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Abstract

In this thesis we address the problem of multichannel audio source separa-
tion (MASS) for underdetermined convolutive mixtures through probabilistic
modeling. We focus on three aspects of the problem and make three contri-
butions. Firstly, inspired from the empirically well validated representation
of an audio signal, that is know as local Gaussian signal model (LGM) with
non-negative matrix factorization (NMF), we propose a Bayesian extension to
this, that overcomes some of the limitations of the NMF. We incorporate this
representation in a MASS framework and compare it with the state of the art in
MASS, yielding promising results. Secondly, we study how to separate mix-
tures of moving sources and/or of moving microphones. Movements make the
acoustic path between sources and microphones become time-varying. Ad-
dressing time-varying audio mixtures appears is not so popular in the MASS
literature. Thus, we begin from a state of the art LGM-with-NMF method
designed for separating time-invariant audio mixtures and propose an exten-
sion that uses a Kalman smoother to track the acoustic path across time. The
proposed method is benchmarked against a block-wise adaptation of that state
of the art (ran on time segments), and delivers competitive results on both
simulated and real-world mixtures. Lastly, we investigate the link between
MASS and the task of audio diarisation. Audio diarisation is the detection of
the time intervals where each speaker/source is active or silent. Most state of
the art MASS methods consider the sources to emit continuously; A hypothe-
sis that can result in spurious signal estimates for a source, in intervals where
that source was silent. Our aim is that diarisation can aid MASS by indicat-
ing the emitting sources at each time frame. To that extent we design a joint
framework for simultaneous diarisation and MASS, that incorporates a hidden
Markov model (HMM) to track the temporal activity of the sources, within a
state of the art LGM-with-NMF MASS framework. We compare the proposed
method with the state of the art in MASS and audio diarisation tasks. We ob-
tain performances comparable, with the state of the art, in terms of separation
while winning in terms of diarisation.



Résumé

Dans cette thése nous abordons le probléme de la séparation de sources audio
dans des mélanges convolutifs multicanaux et sous-déterminés, en utilisant
une modélisation probabiliste. Nous nous concentrons sur trois aspects, et
nous apportons trois contributions. D’abord, nous nous inspirons du modele
Gaussien local par factorisation en matrices non-négatives (LGM-with-NMF),
qui est un modéle empiriquement validé pour représenter un signal audio.
Nous proposons une extension Bayésienne de ce modele, qui permet de sur-
passer certaines limitations du modele NMF. Nous incorporons cette repre-
sentation dans un cadre de separation audio multicanaux, et le comparons
avec 1’état de I’art sur des taches de separation. Nous obtenons des résultats
prometteurs. Deuxiément, nous étudions comment séparer des mélanges au-
dio de sources et/ou des capteurs en movement. Ces déplacements rendent le
chemin acoustique entre les sources et les microphones variant en cours du
temps. L’adressage des mélanges convolutifs variant au cours du temps est
peu exploré dans la littérature. Ainsi, nous partons d’une methode de 1’état
de I’art développée pour la séparation de melanges invariant (sources et mi-
crophones statiques) et utilisant LGM-with-NMF. Nous proposons a ceci une
extension qui utilise un filtre de Kalman pour suivre le chemin acoustique
au cours du temps. La technique proposée est comparée a une adaptation
block-par-block d’une technique de I’état de 1’art appliquée sur des intervalles
de temps, et a donné des résultats exceptionels sur les melanges simulés et
les melanges du monde réel. Enfin, nous investiguons les similitudes entre
la separation et la journalisation audio. La journalisation est le probléme de
détection des intervalles auxquels chaque locuteur/source est émettant. La
plupart des méthodes de séparation supposent toutes les sources émettent con-
tinuellment. Cette hypothese peut donner lieu a de fausses estimations durant
les intervalles au cours desquels cette source n’a pas émis. Notre objectif
est que la journalisation puisse aider a résoudre le separation, en indiquant
les sources qui eméttent a chaque intervalle de temps. Dans cette mesure,
nous concevons une cadre commun pour traiter simultanément la journalisa-
tion et la separation du mélange audio. Ce cadre incorpore un modele de
Markov caché pour suivre les activités des sources au sein d’une technique
de séparation LGM-with-NMF. Nous comparons I’algorithme proposé a I’état
de I’art sur des taches de separation et de journalisation. Nous obtenons des
performances comparables avec 1’etat de I’art pour la separation, et supériures
pour la journalisation.
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Zussamenfassung

In dieser Doktorarbeit beschiftigen wir uns mit dem Problem der Trennung
von Schallquellen, der mehrkanalig und unterbestimmten Faltungsmischun-
gen mittels probabilisticher Modellierung. Wir konzentrieren uns auf drei
Aspekte des Problems und leisten drei Beitrige dazu. Erstens, inspiriert
von dem empirisch gut bestdtigtem Ansatz fiir Signaldarstellung, der als das
lokale GauBlische Modell mit nichtnegativer Matrixfaktorisierung bekannt ist;
Schlagen wir eine Bayesianische Erweiterung vor, die einige Begrenzungen
der nichtnegativer Matrixfaktorisierung aufthebt. Wir setzen diese Darstel-
lung in einen mehrkanaligen Trennungsrahmen und vergleichen es mit dem
Stand der Technik zur Schallquellentrennung. Wir erhalten vielversprechende
Resultate. Zweitens, untersuchen wir die Weise auf welche man Mischun-
gen von bewegenden Schallquellen und mobilen Mikrofonen trennen kann.
Solche Bewegungen gestalten den akustischen Pfaden zwischen den Schal-
Iquellen und den Mikrofonen als zeitvariabel. Soweit wir wissen, die Al-
gorihtmen fiir Trennung der zeitvariabelnden Faltungsmischungen sind sel-
ten in der Fachliteratur. Deswegen, beginnen wir mit einer Stand der Tech-
nik Trennugsmethode die fiir zeitlich invariablen Faltungsmischungen erbaut
wurde. In die Methode stecken wir einen Kalman Filter der die Laufbahn
des Schalles aufspiirt. Die vorgeschlagene Methode wird verglichen mit einer
blockweise Anpassung aus Zeitsegmenten der Stand der Technik Methode.
Unsere Methode liefert hervorragende Resultate, sowohl bei den Mischun-
gen aus der simulierten Realitédt als auch aus der Wirklichkeit. Letztens,
wir untersuchen die Beziehung zwischen der Schallquellentrennung und der
Diarisierung. Diarisierung ist die Anmerkung von Zeitabschnitten wo jeder
Sprecher/Quelle Schalllos ist. Die meisten Schallquellentrennungsmethoden
betrachten die Quellen als unaufhorlich emittierend. Diese Annahme konnte
fadenscheinige Signalschédtzungen liefern im Laufe der Zeitspannen derer die
Quelle nicht emittierte. Wir wollen der Trennung durch die Diarisierung
helfen, mittels der Anzeige der emittierenden Schallquellen. Um die gle-
ichzeitige Diarisierung und Trennung der Faltungsmischungen zu erreichen,
setzen wir ein Hidden Markov Model ein fiir die nachfiihrung der Aussendung
der Schallquellen in eine Stand-der-Technik Trennungsmethode. Wir vergle-
ichen den vorgeschlagenen Algorithmus mit Stand der Technik Methoden bei
Aufgaben der Trennung und der Diarisierung. Das ergibt dhnliche Resultate
beziiglich der Trennung und iiberragende hinsichtlich der Diarisierung.
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Iepidnymn

Ye autn Ty dwaTplBr aoxolobuaoTe pe To TWPOBANuQ  TOU
dLaxwpLopo NXNTLEWY Tnywy emefepyalOUeEVoL T OUVEMKTIRG
PEYROAT O ONUATWY QUTWY TWY TNYWY ToU AauSAavovue péoa amo
TOAG KavaAia, pe xpnon povtéwr mibavorntwy. EoTidlovue oe
TPELS TTUXES TOU TPOPBANUQATOS Kol TPOTELVOUUE TPELS EMERTATELS.
HpdTov. Epmvevouévor amd TNy TELPAUQTLEG ETQANOeVUEVT)
aUaTapaoTaon VoS MXNTLROD ONUQTOS TOU OVOUGCETL TOTLKT)
Ilkaovoravn povredomoinon upe mapayovtomoinon oe  OeTikd
UNT PO, TPOTEVOVUE UL TPOTEYYLON KkaTd Bayes mov Eemeprd
QOVVQUIES TNS CUUPBATLRNS TapayorTomoinons o BeTikd untpua.
FEvowparwvovue TNy TPOTELVOUEVY QUATQPAOTAoN 0 Eva
aXYoplBuiké  wAaLoLo  SLaXwpLopoU,  PEYHOTOS  TOAUVKQVAALKOU
ONUATOS KOt TNV CUYKPIVOUUE pE aAYoplBuLkés pedodovs auxpuns
amorkopilovtas OeTikd amoTeNéouata. AcOTepov. MeleTdvTag
TWS UTOPOUIE VA JLaXWPLOOVUE MXLTLRG BEYUQTQ TOU UTOPEL V(L
TPOEPXOVTAL QTG KLVOUUEVES TNYES, QA& Kat va AapufavovTal
kot amé kwoOpsva  uikpoowra; llapatnpnoaue 6TL 1 Kwnon
emnpecler TNV akovoTikn) (eVEN X povik&  ueTafaAlAouevn. H
emefepyaoioe TETOWY ULYUATWY 0EV QTQUTATOL OUXVE  TTNY
emoTNuovLEN BLBAtoypapia. Yméd To wpio pa auTiS TNS TaPATHPNONS
xTnCovue mavw pe e PEQodo dLaxwpLo ot aKiVNTWY TNYWY oTHY
omoiaw eLodyovpe Eva @piATpo Kalman yio ™y uxvnAarnon s
QKOVOTLRNS CeVENS OTO XPOovo. XUYKPIVOUUE TNV TPOTELVOUEVT)
TEXVLKY EVAVTIWY TNG TEXVLRN QLIS QTAG EQaploousévn ava
XPOVLEG LaoTNuaTe, O TPOBANUQTO dLaXwpLopd ouvleTLROY
XPOVLEAQ  UETASBANAOUEVWY  [WEYIATWY, QAAG KOl T PQY QT LROY
NXOYPQPNOEWY  KLVOUUEVWY — opAnTOv. H  oUykpion amodidel
ONUAVTLEG TELPAUATIRG QTOTENETUQTQ UTEP TNS TEXVLRNS HOS.
Tpitov. Qs eml To TAeLOTOV 0L VTAPXOVTES TEXVLKES SLOXWPLT OV
Ocwpody oTL or TNYES erkméumovy adraleinTws. Avtn n vmobeon
UTopel va dWOEL E0PAAUEVES ERTLUNCELS O OLAOTNHUATQ TOU
or TNYES ocwmovv. ETor Aovmwov, efepevvoduse TIS OpoLOTNTES
peTalV Sraxwpiopot rkoar Kataypagns Huepoloyiov Ermounns
Kal KATQOKEVACOUIE [lQe TEXVLKY TOUTOXPOVNS ETLAVONS TwWV
6v0 TPoBAINUATWY, apol clodyovue Eva Aavldvwr pakpoSiavé
HOVTENO VL LXUNAQTEL TNV eRTOUTN KAOE Tnyns, uéoa o€ e uéhodo
draxwplopov. Ta amoTeENET paT o Lo KAVOUY var atatodooV e
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NOTATION

NOMENCLATURE
Ay Boldface upper case letters denote matrices.
as Boldface lower case letters denote column vectors.

A A compact way to denote a set, here {A o }7 .
aj;  The j™ entry of a;.

Aij; The (i, 7)™ entry of Ay.

0 The set of all parameters to be estimated, of a generative model.
H The set of all hidden variables of a generative model.
SIZES

f €[1,F] Number of frequency bins F', and frequency index f.
¢ e [1,L] Number of STFT (time) frames L, and frame index /.
i€[l,I]  Number of microphones /, and microphone index i.
j €[1,J] Number of sources ./, and source index j.

k € [1, K] Total Number of LGecM components /£, and index k.

n € [1, N] Number of diarisation states N, and state index n.

XiX



NOTATION XX

FUNCTIONS AND OPERATORS

AT Matrix transpose (without conjugation).

AH Hermitian transpose of a matrix.

At Inverse of a matrix.

det(A) Determinant of a matrix.

tr{A} Trace of a matrix.

vec (A) The column vector made by concatenating

all columns of A in a single vector.

® Kronecker (matrix) product.

I, Identity matrix of dimension J.

diag; (a;) J x J diagonal matrix with entries {a;}7_,.
la|* = aa" Squared modulus of complex number.
Re{a} Real part of complex number.

T, & Yn Normalisation with 7, = vy, / évjlyr.

log(x) Natural logarithm, at the base exp(1).

[(x) Gamma function, with x € R,..

v(x) Digamma function, with x € R .

Ep @) [ f ()] The expected value of f(x) with respect to

probability distribution p(z).

exp (— (=)= (x—p))

Ne(x; 1, X)) = Circularly-symmetric complex normal dis-
det (”E) tribution [Neeser 93] for x € C/, mean vec-

tor pu € C!, covariance matrix ¥ € C/*/,

G (;7,6) = %$_(7+1) exp (—2)  Inverse Gamma distribution [Witkovsky 01]
for non negative x € R, with parameters:
shape v € R, and scale 6 € R,.



CHAPTER 1

INTRODUCTION

In robot audition it is a key challenge to discriminate the sound sources that make up
the recorded audio signal at a microphone array, that is called the mixture signal. Audio
source separation is the scientific field encompassing techniques that recover the sound
source signals from their mixture signals. Audio source separation is nowadays a key
ingredient of speech recognition and machine translation. Its theoretical background ex-
tends beyond audio processing on various scientific fields, such as biomedical imaging
and image processing. In the past fourty years the effervescent research conducted on
this field established probabilistic modeling as one of the prominent directions to address
source separation. In this thesis we investigate the source separation from multichannel
audio mixtures (MASS). By taking a technical look on latent structures present in natu-
ral sound signals and their generative process we design probabilistic methods aiming to
separate and diarise multichannel audio mixtures. Our major focus is underdetermined
mixtures (fewer microphones than sources) with moving sources. In this introductory
chapter we give an overview of MASS and present the main scientific roads that have
been taken to address it. We present the Local Gaussian Model (LGM) for sound sig-
nals, as it is a core ingredient of all designs of this thesis. Finally, we summarise our
contributions and plot the organisation of this manuscript.

1.1 INSPIRATION

The majority of everyday sound scenes involve several sound sources that emit simulta-
neously. Speech communication is obscured by background talkers and environmental
sounds interfering to the conversation. When facing such situations, humans are at ease
on concentrating at any of the individual sound sources [Cherry 53, Wang 07]. In audio
source separation we want to design algorithms to recover the original sound source sig-
nals, from recordings of the overall sound scene, that are known as mixture signals. The
general source separation problem is equivalent to answer the question: “Given the sum of

1



CHAPTER 1. INTRODUCTION 2

two numbers could you recover the individual summands?” Such a general problem with
no additional information has no unique solution; however in MASS we are opted with a
large amount of extra information. Natural sounds reveal sparsity in some domains, the
most well being the Short Time Fourier Transform (STFT) domain [Portnoff 80]. Re-
cent studies in music audio processing show that sound signals have structures and can
be well represented in a dictionary-activation basis [Benaroya 03, Févotte 09] with few
parameters. Those characteristics of sound enable the design of MASS algorithms that
can deliver surprising results.

1.2 THE AUDIO SOURCE SEPARATION PROBLEM

In this thesis we are interested in indoor recordings. Commonplace indoor environments
introduce adverse effects on the recorded mixture signal, such as reverberation. The pres-
ence of reverberation makes the MASS problem somewhat easier to solve in the STFT
domain than in the time-domain.

1.2.1 AUDIO MIXTURES IN THE TIME DOMAIN

If we assume the existence of ./ sound sources and denote with y;;(¢) the contribution of
j-th source to microphone i we can write the signal z;(¢) recorded at microphone i as:

J

wi(t) = > wis(t) + bi(t), (1.1)

J=1

with b;(t) a noise signal, for example from the sensors. In real world scenarios there may
be more sources than microphones (J > [). Such scenario is called underdetermined
mixing, in contrast to the (over)determined mixing where J < [I. The overdetermined
MASS case has been long studied and nowadays overdetermined MASS methods can
provide good source separation performance [Gannot 17]. In this thesis we are interested
in underdetermined mixtures of indoor recordings.

The major effect of indoor recordings is reverberation. That is the fact that the micro-
phones capture not only the direct sound coming from the sources, but also its reflections
from the walls and the surfaces of other objects in the scene. Therefore y;;(t) is the sum
of all reflections of source j as they arrive at microphone ¢ [Duong 10, Sturmel 12]. The
v;;(t) is known as the source image signal and is defined as the convolution (denoted ’*")
of the source signal s;(¢) with an impulse response signal a;;(¢):

Yig (1) = ai(t) * 55(1). (1.2)

The impulse response a;;(t), that is called the mixing filter and is encoding the acoustical
effects induced by the environment, such as reverberation. Eq. (1.1) and (1.2) define a
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myvg-world.com

aij(t) ai;(t)

Figure 1.1: Filter responses: of an anechoic (low echo) room (Left) with special walls
to reduce reverberation, and a chamber with high reverberation (Right).

convolutive mixture:
J
zi(t) =Y ay(t) * s;(t) + bi(t). (1.3)
j=1

The MASS problem can be stated as the recovery of the source signals {s;() 37:1 from

the mixture signals {x;(t)}._,. Notice here that the {a,;(t)} "/

;7= are generally unknown
and have to be estimated as well.
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dB
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Figure 1.2: Spectrograms of convolutive (simulated) and real recordings of speech in
indoor environments. The presence of a high level of sparsity and harmonic structure is
apparent, although less visible on the real recordings.

1.2.2 AUDIO MIXTURES IN THE TIME-FREQUENCY DOMAIN

The presence of convolution in (1.3) complicates the design of time-domain MASS meth-
ods. STFT has prevailed as way to transform the MASS task in a time-frequency repre-
sentation, opting for a simpler solution.

Applying the STFT to the mixture signal of the ¢-th microphone yields a set of complex-
valued coefficients {z;, fg}i’zil for the F' frequency bins and the L time-frames. The mix-

ture x;, € C! is approximated in the STFT with:
X = Afog-l—bfz, (1.4)

with A; € C’*/ the mixing matrix, s;; € C’ the vector of source coefficients and
by, some residual noise. Now the MASS task becomes the recovery of {s fg}i’f: , and
of {Af};_,. Eq.(1.4) is known as the narrowband assumption [Parra 00, Gannot 01,
Ozerov 12] and is valid for environments with low reverberation, becoming less appro-
priate as reverberation increases. Eq.(1.4) is popular due to its simplicity; it may be
overcome by directly recovering the source-images [Duong 10, Arberet 10], or by de-
signing a detailed reverberation model [Leglaive 16], or by working in the time domain
[Kowalski 10].

1.3 LITERATURE OVERVIEW

Today, the state of the art in MASS for convolutive mixtures is vast. A comprehensive
survey can be found in [Gannot 17]. We split the state of the art in three non-exclusive
categories.

Methods using localisation information A large family of MASS techniques use in-
formation about the underlying spatial location of the sources. Computational Auditory
Scene Analysis (CASA) intent to emulate the human auditory scene formation process
[Blauert 97, Wang 07]. CASA methods are based on the apparent sparsity of speech in
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time-frequency (TF) representations. In the core of CASA systems the mixture signal
is transformed in a TF representation and the TF points are clustered in groups associ-
ated with a single source. Popular criteria used for clustering include interchannel time
or intensity differences of TF points [Yilmaz 04, Araki 07]. TF points with similar such
differences must have been generated from the same spatial location. At end of clustering
the estimated TF representation for a source is populated with TF points of the mixture
that are clustered on that respective source. Empty TF ponts are filled with zero and
the inverse TF transform is applied to provide the time-domain estimate for that source.
The limitation of CASA methods is the assumption that a TF point contains information
from a single source. In real world recordings, where reverberation is substantial, CASA
methods can be limited [Araki 03].

Beamforming MASS methods [Hioka 13] enhance the sound coming from a specific
location in the room and attain separation by enhancing the signals from the locations of
the sources.

Independent Component Analysis (ICA) ICA is a method for separating a multichan-
nel signal (the mixture) into additive components (the sources) [Hyvérinen 01]. The prin-
ciple of ICA methods is to assume the underlying source signals as statistically indepen-
dent [Cardoso 98]. Because then various criteria for extracting components that are more
independent than the mixture can be used to recover the sources signals [Cardoso 97].
For MASS, ICA is applied independently at each frequency f with (1.4) [Sawada 04,
Sawada 07]. Because the source signals will be recovered with a different order at each
frequency a realignment to make them correspond to the same source over all frequencies
is needed. This alignment is done in a second step by exploiting relations between mixing
matrices from different frequencies. ICA methods may not be applied to underdetermined
mixtures due to the requirement of an invertible A ;.

Probabilistic Inference for Source Separation Insufficiency of observed data (when
we have fewer microphones than sources) places a strong barrier on the recovery of high
quality separated signals. For this reason, methods for separating underdetermined mix-
tures use prior knowledge about the sound production process. The knowledge typically
concerns the structure of the underlying source signals and the generating process of the
mixture. Such methods are referred to as model based MASS [Mandel 10]. Model based
methods rely on generative models for the source signals [Vincent 10] and/or the mixture
[Dorfan 15]. Typically the source signals are considered as hidden random variables and
prior probability distribution functions (PDF) are placed on them [Févotte 09]. The sepa-
rated source signals are obtained through statistical estimation criteria, such as maximum
likelihood (ML) or maximum posterior (MAP) estimation [Vincent 10]. A practical gen-
erative model includes numerous additional model parameters to be estimated. In genera-
tive models it is now classical to use an Expectation Maximization (EM) algorithm for in-
ference of the hidden variables and learning of the model parameters [Ozerov 12]. One of
the popular frameworks for audio signal modeling in the STFT domain, that will be an im-
portant ingredient of this thesis, is the local Gaussian source model (LGM) [Benaroya 03].
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1.4 PROBABILISTIC INFERENCE FOR SOURCE SEPARATION

Various works on model based MASS in the STFT domain consider the source coef-
ficients as hidden random variables with prior distributions, for example [Ozerov 10,
Ozerov 12, Arberet 10, Leglaive 16]. Such methods use MAP to estimate the source co-
efficients and apply the inverse STFT to them so as to obtain the time domain source
signal estimates. To apply MAP to a generative model the posterior probability distribu-
tion of its hidden variables must be infered. In practical generative models, besides the
hidden variables, there are various model parameters that have to be estimated as well.
For that an Expectation Maximization (EM) algorithm [Bishop 06] is used to infer the
hidden variables and estimate the model parameters.

1.4.1 THE EXPECTATION MAXIMIZATION ALGORITHM

EM is an iterative optimization algorithm that finds ML estimates for the model param-
eters of a generative model, in the presence of hidden variables. EM alternates between
evaluation of the posterior probability distribution function (PDF) of the hidden variables,
called the E step, and maximisation, with respect to the model parameters, of the expected
complete data log-likelihood (ECDLL) function, called the M step [Bishop 06].

A generative model is specified by a set of hidden variables H, a set of observed
data (for STFT domain MASS the coefficients of the mixture Xi.r;.7,), a set of model
parameters 6, and a complete data distribution p (X1.r1.1,, H; 6) typically in parametric
form. To design an EM algorithm we first compute the posterior probability distribution:

p (H|x1r1L) - (1.5)
This makes the E step.! Then, we calculate the ECDLL denoted £(6) and defined with:?
L(0) = Epaixr,p.r) logp (H, x1:71:.230)] - (1.6)

Maximising £(6) with respect to 6 results in the updated values for 6. This makes the M
step. The E and M steps are iterated® until a convergence criterion is met.

Variational EM In complicated generative models the posterior distribution may not be
expressible in terms of standard distributions (due to intractable integrals). In such cases,
the posterior distribution must be approximated. Various ways exist to approximate it,
see for example [Bishop 06, Smidl 06]. In this thesis we use the so called variational
approximation [Jordan 99, Bishop 06]. In the variational the set of hidden variables H is
partitioned to P subsets 7 = {#,,},_,. Then the posterior distribution®, denoted ¢(?#) is

'For clarity we omit writing 6 in p (H|x1.r1.1.)-

2To compute £(6), p(H|x1.71.2) is provided by the E step and is fixed.

3In the next E step, the updated values of 6§ are used to compute p(H|X1.r1.7,)-

*It is the approximate posterior distribution, but we abuse the language and refer to it as posterior.
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assumed to factorise over the posterior distribution of the P subsets:
p(HIxuris) ~ a(H) = [ a(Hy). (1.7)

The posterior distribution q(#,) of a subset #,, is then computed with [Bishop 06]:°

q(Hy) o< exp (B, log p(H, X1.p1.250)]) (1.8)

with ¢(H/#,) being the product of all ¢(#,) of all other subsets, except of p. Easily,
the full posterior ¢(H) is computed with (1.7). Hence, if we use ¢(H) in place of (1.5)
we have an E step. As for the M step, one has to define £(f) using ¢(#) in place of
p(H‘XlsFlzL) with:

L(0) = Eqn) logp (H,%x1.71.1; 0)] - (1.9)

This makes the variational EM (VEM). In summary, at the E step we compute ¢(H) and
at the M step we update ¢ by optimising (1.9).

1.4.2 LOCAL GAUSSIAN SOURCE MODELS

For the past decade the statistical modeling of audio signals in the time-frequency domain
has been extensively investigated. The LGM is a prominent example of such modeling
and has become popular in MASS as a parsimonious representation for the source sig-
nals. In LGM the STFT coefficients of the source are assigned with a prior PDF that is a
Gaussian PDF whose support are the complex numbers [Ephraim 84].

To reduce the number of parameters to be estimated [Benaroya 03] introduced a non-
negative matrix factorisation (NMF) scheme on the variance of that prior PDF. The re-
sulting model is known as the Local Gaussian composite Model (LGcM) with NMF:

p(sjre) = Ne (Sj,ff; 0, wfkhkf) , (1.10)

kEKj

with wyy, hiy € R, parameters to be estimated, and K; a subset indicating the indexes (of
the factors w i hye) that have been assigned to source j. There are K indexes in total that
we partition to the J sources with I = {K; }3]:1. All sources coefficients are assumed to
be (statistically) independent.

Local Gaussian Composite Model (LGcM) with NMF An interesting way to arrive
at (1.10) is to introduce the source components {cy ;o}+_,, that are also hidden random
variables [Févotte 09] and let ¢, ¢, follow a complex-Normal PDF:

pler,re) = Ne(Cr,pe; 0, up pe) (1.11)

SOf course, the posterior of a subset depends on all other subsets and so they are updated in alternation.
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with factorised variance:
Uk, fe = wfkhkg. (112)

All components are assumed to be independent. Defining s; ¢, as the sum of the X; source
components:

Sife= > Chts (1.13)

kE’C]’

results again in (1.10) [Févotte 09].

General LGeM In LGcM, extensive research has been done for the NMF parame-
ters wyy, hie. In [Lee 01, Smaragdis 03] they are treated as model parameters in a de-
terministic model. Alternatively, as for example in [Virtanen 08, Févotte 09, Bertin 10,
Hoffman 10, Ozerov 12] the NMF parameters are considered as hidden random variables
in a probabilistic model. Also, multiple types of constraints, such as harmonicity and
sparsity have been placed on them through prior distributions [Virtanen 07, Ozerov 11].

1.4.3 A STATE OF THE ART EM FOR AUDIO SOURCE SEPARATION

The LGcM-with-NMF enables for source separation from a single channel mixture.®
To address MASS the LGcM-with-NMF is combined with a mixing model, as in Sec-
tion 1.2.2) [Ozerov 10, Arberet 10]. We now present in detail [Ozerov 10] as it is our
source of inspiration for the designs of this thesis.

Multichannel Mixtures with LGeM In [Ozerov 10] the source coefficients are hidden
random variables modeled with LGcM-with-NMF’. Writing (1.13) in vector form:

Sj.ft = Z Cr,pe < spe = Gegy, (1.14)
k‘EIC]'

where the binary matrix G € N/*K has entries G, = 1if k € K;, and G = 0
otherwise. The observation model (1.4) is written as:

p(xselspe) = Ne (Xpe; Aysge, vilp), (1.15)

with A s, vy model parameters to be estimated.

®In practice LGcM-with-NMF separates (the PSD) of 54,f¢ into source components {cx f¢}rek; -
"The number of sources J, components K, and the partition /C; are known in advance and are fixed.
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@ -

Figure 1.3: Graphical model of the model of [Ozerov 10]. Latent variables are shown as
circles, observations as double circles, deterministic parameters with rectangles.

The Generative Model The hidden variables are H = {s,c ff}?:fL:l' The model pa-

rameters to be estimated are § = {Af, v, uy, fg}f’f,ﬁ - The observations are assumed
independent over f, {. Therefore the complete data distribution writes:

F LK
p<H;X1:F1:L7 H p Xf£|Sﬂ H P Ck fé (1.16)
fe=1 f,0.k=1

A graphical model for (1.16) can be seen in Fig. 1.3.

Estep The posterior distribution of the component vector p(c s¢|X1.r1.1,) equals the prod-
uct of all terms of the complete data distribution (1.16) that depend on ¢ z:® °

K

p(Crex1:p1:0) o P(Xpe(Sg0) Hp(ck,fe) = N (cpe €50, 27) (1.17)
k=1

with posterior covariance matrix 2?; and mean vector ¢, found with:

-1
1 AUA
s — dlagK< )+GTf—fG , (1.18)
Uk, 70 Vf
& =SGT AT (1.19)
Vi
As shown in the Appendix, the posterior PDF of sy, is also complex-Gaussian:
p(sfﬁ‘XI:Fl:L) :Nc (ng,éfg,E?Z) ) (120)
with covariance matrix 3"° and mean vector § :
-1
1 AHAf
"% = |dia 4+ : (1.21)
e gJ( D ukﬂ> v/
k‘G’CJ‘
870 =S ANZLL (1.22)
Vf

which is a typical Wiener filtering estimator for the sources.

8Note that H p(Ck f() N (Cfg; O, diagK (ukdm)).

k=
9Notice also p(ng|ng) (ng|GCfe) = NC (ng; AfGCfg, VfI[).
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Algorithm 1 [Ozerov 10].

input {x fg}i’le, binary matrix G, initial parameters 6.

repeat
E step
E-sy; step: Compute E?Z with (1.21), then §¢, with (1.22), and then Q?Z with (1.24).
E-cy; step: Compute Zzzﬂ with (1.18), ¢, 7o with (1.19). Then szﬂ with (1.25).
M step
Mixing filter: Update A ; with (1.26), then v with (1.27).
NMF: Update wy;, with (1.28), then hy, with (1.29).

until convergence
return the estimated source images by applying inverse STFT on {A4;; /$;, ﬂ}?’;:l.

M step Replacing (1.16) into (1.6) and discarding constants, £(6) writes:

F,L
’ 1 ) A )
5(0) = Z (—]log(Vf) — WU'{ngXI]_cI[ — AfSﬂXI}IZ — ngs?eAI; + AfQ;?%AI}I}) +
Fa=1
FLK e
) (— log(wyihye) — =5 > : (1.23)
Flk=1 Wykllke

where wy, ¢ is replaced With (1.12).‘ 7}2 = Eq‘(sﬂ) [sfgs?g] , szﬂ = Eq(c;0) [|ck. pe|?] are
second order moments with respective expressions:

Qf =%7 + 8787, (1.24)
Qe =Spppe | pel*. (1.25)

Differentiating (1.23) with respect to A [Hjorungnes 07] and cancelling gives:

L L -1
A= (Z xﬂs§}5> (Z Q?j) . (1.26)
/=1 /=1

Similarly, maximising (1.23) with respect to v gives the update rule:

L

1 5 s
Vf = E ; (X?[Xfﬁ — Q%Q{XI}IZAfog} + tI'{Q?ZAIJ—cIAf}> (127)

Updating vy is of great importance, and can affect tremendously the quality of the result-
ing audio signals [Ozerov 10].
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Maximising (1.23) with respect to wyy, hye is non-convex. Therefore (1.23) is opti-
mized for wy;, keeping hy, fixed and vice versa, giving the update rules [Févotte 09]:

1 L nc
kk,fe
wszzz—hw , (1.28)
/=1
1 F nc
hpg = — §  SRRSE 1.29
ke F; e (1.29)

The fact that (1.29) considers all frequencies together provides the ability to LGcM-with-
NMF of not introducing permutations of the sources (across frequencies). The complete
EM algorithm of [Ozerov 10] is given in Algorithm 1.!°

Estimation of source images from EM The mixing filters and the source signals are al-
ways recovered up to a scale factor, which in STFT MASS is frequency dependent. In this
thesis, we assess the separation performance of a method using the estimated source im-
ages. For example, in [Ozerov 10] after the EM has converged we calculate the estimated
j™ source image by applying the inverse STFT with overlap-add to { A;; ¢$;, f@}i ’;:1-

1.5 CONTRIBUTIONS OF THIS THESIS

In this thesis we investigated the MASS problem of multichannel convolutive audio mix-
tures. The novelties of this thesis extend in three perspectives that are respectively pre-
sented on the three core chapters of this manuscript: In Chapter 2 we propose a more
flexible alternative for LGcM-with-NMF where the source prior PSD becomes full rank.
In Chapter 3 we study the MASS for time-varying convolutive audio mixtures. In Chap-
ter 4 we design a joint algorithm to simultaneously solve MASS and audio diarisation
tasks. The three core chapters are followed with a conclusion Chapter 5, where we also
discuss the overall material of the manuscript and express various remaining challenges
and future directions.

Overall, the three contributions can be viewed as different extensions of [Ozerov 10],
as they are presented in this manuscript as three independent models. Nevertheless, they
are complementary and as such any composition of them is straightforward and is envi-
sioned for future research.

Source Modeling In Chapter 2, we inspire from LGcM-with-NMF and propose a new
statistical model for the power spectral density (PSD) of an audio signal and apply it to
MASS. To this aim, we derive a vEM algorithm for parameter estimation and source in-
ference. We model the source signals with the LGcM and we propose to model the vari-
ance uy, ¢, of each source component with an inverse-Gamma distribution, whose scale

10The index of iterations of the EM has been dropped.
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parameter is factorised as in a rank-1 NMF. We name this model Nonnegative Matrix
Factorization through inverse Gamma (NMFiG). NMFiG advances the theory of LGcM-
with-NMF by modelling the audio signal with the same (number of) parameters as the
NMF but without actually factorising the audio signal’s spectrogram. NMFiG also in-
cludes a relevance determination mechanism to weigh the importance of the individual
LGcM components. We benchmark the proposed VEM with the state of the art. Our
results have been published in [Kounades-Bastian 16a].

Source Separation of Moving Sound Sources In Chapter 3 we explore MASS for
time-varying audio mixtures, which arise when the mixing filters are time-varying. Time-
varying mixing filters can describe moving sources, moving microphones, or other changes
in the recording environment such as opening of a window, or a blind, etc. Address-
ing time-varying mixtures is an important feature for a real-world MASS method. To
this aim, we allow the mixing matrix in (1.4) to vary with the time frame. To keep
the parameter space compact we introduce a Markov chain linking the mixing matri-
ces of succesive time frames. The sources are modeled with LGcM-with-NMFE. We
derive a vEM algorithm that uses a Kalman smoother to infer the time-varying mixing
matrix and the source signals. Extensive experiments on simulated and real recordings
show that the proposed method outperforms the block-wise adaptation of two state of
the art MASS methods for time-invariant mixtures. Our results have been published in
[Kounades-Bastian 15, Kounades-Bastian 16b].

Joint Audio Diarisation and Audio Source Separation Audio diarisation is the label-
ing of the audio mixture with the sources (for example the speakers) that are emitting at
each time [Anguera Miro 12]. Audio diarisation is closely related with MASS, and in
Chapter 4 we propose a joint formulation of these two problems. We propose a generative
model to perform jointly MASS and audio diarisation of convolutive audio mixtures by
augmenting (1.4) with a activity labeling mechanism for every source at the STFT frame
level. We model the sources with the LGcM-with-NMF and derive an EM algorithm to
infer the label (diarisation) and the separated source signals. The diarisation is aided by a
Hidden Markov Model (HMM). The proposed EM shows separation performance compa-
rable with [Ozerov 10], while outperforming a state of the art speaker diarisation pipeline.
Our results have been published in [Kounades-Bastian 17].



CHAPTER 2

A GENERATIVE MODEL FOR
SPECTROGRAM FACTORISATION

We inspire from the LGcM-with-NMF design, and propose a statistical model for the
PSD of an audio signal. The heart of this model is a novel setting of the variance of
the LGcM components. We assume the variance of a LGecM component to be a latent
random variable, following an inverse-Gamma distribution, whose scale parameter is
factorised as a rank-1 model. This way we inherit all useful properties of the LGcM-
with-NMF but without restricting the source PSD matrix to be of low-rank. We name
this new model Nonnegative Matrix Factorization with inverse-Gamma (NMFiG). We
include the proposed formulation to a MASS framework. We derive a vVEM algorithm
for estimation of the model parameters and source inference. We evaluate its perfor-
mance on separating real-world and simulated underdetermined mixtures of speech.
NMFiG shows a benefit in source separation performance compared to a state of the
art LGecM-with-NMF technique. Finally we draw our insights on the ability of NMFiG
to weigh the importance of the LGecM components.

2.1 INTRODUCTION

In LGcM-with-NMF the variance of a component is considered to factorise over fre-
quency and time, as in (1.12). In the present chapter we propose an extension of LGcM-
with-NMF where the component variance becomes a latent random variable and no fac-
torisation is applied on her. We envision the extension to be an alternative for LGcM-
with-NMF in MASS of speech mixtures. As our interest is in multichannel mixtures, we
include the proposed LGcM variant in the MASS framework of [Ozerov 10]. We derive
the associated VEM, because the E step of an exact EM is not analytically tractable.

The main feature of the proposed LGcM variant is the design of the prior distribution
placed on the component variance uy ro. We choose this prior from the family of Inverse

13
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Gamma (IG) distributions; a family that is common in Bayesian NMF [Cemgil 09]. The
IG distribution is defined by two non-negative parameters, a shape and a scale. We choose
to parametrise the scale with a factorised rank-1 model, reminiscent of NMF, and let the
shape control the participation of the specific component. Hence there is a single shape
parameter per component that does not depend neither on frequency nor on the frame.
Recall that the variance of a source in LGcM is the sum of the variances of its components.
This way we make the proposed parametrisation to have almost the same number of model
parameters as the LGcM-with-NMF (up to few additional shape parameters).

We now detail NMFiG and include it in the multichannel framework of [Ozerov 10].
Then we derive the associated vEM, that we name variational EM with NMFiG (VEMIiG).
In Section 2.4, we benchmark the vVEMiG against [Ozerov 10] on MASS tasks of simu-
lated and real-world underdetrmined mixtures of speech.

2.2 MULTICHANNEL NONNEGATIVE MATRIX FACTORIZA-
TION WITH INVERSE GAMMA

We work under the narrow-band assumption, which allows us to write a time-invariant
convolutive mixture of I channels in the STFT with (1.4). Then, to express the mixture
probabilistically, we use (1.15) as in [Ozerov 10].

2.2.1 THE LGCM SOURCE MODEL WITH INVERSE GAMMA

We consider the source coefficients as hidden variables following LGcM, with (1.14). In
LGcM-with-NMF the variance uy, ¢, is assumed to factorise over f and ¢ (see (1.12)).
That factorisation may introduce artefacts if applied to intricate audio signals, such as
speech. We propose here to relax this assumption, by letting u;, 7, to be a hidden random
variable. Therefore (1.11) naturally becomes:

pck, ol p0) = Ne (i pe; 0, up p0) - (2.1)

We set uy, 7o to follow an inverse Gamma (IG) distribution:

p(uk,e) = ZG (uk,pe; Yis Ok, ge) (2.2)

with the scale-parameter 0, s, € R, factorised as:

5k,f€ = wfkhkz, (2.3)
with vy, wyk, hie being non-negative parameters to be estimated.

The key point of (2.3) is to keep the number of model parameters low. Since, having
Ok, ¢ factorised as a rank-1, make the number of parameters be equal (plus few additional
i) with those of LGcM-with-NMF.
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et ()

Figure 2.1: Graphical model for MASS with NMFiG. Latent variables are shown as
circles, observations as double circles, deterministic parameters with rectangles.

The additional v shape parameters play an important role as they are responsible to
suppress irrelevant components, thus balancing the capacity of LGcM. Recall that the
assignment of components to sources is known beforehand.

Since there is no factorisation on the variance uy, ¢y of the NMFiG component. The
NMFiG component may be able to represent more intricate spectrograms, compared to
its analog: the LGcM-with-NMF component (recall (1.12)).

2.2.2 THE COMPLETE DATA PROBABILITY DISTRIBUTION

Our set of hidden variables H = {s, c s, uy, f@}i’é}’fi , consists of the sources, the com-
ponents, and their PSD. Let all components, and all PSDs to be mutually and individually
independent a priori. The complete data PDF writes:

F\L F,LK F,LK
p(Hxirni0) = [ pxpelspe) T plongelunse) [] plunge). @4
fe=1 flk=1 £l k=1
The set of model parameters 6 = {Ay, vy, wyg, hkg,%}i’f, 1;[:(1 consists of the mixing

matrices, the residual noise variance, and the IG parameters. The graphical model where
we see the prior dependencies of the hidden variables is depicted in Fig. 2.1.

2.3 THE VEMIG ALGORITHM

We develop a variational approximation of the true posterior (see Section 1.4.1):

F.L F LK
q(H) = H q(cse) H q(Uk,pe).- (2.5)
fA=1 k=1

VEMIG consists of an E step and an M step. In the E step we first compute g¢(uy r¢) wWith
(1.8), and then compute g(cy,) also with (1.8). Interestingly both factors are identified in
closed form. In the M step we optimize £(6) given by (1.9), to update 6.

2.3.1 E STEP

For ease of presentation we partition the E-step in three steps: The E-uy, ¢, step that com-
putes g(u, ¢), the E-c, step that computes ¢(c ), and the E-s, step that computes g(s /)
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whose mean vector Sy, € C’ is the MAP estimator for s e

E-uy, ;o step Eq. (1.8), replacing (2.4) and discarding constants, writes:'

q(up, o) < p(Ur, o) €Xp <Eq(cﬂ) [10gp(0k,fz|uk,ffz)]) x (2.6)
ZG (wk,p6; Grer i ge). 2.7)
with g, and dj, s, computed with:
gk =7 + 1, (2.8)
dr, e =0k, p0 + QP so- (2.9)

Note, that the expectation in (2.6) is:

ne
exp (Eq(c;,)[log ek, relur,ge)]) o (uk,p0) " exp (—ﬁ) 7 (2.10)

with Q. ¢, = Ey(c,) [l se|*] € Ry provided from E-c, step. The calculation of Q}ly
will resolve, after we identify the g(cy,) in the next paragraph. Note, that we made no
assumption on the functional form of the distribution ¢(c /).

E-cj, step We use (1.8), but now we are interested in ¢(cy,); replacing (2.4) into the
former and discarding any terms not depending on c,, (1.8) writes:

K
q(cye) o< p(xselsse) H exp (]Eq(uk,fé) [log p(ck, pelur,ze)]) = (2.11)
k=1
N (cge; €50, 277), (2.12)
where, using (2.7) and (2.1), we easily find:
exp (Eo(u o) log plex.peluur, ge)]) o Ne (en pe; 0, ge) (2.13)
with 4y, so € R, defined:
1 -1 d}c fe
Uk, e = | Equ — = —, 2.14
U, fe ( a(ur, o) [ ukﬂD 0 (2.14)
The posterior mean vector ¢, and covariance matrix E?; are obtained with:
-1
1 AHA
E’}j = |diag, (A—> + GTf—fG] , (2.15)
Uk, fe \Zi
& :z;;GTAIJ;"i—fJ‘f, (2.16)

Recall here, Z; ¢ needed for (2.10). Easily, ZZ f¢ is computed with (1.25) although
using Ezzﬂ from (2.15) and ¢y, ¢, from (2.16).

"We drop from (1.8) any multiplicative factor that does not depend on the variable at stake, here uy fo.
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E-s;, step Due to LGcM, and as shown in the appendix, ¢(s )is:
q(sge) = Ne (sge; 850, 57) (2.17)

with covariance matrix X', and mean vector 8, given:

-1

1 AHAf
> — | di / 2.18
fe 1ag]< z ﬂk}fﬁ) + Vf ) ( )
kel
A S X
S0 =E7}eA?V—Jf- (2.19)

of course, Sy is the MAP estimator for the separated sources provided by VEMiG. Jux-
taposing (2.18) and (1.21), both have similar forms, but in the latter the component PSD
Uy, ¢¢ 18 a rank-1 parameter, where in the former is s, (an unfactorised expectation).
This major difference adds flexibility on the Wiener filters that provide s ;.

2.3.2 M STEP

In this section we develop the updates for the parameters in 6.

M-A;, v, step Because our mixing equation is (1.15), that is the same with [Ozerov 10],
we obtain the updates: (1.26) for Ay and (1.27) vy, as derived in Section 1.4.3. The

second order moment of the sources Q?Z is also given with (1.24), but with Z?z from
(2.18) and s, from (2.19).

M-IG step The ECDLL for the IG parameters is given by (1.9), by replacing (2.2):
FLK

L ({wfkahkéﬂ/k}i’g%]’fiJ = Y By 108 ZG (upe; 1o, Oppe)] = (2.20)
Flk=1

F,L.K
« - weh
> (% log (wyrhke) —log () — ’Yk<10g<dk,f€) - w(gk)) - M) , (221
- U, fe
fil k=1
with () the digamma function. Maximising (2.21) for wy;, (fixing other terms) results:

Ly

Wy = 7 : (2.22)
e
é:zl U, fe
Maximising (2.21) now for Ay, gives a similar update:
F
hie = —— 1% (2.23)

F
Z -
f—1 o, f€
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Interestingly, the sum now appears on the denominator, whereas in the standard LGcM-
with-NMF appears in the numerator (see (1.28) and (1.29)).

Differentiating (2.21) for 74 and setting the result to zero, results in the equation:
oL werh
> <log (M> — () + 9 <gk>> =0. (2.24)
fe=1 di.pe

Eq. (2.24) is non-linear on ~,. To solve (2.24) we replace gy, dj, ¢, with their respective
expressions (2.8), (2.9). Then (2.24) writes:

F,L Qr]c
> (—1og (1 - ’“’“’”) — () + V(n + 1>) =0. (2.25)

= wyrhie

Using the reflection formula: ¢ (v, + 1) = () + ka [Abramowitz 65], (2.25) writes:

- Q.o 1
Z(—log<1+ : )—M+M+7>:0. (2.26)
k

s W srhie

Solving (2.26) for y, is now closed form:

FL
T = : (2.27)

F.L Qe
kk, e
2o (1 )

Eq. (2.27) is an ML estimator for the shape parameter of an IG probability distribution.

2.3.3 IMPLEMENTING VEMIG

In Algorithm 2 we give the VEMiG algorithm as it is implemented. The order of execution
of the respective E and M steps is chosen empirically.

2.4 EXPERIMENTAL STUDY

In this section we benchmark VEMiG on MASS tasks of underdetermined convolutive
stereo mixtures of speech. In specific, we evaluate our method in separating .J = 3 speech
signals from artificially-generated convolutive stero / = 2 mixtures, and we present av-
erage results over 8 realizations with different source signals. As baseline method we
choose [Ozerov 10], as it is the closest in spirit to our method. Initially, we describe the
simulation setup and the mixture configuration. Then we explain how we choose initial
values for the parameters 6 for the vEM and for the baseline. We evaluate the separated
signals by the two methods, quantitatively using standard MASS measures [Vincent 06].
We end with a subsection with insights on by-properties of the NMFiG model.
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Algorithm 2. VEMiG: A vEM for multichannel source separation with NMFiG.

input {x fg}i’le, binary matrix G, initial parameters 6.

N . FLK

initialise: The IG parameters { iy}, .

repeat
E step
E-s gy step: Compute E?Z with (2.18) and 8, with (2.19). Then ’}2 with (1.24).
E-cy step: Compute Zzzﬂ with (2.15), ¢, 7o with (2.16), then Z;ﬂ with (1.25).
E-uy, ¢ step: Compute g, with (2.8), dy. s with (2.9), then 1y, o with (2.14).

M step

M-IG step: Update wy;, with (2.22), then hy, with (2.23), and then ~;, with (2.27).
M-A step: Update Ay with (1.26).
M-v; step: Update vy with (1.27).

until convergence
return the estimated source images by applying inverse STFT on {A;; $; fg}?’le.

2.4.1 INITIALIZING THE MODEL PARAMETERS

LGcM models have a large number of parameters to be estimated. Both vVEMiG and the
baseline method are iterative optimization techniques. As such, they can stuck in local op-
tima of the ECDLL, if their parameters are initialized improperly. For LGcM-witn-NMF
based MASS methods it has been observed [Ozerov 10, Arberet 10] that the initial values
for the NMF parameters {wy, hkg}?le are of paramount importance for an acceptable
quality of source separation to be achieved. In this thesis we use two initialization strate-
gies which we describe now in detail, and refer here in subsequent chapters.

Semi-blind initialization of NMF parameters The NMF parameters wy, hy of a given
source j are initialized by applying the KL-NMF algorithm [Févotte 09], with K; = 20,
to the power spectrogram of a corrupted version of source j. The corrupted version is
made by adding to source signal j, scaled versions of all other interfering sources. The
corruption is controlled by a signal-to-noise ratio (SNR) R. We test three different levels
of corruption, namely R = 20dB, R = 10dB and 0dB. With 0 dB meaning here equal
power of the desired signal (s;(¢)), and the sum of all interfering source signals. Clearly
R = 20 dB is a quite favorable initialization aiming to show the upper bound of EM’s
performance, whereas R = (0 dB approaches the realism. This NMF initialization process
is applied independently to all sources j € [1, J]. The calculated NMF initial parameters
are used for both the VEM and the baseline method.
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Blind initialization of NMF parameters For a blind initialization procedure of the
NMF parameters, we use a state of the art blind source separation method to provide
(initial) estimates for the source spectrograms. NMF decomposition is then applied on
those spectrograms to obtain the initial NMF parameters. As state of the art blind source
separation method we chose the sound source localization method of [Dorfan 15], which
is a good representative of recently proposed probabilistic methods based on mixture
models of acoustic feature distribution parametrised by source location, see for example
[Mandel 10, May 11, Woodruff 12, Traa 14]. The method of [Dorfan 15] relies on a mix-
ture of complex Gaussian distributions (CGMM) that is used to compare the measured
normalized relative transfer function (NRTF) at a pair of microphones with the expected
NRTF as predicted by a source at a candidate position®. After identifying the parameters
of the CGMM with an EM algorithm. Selecting the J first maxima of the prior probabil-
ities amounts to localize the .J sources. Selecting the TF points that have been clustered
at each of those J maxima (after comparing the posterior probabilities of the CGMM),
provides binary masks for the J sources. Then by applying those masks onto the mixture
STFT we obtain the source image STFT coefficients for every source. Then we take the
absolute squared values of the estimated source image of source j, average them across
channels, supply them (as F' x L matrix) to the KL-NMF algorithm (with K; = 20)
[Févotte 09]. Thus obtaining initial NMF parameters. The initial NMF parameters are
provided to both the vEM and the baseline method.

Other parameters: For both the VEMiG and the baseline we set Ay = 1,V f (an ] x J

matrix filled with ones), and set vy = % Z?’le X?EX 7, Vf. We run 20 iterations. For

the additional parameters of VEMiG we initialise: v, = 1 and tg, r0 = wyrhie, Vf, €, k.

2.4.2 SIMULATION SETUP

The convolutive mixtures were generated using a database of binaural impulse responses
(BRIR) [Hummersone 13] as mixing filters, and (single channel) speech signals as the
source signals (they were 2s signals sampled at 16kHz), randomly chosen from the TIMIT
database [Garofolo 93]. The BRIRs were recorded with a dummy head equipped with
I = 2 microphones (one per each ear), placed in a large theater-like room of dimensions
23.5m x 18.8m x 4.6 m with reverberation time RTgy =~ 0.68 s [Hummersone 13]. The
original BRIRs had 16,000 taps each, but we truncated them keeping only the leading
512 taps because of memory limitations®. The BRIRs were sampled at azimuthal points
from —90° to 90° with spacing of 5°, on a circle of radius 1.5m and center the dummy
head. We selected BRIRs for J = 3 distinct azimuths, namely for —85°, —20°, 60°.
We convolved each of the single channel source-signals with the pair of BRIRs for that
respective azimuth. In this way we displayed a source signal at a spatial position. The
source-images were then summed together to provide the mix signal. We then calculated

There is one CGMM component for each candidate source position on a predefined grid. The grid is
defined in advance based on a direct-path propagation model.
3Hence, the effective RTg( is somewhat reduced.
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Table 2.1: Quantitative Audio Source Separation Evaluation of NMFiG.

R 20 dB 10 dB 0dB Blind Init.
Metric Method S1 So S3 S1 So S3 S1 So S3 S1 S9 S3

NMFiG 11.0 96 8.7 97 81 8.0 52 49 38 58 64 28
SDR  [Ozerov 10] 10.1 85 8.2 95 77 1.5 47 3.0 3.5 51 6.7 25
[Dorfan 15] - - - - - - - - - 43 41 1.7

NMFiG 158 159 14.2 13.7 133 127 72 79 5.2 73 125 4.1
SIR  [Ozerov 10] 14.8 14.8 12.9 13.1 12.8 11.7 6.6 7.1 46 78 12.6 4.1
[Dorfan 15] - - - - - - - - - 13 74 8.9

NMFiG 152 155 126 15.6 162 129 11.1 12.0 10.7 133 119 96
SAR [Ozerov 10] 144 16.5 12.7 155 164 12.7 106 11.7 9.6 13.2 127 9.8
[Dorfan 15] - - - - - - - - - 120 7.0 84

the STFT of the mixture, using a 512-taps sine-wave analysis window with 50% overlap
(of samples) between frames and provided to the algorithms.

2.4.3 RESULTS ON AUDIO SOURCE SEPARATION

Table 2.2: Input scores for the mixture.

SDR SIR SAR
S1 S9 S3 S1 S9 S3 S1 S9 S3
Mixture —0.8 —5.9 —4.6 -03 —-51 =37 +00 400 +o00

We evaluated the source separation performance of the vEM against, [Ozerov 10], and
against [Dorfan 15] (used alone, i.e. using its binary masking estimates). For performance
evaluation, we used standard objective measures for MASS [Vincent 06], that are calcu-
lated by comparing the estimated and ground truth source images. The measures are: The
signal-to-distortion (SDR), the signal-to-interference (SIR), and the signal-to-artefact ra-
tios (SAR), all in dB. All performance scores are reported in Table 2.1. Every reported
value is an average result over 8 mixture realizations. The same azimuthal positions were
used for all 8 mixtures, but the speech contents of each were randomly chosen from the
TIMIT database. For comparison we report in Table 2.2 the input scores*

Results with controlled initialization From Table 2.1 we see that for R = 20dB the
vEM improves the SDR of all sources by at least 11.8dB (least for s;). The SDR of s,
increases by 15.5dB (from —5.9dB at the input to 9.6dB after running the vVEM). Similar
improvements are achieved also from [Ozerov 10], again for s, and R = 20dB the SDR
rises by 14.4dB (from —5.9dB at the input to 8.5dB). The proposed VEM scores higher
for all J = 3 sources, outperforming [Ozerov 10] by 0.9dB for s, 1.1dB for s, and 0.5dB
for s3. For R = 0dB, we see that all scores are lower, clearly due to the corruption of
initialization. Still, a consistent benefit is observed in favor of the vEM, for example

4Separation scores calculated using the mixture signal as estimator for every source.
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the vEM attains an SDR of 4.9dB for s, with the baseline scoring at 3.0dB. The vVEM
rises the SIR of s, by 21dB (from —5.9dB to 15.9dB at R = 20dB). In terms of SAR,
we observe that it starts from perfect in the input (+oco as all sources are intact in the
mix containing no artefacts) and degrades, as any separating technique introduces some
artefacts. In SAR, the scores of VEM and [Ozerov 10] are similar, which possibly happens
due to them sharing the same mixing model.

Results with blind initialization In terms of SIR and SAR the results are mitigated.
Therefore we focus on SDR as it summarizes the overall quality of the separated signals.
We see that the initialization method [Dorfan 15] attains SDRs of 4.3dB for s;, 4.1dB
for so, 1.7dB for s3. Execution of either the vVEM or the baseline [Ozerov 10], increases
the scores provided by [Dorfan 15]. After initializing the NMF with [Dorfan 15], the
vEM improves the SDR scores by: 1.5dB for s;, 2.3dB for s, and 1.1dB for s3. For
s1, s3 the VEM outperforms the SDRs of [Ozerov 10]. The overall improvement of SDR
is attributed to the use of the NMFiG model in the place of the standard LGcM-with-
NMEF. And this inspires us to further investigate the potential of NMFiG full-rank PSD
modeling, for source separation and beyond.

2.4.4 THE SHAPE HYPERPARAMETER OF INVERSE GAMMA

We asserted earlier that v, controls the contribution, of the k-th component in the PSD
of ji-th source. Eq. (2.14) shows that a high (respectively low) value of v, decreases
(respectively increases) the value of iy, ro. Then wy, ¢, contributes in the posterior estimate
of 5; ¢ via (2.18). As ~; is shared across f, ¢, it controls all @y, 1.r1.;, simultaneously.
Fig. 2.2 demonstrates experimentally this fact: For R = 20dB where components are
learned from the true source spectra the VEMIG is able to tell which k’s are “relevant” for
(2.18) as quantified by extremely small (relevant) or extremely high (irrelevant) estimated
values for v,. When for R = 0dB where the learned components are more corrupted, the
vEM is less decisive and yields less extreme values for ;. Recall that in both cases vy is
initialised to 1.

2.5 CONCLUSION

In this chapter we introduced the NMFiG; a new method to model sound source PSD in-
spired by the LGcM-with-NMEF. While in conventional Bayesian NMF, the source PSD is
modeled with a NMF for which a prior probability distribution is set, in NMFiG we first
model the component PSD with a prior distribution (for instance IG), to later on impose
an NMF structure on the scale parameter(s) of the IG prior. We incorporated NMFiG
into a MASS fremework, and we derived the associated VEM to infer the source signals.
We assessed the performance of the model and the proposed vEM in the challenging task
of separating the sound sources from undetermined time-invariant convolutive mixtures
of speech signals. The experiments show the interest of the NMFiG when compared to
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log (k)

source

R = 0dB

log ()

source-components

source

Figure 2.2: Estimated values of log(~), at the last iteration of the vVEM applied on the
mixtures of Section 2.4.2, with controlled initialization. Top R = 20dB. Bottom R =
0dB. A higher value of ~y; decreases the contribution of the corresponding component.

[Ozerov 10]. A qualitative visualization of the estimated values of the shape parameter
of the IG, reveals the potential of the NMFiG model to automatically determine the rele-
vant components [Tan 13] of the NMF decomposition. One may envision extending the
NMFiG in terms of the excitation-filter NMF model [Ozerov 12].






CHAPTER 3

SOURCE SEPARATION OF
TIME-VARYING AUDIO MIXTURES

The chapter addresses the problem of MASS from time-varying convolutive mixtures.
Such mixtures can describe movements of the sources and of the sensor-set, and also
changes of the environment that happen during the recording, for example opening
of a window. We propose a probabilistic framework, based on LGcM-with-NMF, on
which we consider the mixing filters to be time-varying, modeled as continuous tem-
poral stochastic processes. We design a vEM algorithm for source separation that uses
a Kalman smoother to track and infer the time-varying mixing matrices. Extensive ex-
periments on simulated time-varying convolutive mixtures and and real-world mixtures,
of speech, show that the proposed method outperforms a block-wise adaptation of a
state-of-the-art time-invariant MASS baseline method.

3.1 INTRODUCTION

In many Human-robot interaction scenarios, there is a strong need to consider mixed
speech signals emitted by moving speakers, and/or recorded by a moving robot, and per-
turbed by reverberations. More generally, changes in the environment such as door/window
opening/closing or curtain pulling must also be accounted for.

All those facts can be represented by the variation over time of the acoustic channel
between microphones and sources. The vast majority of works in MASS from convolutive
mixtures deal with time-invariant mixing filters. Time-invariant mixing filters are valid
when the acoustic channel is time-invariant, which happens when the position of sources
and microphones is fixed. In this chapter we consider the mixing filters as time-varying
and investigate MASS on such mixtures through a probabilistic formulation.

We start by reviewing the MASS literature for time-varying mixtures and position-
ing ourselves in. Then, in Section 3.3, we present the proposed probabilistic model. In

25
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Section 3.4 we derive the associated VEM. In Section 3.5 we report the results of the
experimental study. In Section 3.6 we conclude, discuss, and give promising future direc-
tions.

3.2 LITERATURE REVIEW ON MOVING SOUND SOURCE
SEPARATION

Early attempts addressing the separation of time-varying mixtures, consisted in block-
wise adaptations of time-invariant methods: The observations (STFT mixture coeffi-
cients) are split in blocks of (STFT) frames, and a time-invariant MASS method is applied
to each block. Hence, block-wise adaptations assume time-invariant filters within blocks.
The separation parameters are updated from one block to the next and the separation re-
sult over a block can be used to initialize the separation of the next block. Frame-wise
algorithms can be considered as particular cases of block-wise algorithms, with single-
frame blocks, and hybrid methods may combine block-wise and frame-wise processing.
Notice that, depending on the implementation, some of these methods can run online.

Most block-wise systems use ICA, either in the temporal domain [Anemiiller 99] be-
ing limited to anechoic setups, or instantaneous mixtures [Hild 02, Aichner 03, Prieto 05],
or in the STFT domain, again for instantaneous mixtures [Mukai 03, Addison 06], but
also for convolutive [Nakadai 09]. The general drawback is that ICA applies only to
(over)determined mixtures. Also the block-wise ICA methods should account for the
source permutation problem, not only across frequency bins, as usual, but across succes-
sive time blocks.

Examples of block-wise adaptation of binary-masking or LGM-based methods are
more scarce. As for binary masking, a block-wise adaptation of [Araki 07] is proposed in
[Loesch 09], where source separation is performed by clustering the observation vectors
in the source image space. Under the LGM model, [Simon 12] describes an online block-
and frame-wise adaptation of the general LGM framework proposed in [Ozerov 12].

One important problem, common to all block-wise approaches, is the difficulty to
choose the block size. Indeed, the block size must assume a good trade-off between
local channel stationarity (short blocks) and sufficient data to infer relevant statistics (long
blocks). The latter constraint can drastically limit the dynamics of either the sources or
the sensors [Loesch 09]. Other parameters such as the step-size of the iterative update
equations may also be difficult to set [Simon 12]. In general, systematic convergence
towards a good separation solution using a limited amount of signal statistics remains an
open issue. Another LGM approach that uses an autoregressive (AR) signal model has
been seen in [ Yoshioka 11].

Dynamic scenarios have been also addressed in [Markovich-Golan 10], where a beam-
forming method for extracting multiple moving sources is proposed. This method is ap-
plicable only to over-determined mixture. Iterative and sequential approaches for speech
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enhancement in reverberant environment have been proposed in [Weinstein 94] and em-
ploy an EM framework with a form of Kalman filtering. However, only the case of a
determined mixture of two sources and two microphones was addressed.

Separating underdetermined time-varying convolutive mixtures using binary masking
within the LGM framework was proposed in [Higuchi 14a]. The mixing filters are con-
sidered as latent variables that follow a Gaussian distribution with mean vector depending
on the direction of arrival (DOA) of the corresponding source. The DOA is modeled as
a discrete latent variable taking values from a finite set of angles and following a dis-
crete hidden Markov model (HMM). A vEM algorithm is derived to perform inference
of the sources and of the DOA sequence. This approach provides interesting results but
it suffers from several limitations. First, the separation quality is poor, proper to binary
masking approaches. Second, the capacity of the mixing filters is limited, due to the use
of a discrete temporal model to represent a continuous variable (the source TDOA).

In the present chapter, we consider time-varying mixing filters and model them as hid-
den random variables. In contrast to [Higuchi 14a], our model for the mixing filters is
an unconstrained continuous-valued temporal model. As for the source signals we use
the LGcM-with-NMF discussed in Section 1.4.2 In this chapter we aim to discover im-
provements in separation performance, emerging from the modeling of the time-varying
channel. Thus, incorporating alternative source models, such as the NMFiG from Chap-
ter 2 is left for future research.

We must note that an earlier reference to the incorporation of a latent Bayesian con-
tinuous model into the underlying filtering, with application to speech processing, can
be found in [Gannot 03]. Two schemes were proposed, namely a dual scheme with
two Kalman filters applied sequentially to the signal and to the filter (the system), and
a joint scheme using the approximated unscented Kalman filter, applied jointly to the
signal and to the filter. Though inspiring, those schemes were applied to single-channel
speech enhancement and speech dereverberation (i.e. a unique speech signal without
interfering sources), and not to MASS. In the present chapter we provide a rigorous treat-
ment of the joint, channel and LGcM-with-NMF signal estimation, using the variational
approach. The proposed method may be viewed as a generalization of [Ozerov 10] to
moving sources, moving microphones, or both.

3.3 AUDIO MIXTURES WITH TIME-VARYING FILTERS

In the STFT representation of an audio mixture with (1.4), the mixing matrix relates the
spatial positions of the source signals and the microphones. Working with (1.4) where
A ¢ does not vary with the time, implies that the positions of sources and microphones
are fixed during the recordings. Such an assumption is quite restrictive for natural audio
scenes where the speakers and the sensor-set can move during the recordings. We there-
fore generalise (1.4) to represent scenarios where the acoustic path linking the sources
with the microphones is now time-varying.
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To do that, the mixing equation (1.4) naturally becomes:
ng:Afgng—i-bfz, 3.1

with A, being now both frequency- and time-dependent. Eq. (3.1) assumes that the
acoustic channel is not varying within an individual frame, which is a reasonable assump-
tion for a wide variety of applications. Notice here, that (3.1) is also eligible to account for
various environmental changes, beyond source movement, such as opening of a window
or moving of furniture.

Similar with (1.15), the conditional PDF of the mixture, given channel and sources is:

P(Xgel Ao, spe) = No(Xpe; Apesye, vilr), (3.2)

with v; being a parameter to be estimated. For sy, we use LGcM-with-NMF, from Sec-
tion 1.4.2. We present now the model for the time-varying mixing matrix.

3.3.1 THE AcousTiCc CHANNEL

A straightforward use of (3.2) in the framework of [Ozerov 10] is unfeasible. Indeed if
we consider, as in [Ozerov 10], every A s, as a (matrix of) model parameters, we end up
with an enormous parameter space. To circumvent this issue, we let the mixing matrix
A 4 to be a hidden random variable and parametrise its temporal evolution instead, with
much less parameters.

To do that, we vectorise A 7, by vertically concatenating its .J columns {a;, fg}‘jle into
a single vector a, iy € C'/, ie. a. ;0 = vec(Ay) = [alTﬂ . a}ﬂ]T. In the following
a. s is referred to as the mixing vector. Then we assume that for every frequency f the
sequence of the L latent mixing vectors: a. ¢1.7, 1s ruled by a first-order LDS, where the
prior distribution and the process noise are assumed complex Gaussian:

plapola. po1) = N (a gos . g1, %) (3.3)
p(a:,fl) :-/\/’c (a:,fl;l'l'?%z]?) . (34)

The mean vector p§ € C'” and the evolution covariance matrix ¢ € C'/*!” are model
parameters to be estimated. Note, that 3% is expected to reflect the amplitude of variations
in the channel. Also, (1.4) corresponds to the particular case in the proposed model when
2‘} = Oryx1s. Indeed, in that case the latent state a. o collapse to a. r; and the mixing
matrix A o reduces to its time-invariant version A ;.



29 CHAPTER 3. SOURCE SEPARATION OF TIME-VARYING AUDIO MIXTURES

Wk, he

Figure 3.1: Graphical model for time-varying convolutive mixtures with NMF source
model. Latent variables are represented with circles, observations with double circles,
deterministic parameters with rectangles, and temporal dependencies with self loops.

3.3.2 THE COMPLETE DATA PROBABILITY DISTRIBUTION

The complete data probability distribution of all hidden variables: = {a. ¢, 1, Sse}

. FLK .
observations: {ng}i’;zl, and model parameters: ¢ = {p,;%, 3% wrk, e, Vf}f”m;zl writes:

F L
p(H,%1.r1.1;0) :H a,f1 Hp relas o)
f=1 (=2
F.L FLK
LI p(xpelAgeispe) T plenso)- (3.5)
f,f:l f,f,k)zl

The complete graphical model of the proposed probabilistic model for audio source sep-
aration of time-varying convolutive mixtures can be seen in Fig. 3.1.

3.4 THE VEMOVE ALGORITHM

Exact inference of the posterior distribution p(H|x1.r1.1; 6) is intractable' for (3.5). There-
fore, we construct a VEM to infer the sources, the mixing matrices and estimate the model
parameters. We call the proposed algorithm variational EM for moving environments
(VEMoOVE).

In the logic of Section 1.4.1, we approximate the posterior as ¢(H) ~ p(H|x1.r1.1.;6)

with:
Hq a1 H al(cye). (3.6)

fil=1

Each factor of ¢(#) is computed with (1.8). At the E step of the VEMoVE, we first
compute ¢(cy,) having at hand a previous estimate for ¢(a. s¢), and then compute g(a. /)
using the just computed ¢(c;). In the M step update 6 by maximising £(6) with (1.9).

'The PDF of the random variable A teSye, that is a product of two Gaussian r.v.’s, is intractable.
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3.4.1 E STEP

For clarity we express the E step as three substeps. The E-a. s, step computes g(a. f/).
The E-cy, step computes g(cs¢). And the E-sy, step that computes g(s ).

E-a. ;, step With (1.8) it is straightforward to show that the joint posterior distribution
of the mixing vector sequence writes:

L L
q(a. fi.1) a. f1 Hp el pe1) Hexp (Eqes;0) [log p(xpelAge,spe)]) . (B.7)
=2 =1

Analysing the expectation in (3.7), we have:

eXp (Eq(sz) [IOgP(Xﬂf’Aﬂ, Sfe)D x (3.8)

1 aQ & S
exp <_Eﬂ' {—Xl}lgAfeSfZ — (AfESfZ)H Xfr + AI}ZQ?EAW}> = (39)
Ne(ae pfp, 2f0),  (3.10)

with 87, = By, [S5e], QFp = Eq(s,,)[85¢8Y%,] computed at the E-sz step. And where:

L\
(Q”ST ) : (3.11)
Vs
La La X Z Jay
vy
./\/'C(u}‘}; a. fr, E}ag) can be seen as an observation PDF of p'f;, given the hidden state a. ;.

In the VEM we need the posterior distribution ¢(a. s¢), for all frames ¢. To calculate
q(a. ) we use the Kalman smoother algorithm [Bishop 06]; a recursive algorithm that
consists of a forward pass and a backward pass. The two passes are afterwards combined

to give g(a. f/):
q(a.p) = Ne (a ;4. 0, 2%) ; (3.13)
with covariance matrix E?Z € C!7*17 and mean vector a. ;o € C'’, given with:
-1
= — <2¢“ + x5 1) , (3.14)
a a_l a a1 a
dge =3 (B0 w20 ul), (3.15)

with 24’@ , p, y » provided by the forward pass, and with e 0 p, 17 » provided by the backward
pass. We now detail the forward and backward passes.
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E-a. 4, step - (forward pass) The forward pass recursively provides the joint distribution
of a. ¢, and the causal observations. The mean vector ufﬁ? € C' and covariance matrix

Efﬁ? € C!7>*17 of this distribution are calculated as:
a La — a a) L -1
a a La— La a a1 a
u =S (S e+ (SR 55 ). (3.17)
E-a. ;, step - (backward pass) The backward pass recursively provides the distribution

of the anti-causal observations given a. so. The mean vector u?? and covariance matrix

Z?Z of this distribution are recursively calculated with:

a La — a -1 -1
S = ( foo " S ) : (3.18)
% =3¢+ 2%, (3.19)
a a La — La a -1 a
“?f = E§”€< For1 Ko E?fﬂ “?ul)’ (3.20)

where Effj is an intermediate matrix introduced to simplify expressions.

E-cs, step Eq. (1.8), with p(cy, s¢) from (1.11) and ¢(a. f¢) from (3.13), yields:

K
q(cse) o< exp (Eqa, ;) [log (el Age,s50)]) HP(Ck,fe) = (3.21)
P

N (cpe €50, 27) - (3.22)

Eq. (3.22) resembles (1.17) although, now A, is a random variable and we use the
expectations provided from ¢g(a. ;) in its place. The covariance matrix E?‘é and the mean
vector ¢y, are now computed with:

= [diagK (L) + GT%G} 71, (3.23)
ukﬂ Vf
& :z;;GTA;‘ji—fj. (3.24)

A fo = Eya, ﬂ)[A s¢] 18 constructed from &, ;, (reversing the operation of column-wise
vectorisation). And @y = Ey(a, ;) [A},A /] with entries:>

q)jT,ﬂ = Eq(ahﬂ)[aﬁfﬂahﬂ] =tr {Eq(a;,ﬂz) [arifga;fﬂ]} =1tr {Q??,fﬂ . (3.25)
with Qf; = Eqa_,) [a. seal;,] equal:
7}? = E?Z + é:,ffé:},[ﬂa (3.26)

>With the help of the cyclic property of the trace: tr{ AB} = tr{BA}.



CHAPTER 3. SOURCE SEPARATION OF TIME-VARYING AUDIO MIXTURES 32

and Q! ;, its (j,7)-th I x I sub-block.?

E-s;, step As shown in the Appendix, ¢(sy,) is again a complex-Gaussian PDF:

q(spe) = N (876380, 27;) (3.27)
with parameters:
-1
= = dlagJ< > 1UW> + qif : (3.28)
kEK;
X 1

8 50 zzng’;ZV— (3.29)

Eq. (3.29) is structurally similar with (1.22). Notice though, that the filter-term in (1.21)
is A?A ¢ (a time-invariant matrix that becomes singular if / < .J), where in (3.28) itis a
full-rank frame varying matrix ® ¢, that is more generic and flexible.

3.4.2 M STEP

M-p%, 35 step  The update rules, for the LDS parameters are quite standard. The update
for puf 1s given with, see for example Eq.(13.110) of [Bishop 06]:

o = ag. (3.30)

The update rule for 3% is more computationally expensive, due to the need of considering
jointly two successive hidden states a. s, and a. y,_;. The update writes, see for example
Eq.(13.114) of [Bishop 06]:

E (Em + Z (Qu e 12 fe Q21 gt Q22 fé)) (3.31)

where Qf‘lz fo Q% 1o Qg‘ll fo Qgg 10 are the respective, four 1.J x I.J blocks of:

QS = 3 + uinss (3.32)

where Efw I f‘z are some composite statistics:

2(1171 + Ea—l _Ea—l -1
E?Z - 7 a—lf d>a_1 ! a—1 ’ (333)
- I o
€a _ yéa a=1l Ba ¢a=l  ga ! 3.34
ye = 250 (2 f£+1) <E “fé) ' (3-34)

JJ

3Parcel out Q"Z in J2 non-overlapping I x I blocks {Q]T FOT et
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Algorithm 3. vEMoVE: A vEM for source separation of ./ moving sound sources.

input {x fg}?’le, partition matrix G, initial parameters 6.
initialize posterior statistics a. s, E%,

initialize Q% with (3.26) and then ® ¢, with (3.25).
repeat

E step

E-cy step: Compute ZZZﬂ with (3.23), ¢, e with (3.24), then Z;ﬂ with (1.25).
E-s gy step: Compute 27}2 with (3.28) and 8, with (3.29), then Q?; with (1.24).
E-a. j step (measurements): Compute 3, with (3.11) and p'f; with (3.12)
E-a. g step (forward pass):
a La — a— -1 a a La — La a— a
Set B¢ = (' +297") 7 and pf = X9 (T pl + 2 ws).
for/:2to L
Compute X% with (3.16) and p%; with (3.17).
end
E-a. ;¢ step (backward pass):
Set E?i = E?“L and u?aL = ,u‘;iCL”
for/:L—1to1l
Compute 3%} with (3.18).
Compute Z'?? with (3.19) and ,U,?Z with (3.20).
end
E-a. s step (posterior): Compute 2’}2 with (3.14) and a. ;, with (3.15).
Compute Q?Z with (3.26) and then ® f, with (3.25).
Compute 3%} with (3.33), p5} with (3.34), then compute Q3} with (3.32).
M step

M-p§, 35 step: Update p§ with (3.30) and 3% with (3.31).

M-v; step: Update vy with (3.35).

M-NMF step: Update wy, with (1.28), then hy, with (1.29).
until convergence

F.L

return the estimated source images {/1]2 7655, fg} .
fA=1

M-v; step The noise variance v is updated similar to (1.27). The difference with (1.27)
is that the mixing matrix Ay was a model parameter, where now it is a latent variable.
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Therefore using its posterior expectation instead, we identify the update rule for v;:
1 L
=77 Z (XIJ}EX]% — 2Re {X?éAfééff} +tr {Q?‘Ziﬁg}) , (3.35)
/=1

M-wyy, hie step  The update rules for wyy, hy, are given with (1.28) and (1.29) respec-
tively. As for Q) ;, it is given with (1.25), although using the vVEMoVE’s estimates for
Ezzﬂ with (3.23) and ¢ 7, with (3.24).

3.4.3 IMPLEMENTING VEMOVE

The complete VEMoVE algorithm separating J sound sources from an /-channel, time-
varying mixture, is given in Algorithm 3. We would like to discuss here some notes about
the LDS that allowed us to have a numerically stable implementation.

The Kalman smoother algorithm requires >0 1o u fl to be set for the first frame, and
EfL, qu to be set for the last frame. At each iteration we set E?‘f = (2“1 1 2}_1) !
and set p% = E‘m (3% iy + 34" ug). We experimentally found that the best sep-
aratlon scores are attained when we ﬁrst run the forward pass, then set 3¢ L= E ; and
p, 7 7= u 7 7, then run the backward pass®.

3.5 EXPERIMENTAL STUDY

To benchmark the VEMoVE algorithm we conducted a series of experiments with 2-
channel time-varying convolutive mixtures of speech. As in Chapter 2, we use [Ozerov 10]
as baseline. To account for the time-varying nature of the mixtures we run [Ozerov 10]
block-wise; the mixture STFT is partitioned in P = 4 blocks of (consecutive) frames, and
[Ozerov 10] is applied to each block. As discussed in Section 3.1, the block size must as-
sume a good trade-off between local stationarity of mixing filters and a sufficient number
of data to construct relevant statistics. We used P = 4, as it showed better overall perfor-
mance for [Ozerov 10] for the entire range of source trajectories (source movements) that
we experimented. We now discuss the simulation setup and then present our results.

3.5.1 INITIALIZING THE MODEL PARAMETERS

We follow the initialisation strategies presented in Section 2.4.1. To deal with the time-
varying nature of the mixtures, we apply them block-wise.

4The backward distribution for L-th frame is a uniform (as there is no observation for frame L + 1).
Hence X fz, u fi are the covariance matrix and mean vector of a uniform probability distribution on C’.

We may set sz = +ool;; and manipulate (3.19) and (3.20) to obtain expressions for EfaL 15 “?2—1’ but
such scheme had reduced separation performance and we instead chose to set E?GL = E?“L, ,u[;z = ,u?aL
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Semi-blind initialization of NMF and filters For the NMF parameters we use the semi-
blind procedure from Section 2.4.1. For the mixing filters: (initialization of a. /) we used
two strategies. In the first strategy, called Central-A, for each source and each block
p € [1, P] of the baseline method, the BRIR corresponding to the center of the block is
selected for the initialization of the corresponding column of Afc (after applying a 512-
point FFT). For vVEMoVE the vectorised Afv is used as initial a. s, for all frames of the
p-th block. The second strategy, called Ones-A, consists of setting all entries of Afc and
of a, so to 1, Vf, £. Obviously, this is a blind and challenging setup. In both strategies, the
vEMoVe and the baseline are initialized with the same amount of true information.

Blind initialization of NMF and filters In order to deal with the time-varying mixing
setup, [Dorfan 15] is applied in a block-wise manner with P = 4 blocks of frames, in the
same way that we ran [Ozerov 10]. For each source j, the block-wise estimate of source
images (STFT), are concatenated, multiplied by their complex conjugate, averaged across
channels, and supplied (as an F' x L matrix) to the KL-NMF algorithm [Févotte 09]
yielding the initial NMF parameters for the J sources. Those parameters are provided to
both the VEMOoVE and the baseline method. As for the mixing vectors we use only the
Ones-A strategy as truly blind.

Other parameters: Remaining parameters are initialized blindly: E?fg = 10%1;,, IS
a. f1, 2;3 = I;;,Vf,{. The sensor noise variance vy, the baseline method showed the
best performance when initialized with 1% of the (L, I')-average PSD of the mixture, as
suggested in [Ozerov 10]. Our method behaved best with a much higher initial value for
vy, namely 1,000 times the (L, I)-average PSD of the mixture.

3.5.2 SIMULATION SETUP

Artificial mixtures (for semi-blind experiments) Similar with Section 2.4.2, we used
monochannel 16 kHz signals as sources, randomly chosen from the TIMIT database
[Garofolo 93]. Each source signal was convolved with BRIRs from [Hummersone 13] to
produce the corresponding ground truth source image. We made mixtures of J = 3 and
J = 4 sources. The J source images were added to generate the mix signal. The database
of [Hummersone 13] provides BRIRs for azimuthal source-to-head angles in the range
—90° to 90° with a 5° step. To simulate continuous circular movements we interpolated
those BRIRs at the sample level using up-sampling, delay compensation, linear interpola-
tion, delay restoration, and downsampling. Due to memory limitations, we truncated the
original 16,000-tap BRIRs to either 512 or 4,096 taps®. Choosing two different lengths
enables to reveal the effect of the narrow-band assumption, see Section 1.2.2. Note that
the recorded BRIRs have vanished after 4,096 samples, but not after 512 samples.

To measure the effect of speed, we designed two setups for the movement of the
sources around the dummy head, shown in Fig. 3.2. In Type I mixtures, s3 always
moves from 85° to 45°, and the bounds of the trajectory of all other sources is varied

SHence, reducing the effective reverberation time to an extent.
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Figure 3.2: Type I (left) and II (right) source trajectories for the experiments with semi-
blind initialization. In Type I, Sources s; (red) and s (blue) move from —4J to v and from
Y to —1 respectively, Source s3 moves from 85° to 45°. In Type II, sources move: from
0° to —1 and back (s1, red), from 0° to ¢} and back (s», blue), from — to ¢ and back (s3,
purple) and from ¢ to — and back (s, green); note that s3 and s, move twice as fast as
s1 and so. In this example, ¥ = 75°.

with ¢ € {15°,30°,45°,60°,75°, 90°}. Every trajectory is traveled within the 2s of signal
duration (the signals duration is always 32,768 samples), hence we had simulated dif-
ferent source velocities. We created four kinds of mixtures, either with filter 512 taps
or 4096 taps, and with either 3 or 4 sources. The four mixtures are: I-512-3, I-4096-3,
I1-512-3,5 and II-512-4. The STFT was applied to the mixed signal with a 512-sample,
50%-overlap, sine window, leading to L = 128 observation frames. The number of com-
ponents per source was set to |IC;| = 25. The correct number of sources in the mixture
(3 or 4) is provided to the algorithms in all experiments. The number of iterations for all
methods was set to 100.

Artificial mixtures (for blind experiments) For the blind experiments we create an
underdetermined stereo setup of J = 3 simulated moving speakers from TIMIT (two
male and one female). Since the blind initialization method relies on a free-field direct-
path propagation model, we substitute the BRIRs with the room impulse response (RIR)
simulator of AudioLabs Erlangen’, based on the image method [Allen 79]. We defined
a 2-microphone set-up with omnidirectional microphones, spaced by d = 50 cm. The
simulated room had the same size as the one made with BRIRs. On the semi-blind ex-
periments, we simulated sources trajectories that were crossing multiple times, to test the
proposed method in a really difficult scenario. However, the binary-mask initialization
method, due to being applied on blocks of time-frames, it may be subject to source per-
mutation across blocks.® To avoid this problem, we simulated a new setup where the
trajectories of the .J = 3 sources are now not crossing: The 3 sources are all moving in
circle of ¥ = 60° in 2 s, from —65° to —5° for s¢, from —30° to 30° for s and from
5° to 65° for s3, at about 1.5 m apart from the microphone pair center (see Fig. 3.3-left).

%In this case we discarded the fourth source (green line, right plot, Fig. 3.2).

7available at www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator.

8Note however that [Dorfan 15] is not subject to source permutation across frequency bins since all
frequencies are jointly processed in the CGMM model.
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T
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Figure 3.3: Source trajectories for the experiments with blind initialization: Simulations
(left) and real recordings (right).

We simulated two reverberation times, namely 75y = 680 ms (same as in the semi-blind
setup) and Ty = 270 ms (the corresponding mixtures are denoted respectively as Mix-
680 and Mix-270). We tested each mixture as is (noiseless case) and when corrupted with
additive white Gaussian noise at SNR= 4 dB. This resulted in 4 configurations. All re-
ported measures are average results over 10 mixtures using different speech signals from
TIMIT and noise realization.

Real recordings Real-recordings are made in a 20 m? reverberant room (Tgo ~ 500 ms),
using / = 2 omnidirectional microphones in free field, placed in the center of the room,
and spaced by d = 30 cm. For the real-recordings, the blind initialization method was
shown to be much less efficient to separate 3 sources, compared to the simulated experi-
ments, but still worked very well for 2 sources. We thus limited the present experiments
to J = 2 sources. Two speakers (one female, one male) were asked to pronounce spon-
taneous speech while moving on a circle at 1.5 m from the microphones, of about 45°,
two-way opposite motions, starting respectively at about 45° and —45° (see Fig. 3.3-
right). The trajectory was traveled within 2s, hence the source movement was pretty fast.
The two speakers were recorded separately, and their signals were added a posteriori to
make the mix, therefore we could calculate separation scores.

3.5.3 EXPERIMENTS WITH SEMI-BLIND INITIALIZATION

We evaluate the separation performance using standard metrics from [Vincent 06]. We
first discuss detailed results for the particular but representative value of ¥y = 75°. Then
we report the performance of the vVEMoVE with respect to ©J and generalize the discussion.

Fig. 3.4 represents the evolution of average SDR measures with the vEM iterations, for
¥ = 75°, and Mix-I. Let us recall that SDR is a general indicator that balances separation
performance (that is rejection of interfering sources) and signal distortion (that measures
artefacts due to the model/algorithm). Each point in the figure is an average result over all
3 sources, and 10 different runs (with different source signals). The two plots at the top
correspond to mix /-5/2-3 and the two plots at the bottom correspond to mix /-4096-3.
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Figure 3.4: Average (over all sources) SDR vs iterations, under semi-blind initialization.
(top): I-512-3, (bottom): I-4096-3, (left) column is with Ones-A filter initialization strat-
egy, (right) is with Central-A filter initialization strategy. All experiments are at ¢} = 75°.

The two plots on the left are initialised with the Ones-A strategy, the two on the right are
initialised with Central-A.

Effect of NMF initialization Fig. 3.4 shows that the baseline method converges faster
than the proposed method, which is natural since the baseline method operates on blocks
of STFT frames and does not have the computational cost of the application of Kalman
smoothing. Also, the baseline vVEM has less parameters to estimate as the mixing matrix
is deterministic. In I-512-3 (Central-A), the proposed vVEM attains SDR of ~ 9.5 dB for
R = 20 dB. The SDR score slightly drops to 8 dB for R = 10 dB, and then more abruptly
decreases to 2 dB for R = 0 dB. SDR scores of the baseline method at R = 20 dB, 10 dB,
and 0 dB go from 4 to 2.5 dB. The vVEMoVE largely outperforms the baseline method
for R = 20 dB and 10 dB, though in this example the baseline performs slightly better at
R = 0dB (= +0.5 dB over the proposed method).
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Table 3.1: Average SDR and SIR for ¥/ = 75° with semi-blind initialization and Ones-A.

SDR SIR
Proposed Baseline Proposed Baseline
R Mixture S1 So S3 S84 S1 So S3 S4 St So S3 S4 S1 S S3 Sy
1-512-3 93 104 79 - 55 65 40 - 149 16.0 143 - 105 123 84
20dB 1-4096-3 77 79 62 - 47 46 30 - 13.0 137 11.3 - 100 99 6.6
11-512-3 84 82 95 - 44 45 57 - 13.6 13.8 161 - 86 91 122 -
1I-512-4 70 6.6 7.6 9.2 38 39 49 58 114 11.8 142 157 74 87 98 113
1-512-3 79 91 63 - 48 60 31 - 128 13.6 129 - 94 115 72 -
10dB 1-4096-3 69 71 52 - 42 44 25 - 114 11.7 97 - 9.0 92 57 -
1-512-3 71 69 82 - 38 40 53 - 11.5 122 139 - 75 85 113 -
11-512-4 61 6.0 69 8.2 37 39 46 54 104 10.6 12.8 13.7 68 81 88 107
1-512-3 24 27 00 - 1.1 23 -12 - 43 44 -04 - 37 59 0.0
0dB 1-4096-3 20 19 03 - 1.8 21 -08 - 42 36 -02 - 49 51 -05
11-512-3 1.1 11 27 - 00 04 17 - 25 21 39 - 20 33 42

11-512-4 1.8 1.7 34 38 07 1.0 17 23 42 36 53 58 27 32 33 46

Effect of filters initialization Regarding the influence of the initialization of the mixing
vectors, that is Ones-A vs. Central-A, the proposed algorithm proves to be quite robust to
the filter initialisation since it attains similar results in Ones-A and Central-A. The baseline
method scores lower that the proposed method for R = 20 dB and R = 10 dB, but equally
well for R = 0 dB. Interestingly, for R = 20 dB and R = 10 dB, the baseline method
scores (about 0.4-0.7 dB) higher, using the Ones-A (blind) configuration rather than using
the Central-A configuration. Difficult to interpret, but a possible explanation is that we
assess the performance using the source images, rather than the single-channel source
signals. Although, in R = 0 dB the filter information delivered by Central-A becomes
useful since now the performance of the baseline method in Ones-A is about 2 dB lower
than that achieved with Central-A. In terms of SDR and for all tested R, the proposed
vEM shows a clear advantage compared to the baseline method.

Effect of the narrow-band assumption As for the influence of the length of the BRIRs,
we see that the performance of both proposed and baseline algorithms decreases when
the BRIRs change from 512-tap to 4096-tap responses. For R = 20 dB and 10 dB, the
decrease is of about 1.5-2 dB for the proposed method, irregardless the initialization of
the mixing-vectors. The decrease is lower for the baseline method (= 1 dB), but this is
probably related to the fact that the baseline scores are lower. For R = 0 dB, the influence
of the BRIRs length on the performance of the proposed method is quite moderate, but
this is also probably because the SDR scores are much lower than for R = 20 dB and
10 dB. All those manifest that (1.4) becomes a less appropriate model as the reverberation
increases. Note that this is a recurrent problem in MASS in general. Our VEM is not
intended to deal with this problem, but these experiments show that our VEM can provide
quite remarkable SDR scores in a configuration that is very difficult in many aspects
(underdetermined, time-varying, reverberant).

Quantitative SDR and SIR scores Table 3.1 provides per source results at iteration
100 (still averaged over 10 mixtures) and includes also SIR, for 1) = 75° and Ones-A filter



CHAPTER 3. SOURCE SEPARATION OF TIME-VARYING AUDIO MIXTURES 40

Table 3.2: Input SDR and SIR for the semi-blind mixtures (average over the 10 runs).

SDR SIR
Mixture S1 S9 S3 Sq S1 S9 S3 S4
[-512-3 -34 -12 -76 - -20 -05 -59 -
[-4096-3 -26 -20 -75 - -20 -05 -59 -
-512-3 -53 49 -21 - 41 -37 -1.1

m-512-4 -78 -76 -53 -41 -63 -60 -41 -35

initialization. SIR scores focus on the ability of an MASS method to reject interfering
sources. It is obvious from Table 3.1 that for R = 20 dB and R = 10 dB, the proposed
vEM outperforms the baseline in both SDR and SIR for all configurations. In other words,
the hierarchy discussed when analyzing Fig. 3.4 for R = 20 dB and R = 10 dB extends
to per-source results, to Mix-II, and to SIR (at least for Ones-A). SDR improvement of
the proposed method over the baseline ranges from 2.1 dB (s, in II-512-4 at R = 10 dB)
to 4.0 dB (s in II-512-3 at R = 20 dB). SIR improvement of the proposed method over
the baseline ranges from 2.1 dB (s; in I-5/2-3 at R = 10 dB) to an impressive 5.9 dB
(s3 in I-512-3 at R = 20 dB). The results are particularly remarkable for the 4-source
mixture configuration, with a range of output score similar to the 3-source configuration,
and improvement over the baseline method up to 4.4 dB (s3 and s, at R = 20 dB). At
R = 0 dB the SIR results are more deteriorated for the 3-source configurations: they do
not seem to indicate which method performs best (in terms of SIR). However, the SDR
scores at 0 dB are all higher for the proposed method than for the baseline method, except
for s, in mixture /-4096-3 (only 0.2 dB below the baseline though). The improvement
is however more limited than for R = 20 dB and R = 10 dB (maximum improvement
is here 1.3 dB). Finally, at R = 0 dB, it can be noted that for the 4-source mixture,
the proposed method outperforms the baseline method for all sources, and for both SDR
(improvement ranges from 0.7 dB to 1.7 dB) and SIR (improvement ranges from 0.4 dB
to 2 dB).

Improvement over input distortion For a source, the performance of MASS is more
adequately described by the separation gain, that is the difference between output score
and input score. Indeed, the input scores quantify how much the target source is corrupted
in the mixture. A source with low input scores is more difficult to extract than a source
with high input scores. In Table 3.2 we show the input SDR and input SIR scores of every
source.” Subtracting the scores in Table 3.1 and Table 3.2, we get the SDR gains and
SIR gains. We comment the results for R = 0 dB as the most realistic setting (remind
that we are in the Ones-A configuration for filters). For the 3-source mixtures, vVEMoVE
provides a SDR gain ranging from 3.9 dB to 7.8 dB, and an SIR gain ranging from 4.1 dB
to 5.8 dB. As for the 4-source mixture, the sources s3 and s, score higher than s; and ss in
Table 3.1, although they are moving twice as fast as s; and s, and are were expected to be

9We can see from Table 3.2 that the length of BRIRs does not affect the input SIR, as the entries I-512-3
and I-4096-3 are equal to 2" decimal figure. For the SDR scores there is a slight degradation.
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Figure 3.5: Average SDR gain for the vVEM over the baseline method, with respect to
Source Trajectory in semi-blind initialization, for the 4 mixture types, as a function of o
(R = 20 dB, Ones-A initialization).

more difficult to separate. However, they also have higher input scores, so the separation
gain turns out to be quite similar overall.

Effect of speed The source’s velocity of movement is proportional to ¢). Fig. 3.5 plots
the gain of the VEMOVE over the baseline method, that is the (signed) difference of the
VEMoVE’s SDR minus the SDR of the baseline. The results shown in Fig. 3.5 are at
R = 20dB, and Ones-A strategy (most favorable strategy for the baseline). For /1-512-
3, we observe that except at ¥ = 30°, the gain is monotonically increasing for all three
sources, starting from about 3 dB at ¥ = 15° and going up to at least 3.5dB, at v/ = 90°.

There is a consistent improvement of the proposed method over the block-wise base-
line, that increases with the speed of moving sources. This makes sense since the block-
wise baseline method rely on the assumption that filters are stationary on each block, and
this assumption gets mangled as the source speed increases. On the other hand, the pro-



CHAPTER 3. SOURCE SEPARATION OF TIME-VARYING AUDIO MIXTURES 42

Table 3.3: Average MASS scores with blind initialization (all units are in dB).

simulated Mix-270 simulated Mix-680 real recordings

SNR 00 4 00 4 N/A
Method  Src SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR
51 23 -19 4o -45 -19 46 35 29 +4oo 5.5 29 46 00 02 +4oo
Input S9 38 30 +o0 -57 3.0 46 27 -19 +4oo -48 -20 46 00 02 +4oo
S3 3.1 25 400 5.1 2.6 4.6 33 27 +oo 53 27 4.6 - - -
51 62 105 95 25 75 34 28 52 6.1 05 26 L7 29 76 63
Bin-Mask s, 62 108 94 20 69 34 38 69 82 1.2 47 31 31 64 66
S3 59 99 92 19 60 30 26 38 68 07 27 27 - - -
51 60 11.1 97 32 79 53 23 49 64 07 26 34 35 67 83
Baseline s 6.7 11.1 10.0 29 77 50 38 7.1 85 1.6 49 44 36 61 9.1
S3 59 97 95 28 67 48 25 44 171 1.1 28 42 - - -
51 75 134 115 50 10.0 8.9 33 68 178 1.9 40 63 42 78 83
Proposed sy 78 134 117 44 94 85 44 83 96 26 57 174 45 71 9.2

S3 74 117 113 46 79 85 30 49 82 23 34 73

posed method seems robust to a large range of source velocity; though recall that we are
in a semi-blind experimental setup. This trend is also visible on other plots. For example,
for the I-512-3 plot, the gain increases with ¢ for s; and s,, from about 3 dB at v = 15° to
about 4 dB at ¥ = 90°, whereas the gain for s3 (whose trajectory remains independent of
1) is almost constant at about 4 dB. The decrease of the gain of s3 on ¥ = 45° is attributed
to the trajectories of s; and s, that interfere with ss. Further, the curve of s in I-512-3
reveals the advantage of the proposed method even for slow movements.

3.5.4 EXPERIMENTS WITH BLIND INITIALIZATION

We report here experiments conducted with blind initialization. This series of experi-
ments consists of two parts: the first part deals with simulated 3-speaker mixtures, and
the second part deals with a 2-speaker mixture made of real recordings.

Results on artificial mixtures In Table 3.3 we report scores measured: 1) At the input
mixture. 2) Using the initial estimates provided by the blind initialization method (bi-
nary masking). 3) After applying the baseline method on the mixture. 4) After applying
the proposed method on the mixture. In addition to the SDR and SIR we also report the
signal-to-artifacts ratios (SAR) quantifying adverse effects introduced due to the separa-
tion method. The input SDR is almost equal across sources (around —3 dB and —5 dB for
the noiseless and noisy case respectively for both Mix-270 and Mix-680). That indicates
roughly equal power for all sources in the mix.

Let us start with the reverberant conditions Mix-680. At SNR = oo, the average SDR
(across sources) attained by the binary masking method is approximately 3 dB, hence a
SDR gain of about 6 dB over the input. The corresponding SIR gain is 7.8 dB, and the
output SAR' is about 7 dB.

10Tt make poor sense to provide SAR gain, since the source signals are intact in the mix the input SAR is
= 00, and applying a source separation method will lead to SAR decrease.
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In Mix-680 and SNR = oo. The baseline method shows a small improvement over the
binary masking scores. The proposed method shows a significant improvement, compared
to any of the binary mask initialization or the baseline method. The proposed method out-
performs the baseline method by: 0.5 dB to 1 dB SDR, 0.5 dB to 1.9 dB SIR, and 1.1 dB
to 1.4 dB SAR. After the addition of noise (SNR = 4 dB), all performance measures
drop significantly. For example, the average SDR for the binary masking is 2.3 dB lower
than for the noiseless condition. Here, the baseline method improves the binary masking
scores, by 0.3 dB SDR, 0.1 dB SIR, and 1.5 dB SAR. The proposed method outperforms
the baseline method by 1.1 dB SDR, 0.9 dB SIR, and 3 dB SAR.

For Mix-270 all methods attain higher separation scores, overall. For example, at
SNR = oo the SDR of the binary masking method (averaged across sources) is 6 dB;
hence an SDR-gain of about 9 dB with respect to the input. The output SIR and SAR vary
from 9.2 dB to 10.8 dB (an SIR gain up to 13.8 dB). The scores (SIR measures in particu-
lar) confirm what is well-known in the literature: Binary-masking techniques show good
separation performance in low-to-moderate reverberant conditions. The baseline method
on the other hand exhibits comparable scores with the binary masking, slightly better on
average. The vVEMoVE outperforms the baseline method, by 1.4 dB in SDR, 2.2 dB in
SIR, and 1.8 dB in SAR. The VEMoVE also obtains an SIR gain (with respect to the
input) of 16.4 dB for Source s, which, we believe, is remarkable in a blind, underdeter-
mined, dynamic (although artificial) setup. At SNR = 4 dB, we observe the same trend
as for Mix-680: The baseline method improves neatly over the binary masking, and the
vEMOoVE significantly ameliorates over the baseline method (by 1.7 dB SDR, 1.7 dB SIR,
and 3.6 dB SAR).

Results on real recordings The last three columns of Table 3.3 report the performance
scores for real recording’s mixture. We first notice that even if we mix two sources in-
stead of three, the performance of the binary masking method is less notable than com-
pared to her performance on the artificial scenarios. Evidently, separating (two) moving
sources from real recordings remains a challenge, even for state-of-the-art sound process-
ing techniques. The baseline method has an SDR improvement ~ 0.5 dB and an SAR
improvement > 2 dB, for both sources, over the binary masking. However, the baseline’s
SIR scores slightly degrade when compared to Binary masking. The proposed method
exhibits positive gains, both over the binary-masking (initialization) and over the baseline
method. The SAR scores of the proposed method are equivalent to the baseline method
and notably better than the initialization. SDR improves by more than 1 dB when com-
pared to the initialization, and by 0.7 dB to 0.9 dB when compared to the baseline method.
SIR improves by 0.2 dB to 0.7 dB when compared to the initialization and by 0.7 dB to
1.1 dB when compared to the baseline method. The results demonstrate the potential ap-
plication of the proposed approach in the real-world and encourage us to pursue this line
of research.
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3.6 CONCLUSION

In this chapter we addressed the challenging task of separating the audio sources from
time-varying convolutive mixtures. We started with the time-invariant convolutive MASS
framework of [Ozerov 10], where we introduced time-varying mixing filters, that were
considered as hidden random variables. We modeled the mixing filters with first-order
Markov chains (per frequency) with complex-Gaussian observations and transition prob-
ability distributions. Since the observations do not depend only on the filters, but also
on the sources (also hidden variables), the direct application of the Kalman smoother
was not possible. For this reason, we designed a VEM algorithm for source separation
and parameter estimation, assuming the mixing filters and the sources to be conditionally
independent given the observations (that is the mixture). An extensive evaluation cam-
paign demonstrated the experimental advantage of the proposed VEM over two baseline
methods in several speech mixtures and different initialization strategies.

It is conjectured [Girin 17] that the latent mixing filters may have higher modeling
capacity than their deterministic consideration. This will justify even further our choice
to model the time-varying mixing filters as hidden random variables. In the present study,
the number of sources in the mixture was assumed to be known. Developing algorithms
capable of counting the number of emitting sources varying over time is an open issue,
and a prerequisite for a fully blind scenario. In the following chapter we address the
problem of estimating and tracking the activity of the sources in a MASS framework.



CHAPTER 4

UNIFYING AUDIO SOURCE SEPARATION
AND AUDIO DIARISATION

We present a statistical model for simultaneous MASS and diarisation of the audio
sources in convolutive audio mixtures. The sources are modeled with LGcM-with-NMF
and we introduce a temporal labeling of every source in the mixture, as active or inactive,
at the STFT frame level. The labeling allows us to obtain the state of diarisation of the
mixture. We devise an EM algorithm where the source separation process is aided by the
state of diarisation, as the latter indicates the emitting sources. The state of diarisation
is tracked with a Hidden Markov Model (HMM) with emission probabilities computed
from the source signals. The iterative nature of the EM creates a joint treatment of the
two tasks. The proposed EM is benchmarked with underdetermined 2-channel mixtures
of speech; We obtain separation performance comparable with [Ozerov 10] and improve
in diarisation accuracy compared to a state-of-the-art speaker diarisation pipeline.

4.1 INTRODUCTION

Speaker diarisation has emerged as an increasingly important and dedicated domain of
speech researh [Anguera Miro 12]. Speaker diarisation is the problem of determining
”who spoke when?”. Speaker diarisation requires the unsupervised identification of the
intervals during which each speaker (or generally each source) is emitting. The earliest
appearance of speaker diarisation can be traced back on works on telephony data. To-
wards the late 1990 and early 2000 broadcast news became the main focus of research
and the rise of speaker diarisation occurred for automatic annotation of television and
radio transmissions [Tranter 06]. Interest in meeting recordings, practically indoor audio
mixtures, grew extensively from 2002 onward [Anguera Miro 12]. Today speaker diarisa-
tion plays an important role in the analysis of meeting recordings, since it allows for such

45
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content to be structured in speaker turns, where linguistic content and other metadata can
be retrieved, as the dominant speakers, the level of interactions, emotions and so forth.

Speaker diarisation is answering to the question “who is talking, and when?” whereas
MASS tries to recover the emitted signals. It is apparent the two problems are related.
Since knowing the separated sources of an audio mixture, one obtains the diarisation by
labeling when every source emits or is silent; On the other hand, knowing he diarisation
of the sources provides, how many source are present and the relevant intervals to recover
those sources.

We espy thus, that a joint formulation of MASS and diarisation can favor the perfor-
mance on both sides. To this aim we propose a probabilistic formulation of MASS and
audio diarisation for multichannel time-invariant convolutive mixtures.

In Section 4.2 we review the literature on joint MASS and audio diarisation. In Sec-
tion 4.3 we present the proposed probabilistic model. In Section 4.4, we derive the as-
sociated EM algorithm that infers the separated source signals and the diarisation, and
estimates the model parameters. In Section 4.5 we evaluate its performance in source
separation against [Ozerov 10], and in speaker diarisation against [Vijayasenan 12]. In
Section 4.6 we place a discussion over the materials of the chapter and future directions.

4.2 LITERATURE REVIEW ON JOINT AUDIO SOURCE SEP-
ARATION AND DIARISATION

Extensive research addressing independently MASS or speaker diarisation tasks has been
conducted. State of the art in MASS has been discussed in previous chapters. State-of-
the-art methods on speaker and audio diarisation [Tranter 06, Anguera Miro 12] mainly
consist of a pipeline starting with feature extraction from the audio mixture, typically
of Mel frequency cepstral coefficients (MFCC) or spatial parameters, and proceed with
speech/non-speech segmentation of the mixture and clustering of the speech segments
into individual speakers, see for example [Vijayasenan 12].

Except from a series of papers by Higuchi et. al., a framework addressing jointly
MASS and diarisation seems overlooked in the literature; In [Higuchi 14b, Higuchi 15]
the emitting/silent state of each source is independently modeled by a factorial HMM. A
simple form of LGcM-with-NMF is included to address source separation, although its
restriction to a single component per source limits the representation capacity of LGcM-
with-NMF, without an easy generalization. Recall, that it is empirically known [Févotte 09]
that a single component (rank-1 NMF) is not enough to represent speech spectrum.

To overcome this limitation we present a probabilistic model for simultaneous diarisa-
tion and MASS of multichannel audio mixtures. We consider all possible combinations
of simultaneous active sources and process their activity in a joint manner. We model the
sources with the general LGcM-with-NMF framework (with rank- X' NMF).
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4.3 AUDIO MIXTURES WITH DIARISATION

We now present the proposed probabilistic formulation of MASS with diarisation. The
new formulation can be seen as a generalization of [Ozerov 10] to include diarisation and
naturally complements the models of Chapter 2 and Chapter 3.

4.3.1 THE MIXING MODEL IS AWARE OF THE DIARISATION

We want to express X s, in way that encodes the activity of the sources. We have N = 27/
possible configurations for the activities of the .J sources; we call every configuration a
state. We represent each state n € [1, N] as a J x J diagonal matrix D,, with entries:

Dj;n =1 if the jth source is active in state n,
Djjn =0 otherwise.

For example, with J = 2, the N = 4 possible matrices are:
Dy =[] D2 = [ ];Ds =[], Da=[11]. (4.1)
Incorporating D,, in the mixing equation (1.4), we rewrite X ¢ as:
Xy =AfDypsy + by 4.2)

By choosing a state n at a time frame ¢, we select which of the J sources comprise the
mixture at the /-th frame. In other words D,, zeroes out the inactive sources.!

With Z, = n,n € [1, N] a categorical variable indicating the state at frame ¢, we
naturally write (see (1.15)):

p(Xfelspe, Zp = n) = N (X0, AfDysge, vilp) (4.3)

where A, v are parameters to be estimated. As for the source sy, we use LGcM-with-
NMF from Section 1.4.2. We now present the novel model for the state.

4.3.2 THE STATE OF DIARISATION

The activity of each sound source varies with time, hence the state is to be estimated for
every frame (. The state variable Z, is modeled with an HMM:

p(Z1 =n) =An, (4.4)
p(Ze =nlZi1 = 1) =T, (4.5)

with \,,, T, € Ry, n,r € [1, N] being the prior and transition parameters to be estimated.



CHAPTER 4. UNIFYING AUDIO SOURCE SEPARATION AND AUDIO DIARISATION 48

/\nyan @’ Zé—l

Figure 4.1: Graphical representation of our generative model for simultaneous MASS
and audio diarisation. Latent variables are represented with circles, observations with
double circles, deterministic parameters with rectangles, temporal dependencies with self
loops.

Af,Vf

Wk, hie

4.3.3 THE COMPLETE DATA PROBABILITY DISTRIBUTION

In the spirit of this thesis, the complete data probability distribution of the hidden vari-
ables H = {cy, sy, Zg}?’le, the observations xy.r1.;,, and the model parameters to be

estimated 6 = {A ¢, V¢, Wek, hie, Tr, /\n}F’L’K’N’N for the proposed model writes:?

flknr=1
L FL FLK
p(M,xvri; 0) = p(Z0) [[p(Zl Zer) T] p(xpelsse. Z0) T plerge).  46)
=2 fe=1 F0kE=1

The graphical model of the proposed generative model for simultaneous MASS and audio
diarisation is given in Fig. 4.1.

4.4 THE EMD ALGORITHM

Surprisingly the posterior probability distribution can be expressed in closed form for
(4.6). This allows us to derive the EM algorithm to infer the hidden variables and esti-
mate #. We name our algorithm EM for joint MASS and audio Diarisation (EMD). We
now present the E-step that computes p(#|x1.r1.1;0) and the M-step that updates the
model parameters by maximising £(6). The complete EMD algorithm can be seen in
Algorithm 4.

4.4.1 E STEP

For conciseness we describe the E-step as three sub E-steps: The E-cy, step, the E-s¢,
step and the E-Z, step. Note though here the sub E-steps are independent, whereas in a
vEM they would depend on each other.

'Tn the state of “all sources are active” the D,, = I; and (4.2) becomes (1.4).
2Note that Z, is not yet evaluated to a specific n.
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E-cy, step We find p(cyy, Zy = n|xy.p1.1,) for every state. Setting Z, = n in (4.6):

K

p(cselZe = n,xuprr) o< p(xpelsye, Ze = n) [ [ plcuse) = 4.7)
k=1

N, (e pe; € fon, E%H) , (4.8)

with mean vector €, and covariance matrix E?;n computed with:

—1
1 ATA
s —|diagy (— )+ G'D,~~D,G| | 4.9)
uk,fg Vf
A C X
&rim ZE;MGTD”A‘];‘V—J;K, (4.10)

E-s;, step From the Appendix, we obtain the source posterior distribution:
p(spel Ze = n,x1:p1:) = Ne (5638 5em, 2) 5 (4.11)

with mean vector S 4, and covariance matrix E}‘Zn given from:

-1

H
= = | diag, 1 +DnAfAf D,| . (4.12)
> Uk e vy
kGKj
~ S X
St —E?ZnDnAI}V—Jj. (4.13)

It is interesting to see that due to the structure of (4.12), if a source is inactive at Z, = n
(thatis it has Dj; , = 0), then also 5; ¢4, = 0.

E-Z, step By integrating out the ¢, from (4.6)*, what remains is the posterior distribu-
tion over the state-sequence:

L FL
P (Zrolxrin) = p(Z0) [ [0 (Zel Zoey) T Ne (%4600, Mypiz,), (4.14)
=2 fe=1

with the matrix My, for Z, = n computed with:

Mfgn = VfI[ + AfDndiagJ ( Z uk’fg> ])nxAIJ;I (415)
k‘E’Cj

3For the integration we use Eq. (2.115) in [Bishop 06].
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Decoding the first-order HMM Eq. (4.14) is a HMM with hidden states Z;.7,, emission
probability for a state Z, = n,n € [1, N] given with:

F
tn = | [ Ve (%600, Mys) (4.16)
F=i

and transition probability 7,,. from state Z, ; = r to Z, = n. We compute the poste-
rior probability 1, = p(Z; = n|xy.r1.1) for every state using the well known forward-
backward algorithm [Bishop 06].

In the forward-backward algorithm the posterior 7;,, is computed with:

Nen & ¢€nﬂ€na (417)

where the probabilities ¢, and 3, are computed recursively:

N
Son Xin D Tre—1yr (4.18)
r=1
N
ﬁfn 8 Z Trnb(f-&—l)rﬁ(ﬁ—kl)r- (4.19)

r=1
To avoid numerical underflow, at each frame ¢, after computing ¢,;.5 with (4.18), we

N
normalise (by setting ¢p, = ¢u/ Y ¢or) and proceed to the next frame. We apply the
r=1
same normalisation on [y,,.
To apply the forward-backward one must set the ¢, and 31,,: At each iteration we set
®G1n = L1nA, as in [Bishop 06], then run the forward recursion. Then we set 51, = ¢r,

and run the backward recursion®.

4.4.2 M STEP

M-T,,,., \,, step The update rules for the HMM parameters are quite standard (see for
example Eq. (13.18), (13.19) in [Bishop 06]):

L—-1
Tor & Lurt 4.21)
(=1

with the joint posterior probability of two succesive states &0 = p(Zy = n, Zy—y =
r|X1.r1.7) that is found with, for example Eq. (13.43) in [Bishop 06]:

Enrp x BentenTnr@e—1yr- (4.22)

“In theory Bz, = 1 forall n = 1 : N, although we achieved slightly better performance in SDR by
setting Br., = @rLn.-
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It may happen that, for short mixtures, some transitions will not be observed with conse-
quence the &, ¢ for those transitions to equal zero for all the frames. Therefore, we add
an artificial offset of 10~7 to all Enr,e 1 (4.22) prior to normalisation.’

M-A;, vy step Consider the D, sy, that appears in (4.3) as a composite random variable
and calculate its first and second order statistics:

N

00 =Y NnDufim, (4.23)
n=1
N

Q) = Z 16nDa (X5, + 85en8%en) D (4.24)
n=1

The updates for A ¢, v are respectively:°

L L -1
Aj = (fogo;) <Z 7};) : (4.25)

=1 =1
and also:
L

1
Vi=77 > (Xl}lgxfé — 2Re {xf,Apop | +u {QJATA} ) : (4.26)

/=1

M-wyy, hie step The updates of wyy, Iy, are similar with (1.28) and (1.29) respectively,
only that here Q}; ;,, has to be marginalised over n:

1 L,N nc
Wik =7 D (4.27)
fn=1 ke
1 FN nc
By = — Lt 4.28
=g fnzl e m— (4.28)

with Q}; 14, the PSD of k-th component at diarisation state 7:

Qi pon = S son + 1k pnl” (4.29)

with EZZ fen given with (4.9) and ¢y, g4, given with (4.10).

4.4.3 IMPLEMENTING EMD

The complete pseudo-code of the EMD algorithm can be seen in Algorithm 4.

SWhen computing probabilities of discrete events under &, those “proportional values” must be divided
with their sum over n to become valid probabilities.
%Notice that the Dz, st in (4.3) plays the role of st in (1.15).
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Algorithm 4. EMD: EM for separation and diarisation of .J sound sources.

input {x fg}i’f:l, partition matrix G, initial parameters 6.
construct: The 27 matrices D,,,n € [1,27] with (4.1).
repeat

E step

E-cy; step: Compute Zzzﬂ with (4.9), ¢ s with (4.10).
E-sy; step: Compute 27}2 with (4.12) and § ¢, with (4.13).
E-Z,; step (emissions): Compute ¢4, with (4.16).
E-Z,; step (forward pass): Set ¢1, = tipAn.
for /:2to L
Compute ¢4, with (4.18) and normalize it.

end
E-Z, step (backward pass): Set Br, = ¢rp.
for/: L —1to1l

Compute (3, with (4.19) and normalize it.
end
E-Z, step (estimate of the diarisation state): Compute 7, with (4.17).
Compute o4, with (4.23) and Q;‘z with (4.24).

M step

M-HMM step: Compute &,,, with (4.22), normalise it, compute 7, with (4.21).
Compute \,, with (4.20).

M-A; step: Update A ; with (4.25).
M-v; step: Update v with (4.26).
M-NMF step: Update wy, with (4.27), then hy, with (4.28).

until convergence
. . F,L
return the estimated source images {A;; r0; e}, ;-

Estimation of source images and diarisation We used {o; s/a;, f}?”le as the STFT
domain source image estimates (applying the inverse STFT with overlap-add we obtain
the time domain estimates). The diarisation (classification) output 7, is obtained at each
frame by selecting the higher value of 7, over n. From the corresponding D;,, we have
the active sources at /" frame. Frames where 7),; is dominant are non-speech frames.
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Table 4.1: Average MASS and Diarisation scores of EMD.

Mix-8 Mix-DC

SDR SIR SAR Acc.(%) SDR SIR SAR Acc.(%)

S1 77 11.6 121 93.5 7.8 124 122 99.5
Q s 79 149 16.6 94.3 73 140 15.1 93.2
E 83 92 134 14.1 87.5 89 133 14.0 99.3
avg. 83 133 143 91.7 80 133 137 973
S1 76 126 124 89.0 77 12,6 127 87.8

¢ sy 76 135 159 68.4 73 13.1 16.0 82.2
& S3 9.0 13.1 14.8 67.4 88 13.0 1438 61.8
avg. 81 13.1 144 74.9 79 129 145 77.3

4.5 EXPERIMENTAL STUDY

In this section we benchmark the performance of EMD on separating and diarising un-
derdetermined mixtures of speech.

4.5.1 SIMULATION SETUP

To assess the performance of EMD we simulated the challenging task of separating and
diarising J = 3 sources from a synthetic convolutive stereo mixture (/ = 2). Each
source was a 27-s signal of speech, made by concatenating utterances from the TIMIT
database [Garofolo 93]. Each source was made of utterances of a different person. As
mixing filters, we used binaural room impulse responses (BRIRs) from [Hummersone 13]
with RTgo ~ 0.68s. The three sources were positioned at azimuths —85°, —20°,60°. We
generated two types of mixtures: Mix-DC where all sources are emitting continuously.
Mix-8 where each source has balanced portions of emission and of silence so that all
N = 8 states appear.

Baseline methods We used [Ozerov 10] for source separation and [Vijayasenan 12] for
speaker diarisation. Both baselines were provided with the true number of sources. Be-
cause [Vijayasenan 12] is designed for audio streams without simultaneously emitting
talkers, we considered 27 — 1 virtual speakers.” The output of [Vijayasenan 12] is a clus-
tering of the time frames to virtual speakers. We now have to associate the virtual speakers
with source combinations. A posteriori, we evaluate all possible associations of the output
of [Vijayasenan 12] and the ground-truth, and report the one that gives the highest accu-
racy, hence favoring the baseline to a certain extent. Note that we apply a median filter
(Iength 10 frames) on the labeling output of each source to remove any ’spikes” (that is
spurious activity on an isolated frame) to both EMD and [Vijayasenan 12].

"There are N — 1 virtual speakers, because [Vijayasenan 12] has a speech/non-speech detection module.
The “virtual speaker” corresponding to silence is pre-detected.
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MASS and Diarisation evaluation MASS performance is assessed with the SDR, SIR
and SAR measures (in dB) [Vincent 06], as in previous chapters. Diarisation is assessed
with Accuracy, which is defined as the percentage of frames for which a source was
correctly identified (as either active if actually emitting, or inactive if actually silent).

Initializing the Model Parameters For the EMD and the MASS baseline [Ozerov 10],
we use the semi-blind initialization procedure from Section 2.4.1, with R = 10dB. As
for the transition probabilities 7, of EMD we initialise them randomly and also initialise
An = 1/N. The diarisation baseline does not require hand-set initialisation of parameters.
For the STFT analysis we used a sine window with 512 taps and 50% frame overlap,
leading to L = 1697 frames.

4.5.2 QUANTITATIVE RESULTS

In Table 4.1 we report detailed MASS and diarisation scores. Each entry is an average
score over 10 mixture realizations with different speakers. In terms of MASS, we see
that EMD performs equally well with [Ozerov 10] on both Mix-8 and Mix-DC. Notably,
on Mix-8 the average SDR of the EMD is 0.2dB higher (8.3dB versus 8.1dB). This is
encouraging considering that the proposed method has to learn the additional parameters
to solve for diarisation.

As for the performance in diarisation, the Accuracy of the proposed method is 16.8%
higher than of the baseline [Vijayasenan 12] on Mix-8 (91.7% versus 74.9%) and 20.0%
on Mix-DC (97.3% versus 77.3%). Although the proposed EM and the baseline are quite
different in nature, and our EM is initialised with some amount of ground truth informa-
tion, this is a significant effect emerging from the joint modeling of the source activity
and the source signal separation.

4.5.3 QUALITATIVE RESULTS ON SPEECH DIARISATION

We would like to discuss here the detection capabilities of the EMD from a qualitative
perspective. Fig. 4.2 illustrates the diarisation achieved for a realization of Mix-8. We
observe that the baseline method shows a large amount of falsely-detected and undetected
frames, when EMD shows significantly less misdetections. This may be attributed on
the controlled initialization for the NMF parameters, although it also reveals that EMD is
capable of attaining a highly accurate diarisation. Nonetheless, recall that the transition
probabilities were initialized randomly, and learned from the mixture. This performance
shows that a unifying framework for MASS and audio diarisation can be a wise ploy.

4.6 CONCLUSION

In this chapter we introduced a probabilistic framework based on LGcM-with-NMF for
joint separation and diarisation of audio sources, under an elegant formulation. We de-
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Figure 4.2: Chronogramme of diarisation. Shows the detected and undetected frames of
each source’s track, for the EMD and the baseline method [Vijayasenan 12], in the Mix-8
setup. GT stands for ground-truth, E stands for estimated.

rived the associated EM algorithm for inference of the separated sources and of the diari-
sation. Experiments on underdetermined mixtures of speech showed competitive perfor-
mance of the proposed method compared to the state of the art, in particular in diarisation
scores. In the future, we would like to investigate properties that can emerge from this
model as is the automatic determination of the number of sources J using D;,,. Last and
most important, this chapter is a not a disconnected method on its own. All previous mod-
els of this thesis can be included in a joint modular formulation to accomplish diarisation
and separation of time-varying audio mixtures.






CHAPTER 5

CONCLUSION

5.1 SUMMARY AND DISCUSSION

In this thesis we studied the problem of MASS for convolutive mixtures. We made contri-
butions in three independent and complementary directions. Our source of inspiration was
[Ozerov 10]. One of the first examples of methods incorporating the LGecM-with-NMF
audio signal model in a probabilistic framework for MASS.

Our journey began with a profound investigation of the role of the LGcM-with-NMF
audio signal model. This search gave rise to a Bayesian alternative for LGcM-with-NMEF,
whose potential we demonstrated on MASS tasks.

Then, we moved to a different direction and proposed a generative model that uses
LGcM-with-NMF and solves the MASS on mixtures of moving sound sources. Using the
theory of Kalman smoothing we took care of tractability issues and the resulting method
was now able to address MASS for time-varying convolutive mixtures. We tested the pro-
posed method on underdetermined simulated and real-world mixtures of moving speakers.
The experimental results revealed a significant boost in separation performance in favor
for our method against a block-wise adaptation of [Ozerov 10].

Then, we envisioned and designed a generative model that jointly addresses the prob-
lem of MASS and of audio diarisation. We designed an EM algorithm, for our generative
model within a framework for time-invariant audio scenes. We benchmarked our EM on
MASS and audio diarisation tasks against the appropriate state of the art methods; re-
vealing promising results. Audio diarisation is significant as it can tackle the automatic
estimation and tracking of the number of emitting sources in the mix.

Each of the three contributions of this thesis was presented and tested as an individual
algorithm. Nonetheless, this manuscript is intended as a collection of three complemen-
tary modules enabling to construct a unified framework for simultaneous separation and
diarisation of underdetermined multichannel time-varying convolutive mixtures of audio.
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5.2 DIRECTIONS FOR FUTURE RESEARCH

Nowadays MASS research aims to overcome the narrowband assumption (see Section 1.2.2).
To this desideratum specialized sound propagation models capable of recovering high fi-
delity audio signals out of highly reverberant mixtures start to appear in the MASS lit-
erature [Duong 10, Leglaive 16]. Adapting the proposals from this thesis to exploit such
models is one of the natural courses for future research.

In this thesis we let aside considerations of dimensions, meaning that we did not in-
vestigate effects from the STFT analysis duration, from additional microphones, from
the number of LGcM components. As also, we always provided the algorithms with the
correct number of sources in the mix. Assigning LGcM components to source was con-
sidered here known in advance and fixed although, the role this assignment is a topic of
active research [Ozerov 11, Bilen 16] that may reveal unknown properties of LGcM in the
future. Even though, we proposed the NMFiG that appears to have an intrinsic mechanism
to select how many components are actually relevant to the MASS task, hhence relaxing
the effect of ad-hoc setting of the number of components; for a similar mechanism for
the control of NMF components see for example [Tan 13]. The diarisation enables to
count and track the number of sources in the mixture, hence only the maximum number
of potential sources has to be provided. Nonetheless, future research shall address in a
principled way the estimation of the number of sources in the mixture; for a representative
example on this direction see [Drude 14].

The major degradation of performance in LGcM based MASS appears to emerge from
the initial values of the LGcM spectrum parameters. Recall that, we encountered serious
difficulties over the parameter initialization for our methods especially about the source’s
spectrum parameters. We tackled the initialization using an additional state of the art
source separation method. An extensive investigation for adequate initialisation proce-
dures is yet to be done. However, we observed that if the source spectrum parameters
were initialized with some amount of ground truth information the proposed methods
were able to deliver paramount performance.

Hence, we continue to believe that probabilistic generative models enfold multifarious
capabilities that may be essential in audio source separation and beyond.
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APPENDIX

In LGcM the source components and the sources are linked with (1.14). In all algorithms
derived in this thesis the posterior pdf of the components is always complex-Gaussian
N, (c; ¢, £"°) with structure (omit f, ¢, n subscripts):!

1 —1
EWZFWW(E>+{ﬂ¢G}’ (A.1)
k
¢ =X"G"Ax. (A.2)

Our goal is the posterior distribution of the sources, that technically is also complex-
Gaussian N, (s; §, X") with parameters calculated from (1.14):

¥ =GX"TG T, (A.3)
s =Gé. (A.4)

In this Appendix we will show an efficient way to compute § and 3"7°, without resorting
to the components.

EFFICIENTLY COMPUTING THE SOURCES IN LGCM

Theorem 1 The source posterior covariance matrix 3X"° and source posterior mean vec-
tor § can be computed, without resorting to the components, with:

-1

3" = , (A.5)

1
di —_— b
1agJ< Z Uk) +

kGKj

§ =" Alx (A.6)

I'The structure appears in (1.17), (2.12), (3.22) and also (4.8).

69



APPENDIX 70

Proof of Theorem 1 Apply the Woodbury identity* on (A.1), and replace in (A.3):

¥ = GG =G <diagK (up) — diagy (u) G x

—1
[qu + Gdiag, (u) GT] Gdiag,, (uz) ) GT. (A7)
Observing that:
Gdiag, (u;)G " = diagJ< > u> : (A.8)
TGKJ'

By replacing all four occurrences of (A.8) in (A.7), the latter becomes:

E”S—diagJ<Zuk> —diagJ(Zuk>x

kEICj ka’Cj
-1
!+ diagJ< > uk> diagJ< > uk) (A.9)
keICj kGKj

Applying again the Woodbury identity, this time on (A.9), we have the result:

-1

1
¥ =|dia — |+ @ (A.10)
gJ( Z Uk)
kEKj
The proof is completed by substituting (A.2) in (A.4) and then identifying (A.3):
s =3Y"Ax. (A.11)

Theorem 1 holds empirically even when ® is singular.

Interesting Relations The following relations hold empirically, even if ® is singular:

A U
Cr :Wsjk’ (AIZ)
TG]C]'k
c U s
ik =uk (1 S (px" )jm>. (A.13)
TE’Cjk

Jr 1s the index of the source that k-th component belongs to, as defined with (1.14).
Notice, that (A.12) is the well known Wiener filtering estimator for the LGecM components
in single-channel MASS [Févotte 09].

YInthe form (A~ + GTBG) ' = A—AG T (B~ + GAGT)_IGA, see for example [Petersen 12].
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