
HAL Id: tel-01681186
https://theses.hal.science/tel-01681186v1
Submitted on 11 Jan 2018 (v1), last revised 11 Jan 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning representations for visual recognition
Shreyas Saxena

To cite this version:
Shreyas Saxena. Learning representations for visual recognition. Computer Vision and Pattern Recog-
nition [cs.CV]. Université Grenoble Alpes, 2016. English. �NNT : 2016GREAM080�. �tel-01681186v1�

https://theses.hal.science/tel-01681186v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques, Sciences et Technologies de l’Information

Arrêté ministériel : 7 août 2006

Présentée par

Shreyas Saxena

Thèse dirigée par Cordelia SCHMID
et codirigée par Jakob Verbeek

préparée au sein d’ Inria Grenoble
et de l’école doctorale MSTII : Mathématiques, Sciences et Technolo-
gies de l’Information, Informatique

Learning representations for visual
recognition
Apprentissage de représentations pour la
reconnaissance visuelle

Thèse soutenue publiquement le 12 Décembre 2016,
devant le jury composé de :

Prof. Frederic Jurie
University of Caen, Caen, France, Rapporteur

Prof. Tinne Tuytelaars
Katholieke Universiteit Leuven, Leuven, Belgium, Rapporteur

Dr. Andrew Bagdanov
University of Florence, Florence, Italy, Examinateur

Dr. Cordelia Schmid
Inria Grenoble, Montbonnot, France, Directeur de thèse

Dr. Jakob Verbeek
Inria Grenoble, Montbonnot, France, Co-Directeur de thèse

i

Abstract

In this dissertation, we propose methods and data driven machine learning so-
lutions which address and benefit from the recent overwhelming growth of digital
media content.

First, we consider the problem of improving the efficiency of image retrieval.
We propose a coordinated local metric learning (CLML) approach which learns
local Mahalanobis metrics, and integrates them in a global representation where
the `2 distance can be used. This allows for data visualization in a single view,
and use of efficient `2-based retrieval methods. Our approach can be interpreted
as learning a linear projection on top of an explicit high-dimensional embedding
of a kernel. This interpretation allows for the use of existing frameworks for Ma-
halanobis metric learning for learning local metrics in a coordinated manner. Our
experiments show that CLML improves over previous global and local metric learn-
ing approaches for the task of face retrieval.

Second, we present an approach to leverage the success of CNN models for
visible spectrum face recognition to improve heterogeneous face recognition, e.g .,
recognition of near-infrared images from visible spectrum training images. We ex-
plore different metric learning strategies over features from the intermediate layers
of the networks, to reduce the discrepancies between the different modalities. In
our experiments we found that the depth of the optimal features for a given modal-
ity, is positively correlated with the domain shift between the source domain (CNN
training data) and the target domain. Experimental results show the that we can use
CNNs trained on visible spectrum images to obtain results that improve over the
state-of-the art for heterogeneous face recognition with near-infrared images and
sketches.

Third, we present convolutional neural fabrics for exploring the discrete and
exponentially large CNN architecture space in an efficient and systematic manner.
Instead of aiming to select a single optimal architecture, we propose a “fabric” that
embeds an exponentially large number of architectures. The fabric consists of a 3D
trellis that connects response maps at different layers, scales, and channels with a
sparse homogeneous local connectivity pattern. The only hyper-parameters of the
fabric (the number of channels and layers) are not critical for performance. The
acyclic nature of the fabric allows us to use backpropagation for learning. Learn-
ing can thus efficiently configure the fabric to implement each one of exponentially
many architectures and, more generally, ensembles of all of them. While scaling
linearly in terms of computation and memory requirements, the fabric leverages
exponentially many chain-structured architectures in parallel by massively sharing
weights between them. We present benchmark results competitive with the state of
the art for image classification on MNIST and CIFAR10, and for semantic segmen-
tation on the Part Labels dataset.

Keywords. Local metric learning • Transfer learning • Convolutional neural net-
work • Architecture learning

ii

Résumé

Dans cette dissertation, nous proposons des méthodes d’apprentissage automa-
tique aptes à bénéficier de la récente explosion des volumes de données digitales.

Premièrement nous considérons l’amélioration de l’efficacité des méthodes de
récupération d’image. Nous proposons une approche d’apprentissage de métriques
locales coordonnées (Coordinated Local Metric Learning, CLML) qui apprends des
métriques locales de Mahalanobis, puis les intègre dans une représentation globale
où la distance l2 peut être utilisée. Ceci permet de visualiser les données avec une
unique représentation 2D, et l’utilisation de méthodes de récupération efficaces ba-
sées sur la distance l2. Notre approche peut être interprétée comme l’apprentis-
sage d’une projection linéaire de descripteurs donnés par une méthode a noyaux de
grande dimension définie explictement. Cette interprétation permet d’appliquer des
outils existants pour l’apprentissage de métriques de Mahalanobis à l’apprentissage
de métriques locales coordonnées. Nos expériences montrent que la CLML amé-
liore les résultats en matière de récupération de visage obtenues par les approches
classiques d’apprentissage de métriques locales et globales.

Deuxièmement, nous présentons une approche exploitant les modèles de ré-
seaux neuronaux convolutionnels (CNN) pour la reconnaissance faciale dans le
spectre visible. L’objectif est l’amélioration de la reconnaissance faciale hétéro-
gène, c’est à dire la reconnaissance faciale à partir d’images infra-rouges avec des
images d’entraînement dans le spectre visible. Nous explorerons différentes straté-
gies d’apprentissage de métriques locales à partir des couches intermédiaires d’un
CNN, afin de faire le rapprochement entre des images de sources différentes. Dans
nos expériences, la profondeur de la couche optimale pour une tâche donnée est
positivement corrélée avec le changement entre le domaine source (données d’en-
traînement du CNN) et le domaine cible. Les résultats montrent que nous pouvons
utiliser des CNN entraînés sur des images du spectre visible pour obtenir des résul-
tats meilleurs que l’état de l’art pour la reconnaissance faciale hétérogène (images
et dessins quasi-infrarouges).

Troisièmement, nous présentons les "tissus de neurones convolutionnels" (Convo-
lutional Neural Fabrics) permettant l’exploration de l’espace discret et exponentiel-
lement large des architectures possibles de réseaux neuronaux, de manière efficiente
et systématique. Au lieu de chercher à sélectionner une seule architecture optimale,
nous proposons d’utiliser un "tissu" d’architectures combinant un nombre exponen-
tiel d’architectures en une seule. Le tissu est une représentation 3D connectant les
sorties de CNNs à différentes couches, échelles et canaux avec un motif de connec-
tivité locale, homogène et creux. Les seuls hyper-paramètres du tissu (le nombre
de canaux et de couches) ne sont pas critiques pour la performance. La nature acy-
clique du tissu nous permet d’utiliser la rétro-propagation du gradient durant la
phase d’apprentissage. De manière automatique, nous pouvons donc configurer le
tissu de manière à implémenter l’ensemble de toutes les architectures possibles (un
nombre exponentiel) et, plus généralement, des ensembles (combinaisons) de ces

iii

modèles. La complexité de calcul et de taille mémoire du tissu évoluent de ma-
nière linéaire alors qu’il permet d’exploiter un nombre exponentiel d’architectures
en parallèle, en partageant les paramètres entre architectures. Nous présentons des
résultats à l’état de l’art pour la classification d’images sur le jeu de données MNIST
et CIFAR10, et pour la segmentation sémantique sur le jeu de données Part Labels.

Mots-clés. Apprentissage de métriques locales • Transfert d’apprentissage • Ré-
seaux neuronaux convolutionnels • Apprentissage d’architectures.

Contents

Contents iv

List of Figures vi

List of Tables xiii

1 Introduction 1
1.1 Context . 2
1.2 Goals . 4
1.3 Contributions . 5

2 Coordinated Local Metric Learning 9
2.1 Introduction . 9
2.2 Related work . 13
2.3 Globally aligning local Mahalanobis metrics 24
2.4 Experimental evaluation . 30
2.5 Conclusion . 42

3 Heterogeneous Face Recognition 43
3.1 Introduction . 43
3.2 Related work . 47
3.3 Cross-modal recognition approach 60
3.4 Experimental evaluation . 64
3.5 Conclusion . 74

4 Convolutional Neural Fabrics 75
4.1 Introduction . 75
4.2 Related work . 79
4.3 The fabric of convolutional neural networks 94
4.4 Experimental evaluation . 101
4.5 Conclusion . 111

iv

CONTENTS v

5 Conclusion 113
5.1 Summary of Contributions . 113
5.2 Future research prespectives 115

Bibliography 118

List of Figures

1.1 Illustration for image classification. In the figure, we show some im-
age instances representing different digits with their corresponding
labels. 4

1.2 Examples form the Part Labels dataset for semantic segmentation.
The image pixels are classified into three classes: hair, background
and skin. 4

1.3 Pairs corresponding to the two categories of face verification, namely,
match pairs (left) and mismatch pairs (right). 5

1.4 Example images from E-PRIP database which depict the modality
gap between visible spectrum images and sketches. 6

1.5 Synthetic dataset with color coded class labels, and the local clusters
used by our method (left panel). Data projection given by a global
Mahalanobis metric (center panel) and our coordinated local metrics
(right panel). The latter approximately separates the classes via local
linear maps. 7

1.6 On the left, schematic illustration of the sparse homogeneous edge
structure in the trellis. Channel connectivity pattern at the same scale
(red) and across finer and coarser scale (green) depict sparse connect
structure. On the right, connectivity of a channel of an internal node
to channels of preceding nodes is shown. The internal node is con-
nected to 3 channels at the same scale (red), 3 at the finer and 3 at
coarser scales (green). 8

2.1 Face images represented by two fictious dimensions, identity and
expression. The ellipses depict the subject-dependent variability in
the feature space. One can see from the figure, that depending on
the task different metrics are needed. See text for details. 10

vi

List of Figures vii

2.2 Basic idea of metric learning is to learn a metric that assigns small
distance to pairs of examples that are semantically similar. In this
figure, semantically similar data points are color coded. Left: Data
points in the original space, Right: Data points in the space defined
by the learned metric. 15

2.3 Schematic illustration of LMNN, (left) original feature space where
the impostors are equally close to the query data point q. On right,
the data points in the projected feature space, learned by LMNN.
The points of the target class are brought closer to query, and the
impostors are pushed away by a certain margin. Image adapted from
Weinberger and Saul [2009] . 18

2.4 Synthetic dataset with color coded class labels (left). Data projection
given by a global Mahalanobis metric (right). Global Mahalanobis
metric fails to separate the three classes given the non-linear nature
of the class decision boundaries. Projection of one of the clusters
of the partitioning given by a linear metric (center). This figure il-
lustrates how locally linear metrics can separate non-linear decision
boundaries in their own partition. 19

2.5 Synthetic dataset with color coded class labels, and the GMM used
by our CLML local metric (left panel). Data projection given by a
global Mahalanobis metric (right panel) and our local CLML metric
(bottom panel). The latter approximately separates the classes via
local linear maps. 25

2.6 Illustration of quantization based retrieval method used in conjunc-
tion with CLML. On the left, the input data clustered with a 4 com-
ponent Gaussian Mixture Model. On the right, the data representa-
tion given by the learned CLML projection clustered using k-means
for quantization based retrieval. 30

2.7 Performance in mAP of local and global metrics for the three fea-
tures, using projection dimensions from 16 to 256. 34

2.8 Performance of CLML and LDML with different numbers of dis-
tractors added to the LFW images. 34

2.9 Retrieval using LFW images only (top), and using LFW plus 100,000
distractor faces (bottom). The results marked with Bhattarai et al.
[2014] correspond to those reported therein. Results for SCML and
LDML have been produced using publicly available code. See text
for details. 36

2.10 Retrieval mAP and speed on LFW plus one million distractor faces,
using CLML with d = 32 and FV feaures. Varying the number of
quantization cells p, and number of assignments m. 37

List of Figures viii

2.11 Visualization of the data projections learned by LDML (top) and
CLML (bottom). Data points of the 40 most frequent people in the
dataset have been color coded. Other data points are plotted in blue
and pink for males and females respectively. On the sides of the
CLML visualization we show outliers faces (marked with black cir-
cles) of males in the female cluster (right), and vice-versa (left). In-
terestingly, male outlier faces are mostly young boys, while female
outlier faces mostly display extreme poses or expressions. 41

3.1 Schematic illustration for domain adaptation. The task is to regress
the emotion content of a face image. On left, the red line depicts the
regressor learned on the training dataset [Huang et al., 2007]. On
right, we show the mismatch between the learned regressor applied
directly on images from another dataset [Lyons et al., 1998] com-
prised of Japanese female faces. In center, we show how domain
adapation can used to adapt the regressor to the new target dataset. . 44

3.2 Illustration for domain adaptation: Source domain contains the im-
ages of the products from Amazon whereas the target domain con-
sists of real life pictures from a camera in an office. The images are
taken from Office dataset [Saenko et al., 2010]. 47

3.3 Schematic illustration of difference between traditional machine learn-
ing and transfer learning. In comparison to the former, transfer
learning re-uses the knowledge across different learning tasks. . . . 48

3.4 Three ways in which transfer learning might improve learning. Im-
age adapted from Torrey and Shavlik [2009]. 50

3.5 Example of domain adaptation via CCA for the task of action recog-
nition. The source and target domain differ due to the view angle of
the camera. Ps and Pt denote the projection matrices for the source
and target domain obtained via CCA, which maximizes the corre-
lation between the two data distributions. Image adapted from Yeh
et al. [2014]. 51

3.6 Architecture proposed in Ganin and Lempitsky [2015] for unsuper-
vised domain adaptation. The feature extractor (green) and deep
label predictor (blue) form a standard feed forward neural network.
The Domain classifier (red) is added on top of feature extractor via
gradient reversal layer that multiplies the gradient by a negative con-
stant for backpropagation. Image adapted from Ganin and Lempit-
sky [2015]. 55

List of Figures ix

3.7 Soft labels in [Tzeng et al., 2015] are computed over the source do-
main and then used for the cross entropy loss for target domain. Soft
labels helps to transfer knowledge about other missing categories,
in this case, soft label of bottle induces the knowledge that bottle is
more similar to mug than a keyboard. Figure adapted from [Tzeng
et al., 2015]. 57

3.8 Schematic illustration of coupled autoencoders used for learning a
common latent representation. X and Y are the source and target
domain pair. The solid and dashed lines depict the encoder and de-
coder network respectively. The parameters of the two autoencoders
are not shared. 59

3.9 Images of one individual in the CASIA Webface dataset. 60
3.10 Illustration of CNN fine-tuning. In this schematic example, layers

marked in red are fine-tuned to adapt to the heterogeneous dataset.
The layers marked in green are frozen, i.e . their parameters remain
fixed while fine-tuning the network. The network is trained to clas-
sify images from both modalities. 62

3.11 Images of two individuals in the Labeled Faces in the Wild dataset
[Huang et al., 2007]. 64

3.12 Example NIR (top) and VIS (bottom) images of one individual in
the CASIA NIR-VIS dataset. 65

3.13 Example images from e-PRIP dataset for two subjects. From left to
right: photo, FACES sketch, and IdentiKit sketch. 66

3.14 Rank-10 identification accuracy on the e-PRIP composite sketch database
(left), and CMC curve for the Faces(In) database (right) for our re-
sult reported in the table. 73

3.15 CMC curve for e-PRIP composite sketch database Faces(In) for our
result reported in Table 3.14. 73

4.1 Trellis embedding of two seven-layer CNNs (red, green) and a ten-
layer deconvolutional network (blue). Feature map size of the CNN
layers are given by height. Layers of the trellis are laid out horizon-
tally, scales vertically. Trellis nodes receiving the input and produc-
ing output are encircled. All edges are oriented to the right, down in
the first layer, and towards the output in the last layer. The channel
dimension of the 3D trellis is omitted for clarity. 77

List of Figures x

4.2 Illustration of the convolution operator inside the convolution layer
of a CNN. A filter (dark green) is convolved over different locations
of the input feature map. At each location of the input feature map,
the dot product of the filter and the entries in the feature map (light
green) gives the output response (light red) for the corresponding
location in the output feature map. 80

4.3 In this figure we depict the equivalence between a convolution and a
fully connected layer. In the top, we interpret the 5 dimensional out-
put embedding of a fully connected layer as an output feature map
(5 channels and 1 × 1 spatial size) of a convolution layer. See text
for more details. In the bottom, the weight matrix of a fully con-
nected layer is shown, which implements the convolution operation
of a 2× 2 filter when convolved with stride 2. 82

4.4 Illustration of max and average pooling with stride and filter size set
to 2 and 2× 2 respectively. 83

4.5 Illustration of upsampling operation for upsampling the spatial size
of a feature map. The first step involves doing a simple top-left
unpooling operation. Next step involves convolution with a filter
whose weights are set to perform bilinear interpolation. In our work,
the weights of the filter are set as learnable parameters of the CNN. 84

4.6 Commonly used activation functions in neural networks: sigmoid,
hyperbolic tangent and ReLU. 85

4.7 On the top, an illustration of architecture used in AlexNet [Krizhevsky
et al., 2012]. The filters of convolution layers are split in two sets
across the two GPU’s and the GPU’s communicate only at certain
layers. At the bottom, two set of 11 × 11 filters (top and bottom)
learned for the first convolution layer. Image source [Krizhevsky
et al., 2012]. 86

4.8 Inception module used in GoogLeNet [Szegedy et al., 2015a]. The
1×1 convolutions are used for reducing the number of input feature
maps. This is done for reducing the computational and parameter
overhead of the modules. Image source [Szegedy et al., 2015a]. . . . 88

4.9 Illustration of the skip architecture proposed in the FCN architecture
[Long et al., 2015]. The network topology corresponds to a DAG
and learns to combine coarse, high layer (e.g . conv7) information
with fine, low layer (e.g . pool3) information. On right, qualitative
results demonstrating the improvement brought in by fusing infor-
mation from different layers with skip connections. Image adapted
from Long et al. [2015]. 89

List of Figures xi

4.10 On left, the convolution-deconvolution network proposed in [Noh
et al., 2015]. The convolution network is based on the VGG16Net
[Simonyan and Zisserman, 2015]. The deconvolution network con-
structs dense pixel-wise predictions through a series of convolution,
unpooling and rectification operations. Image source [Noh et al.,
2015]. 90

4.11 Schematic illustration of U-Net architecture [Ronneberger et al., 2015].
Distant convolution and deconvolution layers are linked with addi-
tional links. Blue and white rectangles indicate output of a con-
volution operation and copied channels respectively. The thickness
of rectangles is propotional to number of channels. Image adapted
from [Ronneberger et al., 2015]. 91

4.12 Architecture of Recombinator networks [Honari et al., 2016] for
landmark localization. Each branch, takes upsampled feature maps
from the coarser branch. 93

4.13 On the left, schematic illustration of the sparse homogeneous edge
structure in the trellis. Channel connectivity pattern at the same scale
(red) and across finer and coarser scale (green) depict sparse connect
structure. See text for more details. On the right, connectivity of a
channel of an internal node to channels of preceding nodes is shown.
The internal node is connected to 3 channels at the same scale (red),
3 at the finer and 3 at coarser scales (green). 95

4.14 Schematic illustration of how a node (purple) in a trellis combines
the input from different scales. Input from a finer scale is obtained
with a stride-2 convolution (green), and from a coarser scale by up-
sampling the feature map, followed by a convolution (red). Input
at the same scale is obtained with stride-1 convolution which pre-
serves the spatial resolution (blue). The output feature map (purple)
is generated by summing the three response maps. 95

4.15 Illustration of how fabrics can implement different upsampling op-
erators. In the top, fabrics upsample a feature map by zero padding,
followed by a convolution. In the bottom, setting the convolution
kernel to specific filters implements bi-linear and nearest neighbor
interpolation. 97

4.16 In this illustration we consider computing a 5 × 5 convolution over
a single channel with 3× 3 convolutions in the fabric. The first con-
volution operation computes 9 intermediate channels (b) to obtain a
vectorized version of 3× 3 neighborhood in the input (a). Perform-
ing a 3×3 convolution over the intermediate channels (b) allows the
filter to access the 5× 5 patch in the input (d). 98

List of Figures xii

4.17 Schematic representation of a dense-channel-connect layer in our
sparse trellis using local copy and swap operations. The five input
channels a, . . . , e are first copied; more copies are generated by rep-
etition. Channels are then convolved and locally aggregated in the
last two layers to compute the desired output. Channels in rows,
layers in columns, scales are ignored for simplicity. 99

4.18 Diagram of sparse channel connectivity from one layer to another
in the channel-doubling trellis. Channels are laid out horizontally,
scales vertically. Each internal node (green), channel, is connected
to nine other nodes at the previous layer: four channels (red) at a
coarser resolution, two (blue) at a finer resolution, and to itself and
neighboring channels at the same resolution. 100

4.19 Examples form the Part Labels test set: input image (left), ground-
truth labels (middle), and superpixel-level labels from our sparse
CNF model with 8 layers and 16 channels (right). 104

4.20 All 33 errors among 10,000 test samples of MNIST for the result of
densely connected trellis reported in Table 4.7. The prediction and
groundtruth are reported in red and black respectively. 106

4.21 Visualization of densely connected trellis model for Part Labels (top-
left), MNIST (top-right) and CIFAR10 (bottom-left). The trellis
models correspond to the best architecture found for each dataset.
Layers are laid out horizontally, and scales vertically. The circled
nodes represent input and output nodes of the trellis. In the bottom-
right we visualize the CIFAR10 trellis after pruning. See text for
details. 110

List of Tables

2.1 Evaluation of CLML over FV features using different GMM cluster-
ing methods. All learned metrics project the data to d= 32 dimen-
sions. Performance is measured in mAP, higher is better. 32

2.2 Performance of CLML in retrieval mAP for the three features, while
varying the number of local metrics. 33

2.3 Comparing CLML using FV features with other metric learning meth-
ods. Performance as LFW verification accuracy. 39

3.1 Architecture of the CNN learned on visible spectrum gray-scale im-
ages of the CASIA Webface dataset. Convolutions (C) use 3 × 3
filters and stride 1, max-pooling (P) act on 2 × 2 regions and use
stride 2. 61

3.2 Evaluation of LFW verification accuracy using features from dif-
ferent CNN layers, using metric learning to project to different di-
mensionalities d. We also report results obtained with the Euclidean
metric. 67

3.3 Evaluation for the impact of normalization on features from differ-
ent layers of the CNN for the CASIA NIR-VIS dataset. We report
results with metric learning. 68

3.4 Evaluation of features from different layers of the CNN for the CA-
SIA NIR-VIS dataset for different metric learning configurations.
Best results per column highlighted in bold. 68

3.5 Combining different features for the VIS (rows) and NIR (columns)
domain of the CASIA NIR-VIS dataset. Best results per VIS feature
highlighted in bold. 69

3.6 Fine-tuning to different depths (columns) on the CASIA NIR-VIS
dataset, while extracting features from different layers (rows). Best
results per feature highlighted in bold. 70

3.7 Comparison on CASIA NIR-VIS using raw CNN features, our pro-
jections, and domain adaptation [Fernando et al., 2013]. For the
latter, the projection dimension is set on the validation set. 71

xiii

List of Tables xiv

3.8 Comparison of our results with the state of the art on CASIA-NIR
dataset. 71

3.9 Rank-10 identification accuracy on the e-PRIP composite sketch database.
Best result per dataset highlighted in bold. 72

4.1 Number of response maps, parameters, activations, and multiplica-
tions for a trellis with L layers, S scales, C channels, for 2D inputs
of size N × N pixels. Channel doubling across scales used in the
bottom row. 99

4.2 Superpixel-level accuracy on Part Labels for CNF-dense. Number
of parameters given in parentheses. 103

4.3 Superpixel-level accuracy on Part Labels for CNF-sparse. Number
of parameters given in parentheses. 103

4.4 Comparison of our results with the state of the art on Part Labels.
The performance is reported in terms of super-pixel and pixel level
accuracy. 104

4.5 Error rate on MNIST for CNF-dense. Number of parameters given
in parentheses. 105

4.6 Error rate on MNIST for CNF-sparse. Number of parameters given
in parentheses. 105

4.7 Comparison of our results with the state of the art on MNIST. Data
augmentation with translation and flipping is denoted by T and F
respectively, N denotes no data augmentation. 106

4.8 Error rate on CIFAR10 for CNF-dense. Number of parameters given
in Table 4.9. 107

4.9 Number of parameters for CIFAR10, CNF-dense. 107
4.10 Error rate on CIFAR10 for CNF-sparse. Number of parameters for

the different configurations are provided in Table 4.11. 107
4.11 Number of parameters for CIFAR10, CNF-sparse. 108
4.12 Comparison of our results with the state of the art on CIFAR10.

Data augmentation with translation, flipping, scaling and rotation
are denoted by T, F, S and R respectively. 108

Chapter 1

Introduction

Contents
1.1 Context . 2
1.2 Goals . 4
1.3 Contributions . 5

The Cambrian explosion refers to the short evolutionary event beginning
around 500 million years ago, which witnessed sudden appearance of fossil
record of major animal groups. A similar explosion is currently under process in
the digital age.

“Between the dawn of civilization and 2003, we only created five
exabytes; now we’re creating that amount every two days. By 2020,
that figure is predicted to sit at 53 zettabytes (53 trillion gigabytes) –
an increase of 50 times.”

—HAL VARIAN, Chief Economist, Google

A significant part of this data explosion is due to the increase in the digital me-
dia. The number and quality of capturing devices have significantly grown over
the past years, making it possible for us to collect large amount of personal mul-
timedia collections. The widespread availability of internet and social platforms
such as Flickr, Facebook, Instagram, and Youtube, allows us to access and share
the multimedia collections, creating a vast storage of digital data in the cloud.
To get a perspective, in the one minute you have spent reading the thesis so far,
400 hours of video has been uploaded on Youtube 1, 136,000 photos have been
uploaded on Facebook 2, and 3,600 photos have been shared on Instagram 3. An-

1. https://www.youtube.com/
2. https://www.facebook.com/
3. https://www.instagram.com/

1

https://www.youtube.com/
https://www.facebook.com/
https://www.instagram.com/

CHAPTER 1. INTRODUCTION 2

other major source of increase in the digital media is surveillance. For instance,
413 Petabytes of data is roughly four times the amount of photos and videos
stored on Facebook 4. Surprisingly, this is also the amount of data produced in
one day by all cameras installed worldwide in 2013 5.

The rapid increase in the digital content comes with both, challenges and ben-
efits. On one hand, storing vast amounts of data has lead to an increase in the
storage and computational footprint, and requires efficient storage and indexing
methods. On the other hand, the abundance of data can be used for training
statistical learning models.

1.1 Context
The proliferation of the digital data has made a significant impact on the

computer vision and the machine learning community. In the following para-
graphs, we list the two outcomes of the rapid increase in digital media, which
are of interest for this dissertation.

The first consequence is the need for efficient systems to process this large vol-
ume for different tasks. Traditional database techniques for processing a large
database have been adequate for applications including text records which could
be ordered, indexed and queried for matching patterns in a straightforward man-
ner. In contrast, for non-textual unstructured content such as images, indexing
and querying is not as obvious as it is for text records. This is due to the fact
that an image first needs to be encoded into a semantically meaningful represen-
tation, before it can be indexed in a database and queried.

“ When you think about “information,” what probably comes to mind
are streams of words and numbers. Google’s pretty good at organizing
these types of information, but consider all the things you can not
express with words: what does it look like in the middle of a
sandstorm? What are some great examples of Art Nouveau
architecture? Should I consider wedding cupcakes instead of a
traditional cake? This is why we built Google Images. ”

— NATE SMITH, Product Manger, Google Images

4. As of February 2012
5. http://press.ihs.com/press-release/design-supply-chain-media/

big-big-big-data-rise-hd-video-surveillance-cameras-spurs-in

http://press.ihs.com/press-release/design-supply-chain-media/big-big-big-data-rise-hd-video-surveillance-cameras-spurs-in
http://press.ihs.com/press-release/design-supply-chain-media/big-big-big-data-rise-hd-video-surveillance-cameras-spurs-in

CHAPTER 1. INTRODUCTION 3

Indexing multimedia data based on its content simplifies its manageability and
leads to efficiency in search. For example, Google Images was launched in 2001
with around 250 million images indexed. By 2010, the amount of indexed pic-
tures has grown to an astounding 10 billion in number. Dealing with images at
a large scale makes indexing and retrieval a challenging and an important task.
As per Rui et al. [1999], the three fundamental components for content-based
image retrieval are: (i) visual feature extraction, (ii) multidimensional index-
ing and (iii) retrieval system design. In the recent decade a lot of progress has
been made on these three components. In particular, the visual feature extraction
techniques have evolved from primitive color and gray scale histograms [Swain
and Ballard, 1991, Huang et al., 1999] to scale and viewpoint invariant high-
dimensional descriptors [Perronnin and Dance, 2007, Jégou et al., 2010, Csurka
et al., 2004]. Recent progress has been made using supervised learning and ef-
ficient quantization to improve the accuracy of retrieval systems, and to address
the computational and storage requirements. Progress along these lines has been
vital for scaling up the traditional retrieval systems and will continue to play a
vital role in the coming years.

Another consequence of the expansion in digital media is its role in our un-
derstanding of images. Statistical learning methods learn the model parameters
from large-scale datasets. Once the training is complete these models can be
evaluated on previously unseen images. The optimal complexity of these model
(in terms of parameters) is largely determined by the number of available la-
belled images. Recently, the availability of large scale datasets [Deng et al.,
2009] have facilitated the impressive results obtained with Convolutional Neu-
ral Networks (CNNs) [LeCun et al., 1989]. In particular, the recent results of
Krizhevsky et al. [2012] have caused a major paradigm shift in the computer
vision community, from models relying on hand-crafted features to end-to-end
trainable systems. However, this recent success of representation learning comes
with few limitations. First, training a deep CNN requires a large amount of la-
belled data, and hence the application of CNN to datasets with a small sample
size is not straightforward. To mitigate this issue, recent works have focused
on transferring the learned representations across a variety of datasets and tasks
[Sharif Razavian et al., 2014]. Transferability of these learned representations
continues to be one of the important research directions in the community.

The recent success of end-to-end trainable systems has made the practice of
hand-crafting image descriptors obsolete in computer vision community. How-
ever, this success came at the cost of introducing a new practice in the commu-
nity i.e . hand-crafting network architectures. This is the second limitation with

CHAPTER 1. INTRODUCTION 4

(0) (1) (2) (3) (4)

(5) (6) (7) (8) (9)

Figure 1.1 – Illustration for image classification. In the figure, we show some
image instances representing different digits with their corresponding labels.

Figure 1.2 – Examples form the Part Labels dataset for semantic segmentation.
The image pixels are classified into three classes: hair, background and skin.

the CNN based approaches, and is concerned with the large number of hyper-
parameters which needs to set for obtaining a network architecture. At present,
in the computer vision community these hyperparameters are set manually, i.e .
hand-crafted for a particular dataset or task.

1.2 Goals
The focus of this thesis is on methods and data driven machine learning so-

lutions which address and benefit from consequences of rapid increase in digital
media. In the following, we briefly describe the vision problems considered in
the dissertation.

Image classification The task of image classification is to assign an input im-
age to one of the given classes based on their visual content, see Figure 1.1.
We distinguish between multiclass classification, where images are asso-
ciated with a single label, and multi-label classification, where an image
can be related to more than one label.

Image segmentation The task of image segmentation is similar to image clas-
sification, but involves making predictions at a finer scale. It is similar to
classification in the sense that it involves classifying each pixel of an input
image to one of the given classes, see Figure 1.2.

CHAPTER 1. INTRODUCTION 5

Figure 1.3 – Pairs corresponding to the two categories of face verification,
namely, match pairs (left) and mismatch pairs (right).

Face recognition Face recognition is mainly divided into two tasks: (i) face
identification and (ii) face verification. The goal of face identification is
to assign the input image to one of the several predefined identities in a
database. In contrast, the goal of face verification is to verify whether the
two input images belong to the same identity or not, see Figure 1.3 for
illustration.

Face retrieval Compared to face verification, face retrieval is related but a
slightly different task. The user provides the face of a person as a query,
and the goal is to retrieve images in a database which depict that person.

Heterogeneous face recognition The goal of heterogeneous face recognition
is to recognize faces of people across different modalities. In most cases,
the gallery of known individuals consists of normal visible spectrum im-
ages. Probe images may be forensic sketches or thermal infrared images
which are useful in a forensic context or covert non-intrusive night-time
acquisition respectively, see Figure 1.4.

1.3 Contributions
The following paragraphs explain the problems that we focus on in this the-

sis, and our corresponding contributions.

CHAPTER 1. INTRODUCTION 6

Figure 1.4 – Example images from E-PRIP database which depict the modality
gap between visible spectrum images and sketches.

What are the limitations of metric learning approaches, and how can we
address them? Mahalanobis metric learning amounts to learning a linear data
projection, after which the `2 metric is used to compute distances. To allow
more flexible metrics, not restricted to linear projections, local metric learning
techniques have been developed. Most of these methods partition the data space
using clustering, and for each cluster a separate metric is learned. Using local
metrics, however, it is not clear how to measure distances between data points
assigned to different clusters. In our work, we propose to embed the local met-
rics in a global representation. This global representation directly allows com-
puting distances between points regardless to which local cluster they belong.
Moreover, it also enables data visualization in a single view (see Figure 1.5),
and the use of `2-based efficient retrieval methods. In our work, we show that
our approach for learning local metrics with alignment can be equivalently in-
terpreted as learning a linear projection on an explicit feature embedding of a
high dimensional kernel. This is the main contribution of work, which allows
the use of existing global Mahalanobis metric learning methods for learning co-
ordinated local metrics. Experiments on the Labeled Faces in the Wild dataset
show that our approach improves over previous global and local metric learn-
ing approaches for the task of face retrieval. Our approach also leads to larger
speed-ups at a higher level of performance. This work is published in [Saxena
and Verbeek, 2015] and presented in Chapter 2.

How can we leverage the success of CNN models for visible spectrum face
recognition to improve heterogeneous face recognition? Heterogeneous face
recognition aims to recognize faces across different sensor modalities. Typi-
cally, gallery images are normal visible spectrum images, and probe images are

CHAPTER 1. INTRODUCTION 7

Figure 1.5 – Synthetic dataset with color coded class labels, and the local clusters
used by our method (left panel). Data projection given by a global Mahalanobis
metric (center panel) and our coordinated local metrics (right panel). The latter
approximately separates the classes via local linear maps.

infrared images or sketches, see Figure 1.4. Recently significant improvements
in visible spectrum face recognition have been obtained by CNNs learned from
very large training datasets. It is, however, not straightforwad how to apply
such networks for heterogeneous face recognition, since the image characteris-
tics may differ significantly across the modalities, and typically relatively little
training data is available for other modalities than normal visible spectrum im-
ages. In this work, we are interested in the question to what extent the features
from a CNN pre-trained on visible spectrum face images can be used to perform
heterogeneous face recognition. We explore different metric learning strategies
to reduce the discrepancies between the different modalities and find that metric
learning over features of intermediate layers of the network is most effective.
Experimental results show that we can use CNNs trained on visible spectrum
images to obtain results that are on par or improve over the state-of-the-art for
heterogeneous recognition with near-infrared images and sketches. This work is
published in [Saxena and Verbeek, 2016b] and presented in Chapter 3.

How can we explore the discrete and exponentially large architecture space
of a CNN in an efficient and systematic manner? The architecture of stan-
dard CNNs is determined by several hyperparameters, including, but not limited
to the following: number of layers, number of channels per layer, filter size per
layer and number of pooling vs . convolutional layers . Despite the success of
CNNs, selecting the optimal architecture for a given task remains an open prob-
lem. Instead of aiming to select a single optimal architecture, we propose a
“fabric” that embeds an exponentially large number of architectures. The fabric
consists of a 3D trellis that connects response maps at different layers, scales,
and channels with a sparse homogeneous local connectivity pattern, see Fig-
ure 1.6. The only hyper-parameters of a fabric are the number of channels and
layers. The standard classification and segmentation architectures can be recov-

CHAPTER 1. INTRODUCTION 8

(s+1)

(s)

(s-1)

Cha
nn

el
s

OutputLayers

Input

Internal Node

S
ca

le
s

Figure 1.6 – On the left, schematic illustration of the sparse homogeneous edge
structure in the trellis. Channel connectivity pattern at the same scale (red) and
across finer and coarser scale (green) depict sparse connect structure. On the
right, connectivity of a channel of an internal node to channels of preceding
nodes is shown. The internal node is connected to 3 channels at the same scale
(red), 3 at the finer and 3 at coarser scales (green).

ered from the fabric by setting certain weights to zero, so that only a single acti-
vation path is non-zero across the fabric. The acyclic nature of the fabric allows
us to use backpropogation for learning. Learning can thus efficiently configure
the fabric to implement each one of exponentially many architectures and, more
generally, ensembles of all of them. An attractive property of the fabrics is its
low computational complexity for exploration of the architecture space. While
scaling linearly in terms of computation and memory requirements, the fabric
leverages exponentially many chain-structured architectures in parallel by mas-
sively sharing weights between them. We present benchmark results competitive
with the state of the art for image classification on MNIST and CIFAR10, and
for semantic segmentation on the Part Labels dataset. This work is published in
[Saxena and Verbeek, 2016a] and presented in Chapter 4.

The structure of the thesis is as follows. We present our technical contribu-
tions in Chapter 2, 3 and 4. The overview of the related work relevant for each
contribution is presented in their respective chapters. We conclude the thesis
with a summary and perspectives in Chapter 5.

Chapter 2

Coordinated Local Metric Learning

Contents
2.1 Introduction . 9
2.2 Related work . 13

2.2.1 Mahalanobis metrics 13
2.2.2 Global Mahalanobis metric 15
2.2.3 Limitiations of Global Mahalanobis metric 19
2.2.4 Local Mahalanobis metrics 20

2.3 Globally aligning local Mahalanobis metrics 24
2.3.1 Coordinated local metric learning 26
2.3.2 Discussion . 28
2.3.3 Implementation 29

2.4 Experimental evaluation 30
2.4.1 Dataset, protocols and features 30
2.4.2 Experiments for retrieval 32
2.4.3 Experiments for verification 38
2.4.4 Data visualization 40

2.5 Conclusion . 42

2.1 Introduction
Many supervised and unsupervised machine learning problems are based on

a notion of metric (similarity or distance function) between examples. Metrics
play a crucial role in a wide range of applications in computer vision, e.g . local
descriptor matching (Dosovitskiy et al. [2014]), fine-grained object comparison

9

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 10

Figure 2.1 – Face images represented by two fictious dimensions, identity and
expression. The ellipses depict the subject-dependent variability in the feature
space. One can see from the figure, that depending on the task different metrics
are needed. See text for details.

(Nowak and Jurie [2007]), image segmentation (Lajugie et al. [2014]) , and face
verification (Köstinger et al. [2012]).

The performance of algorithms in these problems depends upon how relevant
is the metric used to the task at hand. For instance, we hope that the distance
between instances that share a label is smaller compared to the distance between
instances which do not share the label. Unfortunately, standard distance metrics
like Euclidean distance computed over the high-dimensional features, often fail
to capture the specific nature of the task at hand.

Need of metric learning As discussed before, need of metric learning arises
when we need different metrics tailored for different tasks. We motivate this
need through a toy example in Figure 2.1. The face images are represented in a
fictious 2 dimensional coordinate system. First dimension corresponds to iden-
tity of the person, while the second corresponds to expression. In this particular
descriptor space, if our goal was to design an ideal metric for the the task of face
verification, then the metric should highlight the identity dimension and suppress
the expression dimension. Doing so, will make the resulting metric invariant to

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 11

expression changes in the face. However, if we were to design an ideal metric for
the task of expression recognition, then the metric should suppress the identity
dimension, making the faces of two people with same expression more similar.

This toy example exemplifies the need for metric learning i.e . for a given input
space, different tasks require a different metric. In the example above, we had
fictious coordinate axes, but when dealing with real data (for e.g . face images
represented by vectorized pixel values) we do not know which dimensions are
crucial for the task at hand. This is the precise goal of metric learning, where we
learn a metric relevant to the problem at hand using the information brought by
a sample of labeled examples.

In the past years, a considerable amount of research effort has been devoted to
design and learn metrics from the data. Most work considers supervised learning
of Mahalanobis metrics, see e.g . (Globerson and Roweis [2006], Davis et al.
[2007], Guillaumin et al. [2009], Weinberger and Saul [2009], Köstinger et al.
[2012], Mignon and Jurie [2012b], Shi et al. [2014], Trivedi et al. [2014]).

The supervision comes as positive and negative pairs that should be close and
far apart respectively. The Mahalanobis distance between two points is given
by (xi − xj)

>M(xi − xj), where M is a positive definite matrix. Since M
can always be factored as M = L>L, Mahalanobis metrics are equivalent to
the `2 metric after linear projection of the data. For complex class distributions,
however, linear projection of the data might not be sufficient to obtain a suitable
data representation.

To overcome this restriction, several routes have been explored. First, the
linear projection in the Mahalanobis metric can be written in terms of kernel
evaluations, see e.g . (Globerson and Roweis [2006], Guillaumin et al. [2010],
Mignon and Jurie [2012b]). Alternatively, (convolutional) neural networks with
a siamese architecture can be learned to give (dis)similar outputs for positive and
negative pairs, see e.g . (Bromley et al. [1993], Chopra et al. [2005]). Finally,
local metric learning uses a collection of Mahalanobis metrics, each operating in
a different part of the input space, see e.g . (Bhattarai et al. [2014], Bohné et al.
[2014], Frome et al. [2007], Hong et al. [2011], Huang et al. [2013], Noh et al.
[2010], Shi et al. [2014], Wang et al. [2012], Weinberger and Saul [2009], Zhan
et al. [2009a]). The partitioning of the space is typically obtained using k-means
or Gaussian mixture clustering.

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 12

In most existing local metric learning approaches, however, it is unclear how
to compute distances between points assigned to different clusters, or distances
are defined in an asymmetric manner. Unlike for global metric learning, they can
not be interpreted as computing the `2 distance after a transformation of the data,
which hinders data visualization and efficient `2-based retrieval techniques, such
as product quantization and multiple-assignment retrieval (Jégou et al. [2011]).

In this chapter we propose a solution by embedding the local metrics in a
global representation. In particular, we map the input data to an expanded data
representation. This representation is essentially a non-linear embedding of the
input data in the high dimensional space, but as we will show this representation
does not need to be explicitly constructed, and avoids excessive memory con-
sumption by our method. We show that learning a Mahalanobis metric over the
proposed embedding is equivalent to simultaneously learning the local metrics
for each cluster, along with their alignment. Therefore, existing Mahalanobis
metric learning methods can be used to learn and coordinate local Mahalanobis
metrics.

The local metrics are aligned in the global embedding space due to the pair-
wise constraints imposed by the objective function. The alignment of the local
metrics, ensures that the local metrics are coherently placed in a global coordi-
nate system. This allows us to (i) compute distances between points regardless to
which local cluster they belong, (ii) visualize data in a single view, and (iii) use
efficient `2-based retrieval methods. We refer to our approach as “coordinated
local metric learning” (CLML).

We validate our approach in face verification and retrieval settings using the
Labeled Faces in the Wild (LFW) (Huang et al. [2007]) dataset, which has drawn
a significant amount of interest over the recent years, see e.g . (Bhattarai et al.
[2014], Bohné et al. [2014], Cao et al. [2013], Chopra et al. [2005], Guillaumin
et al. [2009, 2010], Köstinger et al. [2012], Liao et al. [2014], Mignon and Jurie
[2012b], Nowak and Jurie [2007], Simonyan et al. [2013a], Sun et al. [2014],
Taigman et al. [2014]). In face verification, the task is to determine whether the
two face images depict the same person or not. Face retrieval is a related but
slightly different task, the user provides the face of a person as a query, and the
goal is to retrieve images in a database which depict that person.

In our experiments we represent the face images using image representations
based on local binary patterns (LBP, Ojala et al. [2002]), convolutional neu-
ral networks (CNN, Yi et al. [2014]), and Fisher vectors (FV, Simonyan et al.

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 13

[2013a]). We use logistic discriminant metric learning method (LDML, Guillau-
min et al. [2009]) to learn both global and local metrics and compare their perfor-
mance. For all tested image representations our approach improves over global
metric learning and other local metric learning approaches. For retrieval, the
improvements over previous local metric learning approaches (Bhattarai et al.
[2014], Shi et al. [2014]) are particularly large.

Outline The rest of the chapter is organized as follows. In Section 2.2 we
discuss a selection of related work which is most relevant to the topics of this
chapter. In Section 2.3 we present our work on coordinated local metric learning
along with implementation details. We present extensive experimental results
in Section 2.4, analyzing different aspects of the proposed method and compar-
ing it to the current state-of-the-art in different application settings such as face
verification and face retrieval. Finally, in Section 2.5 we conclude this chapter.

2.2 Related work
There has been considerable amount of research in the field of distance met-

ric learning over the past years. Depending on the availability of the labels for
training data, the algorithms for distance metric learning can be grouped into two
broad categories: supervised and unsupervised. In contrast to most supervised
learning algorithms which require training data to have class labels, majority of
supervised distance metric learning algorithms require the training data as pairs,
which are labelled as positive or negative depending whether the instances in the
pair share their class labels or not.

In this section, first we review some basic terminology for distance metric
learning, followed by related work on supervised metric learning methods that
is most relevant to the material we present in this chapter.

2.2.1 Mahalanobis metrics
A mapping D : X ×X → R+ over a vector space X is called a metric if for

all vectors ∀xi,xj,xk ∈ X , it satisfies the properties:

1. D(xi,xj) +D(xj,xk) ≥ D(xi,xk) (triangular inequality).

2. D(xi,xj) ≥ 0 (non-negativity).

3. D(xi,xj) = D(xj,xi) (symmetry).

4. D(xi,xj) = 0 ⇐⇒ xi = xj (distinguishability).

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 14

If a mapping satisfies the first three properties but not the fourth, it is called a
pseudometric. However, to simplify the discussion in what follows, we will refer
to pseudometrics as metrics, pointing out the distinction only when necessary.

Given the vectorial representation xi ∈ RD of data points, where sub-script
i indexes the data point, we seek to design good metrics for a given task, e.g .
verification, retrieval, ranking etc . An illustration of metric learning is shown
in Figure 2.2. We obtain a family of metrics by computing Euclidean distances
after projecting the data with a linear transformation x̃i = Lxi. The pairwise
squared distance is given by,

dL(xi,xj) = (Lxi − Lxj)
>(Lxi − Lxj). (2.1)

The distance in Eq. (2.1) is parametrised by matrix L. If L is full-rank then
the distance defined in Eq. (2.1) is a valid metric otherwise it is a pseudometric.
We can equvivalently rewrite the equation as,

dM(xi,xj) = (xi − xj)
>M(xi − xj), (2.2)

where M = L>L ∈ RD×D and L ∈ Rd×D, and d is the rank of M. By con-
struction M is a symmetric positive semi-definite matrix that parametrises the
distance in Eq. (2.2), which is also known as Mahalanobis distance. For M
equal to identity, the Mahalanobis distance reduces to the Euclidean distance.
From the equations above, we can see that the Mahalanobis metric corresponds
to Euclidean distance after a linear transformation. Therefore, learning the Ma-
halanobis distance can be equivalently expressed as optimizing either M or L.
It is interesting to note that when the matrix L is rectangular, we perform di-
mensionality reduction by projecting the data to a reduced subspace of rank d.
Thus, it allows a more compact data representation of the data and cheaper dis-
tance computations, especially for the case when original feature space is high
dimensional.

Given the above, any method which learns a linear projection of the data can
be considered as metric learning. For instance, principal component analysis
(PCA, [Pearson, 1901]) is one of the earliest methods for performing unsuper-
vised dimensionality reduction. To reduce the dimensionality of data, PCA seeks
to find a low-rank linear projection. One of the disadvantages of PCA is that
when searching for the linear projection, it aims at preserving the variance of the
data and does not take into account the class membership of data points. Other
works address this issue by using the supervision brought in by labelled data
points. Below, we give a brief overview of different supervised methods used to
learn a metric.

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 15

Figure 2.2 – Basic idea of metric learning is to learn a metric that assigns small
distance to pairs of examples that are semantically similar. In this figure, se-
mantically similar data points are color coded. Left: Data points in the original
space, Right: Data points in the space defined by the learned metric.

Supervised methods Supervised methods differ from unsupervised methods
in terms of the objective for learning the lower dimensional representation. In-
stead of trying to retain as much data variance as possible while projecting the
data as in PCA, the goal of supervised methods is to learn a distance metric for a
particular task. These methods are, by nature, supervised. Figure 2.2 shows a toy
example which illustrates supervised metric learning. Many supervised Maha-
lanobis metric learning methods exist. Most are based on loss functions defined
over pairs or triplets of data points, see e.g . (Davis et al. [2007], Globerson and
Roweis [2006], Guillaumin et al. [2009], Köstinger et al. [2012], Mignon and
Jurie [2012b], Wang et al. [2014], Weinberger and Saul [2009]).

Supervised methods for learning a distance metric can be divided into two cat-
egories: the global distance metric learning, and the local distance metric learn-
ing. The former learns a single metric shared across the input space, whereas in
the latter case, multiple metrics are learned at different places in the input space.
We refer the reader to recent survey papers (Bellet et al. [2013], Kulis [2012])
for a detailed review of these. Below we give a brief overview of some global
and local distance metric learning methods.

2.2.2 Global Mahalanobis metric
One of the earliest supervised approaches for learning a global Mahalanobis

metric is Fisher Linear Discriminant Analysis (FLDA, Fisher [1936]). Instead
of searching for directions which maximize the variance of data like PCA, it
searches for ones which preserve discriminating information. These directions
were shown to be better than those found by PCA for the task of face recognition
(Belhumeur et al. [1997]). More formally, the objective of FLDA is to find
projections which maximize the between-class covariance while minimizing the

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 16

within-class covariance of the projected data. We can define the within-class
covariance matrix SW and between class covariance matrix SB as,

SW =
∑
i∈Ωc

1

Nc

(x̄c − xi)(x̄c − xi)
>

SB =
C∑
c=1

Nc(x̄c − x̄)(x̄c − x̄)>
(2.3)

where c ∈ {1, ..., C} denotes the classes, Ωc the set of data points belonging to
class c, and x̄c the class mean. The objective which FLDA minimizes is:

J(u) =
uSBu

>

uSWu>
. (2.4)

The minimization of the objective in equation Eq. (2.4) leads to a generalized
eigenvalue problem. The resulting projections correspond to the eigenvectors of
S−1
W SB corresponding to the largest eigenvalues.

Methods based on pairwise loss terms learn a metric so that positive pairs (e.g .
points having the same class label) have a distance that is smaller than negative
pairs (e.g . points with different class labels). An example of such methods is
the logistic discriminant metric learning (LDML) method of Guillaumin et al.
[2009]. They learn the Mahalanobis metric from pairwise supervision for the
task of face verification. Using yij ∈ {−1,+1} to denote whether a pair of
images xi, xj ∈ RD are of the same person or not, LDML seeks to learn the
Mahalanobis matrix M ∈ RD×D by minimizing the log-loss,

L(M, b) =
∑

(i,j)∈C

ln {1 + exp (−yij(b− dij))} , (2.5)

where dij = (xi−xj)
>M(xi−xj), and b is the learned threshold to classify the

pairs being of the same person or not based on the learned Mahalanobis distance.
C denotes the set of training data pairs. In (Guillaumin et al. [2010]), instead
of learning the matrix M they propose to learn a low-rank factorization so as to
explicitly regularize the learned metric to a low rank.

Davis et al. [2007] proposed “information theoretic metric learning” (ITML),
where they take an information theoretic approach to learn a Mahalanobis met-
ric. The prior knowledge is used to keep the learned metric M close to a known
prior M0, which is a PSD matrix. In their work they set M0 to I (the identity
matrix) and thus regularize the learned metric to stay close to the Euclidean dis-
tance metric. They interpret the similarity between the two PSD matrices via KL

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 17

divergence between Gaussian distributions which have M and M0 as covariance
matrix respectively. The formulation of ITML is as follows:

min
M∈RD×D

KL(p(x;M) ‖ p(x;M0))

s.t. dij ≤ u ∀(i, j) ∈ S
dij ≥ v ∀(i, j) ∈ D,

(2.6)

where u, v ∈ R are the threshold parameters, S and D denote the set of similar
and dissimilar pairs, p(x;M) is the probability density function of a Gaussian
whose covariance is parametrised by M. ITML aims at finding a metric that
minimizes the sum of loss terms that enforce positive pairs to have distance
smaller than a constant u and negative pairs to have a distance larger than v. One
shortcoming of the method is that the matrix M0, needs to be picked by hand,
and can have an important influence on the solution.

Köstinger et al. [2012] formulate the probability of a pair (xi,xj) being simi-
lar or dissimilar via standard log-likelihood ratio test:

δ(xi,xj) = log
(p(xi,xj)|yij = +1

p(xi,xj)|yij = −1

)
. (2.7)

Here, xi,xj ∈ RD denote a pair of feature vectors, and yij = +1 indicates that
the pair (xi,xj) belongs to the same class. They obtain a Mahalanobis metric
which reflects the properties of the log-likelihood ratio test. The Mahalanobis
metric is defined by,

M = C−1
+ −C−1

− , (2.8)

based on the covariance matrices C+ and C− of positive and negative pairs. For
positive pairs C+ is defined as C+ =

∑
yij=+1(xi − xj)(xi − xj)

T . The matrix
C− is analogously defined. The advantage of their method is that the solution
is non-iterative and the metric can be computed in closed form. They ensure
that the resulting solution is a valid metric by projecting M onto the cone of
PSD matrices.

An example of a triplet-based approach is the large-margin nearest neighbour
(LMNN) method (Weinberger et al. [2006]). This method was formulated to
improve the performance of k-nearest neighbour classification. For each training
instance, a neighbourhood perimeter is established. The perimeter surrounds the
k nearest neighbours of the same class (targets), plus a margin. Data points with

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 18

xi

margin

push

pull

xi

Target neighbours

Impostors

Impostors Target neighbours

Local Neighborhood AFTERBEFORE

marginClass 1
Class 2

Class 3q q

Figure 2.3 – Schematic illustration of LMNN, (left) original feature space where
the impostors are equally close to the query data point q. On right, the data
points in the projected feature space, learned by LMNN. The points of the target
class are brought closer to query, and the impostors are pushed away by a certain
margin. Image adapted from Weinberger and Saul [2009]

.

a dissimilar label which invade the perimeter are impostors. The Mahalanobis
metric is learned by minimizing a sum of loss terms over triplets of points, where
each loss term encourages the distance between xi and its target data points
to be at least one distance unit (margin) smaller than the distance of xi to the
impostors. Doing so, brings the target data points close to xi while pushing away
the impostors in the learned space. See Figure 2.3 for a graphical illustration.
The objective function of LMNN is expressed as,

min
M∈RD×D

∑
(i,j)∈T

dij

s.t. dik − dij ≥ 1 ∀(i, j) ∈ T,∀(i, k) ∈ I.

(2.9)

where T and I denote the set of target and impostor neighbours of the data
point i, and dij = (xi − xj)

>M(xi − xj). They add slack variables to get
soft constraints, and optimize the convex problem using a special purpose solver
based on subgradient descent and careful book-keeping of active constraints.
Usually the set of target neighbours is chosen and fixed using the `2 metric in
the original space. This can be problematic since the `2 distance might be not be
relevant in the original space. There are some recent works which address this
limitation by avoiding the use of pre-defined neighbours (Weinberger and Saul
[2009], Checkik et al. [2010], Trivedi et al. [2014]).

Trivedi et al. [2014] extend LMNN by optimizing a loss directly correspond-
ing to the k-nn classification error. Their method is based on the intution that

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 19

Figure 2.4 – Synthetic dataset with color coded class labels (left). Data projec-
tion given by a global Mahalanobis metric (right). Global Mahalanobis metric
fails to separate the three classes given the non-linear nature of the class decision
boundaries. Projection of one of the clusters of the partitioning given by a linear
metric (center). This figure illustrates how locally linear metrics can separate
non-linear decision boundaries in their own partition.

k-nn classifier does not require all the k neighbours to have the same label, and
consequently methods like LMNN optimize a much harder objective. Unlike
LMNN, which tries to push all bad neighbours (impostors) away and pull all
good neighbours (targets), minimizing their proposed loss tries to push a few
bad neighbours away from the given point xi and pull some good neighbours,
such that the resulting k-nn prediction will become correct. In contrast to many
other algorithms which use pre-defined neighbours, the choice of neighbours is
a latent variable which is estimated along with the distance metric.

2.2.3 Limitiations of Global Mahalanobis metric
As we mentioned before, Mahalanobis metric learning is equivalent to learn-

ing a linear projection. A linear projection on a feature space, can only im-
plement affine transformations and might not be well suited for settings which

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 20

entail multi-modality or non-linearities in the data. We illustrate this weakness
with an example. In Figure 2.4 (left panel), a synthetic toy dataset is constructed
in such a way that a global linear projection cannot bring all point of a class close
together, while keeping the points of different classes apart. This is observed in
the data projected by using a Global Mahalanobis metric (right panel). There
are different routes by which one can learn projections to separate the classes.
These projections are non-linear in nature. Below, we discuss few ways to learn
non-linear projections:

1. Kernel methods These are a class of algorithms used for machine learn-
ing or pattern analysis which operate in implicit high-dimensional spaces.
Any linear model can be converted into a non-linear model, by applying
the kernel trick to the model i.e . replacing the input features by a kernel
function. Kernel trick applied with PCA, gives us kernel PCA (Schölkopf
et al. [1998]). In the example of Figure 2.4, Kernel PCA with a polyno-
mial kernel of degree two or a Guassian RBF kernel can be used to project
and separate the data points.

2. Non-linear projections There are many different methods which can be
used to learn non-linear mappings. One of these is neural networks, which
consists of a series of linear projections, each followed by a non-linear
activation function. The final output embedding is non-linear, where the
degree of non-linearity depends upon the depth of the network and activa-
tion function used (Montufar et al. [2014]).

3. Locally linear mappings When the data is complex (i.e . multimodal or
heterogenous), it might be better to learn multiple metrics at different
places in the input space. For example, consider the illustration in Fig-
ure 2.4 (center), where, within each partition, learning a linear projection
is able to bring the points of the same class closer while keeping the points
of different classes away from each other.

The work in this chapter falls in the category of locally linear projections.
Below we give a brief overview of different local Mahalanobis metric learning
methods. These methods learn the projections by means of locally linear map-
pings.

2.2.4 Local Mahalanobis metrics
Local Mahalanobis metric learning has been shown to significantly outper-

form global methods on some problems, but typically comes at the expense of
higher computational cost and memory requirements. Furthermore, they usu-
ally do not give rise to a consistent global metric, although some recent work

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 21

partially addresses this issue (Zhan et al. [2009b], Hauberg et al. [2012], Shi
et al. [2014]). To alleviate the limitations of global Mahalanobis metric learn-
ing, many local metric learning methods have been proposed, see e.g . (Bhattarai
et al. [2014], Bohné et al. [2014], Frome et al. [2007], Hong et al. [2011], Huang
et al. [2013], Noh et al. [2010], Shi et al. [2014], Wang et al. [2012], Weinberger
and Saul [2009], Zhan et al. [2009a]). Most of these are based on clustering, and
learn a local metric associated with each cluster. Here we limit our discussion to
recent state-of-the-art methods relevant to our work.

Weinberger and Saul [2009] extend their previous work (Weinberger et al.
[2006]) to learn local Mahalanobis metrics. The data points are grouped in clus-
ters in accordance with their class labels, following which, they learn a Maha-
lanobis metric per cluster and optimize the same objective as LMNN. To com-
pare a test data point xi with data point xj in the training set, they use the metric
associated with the cluster of xj . More formally the Mahalanobis distance is
expressed as,

d(xi,xj) = (xi − xj)
>Myj(xi − xj), (2.10)

where Myj is metric associated to the cluster of xj , indexed by its label yj . Note,
that the resulting metric is not symmetric w.r.t. to its input arguments and hence
is not a valid Mahalanobis metric.

Wang et al. [2012] propose a parametric local metric learning alogrithm, where
the matrix function varies smoothly over the data manifold. They parametrize
the distance metric for an instance as a weighted combination of local metrics,
which are defined over a small set of anchor points. The anchor points are given
by the means of the clusters constructed with k-means clustering. The proposed
algorithm consists of two steps, where in the first step for each data point they
learn a set of weights by approximating the data point as a linear combination of
anchor points. They minimize the reconstruction error and incorporate manifold
regularization in the objective so as to ensure that the weights vary smoothly
over the manifold.

In the second step, they fix the weights and learn the local metrics using the
LMNN objective function. The final distance metric to compute distances from
x to other points is given by a weighted sum of the metrics, using the weights
for x over the metrics. The distance metric is expressed as,

d(xi,xj) =
∑
s

Wis(xi − xj)
>Ms(xi − xj), (2.11)

where Wis ∈ R is the weight of the local metric Ms for the data point xi. Like
LMNN-local, the distance metric they propose is not symmetric, and hence not a

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 22

valid metric. At test time, to set the weights for the test data points, they simply
set them as the weights of the nearest neighbour training point. This lookup is
costly when large training sets are used in practice.

The R2LML method (Huang et al. [2013]) jointly learns a set of local metrics
Ms and weights gsi , that assign data points xi to the local metrics indexed by
s. The distance between xi and xj is computed using the weighted sum of met-
rics, where metric s is weighted by the product gsi g

s
j . The resulting metric for

comparing data points xi and xj is expressed as,

d(xi,xj) =
∑
s

gsi g
s
j (xi − xj)

>Ms(xi − xj). (2.12)

The final metric is symmetric w.r.t. to its input and hence is a valid metric. They
iteratively learn the weights and the metrics, updating one while keeping the
other fixed. Minimizing their objective encourages the similar points to be close
to each other, while encouraging the separation between dissimilar points to be
larger than 1. To ensure low-rank matrices, they use nuclear norm as a regular-
izer. To determine the weights over the metrics for test points, the weights of the
nearest training point are used, which again implies a costly lookup when large
training sets are used in practice.

Shi et al. [2014] make the following observation: any Mahalanobis matrix
M ∈ RD×D can be expressed as a conic combination of rank-1 PSD matrices:

M =
k∑
s=1

wsbsb
>
s , ∀ws ≥ 0, (2.13)

where bs are D dimensional column vectors. For the case of PCA, M is ob-
tained by setting bs’s as the leading eigen vectors, and ws with their correspond-
ing eigenvalues; the eigenvectors are given by eigendecomposition of the data
covariance matrix. In their paper they cast the problem of metric learning as
learning sparse combinations of a large base set of rank-1 base metrics. The
rank-1 base metrics are found by clustering the dataset, and applying Fisher lin-
ear discriminant analysis (FLDA) in each cluster. They concatenate the rank-1
base metrics found in different clusters to form a set, and use 400 elements from
the set to form a basis. Given a basis of k rank-1 matrices, learning a global
metric involves learning k parameters compared to D2 as in most metric learn-
ing algorithms. They learn the metric by optimizing the LMNN objective along
with a `1 norm regularization to encourage sparse solutions. They extend their
work for local metric learning by taking a similar approach as (Noh et al. [2010],

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 23

Wang et al. [2012]), and measure the distance between a test point x and a train-
ing point xi by using a weighted combination of base metrics. The metric tensor
for the point xi is expressed as,

M(xi) =
k∑
s=1

φs(xi)bsb
>
s . (2.14)

Here φs(xi) is the weight for the sth basis, which parametrically depends on
embedding of xi:

φs(xi) = (a>s zi + cs)
2, (2.15)

here zi ∈ Rd′ is an embedding of xi obtained with Kernel-PCA, A = [a1...ak] is
a d′ × k matrix and cs ∈ Rk. Learning A and c, they implicitly learn the weight
of the base metrics for the training data but also for any point in the input feature
space. The total number of learnable parameters are k(d′ + 1). The advantage
of their approach is that weights are easily evaluated for new test points. Also
the total number of learnable parameters are independent w.r.t. the number of
data points and the input dimensionality of data. A limitation, however, is that a
fixed set of base metrics given by FLDA restricts the class of metrics that can be
learned. This is particularly detrimental for high-dimensional data.

Bohné et al. [2014] proposed LMLML, an approach based on GMM cluster-
ing, which learns a metric associated with each cluster. To compare two points
xi and xj they use a weighted sum of the local metrics, where the weight of each
metric is given by p(s|xi) + p(s|xj): the sum of the soft-assignments for xi and
xj to the GMM components. If two points are far away, however, it is not clear
that the local metric associated with either data point will be appropriate for a
pair-wise comparison. Therefore, they also add a learned global metric to the
weighted sum of metrics. The final resulting metric tensor is given by,

M(xi,xj) = M0 +
k∑
s=1

ws(xi,xj)Ms, (2.16)

where ws(xi,xj) = p(s|xi) + p(s|xj), and M0 is the global metric.

Bhattarai et al. [2014] proposed a hierarchical method for efficient retrieval
that learns a hierarchical clustering of the data by interleaving metric learning
and k-means clustering. More formally, they start by taking all the data points
present in the root node and learn a discriminative subspace with the Maha-
lanobis metric. They optimize an objective involving pairwise constraints, sim-
ilar to LDML. Once the metric is learned, they project the data in the subspace

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 24

and perform k-means clustering to obtain two child nodes. They follow this pro-
cedure recursively, upto a pre-defined depth. At the end, each element in the
training set is assigned to a leaf of the hierarchy based on the local metrics and
clustering. A query is assigned to a leaf node, and retrieval is performed among
the data in that leaf-node, using the associated metric. Their hierarchical decom-
position speeds up the retrieval since only a fraction of the dataset is accessed for
a given query. They report improved retrieval accuracy due to the use of local
metrics, as compared to the one obtained with the use of global metric.

None of these methods allow the local metrics to be expressed as the `2 dis-
tance after a non-linear data transformation. The work of (Hauberg et al. [2012])
is an exception in this respect: they show that if local metrics vary smoothly in
the input space, then they form a Riemannian metric on the data manifold. They
define a smoothly varying local metric as a linear combination of a fixed set of
local metrics, which are learned separately using any local metric learning algo-
rithm. They perform PCA in the Riemannian metric to obtain a global Euclidean
data representation. They show their framework improves w.r.t. Euclidean PCA.

Limitations Except for the work of Hauberg et al. [2012], none of these meth-
ods allow the local metrics to be expressed as the `2 distance after a non-linear
data transformation. This means that the local metrics cannot be used for global
data visualization, and do not support efficient retrieval techniques based on `2

quantization, such as product quantization and multiple assignment retrieval (Jé-
gou et al. [2011]).

2.3 Globally aligning local Mahalanobis metrics
As mentioned before, the majority of work on local metrics does not allow

the local metrics to be expressed as `2 distance after the projection. In other
words, data points once projected, lack a common distance measure between
all data points. For example in (Weinberger and Saul [2009], Bhattarai et al.
[2014]), the distance measure is valid within a region, whereas for (Shi et al.
[2014], Bohné et al. [2014], Wang et al. [2012], Huang et al. [2013]) the distance
measure varies per data point. In our work, we address this issue by learning
local metrics and embedding them in a global low-dimensional representation,
in which the `2 metric can be used.

To obtain a more general class of metrics, we define several local Maha-
lanobis metrics. We cluster the data using a k-component Gaussian mixture

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 25

Figure 2.5 – Synthetic dataset with color coded class labels, and the GMM used
by our CLML local metric (left panel). Data projection given by a global Ma-
halanobis metric (right panel) and our local CLML metric (bottom panel). The
latter approximately separates the classes via local linear maps.

model (GMM),

p(x) =
k∑
s=1

p(s)p(x|s) =
k∑
s=1

πsN (x;µs,Σs) , (2.17)

where πs, µs, and Σs are respectively the mixing weight, mean, and covariance
matrix of cluster s. The posterior distribution p(s|x) = p(s)p(x|s)/p(x) defines
a soft-assignment of the data over the k clusters.

We can compute distances between points assigned to the same cluster s using
a local metric learned for that cluster, defined by a local projection matrix Ls.
It is, however, not clear how to compare vectors that are assigned to different
clusters. In order to combine the local metrics, we define a global representation

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 26

in which we integrate the local projections given by the different Ls. Similar to
global Mahalanobis metric learning, and unlike previous work, our formulation
amounts to projecting the data (in a locally linear way) to a new representa-
tion, and computing the `2 metric in this new representation. This allows us to
compute distances between any pair of samples, regardless of their cluster as-
signments, hence allowing us to visualize all data in a single view, and the use of
`2-based efficient retrieval techniques. In Figure 2.5, as a proof of principle, we
illustrate the performance of our “coordinated local metric learning” (CLML)
approach on the toy dataset. Using CLML we obtain a data representation that
respects the pairwise training constraints much better (bottom panel) compared
to the representation found by a global metric (right panel).

2.3.1 Coordinated local metric learning
As pointed out above, we can interpret a Mahalanobis metric as computing

the `2 distance after linear projection of the data. Local Mahalanobis metrics can
therefore be interpreted as locally mapping the data points x to several different,
local, coordinate systems via projections Lsx. The projection of data point xi
for a local coordinate system s is expressed as,

zis = Lsxi. (2.18)

Given these local coordinate systems, our goal is to align them across differ-
ent local models. Since the `2 metric is invariant to rotations, translations and
reflections, we can use them to arbitrarily modify the local projection zis to,

zis := RsLsxi + bs, (2.19)

where Rs denotes an orthonormal matrix, i.e . for which R>s Rs = I, which can
implement rotations and reflections, and bs denotes a translation vector. It is
easy to verify that

‖ zis − zjs ‖2
2=‖ Lsxi − Lsxj ‖2

2 . (2.20)

In this way, we can learn the local metrics Ls and their alignment parameters
to obatin a globally consistent embedding. In particular, given that xi and xj
are assigned to different clusters r and t respectively, we can set the {Rs,bs} to
ensure that zir and zjt are close if xi and xj form a positive pair, and far away if
they form a negative pair.

Instead of learning the {Rs,bs} for fixed Ls that were learned in advance, we
will learn both the local metrics and their alignment in a joint manner. To that

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 27

end, we can absorb Rs into Ls without loss of generality, and define a mapping
of the data points xi to a global coordinate system as

zi :=
k∑
s=1

qiszis =
k∑
s=1

qis
(
Lsxi + bs

)
, (2.21)

where qis := p(s|xi) is the soft-assignment of xi to cluster s. In the case of hard-
assignments (e.g . k-means), zi is given by the local projection of the cluster
to which it is assigned. In the case of soft-assignments (e.g . GMM), zi is the
weighted average of the local projections to the global representation. Note that
in the global coordinates given by the zi we can compare any pair of points,
regardless of whether they are assigned to different clusters or not. Our goal is
now to learn {Ls,bs} so that zi and zj are close for positive pairs, and far away
for negative pairs. We assume the GMM clustering is fixed.

In (2.21), we can see that zi is dervied as a weighted sum of locally linear
projections. Therefore, we can re-write this weighted sum as a single linear
projection

zi = L̃φ(xi), (2.22)

where L̃ = (L1,b1, . . . ,Lk,bk) collects the local linear projections, and the
augmented data representation φ(xi) =

(
qi1(x>i , 1), . . . , qik(x

>
i , 1)

)> containing
k copies of xi appended with a one, each weighted by the corresponding soft-
assignment. The projection matrix L̃ defines the local metrics used to compare
points that are assigned to the same cluster, but also the rotations, reflections,
and translations to globally align the local representations. The augmented data
representation depdends only upon the clustering algorithm used for clustering
and can be applied to data as a pre-processing.

For a given partitioning of the data, the zi are obtained as a linear projection
of the transformed input vectors φ(xi), the `2 distance between zi and zj is
therefore equivalent to a Mahalanobis distance between φ(xi) and φ(xj).

‖ zi − zj ‖2
2= (φ(xi)− φ(xj))

>M̃(φ(xi)− φ(xj)), (2.23)

with M̃ = L̃>L̃. Therefore, the problem of learning a globally aligned ensemble
of local metrics takes the same form of learning a global Mahalanobis metric; be
it using the expanded high-dimensional data representation given by the φ(xi).
As a result, existing Mahalanobis metric learning methods can be used to learn
the projection matrix L̃ for CLML.

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 28

2.3.2 Discussion
It is easy to see that CLML generalizes Mahalanobis metrics. For k ≥ 1, if

each cluster s uses the same projection given by Ls = L and bs = b, then for
arbitrary soft-assignments zi = Lxi + b is a linear projection of xi, and the `2

distance between zi and zj is a Mahalanobis distance between xi and xj given
by ‖ L(xi−xj) ‖2. With proper regularization, we therefore expect performance
that is at least on par with global metric learning.

Our work is also related to the local linear manifold learning technique of Teh
and Roweis (Teh and Roweis [2003]). They use a mixture of factor analyzers
(MFA) (Ghahramani and Hinton [1996]) to map data points to local low dimen-
sional coordinate systems associated with the mixture components. To align the
local coordinates, they minimize the Locally Linear Embedding (LLE) (Roweis
and Saul [2000]) objective function. Our work differs in that we learn coordi-
nated local linear projections in a supervised manner. Also, in our work we use
a diagonal covariance GMMs —which are faster to train than MFA— and learn
local linear maps directly from the original feature space to the global repre-
sentation instead of mapping from the local MFA subspaces. Since the MFA is
learned by optimizing a different unsupervised cost function, the obtained sub-
spaces might be suboptimal.

Our work is similar to Hauberg et al. [2012] in the sense that in both cases the
local metrics can be expresses as a `2 distance after a linear transformation. Also,
in line with Hauberg et al. [2012], our metric tensor uses squared exponentials
in weight functions, and forms a Riemannian metric on the data manifold. Our
approach differs in that, (i) we learn the local metrics and their alignment in a
joint manner, and (ii) to project a point to the global representation Hauberg et al.
[2012] needs to solve a system of second-order differential equations with size
quadratic with the data dimension, whereas our approach requires only averaging
local linear projections.

The expanded data representation φ(xi) can be seen as an explicit feature map
embedding of a kernel, which in this case is the Fisher kernel [Jaakkola and
Haussler, 1999]. Indeed, we can see that φ(xi) is a special case of Fisher vector
image representation for GMMs [Sánchez et al., 2013], when considering just
the Fisher vector components corresponding to the Gaussian means. Learning a
linear projection on the explicit feature embedding can be equivalently done by
learning the Mahalanobis distance in the kernel space, with the kernel function

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 29

defined as,

k(xi,xj) =
(k∑
s=1

qisqjs

)(
x>i xj + 1

)
= φ(xi)

>φ(xj). (2.24)

The kernel function is a product of two kernels. One kernel is linear in the input
data, and the other kernel is non-linear, with the non-linearity introduced by
clustering. The explicit embedding of the kernel function k(xi,xj) is given by
the vectorized outer product of the two kernels, which in our case is equal to the
expanded date representation φ(xi).

2.3.3 Implementation
Optimization We use the LDML (Guillaumin et al. [2009]) objective function
to learn our local metrics parameterized by L̃. Let the label yij ∈ {−1,+1}
denote whether (xi,xj) is a positive or a negative pair. LDML then minimizes
the log-loss

L(L̃, b) =
∑
i,j

ln
{

1 + exp
(
−yij(b− ||zi − zj||2)

)}
, (2.25)

where b is a scalar (estimated along with L̃) that determines at which distance
pairs are considered positive or negative. We add a Frobenius norm regularizer
over L̃ to avoid overfitting, and cross-validate the regularization weight. We
use a global LDML metric to initialize the local metrics. In our implementation
we use the sum formulation of Eq. (2.21), which avoids explicitly storing the
x̃i. Compared to global metric learning, we only need to additionally store the
soft-assignments. In practice this is a negligible overhead, in addition the as-
signments can be thresholded to be sparse. The cost to compute the zi increases
sub-linearly with k because of this sparsity. For example for k = 32 clusters we
typically get five soft assignments larger than 10−3.

Clustering To partition the input space in CLML, we learn diagonal covari-
ance GMMs. In our experiments we consider two alternatives for the data on
which the GMMs are learned. We either learn the mixture in the original feature
space, or learn the mixture in the projection space obtained by global LDML
metric learning. The rationale for the latter option is that the GMM clustering
will be more meaningful in the global metric learning space.

Efficient retrieval For efficient face retrieval we use the multiple assignment
approach of (Jégou et al. [2011]). The zi in the retrieval set are clustered using

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 30

Figure 2.6 – Illustration of quantization based retrieval method used in conjunc-
tion with CLML. On the left, the input data clustered with a 4 component Gaus-
sian Mixture Model. On the right, the data representation given by the learned
CLML projection clustered using k-means for quantization based retrieval.

k-means, and each zi is assigned to the nearest center. A query z is assigned
to the m closest k-means centers. Only points assigned to these m centers are
returned, ranked by their distances to the query z.

The representation obtained with CLML embeds the data points in a global
coordinate space where all the pairwise distances are valid. Once the data is
projected with CLML we use the multiple assignment approach for efficient
retrieval. Doing so, allows us to decouple the number of local metrics used
for CLML and the number of clusters used for multiple assignment approach.
See illustration in Figure 2.6.

2.4 Experimental evaluation
In this section we describe our experimental evaluation of the coordinated

local metric learning. We validate our method for the task of face retrieval and
verification. We start with providing details of the data sets, protocols and the
performance measures. Then we briefly describe the features we have used to
represent the face images, and finally we describe the results for image retrieval
and verification.

2.4.1 Dataset, protocols and features
For our experiments we use the Labeled Faces in the Wild (LFW) (Huang

et al. [2007]) dataset. It contains a total of 13,233 faces of 5,749 people collected
from the web. The dataset was designed for verification experiments, where we

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 31

have to determine for a pair of face images if they depict the same person or not.
The identities present in the train and test set are disjoint, so that we measure the
ability to do verification on people not seen during training. In our experiments,
we use the standard “unrestricted” training protocol, that allows the use of all
pairs in the training set in contrast to the “restricted” protocol which only allows
the use of 600 face pairs per training fold which are labeled as matching or non-
matching identities. The verification accuracy is measured using ten-fold cross-
validation. The train set is used to learn a metric, and to estimate a threshold
on the metric. Using these, the pairs in the test set are classified as positive or
negative, and the accuracy of this classification is reported.

Since the LFW verification accuracy is saturating in recent years (Liao et al.
[2014]), we focus on the more challenging retrieval-based evaluation of Bhat-
tarai et al. [2014]. The set of 423 queries consists of one image of each person
in LFW with five or more images. All images not in the query set form the re-
trieval set, and are used to learn the metric. We augment the retrieval set with up
to one million distractor faces provided by Bhattarai et al. [2014], which belong
to people not present in the LFW dataset. The 1-call@n performance measure
is the fraction of queries for which at least one of the top n ranked result faces is
of the same person. They report the 1-call@n for a range of values of n, giving
a full 1-call@n curve. We also use the mean average precision (mAP) measure,
which gives us a single number per setting instead of a full 1-call@n curve.

Image pre-processing and features We align face images with a similarity
transform based on detection of points on the eyes, nose, and mouth, see Ev-
eringham et al. [2009]. We consider three different representations. The first
is the LBP features of Bhattarai et al. [2014], which allows direct comparison
to their work. We compute a 9,860 dimensional descriptor by concatenating 58
dimensional LBPs (Ojala et al. [2002]) on each cell of a 10 × 17 grid over the
face. The second is similar to the Fisher vector (FV) features of Simonyan et al.
[2013a]. We densely compute at each pixel a root-SIFT descriptor (Arandjelovic
and Zisserman [2012]), using 24 × 24 pixel patches. The descriptors are pro-
jected to 64 dimensions using PCA. Spatial layout information is incorporated
by appending the 2D image coordinates of the patch center to the descriptors
(Sánchez et al. [2012]), providing a 66 dimensional local feature. We represent
the face by computing a 16,896 dimensional FV (Sánchez et al. [2013]) using
128 Gaussian components. The third feature is derived from the penultimate
layer of a convolutional neural network trained on the CASIA WebFace dataset
(Yi et al. [2014]), which contains 494,414 faces of 10,575 subjects. The network
architecture is similar to the one proposed in Yi et al. [2014] and the dimen-

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 32

GMM feature space

Nr. of local metrics k Original Global metric

2 73.04 73.09
4 74.04 75.18
6 73.58 75.24
8 73.92 75.59

Table 2.1 – Evaluation of CLML over FV features using different GMM cluster-
ing methods. All learned metrics project the data to d= 32 dimensions. Perfor-
mance is measured in mAP, higher is better.

sionality of the extracted feature is 320. We differ slightly from the architecture
proposed in Yi et al. [2014]: (i) We optimize the classification loss, instead of
optimizing both classification and verification losses. (ii) We do not use dropout
for regularization.

2.4.2 Experiments for retrieval
Here we present the experimental results for the task of face retrieval, where

we systematically explore the effect of different choices and parameters on the
performance of CLML. For comparability with Bhattarai et al. [2014], we use
projections to d=32 dimensions unless stated otherwise. Finally, we also present
the results for large-scale retrieval setting, and show the efficiency of quantiza-
tion based methods for efficient retrieval when used in conjunction with CLML.

Comparison of CLML with global metric learning In Table 2.1 we compare
CLML using GMMs trained either in the original FV features, or on data pro-
jected to d= 32 dimensions by a global LDML metric, c.f . Section 2.3.3. In all
cases, the clustering obtained LDML projections leads to better results. Where
the difference between the two clustering approaches is only 0.05 for k=2 local
metrics, it increases for larger numbers of clusters, up to 1.67 for k = 8 local
metrics. In all subsequent experiments we therefore use clustering using LDML
projections. Clustering in the LDML projected space is also much faster: in this
case it takes about 0.5 secs. to learn the GMM on 10,000 points.

In Table 2.2 we evaluate CLML on the three features, while varying the num-
ber of local metrics. We also state results obtained when cross-validating the
number of local metrics, as well as results of global LDML metrics and the `2

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 33

Features

Nr. local metrics k LBP FV CNN

2 41.51 73.09 59.78
4 44.02 75.18 61.43
8 47.94 75.59 64.64
16 49.00 76.20 66.07
32 49.98 75.61 70.98
64 49.70 75.58 73.83

Cross-validated 49.89 (26) 74.99 (28) 73.83 (64)

Global LDML metric 36.95 68.12 58.46
`2 metric 13.24 22.88 63.06

Table 2.2 – Performance of CLML in retrieval mAP for the three features, while
varying the number of local metrics.

metric. The results lead to the following observations. (i) CLML generally im-
proves when using more local metrics. (ii) Cross-validation over the number
of local metrics successfully selects a (near) optimal number of local metrics.
In subsequent experiments we cross-validate the number of local metrics for
CLML. (iii) The FV features lead to better results than the LBP and CNN fea-
tures. (iv) For all tested settings, CLML consistently improves over LDML.

In Figure 2.7 we compare CLML and LDML for the three features across
a range of projection dimensions. The results show that CLML consistently
improves over LDML for all projection dimensions with the three features. The
improvements are particularly large for the CNN and LBP features. For the LBP
and FV features, the best results are obtained with CLML at d = 128, with
k = 16 set by cross-validation: 61.6% and 82.2% mAP respectively. LDML
with the same number of parameters, i.e . with d = 128 × 16 = 2048, obtains
53.0% and 80.9% respectively. This shows that the improvement of CLML is not
simply because it has more trainable parameters. In the case of CNN descriptors,
the best performance is obtained with CLML at d = 128 and k = 64 set by
cross-validation: 76.95% mAP. Since the descriptors are only 320 dimensional,
we cannot compare to LDML with the same number of parameters. Using a
full-rank 320×320 Mahalanobis metric, however, yields 63.71% mAP, which is
significantly worse.

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 34

16 32 64 128 256
20

30

40

50

60

70

80

90

Projection dimension

m
A

P

CLML FV

LDML FV

CLML CNN

LDML CNN

CLML LBP

LDML LBP

Figure 2.7 – Performance in mAP of local and global metrics for the three fea-
tures, using projection dimensions from 16 to 256.

0 100k 500k 1000k
10

20

30

40

50

60

70

80

Number of added distractor images

m
A

P

LDML FV

CLML FV

LDML LBP

CLML LBP

LDML CNN

CLML CNN

Figure 2.8 – Performance of CLML and LDML with different numbers of dis-
tractors added to the LFW images.

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 35

Large-scale face retrieval experiments In our second set of retrieval experi-
ments we add up to one million additional distractor images to the LFW images.

In Figure 2.8 we evaluate the results of CLML and LDML for the three
features, while increasing the number of distractors from zero to one million.
We observe that performance degrades gracefully, and that the improvement of
CLML over LDML is stable as a function of the number of distractors for all
three features.

In Figure 2.9 we make a direct comparison to Bhattarai et al. [2014]: re-
plotting the 1-call@n curves reported there. From the other state-of-the-art
methods discussed in Section 2.2 we compare to SCML (Shi et al. [2014]). 1 For
LMLML (Bohné et al. [2014]) code is not available, while for R2LML (Huang
et al. [2013]) we found the code too inefficient to use with our high dimensional
features.

For [Bhattarai et al., 2014] we report the results for their “256D4” setting,
which they found to give best results and uses eight local metrics, and also in-
clude their global metric learning results obtained with PCCA (Mignon and Ju-
rie [2012b]). Our results are directly comparable, since we use the same LBP
features and also learn d= 32 dimensional projections. Our CLML results sub-
stantially improve over the results of Bhattarai et al. [2014], e.g . from under 40%
to over 70% 1-call@n for n = 10 for the case without distractors (Figure 2.9,
top panel). Interesting we also obtained large improvements over Bhattarai et al.
[2014] using global LDML metrics.

To understand the large performance difference, we re-implemented their ap-
proach (Figure 2.9, top panel, green curve), and obtained improvements of about
10 points w.r.t. their results. We found that most of this improvement is due to
the `2 regularization that we use, but Bhattarai et al. [2014] did not. We also im-
plemented a non-hierarchical variant of their approach, based on “flat” k-means
clustering, but which is otherwise the same (Figure 2.9, top panel, black curve).
This leads to another improvement of about 10 points, which suggests that flat
clustering leads to clusters that are better suited for retrieval. Our global metric
learning results obtained with LDML (Figure 2.9, top panel, red dashed curve)
are yet another 10 points better. This shows that the benefit of using local metrics
is counterbalanced by only retrieving points assigned to the same cluster as the
query, as is done by Bhattarai et al. [2014] and for the green and black curves.

1. Code available at http://mloss.org/software/view/553.

http://mloss.org/software/view/553

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 36

10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

Number of retrieved results (n)

1
−

c
a

ll
@

 n

Zero distractors

10 20 30 40 50 60 70 80 90 100

20

30

40

50

60

70

Number of retrieved results (n)

1
−

c
a

ll
@

 n

With 100k distractors

CLML, k=16
LDML
Flat clustering, k=8
Hierarchical clustering, 256D4

[4] PCCA
SCML
3

Bhattarai et al.[2014], 256D4

Figure 2.9 – Retrieval using LFW images only (top), and using LFW plus
100,000 distractor faces (bottom). The results marked with Bhattarai et al.
[2014] correspond to those reported therein. Results for SCML and LDML have
been produced using publicly available code. See text for details.

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 37

10
−3

10
−2

10
−1

10
0

20

25

30

35

40

45

Relative number of distance computations

m
A

P

GMM, 16

K−means, 16

K−means, 64

K−means, 256

K−means, 1024

Figure 2.10 – Retrieval mAP and speed on LFW plus one million distractor faces,
using CLML with d= 32 and FV feaures. Varying the number of quantization
cells p, and number of assignments m.

In Figure 2.9 (bottom panel), we evaluate the results with 100k distractor im-
ages added to the retrieval set. From the figure we can observe that performance
of all the methods drop by approximately 20 points. Similar to what we ob-
served in the setting with zero distractors, CLML substantially improves over
the results of Bhattarai et al. [2014] and other methods.

Using SCML (Shi et al. [2014]) we obtained the worst retrieval results. This
is because SCML learns metrics using a limited set of base metrics, which is
detrimental for high-dimensional data. To improve results we tuned the number
of base metrics (600 gave best results), and also excluded faces of people with
less than 3 images to compute the base metrics with FLDA, which also improved
the results. The number of clusters used to produce the base metrics in SCML is
another hyper-parameter that might require further tuning; for our experiments
we use the default setting, where the number of clusters are set via a heuristic
based on the number of base metrics and dimensionality of the input data.

Efficient retrieval with CLML metrics CLML projects all data in a single
representation in which the `2 distance is used. Therefore we can decouple the
clustering used for local metric learning, and the clustering used for the effi-

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 38

cient quantization-based multiple-assignment retrieval method discussed in Sec-
tion 2.3.3.

In Figure 2.10 we consider the trade-off between the retrieval mAP and search
speed. The speed is measured as number of distance computations relative to the
number needed for exhaustive search. Each curve shows, for a quantization into
p cells, the performance using multiple assignment to m=1, 2, 4, . . . , p clusters,
where m=1 corresponds to the lower-left point of each curve.

The blue curves show performance using 16 clusters: either using a k-means
clustering computed over the zi (solid), or using the GMM clustering used for
the local metrics (dashed). Using the GMM clustering (dashed blue curve), a
speedup factor 10 relative to exhaustive search can be achieved by single as-
signment (m = 1), but at the cost of a drop of around 10 points in mAP. Using
k-means clustering over the zi (solid blue curve) we obtain larger speedups and
higher mAP values. The results show that it is more effective to dissociate the
clustering used for the local metrics from the one used for retrieval, in contrast
to the approach taken by Bhattarai et al. [2014].

Moreover, dissociating the clusterings, allows more flexibility in choosing the
speed-vs .-accuracy operating point. By using k-means clustering with more than
16 centers we can substantially improve the search results: as seen by the red,
black, and green curves for p equal to 64, 256, and 1024 respectively. For ex-
ample, with p= 1024 clusters (green curve) and assignment to m= 64 clusters
we can reduce the search time by a factor 14, without compromising the mAP.
Our speedup is comparable to the factor of 10 reported by Bhattarai et al. [2014]
for 16 clusters in their hierarchical approach, but our approach leads to better
retrieval results. With p= 1024 and m= 8, a speedup factor larger than 100 can
be obtained while loosing less than 5 mAP points.

2.4.3 Experiments for verification
Here, we present the results obtained with CLML for the task of face ver-

ification on LFW dataset and compare them to the relevant state-of-the-art. In
Table 2.3 we compare our results obtained using local CLML metrics and global
LDML ones to the state-of-the-art using the LFW face verification evaluation.

When using no outside training data, the results of Chen et al. [2013] (93.2±
1.1) and Simonyan et al. [2013a] (93.0 ± 1.1) are sate-of-the-art. Using the
`2 metric as a baseline we obtain 78.9 ± 0.9, which is improved using global

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 39

Using LFW training data

Guillaumin et al. [2009] 12K 87.5 ± 0.4
Chen et al. [2013] 12K 93.2 ± 1.1
Simonyan et al. [2013a] 12K 93.0 ± 1.1
Ours, FV, without metric learning 12K 78.9 ± 0.9
Ours, FV, LDML, d=768 12K 92.3 ± 0.5
Ours, FV, LDML, d=128 12K 92.1 ± 0.5
Ours, FV, CLML, d=128 (k=6) 12K 92.8 ± 0.4
Ours, FV, LDML, d=32 12K 91.6 ± 0.4
Ours, FV, CLML, d=32 (k=4) 12K 92.4 ± 0.5

Using external training data

Taigman et al. [2014] 4.4M 97.4 ± 0.3
w/o metric learning, 2D alignment 4.4M 94.3 ± 0.4

Yi et al. [2014] 500K 97.7 ± 0.3
w/o metric learning 500K 96.3 ± 0.3

Parkhi et al. [2015] 2.6M 99.0
w/o metric learning 2.6M 97.3

Schroff et al. [2015] 200M 99.6
Ours, CNN, w/o metric learning 500K 96.2 ± 0.8
Ours, CNN, LDML, d=128 500K 96.5 ± 1.0
Ours, CNN, CLML, d=128 (k=2) 500K 96.4 ± 0.9

Table 2.3 – Comparing CLML using FV features with other metric learning
methods. Performance as LFW verification accuracy.

LDML metrics to 92.1±0.5 and 91.6±0.4 for d = 128 and d = 32 dimensional
projections respectively. For both projection dimensions, CLML improves over
LDML, to 92.8± 0.4 and 92.4± 0.5 respectively. We also observe a consistent
improvement when comparing LDML (d= 128 and d= 768) with CLML (d=
32, k = 4 and d = 128, k = 6) using the same number of parameters. This
underlines once more that the improvements by CLML are not simply due a
larger number of parameters.

Our results differ slightly from those of Simonyan et al. [2013a] due to a more
efficient implementation: (i) They used GMMs with 512 components for the
FV, while we use only 128, yielding 4× smaller descriptors. (ii) They average
over left-right flipped versions of face image which we do not. (iii) Besides a

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 40

Mahalanobis metric, they also learn a similarity of the form xTi Mxj , which they
average with the Mahalanobis metric, similar to Cao et al. [2013].

We report results obtained using CNN features in the bottom part of Table 2.3.
Using the CNN features with the `2 metric we obtain 96.2± 0.8 verification ac-
curacy, similar to the results of Yi et al. [2014] (96.3 ± 0.3) which used the
same training data for their network. Surprisingly, using our CNN descriptors
we found that metric learning, either with LDML or CLML, gives only small
improvements over the `2 baseline. The reason for this might be that the per-
formance of the `2 distance over the CNN features is already very high for the
face verification task, or that the pair-wise loss function of LDML is less suit-
able for verification than the triplet-based loss used by Parkhi et al. [2015], or
the weighted chi-squared metric used by Taigman et al. [2014]. Yi et al. [2014]
use a multi-task learning objective to train their CNN jointly for both verification
and recognition.

The quoted results from the literature other than Yi et al. [2014], are using
CNNs trained on datasets that are 5 to 400 times larger, and therefore not di-
rectly comparable. Taigman et al. [2014] use 4.4 million images and combine
the output of three different CNNs and use 3D face alignment. Using only 2D
aligned images (as we do in our work), they reported slightly worse than ours
before metric learning (94.3± 0.4). Parkhi et al. [2015] recently reported results
using a deeper convolutional architecture (Simonyan and Zisserman [2014]) and
2D face alignment over 2.6 million images (99.0). The state of the art results of
Schroff et al. [2015] are based on an extremely large proprietary dataset of 200
million images, for which no alignment was used.

2.4.4 Data visualization
To illustrate the benefit of CLML for data visualization we plot LFW im-

ages projected using CLML and LDML in Figure 4.21. We learned d = 256
dimensional projections on the FV features, and map these to 2D by PCA. For
CLML the number of local metrics was set to k=12 by cross-validation. CLML
leads to a much better separation of the faces of different people, despite the
limited improvement of CLML (81.9) over LDML (80.8) in mAP for d= 256.
Using CLML we can more clearly see the two groups corresponding to male and
female faces. We used the LFW gender labels from the BeFIT website. 2

2. See http://fipa.cs.kit.edu/431.php

http://fipa.cs.kit.edu/431.php

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 41

Figure 2.11 – Visualization of the data projections learned by LDML (top) and
CLML (bottom). Data points of the 40 most frequent people in the dataset have
been color coded. Other data points are plotted in blue and pink for males and
females respectively. On the sides of the CLML visualization we show outliers
faces (marked with black circles) of males in the female cluster (right), and vice-
versa (left). Interestingly, male outlier faces are mostly young boys, while female
outlier faces mostly display extreme poses or expressions.

CHAPTER 2. COORDINATED LOCAL METRIC LEARNING 42

2.5 Conclusion
In this chapter we presented our coordinated local metric learning (CLML)

approach which learns local Mahalanobis metrics, and integrates them in a global
representation where the `2 distance is used. This allows data visualization in
a single view, and the use of efficient `2-based retrieval methods. Our low-
dimensional global representation is obtained as a linear projection of an ex-
panded data representation, defined using the input data and a Gaussian mixture
clustering. One of the attractive properties of our methods is that the CLML met-
rics can be learned with any global Mahalanobis metric learning method over the
precomputed expanded data representation. In our experiments we used LDML
as learning method, but other methods that optimize different loss functions can
be used.

We have also shown that our proposed method admits different interpretations.
CLML can be interpreted as learning a linear projection on top of Fisher vector
encoding (corresponding to the mean of the Gaussians) of the input space or as
kernel metric learning, where the kernel is a data-adaptive kernel, given by the
unsupervised data clustering.

We have validated our approach through extensive experiments for the task of
face retrieval on the Labeled Faces in the Wild dataset. We have shown large im-
provements over earlier work using local metric learning, and that our approach
consistently improves over global metric learning using different features, pro-
jection dimensions, and performance measures. Our approach also allows effi-
cient multiple-assignment retrieval, which gives a better speed-accuracy trade-
off than earlier work for face retrieval in a large-scale dataset with a million
distractor faces.

We have also validated our approach for the task of face verification on the
Labeled Faces in the Wild dataset. In all settings CLML improves over global
LDML metrics, or gives comparable results. We show that the increase in per-
formance of CLML is not due to the increase in parameters, but due to learning
a set of coordinated of local metrics. Finally, we have also illustrated the benefit
of CLML for performing data visualization.

Chapter 3

Heterogeneous Face Recognition

Contents
3.1 Introduction . 43
3.2 Related work . 47

3.2.1 Overview: Domain adaptation and Transfer Learning 49
3.2.2 Subspace based approaches 51
3.2.3 Transfer learning based on deep adaptation 53
3.2.4 Heterogenous Face Recognition 56

3.3 Cross-modal recognition approach 60
3.3.1 Learning a deep CNN model 60
3.3.2 Metric learning to align modalities 62

3.4 Experimental evaluation 64
3.4.1 Dataset, protocols, and pre-processing 64
3.4.2 Evaluation on LFW dataset 66
3.4.3 Results on the CASIA NIR-VIS dataset 67
3.4.4 Results on the ePRIP VIS-Sketch dataset 72

3.5 Conclusion . 74

3.1 Introduction
Supervised machine learning methods, such as SVM, deep learning, and met-

ric learning have been shown to work very well to learn on a train set, and then
generalize to new data. These methods rely on the assumption that the data for
training and testing comes from the same underlying distribution. However in
practice this assumption is not always true, for e.g ., recognizing human face im-
ages in near-infrared images while the classifier was trained on visible spectrum

43

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 44

Figure 3.1 – Schematic illustration for domain adaptation. The task is to regress
the emotion content of a face image. On left, the red line depicts the regressor
learned on the training dataset [Huang et al., 2007]. On right, we show the
mismatch between the learned regressor applied directly on images from another
dataset [Lyons et al., 1998] comprised of Japanese female faces. In center, we
show how domain adapation can used to adapt the regressor to the new target
dataset.

image, segmenting organs in MRI images when the algorithm was trained on
X-ray images, recognizing day to day objects from images captured with mobile
while the classifier was trained on images from online retail websites, etc . See
Figure 3.1 for an illustration.

In [Torralba and Efros, 2011, Zhou et al., 2014], image classifiers were shown
to perform significantly worse when tested on images from other datasets, due
to the change in underlying distribution of the data. The difference in the distri-
bution of the datasets can arise from many factors: viewpoint of camera, image
resolution, image acquisition device, illumination, etc . To address this problem,
over the past few years there has been a significant amount of research to an-
swer the question : "How can we build machine learning pipelines, which can
generalize or adapt to a new domain?".

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 45

This problem is commonly referred as domain adaptation and has been stud-
ied in many different areas: statistics and machine learning [Shimodaira, 2000,
Daume III and Marcu, 2006, Blitzer et al., 2008, 2011], speech processing [Legget-
ter and Woodland, 1995, Daumé III, 2007, Blitzer et al., 2006], natural language
processing [Jiang and Zhai, 2007, Li et al., 2012] and computer vision [Oquab
et al., 2014, Fernando et al., 2013]. Some special kinds of domain adaptation
problems have also been studied but under different names including covariate
shift [Shimodaira, 2000, Yamada et al., 2012], sample selection bias [Heckman,
1979, Zadrozny, 2004] and class imbalance [Japkowicz and Stephen, 2002]. In
this work, we focus on the problem of domain adaptation for the task of hetero-
geneous face recognition.

Heterogeneous face recognition is the problem of recognizing faces across
different modalities. In most cases, the gallery of known individuals consists of
normal visible spectrum images. Probe images may be forensic or composite
sketches, which are useful in the absence of photos in a forensic context [Klare
et al., 2011, Mignon and Jurie, 2012a]. In comparison to the visible spectrum
(VIS, 0.38 − 0.70µm) images, near-infrared (NIR, 0.75 − 1.4µm) and short-
wave infrared (SWIR, 1.4− 3µm) images are less sensitive to illumination vari-
ation. Mid-wave infrared (MWIR, 3 − 8µm) and long-wave infrared (LWIR,
8 − 15µm), also referred to as “thermal infrared”, is suitable for non-intrusive
and covert low-light and night-time acquisition of face images for surveillance
by relying thermal infrared radiation rather than reflection [Kong et al., 2005].
Differences between the gallery and probe modality, make heterogeneous face
recognition more challenging than traditional homogeneous face recognition in
a single modality.

Visible spectrum face recognition has been extensively studied, and recently
much progress has been made using deep convolutional neural networks (CNN)
[Parkhi et al., 2015, Schroff et al., 2015, Taigman et al., 2014, Yi et al., 2014]. In
part, this progress is due to much larger training datasets. For example, [Schroff
et al., 2015] report an error of only 0.37% on Labeled Faces in the Wild (LFW)
dataset [Huang et al., 2007], using a CNN trained on a proprietary dataset of
200 million labeled face images. Earlier state-of-the-art work [Simonyan et al.,
2013a] used only 10 thousand train images, yielding an error in the order of
7%. Large visible spectrum datasets can be constructed from internet resources,
such as IMDb [Yi et al., 2014], or social media websites. This is, however,
not possible for IR images or sketches. For the same reason, it is even harder
to establish large cross-modal datasets where we have individuals with images
in both modalities. In this work, we are interested in the question: How can

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 46

we leverage the success of CNN models for visible spectrum face recognition to
improve heterogeneous face recognition?

It is not straightforward to apply CNN networks trained on visible spectrum
images for heterogeneous face recognition, since the image characteristics may
differ significantly across the modalities. Also, relatively little training data is
available for other modalities than normal visible spectrum images. In our work
we propose a solution by using a CNN pre-trained on large visible spectrum
dataset (source domain) as a feature extractor. We pre-process the images from
different target domains to match the first and second order statistic of the source
domain. The pre-processed images are used to extract features from different
layers of the pre-trained CNN to give us the image representation. To reduce
the modality gap further, we learn projections for source and target domain in
order to map them in a common subspace. Once the source and target domain
are projected to a common subspace, a common distance measure is available to
us, which is used to perform retrieval and verification.

The contribution of this work is to evaluate a number of strategies to use deep
CNNs learned from large visible spectrum datasets in conjunction with metric
learning to solve heterogeneous face recognition tasks. We evaluate the impact
of different design choices including: using feature representations from differ-
ent layers of CNN, fine-tuning the CNN on target domain, and various forms of
metric learning.

To evaluate our approach we use the following setup, which is commonly used
in heterogeneous face recognition benchmarks [Chen et al., 2005, Li et al., 2013,
Mittal et al., 2014]. We have a limited training dataset which contains images in
both domains for a number of individuals, and is used to learn a model to bridge
the gap between the domains. The test dataset consists of gallery images in one
domain, and probe images in the other domain, and the individuals in the train
and test set are mutually exclusive. We train a deep CNN on CASIA WebFace
dataset [Yi et al., 2014], which is a large dataset comprised of visible spectrum
images. Once the CNN is trained on visible spectrum images, we use it as a fea-
ture extractor for representing the face images in source and target domain. We
modify the metric learning framework of logistic discriminant metric learning
(LDML, [Guillaumin et al., 2009]) to learn a common subspace in order to per-
form retrieval and verification. Using our proposed approach we obtain results
that are on par or better than the state of the art for both VIS-NIR and VIS-sketch
heterogeneous face recognition.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 47

Office

Figure 3.2 – Illustration for domain adaptation: Source domain contains the im-
ages of the products from Amazon whereas the target domain consists of real life
pictures from a camera in an office. The images are taken from Office dataset
[Saenko et al., 2010].

Outline The rest of the chapter is organized as follows. In Section 3.2 we
discuss a selection of related work which is most relevant to the topics in this
chapter. In Section 3.3 we describe the heterogeneous face recognition meth-
ods we evaluate in our experiments. The datasets and experimental results are
presented in Section 3.4. Finally we present our conclusion in Section 3.5.

3.2 Related work
Supervised machine learning for real world applications faces two main prob-

lems: dataset bias and shortage of labelled data for new tasks. Both of them are
relevant to different problems, but none the less are related to each other for the
task of heterogeneous face recognition as we discuss below.

Since dataset bias exists, we can not learn a classifier on a standard dataset and
assume that it would generalize to new tasks and domains. For example, imagine
the task of classifying day to day objects, by taking their pictures from mobile
phone. To train a classifier for this task, we can obtain rich annotated data from
an online retail website e.g . Amazon, eBay, etc. Here, even though the object
categories to be classified remain same, as it can be seen in Figure 3.2, the data
distribution of images from an online website differs from the data distribution
of images captured by a mobile phone.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 48

Wasp

Clock

Elephant

Fish

Train

Bike

Car

Bus

Learning
method

Learning
method

Training
images

Train

Bike

Car

Bus

Learning
method

Learning
method

Training
images

Knowledge

Task A Task B Task A Task B

Traditional machine learning Transfer learning

Figure 3.3 – Schematic illustration of difference between traditional machine
learning and transfer learning. In comparison to the former, transfer learning
re-uses the knowledge across different learning tasks.

Re-training the model from scratch for each new target domain is expensive
and requires collecting large set of annotated data. Therefore, in recent years the
problem of domain adaptation has gained significant attention [Fernando et al.,
2013, Gong et al., 2012, Saenko et al., 2010, Gopalan et al., 2011].

Another way to avoid collecting large set of annotated data and training from
scratch is to transfer the knowledge between related source and target domains.
This line of work is known as transfer learning and is inspired from the fol-
lowing observation. Human learners, when faced with new tasks, are able to
apply relevant knowledge acquired from solving previous tasks. The more re-
lated the new task is to previous tasks, the easier it is for us to solve the new
task. Figure 3.3 illustrates the difference between traditional machine learn-
ing and transfer learning. Traditional machine learning techniques learn from
scratch for each new task. In comparison, transfer learning techniques use the
knowledge acquired from solving previous tasks to solve new tasks. For ex-
ample, the knowledge obtained from training a CNN to classify images can be
transferred to other tasks such as object detection, scene classification, visual
instance retrieval, etc . [Sharif Razavian et al., 2014, Oquab et al., 2014].

Transfer learning and domain adaptation methods make some assumptions
about the data distribution mismatch. For domain adaptation, the underlying
assumption is that source and target domains are different in terms of marginal
data distributions but have identical label sets, see Figure 3.2. In contrast, in

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 49

transfer learning, the marginal data distribution as well as the label sets for source
and target domain are assumed to be different, see Figure 3.3.

Note that heterogeneous face recognition is both a domain adaptation problem
[Patel et al., 2015] (to deal with the discrepancy between the gallery and probe
domains), and a transfer learning problem [Pan and Yang, 2010] (to deal with
the fact that the subjects/classes in the train and test sets are disjoint).

3.2.1 Overview: Domain adaptation and Transfer Learning
In this subsection we first review some basic terminology used in the context

of domain adaptation and transfer learning methods, followed by the relevant
related works on each.

Domain adaptation In the context of domain adaptation, there are two do-
mains: source domain and target domain. We refer to training domain where
labelled data data is abundant as the source domain, and the test domain where
labelled data is not available, or only very little of it, as the target domain.

Most of the existing domain adaptation based techniques [Fernando et al.,
2013, Shekhar et al., 2013, Gopalan et al., 2011, Gong et al., 2012] assume that
the source and target domain data use the same feature representation. These
techniques fall under the category of homogeneous domain adaptation, i.e . source
and target domain are represented by the same feature space but differ in distri-
bution. In contrast, in heterogeneous domain adaptation [Xiao and Guo, 2015,
Duan et al., 2012, Wang and Mahadevan, 2011] the difference arises from both
the feature space as well as the data distribution. For example, training images
for face recognition comes from visible spectrum images, but the testing images
are encoded as thermal images of the face. Domain adaptation in this setting is
much harder compared to homogeneous domain adaptation.

Transfer learning Transfer learning is one of the ways to address a fundamen-
tal issue: shortage of labeled data. As discussed before, often it is the case that
the distribution of data changes from one task to another. Re-training the statis-
tical machine learning model from scratch for dealing with distribution change
is an expensive and impractical solution given the effort involved in collecting
labelled training data. Transfer learning aims to ease the burden of collecting
labelled data for the target domain by transferring the knowledge learned in a
previous task to a new task [Aytar and Zisserman, 2011, Tommasi et al., 2010].

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 50

Pe
rf

o
rm

a
n
ce

Training

Higher start

Higher slope Higher asymptote

With transfer

Without transfer

Figure 3.4 – Three ways in which transfer learning might improve learning. Im-
age adapted from Torrey and Shavlik [2009].

The three different ways in which transfer learning might improve the learning
are (see Figure 3.4, Torrey and Shavlik [2009]):

• Higher start: initial performance achieved without seeing target domain

• Higher slope: the model is able to learn faster with the help of transfer

•Higher asymptote: the model converges to a higher performance with transfer

Transfer learning has been studied under various names: learning to learn
[Thrun and Pratt, 2012], life-long learning [Pentina and Lampert, 2014], knowl-
edge transfer [Mihalkova et al., 2007], etc. Depending upon the specific appli-
cation, the transferred knowledge can be in the form of instances, feature repre-
sentation [Ganin and Lempitsky, 2015, Tzeng et al., 2015] or model parameters
[Oquab et al., 2014, Babenko et al., 2014, Sharif Razavian et al., 2014]. We refer
the reader to [Pan and Yang, 2010] for a more detailed survey of these transfer
learning based methods. In this work, we focus on the setting where we transfer
the knowledge via model parameters.

As highlighted above, there are many principled solutions to perform domain
adaptation and transfer learning. Below we give a detailed overview of subspace
based approaches for domain adaptation and deep learning based approaches for
transfer learning, since they are the most relevant to the material we present in
this chapter.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 51

Source domain

Target domain

Correlation subspace

Check watch

Punch

Punch

Punch

Kick

Kick

Kick

Check watch

Check watch

Figure 3.5 – Example of domain adaptation via CCA for the task of action recog-
nition. The source and target domain differ due to the view angle of the camera.
Ps and Pt denote the projection matrices for the source and target domain ob-
tained via CCA, which maximizes the correlation between the two data distribu-
tions. Image adapted from Yeh et al. [2014].

3.2.2 Subspace based approaches
Subspace based approaches aim to derive new feature representations in or-

der to minimize the discrepancy between the source and target domain. These
approaches involve learning a subspace, where the discrepancy between the data
distributions of the two domains is reduced. In this subspace, both domains share
the characteristics, and a classifier learned on the source domain would work on
the target domain as well. There are two principled approaches for subspaces
based approaches.

In the first set of approaches, one can learn a mapping of one domain to an-
other as a pre-processing step. Doing so makes the two domains comparable
and standard machine learning can be applied on top, for example Wang and
Tang [2009], Juefei-Xu et al. [2015] maps sketches and near infrared images,
respectively, to visible images for the task of face recognition. The second set of
approaches involve mapping both domains to a common latent subspace, where
the bias due to domain shift is suppressed and the information pertaining to the
objects are preserved [Hotelling, 1936, Mignon and Jurie, 2012a, Fernando et al.,
2013]. Below we give a brief overview of these methods while limiting our dis-
cussion to the state-of-art methods relevant to our work in this chapter.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 52

Among the existing methods, one of the earliest and most effective methods
to learn a common subspace is canonical correlation analysis (CCA). Proposed
by Hotelling [1936], CCA aims at finding a subspace for projecting two sets of
distributions, such that the correlation between the two sets is maximized. CCA
seeks a linear transformation for each domain, such that after the transforma-
tion the coordinates of both domains (in the common subspace) are maximally
correlated. The solution to CCA is obtained via generalized eigen-value decom-
position. To deal with non-linearity in the data, kernel methods have also been
used for proposing a kernel variant of CCA [Lai and Fyfe, 2000, Melzer et al.,
2001, Van Gestel et al., 2001, Hardoon et al., 2004]. Figure 3.5 shows an illus-
tration of CCA for the task of cross-view action recognition.

Fernando et al. [2013] propose an unsupervised domain adaptation method
based on subspace alignment. Following the theoretical recommendations of
Ben-David et al. [2007], they aim to directly reduce the discrepancy between
the two domains by aligning the two subspaces. The source and target domain
subspaces U and Ũ are composed of the leading eigen-vectors induced by PCA.
The objective of their method is to find a transformation matrix M, which aligns
the source and the target subspace. They seek the transformation matrix M, such
that it minimizes the objective ||UM− Ũ||2F , where ||.||2F represents the Frobe-
nius norm. Fernando et al. [2014] propose an extension of the method so as to
obtain a more discriminative source subspace representation. More specifically,
they use the label information available in the source domain to learn a metric
with pairwise constraints. Once the metric is learned, they project the source
data with the linear transformation induced by the learned metric, and perform
PCA to obtain a more discriminative source subspace.

Covariance based methods for finding a latent representation like CCA, by
construction ignore any negative constraints, i.e . constraints given by pairs of
non-matching classes. Some works [Yi et al., 2007, Lei and Li, 2009] aim to
mitigate this issue by performing linear discriminant analysis (LDA) in each do-
main, followed by CCA. However, using LDA the maximum dimensionality of
the projection is equal to number of classes. Moreover, using the discriminatory
information directly for construction of the latent representation might be more
effective for learning a discriminative latent subspace. Below we discuss several
methods based on this idea, which directly incorporate the label information to
find the latent representation.

The work of Saenko et al. [2010] is one of the early works where metric learn-
ing was used for the task of domain adaptation. They use ITML [Davis et al.,

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 53

2007] to learn a similarity function betweenA (source domain) and B (target do-
main), optimized to satisfy the pairwise constraints between transformed points.
The linear transformation denotes the learned similarity between the two do-
mains:

simW(x,y) = x>Wy, (3.1)

where x ∈ A and y ∈ B. Note that, such a similarity function can be learned
even when the dimensionality of the two domains is different. In comparison
to standard metric learning approaches, here W could be a rectangular matrix
and is not constrained to be a positive semi-definite matrix. In their work, they
construct the training pairs across the domains and argue that using intra-domain
pairs does not model the task of domain adaptation. They show empirically that
using both inter and intra domain pairs performs considerably worse as com-
pared to using inter-domain pairs.

Similarly, Mignon and Jurie [2012a] propose cross modal metric learning
(CMML) method to extend traditional metric learning approaches to cross-modal
problems. They learn a different projection from each modality to a common
subspace. They adapt the metric learning objective function of PCCA [Mignon
and Jurie, 2012b] to take into account only the cross-domain pairs, which tries
to ensure that across the two domains, face pairs of the same person are close,
and pairs of different people are far. As compared to methods which require la-
bels of training data points, the advantage of their method is that it only requires
cross-domain constraints, for e.g . in face verification with photos and sketches,
training pairs are photo-sketch pairs of same person, as well as photo-sketch
pairs of different persons.

We explore similar metric learning approaches, but explicitly investigate the
relative importance of using intra and inter domain pairs, and separate projection
matrices. Even though intra-domain pairs are not related to the multi-modal
nature of the task, in our work, we show that they can be included in the loss to
provide a form of regularization.

3.2.3 Transfer learning based on deep adaptation
Krizhevsky et al. [2012] used convolutional neural networks to obtain a per-

formance leap over the standard image classification methods on the ImageNet
2012 Large-Scale Visual Recognition Challenge (ILSVRC12, [Russakovsky et al.,
2015]). This leap was largely due to two factors, rise in GPU computing power
and availability of a large set of annotated images. This advancement begs a
question: Will we need to collect 1 million training images for each task ?

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 54

Following this success, there have been works which curate a large dataset
for a particular task [Zhou et al., 2014, Babenko et al., 2014, Lin et al., 2014b,
Parkhi et al., 2015, Schroff et al., 2015]. For example, Zhou et al. [2014] release
a scene centric database with 7 million pictures labelled with scene categories.
Using the representations from the CNN trained on their dataset, they outperform
the representations obtained from CNN trained on ImageNet dataset by a margin
of 10% for the task of scene recognition. Their results highlight the benefit of
collecting large datasets tailored for a particular task.

While it is true that the representations obtained from CNN trained on Ima-
geNet dataset suffer from dataset bias and hence might be sub-optimal, it is not
cost effective to annotate a large set of images for every task. To address this
issue, there have been recent works which explore the use of pre-trained CNNs
for transfer learning. Below we give a brief overview of some of these.

Sharif Razavian et al. [2014] advocate the use of features from a pre-trained
CNN as a replacement for the hand-crafted features. They use a CNN with ar-
chitecture from Sermanet et al. [2014] and train it on the ImageNet dataset. They
do not fine-tune the net on the target domain, and use the first fully connected
layer of the architecture as a feature extractor. They train a linear SVM on top
of this feature representation and obtain competitive results for a wide array of
tasks such as image classification, scene classification, fine grained classifica-
tion, attribute prediction and visual instance retrieval.

Oquab et al. [2014] show that a CNN pre-trained on ImageNet dataset can
be adapted for image classification on different image datasets. They train a
CNN on ImageNet dataset with the network architecture from Krizhevsky et al.
[2012]. The architecture contains five convolutional layers followed by three
fully connected layers. Once the CNN is trained the penultimate layer of the
network is used as a feature extractor. To adapt this feature extractor to a new
domain, they append two fully connected layers on top of the feature extractor
and fine-tune the extended network on the target domain. The parameters of
the feature extractor (pre-trained CNN) are kept fixed and the parameters of the
appended layers are the only trainable parameters. Using the proposed method,
they obtain near state-of-the art performance on PASCAL VOC 2007 and 2012
datasets [Everingham et al., 2007, 2012] for image classification. Not using any
pre-training reduced their performance by 8% indicating the efficiency of the
proposed transfer learning approach. Their method is supervised in the sense that
they need labelled image data in the target domain. This could be problematic

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 55

Figure 3.6 – Architecture proposed in Ganin and Lempitsky [2015] for unsuper-
vised domain adaptation. The feature extractor (green) and deep label predictor
(blue) form a standard feed forward neural network. The Domain classifier (red)
is added on top of feature extractor via gradient reversal layer that multiplies the
gradient by a negative constant for backpropagation. Image adapted from Ganin
and Lempitsky [2015].

for the cases when there are not many labelled samples available in the target
domain.

Similar in spirit to Oquab et al. [2014], Babenko et al. [2014] explore the
use of pre-trained CNN architectures [Krizhevsky et al., 2012] for the task of
instance retrieval. They train the CNN for classification task and evaluate the
features (termed as neural codes) extracted from different layers of the CNN.
The main contribution of their work is that they show the performance of a pre-
trained net can be improved by re-training the CNN on a dataset similar to the
target domain. While they are able to attain state-of-the art performance on a
number of datasets, their proposed method might not be feasible in cases where
large annotated data similar to target domain is not available.

The shortcoming of the approaches discussed so far is that they need large
amount of labelled data in the target domain to fine-tune the CNN. There have
been some attempts to train deep architectures with unlabelled or sparsely anno-
tated target data [Ganin and Lempitsky, 2015, Tzeng et al., 2015, 2014]. Below,
we provide a brief overview.

Ganin and Lempitsky [2015] propose a novel method for domain adaptation in
deep architectures with the use of unlabelled target domain data. Their deep ar-
chitecture can be broken down into three parts. We illustrate these parts with the
help of Figure 3.6. The first part is the feature extractor (green) which consists a
series of non-linear mappings to output a feature vector f . The second part, label

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 56

predictor (blue), maps the feature vector f to the output labels y via a set of lay-
ers. The label predictor and feature extractor form a standard feed-forward net
architecture. Finally, the same feature vector f is mapped to the domain label d
by the third part, domain classifier (red). They train the net in order to minimize
the label prediction loss on source data and maximize the loss of the domain
classifier for both domains. They advocate that the features learned in this way
are discriminative for the source domain and at the same time domain-invariant.
The advantage of their approach is that they don’t need labelled data in target
domain. However, the disadvantage is that they need large amount of unlabelled
data in the target domain for guiding the training of deep net.

Along similar lines, Tzeng et al. [2015] propose a deep adaptation approach
where they minimize the label predictions loss and maximize the loss of the do-
main classifier. They propose a slight modification in their method, which allows
them to train with sparse labelled examples in target domain. Their method is
inspired by prior work of "model distillation" [Ba and Caruana, 2014, Hinton
et al., 2014]. For each category in the source domain, they compute the average
output probability distribution (soft label) over the source training examples.
Then, for each target labelled example, they directly optimize to match its pre-
dicted distribution over classes with the precomputed soft label, for illustration
see Figure 3.7. They argue that doing so, they are able to transfer knowledge
about categories which are not explicitly labelled in the target domain. Hence in
total, they optimize for three losses, the label prediction loss (over source data),
domain classifier loss (over source and target data), and softlabel loss (over la-
belled target data). One shortcoming of their approach is that it is applicable
only when source and target domain share the class labels, a condition which
might not always hold.

3.2.4 Heterogenous Face Recognition
In the previous subsections, we gave an overview of different approaches

for domain adaptation either via subspace learning or via deep adaptation. In
this subsection we give an overview of the work directly relevant to the task of
heterogeneous face recognition.

Most work on heterogeneous face recognition falls in one of two families.
In the first family, methods are based on reconstructing an image in the gallery
domain given an image in the probe domain. In the second family, methods
learn a common subspace in which images of both domains are embedded. We
discuss these two lines of work in more detail below.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 57

Bottle Mug Chair
Laptop

Keyboard

Bottle Mug Chair
Laptop

Keyboard

Adapt CNN

“Bottle”

Source Activations
Per Class

backprop

Cross Entropy Loss

softmax

Figure 3.7 – Soft labels in [Tzeng et al., 2015] are computed over the source
domain and then used for the cross entropy loss for target domain. Soft labels
helps to transfer knowledge about other missing categories, in this case, soft
label of bottle induces the knowledge that bottle is more similar to mug than a
keyboard. Figure adapted from [Tzeng et al., 2015].

Reconstruction based methods This line of work, see e.g . [Sarfraz and Stiefel-
hagen, 2015, Juefei-Xu et al., 2015], follows a reconstruction based approach
that learns a mapping from one modality (typically that of the probe) to the other
modality. Once this mapping has been performed, standard homogeneous face
recognition approaches can be applied.

Sarfraz and Stiefelhagen [2015] use a representation based on sampling local
SIFT features on a dense regular grid in both LWIR thermal and VIS images.
A face is represented by concatenating the local descriptors extracted across the
sampling grid. They learn a deep fully-connected feedforward neural network to
regress the SIFT descriptors in the VIS domain from corresponding descriptors
of the LWIR domain. Once the local descriptors in a probe image are mapped to
the gallery domain, face descriptors are matched using the cosine similarity.

Wang and Tang [2009] deal with problem of matching sketch to photo im-
ages. They learn a multi-scale Markov random field (MRF) model on patches
for synthesis of a sketch from a face photo, or vice-versa. Instead of learning
the global structure, they aim to learn the local structure by reconstructing local
patches. For each patch in a photo, they find similar photo patches in the training
set and use their corresponding sketch patches to synthesize sketch of the photo.
Their method is based on the assumption that similar face photos have similar
sketches. They use patches at multiple scales in conjunction with MRF to incor-
porate the face structure at different scales and to render smooth sketches. Their
method can be used to reconstruct sketches from photos and vice-versa.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 58

Juefei-Xu et al. [2015] propose a method to reconstruct images between NIR
and VIS domains, so that the gallery and probe images can be mapped to a par-
ticular target domain and matched for face recognition. They learn a dictionary
for both domains while forcing the same sparse coefficients for corresponding
VIS and NIR images. Doing so allows the use of their coefficients of NIR image
to reconstruct the corresponding VIS image and vice-versa.

The advantage of reconstruction-based methods is that it allows the re-use of
existing VIS face recognition systems. On the other hand, depending on the dis-
crepancy between the modalities, the problem of cross-modality reconstruction
may prove a harder problem than cross-modality face recognition. Photo realis-
tic reconstruction is non-trivial from, e.g ., sketches as input, and artifacts in the
reconstruction may hurt recognition performance.

Common subspace methods A second line of work learns a mapping from
both probe and gallery domain to a common subspace. In this approach match-
ing and retrieval among images from the same or different domains can be per-
formed transparently in the common subspace. The learned subspace is often
low-dimensional which is attractive for large datasets to reduce the cost of stor-
age and matching. A more general overview of common subspace methods is
provided in Section 3.2.2, here we review work related to heterogeneous face
recognition.

Klare and Jain [2010] propose to use Fisher linear discriminant analysis (FLDA)
for the task of matching NIR to VIS images. They concatenate LBP [Ojala et al.,
2002] and HOG [Dalal and Triggs, 2005] features to give the image represen-
tation. Applying FLDA directly on the image representation might be prone to
overfitting, and hence they propose to use an ensemble of classifiers trained on
random subspaces. They randomly sample (without replacement) a predefined
number number of feature vectors to construct the random subspace, and learn
FLDA models using both VIS and NIR images. For generating the final repre-
sentation of the input image they concatenate the projections obtained via FLDA
on different random subspaces and perform classification with nearest neighbor
classifier.

Crowley et al. [2015] use a triplet-loss similar to LMNN [Weinberger and
Saul, 2009] to learn projections to map photos and paintings to a common sub-
space. The projection aims to ensure that a query photo is closer to a target paint-
ing of the same person than to a painting of a different person in the learned com-
mon subspace. To represent the faces in photos and paintings, they use Fisher

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 59

Source Target

Coupled
Latent

Representation

X Y

X Y

Encoder

Decoder

Figure 3.8 – Schematic illustration of coupled autoencoders used for learning a
common latent representation. X and Y are the source and target domain pair.
The solid and dashed lines depict the encoder and decoder network respectively.
The parameters of the two autoencoders are not shared.

face representation [Simonyan et al., 2013a] and CNN face descriptors [Parkhi
et al., 2015]. They report that a learned distance metric improves the results
significantly over the `2 distance metric when Fisher face representation is used.
With the CNN face descriptors, they do not observe further improvements by
learning a distance metric. We also use CNN features, but instead of simply us-
ing the penultimate network layer, we also investigate the effectiveness of other
layers and find these to be more effective.

Riggan et al. [2015] learn a common latent representation with a deep au-
toencoder. They learn a deep autoencoder for each domain. As depicted in the
Figure 3.8, the encoder maps the input to the latent subspace, and decoder uses
the latent subspace to reconstruct the input. The parameters for the encoder and
decoder of the two autoencoders are not shared. To align the latent representa-
tion of the autoencoders, they introduce another term in the objective function,
the coupling error. They define the coupling error as the `2 distance between the
latent representation of a source and target domain pair. The parameters for the
autoencoders are found by minimizing the reconstruction error as well the cou-
pling error, which ensures that the learned latent representation of two domains
is similar.

Jin et al. [2015] learn a set of image filters for reducing the modality gap. The
filters are learned in a discriminative manner by utilizing patch level pairwise
cross-modality constraints [Mignon and Jurie, 2012a]. At test time, the input

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 60

Figure 3.9 – Images of one individual in the CASIA Webface dataset.

images from two domains are processed with the learned filters. The filtered
images are divided into patches, and local ternary patterns (LTP, [Tan and Triggs,
2007]) are used for local pattern encoding. Finally, to project these features in a
common subspace they use kernel canonical correlation analysis [Hardoon et al.,
2004]. Using this approach they obtained state-of-the art results on CASIA-NIR-
2 [Li et al., 2013] and CUFSF [Wang and Tang, 2009] datasets.

3.3 Cross-modal recognition approach
In this section we present our method for performing heterogeneous face

recognition. First, in Section 3.3.1 we describe our baseline CNN model: it’s
architecture, training data, feature extraction, and fine-tuning. Then, in Sec-
tion 3.3.2 we describe how we use metric learning to obtain a subspace repre-
sentation in which the differences between the modalities are minimized.

3.3.1 Learning a deep CNN model
To train a deep CNN, we use the CASIA Webface dataset [Yi et al., 2014]

which contains 500K images of 10,575 individuals collected from IMDb. The
images display a wide range of variability in pose, expression, and illumination.
Example images of this dataset are shown in Figure 3.9.

We use 100 × 100 pixel input images to train a CNN with an architecture,
detailed in Table 3.1, similar to [Yi et al., 2014] and inspired by the VGG-19
architecture [Simonyan and Zisserman, 2015]. There are a couple of differences
in our network, in comparison to the network used in Yi et al. [2014]. The first
difference is that we use gray-scale images as input to the network to ensure
compatibility with NIR and sketch images. The second difference is that the
[Yi et al., 2014] optimize the network for both softmax (identification) and con-
trastive (verification) loss, whereas in our case we only optimize for the former.

The network is trained to recognize the 10K subjects in the dataset, using the
log-loss over the final soft-max layer of the network. Once the CNN is trained,

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 61

Name Type Size /Stride Dimension

Conv11 Conv. 3× 3/1 100× 100× 32

Conv12 Conv. 3× 3/1 100× 100× 64

Pool1 Max-pool. 2× 2/2 50× 50× 64

Conv21 Conv. 3× 3/1 50× 50× 64

Conv22 Conv. 3× 3/1 50× 50× 128

Pool2 Max-pool. 2× 2/2 25× 25× 128

Conv31 Conv. 3× 3/1 25× 25× 96

Conv32 Conv. 3× 3/1 25× 25× 192

Pool3 Max-pool. 2× 2/2 13× 13× 192

Conv41 Conv. 3× 3/1 13× 13× 128

Conv42 Conv. 3× 3/1 13× 13× 256

Pool4 Max-pool. 2× 2/2 7× 7× 256

Conv51 Conv. 3× 3/1 7× 7× 160

Conv52 Conv. 3× 3/1 7× 7× 320

Pool5 Avg-pool. 320

Class Softmax 10575

Table 3.1 – Architecture of the CNN learned on visible spectrum gray-scale im-
ages of the CASIA Webface dataset. Convolutions (C) use 3×3 filters and stride
1, max-pooling (P) act on 2× 2 regions and use stride 2.

we use it to extract features for face recognition experiments on heterogeneous
datasets. The feature representation from a layer is obtained by concatenating
all activations present in the layer into a single vector. For example, feature rep-
resentation for P4 layer would be a 12,544 dimensional vector which is equal
to the number of activations present in the layer (7 × 7 × 256). Given a face
image we pass it through the network, and extract the features at various layers
ranging from C42 to the soft-max layer, unless stated otherwise. Representa-
tions extracted from other layers are very high-dimensional and do not improve
performance.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 62

C11 C12

C21 C22

C31 C32
C41 C42 C51 C52

softmax

ID 1:

ID N:
P1

P2

P3
P4 P5

Figure 3.10 – Illustration of CNN fine-tuning. In this schematic example, layers
marked in red are fine-tuned to adapt to the heterogeneous dataset. The layers
marked in green are frozen, i.e . their parameters remain fixed while fine-tuning
the network. The network is trained to classify images from both modalities.

We explore fine-tuning the network to adapt to the target domain. We keep the
weights fixed throughout the network, except for the topmost soft-max layer, and
possibly several preceding layers, see Figure 3.10. The loss function for training
is given by the log-loss over a soft-max layer across the subjects present in the
given training set. When fine-tuning the model we use images from subjects
for which we have images in both modalities. In this manner images of the
same subject in the two domains should should be mapped to similar outputs at
the final soft-max layer, since images from both domains are used to learn the
final classification layer. We also expect features extracted at earlier layers to be
comparable, since such features from both domains will be mapped by the same
function to the network output.

3.3.2 Metric learning to align modalities
Nuisance factors such as pose, illumination, and expression, make face recog-

nition in uncontrolled settings a challenging problem. The problem is further
complicated in heterogeneous face recognition, since images in different modal-
ities differ even if they were acquired at the same moment under the same view-
point. In single-modality face verification, metric learning has been used exten-
sively used to deal with these difficulties [Guillaumin et al., 2009, Köstinger
et al., 2012, Simonyan et al., 2013a, Parkhi et al., 2015, Yi et al., 2014]. Most
methods learn a Mahalanobis distance, which is equivalent to the `2 distance af-
ter a linear projection of the data. Supervised training data is used in the form
of image pairs of the same person and image pairs of different people. Using
this supervision, metric learning techniques can find a projection of the image
features that suppresses the effect of nuisance factors, but retains differences due
to identity-specific characteristics.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 63

In our work we use logistic discriminant metric learning (LDML) [Guillaumin
et al., 2009] to learn Mahalanobis metrics from pairwise supervision. Using
yij ∈ {−1,+1} to denote whether a pair of images xi, xj ∈ RD are of the same
person or not, LDML learns a projection matrix L ∈ R(d×D) by minimizing the
log-loss

L = λ||L||2F +
∑

(i,j)∈C

ln {1 + exp (−yij(τ − dij))} , (3.2)

where dij = ||L(xi − xj)||2, and τ is a threshold to classify pairs as being of the
same person or not based on the distance of their projections. The set of training
pairs is denoted as C. The Frobenius norm regularization term avoids overfitting,
and we set λ by cross-validation.

Shared vs . separate projection matrices This same approach can also be
used in the multi-modal case, by effectively treating the acquisition modality as
another nuisance factor. This naive approach requires the use of the same fea-
tures for both modalities, or at least that they have the same dimensionality. Al-
ternatively, as in [Mignon and Jurie, 2012a], we can treat the examples from the
two modalities in a different manner. Let us denote examples from one modal-
ity as xi ∈ RD and from the other as zj ∈ RE . We can then learn projection
matrices A and B to define the cross-modal distance as dij = ||Axi − Bzj||2,
and learn these projections by again minimizing the same log-loss defined in
Eq. (3.2). Note that this formulation with a different projection matrix for each
domain also allows to learn a common subspace in cases where domain-specific
features of different dimensionality are extracted in each domain.

Inter-domain and Intra-domain pairs Another design choice in the metric
learning concerns the pairs that are used for training. We make a distinction
between intra-domain pairs, which are pairs of images that are both from the
same domain, and inter-domain pairs, which consist of one image from each
domain. Our goal is to match a probe in one modality with a gallery image
of the other modality, the inter-domain pairs directly reflect this in the loss in
Eq. (3.2). While the intra-domain pairs are not related to the multi-modal nature
of our task, they can be included in the loss to provide a form of regularization
and are therefore important to guide the metric learning to learn a projection
where the differences between the modalities are reduced.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 64

Figure 3.11 – Images of two individuals in the Labeled Faces in the Wild dataset
[Huang et al., 2007].

3.4 Experimental evaluation
In this section we describe the experimental evaluation of the approaches we

considered for the task of heterogeneous face recognition. First we present the
datasets and evaluation protocols and image pre-processing used in our experi-
ments in Section 3.4.1. Next, we validate the CNN used in our experiments for
the task of face verification in Section 3.4.2, followed by evaluation results for
heterogeneous face recognition in Section 3.4.3 and Section 3.4.4.

3.4.1 Dataset, protocols, and pre-processing
Labeled Faces in the Wild This dataset [Huang et al., 2007] consists of 13,233
images of 5,749 subjects, see Figure 3.11 for examples. It is probably the most
widely used benchmark for uncontrolled face verification. We use it here to
validate our baseline CNN model described in Section 3.3.1. Performance is
evaluated by the verification performance, where image pairs have to be classi-
fied as depicting the same person or not. The classification accuracy is measured
across ten different folds, each containing 300 positive and 300 negative pairs.
We use the “unrestricted” setting in which all training images may be used for
metric learning.

CASIA NIR-VIS This is the largest heterogeneous NIR-VIS face recognition
dataset [Li et al., 2013] and contains 17,580 visible spectrum and near-infrared
images of 725 subjects. For each individual there are between 1 and 22 VIS
images, and between 5 and 50 NIR images. The images present variations in
pose, age, resolution, and illumination conditions. In Figure 3.12 we show ex-
ample VIS and NIR images for one of the subjects in the dataset. We follow
the standard evaluation protocol, and set the hyperparameters for our method on

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 65

Figure 3.12 – Example NIR (top) and VIS (bottom) images of one individual in
the CASIA NIR-VIS dataset.

View1 and report the results on View2, which uses a 10-fold experiment. The
individuals in the train and test set are mutually exclusive, and are divided nearly
equally among them. The train sets consists of 2,500 VIS images and 6,100 NIR
images from 360 subjects. In the test set, the gallery consists of one VIS image
for each of 358 subjects, and 6,000 NIR images of the same 358 individuals are
used as probes. We report the rank-1 recognition rate, i.e . for which fraction of
probes the right identity is reported first, and the verification rate (VR) at 0.1%
false accept rate (FAR).

ePRIP VIS-Sketch This dataset [Mittal et al., 2014] extends the PRIP dataset
[Han et al., 2013] and contains composite sketches for the 123 subjects from
AR dataset [Martinez and Benavente, 1998] by adding additional composite
sketches. In total there are 4 different types of composite sketches depending
upon the software used and the ethnicity of the sketch artist. Due to intellectual
property rights only two kind of composite sketches were released. One is made
by an Indian artist using the FACES software tool, while the other is made with
IdentiKit software tool by an Asian artist 1. Figure 3.13 shows example face
images and corresponding sketches from the dataset. We use the standard eval-
uation protocol [Mittal et al., 2014]. More specifically, we generate 5 random
splits to divide the data into training(48 subjects) and testing (75 subjects) and
report the mean identification accuracy at Rank-10.

Face alignment and normalization We align the images in all datasets using
a similarity transform, based on facial landmarks that are automatically detected
as in [Everingham et al., 2006]. Following [Choi et al., 2012, Sarfraz and Stiefel-

1. See http://www.identikit.net, http:///www.iqbiometrix.com.

http://www.identikit.net
http:///www.iqbiometrix.com

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 66

Figure 3.13 – Example images from e-PRIP dataset for two subjects. From left
to right: photo, FACES sketch, and IdentiKit sketch.

hagen, 2015], dead pixel values in IR images are replaced by the response of a
3× 3 median filter. We also apply an additive and multiplicative normalization,
so as to match the per-pixel mean and variance of the CASIA Webface images.
For example, for each pixel p in an IR image we set

I(p)← σ(p)WF

σ(p)IR

(
I(p)− µIR(p)

)
+ µWF (p), (3.3)

where µ(p)WF and σ(p)WF denote the mean and standard deviation of pixel p
across the CASIA Webface dataset, and µ(p)IR and σ(p)IR denote the same on
the IR dataset. This normalization step is performed for correcting the differ-
ences in the first and second order statistics of the signal.

3.4.2 Evaluation on LFW dataset
Before evaluating the performance of CNN features for heterogeneous face

recognition, we first validate the effectiveness of our CNN model trained on the
CASIA Webface dataset. To this end we evaluate it on the LFW face verfication
task.

In this experiment we perform verification on the pairwise distances between
face features extracted from several layers of the CNN. We compare the Eu-
clidean `2 distance, with metrics learned by LDML using the LFW training data,
and vary the projection dimension d of LDML (i.e . the rank of the metric). Based
on the results in Table 3.2 we can make several observations.

1. Metric learning improves performance for all features, but the improve-
ments are small for S and P5.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 67

d = 64 d = 128 d = 256 Euclidean

S 95.8 95.8 95.8 95.7
P5 95.8 95.9 95.9 95.6
C52 96.7 96.8 96.7 92.8
C51 96.8 96.8 96.9 89.9
P4 96.1 96.4 96.3 81.1
C42 95.1 95.5 95.4 75.1

Table 3.2 – Evaluation of LFW verification accuracy using features from differ-
ent CNN layers, using metric learning to project to different dimensionalities d.
We also report results obtained with the Euclidean metric.

2. Which features are optimal depends on whether we use metric learning
(C51) or not (S).

3. Metric learning notably reduces the performance differences between the
features.

4. Varying the projection dimension from 64 to 256 has only a minor impact
on performance. In the remainder of our experiments we therefore use
LDML with d = 64, unless specified otherwise.

5. The most important observation is that while using only gray scale im-
ages, our network (96.9%) performs comparable to that of [Yi et al., 2014]
(97.7%) which uses RGB input images.

3.4.3 Results on the CASIA NIR-VIS dataset
We now present an extensive experimental evaluation of heterogeneous VIS-

NIR face recognition.

Effect of normalization First, we consider the effect of using the additive and
multiplicative normalization. In Table 3.3 we present the results for the two
possible configurations. We report these results with metric learning, where
for learning the metric we use both inter-domain and intra-domain pairs with
a shared projection matrix. From the results we can observe that performing
the normalization helps us to boost the performance. In the remainder of our
experiments we therefore use this normalization, unless stated otherwise.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 68

Normalization S P5 C52 C51 P4 C42

X 72.6 75.3 80.6 82.9 85.9 84.8
× 66.6 70.4 78.6 80.0 82.4 80.7

Table 3.3 – Evaluation for the impact of normalization on features from different
layers of the CNN for the CASIA NIR-VIS dataset. We report results with metric
learning.

S P5 C52 C51 P4 C42

Inter+Intra
Shared 72.6 75.3 80.6 82.9 85.9 84.8

Separate 66.6 70.4 78.6 80.0 82.4 80.7

Inter
Shared 70.0 74.3 79.8 81.7 83.6 82.0

Separate 73.0 75.7 77.9 76.8 76.91 74.7

Table 3.4 – Evaluation of features from different layers of the CNN for the CA-
SIA NIR-VIS dataset for different metric learning configurations. Best results
per column highlighted in bold.

Metric learning configurations Next, we consider the effect of (a) using intra-
domain pairs in addition to inter-domain pairs for metric learning, and (b) learn-
ing a shared projection matrix for both domains, or learning separate projection
matrices. In Table 3.4 we present the results for the four possible configurations
for various CNN features.

From the results we can observe that using both inter-domain and intra-domain
pairs is the most effective to learn a shared projection matrix. For separate pro-
jection matrices, it is generally also best to learn from both inter and intra domain
pairs. For features of the softmax (S) and fifth maxpool (P5) layer, using sep-
arate metrics learned from inter-domain pairs only is best, while for all other
features a shared projection matrix learned from inter and intra domain pairs is
optimal. This may be explained by the fact that S and P5 features are relatively
low-dimensional as compared to the others, and thus less likely to be affected
by overfitting when learning separate projection matrices. The overall best re-
sults are obtained using a shared projection matrix learned from intra and inter
domain pairs on P4 features. Unless stated otherwise, this is the setting we use
in the experiments below.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 69

S P5 C52 C51 P4 C42

S 72.6 71.0 75.0 74.5 72.6 71.1
P5 69.1 75.3 76.5 75.9 74.7 73.1
C52 70.6 73.8 80.6 78.4 77.7 77.5
C51 70.9 74.4 79.0 82.9 80.3 79.0
P4 69.6 72.8 77.9 80.5 85.9 81.2
C42 68.0 71.0 77.6 79.2 81.1 84.8

NIR feature

V
IS

 f
e
a
tu

re

Table 3.5 – Combining different features for the VIS (rows) and NIR (columns)
domain of the CASIA NIR-VIS dataset. Best results per VIS feature highlighted
in bold.

Combining different features The optimal features might be different de-
pending on the modality. Therefore next, we experiment with combining dif-
ferent features for the two domains. In this case we learn separate projection
matrices, since the feature dimensionalities may differ across the domains. In
Table 3.5, we show results for each combination of choosing among six features
in each domain. The results show that by learning different projection matrices,
we can effectively mix different features. For example, using S or P5 features in
VIS domain, we can best combine these with C52 features in the NIR domain.
For the case where we have same features in both domains, i.e . the diagonal
of the table, the feature dimensionality is the same and hence we use a shared
metric.

The best results, however, are obtained by using P4 features in both domains.
Therefore, we will use the same feature in both domains in further experiments.

Fine-tuning So far we have evaluated different settings with features extracted
from a net pre-trained on CASIA WebFace dataset. Now, we evaluate the effect
of fine-tuning the pre-trained CNN using the training data of the CASIA NIR-
VIS dataset. In our evaluation, once the CNN is fine-tuned, we extract the feature
representations from different layers of the CNN and learn a metric on top. In Ta-
ble 3.6, we report the results with metric learning, where we use both Inter+Intra
pairs with a shared metric. The results show that fine-tuning improves the S, P5,
and C52 features. If we fine-tune up to C51 or deeper (not shown), the features
deteriorate w.r.t. the pre-trained net, probably because at this point fine-tuning

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 70

None S S+C52 S+C52+C51

S 72.4 75.3 76.7 58.3
P5 75.2 75.2 79.8 60.6
C52 81.1 81.1 82.8 65.6
C51 83.0 83.0 83.0 67.1
P4 85.4 85.4 85.4 85.4
C42 84.5 84.5 84.5 84.5

Finetuning layers

F
e
a
tu

re
s

u
se

d

Table 3.6 – Fine-tuning to different depths (columns) on the CASIA NIR-VIS
dataset, while extracting features from different layers (rows). Best results per
feature highlighted in bold.

overfits on the limited training data that is used. Finetuning a CNN over 10 folds
(View 2) for all the different settings was computationaly expensive, therefore
here results are reported on the development set (View 1).

We also experimented with fine-tuning the softmax layer of the network sepa-
rately for each modality, and then combining the features using a shared projec-
tion learned from both inter and intra domain pairs. This improved results from
72.4 to 74.0 w.r.t. the pre-trained network. It is, however, worse than the 75.3
we obtained by fine-tuning the Softmax layer using data from both domains.

The best results, however, are obtained with the P4 features extracted from the
pre-trained net (85.9). In the remainder of the experiments we do not use any
fine-tuning.

Comparison to the state of the art In Table 3.7 we compare our results of
the (Shared, Inter+Intra) setting to the state-of-the-art unsupervised domain-
adaptation approach of Fernando et al. [2013], and a `2 distance baseline that
uses the raw CNN features without any projection. From the results we can ob-
serve that our supervised metric learning results compare favorably to the results
obtained with unsupervised domain adaptation. Moreover, we find that unsuper-
vised domain adaptation improves only marginally over the raw features. This
shows the importance of using supervised metric learning to adapt features of
the pre-trained CNN model to the heterogeneous face recognition task.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 71

S P5 C52 C51 P4 C42

Raw 63.1 62.7 63.8 51.0 29.4 26.8
Our proj. 72.6 75.3 80.6 82.9 85.9 84.8

Domain adapt. 63.1 62.7 64.2 51.8 31.8 28.6

Table 3.7 – Comparison on CASIA NIR-VIS using raw CNN features, our pro-
jections, and domain adaptation [Fernando et al., 2013]. For the latter, the pro-
jection dimension is set on the validation set.

Rank-1 VR at 0.1% FR

[Li et al., 2013] 23.7 ± 1.9 -
[Riggan et al., 2015] 33.1 ± 6.6 -
[Dhamecha et al., 2014] 73.3 ± 1.1 -
[Jin et al., 2015] 75.7 ± 2.5 55.9
[Juefei-Xu et al., 2015] 78.5 ± 1.7 85.8
[Lu et al., 2015] 81.8 ± 2.3 47.3
[Yi et al., 2015] 86.2 ± 1.0 81.3
Ours 85.9 ± 0.9 78.0

Table 3.8 – Comparison of our results with the state of the art on CASIA-NIR
dataset.

In Table 3.8 we compare our results to the state of the art in our best setting
(P4, Shared, Inter+Intra). For the identification experiments, we obtain (85.9 ±
0.9) rank-1 identification rate which is comparable to the state of the art reported
by Yi et al. [2015] (86.2 ± 1.2). Yi et al. [2015] extract Gabor features at some
localized facial points and then use a restricted Boltzman machine to learn a
shared representation locally for each facial point. They process the descriptors
using PCA and report worse results using metric learning. Our approach is quite
different from them, since we do not learn our feature representations on the
CASIA-NIR dataset rather we only learn a metric on top of features from a pre-
trained CNN.

For the verification experiments, the state of the art is reported by Juefei-Xu
et al. [2015] (85.8 %), followed by Yi et al. [2015] (81.3 %), and our verification

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 72

S P5 C52 C51 P4 C42 C41 P3

Faces(In)
Inter + Intra 46.7 44.3 48.3 53.3 61.3 58.1 64.8 65.6

Inter 45.6 42.7 46.7 55.5 65.6 58.9 64.3 63.7

IdentiKit(As)
Inter + Intra 27.7 30.4 27.7 38.7 49.6 48.0 50.9 51.5

Inter 25.1 26.4 28.8 38.1 47.5 44.0 52.0 49.6

Table 3.9 – Rank-10 identification accuracy on the e-PRIP composite sketch
database. Best result per dataset highlighted in bold.

rate of 78.0 %.

3.4.4 Results on the ePRIP VIS-Sketch dataset
In this section we report our experiments on the ePRIP sketch datasets. We

do not evaluate fine-tuning of the CNN on this dataset due to the small size of
the training dataset.

Metric learning configurations In Table 3.9 we report the results for two
types of composite sketches: Faces(In) and IdentiKit(As). We consider the effect
of using intra-domain pairs in addition to inter-domain pairs for metric learning.
As before, we use a shared projection matrix in all settings.

In these experiments there it is not clear cut whether adding intra-domain pairs
is beneficial. This might be due to the fact that there are only 96 training images
in each domain in this dataset. Averaged over Faces(In) and IdentiKit(As), P3
features and both intra and inter domain pairs gives the best results. This similar
to the best setting for the CASIA NIR-VIS dataset, except that there P4 was
better. The fact that here deeper CNN features are better may be related to the
fact that in this dataset, the domain shift is relatively large compared to CASIA
NIR-VIS dataset.

In Table 3.14 we compare our results to the state of the art on the e-PRIP
dataset. We obtain the best performance on the Faces(In) sketches, outper-
forming the previous best of [Mittal et al., 2015] by 5%. For the IdentiKit(As)
sketches our results are on par with those reported by [Mittal et al., 2015].

In Figure 3.15 we plot the Cumulative Match Characteristic (CMC) curve for
our method compared to the existing approaches on Faces(In) dataset, curves for

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 73

Faces(In) IdentiKit(As)

[Bhatt et al., 2012] 24.0 ± 3.4 15.4 ± 3.1
[Mittal et al., 2014] 53.3 ± 1.4 45.3 ± 1.5
[Mittal et al., 2015] 60.2 ± 2.9 52.0 ± 2.4

Ours 65.6 ± 3.7 51.5 ± 4.0

Figure 3.14 – Rank-10 identification accuracy on the e-PRIP composite sketch
database (left), and CMC curve for the Faces(In) database (right) for our result
reported in the table.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Rank

Id
e

n
tif

ic
a

tio
n

 A
cc

u
ra

cy

COTS
Autoencoder + SVM
Autoencoder + neural network
DBN + SVM
DBN + neural network
Autoencoder + DBN + SVM
Without transfer learning [27]

Mittal et al [27]
Mittal etal [26]

Ours

Figure 3.15 – CMC curve for e-PRIP composite sketch database Faces(In) for
our result reported in Table 3.14.

CHAPTER 3. HETEROGENEOUS FACE RECOGNITION 74

other methods are taken from [Mittal et al., 2015] . The figure shows that we
obtain significant gain at all ranks compared to the existing state of the art.

3.5 Conclusion
In this chapter we considered how to leverage CNNs pre-trained on large

scale visible spectrum images for the task of heterogenous face recognition. We
use the pre-trained CNN as a feature extractor along with metric learning for
solving the task of heterogenous face recognition. We studied different aspects
of our proposed method: extracting features from different CNN layers, finetun-
ing the CNN, and using various forms of metric learning.

We evaluate the impact of different design choices by means of extensive
benchmark results on visible to near-infrared and visible to sketch recognition.
In our experiments, we found fine-tuning the CNN to the target domain gave
limited success. The best results were found by using the layers of pre-trained
CNN as feature extractors coupled with metric learning. For our experiments,
we pre-process the images of the target domain, so as to match the first and sec-
ond order statistics of the source domain (visible spectrum images). One of the
advantages of our proposed method is that we need to train the CNN only once
on the visible spectrum image dataset, and later we are able to adapt it for differ-
ent domains and datasets. This property is quite attractive, as it allows for model
reuse and keeps the computational footprint low. Our solution is quite simple
and elegant, and achieves competitive results with the state-of-the art.

For LFW, CASIA NIR and ePRIP dataset, we found the optimal features to be
present at C51, P4 and P3 layers of the pre-trained CNN respectively. This sug-
gests that, for a given modality, the depth of optimal features in a CNN pipeline
is positively correlated with the domain shift from the CNN training data. Using
features from the different layers of pre-trained CNN coupled with metric learn-
ing we obtain state of the art results on e-PRIP dataset and competitive with the
state of the art on the CASIA-NIR dataset.

Chapter 4

Convolutional Neural Fabrics

Contents
4.1 Introduction . 75
4.2 Related work . 79

4.2.1 Convolutional neural network 79
4.2.2 CNN architectures for classification 84
4.2.3 CNN architecture for segmentation 88
4.2.4 Closely related work 92

4.3 The fabric of convolutional neural networks 94
4.3.1 Weaving the convolutional neural fabric 94
4.3.2 Stitching chain-structured networks on the fabric . 96
4.3.3 Analysis of the number of parameters and activations 100

4.4 Experimental evaluation 101
4.4.1 Datasets and experimental protocol 101
4.4.2 Evaluation on Part Labels 103
4.4.3 Evaluation on MNIST 104
4.4.4 Evaluation on CIFAR10 106
4.4.5 Discussion . 108
4.4.6 Visualization . 111

4.5 Conclusion . 111

4.1 Introduction
The discriminative power of feature descriptors, and their invariances to nui-

sance factors, play a key role in computer vision tasks such as matching for 3D
reconstruction from images [Snavely et al., 2006], large scale image retrieval

75

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 76

and classification [Philbin et al., 2007, Perronnin et al., 2010], etc . During the
last decade, a significant amount of work in computer vision has been dedicated
to develop discriminative feature descriptors. Out of these, SIFT [Lowe, 1999],
HOG [Dalal and Triggs, 2005] and LBP [Ojala et al., 2002] are some of the de-
scriptors which were adopted for a wide use in the community. The majority
of these feature descriptors are hand-crafted, though some exceptions [Philbin
et al., 2010, Brown et al., 2011] exist, where machine learning is used to learn
them in a supervised setting.

Traditionally, a computer vision algorithm consists of two independent pipelines.
In the first step, a feature descriptor is used to characterize the content of an im-
age at different spatial locations, and this information is encoded into an image
descriptor. In the next step, machine learning techniques are built on top of
the image descriptor to increase the invariance to various nuisance factors. In
the past years, a lot of progress has been made on both fronts and has lead to
impressive results for a variety of computer vision tasks, for e.g . image classifi-
cation [Perronnin et al., 2010], image retrieval [Jégou et al., 2011, Arandjelovic
and Zisserman, 2013], face verification [Simonyan et al., 2013a], etc .

Despite this progress, the traditional approach has two major shortcomings.
First, the optimum feature descriptor for each new task needs to be hand-crafted.
Second, in the majority of computer vision algorithms these two pipelines, the
machine learning techniques and feature encoding methods, are optimized inde-
pendently and hence might be suboptimal.

Convolutional neural networks (CNNs) [LeCun et al., 1989] have been used
to learn the feature representations alleviating the need for handcrafting fea-
ture descriptors and have proven extremely successful for a wide range of com-
puter vision problems and other applications. In particular, the recent results of
Krizhevsky et al. [2012] have caused a major paradigm shift in computer vision
from models relying in part on hand-crafted features, to end-to-end trainable sys-
tems from the pixels upwards. This has been a welcome change, since for any
given task the features do not require to be hand-crafted and can be learned as a
part of the CNN architecture. The CNN unifies the machine learning and feature
descriptor pipelines, and optimizes them jointly.

In the recent years, a lot of progress has been made in designing efficient ar-
chitectures for image segmentation and image classification. One of the main
problems that holds back further progress using CNNs, as well as deconvolu-
tional variants [Noh et al., 2015, Ronneberger et al., 2015] used for semantic

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 77

Sc
al

es
LayersInput

Output

Figure 4.1 – Trellis embedding of two seven-layer CNNs (red, green) and a ten-
layer deconvolutional network (blue). Feature map size of the CNN layers are
given by height. Layers of the trellis are laid out horizontally, scales vertically.
Trellis nodes receiving the input and producing output are encircled. All edges
are oriented to the right, down in the first layer, and towards the output in the last
layer. The channel dimension of the 3D trellis is omitted for clarity.

segmentation, is the lack of efficient systematic ways to explore the discrete and
exponentially large architecture space. To appreciate the number of possible
architectures, consider a standard chain-structured CNN architecture for image
classification. The architecture is determined by the following hyper-parameters:
(i) number of layers, (ii) number of channels per layer, (iii) filter size per layer,
(iv) stride per layer, (v) number of pooling vs . convolution layers, (vi) type of
pooling operator per layer, (vii) size of the pooling regions, (viii) ordering of
pooling and convolution layers, (ix) channel connectivity pattern between layers,
(x) type of activation, e.g . ReLU or MaxOut, per layer. The number of resulting
architectures clearly does not allow for (near) exhaustive exploration. Instead
of manually designing compact architectures with maximum performance, our
goal is to automate the current practice of hand-crafting architectures for certain
tasks. Our neural fabrics circumvent eight of the ten CNN architecture-related
hyperparameters highlighted above.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 78

In this chapter, we show that all CNN and deconvolutional architectures that
can be obtained for various choices of the above ten hyper-parameters are em-
bedded in a “fabric” of convolution and pooling operators. Concretely, the fab-
ric is a three-dimensional trellis of response maps of various resolutions, with
only local connections across neighboring layers, scales, and channels. See Fig-
ure 4.1 for a schematic illustration of how the trellis embeds different architec-
tures. Each activation in the trellis is computed as a linear function followed by
a non-linearity from a multi-dimensional neighborhood (spatial/temporal input
dimensions, a scale dimension and a channel dimension) in the previous layer.
Setting the only two hyper-parameters, number of layers and channels, is not
critical as long as they are large enough. We also consider two variants, one in
which the channels are fully connected instead of sparsely, and another in which
the number of channels doubles if we move to a coarser scale. The latter allows
for one to two orders of magnitude more channels, while increasing memory
requirements by only 50%.

All chain-structured (de)convolutional architectures embedded in the fabric
can be recovered appropriately setting certain weights to zero, so that only a sin-
gle activation path is non-zero along the scale and layer axes. General non-path
weight settings correspond to ensembling many architectures together, which
share parameters where edges overlap. The acyclic trellis structure allows for
learning using standard error back-propagation methods. Learning can thus ef-
ficiently configure the fabric to implement each one of exponentially many ar-
chitectures and, more generally, ensembles of all of them. Experimental results
competitive with the state of the art validate the effectiveness of our approach.

Our contributions are: (1) Our fabric allows to by and large sidestep the CNN
model architecture selection problem. Avoiding explicitly training and evalu-
ating individual architectures using, e.g ., greedy local-search strategies [Chen
et al., 2016]. (2) While scaling linearly in terms of computation and memory
requirements, our approach leverages exponentially many chain-structured ar-
chitectures in parallel by massively sharing weights between them. (3) Since
our fabric is multi-scale by construction, it can naturally generate output at mul-
tiple resolutions, e.g . for image classification and semantic segmentation, by
connecting a prediction layer to nodes at different scales in the last layer. with-
out requiring to design ad-hoc branching architectures for this purpose.

We validate our approach on CIFAR10 [Krizhevsky, 2009] and MNIST [Le-
Cun et al., 1998] dataset for image classification, and PartLabels dataset [Kae
et al., 2013b] for image segmentation. In our experiments, we explore the per-

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 79

formance of the trellis by varying the number of layers and channels used in
the architecture. We learn the parameters of the trellis with standard SGD with
momentum and obtain results competitive with the state of the art on all three
datasets. We also visualize the weights of the learned trellis to explore the topol-
ogy of learned trellis and observe qualitative differences between the models
learned for the three datasets.

Outline The rest of the chapter is organized as follows. First in Section 4.2
we give a brief overview of CNN followed by discussion of related work most
relevant to the topics presented in this chapter. In Section 4.3 we present the
construction of our trellis model along with implementation details. We present
extensive experimental results in Section 4.4 detailing the effect of the few hy-
perparameters of our trellis model. We also compare our results to the current
state-of-the art for different tasks like image classification and segmentation. Fi-
nally, we conclude this chapter in Section 4.5.

4.2 Related work
In the recent years, there has been a considerable amount of research in the

field of convolutional neural networks (CNN) for computer vision tasks. The
chain-structured CNN architecture used by Krizhevsky et al. [2012] for Ima-
geNet classification is widely used for many other vision tasks [Donahue et al.,
2014, Sharif Razavian et al., 2014]. The tasks range from image classification
[Krizhevsky et al., 2012] to image retrieval [Babenko et al., 2014] to image seg-
mentation [Long et al., 2015], etc . Other widely adopted architectures are the
VGG16 and VGG19 networks of Simonyan and Zisserman [2015]. Although
effective for many tasks, it is by no means clear that these architectures are
among the best ones given their computational and memory requirements. Their
widespread adoption is at least in part due to the lack of more effective tech-
niques to find good architectures than extremely costly brute-force exhaustive or
local search [Chen et al., 2016].

Below we first review some basic terminology and notation for CNN, followed
by a brief overview of different hand-crafted CNN architectures for the problems
of image classification and segmentation.

4.2.1 Convolutional neural network
A convolutional neural network (CNN) [LeCun et al., 1998, 1989] consists

of a series of convolution and pooling layers, optionally followed by fully con-

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 80

K

K

Input feature map

Filter

Output feature map

W

W

Figure 4.2 – Illustration of the convolution operator inside the convolution layer
of a CNN. A filter (dark green) is convolved over different locations of the input
feature map. At each location of the input feature map, the dot product of the
filter and the entries in the feature map (light green) gives the output response
(light red) for the corresponding location in the output feature map.

nected layers. A CNN transforms an input through a series of hidden layers.
Each hidden layer consists of a linear transformation (e.g . convolution for a con-
volution layer and dot-product for a fully connected layer) to be applied on its
input, optionally followed by a non-linearity (e.g . ReLU, sigmoid, etc .).

The input and output of a hidden layers are set of arrays called feature maps.
For example, for the first layer of a CNN with a grayscale image as an input, the
input feature map would be a 2D array (for a video it would be a 3D array, and for
an audio or DNA sequence it would be a 1D array). In comparison to a standard
neural network, the CNN architecture assumes the input to have spatially-local
correlations. These assumptions are encoded in the CNN architecture so as to
have an efficient implementation. Below we give a brief description about the
standard layers used in a CNN, including, but not limited to, convolution, fully
connected, pooling and upsampling followed by a note on activation functions.

Convolution layer A convolution layer consists of a set of learnable filters
and biases. Each filter has a small spatial support region but extends through the
entire depth of incoming feature maps. For example, in Figure 4.2, the filter has
a size of W ×W ×K, where W ×W is the spatial support of the filter, and K
is the number of input feature maps.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 81

In the forward pass of a CNN, we slide the filter over the different locations of
the input feature map and compute the dot product with the entries of the feature
map. This operation, generates an activation for each location we convolve,
providing us with an output feature map. Intuitively, the filter convolves over the
input feature maps, to search for a particular pattern (e.g . edges, corners, faces,
etc .) and this is reflected in the magnitude of the activation present in the output
feature map. Repeating this process with a set of C filters, we can compute C
output feature maps, each one computed independently. Once the output feature
maps are computed, a learnable bias, specific to each output feature map, is
added to the corresponding map. There are couple of hyperparameters which
one has to set for a convolution layer, below we give a brief detail about each.

The filter size corresponds to the spatial support of the filter. In general prac-
tice, the filters are symmetric in shape and 3×3 is the most commonly used filter
size. Some recent works explore the use of asymmetric filters [Szegedy et al.,
2015b].

The number of filters corresponds to the depth of the output volume, i.e . the
number of output feature maps produced. The computational and memory foot-
print of a convolution layer scales linearly with the number of filters used.

The next hyperparameter is the stride with which we slide our filter on the
input feature map. A stride of 1 corresponds to moving the filter 1 pixel at
a time, whereas a stride of 2, jumps the filter 2 pixels at a time, producing a
spatially downsampled feature map .

Zero padding corresponds to the amount of zero pixels padded around an input
feature map. Padding allows us to control the size of the output feature map, and
is most commonly used to preserve the spatial size of the input feature map. For
example, with a filter size of 3×3, a zero padding of 1, would result in an output
feature map with the same spatial size as the input feature map.

Fully connected layer A fully connected layer of a neural network connects
all the activations in an input feature map to each activation in the output feature
map. The output activations in this case can be computed directly with a dense
matrix multiplication.

The fully connected layers are similar to the convolution layers, except that the
latter learns a function over a small spatial support and the shares the parameters

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 82

57

7

3

Input feature map

Output embedding

7

7

3

Stack of 5 filters

7

7

1

1

5
Output feature map

23 26 99 10

18 45 54 29

17 24 84 66

72 55 36 34

-38

-10

158

58

1 -2

2 -1

Filter

Input feature map Output feature map

23

18

17

72

-38
58

158
-10

34

1 2 0 0 -1-2 0 0 0 0 0 0 0 0 0 0
1 2 0 0 -1-2 0 0 0 0 0 0 0 00 0

0 0 0 0 0 00 0 0 0
0 0 0 00 00 0 0 0 1 2 -1-2

0 0 1 2 -1-2
0 0

Weight matrix

Vectorized input feature map

Figure 4.3 – In this figure we depict the equivalence between a convolution and
a fully connected layer. In the top, we interpret the 5 dimensional output embed-
ding of a fully connected layer as an output feature map (5 channels and 1 × 1
spatial size) of a convolution layer. See text for more details. In the bottom,
the weight matrix of a fully connected layer is shown, which implements the
convolution operation of a 2× 2 filter when convolved with stride 2.

over different locations on the input feature map. Apart from this, both layers
compute linear functions. Therefore,

1. Any fully connected layer can be re-written as a convolution layer. We
illustrate this in Figure 4.3 (top), where the fully connected layer takes a
7 × 7 × 3 feature map as an input and maps it to a 5 dimensional output
embedding. The 5 dimensional embedding can be equally interpreted as
an output feature map (5 channels with 1× 1 spatial size) of a convolution
layer. Parameters of the fully connected layer are casted as parameters of
a convolution layer, i.e . as a stack of 5 filters each with 7 × 7 filter size
. Note, in this case, the filter size is equal to the size of the input feature
map.

2. Equivalently, any convolution layer with a particular filter can be imple-
mented as a fully connected layer which implements the same function.
The weight matrix of the fully connected layer would be large and sparse
(due to small spatial support) and would have identical parameters at dif-
ferent places (due to parameter sharing), see Figure 4.3 (bottom).

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 83

23 26 99 10

45 54 29

84 66

36 34

48

42 55

99

72 84

Average pooling

Max pooling

28

45

18

17 24

72 55

Figure 4.4 – Illustration of max and average pooling with stride and filter size
set to 2 and 2× 2 respectively.

Out of the two conversions discussed above, the former is particularly useful
as it allows to interpret the entire network as convolutional in nature. This makes
it possible to evaluate a CNN over images of varying size. Long et al. [2015]
used this conversion for performing semantic segmentation on images.

Pooling layer The pooling layers are responsible for downsampling the spatial
size of the feature map. They operate independently on each input channel of
the feature map, and resizes them spatially. One of the most widely used form of
pooling is max-pooling. Max-pooling with a filter size 2×2 applied with a stride
2, would downsample the input feature map by factor 2 in spatial dimensions. A
particular value in the output response map is computed by taking a max over
4 values in the input feature map, see Figure 4.4. Average pooling is another
variant of pooling which is used in CNN’s.

Upsampling layer As the name suggests, upsampling layers are responsible
for upsampling the spatial resolution of the input feature maps in a CNN archi-
tecture. Long et al. [2015] use bilinear interpolation for upsampling the feature
maps. The bilinear interpolation can be interpreted as a convolution of a dilated
feature map with a pre-defined filter. We illustrate this operation in Figure 4.5.
As it can be seen in the figure, the upsampling layer upsamples the feature map
by factor 2. Upsampling by larger powers of 2 can be obtained by cascading
multiple upsampling layers. The upsampling layer can either be fixed to per-
form bilinear interpolation [Long et al., 2015], or initialized to perform bilinear
interpolation, and then learned.

Activation function An activation function is an element-wise function ap-
plied on the outputs of a hidden layer (convolution or fully connected). In its
simplest form, the activation function could be an identity function i.e . f(x) = x.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 84

44 52

8832

0 0

0 00 0

0 00 0

0 0

0.25

1

0.5

0.5

0.5

0.5

0.25

0.250.25

44 52

8832

48 26

54 3538 70

30 2216 44

60 44

44 52

8832

Unpooling Filter

Upsampled feature mapInput feature map

Figure 4.5 – Illustration of upsampling operation for upsampling the spatial size
of a feature map. The first step involves doing a simple top-left unpooling op-
eration. Next step involves convolution with a filter whose weights are set to
perform bilinear interpolation. In our work, the weights of the filter are set as
learnable parameters of the CNN.

In this case the neural network is a composition of linear transformations which
can be written as a single linear transformation, limiting the representational
power of the network.

To increase the representational power of neural networks, non-linear acti-
vation functions are used. Early works used sigmoid

(
f(x) = 1

1+exp (−x)

)
or

hyperbolic tangent
(
f(x) = 1−exp (−2x)

1+exp (−2x)

)
as an activation function which would

squash the real valued input into a particular range, see Figure 4.6. These non-
linearities are saturating in nature and learning deep neural nets with them is
problematic because of gradients saturating to zero for most of the input range.

To address this issue, Nair and Hinton [2010] introduced a non-saturating
non-linearity commonly known as rectified linear units (ReLU), which is one
of the most widely used activation function. It computes the function f(x) =
max(0, x), which in simple words, clips the activations below zero, see Fig-
ure 4.6. ReLU was found to accelerate the convergence of stochastic gradient
descent for learning deep neural networks [Krizhevsky et al., 2012] and is one of
the key factors for the recent success of deep neural networks. It is argued that
the acceleration observed during learning is due to its non-saturating form.

4.2.2 CNN architectures for classification
Image classification involves predicting the class of the object present in an

image. In this section we present some recent CNN architectures proposed for
performing image classification.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 85

−3 −2 −1 0 1 2

−1

−0.5

0

0.5

1

Sigmoid

Hyperbolic Tangent
ReLU

Figure 4.6 – Commonly used activation functions in neural networks: sigmoid,
hyperbolic tangent and ReLU.

Krizhevsky et al. [2012] trained a deep CNN architecture to obtain state of the
art results on the ImageNet classification benchmark. They outperformed the
second runner up with a significant margin (16 % top-5 error rate versus 26 %
error rate), and were the first to popularize the use of CNN in computer vision.

Their architecture consists of eight learnable layers, with five of them being
convolution and three being fully-connected, see Figure 4.7 (top). The filter
size is set to 11 × 11, 5 × 5, 3 × 3, 3 × 3, 3 × 3 for the five convolution layers
respectively. Being unable to store the model parameters on a single GPU due
to memory constraints, they propose to split the filters of a given convolution
layer in two sets across two GPUs. Further, the filters for the second, fourth and
fifth convolution layer take as an input only those preceding feature maps, which
reside on the same GPU. Doing so reduces the number of learnable parameters.
Interestingly, the filters learned on two different GPUs differ qualitatively as
shown in Figure 4.7 (bottom). One set of filters is color agnostic while the other
set is color specific.

Following the work of Nair and Hinton [2010], they advocate the use of Rec-
tified linear unit (ReLU) as a non-linearity. They show that in comparison to
a saturating non-linearity like hyperbolic tangent or sigmoid, ReLU leads to a
faster convergence, and hence allowed them to train deeper nets. The architec-
ture is commonly used under the name of AlexNet in the community, and lead
to the widespread use of ReLU as an activation function for training deep CNN.

Simonyan and Zisserman [2015] carry out a thorough evaluation of six deep
CNN architectures of increasing depth. They train networks upto a depth of 19

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 86

Figure 4.7 – On the top, an illustration of architecture used in AlexNet
[Krizhevsky et al., 2012]. The filters of convolution layers are split in two sets
across the two GPU’s and the GPU’s communicate only at certain layers. At the
bottom, two set of 11× 11 filters (top and bottom) learned for the first convolu-
tion layer. Image source [Krizhevsky et al., 2012].

layers, and achieve state of the art performance on ImageNet classification and
localization tasks. In their architecture, they set the filter size of the convolution
filters to be 3 × 3, thereby removing the filter size as a hyperparameter. This is
in contrast to the standard practice where filters with a large filter size was used
in the first layer (e.g . 11× 11 with stride 4 in [Krizhevsky et al., 2012], or 7× 7
with stride 2 in [Zeiler and Fergus, 2014, Sermanet et al., 2014, Szegedy et al.,
2015a]). They make the following observation: A set of three convolution layers
with filters of size 3× 3 has an effective receptive field size of 7× 7. Therefore
a convolution layer with a filter size of 7 × 7 can be approximated by stacking
three convolution layers with filter size 3× 3. The advantages of their proposed
stacked convolution layers are:

1. They incorporate three non-linear functions in the latter as compared to
the former, and hence the learned output function would have a higher
representational power.

2. Assuming that the input and output feature maps are fixed to be C, a sin-
gle 7 × 7 convolution layer would require 72C2 parameters. At the same
time, the three layer convolutional stack would require 3(32C2) parame-
ters. The latter parameterization uses fewer parameters and can be seen as
an explicit form of regularization.

In contrast to their approximation, in our work we show that the using a

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 87

3×3 filter size throughout the trellis, with sufficient number of channels, we can
implement a filter of any desired filter size.

They use ReLU activation function as a non-linearity in their network, and use
five Max-pooling layers interleaved between the convolution layers to decrease
the spatial resolution of the filter maps. At the bottom of the network there are
three fully connected layers. Out of the six different architectures evaluated,
the most commonly used architecture is VGG16 which has around 138 million
parameters (roughly twice when compared to AlexNet). 90% of the total number
of parameters belong to the fully connected layers.

Independently to the work of Simonyan and Zisserman [2015], Szegedy et al.
[2015a] developed their deep CNN architecture coined as GoogLeNet. GoogLeNet
is similar to VGG16Net in the sense that it is a deep architecture (22 layers).
GoogLeNet employs 7 × 7 convolutions with stride 2 in the first convolution
layer to aggressively reduce the spatial resolution of feature maps, and hence the
computational overhead.

A difference from the previous line of work is the network topology of GoogLeNet.
Inspired from the topology used by Lin et al. [2014a], they introduce inception
modules which collect the output responses of different filter sizes, and replace
the standard convolution filter with it. To keep the computational and parame-
ter complexity low, they propose to use 1 × 1 convolutions for compressing the
number of input feature maps. Doing so, they are able to make the networks
wider without paying a significant penalty. An illustration of inception module
is shown in Figure 4.8.

To eliminate a large amount of learnable parameters they use average pool-
ing at the top of the CNN instead of a fully connected layer like VGG16 and
AlexNet. Compared to 68M and 138 M, the parameters of AlexNet and VGG16Net,
GoogLeNet has less than 6M parameters and achieved state of the art result for
image classifciation and detection on ILSVRC-2014 challenge. Szegedy et al.
[2015b] further reduce the the computational cost and the parameter overhead by
factorizing the 5×5 convolutions as a series of 3×3 convolutions. Interestingly,
they also factorize the 3×3 convolution as a series of 1×3 and 3×1 asymmetric
convolutions. The asymmetric factorization improved the results when used in
deeper layers of the architecture.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 88

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

Figure 4.8 – Inception module used in GoogLeNet [Szegedy et al., 2015a]. The
1× 1 convolutions are used for reducing the number of input feature maps. This
is done for reducing the computational and parameter overhead of the modules.
Image source [Szegedy et al., 2015a].

4.2.3 CNN architecture for segmentation
In the recent years, convolutional neural networks have made significant

advances in the field of image classification. They have not only improved in
task of image classification, but also related tasks such as local correspondences
[Long et al., 2014, Fischer et al., 2014], object localization [Sermanet et al.,
2014, Girshick et al., 2014, He et al., 2014], etc . Compared to these tasks, se-
mantic segmentation involves making predictions at a finer scale. Semantic seg-
mentation is similar to classification in the sense that it involves classifying each
pixel of an input image to one of the K labels. Below, we present some recent
work on CNN architectures proposed for the task of semantic segmentation.

Many of the (de)convolutional neural networks used for semantic segmenta-
tion, as well as other structured prediction tasks such as pose estimation [Pfister
et al., 2015], are based on the CNN architectures developed for image classifica-
tion of [Krizhevsky et al., 2012, Simonyan and Zisserman, 2015], see e.g . [Chen
et al., 2015, Hong et al., 2015, Lin et al., 2016, Long et al., 2015, Noh et al.,
2015, Tsogkas et al., 2015, Zheng et al., 2015]. In addition to convolution and
pooling operators, deconvolutional networks also involve upsampling operators
to increase the resolution of the predictions in the output layer [Hong et al., 2015,
Noh et al., 2015]. The (de)convolutional neural networks are trained to predict
label for each pixel of the input image. More formally, objective function of the
network can be written as:

L(θ) =
∑
p

E(Xθ(p), l(p)), (4.1)

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 89

image pool4 pool5pool1 pool2 pool3conv1 conv2 conv3 conv4 conv5 conv6-7

pool4
2x conv7

pool3
2x pool4

4x conv7

conv7

conv7 + pool4

conv7 + pool4 + pool3

Figure 4.9 – Illustration of the skip architecture proposed in the FCN architecture
[Long et al., 2015]. The network topology corresponds to a DAG and learns to
combine coarse, high layer (e.g . conv7) information with fine, low layer (e.g .
pool3) information. On right, qualitative results demonstrating the improvement
brought in by fusing information from different layers with skip connections.
Image adapted from Long et al. [2015].

where p is the pixel index, Xθ(p) is the probability distribution over the labels,
predicted by a fully convolutional network with parameters θ, and l(p) is the
ground truth label at the pixel. E(Xθ(p), l(p)) denotes per pixel multinomial
logistic loss. The parameters θ are learned with standard SGD.

The work of Long et al. [2015] was an important work in the context of
deep learning based image segmentation. In contrast to the previous approaches
which used patch wise training [Ning et al., 2005, Pinheiro and Collobert, 2014],
pre- and post-processing [Gupta et al., 2014, Hariharan et al., 2014, 2015, Fara-
bet et al., 2013], their model is more efficient and trained end-to-end. They
are the first work which interprets the classification nets as fully convolutional
(see Section 4.2.1), and transfer the recent success of CNNs in classification
[Krizhevsky et al., 2012, Simonyan and Zisserman, 2015, Szegedy et al., 2015a]
to semantic segmentation by fine-tuning from their learned representations.

In their proposed architecture they interpolate the output response map of the
penultimate layer back to the original image size with a single upsampling layer
and obtain dense predictions at every pixel. They adapt the contemporary clas-
sification networks (AlexNet [Krizhevsky et al., 2012], GoogLeNet [Szegedy
et al., 2015a] and VGG16Net [Simonyan and Zisserman, 2015]) into a fully
convolutional networks (FCN) and transfer their learned representations by fine

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 90

Figure 4.10 – On left, the convolution-deconvolution network proposed in [Noh
et al., 2015]. The convolution network is based on the VGG16Net [Simonyan
and Zisserman, 2015]. The deconvolution network constructs dense pixel-wise
predictions through a series of convolution, unpooling and rectification opera-
tions. Image source [Noh et al., 2015].

tuning the network to semantic segmentation task. Even though GoogLeNet
and VGG16Net attain similar classification accuracy on ImageNet, Long et al.
[2015] obtain significantly inferior results with GoogLeNet for semantic seg-
mentation.

In their experiments they observe that predictions made by penultimate layer
is coarse in nature. To address this shortcoming, they add skip connections to
combine predictions made from penultimate layer with predictions made from
lower layers, converting the line topology to a direct acyclic graph (DAG). See
Figure 4.9 for a schematic of their network architecture. Using the VGG16Net
equipped with the skip connections, they obtain state-of-the-art results on differ-
ent semantic segmentation datasets.

The work of Noh et al. [2015] builds upon the work of Long et al. [2015]
by learning a deep deconvolutional network. Their architecture is composed
of two parts: a convolutional and a deconvolutional network. The convolution
network represents a feature extractor which transforms an image into a multi-
dimensional feature representation via a series of convolution and pooling layers.
The deconvolution network takes the feature representation as an input and out-
puts an image segmentation. The deconvolutional network is composed of con-
volution and unpooling layers, which gradually upsample the response map so as
to obtain the predictions of the same size as the input image. They advocate the
use of unpooling layers [Zeiler and Fergus, 2014, Zeiler et al., 2011], which per-
form unpooling operation by using the pooled location from the corresponding
pooling layers of the convolution network. Figure 4.10 illustrates the proposed
architecture composed with the convolution and the deconvolution network. To

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 91

max pool

upsampling

conv

Output
Segmentation

copy and crop

Input
Image

Figure 4.11 – Schematic illustration of U-Net architecture [Ronneberger et al.,
2015]. Distant convolution and deconvolution layers are linked with additional
links. Blue and white rectangles indicate output of a convolution operation and
copied channels respectively. The thickness of rectangles is propotional to num-
ber of channels. Image adapted from [Ronneberger et al., 2015].

obtain invariance from scale, they apply their trained architecture to individual
object proposals and obtain instance-wise segmentations. In the post-processing
step, they combine the instance-wise segmentations to output the final seman-
tic segmentation. Using their proposed architecture and post-processing, they
obtain a significant gain over the work of Long et al. [2015].

Independently to the work of Noh et al. [2015], Ronneberger et al. [2015]
propose a similar architecture (U-Net) but for the task of biomedical image seg-
mentation. U-Net architecture also involves a convolution network and deconvo-
lution network, but couples the distant convolutional and deconvolutional layers
of the same resolution with additional links, see Figure 4.11. The additional
links are added in order to preserve the fine grained details, which would other-
wise be lost in the convolution network. Milletari et al. [2016] builds upon this
work for the task of volumetric image segmentation. They use an architecture
similar to that of [Ronneberger et al., 2015], but replace the 2D convolution filter
with a 3D convolution filter.

Multi-scale architectures are commonly used for semantic segmentation [Chen
et al., 2015, Farabet et al., 2013, Lin et al., 2016]. They re-sample the input im-
age to several resolutions, process them independently for several layers, and
then fuse all streams by upsampling to the maximum resolution. The result is

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 92

passed through several more layers to produce the final output. Such architec-
tures can be thought of as a tree that has leafs in different re-scaled input images,
and the root at the output.

In Section 4.2.2 and Section 4.2.3 we have presented a brief overview of dif-
ferent CNN architectures used for image classification and segmentation respec-
tively. Hand-crafting the CNN architecture plays a crucial role in the recent
success of CNNs. The networks differ in terms of different hyperparameters of
CNN architecture, such as depth, number of filters, number of convolution and
pooling layers, connecting links, etc . Finding the right architecture for each task
is not trivial, and remains a manual and a tedious process. In our work we show
that nearly all of the (de)convolutional networks discussed above are embedded
in our fabric, either as paths or other simple sub-graphs. Before describing the
construction of fabric in Section 4.3, we give a brief review of work closely
related to our work presented in this chapter.

4.2.4 Closely related work
In this section we give an overview of recent work on CNN architectures

closely related to our work. Some of them share motivation to simplify CNN
architecture selection problem, whereas some share resemblance to our work
in terms of the CNN architecture. We highlight the differences we observe in
comparison to the work presented in this chapter.

The work of Zhou et al. [2015] is closely related to ours. They interlink
CNN models that take input from re-scaled versions of the input image. The
structure of their model is related to our trellis, but lacks a sparse connectivity
pattern across the channel dimension. Moreover, they set the number of chan-
nels, filter size per layer and scale in an ad-hoc manner. They explore their
networks only for semantic segmentation, not for image classification. Finally,
they did not observe that structures similar to theirs suffice to span a vast class
of (de)convolutional networks, which is our main result.

Misra et al. [2016] propose related cross-stitch networks that exchange infor-
mation across corresponding layers of two copies of the same architecture that
produces two different outputs. Their approach is based on the architecture of
Krizhevsky et al. [2012], and does not address the network architecture selection
problem.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 93

Figure 4.12 – Architecture of Recombinator networks [Honari et al., 2016] for
landmark localization. Each branch, takes upsampled feature maps from the
coarser branch.

Kulkarni et al. [2015] use `1 regularization to automatically select the num-
ber of units in “fully-connected” layers of CNN architectures for classification.
Although their approach does not extend to determine more general architec-
tural design choices, it might be possible to use such regularization techniques
to select the number of channels and/or layers of our fabrics.

Springenberg et al. [2015] experimentally observed that the use of max-pooling
in CNN architectures is not always beneficial as opposed to only using strided
convolutions. In our work we go one step further and show that ReLU units and
(strided) convolutions suffice to implement max-pooling operators in our trel-
lis. Their work, similar to ours, also strives to simplify architecture design. Our
results, however, reach much further than only removing one pooling operator
from the architectural hyperparameters.

Lee et al. [2016] generalize the max and average operators by computing both
max and average pooling, and then fusing the result in a possibly data-driven
manner. Our fabrics also generalize max and average pooling, but instead of
adding more elementary operators, we show that settings weights in a network
with fewer elementary operators is enough for this generalization.

Honari et al. [2016] argue that coarse and fine response maps preserve dis-
criminative and localization details respectively, and propose recombinator net-
work architecture to fuse information at different spatial resolutions. Traditional
multi-resolution approaches [Long et al., 2015, Hariharan et al., 2015] take a

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 94

weighted sum of upsampled feature maps. In contrast, they upsample the out-
put at a given scale, and concatenate it with the input feature maps at a finer
scale, see Figure 4.12. There work, similar to ours, fuses information at mutli-
ple scales, however, our work goes beyond that by automating CNN architecture
selection problem.

Dropout [Srivastava et al., 2014] and swapout [Singh et al., 2016] are stochas-
tic training methods related to our work. They can be understood as approx-
imately averaging over an exponential number of variations of a given archi-
tecture. Our approach, on the other hand, allows to leverage an exponentially
large class of architectures (ordering of pooling and convolutional layers, type
of pooling operator, etc .) by means of continuous optimization. Note that these
approaches are orthogonal and can be applied to fabrics.

While multi-dimensional networks have been proposed in the past, e.g . to
process non-sequential data with recurrent nets [Graves et al., 2007, Kalchbren-
ner et al., 2016], to the best of our knowledge they have not been explored as a
“basis” to span large classes of (de)convolutional neural networks.

4.3 The fabric of convolutional neural networks
We now give a precise definition of our trellis model, and show in Sec-

tion 4.3.2 that most architectural design choices of (de)convolutional nets be-
come irrelevant for sufficiently large trellises. Finally, we analyze the number of
response maps, parameters, and activations of our trellises in Section 4.3.3.

4.3.1 Weaving the convolutional neural fabric
Each node in the trellis represents a response map with the same dimension

as the input signal (1D for audio, 2D for images, 3D for video). The structure of
the trellis over the nodes is spanned by three axes. A layer axis along which all
edges advance, which rules out any cycles, and which is analogous to the depth
axis of a CNN. A scale axis along which response maps of different resolutions
are organized from fine to coarse, neighboring resolutions are separated by a
factor two. A channel axis along which different response maps of the same
scale and layer are organized. In practice we use S scales when we process
inputs of size 2S−1, e.g . for 32×32 images we use six scales, so as to obtain
a full scale pyramid from the input resolution all the way to the coarsest 1×1
activations.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 95

(s+1)

(s)

(s-1)

Cha
nn

el
s

OutputLayers

Input

Internal Node

S
ca

le
s

Figure 4.13 – On the left, schematic illustration of the sparse homogeneous edge
structure in the trellis. Channel connectivity pattern at the same scale (red) and
across finer and coarser scale (green) depict sparse connect structure. See text
for more details. On the right, connectivity of a channel of an internal node
to channels of preceding nodes is shown. The internal node is connected to 3
channels at the same scale (red), 3 at the finer and 3 at coarser scales (green).

Upsample + Conv

Conv

Strided Conv

S
ca

le
s

Layers

Figure 4.14 – Schematic illustration of how a node (purple) in a trellis combines
the input from different scales. Input from a finer scale is obtained with a stride-
2 convolution (green), and from a coarser scale by upsampling the feature map,
followed by a convolution (red). Input at the same scale is obtained with stride-
1 convolution which preserves the spatial resolution (blue). The output feature
map (purple) is generated by summing the three response maps.

We now define a sparse and homogeneous edge structure. Each node is con-
nected to a 3×3 scale–channel neighborhood in the previous layer, i.e . channel c
at scale s receives input from channels {c−1, c, c+1} at scales {s−1, s, s+1} in
the previous layer, see Figure 4.13. Input from a finer scale is obtained via strided
convolution, and input from a coarser scale by convolution, after upsampling by
padding zeros around the activations at the coarser level, see Figure 4.14.

Activations in the trellis are thus a linear function over multi-dimensional
neighborhoods, i.e . a four dimensional 3×3×3×3 neighborhood when using 2D
input images. The propagation is, however, only convolutional across the input
dimensions, and not across the scale and layer axes. Note that “fully connected”

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 96

layers of a CNN correspond to nodes and edges along the coarsest 1×1 scale
of the trellis. Rectified linear units (ReLUs) are used at all nodes. Figure 4.14
(left) illustrates the connectivity pattern in 2D, omitting the channel dimension
for clarity.

All channels in the first layer at finest resolution are connected to all channels
in the input signal. The first layer contains additional edges to distribute the
signal across coarser scales, see the vertical edges in Figure 4.14 (left). More
precisely, within the first layer, channel c at scale s receives input from channels
{c − 1, c, c + 1} from the previous scale s − 1. Similarly, edges within the last
layer collect the signal towards the output. Note that these additional edges do
not create any cycles in the trellis, and that the edge-structure within the first and
last layer is reminiscent of the 2D trellis in Figure 4.14.

4.3.2 Stitching chain-structured networks on the fabric
We now explicitly show how various architectures are embedded in the trel-

lis, demonstrating it subsumes essentially all (de)conv. models discussed above.
In practice, learning configures the trellis to behave as one architecture or an-
other, but generally as an ensemble of all embedded architectures.

For all but the last of the following paragraphs, it is sufficient to consider a
2D trellis, as in Figure 4.14, where each node contains the response maps of C
channels with dense connectivity among channels.

Re-sampling operators Several operators are used in (de)convolutional net-
works to change the resolution of response maps, strided convolution is the most
basic one. Stride-two convolutions are used in the trellis on all fine-to-coarse
edges, larger strides can be obtained by following multiple such edges.

Average pooling across small regions is also strided convolution with uniform
filter weights, and thus available in the trellis. See the next paragraph for aver-
aging pooling over larger areas.

Consider max-pooling over a 2 × 2 region, larger sizes are obtained by repe-
tition. Let a and b represent the values of two vertically neighboring pixels. Use
one layer and three channels to compute (a+b)/2, (a−b)/2, and (b−a)/2). Af-
ter ReLU, at most only two terms remain non-zero. A second layer can compute
the sum of the three terms, which equals max(a, b). Each pixel now contains the
maximum of its value and that of its vertical neighbor. Repeating the same in

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 97

1

4

1 2 1

2 4 2

1 2 1

1 1 0

1 1 0

0 0 0

Bilinear Nearest neighbor

Figure 4.15 – Illustration of how fabrics can implement different upsampling
operators. In the top, fabrics upsample a feature map by zero padding, followed
by a convolution. In the bottom, setting the convolution kernel to specific filters
implements bi-linear and nearest neighbor interpolation.

the horizontal direction, and sub-sampling by a factor two, gives the output of
2×2 max-pooling. This process can also be adapted to show that a network of
MaxOut units [Goodfellow et al., 2013] can be implemented in a trellis of ReLU
units.

Bi-linear interpolation is commonly used in deconvolutional networks. Factor-
two interpolation can be represented in our trellis on coarse-to-fine edges by
using a filter that has 1 in the center, 1/4 on corners, and 1/2 elsewhere. In-
terpolation by larger powers of two can be obtained by repetition. Similarly,
Nearest neighbor interpolation is obtained using a filter that is 1 in the four top
left entries and zero elsewhere, see Figure 4.15.

Filter sizes To implement a 5 × 5 filter we first compute nine intermediate
channels to obtain a vectorized version of the 3×3 neighborhood at each pixel,
using filters that contain a single one, and are zero elsewhere. A second 3×3
convolution can then aggregate values across the original 5×5 patch, and output
the desired convolution, see Figure 4.16. Any 5×5 filter can be implemented
in this way, not only factorized approximations, c.f . Simonyan and Zisserman
[2015]. With an appropriate number of channels in the trellis, repetition allows
to implement every filter of any desired size.

Ordering convolution and re-sampling As shown in Figure 4.1, chain-structured
(de)convolutional nets correspond to paths in the trellis. If weights on edges out-

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 98

(a) (b) (c) (d)

Figure 4.16 – In this illustration we consider computing a 5×5 convolution over
a single channel with 3 × 3 convolutions in the fabric. The first convolution
operation computes 9 intermediate channels (b) to obtain a vectorized version of
3 × 3 neighborhood in the input (a). Performing a 3 × 3 convolution over the
intermediate channels (b) allows the filter to access the 5 × 5 patch in the input
(d).

side a path are set to zero, a chain-structured (de)convolutional net with a partic-
ular sequencing of convolutions and re-sampling operators is obtained. A trellis
that spans S+ 1 scales and L+ 1 layers contains more than

(
L
S

)
chain-structured

CNNs, since this corresponds to the number of ways to spread S sub-sampling
operators across the L steps to go from the first to the last layer. More CNNs are
embedded, e.g . by exploiting edges within the first and last layer, or by including
intermediate up-sampling operators.

Networks beyond chain-structured ones, see e.g . Farabet et al. [2013], Long
et al. [2015], Ronneberger et al. [2015], are also embedded in the trellis, by
activating a larger subset of edges than a single path, e.g . a tree structure for the
multi-scale net of Farabet et al. [2013].

Channel connectivity pattern Although most networks in the literature use
dense connectivity across channels between successive layers, this is not a ne-
cessity. For example, Krizhevsky et al. [2012] used a network that is partially
split across two independent processing streams.

In Figure 4.17 we demonstrate that our trellis, which is sparsely connected
along the channel axis, suffices to emulate densely connected convolution lay-
ers. This is achieved by copying channels, convolving them, and then locally
aggregating them. Both the copy and sum process are based on local channel
interactions and convolutions with filters that are either entirely zero, or iden-
tity filters which are all zero except for a single 1 in the center. While more
efficient constructions exist to represent the densely connected layer in our trel-
lis, the one presented here is simple to understand and suffices to demonstrate
feasibility. Note that in practice learning automatically configures the trellis.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 99

Layers

C
ha

nn
el

s

a a a a a a a a a a a

b a b b b b b b b b b

c b a c c c b c c c . . . c

d c c a d d c b d d d

e d d d a e d d b e e

e e e e a e e e b e —– —–
a a a a d c+ d+ e —–

. . . c —– a+ b+ c+ d+ e

b a+ b —–
a —– —–

. . .
...

Figure 4.17 – Schematic representation of a dense-channel-connect layer in our
sparse trellis using local copy and swap operations. The five input channels
a, . . . , e are first copied; more copies are generated by repetition. Channels are
then convolved and locally aggregated in the last two layers to compute the de-
sired output. Channels in rows, layers in columns, scales are ignored for sim-
plicity.

Table 4.1 – Number of response maps, parameters, activations, and multiplica-
tions for a trellis withL layers, S scales,C channels, for 2D inputs of sizeN×N
pixels. Channel doubling across scales used in the bottom row.
chan. / scale # resp. maps # parameters (sparse) # parameters (dense) # activations # multiplications (dense) # multiplications (sparse)
constant C · L · S C · L · 33 · 3 · S C · L · 33 · C · S C · L ·N2 · 4

3
C · L ·N2 · 27C C · L ·N2 · 81

doubling C · L · 2S C · L · 33 · 3 · 2S C · L · 33 · C · 4S · 4
9

C · L ·N2 · 2 C · L ·N2 · 259
8
C · S C · L ·N2 · 135

Both the copy and sum process generally require more than one trellis layer
to execute. In the copying process, intermediate ReLUs do not affect the result
since the copied values themselves are non-negative outputs of ReLUs. In the
convolve-and-sum process care has to be taken since one convolution might give
negative outputs, even if the sum of convolutions is positive. To handle this cor-
rectly, it suffices to shift the activations by subtracting from the bias of every
convolution i the minimum possible corresponding output amin

i (which exists for
any bounded input domain). Using the adjusted bias, the output of the convo-
lution is now guaranteed to be non-negative, and to propagate properly in the
copy and sum process. In the last step of summing the convolved channels, we
can add back

∑
i a

min
i to shift the activations back to recover the desired sum of

convolved channels.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 100

Channels

S
ca
le
s

Figure 4.18 – Diagram of sparse channel connectivity from one layer to another
in the channel-doubling trellis. Channels are laid out horizontally, scales verti-
cally. Each internal node (green), channel, is connected to nine other nodes at
the previous layer: four channels (red) at a coarser resolution, two (blue) at a
finer resolution, and to itself and neighboring channels at the same resolution.

4.3.3 Analysis of the number of parameters and activations
For our analysis we ignore border effects, and consider every node to be an

internal one. In the top row of Table 4.1 we state the total number of response
maps throughout the trellis, and the number of parameters when channels are
sparsely or densely connected. We also state the number of activations in the
trellis, which determines the memory usage of back-propagation during learning.

While embedding an exponential number of architectures in the number of
layers L and channels C, the number of activations and thus the memory cost
during learning grows only linearly in C and L.

The number of parameters is linear in the number of scales S. For sparsely
connected channels, the number of parameters grows also linearly with the num-
ber of channels C , while it grows quadratically with C in case of dense connec-
tivity. The number of activations grows exponentially with the number of scales,
since each scale layer doubles the resolution response maps. In other words, the
number of scales is logarithmic in the input size, e.g . six for 32×32 images, and
nine for 256×256 images.

As an example, the largest models we trained for 32×32 input have L = 16
layers and C = 256 channels, resulting in 2M parameters (255M for dense), and
6M activations. For 256×256 input we used upto L = 16 layers and C = 64
channels, resulting in 0.7 M parameters (15M for dense), and 89M activations.
For reference, the VGG-19 model has 144M parameters and 14M activations.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 101

In addition to the trellis structure defined above, we analyze a second trellis in
the second row of Table 4.1; here the number of channels doubles when moving
one scale coarser instead of being constant. In the case of sparsely connected
channels, we adapt the local connectivity pattern between nodes to accommodate
for the varying number channels per scale, see Figure 4.18 for an illustration.
Each node still connects to nine other nodes at the previous layer. Whereas
before a node at scale s took input from three channels from scales {s−1, s, s+
1}, it now takes two inputs from scale s − 1, three from scale s, and four from
scale s+ 1.

This results in a number of channels throughout the scale pyramid that is ex-
ponential in the number of scales S for a given number of “base channels” at
the finest resolution C. For 32×32 input images the total number of channels is
roughly 11× larger, while for 256×256 images we get roughly 57 more chan-
nels. The last column of Table 4.1 shows that the number of activations, however,
grows only by 50%. Since each node still takes nine inputs from the previous
layer, the computational cost grows also only by 50%. In case of sparse channel
connection, the number of parameters grows by the same factor 2S/S. In case
of dense connections, however, the number of parameters explodes with a factor
4
9
4S/S. That is, roughly a factor 303 for 32×32 input, and 12,945 for 256×256

input. Therefore, the channel-doubling variant of our trellis is very attractive,
provided that sparse channel connectivity is used. Similar channel-doubling is
also used in the well-known VGG-16/19 architectures [Simonyan and Zisser-
man, 2015].

4.4 Experimental evaluation
In this section we detail the experimental evaluation of dense and sparse

trellis for the task of image segmentation and classification. First we present the
datasets and evaluation protocols used in our experiments in Section 4.4.1. Next,
we provide quantitative evaluation of the dense and sparse trellises and compare
our results with relevant state-of-the-art methods. Finally in Section 4.4.6 we
visualize the structure of the learned trellises on different datasets, and observe
qualitative differences between them.

4.4.1 Datasets and experimental protocol
Part Labels dataset This dataset [Kae et al., 2013a] consists of 2,927 face im-
ages from the LFW dataset [Huang et al., 2007], with pixel-level annotations into
the classes hair, skin, and background. We use the standard evaluation protocol

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 102

which specifies training, validation and test sets of 1,500, 500 and 927 images,
respectively. We report performance in terms of pixel-level and superpixel-level
accuracy. For the latter, we average the class probabilities over pixels contained
in the superpixel. To augment the train set we add flipped versions of the images,
and do not use any other data augmentation techniques. The batch size is set to
64, and we train our networks upto 8k iterations. The learning rate is dropped
by factor 10 after 4k and 6k iterations.

MNIST This dataset [LeCun et al., 1998] consists of 28×28 pixel images of
the handwritten digits {0, . . . , 9}. We use the standard split of the dataset into
50k training samples, 10k validation samples and 10k test samples. Pixel values
are normalized to [0, 1] by dividing them by 255. We augment the train data by
randomly positioning the original image on a 32×32 pixel canvas. The batch
size is set to 64, and we train our networks upto 20k iterations. The learning rate
is dropped by factor 10 after every 5k iterations.

CIFAR10 The CIFAR-10 dataset 1 [Krizhevsky, 2009] consists of 50k 32×32
training images and 10k testing images in 10 classes. We hold out 5k train-
ing images as validation set, and use the remaining 45k as the training set. To
augment the data, we follow common practice, see e.g . [Lin et al., 2013, Good-
fellow et al., 2013], and pad the images with zeros to a 40×40 image and then
take a random 32×32 crop, in addition we add flipped versions of these images.
The batch size is set to 128, and we train our networks upto 40k iterations. The
learning rate is dropped by factor 10 after 20k and 30k iterations.

Training protocol We train our trellises using SGD with momentum of 0.9.
We set the initial learning rate to 0.1 in all experiments. After each node in the
trellis we apply batch normalization [Ioffe and Szegedy, 2015], and regularize
the model with weight decay of 10−4. We do not apply dropout [Srivastava et al.,
2014] at any node in the trellis.

For all the three datasets we train dense and sparse trellises with various num-
bers of channels and layers to find the best architecutre (in terms of channels
and layers). In these experiments, we train the models only on the train set, and
report results on the test set. To compare our method to state-of-the-art, we train
the previously found best architecture on both the validation and the train set.
In both set of experiments, the validation set is used to determine the optimal
number of training epochs. For the experiments reported here, we use a constant
number of channels per scale.

1. http://www.cs.toronto.edu/~kriz/cifar.html

http://www.cs.toronto.edu/~kriz/cifar.html

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 103

Table 4.2 – Superpixel-level accuracy on Part Labels for CNF-dense. Number of
parameters given in parentheses.

Layers / Channels 4 16 64

2 93.57 (8K) 95.26 (124K) 95.33 (2M)

4 93.67 (16K) 95.05 (249K) 95.20 (4M)

8 95.09 (31K) 95.22 (498K) 95.39 (8M)

16 94.92 (62K) 95.29 (995K) 95.34 (16M)

Table 4.3 – Superpixel-level accuracy on Part Labels for CNF-sparse. Number
of parameters given in parentheses.

Layers / Channels 4 16 64

2 91.95 (6K) 94.76 (23K) 95.14 (93K)

4 93.94 (12K) 95.02 (47K) 95.34 (187K)

8 94.87 (23K) 95.48 (93K) 95.46 (373K)

16 95.15 (47K) 95.38 (187K) 95.26 (746K)

4.4.2 Evaluation on Part Labels
On this dataset we evaluate the performance of fabrics for the task of im-

age segmentation. The performance is measured in terms of super-pixel level
labelling accuracy. In Table 4.2 and Table 4.3 we evaluate dense and sparse trel-
lis by varying the number of layers and channels. Besides the labelling acuracy,
we also report the number of parameters used for each model. The best per-
formance for dense and sparse trellis is obtained with 8 layers, 64 channels and
8 layers,16 channels respectively. The latter uses one order of magnitude less
parameters than the former, and obtains slightly better performance. As it can
be seen from the results in the table, performance of larger trellises is better than
that of smaller ones.

In Table 4.4 we compare our results with the state-of-the-art, both in terms
of accuracy and the number of parameters. For accuracy, we report both the
super-pixel level accuracy and pixel level accuracy. We obtained a super-pixel
accuracy of 95.6 using both sparse and dense trellises. Our sparse convolutional
neural fabric (CNF) results improve over Kae et al. [2013a] which also employs
CRF and RBM shape models. In contrast, we predict all pixels independently

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 104

Figure 4.19 – Examples form the Part Labels test set: input image (left), ground-
truth labels (middle), and superpixel-level labels from our sparse CNF model
with 8 layers and 16 channels (right).

Table 4.4 – Comparison of our results with the state of the art on Part Labels.
The performance is reported in terms of super-pixel and pixel level accuracy.

Year # Params. SP Acccur. P Accur.

Tsogkas et al. [2015] 2015 >414 M 96.97 —
Zheng et al. [2015] 2015 >138 M 96.59 —
Liu et al. [2015] 2015 >33 M — 95.24
Kae et al. [2013a] 2013 0.7 M 94.95 —

Ours: CNF-sparse (L = 8, C = 16) 0.1 M 95.58 94.60
Ours: CNF-dense (L = 8, C = 64) 8.0 M 95.63 94.82

using a model with about seven times less parameters. In Figure 4.19 we show
two examples of predicted segmentation maps with the CNF-sparse trellis.

Our results are slightly worse than Tsogkas et al. [2015], Zheng et al. [2015].
Their results are based on VGG-16 network, which has three orders of mag-
nitude more parameters than our sparse trellis, and has been trained from over
1M ImageNet images. In contrast, we have trained our model from scratch us-
ing only 2,000 images. Moreover, Tsogkas et al. [2015] also includes CRF and
RBM for spatial regularization and train separate CNN’s for each category.

4.4.3 Evaluation on MNIST
In this section, we evaluate our dense and sparse trellis for the task of image

classification on MNIST dataset. In Table 4.5 and Table 4.6, we report the error

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 105

Table 4.5 – Error rate on MNIST for CNF-dense. Number of parameters given
in parentheses.

Layers / Channels 4 8 16 32 64 128

2 3.47 (8K) 1.46 (31K) 0.73 (124K) 0.65 (498K) 0.59 (2M) 0.59 (8M)
4 2.74 (16K) 0.88 (62K) 0.67 (249K) 0.54 (1M) 0.59 (4M) 0.51 (16M)
8 1.65 (31K) 0.70 (124K) 0.60 (498K) 0.52 (2M) 0.39 (8M) 0.46 (32M)
16 1.04 (62K) 0.60 (249K) 0.50 (1M) 0.55 (4M) 0.39 (16M) 0.47 (64M)
32 1.29 (124K) 0.92 (498K) 0.64 (2M) 0.57 (8M) 0.61 (32M) 0.56 (128M)

Table 4.6 – Error rate on MNIST for CNF-sparse. Number of parameters given
in parentheses.

Layers / Channels 4 8 16 32 64 128

2 4.94 (4K) 2.32 (8K) 1.68 (16K) 1.40 (31K) 0.97 (62K) 1.00 (124K)
4 2.96 (8K) 1.69 (16K) 1.14 (31K) 0.96 (62K) 0.98 (124K) 0.78 (249K)
8 1.94 (16K) 1.12 (31K) 0.87 (62K) 0.69 (124K) 0.79 (249K) 0.57 (498K)

16 1.13 (31K) 0.91 (62K) 0.71 (124K) 0.56 (249K) 0.68 (498K) 0.70 (1M)
32 1.37 (62K) 0.88 (124K) 0.67 (249K) 0.61 (498K) 0.77 (1M) 0.73 (2M)

rate and number of parameters for different configurations of dense and sparse
trellises. For the dense trellis, the largest model we trained consists of 128M
parameters, but performs inferior to the best result we obtain with 8 layers and
64 channels (0.56 vs 0.39). This is possibly due to over-fitting. With the sparse
trellis we obtain slightly inferior results as compared to the dense trellis (0.56 vs
0.39) but with an order of magnitude less parameters.

In Table 4.7 we compare our results to recent state-of-the-art. We excluded
several more accurate results reported in the literature, since they are based on
significantly more elaborate data augmentation methods. We obtain error rates
of 0.48% and 0.33% with sparse and dense trellises respectively. Our result with
densely connected trellis is comparable to those of Kalchbrenner et al. [2016],
Wan et al. [2013], which use similar data augmentation. Our sparse model,
which has 20× less parameters than the dense variant, and yields an error of
0.48% which is slightly higher. In Figure 4.20 we plot the 33 errors among
the 10,000 test samples for the result of densely connected trellis reported in
Table 4.7. A significant portion of these errors are due to missing strokes in the
hand-written digits, see e.g . row three, column two in the figure.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 106

Table 4.7 – Comparison of our results with the state of the art on MNIST. Data
augmentation with translation and flipping is denoted by T and F respectively, N
denotes no data augmentation.

Year Augmentation # Params. Error (%)

Chang and Chen [2015] 2015 N 447K 0.24
Lee et al. [2015] 2015 N 0.31
Grid LSTM [Kalchbrenner et al., 2016] 2016 T 0.32
Dropconnect [Wan et al., 2013] 2013 T 379K 0.32
CKN [Mairal et al., 2014] 2014 N 43 K 0.39
Maxout [Goodfellow et al., 2013] 2013 N 420 K 0.45
Network in Network [Lin et al., 2013] 2013 N 0.47

Ours: CNF-sparse (L = 16, C = 32) T 249 K 0.48
Ours: CNF-dense (L = 8, C = 64) T 5.3 M 0.33

3 (1) 7 (1) 6 (1) 7 (2) 7 (2) 5 (3) 6 (4) 9 (4) 6 (4) 9 (4) 3 (5)

3 (5) 3 (5) 6 (5) 8 (6) 5 (6) 1 (6) 0 (6) 4 (7) 1 (7) 2 (7) 1 (7)

2 (7) 1 (7) 2 (7) 2 (8) 3 (8) 2 (8) 4 (9) 4 (9) 4 (9) 4 (9) 4 (9)

Figure 4.20 – All 33 errors among 10,000 test samples of MNIST for the result of
densely connected trellis reported in Table 4.7. The prediction and groundtruth
are reported in red and black respectively.

4.4.4 Evaluation on CIFAR10
In this section we evaluate the trellis on CIFAR10 dataset for the task of im-

age classification. In Table 4.8 and Table 4.10, we report results for different
configurations of dense and sparse trellis. The parameters for the different con-
figurations are provided in Table 4.9 and Table 4.11 respectively. For CNF-dense
the best results are obtained with 8 layers. 256 channels, and 127M parame-
ters. Models with 16 layers and a large number of channels (e.g . 128 and 256)
perform worse as compared to the relatively smaller trellises. This is possibly
because of optimization difficulties we face when learning trellises with a large
number of parameters and embedded architectures. On this dataset, the error
rates obtained with sparse trellis is significantly worse. We are investigating the

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 107

Table 4.8 – Error rate on CIFAR10 for CNF-dense. Number of parameters given
in Table 4.9.

Layers / Channels 2 4 8 16 32 64 128 256

2 68.70 50.96 33.66 23.92 18.83 15.72 13.79 13.11
4 62.34 41.92 27.76 19.22 14.65 13.38 12.09 10.06
8 58.26 35.12 22.53 15.57 13.05 10.88 9.42 9.31
16 50.31 28.27 19.03 13.57 10.95 9.65 10.63 14.27

Table 4.9 – Number of parameters for CIFAR10, CNF-dense.

Layers / Channels 2 4 8 16 32 64 128 256

2 (2K) (8K) (31K) (124K) (498K) (2M) (8M) (32M)
4 (4K) (16K) (62K) (249K) (1M) (4M) (16M) (64M)
8 (8K) (31K) (124K) (498K) (2M) (8M) (32M) (127M)
16 (16K) (62K) (249K) (1M) (4M) (16M) (64M) (255M)

Table 4.10 – Error rate on CIFAR10 for CNF-sparse. Number of parameters for
the different configurations are provided in Table 4.11.

Layers / Channels 2 4 8 16 32 64 128 256

2 68.70 49.65 48.95 34.48 31.48 28.82 27.67 25.56
4 62.34 43.69 34.28 30.07 26.18 25.14 22.96 22.60
8 58.26 40.02 28.10 24.44 22.12 22.20 20.66 21.38
16 50.31 32.28 25.70 22.65 19.74 19.07 19.05 18.89

reason for this exception.

In Table 4.12 we compare our results to the state of the art. Our error rate of
7.43% with a dense trellis is competitive to that reported with MaxOut networks
Goodfellow et al. [2013]. We also obtain results comparable to that reported
with All Convolutional Net [Springenberg et al., 2015]. They obtain a slightly
better rate, with an order of magnitude fewer parameters. This is due to the fact
that their network has been hand-crafted for optimizing the performance while
keeping the parameter count low. Our trellis construction enjoys the benefit of
having far less hyperparameters to be tuned at the cost of having an order of
magnitude more parameters.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 108

Table 4.11 – Number of parameters for CIFAR10, CNF-sparse.

Layers / Channels 2 4 8 16 32 64 128 256

2 (2K) (4K) (8K) (16K) (31K) (62K) (124K) (249K)
4 (4K) (8K) (16K) (31K) (62K) (124K) (249K) (498K)
8 (8K) (16K) (31K) (62K) (124K) (249K) (498K) (1M)
16 (16K) (31K) (62K) (124K) (249K) (498K) (1M) (2M)

Table 4.12 – Comparison of our results with the state of the art on CIFAR10.
Data augmentation with translation, flipping, scaling and rotation are denoted
by T, F, S and R respectively.

Year Augmentation # Params. Error (%)

Lee et al. [2015] 2015 T+F 1.8M 6.05
Chang and Chen [2015] 2015 T+F 1.6M 6.75
All Convolutional Net [Springenberg et al., 2015] 2015 T+F 1.3 M 7.25
[Mishkin and Matas, 2016] 2016 T+F - 7.40
Network in Network [Lin et al., 2013] 2013 T+F 1 M 8.81
Dropconnect [Wan et al., 2013] 2013 T+F+S+R 19M 9.32
MaxOut [Goodfellow et al., 2013] 2013 T+F >6 M 9.38

Ours: CNF-sparse (L = 16, C = 64) T+F 2M 18.89
Ours: CNF-dense (L = 8, C = 128) T+F 32M 7.43

Mishkin and Matas [2016] obtained an error rate of 5.84% by using residual
connections [He et al., 2016], MaxOut activations [Goodfellow et al., 2013], and
LSUV weight initialization (which we can, but did not yet, use in our approach).
Without residual connections, using ReLU instead of MaxOut activations, and
batch-normalization (as we did), the same paper reports an error of 7.40%, which
is comparable to 7.43%, the error rate we report with dense fabric.

4.4.5 Discussion
In the previous section we have presented our results on three different datasets

for the tasks of image classification and segmentation. In this section, keeping
the results in consideration, we briefly discuss and highlight the salient points of
our contribution.

One of the key advantage of the trellis is that the same architecture can be
used for performing both image classification or image segmentation. The re-
sults presented in the chapter, validate this property of the trellis. In this work,

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 109

we trained the trellises separately for the two tasks. However, the trellis con-
struction, allows for joint learning of both tasks, image classification and image
segmentation.

For the task of image segmentation on Part Label dataset, we obtain results
competitive to the state-of-the-art, while keeping the parameter count lower than
competing methods. However, for the task of image classification on MNIST
and CIFAR-10 (see Table 4.7 and Table 4.12), our dense models have about an
order of magnitude more parameters for similar performance as related work.
We did not, however, manually handcraft the trellis, a practice currently ob-
served by a large part of computer vision literature on CNNs. Our goal in this
work is to automate the current practice of hand-crafting architectures for spe-
cific tasks or datasets. From the results presented in this chapter, we show that
the our fabrics are able to circumvent eight of the ten CNN architecture-related
hyperparameters.

There are two hyperparameters for the neural fabrics, number of layers and
channels. As can be seen from experimental results, performance of the trellis
for both CNF-sparse and CNF-dense varies smoothly over the hyperparameter
space. Hence, in practice, choice of the only two hyper-parameters of our model
is not critical, as long as a large enough trellis is used.

Fabrics, compared to standard CNN architectures, are more expensive to train.
This is due to the fact that by construction our fabrics are larger than any of the
embedded CNNs. The training time of a trellis scales linearly with the number
of nodes. The benefit is that for a linear increase in computation and memory
budget, we are able to explore an exponentially large number of CNN architec-
tures in parallel. This is an extremely advantageous trade-off as compared to
one-by-one hand-crafting and testing individual architectures. To appreciate the
number of embedded architectures consider the fabrics used for MNIST and CI-
FAR10, with 8 layers and 6 scales, the trellis embeds 7, 442 conventional CNN
architectures.

Despite the fact that trellises are more expensive to train, we consider our fab-
ric models practical. All the experiments reported in this work were conducted
on a single consumer-grade Nvidia Titan X GPU.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 110

Figure 4.21 – Visualization of densely connected trellis model for Part Labels
(top-left), MNIST (top-right) and CIFAR10 (bottom-left). The trellis models
correspond to the best architecture found for each dataset. Layers are laid out
horizontally, and scales vertically. The circled nodes represent input and output
nodes of the trellis. In the bottom-right we visualize the CIFAR10 trellis after
pruning. See text for details.

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 111

4.4.6 Visualization
In this section we illustrate the structure of learned trellis models. We visu-

alize the learned trellis by plotting the edge width proportional to mean-squared
filter weights (mean computed along weights and channels). In Figure 4.21 we
visualize the weight strengths of learned trellis models for different datasets, and
observe qualitative differences between them.

For the task of image segmentation, Part Labels model (center) immediately
distributes the signal across the scale pyramid, i.e . across the first layer of the
trellis. The information from multi-scale signal is progressively refined and ag-
gregated towards the output node.

For the task of image classification, we have two models, CIFAR10 (left) and
MNIST (right). In the case of MNIST, signal in the trellis is propagated in a
band-diagonal pattern, exploiting multiple scales in each layer. With CIFAR10
we observe a similar pattern, but with a small difference. The signal is first pro-
cessed at the finest scale for a few layers, and then propagated down. This is
possibly due to the fact that CIFAR10 images have more variability than those
in MNIST, and the first few layers extract discriminative content before down-
sampling and propagating the signal. These results demonstrate that even for the
same task, the trellis is able to configure itself in order to accommodate nuances
of the dataset.

To reduce the number of parameters of a trained trellis model, we prune the
convolutions which have `2 norm of the weights below a threshold. The thresh-
old is set as the `2 norm of convolutions averaged over the entire trellis. We
evaluated this approach for CIFAR10 dataset and reduced the number of pa-
rameters from 32M to 6M in the best architecture (dense model), increasing the
error from 7.43% to 9.6%. We reduced the error rate to 8.11% by fine-tuning the
pruned trellis model. The number of parameters of this network is of a similar
magnitude as the state of the art. We visualize the topology of pruned network in
bottom-right panel of Figure 4.21, which roughly corresponds to the upper-right
triangle of the fabric in the bottom-left panel of Figure 4.21, with all up-sampling
connections being removed as well.

4.5 Conclusion
In this chapter we presented convolutional neural fabrics: homogeneous and

sparsely connected three-dimensional trellises over response maps. The fabric

CHAPTER 4. CONVOLUTIONAL NEURAL FABRICS 112

subsumes a large class of (de)convolutional networks. It sidesteps the tedious
process of specifying, training, and testing individual networks in order to find
good architectures. The fabric has only two main design parameters: the number
of layers and the number of channels. In practice their setting is not critical: we
just need a large enough fabric with enough capacity. We propose a variant with
dense channel connectivity, and one with channel-doubling over scales. The
latter strikes a very attractive capacity/memory trade-off.

In our experiments we study performance of image classification on MNIST
and CIFAR10, and of semantic segmentation on Part Labels. We obtain ex-
cellent results that are close to the best reported results in the literature on all
three datasets. These results demonstrate that our generic fabric approach is
competitive with the best hand-crafted CNN architectures. We expect that these
results can be further improved by using better optimization schemes such as
Adam[Kingma and Ba, 2015], using dropout [Srivastava et al., 2014] or drop-
conect [Wan et al., 2013] regularization, and using MaxOut units [Goodfellow
et al., 2013] and/or residual units [He et al., 2016] to facilitate training of deep
fabrics with many channels.

Chapter 5

Conclusion

Contents
5.1 Summary of Contributions 113
5.2 Future research prespectives 115

In this thesis we have focused on methods which address and benefit from
the consequences of rapid increase in the amount of available digital media con-
tent. To improve the efficiency and accuracy of retrieval, we have presented a
coordinated local metric learning approach in Chapter 2. In Chapter 3, we have
benchmarked various strategies involving metric learning and CNNs pre-trained
on visible spectrum images for heterogeneous face recognition. Finally, in Chap-
ter 4, we have presented convolutional neural fabric to address the architecture
selection problem in CNNs. We now present a summary of our contributions
and results, and conclude the thesis with perspectives for future research.

5.1 Summary of Contributions

Coordinated Local Metric Learning
In Chapter 2, we have focussed on distance metric learning. Learning a task

relevant metric is crucial as metrics play a crucial role in a wide range of ap-
plications in computer vision, e.g . local descriptor matching, fine-grained object
comparison, face verification, etc . We presented our coordinated local metric
learning (CLML) approach which learns local Mahalanobis metrics, and inte-
grates them in a global representation where the `2 distance can be used. This
allows for data visualization in a single view, and use of efficient `2-based re-
trieval methods. We show that our proposed approach can be interpreted as
learning a linear projection on top of an explicit high-dimensional embedding

113

CHAPTER 5. CONCLUSION 114

of a kernel. This interpretation allows for the use of existing frameworks for
Mahalanobis metric learning for learning local metrics in a coordinated man-
ner. We validate the effectiveness of our proposed approach through extensive
experiments. Our approach improves over global metric learning and other lo-
cal metric learning approaches evaluated over different features (LBP, FV-SIFT,
CNN), projection dimensions, and performance measures for the task of face re-
trieval. Our approach also allows efficient multiple-assignment retrieval, which
gives a better speed-accuracy trade-off than earlier work for a large-scale dataset
with a million distractor faces.

Heterogeneous Face Recognition
Heterogeneous face recognition is the problem of recognizing faces across

modalities. In most cases, the gallery of known individuals consists of normal
visible spectrum images. Probe images may be forensic sketches or thermal
infrared images which are useful in a forensic context or covert non-intrusive
night-time acquisition respectively. In Chapter 3, we explore the use of CNNs
pre-trained on visible spectrum images for the task of heterogeneous face recog-
nition. We evaluate different metric learning strategies to reduce the discrep-
ancies between the modalities, and find that metric learning over the features
from the intermediate layers of networks is most effective. In our experiments
we found that the depth of the optimal features for a given modality, is posi-
tively correlated with the domain shift between the source domain (CNN train-
ing data) and the target domain. Experimental results show the that we can use
CNNs trained on visible spectrum images to obtain results that improve over the
state-of-the art for heterogeneous face recognition with near-infrared images and
sketches.

Convolutional Neural Fabrics
Instead of manually designing compact CNN architectures with maximum

performance, our goal in Chapter 4 is to automate the current practice of hand-
crafting architectures for specific tasks or datasets. In our work, we propose a
“fabric” that embeds an exponentially large number of CNN architectures. The
fabrics sidesteps the tedious process of specifying, training and testing individ-
ual networks in order to find good architectures. The standard classification and
segmentation architectures can be recovered from the fabric for different choices
of hyperparamters and by setting certain weights to zero. Learning can thus
efficiently configure the fabric to implement each one of exponentially many
architectures and, more generally, ensembles of them. While scaling linearly in
terms of computation and memory requirements, fabrics leverages exponentially

CHAPTER 5. CONCLUSION 115

many chain-structured architectures in parallel by massively sharing weights be-
tween them. The fabric circumvents 8 out of 10 hyperparameters of the CNN
architecture-related hyperparameters. Our experiments show that the two re-
maining hyperparameters, number of layers and channels, are not critical as long
as they are large enough. In our experimental evaluation for image classification
and segmentation, fabrics obtain results competitive with the state-of-the art and
validate the effectiveness of our approach.

5.2 Future research prespectives
In the following three sections, we give possible extensions to the work pre-

sented in Chapters 2, 3 and 4, respectively.

Coordinated local metric learning In Chapter 2, we propose to embed local
metrics in a global low dimensional representation. Our approach for learning
coordinated local metrics can be interpreted as learning a linear projection on top
of a expanded data representation. The expanded data representation can also
be viewed as a Fisher vector image representation for GMMs [Sánchez et al.,
2013], when considering just the Fisher vector components corresponding to
the Gaussian means. This suggests extensions of CLML by including the FV
components related to the variance parameters of the GMM, which will result
in locally quadratic mappings. More generally, our approach can be applied
to other generative models other than Gaussian mixture models, by performing
metric learning on the FV obtained for these models. In some of our experiments
we use CLML on top of FV image descriptors; In this case the expanded data
representation can be interpreted as a stacked fisher vector [Simonyan et al.,
2013b].

In the context of CNN, CLML has strong similarities with Maxout Networks
[Goodfellow et al., 2013]. We use GMMs to obtain the soft-distribution over the
local metrics, whereas Maxout units use a hard assignment by setting the output
unit as the max computed over the input units. Maxout units were shown to
be an piecewise linear approximation to arbitrary convex functions, and hence
can learn activation functions for each hidden unit. In contrast, we show that
using the locally linear projections can be used to learn a non-linear mapping
by coordinating the local metrics. Our approach, CLML, can be interpreted as
a soft parametric version of Maxout units. Hence, an interesting future research
direction would be to explore the use of locally linear projections in a CNN as a
learnable non-linear projection.

CHAPTER 5. CONCLUSION 116

Heterogeneous face recognition In Chapter 3, we propose to leverage CNNs
pre-trained on large scale visible spectrum images for the task of heterogeneous
face recognition. In our work, we evaluated fine-tuning the CNN on the target
domain, followed by metric learning over features from intermediate layers of
the network. This approach is sub-optimal as we fine-tune the CNN for classifi-
cation, followed by learning a distance metric for verification. To mitigate this
issue, a direct extension of our work would be to evaluate fine-tuning the CNN
directly for metric learning instead of the current two step training protocol.

Similar in spirit to Ganin and Lempitsky [2015], an interesting line of work
would be to use an adversarial loss for training the CNN, but on a heteroge-
neous dataset. In our experiments, we evaluated fine-tuning the CNN on the
heterogeneous dataset with the classification loss, but obtained limited success
in fine-tuning more than one or two layers of the network. To aid in learning,
an adversarial loss [Goodfellow et al., 2014] can be attached to the penultimate
layer of the network which would guide the training to obtain domain-invariant
representations from the network.

Convolutional neural fabrics In Chapter 4, we propose Convolutional neu-
ral fabrics which embeds an exponentially large number of CNN architectures.
In our study, we have focussed on architecture learning and mainly ignored the
computational and memory cost. Therefore, a desirable future work direction is
to explore methods that enable us to learn architectures with a bounded compu-
tational and memory cost. In our experiments, we show that pruning edges of
a trained trellis and fine-tuning the resulting architecture, reduced the parameter
count by 80 % for a modest increase in error rate. Also, we have observed that
the trellis recovers the optimal network architecture within the early epochs of
SGD training. This hints at early pruning of trellis. Therefore, an interesting line
of work would be to train the fabrics in a dynamic nature, i.e . by growing and
pruning the trellises iteratively [Chen et al., 2016]. The key questions would be:
Which edges are to be pruned? Where should the new nodes be placed? Inter-
estingly, this procedure is analogous to synaptic pruning [Chechik et al., 1998,
1999], present in biological brains, where the synapses in the brain are pruned
between the early childhood and onset of puberty.

In the current set of experiments we have used data-augmentation and weight
decay for regularization during training. A promising direction is to investigate
the use of more explicit forms of regularization in the fabric. In the same spirit,
Larsson et al. [2016] train an ensemble of multiple networks of varying depth
in parallel. The networks are linked to each other at different mid-level layers.

CHAPTER 5. CONCLUSION 117

They propose drop-path regularization, which prevents co-adaptation of parallel
paths in a network. We can use similar path based regularization schemes to
encourage different sub-paths in a trellis during training.

Bibliography

R. Arandjelovic and A. Zisserman. Three things everyone should know to im-
prove object retrieval. In CVPR, 2012. 31

R. Arandjelovic and A. Zisserman. All about vlad. In CVPR, 2013. 76

Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category
detection. In ICCV, 2011. 49

J. Ba and R. Caruana. Do deep nets really need to be deep? In NIPS, 2014. 56

A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. Neural codes for image
retrieval. In ECCV, 2014. 50, 54, 55, 79

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisher-
faces: Recognition using class specific linear projection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, pages 711–720, 1997. 15

A. Bellet, A. Habrard, and M. Sebban. A Survey on Metric Learning for Feature
Vectors and Structured Data. ArXiv e-prints, 1306.6709, 2013. 15

S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations
for domain adaptation. In NIPS, 2007. 52

H. S. Bhatt, S. Bharadwaj, R. Singh, and M. Vatsa. Memetically optimized
MCWLD for matching sketches with digital face images. Transactions on
Information Forensics and Security, 7(5):1522–1535, 2012. 73

B. Bhattarai, G. Sharma, F. Jurie, and P. Pérez. Some faces are more equal
than others: Hierarchical organization for accurate and efficient large-scale
identity-based face retrieval. In ECCV Workshops, 2014. vii, 11, 12, 13, 21,
23, 24, 31, 32, 35, 36, 37, 38

J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural cor-
respondence learning. In Proceedings of the 2006 conference on empirical
methods in natural language processing. Association for Computational Lin-
guistics, 2006. 45

118

BIBLIOGRAPHY 119

J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman. Learning bounds
for domain adaptation. In NIPS, 2008. 45

J. Blitzer, S. Kakade, and D. P. Foster. Domain adaptation with coupled sub-
spaces. In AISTATS, 2011. 45

J. Bohné, Y. Ying, S. Gentric, and M. Pontil. Large margin local metric learning.
In ECCV, 2014. 11, 12, 21, 23, 24, 35

J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature verifica-
tion using a siamese time delay neural network. In NIPS, 1993. 11

M. Brown, G. Hua, and S. Winder. Discriminative learning of local image de-
scriptors. PAMI, 33(1), 2011. 76

Q. Cao, Y. Ying, and P. Li. Similarity metric learning for face recognition. In
ICCV, 2013. 12, 40

J.-R. Chang and Y.-S. Chen. Batch-normalized maxout network in network.
Arxiv preprint, 2015. 106, 108

G. Chechik, I. Meilijson, and E. Ruppin. Synaptic pruning in development: a
computational account. Neural computation, 1998. 116

G. Chechik, I. Meilijson, and E. Ruppin. Neuronal regulation: A mechanism for
synaptic pruning during brain maturation. Neural Computation, 1999. 116

G. Checkik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning of
image similarity through ranking. JMLR, 11:1109–1135, 2010. 18

D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: high dimen-
sional feature and its efficient compression for face verification. In CVPR,
2013. 38, 39

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille. Semantic
image segmentation with deep convolutional nets and fully connected CRFs.
In ICLR, 2015. 88, 91

T. Chen, I. Goodfellow, and J. Shlens. Net2net: Accelerating learning via knowl-
edge transfer. In ICLR, 2016. 78, 79, 116

X. Chen, P. Flynn, and K. Bowyer. IR and visible light face recognition. CVIU,
99(3):332–358, 2005. 46

J. Choi, S. Hu, S. S. Young, and L. S. Davis. Thermal to visible face recognition.
In SPIE Defense, Security, and Sensing, 2012. 65

BIBLIOGRAPHY 120

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discrimina-
tively, with application to face verification. In CVPR, 2005. 11, 12

E. J. Crowley, O. M. Parkhi, and A. Zisserman. Face painting: querying art with
photos. In British Machine Vision Conference, 2015. 58

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categoriza-
tion with bags of keypoints. In ECCV Int. Workshop on Stat. Learning in
Computer Vision, 2004. 3

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR, 2005. doi: 10.1109/CVPR.2005.177. URL http://hal.inria.
fr/inria-00548512. 58, 76

H. Daumé III. Frustratingly easy domain adaptation. ACL 2007, 2007. 45

H. Daume III and D. Marcu. Domain adaptation for statistical classifiers. Journal
of Artificial Intelligence Research, 26, 2006. 45

J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic metric
learning. In ICML, 2007. 11, 15, 16, 52

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, 2009. 3

T. I. Dhamecha, P. Sharma, R. Singh, and M. Vatsa. On effectiveness of his-
togram of oriented gradient features for visible to near infrared face matching.
In ICPR, 2014. 71

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition.
In ICML, 2014. 79

A. Dosovitskiy, J. Springenberg, M. Riedmiller, and T. Brox. Discriminative
unsupervised feature learning with convolutional neural networks. In NIPS,
2014. 9

L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for hetero-
geneous domain adaptation. In ICML, 2012. 49

M. Everingham, J. Sivic, and A. Zisserman. ‘Hello! My name is... Buffy’ -
automatic naming of characters in TV video. In BMVC, 2006. 65

M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2007 Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop, 2007. 54

http://hal.inria.fr/inria-00548512
http://hal.inria.fr/inria-00548512

BIBLIOGRAPHY 121

M. Everingham, J. Sivic, and A. Zisserman. Taking the bite out of automatic
naming of characters in TV video. Image and Vision Computing, 27(5):545–
559, 2009. 31

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html, 2012. 54

C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features
for scene labeling. PAMI, 35(8):1915–1929, 2013. 89, 91, 98

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Subspace alignment for
domain adaptation. In ICCV, 2013. xiii, 45, 48, 49, 51, 52, 70, 71

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Subspace alignment for
domain adaptation. arXiv preprint arXiv:1409.5241, 2014. 52

P. Fischer, A. Dosovitskiy, and T. Brox. Descriptor matching with convolutional
neural networks: a comparison to sift. CoRR, arXiv:1405.5769, 2014. 88

R. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2):179–188, 1936. 15

A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local
distance functions for shape-based image retrieval and classification. In ICCV,
2007. 11, 21

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropaga-
tion. In ICML, 2015. viii, 50, 55, 116

Z. Ghahramani and G. Hinton. The EM algorithm for mixtures of factor ana-
lyzers. Technical Report CRG-TR-96-1, University of Toronto, May 1996.
28

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In CVPR, 2014. 88

A. Globerson and S. Roweis. Metric learning by collapsing classes. In NIPS,
2006. 11, 15

B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In CVPR, 2012. 48, 49

I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In ICML, 2013. 97, 102, 106, 107, 108, 112, 115

BIBLIOGRAPHY 122

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014. 116

R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition:
An unsupervised approach. In ICCV, 2011. 48, 49

A. Graves, S. Fernández, and J. Schmidhuber. Multi-dimensional recurrent neu-
ral networks. In Proceedings of the International Conference on Artificial
NeuralNetworks, 2007. 94

M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? Metric learning ap-
proaches for face identification. In ICCV, 2009. 11, 12, 13, 15, 16, 29, 39,
46, 62, 63

M. Guillaumin, J. Verbeek, and C. Schmid. Multiple instance metric learning
from automatically labeled bags of faces. In ECCV, 2010. 11, 12, 16

S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features from
rgb-d images for object detection and segmentation. In ECCV, 2014. 89

H. Han, B. F. Klare, K. Bonnen, and A. K. Jain. Matching composite sketches
to face photos: A component-based approach. Transactions on Information
Forensics and Security, 8(1):191–204, 2013. 65

D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analy-
sis: An overview with application to learning methods. Neural computation,
16(12), 2004. 52, 60

B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous detection
and segmentation. In ECCV. Springer, 2014. 89

B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object
segmentation and fine-grained localization. In CVPR, 2015. 89, 93

S. Hauberg, O. Freifeld, and M. Black. A geometric take on metric learning. In
NIPS, 2012. 21, 24, 28

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolu-
tional networks for visual recognition. In ECCV, 2014. 88

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual net-
works. Arxiv preprint, 2016. 108, 112

J. J. Heckman. Sample selection bias as a specification error. Econometrica:
Journal of the Econometric Society, 1979. 45

BIBLIOGRAPHY 123

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2014. 56

S. Honari, J. Yosinski, P. Vincent, and C. Pal. Recombinator networks: Learning
coarse-to-fine feature aggregation. In CVPR, 2016. xi, 93

S. Hong, H. Noh, , and B. Han. Decoupled deep neural network for semi-
supervised semantic segmentation. In NIPS, 2015. 88

Y. Hong, Q. Li, J. Jiang, and Z. Tu. Learning a mixture of sparse distance metrics
for classification and dimensionality reduction. In ICCV, 2011. 11, 21

H. Hotelling. Relation betweeen two sets of variates. Biometrika, 28:322–377,
1936. 51, 52

G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: a database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, 2007. viii, ix,
12, 30, 44, 45, 64, 101

J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Spatial color indexing
and applications. IJCV, 35(3), 1999. 3

Y. Huang, C. Li, M. Georgiopoulos, and G. Anagnostopoulos. Reduced-rank
local distance metric learning. In ECML, 2013. 11, 21, 22, 24, 35

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In ICML, 2015. 102

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In NIPS, 1999. 28

N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study.
Intelligent data analysis, 6(5), 2002. 45

H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into
a compact image representation. In CVPR, 2010. 3

H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. PAMI, 33(1):117–128, 2011. 12, 24, 29, 76

J. Jiang and C. Zhai. Instance weighting for domain adaptation in nlp. In Asso-
ciation for Computational Linguistics, 2007. 45

BIBLIOGRAPHY 124

Y. Jin, J. Lu, and Q. Ruan. Large margin coupled feature learning for cross-
modal face recognition. In International Conference on Biometrics, 2015. 59,
71

F. Juefei-Xu, D. Pal, and M. Savvides. NIR-VIS heterogeneous face recognition
via cross-spectral joint dictionary learning and reconstruction. In Computer
Vision and Pattern Recognition Workshops, 2015. 51, 57, 71

A. Kae, K. Sohn, H. Lee, and E. Learned-Miller. Augmenting CRFs with Boltz-
mann machine shape priors for image labeling. In CVPR, 2013a. 101, 103,
104

A. Kae, K. Sohn, H. Lee, and E. Learned-Miller. Augmenting crfs with boltz-
mann machine shape priors for image labeling. In CVPR, 2013b. 78

N. Kalchbrenner, I. Danihelka, and A. Graves. Grid long short-term memory. In
ICLR, 2016. 94, 105, 106

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR,
2015. 112

B. Klare and A. Jain. Heterogeneous face recognition: Matching NIR to visible
light images. In ICPR, 2010. 58

B. Klare, Z. Li, and A. Jain. Matching forensic sketches to mug shot photos.
PAMI, 33(3):639–646, 2011. 45

S. Kong, J. Heo, B. Abidi, J. Paik, and M. Abidi. Recent advances in visual and
infrared face recognition – a review. CVIU, 97(1):103 – 135, 2005. ISSN
1077-3142. 45

M. Köstinger, M. Hirzer, P. Wohlhart, P. Roth, and H. Bischof. Large scale
metric learning from equivalence constraints. In CVPR, 2012. 10, 11, 12, 15,
17, 62

A. Krizhevsky. Learning multiple layers of features from tiny images. 2009. 78,
102

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012. x, 3, 53, 54, 55, 76, 79, 84,
85, 86, 88, 89, 92, 98

B. Kulis. Metric learning: A survey. Foundations and Trends in Machine Learn-
ing, 5(4):287–364, 2012. 15

BIBLIOGRAPHY 125

P. Kulkarni, J. Zepeda, F. Jurie, P. Pérez, and L. Chevallier. Learning the structure
of deep architectures using l1 regularization. In BMVC, 2015. 93

P. L. Lai and C. Fyfe. Kernel and nonlinear canonical correlation analysis. In-
ternational Journal of Neural Systems, 10(05):365–377, 2000. 52

R. Lajugie, F. Bach, and S. Arlot. Large-margin metric learning for constrained
partitioning problems. In ICML, 2014. 10

G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural
networks without residuals. arXiv preprint arXiv:1605.07648, 2016. 116

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel. Handwritten digit recognition with a back-propagation network. In
NIPS, 1989. 3, 76, 79

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, pages 2278–2324, 1998.
78, 79, 102

C.-Y. Lee, P. Gallagher, and Z. Tu. Generalizing pooling functions in convo-
lutional neural networks: Mixed, gated, and tree. In AISTATS, 2015. 106,
108

C.-Y. Lee, P. Gallagher, and Z. Tu. Generalizing pooling functions in convolu-
tional neural networks: Mixed, gated, and tree. In AISTATS, 2016. 93

C. J. Leggetter and P. C. Woodland. Maximum likelihood linear regression for
speaker adaptation of continuous density hidden markov models. Computer
Speech & Language, 1995. 45

Z. Lei and S. Li. Coupled spectral regression for matching heterogeneous faces.
In CVPR, 2009. 52

F. Li, S. J. Pan, O. Jin, Q. Yang, and X. Zhu. Cross-domain co-extraction of
sentiment and topic lexicons. In Association for Computational Linguistics,
2012. 45

S. Li, D. Yi, Z. Lei, and S. Liao. The CASIA NIR-VIS 2.0 face database. In
Computer Vision and Pattern Recognition Workshops, 2013. 46, 60, 64, 71

S. Liao, Z. Lei, D. Yi, and S. Li. A benchmark study of large-scale unconstrained
face recognition. In International Joint Conference on Biometrics, 2014. 12,
31

BIBLIOGRAPHY 126

G. Lin, C. Shen, A. van den Hengel, and I. Reid. Efficient piecewise training of
deep structured models for semantic segmentation. In CVPR, 2016. 88, 91

M. Lin, Q. Chen, and S. Yan. Network in network. Arxiv preprint, 2013. 102,
106, 108

M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR, 2014a. 87

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, pages
740–755, 2014b. 54

S. Liu, J. Yang, C. Huang, , and M.-H. Yang. Multi-objective convolutional
learning for face labeling. In CVPR, 2015. 104

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2015. x, 79, 83, 88, 89, 90, 91, 93, 98

J. L. Long, N. Zhang, and T. Darrell. Do convnets learn correspondence? In
NIPS, 2014. 88

D. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
76

J. Lu, V. Liong, X. Zhou, and J. Zhou. Learning compact binary face descriptor
for face recognition. PAMI, 2015. 71

M. J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, and J. Budynek. The japanese
female facial expression (jaffe) database, 1998. viii, 44

J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel net-
works. In NIPS, 2014. 106

A. Martinez and R. Benavente. The AR face database. Technical report, 1998.
65

T. Melzer, M. Reiter, and H. Bischof. Nonlinear feature extraction using gener-
alized canonical correlation analysis. In ICANN, pages 353–360, 2001. 52

A. Mignon and F. Jurie. CMML: a new metric learning approach for cross modal
matching. In ACCV, 2012a. 45, 51, 53, 59, 63

A. Mignon and F. Jurie. PCCA: A new approach for distance learning from
sparse pairwise constraints. In CVPR, 2012b. 11, 12, 15, 35, 53

BIBLIOGRAPHY 127

L. Mihalkova, T. Huynh, and R. J. Mooney. Mapping and revising markov logic
networks for transfer learning. In AAAI, 2007. 50

F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. CoRR, arXiv:1606.04797,
2016. 91

D. Mishkin and J. Matas. All you need is a good init. In ICLR, 2016. 107, 108

I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-stich networks for
multi-task learning. In CVPR, 2016. 92

P. Mittal, A. Jain, G. Goswami, R. Singh, and M. Vatsa. Recognizing composite
sketches with digital face images via ssd dictionary. In International Joint
Conference on Biometrics, 2014. 46, 65, 73

P. Mittal, M. Vatsa, and R. Singh. Composite sketch recognition via deep
network-a transfer learning approach. In International Conference on Bio-
metrics, 2015. 72, 73, 74

G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear
regions of deep neural networks. In NIPS, pages 2924–2932, 2014. 20

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In ICML, 2010. 84, 85

F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E. Barbano. To-
ward automatic phenotyping of developing embryos from videos. IEEE Trans-
actions on Image Processing, 2005. 89

H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic
segmentation. In ICCV, 2015. xi, 76, 88, 90, 91

Y.-K. Noh, B.-T. Zhang, and D. Lee. Generative local metric learning for nearest
neighbor classification. In NIPS, 2010. 11, 21, 22

E. Nowak and F. Jurie. Learning visual similarity measures for comparing never
seen objects. In CVPR, 2007. 10, 12

T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns. PAMI, 24(7):
971–987, 2002. 12, 31, 58, 76

M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In CVPR, 2014.
45, 48, 50, 54, 55

BIBLIOGRAPHY 128

S. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. Knowl. Data
Eng., 22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191. URL http:
//dx.doi.org/10.1109/TKDE.2009.191. 49, 50

O. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In BMVC,
2015. 39, 40, 45, 54, 59, 62

V. Patel, R. Gopalan, R. Li, and R. Chellappa. Visual domain adaptation: a
survey of recent advances. IEEE Signal Processing Magazine, 32(3):53 – 69,
2015. 49

K. Pearson. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, pages 559–572, 1901. 14

A. Pentina and C. H. Lampert. A pac-bayesian bound for lifelong learning. In
ICML, 2014. 50

F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image
categorization. In CVPR, 2007. 3

F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-
scale image classification. In ECCV, 2010. 76

T. Pfister, J. Charles, and A. Zisserman. Flowing ConvNets for human pose
estimation in videos. In CVPR, 2015. 88

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with
large vocabularies and fast spatial matching. In CVPR, 2007. 76

J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor learning for efficient
retrieval. In ECCV, 2010. 76

P. H. Pinheiro and R. Collobert. Recurrent convolutional neural networks for
scene labeling. In ICML, 2014. 89

B. Riggan, C. Reale, and N. Nasrabadi. Coupled auto-associative neural net-
works for heterogeneous face recognition. IEEE Access, 3:1620–1632, 2015.
59, 71

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention, 2015. xi, 76, 91, 98

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 2000. 28

http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TKDE.2009.191

BIBLIOGRAPHY 129

Y. Rui, T. S. Huang, and S.-F. Chang. Image retrieval: Current techniques,
promising directions, and open issues. Journal of visual communication and
image representation, 10(1), 1999. 3

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recog-
nition challenge. IJCV, 115(3), 2015. 53

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models
to new domains. In ECCV, 2010. viii, 47, 48, 52

J. Sánchez, F. Perronnin, and T. de Campos. Modeling the spatial layout of
images beyond spatial pyramids. Pattern Recognition Letters, 33(16):2216–
2223, 2012. 31

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with
the Fisher vector: Theory and practice. IJCV, 105(3):222–245, 2013. 28, 31,
115

M. Sarfraz and R. Stiefelhagen. Deep perceptual mapping for thermal to visible
face recognition. In BMVC, 2015. 57, 65

S. Saxena and J. Verbeek. Coordinated local metric learning. In ICCV ChaLearn
Looking at People Workshops, 2015. 6

S. Saxena and J. Verbeek. Convolutional Neural Fabrics. In NIPS, 2016a. 8

S. Saxena and J. Verbeek. Heterogeneous Face Recognition with CNNs. In
ECCV TASK-CV Workshops, 2016b. 7

B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as
a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998. 20

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for
face recognition and clustering. In CVPR, 2015. 39, 40, 45, 54

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Over-
feat: Integrated recognition, localization and detection using convolutional
networks. In ICLR, 2014. 54, 86, 88

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-
the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, 2014.
3, 48, 50, 54, 79

BIBLIOGRAPHY 130

S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa. Generalized domain-
adaptive dictionaries. In CVPR, 2013. 49

Y. Shi, A. Bellet, and F. Sha. Sparse compositional metric learning. In AAAI,
2014. 11, 13, 21, 22, 24, 35, 37

H. Shimodaira. Improving predictive inference under covariate shift by weight-
ing the log-likelihood function. Journal of statistical planning and inference,
90(2), 2000. 45

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014. 40

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2015. xi, 60, 79, 85, 87, 88, 89, 90, 97,
101

K. Simonyan, O. Parkhi, A. Vedaldi, and A. Zisserman. Fisher vector faces in
the wild. In BMVC, 2013a. 12, 31, 38, 39, 45, 59, 62, 76

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher networks for large-
scale image classification. In NIPS, 2013b. 115

S. Singh, D. Hoiem, and D. Forsyth. Swapout: learning an ensemble of deep
architectures. In NIPS, 2016. 94

N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collec-
tions in 3d. In ACM transactions on graphics (TOG), 2006. 75

J. Springenberg, A. D. andT. Brox, and M. Riedmiller. Striving for simplicity:
The all convolutional net. In ICLR, 2015. 93, 107, 108

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR,
2014. 94, 102, 112

Y. Sun, X. Wang, and X. Tang. Deep learning face representation by joint
identification-verification. In CVPR, 2014. 12

M. J. Swain and D. H. Ballard. Color indexing. IJCV, 7(1), 1991. 3

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In CVPR,
2015a. x, 86, 87, 88, 89

BIBLIOGRAPHY 131

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
inception architecture for computer vision. CoRR, arXiv:1512.00567, 2015b.
81, 87

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to
human-level performance in face verification. In CVPR, 2014. 12, 39, 40, 45

X. Tan and B. Triggs. Enhanced local texture feature sets for face recognition
under difficult lighting conditions. In International Workshop on Analysis and
Modeling of Faces and Gestures, 2007. 60

Y. Teh and S. Roweis. Automatic alignment of local representations. In NIPS,
2003. 28

S. Thrun and L. Pratt. Learning to learn. Springer Science & Business Media,
2012. 50

T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers: Learning categories
from few examples with multi model knowledge transfer. In CVPR, 2010. 49

A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR. IEEE,
2011. 44

L. Torrey and J. Shavlik. Transfer learning, in: Soria, E., Martin, J.,Magdalena,
R., Martinez, M., Serrano, A. (Eds.), Handbook of Research on Machine
Learning Applications. IGI Global, 2009. viii, 50

S. Trivedi, D. Mcallester, and G. Shakhnarovich. Discriminative metric learning
by neighborhood gerrymandering. In NIPS, 2014. 11, 18

S. Tsogkas, I. Kokkinos, G. Papandreou, and A. Vedaldi. Deep learning for
semantic part segmentation with high-level guidance. Arxiv preprint, 2015.
88, 104

E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain con-
fusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474,
2014. 55

E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer
across domains and tasks. In ICCV, 2015. ix, 50, 55, 56, 57

T. Van Gestel, J. A. Suykens, J. De Brabanter, B. De Moor, and J. Vandewalle.
Kernel canonical correlation analysis and least squares support vector ma-
chines. In ICANN, pages 384–389, 2001. 52

BIBLIOGRAPHY 132

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural
networks using DropConnect. In ICML, 2013. 105, 106, 108, 112

C. Wang and S. Mahadevan. Heterogeneous domain adaptation using manifold
alignment. In IJCAI, 2011. 49

J. Wang, A. Kalousis, and A. Woznica. Parametric local metric learning for
nearest neighbor classification. In NIPS, 2012. 11, 21, 23, 24

J. Wang, K. Sun, F. Sha, S. Marchand-Maillet, and A. Kalousis. Two-stage
metric learning. In ICML, 2014. 15

X. Wang and X. Tang. Face photo-sketch synthesis and recognition. PAMI,
2009. 51, 57, 60

K. Weinberger and L. Saul. Distance metric learning for large margin nearest
neighbor classification. JMLR, 10:207–244, 2009. vii, 11, 15, 18, 21, 24, 58

K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin
nearest neighbor classification. In NIPS, 2006. 17, 21

M. Xiao and Y. Guo. Feature space independent semi-supervised domain adap-
tation via kernel matching. PAMI, 2015. 49

M. Yamada, L. Sigal, and M. Raptis. No bias left behind: Covariate shift adap-
tation for discriminative 3d pose estimation. In ECCV, 2012. 45

Y.-R. Yeh, C.-H. Huang, and Y.-C. F. Wang. Heterogeneous domain adaptation
and classification by exploiting the correlation subspace. IEEE Transactions
on Image Processing, 23(5):2009–2018, 2014. viii, 51

D. Yi, R. Liu, R. Chu, Z. Lei, and S. Z. Li. Face matching between near infrared
and visible light images. In International Conference on Biometrics, 2007. 52

D. Yi, Z. Lei, S. Liao, and S. Li. Learning face representation from scratch. In
Arxiv preprint, 2014. 12, 31, 32, 39, 40, 45, 46, 60, 62, 67

D. Yi, Z. Lei, and S. Z. Li. Shared representation learning for heterogeneous
face recognition. In International Conference on Automatic Face and Gesture
Recognition, 2015. 71

B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In
ICML, 2004. 45

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-
works. In ECCV, 2014. 86, 90

BIBLIOGRAPHY 133

M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks
for mid and high level feature learning. In ICCV, 2011. 90

D.-C. Zhan, M. Li, Y.-F. Li, and Z.-H. Zhou. Learning instance specific distances
using metric propagation. In ICML, 2009a. 11, 21

D.-C. Zhan, M. Li, Y.-F. Li, and Z.-H. Zhou. Learning instance specific distances
using metric propagation. In Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, 2009b. 21

H. Zheng, Y. Liu, M. Ji, F. Wu, and L. Fang. Learning high-level prior with con-
volutional neural networks for semantic segmentation. Arxiv preprint, 2015.
88, 104

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep fea-
tures for scene recognition using places database. In NIPS, 2014. 44, 54

Y. Zhou, X. Hu, and B. Zhang. Interlinked convolutional neural networks for
face parsing. In International Symposium on Neural Networks, 2015. 92

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Goals
	Contributions

	Coordinated Local Metric Learning
	Introduction
	Related work
	Globally aligning local Mahalanobis metrics
	Experimental evaluation
	Conclusion

	Heterogeneous Face Recognition
	Introduction
	Related work
	Cross-modal recognition approach
	Experimental evaluation
	Conclusion

	Convolutional Neural Fabrics
	Introduction
	Related work
	The fabric of convolutional neural networks
	Experimental evaluation
	Conclusion

	Conclusion
	Summary of Contributions
	Future research prespectives

	Bibliography

