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Introduction

Sub-Finslerian geometry is a generalization of both sub-Riemannian and
Finslerian geometry. To define such a structure you need to fix a connected
manifold M, a distribution A on M and a norm on A. An admissible curve
for such a structure is, as in sub-Riemannian geometry, an absolutely contin-
uous curve almost everywhere tangent to the distribution and its length is,
as in Finsler geometry, the integral of the norm of its speed. Under a good
condition of non integrability of A any two points of M are connected by an
admissible curve and the distance between these two points is the infimum
of the lengths of the admissible curves joining the two points.

From the eighties, the mathematical activity around sub-Riemannian ge-
ometry is very important and increasing. The list of publications is very large
and a survey is not the object of this thesis. Let focus on some publications
that motivated the same kind of work in sub-Riemannian geometry as the
one we are presenting here for sub-Finslerian metrics.

At the end of the eighties, G. Ben Arous and R. Léandre published a series
of articles (see [9, 17, 18, 8]) with new results on the asymptotics of the heat
kernel in sub-Riemannian geometry on the model of the one of Mol¢anov [19]
in Riemannian geometry. These results, giving information outside the cut
locus in absence of abnormal extremals, motivated several works on the local
synthesis of sub-Riemannian structures in the contact case (see [2, 15, 4])and
the Martinet case (see [11, 10]) in dimension three and the quasi-contact case
(see [14]) in dimension four.

In this thesis, we make the same work in the sub-Finslerian context, when
the norm is a maximum norm, in dimension two and three. The local optimal
synthesis is investigated, with a focus on the evaluation of the first conjugate
locus and of the cut locus.

In the case of the dimension two, the notion of distribution is larger than
the classic one: we define it locally by the data of two vector fields, that
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can become parallel along a submanifold of M. The study we produce here
of such structures uses techniques developed in [12] to define objects that
are very useful to analyze the dynamics, but also techniques developed in
2, 15, 4] in the sub-Riemannian context to compute jets of the extremals
with large initial conditions.

This thesis is organized in three parts. The first part contains definitions
and theorems in geometry and control which are used throughout the thesis.
It also present results that are commune to the two cases treated in the
following parts. The second part deals with the local optimal synthesis in
dimension 2: we construct a normal form and describe the generic local
synthesis. The third part concerns the dimension 3 when the distribution is
contact: we build a normal form and describe the local synthesis.

In chapter 1, in section 1.1 and 1.2 we define the notion of sub-Finslerian
structure and present the case of maximum norm we treat in this manuscript.
In section 1.3, we recall classical results about controllability, existence of
local minimizers, and the Pontryagin Maximum Principle which is a necessary
condition theorem on curves to be optimal, that is to realize the distance.
In the same section, we also present the notion of switching and the tools
to study it, in particular switching functions and their properties, and the
notion of singular control. In section 1.4 we recall the notion of genericity,
present a list of generic properties in dimension 2 and construct a normal
form in the two cases we are studying : the generic case in dimension 2 and
the contact case in dimension 3, generic in a weaker sense.

In chapter 2, we study the local optimal synthesis in dimension 2. It may
look quite simple but the zoology is quite rich. In section 2.1 we present
the nilpotent cases. They play the role of model of the dynamics, as do the
euclidean case in Riemannian geometry. In section 2.2 we describe the effect
on the invariants of the choice of the vector fields used to define the control
system. For exampel the effect of choosing —G instead of G;. In sections 2.3
to 2.6, we describe the synthesis in different cases appearing in the normal
form. Conditions on the invariants are given for the existence of a local cut
locus.

In chapter 3, we study the local optimal synthesis in dimension 3 when the
distribution is contact. In section 3.1, we study the nilpotent case. This last
one was partially studied in the article [13]. Here we define and describe the
first conjugate locus, and we describe the Maxwell set and the cut locus. The
cut time and the Maxwell time in the nilpotent case give a good estimation of
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the cut time in the generic cases for the extremals with large initial condition.
In section 3.2 we describe the conjugate and the cut loci in the generic case
(in a restricted sense with respect to the one in the study of the dimension
2). In section 3.3 we describe the synthesis corresponding to extremals that
switch several times on only one control, and, when it happens, the cut locus
generated by these extremals.






Chapter 1

Sub-Finslerian Structures

In this chapter, we define the structures we are going to study with both
differential and control points of view in sections 1.1 and 1.2, we recall Chow-
Rashevsky theorem and Filippov theorem in subsections 1.3.1 and 1.3.2. In
subsection 1.3.3 we give the formulation of Pontryagin Maximum Principal,
an important tool. In subsections 1.3.4 to 1.3.7 we discuss switching and give
first necessary conditions to the existence of singular curves. In section 1.4
we recall Thom transversality theorem and use it to construct normal forms

in dimension 2 and 3.

1.1 The Point of View of Differential Geom-
etry

1.1.1 The constant rank case

In general, the data of a sub-Finsler structure is the data of a triplet (M, A, )
where M is a manifold, A is a distribution on M, that is a sub-bundle of
TM, and p is a norm on A.

Once defined such a structure, one can define admissible curves as abso-
lutely continuous curves such that 4(t) € A, a.e.

For such a curve defined on [0, 7], we define its length:

13



14 CHAPTER 1. SUB-FINSLERIAN STRUCTURES

If any two points of M are linked by an admissible curve, that is if the
structure is controllable, we can define a distance on M by

d(q,q") = inf{l(v) | v admissible,v(0) = q,v(T) = ¢'}

1.1.2 A more general definition

It happens that it may be natural to consider dynamical systems where A is
no more a sub-bundle of constant rank but is a more general structure.

For example, the Grushin structure on R? where A is defined as
span{%, x%} has such property.

One way to define geometrically such a structure is the following: a sub-
Finslerian structure is now defined by (M, E, m, f, u) where M is a manifold,
m: FE — M is a vector bundle, f : E — T'M is a morphism of vector bundle
(in particular if v € E, then f(v) € T,M) and p is a norm (as defined below)
on E. In general, one add the assumption that the map f,, induced by f
on I'(E) by f.(0) = f oo, is one-to-one from I'(E) to Vec(M). We denote
Ay = f(E,). In this context, a curve is said admissible if §(t) € A, for
a.e. t. For v e Ay, p(v) == inf{u(X)|X € E,, f(X) = v}. The definitions of
length and distance are unchanged.

The dimension of the fiber of E is called rank of the structure.

Definition 1 (Maximum norm). In R" a maximum norm is a norm such
that exists a linear coordinate system (xy,--- ,2,) s.t

(21, -+, 2)| = max{|z;| i < n}

In the sub-Finslerian context, we say that the norm y is a maximum norm

if Vg € M exists a linear coordinate system (v;,--- ,v,) on E, (or A,) such
that VX = (vy, -+ ,v,) € E, then p(X) = max;—q ... o{|vi]}.

1.1.3 The Problems we are considering in this thesis

In this thesis, we studied locally two class of SF structures defined with a

maximuim norm:
1. SF structure of rank 2 on 2d manifolds,

2. SF structure of rank 2 on 3d manifolds for contact distributions.
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In the first case, the distribution may have non constant rank, if the map f
is not one-to-one even if f, is one-to-one.

In the second case, we assume that f is one-to-one and moreover we
assume that A, which is a sub-bundle, satisfies [A, A] = T M locally.

In both cases, since we are interested in the local study of such structures,
we may assume that M = R" (n=2 or 3) or even a neighborhood of 0 in R".

Moreover, we consider only maximum norms.

1.2 The Point of View of control

To define with a control point of view the previous structures, we proceed as
follows. Let give a manifold M (or R™ if we have only local) and (F}, -+, F})
be k vector fields defined on M. The control system we are going to consider
is

k
q(t) = Zui(t)Fi(q(t)), (1.1)

where the functions u; are measurable functions such that

'lrllaxk{|ui(t)|} <1, for ae. t. (1.2)

An admissible curve is defined by the fact that it is an absolutely con-
tinuous curve s.t 4(t) € span{Fi, ..., Fi.} for a.e. t. It is said to be optimal
between g and ¢’ if v(0) = ¢,v(T) = ¢’ and T is the infimum of time necessary
to join the two points under the constraint max{|u;|} < 1.

We define A, = span{F;(¢)} and the maximum norm associate to this
family on A, by

[ X|= 12f{iﬂllé?fk{|ui| | X = ;uiE(Q)}}

We define the length of an admissible curve by

() = / (0|t

and if |§(¢)| = 1 for a.e. t, () is equal to the time necessary to follow the
curve. If the system is controllable, we can define the distance as

d(q,q) = inf{l(v) |y admissible and v(0) = ¢,v(T) = ¢'}.
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1.3 General Properties

We introduce some general properties as the local controllabity by Chow-
Rashevsky theorem, the existence of minimizer by Filippov theorem, the
Pontryagin Maximum Principle theorem, conditions on switching controls
and the definition of switching functions and singular extremals.

Recall that in the following we are going to consider only the two cases:
the distributions of rank 2 in R?; the contact distributions in R? that is
subbundle A of TR? such that A? = TR?.

1.3.1 Controllability

For such systems the classical theorem concerning local controllablity is
Theorem 2 (Chow, Rashevsky, 1938). Let M be a smooth manifold and
X1, ..., Xon be m smooth vector fields on M. Assume that

Lie{ Xy, ..., Xn}(q) = T,M,Vq € M

then the control system
g=> uX(q)
i=1
18 locally controllable in any time at every point of M.

In the systems we are going to consider, A, or Ag or A®, is equal to T,M
hence the system is controllable.

1.3.2 Existence of Minimizers

Once answered the question of controllablity, it is natural to try to check that
the distance is realized that is that between two given points the distance is
realized by a minimizer. The classical result is Filippov theorem, which in
our context take the form

Theorem 3 (Filippov, in the SF context). Let M be a locally compact bracket
generating sub-Finslerian manifold. Since at each point q the unit ball B, C
T,M is conver and compact, and since for all R > 0 the set of points of
distance less or equal to R has compact closure, then for all ¢ € M exists a
manimazer realizing the distance:

d(q,q") = min{l(v),y admissible,v(0) = ¢q,y(T) = ¢'}.
See [1] for the proof.
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1.3.3 Pontryagin Maximum Principle

The PMP gives necessary conditions for a curve to be a minimizer. In our
context, it gives:

Theorem 4 (Pontryagin Maximum Principle). Consider the control system
(1.1) subject to (1.2). Let define the Hamiltonian as follows. For every
(g, N\, u, \g) € T*M x [—1,1]* x R_, the Hamiltonian is defined by

H(q,/\,u, )\0) =up < )\, Fl(Q) > Fuy < )\,FQ((]) > 4.

If q(.) : [0, T] = M is a time optimal trajectory corresponding to a control
u(.) : [0, T] — [=1,1]%, then there exist a never vanishing Lipschitz continu-
ous covector A(.) : t € [0,T] — A(t) € Ty(t)M and a constant Ny < 0 such
that for a.e t € [0,T], we have

3. At) = —%—Zl(q(t),)\(t),u(t),)\g), for a.e. t;

4. H(q(t), A(t),u(t), \o) = Har(q(t), A(t), Xo), for a.e. t; where

Hy(q(t), M), o) = maz{H (g, \,u,, \o) : u € [—1,1]*}

9. Ha(q(t), A(t), Ao) = 0.

Definition 5. The map A : [0,7] — Ty M is called covector. A trajectory
x(.) satisfying conditions 1, 2, 3, 4 and 5 is called an extremal (resp. a
couple (z(.), A(.)) is called an extremal pair). If (z(.), A(.)) satisfies moreover
Ao = 0 (resp. Ag < 0), then it is called an abnormal extremal (resp. a normal
extremal).

An extremal is said to be nontrivial if it does not correspond to controls
a.e vanishing. Notice that a trivial extremal is an abnormal extremal.

Remark 6. In all the situations we are going to study, except at isolated
points, A2 = T M. It is a well known fact that in this case there is no non
trivial abnormal extremal hence we can assume \g = —1.
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1.3.4 Switching

In this section we are interested to give properties of optimal trajectories and
to determine when the controls switch from +1 to —1 or viceversa and when
they may assume values in | — 1,+1[. Moreover, we would like to predict
which kind of switching can happen by using properties of the vector fields
F;. Along an extremal, if < A(t), F;(x(t)) >> 0 (resp.< 0) then u,;(t) =1
(resp. u;(t) = —1). It is a direct consequence of the PMP. This motivates
the introduction of the switching functions ¢;:

Definition 7. For an extremal triplet (g(.), A(.),u(.)), define the switching

functions
oi(t) =< A(t), Fi(q(t)) >,i=1,2.

Thanks to \y = —1, the ¢; functions satisfy

uy (t)p1(t) + uz(t)p2(t) =1, for a.e. t.

Remark 8. Notice that the ¢;(.) are at least Lipschitz continuous.

A direct consequence of the maximality condition is

Proposition 9. If ¢;(t) > 0 (resp. ¢;(t) < 0) then u;(t) =1 (resp. u;(t) =

-1).
If ¢;(t) = 0 and ¢;(t) > 0 (resp. ¢;(t) < 0) then ¢; changes sign at time
t and the control w; switches from —1 to +1 (resp. from +1 to —1).

Defining ¢3(t) =< A(t), [F1, F2](q(t)) > then one computes easily that

(1) = —us(t)p3(t) and  ¢o(t) = uy(t)ds(t), for ace. t.

1.3.5 Switching in R?

In the case R?, let define the following sets. We denote A 4 the set of points
where F} and F5 are parallel, A; the set of points where F} is parallel to
[F1, F5] and A, the set of points where F is parallel to [Fy, Fy).

Outside A4, one can define the functions f; and f5 by

[F1, Fo] = foaFy — [ilo.
Then, outside Ay, at a time ¢ where ¢;(t) = 0 we get

él(t) = —ug(t)ps(t) = ua(t) fr(q(t))d2(q(t))
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and if g(t) ¢ Ay then fi(q(t)) # 0 and the sign of ¢ (t) is given by the sign
of fi(q(t)). And at time where ¢,(t) = 0 then the sign of ¢s(t) is given by
the sign of f(q(t)). Hence, outside A4 U A; U Ay, the signs of the functions
f1 and fy determine the possible switches of the control functions.

1.3.6 Switching in R?

In the case of R?, the hypothesis that we are considering the contact case
allows to claim that (Fy, Fy, [F, Fy]) form a frame of TR? at each point.
Hence, if we denote F3 = [Fy, Fy], Fy = [F, F3], and F5 = [F3, F3] then we
can define the six functions f;;, 1 =1,2, j = 1,2, 3, by

Fy = fnFy + faoFs + fi3Fs, Fys = fs1F + fsoFs + fo3F3.

and define ¢4 =< A\, Fy > and ¢5 =< A, F5 >. Then one computes easily
that

¢3 = ur(fu 1 + faoda + fazds) + ua(fs1d1 + frado + fo303).

1.3.7 Singular extremals

Definition 10. A nontrivial extremal trajectory ¢(.) is said to be u;-singular
if ¢;(.) = 0 along it.

Let us introduce definitions to describe different types of controls

Definition 11. We call bang an extremal trajectory corresponding to con-
stant controls with value 1 or —1 and bang-bang an extremal which is a finite
concatenation of bangs.

A time t is said to be a switching time if v is not bang in any neighborhood
of t. Similarly, ¢ is said to be a u;-switching time if u; is not constant in any
neighborhood of ¢.

Remark 12. Along a u;-singular arc ¢; = 0 which implies gzﬁl =0 and ¢35 = 0.
In R? this implies that fi(q(t)) = 0 or ¢(t) € A4 hence that ¢(t) €
Ay UA,;.
In R3, for example for a wu;-singular, along which ¢, = 1, this implies
that
0 = ur(q(t)) fa2(q(t)) + f52(q(t)).

Hence on a domain where |fs2| > | f42|, no u;-singular can run.
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Proposition 13. In R2, under the generic assumption that A, Ay and A,
are submanifolds traversal by pair (see section 1.4) then

1. The support of a u;-singular trajectory is always contained in the set

A;.

2. At each point of an arc of Ay, if G1(q(t)) and Go(q(t)) point on the
same side of Ay where fy > 0, then a uy-singular extremal can run on
Ay. If Gi(q(t)) and Ga(q(t)) point on opposite side or if Gy point on
the side of Ay where fi < 0 then no uy-singular can run on it.

3. At each point of an arc of Ag, if G1(q(t)) and —G2(q(t)) point on the
same side of Ay where fo > 0, then a ug-singular extremal can run on
As. If G1(q(t)) and —Gy(q(t)) point on opposite side or if Gy point on
the side of Ay where fo < 0 then no us-singular can run on it.

4. Let consider a u;-singular q(.) satisfying 2 or 3. If it does not intersect
Ay and if at each time G1(q(t)) and Go(q(t)) are not tangent to A;
then q(.) is a local minimizer that is at each time t exists € such that
q(.) realizes the SF-distance between q(t1) and q(ty) for any t1 and ty
in |t —et+ el

Proof. See [6].

Definition 14. If a connected part of A; (resp. Aj) satisfies the point 2
(resp. point 3) of Proposition 13 at each point, then it is called a turnpike.
If it does not at each point, it is called an anti-turnpike (see [12]).

Remark 15. Along a u;-singular extremal the control u; is completely deter-
mined by the fact that the dynamics should be tangent to A;.

1.4 Normal forms in R? and R?

In this section we give generic properties of sub-Finslerian structures by
Thom Transversality Theorem and some of its corollaries, and a normal form
in dimension 2 and dimension 3.
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1.4.1 Thom Transversality Theorem

In the following, and in particular in dimension 2, we are going to use deeply
the following theorem in order to describe generic properties of couples of
vector fields. In the following one should think of M as R? or R?, N as the
set of couple of vectors on R? or R3?, C*°(M, N) as the set of couple of vector
fields on R? or R?, and J*(M, N) the set of k-jets of couple of vector fields.

Theorem 16 (Thom Transversality Theorem, [16], Page 82). Let M, N be
smooth manifolds and k > 1 an integer. If Syi,---,S, are smooth submani-
folds of J*(M, N) then the set

{feCM,N): J*fthS; fori=1,2,--- 7},
is residual in the C°°-Whitney topology.

Corollary 17. Assume that codim S; > dim M fori=1,--- ,r and k > 1.
Then the set

{f €C(M,N): J*f(M)NS; =0 fori=1,---,r},
is residual in the C°°-Whitney topology.

Corollary 18. For every f in the residual set defined in Theorem 16,
the inverse images S; := (J*f)~1(S;) is a smooth submanifold of M and
codim S; = codim S; fori=1,---,r.

Remark 19. Let ¢ be a diffeomorphism of M and ¢ be a diffeomorphism of
N. The map
o { C>*(M,N) — C*(M,N)
oo f — pofoo¢
induces a diffeomorphism o7, ; of J¥(M, N) which sends submanifolds of
JE(M, N) on submanifolds of J*(M, N). Moreover, f is in the residual set
defined in Theorem 16, if and only if o, »(f) is in the residual set

{g€ C*(M,N): J*g ol ,(S;) fori=1,--- r}.

This remark is important to facilitate the presentation of the proofs of
the generic properties given in the next section.

Definition 20. In the following, we will say that a property of maps is
generic if it is true on a residual set defined as in Thom’s theorem.
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1.4.2 Generic properties in R?

In this part, since we are interested in local properties, we consider control
systems in a neighborhood of 0 in R? of the type

¢ = u1F1(q) + uaFi(q) (1.3)

where F] and F, are smooth vector fields and u; and uy are the control
functions satisfying the following constraints

lup| < 1 and |ug| < 1. (1.4)

As discussed before, the controls often take values 41 hence it is natural
to introduce the vector fields G; = F; + F, and Gy = F} — F.

Now we give a list of generic properties for couples of vector fields on
2d-manifolds. We list ten generic properties, these properties depending on
the position of the velocity vectors (G; and G5 and some properties of these
vectors. We can locally consider a couple of vector fields as the data of a
map as the following

f,{ UcCcR? — R?xR?
' (z,y) = (91(2,9),92(z,9), (g3(,9), ga(, )

and we define a k-jet of such a map as the data of a map at the initial point
(20, Yo) as the following

ve [ UCR? — Ryfz,y*
Jf'{ (z,y) = (Pu(z,y),..., Palz,y))

where P; (1 < ¢ < 4) is the Taylor series of order k of a functions g; at

(0, Yo)-
Now we describe submanifolds of Ry[z,y]* in coordinates, by writing:

k k—i

Py(x,y) = Z Zpljivjxiyj for h=1,...,4.

i=0 j=0
In the following the g; are the coordinates of the G; in a local coordinate
system.

Here we give the generic properties of vector fields (F, Fy) on M
Generic property 1 (GP1): The set of points where Gy = Gy = 0 is empty,
for generic couples of vector fields (Fy, Fy) on M.
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Indeed in coordinates such points correspond to jets with p; o0 = p20,0 =
P3.00 = Paoo = 0 which form a submanifold of Rg[z,y]* of codimension 4.

Hence, by corollary 17, the property is proven.

Thanks to remark 19, up to a permutation between +F) and +F,, we
will assume in the following that G; = (1,0) locally and hence assume that
g1 = 1 and g = 0 hence that satisfy pi oo = 1 and p1,;; = D200 = P24 =0
when ¢ £ 0 or 7 # 0. As a consequence we are reduced to apply Thom’s
theorem and its corollaries for the situation

(UCR’ » R’
f{ (.T},y) = (gg(x,y),g4(x,y))

and a k-jet at (zg,yo) of such a map as the data of a map

re [ UCR? — Rz, y]?
Jf-{ (z,y) — (Ps(z,y), Pz, y))

where P; (i = 3,4) is the Taylor series of order k of a g; at (xq, yo)-

Generic property 2 (GP2): The set of points where Gy = 0 is a discrete set.
The same holds for the set where Fy = 0 or the set where Fy, =0, for generic
couples of vector fields (Fy, Fy) on M.

In fact these points correspond to jets with psoo = psoo = 0 which is a
submanifold of Ry[z, y]? of codimension 2. Hence, thanks to corollary 18, the
set of points where Gy = 0 is a discrete set and it is generically a submanifold
of M of codimension 2 .

Generic property 8 (GP3): the set of points Ay where Gy is parallel to Gy
is an tmbedded submanifold of codimension 1, for generic couples of vector
fields (Fy, Fy) on M.

Indeed, assuming G; = (1,0), A4 is exactly the set of points where
paoo = 0. It is an imbedded submanifold of Ry[z,y]? of codimension 1.
Thanks to (GP1) and to corollary 18, we can conclude that generically A4
is an imbedded submanifold of M of codimension 1.

Generic property 4 (GP4): the set Ay of points where Fy is parallel to
[F1, Fy] is an imbedded submanifold of codimension 1. The same holds for
Ay where Fy is parallel to the bracket [Fy, Fy], for generic couples of vector
fields (Fy, F3) on M.

In order to prove (GP4), we will compute the bracket [Fy, Fy] and we
will describe Ay in coordinates. [F, Fy| = —%[Gl, G] hence has coordinates
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—%pg,w and —%p471,0 and F} has coordinates %(1 + p300) and %p4,070. Hence
A is the set of points where

1 1
—35P3.10 5(L+p300) | 0

1 1 = U
—35DP4,1,0 5D4,0,0

The differential of this determinant is not degenerate hence the set of
Ry [z, y]? satisfying this equality is clearly an imbedded submanifold of codi-
mension 1. Hence generically A is the preimage of an immersed submanifold
of codimension 1 which, thanks to corollary 18, permits to conclude that A,

is an immersed submanifold of codimension 1.

Generic property 5 (GP5): for generic couples of vector fields (Fy, F») on M,
the sets (Aa N A1), (AaNAy) and (A N As) are discrete.

Assuming G; = (1,0), the set (A; N Ag) \ Ay is the set of points where
(Fy, F3) is free and [Fy, F»] = 0 that is

Pa,0,0 # 0,
p3io0 = 0
paio = 0.

This set is an immersed submanifold of codimension 2 of Ry[z, y|> hence, by
corollary 18, the set (A; N Ay) \ A, is generically a discrete set.

The set (Ax N Ay) \ Ay is a set of points where F» = 0. By (GP2) it is
a discrete set. The same holds for (A4 N A;) \ Ay which is a set of points
where F; = 0.

The set As N A; N Ay is the union of the subset where F; # 0 and
Fy )| F5 ) [F1, F] and a subset where F; = 0. The second is discrete. Since
G1 = (1,0), the first set is also defined by G J/ G2 /) [G1, G2] that is pso =0
and pg10 = 0. Hence, thanks to corollary 18, the set where 7 # 0 and
Fy /| Fy )] [F1, F5] is a submanifold of codimension 2 that is a discrete set.

Generic property 6 (GP6): for generic couples of vector fields (Fy, Fy) on M,
the set of points where Gy || G || [G1, Ga] | [G1,[G1, Gs]] is empty.

The set where Gy )/ Gy ) [G1,Gs) | |G1, |Gy, Gy]] is such that pyoo =
P10 = Pago = 0. Hence, thanks to corollary 18, it is a submanifold of
codimension 3 that is an empty set.

Generic property 7 (GP7): for generic couples of vector fields (Fy, Fy) on M,
at the points ¢ where G1(q) /| G2(q) /) [G1, G2](q) one gets G1(q) € T,A 4.
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The property G1(q) J G2(q) /) [G1, G2](q) implies that py oo = ps1o = 0. If
P11 7 0 then Ay can be written ps 1y = o(x) that is A4 is tangent to the x
axis and G € T,A 4. Hence the set of points where G1(q) / G2(q) J/ [G1, G2](q)
and G1(q) ¢ T,A corresponds to jets with psoo = pa1,0 = pao1 = 0 which
is a submanifold of codimension 3. Hence generically, at the points ¢ where
Gi(q) /) G2(q) J [G1, G2](q), one has G1(q) € T,A 4.

One can even detail more the generic properties: using the Thom
transversality theorem and its corollaries, we can prove that generically

Generic property 8 (GP8): along A1\ (AyUA L), the points where Gy or Gy
is tangent to Ay are isolated. The same holds true for Ag \ (A1 U Ay).

Generic property 9 (GP9): at points of (A1 N Ag) \ Aa, neither G1 nor Gy
are tangent to Ay or As.

Generic property 10 (GP10): along A\ (A1 U Ay), the set of points where
G1 =0 or Gy = 0 s discrete.

1.4.3 Normal form on 2D

We have used the generic properties established in the previous to show:

Theorem 21 (Normal form). For generic couples of vector fields (Fy, F») on
a 2d manifold M, up to an exchange between +F, and +F,, at each point
q of the manifold there exist a unique coordinate system (x,y) centered at q
such that one of the following normal form holds:

(NFl) Gi(z,y) = O,
Ga(z,y) = Oy + x(a10 + a2 + a1y + o(x,y))0r + x(b1g + baox + b1y +
o(x,y))0y, and ¢ ¢ Ay.

(NFQ) Gl(l’,y) = am,
Ga(z,y) = (a0 + arx + apy + o(r,y))0: + x(1 + (b + O(x,9)))9y,
with 0 < ag <1, and g € Ax\ Ay.

(NFB) Gl('xa y) = ama
Ga(z,y) = (a0 +0(1))3y + (bory + 52° + by + booy® +0(2?, 4*)) 9y, with
bor >0 and 0 <ag <1, and g € AaNA; NAy and Gi(q) € T,A 4.

Moreover, for (NF1), (NF2) one of the following subcases holds:



26 CHAPTER 1. SUB-FINSLERIAN STRUCTURES

(NF1,) (NFy) holds with ajg — big # 0 and ayo + big # 0. It corresponds to
q¢ ApUAUA,.

(NFy) (NFy) holds with ayg — byg = 0 and a9 + big # 0. It corresponds to
q c Al \ (AAUAQ)

(NFi.) (NFy) holds with aig — big # 0 and ayp + big = 0. It corresponds to
q E< AQ\(AAUAl).

(NFiy) (NFy) holds with ajg = big = 0. It corresponds to ¢ € (A1 N Ay) \ Ag.
(NFy,) (NFy) holds with 0 < ag < 1. It corresponds to ¢ € Aa\ (A1 U Ay).

(NFy) (NFy) holds with ag = 1. It corresponds to q € (Ax N Ag) \ Ay that is
to g € Ax\ Ay such that Fy(q) = 0.

Proof. see [6]

1.4.4 Normal form in dimension 3

Since we consider only points ¢ where the distribution is contact then G,
G and [G1,Go] = —2[Fy, Fy] form a basis of T,R?. Hence, we can build a
coordinate system centered at ¢, by the following way. Let denote e'* the
flow at time t of a vector field X. We can define

= . (:C, n Z) s exGleyGQeZ[GhGﬂq’

which to (x,y, z) associates the point reached by starting at ¢ and following
[G1, G| during time z, then Go during time y and finally G; during time z.
The map = is smooth and satisfies

o= 0= 0=
%(aj,y, 2) =Gy, —(0,y,2) =Gy, and 5%

ay (Oa O7Z) = [G17G2]'

As a consequence = is not degenerate at (0,0, 0) and defines a coordinate sys-
tem in a neighborhood of ¢q. Such coordinates are called normal coordinates
and G and G, satisfy

Gi(z,y,2) = O,
Ga(z,y,2) = we(r,y,2)0; + (1 4+ xey(n,y,2)))0, + (1 + €,(z,y, 2))0.
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where €,, €,, €, are smooth functions satisfying €,(0,0,2) = €,(0,0,z) =
€.(0,0,2) = 0. Hence we can give the following expressions of G

GZ(xa Y, Z) = (a?OOx2 + aiiory + xe:ﬂ ($, Y, Z))ax
+(1 + bagor® + brozy + 20y(7,y,2))0,
+<ZL' + 02003172 + C1107Y + 6300$3

+C107%Y + Cr207y® + 20, (z,y,2))0,

where 0,, 0, and 6, are smooth functions with Taylor series of respective
order 1, 1,2 is null with x and y of order 1 and z of order 2 and 6,(0,0, z) =
6,(0,0,z) =6.(0,0,2) = 0.

It is well known that for a contact distribution there is no abnormal.

1.5 Optimal syntheses

Several considerations are common to the two cases.

First, the importance of the nilpotent approximation. In both cases, the
notions associated with the nilpotent approximation, as the orders of the
coordinates or privileged coordinates, are fundamental to drive the compu-
tations correctly.

Second, the fact that |¢;| < |¢s| implies that, if we fix a constant K, the
extremals with |¢3| < K cannot see the two controls switching in short time.
As a consequence, we observe five types of extremals: the ones whose both
controls switch; the ones that do not switch; the ones that switch only once,
the ones that are singular; the ones such that one control switches several
times. The two last one correspond to the existence of singular extremals in
the nilpotent approximation.

Third, to study the extremals with both controls switching, and the cor-
responding cut points, the technique is quite similar in both dimensions. In
this case, one coordinate (y or z later) has order more than one and the
dual coordinate A, or A, of the covector is large. The technique consists in
both cases in computing jets with respect to the inverse r of this coordinate.
Finally, we are able to write an exponential map which is smooth by part.
And to give a description of the conjugate locus, the front, and the cut locus.






Chapter 2

Optimal Synthesis in R?

In this section, we study the local geometry of Finslerian and sub-Finslerian
structures associated to the maximum norm in dimension 2: short extremals,
cut locus, generalized conjugate locus, switching locus, small spheres.

For this purpose we use ideas developed by Ugo Boscain, Thomas Cham-
brion and Grégoire Charlot in [12] where the study of SF-structures defined
with a maximum norm is started. As we will see, even if it looks apriori
quite simple, it happens that the zoology is quite rich even considering only
generic cases. We establish some properties of the minimizing trajectories
and we present the synthesis of the nilpotent case. We compute the jets
of the geodesics, the switching and conjugate times and the switching and
conjugate loci. We calculate the cut locus.

Of course, the general situation cannot be completely described since
singular cases may have very special behavior. For example in the case F} =
a% and F, = a% then any admissible trajectory with u; = 1 and fol ug(t)dt =0
joins optimally (0,0) to (1,0). Hence in the following, we will consider only
”generic” situations in the sense given in the Thom Transversality Theorem.
And we use deeply the normal form presented in the previous chapter.

2.1 Initial conditions and their parametriza-
tion

2.1.1 Different types of extremals

On proves easily that in the (NF}) case, then max(|\;(0)], |\, (0)]) = 1.
Hence, in this case, the set of initial conditions A is compact and, since the

29
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variations of the ¢; is bounded, extremals switching in short time or singular
extremals should have a ¢; null or close to zero. Which implies that only one
control may switch in short time.

In the (N Fy) and (N F3) cases, then [A\,(0)] = 1 and there is no condition
on \,. Hence the set of initial condition is not compact. This allows to
consider initial conditions with |\,|] >> 1 and hence will appear optimal

extremals along which the two controls are switching.
In the (N Fy,) and (NF3) cases, ¢1(0) = £% and ¢,(0) = 152, Hence, if

2
one considers a compact set of initial conditions, the corresponding extremals

do not switch in short time. And they are not singular. As a consequence,
to consider the extremals switching at least once, one should consider initial
conditions with |, (0)] >> 1.

In the (N Fyp) case, since ¢2(0) = 0 hence, even if one considers a compact
set of initial conditions, the corresponding extremals may switch in short
time.

2.1.2 Privileged coordinates and nilpotent approxima-
tion

In the computations, we use the notion of privileged coordinates and nilpo-
tent approximation. For the definition of these objects, we refer to [7]. The
coordinates we constructed in the normal form are always privileged coordi-
nates. What is important to understand here is that, using these notions, a
good notion of weight of the coordinates is introduced, giving informations
on the increasing of these coordinates with the times along extremals. And
that the expressions of extremals for the nilpotent approximation are very
good approximations of the true extremals of the true SF-metric.

In the (NF}) case, x and y have weight 1 and 0, and 0, have weight —1
as operators of derivation. In the (N F},) case = has weight 1 and y has weight
2, 0, has weight —1 and 0, have weight —2. In the (IVF'3) case, = has weight
1 and y has weight 3, 0, has weight —1 and 0, have weight —3.

In privileged coordinates, along an extremal, in the (NF}) case x and y
are O(t) (and may be not o(t)), in the (NFy) case x = O(t) and y = O(t?)
and in the (NF3) case z = O(t) and y = O(t3).

In the following, ok (z,y) will denote a function whose valuation at 0 has
order larger than k respectively to the weights of z and y. For example z”
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has always weight 7 and y® has weight 3 in the (N F}) case but 9 in the (N F3)
case.

With this notion of weights, we define the nilpotent approximation of our
normal forms in the three cases

(NFy) Gi(z,y) = O

Go(z,y) = 0y
(NFy)  Gi(z,y) = O,

Ga(z,y) = ap0y + x0y;
(NF3) Gi(z,y) = O,

Go(z,y) = ap0; + %xzﬁy;

which corresponds to an approximation to order -1. In the computation,
when computing developments with respect to the parameter ro = m,
that is for |A,(0)] >> 1, we need the approximation to order 0 for (N Fy,)
and (N F3), and the approximation to order 1 for (N Fy)

(NFy) Gi(z,y) = O,
Go(z,y) (ap + a102)0; + (1 + beox)0y;
(NFy) Gi(x,y) O,
Gy(z,y) (1 + arox + a1y + asx®)dy + (1 + baoz + b30$2)ay3
(NF3)  Gi(z,y) = O,
Gy(z,y) = (ap+ aipx)0, + (%2 + bo1y + b30x3> dy;

2.1.3 Parametrization of the initial conditions

In the case (NF}), in order to estimate the extremals with |, (0)| >> 1, we

proceed to the following change of coordinates and time: we denote r = /\—11/,
p = i—z and, if ¢ denote the time, we denote s = t)\, = f Then, since

A:(0) = %1 then p(0) = %7, and the other initial parameter is r, assumed
to be close to 0.

In the case (NF3), in order to estimate the extremals that switch, that
is with |A,(0)| >> 1, we proceed to the following change of coordinates and

time: we set r = sign()\y(()))\/;—, and set s = L.
Ayl "
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These changes of coordinates and time are motivated by the behavior of
the extremals in the nilpotent cases, the order chosen for s corresponding to
what appears for cut time in the nilpotent case.

2.2 Describing the optimal synthesis

2.2.1 Symbols of extremals

As we will see in the following, the local optimal curves will be finite concate-
nations of bang arcs and wu;-singular arcs. In order to facilitate the presenta-
tion, a bang arc following +G; will be symbolized by [[£G;]], a u;-singular
arc with control uy = 1 will be symbolized by [[S;"]], a u;-singular arc with
control us = —1 will be symbolized by [[S]]], and we will combined this
symbols in such a way that [[—G1, Ga, S5]| symbolizes the concatenation of
a bang arc following —G; with a bang arc following G5 and a us-singular arc
with control u; = 1.

2.2.2 Symmetries

We consider the effect of the change of role between +£F; and £F5, and their
effects on the values of the f;’s and on the parameters. In particular, these
changings imply changing G; and G5 and hence changing the coordinates x
and .

Let consider an example : Fy; = —F, and F, = F,. The SF structure
defined by (Fy, Fy) is exactly the same but the f;’s and G; are changed. One
easily checks that

[FlaFQ] = [—F1>F2] = _[F17F2] = —(f2F1 - lez) = f2F1 - (_fl)FZ

hence that f1 = —f1, fo = fo, G1 = =G5 and Gy = —G,.

Let us consider changes that replace GGy by =G and Gy by £G4. These
changes are interesting from a calculus point of view. Effectively, if we com-
puted the jet of a bang-bang extremals with symbol [[Gy, G3]] and of its
switching times, then we are able to get the other expressions for the bang-
bang extremals with symbols [[£G1, £G5]]. This avoids repetition. For ex-
ample, if one gets the expression of an extremal with symbol [[G1, G3]] as
function of the initial conditions, one gets the expression of an extremal
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with symbol [[—G1, G3]] by respecting the effect on the coordinates and the

invariants ag, aqg, etc. of the corresponding change of role of F; and F.
More details are given in [6].

2.3 (INF)) case

At points ¢ where (N F7) holds, one can compute that

1
f1($, y) = 5 ((alo - blo) + (2(@20 - 520) - b1o(a10 - bm))x + (an - bn)y
+(3(aso — bso) — bio(azo — bap) — (2099 — b%o)(alo - b1o))$2
+(2(ag1 — b21) — bii(aio — bio) — big(arr — bir))zy + (ar2 — bi2)y ) + 0a(z,y),
1
fo(x,y) = 5 ((a10 + b1o) + (2(ago0 + bao) — bro(aro + b1o))z + (a11 + b11)y
+(3(azo + bso) — bio(ag + bao) — (2bag — b3y) (@10 + bio))z?
+(2(ag1 + ba1) — by1(aio + bio) — bio(arr + bi1))xy + (a2 + bi2)y ) + 0a(w,y).

Hence, with respect to what have been proved upper, the only authorized
switches are

a1 — bl() —aig — blO ul-switch U,Q—SWitCh
>0 >0 —1—=+4+1|-1—+1
>0 <0 1 —=+1|+1—- -1
<0 >0 +1—=-1|-1—+1
<0 <0 +1—=-1|+1—= -1

Remark 22 (Generic invariants). Let remark that generically, in the (N F})
case, the base point ¢ is not in A4 and one of the following situation occurs

o |a| # [biol, ¢ ¢ A1 U Ay,
e aj9 — bjp =0 and a9 + bjp # 0, that is ¢ € Ay \ Ay and
® a5y — by # 0 and a;; — by # 0, and G and G5 are not tangent to
AI at q,

® ay—byy = 0 and azy—bsg # 0 and a3 — by # 0, and G is tangent
to A; at g,

® a5 —byy # 0 and a1 —byy = 0 and a2 —bio # 0, and G is tangent
to Ay at ¢,
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® (g +b10 =0 and 10 —b10 7& 0, that is qc AQ\Al and

® ao+ by # 0 and a1 + by # 0, and G and G4 are not tangent to
Ay at g,

® a3 +by = 0 and azg+ b3y # 0 and a; +by; # 0, and G is tangent
to As at ¢,

® ayy+by # 0and ayy+b11 = 0 and ajp+b1o # 0, and Gy is tangent
to A; at q,

® g = blO = 0, |a20| 7é |b20| and |CL11| 7& |l)11|7 and q < Al N Ag and Gl
and (G5 are neither tangent to GG; nor to Gs.

2.3.1 Synthesis in the first quadrant

One first remark for constructing the optimal synthesis is the following. Any
short extremal stays in one of the four quadrants delimited by the axis. This
property is a consequence of the fact that only one control can switch in short
time in this case. Then an extremal switching only on w; and with control
ug equal to 1 enters the domain {(z,y)|r > 0 and y < 0} and cannot leave
it.

Hence we just have to understand the synthesis in the first quadrant and
then obtain the rest of the synthesis by changing the roles of G; and —Gj,
and/or the roles of G; and —G5 in order to get it in the other quadrants.

In the first quadrant, only us can switch. In the following cases

e aig+bio # 0 (¢ ¢ Aa),

e aig+ byg = 0 and (agy + bag) (a1 + b11) > 0,

e a9+ bio =0 and (agy + be) = 0 and (asg + bso) (a1 + b11) > 0,
e a9+ b =0 and (a1 + b11) = 0 and (a2 + b12)(ag + byg) > 0,

then A, do not enter the quadrant. Hence f> has constant sign inside and
hence, depending on the sign of f, in the quadrant, one gets the switching
rule and only one switch of uy can occur and the possible symbols are [[G1]],
[[Gs]] and [[G, G4]] if fo > 0 and [[G4]], [[G2]] and [[G1, Gs]] if fo < 0. The
possible pictures are given in Figure 2.1.

In the other cases, Ay enter the quadrant. Then, depending on the fact
that G; or GGy is or not tangent to A,, depending on the fact that A, is or
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G2 G2

G1 G1
fo>0 fa <O

Figure 2.1: The syntheses when Ay does not enter the quadrant

is not a turnpike, we get one of the following symbols. If A, is a turnpike
then the possible symbols are [[G1]], [[G2]], [[S5,G1]], [[Sy,G2]] and there
is no local cut locus. If A, is not a turnpike then the possible symbols are
[[G1]], [[G2]], [[G2, G1]], [[G1,G2]] and there is a local cut locus, which has
the same equation as A, up to the order that determines the form of As.
The synthesis are presented in the Figures 2.2 and 2.3.

Go Go Go Ao
A
2 As L

G1 G1 G1
a0 + bgp < 0 and a1 +b1; >0 a0 + boop =0 and a11 + b11 > 0 a1 +b11 =0 and azg + bap < 0O
and ago +b3o <0 and a12 +b12 >0

Figure 2.2: The syntheses when A, is a turnpike

2.4 (NF,,) case

Recall that the normal form (N Fy,) gives
Gi(z,y) = 0s, Galz,y) = (ap + a1z + 01(2,y)) 0y + (& + bya® + o(x,)) 9y,

with 0 < ag < 1.
Such a point is neither in A; nor A,. Hence no singular extremal will
appear in the study of the local synthesis.
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G2 G2 G2 Cut locus
Cut locus
Cut locus
G1 G1 G1
a20 + b2p > 0 and aj; +b11 <0 az0 +b20 =0 and aj1 +b11 <0 a1 +b11 =0 and ago + b0 > 0
and azg 4+ b3zgp > 0 and a12 +b12 <0

Figure 2.3: The syntheses when A, enters the quadrant but is not a turnpike

As explained before, if we want to study extremals that switch in short
time, we need to consider ¢g large that is |\,| large.

The weight of the coordinates, together with the computation made in the
subriemannian context which are similar, motivates the change of coordinates
r= %, p = r\, and the change of time s = t/r.

With the new variables (z,y,p,r) and the new time s, the Hamiltonian
equations become

/

oH
= 1
T Ta)\x <x7y7p’ )7

OH
/
= —_ ]-
Yy Ta)\y ($,y7pa )7
OH OH
p/ - _T% (x,y,p7 l)—{—TP dy (x,y,p,l),
OH
/ 2
pu— 1 M
r T _ay (JC,%P’ )

Now, looking for the solutions as taylor series in rg, that is under the form

x(ro,s) = I1(8)7‘0+$2(S)T§+0(T3)» p(ro,s) = pl(s)ro+p2<5)r(2)+0(T8)7
y(ro,s) = wya(s)rg +us(s)rg +o(rg),  r(ro,s) = ro+7ras)rg + o(rg),

one finds the equations

lJl — U1§U2 + u1;u2 ap, x/2 — u1§u2 1071,

yé = %wla yi/’) = U1EU2 (bQOx% + 372)7

Py = —H57T, py = —“5%2(ap1 + 2by11),
rh, = 0,

Using these equations, we are able to compute the jets with respect to ry of
the four types of extremals: depending on the sign of p(0) = £1 and of r.
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For each of these types we can compute the functions x1, x2, y2, y3, P1, P2
and r9 = 0 of the variable s for the first bang. We can then compute the jets
of ¢; and ¢, for the first bang and look for the first switching time under the
form s; = s19 + s1170 and then repeat the procedure for the second bang and
so on. Finally, if we denote §, = p(0) and J, = sign(ry) then the controls
during the first bang are u; = ug = 6,. The first time of switch is

S1 = (Sr(l — (5ra0) — 5p(1 — (5,,a0)((5ra10 + b20 — 57~a0b20)7°0 + 0(7‘0)

and corresponds to ¢a(s;) = 0if §, = 1 or ¢1(s1) = 0if 6, = —1. The second
bang corresponds to u; = 9,0, and uy = —0,0, and the second switch is at

So = 0,(3 — 0,a9) — 6,((1 — 6,a0)(0ra10 + bag — Srapbag) + 4bag)ro + 0(r0)
where ¢1(s2) = 0if 6, = 1 and ¢o(s2) = 0 if 6, = —1. At this time

z(s2) = 0,(8, + ag)ro — 0-(0 + ag)(—dra1g + bag + 5r6lob20)7"(2) + 0(7"3),

y(sy) = 20,18 — 5p§(—a0a10 + 3byg + adbag )T 4 o(rd).

The third bang corresponds to u; = uy = —1if 6, =1 and to u; = uy =1
if §, = —1. The third switching time satisfies s3 = 0,(5 — d,a9) + O(ro) and
the corresponding time t3 is larger than the cut time as we will see.

Being a little careful, we are able to compute the cut locus. Details on
the techniques of computations are given in [6].

The upper part of the cut locus (y > 0) satisfies

2
Leut = _g(—aoalo + 3620 + agbgo)pQ —+ O(pz), Yeut = 2p2’
when the lower part satisfies

2
Teut = —g(—aoalo + 3by + agbzo)ﬂ2 + 0(02)7 Yeut = —2;02-

The synthesis is represented in the Figure 2.4

2.5 (NFy) case

Recall that the normal form (N Fy,) gives Gy (z,y) = 0., and

Go(z,y) = (1+Glox+a01y+a20$2+02($7 y))@x—l—(x+620w2+630:c3+03(x, Y))0y.
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Ay ’

1

| Cut locus

: Second switching locus

\\‘ Cut locus

\

Second's_witching locus

Figure 2.4: The optimal synthesis in the (N Fy,) case

In this case, the extremals with initial condition |A,(0)| >> 1 are the
limit when ag goes to 1 of the extremal presented in the case (NFy,). If
Ay(0) >> 1 then the symbol starts with [[G2, —G4]] or with [[-Gs, G;]] and
if —A,(0) >> 1 then the symbol starts with [[G1, —G>]] or with [[-G, G2]].

What is new in this limit case is that now an extremal can start by
following+G5 and the extremal having the previous symbols do not enter
the domain between the two integral curves of G; and (G5, or between the
integral curve of —G; and —G5. In [6], we put in evidence the invariants
that determine the synthesis in these domains and we can have moreover the
symbols

e [[G1,G,]] and [[-G1, —Gs]l,
e or [[G,G1]] and [[-Gy, —G1]],
o or [[SF,Gi]] and [[SF, Gs]] and [[Sy, —Gh]] and [[S5, —Gal,

e or [[G1,G3]] and [[Ge,G4]] and [[-Ga, —G1]] and [[—-G1, —G3]], and
there is a new branch of the cut locus.

The picture 2.5 illustrates the two last cases.
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Ay : Ay ;
+Cut locus +Cut locus
AN // o Go - / - G
& ," /Z Ao . 7’ —— Cut locus

\ \

\ \

1 Cut locus 1 Cut locus
\

Figure 2.5: Two different syntheses in the (N Fy,) case

2.6 (NFE3) case

In this case we use the same techniques as in case (N Fy,) and we find the
final result for the cut locus

bo1 + 4b30) P>+ o(p?),

et _<3<1+m>
VA et - (-

3&0

Yeut =

The cut locus appears to be a cusp whose tangent at the singular point is
the tangent to A4, see Figure 2.6.
For more details see [6]



,/ Cut locus
/ L Ag

/ Second switching locus

N

. “Second switching locus

Cut locus

Figure 2.6: The synthesis in the (N F3) case



Chapter 3

Optimal Synthesis in R’

In this section, we study the local synthesis of SF metrics for contact distri-
bution in R3. As seen before, we say that a property is generic for this class
of sub-Finslerian metrics if it is true on a residual set of such metrics for the
C>°-Whitney topology. Genericity is usually proven using Thom tranversal-
ity theorem. But, for this residual set of metrics, we are going to consider
the local geometry only at points in the complementary of a set included in
a finite union of codimension 1 submanifolds. For example, we consider only
contact points and generically the set of points where the distribution is not
contact is the Martinet surface which has codimension 1. We may also ask
that an invariant appearing in the normal form is not null, which happens
also outside a codimension 1 submanifold. All along our work we will assume
only a finite number of such assumptions.

As in the (NFy) case, two types of very different extremals should be
studied to describe all the optimal synthesis: the ones corresponding to the
unbounded part of the set of initial condition for which both controls can
switch and do switch; other ones, satisfying ¢3 and ¢; (i = 1 or 2) close to 0,
along which the control u; may switch several times in short time, the other
one being constant.

For the part of the synthesis corresponding to the non compact part, we
use the techniques developed in the subriemannian context by Agrachev et al
to compute jets of the extremals with respect to the parameter ry introduced
in the section 1.5.

For the part of the synthesis, we develop new techniques on switch-
ing functions in order to describe the extremals for which only one control
switches several times.

41
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3.1 Nilpotent case

As in sub-Riemannian geometry (see [7, 3]), the nilpotent approximation
plays an important role as "good estimation” of the real situation. The
nilpotent approximation at (0,0,0) of Gy, G2 given in the normal form is

. 1 - 0
GIZ 0 5 GQZ 1
0 x

It is a left invariant sub-Finslerian metric defined on the Heisenberg group
with the representation

(r,y,2)x (2,9, 2 )= (x + 2,y + v, 2+ 2"+ 2v).

We define the Hamiltonian for the nilpotent case and thus we get the differ-
ential equations in the non singular case.

The singular extremals are those corresponding to A\, = 0. There are
infinitely many. Effectively, any curve defined on the interval [0, 1] with
u; =1 and fol uy(t)dt = 0 reaches the point (3, 3, ) optimally.

By solving these Hamiltonian equations, we get the non singular ex-
tremals with A,(0) # 0. As in dimension 2 we are able to compute explicitly
the consecutive bang arcs and switching times. For example, along the fifth

bang of the extremals starting with speed GG, the controls satisfy u; = 1 and

us = —1 and we have
y(s) = =8r+sr, py(s) =py(0) =1, ¢als) = HG=2,
z(s) = 4r?,

One shows that any extremal with A,(0) # 0 is optimal until s = 8 or ¢t = 8r
and is no more optimal after. The behavior of the extremals in the nilpotent
case is illustrated in Figure 3.1.

Figure 3.2 shows the conjugate locus and three points of view of the part
of the sphere that is reached by non singular extremals.

Now let us concentrate again on the extremals. One can consider the
exponential map which to (r,«, s) where a € [—1,1], r > 0, s > 0 associates
the end point of the geodesic with initial condition A, = a, A\, = 1 and
A, = % for the time ¢ = rs. This map is smooth at points with —1 < a < 1,
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2<s<4

e e e e — - -y

0<s<?2

6<s<8

4<s<6

Figure 3.1: Evolution of the front at r fixed.
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$5i(pz,7) < 8 < Si11(ps, 1) for a certain i where s;(p,,r) is the j switching
time of the geodesic with initial condition p,, p, = 1 and r. The same can
be done for A\, = —1 or A\, = +1 and A, € [—1,1]. Since it is smooth for
—r < p; < r and s # s; Vi, we can compute its jacobian. It happens that
it is null during the two first bangs, and that it has opposite sign to that of
r during the third and fourth bangs. It is again null during the fifth bang.
As we will see later for r small in the generic cases, the jacobian will not
be null during the third and fourth bangs also. In the nilpotent case, for
t €lrsy,rss|, Jac(t) = 0. We define the conjugate time ¢ as the infimum of
the time 7 such that the jacobian takes positive and negative values before
T.

Since in the nilpotent case, the conjugate time is t5, the first conjugate
locus is the set of points where a geodesic switches for the fifth time. The
first conjugate locus is

{(207,0,+4r%)|r € R, 0 €] — 1,1[} U {(0, 267, £4r*)|r € R, 5 €] — 1, 1[}.

The Maxwell set, whose point are reached by several optimal extremal is
exactly the same set.

Figure 3.2 shows the conjugate locus and three points of view of the part
of the sphere that is reached by non singular extremals.

3.2 Extremals with [\,| >> 1

3.2.1 Hamiltonian equations

The Hamiltonian dynamics is given by

Uy + U2 Ul — Us

T = 5 —+ 9 (a200x2 —+ aiioxy —+ 995),
) U — u
y = . 5 2 (1 + bagox® + by1ory + 0y),
. Uy — U2 2 3 2 2
z = 5 (@ + c2002” + C1107Y + C3002° + C21027Y + C120y° T + 6,),
. Uy — u
e = —— 5 2 (Az(2a200% + a110y) + Ay (202002 + b110Y)
+ 2 (1 4 2¢9007 + 33002 + c110Y + 2¢2107Y + C1204?)),
. Uy — U
)‘y = — ! 9 2 (allngz -+ bno:r:)\y -+ /\Z(Clloﬂf + C210I2 + 2C120$y)),
Uy — Uz

Xz = 5 Az (Co01 + C111Y),
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Figure 3.2: The conjugate locus and three points of view of the non singular
part of the sphere in the nilpotent case

where
uy(t) = sign(¢i(t)), ua(t) = sign(ea(t)),
P1(t) = Mt)Fi(q(t)), @a(t) = A(t)Fa(q(t)).
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From now 2 denotes ‘;—i. Using the change of coordinates p, = :\\—z, Dy = i—z,
r= % and the change of time s = f, we get the new dynamical system

T = o —;— U27” + il —; 1627’(@200952 + ar0zy + 0,),

y = ! ; u2r(1 + bagoz® + biioTy + 0,),

z = %T‘(Qz(m + ug) + (ur — ug)(z + C2007” + C3002° + C110TY + C2107°Y + 0120953/2))7
Dy = _o ; UQT(l + 2¢200% + P (22002 + ar10y) + Py(2b200z + b110y) + 3cz002”

+cr0y + 262102y + C120y°),

Dy = _ ; UQT’(Cnoﬂ? + a110P2T + br1opy® + C2107” + 2c120Y),

o= 2 ; = rz(conn + c111Y)-
where, denoting p = (ps, py, 1),

Pi(t) = %pFl(Q(t))v Pa(t) = %pFZ(Q(t»

w(t) = sign(o(t),  ue(t) = sign(ga(t)).
Since the set of initial condition is a square for (p,, p,), we define in fact four
Hamiltonian flows for each initial speed (G, —G1, G, —G3). For example, for
the geodesics with initial speed equal to Gy we have p,(0) = r and p, = oyr
with a; € [—1,1]. The new Hamiltonian flow as for variables (rg, oy, s) where
ro =7(0), pz(0) = ayr and s = L.

In order to compute jets of the Hamiltonian flow we write as Taylor series
in ro and we compute three orders of the smooth differential equations. These
equations are integrable hence we can compute jets of switching functions
and hence jets of switching times. Finally, we are able to compute the jets
of the different bangs of the extremals. For more details we refer to [5]. If
we restrict the computation to z, y, z as functions of (1o, a, s) for the four
Hamiltonian flows, we get four exponential maps that we denote Expg where
b =—1,1,—-2 or 2 depending on if the initial velocity is -G, G1, —Ga, Gbs.
In [20], M. Sigalotti proves, studying second order optimality conditions, that
this family of extremals cannot be optimal after the fifth switch.

3.2.2 Conjugate locus

For these exponential maps, one can compute their jacobian for each bang
arc. One finds
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o Jac(Exp,,) =0 for 0 < s < s9,5 # 1,

o Jac(Exp,,) = —8rf + o(rd) for sy < s < s3,

—8r3 + o(rd) for s3 < s < s4,

o Jac(Exp,,) = 32(2c120 — 21)r5 + o(r5) for s4 < s < ss,

( )=
( )
o Jac(Exp,,)
( )=
( )

o Jac(Exp,,) = 813 + o(rd) for s5 < s < sg,
and
o Jac(Expy,) =01 0<s<syo0rs <s< sy,

o Jac(Expy,) = —4rd + o(rd) if s < s < s3,

—8r3 +o(rd) if s3 < s < s4,

o Jac(Exp,,) = 64(3c300 — 2ba0o — 2¢390)75 + 0(r5) if 84 < s < 83,

( )
( )
o Jac(Expy,)
( )=
( )

8rs + o(rg) if s5 < s < sg.

o Jac(Expy,

We can now state the following proposition introducing two important in-
variants that will be determinant in the form of the cut locus.

Proposition 23. Let G and G5 as in the normal form given in section 2.

o If C) = 3c300 — 20900 — 20340 > 0 then the fourth switching time ty is the
first conjugate time for geodesic with initial velocity £G1. If C; < 0
then it is the fifth ts.

o If Cy = 2c199 — 21y > 0 then the fourth switching time t4 is the first
conjugate time for geodesics with initial velocity £Gs. If Cy < 0 then
it 1s the fifth ts.

Using the expansion of the exponential maps, we can give the expressions
of the upper part of the first conjugate locus for the four exponential maps.
For Expyq, if Ch >0

Teonj = FE(ag—1)ro+ (derio — caoo(ag — 1)*)rg + o(r3),
Yeonj = —862007’3 + 4(b110 + 6¢110C200 — 2¢210
+<4b200 + 120300 - GCSOO)QQ)T(?; + 0(1"8),

Zeonj = 4rg F 8(c110 + 2c20000)rf + 0(1(),
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and if C; <0
xconj = :]:(1 + 062)7"0 + (40110 — 0200(1 + 062)2)7“(2] + 0(7’(2))7
Yeonj = —802007”(2) + 4(5110 + 6¢110C200 — 2¢210
+(4b200 + 120300 - 60300)052)7%’ =+ 0(?"3),
Zeonj = 47’3 F 8(c110 + 20200a2)7°3 + 0(7’8)7

and for Fxpio, if Cy >0
Teonj = 4ci10mg £ 4(br1o + 6¢110C200 — 2¢210
+an(2e120 — 3¢ty))r + o(rp),
Yeonj = F(=1+o)ro— %(160200 +cnoan — 1)*)rg + o(r7),
Zeonj = 4 & d(deggo — crro(1 + an))rg + o(rd),
and if Cy <0
Leong = 401107“(2] + 4(5110 + 6¢110C200 — 2C210
+ai(2c120 — 3ciyg))rg + o(r5),
Yeonj = E(1+ai)ro— %(160200 +enio(1 + a1)?)rg + o(rg),
Zeonj = 418 % 4(dego + crio(l — ar))rp + o(r)).

From the nilpotent case we have that the loss of optimality may come during
the fourth bang or the fifth bang.

3.2.3 Cut locus

The idea to compute the cut locus associated to extremals with A\, >> 1 is
to look close to the parameters (initial conditions plus time) of the Maxwell
set for the nilpotent approximation. Then to compute an suspension at
z4p? for p small of the exponential maps (fourth and fifth bangs of the four
exponential maps). And finally to identify the self intersections in the for
cases

e (1 >0and Cs >0,
e (; <0and C;y >0,

oC'1>OandCQ<O,
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e (; <0and Cy <0.

The second and third cases being equivalent, we present only one.

Cut when (7 > 0 and C5 > 0: in this case, the extremals lose optimality
before the fifth bang. The self intersections of the front is between fourth

bang fronts of the exponential maps. For example, the fourth bang front of
exp; intersects the fourth bang front of exp, for ap between —1 and 1+ o(p?)
and a; between 1 and 1 + o(p?). This is illustrated in Figure 3.3.

cut locus

cut locus

cut locus

cut locus

Figure 3.3: Closure of the cut locus at z fixed.

The optimal synthesis at z = 4p? closes at t = 8p. Let define two times
to = 8p + Ts,p> and t, = 8p + Tspp® where

4
Tga = g(ano — 3b110 + 6b200 + 30?10 — 46120 + 601106200 + 126%00 + 60210 — 120300)

and

4
Ty, = 3 (@110 +3b110 +6b200 + 3¢5 19— 4c120 + 18¢110C200 + 126500 — 6210 — 12¢300)-

Then, if T3, < T3, then the optimal synthesis closes by the intersection of
the front of exp, and of exp_,, when if 75, < 75, then the optimal synthesis
closes by the intersection of the front of exp; and of exp_;. See Figure 3.4.
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When T3, > T3 When T3, < T3p

Figure 3.4: Closure of the cut locus at z fixed

Finally we can present the upper part of the cut locus when C; > 0 and
C5 > 0 in Figure 3.5

T3q > T3y T3a < T3p

Figure 3.5: The upper part of the cut locus

Cut when C; > 0 and (5 < 0: in this case, the intersections of exp,; and

exp,, still happen before the fifth bang when the intersections of exp,; and
exp4, do not happen before the fifth bang. See Figure 3.6.

Figure 3.6: The front before t = 8p when C; > 0 and Cy < 0
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Different type of sequences of intersection can occur, depending on the

invariants but in any cases, the intersection of the cut l