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Résumé

La résolution de l’équation des ondes acoustiques et élastiques en 3D dans le domaine fréquentiel
représente un enjeu majeur dans le cadre de l’inversion des formes d’ondes pour l’imagerie haute ré-
solution de cibles crustales (Virieux and Operto, 2009). Après discrétisation, ce problème revient à
résoudre un système linéaire à valeurs complexes, creux, de grande taille (plus de 109 degrés de liberté
pour des cas d’application réalistes), non défini et mal conditionné. Les méthodes d’inversion sismique
requièrent la solution de ce problème pour l’évaluation du problème direct pour un grand nombre de
sources (plusieurs milliers voire dizaines de milliers). Dans l’approximation acoustique, les méthodes
directes sont privilégiées. Cependant, le coût mémoire de ces méthodes les rendent aujourd’hui inu-
tilisables pour résoudre les problèmes élastiques 3D. En raison de leur plus faible coût mémoire, les
méthodes itératives pour les équations en fréquence peuvent être considérées pour l’élastodynamique.
Cependant, une convergence rapide passe par des préconditionneurs adaptés pour les solveurs itératifs.
Par ailleurs, les stratégies pour résoudre des systèmes linéaires avec des seconds membres multiples ne
sont pas aussi efficaces que pour les méthodes directes. La modélisation dans le domaine temporelle
quant à elle présente une importante complexité en coût de calcul et cette complexité croît linéairement
avec le nombre de sources.

Dans cette thèse, l’approche utilisant un solveur itératif est considérée. Le solveur itératif CARP-
CG introduit par Gordon and Gordon (2010a) est considéré. Cette méthode est basée sur la méthode
de Kaczmarz qui transforme un système linéaire mal conditionné en un système hermitien, positif et
qui peut être résolu en utilisant les méthodes du type gradient conjugué (CG). Dans des configurations
de forts contrastes et hétérogénéités, ce solveur s’est révèlé être extrêmement robuste alors que les
méthodes itératives standards basées sur les sous-espaces de Krylov telles que GMRES et BiCGSTAB
nécessitent l’utilisation d’un préconditionneur pour converger (Li et al., 2015). Malgré les bonnes
propriétés de la méthode CARP-CG, le nombre d’itérations nécessaires pour atteindre une précision
suffisante reste néanmoins élevé. Je présente alors une stratégie de préconditionnement adaptée au
problème de propagation des ondes et à la méthode CARP-CG. Ce préconditionneur est un inverse creux
et approché d’un opérateur de propagation des ondes fortement amorti. Le calcul du préconditionneur
est réalisé grâce un algorithme massivement parallèle pour les architectures à mémoire distribuée.

La méthode développée est appliquée à des cas d’étude réalistes. Les applications sont faites sur
des modèles synthétiques 2D dans l’approximation visco-acoustique pour des fréquences allant jusqu’à
40 Hz puis dans l’approximation élastique pour des fréquences allant jusqu’à 20 Hz. Ces études mon-
trent l’efficacité de la méthode CARP-CG munie de la stratégie de préconditionnement. Le nombre
d’itérations est fortement réduit (jusqu’à un facteur 9) permettant d’améliorer considérablement la com-
plexité de la méthode CARP-CG. Des gains en temps de calcul allant jusqu’à un facteur 3.5 sont ainsi
obtenus. La méthode est ensuite appliquée à un cas 3D synthétique et réaliste dans l’approximation
visco-élastique pour des fréquences allant de 1.25 Hz à 7.5 Hz. Des résultats encourageants sont
obtenus. Munie du préconditioneur, la méthode CARP-CG permet de résoudre ces systèmes linéaires



deux fois plus rapidement.

La stratégie de préconditionnement implique la nécessité de plus grandes ressources en mémoire
pour le solveur itératif; cependant, elles ne constituent pas une limitation pour la méthode et restent très
négligeables devant celles requises par les solveurs directs. La principale limitation réside dans le temps
de calcul qui demeure assez significatif. Cependant, cette méthode constitue un solveur compétitif
comparé aux autres solveurs en temps et direct utilisés aujourd’hui dans le cadre de l’inversion des
formes d’ondes.
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Abstract

A robust and efficient wave modeling method is the cornerstone of high resolution seismic inversion
methods such as the frequency-domain Full Waveform Inversion (Virieux and Operto, 2009). After dis-
cretization, frequency-domain wave modeling amounts to the solution of large (up to several billion of
unknowns for realistic case studies), sparse, indefinite and ill-conditioned linear systems. Furthermore,
seismic inversion methods require the solution of this problem for numerous sources (from several
thousands up to tens of thousands). In the acoustic approximation, 3D real case studies can be handled
efficiently using direct solvers. However because of their tremendous intrinsic memory requirements,
they are not yet adapted to the solution of the 3D elastodynamics equations. Iterative solvers provide an
alternative to direct solvers. However, they require a preconditioning strategy to ensure convergence for
the frequency-domain wave equation. Besides, multiple right-hand sides linear systems are not treated
as efficiently as direct solvers do.

In this thesis, we are interested in the use of a robust iterative solver adapted to the solution of these
systems called CARP-CG (Gordon and Gordon, 2010a). The CARP-CG method has shown robust
convergence properties for 2D and 3D elastic problems in highly heterogeneous media compared to
standard Krylov methods such as GMRES or Bi-CGSTAB which require the use of a preconditioner
to ensure convergence (Li et al., 2015). Despite the good convergence properties of CARP-CG, the
latter still requires a large number of iterations to reach sufficient accuracy. I introduce an efficient
preconditioning strategy adapted to the CARP-CG method and the frequency-domain wave problem.
This preconditioner is computed as a sparse approximate inverse of a strongly damped wave propagation
operator. The computation of the preconditioner is performed in a massively parallel algorithm for
distributed memory architectures.

The efficiency of the preconditioner is evaluated on several case studies. First, applications are
performed on realistic synthetic models in the 2D visco-acoustic approximation (up to 40 Hz) and the
2D visco-elastic approximation (up to 20 Hz). These studies show that the CARP-CG method together
with the preconditioning strategy is robust and efficient. The number of iterations is significantly re-
duced (up to a factor 9) enabling a speedup in the computation time by a factor up to 3.5. Second, this
method is investigated in the 3D elastic approximation on a realistic synthetic case study on the range
of frequencies 1.25 to 7.5 Hz. Very encouraging results are obtained with a significant reduction in the
number of iterations. A slow increase of the number of iterations with respect to the frequency is noted.

This preconditioning strategy adapted to the CARP-CG method implies larger memory require-
ments. However, this extra memory cost remains one order lower compared to direct solver memory
requirement, and should be affordable on standard HPC facilities. The main bottleneck preventing from
the possible use of this iterative solver for 3D elastic FWI remains the computation time for the wave
equation solves.
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Introduction

Systems of linear equations are ubiquitous in science and engineering. Being able to solve large scale
systems in a short amount of time is a mathematical and computational challenge. The subject of this
work is the design of a preconditioning strategy for the frequency-domain wave equations adapted to
the iterative solver CARP-CG. The reasons for this particular choice are discussed in this introduction.
First, the research field which has motivated this work, namely the field of seismic imaging techniques,
is described. Then, we provide arguments for considering iterative methods and we shall identify where
one needs to make progress for considering these methods competitive with respect to other methods
such as direct solvers or the time dependent techniques. The design, construction, analysis and testing of
different strategies of preconditioning the frequency-domain wave equations are the main contributions
of this work.

Imaging Earth’s structure at the crustal scale

Seismic imaging is one of many remote sensing methods available to geophysicists to study and build
quantitative images of the subsurface parameters. The inversion of seismic waves allows to recover
certain properties of the geological structures. P-wave velocity, density, attenuation and anisotropy
parameters can be reconstructed in the acoustic approximation. One may consider additional quantities
as S-wave velocity and S-wave attenuation in the framework of the elastic inversion. At the crustal
scale, seismic imaging methods help the understanding of many scientific questionings on the internal
mechanisms of the Earth such as landslide, volcanic activity and seismology which require sharper
and sharper imaging techniques. At the exploration scale, these methods are a crucial stake for the
natural resource search and in particular for the oil and gas industries for purposes of exploration or
exploitation of the hydrocarbon reservoirs. Besides the seek of natural resource aspects, as CO2 and
radioactive waste are confined underground, seismic inversion methods are used as well for locating,
monitoring and the surveillance of these disposal sites.

In the context of seismic exploration, geophysicists use these seismic imaging tools to perform a
veritable echography of the subsurface. Their investigations cover several tens of kilometers at the
surface and rarely exceed ten kilometers at depth. They characterize the P-wave velocity, density,
attenuation or anisotropy quantities underground. 3D surveys are set up by laying out source points
and receiver points in a grid over the area to be surveyed. In an onshore seismic survey (see Figure
1a), a shock on the surface of the ground emits seismic waves. The shocks can be produced either by
small explosive charges set at the surface of the ground or by large vehicles equipped with heavy plates
called vibrating trucks which vibrate at a specific power and frequency. The seismic wave travels into
the earth, is reflected by the subsurface formations and returns to the surface where it is recorded by
receivers similar to microphones called geophones. In marine exploration, the shock is produced by
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(a) Onshore (b) Offshore

Figure 1: Schematic of an onshore and offshore setup for a seismic survey (Total).

an air gun and hydrophones record the data which reflects to the surface (see Figure 1b). There are
two classes of seismic sensors which are used to record the data. In onshore surveys, vector sensors
are usually used. They record the particle displacement. A classic example of a vector sensor is the
moving-coil geophone. They are directional sensors and thus can distinguish between horizontal and
vertical motions. In offshore surveys, scalar sensors are used to measure only the magnitude of the
disturbance and do not indicate the direction of the motion. The hydrophone is the classic example of
scalar sensor used in the seismic industry to measure pressure variations.

Over the past decades, 3D seismic surveys have become increasingly denser. The area covered by
these surveys exceeds easily several hundred square kilometers. The spacing between the source and
receiver points is determined by the design and the aims of the survey. Often, source and receiver are 20
to 100 meters apart along the source line direction and 50 to 100 meters apart laterally to create parallel
source lines. Such dense acquisitions provide finally several ten thousands of source and receivers
points.

Seismic imaging techniques – Full Waveform Inversion FWI

Full waveform inversion is recognized to be a promising technique for the estimation of the surface
parameters (Virieux and Operto, 2009). This method relies on the entire waveform information, i.e.
phase and amplitude of both transmitted and reflected energy, to provide high resolution imaging re-
sults. FWI was first formulated as a least square optimization problem (Tarantola, 1984) which aims at
minimizing the difference between the simulated data and the observed data dobs in the sens of the L2

norm. Consider the forward problem equation

F (m)u = φ, (1)

where m denotes the model parameters, F (m) denotes the linear forward problem operator which
corresponds to wave equation discretization, φ is the source vector and u is the wavefield vector. The
model parameter m could embrace any set of the medium parameters influencing the propagation of
seismic waves in the subsurface. These notations are general and can be either in the time domain or in
the frequency domain. The FWI problem can be expressed as

min
m
C(m) =

1

2

Ns∑
s=1

||Psus(m)− ds||22, (2)

where us(m) and ds are respectively the solution of the forward problem (1) with respect to the source
φs and the recorded data, Ns is the number of sources and Ps is a restriction operator which maps the
wavefield us(m) to the receivers locations.

18
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Although the cost function was originally formulated using the L2 norm, the latter is sensitive to
ambient noise naturally present in the subsurface giving rise to a lack of robustness of the L2 norm.
Alternative norms are have been investigated since then to remedy this problem. The L1 norm is
introduced by Tarantola (1987) showing a robustness towards the presence of noise in the data as well as
hybrid approaches combining the L1 and L2 norm (Bube and Langan, 1997). Recently, the Wasserstein
metric, related to the optimal transport, is introduced to measure the distance between the observed and
simulated data (Métivier et al., 2016; ?). This breakthrough helps mitigating another well known issue
of FWI in the seismic imaging community which is the cycle skipping problem.

The expression of the gradient of the misfit function C is given by

∇C(m) = Re

(
Ns∑
s=1

JHs P
H
s (Psus(m)− ds)

)
,

where Js denotes the Jacobian matrix ∂mus(m), the symbol H denotes the complex conjugate trans-
pose operator and Re is the real part of a complex number. The Hessian operator is

H(m) = Re

 Ns∑
s=1

JHs PHs PsJs +
m∑
j=1

[
PHs (Psus(m)− ds)

]
j
Hsj

 ,

with
Hsj = ∂2

mm(us)j(m),

where m ∈ N is the number of components of the model parameter m. The Gaussian-Newton approx-
imation of the Hessian is

H̃(m) = Re

(
Ns∑
s=1

JHs P
H
s PsJs

)
Thanks to the gradient and the Hessian, the minimization problem (2) is solved using the update formula

m(k+1) = m(k) + δm(k),

where δm(k) is the solution of
H(k)δm(k) = −∇C(m(k)),

or, in the Gauss-Newton approximation

H̃(k)δm(k) = −∇C(m(k)),

The explicit computation and storage of the the Jacobian and Hessian matrices is prohibitive for large
scale problems in FWI applications. Diagonal approximations of the Hessian are more conventionally
used (Pratt et al., 1998; Shin et al., 2001). However, the computation of the gradient can be performed
efficiently and relies on using the classical adjoint-state method (Plessix, 2006a) where the ith compo-
nent of the vector∇C(m) is computed through

(∇C(m))i =

Ns∑
s=1

Re (∂miF (m)us(m),λs(m)) , (3)

where λs(m), defined as the adjoint-state or the adjoint wavefield, is the solution of

F (m)Hλs(m) = PHs (ds − Psus (m)) , (4)
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which is referred to as the adjoint problem. In essence, the gradient is proportional to the correlation
of the direct wavefield which is solution of the forward problem (1) and the adjoint wavefield which
is solution of the adjoint problem (4). Therefore, a fundamental element of FWI is a full waveform
modeling method which enables robust and fast computations of the direct and adjoint wavefields.

Time-domain versus frequency-domain FWI

As noted, FWI was first formulated in the time domain (Tarantola, 1984). In the time domain, the
data are represented by temporal seismograms. The first applications of time-domain FWI suffered
from the huge computational costs of this method which limits the possible number of iterations of the
optimization problem. An implicit summation over all the time steps is performed in the computation
of the gradient (3) which requires the storage in memory of the direct and adjoint wavefields on all the
computation domain for all time steps and for all sources at a time. The computation of the gradient
becomes quickly impossible due to the large number of time steps and the memory request it involves.
In practice, the gradient is updated at each time step ti. Once the adjoint wavefield is computed, the
direct wavefield is recomputed from scratch. The contribution of the correlation for the time step ti is
added to the gradient resulting from the previous time steps. The re-computation of the direct wavefield
is accelerated by storing samples of the direct wavefield at specific time steps. The computation of
the direct wavefield is then performed starting from the closest previous stored value which is used
as an initial condition. This method is referred to as checkpointing (Griewank, 1992; Symes, 2007).
Another approach consists in the storage of the direct wavefields at all time steps but only on the
boundaries of the computation domain. From these values, the direct wavefield is computed on all the
domain by time-reversal (Clapp, 2008). However, the main limitation of such approach is the reverse
propagation in media with attenuation which is a difficult framework for time-domain wave propagation
as attenuation is naturally present in the subsurface.

In the early 1990s, Pratt and Worthington (1990) suggested a frequency-domain formulation of
FWI. The temporal seismic data is transformed in the frequency domain by Fourier Transform yielding
complex valued data. The frequency-domain FWI approach is equivalent to the time-domain approach
when all the frequencies are inverted simultaneously. Sirgue and Pratt (2004) showed that frequency-
domain FWI can be performed using a limited number of frequencies which is one of the most advan-
tageous feature of this approach from a computational point of view. It is therefore feasible to store the
direct and adjoint wavefields on all the computation domain for a limited number of frequencies. The
implicit summation over all the time steps which is performed in the computation of the gradient (3)
is therefore replaced by an implicit summation over the number of frequencies. The frequency-domain
FWI was conferred a privileged position for seismic imaging ever since.

Frequency-domain versus time-domain forward problem

Frequency-domain FWI requires the computation of frequency-domain direct and adjoint wavefields in
arbitrarily heterogeneous media and for a large number of sources. There are numerous methods for
modeling such problems such as finite-difference methods (Virieux, 1986; Moczo, 1989), finite-element
methods (Marfurt, 1984; Brossier et al., 2010) and finite-volume methods (Dormy and Tarantola, 1995;
Brossier et al., 2008). Among these methods, the finite-difference method provides a good compro-
mise between computational cost, accuracy, simplicity of implementation and the ability to describe
heterogeneous media. Over the past decades, substantial efforts have been concentrated in including
more realistic descriptions of the media in FWI such as density, anisotropy and attenuation. Most of
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the FWI applications are mainly based on the acoustic approximation of the wave propagation prob-
lem (Dessa et al., 2004; Operto et al., 2006; Plessix et al., 2012). Such approximation is advantageous
due to the low numerical cost of solving the wave propagation problem. Furthermore, thanks to the
enhancement of modern computing clusters, recent developments are evolving from 2D to 3D geome-
tries which requires a very efficient forward problem solver and efficient strategies for handling large
memory requests. Thus, the central criterion for a feasible and efficient frequency-domain FWI is a
robust and efficient forward problem solver that is able to manage efficiently multiple sources. In the
following discussion, the dimension of a 3D N3 computational grid is denoted by N .

The numerical solutions of the wave equations can be obtained by considering the latter in the time
domain. An explicit time-marching algorithm is commonly used. At each time step, the solution over
the computation domain is estimated from the solutions at the previous time steps. The computation of
the frequency-domain wavefields is obtained by a discrete Fourier (DFT) summation over time (Sirgue
et al., 2008). The time-domain algorithm can be efficiently parallelized using domain decomposition
methods. The time and memory complexities for the time-domain solver for 3D finite-difference prob-
lems areO(N4) andO(N3) respectively for one source modeling. The main limitation of this approach
is the lack of strategies for accelerating multiple sources modeling and the computational cost of the
DFT which is as expensive as the time-marching algorithm. Therefore, the time complexity scales lin-
early with the number of sources. Warner et al. (2013) performed 3D acoustic FWI using a time-domain
solver combined with DFT on the Tommeliten Alpha field in the North Sea. The 3D survey covers a
surface of 208 km2 and is 4 km deep with 1,440 sources. This approach enables to extract frequencies
up to 6.5 Hz which corresponds to a 321x261x81 discretization of the 3D domain. A sub-sampling
of the data is carried out to drastically reduce the computational cost of the method. Only 80 sources
among the 1,440 are used at each iteration of FWI.

Alternatively, the wave equations can be formulated straightforwardly in the frequency-domain
yielding a sparse linear system with multiple right-hand sides to be solved. This linear system can
be solved using a direct solver based on a LU decomposition. Parallelism is implemented through
multifrontal and nested dissection techniques such as the MUMPS solver (George and Liu, 1981; Duff
et al., 1986; Amestoy et al., 2000b). Once the parallel lower-upper factorization is performed, the
solutions can be computed efficiently by backward and forward substitutions. With such approach, the
time and memory complexities areO(N6) andO(N4) respectively which points out the main limitation
of the direct solver approach that is the memory issue. This direct solver is used in the framework of
the 3D acoustic frequency-domain FWI in anisotropic media by Operto et al. (2015) on the Valhall case
study. The model covers a surface of 145 km2 and is 4 km deep. The frequencies modeled reach 10 Hz
yielding a linear system of size 17 million unknowns with more than 4,000 right hand sides.

An alternative approach for the solution of the frequency-domain wave equations relies on pre-
conditioned iterative methods (Saad, 2003). Krylov subspace methods are generally used such as the
generalized minimal residual method (Saad, 1986) or the biconjugate gradient stabilized method (Van
der Vorst, 1992). These iterative methods start from an initial guess and compute successive approx-
imations of the solution through a projection process. The central ingredient of any iterative method
is an efficient preconditioning method. A preconditioner is an operator which transforms the original
linear system into another with better spectral properties, i.e. location and clustering of the eigenvalues.
The design of an efficient preconditioner for the frequency-domain wave equations is an active field of
research. The impedance matrix is indefinite with positive and negative eigenvalues along the real axis
and ill-conditioned. Made et al. (2000) have shown on the Helmholtz equation that by introducing a
complex perturbation in the diagonal of the impedance matrix, the spectral properties of the precondi-
tioned linear system are well improved by shifting and clustering the eigenvalues in the positive part
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of the real axis. Later, Erlangga et al. (2006a), Riyanti et al. (2006) and Plessix (2007) introduced
the complex shifted Laplacian preconditioner where an imaginary term is added to the Laplacian of
the Helmholtz equation which is equivalent to a damped version of the Helmholtz equation. The ap-
proximate solution of the damped wave equation is obtained by one cycle of multigrid. With such a
preconditioner, Plessix (2007) have shown that the number of iterations increases linearly with respect
to the frequency. The complex shifted Laplacian preconditioner is further improved by Erlangga and
Nabben (2008b) who introduced a multigrid multi-level Krylov method based on a deflated precon-
ditioner. This approach led to a number of iterations that is almost independent of the frequency. In
this ideal case, the computational complexity of the iterative solver would be O(N3) while previous
iterative methods have O(N4). Their memory complexity is O(N3). Plessix (2009) present a 3D
frequency-domain acoustic FWI with the multigrid preconditioned iterative solver. Applications on the
synthetic SEG/EAGE overthrust and salt case studies and a real data example show the ability to use the
preconditioned iterative solver as a forward modeling tool in FWI at least up to 10 Hz with more than
1,300 sources on standard modern computers. At 7 Hz, the computational grid contains 307x103x103
points and the 15 iterations of the inversion at 7Hz are performed in 36 hours using 1369 cores (2.6
GHz AMD processors).

Unlike time-domain approaches, the use of block iterative solvers and projection-based methods
should enable efficient solving of multiple right-hand side linear systems (O’Leary, 1980; Smith et al.,
1989; Chan and Wan, 1997). Such techniques should theoretically provide a better numerical scheme
than the time-domain solver.

Toward 3D frequency-domain elastic FWI: Challenges and bottlenecks

In the industry, challenging 3D problems involving large grid size of 10013 or larger are investigated (?).
The high computational cost and memory requirements of the seismic wave modeling limits the feasi-
bility of frequency-domain FWI. In the acoustic approximation, FWI can performed in the frequency-
domain efficiently using a sparse parallel direct solver for numerous sources (Operto et al., 2015).
However, in the elastic approximation, the size of the linear systems to be solved increase dramati-
cally which prohibits the use of sparse direct solvers on the actual clusters. Although recent attempts
have addressed 3D frequency-domain elastic wave modeling with direct solvers (Wang et al., 2012;
Gosselin-Cliche and Giroux, 2014), challenging large scale problems involving large grid size seem to
be still out of reach for direct solvers. Therefore, other approaches suggest the use of iterative solvers
or time-domain solvers as they require far less memory than direct solvers.

Time-domain approaches have matured enough and are extensively used in seismic imaging tech-
niques. However, no multiple right-hand side accelerations can be implemented and furthermore, the
implementation of attenuation effects is more difficult and computationally expensive. Frequency-
domain iterative solvers present similar theoretical complexities as time-domain schemes and allow
to account for attenuation effects efficiently by means of complex velocity (Kolsky, 1956; Futterman,
1962). Until recently, iterative solvers have been questioned on their robustness in the case of very
heterogeneous media as well as the feasibility of elastic wave modeling (Virieux et al., 2009). The
development of optimal iterative solvers is still an active field of research (Plessix, 2007; Erlangga and
Nabben, 2008a; Engquist et al., 2011; Poulson et al., 2013). Although they are successfully used in
the framework of 2D and 3D frequency-domain acoustic FWI, the evolution towards 3D elastic is still
an open question. A 3D elastic frequency-domain FWI application is carried out by Pan et al. (2015)
using BiCGStab with the complex shifted Laplacian preconditioner. However, the size of the problem

22



INTRODUCTION

(hundred of meters per dimension) which is investigated is way far from realistic problem size or even
medium-sized typical FWI applications.

Recently, the iterative solver CARP-CG introduced by Gordon and Gordon (2010a) has attracted
a particular interest for the solution of the frequency-domain wave equation. It is used in the 3D
frequency-domain acoustic waveform inversion by van Leeuwen and Herrmann (2014) together with a
Block iterative method to solve multiple right-hand sides linear systems. Furthermore, its robustness
is demonstrated as well by Li et al. (2015) on large and complex models in the 2D and 3D elastic
approximations. The convergence is obtained with a number of iteration in O(Nα) with α < 1 in
arbitrarily heterogeneous media.

Objectives of the thesis

The work carried out in this thesis is to further investigate the efficiency of this particular iterative solver
CARP-CG thanks to a preconditioning method. The objective of this thesis is to develop a numerical
method of the solution of the 3D frequency-domain viscoelastic wave equations.

Outline

To begin with, Chapter 1 introduces the methods for the simulation of the wave propagation in the
subsurface. In the first part, the equations governing the propagations of waves in the subsurface are
introduced. These equations are formulated in the time domain from which the frequency-domain
equations are derived. Both acoustic and elastic approximations are considered. Simulating properly
the propagations of seismic waves at the regional scale requires to use adequate boundary conditions.
The medium is considered infinite in the horizontal direction and the vertical direction at depth. There-
fore, absorbing and free-surface boundary conditions are introduced. The Perfectly Matched Layers of
Bérenger (1994) are used for the absorbing boundary conditions. The method of Mittet (2002) is used
for the free-surface. Finally, this work focuses on the finite-difference method for the discretization
of the wave equations. The staggered-grid method for the wave equations (Madariaga, 1976; Virieux,
1984) is introduced together with the parsimonious approach (Luo and Schuster, 1990). In the time
domain, the system of algebraic equations written in the velocity-stress formulation is obtained in the
elastic approximation. In the acoustic approximation, the system of equations reduces to one equation
involving the pressure wavefield. In the second part, the three different methods for the computation of
the seismic waves in the frequency-domain are discussed: (1) the time-domain approach combined with
a Discrete Fourier Transform, (2) the solution of the linear system resulting from the discretization of
the frequency-domain wave equations using a direct solver or (3) an iterative solver. These methods are
evaluated in the framework of seismic imaging techniques, i.e. for the solution of the forward problem
with numerous sources or right-hand sides. An overview of the standard iterative solvers is presented
as well as the preconditioning methods.

Chapter 2 describes the iterative solver CARP-CG in the first part. In the second part, I seek to
improve the convergence properties of this iterative method. This is the main contribution of this work.
The spectral properties of the preconditioned equations are evaluated in the 2D visco-acoustic and visco-
elastic approximations. A method for the computation of a sparse approximation of the preconditioner
is then suggested.
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Chapter 3 is dedicated to the evaluation of the preconditioned iterative method on 2D realistic case
studies. In the first part, the method is used to solve the 2D frequency-domain visco-acoustic wave
equation on the BP2004 model (Billette and Brandsberg-Dahl, 2004). In the second part, it is applied
in the 2D visco-elastic approximation on the Marmousi 2 model (Martin et al., 2006). The efficiency of
the preconditioner as well as the scaling properties of the CARP-CG method are investigated.

Last, Chapter 4 is dedicated to a 3D realistic application in the visco-elastic approximation of the
preconditioned iterative solver. The efficiency of the preconditioner is evaluated. The memory issue
is addressed as well. A theoretical comparison with the time-domain solver on the computational and
memory complexities is carried out.

This thesis ends with conclusions and a list of improvements which can be carried out for future
developments.

All the numerical tests are performed on the Grenoble Alpes University High Performance Com-
puting Center (CIMENT). The cluster is composed of nodes having 2 Intel Sandy Bridge processors
and connected to a FDR Infiniband non-blocking low latency network. Each node has two CPUs Intel
Xeon E5-2670 2.6 GHz octacore, that is, 16 computing cores per node. Nodes with 64 GB of RAM as
well as nodes with 128 GB of RAM are available.

24



Chapter 1

Modeling the seismic wave propagation in
the subsurface

Contents
1.1 Seismic wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1.1 Newton’s law: conservation of momentum . . . . . . . . . . . . . . . . . . 27

1.1.2 Linear stress/strain relation: Hooke’s law . . . . . . . . . . . . . . . . . . . 28

1.1.3 Isotropic media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Time-domain formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.1 Second-order isotropic elastic wave equations: displacement-stress formulation 30

1.2.2 First-order isotropic elastic wave equations: velocity-stress formulation . . . 31

1.2.3 First-order isotropic acoustic wave equations: velocity-pressure formulation . 31

1.2.4 Second-order isotropic acoustic wave equation: pressure formulation . . . . 32

1.2.5 Types of waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.3 Frequency-domain formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.1 First-order and second-order frequency-domain elastic wave equations . . . . 34

1.3.2 Second-order frequency-domain acoustic wave equation . . . . . . . . . . . 35

1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.1 Absorbing boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4.2 Free surface boundary condition . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5 Finite-difference discretization strategy . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.1 Fourth-order staggered finite-difference scheme for the 2D acoustic wave

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.5.2 Fourth-order staggered-grid finite-difference scheme for the 2D elastic wave
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.5.3 Fourth-order staggered-grid finite-difference scheme for the 3D elastic wave
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.6 Frequency-domain wave modeling : three strategies . . . . . . . . . . . . . . . . 50
1.6.1 Time-domain wave modeling with DFT . . . . . . . . . . . . . . . . . . . . 50

1.6.2 Frequency-domain wave modeling using a direct method . . . . . . . . . . . 51

1.6.3 Frequency-domain wave modeling using an iterative method . . . . . . . . . 51



MODELING THE SEISMIC WAVE PROPAGATION IN THE SUBSURFACE

1.7 Iterative methods and preconditioning for the solution of the frequency-domain
wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.7.1 Iterative methods for the solution of linear systems . . . . . . . . . . . . . . 54
1.7.2 Difficulties to use an iterative solver for the solution of the Helmholtz equation 63
1.7.3 Preconditioning strategies for iterative methods . . . . . . . . . . . . . . . . 65

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

The context in which this work has been carried out is related to high resolution seismic imaging
methods such as Full Waveform Inversion (FWI) or Reverse Time Migration (RTM). These methods
require to perform numerous seismic wave propagation simulations during the optimization procedure
to build quantitative images of model parameters. Designing efficient tools to perform these simulations
is thus crucial.

The Earth is a solid medium and, as a consequence, both compressive and shear waves are prop-
agating in the subsurface. This is the elastic wave propagation framework, which is a challenging
problem from a numerical simulation point of view. Often, we may consider simpler and, therefore,
faster simulation strategies (in the sens of the computation time) by considering the Earth as a fluid:
only compressive waves are propagating. This is the acoustic wave propagation framework. During
my research investigations, I consider both acoustic and elastic wave propagations. I shall consider the
FWI in the frequency domain. Modeling the wavefield in the frequency domain may be performed in
three ways. The first strategy consists in solving the wave problem in the time domain and extract the
frequencies needed thanks to the Discrete Fourier Transform (DFT). The two other strategies solve the
wave problem in the frequency domain using either a direct or an iterative linear solver. We are mainly
interested in the latter approach. In this chapter, I introduce the key elements allowing to describe this
problematic.

First, a description of the system of equations governing the propagation of waves in the subsurface
is introduced. These equations are presented in the time domain for completeness although I shall
not consider them in my investigation. I shall deduce related expressions in the frequency domain
where I shall consider both elastic and acoustic approximations. They need to be solved efficiently
in any arbitrarily heterogeneous medium in the framework of the imaging method we are interested
in. Absorbing boundary conditions and free surface boundary conditions are introduced to simulate
properly the seismic wave propagation in the Earth. The discretization of the acoustic wave equation
and of the system of elastic wave equations is performed using the staggered grid finite-difference
method, leading to a discrete linear system to be solved. This linear system could be solved either by a
direct or an iterative solver.

Direct solvers can provide efficient techniques for the 3D acoustic equation at the exploration scale.
In the framework of FWI, Operto et al. (2015) use a parallel sparse direct solver to compute the solu-
tion of the 3D frequency-domain visco-acoustic wave equation taking into account vertical anisotropy.
Simulations are performed on the Valhall real case study. The model covers a large surface of 145 km2

and is 4 km deep. The frequencies modeled reach 10 Hz, yielding a linear system of size 17 million
unknowns with more than 4000 right hand sides which requires 1.6 TB of memory for the storage of
the LU factors. The massively parallel sparse direct solver of MUMPS (Amestoy et al., 2001, 2000a) is
used in his study. This solver relies on the multifrontal method (Duff et al., 1986) allowing to distribute
the factorization on parallel architectures. This solver is combined with a block-low rank approximation
of the dense frontal matrices to reduce the memory demand and the computational costs (Weisbecker
et al., 2013; Amestoy et al., 2015b) as well as a nested-dissection algorithm (George and Liu, 1981)
based on a reordering strategy to reduce the filling during the factorization.
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1.1 Seismic wave equation

A recent attempt was performed by Wang et al. (2012) for the 3D elastic wave problem in the
frequency domain using a direct solver. They use a hierarchically semi-separable (HSS) low rank matrix
compression for the reduction of the computation and memory costs. The 3D frequency-domain elastic
wave equations are solved on the SEAM3D model covering a 19 km2 surface with a 3.3 km depth. This
model is discretized with a compact finite-difference stencil according the shortest wavelength yielding
a 201× 201× 151 mesh at the frequency 10 Hz and a linear system of size 54.9 million unknowns
which requires 2.2 TB of memory for the storage of the LU factors.

In addition, specific stencils are designed for 3D wave modeling in the acoustic and elastic approx-
imation when direct solvers are used. Operto et al. (2014) use a 3D fourth-order mixed-grid finite-
difference stencil of compact support for the 3D visco-acoustic wave modeling. A similar strategy
is adopted by Gosselin-Cliche and Giroux (2014) for the 3D visco-elastic wave modeling. They use
a second-order finite-difference staggered grid stencil of compact support with optimal coefficients.
Such strategies allow to reduce the bandwidth of the impedance matrix and thus minimize the compu-
tational cost of the lower-upper decomposition of the impedance matrix in terms of memory demand
and floating-point operations.

Despite these efforts, direct solvers are not yet adequate for the solution of the 3D visco-elastic
wave equations in realistic size models. The size of the achieved simulations is still modest and does
not correspond to the size of the problems which could be treated in the oil and gas industry, where the
number of discretization points could exceed several thousands in each dimension.

As iterative method fully benefit from the sparsity of the linear system, they appear as an interesting
tool for such large scale simulations. I shall discuss why they are still facing difficulties related to their
convergence. Designing preconditioning strategies will be at the heart of this work.

1.1 Seismic wave equation

Simulating the propagation of seismic waves in the subsurface requires to account for the full complex-
ity of the Earth model parameters. Therefore, the solution of the full 3D equations must be considered
rather than their 2D approximations. Moreover, the upper crust of the Earth must be considered as an
elastic anisotropic medium with strong heterogeneities. Therefore, the seismic waves are composed
of compressional waves and shear waves which travel at different velocities. Furthermore, the surface
of the medium presents often a complex topography (in opposition to a flat topography) and, because
of the free surface condition, another type of waves appears which are located mainly along the free
surface, namely surface waves. Although many textbooks exist on how to build up partial differential
equations for the modeling of the wave propagation (Aki and Richards, 1980, 2002; Chapman, 2004), I
shall remind the main principles and governing laws in this section for the sake of completeness.

1.1.1 Newton’s law: conservation of momentum

The seismic wave propagation is governed by elastodynamics wave equations. These equations are de-
rived from the Newton’s law relating the acceleration to external forces. This relation can be expressed
as

ρ
∂2ui
∂t2

=
∑
j

∂jσij + Fi, (1.1)
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where the density is denoted by ρ. The quantities ui and σij are respectively the particle displacement
and the stress tensor with i, j denoting possible space directions, and Fi is the volumetric applied force.

The deformation of a continuum body can be linked to the strain tensor εij through the rheological
laws of mechanics. The particle displacement and the strain tensors are therefore linked through

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
. (1.2)

Note that in the relation (1.2), an implicit summation over the repeated index k is assumed (Einstein
summation convention). One can see that the definition (1.2) is non-linear with respect to the displace-
ments. In the framework of the seismic wave propagation, we consider small perturbations approxima-
tion: only the first-order terms are kept, and upper order terms in ui are neglected. The corresponding
linearized constitutive law writes

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.3)

1.1.2 Linear stress/strain relation: Hooke’s law

In the framework of the wave propagation, one may also consider the simple relation given by the
generalized Hooke’s law where the strain and stress tensors are linked linearly. It is defined as follows
using the tensor of fourth-order cijkl

σij =
3∑

k=1

3∑
l=1

cijklεkl.

In a general fully anisotropic medium, the above formula provides a 81 stiffness element tensor. How-
ever, inherent symmetries of stress tensor

σij = σji ⇒ cijkl = cjikl,

reduces the number of independent stiffness elements from 81 to 54, and symmetries of the strain tensor

εkl = εlk ⇒ cijkl = cijlk,

reduces the number of independent stiffness elements from 54 to 36. To further reduce the number of
independent stiffness elements, one needs to account for energetic considerations (Reddy, 2002). The
strain energy ψ is introduced

ψ =
1

2
Eε2. (1.4)

The Young’s modulus, denoted by E and also known as the elastic modulus, describes the elastic
properties of the medium. It is expressed as the ratio of the stress by the strain. Using the above
equation (1.4), the stress tensor can be expressed as

σij =
∂ψ

∂εij
= cijklεkl,

leading to

cijkl =
∂2ψ

∂εkl∂εij
=

∂2ψ

∂εij∂εkl
= cklij .
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1.1 Seismic wave equation

Considering the symmetries of the stress tensor further reduces the number of independent stiffness
elements to only 21 which can be recast as a 6 × 6 matrix, using the Voigt’s notations (Voigt, 1889).
Following these notations, the stress tensor may be stated as a 6-components vector through

σ = (σ1, σ2, σ3, σ4, σ5, σ6)T = (σxx, σyy, σzz, σyz, σxz, σxy)
T ,

where the upper script T is for transposition. The strain tensor is written as well

ε = (ε1, ε2, ε3, ε4, ε5, ε6)T = (εxx, εyy, εzz, 2εyz, 2εxz, 2εxy)
T .

Note the factor 2 in the strain vector definition which will require cautiousness when manipulating these
entities as they do not follow vector properties. We end up with the following expression

σxx
σyy
σzz
σyz
σxz
σxy

 =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66





εxx
εyy
εzz
2εyz
2εxz
2εxy

 .

Here, I keep the subscripts x, y, z instead of the index numbers for the stress and strain tensors to keep
in mind spatial coordinates while I use them.

1.1.3 Isotropic media

I focus in this thesis on isotropic media. In this case, the properties of the medium remain the same with
respect to the space directions. The stiffness tensor can therefore be reduced to only two independent
physical parameters as in the following expression

σxx
σyy
σzz
σyz
σxz
σxy

 =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





εxx
εyy
εzz
2εyz
2εxz
2εxy

 , (1.5)

where the Lamé parameters are denoted by symbols λ and µ. An isotropic medium can then be charac-
terized by only two parameters where µ is also known as the shear modulus. The mechanics community
usually employs the Young modulus E which measures the stiffness and the compressional properties
of a body and the Poisson ratio ν related to the Lamé parameters through the equations

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
.

These coefficients better describe the rock physics during laboratory experiments where the measure-
ment is performed through strains. For the formulation of the wave propagation equations, the Lamé
coefficients are usually preferred.
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1.2 Time-domain formulation

Following the above relations, one can derive the equations governing the wave propagation in the
time domain. In order to reduce the computational cost and the memory requirements, the equations
are usually written with respect to the particle displacement or the particle velocity by eliminating
the stress components in the elastic approximation. Under the acoustic approximation, the particle
velocity is eliminated from the system of equations yielding one equation involving the scalar pressure
wavefield.

In the following, the wave equations are derived in the time domain, first in the second-order
displacement-stress formulation, then in the first-order velocity-stress formulation.

1.2.1 Second-order isotropic elastic wave equations: displacement-stress formulation

From the combination of the equation of motion (1.1) and the Hooke’s law (1.5) under the assumption
of an isotropic medium, the elastic system of equations in an isotropic medium can be expressed in the
displacement-stress formulation as

ρ
∂2ux
∂t2

=
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ Fx,

ρ
∂2uy
∂t2

=
∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ Fy,

ρ
∂2uz
∂t2

=
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ Fz,

σxx = (λ+ 2µ)
∂ux
∂x

+ λ
∂uy
∂y

+ λ
∂uz
∂z

+ σxx0 ,

σyy = λ
∂ux
∂x

+ (λ+ 2µ)
∂uy
∂y

+ λ
∂uz
∂z

+ σyy0 ,

σzz = λ
∂ux
∂x

+ λ
∂uy
∂y

+ (λ+ 2µ)
∂uz
∂z

+ σzz0 ,

σxy = µ

(
∂ux
∂y

+
∂uy
∂x

)
+ σxy0 ,

σyz = µ

(
∂uy
∂z

+
∂uz
∂y

)
+ σyz0 ,

σxz = µ

(
∂ux
∂z

+
∂uz
∂x

)
+ σxz0 ,

(1.6)

where the excitation terms σij0 on the stress are added. The system of equations (1.6) can be written
with respect to the particle displacement by eliminating the stress terms, leading to

ρ∂ttux − ∂x ((λ+ 2µ)∂xux)− ∂y (µ∂yux)− ∂z (µ∂zux)− ∂x (λ∂yuy)− ∂y (µ∂xuy)

−∂x (λ∂zuz)− ∂z (µ∂xuz) = Fx + ∂xσxx0 + ∂yσxy0 + ∂zσxz0 ,

ρ∂ttuy − ∂x (µ∂xuy)− ∂y ((λ+ 2µ)∂yuy)− ∂z (µ∂zuy)− ∂y (λ∂xux)− ∂x (µ∂yux)

−∂y (λ∂zuz)− ∂z (µ∂yuz) = Fy + ∂xσxy0 + ∂yσyy0 + ∂zσyz0 ,

ρ∂ttuz − ∂x (µ∂xuz)− ∂y (µ∂yuz)− ∂z ((λ+ 2µ)∂zuz)− ∂z (λ∂xux)− ∂x (µ∂zux)

−∂z (λ∂yuy)− ∂y (µ∂zuy) = Fz + ∂xσxz0 + ∂yσyz0 + ∂zσzz0 .

(1.7)
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1.2 Time-domain formulation

The solution of the system (1.7) is implemented in many widespread computer codes such as the SPICE
Code Validation for seismic wave propagation and earthquake motion simulation developed by Moczo
et al. (2005).

1.2.2 First-order isotropic elastic wave equations: velocity-stress formulation

The system of elastodynamic equations (1.6) can be recast into an hyperbolic system of first-order
equations involving now the particle velocities vi = ∂ui/∂t and the stress components (Virieux, 1986).
This velocity-stress formulation in an isotropic medium is expressed as

ρ
∂vx
∂t

=
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ Fx,

ρ
∂vy
∂t

=
∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ Fy,

ρ
∂vz
∂t

=
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ Fz,

∂σxx
∂t

= (λ+ 2µ)
∂vx
∂x

+ λ
∂vy
∂y

+ λ
∂vz
∂z

+
∂σxx0
∂t

,

∂σyy
∂t

= λ
∂vx
∂x

+ (λ+ 2µ)
∂vy
∂y

+ λ
∂vz
∂z

+
∂σyy0
∂t

,

∂σzz
∂t

= λ
∂vx
∂x

+ λ
∂vy
∂y

+ (λ+ 2µ)
∂vz
∂z

+
∂σzz0
∂t

,

∂σxy
∂t

= µ

(
∂vx
∂y

+
∂vy
∂x

)
+
∂σxy0
∂t

,

∂σyz
∂t

= µ

(
∂vy
∂z

+
∂vz
∂y

)
+
∂σyz0
∂t

,

∂σxz
∂t

= µ

(
∂vx
∂z

+
∂vz
∂x

)
+
∂σxz0
∂t

.

(1.8)

1.2.3 First-order isotropic acoustic wave equations: velocity-pressure formulation

The acoustic approximation is a particular case that can be derived from the elastodynamic equations by
considering the Lamé coefficient µ equal to zero. Under the acoustic assumption, only compressional
waves travel in the medium. Therefore, only the normal stress components σxx, σyy, σzz are kept. The
isotropic elastic wave equations (1.8) reduce to the acoustic wave equation

ρ
∂vx
∂t

=
∂σxx
∂x

+ Fx +
∂

∂y

(
∂σxy0
∂t

)
+

∂

∂z

(
∂σxz0
∂t

)
,

ρ
∂vy
∂t

=
∂σyy
∂y

+ Fy +
∂

∂x

(
∂σxy0
∂t

)
+

∂

∂z

(
∂σyz0
∂t

)
,

ρ
∂vz
∂t

=
∂σzz
∂z

+ Fz +
∂

∂x

(
∂σxz0
∂t

)
+

∂

∂y

(
∂σyz0
∂t

)
,

∂σxx
∂t

= λ

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
+
∂σxx0
∂t

,

∂σyy
∂t

= λ

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
+
∂σyy0
∂t

,

∂σzz
∂t

= λ

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
+
∂σzz0
∂t

.

(1.9)
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The last three equations in the system (1.9) are the same. Therefore by introducing the pressure wave-
field defined as

p = −1

3
(σxx + σyy + σzz),

the first-order hyperbolic acoustic system is expressed as

ρ
∂vx
∂t

= −∂p
∂x

+ Fx +
∂

∂y

(
∂σxy0
∂t

)
+

∂

∂z

(
∂σxz0
∂t

)
,

ρ
∂vy
∂t

= −∂p
∂y

+ Fy +
∂

∂x

(
∂σxy0
∂t

)
+

∂

∂z

(
∂σyz0
∂t

)
,

ρ
∂vz
∂t

= −∂p
∂z

+ Fz +
∂

∂x

(
∂σxz0
∂t

)
+

∂

∂y

(
∂σyz0
∂t

)
,

∂p

∂t
= −κ

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
+ q,

(1.10)

where the excitation q is introduced in the last equation of the system (1.10) and is defined by

q = −1

3

(
∂σxx0
∂t

+
∂σzz0
∂t

+
∂σzz0
∂t

)
.

This excitation term is sometimes called volume velocity source. The latter is adapted to provide an
explosive-type source (Brekhovskikh and Godin, 1990, 1992). In the case of fluid approximation, the
Lamé coefficient λ is equal to the incompressibility coefficient κ. In this case, the P-wave velocity is
sometimes called also the bulk velocity defined as

VP =
√
κ/ρ. (1.11)

1.2.4 Second-order isotropic acoustic wave equation: pressure formulation

The system of equations (1.10) can be reduced to one second-order acoustic equation involving only
the pressure variable as

∂2p

∂t2
− κ

(
∂

∂x

(
1

ρ

∂p

∂x

)
+

∂

∂y

(
1

ρ

∂p

∂y

)
+

∂

∂z

(
1

ρ

∂p

∂z

))
=
∂q

∂t
− κf − κg, (1.12)

where the excitation terms f and g are defined by

f =
∂

∂x

(
1

ρ
Fx

)
+

∂

∂y

(
1

ρ
Fy

)
+

∂

∂z

(
1

ρ
Fz

)
,

g =
∂

∂x

{
1

ρ

[
∂

∂y

(
∂σxy0
∂t

)
+

∂

∂z

(
∂σxz0
∂t

)]}
+

∂

∂y

{
1

ρ

[
∂

∂x

(
∂σxy0
∂t

)
+

∂

∂z

(
∂σyz0
∂t

)]}
+
∂

∂z

{
1

ρ

[
∂

∂x

(
∂σxz0
∂t

)
+

∂

∂y

(
∂σyz0
∂t

)]}
.
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1.2 Time-domain formulation

1.2.5 Types of waves

By introducing the compact vector notation

U = (vx, vy, vz, σxx, σyy, σzz, σxy, σyz, σxz)
T , (1.13)

the system of equation (1.8) can be written in a general matrix form using (1.13) as

∂tU−A∂xU−B∂yU− C∂zU = F

where F is the source term written in matrix form as

F = (Fx, Fy, Fz, σxx0 , σyy0 , σzz0 , σxy0 , σyz0 , σxz0)T ,

and where A, B and C are the 9 × 9 matrices accounting for the medium properties. For the sake of
simplicity, consider the system of equations (1.10) written in the 2D approximation

∂tU−A∂xU−B∂zU = F

with
U = (vx, vz, σxx, σzz, σxz)

T , F = (Fx, Fz, σxx0 , σzz0 , σxz0)T .

The matrices A and B writes explicitly

A =


0 0 1/ρ 0 0
0 0 0 0 1/ρ

λ+ 2µ 0 0 0 0
λ 0 0 0 0
0 µ 0 0 0

 , B =


0 0 0 0 1/ρ
0 0 0 1/ρ 0
0 λ 0 0 0
0 λ+ 2µ 0 0 0
µ 0 0 0 0

 ,

and their characteristic polynomials

χA(x) = det(A− xI), χB(x) = det(B − xI),

can be easily calculated. The latter are given by

χA(x) = χB(x) = −x
(
x2 − λ+ 2µ

ρ

)(
x2 − µ

ρ

)
.

The eigenvalues of the matrices A and B are given by

0, −
√
λ+ 2µ

ρ
,

√
λ+ 2µ

ρ
, −

√
µ

ρ
,

√
µ

ρ
.

These eigenvalues denote the wave propagation velocities. Two waves, called compressional waves or
P-waves, vibrate in the direction of the propagation and travel at the same velocity

VP =

√
λ+ 2µ

ρ
,

but in opposite directions and two other waves called shear waves or S-waves, travel at the velocity

VS =

√
µ

ρ
,
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but in opposite directions. The latter vibrate in the plane which is orthogonal to the direction of the
propagation.

The particular case where the Poisson ratio ν is equal to 0.5 implies that the Lamé coefficient µ is
equal to 0. It corresponds to the acoustic approximation. Therefore, only compressional waves travel
in the acoustic medium as VS = 0.

A particular attention is given to the zero eigenvalue. It correspond to a singular mode which should
not be excited during the numerical resolution as it may lead to instabilities.

In the following, we shall derive the wave equations in the frequency domain. The computation of
the solution of these equations is the main interest of this work.

1.3 Frequency-domain formulation

The wave equation, either in the elastic or the acoustic approximation, can be written in the frequency
domain. For simplicity, the same notations are used for describing the unknowns in the time domain
and the frequency domain as I shall consider only the frequency domain for my investigation. The
frequency-domain unknowns are introduced through the Fourier transform with the convention

F : g(t) 7−→ F(g)(ω) =

∫ +∞

−∞
g(t)e−iωtdt,

where we consider the angular frequency ω related to the frequency f (inverse of the period for an
harmonic signal) through the relation ω = 2πf . The pure imaginary number i is such that i2 = −1.
By integration by parts, one can find that the Fourier transform of the time derivative of a function g is
given through the equation ∫ +∞

−∞

dg(t)

dt
e−iωtdt = iωg(ω).

In the following, I shall derive the frequency-domain wave equations when considering the first-
order velocity-stress formulation, the second-order velocity formulation and finally the second-order
pressure formulation. While composing these linear systems, we focus on the second-order hyperbolic
systems. The discretization of these systems using compact derivation stencils reduces the memory
request for storing field components, as well as the size of the corresponding linear system. In 3D,
the system reduces from 3 to 1 equation in the acoustic approximation, and from 9 to 3 in the elastic
approximation.

1.3.1 First-order and second-order frequency-domain elastic wave equations

The velocity-stress elastic wave equations in an isotropic medium (1.8) can be expressed in the fre-
quency domain as
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1.3 Frequency-domain formulation



iωρvx =
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ Fx,

iωρvy =
∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ Fy,

iωρvz =
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ Fz,

iωσxx = (λ+ 2µ)
∂vx
∂x

+ λ
∂vy
∂y

+ λ
∂vz
∂z

+ iωσxx0 ,

iωσyy = λ
∂vx
∂x

+ (λ+ 2µ)
∂vy
∂y

+ λ
∂vz
∂z

+ iωσyy0 ,

iωσzz = λ
∂vx
∂x

+ λ
∂vy
∂y

+ (λ+ 2µ)
∂vz
∂z

+ iωσzz0 ,

iωσxy = µ

(
∂vx
∂y

+
∂vy
∂x

)
+ iωσxy0 ,

iωσyz = µ

(
∂vy
∂z

+
∂vz
∂y

)
+ iωσyz0 ,

iωσxz = µ

(
∂vx
∂z

+
∂vz
∂x

)
+ iωσxz0 .

(1.14)

We may consider as well the second-order form involving only velocities eliminating the stress from
system (1.14) as it was done for the system (1.8), which yields

ω2ρvx + ∂x ((λ+ 2µ)∂xvx) + ∂y (µ∂yvx) + ∂z (µ∂zvx) + ∂x (λ∂yvy) + ∂y (µ∂xvy)

+∂x (λ∂zvz) + ∂z (µ∂xvz) = −iωFx + ∂xσxx0 + ∂yσxy0 + ∂zσxz0 ,

ω2ρvy + ∂x (µ∂xvy) + ∂y ((λ+ 2µ)∂yvy) + ∂z (µ∂zvy) + ∂y (λ∂xvx) + ∂x (µ∂yvx)

+∂y (λ∂zvz) + ∂z (µ∂yvz) = −iωFy + ∂xσxy0 + ∂yσyy0 + ∂zσyz0 ,

ω2ρvz + ∂x (µ∂xvz) + ∂y (µ∂yvz) + ∂z ((λ+ 2µ)∂zvz) + ∂z (λ∂xvx) + ∂x (µ∂zvx)

+∂z (λ∂yvy) + ∂y (µ∂zvy) = −iωFz + ∂xσxz0 + ∂yσyz0 + ∂zσzz0 .

(1.15)

This system of second-order hyperbolic equations is the one which will be solved using the numerical
methods introduced later. The system of equations (1.15) can be derived as well from equations (1.7)
by Fourier transform after a time derivation and assuming the medium is at rest at the initial time.

1.3.2 Second-order frequency-domain acoustic wave equation

In the same manner, the acoustic wave equation (1.12) expressed in the time domain can be written in
the frequency domain. The second-order acoustic wave equation writes

∂

∂x

(
1

ρ

∂p

∂x

)
+

∂

∂y

(
1

ρ

∂p

∂y

)
+

∂

∂z

(
1

ρ

∂p

∂z

)
+
ω2

κ
p = −iω

κ
q + f + iωg̃, (1.16)

where g̃ is the Fourier transform of g

g̃ =
∂

∂x

[
1

ρ

(
∂σxy0
∂y

+
∂σxz0
∂z

)]
+

∂

∂y

[
1

ρ

(
∂σxy0
∂x

+
∂σyz0
∂z

)]
+

∂

∂z

[
1

ρ

(
∂σxz0
∂x

+
∂σyz0
∂y

)]
.
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In the above equations (1.15) and (1.16), the medium properties are supposed to be heterogeneous, lead-
ing to mixed spatial derivatives operators ∂x 1

ρ∂x, ∂y 1
ρ∂y and ∂z 1

ρ∂z . When considering homogeneous
density, the frequency-domain acoustic equation (1.16) reduces to the well-known Helmholtz elliptic
equation

∆p+ k2p = ρ(−iω
κ
q + f + iωg̃), (1.17)

where the expression ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
denotes the Laplacian operator and where we have

introduced the wavenumber k = ω/c. When the velocity c is homogeneous, analytical solutions of
(1.17) can be easily derived. Note that the P-wave velocity c and the incompressibility coefficient κ are
linked by the relation (1.11).

1.4 Boundary conditions

Simulating the propagation of seismic waves in the subsurface as defined by the time-domain (1.8),
(1.12) or the frequency-domain (1.15),(1.16) equations requires the use of proper boundary conditions.
At the exploration and regional scales the subsurface can be assimilated with a semi-infinite medium
with a free-surface boundary condition at the air/subsurface interface. We thus need to use appropriate
absorbing boundary conditions to mimic infinite medium in depth and in the horizontal directions when
we consider numerical approximations to the solution of these equations.

1.4.1 Absorbing boundary conditions

Two general classes of methods allow to mimic wave propagation in infinite domain: absorbing bound-
ary condition (ABC) (introduced by Clayton and Engquist (1977)) and absorbing boundary layers (in-
troduced by Cerjan et al. (1985)).

The ABC method is based on paraxial approximations of the wave equation. This method assumes
that the wave propagates in the direction perpendicular to the border. Only these waves are absorbed and
therefore waves propagating in other directions (non-perpendicular to the border) will not be completely
absorbed.

ΩPML

ΩPML

ΩPML ΩPMLΩint

(a) PML

ΩPML

ΩPML

ΩPML Ωint

Free surface

(b) Free surface

Figure 1.1: Domain of interest Ωint with PML layers ΩPML (a) and free surface (b).

The second class of methods introduces fictitious layers at the boundaries of the domain. Two con-
figurations are investigated in this work: the first one is presented in Figure (1.1a) where the interest
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1.4 Boundary conditions

domain with surrounded by absorbing layers and the second configuration is presented in Figure (1.1b)
where the top boundary is replaced by a free surface. The latter is introduced in the following subsec-
tion 1.4.2. The ABC method was first promoted by Cerjan et al. (1985) for the second-order in time
acoustic equation. The wave is artificially damped as it enters this area. However, this method gener-
ates reflections at the interface between the layer and the domain of interest. These reflections can be
mitigated by choosing variable damping coefficient that smoothly grow from zero at the interface to the
external boundary of the layer. However, this reduces the absorbing capability of the layer and requires
to increase its size, and thus additional computations during the simulation.

The method I use in my investigation is the perfectly matched layers (PML) technique which
Bérenger (1994) introduced first for the 2D and 3D Maxwell equations. The initial method is based
on a splitting of the hyperbolic system and the introduction of smooth damping coefficients in the layer.
An example of damping profile is presented in Figure (1.2). Theoretically the reflections are canceled
but in practice, a small non-zero reflection coefficient remains. However, in many practical applications
the amplitude of these undesired and artificial reflected waves remains very small. This method has
become quickly a standard method in seismic applications.

−2 −1 0 1 2 3 4 5 6 7
0

0.5

1 damping zone damping zone

Figure 1.2: Example of damping profile along the horizontal direction.

Both time and frequency formulations could be considered but I shall focus on the frequency for-
mulation. I shall describe how to consider this sponge zone for the frequency-domain acoustic wave
equation (1.16) but similar expressions exist for the elastic cases. In order to write this equation with the
PML boundary condition, one needs to consider first the system of equations (1.10) in the frequency
domain and introduce the 1D space dependent damping functions γx, γy, γz . The damping function
may have the form

γx(x) = CPML cos

(
π

2

x

Lx

)
,

where Lx is the width of the sponge layer and CPML is a real value used to control the damping rate.
The coefficient CPML needs to be handled carefully in order to avoid reflections at the interface of
the domain and the sponge layer. The pressure wavefield is split into three non-physical components
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px, py, pz such that p = px + py + pz and

iωvx + γxvx = b
∂p

∂x
+ Fx + iω

(
∂σxy0
∂y

+
∂σxz0
∂z

)
,

iωvy + γyvy = b
∂p

∂y
+ Fy + iω

(
∂σxy0
∂x

+
∂σyz0
∂z

)
,

iωvz + γzvz = b
∂p

∂z
+ Fz + iω

(
∂σxz0
∂x

+
∂σyz0
∂y

)
,

iωpx + γxpx = κ
∂vx
∂x

,

iωpy + γypy = κ
∂vy
∂x

,

iωpz + γzpz = κ
∂vz
∂x

+ iωq.

(1.18)

Note the the source term on the pressure equations can applied equivalently to either of the last tree
equations since it is additive. The system of equations (1.18) is written into the following one allowing
to eliminate the particle velocity terms

iωvx =
b

1− iγx/ω
∂p

∂x
+

1

1− iγx/ω
Fx +

iω

1− iγx/ω

(
∂σxy0
∂y

+
∂σxz0
∂z

)
,

iωvy =
b

1− iγy/ω
∂p

∂y
+

1

1− iγy/ω
Fy +

iω

1− iγy/ω

(
∂σxy0
∂x

+
∂σyz0
∂z

)
,

iωvz =
b

1− iγz/ω
∂p

∂z
+

1

1− iγz/ω
Fz +

iω

1− iγz/ω

(
∂σxz0
∂x

+
∂σyz0
∂y

)
,

iω + γx
κ

px =
∂vx
∂x

,

iω + γy
κ

py =
∂vy
∂x

,

iω + γz
κ

pz =
∂vz
∂x

+
iω

κ
q.

This system of equations is recast into

1

b

(
1

ξx

∂

∂x

(
b

ξx

∂p

∂x

)
+

1

ξy

∂

∂y

(
b

ξy

∂p

∂y

)
+

1

ξz

∂

∂z

(
b

ξz

∂p

∂z

))
+ k2p = ρ(−iω

κ
q + f + iωg̃), (1.19)

where the coefficients ξj = 1 − iγj/ω are introduced with j the space directions x, y, z. For the sake
of simplicity, I shall denote by s(ω) the right-hand side of of equation (1.19).

1.4.2 Free surface boundary condition

Alternatively, the free-surface boundary condition can be used at the top boundary of the domain for
realistic wave propagation modeling. The method used in this work is proposed by Mittet (2002). It
is an efficient strategy based on the assumption that the elastic Hooke’s tensor on the free surface can
be taken similar to a transversely isotropic medium. The method is based on the first-order velocity-
stress formulation of the elastic wave equations using staggered-grid modeling schemes. The density
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1.5 Finite-difference discretization strategy

and the Lamé coefficient µ on the one hand and the Lamé coefficient λ on the other hand are given
different treatments. The method uses an average of the internal value and the vacuum value for the
density and the Lamé coefficient µ at the free-surface nodes. The Lamé coefficient λ is set to zero at the
surface nodes. This approach has the advantage of simulating the free-surface without any additional
grid points.

In this thesis, I shall be concerned only with wave equations formulated in the frequency domain.
Namely, I will deal with the scalar 2D frequency-domain visco-acoustic wave equation (1.16) first and
then with the 2D and 3D frequency-domain visco-elastic wave equations (1.15). I shall consider two
configurations for the boundary conditions. PML are considered for all boundaries (Bérenger, 1994)
in the first configuration. Then, the top boundary is replaced with a free surface boundary condition
(Mittet, 2002) in the second configuration while PML are used on the lateral and the bottom boundaries.

1.5 Finite-difference discretization strategy

Any numerical method requires the continuous equations to be formulated in the discrete domain. Nu-
merical discretization schemes are used to approximate in a stable, consistent and accurate way the
continuous information of the problem. They can be described as a model reduction which transforms
an infinite dimensional equation into a finite dimensional set of equations. Such reduction comes inher-
ently with a loss of information due to the way of addressing the partial differential operators. I consider
here one class of numerical discretization method: the finite-difference method. Therefore, this section
focuses on several finite-difference approaches for the spatial discretization as I am not concerned with
time-domain wave modeling. The reader may refer to the complete review of Moczo et al. (2007) for
a deeper analysis on modeling techniques of seismic waves. I shall restrict myself to the second- and
fourth-order staggered-grid stencils with optimal coefficients.

The finite-difference method is the most widespread method for time and space discretization. It is
popular within the Earth science community for the simplicity of its implementation and its efficiency.
The method presents low requirements in terms of computational cost and memory demand as the
discrete problem is sparse. This method relies on the strong formulation of the problem. The main idea
behind any finite-difference scheme is related to the derivative of the function u at a point x

u′(x) = lim
h→0

u(x+ h)− u(x)

h
, (1.20)

and the fact that when h tends toward 0, the quotient on the right hand side of equation (1.20) provides a
good approximation of the derivative u′. Arbitrary order approximations can be derived from the Taylor
polynomial expansion.

Theorem 1.1. Let I be an interval of R, x a point of I and for a given integer n, u : I −→ R a function
of class Cn on I . For any h ∈ R such that x+ h ∈ I we have

u(x+ h) = u(x) + hu′(x) +
h2

2!
u(2)(x) + · · · h

n

n!
u(n)(x) + hnε(h),

=

n∑
k=1

hk

k!
u(k)(x) + hnε(h),

where ε(h) −−−→
ε→0

0. By convention, we assume 0! = 1.
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Definition 1.1. The sum

Tn(x) =

n∑
k=1

hk

k!
u(k)(x),

is called the nth-order Taylor polynomial of u.

The finite-difference approximation of u′ at the point x can be derived from the Taylor polynomial
(1.1) as in

• The forward difference (D+u)(x) =
u(x+ h)− u(x)

h
;

• The backward difference (D−u)(x) =
u(x)− u(x− h)

h
;

• The centered difference (Du)(x) =
u(x+ h)− u(x− h)

2h
.

It is easy to prove by Taylor expansion that

(D+u)(x)− u′(x) = O(h),

(D−u)(x)− u′(x) = O(h),

(Du)(x)− u′(x) = O(h2).

Using the second-order Taylor polynomial, we have

u(x+ h)− u(x)

h
− u′(x) =

h

2
u
′′
(x) + hε(h),

u(x)− u(x− h)

h
− u′(x) = −h

2
u
′′
(x) + hε(h),

which corresponds to two first-order approximations of u′(x). The centered difference is obtained using
the third degree Taylor polynomial and we obtain

u(x+ h) = u(x) + hu′(x) +
h2

2
u
′′
(x) +

h3

3!
u(3)(x) + h3ε(h), (1.21)

u(x− h) = u(x)− hu′(x) +
h2

2
u
′′
(x)− h3

3!
u(3)(x) + h3ε(h). (1.22)

The difference between the two above equations (1.21) and (1.22) gives the second-order approximation
of u′(x)

u(x+ h)− u(x− h)

2h
− u′(x) =

h2

3!
u(3)(x) + h2ε(h).

The second-order approximation of the second derivative u′′ can be expressed as well as

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2).

To better describe the finite-difference method, let us consider for instance the 2D Laplace problem
with the Dirichlet boundary condition

∆u = f, on Ω =]0, 1[×]0, 1[,
u = 0, on ∂Ω,

(1.23)
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1.5 Finite-difference discretization strategy

where f is the source term. Given two integers n,m ≥ 2, we construct the grid Ωh = {(xi, yj) ∈ Ω}
(see Figure 1.3) by the tensor product of the two grids of ]0, 1[ such that

xi = (i− 1)hx, i = 1, · · · , n, hx =
1

n− 1
,

yj = (j − 1)hy, j = 1, · · · ,m, hy =
1

m− 1
.

Let h = max{hx, hy} denote the size of the cell and Γh = {(xi, yj) ∈ ∂Ω} the boundary. The discrete
function is defined by uh : Ωh −→ R such that uh(xi, yj) = u(xi, yj). It is more convenient to use
sub-index (i, j) for the discrete function which amounts to ui,j = uh(xi, yj).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(0,0) 1

1

y

x
hx

hy

Figure 1.3: Finite-difference mesh

The problem (1.23) is therefore written on each node of the discretization grid as

∆u(xi, yj) = f(xi, yj), in Ωh,
u(xi, yj) = 0, on Γh.

(1.24)

Assuming u is C4 and hx = hy = h, the Taylor series development of u at the point (xi+1, yj) = (xi + h, yj)
gives

u(xi+1, yj) = u(xi, yj)+h
∂u

∂x
(xi, yj)+

h2

2

∂2u

∂x2
(xi, yj)+

h3

3!

∂3u

∂x3
(xi, yj)+

h4

4!

∂4u

∂x4
(xi, yj)+o(h

4),

(1.25)

and similarly the Taylor series development of u at the point (xi−1, yj) = (xi − h, yj) gives

u(xi−1, yj) = u(xi, yj)−h
∂u

∂x
(xi, yj)+

h2

2

∂2u

∂x2
(xi, yj)−

h3

3!

∂3u

∂x3
(xi, yj)+

h4

4!

∂4u

∂x4
(xi, yj)+o(h

4).

(1.26)

The sum of these two developments (1.25) and (1.26) gives us the second-order finite-difference ap-
proximation of the second-order derivative of u with respect to x

∂2u

∂x2
(xi, yj) =

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2
− h2

12

∂4u

∂x4
(xi, yj) + o(h2), (1.27)
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where the term
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2

represents the finite-difference approximation of the second-order derivative and

τ(xi, yj , h) =
h2

12

∂4u

∂x4
(xi, yj) + o(h2)

is the truncation error. The expression (1.27) simplifies into

∂2u

∂x2
(xi, yi) =

ui+1,j − 2ui,j + ui−1,j

h2
+ o(h2). (1.28)

The same approach is adopted to calculate the second-order derivative finite-difference approximation
with respect to y. Using (1.28), one can write the finite-difference discretization of the problem (1.23)
as

ui+1,j + ui,j+1 − 4ui,j + ui−1,j + ui,j−1

h2
= fi,j , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

ui,j = 0, on the border nodes.
(1.29)

If the unknowns are sequentially indexed column-wise and if the solution on the grid points located
at the column i of the mesh is denoted by ui =

(
ui,1, ui,2, . . . , ui,Ny

)T then the equation (1.29) is
formulated as

1

h2
(ui+1 +Aui + ui−1) = fi, 1 ≤ i ≤ Nx,

ui,j = 0, on the border nodes,
(1.30)

where A is the tridiagonal matrix of size Ny

A =


−4 1
1 −4 1

. . . . . . . . .
1 −4 1

1 −4

 ,

corresponding to the discretization of the problem in the vertical direction. Therefore, the entire system
can be written in matrix form as

1

h2


A I 0
I A I

. . . . . . . . .
I A I

I A

 ·

u1

u2
...
...

uNx

 =


f1

f2
...
...

fNx

 . (1.31)

The solution of the discrete Laplace problem (1.29) is finally computed through the solution of the
linear system (1.31).
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1.5 Finite-difference discretization strategy

1.5.1 Fourth-order staggered finite-difference scheme for the 2D acoustic wave equa-
tion

Consider the 2D acoustic wave equation formulated as a first-order hyperbolic system (Virieux, 1984)
using the physical quantities defined by the pressure and the particle velocity. The 3D equations (1.18)
which are introduced in subsection 1.4 are recast in 2D. Perfectly matched layers (Bérenger, 1994) are
implemented at the edges of the domain to absorb the outgoing wave.

aa

`

`

p, κ
a
vx, b

`
vz, b

Figure 1.4: Illustration of the staggered-grid finite-difference scheme for the 2D frequency-domain
acoustic wave equation. The pressure wavefield is defined on the regular grid (i, j) labeled by©. The
density is defined at intermediate positions at (i± 1/2, j) and (i, j ± 1/2) labeled by

`
and

a
.

Following the staggered-grid approach where the finite-difference scheme is presented in Figure 1.4,
the system of equations (1.18) is discretized using the fourth-order centered finite-differences (Levan-
der, 1988)

[
∂vx
∂x

]h
i,j

=
1

h

[
9
8

(
(vx)i+1/2,j − (vx)i−1/2,j

)
− 1

24

(
(vx)i+3/2,j − (vx)i−3/2,j

)]
,[

∂vz
∂z

]h
i,j

=
1

h

[
9
8

(
(vz)i,j+1/2 − (vz)i,j−1/2

)
− 1

24

(
(vz)i,j+3/2 − (vz)i,j−3/2

)]
,[

∂p

∂x

]h
i+1/2,j

=
1

h

[
9
8 (pi+1,j − pi,j)− 1

24 (pi+2,j − pi−1,j)
]
,[

∂p

∂z

]h
i,j+1/2

=
1

h

[
9
8 (pi,j+1 − pi,j)− 1

24 (pi,j+2 − pi,j−1)
]
,

(1.32)

where h is the discretization step in the uniform grid.

The particle velocities vx and vz are eliminated in the discretized equations. This is the so-called
parsimonious approach (Luo and Schuster, 1990). After the summation of the two remaining discrete
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equations, the scalar equation for the pressure wavefield p is obtained

−ω2

κi,j
pi,j =

1

(ξx)i,j

1

h2

{
9

8

[
bi+1/2,j

(ξx)i+1/2,j

(
9

8
(pi+1,j − pi,j)−

1

24
(pi+2,j − pi−1,j)

)
−

bi−1/2,j

(ξx)i−1/2,j

(
9

8
(pi,j − pi−1,j)−

1

24
(pi+1,j − pi−2,j)

)]
− 1

24

[
bi+3/2,j

(ξx)i+3/2,j

(
9

8
(pi+2,j − pi+1,j)−

1

24
(pi+3,j − pi,j)

)
−

bi−3/2,j

(ξx)i−3/2,j

(
9

8
(pi−1,j − pi−2,j)−

1

24
(pi,j − pi−3,j)

)]}
+

1

(ξz)i,j

1

h2

{
9

8

[
bi,j+1/2

(ξz)i,j+1/2

(
9

8
(pi,j+1 − pi,j)−

1

24
(pi,j+2 − pi,j−1)

))
−

bi,j−1/2

(ξz)i,j−1/2

(
9

8
(pi,j − pi,j−1)− 1

24
(pi,j+1 − pi,j−2)

)]
− 1

24

[
bi,j+3/2

(ξz)i,j+3/2

(
9

8
(pi,j+2 − pi,j+1)− 1

24
(pi,j+3 − pi,j)

)
−

bi,j−3/2

(ξz)i,j−3/2

(
9

8
(pi,j−1 − pi,j−2)− 1

24
(pi,j − pi,j−3)

)]}
+ si,j .

(1.33)

Equation (1.33) can be written in a compact form with respect to the different nodes (i, j) such that

C1 pi,j+ C2 pi−1,j + C3 pi+1,j + C4 pi,j+1 + C5 pi,j−1 + C6 pi−2,j + C7 pi+2,j

+C8 pi,j+2 + C9 pi,j−2 + C10 pi−3,j + C11 pi+3,j + C12 pi,j+3 + C13 pi,j−3 = si,j ,
(1.34)

where the coefficients Ck for k = 1, · · · , 13 are easily determined by developing equation (1.33). The
corresponding fourth-order stencil is presented in Figure 1.5.

C1C2 C3

C4

C5

C6 C7

C8

C9

C10 C11

C12

C13

Figure 1.5: Fourth-order finite-difference stencil for the 2D frequency-domain acoustic wave equation.
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1.5 Finite-difference discretization strategy

By denoting Nx and Nz the number of discretization points along the horizontal and vertical direc-
tions, the following linear system of size n = NxNz is obtained

Ax = b

with
A ∈ Gln (C) , x ∈ Cn, b ∈ Cn, n ∈ N

where A is a 13-diagonal complex large-scale sparse matrix. To obtain the minimum bandwidth, the
following indexation method is used following the smallest dimension of the domain (the vertical di-
rection in practice for seismic imaging applications)

k = (i− 1)Nz + j, i = 1, . . . , Nx, j = 1, . . . , Nz.

The bandwidth of the matrix A is therefore equal to 6Nz + 6. In seismic imaging applications, the
ratio Nx/Nz is approximately up to ten. Therefore, choosing Nz for the indexation method allows to
significantly reduce the bandwidth of the matrix A.

1.5.2 Fourth-order staggered-grid finite-difference scheme for the 2D elastic wave equa-
tions

Consider the 2D frequency-domain velocity-stress elastic system of equations for the heterogeneous
isotropic media

−iωρ(x, z) vx(x, z)= (∂xσxx(x, z) + ∂zσxz(x, z)) + fx(x, z),
−iωρ(x, z) vz(x, z)= (∂xσxz(x, z) + ∂zσzz(x, z)) + fz(x, z),
−iω σxx(x, z) =(λ+ 2µ)(x, z) ∂xvx(x, z) + λ(x, z) ∂zvz(x, z)− iωs1(x, z),
−iω σzz(x, z) =(λ+ 2µ)(x, z) ∂zvz(x, z) + λ(x, z) ∂xvx(x, z)− iωs2(x, z),
−iω σxz(x, z) = µ(x, z) (∂zvx(x, z) + ∂xvz(x, z)).

(1.35)

The particle velocities are denoted by vx and vz and the stress tensor components by σxx, σzz and σxz .
The density is denoted by ρ and λ, µ are the Lamé parameters. (fx, fz) is the vector representing the
external forces and (s1, s2) are the increments of the normal stresses which are related to the explosive
source s.

The system of equations (1.35) is discretized using the fourth-order staggered-grid finite-difference
method (Levander, 1988). The staggered-grid stencil for the elastodynamic system is illustrated in
Figure 1.6a where the locations of the velocity terms and the the stress components are shown on the
two grids shifted by the half space step. The fourth-order discretization scheme associated with this
staggered-grid is presented in Figure 1.6b. The spatial derivatives are given by[

∂vx
∂x

]h
i,j

=
1

h

[
c1

(
(vx)i+1/2,j − (vx)i−1/2,j

)
+ c2

(
(vx)i+3/2,j − (vx)i−3/2,j

)]
,[

∂vz
∂z

]h
i,j

=
1

h

[
c1

(
(vz)i,j+1/2 − (vz)i,j−1/2

)
+ c2

(
(vz)i,j+3/2 − (vz)i,j−3/2

)]
,

and [
∂σxx
∂x

]h
i+1/2,j

=
1

h
[c1 ((σxx)i+1,j − (σxx)i−1,j) + c2 ((σxx)i+2,j − (σxx)i−2,j)] ,[

∂σzz
∂z

]h
i,j+1/2

=
1

h
[c1 ((σzz)i,j+1 − (σzz)i,j−1) + c2 ((σzz)i,j+2 − (σzz)i,j−2)] ,
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x

z τxx, τzz

τxz

vz

vx

(a) Staggered-grid stencil

(i+1/2,j+3)

(i+7/2,j)(i-5/2,j)

(i-1,j-3/2)

(i-1,j+3/2)

(i+2,j-3/2)

(i+2,j+3/2)

vx

vz

(b) Fourth-order scheme

Figure 1.6: 2D staggered-grid finite-difference stencil (a) and the 29-point fourth-order staggered-grid
finite-difference scheme used to approximate the partial differential operators (b). In Figure a, blue
marks represent stress positions and red marks represent velocity positions. The buoyancy is located on
the same grid points as the particle velocity. The Lamé coefficient λ is located on the same grid as the
normal stress components. The Lamé coefficient µ is located on the same grid as the stress component
τxz .

where c1 and c2 are the fourth-order coefficients which are equal to c1 = 9/8 and c2 = −1/24 con-
ventionally. The antilumped mass strategy is applied to decrease the numerical dispersion. Take for
instance the horizontal particle velocity vx. The mass term (ρvx) is approximated by

(ρvx)i+1/2,j = a1 (ρvx)i+1/2,j

+ a2

[
(ρvx)i+3/2,j + (ρvx)i−1/2,j + (ρvx)i+1/2,j+1 + (ρvx)i+1/2,j−1

]
+ a3

[
(ρvx)i+5/2,j + (ρvx)i−3/2,j + (ρvx)i+1/2,j+2 + (ρvx)i+1/2,j−2

]
+ a4

[
(ρvx)i+7/2,j + (ρvx)i−5/2,j + (ρvx)i+1/2,j+3 + (ρvx)i+1/2,j−3

]
,

where a1, a2, a3 and a4 are the weighting coefficients. An optimization problem is solved to compute
the optimal coefficient values following the work of Li et al. (2016). These coefficients are used in the
following chapter for our applications. They are presented in table (1.1) together with the conventional
coefficient values.

a1 a2 a3 a4 c1 c2

Conventional 1 0 0 0 9/8 −1/24

Optimized 0.81872 5.32025E− 2 −2.49E− 2 4.38444E− 3 1.12169 −4.92201E− 2

Table 1.1: Optimal coefficients for the 2D fourth-order staggered-grid finite-difference scheme.

Following the parsimonious approach proposed by Luo and Schuster (1990), the system of equa-
tions (1.35) is first discretized and the stress terms are eliminated to derive a finite-difference scheme
associated with the fourth-order elastic wave equations based on the particle velocities only. This strat-
egy gives more accurate finite-difference approximations of the partial derivative operator and less nu-
merical dispersion. Using the optimal coefficients, the discretization of the models is performed using
5.4 grid points per minimum shear wavelength.
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1.5 Finite-difference discretization strategy

By denoting Nx and Nz the number of discretization points along the horizontal and vertical direc-
tions, the following linear system of size n = 2NxNz is obtained

Ax = b

with
A ∈ Gln (C) , x ∈ Cn, b ∈ Cn, n ∈ N

where A is a 29-diagonal complex large-scale sparse matrix. To obtain the minimum bandwidth, the
grid-points are ordered in the z, x manner, i.e.,

v1,1, v1,2, · · · , v1,nz︸ ︷︷ ︸, v2,1, · · · , v2,nz︸ ︷︷ ︸, · · · , vnx,1, · · · , vnx,nz︸ ︷︷ ︸,
where v is for instance the horizontal particle velocity field. The following indexation method is used
following the smallest dimension of the domain (the vertical direction in practice for seismic imaging
applications)

k = 2(i− 1)Nz + 2(j − 1) + 1, i = 1, . . . , Nx, j = 1, . . . , Nz.

The bandwidth of the matrix A is therefore equal to 12Nz + 14. Therefore, choosing Nz instead of Nx

reduces the bandwidth of the matrix A.

1.5.3 Fourth-order staggered-grid finite-difference scheme for the 3D elastic wave equa-
tions

Consider the 3D frequency-domain velocity-stress elastic system of equations for the heterogeneous
isotropic media (1.14) which is reminded below

iωρ(x)vx = ∂xτxx + ∂yτxy + ∂zτxz + fx,
iωρ(x)vy = ∂xτxy + ∂yτyy + ∂zτyz + fy,
iωρ(x)vz = ∂xτxz + ∂yτyz + ∂zτzz + fz,
iωτxx = ν(x)∂xvx + λ(x)∂yvy + λ(x)∂zvz + iωs1,
iωτyy = λ(x)∂xvx + ν(x)∂yvy + λ(x)∂zvz + iωs2,
iωτzz = λ(x)∂xvx + λ(x)∂yvy + ν(x)∂zvz + iωs3,
iωτyz = µ(x)(∂yvz + ∂zvy),
iωτxz = µ(x)(∂xvz + ∂zvx),
iωτxy = µ(x)(∂xvy + ∂yvx),

(1.36)

where the vector x = (x, y, z) denotes the space position and space-dependency of the model param-
eters, the particle velocity components are denoted by vx, vy and vz and the stress tensor components
by σxx, σyy σzz , σyz , σxz and σxy. The density is denoted by ρ and λ, µ are the Lamé parameters. The
P-wave modulus ν = λ + 2µ is introduced. The vector (fx, fy, fz) represents the external forces and
(s1, s2, s3) are the increments of the normal stresses which are related to the explosive source.

Perfectly Matched Layer (Bérenger, 1994) are used at the boundaries of the 3D domain. Following
the work of Li et al. (2016), the fourth-order staggered-grid finite-difference scheme (Levander, 1988) is
used to discretize the system of equations (1.36) with the PMLs. The staggered-grid stencil is presented
in Figure 1.7(a).
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(a)

τxx , τyy , τzz
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Figure 1.7: 3D staggered-grid finite-difference stencil (a). The normal stress components and the Lamé
parameters λ, λ + 2µ are defined on the reference grid (i, j, k). The particle velocity components are
defined on the staggered-grid. The density and the Lamé parameter µ are interpolated on the staggered-
grid. Grid points involved with the mass acceleration (ρvx)i+1/2,j,k averaging (b). The particle velocity
component (vx)i+1/2,j,k is located at the center.

The finite-difference approximation of the spatial derivatives (take the first x-derivative for instance)
is given by[

∂vx
∂x

]∆

i,j,k

=
1

∆

[
c1

(
(vx)i+1/2,j,k − (vx)i−1/2,j,k

)
+ c2

(
(vx)i+3/2,j,k − (vx)i−3/2,j,k

)]
. (1.37)

To decrease the numerical dispersion and the required number of grid points per wavelength, an
antilumped mass strategy is used. The mass term (take for instance ρvx) is distributed over the 19 grid
points involved in the stencil (see Figure 1.7(b)). The mass acceleration term is approximated as

(ρvx)i+1/2,j,k = a1 (ρvx)i+1/2,j,k

+ a2

[
(ρvx)i+3/2,j,k + (ρvx)i−1/2,j,k + (ρvx)i+1/2,j+1,k

+ (ρvx)i+1/2,j−1,k + (ρvx)i+1/2,j,k+1 + (ρvx)i+1/2,j,k−1

]
+ a3

[
(ρvx)i+5/2,j,k + (ρvx)i−3/2,j,k + (ρvx)i+1/2,j+2,k (1.38)

+ (ρvx)i+1/2,j−2,k + (ρvx)i+1/2,j,k+2 + (ρvx)i+1/2,j,k−2

]
+ a4

[
(ρvx)i+7/2,j,k + (ρvx)i−5/2,j,k + (ρvx)i+1/2,j+3,k

+ (ρvx)i+1/2,j−3,k + (ρvx)i+1/2,j,k+3 + (ρvx)i+1/2,j,k−3

]
,

where a1, a2, a3 and a4 are the weighting coefficients which are determined by solving an optimization
problem that minimizes the misfit between the normalized phase velocities and the unity. The resulting
coefficients are presented in table (1.2) together with the standard fourth-order coefficients.

Following the parsimonious approach (Luo and Schuster, 1990), the system of equations (1.36) with
PMLs is first discretized using (1.37) and (1.38), then the stress tensor components are eliminated by
substitution from this discretized system. There only remains the three discretized equations involving
the particle velocity components vx, vy and vz which can be written in matrix form as

Ax = b,
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1.5 Finite-difference discretization strategy

a1 a2 a3 a4 c1 c2

Conventional 1 0 0 0 9/8 -1/24
Optimized 0.926585 6.99990E-2 -3.28692E-2 6.28252E-3 1.25274 -5.45995E-2

Table 1.2: 3D Optimal coefficients for the fourth-order staggered-grid finite-difference stencil. The
coefficients are obtained by minimizing the misfit between the normalized phase velocity and unity for
the 3D fourth-order staggered-grid finite-difference stencil. The standard fourth-order coefficients are
presented in the first row of the table as well.

where A is the so-called impedance matrix, x is the particle velocity vector and b is the source vector.
The grid points are ordered in the z, y, x order (from the smallest to the largest dimension of the model
which is usually in seismic applications z, y, x) such that

x =

[
v1,1,1, v1,1,2, · · · , v1,1,nz︸ ︷︷ ︸, v1,2,1, · · · , v1,2,nz︸ ︷︷ ︸, · · · , v1,ny ,1, · · · , v1,ny ,nz︸ ︷︷ ︸, · · · , vnx,ny ,1, · · · , vnx,ny ,nz︸ ︷︷ ︸

]
,

where nx, ny and nz are the number of grid points per dimension. This ordering corresponds to the
following indexation method

kx = 3(i3 − 1)nynz + 3(i2 − 1)nz + 3(i1 − 1) + 1,

ky = 3(i3 − 1)nynz + 3(i2 − 1)nz + 3(i1 − 1) + 2,

kz = 3(i3 − 1)nynz + 3(i2 − 1)nz + 3(i1 − 1) + 3,

where kx is used to access vx, ky is used to access vy and kz is used to access vz for i1 = 1, . . . , nz ,
i2 = 1, . . . , ny and i3 = 1, . . . , nx. The bandwidth of the matrix A is therefore minimal and is given
by 18nynz + 1.

The combination of these three strategies (staggered-grid, parsimonious approach and second/fourth-
order discretization stencil) provides a discretization scheme adapted to the elastodynamics equations.
The formulation into higher order discretization is straightforward. From an implementation point of
view, the resulting computational domain is a two dimensional rectangular grid or a three dimensional
rectangular cuboid grid where the core of the computation is composed of the interactions of each grid
with its immediate neighbors. Such meshes should be partitioned among the processors with the main
objectives of minimal communication, understanding the minimum total communication volume, and
equal load balance, i.e., at best equal number of grid points per processor. The mesh partitioning prob-
lem can be formulated as a standard graph partitioning problem where the mesh points are represented
by the vertices of the graph and the edges of the graph correspond to an interaction between the mesh
points. There are a number of software libraries (Karypis and Kumar, 1999; Boman et al., 2012) im-
plementing graph partitioning methods where the objective is to minimize the number of interacting
pairs of mesh points. Using the finite-difference discretization method, meshes are efficiently obtained
using a Cartesian partitioning. As the interior mesh points require an equal number of interactions,
load balance can be achieved by partitioning equally the number of mesh points among the proces-
sors. Assuming a 2D geometry for instance, a mesh of size Nx × Nz is partitioned among the p × q
processors by equally diving the x and z coordinates by, respectively p− 1 and q − 1. Thus the finite-
difference method is naturally well designed for parallel computing without paying the extra cost of
graph partitioning methods.
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1.6 Frequency-domain wave modeling : three strategies

The computation of the solution of the wave propagation problem in the frequency domain can be
performed following three main approaches. The first strategy addresses the problem in the time domain
and extracts the needed frequencies during the simulation using a Discrete Fourier Transform (DFT).
The second and third approaches consider the problem formulated in the frequency domain. The linear
system resulting from the discretization of the latter equations can be solved either with a direct method
or an iterative method.

In the following, these three approaches are discussed. We shall give a special interest to the compu-
tational complexities and memory requirements. For the sake of simplicity, we consider a 3D problem
of sizeN3 withN the average number of discretization points in one dimension. The number of sources
is denoted by Ns which is in the order of N2 for 3D FWI applications considering a dense surface ac-
quisition framework. The number of time steps for time-domain wave modeling is denoted by Nt.
Finally the number of iterations performed by an iterative method to solve the frequency-domain wave
equation is denoted by Niter. Such comparisons have already been addressed by Plessix (2006b) and
Pajot et al. (2014).

1.6.1 Time-domain wave modeling with DFT

The time-domain approach was promoted by Sirgue et al. (2008). A second-order leap-frog scheme
for the time derivative and a 4th or 8th order staggered-grid finite-difference scheme for the spatial
discretization are commonly used. The frequencies are extracted on the fly using the DFT in the loop
over the time.

The evaluation of the wavefield for one time step has a complexity of O(N3): updating the wave-
field at a given time step with a leap-frog scheme requires to sweep the entire domain. Front tracking
technique can mitigate this cost, but this yields only marginal improvement we do not consider here.
As the number of time steps Nt is constrained by the CFL condition (Courant et al., 1928) and the
recording time which depends on the size of the problem, a fair approximation of the complexity is
Nt = O(N). Note that the recording time should be long enough to ensure the DFT has accurately
converged. Therefore, the computational complexity of the time-domain wave modeling for one source
has a complexity of O(N4).

Finally, the computational complexity of the time-domain approach increases linearly with the num-
ber of sources. Therefore, this linear approach gives an overall computational cost in the order of
O(NsNtN

3) = O(N6). The memory requirements of the time-domain are in the order of O(N3) for
one source modeling.

In 2D FWI applications, the discrete Fourier transform computes on the fly the frequency wavefield
by discrete integration with an affordable memory and computational cost. In the 3D, It is computed
as well on the fly but the cost cannot be ignored totally anymore. This step has a complexity of O(N4)
and is roughly as expensive as one time-domain wave modeling. The reader may refer to Brossier et al.
(2014a) for a further analysis on the real computational complexities of the different steps required for
time-domain FWI computations.
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1.6 Frequency-domain wave modeling : three strategies

1.6.2 Frequency-domain wave modeling using a direct method

The second approach consists in considering the frequency-domain wave equation. The discretization
of this equation is performed using a compact finite-difference stencil described in the previous section.
This approach gives a large, sparse, banded and ill-conditioned linear system

A(x, ω)u(x, ω) = b(x, ω), (1.39)

Direct methods are robust and allow the computation of accurate up to machine precision solutions.
Standard direct methods are based on a lower-upper (LU) factorization of the matrix A = LU . Once
the factorization is performed, the solution is calculated by forward substitution Ly = b and back-
ward substitution Uu = y. The LU factorization of the matrix A produces dense triangular matrices
L and U due to the fill-in effect (non-zero coefficients in the bandwidth are added), making the LU
factorization memory demanding. This is the main reason why direct solvers are not used for large size
problems. The computational cost of the LU factorization step is inO(N6) whereas the cost of the for-
ward/backward substitution operations is in O(N4) for the solution of one right hand side. Therefore,
considering the solution of the N2 sources has a computational complexity of O(N6). The memory
complexity is in O(N4). This is due to the storage of the LU factors and it is the main limitations for
these methods.

For practical applications, a multifrontal parallel direct solver can be used. The multifrontal solver
has been introduced by Duff and Reid (1983). This method allows to use several independent fronts
during the LU factorization at the same time. The multifrontal technique is the key ingredient for en-
abling parallel computing when using direct solvers. Amestoy et al. (2015a) and Weisbecker et al.
(2013) combine this algorithm with a block-low rank representation and a nested-dissection algorithm
(George and Liu, 1981). These strategies allow to reduce the computational cost and the memory de-
mand due to the storage of the dense frontal matrices by minimizing the fill-in during the factorization.
This direct solver is used for the solution of the 3D visco-acoustic frequency-domain wave problem in
vertical transversely isotropic media by Operto et al. (2014). This modeling engine is later used for
the solution of the forward problem in the 3D acoustic FWI performed by Operto et al. (2015) on the
Valhall real case study. The model covers a large surface of 145 km2 and is 4 km deep. The frequen-
cies modeled reach 10 Hz yielding a linear system of size 17 million unknowns with more than 4000
right hand sides. Another approach is promoted by Wang et al. (2012) where the hierarchically semi-
separable (HSS) structures are used to approximate the dense frontal matrices with block compressed
forms.

1.6.3 Frequency-domain wave modeling using an iterative method

Iterative methods based on Krylov subspace for the solution of non hermitian linear systems provide an
alternative to direct methods for the solution of the frequency-domain wave equations. These methods
are considered as direct as well as they offer the opportunity to compute exact solution up to machine
precision, however approximate solutions can be computed by limiting the number iterations. Given
an initial iterate u(0), an approximate solution is computed by iteratively updating the iterate u(i). The
method stops once the solution reaches a satisfying accuracy. Each iteration performs only basic linear
algebra operations (sparse matrix vector products, scalar products and vector updates). These methods
have a computational complexity in O(NiterN

3) for the solution of one right-hand side. Thus for
a number of sources in the order of N2 the overall computational cost of the iterative method is in
O(NiterN

5). These methods require the storage of few vectors of size N3 for the computation of the
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solution. An exception is made of the iterative solver GMRES (Saad, 1986) where the Krylov space of
size mN3 needs to be allocated with m an integer ranging from few tens to few hundreds. Thus, the
memory demand is in the order of O(N3). Iterative methods often require the use of preconditioners.
The latter are used to ensure the fast convergence. Therefore, if the number of iterations is reduced to the
order of N or lower, iterative methods become competitive with the time-domain approach (Table 1.3).

Most of the recent developments on preconditioning methods allowed to reduce the number of
iterations to Niter = O(N) which makes the overall computational cost in O(N6). More importantly,
multiple right-hand side accelerations may be combined with iterative solvers. These methods mainly
rely on the block conjugate gradient (CG) method (O’Leary, 1980) and projection methods introduced
by Smith et al. (1989) and Chan and Ng (1999). An application to the 3D frequency-domain seismic
inversion is performed in the acoustic approximation using an Krylov based iterative solver combined
with the block CG method in (van Leeuwen and Herrmann, 2014) giving significant reduction in the
computational cost for the solution of numerous right-hand sides.

Computational complexity Memory complexity

Time-domain + DFT O(Ns ×Nt ×N3) = O(N6) O(N3)

Freq-domain + Direct O(N6) O(N4)

Freq-domain + Iterative O(Niter ×Ns ×N3) = O(Niter ×N5) O(N3)

Table 1.3: Theoretical computational and memory complexities of the three modeling approaches in
the frequency-domain for a 3D problem of size N3.

Discussion

Current FWI studies demonstrate the ability of using direct solvers in the 3D acoustic approximation
for reasonable target size (Operto et al., 2015) solving up to 17 million unknowns linear system with
several thousands of right-hand sides. However, the high memory requirements of these methods, due
to the fill-in associated with the matrix factorization, put to the test today’s computing architectures
when facing larger size problems associated with realistic size 3D elastic simulations. Pioneering work
by Wang et al. (2012) shows that a hierarchical semi-separable (HSS) low rank matrix can be used to
reduce the memory and computation costs. However, the size of the application they present is still
modest (201x201x151 grid points). Challenging large scale 3D elastodynamics problems involving
larger grid size seem to be still out of reach for direct solvers.

In the perspective of performing 3D frequency-domain elastodynamics FWI, two strategies could
thus be adopted. The first consists in solving the elastic wave equations in the time domain together
with the DFT approach. This strategy is appealing because of its straightforward implementation, how-
ever, three limitations can be identified. First, no Multiple Right-Hand Sides (MRHS) acceleration can
be implemented. Second, the integration time is controlled by a CFL condition depending on the high-
est P-wave-velocity and the smallest discretization step which is governed by the smallest wavelength.
Finally, the integration time should be long enough for the DFT to be sufficiently accurate. For elasto-
dynamics simulations in media with low S-wave velocity, this could lead to severe restrictions on the
time step. A drawback of time-domain methods is the more difficult and computationally expensive
implementation of attenuation effects.
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These limitations lead us to rather investigate the possibility of solving the elastodynamics equa-
tions using iterative solvers. These algorithms fully benefit from the sparsity of the linear system as
they only require the computation of scalar products and sparse matrix vector products, and therefore
present significantly lower memory requirements in comparison with direct solvers as it has been shown
earlier. However, these methods require efficient preconditioning strategies to ensure the convergence.
In the acoustic approximation, the preconditioner based on the shifted Laplacian operator has been suc-
cessfully applied with the BiConjugate Gradient Stabilized method (BiCGStab) and the Generalized
Minimal Residual (GMRES) method together with a multigrid approach for the solution of the 2D and
3D acoustic wave equation in (Erlangga and Nabben, 2008c) and as a forward problem solver in the
2D acoustic FWI by Plessix and Perkins (2009). More recently, studies and applications in the elastic
approximation are attempted. Rizzuti and Mulder (2016) investigated theoretically the 2D frequency-
domain elastic wave equations together with the shifted Laplace preconditioner on the elastic Marmousi
2 model. A 3D FWI application in the elastic approximation is performed by Pan et al. (2015) using
BiCGStab and the shifted Laplace preconditioner. A problem of the size of a couple hundred meters in
each dimension is studied. These applications show mainly the feasibility of the method. Realistic size
problems are still a challenge.

In the following section, I will focus my investigations on iterative methods which are at the center
of this thesis. I shall review the classic iterative methods used for the solution of the frequency-domain
wave equations. This will inevitably lead us to investigate preconditioning strategies.

1.7 Iterative methods and preconditioning for the solution of the frequency-
domain wave equation

Iterative methods refer to a wide class of techniques that use a set of successive approximations to
compute accurate solutions of a linear system at each iteration. The range of iterative methods we are
particularly interested in this investigation are the methods based on Krylov subspace and designed
for non-hermitian linear systems. Most of these methods are considered as direct in the sense that they
allow the computation of exact solutions up to machine precision when the number of iterations is equal
to the size of the problem. However, approximate solutions can be computed by using a convergence
threshold and thus limiting the number of iterations.

Consider the linear system
Ax = b, (1.40)

where A ∈ Gln(K) is an invertible matrix of size n with coefficients in K = R or K = C and x and b
are two vectors in Kn denoting respectively the solution and the right hand side vectors.

The idea behind Krylov subspace iterative methods is to start from an initial guess x(0) and to
generate a sequence of approximate solutions, denoted by x(m), which converges to the exact solution
such that

x(m) ∈ x(0) +Km(A, r(0)).

The vector r(m) is called the residual vector and is equal to r(m) = b − Ax(m) and Km(A, r(0)) is
defined as the Krylov subspace which is generated by A and r(0)

Km(A, r(0)) = span
{
r(0), Ar(0), . . . , Am−1r(0)

}
.

53



MODELING THE SEISMIC WAVE PROPAGATION IN THE SUBSURFACE

The Conjugate Gradient (CG) method (Hestenes and Stiefel, 1952) is the archetype of Krylov sub-
space based methods. Even though this method is used for the solution of hermitian positive definite
linear systems, it is the starting point of most Krylov based iterative method and therefore it is included
in widely used iterative methods presented below. In the following, we review the standard iterative
methods for the solution of, first, hermitian positive definite linear systems and second non-hermitian
positive semi-definite linear systems.

1.7.1 Iterative methods for the solution of linear systems

CG for the solution of hermitian positive definite linear systems

The CG method (Hestenes and Stiefel, 1952) is used for the solution of linear systems where the matrix
A is hermitian positive definite. The problem (1.40) can be stated equivalently as the minimization
problem of the quadratic function (see Nocedal and Wright (2006) for instance)

min
x∈Kn

φ(x) =
1

2
xHAx− bHx, (1.41)

for which the minimum is reached when

∇φ(x) = Ax− b = 0

Therefore, problems (1.40) and (1.41) have the same solution. The quadratic function φ can be min-
imized in n steps by successively minimizing it along the directions p(i) which are conjugate with
respect to the hermitian positive definite matrix A

(p(i),p(j))A = p(i)HAp(j) = 0, for all i 6= j. (1.42)

Given a starting point x(0) and a set of A-conjugate directions {p(1), . . . ,p(i)}, the solution vector
x(i+1) is generated through

x(i+1) = x(i) + αip
(i),

and the residual r(i+1) is computed using

r(i+1) = r(i) − αiAp(i), (1.43)

where αi is the scalar minimizer of the quadratic function φ given by

αi =
(r(i), r(i))

(p(i),p(i))A
.

In the conjugate gradient method, two successive search directions are required and each direction p(i)

is chosen to be a linear combination of the residual r(i) and the previous direction p(i−1)

p(i) = r(i) + βi−1p
(i−1), (1.44)

where the scalar βi is determined by the A-conjugacy condition of the directions vectors p(i−1) and
p(i). Therefore, the following expression of βi is obtained

βi =
(r(i),p(i−1))A

(p(i−1),p(i−1))A
.
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From (1.43), we have that −αiAp(i) = r(i+1) − r(i) and using (1.42) and (1.44) one can simplify the
expression of βi as

βi =
(r(i), r(i))

(r(i−1), r(i−1))
.

The CG algorithm can be summarized as follows (Algorithm 1.1)

Algorithm 1.1 Conjugate Gradient method (CG)

1: Given an initial guess x(0),
2: Compute r(0) = b−Ax(0),
3: Set p(0) = r(0),
4: for i = 0, . . . until convergence do
5: αi = (r(i), r(i))/(Ap(i),p(i)),
6: x(i+1) = x(i) + αip

(i),
7: r(i+1) = r(i) − αiAp(i),
8: βi = (r(i+1), r(i+1))/(r(i), r(i)),
9: p(i+1) = r(i+1) + βip

(i),
10: endfor

Computational and memory costs The CG method as presented in Algorithm 1.1 uses two coupled
term recurrences: one for the residual update using a search direction vector and one updating the
search director with newly computed residual and the solution vector naturally. It has the nice property
of requiring one matrix vector product, two inner products and three vector updates per iteration.

Convergence Defining the condition number of a matrix A ∈ Gln (K) by

cond(A) = ‖A‖2‖A−1‖2,

or in the case where the matrix A is hermitian, through the eigenvalues of the matrix A, |λmin| =
|λ1| 6 · · · 6 |λn| = |λmax|

cond(A) =
|λmax|
|λmin|

,

it can be shown that at the ith iteration of the conjugate gradient method, the error of the approximate
solution can be bounded by

‖x(i) − x?‖A ≤ 2

(√
cond(A)− 1√
cond(A) + 1

)i
‖x(0) − x?‖A.

where x? is the exact solution of the linear system (1.40). Therefore, the number of iterations to reach
a relative reduction of ε in the error ‖x(i) − x?‖ is proportional to

√
cond(A) (Golub, 1996). Thus the

CG method converges faster when the matrix A has a small condition number.
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Iterative methods for the solution of non-hermitian linear systems

When the matrix A is no longer hermitian, one needs to turn to other iterative methods for the solution
of these systems. In the following, we are interested in the CG method applied to the normal equations
(CGNR) (Saad, 2003), the Generalized Minimal Residual (GMRES) method (Saad, 1986) and the Bi-
Conjugate Gradient (Bi-CGSTAB) method (Van der Vorst, 1992).

CG on the Normal equations: CGNR, CGNE

When the matrix A is not hermitian, one can solve the so-called normal equations system defined by

AHAx = AHb, (1.45)

using the conjugate gradient method, where the matrix AHA is hermitian

(AHA)H = AHA, (1.46)

positive definite as for u 6= 0 and assuming A ∈ Gln(C)

uHAHAu = (Au, Au) = ‖Au‖2 > 0. (1.47)

Alternatively, one can solve the following system by setting x = AHu

AAHu = b. (1.48)

The solution of the system (1.45) with the CG method is then labeled CGNR for Normal Residual, while
the solution of (1.48) is labeled CGNE for Normal Error (Saad, 2003). In the following, the properties
of the CGNR method are discussed as the CGNE method is very similar. Algorithm 1.1 applied on the
normal equations (1.45) gives the CGNR in Algorithm 1.2.

Algorithm 1.2 Conjugate Gradient method for Normal Residuals (CGNR)

1: Given an initial guess x(0),
2: Compute r(0) = b−Ax(0),
3: Compute z(0) = AHr(0),
4: Set p(0) = r(0),
5: for i = 0, . . . until convergence do
6: αi = (z(i), z(i))/(Ap(i), Ap(i)),
7: x(i+1) = x(i) + αip

(i),
8: r(i+1) = r(i) − αiAp(i),
9: z(i+1) = AHr(i+1),

10: βi = (z(i+1), z(i+1))/(z(i), z(i)),
11: p(i+1) = z(i+1) + βip

(i),
12: endfor

Computational and memory costs The CGNR method requires the storage of 5 vectors as one more
vector is required in addition to the CG algorithm. Two matrix vector products are required where one
involves the conjugate transpose matrix vector product as shown at lines 3 and 9 of Algorithm 1.2.
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Convergence Solving the normal equations using the CG method can be an inefficient approach when
the matrix A is poorly conditioned cond(A) >> 1. Indeed, the condition number of the matrix AHA
is

cond(AHA) = cond(A)2.

Therefore, the solution of non-hermitian linear system should preferably be computed using other iter-
ative methods when the matrix A is poorly conditioned.

The Generalized Minimal Residual GMRES method

The GMRES method was proposed by Saad (1986) for the solution of large, sparse and non hermitian
linear systems. A set of convergent solutions {x(m)} are calculated as

x(m) = x(0) + δ,

where x(0) is an initial guess and δ is a vector in Km(A, r(0)). The GMRES method transforms the
Krylov subspace Km(A, r(0)) into an orthonormal basis {v(1), . . . ,v(m)}

Km(A,v(1)) = span{v(1), Av(1), . . . , Am−1v(1)},

with v(1) = r(0)/‖r(0)‖2 using the modified Arnoldi-Gram-Schmidt process of orthogonalization (Al-
gorithm 1.3).

Algorithm 1.3 Modified Arnoldi-Gram-Schmidt process

1: v(1) = r(0)/‖r(0)‖2;
2: for i = 1, . . . ,m do
3: w = Av(i);
4: for k = 1, . . . , i do
5: hk,i = (w,v(i);
6: w = w − hk,iv(k);

7: endfor
8: hi+1,i = ‖w‖2;
9: v(i+1) = w/hi+1,i;

10: endfor

The modified Arnoldi-Gram-Schmidt process allows to compute the upper Hessenberg matrixHm =
(hi,j) of size m×m. The coefficients hi,j are computed in Algorithm 1.3. Defining the matrix Vm by

Vm =
[
v(1) v(2) · · · v(m)

]
,

this algorithm can be written in matrix form which leads to the following relation

AVm = VmHm + hm+1,mv
(m+1)eTm,

where em is the unitary vector of which the mth component is equal to 1, or

AVm = Vm+1H̄m,

57



MODELING THE SEISMIC WAVE PROPAGATION IN THE SUBSURFACE

where the matrix H̄m is defined as the matrix Hm but with an additional line with one non-zero coeffi-
cient hm+1,m

H̄m =



h1,1 h1,2 . . . h1,m−1 h1,m

h2,1 h2,2 . . . h2,m−1 h2,m

0
. . .

...
...

...
. . . . . .

...
...

0 0
. . . hm,m−1 hm,m

0 0 . . . 0 hm+1,m


.

The following relation can be deduced

V H
m AVm = Hm

The correction vector δ ∈ Km(A, r(0)) can therefore be written as

δ = Vmy,

where y is a vector of size m. Therefore the approximate solution is computed in the form

x(m) = x(0) + Vmy.

Thus, the GMRES method aims at building the solution x(m) which minimizes the l2-norm of the
residual r = b−Ax. At the iteration m, the minimization problem can be formulated as

Find x(m) ∈ Km(A, r(0)) such that

min
x∈x(0)+Km(A,r(0))

‖b−Ax‖2 = ‖b−Ax(m))‖2. (1.49)

Therefore, we have

r(m) = b−Ax(m)

= b−A(x(0) + Vmy)

= (b−Ax(0))−AVmy
= r(0) −AVmy,

which implies that

r(m) = βv(1) − Vm+1H̄my

= Vm+1(βe1 − H̄my),

where β = ‖r(0)‖2. As the matrix Vm+1 is orthonormal , then

‖Vm+1(βe1 − H̄my)‖2 = ‖βe1 − H̄my‖2,
Therefore, the minimization problem (1.49) can be written as

min
y∈Km

‖βe1 − H̄my‖2 = ‖βe1 − H̄my
(m)‖2.

The computation of y(m) amounts to solve a least square problem of size (m + 1) ×m. The solution
at iteration m is reconstructed by

x(m) = x(0) + Vmy
(m).

The GMRES method is summarized in Algorithm 1.4 in the restarted version.
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Remark 1.1. “Full” GMRES is equivalent to the restarted version when m = n. Because the “full”
GMRES method may require a large number of iterations to reach convergence and therefore a pro-
hibitive amount of memory, the restarted GMRES method is used in practice to limit the memory cost
of the method in particular for large size linear systems. The size m of the Krylov subspace is however
set empirically. Restarted GMRES often leads to slow convergence or even stagnation. This poor con-
vergence properties is caused by the loss of information when the iterations are restarted from scratch.

Algorithm 1.4 Generalized Minimal Residual GMRES method (restarted version)

1: Given an initial guess x(0),
2: Compute r(0) = b−Ax(0),
3: Compute β = ‖r(0)‖2,
4: Compute v(1) = r(0)/β,
5: for i = 1, . . . ,m do
6: ω(i) = Av(i),
7: for j = 1, . . . , i do
8: hj,i = (ω(i),v(j)),
9: ω(i) = ω(i) − hj,iv(j),

10: endfor
11: hi+1,i = ‖ω(i)‖2,
12: v(i) = ω(i)/hi+1,i,

13: endfor
14: Compute y(m) the minimizer of ‖βe1 −Hmy‖2 and
15: Form the solution x(m) = x(0) + Vmy

(m),
16: If no convergence, set r(0) = b−Ax(m) and restart at line 3,

Note that in the GMRES algorithm, if hi+1,i = 0 then x(i) is the solution of Ax = b.

Convergence In exact arithmetic, which is not the case in numerical computing environment, full
GMRES will always converge in at most n iterations. This convergence is monotonic since ‖ri+1‖ ≤
‖ri‖, ri is minimized over Kn. In order to analyze the convergence, let Pm be the space of all polyno-
mials of degree lower or equal tom and σ be the spectrum of the matrixA. SupposeA is diagonalizable
so that A = XDX−1 and

ε(k) = min
p∈Pk
p(0)=1

max
λi∈σ
|p(λi)|.

Then the residual norm at the ith iteration of GMRES satisfies

‖ri+1‖ ≤ cond(X)ε(i)‖r0‖.

When A is positive real with symmetric part M , then

‖ri‖ ≤ (1− α

β
)(i/2)‖r0‖,

with α = (λmin(M))2 and β = λmax(ATA).
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When A is no longer positive real, assume that there are ν eigenvalues λ1, λ2, · · · , λν of A with
non-positive real parts and let the other eigenvalues be enclosed in a circle centered at C with C > 0
and having radius R with R > C. Then

ε(k) ≤
(
R

C

)k−ν
max

j=ν+1,n

ν∏
i=1

|λi − λj |
|λi|

≤
(
D

d

)ν (R
C

)k−ν
,

where
D = max

i=1,ν
j=ν+1,n

|λi − λj |, d = min
i=1,ν

|λi|.

Note that the eigenvalue distribution is much more important that the condition number of A which is
the main criterion for rapid convergence of the conjugate gradient method. The rate of convergence
of the GMRES method depends on the distribution of the eigenvalues of A in the complex plane. In
general, for fast convergence, the eigenvalues need to be clustered away from the origin.

Computational and memory costs The main disadvantage of GMRES is that the sizem of the Kylov
subspace increases with the number of iterations which is prohibitive in terms of memory. Therefore, a
restarted version of GMRES is proposed in (Saad, 1986). It allows to control the maximum size m of
the search space (see Algorithm 1.4). The total cost of computing x(m) by GMRES can be divided in
two parts

• The computation of the Arnoldi vectors v(j+1) for j = 1, . . . ,m. The jth step in this procedure
requires 2(j + 1)n multiplications and one matrix vector product, assuming that the vectors v(i)

are not normalized but that their norms are only computed and saved. The last step requires (m+
1)n multiplications. Therefore, the total number of multiplications for this part is approximately
m(m+ 1)n plus m matrix vector products.

• The computation of the approximate solution x(m) = x(0)+Vmy
(m) requiresmnmultiplications.

Therefore, the k-th iteration of GMRES requires k(k + 2)n multiplications and one matrix vector
products. The memory request of this method is (k + 2)n as the vectors v(i) for i = 1, . . . , k, the ap-
proximate solution x(k) and the vector Av(k) are needed to be stored keeping in mind that the restarted
GMRES is preferred in order to limit the size of the Krylov subspace.

The Bi-Conjugate Gradient Stabilized Bi-CGSTAB

Another strategy for the solution of indefinite non-hermitian systems is the the Bi-CGSTAB method.
This method is a fast and smoothly converging variant of BiConjugate Gradient method (BiCG) (Fletcher,
1976) and the Conjugate Gradient Squared (Sonneveld, 1989) for the solution of large sparse indefinite
non-hermitian linear systems. Implicitly, the algorithm solves not only the original system Ax = b but
also the dual linear system AHx? = b?. Starting from an initial approximation x(0) and a residual r̃(0),
the Bi-CGSTAB algorithm produces iteratively sequences of residuals r(k) and search directions p(k)

such that
r̃(k) = ψk(A)φk(A)r(k)

where ψk is a certain polynomial (Bi-CG polynomial) of degree k of which the goal is to stabilize the
convergence behaviour of the algorithm defined by

ψk(A) = (I − ω1A)(I − ω2A) . . . (I − ωkA)
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with a suitable coefficient ωk helping to stabilize the convergence of the algorithm. The polynomial φk
is defined by the recurrence

φk(A) = φk−1(A)− αkπk−1(A),

πk(A) = φk(A)− βk + 1φk−1(A),

where αk and βk are constants to be chosen. From the above recurrences and the definition of ψk, it
follows that

ψk(A)φk(A) = (I − ωkA)(ψk−1(A)φk−1(A)− αkAψk−1(A)πk−1(A),

where the product ψk(A)πk(A) can be derived from the above recurrences as

ψk(A)πk(A) = ψk(A)φk(A) + βk+1(I − ωkA)ψk−1(A)φk−1(A).

The Bi-CGSTAB defines the search direction vector p(k) such that

p(k+1) = ψk(A)πk(A)r(0),

which writes in vector form as

r(k+1) = (I − ωkA)(r(k) − αkAp(k)),

p(k+1) = r(k+1) + βk(I − ωkA)p(k).

To derive the recurrence for x(k), the vector s(k) is introduced such that

s(k) = r(k) − αkAp(k),

therefore, the recurrence for r(k) can written as

r(k+1) = (I − ωkA)s(k) = r(k) − αkAp(k) − ωkAs(k),

which yields
x(k+1) = x(k) + αkp

(k) + ωkAs
(k).

The optimal value for ωk is chosen to minimize the l2-norm of the vector

(I − ωkA)ψk(A)φk+1(A)r(0).

It is given by

ωk =
(As(k), s(k))

(As(k), As(k))
.

The scalar αk and βk are chosen so that the residuals and the search directions satisfy biorthogonality
and biconjugacy conditions

(r̃(i), r(j)) = 0,

(p(i),p(j)) = 0,

for i 6= j. They are given by

αk =
(r(k), r̃(0))

(Ap(k), r̃(0))
,

βk =
(r(k+1), r̃(0))

(r(k), r̃(0))
× αk
ωk
.

After putting together the above relations, the Bi-CGSTAB algorithm due to Van der Vorst (1992)
is given in Algorithm 1.5.
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Algorithm 1.5 Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB)

1: Given an initial guess x(0),
2: Compute r(0) = b−Ax(0),
3: Choose r̃ such that (r(0), r̃) 6= 0 ,
4: Set p(0) = r(0),
5: for i = 0, . . . until convergence do
6: αi = (r(i), r̃)/(Ap(i), r̃),
7: s(i) = r(i) − αiAp(i),
8: ωi = (As(i), s(i))/(As(i), As(i)),
9: x(i+1) = x(i) + αip

(i) + ωis
(i),

10: r(i+1) = s(i) − ωiAs(i),
11: βi = (r(i+1), r̃)/(r(i), r̃)× αi/ωi,
12: p(i+1) = r(i+1) + βi

(
p(i) − ωiAp(i)

)
,

13: endfor

Convergence Few theoretical results are known about the convergence of Bi-CGSTAB method. Con-
vergence is obtained for 2n iterations. For hermitian positive definite systems, this method provides the
same results as CG, but for twice the cost per iteration as the dual linear systemAHx? = b? is solved as
well. For non-hermitian matrices, it has been shown in (Van der Vorst, 1992), (Sleijpen and Fokkema,
1993) and (Saad, 2003) that in phases of the process where there is significant reduction of the norm
of the residual, the method is comparable to full GMRES in terms of numbers of iterations. In practice
this is often confirmed, but it is also observed that the convergence behavior may be irregular and the
method may even break down in particular for indefinite matrices.

Computational and memory costs Algorithm 1.5 allows to summarize the operations performed
per iteration and the total vectors needed. Thus, the method requires 2 matrix vector products, 5 inner
products and 6 vector updates. The method requires the storage of 7 vectors including the solution
vector.

Summary

Efficient solution of non-hermitian indefinite and ill-conditioned linear system is largely related to an
adequate choice of the iterative method.

Method Inner product Vector update Matrix vector product

CG 2 3 1

CGNR 2 3 2

GMRES k + 1 k + 1 1

Bi-CGSTAB 5 6 2

Table 1.4: Summary of the operations required at the iteration k.

Fortunately, operations which are performed in iterative methods as presented in Table 1.4 can
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be executed at a very high efficiency on today’s parallel computers. Table 1.5 shows the memory
requirements of the iterative methods.

Method Storage requirements

CG 4n

CGNR 5n

GMRES (k + 2)n

Bi-CGSTAB 7n

Table 1.5: Summary of the memory required at the iteration k with n denoting the size of the matrix

1.7.2 Difficulties to use an iterative solver for the solution of the Helmholtz equation

The frequency-domain wave equation is known to be one challenging problem for iterative methods.
Even when it is reduced to its simplest form where the density is assumed homogeneous giving the well-
known Helmholtz equation, and when the wavenumber k = ω/c (ω = 2πf is the angular frequency
and c is the P-wave velocity) is constant, the impedance matrix is indefinite which leads to severe
convergence problem of iterative solvers. The Helmholtz equation is difficult to solve for mainly two
reasons (Ernst and Gander, 2012). First, the solutions of the homogeneous Helmholtz equation oscillate
on a scale of 1/k. Therefore the total number of degrees of freedom n increases proportionally to kd

where d is the space dimension (d = 2 or 3). This growth of n leads to very large matrices and hence
to large computational costs. Second, the matrix resulting from the discretization of the Helmholtz
equation is indefinite. This means that the eigenvalues of the impedance matrix have both negative
and positive real parts with extremely small amplitude as the wavenumber increases. This yields an
ill-conditioned impedance matrix difficult to invert for iterative solvers.

Consider the 2D frequency-domain acoustic wave equation equation (1.33). Perfectly matched
layers (Bérenger, 1994) are used at the boundary of domain with NPML = 10 grid points in each layer.
The damping coefficient in the PMLs is set toCPML = 1500. The equation (1.33) is discretized using a
fourth-order staggered-grid finite-difference method with 5 grid points per wavelength yielding a sparse
impedance matrix A of size n.

We compute the spectrum of the impedance matrix A based on the domain Ω of size 12 km×6 km.
The P-wave velocity is assumed constant (c = 1500 m/s). The spectrum of the impedance matrix A is
presented in Figure 1.8. It shows the shift in the real part of the eigenvalues due to the zero-th term in
k2 giving eigenvalues with positive and negative real parts.

For the numerical solution using the iterative methods CGNR, GMRES and Bi-CGSTAB, we con-
sider the heterogeneous medium given by the BP2004 model (Billette and Brandsberg-Dahl, 2004) of
size 67 km × 12 km (a fully detailed description of the model is given in Chapter 3 Section 3.1.1). The
model is discretized on 48 × 270 grid for f = 1 Hz and 209 × 1113 grid for f = 5 Hz. The stopping
criterion

‖Ax(k) − b‖2
‖b‖2

≤ 10−4,

is applied using the true residual.
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Figure 1.8: Spectrum of the impedance matrix A on a homogeneous medium.
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Figure 1.9: Performances of CGNR, CGMRES and Bi-CGSTAB on the Helmholtz problem in the
heterogeneous medium BP2004.

Figure 1.9 shows the number of iterations performed by CGNR, GMRES and Bi-CGSTAB for the
solution of the heterogeneous Helmholtz problem for various frequencies. The three iterative solvers
perform more than 10, 000 iterations to converge which a large number for a relatively small discrete
problem. The CGNR method is robust however it requires a large number of iterations to converge.
Because it solves the normal equations, the rate of convergence is proportional to the square of the
condition number of the matrix A. Both GMRES and Bi-CGSTAB suffer from a slow convergence as
the size of the problem increases. Bi-CGSTAB is more sensitive to the spectrum of the matrix. As the
size of the linear system increases, the convergence becomes increasingly non-smooth underlining a
loss of accuracy in the residual update.

Therefore, preconditioning strategies become mandatory to improve the convergence of iterative
solvers. These techniques are introduced in the following section.
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1.7.3 Preconditioning strategies for iterative methods

The convergence rate of iterative methods based on Krylov subspace is directly linked to the spectrum
of the matrix A. For conjugate gradient methods, this convergence is quantified by the condition num-
ber of the matrix A which is denoted by cond(A). When the condition number of the matrix A is
small, solving the linear system (1.40) results in a convergence with a low number of iterations. On the
contrary, an ill-conditioned matrix has a relatively high condition number and a CG iterative method
applied to this linear system requires a large number of iterations to converge. In addition, and par-
ticularly for GMRES, rapid convergence is obtained when the eigenvalues of preconditioned matrix
are clustered away from the origin. Therefore, a preconditioning strategy is required to enable a fast
convergence as it improves the eigenvalue distribution of the matrix to be solved.

Principle

Preconditioning means transforming the original system into another system "easier" to solve. General
preconditioning strategies for solving the linear system (1.40) consist in defining the invertible matrices
Pl and Pr such that

PlAPry = Plb, x = Pry. (1.50)

The condition number of the matrix PlAPr should be closer to 1 than the condition number of A or
in some cases, Pl and Pr help clustering the eigenvalues of the matrix PlAPr away from the origin.
Preconditioning should then enable fast convergence of iterative solvers on the system (1.50). Standard
strategies for non-hermitian systems consists for instance in choosing Pl = A−1 + E, Pr = I (left
preconditioning), or equivalently Pl = I, Pr = A−1 + E (right preconditioning) with E a residual
or error matrix of the approximation.

Ideally , one can choose Pl or Pr as

Pl = A−1 or Pr = A−1,

the convergence is then obtained in one iteration and we would have

cond(PlA) = cond(APr) = cond(I) = 1.

However, the matrix A−1 is not available in practice either for computational or memory issues (or
both). Therefore, preconditioning strategies consists in computing a preconditioner P which approxi-
mates at "best" the matrix A−1 such that

• the computational cost of applying the preconditioner on a vector is in the same order of Ax,

• the cost for computing and storing the preconditioner is affordable,

• and Px is a good approximation of A−1x.

Standard preconditioning strategies for the wave problem

Preconditioning strategies for the frequency-domain wave equation have been intensively studied over
the past decades. Ernst and Gander (2012) propose an overview of the iterative methods together with
the preconditioning strategies which I detail later in this section, for the solution of Helmholtz-like
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problems. This review explains why the Helmholtz problem is difficult to solve by iterative methods
and addresses the theoretical aspects of the problem. GMRES and Bi-CGSTAB are promoted as the best
iterative methods for this problem. However they require an efficient preconditioning method as they
fail to converge for large and/or complex heterogeneous problems. Many iterative methods combined
with specific preconditioners have been designed for solving the frequency-domain wave equations.
Most of the recent developments of the preconditioning strategies focus on the acoustic frequency-
domain wave equation, particularly on the Helmholtz equation which considers a homogeneous density.
Therefore, consider the latter equation

−
(
∆ + k2

)
u = f, (1.51)

with the suitable boundary conditions. The discretization of the Helmholtz problem (1.51) using finite-
difference methods yields a sparse linear system

Ax = b. (1.52)

The matrix A is sparse, large dependently on the size of the model and the wave numbers modeled,
complex-valued and non hermitian because of the absorbing boundary conditions often used. This
matrix remains positive definite as long as k2 is smaller than the first eigenvalue of the discrete Laplacian
operator. However, in geophysical applications, the wavenumber becomes rapidly large which gives to
the matrix A both positive and negative real part eigenvalues. This makes the matrix A indefinite.
Therefore, iterative methods alone are not effective methods for the solution of this type of problem.

In this section, I shall focus on the different preconditioning methods which have been discussed
recently. I shall distinguish them into two categories. The first category of preconditioners is called
algebraic. They do not require a prior knowledge of the discrete operator A. The second category is
called operator-based as it attempts to produce a preconditioning operator which approximates from a
"physics" point of view the operator A.

Algebraic preconditioners Among the most reliable algebraic preconditioning strategies is the In-
complete LU factorization of the matrix A introduced by Saad (2003). This factorization performs a
decomposition of the form A = LU − R where L and U are respectively a lower and an upper matrix
which have the same non-zero pattern as the lower and upper parts of the matrix A and R is a residual
matrix. The basic method is called the ILU(0) where the matrices L and U have the same sparsity pat-
tern as the matrix A. Further developments of the ILU preconditioner were about introducing a control
on the level of fill p and/or a threshold τ to improve its quality. This strategy allows the preconditioner
to be more accurate with a control on the fill-in effect (Saad, 1994). Therefore, the action of the ILU
preconditioner on a vector x can be known by performing a forward and backward substitution. This
kind of preconditioner may be described as implicit as its action on a vector requires the solution of
a linear system. However, such preconditioner suffer from instabilities during the Gauss elimination
process. Null pivots appear and cause possible breakdown of the factorization. This preconditioner
is used by Osei-Kuffuor and Saad (2010) on the Helmholtz problem. The incomplete factorization is
performed on the matrix A + iαI where a small complex perturbation on the diagonal of the matrix
is introduced. Such strategy improves the quality of the preconditioner and more importantly acts as a
tool for safeguarding the stability of the incomplete factorization procedure.

Among the algebraic preconditioner, one can recall the approximate inverse (AINV) preconditioner.
This technique introduced by Benzi and Tuma (1998) is based on an incomplete inverse triangular
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factorization of the matrix A. It computes an incomplete factorization of the form WHAZ = D using
a bi-conjugation algorithm, where W and Z are upper triangular matrices, and D is a diagonal matrix

WHAZ = D,

thus
(WHAZ)−1 = Z−1A−1W−H = D−1,

and
A−1 = ZD−1WH .

The matricesW andZ are computed column-wise by performing an approximateA-bi-orthogonalization
of the Gram-Schmidt kind. In fact, as A = LDU is an LDU factorization of the matrix A, then W and
Z are respectively the inverse of the matrices L and U . To obtain a sparse preconditioner, a dropping
rule may be applied as for the ILU preconditioner at each iteration of the preconditioner computation
process. This straightforward implementation of the bi-conjugation algorithm is refereed to DDS (Dy-
namic Data Structures) by Benzi and Tuma (1998). Because most of the fill-in in the factors Z and W
appears in the late steps of the factorization, it is difficult to minimize the computational cost and the
high proportion of non-floating-point operations. Therefore, an alternative implementation called SDS
(Static Data Structures) is preferred. Non-zero coefficients are computed according to the sparsity pat-
tern chosen. Both implementations are completely equivalent, however the SDS implementation allows
to compute separately the factors Z and W but at the cost of increasing the number of floating-point
operations. It appears to be well suited to parallel implementation. The action of such a preconditioner
on a vector is known by performing matrix vector products of the matrices W , Z and D−1. Therefore,
such preconditioner is advantageous as its action can be easily parallelized. This kind of preconditioner
may be described as explicit.

One last preconditioning strategy we may consider is the algebraic domain decomposition method
based on a hybrid direct-iterative solver. The computational domain is decomposed into sub-domains.
The points which are located in the interior of each sub-domain are called the interior points. The
points which are located at the interfaces between the sub-domains are called interface points (Smith
et al., 1996). A sparse direct solver is used to solve the local linear systems defined on each sub-
domain allowing to compute the solution on the interior points. An iterative method is used to solve
the reduced system, the so-called Schur complement system, for the interface points (Saad, 2003). A
detailed presentation of this method is given by Haidar (2008) and Sourbier et al. (2011). Denote by
np the number of sub-domains in one direction. For complexity comparison, it is assumed the same
number of sub-domains in the three space directions. Therefore, the total number of sub-domains is
n3
p and the dimension of the cubic sub-domains is N/np. The theoretical memory used to perform the

local lower-upper factorizations for all sub-domain is O(n3
p(N/np)

4) = O(N4/np). The dimension
of the dense Schur complement matrices is (N/np)

2. Thus, the total memory complexity which re-
quired for the storage of the n3

p local Schur complements is O(n3
p(N/np)

4) = O(N4/np) which is
equal to the memory complexity of the LU factorizations. Thus, the memory complexity of the hybrid
solver isO(N4/np). The computational complexity of the local LU factorizations for all sub-domain is
O(n3

p(N/np)
6) = O(N6/n3

p) and the computational complexity for the solution of the Schur comple-
ment systems using the iterative part of the hybrid solver is O(n3

pNiter(N/np)
4) = O(NiterN

4/np).
Therefore, assuming thatO(np) = O(N) andO(Niter) = O(N), the computational complexity of the
hybrid solver is O(N4) and its memory complexity is O(N3) for one source modeling. These compu-
tational and memory costs are the same as that of iterative solvers. However, one need to keep in mind
that a large number of cores O(N3) is required to achieve such performances.
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Operator-based preconditioners The second class of preconditioners is known as operator-based
preconditioners. The first attempts to precondition the Helmholtz operator (∆ + k2) was using the
inverse of the Laplacian operator ∆ as introduced by Bayliss et al. (1983). They propose to solve the
Helmholtz problem using the CGNR method where the iterations are preconditioned with the inverse
of the discrete Laplacian operator. This inverse is not computed explicitly but its action is evaluated
by applying sweeps of Symmetric Successive Over Relaxation (SSOR) iterations (Saad, 2003). Bayliss
et al. (1983) indicate that performing more sweeps is less efficient because of the additional cost of each
sweep and the results obtained with one SSOR sweep present significant acceleration even when the
wavenumber is not small.

Laird and Giles (2002) define the preconditioner based on a modified Helmholtz operator (∆ −
k2). In the definition of the preconditioner, Dirichlet boundary conditions are used despite the use the
radiation boundary condition in the original problem and the sign of the mass matrix term is changed.
Therefore, the preconditioner is symmetric positive definite. The preconditioner is applied using one
V-cycle of multigrid. To minimize the cost of the application of the preconditioner, only one pre- and
post-smoothing Jacobi iteration is used within the multigrid cycle. This method is fully described by
Aruliah and Ascher (2003) and Mulder (2006). GMRES is used for small size systems and CGNR for
larger size systems.

Made et al. (2000) introduce first the idea of preconditioning the Helmholtz operator using the
same operator but with a complex shift on the Laplace operator which amounts to use the operator
(∆ + iε+ k2) as a preconditioner with ε a small real perturbation. GMRES is used for the solution of
the 2D Helmholtz problem and the preconditioner is computed using the incomplete LU factorization
(ILU) strategy with different levels of filling.

Erlangga et al. (2006b) introduce the complex shifted Laplace preconditioner. This preconditioner
is based on the operator (∆ − ik2). The shifted Laplace operator is used to precondition the Bi-
CGSTAB iterations. It is computed using the ILU strategy described in the previous part. The results
are compared with the results obtained when the preconditioner is applied with a multigrid approach
using the same iterative solver. The experiments are performed on a constant wavenumber model, a
wedge model and finally on the Marmousi problem. Hence, both strategies are effective under the
condition that the computation of the ILU preconditioner is allowed with some fill-in.

Ultimately, several investigations have been performed in this direction. The preconditioning strat-
egy has been addressed in a more general fashion through the operator (∆ + (β1 + iβ2)k2) by Erlangga
et al. (2004) and Plessix (2006b) with proofs for defining the optimal shift. The values β1 = 1 and
β2 = 0.5 have shown the optimal results.

Recently, another type of preconditioner was introduced. The sweeping preconditioner and moving
PML sweeping preconditioner are introduced in (Engquist and Ying, 2011) and (Poulson et al., 2013)
for both constant and non-constant wavenumber. This method is based on the computation a reason-
ably accurate approximate factorization of the shifted Helmholtz operator by multifrontal approach and
hierarchical partitioning of the domain layer by layer. The approach of this method is to reduce the di-
mension of the problem by one order of magnitude allowing the feasibility of the factorization. GMRES
is used to solve the 2D and 3D acoustic wave problem.

Up to now, the combination of iterative methods together with preconditioning strategies allows to
speed up the convergence on the Helmholtz equation. As most of these methods are based on multigrid
approaches, it is well-known that the shift has to be large enough for these methods to be effective to
invert the shifted operator, but not too large to still be a good preconditioner for the original Helmholtz
problem as it has been pointed out in (Ernst and Gander, 2012) and (Gander et al., 2015). The number of
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iterations still increases with respect to the frequency modeled yielding a complexity of Niter = O(N)
whereN is the average number of grid point per dimension. The ideal case is having a convergence that
is independent of the size from the problem. This results is nearly obtained by Poulson et al. (2013) for
the 2D and 3D Helmholtz equation using the sweeping PML preconditioner combined with GMRES.
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1.8 Conclusion

In this chapter, I was interested in describing the main ingredients governing this study. I introduced the
equations governing the acoustic and elastic wave propagation and the standard discretization method
I use in this thesis. These equations are discretized using the finite-difference method with the appro-
priate schemes. Namely, the staggered-grid finite-difference scheme combined with the parsimonious
approach is used.

Iterative method and preconditioning strategies are discussed for the solution of the frequency-
domain wave equation. Most of the recent developments were done in the acoustic approximation
and particularly using the Helmholtz equation which supposes a constant density. Some attempts for
the resolution of the 3D frequency-domain elastic wave equations are carried out but the size of the
problems are not realistic. Among the standard iterative methods, the Conjugate Gradient Minimum
Norm (CGMN) iterative solver introduced by Björck and Elfving (1979) and efficiently parallelized
into the Component-Averaged Row Projections Conjugate Gradient method (CARP-CG) method by
Gordon and Gordon (2010a) has been successfully used for the resolution of the frequency-domain
acoustic wave equation in the 3D FWI framework (van Leeuwen and Herrmann, 2014) as well as in
the 2D and 3D elastic approximations for the frequency-domain seismic wave simulation by Li et al.
(2015). In the latter case, CARP-CG reveals to be extremely robust. The convergence is obtained
without preconditioning with Niter = O(Nα) with α < 1 in media with strong contrasts, presenting
high Poisson’s ratio, and with a free surface boundary condition responsible for the generation of surface
waves. In addition, iterative methods benefit from multiple right hand side accelerations such as the
block CG methods introduced by O’Leary (1980) and the projection methods of Chan and Wan (1997)
leading to a significant reduction in the number of iterations. Therefore, the CARP-CG method can be
computationally enhanced with a proper preconditioning strategy. This method becomes particularly
appealing for FWI applications in the 3D elastic approximation where other strategies fail or require
too much resources. However, the number of iterations required to converge is still large in some
configurations.

The linear system resulting from the discretization of the frequency-domain wave equations and
its resolution using the iterative method CARP-CG are at the heart of this thesis. I am interested into
pushing further this method by suggesting a preconditioning strategy which is adapted. Based on the
recent developments, this preconditioner is based on the formulation of this same problem in a strongly
damped medium which is equivalent to the shifted Laplace preconditioner already discussed. The
method for the evaluation of the preconditioner and its application with CARP-CG method will be
detailed in the following chapters.

70



Chapter 2

The CARP-CG method and
preconditioning strategies

Contents
2.1 The CARP-CG method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.1.1 The Kaczmarz method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.1.2 The CGMN method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.1.3 The CARP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.1.4 The CARP-CG method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.1.5 Computational and memory costs . . . . . . . . . . . . . . . . . . . . . . . 86
2.1.6 Spectral analysis of the matrix I −Q(A) for the Helmholtz equation . . . . 87

2.2 Preconditioning strategy for the CARP-CG method . . . . . . . . . . . . . . . . 90
2.2.1 How to precondition the CARP-CG method ? . . . . . . . . . . . . . . . . . 90
2.2.2 The ILUT preconditioner for the frequency-domain wave equation . . . . . . 93
2.2.3 The AINV preconditioner for the frequency-domain wave equation . . . . . 94
2.2.4 Numerical illustration of the ILUT and AINV preconditioners for the frequency-

domain wave equation using CGMN . . . . . . . . . . . . . . . . . . . . . . 96
2.2.5 A revisited sparse approximate inverse preconditioner for the frequency-domain

wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.3 Spectral study of the preconditioned Helmholtz equation . . . . . . . . . . . . . 104

2.3.1 The Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.3.2 Spectral properties of the damped frequency-domain wave preconditioner . . 106
2.3.3 Sparse approximation of the damped frequency-domain wave preconditioner 109
2.3.4 Spectral analysis of the matrices I −Q(A), I −Q(AG−1) and I −Q(AP ) . 111

2.4 Spectral study of the preconditioned frequency-domain elastic wave equations . 112
2.4.1 The frequency-domain elastic wave equations . . . . . . . . . . . . . . . . . 113
2.4.2 Spectral properties of the damped frequency-domain wave preconditioner . . 115
2.4.3 Sparse approximation of the damped frequency-domain wave preconditioner 117
2.4.4 Spectral analysis of the matrices I −Q(AG−1) and I −Q(AP ) . . . . . . . 121

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



THE CARP-CG METHOD AND PRECONDITIONING STRATEGIES

A robust and efficient solver for the frequency-domain elastic wave problem is an essential element
for any seismic imaging technique such as the reverse time migration (RTM) and the full waveform
inversion (FWI) methods. The discretization of the frequency-domain elastic wave equations (1.14) or
(1.15) governing the elastic wave propagation in the frequency-domain yields a large sparse indefinite
and ill-conditioned impedance matrix. Moreover, the conditioning of such matrix is worsened by ac-
counting for the heterogeneities of the subsurface (P and S-wave velocity and density fields) as well
as the nature of the boundary condition on top. The free-surface boundary induces the propagation of
surface waves which makes the linear system even harder to solve using iterative solvers.

The CARP-CG method is a Krylov sub-space iterative method designed for the solution of large
sparse and non-hermitian linear systems on parallel architectures (Gordon and Gordon, 2010b). This
method is based on the combination of the Kaczmarz iterations and the conjugate gradient method.
CARP-CG can be considered as a parallel version of the CGMN method introduced by Björck and Elfv-
ing (1979). By introducing the parallelization of the Kaczmarz iterations through the CARP method
(Gordon and Gordon, 2005), the CARP-CG method can also be seen as a conjugate gradient accelera-
tion of CARP. CARP-CG has been successfully applied for solving the 2D and 3D Helmholtz equation
in heterogeneous media (Gordon and Gordon, 2013; van Leeuwen and Herrmann, 2014). Gordon and
Gordon (2013) show that the CARP-CG method outperforms any iterative solver or multigrid method
combined with the shifted Laplacian preconditioner at all wave numbers in term of computation time.
Recently, the CARP-CG method was used for solving the 2D and 3D frequency-domain elastic wave
equations in strongly heterogeneous media (Li et al., 2015).

However, in the 3D elastic approximation, considering CARP-CG as a solver for the forward prob-
lem in the framework of seismic imaging methods requires to further improve the convergence proper-
ties of this method. The number of iterations and the computation time performed by the CARP-CG
method for the solution of the frequency-domain elastic wave equation still needs to be reduced. Thus
preconditioning techniques have to be used to enhance the performances of the CARP-CG method.
However, unlike standard iterative methods such as CGNR, GMRES or BiCGSTAB, the CARP-CG
algorithm is based on a reformulation of the linear system to be solved. Therefore, designing a precon-
ditioner adapted to this method is not straightforward.

In this chapter, I shall give an overview of the CARP-CG method and study the possible precondi-
tioning strategies which can be combined with it. In the first part, the CARP-CG method is introduced
through the Kaczmarz iterations and the conjugate gradient method. The numerical complexity and
the theoretical convergence properties are presented. A spectral analysis of this method based on the
Helmholtz equation is presented as well. In the second part, preconditioning strategies are investi-
gated for the CARP-CG method. In the third and fourth parts, spectral studies are carried out on the
preconditioned problems in the 2D acoustic and elastic approximations respectively.

2.1 The CARP-CG method

The purpose of this section is to introduce the CARP-CG method. This method is based on the ac-
celeration of the Kaczmarz iterations using the conjugate gradient method. I start this overview by
introducing the Kaczmarz method. The latter is combined with the conjugate gradient method yield-
ing the sequential CGMN method. The parallelization of the Kaczmarz iterations is performed by the
CARP method. Finally, the CARP-CG method is the CG acceleration of CARP. It can be considered as
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2.1 The CARP-CG method

well as the parallelization of CGMN. In the Figure 2.1, the links between the above iterative methods
(Kaczmarz, CARP, CGMN and CARP-CG) are presented.

Kaczmarz CARP
parallelization

CGMN

CG acceleration

CARP-CG
parallelization

CG acceleration

Figure 2.1: Generalized diagram showing the links between the iterative methods Kaczmarz, CGMN,
CARP and CARP-CG.

2.1.1 The Kaczmarz method

The Kaczmarz method is one of the first iterative method for computing the solution of a sparse linear
system (Kaczmarz, 1937). Consider a linear system of size n ∈ N \ {0}

Ax = b, (2.1)

with
A ∈ Gln (K) , x ∈ Kn, b ∈ Kn,

where K = R or K = C. Given an initial guess x(0), at each iteration, the approximate solution x(k)

is updated by performing an orthogonal projection of the current iterate towards the hyperplane defined
by one equation of the linear system (2.1). These projections are denoted by

x(k+1) = x(k) +
bi −

(
ai•,x

(k)
)

‖ai•‖22
aHi• , i = k + 1 [n] , (2.2)

where (·, ·) denotes the canonical scalar product in K and ‖x‖22 = (x,x) is the norm induced by the
canonical scalar product. Consider for instance a linear system of size 2 given by{

a11 x1 + a12 x2 = b1,
a21 x1 + a22 x2 = b2.

(2.3)

The coefficients of the linear system (2.3) are set to (a11, a12, a21, a22) = (−2, 1, 0, 1) and (b1, b2) =
(1, 1). Each equation of the system (2.3) is represented by a line in Figure 2.2. Applying the Kaczmarz
method for the solution of the system (2.3) with a given initial guess x(0), the set of approximate so-
lutions {x(0), x(1), x(2), · · · } is calculated following the orthogonal projections given in the equation
(2.2).

Consider the case where the hyperplanes of the linear system (2.3) are orthogonal. Note that the
resulting matrix A

A =

(
a11 a12

a21 a22

)
,
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x(0)

x(1)

x(2)

x(3)

x(4)

Figure 2.2: Successive approximate solutions computed by the Kaczmarz method on system (2.3) with
(a11, a12, a21, a22) = (−2, 1, 0, 1) and (b1, b2) = (1, 1).

is orthogonal, i.e. (ai•,aj•) = 0 if i 6= j. In such case, the Kaczmarz method converges in 2 iterations
as it is the shown in Figure 2.3a where the matrix A is given by

A =

(
−1 0.1
0.1 1

)
.

On the other hand, when the hyperplanes of the linear system (2.3) are nearly collinear, the Kacz-
marz method performs a large number of iterations to converge towards the solution. This is shown in
Figure 2.3b where the matrix A is chosen as

A =

(
−1 0.1
0 1

)
.

x(0)

x(1)

x(2)

(a) Case 1

x(0)

(b) Case 2

Figure 2.3: Successive approximate solutions computed by the Kaczmarz method on system
(2.3) with (a11, a12, a21, a22) = (−1, 0.1, 0.1, 1, 1) for (a) denoting an orthogonal matrix A and
(a11, a12, a21, a22) = (−0.1, 1, 0, 1) for (b) denoting a matrix A with nearly collinear row vectors
and (b1, b2) = (1, 1).

Remark 2.1. The computational cost of the Kaczmarz method can be reduced assuming the rows of the
matrix A have been previously normalized by dividing each equation by the L2-norm of its coefficients

DAx = Db, (2.4)
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where D ∈ Gln (R) is a diagonal matrix such that

dii =
1

‖ai•‖2
, i = 1, · · · , n, and dij = 0, i 6= j.

This normalization step is called Geometric Row Scaling (GRS) and can be considered as a first pre-
conditioning step for the linear system (2.1) (Gordon and Gordon, 2010c). Throughout the rest of
this thesis, the linear system (2.1) is considered as already normalized through equation (2.4). The
iterations (2.2) are then rewritten as

x(k+1) = x(k) +
(
bi −

(
ai•,x

(k)
))

aHi• , i = k + 1 [n] . (2.5)

A relaxation parameter λ (0 < λ < 2) can be introduced in the Kaczmarz method, yielding the
iterations

x(k+1) = x(k) + λ
(
bi −

(
ai•,x

(k)
))

aHi• , i = k + 1 [n] . (2.6)

When the relaxation parameter is greater than 1, the projections are performed over the hyperplanes de-
fined by the row equations whereas when λ < 1, these projections are performed under the hyperplanes
(see figure 2.4). Depending on the hyperplanes, the relaxation parameter gives either an acceleration

x(0)

x(1)

x(2)

x(3)

(a) λ > 1

x(0)

x(1)

x(2)

x(3)

x(4)

(b) λ < 1

Figure 2.4: Relaxed Kaczmarz method with λ > 1 (a) and λ < 1 (b).

of the convergence or on the opposite a slow down of the convergence. Unfortunately, in most cases
the optimal value for the relaxation parameter needs to be estimated empirically. Theoretical results are
derived for the estimation of the optimal value of the relaxation parameter λ

λopt =
2

1 +
√

1− ρ(G)
, (2.7)

where G is the iteration matrix defined by G = (D − L)−1U with D, L and U the diagonal, lower and
upper parts of the matrix A and ρ(G) the spectral radius of the matrix G (Saad, 2003). Expression (2.7)
shows the difficulty to estimate the optimal value of the relaxation parameter as one needs to access the
spectral radius of the matrix G.
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Remark 2.2. Note that in addition to dividing the ith equation by ‖ai•‖22, we can also multiply it by
√
λ

and thus save some additional multiplications during the Kaczmarz iterations. The matrix D̃ ∈ Gln (R)
is such that

D̃Ax = D̃b,

with

d̃ii =

√
λ

‖ai•‖2
, i = 1, · · · , n, and d̃ij = 0, i 6= j.

The relaxed version of the Kaczmarz algorithm is equivalent to the Successive Over Relaxation
(SOR) method applied to the normal equations (Saad, 2003)

AAHy = b, x = AHy, (2.8)

with y ∈ Kn. The SOR method is based on the recursion

(D + λE)x(k+1) = [(1− λ)D − λF ]x(k) + λb,

which can be rewritten as

x(k+1) = x(k) + λD−1
[
b− Ex(k+1) − (F +D)x(k)

]
, (2.9)

where A = D + E + F in which D is the diagonal of A, E and F are respectively its strict lower and
upper parts. The ith inner step of the above iteration k of equation (2.9) is given by

x
(k+1)
i = x

(k)
i +

λ

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i

aijx
(k)
j

 , i = k + 1 [n] . (2.10)

Given the initial guess x(0) ∈ Kn, the first iteration of equation (2.10) writes

x
(1)
1 = x

(0)
1 +

λ

a11

b1 − n∑
j=1

a1jx
(0)
j

 ,
= x

(0)
1 +

λ

a11

[
b1 − (Ax(0))1

]
,

= x
(0)
1 +

λ

a11

[
b1 − (a1•,x

(0))
]
,

with (Ax(k))j denoting the jth coefficient of the vector Ax(k). At the iteration k + 1, only the ith

(i = k + 1 [n]) coefficient of the vector x(k+1) is updated, therefore the coefficients x(k+1)
j for j = 1, . . . , i− 1

remain unchanged from the previous iteration k

x
(k+1)
j = x

(k)
j , j = 1, . . . , i− 1, i = k + 1 [n] .

Thus, at the iteration k + 1 we have

i−1∑
j=1

aijx
(k+1)
j =

i−1∑
j=1

aijx
(k)
j . (2.11)
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Using the above equation (2.11), the iteration given in the equation (2.10) becomes

x
(k+1)
i = x

(k)
i +

λ

aii

[
bi − (ai•,x

(k))
]
, i = k + 1 [n] ,

or in vector form

x(k+1) = x(k) +
λ

aii

[
bi − (ai•,x

(k))
]
ei, i = k + 1 [n] .

When applied to the normal equations (2.8), the previous iterations write

y(k+1) = y(k) +
λ

ai•aHi•

[
bi − (ai•, A

Hy(k))
]
ei, i = k + 1 [n] . (2.12)

The above equation (2.12) is multiplied by AH on the left and by noting that ‖ai•‖22 = ai•a
H
i• , the

following equation is obtained

AHy(k+1) = AHy(k) +
λ

‖ai•‖22

[
bi − (ai•, A

Hy(k))
]
AHei, i = k + 1 [n] ,

and using the change of variable x = AHy, the Kaczmarz iterations (2.2) are retrieved

x(k+1) = x(k) +
λ

‖ai•‖22

[
bi − (ai•,x

(k))
]
aHi• , i = k + 1 [n] ,

In the following, a forward sweep is defined as a sequence of projections from the first to the last
row of the matrix A

x(i) = x(i−1) + λ
(
bi −

(
ai•,x

(i−1)
))

aHi• , i = 1, · · · , n. (2.13)

A Kaczmarz forward sweep can be defined as well as follows by extending its application to non square
linear systems.

Definition 2.1. Let A be a given m × n matrix in K, b a given vector of Km, x a vector in Kn and
λ ∈ Iλ = ]0, 2[ the real-valued relaxation parameter, a Kaczmarz forward sweep is defined as the
function FKACZ

FKACZ : Mm,n(K),Km, Iλ,Kn −→ Kn

A,b, λ,x 7−→ y,

which takes A,b, λ and x and computes y ∈ Kn following the projections

x(i) = x(i−1) + λ
(
bi −

(
ai•,x

(i−1)
))

aHi• , i = 1, · · · ,m,

using x as an initial iterate. The matrix A and the right-hand side b are assumed to be previously
normalized through the GRS operation (2.4).

A backward sweep is similar to a forward sweep, but traversing the equations in the reverse order

x(n−i+1) = x(n−i) + λ
(
bi −

(
ai•,x

(n−i)
))

aHi• , i = n, · · · , 1, (2.14)

A Kaczmarz backward sweep can be defined as well as follows by extending its application to non
square linear systems.
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Definition 2.2. Let A be a given m × n matrix in K, b a given vector of Km, x a vector in Kn and
λ ∈ Iλ = ]0, 2[ the real-valued relaxation parameter, a Kaczmarz backward sweep is defined as the
function BKACZ

BKACZ : Mm,n(K),Km, Iλ,Kn −→ Kn

A,b, λ,x 7−→ y,

which takes A,b, λ and x and computes y ∈ Kn following the projections

x(n−i+1) = x(n−i) + λ
(
bi −

(
ai•,x

(n−i)
))

aHi• , i = m, · · · , 1,

using x as an initial iterate. The matrix A and the right-hand side b are assumed to be previously
normalized through the GRS operation (2.4).

A double sweep is defined as a forward sweep followed by a backward sweep. It can be defined as
the function DKACZ which is introduced below.

Definition 2.3. Let A be a given m × n matrix in K, b a given vector of Km, x a vector in Kn and
λ ∈ Iλ = ]0, 2[ the real-valued relaxation parameter, a Kaczmarz double sweep is defined as the
function BKACZ which takes A,b, λ and x and computes y ∈ Kn such that

DKACZ : Mm,n(K),Km, Iλ,Kn −→ Kn

A,b, λ,x 7−→ y = BKACZ(A,b, λ,FKACZ(A,b, λ,x)).

The matrix A and the right-hand side b are assumed to be previously normalized through the GRS
operation (2.4).

Performing successive Kaczmarz double sweep operations is equivalent to the Symmetric Succes-
sive Over Relaxation (SSOR) method applied to the normal equations (2.8). Symmetric SOR steps
consist of the SOR step followed by a backward SOR step (Saad, 2003)

(D + λE)x(k+1/2) = [(1− λ)D − λF ]x(k) + λb,

(D + λF )x(k+1) = [(1− λ)D − λE]x(k+1/2) + λb.

The backward SOR inner iteration steps can be written as

x
(k+1)
i = x

(k+1/2)
i +

λ

aii

bi − n∑
j=i

aijx
(k+1)
j −

i−1∑
j=1

aijx
(k+1/2)
j

 , i = n− k [n+ 1] . (2.15)

Starting from row n, the backward SOR inner iteration writes

x(1)
n = x(1/2)

n +
λ

ann

bn − n∑
j=i

anjx
(1/2)
j

 ,
= x(1/2)

n +
λ

ann

[
bn − (Ax(1/2))n

]
,

= x(1/2)
n +

λ

ann

[
bn − (an•,x

(1/2))
]
.
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The coefficients of the x(k+1/2) are updated from the last coefficient n to the i-th one in a reverse order,
therefore the coefficients x(k+1/2)

j for j = i, . . . , n remain the same from the iteration k + 1/2 to the
iteration k + 1

x
(k+1/2)
j = x

(k)
j , j = i, . . . , n, i = k + 1 [n] .

Thus, at the iteration k + 1 we have

n∑
j=i

aijx
(k+1)
j =

n∑
j=i

aijx
(k+1/2)
j . (2.16)

Using the above equation (2.16), the backward SOR iteration (2.15) can be expressed as

x(k+1) = x(k+1/2) +
λ

aii

[
bi − (ai•,x

(k+1/2))
]
ei, i = n− k [n+ 1] . (2.17)

Using the above equation (2.17), it is easy to check that the backward SOR method (2.15) applied to
the normal equations (2.8) is equivalent to the backward Kaczmarz sweeps.

2.1.2 The CGMN method

The CGMN method introduced by Björck and Elfving (1979) allows to accelerate the Kaczmarz it-
erations using the conjugate gradient method. The linear system (2.1) is transformed into a positive,
semi-definite and hermitian linear system through the Kaczmarz iterations performed in double sweeps.
The latter is solved with the CG method.

The Kaczmarz projection on the ith row of the linear system (2.1) can be formulated in matrix form
using the following definition.

Definition 2.4. Given the linear system (2.1), the Kaczmarz ith row projection operation is defined by

x(i) = Qi(A)x(i−1) +Ri(A)b.

where the matrices Qi(A) and Ri(A) are given by

Qi(A) = I − λAeieHi AH = I − λai•aHi• ,
Ri(A) = λAeie

T
i = λai•e

T
i .

The matrix I is the identity and λ is the relaxation parameter introduced by the Kaczmarz method. By
construction, the matrices Qi(A) for i = 1, . . . , n are hermitian.

Using the definition 2.4, the double sweep operations can be expressed as

y = Q(A)x +R(A)b, y ∈ Kn,

where
Q(A) = Q1(A) . . . Qn(A)Qn(A) . . . Q1(A),

and

R(A) =

n∏
j=1

Qj(A)

 n∑
i=1

 i+1∏
j=n

Qj(A)

Ri(A)

+

n∑
i=1

i−1∏
j=1

Qj(A)

Ri(A).
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Remark 2.3. The matrixQ(A) is hermitian as a product of hermitian matricesQi(A) for i = 1, . . . , n.

With the previous notations, the Kaczmarz method applied with double sweeps can be written as

x(k+1) = Q(A)x(k) +R(A)b. (2.18)

At convergence, i.e. when x(k) = x? = A−1b, the equation (2.18) becomes

x? = Q(A)x? +R(A)b,

and therefore, the solution x? of the problem (2.1) is the solution as well of

(I −Q(A))x = R(A)b, (2.19)

which is equivalent to considering the problem (2.18) as a fixed-point iteration problem.

Theorem 2.1. The matrix I −Q(A) is hermitian positive semi-definite.

Proof. By construction, the matrix Q(A) is hermitian (see remark 2.3). We have immediately that
I −Q(A) is hermitian. We prove that I −Q(A) is positive semi-definite. We define the matrix Pi(A)
for i = 1, . . . , n by

Pi(A) = Aeie
H
i A

H ,

is the orthogonal projector onto ai•. Indeed, for i = 1, . . . , n

P 2
i (A) = Aeie

H
i A

HAeie
H
i A

H ,

= Aei(Aei)
H(Aei)e

H
i A

H .

With A previously normalized (see remark 2.1), we have

(Aei)
H(Aei) = ‖Aei‖22 = 1,

it follows that

P 2
i (A) = Aeie

H
i A

H ,

= Pi(A).

Therefore, Pi(A) has its eigenvalues in {0, 1}. It follows that the eigenvalues of the matrix Qi(A) =
I − λPi(A) are 1 and 1− λ for i = 1, . . . , n. Thus, for 0 < λ < 2, we have

ρ(Qi(A)) ≤ 1, i = 1, . . . , n (2.20)

where ρ(M) denotes the spectral radius of the matrix M . In the following, the definition of the matrix
norm is introduced.

Definition 2.5. Given a square complex or real matrix A in Mn(K), a matrix norm ||A|| is a non-
negative real number associated with A having the properties

• for A 6= 0n,n, ||A|| > 0,

• ||A|| = 0 if and only if A = 0n,n,
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• ||kA|| = |k| ||A|| for any scalar k ∈ K,

• ||A+B|| ≤ ||A||+ ||B|| for any matrix B ∈Mn(K),

• ||AB|| ≤ ||A|| ||B|| for any matrix B ∈Mn(K),

• for A hermitian and using the L2-norm || · ||2, we have ρ(A) = ||A||2.

Thus, using the above definition 2.5 and equation (2.20), we have

ρ(Q) ≤ 1.

The spectrum of the matrix Q is contained in [−1, 1] and therefore, the spectrum of I − Q(A) is
contained in [0, 2].

Thus, the Conjugate Gradient method can be applied straightforwardly to the system (2.19). This
method is called CGMN and is presented in Algorithm 2.1.

Algorithm 2.1 CGMN

1: x(0) ∈ Kn

2: r(0) = R(A)b− (I −Q (A))x(0) = DKACZ(A,b, λ,x(0))− x(0)

3: . Relaxed Kaczmarz double sweep operations
4: p(0) = r(0)

5: for i = 1, ..., until convergence do
6: q(i) = (I −Q(A))p(i) = p(i) −DKACZ(A,0n, λ,p

(i))
7: . Relaxed Kaczmarz double sweep operations with b = 0n
8: α =

(
r(i), r(i)

)
/
(
p(i),q(i)

)
9: x(i+1) = x(i) + αp(i)

10: r(i+1) = r(i) − αq(i)

11: β =
(
r(i+1), r(i+1)

)
/
(
r(i), r(i)

)
12: p(i+1) = r(i+1) + βp(i)

13: endfor

2.1.3 The CARP method

As the double sweep operations are intrinsically sequential, Gordon and Gordon (2005) suggest to
break the Kaczmarz iterations performed in double sweeps using a block parallel method called the
component-averaged row projections (CARP) method. This is the main motivation of the CARP
method. This method takes inspiration from domain decomposition methods. The computation domain
is partitioned into slices, which is equivalent to dividing the linear system into blocks of equations.
Each processor is assigned with a block of equations and performs the sequence of sweeps within the
block’s equations. After each sweep (forward or backward) the local solutions which are computed by
each processor are merged together by averaging to form the next iterate. The block decomposition and
the averaging operation are presented in this paragraph.

Consider the linear system (2.1) which is divided into t ∈ N \ {0} blocks. In practice, t is the
number cores used to perform the computations. This partition is denoted by B = {B1, . . . , Bt} where
Bq denotes the block q of the linear system. One or more unknowns can be shared by the blocks. For
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1 6 j 6 n, we denote the set of indexes of row blocks which share the unknown xj by Ij . The size of
Ij is denoted by sj = |Ij |.

For instance, take a simple example which is illustrated by a linear system of size 9 divided into 3
blocks. The blocks are denoted by B = {B1, B2, B3} and the unknowns by the vector (x1, x2, . . . , x9).
The coefficients of the right hand side are denoted by (b1, b2, . . . , b9).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x1 x2 x3

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

B1 →

B2 →

B3 →



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗





x1
x2
x3
x4
x5
x6
x7
x8
x9



↔
↔



x1
x2
x3
x4
x5
x6
x7
x8
x9

↔↔



x1
x2
x3
x4
x5
x6
x7
x8
x9


=



b1
b2
b3
b4
b5
b6
b7
b8
b9


.

The solution vector x is duplicated for each block yielding the local solution vectors x1,x2,x3.
One can see that a sweep into the block B1 acts on the unknowns x1, x2, x3, x4 of the local solution
vector x1 and leaves the remaining unknowns x5, x6, x7, x8 and x9 unchanged. Similarly a sweep in
the block B2 acts only on the unknowns x3, x4, x5, x6, x7 of the local solution vector x2 and a sweep
into the block B3 acts only on the unknowns x6, x7, x8, x9 of the local solution vector x3. Therefore,
the sweeps in the blocks B1 and B2 act on the same unknowns x3, x4 held by x1 and x3, x4 held by x2.
Similarly, the unknowns x6, x7 held by x2 and x6, x7 held by x3 are shared by the blocks B2 and B3.

Remark 2.4. In practice, the solution vector x is not duplicated entirely. It is partitioned following
the block division of linear system and with respect to the smallest and largest column indexes of the
coefficients of the block matrix. For instance, following the simple example which is described above,
the local solution vectors are given by

x1 = (x1, x2, x3, x4), x2 = (x3, x4, x5, x6, x7), x3 = (x6, x7, x8, x9).

Therefore, the sets Ij for j = 1, . . . , 9 can be defined as

I1 = I2 = {1}, I3 = I4 = {1, 2}, I5 = {2}, I6 = I7 = {2, 3}, I8 = I9 = {3},

and consequently the size of Ij for j = 1, . . . , 9 denoted by sj are given by

s1 = s2 = 1, s3 = s4 = 2, s5 = 1, s6 = s7 = 2, s8 = s9 = 1.

The following definition explains the averaging operation performed in the CARP method

Definition 2.6. For t ∈ N \ {0} let B = {B1, . . . , Bt} be the decomposition of the linear system (2.1)
as described above. The component-averaged operator relative to B is a mapping

CAB : (Kn)t → Kn
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2.1 The CARP-CG method

such that for
(
y1, . . . ,yt

)
∈ (Kn)t , CAB

(
y1, . . . ,yt

)
is the vector in Kn whose jth coefficient is

given by

CAB

(
y1, . . . ,yt

)
j

=
1

sj

∑
q∈Ij

yqj , (2.21)

where yqj is the jth coefficient of yq for 1 6 q 6 t.

The application of the Component-averaged operator to the simple case of size 9 gives

CAB

(
x1,x2,x3

)
1

= x1, CAB

(
x1,x2,x3

)
2

= x2,

CAB

(
x1,x2,x3

)
3

=
x3 + x3

2
, CAB

(
x1,x2,x3

)
4

=
x4 + x4

2
,

CAB

(
x1,x2,x3

)
5

= x5,

CAB

(
x1,x2,x3

)
6

=
x6 + x6

2
, CAB

(
x1,x2,x3

)
7

=
x7 + x7

2
,

CAB

(
x1,x2,x3

)
8

= x8, CAB

(
x1,x2,x3

)
9

= x9,

which after simplification writes in matrix form as



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗





x1
x2
x3
x4
x5
x6
x7
x8
x9


↔
↔



x1
x2
x3
x4
x5
x6
x7
x8
x9

↔↔



x1
x2
x3
x4
x5
x6
x7
x8
x9


CA−→



x1
x2

CA(x1,x2)3

CA(x1,x2)4

x5

CA(x2,x3)6

CA(x2,x3)7

x8
x9


→



x1
x2

(x3 + x3)/2

(x4 + x4)/2

x5

(x6 + x6)/2

(x7 + x7)/2

x8
x9


.

The linear system (2.1) is transformed into a system of equations in some superspace Ks with

s =

n∑
i=1

si,

where the averaging equations are added to the initial system. The equations belonging to the different
blocks do not have common variables anymore. Thus performing the Kaczmarz sweeps in parallel in
Ks is equivalent to performing the Kaczmarz sweeps in serial in Kn.

Consider a vector x in Kn where a number r, 1 ≤ r ≤ n, of its coefficients are shared by two or
more blocks. These common coefficients are denoted by x1, . . . , xr. Therefore,

s1, · · · , sr ≥ 2,
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and
sr+1 = · · · = sn = 1.

The expansion mapping E : Kn −→ Ks allows to expend the vector x from Kn into the superspace Ks

such that
E(x1, . . . , xn) = (y1,1, · · · , y1,s1 , . . . , yr,1, · · · , yr,sr , yr+1, · · · , yn),

where for j = 1, · · · , r
yj,1, . . . , yj,sj = xj ,

and for j = r + 1, · · · , n
yj = xj .

The inverse of the expansion mapping E is defined as

E−1 : Ks −→ Kn

y 7−→ x,

such that

xj =

{
yj,1, for 1 ≤ j ≤ r,
yj , if r < j ≤ n.

Thus, the index set of the blocks containing a nonzero coefficient xj denoted by Ij has sj elements by
definition. It can be written as

Ij = {ij,1, ij,2, · · · , ij,sj}.
Therefore, for each 1 ≤ j ≤ n and 1 ≤ l ≤ sj , the variables yj,l represent a copy of xj in the block
Bij,l following the mapping E.

Let B′1, B
′
2, · · · , B′t denote the blocks of equations derived from B1, · · · , Bt using the above re-

placements and B′ =
t⋃

q=1
B′q. This set of equation is defined in Ks. The system of equations resulting

from B′ is denoted by
A′x = b′.

Performing CARP in Ks is presented in the following Algorithm 2.2

Algorithm 2.2 CARP in Ks

1: x0 = (x0
1, x2,

0 · · · , x0
n) ∈ Kn,

2: y0 = E(x0) ∈ Ks,
3: for q = 1, ..., t (independently for each bloc B′q) do
4: for k = 1, ..., until convergence do
5: zq = FKACZ(A′q,b′q, λ,yk),

6: For 1 ≤ j ≤ r, set ykj,1, . . . , y
k
j,sj

= 1
sj

sj∑
l=1

z
qj,l
j,l and for r < j ≤ n, set ykj = z

qj
qj,1 ,

7: endfor
8: endfor
9: Output: x = E−1(yk+1) ∈ Kn

Other than the initial and final steps involving the expansion mapping E and its inverse, Algo-
rithm 2.2 can be executed iteratively in parallel in Ks since the blocks B′q dot not have common vari-
ables.
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Using the component-averaged operator definition 2.6, the CARP method is easily formulated in Kn

using the forward sweep definition (2.1). One forward sweep of CARP can be defined as the function
FCARP which takes the block decomposition B, a vector x ∈ Kn and computes y ∈ Kn such that

Algorithm 2.3 y = FCARP(B, λ,x)

1: Let zt ∈ Kn be local vectors for i = 1, . . . , t,
2: for q = 1, ..., t (independently for each bloc Bq) do
3: zq = FKACZ(Aq,bq, λ,x),
4: endfor
5: y = CAB(z1, . . . , zt).

Using the above definition of the forward sweep FCARP performed in parallel (see Algorithm 2.3),
the CARP method performed in several sweeps is presented in Algorithm 2.4.

Algorithm 2.4 CARP in forward sweeps

1: x(0) ∈ Kn

2: for k = 0, 1, ..., until convergence do
3: x(k+1) = FCARP(B, λ,x(k)),
4: endfor

Each block q in B of the linear system (2.1) is associated with the system of equations of size
nq × n with nq = n

t

Aqxq = bq,

where
Aq ∈Mnq ,n (K) , xq ∈ Kn, bq ∈ Knq .

The relaxed Kaczmarz method is therefore parallelized by performing independently the forward sweeps
within each block q of B. This is indicated at line 3 in Algorithm 2.4. After each sweep the component-
averaged CAB operator is applied to compute the next iterate x(k+1).

The CARP method is introduced in double sweeps as well. The CARP double sweep steps consist
in

1. perform one forward sweep of CARP,

2. apply the Component-Averaged operator,

3. perform one backward sweep of CARP,

4. apply the Component-Averaged operator.

One backward sweep of CARP can be defined as the function BCARP which takes the block decom-
position B, a vector x ∈ Kn and computes y ∈ Kn following Algorithm 2.5.

A backward sweep of CARP consists simply in applying the CARP sweep by performing the row
projections in reverse order from the last row to the first row. Therefore, the double sweep operation in
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Algorithm 2.5 y = BCARP(B, λ,x)

1: Let zt ∈ Kn be local vectors for i = 1, . . . , t,
2: for q = 1, ..., t (independently for each bloc Bq) do
3: zq = BKACZ(Aq,bq, λ,x),
4: endfor
5: y = CAB(z1, . . . , zt).

CARP can be defined as the function BCARP which takes the block decomposition B, the relaxation
parameter λ ∈ Iλ = ]0, 2[, a vector x ∈ Kn and computes y ∈ Kn such that

y = DCARP(B, λ,x) = BCARP(B, λ,FCARP(B, λ,x)). (2.22)

The CARP method performed in double sweeps is presented in Algorithm 2.6.

Algorithm 2.6 CARP in double sweeps

1: x(0) ∈ Kn

2: for k = 0, 1, ..., until convergence do
3: x(k+1) = DCARP(B, λ,x(k))

4: endfor

2.1.4 The CARP-CG method

We have seen that the sequential Kaczmarz sweeps are the starting point of all the above iterative
methods. The Kaczmarz method is accelerated by conjugate gradient method and by performing the
Kaczmarz projection in double sweeps. The resulting method is sequential and is called CGMN. Alter-
natively, the Kaczmarz method is parallelized into the CARP method. The combination of the CARP
method performed in double sweeps and the conjugate gradient yields the CARP-CG method (Gordon
and Gordon, 2010b). CARP is easily formulated in the double sweep form in Algorithm 2.6.

Therefore, the CARP-CG method is written straightforwardly by replacing the sequential Kaczmarz
iterations performed in double sweeps in CGMN (see lines 2 and 6 in Algorithm 2.1) by the block paral-
lel version which is presented in equation (2.22). The CARP-CG method is presented in Algorithm 2.7.

2.1.5 Computational and memory costs

Consider the linear system (2.1) with A a sparse matrix with s nonzero coefficients per row. A double
sweep requires 4sn operations (projections on sparse rows), with s being in O(1). This is the com-
putational cost required for two sparse matrix-vector products. Using the double sweep operation, the
complexity of the matrix-vector product (I −Q(A))x is thus in O(n), despite the matrix I −Q(A) is
dense.

Therefore, the computational cost of one iteration of CARP-CG in terms of matrix-vector products
is equal to the cost of one iteration of Bi-CGSTAB or CGNR, and is twice the cost of one iteration of
GMRES. As the CARP-CG method relies on the conjugate gradient algorithm, it performs the same
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Algorithm 2.7 CARP-CG

1: x(0) ∈ Kn,
2: Given B the block decomposition of linear system,
3: r(0) = DCARP(B, λ,x(0)),
4: p(0) = r(0),
5: for i = 1, ..., until convergence do
6: q(i) = DCARP(B, λ,p(i)) . Apply DCARP with b = 0n
7: α =

(
r(i), r(i)

)
/
(
p(i),q(i)

)
8: x(i+1) = x(i) + αp(i)

9: r(i+1) = r(i) − αq(i)

10: β =
(
r(i+1), r(i+1)

)
/
(
r(i), r(i)

)
11: p(i+1) = r(i+1) + βp(i)

12: endfor

vector updates and inner products for the computation of the solution, the residual and the direction
vectors. In practice, the Kaczmarz double sweep operation updates the current iterate and as the conju-
gate gradient algorithm requires the knowledge of two successive iterates, therefore, one extra vector is
used in the CARP-CG algorithm to store a copy of the current iterate.

2.1.6 Spectral analysis of the matrix I −Q(A) for the Helmholtz equation

Consider the 2D Helmholtz equation (1.17) which is recast in the 2D approximation on the square
domain of size 900 m. The source term is defined as a Dirac delta function

s(x, z) = δ(x− x0)δ(z − z0),

which symbolizes a source point located at x0 = 450 m and z0 = 90 m. Perfectly Matched Layers
(PML) are used at all the boundaries to mimic wave propagation in infinite domain. The discretization
of this problem is performed using the second-order staggered-grid finite-difference method (see Chap-
ter 1 Section 1.5). The minimum 10 grid points per wavelength are used for the discretization to ensure
the accuracy of the discretization scheme. The P-wave velocity is taken as constant c = 1500 m/s. The
frequency is set to f = 5 Hz. NPML = 10 grid points are used in each PML layer. The damping
coefficient in the PMLs is set to CPML = 1500. This yields the linear system

Ax = b. (2.23)

where A is a sparse complex-valued indefinite and ill-conditioned impedance matrix of size 2601 with
12901 non-zero values, the right-hand side b represents the Dirac source term and x is the pressure
wavefield.

Remark 2.5. We may refer to this simple “toy” problem as Problem 2.1.6. We shall use it later for the
study of the preconditioning effects on the matrix A.

The sparsity pattern of the matrix A is presented in Figure 2.5a. A zoom on the diagonal of the
matrix is performed in the Figure 2.5b.
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(a) Sparsity pattern of A (b) Zoom on the diagonal of A

Figure 2.5: Sparsity pattern of the matrix A resulting from the discretization of the 2D Helmholtz
equation using the second-order staggered-grid finite-difference method (a) and zoom on the diagonal
of the matrix A (b).

The geometric row scaling (2.1) is applied to A. The CGMN method is applied to the system (2.23)
using the relaxation parameter λ = 1. In section 2.1.2, we have seen that the linear system (2.23) is
transformed using the Kaczmarz iterations performed in double sweeps into

(I −Q(A))x = R(A)b,

where the matrix I −Q(A) is hermitian positive semi-definite.

Remark 2.6. As the matrix I −Q(A) is computed explicitly for the eigenvalues computation, the size
of the domain is reduced to 360 m in order to allow the computations in a reasonable amount of time.

In Figure 2.6, we show the convergence histories for the solution of this problem using the iterative
methods CGMN, CGNR, GMRES and BiCGSTAB. Restarted GMRES(m) is used with m = 15. The
relative residual

‖b−Ax(k)‖2
‖b‖2

,

is plotted as a function of the iteration number on a semi-log axis.

Clearly, the CGMN method exhibits a better rate of convergence compared to the other iterative
solvers. Table 2.1 presents the condition numbers of the matrices A, AHA and I − Q(A) and it is
interesting to note that the matrix I − Q(A) associated with the linear system solved by CGMN is far
better conditioned than AHA which is associated with the linear system solved by CGNR. This is due
to the updates performed on the approximation after each Kaczmarz projection whereas in CGNR the
approximation is updated after a whole matrix-vector product. A factor 15 is noted.

A AAH I −Q(A)

cond 102.8 10572.7 671.6

Table 2.1: Condition number of the matrices A, AAH and I − Q(A) on the homogeneous Helmholtz
problem 2.1.6.
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Figure 2.6: Convergence histories for the homogeneous Helmholtz problem 2.1.6 using CGMN, CGNR,
GMRES(15) and BiCGSTAB.

It is interesting as well to note that CGMN outperforms GMRES despite the condition number of the
matrix I−Q(A) is worse than the one of the matrix A. Indeed, for indefinite matrices with eigenvalues
on both sides of the origin. In Figure 2.7a, the eigenvalues of the matrix A lie close to the origin and
GMRES is known to have difficulties to converge in such configuration. The spectra of I −Q(A) and
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(a) Eigenvalues of A.
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(b) Eigenvalues of I −Q(A) and AAH .

Figure 2.7: Eigenvalues of the matrices A, AAH and I −Q(A) for the homogeneous Helmholtz prob-
lem 2.1.6.

AAH are plotted in Figure 2.7b. The eigenvalues of the matrix I −Q(A) are located between 0 and 2
(see proof of Theorem 2.1) and seems more clustered around 1. The spectrum of the matrix AAH is
less flattened and presents more extreme values compared to the spectrum of I −Q(A) which denotes
a larger condition number. As the convergence of the CG method is sensitive to the condition number
of the matrix, it requires a larger number of iterations to reach convergence.
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2.2 Preconditioning strategy for the CARP-CG method

The purpose of this section is to propose a preconditioning strategy to further enhance the performances
of the CARP-CG method by reducing the number of iterations to reach the solution. This precondition-
ing strategy is dedicated to the frequency-domain wave equations. Unlike standard iterative methods
such as CGNR, GMRES or BiCGSTAB, the CARP-CG algorithm is based on a reformulation of the
linear system to be solved. Therefore, designing a preconditioner adapted to this method is not straight-
forward. In the first part, this question is addressed by investigating the different possibilities. Further-
more, the preconditioner which we consider in this work is introduced. This preconditioner is based on
the damped frequency-domain wave equation approach. This approach relies on the computation of a
sparse approximate inverse preconditioner. The properties of this preconditioner are investigated in this
chapter, in the sections 2.4 and 2.3 on the 2D frequency-domain acoustic and elastic wave equations.

2.2.1 How to precondition the CARP-CG method ?

Designing a preconditioning strategy for the CARP-CG method is not an easy task because of the
Kaczmarz iterations. Consider the double sweep operation

y = (I −Q(A))x,

where for a given vector x ∈ Kn the vector y ∈ Kn is computed.

The first approach is use a preconditioner which preserves the hermitian property of the matrix
I −Q(A) which amounts to perform the operation

y = PH(I −Q(A))Pz, x = Pz.

However, designing a preconditioner for the matrix I−Q(A) cannot be done for the simple reason that
this matrix is dense and not formed explicitly and therefore one cannot have access to its coefficients.
Consequently, the standard preconditioning techniques which have been discusses in Chapter 1 Sec-
tion 1.7.3, cannot be used since they require access to the matrix coefficients and as they are designed
for sparse matrices as well. For these reasons, both types of preconditioners (“explicit” and “implicit”)
are out of reach for this first approach.

The second approach to precondition the CARP-CG method is to apply the latter to the system

APy = b, x = Py. (2.24)

This strategy is supported by the fact that if the matrixA is unitary, then applying the CARP-CG method
amounts to solve a diagonal system.

Theorem 2.2. If A ∈ Gln(K) is unitary, i.e., AHA = AAH = I , then Q(A) = (1− λ)2 I and
I −Q(A) = λ (2− λ) I with λ the relaxation parameter.

Proof. We assume that A ∈ Gln(K) is a unitary matrix
(
AHA = AAH = I

)
. Therefore, (ai•)i=1,··· ,n

forms an orthonormal basis in Kn. Thus, any vector x ∈ Kn can be decomposed in this basis such that

∀x ∈ Kn, x =
n∑
i=1

αiai•, with (αi)i=1,··· ,n ∈ Kn. (2.25)
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Following the definition (2.4) of the matrixQi(A) and using (2.25), the matrix-vector product ofQi(A)
with x is given by

Qi(A)x =
(
I − λai•aHi•

)
x = x− λai•aHi•x = x− λαiai•.

Moreover, for 1 ≤ i, j ≤ n and i 6= j

Qi(A)Qj(A)x =
(
I − λai•aHi•

)
(x− λαjaj•) ,

= x− λαjaj• − λai•aHi•x− λ2αjai•a
H
i•aj•,

as the (ai•)i=1,··· ,n are an orthonormal basis of Kn, thus

Qi(A)Qj(A)x = x− λ (αiai• + αjaj•) .

Consequently, the expression of the Kaczmarz forward sweep reduces to

Q1(A) · · ·Qn(A)x = x− λ
n∑
i=1

αiai• = x− λx = (1− λ)x.

Similarly, we have for a Kaczmarz backward sweep

Qn(A) · · ·Q1(A)x = (1− λ)x,

and finally
Q(A)x = (1− λ)2 x, and I −Q(A) = λ (2− λ) I.

Thus, applying the CARP-CG method to the system (2.24) should give a nearly diagonal system.

One possible way to implement this approach is to design a preconditioner based on the matrix A
and perform the iterations

y(i) = y(i−1) + λ
(
bi −

(
ai•, Py

(i−1)
))

aHi• , i = 1, · · · , n, (2.26)

with x(i) = Py(i). However, one can easily see that one Kaczmarz row projection requires the compu-
tation of the matrix vector product Py(i−1). Assuming the preconditioner sparse and its application has
a complexityO(n), the complexity of the Kaczmarz double sweep operation isO(n2) which cannot be
worth considering. On alternative is to rewrite the iterations (2.26) as

y(i) = y(i−1) + λ
(
bi −

(
api•,y

(i−1)
))

apHi• , i = 1, · · · , n,

with x(i) = Py(i) and where api• denotes the ith row of the matrix AP . The explicit computation
of the matrix-matrix product AP is thus required. Therefore, one needs to be pay a close attention to
the fill-in effect induced by the matrix-matrix product. Thus the preconditioner needs to be sparse and
consequently, “implicit” type preconditioners such as ILU are discarded as the matrix Ũ−1L̃−1 is dense.
In our applications, the matrix A is sparse and banded because of the finite-difference discretization
method. Therefore, the preconditioner P needs to have the same properties in order to keep the matrix
AP sparse and banded as well.

Without completely discarding the first approach, one can obtain simplifications if the matrix P is
assumed to be unitary. In this case, the following theorem can be derived.
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Theorem 2.3. If P ∈ Gln(K) is unitary, i.e., PHP = PPH = I , then

PH (I −Q(A))P = I −Q(AP ).

Proof. Let P ∈ Gln(K) be a unitary matrix. Following the definition (2.4) of the matrix Qi(A), let
Qi(AP ) be the ith sweeping matrix resulting from the application of the Kaczmarz row projection to
the preconditioned system (2.24)

Qi(AP ) = I − λ(ap)i•(ap)Hi• ,

= PHP − λPHai•aHi•P,
= PH

(
I − λai•aHi•

)
P,

= PHQi(A)P.

Thus

Q(AP ) = Q1(AP ) · · ·Qn(AP )Qn(AP ) · · ·Q1(AP ),

= PHQ1(A)P · · ·PHQn(A)PPHQn(A)P · · ·PHQ1(A)P,

= PHQ1(A) · · ·Qn(A)Qn(A) · · ·Q1(A)P,

Q(AP ) = PHQ(A)P.

It results that
I −Q(AP ) = PH(I −Q(A))P.

The Theorem 2.3 shows two interesting results. First, one can circumvent the requirement of access-
ing the entries of the matrix I − Q(A) for the computation of the preconditioner. This preconditioner
can be computed out of the matrix A under the assumption that P is unitary. Therefore, such precon-
ditioner can be computed using standard methods (explicit or implicit approaches) such as AINV or
ILU applied to the matrix A. Furthermore, this preconditioner is applied only two times: before and
after the double sweep operation. Second, this approach can be seen as a simplification of the sec-
ond preconditioning strategy which consists in applying the CARP-CG method to the preconditioned
system (2.24). This theorem shows that one can approximate the second preconditioning strategy by
applying the preconditioner only two times (before and after the double sweep operation) but under the
assumption that P is unitary.

Although this assumption may seem unrealistic, one can set up a framework in which it should
be “weakly” satisfied. By “weakly”, we suggest that in the case where A is a banded and diagonal
dominant matrix, its inverse presents an exponential decay of the amplitude of the off-diagonal entries
as it is pointed out by Demko et al. (1984). For both preconditioning approaches which are described
above, the preconditioner P needs to be computed on a diagonal dominant matrix A. In the context of
seismic wave modeling, the matrixA is only banded because of the finite-difference method. The matrix
A is made diagonal dominant by considering the wave propagation in a strongly damped medium. This
is achieved by using a complex velocity such as the Kolsky model (Kolsky, 1956). In the acoustic
approximation, the complex-valued P-wave velocity c̃ is introduced by

c̃(x) = c(x)

(
1− i

2qatt

)
, (2.27)
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where i is the complex number such that i2 = −1 and qatt is the quality factor which controls the
attenuation in the medium. This strategy justifies the need compute P from G which is a damped
version of A.

In the following, I consider the two preconditioning strategies. We recall that the first strategy
consists in solving the preconditioned system

PH1 (I −Q(A))P1y = PH1 R(A)b, x = P1y,

and the second strategy where the preconditioned linear system

AP2y = b, x = P2y,

is solved using the CARP-CG with a prior computation of the matrix AP2. In both cases, the precondi-
tioners P1 and P2 are computed from G. P1 shall be computed using the ILUT technique and P2 using
the AINV technique. I shall illustrate the efficiency of these two strategies on the Helmholtz equation
using the Marmousi P-wave velocity model.

2.2.2 The ILUT preconditioner for the frequency-domain wave equation

In this part, I describe the method for the computation of a preconditioner for the frequency-domain
wave equation which adapted to the first preconditioning strategy. Therefore, the solution of the linear
system

PH1 (I −Q(A))P1y = PH1 R(A)b, x = P1y,

is investigated where P1 is computed using the ILUT strategy. The ILUT method belongs to a broader
class of widely used preconditioners based on incomplete factorizations (ILU) (Saad, 2003). A factor-
ization is called incomplete if during the process certain fill-in coefficients are dropped, i.e. set to zero.
This incomplete factorization gives the lower and upper triangular sparse factors L̃ and Ũ such that

A = L̃Ũ + E,

with E a residual or error matrix of the factorization. The ILUT(τ, p) uses a dual dropping strategy
which aims at controlling the computational cost and the memory requirements during the factorization
and the application of the preconditioner. The drop tolerance τ reduces the computational cost, while
the parameter p controls the memory required to store the sparse factors L̃ and Ũ , by controlling the
number of coefficients kept per row. During the factorization process, the ILUT(τ, p) algorithm drops
any entries whose magnitude is smaller than the threshold τ . From the remaining non-zero entries, the
p largest coefficients in L and the p largest coefficients in U in addition to the diagonal coefficient are
kept. From the L and U factors, we can define the preconditioner

P = (L̃Ũ)−1 = Ũ−1L̃−1.

In this context, P is not formed explicitly. Indeed, even if L̃ and Ũ are kept sparse through the incom-
plete factorization process, their inverse are dense matrices. However, the action of P on a vector can
be evaluated by solving one upper and one lower triangular sparse systems by forward and backward
substitutions. The cost of these operations is 2(p + 1)n for sparse triangular matrices with p + 1 non-
zero values by row. The complexity of applying this preconditioner is then in O(n) as p << n. The
resulting algorithm is described in Algorithm 2.8.
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Algorithm 2.8 ILUT(τ, p)

1: for i = 1 . . . n do
2: w = ai•
3: for k = 1 . . . i− 1 and wk 6= 0 do
4: wk = wk/akk
5: Apply dropping on wk using the threshold τ
6: if wk 6= 0 then
7: w = w − wkuk•
8: endif
9: endfor

10: Apply dropping on w: keep the p largest entries
11: lij = wj , for j = 1, · · · , i− 1
12: uij = wj , for j = i, · · · , n
13: endfor

2.2.3 The AINV preconditioner for the frequency-domain wave equation

In this part, I describe a method for the computation of a sparse approximate inverse preconditioner for
the frequency-domain wave equation and adapted to the second preconditioning strategy which consists
in solving the linear system

AP2y = b, x = P2y,

using the CARP-CG. Therefore the design of a preconditioner needs to satisfy the following two re-
quirements

• First, the preconditioner P2 needs to be computed explicitly as an approximate inverse of A in
order to allow the explicit computation of the matrix AP2.

• Second, the preconditioner P2 needs to be sparse and banded in order to reduce the fill-in induced
by the matrix-matrix product AP2.

Following these two requirements, standard implicit preconditioners such as the ILU type are discarded.
The reason is after performing the incomplete factorization yielding the sparse factors L̃ and Ũ , the
preconditioner resulting from the computation of Ũ−1L̃−1 gives a dense matrix. Therefore, the combi-
nation of the CARP-CG method with such preconditioner is not possible.

A more attractive solution is to consider the Approximate Inverse (AINV) preconditioner (Benzi
and Tuma, 1998). The latter belongs to the class of algebraic “explicit” preconditioners in the sense
that the action of the preconditioner on a vector is know by a matrix-vector product. This method
attempts to approximate A−1, which is dense, with a sparse matrix by performing a sparse incomplete
triangular factorization of the matrix A−1.

The computation of the preconditioner is based on an algorithm which computes two sets of vectors
{zi}i=1···n, {wi}i=1···n, which are A-biconjugate

ziAwj = 0⇐⇒ i 6= j.
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The exact factorization yields two upper triangular matrices Z and W such that

WHAZ = D =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

 ,

where

Z = [z1 z2 · · · zn], W = [w1 w2 · · · wn], and pi = wiAzi 6= 0.

It follows that

A−1 = ZD−1WH .

The matricesZ andW whose columns areA-biconjugate can be computed by means of a bi-conjugation
process applied to the columns of any non-singular matrices Z(0) and W (0). A convenient choice is to
use

Z(0) = W (0) = I.

For simplicity, only the Z factor is considered. The same procedure is applied for the matrix W by
considering the matrix AH . The resulting algorithm is described in Algorithm 2.9.

Algorithm 2.9 AINV

1: z
(0)
1 = e1

2: a
(0)
1 = a11

3: for i = 2 . . . n do
4: z

(0)
i = ei

5: for j = 1 . . . i− 1 do
6: a

(j−1)
i = aj•z

(j−1)
i

7: z
(j)
i = z

(j−1)
i − a

(j−1)
i

a
(j−1)
j

z
(j−1)
j

8: endfor
9: a

(i−1)
i = ai•z

(i−1)
i

10: endfor

The computation of a sparse approximation of the factors Z, W and D can be performed following
two strategies inspired from the ILUT(τ, p) preconditioner.

• The first strategy consists in performing the linear combination in the internal loop indicated at
line 5 in Algorithm 2.9 using only the last ν vectors. Therefore, the internal loop at line 5 in
Algorithm 2.9 becomes
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Algorithm 2.10 Reduced internal loop

1: for j = i− ν . . . i− 1 do
2: a

(j−1)
i = Aj•z

(j−1)
i

3: z
(j)
i = z

(j−1)
i − a

(j−1)
i

a
(j−1)
j

z
(j−1)
j

4: a
(i−1)
i = Ai•z

(i−1)
i

5: endfor

• The second strategy is to discard the small value coefficients of the vectors zi and wi using a
threshold τ .

Algorithm 2.11 Dropping strategy

1: for j = 1 . . . i− 1 do
2: a

(j−1)
i = Aj•z

(j−1)
i

3: z
(j)
i = z

(j−1)
i − a

(j−1)
i

a
(j−1)
j

z
(j−1)
j

4: endfor
5: if |z(j)

i | < τ for i = 1 . . . n then
6: z

(j)
i = 0

7: endif
8: a

(i−1)
i = Ai•z

(i−1)
i

Therefore, the computation of the sparse approximate factors which we denote by Z̃, W̃ and D̃, gives
the desired sparse preconditioner

P2 = Z̃D̃−1W̃H , (2.28)

These two strategies for making the preconditioner P2 sparse are supported by the fact that the
matrix A is a banded. Moreover, the matrix A is made diagonal dominant by introducing a strong
damping in the wave equation. Therefore, its inverse has an exponential decay of the amplitude of the
off-diagonal coefficients (Demko et al., 1984).

2.2.4 Numerical illustration of the ILUT and AINV preconditioners for the frequency-
domain wave equation using CGMN

In this part, I briefly show an application of the ILUT and the AINV preconditioners for the solution of
the Helmholtz equation on the heterogeneous 2D Marmousi 2 P-wave velocity model using the CGMN
method.

2.2.4.1 The Marmousi 2 model

The Marmousi model (Versteeg and Grau, 1991) was created by the Institut Français du Pétrole (IFP)
in 1988. The geometry of this model is based on a profile through the North Quenguela trough in the
Cuanza basin. The geometry and velocity model were created to produce complex seismic data which
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require advanced processing techniques to obtain a correct earth image at this time. The model was
used for the workshop on practical aspects of seismic data inversion at the 1990 EAGE meeting in
Copenhagen, where different groups (contractors, universities, and oil companies) applied their prof-
fered imaging tools on this data set.

Since its inception in 1990, it has become a standard benchmark dataset for seismic imaging tech-
niques. The model contains 158 horizontally layered horizons. A series of normal faults and resulting
tilted blocks complicates the model towards its center.

The Marmousi model is precisely 9192 m long and 2904 m deep. It has been upgraded to the
Marmousi 2 model for elastic applications (Martin et al., 2006) without taking away any of qualities
that have made it so useful. A shear wave velocity model is then added to the dataset. The model length
has been extended from 9.2 km to 17 km. A water layer of 500 meters has also been added on top. The
Marmousi 2 velocity is given in a 2801 × 13601 grid with a space step length h = 1.25 m. For this
application, I use the P-wave velocity model of Marmousi 2 which is presented in Figure 2.8.
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Figure 2.8: Marmousi 2: P-wave velocity model

2.2.4.2 The 2D Helmholtz equation

Consider the 2D Helmholtz equation (1.17) which is recast in the 2D approximation. An explosive
source s modeled by a Delta function at the position (x0, z0) m

s(x, z) = δ(x− x0)δ(z − z0).

Perfectly Matched Layers (PML) are used at the boundaries to mimic infinite domain wave propagation.
The discretization of this problem is performed using the second-order staggered-grid finite-difference
method (see Chapter 1 Section 1.5). Attenuation is accounted for using the Kolsky model (Kolsky,
1956) through the relation (2.27).

2.2.4.3 Numerical results

Several experiments are performed to illustrate the performance of the CGMN method for solving the
2D Helmholtz equation on the Marmousi 2 model together with the preconditioning strategies. For
each experiment, the starting point x(0) is set to 0. The relaxation parameter used for the Kaczmarz
projections is set to 1.2 which is the optimal value selected from several experiments. The stopping
criterion is set to 10−4 on the relative residual

||Ax(k) − b||
||b|| < 10−4.
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The explosive Dirac source is located at the middle top of the domain at x0 = 8500 m and z0 = 100 m.

The Marmousi 2 model, presented in Figure 2.8 is given in a 2801 × 13601 grid points with d =
1.25 meter space step length. This model is filtered and then sampled for several frequencies f =
{5, 10, 15, 20}. We use 10 grid points per wavelength to ensure the accuracy of the second-order finite-
difference scheme. NPML = 10 grid points are used in each PML. The damping coefficient inside the
PML is set to cPML = 1500. Table 2.2 summarizes the size of the models used for each frequency.
Representative pressure wavefields solution of this problem are presented at the end of this section at
the frequencies 5 and 20 Hz in Figures 2.11 and 2.12.

f h Nz Nx Nu

5 30 145 709 120285
10 15 289 1417 444033
15 10 433 2125 971685
20 7.5 577 2833 1703241

Table 2.2: Discritization of the Marmousi 2 model (Nx, Nz) following the second-order finite-
difference scheme and number of unknowns Nu. 10 grid points per minimum wavelength are used.

CGMN In Figure 2.9, a complexity analysis of the CGMN method is presented. The number of
iterations is plotted as a function of the mean size of one dimension

N =
√
NxNz

on a log-log scale. The black solid line represents the linear increase of the computational complexity
Niter = N . The solid red curve indicates the dependence between Niter and N . A standard linear
regression, indicated by the dotted line, is performed on the solid red curve.
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Figure 2.9: Complexity analysis of the CGMN method for the frequency domain wave propagation
problem in the 2D heterogeneous acoustic model Marmousi 2. The number of iterations are plotted as
a function of the average number of grid points by dimension N on a log-log scale ( ). The blue line
( ) represents the line regression.

The complexity of the CGMN method is approximately given by

Niter = 50 N0.68.
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Therefore, following the analysis presented in Chapter 1 Section 1.6, the total computational complexity
of the CGMN method for 2D modeling with one source is

O(Niter ×N2) = O(N2.68).

This sub-linear complexity of the number of iterations with respect to N indicates the good perfor-
mances of the CGMN method. This complexity is an improvement compared to O(N3) performed by
the time-domain modeling strategy.

In Figure 2.10, the relative residuals of the CGMN method are plotted as a function of the iteration
number for each frequency described in Table 2.2. The rate of convergence is very fast until the norm
of the relative residual reaches 10−2. From then on, the rate of convergence decreases. The number of
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Figure 2.10: Convergence histories of the CGMN method for the frequency-domain acoustic wave sim-
ulations using the Marmousi 2 P-wave velocity model. The relative residuals are plotted as a function
of the iteration number during the CGMN runs.

iterations and the computation time performed to solve the linear systems are summarized in Table 2.3.

f Nu NCGMN
iter Time (s)

5 120285 2764 44.3
10 444033 4038 263.5
15 971685 5407 778.6
20 1703241 6878 1786.9

Table 2.3: Number of iterations performed by the CGMN method applied to the Helmholtz problem
using the Marmousi 2 P-wave velocity model.
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Figure 2.11: Marmousi 2 acoustic pressure wavefield (real part) solution at 5 Hz.
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Figure 2.12: Marmousi 2 acoustic pressure wavefield (real part) solution at 20 Hz.

CGMN with ILUT and AINV preconditioners In this paragraph, the results of the CGMN method
with the preconditioning techniques ILUT and AINV are presented. Both preconditioners are computed
from the damped version of the matrix A. Damping is introduced in the medium by tuning the quality
factor qatt. The ILUT preconditioner is computed with p = 10 and τ = 10−10. As discussed in
the previous part, the AINV preconditioner is made sparse following two dropping strategies. The
factorization process is performed by reducing the internal loop to the bandwidth ν = Nz . A threshold
τ = 10−2 is applied allowing to keep the preconditioner sparse with only 9 nonzero coefficients per
columns.

In the experiment (2.13), the influence of the attenuation on the quality of the preconditioner for the
f = 10 Hz problem is investigated. The experiment is performed with the ILUT preconditioner but sim-
ilar behavior is obtained with the AINV preconditioner. The CGMN method performs 4038 iterations
to solve the Helmholtz equation applied to the Marmousi 2 P-wave velocity model for the frequency
f = 10 Hz. Figure 2.13 shows how the CGMN method performs when the ILUT preconditioner is
computed based on a damped version of A, which is denoted by G. When a small damping is applied,
the quality of the preconditioner is very poor. The preconditioned method performs even more itera-
tions than CGMN. However, by introducing a stronger damping, the preconditioned method becomes
efficient. The minimum number of iterations Niter = 1205 performed by the ILUT-preconditioned
CGMN method is reached for qatt = 1.1. Such behavior is due to the fact that the preconditioner needs
to be computed based on a diagonal dominant matrix. If the damping is not strong enough, the sparse
approximation of the ILUT preconditioner does not compute a good a approximation of the G−1. In
the following, both preconditioner are computed based on the damped version of A using qatt = 1.1.

Figure 2.14 shows the convergence of the relative residual for the given frequencies. For each fre-
quency, the comparison between the convergence histories of CGMN, CGMN with ILUT and CGMN
with AINV shows the AINV preconditioner reduces at best the number of iterations. A “super” conver-
gence is observed compared to CGMN.
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Figure 2.13: Effect of the quality factor on the quality of the preconditioner. The number of iterations
Niter performed by the preconditioned CGMN method is plotted as a function the quality factor qatt
( ). The Helmholtz problem at the frequency f = 10 Hz is considered for this experiment. The
ILUT preconditioner is computed with p = 10, τ = 10−10 by varying the quality factor qatt. The
number of iterations performed by the CGMN method without preconditioning ( ) is Niter = 4038.

Table (2.4) summarizes the number of iterations and the computation time in seconds performed
by the CGMN method and the preconditioned CGMN method using the ILUT and AINV precondi-
tioners. The number of iterations is reduced by a factor going from 3.6 to 6.0 when using the ILUT
preconditioner. The computation time is reduced by a factor 1.5 up to 2.2.

The AINV preconditioner clearly performs better than the ILUT preconditioner for the reduction in
the number of iterations. A factor 8.6 up to 9.2 is obtained. A reduction in the computation time by a
factor 3.6 up to 3.9 is obtained.

f Nu NCGMN
iter Time (s) N ILUT

iter Time (s) NAINV
iter Time (s)

5 120285 2764 44.3 460 20.1 310 12.3
10 444033 4038 263.5 790 134.1 470 70.8
15 971685 5407 778.6 1350 500.2 620 215.1
20 1703241 6878 1786.9 1800 1189.2 750 449.7

Table 2.4: Number of iterations and computation time performed by the preconditioned CGMN method
for the solution of the 2D Helmholtz problem using the Marmousi 2 P-wave velocity model. CGMN is
preconditioned with the ILUT and the AINV preconditioners. NCGMN

iter denotes the number of iterations
performed by the CGMN method without preconditioning. N ILUT

iter denotes the number of iterations
performed by the CGMN method using the ILUT preconditioner. NAINV

iter denotes the number of
iterations performed by the CGMN method using the AINV preconditioner. The computation time is
presented in the column “Time” in seconds.

A complexity analysis of the CGMN method using the ILUT and AINV preconditioners is presented
in Figure 2.15. For the ILUT preconditioner, we have

N ILUT
iter = 0.9 N1.04.

Despite the gain in computation time, the complexity of the CGMN seems worsen for high frequencies.
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Figure 2.14: Convergence histories of the CGMN method for the resolution of the Helmholtz problem
using the 2D Marmousi 2 P-wave velocity model. CGMN without preconditioned is plotted with ( ),
with the ILUT preconditioner ( ) and with the AINV preconditioner ( ). The ILUT preconditioner
is computed with p = 10, τ = 10−10 and qatt = 1.1. The AINV preconditioner is computed on the
same damped matrix as for the ILUT preconditioner. The threshold τ = 10−2 so that the preconditioner
only has 9 non-zero values per column.

A complexity analysis of the CGMN method using the AINV preconditioner gives

NAINV
iter = 6.2 N0.66.

The latter clearly indicates the reduction in the complexity of the preconditioned method. Both coeffi-
cients α and β as in αNβ are reduced. In comparison with the CGMN method without preconditioning,
the exponent is sensitively the same but the constant multiplying the complexity is drastically reduced
by a factor 8.1.

The above experiments show that the second preconditioning strategy provides clearly better results.
Therefore, the approach which consists in solving the linear system

AP2y = b, x = P2y,

using the CGMN or CARP-CG method shall be preferred in the following.
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Figure 2.15: Complexity analysis of the CGMN method with and without preconditioning (ILUT,
AINV) for the frequency domain wave propagation problem in the 2D heterogeneous acoustic model
Marmousi 2.

2.2.5 A revisited sparse approximate inverse preconditioner for the frequency-domain
wave equation

The AINV addresses the problem of computing the preconditioner from an algebraic point of view.
Because the operator A is well-known, one can consider the problem from an operator point of view,
namely as a frequency-domain wave propagation problem in a strongly damped medium. We denote
by G this frequency-domain wave propagation operator in a strongly damped medium. The kth column
vector of G−1, denoted by G−1

•k , is the solution of the system

Gx = ek, (2.29)

where ek is a vector of size n with a single nonzero coefficient equal to 1 at the index k. Assuming
for instance a 2D approximation, let (ik, jk) be the couple of indexes representing the spatial position
associated with the index k, the column vector G−1

•,k can be identified with the wavefield generated by
a Dirac source located at the position (ik, jk) in a strongly attenuating medium. Each column of P
can thus be sparsely approximated by restraining G−1

•,k to few discretization points around (ik, jk) (see
Figure 2.16).

Therefore, discarding the small values of G−1
k,• and taking into account the exponential decay of the

off-diagonal entries is equivalent to say that physical points far from the source position are ignored.
Thus, by introducing a strong attenuation in the media and by considering only the immediate source
point neighbors, one can build a good approximation of the wavefield G−1

k,•

Pk,• = G−1
k,• + Ek,•, (2.30)

where E is an error matrix due to the approximation.

In practice, the preconditioner P is computed efficiently by solving the n local frequency-domain
wave propagation problems in a strongly damped small medium defined by the sparsity pattern chosen.
Perfectly Matched Layers (Bérenger, 1994) surround this local domain to absorb the outgoing waves.
The sparsity pattern of the preconditioner can be controlled efficiently. Using this method, the compu-
tation of the preconditioner presents low memory requirements as it only requires the solution of small
frequency-domain wave propagation problems. In addition it is highly scalable as each column of the

103



THE CARP-CG METHOD AND PRECONDITIONING STRATEGIES

ik, jk
•ik, jk − 1•

•

•

ik, jk + 1•

•

•

ik − 1, jk•

ik + 1, jk
•

ik, jk
••

•

•

•

•

•

•

•

ik, jk − 2•

•

•

ik, jk + 2•

•

•

•

•

•

•

•

ik − 2, jk• •

•
ik + 2, jk
••

x

z

9-point approximation 25-point approximation

Figure 2.16: Sparse approximation patterns of the wavefield using a 9-point or 25-point approximation
around the source position (ik, jk).

preconditioner can be computed independently. Finally this approach ensures P is composed of only
few non-zero diagonals. The matrix AP remains sparse and banded. It is computed efficiently in O(n).

The complex shifted Laplacian preconditioner has attracted considerable attention for the speed up
of the convergence of iterative methods for the solution of the 2D and 3D Helmholtz equation. It has
been intensively studied over the past decade by Erlangga et al. (2003), Riyanti et al. (2006), Plessix
(2007), Osei-Kuffor and Saad (2013) and more recently by Gander et al. (2015). In this work, we extend
this strategy equivalent to preconditioning by the strongly damped frequency-domain wave operator to
the general case for the 2D and 3D frequency domain elastic wave equations.

2.3 Spectral study of the preconditioned Helmholtz equation

In the following section, we restrict the study to the Helmholtz equation where the density is assumed
homogeneous. In this case, the eigenvalues and the eigenvectors can be derived analytically. First,
some properties of the matrix resulting from the discretization of this equation are discussed. Then,
the damped frequency-domain wave preconditioner is introduced and the preconditioned problem is
examined on the toy problem 2.1.6.

2.3.1 The Helmholtz equation

Consider the 2D Helmholtz equation (1.17) which is recast in the 2D approximation in the domain Ω.
Attenuation is introduced in the Helmholtz operator using a complex shift on the zero-th-order term k2.
This complex shift is defined by

zν = (1− iν),

where ν ∈ R+. Therefore the Helmholtz operator with attenuation writes

Hν := −∆− zνk2. (2.31)

The Helmholtz equation (2.31) may be defined with the boundary conditions

p = 0, on ∂Ω, (2.32)
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2.3 Spectral study of the preconditioned Helmholtz equation

for the homogeneous Dirichlet condition, or

∂p

∂η
= ikp, on ∂Ω,

which represents radiating boundaries where η is the outward normal unit vector with respect to the
boundary. This condition is also known as the first kind Sommerfeld boundary condition. It simulates
the seismic wave propagation in infinite domains. In practice, Perfectly Matched Layer of Bérenger
(1994) are used.

Remark 2.7. In this study, I shall restrain the investigations to the homogeneous Dirichlet boundary
condition (2.32). However, I shall present numerical results for PMLs.

The eigenvalues λ−∆ of the negative Laplacian problem are solution of the problem

−∆v = λ−∆v (2.33)

where v is the eigenvector related to the eigenvalue λ−∆. The solution of the eigenvalue problem (2.33)
is obtained using eigenvectors of the form

vk1,k2(x, z) = sin(k1x) cos(k2z) (2.34)

where k1 = j1π, j1 ∈ N \ {0} and k2 = j2π, j2 ∈ N \ {0} satisfying the homogeneous Dirichlet
boundary condition (2.32). By substituting the eigenvectors (2.34) in equation (2.33), the eigenvalues
of the negative Laplacian are obtained

−∆vk1,k2 = k2
1vk1,k2 + k2

2vk1,k2 ,

= (k2
1 + k2

2)vk1,k2 ,

which gives
λ−∆ = k2

1 + k2
2,

with k1 = j1π, j1 ∈ N \ {0} and k2 = j2π, j2 ∈ N \ {0}.
Thus, the eigenvalues λHν of the Helmholtz operator (2.31) write

λHν = (k2
1 + k2

2)− zνk2, zν = 1− iν, ν ∈ R+, (2.35)

with k1 = j1π, j1 ∈ N \ {0} and k2 = j2π, j2 ∈ N \ {0}. Thus, for large wavenumbers k, the real part
of the eigenvalues of the Helmholtz operator change sign which shows its indefiniteness. The imaginary
part of the eigenvalues is shifted by a constant value equal to ν.

The discretization of the negative Laplacian operator −∆ using the second-order finite-difference
method together with the homogeneous Dirichlet boundary condition (2.32) yields the real symmetric
positive definite matrix −L where

L =
1

h2


L′ I 0
I L′ I

. . . . . . . . .
I L′ I

I L′

 ,
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and where the matrix L′ is given by

L′ =


−4 1
1 −4 1

. . . . . . . . .
1 −4 1

1 −4

 .

Therefore, the discretization of the Helmholtz equation (2.31) together with the homogeneous Dirichlet
boundary condition (2.32) using the second-order finite-difference method gives a sparse linear system
which can be written in the matrix form as

Ax = (−L− zνk2I)x = b (2.36)

where x is the pressure wavefield and b is the right-hand side representing the source term.

The pressure wavefield solution of the toy problem 2.1.6 with homogeneous Dirichlet and PML
boundary conditions are presented in Figures 2.17 and 2.18.
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Figure 2.17: Pressure wavefields (real parts) solution of the 2D Helmholtz equation on the toy problem
2.1.6 in a medium without attenuation using the second-order staggered-grid finite difference discretiza-
tion with homogeneous Dirichlet boundary condition (a) and PMLs (b)

Figure 2.17 presents the wavefields computed in a medium without damping. A strong damping is
introduced in the medium (qatt = 1.0) in Figure 2.18. The wavefields are very similar for homogeneous
Dirichlet and PML boundary condition. No reflections are observed at the boundary of the medium due
to the very weak amplitude of the wavefield in the case of the Dirichlet boundary configuration.

2.3.2 Spectral properties of the damped frequency-domain wave preconditioner

The damped frequency-domain wave preconditioner is introduced in 2D as

(−∆− zk2)p(x, z, ω) = s(x, z, ω), Pz := −∆− zk2, (2.37)
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Figure 2.18: Pressure wavefields (real parts) solution of the 2D Helmholtz equation on the toy problem
2.1.6 in a medium with a strong attenuation using the second-order staggered-grid finite difference
discretization with homogeneous Dirichlet boundary condition (a) and PMLs (b)

where z is a complex number defined by

z = (α− iβ),

with α and β real positive values. The operator Pz is defined the same way as the Helmholtz operator
using the homogeneous Dirichlet boundary condition (2.32). Following the equations (2.34) and (2.35),
the eigenvalues of the damped Helmholtz operator Pz are given by

λPz = λ−∆ − zk2, z = α− iβ,

with λ−∆ = k2
1 + k2

2 , k1 = j1π, j1 ∈ N \ {0} and k2 = j2π, j2 ∈ N \ {0} the eigenvalues of the
negative Laplacian operator.

The Helmholtz operatorHν (2.31) is preconditioned with Pz , which gives(
P−1
z Hν

)
p(x, z, ω) = P−1

z s(x, z, ω). (2.38)

The eigenvalues θ of the operator P−1
z Hν are given by

θ =
λ−∆ − zνk2

λ−∆ − zk2
. (2.39)

Note that it is assumed that zk2 6= λ−∆, otherwise the preconditioner Pz is singular (resonance case).
Such case is preferably avoided. Following the work of Erlangga (2005), we have the theorem

Theorem 2.4. Let the 2D Helmholtz problem (2.31) with the homogeneous Dirichlet boundary condi-
tion be preconditioned by Pz and assume that resonance does not occur. The spectrum of the precondi-
tioned operator P−1

z Hν has the following properties:

(i) All eigenvalues lie on a circle with center c and radius r given by

c =
zν − z̄
z − z̄ , r =| z − zν

z − z̄ | .
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(ii) This circle is independent of the wavenumber k.

Proof. Let θ be the eigenvalues of P−1
z Hν given in equation (2.39). We have

|θ − c| =
∣∣∣∣λ−∆ − zνk2

λ−∆ − zk2
− zν − z̄

z − z̄

∣∣∣∣ ,
=

∣∣∣∣(λ−∆ − zνk2)(z − z̄)− (λ−∆ − zk2)(zν − z̄)
(λ−∆ − zk2)(z − z̄)

∣∣∣∣ ,
=

∣∣∣∣λ−∆(z − zν)− z̄k2(z − zν)

(λ−∆ − zk2)(z − z̄)

∣∣∣∣ ,
=

∣∣∣∣z − zνz − z̄

∣∣∣∣ ∣∣∣∣λ−∆ − z̄k2

λ−∆ − zk2

∣∣∣∣ ,
= r

∣∣∣∣λ−∆ − z̄k2

λ−∆ − zk2

∣∣∣∣ .
By expanding the expression λ−∆ − zk2 and λ−∆ − z̄k2, we have

λ−∆ − zk2 = (λ−∆ − αk2) + iβk2,

and
λ−∆ − z̄k2 = (λ−∆ − αk2)− iβk2,

and it is easy to see that
| λ−∆ − zk2 |=| λ−∆ − z̄k2 | .

Thus, the property (i) of theorem 2.4 is retrieved

|θ − c| = r.

Furthermore, the center c and the radius r of the circle are independent of the wavenumber k, which
shows the property (ii) of theorem 2.4.

Remark 2.8. The origin is not enclosed by the circle defined in theorem (2.4). This is true if the distance
of the center c to the origin is larger than the radius which is equivalent to

| zν − z̄ |>| z − zν | ⇐⇒ (1− α)2 + (ν + β)2 > (1− α)2 + (ν − β)2,

⇐⇒ νβ > −νβ,
⇐⇒ νβ > 0,

which is clearly the case as ν and β are positive real numbers.

The operator Pz is discretized using the second-order staggered-grid finite-difference method. The
matrix G is obtained and its inverse G−1 is computed. In the Figure 2.19, the spectrum of the matrix
AG−1 is shown in the case of the toy problem 2.1.6 with homogeneous Dirichlet boundary condition
and PMLs. The preconditioner is computed with the value of damping qatt = 1.0.

The spectra of the preconditioned matrices are improved and this result corroborates theorem (2.4).
The eigenvalues are closely gathered around the value 1. In the case of the homogeneous Dirichlet
configuration, the condition number of the linear system is reduced

cond(A) = 343.3, cond(AG−1) = 18.9. (2.40)
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Figure 2.19: Eigenvalue distribution of the matrix AG−1 with homogeneous Dirichlet boundary condi-
tion (a) and PML (b). The matrix G results from the discretization of the 2D Helmholtz operator in a
strongly damped medium with qatt = 1.0.

In the case of the PML configuration, the condition number of the linear system is improved as well

cond(A) = 107.4, cond(AG−1) = 6.5. (2.41)

This situation is very favorable when using iterative solvers. First, the indefinite matrix A is trans-
formed into a definite one AG−1 by moving the eigenvalues toward the positive real half space and
away from the origin. This criterion is suitable for GMRES type iterative solvers. Second, the spectrum
of the preconditioned matrix is gathered around the value 1 which is crucial for conjugate gradient type
iterative solvers which the convergence rate depends on the condition number of the matrix. Thus, the
convergence rate of iterative solvers is improved and they converge using a small number of iterations.

2.3.3 Sparse approximation of the damped frequency-domain wave preconditioner

For our applications, a sparse approximation of the preconditioner is required. Following the wavefield
approximation approach in the strongly damped medium, the discretization points immediately close to
the source are kept. The sparse preconditioner is denoted by P . In the following, I show the influence
of increasing the approximation of the wavefield on the spectrum of the matrix AP .

Naturally, the spectrum of the matrix AP is damaged compared to using the dense preconditioner
G−1 as it is shown in the Figures 2.20 and 2.21. But, the eigenvalues are still gathered around the value
1. In the homogeneous Dirichlet configuration, the condition number of the matrix AP is equal to

cond(AP ) = 143.4,

for the 9-point approximation, and
cond(AP ) = 96.5,

for the 25-point approximation, which has to be confronted with the condition number of the matrices
A and AG−1

cond(A) = 343.3, cond(AG−1) = 18.9.
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Figure 2.20: Eigenvalue distribution of the preconditioned system AP with homogeneous Dirichlet
boundary condition using the 9-point approximation (a) and the 25-point approximation (b).
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Figure 2.21: Eigenvalue distribution of the preconditioned system AP with PML boundary condition
using the 9-point approximation (a) and the 25-point approximation (b).

In the PML configuration, the condition number of the matrix AP is equal to

cond(AP ) = 69.5,

for the 9-point approximation, and
cond(AP ) = 43.7,

for the 25-point approximation, which has to be confronted as well with the condition number of the
matrices A and AG−1

cond(A) = 107.4, cond(AG−1) = 6.5.

However, one has to pay attention when performing the sparse approximation. Some eigenvalues of
the preconditioned system might be shifted to the negative real half space and closer to the origin as
well, making the matrix AP indefinite. Therefore, the amount of damping needs to be tuned in order to
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compensate the loss of definiteness. Conjugate gradient based iterative solver should not be influenced
by this effect since these methods are more sensitive to the condition number of the preconditioned
matrix.

Related work The way the preconditioner is sparsely approximated in this work meets the strategy
adopted by Poulson et al. (2013) with the parallel sweeping preconditioner. Indeed, here, the wavefield
computed in each column of the preconditioner in the strongly damped medium is truncated using
PMLs. This is justified by fact that far from the source point the amplitude of the wavefield is almost
equal to zero. Through his moving PML, Poulson et al. (2013) approximate the Schur complements
resulting from the factorization using auxiliary smaller problems truncated with artificial PML boundary
conditions. Since, the inverse of the Schur complement is a restricted space of the Green’s function
defined on the grid points located at the interface of the sub-domains, an approximation can be made
with another restricted smaller space of the Green’s function by moving the PMLs.

2.3.4 Spectral analysis of the matrices I −Q(A), I −Q(AG−1) and I −Q(AP )

In this section, I focus on the spectral properties of the matrices I −Q(A) and I −Q(AG−1) and I −
Q(AP ) which represent the double sweeping matrices on A, AG−1 and AP where the preconditioner
G−1 is build on the damped medium using a quality factor qatt = 1 without any sparse approximation.
The matrix P denotes the sparse approximation of G−1 using the 9-point sparsity pattern. The spectra
of the matrices I −Q(AG−1) and I −Q(AP ) are plotted in Figure 2.22. On the same figure, they are
compared to the spectrum of the matrix I −Q(A). On the Figure 2.22a, the computation is performed
using the homogeneous Dirichlet boundary condition and on the Figure 2.22b, PMLs are used.
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Figure 2.22: Eigenvalue distribution of the matrices I − Q(A), I − Q(AG−1) and I − Q(AP ) with
homogeneous Dirichlet boundary condition (a) and PML (b). The preconditioner G−1 is build on the
damped medium using qatt = 1 without any sparse approximation and P is the sparse approximation
of G−1 using the 9-point sparsity pattern.

Ideally, when the dense preconditioner is used (red curves), the spectrum of the matrix I−Q(AG−1)
is significantly improved compared to the spectrum of the matrix I−Q(A) (black curves). The eigenval-
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ues are clustered around the value 1. The spectrum is improved as well when the sparse approximation,
i.e. P , is used (blue curves).

The condition numbers of the matrices A, AG−1, AP , AHA, I − Q(A), I − Q(AG−1) and
I − Q(AP ) are summarized in Table 2.5. Both dense and sparse preconditioners improve the con-
ditioning of the matrix A. The matrix I −Q(AG−1) has clearly a better conditioning compared to the
matrix associated with the normal equations AHA. Despite the sparse approximation applied to the
preconditioner, the matrix I −Q(AP ) still remains very well conditioned.

A AG−1 AP AHA I −Q(A) I −Q(AG−1) I −Q(AP )

Dirichlet 343.3 18.9 143.4 117898.1 8835.4 61.0 1053.8
PML 107.4 6.5 69.5 11543.5 671.6 2.1 94.4

Table 2.5: Condition numbers of the matrices A, AG−1, AP , AHA, I − Q(A), I − Q(AG−1) and
I −Q(AP ) with homogeneous Dirichlet and PMLs configurations.

The application of the CARP-CG method on the preconditioned system AP gives very promis-
ing results in terms of condition number and localization of the eigenvalues for the frequency-domain
acoustic wave equation. In the following seciton, I shall carry out this analysis in the 2D elastic approx-
imation.

2.4 Spectral study of the preconditioned frequency-domain elastic wave
equations

Because the damped frequency-domain wave preconditioner has shown good properties for precondi-
tioning the Helmholtz equation, in the following it is applied to the frequency-domain elastic wave
equations. The same approach used for the spectral study of the Helmholtz equation is carried out.
The spectral properties of the preconditioned system in the elastic approximation using the velocity
formulation are studied. First, some properties of the matrix resulting from the discretization of the
frequency-domain elastic wave equations are discussed. Then, the damped frequency-domain wave
preconditioner is introduced and the preconditioned problem is examined. I shall retain this study to
the 2D approximation only. The numerical experiments are performed on a simple toy problem which
I describe in the following.

Consider the 2D domain Ω = 3×2 km2 with constant P-wave and S-wave velocities VP = 1500 m/s
and VS = 1000 m/s corresponding to a constant Poisson’s ratio ξ = 0.1. The 2D frequency-domain
elastic wave equations are discretized using the fourth-order staggered-grid finite-difference method for
the frequency f = 5 Hz and using 5.4 points per wavelength. The discrete domain of 71× 141 grid
points is obtained. The domain is surrounded by PMLs of width 500 m corresponding to one wave-
length of fasted traveling wave. The damping coefficient in the PML is set to CPML = 700. A vertical
force source is located at xs = 1500 and zs = 1000 m. For the computation of the eigenvalues, the size
of the domain is reduced to 600× 600 m2 to allow the computations in a reasonable amount of time.
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2.4.1 The frequency-domain elastic wave equations

Consider now the frequency-domain elastic wave equations in the 2D approximation. The model pa-
rameters, namely the density ρ and the Lamé parameters λ and µ are supposed homogeneous so that
they do not step in the partial derivatives. The medium is supposed isotropic and viscous. Attenuation
is introduced in the medium using a complex shift on the zero-th-order term ω2. This complex shift is
defined by the coefficient

zν = 1− iν.
In practice, attenuation is accounted for using the Kolsky model (Kolsky, 1956). The complex-valued
P-wave and S-wave velocities are introduced as in the previous section such that

V (qatt)
p = Vp

(
1− i

2qatt

)
, V

(qatt)
S = VS

(
1− i

2qatt

)
,

with qatt the quality factor.

Remark 2.9. Note that different values of the quality factor qatt could be used to define attenuation for
P-waves and S-waves. Here, we use the same value for both types of waves.

The problem is considered on a 2D domain Ω and bounded by ∂Ω. The frequency-domain elastic
wave equations in such configuration write

zνω
2ρvx + (λ+ 2µ)∂xxvx + µ∂zzvx + λ∂xzvz + µ∂zxvz = −iωFx,

zνω
2ρvz + µ∂xxvz + (λ+ 2µ)∂zzvz + λ∂zxvx + µ∂xzvx = −iωFz.

in Ω (2.42)

We are not concerned with the source terms, the full expression which involves excitations on the stress
terms is not provided. Note that the differential operators ∂i∂j are noted as ∂ij to simplify notations.
The homogeneous Dirichlet boundary conditions are used in this study

v = 0, on ∂Ω. (2.43)

Remark 2.10. I shall present as well numerical results using PMLs for completeness.

Using the following operator

L :=

[
(λ+ 2µ)∂xx + µ∂zz λ∂xz + µ∂zx

λ∂zx + µ∂xz µ∂xx + (λ+ 2µ)∂zz

]
,

and the vector notations

v =

[
vx
vz

]
, f = −iω

[
Fx
Fz

]
,

the system of equation (2.42) together with the homogeneous Dirichlet boundary condition (2.43) can
be written in matrix form as

(L+ zνω
2ρI)v = f , Eν := L+ zνω

2ρI. (2.44)

Let ΛL be the eigenvalues of the operator L. The eigenvectors u given by

u =

[
cos(k1πx) sin(k2πz)
sin(k1πx) cos(k2πz)

]
,
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for k1, k2 ∈ N \ {0} satisfy the eigenvalue problem Lu = ΛLu. One can easily derive the eigenvalues
ΛL of the operator L which are given by

ΛL(1) = −π2
(
(λ+ 2µ)k2

1 + µk2
2 + (λ+ µ)k1k2

)
,

ΛL(2) = −π2
(
µk2

1 + (λ+ 2µ)k2
2 + (λ+ µ)k1k2

)
,

for k1, k2 ∈ N \ {0}. Thus, the eigenvalues of ΛEν of the operator Eν write

ΛEν =

[
ΛL(1) + zνω

2ρ 0
0 ΛL(2) + zνω

2ρ

]
. (2.45)

Similarly to the Helmholtz operator, for large wavenumber, the real part of the eigenvalues of the
operator Eν change sign which shows its indefiniteness.

The problem (2.44) is discretized using the fourth-order staggered-grid finite-difference method for
the numerical simulations. The following sparse linear system is obtained

Ax = (L+ zνω
2ρI)x = b, (2.46)

where L is the discretization of the partial derivative operator Lwith the homogeneous Dirichlet bound-
ary condition (2.43). Considering the toy problem (2.4) and by setting ν = 0 which amounts to a
frequency-domain elastic wave propagation in a medium without attenuation, the eigenvalues of the
matrix A are presented in Figure 2.23. The spectrum of the matrix A is presented as well with the PML
boundary condition.
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Figure 2.23: Spectrum of the impedance matrix A resulting from the discretization of 2D frequency-
domain elastic wave equations on the toy problem 2.4 with homogeneous Dirichlet boundary condition
(a) and PMLs (b).

It shows indeed the negative real part of its eigenvalues relative to L and some small positive ones
as it has been discussed earlier. Finally, the solution of the linear system for a vertical force source
located in the middle of the domain is presented in Figure 2.24.
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Figure 2.24: Solutions of the 2D frequency-domain elastic wave problem on the toy problem 2.4 for
a vertical force source located at xs = 1500 m zs = 1000 m with homogeneous Dirichlet boundary
condition (a,b) and PML (c,d).

2.4.2 Spectral properties of the damped frequency-domain wave preconditioner

The damped frequency-domain wave preconditioner is introduced for the 2D frequency-domain elastic
equations by

(L+ zω2ρI)v = f , Pz := L+ zω2ρI, (2.47)

where z is complex number defined by
z = (α− iβ),

with α and β real positive numbers. The operator Pz is defined the same way as the elastic wave
operator Eν using the homogeneous Dirichlet boundary condition. Following the equation (2.45), the
eigenvalues of the operator Pz are given by

ΛPz =

[
ΛL(1) + zω2ρ 0

0 ΛL(2) + zω2ρ

]
.

The elastic wave operator Eν is preconditioned with Pz which gives

P−1
z Eνv = P−1

z f ,

and the eigenvalues Γ of the operator P−1
z Eν are given by

Γ(1) =
L(1) + zνω

2ρ

L(1) + zω2ρ
, Γ(2) =

L(2) + zνω
2ρ

L(2) + zω2ρ
.
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Note that it is assumed that L(1) 6= −zω2ρ and L(2) 6= −zω2ρ. In this case the preconditioner is
singular and such case is avoided.

Theorem (2.4) applies here. For the 2D frequency domain elastic problem (2.44) with homogeneous
Dirichlet boundary condition preconditioned by Pz , the eigenvalues of the resulting operator P−1

z Eν lie
on a circle with center c and radius r given by

c =
zν − z̄
z − z̄ , r =| z − zν

z − z̄ | .

This circle is independent of the wavenumber k. The proof (2.3.2) can be carried out as well in the
elastic case.

The system of equations (2.44) and (2.47) together with the homogeneous Dirichlet boundary equa-
tion (2.43) are discretized using the fourth-order staggered-grid finite-difference method which gives
the sparse linear systems

Ax = b,

and
AG−1y = b, x = G−1y.

The preconditioner is computed using the quality factor qatt = 1.0 to account for a strong damping. In
the Figure 2.25, the spectrum of the matrix AG−1 in the homogeneous Dirichlet and PML configura-
tions are presented. These results corroborate the theoretical results obtained earlier.
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(a) Homogeneous Dirichlet boundary condition
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Figure 2.25: Eigenvalue distribution of the preconditioned matrix AG−1 with homogeneous Dirichlet
boundary condition (a) and PML (b). The preconditioner is computed on a strongly damped medium
with qatt = 1.0.

Table 2.6 summarizes the conditioner number of the matrices A and AP−1 in the two configura-
tions: homogeneous Dirichlet and PMLs.

As expected, the spectrum of the matrix AG−1 is improved. Such preconditioner improves as well
its condition number in both configurations.
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A AG−1

Dirichlet 4906.9 314.5
PML 138.8 10.4

Table 2.6: Condition number of the matrices A and AG−1 with homogeneous Dirichlet and PMLs
configurations.

2.4.3 Sparse approximation of the damped frequency-domain wave preconditioner

In the 2D elastic approximation, two velocity wavefields are computed on a staggered grid. Therefore,
selecting a sparsity pattern is not as straightforward as for the frequency-domain acoustic problem
where only one pressure wavefield is computed. I carry out in the paragraph a study on the influence of
the preconditioner sparsity pattern. Consider the toy problem 2.4. I investigate several sparsity patterns
which can be adopted for the computation of the preconditioner. In the following, the matrix P denote
the sparsely approximated preconditioner from the matrix G−1.

(a) 9/0 (b) 9/4 (c) 9/16

Figure 2.26: Sparsity patterns for the preconditioner in the 2D elastic approximation. For a horizontal
force source, red circles denote the horizontal particle velocity vx and blue square denote the vertical
particle velocity vz .

In Figure 2.26, the sparsity patterns 9/0, 9/4 and 9/16 are presented. Following the solution of
the 2D frequency-domain elastic wave problem in a strongly damped medium which can be seen in
Figure 2.27, one can keep the 9 discretization points for vx (red circles in Figure 2.26a) and either
discard vz as in the sparsity pattern 9/0 or keep 4 or 16 discretization points as in the sparsity patterns
9/4 and 9/16 (blue squares in Figures 2.26b and 2.26c). In Figure 2.27c, the kinetic energy is presented.
It shows that most of the energy is located at the 9 discretization points surrounding the source. Such
observation suggests to consider preferably the sparsity pattern 9/0.

Moreover, such sparsity patterns can be enlarged with respect to the number of discretization points
around the source. We refer to this operation as the sparsity approximation of a given sparsity pattern. In
Figure 2.28, the sparsity approximation is enlarged from 1 point around the source to 2 for the sparsity
pattern 9/4.

In Table 2.7, by considering the kinetic energy |vx|2 + |vz|2, the different sparsity patterns cover
most of the kinetic energy in the medium. The relative error for the kinetic energy

Relative energy =
‖Exact energy− Sparse energy‖

‖Exact energy‖ ,
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Figure 2.27: Horizontal (a) and vertical (b) particle velocity wavefields solution of the 2D frequency-
domain elastic wave equations for a horizontal force source in a strongly damped homogeneous medium
(Problem 2.4) with homogeneous Dirichlet boundary condition. Kinetic energy distribution is presented
in figure (c).

(a) 9/4

(b) 25/16

Figure 2.28: Increasing the approximation of the sparsity pattern 9/4 for the preconditioner in the 2D
elastic approximation: one point around the source (a) and two points around the source (b).

remains small in particular for the sparsity pattern 9/0 where the vertical particle velocity vz is dis-
carded.

These considerations of the kinetic energy are corroborated to the condition number of the matrices
AP . The condition number of the matrix AP is approximately the same for all the sparsity pattern. In
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Sparsity pattern 9/0 9/4 9/16

Approximation 1 2 1 2 1 2

Kinetic energy (×10−7) 4.85 4.88 4.90 4.96 4.92 4.96
Relative error (%) 14.4 5.7 14.3 5.2 13.5 4.8

Exact kinetic energy (×10−7) 4.97

Table 2.7: Kinetic energy |vx|2 + |vz|2 with respect to the sparsity pattern chosen and the number of
discretization points around the source and comparison with the exact solution.

the case where the homogeneous Dirichlet boundary condition is used, it is equal to

cond(AP ) = 900.4,

and with the PMLs, it is equal to
cond(AP ) = 34.5.
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Figure 2.29: Eigenvalue distribution of the preconditioned matrix AP with homogeneous Dirichlet
boundary condition (a) and PML (b). The preconditioner is computed on a strongly damped medium
with qatt = 1.0 using the sparsity pattern 9/0.

The spectrum of the matrix AP with the preconditioner computed using the sparsity pattern 9/0 is
presented in Figure 2.29. Compared to the spectrum of the matrix A (see Figure 2.23), the spectrum of
the matrix AP is improved in both configurations (Dirichlet and PMLs). However, some eigenvalues
have their real parts in both positive and negative half-planes. This matrix is therefore still indefinite
but the eigenvalues are far from the origin and well clustered. Furthermore, the number of iterations
performed by the CGMN method on the matrix AP is significantly reduced. This reduction is all the
more improved when the sparsity pattern is denser (9/0, 9/4, 9/16). Table 2.8 shows the effect of the
sparsity approximation on the number of iterations performed by CGMN on the toy problem (2.4) with
PML at the boundaries.

Furthermore, one can expect that the quality of the preconditioner is improved by considering in-
creasingly larger sparsity pattern. The number of iterations decreases accordingly. The same observa-
tion is made by considering each sparsity pattern at a time and by increasing the approximation (number

119



THE CARP-CG METHOD AND PRECONDITIONING STRATEGIES

Sparsity pattern Niter η

without preconditioning 285 1
9/0 66 2.7
9/4 59 3.1
9/16 54 4.3
Full 32 >> 1

Table 2.8: Number of iterations performed by CGMN with respect to the sparsity pattern of the precon-
ditioner when solving the 2D frequency-domain elastic wave equations on the toy problem (2.4) with
PMLs at the boundaries. η denotes the ratio nnz(AP )/nnz(A) which is the increase in the memory
request.

of discretization points around the source) as shown in Table 2.9. However, one needs to keep in mind
the impact of such large sparsity pattern on the memory request denoted by the ratio

η =
nnz(AP )

nnz(A)
.

Indeed, for 3D applications, we are very concerned with the memory requirements. Therefore, I shall
consider the sparsity pattern 9/0 which induces the least memory increase.

Approx. Niter η

1 (9/0) 66 2.7
2 (25/0) 58 4.9

(a) 9/0

Approx. Niter η

1 (9/4) 59 3.1
2 (25/16) 40 5.5

(b) 9/4

Approx. Niter η

1 (9/16) 54 4.3
2 (25/36) 39 6.9

(c) 9/16

Table 2.9: Number of iterations performed by CGMN with respect to the increase of the number
of discretization points in the sparsity pattern of the preconditioner when solving 2D frequency-
domain elastic wave equations on the toy problem (2.4) with PMLs at the boundaries. η is the ratio
nnz(AP )/nnz(A) denoting the increase in the memory request.

In Tables 2.8 and 2.9, the memory increase is presented for each sparsity pattern. We observe
that the memory request increases quickly when large approximations are used which is prohibitive
considering the future 3D applications. Finally, Table 2.10 shows the summary of the condition number

A AG−1 AP

Dirichlet 4906.9 314.5 900.4
PML 138.8 10.4 34.5

Table 2.10: Condition number of the matricesA, AG−1 andAP with homogeneous Dirichlet and PML
configurations. The sparse preconditioner P is computed using the sparsity pattern 9/0 from the fully
dense preconditioner G−1.

of the matrices A, AG−1 and AP when homogeneous Dirichlet boundary condition and PMLs are
used. These results show the efficiency of the dense and sparse preconditioners.
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2.4.4 Spectral analysis of the matrices I −Q(AG−1) and I −Q(AP )

In this section, I focus on the spectral properties of the matrices I−Q(A), I−Q(AG−1) and I−Q(AP )
where the preconditioner G−1 is build on the damped medium using qatt = 1 without any sparse
approximation. Furthermore, P denotes the sparse approximate inverse preconditioner which is a sparse
approximation ofG−1 using the 9/0 point sparsity pattern. The spectrum of the matrices I−Q(AG−1)
(red curve) and I−Q(AP ) (blue curve) are presented in Figure 2.30. They are compared to the spectrum
of the matrix I − Q(A) (black curve). On the Figure 2.30a, the 2D frequency-domain elastic wave
equations are defined using the homogeneous Dirichlet boundary condition and on the Figure 2.30b,
PMLs are used.
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Figure 2.30: Eigenvalue distribution of the matrices I − Q(A) , I − Q(AG−1) and I − Q(AP ) with
homogeneous Dirichlet boundary condition (a) and PML (b). The preconditioner G−1 is computed
upon the strongly damped medium using qatt = 1 without any sparse approximation and P is the
sparse approximation of G−1 using the 9-point sparsity pattern.

Ideally, when the full preconditionerG−1 is used (red curves), the spectrum of the matrix I −Q(AG−1)
is significantly improved compared to the spectrum of the matrix I −Q(A) (black curves). The eigen-
values are clustered around 1. When the sparse approximation is introduced (blue curves), the spectrum
of the matrix I −Q(AP ) remains well clustered around 1 despite the drastic sparse approximation.

The condition number of the matrices A, AG−1, AP , AHA, I − Q(A), I − Q(AG−1) and I −
Q(AP ) are summarized in Table 2.11.

A AG−1 AP AHA I −Q(A) I −Q(AG−1) I −Q(AP )

Dirichlet 4906.9 314.5 900.4 2.4 107 1.4 106 1053.8 14037.7
PML 138.8 10.4 34.5 1.9 104 983.6 19.1 78.7

Table 2.11: Condition number of the matrices A, AG−1, AP , AHA, I − Q(A), I − Q(AG−1) and
I−Q(AP ) with homogeneous Dirichlet and PMLs configurations in the 2D elastic approximation. The
preconditioner P is computed using the 9/0-point sparsity pattern from the fully dense preconditioner
G−1.
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Both dense and sparse preconditioners improve the conditioning of the matrix A. The matrix I −
Q(AG−1) has clearly a better conditioning compared to the matrix associated with the normal equations
AHA. Despite the sparse approximation on the preconditioner, the matrix I −Q(AP̃−1) still remains
very well conditioned.
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2.5 Conclusion

In this chapter, the CARP-CG method is introduced. This method solves robustly the frequency-domain
acoustic and elastic wave equations in both 2D and 3D approximations in complex media and for large
scale problems. We are mainly interested in improving the spectral properties of the frequency-domain
wave equations in both acoustic and elastic approximations and more importantly, investigate how
a preconditioning strategy can be adapted to the CARP-CG method when applied to the frequency-
domain wave equations.

Two preconditioning strategies are introduced for the frequency-domain wave equations and the
CARP-CG method. The preconditioning strategy which is retained is based on applying the CARP-CG
method to the preconditioned linear system

APy = b, x = Py,

where P is a sparse approximate inverse which the computation is based on a version of A in a strongly
damped medium. I presented the damped frequency-domain wave preconditioner in the 2D approxi-
mation for the acoustic and elastic wave equations. Using artificial damping, a complex diagonal shift
is introduced in the preconditioner allowing the improvement of the conditioning of the overall matrix
AP . The eigenvalues are localized in a closed-off area away from the origin assuming that the precondi-
tioner is computed exactly for this theoretical study. Thanks to the strong damping, this preconditioner
is sparsely approximated by selecting few discretization points around the source area. Through this
sparse approximation, the preconditioner remains efficient on these small problems. The performances
of the CARP-CG method are improved with the use of such preconditioner. However, one needs to pay
close attention of the sparsity pattern of the preconditioner as its use with CARP-CG may lead to severe
memory costs.

In practice, the preconditioner is computed efficiently column-wise by solving the n small linear
systems corresponding to the frequency-domain wave problems in the small domain defined by the ap-
proximation. Perfectly Matched Layers are used to absorb the outgoing waves and truncate the domain
of computation. Therefore, the computation of the precondition is embarrassingly parallel as each col-
umn can be computed independently and presents low memory requirements. More importantly, the
sparsity pattern of the preconditioner can be controlled easily with respect to the number of discretiza-
tion points accounted for in the approximation and thus one has a hold over the memory request for the
computation of the matrixAP . Finally, the computation of the preconditioned system can be performed
in low complexity O(n) thanks to the well-known sparsity pattern of the matrices A and P and their
sparsity. Therefore, for the frequency-domain acoustic wave equation, the 9-point sparsity pattern is
adopted for the upcoming numerical experiments. For the 2D elastic approximation, the 9/0 sparsity
pattern is used.

However, some questions rise: indeed, the preconditioning strategy is proven effective in small ho-
mogeneous cases. What would one expect when this preconditioner is used on larger and heterogeneous
problems? Moreover, what would be the effect of another kind of boundary condition such as the free-
surface. Regarding the computation of the preconditioner and in the perspective of 3D applications, to
what extent the computation of such preconditioner can be affordable? Could the computational cost of
the preconditioner be reduced under the assumption of homogeneous media? These are the questions
we investigate in the next two chapters.
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Chapter 3

Application to 2D realistic cases
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Seismic imaging of crustal structures is one of the main challenges of geophysical exploration at
different scales for oil exploration and crustal investigations. At the exploration scale, heterogeneous
properties of the media are encountered with strong contrasts in both density and velocity parameters.
So far in this work, problems only in homogeneous media were treated in the analysis and the numer-
ical tests. In this chapter, 2D typical problems often investigated in seismic imaging applications are
investigated. I shall pay a particular attention to complexity issues as we are looking for extensions in
3D which is mandatory in seismic imaging.

The 2D frequency-domain acoustic wave equation is considered in the first part. The sequential
CGMN method is used for the solution of this problem. Several numerical experiments are performed
to investigate the convergence of this method. The complexity and convergence histories of the CGMN
method are investigates at for several frequencies. These experiments are performed on the BP2004
model (Billette and Brandsberg-Dahl, 2004). This model is 67 km long and 12 km deep and provides
heterogeneous P-wave velocity and density model with strong heterogeneities. Furthermore, the con-
vergence properties of the preconditioned CGMN method are investigated as well. The preconditioner
is computed using the 9-point sparsity pattern introduced in the previous chapter. Therefore, the pre-
conditioner is sparse with only 9 nonzero coefficients per column and it is computed upon the same
media but with a strong damping.

In the second part, the CARP-CG method is used to solve the 2D frequency-domain elastic wave
equations. The Marmousi 2 elastic model (Martin et al., 2006) is used with its P-wave and S-wave
velocity models and its density model. The results using different frequencies are presented to show
the complexity of the CARP-CG method with respect to the size of the problem. Furthermore, experi-
ments with several processors show its scaling properties. The convergence properties of the CARP-CG
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method are then compared with those of the preconditioned CARP-CG with the sparse approximate in-
verse preconditioner built on the same media but with a strong damping. The 9/0 sparsity pattern is
used, ensuring a sparse preconditioner.

3.1 Numerical applications in the acoustic approximation

In this section, the 2D frequency-domain acoustic wave equation is solved on the heterogeneous den-
sity and velocity BP2004 model. I consider the CGMN method as the resulting linear systems are of
relatively small size for these 2D problems. The CARP-CG method will be used in the elastic ap-
proximation where the size of these linear systems requires a parallel strategy even when considering
2D problems. The convergence properties of the CGMN method with and without preconditioning are
finally compared.

3.1.1 Presentation of the BP2004 model

The numerical experiments are performed using the 67 km long and 12 km deep BP2004 model pro-
vided by Billette and Brandsberg-Dahl (2004). The velocity and density fields are presented in Fig-
ure 3.1.

(a)

(b)

Figure 3.1: BP2004 model: 67 km × 12 km P-wave velocity model (a) and density model (b). This
model is characterized by its large size and its strong heterogeneities.

The model was built on a 6.25 m× 6.25 m grid. The top part is a water layer with a constant P-wave
velocity 1486 m/s. The left part presents a complex rugose salt body with a constant velocity of 4510
m/s. A challenge comes from the sub-salt low velocity layers that are meant to represent over-pressured
zones. The center part of the model is representative for the Gulf of Mexico and West Africa with a
constant P-wave velocity 4510 m/s in the salt body.
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3.1.2 Numerical results

The 2D frequency-domain acoustic wave equation is discretized using the fourth-order staggered-grid
finite difference method (Levander, 1988). Perfectly matched layers (Bérenger, 1994) are implemented
at the edges of the domain to absorb the outgoing waves. NPML = 5 grid points are used in the
PMLs and the damping coefficient in the PML is set to CPML = 1500. The explosive Dirac source is
located at the middle top of the domain at xs = 33 km and zs = 150 m. The medium is considered
without attenuation by setting the quality factor to qatt = 1000. Several experiments are performed to
illustrate the performance of the CGMN method for the solution of the 2D frequency-domain acoustic
wave equation on the BP2004 model. For each experiment, the starting point x(0) is set to 0n. The
relaxation parameter used for the Kaczmarz projections is set to 1.2 which is the optimal value selected
from several experiments.

The BP2004 model, presented in Figure 3.1 is filtered and then sampled for several frequencies
f = {1, 5, 10, 20, 40} Hz. I use 5 grid points per wavelength to ensure the accuracy of the fourth-
order finite-difference scheme as promoted by Levander (1988). For the low frequencies, a smoothing
operator is applied on the model to avoid aliasing effects. Table 3.1 summarizes the geometric param-
eters of the models used for each frequency. The solutions for the different frequencies at displayed in
Figure 3.4 at the end of this section.

f h Nz Nx Nu

1 300 41 224 11551
5 60 201 1117 232617
10 30 401 2234 904128
20 15 801 4468 3564132
40 7.5 1601 8934 14152068

Table 3.1: Geometric parameters of the discretization of the BP2004 model (h, Nx, Nz) and size
of the linear systems Nu. Such frequency simulations correspond to the propagation of few tens of
wavelengths (8 in the vertical direction and 44 in the horizontal direction for f = 1 Hz) and up to
several hundreds of wavelengths (320 in the vertical direction and 1780 in the horizontal direction for
f = 40 Hz).

In FWI, performing frequency-domain acoustic wave simulations are usually not required at high
frequencies such as f = 40 Hz. In this study, I am mainly interested in the behavior of the iterative
solver CGMN for such high frequency problems and more importantly whether the preconditioning
still applies for such indefinite linear systems.

The preconditioner P is computed upon a strongly damped medium with qatt = 1 and using the
9-point sparsity pattern. The results obtained with this preconditioner are shown in Table 3.2.

The number of iterations performed by the CGMN method for the solution of each linear system
with respect to the frequency are given together with the computation time. The same data are provided
for the preconditioned CGMN method (PCGMN). Note that the computation time of the preconditioner
is not included in the run times. I consider that the preconditioner can be computed once and therefore
be used for the solution of the same linear system but with multiple right-hand sides for instance. The
results in Table 3.2 show that the number of iterations is divided by a factor ranging from 5.1 to 6.9
between the CGMN method (without preconditioning) and the PCGMN (with preconditioning). More
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Niter Time (s)

f Nu CGMN PCGMN CGMN PCGMN

1 11551 845 164 2.3 1.4
5 232617 3313 569 206.9 109.7
10 904128 5959 951 1443.5 728.5
20 3564132 9525 1424 9195 4355.4
40 14152068 13469 1942 51480.9 23402.6

Table 3.2: Number of iterations and computation time performed by the CGMN method for the solution
of the 2D frequency-domain acoustic wave equation on the BP2004 model. PCGMN denotes the pre-
conditioned iterative method CGMN. The size of the linear systems ranges from ten thousands to ten
millions of unknowns. Note that the computation time denotes the CGMN and the PCGMN run times
and does not include the preconditioner computation time. The latter is performed apart, independently
from the PCGMN runs.

interestingly, the efficiency of the preconditioner increases with respect to the frequency. Such reduction
in the number of iterations even allows to note a gain in the computation time by a factor up to 2.2.
Note the difference in the reduction in the number of iterations and the computation time. Indeed, this
gain in the number of iterations is compensated by the increase of the cost of each iteration. The matrix
AP has 45 nonzero coefficients per row whereas the matrix A has only 13 nonzero coefficients. The
improvement of the convergence profile of the residuals for f = 5 Hz is shown in Figure 3.2.

Figure 3.2: Convergence histories of the relative residuals of the 2D frequency-domain acoustic wave
simulations using the CGMN method (black solid curve) and the preconditioned CGMN method (red
dashed curve) for f = 5 Hz on the BP2004 model.

One can see a drastic convergence towards the stopping criterion when considering the precondi-
tioned CGMN method (PCGMN). Unfortunately, this is mitigated by the fill-in in the matrix AP .

A complexity analysis of the CGMN method is presented in Figure 3.3. The number of iterations
Niter performed by the preconditioned and non-preconditioned CGMN method is plotted as a function
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3.1 Numerical applications in the acoustic approximation

of the average number of discretization points per direction N

N =
√
Nx ×Nz,

on a log-log scale. The black solid line represents the linear increase of the computational complexity

Niter = O(N).

The solid red curve indicates the dependence between Niter and N for the CGMN method. A standard
linear regression, indicated by the solid blue line, is performed on the dashed red curve. A slope equal
to 0.71 for the CGMN method without preconditioning is obtained. The computational complexity
is sub-linear with respect to N , which is consistent with previous studies performed in the previous
Chapter 2 Section 2.1.6 and in (Li et al., 2015). Based on this analysis, the complexity of the CGMN
method is approximately evaluated as

Niter = 20.9 N0.79.

Using the preconditioner, the complexity is improved to

Niter = 5.9 N0.71.

Therefore, following the analysis presented in Chapter 1 Section 1.6, the total computational complex-

Figure 3.3: Complexity analysis of the CGMN method (red dashed curve) with and (red dashed curve)
without the preconditioner for the solution of the 2D frequency-domain acoustic wave equation on the
BP2004 model. The black solid line and the blue “x”-marked line represent respectively the linear
increase and trend line.

ity of the CGMN method for the 2D simulations with one source is

O(Niter ×N2) = O(N2.71), (3.1)

which is a noticeable improvement compared to O(N3) performed by standard time-domain modeling
techniques. However, such reduction is not as important as one may wish. One possible reason is the
difficulty that is introduced by the heterogeneous density.
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Figure 3.4: 2D frequency-domain pressure wavefield (real part) solutions on the BP2004 model: 1 Hz
(a), 5 Hz (b), 10 Hz (c), 20 Hz (d) and 40 Hz (e). One can guess the the reflectivity in the wavefield
at the surface, at the edges of the center part of the salt body and below the left part salt body. This
geometry creates a waveguide that can be seen in the Figures (b) and (c) between the two salt bodies.
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3.2 Numerical applications in the 2D elastic approximation

In this section, the 2D frequency-domain elastic wave equations are solved on the well-known hetero-
geneous Marmousi 2 density and velocity model. The parallel solver CARP-CG is used to solve the
resulting linear systems. A complexity analysis and the scaling properties of the CARP-CG method
are investigated. The sparsity pattern for the preconditioner is introduced. The performances of the
CARP-CG method on the preconditioned system are compared with the results obtained from the non-
preconditioned system.

3.2.1 Presentation of the Marmousi 2 model

Following the description of the Marmousi 2 model performed in Chapter 2 Section 2.2.4, we simply
note that we consider the shear-wave velocity model necessary for elastic wave simulations.
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Figure 3.5: Marmousi 2 model: P-wave velocity (a), S-wave velocity (b), Poisson’s ratio (c) and density
fields (d). Oil reservoirs are located x = 3000 m z = 1000 m, x = 2500 m z = 1700 m, x = 10000
m z = 1200 m, x = 11000 m z = 2000 m and x = 10500 m z = 3000 m. They can be seen in the
Poisson’s ratio panel with the low values (blue).

The Marmousi 2 model has very low VS values, i.e. high Poisson’s ratios (see Figure 3.5(c)).
This requires a fine discretization with respect to the lowest shear wave velocity which gives a large
number of grid points and thus large linear systems to solve. This feature makes the model particularly
interesting to study. For this reason, the parallel iterative solver CARP-CG is used to solve the linear
systems.
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3.2.2 Numerical results

The 2D frequency-domain elastic wave equations in velocity formulation is discretized using the fourth-
order staggered-grid finite-difference method with optimal coefficients (see Chapter 1 Section 1.5.1).
The discretization of the Marmousi 2 model is performed using 5.4 grid points per minimum shear
wavelength. An explosive Dirac source is used at the position xs = 8500 m and zs = 100 m. The
initial point x(0) is set to 0n. The relaxation parameter used for the Kaczmarz projections is set to 1 and
the stopping criterion for the iterations is based on the relative residual

‖b−Ax(k)‖
‖b‖ < 10−4.

The sparsity pattern 9/0 is used for the computation of the preconditioner. For all numerical experi-
ments, the computation time of the preconditioner is not included in the computation time presented
for the preconditioned CARP-CG method. This aspect will be discussed for the 3D application in
Chapter 4.

In the following, I investigate the influence of the different physical parameters on the convergence
of the CARP-CG method. These investigations aim to characterize the influence of the Poisson’s ratio,
the PMLs and the free-surface boundary condition. In the first part, the optimal value for the qual-
ity factor for the computation of the preconditioner is investigated. The value of qatt providing the
minimum number of iterations for the preconditioned CARP-CG method is therefore retained for the
following studies. In the second part, numerical experiments are performed on the Marmousi 2 model
with constant Poisson’s ratio. The shear velocity model is derived from the P-wave velocity model us-
ing the Poisson’s relation (3.2). The values for the Poisson’s ratio {0.25, 0.33, 0.45} are investigated
with the PML configuration. For the model with the constant Poisson’s ratio ξ = 0.25, numerical ex-
periments are carried out to investigate the influence of the free-surface. The results are then compared
with those of the PML case. In the third part, the original Marmousi 2 model is considered with its
space-dependent Poisson’s ratio. The numerical experiments are performed with both PMLs and free-
surface boundary conditions. In the last part, the scaling properties of the CARP-CG method (with and
without preconditioning) are investigated.

3.2.2.1 Optimal value of damping for the best preconditioner efficiency

The good performances of the preconditioner come from the level of damping introduced in the medium
for the computation of the preconditioner so that a good balance between accuracy of the preconditioner
and diagonal dominance is obtained. In this part, I investigate the sensitivity of the convergence of the
preconditioned CARP-CG method in number of iterations with respect to the quality factor qatt used to
compute the preconditioner.

Consider the Marmousi 2 model built with a constant Poisson’s ratio which is set to ξ = 0.25. The
shear velocity model VS is derived from VP using the Poisson’s relation

VS
VP

=

√
0.5− ξ
1− ξ . (3.2)

The frequency-domain elastic wave simulations are performed using PMLs on all boundaries for the
frequencies {1.25, 2.5, 5, 10, 20} Hz. Details on the geometric parameters of the discretization can
be found in Table 3.3 in the next section. Figure 3.6 shows the number of iterations performed by
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Figure 3.6: Sensitivity analysis of the convergence of the preconditioned CARP-CG method (PCARP-
CG) with respect to the damping used to build the preconditioner. The simulations are performed on
the Marmousi 2 model where the shear wave velocity model is derived from the P-wave velocity model
using the Poisson’s relation (3.2) with a constant Poisson’s ratio ξ = 0.25.

the preconditioned CARP-CG method using a preconditioner computed upon a damped medium using
qatt. The results clearly show that the optimal value for the damping is frequency-dependent. These
optimal values range from 0.35 for the highest frequency (f = 20 Hz) to 0.6 for the lowest frequency
(f = 1.25 Hz). Nevertheless, within this range the value qatt = 0.6 seems to be optimal for all
frequencies. The number of iterations varies slightly (couple of tens) for the high frequencies and this
is completely insignificant compared to the tens of thousands of iterations performed by the CARP-CG
method without preconditioning.

Therefore, in the following the optimal value of damping qatt = 0.6 is used to compute the precon-
ditioner for all simulated frequencies.

3.2.2.2 Marmousi 2 case study with constant Poisson’s ratio

Poisson’s ratio The Poisson’s ratio is an important factor for describing an elastic medium. It is
related to the P- and S-wave velocities through the relation (3.2). If ξ = 0.5, i.e. VS = 0, it reduces the
elastic wave modeling to the acoustic approximation. A Poisson’s ratio close to 0.5 corresponds to soft
materials. In this case, the ratio VS/VP is small and the discretization resulting from such configuration
gives large problems to solve as the discretization is performed according to the smallest wavelength
which corresponds to the shear wave velocity (see Figure 3.7). On the contrary, a lower Poisson’s ratio,
around the value 0.25 for instance, corresponds to harder media. The discretization is thus coarser
which yields linear systems which are easier to solve.

133



APPLICATION TO 2D REALISTIC CASES

0 0.50.450.330.25

0.30

0.50
0.57

0.19

0.48

f(ξ) =

√
0.5− ξ
1− ξ

VS
VP

ξ

Figure 3.7: Ratio VS/VP profile.

To investigate the influence of the Poisson’s ratio, the frequency-domain elastic wave simulations
are performed in three cases with a constant increasing Poisson’s ratio. In the first case, a constant
Poisson’s ratio equal to 0.25 is used. The ratio is increased to 0.33 in the second case and finally
to 0.45 in the last case. For each case, the shear wave velocity model is derived from the P-wave
velocity model using the Poisson relation (3.2). Therefore, the minimum shear wave velocities are
VS,min = {593.52, 517.82, 309.95}m/s. Numerical experiments using the space-dependent Pois-
son’s ratio from the original Marmousi 2 model are performed in the next part.

The discretization is performed with respect to the minimum shear wavelength for all three cases.
The preconditioner is computed based on a strongly damped medium using the quality factor qatt = 0.6.
The sparsity pattern 9/0 is used (see Figure 2.26a in Chapter 2 Section 2.4.3). The details of the
discretization of the media are presented in Tables 3.3, 3.4 and 3.5. The number of iterations and the
computation time (in seconds) are presented for the experiments using the CARP-CG method and the
preconditioned CARP-CG method (PCARP-CG). Representative wavefields of the horizontal particle
velocity vx and the vertical particle velocity vz at each frequency are shown in the Figures 3.9 and 3.10
at the end of this part.

These results show that for the constant Poisson’s ratio ξ = 0.25 simulations, the preconditioned
method PCARP-CG is able to solve the linear systems using a small number of iterations. In Table 3.3,
one can see that the number of iterations is divided by a factor ranging from 4.71 up to 6.75. Such
reductions in the number of iterations allow to reduce the computation time by a factor going from 1.64
up to 2.52.

Similarly, from the results shown in Table 3.4, one can see that in the case where the constant
Poisson’s ratio ξ = 0.33 is used, the preconditioner allows to reduce the number of iterations by factor
4.75 and up to 6.8. A speed up in computation time by a factor 1.94 and up to 2.62 is obtained.

Finally, for the last case ξ = 0.45, the results from Table 3.5 show a reduction in the number of
iterations by a factor going from 3.91 up to 5.45 allowing as well to reduce the computation time by a
factor 1.55 and up to 2.3.

These results show that for constant Poisson’s ratio simulations, the preconditioned method PCARP-
CG is able to achieve substantial reductions in the number of iterations. The first conclusion which can
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ξ = 0.25 CARP-CG PCARP-CG

f h (m) Nz Nx Nu Niter Time (s) Niter Time (s)

1.25 88 41 194 37908 1532 20.5 325 12.5
2.5 44 81 388 103576 2487 101.0 429 46.8
5 22 160 774 325600 4211 556.2 698 243.6
10 11 319 1548 1140184 9226 338.8 1366 127.4
20 5.5 628 3094 4187024 12568 505.8 2080 200.1

Table 3.3: Geometric parameters, total number of unknowns Nu, computing time and number of iter-
ations Niter for the solution of the 2D frequency-domain elastic wave equations using CARP-CG and
PCARP-CG with PMLs at the boundaries on the Marmousi 2 model with homogeneous Poisson’s ratio
ξ = 0.25. The preconditioner is computed upon the Marmousi 2 model with a strong damping using
qatt = 0.6 and according to the 9/0 sparsity pattern.

ξ = 0.33 CARP-CG PCARP-CG

f h (m) Nz Nx Nu Niter Time (s) Niter Time (s)

1.25 76.71 47 223 45762 1913 36.9 402 19.0
2.5 38.36 92 444 127776 3074 162.9 577 77.6
5 19.19 183 887 413442 5143 878.6 905 406.2
10 9.59 366 1774 1472968 11947 162.4 1758 61.8
20 4.79 731 3547 5531154 16419 841.2 2870 355.1

Table 3.4: Geometric parameters, total number of unknowns Nu, computing time and number of iter-
ations Niter for the solution of the 2D frequency-domain elastic wave equations using CARP-CG and
PCARP-CG with PMLs at the boundaries on the Marmousi 2 model with homogeneous Poisson’s ratio
ξ = 0.33. The preconditioner is computed upon the Marmousi 2 model with a strong damping using
qatt = 0.6 and according to the 9/0 sparsity pattern.

ξ = 0.45 CARP-CG PCARP-CG

f h (m) Nz Nx Nu Niter Time (s) Niter Time (s)

1.25 45.92 77 371 6174 3207 128.7 819 82.9
2.5 22.96 153 741 301466 5191 625.7 1148 374.2
5 11.48 306 1482 1053224 11839 398.5 2324 199.5
10 5.74 611 2963 3909906 19794 728.4 3619 317.1

Table 3.5: Geometric parameters, total number of unknowns Nu, computing time and number of iter-
ations Niter for the solution of the 2D frequency-domain elastic wave equations using CARP-CG and
PCARP-CG with PMLs at the boundaries on the Marmousi 2 model with homogeneous Poisson’s ratio
ξ = 0.45. The preconditioner is computed upon the Marmousi 2 model with a strong damping using
qatt = 0.6 and according to the 9/0 sparsity pattern.

be drawn from these results is, despite the heterogeneities in the velocity models and density model, the
combination of the preconditioner with the CARP-CG method allows to retrieve a significant reduction
in the number of iterations permitting as well a reduction in the computation time.
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Figure 3.8: Complexity analysis of the CARP-CG method with and without preconditioning for the
solution of the 2D frequency-domain elastic wave equations with PMLs on the Marmousi 2 model with
homogeneous Poisson’s ratio: ξ = 0.25 (a), ξ = 0.33 (b) and ξ = 0.45 (c). The number of iterations
Niter is plotted as a function of the average model dimension N on a log-log scale. The straight dashed
line indicates the results obtained from a line regression.

Figure 3.8 shows that the complexity in number of iterations of the CARP-CG method (red solid
curves) remains sub-linear with respect to the average number of grid points per dimension N .

Niter

ξ CARP-CG PCARP-CG

0.25 49×N0.76 15×N0.67

0.33 51×N0.78 14×N0.71

0.45 35×N0.87 20×N0.71

Table 3.6: Complexities in number of iterations of the CARP-CG method with and without precondi-
tioning for the 2D frequency-domain elastic wave simulations on the Marmousi 2 model with homoge-
neous Poisson’s ratio with PMLs on the boundaries.

Performing a standard linear regression (dashed blue line), one can obtain the complexities which
are summarized in Table 3.6. Using the preconditioner, the complexity of the CARP-CG method is
improved. The slopes as well as the constants multiplying these complexities are reduced which is the
expected result.

The second conclusion which can be drawn is, however, as the problem becomes increasingly more
complex to solve (this is denoted by the increasing Poisson’s ratio from 0.25 to 0.45), the complexity in
number of iterations of the CARP-CG method increases (see CARP-CG column in Table 3.6) and the
performances of the preconditioner are a little degenerated due to the finer discretization which is used
for high Poisson’s (see PCARP-CG column in Table 3.6).

In the following part, the Marmousi 2 model with homogeneous Poisson’s ratio ξ = 0.25 is consid-
ered and the effect of the free-surface is investigated.
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Figure 3.9: 2D frequency-domain horizontal particle velocity vx wavefields in the constant Poisson’s
ratio ξ = 0.25 Marmousi 2 model with PMLs at 1.25 (a), 2.5 (b), 5 (c) and 10 Hz (d). For high
frequencies, note the reflections induced by the change in density and velocities at the water bottom.
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Figure 3.10: 2D frequency-domain vertical particle velocity vz wavefields in the constant Poisson’s
ratio ξ = 0.25 Marmousi 2 model with PMLs at 1.25 (a), 2.5 (b), 5 (c) and 10 Hz (d). For high
frequencies, note the reflections induced by the change in density and velocities at the water bottom.
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Free-surface Realistic simulations of the propagation of seismic waves require a free-surface bound-
ary condition (FSBC) at the air/subsurface interface. In this paragraph, the influence of the FSBC on
the convergence of the CARP-CG method using the preconditioner is investigated. The previous model
settings are kept, i.e. the investigations are restricted to the Marmousi 2 model with homogeneous Pois-
son’s ratio ξ = 0.25. The FSBC is used at the top boundary and PMLs are attached to the other three
boundaries of the model. The geometric parameters, the computation time and the number of itera-
tions performed by the CARP-CG method and the preconditioned CARP-CG method are summarized
in Table 3.7. Representative wavefields of the horizontal particle velocity vx and the vertical particle
velocity vz at the given frequencies are presented at the end of this part in Figures 3.12 and 3.13.

CARP-CG PCARP-CG

f h (m) Nz Nx Nu Niter Time (s) Niter Time (s)

1.25 88 41 194 28548 5034 22.2 766 8.9
2.5 44 81 388 86456 8766 130.5 1153 46.5
5 22 160 774 293040 14764 812.2 1647 232.4
10 11 319 1548 1076664 23764 1324.2 2653 371.2

Table 3.7: Geometric parameters, total number of unknowns Nu, number of iterations Niter and com-
puting time for the solution of the 2D frequency-domain elastic wave equations using CARP-CG and
PCARP-CG with the FSBC on the Marmousi 2 model with homogeneous Poisson’s ratio ξ = 0.25.
The preconditioner is computed upon the Marmousi 2 model with a strong damping using qatt = 0.6
and according to the 9/0 sparsity pattern.

Table 3.7 shows the performances of the CARP-CG method with and without preconditioning when
the free-surface boundary condition is used. The FSBC generates the propagation of surface waves
which interact with the P and S-waves. Therefore, it strongly affects the convergence of the CARP-CG
method. The number of iterations is multiplied by more than a factor 2 compared to the simulations
performed with PMLs on all boundaries despite the smaller size linear system (see previous results
in Table 3.3). When the preconditioner is applied, the convergence of the CARP-CG method is sig-
nificantly improved. The number of iterations is reduced by a factor going from 6.57 and up to 8.96
inducing a computation time speed-up by a factor 2.5 and up to 3.5.

In Figure 3.11, the convergence histories of the CARP-CG method clearly show the improvement
of the convergence thanks to the preconditioner. The relative residual tends very quickly towards zero,
while, without preconditioning, the CARP-CG method converges slowly.

The complexity analysis of the CARP-CG method (with and without preconditioning) is presented
in Figure 3.11d. The following result is obtained

Niter =

{
172×N0.75, for CARP-CG,
51×N0.6, for PCARP-CG.

(3.3)

In comparison with the simulation performed with PMLs, for which the complexities of the CARP-
CG method are recalled in Table 3.8, one may say that the free-surface boundary condition is responsi-
ble for degenerating the constant multiplying the complexity of the CARP-CG method. The exponent
remains roughly the same. However, thanks to the preconditioner, both constant and exponent are
reduced.
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Figure 3.11: Convergence histories of the CARP-CG method with (red curve) and without precon-
ditioning (blue curve) for the solution of the 2D frequency-domain elastic wave simulations with the
FSBC on the Marmousi 2 model with the constant Poisson’s ratio ξ = 0.25 (a), (b) and (c). Complexity
analysis of the CARP-CG method with and without preconditioning. The number of iterations Niter is
plotted as a function of the average model dimension N on a log-log scale. The straight dashed line
indicates the results obtained from a line regression.

Niter

ξ = 0.25 CARP-CG PCARP-CG

PML 49×N0.76 15×N0.67

FSBC 172×N0.75 51×N0.60

Table 3.8: Comparison of the complexities of the CARP-CG method with and without precondition-
ing for solution of the 2D frequency-domain elastic wave equation on the Marmousi 2 model with
homogeneous Poisson’s ratio with PMLs and the FSBC.

In the following part, the original Marmousi 2 model with its space-dependent Poisson’s ratio is
considered. The numerical experiments are performed using both PMLs and the FSBC.
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Figure 3.12: 2D frequency-domain horizontal particle velocity vx wavefields in the constant Poisson’s
ratio ξ = 0.25 Marmousi 2 model with the FSBC at 1.25 (a), 2.5 (b), 5 (c) and 10 Hz (d). The FSBC
introduces multiple reflections at the top boundary.
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Figure 3.13: 2D frequency-domain vertical particle velocity vz wavefields in the constant Poisson’s
ratio ξ = 0.25 Marmousi 2 model with the FSBC at 1.25 (a), 2.5 (b), 5 (c) and 10 Hz (d). The FSBC
introduces multiple reflections at the top boundary.
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3.2.2.3 Marmousi 2 case study with the space-dependent Poisson’s ratio

In this part the original Marmousi 2 model is considered with its space-dependent Poisson’s ratio. This
minimum wavelength is obtained for VS,min = 271.53 m/s corresponding to the Poisson’s ratio ξ =
0.46. Two configurations are investigated: the first one considers the frequency-domain elastic wave
simulations with the PMLs on all boundaries. The second configuration uses the free-surface (FSBC)
at the top boundary and PMLs on the remaining boundaries. Table 3.9 summarizes the discretization
parameters of these two problems for several frequencies.

f (Hz) h (m) Nz ×Nx Nu(FSBC) Nu(PML)

1.25 40 89× 426 101, 588 120, 228
2.5 20 176× 851 349, 272 384, 912
5 10 351× 1701 1, 291, 822 1, 361, 462
10 5 701× 3401 4, 961, 922 5, 099, 562
15 3.35 1046× 5075 10, 905, 180 11, 109, 780

Table 3.9: Geometry parameters, total number of unknownsNu at different frequencies with PMLs and
the FSBC boundary conditions for the Marmousi 2 model with the space-dependent Poisson’s ratio.

Several experiments have shown that the preconditioner built on the strongly damped medium with
a space-dependent Poisson’s ratio does not give a substantial improvement in the convergence of CARP-
CG method.

PML
f CARP-CG Time (s) PCARP-CG Time (s) PCARP-CG Time (s)

ξp: space-dependent ξp = 0.15

1.25 3647 74.7 2846 154.2 1071 56.1
2.5 7349 76.8 3031 81.2 1541 44.7
5 12571 155.4 4254 116.3 2487 68.8

FSBC
1.25 9997 163.9 4970 212.9 2900 124.2
2.5 22054 400.3 10950 516.4 5338 250.6
5 43975 514.2 16359 421.2 10316 265.6

Table 3.10: Number of iterations and computation time for the solution of 2D frequency-domain
elastic equations on a portion of the space-dependent Marmousi 2 model with PMLs and FSBC us-
ing the CARP-CG method. The preconditioner is computed on the Marmousi 2 model with the
space-dependent Poisson’s ratio and a constant Poisson’s ratio ξp = 0.15 both with strong damping
(qatt = 0.6) according to the 9/0 sparsity pattern.

In Table 3.10, several experiments are performed on a portion of the Marmousi 2 model where the
water layer is removed. The simulations are carried out with PMLs and the FSBC boundary condi-
tions. The results show that when the preconditioner is computed on a medium with homogeneous
low Poisson’s ratio ξp = 0.15 with strong damping, the performances of the preconditioner are far
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better than the configuration where the preconditioner is computed on the original medium (with space-
dependent Poisson’s ratio) with a strong damping. Several experiments have shown that the Poisson’s
ratio ξp = 0.15 for the preconditioner computation is optimal. This is partially due to the fact that the
minimum Poisson’s ratio of the Marmousi 2 model is approximately equal to ξmin = 0.16. Moreover,
the constant Poisson’s ratio ξp = 0.15 provides a shear velocity model with higher velocity values.
Therefore, the amount of damping introduced in the preconditioner is accordingly higher. This makes
the preconditioner more diagonal dominant. This value of the Poisson’s ratio ξp = 0.15 will be used to
compute the preconditioner in the following experiments.

PML CARP-CG PCARP-CG

f h (m) Nu Nproc Niter Time (s) Niter Time (s)

1.25 40 120, 228 2 5918 125.7 2969 167.1
2.5 20 384, 912 4 9174 341.5 3474 331.9
5 10 1, 361, 462 32 16267 376.9 4650 266.5
10 5 5, 099, 562 64 27284 1295.9 5274 598.1

FSBC CARP-CG PCARP-CG

f h (m) Nu Nproc Niter Time (s) Niter Time (s)

1.25 40 101, 588 2 10452 189.0 3186 151.9
2.5 20 349, 272 4 21278 706.3 6417 549.5
5 10 1, 297, 822 32 35471 833.7 7217 389.1
10 5 4, 961, 922 64 43144 2012.8 9052 993.9
15 3.35 10, 905, 180 128 44779 2779.3 9529 1337.1

Table 3.11: Geometric parameters, total number of unknowns Nu, number of iterations Niter and com-
putation time of the frequency-domain elastic wave simulations using the CARP-CG method with
PMLs (top) and FSBC (bottom) on the Marmousi 2 model with the space-dependent Poisson’s ra-
tio. Nproc denotes the number of cores used for the parallel solver CARP-CG. The preconditioner is
computed on the Marmousi 2 model where the shear wave velocity model is derived using the con-
stant Poisson’s ratio ξp = 0.15 and where a strong damping is introduced through the quality factor
qatt = 0.6.

In Table 3.11, the number of iterations and the computation time of the CARP-CG method for the
solution of the frequency-domain elastic wave equations on the Marmousi 2 model with the space-
depend Poisson’s ratio with the PML and FSBC configurations are presented. The preconditioner is
computed on the Marmousi 2 model where the shear wave velocity model is derived using the constant
Poisson’s ratio ξp = 0.15 and where a strong damping is introduced through the quality factor qatt =
0.6.

In Figure 3.14, the convergence histories of the CARP-CG method clearly show the improvement of
the convergence thanks to the preconditioner. Overall, the relative residual tends quickly towards zero,
while, without preconditioning, the CARP-CG method converges slowly. However, in comparison with
the constant Poisson’s ratio case, one can see the difficulty introduced by the variable Poisson’s ratio.
The convergence histories of the preconditioned CARP-CG stagnates near the stopping criterion.

In Figure 3.15, the complexity analysis of the CARP-CG method for the two experiments with
PML (see Figure 3.15a) and the FSBC (see Figure 3.15b) is presented. The number of iterations Niter
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Figure 3.14: Convergence histories of the CARP-CG method for the solution of the 2D frequency-
domain elastic wave simulations using the CARP-CG method with PMLs (a), (b) and the FSBC (c), (d)
on the Marmousi 2 model with the space-dependent Poisson’s ratio.

is plotted as a function of the geometric mean size in one dimension

N =
√
Nx ×Nz,

on a log-log scale. The solid black line represents the linear increase that is

Niter = O(N),

and the dashed lines indicate the standard linear regression. The complexities of the CARP-CG method
for these two experiments are presented in Table 3.12. The comparison of the performances of CARP-
CG on the simulations using PMLs and the FSBC shows that the slopes of the complexity are roughly
the same (O(N0.74) and O(N0.77)). However, some irregularities arises when the FSBC is used which
indicate the influence of the surface waves and the reflections at the air/subsurface interface. In this case,
the convergence of the CARP-CG method is worsened and this is noted by the constant multiplying the
complexities. This constant increases from 121 in the PML configuration to 216 in the FSBC case.

The use of the preconditioner improves the complexity of the CARP-CG method in the sense that,
for experiments using PMLs, the complexity of the CARP-CG method reduces from 121 N0.74 to
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Figure 3.15: Complexity analysis of the CARP-CG method with and without preconditioning for the
2D frequency-domain elastic wave simulations on the Marmousi 2 model with the space-dependent
Poisson’s ratio: PML (a) and FSBC (b). The number of iterations Niter is plotted as a function of the
average model dimension N on a log-log scale. The straight dashed line indicates the results obtained
from line regression. The preconditioner is computed on the Marmousi 2 model where the shear wave
velocity model is derived using the constant Poisson’s ratio ξp = 0.15 and where a strong damping is
introduced through the quality factor qatt = 0.6.

Niter

CARP-CG PCARP-CG

PML 121×N0.74 690×N0.28

FSBC 216×N0.77 472×N0.41

Table 3.12: Complexities of the CARP-CG method with and without preconditioning for the 2D
frequency-domain elastic wave simulations on the space-dependent Poisson’s ratio Marmousi 2 model.

690 N0.28. The decrease in the complexity is compensated with an increase in the constant multiplying
the complexity, but the preconditioned CARP-CG method allows to retrieve substantial gains in the
number of iterations and the computation time. The same conclusion is drawn from the results with the
FSBC. Using the preconditioner, the computational complexity in number of iterations of the CARP-
CG method is reduced from 216 N0.77 to 472 N0.41. These results denote a substantial improvement
compared toO(N) performed by the combination of the time-domain modeling and the Fourier Trans-
form approach and the previous complexities of the CARP-CG method derived from constant Poisson’s
ratio experiments with both PMLs and the FSBC.

Remark 3.1. The computation are performed in double precision code. For large size linear systems
and particularly when the number of iterations performed by the CARP-CG method is too large, the
CARP-CG method diverges when a single-precision implementation is used. This is the case in the 2D
approximation at 10 Hz and 20 Hz and when the free-surface boundary condition is used on the elastic
Marmousi 2 case study. The large number of iterations (more than 30 000 at 10 Hz and more than 50
000 iterations at 20 Hz) increases the round-off errors. In addition, performing the sweeps on large
blocks worsens the problem. The double-precision implementation is used to remedy to this issue. This
is discussed as well by Li et al. (2015).
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Figure 3.16: 2D frequency-domain horizontal particle velocity vx wavefields in the the space-dependent
Poisson’s ratio Marmousi 2 model with PMLs at 1.25 (a), 2.5 (b), 5 (c), 10 Hz (d) and 15 Hz (e).

147



APPLICATION TO 2D REALISTIC CASES

(a)

0

1

2

3

D
ep

th
(k

m
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Distance(km)

-2.2

-1.6

-0.9

-0.3

0.4

1.0

x10 -9

m
/s

(b)

0

1

2

3

D
ep

th
(k

m
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Distance(km)

-2.8
-2.0
-1.2
-0.5
0.3
1.0
1.8
2.5

x10 -9

m
/s

(c)

0

1

2

3

D
ep

th
(k

m
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Distance(km)

-1.1
-0.8
-0.5
-0.2
0.1
0.4
0.7
1.0

x10 -8

m
/s

(d)

0

1

2

3

D
ep

th
(k

m
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Distance(km)

-2.8

-1.9

-0.9

-0.1

0.8

1.8

2.7

x10 -8

m
/s

(e)

0

1

2

3

D
ep

th
(k

m
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Distance(km)

-1.6
-1.2
-0.7
-0.3
0.2
0.6
1.1
1.5

x10 -8

m
/s

Figure 3.17: 2D frequency-domain vertical particle velocity vz wavefields in the the space-dependent
Poisson’s ratio Marmousi 2 model with PMLs at 1.25 (a), 2.5 (b), 5 (c), 10 Hz (d) and 15 Hz (e).
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Figure 3.18: 2D frequency-domain vertical particle velocity vx wavefields in the the space-dependent
Poisson’s ratio Marmousi 2 model with the FSBC at 1.25 (a), 2.5 (b), 5 (c) , 10 (d) and 15 Hz (e).
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Figure 3.19: 2D frequency-domain vertical particle velocity vz wavefields in the the space-dependent
Poisson’s ratio Marmousi 2 model with the FSBC at 1.25 (a), 2.5 (b), 5 (c) , 10 (d) and 15 Hz (e).
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3.2.2.4 Scalability tests

In this part, the scaling properties of the CARP-CG method are investigated for each frequency.
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Figure 3.20: Scaling properties of the CARP-CG method (a) and the preconditioned CARP-CG method
(b) using different numbers of cores for the frequency-domain elastic wave simulations with the FSBC
on the Marmousi 2 model with the space-dependent Poisson’s ratio. The frequencies are 1.25 ,
2.5 , 5 , 10 and 15 Hz respectively. The black lines represent the ideal scalability for
parallel computing. The preconditioner is computed on the Marmousi 2 model where the shear wave
velocity model is derived using the constant Poisson’s ratio ξp = 0.15 and where a strong damping is
introduced through the quality factor qatt = 0.6.

In Figure 3.20, the experiments are formed on the Marmousi 2 model with the FSBC using the
space-dependent Poisson’s ratio. The frequency-domain elastic wave simulations are performed for the
frequencies 1.25, 2.5, 5, 10 and 15 Hz and using an increasing number of processors. The computation
times are plotted as a function of the number of processors. The black solid lines represent the ideal
scalability for parallel computing and the colored marked curves are the results for the CARP-CG
method without preconditioning (Figure 3.20a) and with preconditioning (Figure 3.20b). A satisfactory
scaling properties of CARP-CG is observed up to 16 cores for low frequencies and 64 cores for higher
frequencies.

Let T (n, 1) be the run-time of the CARP-CG method using 1 core (namely, it is the CGMN method)
and let T (n, p) be the run-time of the parallel algorithm CARP-CG executed using p cores. Let n denote
the size of the linear system. The speedup is then defined as

S(p) =
T (n, 1)

T (n, p)
,

i.e., the ratio of the sequential execution time to the parallel execution time. Ideally, one would hope to
obtain

S(p) = p,

which is called perfect or ideal speedup. The parallel efficiency E(p) is defined as well as

E(p) =
S(p)

p
.
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Ideally, the efficiency is equal to 1 for any number of cores p. I shall use the speedup and the efficiency
to analyze the scaling properties of the CARP-CG and the PCARP-CG algorithms using the run-time
complexity. I shall consider as well the sequential run-time as the one performed by CARP-CG using 2
cores, for convenience, since the sequential CGMN leads to extremely high run-times.

2 4 8 16 32 64 128

2

4

8

16

32

64

128

Number of processors

Sp
ee

du
p

(a) 1.25 Hz

2 4 8 16 32 64 128

2

4

8

16

32

64

128

Number of processors

(b) 2.5 Hz

2 4 8 16 32 64 128

2

4

8

16

32

64

128

Number of processors

(c) 5 Hz

2 4 8 16 32 64 128

2

4

8

16

32

64

128

Number of processors

Sp
ee

du
p

(d) 10 Hz

2 4 8 16 32 64 128

2

4

8

16

32

64

128

Number of processors

Sp
ee

du
p

(e) 15 Hz

Figure 3.21: Speedup analysis for the 2D frequency-domain elastic wave simulations with the FSBC
and the space-dependent Poisson’s ratio Marmousi 2 model at 1.25 Hz (a), 2.5 Hz (b), 5 Hz (c), 10 Hz
(d) and 15 Hz (e). The blue curves are used to plot the results of the CARP-CG method without
preconditioning and the red curves are used for the CARP-CG method with preconditioning. The
black solid lines represent the ideal speedup.

In Figures 3.21 and 3.22, the speedup and the efficiency plots are presented for the CARP-CG
method when applied to the Marmousi 2 model with space-dependent Poisson’s ratio and the FSBC.
On each plot, both curves for the CARP-CG method and the preconditioned CARP-CG method are
compared. The speedup and the efficiency are improved for both methods (CARP-CG and PCARP-
CG) as the frequency increases. Note the irregularity in the efficiency when the number of cores goes
from 8 to 16. First, the nodes on which the experiments are performed are composed of 2 CPUs.
Each of them has 8 cores. Communications are performed between CPUS. Therefore when running
the CARP-CG and PCARP-CG program on less than 16 cores, the node uses one CPU completely and
the remaining cores (<8) are used on the second CPU, therefore the total amount of communication per
CPU is not perfectly balanced. Thus, efficiency plots show a slight drop when going from 8 to 16 cores.
When using more than 16 cores, the efficiency curves are more regular. Overall, the CARP-CG method
presents satisfying speedup and efficiency properties.

The same comments can be made of the PCARP-CG method. Even more, the latter presents better
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speedup and efficiency properties compared to the CARP-CG method. The preconditioned matrix is
denser than the unpreconditioned one. Therefore, a good speed-up is observed as the computation time
is much larger than the communication time in comparison with the non-preconditioned experiments.
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Figure 3.22: Efficiency analysis for the 2D frequency-domain elastic wave simulations with the FSBC
and the space-dependent Poisson’s ratio Marmousi 2 model at 1.25 Hz (a), 2.5 Hz (b), 5 Hz (c), 10 Hz
(d) and 15 Hz (e). The blue curves are used to plot the results of the CARP-CG method without
preconditioning and the red curves are used for the CARP-CG method with preconditioning. The
black solid lines represent the ideal efficiency.
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3.3 Conclusion

In this chapter, I have presented two realistic 2D applications for the frequency-domain wave simula-
tions using the iterative methods CGMN and CARP-CG. A sensitivity analysis is performed on different
parameters, namely the quality factor which controls the damping in the medium, the sparsity pattern of
the preconditioner, the Poisson’s ratio on which the shear velocity model is derived for the computation
of the preconditioner and the scaling properties of the CARP-CG method.

In the first part, the frequency-domain wave simulations are performed in the acoustic approxima-
tion. The numerical experiments are performed on the BP2004 model. The CGMN method is used to
the solve the resulting linear systems at various frequencies (up to 40 Hz). The number of iterations
performed by the CGMN method has shown a sub-linear computational complexity with respect to the
average number of grid points per dimension N which is an expected result from previous studies (Li
et al., 2015). The use of the preconditioner with the CGMN method allowed to improve the conver-
gence of the CGMN method in terms of number of iterations. A study on the sensitivity of the quality
factor qatt allowed to determine the optimal value of damping the preconditioner computation. In this
acoustic case applied to the BP2004 model, the value qatt = 1 is noted. A reduction in the number of
iterations by a factor up to 6.9 is obtained. As a result, the complexity of the preconditioned CGMN
method is decreased and furthermore, the constant multiplying this complexity is reduced as well. Such
reduction induced a gain in the computation time by a factor 2.2.

In the second part, the frequency-domain wave simulations are carried out in the elastic approxima-
tion. The simulations are performed on the well-known Marmousi 2 model. The CARP-CG method is
used as a solver. Using the sparsity pattern 9/0, the optimal value of damping qatt = 0.6 gives optimal
reduction in the number of iterations for this 2D elastic application. Numerical experiments are per-
formed to investigate the influence of the Poisson’s ratio and the boundary condition (PML or FSBC)
on the convergence of the CARP-CG method. The original Marmousi 2 P-wave velocity model is used
and the S-wave velocity model is derived from the P-wave velocity model using the Poisson relation.
The numerical experiments were performed using PMLs on all boundaries with several models derived
with constant Poisson’s ratios. This study has shown that using the preconditioner, the PCARP-CG is
able to retrieve a significant reduction in the number of iterations and the computational time. The com-
plexity of the CARP-CG method is improved with preconditioning whatever the Poisson’s ratio value.
However, for high Poisson’s ratios, the convergence is slightly degenerated. In the third study, the in-
fluence of boundary conditions on the convergence of CARP-CG are investigated. The behavior of the
CARP-CG method with and without preconditioning is studied on the Marmousi 2 model derived with
a constant Poisson’s ratio. Simulations were performed using PMLs and the FSBC. The results have
shown substantial reductions in both number of iterations and computation time for both configurations
(PML and FSBC). The configuration with the FSBC has shown better results with a reduction by a
factor almost equal to 9 in the number of iterations and a factor 3.5 speedup in computation time. In the
fourth investigation, the original Marmousi 2 model with its space-dependent Poisson’s ratio is stud-
ied. In this case, a better preconditioner is obtained by using a VS model derived from a constant low
Poisson’s ratio for the computation of the preconditioner. Using this strategy, the convergence of the
CARP-CG method is improved in both PML and FSBC configurations in terms of number of iterations.
The complexities of the CARP-CG method are significantly reduced. Finally, the scaling properties
of the CARP-CG method are investigated. As expected, the combination of the preconditioner with
the CARP-CG method improves the scaling properties of this method. A better speedup and parallel
efficiency are obtained when using the preconditioner. The preconditioned system is denser, therefore
the ratio of the computation time and the communication time is smaller in comparison with the results
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obtained from the original system.

In both acoustic and elastic approximations, the preconditioning strategy which is developed so
far seems to be satisfying. Significant reductions in the number of iterations and the complexities
of the CARP-CG method are obtained. The quality factor qatt and the Poisson’s ratio ξp used for
the computation of the preconditioner are case and frequency dependent. But the latter can be easily
determined by investigating the Poisson’s ratio of the model which is used. The computation of the
preconditioner based on the strongly damped medium derived from the minimum Poisson’s ratio seems
to be the governing rule. The optimal value for the quality factor qatt ranges around 1 and is frequency-
dependent. However, the gain which is obtained by tuning the quality factor around the value 1 does
not provide tremendous gain in the number of iterations.

In the next chapter, I shall extend this investigation to the 3D elastic approximation. Serious con-
cerns rise as regard the memory request. The latter could represent the main limitations for such devel-
opments.
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Chapter 4

Application to a 3D realistic case
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In this chapter, the CARP-CG method is investigated for the solution of the 3D frequency-domain
elastic wave equations. The pioneer work of (Li et al., 2015) in this framework leads to attempt to use
the preconditioner introduced in the previous chapters to improve the convergence of the CARP-CG
method when solving this problem.

In the first part, the 3D heterogeneous elastic model used by Li et al. (2015) (courtesy of Shell) is
presented. The size of this model is 48 × 20 × 4 km which covers the surface of 960 km2. Besides its
size, this model is quite challenging due to the fast-slow-fast layers resembling a waveguide geometries.
For a more reasonable application, the size of this model is reduced to 16 × 9 × 4 km. Therefore it
covers the same surface as the Valhall model. The numerical experiments are performed on this reduced
model.

In the second part, the different sparsity patterns are investigated. For the 3D frequency-domain
elastic wave equations, three components for the particle velocity are computed on a staggered grid.
Therefore, one may consider several approaches to design the sparsity pattern for the computation of
the preconditioner. The numerical tests are performed on a small 3D homogeneous elastic model to
determine efficiency (reduction in the number of iterations and memory cost induced by the fill-in of
the matrix-matrix product AP ) of these sparsity patterns.
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In the third part, numerical experiments are performed using the preconditioner on the 3D heteroge-
neous elastic model with the iterative solver CARP-CG. The 3D elastic wave simulations are performed
at the frequencies f = {1.25, 2.5, 5, 7.5} Hz. Following the results obtained in Chapters 2 and 3, the
preconditioner is computed based on a strongly damped medium and using a shear wave velocity model
which is derived from the minimum Poisson’s ratio using Poisson’s relation. The complexity analysis of
the preconditioned iterative solver is carried out. On conclusion, the improvements of the convergence
of the CARP-CG method and the main limitations of this preconditioning strategy are discussed.

4.1 3D heterogeneous elastic model

The 3D heterogeneous elastic model provided by Shell is used for the investigations on the CARP-CG
method and its preconditioner. The size of this model is 16 × 9 × 4 km. The P- and S- wave velocities
and the density models are presented in Figure 4.1.
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Figure 4.1: 3D heterogeneous elastic model of 16 × 9 × 4 km (courtesy of Shell): P-wave velocity (a),
S-wave velocity (b) and density (c).

This model presents an interesting feature which is its layered structure. More precisely, a low
P-wave velocity layer is surrounded by two fast P-wave velocity layers with 2800/1960/2600 m/s
(fast/low/fast) at the depth z = 550 m. Such a structure creates a waveguide geometry for which, if
a source is located in this area, the linear system resulting from the discretization of such problem is
particularly difficult to solve.
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VP (m/s) VS(m/s) Poisson’s ratio ξ ρ(kg/m3)

Min 1947.0 837.2 0.0196 1808.0
Max 6000.0 4200.0 0.4047 2500.0

Table 4.1: Geological properties of the 3D heterogeneous elastic model.

The geological properties of the model are presented in Table 4.1. The geological layered structure
of the model with high P-wave velocity denotes mostly shales (Poisson’s ratio approximately equal to
0.4 representative of hard material). Low P-wave velocity zones with low Poisson’s ratio, i.e. around
the value 0.16, are representative of water wet sand or salt zones.

4.2 3D sparsity pattern for the computation of the preconditioner

The preconditioning strategy relies on the computation of sparse approximations of the particle velocity
components vx, vy and vz based on a strongly damped medium. Following the approach used in the 2D
elastic approximation, I investigate the sparsity patterns which can be adopted in the 3D approximation.

In this section, the numerical experiments are performed on a 3D homogeneous visco-elastic prob-
lem. Consider the 3D visco-elastic problem of size 1900 × 1430 × 950 m. The P-wave velocity is
homogeneous and is defined by VP = 1500 m/s. The shear wave velocity is derived from the P-wave
model using the Poisson’s relation (3.2) with the constant Poisson’s ratio ξ = 0.1 yielding VS = 1000
m/s. The density is considered constant as well and is equal to ρ = 1000 kg/m3. The problem is
discretized using the fourth-order staggered-grid finite-difference method with the optimal coefficients
as it is described in Chapter 1 Section 1.5.3. The frequency f = 5 Hz is considered and 4.2 grid points
per minimum shear wavelength are used. The discrete domain of 41 × 31 × 21 grid points is obtained.
The domain is surrounded by PMLs using NPML = 10 grid points per layer. The damping coefficient
in the PMLs is set to CPML = 500. A horizontal force source in the x direction is used at the position
xs = 950 m, ys = 715 m and zs = 475 m corresponding to the center of the domain. The linear system
is solved using the CARP-CG method. The relaxation parameter is set to λ = 1.0 and the stopping
criterion is defined as usual by

‖b−Ax(k)‖2
‖b‖2

< 10−4.

In the 3D approximation, three particle velocity wavefields are computed vx, vy and vz . The solution of
the homogeneous problem in the medium without attenuation is presented in Figure 4.2. Slices of the
particle velocity wavefields in the planes xz, yz and xy at the source position are presented. When the
force source is applied in the x direction, the amplitude of the particle velocity component vx is higher
compared to the amplitude of vy and vz . The same effect is observed when the force source is applied
on the y direction and the z direction for the particle velocities vy and vz .

When the simulations are performed in a strongly damped medium (the quality factor qatt = 0.6 is
used), the particle velocity wavefields are strongly attenuated. The amplitude of the wavefield decays
rapidly to zero after few discretization points away from the source position. Representative wavefields
in the strongly damped medium in the planes xz, yz and xy at the source position are presented in
Figure 4.3. The amplitude of the wavefield is mainly dominated by the particle velocity component vx.
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Figure 4.2: 3D solution of the frequency-domain elastic wave problem in a homogeneous medium
without attenuation at f = 5 Hz and using a horizontal force source in the x-direction. The figures
in the first column represent the particle velocity component vx. The figures in the second column
represent the particle velocity component vy. The figures in the third column represent the vertical
particle velocity component vz . Figures in row 1 are the wavefields in the plane yz at the source
position. Figures in row 2 are the wavefields in the plane xz at the source position. Figures in row 3 are
the wavefield in the plane xy at the source position.

In the following, the gain in number of iterations is denoted by ηiter with

ηiter =
Niter(A)

Niter(AP )
,

where Niter(A) denotes the number of iterations performed by the CARP-CG method to solve the non-
preconditioned linear system andNiter(AP ) denotes the number of iterations performed by the CARP-
CG method to solve the preconditioned linear system. The increase in memory cost is introduced as
well through the ratio ηnnz

ηnnz =
nnz(AP )

nnz(A)

where nnz(A) and nnz(AP ) represent respectively of the number of nonzero coefficients of the matrix
A and AP . The ratio ηnnz denotes the fill-in effect induced by the matrix-matrix product AP in
comparison with A.

4.2.1 27-point sparsity patterns

The 27-point sparsity pattern presented in Figure 4.4 takes into account the source point (colored in
red) and the adjacent discretization points (colored in blue). When the force source is applied in the
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Figure 4.3: 3D solutions of the frequency-domain visco-elastic wave problem in a homogeneous
medium with strong damping at f = 5 Hz and using a horizontal force source in the x direction.
The figures in the first column represent the particle velocity component vx. The figures in the second
column represent the particle velocity component vy. The figures in the third column represent the ver-
tical particle velocity component vz . Figures in row 1 are the wavefields in the plane yz at the source
position. Figures in row 2 are the wavefields in the plane xz at the source position. Figures in row 3 are
the wavefield in the plane xy at the source position.

x direction, the preconditioner is computed by selecting the particle velocity component vx defined by
the discretization points presented in the Figure 4.4. The particle velocities vy and vz are set to 0. The
method is repeated for the particle velocity component vy when the force source is applied in the y
direction and the particle velocity component vz when the force source is applied in the z direction.
The reduction in the number of iterations and the memory request induced by such sparsity pattern are
given by

ηiter = 4.8, ηnnz = 7.6.

4.2.2 Alternative sparsity pattern

9-point sparsity pattern The 9-point sparsity pattern presented in Figure 4.5 takes into account the
source point (colored in red) and the adjacent discretization points (colored in blue) located either in
the plane xy as in the left figures or yz as in the right figures. The 3D particle velocity components are
thus approximated in a 2D fashion. Similarly to the 27-point sparsity pattern, when the force source is
applied in the x direction, the particle velocities vy and vz are set to 0.

3-point sparsity pattern The 9-point sparsity pattern presented in Figure 4.6 takes into account the
source point (colored in red) at the center of the cube and the adjacent discretization points (colored
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Figure 4.4: 27-point sparsity pattern. The source point is marked by the red bullet at the center of the
cube. The discretization points involved in the stencil are colored in blue. It is the grid points which are
adjacent to the source point. The particle velocities vy and vz are set to 0.

Figure 4.5: 9-point sparsity patterns. The source point is marked by the red bullet at the center of the
cube. The discretization points involved in the stencil are colored in blue. It is the grid points which are
adjacent to the source and are located either in the plane xy (see the two right figures) or in the plane
xz (see the two left figures). The particle velocities vy and vz are set to 0

in blue) located on the axis where the force source is applied (Ox in this case). when the force source
is applied in the x direction, the particle velocities vy and vz are set to 0. The 3D particle velocity
components are thus drastically approximated in a 1D fashion.

The results obtained from the application of the CARP-CG method with the 27-point, 9-point and 3-
point sparsity patterns are summarized in Table 4.2. The 9-point sparsity pattern in both configurations
xy-plane and xz-plane gives exactly the same results when applied to the homogeneous problem.

27-point 9-point 3-point

ηiter 4.8 2.8 1.9
ηnnz 7.6 3.9 1.8

Table 4.2: Reduction in the number of iterations and extra memory cost induced by the 27-point, 9-point
and 3-point sparsity patterns with the CARP-CG method.

Note that the above sparsity patterns (4.4),(4.5) and (4.6) are tested on a small size homogeneous
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Figure 4.6: 9-point sparsity pattern. The source point is marked by the red bullet at the center of the
cube. The discretization points involved in the stencil are colored in blue. It is the grid points which are
adjacent to the source and are located on the axis where the force source is applied (Ox in this case).
The particle velocities vy and vz are set to 0.

problem. The behavior changes when large scale problems with heterogeneities are experimented. A
better reduction in the number of iterations is expected however, the memory increase remains the same.

For realistic applications which shall be introduced in the next section, the 27-point sparsity pattern
is selected. This choice is motivated by the substantial reduction in the number of iterations performed
by the CARP-CG method using a preconditioner computed on this stencil. Such reduction in the num-
ber of iterations underlines a good conditioning of the matrix AP . Therefore, thanks to the sweeps
performed by CARP-CG which introduce a second level of preconditioning, the number of iterations
is expected to grow slowly as the size of the linear system increases. Furthermore, the extra mem-
ory request induced by the use of this sparsity pattern remains affordable compared to what would be
requested by direct solvers.

4.3 Numerical results

4.3.1 Setup

In this section, the CARP-CG method is used to solve the 3D frequency-domain visco-elastic wave
equations using the heterogeneous model of size 16 × 9 × 4 km presented earlier in Figure 4.1. The
wave simulations are performed at the frequencies 1.25, 2.5, 5 and 7.5 Hz. The fourth-order staggered-
grid finite-difference scheme with optimal coefficients is used (see Chapter 1 Section 1.5.3). To ensure
the accuracy of the finite-difference scheme, the discretization is performed using 4.2 grid points per
minimum shear wavelength which is equal to VS,min = 837 m/s. The number of grid points in the PMLs
is equal to NPML = 10. The damping coefficient in the PMLs is set to CPML = 200. The explosive
source is located in the layer with the low P-wave velocity surrounded by the two layers with higher
P-wave velocities. The source position is xs = 8 km ys = 4.5 km and zs = 0.55 km. The relaxation pa-
rameter is set to λ = 1.0 and the stopping criterion is defined as usual by ‖b−Ax(k)‖2/‖b‖2 < 10−4.
The geometry parameters, the total number of unknowns Nu and the estimated memory requirements
are summarized in Table 4.3. Representative particle velocity wavefields are presented at the end of
this section in Figures 4.9, 4.10 and 4.11. For medium and high frequencies in the low P-wave ve-
locity layer, the waveguide geometry can be seen through the several reflections in this zone. In the
shallow part of the medium, the small P-wave velocity generates the propagation of waves with short
wavelengths. This is particularly visible on the left side of the domain.

163



APPLICATION TO A 3D REALISTIC CASE

f (Hz) ∆ (m) nx × ny × nz Nu

1.25 160 101× 57× 26 1 285 746
2.5 80 201× 113× 51 6 260 709
5 40 401× 226× 101 37 594 458

7.5 26.6 601× 338× 152 114 716 088

Table 4.3: Geometry parameters (number of grid points per direction nx, ny, nz and discretization
space step ∆ in meters) and total number of unknowns Nu which takes into account the NPML = 10
grid points in the PML layers for the 3D frequency-domain visco-elastic wave simulations in the het-
erogeneous model (4.1).

I give a particular interest to the single/double-precision implementations aspect of the CARP-CG
method which has been discussed as well by Li et al. (2015). For large size linear systems and partic-
ularly when the number of iterations performed by the CARP-CG method is too large, the CARP-CG
method diverges when a single-precision implementation is used. Such behavior is observed in the 2D
approximation at 10 Hz and 20 Hz and when the free-surface boundary condition is used on the elastic
Marmousi 2 case study (see Chapter 3 Section 3.2.2.3). The large number of iterations (more than 30
000 at 10 Hz and more than 50 000 iterations at 20 Hz) increases the round-off errors. In addition,
performing the sweeps on large blocks worsens the problem. The double-precision implementation is
used to remedy to this issue.

Simple-precision Double-precision

f (Hz) Nu Nproc Mem (GB) Niter Time (s) Mem (GB) Niter Time (s)

1.25 1 285 746 8 0.7 1 578 133.8 1.2 1 578 204.8
2.5 6 260 709 16 3.6 3 075 770.4 6.0 3 061 1 217.1
5 37 594 458 32 21.7 5 451 4 575.8 36.2 5 404 7 088.3

7.5 114 716 088 54 67.1 − − 110.8 6 640 16 466.9

Table 4.4: 3D frequency-domain elastic wave simulations with the CARP-CG solver using the 3D
heterogeneous elastic model (4.1). The single-precision and the double-precision implementations are
tested. For the 7.5 Hz case, a divergence occurs in the single-precision implementation of the CARP-
CG method. The double-precision allows to save a couple of iterations thanks to its accuracy. The
computation time for the double-precision code is multiplied by a factor 1.5 compared to the single-
precision code. The memory request is increased by a factor 1.6. “−" denotes that a divergence occurs.

Table 4.4 shows the results of the single- and double-precisions tests of the CARP-CG method
for the solution of the 3D frequency-domain elastic wave equations using the heterogeneous model.
The double-precision implementation of the CARP-CG method allows to save a couple of iterations
although this is not the main objective of using such implementation. The computation time is increased
by factor smaller than 2 (approximately 1.5) and the memory requirements for the storage of the nonzero
coefficients of the matrix A and the right-hand side b are increased by a factor 1.6 approximately.
During the numerical experiment on the f = 7.5 Hz case, a divergence occurs. It is due to a lack of
accuracy because of the size of linear system and the number of iterations performed. The divergence
occurs when the L2-norm of the relative residual becomes small, i.e. near 1.5 10−4. Performing the
double sweeps on smaller blocks (this is achieved by increasing the number of cores) does not help
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mitigating this problem. The use of the double-precision implementation is therefore mandatory for
this large problem. The double-precision implementation is used for the numerical test on the 7.5 Hz
case. Otherwise, the single-precision code is used for memory savings.

4.3.2 Computation of the preconditioner and the matrix AP : computational costs and
run-times

For this 3D application, I pay a close attention to the computational resources required for the computa-
tion of the preconditioner and the matrix AP although their computations are embarrassingly parallel.

The computation of the preconditioner requires for each grid point of the discrete domain the solu-
tion of three small 3D frequency-domain strongly damped visco-elastic problems. The size of this local
domain is 13 grid points per dimension (3 grid points per dimension according to the 27-point sparsity
pattern and 5 grid points per PML). The resulting size of these small linear systems is 6 591. The latter
are solved using roughly 100 iterations of the CGMN method. Assuming the most costly operation of
one iteration of CGMN is the Kaczmarz double sweep operation which requires 4sn operations (s is the
number of nonzero coefficients per row of the small impedance matrix, s = 51 due to the fourth-order
staggered-grid stencil and n is the size of this matrix), the computational cost of one iteration of CGMN
for the solution of the small linear system is roughly equal to 1.3 106. Thus the computational cost of
the solution of one small linear system using CGMN is approximately equal to 1.3 108. Finally, the
total computational cost of the preconditioner is

Nop
P = 3.9 108 N3,

with N is the average number of grid points per dimension.

The computation of the matrix-matrix product AP relies on the computation of sparse scalar prod-
ucts. Each row of the matrix AP contains at most 405 nonzero coefficients and each coefficient is, in
average, the result of the sparse scalar product of one row of the matrix A and one column of the matrix
P . Assuming the computational cost of the sparse scalar product is 2s with s the number of nonzero
coefficient per row of the matrix A (s = 51), the total computational cost of the matrix-matrix product
AP is roughly estimated at

Nop
AP = 4.1 104 N3.

P AP

f (Hz) N Nproc Mem (GB) Time Nproc Mem (GB) Time (s)

1.25 75 512 0.38 0 h 27 m 12 s 32 5.5 6.4
2.5 128 1024 1.96 1 h 08 m 00 s 64 27.4 15.9
5 232 2048 11.58 3 h 05 m 37 s 128 167.5 48.2

7.5 337 2048 35.85 8 h 11 m 11 s 256 514.2 72.8

Table 4.5: Average number of grid points per dimension (PML included), number of cores Nproc, total
memory used and run time for the computation of the preconditioner and the matrix-matrix product
AP .

Remark 4.1. Exceptionally, the preconditioner is computed on the cluster “Ada” of the Institute for
Development and Resources in Intensive Scientific Computing (IDRIS http://www.idris.fr).
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This cluster is composed of 332 compute nodes, a quadri-socket node of 4 Intel Sandy Bridge E5-4650
8-core processors at 2.7 GHz, with 32 cores per node with 128 GB of memory (4 GB/core). Nodes are
linked through an InfiniBand FDR10 Mellanox network (2 links per node). In usage, the resources are
accessible rapidly for up to 2048 execution cores. The matrix-matrix product AP and the resolutions
using the CARP-CG methods are performed the CIMENT cluster.

The computation times in Table 4.5 show that the matrix AP is computed efficiently using a small
amount of time. However, the computation of the preconditioner requires much more computational
effort. Improvements can be done to speedup the computation of the preconditioner at two levels:
implementation and reduction of the computational costs. The current implementation uses a MPI
parallelization where each MPI process is in charge of the computation of the solution of the 3N3/Nproc

small linear systems. As for each grid point, the solution of these three linear systems can be computed
independently as well, a second level of parallelism using multi-thread can be introduced. A speedup
by a factor 3 can be obtained. Alternatively, as these local solutions are very similar after an adequate
rotation in space, the computation of the preconditioner can be reduced to the computation of the
solution of only one small linear system. The two remaining solutions can then be obtain by performing
a space rotation of the computed wavefield.

4.3.3 Numerical simulations with CARP-CG and PCARP-CG

In Table 4.6, the results from the CARP-CG and the PCARP-CG numerical experiments on the 3D
heterogeneous elastic model (4.1) are presented. For each frequency, the size of the linear system Nu is
recalled and the memory used for the storage of the linear system (A and b for the CARP-CG method
and AP and b for the preconditioned CARP-CG method) is given in the column “Mem” in GigaBytes
(GB). The computations are performed using the single-precision implementation of the code. The
preconditioner is computed on the strongly damped medium with the quality factor qatt = 0.6. Several
experiments have shown that when the shear-wave velocity model is derived from the P-wave velocity
model using the Poisson’s relation (3.2) with the constant Poisson’s ratio ξp = 0.15, optimal gain in
the number of iterations is obtained. This behavior is observed in the 2D case study as well. Numerical
tests performed in double-precision implementation are labeled by “∗” in Table 4.6 (this is relative only
to the CARP-CG results without preconditioning for the 7.5 Hz case).

It is interesting to note that thanks to the preconditioner, the single-precision CARP-CG code is able
converge for the 7.5 Hz case. This result allows significant memory savings as the memory requirements
for the storage of the matrix AP and the right-hand side b increases from 514.2 GB in single-precision
to 867.9 GB in double-precision. The number of iterations are divided respectively by a factor 3.1,
5, 6 and 5.5 for the 1.25, 2.5, 5 and 7.5 Hz experiments. The number of iterations performed by
the preconditioned CARP-CG method increases modestly. However, the run times show that despite
the preconditioning strategy, the reduction in the number of iterations does not provide a substantial
gain in the computation time. The number of iterations performed by PCARP-CG is still high in
comparison with the computational burden induced by the fill-in of the matrixAP . Figure 4.7 shows the
fast convergence of the relative residual of the preconditioned CARP-CG method whereas the relative
residual of the CARP-CG (without preconditioning) has a slow convergence particularly starting from
10−3.

The complexity analysis of the CARP-CG method and the preconditioned CARP-CG method are
presented in Figure 4.8. The number of iterations Niter is plotted as a function of the geometric mean
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CARP-CG PCARP-CG

f (Hz) Nu Nproc Mem (GB) Niter Time (s) Mem (GB) Niter Time (s)

1.25 1 285 746 8 0.7 1 578 133.8 5.5 510 284.7
2.5 6 260 709 16 3.6 3 075 770.4 27.4 620 1 005.7
5 37 594 458 32 21.7 5 451 4 575.8 167.5 910 4 068.2

7.5 114 716 088 54 110.8∗ 6 640∗ 16 466.9∗ 514.2 1 218 11 873.9

Table 4.6: Geometry parameters, total number of unknowns Nu, number of cores Nproc, total memory
used, number of iterations Niter and computing time for the 3D elastic wave simulations in a heteroge-
neous model. The preconditioner is computed on original model where the shear wave velocity model is
derived using the constant Poisson’s ratio ξp = 0.15 and where a strong damping is introduced through
the quality factor qatt = 0.6. Results which are labeled with “∗” denote numerical experiments per-
formed using the double-precision implementation of code due to a divergence of the single-precision
version because of a lack of accuracy.

size of the discrete domain in one dimension

N = (nx × ny × nz)1/3,

on a log-log scale. The solid black line indicates the linear increase that is

Niter = O(N),

and the dashed line represents the standard linear regression performed on the results from the CARP-
CG method.

The computational costs of both methods are presented in Table 4.7.

Niter

CARP-CG PCARP-CG

Computational cost 43×N0.90 95×N0.42

Table 4.7: Computational cost of the CARP-CG method with and without preconditioning for the
solution of the 3D frequency-domain elastic wave equations on the 3D heterogeneous elastic model.

The complexity analysis shows clearly the advantage of the preconditioning method. The number of
iterations grows slowly with respect to the geometric mean size of the discretization N for the CARP-
CG method. This is mainly due to the ill-conditioning of the problem and more precisely the source
position which creates a difficult problem to solve by iterative solvers. Thanks to the preconditioning,
the complexity of the CARP-CG method is nicely improved. The exponent β of the complexity αNβ

is divided by factor slightly bigger than 2 yielding the complexity Niter = O(N0.42). However, the
overhead α has increased.

4.3.4 Numerical tests with an alternative source position

In the previous experiments, the position of the source in the low P-wave velocity layer clearly intro-
duced a difficulty for the solution of this problem using both CARP-CG and PCARP-CG solvers. In this
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Figure 4.7: Convergence histories of the 3D frequency-domain elastic wave simulations using the
CARP-CG method and the preconditioned CARP-CG method (PCARP-CG) for the 3D heterogeneous
elastic model. The convergence curves relative to the CARP-CG method are plotted in black. The
convergence curves relative to the preconditioned CARP-CG method (PCARP-CG) are plotted in red.
The preconditioner is computed with the quality factor qatt = 0.6. Its computation is performed on
the medium where the shear wave velocity model is derived from the P-wave velocity model using the
Poisson’s relation and a constant Poisson’s ratio ξp = 0.15.

paragraph, I investigate the previous numerical tests with a source position outside of the low P-wave
velocity layer. Therefore, I choose to put the source far from the heterogeneities of the shallow part
of the medium. The explosive source is located at depth in a more homogeneous zone at xs = 4 km,
ys = 4.5 km and zs = 3 km.

The number of iterations and the computation time are presented in Table 4.8. In this configu-
ration, the CARP-CG method performs less iterations to solve the problem. More interestingly, the
performances of the PCARP-CG method are also better than expected. The preconditioned CARP-CG
method performed impressively a small number of iterations. The reduction in the number of iterations
by factors 8.9, 9.4, 9.8 and 11 is obtained which is more than twice the reduction obtained with the
numerical tests using the source in the low P-wave velocity layer. The time speedup ranges from 1.3 to
2.2.

The computational costs of both methods are presented in Table 4.9. The gain in computational
cost is clearly noticeable in the reduction of the constant multiplying the complexity. Time speedups is
thus obtained at early frequencies.
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Figure 4.8: Complexity analysis of the CARP-CG method with and without preconditioning for the
3D frequency-domain elastic wave simulations on the 3D heterogeneous elastic model. The number of
iterations Niter is plotted as a function of the geometric mean size of the discrete domain in one dimen-
sion N on a log-log scale. The straight dashed line indicates the results obtained by a line regression.
The preconditioner is computed with the quality factor qatt = 0.6. Its computation is performed on
the medium where the shear wave velocity model is derived from the P-wave velocity model using the
Poisson’s relation and a constant Poisson’s ratio ξp = 0.15.

CARP-CG PCARP-CG

f (Hz) Nu Nproc Mem (GB) Niter Time (s) Mem (GB) Niter Time (s)

1.25 1 285 746 8 0.7 1 574 131.7 5.5 176 98.6
2.5 6 260 709 16 3.6 2 267 567.2 27.4 241 388.4
5 37 594 458 32 21.7 3 463 2 910.8 167.5 355 1 601.2

7.5 114 716 088 54 110.8∗ 4 954∗ 13 197.1∗ 514.2 451 4 065.3

Table 4.8: Geometry parameters, total number of unknowns Nu, number of cores Nproc, total estimated
memory used, number of iterations Niter and computing time for the 3D elastic wave simulations in a
heterogeneous model with an explosive source located in depth outside the low P-wave velocity layer
at xs = 4 km, ys = 4.5 km and zs = 3 km. The preconditioner is computed on original model where
the shear wave velocity model is derived using the constant Poisson’s ratio ξp = 0.15 and where a
strong damping is introduced through the quality factor qatt = 0.6. Results which are labeled with “∗”
correspond to numerical experiments performed using the double-precision implementation of code due
to a divergence of the single-precision version because of a lack of accuracy.

Such configuration, i.e. with the source located in a homogeneous zone, is quite comparable to
simulations using models with a water column with a source in this zone, similar to the BP2004 and the
Marmousi 2 case studies presented in Chapter 3. One can expect that for such model, i.e. with a water
column, similar gains could be obtained.
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Niter

CARP-CG PCARP-CG

Complexity 122×N0.64 21×N0.53

Table 4.9: Computational cost of the CARP-CG method with and without preconditioning for the
solution of the 3D frequency-domain elastic wave equations on the 3D heterogeneous elastic model
with an explosive source located outside the low P-wave velocity layer at xs = 4 km, ys = 4.5 km and
zs = 3 km.
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(b) 2.5 Hz
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(c) 5 Hz
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Figure 4.9: 3D frequency-domain particle velocity component vx at 0.625 (a), 1.25 (b), 2.5 (c), 5 Hz (d)
and 7.5 (e). In the low P-wave velocity layer, the waveguide geometry can be seen through the several
reflections in this zone for the medium and high frequencies. In the shallow part, the small P-wave
velocity generates the propagation of waves with short wavelengths. This is particularly the case on the
left side of the domain.
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(b) 2.5 Hz
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(c) 5 Hz
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Figure 4.10: 3D frequency-domain particle velocity component vy at 0.625 (a), 1.25 (b), 2.5 (c), 5 Hz
(d) and 7.5 (e). In the low P-wave velocity layer, the waveguide geometry can be seen through the
several reflections in this zone for the medium and high frequencies. In the shallow part, the small
P-wave velocity generates the propagation of waves with short wavelengths. This is particularly the
case on the left side of the domain.
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(b) 2.5 Hz
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(c) 5 Hz
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Figure 4.11: 3D frequency-domain particle velocity component vz at 0.625 (a), 1.25 (b), 2.5 (c), 5 Hz
(d) and 7.5 (e). In the low P-wave velocity layer, the waveguide geometry can be seen through the
several reflections in this zone for the medium and high frequencies. In the shallow part, the small
P-wave velocity generates the propagation of waves with short wavelengths. This is particularly the
case on the left side of the domain.
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4.4 Computational complexities comparison with the time-domain 3D
elastic wave modeling and the sparse parallel direct solver approaches

Consider the 3D time-domain elastodynamic wave equations in velocity-stress formulation. The time-
domain approach consists in the discretization of the system of equations using an explicit second-order
scheme in time and the fourth-order scheme in space. Discrete Fourier Transform (DFT) is used to
extract the needed frequencies. Assuming that an addition and a multiplication count for one operation,
the evaluation of one time step requires 46 N3 operations. Therefore, the total number of operations
is roughly estimated as 46 Nt N

3 operations where Nt is the number of time steps. The latter is
constrained by the CFL condition which is given for the fourth-order scheme by

∆t = α1
h

Vmax
, α1 = 0.495,

and the recording time T = ∆t Nt which depends on the size of the problem L = hN and the smallest
wave speed Vmin

T = α2
L

Vmin
, 1 ≤ α2 ≤ 2.

This gives

Nt =
α2

α1

Vmax
Vmin

N.

By considering the 3D heterogeneous elastic model (4.1), the ratio Vmax/Vmin is equal to 7.16 (see
Table 4.1). Assuming α2 = 2, as nx = 2N approximately, the number of operations for the time-
domain approach is estimated at

Nop
TD = 1332 N4.

The DFT is performed at each time step. The computational cost of this operation can be roughly
estimated at

Nop
DFT = 1738 N4.

Note that the numerical cost of the evaluation of the trigonometric functions is roughly estimated at 1.
One can see that the computational cost of the DFT is larger than the time-domain simulation. A com-
parative analysis on the time complexities is presented in the 3D acoustic approximation in (Brossier
et al., 2014b). Therefore, the total number of operations for the time-domain modeling combined with
the DFT approach is estimated at

Nop
TD+FDT = 3070 N4.

Using the preconditioned CARP-CG method as the frequency-domain solver, the numerical results and
the complexity analysis given in Table 4.7, the total number of operations performed by the precondi-
tioned iterative solver for the 3D simulation is given by

Nop
FD+I = 95 N3.42.

The results from the simulations with the source in the low- P-wave velocity layer are used.

A sparse direct solver can be used as well to solve the linear system. Table 4.10 summaries the
computational and memory complexities of these three modeling approaches in the frequency-domain.

The main limitations of direct solvers is the memory issue. Tackling large scale problems still
remains out of reach given the current high performance computing clusters. Despite the latest de-
velopments carried out by Gosselin-Cliche and Giroux (2014) using compact stencils to reduce the
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4.4 Computational complexities comparison with the time-domain 3D elastic wave modeling and the
sparse parallel direct solver approaches

Computational complexity Memory complexity

TD + DFT 3070 N4 = O(N4) O(N3)

FD + Iterative 95 N3.42 = O(N3.42) O(N3)

FD + Direct O(N4) O(N4)

Table 4.10: Theoretical computational and memory complexities of the three modeling approaches
in the frequency-domain (FD) using one source for a 3D elastic problem of size N3 inspired from
the 3D elastic case study. “TD + DFT" denotes the time-domain (TD) approach combined with the
Discrete Fourier Transform (DFT). “FD + Iterative" denotes the resolution of the frequency-domain
(FD) linear system using an iterative method, i.e. PCARP-CG. ‘FD + Direct" denotes the resolution of
the frequency-domain linear system using the sparse parallel direct solver (MUMPS-team, 2006).

bandwidth of the matrix A or Wang et al. (2012) using compression schemes to reduce the memory
requirements induced by the fill-in, the memory requirements of direct solvers become tremendous.
For a simulation performed on a 601×338×152 discrete elastic model (see Figure 4.12 (a)), a memory
requirement of 54 TB could be expected for the MUMPS solver.
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Figure 4.12: Estimated number of nonzero coefficients in the LU factors and memory for the storage of
the LU factors issued by the MUMPS (MUMPS-team, 2006) sparse parallel direct solver (a). The esti-
mation is reproduced from (Gosselin-Cliche and Giroux, 2014) using the second-order staggered-grid
finite-difference method with optimal coefficients and a single-precision implementation. Estimated
number of nonzero coefficients in the matrix A (squares) and AP (triangles) and memory request for
their storage (b). Note the difference of magnitude for the storage of LU on the one hand and A and
AP on the other hand.

On the other hand, time-domain and iterative solvers fully benefit from the sparsity of the dis-
cretization method. Iterative methods require the storage of the matrix A which remains quite modest
compared to the direct solvers memory complexity. Figure 4.12 (b) shows the memory requirements
for the storage of the matrix A and AP . In comparison with direct solvers, the memory complexity of
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iterative solvers is very small.

Thanks to the low computational complexity of the preconditioned CARP-CG method, the latter
can be seriously considered for 3D frequency domain elastic wave simulations for high frequencies up
to 15 Hz considering the current frequency range used in FWI applications.
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In this chapter, I have presented a realistic 3D application for the simulation of frequency-domain
elastic wave propagation using the iterative solver CARP-CG. The preconditioning strategy in 3D is
investigated using a homogeneous model. The sparsity pattern with a compact support and conserving
the highest amplitude in the particle velocity components is used. This sparsity pattern is introduced as
a 27-point stencil.

The numerical tests are performed on the 3D heterogeneous elastic model (courtesy of Shell). The
model is of size 16 × 9 × 4 km and presents heterogeneities in the P-wave velocity model, the S-wave
velocity model and the density model. The Poisson’s ratio panel is heterogeneous as well and varies
from 0.01 to 0.40. This model is particularly chosen for the difficulties it rises for iterative solvers. The
model is formed by a superposition of layers of different P-wave velocities. One particular layer of low
P-wave velocity is surrounded between two layers of higher P-wave velocity creating a waveguide ge-
ometry. When the source is located in this particular layer, iterative solvers have difficulties converging
and this is confirmed by the numerical results.

The 3D heterogeneous model is discretized at the frequencies 0.625, 1.25, 2.5, 5 and 7.5 Hz. The
size of the linear systems resulting from such discretization ranges from 3.4 105 to 1.1 108. First,
the CARP-CG is used to the solve the linear systems using a single-precision implementation. Due
to the lack of accuracy and the accumulation of round off errors, a divergence occurs on the 7.5 Hz
problem. Therefore, a double-precision implementation is used to remedy this issue. The complexity
analysis of the CARP-CG method gives a total number of operations for the 3D frequency-domain wave
simulations

Nop
FD+I = 43 N3.9, (CARP − CG)

where N is the geometric mean size of the discrete model (N = (nx × ny × nz)1/3 with nx, ny and
nz the number of grid points along the corresponding space direction). The numerical results show
that the complexity of the CARP-CG is nearly linear. Second, the CARP-CG method is used with the
preconditioner. The latter is computed based on the strongly damped medium by using qatt = 0.6.
Several experiments have shown that an optimal preconditioner, i.e. giving the best reduction in the
number of iterations, is obtained by considering the medium parameter VP , ṼS , ρ where ṼS is derived
from VP using a constant Poisson’s ratio ξp = 0.15. Using this preconditioner, the complexity of the
preconditioned CARP-CG method is improved to

Nop
FD+I = 95 N3.42, (PCARP − CG)

which is very satisfying. Thanks to the preconditioner, the divergence problem which occurs at 7.5 Hz
with the singly-precision implementation is mitigated.

Other numerical tests are performed using an explosive source outside the low P-wave velocity
zone. The source is located at depth with the medium is almost homogeneous. Such configuration
gives very encouraging results. Using the preconditioner, the number of iterations is divided by a factor
up to 11 allowing a time speedup by a factor 2.2.

The comparison with the direct solver and time-domain combined with the DFT approaches shows
the crucial advantages of the iterative method PCARP-CG. On the one hand, direct solvers suffer from
the huge memory requirements for the storage of the factors L and U which makes them impracticable
for simulations on a 601×338×152 discretization grid. More than 50 TB would be requested for such
a problem size with a direct solver. Iterative solvers only need the storage of the matrix AP which
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roughly amounts to 514 GB of storage. On the other hand, the time-domain approach combined with
Discrete Fourier Transform requires relatively high computational cost

Nop
TD+DFT = 2201 N4.

In addition, such approach suffers from the lack of multiple source modeling techniques. The time-
domain simulation relative to each source needs is performed independently which denotes a linear
increase of the computational cost with respect to the number of sources. CARP-CG may benefit from
multiple right-hand side strategies such as the block approach (O’Leary, 1980) or the projection method
(Chan and Wan, 1997). Theoretical results show that for a number of right-hand sides Nrhs, the block
conjugate gradient method may converge in roughlyNrhs times fewer iterations than a naive application
of CG over the Nrhs linear systems independently. Therefore, the frequency-domain approach using
the preconditioned CARP-CG method seems to be appealing.

The computation of the preconditioner and the matrix AP is indeed not costless. The complexity
of both operations is in the order of O(N3). Numerical results show that the product AP is computed
efficiently in a small amount of time but the preconditioner requires much more computational efforts.
However, one can mitigate this computational cost as soon as multiple right-sides are considered. For a
given linear system, the preconditioner and the matrix AP are computed once and used for the solution
of several right-hand sides.

Finally, one may consider the memory cost induced by the fill-in due to the matrix-matrix product
AP as a possible limitation of this method. Indeed, using the fourth-order scheme for the discretization
of the frequency-domain elastic wave equations and the 27-point sparsity pattern for the preconditioner
yield a matrix A with at most 51 nonzero coefficients per row and a matrix AP with at most 405
nonzero coefficients per row. For the 7.5 Hz problem, the storage of the matrix AP and the right-hand
side requires 514.2 GB. Performing numerical experiments at 10 Hz would require 1.1 TB using the
single-precision implementation and 1.9 TB in double-precision which may seem close to the limit of
current computing clusters today. This memory issue can be mitigated by using more compact finite-
difference schemes. In this direction, the compact second-order scheme of Gosselin-Cliche and Giroux
(2014) is suggested. Such compact scheme should reduce the fill-in in the matrix AP . This compact
second-order stencil together with a preconditioner computed with the 27-point sparsity pattern give
a matrix A and a matrix AP with, respectively, at most 51 and 261 nonzero coefficients per row. A
reduction of the memory requirements by a factor 1.5 approximately is obtained which helps reducing
the memory request for the storage of the matrix AP from 1.9 TB to 1.3 TB. This is due to the smaller
bandwidth of the matrix A.
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Conclusions for this work

The work performed during this thesis was carried out in the objective to develop a preconditioning
strategy for the frequency-domain wave propagation problem adapted to the iterative solver CARP-CG.
In the framework of the seismic imaging techniques such as the Full Waveform Inversion or the Reverse
Time Migration, the solution of the forward problem, i.e. frequency-domain wavefields, for large scale
problems and numerous sources is required at each iteration of the optimization procedure to build high
resolution quantitative images of the subsurface parameters. Therefore, a robust and efficient method
for the solution of the forward problem is the cornerstone for these imaging methods.

In chapter 1, the equations governing the wave propagation in the subsurface are introduced. These
equations are presented in the frequency-domain which are derived from the time-domain formulation.
Both acoustic and elastic approximation are considered. At the exploration and regional scales, the
subsurface can be assimilated to a semi-infinite domain. Absorbing boundary conditions are used to
mimic infinite domain wave propagation in the horizontal direction and the vertical direction in depth.
The Perfectly Matched Layers of Bérenger (1994) are preferred for their efficiency and the simplicity
of their implementation. The free-surface boundary condition (Mittet, 2002) is introduced at the top
boundary of the domain as it allows to perform realistic wave propagation modeling. The discretization
of the acoustic and elastic equations is performed using the staggered-grid finite-difference method. In
the frequency-domain, this discretization leads to the linear system

Ax = b, (4.1)

of size n which can be solved using a direct or an iterative method. A review of the different strategies
for the computation of frequency-domain wavefields is presented. A state of the art regarding iterative
solvers and preconditioning techniques in particular for the wave equation is carried out.

In chapter 2, an overview of the iterative solvers CGMN (Björck and Elfving, 1979) and its parallel
version called CARP-CG (Gordon and Gordon, 2010b) is given. These particular solvers attract special
interest due to their robustness for solving the 2D and 3D frequency-domain wave equations in the
acoustic and elastic approximations in complex media and for large scale problems (Li et al., 2015).
These iterative methods solve the linear system (4.1) by the mean of the Kaczmarz row projections
(Kaczmarz, 1937) performed in double sweeps (projections from the first row to the last row then from
the last row to the first row) which transforms the matrix A into an hermitian positive semi-definite
matrix I − Q(A). The conjugate gradient (CG) is used to accelerate the convergence. It amounts to
apply the CG method the linear system

(I −Q(A))x = R(A)b.
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Two preconditioning strategies are introduced to improve the convergence of these iterative methods.
The first strategy relies on the computation of a preconditioner P of the matrix A and the resolution of
the system of size n

P (I −Q(A))PHy = PR(A)b, x = PHy.

The second strategy is based on the application the CGMN or CARP-CG method to the preconditioned
system

APy = b, x = Py. (4.2)

For both approaches, the preconditioner P needs to be computed on a diagonal dominant matrix . In
the context of seismic wave modeling, this is achieved by computing the preconditioner based on a
wave operator G in a strongly damped medium using complex-valued P-wave and S-wave velocities
for instance. The second preconditioned strategy gave the best results and is therefore retained. How-
ever, it requires P to be sparse and banded and the explicit computation of the matrix AP as well. The
new approach for the computation of preconditioner which is introduced in this thesis is to identify the
columns of the matrix G−1 as the Green’s function associated with the frequency-domain wave propa-
gation operator G in a strongly damped medium. Due to the strong attenuation, the wavefield is closely
located around the source point. Therefore, the each column of the preconditioner P can be sparsely
approximated by restraining the Green’s function to few discretization points around the source. The
computation of the preconditioner is performed column-wise by solving n frequency-domain wave
problems in small strongly damped domains defined by a sparse approximation. Perfectly Matched
Layers (Bérenger, 1994) are used to truncate the computational domain to the local approximation. As
each column of P can be computed independently and using O(1) operations, the computation of the
preconditioner is embarrassingly parallel and can be performed in low complexityO(n). Thanks to the
sparse approximation of the preconditioner and its small bandwidth, the matrix AP remains sparse and
banded and its computation can be performed in linear complexity as well O(n). The spectral proper-
ties of the preconditioned system AP are evaluated in the acoustic and elastic approximation. Despite
the sparse approximation, the conditioning of the matrix AP is improved and its spectrum is closely
gathered around 1.

In chapter 3, 2D realistic case studies are presented to evaluate the performances of the precondi-
tioner for large scale and heterogeneous problems. In the acoustic approximation, the frequency-domain
wave simulations are performed on the BP2004 model (Billette and Brandsberg-Dahl, 2004) which pro-
vides heterogeneous P-wave velocity and density models of size 67 km × 12 km. The size of the linear
systems to be solved ranges from 1.4 104 to 1.4 107. The complexity of the CGMN method is evaluated
as

Niter = 20.9 N0.79, (CGMN)

where Niter denotes the number of iterations performed by the iterative solver and N is the geometric
average number of discretization points per direction (nx, nz)

N =
√
nx × nz.

Using the preconditioner, the complexity of the CGMN method is improved to

Niter = 5.9 N0.71, (PCGMN).

A reduction in the number of iterations by factor 6.9 is obtained, yielding a computation time acceler-
ation by a factor 2.2 in average over all the simulated frequencies. The total computational complexity
of the CGMN method for the 2D frequency-domain acoustic modeling with one source is then

Nop
FD+I = 5.9 N2.71.
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Compared to the time-domain approach with the DFT which the computational complexity is inO(N3),
this result denotes an improvement. In the 2D elastic approximation, the frequency-domain wave equa-
tions are solved on the Marmousi 2 model (Martin et al., 2006) using the parallel solver CARP-CG. The
numerical experiments are performed with PMLs at the surface and a free-surface as well. The size of
the linear system ranges from 105 to 107. Very satisfying results are obtained for both configurations.
The number of iterations is divided by a factor approximately equal to 9 allowing a speedup in the com-
putation time by a factor 3.5 when the simulations are performed with the free-surface. The numerical
complexity for the simulation with one source is given by

Nop
FD+I =

{
690 N2.28 PMLs,
472 N2.41 Free-Surface,

(PCARP− CG).

Such complexities denote an number of iterations roughly proportional to
√
N . Due to the sparsity

of the linear system, the memory complexity in the 2D approximation is

Nmem
FD+I = O(N2).

The time-domain approach allows the computations of the wavefields with a number of operations equal
to

Nop
TD = 6200 N3.

A Discrete Fourier Transform (DFT) is included at each time step to extract the needed frequency
yielding a computational cost for the DFT roughly equal to

Nop
DFT = 6200 N3

In these estimations, the numerical cost of the evaluation of the trigonometric functions is roughly
estimated at 1. In the 3D acoustic approximation, Brossier et al. (2014b) show that the computation
time of the DFT is almost equal to the time-domain simulation for the computation of the wavefields.

Alternatively, a sparse direct solver can be used as well to solve the linear system (4.1). Table
4.11 summaries the computational and memory complexities of the three modeling approaches in the
frequency-domain. Despite the small computational and memory complexity of the iterative approach

Computational complexity Memory complexity

Time-domain + DFT 12400 N3 = O(N3) O(N2)

Freq-domain + Iterative∗ 472 N2.28 = O(N2.28) O(N2)

Freq-domain + Direct O(N3) O(N2 log(N))

Table 4.11: Theoretical computational and memory complexities of the three modeling approaches in
the frequency-domain using one source for a 2D elastic problem of sizeN2 inspired from the Marmousi
2 case study. “*” refers to the results using the free-surface at the top boundary of the domain.

in 2D, the frequency-domain approach using a sparse parallel direct solver (MUMPS-team, 2006) is
usually preferred due to the numerous right-hand sides to solve. Once the LU factorization is per-
formed, the linear system is efficiently solved by forward and backward substitutions. This method
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is efficient for multiple right-hand sides linear system. Using the time-domain solver, each source is
solved independently, making this approach not efficient at all as the computational cost scales linearly
with the number of sources. Iterative solvers can be combined with multiple right-hand sides strategies
such as the block conjugate gradient (O’Leary, 1980; Gutknecht, 2006) and projection methods (Chan
and Wan, 1997). Theoretical results show that for a number of right-hand sides Nrhs, the block conju-
gate gradient may converge in roughly Nrhs times fewer iterations than a naive application of CG over
the Nrhs linear systems independently.

The scaling properties of the iterative solver CARP-CG are investigated as well. Gordon and Gor-
don (2010b) and Li et al. (2015) have already shown the good scaling properties of this method. The
scaling remains close to the ideal scalability up to 128 cores and this scaling improves for high frequen-
cies , i.e. for large problem size. Applying the CARP-CG to the preconditioned system (4.2) gives better
scaling properties. Using the same number of cores, the CARP-CG applied to (4.2) presents a better
speedup and efficiency compared to applying CARP-CG to (4.1). Such behavior is mainly due the com-
munication cost which becomes significantly smaller than the computation cost on the preconditioned
system (4.2) as the matrix AP is denser than A. Therefore, the application of the CARP-CG method to
the preconditioned system enables to use a larger number of cores, allowing thus faster computations.

In chapter 4, the 3D frequency-domain elastic approximation is investigated on a realistic case. The
system of equations is discretized using the fourth-order staggered-grid finite-difference method with
optimal coefficients (Li et al., 2016). A 3D heterogeneous elastic model (courtesy of Shell) is used
to performed the simulations. The size of the model is 16 km×9 km×4 km. The model is formed
of the superposition of several layers of sediments of increasing P-wave velocities. One difficulty in
this model is the particular layer of low P-wave velocity which is trapped between two layer of higher
P-wave velocity creating thus a waveguide resembling geometry. When the source is located in this
particular layer, iterative solvers have difficulties to converge. The discretization is performed for the
frequencies 1.25, 2.5, 5 and 7.5 Hz yielding linear systems of size from 3.4 105 to 1.1 108 corresponding
to a 601×338×152 discretization grid. The complexity analysis of the CARP-CG method yields a total
number of iterations for the 3D frequency-domain elastic wave simulation equal to

Nop
FD+I = 43 N3.9, (CARP− CG).

In 3D, N denotes the geometric mean size of the discrete model given by

N = (nx × ny × nz)1/3,

where nx, ny and nz are the number of grid points along the space directions. Using the preconditioner,
this computational complexity is reduced to

Nop
FD+I = 95 N3.42, (PCARP− CG).

By moving the source to a more homogeneous zone which denotes an easier problem to solve, larger
reduction in the number of iterations are obtained. Time speedups by a factor up to 2.2 is noted. The
preconditioner is built on a operator Ã using strong damping. The operator Ã is computed in the media
defined by (VP , ṼS , ρ) where ṼS is derived from VP using a low constant Poisson’s ratio ξp = 0.15.
This method enables the computation of a preconditioner which provides the best reduction in the num-
ber of iterations. These results are very satisfying in comparison with other frequency-domain wave
modeling strategies and very encouraging for higher frequencies simulations. The comparison between
the different 3D frequency-domain elastic wave modeling methods, i.e. the time-domain modeling with
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the DFT and the direct solver for the solution (4.1), shows the mains limitations of these approaches. Di-
rect solvers suffer from the tremendous memory requirement issue. Tackling large scale problems still
remains out of reach given the current high performance computing clusters despite the latest develop-
ments carried out by Gosselin-Cliche and Giroux (2014) using compact stencils to reduce the bandwidth
of the matrix A or Wang et al. (2012) using compression schemes to reduce the memory requirements
induced by the fill-in. For instance, the sparse parallel direct solver of MUMPS-team (2006) would
require more than 54 TB of memory for the 3D elastic Shell model using the 601×338×152 discretiza-
tion grid whereas PCARP-CG requires only 514 GB. On the other hand, the time-domain approach
with the DFT requires significant computational resources due to the cost of the DFT.

Although the memory request may not be the bottleneck for performing 3D frequency-domain elas-
tic wave simulations using the CARP-CG method, the computation time plays however a key role for
considering this iterative method in seismic imaging techniques such as RTM or FWI. Note that the
solution of the 3D problem on the Shell model at 7.5 Hz takes approximately 3 hours and 20 minutes
using 54 cores. Thus, considering this computation time for thousands of sources shows how time con-
suming this approach can be (4 months and 18 days for solving this linear system with 1000 sources).
Interestingly, the resolution of these linear systems using the PCARP-CG method takes 2 months using
the same number of cores (the computation of the preconditioner P and the matrix AP are included in
the run time). Significant computation time savings are obtained using the preconditioner. From a the-
oretical point of view, the comparison of the computational complexities shows that this iterative solver
clearly outperforms the time-domain solver. But a fair comparison would require to perform numerical
tests using the time-domain solver on a same problem to be able to conclude. However, considering the
numerous source simulations inquired by these seismic imaging techniques, this iterative solver can be
considered as a serious candidate for the forward simulations.
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Perspectives

Several future investigations can be conducted based on this thesis work on both methodological/implementation
and application aspects. I only list some of the key perspectives below.

Method/Implementation

This work emphasizes the efficiency and the robustness of the CARP-CG method for the solution of the
3D frequency-domain elastic equations. The preconditioning strategy has enabled significant reduction
in the number of iterations allowing to improve the computational complexity of this iterative solver.
Although the memory issue is not the main limitation of this approach, memory savings can be achieved
by considering compact discretization stencil such as the second-order stencil with optimized coefficient
(Gosselin-Cliche and Giroux, 2014). However, the computation time denotes the main bottleneck which
prevents considering this iterative solver of one of the most important application which is the seismic
imaging area. In this perspective, further investigations on the CARP-CG method have to be carried
out.

• The Kaczmarz sweeps through the rows of the matrix A are performed in the natural order, i.e.
projections on the hyperplanes associated with the first row and proceed to the last row. It is
suggested by Strohmerand and Vershynin (2008) and references therein that the convergence of
the Kaczmarz method can be greatly improved by sweeping through the rows of the matrix A
in a random order. This randomized Kaczmarz method is proposed with an exponential rate of
convergence. Therefore, performing these randomized projections in double sweeps following
the same order at each iteration of CARP-CG (the objective is to preserve the hermitian property
of the matrix I −Q(A)) may enable a faster convergence compared to the standard approach.

• A close attention to the computation time performed by the CARP-CG method on the precondi-
tioned 3D elastic problem (see Table 4.12) allows to see that the point-to-point communication
time increases with respect to the number of cores which is expected because of the Component
Averaging operation, but the computation time of the forward and backward sweeps remains
high due to a denser matrix AP . These observations lead to investigate a second level of paral-

Operation 30 cores 40 cores 54 cores

Forward Sweep 5.0 3.6 2.7
Backward Sweep 6.0 4.3 3.2
Double Sweep 12.5 9.5 8.0
Point-to-Point Communication 1.5 1.6 2.1

Table 4.12: Computation time in seconds performed by one forward, backward and double sweep and
the point to point communication time performed by the CARP-CG method on the preconditioned 3D
frequency-domain elastic problem on the Shell model.

lelism using multi-threads. The point-to-point communication time shall be kept to the minimum
thanks to a lower number of cores. The forward and backward sweeps may be accelerated using
a multi-thread implementation as the matrixAP is denser. Take for instance the 30-core example
in Table 4.12, by using 2 threads per core, the computation time of the forward and backward
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sweeps shall be divided by 2 (ideally) and the communication time remains the same. Therefore,
the overall computation time resulting from such implementation may be improved compared to
running the CARP-CG method on 60 cores.

• In the perspective of a purely threaded implementation of the CARP-CG method, GPUs can be
considered. The latter can be used either as a computing unit replacing the CPU. This is the work
of Elble et al. (2010) and Knibbe et al. (2011). Elble et al. (2010) present a comparison between
GPU and CPU implementations of several iterative methods including CARP-CG on 9 test prob-
lems. The results show that the GPU implementation outperforms the CPU implementation with
a substantial reduction of the computation time. However, this framework supposes that the ma-
trix fits in the memory offered by the GPU which is very small (around 4 GB per GPU). Knibbe
et al. (2011) compare the CPU and the GPU implementation of the iterative solver BI-CGSTAB
preconditioned with the shifted Laplace preconditioner on the 2D and 3D Helmholtz equation.
Similar results with the previous referenced work are obtained. Alternatively, GPUs can be used
as accelerators which means that the problem is solved on the CPU while the some computational
intensive parts of the algorithm are performed by the GPUs. This approach requires that the data
are transferred to and from the GPU for each task. However, the main problem is the intensive
data transfer which is limited by the small bandwidth of the computing architectures Knibbe et al.
(2014). Therefore, the possible GPU implementation of the CARP-CG method may not be the
best fit for the 3D elastic equations from my point of view. The memory bottleneck is even more
emphasized.

• One interesting direction of research is the devoted work of Petrenko (2014); Petrenko et al.
(2014) to optimize the implementation of the Kaczmarz sweeps. The use of reconfigurable hard-
ware accelerator FPGA (field programmable gate arrays) is investigated. This approach is similar
to GPU accelerators but offers larger memory resources. Applications on the 3D Helmholtz prob-
lem using the CGMN method are performed and an improvement by a factor 2 in the computation
time is observed when running the CGMN method on the FPGA accelerator.

• Finally, multiple-right hand side accelerations (Gutknecht, 2006) are one of the main advantages
of using CARP-CG in comparison to the time-domain approach. The “single seed” method (Chan
and Wan, 1997) which is a projection-based method (Smith et al., 1989), is one possible solution
although no theoretical proof have been made for the improvement of the convergence rate. The
single seed method is tested on the 2D acoustic problem (the 5 Hz acoustic problem on the
BP2004 model is considered, see Chapter 3 Section 3.1.1) with 1000 right-hand sides (Hamitou
et al., 2015) (see Appendix B). A reduction in the number of iterations and the computation time
by a factor 1.5 is obtained. Further investigations can be driven using the block conjugate gradient
method (O’Leary, 1980). With NRHS right-hand sides, the block CG method may converge,
theoretically, with NRHS times fewer number of iterations compared to a sequential approach
where each linear system is solved independently.

Improvements for the computation of the preconditioner can be made as well. Substantial accel-
erations can be achieved with a second level of parallelism for the computation of the preconditioner.
For the 3D frequency-domain elastic problem, three small linear systems are solved for each discretiza-
tion point. Using the same local matrix, three solutions are computed for three force excitations: (1)
along the x direction, (2) along the y direction and (3) along the z direction. As these solutions can be
computed independently, a multi-thread implementation seems very appropriate to achieve a speedup
by a factor 3. Further investigations take advantage of the similarities of the three wavefields computed
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for each excitation. For a given local medium, one can use the first computed wavefield (along the x
direction for instance) and by a simple copy/rotation, avoid the computation of the two extra solutions
along the y and z directions. Such strategy enables computational resource savings.

Applications

This work enables the preconditioning of the iterative solver CARP-CG for the solution of the 3D
frequency-domain elastic wave equations. So far, the 3D heterogeneous model provided by Shell is
tested. This case study can be further investigated with different configurations (free-surface). Several
numerical applications can be carried out as well on other 3D realistic models. In the following, some
possible applications are presented.

• 3D elastic wave modeling with a Free-Surface: realistic seismic wave modeling accounts for the
Free-Surface. The positive results obtained in the 2D elastic approximation on the Marmousi 2
case study with the free-surface boundary condition (see Chapter 3 Section 3.2.2.3) should lead
to investigate the free-surface effects in the 3D elastic approximation. Larger reduction in the
number of iterations and thus in the computational complexity is expected.

• 3D SEG/EAGE Overthrust model: the 20 km × 20 km × 4.65 km 3D acoustic onshore model
presents complex sedimentary succession similar to the model which is investigated here (see
Figure 4.13). One particular difference is the presence of faults and more complex heterogeneities
at the surface of the model. For elastic wave modeling, the VS model can be build from the VP
model using a constant Poisson’s ratio.
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Figure 4.13: Slice of the Overthrust SEG/EAGE P-wave velocity model.

• 3D Valhall model: the 18 km × 11 km × 5 km elastic model provides less heterogeneities
compared to Shell’s model (see Figure 4.14). This model is interesting for its 70 m water layer and
the smaller range of variation for the P-wave velocity with V max

P = 3200 m/s and V min
P = 1480

m/s which denotes less heterogeneities but high contrasts. A larger panel for the shear wave
velocity model V max

S = 1594 m/s and V min
S = 379 m/s denotes large Poisson’s ratio. This model

is investigated in the acoustic approximation for the FWI application performed by (Operto et al.,
2015).
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Figure 4.14: Slice of the Valhall P-wave velocity model.

• 3D Valhall model with anisotropy: Perhaps one interesting application is to look at the influence
of anisotropy in the medium on the convergence of the CARP-CG with and without precondi-
tioning. The fourth-order stencil of Li et al. (2016) provides the possibility to perform the elastic
wave modeling in the frequency-domain for orthorhombic media. Numerical experiments can be
carried out straightforwardly.
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Appendix A

Notations

I introduce in this annexe the relevant concepts in linear algebra which are useful in the chapters of
this thesis. I give an overview of the basic vector and matrix theory and introduce some basic notations
which are used later. The reader may refer to Golub (1996) for relevant proofs.

Vectors and matrices

We denote by K the real R or complex C corps. For all z ∈ C, |z| denotes the modulus of the complex
number z and z̄ denotes the complex conjugate number of z. We denote by i the purely imaginary
complex number such that i2 = −1.

For n and m in N \ {0}, we have

• Kn is the K-vector space of (z1, z2, · · · , zn) with zj ∈ K for j = 1, · · · , n,

• Mn,m (K) is the corp of matrices with n rows and m columns and whose coefficients are in K.
For simplicity, the corp of square matrices is denoted byMn (K) =Mn,n (K).

Kn is identified toMn,1 (K). Therefore, a vector writes as a single column matrix. ForA ∈Mn,m (K),
the notationA = (aij)1≤i6n, 16j≤m is used when the coefficients of the matrixA need to be mentioned.
The notation a•j refers to the j-th row vector of A

a•j =


a1j

a2j
...
anj

 .

The same way, the vector ai• denotes the i-th column vector of A

ai• = (ai1, ai2, · · · , aim) .

We denote by 0n ∈ Mn (K) the identity element for the addition in the matrix corpMn (K). For any
matrix A ∈Mn (K)

A+ 0n = 0n +A = A.



NOTATIONS

Similarly, I ∈ Mn (K) the identity element for the multiplication in the matrix corpMn (K). For any
matrix A ∈Mn (K)

AI = IA = A.

For allA ∈Mn (C),AT is the transposed matrix ofA andAH = ĀT the complex conjugate transposed
matrix of A, that is, aHij = āji.

Definition 1 (Upper (respectively lower) triangular matrices). The matrix A ∈Mn (K) is called upper
(respectively lower) triangular if

aij = 0, pour i > j, (respectivement i < j).

Definition 2 (Banded matrices). The matrix A ∈Mn (K) is called banded if

aij 6= 0, only if i−ml 6 j 6 i+mu,

where ml and mu are two positive integers. The number ml +mu is then called the bandwidth of A.

Definition 3 ((Strictly) diagonally dominant matrices). The matrix A ∈ Mn (K) is diagonally domi-
nant if

|aii| >
n∑
j=1
j 6=i

|aij |, i = 1, . . . , n

strictly dominant if

|aii| >
n∑
j=1
j 6=i

|aij |, i = 1, . . . , n

Definition 4 (Trace of a matrix). The trace tr(A) of a matrix A ∈Mn (K) is the scalar

tr(A) =

n∑
i=1

aij .

Definition 5 (Eigenvalues). A scalar λ ∈ C is called an eigenvalue of a matrix A ∈ Mn (C) if a non
zeros vector u ∈ Cn exists such that Au = λu. The vector u is called an eigenvector of A associated
to λ. The set of all the eigenvalues of A is then called the spectrum of A and is denoted by σ(A). The
spectral radius of A is defined by

ρ(A) = max {|λ|; λ ∈ σ(A)} .

Vector inner products and norms

An inner product on a space vector Kn is any bi-linear, hermitian, positive definite mapping from
Kn ×Kn into K.

Definition 6 (Euclidean inner product). The Euclidean inner product of two vectors x and y of Cn is
defined by

(x,y) =

n∑
i=1

xiȳi, (A.1)
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which writes in matrix form as
(x,y) = yHx.

The Euclidean inner product in Cn reduced to

(x,y) =

n∑
i=1

xiyi, (A.2)

which writes in matrix form as
(x,y) = yTx.

Definition 7 (Symmetric, hermitian matrices). In the sens of the scalar product (·, ·), the matrix A ∈
Mn (R) is called symmetric if AT = A

(x, Ay) = (Ax,y)⇐⇒ yTATx = yTAx.

Similarly, for A ∈Mn (C), it is called hermitian or self-adjoint if AH = A.

Definition 8 (Orthogonality). Two vectors x and y of Kn are said orthogonal if

(x,y) = 0.

Definition 9 (Norms de Kn). The norms ‖ · ‖p associated to the Euclidean vector inner product are
defined by

‖x‖p = (x,x)
1
p =

(
n∑
i=1

|xi|p
) 1

p

, p ∈ {1, 2,∞}. (A.3)

Therefore, we have

‖x‖1 =
n∑
i=1

|xi|,

‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

,

‖x‖∞ = max
i=1,...,n

|xi|.

Definition 10 (Matrix norms). For A ∈Mn (K), the p-norm of A is defined by

‖A‖p = max
x∈Kn,x 6=0

‖Ax‖p
‖x‖p

. (A.4)

The usual matrix norms are

‖A‖1 = max
j=1,...,n

n∑
i=1

|aij |,

‖A‖2 = ρ
(
AHA

) 1
2 ,

‖A‖∞ = max
i=1,...,n

n∑
j=1

|aij |,

‖A‖F =
(
tr(AHA)

) 1
2 .

‖A‖F is called the Frobenius norm.
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Definition 11 (Unitary matrices). The matrix A ∈ Mn (K) is called unitary if AHA = AAH = I .
Then A−1 = AH

Condition number

Definition 12 (Condition number). Given the matrix norm ‖·‖ (see definition 10), the condition number
of a matrix A ∈ Gln (K) with respect to the norm ‖ · ‖ is defined by

cond(A) = ‖A‖‖A−1‖.

For any matrix A ∈ Gln (K), let µ1 6 · · · 6 µn be the singular values of A, then

cond(A) =
µn
µ1
.

If the matrix A is hermitian, then

cond(A) =
|λn|
|λ1|

,

where |λ1| and |λn are respectively the smallest and largest eigenvalue with respect to the module | · |
of A.
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Appendix B

Preconditioning and multiple-right hand
sides strategies for the solution of the
frequency-domain wave propagation
problem using the CGMN method

This appendix contains a supplementary publication, a conference expanded abstract. This work was
presented at the SEG conference in 2015. The preconditioning strategy for the CGMN method adapted
to the 2D frequency-domain acoustic wave equation is presented on the BP2004 model. This part
of the conference paper is presented in the first part of chapter 3. In addition, a multiple right-hand
side acceleration called the single seed method (Chan and Wan, 1997) is investigated. An interesting
extension to this work would be to perform a comparison with the block Conjugate Gradient method
(O’Leary, 1980).
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SUMMARY
Frequency-domain waveform modeling in the acoustic and
elastic approximations requires the solution of large ill-
conditioned linear systems. In the context of frequency-
domain full waveform inversion, the solutions of these sys-
tems are required for a large number of sources (i.e. right-
hand sides). Because of their tremendous memory require-
ments, direct solvers are not yet adapted to the solution of 3D
elastodynamics equations. We are thus interested in the use
of efficient iterative solvers adapted to the solution of these
systems. The CGMN method has shown robust convergence
properties for 2D and 3D elastic problems in highly heteroge-
neous media, compared to standard Krylov methods, but still
requires a large number of iterations to reach sufficient accu-
racy. In this study, the design of an efficient preconditioning
strategy adapted to this method is investigated. This precondi-
tioner is computed as a sparse approximate inverse of a heav-
ily damped wave propagation operator. In addition, the single
seed method is used to increase the efficiency of the solver for
multiple right-hand sides. The efficiency of these two com-
bined strategies is evaluated on the 2D BP2004 model in the
visco-acoustic approximation, up to 40 Hz. An overall time
speed-up equal to 3 and a reduction of the number of iterations
by a factor 10 are observed.

INTRODUCTION

Solving 3D frequency-domain acoustic and elastodynamics equa-
tion is a highly challenging problem. After discretization, these
problems amount to the solution of a large, sparse, ill-conditioned
and non-positive linear systems. These difficulties are mag-
nified by the high contrasts and discontinuities in the physi-
cal properties of the subsurface. In the context of frequency-
domain Full Waveform Inversion (FWI), the solution of the
wave propagation problem is needed for a large number of
sources (up to several tens of thousands for realistic applica-
tions). In the acoustic approximation, direct methods can be
used. The factorization of the matrix is performed once and
the solutions of the linear systems relative to each right-hand
side can be obtained efficiently by forward and backward sub-
stitutions. Current FWI studies demonstrate the ability of us-
ing direct solvers in the 3D acoustic approximation for rea-
sonable target size (Operto et al., 2014, 2015). However, the
high memory requirement of these methods, due to the fill-in
associated with the matrix factorization, makes them still in-
appropriate for solving 3D elastic problems.

In the perspective of performing 3D frequency-domain elas-
todynamics FWI, two strategies could thus be adopted. The
first consists in solving the elastodynamics in the time-domain
and using a Discrete Fourier Transform (DFT) on-the-fly to

transform the solution into the frequency-domain. This strat-
egy is appealing because of its straightforward implementa-
tion, however, three limitations can be identified. First, no
Multiple Right Hand Sides (MRHS) acceleration can be imple-
mented. Second, the time-integration is controlled by a CFL
condition depending on the highest P-wave-velocity and the
smallest discretization step. For elastodynamics simulations in
media with slow S-wave velocity, this could lead to severe re-
strictions on the time step. Finally, the integration time should
be long enough for the DFT to be sufficiently accurate.

These limitations lead us to rather investigate the possibility of
solving the elastodynamics equations using iterative solvers.
These algorithms fully benefit from the sparsity of the linear
system as they only require the computation of scalar prod-
ucts and sparse matrix vector products, and therefore present
significantly lower memory requirement. In this study, we are
interested in the CGMN iterative solver, introduced by Björck
and Elfving (1979). This method is based on the row projec-
tion strategy proposed by Kaczmarz (1937) to transform the
initial non-symmetric system into a symmetric positive one
which can be solved using a Conjugate Gradient (CG) method.
This strategy can be efficiently parallelized using row-block
decomposition and averaging techniques (Gordon and Gor-
don, 2010). It has been successfully applied to the frequency-
domain wave modeling in the 3D acoustic approximation (van
Leeuwen et al., 2012) as well as in the 2D and 3D elastic ap-
proximations (Li et al., 2014). In the latter case, CGMN re-
veals to be extremely robust: the convergence is obtained in
media with fast variations, presenting high Poisson’s ratio, and
with a free surface boundary condition responsible for the gen-
eration of surface waves. In the same configuration, standard
Krylov solvers such as GMRES, BiCGSTAB, or Conjugate
Gradient on Normal Equations (CGNR) (Saad, 2003) fail to
converge.

Despite these relatively good properties, the CGMN method
still requires a large number of iterations to reach sufficient
accuracy. We are thus interested in the design of a suitable
preconditioner for the CGMN method, allowing to increase
the performance of this algorithm. In addition, in the perspec-
tive of FWI applications, a MRHS strategy based on the seed
method proposed by Chan and Wan (1997) is applied to inves-
tigate the potential acceleration which can be expected.

A numerical example on the BP2004 case study is provided in
the 2D visco-acoustic approximation. Using a 4th order finite-
difference scheme the combination of the two strategies (pre-
conditioning and MRHS) allow for an overall speed-up equal
to 3 and a reduction of the total number of iterations by a factor
10 for a case study involving 1000 sources.
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THEORY

Overview of the CGMN method
We consider the linear system derived from the discretization
of the frequency-domain wave equation

Ax = b, (1)

where A is a complex and invertible matrix of size n and b is a
complex vector. The rows of A are denoted by ai•. Assuming
these rows have been previously normalized, the Kaczmarz’s
method cyclically projects the iterate xk following

xk+1 = xk +λ
(

bi−aT
i•x

k
)

ai•, i = k+1 [n] , (2)

where λ ∈]0;2[ is a relaxation parameter. Performing the pro-
jections (2) from the first to the last row of A is referred to
as a forward sweep. Performing these projections in the re-
verse order is referred to as a backward sweep. A succession
of a forward sweep and a backward sweep is referred to as
a double sweep operation. Within this framework, the well
known Symmetric Successive Over Relaxation (SSOR) itera-
tive method (Saad, 2003) is equivalent to a sequence of dou-
ble sweep operations. The solution of (1) through the SSOR
method is computed through the iteration xk+1 = Qxk +Rb,
where Q and R are deduced from A and represent the double
sweep operation. An acceleration of this fixed-point iteration
can be obtained by considering the system

(I−Q)x = Rb, (3)

where the identity operator is denoted by I. The matrix I−Q
is symmetric and positive semi-definite (Björck and Elfving,
1979). Hence, the CG method can be applied to solve (3). The
resulting method is called CGMN.

Using a finite-difference method for the discretization of the
wave equation yields a sparse matrix A with s non-zero diago-
nals, s depending on the order of the discretization scheme. A
double sweep requires 2ns operations (2n projections on sparse
rows), with s being in O(1). Using the double sweep operation,
the complexity of the matrix vector product (I−Q)x is thus in
O(n), despite the matrix I−Q is dense.

Preconditioning strategy for the CGMN method
The preconditioning method presented in this study relies on
applying the CGMN method to the right preconditioned sys-
tem

APy = b, x = Py, (4)
where the matrix P is an approximate inverse of A. Following
earlier results on the use of complex-shifted Laplacian precon-
ditioners (Erlangga and Nabben, 2008), a good preconditioner
for A can be deduced from a heavily damped wave propaga-
tion operator B. In this study, we build a preconditioner P as
a sparse approximate inverse of B. The k-th column of B−1,
denoted by b−1

•k , is the solution of the system

Bb−1
•k = ek, (5)

where ek is a vector of size n with a single non-zero compo-
nent equal to 1 at index k. Assuming here a 2D approxima-
tion, let (ik, jk) be the couple of indexes representing the spa-
tial position associated with the index k, the column b−1

•k can
be identified with the pressure wavefield generated by a Dirac
source located at the position (ik, jk) in a strongly attenuating

Figure 1: Sparsity pattern for computing the preconditioner
using 9-points (left) and 25-points (right) per column.

medium. Each column of P can thus be sparsely approximated
by restraining b−1

•k to few discretization points around (ik, jk)
(see Figure 1). An efficient way to compute the preconditioner
P is to solve the n local frequency-domain wave propagation
problems in a strongly damped small medium (9 or 25 grid
points according to the sparsity pattern which has been cho-
sen). Perfectly Matched Layers (PML) (Bérenger, 1994) sur-
round this local domain to absorb the outgoing waves. Using
this method, the computation of the preconditioner presents
low memory requirements as it only requires the solution of
small frequency-domain wave propagation problems. In addi-
tion it is highly scalable as each column of the preconditioner
can be computed independently.

This approach ensures P is composed of only few non-zero di-
agonals (9 or 25 in Figure 1). The number of non-zero diago-
nals of AP, denoted by s̃, increases with respect to the number s
of non-zero diagonals of A. A gain in number of arithmetic op-
erations is obtained if the increase from s to s̃ is compensated
by the decrease of the number of iterations. This is quantified
by the ratio η = (Ns)/(Ñs̃), where N and Ñ denote respec-
tively the number of iterations performed by CGMN to solve
the system (1) and (4).

Seed method for linear systems with MRHS
Consider the original linear system (1) with Nrhs MRHS

AX = B, (6)

where X =
[
x(1), ...,x(Nrhs)

]
are the solutions of the linear sys-

tem related to the right-hand sides B =
[
b(1), ...,b(Nrhs)

]
. The

straightforward treatment for an iterative approach to solve the
linear systems (6) is to solve each linear system independently.
One way to accelerate this process is to compute initial guesses
for the unsolved systems while solving the linear systems. This
is efficiently done using the single seed method introduced by
Smith et al. (1989) and Chan and Wan (1997).

The single seed method takes advantage of the Krylov sub-
space generated along the solution of one linear system in (6),
referred to as the seed system. The residuals of the others
systems are projected orthogonally on this Krylov subspace to
compute an approximate initial guess. Once the seed system
is solved, this process is repeated by selecting the next “non
seed” systems as the seed system. This strategy is presented
in Algorithm 1. For seismic experiments, the MRHS are as-
sociated with distinct source positions. As a consequence, the
MRHS are orthogonal one to each other. In practice the seed
method performs poorly in such configurations. This is un-
derstandable as in this case the residuals associated with one
system are nearly orthogonal to the Krylov space generated
through the solution of the seed system. Therefore the ini-
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Algorithm 1 Single seed method algorithm

1: Compute Conjugate Gradient initial residuals
2: for k = 1, ...,Nrhs do
3: Set the k-th system as the seed system
4: for i = 1, ..., until the seed system is solved do
5: Perform Conjugate Gradient iteration:
6: Compute p(k)i ,r(k)i and x(k)i
7: for j = k+1, ...,Nrhs do
8: Compute the projected solutions and residuals
9: η ← (p(k)i )T r( j)

i /(p(k)i )T (I−Q)p(k)i

10: x( j)
i+1← x( j)

i +η p(k)i

11: r( j)
i+1← r( j)

i −η(I−Q)p(k)i
12: end for
13: end for
14: end for
15: for k = 1, ...,Nrhs do
16: r(k)0 ← Rb(k)− (In−Q)x(k)0
17: end for

tial guess computed through the seed method is close to zero.
However, one can circumvent this problem by transforming
the system (6) into

AY = MB, X = M−1Y, (7)

where M ∈ RNrhs×Nrhs is an invertible matrix which we will
refer to as the blending matrix. For the numerical experiments,
we will choose the matrix M of the form

M =




1− γ 1 · · · 1

1
. . .

. . .
...

...
. . .

. . .
...

1 · · · 1 1− γ



, (8)

with γ ∈]0,1[. The choice of γ should be done with caution.
Indeed, as γ tends towards 1, the seed strategy tends to be par-
ticularly efficient, as the right hand sides MB tend to be similar.
However, the condition number of M also increases, and the
multiplication of Y by M−1 degrades the accuracy of the solu-
tion. The accuracy required for the solution of Y should thus
be done accordingly, which decreases the efficiency of the seed
strategy. In the case study presented here, a choice of γ = 0.2
seems to represent an acceptable trade-off between these two
requirements.

TEST ON 2D MODEL

We consider the frequency-domain visco-acoustic wave equa-
tion

− ω2

ρ(x)vP(x)2 p(x)−div
(

1
ρ(x)

∇p(x)
)
= s(x,ω), (9)

where ω = 2π f is the angular frequency, vP(x) is the P-wave
velocity, ρ(x) is the density, s(x,ω) is the source term and
p(x,ω) is the pressure wavefield.

The attenuation is accounted for using the Kolsky model, re-
sulting in a complex-valued P-wave velocity. The velocity is
therefore defined by vP(x) = vP,0(x)(1−0.5i/qatt), where qatt
is the quality factor. PML are attached to the four sides of

Figure 2: 2004 BP model: velocity (top) and density (bottom).

Figure 3: Pressure wavefield at frequency f = 5 Hz for a Dirac
source located at x = 33 km and z = 180 m.

the domain to mimic an infinite medium and absorb outgoing
energy.

We perform the numerical experiments using the 67 km long
and 12 km deep 2004 BP velocity and density model (see Fig-
ure 2). The quality factor qatt is taken equal to 1000, which
corresponds to a non-attenuating medium. The discretization
of the equation (9) is performed using the fourth-order staggered-
grid finite-difference scheme of Levander (1988). At least 5
discretization points per wavelength are used for all frequen-
cies. The pressure wavefield solution of (9) for f = 5 Hz is
presented in Figure 3. The number of iterations performed by
the iterative solver to converge is denoted by Niter. The geo-
metric mean size of the domain is denoted by N =

√
n. The

initial estimation is taken as x0 = 0 and the stopping criterion
is fixed to 10−4 on the relative residual ||Axk−b||/||Ax0−b||.
The relaxation parameter λ is equal to 1.2.

Evaluating the efficiency of the preconditioner
The preconditioner P is computed upon a strongly damped
medium with qatt = 1 and using the 9-points sparsity pattern
(Fig. 1). The results obtained with this preconditioner are shown
in Table 1. The computation time is divided by a factor up to
2.2. The gain in computational cost η reaches a factor 2. The
preconditioner reduces the number of iterations up to a factor
6.9. However this gain is compensated by the increase of the

Niter Time (s)
f n CGMN PCGMN CGMN PCGMN
1 11551 845 164 2.3 1.4
5 232617 3313 569 206.9 109.7
10 904128 5959 951 1443.5 728.5
20 3564132 9525 1424 9195 4355.4
40 14152068 13469 1942 51480.9 23402.6

Table 1: Number of iterations and time of computations per-
formed by the CGMN method with and without the precondi-
tioner.
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Figure 4: Convergence curves of the normalized residuals of
the solution of the frequency-domain wave propagation prob-
lem using the CGMN method (black solid curve) and the pre-
conditioned CGMN method (red dotted curve) for f = 5 Hz.

Figure 5: Complexity analysis of the CGMN method (lower
red dotted curve) with and (upper red dotted curve) without the
preconditioner. The black solid line and the blue ”x”-marked
line represent respectively the linear increase and trend line.

cost of each iteration. Indeed, the matrix AP has 45 non-zero
values per row whereas the matrix A has only 13 non-zero en-
tries. The improvement of the convergence profile of the resid-
uals for f = 5 Hz is shown in Figure 4. A complexity analysis
of the CGMN method is presented in Figure 5. The number
of iterations Niter performed by the preconditioned and non-
preconditioned CGMN method is plotted as a function of N on
a log-log scale. The computational complexity is sub-linear in
N, which is consistent with previous studies (Li et al., 2014).
Based on this analysis, the CGMN complexity is evaluated as
Niter ≈ 20.9 N0.79. Using the preconditioner, the complexity is
improved to Niter ≈ 5.9 N0.71.

A multiple right-hand side strategy
The gain in computational time and number of iterations of
the single seed method is evaluated for f = 5 Hz yielding 209
grid points along the vertical direction, 1113 grid points along
the horizontal direction and a space grid step d = 60 m. The
number of sources Nrhs is set to 1000. The sources are located
at zs = 180 m and regularly spaced by a space grid step d along
the horizontal direction. The blending matrix M is defined with
γ = 0.2.

Applying the single seed method as it has been introduced in
the previous section over all the Nrhs right-hand sides leads to
poor results in terms of computational time. The large number
of sources makes the computational cost related to the addi-
tional projection operations (lines 7 to 12 in algorithm 1) too
expensive, and not compensated by the reduction of the over-
all number of iterations. Therefore, we apply the seed method

Figure 6: Number of iterations performed to solve each linear
system with the subset of RHS (a), residual convergence of the
linear systems with the subset of RHS (b).

only on smaller subsets of right-hand sides. We divide the
1000 RHS into 50 subsets of 20 RHS and apply our method
sequentially on each subset. The improvement of the conver-
gence profile when solving the linear systems with the subset
of RHS is shown in Figure 6. Linear systems using the pro-
jected initial guesses converge in an increasingly smaller num-
ber of iterations. Compared to the CGMN method using the
preconditioner, the computational time is then divided by a fac-
tor 1.5 whereas the number of iterations is divided by a factor
1.6. Compared to the CGMN method without preconditioner,
the computational time is divided by a factor 2.9 whereas the
number of iterations is divided by a factor 10.

CONCLUSION
A sparse approximate inverse preconditioner for frequency-
domain wave equation and a MRHS strategy are presented
in this study. The preconditioner is built as an approximate
inverse of a strongly damped frequency-domain wave prop-
agation operator. Its evaluation relies on the solution of lo-
cal systems of small size which can be performed indepen-
dently making its construction highly scalable. The precondi-
tioner accelerates substantially the convergence of the CGMN
solver. However this gain is compensated by the increase of
the computational cost of each iteration and the final speed-up
is around 2.2 for a system of 14 million unknowns. The single
seed method is used to accelerate the solution of the system
for 1000 right-hand-sides. When applied to small subsets of
the right-hand sides, an additional speed up of 1.5 is observed.

Further work will be dedicated to the application of the pre-
conditioner to 2D and 3D realistic elastic systems, and adapted
to the parallel version of the CGMN algorithm, named as the
CARP-CG method (Gordon and Gordon, 2010). Block con-
jugate gradient method (O’Leary, 1980) will be investigated
together with the single seed method for improving the MRHS
strategy. Ultimately, this method should serve as an efficient
forward modeling engine for performing 3D frequency-domain
FWI in the elastodynamics approximation.
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