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Abstract

The field of parallel supercomputing has been changing rapidly in recent
years. The reduction of costs of the parts necessary to build machines with
multicore CPUs and accelerators such as GPUs are of particular interest to
us. This scenario allowed for the expansion of large parallel systems, with
machines far apart from each other, sometimes even located on different
continents. Thus, the crucial problem is how to use these resources efficiently.

In this work, we first consider the efficient allocation of tasks suitable for
CPUs and GPUs in heterogeneous platforms. To that end, we implement
a tool called SWDUAL, which executes the Smith-Waterman algorithm si-
multaneously on CPUs and GPUs, choosing which tasks are more suited to
one or another. Experiments show that SWDUAL gives better results when
compared to similar approaches available in the literature.

Second, we study a new online method for scheduling independent tasks
of different sizes on processors. We propose a new technique that optimizes
the stretch metric by detecting when a reasonable amount of small jobs is
waiting while a big job executes. Then, the big job is redirected to separate
set of machines, dedicated to running big jobs that have been redirected. We
present experiment results that show that our method outperforms the stan-
dard policy and in many cases approaches the performance of the preemptive
policy, which can be considered as a lower bound.

Next, we present our study on constraints applied to the Backfilling algo-
rithm in combination with the FCFS policy: Contiguity, which is a constraint
that tries to keep jobs close together and reduce fragmentation during the
schedule, and Basic Locality, that aims to keep jobs as much as possible
inside groups of processors called clusters. Experiment results show that
the benefits of using these constrains outweigh the possible decrease in the
number of backfilled jobs due to reduced fragmentation.

Finally, we present an additional constraint to the Backfilling algorithm
called Full Locality, where the scheduler models the topology of the platform
as a fat tree and uses this model to assign jobs to regions of the platform
where communication costs between processors is reduced. The experiment
campaign is executed and results show that Full Locality is superior to all
the previously proposed constraints, and specially Basic Backfilling.



Résumé

Les plateformes de calcul à grande échelle ont beaucoup évolué ces dernières
années. coûts des composants simplifie la construction de machines possé-
dant des multiœurs et des accélérateurs comme les GPUs. Ceci a permis
une propagation des plateformes à grande échelle, dans lesquelles les ma-
chines peuvent être éloignées les unes des autres, pouvant même être situées
sur différents continents. Le problème essentiel devient alors d’utiliser ces
ressources efficacement.

Dans ce travail nous nous intéressons d’abord à l’allocation efficace de
tâches sur plateformes hétérogènes composées CPU et de GPUs. Pour ce
faire, nous proposons un outil nommé SWDUAL qui implémente l’algorithme
de Smith-Waterman simultanément sur CPU et GPUs, en choisissant quelles
tâches il est plus intéressant de placer sur chaque type de ressource. Nos
expériences montrent que SWDUAL donne de meilleurs résultats que les
approches similaires de l’état de l’art.

Nous analysons ensuite une nouvelle méthode d’ordonnancement en ligne
de tâches indépendantes de différentes tailles. Nous proposons une nouvelle
technique qui optimise la métrique du stretch. Elle consiste à déplacer les jobs
qui retardent trop de petites tâches sur des machines dédiées. Nos résultats
expérimentaux montrent que notre méthode obtient de meilleurs résultats
que la politique standard et qu’elle s’approche dans de nombreux cas des
résultats d’une politique préemptive, qui peut être considérée comme une
borne inférieure.

Nous nous intéressons ensuite à l’impact de différentes contraintes sur la
politique FCFS avec backfilling. La contrainte de contiguïté essaye de com-
pacter les jobs et de réduire la fragmentation dans l’ordonnancement. La
contrainte de localité basique place les jobs de telle sorte qu’ils utilisent le
plus petit nombre de groupes de processeurs appelés clusters. Nos résultats
montrent que les bénéfices de telles contraintes sont suffisants pour com-
penser la réduction du nombre de jobs backfillés due à la réduction de la
fragmentation.

Nous proposons enfin une nouvelle contrainte nommée localité totale,
dans laquelle l’ordonnanceur modélise la plateforme par un fat tree et se sert
de cette information pour placer les jobs là où leur coût de communication est
minimal. Notre campagne d’expériences montre que cette contrainte obtient
de très bons résultats par rapport à un backfilling basique, et de meilleurs
résultats que les contraintes précédentes.



Chapter 1

Introduction

The field of parallel supercomputing has been changing rapidly in recent
years, particularly after the introduction of multicore and specialized ar-
chitectures. Such processing units, for example Graphical Processing Units
(GPUs), Field-programmable gate arrays (FPGAs) and Intel Xeon Phis, fea-
ture hardware that is much more suited for computing regular parallel jobs,
when comparing to the previous standards. Indeed, the amount of cores
available within each system is much higher and this additional computing
power comes with its own challenges. Furthermore, this scenario has allowed
for the creation and expansion of large parallel systems, with machines far
apart from each other, sometimes even located on different continents. Be-
cause the distance between these clusters is high, there is also high latency,
even though these machines are usually connected by high performance net-
works. Thus, the communication performance can be dramatically affected
by the location of the processes within the system since the closer the pro-
cesses are from each other, the fastest the communication will be due to
latency. Beyond that, we can safely say that the size of parallel platforms is
increasing rapidly as machines get cheaper to build.

1.1 Motivation

One good example of a platform where a large number of nodes are avail-
able but geographically distant from each other is the Grid 5000 testbed [2].
It is supported by a scientific interest group involving Inria, CNRS, RE-
NATER and several Universities as well as other organizations. The grid
provides access to nodes in eight different locations in France, as shown in
Figure 1.1, consisting of 1000 nodes, 8000 cores, grouped in homogeneous
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clusters. The nodes themselves are heterogeneous, containing not only cores
but also coprocessors like Graphic Processing Units (GPUs) and Xeon Phi
boards.

Figure 1.1 – Grid 5000 high level network topology, taken from the official
website on 21 March 2017

One of the problems with such platforms is that although network con-
ditions between clusters of the same site tend to be favorable, the same
cannot be said between sites, specially if they are geographically far from
each other. In such cases, it is common that communication between sites
have high latency, even though the links may be dedicated and thus have
high bandwidth.

Even if we consider only machines located in clusters from the same site,
a case can be made for assigning jobs to processors that are as close together
as possible. The reason is that the topology is most likely shaped like a tree,
where machines are placed in racks, which in turn are connected to each
other through network nodes on different levels. In this case, we can agree
that running a job on two processors in the same machine is considerably
faster than running the same job on two processors located in two different
clusters, with several levels of network between them.

Figure 1.2 shows an example of a schedule through a Gantt chart. The
horizontal axis represents time and the vertical axis the processors available
in the platform. In such platforms, a large number of users can submit
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jobs, which are executed in partitions of the platform, that is, subsets of
processors.

P4

P3

P2

P1 1

2

3
4

5

6 7

Figure 1.2 – Schedule representation using a Gantt chart

The most basic scheduling scheme that can be used in distributed-memory
parallel supercomputers is variable partitioning, where each job receives a
partition of the machine with its desired number of processors. Such par-
titions are allocated in a First Come, First Served (FCFS) fashion. The
problem with this approach is that it suffers from fragmentation, where pro-
cessors are available but cannot be used until much later in the schedule. As
a result system utilization can be penalized.

Figure 1.3 shows an example of schedule done with the FCFS scheme.
In this case, job number 6 is submitted and can not be moved forward.

1

2

3

4

5

6

t

P4

P3

P2

P1

Figure 1.3 – Example of FCFS allocation scheme

A better solution to this problem is to require users to estimate the run
time of their jobs. Using this information, small jobs can be moved forward
in the schedule and fill gaps left over from other jobs. This approach is
called Backfilling and was developed for the IBM SP1 parallel supercomputer
installed at the Argonne National Laboratory [51]. Users are expected to
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submit jobs in conjunction with accurate estimates of their job’s run time,
since underestimating the job’s run time may lead to the job being killed
before it finishes executing, while overestimating may lead to long wait times
and likely low utilization of processors.

Figure 1.4 shows an example of a schedule done with Backfilling. We
can see that job 5, being the last one to be submitted, was allowed to move
forward and start executing right after job 1.

1

2 3
4

5

3
4

5

Queue

t

P4

P3

P2

P1

Figure 1.4 – Example of allocation using Conservative backfilling

The Backfilling algorithm, combined with a First Come, First Served
(FCFS) policy, works very well when there are no latency issues between the
processors. On the other hand, Backfilling shows significantly worst results
if the latency between some of the processors available is high enough to
impact the jobs’ run times. The reason for this poor performance is that
the Backfilling algorithm does not choose specific processors for each job,
but rather just picks the first ones it encounters that are available for the
duration of the job.

As a result, scheduling jobs with Backfilling can be largely improved
by inserting additional constraints that help better choose which processors
each job should be assigned to.

Moreover, one other problem with scheduling jobs utilizing the FCFS
scheme is that it may happen that a big job is submitted and starts executing
right before a large number of small jobs are submitted. As a consequence,
most or all the small jobs wait have to wait for a long time in the system, until
the big job finishes. This phenomenon happens even if a scheme different
than FCFS is being used. For example, this can happen if jobs are sorted
by increasing run time when they are submitted. If only the big job is
submitted, it is allowed to start executing. Then, if a large number of small
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jobs is submitted, the same situation happens.
Figure 1.5 shows an example of a schedule where a job with a very long

run time is executing while several jobs with short run times are waiting.
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Figure 1.5 – Example of a schedule where a big job is executing while several
small jobs have to wait

Furthermore, it is common that platforms provide nodes with more than
one type of processing unit, including processors, GPUs, Field-programmable
gate arrays (FPGAs) and Xeon Phi accelerators. In such cases, it is essential
that the platform’s characteristics are utilized as efficiently as possible. The
way this can be done is by matching the job’s tasks to the different types
of processing units available, depending on processing power, availability,
architecture, among others. Also, it is important to consider that some tasks
may be more suited to specific types of processing units but not others, or
may even be executed exclusively on a particular type of processing unit.

1.2 Contributions: Design Efficient Scheduling Poli-
cies

1.2.1 Fast Biological Sequence Comparison on Heterogeneous
Platforms

There are some applications that require considerable amount of time to
complete with limited resources. As parallel platforms get more accessible,
it becomes more interesting to exploit these platforms and utilize resources
in a parallel fashion. Additionally, heterogeneous platforms propose a new
challenge for running parallel applications efficiently. It is not just a matter
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of running jobs whenever a processing unit is available, but also consider
their differences in architecture and performance.

Since heterogeneous platforms are usually composed of accelerators con-
nected to multi-core hosts, we study how to efficiently utilize both the ac-
celerators and the processors to execute the Smith-Waterson (SW) algo-
rithm [62] in parallel. There are some approaches in the literature that
explore such idea, but they assume that multi-core processors and accel-
erators have similar processing powers, distribute work proportionally in a
static fashion considering the theoretical processing power of each type of
processing unit or assign one task at a time in a Self-Scheduling strategy.

To achieve this goal, we implement a tool called SWDUAL, which exe-
cutes the Smith-Waterson algorithm on hybrid platforms composed of multi-
core processors and GPUs. Furthermore, SWDUAL is based on a fast dual
approximation scheduling algorithm that selects the most suitable tasks to
be executed on the GPUs while balancing the load over the whole platform.

Experiments are prepared and executed to demonstrate that SWDUAL
gives better results when comparing to other approaches available in the
literature. We show that our approach was able to significantly reduce the
execution time of the sequence database searches using the Smith-Waterman
algorithm, as well as finish the execution with almost no idle time on most
of the included processors and GPUs.

This work was published in the International Conference on Parallel Pro-
cessing (ICPP) in 2014 [37], under the name “Fast Biological Sequence Com-
parison on Hybrid Platforms”.

1.2.2 A New Online Method for Scheduling Independent
Tasks

When sequential jobs of different run times are being executed in a plat-
form composed of a set of processors, a phenomenon can happen where big
jobs start first and small jobs that are submitted later are required to wait
for a long time. This scenario is particularly bad for metrics like flow or
stretch, that measure the amount of time each job stays in the system, since
a large number of small jobs wait while a few big jobs are being executed.

We propose a novel technique for scheduling sequential jobs in this fash-
ion that optimizes the stretch metric. The main idea is to detect when a
reasonable number of small jobs is waiting for a big job and redirect the big
job to a separate set of processors dedicated to running redirected jobs.

This technique is implemented in a discrete event simulator. Jobs from
real traces are converted to sequential independent jobs and grouped to-
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gether in periods of one week each. Then, different numbers of periods are
chosen randomly depending on the characteristics of the platforms included
in the experiments. We use these generated traces to execute the experi-
ments and show that our method outperforms the standard policy and in
many cases approaches the performance of the preemptive policy, which can
be considered as a lower bound.

This work was published in the IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID) in 2017 [45], under the
name “A new on-line method for scheduling independent tasks”.

1.2.3 Contiguity and Basic Locality in Backfilling Schedule

Backfilling is a scheduling algorithm that can move small jobs forward
in the schedule in order to fill gaps. Also, it shows good results by itself and
is quite hard to improve, although not impossible.

Attempting to improve the Backfilling algorithm can introduce delays
to the jobs and reduce the effectiveness of the improvements being made.
On the other hand, one of the weak points of Backfilling is that it does not
choose any particular processors when assigning a job. It picks the first ones
available, which can have a different effect depending on the implementation.
For this reason, it is specially interesting to explore additional constraints
made to this phase of the algorithm, helping it better select processors for
each job.

Contiguity is a basic constraint that attempts to keep jobs close together
and reduce fragmentation during a schedule. This is done by assigning jobs
to contiguous blocks of processors, which are numbered. On one hand, em-
ploying this constraint might reduce the chance of the algorithm actually
moving small jobs forward since there will be less space available. On the
other hand, the reduced fragmentation tends to facilitate the assignment of
larger jobs in the first place, helping improve different metrics.

Figure 1.6 shows an example of a platform as modeled by the Contiguity
constraint.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1.6 – Example a of a platform as utilized by the Contiguity constraint

Basic Locality is a constraint that aims to keep jobs close together but
with a different organization. It divides the available processors in groups
called clusters. The size of each cluster is configurable. The goal is then to
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assign jobs in such a way that as few clusters as possible are occupied by the
job. This in turn helps in similar ways as contiguity, reducing fragmentation,
although not as much. Additionally, in a scenario where communication
costs are not negligible, associating the clusters with the organization of the
network helps improve the schedule further.

1 2 3 4

Cl1

5 6 7 8

Cl2

9 10 11 12

Cl3

13 14 15 16

Cl4

Figure 1.7 – Example a of a platform as utilized by the Basic Locality con-
straint

Figure 1.7 shows an example of a platform modeled by the basic locality
constraint. Each cluster, from Cl1 to Cl4, consists of four processors.

These two constraints are used to improve the efficiency of the Back-
filling algorithm. To demonstrate this, a new discrete event simulator is
developed. Experiments are then designed focusing on employing real traces
and utilizing the jobs’ real run time, since user submitted times are strongly
overestimated. For this reason, the scheduler runs in an offline fashion and
we focus on the completion time metric (Cmax). Then, subsets of jobs are
taken from random starting points in the original traces and used as input
in the experiments.

Results show that the benefits of these constraints indeed outweigh the
possible decrease in the number of jobs backfilled due the reduced fragmen-
tation. Particularly, we demonstrate that contiguity is able to achieve some
level of locality without knowledge of the platform. We also note that these
algorithms can be easily integrated into existing batch schedulers as plugins.

This work was published in the IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID) 2015 [46], under the name
“Contiguity and Locality in Backfilling Scheduling”.

1.2.4 Improving Backfilling with Full Locality Awareness

Full Locality is a constraint that considers the topology of the platform,
and not just the size of each group of processors at the last level. The main
goal is to use this information to assign jobs to regions of the platform where
communication costs due to latency are minimized. This constraint does not
require jobs to be assigned contiguously, since communication costs inside
the same group of processors is the same for all of them. As a consequence,
there is but a slight reduction in fragmentation and consequently in the

8



number of backfilled jobs. For this reason, full locality is superior to all the
other constraints, because it focuses on reducing the run time by minimizing
communication costs while keeping the Backfilling algorithm’s efficiency as
intact as possible.

1 2 3 4 5 6 7 8

Figure 1.8 – Example of a platform as utilized by the full locality constraint

In order to compare the Full Locality constraint to the previously pro-
posed ones, it was added to the simulator. Then, new experiments were
designed, now focusing on utilizing the original traces with as few modifica-
tions as possible. In this instance, the only modification done to the traces
is the division in periods of one week. Then, each instance is composed by
one or more contiguous periods chosen at random. This is done to show
that the results represent different scenarios relevant to each of the included
platforms.

Thus, we keep the jobs’ original information and consider both user sub-
mitted and real run times. For this reason, the scheduler works in an online
fashion, where it has no information about the subsequent jobs and does
not know when the currently running jobs will finish. This information is
restricted to the part of the code that deals with the submission and ending
events. The experiments are executed and generated results show that Full
Locality is indeed superior to all the previous variants, for several metrics.

At time of writing this work has not been submitted to any conference.
However, we have plans to submit it to to a conference in the following
months.

1.3 Organization of the text

The Chapters of the text are organized in the following way:
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Chapter 2 presents the sequence comparison problem, the strategy and
its implementation and experimental results.

Chapter 3 contains the definition of the studied problem, a presentation
of the base-line non-preemptive algorithms used as well as the preemptive
lower bounds used in the experiments. Additionally, the algorithms based on
heavy tasks and redirections are proposed. Finally, this Chapter describes
the organization of experimental phase and provide results.

Chapter 4 discusses the most relevant related works concerning the schedul-
ing problem, presents the theoretical analysis of the degradation ratio due to
additional topology constraints applied to the Backfilling algorithm and pro-
posed allocation algorithms targeting locality. Finally, the chapter reports
the results of the conducted experiments.

Lastly, Chapter 5 introduces an update to the discrete event simulator
presented in the previous Chapter. This update contains additional features
such as job reassignment. Furthermore, this new version of the simulator
includes an improved model of the platform topology as well as the imple-
mentation of a new type of constraint that is aware of the topology. Next,
the Chapter discusses the configuration of the conducted experiments and
presents the results.
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Chapter 2

Fast Biological Sequence
Comparison on Heterogeneous
Platforms

2.1 Introduction

The goal of this Chapter is to design an efficient implementation of the
classical problem of comparing biological sequences in a parallel multi-core
platform with hardware accelerators.

Once a new biological sequence is discovered, its functional/structural
characteristics must be established. In order to do that, the newly discov-
ered sequence is compared against other sequences, looking for similarities.
Sequence comparison is, therefore, one of the most crucial operations in
Bioinformatics [50]. The most accurate algorithm to execute pairwise com-
parisons is the one proposed by Smith and Waterman (SW) [62], which is
based on dynamic programming and runs in quadratic time and space com-
plexity to the length of the sequences. This can easily lead to very large
execution times and huge memory requirements, since the size of biological
databases is growing exponentially.

Parallel implementations can be used to compute results faster, reduc-
ing significantly the time needed to obtain results with the SW algorithm.
Indeed, many proposals exist to execute SW on clusters [55, 16] and com-
putational grids [18]. More recently, hardware accelerators such as GPUs
(Graphics Processing Units) and FPGAs (Field Programmable Gate Arrays)
have been explored to speed-up the SW algorithm [20, 44, 34]. In addition to
that, SIMD extensions of general-purpose processors, such as the Intel SSE,
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have also been explored to accelerate SW implementations [57].
Since accelerators are usually connected to a multi-core host, the idea is

to use both the accelerators and the CPUs to execute SW in parallel. There
are some approaches in the literature that explore such idea [59, 60, 49]. In
order to distribute work among the hybrid processing elements, these ap-
proaches usually assume that multi-cores and accelerators have the same
processing power [60], distribute work proportionally, considering the theo-
retical computing power of each processing element [49] or assign one work
unit at the time [59] in a Self-Scheduling strategy.

In this Chapter, we propose SWDUAL, a new implementation of the
Smith-Waterman algorithm for hybrid platforms composed of multiple pro-
cessors and multiple GPUs. SWDUAL is based on a fast dual approximation
scheduling algorithm that selects the most suitable tasks to be run on the
GPUs while keeping a good balance of the computational load over the whole
platform [38].

Given a set of query sequences and a biological database, our strategy
uses a one round master-slave approach to assign tasks to the processing
elements according to the dual approximation scheduling algorithm being
used.

The remainder of this Chapter is organized as follows. Section 2.2 presents
the sequence comparison problem and recalls the principle of the classical
SW algorithm. The strategy and its implementation for executing SW on hy-
brid platforms are proposed respectively in Sections 2.3 and 2.4. Section 2.5
presents the experimental results. Finally, Section 2.6 presents a conclusion
for the Chapter.

2.2 Biological Sequence Comparison

2.2.1 Presentation of the core problem

A biological sequence is a structure composed of nucleic acids or proteins.
It is represented by an ordered list of residues, which are nucleotide bases
(for DNA or RNA sequences) or amino acids (for protein sequences).

DNA and RNA sequences are treated as strings composed of elements
of the alphabets

∑
= {A, T,G,C} and

∑
= {A,U,G,C}, respectively.

Protein sequences are also treated as strings which elements belong to an
alphabet with, normally, 20 amino acids.

Since two biological sequences are rarely identical, the sequence compar-
ison problem corresponds to approximate pattern matching. To compare
two sequences, a good alignment between each other should be determined.
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This corresponds to place one sequence above the other making clear the
correspondence between similar characters [50]. In an alignment, some gaps
(space characters) can be inserted in arbitrary locations such that the se-
quences end up with the same size.

Given an alignment between sequences s and t, a score is associated to
it as follows. For each two bases in the same column:

• a punctuation ma is associated if both characters are identical (match);

• a penalty mi, if the characters are different (mismatch);

• a penalty g, if one of the characters is a gap.

The score is obtained by the addition of all these values. The maximal
score is called the similarity between the sequences. Figure 2.1 presents one
possible global alignment between two DNA sequences and its associated
score. In this example, ma = +1, mi = −1 and g = −2.

A C T T G T C C G
A − T T G T C A G

+1 −2 +1 +1 +1 +1 +1 −1 +1︸ ︷︷ ︸
score = 4

Figure 2.1 – Example of an alignment and score

2.2.2 Smith-Waterman (SW) Algorithm

The SW algorithm [62] is an exact method based on dynamic program-
ming to obtain the optimal pairwise local alignment in quadratic time and
space in the length of the sequences.

The first phase of the SW algorithm starts by two input sequences s and
t, with |s| = m and |t| = n, where |s| is the size of sequence s. The similarity
matrix is denoted by Hm+1,n+1, where Hi,j contains the score between pre-
fixes s[1..i] and t[1..j]. At the beginning, the first row and column are filled
with zeros. The remaining elements of H are obtained from Equation (2.1).
In addition, each cell Hi,j contains the information about the cell that was
used to produce the value. Si,j is a similarity score for the elements i and j
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Hi,j = max


Hi−1,j−1 + Si,j

Hi,j−1 + g

Hi−1,j + g

0

(2.1)

The SW algorithm assigns a constant cost to gaps. Nevertheless, in na-
ture, gaps tend to appear in groups. For this reason, a higher penalty is
usually associated to the first gap and a lower penalty is given to the fol-
lowing ones (this is known as the affine-gap model). Gotoh [28] proposed an
algorithm based on SW that implements the affine-gap model by calculating
three Dynamic Programming (DP) matrices, namely H, E and F , where E
and F keep track of gaps in each of the sequences. The gap penalties for
starting and extending a gap are Gs and Ge, respectively. This recursion
formulas are given by Equations (2.2), (2.3) and (2.4).

Hi,j = max


Hi−1,j−1 + Si,j

Ei,j

Fi,j

0

(2.2)

Ei,j = −Ge + max

{
Ei,j−1

Hi,j−1 −Gs
(2.3)

Fi,j = −Ge + max

{
Fi−1,j

Hi−1,j −Gs
(2.4)

2.2.3 Parallelizing SW

There are several ways to parallelize the SW algorithm. The follow-
ing paragraph describes the comparison of a set q of m query sequences
(q1, q2, ..., qm) to a set d of n database sequences (d1, d2, ..., dn). It is as-
sumed that the size of the database is much larger than the set of query
sequences (m� n).

In the fine-grained approach, the comparison of one query sequence and
one database sequence (i.e. a single SW execution) is done by several Pro-
cessing Elements (PEs). The data dependency in the matrix calculation
is non-uniform, and the calculations that can be done in parallel evolve as
waves on diagonals (according to Equation (2.2)). Figure 2.2 illustrates a
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fine-grained column-based block partition technique with four PEs. At the
beginning, only p0 is computing. When p0 finishes calculating the values
of a block of matrix cells, it sends its border column to p1, that can start
calculating and so on. Note that this solution may be unbalanced: very close
to the end of the matrix computation, only p3 is calculating. When the PEs
finish to compare q1 to d1, they start comparing q1 to d2 and so on, until
the comparison of qm to dn is completed.

D
K
Y
A
...
Y
IK

DEKLKKWVT...YAA

p0 p1 p2 p3

Figure 2.2 – Fine-grained strategy to parallelize the SW algorithm
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Figure 2.3 – Very coarse-grained strategy to parallelize the SW algorithm

In the very coarse-grained approach, each PE compares a different query
sequence to the whole database (see Figure 2.3). For instance, p0 compares
q1 to d, p1 compares q2 to d and so on. Note that, in this case, the number
of SW comparisons executed by each processing element is big and this
approach can easily lead to load imbalance.

The SWDUAL implementation uses both the fine-grained and very coarse-
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grained approach. Each one of the workers uses fine-grained approach to
accelerate the execution of the SW algorithm for a particular comparison.
That approach is dependent on the type of worker and the techniques be-
ing used to optimize each comparison. At the same time, other workers are
comparing other sequences of the query set to the database in the same way.
In our case the master uses the scheduling algorithm to allocate tasks to the
workers. Each task is equivalent to the comparison of one task of the query
set to the whole database.

In the following section, we describe the scheduling algorithm used by
the master to allocate the tasks to the workers.

2.3 Scheduling Algorithm with Dual Approxima-
tion

In the implementation targeted in this Chapter, tasks are pairwise com-
parisons of two sequences. The problem is to determine an allocation of the
tasks to the GPUs that minimizes the global completion time 1.

The principle of the proposed scheduling algorithm is to use the dual
approximation technique introduced in [30] and which is recalled as follows.
A g-dual approximation algorithm for any minimization problem takes a real
number λ (called the guess) as an input and either delivers a schedule whose
makespan is at most gλ or answers correctly that there exists no schedule of
length at most λ.

We target g = 2. Let λ be the current real number input for the dual
approximation. In the following, we assert that there exists a schedule of
length lower than λ. Then, we have to show how it is possible to build a
schedule of length at most 2λ.

We introduce an allocation function π(j) of a task Tj which corresponds
to the processor where the task is processed. The set C (resp. G) is the set
of all the CPUs (resp. GPUs). Therefore, if a task Tj is assigned to a CPU,
we can write π(j) ∈ C. Each task Tj has two processing times, pj if it is
processed on a CPU, pj if it is processed on a GPU. We define WC as being
the computational area of the CPUs on the Gantt chart representation of a
schedule, i.e. the sum of all the processing times of the tasks allocated to
the CPUs: WC =

∑
j / π(j)∈C

pj .

To take advantage of the dual approximation paradigm, we have to make
explicit the consequences of the assumption that there exists a schedule of

1also called makespan, or Cmax
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length at most λ. We state below some basic properties of such a schedule:

• The execution time of each task is at most λ.

• The computational area on the CPUs is at most mλ.

• The computational area on the GPUs is at most kλ.

We are looking for an assignment of the tasks to either a CPU or a GPU
satisfying the following two constraints:

• (C1) The total computational area WC on the CPUs is at most mλ.

• (C2) The total computational area on the GPUs is lower than kλ.

We define for each task Tj a binary variable xj such that xj = 1 if Tj is
assigned to a CPU or 0 if Tj is assigned to a GPU. Determining if an assign-
ment satisfying (C1) and (C2) exists corresponds to solving a minimization
knapsack problem [48] that can be formulated as follows:

W ∗C = min

n∑
j=1

pjxj (2.5)

s.t.
n∑
j=1

pj (1− xj) 6 kλ (2.6)

xj ∈ {0, 1} ∀j = 1, . . . , n (2.7)

Equation (2.5) represents the minimal workload on all the CPUs. Con-
straint (2.6) imposes an upper bound on the computational area of the GPUs
which is kλ (cf. (C2)).

The knapsack is solved by a greedy algorithm. Usually the knapsack
is a maximization problem. Here we consider the opposite minimization
version. The tasks are sorted by decreasing order of the ratio pj

pj
. Thus,

the most prioritary tasks are those with the best relative processing times
on GPUs. Figure 2.4 depicts the principle of the greedy knapsack. The
knapsack allocates the first tasks to the GPUs until the computational area
on the GPUs is roughly equal to kλ.

The result of the knapsack leads to a solution with a computational area
on GPUs larger than kλ. All remaining tasks are scheduled on CPUs. If the
value of the computational area on the CPUs is greater than mλ, then there
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k

λ

Figure 2.4 – Greedy knapsack fills the GPUs with tasks up to getting a
computational area larger than kλ on the GPUs

exists no solution with a makespan at most λ, and the algorithm answers
“NO” to the dual approximation.

The scheduling on the CPUs after the allocation of the greedy knapsack
is done with a list scheduling algorithm assigning the tasks on an available
processor of the corresponding type in the assignment (cf. Figure 2.5).

Proposition 1. If WC is lower than mλ, there exists a feasible solution with
a makespan at most 2λ.

Proof. The makespan on the CPUs, CCPUmax , is bounded by the following
inequality:

CCPUmax 6 max
16j6n

(pjxj) +

n∑
j=1

pjxj

n∑
j=1

xj

(2.8)
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λ

Figure 2.5 – List scheduling fills the CPUs with remaining tasks. The com-
putational area is smaller than mλ, otherwise λ is smaller than C∗max

All the tasks assigned to the CPUs have a processing time lower than λ,

therefore max
16j6n

pjxj 6 λ and
n∑
j=1

pjxj 6 mλ with the hypothesis that WC is

lower than mλ. We obtain:

CCPUmax 6

1 +
m
n∑
j=1

xj

λ (2.9)

Moreover, we can assume
n∑
j=1

xj > m, otherwise the optimal solution is

straightforward (one task per CPU), thus:

CCPUmax 6 2λ (2.10)
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Let us turn now to the GPU side. Let jlast be the index of the last task
selected by the knapsack. The task jlast is thus the last task scheduled by
the greedy knapsack on the GPUs. Hence, task jlast has no influence at all
on the scheduling of all the other tasks.

Two cases hold (cf. Equation (2.11)): either the jlast task is not the
last to be completed or it is. On the first hand, jlast can be removed from
the schedule instance without changing the makespan. The computational
area of all tasks except jlast is smaller than kλ thus the guarantee is the
same as the one derived for the CPU schedule. On the second hand, the
computational area of all tasks save jlast is also smaller than kλ thus, when
the list algorithm schedules the jlast task, the least loaded of the k GPUs
is loaded less than λ. Hence the jlast task ends before 2λ.

CGPUmax 6


max

1≤j≤n|j 6=jlast

(
pj(1− xj)

)
+

n∑
j=1

pj(1−xj)−pjlast

k 6 2λ

(
pj(1− xj)

)
+

n∑
j=1

pj(1−xj)−pjlast

k 6 2λ

(2.11)

Since the makespan of the schedule is the maximum of the makespans
on the CPUs and on the GPUs, we get:

Cmax 6 2λ (2.12)

We have described one step of the dual-approximation algorithm, with a
fixed guess. A binary search will be used to try different guesses to approach
the optimal makespan as follows.

Binary Search We first take an initial lower bound Bmin and an initial
upper bound Bmax of our optimal makespan. We start by solving the prob-
lem with λ equal to the average of these two bounds and then we adjust the
bounds:

• If the previous algorithm returns “NO”, then λ becomes the new lower
bound.

• If the algorithm returns a schedule of makespan at most 2λ, then λ
becomes the new upper bound.

The number of iterations of this binary search can be bounded by log (Bmax −Bmin).
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Cost Analysis The greedy algorithm used to fill the GPUs only requires
a sorting of the tasks, whereas the list scheduling used for the CPUs is
linear. Therefore, the time complexity of each step of the binary search is
O(n log(n)).

The algorithm described above returns a schedule with a makespan equal
to at most twice the optimal makespan. Some constraints on the number of
tasks with processing times larger than 2

3λ, λ being the current guess, in the
algorithm can be added to the original problem. The resolution of the knap-
sack problem with these additional constraints via dynamic programming can
reduce the makespan of the schedule returned by the algorithm to 3

2OPT ,
where OPT is the optimal makespan. This method is described in [38], and
has a time complexity in O

(
n2mk2

)
per step of the binary search. This time

complexity is important, but it can be lowered with special instances where
all the considered tasks are accelerated when assigned to a GPU, which is
the case for the sequence comparison problem addressed in this Chapter.
In this special case, the time complexity reduces to O(mn log(n)), which is
satisfactory for real implementations.

2.4 Designing the SWDUAL implementation

Our implementation is designed using the master-slave model. The mas-
ter is responsible for receiving commands from the user, reading the se-
quences from disk, generating a list of tasks and allocating them to the
workers (slaves), receiving and presenting the results back to the user. The
workers first have to register themselves with the master. Then, acquire
the same sequences that master received as parameters from the user, re-
ceive tasks from the master, execute them and return the results. Both the
master and workers convert the format of the sequences if necessary. Fig-
ure 2.6 shows the different steps taken during execution by the master and
the workers.

First, the master processes the command line arguments entered by the
user. Then, it loads the sequences, converts the format if necessary and
waits for the workers to connect. The workers are started either manually or
automatically, connect to the master, load the sequences and also if necessary
convert the format.

Now, the master can use the information gathered from the workers and
the allocation policy or scheduling algorithm to allocate tasks to the workers,
after which the workers start executing them. That can be done only once
at the beginning of the execution or iteratively until all tasks are executed.
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Figure 2.6 – SWDUAL master-slave model

Finally, the workers send the results to the master that merge and present
them to the user.

Sequence database files created using the Fasta [54] format are in fact
text files, with sequences placed one after the other. For that reason, it is not
feasible to read specific sequences contained in the file, which is important
for implementations like SWDUAL.

To improve this reading process, a simple binary format was created with
a few additional fields. Using this format, both the master and workers are
able to read sequences in any position inside the file, directly. Additionally,
the memory allocation process is simplified due to the fact that the all the
sequences sizes are known beforehand.

2.5 Experimental Results

In this section, the experimental results of the method implementation
are presented and compared to the state-of-the-art.

The method proposed in Section 2.3 was implemented in C++ with SSE
extensions and CUDA.

The strategy was implemented in C with SSE extensions and CUDA,
and it integrates CUDASW++ 2.0 [44] and SWIPE [57] into the code. That
code was compiled with the CUDA SDK 4.2.9 and gcc 4.5.2. The operating
system used was Linux 3.0.0-15 Ubuntu 64 bits. The tests were conducted
with 40 real query sequences of minimum size 100 and maximum size 5,000
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amino acids, which were compared to 5 real genomic databases: Uniprot with
537,505 sequences, Enbembl Dog with 25,160 sequences and Rat with 32,971
sequences and RefSeq Human with 34,705 sequences and Mouse 29,437 se-
quences.

The tests were executed in the Idgraf high performance computer located
at Inria Grenoble. It contains 2 Intel Xeon 2.67GHz processors with 4 cores
each, 74GB of RAM and 8 Nvidia Tesla C2050 GPUs. The machine was
reserved for exclusive use for the duration of the test to ensure that no
other major process was running concurrently. All the sequences used were
available locally to minimize the influence of the network and file reading
time. All combinations of programs, number of workers, query and database
sequences were executed twenty-five times and the average total wall-clock
execution time was recorded. Also, processor affinity was used to ensure that
each process stayed in the same processor during the whole execution.

2.5.1 Comparison to other implementations

Table 2.1 shows the state-of-the-art implementations that were compared
to SWDUAL, as well as their version number and command line options. For
the commands, the variables were $T for the number of threads, $Q query
sequence and $D database sequence.

Table 2.1 – Applications included in the comparison

Application Version Command line

SWIPE 1.0 ./swipe -a $T -i $Q -d $D

STRIPED ./striped -T $T $Q $D

SWPS3 20080605 ./swps3 -j $T $Q $D

CUDASW++ 2.0 ./cudasw -use_gpus $T -query $Q -db $D

The SWDUAL implementation was compared against SWIPE, STRIPED,
SWPS3 and CUDASW++.

SWIPE [57] was written mostly in C++ with some parts hand coded in
assembly. It was compiled using the provided Makefile.

The source code for the Farrar’s STRIPED implementation of the SW
algorithm [24] was compiled using the provided Makefile. It was written
mainly in C with some parts also coded in assembly or Intel intrinsics.

SWPS3 [64] was downloaded from the author’s website and was written
in C. It was compiled using the provided Makefile.
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CUDASW++ 2.0 [44] was also downloaded from the author’s website
and was written in C++ and CUDA. It was compiled using the provided
Makefile. CUDA 4.1 was used in the compilation.

The tests were conducted using the UniProt database (www.uniprot.org)
and 40 query sequences taken from it. Also, were used on the test up to
four CPUs and four GPUs. For that reason the considered applications were
executed with up to four workers, while SWDUAL, that uses both CPUs
and GPUs as workers was executed with workers between two and eight. In
this case, the first four workers used on the SWDUAL execution were GPUs
and the last four workers were CPUs.

The reason why only four CPUs and four GPUs were used in this test al-
though eight CPUs and eight GPUs were available is that each GPU worker
actually needs some CPU time to execute as fast as it can. As a consequence,
using more CPUs and GPUs than that number impacts on the overall per-
formance of the applications and the speedup is considerably worst. Thus
for the applications that only used CPUs or GPUs up to four workers were
used. The exception was our case that was executed with four GPUs and
four CPUs for a total of eight workers. In this case, since our implementation
needs at least one CPU and one GPU to execute, we start with two workers.
For three workers, two are GPUs and one is a CPU. Finally, an execution of
four workers uses three GPUs and one CPU.

The SWDUAL implementation was able to significantly reduce the ex-
ecution time of the sequence database searches using the Smith-Waterman
algorithm compared to earlier proposals that use only one type of processing
element. As can be seen on Figure 2.7 and Table 2.2, the combination of
CPUs and GPUs leaded to very good results. When executing with two
workers, SWDUAL showed a reduction of 54.7%, 85% and 98% when com-
pared to the same execution on SWIPE, STRIPED and SWPS3, respectively.
When executing with four workers, a reduction of 55.3% was obtained when
compared to the execution on SWIPE, 73.5% when compared to STRIPED
and 98.6% on SWPS3.

Also, due to the implementation of the dual approximation scheduling
algorithm, the execution on each of the processing elements finished with
almost no idle time.

2.5.2 Comparison to 5 genomic databases

In this case, the tests were conducted with 40 real query sequences of
minimum size 100 and maximum size 5,000 amino acids, which were com-
pared to 5 real genomic databases, as in [44]: Uniprot with 537,505 sequences
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Table 2.2 – Execution times for the compared implementations

Application
Number of workers

1 2 3 4

SWPS3 69208.2 36174.09 25206.563 18904.31

STRIPED 7190 3615.38 1369.33 1027.28

SWIPE 2367.24 1199.47 816.61 610.23

CUDASW++ 785.26 445.611 350.09 292.157

SWDUAL 543.28 472.84 271.98

Application
Number of workers

5 6 7 8

SWDUAL 266.69 239.04 183.12 142.98

(www.uniprot.org), Enbembl (www.ensembl.org) Dog with 25,160 sequences
and Rat with 32,971 sequences and RefSeq (www.ncbi.nlm.nih.gov/RefSeq)
Human with 34,705 sequences and Mouse 29,437 sequences as listed in Ta-
ble 2.3.

Table 2.3 – Genomic Databases used on the tests

Database
Number of Smallest Longest

database seqs query seq query seq

Ensembl Dog Proteins 25,160 100 4,996

Ensembl Rat Proteins 32,971 100 4,992

RefSeq Human Proteins 34,705 100 4,981

RefSeq Mouse Proteins 29,437 100 5,000

UniProt 537,505 100 4,998

In order to measure the benefits of using a hybrid platform, the wall-clock
execution time and GCUPs (billion cell updates per second) obtained were
measured when comparing 40 query sequences to the five genomic databases.

As can be seen on Table 2.4, SWDUAL was able to obtain good speedups
while combining CPUs and GPUs, reducing the execution time repeatedly
while adding processing elements. For the Uniprot database the execution
time was reduced from 543 seconds (approximately 10 minutes) to 86 sec-
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Figure 2.7 – Execution times in seconds for the compared implementations

onds when executing on eight CPUs and eight GPUs. Figure 2.8 shows the
execution times obtained when comparing the databases.

Table 2.4 – Results running on GPUs and CPUs

Workers
2 4 8

Time (s) Time (s) Time (s)
GCUPS GCUPS GCUPS

Ensembl Dog 78.36 39.63 20.45
18.91 37.39 72.45

Ensembl Rat 75.85 37.97 20.17
22.97 45.89 86.38

RefSeq Mouse 84.40 46.25 23.59
18.99 34.66 67.95

RefSeq Human 95.09 48.01 24.82
20.70 41.00 79.31

Uniprot 543.28 271.98 142.98
35.81 71.53 136.06

2.5.3 Comparison of homogeneous and heterogeneous sets

For this test, two additional query sets were created from the Uniprot
database. Each query set has, like in the previous tests, 40 sequences. In
this case, the sequences in the homogeneous set range in size from 4500 to
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Figure 2.8 – Execution times for the compared databases

5000 and the ones in the heterogeneous set have sizes between 4 (the smallest
sequence in the database) and 35213 (the largest sequence in the database).

The idea is to verify that the allocation strategy and the application as
a whole is equally able to work with sequences, and therefore tasks, that are
similar in terms of size as well as tasks with very different sizes.

Table 2.5 shows the execution times and the GCUPs obtained when com-
paring these two sets to the UniProt database. In this case, SWDUAL was
able to achieve good performance on both sets. Figure 2.9 also shows the
results obtained in these comparisons.

Table 2.5 – Results running the homogeneous and the heterogeneous sets

Sets
2 4 8

Time (s) Time (s) Time (s)
GCUPS GCUPS GCUPS

Heterogeneous 3554.36 1785.73 908.45
37.55 74.74 146.92

Homogeneous 998.27 484.74 249.69
36.3 74.76 145.14
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Figure 2.9 – Execution times for the heterogeneous and homogeneous sets

2.6 Conclusion

Efficient parallelization of the Smith-Waterman algorithm using SIMD
and SIMT on standard hardware enables sequence database searches to be
performed much faster than before. Also, scheduling algorithms like the
dual approximation and the master-slave model allow for better utilization
of the resources by combining the processing elements available in hybrid
platforms.

In our new implementation, the comparison of a given database to a
set of query sequences is divided among any number of workers. The dual
approximation algorithm was used to decide which tasks to execute on the
GPUs. The objective is to achieve good execution times and have as little
idle time on the processing elements as possible.

When comparing 40 query sequences to the UniProt database a speed
of 225 billion cell updates per second (GCUPS) was achieved on a dual
Intel Xeon processor system with Nvidia Tesla GPUs, reducing the execution
time from 543 seconds to 86 seconds. In addition to that, the combination
of GPUs and CPUs was responsible for reducing the execution time to a
total of 142 seconds for that database, which is faster than all the compared
implementations.

Finally, we showed that SWDUAL is able to reduce execution times in
sequence database comparisons both when tasks have similar sizes and sizes
that are very different between tasks.
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Chapter 3

A New Online Method for
Scheduling Independent Tasks

3.1 Introduction

We are interested in studying the problem of scheduling a set of indepen-
dent sequential without preemption. These tasks are submitted on a multi-
core parallel machine. This is a basic scheduling problem whose different
variants have been studied for different objectives. The aim is, in general, to
determine good solutions in short (polynomial) time, whose objective values
are close to the optimal solution.

Most existing works, and particularly theoretical studies, consider off-line
executions, that correspond to scenarios where the entire instance is known
in advance. In this case, the algorithms naturally target the minimization
of objectives like the maximum completion time (makespan) or the total
completion time of all tasks. Several provably good algorithms have been
proposed for these objectives which achieve constant approximation ratios.

In this Chapter, we consider more realistic scenarios where the tasks and
their characteristics are only known when they are submitted in the system.
This on-line problem is harder since we should be able to make decisions with
a partial knowledge of the instance. In this context, objectives like makespan
have no concrete meaning since they could strongly depend on the maximum
submission time. For these reason, in the on-line setting we usually consider
objectives based on the flow-time which corresponds to the time that a task
remains to the system. We are mainly interested in the stretch of the tasks
(also known as slow-down) which normalizes the flow-time of each task with
respect to its processing time.
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Our purpose within this work is to introduce a new technique for on-
line scheduling independent tasks which will be applied to optimize several
enhanced objectives. The main idea of this technique is to detect a reasonable
number of tasks that have a negative impact on the whole execution and to
redirect them to a dedicated pool of processors in order to be executed apart
from the other tasks. More precisely, we propose to split the set of tasks
into common and heavy tasks. This split is performed on-line at run time.
Informally, a task will be called heavy if its execution delays an important
number of smaller tasks. Whenever a task is characterized as heavy, it is
redirected to the pool of dedicated processors and this decision will never be
reconsidered in the future.

The dedicated pool consists of a subset of the available processors of the
machine, that is no additional processors are used. However, it will be only
used by the heavy tasks. The size of this pool should be related to several
parameters, including the input instance, the size of the machine, as well as,
parameters that cause the redirection of the heavy tasks.

In order to characterize a task as heavy, we propose to keep track of the
number of smaller tasks that arrive during the execution of a task. For this,
a counter is initialized at the beginning of the execution of a task, and if this
counter reaches a given threshold, then the task is characterized as heavy
and it is redirected. The execution of heavy tasks on the dedicated proces-
sors is restarted from the beginning, so that the non-preemptive assumption
to be satisfied. The above idea of the counter has been used in [47], where
a theoretical upper bound has been proved. However, this algorithm com-
pletely rejects the heavy tasks instead of redirecting them, an action that is
not permissible in real systems.

Based on the observation that most heavy tasks in the above policy
have quite long processing times, we also propose a random method which
characterizes a long task as heavy with some given probability. This method
avoids the interruption of the tasks and the re-execution of part of them,
but does not benefit of the information about the currently delayed tasks
provided by the counter.

Both above ideas have been assessed by an extensive simulation campaign
based on real data coming from actual execution traces. The experimental
results show the significant benefits compared to standard base-line policies
for scheduling tasks without preemptions.

In Section 3.2 we formally define the studied problem and we give the
notations used throughout the Chapter, while in Section 3.3 we describe
known results and position this Chapter in regards to related works. In Sec-
tion 3.4 we first present the base-line non-preemptive algorithms as well as
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the preemptive lower bounds that will be used in our experiments. Then, we
propose our algorithms based on heavy tasks and redirections. In Section 3.5
we describe the construction of experimental data which are extracted from
7 different traces. Next, we provide the results of the experimental campaign
consisting of the parameter tuning of our new methods as well as their com-
parison in the constructed instances with the base-line algorithms and the
lower bounds. Finally, we conclude in Section 3.6.

3.2 Definitions and notations.

In the following, we consider a set of n independent sequential tasks and
a parallel machine consisting of m processors. Each task should be executed
on a single processor without preemptions. We denote by Mi, 1 ≤ i ≤ m,
each processor of this machine. Each task Tj , 1 ≤ j ≤ n, is characterized by
a processing time pj , which becomes known to the scheduler only after its
submission at time rj ; we call rj the release time of Tj . In what follows we
denote by pj(t) the remaining processing time of the task Tj at time t. Note
that pj(rj) = pj .

time

rj
Tj

pj

Cjt

pj(t)

Fj

Figure 3.1 – Summary of notations.

Given a schedule, Cj denotes the completion time of Tj , that is the time
at which it is completed. From a more realistic perspective and taking into
account the user point of view, a natural measure of the quality of service
delivered to a task is the amount of time it spends in a system. The basic
objective in this direction is the flow-time (also called response time) of a
task, which is defined as the amount of time it remains in the system until
being completed. In other words, the flow-time of a task is composed by the
time this task waits in the system to begin its execution plus its processing
time. The flow-time of a task Tj is denoted by Fj = Cj − rj .

Many variants of flow-time metric have been investigated in different
settings. Since the flow-time depends on the processing time, it varies a
lot for different tasks. For this reason the stretch (or slowdown) metric has
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been proposed which normalizes the flow-time of a task by dividing it by its
processing time, i.e. Sj = Fj/pj. This metric is often used in fair scheduling
where the users are willing to wait longer for long tasks as opposed to short
ones. However, the stretch metric has also some drawbacks since it largely
focus on very short tasks. Specifically, such a short task cannot wait even for
a natural period of time because its stretch will be exploded. To overcome
this, the stretch metric has been refined to the bounded stretch (or bounded
slowdown) metric [26] which is defined as Fj

max{pj ,B} , where B > 1 is a small
constant (we set B = 10). In this Chapter we are mainly interested in the
bounded stretch metric, and secondarily in flow-time. For simplicity, we will
henceforth refer to bounded stretch by just stretch.

For both stretch and flow-time, we consider three different objective func-
tions. The first objective function concerns the minimization of the maxi-
mum stretch or flow-time over all tasks. These objectives are denoted by
Smax and Fmax, respectively. The second objective function corresponds to
the minimization of the total stretch or flow-time for all tasks, i.e.

∑
Sj and∑

Fj , respectively. A third objective function that balances the previous two
functions, while it is also considered to increase the fairness among tasks,
is the norm. We will consider the second norms of stretch and flow-time
which are defined as (

∑
S2
j )1/2 and (

∑
F 2
j )1/2, respectively. Note that the

first norm corresponds to the sum function, while the infinite norm to the
max function.

3.3 Related works

Scheduling efficiently concurrent tasks on a parallel machine is a cen-
tral problem for reaching good performances. There exist a huge literature
on this problem focusing on standard objectives based on completion times
(see for example [22]). Most of these studies are done in an off-line setting.
Here, we are interested in flow-time based objectives that are more appropri-
ate for the non-preemptive and mainly for the on-line settings. In general,
the flow-oriented objectives are harder than the standard makespan or total
completion time objectives.

In what follows, we say that an off-line algorithm achieves a ρ-approximation
ratio if the objective value of its constructed solution is at most ρ times bigger
than the objective value of an optimal solution. In a similar way, we may de-
fine the competitive ratio for on-line algorithms, comparing the algorithm’s
solution with the off-line optimal solution.

If preemptions are allowed, the classical Shortest Remaining Processing
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Time policy (SRPT) provides an optimal solution for minimizing the total
flow-time and a 2-competitive solution for minimizing the total stretch on a
single processor [12]. Moreover, a variant of SRPT achieves a competitive
ratio of 13 for the total stretch minimization problem on parallel proces-
sors [52]. Furthermore, Bender et al. [13] proposed a variant of the classical
Earliest Deadline First (EDF) policy for the max stretch objective on a sin-
gle processor which leads to a O(

√
∆)-competitive algorithm, where ∆ is the

ratio of the maximum over the minimum processing time of the instance. As
we consider non-preemptive scheduling, the above results may only serve as
lower bounds.

In the non-preemptive case, Kellerer et al. [39] showed that there exists a
lower bound of Ω(n

1
2
−ε) on the approximability of total flow-time minimiza-

tion problem even on a single processor, while the corresponding lower bound
for the on-line case is Ω(n) [17]. On the positive side, an O(

√
n
m log n

m)-
approximation algorithm has been presented in [41] for the problem of min-
imizing the total flow-time on m parallel processors. Moreover, Weighted
Shortest Processing Time (WSPT) is a O(∆ + 3

2 −
1
2m)-competitive algo-

rithm [65] for the more general problem where each task has a weight and
the objective is to minimize the total weighted flow-time. Since this prob-
lem is a generalization of the total stretch minimization problem, to which
reduces if the weight of a task is equal to the inverse of its processing time,
the result holds also for the latter objective.

Concerning the max function, it is known that First-Come-First-Served
(FCFS) is optimal on a single processor and (3 − 2

m)-competitive on paral-
lel processors for the max flow-time minimization problem [13]. Bender et
al. [13] showed that the max stretch minimization problem on parallel proces-
sors cannot be approximated within a factor of Ω(∆

1
3 ) on a single processor

and Ω(n1−ε) on parallel processors, unless P = NP. Legrand et al. [40]
studied the FCFS policy for the problem of minimizing the max stretch on a
single processor and they proved that it achieves a O(∆)-competitive ratio.
This result has been improved to (

√
5−1
2 ∆ + 1) in [23]. No results are known

for the max stretch objective in multi-processors setting.
Let us conclude this section by a remark: the idea presented in this

Chapter is related to the over-provisioning mechanism, which is for instance
discussed in [58] in the context of energy saving in high-performance parallel
platforms. The idea is to add extra hardware (processors) in order to improve
the power utilization as well as the task throughput in power-constrained
platforms. In our case, we propose to dedicate a part of the processors to
a specific utilization on a small number of problematic tasks for improving
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the whole execution of the bunch of tasks.

3.4 Algorithms

In this section we propose new policies for scheduling sequential tasks
on parallel processors based on the idea of redirecting the “hard” tasks to
a dedicated subset of processors. Before this, we briefly describe several
standard scheduling policies whose efficiency is compared in Section 3.5 with
the efficiency of our algorithms.

In all cases, we will consider two basic paradigms: the common queue and
the immediate dispatch models. In the first model, we use a single common
queue Q for all processors in order to store the pending tasks, i.e., the tasks
that are released but not yet executed. Then, whenever a processor becomes
idle we select a task from Q according to rules that depend on the specific
policy. In the second model, we use a different queue Qi for each processor
Mi and we dispatch each task just upon its arrival to one of these queues.
We will describe the dispatching policy in Section 3.4.4, after presenting the
scheduling policies.

3.4.1 Standard scheduling policies

Initially, we describe the policies based on a common queue Q for all
processors. Specifically, we will consider the following three “global” policies.

First-Come First-Served (FCFS) Whenever a processor becomes idle,
schedule on it the earliest released task in Q.

Global Shortest Processing Time (GSPT) Whenever a processor be-
comes idle, schedule on it the shortest processing time task in Q.

Global Shortest Remaining Processing Time (GSRPT) Whenever
a processor becomes idle, schedule on it the shortest remaining processing
time task in Q. At the arrival of a new task Tj we search for the processor
that actually executes the task with the longest remaining processing time.
Let Mi be this processor and Tk be the task executed on Mi at rj . If
pj ≤ pk(rj) then we interrupt the execution of Tk and we start executing Tj
on processor Mi, while the task Tk is added again to Q with processing time
pk(rj).
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Next, we describe the immediate dispatch versions of the SPT and SRPT
policies, respectively. Recall that the dispatching policy will be presented in
Section 3.4.4.

Shortest Processing Time (SPT) Whenever a processor Mi becomes
idle, schedule on it the shortest processing time task in Qi.

Shortest Remaining Processing Time (SRPT) Whenever a processor
Mi becomes idle, schedule on it the shortest remaining processing time task
in Qi. At the arrival of a new task Tj which is dispatched to processor Mi,
let Tk be the task which is actually executed by Mi. If pj ≤ pk(rj) then
we interrupt the execution of Tk and we start executing Tj on processor Mi,
while the task Tk is added again to Qi with processing time pk(rj).

Note that the policies based on SRPT produce preemptive schedules, and
they are used as lower bounds. Moreover, all the above policies apart from
FCFS prioritize the tasks with the shortest (remaining) processing time. The
motivation to this is due to the fact that this order provides good schedules
for both the total flow-time and the total stretch objectives. Recall that,
for the single processor case, SRPT is a preemptive policy which is optimal
for total flow-time [12] and almost optimal for total stretch, while SPT is
an optimal non-preemptive policy for both objectives if there are no release
dates [63]. On the other hand, it is well-known that FCFS is an optimal non-
preemptive policy for the maximum flow-time objective on a single processor.

3.4.2 Scheduling with redirections

In this section we propose new algorithms for scheduling non-preemptively
a set of sequential tasks on a multi-processor machine. The basic idea is to de-
tect the heavy tasks whose non-preemptive execution increases significantly
the waiting time of smaller tasks. These heavy tasks will be then redirected
to be executed on a small subset of processors reserved exclusively for them.

In order to give the intuition of our idea, let us present an example that
shows why any on-line non-preemptive policy A can be arbitrarily bad with
respect to an optimal non-preemptive schedule. For simplicity, we consider
that a single processor is available. Assume that a big task T0 of processing
time p is released and, without loss of generality, the scheduler starts execut-
ing T0 at time 0. Then, p unit processing time tasks are released: task Ti,
1 ≤ i ≤ p, is released at time ri = i. Since A is a non-preemptive algorithm,
it cannot interrupt the big task and hence executes the small tasks during
the interval [p + 1, 2p + 1] as, for example, shown in Figure 3.2. The total
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flow-time of any such schedule is O(p2). On the other hand, the offline op-
timal non-preemptive schedule will delay the execution of the big task and
execute all small tasks before T0, which gives a schedule of total flow-time
only O(p).

A

time0 1 2 3 p p + 1 2p

T0 T1 T2 T3 . . . Tp

OPT

time0 1 2 3 p p + 1 2p + 1

T1 T2 T3 . . . Tp T0

time0 1 2 3 p p + 3

T0 T1 T2 T3 . . . Tp

r1 r2 r3
. . . rp

Figure 3.2 – Intuition of redirection.

Motivated by this example, we propose to characterize a task Tj as heavy
if the number of smaller tasks that arrive during its execution attains a
given threshold τ . When this threshold is attained, the execution of Tj is
interrupted and it is redirected to a small subset of processors dedicated
only for heavy tasks. Note that, the execution of any heavy task on these
processors will be restarted from the beginning, that is heavy tasks are not
preemptively executed but they are interrupted and restarted. The last
part of Figure 3.2 demonstrates an example of the resulting schedule if the
threshold is set to be τ = 3. In this case, the task T0 is interrupted at time
r3 = 3 while the remaining tasks can start their execution and complete
earlier than in the schedule of A but later than in the optimal schedule. In
this way, the value of the threshold could describe a trade-off between the
number of the tasks that should be restarted and the performance for the
remaining tasks.

As in the case of the standard scheduling policies, we will consider two
versions of our method, one with a common queue and one with immediate
dispatch. The formal definition of these two versions follows. In both cases,
we consider that a threshold τ is given.
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Global Shortest Processing Time with Redirections (GSPT-RD)
Whenever a processor becomes idle, schedule on it the shortest processing
time task in Q. At the beginning of the execution of a task Tk on any
processor Mi we introduce a counter ck which is initialized to zero. At the
arrival of a new task Tj , we search for the processor that actually executes the
task with the longest remaining processing time. Let Mi be this processor
and Tk be the task executed on Mi at rj . If pj < pk(rj) then we increase by
one the counter ck. If ck = τ then we interrupt Tk and we redirect it to the
set of dedicated processors.

Shortest Processing Time with Redirections (SPT-RD) Whenever
a processorMi becomes idle, schedule on it the shortest processing time task
in Qi. At the beginning of the execution of a task Tk on any processor Mi

we introduce a counter ck which is initialized to zero. At the arrival of a
new task Tj which is dispatched to processor Mi during the execution of Tk,
we increase by one the counter ck only if pj < pk(rj). If ck = τ then we
interrupt Tk and we redirect it to the set of dedicated processors.

It remains to describe the scheduling policy that we use for the subset
of the processors dedicated for the redirected tasks. In fact, in each case
we use the same policy as for the main set of processors, without however
allowing new redirections for the already redirected tasks. In other words,
the GSPT (resp., SPT) policy is used for the dedicated processors along with
the GSPT-RD (resp., SPT-RD) policy.

3.4.3 Scheduling with random redirections

In some applications, the interruption of a task is very complicated even
if it will be re-executed from the beginning. For example, this is the case of
output-intensive applications. For this kind of applications, we propose to
substitute the threshold rule used in the previous section with a random rule
which will be applied before the beginning of the execution of each task. In
this way, no interruptions will be performed.

In order to simulate the threshold rule, we observe that the tasks redi-
rected based on it are in general big tasks. For this reason, we characterize
a task as potentially heavy if its processing time is at least b · pmax, where
b ∈ [0, 1] is a constant that characterizes how big is the task and pmax is
the maximum processing time over all tasks that have been arrived by the
current time. Then, a potentially heavy task will be redirected with a prob-
ability c ∈ [0, 1]. Note that a significant drawback of the random rule with
respect to the threshold rule is that the first one only cares about the load
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of the task under consideration, while the second one relates the load of this
task with the current load of the system.

We again consider two versions of the random method which are formally
defined as follows.

Global Shortest Processing Time with Random Redirections (GSPT-
RR) Whenever a processor becomes idle, schedule on it the shortest pro-
cessing time task in Q. At the arrival of a new task Tj , if pj ≥ b · pmax then
select a number cj uniformly at random in [0, 1]. If cj ≤ c then redirect Tj
to the set of dedicated processors. In any other case, add Tj in Q.

Shortest Processing Time with Redirections (SPT-RR) Whenever
a processorMi becomes idle, schedule on it the shortest processing time task
in Qi. At the arrival of a new task Tj , if pj ≥ b · pmax then select a number
cj uniformly at random in [0, 1]. If cj ≤ c then redirect Tj to the set of
dedicated processors. In any other case, apply the dispatching policy for the
task Tj .

3.4.4 Dispatching policy

In order to decide to which processor we will dispatch each new task, we
use a rule that tries to balance the flow-times of tasks over all processors.
Specifically, for each processor separately, we compute the marginal increase
in the total flow-time that causes the potential assignment of the new task
to this processor. Then, we dispatch the new task to the processor for which
this increase is minimum. Note that this decision is irrevocable, except for
the redirection case, but still the processors used for redirected tasks are
apart.

In what follows in this section, we clearly define the marginal increase in
different cases. Observe first that in any of the presented scheduling policies
which are based on the immediate dispatch model (SPT, SRPT and SPT-
RD), the tasks are executed in shortest (remaining) processing time order.
Based on this observation, we can say that the marginal increase that causes
a new task Tj if it is dispatched to a processor Mi consists of the flow-time
of Tj as well as the increase of the flow-time for the tasks of processing time
bigger than pj in the queue Qi.

Assuming that the task Tk is executed at rj onMi, the marginal increase
can be defined in the general case as follows:
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∆Fi =

(
pk(rj) +

∑
T`∈Qi:

p`(rj)≤pj

p`(rj) + pj

)
+

∑
T`∈Qi:

p`(rj)>pj

pj

where the first part is the potential flow-time of Tj if it is dispatched to
Mi, while the second part corresponds to the potential delay for the tasks of
longer (remaining) processing time than Tj . Note that, in the cases of SPT
and SPT-RD, for the value of p`(rj) in the first sum, it always holds that
p`(rj) = p`.

The above general definition has two exceptions. First, in the case of
SRPT and only if the potential dispatching of the new task Tj on Mi will
preempt the executed task Tk, i.e., if pj < pk(rj), then the marginal increase
is defined as follows:

∆Fi = pj +
∑

T`∈Qi∪{Tk}:
p`(rj)>pj

pj

Second, in the case of SPT-RD and only if the potential dispatching of
the new task Tj on Mi will redirect the executed task Tk, i.e., if pj < pk(rj)
and ck = τ − 1, then the marginal increase is defined as follows:

∆Fi =

( ∑
T`∈Qi:

p`(rj)≤pj

p`(rj) + pj

)
+

∑
T`∈Qi:

p`(rj)>pj

pj −
∑
T`∈Qi

pk(rj)

where the negative term corresponds to the decrease in the flow-time of all
tasks in Qi by the removal of the remaining processing time of Tk.

3.5 Experimental results

In this section we describe the generation of the instances that we will be
next used to experimentally compare our new methods based on redirections
with the state-of-the-art algorithms for scheduling independent tasks.

3.5.1 Construction of instances

In our experiments we use data from 7 traces in order to validate the
results across different scenarios. The traces used and their characteristics
are shown in the first part of Table 3.1. Since these traces consist of parallel
independent jobs, we next describe how to meaningfully transform them to
construct instances of sequential independent tasks.
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For each trace we create 20 instances. Specifically, in order to create an
instance we uniformly at random select an initial point t during the whole
time horizon of the corresponding trace. Then, all jobs that are released in
the interval [t, t+ s] will belong to the instance, where s is the instance size
(total duration) as this is given for the different traces in the last column of
Table 3.1. Let n be the number of all selected jobs for an instance and m
be the total number of processors used by the platform in the corresponding
original trace.

Trace Traces characteristics Instances characteristics
# CPUs # tasks size # CPUs # tasks size

Curie [1] 80640 279991 6089 160 70215 60
HPC2N [3] 240 201998 1268 17 4516 30
KTH-SP2 [10] 100 20483 333 12 860 15
LLNL-Thunder [4] 4096 97875 148 48 4601 7
Metacentrum [6] 806 86586 157 18 4155 7
RICC [7] 8192 431547 153 200 19401 7
SDSC-Blue-4.1 [8] 1152 195587 979 27 6263 30

Table 3.1 – Traces and instances characteristics. The processors and tasks
numbers are the average over the 20 instances created for each trace.

Each job is characterized by a real execution time ej , a number of required
processors qj and a release date rj . We consider only the real execution
times since user submitted execution times are strongly overestimated. As
an example, one third of the jobs in the Curie trace have user submitted
execution times of 24 hours which corresponds to the default setting of the
system. In order to transform a parallel job to a sequential task, we used the
following three methods. Note that, the main characteristic of all of them
is that they keep the ratio of the total execution volume over the number of
processors for the created instance the same as in the initial trace.

A. For each parallel job, create qj sequential tasks each one of processing
time ej .

B. For each parallel job, create a sequential task with processing time
pj = qj · ej .

C. Let Q = (
∑n

j=1 qj)/n be the average number of requested processors for
all jobs of the instance. For each parallel job, create a sequential task
with processing time pj =

qj
Q · ej . Moreover, the number of processors

that will be used for this instance is m/Q.
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We have performed some initial experiments for these three methods.
However, methods A and B have significant drawbacks. Method A gener-
ates many tasks, and it can create instances that are too big to be kept
in memory. Moreover, it constructs instances where multiple tasks have
the same processing times. Method B overcomes both previous drawbacks.
Although it creates a single sequential task per parallel job with the same
execution volume, it disturbs the relations between the execution times of
jobs. For example, in an instance created by method B, one job of short
execution time and big number of required processors and another job of
long execution time and small number of required processors could lead to
tasks of the same processing times, or even worse change their ordering with
respect to their execution times. For this reason, in the experimental cam-
paign that we present in the following section, the instances are created using
method C. The only (small) disadvantage of this method is that the number
of processors in each instance can be significantly smaller than the number
of processors used by the platform in the corresponding original trace. How-
ever, this could be considered as a natural assumption when dealing with
sequential tasks.

3.5.2 Experiments

All the algorithms have been implemented in a custom discrete event
simulator. The code of the simulator and the experimental data used can be
found at http://fernando.mendonca.xyz/redirection.tar.gz. All val-
ues given in the following subsections and figures correspond to the average
over the 20 instances constructed as described above for each trace.

Tuning of parameters The first part of our experiment concerns the
tuning of the parameters used for methods SPT-RD, GSPT-RD, SPT-RR
and GSPT-RR. Specifically, for the methods SPT-RD and GSPT-RD we
have to define the number of dedicated processors md used for the heavy
tasks and the threshold τ which determines the characterization of a task as
heavy. Recall that the dedicated processors is a subset of the processors of
the machine and hence md < m. In other words, the basic set of processors
used for the common tasks contains m−md processors.

For Curie and RICC traces we will set τ ∈ {1, 2, . . . , 10}, while for
the remaining instances we set τ ∈ {1, 2, . . . , 5}. Moreover, we use md ∈
{1, 2, . . . , 10} and test all combinations of parameters.

In Figures 3.3 to 3.6, the values of total stretch and total flow-time of
SPT-RD for different parameters are shown. We present here only the two
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more representative traces: Curie and LLNL-Thunder. In the Curie trace,
we observe that while the stretch is, in general, increasing with the number of
dedicated processors formd ≥ 4, the flow-time decreases. This is not true for
the LLNL-Thunder trace, but a similar situation is observed for this trace
with the threshold increase (see the following couple of graphs in Figures
3.3 to 3.6). In the four first graphs, the horizontal axis corresponds to the
number of dedicated processorsmd while each line corresponds to a threshold
τ . The inverse situation appears in the four latter graphs. In general, we
have observed a very variant relation between the two parameters and the
different objectives. The value of the threshold directly affects the number
of redirected tasks, while indirectly may affect the under-/over-utilization
of the dedicated or the basic set of processors. For this reason, the two
parameters are strongly related and they should be selected in conjunction.
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Figure 3.3 – Total stretch and total flow-time for the Curie trace
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Figure 3.4 – Total stretch and total flow-time for the LLNL-Thunder trace

Similar observations can be done for SPT-RR and GSPT-RR methods.
Here we have three parameters: the number of dedicated processors md,
the parameter b that determines how long is a task and the probability of
redirection c. In order to deal with the parameter b, we first observed that all
traces have a very small number of very long tasks. To see this, we calculated
the ratio of the 0.8n longest task of each trace over the longest task of it,
and this is equal to 0.02 in average for all traces. For this reason, we fix
b = 0.02. For the other two parameters we did a similar analysis using the
values md ∈ {1, 2, . . . , 10} and c = {0.2, 0.4, 0.6, 0.8, 1}.

In Table 3.2, we present the “best” combination of parameters for each
trace and method which will be also used in the next section. These param-
eters are chosen in such a way that each method has a good (or average)
performance for all objectives. Another choice could be the parameters that
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Figure 3.5 – Total stretch and total flow-time for the Curie trace

minimize a particular objective. However, this choice can have the opposite
effect for the other objectives as it is indicated in the previous Figures.

Comparison with base-line algorithms and lower bounds The sec-
ond part of our experiment is the comparison between the implemented
methods SPT, GSPT, SRPT, GSRPT, SPT-RD, GSPT-RD, SPT-RR and
GSPT-RR.

We start by focusing on the Curie trace which is the largest trace of our
collection. The comparison of the algorithms for the different metrics can be
found in Figures 3.7a to 3.7f. These Figures show that although SPT is stable
for the flow metric, it is highly detrimental to the stretch metric with regard
to the lower bounds (SRPT and GSRPT). On the other hand, the redirection
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Figure 3.6 – Total stretch and total flow-time for the LLNL-Thunder trace

of tasks improve the stretch metrics for the Curie trace. Specifically, there
is a significant decrease in all stretch metrics for the GSPT-RJ, SPT-RR
and GSPT-RR methods. The reason that the same improvement cannot be
seen for the SPT-RJ method is the presence of bursts of short tasks in the
Curie trace. These bursts cause the redirection even of short tasks to the
dedicated processors and their consequent over-utilization. For this reason,
we can safely say that the flow metric would see significant improvement
if more dedicated processors were used. This can be also justified by the
tendency shown in Figure 3.4b.

Next, we consider the remaining traces using only the stretch metric as
can be seen in Figures 3.7 to 3.13. These Figures show that in most of the
cases there is a significant improvement in all stretch metrics if redirection is
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Trace SPT-RD GSPT-RD SPT-RR GSPT-RR
md τ md τ md c md c

Curie 10 10 10 4 9 0.8 10 0.8
HPC2N 5 2 10 1 5 1 10 1
KTH-SP2 8 1 7 1 2 0.8 3 0.8
LLNL-Thunder 7 2 10 5 8 1 9 1
Metacentrum 4 5 3 4 3 0.4 2 0.2
RICC 10 5 10 10 5 0.2 5 0.2
SDSC-Blue-4.1 5 2 10 1 10 1 8 0.8

Table 3.2 – Selected parameters for each trace

used comparing to the SPT and GSPT methods. In addition, we can see that
in some cases the stretch metric for the methods that employ redirections
is even close to the SRPT and GSRPT methods, justifying the efficiency of
our methods.
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Figure 3.7 – Curie
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Figure 3.9 – KTH-SP2
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Figure 3.10 – LLNL-Thunder
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Figure 3.11 – Metacentrum
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Figure 3.12 – RICC
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Figure 3.13 – SDSC-Blue-4.1
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3.6 Conclusion

We have presented a method for on-line scheduling independent tasks on
a multi-processor machine based on the characterization of a small number of
tasks as heavy, that is problematic for the whole performance of the system.
These tasks are executed on a dedicated subset of processors. We proposed
a deterministic and a random approach for detecting the heavy tasks. These
methods are evaluated on instances extracted by seven real traces. The
experimental results show the dependency of both methods on the correct
choice of the parameters. Both methods focus mainly on stretch metrics
at the expense of flow-time metrics. In general, the deterministic method
outperforms the standard SPT policy and in many cases its performance
approached the performance of the preemptive policy SRPT which can be
considered as lower bound. The gains for the random method are smaller
but, in several cases, significant comparing again with SPT.

The most intriguing future direction is to extend the above ideas for par-
allel jobs. However, there are several issues that should be considered. First,
the size of the dedicated processors part should be large enough for dealing
with wide jobs, which could lead to under-utilization of these processors. A
solution to this could be to leave the borders between dedicated and nor-
mal processors more free. Second, the counter method is not anymore clear
how it will be applied since a new job may need to cause the redirection of
more than one running jobs. Third, the commonly used backfilling strategy
should also be able to benefit from redirections. In other words, redirection
could be used to increase the available space (holes) in order to backfill more
efficiently.
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Chapter 4

Contiguity and Locality in
Backfilling Scheduling

4.1 Introduction

High Performance Computing systems are evolving from large scale multi-
cores to extreme scale heterogeneous many-cores (where hundreds of cores
are integrated within the same chip) [21]. The number of cores will dras-
tically increase but the I/O and interconnection devices are evolving much
slowly while the memory hierarchy will be even deeper than today. In ad-
dition, more processing capabilities will obviously lead to applications with
more data produced, stressing even more the interconnections.

Managing the resources in HPC platforms becomes the crucial issue. The
basic scheme used is the following: users are submitting their jobs in a wait-
ing queue while the job and resource manager collects data of ready jobs
and analyzes them. Finally, it determines an allocation according to the
available resources. The most popular scheduling mechanism in supercom-
puting centers is First Come First Served (FCFS). It consists in executing
the jobs in their order of arrival and to allocate them in the first available
time slot. FCFS is used with local improvements aiming at filling idle times
with smaller jobs in the queue (Backfilling) [25]. It is well-known that such a
strategy does not optimize any sophisticated function, however, it provides
good results in particular because the resource occupation is high, it is sim-
ple to implement and it guarantees that there is no starvation (i.e., every
job will be scheduled).

There are currently several implementations of such management sys-
tems. SLURM (Simple Linux Utility for Resource Management) provides the
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infrastructure for basic allocations/monitoring/scheduling operations [66].
It is open source and it is widely used, available on more than half of the
TOP500 platforms. The other management systems are special purpose sys-
tems developed by private companies (Maui, Moab, Torque) [5].

Although batch scheduler systems exist for many years, the current rev-
olution of extreme scale computing makes them more complex because of
the scalability and the heterogeneity of resources. Taking into account topo-
logical constraints is a way of handling their complexity. It is also worth
in the direction of reducing the energy/power consumption [21]. With plat-
forms using several levels of hierarchy, the difference between communication
latency and bandwidth in the same level and across different levels is con-
siderable. For this reason, it is crucial to analyze how jobs are allocated
on the available processors and how this process impacts the overall system
performances.

Our goal within this work is to show that some simple topological con-
straints are worth to be considered. Two major constraints are studied,
namely contiguity and locality. The contributions of this Chapter are two-
fold. First, we propose a systematic theoretical study for bounding the effects
of constraints on the makespan for all possible scenarios. The main result
here is that the worst case ratios are all bounded by a small constant. Sec-
ond, we provide an extensive experimental campaign based on actual logs.
The experiments are based on the makespan metric. Experiments show good
performance for the proposed algorithms with the benefit of increased jobs
locality. In particular they demonstrate that contiguity is able to achieve lo-
cality without knowledge of the platform. We also notice that the proposed
algorithms can easily be integrated into existing batch schedulers (i.e., with
only few modifications), for instance as plugins of SLURM.

The Chapter is organized as follows. In Section 4.2 we discuss the most
relevant related works concerning the scheduling problem under topological
constraints. The problem description including our main hypothesis are
presented in Section 4.3. Section 4.4 provides the theoretical analysis of the
degradation ratio due to the additional topology-aware constraints. Various
allocation algorithms targeting locality are described in Section 4.5. Finally,
we report the results of our experiments in Section 4.6 and we conclude in
Section 4.7.
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4.2 Related Works

Backfilling algorithms are the most commonly used scheduling algorithms
in batch schedulers [32, 61]. All Backfilling algorithms work by assigning jobs
in a queue by incoming order to computing resources.

Conservative Backfilling is the most commonly version mentioned in the
literature [25, 27]. In this version, backfilling is done only if it does not delay
any of the previous jobs in the queue. Users provide each submitted job
with a running time limit and a fixed number of processors. This knowledge
allows the scheduler to know in advance all resources consumption and to
backfill jobs into inactivity periods. The main feature is that no starvation
occurs in conservative Backfilling.

Pascual et al. proposed topology-aware backfilling techniques in [53].
They introduced modifications to processors allocation algorithms in order
to improve job locality in k-ary n-trees platforms topologies. They show an
increase in waiting times for strict locality enforcing. While we use a similar
kind of techniques, modifying the processors allocation of the Backfilling al-
gorithm, we focus here on different constraints. Our constraints do not rely
on a complex platform description. In particular scheduling with contiguous
sets of processors does not require knowledge of the platform and is still sub-
ject to locality improvement. Simpler constraints also allow us to achieve a
theoretical analysis of the impact of additional constraints on the makespan.

On the theoretical side, Bładek et al. studied in [15] the impact of
contiguity on makespan. They provide an algorithm converting any non-
contiguous schedule to a contiguous schedule with performance degradation
bounded by a constant factor. They also compare performances of optimal
solutions in both settings and show a lower bound of 5

4 . For more details on
these results we refer to Section 4.4.

From a different perspective, there exist a lot of works dealing with al-
gorithmic studies at the user level aiming at optimizing the execution times
of applications (see for example [14, 42]). Our focus is at middle-ware level
independent on the applications.

4.3 Problem Setting

Typical batch scheduling environments are composed of queues of jobs.
The queue is defined as a set of jobs J . Each job j ∈ J is characterized
by a processing time pj and a number sizej of required resources (nodes or
processors).
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In this Chapter we decompose the platform into sets of closely located
processors called clusters where each cluster is formed by a contiguous range
of processors. The performance of communications is considered higher
within a cluster than between two different clusters.

Different decompositions into clusters can be chosen for a given platform.
The choice of this decomposition is left as a parameter in the batch sched-
uler. Setting this parameter within a target level will enable to decrease
the amount of communications taking place at this level. We assume m
processors partitioned into k different clusters.

In order to better illustrate this situation, we consider the example of a fat
tree topology as displayed in Figure 4.1. Two different cluster configurations
can be mapped on the tree hierarchy of Figure 4.1. We can choose to define
clusters at the lowest hierarchical level to obtain four clusters (Cl1, . . . , Cl4)
of size two. A second choice is possible by dividing one level above into two
clusters (Cl′1, Cl′2) of size four.

1 2 3 4 5 6 7 8

Cl1 Cl2 Cl3 Cl4

Cl′1 Cl′2

Figure 4.1 – Example of a fat tree interconnection

Based on the above definition of clusters we can highlight two key prop-
erties of scheduled jobs.

First, a job is local if it uses a minimal amount of clusters. For example,
with respect to clusters Cl1, . . . , Cl4 in Figure 4.1, a job j needing three
processors is local when scheduled on processors 1, 2, 4 and not local when
scheduled across three different clusters. One of our main objectives is to
achieve a high number of local jobs.

We also consider contiguous jobs. A job is contiguous when its allocated
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processors form a contiguous range. Hence in the previous example, j is
not contiguous because of the missing processor 3 in the range between 1
and 4. Contiguous jobs have the advantage to be always very close from
being local using at most one additional cluster over the minimal amount
required. Scheduling contiguous jobs does not require a fixed decomposi-
tion into clusters and provides therefore locality across all hierarchy levels
simultaneously.

4.4 Worst-case Guarantees for Optimal Solutions

We provide in this section a worst-case analysis for comparing the optimal
solutions with and without topological constraints (contiguity/locality). It
is well known that FCFS with Backfilling guarantees no constant approxima-
tion ratio for makespan. In practice however it provides good performances
with often a platform usage close to the optimal one. We intend here to
study the impact of additional scheduling constraints like contiguity or/and
locality on makespan in such configurations. More specifically, we are going
to bound the worst-case ratio of the makespan of an optimal schedule when
contiguity and/or locality are enforced over the makespan of an optimal
schedule for the basic model where no additional constraints are demanded.
As we will see, these ratios are within constant factors, providing in a way a
good potential for the experimental results of Section 4.6.

In order to formalize the above comparison, let Cmax be the value of
the makespan of an optimal schedule for the basic model. Moreover, we
denote by CCmax and CLmax the value of the makespan of an optimal schedule
when only contiguity and only locality constraints, respectively, are enforced.
Finally, let CC+L

max be the value of the makespan of an optimal schedule when
both contiguity and locality constraints are taken into account. We are
interested in the ratios of the form

max{C
x
max

Cymax
}

where Cxmax and Cymax coincide with one of the quantities defined above. The
maximum is taken over all instances and hence the ratio corresponds to the
worst case.

4.4.1 Contiguous vs. Non-contiguous

In the case where locality constraints are not taken into account, then the
relation between contiguous and non-contiguous schedules has been studied
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in [15] where the following theorem has been proved.

Theorem 1. (Bładek et al. [15])
5

4
≤ max{C

C
max

Cmax
} ≤ 2.

The authors in [15] provide both an upper and a lower bound which does
not match each other, while they conjecture that the worst-case ratio is 5/4.

It has to be noticed also here that the same bounds hold when locality
constraints are enforced for both contiguous and non-contiguous cases, since
we can apply the same analysis for each cluster separately. Therefore, we
have the following corollary.

Corollary 1.
5

4
≤ max{C

C+L
max

CLmax

} ≤ 2.

4.4.2 Local vs. Non-local

In this section we explore the relation between the optimal local and non-
local schedules. In the results that will be presented, we consider that all
clusters have the same size ` and all jobs can fit into a cluster, i.e., sizej ≤ `
for each job j ∈ J .

In the case where contiguity constraints are not taken into account, then
the problem with locality constraints has been studied in [56] in the context
of Resource Constrained Scheduling (RCS). The input of the RCS consists of
a set of jobs and a set of processors. Each job j is characterized not only by
its processing time pj ∈ Z+ but also by a weight wj ∈ Z+. Moreover, each
processor i has a capacity ci ∈ Z+ and it can execute many jobs in parallel
under the constraint that at each time t the sum of the weights of the jobs
executed by i at t does not exceed ci.

RCS coincides with our problem when locality constraints are enforced.
Indeed, each processor of the RCS problem corresponds to a cluster, while
the weight of a job coincides with the number of processors that it requires,
i.e., wj = sizej . Using this relation we get the following theorem.

Theorem 2. max{C
L
max

Cmax
} ≤ 2. This ratio is tight.

Proof. Remy [56] has presented a 2-approximation algorithm for RCS. In
fact, a stronger result has been proved: the makespan C of the created
schedule for RCS is not more than twice the total load over the total capacity,
i.e., C ≤ 2

∑
j pj ·wj∑

i ci
. Due to the equivalence between the problems, this

schedule corresponds also to a feasible schedule for our problem subject to
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local constraints with makespan C. Clearly, C ≥ CLmax. Moreover, the
quantity

∑
j pj ·wj∑

i ci
is a lower bound for Cmax, i.e., Cmax ≥

∑
j pj ·wj∑

i ci
. In total,

we have that CL
max

Cmax
≤ 2.

In order to prove the tightness, let us consider the following instance. We
are given two clusters each one containing three processors, and three unit.

processing time jobs each one requiring two processors. The optimal
schedule without any additional constraint is shown in Figure 4.2a and it has
a makespan Cmax = 1, while the optimal schedule when locality constraints
are enforced is shown in Figure 4.2b and it has a makespan CLmax = 2, and
the theorem follows.

1

2

2

3

(a)

1 2

3

(b)

Figure 4.2 – Tightness example

We next study the relation between the optimal local and non-local
schedules when contiguity is a required property for both. More specifi-
cally, we present a transformation from an optimal schedule without locality
constraints to a schedule with locality constraints, and we prove the next
theorem.

Theorem 3. max{C
C+L
max

CCmax

} ≤ 2. This ratio is tight.

Proof. For the upper bound, consider an optimal schedule S with makespan
CCmax in which contiguity constraints are enforced while locality constraints
are not. We will partition the set of jobs J into two subsets: J1 contains
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the jobs that are scheduled entirely into only one cluster, and J2 consists of
the jobs whose execution takes place into two adjacent clusters (recall that
we assume that all jobs require less processors than the size of a cluster).

We create the schedule S ′ with makespan 2CCmax as follows. In the interval
[0, CCmax) we schedule the jobs in J1 exactly as they are scheduled in S. In
the interval [CCmax, 2C

C
max) we schedule the jobs in J2. More specifically,

consider a job j ∈ J2 which is executed in the interval [t1, t2) using a set of
sizej processors from the clusters i and i + 1. In S ′, we schedule j in the
interval [CCmax + t1, C

C
max + t2) using an arbitrary set of sizej processors only

from the cluster i.
In order to show that the created schedule S ′ is feasible, observe that at

each time t in S for each pair of consecutive clusters i and i+1, 1 ≤ i ≤ k−1,
there is at most one job that is executed at t using processors from both i
and i + 1, since the jobs in S satisfy contiguity. As we have assumed that
for each job j ∈ J the number of required processors sizej is smaller than
the size of the cluster, in the schedule S ′ each job is executed in a set of
contiguous processors of exactly one cluster. Finally, the optimal schedule
with both contiguity and locality constraints has a makespan CC+L

max at most
the makespan of S ′, and hence the upper bound follows.

For the tightness, we can use the same example as in the proof of Theo-
rem 2.

4.4.3 Topological-aware vs. Basic Model

In this section we study the relation between the optimal solutions of the
basic model without constraints and the case where contiguity and locality
are both required. By combining Corollary 1 and Theorem 2 or Theorems 3
and 1, we directly get that max{C

C+L
max
Cmax

} ≤ 4. In what follows, we improve
the above bound. As in the previous section, we consider that all clusters
have the same size ` = m

k and all jobs can fit into a cluster, i.e., sizej ≤ `
for each job j ∈ J .

Our approach here is to present an algorithm with bounded worst case ap-
proximation ratio for the problem with contiguity and locality constraints.
In the computation of this approximation ratio, we use as a lower bound
for the value of the optimal solution the total processing requirement A =∑

j∈J pj · sizej divided by the total number of available processors m, as
well as, the maximum processing time pmax = max{pj : j ∈ J } among all
jobs. The crucial observation here is that both these quantities are lower
bounds also for the value of the optimal solution for the basic model. Hence,
we can obtain the desired result. In order to create the approximation al-
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gorithm, we combine two basic ingredients: an approximation algorithm for
the Strip Packing (SP) problem [19] and an approximation algorithm for the
classical P ||Cmax problem of scheduling serial tasks [29]. Several algorithms
are known for both SP and P ||Cmax. However, the choice of the algorithms
which we will use is driven by the lower bounds used by them, since at the
end we need to compare with A

m and pmax.
The input of the SP problem consists of a unit-width, infinite-height

strip and a set of rectangles R parallel to the bottom of the strip. Each
rectangle j ∈ R is characterized by a width wj , 0 < wj ≤ 1, and a height
hj > 0. The goal is to pack the rectangles into the strip such that no
two rectangles overlap and the height of the strip used is minimized. A
well-known algorithm for the SP problem is the Next-Fit Decreasing-Height
(NFDH) algorithm which considers the rectangles in non-increasing order
with respect to their heights and applies the Next-Fit policy using this order.
More specifically, the algorithm keeps at each time during its execution a set
of batches. Let Bi be the i-th batch that NFDH opens and Wi =

∑
j∈Bi

wj
and Hi = maxj∈Bi{hj} be the width and the height, respectively, of Bi.
According to the Next-Fit policy, if the currently handled rectangle z fits to
the latest opened batch Bi, i.e., Wi+wz ≤ 1, then we add z to Bi; otherwise
we open a new batch Bi+1 and we add z to it. The following lemma has
been proved in [19].

Lemma 1. (Coffman et al. [19]) NFDH packs a set of rectangles in a strip
of total height H =

∑b
i=1Hi ≤ 2

∑
j∈Rwj · hj +H1, where b is the number

of created batches.

The input of P ||Cmax consists of a set of m′ parallel processors and a set
J ′ of jobs each one characterized by a processing time p′j . The goal is to
find a schedule of minimum makespan. Let p′max = max{p′j : j ∈ J ′} be the
maximum processing time among all jobs in J ′. A classical algorithm for
P ||Cmax is the well known List Scheduling (LS) algorithm which at each time
where a processor becomes idle, it selects a job which is not yet scheduled
and it assigns it to the idle processor. The following lemma has been proved
in [29].

Lemma 2. (Graham [29]) LS returns a schedule of makespan C ≤ 1
m′
∑

j∈J ′ p
′
j+

(1− 1
m′ )p

′
max.

The idea of our algorithm is to initially transform an instance of our
problem to an instance of SP and apply NFDH. More specifically, for each
job j ∈ J we create a rectangle j ∈ R with wj =

sizej
` and hj = pj . The
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result of the application of NFDH to the created instance is a set of batches
B1, B2, . . . , Bb, that are sorted in non-increasing order with respect to their
heights, i.e., H1 ≥ H2 ≥ . . . ≥ Hb, and their total height satisfy Lemma 1.
Using these batches, we create an instance of P ||Cmax as follows: for each
batch Bi we create a job i ∈ J ′ with processing time p′i = Hi. Moreover,
we consider m′ = k processors. Finally, we apply the LS algorithm and we
transform the created schedule to a feasible schedule for our initial instance.
In fact, each processor of P ||Cmax corresponds to a cluster and each job in
J ′ corresponds to a set of jobs in J that can be feasibly executed in parallel
on a single cluster.

Theorem 4. There is an algorithm for the problem with contiguity and local-
ity constraints which returns a schedule with makespan C ≤ 3 max{Am , pmax}.

Proof. By using Lemma 2, for the makespan C of the schedule created by
our algorithm it holds that:

C ≤ 1

m′

∑
j∈J ′

p′j + (1− 1

m′
)p′max

=
1

k

b∑
i=1

Hi + (1− 1

k
)H1

Hence, by using Lemma 1 we get:

C ≤ 1

k
(2
∑
j∈R

wj · hj +H1) + (1− 1

k
)H1

=
1

k
(2
∑
j∈J

sizej
`
· pj + pmax) + (1− 1

k
)pmax

= 2
A

m
+
pmax

k
+ (1− 1

k
)pmax

≤ 3 max{A
m
, pmax}

Theorem 5. 2 ≤ max{C
C+L
max

Cmax
} ≤ 3.

Proof. The lower bound follows from Theorem 2.
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For the upper bound, we observe that the makespan of the optimal solu-
tion with contiguity and locality constraints is at most equal to the makespan
of the approximation algorithm proposed above. Hence, by Theorem 4 we
have that CC+L

max ≤ C ≤ 3 max{Am , pmax}. As Cmax ≥ max{Am , pmax}, the
theorem follows.

4.5 Allocation Algorithms

In this section we present new variants of the classical Backfilling algo-
rithm designed to achieve improved job locality. Different algorithms allow
the administrator to choose more or less strict contiguity and locality con-
straints. All proposed algorithms are designed to be easily integrated in
existing systems.

4.5.1 Backfilling

Most of the scheduling schemes currently in use are based on variable
partitioning [25]. In this scheme, each job receives a partition of the machine
containing a subset of processors. One particular way partitions can be
allocated is First Come, First Serve (FCFS). One notable disadvantage of
using FCFS to allocate partitions is fragmentation, where free processors
cannot be used for the following jobs and remain idle until more processors
are available. As a result, systems that employ FCFS tend to have low
system utilization rates [31, 35].

Another approach is to use non-FCFS policies, reordering jobs in the
queue as they are submitted. In this scenario, the scheduler improve utiliza-
tion by allowing jobs to move forward in the queue. However, this procedure,
if overly utilized, can lead to starvation of big jobs. The common solution
to this problem is to allow only a certain number of jobs to move forward in
the queue before the next big job is allocated.

Figure 4.3 shows an example of FCFS allocation. The horizontal axis
shows the schedule time, denoted by t. The Figure shows that some jobs are
executing and the next job in the queue needs all the processors available
in the machine. Since no jobs are allowed to move forward, processors will
become idle as they are freed by the jobs that are currently running. In the
worst case, the total number of available processors in the machine minus
one will be idle, moments before the big job starts.

A more complex approach is to require users to submit an estimation of
the run time of their jobs. The scheduler, in turn, can consider this informa-
tion to allow short jobs to move forward in the queue and fill gaps left by the
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Figure 4.3 – Example of FCFS allocation scheme

allocation of big jobs. This scheduling scheme is called Backfilling, and was
developed for the IBM SP1 parallel supercomputer installed at the Argonne
National Laboratory as part of EASY (Extensible Argonne Scheduling sYs-
tem) [43, 51]. Users are expected to provide estimated run times that are as
accurate as possible, since a low estimation can lead to the job being killed
and canceled before it terminates, while a high estimation may lead to long
waiting times for the other jobs and additional fragmentation.

The EASY Backfilling algorithm checks only one thing: that jobs that
move forward in the queue do not delay the first queued job. This approach is
shown to lead to unbounded queuing delays for other queued jobs. Therefore,
it prevents the system from making predictions regarding when each job—
with the exception of the first job of the queue—will run.

An example can be seen on Figure 4.4. The first part of the Figure shows
the allocation if no jobs are allowed to move forward in the queue. But, since
the second job can be executed at t = 2 without delaying the first job in
the queue, it is allowed to move forward. As a consequence, the third job is
delayed.

An alternative to EASY Backfilling is to only move short jobs that do
not delay any job already in the queue. It has been shown that, for the
workloads measured on SP2 systems, EASY Backfilling provides better per-
formance, with the penalty of not having estimated starting times for the
jobs. In contrast, analyzing workloads for different systems it is possible to
see that both algorithms have similar performances. In this case, Conser-
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(a) No jobs are allowed to move forward

1

2 3
4

5

3
4

5

Queue

t

P4

P3

P2

P1

(b) Job 5 moves forward without delaying the first job in the queue

Figure 4.4 – Example of EASY job allocation

vative Backfilling is preferable to the EASY algorithm due to the improved
predictability associated with knowing the starting times of the jobs.

Figure 4.5 shows an example of allocation using Conservative Backfilling.
The first part of the Figure shows how the allocation would be if Conservative
Backfilling is used with the same jobs as in Figure 4.4, that showed an
example of allocation using EASY Backfilling. In this case, the third job is
not allowed to move forward since there is no space for it without delaying
the second job. The second part of the picture shows another scenario where
there is enough space for the third job to be backfilled and start running
sooner, without delaying any of the subsequent jobs.

Conservative Backfilling is the most commonly version mentioned in the
literature [25, 27]. In this version, backfilling is done only if it does not delay
any of the previous jobs in the queue. Users provide each submitted job
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(b) Job 5 moves forward without delaying the first job in the queue

Figure 4.5 – Example of allocation using Conservative backfilling

with a running time limit and a fixed number of processors. This knowledge
allows the scheduler to know in advance all resources consumption and to
backfill jobs into inactivity periods. The main feature is that no starvation
occurs in Conservative Backfilling. Moreover, all jobs receive a reservation
period when they are submitted. This means that the job is guaranteed
to start executing either at that time or before, but never later than the
reservation.

Figure 4.6 displays a schedule example with the corresponding division
into time slices. For each time slice Ti, let S[i] be the set of the current idle
processors during Ti. Moreover, we denote by |S[i]| the cardinality of S[i].

When scheduling a job, the Backfilling algorithm starts by finding the
first contiguous set of time slices large enough for both the number of required
processors and run time. Simple pseudocode for this operation is given in
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Figure 4.6 – Schedule representation through time slices

Algorithm 1.

4.5.2 Algorithms

One of the final steps of the Backfilling algorithm (as shown in Algo-
rithm 1, line 15) is to reduce the set P of available processors to the required
number of processors. This operation is called the allocation step.

All of our algorithms are based on the specialization of this step in order
to select specific processors. It is even possible for the allocation to return an
empty set of processors (when no set matches required properties). In this
case the search for valid time slices will continue by resuming the iterative
process in the main algorithm.

We present below the following algorithms:

• basic,

• best effort contiguous,

• forced contiguous,

• best effort local,

64



Algorithm 1: Backfilling
Data: job j, processing time pj , required processors number sizej ,

list of time slices S
Result: list P of available processors for the job, starting time t

1 foreach time slice S[i] do
2 if |S[i]| < sizej then
3 next;
4 end
5 P ← S[i];
6 time← 0;
7 foreach time slice index j starting from i do
8 P = P ∩ S[j];
9 time← time+ duration(S[j]);

10 if time ≥ pj then
11 break;
12 end
13 end

14 if |P | ≥ sizej then
15 P ← sizej processors of P ;
16 t← starting_time(S[i]);
17 return (P, t)

18 end
19 end

• forced local.

Basic Backfilling (Algorithm 2) This is the simplest form of the allo-
cation algorithm. It chooses the first processors that are available, whether
they are contiguous or not. This policy is commonly used in most batch-
schedulers.

Backfilling with best effort contiguity (Algorithm 3) This algorithm
aims to reduce the processors available in the execution profile by finding a
block of contiguous processors. If there are no possible contiguous blocks, a
non contiguous block is assigned.
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Algorithm 2: Basic backfilling allocation algorithm
Data: job size sizej , set P of available processors
Result: block of sizej processors

1 sort P by processor rank;
2 return P [1]..P [sizej ]

Algorithm 3: Backfilling with best effort contiguity
Data: job size sizej , set P of available processors
Result: block of sizej processors

1 sort P by processor rank;
2 first← 1;
3 length← 1;
4 for i← 2 to |P | do
5 if P [first]..P [i] is a contiguous block then
6 length← length+ 1;
7 else
8 first← i;
9 length← 1;

10 end

11 if length = sizej then
12 return P [first]..P [first+ sizej ]
13 end
14 end

15 return P [1]..P [sizej ]

Backfilling with best effort locality (Algorithm 4) This algorithm
aims to reduce the number of clusters used to schedule the job to the minimal
one. If there are not enough available processors in the clusters such that
this constraint can be applied, the job is scheduled on the block of processors
that are as close as possible to the one it aimed for earlier. This algorithm
is shown in 4.

Backfilling with forced contiguity This algorithm reduces the list of
available processors making sure that the reduced list is made of a contiguous
block of processors. In the case that there are no possible contiguous blocks,
the current starting time slice is rejected and a new posterior one has to be
found. This algorithm is implemented similarly to the best effort contiguous
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Algorithm 4: Backfilling with best effort locality
Data: job j, set P of available processors

1 C ← array of clusters (initially empty);
2 foreach processor i in S do
3 let j be the index of the cluster containing i;
4 assign i to C[j];
5 end
6 sort C by the number of processors in each cluster in decreasing order;
7 return sizej processors of the first k clusters in C verifying∑k

i=1 size(C(i)) ≥ sizej

one, with the exception that when a contiguous block of processors cannot be
found, an empty block is returned so that the starting time slice is rejected.

Backfilling with forced locality This algorithm reduces the list of avail-
able processors making sure that the new list comprises a block of processors
that uses the minimum possible number of clusters. Similarly, if such block
cannot be found, an empty block is returned so that the starting time slice
is rejected. It is implemented like the best effort local algorithm, with the
difference that if there are less than sizej processors in the first k clusters,
an empty block is returned instead of the first sizej processors.

It should be noticed that in the standard Backfilling algorithm the way
to achieve the allocation is not fully specified. Thus one scheduling instance
might yield several different solutions. In particular the classical algorithm is
able to give exactly the same solution as basic, best effort contiguous and best
effort local. This property gives a strong argument in favor of a switch from
actual implementations towards one of our proposed allocation algorithms.

4.6 Experimental Results

In this section we compare the performances of the different algorithms
proposed under realistic scenarios. All algorithms have been implemented
in a custom discrete events simulator. This simulator works by reading a
batch scheduler trace file in the SWF format [9] and extracting for each job
the number of required processors and the execution time. Trace data are
extracted from three different trace archives: CEA-Curie [11], METACEN-
TRUM [6] and RICC [7].
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In our experiments we consider only real execution times. This choice
is common when doing simulations since user submitted times are strongly
overestimated. For instance, one third of the jobs in the Curie trace have
user submitted times of 24 hours (default setting).

Our experiments are designed by setting:

• the machine parameters: number of processors and cluster size,

• the number of jobs,

• the number of experiments instances,

• the algorithms to compare.

We start by choosing the platform. We tested varying numbers of pro-
cessors from 64 to 1000 and we present in this Chapter the results for 512
processors which correspond to the worst performances for our algorithms.
For this virtual platform we tested results for different cluster sizes from 16
to 128. The results are presented for a cluster size of 16, while similar results
are achieved for larger sizes.

Jobs selection is handled in the following way: we first filter the trace by
removing all jobs requiring more processors than the machine size. Then we
randomly select a fixed number of jobs from the remainder. A wide range
of values for the number of jobs is tested and we present here results for 300
jobs. Instances for higher number of jobs lead to similar results. We extract
512 job instances from the trace and we use these instances as input for each
experiment.

The following algorithms described in Section 4.5 are compared: basic,
best effort contiguous, best effort local, forced contiguous and forced local.

Our experiments are designed to quantify and make explicit the trade-
off between locality and makespan. Performance degradations are expected
on classical scheduling objectives as locality constraints grow. On the other
hand, a gradual improvement of job locality should be observed.

Since the real amount of communication for each job is unknown we
cannot estimate the actual gains/losses in processing time due to different
job placements. We therefore look at makespan and locality as two separate
objectives. We assume than improvements in locality will at the end translate
into improvements in makespan. One common set of experiments is run for
both objectives.
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4.6.1 Makespan

We start by presenting results for the makespan experiments for 512
instances of 300 random jobs running on a 512 processors platform. The
results presented here are generated with jobs extracted from the Curie trace.
Experimenting with other traces gives very similar results which are therefore
not presented here.

Initially, a comparison of the basic Backfilling algorithm with best effort
contiguous is given. Best effort contiguous creates few changes over basic and
it is a good candidate for starting our comparisons. These results are shown
in Figure 4.7. Each point represents an instance with the corresponding
makespan for basic on the x-axis and for best effort contiguous on the y-
axis. Since most points are located on the y = x line it is clear that both
algorithms yield similar performances. In fact, their average performance
differs by less than 0.1%.
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Figure 4.7 – Makespan comparison: basic Backfilling to best effort contigu-
ous.
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In Figure 4.8 and Figure 4.9 we compare the basic Backfilling algorithm
with forced contiguous and forced local, respectively. These figures are similar
to the previous one with the makespan of the basic algorithm on the x-axis
and the makespan of forced contiguous and forced local, respectively, on the
y-axis. Forced local shows a similar behavior as best effort contiguous. On the
other hand, the shape of the cloud of points displayed for forced contiguous
thickens. This particularity indicates that results are less stable for this
algorithm. Note however that its performance is still close to the one of the
basic algorithm with under two percents of difference in average.
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Figure 4.8 – Makespan comparison: basic Backfilling to forced contiguous.

The results for best effort local are not presented here but it compares to
basic in a similar way as forced local.

As a conclusion, the makespan experiments show that all proposed al-
gorithms yield similar performances as basic. This result is very positive
and shows a good application potential since additional constraints gener-
ate negligible extra costs. However, the experiments indicate that enforcing
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Figure 4.9 – Makespan comparison: best effort contiguous to forced local.

contiguity leads to less performance stability.

4.6.2 Contiguity and Locality

First we compare in Figure 4.10 the number of contiguous jobs for each
algorithm (with the exception of forced contiguous which achieves by defini-
tion 100% of contiguous jobs). For each algorithm we plot the probability
density function of the number of contiguous jobs over all instances. We
observe that basic and best effort local have similar behaviors. Forced lo-
cal improves the number of contiguous jobs, closely followed by best effort
contiguous. This corresponds to the results expected from the design of the
algorithms.

We continue by studying locality which is the main target of our work.
In Figure 4.11 the probability density function of the number of local jobs is
plotted. We can see here that best effort contiguous achieves worse results
than basic. Forced contiguous outperforms basic with however more variabil-
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Figure 4.10 – Distribution of the number of contiguous jobs by algorithm.

ity in the performance. Finally best effort local achieves the best results by
scheduling jobs locally 90% of the time.

The results for best effort contiguous are unexpected. They can be ex-
plained by the fact that contiguity guarantees us to use a number of clusters
which is at most one more than the optimal one. However such a job is not
considered as local.

In order to get a better view of the achieved locality of jobs we propose
to consider a new metric, the locality ratio.

We consider a random variable KA,I which is the number of clusters in
use for a random job in a schedule of instance I by algorithm A. Similarly
we consider a random variable KI

∗, the minimal number of clusters required
for a random job taken uniformly in instance I. The locality ratio for an
algorithm A and an instance I is defined as the ratio of expectations:E(KA,I)

E(KI
∗) .

Figure 4.12 displays the density function of locality ratios for all algo-
rithms. Forced local is not displayed in this figure since all its jobs are
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Figure 4.11 – Distribution of the number of local jobs by algorithm.

local. Figure 4.12 shows that with respect to the locality ratio all our algo-
rithms proceed as expected. Best effort local gives the best results, followed
by forced contiguous. Basic and best effort contiguous show similar perfor-
mances with a slight advantage for best effort contiguous.

Similar results are achieved for varying cluster sizes and trace files with
similar performances for the different algorithms. As such they are not pre-
sented within this Chapter.

4.7 Conclusion

In this Chapter we take interest into scheduling jobs with contiguity and
locality.

We provide a theoretical analysis of the impact of these constraints on
makespan. By using bounds on optimal makespan ratios we characterize
the worst case impact of different sets of constraints on “good” solutions.
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We show for all cases that this impact is limited to a constant ratio. We
present a compilation of existing results on contiguity and locality completed
by new results. More specifically we provide a 3-approximation algorithm
for scheduling contiguous and local jobs and some tightness results for the
other cases.

Moreover, two different ways to adapt the allocation step of the standard
FCFS with Backfilling algorithm to contiguity and locality are presented.i
More specifically, we distinguish between best effort algorithms and a more
strict enforcing of constraints.

Our simulation campaign shows that the proposed algorithms do not
affect the makespan in a negative way. All algorithms with the exception of
forced contiguous show a strong stability with more than 99.6% of instances
with a makespan deviation of less than 2% from the basic one. We are
also able to improve locality with especially strong improvement for forced
contiguous, best effort local and forced local. Experiments show that very
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simple constraints can indeed achieve a more local job allocation with little or
even no information on platform topology as in the case of forced contiguous.

We consider our results to be very promising and envision different ways
of further improvements. One of the first possible research direction is to
implement our work in a real batch scheduler like SLURM.

We also wish to be able to characterize communications within jobs in or-
der to evaluate the actual performance or energy gains which can be achieved
by our algorithms. This would require some platform-wide monitoring of
communications over large periods of time in order to extract realistic mod-
els of communications within jobs for a wide set of applications.
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Chapter 5

Improving Backfilling with Full
Locality Awareness

5.1 Introduction

In this Chapter we are interested in studying an improvement to the
Contiguity and Basic Locality constraints studied before. The Backfilling
algorithm, combined with the FCFS policy, works very well when there are
no latency issues between the processors allocated to a job. However, per-
formance decreases considerably when the latency between some of the pro-
cessors is high enough to impact the jobs’ run times. The reason for this is
that the Backfilling algorithm does not choose specific processors for each
job. Depending on the implementation and the data structures being used,
it selects the processors for a job in different ways. Some examples are pick-
ing the first processors from a list ordered by increasing ids or taking them
randomly from a hash.

Therefore, scheduling jobs with Backfilling can be significantly improved
by adding to it constraints that help better choose which processors each job
should be assigned to.

As far as we know, most of the approaches available in the literature that
present some form of topology awareness do it in one of two ways. The first
is to add to a job a library that can detect the different elements of the plat-
form, such as topology and performance of the processors. Then, the idea
is to use this information to reorganize the job and match the computing
power and communication costs to the characteristics of the job. The limi-
tation of this approach is that it has no power over the initial assignment,
which may have been inadequate. The second most common approach is
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to include in the job submissions information about communication in the
form of communication matrices. This approach allows the scheduler to
place close together processes that have the most communication between
each other. The problem, in this case, is that the communication matrix has
limited knowledge of the communication done between processes. It con-
tains information either about the frequency of communication or message
size. There is no way to differentiate between processes that communicate
in short burst and at constant rates. Furthermore, this approach requires
jobs to be profiled before they are submitted. Often, small changes in the
code or in the number of processes require that a new profile is made, which
is commonly done by executing the job beforehand.

Apart from the Contiguity and Basic Locality constraints that were stud-
ied in the previous Chapter, Full Locality is a constraint that considers the
topology of the platform, and not just the fragmentation of assignments or
the size of each group of processors at the last level. The main goal is then
to utilize this information to assign jobs to regions of the platform where
communication costs between the processors assigned to a particular job are
minimized. This constraint does not require jobs to be assigned contiguously,
since communication costs between processors that are located at the last
level are considered to be the same, for all processors in the group.

In order to compare the performance of the Full Locality constraint to the
previously proposed ones, the discrete events simulator was updated. The
new constraint was added and the simulator was modified to utilize original
traces with as few modifications as possible. To achieve this, the simulator
now works in an online fashion, where knowledge of the jobs’ real run time is
limited to the part that handles the events, and instead bases the scheduling
decisions on wall times supplied by users. These wall times, as we know, can
be deeply flawed, either by overestimation or underestimation, which can
lead to the job being killed before it finishes its execution.

To deal with the problem related to imprecise wall times given by the
users, we implement in the simulator the feature of reassignment of jobs 1.
When a job finishes early, either due to overestimation of the wall time or
an improvement of the run time due to better locality, the simulator releases
the processors for that job and checks, for each job with a reservation that
has not started yet if that job can start now. If it can, it is moved forwarded,
otherwise it keeps its reservation.

Furthermore, we prepare a campaign of experiments, where different plat-
forms and their corresponding traces are utilized to compare Full Locality

1also called schedule compression
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to the other constraints. To that end, the original traces are split in smaller
periods that are in turn used as input in the experiments. The generated
traces and other parameters are combined to run the experiment campaign.

Experiment results indicate that the Full Locality constraint is an im-
provement over the previously proposed ones and specially Basic Backfilling,
when considering several metrics, for each one of the considered platforms.

This Chapter is organized as follows. Section 5.2 discusses the relevant
related works present in the literature concerning locality awareness. The
problem description are presented in Section 5.3. Sections 5.4 and 5.5 de-
scribe some of the modifications done to the simulator for this work. Then,
Section 5.6 presents the Full Locality algorithm. Finally, Section 5.7 presents
the experiment campaign as well as the results when comparing the Full Lo-
cality constraint to the previously proposed ones and Basic Backfilling and
a brief conclusion is given in Section 5.8.

5.2 Related Work

Algorithms based on Backfilling are the most commonly used scheduling
algorithms in batch schedulers [32, 61]. All variations of the Backfilling
algorithm work by assigning jobs in a queue by incoming order to computing
resources.

The TreeMatch core algorithm takes as input a matrix modeling the
amount of communication between the processes of the job. It also needs a
representation of the underlying architecture modeled as a tree. As with our
model, the leaves contain processors where the job can be executed.

The communication matrix represents the target application’s communi-
cation pattern. It consists of the global amount of data exchanged between
each pair of MPI processes and is stores in a p × p communication matrix.
Table 5.1 shows an example of communication matrix of a MPI application
where each processors communicates with its neighbors.

In order to gather this data, the team chooses to introduce a slight
amount of profiling code within an existing MPI implementation. By do-
ing this, they are able to trace data exchanges both in point-to-point and
collective communication. The main drawback to this approach is that a
preliminary run of the application is mandatory in order to get the commu-
nication data. Additionally, any change in the execution (number of proces-
sors, input data, etc.) generally requires a new execution of the application
to generate a new trace.

The goal of TreeMatch is to assign each MPI process to a processor. In
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P 0 1 2 3 4 5 6 7
0 0 100 0 0 0 0 0 100
1 100 0 100 0 0 0 0 0
2 0 100 0 100 0 0 0 0
3 0 0 100 0 100 0 0 0
4 0 0 0 100 0 100 0 0
5 0 0 0 0 100 0 100 0
6 0 0 0 0 0 100 0 100
7 100 0 0 0 0 0 100 0

Table 5.1 – Example of communication matrix where each processors com-
municates with its neighbors

other words, TreeMatch attempts to match the available processors to the
leafs of the tree on the platform. In order to improve the communication time
of a MPI application, the TreeMatch algorithm maps processes to processors
depending on the amount of data they exchange during execution.

TreeMatch is a recursive algorithm. It processes the tree upward starting
at the lowest level. At this depth the arity of the node is two. The algorithm
then generates all the combinations of two processes. For example, process
0 can be combined with processes 1 to 7 and process 1 with processes 2 to
7 and so on. The objective is to find four groups of two processes that do
not have processes in common. To find these groups, a graph of incompat-
ibilities is built. Two groups are incompatible if they share a process. In
this graph, vertices are groups and an edge exists between two vertices if the
corresponding groups are incompatible. The desired set of groups is then an
independent set of this graph.

Additionally, not all combinations of groups of processes are of equal
quality for the purposes of the algorithm. The quality of the combination
depends on the values of the matrix. To account for this, each vertex receives
the value of the combined communication between the group and the other
processes. The smaller this value, the better the combination. Since finding
such an independent set of minimum weight is NP-Hard and in-approximable
at a constant ratio [36], heuristics are used to find “good" independent sets.

5.3 Problem Modeling

Typical batch scheduling systems are composed of queues of jobs. Each
queue is defined as a set of jobs J . Each job j in the queue is characterized
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by a run time pj , a wall time wj that is submitted by the user and a number
sizej of required processors.

5.3.1 Platform

In this work we model the platform as sets of closely related processors
connected to a network unit and call each set a cluster. In other words, a
cluster is a contiguous range of processors. Clusters, in turn, are connected
to each other by network units.

Each platform has its own composition of network units and processors.
This composition depends on how the platform was constructed and how the
nodes are connected.

1 2 3 4 5 6 7 8

Cl1 Cl2 Cl3 Cl4

Figure 5.1 – Example of a tree-shaped topology

To help illustrate, we consider the example of a tree topology shown in
Figure 5.1. The circles are network units — normally in the form of switches
— and the squares are processors. The clusters are located at the lowest
level of the tree, denoted Cl1 to Cl4. If all the processors allocated to a
job that needs two processors are in the same cluster, for example Cl1, the
communication cost is considered to be the lowest possible in the platform.
If the processors allocated to the job are distributed between two clusters,
for example Cl1 and Cl2, the communication between the processors needs
to pass through one level above the minimum for a job with two processors.
Since this level has a higher communication cost than the previous one,
the job will have a longer running time. Finally, if the job has processors
allocated on both sides of the tree, for example in clusters C1 and Cl3, the
communication has to go through the root, which is the path with the highest
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cost. In this case the job’s run time will be the longest.
Based on this definition of cluster, we can describe some key properties

of scheduled jobs.

5.3.2 Backfilling

In the previous Chapter, on Section 4.5.1, we discuss the characteristics
of the Backfilling algorithm, its goals, advantages and limitations. In this
Chapter, we employ the same basic algorithm in order to serve as a starting
point for our new proposed improvements and variants. The differences in
the implementation as well as the new additions are detailed in the following
Sections.

5.3.3 Success Rate

We consider a job’s success rate its status after finishing execution. This
metric is important since it impacts directly the user that submitted the
job. When the user submits the job he/she expects a certain run time and
decides on a wall time accordingly. If the job is placed in a platform level
that is worst than the minimum, the run time will increase and might reach
the wall time. When that happens, the job fails to finish and is canceled.
Thus, for every submitted job we calculate the new run time based on the
platform level of the job and decide if it fails or not.

5.3.4 Overhead Model

When the processors have been chosen for the job, the new run time can
be calculated. We do this by computing the minimum platform level for
the job based on its number of required processors, Lmin, and the current
platform level based on its allocated processors, Lcur. Thus, the ratio of slow
down applied to the job due to slower than expected communication is R =
Lcur−Lmin. We model the job’s run time depending on the penalty function
used. The two penalty functions that are mainly used for the purpose of
modifying the job’s run time are linear and quadratic.

For the linear penalty function, the job’s new run time is modeled as:

T ′ = T + T ×R× F, (5.1)

where R is the difference between the minimum and current platform levels
and F is the penalty factor, a parameter received as input.

For the quadratic penalty function, the job’s new run time is:
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T ′ = T × FR. (5.2)

After the job’s new run time is know, we verify if the new run time is
bigger than the job’s wall time. If it is, the new run time is set to be equal
the wall time and the job is considered failed.

The advantage of this model is that no information specific to the commu-
nication pattern of each job is necessary. The only information needed is the
shape and performance of the platform. Other models, like TreeMatch [33],
are restricted to jobs that use MPI because they need the communication
matrix used by each job.

Additionally, there are some disadvantages to using a communication
matrix to describe a job’s communication profile. The biggest one is that
a communication matrix does not know precisely the size and timestamp
of each message, which means it can not diferentiate between two jobs that
communicates a lot in a small perior of time and communicates at a constant
rate for the duration of the execution.

5.4 Online Scheduling

In an Offline scheduling, the scheduler has complete understanding of
the system and the environment it will operate in. More specifically, the
scheduler knows, when execution begins, the release date and real run time
of all the jobs. With this information, the scheduler is able to backfill jobs
with the guarantee that these resources will be available.

Online scheduling works in a different way. Initially, the scheduler has no
information about release dates. This means that time advances while the
scheduler waits for jobs to be submitted. When a job is submitted, the only
two pieces of information about that job the scheduler has and in turn can
use are the number of requested processors and user submitted wall time.
With this information, the scheduler is able to give the job a reservation,
which is composed of a list of processors and a starting time.

When the job starts executing, the scheduler still does not know when
it will finish, merely the maximum ending time based on the user submitted
wall time. If the execution reaches this wall time, the scheduler is forced to
kill the job and consider it failed, as other jobs may have reservations for the
same resources later on. Furthermore, if the job finishes before its maximum
ending time, the scheduler has the opportunity to re-utilize the resources.
This subject is discussed in the next Section.
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Figure 5.2 shows an example of a schedule where jobs are being assigned
in an Online fashion

1

2

3
4

t

P4

P3

P2

P1

Figure 5.2 – Schedule showing jobs with different user submitted wall times
and real run times

5.5 Job reassignment

One of the things that can be done to further improve the efficiency of
the Backfilling algorithm is to reassign jobs that finish their execution early.
This is mentioned in Backfilling’s original paper but only briefly. In our
implementation of the Backfilling algorithm, this is done in the following
way:

First, it is important to note that jobs receive an assignment that consists
of a starting time and a set of processors as soon as they are released. This
consists in a reservation and is guaranteed for the job, meaning that no other
job can be assigned or backfilled to the time or processors assigned to this
job.

When any job that is executing finishes early, the first thing that is done
is to release the remaining time and processors that were assigned to this job.
After that, the algorithm checks, for every job that is queued, or in other
words, that has been assigned but has not started yet, if the job can be
backfilled to start now. The reason we only move jobs if they can start now
is to avoid all jobs from being reassigned repeatedly every time a job finishes
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early. Additionally, reassigning jobs only if they can start now achieves the
same result, which is to utilize the platform’s resources as much as possible,
contributing to a smaller overall flow time.
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(a) Schedule when jobs in the queue are assigned
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(b) Schedule after job 2 finishes early
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(c) Schedule after job 3 finishes early

Figure 5.3 – Example of job reassignment

Figure 5.3 illustrate the reassignment process. On Figure 5.3a jobs 1
and 2 have already been assigned and two more jobs, 3 and 4, have been
submitted and are being assigned now. This is done in the FCFS fashion.
Also, the arrow on the lower part of the Figure indicates the current time. On
Figure 5.3b, we can see that job 2 finished earlier than expected. Following
that, the jobs that were already assigned but have not started yet can be
reassigned. Thus, job 3 is allowed to move forward and start right now. Since
job 4 could not start now even though it could move forward, it keeps its
original reservation. Finally, Figure 5.3c shows that when job 3 also finishes

84



early, job 4 is allowed to move forward and start now, instead of waiting for
its reservation.

5.6 Allocation Algorithms

The main way we improve the Backfilling algorithm is by implementing
variants. When Backfilling schedules a job, it chooses the earliest time that
have enough processors available for the duration of the job. It does not,
however, choose specific processors when more than the minimum necessary
are available. That gives us an opportunity to choose the job’s processors in
a way that improves its execution.

5.6.1 Basic Backfilling

The Basic Backfilling variant try to change the behavior of the Backfilling
algorithm as little as possible. The resulting behavior, in this case the set
of processors chosen for a particular job, depends a little on the details of
the implementation, like data structures and programming language used.
Nonetheless, Basic Backfilling chooses the first processors available, as soon
as they are selected from the pool of processors. Since in this case processors
are kept in a list and this list is ordered, the available processors with the
smallest ids are chosen.

1 2 3 4 5 6 7 8

Figure 5.4 – Example of schedule using the Basic Backfilling variant

Figure 5.4 shows an example of a job scheduled using the Basic Backfilling
variant. In this case, the first processors available for the job are 1 2, 4
and 5. The Figure also shows an example of a case where picking the first
processors available might not be a good idea. The chosen processors are
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scattered among different parts of the platform, whereas if processors 5 to 8
were chosen, the assignment would be better in a few different aspects, like
lower fragmentation and communication cost between the processors.

5.6.2 Basic Locality

A job is considered local if it uses the minimum amount of clusters it
needs to execute. This minimum number of clusters is determined by the
size of the job. A job that has basic locality has the advantage of keeping the
communication between processors contained in the lowest level as much as
possible, without any knowledge about the topology of the platform apart
from the size of each cluster. An example can be seen on Figure 5.5. A job
was allocated and the chosen processors are marked in green. Due to the
number of required processors, the job needs two full clusters to be executed.
In order for the job to be considered local, any two clusters can be chosen.

1 2 3 4 5 6 7 8

Figure 5.5 – Example of a local job

Best Effort Local

This variant tries to allocate the job in as few clusters as possible. It
does that by separating the available processors in blocks pertaining to the
clusters and sorting these blocks by descending size. Since this is a best effort
variant, blocks are selected from the list until enough processors are chosen
for executing the job, without delaying it.

Forced Local

This variant does the same thing as Best Effort Local, except it is only
allowed to select processors from the first element of the sorted list of proces-
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sors grouped by clusters. If there are not enough processors for the execution
of the job, the job is delayed until the next available time stamp, when a
new attempt will be made to allocate it.

5.6.3 Contiguity

We say that a job is contiguous if all processors allocated to it form a
contiguous range. Contiguous jobs have the advantage of being close to local,
using at most one additional cluster over the minimum required. Scheduling
contiguous jobs does not require any information about the platform. For
this reason, it is a good method of achieving locality when this information
can not be used or is not available. An example can be found on Figure 5.6.
The processors chosen for the job are marked in green. In order for the job
to be considered contiguous, the chosen processors need to form a contiguous
range.

1 2 3 4 5 6 7 8

Figure 5.6 – Example of a contiguous job

Best Effort Contiguous

This variant attempts to allocate the job so all chosen processors form
a contiguous range. It does that by dividing the list of available processing
units in blocks and sorting these blocks by descending size. It then chooses
these blocks until enough processors have been chosen. Since this is a best
effort variant, it does not delay the job. It will choose as many contiguous
blocks as it needs until enough processors to execute the job have been
chosen.
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Forced Contiguous

This variant does the same thing as Best Effort Contiguous except it can
only use one block of contiguous processors. If the biggest block does not
have enough processors for executing the job, the job is delayed and a new
attempt will be made at the next available time stamp.

5.6.4 Platform Level (Algorithm 5)

We consider a job’s platform level the number of different levels of the
platform the communication between processors needs to go through to reach
any of the other processors. This number is 1 if all the processors allocated
to the job are in the same cluster, that is, if they can reach all the other
processors going through only one level of the platform. The number is
increased for each different level of the platform the communication has to
go through.

1 2 3 4 5 6 7 8

Figure 5.7 – Example of job using the minimum number of platform levels

An example of a job that utilizes the minimum number of platform levels
can be seen on Figure 5.7. The chosen processors for the job can be seen
marked in green. Since the job needs two clusters, its minimum platform level
is 2. Nonetheless, in order for the job to be considered using the minimum
number of platform levels, these clusters need to be connected to each other
on the next platform level.

Best Effort Platform Level

This variant tries to place the job so that the communication goes though
as few levels in the platform as possible without delaying it. It does that by
generating a list of platform levels where each item contains all the processors
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Algorithm 5: Backfilling with best effort platform
Data: job j, set P of available processors, platform topology T

1 foreach topology level l in T do
2 N ← list of nodes on level l;
3 foreach node n in N do
4 Pn ← list of available processors connected to node n;
5 if |Pn| < sizej then
6 continue;
7 end
8 Cn ← array of clusters (initially empty);
9 foreach processor i in Cn do

10 let j be the index of the cluster containing i;
11 assign i to Cn[j];
12 end
13 sort Cn by the number of processors in each cluster in

decreasing order;
14 return sizej processors of the first clusters in Cn
15 end
16 end

that could be used going up to that level. Then, it sorts the elements in the
list by descending size. The variant picks the processors from the first level
in the list with enough processors for the job.

Forced Platform Level

This variant is similar to best effort platform expect it will only allow the
first item in the sorted list of platform levels to be used. If this level does
not have enough processors for the job, the job is delayed until the next time
stamp, when a new attempt can be made.

Discussion

The advantage of using the platform level to choose the processors for
a job is that this approach doesn’t need any information about the job’s
communication pattern or composition. That is interesting since getting
access to this kind of information is complicated and is only possible for
some types of jobs. This approach only needs some information about the
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platform, like shape and network profile, which is something that the admins
of the platform have easy access to.

Furthermore, this approach focuses on improving the run time of the
jobs, which is the most important metric for the user. Results show that
improving the platform level of the jobs also improves metrics that may be
important for the admins, like flow, stretch, contiguity, job success rate.

5.7 Experimental Results

5.7.1 Goals

The main goal of the experiments is to compare the performance of the
different Backfilling variants. Additionally, we want to show that:

• there is considerable performance increase when using a platform aware
variant of Backfilling, when comparing to the basic variant;

• that full locality awareness, where jobs are assigned to regions of the
platform where the communication has to go through as few levels as
possible, is preferable to basic locality awareness, where the platform
is split in groups of processors called clusters and jobs are assigned to
as few clusters as possible;

• we can improve the basic Backfilling algorithm in different ways with-
out the need for code intrumentalization, without tying to specific run-
time environments like MPI and without penalizing jobs with severe
delays due to the additional constraints.

5.7.2 Simulator

The Backfilling algorithm and the variants were implemented together
with a discrete events simulator written specifically for these experiments.
This simulator works by reading a list of jobs from a batch scheduler trace
file in the SWF format [9]. During the execution, each job and its associated
characteristics are read from the trace. Moreover, each trace is associated
with a platform where the jobs were originally executed and running times
were measured. Several commonly used platforms and their associated traces
were chosen for these experiments.

The reason we chose to implement our own simulator is that since the
beginning we wanted to be able to tweak, run experiments and analyze results
for several different aspects of batch scheduling and Backfilling, from the
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most basic, like changing the priority each job has when it is submitted
or choosing on which processors the job is going to be executed, to more
complex, like redefining the execution profile and optimizing the code to run
the kinds of experiments that we were planning.

In total, the simulator has been worked on for approximately two years,
and includes features like:

Implement different variants One of the main goals of the simulator is
to help us find different ways to improve Backfilling. For this reason, one
of the most important parts of the simulator is the implementation of the
variants. These variants inherit the basic implementation of the Backfilling
algorithm and make changes to improve it. The biggest change is usually
the way processors are chosen, but other, smaller changes can be made as
well.

Implement optimized events controller and execution profile One
of the reasons why implementing our own simulator is interesting is that we
can optimize certain parts of the simulator, like the events controller and
the execution profile. This is important because it helps reduce the time it
takes to process a trace and assign the jobs, specially for larger traces.

Reassign jobs One of the things that is mentioned in the main Backfilling
paper but not explained or experimented upon is the process of reassigning
queued jobs when jobs that are executing finish early. This step is very
important because it gives Backfilling not just one opportunity to backfill
jobs, but many, every time a job finishes early. The downside to doing this
is that it increases the complexity of the Backfilling algorithm by one order
of magnitude, since every time a job finishes early, all jobs that are queued
need to be checked to see if they can be moved forward. This fact makes
it more important for the optimization of things like the execution profile,
since it is heavily utilized when checking if a job can be backfilled.

Generate traces The simulator allows us to create traces of different sizes
and characteristics based on larger, popular traces available in the literature.
This is important because original traces tend to be large, spanning several
months, which if used directly would take too long to process and wouldn’t
allow for different instances. Thus, the simulator splits these long traces
in segments of approximately seven days and, depending on the size of the
platform (number of processors) and the size of the original trace, chooses a
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number of contiguous segments to generate a trace that can be used in the
experiments.

Prepare experiments Apart from the improvements made to the Back-
filling algorithm by implementing our own simulator, one important addition
to the simulator is the ability to execute the simulator using the generated
instances explained earlier, in addition to a combination of different param-
eters, and save everything to output files in the CSV (Comma Separated
Values) format. These files can then be used to generate the curves included
in this text.

5.7.3 Parameters

In our experiments we consider only the real run time of the jobs. This
choice is common when doing simulations using real traces since user sub-
mitted wall times can be strongly overestimated [51]. The reason for this
overestimation is that usually jobs are interrupted and killed if the run time
reaches the user submitted wall time.

Our experiments are designed by setting a list of parameters:

Platform Parameters The first set of parameters is related to the plat-
forms. For each platform, we set the number of processors, shape and com-
munication characteristics based on the information available about them in
their respective web pages.

Traces Secondly, we prepare the traces associated with each of the plat-
forms. This preparation consists in dividing the traces in periods of seven
days. Then, depending on the size of the trace and the platform, we include
in the experiments instances with different numbers of periods.

Penalty Thirdly, we configure the different values of penalty function and
penalty factor that will be used in the experiments. As explained before,
linear and quadratic functions are available.

Instances Finally, we determine how many instances of each trace are used
in the experiments. As mentioned before, the original traces are divided
in periods of seven days. One instance is a trace containing a contiguous
number of seven day periods. The number of periods depends on the size
of the platform (i.e number of processors) and the trace itself. This number
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of instances is meant to make sure that the results have an acceptable trust
interval.

5.7.4 Platforms

Table 5.2 shows the platforms that were included in the experiments, as
well as the number of processors, numbers of jobs and numbers of 7 day
periods used in each instance.

Platform Processors Jobs Periods
Currie [1] 80640 279991 3
Hpc2n [3] 240 201998 1
Kth-SP2 [10] 100 20483 1
Llnl-Thunder [4] 1024 97875 1
Ricc [7] 8192 431547 2
Sdsc-Blue [8] 1152 195587 1

Table 5.2 – Platforms included in the experiments

5.7.5 Experimental Analysis

The experiments were performed using the following combination of pa-
rameters:

• Included platforms, as described by the Table 5.2

• Penality function: quadratic

• Penality factor: 2

• 30 instances of traces from each platform

• Included variants:

– Basic Backfilling: basic

– Best Effort Contiguity: becont

– Best Effort Locality: beloc

– Best Effort Platform Level: beplat

– Forced Contiguity: cont

– Forced Locality: loc
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– Forced Platform Level: plat

• Included metrics:

– Sum flow

– Sum stretch

– Contiguity factor

– Locality factor

– Platform level factor

– Job success rate

The machines used to carry out the experiments are part of the Grid5000
testbed for experiment-driven research [2].

Results preparation

After all the instances determined by the set of parameters are executed,
the results file is processed and used to generate the graphs shown below.
Firstly, the results are grouped by the combination of parameters, so that
each group contains the 30 instances for that combination. Then, a normal-
ized value is calculated for each metric in each instance, dividing its value by
the average between instances when the variant is Basic. That means that
all the values for the other instances are normalized by the Basic Backfilling
metric. After that, the average is taken between the different instances, for
all the metrics and all the variants. That is the value that is shown in the
bar graphs.

Sum Flow

The first Figure we present is Figure 5.8, containing the results for sum
flow on the different platforms.

In this Graph and in the following ones, each set of bars corresponds to
a different platform included in the experiments. The name of the platform
can be found at the top of the graph, shown in grey labels. To the right
of the graph another label shows the combination of penalty function and
factor used in the experiment. In this case, the quadratic function with a
factor of 2 was used. Finally, the legend on the right indicates the different
variants that are being compared.

We can see from the Figure that with the exception of Best Effort Local
on the SDSC Blue platform, all best effort variants show improvements when
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comparing to Basic Backfilling for sum flow. More specifically, we can see
the Best Effort Platform shows the best results on all platforms. If we
consider the Forced variants, we can see that the Forced Contiguous and
Forced Local variants present worst results than Basic Backfilling for the
HPC2N platform and Forced Contiguous for the KTH SP2 platform. Other
than that, forced variants present improved results when comparing to Basic
Backfilling. More specifically, they tend to show results that are similar to
their best effort counter part and sometimes even improved results.

currie hpc2n kth_sp2 llnl_thunder ricc sdsc_blue

quadratic−
2

0.0

0.3

0.6

0.9

Variants

basic

becont

beloc

beplat

cont

loc

plat

Figure 5.8 – Sum Flow

Next, we present some graphs that aim to take a closer look at the flow
metric in some interesting cases. The first set of graphs (Figure 5.9) compares
Basic Backfilling to Best Effort Platform for the different platforms included
in the experiments. In these graphs, the horizontal axis denotes the sum
flow for Basic Backfilling and the vertical axis Best Effort Platform. There
is a line indicating the separation between regions where each variant has
better results and each point indicates one of the experiment instances. The
Figure shows that for all of the included platforms the results are either
similar (Currie, LLNL Thunder), marginally better for Best Effort Platform
(RICC) or very good for Best Effort Platform (HPC2N, KTH SP2 and SDSC
Blue). In these cases, most of the points show a better sum flow for Best
Effort Platform.

These points indicate that, because jobs are placed more close together
when they are assigned by the Best Effort Platform variant, they tend to
finish earlier, opening space in the schedule for other jobs. These other jobs
will start earlier and thus have a lower flow time. In other cases, when the
flow is mostly similar, jobs either don’t finish earlier, not opening space for
the next jobs, or they do finish earlier but no jobs can be moved due to their
size or not being released yet (not enough jobs).
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Figure 5.9 – Clouds of points for sum flow comparing the basic and best
effort platform variants 96



Next, we show the set of graphs comparing the Basic Backfilling variant
to Forced Platform. Since in this case the constraint is stronger, or in other
words, jobs are delayed unless they can be scheduled in the lowest platform
level possible, some jobs might be delayed further when comparing to the
best effort equivalent. On the other hand, scheduling jobs in this fashion
causes them to have the smallest run time possible, helping flow.

As we can see on Figure 5.10, the results when comparing Basic Backfill-
ing to Forced Platform are similar to the ones shown before, even with the
stronger constraint. There is improvement on the flow metric for most of
the platforms (HPC2N, KTH SP2, RICC and SDSC Blue), while results are
similar between the variants for the Currie and LLNL Thunder platform.
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Figure 5.10 – Clouds of points for sum flow comparing the basic and forced
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Next, we show a set of graphs comparing the Best Effort Local, that
implements the constraint of simple locality, where the platform is modeled
as a set of clusters with no hierarchy, and the Best Effort Platform variants.
In this case, results are more similar, as we can expect. More specifically, we
can see on Figure 5.11 that results are similar for flow on the Currie, HPC2N
and LLNL Thunder platforms, slightly better for the RICC platform and
significantly better for the Best Effort Platform variant on the KTH SP2
and SDSC Blue platforms.

What we can understand from these results is that although the basic
locality constraint goes towards a better schedule, it is not enough. Jobs
might use two clusters and that is considered a good result for the constraint
of basic locality, but those clusters might be located far from each other on
the platform, leading to a longer run time for the job.
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Figure 5.11 – Clouds of points for sum flow comparing the best effort local
and best effort platform variants 100



Finally, we show the set of graphs comparing the Forced Locality variant,
that implements basic locality constraint with the difference that it delays
jobs unless they use the minimum number of clusters possible, with the
Forced Platform variant. Here we see similar results as the previous case.
Figure 5.12 shows that on three of the platforms (HPC2N, KTH SP2 and
SDSC Blue) results are considerably better for Forced Platform in compari-
son to Forced Platform. On one of the platforms (RICC) results are slightly
better for Forced Platform and for the Currie and LLNL Thunder platforms
results are similar.
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Figure 5.12 – Clouds of points for sum flow comparing the forced local and
forced platform variants 102



Contiguity Factor

The next metric we show is the Contiguity Factor. This metric is calcu-
lated by counting how many contiguous blocks have been assigned to a job.
After all jobs are assigned, the average Contiguity Factor for the schedule is
calculated.

Figure 5.13 shows the results for this metric. We can see in this Fig-
ure that basically all variants improve contiguity when comparing to Basic
Backfilling, even though, as explained before, this implementation of Back-
filling tends to choose contiguous blocks of processing units, if they exist
when choosing ranges of processors for a job. This is to be expected, since
all variants tend to achieve some level of contiguity, in one fashion or an-
other. Furthermore, we can see that the variants with the best results for
this metric are Best Effort Contiguity and Forced Contiguity. This is also
expected, since this is desired effect of these variants.

This metric is interesting because, as we will see later on when analyzing
the results for Job Success Rate, an improvement in contiguity does help im-
prove the other metrics, although considerably less than other, more locality
aware variants. This in addition to the fact that contiguity is easy to imple-
ment, doesn’t require any information about the platform and is a weaker
constraint, meaning that it might impose fewer delays than other variants,
makes it interesting.
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Figure 5.13 – Contiguity Factor

Locality Factor

In this Section, we present and analyze the results for the Locality Factor
metric. This metric is calculated by counting how many different clusters
have been used in a job’s assignment, and dividing that number by the
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minimum number of clusters needed for that job, considering how many
processors it needs. This number is the job’s locality factor.

Figure 5.14 shows the results for this metric. As we can see, all variants
improve basic locality when comparing to Basic Backfilling, even Best Effort
Contiguous and Forced Contiguous, that don’t have any information at all
about the platform. Furthermore, the best results are shows by the Best
Effort and Forced Locality variants. This is to be expected, since this is
precisely what these variants try to improve. Finally, we see that the Best
Effort and Forced Platform variants achieve very good basic locality, even
though they use a different model and try to achieve a different goal.
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Figure 5.14 – Locality Factor

Platform Level Factor

In this Section, we present and analyze the results for the Platform Level
Factor metric. This metric is calculated by counting, for a job, how many
levels the communication has to go through to reach all the processors as-
signed to that job. Then, that number is divided by the minimum number
of levels the communication has to go through, considering the number of
processors required by the job.

Figure 5.15 shows the results for this metric. We can see that all the
metrics have better platform level factors in comparison to Basic Backfill-
ing. Additionally, it is interesting to note that for this metric, the stronger
the constraint, the better. That can be explained to the fact that stronger
constraints tend to pack jobs closer together, increasing the probability that
those jobs are assigned to lower levels of the platform. Furthermore, we can
see that the best results are shown by the Best Effort and Forced Platform
variants. This means that when utilizing these variants jobs can commu-
nicate between their processors going through fewer levels of the platform,
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contributing smaller run times.
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Figure 5.15 – Platform Level Factor

Job Success Rate

Lastly, we show the results for the Job Success Rate metric. This metric
is calculated by counting how many jobs are successfully executed in a par-
ticular schedule or trace. The more jobs that are successfully executed, the
better.

Figure 5.16 shows the results for the metric. As with the Platform Level
Factor metric, all variants present improved results when comparing to Ba-
sic Backfilling. Indeed, this is expected since there is a direct relationship
between these two metrics, meaning that the platform level of a job directly
impacts its run time, which in turn decides if the job is successful or not in
its execution. Thus, we can see that the best results are the ones shown by
the Best Effort and Forced Platform variants, for all the platforms.
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Figure 5.16 – Job Success Rate
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5.8 Conclusion

In this Chapter, we update our simulator to include job reassignment,
which is done when jobs that are running finish early, and online scheduling.
In online scheduling, the scheduler does not know the real run time of the
jobs and instead relies on user submitted wall times to assign jobs.

In our experiment campaign, we show that the Full Locality constraint
is superior to all the previously proposed constraint, and specially Basic
Backfilling. The comparison is done on several commonly used platforms,
using a combination of generated instances and parameters. The results are
presented with different metrics, demonstrating that our proposed constraint
improves the time jobs stay in the system while simultaneously reducing
fragmentation, which allows for a better utilization of the platform. These
improvements contribute to an overall better job success rate.
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Chapter 6

Conclusion

In this work, we focused our study on designing efficient resource allo-
cation for parallel systems. At a lower level, this corresponds to parallelize
a job (composed of several tasks), given certain resources, that may include
various types of processing units, should try to match the characteristics of
each task to the resources, utilizing them as efficiently as possible. At a
higher level of the whole platform, we focused our studies on studying effi-
cient methods for assigning multiple jobs to resources on a platform where
locality matters. This means that the platform has a hierarchical structure
where an assignment in which the assigned processors are close together is
advantageous when comparing to a similar assignment containing processors
that are far apart from each others. Both situations involve a variant of allo-
cation and scheduling problems. At the lower level, the scenario can involve
multi-processor machines, different levels of cache while at a higher level,
the hierarchy indicates clusters that can be geographically separated. As a
consequence, the network imposes a certain latency on the communication.

In the first Chapter, we were interested in showing how tasks can be
assigned to different types of processing units in order to utilize available
resources as efficiently as possible. To achieve this goal, we proposed an
efficient implementation of the classical Smith-Waterman algorithm utilizing
SIMD and SIMT parallelization schemes. Additionally, we employed a novel
dual approximation technique in combination with the standard master-slave
model for better resource utilization. When comparing query sequences to
a common bio-computing benchmark (the UniProt database). A speed of
225 billion cell updates per second (GCUPS) was achieved on a dual Intel
Xeon processor system with Nvidia Tesla GPUs, reducing significantly the
execution times. In addition to that, the combination of GPUs and CPUs
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reduced drastically the execution time for that database, which was faster
than all the compared implementations.

In the second Chapter of the thesis, we studied the effect that the com-
bination of mixed jobs with both long and short running times have on the
overall flow time. We presented a method for on-line scheduling of indepen-
dent tasks on a multi-processor machine based on the characterization of a
small number of tasks as heavy. Those tasks are considered problematic for
the whole performance of the system. We proposed deterministic random
approaches for detecting the heavy tasks. These methods were evaluated on
instances extracted by seven real traces. In general, we found out that the
deterministic method outperforms the standard Shortest First (SPT) pol-
icy and in many cases its performance approached the performance of the
preemptive policy SRPT which can be considered as a lower bound.

In the third Chapter, we focused our studies on how to schedule jobs uti-
lizing contiguity and locality constraints. We provided a theoretical analysis
of the impact of these constraints on the completion time. We presented
two different ways to adapt the allocation step of the standard First Come
First Come (FCFS) with the Backfilling algorithm to contiguity and locality.
More specifically, we distinguished the proposed algorithms between best ef-
fort and a more strict enforcing. Our simulation campaign showed that the
proposed algorithms did not affect the makespan in a negative way. We
were able to improve locality with especially strong improvement for forced
contiguous, best effort local and forced local. Experiments showed that very
simple constraints can indeed achieve a more local job allocation with lit-
tle or even no information on platform topology as in the case of forced
contiguous.

In the fourth and last Chapter, we updated our simulator to include job
reassignment, which is done when jobs that are running finish early, and
online scheduling. In online scheduling, the scheduler does not know in ad-
vance the real running time of the jobs and instead relies on user submitted
wall times to assign jobs. In our experimental campaign, we showed that
the Full Locality constraint strategy is superior to all the previously pro-
posed constraints, and specially Basic Backfilling. The comparison was done
on several commonly used platforms, utilizing a combination of generated
instances and parameters. The results are presented with different metrics,
demonstrating that our proposed constraint was able to improve the time
jobs stay in the system while simultaneously reducing fragmentation, which
allowed for a better utilization of the platform. These improvements con-
tribute to an overall better job success rate.
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