
HAL Id: tel-01681324
https://theses.hal.science/tel-01681324v2

Submitted on 12 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sur les aspects théoriques et pratiques des compromis
dans les problèmes d’allocation des ressources

Abhinav Srivastav

To cite this version:
Abhinav Srivastav. Sur les aspects théoriques et pratiques des compromis dans les problèmes
d’allocation des ressources. Géométrie algorithmique [cs.CG]. Université Grenoble Alpes, 2017.
Français. �NNT : 2017GREAM009�. �tel-01681324v2�

https://theses.hal.science/tel-01681324v2
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 25 mai 2016

Présentée par

Abhinav Srivastav

Thèse dirigée par Oded Maler, Directeur de recherche, CNRS-Verimag
et codirigée par Denis Trystram, Professeur, Grenoble INP

préparée au sein Laboratoire Verimag
et de L’ École Doctorale Mathématiques, Science et technologies de
I’information, Informatique

Sur les aspects théoriques et
pratiques des compromis dans les
problèmes d’allocation des
ressources

Thèse soutenue publiquement le 16 Février 2017,
devant le jury composé de :

Monsieur Oded Maler
Directeur de Recherche, CNRS-Verimag, Directeur de thèse
Monsieur Denis Trystram
Professeur, Grenoble INP, Grenoble, Co-Directeur de thèse
Madame Marie-Christine Rousset
Professeur, Université Grenoble Alpes, Présidente
Monsieur Adi Rosén
Directeur de Recherche, CNRS et Université Paris Diderot, Rapporteur
Monsieur Monaldo Mastrolilli
Professeur, SUPSI-Suisse, Rapporteur
Monsieur Seffi Naor
Professeur, Institut de Technologie D’Israël, Examinateur
Monsieur Daniel Vanderpooten
Professeur, Université Paris-Dauphine, Examinateur
Monsieur Lothar Thiele
Professeur, ETH-Zürich - Suisse, Examinateur





Résumé

Cette thèse est divisée en deux parties. La première partie de cette thèse porte sur
l’étude d’approches heuristiques pour approximer des fronts de Pareto. Nous proposons
un nouvel algorithme de recherche locale pour résoudre des problèmes d’optimisation
combinatoire. Cette technique est intégrée dans un modèle opérationnel générique où
l’algorithme évolue vers de nouvelles solutions formées en combinant des solutions
trouvées dans les étapes précédentes. Cette méthode améliore les algorithmes de re-
cherche locale existants pour résoudre le problème d’assignation quadratique bi- et
tri-objectifs.

La seconde partie se focalise sur les algorithmes d’ordonnancement dans un contexte
non-préemptif. Plus précisément, nous étudions le problème de la minimisation du
stretch maximum sur une seule machine pour une exécution online. Nous présentons des
résultats positifs et négatifs, puis nous donnons une solution optimale semi-online. Nous
étudions ensuite le problème de minimisation du stretch sur une seule machine dans le
modèle récent de la réjection. Nous montrons qu’il existe un rapport d’approximation
en O(1) pour minimiser le stretch moyen. Nous montrons également qu’il existe un
résultat identique pour la minimisation du flot moyen sur une machine. Enfin, nous
étudions le problème de la minimisation du somme des flots pondérés dans un contexte
online.





Abstract

This thesis is divided into two parts. The first part of the thesis deals with the study
of heuristic based approaches for approximating Pareto fronts. We propose a new
Double Archive Pareto local search algorithm for solving multi-objective combinatorial
optimization problems. We embed our technique into a genetic framework where our
algorithm restarts with the set of new solutions formed by the recombination and the
mutation of solutions found in the previous run. This method improves upon the existing
Pareto local search algorithm for multiple instances of bi-objective and tri-objective
quadratic assignment problem.

In the second part of the thesis, we focus on non-preemptive scheduling algorithms.
Here, we study the online problem of minimizing maximum stretch on a single machine.
We present both positive and negative theoretical results. Then, we provide an optimally
competitive semi-online algorithm. Furthermore, we study the problem of minimizing
average stretch on a single machine in a recently proposed rejection model. We show
that there exists a polynomial time O(1)-approximation algorithm for minimizing the
average stretch and average flow time on a single machine. Essentially, our algorithm
converts a preemptive schedule into a non-preemptive schedule by rejecting a small
fraction of jobs such that their total weights are bounded. Lastly, we study the weighted
average flow time minimization problem in online settings. We present a mathematical
programming based framework that unifies multiple resource augmentations. Then, we
developed a scheduling algorithm based on the concept of duality. We showed that our
algorithm is O(1)-competitive for solving the weighted average flow time problem on
a set of unrelated machines. Furthermore, we showed that our algorithm when applied
to the problem of minimizing `k norms of weighted flow problem on a set of unrelated
machines, is O(k)-competitive.





C O N T E N T S

1 I N T RO D U C T I O N 13
1.1 Our Contributions 18

2 M U LT I - O B J E C T I V E O P T I M I Z AT I O N 21
2.1 Formalization 21
2.2 Bounds on the Pareto front 22

2.2.1 Ideal point 22
2.3 Solving Multi-objective optimization problem 24

2.3.1 Quality of Approximate Pareto front 25

I ON MULTI-OBJECTIVE OPTIMIZATION 29

3 M U LT I - O B J E C T I V E O P T I M I Z E R S 31
3.1 Local Search for Single-Objective Optimization 31
3.2 Local Search for Multi-Objective Optimization 35
3.3 Evolutionary Algorithms for Single-Objective Optimization 36
3.4 Evolutionary Algorithms for Multi-Objective Optimization 39

4 D O U B L E A R C H I V E PA R E T O L O C A L S E A R C H 43
4.1 Pareto Local Search Algorithm 43
4.2 Queued Pareto Local Search Algorithm 45
4.3 Double Archive Pareto Local Search Algorithm 47
4.4 Experimental Results 49
4.5 Conclusion and Future work 54

II ON NON-PREEMPTIVE SCHEDULING 55

5 I N T RO D U C T I O N T O S C H E D U L I N G 57
5.1 Preliminaries 57
5.2 Resource Augmentation 59
5.3 Related Works 61

5.3.1 Results without resource augmentation 61
5.3.2 Results with resource augmentation 62

5.4 Our Results 63

6 S C H E D U L I N G T O M I N I M I Z E M A X - S T R E T C H O N A S I N G L E M AC H I N E 65
6.1 Introduction 65
6.2 Problem Definition 65

7



Contents

6.3 Lower Bounds on Competitive Ratios 65
6.4 The Algorithm 67
6.5 Analysis for Max-stretch 69

6.5.1 Some definition and properties related to WDA 69
6.5.2 Defining Optimal Schedule and its relation to WDA 71
6.5.3 Consider a scenario where py ≤ pz 71
6.5.4 Consider a scenario where pz < py ≤ (1 + α∆)pz 72
6.5.5 Proving the bound when (1 + α∆)pz < py 74

6.6 Concluding remarks 78

7 S C H E D U L I N G W I T H R E J E C T I O N T O M I N I M I Z E S T R E T C H A N D FL OW T I M E 81
7.1 Introduction 81
7.2 Speed augmentation v/s Rejection model 81
7.3 Structure and Properties of SRPT and an Intermediate Schedule 82
7.4 The Rejection Model 84
7.5 Conclusion 87

8 O N L I N E S C H E D U L I N G T O M I N I M I Z E W E I G H T E D FL OW T I M E O N U N R E -
L AT E D M AC H I N E S 89
8.1 Introduction 89

8.1.1 Mathematical Programming and Duality 89
8.1.2 Generalized Resource Augmentation 90
8.1.3 Our approach 91

8.2 Problem Definition and Notations 92
8.3 Lower Bound 92
8.4 Scheduling to Minimize Average Weighted flow time 94

8.4.1 Linear Programming Formulation 94
8.4.2 Algorithm and Dual Variables 95
8.4.3 Analysis 97

8.5 Conclusion 101

9 S C H E D U L I N G T O M I N I M I Z E D W E I G H T E D `k - N O R M S O F FL OW T I M E O N

U N R E L AT E D M AC H I N E S 103
9.1 Introduction 103
9.2 Problem Definition and Notations 103
9.3 Linear Programming Formulation 104

9.3.1 Algorithm and Dual Variables 104
9.3.2 Analysis 106

10 C O N C L U S I O N 115

8



L I S T O F F I G U R E S

Figure 1.1 An example showing trade-offs in the cost space for a bi-
objective minimization problem 13

Figure 1.2 An example showing concept of dominance in local search for
bi-objective problem (min f1, min f2). 15

Figure 1.3 An example showing (ρ1, ρ2)-approximation solution for bi-
objective problem. Note that the solution f ∗1 and f ∗2 are the best
values with respect to f1 and f2 objective function. 16

Figure 2.1 The solution space and the corresponding cost space 22
Figure 2.2 An example showing trade-offs in cost space for a bi-objective

minimization problem 23
Figure 2.3 The notion of ideal and nadir points in a bi-objective mini-

mization 24
Figure 2.4 Outcomes of three hypothetical algorithms for a bi-objective

minimization problem. The corresponding approximation sets
are denoted as A1, A2, and A3 25

Figure 2.5 The shaded region of the cost space corresponds to the hyper-
volume indicator 27

Figure 3.1 An instance and a feasible solution for TSP with 5 cities. 32
Figure 3.2 Example of local operator for above TSP problem with 5

cities. 33
Figure 3.3 Example of a feasible solution for knapsack problem with 10

items 37
Figure 3.4 One-point crossover for knapsack problem with 10 items

where X1 and X2 correspond to two individuals picked ran-
domly from a mating pool. Y1 and Y2 are two new solutions
formed after the application of one-point crossover 39

Figure 4.1 An example of 3-exchange path mutation borrowed from [DT10].
The solution s′ and s′′ form two cycles from which cycle
{2, 3, 5, 7} is randomly chosen. The three positions l1, l2 and
l3 in cycle are used to decrease the distance between s′ and
s′′. 51

Figure 4.2 Median attainment surfaces for n = 50 with ρ = 0.25 (on
left) and ρ = 0.75 (on right) 53

Figure 4.3 Median attainment surfaces for n = 75 with ρ = 0.25 (on
left) and ρ = 0.75 (on right) 54

9



List of Figures

Figure 7.1 An instance of n = 3k + 2 jobs with equal processing times
pj = n, equal weights wj = 1, and release dates rj = (j−
1)(n − 1), where 1 ≤ j ≤ n. By setting ε = 1

n−1 , in the
rejection model we are allowed to reject at most εn ≤ 2
jobs, while in the speed augmentation model the processing
time of each job becomes

pj
1+ε = n− 1. The sum flow time

using rejections is 3 ∑k
j=1(n + j − 1) = 21

2 k2 + 9
2 k, while

the sum flow time using speed augmentation is n(n− 1) =
9k2 + 9k + 2 which is better for large enough k. 82

Figure 7.2 A schedule created by the SRPT policy and its corresponding
collection of out-trees. 83

Figure 7.3 Transformation from SRPT to QPO schedule 84

10



L I S T O F A L G O R I T H M S

3.1 Local Search Algorithm for single-objective optimization problem . . 32
3.2 Genetic Algorithm for single-objective optimization problem . . . . . 39

4.1 Pareto Local Search PLS(S0,F ) . . . . . . . . . . . . . . . . . . . . 43
4.2 Pareto filter min(K ∪ r) . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Genetic Pareto local search GPLS(S0, α,F ) . . . . . . . . . . . . . . 45
4.4 Deactivation Deactivate(r, K) . . . . . . . . . . . . . . . . . . . . . 45
4.5 Queued Pareto Local Search QPLS(Q,F ) . . . . . . . . . . . . . . 46
4.6 Genetic Queued Pareto local search GQPLS(Q, α,F ) . . . . . . . . . 47
4.7 DAPLS(S0,F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Genetic DAPLS(S0, α,F ) . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Job selection in WDA . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Wait-Deadline algorithm . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1 Non-preemptive Schedule for the jobs in J \R . . . . . . . . . . . . 85

11





1
I N T RO D U C T I O N

In many real-life problems, a decision maker searches for an optimal choice amongst
a set of alternatives. For example, a driver interested in choosing among the set of
alternative routes or a buyer interested in choosing among different brands. Quite often,
each solution can be evaluated according to various cost or utility functions. Hence
these searches are based on optimizing several, possibly conflicting, objective functions.
For instance, each route may be assessed with respect to fuel consumption, its travel
time and its touristic value while the value of a product such as a smartphone or a
laptop can be estimated by its price, quality, and size. Consequently, a solution which
performs better according to one objective function may have the worse performance
with respect to another. This gives rise to a set of incomparable solutions. Without
any prior subjective preference about the decision maker’s choice, all such solutions
are considered equally good. Problems like these frequently arise in diverse areas
like telecommunication, engineering, computer science, operation research, medicine,
finance, physics, etc.

Figure 1.1. – An example showing trade-offs in the cost space for a bi-objective mini-
mization problem

In multi-objective optimization, there is typically not a single optimal solution but
rather a set of incomparable optimal solutions where no solution can be improved with
respect to one objective function without worsening its performance with respect to some

13



I N T RO D U C T I O N

other objective function(s). Such solutions are called Pareto optimal solutions while a
set consisting of all such solutions is known as the Pareto front. Figure 1.1 illustrates
the notion of Pareto front for a minimization problem with two objective functions f1
and f2. Thus, the notion of “solving a multi-objective optimization problem” refers to
finding the Pareto front.

Unfortunately, many real-world problems are combinatorial in nature and thus,
finding the sets of optimal solutions are generally hard, i.e. such problems cannot be
solved within a reasonable amount of time limit unless P = NP. For hard single-
objective problems, the most common approach is to relax the notion of optimality
so as to find a good enough solution within a reasonable amount of time. But for
multi-objective problems, the meaning of a relaxed notion of optimality is not self-
evident. For instance, does it refer to finding a single solution or a set of solutions
approximating the entire Pareto front? This problem becomes pronounced when the
number of optimal solutions in the Pareto front is large. Many of the classical multi-
objective combinatorial optimization problems such as knapsack [Hug07], shortest
path [Han80], s-t cut [Hug07], spanning tree [HR94], TSP [EP09] to name a few, are
known to have exponential (in the size of the input) number of optimal solutions, even
for the bi-objective case. In such cases, the focus of an algorithm designer shifts towards
finding the approximate Pareto optimal solutions. By far the most common approach is
to approximate the Pareto front by a set of mutually incomparable solutions. Numerous
methods, both practical and theoretical have been proposed in the literature which can
efficiently produce such a set of solutions.

Local search algorithms are one such type of heuristics which have been applied
to a variety of single-objective problems. They have also been extended to multi-
objective case under the name of Pareto local search (PLS) techniques. Essentially,
these techniques are iterative improvement algorithms that start with a random feasible
solution and repeatedly apply local changes with the goal of improving its quality.
Figure 1.2 illustrates one such iteration where the solution s has four neighbors: s1, s2,
s3 and s4 which are represented in the cost space. Note that s1 dominates s2 with respect
to both objective functions. , s3 dominates s4. Thus, PLS discards s2 and s4 and selects
either s1 and s3 for the next step in the local search. These techniques are known to
produce high-quality solutions. The quality of these solutions can be improved further
when they are coupled with other heuristics. For instance, some of the best performing
algorithms for solving multi-objective travelling salesman problems have PLS as a
crucial component. Various other problems such as bi-objective permutation flow-shop
problem and multi-dimensional knapsack have been efficiently solved using the PLS
techniques.

Another widely used heuristic is genetic algorithms (GA), which are population-based
metaheuristic optimization algorithms inspired by a simplified view of the evolution.
GAs are search algorithms where solutions are represented as bit strings such that each
bit represents a gene. Once such a string is created, it is assigned a fitness function

14



I N T RO D U C T I O N

Figure 1.2. – An example showing concept of dominance in local search for bi-objective
problem (min f1, min f2).

50100054794869

according to solution’s objective function value. The fitness function determines the
chances of survival of the candidate solutions. In each generation, the reproduction step
builds the mating pool with promising candidate solutions. Next, the crossover operator
is applied to strings in the mating pool. For this, two individuals are randomly picked
from the pool and some part of their strings are exchanged to generate new individuals.
These offsprings are then mutated with some probability to provide a better diversity in
the population. The above procedure is repeated until some stopping criteria are met.
Since GAs maintain a set of individuals as a population, they have been easily extended
to multi-objective optimization problems. Quite often in practice, multi-objective
genetic algorithms are coupled with PLS methods. This helps in improving the running
time of genetic algorithms and provides a better set of incomparable solutions.

Although these heuristics in practice may provide good sets of solutions, they gener-
ally do not provide any theoretical guarantee on the quality of the solutions with respect
to the optimal Pareto front. However, such guarantees are often required to understand
the underlying complexity of the problem. Moreover, they provide us with insights on
the types of instances for which a particular heuristic will perform well.

A widely accepted notion of a theoretical guarantee of an algorithm for single-
objective problem is its approximation ratio. For a minimization (maximization)
problem, the approximation ratio of an algorithm is the largest (smallest) ratio between
the result obtained by the algorithm and the optimal solution. For multi-objective
problems, the term approximation ratio refers to a set of ratios, where each ratio
corresponds to the worst case performance of the algorithm with respect to different
objective functions. For instance, consider a case of bi-objective problem where the

15



I N T RO D U C T I O N

term approximation ratio refers to a set (ρ1, ρ2), where ρ1 is the factor by which the
algorithm performs with respect to f1 and ρ2 is the factor by which the algorithm
performs with respect to f2. Figure 1.3 represents the notion of (ρ1, ρ2)-approximation
for a bi-objective problem. Papadimitriou et al. [PY00] proposed a generalized notion
of ρ-approximate Pareto curve which consists of a set of incomparable solutions such
that each optimal Pareto solution is within the factor of ρ from some solution in the set.

Figure 1.3. – An example showing (ρ1, ρ2)-approximation solution for bi-objective
problem. Note that the solution f ∗1 and f ∗2 are the best values with respect
to f1 and f2 objective function.

For many multi-objective combinatorial problems, such approximate schemes have
been developed. In fact, several works on the theoretical study of multi-objective
optimization problems focus either on finding a single solution which can provide a
vector of approximation ratios or on finding a set of incomparable points which can
approximate the entire Pareto front within some constant bound. Our focus is on the
study of combinatorial problems arising in the context of scheduling. Scheduling is a
combinatorial optimization problem that plays an important role in different disciplines.
It is generally concerned with the allocation of limited resources to the tasks with the
aim of optimizing one or more performance measures. Such problems arise in a variety
of domains such as vehicle routing, transportation, manufacturing, etc. Our motivation
comes from the study of the client-server model where tasks are modelled as jobs and
resources are modelled as machines. Then, the general aim is to assign the sequence in
which jobs are processed on a set of machines. The typical example of such systems
includes operating systems, high-performance platforms, web-servers, database servers,
etc.

16



I N T RO D U C T I O N

One of the most common measure for the quality of service delivered to a job is the
amount of time it spends in a system. Mathematically, this can be modelled as the flow
time of the job, which is defined as the difference between the completion time and the
arrival time of the job. Historically, such problems have been studied in the preemptive
settings where jobs are allowed to be interrupted during the execution and resumed later
for the completion. In general, preemptive flow time minimization problems are known
to have strong lower bounds [KTW95, LSV08, BMR03, BCM98]. Therefore, these
problems are often explored under a relaxed notion of performance known as resource
augmentation [KP00].

Resource augmentation refers to a method of algorithm analysis, where the algorithm
is allowed more resources than the optimal algorithm. In a client-server model, extra
resources can often be thought as having faster machines or having more machines in
comparison to the optimal algorithm. Then, performance guarantees are stated with
respect to a fixed resource augmentation i.e. the performance of the algorithm with
extra resources is compared to the optimal performance without any extra resources.
In the last decade or so, several intuitive explanations have been proposed in the
support of using resource augmentation for the analysis of algorithms. For instance,
Kalyanasundaram et al. [KP00] first proposed this model for online problems where
they explained the usage of extra resources as the cost of buying clairvoyance. They
claimed that the comparison with a weaker optimal suggests a practical way to combat
the lack of knowledge of the future. Another interesting explanation is based on the
“sensitivity” analysis of hard problems [BCK+07]. Here, the existence of a constant
approximation algorithm under resource augmentation model is seen as the evidence
that hard instances are rare in practice, i.e. if hard instances are slightly perturbed,
then the lower bound for the problem under the consideration falls apart. This also
suggests why resource augmentations are able to identify algorithms that perform well
in practice. In multi-objective perspective, we can view the resource augmentation as a
trade-off between the usage of extra resources and the performance of the algorithm.

Another important criterion for the client-server model is the uninterrupted (non-
preemptive) execution of a job. This is particularly important because preemptive
scheduling usually have a huge management overhead which can affect the overall per-
formance of the system. However, in spite of the importance, most of the existing work
is focused on the preemptive setting. This is mainly due to the fact that non-preemptive
problems have strong lower bounds even with speed and machine augmentation. In
contrast, we focus on non-preemptive problems in the recently proposed model of
rejection where the algorithm is allowed to reject a small fraction of the instance of the
problem [CDK15, CDGK15]. For example in the case of scheduling, an algorithm is
allowed to reject a small fraction of the total number of jobs. Then, the performance of
the algorithm on non-rejected instance is compared to the optimal value for the entire
instance. This is a very natural setting in the client-server model, where the server
is allowed to reject a small fraction of requests from clients to have a good overall

17



1.1 O U R C O N T R I B U T I O N S

performance. Moreover, the rejection model gives us insight on the types of instances
for which a particular scheduling algorithm will have a good performance.

1.1 Our Contributions

Our work is divided into two separate parts. The first part deals with the study of
heuristic based approaches for approximation Pareto fronts. Specifically, we study
Pareto local search algorithm (PLS) and Queued Pareto local search algorithm (QPLS).
We show some major drawbacks in the design of these algorithms. Then, we present
a new Double Archive Pareto local search algorithm (DAPLS) which takes these
drawbacks into consideration. Essentially, our effort is focused on designing a new
method to maintain the set of candidate solutions whose neighbours are unexplored
during the iteration. Moreover we show that like PLS and QPLS, our algorithm
also terminates in a local optimum. This is one of the basic design requirement for
any local search algorithm. To escape local optima, we embed our technique into
a genetic framework where DAPLS restarts with the set of new solutions formed
by the recombination and the mutation of solutions found in the previous run of
DAPLS. Empirically, we show that our genetic DAPLS outperforms genetic PLS and
genetic QPLS on bi-objective and tri-objective instances of the quadratic assignment
problems [MS16].

In the second part of the thesis, we focus on non-preemptive scheduling algorithms.
Unlike the above heuristic approach, our algorithms produce a single solution whose
performance guarantee is bounded. First, we study the problem of minimizing maximum
stretch on a single machine. Stretch is a variant of the weighted flow time problem
where the weight of each job is inversely proportional to its processing time. This
is a natural performance measure where the importance is given to “fair” scheduling
of jobs i.e. for instances where the job preferences are not made explicit, one can
assume that jobs with a large processing time should wait more than jobs with a smaller
processing time. We present both positive and negative theoretical results. We show the
existence of a strong lower bound on the problem of minimizing maximum stretch on a
single machine. Then we provide a semi-online algorithm which achieves this lower
bound [DSST16].

In general, it has been shown that the offline problem of minimizing stretch on a single
machine is NP-hard. Therefore, we study this problem under the notion of resource
augmentation. Specifically, we show that there exists an O(1)-approximation ratio for
the problem of minimizing average stretch such that the algorithm is allowed to reject
at most an ε-fraction of the total weights of the jobs. Essentially, our algorithm converts
a preemptive schedule into a non-preemptive schedule by rejecting a small fraction of
jobs such that their total weights are bounded. Using a similar idea, we also show that
there exists an O(1)-approximation ratio for the problem of minimizing average flow
time on a single machine. Moreover, our algorithm has polynomial running time. This

18



1.1 O U R C O N T R I B U T I O N S

answers an open question on the existence of a polynomial time O(1)-approximation
algorithm [ILMT15]. Our algorithm can be seen as a trade-off between the optimal
performance and the number of rejected jobs [LST16].

Lastly, we study the weighted average flow time minimization problem in online
settings. We present a mathematical programming based framework that unifies multiple
resource augmentations. Then, we developed a scheduling algorithm based on the
concept of duality. We showed that there exists an O(1)-competitive algorithm for
solving the weighted average flow time problem on a set of unrelated machines where the
algorithm is allowed to reject at most ε-fraction of the total weights of jobs. Furthermore,
we showed that this idea can be extended to the problem of minimizing weighted `k
norms of flow time on a set of unrelated machines [LNST16].

19





2
M U LT I - O B J E C T I V E O P T I M I Z AT I O N

The field of multi-objective optimization deals with the problem of finding a set of
optimal trade-offs among a set of solutions. Such problems are characterized by a set of
objective functions defined over a solution space. Many problems with several, possibly
conflicting, objectives can be modelled in these terms. Depending on the problem, the
objectives can either be defined explicitly for each criteria or they may be formulated as
a set of constraints. These problems are generally addressed by providing the set of all
non-dominated solutions. Specifically a solution s is said to dominate solution s′ only if
it is at least as good as s′ with respect to all objective and is strictly better with respect
to at least one of the objective function. The set consisting of all such non-dominated
optimal solutions is known as the Pareto front.

2.1 Formalization

Mathematically, a multi-objective optimization problem can be viewed as a tuple
ϕ = (S , C,F ) where S is the set of feasible solutions, C ⊆ Rd is the cost (objective)
space and F : S → C is a set of d objective functions, i.e. F = { f1, f2, ..., fd}.
Figure 2.1 illustrates the relationship between a solution space and its corresponding
cost space for a bi-objective problem. Without the loss of generality, we assume that all
the objective functions in F are to be minimized. The duality principle, defined in the
context of optimization, suggests that we can convert a maximization problem into a
minimization problem [BV04]. This has made the task of handling maximization and
mixed maximization/minimization problem much easier. Since our aim is to find a set
with minimal costs in C ⊆ Rd, we provide a partial order on elements of C.

Definition 2.1. For two solution s, s′ ∈ S , we say that

1. s weakly dominates s′, denoted as F (s) � F (s′), iff ∀i ∈ {1, ..., d} : fi(s) ≤
fi(s′).

2. s strictly dominates s′, denoted as F (s) ≺ F (s′), iff ∀i ∈ {1, ..., d} : fi(s) ≤
fi(s′) and ∃j ∈ {1, ..., d} : f j(s) < f j(s′).

Using Definition 2.1, we now define the notion of incomparable solutions.

Definition 2.2. Two solution s, s′ ∈ S are said to be incomparable iff F (s) 6≺ F (s′)
and F (s′) 6≺ F (s). We denote this fact by F (s)||F (s′).

It follows that if s and s′ are incomparable, then there exists i, j ∈ {1, ..., d} such that
i 6= j and fi(s) < fi(s′) and f j(s′) < f j(s′). The notion of domination (illustrated in

21



2.2 B O U N D S O N T H E PA R E T O F RO N T

Figure 2.1. – The solution space and the corresponding cost space

Figure 2.2) and incomparability are central to the field of multi-objective optimization.
A solution s which is strictly dominated by some s′, is generally discarded, as s′ has
better objective values in comparison to s in all dimensions. A solution is considered
optimal when its objective values are not dominated by any other solution in S .

Definition 2.3. A Pareto front is a set P ⊆ S consisting of all Pareto optimal solutions
where a solution s ∈ S is said to be Pareto Optimal iff ∀s′ ∈ S : F (s′) 6≺ F (s).

2.2 Bounds on the Pareto front

In this section, we define ideal and nadir points as the lower and the upper bounds
on the cost of Pareto optimal solutions. Informally, these points indicate the range of
the values which non-dominated solution can attain in C.

2.2.1 Ideal point

For each of the d-objectives, there exists an optimal solution. A cost vector consisting
of these individual optimal solutions is known as the ideal point.

Definition 2.4. A point z∗ ∈ C is called the ideal point of the multi-objective optimiza-
tion problem iff ∀i ∈ {1, .., d}, z∗i = min

S
fi.

22



2.2 B O U N D S O N T H E PA R E T O F RO N T

Figure 2.2. – An example showing trade-offs in cost space for a bi-objective minimiza-
tion problem

Although the ideal point is typically infeasible (for conflicting objectives), it can serve
as a reference solution. Furthermore, it can be used by many algorithms to normalize
objective values into a common range.

2.2.1 Nadir points

Nadir points represent the upper bound on the cost of non-dominated solutions. Note
that the nadir point is not a vector of costs with worst objective values for each objective.

Definition 2.5. A point in z∗∗ ∈ C is said to be the nadir point of the multi-objective
optimization problem iff ∀i ∈ {1, ..., d}, z∗∗i = max

P
fi, where P is the Pareto front of

the problem under consideration.

Note that the nadir point may represent an existent or non-existent solution, depending
upon the convexity of the Pareto optimal set. Although the nadir point is easy to compute,
the solution corresponding to the nadir point is much harder to find in practice. However,
for some problems like linear multi-objective optimization problems, the nadir point can
be derived from the ideal point using the payoff table mentioned in Miettinen [Mie99].
Figure 2.3 show the ideal and the nadir points for a bi-objective minimization problem.

23



2.3 S O LV I N G M U LT I - O B J E C T I V E O P T I M I Z AT I O N P RO B L E M

Figure 2.3. – The notion of ideal and nadir points in a bi-objective minimization

2.3 Solving Multi-objective optimization problem

Unfortunately, many of the discrete multi-objective problems of interest are NP-
hard even in the single-objective case. Furthermore, in a multi-objective scenario
there exists multiple Pareto solutions and if their number is huge, enumerating all of
them is impossible within a reasonable amount of time. Such problems are known as
intractable.

Definition 2.6. A multi-objective optimization problem is said to be intractable if there
are instances for which the number of solutions in the Pareto set is super-polynomial in
the size of the input.

In the case of intractable or NP-hard problems, one has to be content with an
approximation of the Pareto front. Below we define the notion of approximate Pareto
front.

Definition 2.7. An approximation of a Pareto front in a feasible cost space S is a set
A ⊆ S such that ∀s, s′ ∈ A : F (s)||(F)s′. We denote the set of all such approxima-
tions as A.

Numerous multi-objective optimizers have been proposed in the literature which can
efficiently generate approximations of the Pareto front. We postpone their study in
detail until the next chapter. Now we turn our attention on the quality assessment of the
approximate Pareto front.

24



2.3 S O LV I N G M U LT I - O B J E C T I V E O P T I M I Z AT I O N P RO B L E M

2.3.1 Quality of Approximate Pareto front

One of the key questions pertaining multi-objective optimization is how to evaluate
the performance of several different multi-objective optimizers and compare the quality
of their respective outputs. Note that the definition of the approximate Pareto front
does not comprise of any notion of quality. However, we can make statements about
the quality of approximation sets in comparison to other approximation sets using
dominance relations.

Figure 2.4. – Outcomes of three hypothetical algorithms for a bi-objective minimiza-
tion problem. The corresponding approximation sets are denoted as
A1, A2, and A3

Consider a scenario (borrowed from [ZTL+03]) where outcomes of three differ-
ent hypothetical optimizers are depicted in Fig 2.4. Based on the Pareto dominance
relationship, A1 and A2 dominate A3. Moreover, the A1 provide better quality of ap-
proximation as it contains all solutions in A2 and one more solution not in A2. Although
such a simple comparison can check whether an optimizer is better than another with
respect to dominance relation, it is difficult to make precise quantitative comparison i.e.
how much is one optimizer is better than another ? or if no optimizer can be said better
than the other (mutually incomparable solutions) then in what aspect certain optimizer
is better than others ?

In general, one expects that solutions returned should be close to Pareto optimal
solutions. But this alone does not guarantee a good quality of solutions as all solutions
returned by an optimizer may be concentrated in one region of the cost space. Therefore,
there is further need of finding the solutions that are spread evenly in the cost space
(diversity). This will provide a good understanding of trade-offs available to a decision

25



2.3 S O LV I N G M U LT I - O B J E C T I V E O P T I M I Z AT I O N P RO B L E M

maker. As pointed out above, the dominance criteria alone cannot determine the quality
of the approximate solution. We need indicators that can provide some kind of total
order on the outcome of different optimizers. Below we define the notion of quality
indicator for an approximation of the Pareto front.

Definition 2.8. A quality indicator is a function I : A → R which assigns real
numbers to approximate Pareto fronts.

Without the loss of generality, we assume that as the value of I increases, the quality
of approximation improves. Several quality indicators like inverted generalized dis-
tance [CC05], R-metrics [HJ98], epsilon indicator [ZTL+03], etc have been introduced
to compare outcomes of different optimizers. Below we present two such quality
indicators which are used later in this thesis.

Hypervolume Indicator

The most common indicator used in the literature is hypervolume or L-measure
which is popularized by the work of Zizler et.al [ZTL+03].

Definition 2.9. Let r ∈ C be a reference point and A ∈ A be an approximation set,
then we define dominated region (denoted B+(A, r)) as

B+(A, r) = {c ∈ C, ∃s ∈ A : F (s) � c � r}

.

The shaded area in Figure 2.5 represents the region dominated by approximating
solutions (in dark blue color) with respect to a reference point (in black color).

Definition 2.10. Given r and A, the hypervolume indicator, denoted by IH(A, r), is
the volume of the region B+(A, r).

This measure is Pareto compliance, in the sense that if A1, A2 ∈ A and A1 � A2,
then IH(A1, r) > IH(A2, r). Unfortunately, this measure is biased towards the convex
inner portions of the objective space. Later Zitzler et al. [ZBT07] proposed a weighted
variant of the hypervolume measure.

The above presented performance measure is used for deterministic algorithms i.e
algorithms which produce a single approximate Pareto front. Many multi-objective
optimizers, including evolutionary algorithms, are stochastic in nature. Therefore, each
run of these algorithms can produce different outcomes. In order to compare algorithms,
one needs to perform a statistical analysis on the quality of each output with an indicator.
For example, consider a scenario where two multi-objective optimizers P and Q are
compared using the hypervolume quality indicator. Both P and Q are run multiple times
on the same instance of the problem. The final quality indicator used in comparing P
and Q, is the mean and/or variance of the hypervolume.

26



2.3 S O LV I N G M U LT I - O B J E C T I V E O P T I M I Z AT I O N P RO B L E M

Figure 2.5. – The shaded region of the cost space corresponds to the hypervolume
indicator

Empirical Attainment Function

In a stochastic multi-objective optimizer, each outcome can be seen as the realization
of a random non-dominated point set. Therefore, they can be studied under the distribu-
tion of a random set. In particular, the attainment function is defined as the probability of
an approximate set A attaining an arbitrary point c ∈ C, i.e., Pr(∃s ∈ A : F (s) � c).
For stochastic optimizers, the attainment function can be estimated from the experimen-
tal data of several different runs. Such an estimated is called the empirical attainment
function (EAF).

The EAF can be seen as a distribution of the solution quality after running an
algorithm for a specific amount of time. In particular, EAFs are used as a graphical
tool for comparing algorithms in two or three dimensions. In such cases, boundaries
of the regions of the cost space where EAF takes some constant value are usually of
interest. Based on this idea, Fonseca et al. [FGLIP11] proposed the notion of attainment
surface, which corresponds to a boundary which separates the objective space into two
regions: first that are attained by outcomes of the stochastic algorithm and second that
are not. Formally, this boundary is known as a k%-attainment surface, which is a set of
hyperplanes separating the objective space attained by at least k percent of runs of an
algorithm. For example, the median attainment surface corresponds to the region in the
cost space attained by 50 percent of the runs. Similarly, the worst attainment surface
(100%-attainment surface) corresponds to the region attained by all runs, whereas the
best attainment surface corresponds to the limit between the region attained by at least
one run and the region never attained. Fonseca et al. [FGLIP11] also gave efficient
algorithms for computing EAF in two and three dimensions using dimension sweep
algorithms.

27





Part I.

ON MULTI-OBJECTIVE
OPTIMIZATION

29





3
M U LT I - O B J E C T I V E O P T I M I Z E R S

In this chapter, we review some of the popular heuristics used for solving multi-
objective optimization problems. Specifically, we focus on the study of local search
and evolutionary algorithms. Both these techniques have been quite effective in solving
hard single-objective combinatorial optimization problems. In fact, many of the best-
known solutions for travelling salesman problem and quadratic assignment problem are
based on these methods or use them as crucial components. Several variants of local
search and evolutionary algorithm have been defined in the context of multi-objective
optimization. In next section, we discuss the general schema of local search algorithm
for single-objective optimization problems.

3.1 Local Search for Single-Objective Optimization

A single-objective optimization problem (SOP) can be viewed as a tuple ϕ =
(S , C,F ), where S is the feasible solutions, C ∈ R is the cost (objective) space and
F : S → C is a function that maps the set of feasible solutions to costs. We assume,
without the loss of generality, that F is to be minimized. Furthermore, we assume that
the solution space is discrete and finite. The goal is to find a solution s∗ ∈ S such that
F (s∗) is optimal, i.e. F (s∗) is the minimum feasible value in the cost space.

Local search belongs to a family of search methods that explores a small subset
S′ ⊂ S of the solution space and returns the optimal solution obtained in this subset.
The key issue in designing a local search method is how to come up with a good S′.
The first ingredient of a local search algorithm lies in defining the term “local”, that
is defining a metric on S . Each element of S is defined by values assigned to a finite
number of discrete variables. We illustrate local search and its ingredient for an instance
of the travelling salesman problem (TSP): given a list of n cities and distance dij for
each pair of cities i and j, find the cheapest path such that each city is visited exactly
once and the path ends at a city where it starts. A feasible solution for a TSP problem
corresponds to an order in which each city is visited. Thus, each solution of S can
be represented by a permutation π = {π1, π2, ..., πn} where πi corresponds to some
city in n such that ∀i 6= j, πi 6= πj and if i < j then city πi is visited before city πj.
Figure 3.1 illustrates one element of solution space for a travelling salesman problem
with 5 cities.

On such a discrete representation of the solution, a local operator L : S → S is
defined that transforms one solution to another solution by making a small change
in the representation. For the above example, one can define a simple local operator

31



3.1 L O C A L S E A R C H F O R S I N G L E - O B J E C T I V E O P T I M I Z AT I O N

Figure 3.1. – An instance and a feasible solution for TSP with 5 cities.

which swaps the order in which two adjacent cities are visited (refer to Figure 3.2).
The distance between s and s′ is defined as the smallest number of changes required
to transform s into s′. The next ingredient of a local search is the neighborhood of
a solution. Formally, the neighborhood of a solution, denoted by N(s), consists of
the solutions whose distance from s is some constant (usually 1). For instance, in the
above example, the neighborhood of a solution consists of all solutions which have
two adjacent cities interchanged. Now we present the general scheme of a local search
method in Algorithm 3.1.

Algorithm 3.1 Local Search Algorithm for single-objective optimization problem
1: s := generate a random solution
2: B := F (s)
3: while (stopping criteria = FALSE) do
4: generate neighborhood N(s) of the solution s
5: s′′ := argmins′∈N(s)F (s′)
6: if F (s′′) < B then
7: P := F (s′′)
8: end if
9: s := select(N(s))

10: end while

Observe that in each iteration, local search explores the neighborhood of the current
solution s and computes their objective value. The best objective value B is updated
when a neighboring solution with a better objective value is found. The next point in the

32



3.1 L O C A L S E A R C H F O R S I N G L E - O B J E C T I V E O P T I M I Z AT I O N

Figure 3.2. – Example of local operator for above TSP problem with 5 cities.

search is determined by the select procedure which can be deterministic or probabilistic,
depending upon the variant of the local search algorithm.

The performance of any local search algorithm depends significantly on the underly-
ing neighborhood relation and the select procedure. Generally, larger neighborhoods
contain more and potentially better solutions and hence they offer better chances for
improved solutions. But at the same time, the time complexity for computing objective
values of a larger neighborhood is much higher. One attractive idea for improving the
time complexity of the cost computation is to examine neighbors that are likely to yield
better solutions. The neighborhood pruning techniques identify neighbors that provably
cannot lead to improved solutions based on insights into the combinatorial structure of
a given problem.

Another method for improving local search is to design the select procedure more
efficiently. The most widely used selection strategy in iterative improvement algo-
rithms is the best improvement strategy and the first improvement strategy. The best
improvement strategy is based on selecting the best neighboring solutions. Formally,
the select procedure, denoted by g, for the best improvement strategy can be defined
as g := argmin{F (s′)|s′ ∈ N(s)}. Note that the best improvement strategy requires
evaluating all the neighbors in each iteration. Thus, if the size of the neighborhood is
large, one needs to design an efficient algorithm to compute the cost of neighboring
solutions. In the literature, this strategy is also known as greedy hill climbing or discrete
gradient descent.

The first improvement strategy, on the other hand, tries to avoid evaluating the
entire neighborhood by selecting the first improving solution encountered during the
neighborhood generation. At each iteration, this strategy evaluates the neighboring
solution s′ ∈ N(s) in a particular fixed order and the first solution s′ for which
F (s′) < F (s), is selected. In general, the neighborhood cost in the first improvement

33



3.1 L O C A L S E A R C H F O R S I N G L E - O B J E C T I V E O P T I M I Z AT I O N

algorithms can often be computed more efficiently than in the best improvement strategy,
since in the former case, typically a small part of the local neighborhood is evaluated,
especially as long as there are multiple improving neighbors from the current solution.
However, the overall rate of improvement by the first improvement is typically smaller
and therefore more iterations have to be performed in order to reach the same quality
of solutions. Note that both of the above strategies search for better solutions in order
to replace the current solution. Such neighborhood searches are often iterated until no
more improvements can be found and the algorithm stops in what is known as local
optimum. We present below a more formal definition of the local optimum solution.

Definition 3.1. Let N : S → 2S be a neighborhood function that associates a set of
neighboring solutions N(s) to every feasible solution s. A solution s is said to be local
optimum with respect to N iff there is no s′ ∈ N(s) such that f (s′) < f (s).

To avoid getting stuck in a local optimum, one can modify the select procedure
to perform non-improving steps. The simplest technique for achieving this is to use
a restart strategy that re-intializes the local search algorithm whenever it gets stuck
in some local optimum. An interesting alternative is to design a select procedure
that probabilistically determines in each iteration whether to choose an improving
or randomly selection solution from the neighborhood. Typically this is done by
introducing a noise parameter, that corresponds to the probability of selecting a random
solution rather than an improving solution. The resulting algorithm is called Randomized
iterative improvement.

Another commonly used probabilistic local search algorithm is Simulated Annealing
(SA) which is inspired by the physical annealing process. Like randomized local search,
SA starts with a random initial solution and performs randomized local search iterations
wherein each iteration, a neighbor is chosen as the next point in the search based on the
temperature parameter T. Throughout the run of SA, T is adjusted according to a given
annealing schedule [KGV83]. Theoretically, under certain conditions, SA algorithms
are known to converge to a globally optimal solution [GG84].

A fundamentally different approach for escaping local minima is to utilize the
memory (visited solutions) in designing the select procedure. The resulting algorithms
are known as Tabu search (TS) [Glo86]. TS typically uses the best improvement
strategy which in local minima corresponds to a selecting a worsening solution. To
prevent the algorithm from immediately returning to visited solutions and to avoid
cycling, TS forbids selection of recently visited solutions by explicitly maintaining the
list of recently visited solutions. Apart from above-mentioned techniques, there exist
numerous other methods such as Variable Neighborhood search [MH97], Variable Depth
Search [KL70], Dynasearch [PVdV70], etc all dedicated to escaping local minima.

34



3.2 L O C A L S E A R C H F O R M U LT I - O B J E C T I V E O P T I M I Z AT I O N

3.2 Local Search for Multi-Objective Optimization

The adaptation of Algorithm 3.1 to multi-objective setting involves several issues.
Note that unlike single-objective optimization, the cost space C of a multi-objective
problem is a subset of Rd, where d is the number of objective functions in F . Therefore,
the outcome B is not a singleton, but rather a set of incomparable costs encountered
so far. Moreover, there may exist a set of solutions with incomparable cost in the
neighborhood N(s) of a solution s. This further complicates the design of an efficient
select procedure.

Several adaptations of local search algorithms to the multi-objective settings have
been proposed. Serafini [Ser94] and Ulungu et al. [UTF95] presented simulated an-
nealing based algorithms for multi-objective combinatorial problems. They proposed
the usage of the weighted norm in the design of select procedure. Essentially, if the
s′ and s′′ ∈ N(s) are incomparable, then the select procedure was based on local
aggregation of all objective values using Lp-norm, where p is either 1 or ∞. The final
output consisted of non-dominated solutions formed with the outcome of several runs
of the algorithm with different sets of weight vectors. Later, Czyzz̀ak et al. [CJ98]
proposed another variant of these algorithms where weights of each objective are tuned
in each iteration in order to assure a uniform distribution of the solutions. The concept
of Tabu search has also been extended to multi-objective problems. Dahl et al. [DL95]
generated a set of non-dominated solutions by solving the family of objective functions
where each objective corresponds to the weighted summation of the objective functions
with different weight vectors. Hertz et al. [HJRFF94] proposed the method of solving a
sequence of single-objective problems considering, in turn, each objective fi ∈ F with
a penalty term. Later on, several variants of tabu search algorithm were proposed in the
multi-objective settings [GMF97, GMU97, Han97, BAKC99, GF00].

Observe that all of the above techniques are based on scalarization techniques that
basically convert a multi-objective problem into a single objective problem. A funda-
mentally different approach for designing a local search algorithm is inspired by the
notion of Pareto optimality: a solution in the neighbourhood is optimal solution if it is
not dominated by all non-dominated solutions found so far in the search. The resulting
local search algorithm is known as Pareto Local Search (PLS) [PCS04]. In [PSS07],
Paquete et al. presented soundness and completeness proofs for the PLS algorithm.
Previous works have shown that PLS can find good approximation of the Pareto front
in many combinatorial problems if it runs until completion [PS06, LT10a].

Many variations of PLS has been proposed in the literature, each having small
differences in their neighborhood exploration strategy. Angel et al. [ABG04] proposed
to use of Dynasearch and dynamic programming to explore the neighborhood of the
bi-objective travelling salesman problem. They also proposed the idea of the bounded
archive that accepts neighboring solutions whose objective values do not lie in the same
partition of the objective space and a restart version of PLS. Liefooghe et al. [LHM+12]

35



3.3 E VO L U T I O NA RY A L G O R I T H M S F O R S I N G L E - O B J E C T I V E O P T I M I Z AT I O N

performed several experiments on the instances of the bi-objective travelling salesman
and scheduling problems so as to compare various PLS algorithms using different
parameters. To improve the performance of PLS, Lust et al. proposed a two-phase
PLS algorithm [LT10b]. In the first phase of the algorithm, an initial population of the
solutions was generated with single-objective solvers. Then PLS algorithm was applied
in the second phase to each solution of the initial, so as to generate the solutions not
found in the first phase. Later, Dubois-Lacoste et al. used this combination to solve the
bi-objective flow-shop scheduling problems of minimizing the pairwise combination of
makespan, the sum of completion times and weighted tardiness of all jobs [DLLIS11].

Alsheddy et al. proposed a guided Pareto local search (GPLS) that essentially first
performs PLS and then tries to escape from a Pareto local optimal set by adjusting
weights (penalties) of different objectives [AT09]. Another interesting way of escaping
local optima is to use stochastic operators. Iterated PLS (SPLS) uses such stochastic
operators that restart PLS from the solutions generated by applying path guided mutation
to the currently found Pareto local optimal set [DT10]. In [DT12], Drugan et al. discuss
and analyze different Pareto neighborhood exploration strategies with respect to PLS
and proposed a deactivation mechanism that restarts PLS from a set of solutions in
order to avoid the exploration of already visited regions. They applied two perturbation
strategies: path-guided mutation and q-mutation exchange to escape a Pareto local
optimal set (formally defined in next chapter).

3.3 Evolutionary Algorithms for Single-Objective Optimization

In section 3.1, we discussed search paradigms that manipulate one single solution of
a given problem instance in each iteration. Another interesting extension is to consider
procedures where several individual solutions are simultaneously maintained: this idea
leads to population-based meta-heuristics. Perhaps the most prominent population-
based meta-heuristics is the class of evolutionary algorithms (EA) where the candidate
solutions in the population interact with each other directly. These algorithms are
inspired by models of the natural evolution of biological species [B9̈6, Mit98]. EAs
are iterative methods that start with a set of solutions and repeatedly apply a series
of operators such as selection, mutation, and recombination. In each iteration of an
EA, the set of current individuals are replaced by a new set of individuals using these
operators. As an analogy to biological evolution, the population in each iteration of the
algorithm is referred to as a generation.

In this thesis, we specifically focus on a special and most common class of evolu-
tionary algorithms known as genetic algorithms (GA). We will describe the principles
of GA’s operation. To illustrate the working of GAs, we will focus on a 0-1 knapsack
problem: given a list of n items where each item i admits a profit vi and a weight wi,
find the subset of items that maximizes the total profit provided that the total weight
of selected items is at most W. The solution space S of the knapsack problem con-

36



3.3 E VO L U T I O NA RY A L G O R I T H M S F O R S I N G L E - O B J E C T I V E O P T I M I Z AT I O N

sists of all the subset of n items. Each solution of S can be represented by a vector
X = {x1, x2, ..., xn} where xi is 1 if item i is present in the subset, otherwise xi = 0.
Figure 3.3 illustrates one feasible solution for a knapsack problem with 10 items. This
encoding of the decision variables in a binary string is primarily used to achieve a
“pseudo chromosomal” representation of a solution. After choosing a binary representa-
tion scheme of a solution, GAs create a population of such strings at random on which
genetic operators are iteratively applied. However, before we explain the notion of
genetic operators on such strings, we will describe an intermediate step of assigning a
measure to each solution.

Figure 3.3. – Example of a feasible solution for knapsack problem with 10 items

It is necessary to evaluate the solution in the context of objective functions and con-
straints. The fitness of a string is a function that assigns a value which is a function of
the solution’s objective value and constraint violation. In the case of above knapsack ex-

ample, the fitness of a solution can be evaluated as
n
∑

i=1
vixi −max{0, (

n
∑

i=1
wixi −W)}.

Since the knapsack problem is a maximization problem, solutions with larger fitness
values are considered important. In general, the evaluation of a solution means calcu-
lating the objective value and checking constraint violations. Note that for infeasible
solutions, the fitness value is the total profit minus the penalty in proportion to the
constraint violation. Next, we explain operators commonly used in the design of a
genetic algorithm.

37



3.3 E VO L U T I O NA RY A L G O R I T H M S F O R S I N G L E - O B J E C T I V E O P T I M I Z AT I O N

Selection Operator: The general purpose of this operator is to make a large copy of
“good” solutions so as to build a mating pool of most promising candidates. This, in
turn, eliminates bad solutions from the population. This is achieved by a probabilistic
filter that selects good solutions with a higher probability. The most common methods
are tournament selection [MG96], proportionate selection [B9̈6], and ranking selec-
tion [GD91]. In the tournament selection, a tournament is repeatedly played between
two solutions of the population and the better solution (according to fitness evaluation)
is added to the mating pool. It has been shown that if carried out systematically, the
tournament selection has similar convergence and computation time complexity proper-
ties as other operators [GD91]. In the proportionate selection method, the solutions are
copied proportionate to their fitness values. If the average fitness of the population is
fa then a solution si with fitness fi get an expected fi/ fa number of copies. Since this
method requires the computation of average fitness value, the proportionate selection
method is slower compared to the tournament selection method. Furthermore, propor-
tionate selection method has scaling issues as the outcome is dependent on the true
values of the fitness.

Crossover Operator: Once a mating pool is generated using the selection operator, a
crossover operator is applied. Typically, a crossover consists of creating one or two new
individual solutions. There exist numerous ways to define a crossover operator [Spe98,
VMC95, TYH99, OKK03], but in almost all of them, two individuals are randomly
picked from the mating pool and some portion of their string are exchanged [Spe98].
For example in a one-point crossover operator, a crossing site along the string is chosen
at random and all the bits on the right side of two solutions are exchanged. Figure 3.4
illustrates the application of one-point crossover operator to the Knapsack problem.
Note that a crossover operator can lead to both better and worse solutions. Therefore, a
crossover probability is used such that some portion of the population is preserved. The
above concept of exchanging partial bits between two strings can also be generalized to
n-point crossover operator, where an n cross-site are chosen at random.

Mutation Operator: After the application of the crossover operator, the mutation
operator is applied to the newly generated individuals. A bit-wise mutation operator
changes a single bit of a string with some mutation probability. This operator brings
better diversity in the population than the crossover operator since the latter is just a
recombination of existing solutions. Goldberg et al. [GD91] suggested a clock mutation
operator where after a bit is mutated, the location of the next mutated bit is determined
by an exponential distribution. This operator has also been used in [DA99].

Now that we have discussed all the ingredients, we present the pseudocode in Al-
gorithm 3.2 illustrating the working principle of a genetic algorithm. The primary
objective of genetic algorithms for combinatorial problem is to mature the population
such that the promising regions of the search space are covered efficiently, thus resulting
in high-quality solutions for the given problem. However, pure genetic algorithms

38



3.4 E VO L U T I O NA RY A L G O R I T H M S F O R M U LT I - O B J E C T I V E O P T I M I Z AT I O N

1 0 0 000 1 1

1

11

000001 1 1 1

1

0

0 0 0 0 01 1 1 1

11111 0 0 0 0 0

Figure 3.4. – One-point crossover for knapsack problem with 10 items where X1 and
X2 correspond to two individuals picked randomly from a mating pool.
Y1 and Y2 are two new solutions formed after the application of one-point
crossover

Algorithm 3.2 Genetic Algorithm for single-objective optimization problem
1: Initialize Population
2: gen := 0
3: while (gen ≤ Required number of generation) do
4: Evaluate population and assign fitness values
5: Apply selection operator to build a mating pool
6: Apply crossover operator
7: Apply mutation operator
8: gen := gen + 1
9: end while

have been often criticized on their capability of search intensification. Therefore, in
many practical applications, the performance of genetic algorithms can be significantly
improved by combining them with a local search phase after mutation and recombi-
nation [Bra85, UAB+91, MF00] or by incorporating a local search process into the
recombination operator [NK13, KP94, MF97].

3.4 Evolutionary Algorithms for Multi-Objective Optimization

A clear difference between a local search optimization method and a genetic algorithm
is that the latter maintains a set of solutions and processes them iteratively. This gives
GA an advantage while solving multi-objective optimization problems. GA’s population
approach can be exploited to maintain a set of non-dominated solutions. The first
implementation of multi-objective evolutionary algorithm VEGA was suggested in the
work of Schaffer [Sch85], who proposed an independent selection according to each
objective. VEGA is the simplest and rather straightforward extension of single-objective

39



3.4 E VO L U T I O NA RY A L G O R I T H M S F O R M U LT I - O B J E C T I V E O P T I M I Z AT I O N

GA to the multi-objective case. In each generation, the population is randomly divided
into d equal subpopulations. Each subpopulation is assigned a fitness function based
on a different objective function. A separate mating pool using proportionate selection
is generated for each subpopulation which is eventually combined together to make a
single mating pool. Finally, crossover and mutation are performed on this combined
mating pool. Observe that each solution in VEGA is evaluated with respect to only one
objective function. This, in turn, limits the diversity of VEGA and it converges to a set
of individual solutions that perform well with respect to individual objective functions.

Fonesca et al. [FF93] introduced a multi-objective genetic algorithm (MOGA) which
used ranking based fitness assignment to each solution in the population. Each solution
in MOGA is checked for its domination in the population. The rank of a solution si is
set to one plus the number of solutions that dominate si is the population. Thus, the
non-dominated solutions are ranked 1 and the maximum rank of a solution is no more
than the total number of solutions in the population. Once the ranking is completed, a
fitness value is assigned to solutions based on their ranking. This way, non-dominated
solution are emphasized in a population. In order to maintain diversity (the spread of
solutions in cost space), Fonseca et al. have introduced niching among the solutions
of each rank. For this, they first calculated the normalized euclidean distance between
any two solutions having the same rank and then computed a niche count using the
sharing function mentioned in [GR87]. A shared fitness value is computed by dividing
the fitness of a solution with its niche count. This, in turn, produces a large selection
pressure on the solutions that reside in a less crowded region. Thereafter, a selection,
a single point crossover, and bit-wise mutation operators are applied to create a new
population.

Srinivas et al. implemented the concept of non-dominated sorting in genetic algo-
rithms (NSGA) [SD94]. Like MOGA, NSGA also uses fitness assignment scheme
based on non-domination criteria and a sharing strategy that preserves diversity. The
solutions in the population are sorted according to non-domination into several equiva-
lence classes where any two solutions in the same class are mutually incomparable. The
first class of solutions corresponds to the best non-dominated set in the population, while
the second best solutions belong to the second set and so on. The fitness assignment
is performed from the first class (best non-dominated sets) and iteratively proceeds
to other classes. The fitness values for all solutions in the first class are initialized to
the size of the population. Further, these fitness values are degraded to maintain the
diversity. That is, for each solution in the first class, its fitness value scaled down by
its niche count, where the sharing function is applied to the solution of first class only.
In order to proceed to the next front, the fitness values of the solutions in the second
class are initialized to a value slightly smaller than the minimum shared fitness of the
first class. This procedure is iteratively continued until all solutions in the population
are assigned fitness values. NSGA applied stochastic roulette wheel operator [GDK89]

40



3.4 E VO L U T I O NA RY A L G O R I T H M S F O R M U LT I - O B J E C T I V E O P T I M I Z AT I O N

for selecting solution into the mating pool. The crossover and mutation operators are
applied to the whole population.

Deb et al. proposed the idea of elitist non-dominated sorting genetic algorithm
(NSGA-II) [DAPM00] where the offsprings population are first created using the
crowded tournament selection, crossover and mutation operators. Then the offspring
population and the parent population are combined together to form a merged population.
A non-dominated sorting is used to classify the solutions of the merged population into
multiple equivalence classes. The final population is generated by selecting solutions
from the different classes according to their non-dominating ranks. That is, the filling
starts with the best non-dominated solution and continues with the solutions from the
second best non-dominated front and so on. All fronts which can not be accommodated
into the fixed size population are deleted. The solutions from last allowed front are
selected based on the niching strategy which prefers the solutions residing in the least
crowded region in that front. Since the population size is fixed, NSGA-II can resort to
cycle before converging to a well-distributed set of solutions.

Another interesting work in the domain of elitist evolutionary algorithm is the strength
Pareto evolutionary algorithm (SPEA) [ZT98, ZT99] where elitism is introduced by
maintaining an external population. This population stores a fixed number of non-
dominated solutions that are found until so far. As the size of the non-dominated
population can go beyond the fixed size of the external population, SPEA uses hierar-
chical clustering methods which preserve the less crowded elite solutions. Moreover,
SPEA uses elite solutions for genetic operators in order to maintain the population in
the good regions of the search space. In fact, SPEA assigns to a solution in external
population, a smaller fitness value (known as strength) than those assigned to the current
population. This method of fitness suggests that a solution with smaller fitness value
is considered better. Finally, a binary tournament selection, a crossover and mutation
operators are applied to create a new population. Later, Zitzler et al. proposed an
improved version, namely SPEA-2, which incorporates a better fine-grained fitness
assignment strategy, a density estimation technique, and an enhanced archive truncation
method [ZLT01]. In particular, the fitness value assigned to a solution si is the sum
of its strength (number of solutions si dominates in current and external population)
and its density (inverse of the distance to the k-th nearest solution). Apart from above
mentioned, many other evolutionary algorithms such as PAES [KC00], HypE [BZ11],
ParEGO [Kno06], approximation guided EA [BFNW11], to name a few, have been
proposed for solving the multi-objective optimization problems.

41





4
D O U B L E A R C H I V E PA R E T O L O C A L S E A R C H

In this chapter, we discuss in detail Pareto local search algorithms that have been
quite useful in solving multi-objective combinatorial problems. We show that under
certain conditions these algorithms can converge prematurely to a local optimum. In
contrast, we propose a new algorithm which improves upon these algorithms in terms
of convergence to the Pareto front and spread of solutions in the cost space.

4.1 Pareto Local Search Algorithm

In this section, we revisit the Pareto local search introduced in [PCS04]. Algo-
rithm 4.1 presents the pseudo-code of the algorithm. PLS starts with randomly gener-
ated solutions S0. Since the neighbors of S0 are not explored, solutions in S0 are marked
as unvisited. The algorithm randomly selects an unvisited solution s and explores its
neighborhood N(s). Line 11 attempts to insert s′ ∈ N(s) to the archive P using a min
operator which is realized using a Pareto filter: a procedure that takes as input a set K
and a solution r and returns a set consisting of the non-dominated solutions in K ∪ {r}.
The algorithm stops when all the solutions in the set P are visited. The pseudo-code for
the min operator is given below in Algorithm 4.2.

Algorithm 4.1 Pareto Local Search PLS(S0,F )
1: Input: An initial set S0 of incomparable solutions
2: Output: A set P consisting of mutually incomparable solutions
3: P := S0
4: for each s′ ∈ P do
5: visited(s′) := False
6: end for
7: repeat
8: s := select randomly a solution from P.
9: for each s′ ∈ N(s) do

10: visited(s′) := False
11: P := min(P ∪ {s′})
12: end for
13: visited(s) := true
14: until ∀s′ ∈ P : visited(s′) = True

43



4.1 PA R E T O L O C A L S E A R C H A L G O R I T H M

Algorithm 4.2 Pareto filter min(K ∪ r)
Input : a set of mutually incomparable solutions K and a solution r
Output : a set of mutually incomparable solutions
K′ := {s′ | s′ ∈ K and F (r) ≺ F (s′)}
K := K \ K′

if (∃s′ ∈ K : F (r)||F (s′)) then
K := K ∪ {r}

end if
Return K

Observe that PLS applies the best improvement strategy that iteratively moves from
a set of current solutions to a neighboring solution that improves upon them. The
algorithm stops in a Pareto local optimal set: a set of solutions that have no improving
solutions in their neighborhood. We formalize these notions below.

Definition 4.1. [PCS04] Let N : S → 2S be a neighborhood function that relates
a subset of S to every feasible solution s. A solution s is said to be a Pareto local
optimum with respect to N if and only if there is no s′ ∈ N(s) such that F (s′) ≺ F (s).
Moreover, a set P is a Pareto local optimum set with respect to N if and only if it
consists of Pareto local optimum solutions with respect to N.

To improve upon PLS performance, Drugan et al. [DT12] proposed a stochastic
Pareto local search algorithm which aims to escape from local optimal sets by using a
combination of mutation and recombination genetic operators. Algorithm 4.3 gives the
pseudo-code of the Genetic Pareto local search (GPLS) algorithm.

GPLS first runs the PLS algorithm in order to construct an initial Pareto set P.
Afterward, a solution s is randomly selected from P. A new solution s′ is generated
by mutating s (with probability α) or by recombining s (with probability 1− α) with
another solution s′′ randomly selected from P. The solutions in P are deactivated using
Algorithm 4.4 and the resultant Pareto set P′ is provided as an initial input to the PLS
algorithm. The archive P is finally updated with the outcome of the PLS run. This
process is repeated until some stopping criterion is met. The GPLS algorithm also
returns a Pareto local optimum set.

PLS has major advantages over prior works. First. it maintains only a set of non-
dominated solutions, hence it provides fast convergence to a Pareto local optimum set.
Furthermore, the size of the archive P is unlimited. This helps in providing a large
number of incomparable solutions. However, one of its major drawbacks is that good
candidate solutions are removed from the archive if dominated by other solutions. This
premature deletion may limit the diversity of future exploration [IKdW+14].

44



4.2 Q U E U E D PA R E T O L O C A L S E A R C H A L G O R I T H M

Algorithm 4.3 Genetic Pareto local search GPLS(S0, α,F )
1: Input: An initial set of incomparable solutions S0
2: Output: A set P consisting of mutually incomparable solutions
3: P := PLS (S0,F )
4: while NOT Termination do
5: select s uniform randomly from P
6: if α > rand(0, 1) or |P| < 2 then
7: s′ := Mutate(s)
8: else
9: Select s′′ 6= s from P

10: s′ := Recombine(s′′, s)
11: end if
12: P′ := Deactivate(P, {s′})
13: P := min(P ∪DAPLS(P′, f ))
14: end while
15: return P

Algorithm 4.4 Deactivation Deactivate(r, K)
1: Input: A Pareto Set K and a solution r
2: Output: A set K′ consisting of mutually incomparable solutions
3: K′ := {r}
4: for ∀s′ ∈ K do
5: if F (r)||F (s′) then
6: K′ := min(K′ ∪ {s′})
7: end if
8: end for
9: return K′

4.2 Queued Pareto Local Search Algorithm

Inja et al. [IKdW+14] introduced a queue based Pareto local search (QPLS) which
prevents the premature deletion of promising candidate solutions by maintaining a
queue of solutions, which leads to a more diverse Pareto archive. The pseudo code for
QPLS is presented in Algorithm 4.5.

QPLS starts with an initial queue Q of solutions and an empty Pareto archive P. A
candidate solution s is popped from the queue and a recursive Pareto improvement
function (PI) is applied. It improves the solution by repeatedly selecting a dominating
solution from the neighborhood until no such improvements are possible. After a
solution s is found that is not weakly dominated by any of its neighbors, it is compared
to P. If no solution in the current archive dominates s, then solution s is added to P
using the min operator. Following this, a set of k new incomparable candidate solutions

45



4.2 Q U E U E D PA R E T O L O C A L S E A R C H A L G O R I T H M

Algorithm 4.5 Queued Pareto Local Search QPLS(Q,F )
1: Input: An initial queue Q
2: Output: A set P consisting of mutually incomparable solutions
3: P := ∅
4: while Q is not empty do
5: s := pop an element from Q
6: s := PI(s,F )
7: if ∃p ∈ P : f (s) 6≺ f (p) ∧ f (s) 6= f (p) then
8: P = min(P ∪ {s})
9: N := {s′ ∈ N(s) : f (s) 6≺ f (s′)}

10: Q.addK(N, k)
11: end if
12: end while
13: return P

are randomly selected from the neighborhood of s and are added to the queue. This
entire procedure is repeated until Q is empty.

Inja et al. proved that in a finite solution space, QPLS terminates in a finite number
of steps for any finite initial queue. To avoid converging to a locally optimal set, QPLS
is combined with a genetic framework that mutates and recombines the entire Pareto
archive from the previous runs. The resultant algorithm is known as Genetic queued
Pareto local search (GQPLS). The pseudocode for GPLS is presented in Algorithm 4.6.

GQPLS first finds a locally optimal Pareto achieve P by running QPLS on the initial
Q. A new set of solutions is generated by mutating and recombining the solutions from
the previous run. For each solution in P, either a mutation is performed with probability
α or recombination with some other solution in P is performed with probability (1− α)
to generate a new solution. The newly generated solution is added to the queue. Finally,
QPLS is called on the set of newly generated individuals. This process is repeated until
some stopping criterion is met.

QPLS has a major advantage over PLS as the solutions which have not been explored
are stored in a queue. This prevents the premature deletions of solutions. However,
a drawback of the QPLS algorithm is that it applies a recursive Pareto improvement
strategy. PI improves upon a solution by repeatedly selecting a single dominating
solution from the neighborhood. Note that a neighborhood of a solution may consist of
a set of non-dominated solutions which are mutually incomparable. In this case, QPLS
selects only one such solution while discarding the rest. We present a new algorithm in
the next section that does not delete candidate solutions prematurely.

46



4.3 D O U B L E A R C H I V E PA R E T O L O C A L S E A R C H A L G O R I T H M

Algorithm 4.6 Genetic Queued Pareto local search GQPLS(Q, α,F )
1: Input: An initial queue Q
2: P :=QPLS (Q,F )
3: while NOT Termination do
4: Initialize Q to be an empty queue
5: for each s ∈ P do
6: if α > rand(0, 1) or |P| < 2 then
7: s′ := mutate(s)
8: else
9: Select s′′ 6= s from P

10: s′ := Recombine(s′′, s)
11: end if
12: Q.add(s′)
13: end for
14: P := min(P ∪QPLS(Q,F ))
15: end while
16: return P

4.3 Double Archive Pareto Local Search Algorithm

In this section, we present our Double archive Pareto local search algorithm that
maintains an additional archive L which is maintained as a queue. Algorithm 4.7 depicts
the general scheme of DAPLS.

Both archives P and L are initialized to a set S0 of mutually incomparable solutions.
While L is not empty, a solution s is selected and its entire (or partial) neighborhood
N(s) is generated. The current Pareto archive P is updated with solutions from N(s)
using a min operator. If a solution s′ ∈ N(s) is present in the updated Pareto archive,
it is added to L in line 12 and remains there even if it is later removed from P. This
procedure is repeated for all the solutions in neighborhood of s (lines 10-13).

As in previous work of SPLS [DT12], one can distinguish between two neighbor-
hood generation strategies: best improvement and first improvement implementation.
Observe that, DAPLS applies improvement once per iteration and saves all dominating
points from P in L. Moreover, we maintain L as a queue. Hence, DAPLS explores the
neighbors of s ∈ L before the neighbors of s′ ∈ L if and only if s is added to L earlier
than s′. This provides fair chance to the solutions for exploration and prevents prema-
ture convergence. Informally, DAPLS can also be seen as a breadth-first exploration of
the search space using the Pareto dominance criteria.

DAPLS admits some natural properties mentioned below.

Property 1. DAPLS is an iterative improvement algorithm with respect to its neighbours
and strict non-dominance relation.

47



4.3 D O U B L E A R C H I V E PA R E T O L O C A L S E A R C H A L G O R I T H M

Algorithm 4.7 DAPLS(S0,F )
1: Input: An initial set of incomparable solutions S0
2: Output: A set P consisting of mutually incomparable solutions
3: P := S0
4: for each s ∈ S0 do
5: L.add(s)
6: end for
7: while L is not empty do
8: s := pop a solution from L
9: P := min(P ∪ N(s))

10: for each s′ ∈ N(s) do
11: if s′ ∈ P then
12: L.add(s′)
13: end if
14: end for
15: end while
16: return P

Property 2. Let Pi and Li denote the archives P and L, respectively at end of iteration
i, then ∀s ∈ Li, ∃i′ ≤ i : s ∈ Pi′ .

Property 3. DAPLS terminates with a Pareto local optimum set.

Property 1 holds since P is updated using the min operator. Thus at all times, P
consists of incomparable solutions. The essence of our approach lies in Property 2.
Essentially all the solutions which are inserted to P at iteration i are also inserted to
archive L (line 12). At a later iteration i′, it may happen that a new solution is removed
from P in which case, L protects the unvisited solution. Recall that a solution from L
can only be removed after its neighborhood has been explored. DAPLS protects all the
dominating incomparable solutions from the neighborhood by inserting them in L.

Next, we present a simple genetic variation of DAPLS, depicted in Algorithm 4.8.
Our genetic DAPLS escapes local optima by mutating and recombining the entire Pareto
archive. It starts with executing DAPLS on an initial set of solutions. Once, a locally
optimal Pareto archive P is obtained. It mutates (with probability α) or recombines (with
probability 1− α) all the solutions in P. Essentially, the skeleton of Genetic DAPLS is
similar to Genetic QPLS where QPLS algorithm is replaced with DAPLS algorithm
and updates to S are realized using non-dominance relation. This has a similar effect to
that of deactivation scheme applied to the GPLS algorithm and helps DAPLS to explore
only a small number of candidate solutions. Note that genetic DAPLS also runs until
some stopping criterion is met.

48



4.4 E X P E R I M E N TA L R E S U LT S

Algorithm 4.8 Genetic DAPLS(S0, α,F )
1: Input: An initial set S0 of incomparable solutions
2: Output: A set P consisting of mutually incomparable solutions
3: P := DAPLS (S0, f )
4: while NOT Termination do
5: S := ∅
6: for each s ∈ P do
7: if α > rand(0, 1) or |P| < 2 then
8: s′ := mutate(s)
9: else

10: Select s′′ 6= s from P
11: s′ := Recombine(s′′, s)
12: end if
13: S := min(S ∪ {s′})
14: end for
15: P := min(P ∪DAPLS(S,F ))
16: end while
17: return P

4.4 Experimental Results

We compare DAPLS to QPLS and PLS on the multi-objective quadratic assignment
problem (MQAP) [KC03].

Single objective QAPs are NP-hard combinatorial optimization problems that model
many real-world situations like the layout of electrical circuits in computer aided design,
scheduling, vehicle routing, etc. In fact, travelling salesman problem which is one of
the most challenging problems in combinatorial optimization is a special case of QAP.
Intuitively, QAPs can be described as the assignment of n facilities to n locations where
the distance between each pair of locations is given and for each pair of facilities, the
amount of flow (or materials) transported is specified. The aim is to find an optimal
assignment of facilities to locations that minimizes the sum of products between distance
and flows.

In this work, we consider the multi-objective version of QAPs (MQAP) introduced
by Knowles et al., where the flows between each pair of facilities are multi-dimensional
values [KC03]. The values in flow matrices are correlated with factor ρ. If ρ is strongly
positive then the Pareto front is small and is closer to being convex. This makes the
problem harder. On the other hand, if the value of ρ is small or negative, then there
exists a large number of Pareto optimal solution which is evenly spread out in the cost
space.

Specifically, we are given n facilities and n locations such that dpq denotes the
distance between location p and location q. Moreover, we are provided with d flow

49



4.4 E X P E R I M E N TA L R E S U LT S

matrices F1, · · · , Fd, where Fi
jk denotes the flow from facility j to facility k in the i-th

dimension. The aim is to minimize:

Ci(π) =
n

∑
a=1

n

∑
b=1

Fi
ab.dπ(a),π(b), ∀i ∈ {1, · · · , d}

where π(.) is a permutation from set of all permutations Π(n) of {1, 2, · · · , n}. Given
a permutation π, it takes O(n2) to compute the above cost functions.

Below we present a description of the neighborhood relation for QAPs. Furthermore,
we also define a mutation and a recombination operators applied in the genetic version
of the algorithms. Lastly, we present simple time-based stopping criteria so as to have a
fair comparison of the performance of the algorithms.

Neighborhood Relation: MQAPs are permutation problems where a suitable neigh-
borhood operator is the q-exchange operator that swaps the locations of q-facilities. In
this work, we the use a 2-exchange operator that swaps the location of two difference
facilities. It has two major advantages: the neighborhood size (n

2), is relatively small
and the time complexity of computing the incremental change in cost is linear [PS06].

Mutation Operator: We use the q-exchange mutation operator described in [DT10].
The q-exchange mutation randomly selects q > 2 locations {l1, · · · , lq}, without
replacement from a solution. A new solution is generated by exchanging these locations
from left to right or from right to left with equal probability. For example, when
exchanges are made right to left, the facility at li is shifted to location li−1 where
i > 2 and facility at location l1 is shifted to location lq. Note that a new solution is
q-swaps apart from the original solution. Since our neighborhood operator is 2 exchange
operator, we use q > 2 exchange mutation to escape from the local optima.

Recombination Operator: Drugan et al. [DT10] also introduced the idea of the path-
guided mutation for QAP problems where two solutions s and s′ are selected from the
current Pareto archive such that the distance is at least q. An offspring s′′ is generated
by copying the solution s. The set of common cycles for two solutions, s′′ and s′ are
identified. A cycle is a minimal subset of locations such that the set of their facilities
is the same in both parent solutions. For example, in Figure 4.1 there are two cycles
between s′ and s′′: {2, 7, 5, 3} and {6, 8, 4, 1}. Then a cycle c is randomly chosen.
For q− 1 times, choose at random a location i in the cycle c from solution s′′, where
s′′[i] = s′[j] and i 6= j. Exchange the facilities of s′′[i] and s′[j]. Thus, the distance
between s′′ and its first parent s, is increased by 1 and the distance between s′′ and the
second parent s′, is decreased by 1. If the size of c is smaller or equal to q, a second
cycle is chosen. This process of randomly selecting a cycle and swap locations is
repeated until the distance between s′′ and s is q. If there are no parent solutions at
distance larger or equal to q, we generate a solution with the mutation operator.

Stopping Criteria: In the majority of the MOEA literature, the algorithms are com-
pared using the number of fitness function evaluation rather than the execution time. On

50



4.4 E X P E R I M E N TA L R E S U LT S

5 8 61 3 4 72

35762 4 1 8

2 6 14 5 8 73

73562 4 1 4

Figure 4.1. – An example of 3-exchange path mutation borrowed from [DT10]. The so-
lution s′ and s′′ form two cycles from which cycle {2, 3, 5, 7} is randomly
chosen. The three positions l1, l2 and l3 in cycle are used to decrease the
distance between s′ and s′′.

the other hand, neighborhood generating operators do not perform full fitness evalua-
tions. Instead they perturb many small changes to the solutions, which can be evaluated
in a fractional amount of time. Therefore, we measure the outcome of different algo-
rithm as a function of time. We run each algorithm for the same fixed amount of time
for each instance.

Comparison Methodology

We generated multiple QAPs problem instances with different correlation factors
and facilities. For bi-objective QAP problem, we choose a large number of facil-
ities, n ∈ {50, 75} with correlation factors ρ ∈ {−0.25,−0.75, 0.25, 0.75}. For
tri-objective QAP, since the number of non-dominated solutions in the Pareto front
increases exponentially with dimension, we restricted our choice to rather small number
of facilities n ∈ {20, 25} with the combination of correlation factor ρ ∈ {0.25.0.75} .
To have a fair comparison, we kept the runtime for each instance across all the algo-
rithms a constant. For example, for a small bi-objective instance with 50 facilities and
ρ = 0.25, all algorithms were executed for 20 minutes. Due to stochasticity of the algo-
rithms, each experiment was executed 20 times for each instance. The comparison of
performance is carried out using a hypervolume unary indicator [ZT99]. This indicator
measures the volume of the cost space which is weakly dominated by an approximating
set.

51



4.4 E X P E R I M E N TA L R E S U LT S

Bi-qap Volume
n, ρ GSPLS GQPLS DAPLS

50,−0.75 0.92± 0.008 0.93± 0.002 0.94 ± 0.001
50,−0.25 0.94± 0.010 0.97± 0.011 0.99 ± 0.008
50,+0.25 0.93± 0.015 0.95± 0.002 0.98 ± 0.005
50,+0.75 0.84± 0.012 0.82± 0.015 0.88 ± 0.006

75,−0.75 0.80± 0.007 0.83± 0.010 0.86 ± 0.002
75,−0.25 0.75± 0.001 0.79± 0.007 0.81 ± 0.009
75,+0.25 0.81± 0.006 0.83± 0.001 0.86 ± 0.001
75,+0.75 0.77± 0.001 0.77± 0.013 0.83 ± 0.014

Table 1. – Performance of GSPLS, GQPLS and Genetic DAPLS on 8 large bi-objective
instances of QAP in terms of normalized hypervolume

Table 1 shows the average performance, in terms of normalized hypervolume 1

for bi-objective QAP instances. For all instances, genetic DAPLS outperforms both
algorithms. Moreover, we observe that for small and negative correlation factors the
difference between genetic DAPLS and other methods is almost negligible. This can
be explained by the fact that for such instances the solutions are evenly spread out in
the cost space and all algorithms can find them easily. On the other hand, for strongly
positive correlation factors, the number of solutions is small and rather restricted to
some part of the cost space. This in turn increases the complexity of finding solutions
approximating the Pareto front for such instances. Our method improves upon the
previous algorithms and finds a much better approximate Pareto front for these hard
instances.

Similarly, Table 2 shows the average performance for tri-objective QAP instances.
Here, ρ1 represents the correlation factor between objectives 1 and 2 while ρ2 presents
the correlation between objectives 1 and 3. Like the bi-objective case, genetic DAPLS
outperforms all other methods in terms of hypervolume. We observe that especially for
large correlation factors (ρ1 = 0.75 and ρ2 = 0.75), DAPLS finds better approximate
solutions.

For comparison, we also use visualization of EAFs from outcomes of multiple runs of
each algorithm. An approximating set is k%-approximation set if it weakly dominates
exactly those solutions that have been attained in at least k percent of runs. We show
50%-approximation set of EAFs for bi-objective instances with positive correlation.
These plots are generated using theR-statistical tool with the library EAF. The details
of the generating algorithm can be found in [LIPS10].

1. We used hypervolume generating tool from http://lopez-ibanez.eu/hypervolume for comparison.

52



4.4 E X P E R I M E N TA L R E S U LT S

Tri-qap Volume
n, ρ1, ρ2 GSPLS GQPLS DAPLS

20, 0.25, 0.25 0.81± 0.027 0.84± 0.003 0.86 ± 0.001
20, 0.25, 0.75 0.79± 0.001 0.81± 0.001 0.83 ± 0.003
20, 0.75, 0.25 0.78± 0.013 0.80± 0.001 0.82 ± 0.002
20, 0.75, 0.75 0.73± 0.011 0.75± 0.002 0.82 ± 0.001

25, 0.25, 0.25 0.90± 0.019 0.92± 0.003 0.96 ± 0.002
25, 0.25, 0.75 0.82± 0.012 0.84± 0.006 0.87 ± 0.001
25, 0.75, 0.25 0.80± 0.014 0.82± 0.008 0.84 ± 0.001
25, 0.75, 0.75 0.78± 0.012 0.82± 0.023 0.87 ± 0.001

Table 2. – Performance of GSPLS, GQPLS and Genetic DAPLS on 8 tri-objective
instances of QAP in terms of normalized hypervolume

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Obj val 2 1e8

3.0

3.5

4.0

4.5

5.0

5.5

6.0

O
b
j 
v
a
l 
1

1e8

PLS
QPLS
DAPLS

3.0 3.5 4.0 4.5 5.0 5.5
Obj val 2 1e8

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

O
b
j 
v
a
l 
1

1e8

PLS
QPLS
DAPLS

Figure 4.2. – Median attainment surfaces for n = 50 with ρ = 0.25 (on left) and
ρ = 0.75 (on right)

Figure 4.2 shows the median attainment surfaces for bi-objective instance of 50-
facilities with correlation factors 0.25 and 0.75. Similarly, Figure 4.3 shows the median
attainment surface for 75 facilities for ρ equal to 0.25 and 0.75. For instances with
correlation factor 0.25, it is clearly visible that genetic DAPLS achieves better spread of
solutions (diversity) in the cost space than GSPLS and GQPLS. Similar improvements
are also observed for the instances with correlation factor 0.75, where genetic DAPLS
not only achieves better diversification but also provides solutions which are closer to
the Pareto front.

53



4.5 C O N C L U S I O N A N D F U T U R E W O R K

0.8 0.9 1.0 1.1 1.2 1.3 1.4
Obj val 2 1e9

0.6

0.7

0.8

0.9

1.0

1.1

O
b
j 
v
a
l 
1

1e9

PLS
QPLS
DAPLS

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Obj val 2 1e9

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

O
b
j 
v
a
l 
1

1e9

PLS
QPLS
DAPLS

Figure 4.3. – Median attainment surfaces for n = 75 with ρ = 0.25 (on left) and
ρ = 0.75 (on right)

4.5 Conclusion and Future work

We developed a new local search algorithm for approximating Pareto fronts. Our algo-
rithm is based on the principle that the neighbors of solutions that were non-dominated
at some stage of the search process should be explored before they are discarded. To
escape the local optimal set, we embedded DAPLS in a genetic framework. We showed
empirically that genetic DAPLS outperforms GSPLS and GQPLS algorithms on several
instances of bi-objective and tri-objective quadratic assignment problems.

In the future, we would like to study DAPLS for higher dimensional cost spaces
where the size of the Pareto front is typically huge. This, in turn, causes an increase in
the runtime of the inner loop of genetic DAPLS. Our next aim would be to use some
heuristics to limit the size of the neighborhood. We would also like to see how DAPLS
performs on other multi-objective problems like the knapsack, coordination graphs, etc.

54



Part II.

ON NON-PREEMPTIVE
SCHEDULING

55





5
I N T RO D U C T I O N T O S C H E D U L I N G

Scheduling is a combinatorial problem of allocating resources to a set of requests
so as to optimize some performance objectives. Such problems have been studied in
various disciplines such as management science, computer science, finance, economics,
etc. This has lead to a virtually unlimited number of models for scheduling problems.
In this thesis, we focus on the client-server model where resources are represented as
machines or processors, whereas requests correspond to jobs/tasks that arrive over time.
The general aim of a scheduler is to assign the sequence in which the jobs are executed
on the machines. The typical example of such systems includes operating systems,
high-performance platforms, web-servers, database server, etc.

One of the most common and natural measure for the quality of service delivered to a
job is the amount of time it spends in a system. Mathematically, this can be modelled as
the flow time of a job, which is defined as the amount of time a job remains in the system
until it is fully served. Informally, the flow time can be related to the waiting time of
a job in a system. Several variants of the flow time problem have been investigated
in different settings. We specifically focus on non-preemptive settings where a job is
executed uninterruptedly to its completion time. This is particularly important because
scheduling with interruptions (preemptions) usually have a huge management overhead,
which can impact the overall performance of the system.

5.1 Preliminaries

A scheduling problem generally consists of a set of independent jobsJ = {J1, J2, ..., Jn}
and a set of machines M = {1, 2, ..., m}. Each job Jj ∈ J is characterized by its
release date rj and a set of processing times pij, ∀i ∈ {1, 2, ...m}. Depending upon the
machine type, scheduling problems are generally studied in four different settings.

1. Single machine: This is the simplest and most commonly studied setting where
all jobs in J are scheduled on a single machine i.e. m = 1. Moreover, each job
Jj ∈ J has a processing time pj.

2. Identical machines: This setting is the natural generalization of single machine
case where each job Jj ∈ J are scheduled on a set of similar parallel machines
M such that ∀i ∈ M : pij = pj.

3. Related machines: Here, each job Jj ∈ J has a processing requirement of pj
and can be scheduled on a set of machinesM where machine i ∈ M executes
jobs at a speed si . Thus, a job j requires

pj
si

time units on machine i.

57



5.1 P R E L I M I NA R I E S

4. Unrelated machines: This is most general setting where each job Jj ∈ J has a
processing time of pij on the machine i ∈ M.

In addition to above machine models, we will also consider problems where each job
is given a degree of importance. The importance of a job Jj is represented by its weight
wj. The total number of total jobs in an instance is denoted by n. Given a schedule,
the completion time Cj of job Jj is defined as the time at which Jj is fully served with
respect to its resource requirement. Then, the flow time (or response time) Fj is defined
as the time Jj spends in the system i.e. Fj = Cj − rj.

Another related measure to the flow time objective is the stretch, which is defined as
the factor by which a job is slowed down with respect to it’s processing time. Stretch
is often used in fair scheduling where users are willing to wait longer for large jobs
as opposed to small jobs. In fact, stretch is a special case of the weighted flow time
measure where the weight wj of a job is equal to the inverse of it’s processing time i.e

Sij =
Fj
pij

where Jj is entirely scheduled on machine i [BCM98].
Typically, most of the scheduling problems are studied under two separate scenarios:

offline and online settings. In case of offline settings, the entire instance J is known in
advance where the aim is to design efficient algorithms that achieve optimal performance
guarantees. Unfortunately, many such scheduling problems are NP-hard i.e. there
exists no polynomial time algorithm to find an optimal solution unless P = NP. Thus,
a widely accepted approach is to relax the notion of optimality and find a polynomial
time solution with a provable good performance guarantee. The performance guarantees
of offline problems are usually expressed in the terms of approximation ratio. Below
we define more formally the notion of the approximation algorithm.

Definition 5.1. Let A and OPT denote an algorithm and some fixed optimal solution,
respectively. Then A is said to be an α-approximation algorithm iff for all instances of
the optimization problem

F (A) ≤ α.F (OPT)

where F denotes the objective function.

Informally, the idea here is to find a solution whose objective value is close to the
optimal solution. Moreover, the running time of the algorithm generating such a solution
should be small (polynomial in the size of input instance). Note that for most of the
offline scheduling problems, one can find an optimal solution by simply enumerating
all the permutations of the jobs. But the time required for such an enumeration is
exponential in the size of input instance. Thus, the approximation algorithm can be
seen as a trade-off between the quality of a solution and the search time.

The online setting differs from the offline setting in the sense that the existence of a
job is revealed at the time of its arrival. Thus, an online algorithm has to make decisions
based on the partial knowledge of the instance that has arrived until that time. In this
thesis, we focus on problems arising in the clairvoyant scheduling, where the set of

58



5.2 R E S O U R C E AU G M E N TAT I O N

processing times pij of a job j is revealed on its arrival time rj. As in the offline setting,
for most the online scheduling problems finding an optimal solution is infeasible in a
small amount of time. Moreover, the partial knowledge of the instance complicates
this problem further as the notion of optimal is not very clear. In such a case, the
performances of online algorithms are given in terms of the competitive ratio where
the cost of the online algorithm is compared to the cost of the offline optimal solution.
Below we formally define the notion of competitive ratio.

Definition 5.2. Let A and OPT denote an online algorithm and some fixed offline
optimal solution, respectively. Then A is said to be an ρ-competitive algorithm iff for
all instances of the optimization problem

F (A) ≤ ρ.F (OPT)

where F denotes the objective function.

Note that in above definition, we assume that the objective function is a minimization
problem. The competitive ratio for maximization problems can be defined similarly.
Moreover, the performance of an online algorithm is compared to the optimal offline
solution i.e. where the optimal algorithm knows the entire instance in advance whereas
the online algorithm is made aware of the instance as jobs arrive.

Both of the above definitions can be extended to multi-objective analysis, where
an algorithm’s performance is measured using two or more objective functions. For
instance in a bi-objective problem, the performance of an online algorithm is measured
terms of (ρ1, ρ2)-competitive ratio which is defined as:

Definition 5.3. An online algorithm is said to be (ρ1, ρ2)-competitive iff for all in-
stances of the online optimization problem, the algorithm produces a solution that is
simultaneously ρ1-competitive for the first objective and ρ2-competitive for the second
objective.

Note that in the above definition, the performance of an online algorithm is compared
to two separate offline algorithms. In terms of general multi-objective problems, this
can be seen as comparing the cost of a solution with an ideal point.

5.2 Resource Augmentation

The above performance measures are based on the worst case analysis of the algorithm
i.e. the performance of an algorithm is measured on the most difficult instances of the
problem. However, in practice, such instances are rare. In fact, many algorithms which
have arbitrarily huge performance guarantees with respect to the optimal algorithm,
perform quite well under practical settings. Therefore, the standard performance
measures like approximation ratio or competitive ratio turns out to be overly pessimistic.

59



5.2 R E S O U R C E AU G M E N TAT I O N

In such cases, a different form of analysis known as resource augmentation has been
proven useful [KP00, PSTW97].

Resource augmentation refers to the relaxed notion of analysis where the algorithm’s
performance is computed on the set of slightly extra resources in comparison to the
optimal solution [KP00]. For example, consider a case of speed augmentation where the
algorithm is allowed to execute the jobs (1 + ε) times faster than the optimal algorithm,
where ε > 0. In other words, the work that the optimal algorithm can do in an 1
unit of time will require

(
1

1+ε

)
unit of time in the algorithm. The power of resource

augmentation lies in the fact that it has successfully provided theoretical evidences for
many scheduling algorithms with good performance in practice.

Below we formally define the notion of resource augmentation in terms extra speed
and extra machine.

Definition 5.4. An online algorithm A is said to be s-speed c-competitive iff for all
instances of the problem A is c-competitive and executes job s times faster than the
offline optimal policy.

Definition 5.5. An online algorithm A is said to be m-machine c-competitive iff for all
instances of the problem A is c-competitive and the number of machines available to A
is m times the number of machines available to the offline optimal algorithm.

The speed and the machine augmentation have been extensively applied to preemptive
flow minimization problems. In fact, many scheduling algorithms which behave poorly
under the classical models, are shown to have O(1)-competitive ratio under resource
augmentation [KP00, PSTW97].

In contrast, we specifically focus on non-preemptive flow time minimization problems.
In general settings, non-preemptive flow minimization problems are much harder and
therefore had very little success in above resource augmentation model. We study
such problems in a recently proposed model of rejection. Unlike previous resource
augmentation model, the rejection model does not provide any extra resources; instead
it allows an algorithm to discard a small fraction of the jobs. Then, the idea is to find an
algorithm which can provide a good performance guarantee for the remaining set of
jobs. Below we formally define the definition of algorithm’s performance in terms of
rejection model.

Definition 5.6. Under rejection model, an online algorithm A is said to be f -rejection
c-competitive iff for all instances of the problem A is c-competitive and is allowed to
reject at most f -fraction of total number of jobs.

The performance of the algorithm is computed on the non-rejected set of jobs and
compared to the offline optimal solution for all jobs. Intuitively, the rejection can be seen
as a resource augmentation where a small fraction of the jobs have very huge number
of resources at its disposal. Above definitions can be similarly extended to offline

60



5.3 R E L AT E D W O R K S

algorithms in terms of approximation ratios. Many preemptive problems with strong
lower bound in the resource augmentation model have been solved efficiently in the
rejection model [CDK15, CDGK15]. In contrast, we focus on study of non-preemptive
flow time minimization problems. Such problems are much harder to solve than their
preemptive counterpart. In fact, there is a limited literature focusing on the study of
non-preemptive problems. In the following chapters, we will present some new results
for these problems in different settings.

5.3 Related Works

5.3.1 Results without resource augmentation

The stretch metric was originally introduced to study the fairness for HTTP requests
arriving at web servers [BCM98]. Bender et al. [BCM98] showed that the problem of
optimizing max-stretch i.e minimizing the maximum stretch attained by a set of jobs, in
a non-preemptive offline setting cannot be approximated within a factor of Ω(n1−ε),
unless P = NP. To show this, they reduced an arbitrary instance of 3-partition problem
to an instance of the non-preemptive max-stretch problem. Then using the adversary
technique for online algorithms, they presented a lower bound of Ω(∆

1
3 ) for the max-

stretch problem on a single machine. Finally, they provided an online preemptive
algorithm using a variant of classical EDF strategy (earliest deadline first) and showed
that it is O(

√
∆)-competitive, where ∆ is the ratio of largest to smallest processing

time.
Later, Legrand et al. showed that First-Come First-Served algorithm (FCFS) is

∆-competitive for the max-stretch problem on a single machine [LSV08]. Since the
preemption is not used in FCFS, above bound is also valid for the non-preemptive case.
They also showed that the problem of optimizing max-stretch on a single machine with
preemption cannot be approximated within a factor of 1

2 ∆
√

2−1. Saule et al. showed
that all approximation algorithms optimizing max-stretch cannot have a competitive
ratio better than 1+∆

2 on a single machine [SBÇ12].
For the problem of minimizing average stretch, Muthukrishnan et al. [MRSG99]

showed that the classical preemptive strategy of scheduling jobs with shortest remaining
processing time (SRPT) is 2-competitive on a single machine. Their analysis relies on
a careful comparison of the set of unfinished jobs in SRPT with the set of unfinished
jobs in any other scheduling algorithm. Later, Bender et al. presented a polynomial
time approximation scheme with a time complexity of O(npoly( 1

ε )) [BMR03]. A
more general problem of minimizing average stretch is the problem of minimizing the
average weighted flow time (∑ wiFi). In preemptive settings, there is no known online
algorithm with a constant competitive ratio for the average of weighted flow time on a
single machine. The best known guarantee is given by a randomized algorithm which
achieves an approximation ratio of O(log log ∆) [BP14]. In online setting, Chekuri et

61



5.3 R E L AT E D W O R K S

al. [CKZ01] and Bansal et al. [BD07] presented online algorithms with O(log W) and
O(log2 ∆) competitive ratio, respectively, where W is the ratio of the largest weight
over the smallest weight. Furthermore, Bansal et al. showed that any algorithm should

have a competitive ratio of at least Ω(min{
√

log W
log log W ,

√
log log ∆

log log log ∆}) [BC09]. In
terms of instance dependent parameter, Tao et al. [TL13] proved that the weighted SPT
is (∆ + 1)-competitive for the total weighted flow-time objective.

In case when weights are equal to 1 and preemptions are allowed, a well-known
online strategy of scheduling jobs with shortest remaining processing time (SRPT)
provides an optimal solution for minimizing the average flow time on a single ma-
chine [BT09]. Whereas in the non-preemptive setting, Kellerer et al. [KTW95] showed
that there exists a strong lower bound of O(n

1
2−ε) on the inapproximability of the total

flow time minimization problem and presented an algorithm which achieves O(
√

n)-
approximation for the flow time problem on single machine. In the online setting,
Chekuri et al. [CKZ01] showed that any algorithm minimizing the non-preemptive
total flow should have a competitive ratio Ω(n). Bunde [Bun04] later proved that
the online strategy of scheduling jobs with shortest processing time (SPT) strategy is
∆+1

2 -competitive for the average flow-time minimization problem. He also showed that
this is the best achievable bound for optimizing the online average flow time on a single
machine.

In the identical parallel machines setting, SRPT is a 14-competitive algorithm for the
preemptive average stretch minimization problem [MRSG99] and O(log(min{ n

m , ∆}))-
competitive algorithm for the preemptive problem of minimizing average flow-time [LR07].
Leonardi et al. further showed that the competitive ratio of any randomized online
algorithm is Ω(log n

m ) and Ω(log ∆). In non-preemptive case, a general technique
for the total flow-time minimization problem has been presented in [LR07], which
transforms any preemptive schedule into a non-preemptive schedule by loosing a factor
of O(

√ n
m ). Thus, this technique yields an O(

√ n
m log(min{ n

m , ∆}))-approximation
algorithm for minimizing the non-preemptive flow time on a set of parallel machines.
Lastly, they also presented a lower bound of Ω(n

1
3 ) for this problem.

5.3.2 Results with resource augmentation

Bechetti et al. [BLMSP06] showed that the online preemptive scheduling policy
of weighted shortest remaining time first is (1 + ε)-speed O(1

ε )-competitive for the
average weighted flow-time minimization problem. In the rejection model, Choudhary et
al. [CDK15] presented an O( 1

ε12 )-competitive algorithm for the same problem where
the algorithm rejects at most an ε-fraction of total weights of the job. Moreover, they
showed that their result also holds on the set of identical machines. If preemptions
are not allowed, Bansal et al. [BCK+07] showed that there exist algorithms that is
12-speed (2 + ε)-approximation algorithm for the total flow-time objective and a 12-
speed 4-approximation algorithm for the total weighted flow-time objectives. First,

62



5.4 O U R R E S U LT S

they proposed a new integer programming formulation whose the relaxation is close
to an optimum. Then, they transformed the schedule obtained from solving relaxed
LP into a feasible non-preemptive schedule. Using a different approach of dynamic
programming, Im et al. [ILMT15] proposed a quasi-polynomial time framework that
achieves (1 + ε)-speed and (1 + ε)-approximate solution for the total weighted flow-
time minimization problem and a (1 + ε)-speed and O(1)-approximate solution for the
total flow-time minimization problem. Moreover, they showed that their framework can
be easily extended to a set of parallel machines.

In [PSTW97], an O(log ∆)-machine 1-competitive algorithm has been proposed for
the total weighted flow-time objective even for identical machines. For the unweighted
version, the authors also proposed an O(log n)-machine (1 + o(1))-competitive al-
gorithm and an O(log n)-machine (1 + o(1))-speed 1-competitive algorithm. Note
that algorithms in [PSTW97] work in the online setting but they need to know the
minimum and the maximum processing times in advance. Moreover, a m-machine
(1 + ∆1/m)-competitive algorithm was presented in [EVS01] for the total flow-time
minimization problem, if ∆ is known a priori to the algorithm. The authors also pro-
vided a lower bound which shows that their algorithm is optimal up to a constant factor
for any constant m.

Another general problem related to weighted flow time is the problem of minimizing
the weighted `k-norm of flow time. Bansal et al. [BP03] first studied this problem in
preemptive settings and showed that the policy of scheduling jobs with highest density
first (HDF) is (1 + ε)-speed, 1

ε -competitive where the density of a job is equal to the
weight of the job divided by its processing time. Anand et al. [AGK12] improved this
bound and presented a primal-dual based algorithm that is (1+ ε)-speed, O(k/ε2+1/k)-
competitive. Thang [Ngu13] further improved this bound and provided an algorithm
that is (1 + ε)-speed, O(k/ε1+1/k) and does not need to know ε a priori. To the best
of our knowledge, no competitive algorithm is known for non-preemptive problem of
weighted `k-norm of flow time.

5.4 Our Results

The main contribution of this part of the thesis are summarized below.

1. In Chapter 6, we study the online problem of minimizing max-stretch on a
single machine. We show an improved lower bound of α∆, where α =

√
5−1
2 .

Then, we design a new semi-online algorithm which asymptotically achieves the
same performance guarantee. At last, we show that our algorithm achieves the
competitive ratio of ∆2 for the problem of minimizing the average stretch.

2. In Chapter 7, we study the problem of minimizing average flow and average
stretch under the rejection model. We present a polynomial time algorithm that
converts a preemptive SRPT schedule into a feasible non-preemptive schedule
with a performance guarantee of O(1

ε ) and rejects at most ε-fraction of total

63



5.4 O U R R E S U LT S

number (weights) of jobs for the problem of minimizing the average flow (the
average stretch) on a single machine.

3. In Chapter 8, we study the online problem of minimizing average weighted flow
time on unrelated machine. Here we first present a generalized framework that
unifies multiple variants of resource augmentation. Then, we design a primal-dual
algorithm that is (1+ εs)-speed O

(
1

εr.εs

)
-competitive ratio for average weighted

flow time problem and rejects at most εr-fraction of the total weight of the jobs.

4. In Chapter 9, we extended the analysis to `p-norm of the weighted flow and
showed that the same algorithm (as in Chapter 8) achieves (1 + εs)-speed

O
(

k(k+3)/k

ε1/k
r .ε(k+2)/k

s

)
-competitive and rejects at most εr-fraction of the total weight

of the jobs.

64



6
S C H E D U L I N G T O M I N I M I Z E M A X - S T R E T C H O N A S I N G L E
M AC H I N E

6.1 Introduction

In this chapter, we consider basic single processor scheduling scenario where jobs
arrive over time and the aim of a scheduler is to optimize some function that measures
the performance or quality of service delivered to jobs. One of the most relevant
performance measures in job scheduling is the fair amount of time that jobs spend in
the system. This includes both the waiting time due to processing some other jobs and
the actual processing time of the job itself. We consider stretch as an objective for fair
scheduling of jobs.

Here, we are interested in scheduling a stream of jobs to minimize the maximum
stretch (max-stretch) on a single machine. This problem is denoted as 1|ri, online|Smax
in the classical 3-fields notation of scheduling problems [LLRKS93]. The problem
of max-stretch admits no constant approximation in the offline setting unless P =
NP [BCM98]. Though interesting results can be derived by introducing an instance-
dependent parameter ∆: the ratio between the largest and the smallest processing time
in the instance.

6.2 Problem Definition

We study the problem of scheduling a set of n independent jobs on a single machine
where jobs arrive over time and their processing time is known only at their release times.
A scheduling instance is specified by the set of jobs J. Without loss of generality, we
assume that the smallest and largest processing times are equal to 1 and ∆, respectively.
In this work, we consider the semi-online version of the problem where the value of ∆
is known a priori.

In a given schedule σi, Ci and Si denote the start time, completion time and stretch of
job i, respectively where Si =

Ci−ri
pi

. We are interested in minimizing Smax = max
j∈J

Sj.

6.3 Lower Bounds on Competitive Ratios

Definition 6.1. A scheduling algorithm A is said to be greedy iff there does not exist a
time t where the machine is idle while A has a set of unfinished jobs.

65



6.3 L OW E R B O U N D S O N C O M P E T I T I V E R AT I O S

Note that the lower bounds mentioned below are expressed in the term of compet-
itiveness defined in Chapter 6. According to the general definition of competitive-
ness [BEY98], these bounds hold true iff ∆ is not a constant.

Observation 6.1. Any greedy algorithm for scheduling jobs on a single machine has a
competitive ratio of at least ∆ for minimizing the max-stretch objective.

Proof. We present a simple proof using the adversary technique. At time 0 a job of
processing time ∆ arrives. Any greedy algorithm schedules it immediately on the
processor. At time ε, a small job of processing time 1 is released. Since preemption is
not allowed, the greedy algorithm can only schedule the small job at time t = ∆ and
thus attaining Smax ≈ ∆. On the contrary, the optimal algorithm finishes the small job
first and hence has a stretch close to 1 for both jobs; more precisely of S∗ = ∆+ε

∆ .

Hence, for an improved bound any algorithm should incorporate some waiting time
strategy. We show below a lower bound on the competitive ratio of such algorithms
using a similar adversary technique.

Theorem 6.1. There exists no ρ-competitive non-preemptive algorithm for minimizing
max-stretch for any fixed ρ <

√
5−1
2 ∆.

Proof. Let A be any scheduling algorithm. At time 0, a job x of size ∆ is released.
Now, consider the following two behaviors of the adversary.

— Case 1:
If algorithm A schedules job x at time t such that 0 ≤ t ≤

√
5−1
2 ∆, then the

adversary releases a job y of size 1 at time t + ε where 0 < ε � 1. The
algorithm A schedules job y after the completion of job x. Therefore, job x
and job y achieve a stretch of at least t+∆

∆ and ∆ + 1, respectively. On other
hand, the adversary first waits for t + ε amount of time and then schedules job
y before job x. In which case, the stretch of job x and job y is at most t+1

∆ + 1

and 1, respectively. Hence, the competitive ratio of A is greater than
√

5−1
2 ∆, for

sufficiently large values of ∆.
— Case 2:

If A schedules job x at time t such that t >
√

5−1
2 ∆, then the adversary releases

a job z of size 1 at time ∆. As in the above case, the algorithm A schedules job z
after the completion of job x. Therefore, job x and job z achieve the stretch of at
least t+∆

∆ and t + 1, respectively. Whereas, the adversary schedules both job x
and z at their respective release times and therefore attains the stretch of 1 (for
both x and z). The competitive ratio, in this case, is at least

√
5−1
2 ∆.

66



6.4 T H E A L G O R I T H M

6.4 The Algorithm

We design a semi-online non-preemptive algorithm for optimizing max-stretch on a
single machine. The algorithm is semi-online in that the parameters Pmin and Pmax are
known in advance. To develop the intuition, we briefly consider the case where all jobs
have been released before time t. Let K denote the set of such jobs. Our objective is to
determine if there exists a schedule such that all jobs achieve the stretch of at most S.
For each job j ∈ K, we define a deadline dj = rj + Spj. Note that rj ≤ t. Then the
above problem is transformed into a problem of scheduling jobs with their deadlines.
Brucker [Bru01] showed that Earliest Deadline First (EDF) schedules all jobs before
their deadlines if such a schedule exists.

Note that in above scenario, the problem can be efficiently solved since all the
jobs have been released until time t. In the online setting, where the release times
and processing times are not known in advance and jobs have to be scheduled non-
preemptively, computing efficient deadline is not feasible. Moreover, Observation 6.1
states that any algorithm, which has to achieve better than the ∆-competitive ratio,
must wait for some amount of time before it starts scheduling large jobs. This further
complicates the problem of computing appropriate deadlines.

Waiting time strategies have been studied for problems of minimizing completion
time [LSS03, NS04]. Here, we focus on the problem of minimizing max-stretch. To
best of our knowledge, this is the first work which studies waiting time strategies
in the context of the flow-time based objective. Our algorithm works in two steps:
first, it forces the large jobs to wait for some time before they can be considered for
scheduling and second, it maintains an online estimate of max-stretch for assigning
deadlines to each job. In case, jobs cannot be scheduled with their current deadlines,
our algorithm adjusts the online estimate to provide a new set of deadlines. The details
of our algorithm are mentioned below.

Wait-Deadline Algorithm (WDA)

Based on the processing times, we classify the online arriving jobs into two sets,
namely large set and small set (denoted by Jlarge and Jsmall, respectively). A job

i ∈ Jsmall if and only if pi ≤ 1 + α∆, where α =
√

5−1
2 . Otherwise a job i ∈ Jlarge.

Note that Jlarge consists of jobs which have processing time strictly greater than 1 + α∆.
WDA maintains two separate queues, the Ready queue (denoted by QR) which

contains jobs that are available for scheduling and the Wait queue (denoted by QW)
where jobs belonging to large set are waiting. More specifically, when a job i is released,
it is placed directly into QR if j ∈ Jsmall. On the other hand, if the job i ∈ Jlarge, it is
initially placed in QW where it waits for αpi units of time before it is shifted to QR.
WDA picks a job from QR and schedules them one by one in a specific order.

Based on the management of both queues, WDA is triggered at three separate events:

67



6.4 T H E A L G O R I T H M

1. when a new job is released (denoted by E1),

2. when some job completes its waiting time (denoted by E2), and

3. when a job completes its execution (denoted by E3).

On the occurrence of event E1, WDA classifies the newly arrived job and updates QR
or QW , correspondingly. In case if some job completes waiting, the event E2 is triggered
where WDA shifts this job from QW to QR. Lastly, if a job completes its execution
(event E3), WDA removes a job from QR and schedules it on the machine. The selection
of a job from QR is performed using the pseudocode presented in Algorithm 6.1. In
case, the multiple events occur at the same time, WDA prioritizes them in order of E1
followed by E2 which is followed by E3. Moreover, after the end of each event, WDA
checks the state of the machine. In case if the machine is idle, as in the event E3, WDA
removes a job from QR and schedule it on the machine. The entire procedure based on
events is summarized in Algorithm 6.2.

Algorithm 6.1 Job selection in WDA
1: Input: Ready queue QR at time t and the previous max-stretch estimate S(t′),

where (t′ ≤ t)
2: Order all jobs in QR according to their release time
3: Compute the max-stretch and set it as UB
4: LB := max{S(t′), 1}
5: while LB 6= UB do
6: M := (UB + LB)/2
7: ∀j ∈ QR : dj(t) = rj + Mpj
8: Schedule all jobs in QR according to the Earliest Deadline First policy
9: if all jobs complete within their deadline then

10: UB := M
11: else
12: LB := M
13: end if
14: end while
15: S(t) := UB
16: Return the job of QR with the earliest deadline according to S(t), where ties are

broken according to the processing time of the job (the shortest job is returned)

Intuitively, we modify the release time of every job i ∈ Jlarge to a new value ri + αpi.
Let t be the time at which the machine becomes idle. Then the input to Algorithm 6.1 is
the set QR and the previous max-stretch estimate. WDA sets the deadline di(t) for each
job i ∈ QR where di(t) = ri + S(t)pi, where S(t) is the new estimated max-stretch
such that all jobs in QR can be completed. Note that the deadline di(t) uses the original
release time ri rather than the modified release date. For already released jobs, S(t) can
be computed in polynomial time using a binary search similarly to the technique used

68



6.5 A NA LY S I S F O R M A X - S T R E T C H

Algorithm 6.2 Wait-Deadline algorithm
1: Initial State: QR and QW are empty sets
2: Wait for events to occur.
3: Let t be the time at which events occurred.
4: while At least one event occurring at time t has not been processed do
5: switch (Event)
6: case Job i has been released:
7: the new job is in Jsmall
8: Update QR.
9: Create a new event at time t + αpi and update QW .

10: case Job i finished its waiting period:
11: Remove i from QW and add it to QR.
12: case Job i finished its execution:
13: Nothing special to do in this case for QR and QW .
14: end switch
15: if QR 6= ∅ and the machine is idle then
16: Select a new job to execute using Algorithm 6.1 and remove it from QR.
17: end if
18: end while
19: Return to the first line to wait for the next time instant when events occur.

in [BCM98]. The upper bound for the binary search can be derived from the FCFS
schedule of all jobs in QR, while 1 is a natural lower bound at time t = 0. At any later
time t > 0, whenever a job has to be selected, WDA uses the previous stretch estimate
as a lower bound for the new binary search. Algorithm 6.1 outputs the job with the
earliest deadline.

Before we start with the competitive analysis, remember that α =
√

5−1
2 . Indeed

Theorem 6.1 suggests that for an instance of two jobs with size 1 and ∆, it is optimal to
wait for α∆ time units before the job of size ∆ is scheduled. When the size of jobs can
take any values between 1 and ∆, the partitioning of jobs in Jsmall and Jlarge ensures
that small jobs can be scheduled as soon as they arrive while large jobs wait a fraction α

of their processing time before they can be scheduled.

6.5 Analysis for Max-stretch

6.5.1 Some definition and properties related to WDA

Let WDA denote the schedule produced by our algorithm. We use r′i to denote the
modified released time of job i, that is r′i = ri if job i ∈ Jsmall, otherwise r′i = ri + αpi.
Moreover di(t) denotes the estimated deadline of job i at time t i.e, di(t) = ri + S(t)pi.

69



6.5 A NA LY S I S F O R M A X - S T R E T C H

Property 4. Let t, t′ denote the two times such that t ≤ t′, then S(t) ≤ S(t′).

Let z be the job in WDA that attains the max-stretch among jobs in J. We remove
all jobs from the instance J that are released after the start of job z without changing the
Sz and without increasing the optimal stretch. Similarly, we also remove the set of jobs
that are scheduled after the job z in WDA, without changing Sz and without increasing
the optimal stretch. Therefore, we assume without loss of generality, that z is the latest
job in J that is processed in WDA.

Property 5. The machine is busy for during time interval [r′i, Ci), ∀i ∈ J.

Definition 6.2. Let JB denote the set of jobs that start and complete their execution
during the interval [r′z, σz), i.e,

JB = {i ∈ J : r′z ≤ σi < σz}

Now we define the relationship between the deadlines of jobs in set JB and deadline
of z.

Consider a job i ∈ JB. Since r′z ≤ σi < σz, both i and z are available in Ready queue
at time σi. Then it must be the case that di(σi) ≤ dz(σi). This relationship can be
derived between each i ∈ JB and z. The next property formalizes this relationship.

Property 6. For all i ∈ JB, it holds that di(σi) ≤ dz(σi).

Observation 6.2. There does not exist a job i ∈ J such that the following two conditions
are met simultaneously,

— pi > pz
— ri > rz

Proof. We prove this by a simple contradiction. Suppose that there exists some job i
such that ri > rz and pi > pz. Since z is the latest job in WDA, it must be the case
that job i belongs to set JB. Then Property 6 implies that S(σi) ≤ rz−ri

pi−pz
< 0. This

contradicts the fact that the lower bound on online stretch estimate at any time is at least
1.

The completion time of job z in WDA can be formulated as:

Cz = rz + Sz pz (6.1)

where Sz is the stretch of z attains in WDA.

70



6.5 A NA LY S I S F O R M A X - S T R E T C H

6.5.2 Defining Optimal Schedule and its relation to WDA

Let OPT denote some fixed optimal schedule. For the rest of this analysis, a super-
script of ∗ indicates that the quantities in question refer to OPT. Our general approach
is to relate the stretch of job z with the stretch of some job in the optimal schedule.

In OPT, there exists a job which completes at or after time Cz − δ, where δ ≤ α∆.
This can be explained by the fact that α∆ is the maximum difference between the
makespan of schedules WDA and OPT. In the rest of the analysis, let y denote one
such job in OPT. Hence, the completion time of job y in OPT can be written as
C∗y ≥ Cz − δ. Without the loss of generality, we assume that σ∗y < Cz − α∆. Since y
is schedule in OPT with stretch S∗y , we also have C∗y = ry + S∗y py. Combining this
inequality with Equation 6.1, it implies that ry + S∗y py ≥ rz + Sz pz − δ.

Rearranging the terms in previous equation, we get:

Sz ≤ S∗y

(
py

pz

)
+

ry − rz

pz
+

δ

pz
(6.2)

where δ ≤ α∆.

Theorem 6.2. WDA is (1+ α∆)-competitive for the problem of minimizing max-stretch
non-preemptively.

The proof is constructed on the case-by-case analysis of Equation 6.2. The main
cases are considered in: Lemma 6.1, Lemma 6.2 and Lemma 6.5 where each lemma
corresponds to different ratio of processing time of z and y. Specifically, Lemma 6.1
considers the case when py ≤ pz while Lemma 6.2 and Lemma 6.5 consider the case
when pz < py ≤ (1 + α∆)pz and (1 + α∆)pz < py, respectively. Depending on the
start time of y in WDA, we further divide these cases into sub-cases where a different
lower bound on max-stretch is computed.

As aforementioned, we use the notation S(t) to refer online stretch estimate at time t
such that all jobs in the Ready queue can be scheduled within their respective deadlines.
Also note that S(σi) ≥ Si for all job i ∈ J.

6.5.3 Consider a scenario where py ≤ pz

Lemma 6.1. If py ≤ pz, then it holds that Sz ≤ S∗y + α∆.

Proof. We consider the following two cases:

1. Suppose y ∈ JB. Since r′z < σz < σy, Property 4 implies that S(σy) ≤ S(σz).
As job z attains the max-stretch we have S(σy) ≤ S(σz) ≤ Sz. Substituting,
this inequality in Property 6 leads to ry − rz ≤ Sz(pz − py). Consequently,
Equation 6.2 can be formulated as:

71



6.5 A NA LY S I S F O R M A X - S T R E T C H

Sz ≤ S∗y

(
py

pz

)
+

(
1−

py

pz

)
Sz +

δ

pz

Sz ≤ S∗y +
α∆
py

since py ≤ pz

Sz ≤ S∗y + α∆

2. Suppose y 6∈ JB. Let β be a binary variable such that

β =

{
1, if z ∈ Jlarge.
0, otherwise.

(6.3)

We re-formulated r′z as r′z = rz + βαpz. Since ry < σy < r′z, it implies that
ry − rz < βαpz. Applying this inequality to Equation 6.2 we get,

Sz ≤ S∗y

(
py

pz

)
+

δ

pz
+ βα ≤ S∗y +

α∆
1 + βα∆

+ βα ≤ S∗y + α∆

Note that the second inequality is due to the fact that the lower bound on the
processing time of z can be expressed as pz ≥ 1 + βα∆.

For the remaining cases, it follows that job z is processed before job y in OPT,
pz < py and ry < rz.

6.5.4 Consider a scenario where pz < py ≤ (1 + α∆)pz

First we define the notion of limiting jobs which plays a crucial role.

Definition 6.3. Let i, j ∈ J such that the following conditions are true:

1. pi > pj

2. r′i ≤ r′j
3. r′j ≤ σi < σj

4. r′j ≤ σ∗j < σ∗i
Then we say that job i limits job j.

Property 7. If i limits j then Si ≥ 1 + pi
pj
− pj

pi
.

Proof. From Property 6, it follows that the estimated deadline of i is at most the
estimated deadline of j at σi. This can be expressed as ri + S(σi)pi ≤ rj + S(σi)pj.

Since job i is scheduled earlier than job j, the estimated stretch S(σi) is at least
pi+pj

pj
.

72



6.5 A NA LY S I S F O R M A X - S T R E T C H

Combining these two inequalities with the fact that pi > pj, we have Si =
σi−ri+pi

pi
≥

rj−ri+pi
pi

> 1 + pi
pj
− pj

pi
.

Now we show the competitive ratio for max-stretch when py ≤ (1 + α∆)pz.

Lemma 6.2. If pz < py and py ≤ (1 + α∆)pz then Sz ≤ S∗(1 + α∆).

Proof. We consider two following cases.
— Suppose δ ≤ 0: Here, the completion time of z in WDA is no later than the

completion time of job y in OPT. Therefore, the Equation 6.2 can be simplified
to

Sz ≤ S∗y

(
py

pz

)
+

ry − rz

pz

From Observation 6.2, it follows that ry − rz ≤ 0. Therefore above inequality

can be expressed as Sz ≤ S∗y
(

py
pz

)
≤ S∗(1 + α∆).

— Suppose δ > 0: We split this particular cases into three subcases:
— Assume that y ∈ JB. Then, Property 6 implies that ry − rz ≤ S(σy)(pz −

py). Since py > pz and S(σy) ≥ 1, it implies that ry − rz ≤ pz − py.
Putting this in Equality 6.2, we get:

Sz ≤ S∗y

(
py

pz

)
+

pz − py

pz
+

δ

pz

≤ (S∗y − 1)
(

py

pz

)
+

1 + δ

pz

≤ (S∗y − 1)(1 + α∆) + (1 + α∆) = S∗y(1 + α∆)

The second last inequality is due to the fact that S∗y ≥ 1 and the right hand
side is maximized when py ≤ (1 + α∆)pz.

— Assume that y 6∈ JB and Cy ≤ r′z. Then ry + Sy py ≤ rz + βαpz, where
β = 0 if z ∈ Jsmall, otherwise β = 1. If z ∈ Jlarge, then y ∈ Jlarge. In this
case Sy > 1 + α. On other hand, if z ∈ Jsmall, then Sy ≥ 1. Therefore,
the lower bound on Sy can be expressed as 1 + βα. Combining the lower
bound on Sy with previous inequality, we have ry− rz ≤ β(αpz− αpy)− py.
Putting this in Equation 6.2, we get:

Sz ≤ S∗y

(
py

pz

)
+

β(αpz − αpy)− py

pz
+

δ

pz

≤ (S∗y − 1)
(

py

pz

)
+

βα(pz − py)

pz
+

δ

pz

73



6.5 A NA LY S I S F O R M A X - S T R E T C H

≤ (S∗y − 1)
(

py

pz

)
+

α∆
pz

since pz < py

≤ S∗y(1 + α∆)

The last inequality is due to the fact that S∗y ≥ 1 and the right hand side is
maximized when py ≤ (1 + α∆)pz.

— Assume that y 6∈ JB and Cy > r′z. Observe that during the interval I =
[σy, Cz), the machine is completely busy in WDA. We claim that there exists
a job k such that [σk, Ck) ⊆ I and [σ∗k , C∗k ] 6⊆ I. Assume there exists no such
job. Then OPT is busy during the entire interval I. But this is in contradiction
to the fact that δ > 0. Now, we consider two sub-cases:

— Consider rk ≥ σy. This implies that Cz < C∗k . Furthermore, assume that
pk ≤ pz, then Lemma 6.1 implies that competitive ratio holds. On the
contrary if pk > pz, then Observation 6.2 implies that k is released earlier
than job z. Since both k and z are release during the processing time of
y, we can bound rz − rk by at most py ≤ (1 + α∆)pz. Moreover k ∈ JB.
Using Property 6, we have rk + S(σk)pk ≤ rz + S(σk)pz where S(σk) ≥
pk+pz

pz
. This implies that p2

k−p2
z

pz
≤ rz− rk. Combining this inequality with

the upper bound of (1+ α∆)pz, we get pk ≤ (
√

2 + α∆)pz. As C∗k > Cz
and pk ≤ pz(

√
2 + α∆), we get Sz ≤ S∗k (

√
2 + α∆) ≤ S∗(1 + α∆).

— Consider rk < σy If pk ≤ pz then by Property 7, we have Sy > 1 +
py
pk
− pk

py
> 1 +

py
pk
− pz

py
. Since r′z ≤ Cy and y 6∈ JB, we have ry +

Sy py − py < rz. Using both inequalities in Equation 6.2 proves that
our bound holds in this case. Conversely suppose that pk > pz. Since
k ∈ JB , using Property 6 we have rk + S(σk)pk ≤ rz + S(σk)pz. As
intermediate stretch estimate is a non-decreasing function of time, pk >
pz and σy ≤ σk, we have rk + S(σy)pk < rz + S(σy)pz. Hence ry +
S(σy)py < rk + S(σy)pk < rz + S(σy)pz. The above facts imply that
ry − rz < S(σy)(pz − py) < pz − py since pz − py < 0. Substituting
this inequality in Equation 6.2 gives Sz ≤ S∗y

py
pz
+ 1− py

pz
+ α∆

pz
≤ (S∗y −

1) py
pz
+ 1 + α∆ ≤ S∗y(1 + α∆).

6.5.5 Proving the bound when (1 + α∆)pz < py

In this case, job z and job y belong to class Jsmall and Jlarge, respectively. To simplify
the notations, from here on we will refer to r′z as rz.

74



6.5 A NA LY S I S F O R M A X - S T R E T C H

Definition 6.4. We define JU(t) as set of jobs that have not been scheduled until the
time t, i.e. JU(t) = {i ∈ J : ri ≤ t < σi}.

Then the following lemma relates the stretch estimates S(t) shortly after rz with jobs
in JU(rz).

Lemma 6.3. in WDA, let j be the first job that starts processing after rz. Then for any

time t ≥ σj, the estimated stretch S(t) is at least
∑

i∈JU (rz)
pi+σj−rz

pz
.

Proof. Let i∗ be the some job in JU(rz) which has latest deadline according to online

stretch S(σj). We claim that pi∗ ≤ pz. Thus, we have S(σi∗) ≥
σj−rz+ ∑

i∈JU (rz)

pi∗
≥

σj−rz+ ∑
i∈JU (rz)

pz
. Now it remains to show that pi∗ ≤ pz. Assume that pi∗ > pz. Since

i∗ ∈ JB, we have ri∗ + S(σi∗)pi∗ ≤ rz + S(σi∗)pz. This implies that ri∗ − rz < 0. But
this contradicts the fact that i∗ ∈ JU(rz).

Before we proceed to the analysis of the last case in Lemma 6.5, we define two sets
of jobs. Our aim is to relate the set of jobs in WDA and OPT that are executed after
rz. Informally, we first define a set consisting of jobs that were processed during the
interval [rz, C∗y) in OPT such that for each job, their processing time is at most the
processing time of job z.

Definition 6.5. We define a new set JS. Let i be some job in J. Then i ∈ JS if and only if
following conditions are met:

— σ∗i ≥ rz
— pi ≤ pz or ri + S∗pi ≤ rz + S∗pz
— C∗i < C∗y

where S∗ denotes the max-stretch attained by some job in OPT.

Observe that JS is a non-empty set as job z ∈ JS. Now we define the set of big jobs
that were processed consecutively 1 just before job y.

Lemma 6.4. If y ∈ JS, then Sz ≤ S∗(1 + α∆).

Proof. Since y ∈ JS, we have ry + S∗py ≤ rz + S∗pz. Using this in Equation 6.2, we
get:

Sz ≤ S∗y

(
py

pz

)
+

S∗(pz − py)

pz
+

δ

pz

≤ S∗ +
δ

pz
≤ S∗(1 + α∆)

1. Here we assume that the optimal schedule is non-lazy, that is all jobs are scheduled at the earliest
available time.

75



6.5 A NA LY S I S F O R M A X - S T R E T C H

For the rest of analysis, we assume that y 6∈ JS.

Definition 6.6. We define JL as the set of jobs in schedule OPT that are executed
between the completion time of latest job in set JS and completion time of job y.

JL = {i ∈ J : σ∗i ∈ [C∗k , C∗y)}

where k ∈ JS and σ∗k ≥ σ∗i , ∀i ∈ JS. Moreover, λ and |JL| denote the length of time
interval [C∗k , C∗y) and the number of jobs in JL, respectively.

Note that job y belongs to JL. Hence λ ≥ py and ∀i ∈ JL, we have pi > pz and
rz + S∗pz < ri + S∗pi. We assume that σ∗y < Cz − α∆. This implies that δ < 0.

Property 8. If pz(1 + α∆) < py ≤ ∆, then the total processing time of jobs scheduled
after rz in WDA is at least λ− py + α∆.

Proof. Let JU\B is a set of jobs that are released on or after rz. The set JU\B include
z. Then we have Cz = w + rz + ∑

i∈JU\B

pi + ∑
i∈JU(rz)

pi, where w is the remaining

processing time of job executing at rz. Moreover all jobs in set JU\B are scheduled
after time rz in OPT. Therefore C∗y ≥ rz + λ + JU\B. Since σ∗y < Cz − α∆, we have
w + ∑

i∈JU(rz)
pi ≥ λ− py + α∆.

For the rest of the analysis, let j denote the first job that starts its execution after time
rz, that is σj ≤ σi : ∀i ∈ JB.

Corollary 6.1. S(σj) ≥
λ−py+α∆+pz

pz

Proof. The result is direct consequence of the Lemma 6.3 and Property 8.

Now we have all the tools necessary to prove the following lemma.

Lemma 6.5. If pz(1 + α∆) < py ≤ ∆, then Sz < S∗(1 + α∆), where S∗ is the
max-stretch of some job in OPT.

Proof. Let k be the latest job in set JS. More formally, k ∈ JS and ∀i ∈ JS : σ∗i ≤ σ∗k .
From Definition 6.6, we have C∗k = C∗y − λ. We can re-write this equality in terms of
the stretch of job y and k as pyS∗y = pkS∗k + λ + rk − ry. Substituting this expression
in Equation 6.2, we get:

Sz ≤ S∗k
pk
pz

+
rk − rz

pz
+

δ + λ

pz
(6.4)

We consider two scenarios.

76



6.5 A NA LY S I S F O R M A X - S T R E T C H

— Case A:
Suppose there exists a job l ∈ JL such that σl ≥ rz. From Property 6 it follows
that rl + S(σl)pl < rz + S(σl)pz. Due to Property 4, we have rl + S(σj)pl ≤
rz + S(σj)pz. Moreover we also have rz + S∗pz < rl + S∗pl. Combining these
together, we get S(σj) ≤ S∗. Now we make two simple sub-cases depending
upon the release time of job k.
— Suppose rk − rz ≤ 0. Either pk ≤ pz or rk − rz ≤ S∗(pk − pz). In both

case Equation 6.4 can be simplified to:

Sz ≤ S∗k +
δ + λ

pz

Sz

S∗k
≤ 1 +

λ + δ

λ− py + pz + α∆

≤ 1 +
λ + α∆

λ− py + pz + α∆

≤ 1 +
∆ + α∆
1 + α∆

≤ 1 + α∆

— Suppose rk > rz. From Observation 6.2, we have pk < pz. Also job k
belongs to JB. From Property 6, we have the rk − rz ≤ S(σk)(pz − pk) ≤
Sz(pz − pk). Then Equation 6.4 can be simplified to:

Sz ≤ S∗k
pk
pz

+
Sz(pz − pk)

pz
+

δ + λ

pz

≤ S∗k +
δ + λ

pz

Sz

S∗k
≤ 1 +

λ + δ

λ− py + pz + α∆

≤ 1 +
λ + α∆

λ− py + pz + α∆

≤ 1 +
∆ + α∆
1 + α∆

≤ 1 + α∆

— Case B:
Assume that ∀l ∈ JL : σl < rz.
— Assume that all job ∀w ∈ JB : σ∗w ≥ rz. We show by contradiction that there

exists a job i such that σi < rz < Cw. Assume that no such job exists. Then
JB ⊆ JS. But this is in contradiction to fact that σ∗y < Cz− α∆. Moreover, we
can infer that pi > pi(rz) > α∆ + pz, , where pi(rz) denotes the remaining
processing time of job i at rz. Therefore Cz = pi(rz) + ∑

w∈JB

pw + pz. This

implies that σ∗y < pi(rz) + ∑
w∈JB

pw + pz − α∆. Note that all jobs in JB

77



6.6 C O N C L U D I N G R E M A R K S

are executed before job y in OPT. Therefore, λ + δ ≤ pi(rz). Using this
inequality in Equation 6.4, we get

Sz ≤ S∗k
pk
pz

+
rk − rz

pz
+

pi(rz)

pz

Thus using the relation S∗ > 1 + α and arguments mentioned in Case A, our
bound holds.

— Now we assume that ∃w ∈ JB : σ∗w < rz. Without the loss of generality, we
assume that all jobs in JL start before rz in WDA i.e. ∀l ∈ JL : l ∈ JB. Let v
be the smallest job in JL. Now we partition proof into two sections.
— Assume pv ≤ pw. Since σv < σw, it implies that rv + S(σv)pv ≤ rw +

S(σv)pw. Using Property 4, we have rv + S(σj)pv ≤ rw + S(σj)pw ≤
rz + S(σj)pz. As v ∈ JL, we have rz + S∗pz ≤ rv + S∗pv. Combin-

ing this with Corollary 6.1, we get S∗ ≥ λ−py+α∆+pz
pz

. Using this in
Equation 6.4, our bound holds.

— Assume that pv > pw. Then there must be at least |JL| jobs in JB such that
their start times are no more than rz in OPT. Furthermore, there exists
a job in JB such that it is delayed by at least λ time units. We overload
the notation w to denote such a job. At σv, we have rv + S(σv)pv ≤
rw + S(σw)pw. In OPT we have rw + S∗pw ≤ rv + S∗pv. This implies
that S∗ > S(σx) >

λ+pw
pw

. Now we partition proof into two parts:

— We assume that pw ≤ 2pz or λ+pw
pw
≥ (2|Jl| + 1). This implies

that S∗ ≥ λ+2pw
2pw

or S∗ ≥ λ+pw
pw
≥ (2|Jl|+ 1). Applying this lower

bound in Equation 6.4, our bound holds.
— Assume that pw > 2pz and λ+pw

pw
< (2|Jl|+ 1). This implies that

pw > λ
2|JL|

> pv
2 since v is the smallest job in JL. Hence pw < pv <

2pw. Moreover, rz + S∗pz < rv + S∗pv < rv + 2S∗pw. At time σv,
we have rv + S(σv)pv ≤ rw + S(σw)pw. Since pw > 2pz > pz, we
have rv < rw. Therefore rz + S∗pz < rw + 2S∗pw. On the other
hand, in WDA we have rw + S(σw)pw ≤ rz + S(σw)pz. Combining

this both inequality, we get S∗ ≥ S(σw)
pw−pz

2pw−pz
≥ S(σj)

(
pw−pz

2pw−pz

)
.

Using this inequality and Corollary 6.1 in Equation 6.4, our bound
holds.

6.6 Concluding remarks

In this chapter, we investigated the non-preemptive problem of minimizing the
maximum stretch on a single machine. We consider the scenario where jobs arrive

78



6.6 C O N C L U D I N G R E M A R K S

over time. We showed that no algorithm can achieve a competitive ratio better than the(√
5−1
2 ∆

)
for the maximum stretch objective. We proposed a new algorithm which

delays the execution of large jobs and achieves the optimal competitive ratio for max-
stretch objective. As a future work, we would like to explore the waiting time strategy
for the more general problem of the weighted flow-time minimization problem.

79





7
S C H E D U L I N G W I T H R E J E C T I O N T O M I N I M I Z E S T R E T C H
A N D F L OW T I M E

7.1 Introduction

In this chapter, we are interested in the design of efficient algorithms for scheduling
set of independent jobs non-preemptively. We consider the offline problem of scheduling
a set J of n jobs on a single machine where each job j ∈ J is characterized by its
processing time pj and itsrelease time rj. Given a schedule S , σSj and CSj denote the
starting and completion times of j, respectively. The flow time of j is defined as the total
time that j remains in the system i.e. FSj = CSj − rj. Furthermore, the stretch of j in S

is defined as sSj =
FSj
pj

i.e. the flow time of j is normalized with respect to its processing
time. When there is no ambiguity, we will simplify the above notation by dropping S .
Our objective is to create a non-preemptive schedule that minimizes the average stretch
of jobs in J , i.e., ∑j∈J sj.

As aforementioned, the average stretch minimization problem is a special case of the
average weighted flow-time minimization problem where each job j ∈ J is additionally
characterized by a weight wj and the objective is to minimize ∑j∈J wjFj. Another
closely related problem is the average flow-time minimization. This is also a special
case of the average weighted flow-time minimization problem where the weights of all
jobs are equal. Although average flow-time and average stretch objectives do not have
an immediate relation, the latter is generally considered to be a more difficult problem
since wj depends on the job’s processing time and therefore pays a huge penalty when
a large job is scheduled before a small job. Here, we study the average stretch and
average flow minimization problems with respect to the rejection model.

7.2 Speed augmentation v/s Rejection model

In this chapter, we explore the relation between preemptive and non-preemptive
schedules with respect both objectives subject to the rejection model. More specifically,
we consider the SRPT policy for creating a preemptive schedule. Observe that the
relation among the rejection model and other resource augmentation models is not clear.
For example, in Fig. 7.1 we give an instance for which the best possible solution in
the rejection model is worse than the best possible solution in the speed-augmentation
model, when the same constant ε is selected for both models.

81



7.3 S T RU C T U R E A N D P RO P E RT I E S O F S R P T A N D A N I N T E R M E D I AT E

S C H E D U L E

time
1 . . . k k+2 . . . 2k+1 2k+3 . . . 3k+2

0 (k + 1)(n− 1) (2k + 2)(n− 1)

Scheduling using rejections (reject the jobs k + 1 and 2k + 2)

time
1 2 . . . n

0 n− 1 (n− 1)(n− 1)

Scheduling using speed augmentation (augmented processing times are equal to n− 1)

Figure 7.1. – An instance of n = 3k + 2 jobs with equal processing times pj = n,
equal weights wj = 1, and release dates rj = (j − 1)(n − 1), where
1 ≤ j ≤ n. By setting ε = 1

n−1 , in the rejection model we are allowed
to reject at most εn ≤ 2 jobs, while in the speed augmentation model
the processing time of each job becomes

pj
1+ε = n− 1. The sum flow

time using rejections is 3 ∑k
j=1(n + j− 1) = 21

2 k2 + 9
2 k, while the sum

flow time using speed augmentation is n(n− 1) = 9k2 + 9k + 2 which
is better for large enough k.

However, our results in this chapter show the strength of the rejection model, par-
ticularly in the non-preemptive context. Note that previous algorithms for solving
the non-preemptive average flow time minimization problem either required quasi-
polynomial time [ILMT15] or cannot achieve performance guarantee arbitrarily close
to the optimum [BCK+07, PSTW97]. Before continuing, we give some additional
notation which we use throughout the chapter.

Notations. In what follows, for each job j ∈ J and schedule S , we define the interval
[σSj , CSj ] to be the active interval of j in S . In the case where preemptions are allowed,
the active interval of j may have a length bigger than pj. A job j is available at a time t
if it is released but it is not yet completed, i.e., rj ≤ t < Cj. We call a schedule compact
if it does not leave any idle time whenever there is a job available for execution.

7.3 Structure and Properties of SRPT and an Intermediate Schedule

In this section we deal with the structure of a preemptive schedule created by the
classical Shortest Remaining Processing Time (SRPT) policy and we give some useful
properties that we will use in the following sections.

According to the SRPT policy, at any time, we schedule the unfinished job with
the shortest remaining processing time. Since the remaining processing time of the
executed job j ∈ J decreases over time, its execution may be interrupted only in the
case where a new job k ∈ J is released and the processing time of k is smaller than
the remaining processing time of j at rk. Hence, the SRPT policy can be seen as an

82



7.3 S T RU C T U R E A N D P RO P E RT I E S O F S R P T A N D A N I N T E R M E D I AT E

S C H E D U L E

jobs 1 2 3 4 5 6
rj 0 3 6 7 14 16
pj 7 3 3 1 5 1

1 2 3 4 3 1 5 6 5
0 3 6 7 8 10 14 16 17 20

Shortest Remaining Processing Time (SRPT) schedule

1

2 3

4

5

6

Collection of out-trees

Figure 7.2. – A schedule created by the SRPT policy and its corresponding collection
of out-trees.

event-driven algorithm where at each time t when a job is released or completed, it
schedules an unfinished jobs with the shortest remaining processing time. In case of
ties, we assume without the loss of generality that SRPT resumes the partially executed
job, if any, with the latest starting time; if all candidate jobs are not processed before,
then it chooses among them the job with the earliest release time.

Kellerer et al. [KTW95] observed that in the schedule produced by the SRPT policy,
for any two jobs j and k, their active intervals are either completely disjoint or the one
contains the other. Moreover, there is no idle time during the active interval of any
job. Based on the above observation, the execution of the jobs in the SRPT schedule
has a tree-like structure. More specifically, we can create a graph which consists of a
collection T of out-trees and corresponds to the SRPT schedule as follows (see Fig. 7.2):
for each job j ∈ J , we create a vertex uj. For each pair of jobs j, k ∈ J , we add an
arc (uj, uk) if and only if [σk, Ck] ⊂ [σj, Cj] and there is no other job i ∈ J so that
[σk, Ck] ⊂ [σi, Ci] ⊂ [σj, Cj].

In what follows, we denote by root(T) the root of each out-tree T ∈ T . Intuitively,
each vertex root(T) corresponds to a job for which at any time t during its execution
there is no other job which has been partially executed at t. We denote also by a(j) the
parent of the vertex that corresponds to the job j ∈ J in T. Moreover, let T(uj) be the
subtree of T ∈ T rooted at a vertex uj in T. Note that, we may refer to a job j by its
corresponding vertex uj and vice versa.

In this chapter, we use the schedule created by the SRPT policy for the preemptive
variant of our problem as a lower bound to the non-preemptive variant. The SRPT

83



7.4 T H E R E J E C T I O N M O D E L

SRPT 1 2 3 4 3 1 5 6 5
0 3 6 7 8 10 14 16 17 20

QPO 1 2 4 3 5 6
0 7 10 11 14 19 20

Figure 7.3. – Transformation from SRPT to QPO schedule

policy is known to be optimal [LR07] for the problem of minimizing ∑j∈J Fj when
preemptions of jobs are allowed. However, for the preemptive variant of the average
stretch minimization problem, SRPT is a 2-approximation algorithm [MRSG99].

Consider now the collection of out-trees T obtained by an SRPT schedule and
let T(uj) be the subtree rooted at any vertex uj. We construct a non-preemptive
schedule for the jobs in T(uj) as follows: during the interval [σj, Cj], we run the jobs in
T(uj) starting with j and then running the remaining jobs in order of increasing SRPT
completion time as shown in Figure 7.3. This policy has been proposed in [Bun04] for
the problem of minimizing the sum ∑j∈J Fj and corresponds to a post order transversal
of the subtree T(uj) excluding its root which is scheduled in the first position. We
call the above policy as Quasi Post Order (QPO) and we will use it for the problem of
minimizing ∑j∈J sj. The following lemma presents several observations for the QPO
policy.

Lemma 7.1. [Bun04] Consider any subtree T(uk) which corresponds to a part of the
schedule SRPT and let QPO be the non-preemptive schedule for the jobs on T(uk)
created by applying the Quasi Post Order policy. Then,

1. all jobs inQPO are executed during the interval [σSRPTk , CSRPTk ] without any
idle period,

2. σQPOj ≥ rj for each uk in T(uk),

3. CQPOj ≤ CSRPTj + pk for each uj in T(uk) with j 6= k, and

4. CQPOk = CSRPTk −∑uj∈T(uk):j 6=k pj.

Note that the schedule created by the SRPT policy is a compact schedule, since
it always execute a job if there is an available one. Therefore, by Lemma 7.1, the
following directly holds.

Corollary 7.1. The schedule created by the QPO policy is compact.

7.4 The Rejection Model

In this section we consider the rejection model. More specifically, given an ε ∈ (0, 1),
we are allowed to reject any subset of jobsR ⊂ J whose total weight does not exceed

84



7.4 T H E R E J E C T I O N M O D E L

an ε-fraction of the total weight of all jobs, i.e., ∑j∈R wj ≤ ε ∑j∈J wj. We will present
our rejection policy for the more general problem of minimizing ∑j∈J wjFj.

Our algorithm is based on the tree-like structure of the SRPT schedule. Let us focus
first on a single out-tree T ∈ T . The main idea is to reject the jobs that appear in the
higher levels of T (starting with its root) and run the remaining jobs using the QPO
policy. The rejected jobs are, in general, long jobs which are preempted several times in
the SRPT schedule and their flow time can be used as an upper bound for the flow time
of the smaller jobs that are released and completed during the life interval of the longest
jobs. In order to formalize this, for each job j ∈ J we introduce a charging variable
xj. In this variable we accumulate the weight of jobs whose flow time will be upper
bounded by the flow time of job j in the SRPT schedule. At the end of the algorithm,
this variable will be exactly equal to 1

ε wj for each rejected job j ∈ R, while xj <
1
ε wj

for each non-rejected job j ∈ J \ R. In fact, for most of the non-rejected jobs this
variable will be equal to zero at the end of the algorithm. Our algorithm considers the
jobs in a bottom-up way and charges the weight of the current job to its ancestors in T
which are closer to the root and their charging variable is not yet full; that is the vertices
to be charged are selected in a top-down way. Note that, we may charge parts of the
weight of a job to more than one of its ancestors.

Algorithm 7.1 describes formally the above procedure. For notational convenience,
we consider a fictive vertex u0 which corresponds to a fictive job with w0 = 0. We
connect u0 with the vertex root(T) of each out-tree T ∈ T in such a way that u0
becomes the parent of all of them. Let T∗ be the created tree with root u0.

Algorithm 7.1 Non-preemptive Schedule for the jobs in J \R
1: Create a preemptive schedule SRPT and the corresponding out-tree T∗

2: Initialization: R ← ∅, xj ← wj for each j ∈ J , x0 ← 0
3: for each vertex uj of T∗ with xj = wj in post-order traversal do
4: while xj 6= 0 and xa(j) <

1
ε wa(j) do

5: Let uk be a vertex in the path between u0 and uj such that
xa(k) =

1
ε wa(k) and xk <

1
ε wk

6: Let y← min{xj, 1
ε wk − xk}

7: xj ← xj − y and xk ← xk + y
8: end while
9: end for

10: for each job j ∈ J do
11: if xj =

1
ε wj then

12: Reject j, i.e.,R ← R∪ {j}
13: end if
14: end for
15: return S: the non-preemptive schedule for the jobs in J \R using QPO

85



7.4 T H E R E J E C T I O N M O D E L

Note that, the for-loop in Lines 3-7 of Algorithm 7.1 is not executed for all jobs. In
fact, it is not applied to the jobs that will be rejected as well as to some children of it for
which at the end of the algorithm it holds that wj < xj <

1
ε wj. The weight of these jobs

is charged to itself. Moreover, the while-loop in Lines 4-7 of Algorithm 7.1 terminates
either if the whole weight of j is charged to its ancestors or if the parent of uj is already
fully charged, i.e., xa(j) =

1
ε wa(j).

Theorem 7.1. For the schedule S created by Algorithm 7.1 it holds that

(i) ∑
j∈J \R

wjFSj ≤
1
ε ∑

j∈J
wjFSRPTj , and

(ii) ∑
j∈R

wj ≤ ε ∑
j∈J

wj.

Proof. Consider first any vertex uk such that k ∈ J \ R and a(k) ∈ R. By the
execution of the algorithm, all the jobs corresponding to vertices in the path from u0
to a(k) do not appear in S . Hence, k starts in S at the same time as in SRPT , i.e.,
σSk = σSRPTk . Thus, by Lemma 7.1, the jobs that correspond to the vertices of the
subtree T∗(uk) are scheduled in S during the interval [σSRPTk , CSRPTk ]. In other
words, for any job j in T∗(uk) it holds that CSj ≤ CSRPTk , while by the construction

of T∗ we have that σSRPTk < rj. Assume now that the weight of j is charged by
Algorithm 7.1 to the jobs j1, j2, . . . , jqj , where qj is the number of these jobs. Let wi

j

be the weight of j charged to ji ∈ {j1, j2, . . . , jqj}; note that wj = ∑
qj
i=1 wi

j. By the
definition of the algorithm, each ji ∈ {j1, j2, . . . , jqj} is an ancestor of both k and j in
T∗ (one of them may coincides with k). Therefore, by the definition of T∗, it holds that
σSRPTji

< rj < CSj ≤ CSRPTji
, for each ji ∈ {j1, j2, . . . , jqj}. Then, we have

∑
j∈J \R

wjFSj ≤ ∑
j∈J \R

qj

∑
i=1

wi
jF
SRPT
ji ≤ ∑

j∈J
xjFSRPTj ≤ ∑

j∈J

1
ε

wjFSRPTj

where the second inequality holds by regrouping the flow time of all appearances of
the same job, and the last one by the fact that Algorithm 7.1 charges at each job j at most
(1 + 1

ε )wj. Finally, since the weight of each job is charged exactly once (probably to
more than one other jobs) we have ∑j∈J wj ≥ 1

ε ∑j∈R wj and the theorem holds.

Since SRPT creates an optimal preemptive schedule for the problem of minimizing
∑j∈J Fj on a single machine and an optimal preemptive schedule is a lower bound for
a non-preemptive one the following theorem holds.

Theorem 7.2. Algorithm 7.1 is a 1
ε -approximation algorithm for the single-machine

average flow-time minimization problem without preemptions if we are allowed to reject
an ε-fraction of the jobs.

86



7.5 C O N C L U S I O N

By combining Theorem 7.1 and the fact that SRPT is a 2-approximation algorithm
for the preemptive variant of the average stretch minimization problem [MRSG99], the
following theorem holds.

Theorem 7.3. Algorithm 7.1 is a 2
ε -approximation algorithm for the single-machine

average stretch minimization problem without preemptions if we are allowed to reject a
set of jobs whose total weight is no more than an ε-fraction of the total weight of all
jobs.

7.5 Conclusion

We studied the effects of applying resource augmentation in the transformation of
a preemptive schedule to a non-preemptive one for the problem of minimizing total
stretch on a single machine. Specifically, we show the power of the rejection model for
scheduling without preemptions comparing with other resource augmentation models,
by presenting an algorithm which has a performance arbitrarily close to optimal. So,
an interesting question is to explore the general idea of transforming preemptive to
non-preemptive schedules subject to the rejection model on parallel machines based on
the above results.

87





8
O N L I N E S C H E D U L I N G T O M I N I M I Z E W E I G H T E D F L OW
T I M E O N U N R E L AT E D M AC H I N E S

8.1 Introduction

In this chapter, we are interested in studying speed augmentation and rejection model,
that compares online algorithms to a weaker adversary. The power of these models
lies in the fact that many natural scheduling algorithms can be analyzed with respect to
them. Furthermore, they have successfully provided theoretical evidences for heuristic
scheduling algorithms with good performance in practice. Although these models give
more power to online algorithms, the connection especially between the rejection model
and the speed augmentation is unclear. This disconnection is emphasized by the fact
that some algorithms have good performance in a model but have moderate behaviour
in others. For instance, it has been shown that no algorithm can be constant competitive
with respect to the speed augmentation for the problem of minimizing maximum flow
time on the restricted machine settings, whereas in the rejection model, this problem is
known to be scalable competitive [CDK15].

8.1.1 Mathematical Programming and Duality

Our approach for the systematic study of algorithms, is based on the principle of
mathematical duality. This techniques have been extensively applied for the design of
approximation algorithms [WS11] and online algorithms [BN09]. Specifically, Buch-
binder et al. [BN09] gave a generalized framework for online covering/packing LPs that
applies to several fundamental problems in the domain of online computation. However,
this framework encounters several issues while designing competitive algorithms for
online scheduling problems. Recently, Anand et al. [AGK12] have proposed the use
of dual-fitting techniques to study scheduling problems in the speed augmentation
model. After this seminal paper, the duality approaches in online scheduling have been
extended to a variety of problems, and has rapidly become standard techniques. The
duality approaches have also led to the development of newer techniques for analyzing
algorithm (see for example [DH14, GKP13, IKM14, IKMP14, Ngu13]).

To see that the duality is particularly appropriate, we first explain the model and the
approach intuitively. The weak duality in mathematical programming can be interpreted
as a game between an algorithm and an adversary (the primal program against the dual
one). The game is L(x, λ), the standard Lagrangian function completely defined for
a given problem, in which x and λ are primal and dual variables, respectively. The

89



8.1 I N T RO D U C T I O N

primal and dual variables are controlled and correspond to the strategies of the adversary
and the algorithm, respectively. The goal of the algorithm is to choose a strategy λ

among its feasible sets so as to minimize L(x, λ) for whatever feasible strategy x of the
adversary.

8.1.2 Generalized Resource Augmentation

The resource augmentation models proposed in [KP95, PSTW97] consist in giving
more power to the algorithm. This idea could be perfectly interpreted as a game between
an algorithm and an adversary in which additional power for the algorithm is reflected
by better choices over its feasible strategy set. Concretely, let us illustrate this idea
for the speed augmentation and the rejection models. In several scheduling problems,
a constraint originally states that the speed of a given machine is at most one. In the
speed augmentation model, this constraint is relaxed such that the algorithm executes
jobs at a slightly higher speed than that of the adversary. In the approach proposed
in [AGK12], the key step relies on the construction of a dual feasible solution in such
a way that its dual objective is up to some bounded factor from that of the algorithm.
Then, the dual variables are carefully designed in order to encode the power of speed
augmentation. Later on, Nguyen [Ngu13] explicitly formalized the comparison through
the mean of Lagrangian functions between the algorithm and the adversary, with a
tighter feasible domain due to speed augmentation. That point of view makes the
framework in [AGK12] effective to study non-convex formulations. On the other hand,
the relaxation is of a different nature in the rejection model. Specifically, there are
usually constraints ensuring that all jobs should be completed. In the rejection model,
the algorithm is allowed to systematically reject a fraction of constraints whereas the
adversary should satisfy all of them.

In both models, the algorithm optimizes the objective over a feasible domain whereas
the adversary optimizes the same objective over a sub-domain with respect to the
algorithm. This naturally leads to a more general model of resource augmentation.

Definition 8.1 (Generalized Resource Augmentation). Consider an optimization
problem that can be formalized by a mathematical program. Let P be the set of
feasible solutions of the program and let Q be a subset of P . In generalized resource
augmentation, the performance of an algorithm is measured by the worst ratio between
its objective over P and that of a solution which is optimized over Q.

Based on the above definition, the polytope of the adversary in speed augmentation
is a strict subset of the algorithm’s polytope since the speed constraint for the adversary
is tighter. In the rejection model, the polytope of the adversary is also a strict subset
of the algorithm’s one since it contains more constraints. In addition, the generalized
model allows us to introduce different kind of relaxations to the set of feasible solutions
– each corresponding to different type of models.

90



8.1 I N T RO D U C T I O N

Together with the generalized model, we consider the following duality-based ap-
proach for the systematic design and analysis of algorithms. Let P and Q be the
sets of feasible solutions for the algorithm and the adversary, respectively. Note that
Q ⊂ P for the both, resource augmentation and rejection model. In order to study
the performance of an algorithm, we consider the dual of the mathematical program
consisting of the objective function optimized over Q. By weak duality, the dual is a
lower bound for any solution. We bound the algorithm’s cost by that of this dual. We
exploit the model properties (relation between P and Q) to derive effective bounds.
Intuitively, one needs to take the advantage from these models so as to raise the dual
as much as possible — an impossible procedure otherwise. As it has been shown in
previous works, the duality approach is particularly appropriate to study problems with
resource augmentation [GKP13, IKM14, AGK12, Ngu13].

8.1.3 Our approach

We apply the generalized model and the duality-based approach to scheduling prob-
lems, in which jobs arrive online and they have to be scheduled non-preemptively on a
set of unrelated machines. The objective is to minimize the weighted average flow time
of the jobs.

In this chapter, we present scheduling algorithms in a model which combines speed
augmentation and the rejection model. The design and analysis of the algorithms follow
the duality approach. At the release time of any job, the algorithm defines the dual
variables associated with the job and assigns the job to some machine based on this
definition. The value of the dual variables associated with a job are selected in order to
satisfy two key properties:

1. comprise the marginal increase of the total weighted flow-time due to the arrival
of the job — the property that has been observed [AGK12, Ngu13] and has
become more and more popular in dual-fitting for online scheduling;

2. capture the information for a future decision of the algorithm whether this job
will be completed or rejected — a novel point in the construction of dual variables
to exploit the power of rejection.

Informally, to fulfill the second property, we introduce prediction terms to dual
variables that at some point in the future will indicate whether the corresponding job
would be rejected. Moreover, these terms are chosen so as to stabilize the schedule
such that the properties of the assignment policy are always preserved (even with job
rejections in the future). This allows us to maintain a non-migratory schedule.

Our algorithm dispatches jobs immediately at their release time — a desired property
in scheduling. Besides, the algorithm processes jobs in the highest density first manner
and interrupts a job only if it is rejected. In other words, no completed job has been
interrupted during its execution. The algorithm is relatively simple, particularly for

91



8.2 P RO B L E M D E FI N I T I O N A N D N OTAT I O N S

a single machine setting as there is no assignment policy. Therefore, the analysis of
the algorithm in the generalized resource augmentation could be considered as a first
step toward the theoretical explanation for the well-known observation that simple
scheduling algorithms usually behave well and are widely used in practice.

8.2 Problem Definition and Notations

We are given a setM of m unrelated machines. Let J denote the set of all jobs of
our instance, which is not known a priori. Each job j ∈ J is characterized by its release
time rj, its weight wj and if job j is executed on machine i ∈ M then it has a processing
time pij. We study the non-preemptive setting. In this chapter, we consider a stronger
non-preemptive model according to which we are only allowed to interrupt a job if we
reject it, i.e., we do not permit restarts. Moreover, each job has to be dispatched to one
machine at its arrival and migration is not allowed.

Given a schedule S , let Cj and Fj denote the completion time and flow time of the
job j. Our objective is to create a non-preemptive schedule that minimizes the weighted
average of flow-times of all jobs, i.e., ∑j∈J wjFj.

Let δij =
wj
pij

be the density of a job j on machine i. Moreover, let qij(t) be the
remaining processing time at time t of a job j which is dispatched at machine i. A job
j is called pending at time t, if it is already released at t but not yet completed, i.e.,
rj ≤ t < Cj. Finally, let P = maxj,j′∈J {pj/pj′} and W = maxj,j′∈J {wj/wj′}.

8.3 Lower Bound

Lemma 8.1. For any speed augmentation s ≤ P1/10 (resp., s < W1/6), every deter-
ministic algorithm has competitive ratio of Ω(P1/10) (resp., Ω(W1/6)) for the problem
of minimizing weighted average flow time on a single machine problem.

Proof. Let s > 1 be the speed of the machine; without loss of generality, we assume
that the machine speed for the adversary is 1. Let R > s2 be an arbitrary (large)
constant. Let A be some fixed scheduling algorithm.

We consider the following instance. At time 1, a long job of processing time 2sR3

and weight 1 is released. A short job of processing time 1 and weight R is released at
time R3. In the phase 1 of the instance, one short job is released at every time interval
aR3 for all 2 ≤ a ≤ 2s− 1, if the algorithm does not processes the long jobs during
the entire interval [(a− 1)R3, aR3], otherwise the adversary stops and instance halts.
At time 2sR3, the phase 2 of the instance starts where new small job of processing time
1 and weight R2 are released at every time interval aR3 for all 2s ≤ a ≤ 2sR2 if the
algorithm does not processes the long jobs during the entire interval [(a− 1)R3, aR3],
otherwise the adversary stops and instance halts.

92



8.3 L OW E R B O U N D

In the instance, we have at most 2s short jobs and 2sR2 small jobs. Observe that by
using speed s, the algorithm cannot complete the long job between two consecutive
release times of short or small jobs. We analyze the performance of the algorithm by
considering different cases.

— Case 1: the instance halts during phase 1. In this case, there is a a ∈
{1, 2, . . . , 2s− 1} for which the algorithm keeps processing the long job during
the whole interval [aR3, (a + 1)R3] and hence the short job released at aR3 is not
processed during that time interval. Hence the short job’s flow time is at least R3.
Therefore, the weighted flow-time of the short job is at least R · R3. However,
the adversary can execute immediately all short jobs at their release times and
process the long job in the end. The sum weighted flow-time of all short jobs is
at most 2sR. The long job would be started no later than the time where phase 1
terminates, which is (2s− 1)R3 + 1. So the weighted flow-time of the long job
is at most 4sR3. Therefore, the competitive ratio is at least Ω(R/s).

— Case 2: the instance halts during phase 2. In this case, there is a a ∈ {2s, 2s +
1, . . . , 2sR2} for which the algorithm keeps processing the long job during the
whole interval [aR3, (a + 1)R3] and hence the small job released at aR3 is not
processed during that time interval. We proceed similarly as in the previous case.
The weighted flow-time of this small job is at least R2 · R3 = R5. Nevertheless,
the adversary can process the long job during [1, 2sR3 + 1], execute small jobs at
their release time (except the first one which starts 1 unit of time after its release
time) and execute all short jobs during the interval [2sR3 + 2, 5sR3] whenever
a small job is not executed. This is a feasible schedule since the number of
short jobs is (2s − 1) < 3R3 − 5 (note that there are 2 small jobs released
during [2sR3 + 2, 5sR3]). By this strategy, the weighted flow-time of the long
job is 2sR3 + 1 < 2s2R4. The total weighted flow-time of small jobs is at
most 2sR2 · R2 < 2s2R4. The total weighted flow-time of short jobs is at most
2s · R · 5sR3 = 10s2R4. Hence, the cost of the adversary is at most 14s2R4 and
the competitive ratio is at least R5

14s2R4 = Ω(R/s2).
— Case 3: the instance halts at the end of phase 2. The algorithm executes the

long job after the end of phase 2 and hence this job is completed at later than
2sR5; so its weighted flow-time is at least 2sR5. The adversary can apply the
same strategy as in Case 2 with total cost 14s2R4. Therefore, the competitive
ratio is at least Ω(R/s).

In summary, the competitive ratio is at least Ω(R/s2). Recall that P and W are the
largest ratio between processing times and that between weights, respectively. In this
instance, P = 2sR3 and W = R2 respectively. By a simple estimation (setting R = s3),
for any speed s ≤ P1/10 the competitive ratio is at least Ω(P1/10); and for s ≤W1/6,
the competitive ratio is at least Ω(W1/6).

93



8.4 S C H E D U L I N G T O M I N I M I Z E AV E R AG E W E I G H T E D FL OW T I M E

8.4 Scheduling to Minimize Average Weighted flow time

In this section, we describe our primal-dual method for the online non-preemptive
scheduling problem of minimizing the total weighted flow-time on unrelated machines.
This problem admits no competitive algorithm even with speed augmentation as shown
by the Lemma 8.1. In the following, we study the problem in the generalized resource
augmentation model with speed augmentation and rejection.

8.4.1 Linear Programming Formulation

For each machine i ∈ M, job j ∈ J and time t ≥ rj, we introduce a binary variable
xij(t) which indicates if j is processed on i at time t. We consider the following linear
programming formulation. Note that the objective value of this linear program is at
most twice that of the optimal preemptive schedule.

min ∑
i∈M

∑
j∈J

∫ ∞

rj

δij
(
t− rj + pij

)
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J (8.1)

∑
j∈J

xij(t) ≤ 1 ∀i ∈ M, t (8.2)

xij(t) ∈ {0, 1} ∀i ∈ M, j ∈ J , t ≥ rj

After relaxing the integrality constraints, we get the following dual program.

max ∑
j∈J

λj − ∑
i∈M

∫ ∞

0
γi(t)dt

λj

pij
− γi(t) ≤ δij

(
t− rj + pij

)
∀i ∈ M, j ∈ J , t ≥ rj (8.3)

We will interpret the resource augmentation models in the above primal and dual
programs as follows. In the speed augmentation model, we assume that all machines in
the schedule of our algorithm run with speed 1, while in adversary’s schedule they run
at a speed a < 1. This can be interpreted in the primal linear program by modifying
the constraint (8.2) to be ∑j∈J xij(t) ≤ a. Intuitively, each machine in the adversary’s
schedule can execute jobs with speed at most a at each time t. The above modification
in the primal program reflects to the objective of the dual program which becomes
∑j∈J λj − a ∑i∈M

∫ ∞
0 γi(t)dt. In the rejection model, we assume that the algorithm

is allowed to reject some jobs. This can be interpreted in the primal linear program
by summing up only on the set of the non rejected jobs, i.e., the algorithm does not

94



8.4 S C H E D U L I N G T O M I N I M I Z E AV E R AG E W E I G H T E D FL OW T I M E

have to satisfy the constraint (8.1) for rejected jobs. Hence the objective becomes
∑i∈M∑j∈J \R

∫ ∞
rj

δij
(
t− rj + pij

)
dt. Concluding, our algorithm rejects a set R of

jobs, uses machines with speed 1/a times faster than that of the adversary and, by using
weak duality, has a competitive ratio at most

∑i∈M∑j∈J \R
∫ ∞

rj
δij(t− rj + pij)dt

∑j∈J λj − a ∑i∈M
∫ ∞

0 γi(t)dt
.

8.4.2 Algorithm and Dual Variables

We describe next the scheduling, the rejection and the dispatching policies of our
algorithm which we denote by A. In parallel, we give the intuition about the definition
of the dual variables in a primal-dual way. Let εs > 0 and 0 < εr < 1 be constants
arbitrarily small. Intuitively, εs and εr stand for the speed augmentation and the rejection
fraction of our algorithm, respectively. In what follows, we assume that in the schedule
created by A all machines run with speed 1, while in the adversary’s schedule they run
by speed 1

1+εs
.

Each job is immediately dispatched to a machine upon its arrival. We denote by
Qi(t) the set of pending jobs at time t dispatched to machine i ∈ M, i.e., the set of
jobs dispatched to i that have been released but not yet completed and have not been
rejected at t. Our scheduling policy for each machine i ∈ M is the following: at each
time t when the machine i becomes idle or has just completed or interrupted some job,
we start executing on i the job j ∈ Qi(t) such that j has the largest density in Qi(t),
i.e., j = argmaxj′∈Qi(t){δij′}. In case of ties, we select the job that arrived earliest.

When a machine i ∈ M starts executing a job k ∈ J , we introduce a counter vk
(associated to job k) which is initialized to 0. Each time when a job j ∈ J with δij > δik
is released during the execution of k and j is dispatched to i, we increase vk by wj.
Then, the rejection policy is the following: we interrupt the execution of the job k and
we reject it the first time where vk >

wk
εr

.
Let ∆ij be the increase in the total weighted flow-time occurred in the schedule of our

algorithm if we assign a new job j ∈ J to machine i, following the above scheduling
and rejection policies. Assuming that the job k ∈ J is executed on i at time rj, we have
that

∆ij =



wj

(
qik(rj) + ∑

`∈Qi(rj)\{k}:
δi`≥δij

pi`

)
+ pij ∑

`∈Qi(rj)\{k}:
δi`<δij

w` if vk + wj ≤ wk
εr

,

wj ∑
`∈Qi(rj):

δi`≥δij

pi` +

(
pij ∑

`∈Qi(rj):
δi`<δij

w` − qik(rj) ∑
`∈Qi(rj)∪{k}:

` 6=j

w`

)
otherwise.

95



8.4 S C H E D U L I N G T O M I N I M I Z E AV E R AG E W E I G H T E D FL OW T I M E

where, in both cases, the first term corresponds to the weighted flow-time of the job j
if it is dispatched to i and the second term corresponds to the change of the weighted
flow-time for the jobs in Qi(rj). Note that, the second case corresponds to the rejection
of k and hence we remove the term wjqik(rj) in the weighted flow-time of j, while the
flow-time of each pending job is reduced by qik(rj).

In the definition of the dual variables, we aim to charge to job j the increase ∆ij in
the total weighted flow-time occurred by the dispatching of j in machine i, except from
the quantity wjqik(rj) which will be charged to job k, if δij > δik. However, we will
use the dual variables (in the primal-dual sense) to guide the assignment policy. Hence
the charges have to be distributed in a consistent manner to the assignment decisions of
jobs to machines in the past. So in order to do the charging, we introduce a prediction
term: at the arrival of each job j we charge to it an additional quantity of

wj
εr

pij. By
doing this, the consistency is maintained by the rejection policy: if the charge from
future jobs exceeds the prediction term of some job then the latter will be rejected.

Based on the above, we define

λij =


wj

εr
pij + wj ∑

`∈Qi(rj):δi`≥δij

pi` + pij ∑
`∈Qi(rj)\{k}:δi`<δij

w` if δij > δik

wj

εr
pij + wj

(
qik(rj) + ∑

`∈Qi(rj)\{k}:δi`≥δij

pi`

)
+ pij ∑

`∈Qi(rj):δi`<δij

w` otherwise

which represents the total charge for job j if it is dispatched to machine i. Note that
the only difference in the two cases of the definition of λij is that we charge the quantity
wjqik(rj) to j only if δij ≤ δik. Moreover, we do not consider the negative quantity that
appears in the second case of ∆ij. Intuitively, we do not decrease our estimation for the
completion times of pending jobs when a job is rejected. The dispatching policy is the
following: dispatch j to the machine i∗ = argmini∈M{λij}. Intuitively, a part of ∆ij
may be charged to job k, and more specifically to the prediction part of λik. However,
we do not allow to exceed this prediction by applying rejection. In other words, the
rejection policy can be re-stated informally as: we reject k just before we exceed the
prediction charging part in λik.

In order to keep track of the negative terms in ∆ij, for each job j ∈ J we denote
by Dj the set of jobs that are rejected by the algorithm after the release time of j and
before its completion or rejection (including j in case it is rejected), that is the jobs that
cause a decrease to the flow time of j. Moreover, we denote by jk the job released at
the moment we reject a job k ∈ R. Then, we say that a job j ∈ J which is dispatched
to machine i ∈ M is definitively finished ∑k∈Dj

qik(rjk) time after its completion or
rejection. Let Ui(t) be the set of jobs that are dispatched to machine i ∈ M, they are
already completed or rejected at a time before t, but they are not yet definitively finished
at t.

96



8.4 S C H E D U L I N G T O M I N I M I Z E AV E R AG E W E I G H T E D FL OW T I M E

It remains to formally define the dual variables. At the arrival of a job j, we set
λj =

εr
1+εr

mini∈M{λij} and we never change λj again. Let Wi(t) be the total weight
of jobs dispatched to machine i ∈ M in the schedule of A, and either they are pending
at t or they are not yet definitively finished at t, i.e., Wi(t) = ∑`∈Qi(t)∪Ui(t) w`. Then,
we define γi(t) = εr

1+εr
Wi(t). Note that γi(t) is updated during the execution of A.

Specifically, given any fixed time t, γi(t) may increase if a new job j′ arrives at any
time rj′ ∈ [rj, t). However, γi(t) does never decrease in the case of rejection since the
jobs remain in Ui(t) for a sufficient time after their completion or rejection.

8.4.3 Analysis

We first prove the following lemma which guarantees the feasibility of the dual
constraint using the above definition of the dual variables.

Lemma 8.2. For every machine i ∈ M, job j ∈ J and time t ≥ rj, the dual constraint

is feasible, that is
λj
pij
− γi(t)− δij

(
t− rj + pij

)
≤ 0.

Proof. Fix a machine i. We have observed above that, for any fixed time t ≥ rj, as long
as new jobs arrive, the value of γi(t) may only increase. Then, it is sufficient to prove
the dual constraints for the job j using the values of γi(t), Qi(t), Ui(t) and Wi(t) as
these are defined at time rj. Let k be the job executed in machine i at rj.

We have the following cases.

C A S E 1 : δij > δik . In this case we may have rejected the job k at rj. By the
definitions of λj and λij, we have

λj

pij
≤ εr

(1 + εr)

λij

pij
=

εr

1 + εr

(
wj

εr
+ δij ∑

`∈Qi(rj):δi`≥δij

pi` + ∑
`∈Qi(rj)\{k}:δi`<δij

w`

)

=
εr

1 + εr

(
wj

εr
+ δij ∑

`∈Qi(rj)\{j}:δi`≥δij

pi` + wj + ∑
`∈Qi(rj)\{k}:δi`<δij

w`

)

= wj +
εr

1 + εr

(
δij ∑

`∈Qi(rj)\{j}:δi`≥δij

pi` + ∑
`∈Qi(rj)\{k}:δi`<δij

w`

)
By the definition of γi(t) we get

γi(t) + δij(t− rj + pij) =
εr

1 + εr
∑

`∈Qi(t)∪Ui(t)
w` + δij(t− rj) + wj

≥ εr

1 + εr

 ∑
`∈Qi(t)∪Ui(t)

w` + δij(t− rj)

+ wj

97



8.4 S C H E D U L I N G T O M I N I M I Z E AV E R AG E W E I G H T E D FL OW T I M E

Thus, it remains to show that

δij · ∑
`∈Qi(rj)\{j}:

δi`≥δij

pi` + ∑
`∈Qi(rj)\{k}:

δi`<δij

w` ≤ ∑
`∈Qi(t)∪Ui(t)

w` + δij(t− rj) (8.4)

Let C̃j = rj +∑`∈Qi(rj):δi`≥δij
pi` (if k is rejected) or C̃j = rj + qik(rj)+∑`∈Qi(rj):δi`≥δij

pi`
(otherwise) be the estimated completion time of j at time rj if it is dispatched to ma-
chine i.

Case 1.1: t ≤ C̃j. By the definition of Ui(t), all jobs in Qi(rj) with δi` < δij still
exist in Qi(t) ∪Ui(t). Moreover, for every job ` ∈ Qi(rj) \ (Qi(t) ∪Ui(t) ∪ {k}) it
holds that δi` ≥ δij, since ` is processed before j by the algorithm. Then, by splitting
the first term of the left-hand side of (8.4) we get

δij · ∑
`∈Qi(rj)\{j}:δi`≥δij

pi` + ∑
`∈Qi(rj)\{k}:δi`<δij

w`

= δij ∑
`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k})

pi` + δij ∑
`∈(Qi(rj)∩(Qi(t)∪Ui(t)))\{j}:

δi`≥δij

pi` + ∑
`∈(Qi(rj)∩(Qi(t)∪Ui(t)))\{k}:

δi`<δij

w`

≤ δij ∑
`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k})

pi` + ∑
`∈(Qi(t)∪Ui(t))\{j}:δi`≥δij

w` + ∑
`∈(Qi(t)∪Ui(t))\{k}:δi`<δij

w`

≤ δij(t− rj) + ∑
`∈Qi(t)∪Ui(t)

w`

where the first inequality is due to δij pi` ≤ w` for each ` ∈ Qi(t) ∪Ui(t) with
δi` ≥ δij, while the latter one holds since the set of jobs Qi(rj) \ (Qi(t)∪Ui(t)∪ {k})
corresponds to the set of pending jobs at rj that start their execution after rj and are
definitively finished before t.

Case 1.2: t > C̃j. By splitting the second term of the left-hand side of (8.4) we get

δij · ∑
`∈Qi(rj)\{j}:δi`≥δij

pi` + ∑
`∈Qi(rj)\{k}:δi`<δij

w`

= δij ∑
`∈Qi(rj)\{j}:δi`≥δij

pi` + ∑
`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k}):δi`<δij

w` + ∑
`∈Qi(rj)∩(Qi(t)∪Ui(t)):δi`<δij

w`

≤ δij(C̃j − rj) + δij ∑
`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k}):δi`<δij

pi` + ∑
`∈Qi(t)∪Ui(t)

w`

≤ δij(C̃j − rj) + δij(t− C̃j) + ∑
`∈Qi(t)∪Ui(t)

w`

98



8.4 S C H E D U L I N G T O M I N I M I Z E AV E R AG E W E I G H T E D FL OW T I M E

where the first inequality follows by the definition of C̃j and since w` < δij pi` for
each ` ∈ Qi(rj) with δi` < δij, while the second inequality follows since the set of jobs
in Qi(rj) \ (Qi(t) ∪Ui(t) ∪ {k}) with δi` < δij corresponds to the pending jobs at rj
which at time rj have been scheduled to be executed during the interval [C̃j, t).

Case 2: δij ≤ δik. In this case the job k is not rejected at the arrival of job j. By using
the same arguments as in Case 1, we have

λj

pij
≤ wj +

εr

1 + εr

δijqik(rj) + δij ∑
`∈Qi(rj)\{k,j}:δi`≥δij

pi` + ∑
`∈Qi(rj):δi`<δij

w`


Let C̃k = rj + qik(rj) be the estimated completion time of k at time rj. We consider
different scenarios.

Case 2.1: t ≤ C̃k. In this case, it holds that wk ≥ δij pk ≥ δijqik(rj). Then,

γi(t) + δij
(
t− rj + pij

)
≥ εr

1 + εr
∑

`∈Qi(t)∪Ui(t)
w` + wj ≥

εr

1 + εr
∑

`∈Qi(rj)

w` + wj

≥ εr

1 + εr

 ∑
`∈Qi(rj)\{k}

w` + wk

+ wj ≥
εr

1 + εr

 ∑
`∈Qi(rj)\{k}

w` + δijqik(rj)

+ wj

Hence, it remains to show

δij ∑
`∈Qi(rj)\{k,j}:δi`≥δij

pi` + ∑
`∈Qi(rj):δi`<δij

w` − ∑
`∈Qi(rj)\{k}

w` ≤ 0

which directly holds as δij pi` ≤ w` for any job j ∈ Qi(rj) with δi` ≥ δij.

Case 2.2: t > C̃k. By the definition of γi(t) we get

γi(t)+ δij
(
t− rj + pij

)
≥ εr

1 + εr

 ∑
`∈Qi(t)∪Ui(t)

w` + δijqik(rj) + δij(t− rj)

+wj

Hence it suffices again to prove (8.4), which has been proved previously.

Lemma 8.3. For the setR of jobs rejected by the algorithmA it holds that ∑j∈R wj ≤
εr ∑j∈J wj.

99



8.4 S C H E D U L I N G T O M I N I M I Z E AV E R AG E W E I G H T E D FL OW T I M E

Proof. Each job j ∈ J dispatched to machine i ∈ M may increase only the counter
vk of the job k ∈ J that was executed on i at rj. In other words, each job j may be
charged to at most one other job. Besides, we reject a job k the first time where vk >

wk
εr

,
meaning that the total weight of jobs charged to k is at least wk

εr
. Hence, the total weight

of rejected jobs is at most εr fraction of the total job weight in the instance.

Theorem 8.1. Given any εs > 0 and εr ∈ (0, 1), A is a (1 + εs)-speed 2(1+εr)(1+εs)
εrεs

-
competitive algorithm that rejects jobs of total weight at most εr ∑j∈J wj.

Proof. By Lemma 8.2, the proposed dual variables constitute a feasible solution for the
dual program. By definition, the algorithm A uses for any machine at any time a factor
of 1 + εs higher speed than that of the adversary. By Lemma 8.3, A rejects jobs of
total weight at most εr ∑j∈J wj. Hence, it remains to give a lower bound for the dual
objective.

We denote by FAj the flow-time of a job j ∈ J \R in the schedule of A. By slightly

abusing the notation, for a job k ∈ R, we will also use FAk to denote the total time
passed after rk until deciding to reject a job k, that is, if k is rejected at the release of
the job j ∈ J then FAk = rj − rk. Denote by jk the job released at the moment we
decided to reject k, i.e., for the counter vk before the arrival of job jk we have that
wk/εr − wjk < vk < wk/εr.

Let ∆j be the total increase in the flow-time caused by the arrival of the job j ∈ J ,
i.e., ∆j = ∆ij, where i ∈ M is the machine to which j is dispatched by A. By the
definition of λj’s, we have

∑
j∈J

λj ≥
εr

1 + εr

∑
j∈J

∆j + ∑
k∈R

qik(rjk) ∑
`∈Qi(rjk

)∪{k}:` 6=jk

w`


=

εr

1 + εr

∑
j∈J

wjFAj + ∑
j∈J

wj ∑
k∈Dj

qik(rjk)


where the inequality comes from the fact that if δij > δik then in the prediction part of
the running job k at rj we charge the quantity wj pk instead of wjqk(rj) which is the real
contribution of k to the weighted flow-time of job j. By the definition of γi(t)’s, we
have

∑
i∈M

∫ ∞

0
γi(t)dt =

εr

1 + εr

 ∑
i∈M

∫ ∞

0
∑

`∈Qi(t)
w`dt + ∑

i∈M

∫ ∞

0
∑

`∈Ui(t)
w`dt


=

εr

1 + εr

∑
j∈J

wjFAj + ∑
j∈J

wj ∑
k∈Dj

qik(rjk)



100



8.5 C O N C L U S I O N

since the set Qi(t) contains the pending jobs at time t dispatched on machine i, while
each job j ∈ J appears by definition in Ui(t) for ∑k∈Dj

qik(rjk) time after its comple-
tion or rejection.

Therefore, the proposed assignment for the dual variables leads to the following value
of the dual objective

∑
j∈J

λj −
1

1 + εs
∑

i∈M

∫ ∞

0
γi(t)dt ≥ εrεs

(1 + εr)(1 + εs)

∑
j∈J

wjFAj + ∑
j∈J

wj ∑
k∈Dj

qik(rjk)


≥ εrεs

(1 + εr)(1 + εs)
∑
j∈J

wjFAj ≥
εrεs

(1 + εr)(1 + εs)
∑

j∈J \R
wjFAj

Since the objective value of our linear program is at most twice the value of an optimal
non-preemptive schedule, the theorem follows.

8.5 Conclusion

In this chapter, we proposed a new generalized resource augmentation model for
avoiding the pessimistic bounds arising from competitive analysis of online algorithms
for non-preemptive scheduling problem. Then, we present a strong lower bound on the
problem of minimizing weighted flow-time on unrelated machines. Finally, we show
that this problem admits a scalable-competitive algorithms in a generalized resource
augmentation model which combines the speed augmentation model and the rejection
model. Our work suggests that the rejection can be quite powerful in dealing with
non-preemptive settings and also suggests that for problems that remain stubborn even
with some form of resource augmentation, one possible avenue is to consider allowing
two or more types of augmentation.

101





9
S C H E D U L I N G T O M I N I M I Z E D W E I G H T E D `K - N O R M S O F
F L OW T I M E O N U N R E L AT E D M AC H I N E S

9.1 Introduction

Despite the common use of average flow time measure as a quality of service delivered
to a set of jobs, there is a general concern regarding the unfair starving of some longer
jobs. For instance, the classical policy of scheduling jobs with shortest remaining
processing time is known to be optimal for minimizing average flow time on a single
machine, whereas it has unbounded competitive ratio for minimizing maximum flow.
Therefore, it is often required to have a quality measure that balances the trade-off
between the average quality of service and maintaining fairness among the jobs. The
most natural way to achieve this tradeoff is to use 2-norm of the flow time measure. In
this chapter, we extend the ideas from previous chapter to the more general objective
of minimizing the weighted `k-norm of flow-time of jobs on unrelated machines. The
`k-norm captures the notion of fairness between jobs since it removes the extreme
outliers and hence it is more appropriate to balance the difference among the flow-times
of individual jobs than the average function, which corresponds to the `1-norm (see for
example [MPS13]).

9.2 Problem Definition and Notations

We are given a setM of m unrelated machines. Let J denote the set of all jobs of
our instance, which is not known a priori. Each job j ∈ J is characterized by its release
time rj, its weight wj and if job j is executed on machine i ∈ M then it has a processing
time pij. We study the non-preemptive setting. In this chapter, we consider a stronger
non-preemptive model according to which we are only allowed to interrupt a job if we
reject it, i.e., we do not permit restarts. Moreover, each job has to be dispatched to one
machine at its arrival and migration is not allowed.

Given a schedule S , let Cj and Fj denote the completion time and flow time of the
job j. Our objective is to create a non-preemptive schedule that minimizes the weighted
`k-norm of the flow-time of all jobs, i.e., (∑j∈J wjFk

j )
1/k, where k ≥ 1.

Let δij =
wj
pij

be the density of a job j on machine i. Moreover, let qij(t) be the
remaining processing time at time t of a job j which is dispatched at machine i. A job
j is called pending at time t, if it is already released at t but not yet completed, i.e.,
rj ≤ t < Cj.

103



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

9.3 Linear Programming Formulation

In this section, we study the objective of minimizing the weighted `k-norm of flow-
times.

Let εs > 0 and 0 < εr < 1 be the speed augmentation and the rejection fraction of
our algorithm, respectively. For each machine i ∈ M, job j ∈ J and time t ≥ rj, we
introduce a binary variable xij(t) which indicates if j is processed on i at time t. We
consider the following linear programming formulation. Note that the optimal objective
value of this linear program is at most 4(20k)k+3

εk+1
s

times the total weighted k-power of
flow-time of jobs in an optimal preemptive schedule.

min ∑
i∈M

∑
j∈J

∫ ∞

rj

2(20k)k+3

εk+1
s

δij

[
(t− rj)

k + pk
ij

]
xij(t)dt

∑
i∈M

∫ ∞

rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J

∑
j∈J

xij(t) ≤ 1 ∀i ∈ M, t

xij(t) ∈ {0, 1} ∀i ∈ M, j ∈ J , t ≥ rj

After relaxing the integrality constraints, we get the following dual program.

max ∑
j∈J

λj − ∑
i∈M

∫ ∞

0
γi(t)dt

λj

pij
− γi(t) ≤

2(20k)k+3

εk+1
s

δij

[
(t− rj)

k + pk
ij

]
∀i ∈ M, j ∈ J , t ≥ rj

λj, γi(t) ≥ 0 ∀i ∈ M, j ∈ J , t

9.3.1 Algorithm and Dual Variables

The algorithm follows the same ideas of the one for the objective of minimizing the
average weighted flow-time in previous chapter. Each job is immediately dispatched
to a machine upon its arrival. We denote by Qi(t) the set of pending jobs at time t
dispatched to machine i ∈ M, i.e., the set of jobs dispatched to i that have been released
but not yet completed and have not been rejected at t. Our scheduling policy for each
machine i ∈ M is the following: at each time t when the machine i becomes idle or
has just completed or interrupted some job, we start executing on i the job j ∈ Qi(t)
of largest density, i.e., j = argmaxj′∈Qi(t){δij′}. In case of ties, we select the job that
arrived the earliest.

104



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

When a machine i ∈ M starts executing a job u ∈ J , we introduce a counter vu
(associated to job u) which is initially equal to zero. Each time when a job j ∈ J with
δij > δiu is released during the execution of u and j is dispatched to i, we increase vu
by wj. Then, the rejection policy is the following: we interrupt the execution of the
job k and we mark it as rejected the first time where vu > wu

εr
. As before we define the

set of rejected jobs Dj which causes a decrease to the flow time of j and we say that j
is definitively finished ∑u∈Dj

qiu(rju) time after its completion or rejection. However,
j does not appear to the set of pending jobs Qi(t) for any t after its completion or
rejection. Recall that Ui(t) is the set of jobs that have been marked finished at a time
before t in machine i but they have not yet been definitively finished at t. For a job
j ∈ Qi(t) ∪Ui(t), let Fj(t) be the remaining time of j from t to to the moment it is
definitively finished.

Let ∆ij be the increase in the total weighted k-th power of flow-time occurred in the
schedule of our algorithm if we assign a new job j ∈ J to machine i, following the
above scheduling and rejection policies. Assuming that the job u ∈ J is executed on i
at time rj, we have that, if vu + wj ≤ wu

εr
then

∆ij = wj

(
qiu(rj) + ∑

a∈Qi(rj)∪{j}\{u}:
δia≥δij

pia

)k

+ ∑
a∈Qi(rj)\{u}

δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)
k
]

,

otherwise,

∆ij = wj

(
∑

a∈Qi(rj)∪{j}:
δia≥δij

pia

)k

+ ∑
a∈Qi(rj)\{u}

δia<δij

wa

[(
Fa(rj) + pij − qiu(rj)

)k − Fa(rj)
k
]

,

where, in both cases, the first term corresponds to the weighted k-th power of the
flow-time of job j if it is dispatched to i and the second term corresponds to the change
of the weighted k-th power of flow-time for the jobs in Qi(rj). Note that, the second
case corresponds to the rejection of u and hence we do not have the term qiu(rj) in the
weighted flow-time of j, while the flow-time of each pending job is reduced by qiu(rj).

Based on the above, we define λij in the following. If δij > δiu then λij equals to

2k(10k)k

εk
s

1 + εr

εr
wj pk

ij +

(
1 +

εs

5

)
wj

(
∑

a∈Qi(rj)∪{j}\{u}:
δia≥δij

pia

)k

+ ∑
a∈Qi(rj)\{u}

δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)
k
]

,

105



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

otherwise, λij equals to

2k(10k)k

εk
s

1 + εr

εr
wj pk

ij +

(
1 +

εs

5

)
wj

(
qiu(rj) + ∑

a∈Qi(rj)∪{j}\{u}:
δia≥δij

pia

)k

+ ∑
a∈Qi(rj)\{u}

δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)
k
]

.

The value of λij represents the total charge for job j if it is dispatched to machine i.
Note that we do not consider the negative quantity that appears in the second case of ∆ij.
Moreover, the only difference in the two cases of the definition of λij is in the second
term. The coefficients of the terms in the formula of λij are chosen in such a way that the
total value of λij’s can cover the total value of ∆ij’s (more detail in Theorem 9.1). The
dispatching policy is the following: dispatch j to the machine i∗ = argmini∈M{λij}.

It remains to formally define the dual variables. At the arrival of a job j ∈ J , we set
λj =

εr
1+εr

mini∈M{λij} and we will never change the value of λj again. Define γi(t)
as the following.

γi(t) =
εr

1 + εr

(
1 +

εs

2

)(
1 +

εs

5

)
· k ∑

a∈Qi(t)∪Ui(t)
waFa(t)k−1

Note that γi(t) is updated during the execution of A. More specifically, given any
fixed time t, γi(t) may increase if a new job j′ arrives at any time rj′ ∈ [rj, t). However,
γi(t) does never decrease in the case of rejection since the jobs remain in Ui(t) for a
sufficient time after their completion or rejection.

9.3.2 Analysis

We prove the main technical lemma which guarantees the feasibility of the dual
constraint using the above definition of the dual variables. Note that the inequality in
Lemma 9.1 is stronger than the dual constraint.

Lemma 9.1. For every machine i ∈ M, job j ∈ J and time t ≥ rj, the dual constraint
is feasible, that is

λj

pij
− γi(t) ≤

(20k)k+3

εk+1
s

δij

[
(t− rj)

k + pk
ij

]
+

2k(10k)k

εk
s

pk
ij

Proof. Fix a machine i and job j. For any fixed time t ≥ rj, as long as new jobs arrive,
the value of γi(t) may only increase. Hence, it is sufficient to prove the inequality
assuming that no job will be released after rj.

106



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

Let Q1
i (t) ⊂ Qi(t) be the set of pending jobs u assigned to machine i and δiu(rj) ≥

δij. Let Q2
i (t) = Qi(t) \Q1

i (t). By definition of λij and by convexity of function zk,

λij

pij
≤ 2k(10k)k

εk
s

1 + εr

εr
δij pk

ij + k ∑
a∈Qi(rj)\{u}

δia<δij

wa
(

Fa(rj) + pij
)k−1

+

(
1 +

εs

5

)


δij

(
∑

a∈Qi(rj)∪{j}\{u}:
δia≥δij

pia

)k

if δij > δiu

δij

(
qiu(rj) + ∑

a∈Qi(rj)∪{j}\{u}:
δia≥δij

pia

)k

otherwise

≤ 2k(10k)k

εk
s

1 + εr

εr
δij pk

ij + k ∑
a∈Q2

i (rj)

wa
(

Fa(rj) + pij
)k−1

+

(
1 +

εs

5

)
δij

(
∑

a∈Q1
i (rj)

pia + pij

)k

(9.1)

Note that in job u is included in the last term if δiu ≥ δij. Besides, the second
inequality holds since ∑a∈Q1

i (rj)
pia + pij ≥ ∑a∈Q1

i (rj)∪{j} pia (and equality happens if
j is not assigned to machine i).

Since λj = εr
1+εr

mini λij, the lemma inequality is a corollary of the following
inequality.

εr

1 + εr

λij

pij
− γi(t) ≤

(20k)k+3

εk+1
s

δij

[
(t− rj)

k + pk
ij

]
+

2k(10k)k

εk
s

δij pk
ij

By (9.1) and by definition of γi(t) and and 0 < εr < 1, in order to prove the above
inequality, we will prove a stronger inequality(

1 +
εs

5

)
δij

(
∑

a∈Q1
i (rj)

pia + pij

)k

+ k ∑
a∈Q2

i (rj)

wa
(

Fa(rj) + pij
)k−1

≤ k
(

1 +
εs

2

)(
1 +

εs

5

)
∑

a∈Qi(t)
waFa(t)k−1 +

(20k)k+3

εk+1
s

δij

[
(t− rj)

k + pk
ij

]
(9.2)

Let t0 be the completion time of job j if j is scheduled in machine i by the algorithm.
Inequality (9.2) follows Lemma 9.2 and Lemma 9.3 by choosing the parameter ε =
εs/(10k) in the latters.

107



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

In the analysis, we extensively use the following simple inequalities. For a, b ≥ 0
and ε > 0 small enough,

(a + b)k ≤ (1 + ε)kak +

(
1 +

1
ε

)k

bk ≤ (1 + 2kε)ak +
2k

εk bk (9.3)

The proof of the first inequality is done by considering cases whether b ≤ εa or
b > εa. In the former, the term (1 + ε)kak dominates (a + b)k while in the latter,(
1 + 1

ε

)kbk dominates (a + b)k. The second inequality holds for ε small enough.

Lemma 9.2. Fix a machine i and a job j and assume that no new job is released after
rj. Let t0 be the completion time of job j if j is scheduled in machine i by the algorithm.
Then, for every rj ≤ t ≤ t0 and for ε > 0, it holds that

(1 + 2kε)δij

(
∑

a∈Q1
i (rj)

pia + pij

)k

+ k ∑
a∈Q2

i (rj)

wa
(

Fa(rj) + pij
)k−1

≤ k(1 + 8kε) ∑
a∈Qi(t)

waFa(t)k−1 + k2k+3ε−(k+1)δij

[
(t− rj)

k + pk
ij

]

Proof. First, we prove the following claim.

Claim 1. It holds that

k ∑
a∈Q2

i (t)

wa(Fa(rj) + pij)
k−1

≤ k(1 + 2kε) ∑
a∈Q2

i (t)

waFa(t)k−1 + k2kε−(k+1)δij

(
(t− rj)

k + pk
ij

)

Proof of claim. Observe that Q2
i (rj) = Q2

i (t) and qia(t) = qia(rj) for a ∈ Q2
i (rj)

since no such job a is scheduled in interval [rj, t]. Let V1 be the set of jobs a ∈ Q2
i (t)

such that t− rj ≤ ε(Fa(t) + pij). We have

k ∑
a∈Q2

i (rj)

wa

(
Fa(rj) + pij

)k−1

≤ k ∑
a∈Q2

i (rj)

wa

(
(t− rj) + Fa(t) + pij

)k−1

= k ∑
a∈V1

wa

(
(t− rj) + Fa(t) + pij

)k−1

+ k ∑
a∈Q2

i (t)\V1

wa

(
(t− rj) + Fa(t) + pij

)k−1

≤ k(1 + 2kε) ∑
a∈V1

wa

(
Fa(t) + pij

)k−1

+ k ∑
a∈Q2

i (t)\V1

wa

(
(t− rj) + Fa(t) + pij

)k−1

108



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

≤ k(1 + 2kε) ∑
a∈V1

wa

(
Fa(t) + pij

)k−1

+ k(1 + 2kε) ∑
a∈Q2

i (t)\V1

wa

(
Fa(t) + pij

)k−1

+ k2kε−k ∑
a∈Q2

i (t)\V1

wa(t− rj)
k−1

≤ k(1 + 2kε) ∑
a∈Q2

i

wa

(
Fa(t) + pij

)k−1

+ k2kε−kδij ∑
a∈Q2

i (t)\V1

pia(t− rj)
k−1

≤ k(1 + 2kε) ∑
a∈Q2

i (t)

wa

(
Fa(t) + pij

)k−1

+ k2kε−(k+1)δij(t− rj)
k (9.4)

The second inequality follows the definition of V1. In the third inequality, we apply
inequality (9.3). The fourth inequality follows because δij ≥ δia for all a ∈ Q2

i (t).
The last inequality holds since ∑a∈V2

pia ≤ maxa∈Q2
i (t)\V1

Fa(t) ≤ (t − rj)/ε (by

definition of Q2
i (t) \V1).

Let V2 be the set of jobs a ∈ Q2
i (t) such that pij ≤ εFa(t). Similarly, we have

k ∑
a∈Q2

i (t)

wa(Fa(t) + pij)
k−1 = k ∑

a∈V2

wa(Fa(t) + pij)
k−1 + k ∑

a∈Q2
i (t)\V2

wa(Fa(t) + pij)
k−1

≤ k(1 + 2kε) ∑
a∈V2

waFa(t)k−1 + k ∑
a∈Q2

i (t)\V2

wa(Fa(t) + pij)
k−1

≤ k(1 + 2kε) ∑
a∈Q2

i (t)

waFa(t)k−1 + k2kε−k ∑
a∈Q2

i (t)\V2

wa pk−1
ij

≤ k(1 + 2kε) ∑
a∈Q2

i (t)

waFa(t)k−1 + k2kε−k pk−1
ij δij ∑

a∈Q2
i (t)\V2

pia

≤ k(1 + 2kε) ∑
a∈Q2

i (t)

waFa(t)k−1 + k2kε−(k+1)δij pk
ij (9.5)

where the second inequality follows inequality (9.3) and rearranging terms; the third
inequality holds since δia ≤ δij and qia(t) = qia(rj) for a ∈ Q2

i (t) = Q2
i (rj); the

fourth inequality is due to the fact that ∑a∈Q2
i (t)\V

pia is bounded by the maximal Fa(t)
for a ∈ Q2

i (t) \V2, which is bounded by pij/ε (by definition of Q2
i (t) \V2).

Combining (9.4) and (9.5), we get

k ∑
a∈Q2

i (t)

wa(Fa(rj) + pij)
k−1 ≤ k(1 + 2kε) ∑

a∈Q2
i (t)

waFa(t)k−1 + k2kε−(k+1)δij

(
(t− rj)

k + pk
ij

)

We are now proving Lemma 9.2. Observe that

109



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

∑
a∈Q1

i (rj)

qia(rj) + pij = (t− rj) + ∑
a∈Q1

i (t)

qia(t) + qij(t)

Therefore,

(1 + 2kε)δij

(
∑

a∈Q1
i (rj)

qia(rj) + pij

)k

= (1 + 2kε)δij

(
(t− rj) + ∑

a∈Q1(t)

qia(t) + qij(t)
)k

≤ k2k+1ε−(k+1)δij(t− rj)
k + k(1 + 5kε)δij

(
∑

a∈Q1
i (t)

qia(t) + qij(t)
)k

≤ k2k+1ε−(k+1)δij(t− rj)
k + k(1 + 5kε)2kε−(k+1)qk

ij(t)

+ k(1 + 5kε)(1 + 2kε)δij

(
∑

a∈Q1
i (t)

qia(t)
)k

≤ k2k+2ε−(k+1)δij

[
(t− rj)

k + pk
ij

]
+ k(1 + 8kε)δij ∑

a∈Q1
i (t)

qia(t)
(

∑
b∈Q1

i (t):δib≥δia

qib(t)
)k−1

≤ k2k+2ε−(k+1)δij

[
(t− rj)

k + pk
ij

]
+ k(1 + 8kε) ∑

a∈Q1
i (t)

waFa(t)k−1 (9.6)

In the inequalities, we use (9.3) and estimations with ε sufficiently small. The last
inequality is due to the fact that δij ≤ δia for a ∈ Q1

i (t).
Hence, using Claim 1 and (9.6), we get

(1 + 2kε)δij

(
∑

a∈Q1
i (rj)

pia

)k

+ k ∑
a∈Q2

i (rj)

wa
(

Fa(rj) + pij
)k−1

≤ k(1 + 8kε) ∑
a∈Qi(t)

waFa(t)k−1 + k2k+3ε−(k+1)δij

[
(t− rj)

k + pk
ij

]
which is the lemma inequality.

Lemma 9.3. Fix a machine i and a job j and assume that no new job is released after
rj. Let t0 be the completion time of job j if j is scheduled in machine i by the algorithm.
Then, for every t > t0 and for ε > 0, it holds that

(1 + 2kε)δij

(
∑

a∈Q1
i (rj)

pia + pij

)k

+ k ∑
a∈Q2

i (rj)

wa
(

Fa(rj) + pij
)k−1

≤ k(1 + 8kε) ∑
a∈Qi(t)

waFa(t)k−1 + k2k+2ε−(k+1)δij

[
(t− rj)

k + pk
ij

]

110



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

Proof. First we argue the following claim.

Claim 2. It holds that

k ∑
a∈Q2

i (rj)

waFa(rj)
k−1 ≤ k

(
k + 1

k

)k−1

∑
a∈Qi(t)

waFa(t)k−1 + 3kkδij(t− rj)
k − k(t0 − rj)

k

Proof of claim. Let {a1, . . . , ah} ⊂ Q2
i (rj) be the set of jobs processed by the

algorithm in interval [t0, t] where all jobs in W but probably ah have been completed.
It means that at time t, the machine is processing job ah or has just completed job ah−1.
Hence, Qi(t) = Q2

i (rj) \ {a1, . . . , ah−1}. Recall that qia(t) is the remaining of job a
at time t. We have

k ∑
a∈Q2

i (rj)

waFa(rj)
k−1

≤ kδij

h−1

∑
b=1

pi,ab

(
t0 − rj + pi,a1 + . . . + pi,ab

)k−1

+ k ∑
a∈Q2

i (rj)\{a1,...,ah−1}
wa

(
t− rj + Fa(t)

)k−1

≤ k(1 + 2kε)δij

[
h−1

∑
b=1

pi,ab(t0 − rj + pi,a0 + . . . + pi,ab−1)
k−1

]
+ k2kε−kδij

h−1

∑
b=1

pk
i,ab

+ k ∑
a∈Q2

i (t)

wa

(
t− rj + Fa(t)

)k−1

≤ (1 + 2kε)δij

[
(t− rj)

k − (t0 − rj)
k
]
+ k2kε−kδij(t− rj)

k

+ k ∑
a∈Qi(t)

wa

(
t− rj + Fa(t)

)k−1

(9.7)

The first inequality follows the fact that δij ≥ δia for a ∈ Q2
i (rj). In the second

inequality, we use inequality (9.3) and conventionally pi,a0 = 0. The last inequality
holds because of the convexity of function zk and pi,a1 + . . .+ pi,ah−1 ≤ t− t0 ≤ t− rj.

Let V3 be the set of jobs a ∈ Qi(t) such that t− rj ≤ εFa(t). Let V4 = Qi(t) \V3.
Then we have

k ∑
a∈Qi(t)

wa(t− rj + Fa(t))k−1 = k ∑
a∈V3

wa(t− rj + Fa(t))k−1 + k ∑
a∈V4

wa(t− rj + Fa(t))k−1

≤ k(1 + ε)k−1 ∑
a∈V3

waFa(t)k−1 + k ∑
a∈V4

wa(t− rj + Fa(t))k−1

111



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

≤ k(1 + 2kε) ∑
a∈V3

waFa(t)k−1 + k(1 + 2kε) ∑
a∈V4

waFa(t)k−1 + k2kε−k ∑
a∈V4

wa(t− rj)
k−1

≤ k(1 + 2kε) ∑
a∈Qi(t)

waFa(t)k−1 + k2kε−k ∑
a∈V4

δij pi,a(t− rj)
k−1

≤ k(1 + 2kε) ∑
a∈Qi(t)

waFa(t)k−1 + k2kε−(k+1)δij(t− rj)
k (9.8)

The first inequality follows the definition of V3. The second one holds due to inequal-
ity (9.3) and for ε sufficiently small. The last inequality follows the observation that
∑a∈V4

pia ≤ (t0 − rj) + ∑a∈V4
qia(t) ≤ (t− rj) + maxa∈V4 Fa(t) ≤ (t− rj)/ε (by

definition of V4).
Using (9.7) and (9.8), we deduce that

k ∑
a∈Q2

i (rj)

waFa(rj)
k−1

≤ k(1 + 2kε) ∑
a∈Qi(t)

waFa(t)k−1 + k2k+1ε−(k+1)δij(t− rj)
k − δij(t0 − rj)

k

which is the claim inequality.

We are now proving the lemma. By exactly the same arguments to prove inequalities
(9.5) and (9.8), we have

k ∑
a∈Q2

i (rj)

wa(Fa(rj) + pij)
k−1 ≤ k(1 + 2kε) ∑

a∈Q2
i (t)

waFa(rj)
k−1 + k2kε−(k+1)δij pk

ij

(9.9)

Therefore,

(1 + 2kε)wj

(
∑

a∈Q1
i (rj)

pia + pij

)k

+ k ∑
a∈Q2

i (rj)

wa
(

Fa(rj) + pij
)k−1

≤ (1 + 2kε)δij(t0 − rj)
k + k ∑

a∈Q2
i (rj)

wa(Fa(rj) + pij)
k−1

≤ (1 + 2kε)δij(t0 − rj)
k + k(1 + 2kε) ∑

a∈Q2
i (rj)

waFa(rj)
k−1 + k2kε−(k+1)δij pk

ij

≤ k(1 + 5kε) ∑
a∈Qi(t)

waFa(t)k−1 + k2k+2ε−(k+1)δij

[
(t− rj)

k + pk
ij

]

The first inequality holds since every job in Q1
i has been completed by t0. The second

inequality is due to inequality (9.9). The last inequality follows Claim 2.

By the rejection policy, the algorithm rejects at most a small fraction of the total job
weight. The proof of the following lemma is the same as Lemma 8.3.

112



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

Lemma 9.4. For the set R of jobs rejected by the algorithm A it holds that
∑j∈R wj ≤ εr ∑j∈J wj.

Theorem 9.1. Given any εs > 0 and εr ∈ (0, 1), the algorithm is a (1 + εs)-speed

O
(

k(k+3)/k

ε1/k
r ε

(k+2)/k
s

)
-competitive algorithm

that rejects jobs of total weight at most εr ∑j∈J wj.

Proof. By Lemma 8.2, the proposed dual variables constitute a feasible solution for the
dual program. By definition, the algorithm uses for any machine at any time a factor of
1 + εs more speed with respect to the adversary. By Lemma 9.4, the algorithm rejects
jobs of total weight at most εr ∑j∈J wj. Hence, it remains to give a lower bound for
the dual objective based on the proposed dual variables.

We denote by Fj the flow-time of a job j ∈ J \R in the schedule of the algorithm.
By slightly abusing the notation, for a job k ∈ R, we will also use Fu to denote the
total time passed after ru until deciding to reject a job u. In other words, if the job u is
rejected at the release of the job j ∈ J then Fu = rj + qiu(rj)− ru. Denote ju the job
released at the moment we decided to reject the job u, i.e., wu/εr−wju < vu < wu/εr
for the value of the counter vu before the arrival of job ju.

By the definition of λj’s and as 0 < εr < 1, we have

∑
j∈J

λj =
εr

1 + εr
∑
j∈J

λij

≥ εr

1 + εr

∑
j∈J

wjFk
j + ∑

j∈J

wj ∑
u∈Dj

((
Fj(rju) + piju

)k −
(

Fj(rju) + piju − qiu(rju)
)k
)

where the inequality follows the definition of λij. It can be seen by decomposing
the first term of ∆ij (in case δij > δiu) using inequality (9.3) as follows. For ε > 0
sufficiently small,

wj

(
qiu(rj) + ∑

a∈Qi(rj)∪{j}\{u}:
δia≥δij

pia

)k

≤ wj(1 + 2kε)

(
∑

a∈Qi(rj)∪{j}\{u}:
δia≥δij

pia

)k

+ wj2kε−k pk
iu

Then choose ε = εs/(10k), the right-hand side of this inequality is captured by the
first two terms in the definition of λij (note that 0 < εr < 1). That also explains the
(complex) coefficients in the definition of λij.

By the definition of γi(t)’s, for εs sufficiently small,

∑
i∈M

∫ ∞

0
γi(t)dt = ∑

i∈M

∫ ∞

0

εr

1 + εr

(
1 +

εs

2

)(
1 +

εs

5

)
k ∑

a∈Qi(t)∪Ui(t)
waFa(t)k−1dt

113



9.3 L I N E A R P RO G R A M M I N G F O R M U L AT I O N

≤ εr

1 + εr

(
1 +

3εs

4

)∑
j∈J

wjFk
j + ∑

j∈J

wj ∑
u∈Dj

((
Fj(rju) + piju

)k −
(

Fj(rju) + piju − qiu(rju)
)k
)

Therefore, the proposed assignment for the dual variables leads to the following value
of the dual objective

∑
j∈J

λj −
1

1 + εs
∑

i∈M

∫ ∞

0
γi(t)dt ≥ εr

(1 + εr)
∑
j∈J

wjFk
j

(
1− 1 + 3εs/4

1 + εs

)
≥ εrεs

4(1 + εr)(1 + εs)
∑

j∈J \R
wjFk

j

for εs sufficiently small.
Recall that the relaxation is at most 4(20k)k+3

εk+1
s

times the total weighted k-power of flow-
time of jobs in an optimal preemptive schedule. Therefore, we deduce the competitive

ratio of the `k-norm objective (i.e.,
(
∑j∈J wjFk

j
)1/k) is at most O

(
k(k+3)/k

ε1/k
r ε

(k+2)/k
s

)
.

114



10
C O N C L U S I O N

In this thesis, we dealt with trade-offs that often arise in the context of resource allo-
cation problems. First, we formulated them as multi-objective optimization problems
where the final outcome consists of a set of mutually incomparable solutions known
as the Pareto front. Since most of the discrete problems are NP-hard, we concentrated
our effort on finding an approximation of the Pareto front. For this purpose, we studied
Pareto-based local search algorithms where we argued that previous algorithms had
significant drawbacks in the sense that they removed candidate solutions prematurely.
Taking this drawback into consideration, we designed a new double archive Pareto
local search algorithm (DAPLS) that protects good candidate solutions. We showed
that DAPLS terminates in a Pareto local optimal set. To escape the local optimum,
we embedded DAPLS in a genetic framework. We showed empirically that genetic
DAPLS outperforms state-of-the-art algorithms on several instances of bi-objective and
tri-objective quadratic assignment problems.

It would be interesting to see how DAPLS performs for other kinds of multi-objective
combinatorial problems such as the multi-objective versions of 0/1 knapsack, the
travelling salesman problem, the scheduling problem, the graph coordination etc. In
the future, we would like to study DAPLS for higher dimensional cost space where
the size of the Pareto front is typically huge. Specifically, we would like to explore
trade-offs between the time taken and the quality of solutions produced. Moreover, in
such problems, DAPLS can take a large amount of time to reach a local Pareto optimal
set. Our aim would be to use some heuristics to limit the size of the neighborhood.

In the second part of the thesis, we focused on the design of algorithms with theo-
retical guarantees in the context of scheduling. Specifically, we studied trade-offs in
client-server systems where requests are modelled as a set of independent jobs with
processing requirement and resources are modelled as a set of machines. Our aim was
to create a feasible schedule with some degree of performance guarantee. One of the
well-studied and important performance measures is the flow-time of a job. We studied
several variants of this measure in different machine settings. First, we considered the
problem of minimizing maximum weighted flow-time on a single machine where jobs
arrive online and the weight of a job is inversely proportional to its processing time.
We presented an improved lower bound of

√
5−1
2 ∆ where ∆ is the ratio between the

largest and the smallest processing times of the input instance. Then, we designed a
semi-online algorithm that asymptotically achieves the performance guarantees. Our
algorithm used the strategy of waiting-time where long jobs incur additional delay after
their release time.

115



C O N C L U S I O N

As it turns out, many of the flow-time related problems have strong lower bound.
Therefore we explored these problems under a relaxed notion of resource augmentation.
In this model, we first considered the problem of minimizing average flow on a single
machine in the offline setting. In the classical model (without resource augmentation),
there exists a strong lower bound of O(

√
n). Instead, we showed that there exists

an O(1
ε )-approximation algorithm for average-flow problem where the algorithm is

allowed to reject at most an ε-fraction of the total number of jobs. Our approach used
the tree-based structure of the shortest remaining processing time policy to convert
an optimal preemptive algorithm into a non-preemptive algorithm with the bounded
number of rejections. We extended this idea to the offline problem of minimizing
average stretch on a single machine.

In the last section of the thesis, we considered the problem of minimizing average
weighted flow-time on a set of unrelated machines where jobs arrive online. Here, we
showed the existence of a strong lower bound for the speed augmentation model. We
then proposed a mathematical programming based framework that unifies the speed
augmentation and the rejection model. Finally, we developed a scheduling algorithm
that achieves O(1)-competitive ratio in this generalized resource augmentation model.
We used the concept of dual-fitting for the analysis of our algorithm. Despite the
widespread use of average flow, it is often criticized for being unfair in that an algorithm
minimizing average flow may starve some jobs. Therefore, we considered the `k-norm
of a flow-time which introduces some fairness among competing jobs. Using the above
idea, we showed that there exists an O(k)-competitive algorithm for the problem of
minimizing weighted `k-norm of flow-time on a set of unrelated machines.

Our generalized model opens up possibilities for different types of resource augmen-
tation. As shown in this thesis, this model can be used to explain the competitiveness of
algorithms for certain problems that were known to admit no performance guarantee
even with speed augmentation. Besides in our model, one can benefit from the power
of duality-based techniques for analyzing online algorithms. It would be interesting to
consider how different problems can be explored under the new model.

116



B I B L I O G R A P H Y

[ABG04] E. Angel, E. Bampis, and L. Gourvès. A Dynasearch neighborhood for the
bicriteria traveling salesman problem. Metaheuristics for Multiobjective
Optimisation, pages 153–176, 2004.

[AGK12] S. Anand, N. Garg, and A. Kumar. Resource augmentation for weighted
flow-time explained by dual fitting. In Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1228–1241, 2012.

[AT09] A. Alsheddy and E. Tsang. Guided Pareto local search and its application
to the 0\1 multi-objective knapsack problems. In International Conference
on Metaheuristics, 2009.

[B9̈6] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Uni-
versity Press, 1996.

[BAKC99] F. Ben Abdelaziz, S. Krichen, and J. Chaouachi. Meta-Heursitics - Ad-
vances and Trends in Local Search Paradigms for Optimization. Kluwer
Academic Publishers, 1999.

[BC09] N. Bansal and H. Chan. Weighted flow time does not admit O(1)-
competitive algorithms. In Proceedings of the Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1238–1244, 2009.

[BCK+07] N. Bansal, H. Chan, R. Khandekar, K. Pruhs, C. Stein, and B. Schieber.
Non-preemptive min-sum scheduling with resource augmentation. In
Proceedings of the IEEE Annual Symposium on Foundation of Computer
Science, pages 614–624, 2007.

[BCM98] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch
metrics for scheduling continuous job streams. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 270–279,
1998.

[BD07] N. Bansal and K. Dhamdhere. Minimizing weighted flow time. Journal
of ACM Transactions on Algorithms, 3, 2007.

[BEY98] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analy-
sis. 1998.

[BFNW11] K. Bringmann, T. Friedrich, F. Neumann, and M. Wagner. Approximation-
guided evolutionary multi-objective optimization. In Proceeding of the
International Joint Conference on Artificial Intelligence, pages 1198–1203,
2011.

117



Bibliography

[BLMSP06] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K Pruhs. On-
line weighted flow time and deadline scheduling. Journal of Discrete
Algorithms, 4:339 – 352, 2006.

[BMR03] M. A. Bender, S. Muthukrishnan, and R. Rajaraman. Approximation
algorithms for average stretch scheduling. Journal of Scheduling, 7:195–
222, 2003.

[BN09] N. Buchbinder and J. Naor. The design of competitive online algorithms
via a primal: Dual approach. Foundations and Trends Theoretical Com-
puter Science, 3:93–263, 2009.

[BP03] N. Bansal and K. Pruhs. Server scheduling in the `p norm: A rising tide
lifts all boat. In Proceedings of the Annual ACM Symposium on Theory of
Computing, pages 242–250, 2003.

[BP14] N. Bansal and K. Pruhs. The geometry of scheduling. In SIAM Journal
on Computing, volume 43, pages 1684–1698, 2014.

[Bra85] R. M Brady. Optimization strategies gleaned from biological evolution.
Nature, 317:804–806, 1985.

[Bru01] P. Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., 3rd
edition, 2001.

[BT09] K. R. Baker and D. Trietsch. Principles of Sequencing and Scheduling.
Wiley Publishing, 2009.

[Bun04] D. P. Bunde. SPT is optimally competitive for uniprocessor flow. Infor-
mation Processing Letters, 90:233–238, 2004.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. 2004.

[BZ11] J. Bader and E. Zitzler. Hype: An algorithm for fast hypervolume-
based many-objective optimization. Journal of Evolutionary Computation,
19:45–76, 2011.

[CC05] C. A. Coello and N. C. Cortés. Solving multiobjective optimization
problems using an artificial immune system. Genetic Programming and
Evolvable Machines, 6:163–190, 2005.

[CDGK15] A. R. Choudhury, S. Das, N. Garg, and A. Kumar. Rejecting jobs to
minimize load and maximum flow-time. In Proceedings of Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1114–1133, 2015.

[CDK15] A. R Choudhury, S. Das, and A. Kumar. Minimizing weighted lp-norm of
flow-time in the rejection model. In Proceedings of the Annual Conference
on Foundations of Software Technology and Theoretical Computer Science,
pages 25–37, 2015.

[CJ98] P. Czyzz̀ak and A. Jaszkiewicz. Pareto simulated annealing: a metaheuris-
tic technique for multiple-objective combinatorial optimization. Journal
of Multi-Criteria Decision Analysis, 7:34–47, 1998.

118



Bibliography

[CKZ01] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted
flow time. In Proceeding of ACM Symposium on Theory of Computing,
pages 84–93, 2001.

[DA99] K. Deb and S. Agrawal. Understanding interactions among genetic algo-
rithm parameters. In Foundations of Genetic Algorithms, pages 265–286,
1999.

[DAPM00] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. In Proceedings of the International Conference on Parallel
Problem Solving from Nature, pages 849–858, 2000.

[DH14] N. R. Devanur and Z. Huang. Primal dual gives almost optimal energy
efficient online algorithms. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1123–1140, 2014.

[DL95] G. Dahl and A. Lokkentangen. A tabu search approach to the channel
minimization problem. In Proceedings of the International Conference on
Optimization Techniques and Applications, 1995.

[DLLIS11] J. Dubois-Lacoste, M. López-Ibánez, and T. Stützle. A hybrid TP+PLS
algorithm for bi-objective flow-shop scheduling problems. Computers
and Operations Research, 38:1219–1236, 2011.

[DSST16] P. F. Dutot, E. Saule, A. Srivastav, and D. Trystram. Online non-preemptive
scheduling to optimize max stretch on a single machine. In Proceedings
of the International Conference on Computing and Combinatorics, pages
483–495, 2016.

[DT10] M. M. Drugan and D. Thierens. Path-guided mutation for stochastic Pareto
local search algorithms. In Proceedings of the International Conference
on Parallel Problem Solving from Nature, pages 485–495, 2010.

[DT12] M. M. Drugan and D. Thierens. Stochastic Pareto local search: Pareto
neighbourhood exploration and perturbation strategies. Journal of Heuris-
tics, 18:727–766, 2012.

[EP09] V. A. Emelichev and V. A. Perepelitsa. On cardinality of the set of
alternatives in discrete many-criterion problems. Discrete Mathematics
and Applications, 2:461–472, 2009.

[EVS01] L. Epstein and R. Van Stee. Optimal online flow time with resource
augmentation. In Proceedings of the International Symposium on Funda-
mentals of Computation Theory, pages 472–482, 2001.

[FF93] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective
optimization: Formulation discussion and generalization. In Proceedings
of the International Conference on Genetic Algorithms, pages 416–423,
1993.

119



Bibliography

[FGLIP11] C. M. Fonseca, A. P. Guerreiro, M. López-Ibáñez, and L. Paquete. On the
computation of the empirical attainment function. In Proceedings of the
International Conference on Evolutionary Multi-Criterion Optimization,
pages 106–120, 2011.

[GD91] D .E. Goldberg and K. Deb. A comparative analysis of selection schemes
used in genetic algorithms. In Proceedings of Internationa conference on
Foundations of Genetic Algorithms, pages 69–93, 1991.

[GDK89] D. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms: motivation,
analysis, and first resutls. Complex Systems, 3:493–530, 1989.

[GF00] X. Gandibleux and A. Freville. Tabu search based procedure for solving
the 0-1 multiobjective knapsack problem: The two objectives case. Journal
of Heuristics, 6:361–383, 2000.

[GG84] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-6:721–741, 1984.

[GKP13] A. Gupta, R. Krishnaswamy, and K. Pruhs. Online primal-dual for non-
linear optimization with applications to speed scaling. In Proceedings of
the Annual International Workshop on Approximation and Online Algo-
rithms, pages 173–186, 2013.

[Glo86] F. Glover. Future paths for integer programming and links to artificial
intelligence. Computer and Operations Research, 13:533–549, 1986.

[GMF97] X. Gandibleux, N. Mezdaoui, and A. Fréville. A tabu search procedure to
solve multiobjective combinatorial optimization problems. In Proceedings
of the Second International Conference on Multi-Objective Programming
and Goal Programming, pages 291–300, 1997.

[GMU97] X. Gandibleux, N. Mezdaoui, and E. L. B. Ulungu. Simulated annealing
versus tabu search multi-objective approaches to the multiobjective knap-
sack problem. In Proceeding of the International Conference on Multiple
Criteria Decision-Making, 1997.

[GR87] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for
multimodal function optimization. In Proceedings of the International
Conference on Genetic Algorithms and Their Application, pages 41–49,
1987.

[Han80] P. Hansen. Bicriterion path problems. In Proceedings of the International
Conference on Multiple Criteria Decision Making Theory and Application,
pages 109–127, 1980.

[Han97] M. P. Hansen. Tabu search for multiobjective optimization: MOTS. In
Proceedings of the International Conference on Multiple Criteria Decision
Making, pages 6–10, 1997.

120



Bibliography

[HJ98] M.P. Hansen and A. Jaszkiewicz. Evaluating the Quality of Approxima-
tions to the Non-dominated Set. Technical report (IMM). Department of
Mathematical Modelling, Technical University of Denmark, 1998.

[HJRFF94] A. Hertz, B. Jaumard, C. C. Ribeiro, and W. P. Formosinho Filho. A
multi-criteria tabu search approach to cell formation problems in group
technology with multiple objectives. RAIRO - Operations Research -
Recherche Opérationnelle, 28:303–328, 1994.

[HR94] H. W. Hamacher and Günter Ruhe. On spanning tree problems with
multiple objectives. Annals of Operations Research, 52:209–230, 1994.

[Hug07] H. Hugot. Approximation et énumération des solutions efficaces dans
les problèmes d’optimisatio combinatoire multi-objectifs. Ph.D thesis -
Université Paris-Dauphine, 2007.

[IKdW+14] M. Inja, C. Kooijman, M. de Waard, D. M. Roijers, and S. Whiteson.
Queued Pareto local search for multi-objective optimization. In Proceed-
ings of the International Conference on Parallel Problem Solving from
Nature, pages 589–599, 2014.

[IKM14] S. Im, J. Kulkarni, and K. Munagala. Competitive algorithms from compet-
itive equilibria: Non-clairvoyant scheduling under polyhedral constraints.
In Proceedings of the Annual ACM Symposium on Theory of Computing,
pages 313–322, 2014.

[IKMP14] S. Im, J. Kulkarni, K. Munagala, and K. Pruhs. Selfishmigrate: A scalable
algorithm for non-clairvoyantly scheduling heterogeneous processors. In
Proceedings of the IEEE Annual Symposium on Foundations of Computer
Science, pages 531–540, 2014.

[ILMT15] S. Im, S. Li, B. Moseley, and E. Torng. A dynamic programming frame-
work for non-preemptive scheduling problems on multiple machines. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1070–1086, 2015.

[KC00] J. D. Knowles and D. W. Corne. Approximating the nondominated front
using the Pareto archived evolution strategy. Journal of Evolutionary
Computation, 8:149–172, 2000.

[KC03] J. Knowles and D. Corne. Instance generators and test suites for the mul-
tiobjective quadratic assignment problem. Evolutionary Multi-Criterion
Optimization, pages 295–310, 2003.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and C. D. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[KL70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. The Bell System Technical Journal, 49:291–307, 1970.

121



Bibliography

[Kno06] J. Knowles. ParEGO: a hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation, 10:50–66, 2006.

[KP94] A. Kolen and E. Pesch. Genetic local search in combinatorial optimization.
Discrete Applied Mathematics, 48:273–284, 1994.

[KP95] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoy-
ance. In Proceedings of Annual Symposium on Foundations of Computer
Science, pages 214–221, 1995.

[KP00] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
Journal of ACM, 47:617–643, 2000.

[KTW95] H Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and
nonapproximability results for minimizing total flow time on a single
machine. In Proceedings of the Annual ACM Symposium on Theory of
Computing, pages 418–426, 1995.

[LHM+12] A. Liefooghe, J. Humeau, S. Mesmoudi, L. Jourdan, and E. Talbi. On
dominance-based multiobjective local search: Design, implementation
and experimental analysis on scheduling and travelling salesman problems.
Journal of Heuristics, 18:317–352, 2012.

[LIPS10] M. López-Ibáñez, L. Paquete, and T. Stützle. Experimental methods for the
analysis of optimization algorithms. Exploratory Analysis of Stochastic
Local Search Algorithms in Biobjective Optimization, pages 209–222,
2010.

[LLRKS93] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys.
Sequencing and scheduling: Algorithms and complexity. Handbooks in
operations research and management science, 4:445–522, 1993.

[LNST16] G. Lucarelli, K. T Nguyen, A. Srivastav, and D. Trystram. Online non-
preemptive scheduling in a resource augmentation model based on duality.
In Proceedings of the Annual European Symposium on Algorithms, pages
63:1–63:17, 2016.

[LR07] S. Leonardi and D. Raz. Approximating total flow time on parallel ma-
chines. Journal of Computer and System Sciences, 73(6):875 – 891, 2007.

[LSS03] X. Lu, R. A. Sitters, and L. Stougie. A class of on-line scheduling
algorithms to minimize total completion time. Operation Research Letters,
31:232–236, 2003.

[LST16] G. Lucarelli, A. Srivastav, and D. Trystram. From preemptive to non-
preemptive scheduling using rejections. In Proceedings of the Interna-
tional Conference on Computing and Combinatorics, pages 510–519,
2016.

122



Bibliography

[LSV08] A. Legrand, A. Su, and F. Vivien. Minimizing the stretch when scheduling
flows of divisible requests. Journal of Scheduling, 11:381–404, 2008.

[LT10a] T. Lust and J. Teghem. The multiobjective traveling salesman problem: A
survey and a new approach. Advances in Multi-Objective Nature Inspired
Computing, pages 119–141, 2010.

[LT10b] T. Lust and J. Teghem. Two-phase Pareto local search for the biobjective
traveling salesman problem. Journal of Heuristics, 16:475–510, 2010.

[MF97] P. Merz and B. Freisleben. Genetic local search for the TSP: new results.
In Proceedings of the IEEE Conference on Evolutionary Computation,
pages 159–164, 1997.

[MF00] P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms, and
greedy operators for graph bipartitioning. Journal on Evolutionary Com-
putation, 8:61–91, 2000.

[MG96] B. L. Miller and D. E. Goldberg. Genetic algorithms, selection schemes,
and the varying effects of noise. Journal on Evolutionary Computation,
4:113–131, 1996.

[MH97] N. Mladenovica and P. Hansen. Variable neighborhood search. Computers
and Operations Research, 24:1097–1100, 1997.

[Mie99] K. Miettinen. Nonlinear Multiobjective optimization. Springer US, 1999.

[Mit98] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

[MPS13] B. Moseley, K. Pruhs, and C. Stein. The complexity of scheduling for p-
norms of flow and stretch. In Proceedings of the International conference
on Integer Programming and Combinatorial Optimization, pages 278–289,
2013.

[MRSG99] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E. Gehrke. Online
scheduling to minimize average stretch. In Proceedings of the Annual
Symposium on Foundations of Computer Science, pages 433–443, 1999.

[MS16] O. Maler and A. Srivastav. Double archive Pareto local search. In Pro-
ceedings of the International Symposium on Computational Intelligence,
page To appear, 2016.

[Ngu13] K.T. Nguyen. Lagrangian duality in online scheduling with resource
augmentation and speed scaling. In Proceedings of the Annual European
Symposium, pages 755–766, 2013.

[NK13] Y. Nagata and S. Kobayashi. A powerful genetic algorithm using edge as-
sembly crossover for the traveling salesman problem. INFORMS Journal
on Computing, 25:346–363, 2013.

[NS04] N.Megow and A. S. Schulz. On-line scheduling to minimize average
completion time revisited. Operations Research Letters, 32:485–490,
2004.

123



Bibliography

[OKK03] I. Ono, H. Kita, and S. Kobayashi. A real-coded genetic algorithm using
the unimodal normal distribution crossover. Advances in Evolutionary
Computing: Theory and Applications, pages 213–237, 2003.

[PCS04] L. Paquete, M. Chiarandini, and T. Stützle. Pareto local optimum sets
in the biobjective traveling salesman problem: An experimental study.
Metaheuristics for Multiobjective Optimisation, pages 177–199, 2004.

[PS06] L. Paquete and T. Stützle. Stochastic local search algorithms for mul-
tiobjective combinatorial optimization: Methods and analysis. IRIDIA-
Technical Report, Université de Bruxelles, 2006.

[PSS07] L. Paquete, T. Schiavinotto, and T. Stützle. On local optima in multiobjec-
tive combinatorial optimization problems. Annals of Operations Research,
156:83–96, 2007.

[PSTW97] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical
scheduling via resource augmentation. In Proceedings of the Annual ACM
Symposium on Theory of Computing, pages 140–149, 1997.

[PVdV70] C.N. Potts and S. Van de Velde. Dynasearch: Iterative local. Technical
Report LPOM-9511, Faculty of Mechanical Engineering, University of
Twente, Enschede, 49:291–307, 1970.

[PY00] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-
offs and optimal access of web sources. In Proceedings of the Annual
Symposium on Foundations of Computer Science, page 86, 2000.

[SBÇ12] E. Saule, D. Bozdag, and Ü. V. Çatalyürek. Optimizing the stretch of
independent tasks on a cluster: From sequential tasks to moldable tasks.
Journal of Parallel and Distributed Computing, 2012.

[Sch85] J. D. Schaffer. Multiple objective optimization with vector evaluated
genetic algorithms. In Proceedings of the International Conference on
Genetic Algorithms, pages 93–100, 1985.

[SD94] N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated
sorting in genetic algorithms. Journal on Evolutionary Computation,
2:221–248, 1994.

[Ser94] P. Serafini. Simulated annealing for multi objective optimization prob-
lems. In Proceedings of the International Conference on Multiple Criteria
Decision Making, pages 283–292, 1994.

[Spe98] W. M Spears. The Role of Mutation and Recombination in Evolutionary
Algorithms. Ph.D Thesis, George Mason University, 1998.

[TL13] J. Tao and T. Liu. WSPT’s competitive performance for minimizing the
total weighted flow time: From single to parallel machines. Mathematical
Problems in Engineering, 2013.

124



Bibliography

[TYH99] S. Tsutsui, M. Yamamura, and T. Higuchi. Multi-parent recombination
with simplex crossover in real coded genetic algorithms. In Proceedings of
the International Conference on Genetic and Evolutionary Computation,
pages 657–664, 1999.

[UAB+91] N. L. J. Ulder, E. H. L. Aarts, H. J. Bandelt, P. J. M. Van Laarhoven,
and E. Pesch. Genetic local search algorithms for the traveling salesman
problem. In Proceedings of International Conference on Parallel Problem
Solving from Nature, pages 109–116, 1991.

[UTF95] B. Ulungu, J. Teghem, and P. Fortemps. Heuristic for multi-objective
combinatorial optimization problems by simulated annealing. MCDM:
Theory and Applications, pages 229–238, 1995.

[VMC95] H. Michael Voigt, H. Mühlenbein, and D. Cvetkovic. Fuzzy recombination
for the breeder genetic algorithm. In Proceedings of the International
Conference on Genetic Algorithms, pages 104–113, 1995.

[WS11] D. P. Williamson and D. B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[ZBT07] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator
revisited: On the design of Pareto-compliant indicators via weighted inte-
gration. In Proceedings of the International Conference on Evolutionary
Multi-Criterion Optimization, pages 862–876, 2007.

[ZLT01] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm. TIK-ETH, Technical Report, 103, 2001.

[ZT98] E. Zitzler and L. Thiele. An evolutionary algorithm for multi-objective
optimization: The strength pareto approach. ETH, Technical Report, 43,
1998.

[ZT99] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a com-
parative case study and the strength Pareto approach. IEEE Transactions
on Evolutionary Computation, 3:257–271, 1999.

[ZTL+03] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.
Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Transactions on Evolutionary Computation, 7:117–132,
2003.

125


	Introduction
	Our Contributions

	Multi-Objective Optimization
	Formalization
	Bounds on the Pareto front
	Ideal point

	Solving Multi-objective optimization problem
	Quality of Approximate Pareto front


	ON MULTI-OBJECTIVE OPTIMIZATION
	Multi-objective Optimizers
	Local Search for Single-Objective Optimization
	Local Search for Multi-Objective Optimization
	Evolutionary Algorithms for Single-Objective Optimization
	Evolutionary Algorithms for Multi-Objective Optimization

	Double Archive Pareto Local Search
	Pareto Local Search Algorithm
	Queued Pareto Local Search Algorithm
	Double Archive Pareto Local Search Algorithm
	Experimental Results
	Conclusion and Future work


	ON NON-PREEMPTIVE SCHEDULING
	Introduction to Scheduling
	Preliminaries
	Resource Augmentation
	Related Works
	Results without resource augmentation
	Results with resource augmentation

	Our Results

	Scheduling to Minimize Max-Stretch On a single machine
	Introduction
	Problem Definition
	Lower Bounds on Competitive Ratios
	The Algorithm
	Analysis for Max-stretch
	Some definition and properties related to WDA
	Defining Optimal Schedule and its relation to WDA
	Consider a scenario where py pz
	Consider a scenario where pz < py (1 + ) pz
	Proving the bound when (1+) pz < py

	Concluding remarks

	Scheduling with rejection to minimize stretch and flow time
	Introduction
	Speed augmentation v/s Rejection model
	Structure and Properties of SRPT and an Intermediate Schedule
	The Rejection Model
	Conclusion

	Online Scheduling to Minimize Weighted flow time on unrelated machines
	Introduction
	Mathematical Programming and Duality
	Generalized Resource Augmentation
	Our approach

	Problem Definition and Notations
	Lower Bound
	Scheduling to Minimize Average Weighted flow time
	Linear Programming Formulation
	Algorithm and Dual Variables
	Analysis

	Conclusion

	Scheduling to Minimized Weighted k-norms of Flow Time on Unrelated Machines
	Introduction
	Problem Definition and Notations
	Linear Programming Formulation
	Algorithm and Dual Variables
	Analysis


	Conclusion


