
HAL Id: tel-01681008
https://theses.hal.science/tel-01681008v2

Submitted on 11 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing the memory behavior of parallel scientific
applications
David Beniamine

To cite this version:
David Beniamine. Analyzing the memory behavior of parallel scientific applications. Distributed,
Parallel, and Cluster Computing [cs.DC]. Université Grenoble Alpes, 2016. English. �NNT :
2016GREAM088�. �tel-01681008v2�

https://theses.hal.science/tel-01681008v2
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial :

Présentée par

David Beniamine

Thèse dirigée par Bruno Raffin
et codirigée par Guillaume Huard

préparée au sein LIG
et de EDMSTII

Analyzing the memory behavior of
parallel scientific applications

Thèse soutenue publiquement le 5 décembre 2016
devant le jury composé de :

Pr, Martin Quinson
Professor at ENS Rennes, Président
Pr, Jesús Labarta Mancho
Professor at Universitat Politècnica de Catalunya, Rapporteur
Pr, Raymond Namyst
Professor at University of Bordeaux, Rapporteur
Dr, Lucas M. Schnorr
Associate professor at Institute of Informatics of the Federal University of Rio
Grande do Sul, Examinateur
Pr, Bruno Raffin
Professeur at INRIA Grenoble, Directeur de thèse
Dr, Guillaume Huard
Associate professor at Grenoble Alpes University, Co-Directeur de thèse

Acknowledgments

I first would like to thank the members of my jury for the time they spent on
my work and for their helpful remarks.

I would like to thank all the members of the Informatica team of Porto Alegre
for welcoming me there. Especially Mathias and Marcos, I enjoyed working with
you guys, it has been a great experience.

Eu gostaria de agradecer todos os meus colegas em Porto Alegre que me re-
ceberam de braços abertos e fizeram da minha estadia um período inesquecível.
Dentre outros, gostaria de agradecer todos os moradores do condomínio Ri-
achuelo e os visitantes regulares pelos momentos divertidos e discussões inter-
essantes. And thank you Fernando for the translation.

Je tiens à remercier tous les membres présents et passés des équipes Polar-
is/Moais/Datamove/Mescal, travailler avec vous à été très enrichissant, scien-
tifiquement comme humainement. Et surtout merci à Annie Simon et Christine
Guimet qui plus d’une fois ont rattrapé mes bêtises administratives. Je voudrais
aussi remercier les enseignants de l’UFR IM2AG qui m’ont motivé à pousser les
études jusqu’à la thèse et ont continué à suivre mon évolution, en particulier
Anne Rasse. Dans un autre registre, tous les coincheur.euse.s grâce à qui les
pauses midi finissent souvent en fou rire et concours de mauvaise foi. Tous mes
co-bureaux même temporaires qui ont rendu les heures de déprime de rédaction
ou de debug supportables et souvent même agréables. Plus particulièrement
Raphaël (avec ou sans son genou) et Alexis pour tous les interminables débats
mi-Trolls mi-sérieux et les croissants du lundi. Swann qui rentre à la fois dans
toutes ces catégories et dans aucune, et sans qui je n’aurais peut-être pas at-
terri dans ce laboratoire. Enfin je voudrais remercier mes encadrants et surtout
Guillaume pour ces 5 années durant lesquelles il m’a accompagné et encouragé
dans mon travail, qu’il s’agisse de la thèse ou d’autres projets, toujours avec
beaucoup d’humour, parfois même sur un vélo ou derrière un verre (heureuse-
ment jamais les deux à la fois). Bref j’ai eu de la chance d’avoir un aussi bon

iii

Acknowledgments

encadrant1, j’espère vraiment que nous continuerons à travailler ensemble.
Je voudrais finalement remercier tou.te.s mes ami.e.s qui depuis des années

me supportent avec tous mes défauts et sont toujours présent malgré tout. Tous
les sportifs occasionnels ou réguliers, sans nos sorties vélo, via, rando, etc. je
serais probablement devenu fou. Parmi eux je tiens à remercier spécifiquement
Seb pour sa capacité à transformer n’importe quelle “petite sortie d’une heure”
en aventure, parfois en y laissant une roue, des sacoches ou carrément un genou
(encore un). Je tiens aussi à remercier mes parents et Sacha pour avoir subi mon
incapacité à organiser ma vie hors de la thèse sans jamais se plaindre ni m’en
tenir rigueur mais aussi pour leurs encouragements. Enfin, Flo, je ne peux pas
imaginer ce qu’auraient été ces dernières années ni comment aurait fini cette
thèse sans toi, je ne peux pas non plus te dire tout ce pour quoi je veux te
remercier sans doubler (au minimum) la taille de ce manuscrit, alors je dirais
juste: “thanks for all the fish” (mais pas “so long”, bien au contraire).

1 “le mauvais encadrant, il voit un thésard, il l’encadre, alors que le bon encadrant, il voit
un thésard, il l’encadre, mais c’est un bon encadrant. . . ”

iv

Abstract

Since a few decades, to reduce energy consumption, processor vendors builds
more and more parallel computers. At the same time, the gap between pro-
cessors and memory frequency increased significantly. To mitigate this gap,
processors embed a complex hierarchical caches architecture. Writing efficient
code for such computers is a complex task. Therefore, performance analysis has
became an important step of the development of applications performing heavy
computations.

Most existing performance analysis tools focuses on the point of view of the
processor. Theses tools see the main memory as a monolithic entity and thus
are not able to understand how it is accessed. However, memory is a common
bottleneck in High Performance Computing (HPC), and the pattern of memory
accesses can impact significantly the performance. There are a few tools to
analyze memory performance, however theses tools are based on a coarse grain
sampling. Consequently, they focus on a small part of the execution missing
the global memory behavior. Furthermore, these coarse grain sampling are not
able to collect memory accesses patterns.

In this thesis we propose two different tools to analyze the memory behavior
of an application. The first tool is designed specifically for Non-Uniform Mem-
ory Access (NUMA) machines and provides some visualizations of the global
sharing pattern inside each data structure between the threads. The second
one collects fine grain memory traces with temporal information. We can visu-
alize theses traces either with a generic trace management framework or with
a programmatic exploration using R. Furthermore we evaluate both of these
tools, comparing them with state of the art memory analysis tools in terms of
performance, precision and completeness.

vii

Résumé

Depuis plusieurs décennies, afin de réduire la consommation énergétique des
processeurs, les constructeurs fabriquent des ordinateurs de plus en plus paral-
lèles. Dans le même temps, l’écart de fréquence entre les processeurs et la mé-
moire a significativement augmenté. Pour compenser cet écart, les processeurs
modernes embarquent une hiérarchie de caches complexe. Développer un pro-
gramme efficace sur de telles machines est une tâche difficile. Par conséquent,
l’analyse de performance est devenue une étape majeure lors du développement
d’applications exécutant des calculs lourds.

La plupart des outils d’analyse de performances se concentrent sur le point de
vue du processeur. Ces outils voient la mémoire comme une entité monolithique
et sont donc incapables de comprendre comment elle est accédée. Cependant,
la mémoire est une ressource critique et les schémas d’accès à cette dernière
peuvent impacter les performances de manière significative. Quelques outils
permettant l’analyse de performances mémoire existent, cependant ils sont basés
sur un échantillonnage à large grain. Par conséquent, ces outils se concentrent
sur une petite partie de l’exécution et manquent le comportement global de
l’application. De plus, l’échantillonnage à large granularité ne permet pas de
collecter des schémas d’accès.

Dans cette thèse, nous proposons deux outils différents pour analyser le
comportement mémoire d’une application. Le premier outil est conçu spéci-
fiquement pour pour les machines NUMA (Not Uniform Memory Accesses) et
fournit plusieurs visualisations du schéma global de partage de chaque structure
de données entre les flux d’exécution Le deuxième outil collecte des traces mé-
moires à grain fin avec information temporelles. Nous proposons de visualiser
ces traces soit à l’aide d’un outil générique de gestion de traces soit en utilisant
une approche programmatique basé sur le langage R. De plus nous évaluons ces
deux outils en les comparant à des outils existant de trace mémoire en terme de
performances, précision et de complétude.

ix

Résumé étendu

Les scientifiques de toute les disciplines utilisent des ordinateurs pour faciliter
leurs calculs et exécuter des simulations afin de tester leurs hypothèses. Plus
la science avance, plus ces simulations deviennent complexes, les scientifiques
ont donc toujours besoin de plus de capacité de calcul. Pour augmenter la
capacité de calcul de leurs processeurs, les constructeurs ont dans un premier
temps augmenté la fréquence de ces derniers. Cependant cette approche a vite
été stoppée par plusieurs limites physiques. Afin de contourner ces limites, les
constructeurs se sont mis à concevoir des processeurs parallèles.

La première limite provient de l’énergie nécessaire pour augmenter la fréquence
d’un processeur. En effet, d’après Intel, augmenter la fréquence d’un processeur
de 20 % n’augmente les performances que d’un facteur 1.13 mais requière 1.73
fois plus d’énergie. A l’opposé, utiliser un processeur identique mais avec deux
cœurs de calculs au lieu d’un en diminuant la fréquence de ce dernier de 20 %,
permet d’obtenir 1.73 fois plus de performances pour uniquement 1.02 fois plus
d’énergie. La deuxième limite est la vitesse de la lumière : en effet les données
doivent transiter de la mémoire jusqu’au processeur et ne peuvent pas se dé-
placer plus vite que la lumière. Si cette limite peut paraître élevée, elle a déjà été
atteinte. En effet si nous voulons construire une machine séquentielle capable
de traiter 1 To de données par seconde, du fait de cette limite, il faudrait faire
tenir 1 To dans une aire de 0.3 mm2, ce qui signifie que 1 bit occupe uniquement
0.1 nm, la taille d’un petit atome.

Si ces processeurs parallèles sont en théorie plus puissants que les séquentiels,
les utiliser efficacement est bien plus complexe et relève de la responsabilité
des développeur.euse.s. De plus, depuis plusieurs années nous sommes face
à une troisième limite physique. Nous somme capable de réduire la taille des
transistors, donc d’augmenter le nombre de transistors sur une puce. Cependant,
plus de transistors signifie plus de chaleur et la quantité de chaleur qu’une puce
peut produire avant que des effets indésirables tel que des courants de fuites

xi

Résumé étendu

se produisent. De ce fait, les constructeurs font désormais des machines avec
plusieurs puces (processeurs), chacune étant composée de plusieurs cœurs.

Dans le même temps, les processeurs sont devenus significativement plus
rapides que la mémoire; pour palier à cet écart, ils embarquent des petites mé-
moires cache. Ces caches sont conçus pour tirer profit de deux schémas d’accès
communs à la plupart des programmes : la localité spatiale et temporelle qui
correspond respectivement au fait d’accéder à des données proches et d’accéder
plusieurs fois aux mêmes données dans un temps restreint. Une des choses qui
rend ces caches plus rapides que la mémoire est leur taille, plus ils sont petits,
plus il est rapide d’y trouver une donnée. C’est pourquoi les processeurs embar-
quent plusieurs niveaux de cache (en général trois). Le premier est très petit
et rapide, quelques kilo octets, et conçu pour des accès très proches (boucles
sur un tableau), le dernier plus grand et lent, environ 10 Mo, et conçu pour des
accès plus espacés. Comme les processeurs sont multi-cœurs, ces caches sont
organisés hiérarchiquement, le dernier niveau est partagé par tous les cœurs,
et chaque cœur a accès à un cache de niveau 1 privé. Cette hiérarchie permet
d’isoler les données privées et de tirer profit des partages correctement struc-
turés; de plus cela réduit la bande passante nécessaire entre les caches. Pour
des raisons similaires, les ordinateurs comportant plusieurs processeurs ont une
organisation mémoire non uniforme (NUMA) ce qui signifie que chaque puce a
un accès privilégié à une sous-partie de la mémoire. Par conséquent, les schémas
d’accès à la mémoire d’une application peuvent avoir un impact significatif sur
ses performances.

En fin de compte, écrire un programme efficace nécessite de prendre en
compte l’architecture de la machine qui va l’exécuter, les schémas d’accès et leur
adéquation, même si le programme est séquentiel. Bien qu’il y ait des règles
générales : privilégier les accès séquentiels, travailler sur des petits ensembles
de données, cette tâche est extrêmement complexe même pour des spécialistes
de calcul haute performance (HPC). Les outils d’analyse de performances sont
donc extrêmement utiles pour comprendre et optimiser les performances d’une
application.

La première étape lors de l’optimisation des performances d’une application
consiste à identifier les points chauds, c’est à dire les parties du code qui sont
inefficaces et comprendre la nature des erreurs qui entrainent cette inefficacité.
C’est uniquement après cette étape qu’il est possible de décider quelle partie du
code peut être améliorée et comment. Il existe de nombreux outils conçus pour
analyser les performances d’une application [Pillet et al., 1995, Browne et al.,
2000, Shende and Malony, 2006, Treibig et al., 2010, Adhianto et al., 2010], la
plupart d’entre eux utilisent les compteurs de performances pour collecter la
trace d’une application. Ces compteurs sont des registres processeurs dédiées à
l’analyse de performances qui permettent la collecte efficace de données concer-
nant les performances.

Dans cette thèse nous avons mené une étude de cas sur l’analyse de perfor-
mance d’un outil de simulation physique : Simulation Open Framework Archi-
tecture (Sofa). Afin d’analyser les performances de cette application, nous avons
utilisé “Like I Knew What I am Doing” (Likwid) [Treibig et al., 2010], un outil
classique d’analyse de performances, et nous avons tracé plusieurs métriques
concernant l’utilisation de la mémoire. Avec cet outil nous avons été capable
de détecter des problèmes de performances liés à la mémoire, mais il était im-
possible de trouver leur position dans la mémoire et les schémas responsable

xii

Résumé étendu

des mauvaises performances. En effet, si ces compteurs peuvent s’avérer très
utiles, ils voient la mémoire comme une entité monolithique ce qui n’est pas le
cas pour les architecture récentes. Par conséquent, des outils spécifiques doivent
être utilisés pour analyser les performances du point de vue de la mémoire.

Analyser les performances d’une application au regard de la mémoire soulève
deux défis techniques : le premier est la collecte de la trace elle-même. C’est
une tâche compliquée car il n’existe pas de matériel comparable aux compteurs
de performances pour tracer les accès mémoire. De plus, chaque instruction
d’un programme déclenche au moins un accès mémoire : collecter chaque accès
mémoire d’une application n’est donc pas possible. Par ailleurs, l’absence de
matériel pour tracer les accès mémoire implique qu’un outil de collection peut
facilement devenir envahissant et modifier significativement le comportement de
l’application analysée. Le deuxième défi technique consiste à présenter la trace
de manière simple et compréhensible. En effet, les traces mémoire sont extrême-
ment complexes puisqu’elles sont étalées sur cinq dimensions : le temps, l’espace
d’adressage, la localité processeur, les flux d’exécution et le type d’accès. De
plus, certaines de ces dimensions ne sont pas triviales à représenter, par exem-
ple l’espace d’adressage peut être physique ou virtuel, et la localité processeur
est organisée de manière hiérarchique. Finalement, les outils d’analyse mémoire
doivent extraire les données pertinentes et les présenter de manière compréhen-
sible.

Un outil idéal d’analyse mémoire devrait être capable de présenter les sché-
mas d’accès mémoire d’un programme à ses développeur.euse.s, en incluant des
informations concernant le partage de données entre flux d’exécution et la local-
isation des accès sur l’architecture de la machine. De plus, un tel outil devrait
mettre en avant les schémas inefficaces.

Plusieurs outils ont été conçus dans le but d’analyser les performances mé-
moire [Lachaize et al., 2012, Liu and Mellor-Crummey, 2014, Giménez et al.,
2014], cependant la plupart d’entre eux collectent la trace à l’aide de la tech-
nique d’échantillonnage d’instructions. L’échantillonnage d’instructions est une
technique assistée par le matériel, qui permet de tracer certaines instructions
à une fréquence[Drongowski, 2007, Levinthal, 2009] définie. Si cette méthode
permet de collecter rapidement une trace, elle manque la plupart de l’espace
d’adressage. De ce fait, il est impossible de visualiser les schémas d’accès mé-
moire à partir de la trace collectée.

Contributions
Dans cette thèse, nous proposons deux outils pour analyser le comportement
mémoire d’une application. Notre premier outil, nommé Tool for Analyzing the
Behavior of Applications Running on NUMA ArChitecture (Tabarnac), collecte
des traces globales de l’utilisation de la mémoire sans informations temporelles et
présente une vue d’ensemble des schémas de partage à l’intérieur des structures
de données entre les flux d’exécution. Le deuxième, nommé Memory Organisa-
tion Cartography & Analysis (Moca), collecte des traces mémoire génériques à
grain fin, avec informations temporelles. Nous proposons deux approches dif-
férentes pour visualiser les traces collectées par Moca, la première est basée sur
FrameSoc, un outil existant d’analyse de gestion de traces, la deuxième approche
est basée sur une exploration programmatique utilisant le langage R.

xiii

Résumé étendu

Conduire une campagne d’expérience en informatique peut être extrêmement
simple, mais le faire de manière reproductible requiert davantage de planifica-
tion et de méthodologie. L’analyse de performances, qu’elle soit conduite dans le
but d’optimiser une application ou pour évaluer un outil requiert une campagne
d’expériences complète. Dans cette thèse, nous avons porté une attention parti-
culière à rendre nos expériences aussi reproductibles que possible. Dans ce but,
nous décrivons clairement notre méthodologie expérimentale et distribuons tous
les fichiers requis afin de reproduire chaque étape des expériences présentées.

Vue d’ensemble des schémas de partage

Nous avons conçu Tabarnac afin d’analyser les schémas de partage d’applications
s’exécutant sur des machines NUMA. Cet outil est basé sur une instrumentation
binaire légère pré-existante, elle-même basée sur la bibliothèque Pin d’Intel.
Cette instrumentation compte le nombre d’accès de chaque flux d’exécution à
chaque page mémoire d’une application. Nous avons ajouté à cette bibliothèque
la capacité de retrouver des informations contextuelle afin d’associer les adresses
mémoire à des structures de données (statiques ou allouées). De plus, nous
avons conçu plusieurs visualisations simples et compréhensibles pour les traces
collectées. En utilisant ces visualisation, nous avons pu identifier des problèmes
d’utilisation mémoire et augmenter de 20 % les performances d’une application
de test largement étudiée.

Ces résultats ont été publiés dans un article à Visual Performance Analysis
(VPA) 2015, un séminaire de Super Computing [Beniamine et al., 2015b]. De
plus, Tabarnac est distribué en tant que logiciel libre sous la licence General
Public License (GPL) : https://github.com/dbeniamine/Tabarnac. Ce tra-
vail est le fruit d’une collaboration avec M. Diener et P.O.A Navaux de l’équipe
informatica de l’Universidade Federal do Rio Grande do Sul (UFRGS), Porto
Alegre, Bresil, financé par CAMPUS France.

Collecte de traces mémoires à grain fin

Moca est notre contribution principale. Cette outil est basé sur un module noyau
Linux pour collecter efficacement des traces mémoires à grain fin. Ce module
noyau intercepte les défauts de pages, qui sont déclenchés par le processeur et
gérés par le système d’exploitation, afin de tracer les accès mémoire. Comme
ces défauts de pages n’ont pas lieu fréquemment, il injecte aussi périodiquement
de faux défauts de pages. De plus nous avons porté notre bibliothèque qui trace
les structures de données dans Moca en s’affranchissant de sa dépendance à Pin.
Nous avons aussi exécuté une campagne expérimentale approfondie, comparant
Moca à Tabarnac ainsi que deux outils existants de collecte de traces mémoire,
en termes de surcout, précision et complétude.

Ce travail est le sujet de deux rapport de rechercher Inria [Beniamine et al.,
2015a, Beniamine and Huard, 2016] et a été soumis à Cluster, Cloud and Grid
Computing (CCGRID) 2017. Comme l’outil précédent, Moca est distribué sous
licence GPL : https://github.com/dbeniamine/Moca.

xiv

https://github.com/dbeniamine/Tabarnac
https://github.com/dbeniamine/Moca

Résumé étendu

Analyse de traces mémoires à grain fin
Nous proposons deux approches différentes pour visualiser les traces de Moca.
La première est basée sur un outil générique de gestion et d’analyse de traces
: FrameSoc [Pagano and Marangozova-Martin, 2014]. Plus particulièrement,
elle repose sur Ocelotl [Dosimont et al., 2014], un outil FrameSoc qui agrège
les parties similaires de la trace et présente une vue globale simplifiée qui met
en avant les anomalies. Avec cet outil nous avons pu identifier des schémas
inefficaces en mémoire connus sur une application de test. Cependant nous
avons rencontré plusieurs problèmes de passage à l’échelle dus à la représentation
générique de la trace dans FrameSoc.

Afin de dépasser ces limites, nous avons aussi exploré plusieurs traces Moca
avec une approche programmatique utilisant le langage R. Cette approche per-
met d’utiliser des filtres et zooms avancés, et de concevoir des visualisations
spécifiques pour chaque trace. Avec cette méthode, nous avons pu analyser des
traces plus complexes et détecter des comportements mémoires inconnus et in-
téressants. Afin d’être reproductibles, ces analyses sont sauvées et versionnées
dans un cahier de laboratoire publiquement accessible sur github :
https://github.com/dbeniamine/Moca_visualization.

Organisation de cette thèse
Cette thèse est organisée de la manière suivante : dans le chapitre 2, nous
présentons une étude de cas sur l’analyse de performances de Sofa, un outil de
simulation physique. Ce chapitre commence par présenter Sofa, ses spécificités
ainsi que les tentatives précédentes de l’optimiser et souligne le besoin d’analyser
les performances de Sofa. Ensuite, nous discutons des outils génériques d’analyse
de performances existants et notre méthodologie expérimentale. Cette étude de
cas met en avant le besoin d’outils spécifiques pour l’analyse de performance
du point de vue de la mémoire. Dans le chapitre 3, nous présentons certaines
spécificités des architectures mémoires récentes, des problèmes de performances
classique liés à l’utilisation de la mémoire et des façons de les contourner. Puis
nous traitons des outils d’analyse de performances mémoire existants, de leurs
limites et ce que l’on attendrais d’un outil idéal. Après cela nous présentons
Tabarnac, notre première contribution, dans le chapitre 4. Nous présentons
sa conception et son utilisation, évaluons son surcout et finalement présentons
des optimisations de performances réalisées grâce à la connaissance acquise en
analysant des traces produite par Tabarnac. Dans le chapitre 5, nous décrivons
notre contribution principale : Moca. Nous expliquons d’abord en détail les
mécanismes utilisés par Moca, sa conception interne et comment il répond aux
défis soulevés par la collecte de traces mémoire à grain fin. Puis, nous proposons
une analyse expérimentale approfondie comparant Moca à deux outils existants
de collecte de traces mémoires ainsi qu’à Tabarnac en termes de performances,
précision et complétude. Le chapitre 6 traite de la visualisation des traces de
Moca. Nous présentons d’abord FrameSoc et Ocelotl puis les résultats obtenus
avec ces outils. Après cela nous proposons une approche programatique et
présentons les visualisations obtenues avec cette approche. Enfin nous tirons nos
conclusions et proposons des perspectives de travail futures dans le chapitre 7.

xv

https://github.com/dbeniamine/Moca_visualization

Outline

Acknowledgments iii

Abstract vii

Résumé ix

Résumé étendu xi

I Introduction 3

1.1 Contributions . 6
1.2 Thesis organization . 7

II Case Study 11

2.1 Motivations . 12
2.2 Profiling tools . 15
2.3 Experimental methodology . 16
2.4 SOFA Analysis . 25

III Memory Performance Analysis 31

3.1 Architectural considerations . 32
3.2 Existing tools . 39
3.3 Conclusions . 43

IV Collecting and Analyzing Global Memory Traces 45

4.1 Design . 46

xvii

Outline

4.2 Experimental validation . 50
4.3 Results and discussion . 57

V Collecting Fine Grain Memory Traces 61

5.1 Moca components . 62
5.2 Background knowledge . 63
5.3 Design . 63
5.4 Experimental validation . 70
5.5 Conclusions . 78

VI Analyzing Fine Grained Memory Traces 81

6.1 Interactive visualization of aggregated trace 82
6.2 Programmatic exploration . 90
6.3 Conclusions . 96

VII Conclusions and perspectives 99

7.1 Contributions . 100
7.2 Perspectives . 101

Contents 105

List of Figures 109

List of Tables 113

Acronyms 115

Glossary 119

Bibliography 125

xviii

Chapter I

Introduction

Contents

1.1 Contributions .. 6
1.1.1 Global overview of the memory sharing patterns..... 6
1.1.2 Fine grain memory traces collection 6
1.1.3 Fine grain memory traces analysis 7

1.2 Thesis organization 7

3

I – Introduction

Scientists from all fields use computers to ease their calculations and run simu-
lations to test their hypothesis. These simulations are more and more complex
as science advances and therefore requires always more computing power. In a
first time, computer vendors increased this power by increasing the frequency
of their Central Processing Units (CPUs), but this approach reached quickly
several hard physical limits. To overpass them, they started to build parallel
processors.

The first limit comes from the energy required to increase the frequency of a
CPU. Indeed, according to Intel [Ganesan, 2016], over-clocking a processors by
20 % only increase the performance by a factor 1.13 but requires 1.73 times more
energy. At the opposite, using an identical processor with two cores instead of
one with a frequency 20 % lower provides 1.73 times more performance for only
1.02 times more energy. The second limit is the speed of light: data have to
travel from memory to the CPU and cannot go faster than the speed of light.
While this limit may seem high, we have already reached it. Indeed, if we want
to build a sequential machine able to process 1 TByte of data per second, due to
this limit it would require to stick 1 TByte of data on an area of 0.3 mm2 which
mean that 1 bit occupies only 0.1 nm, the size of a small atom.

While these parallel processors are theoretically more powerful than sequen-
tial ones, it is way more complex to use them efficiently and it is the responsi-
bility of the developer to do so. Moreover since a few years we are reaching yet
another physical limitation. We are capable of reducing the size of transistors,
hence increasing the number of transistors in a chip. Still, more transistors
means more heat, and there is a maximum of heat that an area can produce
before unexpected effects such as leakage occurs. As a result, vendors are now
building machines with several sockets, each one embedding several cores.

At the same time, processors became significantly faster than memory, thus,
CPUs embed small caches memory to limit the impact of this gap on perfor-
mance. Theses caches are designed to benefit from two patterns that occurs in
most programs: spacial and temporal locality, which respectively means using
data close in memory and using several times the same data in a short time
lapse. One of the things that makes the caches faster than the main memory is
their size, the smaller they are, the faster it is to access them. Therefore CPUs
embed several level of caches (usually three), the first level is very fast and small
few kilo bytes and designed for very close accesses (loop on an array), while the
last level is bigger and slower, about 10 MBytes and designed for more distant
accesses. As the CPUs embed several cores, theses caches are organized hierar-
chically, the last level is shared by all cores while each core has a private access
to a level one cache. This hierarchy helps isolating private data and benefit
from well structured sharing, moreover it reduces the required bandwidth in the
caches. For similar reasons, computers with several sockets have a Non-Uniform
Memory Access (NUMA) which means that each socket has a privileged access
to a subpart of the memory. Consequently, the memory access patterns of an
application can significantly impact its performance [Drepper, 2007]. Indeed,
four threads working on small and separate piece of data will benefit from their
private caches while patterns such as all to all sharing will result in a lot of
conflicts in the caches. Moreover, if some sharing occurs between threads that
are close in this hierarchy, the shared caches will contain shared data and one
thread will benefit from the accesses of the other. At the opposite, if theses
threads are far in the hierarchy, the sharing will generate some noise and maybe

4

–

some contention on the memory bus.
In the end, writing an efficient program requires to consider the architecture

of the computer that will run it, and the patterns, and their matching, even if
the program is sequential. Although there are some general rules: privileging
sequential accesses, working on small set of data, this task is extremely com-
plex, even for High Performance Computing (HPC) specialists, as every accesses
matters. Thus, performance analysis tools are extremely helpful to understand
and optimize the performance of any application.

The first step to optimize the performance of an application is to find the
hotspots, which means the parts of code that are inefficient and understand
their nature. Only at this point it is possible to decide what part of code
should be improved and how. There are many tools designed to analyze the
performance of an application [Pillet et al., 1995, Browne et al., 2000, Shende
and Malony, 2006, Treibig et al., 2010, Adhianto et al., 2010] most of them rely
on performance counters to collect a trace of the application. These are CPU
register dedicated to performance analysis which enable efficient collection of
performance data.

In this thesis we ran a case study on the performance analysis of a physical
simulation framework: Simulation Open Framework Architecture (Sofa). To
analyze the performance of this application, we used “Like I Knew What I am
Doing” (Likwid) [Treibig et al., 2010], a classical performance analysis tool and
traced several metrics concerning the memory usage. With this tool we are
able to detect memory related performance issues and guess the nature of some
of them, but it was impossible to spot their location on the memory and the
patterns responsible for the bad performance. Indeed, if these counters can be
very useful, they consider the memory as a monolithic entity which is not the
case on recent architecture. Thus, specific tools should be used for analyzing
performance in view of memory.

Analyzing an application performance in view of the memory raises two
challenges: the first one is the collection of the trace itself. This is a complex
task as there is no hardware comparable to the performance counters for tracing
memory accesses. Furthermore, every instructions of a program triggers at
least one memory access, thus, collecting every single memory accesses of an
application is not possible. Additionally, due to the lack of hardware tracing, a
memory collection tool might easily become invasive and significantly change the
behavior of the analyzed application. The second challenge is the presentation
of the trace. Indeed, memory traces are extremely complex as they are spread
over five dimensions: time, address space, CPU location, threads and access
type. Furthermore, some of these dimensions are not trivial to represent, for
instance the address space can be virtual or physical and the CPU location
is organized hierarchically. In the end, memory analysis tools have to extract
pertinent data and present them in an understandable way.

An ideal memory analysis tool should be able to present the memory access
patterns of a program to its developer, including information about data sharing
between threads and the location of the access on the machine architecture.
Furthermore, such tool should highlight inefficient patterns.

Several tools were designed for memory performance analysis [Lachaize et al.,
2012, Liu and Mellor-Crummey, 2014, Giménez et al., 2014], however most of
them addresses the trace collection challenge by doing an instruction sampling.
Instruction sampling is a hardware based technique that enable tracing some

5

I – Introduction

instructions at a defined frequency [Drongowski, 2007, Levinthal, 2009]. While
this method enables efficient tracing, it does not trace the whole memory space
addressed. As a result, it is impossible to visualize memory patterns from the
collected trace.

1.1 Contributions

In this thesis we propose two tools to analyze the memory behavior of an ap-
plication. Our first tool, called Tool for Analyzing the Behavior of Applications
Running on NUMA ArChitecture (Tabarnac), collects global memory traces
without temporal information and presents an overview of the sharing patterns
inside the data structures, between the threads of the execution. The sec-
ond one, called Memory Organisation Cartography & Analysis (Moca), collects
generic, fine grained memory traces with temporal information. We propose
two approaches to visualize Moca traces, the first one is based on FrameSoc
an existing generic trace analysis framework, while the second one relies on a
programmatic exploration using R.

Conducting experiments in computer science can be extremely simple, but
doing it in a reproducible way requires more planning and methodology. Per-
formance analysis, whether it is for optimizing an application or to evaluate a
tool requires to do complete experimental campaigns. In this thesis, we take a
particular attention at making our experiments as reproducible as possible. To
do so, we clearly describe our experimental methodology and distribute the files
required to reproduce each step of the presented experiments.

1.1.1 Global overview of the memory sharing patterns
We designed Tabarnac to analyze the memory sharing patterns of applications
running on NUMA machines. This tool relies on an existing, lightweight binary
instrumentation, based on the Intel Pin library, which counts how much each
thread of an application accesses each page. We added to this library the ca-
pacity to retrieve contextual information to associate memory addresses to data
structures (static and allocated). Moreover we designed several comprehensive
visualizations of the collected traces. Using these visualizations we were able
to identify some performance issues and improve the performance of the NAS
Parallel Benchmarks (NPB), IS by 20 %.

These results were published in an article at Visual Performance Analysis
(VPA) 2015 a Super Computing workshop [Beniamine et al., 2015b]. Further-
more Tabarnac is distributed as a free software under the General Public License
(GPL): https://github.com/dbeniamine/Tabarnac. This work is the result
of a collaboration with M. Diener and P.O.A Navaux from the Parallel and Dis-
tributed Processing Group (GPPD) of the Universidade Federal do Rio Grande
do Sul (UFRGS), Porto Alegre, Brazil, financed by CAMPUS France.

1.1.2 Fine grain memory traces collection
Moca is our main contribution. This tool relies on a Linux kernel module
to collect efficiently fine grain memory traces. This kernel module intercepts

6

https://github.com/dbeniamine/Tabarnac

Thesis organization – 1.2

page faults, which are triggered by the hardware and handled by the Oper-
ating System (OS), to trace memory accesses. As these page faults does not
occur frequently, it also injects periodically false page faults. It handles memory
traces in the kernel space and flush them to userspace periodically. Moreover
we incorporated our data structures tracking library in Moca without the de-
pendency to Pin. Additionally we ran an extensive experimental comparison of
Moca comparing it to Tabarnac and two state of the art memory analysis tools
in terms of overhead, trace precision and completeness.

This work is the subject of two Inria research reports [Beniamine et al.,
2015a, Beniamine and Huard, 2016] and has been submitted at Cluster, Cloud
and Grid Computing (CCGRID) 2017. As the previous tool, Moca is distributed
under the GPL license: https://github.com/dbeniamine/Moca.

1.1.3 Fine grain memory traces analysis
We proposed two different approaches to visualize Moca traces. The first one is
based on an existing general trace management and analysis framework called
FrameSoc [Pagano and Marangozova-Martin, 2014]. More precisely, it relies on
Ocelotl [Dosimont et al., 2014] a FrameSoc tool that aggregates similar parts
of the trace and present a simplified overview highlighting anomalies. With
this tool we were able to identify classical inefficient memory patterns on a test
application. Nevertheless we encountered several scalability issues due to the
generic representation of the trace inside the tool.

To overpass theses scalability issues, we also explored several Moca traces
with a programmatic approach using R. This approach enables using advanced
filtering and zooms, and to design specific visualization for each traces. With
this method we were able to explore more complex traces and detect some
interesting and unknown memory patterns. For reproducibility, these analysis
are saved and versioned in a labbook publicly available at github:
https://github.com/dbeniamine/Moca_visualization.

1.2 Thesis organization
The remaining of this thesis is organized as follow: in Chapter 2 we present a
case study on the performance analysis of Sofa, a physical simulation tool. This
chapter first introduces Sofa, its specificities and previous attempts to optimize
it, and highlight the need for performance analysis on Sofa. We then discuss the
existing generic performance analysis tools and our experimental methodology.
This case study emphasize the need for specific memory performance analysis
tools. In Chapter 3, we introduce some specificities of recent memory archi-
tectures, usual memory performance issues and workarounds. Then we discuss
the existing memory performance analysis tools, their limitations and what we
would expect from an ideal tool. After that we present Tabarnac, our first con-
tribution, in Chapter 4. We discuss its design and usage, evaluate its overhead
and finally present some performance optimization done with the knowledge
obtained thanks to Tabarnac. In Chapter 5, we describe our main contribution,
Moca. We first explain in details the mechanisms used by Moca, its internal
design and how it handles the challenges raised by fine grain memory trace col-
lection. Then we provide an extensive experimental evaluation comparing Moca

7

https://github.com/dbeniamine/Moca
https://github.com/dbeniamine/Moca_visualization

I – Introduction

to two state of the art memory analysis tools and Tabarnac. Chapter 6 discusses
the visualization of Moca traces. We first introduce FrameSoc and Ocelotl and
then discuss the results obtained with these tools. Then we propose a pro-
grammatic approach and present the visualizations and results obtained with
it. Finally we draw our conclusions and present some perspectives of future
work in Chapter 7

8

Chapter II

Case Study

Contents

2.1 Motivations... 12
2.1.1 SOFA: a physical simulation framework 12
2.1.2 Previous efforts toward SOFA parallelization 14

2.2 Profiling tools.. 15
2.3 Experimental methodology............................ 16
2.3.1 Reproducible research..................................... 16
2.3.2 Experimental workflow.................................... 18
2.3.3 Methodology.. 20

2.4 SOFA Analysis .. 25
2.4.1 Experimental plan ... 25
2.4.2 Results and discussion 26

11

II – Case Study

Optimizing a computational kernel is a complex task, which requires a deep un-
derstanding of both the algorithm mechanics and the machine that will execute
it. Simple computational kernels such as matrix multiplication or Cholesky fac-
torization have been subject of years of optimizations, yet some scientists still
manage to improve them. The task is even more complex when it comes to
optimizing a whole actual application. We first need to identify hotspots which
means understand where and why the performance are suboptimal. Then we
have to understand their nature and localization both in terms of code and
data structure (if they are memory related). Finally, when optimizing a real life
application, it is important to make the code modifications as clear as possi-
ble. Indeed not all developers are specialized in High Performance Computing
(HPC) and a code is only maintainable if understandable.

Simulation Open Framework Architecture (Sofa) [Allard et al., 2007] is a
simulation framework designed for exact and interactive physical simulation, it
aims at assisting surgeons with real time medical simulation. Hence it cannot
afford to improve its efficiency by relying on approximations. Therefore opti-
mizing Sofa performance is crucial. Yet, most of the developers are not from
the HPC community. To guide them into this optimization process, we need to
analyze the performance of Sofa and identify precisely the hotspots.

In this chapter, we present a case study about the performance optimization
of Sofa. This case study aims at demonstrating the usage of classical analysis
tools and emphasize their limits concerning memory related performance issues.
It is organized as follow: first we present Sofa, its specificities and previous
attempt to parallelize or optimize it in Section 2.1. Then, we discuss the existing
profiling tools that can be used to analyze the performance of application in
Section 2.2. After that we detail our experimental methodology and discuss
reproducibility matters in Section 2.3. Finally we present our analysis and first
conclusions in Section 2.4.

2.1 Motivations
Several efforts were made to parallelize the different part of Sofa, using its
specificities. Before discussing these efforts, we need to present more precisely
the Sofa framework.

2.1.1 SOFA: a physical simulation framework

Initial
State

Time
Integration

Collision detection
and response Rendering

Figure 2.1 – The simulation loop.

12

Motivations – 2.1

In Sofa, simulation can be seen as a loop depicted in Figure 2.1: we start
from an initial configuration were a set of objects are subject to a force field.
The second step, called time integration, solves a system of equation to com-
pute the next position of each object. At that point, some objects might be
overlapping. Thus the third step consist in detecting these overlaps and apply-
ing repulsing forces to simulate the collision. Finally the result of these step is
displayed (rendered) and we are back the beginning. The time integration and
the collisions detection are the most costly steps. Hence many algorithms were
developed to compute them efficiently, each algorithm being more appropriate
for simulating one type of object depending on its form and stiffness.

Figure 2.2 – SOFA representation of a scene with two objects: a liver and a
heart. Each node of the scene can embed its own set of solvers and visual
representations.
Image from SOFA documentation [SOFA, 2016].

13

II – Case Study

One of Sofa main specificity is that it has a multi-model representation
of each component. A simulation scene is represented as a tree, as shown
in Figure 2.2 where each physical object is a node. Each level of the graph
can embed solvers, collision detector and visual representation, overriding the
defaults. This hierarchical representation enable dependencies management be-
tween objects and the representation of complex embedded objects [Nesme et al.,
2009, Faure et al., 2011].

2.1.2 Previous efforts toward SOFA parallelization
It is important to note that the main developers of Sofa are mostly computer sci-
entists with a physical or medical background but not specialized in HPC. Sev-
eral efforts were made by external developers to parallelize Sofa, most of these
efforts consist in optimizing some algorithms which, according to Sofa develop-
ers, are time consuming. For instance, Everton Hermann proposed an efficient
(sequential) collision detection algorithm based on ray tracing and a paralleliza-
tion of this algorithm [Hermann et al., 2008]. More recently, Julio Toss has been
developing several algorithms on Graphical Processing Units (GPUs) to improve
the computation time of Voronoi diagrams [Toss and Comba, 2013, Toss et al.,
2014]. Although their computation generates a considerable overhead before
the simulation, these diagrams enable efficient simulation of forces propagation
in heterogeneous materials [Faure et al., 2011]. Hence optimizing their compu-
tation is critical for Sofa.

E. Hermann also proposed a more global approach, exploiting the hierarchy
of the scene tree, to parallelize the time integration step [Hermann et al., 2009].
This parallelization relies on the KAAPI runtime [Gautier et al., 2007] which
consider an application as a set of tasks and dependencies between these tasks.
Each task can provide one or several implementations (Central Processing Unit
(CPU), GPU . . .), the runtime choose online which implementation to use de-
pending on the current performance, which results in portable performance.
With this method, the amount of parallelism depends on the number of objects
simulated. As most Sofa scenes only include a few objects, this parallelization
is not suitable for them.

While this approach is more generic it was never actually used by Sofa
developers for several reasons. First of all, they are not specialized in parallelism,
hence not used to write programs in parallel languages. Second, KAAPI is a
research runtime that evolve quickly, maintaining code based on it seemed to
costly for them. Last but not least, while this approach helps to parallelize the
code, it does not help finding hotspots and optimizing existing code. In the end,
Sofa is currently parallelized using simple Open Multi-Processing (OpenMP)
#pragma. These #pragma are compiler directives to tells the runtime that a
region of code should be run in parallel. While adding such annotation to
an existing code is trivial, it requires to spend some time at improving data
structures and algorithms to obtain an efficient parallelization. This method
impacts small chunks of code and miss the global aspect of the previous one.
Thus it is considerably less efficient than the KAAPI version.

To conclude, it appears that optimizing algorithms or chunk of codes pointed
out by Sofa developers is not sufficient. Indeed this approach can miss unknown
hotspots and therefore opportunities for optimizations. Moreover, while the
global, runtime based approach seems potentially more efficient than local opti-

14

Profiling tools – 2.2

mizations, it does not overpass this limitation. At the end of the day, it appears
that identifying precisely unknown hotspots and digging into Sofa performance
would be more profitable than writing pieces of highly optimized code.

2.2 Profiling tools
Performance analysis consists of two steps: data collection and presentation.
The first step aims at extracting as much pertinent information as possible from
an execution. Nevertheless, observing an execution is not free: it takes time to
count and record events. As a result, it can impact the application performance
or, worst, modify its behavior. Consequently, any analysis provides a trade-
off between the amount of data collected and the impact on the monitored
application. The second step is also challenging as the analysis tool has to to
find out which data are pertinent and to present them in a meaningful way to
the user. Many tools were designed to address one or both of these challenges.

Performance counters are dedicated CPU registers that were originally de-
signed by vendors to debug their processor prototypes. They count events such
as cache misses, or branch miss-predicts at a very low cost compared to software
based solutions. They can directly be accessed using the Perf driver which is
part of the Linux kernel since version 2.6.31. Yet, as a result of their initial aim,
the available counters depends of the CPU model and vendor. Furthermore,
it requires a deep knowledge of CPUs mechanisms to understand the mean-
ing of some counters. Hence, higher level libraries such as Performance API
(PAPI) [Browne et al., 2000, Malony et al., 2011, Weaver et al., 2013] and “Like
I Knew What I am Doing” (Likwid) [Treibig et al., 2010] were designed to make
performance counter access and interpretation more convenient. These libraries
provide performance groups and automatically compute comprehensive metrics.
In addition they provide markers that can be used in the code in order to collect
counters only during some parts of the execution. This is useful once hotspots
are identified, but can lead to miss a part of the execution if used too early.

Another approach to make performance counters more understandable con-
sists in combining them with contextual informations. Such informations can
be obtained by intercepting libraries calls (system calls, C standard library,
Message Passing Interface (MPI), OpenMP . . .). The easiest way to intercept
a library call is by overriding it at runtime with the LD_PRELOAD environment
variable1. A second method is to rely on binary instrumentation libraries such
as Intel Pin [Luk et al., 2005] or Dyninst from the Paradyn Project [Miller
et al., 1995]. This method is more flexible and usually enable higher level
data collection, but it is more intrusive, thus it can impact the behavior of
the studied application. Simulators such as SimGrid [Casanova et al., 2014]
can be used to overpass these limitations. However HPC simulators often fo-
cus on explicit communications (via MPI or OpenMP) discarding the actual
computations. Hence they might miss memory related issues. Several tools
such as HPCToolkit [Adhianto et al., 2010], PARAllel Visualization end Events
Representation (PARAVER) [Pillet et al., 1995], Tunning and Analysis Utili-
ties (TAU) [Shende and Malony, 2006], Modular Assembler Quality Analyzer

1 One can use the LD_PRELOAD environment variable to tell the linker to load a library before
running a program. As a result, each call to a function from an external library overwritten
in the preloaded library will be intercepted.

15

II – Case Study

and Optimizer (MAQAO) [Djoudi et al., 2005], AMD CodeXL [AMD, 2016] (the
successor of AMD CodeAnalyst [Drongowski, 2008]) and Intel VTune [Reinders,
2005] combine several of these methods to collect traces.

When it comes to presenting performance traces in a readable way, we can
split these tools in three groups. The first ones only provides textual traces and
let the user extract pertinent information from them. It includes the Perf driver,
Likwid and PAPI library as well as several Pintools. Such tools are very useful
for small applications as they do not require complex tools to be read. Moreover
they are usually easy to parse and one can build more complex visualization on
top of it using R, for instance. Tools from the second group, that includes
VTune, CodeXL tries to present data in a more readable way. Usually their
visualization consist in a set of tables and plots, where they highlight values that
seem to be pertinent (for instance cache miss above a fixed threshold) pointing
important parts to the user. Finally, while tools like MAQAO, HPCToolkit and
PARAVER propose similar visualizations, but they also provide Application
Programming Interfaces (APIs) to design new visualizations or import external
traces. FrameSoc [Pagano et al., 2013, Pagano and Marangozova-Martin, 2014]
is very similar to the previous tools, the main difference is that it is designed
for trace management and analysis. Consequently it does not provide any way
to collect traces but is able to import traces collected by the user. It describes
them with a generic representation and enable easy navigation through different
visualizations of the same trace.

To conclude, many tools were developed to monitor the performance of an
application. The best tool depends on the kind of issues we are looking for and
the application that is monitored. Most of the tools discussed here are based
on performance counters and thus present data from the point of view of the
CPU. In our specific case, we are studying a complex application, yet we are in
contact with the developers of Sofa. Consequently they can give us hints about
the important parts and the kind of issues we should look for. Therefore low
level tools such as Likwid are well suited as they can both compute pertinent
metrics and focus on specific parts of the application.

2.3 Experimental methodology
In computer science we can easily monitor our experiments and restart them
quickly if something goes wrong. At the opposite, in other domains, such as
biology, this reactivity is not possible, scientist are forced to write very precise
protocols to avoid loosing large amounts of time and money. By inspiring our-
selves from their protocols we could make our experiments reproducible and our
research more trustable.

In this section we first introduce reproducibility and how people have tried
to reach it in HPC, then, we present the methodology we have developed during
this thesis to make our experiments as reproducible as possible.

2.3.1 Reproducible research
Measurement bias, which means attributing a consequence to the wrong cause
due to an issue in our measurement and analyze method, is a widely known
phenomena in scientific communities and is analyzed in most fields. Mytkowicz

16

Experimental methodology – 2.3

et al. [Mytkowicz et al., 2009] highlighted several ways to introduce significant
measurement bias in computer science experiments without noticing it. Its
experiments showed that measurement bias is both commonplace and unpre-
dictable in our field. Therefore, the easiest way to deal with this bias is to
reproduce studies published by other teams in order to confirm or invalidate
their results. Still, reproducing experiments in computer science, and more
specifically in HPC, is not trivial.

A previous study [Collberg et al., 2015] tried to evaluate how reproducible
the experiment presented in computer science article are. To do so, they only
focused on the capacity to compile the experimental code and evaluated 601
articles published in “top ACM conferences and journal”. From these 601 articles
they were only able to build the environment of 217 articles. Moreover it took
more than half an hour to build the experimental code of 64 of these papers and
23 others required the intervention of the authors.

At this point we need to define precisely reproducibility, for the remaining of
this thesis, we will use the definition proposed by Dror G. Feitelson [Feitelson,
2015]:

Repeatability concerns the exact repetition of an experiment, us-
ing the same experimental apparatus, and under the same condi-
tions.
Reproducibility is the reproduction of the gist of an experiment:
implementing the same general idea, in a similar setting, with newly
created appropriate experimental apparatus.

Repeating an experiment in the sense of Feitelson in HPC is nearly impos-
sible. Indeed repeating an experiment first requires the access to the machine
that executed the original one, with the exact same software stack and all the
scripts to run it. Yet, several unpredictable factors can impact the repeatability:
between the two experiments, some hardware (for instance a disc) could have
been replaced by one faster. While we can log the whole hardware configuration
during the experiment, some other factors, such as the room temperature, can
impact the performance and are nearly impossible to measure during the exper-
iment and impossible to reproduce. Still there is a gap between the definitions
of repeatability and reproducibility. Indeed if we have access to a machine,
with the exact same software stack and comparable hardware, as well as the
experimental scripts, we can repeat the experiment in similar conditions. This
definition of similar repeatability is stronger than reproducibility as we do not
re-implement the experiment but re-run it on a similar settings. Nevertheless
we cannot expect the exact same results. If the experiments compares raw
execution times, changing the machine may significantly changes the results,
although if we compare relative time (speedup or slowdown) we are more likely
to lessen the discrepancy. Finally, adaptive algorithms may be a limit to simi-
lar repetition. Indeed, small hardware differences might be enough to trigger a
change on the executed code of an adaptive algorithm.

Several tools can help us making experiments more repeatable. For instance,
by running our experiment on a shared platform such as grid5000 [Cappello
et al., 2005], we can argue that other people have access to the same set of
machines. Moreover on these machines, it extremely easy to make a deployable
image of our environment. Using an image provides controls on the installed

17

II – Case Study

library, but it is impossible to know or change the version a library without
deploying it. Kameleon [Ruiz et al., 2015] overpass this limit by describing an
environment as a recipe. It also make the distribution of the environment easier
as we only need to distribute the recipe which is a lightweight piece of code
instead of an archive containing a whole Operating System (OS).

To reproduce an experiment it is important to understand how it has been
designed and how it has evolved from the first version to the results presented in
the paper. Stanisic et al. [Stanisic, 2015, Chapter 4, p31-44] described an exper-
imental workflow based on Git and Org-mode to keep track of these evolutions
and make easy for anyone to understand it. One of the main drawback of this
workflow is that it is not suitable for experiment generating huge (≥500 Mib)
trace files as Git is not designed to handle such files.

Many tools were designed to conduct experiments in computer science how-
ever they are not designed for HPC and using them in our context would require
some adjustments. A comprehensive survey can be found in [Stanisic, 2015,
Chapter 3, p17-19].

2.3.2 Experimental workflow
We design experiments to analyze the behavior of an application, compare it
to other applications or to test it under specific circumstances. The goal of
the experiment is to answer a question or confirm an hypothesis. Answering
scientifically a question requires to define:

• The environment: the circumstances under which we do the measure. In
computer science that includes the OS, libraries and any user configura-
tions.

• The reference cases to which we will compare our results. These are usually
state of the art existing applications comparable to the one we evaluate.

• The inputs given to the tested applications.

• The parameters used for each application.

• The metrics: a set of quantifiable and measurable indicators used to eval-
uate our results.

• The expected results: what behavior do we expect, what should be con-
sidered as abnormal.

Designing an experiment consists in translating high level questions into an
experimental plan that answers them scientifically.

Complete experimental plan: We consider an experiment as a three steps
workflow depicted in Figure 2.3 determined by a Complete experimental plan.
We define the Complete experimental plan as the smallest set of scripts and
documentation required to repeat an experiment. It includes the main script
that actually run the experiment with all its dependencies. These dependencies
consists in the tested applications (Git version, modifications) along with their
inputs or the benchmarks used for testing them and the environment on which
it is run. The complete experimental plan also contains the description of the

18

Experimental methodology – 2.3

experimental machine(s) and the command(s) or script(s) used to deploy the
environment on them and start the main script. Finally all the scripts used
for parsing and analyzing the experimental results are part of the complete
experimental plan as they are required to repeat it. Moreover, designing the
analysis at the same time as the experiment help reduce some bias. Indeed,
preparing data presentation before obtaining the actual data forces us to express
our expectations. In the end, if the results do not match theses expectations we
are more likely to notice it.

Complete
experimental
plan

Complete
analysis
plan

Filtered
analysis
plan

Human
readable
results

de
pe

nd
s

ge
ne

ra
te

ge
ne

ra
te

ge
ne

ra
te

Main experiment Raw analysis Statistical analysis

B
en

ch
m
ar
ks
,

R
un

tim
es
,

In
pu

ts
..
.

V
irt

ua
l

en
vi
ro
nm

en
t

Parsing
script

Main
script

Analysis
script

Launch
script

E
xp

er
im

en
ta
l

m
ac
hi
ne
(s
)

Meta
data

Raw
results

Parsing
script

Analysis
script

Filtered
results

Analysis
script

Figure 2.3 – Experimental workflow.

Main experiment: The first step of the experimental workflow consist in ex-
ecution the main experiment on the experimental machines. This step produces
two types of results: the raw results which are the actual output of the experi-
ment and the meta data. These meta data include all pertinent informations on
how the data were produced (information about the environment, commands
executed, Git version of every applications) and how to interpret them.

19

II – Case Study

Raw analysis: We call Raw Analysis the second step that extract the raw
values needed to compute the metrics defined in the complete experimental
plan from the raw results. This step only aims at reducing the amount of data
to analyze (from 100 Gio to few Mib in some of our experiments). The result
of the raw analysis is usually one or two Comma-Separated Values (CSV) files
that can be easily read by any statistical tool.

Statistical Analysis: Finally comes the Statistical Analysis which first reads
the filtered results and computes statistics such as means, standard error, slow-
down and speedup etc. The second aim of this step is to present a comprehensive
visualization of these statistics.

While the complete experimental plan is required to repeat the experiment,
some people may want to reproduce only the statistical analysis to change it and
inspect the results from another point of view. Furthermore they might want
to extract other values from the raw results or get more information about the
experimental environment from the meta data. To enable such partial repro-
duction we can distribute the Complete analysis plan and the filtered analysis
plan that each includes all the files generate by the previous step and all the files
required to redo the next step. Finally while repeating the whole experiment
requires access to the experimental machines, the two last steps are not machine
dependent, thus, are easily repeatable.

2.3.3 Methodology
Implementing such an experimental plan is not trivial, we describe here how we
design, implement and distribute our plans.

Construction of an experimental plan

In HPC, an experiment usually consists in evaluating the performance or the
correctness of an application or of a tool that uses an application as an input
(scheduler, simulator, analysis tool . . .). For both we need to find a set of bench-
marks to conduct our experiments, which means an input representative of the
case we want to test. A benchmark can be either the input of a computational
kernel or an actual application used by the tool we evaluate. Additionally, if
the aim of the experiment is to evaluate the performance of a code that we have
developed and there are some existing comparable applications, we need to test
it against these applications. Yet, a set of benchmarks might not be a sufficient
input as HPC applications are often highly configurable. Consequently, we must
determine for each application which parameters are the most efficient for the
evaluated metrics and the defined benchmarks. In the end, we evaluate each
program under at least two set of parameters: the default and a tuned version.

Once the benchmarks are chosen, we need to decide on one machine or a
set of machines on which we will run the experiment. This step is crucial as
computers architectures are getting more and more complex and applications
are (usually) designed for one type of machines. Furthermore some tools (such as
Pin, Precise Event Based Sampling (PEBS) [Levinthal, 2009], Instruction Based
Sampling (IBS) [Drongowski, 2007]) are either vendor specific or optimized for

20

Experimental methodology – 2.3

some architecture. Therefore, we often have to repeat the same experiment on
several different machines to conduct a fair comparison.

At this point, we need to find some relevant metrics to answer the questions
that we are asking. These metrics should remain simple as they will be inter-
preted by humans. Still, they must also cover every aspect that we are studying.
A complete set of simple measurable metrics is often easier to understand that
one complex metric providing an overall score in an obscure unit.

An experimental environment should be both minimalist and sufficient. In-
deed if the environment is not sufficient we will have to install packages or
library before the experiment. Hence the installed version will depend on the
date at which the experiment is run, making it almost impossible to repeat. At
the opposite if we include more libraries than we need or worst several version
of the same library when it is not required, finding the version actually used
during the original experiment might require to pay an extra attention to the
whole building pipeline.

Finally it is crucial to write both parsing and analysis scripts before running
the experiment. To do so, we can generate a filler set of (fake) results repre-
senting our expectations. From this set we can design some data visualizations.
Furthermore using this set we can complete the plots with some text describing
these expected results. Such information will prevent us from trying to explain
a posteriori results that infirm our hypothesis.

Automation and documentation

It is crucial that a all the steps of the experiment from the deployment of the
environment to the final analysis are properly scripted in a language that can
be understood by other developers. Any manual step can make the experiment
impossible to repeat and an obscure code might make it difficult to modify the
experiment without breaking it.

Moreover, the traces generated by an experiment must be self explanatory
or at some point they will only be a (large) set of meaningless Bytes on a hard
drive. We consider that a trace is self explanatory if and only if we can easily
answer the following questions from the raw trace:

• How the trace was generated, what is the exact command that launched
it ?

• What software were used (including their versions and possible modifica-
tions) ?

• What were the hypotheses and expectations ?

• When was it executed ?

• On which machines (description, name and physical location) ?

• How are the trace files organized (file hierarchy) ?

• What scripts are used to do the analysis ?

To do so, all our experimental scripts starts the same way: they first create a
new directory that will hold the traces. Then they copy themselves with all
the scripts which are inside their directory to this new directory. After that

21

II – Case Study

they duplicate their output to a file in this new directory and log every sensitive
meta data as show in Listing 2.1. During the experiment, each command is
echoed before executing it. Regarding the data analysis we use R as it provides
a large set of reliable statistic analysis libraries. Additionally, thanks to R-
markdown, we can produce a standalone structured output that contains the
original questions, our assumptions, the results and plots, our observations and
comments. Finally, before distributing an experimental trace, we write a small
Readme that explain the file hierarchy and the experiment design (although
these informations could be recovered from the meta data and by reading the
experiment code).

Listing 2.1 Logging experimental informations.
1 exec > >(tee $OUTPUT) 2>&1
2
3 echo "Expe started at $START_TIME "
4 echo "#### Cmd line args : ###"
5 echo " $CMDLINE "
6 echo " EXP_NAME $EXP_NAME "
7 echo " OUTPUT $OUTPUT "
8 echo " NUMBER OF RUNS $RUN"
9 echo " ######################## "

10 echo "#### Hostname : ######### "
11 hostname
12 echo "#### Kernel : ######### "
13 uname -a
14 echo "#### Path: ######### "
15 echo "$PATH"
16 echo " ######################## "
17 echo "##### git log: ######### "
18 git log | head
19 echo " ######################## "
20 echo "#### git diff: ######### "
21 git diff
22 echo " ######################## "
23 lstopo --of txt
24 cat /proc/ cpuinfo
25 echo " ######################## "
26
27 # Copying scripts
28 cp -v $0 $EXP_DIR /
29 cp -v ./*. sh $EXP_DIR /
30 cp -v *.pl $EXP_DIR /
31 cp -v *. rmd $EXP_DIR /
32 cp -v Makefile $EXP_DIR /

To evaluate the variability and reduce the effect of external noise, we run
each configuration several times. The more variability there is, the more runs
we need to execute. These runs are all independent therefore we must avoid
to make them artificially dependent. The Algorithm 2.2 shows a very simple
experiment where the runs are launched by the process that actually do the
experiment. As we do not create a new process for every run, some cache effects

22

Experimental methodology – 2.3

might appear after the first the run improving the performance of subsequent
runs. Thus, these runs are artificially dependent. An easy way to avoid this bias
is to start a new process for each run, as shown in Algorithm 2.3. However, this
is not enough to protect our experiment from system noise Indeed if at some
point of the experiment a system process (such as logrotate) interfere with our
experiment, the performance of a set of runs will drop. As the runs are executed
in order, it might be correlated with the size, and therefore we will not realize
that it is due to external noise, and we will consider it as a consequence of the
size. While, if we randomize the runs, the performance drop will affect several
runs (but not all) for different sizes. As a result we will observe abnormal results
for the impacted sizes and conclude that something might have interfered. To
do so, our experimental scripts generate a list of runs that should be executed,
shuffle it and then execute them in this randomized order.

Algorithm 2.2 Dependent runs.
MatAdd:

function do_run(size)
for i in 1..size do

for j in 1..size do
C[i][j] = A[i][j]+B[i][j]

end for
end for

end function

function Main
for size in 1..N do

for run in 1..R do
do_run(Param)

end for
end for

end function

Algorithm 2.3 Independent runs.
MatAdd:

function Main(size)
for i in 1..size do

for j in 1..size do
C[i][j] = A[i][j]+B[i][j]

end for
end for

end function

Experiment:
function Main

for size in 1..N do
for run in 1..R do

exec(MatAdd size)
end for

end for
end function

Each run consists of three step: a pre-command that can set specific en-
vironment values, the actual command that execute the benchmark and the
post-command that can save data, pre-process it, compute metrics must restore
the normal state. Pre-processing data during the experiment can reduce the
raw trace, and interfere with the raw analysis, but it is sometimes unavoidable,
for instance when some evaluated tools generate binary traces that can only
be interpreted inside the experimental environment. The first and last steps
are not mandatory, however any environment change must be restored on the
last step. Each of the commands executed by these 3 steps are logged before
execution as shown in Listing 2.4.

Distribution

The experimental plan is mostly composed of source code, thus it can easily
be distributed using a Version Control System (VCS). As it often depends on

23

II – Case Study

Listing 2.4 Execution of a run.
1 do_run ()
2 {
3 run=$1
4 conf=$2
5 benchname =$3
6
7 benchname =$(basename $bench)
8 echo " $benchname "
9

10 LOGDIR =" $EXP_DIR / $benchname /run -$run"
11 echo $LOGDIR
12 mkdir -p $LOGDIR
13
14 set -x
15 # Prepare run
16 i f [! -z "${ PRE_ACTIONS [$conf]}"]
17 then
18 bash -c "${ PRE_ACTIONS [$conf]}"
19 f i
20
21 # Do experiment
22 cmd="${ TARGETS [$conf]} $bench "
23 $cmd > $LOGDIR /$conf.log 2> $LOGDIR /$conf.err
24
25 # Restore everything
26 i f [! -z "${ POST_ACTIONS [$conf]}"]
27 then
28 bash -c "${ POST_ACTIONS [$conf]}"
29 f i
30 set +x
31 }

external programs, it is preferable to use VCS which can manage dependencies
and patches such as Git or mercurial. We distribute our experimental plans
as Git repositories, were each dependency is tracked as a submodule. This
repository includes an initialization script that retrieves all dependencies and
apply the required patch. If the virtual environment is written as a Kameleon
recipe, it is trivial to distribute it inside the Git repository. Yet in this case,
we have to build the image from the recipe during the initialization. Often the
environment is just an archive, in that case, we make it available on a http server,
and the initialization script take charge of downloading it. Finally, we add a
Readme describing how to run the experiment, on which machines and what
variables should be changed (if any). Ideally this Readme should be generated
automatically.

Distributing the raw analysis is more difficult as some trace files can be quite
heavy and code repositories are usually not designed to handle large files. Large
file hosting services such as Renater FileSender [Renater, 2011] or Zenodo [Cern
and OpenAire, 2013] are well suited to upload these files. Moreover they gener-

24

SOFA Analysis – 2.4

ate Digital Object Identifier (DOI) that can be used both in the article and in
the experimental Git to link to the trace.

The statistical analysis could be distributed via code repository or with large
file hosting service as it does not include large files. Still, large file hosting seems
more suitable to us as the filtered traces are not code but experimental results.

2.4 SOFA Analysis
In this section, we present first the experiment designed to produce a perfor-
mance analysis of Sofa, then we discuss about the obtained result and the pos-
sibility of improvements.

2.4.1 Experimental plan
The current version of Sofa is mostly sequential with a simple OpenMP paral-
lelization in some places. Yet, this parallelization is known to be often inefficient.
The Sofa developers gave us four simulation scenes specifically designed to test
the most popular parts of Sofa, and hints about functions that are known as
hotspots.

We decided to use Likwid to analyze Sofa performance as it is quite flexible
allowing both global (wrapper mode) and local (marker mode) analysis and
provides several useful metrics and performance groups out of the box.

More specifically, we focused on the following metrics:

• Idle time ratio: The CPU is idle when it is waiting for a transfer to
memory, disc or network Input / Outputs (I/Os). Idle time can often
be reduced either by overlapping it with computation or by improving
memory (or I/Os) access patterns. This metric gives the ratio between
the time spent idle and the total execution time. It is computed from two
likwid metrics: Runtime (RDTSC) (total time) and Runtime unhalted
(total time not idle): idleT ime = 100 ∗ (1 − RuntimeUnhalted

RuntimeRDT SC).

• Simulation time: The time spent inside Sofa simulation loop, this is only
useful to compare parallel executions to sequential ones.

• Runtime ratio: For each function, the ratio of the time spent in this
function and the total time spent in the simulation loop. This metric
highlights functions that are actually hotspots.

• L2, L3 and MEM predefined groups from Likwid. These groups mainly
compute the data volume exchanged and the bandwidth at their level
(respectively second level of cache, third level of cache and main memory).
These two metrics and more precisely their evolution between sequential
and parallel executions tell us how data is shared between the threads and
if it is shared efficiently or not. These metrics are computed by counting
the misses at one level lower (hence the absence of L1 group).

As Sofa is mainly used on personal machines and not HPC ones, we ran
our performance evaluation on a recent desktop machine called Naskapi. The
hardware and software specifications of this machine are described in Table 2.1.

25

II – Case Study

CPU Vendor Model Core Threads Frequency
Intel Xeon E5-1607 4 4 3.00 Ghz

Cache
and
Memory

L1 L2 L3 Memory
Private Shared

32 Kib 256 Kib 10 Mib 16 Gib

Software kernel Distribution Bios configurations
Linux 3.2.0-4 Debian Wheezy No hyperthreading

Table 2.1 – Hardware and software configuration of Naskapi.

The experimental methodology described in Section 2.3 evolved during this
Ph.D thesis, hence the experiments presented here do not fit it perfectly. Mostly
the runs were independent but not randomized, and the experimental logs were
not as complete as they should. Furthermore, as Naskapi is a desktop machine
and not a node from a cluster, we did not deploy an image of the system. Hence,
repeating these experiment in the exact same condition do not seem possible.
Nevertheless, we distribute the experimental plan and the trace, which should
make the experiment easy to reproduce on github:
https://github.com/dbeniamine/Sofa_expe.

2.4.2 Results and discussion
To present the results of our evaluation, we will focus on two Sofa scenes that
illustrate the kind of results we obtained. The first scene is called linearQuadrat-
icFrame, for this scene the OpenMP parallelization provides a speedup of 1.37
with four threads. This speedup seems rather low, yet, as the parallelization is
only partial we need to determine if we can actually reach a higher speedup.
However the second scene linearRigidAndAffineFrame has a speedup of 0.87
which means that the parallel version is slower than the sequential one. These
difference of performance probably means that theses scenes are not executing
the same core. Our first goal is to understand why some part of Sofa are more
efficient with the OpenMP parallelization while some other are slowed down by
it.

Before digging into the differences between these scenes, there are two no-
ticeable similarities between them to discuss. First the idle time ratio reported
by Likwid showed that, for the sequential version of the code, during almost
half of the simulation the processor is idle, which means that it spend a lot of
time waiting for I/Os or memory accesses. For Sofa, all the I/Os occurs at the
beginning of the execution, before the simulation loop, therefore, all the idle
time captured in the simulation loop is due to memory accesses. In parallel
executions, this idle time increases. This behavior is expected as the OpenMP
based parallelization only affect some small parts of the code, hence as soon as
the code is not in a parallel loop, 3 threads out of 4 are idle. Still, it means that
there is room for improvement even for the sequential version. The second no-
ticeable similarity is that the functions pointed by the developers only represent
around 30 % of the simulation time, which means that there are some unknown

26

https://github.com/dbeniamine/Sofa_expe

SOFA Analysis – 2.4

hotspots left.
From here, we know that there might be a memory issue (as the processor

spend a lot of time idle). We compared the bandwidth and data volume going
into each cache level and the main memory for the two scenes and for the
functions indicated by the developers. Those functions are generic and thus their
actual code varies depending on the parameters of the simulation. Therefore,
while the compared functions are similar in terms of role in the simulation, the
manipulated data as well as the executed code is different for the two scenes.

Figure 2.4 shows the bandwidth (left side) and the data volume (right side)
for the two functions (linearQuadraticFrame above, linearRigidAndAffineFrame
below) between L2 cache to the main memory. Each point represents the mean
of 60 runs and the error bars represents the standard error. To make the plot
more readable, we have normalized each value by dividing it by the value for
the corresponding sequential run. Thus these plots show the evolution of the
bandwidth and data volume when we use the OpenMP version of Sofa.

Bandwidth Data volume

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

linearQ
uadraticFram

e
linearR

igidandAffineFram
e

L2 L3 MEM L2 L3 MEM
Memory hierarchy level

N
or

m
al

iz
ed

 v
al

ue
 re

la
tiv

e
to

 s
eq

ue
nt

ia
l e

xe
cu

tio
n

Execution type OpenMP Sequential

Figure 2.4 – Differences of bandwidth and data volume, from L2 cache to main
memory, between sequential and parallel execution of Sofa on two different
simulation scenes.

We can see that for the first scene, both the bandwidth and data volume
increases by a factor of 1.5 in the cache and stays comparable in the main
memory when we use the parallel version. Yet, in the parallel version, the
variability of the memory bandwidth increase significantly and we are not able
to explain this behavior with our traces. We can see the same behavior for the
second scene and the memory data volume. Still, the overall behavior shows
that there are more useful data in the cache in parallel. If this was due to
each thread working on a smaller set of independent data, the data volume in

27

II – Case Study

memory would decrease in parallel. As it is not the case, these useful data in the
cache are due to an efficient data sharing between the threads. At the opposite,
for the second scene, the bandwidth drops down at each level while the data
volume stays still except at the L3 level where it increases by a factor 2.5. It is
important to note that the L3 cache is the only shared cache of this machine. It
means that several threads are writing the same data, invalidating each other
private cache and requiring the coherency protocol to interfere. This behavior
is called false sharing and is a well known performance issue that have been
introduced by Torellas et al. [Torrellas et al., 1994].

At this point we can say that false sharing occurs in this precise function,
yet we do not know on which data structure. We could dig onto the code
and try to understand the memory access pattern of each data structure to
see where the false sharing does occurs. By looking at Sofa’s code, we can
see that the main difference between the two version of the function is that
for linearRigidAndAffineFrame there is one more loop in the computations.
However, this code manipulate several data through many indirections. Con-
sequently, determining on which data the false sharing is happening could be
extremely cumbersome. Furthermore, this approach is not generic at all. Once
we have done it for one particular function, we would have to redo the same
analysis and optimization for each potential hotspot.

As we have seen with the runtime ratio, this particular false sharing issue
only represent a small part of the execution. Moreover, our analysis highlighted
some variability in the memory bandwidth and data volume in parallel that we
are not able to explain. Therefore, a more generic approach would be welcome.

From that point it seems clear that Sofa is having memory performance
issues. Yet, we need a generic tools to analyze its performance from the memory
point of view. Such tool should be able to establish a complete diagnosis of the
memory usage. To do so, this tool need to identify memory access patterns
and differentiate the efficient ones from the others. Additionally, to correct an
inefficient pattern we need to know precisely why it is inefficient. Thus, this
tool should classify them in terms of performance characteristics. Finally, it
needs to localize these patterns which means determine where it occurs in term
of data structure, which thread(s) are responsible for the accesses, to what lines
of code and at what time it correspond. To sum up, this ideal tool will trace
every memory access of an application and give to the user a list of inefficient
patterns. For each pattern it will specify very precisely what kind of issue is
occurring, where it happens and how we could fix it.

28

Chapter III

Memory Performance
Analysis

Contents

3.1 Architectural considerations 32
3.1.1 Caches ... 32
3.1.2 Memory hierarchy ... 37

3.2 Existing tools .. 39
3.2.1 Memory traces collection 40
3.2.2 Memory traces analysis 41

3.3 Conclusions... 43

31

III – Memory Performance Analysis

The results of our case study (Chapter 2) showed that traditional performance
analysis tools can help identify memory related performance issues. Yet they
are not able to tell precisely where, in terms of data structures, the issue occurs.
Thus it is still required to analyze the code manually. As memory is often a
performance bottleneck, several tools where developed to analyze performance
in regards of the memory. However, none of these tools is currently able to
present the memory access patterns of an application.

This chapter discuss memory analysis tools, first we present the specificities
of recent memory subsystems and the usual mistakes that can generate per-
formance drop in Section 3.1. Then we present existing memory performance
analysis tools, how they relate to usual memory issues and discuss their limi-
tation in Section 3.2. Finally we describe what would be in idealistic memory
performance analysis tool Section 3.3.

3.1 Architectural considerations
During a few decades, processor frequency increased significantly more than
memory frequencies, resulting in a considerable gap between these two resources.
Nevertheless most applications use spatially close data (spatial locality) and
temporally close data (temporal locality). To benefit from these localities, Cen-
tral Processing Units (CPUs) embed some caches reducing the number of ac-
cesses actually generating a fetch from the main memory.

3.1.1 Caches
There are two phenomena called spatial locality and temporal locality that can
be observed in most programs and that are the main principles used for cache
optimization. Spatial locality is the fact that most programs do not usually
access the memory in a completely random way, they usually access data that
are near to each other in a small time lapse. Similarly, temporal locality is the
fact that a memory address is often used several times during a small interval
of time. Consequently the main role of caches is to keep data that have already
been accessed close to the CPU when they are reused to reduce the number of
actual memory accesses.

These caches are organized hierarchically, thus, the time required to access
a piece of data depends on the cache level in which it is present. One access to
the fastest cache usually cost about 4 CPU cycles while retrieving one piece of
data from the main memory cost around 180 CPU cycles [Levinthal, 2009]. As
these caches are small, each time a data is added in a cache it replaces (evict) an
existing one. Several mechanisms where designed to guess which data should be
in the cache and which one should be evicted. As a result, a developer seeking
for performance must consider the architecture of these caches and the way the
work to benefit from them.

Cache lines and alignment

To benefit from spatial locality, the memory is divided on lines (usually 64 Bytes),
and every time an address must be fetched from the main memory, the whole
line is copied to the cache. Therefore accessing 8 successive doubles (usually

32

Architectural considerations – 3.1

one double equals 8 Bytes) requires only one memory transaction if they all are
in the same line of cache. As a result, aligning data structure to cache line can
improve the memory access time.

For instance if we consider accessing an array of two lines of caches as illus-
trated in Figure 3.1. If the data structure is aligned to cache lines, two accesses
will be required to retrieve the whole data structure, and no unused data will be
introduced in the cache. At the opposite, if it is not correctly aligned, not only
one more memory fetch will be required but one useless line will be introduced
inside the cache. As caches are designed to keep only a limited volume of data,
inserting one line inside a cache means evicting another one, thus, introducing
unused data must be avoided as much as possible.

Fetch 0 Fetch 1 Fetch 2

Total: 3 fetches, 2 useful lines / 1 useless line

0 1 2 3 4
Bad alignment:

0 1 2 3 4
Good alignment:

Fetch 0 Fetch 1

Total: 2 fetches, 2 useful lines / 0 useless lines

Figure 3.1 – Retrieving two lines of cache with one or two fetches depending on
the alignment of the lines.

Cache management policies

When an address is accessed, the CPU must search for the corresponding line
in the cache. If it is not present, the CPU must fetch it from the memory and
decide where to copy it into the cache, which means choosing one line to evict.
To make the cache efficient, these decisions must be done quickly.

There are three distinct ways to decide where a line should be placed in
the cache. The simplest way to do so is called direct mapping and consists in
associating each memory line to one specific line of cache in a round robin way:
the line number l can only be in the cache line l mod L where L is the total
number of available lines in the cache. With this policy it is only required to
look at one line of cache to check whether a line of memory is present or not
in the cache. Furthermore, it is not required to decide which line should be

33

III – Memory Performance Analysis

evicted as their is only one possible line. Still, this policy is inefficient with
some memory patterns, for instance when a program accesses data regularly
spaced but misaligned in the memory. Indeed, for such pattern, only a small
subset of the cache will be used. At the opposite, fully associative caches allows
any memory line to be mapped anywhere in the cache. As a result we always
exploit the maximum size of the cache, but it requires to look at the whole cache
to find if a line is present, and deciding which line should be evicted. Usually
caches are N-way associative which is a compromise between those two policies.
A N-way associative cache is divided in N sets and the memory line number l
could be in any line of the set number l mod N .

This associativity can be used to create (virtual) partitions in the cache
and then allocate data structures in these partition giving more cache to the
ones that are more reused and thus will benefit from it [Perarnau et al., 2011].
However, this technique is not possible anymore with recent Intel processors as
they change dynamically the associative sets.

Choosing the best line to evict is impossible as it would require to predict
the future steps of the execution. A realisable and often efficient policy consists
in evicting the Least Recently used (LRU) line that could be replaced by the
one fetched. Nevertheless, implementing an actual LRU policy is costly as it
requires to timestamp every line inside the cache. Consequently most caches
use pseudo-LRU heuristics.

A naive example

The naive matrix multiplication is a good illustration of how a simple program
can benefit from the caches or not. Figure 3.2 illustrate a naive, sequential
matrix multiplication algorithm that computes C = A ∗ B. For the matrices
A and C, this algorithm loops over a whole row before going to the next one,
while it goes through B by columns first. To understand why this pattern
matters, we have to consider the memory representation of these matrices. As
the memory address space has only one dimension, a matrix is a contiguous
block of memory. Usually it is stored row major, which means that A[i][j] is
actually A[i∗N +j] where N is the size of a row. This means that, when we loop
through a matrix by rows first, we scan linearly the address space, while if we do
it by columns first, we jump N elements between two accesses. In this example
we use N = 8192, the first access to a row of B will trigger a cache miss, and
the whole cache line will be fetched. Before we access the second element of this
row, we will have to fetch one line of cache for each row of the matrix which
means 8192 ∗ 64 = 512Kb which is a little more than the size that the L2 cache
can accommodate. Therefore each access to B will trigger at least a L2 cache
miss resulting in a lots of traffic in the L3 cache. With huge matrices, it may
not even fit in the L3 cache resulting in contention on the memory bus. The
simplest way to fix this issue (although it is not the optimal algorithm for the
matrix multiplication) consists in swapping the two inner loop of the algorithm,
as shown by the dotted arrows. Indeed the order of the operations does not
change the result of the multiplication (all computations are independent in
this example) this swap only changes the order of the accesses concerning the
matrix B.

Recent caches also embed a prefecther that tries to detect memory accesses
patterns to retrieve several lines of cache at the same time from the main mem-

34

Architectural considerations – 3.1

Algorithm Matrix multiplication
for i in 0..N-1 do

for j in 0..N-1 do
for k in 0..N-1 do

C[i,j] += A[i,k] * B[k,j]
end for

end for
end for

A

0

N-1

N-1

B

0

N-1

N-1

C

0

N-1

N-1
k

i

k

j

j

i

Figure 3.2 – Example of non linear memory accesses: the naive matrix multi-
plication.

ory. This mechanism is particularly efficient with linear or regularly spaced
accesses. Yet, for sparse and random accesses it might prefetch unused lines
evicting potentially useful ones. Consequently, this mechanism amplify the im-
pact of the accesses regularity.

Memory caches and parallelism

Several reasons have led vendors to make their CPUs more and more parallel.
For instance, increasing by 20 % the frequency of a CPU requires much more
energy than using two cores at the original frequency and results in less compu-
tational power. Furthermore, increasing the frequency of a processor increases
also the amount of heat produced, and there is a physical limitation on the
maximum heat that an area can produce before current leakage happens. As a
result, modern CPUs embed several cores.

Using one huge private cache per core would be costly and space consuming,
at the opposite if we use only one cache shared by each thread, they will interfere
with each other all the time. Therefore, the caches are organized hierarchically.
The highest level of cache is shared by each core while the lowest is private,
the intermediate levels are usually shared by a subset of the cores. Figure 3.3

35

III – Memory Performance Analysis

depicts a quad core machine with hyperthreading enabled (two threads per
physical core). This machine embed three levels of cache, the first one is private
for each core, while the second one is shared by half the cores and the last one
is shared by every cores.

Th#0

Th#1

Core#0
L1

Th#2

Th#3

Core#1
L1

L2

Th#4

Th#5

Core#2
L1

Th#6

Th#7

Core#3
L1

L2
L3

CPU

Memory

Figure 3.3 – Topology of a quad core parallel machine.

A consequence of that hierarchy is that the physical location of thread shar-
ing data can have a considerable impact on the performance. Indeed if two
threads on the same core read the same line, the first one will copy it to the
L1 cache and the second one will access it extremely fast. If they are executed
inside different cores, the sharing will be efficient at the lowest common level (L2
or L3). At the opposite, if two threads write data in the same cache line, a con-
flict occurs and must be solved by the cache coherency protocol. The coherency
is done at the lowest shared level of cache and requires to lock the memory
subsystem. Therefore conflicts are extremely costly, and must be avoided when
possible, or at least must occurs between threads as close as possible to avoid
locking the L3 cache.

For instance, we consider a simple example where two threads are working
on a small array of 8 doubles. As a double is usually coded on 8 Bytes, this
array is exactly the size of one cache line. Each thread is doing independent
computations on a half of the array as illustrated in Figure 3.4. The first access
will copy the whole array from the memory to all the caches levels of the thread
that triggers it. When the second thread reads the array, it will copy it from
the lowest shared cache to its private cache. If the threads were only reading it,
no more memory access would be required. Yet, in our example, each thread
updates the value of each entry of its array after its computation. Each time
a thread writes a value of the array, it invalidates the whole line. Therefore
the coherency protocol must interfere at the lowest shared level, while the two
threads are not actually sharing any data. Hence the name false sharing. Not
only the accesses to this array are inefficient but they generates lots of useless
data traffic in the memory bus which can create some contention slowing down
the whole application. The easiest way to fix such issues, consists in padding
the data structure, which mean introducing zeroes between each element of the
data structure so that each thread works on a different cache line.

36

Architectural considerations – 3.1

0 1 2
Thread 0 Thread 1

False sharing:

0 1 2
Thread 0 Thread 1

No false sharing (padding):

Figure 3.4 – Two threads writing 4 consecutive doubles on the same line of
cache, without any actual sharing, resulting in false sharing and an easy fix by
padding the data structure.

3.1.2 Memory hierarchy
Increasing the parallelism inside a chip means fitting more transistors in a lim-
ited space. Therefore, it requires to reduce the size of the transistors and find
a way to dissipate the heat produced by them. Consequently it is not possible
to increase indefinitely this parallelism. As a results, modern computers often
embed several CPUs sockets to overpass this limitation. A machine with sev-
eral sockets can either give them a uniform access to the memory by sharing the
memory bus or split the memory into banks and giving non uniform access to the
sockets, such machine is called Non-Uniform Memory Access (NUMA). While
the first option seems simpler to use, it means that the bandwidth is shared
by all the threads, therefore contention can easily appear. At the opposite, the
second option provides a maximal bandwidth for each socket. Figure 3.5 depicts
a NUMA machine, we can see that each socket has a privileged access to one
memory bank. Furthermore, the sockets are linked via a interconnect with a
ring topology. As a result, each socket has a direct access to its memory bank, a
slower one the banks of its neighbors and an even slower access to the last bank.
Writing code that uses efficiently this specific architecture remains the burden
of the developer who therefore needs to explicitly consider the physical location
of its data. Table 3.1 provides approximate accesses latencies depending on the
memory hierarchy level for the Intel I7 Xeon 5500 Series.

To use NUMAmachines efficiently, we need to understand how the Operating
System (OS) handles the memory. From the OS point of view, the memory
is split into contiguous chunks called pages, usually one page corresponds to
4 Kb (some High Performance Computing (HPC) applications uses huge pages
of 4 Gb). Each userspace program works on virtual pages, which means that,
when it accesses an address, the OS must first translate it to find the actual
physical address of the page. This pagination is used to provide the abstraction
of virtual memory and the memory isolation. Linux is a lazy OS thus it will
never map a page until a program has written something to it. Indeed if a
program reads the contents of a new page, Linux can simply return a zero. To
do so, one page full of zeroes is always present in the memory and any virtual
page points to this specific page until a program write or explicitly touch it.
This means that the physical location of a piece of data is determined the
first time that a program write something on the virtual page containing this

37

III – Memory Performance Analysis

Th#0

Th#1

Core#0

L1

Th#2

Th#3

Core#1

L1

L2

Th#4

Th#5

Core#2

L1

Th#6

Th#7

Core#3

L1

L2
L3

Socket #0

Memory bank #0

Th#8

Th#9

Core#4

L1

Th#10

Th#11

Core#5

L1

L2

Th#12

Th#13

Core#6

L1

Th#14

Th#15

Core#7

L1

L2
L3

Socket #1

Memory bank #1

Th#16

Th#17

Core#8

L1

Th#18

Th#19

Core#9

L1

L2

Th#20

Th#21

Core#10

L1

Th#22

Th#23

Core#11

L1

L2

L3
Socket #2

Memory bank #2

Th#24

Th#25

Core#12

L1

Th#26

Th#27

Core#13

L1

L2

Th#28

Th#29

Core#14

L1

Th#30

Th#31

Core#15

L1

L2

L3
Socket #3

Memory bank #3

Figure 3.5 – Topology of a 32 cores NUMA machine.

data. At this point, the OS needs to decide where it is going to map the page.
One of the most classic and simplest policy, used by most OSes is the first
touch policy [Marchetti et al., 1995]. This policy maps a page to the memory
bank closest to the socket where the thread responsible for the first access is
executing. As a result, the thread(s) initializing a data structure will determine
its mapping. A classic performance issue with NUMA machines comes from the
initialization of all the data structures using only one thread. When doing so,
all pages are mapped on the same memory bank, and each further access from
another socket will be remote and, thus, slow.

Kleen et al. developed an interface to map the pages on NUMA machines
using more advanced policies than first touch [Kleen et al., 2005]. This Ap-
plication Programming Interface (API) can be accessed either via the numactl
command or via a library called libnuma. The numactl command is useful to
apply a global policy on all the page of the application. It is often used to apply
the interleave policy that distribute the pages over the NUMA nodes in a round
robin way. While it does not reduce the overall number of remote accesses, it
distribute them among the nodes and therefore reduces the contention when
there are more than two sockets. At the opposite the libnuma provides fine

38

Existing tools – 3.2

Data source Latency (cycles) Latency (ns)
L1 Cache hit ~4 ~1.6
L2 Cache hit ~10 ~4
L3 Cache hit, unshared ~40 ~16
L3 Cache hit, shared in other core ~65 ~26
L3 Cache hit, modified in other core ~75 ~30
Remote L3 Cache ~100-300 ~40-120
Local Memory ~180 ~60
Remote Memory ~250 ~100

Table 3.1 – Order of magnitude of access latency depending on the memory
hierarchy level. Values in bold extracted from Levinthal report on performance
analysis for Intel I7 Xeon 5500 Series [Levinthal, 2009]. Conversion cycles to
latency computed for a CPU frequency of 2.5GHz.

grain pages and threads mapping. The user can use it to explicitly allocate
data structures and bind threads to nodes.

Still, finding the optimal mapping for one machine is not trivial and, mapping
threads and data structures in an adaptive way is even harder. Therefore, several
tools were developed to automatically map threads and pages online [Diener
et al., 2014, Corbet, 2012]. Such tools count remote accesses for each page, and
move them when they are more accessed remotely than locally. While adaptive
tools often improve the performance, they cannot reach the same performance
as an application optimized while considering memory issues. Indeed, these
tools, by conception, require a time to detect inefficient patterns and adapt and
consequently lose opportunities of optimizations.

An easy way to overpass this issue for small computational kernels consists
in running a loop of computation on the data before initializing them. Indeed,
by doing so, each page will be mapped as close as possible to the first thread
that will actually use it. Nevertheless, this technique is only efficient for kernel
that repeat several iterations of the same computations and is not suitable for
more complex applications

To conclude, using efficiently the memory is challenging. Indeed, due to the
organization of the memory in pages and cache lines, we must consider where
and how our data structures are allocated. Furthermore the hierarchical or-
ganization of the memory and the cache must be correlated with the thread
placement and data sharing. In summary, the developer must consider the ma-
chine architecture and the memory access patterns over the address space, time
and threads. Therefore visualizing the memory access patterns of an application
is a great help to optimize it.

3.2 Existing tools
Presenting memory access patterns to the user raises two challenges. The first
one is to collect efficiently a detailed and precise trace without interfering with
the normal execution. Collecting such traces is challenging as each instruction
of a program triggers at least one memory access. Once this trace is collected,

39

III – Memory Performance Analysis

presenting it in a meaningful way to the user is also a challenge. Indeed such
traces are spread over at least five dimensions: memory address space (physical
and virtual), time, threads, cores and type of accesses. Furthermore they are
potentially huge, and identifying relevant information is complex.

3.2.1 Memory traces collection
To help the developer solve memory related issues, an ideal tool should provide
enough data to build a map of the memory accesses locations over the time, and
identify memory accesses patterns such as false sharing. Therefore the trace it
collects must have the following properties:

• Detailed: a memory trace is detailed if it includes information about
time, space (at which address the event occurs), location (on which CPU
it occurs) and nature of access (is this a read, a write, by which thread).

• Precise: to be precise enough, a trace should include a sufficiently large
number of events in order to enable identification of memory accesses
patterns.

• Complete: We say that a trace is complete, at a given granularity, if
and only if the events it contains covers the whole address space at this
granularity.

Several studies propose to analyze memory by looking solely at the informa-
tion collected through PAPI and Likwid libraries [Majo and Gross, 2013, Jiang
et al., 2014, Bosch et al., 2000, Weyers et al., 2014, Tao et al., 2001, DeRose,
2001]. Generic tools have been designed on top of hardware performance coun-
ters to analyze and improve parallel applications performance, such as Intel’s
VTune [Reinders, 2005], Performance Counter Monitor (PCM) [Wilhalm et al.,
2012], the HPCToolkit [Adhianto et al., 2010], and AMD’s CodeAnalyst [Dron-
gowski, 2008]. Although performance counters provide information about the
memory use (bandwith, volume of data transferred . . .), they consider the mem-
ory as one huge entity and do not differentiate distinct addresses or at least
distinct pages. Thus, these methods lacks of precision as they are not able to
locate issues in the memory and determine in which data structure they happen.

Tracing all the memory accesses without information loss is nearly impossible
as almost each instruction can trigger a memory access in addition to its fetch.
Nevertheless, several methods can record a detailed memory trace with a good
precision. Budanur et al. [Budanur et al., 2011] use an instrumentation based
tool to collect all the memory accesses. They loose precision by doing online
compression and merging accesses into a higher level model, but this is necessary
to reduce both the trace size and its overhead. Still, on a small matrix multipli-
cation (size 48 ∗ 48 with four OpenMP threads) they already slow the execution
down by a factor 50. Another method consists in using hardware sampling tools
such as AMD’s IBS [Drongowski, 2007] or Intel PEBS [Levinthal, 2009] to trace
a subset of the memory accesses. This method is used by many several tools,
including the memory trace module of HPCToolkit [Liu and Mellor-Crummey,
2014], Memphis [McCurdy and Vetter, 2010], MemProf [Lachaize et al., 2012],
and Mitos [Giménez et al., 2014]. This method provides incomplete sampling:
some parts of the memory can be accessed without being noticed by the tool if

40

Existing tools – 3.2

none of the associated instructions are part of the sampled instructions. Thus, it
is possible that they ignore memory areas less frequently accessed, but in which
optimization could take place. Applications sensitive to spurious performance
degradation, such as interactive applications, could be hindered by these unno-
ticed accesses, despite their low frequency. Furthermore, to be able to detect
patterns such as false sharing, theses sampling mechanisms should be able to
collect several samples every 10 cycles which means around 100 ns.

These sampling mechanisms monitor events set given by an instruction type.
They can monitor several events sets at the same time but the number of moni-
tored sets is limited by the hardware capabilities (number of available registers).
Unfortunately, the number of existing events sets that relate to the memory hi-
erarchy is large, because of its complexity. This makes difficult the task of
tracing all the relevant memory accesses with just a single analysis. One way to
lessen the impact of this limitation is to run several times the instrumentation
and use advanced methods such as folding [Servat Gelabert, 2015] to generate
a more accurate summary trace. Nevertheless, this makes the instrumentation
cost grow accordingly. Moreover, writing (and sometimes) using tools that re-
lies on hardware mechanisms requires a deep knowledge of the processor. As
processors evolve, such tools are hard to maintain and can quickly become out-
dated. We regard all these limitations as too constraining for a general purpose
memory analysis tool.

Finally other studies rely on hardware modifications either actually imple-
mented or simulated [Bao et al., 2008, Martonosi et al., 1992]. Although they
are eventually able to collect more precise traces efficiently, these techniques are
limited to hardware developers. Indeed, to use these hardware extensions one
has either to obtain (or build) a prototype or to use a suitable simulator. Such
configuration is not realistic for general purpose memory analysis.

To conclude, existing memory trace collection tools are not able to collect
traces precise and detailed enough to present memory patterns to the end user.
Nevertheless, two tools: MemProf [Lachaize et al., 2012] and Mitos [Giménez
et al., 2014] collects incomplete and detailed traces. While this is not enough
for the kind of analysis we want to run, these tools provides an interesting
comparison point. Both of them collects trace using event sampling (PEBS or
IBS, respectively). Therefore their trace are precise on the parts of the memory
that are accessed the most.

3.2.2 Memory traces analysis
Some memory oriented analysis tools such as Memphis [McCurdy and Vetter,
2010] and Memspy [Martonosi et al., 1992] only provide a textual output. Mem-
Prof [Lachaize et al., 2012] also provide a command line interface to inspect the
trace. Although these tools highlight relevant informations, it is hard to get an
overview of the memory behavior from such output. The developer might be
presented with a huge amount of information and, thus, unable to differentiate
normal behaviors from problematic ones nor identify memory patterns.

Several studies [DeRose, 2001, DeRose et al., 2002, Bosch et al., 2000] rely
on generic performance traces and present them in a data centric way, in the
sense that they correlate the metric values with source code and data structures.
These studies are based on performance counters and present derived metrics
such as cache misses or memory bandwidth. Weyers et al. [Weyers et al., 2014]

41

III – Memory Performance Analysis

have a slightly different approach: they present the same kind of data but
correlate them with the NUMA architecture instead of the data structures. All
these studies can help localizing the issue in the code and find the data structures
involved in it. Furthermore, they provide comprehensive visualization that are
easier to understand than plain text traces. However, they are not able to
present the memory patterns, and the developer still has to figure out by itself
the nature of the issue.

A part of this limit is due to the fact that the previously cited tools work on
generic traces instead of memory traces, hence they do not have the information
required to identify access patterns. Liu et al [Liu and Mellor-Crummey, 2013,
Liu and Mellor-Crummey, 2014] proposed an HPCToolkit extension that let the
user visualize the number of accesses done by each thread to a data structure.
This visualization gives already more information about data sharing, but the
granularity is quite high. Consequently, we cannot identify patterns inside the
data structure nor pattern change over time. Tao et al [Tao et al., 2001] proposed
a more fine grain visualization, showing for each page the number of remote
and local accesses. Yet, compared to the previous study they loose the notion
of sharing.

Finally, MemAxes [Giménez et al., 2014], which is the visualization tool for
Mitos, provide a unified view of the trace. This view, presented in Figure 3.6,
correlates the information collected in the samples (bottom pane) with the ar-
chitecture (middle pane) and the source code and data structures (left pane). It
enables to do some selection on any part of the visualization to focus on some
code or a NUMA node etc. Furthermore, Husain et al. [Husain et al., 2015]
have recently added a layer to MemAxes that enable to trace simulations and
link the simulation visualization to MemAxes. Still, this visualization does not
show sharing pattern or access patterns, it only helps identifying the lines of
code and data structures responsible for the bad performance (hotspots) As a
result, the user still has to correlate the samples information to understand the
nature of the issue and how to fix it.

Figure 3.6 – Screenshot from MemAxes on the example data trace provided
with the tool.

42

Conclusions – 3.3

3.3 Conclusions
The memory subsystems have became more and more complex over the last
few decades. As a result, the way a program allocates and access its memory
has a significant impact on the performance. Eventually, a developer looking
for performance must consider the memory access patterns of its application.
Therefore a tool able to collect a memory trace and to display accesses and
sharing patterns would be useful for performance optimization.

Most existing memory trace collection tools consider the memory as a mono-
lithic entity and only provide global information such as the bandwidth. Some
tools provide more detailed memory traces. Nevertheless, they rely either on
hardware based sampling in which case the resulting trace only shows a small
subset of the memory, or on hardware modifications and are thus not usable by
real life developers.

When it comes to visualizing these traces, many techniques were developed
to identify precisely in the code and data structures where performance are sub-
optimal. Yet, most of the existing tools are not able to show memory patterns of
any kind. A few advanced tools picture the number of accesses per data struc-
ture and per thread or the number of remote accesses per page. Still this is not
sufficient to understand precisely sharing patterns or memory access patterns.

To conclude we need both to collect precise memory traces and to present
them to the user in a comprehensive way that enable identification of sharing
and access patterns.

43

Chapter IV

Collecting and Analyzing
Global Memory Traces

Contents

4.1 Design .. 46
4.1.1 Trace collection .. 46
4.1.2 Ease of use and portability............................... 47
4.1.3 Visualization.. 48

4.2 Experimental validation................................ 50
4.2.1 Methodology.. 50
4.2.2 Ondes3D .. 51
4.2.3 The IS benchmark... 52
4.2.4 Tracing overhead... 56

4.3 Results and discussion 57

45

IV – Collecting and Analyzing Global Memory Traces

This chapter presents Tool for Analyzing the Behavior of Applications Run-
ning on NUMA ArChitecture (Tabarnac), our first attempt to collect memory
traces and use them for performance optimizations. Previous work [Beniamine,
2013] showed how difficult it is to capture complete memory traces with tem-
poral information. Therefore Tabarnac focuses on the global memory behav-
ior. Furthermore it aims specifically at improving Non-Uniform Memory Access
(NUMA) related performance issues. Tabarnac, relies on a low overhead and
lock free instrumentation library to provide a global overview of the memory
usage. Moreover, it also provides simple yet meaningful visualizations.

The contribution presented in this chapter were published at Visual Perfor-
mance Analysis (VPA) 2015 a Super Computing workshop [Beniamine et al.,
2015b]. Furthermore Tabarnac is distributed as a free software under the Gen-
eral Public License (GPL) license: https://github.com/dbeniamine/Tabarnac.
This work is the result of a collaboration with M. Diener and P.O.A Navaux
from the Parallel and Distributed Processing Group (GPPD) of the Universi-
dade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.

This chapter first presents the design and usage of Tabarnac in Section 4.1.
Then Section 4.2 present an experimental validation of Tabarnac including per-
formance optimization of well known benchmarks and overhead analysis. Finally
we discuss the results obtained with Tabarnac in Section 4.3.

4.1 Design

On NUMA machines, optimizing memory performance often means reducing
the number of remote accesses. Indeed, to optimize the performance a memory
page must be mapped to a physical memory bank as close as possible to the
threads that actually uses it. Therefore to optimize memory performance on
NUMA system, it is required to know how much each page is accessed by each
thread. Tabarnac is designed to collect specifically this information. It gives
also hints about imbalance in the accesses to data structures.

4.1.1 Trace collection
Tabarnac is based on Numalyze [Diener et al., 2015] instrumentation which rely
on the Pin [Luk et al., 2005] library. This instrumentation is lock free by design:
it traps on each memory accesses but only maintain one counter per pages and
per threads. Adaptive NUMA mapping tools collect similar traces but uses
them online to decide whether they should migrate a memory page from a node
to another. Numalyze was originally designed to estimate the efficiency of such
tools. Indeed, adaptive tools work with partial traces as they need to decide on
page migration before the end of the execution. Thus, comparing the mapping
obtained with a partial trace to the one obtained with the complete trace helps
finding out the minimum size of partial trace required to compute an efficient
page mapping.

We proposed to expand these traces and use them for offline analysis. While
Numalyze only collects one counter per page and per thread, our instrumen-
tation also differentiate reads and writes, as shown in Algorithm 4.1. This
distinction is important for memory analysis as reads and writes do not have

46

https://github.com/dbeniamine/Tabarnac

Design – 4.1

the same impact on performance. Furthermore, an easy way to reduce the num-
ber of remote accesses produced by a data structure is to duplicate it and map a
copy to each node, but this optimization is only useful to data structures which
are mostly read. Moreover, as page numbers are not really meaningful for hu-
mans, we added contextual information to Numalyze traces. Indeed, Tabarnac
collects data structure information by three different means. First: each time
a thread is created, it computes its stack bounds and create a virtual structure
named Stack#N where N is the thread Id. Then, every time a binary file is
loaded (main file or shared library), it inspect the binary, looking for static data
structures. Finally it intercepts all calls the malloc functions family, keeping
track of allocated data structures. Only structures that are bigger than one
page (usually 4Kib in current x86_64 architectures) are recorded as our anal-
ysis granularity is the memory page. The data structure informations (name,
size and address) are only used to generate the visualization, after the end of
the instrumentation.

Algorithm 4.1 Handling of memory accesses by Tabarnac.
function mem_access(unsigned long address, int threadId, char type)

uint64_t page = address » page_bits;
accesses[threadId][page][type]++;

end function

The name detection of allocated data structure is heuristic and based on
source code analysis. When a data structure is allocated, and if the binary was
compiled with the debug (-g) flag, Tabarnac inspects the source code at the ad-
dress responsible for the allocation. It looks for the first identifier before the “=”
sign and consider it the name of the data structures. For instance for the code
presented in Listing 4.2, the name of the allocation will be MyDataStructure42.
If the source code is not accessible the data structure will be name malloc#N
where N is the number of call to the malloc function. The beginning and ending
addresses of the data structure correspond respectively to the address returned
by malloc and the size requested in the call.

Listing 4.2 A simple allocation.
1 double * MyDataStructure42 =
2 // This is an allocation
3 (double *) malloc (N* s izeo f (double));

4.1.2 Ease of use and portability
At the end of the execution, the tool generate three CSV files. The first contains
the list of pages and the number of reads and writes per thread. The second
contains the list of structures with their names, sizes and start addresses, the last
file contains the stacks size and addresses. Then, a R-markdown script which
reads the trace, retrieves the page to data structure mapping and generates the
final visualization (as an HTML page).

47

IV – Collecting and Analyzing Global Memory Traces

Tabarnac only depends on Pin for the trace collection and R for the visualiza-
tion, and can, thus, be installed easily. If all the R libraries required to generate
the visualization are not present, it is able to install them automatically. By
default Tabarnac generates both the memory trace and the visualization, but
the user can also collect the trace and generate the visualization separately on
different machines.

4.1.3 Visualization
Tabarnac visualization provides a summary of the trace through several plots.
It aims at showing how pages are shared inside each data structure. Therefore,
it provides two types of plots, the first highlights the importance of each data
structure, while the second describes the sharing patterns inside these data
structures. Each plot is introduced by an explanation of the characteristic it
emphasizes, what common issues it can help to understand and hints about how
to fix these issues. We present here each plot included in Tabarnac visualization.
Additionally, A full visualization, including comments and hints, is available
online: https://dbeniamine.github.io/Tabarnac/examples/.

The visualization starts with a small introduction, summarizing the main
principles while developing for NUMA machines, and shows the hardware topol-
ogy of the analyzed machine extracted with Hwloc [Broquedis et al., 2010]. Af-
ter the introduction, the visualization focuses on the usage of data structures.
Some structures are not displayed if less than 0.01 % of the total accesses hap-
pen within them. This makes the output more readable by focusing on the most
important structures. However, it is possible to ask Tabarnac to include them
for a more detailed view.

(a) Structures size. (b) Number of accesses per structures.

Figure 4.1 – Global views of the memory usage.

The first series of plots presents information about the relative importance
of the data structures. It consists of two plots, showing the size of each data
structure, as in Figure 4.1a, and the number of reads and writes in each struc-
ture as in Figure 4.1b. These plots give a general idea of the importance of the

48

https://dbeniamine.github.io/Tabarnac/examples/

Design – 4.1

structures used by the parallel application. Moreover, knowing the global read-
/write distribution is very useful as it determines the possible optimizations.
For instance, small data structures written only during initialization or very
rarely can be relatively easily duplicated, such that each NUMA node works on
a local copy.

The second series of plots is the most important one. It shows, for each page
of each structure, which thread is responsible for the first touch (Figure 4.2a).
This information is important as the default policy for Linux and most other
operating systems is to map a page as close as possible to the first thread access-
ing it. If the first touch distribution does not fit the overall access distribution,
the default mapping performed by Linux might not be efficient. To address
this issue, the developer can either correct the first touch or do some manual
data mapping to ensure better memory access locality and balance during the
execution.

(a) First touch distribution. (b) Per thread access distribution.

Figure 4.2 – Per structure view of the memory usage.

This second series also shows the density of accesses performed by each
thread and their global distribution. In the example shown in Figure 4.2b, each
horizontal line represents the number of accesses performed by each thread to
the memory space. There is also one line for the average number of accesses.
Additionally, for each thread the average number of accesses to the structure is
indicated by its tone. Darker points indicate more memory accesses to the page.
This visualization gives an easy way to understand the data sharing between
threads, as well as the balance between pages and threads. These plots can be
used to identify inefficient memory sharing and to determine the best NUMA
mapping policy. For instance in Figure 4.2b, we can see that the addresses in the
middle of the data structure (from 500 to 1500) are accessed by each threads and
significantly more than the other pages. The consequences on the performance
of this pattern and how we can improve it are discussed in Section 4.2.3.

49

IV – Collecting and Analyzing Global Memory Traces

4.2 Experimental validation
To evaluate Tabarnac, we present two examples of benchmark optimization
achieved with the help of Tabarnac. For each benchmark, we compare the
speedup obtained with the modifications done using the knowledge provided by
Tabarnac to the one obtained by using several classic NUMA mapping tools
and policies. We also evaluate the overhead of Tabarnac on each of the NAS
Parallel Benchmarks (NPB).

4.2.1 Methodology
We used two NUMA machines for our experiments, Turing and Idfreeze. The
second machine has only been used to compare the instrumentation overhead
between Intel and AMD machines. All the other experiments ran on Turing.
The hardware and software configurations are summarized in Table 4.1.

Hardware totals
Nodes Threads Vendor Model Memory

Turing 4 64 Intel Xeon X7550 128 Gib
Idfreeze 8 48 AMD Opteron 6174 256 Gib

Hardware per node
Cores Threads Frequency L3 Cache Memory

Turing 8 16 2.00 Ghz 18 Mib 32 Gib
Idfreeze 6 6 2.20 Ghz 12 Mib 32 Gib

Software
Kernel Distribution Bios configurations

Turing Linux 3.13 Ubuntu 12.04 Hyper threading
Idfreeze Linux 3.2 Debian Jessie No hyperthreading

Table 4.1 – Hardware and software configuration of the evaluation systems for
Tabarnac.

We evaluated the overhead of Tabarnac over all the NPB [Jin et al., 1999].
Moreover we present the performance optimization of the following applications
with Tabarnac: the IS benchmark from the NPB and Ondes3D. They were cho-
sen to demonstrate different memory access behaviors with different strategies
to improve them.

All applications use OpenMP for parallelization, they were compiled with
gcc, version 4.6.3, with the -O2 optimization flag. Both analysis and perfor-
mance evaluation are performed with the maximum number of threads that the
machine can manage with its hardware, which means 64 threads for Turing and
48 for Idfreeze.

For the application we modified thanks to the knowledge obtained with
Tabarnac, we also compare the performance obtained with following two tradi-
tional mapping policies. The interleave policy is performed with the help of the
numactl tool [Kleen et al., 2005]. The recently introduced NUMA Balancing

50

Experimental validation – 4.2

technique [Corbet, 2012], which is executed with its default configuration. Our
baseline for the experiment is an unmodified Linux kernel, version 3.13, with the
first-touch policy. The NUMA Balancing mechanism is disabled in this baseline.
To lessen the overhead of Tabarnac, we analyzed the applications with smaller
input than the one used for their performance analysis.

For the plots presenting speedups, each configuration was executed at least
10 times. Each point shows the arithmetic mean of all runs. The error bars in
those plots represent the standard error.

All the files required to reproduce the experiments or the analysis described
here online: https://github.com/dbeniamine/tabarnac_expe.

4.2.2 Ondes3D
Ondes3D is the main numerical kernel of the Ondes3D application [Dupros et al.,
2008]. It simulates the propagation of seismic waves using a finite differences
numerical method. We analyzed Ondes3D with Tabarnac on a small input re-
sulting in 0.7 Gib of memory usage. For the performance analysis, we increased
the size of the input reaching 11.3 Gib of memory used.

The analysis of the accesses distribution in Ondes3D shows that each struc-
ture seems to be well distributed between the threads, as we can see for structure
vz0 in Figure 4.3a. However, for all structures, thread 0 is responsible for all
first accesses, as we can see in Figure 4.3b. Due to this pattern, if we run
Ondes3D without any improved mapping policy, every page will be mapped to
the NUMA node that executes the thread 0, resulting in remote accesses for the
other threads. An easy fix is to perform the initialization in parallel and to pin
each thread on a different core. Such a modification results in the first touch
distribution shown in Figure 4.3c, for which pages are distributed among all the
threads.

We compare the performance of our modified version called First Touch to
three variants:

• The original (Base) version running on the unmodified Operating System
(OS).

• A version using NUMA Balancing to move pages online.

• A version with Interleave policy that aims at reducing the impact of remote
accesses.

Figure 4.4 present the results of this evaluation. We can see that all methods
improve the execution time compared to the base. Still, but NUMA Balancing
provides less than 30 % speedup, while the static mappings (Interleave and the
modified code) increase performance by 60 %. Indeed, with NUMA Balancing,
all pages are initially mapped by the OS to the NUMA node of thread 0, and
are only moved later on, after several remote accesses have already occurred,
losing some optimization opportunities. This is a case where static mapping can
be substantially better than automated tools. The Interleave policy provides a
similar speedup as First Touch since it distributes the pages over the NUMA
nodes at the beginning of the execution. In the end, for this example, using a
classic static policy would have been enough to fix the performance issue, yet
Tabarnac helped understanding and fixing it in a definitive way.

51

https://github.com/dbeniamine/tabarnac_expe

IV – Collecting and Analyzing Global Memory Traces

(a) Access distribution

(b) Original first-touch. (c) Improved first-touch.

Figure 4.3 – Access distribution and first-touch for structure vz0 from Ondes3D.

4.2.3 The IS benchmark
According to the NPB website1, IS has a random memory access pattern, al-
though we observed a very specific pattern. In this section we explain this
pattern and how we used the knowledge about this pattern to improve the
performance of IS.

IS was executed with input class D for the performance evaluation, resulting
in a memory usage of 33.5 Gib, and class B for the analysis, with a memory usage
of 0.25 Gib.

Figure 4.5 shows the original access distributions for the three main struc-
tures of IS. We can see that each structure has a different access pattern: for
key_array (Figure 4.5a) each thread works on a different part of the structure,
which let automated tools perform an efficient data/thread mapping on it. On
the other hand, key_buff2 (Figure 4.5b) is completely shared by all threads,

1http://www.nas.nasa.gov/publications/npb.html

52

http://www.nas.nasa.gov/publications/npb.html

Experimental validation – 4.2

0

20

40

60

Base NUMA Balancing Interleave First Touch
Optimization

Sp
ee

du
p

(%
)

Figure 4.4 – Speedup for Ondes3D compared to the baseline.

we can barely see a diagonal pattern, indicating a small affinity between some
threads and some pages. key_buff1’s access distribution (Figure 4.5c) is the
most interesting one. We can see that almost all accesses occur in pages in the
middle of the structure (from page 500 to 1500), and those pages are shared
by all threads. This means that the number of access per page for each thread
follows a Gaussian distribution centered in the middle of the structure.

We can identify the source of this pattern in the IS source code. Indeed,
all the accesses to key_buff1 are linear, except the ones shown in Listing 4.3,
Line 4, which depend on the values of key_buff22. Those accesses happens in
an OpenMP parallel loop that has the particularity to be scheduled dynamically.
The comments on the IS code explains that the values of key_buff2 follows
a Gaussian distribution, therefore using a dynamic scheduling provides a good
load balancing between the threads, while a cyclic distribution would results in
some threads generating significantly more memory accesses than the others.
Still it is possible to use a cyclic scheduling instead of the default one (dynamic)
by defining a variable at the compilation time.

Listing 4.3 IS code responsible for the distribution of memory accesses.
1 #pragma omp for schedule (dynamic)
2 for (i=0; i< NUM_BUCKETS ; i++)
3 for (k = m; k < bucket_ptrs [i]; k++)
4 key_buff1 [key_buff2 [k]]++;

As simple cyclic distribution of the loop would result in unbalanced work,
we can design a slightly more complex distribution that provides a fair load

2 The code has been slightly modified to make it more readable. In the original version,
the arrays generic pointers. Furthermore we removed several lines of code inside the loop that
are not required to understand the memory pattern.

53

IV – Collecting and Analyzing Global Memory Traces

(a) key_array. (b) key_buff2.

(c) key_buff1.

Figure 4.5 – Original memory access distribution for the main structures of IS.

balancing while enforcing locality of data. To do so, we split the loop into
two equal parts and distribute each part among the threads in a cyclic way as
shown in Figure 4.6 where each color represent a thread. This can be done
by modifying the OpenMP pragma (Line 1 in the original code), as shown
in Listing 4.4. Obviously this distribution does not provide an optimal load
balancing, but only a relatively fair one.

Listing 4.4 Modified IS code.
1 #pragma omp for schedule (static , NUM_BUCKETS /
2 (2* omp_get_num_threads ()))

Figure 4.7 show the accesses distribution obtained with this code modifica-
tion. We can see that now each thread accesses a different part of key_buff1.
Furthermore, if most of the accesses still occur in the middle of the structure,
the average number of accesses across the whole structure is the comparable
same for all threads, which means that our distribution preserves the good load
balancing. Our modification has also changed key_buff2’s accesses distribu-
tion. Indeed, we can now clearly see a sharing pattern very similar to the one
obtained for key_buff1.

54

Experimental validation – 4.2

Page number

In
te
n
si
ty

o
f
ac
ce
ss
es

Thread 0
Thread 1
Thread 2
Thread 3

Figure 4.6 – Fair distribution of the pages of key_buff2 among the threads.

The main point of our code modification is to improve the affinity between
thread and memory, therefore we need to pin each thread on a core to keep
them close to the data they access. To perform the thread mapping, we use the
GOMP_CPU_AFFINITY environment variable. Tabarnac also showed us that the
first touch is always done by the thread actually using the data for IS, therefore
we do not need to explicitly map the data to the NUMA nodes.

We compare the execution time of IS (class D) for the three scheduling
methods, Dynamic, Cyclic and our custom Fair distribution. We evaluated
each scheduling method in each of the following setup: with our Base unmod-
ified OS, with the Interleave policy and with Numa Balancing activated. As
our modification rely on the firs-touch it does not make sense with Interleave
and NUMA Balancing, therefore these policies are not evaluated for our Fair
distribution.

Figure 4.8 shows the speedup of IS compared to the default version (Dy-
namic) for each scheduling method and for each mapping policy. The first
thing to notice is that with the default Dynamic scheduling, both Interleave and
NUMA Balancing slow the application down, by up to 10 %. This slowdown is
due to the fact that two mechanisms (the mapping policy and the OpenMP
runtime) or modifying the application behavior with conflicting interests and
without communicating. Then we can note that Cyclic scheduling, proposed
in the original code, already provides up to 13 % of speedup. Yet, both inter-
leave and NUMA Balancing are still reducing the performance gains. Finally,
the Cyclic-Split version provides more than 20 % of speedup with a very small
code modification. This example shows that while mapping policies (static or
dynamic) can conflict with the parallel runtime and slow the execution time,
analyzing an application’s memory behavior can help fixing inefficient behavior
resulting in significant performance gain.

55

IV – Collecting and Analyzing Global Memory Traces

(a) key_array. (b) key_buff2.

(c) key_buff1.

Figure 4.7 – Modified memory access distribution for the main structures of IS.

4.2.4 Tracing overhead

Finally, we evaluate the instrumentation cost of Tabarnac. To do so, we executed
all of the NPB in class B3 with 64 threads on both evaluation systems and
compared the original execution time to the execution time with instrumentation
enabled.

As we can see in Figure 4.9, on the Intel machine, the instrumentation slows
the execution down by a factor ranging from 10 to 30. Nevertheless, on the
AMD machine, the instrumentation is 10 to 50 % slower for most benchmarks,
and two to three times slower than on the Intel machine for pathological cases.
This behavior was expected as Pin is an instrumentation library developed by
Intel. Although this overhead is not negligible, we have to consider the fact that
often we can instrument smaller versions of the applications, as we focus on the
general behavior. Moreover, our method is more precise than sampling and thus
one run is often enough. Finally, as our analysis is designed to be used during
the development phase and not at runtime in an automated tool, we consider
that this overhead is acceptable.

3 DC was run in class A as it was too slow in class B to run the full experiment.

56

Results and discussion – 4.3

-10

0

10

20

Base NUMA Balancing Interleave
Optimization

Sp
ee

du
p

(%
)

Thread
scheduling

Dynamic Cyclic Fair

Figure 4.8 – Speedup for IS (class D) compared to the baseline.

4.3 Results and discussion
Our experiments have highlighted the fact that using blindly static mapping
policies such as Interleave or dynamic tools such as NUMA Balancing can result
in significant performance loss. Furthermore in the experiments where both
dynamic and static policies increased the performance, the difference between
the gain provided by the two policies was significant. The only way to predict
which tool is the most suited to an application is to understand the sharing
patterns of the memory of this application by the threads.

Tabarnac enables developers and users to achieve performance improvements
in two ways. First, by providing a deep understanding of the memory sharing
pattern, it enables the user to find the best existing mapping policy. Second,
this knowledge can be used to identify and fix inefficient memory behavior, for
instance by designing a specific thread scheduling taking the sharing patterns
into account. Our experiments showed that both situations result in significant
performance gains.

While Tabarnac helps the developer identify and fix some inefficient sharing
patterns, it only provides a global overview of the memory usage. Indeed it does
not collect any temporal information. Therefore, it does not enable identification
of the distribution of inefficient memory access patterns over the time, such as
the ones depicted in Section 3.1 with the naïve matrix multiplication.

57

IV – Collecting and Analyzing Global Memory Traces

0

20

40

60

BT.B CG.B DC.A EP.B FT.B IS.B LU.B MG.B SP.B UA.B
Benchmark

Sl
ow

do
w

n
fa

ct
or

Machine Idfreeze (AMD) Turing (Intel)

Figure 4.9 – Tabarnac’s instrumentation overhead.

58

Chapter V

Collecting Fine Grain
Memory Traces

Contents

5.1 Moca components .. 62
5.2 Background knowledge 63
5.3 Design .. 63
5.3.1 Page faults interception and injection 64
5.3.2 Internal design ... 65

5.4 Experimental validation................................ 70
5.4.1 Methodology.. 70
5.4.2 Moca validation .. 72
5.4.3 Comparison to other memory trace collection tools.. 72
5.4.4 Results and discussion 77

5.5 Conclusions... 78

61

V – Collecting Fine Grain Memory Traces

Tabarnac manages to keep it’s overhead reasonable by two means. First it sees
the memory at the granularity of the page, loosing any information about the
internal use of a page. While this is enough to debug issues specific to Non-
Uniform Memory Access (NUMA), it is not detailed enough to build a map of
the memory accesses. Second, it does not collect any temporal information,
reducing the size of its trace and avoiding to maintain temporal order. An
instrumentation similar to Tabarnac but with temporal information with a finer
grain than the page would have a considerable overhead. Therefore it is required
to find a lighter mean to collect memory traces. This chapter presents Memory
Organisation Cartography & Analysis (Moca), a memory trace collection system
that relies on an Operating System (OS) level mechanism called page fault
interception and injection. Moca addresses the challenge of collecting detailed,
precise and complete traces, that is with temporal information.

This work is the subject of two Inria research reports [Beniamine et al.,
2015a, Beniamine and Huard, 2016] and has been submitted at Cluster, Cloud
and Grid Computing (CCGRID) 2017. Moca is distributed under the GPL
license: https://github.com/dbeniamine/Moca.

This chapter presents first the main components of Moca in Section 5.1.
Then we present some background knowledge required to understand Moca
design in Section 5.2. After that we discuss the implementation details of Moca
Linux kernel module in Section 5.3. Then we present an experimental validation
including an extensive comparison with existing memory trace collection tools in
Section 5.4. Finally we provide our conclusions about memory traces collection
in Section 5.5.

5.1 Moca components
Moca consists of a Linux kernel module that can be loaded at runtime, a script
in charge of both loading this module with the proper parameters and launching
the monitored application on the user behalf and an optional context library able
to retrieve data structures information. It neither relies on architecture specific
technologies such as AMD IBS or Intel PEBS, nor on architecture dependent
kernel code, kernel patch or kernel modifications. Therefore it is portable and
can be run on any Linux kernel from the 3.0.

When the user wishes to retrieve data structure informations, Moca runs the
application twice with virtual address space randomization disabled. The first
time, the application is run with the context library preloaded but without the
Linux kernel module. At the opposite, during the second run, only the Linux
kernel module is loaded. This library is a port of the one used by Tabarnac
without the dependencies to Pin. It reads static data structures information in
each executed binary file and stores data about structures larger than one page.
It also intercepts all calls to malloc family functions and names these calls ac-
cording to their stack trace and retrieve stacks from the file /proc/<pid>/maps.
Naming the data structures by call stack instead of by looking at the source code
is an improvement, as some code uses temporary pointers for allocations. Moca
and the library are run separately as it would be costly for Moca to check if each
intercepted access has been triggered inside the context library. Our context li-
brary is lightweight, the added cost is the cost of a regular execution added to a
small constant overhead for each binary opened and each allocation performed.

62

https://github.com/dbeniamine/Moca

Background knowledge – 5.2

Thus the overhead of using Moca and the library is basically Moca overhead
plus one time the normal execution time.

5.2 Background knowledge
As explained in Chapter 3, in recent Linux kernel, physical memory pages are
lazily allocated to page frames during the execution. The first access to a page
in the virtual address space triggers a page fault. To handle this page fault,
Linux allocates a physical page to the requested page frame. Such a page fault
can also be triggered when a thread access a shared page modified by another
thread. Linux provides the possibility to intercept these page faults. Page faults
interception is an efficient mean to collect information about memory usage at
the run time. Such a mechanism has been used in several existing works : in
parallel garbage collectors [Boehm et al., 1991], in memory checkpointing [Heo
et al., 2005] or in the domain of virtualization to provide the hypervisor with
information about the memory usage of the guest OS [Jones et al., 2006]. How-
ever, page faults only occur when caused by predetermined events in the sys-
tem (copy-on-write, paging, ...). Thus, intercepting existing page faults at a
relatively low frequency do not provide the precision required for a thorough
analysis. To improve this method, it is also possible to fake invalid pages at
regular intervals in order to generate false page faults [Bae et al., 2012, Diener
et al., 2013] at a higher frequency than regular ones. These false page faults
are just triggered during regular memory accesses, that would not have caused
a page fault if the page were not faked as invalid. The advantage is that they
create additional events for the monitoring tool to collect, thus more precision,
but the tool must be able to identify faked invalid pages. Fake page faults can
be identified either by setting some bits of the Page Table Entry (PTE) that
are not used by the OS, yet this kind of hack is not portable and might interfere
with runtimes or by maintaining the set of faked invalid pages in the monitoring
tool.

Existing memory profiling tools do not use false page faults injection and only
need to store the location of memory pages and the threads that access them.
As a consequence, they require a relatively small data structure in memory for
their own usage. Moca is a new complete memory trace collection system, based
on page fault interception and false page faults injection, able to capture pre-
cisely the temporal evolution of memory accesses performed by a multithreaded
application. To reach a satisfying precision, Moca has to maintain in memory
both the trace data and the set of faked invalid pages. Overall, storing and
exploiting efficiently these data within the kernel space and outputting them in
real time to the user space is a challenge and is the main contribution of our
work.

5.3 Design
Two tasks are addressed by the kernel module included in Moca. The first
one is to keep track of the set of pages accessed by the application during an
elementary monitoring interval. The second one is to manage the huge quantity
of data produced by the trace collection within the kernel space in-between

63

V – Collecting Fine Grain Memory Traces

regular flushes toward the user space. Of course, these two tasks should be as
slightly intrusive as possible.

The remaining of this section discusses the design of Moca Linux kernel
module as it is both the most important and the most complex part of Moca.

5.3.1 Page faults interception and injection
Moca collects complete traces in the sense that the exact set of pages accessed
by the application is deduced from the collected events at all times during the
execution. Thus, it is complete at the page granularity. Other information such
as exact addresses and access times are a sample of the set of all the accesses.

Moca is built upon the possibility to register an additional callback on Linux
page faults. Nevertheless, a page fault does not occur at each memory access.
To monitor memory accesses during the course of the execution, we need to
reenable a page fault similar to the first access, but performed on a regular
basis and on behalf of Moca. In other words, we need to inject false page fault
by periodically marking as not present the pages accessed by the application. In
Linux terminology, marking means that the next access to the page will trigger
a page fault which will have to be handled, in this case, by a handler contained
in Moca.

This method has several advantages over hardware sampling or instrumen-
tation. First, it provides a superset of all the memory accesses, because it
guarantees that each page accessed by the monitored application will fault once
and will be traced. Second, at the end of each monitoring interval, we know the
exact set of accessed pages from which we deduce a superset of actual memory
accesses. This comes in addition to the fact that each false page fault generated
provides Moca with exact information about one memory access. This means
that Moca also performs a sampling of all the memory accesses at the granu-
larity of the Byte. Because it is designed to manage large chunks of trace data
within the kernel space, it also stores all the details about these samples in the
collected trace.

Moca differs from instruction sampling because it is not necessary to increase
the monitoring frequency of Moca to collect a complete trace. On the contrary,
when using instruction sampling, if the pages of the application are accessed in
an unbalanced manner, it is necessary to increase the sampling frequency to get
a precise picture of the memory working set of the application. Nevertheless,
there can be no guarantee that a chosen sampling frequency will result in a trace
that contains all the pages on which the application works. To illustrate this
difference, we consider two threads accessing a set of four pages in a linear way
over the time as represented in Figure ??. With a classic instruction sampling
based tool, we will intercept one access every n instruction, which will result
in a trace similar to the one depicted in Figure 5.1b. From such trace, it is
impossible to identify the access pattern. At the opposite, a tool such as Moca
using page sampling, will intercept every first access to a page during each chunk
of time, resulting in the trace depicted in Figure 5.1c.

Moca also differs from instrumentation based tools because, just as in the
case of sampling, memory accesses that are not collected in the trace are not
trapped at all by a false page fault. Furthermore, the remaining memory ac-
cesses, which are collected, are trapped using a hardware mechanism and Linux
kernel probes. Both are lightweight mechanisms, which means that the overall

64

Design – 5.3

1 2 3 4

P0

P1

P2

P3

Time

P
a
ge
s

Thread 0
Thread 1

(a) Actual accesses

1 2 3 4

P0

P1

P2

P3

Time

P
ag
es

Thread 0
Thread 1

(b) Accesses captured by instruction sam-
pling tools

1 2 3 4

P0

P1

P2

P3

Time

P
ag
es

Thread 0
Thread 1

(c) Accesses captured by Moca

Figure 5.1 – Accesses done by two threads on a set of pages, captured by in-
struction sampling tools and by Moca.

instrumentation overhead of Moca is likely to be low. Indeed, instrumentation
based methods often work at a high granularity, collecting few information, in
order to keep their naturally high overhead in control.

5.3.2 Internal design
During the execution, our Linux kernel module needs to store three kinds of
information:

1. The set of tasks (Linux internal representation of threads and processes)
which are monitored. This is necessary because page faults will also be
triggered by tasks which do not belong to the monitored application.

2. The set of all page faults which have been injected by Moca, required
to distinguish false page faults from regular ones, because their handling
differs. False page fault could also be identified by setting some bits of the
PTE that are not used by the OS. While this solution avoid to maintain

65

V – Collecting Fine Grain Memory Traces

the set of false page fault, it is a hack not portable and could interfere
with a runtime.

3. The set of addresses recently accessed by each task, this set correspond to
the actual memory trace. It is required to keep it in kernel space as we need
to reinject these false page faults at the end of each monitoring interval.
Afterwards, this set is transferred to the user space by a dedicated process
and appended to the resulting trace.

These sets of data are stored in hashmaps. The Linux kernel provides some
helpers to manage such hashmaps, still these maps generate an allocation each
time we add an element to it. Therefore we implemented generic pre-allocated
hashmaps in our kernel module. As memory space is restricted in the kernel
space, these hashmaps are not statically allocated, but they only call the kmalloc
function during their initialization. Furthermore, they are initialized as soon as
possible which means at the beginning of the execution for the two first sets,
and each time a new thread is created for the third. As Moca does not have any
a priori knowledge of the monitored application, it allocates huge hashmaps. If
the monitored application has a considerable memory footprint they might be
too small, in this case, Moca will drop a part of the trace and notify the user
that it is incomplete. The user can then either monitor its application on a
smaller input or use Moca parameters to change the size of these hashmaps.

The two first sets of data are read at each page fault but rarely written, only
when a new task of the monitored application triggers its first page fault or when
Moca generate new false page faults. We can protect them with Linux kernel
built-in rwlocks. The third type of information is the actual trace, divided,
for each task, in a private set of chunks. A chunk is the set of accesses that
have been collected during the monitoring time interval and is implemented as
a hashmap. Chunks provide a discretization of time, each chunk embed two
timestamp to mark its temporal bounds. To reduce the volume of information
stored, the accesses are not timestamped. However, the arrival order in the
chunk is preserved in the final trace file.

The discretization of time, materialized as a sequence of chunks, is useful as
it let the different components of Moca work concurrently on different chunks.
Indeed, the traced program always works on current chunks, one for each core,
while the logging daemon, which flushes the trace from memory to permanent
storage works on completed chunks. A monitoring kernel thread, manages the
progress of this logical time. It periodically wakes up, marks the current chunks
as ending and invalidates all the pages they reference. Once all pages of the end-
ing chunks have been invalidated, it marks these chunks as completed. Finally,
the logging process flushes completed chunks to the filesystem at a lower rate, in
order to reduce the overhead of I/Os requests, and recycle them as empty places
for upcoming chunks. Figure 5.2 depicts the interaction between the different
processes and threads of Moca, its data structures and Linux.

Eventually, Moca generates one CSV file, each line of this file describe one
access giving its physical and virtual address, the number of read and writes
captured, a bitmask indicating on which CPU the access occurred, the start
and end timestamp of its chunk and the internal identifier of the task which
triggered it. A set of access sharing the same timestamps and task identifier
correspond to a chunk. The order of accesses inside a chunk is preserved.

66

Design – 5.3

Moca

Linux

Trace (1 Task)

False
Page

fault map

Tasks
map

Read
callback

page fault
handler

Logging
Process

(userspace)

Monitor
thread
(kernel)

Tasks
(user/kernel
thread/process)

Page
table

(kernel)

/proc file
(kernel)

File
(userspace)

read triggers

read write

write

triggers

write

read
(write)

read

read
write

write

write

write

read

Chunk3 empty

Chunk2 current

Chunk1 ending

Chunk0 completed

current

Figure 5.2 – Interactions betweens Moca and Linux.

The monitoring thread, which is a kernel thread, that uses the Algorithm 5.1,
is in charge of enabling false page faults destined for Moca. It performs its task
by removing the PRESENT flags from the PTE that corresponds to each recently
accessed addresses. Of course, the shorter is the period between two wakeups,
the more precise the trace is. This period is called monitor thread wakeup in-
terval (or monitoring interval). But invalidating all the recently accessed pages
takes time as it requires to take a write lock on the page faults hashmap. This
write lock delays any pending false page fault in the monitored application.
Thus the wakeup frequency of the monitoring thread cannot be too high, oth-
erwise its action becomes too intrusive. The MonitorThreadWakeUpInterval
Moca parameter lets the user change the default setting that we have empirically
chosen after a few experiments that are presented in Section 5.4.2.

The logging daemon, that uses Algorithm 5.2, is a userspace process which
periodically reads /proc pseudo files used by Moca kernel module to export its

67

V – Collecting Fine Grain Memory Traces

Algorithm 5.1 Monitoring thread algorithm
1: while NotFinished() do
2: for all t in MonitoredTasks() do
3: EndCurrentChunk(t)
4: for all Addr in PreviousChunk(t) do
5: WriteLockPF()
6: AddFalsePF(Addr)
7: WriteUnlockPF()
8: end for
9: MarkPreviousChunkFinished(t)
10: end for
11: sleep(MonitorThreadWakeUpInterval)
12: end while

data to userspace. Those reads trigger a callback method in our tool which
flushes completed chunks from memory to disc. As it works on completed
chunks, it does not directly interfere with the normal application execution.
Especially, no lock is required to access to these completed chunks, and, as it
mostly generates disc I/O, it does not compete much for CPU. Moca has just
to wake him up sufficiently often so that the kernel module does not run out of
free space to store upcoming chunks.

Algorithm 5.2 Logging daemon algorithm.
Note that no locks are required to work on completed chunks.

1: while NotFinished() do
2: for all t in MonitoredTasks() do
3: for all c in FinishedChunks(t) do
4: WriteTraceToDisk(c)
5: ReinitChunk(c)
6: end for
7: end for
8: sleep(LoggingDaemonWakeupInterval)
9: end while

Each time a page fault occurs, it is trapped by the handler registered by
Moca. As depicted by Figure 5.3, it first finds out if the task (thread or process)
involved by the page fault is monitored or not. If not, it has to check if the task
is a child of a monitored task and, in this case, it starts monitoring it. The check
is done with a simple read lock on the hashmap containing the monitored tasks,
the write lock is only taken if the task must be added. This last case occurs
only at the first page fault from a new monitored process or thread which is
quite rare and usually occurs only at initialization time. For instance, in the
benchmarks used for the evaluation it happened 8 times out of 5 × 106 accesses.
At the end of this phase, if the task is still not monitored, we let Linux handle
the page fault as usual.

When a monitored task triggers a page fault, the access is first added to its
current chunk. For each access, Moca stores the exact address, its type (read
or write) and the CPU on which the fault occurred. Then, it checks if the page

68

Design – 5.3

PageFault(task, @)

HandleFault(task,@)

Resume execution

InterceptPageFault(task,@)

Is task
monitored ?

Should we
monitor it ?

AddToChunk(task,@)Monitor(task)

Is it a false
page fault ?

FixFalsePageFault(task,@)

MocaLinux

No

YesNo

Yes

No

Yes

Figure 5.3 – Flow chart of Moca’s page faults

fault has been injected by Moca or if this is a legitimate page fault. To do
so, it needs to take a read lock on the false page fault hashmap. In the first
case, Moca fixes it by setting the PRESENT flag on the PTE. The hashmap entry
indicating that the fault was injected by Moca should then be removed, but
this would required a write lock, so we only mark the hashmap entry as BAD.
PTE are stored in Page Middle Directory (PMD) themselves stored in Page
Global Directory (PGD), to write a flag on a PTE it is required to take a lock
at the PMD level. Thus, if two threads faults at the same page in parallel,
they will be serialized at this step and only one of the thread will change this
flag. Therefore, it is safe to mark the page entry as BAD without holding the
write lock. When the monitoring thread, which already holds a write lock on
this hashmap, injects false page faults it might run out of space. In this case,
it walks the hashmap freeing all BAD entries it enconters. This lazy removal
reduce the overhead of Moca in three different ways. First, it avoid serializing
page faults. Then, it avoid removing entries when there are still enough room,
which is highly probable as we allocate huge hashmaps independently from the
memory footprint of the monitored application. Finally, it enables recycling
entries for page that are often accessed, speeding up the monitoring thread.

If a fix occurred in the Moca handler, Linux silently aborts the page fault
when it resumes its execution. In the other case, it executes a normal page fault
handling. Each page fault increases an atomic clock that is used to timestamp
the beginning and end of the chunks. A race might occur if the monitoring

69

V – Collecting Fine Grain Memory Traces

thread enables a false page fault between the end of our handler and the end
of Linux page fault handler. To avoid that, Moca stores for each CPU the last
address that faulted, and does not clear it right away but at the end of the next
chunk.

5.4 Experimental validation
In this section, we compare Moca and Tabarnac to other existing memory analy-
sis tools. In a first time, we present their main differences in terms of portability
and capabilities. Then, we present two sequences of quantitative experiments,
one that outlines the importance of the default parameters chosen for Moca and
the other that compares the precision and performance of all the tools.

5.4.1 Methodology
Our main experiments were run on machines from Grid5000 Edel cluster (Intel
machines). As some state of the art tools can only run on AMD machines,
we also ran some of the experiments on StRemi machine from Grid5000 greno-
ble. These machines hardware and software specifications1 are summarized in
Table 5.1.

Hardware totals
Nodes Threads Vendor Model Memory

Edel 2 8 Intel Xeon E5520 24 Gib
StRemi 2 24 AMD Opteron 6164 HE 48 Gib

Hardware per node
Cores Threads Frequency L3 Cache Memory

Edel 4 4 2.27 Ghz 8 Mib 12 Gib
StRemi 12 12 1.70 Ghz 12 Mib 24 Gib

Software
Distribution Kernel Bios configurations

Edel Debian Jessie Linux 3.16.0-4 No hyperthreading
StRemi Debian Jessie Linux 3.16.0-4 No hyperthreading

Table 5.1 – Hardware and software configuration of the evaluation systems for
Moca.

We disabled address space randomization to make the comparison between
different traces more practical. As our two evaluation machines do not have the
same hardware, we limited the number of threads used by OpenMP to 8, that
is the largest number of hardware threads available on both machines.

We evaluate Moca and Tabarnac by comparing them to the following state of
the art tools. The first one, Mitos, is the tracing tool from MemAxes [Giménez

1Grid5000 provides an online hardware description:
https://www.grid5000.fr/mediawiki/index.php/Grenoble:Hardware#Edel
https://www.grid5000.fr/mediawiki/index.php/Reims:Hardware#Stremi

70

https://www.grid5000.fr/mediawiki/index.php/Grenoble:Hardware#Edel
https://www.grid5000.fr/mediawiki/index.php/Reims:Hardware#Stremi

Experimental validation – 5.4

et al., 2014] and relies on Intel PEBS technology. The second one, Mem-
Prof [Lachaize et al., 2012], is designed to analyze NUMA performance issues
and relies on AMD IBS. The main differences between these memory profiling
tools are summarized in Table 5.2.

Moca Tabarnac Mitos MemProf
Design
Mechanisms Page faults Inst* PEBS + Inst* IBS
Architecture Any Intel (AMD) Intel AMD
Completeness
Trace Granularity Address Page Address Address
Superset Page Page None None
Detail
Temporal data Yes No Yes Yes
CPU location Yes No Yes Yes
Nature Yes Yes Yes** Yes**

Table 5.2 – Comparison of different memory traces tools.
*Inst: Instrumentation.
**Type (Read/Write) must be deduced from the instruction name.

Name Footprint* Description Group
IS 132 Mib Integer Sort

Memory IntensiveCG 125Mib Conjugate Gradient
MG 508Mib Multi-grid
FT 398Mib Discrete 3D FFT
UA 112Mib Unstructured Adaptive mesh Unstructured
DC 1.46Gib Data Cube
BT 120Mib Block Tri-diagonal solver

Pseudo ApplicationsSP 122Mib Scalar Penta-diagonal solver
LU 118Mib Lower-Upper Gauss-Seidel solver
EP 78Mib Embarrassingly parallel CPU bound

Table 5.3 – Description of the NAS Parallel Benchmarks (NPB).
All benchmarks are in class B.
*Footprints: maximum memory used, measured with Valgrind tool: Massif.

In the following sections, all the tools are evaluated on each of the 10 NAS
Parallel Benchmarks (NPB) [Jin et al., 1999], which are presented in Table 5.3,
according to the information available on the NASA website2. In this table, we
included the footprint of each benchmark, that is the maximum memory used,
as reported by Valgrind’s tool Massif.

In each experiment, Moca and Tabarnac were run with their default param-
eters, except for the experiment about the influence of Moca parameters. For

2 http://www.nas.nasa.gov/publications/npb.html

71

http://www.nas.nasa.gov/publications/npb.html

V – Collecting Fine Grain Memory Traces

Moca, their default values are: a wakeup interval of 0.5 s for the logging process
and 50 ms for the monitoring thread. Each point in each plot is the average
of at least 30 executions. Along with each point, the error bars represent the
standard error.

As explained in Chapter 2, we distribute3 all the files needed to reproduce
our experiments at three different levels: The first level contains the filtered
results (CSV files) from the experiments along with the R-markdown scripts that
generated the plots presented in this chapter, making possible the reproduction
of our statistic analysis. The second consists of the full raw traces generated
by our experiments along with the scripts used to extract the filtered traces
(CSV files from the previous level) and the scripts used at the previous level
to perform the analysis. Finally, at the most comprehensive level, we provide
a git repository that includes our deployment environment, dependencies to all
the tools and files required and instructions that explain how to reproduce the
experiment with or without access to Grid5000.

5.4.2 Moca validation
Before comparing Moca to existing tools, we need to evaluate the impact of the
wakeup intervals (logging daemon and monitoring thread) on the trace precision
and on the overhead. To do so, we ran the IS benchmark instrumented by
Moca with a wakeup interval ranging from 0.1 s to 0.9 s for the logging daemon
and from 20 ms to 100 ms for the monitoring thread. We decided to evaluate
monitoring thread wakeup interval close to the Linux scheduler interval 50 ms as
these events seems related to us. Concerning the logging interval we need it to be
longer than the previous one to limit the impact of Input / Outputs (I/Os). For
each run, we measure IS execution time and the number of accesses captured.
We have chosen IS for this evaluation as it is one of the memory intensive out of
the NPB and quick experiments with other ones confirmed these results. This
experiment was run on a machine from the Edel cluster.

We can see on the Figure 5.4a that the execution time increases when we
reduce the monitoring wakeup interval. At 40 ms it seems to reach its worst
level, thus we should keep it larger. At 50 ms, the default value we have chosen,
the Figure 5.4b shows that we obtain more than two thirds of the events cap-
tured at smaller intervals, which seems sufficient to us. Regarding the logging
interval, our experiments do not exhibit a clear trend. Changing it seems to
interfere with the system I/Os scheduler resulting in chaotic variations both in
the execution time and the number of captured events. The fact that variations
in execution time result in matching variations in the number of captured events
is due to the fixed length of monitoring intervals : the longer the execution, the
more monitoring intervals there are and the more events the trace contains.
Overall these variations are not significant as all the confidence intervals inter-
sect. Finally we have chosen a logging interval of 0.5 s, the median value, in
order to avoid unnoticed effect caused by extremum values.

5.4.3 Comparison to other memory trace collection tools
Preliminary experiments showed us that Mitos capture by default way less dis-
tinct pages than Tabarnac and Moca. Thus, we tried to change Mitos sampling

3 See our experiment repository: https://github.com/dbeniamine/Moca_expe

72

https://github.com/dbeniamine/Moca_expe

Experimental validation – 5.4

0

2

4

6

8

25 50 75 100
Monitoring interval (ms)

Ex
ec

ut
io

n
tim

e
(s

)

0.25 0.50 0.75
Logging
interval (s)

(a) Execution time.

0

50

100

25 50 75 100
Monitoring interval (ms)

C
ap

tu
re

d
ev

en
ts

 (x
10

^3
)

0.25 0.50 0.75
Logging
interval (s)

(b) Number of captured events.

Figure 5.4 – Influence of the wakeup intervals on IS, class A.

period in order to make it capture as many pages as possible, we name this
version MitosTun. Surprisingly, Mitos behavior regarding this sampling period
is not monotonous, we had to try many different periods to find the proper one.

The default MemProf distribution did not work with our experimental setup.
With the help of their support team4, we managed to make it work by disabling
the library used to retrieve data structures names. For the same reason as in
the case of Mitos, our study includes two versions of MemProf: the default
version and MemProfTun in which we have increased the sampling rate to its
maximum.

Finally our evaluation also distinguishes Moca (kernel module only) from
MocaPin, which also retrieve the data structure information using a Pin instru-
mentation. In recent version of Moca, the library that retrieve data structure

4 see issue at github.com/Memprof/scripts/issues/1

73

https://github.com/Memprof/scripts/issues/1

V – Collecting Fine Grain Memory Traces

information have been ported out of Pin, as described in Section 5.3. Still it
does the same work as the Pin instrumentation but without the weight of Pin
therefore has a similar or lighter overhead.

We compare the different tools regarding two metrics, trace precision and
induced slowdown. Regarding the trace precision, the first experiment compares
the tools using two criteria, the percentage of captured pages and the number of
captured events. We use Tabarnac as a reference to compute the total number
of pages accessed by the application because, by design, it traps all the memory
accesses to compute the number performed in each page. This metric is repre-
sentative of the coverage of the memory space, that is the capacity of the tool
to outline the whole memory area accessed by the application. Regarding the
number of captured events, we present the percentage relative to Moca, as it
is the tool that usually provides the more precise traces. We define one event
as one timestamped access found in the trace file outputted by a tool. Accord-
ing to this definition, Tabarnac does not capture any event as it only keeps
one counter per page and per thread without any temporal information. Thus,
Tabarnac is excluded from this comparison. The number of captured events is
representative of the precision of a monitoring tool, its capacity to keep track
of all the evolutions of the access patterns during the course of the execution.
The idea is that, the more the tool captures events, the less it misses changes
in the access patterns. The second experiment compares the slowdown factor
of the different tools. All these experiments have been run on each of the NPB
on class A.

Figure 5.5 presents the results of the precision evaluation for the different
tools. The values used for Mitos, MitosTun, Moca and Tabarnac result from
runs on Edel machines, while MemProf and MemProfTun values result from
runs on StRemi. We can see on Figure 5.5a that Moca captures almost as
many pages as Tabarnac. Regarding their design they should capture as many
pages. Nevertheless, there is a slight bump in the number of pages used by
applications monitored by Tabarnac due to the Pin instrumentation. Indeed,
its JIT instrumentation recompiles the executable on the fly and changes the
memory footprint (of the stack, mainly). Thus, we can safely ignore these
differences.

Mitos usually collect less than 12.5 % of the pages, adding some fine tuning
can almost double this number but it still misses most of the address space.
Regarding MemProf, changing the default sampling rate does not seem to have
any noticeable impact on the end result. Both MemProf and MemProfTun
capture significantly more pages than Mitos and MitosTun. Nevertheless, for
half of the studied applications it does not see more than 50 % of the addresses
space. Only for BT, LU, SP and UA, MemProf manages to capture around 75 %
of the accessed pages. This is explained by the fact that all these benchmarks
are using uniformly most of their address space, and that many pages are fre-
quently accessed. This is coherent with the fact that MemProf is solely based
on instructions sampling and only sees the most accessed pages.

From Figure 5.5b we can see that, as expected, for almost every bench-
marks, Moca collects significantly more events than the other tools. The only
benchmark for which Moca is not the more precise tool is EP which is an Em-
barrassingly Parallel application with very few memory accesses. This outlines
the fact that Moca captures events in an uniform way, timed by the monitoring
interval. On the contrary, the other tools might capture more events in a few

74

Experimental validation – 5.4

0

25

50

75

100

bt cg dc ep ft is lu mg sp ua
Benchmark

Pe
rc

en
ta

ge
 o

f
ca

pt
ur

ed
 p

ag
es

MemProf
MemProfTun

Mitos
MitosTun

Moca
Tabarnac

(a) Percentage of captured pages.

0

50

100

150

bt cg dc ep ft is lu mg sp ua
Benchmark

Pe
rc

en
ta

ge
 o

f c
ap

tu
re

d
ev

en
ts

 c
om

pa
re

d
to

 M
oc

a

MemProf MemProfTun Mitos MitosTun Moca

(b) Percentages of events captured (compared to Moca).

Figure 5.5 – Precision of the traces generated by each tool.

hotspots presents in the application but miss sparse accesses during the rest of
the execution. For almost every other benchmarks both Mitos (with or without
tunning) and MemProf hardly reach 10 % of the accesses collected by Moca,
the only exception is DC for which MemProf captures from 25 % to 50 % of the
accesses collected by Moca.

These results prove that most existing tools can miss a considerable part of
the address-space while Moca guarantee that it traces covers all the accessed
pages. Furthermore they show that Moca is the only existing tool able to provide
a trace that is precise enough to give an good overview of the memory use of
an application. In short, not only our tool provides a complete trace at the
granularity of the page but it is also significantly more precise than the other
existing tools.

Figure 5.6 shows for each of the NPB, the slowdown factor when instru-

75

V – Collecting Fine Grain Memory Traces

mented by Moca and the other existing tools on Intel (Figure 5.6a) and AMD
(Figure 5.6b) Machines. Notice that the Y-axis is in log scale.

1

10

100

bt cg dc ep ft is lu mg sp ua
Benchmark

Sl
ow

do
w

n
fa

ct
or

Mitos MitosTun Moca MocaPin Tabarnac

(a) Evaluation on Edel (Intel)

10

1000

bt cg dc ep ft is lu mg sp ua
Benchmark

Sl
ow

do
w

n
fa

ct
or

MemProf MemProfTun Moca MocaPin

(b) Evaluation on StRemi (AMD)

Figure 5.6 – Slowdown factor of each tool. Y-axis in log scale.

From Figure 5.6a, we can see that Mitos, MitosTun overhead is almost negli-
gible which is not the case for Moca and Tabarnac. This difference is explained
by the results of the previous experiment, as these tools usually collects less
than 10 % of the accesses collected by Moca and miss a significant part of the
address space.

We can classify the benchmarks into three groups: for BT, CG, DC, EP, LU, SP
and UA, Moca is significantly faster than Tabarnac. This set of benchmarks is
interesting as it is made of varied application profiles as we can see in Table 5.3.
Indeed, if EP is mostly doing parallel computation with only a few number
of memory accesses, CG is described as memory intensive, BT, LU as well as
SP are linear algebra solvers with regular memory access patterns, and both

76

Experimental validation – 5.4

UA and DC contain unstructured computation, parallel I/O and data movement.
Furthermore, DC has a considerable memory footprint as described in Table 5.3.
The second group only contains memory intensive benchmarks (FT and IS). For
this group, Moca is as good as Tabarnac or a bit faster, probably because the
balance between computations and memory accesses hides the overhead of the
instrumentation.

For the last benchmark: MG, Moca is significantly slower than Tabarnac. By
looking at our experiment logs, we found that MG generates a lot of conflicts
in the hash map used by Moca to store false page faults. This issue is caused
by applications that perform a very large number of sparse accesses to a large
working set. This is not usual as parallel applications are often optimized to
make memory accesses as local as possible in order to take advantage of all
the levels of the memory hierarchy. Thus, we consider this benchmark as a
pathological case. A solution could be to increase the size of this hash map,
which is not always possible as memory space in the kernel is limited (and these
experiments have been run with the largest hash map we could use). Another
easier solution would consist in working on a smaller instance of MG and see if
the trace is still useful. Although the results are not presented here, we have
run Moca on MG with a smaller size (W) and we have been able to confirm that
the performance becomes comparable to Tabarnac in this case.

Figure 5.6b shows the results of the evaluation on the AMDmachine (StRemi).
On this machine, Moca overhead is quite similar to the one obtained on Edel.
MemProf exhibits a slowdown factor comparable to Mitos while providing traces
a little more precise. Nevertheless, they are still incomplete and way less precise
than Moca traces. Obviously MemProfTun has the same overhead as MemProf
as it captures the same amount of data.

Finally, we can see, as expected, that adding one execution with a Pin instru-
mentation to retrieve data structures information (MocaPin) only adds a small
overhead to the whole Moca execution. For several benchmarks this difference
is so small that we cannot distinguish it from Moca usual overhead.

5.4.4 Results and discussion

We have tested Moca with various applications and using several parameters.
Our experiments show that Moca has a good behavior for a wide range of param-
eters and helped us defining their default values. Our experiments also show
that, with these parameters, Moca provides significantly more precise traces
than state of the art tools. Of course, because of this increased precision, Moca
is slower than two of these tools, MemProf and Mitos. Nevertheless, compared
to the only other tool able to collect a superset of the memory space, Tabarnac,
Moca exhibit a decent overhead. Collecting such a superset with MemProf and
Mitos, and provide the same guarantee, would require to sample all the memory
instructions, which is not possible. At the end of the day, Moca is the only tool
able to provide a detailed trace with temporal, spacial and sharing information
while providing guarantees about the information lost during the sampling.

77

V – Collecting Fine Grain Memory Traces

5.5 Conclusions

We addressed the issue of memory accesses collection for multithreaded appli-
cations. This is a key challenge in high performance computing as memory
is often a performance bottleneck. Memory traces can be used at runtime to
improve data locality or offline by developers to understand and improve the
memory behavior of their applications and, therefore, their performance. For
online analysis the trace precision is limited by the volume of data that can be
analyzed in real time, but for offline usage, highly accurate traces can provides
a better understanding of the application memory behavior.

Our first attempt at collecting memory traces, Tabarnac, is designed specifi-
cally for NUMA related issue. It relies on a custom memory tracer based on the
Pin dynamic binary instrumentation tool which records the number of memory
reads and writes performed by all threads for each data structure. The ad-
vantage of instrumentation is that it is the most accurate and portable way to
generate memory traces. Despite the overhead caused by the instrumentation,
Tabarnac is efficient enough to analyze even huge applications in a reasonable
time.

We analyzed two parallel applications with Tabarnac: Ondes3D, a real life
application that simulates seismic waves, and IS from the NPB which is known
for being memory intensive with a random memory access pattern. For both
applications, Tabarnac helped us understand their performance issues. Using
this knowledge, we proposed simple code modifications to optimize the memory
behavior resulting, for each application, in significant speedups compared to
the original version (up to 60% speedup). Improvements were also substantially
higher than those provided by automated tools. Yet, Tabarnac traces are not
precise as they only contains a global overview of the memory sharing patterns
without temporal information. Therefore they only enable the observation of a
limited number of memory related issues.

Our second memory trace collection tool, Moca addresses this challenge. It
collects precise, complete and detailed memory traces. While existing tools rely
on incomplete hardware sampling to provide such traces at a lower cost, Moca
provides a complete trace, that contains all the accessed areas, at the granu-
larity of the page. Moreover, Moca traces not only contain all the pages that
are accessed during the execution, but also, for each trapped access, temporal,
spatial and sharing information: accesses are timestamped and recorded along
with their thread number, CPU number, and kind. While Moca works at the
page granularity, it stores the exact address of each intercepted accesses. There-
fore, it also provides an incomplete trace at the granularity of the Byte, similar
to traces collected by instructions sampling. Furthermore, Moca is also able to
relate accesses to data structures of the application by combining this efficient
trace collection system with an examination of the application binary.

Most state of the art tools are relying on hardware technologies such as Intel
PEBS or AMD IBS, and embed vendor (or processor) dependent code making
them hard to maintain and not portable. On the contrary, Moca is based on
page faults interception as well as false page faults injection mechanisms and
does not use any architecture dependent code. It can work on any Linux kernel
from 3.0 only by loading a module and without any kernel modification.

Several tools use page faults interception to retrieve information about the

78

Conclusions – 5.5

memory use. As information provided by only intercepting regular page faults
is not always precise enough, a few tools also inject false page faults on a regular
basis to increase the trace precision. To our knowledge, all the existing tools
relying on these mechanisms uses the collected data online and, thus, do not
have to manage and store a large volume of data. Moca is the first tool able to
generate and store complete and precise memory traces for offline analysis.

We evaluated Moca and Tabarnac by comparing them to two state of the art
tools: Mitos (the collection tool from MemAxes) and MemProf. Both of these
tools were evaluated with their default parameters and with some fine tunning
of our own. For this comparison, we evaluated two criteria: the precision of the
trace and the runtime overhead. We ran our evaluation on the NPB which are
representative of multiple kinds of applications from simple kernels to realistic
ones. Our evaluation has exposed the fact that the tools relying on hardware
sampling miss a large part of the address space. It has also shown that Moca is
able to provide both a complete trace at the page granularity and a sampling at
the Byte granularity significantly more precise than the other sampling based
tools. Generating comparable traces using MemProf or Mitos would require
to sample more memory instructions than the hardware can. Finally, Moca
overhead is more important than the overhead of sampling based tools but
usually lower than the one induced by Tabarnac.

The visualization and exploitation of these memory traces is another chal-
lenge. Indeed, not only theses traces contains an important volume of data, but
they are spread over several dimensions. The most obvious ones are the address
space and the time. Yet, the threads responsible for the accesses also represent
a dimension of the trace. Moreover, the Central Processing Unit (CPU) loca-
tion of the access is not necessarily bound to the threads, hence it is one more
dimension. Finally, the type of access (read or write, private or shared) is yet
another dimension. Several of these five dimension can be observed from differ-
ent point of view, for instance the address space can be physical or virtual, and
the time can be seen either as a discrete sequence of timestamp or as the result
of the code. In summary, our traces contain at least five dimensions, therefore
designing meaningful and intuitive visualization is far from being trivial.

79

Chapter VI

Analyzing Fine Grained
Memory Traces

Contents

6.1 Interactive visualization of aggregated trace 82
6.1.1 FrameSoc and Ocelotl..................................... 83
6.1.2 Trace Description .. 85
6.1.3 Sharing detection .. 85
6.1.4 Example ... 86
6.1.5 Discussion ... 89

6.2 Programmatic exploration............................. 90
6.2.1 Design ... 91
6.2.2 Example of visualization.................................. 92

6.3 Conclusions... 96

81

VI – Analyzing Fine Grained Memory Traces

Tabarnac traces contain two parts: informations about the data structures and
the actual trace. For small applications with a limited number of data struc-
tures, it is relatively easy to present the first kind of information. The actual
trace is spread over four dimensions: data structures, threads, pages and type of
accesses, however, this last one can only take two values (read or write). Finding
a meaningful and comprehensive representation for such data is slightly more
complex but it is still doable. Moca traces are way more detailed. Indeed, they
contain the same meta data and the actual trace also provides information about
time and Central Processing Unit (CPU) location. Therefore, these traces are
spread over five dimensions: time, addresses, type of access, thread and CPU
location. Furthermore some of these dimensions can be seen from several point
of view, for instance we can look either at the virtual address space or physical.
As we are not used to visualize things in more than three dimensions, to analyze
these traces, we must provide the user with a way to navigate through different
representations. Additionally, we need to help the user identify and focus on
the important parts.

The contribution presented in this chapter consists in two different methods
to analyze Moca traces:

• The first method relies on FrameSoc [Pagano and Marangozova-Martin,
2014], an existing generic trace management tool, and more specifically
one plugin called Ocelotl [Dosimont et al., 2014] that provide aggregated
views of a trace.
We have implemented an importer to analyze Moca traces in FrameSoc
that is distributed on Github under GPL License:
https://github.com/dbeniamine/framesoc_importer_moca.
The proposed visualizations are presented in a Research Report [Beni-
amine et al., 2015a].

• The second method relies on R, it is an ongoing work, publicly available
online at: https://github.com/dbeniamine/Moca_visualization

This chapter is organized as follows: first we present our analysis of Moca
traces with FrameSoc and Ocelotl with an example and discuss the limits of
this method in Section 6.1. Then we propose a second, more flexible approach
based on R in Section 6.2. Finally we present some perspective of improvement
of these analysis and our conclusions in Section 6.3.

6.1 Interactive visualization of aggregated trace

As Moca traces are spread over five dimensions and as the address space of
an application can be quite large, we need a way to navigate easily in the
trace and highlight interesting parts. Consequently, we are looking for a high
level tool that is able to highlight potentially interesting parts of the trace.
While several trace manager tools such as HPCToolkit [Adhianto et al., 2010]
are able to import generic traces, we decided to use FrameSoc [Pagano and
Marangozova-Martin, 2014]. This decision was mainly motivated by one of
FrameSoc visualization tool, Ocelotl [Dosimont et al., 2014] that is designed
specifically to aggregate similar parts of a trace and identify anomalies.

82

https://github.com/dbeniamine/framesoc_importer_moca
https://github.com/dbeniamine/Moca_visualization

Interactive visualization of aggregated trace – 6.1

6.1.1 FrameSoc and Ocelotl
FrameSoc is a generic trace management infrastructure, it provides importers to
read traces from many different formats. From its point of view a trace consists
in five sets:

1. Some meta data about the trace, such as the name of the trace, the ap-
plication traced, the number of CPUs used, the Operating System (OS)
and so on. . .

2. A set of Event Producers: which are entities able to produce some Events.
For classic performance traces the Event producers are the CPUs, threads
or processes.

3. A set of Events Types used to classify the possible events. MPI function
calls and system calls are two usual event types.

4. A set of Events, Variables and States that form the actual trace. For
instance in a classic trace, a call to a call to MPI_Send could be an event,
and a CPU could be in idle state after a call to MPI_Receive. Variables
are used to represent values that evolves as the time passes.

5. A set of Links that can be used to represent causality between events,
variables and states.

To analyze a trace from an unknown format in FrameSoc, we need to write
an importer which is a relatively simple task. Indeed FrameSoc is implemented
as an Eclipse plugin, consequently an importer is a small piece of java code that
read a trace file, create the sets described above and store them in a database,
using FrameSoc Application Programming Interface (API). The main challenge
in the writing of an importer is to figure out how to represent the trace in
FrameSoc internal model.

FrameSoc provides several functionalities to explore a trace such as filtering
events by type, name, focusing on a time frame. Additionally it has a multi
view representation which means that several views of the trace can be opened
at the same time and synchronized. For instance a user can start inspecting a
trace with a Gantt chart, focus on a small part and then look at a pie chart
of the event distribution in this subset of the trace. FrameSoc is optimized to
make such analysis as smooth as possible.

Ocelotl [Dosimont et al., 2014] is an analysis tool for FrameSoc. This tool is
particularly interesting for us as it provides an aggregated overview of a trace.
The idea behind Ocelotl is that a trace with too many entities (events or event
producers) is not understandable, consequently, it should be analyzed with a
systemic approach. This means considering the whole trace as a system and
finding a macroscopic representation of that system that contains an amount
of information understandable by a human. To do so, it uses an aggregation
methodology proposed by Lamarache-Perrin [Lamarche-Perrin et al., 2014] and
adapted for trace analysis. This methodology cuts the trace into small slices
over the two dimensions: time and space (event producers). Then it consid-
ers each possible partition, benefiting from the structure enforced on time and
space to reduce the number of possibilities. For instance, merging two slices
that are not continuous over time is not allowed as it would not be meaningful.

83

VI – Analyzing Fine Grained Memory Traces

In addition, it uses a parameter p < [0, 1] that controls the trade-off between
information loss and data reduction and find the optimal partition for this pa-
rameters. Once the first visualization is generated, Ocelotl provide the ability to
explore the trace (zoom, use FrameSoc filters . . .) and change the p parameter.
The usual workflow with Ocelotl is starting with a high p, where the trace is
mostly aggregated, zoom on anomalies or interesting parts and decreasing p to
understand more precisely what phenomena we are observing.

Figure 6.1 is a screenshot of Ocelotl, showing on the main pane an overview
of an example trace, aggregated over time and space (memory addresses). The
X-axis represents time and the Y-axis represent the memory space, we can see on
the left that the Y-axis is organized hierarchically. Indeed, the blocks on the left
of the main page represents a tree where the root represent the whole memory
and which is then divided in data structures and continuous allocations. Each of
these entities are divided recursively until we reach the page level. This hierarchy
is used to reduce the number of possible aggregations, indeed, Ocelotl can only
merges complete nodes of the tree. Without any a priori knowledge about
the trace application, we can distinguish three phases on this visualization: a
short initialization (blue column at the beginning), the main execution with
some pattern change around the middle of the execution (dark block in the
middle) followed by a pattern change at the two third of the execution. The top
right pane shows a summary of the trace, aggregated only over the time. On
this summary, the initialization is a bit less visible. Finally, the bottom right
pane shows a comprehensive visualization of the tradeoff between information
and complexity depending on the value of p. The red (dark) curve shows the
information gain and the green (light) one the complexity gain. The current
value of p is showed by a blue vertical line, and displayed in a text block under
the curve. We can set the p parameter either by clicking the curve or by entering
the requested value inside the text block. At this point, the user could zoom in
a subpart of the trace by selecting it, or change the parameter p to disaggregate
the visualization.

Figure 6.1 – Screenshot of Ocelotl.

84

Interactive visualization of aggregated trace – 6.1

6.1.2 Trace Description

As explained earlier, Moca traces are spread over five dimensions while Frame-
Soc is designed for two dimensional traces (time and event producers). Never-
theless, we can use the event types of FrameSoc to represent some of the missing
dimensions. To provide different visualizations of the same trace, our importer
produces four different FrameSoc traces with different event types. For all the
traces, the event producers represent the memory addresses, but the two first
are based on virtual addresses while the two others physical addresses.

The more event producer there are, the more partitions Ocelotl must consider
to compute the aggregation. Yet, Ocelotl uses the structure of the event pro-
ducers hierarchy to reduce the number of allowed partitions, indeed it can only
merge event producers that have the same parent (and all of them or none).
Consequently we can counterbalance the huge number of event producers by
creating an artificial hierarchy in the memory. Still, we can build a meaningful
hierarchy that also adds some semantic to the trace: to do so we create a vir-
tual Memory Root event producer that is the parent of all the event producers.
Then, the second level of event producers is composed of the stacks and data
structures. All the addresses that are not in these set, are merged if they are
contiguous, creating chunks of continuous addresses which are also second level
event producers. Then, each subsequent level is obtained by splitting the previ-
ous one in two or three parts, until we reach the page level. The pages are the
leaves of this artificial memory hierarchy. We could divide the pages in cache
lines and keep going until the address granularity, but this would generate way
more event producer that what Ocelotl is able to handle.

For both physical and virtual addressing, our importer creates two different
traces. In the first type of trace, the events are spread on four event types:
private_read, private_write, shared_read, shared_write. For the second
trace, the event type represent the thread responsible of the access. As a result,
for both physical and virtual addresses, we have two views, one representing the
detailed usage of the memory by the threads and one global view presenting the
sharing patterns and memory access types.

Each access is represented by a variable, whose value is the number of threads
involved in the access. Finally, the CPU on which the access occurred is stored
as an event parameter.

6.1.3 Sharing detection

Moca does not compute sharing directly but the traces contains enough in-
formation to detect shared accesses. Indeed, in Moca traces, each access is
timestamped with the begin and end of the chunk to which it belongs, which
means that an access can be seen as a time interval during which a thread is
using a memory page. We do the sharing detection at the page level as Moca
traces are complete at the page granularity. Consequently, we consider that a
sharing occurs when two threads access the same page during and intersecting
time interval. To compute this sharing, we retrieve the list of accesses for each
page. Then we cut the global time interval each time a thread start or stop
using a page and mark each access with the number of threads involved in the
sharing. Figure 6.2 shows this transformation.

85

VI – Analyzing Fine Grained Memory Traces

Thread 0:

Thread 1:

Thread 2:

Original Trace Modified Trace

0 2 5

1 3 6

4 7

0 1
1

2
2

3
2

4
2

5
3

1 2
2

3
2

4
2

5
3

6
2

5
3

6
2

7
1

Figure 6.2 – Sharing detection in Moca traces.

6.1.4 Example
To illustrate these visualizations we implemented an extremely naive parallel
matrix multiplication. In this example, a first thread does the whole initializa-
tion, then create four threads that will do the actual computations. Further-
more, we split the work by cutting the result matrix in four parts, resulting in
the distribution of the data structures presented in Figure 6.3.

A

B

C

Thread 1 and Thread 2

Thread 3 and Thread 4

Thread 1
and

Thread 3

Thread 2
and

Thread 4

Thread 1 Thread 2

Thread 3 Thread 4

Figure 6.3 – Naive parallel matrix multiplication

Figure 6.4 is a screenshot of Ocelotl visualization by thread of a Moca trace.
We can see the hierarchy on the Y-axis, starting with the memory root, then
three data structures. The X-axis represent temporal evolution.

From this view, we see clearly that blue accesses occurs only during the ini-

86

Interactive visualization of aggregated trace – 6.1

Figure 6.4 – By thread view of the memory usage of a naive parallel matrix
multiplication.

tialization phase (vertical light line at the beginning) except for a small data
structure on the bottom of the figure (thin dark line). Blue is the color of
threads 0, therefore we can see that this is the master thread doing the initial-
ization. Moreover, the master thread also access to some private data (the small
structures in the bottom). Among these data, we can find a Process Identifier
(PID) array used to wait the end of the slave threads. We can confirm that by
filtering the accesses to show only the accesses done by thread 0. Or by zooming
on the initialization phase.

During the rest of the execution, two data structures are accessed diagonally
over the time, which means linearly. Furthermore, the colors confirms that two
threads are sharing each series of accesses. The data structure in the middle
is intensively accessed by all the threads. As these accesses are regular, all the
accesses are aggregated.

At the two third of the execution, we can see a change of colors in the middle
data structure. Additionally, it seems that at the same time the violet (dark)
thread has completed his work and does not access the memory anymore. More-
over, just before this threads finished its accesses, the middle structures turns
violet (dark) for a small time lapse which means that this thread is responsible
for most of theses access at that time. This could be an effect of Linux scheduler
that privileged temporarily this thread.

Now let’s zoom on the initialization step. The result is shown in Figure 6.5.
We can see that, during the initialization phase, only the master thread is
working. We can identify a three diagonal patterns happening at the same
time, it correspond to the matrix initialization. The private data structures in
the bottom also appears during the initialization. Finally, we see that as soon as

87

VI – Analyzing Fine Grained Memory Traces

the thread 0 has finished to initialize the data structure, the other four threads
start working.

Figure 6.5 – By thread view of the memory usage of a naive parallel matrix
multiplication, initialization.

In the previous view there was one access type per thread. The global view,
designed to highlight sharing only, provides four event types independently from
the number of threads. Therefore, it is easier to identify sharing patterns with
this view. Figure 6.6 shows this visualization of our example traces. We can
see that the trace looks like the previous one except that the order of the data
structures is different, which is due to an artifact of the importer. Blue accesses
are privates and reds are shared. Dark colors are for writes while light ones
means reads. From this view, we can see that most accesses seems to be reads
and except for the matrix B (on the bottom) they are all private. Afterwards,
the visualization is aggregated. At this point it is interesting to zoom in the
middle of the execution and disagregate the trace as much as possible.

By focusing on the middle of the execution and setting p to zero, we obtain
the Figure 6.7. It is important to note that the trace is still aggregated due to
the microscopic model of the trace. This aggregation explains the fact that we
still see small, regular, blocks of accesses. We cannot identify a clear pattern on
the bottom matrix, however, we can see a few private (blue) accesses appearing
from time to time in this data structure. The access on this matrix seem dense
and not designed to fit in a cache. This density of accesses is coherent with
the behavior expected. Indeed the matrix B is accessed column first by all the
threads. Due to the representation of 2D matrices in C, each access made by
each thread is separated by sz doubles from the next one. Hence Ocelotl groups
almost everything in huge chunks of accesses on all the matrix. We can also see
in this figure that shared (orange) accesses appears regularly on the two other

88

Interactive visualization of aggregated trace – 6.1

Figure 6.6 – Sharing view of the memory usage of a naive parallel matrix mul-
tiplication.

data structures (matrix A and C) which is also coherent with the expected
behavior.

6.1.5 Discussion
Ocelotl enabled visualizing Moca traces and helped identifying inefficient pat-
terns on a test application. We visualized Moca traces from two different point of
view, the first one show the memory accesses by threads and helps understand-
ing the division of the work. The second shows the access types independently
from the threads it helps understanding how the memory is globally used.

However even for this extremely simple benchmark we started to see some
scalability issues. The first limit comes from the fact that FrameSoc is designed
for a small number of event producers. Indeed FrameSoc event producers usually
represents threads, CPUs or nodes of a distributed system with at worst a few
thousands of them. At the opposite, our small example we already had 20000
event producers for only 78 Mb of memory usage, a trace using 1 Gb would
require more than 250000 event producers. We can mitigate the impact of
the number of event producers on Ocelotl by organizing them in an artificial
hierarchy but this only reduces the computation time of Ocelotl and makes
the visualization even more aggregated. Filtering the trace based on the event
producers is extremely slow with such traces in FrameSoc. This issue also impact
other FrameSoc tools, and makes it almost impossible to analyze Moca traces
on tools which rely on filtering. The second issue comes from the fact that we
had to create several FrameSoc traces to represent all the information contained
in Moca traces. As a result, changing analysis point of view means changing the
trace, hence loosing all filtering already computed and all caches that speeds

89

VI – Analyzing Fine Grained Memory Traces

Figure 6.7 – Sharing view of the memory usage of a naive parallel matrix mul-
tiplication, computing phase.

Ocelotl up. Therefore it is a process extremely slow that breaks the analysis
workflow. While it would have been technically possible to merge the threads
view and the sharing view by creating complex event types holding information
about access type, sharing and the thread responsible for it, this would result
on a huge amount of event types. Such a trace would results in two issues:
first the microscopic description of the trace would be more complex which
might slow Ocelotl down, and second it would make filtering by type extremely
complicated. Indeed there is no way to do filtering using regular expression or
any programmatic way in FrameSoc, thus, on a huge trace the user would have
to do tens or hundreds of clicks and might do some errors to switch from point
of view. Finally, with these traces it is not possible to have information about
the data structure (their size and number of acesses), to do so we would have
to create yet another trace during the importation.

To conclude, visualizing our traces with Ocelotl proved that memory traces
are helpful to identify performance issues. Nevertheless, we identify several scal-
ability issues in our analysis workflow due to the fact that generic trace analysis
tools are not designed for the specificities of memory traces. Consequently, a
more flexible approach that ease switching from point of view and filtering would
be more efficient to analyze our traces.

6.2 Programmatic exploration
The main drawback of using a generic visualization tool for analyzing Moca
traces come from the difficulty to switch the perspective from which we visual-
ize the data. More precisely, this limitation comes from the static representation

90

Programmatic exploration – 6.2

of traces as a two dimensional entities used in most tools. This is problematic
for Moca traces because not only they are spread over five dimensions, but these
dimensions are related to each other. Indeed, the placement of threads on the
CPUs is not necessarily fixed but it matters and can impact the performance.
Furthermore, this placement must be analyzed in relation to the placement of
memory pages on the physical memory and on the underlying hierarchy. As a
result, projecting such traces on two dimension is complex and different projec-
tions should be analyzed and correlated to understand the memory behavior of
an application. Hence, a more programmatic approach may enable the analyst
to work closer to the data and ease this point of view switch.

In R, data are usually stored in huge dataframes, each row of a dataframe
represent one observation and each column represent one dimension of this ob-
servation. Consequently, in R, changing the analysis point of view for a set of
data only means looking at another column of the dataframe which is made
simple by its formalism. While this representation has a significant memory
footprint, R is designed and optimized to do such analysis and to correlate dif-
ferent dimensions of a set of observations. For these reason, we analyzed several
traces with R. For more reproducibility, we have stored the evolution of our
work in an Org-mode labbook, as described in [Stanisic, 2015, Chapter 4, p 54],
available online at: https://github.com/dbeniamine/Moca_visualization.

While this approach is extremely flexible, it is not user friendly. Indeed it
requires to know how to write efficient R code, how to use Org-mode and Emacs
and to read the labbook before doing an analysis. Anyway, after a few analysis
we obtained a basic procedure to analyze traces (parsing, transforming data,
showing some generic visualization) which we can adapt at each step to actual
the trace. For instance, we might want to ignore some parts of the trace very
soon to focus on some data structures, or after analyzing one plot we might
think of another representation of data that might be meaningful in this case.

6.2.1 Design
Our analysis always starts with a typical pipeline that we can easily adapt to
the specificities of the analyzed trace:

1. Parsing: reading Moca traces (to which we have applied the sharing detec-
tion written for FrameSoc and depicted in Figure 6.2) and storing them in
R dataframes. At the end of this step, we have two dataframes, the main
one contains all the accesses, and the other one the list of data structures.

2. Creating simplified data frames: At this point, the main dataframe con-
tains a set of accesses where shared access appears one time for each thread
involved in the sharing as described in Figure 6.2. We can aggregate all
theses accesses, reducing the size of the main dataframe.

3. Retrieving the mapping between structures and pages: this step is the
most costly one, but can be speeded up by several means:

• At the end of the parsing step, we can reduce the interesting address
space, usually we take the minimum and maximum addresses that
are inside a data structure and filter out all the accesses that are not
in this interval.

91

https://github.com/dbeniamine/Moca_visualization

VI – Analyzing Fine Grained Memory Traces

• By sorting both dataframes (accesses and data structures) by ad-
dress, we can retrieve this mapping while going through each data
frame only one time.

4. First set of predefined plots: we can present, using processed dataframes,
some predefined plots. This first set is inspired from Tabarnac plots and
show the size of data structures, the number of accesses, and amount of
sharing.

5. Filtering: at this step we can easily identify data structures that are rarely
used and might not have a significant impact on the application perfor-
mance, we filter these data structures out to focus on the most important
ones.

6. Second set of predefined plots: for all the data structures that are left
we visualize the memory accesses over the time depending on their type.
For these plots, the color represent either the number of accesses or the
number of threads involved in the access.

At any step of the pipeline, it is possible to do more filtering using our knowledge
of the analyzed application to speed up the process. Once the predefined plots
are obtained, we can easily navigate in them using R selection operators to do
complex filtering or zoom on a part of the trace. Moreover it is possible to
design any other visualization that might be interesting.

6.2.2 Example of visualization
We illustrate our visualization with the dgetrf kernel from the fflas-ffpack [group,
2016] compiled against the OpenBlas [Chothia et al., 2016]. This trace was
collected on a machine from the Edel cluster which hardware was presented in
Table 5.1.

Figure 6.8 shows for each data structure1 the number of accesses per page
over the time. Furthermore we differentiate four types of access: PrivateRead,
PrivateWrites, SharedRead and SharedWrites.

For each structures, some accesses seemed to appear private and shared at
the same time which is not possible. Nevertheless, by zooming on a small part
of the execution were able to confirm that those access are interleaved and never
of both types at the same time. This means that several threads are working
on data very close and often do actually share some pages.

From this visualization we can see that two of the stacks (1252 and 1250)
are always used privately. Furthermore the data structure malloc#5 seems to
be used mostly privately and only very rarely read in a shared way. The name
malloc#N means that it is the Nth call to malloc intercepted by the library.
These three structures seems also to be accessed mostly linearly, hence they
should not be subject to memory optimization.

At this point, it is interesting to ignore these three data structures and focus
on the others, we can do this with the simple line of code displayed in Listing 6.1.

These three structures present different and interesting memory access pat-
terns that are presented in Figure 6.9. First the malloc#1 structure is very small

1 A few, almost unused, data structures have been filtered out to make the image more
readable.

92

Programmatic exploration – 6.2

Figure 6.8 – Visualization of the memory access of the dgetrf kernel from ffplas-
ffpack.

Listing 6.1 R code to focus on interesting data structures.
1 s <- r[r$Structure %in%
2 c(" malloc #1", "stack", "stack :1256"),]

and accessed intensively in a shared way, during all the execution and always on
the same page. We can presume that this data structure contains information
about the threads status that must be updated quite often, maybe it is used for
thread scheduling. Second the stack 1256 is only used during the first third of
the execution and written only at the beginning and in parallel. For a generic
data structure, this parallel initialization could probably have been designed to
distribute first touch on the Non-Uniform Memory Access (NUMA) nodes of the
machine, still on a stack it seems quite unusual. Last but not least, a small part
of the main stack is accessed in read and write mode and in a shared way during
all the execution. This pattern means that threads are probably organized in
a master / slave way, where the master thread allocates data in its stack (not
a dynamic allocation). This might be problematic on NUMA machines as the
stack is usually used to store private data, thus not trivial to explicitly allocate
a part of it on a chosen remote node. It seems interesting to zoom on the be-
ginning of the execution to check if the initialization of this part of the stack is
correctly spread among the thread or not. If not, Linux will allocate each page
on the memory bank of the master thread independently of the repartition of
the data between the threads.

Figure 6.10 shows the memory accesses occurring inside stack:1256 during
the first par of the execution. The color indicates the number of threads involved

93

VI – Analyzing Fine Grained Memory Traces

Figure 6.9 – Visualization of the memory access of the dgetrf kernel from ffplas-
ffpack, zoom on the three interesting data structures.

in the memory access. The first thing we can notice in this figure is that the
data structure seems to be read before being written. When a page that is not
mapped to the memory is read before writing it, Linux does not map it but
reads a page full of zeroes. Consequently, this behavior should not impact the
first touch. Then, it seems that the first writes are both private and shared. As
a memory access cannot be both shared an private, that means these accesses
occurs in parallel and some parts are accessed by two or three threads at a time
while some others stays private. We can confirm this behavior by zooming even
more in the initialization.

By zooming even more, we obtain Figure 6.11 which shows that access are
indeed not shared and private at the same time. Furthermore it confirms that
the data in this stack are read before being written.

After discussing these results with some of the developers of the fflas-ffpack,
it appears that the observed patterns can be due to the OpenBlas library and
might be complex to improve. Yet an interesting thing to do would be to
compare these traces, with the trace of the same kernel but compiled against
the Intel Math Kernel Library (Intel MKL). Indeed, there are some performance
differences between the two library that are hard to explain with traditional
profiling tools as the Intel MKL code is proprietary. Therefore, memory traces
might help understanding the underlying algorithms.

In the end, this approach ease the exploration of Moca traces, provided
that the user know a minimum of R code and that read our labbook. This is
more complicated than using FrameSoc and Ocelotl. Additionally, we had some
troubles to analyze some traces from Lulesh and Sofa. Indeed these applications
generates thousands of call to the malloc functions (hundreds of thousands for
Lulesh), probably to create trees. Hence, retrieving the mapping page to data

94

Programmatic exploration – 6.2

Figure 6.10 – Visualization of the sharing patterns of the dgetrf kernel from
ffplas-ffpack, zoom on the initialization of stack:1256.

Figure 6.11 – Visualization of the sharing patterns of the dgetrf kernel from
ffplas-ffpack, zoom on a part of the initialization of stack:1256.

95

VI – Analyzing Fine Grained Memory Traces

structure was extremely slow or nearly impossible without merging some data
structures. In the end it appears that we need to add a priori knowledge of the
developers in the parsing step to merge data structures.

6.3 Conclusions
Visualizing Moca traces is a complex task. Indeed these traces are spread over
five dimensions: time, addresses (virtual or physical), threads, CPU location
and access type. Furthermore, the address space is quite large and we are
mostly interested in some specific patterns. Therefore, we first used Ocelotl, a
part of FrameSoc infrastructure, to analyze these traces. This tool is designed
to aggregate traces in a meaningful way, trying to provide a good trade-off
between information lost and data reduction. Importing Moca traces inside
FrameSoc is interesting as it provides easy filtering and zoom on the traces.
Still, FrameSoc considers that a trace has two dimensions: time and event
producers, it is hard to represent the complexity of Moca traces in it. FrameSoc
event types could be used to represent this complexity. In Ocelotl event types
are represented as a color, if the event types represent several dimensions, it is
impossible to interpret the colors of a visualization. Consequently, if a FrameSoc
trace contains all the information, we must do some filtering by event types to
be able to interpret it. In FrameSoc, the only way to filter a trace by event
type is to select individually some types by clicking on them. As a result such a
trace would not be usable and it is simpler to generate several distinct FrameSoc
traces while importing one Moca trace. The main drawback of this workaround
is that switching traces inside FrameSoc means loosing all zooms and filters
along with the caches and the results of the aggregated views computed by
Ocelotl. In the end this approach enable the visualization of small traces, yet
the cost of changing the perspective is too high and makes the interaction too
slow to be usable.

Our second approach to analyze these trace was more programmatic, we
used R and saved all our attempts in a labbook. Using a labbook is particularly
appropriate for such workflows as it is designed to reuse easily chunks of code and
adapt them. Moreover it is also easy with a labbook to link a plot generate with
a previous trace and, thus, compare two traces. While this is less user friendly,
R is a powerful tool and it enables more complex visualization. Moreover,
it is optimized to analyze large data sets spreed over several dimensions and
provides powerful selection operators that can be used to do conditional zoom
and filtering. Using R, we have provided several meaningful plots that can be
used to start a memory trace analysis. These visualization could be used to
compare the memory access patterns of applications in order to understand the
underlying algorithm of proprietary programs such as the Intel MKL.

Another approach that have not been studied during this thesis would be
to analyze traces automatically. Such analysis would have to detect memory
patterns and possibly and highlight parts of code that should be improved. A
memory pattern is an interaction between threads inside a memory area over a
short laps of time. Yet, defining such a pattern in a more specific way is a hard
task.

For any approach, it appears that the developers knowledge is useful to
focus the analysis on the interesting parts. Therefore we need a way to use this

96

Conclusions – 6.3

knowledge during the analysis and as soon as possible to reduce the amount of
data to analyze. Nevertheless, we have seen in Chapter 2 that they might not
know all the sources of performance issues. In the end, this knowledge can be
used to focus the analysis but it is important to also have a global visualization of
the trace, to spot issues that would have been missed by the developers. Hence
the two approaches described in this chapter can be used in a complementary
way.

97

Chapter VII

Conclusions and
perspectives

Contents

7.1 Contributions .. 100
7.2 Perspectives .. 101

99

VII – Conclusions and perspectives

In this thesis, we have addressed the issue of memory performance analysis. It
has been motivated by the fact that Central Processing Units (CPUs) are more
and more parallel and their memory and caches are organized hierarchically.
Therefore, writing efficient code requires to consider this architecture, and is
complex even for High Performance Computing (HPC) specialists.

In Chapter 2, we presented a case study on the performance analysis of
Sofa, a physical simulation tool. This case study highlighted the fact that
generic performance analysis tools can help finding memory related issues, but
are not sufficient to clearly understand the nature of theses issues in order to
fix them. This is due to the fact most performance analysis tools focus on the
CPU point of view. Indeed, they consider the memory as a monolithic entity,
missing information on how the accesses are organized inside it.

This thesis present several experiments, for each of them, we used a well
defined methodology described in Chapter 2, in order to ease reproducibility.
All the files required to reproduce each step of each experiment presented in
this thesis are available online.

Analyzing the memory behavior of an application raises two challenges: the
first one is to collect a trace complete and precise enough to contain memory
patterns. This is challenging as there is no hardware designed specifically for
memory analysis comparable to the performance counters for CPUs traces. The
second challenge is to provide a comprehensive visualization of the memory
traces which are spread over five dimensions: time, address space, threads, CPU
location and access types. A few tools were designed to analyze performance
from the memory point of view, yet they rely on instruction sampling, which is
a hardware assisted mechanism that enable interception of some instruction at a
defined frequency. The limit of instruction sampling based tools is that they miss
a significant part of the execution and therefore are not able to display memory
patterns or to give a global overview of the memory sharing. As explained
in Chapter 3, these patterns can have a significant impact on the performance.
Therefore we consider that the existing memory analysis tools are not sufficient.

7.1 Contributions
We proposed two different tools to address the challenge of memory perfor-
mance analysis. The first tool, called Tabarnac and presented in Chapter 4,
is based on an existing binary instrumentation, which relies on Pin, an instru-
mentation library developed by Intel. We improved this instrumentation to
add contextual information allowing to determine on which data structure the
memory accesses occurred. Furthermore we designed several comprehensive vi-
sualizations to interpret Tabarnac traces. Finally we evaluated the overhead of
Tabarnac and used the knowledge acquired thanks to this tools to improve the
performance of two benchmarks, resulting on 20 % performance gain on a well
studied benchmark. This work was published at Visual Performance Analysis
(VPA) 2015 a Super Computing workshop [Beniamine et al., 2015b], and is the
result of a collaboration with M. Diener and P.O.A Navaux from the GPPD of
the Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
Moreover Tabarnac is distributed as a free software under the GPL license:
https://github.com/dbeniamine/Tabarnac. This provides sufficient traces
to understand and improve the global sharing pattern of an application. Nev-

100

https://github.com/dbeniamine/Tabarnac

Perspectives – 7.2

ertheless, more precise traces are required to understand temporal and complex
patterns.

Our second tool, Moca, which is presented in Chapter 5, is an efficient fine
grain memory trace collection system. This tool relies on a Linux kernel module
that we implemented. It collects memory accesses by intercepting page faults
at the operating system level. As page fault does not occurs frequently it also
injects false page faults frequently to increase the number of intercepted accesses.
We ran an extensive experimental evaluation of Moca, comparing it to two state
of the art memory performance analysis tools and Tabarnac. We compared these
tools in terms of overhead, trace precision, and completeness. This work is the
subject of two Inria research reports [Beniamine et al., 2015a, Beniamine and
Huard, 2016] and has been submitted at Cluster, Cloud and Grid Computing
(CCGRID) 2017. As the previous tool, Moca is distributed under the GPL
license: https://github.com/dbeniamine/Moca.

As Moca traces are more complex than the one from Tabarnac, we do not
provide visualizations with the collection system. Nevertheless, we proposed two
different techniques to analyze Moca traces, which are presented in Chapter 6.
The first technique relies FrameSoc a generic trace management framework.
More precisely it uses one of FrameSoc tools called Ocelotl. This tool is designed
to aggregate traces based on a model of the trace, highlighting anomalies and
pattern changes. The importer required to read Moca traces in FrameSoc is
published as free software:
https://github.com/dbeniamine/framesoc_importer_moca.
With this tool we were able to visualize several inefficient pattern on a test
application. However we encountered some scalability limits with this tool.
Consequently we proposed a second approach to analyze Moca traces, based on
a programmatic exploration of the trace using R. We analyzed several programs
and were able to visualize memory patterns. Our analysis are stored on a
labbook publicly available online for reproducibility purpose:
https://github.com/dbeniamine/Moca_visualization.

After these analysis, it appears that Moca traces are precise enough to iden-
tify temporal memory patterns. Moreover they are sufficiently small to be an-
alyzed. Nevertheless, it seems that the sampling rate and the granularity of
Moca might be too high to detect clearly very fine grain patterns such as false
sharing on a few lines of caches.

7.2 Perspectives
Our contextual library used in both Moca and Tabarnac is extremely useful
to understand which data structure inefficient memory patterns occurred in.
However, this library could be improved by two means.

The first one would be to take into account the lifetime of data structures.
Indeed, our library does not handle data structures suppression and realloca-
tion. This could lead to erroneous interpretation in the analysis of complex
applications that uses many temporary data structures. Adding temporal in-
formation in this library is not trivial: Indeed, we do not run Moca and the
library at the same time, to avoid tracing memory accesses done inside the li-
brary. Therefore the execution time of both runs are different and we would
have to synchronize them after tracing. This could be done by generating the

101

https://github.com/dbeniamine/Moca
https://github.com/dbeniamine/framesoc_importer_moca
https://github.com/dbeniamine/Moca_visualization

VII – Conclusions and perspectives

call tree of the application and using it as a temporal indicator. Furthermore,
retrieving the mapping addresses to data structure will be more complex with
this temporal information.

A second improvement that could be done to this library would be to identify
complex data structures such as trees and lists. We might be able to do so
by looking at the addresses accessed right after and before allocating a data
structure. Nevertheless, this approach seems heuristic and requires to keep a
huge amount of data online. Another approach could rely on the developer
knowledge and provide some callbacks to annotate allocations and post process
them after the trace collection.

While Moca traces enables visualization of memory patterns, it sometimes
is hard to associate these patterns with some code a posteriori. At this point
we could use the developers knowledge to annotate their code before tracing
it to highlight the data structures and parts of code that seems inefficient to
them and guide the analysis. However, as we saw in Chapter 2, the developers
knowledge can help the analysis but they might miss some hotspots. Therefore,
this knowledge should not be used to filtrate traces during the collection step,
but to guide the exploration and interpretation during the analysis step.

Moca is not able to detect extremely fine grain patterns such as false sharing
on a few lines of caches. However, the pages where such pattern occurs while
appears as hotspots in Moca traces. Thus, it would be interesting to build an
extremely fine grain collection traces that focuses on small parts of the execution,
identified by a first analysis, to visualize these patterns.

Finally it would be interesting to use memory traces to understand propri-
etary code. More specifically, it is sometimes hard to understand the perfor-
mance of some kernels of the Intel Math Kernel Library (Intel MKL) as its
code is kept secret. Comparing the memory patterns of the kernels from this
library to equivalent free kernels might help to understand the differences of
performance and to improve those free kernels.

A longer term perspective would be to build a tool similar to Moca for
recent memory oriented co-processors architectures, such as the Intel Xeon Phi,
or for Graphical Processing Units (GPUs). This would require to identify a
mechanism that can be used to collect memory traces which is far from being
trivial as we have far less control on these architectures than on general purpose
CPUs.

102

Contents

Acknowledgments iii

Abstract vii

Résumé ix

Résumé étendu xi

Outline xvii

I Introduction 3

1.1 Contributions . 6
1.1.1 Global overview of the memory sharing patterns 6
1.1.2 Fine grain memory traces collection 6
1.1.3 Fine grain memory traces analysis 7

1.2 Thesis organization . 7

II Case Study 11

2.1 Motivations . 12
2.1.1 SOFA: a physical simulation framework 12
2.1.2 Previous efforts toward SOFA parallelization 14

2.2 Profiling tools . 15
2.3 Experimental methodology . 16

2.3.1 Reproducible research . 16
2.3.2 Experimental workflow . 18

105

Contents

2.3.3 Methodology . 20
Construction of an experimental plan 20
Automation and documentation 21
Distribution . 23

2.4 SOFA Analysis . 25
2.4.1 Experimental plan . 25
2.4.2 Results and discussion . 26

III Memory Performance Analysis 31

3.1 Architectural considerations . 32
3.1.1 Caches . 32

Cache lines and alignment 32
Cache management policies 33
A naive example . 34
Memory caches and parallelism 35

3.1.2 Memory hierarchy . 37
3.2 Existing tools . 39

3.2.1 Memory traces collection 40
3.2.2 Memory traces analysis 41

3.3 Conclusions . 43

IV Collecting and Analyzing Global Memory Traces 45

4.1 Design . 46
4.1.1 Trace collection . 46
4.1.2 Ease of use and portability 47
4.1.3 Visualization . 48

4.2 Experimental validation . 50
4.2.1 Methodology . 50
4.2.2 Ondes3D . 51
4.2.3 The IS benchmark . 52
4.2.4 Tracing overhead . 56

4.3 Results and discussion . 57

V Collecting Fine Grain Memory Traces 61

5.1 Moca components . 62
5.2 Background knowledge . 63
5.3 Design . 63

5.3.1 Page faults interception and injection 64
5.3.2 Internal design . 65

5.4 Experimental validation . 70
5.4.1 Methodology . 70
5.4.2 Moca validation . 72
5.4.3 Comparison to other memory trace collection tools 72
5.4.4 Results and discussion . 77

5.5 Conclusions . 78

VI Analyzing Fine Grained Memory Traces 81

6.1 Interactive visualization of aggregated trace 82
6.1.1 FrameSoc and Ocelotl . 83

106

Contents

6.1.2 Trace Description . 85
6.1.3 Sharing detection . 85
6.1.4 Example . 86
6.1.5 Discussion . 89

6.2 Programmatic exploration . 90
6.2.1 Design . 91
6.2.2 Example of visualization 92

6.3 Conclusions . 96

VII Conclusions and perspectives 99

7.1 Contributions . 100
7.2 Perspectives . 101

Contents 105

List of Figures 109

List of Tables 113

Acronyms 115

Glossary 119

Bibliography 125

107

List of Figures

2.1 The simulation loop. 12
2.2 Example of SOFA scene graph. 13
2.3 Experimental workflow. 19
2.4 SOFA likwid results. 27

3.1 Example of bad alignment. 33
3.2 Example of non linear memory accesses. 35
3.3 Topology of a quad core parallel machine. 36
3.4 Example of false sharing. 37
3.5 Topology of a 32 cores NUMA machine. 38
3.6 Screenshot from MemAxes. 42

4.1 Global views of the memory usage. 48
4.2 Per structure view of the memory usage. 49
4.3 Access distribution and first-touch for structure vz0 from Ondes3D. 52
4.4 Speedup for Ondes3D. 53
4.5 Original memory access distribution for IS. 54
4.6 Fair distribution of the pages of key_buff2 among the threads. . 55
4.7 Modified memory access distribution for IS. 56
4.8 Speedup for IS. 57
4.9 Tabarnac’s instrumentation overhead. 58

5.1 Accesses done by two threads on a set of pages, captured by
instruction sampling tools and by Moca. 65

5.2 Interactions betweens Moca and Linux. 67
5.3 Flow chart of Moca’s page faults 69
5.4 Influence of Moca wakeup intervals. 73
5.5 Precision of the traces generated by each tool. 75

109

List of Figures

5.6 Slowdown factor of each tool. 76

6.1 Screenshot of Ocelotl. 84
6.2 Sharing detection in Moca traces. 86
6.3 Naive parallel matrix multiplication 86
6.4 By thread view of the memory usage of a naive parallel matrix

multiplication. 87
6.5 By thread view of the memory usage of a naive parallel matrix

multiplication, initialization. 88
6.6 Sharing view of the memory usage of a naive parallel matrix

multiplication. 89
6.7 Sharing view of the memory usage of a naive parallel matrix

multiplication, computing phase. 90
6.8 Visualization of the memory access of the dgetrf kernel from

ffplas-ffpack. 93
6.9 Visualization of the memory access of the dgetrf kernel from

ffplas-ffpack, zoom on the three interesting data structures. . . . 94
6.10 Visualization of the sharing patterns of the dgetrf kernel from

ffplas-ffpack, zoom on the initialization of stack:1256. 95
6.11 Visualization of the sharing patterns of the dgetrf kernel from

ffplas-ffpack, zoom on a part of the initialization of stack:1256. 95

110

List of Tables

2.1 Hardware and software configuration of Naskapi. 26

3.1 Approximate access latency depending on the memory hierarchy
level. 39

4.1 Hardware and software configuration of the evaluation systems
for Tabarnac. 50

5.1 Hardware and software configuration of the evaluation systems
for Moca. 70

5.2 Comparison of different memory traces tools. 71
5.3 Description of the NAS Parallel Benchmarks. 71

113

List of Algorithms and
codes

2.1 Logging experimental informations. 22
2.2 Dependent runs. 23
2.3 Independent runs. 23
2.4 Execution of a run. 24

4.1 Handling of memory accesses by Tabarnac. 47
4.2 A simple allocation. 47
4.3 Original IS code. 53
4.4 Modified IS code. 54

5.1 Monitoring thread algorithm . 68
5.2 Moca Logging daemon algorithm. 68

6.1 R code to focus on interesting data structures. 93

115

Acronyms

API
Application Programming Interface. 14, 36, 81

CCGRID
Cluster, Cloud and Grid Computing. xiv, 7, 60, 99

CPU
Central Processing Unit. 4, 5, 12–14, 30, 31, 33, 35, 77, 80, 81, 83, 87, 89,
94, 98, 100

CSV
Comma-Separated Values. 17, 45, 64, 69

DOI
Digital Object Identifier. 22

GPL
General Public License. xiv, 6, 7, 44, 60, 98, 99

GPPD
Parallel and Distributed Processing Group. 6, 44, 98

GPU
Graphical Processing Unit. 12, 100

HPC
High Performance Computing. vii, 5, 10, 12–16, 18, 23, 35, 98

117

Acronyms

I/O
Input / Output. 23, 24, 70

IBS
Instruction Based Sampling. 18, 38, 39, 60, 68, 76

Intel MKL
Intel Math Kernel Library. 92, 94, 100

Likwid
“Like I Knew What I am Doing”. xii, 5, 13, 14, 23, 24, 38

LRU
Least Recently used. 32

MAQAO
Modular Assembler Quality Analyzer and Optimizer. 13, 14

Moca
Memory Organisation Cartography & Analysis. xiii–xv, 6, 7, 60–77, 80,
83, 84, 87–89, 92, 94, 99, 100

MPI
Message Passing Interface. 13, 81

NPB
NAS Parallel Benchmarks. 6, 48, 51, 54, 69, 70, 72, 73, 76, 77, 111

NUMA
Non-Uniform Memory Access. vii, 4, 6, 35, 36, 39, 44, 46–48, 50, 53–55,
60, 68, 76, 91

OpenMP
Open Multi-Processing. 12, 13, 23–25, 38, 52, 54, 68

OS
Operating System. 6, 15, 16, 35, 36, 50, 54, 60, 61, 63, 81

PAPI
Performance API. 13, 14, 38

PARAVER
PARAllel Visualization end Events Representation. 13, 14

PCM
Performance Counter Monitor. 38

118

Acronyms

PEBS
Precise Event Based Sampling. 18, 38, 39, 60, 68, 76

PGD
Page Global Directory. 67

PID
Process Identifier. 85

PMD
Page Middle Directory. 67

PTE
Page Table Entry. 61, 63, 64, 66, 67

Sofa
Simulation Open Framework Architecture. xii, xv, 5, 7, 10–12, 14, 23–26,
92, 98

Tabarnac
Tool for Analyzing the Behavior of Applications Running on NUMA Ar-
Chitecture. xiii–xv, 6, 7, 44–50, 53–56, 60, 68–70, 72, 74–77, 80, 90, 98,
99

TAU
Tunning and Analysis Utilities. 13

UFRGS
Universidade Federal do Rio Grande do Sul. xiv, 6, 44, 98

VCS
Version Control System. 21

VPA
Visual Performance Analysis. xiv, 6, 44, 98

119

Glossary

AMD
Advanced Micro Devices, Inc. 13, 55, 60, 68, 76

CodeAnalyst
CodeAnalyst is AMD performance analyser. 13, 38

CodeXL
CodeXL is CodeAnalyst successor’s. 13, 14

FrameSoc
Framesoc is a generic trace management and analysis infrastructure. xiii–
xv, 6, 7, 14, 80, 81, 83, 87–89, 92, 94, 99

Git
Git is a distributed Version Control System. 16, 17, 21, 22

Grid5000
Grid5000 is a large scale platform for experiment in computer science. 68,
69

HPCToolkit
HPCToolkit is an integrated suite of tools for measurement and analysis
of program performance. 13, 14, 38, 40, 80

Intel
Intel corporation. xi, xiv, 4, 6, 13, 32, 35, 37, 55, 60, 68, 76, 98, 100

121

Glossary

KAAPI
KAAPI is a parallel runtime with data flow dependencies. 12

Kameleon
Kameleon is a tool to generate customized software appliances. 15, 21

Linux
The Linux kernel. xiv, 6, 13, 35, 47, 60–64, 70, 76, 92, 99

MemAxes
MemAxes is a tool for visualizing memory access samples. 40, 68, 77

Memphis
Memphis is a toolset for indentifiying problematic memory accesses. 38,
39

MemProf
MemProf is a memory profiler for NUMA machines based on AMD IBS.
38, 39, 68, 71–73, 75, 77

Memspy
MemSpy is a performance debugging tool for memory bottlenecks. 39

Mitos
Mitos is a library and a tool for collecting sampled memory performance
data to view with MemAxes. 38–40, 68, 70–73, 75, 77

Numalyze
Numalyze is a memory tracer designed to analyze the result of online
NUMA mapping tools. 44, 45

Ocelotl
Ocelotl is a visualization tool providing aggregated overview for trace anal-
ysis.. xiv, xv, 7, 80–84, 86–88, 92, 94, 99

Org-mode
Org-mode is an organizing mode for the editor GNU Emacs. 16, 89

Perf
The Linux perf command, also called perf_events, allows to access per-
formance counters. 13

Pin
Pin is a dynamic binary instrumentation framework designed by Intel for
IA-32 and X86-64 architectures. xiv, 6, 13, 18, 44, 45, 55, 60, 71, 98

Pintool
Pintool is the name given (by Intel) to tools developed using Pin. 14

122

Glossary

R
R is a programming language for statistical computing. xv, 6, 7, 14, 19,
45, 80, 89, 90, 92, 94, 99

R-markdown
R-markdown is a combination of the R and markdown languages that
allow to mix statistical analysis with formated comments. 19, 45

SimGrid
SimGrid is a scientific instrument to study the behavior of large-scale
distributed systems such as Grids, Clouds, HPC or P2P systems. 13

VTune
Intel VTune Amplifier. 13, 14, 38

123

Bibliography

[Adhianto et al., 2010] Adhianto, L., Banerjee, S., Fagan, M., Krentel, M.,
Marin, G., Mellor-Crummey, J., and Tallent, N. R. (2010). HPCTOOLKIT:
tools for performance analysis of optimized parallel programs. Concurrency
and Computation: Practice and Experience, 22(6):685–701.

[Allard et al., 2007] Allard, J., Cotin, S., Faure, F. c., Bensoussan, P.-J., Poyer,
F. c., Duriez, C., Delingette, H., and Grisoni, L. (2007). SOFA - an Open
Source Framework for Medical Simulation. In Medicine Meets Virtual Reality
(MMVR 15), palm beach, États-Unis.

[AMD, 2016] AMD (2016). CodeXL Quick Start Guide. https:
//github.com/GPUOpen-Tools/CodeXL/releases/download/v2.0/
CodeXL_Quick_Start_Guide.pdf. Version 2.0 Revision 1 [Online; last
accessed 01-10-2016].

[Bae et al., 2012] Bae, C. S., Xia, L., Dinda, P., and Lange, J. (2012). Dynamic
Adaptive Virtual Core Mapping to Improve Power, Energy, and Performance
in Multi-socket Multicores. In Proceedings of the 21st International Sympo-
sium on High-Performance Parallel and Distributed Computing, HPDC ’12,
pages 247–258, New York, NY, USA. ACM.

[Bao et al., 2008] Bao, Y., Chen, M., Ruan, Y., Liu, L., Fan, J., Yuan, Q., Song,
B., and Xu, J. (2008). HMTT: A Platform Independent Full-system Memory
Trace Monitoring System. In Proceedings of the 2008 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’08, pages 229–240, New York, NY, USA. ACM.

[Beniamine, 2013] Beniamine, D. (2013). Cartographier la mémoire virtuelle
d’une application de calcul scientifique. In ComPAS’2013 / RenPar’21,
Grenoble, France.

125

https://github.com/GPUOpen-Tools/CodeXL/releases/download/v2.0/CodeXL_Quick_Start_Guide.pdf
https://github.com/GPUOpen-Tools/CodeXL/releases/download/v2.0/CodeXL_Quick_Start_Guide.pdf
https://github.com/GPUOpen-Tools/CodeXL/releases/download/v2.0/CodeXL_Quick_Start_Guide.pdf

Bibliography

[Beniamine et al., 2015a] Beniamine, D., Corre, Y., Dosimont, D., and Huard,
G. (2015a). Memory Organisation Cartography and Analysis. Technical Re-
port 8694, Inria.

[Beniamine et al., 2015b] Beniamine, D., Diener, M., Huard, G., and Navaux,
P. O. A. (2015b). TABARNAC: Visualizing and Resolving Memory Access
Issues on NUMAArchitectures. In Proceedings of the 2Nd Workshop on Visual
Performance Analysis, VPA ’15, pages 1–1, New York, NY, USA. ACM.

[Beniamine and Huard, 2016] Beniamine, D. and Huard, G. (2016). Moca: An
efficient Memory trace collection system. Research Report RR-8931, Inria
Grenoble Rhône-Alpes, Université de Grenoble.

[Boehm et al., 1991] Boehm, H.-J., Demers, A. J., and Shenker, S. (1991).
Mostly Parallel Garbage Collection. In Proceedings of the ACM SIGPLAN
1991 Conference on Programming Language Design and Implementation,
PLDI ’91, pages 157–164, New York, NY, USA. ACM.

[Bosch et al., 2000] Bosch, R., Stolte, C., Tang, D., Gerth, J., Rosenblum, M.,
and Hanrahan, P. (2000). Rivet: A Flexible Environment for Computer
Systems Visualization. SIGGRAPH Comput. Graph., 34(1):68–73.

[Broquedis et al., 2010] Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento,
N., Goglin, B., Mercier, G., Thibault, S., and Namyst, R. (2010). hwloc:
A Generic Framework for Managing Hardware Affinities in HPC Applica-
tions. In Parallel, Distributed and Network-Based Processing (PDP), 2010
18th Euromicro International Conference on, pages 180–186.

[Browne et al., 2000] Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci,
P. (2000). A Portable Programming Interface for Performance Evaluation on
Modern Processors. International Journal of High Performance Computing
Applications, 14(3):189–204.

[Budanur et al., 2011] Budanur, S., Mueller, F., and Gamblin, T. (2011). Mem-
ory Trace Compression and Replay for SPMD Systems Using Extended
PRSDs? SIGMETRICS Perform. Eval. Rev., 38(4):30–36.

[Cappello et al., 2005] Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou,
Y., Primet, P., Jeannot, E., Lanteri, S., Leduc, J., Melab, N., Mornet, G.,
Namyst, R., Quetier, B., and Richard, O. (2005). Grid’5000: a large scale
and highly reconfigurable grid experimental testbed. In The 6th IEEE/ACM
International Workshop on Grid Computing, 2005., page 8.

[Casanova et al., 2014] Casanova, H., Giersch, A., Legrand, A., Quinson, M.,
and Suter, F. (2014). Versatile, Scalable, and Accurate Simulation of Dis-
tributed Applications and Platforms. Journal of Parallel and Distributed
Computing, 74(10):2899–2917.

[Cern and OpenAire, 2013] Cern and OpenAire (2013). Zenodo. https://
zenodo.org. [Online; last accessed 01-10-2016].

[Chothia et al., 2016] Chothia, Z., Shaohu, C., and Luo, W. (2016). OpenBlas
An optimized BLAS Libary. http://www.openblas.net/. [Online; last ac-
cessed 01-10-2016].

126

https://zenodo.org
https://zenodo.org
http://www.openblas.net/

Bibliography

[Collberg et al., 2015] Collberg, C., Proebsting, T., and Warren, Alex, M.
(2015). Repeatability and Benefaction in Computer Systems Research . A
Study and a Modest Proposal. Technical report, University of Arizona TR
14-04.

[Corbet, 2012] Corbet, J. (2012). AutoNUMA: the other approach to NUMA
scheduling. http://lwn.net/Articles/486858/.

[DeRose et al., 2002] DeRose, L., Ekanadham, K., Hollingsworth, J. K., and
Sbaraglia, S. (2002). SIGMA: a simulator infrastructure to guide memory
analysis. In Supercomputing, ACM/IEEE 2002 Conference, pages 1–13.

[DeRose, 2001] DeRose, L. A. (2001). The Hardware Performance Monitor
Toolkit. In Euro-Par 2001 Parallel Processing, volume 2150, chapter Lec-
ture Notes in Computer Science, pages 122–132. Springer Berlin Heidelberg.

[Diener et al., 2013] Diener, M., Cruz, E. H. M., and Navaux, P. O. A. (2013).
Communication-Based Mapping Using Shared Pages. In Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages
700–711.

[Diener et al., 2014] Diener, M., Cruz, E. H. M., Navaux, P. O. A., Busse,
A., and Heiß, H.-U. (2014). kMAF: Automatic Kernel-level Management
of Thread and Data Affinity. In Proceedings of the 23rd International Con-
ference on Parallel Architectures and Compilation, PACT ’14, pages 277–288,
New York, NY, USA. ACM.

[Diener et al., 2015] Diener, M., Cruz, E. H. M., Pilla, L. L., Dupros, F., and
Navaux, P. O. A. (2015). Characterizing communication and page usage of
parallel applications for thread and data mapping . Performance Evaluation
, 88–89:18–36.

[Djoudi et al., 2005] Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Ac-
quaviva, J.-T., and Jalby, W. (2005). MAQAO: Modular Assembler Quality
Analyzer and Optimizer for Itanium 2. In Proceedings of workshop on Ex-
plicitely Parallel Instruction Computing Techniques (EPIC’04), Santa Jose,
California.

[Dosimont et al., 2014] Dosimont, D., Corre, Y., Schnorr, L. M., Huard, G.,
and Vincent, J.-M. (2014). Ocelotl: Large Trace Overviews Based on Multi-
dimensional Data Aggregation. In 8th International Parallel Tools Workshop,
Stuttgart, Germany.

[Drepper, 2007] Drepper, U. (2007). What every programmer should know
about memory. http://people.redhat.com/drepper/cpumemory.pdf. [On-
line; accessed 01-10-2016].

[Drongowski, 2007] Drongowski, P. J. (2007). Instruction-based sampling: A
new performance analysis technique for AMD family 10h processors. Techni-
cal report, AMD CodeAnalyst Project, Boston Design center.

[Drongowski, 2008] Drongowski, P. J. (2008). An introduction to analysis and
optimization with AMD CodeAnalystTM. Technical report, AMD Boston
Design center.

127

http://people.redhat.com/drepper/cpumemory.pdf

Bibliography

[Dupros et al., 2008] Dupros, F., Aochi, H., Ducellier, A., Komatitsch, D., and
Roman, J. (2008). Exploiting Intensive Multithreading for the Efficient Simu-
lation of 3D Seismic Wave Propagation. In Computational Science and Engi-
neering, 2008. CSE ’08. 11th IEEE International Conference on, pages 253–
260.

[Faure et al., 2011] Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. (2011).
Sparse Meshless Models of Complex Deformable Solids. In ACM SIGGRAPH
2011 Papers, SIGGRAPH ’11, pages 73–1, New York, NY, USA. ACM.

[Feitelson, 2015] Feitelson, D. G. (2015). From Repeatability to Reproducibility
and Corroboration. SIGOPS Oper. Syst. Rev., 49(1):3–11.

[Ganesan, 2016] Ganesan, B. (2016). Introduction to Multi-Core.
http://www.ecs.umass.edu/ece/andras/courses/ECE668/Mylectures/
Introduction_to_Multi_Core.pdf. [Online; last accessed 01-10-2016].

[Gautier et al., 2007] Gautier, T., Besseron, X., and Pigeon, L. (2007). KAAPI:
A Thread Scheduling Runtime System for Data Flow Computations on Clus-
ter of Multi-processors. In Proceedings of the 2007 International Workshop
on Parallel Symbolic Computation, PASCO ’07, pages 15–23, New York, NY,
USA. ACM.

[Giménez et al., 2014] Giménez, A., Gamblin, T., Rountree, B., Bhatele, A.,
Jusufi, I., Bremer, P.-T., and Hamann, B. (2014). Dissecting On-Node Mem-
ory Access Performance: A Semantic Approach. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’14, pages 166–176, Piscataway, NJ, USA. IEEE Press.

[group, 2016] group, T. F.-F. (2016). FFLAS-FFPACK: Finite Field Linear
Algebra Subroutines / Package, v2.2.1 edition. http://github.com/linbox-
team/fflas-ffpack.

[Heo et al., 2005] Heo, J., Yi, S., Cho, Y., Hong, J., and Shin, S. Y. (2005).
Space-efficient Page-level Incremental Checkpointing. In Proceedings of the
2005 ACM Symposium on Applied Computing, SAC ’05, pages 1558–1562,
New York, NY, USA. ACM.

[Hermann et al., 2008] Hermann, E., Faure, F. c., and Raffin, B. (2008). Ray-
traced collision detection for deformable bodies. In Braz, J., Nunes, N. J.,
and Pereira, J. M., editors, GRAPP 2008 - 3rd International Conference
on Computer Graphics Theory and Applications, pages 293–299, Madeira,
Portugal. INSTICC.

[Hermann et al., 2009] Hermann, E., Raffin, B., and Faure, F. c. (2009). Inter-
active Physical Simulation on Multicore Architectures. In EGPGV - Euro-
graphics Workhop on Parallel Graphics and Visualization, pages 1–8, Munich,
Germany.

[Husain et al., 2015] Husain, B., Giménez, A., Levine, J. A., Gamblin, T., and
Bremer, P.-T. (2015). Relating Memory Performance Data to Application
Domain Data Using an Integration API. In Proceedings of the 2Nd Workshop
on Visual Performance Analysis, VPA ’15, pages 5–1, New York, NY, USA.
ACM.

128

http://www.ecs.umass.edu/ece/andras/courses/ECE668/Mylectures/Introduction_to_Multi_Core.pdf
http://www.ecs.umass.edu/ece/andras/courses/ECE668/Mylectures/Introduction_to_Multi_Core.pdf

Bibliography

[Jiang et al., 2014] Jiang, T., Zhang, Q., Hou, R., Chai, L., Mckee, S. A., Jia,
Z., and Sun, N. (2014). Understanding the behavior of in-memory computing
workloads. In Workload Characterization (IISWC), 2014 IEEE International
Symposium on, pages 22–30.

[Jin et al., 1999] Jin, H., Frumkin, M., and Yan, H. (1999). NPB-OpenMP 3.0.
NAS Technical Report NAS-99-011, NASA Ames Research Center.

[Jones et al., 2006] Jones, S. T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau,
R. H. (2006). Geiger: Monitoring the Buffer Cache in a Virtual Machine
Environment. SIGARCH Comput. Archit. News, 34(5):14–24.

[Kleen et al., 2005] Kleen, A., Brunner, R., Langsdorf, M., and Chabowski, M.
(2005). A NUMA API for Linux. Technical report, SUSE Labs.

[Lachaize et al., 2012] Lachaize, R., Lepers, B., and Quema, V. (2012). Mem-
Prof: A Memory Profiler for NUMA Multicore Systems. In USENIX 2012
Annual Technical Conference (USENIX ATC 12), pages 53–64, Boston, MA.
USENIX.

[Lamarche-Perrin et al., 2014] Lamarche-Perrin, R., Schnorr, L. M., Vincent,
J.-M., and Demazeau, Y. (2014). Agrégation de traces pour la visualisation de
grands systèmes distribués. Technique et Science Informatiques. Forthcoming.

[Levinthal, 2009] Levinthal, D. (2009). Performance Analysis Guide for Intel
Core i7 Processor and Intel Xeon 5500 processors. Technical report, Intel.

[Liu and Mellor-Crummey, 2013] Liu, X. and Mellor-Crummey, J. (2013). A
Data-centric Profiler for Parallel Programs. In Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 28–1, New York, NY, USA. ACM.

[Liu and Mellor-Crummey, 2014] Liu, X. and Mellor-Crummey, J. (2014). A
Tool to Analyze the Performance of Multithreaded Programs on NUMA Ar-
chitectures. In Proceedings of the 19th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’14, pages 259–272, New
York, NY, USA. ACM.

[Luk et al., 2005] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A.,
Lowney, G., Wallace, S., Reddi, V. J., and Hazelwood, K. (2005). Pin: Build-
ing Customized Program Analysis Tools with Dynamic Instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’05, pages 190–200, New York, NY,
USA. ACM.

[Majo and Gross, 2013] Majo, Z. and Gross, T. R. (2013). (Mis)understanding
the NUMA memory system performance of multithreaded workloads. In
Workload Characterization (IISWC), 2013 IEEE International Symposium
on, pages 11–22.

[Malony et al., 2011] Malony, A. D., Biersdorff, S., Shende, S., Jagode, H., To-
mov, S., Juckeland, G., Dietrich, R., Poole, D., and Lamb, C. (2011). Parallel
Performance Measurement of Heterogeneous Parallel Systems with GPUs. In
Parallel Processing (ICPP), 2011 International Conference on, pages 176–
185.

129

Bibliography

[Marchetti et al., 1995] Marchetti, M., Kontothanassis, L., Bianchini, R., and
Scott, M. L. (1995). Using simple page placement policies to reduce the
cost of cache fills in coherent shared-memory systems. In Parallel Processing
Symposium, 1995. Proceedings., 9th International, pages 480–485.

[Martonosi et al., 1992] Martonosi, M., Gupta, A., and Anderson, T. (1992).
MemSpy: Analyzing Memory System Bottlenecks in Programs. In Proceed-
ings of the 1992 ACM SIGMETRICS Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS ’92/PERFOR-
MANCE ’92, pages 1–12, New York, NY, USA. ACM.

[McCurdy and Vetter, 2010] McCurdy, C. and Vetter, J. (2010). Memphis:
Finding and fixing NUMA-related performance problems on multi-core plat-
forms. In Performance Analysis of Systems Software (ISPASS), 2010 IEEE
International Symposium on, pages 87–96.

[Miller et al., 1995] Miller, B. P., Callaghan, M. D., Cargille, J. M.,
Hollingsworth, J. K., Irvin, R. B., Karavanic, K. L., Kunchithapadam, K.,
and Newhall, T. (1995). The Paradyn parallel performance measurement
tool. Computer, 28(11):37–46.

[Mytkowicz et al., 2009] Mytkowicz, T., Diwan, A., Hauswirth, M., and
Sweeney, P. F. (2009). Producing Wrong Data Without Doing Anything
Obviously Wrong! In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS XIV, pages 265–276, New York, NY, USA. ACM.

[Nesme et al., 2009] Nesme, M., Kry, P. G., JeRabkova, L., and Faure, F.
(2009). Preserving Topology and Elasticity for Embedded Deformable Mod-
els. In ACM SIGGRAPH 2009 Papers, SIGGRAPH ’09, pages 52–1, New
York, NY, USA. ACM.

[Pagano et al., 2013] Pagano, G., Dosimont, D., Huard, G., Marangozova-
Martin, V., and Vincent, J. M. (2013). Trace Management and Analysis
for Embedded Systems. In Embedded Multicore Socs (MCSoC), 2013 IEEE
7th International Symposium on, pages 119–122.

[Pagano and Marangozova-Martin, 2014] Pagano, G. and Marangozova-
Martin, V. (2014). The frameSoC Software Architecture for Multiple-view
Trace Data Analysis. In Proceedings of the 2014 ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, EICS ’14, pages 217–222,
New York, NY, USA. ACM.

[Perarnau et al., 2011] Perarnau, S., Tchiboukdjian, M., and Huard, G. (2011).
Controlling Cache Utilization of HPC Applications. In Proceedings of the
International Conference on Supercomputing, ICS ’11, pages 295–304, New
York, NY, USA. ACM.

[Pillet et al., 1995] Pillet, V., Labarta, J., Cortes, T., and Girona, S. (1995).
PARAVER: A Tool to Visualize and Analyze Parallel Code. In Nixon, P., ed-
itor, Proceedings of WoTUG-18: Transputer and occam Developments, pages
17–31.

130

Bibliography

[Reinders, 2005] Reinders, J. (2005). VTune performance analyzer essentials.
Intel Press.

[Renater, 2011] Renater (2011). FileSender. [Online; last accessed 01-10-2016].

[Ruiz et al., 2015] Ruiz, C., Harrache, S., Mercier, M., and Richard, O. (2015).
Reconstructable Software Appliances with Kameleon. SIGOPS Oper. Syst.
Rev., 49(1):80–89.

[Servat Gelabert, 2015] Servat Gelabert, H. (2015). Towards instantaneous per-
formance analysis using coarse-grain sampled and instrumented data. PhD
thesis, Universitat Politècnica de Catalunya, Barcelona.

[Shende and Malony, 2006] Shende, S. S. and Malony, A. D. (2006). The Tau
Parallel Performance System. International Journal of High Performance
Computing Applications, 20(2):287–311.

[SOFA, 2016] SOFA (2016). Sofa online documentation. https://www.
sofa-framework.org/community/doc. [Online; last accessed 20-06-2016].

[Stanisic, 2015] Stanisic, L. (2015). A Reproducible Research Methodology for
Designing and Conducting Faithful Simulations of Dynamic HPC Applica-
tions. PhD thesis, Université Grenoble Alpes.

[Tao et al., 2001] Tao, J., Karl, W., and Schulz, M. (2001). Visualizing the
Memory Access Behavior of Shared Memory Applications on NUMA Archi-
tectures. In Alexandrov, V., Dongarra, J., Juliano, B., Renner, R., and Tan,
C. J. K., editors, Computational Science - ICCS 2001, volume 2074, chapter
Lecture Notes in Computer Science, pages 861–870. Springer Berlin Heidel-
berg.

[Torrellas et al., 1994] Torrellas, J., Lam, H. S., and Hennessy, J. L. (1994).
False sharing and spatial locality in multiprocessor caches. IEEE Transactions
on Computers, 43(6):651–663.

[Toss and Comba, 2013] Toss, J. and Comba, J. (2013). Parallel Voronoi Dia-
gram computation on scaled distance planes using CUDA. In WSPPD 2013
- XI Workshop de Processamento Paralelo e Distribuído.

[Toss et al., 2014] Toss, J., Comba, J. L. D., and Raffin, B. (2014). Parallel
Shortest Path Algorithm for Voronoi Diagrams with Generalized Distance
Functions. In XXVII SIBGRAPI, Conference on Graphics Patterns and Im-
ages, Rio de Janerio, Brazil.

[Treibig et al., 2010] Treibig, J., Hager, G., and Wellein, G. (2010). LIKWID: A
lightweight performance-oriented tool suite for x86 multicore environments.
In Proceedings of PSTI2010, the First International Workshop on Parallel
Software Tools and Tool Infrastructures, San Diego CA.

[Weaver et al., 2013] Weaver, V. M., Terpstra, D., McCraw, H., Johnson, M.,
Kasichayanula, K., Ralph, J., Nelson, J., Mucci, P., Mohan, T., and Moore,
S. (2013). PAPI 5: Measuring power, energy, and the cloud. In Performance
Analysis of Systems and Software (ISPASS), 2013 IEEE International Sym-
posium on, pages 124–125.

131

https://www.sofa-framework.org/community/doc
https://www.sofa-framework.org/community/doc

Bibliography

[Weyers et al., 2014] Weyers, B., Terboven, C., Schmidl, D., Herber, J., Kuhlen,
T. W., Muller, M. S., and Hentschel, B. (2014). Visualization of Memory
Access Behavior on Hierarchical NUMA Architectures. In Visual Performance
Analysis (VPA), 2014 First Workshop on, pages 42–49.

[Wilhalm et al., 2012] Wilhalm, T., Dementiev, R., and Fay, P. (2012).
Intel Performance Counter Monitor - A better way to measure
CPU utilization. https://software.intel.com/en-us/articles/
intel-performance-counter-monitor. [Online; last accessed 01-10-
2016].

132

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

	Acknowledgments
	Abstract
	Résumé
	Résumé étendu
	Outline
	Introduction
	Contributions
	Global overview of the memory sharing patterns
	Fine grain memory traces collection
	Fine grain memory traces analysis

	Thesis organization

	Case Study
	Motivations
	SOFA: a physical simulation framework
	Previous efforts toward SOFA parallelization

	Profiling tools
	Experimental methodology
	Reproducible research
	Experimental workflow
	Methodology

	SOFA Analysis
	Experimental plan
	Results and discussion

	Memory Performance Analysis
	Architectural considerations
	Caches
	Memory hierarchy

	Existing tools
	Memory traces collection
	Memory traces analysis

	Conclusions

	Collecting and Analyzing Global Memory Traces
	Design
	Trace collection
	Ease of use and portability
	Visualization

	Experimental validation
	Methodology
	Ondes3D
	The IS benchmark
	Tracing overhead

	Results and discussion

	Collecting Fine Grain Memory Traces
	Moca components
	Background knowledge
	Design
	Page faults interception and injection
	Internal design

	Experimental validation
	Methodology
	Moca validation
	Comparison to other memory trace collection tools
	Results and discussion

	Conclusions

	Analyzing Fine Grained Memory Traces
	Interactive visualization of aggregated trace
	FrameSoc and Ocelotl
	Trace Description
	Sharing detection
	Example
	Discussion

	Programmatic exploration
	Design
	Example of visualization

	Conclusions

	Conclusions and perspectives
	Contributions
	Perspectives

	Contents
	List of Figures
	List of Tables
	Acronyms
	Glossary
	Bibliography

