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1.1 Context
Applications of Systems-on-a-Chip (SoCs) include most of the electronic devices used nowadays. A SoC is
an electronic system embedded within a larger electronic device, such that hardware components necessary
for the system’s operation are grouped onto a single integrated circuit. SoCs are extremely complex; they
consists of hardware, made of blocks, and embedded software, meant to be executed on top of the hardware.
Functional correctness of such systems depends on the proper interaction of these heterogeneous parts; it
is required to check that the software operates correctly on the assumed hardware. Moreover, it is also
required to check that the hardware operates in the "expected" way.

Due to the enormous cost and intrinsic complexity of hardware components, virtual prototyping is
used to ensure the correctness of a SoC. A virtual prototype is a very abstract executable model of
the hardware. It has the same interface for the embedded software as the real hardware such that the
software can be executed on the virtual prototype. The embedded software implemented by means of
virtual prototyping at the later stages of the design flow can be executed on the hardware. The degree of
details relevant to the actual hardware, which is presented by virtual prototypes, defines their abstraction
level. Virtual prototypes at the lower abstraction levels (e.g., Register Transfer Level – RTL) can be used
for synthesis of the hardware chip. Their simulation is very slow because the models contain too much
details, specially on timing aspects. Simulation with virtual prototypes at higher abstraction levels (e.g.,
Transaction Level – TL) can be very fast; these models abstract away many details. For instance, wires
which can be explicitly modeled at RTL are abstracted by chunks of data, called transactions, at TLM.
Since such virtual prototypes are more abstract, they require less effort to build.

SystemC-based Transaction-Level Modeling (TLM) [Sys] is the industrial standard for defining high-
level executable models of SoCs. Due to their simulation speed, TL models are used for the development
of the embedded software and checking software/hardware interfaces. Simulation with SystemC/TLM
virtual prototypes can help to detect functional bugs in a system’s design early, (potentially) saving time
are effort that are needed for their fixing. Therefore, it is very important to check that:

• TL models are correct and do not have functional bugs,
• they are representative, or faithful, to the real hardware.

For SystemC/TLM virtual prototypes Assertion-Based Verification (ABV) allows property checking
early in the design cycle [Eck+06b; Tom+09; PF08]. Properties (or assertions) define aspects of the
expected behavior of TL models (e.g., a communication protocol of the components). There are dedicated
languages that can be used to define the assertions (e.g., PSL [18505; EF06]). ABV defines how properties
are interpreted and evaluated when SystemC/TLM virtual prototypes are simulated. Although ABV helps
to find malfunctions in the virtual prototype early, TL models can be over-constrained, which means that
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they do not represent all behaviors of the hardware. Due to that some malfunctions can be discovered too
late in the design flow, which, in the extreme case, can cause re-spin of a chip [Bor]. For instance, in [Cor08],
it has been established that exact delays in SystemC/TLM models are sources of over-constraints and
spurious synchronizations in models. The problem has been solved by introducing a notion of loose-timing
which replaces exact delays with intervals. TL models can (potentially) have other over-constraints, which
are not identified yet. Those over-constraints should be found and removed from the models. Moreover,
ABV support for capturing those over-constraints should be proposed.

Early simulation of SoCs with SystemC/TLM virtual prototypes is fast and allows early development
of the embedded software. To simulate the system, the TL model should be executable. Executability
means that certain details on interactions of components, exchanged data and/or components’ internal
behavior are defined. Although the effort spent to build TL models is negligible comparing to RTL models,
it takes time to define TL models of all hardware components and to implement a TLM virtual prototype.
To check the software, many of the details about the components’ implementation can be irrelevant (e.g.,
the actual implementation of computation algorithms); only their border behavior, i.e., inputs/outputs
they consume/provide, matters. To enable very early simulation with SystemC/TLM virtual prototypes,
when the implementation of some of the components is missing and only a very abstract definition of their
input/output behavior is provided, the idea is to use the specification instead of those components. It
requires the understanding of what it means to “run” the specification, and what types of the specification
can be used in place of TL components.

Both the identification and the removal of over-constraints in TL models, and early simulation of SoCs
with SystemC/TLM virtual prototypes are closely related to the problem of the raise of the abstraction
level above TLM. Adding non-determinism to the model as a way to remove over-constraints is a natural
step towards raising the abstraction level of the models. The specification capturing this non-determinism
can be used in early simulation of the system, which in turn allows early detection and fixing of functional
bugs.

The work presented in this document was carried out during a Ph.D. at the team Synchronous Language
and Reactive Systems (Synchrone) of the Verimag laboratory, in the context of the OpenES European
CATRENE project, in a collaboration with STMicroelectronics. The focus has been made on a family
of SoCs that includes one or more CPUs running embedded software, one or several accelerators (e.g.,
hardware blocks), potentially complex interconnects, memories, and input/output devices. A part of this
thesis is about examining and testing TL models. It attempts to answer the questions: Are there other
sources of over-constraints in TL models? Why do they appear and what are the consequences for the
quality of the software and the hardware? How to remove those over-constraints? Finally, how to specify
and test obtained models? Another part of this work is the investigation of the fundamental question
on abstraction level: if one wants to start with models above TLM, what kind of information can be
accepted to be not available yet? To answer the questions, it was required to master virtual prototyping
of SoCs with SystemC/TLM, to understand what is a “bug” in these models, to check types of bugs which
often happen and to analyze their causes. The work also required to become proficient in Assertion-Based
Verification for TL models; in particular, to learn different specification styles, specification languages
used in the domain, testing approaches for hardware designs, the industrial standards of verification
methodologies used in the design flow of SoCs, etc. Apart from that, the work at Verimag with the
Synchrone team reinforced and augmented the knowledge about formal models and specifications, which
was the inspiration for this thesis.

1.2 Summary of Contributions
The main contributions of this thesis consist of three parts.

• Design of a small case study of a system-on-a-chip and implementation of its TLM
virtual prototype. The case study is made of components frequently used in industrial case
studies. It is characterized by complex synchronization between the components. The virtual
prototype is implemented in SystemC/TLM; it is used for experiments.

Two other parts are orthogonal and complementary. First, this work contributes results related to the
specification and the monitoring of TL models:

• Identification of the notion of loose-ordering. This notion is very much in the same spirit as
loose-timing, which helps avoiding over-constraints in transaction-level models of systems-on-a-chip
due to order of interactions between components.
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• Definition of a set of primitive constructs to capture loose-ordering properties. The
properties are identified by reviewing industrial case studies. These constructs could be integrated
in a language like PSL to allow expressing loose-ordering properties.

• Translation of the primitives into efficient SystemC monitors. The monitors can be used for
on-line testing of SystemC/TLM models. They facilitate detection and localization of bugs caused
by erroneous synchronization of components.

The third part of the contributions is about the very early simulation with SystemC/TLM virtual
prototypes:

• Definition of a generalized stubbing mechanics for systems-on-a-chip. The mechanics
enables the early simulation of systems in which some of the components have very abstract spec-
ifications only, in the form of constraints between inputs and outputs. A contract-like specification
style with an assume clause that specifies what the component expects from its environment, and a
guarantee clause that specifies what the component promises to produce if used properly, is adopted.
The stubbing mechanics provides a facility to expose bugs, and blame faulty components (if the as-
sume clause of A complains, then the components that provide inputs to A are to be blamed).
The mechanics is generic; the focus is made on key concepts, principles and rules which make the
stubbing mechanics implementable and applicable for real, industrial case studies. Any specification
language which conforms the requirements (e.g., loose-orderings), can be plugged in the stubbing
framework.

• Implementation of the generalized stubbing mechanics in SystemC. The SystemC imple-
mentation should be immediately usable by people used to SystemC/TLM. It allows integration of
stubs into SystemC/TLM virtual prototypes.

1.3 Outline of the Document and Suggestions for Readers
The thesis is made of five parts and two appendices:

I. Preliminaries

• Chapter 2 “Background” is a collection of different notions the reader may or may not know about.
This chapter can be skipped; we refer to its sections when needed.

II. Running Example

• Chapter 3 “Running Example” introduces the first contribution of this work. The chapter describes a
SystemC/TLM virtual prototype used through the document to motivate and illustrate new notions,
and to perform experiments. The big part of this chapter describes the implementation details of
the model in SystemC/TLM. For those readers, who are either not familiar with or not interested
in SystemC/TLM, we suggest to read Sections 3.1 and 3.5; they provide respectively an overview of
the system’s functionality and a list of bugs the system may have.

The following two parts can be read independently, in any order:

III. Efficient Monitoring of Loose-Ordering Properties for SystemC/TLM

• Chapter 4 “Introducing the Notion of Loose-Ordering” motivates and defines a notion of loose-
orderings and loose-ordering patterns. Section 4.5 presents encoding of loose-ordering properties
into PSL; if the reader is not familiar with PSL, this section can be skipped. The rest of the chapter
should be read entirely. When reading this chapter the reader is suggested to consult Section 3.4,
where (s)he can find a list of the loose-ordering properties of our running example.

• Chapters 5 and 6 focus on implementation aspects. Chapter 5 “Compositional Building of Recogniz-
ers” defines recognizers of loose-ordering properties and shows their implementation in Lustre for
validation purposes. Chapter 6 “Monitoring Principles and SystemC Implementation” presents a
monitoring principle of SystemC/TLM models and a SystemC implementation of the recognizers.
These chapters are suggested to the readers interested, in particular, in the technical aspects related
to the checking of loose-ordering properties.
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• Chapter 7 “Experiments” compares complexities of our SystemC monitors with monitors of PSL
properties. It also demonstrates on the running example the benefits of the SystemC monitors in
detecting and finding bugs of SystemC/TLM virtual prototypes.

IV. Towards Generalized Stubbing with Contracts

• Chapter 8 “Towards Generalized Stubbing with Sequence Properties” introduces a generalized stub-
bing mechanics, identifies related semantical, implemental and schedular problems and proposes their
solution. This chapter should be read entirely; it provides all the concepts, needed to understand
the generalized stubbing mechanics.

• Chapters 9 and 10 describe implementation and the early simulation with stubs. Chapter 9 “Im-
plementation by Encoding into Mealy Machines” defines the operational semantics of stubs and a
system made of stubs. Then, Chapter 10 “Execution Mechanics: Implementation with the SystemC
Scheduler” provides a SystemC implementation of the stubbing mechanics and describes a simulation
of a stub-based system with the SystemC scheduler. This chapter also shows the experiments.

V. Related Work and Conclusions The document concludes with the following chapters:

• Chapter 11 “Related Work” presents an overview of related work.

• Chapter 12 “Conclusions” ends this document with a summary of the various contributions of the
thesis, as well as the prospects of this work.

There are two appendices:

• Appendix A “Lustre Implementation of Loose-Orderings” provides a Lustre implementation of
the recognizers of the loose-ordering properties.

• Appendix B “Encoding of Loose-Orderings into PSL” contains examples of loose-ordering properties
and their encoding into PSL.

1.4 Dissemination Activities
The first part of this work has been published as a DATE’16 paper:

• Yuliia Romenska and Florence Maraninchi. “Efficient Monitoring of Loose-Ordering Properties for
SystemC TLM”. in: Design, Automation, and Test in Europe (DATE). Dresden, Germany, 2016

Parts of the contributions were presented at conferences and workshops:

• Yuliia Romenska. “High-Level Component Based Models for Functional and Non-Functional Prop-
erties of Systems-On-Chip”. A talk given at the 21st International Open Workshop on Synchronous
Programming (SYNCHRON). Aussois, France. December 2, 2014.

• Yuliia Romenska. “Efficient Monitoring of Loose-Ordering Properties for SystemC TLM”. An inter-
active presentation given at the DATE’16 conference. Dresden, Germany. March, 2016.

• Yuliia Romenska. “Efficient Monitoring of Loose-Ordering Properties for SystemC TLM”. A talk
given at the OpenES and CONTREX Projects Workshop. Dresden, Germany. March, 2016.

Various aspects of the work were presented during internal seminars of the VERIMAG laboratory:

• Yuliia Romenska. “High-Level Executable Component-Based Models for Functional and Non-Functional
Properties of SoCs”. A talk given at the seminar of the Verimag laboratory. Grenoble, France. Febru-
ary, 2015.

• Yuliia Romenska. “Encoding of Loose-Orderings into Linear Temporal Logics”. A talk given at the
meeting of the SYNCHRONE/Verimag team. Grenoble, France. October, 2015.

• Yuliia Romenska. “Efficient Monitoring of Loose-Ordering Properties for SystemC TLM”. A talk
given at the seminar of the SYNCHRONE/Verimag team. Grenoble, France. November, 2015.

Other dissemination activities are:
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• Yuliia Romenska. “Very Early Simulation with Component-Based Virtual Prototypes for Systems-
on-a-Chip”. A talk given at the 4th edition of the PhD day organized by the MSTII Doctoral School
of the universitity Grenoble-Alpes (UGA). Grenoble, France. April 30, 2015. Best Poster Award.

• Yuliia Romenska. “Contract-Based Specifications for Systems-on-Chip”. A talk given at the 5th
Halmstad Summer School on Testing. Halmstad, Sweden. June, 2015.
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To make the document self-contained, in this chapter we provide the minimum background information
required for understanding of the first and the second parts of this work. The reader familiar with the
presented topics may skip this chapter, or check only its specific sections. When defining our work in the
following chapters, we will refer to related sections of the background provided here.

2.1 Systems-on-Chip

2.1.1 Definition
A System-on-a-Chip (SoC) refers to the integration of different computing elements and/or other elec-
tronic subsystems into a single-integrated circuit (chip) [Ris11]. A SoC is heterogeneous: in addition to
classical digital components (e.g., processor, memory, bus, etc.) it may contain analog, mixed-signal, and
other radio-frequency functions - all on one chip. These systems range from portable devices such as MP3
players, videogame consoles, digital cameras, or mobile phones to large stationary installations like traffic
lights, factory controllers, engine controllers for automobiles, or digital set-top boxes [Pop+10]. It consists
of the hardware architecture and the embedded software meant to be executed on its programmable part.

The hardware architecture of a SoC (e.g., Fig. 2.1) is defined by the set of hardware blocks (in the
sequel also referred to as components, modules) and subsystems made of them. Most of those blocks are
pre-designed, they are referred to as Intellectual Property (IP). Components constituting the architecture
can be divided into two categories: (i) hardware, and (ii) communication.

2.1.1.1 Hardware Components

Programmable Components The programmable hardware components are also called processor nodes
of the architecture. They include computing resources represented by the processing units or CPUs, intra-
subsystem communication, and other hardware components, such as local memories, I/O components,
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Figure 2.1 Intel EP80579 “Tolapai” SoC [Int].

or hardware accelerators. The CPU (Central Processing Unit) also known as processor core, processing
element, or shortly processor, executes programs stored in the memory by fetching their instructions, ex-
amining them, and then executing them one after another [TA12]. Depending on the number of processors,
one may distinguish single core and multi-core processor nodes of a SoC.

Non-Programmable Components The non-programmable hardware components add functionalities
to a SoC. They are peripherals, co-processors (hardware accelerators), memories. A peripheral component
senses state (status) or get data from devices externally connected to a SoC. When the component detects
an event, it can generate an interrupt request, which triggers the execution of a service routine on the
processor node. The typical peripherals are General Purpose Input/Output (GPIO), Timers (TMR),
Interrupt Controllers (INTC), LCD Controller (LCDC), etc. A co-processor is designed and optimized
to quickly perform a specific set of computations to accelerate the system performance. Examples of
hardware accelerators are cryptoprocessors, DSPs performing a digital signal processing from a data
stream (voice, image, etc.). A memory is a digital storage device which is commonly used to allocate the
program executed by a processor.

Peripherals, hardware accelerators implement a set of internal registers; writing or reading those
registers allow to control or monitor the components. A basic classification of the registers is:

• control register: a write-only register which configures and controls the component (e.g., a register
setting parameters in an LCDC);

• status register: a read-only register used to get the status of the component (e.g., the register used
in the INTC to store the owner of the transmitted interrupt);

• data register: a read-write register which sets or gets data (e.g., the result of the computation
performed by a hardware accelerator).

2.1.1.2 Inter-Component Communication

Inter-block communication enables transmission of data from a source hardware component to a desti-
nation. It can be implemented by means of a bus or a network on chip (NoC). A bus is a collection of
parallel wires for transmitting address, data and control signals. A standard on-chip bus may connect a
CPU and standard components like memories, peripherals, interrupt units, or some application-specific
components (e.g., see Fig. 2.2). The most widely-spread on-chip connection standard is the Advanced
Microcontroller Bus Architecture, AMBA [Fur00] specified by ARM. To improve both performance and
scaling with the rapid increase in the number of hardware components to be connected, buses can be
linked through bridges forming complex hierarchies (e.g., AMBA-based Advanced High-performance Bus
(AHB), Advanced System Bus (ASB), Advanced Peripheral Bus (APB) [Fur00]).
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CPU RAM LCDC

INTC GPIO TMR

BUS

Figure 2.2 A standard block diagram of a SoC architecture based on a system bus.

When bus-based solutions reach their limit, packet-switched networks are used instead [Fur05]. A
network-on-chip (NoC) is constructed from point-to-point data links interconnected by switches, which
provide means to route the data messages from the source module to the destination module (e.g., Quarc
NoC [MVS08], Spidergon NoC [Cop+04], Hermes NoC [Mor+04]).

2.1.2 Design Flow
The complexity of SoCs comes from the need to ensure that the embedded software runs correctly on
the hardware. Functional bugs are a large, if not the largest, cause of chip respins [Bor]. To tackle
the complexity, ensure functional correctness and increase productivity at the SoC design stage, several
strategies are used along the design flow. Among them (i) the abstraction of the hardware, (ii) the
early hardware/software co-development, (iii) the specification and verification of the design (these will
be discussed in Sections 2.3 and 2.1.3 respectively).

Models of the Hardware: Levels of Abstraction There are common models used in the hardware
design written with more or less details. These levels of details are commonly called abstraction levels.
The traditional hardware design process relies classically on three different levels of abstraction:

• The Layout is the most precise description of the chip. The location and design of each transistor
is precisely known.

• The Gate Level abstracts away a lot of details by focusing only on describing the logical gates
(AND, OR, flip-flops, etc.) and their connections. The actual implementation of the gates is
provided with the hardware libraries.

• At the Register Transfer Level (RTL) the gate-level instantiations of independent flip-flops and
logical operators are replaced by registers and a data-flow description of the transfers between
registers. Still, each wire is represented, but its precise value is known only at each clock tick.

There are tools which allow automatic translation of the RTL models to the gate level. This process
is called synthesis. It optimizes the circuit with respect to its surface and timing. The translation of the
gate level models to the layout level can be done automatically by the use of place-and-route software
optimizing the locations and connections of the various elements.

The RTL models are very slow in simulation. Moreover, they appear too late in the design flow to
be used for the hardware/software co-design. To achieve better simulation speeds while benefiting of the
early availability of the models, one may create models with less details before the RTL one:

• Cycle-accurate (CA) models require that at component bounds the wires are the same as at RTL,
and exhibit the same value at each clock cycle. The internals of the component are left free to the
implementer.

• Transaction Level Models (TLM) are created after hardware/software partitioning, i.e., after
it has been decided for each processing if it would be done using a specific hardware block or by
software. The main idea of TLM is to abstract away communication on the buses by so-called trans-
actions: instead of modeling all the bus wires and their state changes, only the logical operations
(reading, writing, etc.) carried out by the buses are considered in the model. The TL models do not
use clocks. They are asynchronous by nature, with synchronization occurring during the commu-
nication between components. These abstractions allow simulations multiple orders of magnitude
faster than RTL. TLM is discussed in more details in Section 2.1.5.
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Figure 2.3 Different abstraction levels for describing the hardware. (Source [Cor08])

• Function or algorithmic models can be sequential C/C++ programs or Matlab descriptions.
These models can serve as a reference implementation of processing algorithms (e.g., face recogni-
tion), however they do not contain any details with respect to the final hardware and software.

There is no automatic translation of the cycle-accurate models to RTL, or of the TL models to the
cycle-accurate one. One needs to encode respective models manually. This can be tedious and error-
prone. To ensure that the design at any level of abstraction is complaint with the specification, functional
verification is used along the design flow.

2.1.3 Functional Verification
The reasons for functional errors in a system’s design can be (i) ambiguities in the design specification,
(ii) implementation errors in the design. Formal specification of the design is defined in Section 2.3. This
section provides the (simplified) view on the mechanisms enabling the functional verification of hardware
designs.

2.1.3.1 The Design Under Verification (DUV)

The Design Under Verification1 (DUV) can be defined at different abstraction levels (e.g., TLM, RTL).
The DUV can present either a module (like an IP block), of the whole system (like a SoC). The verification
phase defines the type of properties of the DUV which are checked during the simulation, and the way
those properties are checked (see below).

2.1.3.2 Simulation-Based Functional Verification

The primary goal of functional verification is to ensure that the initial design implementation, i.e., DUV,
is functionally equivalent to the design specification [Vas06]. The functional verification concerns only the
intended behavior of the design; the non-functional properties such as power consumption or temperature
are not considered. Time is classified as a functional property if it affects the correctness of the system’s
behavior.

One can distinguish two fundamental approaches in verifying the functionality of the mixed soft-
ware/hardware systems: static and dynamic. The former is defined by formal model checking or other
methods. This approach relies on state space exploration based on abstract representations of system
level models [GD03; Per+04; Wei+05]. The formal methods are very successfully applied to formal ver-
ification of the hardware, and less successfully to formal verification of the embedded software. Due to
state explosion problems, they are not widely used for verification of SoCs. In the sequel we discuss only
dynamic verification approaches.

1In the literature the Design Under Verification (DUV) is sometimes referred to as the Design Under Test (DUT). In this
document we stick to the DUV abbreviation.
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The dynamic simulation-based verification exercises the DUV at runtime. Its fundamental operation is
the process of the DUV state activation followed by the DUV response checking (Fig. 2.4). All functional
verification can be described by a series of such fundamental steps. Applying sequences of input stimuli
to the DUV one may put it in the goal state (the state of interest), and then check that the DUV’s output
or its internal execution in that state is correct with respect to the specification. A state of the DUV may
refer to the content of its registers, the state of its state machine, etc. For instance, suppose we want
to ensure that the GPIO sends an interrupt when a press of a button occurs. To do that, it would be
necessary to apply a keystroke to the GPIO (a stimulus), and then to check if the GPIO produces an
interrupt (an output). Sometimes the simulation-based verification is also referred to as testing of the
design due to its runtime nature.

the DUV’s
state activation

the DUV’s
response checking

Figure 2.4 Fundamental steps of the simulation-based verification.

2.1.3.3 Verification Progress

The aim of verification is to generate the necessary stimuli to put the DUV into all goal states and ensure
that the DUV’s outputs, or its internal behavior, are compliant with the design specification in those
states. Goal states are defined at the very beginning of the verification process. Usually they represent
states of the DUV where malfunctions are likely to occur. The verification progress is measured by the
covered sequences of states of the DUV leading to the goal states. These sequences are referred to as
scenarios. For instance, one might be interested in checking that the interrupt controller (INTC) sends
an interrupt to the CPU whenever it gets an interrupt either from the LCDC or the GPIO. The goal state
here would be the state of the INTC with one pended interrupt to be sent. The sequence of input stimuli
leading to this state would include (i) receiving an interrupt from the LCDC, (ii) receiving an interrupt
from the GPIO, etc. The set of scenarios to reach all goal states of the DUV defines the functional coverage
of the design [YWD14; AMZ04; Hel+06; LGD10; HMMC09]. Using functional coverage one may check
the verification progress and define the set of scenarios which should be exercised further.

2.1.3.4 Structure of a Testbench

To automate the verification process of the DUV at runtime, testbenches2 are constructed. The basic
components of a testbench are shown in Fig. 2.5 as it is defined by the Universal Verification Methodology
(UVM) [AO14b], the widely accepted Accellera3 standard. The components of the testbench are (i) a
stimuli generator, (ii) a coverage improver, (iii) an assertion checker.

Testbench for DUV

Stimuli
Generator

inputs outputs Assertions
Checker

DUV
(Design Under
Verification)

Coverage Improver

Figure 2.5 Simplified view of a testbench for testing hardware design.

2In the literature a testbench is also called a verification environment of the DUV (see for instance [AO14a; AO14b;
IJ04]).

3Accellera Systems Initiative is an independent, not-for profit organization dedicated to create, support, promote, and
advance system-level design, modeling and verification standards for use by the worldwide electronics industry [Acc].
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The stimuli generator (also known as traffic generator) provides input stimuli (or simply inputs) for
the DUV. One may distinguish direct, constrained random, and coverage driven stimuli generation. In
direct stimuli generation specific inputs are created for each scenario. It is usually used to cover very
specific corner cases which are difficult to exercise in any other way.

Constrained random stimuli generation relies on randomization to automatically generate constrained
random sequences of inputs. In this approach a list of inputs (e.g., atomic transactions) and their corre-
sponding valid orderings, valid data content, and valid parameter content are defined by constraints. The
constraints are defined by means of languages with support of random variables and ranges (e.g., e [IJ04],
CRAVE [Hae+12; LD14], SCV [GED07; Wil+09; Opeb]). Provided the set of constraints, the generation
of random stimuli relies on different solving approaches such as Binary Decision Diagrams (BDDs) [Ake78],
Boolean Satisfiability Theory (SAT) [ES03] or Satisfiability Module Theories (SMT) [Bar+09]. Usually
different solvers implementing one of those approaches are used to get inputs (e.g., Boolector [BB09],
SWORD [Wil+07], Z3 [DMB08], etc.). When the set of constraints is defined, they may contradict each
other. The occurring contradictions should be detected and resolved before generation is started [Gro+08;
Gro+09]. Random generation of inputs leads to far more covered scenarios of the DUV than it could pos-
sibly be done with direct inputs. At the same time there is very low probability to reach corner cases. It
is a reason why constrained random generation is usually used together with directed stimuli generation.
Due to automation of stimuli generation a huge set of scenarios can be executed, however some of the
generated inputs can be repeated. Moreover, it is difficult to measure verification progress, since the set
of scenarios being generated is known only during simulation.

Coverage driven stimuli generation is the unification of coverage collection performed by the coverage
improver (see Fig. 2.5) and the constrained random stimuli generation described above. In this case the
results of coverage collection is used to guide random generation of inputs.

The assertion checker ensures that the DUV’s responses are compliant with its specification. If the
DUV is defined at the Register Transfer (RT) of Cycle Accurate (CA) level of abstraction, specification
properties (assertions) are interpreted on discrete time scales defined by clocks. If the DUV is defined at
the TL level, the unique discrete time scale is recovered from sequences of events. Checking of the DUV’s
assertions is usually referred to as Assetions Based Verification (ABV) [Bom+07; Fos09; Fos09].

Reference Model

DUV

Stimuli
Generator

i
Assertions Checker

ok = (i ⇒ oR = oD)

oR

oD

ok

Figure 2.6 Black-box assertion checking for system level verification.

One may distinguish two types of checking: black-box and white-box. The black-box checking verifies
only the boundary (i.e., inputs and outputs) of the DUV. If a property of a device cannot be verified
through its ports, it is either not controllable (i.e., cannot be activated), or not observable. Usually black-
box checking requires a reference model to check that responses generated by the DUV are in fact the
expected ones. As a reference model one may use either the model of the DUV at a higher abstraction
level than the one being verified (e.g., the TL model of the DUV for the verification at the RT level), or
the properties of the DUV expressed in languages with support of temporal constructs (e.g., PSL [18505],
SVA [Cer+14]). The work of the assertion checker then consists in verifying that the outputs of the DUV
are the same as the outputs of the reference model, triggered with the same inputs as the verified DUV
(Fig. 2.6). Such type of checking ensures consistency of the design with the reference model. Since only
boundaries of the DUV are observed, some bugs can be detected with the delay which makes it difficult to
localize their source. Due to that the black-box testing is dominant during system level verification when
the majority of the errors are detected in port interfaces and in the communication between modules.

During the module design phase most of the erros are in the function of the module. To enhance
debugability of the DUV and localization of bugs inside the DUV, monitors and checkers are used. They
track internals of the DUV with the potential to become sources of malfunctions. Such an approach is
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DUV
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state1Stimuli
Generator

i1

i2

Assertions Checker

ok =
(i1 ⇒ state1 is active)∧
(i2 ⇒ state2 is active)

ok

Figure 2.7 White-box assertion checking for module level verification.

referred to as white-box verification. It does not use a reference design (Fig. 2.7). White-box functional
verification is usually used for smaller modules in the early stages of the design process, or for RTL design
where checkers are embedded into the design and/or the system boundary. This assertion technique
provides effective checks to detect the design problems at exact timing of the false behavior, although it
can be hard to reuse and manage [IJ04].

2.1.4 SystemC
The information provided in this section is inspired by [Sys; DCBK10]. SystemC is a system design
and modeling language based on C++. Strictly speaking SystemC is a C++ library [DCBK10]. It was
standardized by the Open SystemC Initiative (OSCI) and approved as IEEE 1666 in 2006. It consists of
the language itself and potential methodology-specific libraries, e.g., SCV4. SystemC can be used to model
SoCs at different levels of abstraction from RTL up to TLM. In this section we briefly cover features of
SystemC necessary for the understanding of the present work. For more complete information, the reader
is invited to consult the SystemC Language Reference IEEE 1666-2011 [Sys].

2.1.4.1 Overview

SystemC addresses the modeling of both software and hardware using C++. It implements the structures
necessary for hardware modeling enabling concepts of hierarchy, time, concurrency, communications and
hardware data types. Figure 2.8 shows the structure of the library. The basic unit of SystemC design is
a module which encapsulates a design component (e.g., IP). Modules may contain other modules (sub-
components), simulation processes referred to as threads, channels and ports for connectivity. Simulation
processes are executed only by the event-driven non-preemptive SystemC scheduler (the simulation ker-
nel). They appear to execute concurrently. The user can indirectly control the execution of processes by
the kernel by means of events and notifications. For instance, to make the scheduler to resume a thread
P1 waiting for an event e, another thread P2 should notify e. Few seconds of the wall-clock time can be
needed to simulate several milliseconds of the design.

Sy
st
em

C

C ++

Predefined channels (e.g., fifos, signals)

Simulation
kernel

Hardware
specific

data types

Modules,
Hierarchy

Channels,
Interfaces

Threads,
Methods

Events,
Notifications

Figure 2.8 Simplified structure of SystemC library.

Channels can represent both very simple communications such as a wire or a FIFO, or complex
communications schemes that eventually map to significant hardware such as the AMBA bus. SystemC
provides several predefined channels common to software and hardware design (Fig. 2.8). These built-in
channels include locking mechanisms like mutex and semaphores, as well as hardware concepts like FIFOs,
signals and others. SystemC modules connect to channels and other modules via ports.

The following sections provide technical and syntactical details about the concepts introduced above.
Their understanding is the prerequisite for Chapters 3, 6 and 12. The reader already familiar with the
material may skip the rest of this section and move directly to Section 2.1.5.

4SystemC Verification Library
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2.1.4.2 Modules

A SystemC module (component) is a C++ class definition which can be defined with a macro SC_MODULE
(Fig. 2.9). It may contain constructors (SC_CTOR macro in Fig. 2.9(a)), destructors, ports, member
channels and data instances, member module instances, simulation process member functions (threads
and methods), and other functions. All of these items are explained in the sections below.

#ifndef NAME_H
#define NAME_H
SC_MODULE(Name) {

// port declaration
// channel/submodule instances
SC_CTOR(Name) {

// connectivity
// process registrations

}
// process declarations
void thread ();
...
// function declarations
void func(int arg);
...

};
#endif

(a) Name.h

#include <systemc >
#include "Name.h"

...
/* Implementation of processes

and functions */
void Name:: thread (){

// Implementation
}
...
void Name::func(int arg){

// Implementation
}

...

(b) Name.cpp

Figure 2.9 Syntax of the SC_MODULE.

2.1.4.3 Simulation Processes

A basic unit of concurrent execution of SystemC is the SystemC simulation process registered within the
SystemC simulation kernel (discussed below). The registration of processes is done by the constructs
SC_THREAD or SC_METHOD (Fig. 2.12(a)). The simulation kernel then schedules and calls each of the
registered processes as needed (see Sec. 2.1.4.8 below).

When a simulation process runs, its small segment of code is executed and then control is returned to
the simulation kernel. The SystemC simulator is non-preemptive, i.e., it cannot force a running process to
return control. Thus, it is required for the processes to suspend themselves (i.e., to return control to the
kernel) to allow SystemC to proceed to execute other processes. An SC_THREAD may suspend itself calling
the wait() function specifying an event or a time-out (see below). When wait() returns, the process is
resumed. For instance, Figure 2.12(b) provides an example of a process where the function wait(TIME) is
used to simulate the passage of time. SC_METHOD processes never suspend internally, i.e., they can never
invoke wait(). Instead, they execute without interrupts and return to the caller (the kernel); simulation
time does not pass between the invocation and return of SC_METHODs.

//FILE: blinker.h ------------
SC_MODULE(Blinker) {

bool blinker;

SC_CTOR(Blinker) {
SC_THREAD(T);

}
void T();
...

};

(a) Registration of the process with
SC_THREAD in the kernel

//FILE: blinker.cpp ------------
void Blinker ::T(){

while(true){
blinker = true;
cout << "Blink ON" << endl;
wait (200, SC_MS );
cout << "Blink OFF" << endl;
blinker = false;
wait (200, SC_MS );

}}

(b) Example usage of wait(TIME)

Figure 2.10 A process using wait().

An SC_THREAD can be invoked by the kernel only once; if it terminates, it cannot be restarted. An
SC_THREAD typically begins execution at the start of simulation and continues in an endless loop until the
simulation ends (e.g., see Fig. 2.12(b)). Each time SC_THREAD returns control to the simulation kernel
calling wait(), its execution state is saved (variables of the process are persistent), which lets the process

16/230 Verimag/UGA Yuliia ROMENSKA



Chapter 2. Background

be resumed when the wait() returns. On the contrary, an SC_METHOD must initialize variables each time
the method is invoked.

Only the SystemC scheduler is allowed to call both SC_THREADs and SC_METHODs. The user can
indirectly control the execution of processes by the kernel by means of events, notification and sensitivity.

2.1.4.4 Events, Notification, Sensitivity

SystemC is an event-driven simulator. For instance, the time-out of a wait(TIME) is an event. Events
are modeled with the sc_event SystemC class. The class sc_event allows explicit triggering (causing)
of events by means of a notification method notify() (Fig. 2.11). There are three types of notifications:
(i) immediate, (ii) delayed and (iii) timed. They are specified as shown in Fig. 2.11. To make simulation
processes SC_THREADs and SC_METHODs react on occurrences of events, one should define the sensitivity of
those processes to appropriate events. It can be of any of the following types:

1. Static sensitivity is implemented by applying SystemC sensitive command on SC_METHOD or
SC_THREAD within the constructor (Fig. 2.12(a)).

2. Dynamic sensitivity lets a simulation process change its sensitivity on the fly. The SC_METHOD
implements dynamic sensitivity with a next_trigger(arg) command; the SC_THREAD implements
it with a wait(arg) command (Fig. 2.12(b)).

sc_event e;
/* notification of event */
e.notify (); // immediate
e.notify(SC_ZERO_TIME );// delayed
e.notify (100, SC_NS ); // in 100 nonaseconds

Figure 2.11 Syntax of sc_event.

// FILE: Server.h ------------
SC_MODULE(Server)
{int tasks_N;
sc_event e_task_arrival;
sc_event e_service_request;
sc_event e_service_finish;

SC_CTOR(Server)
{tasks_N = 0;
SC_THREAD(task_generator_T );

/* static sensitivity */
SC_METHOD(queue_M );
sensitive <<e_task_arrival;

SC_THREAD(server_T );
sensitive <<e_service_finish

<<e_task_arrival;

SC_METHOD(service_M );
sensitive <<e_service_request;

}
void task_generator_T ();
void queue_M ();
void server_T ();
void service_M ();

};

(a) Static sensitivity in a module’s construc-
tor

1 // FILE: Server.cpp ------------
2 void Server :: task_generator_T (){
3 sc_time ARRIVAL_T (400, SC_MS);
4 while(true){
5 wait(ARRIVAL_T );
6 cout <<"New task arrived\n";
7 e_task_arrival.notify ();
8 }}
9 void Server :: queue_M (){

10 tasks_N +=1;
11 }
12 void Server :: server_T (){
13 while(true){
14 while (tasks_N != 0){
15 e_service_request.notify ();
16 wait(e_service_finish );
17 cout <<"Task departs\n";
18 tasks_N -= 1;
19 }
20 wait(e_task_arrival );
21 }}
22 void Server :: service_M (){
23 sc_time SERVICE_T (400, SC_MS);
24 cout <<"Task is accomplished\n";
25 next_trigger(SERVICE_T );
26 e_service_finish.notify ();
27 }

(b) Examples of dynamic sensitivity: lines 5, 25

Figure 2.12 Sensitivity of processes.
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2.1.4.5 Communication

Communication between concurrent SC_THREADs can be done by exchanging events and ordinary module
member data. It is unsafe because the processes may miss events5. To ensure safe data communication
between simulation processes, it is important to update a handshake variable indicating when a request for
data is made, and clear it when the request is acknowledged. This communication principle is encapsulated
in SystemC built-in channels such as sc_signal<T> .

All channels inherit from and implement one or more SystemC interface classes6. For instance, the
interface sc_signal_inout_if<T> lets a module have access to the value of a channel through the read()
and write() methods. It is inherited by sc_signal<T> (Fig. 2.19). Simply by referring to interfaces, one
may implement modules independently of the implementation details of the communication channels. For
instance, in Figure 2.13 the implementation of the modules modA, modB, modC and modD does not depend
on the implementation of the complex_bus_channel; only the interface of the latter is known.

complex_bus_channel

modA modB

modC modD

a port

an interface

a module

a channel

point-to-point
connection

Figure 2.13 The power of interfaces in SystemC. (Source [DCBK10])

Channels are connected to modules by means of ports referring to respective interfaces of those channels
(Fig. 2.13). There are two types of ports in SystemC. A port sc_port<T> is a pointer to the channel outside
the respective module. For instance, Figure 2.14(b) shows an example where two processes A_thread and
B_thread of two respective distinct modules modA and modB communicate through the FIFO channel
c. A_thread in module modA sets a value to a local variable v of modB by calling the write method
of the channel c. B_thread in module modB retrieves a value via the read method of c. The access is
accomplished by means of the pointers pA and pB.

The idea of sc_export<T> is to move the channel inside the defining module, thus hiding some of
the connectivity details and using the port externally as if it were a channel. The sc_export<T> allows
control over the interface. The concept is illustrated in Figure 2.14(c). Ports are always defined within
the module class (Fig. 2.15).

2.1.4.6 The Entry Point of the SystemC Simulation

The starting point of execution of a SystemC model (program) is called sc_main() (the analog of main()
in C/C++). Within sc_main() the code executes in three distinct stages (see Fig. 2.16):

1. During the elaboration phase SystemC components are instantiated and connected to create a model
ready for simulation.

2. Simulation is started with the call to the sc_start() method. The simulation starts with the
initialization: the kernel identifies all simulation processes and places them in either the runnable
or waiting process sets (more details below). When the initialization is finished, the scheduler starts
to execute the processes (potentially) advancing the simulation time.

3. The post-processing phase is optional, it handles results of the simulation.
5When processes P1 and P2 communicate via an event e, the process interested in the event, let say P2, can miss e

notified by P1 due to implementation of the SystemC scheduler. To capture an occurrence of e, P2 needs to be executed by
the simulation kernel in the same evaluation phase of the simulation as P1 when it produces e (see Sec. 2.1.4.8)

6The SystemC concept of an interface class is the one of C++, i.e., it is a class which contains no data members and only
pure virtual methods like virtual void foo()=0 [Mey14].
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a port

an export

an interface

a module

a channel

a thread

point-to-point
connection

(a) Graphical notation

pA->write(v);

A_thread

modA

sc_port pA

v=pB->read();

B_thread

modB

sc_port pB

sc_fifo<int> c;

write()...
read()...

(b) Communication through ports

c.write(v);

A_thread

modA
sc_fifo<int> c;

write()...
read()...

v=pB->read();

B_thread

modB

sc_port pB
sc_export pA

(c) Communication through exports

Figure 2.14 Communication mechanism in SystemC. (Source [DCBK10])

// FILE: INTC.h------------------
...
SC_MODULE(INTC){
//sc_port <sc_signal_in_if <bool > >
sc_in <bool > irq_in0;
sc_in <bool > irq_in1;

//sc_port <sc_signal_inout_if <bool > >
sc_out <bool > irq_out;
...

};

(a) Definition of ports

// FILE: main.cpp ------------------
#include "INTC.h"
...
int sc_main(int argc , char** argv){

INTC intc("Interrupt Controller");
sc_signal <bool > intr_channel;
intc.irq_out(intr_channel );
...
sc_start ();
return 0;

}

(b) Binding at elaboration phase

Figure 2.15 Example of defining ports within a module class definition.

int sc_main(int argc , char** argv){
/* elaboration */
sc_start (); /* <--simulation starts here*/
/* post -processing */
return 0; }

Figure 2.16 Syntax of the sc_main().

2.1.4.7 Simulation Time

Simulation time is tracked by the kernel by means of the data type sc_time . SystemC defines time
units like SC_NS for nanoseconds, SC_US for microseconds, etc. The current simulated time_value can be
obtained by means of the method sc_time_stamp() (Fig. 2.17).

sc_time current_time = sc_time_stamp ();

Figure 2.17 Getting the current simulation time in SystemC.
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2.1.4.8 SystemC Simulation: The Scheduling Algorithm

In this section we briefly examine operations of the simulation kernel which are schematically presented in
Figure 2.18. The simulation is started with the call to sc_start() which invokes the simulation kernel.
Being activated the kernel starts the initialization phase: it identifies all simulation processes Pis and
places them in either the set of runnable processes R, if they can start immediately, or in the set of
waiting processes W , if they need events to be activated. When initialization is finished, the kernel starts
the simulation scheduling the processes to run and advancing simulation time. The simulation can be
described as a state machine with three states (phases) (see. Fig. 2.18):

1. Evaluation. All runnable processes R = {P1, . . . Pn} are run one at a time. Each process Pi runs
until either it executes a wait() (or wait(TIME) ), or returns. If wait(TIME) is executed, the
time information is stored as an upcoming time event in the scheduling priority queue. The phase
continues until there are no runnable processes left, i.e., R = ∅. During evaluation a waiting process
can become runnable if it is waiting for an event e which is immediately notified with e.notify() in
the same evaluation phase. In this case, the process is immediately added to R during the evaluation
phase.

2. Update. All delayed events es, notified in the preceding evaluation phase with
e.notify(SC_ZERO_TIME), take place. Processes waiting for those events become runnable. If
after update there are runnable processes (i.e., R 6= ∅), the kernel moves back to the evaluation
phase7; otherwise it advances time.

3. Advancement of Time. Once the set of all runnable processes has been emptied, the simulation
time is advanced. Simulated time is moved forward to the closest time with a scheduled event. All
processes waiting for that particular time are moved into the runnable set, allowing the evaluation
phase to resume.

The alternation between evaluation, update and time advancement continues until one of three things
occurs: (i) all processes have yielded and there are no delayed events (i.e., there is nothing in the runnable
set), (ii) a process has executed the function sc_stop(), (iii) maximum simulation time is reached (i.e.,
internal 64-bit time variable runs out of values). At this point simulation stops.

SystemC Simulation Kernelsc_main(...)

Elaborate

sc_start()

Cleanup

Initialize Evaluate

Update

Advance
Time

R 6= ∅

R = ∅

R 6= ∅

R = ∅ R 6= ∅

Figure 2.18 The SystemC scheduling algorithm: R is the set of runnable SystemC processes. (Source [DCBK10])

Revisiting sc_signal<T> The sc_signal<T> uses the update phase as a point of data synchronization.
To accomplish the synchronization, it has two storage locations: the current and the new value. When a
process writes to a sc_signal<T> calling its method write(), the process stores into the new value. By
calling the method request_update() the process notifies the kernel. When the update phase occurs, the
simulation kernel calls the update() method of the channel which copies the new value into the current
value of the channel. The value_changed_event() method returns a reference to an sc_event which is
notified any time the update causes a change in value. If any process is waiting on changes in the channel,
it becomes runnable and executes during next evaluation. The principle is illustrated in Figure 2.19.

7An evaluation followed by an update is referred to as a delta cycle.
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sc_sginal <string > msg_sig;

cout <<"Initialize during 1st delta cycle: ";
msg_sig.write("Hello World!");
cout <<"msg_sig is ’"<<msg_sig <<" ’\n";
wait(SC_ZERO_TIME );

cout <<"2nd delta cycle: ";
msg_sig.write("Bye!");
cout <<"msg_sig is ’"<<msg_sig <<" ’\n";

cout <<"3rd delta cycle: ";
msg_sig.write("Have a nice day!");
cout <<"msg_sig is ’"<<msg_sig <<" ’\n";

/* OUTPUT ------------------------------------------
Initialize during 1st delta cycle: msg_sig is ’’
2nd delta cycle: msg_sig is ’Hello World!’
3rd delta cycle: msg_sig is ’Bye!’
----------------------------------------------------*/

Figure 2.19 Example of the sc_signal<T> update.

2.1.4.9 Process Execution and Time Advancement: an Example

To better understand how time and execution interact, consider a design with three hypothetical processes
as illustrated in Figure 2.20. We assume that t1, t2 and t3 are non-zero. Each process contains statements
(stmtA1, stmtA2, . . . ), and wait methods (wait(t1), wait(t2)). From the modeling perspective statements
of processes take some time and are evenly distributed along simulation time (Fig. 2.21(a)); however actual
simulated activity is such that statements execute in zero time (Fig. 2.21(b)). At intervals [ti, ti+1] no
simulated time elapses; all statements executed at [ti, ti+1] (e.g., B4, B5, C4, C5 at [t3, t4]) are executed
during the same evaluate phase in random order8.

2.1.5 Transaction Level Modeling
TLM was introduced in 2003 [CG03]. It defines the principles of high-level modeling of component-
based systems. TLM is a concept independent of any language. TLM virtual prototypes have become
a de-facto standard in today’s SoC design. For instance, at STMicroelectronics they are used for (i)
early development of the embedded software, (ii) architectural analysis, (iii) functional verification of the
hardware, where they serve as the reference model (see Sec. 2.1.3.4). The TLM-2.0 library implemented
in SystemC was integrated in the IEEE 1666-2011 SystemC standard [Sys].

Figure 2.22 illustrates a standard block diagram of a TL model. Models typically consist of a set
of asynchronous components communicating by means of transactions. Transactions are passed between
initiator components (e.g., LCDC) and target components (e.g., RAM) through interconnects (e.g., a
bus). Initiators create transaction objects; targets execute received transactions; interconnects are neither
initiators nor targets of transactions, they simply pass on transactions between TLM components.

2.1.5.1 Abstraction Levels of TL Models

The abstraction level of a TL model is defined based on the granularity of time, the function and com-
munication abstraction. TL models can be defined at any of the following abstraction levels.

1. For untimed TL models the notion of simulation time is unnecessary. Processes of TLM components
yield at explicit pre-determined synchronization points. For instance, if the model is implemented
in SystemC, the synchronization point could be the call to wait().

2. When the model is loosely-timed, each transaction has two timing points marking the start and the
end of the transaction. Simulation time is used but processes may be temporally decoupled from
simulation time. Each process knows its time quantum, i.e., how far it can run ahead of simulation
time. A process may yield either because it reaches an explicit synchronization point (e.g., the
SystemC’s wait()) or because it has consumed its time quantum.

8It is possible to impose the order of processes execution by means of delta-cycle.
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Process_A(){
xx /* t0 */
xx stmtA1;
xx stmtA2;
xx wait(t1);
xx stmtA3;
xx stmtA4;
xx wait(t2);
xx stmtA5;
xx wait(t3); }

Process_B(){
xx /* t0 */
xx stmtB1;
xx wait(t1);
xx stmtB2;
xx stmtB3;
xx wait(t3);
xx stmtB4;
xx stmtB5;
xx wait(t4); }

Process_C(){
xx /* t0 */
xx stmtC1;
xx stmtC2;
xx stmtC3;
xx wait(t3);
xx stmtC4;
xx stmtC5;
xx wait(t4);
}

Figure 2.20 Three SystemC processes. (Source [DCBK10])

t0 t1 t2 t3 t4

A1; A2 A3; A4 A5;

B1; B2; B3; B4; B5;

C1; C2; C3; C4; C5;Process_C

Process_B

Process_A

(a)

t0 t1 t2 t3 t4

A1; A2 A3; A4 A5;

B1; B2; B3; B4; B5;

C1; C2; C3; C4; C5;Process_C

Process_B

Process_A

(b)

Figure 2.21 Simulated activities of three SystemC processes: a) perceived, b) actual. Solid line portions indicate
program activity. Vertical discontinuities indicate a wait. (Source [DCBK10])

CPU RAM LCDC

INTC GPIO TMR

Bus

a TLM component

a TLM initiator socket

a TLM target socket

a SystemC signal channel
modeling interrupts

Figure 2.22 Example of a TLM virtual prototype.

3. When the model is approximately-timed each transaction can be associated with multiple protocol-
specific timing points. Processes are typically forbidden to run ahead of simulation time.

2.1.5.2 Communication Principles

To enable communication TLM components are equipped with TLM initiator/target sockets (see. Fig. 2.23)
which implement TLM transport interfaces (see below). A pair of connected initiator and target sockets
form a hop of the communication path. The initiator component passes on a transaction object via its
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forward path backward path

Initiator
(e.g., LCDC)

◦

Transaction
Object

Interconnect
(e.g., BUS)

Target
(e.g., RAM)

a TLM component a TLM initiator socket a TLM target socket

Figure 2.23 Communication via TLM sockets.

initiator socket by calling a respective method of the transport interface of the connected target socket.
The target socket can belong either to the interconnect or to the target component. The interconnect
component implements the transport interface; it may read attributes of the transaction object before
passing it on to a further transport call. This transport call is implemented either by another interconnect
component or by a target. This sequence of method calls is known as the forward path. The target acts as
the final destination for a transaction; when the latter is executed it can be returned to the initiator either
with the return from the transport method call (the return path), or by an explicit transport method call
performed by the target back to initiator (the backward path).

Transport interfaces The transport interfaces define communication abstractions of TL models:

1. The blocking transport interface is used to model the start and end of a transaction, with the
transaction being completed within a single function call. It is typically used for loosely-timed
models (see Sec. 2.1.5.1).

2. The non-blocking transport interfaces allow a transaction to be broken down into multiple timing
points, as a rule it requires multiple function calls for a single transaction. These interfaces are used
to implement communication protocols of approximately-timed TL models.

2.1.5.3 TL Models Implemented in SystemC

A TLM component is implemented as a SystemC sc_module (Fig. 2.24). SystemC simulation processes
(threads and methods) are used to model the behavior of the TLM component. When the component is
an initiator (resp. a target) the sc_module possesses an initiator (resp. target) socket (Fig. 2.24).

// using namespace sc_core , tlm

SC_MODULE(TLM_Component ){
/*TLM sockets */
tlm_target_socket <...> target_socket;
tlm_initiator_socket <...> initiator_socket;

SC_CTOR(TLM_Component ){
/* register threads and methods in

SystemC simulation kernel */
}
/*threads , methods */
/* functions */
...

};

Figure 2.24 Declaration of a TLM component in SystemC.

The forward and backward communication paths of TL models are enabled by means of SystemC
ports . A TLM initiator (target) socket is presented by the class tlm_initiator_socket<...> (resp.
tlm_target_socket<...>). The tlm_initiator_socket<...> inherits from the SystemC sc_port and
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A

a

B

b

a SystemC port

a SystemC export

point-to-point
connection

forward path backward path

Figure 2.25 Implementation of TLM sockets in SystemC: A (resp. B) is the TLM initiator (resp. target socket).

contains a member which is the SystemC export sc_export. It is reverse for tlm_target_socket<...>.
When the initiator socket A is connected to the target socket B (see Fig. 2.25), A as a SystemC port is
bound to B which is a SystemC export; a SystemC port b of B is connected to a SystemC export a of
A. The connected pairs of ports/exports should be compatible, i.e., exports and ports should refer to the
same transport interfaces of TLM. Those interfaces can be implemented either by parent components of
the sockets, or by the sockets themselves. The call from A to B (resp. from b to a) corresponds to the
forward (resp. backward) communication path.

Transactions are represented by the class tlm_generic_payload. It allows to set parameters of a
transaction such as address, data, response status, etc.

All TLM components constituting our running example (see Chapter 3) are implemented in SystemC
as it is described in this section.

2.2 Formal Models for Discrete Concurrent Systems

2.2.1 Synchronous Models
The synchronous models have been proposed to describe reactive systems. Reactive systems are computer
systems that continuously react to their environment at a speed determined by this environment (e.g.,
control, supervision systems) [HP85; Ber02]. Each internal or output event of the program is precisely
dated with respect to the flow of input events. The synchronous models for reactive systems are based on
the assumption that the program reacts rapidly enough to perceive all the external events. This assumption
is referred to as the perfect synchrony hypothesis. It allows to decouple logical time on which we reason
and physical time. The synchronous models are also used for modeling, simulation and validation of safety
critical systems.

2.2.1.1 Synchronous Mealy Machines

Synchronous Mealy machines is a formalism that can be used to model reactive systems. One transition
of an automaton corresponds to one reaction. Mealy machines has been originally proposed in [Mea55]
for the synthesis of synchronous circuits. Here we define ordinary Mealy machines and their synchronous
product as in [MR01] since they are extensively used in the presented work.
Definition 1: Mealy Machine — A tuple M = (S, s0, I,O,T) is a Mealy machine where

S is the set of states,
so ∈ S is the initial state,
I is the set of input Boolean variables,
O is the set of output Boolean variables,
T ⊆ (S×B(I)× 2O × S) is the set of transitions.

B(I) denotes the set of Boolean formulas with variables in I. For t = (s, `,O, s′) ∈ T, s, s′ ∈ S are the
source and target states, ` ∈ B(I) is the triggering condition of the transition, and O ⊆ O is the set of
outputs emitted whenever the transition is triggered.

In the sequel we use the following notation to denote the triggering conditions ` ∈ B(I): we use dot
“.” to denote the conjuction, e.g., i.j is equivalent to i ∧ j; (ii) we use comma “ ,” to denote disjunction,
e.g., i,j is equivalent to i ∨ j; (iii) i stands for ¬i.
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s0 s1

i/ j/

j.i/k

i.j/o

Figure 2.26 A deterministic reactive Mealy machine. s0 is the initial state (denoted with an arrow). The inputs
(resp. outputs) are I = {i, j} (resp. O = {o, k}). Arrows represent transitions; the labels are of the form input
condition/emitted outputs. Transitions which are not defined are forbidden.

Definition 2: Determinism and Reactivity — Let M = (S, s0, I,O,T) be a Mealy machine. M is
reactive if and only if

∀s ∈ S,

( ∨
(s,`,O,s′)∈T

`

)
= true.

M is deterministic if and only if

∀s ∈ S, ∀ti = (s, `i,Oi, si) ∈ T, i ∈ [1, 2] : t1 6= t2 ⇒ `1 ∧ `2 = false.

The semantics of a Mealy machine M = (S, s0, I,O,T) is given in terms of input/output/state
traces [MR01; Alt+03].
Definition 3: Trace— Let M = (S, s0, I,O,T) be a Mealy machine and let v0, . . . , vn, . . . be a (possibly)
infinite sequence of valuations of the input variables such that ∀i, vi : I → {true, false}. A trace is a
sequence of tuples t = {(vi,Oi, si)}i where Oi ⊆ O are subsets of output variables and si ∈ S are states,
such that (i) s0 is the initial state, (ii) each tuple (vn,On, sn) is followed by a tuple (vn+1,On+1, sn+1) if
and only if there exists a transition (sn, `,On, sn+1) ∈ T such that ` has value true on vn.

2.2.1.2 Composition Operators

The synchronous product of Mealy machines is a construct for modeling parallelism of systems [Mar92].
The parallel composition represents the set of all possible states and transitions of the system.
Definition 4: Synchronous Product of Mealy machines — Let M1 = (S1, s10, I1,O1,T1) and
M2 = (S2, s20, I2,O2,T2) be two Mealy machines. The synchronous product of M1 and M2 is the Mealy
machine

M1 ×M2 = (S1 × S2, (s10, s20), I1 ∪ I2,O1 ∪O2,T),

where T is defined as
(s1, `1,O1, s

′
1) ∈ T1, (s2, `2,O2, s

′
2) ∈ T2

((s1, s2), `1 ∧ `2,O1 ∪ O2, (s′1, s
′
2)) ∈ T

.

The synchronous product of Mealy machines is both commutative and associative, it preserves both
determinism and reactivity [MR01]. It does not make any synchronization between components. Fig-
ure 2.27 illustrates an example of the synchronous product of two Mealy machines. A transition in the
composed state machine corresponds to exactly one transition in each of its parallel components. Some
of them loops, and emit no signal (no reaction), but they do take a transition and only one.

Encapsulation When two Mealy machines have to synchronize (communicate), the parallel composition
should be used together with the encapsulation of some dedicated signals. Encapsulation is used to enforce
synchronization between parallel components by removing some of the transitions in their synchronous
product. Thus, if a signal k is the output of a Mealy machine P and the input of a Mealy machine Q
(see Fig. 2.27), it may serve as a synchronization signal. The intuitive semantics of the synchronization
is such that Q should react on its input k if and only if it is emitted by P. The following transitions are
therefore inconsistent and should be removed from the synchronous product of P and Q:

1. Q reacts as if k was absent, and P emits k to true;

2. Q reacts as if k was present, and P does not emit it.
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Figure 2.27 Parallel composition of two Mealy machines.
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(a) Application of the encapsulation criterion for the signal k to
the parallel composition (P× Q) in Figure 2.27
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(b) Hiding of the local signal k

Figure 2.28 Constructing (P×Q)\[k].

After the removal of inconsistent transitions (Fig. 2.28(a)), the synchronization signal is hidden in the
labels of the remaining transitions (Fig. 2.28(b)). We denote the encapsulation of the signals k1, . . . , kn
in the product of the Mealy machines M1 and M2 as

(M1 ×M2)\[k1, . . . , kn].

The formal definition of the encapsulation operator can be found in [MR01].
In general, the encapsulation operation does not preserve determinism nor reactivity. This is related

to the so-called “causality” problem intrinsic to synchronous languages (see, for instance [MR01; Hal93]).
However, these problems can appear only if two Mealy machines (parallel components) communicate in
both directions, in the same instant. We will use encapsulation only in simple cases for which this is not
necessary.

2.2.1.3 Extended Mealy Machines

A Mealy machine M = (S, s0, I,O,T) can be extended with a set of variables V of some predefined type
(e.g., integers, Booleans). The transitions of the extended Mealy machine M′ = (S, s0, I,O,V,T) are of
the form (s, φ, `,O, α, s′) ∈ T, where φ ∈ B(V) defines a condition on the values of variables in V (B(V)
stands for the set of Boolean formulas over V), and α : Dom(V) → Dom(V) changes the values of the
variables (Dom(V) defines the domain of the variables in V). A transition t = (s, φ, `,O, α, s′) ∈ T is
triggered if and only if both φ and ` are true. In the present work we deal with Mealy machines with
counters (e.g., see Fig. 2.29). All operators extend naturally to extended Mealy machines [MR01].
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s0 [cpt<4]i/[cpt+=1][cpt=4]i/o[cpt:=0]

Initialization: cpt=0

Figure 2.29 A Mealy machine with a counter cpt. i (resp. o) are inputs (resp. is output); cpt is the counter,
initially cpt = 0. The state machine emits o each 5th occurrence of i. The transition labels are of the form [φ]`/O
[α], when φ = true (resp. α does not change value of cpt) [φ] (resp. [α]) part is omitted.

2.2.1.4 Synchronous Languages: Lustre

Synchronous models, particularly synchronous Mealy machines, are similar to the synchronous languages
like Esterel [BG92], SyncCharts [And96a; And96b], Argos [MR01], Signal [BG90; LeG+91], Lus-
tre [Hal+91]. The synchronous languages provide constructs to express the synchronous parallelism, con-
sequent compilation into software [Ray91; HRR91; Bou+92; Bie+08], easy synthesis of hardware [RH92;
RGH94; Ber92], they can also be used for verification purposes [Ver86; RDS92; HLR93; Ray10].

In this work we focus on the synchronous language Lustre. In the following chapters (e.g., see
Chapters 5) we use Lustre to validate our results. Here we provide a short survey of the language and
focus only on those constructs which are necessary for understanding the material presented in this work.
A comprehensive description and specification of the language can be found in [Lus] or [EJ].

The language Lustre is based on the synchronous dataflow paradigm: systems are made of “nodes”
and oriented wires, considered to behave in parallel. A Lustre node is a user-defined operator. A node
declaration consists of: (i) an interface specification defining the input and output parameters with their
types; (ii) declaration of local variables; (iii) a system of equations and assertions that defines the outputs,
and possibly local variables, as functions of inputs (Fig. 2.30). The order of equations is irrelevant. Any
variable x (input, output or locals) refers to a flow, which is a sequence of values (x1, x2, . . . , xn, . . . ) of
some elementary data types - integers, Boolean and reals. There is a notion of global discrete clock on
which all the nodes evolve: they take one input on their input wires, and produce one output on their
output wires.

1 node mealy_machine(i, j: bool) -- the interface speficication: inputs
2 returns (o, k: bool); -- and outputs
3 var s0, s1: bool; -- local variables
4 let
5 assert(not (i and j)); -- assertion:
6 -- i and j never occur simultaneously
7 -- Boolean equations defining states
8 s0 = true -> pre(s0 and not i) or pre(s1 and j);
9 s1 = false -> pre(s1 and not j) or pre(s0 and i) ;

10
11 -- Boolean equations defining outputs
12 o = s0 and i;
13 k = s1 and j;
14 tel

Figure 2.30 Lustre encoding of the Mealy machine in Figure 2.26.

Expressions E on right hand sides of Lustre equations are built of constants, variables, and operators.
Constants are constant-valued flows (e.g., (1, 1, . . . , 1, . . . )). Lustre supports the following standard data
operators: arithmetic (e.g., “+”), Boolean (e.g., and, or, not), conditional operators (e.g., if-then-else).
The following sequence operators are available:

• the “previous” operator pre denotes the value of its argument at the preceding instant. For
instance, if (e1, e2, . . . , en, . . . ) is the sequence of values of the expression E, pre(E) is a flow
(nil, e1, e2, . . . , en−1, . . . ), where nil is an undefined value.

• the “->” operator (read “followed by”) defines the initial value: if E and F are two expressions, with
respective sequences of values (e1, e2, . . . , en, . . . ) and (f1, f2, . . . , fn, . . . ), “E -> F” is a flow whose
sequence is (e1, f2, . . . , fn, . . . ). In other words, “E -> F” is initially equal to E, and then forever
equal to F.

All flows evolve on the same global discrete clock.
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1 -- definition of the basic Mealy machine
2 node mealy_machine(i: bool) returns (o: bool);
3 var s0, s1: bool;
4 let
5 s0 = true -> pre(s1 and i) or pre(s0 and not i);
6 s1 = false -> pre(s0 and i) or pre(s1 and not i);
7 o = s0 and i;
8 tel
9 -- encoding of the synchronous product

10 node product(i: bool) returns (o: bool);
11 var k: bool; -- the encapsulated ’wire ’
12 let
13 (k) = mealy_machine(i);
14 (o) = mealy_machine(k);
15 tel

Figure 2.31 Lustre encoding of the synchronous product in Figure 2.27.

product

Pi k Qk o

Figure 2.32 The diagrammatic view of the synchronous product of two communicating Mealy machines.

Assertions generalize equations. They are Boolean Lustre expressions that are assumed to be always
equal to true at any instant. For instance, assert (not (i and j )) defines the requirement that i
and j do not occur simultaneously. Assertions play an essential role in program verification [RDS92;
HLR93; Ray10].

The system of Lustre equations should be acyclic, i.e., it is forbidden to define systems of equations
like x = y + 1; y = x + 1. These cycles are detected by a single analysis of static dependencies.

2.2.2 Asynchronous Models
Asynchronous models have been introduced in [Mil83; Mil80]. Examples of asynchronous systems are
asynchronous circuits, processes on a monoprocessor system with shared memory, multiprocessor systems
with shared memory, large-scale multi-computer systems, etc.

2.2.2.1 Asynchronous Parallelism

Asynchronous models model asynchronous parallelism: the parallel components of the system do not
share a common clock, they can evolve independently [Gam86]. Very common modeling of asynchronous
systems relies on interleaving semantics. It defines that an execution step of a system corresponds to
a step of one of its components. If the components of the system are defined as state machines, the
interleaving semantics is defined by the asynchronous product of the system’s components.
Definition 5: Labeled Transition System — A tuple A = (S, s0,L,T) is a labeled transition system
where 

S is the set of states,
s0 ∈ S is the initial state,
L is the set of labels,
T ⊆ S× L× S is the set of transitions.

Definition 6: Asynchronous Product of Labeled Transition Systems— Let A1 = (S1, s01,L1,T1)
and A2 = (S2, s02,L2,T2) be two labeled transition systems. The asynchronous product of A1 and A2 is
the transition system

A1 ‖ A2 = (S1 × S2, (s01, s02),L1 ∪ L2,T),
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Figure 2.33 Asynchronous product of two transition systems.
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Figure 2.34 Impact of the granularity of atomic executions on the states.

where T is defined by
(s1, `1, s

′
1) ∈ T1, (s2, `2, s

′
2) ∈ T2,

((s1, s2), `1, (s′1, s2)) ∈ T, ((s1, s2), `2, (s1, s′2)) ∈ T
.

A scheduler executing two asynchronous systems can stop them at any time between two atomic actions
corresponding to one transition of the product. The pure asynchronous product produces the whole set of
global states that are potentially reachable when two systems are executed by such a scheduler. Choosing
the granularity of atomic transitions is an intrinsic modeling problem. The granularity should be faithful
to reachable reality. Figure 2.34 illustrates the impact of atomicity of the behavior exposed by the
asynchronous model.

2.2.2.2 Asynchronous Communication

Asynchronous modeling assumes that none of the components (processes, threads, state machines, etc.)
of a system are active at the same time. Still they can exchange information using shared memory, or by
means of messages. When shared memory is used the states of the global process can include the state
of the memory locations that are relevant for the processes. The memory locations should be statically
known. Communication by means of message passing can rely on usage of communication channels (e.g.,
FIFOs). When communication channels are used, the sending should be non-blocking: the component-
sender can proceed without waiting for the component-receiver to accept the message. The global state
of the model comprises states of all communication channels. Figure 2.35 shows an example of two
asynchronous processes communicating through a FIFO channel. Notice, due to communication of the
parallel components, some of the paths of the product are not possible.

2.3 Formal Specifications

2.3.1 Intuition
According to [MP91] a specification is a description of the desired behavior (property) or operation of
the system, while avoiding references to the method or details of its implementation. For instance, in
Figure 2.36 the SystemC implementation of the TLM virtual prototype has a natural language specification
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Figure 2.35 Asynchronous communication through a FIFO: dashed lines show the unfeasible path of the product.

defining the management of interrupts. A specification is typically more descriptive and less operational
than the system’s implementation. Using specification one can make sure that (i) the design (or code
segment) functions are according to the specification, (ii) the specification is complete, (iii) the entire
specification has been fully implemented. Formal specifications can be defined as follows. Let S be the
implementation of the design, and let C(S) be a set of all computations (sequences) generated by S. Let φ
be a specification property of the design S, and let Sat(φ) be the set of sequences that satisfy φ. Then, we
say that S implements φ (or equivalently, S satisfies φ) if all its computations satisfy φ, i.e., C(S) ⊆ Sat(φ).

SystemC Implementation

CPU RAM LCDC

INTC GPIO TMR

Bus

.cpp
.h

.cpp
.h

.cpp
.h

.cpp
.h

.cpp
.h

.cpp
.h

.cpp
.h

Specification

Each interrupt re-
quest from the
GPIO and the
TMR is passed on
to the CPU through
the INTC, unless it
is masked

Figure 2.36 Example of a natural language specification of a TLM virtual prototype.

Properties can be defined either in plain English (like in Fig. 2.36), or by means of dedicated specifica-
tion languages (e.g., PSL, SVA, see Sec. 2.3.2 below). A possible advantage of the latter is that they can
provide a means to write specifications which can be easy to read and mathematically precise. Formal
specification (i) are unambiguous, (ii) enable the use of formal methods for checking functional correctness
of the design, (iii) can be used as a part of assertion-based verification frameworks as defined in Sec. 2.1.3.
When used as a part of testbenches for hardware design, properties referred to as assertions are meant to
be checked by the assertion checker (see Sec. 2.1.3).

2.3.2 Defining Properties (The Discrete-Time Case)
Since we deal with digital circuits, we will focus on discrete-time specification languages. There exist
works on continuous-time specification logic for analog circuits [MN04; FP09; DFM13].

In this section we provide an overview of the basic operators used to define assertions of the hardware
design. Some of those operators are implemented by industrial specification languages like Property
Specification Language (PSL) [18505; EF06] and SystemVerilog Assertion (SVA) [ST12; SSF06]. Let V be
a set of variables taking values in some domains (i.e., integers, Booleans, etc). Assertions are interpreted
on infinite sequences (computations) of the design denoted here as σ = σ0 . . . σk . . . , where σk represents
the kth valuation of variables of V . We denote any finite subsequence of σ as σk...`, and the suffix (resp.
prefix) of σ starting from (resp. ending by) the `th letter as σ`... (resp. σ...`).
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2.3.2.1 State Formulas

Properties are defined by means of logical and temporal operators, which are constructed from state
formulas [MP91]. State formulas are defined over V using standard functions and predicates for integers
(e.g., “+”, “−”), Booleans (e.g., “∧”, “∨”), etc. They can be combined using Boolean operators. For
instance, given two integer variables x, y ∈ V one may define a state formula (x ≤ 5) ∧ (y 6= x). A state
formula can be evaluated at a certain position k ≥ 0 in a sequence, and it expresses properties of the state
σk occurring at this position. We use notation: a state formula φ holds at position k of σ if and only if
σk |= φ. For instance, in Figure 2.37 the state formula (x ≤ 5) ∧ (y 6= x) holds at positions 3, 5 and 7.

k 0 1 2 3 4 5 6 7 8 9 . . .

x 9 5 9 4 8 3 7 2 6 1 . . .

y 9 5 1 5 5 1 10 5 1 1 . . .

(x ≤ 5) f t f t f t f t f t . . .

(y 6= x) f f t t t t t t t f . . .

(x ≤ 5) ∧ (y 6= x) f f f t f t f t f f . . .

Figure 2.37 Evaluation of state formulas.

A temporal formula is constructed from state formulas to which we apply temporal operators, Boolean
connectives and operators of extended regular expressions. Their semantics is introduced below in respec-
tive sections.

2.3.2.2 Temporal Operators

The temporal operators presented here are operators of Linear Temporal Logic (LTL) as defined in [Pnu77;
Kam68b]. In the sequel we denote the fact that a temporal formula φ holds at the kth position of a sequence
σ by σk |= φ.

The Henceforth Operator If φ is a temporal formula, then �φ (or Gφ), read as henceforth φ or always
φ, is a temporal formula. Its semantics is

σk |= �φ ⇐⇒ ∀j ≥ k : σj |= φ.

The formula �φ holds at position k if and only if φ holds at position k and all following positions (e.g.,
see Fig. 2.38).

k 0 1 2 3 4 5 6 . . .

x 3 4 5 6 7 8 9 . . .

(x > 5) f f f t t t t . . .

�(x > 5) f f f t t t t . . .

Figure 2.38 Evaluation of the henceforth operator �. Values of x are increasing.

The Eventually Operator If φ is a temporal formula, then ♦φ (or Fφ), read as eventually φ, is a
temporal formula. It holds at position k if and only if φ holds at some position j ≥ k (e.g., see Fig. 2.39):

σk |= ♦φ ⇐⇒ ∃j ≥ k : σj |= φ.

k 0 1 2 3 4 5 6 . . .

x 3 4 5 6 7 8 9 . . .

(x = 5) f f t f f f f . . .

♦(x = 5) t t t f f f f . . .

Figure 2.39 Evaluation of the eventually operator ♦. Values of x are increasing.
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The Until Operator The until formula φ U ψ (read φ until ψ) predicts the eventual occurrence of ψ
(similarly to ♦ψ) and states that φ holds continuously at least until the (first) occurrence of ψ (in the
spirit of �φ)9. The semantics is the following:

σk |= φ U ψ ⇐⇒ ∃j ≥ k : σj |= ψ ∧ ∀k ≤ i < j : σi |= φ.

Figure 2.40 illustrates the evaluation of the until formula. Notice, if position k satisfies formula ψ, it also
satisfies φ U ψ for any φ (even false). Notice also that all positions satisfying φ U ψ satisfy ♦ψ.

The until operator has a weak version φ W ψ referred to as week until. It states that either φ always
holds starting from the current position, or it holds at least until the (first) occurrence of ψ. It is defined
as

φ W ψ
def
= �φ ∨ φ U ψ.

k 0 1 2 3 4 5 6 . . .

x 4 5 5 5 6 6 7 . . .

(x = 5) f t t t f f f . . .

(x = 6) f f f f t t f . . .

(x = 5) U (x = 6) f t t t t t f . . .

Figure 2.40 Evaluation of the until operator U .

The Next Operator If φ is a temporal formula, then #φ (read as next) φ is a temporal formula. Its
semantics is such that

σk |= #φ ⇐⇒ σk+1 |= φ.

Thus, #φ holds at position k if and only if φ holds at the next position k + 1 (e.g., see Fig. 2.41).

k 0 1 2 3 4 5 6 . . .

x 5 4 3 5 4 3 5 . . .

(x = 5) t f f t f f t . . .

#(x = 5) f f t f f t f . . .

Figure 2.41 Evaluation of the next operator #. Values of x are periodic.

2.3.2.3 Boolean Operators (for Temporal Formulas)

Let φ and ψ be temporal formulas. They can be combined using Boolean operators of conjunction ∧,
disjunction ∨, implication →, negation ¬, etc.

Example 2.3.1. – Let V = {a, b} be a vocabulary of temporal formulas φ, ψ and π. Let φ (resp. ψ)
be such that φ = �(¬(a ∧ b)) ∧ �(a → #(¬a U b)) (resp. ψ = �(¬(a ∧ b)) ∧ �(b → #(¬b U a))); it
states that (i) a and b never occur simultaneously, (ii) a (resp. b) never occurs two times without b (resp.
a) in between. Let π be such that π = �(¬(a ∧ b)) ∧ (¬b U a); it states that (i) a and b never occur
simultaneously, (ii) a occurs before b. The conjunction φ ∧ ψ ∧ π defines alternation of a and b starting
from a. �

2.3.2.4 Sequential Extended Regular Expression (SERE) Operators

Depending on the source the “SERE” acronym can be translated to different words. Thus, it stands for
“Sugar Extended Regular Expression” in [Bee+01], “Sequential Extended Regular Expression” in [EF06;
18505], and “Semi-Extended Regular Expression” in [EF09]. In all these cases, the intent is to extend the
usual operators of regular expressions (union “|”, concatenation “;” and Kleene star “ [∗]”) with additional
operators such as intersection, etc. Here we provide semantics of SERE operators as it is defined in [18505].
The semantics is defined over finite sequences. The idea is to define a state formula φ which is true at
one point, and then to combined state formulas using SERE operators:

9The until operator U can be used to derive the ♦ and � operators; the reverse is not true [Kam68a]. Thus,
♦φ = true U φ and �φ = ¬♦¬φ.
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σ � {φ} ⇐⇒ σ � φ

σ � φ | ψ ⇐⇒ σ � φ ∨ σ � ψ (union)
σ � φ ;ψ ⇐⇒ ∃σ1, σ2 : σ = σ1.σ2 such that σ1 � φ ∧ σ2 � ψ (concatenation)
σ � φ[∗] ⇐⇒ σ = ε ∨ ∃σ1, σ2 : σ = σ1.σ2 such that σ1 6= ε ∧ σ1 � φ ∧ σ2 � φ[∗] (Kleene star)
σ � φ && ψ ⇐⇒ σ � φ ∧ σ � ψ (intersection)

Using these operators, one may define the following syntactic sugar:

φ[∗i] def
= φ; φ; . . . ; φ︸ ︷︷ ︸

i times

(bounded ;-iteration)

φ[∗i..j] def
= φ[∗i] | . . . | φ[∗j]

Example 2.3.2. – Consider a SERE {true[∗]; a; true[∗]; b; true[∗]}[∗]. It defines a finite sequence
such that (i) a and b alternate starting from a, (ii) between a and b anything else can occur. �

2.3.2.5 SERE-LTL Binding Operators

Let r be a SERE formula, and let φ be a temporal formula. They can be combined with the following
suffix implication operator:

σ |= r 7→ φ ⇐⇒ (∀k ≥ 0 : σ0...k � r → σk... |= φ) (suffix implication)

The formula r 7→ φ states that φ should hold whenever r holds10. Based on suffix implication one may
define the following syntactic sugar:

r Z⇒ φ
def
= {r; true} 7→ φ (weak suffix implication)

The formula r Z⇒ φ states that φ should hold whenever r holds starting from the next instant.

Example 2.3.3. – Consider a formula {a; true[∗]; b} 7→ �(c). Here, “ ;” is a regular expression
concatenation. It states that if a occurs and then later b occurs, then c will always occur starting from
the instant when b occurs. A formula {a; b} Z⇒ {c; d} states that if a and b occur one after the other, c
will occur at the next instant after b, and then d. �

2.3.3 Specification Languages for Hardware Designs
To define properties for hardware design (assertions), one may use either chip design languages (e.g.,
Verilog, SystemVerilog, VHDL, SystemC/C++), or dedicated assertion languages. The latter provide
support for (a certain subset of) the operators listed in Sec. 2.3.2. Assertion languages include: (i)
SystemVerilog Assertions (SVA) [ST12; SSF06], (ii) Property Specification Language (PSL) [18505; EF06],
(iii) C-Asserts as a part of ANSI-C standard associated with SystemC/C++ design verification, (iv)
proprietary assertions formats (e.g., Intel ForSpec, IBM Sugar languages).

SVA and PSL are IEEE standards. Both languages implement LTL, Boolean, SERE and SERE-LTL
operators. The sequences on which the operators are evaluated are interpreted differently depending on
the abstraction level of the hardware design. Thus, if the design is defined at synchronous RT level, each
letter of a sequence σ corresponds to a clock tick and operators are evaluated on each clock tick. If the
design is defined at asynchronous TLM level, operators are evaluated on sequences of events. SVA is used
by about 70% of the industry to define assertions at RT level [Hog16]. PSL supports both clocked and
unclocked versions of LTL and SERE operators, and it is suitable to define properties at the transaction
level.

10We provide semantics of the formula r 7→ φ as it is defined in PSL (see [18505]). In [DL16] its existential variation is
proposed; it defines that r should hold at least once, and φ should hold afterwards.
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PSL Operators Corresponding
Operators of Sec. 2.3.2

always f �φ

eventually! f ♦φ

f until! g φ U ψ
f until g φ W ψ

next! f #φ

next f ¬#¬φ

Table 2.1 PSL syntax for temporal operators. f , g are PSL formulas.

Property Specification Language (PSL) In the whole document, PSL stands for PSL 1.1. PSL
consists of four layers:

1. The Boolean Layer consists of Boolean expressions built with Boolean operators (conjunction “∧”,
disjunction “∨”, etc.).

2. The Temporal Layer is comprised of temporal expressions which describe the relationships between
Boolean expressions over time. Temporal expressions are built by means of SERE, LTL and SERE-
LTL operators.

3. The Verification Layer consists of directives which describe how the temporal expressions should be
handled by the verification tool. For example, assert φ is a verification directive that tells the tools
to verify that the property φ holds. Other verification directives include an instruction to assume,
rather than verify, that a particular temporal property holds, or to specify coverage criteria for a
simulation tool.

4. The Modeling Layer allows to model behavior of design inputs to name properties from the temporal
layer.

PSL formulas can be constructed by means of LTL operators, Boolean, SERE and SERE-LTL oper-
ators. LTL based operators form so called PSL Foundation Language, and the respective formulas are
usually referred to as FL formulas. Table 2.1 lists temporal operators supported by PSL as they are
defined in [18505], and their expansion into corresponding LTL operators.

PSL can be evaluated on finite sequences even for the operators that look like liveness properties; it
requires change of the semantics of the operators [DGV13]. For the LTL operators next # and until U ,
PSL defines their weak versions. Thus, the PSL formula next! φ (resp. φ until! ψ) has the semantics of
#φ (resp. φ U ψ), and the PSL formula next φ (resp. φ until ψ) means that φ holds at the next instant
only if that instant exists (resp. φ holds up until an instant where ψ holds if such exists). Intuitively, a
property built on weak operators that is still pending at the end of a finite trace is considered satisfied.

2.4 Recognition of Regular Languages, Continuous Recognizers
A language L is regular, if it is defined by a regular expression. A recognizer of a regular language L
is a deterministic finite automaton which accepts sequences of L [Hop+00]. For instance, Figure 2.42
shows the recognizer of a sequence 123. Here, in s3, the recognizer accepts the sequence (the state s3 is
accepting). When the recognizer of L is started, it works till either it detects a sequence of L or fails; the
recognizer cannot be re-started.

A continuous recognizer of a regular language L is a deterministic finite automaton, which works on
infinite sequences. The continuous recognizer is always active. For each element of an infinite sequence,
it can decide if L occurred at the end of the prefix of the sequence observed thus far, whatever happened
before. After each occurrence of L the automaton continues. A door opening is an example of the work of
the continuous recognizer. The door opens, whenever the combination of digits (e.g., 123) is entered, and
it does not matter which digits were before. Figure 2.43 shows the continuous recognizer of the sequence
123. Here, s3 is an accepting state.

The continuous recognizer of L should not miss any occurrence of L. If L occurs, at the next step
the recognizer tries to detect another occurrence of L. If occurrences of L overlap, when one occurrence
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s0 s1 s2 s3
1 2 3

Figure 2.42 A recognizer of a sequence 123. A state denoted with an arrow (resp. double circles) is an initial
state (resp. are accepting states). Transitions which are not defined are forbidden.
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Figure 2.43 A continuous recognizer of a sequence 123.
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Figure 2.44 Overlapping occurrences of a regular language ba∗ + acd in a sequence baacd.

s0

s2

s1

s6

s5 s7 s4

s3

b

a b

c
b

a

c

d d

b

c
c

d

da cc

a

b
ca

d

a a

b b

c

d

d

b

a

d

Figure 2.45 A continuous recognizer of a regular language ba∗ + acd.
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of L is detected, the continuous recognizer returns to a state, which corresponds to another occurring L.
For instance, consider a language L defined by the regular expression ba∗ + acd (here, “a∗” is a Kleene
star, and “+” is the union operator). Consider a sequence baacd (Fig. 2.44). The sequence has four
overlapping occurrences of L: 1 , 2 and 3 correspond to ba∗, 4 is the sequence acd. Figure 2.45 shows
the continuous recognizer of ba∗+acd. When 1 occurs, the recognizer is in the accepting state s2. When
either 2 or 3 occurs, the recognizer is in the accepting state s6. After the occurrence of 3 , when c
takes place, the recognizer enters s5. Then, when d happens, the recognizer moves to the accepting state
s7, and thus the occurrence of 4 is detected.

Notice, when the continuous recognizer is in an accepting state, it means that a sequence of its
language has been detected whatever happened before. Thus, the continuous recognizer in Figure 2.45 is
in the accepting state s2 whenever a sequence of the form dbb∗ occurs. This happens because one b is
detected (i.e., a sequence of the language define by ba∗ + acd), not because db.

In Chapter 4, we define continuous recognizers for loose-orderings. In Chapters 8 and 9, we refer to
continuous recognizers, when we describe the implementability of our stubbing framework.

2.5 Components and Contracts
As complexity of software and hardware systems increases, and the development and verification time
decreases it becomes unavoidable to reuse a lot of previous work when designing new systems. Reusing
parts of a previous system requires that these parts be properly defined as components and equipped with
some form of a specification. In the world of hardware IPs are typical components.

A contract is one possible form of a specification. A contract characterizes under which context a
component is assumed to operate, and what a component guarantees, if it works in a proper context.
Contract theories strictly follow the principle of separation of concerns: the specification of assumptions
is separated from the specification of guarantees. For instance, Figure 2.46 illustrates a contract for a
class computing a square root of a number. It is assumed that the actual number is set before a square
root is computed, and that the number is non-negative. If the assumptions hold, the computation of a
square root is guaranteed by the component.

Design-by-Contract The “design-by-contract” principle was first introduced in the Eiffel programming
language by Bertrand Meyer [Mey92; Mey97]. The principle is based on the idea that the design of software
modules should imperatively include the specification phase. The principle has been successfully applied to
object-oriented programming along with the wide acceptance of pre-/post-condition style of specification
(e.g., Eiffel [Swi93], iContracts [Kra98], JASS [Bar+01]). In the hardware world contracts are used for
hardware optimization. Thus, by exploiting (sequential) don’t care sets, it is possible to optimize area and
performance of the chip [Dev91].

SquareRoot_Class

-int x

+set_x (int x)

+sqrt()returns r

The Contract

Assumptions A

A1. set_x() must be called
at least once before sqrt()

A2. x >= 0

Guarantees G

G1. r = sqrt(x)

Figure 2.46 Contracts in object-oriented languages.
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The given chapter describes our running example which we call “Smart Intercom”. It is a mixed
component-based hardware and software system used for controlling accesses to a building based on
the results of a face recognition analysis. A virtual prototype of the system has been implemented
using standardized SystemC/TLM-2.0 [Sys]. It serves as a reference specification and illustration for the
following parts of this thesis, as well as the basis for the experiments.

The material of this chapter is structured in the following way: In Section 3.1, we describe the high-level
functionality of the device and its user interface. In Section 3.2, we present the TLM virtual prototype of
the system, list details of the SystemC/TLM implementation, and give a rough idea about the behavior
of the components constituting the designed SoC. In Section 3.3, the control performed by the software is
described. Finally, in Section 3.5, we list synchronization bugs of the intercom system, and explain how
they are detected at simulation time.

Section 3.4 is technical; it specifies the behavior of the system’s components. Its understanding requires
familiarization with Chapter 4. We suggest the reader to skip this section when reading the chapter for
the first time. In the following parts of the document we refer to Section 3.4 when needed.

3.1 The External View and Functionality of the System
The user interface of the Smart Intercom device includes four elements: an image sensor (e.g., a digital
camera), a liquid crystal display (LCDC) and two buttons (Fig 3.1). The Button-On-Off switches the
system on and off. The Button-Start starts face recognition.

The functionality of the system consists of three phases (Fig. 3.2):
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an image sensor

a display

Button-StartButton-On-Off

Figure 3.1 A sketch of the user interface of the Smart Intercom device.

The device is off
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I configuration of the components

Image Capturing/Displaying

I display of images captured
by the sensor

I computation of the confidence
value c

I checking if the user is allowed
to enter the building

c ≥ δ

I establishment of the user’s
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I display of a salutation
image

I unlocking the door

I display of an “access-denial”
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wait T

Button-On-Off

Button-Start

c

yes no

Button-On-Off

Face Recognition

Figure 3.2 High-level functionality of the Smart Intercom.
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1. The initialization phase starts when the user switches the device on by pressing Button-On-Off;
all subcomponents (e.g., the image sensor) are initialized. At any time the user can switch the device
off by pressing again Button-On-Off during the capturing/displaying phase.

2. During the image capturing/displaying phase, the images captured by the sensor are shown on the
display.

3. The face recognition phase is started when the user presses Button-Start. During this phase
the system computes a confidence value c of the face recognition, which is meant to be compared
to a threshold δ. If c < δ, then there is no significant match; it means that the user will see an
“access-denial” notification on the screen. If c ≥ δ, then there is a significant match; in this case the
system also computes an id of the person, which is used in the salutation message shown before the
door opens. After some time T the system returns to the capturing/displaying phase.

It is assumed that all the users allowed to get access to the building are registered, i.e., the reference
images of their faces are stored in the system’s image database called image gallery.

3.2 SystemC/TLM Virtual Prototype
The designed intercom SoC is simple but representative; its representation is enough to illustrate our
work. The hardware architecture of the SoC has common hardware components which can be used in
real, industrial case-studies; the system is characterized by relatively complex communication protocols
between hardware components. The SoC has the embedded software. The software ensures that the
components, being executed together, implement the functionality of the system described in Section 3.1.
We make the emphasis on the synchronization of the components; each component synchronizes with the
rest of the system by exposing its border behavior, i.e., getting/producing transactions/interrupt requests
(see more details below).

The TLM virtual prototype of the SoC’s hardware platform is shown in Figure 3.3. It comprises one
processor node, the set of peripheral components, one hardware acceleration block, the system’s memory,
and a memory-mapped bus. Specifically, Figure 3.3 shows the following components:

1. A central processing unit (CPU), on top of which the embedded software is executed (in the sequel
we use “embedded software” and “CPU” interchangeably);

2. A timer to measure the elapsed time T1 between the end of the face recognition phase and the
beginning of the next capturing/displaying phase (TMR1);

3. A door lock actuator (LOCK);
4. A system’s memory (MEM);
5. A timer controlled by the GPIO to measure a sampling period of keystrokes (TMR2);
6. A component to handle buttons (GPIO);
7. An image sensor (SEN);
8. A hardware accelerator called image processing unit (IPU), which performs a face recognition anal-

ysis;
9. A liquid crystal display controller (LCDC);
10. An interrupt controller (INTC);
11. A memory-mapped bus (Bus).

The components interact by means of transactions and interrupts; interrupts are modeled by means
of SystemC signal channels. Through initiator (resp. target) TLM ports components send (resp. receive)
transactions. The components send (resp. receive) interrupt requests by writing to SystemC signal
channels (resp. being notified about the change of values of the channels). The architecture of the system
is as it is shown in Figure 3.3.

In the following sections we describe in more details the TL models of the listed components, show an
example of the SystemC/TLM implementation of one of the components, and explain a communication
principle.

3.2.1 TL Models of the Components
TL models of the components can include the implementation of algorithms. Thus, the IPU implements
the face recognition algorithm, the embedded software (the CPU) implements the control algorithm. The
components can have data and control registers (Fig. 3.4). The registers are written (reps. read) by means
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GPIO SEN IPU LCDC INTC

TMR2 MEM LOCK TMR1 CPU

Bus

Figure 3.3 The TLM platform of the Smart Intercom device.

of write (resp. read) transactions. Writing the control registers triggers computation processes of the
components (e.g., face recognition). To model duration of the computations, we use SystemC simulation
time. This is specified with the fuzzy version of the wait(TIME) function introduced by [Cor08] (see more
detail in Sec. 3.2.2.3).

Based on the ability to send and receive transactions, the TL components are classified as initiators,
targets, or mixed initiator-targets. They are described below. Here, we focus only on the observed behavior
of the components, i.e., sequences of received and sent transactions and interrupts. Formal specifications
of the components is defined in Section 3.4.

3.2.1.1 The Initiator Component: The CPU

The CPU is a pure initiator component (Fig. 3.4(a)). It may receive interrupts from the interrupt controller
INTC through its SystemC port irq-cpu. The embedded software running on the CPU may initiate
transactions for other components of the system; those transactions are sent through the TLM initiator
port of the CPU. The embedded software performs the control of all other components of the system. Its
algorithm is discussed in Section 3.3.

3.2.1.2 Target Components

The timers TMR1 and TMR2, the memory MEM, the lock actuator LOCK, the interrupt controller INTC,
and the image sensor SEN are targets, i.e., they can only receive and execute transactions.

The Timers The timers TMR1 and TMR2 are functionally identical (Fig. 3.4(c)). Both components
can be (i) configured with a time interval by writing the read-write data register scale, (ii) started by
writing the control register start, (iii) stopped by writing the control register stop. When the TMR1
(resp. the TMR2) is active, it sends interrupt requests through the port irq-tmr1 (resp. irq-tmr2) whenever
the defined interval of simulation time elapses.

The Memory The MEM stores the image gallery of the system, an image for face recognition analysis,
the set of salutation images for the registered users, one “access-denial” image, and the double buffer of
the LCDC. It is accessed by the CPU, the IPU, and the LCDC.

The Lock Actuator The LOCK component has one write-only control register unlock
(Fig. 3.4(d)). When it is written, the actuator opens the entrance door.

The Interrupt Controller The INTC (Fig. 3.4(e)) has the set of SystemC ports through which the
INTC receives interrupt requests from the processors. It gets a request from:

• the LCDC when the display is refreshed,
• the SEN when the image is captured,
• the GPIO when the button Button-Start is pressed,
• the IPU when started face recognition has finished,
• the TMR1 when time T1 has elapsed.
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Figure 3.4 The TL models of the components constituting the intercom system.
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The ports (interrupt inputs) are respectively irq-lcdc, irq-sen, irq-gpio, irq-ipu, irq-tmr1 as represented
in Figure 3.4(e). By generating interrupts through the interrupt output irq-cpu, the interrupt controller
notifies the CPU about occurrences of one of the listed events. The CPU coordinates the work of the
whole system by writing/reading a set of registers in the INTC:

• by writing the write-only register irq-ack the CPU acknowledges interrupt requests,
• by reading the read-only status register irq-own, the CPU establishes the owner of interrupts,
• the read-write registers irq-dsbl/enbl are used to mask (resp. unmask) interrupts.

The model of the INTC was inspired by the Xilinx OPB Interrupt Controller (v1.00c) [Xil]. Interrupt
requests from different components are prioritized. The priority is assigned according to the order: the
TMR1, the IPU, the GPIO, the SEN and the LCDC. Interrupt requests from the TMR1 (resp. the LCDC)
have the highest (resp. lowest) priority.

The image sensor The SEN has an accessible buffer, where images captured by the component are
stored (Fig. 3.4(f)). The address of the buffer is stored in the data read-only register buff-addr. To
make the sensor to capture an image, one needs to activate its shutter by writing the control register
act-shttr. The SEN sends interrupts through the SystemC port irq-sen when it captures an image.

To model the capturing of images by the sensor, we use the set of files-images. When the shutter of
the SEN is activates, the component randomly picks up one of those files, and loads the file’s content into
its buffer.

3.2.1.3 Initiator-Target Components

There are tree mixed initiator-target components: the image processing unit IPU, the GPIO and the
LCDC. They act as initiators when they configure and use other components:

• the IPU reads images from the memory MEM;
• the LCDC reads images from the buffer (stored in the memory MEM);
• the GPIO uses the timer TMR2.

The listed components are targets, when they are controlled by the CPU (the embedded software).

The Image Processing Unit Figure 3.4(b) shows the TL model of the IPU component. The read/write
data registers img-size, gl-size, img-addr, img-size are used for the component’s configuration; they
store respectively values of the image size, the image gallery size, the address of the user’s picture to be
analyzed, and the size of the image. A confidence value computed during the face recognition by the IPU is
stored in the read-only register conf-val. The IPU stores the address of the reference image corresponding
to the best match to the read-only register ref-img. Writing the control register start launches the face
recognition. During the recognition process, the IPU accesses the external image gallery and the image
under analysis by sending transitions through its initiator socket. When recognition terminates, the IPU
sends an interrupt through the port irq-ipu.

The face recognition procedure of the IPU is modeled with byte-by-byte comparison of images. The
IPU reads the analyzed image from the memory, then reads the reference images from the image gallery.
If one of the reference images matches the analyzed image, face recognition is successful. In this case,
the IPU randomly chooses a confidence value in the interval [70, 100]. If the match of images was not
established, the IPU stores zero value to the confidence value by writing the register conf-val. Notice
that one could use the specialized face recognition libraries such as OpenCV [Opea], in order to implement
the recognition analysis performed by the IPU. Nevertheless, even our simplistic implementation of the
recognition is sufficient to observe synchronization bugs (see Sec. 3.5).

The General Purpose Input/Output The GPIO component can be launched by writing the control
register start (Fig. 3.4(g)). The component configures and starts the TMR2. The component receives
interrupts from the timer via the port irq-tmr2. It samples the state of Button-Start, when the timer’s
interrupt is received. If the button is pressed, the component sends an interrupt via its port irq-gpio.
Button-Start is implemented by means of the SDL library [Sdl].
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1 /*FILE: IPU.h*/
2
3 //use namespace tlm , sc_core
4 SC_MODULE(IPU){
5 sc_out <bool > irq_ipu; /*port*/
6 initiator_socket <IPU > is; /* sockets */
7 target_socket <IPU > ts;
8
9 SC_CTOR(IPU){

10 SC_THREAD(face_recognition_thread );
11 sensitive << start_event;
12 irq_ipu.initialize(false );
13
14 /* initialize registers */
15 img_addr = 0; gl_addr = 0; gl_size = 0; img_size = 0;
16 conf_val = 0; }
17
18 /* functions to access registers */
19 tlm_response_status read(uint32_t addr , uint32_t &data);
20 tlm_response_status write(uint32_t addr , uint32_t data);
21
22 private:
23 sc_event start_event;
24
25 /* behavior of the component */
26 void face_recognition_thread ();
27
28 /* registers */
29 uint32_t img_size , img_addr , gl_size , gl_addr , conf_val;
30
31 /*face recognition procedures */
32 void upload_image(uint32_t addr , uint32_t* img_buffer );
33 int compare_facial_features ();
34
35 /* internal buffers */
36 uint32_t* img_buffer = NULL;
37 uint32_t* gl_img_buffer = NULL; };

Figure 3.5 The declaration of the IPU.

The Liquid Crystal Display Controller The LCDC has an external double-buffer. The component
has two registers: the read-write register buff-addr is used to set and get the address of the buffer, and
the write-only control register start launches the component (Fig. 3.4(h)). When it is started, the LCDC
reads the buffer and refreshes the display. The component generates interrupts through its interrupt
output port irq-lcdc after each refresh cycle. The display is implemented by means of the SDL library.

3.2.2 SystemC/TLM-2.0 Implementation of the Components
We use a standard approach to implement TLM components in SystemC as it was defined in Sec-
tion 2.1.5.3. For instance, Figure 3.5 illustrates the declaration of the component on the example of
the IPU. Each component is defined as the SystemC module sc_module. If the component can send
(resp. receive) interrupts, it possess output (resp. input) SystemC ports (e.g., line 5). If the component
is an initiator (resp. a target), it has an initiator (resp. target) TLM port (e.g., lines 6, 7). Ports enable
communication between components. The component can have data registers (e.g., line 29), and methods
to access them (lines 19, 20). The behavior of the component is defined by SystemC processes (e.g.,
line 10). The processes are triggered when corresponding control registers are written (e.g., line 11). The
component can have functions implementing specific algorithms (e.g., lines 32, 33).

3.2.2.1 Registers Access

To provide an access to read (resp. write) registers, the components implement a read(const uint32_t
addr, uint_32 data) (resp. write(const uint32_t addr, uint_32 data)) method (e.g., see Fig. 3.6).
The first argument defines the address (offset) of the register to be read (reps. written). Offsets of the
registers are statically defined. The second argument is used to get the register’s value (resp. to specify
the value to be set to the register). The read(...) (resp. write(...)) function is called each time
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1 /*FILE: IPU.cpp*/
2
3 //use namespace tlm , sc_core
4 // uint32_t conf_val , img_addr , gl_addr , img_size , gl_size
5
6 tlm_response_status IPU::read(uint32_t addr , uint32_t &data){
7 /* identify the register */
8 switch(addr){
9 case conf_val: data = conf_val; break;

10 case img_addr: data = img_addr; break;
11 case gl_addr: data = gl_addr; break;
12 case img_size: data = img_size; break;
13 case gl_size: data = gl_size; break;
14 default:
15 SC_REPORT_ERROR(name(), "register is not implemented");
16 return TLM_ADDRESS_ERROR_RESPONSE; }
17 return TLM_OK_RESPONSE; }

(a) Reading registers of the IPU

1 /*FILE: IPU.cpp*/
2
3 //use namespace tlm , sc_core
4 // uint32_t img_addr , gl_addr , gl_size , img_size
5 // sc_event start_event
6
7 tlm_response_status IPU::write(uint32_t addr , uint32_t data){
8 /* identify the register */
9 switch(addr){

10 case img_addr: img_addr = data; break;
11 case gl_addr: gl_addr = data; break;
12 case img_size: img_size = data; break;
13 case gl_size: gl_size = data; break;
14 case start: start_event.notify (); break;
15 default:
16 SC_REPORT_ERROR(name(), "register is not implemented");
17 return TLM_ADDRESS_ERROR_RESPONSE; }
18 return TLM_OK_RESPONSE; }

(b) Writing registers of the IPU

Figure 3.6 Access to the IPU’s registers.

the component receives a read (resp. write) transaction (see Sec. 3.2.3 below). Invocation of the method
write(const uint32_t addr, uint_32 data), such that addr is an address of a control register, can
notify an event which triggers a computation process of the component (e.g., line 14 in Fig. 3.6(b)).

3.2.2.2 Behavior of the Component

The behavior of the components is modeled by means of the SystemC SC_THREADs1. For instance, Fig-
ure 3.7 shows the SC_THREAD of the IPU. SC_THREADs are sensitive to events: when write-only control
registers are written by means of the write(...) function, events triggering the SC_THREADs are noti-
fied. Thus, the face_recognition_thread of the IPU shown in Figure 3.7 is triggered when the event
start_event occurs (line 4). The simulation processes of the components can:

• perform internal calculations of the components, call the components’ functions (e.g., lines 7 – 33),
• send transactions through the initiator socket (e.g., line 13),
• let simulation time pass (e.g., lines 34, 38),
• send interrupts through ports (e.g., lines 37, 39).

3.2.2.3 Timing

To integrate the intrinsically timed components (which are the timers TMR1, TMR2, and the LCDC) with
untimed components, we follow the guidelines given in [Cor08] and use fuzzy timing with randomization,
also known as loose timing. We specify non-deterministic delays using the construct pv_wait(a, b,

1The SystemC threads are defined in Section 2.1.4.3.
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1 /*FILE: IPU.cpp*/
2 void IPU:: face_recognition_thread (){
3 while(true){
4 wait(start_event );
5 conf_val = 0;
6
7 /* initialize buffers */
8 img_buffer = new uint32_t[img_size/sizeof(uint32_t )];
9 gl_img_buffer = new uint32_t[img_size/sizeof(uint32_t )];

10
11 /* upload the analyzed image*/
12 for(int i=0; i<img_size/sizeof(uint32_t ); i++)
13 is.read(img_addr +(i*sizeof(uint32_t)), img_buffer[i]);
14
15 uint32_t temp_conf_val = 0;
16 uint32_t gl_img_addr;
17 int i = 0;
18 while ( i < gl_size ){
19 gl_img_addr = gl_addr + i * img_size;
20 upload_image(gl_img_addr , gl_img_buffer );
21 temp_conf_val = compare_facial_features ();
22 if(temp_conf_val > conf_val)
23 conf_val = temp_conf_val;
24 i += 1; }
25
26 srand(time (0));
27 /* if the correspondence was found then the value is
28 taken from the range [70 .. 100];*/
29 if(conf_val == 1)
30 conf_val = rand ()%30 + 70;
31 /* otherwise from [0 .. 70)*/
32 else
33 conf_val = rand ()%70;
34 pv_wait (100, 500, SC_NS );
35 delete [] img_buffer;
36 delete [] gl_img_buffer;
37 irq_ipu.write(true);
38 pw_wait(1, 5, SC_NS );
39 irq_ipu.write(false );
40 }}

Figure 3.7 The behavior of the IPU.

TIME_SCALE) (Fig. 3.8). The simulation engine draws a random value in the interval [a, b], thus exploring
more behaviors. It allows us:

• to define explicit yielding points which let the components to advance,
• to avoid synchronization on timing, which may have spurious effect on the activities relying on TL
models.

The pv_wait(...) is also used to model non-deterministic duration of a component’s activity. For
instance, it is specified that the face recognition may take from 100 up to 500 nanoseconds (see line 34 in
Fig. 3.7).

//use namespace std , sc_core

#define pv_wait(a, b, TIME_SCALE) wait(a+(rand ()%b), TIME_SCALE)

Figure 3.8 The definition of the pv_wait() function.

3.2.3 Communication Mechanism
The communication between components is blocking, i.e., each transaction is processed within one func-
tional call (more details in Sec. 2.1.5). The initiator process is blocked until the communication finishes,
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i.e., until the implementation of the function in the target returns. It is implemented by means of the
blocking TLM transport interface2.

3.2.3.1 TLM Ports

To enable communication between components by means of transactions, we define two classes
initiator_socket<...> and target_socket<...> implementing respectively initiator and target sock-
ets. They are derived from the standard TLM sockets tlm_initiator_socket<...> and
tlm_target_socket<...> respectively (see Fig. 3.9). Both classes are parameterized with the type M
of a component possessing a socket; in our case the type is always sc_module. Instances of the classes
have pointers to their parent components.

The initiator_socket provides two methods write(const uint32_taddr, uint32_t& data) and
read(const uint32_taddr, uint32_t& data) (Fig. 3.9(a)). They are used to send transactions through
the initiator socket. When the component invokes one of these methods, it specifies:

• the destination address of a transaction (the first addr argument),
• the data to be sent or received by means of the transaction (the second data argument).

When invoked, the methods write(...) and read(...) create a transaction object using the specified
address and the data, and send the created transaction to the connected target socket.

The target_socket implements the blocking transport interface represented by the function
b_transport(tlm_generic_payload tr, sc_time& t) (Fig. 3.9(b)). When this function is called, the
address and the data are recovered from the received transaction object tr. Then, depending on the
type of the transaction (read or write), either write(...) or read(...) method of the socket’s parent
component is called. (Notice that the second argument sc_time& t is never used, since in our example
we always assume that transactions are fulfilled immediately without delays).

3.2.3.2 The Interconnect: The Bus

The components of the virtual prototype communicate through the memory-mapped Bus. The Bus
maintains the correspondence between addresses and the components. For instance, to read the content
of the memory, the IPU sends a read transaction tr, specifying an address. When the transaction tr reaches
the Bus, the component retrieves the address and checks to which component it belongs. After the identity
of the target is established (in this case the MEM component), the Bus passes on the transaction tr to
the destination.

The interconnect Bus has the standard tlm_target_socket<...> and the
tlm_initiator_socket<...>. The Bus is a communication channel, it implements the
b_transport(_generic_payload tr, sc_time& t) method of the TLM blocking transport interface.
All initiator components being connected to the target socket of the Bus can call the function
b_transport(tlm_generic_payload tr, sc_time& t). In the function, the Bus retrieves the address
from the transaction tr, checks the mapping of addresses of the components, and passes on the transaction
tr to the appropriate destination through its initiator socket.

3.2.3.3 Communication Principle

Figure 3.10 summarizes the sequence of function calls performed to send a read transaction. The initiator
invokes the read(...) method of its socket providing the address and the data to be sent. This is 1
. The initiator socket creates a transaction and sends it calling the b_transport(...) method of the
connect target socket of the Bus. This is 2 . Since the Bus is the communication channel and its target
socket is an export, the method b_transport(...) implemented by the Bus is called. The Bus establishes
the destination component and calls the b_transport(...) function of the component’s target socket
connected to the initiator socket of the Bus. This is 3 . The b_transport(...) of the target socket
recovers parameters of the received transaction and calls the read(...) of the parent component. This
is 4 . The sequence 1 - 4 is the forward path, the sequence 5 - 8 is the return path. When the initiator
component gets the data, i.e., the call of the read(...) function of its initiator socket returns, the
component may proceed in its execution.

2The TLM communication principles via TLM ports is explained in Section 2.1.5.2.
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SystemC/TLM-2.0

sc_port
<tlm_fw_transport_if<tlm_base_protocol_types>,

MULTIPORT?0:1>

tlm_initiator_socket<CHAR_BIT*sizeof(uint32_t),
tlm_base_protocol_types, MULTIPORT?0:1>

sc_export<tlm_bw_transport_if
<tlm_base_transport_types> > m_export

tlm_bw_transport_if
<tlm_base_protocol_types>

initiator_socket
<M, bool MULTIPORT=false>

M* mod

write(const uint32_t&, uint32_t, int port=0)
read(const uint32_t&, uint32_t, int port=0)

...

(a) An initiator socket

SystemC/TLM-2.0

sc_export
<tlm_fw_transport_if<tlm_base_protocol_types> >

tlm_target_socket<CHAR_BIT*sizeof(uint32_t),
tlm_base_protocol_types, MULTIPORT?0:1>

sc_port<tlm_bw_transport_if
<tlm_base_transport_types> > m_port

tlm_fw_transport_if
<tlm_base_protocol_types>

b_transport(tlm_generic_payload tr,
sc_time& t)

target_socket
<M, bool MULTIPORT=false>

M* mod

...

(b) A target socket

Figure 3.9 The definition of TLM sockets.
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IPU Bus MEM

face_recognition_thread

is.read(addr, &data)

initiator_socket is

read(addr, &data){
/*form transaction t*/
(*this)->b_trasport(t)
return

}

tlm_target_socket ts

tlm_initiator_socket is

b_transport(t){
/*find target id*/
is[id]->b_transport(t)
return

}

target_socket ts

b_transport(t){
/*get parameters of t*/
MEM->read(addr, &data)
return

}

read(addr, &data){
data=value
return }

1 2

3

4

5
678

Figure 3.10 The communication principle.

3.3 The Embedded Software and the CPU
The embedded software running on the CPU coordinates execution of the processors: the LCDC, the
SEN, the GPIO, the IPU and the TMR1 (Fig. 3.3). The CPU represented by its port irq-cpu and the
initiator socket implements the hardware. The embedded software is executed on top of the CPU by
means of the native wrapper:

• the read(...) (resp. write(...)) operations performed by the embedded software are translated
into the calls of the read(...) (resp. write(...)) method of the initiator socket of the CPU;

• the interrupts gotten by the CPU invoke the interrupt handling methods
interrupt_pos_edge_handler() and interrupt_neg_edge_handler() of the embedded software
(see below).

In the sequel, we always consider the CPU and the embedded software, and use their names interchange-
ably. The TL model of the CPU together with the embedded software comprise ≈280 lines of C++
code.

3.3.1 The Control Algorithm
The control implemented by the CPU consists of four modes (states): initialization, image capturing/dis-
playing, face recognition, salutation, restart. They match the execution phases of the system (see Sec. 3.1).
The transitions between modes are defined by the types of interrupts the CPU gets. Figure 3.11 illus-
trates the control as a state machine. Here, states are the execution modes of the CPU. Labels irq_lcdc,
irq_sen, irq_gpio, irq_ipu and irq_tmr1 represent occurrences of interrupts belonging to the LCDC,
the SEN, the GPIO, the IPU and the TMR1 respectively. For each state the outgoing transitions represent
all possible interrupts that may occur in that state. For instance, in the initialization mode the CPU can
get the interrupt from the SEN, but not from the IPU. The CPU can mask some interrupts. For instance,
the irq_gpio cannot occur when the CPU is in the face recognition mode, because the CPU has masked
it before entering that mode (see below). The occurrences of interrupts can be indirectly triggered by
the behavior of the CPU. For instance, the irq_ipu (resp. irq_sen) occurs when the IPU finishes face
recognition (resp. the SEN captures an image) which is started by the CPU in its face recognition mode
(resp. initialization, image capturing/displaying or restart mode). In the following sections, we first de-
scribe the interrupt handling principle of the embedded software, then we define the behavior of the CPU
in each of its execution modes.

3.3.2 Interrupt Handling
To handle incoming interrupts, the embedded software has two functions
interrupt_pos_edge_handler() and interrupt_neg_edge_handler() shown in Figures 3.12(a) and 3.12(b)
respectively. The former (resp. the latter) is called each time the CPU gets a positive (resp. negative)
edge of an interrupt signal trough its port irq-cpu.

When a positive edge is detected, the embedded software establishes the owner of the interrupt by
reading the irq-own register of the interrupt controller (lines 6, 7 in Fig. 3.12(a)). Then the CPU
acknowledges the interrupt by writing the irq-ack register of the INTC ( lines 11, 14, 19, 22, 28). If the
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Initialization
Image Capturing/

Displaying
Face

Recognition Salutation

Restart

irq_sen irq_gpio irq_ipu

irq_lcdc irq_sen

irq_lcdc irq_lcdc irq_lcdc

irq_tmr1

irq_sen

irq_lcdc

Figure 3.11 The control algorithm implemented by the CPU.

1 /*FILE: software.cpp*/
2
3 // uint32_t ack
4 void interrupt_pos_edge_handler (){
5 /* establish the owner*/
6 uint32_t irq_owner;
7 read(INTC_BASEADDR+IRQ_OWN , irq_owner );
8 ack = irq_owner;
9 switch(irq_owner ){

10 case 4: //LCDC
11 write(INTC_BASEADDR+IRQ_ACK , 4);
12 break;
13 case 3: //SEN
14 write(INTC_BASEADDR+IRQ_ACK , 3);
15 break;
16 case 2: //GPIO
17 write(INTC_BASEADDR+IRQ_DSBL , 2); //mask the GPIO’s interrupts
18 write(INTC_BASEADDR+IRQ_DSBL , 3); //mask the SEN’s interrupts
19 write(INTC_BASEADDR+IRQ_ACK , 2);
20 break;
21 case 1: //IPU
22 write(INTC_BASEADDR+IRQ_ACK , 1);
23 break;
24 case 0: //TMR1
25 write(TMR1_BASEADDR+TMR_STOP , 0); //stop the TMR1
26 write(INTC_BASEADDR+INTC_ENBL , 2); // enable the GPIO’s interrupts
27 write(INTC_BASEADDR+INTC_ENBL , 3); // enable the SEN’s interrupts
28 write(INTC_BASEADDR+IRQ_ACK , 0);
29 break;
30 default: cout << "ERROR: unknown source of the interrupt\n";
31 exit (1);
32 }}

(a) Handling the positive edge of interrupts

1 /*FILE: software.cpp*/
2
3 // uint32_t ack
4 void interrupt_neg_edge_handler (){
5 switch(ack){
6 case 4: /* IRQ_LCDC */ break;
7 case 3: /* IRQ_SEN */ image_capturing_displaying (); break;
8 case 2: /* IRQ_GPIO */ face_recognition (); break;
9 case 1: /* IRQ_IPU */ salutation (); break;

10 case 0: /* IRQ_TMR1 */ restart (); break;
11 default: cout << "ERROR: unknown source of the interrupt\n"; W
12 exit (1);
13 }}

(b) Handling the negative edge of interrupts

Figure 3.12 The interrupt handling methods of the embedded software.

interrupt was received from the GPIO (i.e., Button-Start has been pressed), the CPU masks interrupts
of both the GPIO and the SEN by writing the register irq-dsbl of the INTC (lines 17, 18). Masking
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of interrupts guarantees that the started face recognition cannot be restarted unless it terminates, i.e.,
the presses of Button-Start are ignored. When the CPU gets an interrupt from the TMR1 (i.e., face
recognition terminated and time T has elapsed), the CPU stops the timer, and unmasks the interrupts
from the GPIO and the SEN (lines 26, 27).

When the method interrupt_neg_edge_handler() is called, the CPU is notified about the fact
that the previously sent acknowledgement has had effect. Depending on the owner of the acknowledged
interrupt, the CPU enters one of its execution modes (lines 7 – 10 in Fig. 3.12(b)).

3.3.3 Execution Modes
3.3.3.1 Initialization

Figure 3.13 provides the operations performed by the CPU in the initialization mode. When the system
is started and the CPU is launched, the embedded software does the following:

• it configures the timer TMR1 and the LCDC setting respectively the time interval and the address
of the buffer (lines 7, 8);

• the CPU reads the buffer address of the SEN (line 9);
• the CPU activates the shutter of the image sensor, starts the LCDL, and then the GPIO (lines 10 –

12).

The initialization should take time in the interval [50, 200] nanoseconds (line 13 in Fig. 3.13).

1 /*FILE: software.cpp*/
2
3 // uint32_t sen_buf_addr , old_img_addr , data
4 void initialization (){
5 uint32_t t_scale;
6 t_scale = 1 + (rand() % 100);
7 write(TMR1_BASEADDR+TMR_T_SCALE , t_scale );
8 write(LCDC_BASEADDR+LCDC_BUFF_ADDR , old_img_addr );
9 read (SEN_BASEADDR +SEN_BUF_ADDR , sen_buf_addr );

10 write(SEN_BASEADDR +SEN_ACT_SHTTR , data);
11 write(LCDC_BASEADDR+LCDC_START , data);
12 write(GPIO_BASEADDR+GPIO_START , data);
13 pv_wait (50, 200, SC_NS ); }

Figure 3.13 The initialization mode.

3.3.3.2 Image Capturing/Displaying

Figure 3.14 shows the image capturing/displaying mode of the CPU. The component does the following:

• it switches to the inactive buffer of the LCDC (see lines 6 – 8);
• the component reads the content of the sensor’s buffer (lines 9, 10);
• the CPU writes to the LCDC’s buffer the image captured by the SEN (lines 11, 12);
• it activates the inactive buffer by setting the new buffer address of the LCDC (line 13);
• it activates the shutter of the SEN to make the component capture another image (line 14).

It takes the CPU at most 400 nanoseconds to perform the transfer of images (line 15).

3.3.3.3 Face Recognition

When the irq_gpio occurs, the embedded software enters the face recognition mode (Fig. 3.15) and does
the following:

• transfers the last captured image of the image sensor to the memory MEM (lines 6 – 9);
• configures the IPU providing the address of the image to be analyzed, the address of the image

gallery, the size of one image in bytes, and the size of the image gallery (lines 10 – 13);
• finally, the CPU starts face recognition (line 14).

The CPU completes all mentioned activities within at most 400 nanoseconds (line 15).
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1 /*FILE: software.cpp*/
2
3 // uint32_t sen_buf_addr , old_img_addr , new_img_addr , data
4 // uint32_t* img_buffer
5 void image_capturing_displaying (){
6 uint32_t temp_addr = old_img_addr;
7 old_img_addr = new_img_addr;
8 new_img_addr = temp_addr;
9 for(int i = 0; i < SEN_BUFFER_SIZE/sizeof(uint32_t ); i++ )

10 read(SEN_BASEADDR+sen_buf_addr +(i*sizeof(uint32_t)), img_buffer[i]);
11 for(int i = 0; i < SEN_BUFFER_SIZE/sizeof(uint32_t ); i++ )
12 write(old_img_addr + (i*sizeof(uint32_t)), img_buffer[i]);
13 write(LCDC_BASEADDR+ LCDC_BUFF_ADDR , old_img_addr );
14 write(SEN_BASEADDR + SEN_ACT_SHTTR , data);
15 pv_wait (100, 400, SC_NS ); }

Figure 3.14 The image capturing/displaying mode.

1 /*FILE: software.cpp*/
2
3 // uint32_t sen_buf_addr , img_addr , gl_addr , data
4 // uint32_t* img_buffer
5 void face_recognition (){
6 for(int i = 0; i < SEN_BUFFER_SIZE/sizeof(uint32_t ); i++ )
7 read(SEN_BASEADDR+sen_buf_addr +(i*sizeof(uint32_t)), img_buffer[i]);
8 for(int i = 0; i < SEN_BUFFER_SIZE/sizeof(uint32_t ); i++ )
9 write(img_addr + (i*sizeof(uint32_t)), img_buffer[i]);

10 write(IPU_BASEADDR+IPU_IMG_ADDR , img_addr );
11 write(IPU_BASEADDR+IPU_GL_ADDR , gl_addr );
12 write(IPU_BASEADDR+IPU_IMG_SIZE , IMG_SIZE );
13 write(IPU_BASEADDR+IPU_GL_SIZE , GALLERY_SIZE );
14 write(IPU_BASEADDR+IPU_START , data);
15 pv_wait (100, 400, SC_NS ); }

Figure 3.15 The face recognition mode.

3.3.3.4 Salutation

When face recognition is finished and the irq_ipu occurs, the CPU enters the salutation mode. Here, it
gets the confidence value c computed by the IPU. If c is smaller than the threshold δ, i.e., face recognition
did not detect significant match, the CPU writes to the inactive buffer of the LCDC the “access-denial”
image from the MEM. If the confidence value c is greater than the threshold c ≥ δ, face recognition
terminates with a significant match. In this case the CPU establishes the id of the user, and writes a
salutation image for the user to the inactive buffer of the LCDC. Then, the CPU switches the buffer
address of the LCDC, (potentially) unlocks the door, and starts the timer TMR1. The salutation may
take up to 400 nanoseconds.

3.3.3.5 Restart

When time T elapses and the irq_tmr1 occurs, the CPU immediately activates the shutter of the image
sensor SEN. Later on, when the SEN captures an image and the irq_sen occurs, the CPU again enters
the image capturing/receiving mode.

3.4 Formal Specification of Components
This section provides the list of properties which specify the components of the running example. The
emphasis is made on the properties which can be expressed by means of the loose-ordering language. The
syntax and semantics of the language are defined in Chapters 4 and 5. It is assumed that the reader is
familiar with the respective material. We do not consider properties which are beyond the expressivity
of loose-orderings. They can be defined by means of other specification formalisms. For instance, one
may define behavior of a fully deterministic component (like the INTC) as an imperative program. The
properties defined here are scattered over the present document: they serve as examples and as the
intercom’s reference specification for the first and second parts of this thesis.
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Recall, the loose-ordering properties of a component C are formulated in terms of the component’s
inputs and outputs. Input is any activity of the system’s components that may affect C (e.g., getting an
interrupt). Output is any activity of C which is visible for other components (e.g., acknowledgement of
the received interrupt). We propose two types of loose-ordering properties: an antecedent requirements
and a timed implication constraints. The former defines what the component assumes (expects) about its
environment; the latter states what the component guarantees if it is properly used (i.e., its assumptions
are fulfilled).

In the following sections we provide specification of the CPU, the IPU, the LCDC and the SEN. Other
components are either trivial (e.g., the memory MEM and the lock actuator LOCK), or their specification
cannot be expressed in terms of the loose-ordering language (e.g., the timers TMR1 and TMR2, the
GPIO, the INTC). We comment the behavior of the latter ones in Section 3.4.5. There we also discuss
the specification of the fully deterministic Bus. For each considered component we provide the set of its
inputs and outputs and explain their meaning. Then, we formulate loose-ordering properties in terms of
those inputs and outputs.

3.4.1 The Embedded Software and the CPU
Table 3.1 summarizes the set of inputs and outputs of the CPU. The left column of the table lists the
interface names, the right column explains the purpose of each input/output. The input start represents
the launching of the CPU; its occurrence coincides with the start of the whole system (start of a SystemC
simulation). We define the set of the component’s outputs applying the following naming conventions:

1. set-Y-X (resp. get-Y-X) output corresponds to writing (resp. reading) a data register Y of a
component X (e.g., the outputs set-img-add-IPU and get-conf-val-IPU);

2. Y-X output corresponds to activation of a control register Y of a component X (e.g., the outputs
start-IPU and unlock-LOCK);

3. read-buff-X (resp. write-buff-X) output represents the reading (resp. writing) of the buffer belonging
to a component X (e.g., the outputs read-buff-SEN and write-buff-LCDC);

4. read-MEM (resp. write-MEM) output corresponds to reading (resp. writing) the system’s memory
MEM.

Some outputs (e.g., set-buff-addr-LCDC) have several numbered instances. Different instances corre-
spond to different timed implication constrains.

3.4.1.1 Antecedent Requirements

The antecedent requirements A1-CPU and A2-CPU state that the CPU (its embedded software) can get
interrupts (positive and negative edges) only if it has been started (X stands for lcdc, sen, gpio, ipu and
tmr1). The assumption A3-CPU specifies that the positive and negative edges of interrupts belonging to
a component X should alternate starting from a positive edge.(

start� set-irq-pos-X | Non-Repeated
)

(A1-CPU)(
start� set-irq-neg-X | Non-Repeated

)
(A2-CPU)(

set-irq-pos-X� set-irq-neg-X | Non-Repeated
)

(A3-CPU)

The antecedent requirement A4-CPU states that the CPU can get interrupts from other components
(the LCDC, the SEN, the GPIO, the IPU and the TMR1) only if it has activated at least one of them.((

{start-LCDC, act-shttr-SEN, start-GPIO, start-IPU, start-TMR1},∨,Non-Shuffled
)

� set-irq-pos | Non-Repeated
) (A4-CPU)

3.4.1.2 Timed Implication Constraints

The timed implication constraints T1-CPU–T5-CPU specify the interrupt handling behavior of the
embedded software. The property T1-CPU (resp. T2-CPU, T3-CPU) specifies that whenever the CPU
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Interface Names Interpretation

Inputs: Actions of the Environment:
start start the CPU

set-irq-pos/neg-
lcdc/sen/gpio/ipu/tmr1

set the positive (resp. negative) edge of an interrupt belonging to the
LCDC (resp. the SEN, the GPIO, the IPU, the TMR1) by means of the
CPU’s port irq-cpu

Outputs: Actions of the CPU (the embedded software):
set-irq-ack-
lcdc/sen/gpio/ipu/tmr1-INTC

acknowledge an interrupt belonging to the LCDC (resp. SEN, GPIO, IPU,
TMR1) by writing the register irq-ack of the INTC

set-irq-enbl-gpio/sen-INTC enable interrupts from the GPIO (resp. the SEN) by writing the register
irq-enbl of the INTC

set-irq-dsbl-gpio/sen-INTC disable interrupts from the GPIO (resp. the SEN) by writing the register
irq-dsbl of the INTC

read/write-MEM read from (resp. write to) the memory MEM

read-buff-SEN-1/2 read the buffer of the image sensor SEN (two instances of the output for
the timed implication constraints T7-CPU and T8-CPU respectively)

get-buff-addr-SEN get the buffer address of the SEN by reading its register buff-addr

act-shttr-SEN-1/2 activate a shutter of the SEN by writing its control register act-shttr
(tree instances of the output for the timed implication constraints T6-
CPU, T7-CPU and T10-CPU respectively)

set-buff-addr-LCDC-1/2/3 set the address of the LCDC’s buffer by writing its register buff-addr
(tree instances of the output for the timed implication constraints T6-
CPU, T7-CPU and T9-CPU respectively )

write-buff-LCDC-1/2 write to the buffer of the LCDC (two instances of the output for the guar-
antees T7-CPU and T9-CPU respectively)

start-LCDL/GPIO start the LCDC (resp. GPIO) by writing the control register start

set-img-addr-IPU configure the IPU with the address of the analyzed image by writing its
register img-addr

set-img-size-IPU configure the IPU with the size of the image by writing the register
img-size

set-gl-addr-IPU configure the IPU with the address of the image gallery by setting the
value of the register gl-addr

set-gl-size-IPU configure the IPU with the size of the image gallery by writing the com-
ponent’s register gl-size

get-conf-val-IPU get the confidence value computed by the face recognition of the IPU by
reading the register conf-val

get-ref-img-IPU get the address of the reference image corresponding to the best match of
the face recognition by reading the register ref-img of the IPU

start-IPU start the face recognition analysis performed by the IPU by writing its
control register start

unlock-LOCK unlock the door by writing the control register unlock of the LOCK

set-t-scale-TMR1 set the time scale of the timer TMR1 by writing the register t-scale

start/stop-TMR1 start (resp. stop) the timer TMR1 by writing the control register start
(resp. stop)

Table 3.1 The input/output interface of the CPU (and the embedded software).
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gets an interrupt belonging to the LCDC (resp. the SEN, the IPU) it should immediately (i.e., within 0
nanoseconds) acknowledge it.(

set-irq-pos-lcdc =⇒ set-irq-ack-lcdc-INTC | 0ns
)

(T1-CPU)(
set-irq-pos-sen =⇒ set-irq-ack-sen-INTC | 0ns

)
(T2-CPU)(

set-irq-pos-ipu =⇒ set-irq-ack-ipu-INTC | 0ns
)

(T3-CPU)

If the CPU gets an interrupt belonging to the GPIO, the embedded software should first mask interrupts
of the GPIO and the image sensor SEN in any order, and then send acknowledgement for the received
interrupt:(

set-irq-pos-gpio =⇒
(
{set-irq-dsbl-gpio-INTC, set-irq-dsbl-sen-INTC},∧,Non-Shuffled

)
< set-irq-ack-gpio-INTC | 0ns

) (T4-CPU)

The time implication constraint T5-CPU defines that if the CPU gets an interrupt belonging to the
timer TMR1, the embedded software (i) stops the timer, (ii) enables interrupts from both the GPIO and
the SEN in any order, and (iii) acknowledges the interrupt of the TMR1:(

get-irq-pos-tmr1 =⇒ stop-TMR1

<
(
{set-irq-enbl-gpio-INTC, set-irq-enbl-sen-INTC},∧,Non-Shuffled

)
< set-irq-ack-tmr1-INTC | 0ns

) (T5-CPU)

The timed implication constraint T6-CPU specifies the initialization mode of the CPU. It defines that
when the CPU is started, the embedded software configures the TMR1 and the LCDC with respectively
the time scale value and the address of the buffer, and gets the address of the SEN’s buffer; all these
actions are performed in any order. Then the CPU activates the shutter of the SEN, and starts the
LCDC and the GPIO; everything is done in any order. All mentioned actions should not take more than
200 nanoseconds:(

start =⇒
(
{set-t-scale-TMR1, set-buff-addr-LCDC-1, get-buff-addr-SEN},∧,Non-Shuffled

)
<
(
{act-shttr-SEN-1, start-LCDC, start-GPIO},∧,Non-Shuffled

)
| 200ns

) (T6-CPU)

The guarantee T7-CPU specifies the image capturing/displaying mode of the CPU. It states the
following: If acknowledgement for the received interrupt of the SEN had effect (i.e., a negative edge of
the interrupt has been detected), the software moves the last captured image by the SEN from the SEN’s
buffer to the buffer of the LCDC. Then the CPU reconfigures the address of the LCDC’s buffer and
activates the SEN’s shutter. All actions should be performed within at most 400 nanoseconds.(

set-irq-ack-sen-INTC < set-irq-neg-sen =⇒ read-buff-SEN-1[100,19000]

< write-buff-LCDC-1[100,19000] < set-buff-addr-LCDC-2 < act-shttr-SEN-2 | 400ns
) (T7-CPU)

The guarantee T8-CPU defines the set of actions performed by the CPU when the interrupt of the
GPIO was successfully acknowledged; it corresponds to the face recognition mode. The actions are: (i)
transfer of the last image captured by the SEN before the press of the Button-Start was detected by
the GPIO, (ii) configuration of the IPU, (iii) start of the face recognition:(

set-irq-ack-gpio-INTC < set-irq-neg-gpio =⇒ read-buff-SEN-2[100,19000] < write-MEM[100,19000]

<
(
{set-img-addr-IPU, set-img-size-IPU, set-gl-addr-IPU, set-gl-size-IPU},∧,Non-Shuffled

)
< start-IPU | 400ns

)
(T8-CPU)

The timed implication constraint T9-CPU defines the salutation mode of the CPU. When acknowl-
edgement for an interrupt belonging to the IPU was sent and a negative edge of the interrupt has been
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Interface Names Interpretation

Inputs: Actions on the Environment:
set/get-img-addr set (resp. get) the image address by writing (resp. reading) the register img-addr

set/get-img-size set (resp. get) the image size by writing (resp. reading) the register img-size

set/get-gl-addr set (resp. get) the gallery address by writing (resp. reading) the register gl-addr

set/get-gl-size set (resp. get) the gallery size by writing (resp. reading) the register gl-size

get-conf-val get the confidence value by reading the register conf-val

get-ref-img get the reference image address by reading the register ref-img

start start the face recognition by writing the control register start

Outputs: Actions of the IPU:
read-img read the image under analysis by accessing external memory

read-gl-img read images from the gallery by accessing external memory

set-irq-pos/neg set the positive (resp. negative) edge of an interrupt through the port irq-ipu
Table 3.2 The input/output interface of the IPU.

detected, the embedded software (i) gets the confidence value and the address of the reference image
computed by the IPU in any order, (ii) writes the image to be displayed (either the salutation or “access-
denied” image) to the LCDC’s buffer, (iii) reconfigures the LCDC with the new buffer address, and (iv)
starts the timer TMR1:(

set-irq-ack-ipu-INTC < set-irq-neg-ipu

=⇒
(
{get-conf-val-IPU, get-ref-img-IPU},∧,Non-Shuffled

)
< read-MEM[100,19000]

< write-buff-LCDC-2[100,19000] < set-buff-addr-LCDC-3 < start-TMR1 | 400ns
) (T9-CPU)

The property T10-CPU corresponds to the restart mode of the CPU. It states that once an interrupt
from the TMR1 was acknowledged and its negative edge has been detected, the CPU immediately activates
the shutter of the SEN.(

set-irq-ack-tmr1-INTC < set-irq-neg-tmr1 =⇒ act-shttr-SEN-3 | 0ns
)

(T10-CPU)

3.4.2 The Image Processing Unit (IPU)
The interface of the Image Processing Unit (IPU) is presented in Table 3.2. As before, the left column
is the list of the component’s inputs and outputs, the right column is the interpretation of each interface
name.

3.4.2.1 Antecedent Requirements

The antecedent requirement A1-IPU states that the value of a register Y should be written at least once
before it is read (Y stands for img-add, img-size, gl-addr, gl-size).(

set-X� get-X | Non-Repeated
)

(A1-IPU)

The face recognition of the IPU can be started only if the component is fully configured, i.e., the image
address, the image size, the gallery address, the gallery size are defined at least once (A2-IPU). Moreover,
the image address should be set before each face recognition (A3-IPU).((

{set-img-addr, set-img-size, set-gl-addr, set-gl-size},∧,Non-Shuffled
)

� start | Non-Repeated
) (A2-IPU)
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Interface Names Interpretation

Inputs: Actions of the Environment:
set/get-buff-addr set (resp. get) the address of the LCDC’s buffer by writing (resp. reading) its register

buff-addr

start start the component by writing the register start

Outputs: Actions of the LCDC:
read-buff-1/2/3 read the content of the buffer from external memory (tree instances of the output

for the timed implication constraints T1-LCDC, T2-LCDC and T3-LCDC respec-
tively)

set-irq-pos/neg-1/2/3 set the positive (resp. negative) edge of an interrupt through the port irq-lcdc (tree
instances of the output for the timed implication constraints T1-LCDC, T2-LCDC
and T3-LCDC respectively)

Table 3.3 The input/output interface of the LCDC.

(
set-img-addr� start | Repeated

)
(A3-IPU)

The confidence value (resp. the address of the reference image) provided by the IPU can be accessed
only if it has been computed at least once, i.e., at least one started face recognition has terminated with
an interrupt: (

set-irq-pos� get-conf-val | Non-Repeated
)

(A4-IPU)(
set-irq-pos� get-ref-img | Non-Repeated

)
(A5-IPU)

3.4.2.2 Timed Implication Constraint

The timed implication constraint T1-IPU states that when the face recognition performed by the IPU
is started, the component (i) reads the image under analysis from external memory and the images from
the gallery, (ii) sends an interrupt (the positive edge being followed by the negative edge). The face
recognition should not take more than 500 nanoseconds.(

set-img-addr < start =⇒
(
{read-img[100,19000], read-gl-img[10K,2000000]},∧,Shuffled

)
< set-irq-pos < set-irq-neg | 500ns

) (T1-IPU)

3.4.3 The Liquid Crystal Display Controller (LCDC)
The input/output interface of the LCDC is defined in Table 3.3.

3.4.3.1 Antecedent Requirements

The assumption A1-LCDC defines that the address of the LCDC’s buffer can be read only if it has been
set at least once. The assumption A2-LCDC states that the LCDC can be started only if the buffer
address is defined. (

set-buff-addr� get-buff-addr | Non-Repeated
)

(A1-LCDC)(
set-buff-addr� start | Non-Repeated

)
(A2-LCDC)

3.4.3.2 Timed Implication Constraints

The intended behavior of the started LCDC is the following: (i) the component reads its buffer, and
then (ii) sends an interrupt. The activities (i) and (ii) should take at most 300 nanoseconds; this value
represents the screen refreshing time. After sending an interrupt the LCDC loops to the reading of its
buffer. The first iteration of the LCDC’s loop behavior is formulated by the guarantee T1-LCDC. The
timed implication constraints T2-LCDC and T3-LCDC encode the repeated behavior of the LCDC: the
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Interface Names Interpretation

Inputs: Actions of the Environment:
act-shttr activate the shutter of the SEN by writing its control register act-shttr

get-buff-addr get the address of the buffer by reading the register buff-addr

read-buff read the content of the SEN’s buffer

Outputs: Actions of the SEN:
set-irq-pos/neg set the positive (resp. negative) edge of an interrupt through the port irq-sen

Table 3.4 The input/output interface of the SEN

guarantee T2-LCDC specifies the behavior of the even iterations of the loop. The guarantee T3-LCDC
specifies the behavior of the odd iterations except the first one. Conceptually outputs X-1/2/3 (X stands
for read-buff, set-irq-pos, set-irq-neg) represent one action X performed by the LCDC.(

set-buff-addr < start =⇒ read-buff-1[100,19000] < set-irq-pos-1 < set-irq-neg-1 | 300ns
)

(T1-LCDC)

((
{set-irq-neg-1, set-irq-neg-3},∨,Non-Shuffled

)
=⇒ read-buff-2[100,19000]

< set-irq-pos-2 < set-irq-neg-2 | 300ns
) (T2-LCDC)

(
set-irq-neg-2 =⇒ read-buff-3[100,19000] < set-irq-pos-3 < set-irq-neg-3 | 300ns

)
(T3-LCDC)

3.4.4 The Image Sensor (SEN)
Table 3.4 defines the input/output interfaces of the image sensor SEN. The antecedent requirement A1-
SEN states that the SEN’s buffer can be accessed only if its address has been requested at least once. The
timed implication constraint T1-SEN defines the behavior of the SEN. It states that if the shutter of the
SEN is activated, the component sends an interrupt (after capturing an image) within 200 nanoseconds.(

get-buff-addr� read-buff | Non-Repeated
)

(A1-SEN)

(
act-shttr =⇒ set-irq-pos < set-irq-neg | 200ns

)
(T1-SEN)

3.4.5 Other Components
The Timers TMR1 and TMR2 The behavior of the timers cannot be specified in terms of the
loose-ordering language. When the timer TMR1 (resp. the TMR2) is started, it produces an interrupt
through its port irq-tmr1 (resp. irq-tmr2) whenever the predefined time interval elapses (i.e., at each clock
tick). Recall, we refer to a time interval between two consecutive interrupts as a time scale of the timer.
Production of interrupts takes place unless the timer is stopped. To specify only repetitive production of
interrupts, one could apply the approach used for the specification of the LCDC. Particularly, one could
define timed implication constraints for (i) the first production of an interrupt after start of the timer, (ii)
odd and even productions of interrupts. Nevertheless, it is not sufficient, because the timed implication
constraint (P =⇒ Q | t) allows checking only the fact that the production of outputs Q (in our case
interrupts) does not take more time than t, where t is statically defined. For the timers it causes a problem
for two reasons: (i) between two sent interrupts it should elapse the exact specified time interval, i.e., if it
takes less time than t to produce the next interrupt, it is an error; (ii) the time scale is defined dynamically
as a value of the register t-scale.

Another problem emerges when one makes an attempt to define stopping of the timer. One would
need to state that an interrupt is produced only if the timer is not stopped, and this type of properties is
not expressible in the loose-ordering language.
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The GPIO The component produces interrupts through its port irq-gpio, if the Button-Start is
pressed. Since the GPIO encapsulates the button, the production of interrupts is uncontrollable, i.e., it
cannot be activated by means of inputs. Therefore, the GPIO’s behavior cannot be defined in terms of
inputs/outputs only; particularly it cannot be expressed in the loose-ordering language.

The Interrupt Controller When a component is completely deterministic, as the interrupt controller
INTC, it does not seem to be reasonable to use loose-orderings for its specification (though in some cases
it can be possible, see description of the Bus below). We provide the specification of the INTC in the form
of the imperative C++ program. The intended behavior of the INTC cannot be expressed only in terms
of the loose-ordering language due to the same reason as the stopping behavior of the timers discussed
above: masking interrupt requests may cancel (or postpone) generation of respective interrupts by the
INTC.

The Bus The behavior of the Bus can be defined as the conjunction of the timed implication constraints
of the form: (

input =⇒ output | 0ns
)

(T1-Bus)

where input (resp. output) stands for all different transactions which the Bus can receive from (resp. should
send to) the connected components (the CPU, the IPU, etc.). An alternative to the guarantee T1-Bus
could be the if-then construction provided by most of the imperative languages:

if input then output

3.5 Synchronization Bugs
The TLM virtual prototype presented in Section 3.2 consists of the set of components which implement the
functionality of the intercom as it is defined in Section 3.1. Individually all components are implemented
as it is defined in Section 3.2.1, and controlled by the embedded software running on top of the CPU,
which algorithm is discussed in Section 3.3. To implement the functionality, some components implement
algorithms (e.g., the IPU, the SEN, the CPU) and all of them synchronize with each other by means of
transactions and interrupts.

Even if each of the components are “correct” in isolation (e.g., implementation of computation algo-
rithms is ensured to be correct), it can be difficult to guarantee that the ensemble of the components will
implement the specified (expected) behavior [AH01]. In other words, when the components are put to-
gether bugs may appear due their wrong synchronization. We call a synchronization bug a malfunction of
the system caused by the communication of two components. Although the description of the TL model
of the intercom provided in Section 3.2 and the embedded software introduced in Section 3.3 are free
from synchronization bugs, this result was achieved through the painful process of testing, debugging and
exploration of sources of the system’s malfunction. All bugs occurred due to the wrong synchronization of
the components since it is assumed that the computation algorithms of the IPU and the SEN are correct
(in our case they are trivial as it was described in Sections 3.2.1.2 and 3.2.1.3). The list of the synchro-
nization bugs is provided below. For sake of convenience, we associate them with respective reference
names. The listed synchronization bugs will be investigated in Chapter 7 as a part of our experimental
settings. There are bugs which are visible to the user: when they occur the system continues to operate,
but the results the user gets do not correspond to his/her expectations. The expectations of the user in
this case are defined by the functional specification of the intercom defined in Section 3.1. These bugs are
BS1 – BS12. There are also bugs which cause crash of the system, they are BS13 – BS15.

BS1: The Button-Start does not respond whatever the execution phase of the system is.

BS2: The display of the intercom is always black.

BS3: The display of the intercom shows nonsense.

BS4: The system gets stuck at the face recognition phase: the Button-Start does not respond, the
same (currently analyzed) image is shown on the display.

BS5: When the intercom is in the face recognition phase (i.e., the face recognition was started with the
press of the Button-Start and it has not terminated), the display starts to show the images
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being captured by the sensor SEN (i.e, the intercom “jumps” to the image capturing/displaying
phase).

BS6: For any user (either registered in the system or unknown) face recognition always results in the
closed door and the “access-denied” image shown on the display.

BS7: The registered user gets the “access-denied” notification on the display and (s)he is forbidden to
enter the building.

BS8: The registered user sees on the screen a salutation image addressed to another user.

BS9: The unregistered user sees on the screen a salutation image addressed to someone else, and gets
access into the building.

BS10: The intercom starts face recognition of either the “access-denied” or the salutation image.

BS11: When the face recognition terminates and either the “access-denied” image or salutation one is
shown on the display, the system gets stuck: the Button-Start does not respond, no change of
the image on the display occurs.

BS12: The user is not informed about the results of the face recognition, i.e., neither the “access-denied”
image nor the salutation one is shown on the display.

BS13: The Bus fails to establish the target component for a transaction initiated by the CPU.

BS14: The Bus cannot establish the target component for a transaction initiated by the IPU.

BS15: The Bus cannot establish the target component for a transaction initiated by the LCDC.

When any of these bugs occurs, how would one establish the source of the occurring bug? For instance,
if the Button-Start does not respond (BS1), is it a fault of the GPIO, or the embedded software which
“forgot” to start the component? Or is it the TMR2 which was started by the GPIO without the time
scale being specified? Or the bug was caused by some other reason? In Chapter 7 it will be shown that
in fact each of the listed possibilities could cause the described defect of the system. Moreover, any of the
bugs listed above can have several potential sources, and their localization requires additional time and
effort. To ensure functional correctness of the system and to facilitate localization of the bugs, one needs
to use the system’s specification3. Moreover the specification should be executable such that the system’s
faults with regard to the specification could be detected during simulation of the SystemC/TLM virtual
prototype. The first part of this document is devoted to the specification and testing of TL models.

Summary
In this chapter, we have presented our running example named “Smart Intercome”. It is a system-on-
chip which controls the access to a building based on the face recognition analysis. We have given an
overview of the system’s functionality, have considered the TL models of the system’s components, and
have explained the control algorithm implemented by the embedded software. The properties of these
components are used through the whole document serving examples for the introduced notions, as well
as a basis for our experiments. We have listed the set of synchronization bugs which can occur in the
intercom system.

3The concept of specification is introduced in the background chapter (see Sec. 2.3.1).
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In this chapter we introduce specification primitives called loose-orderings which facilitate definition
of order and number non-determinism. To the best of our knowledge such primitives are original; they
are not supported by existing specification languages. Moreover, encoding of our primitive constructs into
those languages using their provided operators (like temporal and SERE1 operators) can be hard, and
can lead to combinatorial explosion either of the size of the obtained temporal formula, or of the size of
its vocabulary. We define the set of specification patterns on top of loose-orderings to facilitate definition
of the most common types of properties of the hardware design. The patterns define assumptions and
guarantees of specified components.

4.1 Introduction
SystemC-based Transaction-Level Modeling (TLM) [Sys] has been very successful in providing high-level
executable component-based models for systems-on-chip (SoCs). The rationale has been to raise the
level of abstraction by removing details of lower models like RTL models, especially on timing aspects.
The notion of loose-timing is very interesting in that perspective. Exact delays in SystemC models
(e.g., wait(100, SC_NS);) have been identified as a source of over-constraints and spurious synchro-
nizations in models. The loose-timing principle allows to write wait (90, 110, SC_NS);, to specify a
non-deterministic delay. The simulation engine draws a random value in the interval, thus exploring more
behaviors. The coverage problem involved by this non-deterministic specification has been addressed in,
e.g., [Hel+06], using dynamic partial order reduction techniques [FG05].

1Recall, according to [18505] SERE is an acronym which is translated to “Sequential Extended Regular Expression“.
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Figure 4.1 Example of over-constraints related to the order of interactions.

Introducing Loose-Ordering In this thesis, we identify another source of over-constraints. Typically,
when a component needs several input data (e.g., the address of an image, the size of it, etc.) before one
of the functions it provides (e.g., some transformation of the image) can be started, the order in which
the input data elements are provided is usually irrelevant. The same is true for data and control outputs.
Any specification in which the order is imposed is over-constrained. For example, consider a component
A (resp. B) with data outputs a, b, c (resp. data inputs i, j, k) and a control output finish (resp. a
control input start). Suppose a specification of A (resp. B) stating that a, b, c, finish (resp. k, j, i,
start) are produced (resp. consumed) in this exact total order. The connection of a to i, b to j and c
to k is incompatible with such a specification (Fig. 4.1). In fact, a, b, c can be produced in any order,
before finish; and i, j, k can be received in any order, before start. The specification of A and B should
not over-constrain the order of interactions.

This type of property can already be expressed in languages like the Property Specification Language
(PSL) [CVK04; 18505]2. But even simple loose-ordering properties require complex formulas, hence ded-
icated constructs are helpful. By reviewing industrial models we identified main loose-ordering properties
and proposed the set of patterns to capture them. This is not meant to be a complete specification lan-
guage that could replace PSL or e [IJ04], but rather a proposal of new dedicated constructs that could be
integrated in these existing languages.

Efficient Monitoring for Loose-ordering Properties The complete integration of loose-ordering
principles in the ABV3 framework has two facets: monitoring these new properties efficiently, and gen-
erating random values according to these properties. In the first part of this document we address the
monitoring aspects for loose-ordering properties. When any component (of type A or B of the above
example) is specified with a loose-ordering property, the ABV framework has to include the monitoring of
this type of constraints. The first idea is to translate automatically our new properties into PSL, for which
there exist monitor generation techniques [Pie07; PF08]. However, we will show that this produces com-
plex formulas. Then, even the efficient techniques for exploiting such logics (e.g., the automatic modular
generation of monitors described in [MAB07a; PF08]) cannot do better than producing complex monitors
from the obtained complex formulas.

We propose two different translations of loose-ordering properties into PSL, and a direct translation
into very efficient monitors that benefit from the particular form of our properties (Fig. 4.2). We do not
prove formally the uniqueness of the translation into PSL. Our encoding is intuitive and it is not difficult
to check its correctness. The direct synthesis of very efficient monitors is compositional, thus, it is easier
to prove their correctness.

A complete integration of loose-ordering principles in the ABV framework also requires an extension
of the random generation techniques: when a component like the component A of the above example is
used in simulation, several orders for producing outputs should be generated. This is similar to drawing
a random value for the loose-timing variant of the wait instruction. We address this point in the second
part of the thesis (see Chapter 8).

The contributions are: (i) a new notion called loose-ordering, allowing to remove the sources of over-
constraints due to the order of interactions between components in a TL model; (ii) a set of patterns to
capture these properties; (iii) a translation into PSL, for comparison purposes; (iv) a direct translation
into efficient SystemC monitors.

2PSL stands for PSL 1.1.
3ABV stands for Assertion-Based Verification.
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Figure 4.2 Monitoring loose-orderings: attempts at comparison.

Organization of the Material Section 4.2 details motivation for loose-orderings and illustrates our
patterns. In Section 4.4 we define loose-orderings and the patterns formally. Section 4.5 provides trans-
lation of loose-orderings into PSL. The direct translation of loose-orderings into efficient SystemC/TLM
monitors and the evaluation results are presented in Chapters 5, 6 and Chapter 7 respectively.

4.2 Motivation for Loose-Orderings
Synchronization bugs of TL models usually occur because some computation of a component is started
before all relevant registers of the component get values (i.e., before the component is configured), or
because results of the computation (which are stored in respective registers of the component) are accessed
before they are computed (i.e., before the computation terminates). Such types of properties can be
implicitly assumed when a TL model is developed. It makes it easy to “forget” about some of such implicit
assumptions while implementing a model. Moreover, when respective synchronization bugs occur it can be
very hard to find their sources, specially if the same malfunction has several causes (e.g., see Chapter 7).
To avoid these problems, one needs to specify components explicitly.

To check synchronization between TLM components, one needs to specify their border behavior (pro-
tocol). Such specification defines what a component expects (assumes) to get from other components,
and what it provides (guarantees) if its expectations are met. Specification consists of temporal properties
defining sequences (orders) of expected input and output events. For instance, Figure 4.3 shows the spec-
ification of TLM components A and B: A guarantees to provide a, b, c in this order, then d ten times,
and then startB; B assumes to get b, c, a in this order and then start (a, c, etc., may correspond to
either TLM transactions or SystemC interrupt requests).

4.2.1 Over-Constraining
Order properties as those shown for A and B in Figure 4.3 are typical for most of hardware specification
languages relying on regular expressions and LTL. This is because the definition of exact orders in those
languages is intuitive. Such properties may cause order over-constraining of the design. Order over-
constraining makes components incompatible and leads to spurious detection of bugs. For instance, suppose
the component A sends a, b, c and startB to B (see Fig. 4.4(a)). If A behaves according to its
specification (see Fig. 4.3(b)) and first provides a, it violates the specification of B which states that
B should get b first (see Fig. 4.3(c)). Thus, the specification of B complains despite the fact that the
component may operate normally whatever the order in which it gets its inputs (which can be the case
for TLM components). It means that there is a need for specification primitives which would allow order
non-determinism. Figure 4.4 shows the non-deterministic specification of the components A and B. Here,
A (resp. B) guarantees to provide (resp. assumes to get) a, b and c in any order, before startB (resp.
start). At simulation time A will produce a, b and c for B in one specific order.

Another source of over-constraining emerges due to the need to specify that some operation of a
component is repeated. The problem raises because the number of repetitions may not be statically
known. For instance, specification of A states that d should be repeated 10 times in a row (Fig. 4.3(c)).
If A produces d 11 times, it violates its guarantees. The problem can be solved, if one defines that d is
repeated several times from a certain range (see Fig. 4.4(b)). Therefore, there is a need for specification

Yuliia ROMENSKA Ph.D Thesis 67/230



4.2. Motivation for Loose-Orderings

A B

C

Bus

startB, c, b, a

d

(a) TLM virtual prototype. A sends a b, c and
startB to B, and d to C.

A guarantees:

A

1
a

2
b

3
c

4 10

d

then startB

x

(b) Specification of A

B assumes:

B

3
a

1
b

2
c

thenstart

x

(c) Specification of B

Figure 4.3 Example of over-constrained specifications for components A and B.
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Figure 4.4 Non-deterministic specifications for components A and B.

primitive which would allow number non-determinism. At simulation time the component will repeat d
one specific number of times in the defined range.

4.2.2 Robustness of the Embedded Software
Even when we define non-deterministic specifications for A and B as described above, the deterministic
SystemC scheduler (see Sec. 2.1.4.8) may not cover the possible choices well. For instance, during all run
simulations A may always provide a, b and c in this exact order, and other orders of the outputs might
not be examined. This is similar to the coverage problem involved by loose-timing specifications which
has been addressed in [Hel+06].

The coverage of loosely-orderings effects robustness of the embedded software. For instance, let assume
that the componentB (resp. D) guarantees to provide an interrupt irqB (resp. irqD) when it gets startB
(resp. startD). The order in which the component A starts B and D (see Fig. 4.5) may imply the order
in which A gets interrupts from the components. Thus, to ensure that A is robust, i.e., the component
can adequately react on the interrupts irqB and irqD, one needs to consider all possible activation orders

A
software B D

Bus
startB

startD
irqB

irqD

Figure 4.5 Robustness of the embedded software: any order of startB and startD should be examined to observe
all orders of irqB and irqD.
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of B and D. Although we do not address the coverage problem involved by loose-orderings in this work,
in Chapter 10 we will provide guidelines on writing TL models of components in such a way that each
component may produce its outputs in non-deterministic order at simulation.

4.3 Proposal

4.3.1 Loose-Orderings
To address the over-constraining issues discussed above, we introduce the notion of loose-orderings. They
allow (i) the definition of ranges of the form d[10,15] read as repeat d from 10 to 15 times in a row, (ii)
definition of fragments made of ranges that can occur in any order, (iii) the definition of loose-orderings
made of ordered sequences of fragments (notice, we call it loose-ordering because the order inside fragments
is free). For instance, one may define the loose-ordering for the component A in the following way

(
{a,b, c},∧,Non-Shuffled

)︸ ︷︷ ︸
a fragment

<

a range︷ ︸︸ ︷
d[10,15]

︸ ︷︷ ︸
a loose-ordering

It states that a, b and c all (∧) occur, in any order, and then d occurs several times in the range
[10, 15]. The meaning of Non-Shuffled, the syntax and the semantics of loose-orderings will be defined in
Section 4.4.2 below.

Loose-orderings are an intermediate form between the explicit enumeration of all total orders of names
(e.g., abcd...d, bacd...d, etc.) and any partial order (e.g., a, b, c and d in any order). The concept is
intuitive, and it seems to be adequate for industrial SystemC/TLM models (see Sec. 3.4).

4.3.2 Loose-Ordering Patterns
To facilitate specification of components, we propose a set of patterns defined on top of loose-orderings.
The patterns are defined based on the observation that most of synchronization bugs of TL models (e.g.,
see the list of bugs in Sec. 3.5) occur due to the violation of certain types of properties. The first group
of those properties ensures proper configuration of components before their start. For instance, recall our
intercom running example (see Chapter. 3). One of its (potential) malfunctions could be described as “an
unregistered user gets access to the building”. This bug is caused by the wrong synchronization of the CPU
and the IPU: the CPU does not provide the address of the analyzed image to the IPU before starting face
recognition. The synchronization bugs BS1, BS7, BS11, BS14, BS15 of our running examples defined
Section 3.5 are caused by violating this type of properties.

The second group of properties concerns relevance of computed data; they state that results of com-
putation can be accessed only after they have been computed. For instance, recall again the intercom
system. Because the CPU gets the reference image before it is actually computed by the IPU, the user
may see on the display of the intercom a salutation image addressed to another user (this is the bug BS8
from Sec. 3.5). Other examples of the violation of this type of properties are the synchronization bugs
BS9 and BS13 defined in Section 3.5.

The third (and the last) type of properties defines obligations of components. Such properties state
that when a certain condition holds, a component should fulfill its promises. This type of properties is
very common in hardware design. To enable their definition, hardware specification languages like PSL
and SVA provide the set of operators of the “implication” kind α Z⇒ β (e.g., the PSL property {a; b} Z⇒
{c; d} uses the weak suffix implication operators “ Z⇒” to state that after a and b occurring in this order,
c and then d should occur, see Sec. 2.3.2.5). The antecedent α (resp. the consequent β) of those operators
corresponds to a condition (resp. a promise of a component). For instance, when the CPU detects the
press of Button-Start (the condition), it should disable the button before starting face recognition (the
promise). Otherwise, “a user may start face recognition of either “access-denied” or salutation image”
(this is the bug BS10, see Sec. 3.5). The bugs BS1, BS2, BS3, BS4, BS5, BS11 and BS12 may appear
in the TLM virtual prototype of the intercom due to the violation of this kind of properties.

Generalizing properties of the configuration and the data relevance, we define an antecedent requirement
pattern of the form (

P � i | ∇
)

(antecedent requirement)
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Grammar Rule Constraints

a range α(R) = {n} ⊆ I ∪O
R = n[u,v] u, v ∈ N

a fragment i 6= j =⇒ α(Ri) ∩ α(Rj) = ∅,

F =
(
{R1, . . . ,Rn}, ],�

)
] ∈ {∧,∨}, � ∈ {Non-Shuffled,Shuffled}

a loose-ordering
i 6= j =⇒ α(Fi) ∩ α(Fj) = ∅

L = F1 < · · · < Fq

P = L α(P) ⊆ I ∪O

Q = L α(Q) ⊆ O

an antecedent requirement α(P) ∩ {i} = ∅
A =

(
P � i | ∇

)
i ∈ I, ∇ ∈ {Non-Repeated,Repeated}

a timed implication constraint
t ∈ N

T =
(
P =⇒ Q | t

)
Table 4.1 Abstract grammar and constraints for well-formed formulas.

where P is a loose-ordering. Intuitively it means the following: before i can occur the loose-ordering P
should have been observed. The parameter ∇ ∈ {Non-Repeated,Repeated} defines if P is repeated before
the next occurrence of i. P may define a fragment stating that the configuration data (like a, b and c of
the component B in Fig. 4.4(c)) is provided in any order; i could stand for a control input (like start of
B). The syntax and the semantics are explained in Section 4.4.3 below.

To define obligations of components, we adapt the suffix implication operator α Z⇒ β (see definition
in Sec. 2.3.2.5) to our setting as follows: the antecedent α (resp. the consequent β) is a loose-ordering
made of inputs and/or outputs (resp. only outputs) of a component. We introduce a timed implication
constraint with the following syntax(

P =⇒ Q | t
)

(timed implication constraint)

where P and Q are loose-orderings and t defines a bound. The property has the following meaning: when
P is observed, Q should be produced within t. Semantically a bound defines the maximum number of
steps which can take place before Q is produced after P (see Chapter 9). When the design is simulated
by means of any scheduler with time, a bound can be mapped to simulation time of that scheduler. The
pattern is defined in Section 4.4.4.

4.4 Definitions
We generalize the case-study properties with two patterns for: antecedent requirements and timed impli-
cation constraints. Both patterns are written on the vocabulary of the input/output interface (I,O) of the
component. The syntax is given by the abstract grammar shown in Table 4.1. The right column of the
table is the set of additional syntactic constraints defining well-formed formulas of this grammar. They
are expressed using α, which denotes the vocabulary of the respective formula, i.e, the set of interface
names (inputs or outputs) that appear in the formula. The constraints mainly state that we should not
reuse the same interface names in two ranges, or fragments, of the same property. They are needed for
the direct translation of loose-orderings into efficient SystemC monitors; the constraints are the trade-off
between the usefulness of loose-orderings and the efficiency of the monitors (see Chapter 5). All well-
formed formulas are interpreted on sequences where only the names of the root pattern appear; only one
name at a time can occur due to asynchrony of considered models. The notion of time used in the timed
implication constraint is mapped directly to simulation time of the SystemC simulation kernel.
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IPU

set/get-img-addr
set/get-img-size
set/get-gl-addr
set/get-gl-size

get-conf-val
get-ref-img

start

read-img
read-gl-img
set-irq-pos
set-irq-neg

Figure 4.6 The graphical representation of the IPU’s input/output interface. Arrow from the left (resp. to
the right) are inputs (resp. outputs). set-X (resp. get-X) stands for “read” (resp. “write”) of the IPU’s register
X; read-img (resp. read-gl-img) stands for “read image” (resp. “read image gallery”) operation; set-irq-pos (resp.
set-irq-neg) stands for “set positive (resp. negative) edge of interrupt”.

4.4.1 Input/Output Interface
The input/output interface of a component C is a pair of sets (I,O), where I is the set of inputs and
O is the set of outputs. Input is any action of other components that affects C. Output is any activity
performed by the component C and visible for other components.

For instance, consider the image processing unit (IPU) which is the part of our running example (see
Sec. 3.2.1.3). Recall, the IPU component has the set of read/write data registers img-addr, img-size,
gl-size and gl-addr; they are used to configure the IPU before the start of face recognition. The
recognition is launched by writing the control register start. To perform face recognition analysis, the
component reads images from the external memory. When face recognition terminates, the IPU sends an
interrupt through its interrupt port irq-ipu. The results of face recognition are stored into the read-only
registers conf-val and ref-img.

Figure 4.6 shows the input/output interface of the IPU component. We define it as follows. Each data
register can be either read or written by other components. Thus, we introduce one input to represent
read (resp. write) operation performed on any of the data registers of the IPU. For instance, we define
an input set-img-addr (resp. get-img-addr) to present the “read” (resp. “write”) operation for the register
img-addr4. An input start represents writing the control register start.

The outputs of the IPU represent all actions performed by the IPU while the face recognition is
running. They are: read-img (resp. read-gl-img) which corresponds to reading the analyzed image (resp.
images of the image gallery) from the external memory; set-irq-pos (resp. set-irq-neg) which represents
sending the positive (resp. negative) edge of the interrupt signal through the interrupt output port irq-ipu
of the IPU.

Definition of input/output interfaces for other components of the intercom system is defined in Sec-
tion 3.4.

4.4.2 Loose-Orderings
As Table 4.1 states, loose-orderings are made of fragments, and fragments are made of ranges. The latter
are defined as follows.
Definition 7: Range — A range R = n[u,v] denotes any sequence of k occurrences of n, n ∈ I ∪O and
k ∈ [u, v].

For instance, one may define that the IPU component repeats the read image operation (the output
read-img) several number of times in [100, 19000] using a range of the form:

read-img[100,19000].

Fragments made of ranges can have conjunctive or disjunctive, shuffled or non-shuffled semantics.
Definition 8: Shuffle of Sequences — A shuffle of two sequences s1 and s2 is a sequence s that one
can get by interleaving positions of s1 and s2 in any way [Hop+00].
Definition 9: Fragment — A fragment F =

(
{R1, . . . ,Rm}, ],�

)
, ] ∈ {∧,∨},

� ∈ {Shuffled,Non-Shuffled} is made of sequences s1, ...sm matching the corresponding ranges. If ] = ∧,
4Notice, despite the fact that the confidence value (resp. the reference image address) is the result (output) of the face

recognition, other components get it by reading the register conf-val (resp. ref-img), i.e., by providing the respective input
get-conf-val (resp. get-ref-img).
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Figure 4.7 Semantics of the antecedent requirement A = (P � i | ∇).

then all these sis should appear; if ] = ∨, at least one of these sis should appear, and possible several of
them. If � = Shuffled, then the appearing sis are shuffled; if � = Non-Shuffled, then the appearing sis
are concatenated in any order. The values of ] and � define semantics of F .

For instance, the configuration of the IPU with the image address (the input set-img-addr), the image
size (the input set-img-size), the gallery size (set-gl-size) and the gallery address (set-gl-addr) can be
defined with the fragment:(

{set-img-addr, set-img-size, set-gl-size, set-gl-addr},∧,Non-Shuffled
)
.

It states that each of the mentioned inputs should occur. Notice, shuffling here is meaningless since ranges
are trivial (they define only one occurrence of respective names).

The fragment (
{read-img[100,19000], read-gl-img[10000,2000000]},∧,Shuffled

)
states that the IPU may perform read image (read-img) and read image gallery (read-gl-img) operations
several number of times defined by the respective ranges, and the order of those read operations does not
matter.

For sake of brevity, if fragments are not shuffled (i.e., � = Non-Shuffled), below we simply denote
them as F =

(
{R1, . . . ,Rm}, ]

)
.

Definition 10: Loose-Ordering — A loose-ordering L = F1 < · · · < F` is made of sequences s1, ...s`
matching the corresponding fragments. All the sis should appear, concatenated in this exact order. Notice
we call it loose-ordering because the order inside fragments is free.

Example 4.4.1. Loose-Ordering – Consider the loose-ordering

` =
(
{n1, n2},∧

)
< n

[2,8]
3 <

(
{n4, n5},∨

)
.

It defines sequences such that: n1 and n2 come first in any order (i.e., n1 followed by n2 or the reverse);
then we have several n3 in a row (the number of occurrences of n3 is in [2, 8]); then we have either n4
or n5, or both in any order. Thus, a sequence n2n1n3n3n5 is compliant with the loose-ordering `; the
underlined letter in a sequence n2n3n4 violates ` since it occurs “too soon”, before the first fragment(
{n1, n2},∧

)
has happened. �

4.4.3 An Antecedent Requirement
The antecedent requirement defines how a component should be activated. In other words, it states an
assumption of the component about its environment.
Definition 11: Antecedent requirement — An antecedent requirement A =

(
P � i | ∇

)
, ∇ ∈

{Non-Repeated,Repeated}, means that i can occur only if P has been observed before. When∇ = Repeated
the condition has to be repeated: each occurrence of i should be preceded by its “own” occurrence of P, i.e.
an occurrence that happened since the last i (see Fig. 4.7(a)). When ∇ = Non-Repeated one occurrence
of P is enough to validate all the further occurrences of i (Fig. 4.7(b)).

Notice, the loose-ordering P can occur (potentially) several times before the respective occurrence of
i. In this case, if A has a non-repeated context (∇ = Non-Repeated), the very first occurrence of P is
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Figure 4.8 Elaborated semantics of A = (P � i | ∇).

taken into account (see Fig. 4.8(b)); if A has a repeated context (∇ = Repeated), the very first occurrence
of P since the last i is taken into account (see Fig. 4.8(a)).

As it is shown in Table 4.1, the name i is an input (i ∈ I) and a vocabulary of the loose-ordering P
is such that α(P) ∩ i = ∅. Notice, names of α(P) may also occur before, after or between occurrences of
P and i. The loose-ordering P may depend on outputs of a specified component (e.g., see Examples 4.4.4
and 4.4.6 below). We give below examples of the property with various contexts. The examples are
inspired by our running example. The full list of defined antecedent properties for the components of the
intercom system can be found in Section 3.4 of Chapter 3. In Chapter 7 it is shown how the definition of
those properties helps detect and localize the synchronization bugs listed in Section 3.5.

Example 4.4.2. Simple Non-repeated Requirement – Consider the IPU component with the
input/output interface shown in Figure 4.6. Any of the component’s read-write data registers (e.g.,
img-add) can be read only after its value has been set (written) at least once (and there is no need for
a repetition). Recall, the input set-img-addr (resp. the output get-img-addr) of the IPU’s input/output
interface corresponds to “read” (resp. “write”) of the register img-addr. Thus, the stated above property
can be formulated as an antecedent requirement:(

set-img-addr� get-img-addr | Non-Repeated
)

�

Example 4.4.3. Simple Repeated Requirement – To ensure that the user gets correct the result of
face recognition, one needs to provide the new image address to the IPU before each start of the recognition
analysis: (

set-img-addr� start | Repeated
)

�

Example 4.4.4. Simple Repeated Requirement – The confidence value c, which is the result of face
recognition, stored in the “read-only” register conf-val, can be read (the input get-conf-val) only after
the respective face recognition terminates. Face recognition terminates when the IPU sends an interrupt
(i.e., produces the output set-irq-pos). Thus, the property is formulated as an antecedent requirement
with a repeated context: (

set-irq-pos� get-conf-val | Repeated
)

This property ensures that the environment using the IPU gets the relevant value of c. Notice, in this case
the right part of the property depends on the output of the component. Also notice that such formulation
of the property means that the result can be read only once. �

Example 4.4.5. Non-Repeated Requirement with a Conjunction – Before face recognition is
started, the IPU needs to be provided at least once with the address of the image to be analyzed, the
size of the image, the size of the gallery, the address of the gallery, i.e., the values of the respective data
registers should be defined. The property is an antecedent requirement:((

{set-img-add, set-img-size, set-gl-size, set-gl-addr},∧
)
� start | Non-Repeated

)
.

�
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time (occurrences of names)
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Figure 4.9 Semantics of a timed implication constraint T = (P =⇒ Q | t).
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Figure 4.10 Ignoring occurrences of P: the second, the third and the fifth occurrences of P are ignored because
they overlap with Q.

Example 4.4.6. Non-repeated Requirement with a Disjunction – The CPU can get interrupts
from the LCDC, the image sensor SEN, the GPIO, the IPU and the timer TMR1. To start getting
interrupts, the CPU has to activate at least one of those components before. The constraint is of the
form: ((

{start-LCDC, act-shttr-SEN, start-GPIO, start-IPU, start-TMR1},∨
)

� set-irq-pos | Non-Repeated
)
,

(4.1)

where the start-Xs and act-shttr-SEN are the outputs of the CPU, and set-irq-pos is one of its inputs5. �

4.4.4 A Timed Implication Constraint
Properties of the “timed implication constraint” type define obligations (guarantees) of a component,
which must be fulfilled when certain conditions hold. The pattern is adaptation of the suffix implication
operator available in hardware specification languages (see Sec. 2.3.2.5) to loose-orderings.
Definition 12: Timed implication constraint — A timed implication constraint
T =

(
P =⇒ Q | t

)
means that, whenever P has been observed, Q should occur, and should have fin-

ished before t time units have elapsed since the end of P (see Fig. 4.9). This pattern is implicitly of the
“repeated” kind: when P has been observed, Q should occur, and if a new occurrence of P is observed, a
new occurrence of Q should occur.

The loose-ordering P can be seen as a condition which triggers the production of a component’s outputs
with respect to the loose-ordering Q. Since both P and Q define sequences of names, we need to define
semantics of the pattern when occurrences of P and Q overlap. Overlapping may occur due to shared
names of P and Q (see Table 4.1), and/or because of names of P which may happen while Q is taking
place. We decide that occurrences of P which take place either while occurrence of Q (e.g., see 2 and
3 in Fig. 4.10), or in between another occurrence of P and the respective occurrence of Q (e.g., see 5 )
are ignored. That is, Q cannot be restarted unless it terminates.

We give below examples of timed implication constraints defined for the IPU and the CPU (the
embedded software). The full list of the properties is provided in Section 3.4.

Example 4.4.7. – If face recognition starts properly with the defined image address, the IPU reads the
analyzed image and images from the external gallery, and then sends an interrupt (the positive edge of
the interrupt followed by the negative edge). All outputs must be produced within 500 nanoseconds; it
models the duration taken by face recognition. The timed implication constraint specifying the behavior

5Here, set-irq-pos is the input of the CPU, because it represents interrupts the CPU gets from other components. One
could notice that the IPU has the output of the same name (see Example 4.4.4). For the IPU the output set-irq-pos represents
interrupts sent by the component itself. For the full list of inputs/outputs of the components of the intercom system see
Section 3.4.
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Language of Loose-Orderings

Strict Alternation

Non-Shuffling

Figure 4.11 The subset of the loose-ordering language encoded into SERE and LTL (the lined area).

of the IPU is the following:(
set-img-addr < start =⇒

(
{read-img[100,19000], read-gl-img[10000,2000000]},∧,Shuffled

)
< set-irq-pos < set-irq-neg | 500ns

)
�

Example 4.4.8. – When the system is launched and the CPU is started (the input start), the embedded
software configures the timer TMR1 and the LCDC with the time scale (the output set-t-scale-TMR1)
and the address of the buffer (the output set-buff-addr-LCDC) respectively, and reads the address of the
SEN’s buffer (the output get-buff-addr-SEN). Then the software starts the image sensor, the LCDC and
the GPIO in any order. The described initialization should not take more that 200 nanoseconds:(

start =⇒
(
{set-t-scale-TMR1, set-buff-addr-LCDC, get-buff-addr-SEN},∧

)
<
(
{act-shttr-SEN, start-LCDC, start-GPIO},∧

)
| 200ns

)
�

4.5 Encoding Loose-Ordering Properties
In this section, we show one possible encoding of loose-ordering properties using SERE and LTL operators.
This encoding is used in Chapter 7 in order to compare efficiency of our SystemC monitors for loose-
orderings (see Chapter 6) with monitors available for SERE and LTL fragments of PSL [PF08; FP10;
BA14].

4.5.1 The Encoded Subset
We provide SERE and LTL encoding for the subset of the loose-ordering language which has the following
characteristics:

1. For A =
(
P � i | ∇

)
(resp. T =

(
P =⇒ Q | t

)
) only one occurrence of P can take place before

the respective occurrence of i (resp. Q). Moreover, names of α(P) (resp. α(Q)) do not occur before
or after occurrences of P (resp. Q). The syntax of T is such that the vocabularies of P and Q are
disjoint, i.e., α(P) ∩ α(Q) = ∅. The semantics of T is such that P and Q do not overlap. We refer
to this subset as Strict Alternation (see Fig. 4.11).

2. Neither A nor T has fragments with shuffled semantics � = Shuffled. In Figure 4.11 this subset is
referred to as Non-Shuffling.

The defined subset of the loose-ordering language has been chosen because its encoding into SERE and
LTL is relatively easy and leads to the minimum explosion of the size of obtained formulas (Sec. 4.5.2)
or their vocabularies (Sec. 4.5.3). Moreover, the subset has (very) intuitive semantics, thus, it is easy to
check correctness of the encodings. Although we carefully examine only loose-ordering with non-shuffled
fragments, here we also provide the idea of the encoding of fragments with shuffled semantics into SERE
and LTL. Notice, we do not prove formally the correctness of the proposed encoding. Our goal is to
show that encoding of order non-determinism into specification languages based on regular expressions
and linear temporal logic is not very intuitive, and due to that can be hard.
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4.5.2 Encoding Using SERE Operators
Consider the antecedent requirement A =

(
P � i | ∇

)
and the timed implication constraint T =

(
P =⇒

Q | t
)
. The simplest translation of A and T consists in enumerating all total orders compatible with the

loose-orderings P and Q as it is defined in Section 4.4.2.

4.5.2.1 Encoding Loose-Orderings

Range A range R = n[u,v] is encoded by the explicit enumeration of all possible sequences of n:

{ n[∗u] | · · · | n[∗v] } (4.2)

Here, “[∗i]” is the bounded ;-iteration operator, and “|” is the union operator (see definitions in Sec. 2.3.2.4).
Notice, n[∗i] is a syntactic sugar for

n; n; . . . ; n︸ ︷︷ ︸
i times

(“;” stands for concatenation). A range R = n[u,v] defines (v − u+ 1) sequences of n.

Fragment The encoding of a fragment F =
(
{R1, . . . ,Rm}, ],Non-Shuffled

)
depends on ]. If ] = ∧ one

needs to enumerate all possible permutations of the length m of all sequences defined by the ranges Rjs.
For instance, for a fragment with two ranges F =

(
{R1,R2},∧,Non-Shuffled

)
the encoding is of the form{

{sequences of R1}; {sequences of R2} |
{sequences of R2}; {sequences of R1}

}
Here, “{sequences of Ri}; {sequences of Rj}” is a Cartesian product of sets, i.e., all sequences of Ri are
concatenated with all sequences of Rj .

If ] = ∨ one needs to enumerate all possible permutations of any length in [1,m] of all sequences
defined by the ranges Rjs. For example, a fragment F =

(
{R1,R2},∨,Non-Shuffled

)
can be represented

as {
{sequences of R1} |
{sequences of R2} |
{sequences of R1}; {sequences of R2} |
{sequences of R2}; {sequences of R1}

}
Let F =

(
{R1, . . . ,Rm}, ],Non-Shuffled

)
, and for any j ∈ [1,m], Rj = n[uj ,vj ]. The total number of

sequences defined by F when ] = ∧ is defined by Formula 4.3:

m!

m∏
j=1

(vj − uj + 1) (4.3)

Here, m! defines the number of possible permutations of the Rjs, and the product defines the number
of sequences obtained by concatenating all sequences of the Rjs in one specific order, i.e., a Cartesian
product of sets. The total number of sequences compatible with a fragment F of the disjunctive semantics
(] = ∨) is defined by Formula 4.4:

m∑
k=1

[
m!

(m− p)!

p∏
j=1

(vpj − u
p
j + 1)

]
(4.4)

Here, the fraction defines the number of permutations of p among m ranges of the fragment F , and vpj ,
upj are parameters of those p ranges, for all j ∈ [1, p]. (The formula m!

(m−p)! defines p-permutations of m
elements [Fel68].)
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Loose-Ordering The encoding of a loose-ordering L = F1 < · · · < F` is the set of all sequences made
by concatenating all sequences of all the fragments Fks in the order defined by L:{

{sequences of F1}; {sequences of F2}; . . . ; {sequences of F`}
}

As before, “{sequences of Fk}; {sequences of Fk+1}” defines a Cartesian product of the respective
sets. Let for all k ∈ [1, `], Fk =

(
{Rk1 , . . . ,Rkmk}, ],Non-Shuffled

)
, and for any j ∈ [1,mk], Rkj = n[u

k
j ,v

k
j ].

When all the Fks have the conjunctive semantics (] = ∧), the total number of sequences defined by the
loose-ordering L is computed with Formula 4.5:

∏̀
k=1

[
mk!

mk∏
j=1

(vkj − ukj + 1)

]
(4.5)

Here, the component in parentheses is the number of sequences of a fragment Fk (for any k ∈ [1, `]) with
] = ∧ (see Formula 4.3). This component should be replaced by Formula 4.4, to compute the number of
sequences of the loose-ordering L with all the Fks having ] = ∨.

Example 4.5.1. – Consider a loose-ordering ` =
(
{n[1,2]1 , n

[3,4]
2 },∧,Non-Shuffled

)
< n3. It is made of two

fragments. The encoding of the first fragment
(
{n[1,2]1 , n

[3,4]
2 },∧,Non-Shuffled

)
is the SERE Formula 4.6:{

n1[∗1];n2[∗3] | n1[∗1];n2[∗4] | n1[∗2];n2[∗3] | n1[∗2];n2[∗4] |
n2[∗3];n1[∗1] | n2[∗3];n1[∗2] | n2[∗4];n1[∗1] | n2[∗4];n1[∗2]

} (4.6)

The encoding of the second fragment n3 is trivial. The encoding of the loose-ordering of ` is obtained by
concatenating all sequences defined by the SERE Formula 4.6 with n3 (e.g., {n1[∗1];n2[∗3];n3}). �

4.5.2.2 Encoding Loose-Ordering Patterns

Consider the antecedent requirement A =
(
P � i | ∇

)
. We encode the loose-ordering P as it is described

in Section 4.5.2.1 above. When A has a non-repeated context (∇ = Non-Repeated), the encoding of the
pattern is obtained by concatenating all sequences of P with i:{

{sequences of P}; {i}
}

To encode the antecedent requirement with a repeated context (∇ = Repeated), one may use a Kleene
star: {

{sequences of P}; {i}
}

[∗]

It reflects our assumption that only one P occurs before respective occurrence of i (i.e., P and i alternate
starting from P). The set of sequences of the timed implication constraint
T =

(
P =⇒ Q | t

)
is defined in a similar way. One needs to concatenate all sequences of P with

all sequences of Q in this order, and apply a Kleene star:{
{sequences of P}; {sequences of Q}

}
[∗]

Here, the Kleene star encodes alternation of P and Q starting from P. The encoding is possible due to
the assumptions we made in Section 4.5. Notice that we do not encode t.

4.5.2.3 The Number of Operators in SERE Encodings

Since the proposed encoding explicitly enumerates all total orders, the use of regular expressions causes
a combinatorial explosion of the length (number of operators) of the SERE formula. The number of
SERE operators needed to encode the antecedent requirement A =

(
P � i | ∇

)
(resp. the timed

implication constraint T =
(
P =⇒ Q | t

)
) is proportional to the number of sequences compatible with

A (resp. T ). Thus, when the loose-ordering P of A is such that P = F1 < · · · < F`, for all k ∈ [1, `]
Fk =

(
{Rk1 , . . . ,Rkmk},∧,Non-Shuffled

)
, and for all j ∈ [1,mk], Rkj = n[uj ,vj ] the number of operators is
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approximately equal to Formula 4.7.

∏̀
k=1

[
mk!

mk∏
j=1

(vkj − ukj + 1)

]
(4.7)

Example 4.5.2. – To get an intuition about the number of operators defined by Formula 4.7, consider
a loose orderings

` = n
[100,19000]
1 < n

[100,19000]
2 <

(
{n3, n4, n5, n6},∧,Non-Shuffled

)
< n7.

It is inspired by the specification of the CPU (see the property T8-CPU in Sec. 3.4.1.2). The length of
the encoding of ` into SERE is approximately equal to:

≈ (19000− 99)× (19000− 99)× 4!× 1 = 189012 × 24 = 8.573.947.224 SERE operators.
�

4.5.2.4 Remark: When Ranges are Shuffled

In Section 4.5.2.3 we provided the approximate length of the SERE encoding for a loose-ordering L =
F1 < · · · < F` under assumption that ranges of the fragments Fks are not shuffled. The encoding of a
fragment F =

(
{R1, . . . ,Rm}, ],Shuffled

)
with shuffled ranges and the conjunctive semantics ] = ∧ (resp.

the disjunctive semantics ] = ∨) is the set of all sequences obtained by (i) concatenating all sequences of
all (resp. any p ∈ [1,m]) ranges Rjs; (ii) enumerating all (different) permutations of the letters for all
those sequences. Obviously, shuffling of ranges leads to more explosive SERE encoding than the encoding
defined in Section 4.5.2.3. Although shuffle of regular languages is defined [Hop+00; EPH06], to the
best of our knowledge the respective constructs are not supported by any of the existing specification
languages.

Example 4.5.3. – Consider a shuffled fragment
(
{n1, n32},∧,Shuffled

)
. It defines that exactly one

occurrence of n1 and exactly three occurrences of n2 should occur; the order of occurrences is not fixed.
To encode the fragment into SERE, one needs to enumerate all possible permutations of the occurrences
of n1 and n2: {

n1;n2;n2;n2 | n2;n1;n2;n2 | n2;n2;n1;n2 | n2;n2;n2;n1
}
.

�

4.5.3 Encoding Using LTL Operators
The encodings of the antecedent requirement A =

(
P � i | ∇

)
and the timed implication constraint

T =
(
P =⇒ Q | t

)
into LTL are Boolean combinations of LTL formulas. We use LTL operators always

“�”, until “ U ”, next “#” and Boolean operators “∧”, “∨”, “¬”, “→” (see definitions in Sec. 2.3.2). The
purpose of this section is to show that it is feasible to express loose-orderings in temporal logic, although
this task is not trivial. Since conjunction and nesting of temporal formulas is not very intuitive, we tested
our LTL encodings by (i) translating them into equivalent Büchi automata, (ii) translating obtained Büchi
automata into monitors of the respective LTL formulas. Both steps were performed using the SPOT tool
(see below).

4.5.3.1 Background Note: SPOT Tool

SPOT is a C++11 library for LTL, ω-automata manipulation and model checking [DLP04; DL+16].
ω-automata recognize infinite sequences. They have states and transitions. A run of the automaton is
accepting if it satisfies the automaton’s acceptance condition. The simplest kind of ω-automata is Büchi
automata. Their acceptance condition states that a run is accepting if and only if it visits some accepting
state infinitely often. For instance, Figure 4.12 shows a Büchi automaton as it is represented in SPOT.
The automaton accepts sequences such that at least two consecutive occurrences of b∧¬a happen infinitely
often. Its labels are Boolean formulas.

SPOT translates temporal formulas into equivalent Büchi automata. Recall, a temporal formula
is constructed by means of temporal operators (always “�”, eventually “♦”, etc.), Boolean operators
(conjunction “∧”, disjunction “∨”, etc.), SERE operators (concatenation “;”, union “|”, etc.) and SERE-
LTL operators (suffix implications “ 7→” and “ Z⇒”). Their definition is provided in Section 2.3.2 of the
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s0 s1
b ∧ ¬a

b ∧ ¬a

a ∧ ¬b b ∧ ¬a

Figure 4.12 Example of Büchi automaton defined in SPOT. A state marked with an arrow is initial, a double-
circled state is accepting. Labels are Boolean formulas.

background chapter. The translation performed by SPOT relies on the results of [McN06; LP85; Var96;
Cou99]. When a Büchi automaton for a formula φ is obtained, the tool may produce a monitor of φ, i.e.,
a finite state machine which accepts all finite prefixes compatible with φ. To define temporal formulas,
SPOT provides its own syntax [DL16]. The SPOT’s operators G, F, U, W and X correspond to the PSL’s
operators always, eventually!, until!, until and next! respectively. The syntax of other operators
is as it is defined for PSL6.

Example 4.5.4. – Consider the LTL formula

φ = �
(
¬(a ∧ b)

)
∧�

(
a→ #(¬a U b)

)
∧�

(
b→ #(¬b U a)

)
∧
(
¬b U a

)
It defines that (i) a and b never occur simultaneously, (ii) a and b alternate starting from a. Figure 4.13
provides 1 definition of φ in the SPOT syntax, 2 a Büchi automaton equivalent to φ and 3 a corre-
sponding SPOT monitor. The monitor 3 recognizes finite prefixes of sequences which satisfy φ. It has
semantics of a recognizer for a regular language, i.e., its missing transitions are interpreted as errors. For
instance, occurrence of a when the monitor is in s1 is an error. �

1

2

3

G(!(a & b)) & G(a -> X(!a U b)) & G(b -> X(!b U a)) & (!b U a)

s0 s1 s2 s3

s0 s1

a ∧ ¬b ∧ ¬else b ∧ ¬a ∧ ¬else b ∧ ¬a ∧ ¬else

a ∧ ¬b ∧ ¬else

else ∧¬a ∧ ¬belse ∧¬a ∧ ¬b

a ∧ ¬b ∧ ¬else

b ∧ ¬a ∧ ¬else

else ∧¬a ∧ ¬b else ∧¬a ∧ ¬b

else ∧¬a ∧ ¬b

else ∧¬a ∧ ¬b

Figure 4.13 Example of a Büchi automaton and a monitor produced by SPOT for LTL formula. else stands for
any name which is not in {a, b}.

4.5.3.2 Encoding Loose-Ordering Patterns

Consider the antecedent requirement A =
(
P � i | ∇

)
and the timed implication constraint T =

(
P =⇒

Q | t
)
. Let P and Q be F1 < · · · < Fp. Recall, we encode the subset of the loose-ordering language

which (i) satisfies the condition of the strict alternation of P and i for A, and P and Q for T as defined in
Section 4.5.1, (ii) does not contain fragments with shuffled semantics. The considered subset of the loose-
ordering language allows us to consider both A =

(
P � i | ∇

)
and T =

(
P =⇒ Q | t

)
as a loose-ordering

L = F1 < · · · < F` < F ′ such that the last marked fragment is F ′ = i for A, and F ′ coincides with the
last fragment of Q for T . Repeating L we reproduce the repeated nature of A and T respectively. The
encoding of the antecedent requirement A with a non-repeated context is the encoding of one occurrence
of L.

6The list of PSL operators is provided in Table 2.1 of Section 2.3.2.

Yuliia ROMENSKA Ph.D Thesis 79/230



4.5. Encoding Loose-Ordering Properties

The idea of expressing loose-orderings in LTL is the following. To encode A and T of the repeated
kind, we consider the last fragment F ′ of L = F1 < · · · < F` < F ′ as a resetting point: (i) F ′ should
alternate with occurrences of all other fragments Fks which take place as it is specified by L, (ii) none of
the Fks can occur twice unless occurrence of F ′. To encode A with a non-repeated context we consider F ′
as a delimiter: only before F ′ all the Fks should occur in the specified order, after F ′ occurrences of the
names of the Fks are unrestricted. To encode order of the Fks, we define LTL formulas which constrain
occurrences of each name of the fragments, and take conjunction of those formulas.

Dealing with Ranges LTL lacks counting facilities [Wol81]. Provided that ranges are not shuffled, one
way to encode ranges is to use a big disjunction of nested “next” operators encoding all sequences defined
by ranges. For instance, the encoding of the range n[2,4] defining sequences of consecutive occurrences of
the name n of the length 2, 3 or 4 into temporal logic by means of nested next operators “#” can be done
as follows: (

n ∧#n
)

︸ ︷︷ ︸
2 occurrences

∨
(
n ∧#(n ∧#n)

)
︸ ︷︷ ︸

3 occurrences

∨
(
n ∧#

(
n ∧#(n ∧#n)

))
︸ ︷︷ ︸

4 occurrences

This encoding is as explosive as the encoding into regular expressions since all possible sequences are
expressed explicitly (see Sec. 4.5.2). Moreover, it is hard to ensure that such LTL formulas have their
intended semantics, specially when conjunction of several of them is taken.

We propose an alternative approach to deal with ranges. The approach relies on the use of a lexical
analyzer which treats different sequences of consecutive occurrences of a range’s name as new elements.
For instance, the range n[1,2] defines sequences n and nn, i.e., n[1,2] = {n, nn}. Let n1 stands for the
sequence n, and let n2 stands for the sequence nn. When the lexical analyzer detects n (resp. nn) it
returns the name n1 (resp. n2). Thus, n[1,2] = {n1, n2}. In the sequel we use renaming of sequences such
that a sequence of p occurrences of n corresponds to a new name np. Thus, the new vocabulary of n[u,v]
is α̂ = {nu, . . . , nv} (instead of α = {n}), and n[u,v] = {nu, . . . , nv}.

The unrolling of ranges causes explosion of the size of vocabulary. For instance, a new vocabulary
of a range n[100,19000] after introduction of new names is of the size 19000 − 100 + 1 = 18901. In the
general case, when a range is R = n[u,v], the size of a new vocabulary α̂(R) is defined by the formula
|α̂(R)| = v − u+ 1.

Occurrences of names of α̂(R) are mutually exclusive: if a sequence of 5 occurrences of n takes place
(i.e, a name n5 ∈ α̂(R) occurs), neither a sequence of 4 occurrences (n4 ∈ α̂), nor of 6 occurrences (n6 ∈ α̂)
can take place.

Encoding Repeated Loose-Ordering We consider a loose-ordering L = F1 < · · · < F` < F ′ such
that ∀k ∈ [1, `],Fk =

(
{Rk1 , . . . ,Rkmk}, ],Non-Shuffled

)
and F ′ =

(
{R′1, . . . ,R′m′}, ],Non-Shuffled

)
. All

ranges of the fragments of L are unrolled as described above. The vocabulary of L (resp. F , R) is α̂(L)
(resp. α̂(F), α̂(R)). The encoding of the repetition of L is the conjunction of LTL formulas constraining
occurrences of the individual names of α̂(L). The formulas are listed and explained below.

Exclusiveness: due to asynchrony of TL models, none of the names of α̂(L) should occur simulta-
neously (Formula 4.8). For example, one may express mutual exclusiveness of names a and b by the LTL
formula:

�
(
¬(a ∧ b)

)
,

read as “never a and b at the same time”.∧
∀nx,ny∈α̂(L): nx 6=ny

(
�
(
¬(nx ∧ ny)

))
(4.8)

Notice, Exclusiveness is implicitly assumed for all the formulas introduced in the sequel. The
following two formulas are constraints on the occurrences of names of ranges of different fragments of L.

Range: only one name of a range Rkj (for k ∈ [1, `], for j ∈ [1,mk]) can occur before each occurrence
of the fragment F ′ (its names). The order relation between the occurrences of names makes sense since
we assume that names do not occur simultaneously. If the semantics of F ′ is conjunctive (] = ∧), the
constraint is encoded by Formula 4.9. If the semantics of F ′ is disjunctive (] = ∨), the constraint is
encoded by Formula 4.10. Formula 4.9 (resp. Formula 4.10) for each ordered pair of names nx, ny
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(nx 6= ny) of a range Rkj states that always if nx occurs, then ny does not occur unless at least one name
nz per range of the fragment F ′ (resp. at least one name of the fragment F ′) occurs.∧

k∈[1,`], j∈[1,mk], i∈[1,m′]
∀nx,ny∈α̂(Rk

j ): n
x 6=ny

(
�
(
nx →

( ∨
∀nz∈α̂(R′i)

(¬ny U nz)
)))

(4.9)

∧
k∈[1,`], j∈[1,mk]

∀nx,ny∈α̂(Rk
j ): n

x 6=ny

(
�
(
nx →

( ∨
i∈[1,m′]
∀nz∈α̂(R′i)

(¬ny U nz)
)))

(4.10)

RangeF ′: at most one name per range of the reset fragment F ′ should occur before all the fragments
Fks (for k ∈ [1, `]). The constraint is encoded by Formula 4.11. Here, the first (resp. second) big conjunct
is over all Fks which have the conjunctive (resp. disjunctive) semantics ] = ∧ (resp. ] = ∨). It states that
at most one name per range of F ′ should occur before the names of all ranges (resp. at least one range)
of Fks.

∧
i∈[1,m′]

∀nx,ny∈α̂(R′i): n
x 6=ny

k∈[1,`] such that for Fk ]=∧
j∈[1,mk]

(
�
(
nx →

( ∨
∀nz∈α̂(Rk

j )

(¬ny U nz)
)))

∧
∧

i∈[1,m′]
∀nx,ny∈α̂(R′i): n

x 6=ny

k∈[1,`] such that for Fk ]=∨

(
�
(
nx →

( ∨
j∈[1,mk]

∀nz∈α̂(Rk
j )

(¬ny U nz)
))) (4.11)

Notice, the constraints Range and RangeF ′ are symmetric.

MaxOne: names of the fragments Fks can occur at most once before each occurrence of the fragment
F ′ (its names). If F ′ has the conjunctive (resp. disjunctive) semantics, then the names of Fks should
occur at most once before occurrences of the names of all ranges (resp. at least one range) of F ′. The
constraint is encoded by Formula 4.12 (resp. Formula 4.13).∧

k∈[1,`], ∀nx∈α̂(Fk)
i∈[1,m′]

(
�
(
nx → #

( ∨
∀nz∈α̂(R′i)

(¬nx U nz)
)))

(4.12)

∧
k∈[1,`], ∀nx∈α̂(Fk)

(
�
(
nx → #

( ∨
i∈[1,m′], ∀nz∈α̂(R′i)

(¬nx U nz)
)))

(4.13)

The following two formulas Order and OrderF ′ encode the order of fragments of the loose-ordering
L = F1 < · · · < F` < F ′.

Order: if the fragment Fk has started (i.e., its names occur), the preceding fragment Fk−1 has lost
its turn and cannot occur unless the resetting fragment F ′ occurs. If the semantics of F ′ is conjunctive
(resp. disjunctive), then the names of Fk−1 should not occur unless the names of all ranges (resp. at least
one range) of F ′ occur. The constraint is encoded by Formula 4.14 (resp. Formula 4.15).∧

k∈[2,`], i∈[1,m′]
∀nx∈α̂(Fk)
∀ny∈α̂(Fk−1)

(
�
(
nx →

( ∨
∀nz∈α̂(R′i)

(¬ny U nz)
)))

(4.14)

∧
k∈[2,`]

∀nx∈α̂(Fk)
∀ny∈α̂(Fk−1)

(
�
(
nx →

( ∨
i∈[1,m′]
∀nz∈α̂(R′i)

(¬ny U nz)
)))

(4.15)
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OrderF ′: if the fragment F ′ has started (i.e., its names occur), the preceding fragment F` has lost its
turn and cannot occur unless the fragment F1 occurs. This constraint is symmetric to Order. Its LTL
encoding is defined by Formula 4.16 (resp. Formula 4.17) when the semantics of F1 is conjunctive (resp.
disjunctive). Notice, the proposed encoding can be applied to a loose-ordering which has at least three
fragments. ∧

∀nx∈α̂(F ′)
∀ny∈α̂(F`)

j∈[1,m1]

(
�
(
nx →

( ∨
∀nz∈α̂(R1

j )

(¬ny U nz)
)))

(4.16)

∧
∀nx∈α̂(F ′)
∀ny∈α̂(F`)

(
�
(
nx →

( ∨
j∈[1,m1]

∀nz∈α̂(R1
j )

(¬ny U nz)
)))

(4.17)

The constraints FirstF ′ and AfterF ′ define the alternation of the ordered fragments F1 < · · · < F`
and the resetting fragment F ′.

FirstF ′: the fragment F ′ can occur for the first time only after all the fragments Fks were observed.
The constraint is encoded by Formula 4.18. Here, the first big conjunct states that the names of F ′ should
not occur before the names of all ranges of the fragments Fks with the conjunctive semantics (] = ∧)
occur. The second big conjunct states that the names of F ′ should not occur before the names of at least
one range per Fk with the disjunctive semantics (] = ∨) occur.

∧
∀nx∈α̂(F ′)

k∈[1,`] such that for Fk ]=∧
j∈[1,mk]

( ∨
∀ny∈α̂(Rk

j )

(¬nx U ny)
)

∧
∧

∀nx∈α̂(F ′)
k∈[1,`] such that for Fk ]=∨

( ∨
j∈[1,mk]

∀ny∈α̂(Rk
j )

(¬nx U ny)
) (4.18)

AfterF ′: the fragments Fks should be observed before each occurrence of the fragment F ′. The
constraint is encoded by Formula 4.19. Here, the first big conjunct states that the names of F ′, when
they occur, should not be repeated unless the names of all ranges of Fks with ] = ∧ occur. The second
big conjunct states that the names of F ′, when they occur, should not be repeated unless the names of
at least one range per fragment Fk with the disjunctive semantics (] = ∨) occur.

∧
∀nx∈α̂(F ′)

k∈[1,`] such that for Fk ]=∧
j∈[1,mk]

(
�
(
nx → #

( ∨
∀ny∈α̂(Rk

j )

(¬nx U ny)
)))

∧
∧

∀nx∈α̂(F ′)
k∈[1,`] such that for Fk ]=∨

(
�
(
nx → #

( ∨
j∈[1,mk]

∀ny∈α̂(Rk
j )

(¬nx U ny)
))) (4.19)

The LTL encoding of A with a repeated context ∇ = Repeated is Conjunction 4.20. The LTL encoding
of T is Conjunction 4.21. Here, the conjuncts represent constraints introduced thus far. Notice, for the
encoding of A we do not use conjuncts RangeF ′ and OrderF ′ because the fragment F ′ = i is trivial.

Exclusiveness ∧ MaxOne ∧ Range ∧ Order ∧ FirstF ′ ∧ AfterF ′ (4.20)
Exclusiveness ∧MaxOne ∧Range ∧Order ∧RangeF ′ ∧OrderF ′ ∧ FirstF ′ ∧AfterF ′

(4.21)
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Encoding One Occurrence of Loose-Ordering To encode the antecedent requirement A =
(
P �

i | Non-Repeated
)
with a non-repeated context into LTL (i.e., to encode one occurrence of L = F1 < · · · <

F` < F ′ with F ′ = i being a delimiter), one needs to state that (i) the Fks should occur only once in a
defined order before the first occurrences of F ′ = i; (ii) after the first occurrence of F ′ the names of L
can occur in any order. For the names of L as before we apply Exclusiveness and FirstF ′. Since L is
non-repeated, Fks are not required to occur before each occurrence of F ′, i.e., AfterF ′ is omitted. The
constraints Range, MaxOne and Order are modified as explained below.

RangeNR: 7 only one name of a range Rkj (for k ∈ [1, `], for j ∈ [1,mk]) can occur before the first
occurrence of F ′ = i, and after the occurrence of i the names of ranges can occur in any order. The
constraint is encoded by Formula 4.22.∧

k∈[1,`], j∈[1,mk]

∀nx,ny∈α̂(Rk
j ): n

x 6=ny

((
nx → (¬ny U i)

)
U i
)

(4.22)

MaxOneNR: the fragments Fks (their names) can occur only once before the first occurrence of
F ′ = i, and after the first occurrence of i they can occur in any order (Formula 4.23).∧

k∈[1,`], ∀nx∈α̂(Fk)

((
nx → #(¬nx U i)

)
U i
)

(4.23)

OrderNR: if the fragment Fk has started (i.e., its names occur), the preceding fragment Fk−1 has
lost its turn and cannot occur unless the resetting fragment F ′ = i occurs for the first time; after the
occurrence of i the fragments Fks can occur in any order (Formula 4.24).∧

k∈[2,`]
∀nx∈α̂(Fk), ∀ny∈α̂(Fk−1)

((
nx → (¬ny U i)

)
U i
)

(4.24)

The LTL encoding of A with a non-repeated context ∇ = Non-Repeated is Conjunction 4.25.

Exclusiveness ∧ MaxOneNR ∧ RangeNR ∧ OrderNR ∧ FirstF ′ (4.25)

Example 4.5.5. LTL Encoding of an Antecedent Requirement – Consider an antecedent re-
quirement

A =
((
{a, b[1,2]},∧,Non-Shuffled

)
<
(
{c, d},∨,Non-Shuffled

)
� i | ∇

)
.

Before encoding the property into LTL, let remove the range b[1,2] by introducing new names b1 and b2.
The new vocabulary is α̂(A) = {a, b1, b2, c, d, i}. The LTL encoding of the property is the conjunction of
the following formulas:

�
(
¬(a ∧ b1)

)
∧�

(
¬(a ∧ b2)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ d)

)
(A-Exclusiveness)

∧�
(
¬(a ∧ i)

)
∧�

(
¬(b1 ∧ b2)

)
∧�

(
¬(b1 ∧ c)

)
∧�

(
¬(b1 ∧ d)

)
∧�

(
¬(b1 ∧ i)

)
∧�

(
¬(b2 ∧ c)

)
∧�

(
¬(b2 ∧ d)

)
∧�

(
¬(b2 ∧ i)

)
∧�

(
¬(c ∧ d)

)
∧�

(
¬(c ∧ i)

)
∧�

(
¬(d ∧ i)

)
�
(
a→ #(¬a U i)

)
∧�

(
b1 → #(¬b1 U i)

)
∧�

(
b2 → #(¬b2 U i)

)
(A-MaxOne)

∧�
(
c→ #(¬c U i)

)
∧�

(
d→ #(¬d U i)

)
7“NR” stands for “Non-Repeated”
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((
a→ #(¬a U i)

)
U i
)
∧
((
b1 → #(¬b1 U i)

)
U i
)
∧ (A-MaxOneNR)((

b2 → #(¬b2 U i)
)
U i
)
∧
((
c→ #(¬c U i)

)
U i
)
∧
((
d→ #(¬d U i)

)
U i
)

�
(
b1 → (¬b2 U i)

)
∧�

(
b2 → (¬b1 U i)

)
(A-Range)((

b1 → (¬b2 U i)
)
U i
)
∧
((
b2 → (¬b1 U i)

)
U i
)

(A-RangeNR)

�
(
c→ (¬a U i)

)
∧�

(
c→ (¬b1 U i)

)
∧�

(
c→ (¬b2 U i)

)
(A-Order)

∧�
(
d→ (¬a U i)

)
∧�

(
d→ (¬b1 U i)

)
∧�

(
d→ (¬b2 U i)

)
((
c→ (¬a U i)

)
U i
)
∧
((
c→ (¬b1 U i)

)
U i
)
∧
((
c→ (¬b2 U i)

)
U i
)

(A-OrderNR)

∧
((
d→ (¬a U i)

)
U i
)
∧
((
d→ (¬b1 U i)

)
U i
)
∧
((
d→ (¬b2 U i)

)
U i
)

(
(¬i U b1) ∨ (¬i U b2)

)
∧
(
¬i U a

)
∧
(
(¬i U c) ∨ (¬i U d)

)
(A-FirstF ′)

�
(
i→ #(¬i U a)

)
∧�

(
i→ #

(
(¬i U b1) ∨ (¬i U b2)

))
(A-AfterF ′)

∧�
(
i→ #

(
(¬i U c) ∨ (¬i U d)

))
The LTL encoding of the property

A =
((
{a, b[1,2]},∧,Non-Shuffled

)
<
(
{c, d},∨,Non-Shuffled

)
� i | ∇

)
,

when ∇ = Non-Repeated (resp. ∇ = Repeated) is Conjunction 4.26 (resp. Conjunction 4.27). Fig-
ures 4.14(a) and 4.14(b) show monitors produced by SPOT for the respective conjunctions provided to
the tool in SPOT syntax.

A-Exclusiveness ∧ A-MaxOneNR ∧ A-RangeNR ∧ A-OrderNR ∧ A-FirstF ′ (4.26)
A-Exclusiveness ∧ A-MaxOne ∧ A-Range ∧ A-Order ∧ A-FirstF ′ ∧ A-AfterF ′ (4.27)

�

Testing with SPOT The correctness of the LTL encoding has been checked using the SPOT
tool introduced in Section 4.5.3.1. For checking we selected different configurations of an antecedent
requirement A and a timed implication constraint T ; they are presented in Tables 4.2 and 4.3 respec-
tively. The forth (resp. third) column of Tables 4.2 (resp. Tables 4.3) provides references to the parts
of this document where the interested reader can find LTL encodings of the respective loose-ordering
properties. The fifth (resp. the forth) column defines the number of LTL and Boolean operators in the
respective LTL formulas. The sixth (resp. the fifth) columns of the tables provide references to the figures
illustrating corresponding SPOT monitors.

The testing consisted in (i) encoding the properties into LTL, (ii) providing SPOT with the obtained
formulas, (iii) getting corresponding monitors, and (iv) ensuring that the state machines produced by the
tool were correct with regard to the semantics of the encoded subset of the loose-ordering language.

4.5.3.3 The Number of Operators in LTL Encodings

The number of operators in the LTL encoding of A =
(
P � i | ∇

)
such that ∇ = Repeated (resp.

∇ = Non-Repeated) is the sum of the LTL and Boolean operators appearing in each component of
Conjunction 4.20 (resp. Conjunction 4.25). The number of operators in the LTL encoding of T =

(
P =⇒

Q | t
)
is the sum of operators appearing in Conjunction 4.21. Thus, to compute the length of the

encoding, we define the number of operators per each component of the conjunctions. We count only
Boolean operators defined over LTL formulas.
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s0

s1

s2

s3

s4

s5

s6 s7

a b1, b2

b1, b2 a

d c

c d

i

else

else

else

else

else

else else

a, b1, b2,
c, d, i,
else

i

i

(a) A non-repeated context ∇ = Non-Repeated

s0

s1

s2

s3

s4

s5

s6

a b1, b2

b1, b2 a

d c

c d

else
else

else

else

else

else else ii

i

(b) A repeated context ∇ = Repeated

Figure 4.14 SPOT monitors for the LTL encoding of A = (({a, b[1,2]},∧,Non-Shuffled) <
({c, d},∨,Non-Shuffled) � i | ∇). else stands for any name which is not of α̂(A) = {a, b1, b2, c, d, i}. Comma
“ ,” stands for disjunction. All names of α̂(A) are mutually exclusive. Transitions which are not defined are
forbidden.

Let L = F1 < · · · < F` < F ′. Let Fk =
(
{Rk1 , . . . ,Rkmk}, ],Non-Shuffled

)
for k ∈ [1, `] , and

Rkj = n[u
k
j ,v

k
j ] for j ∈ [1,mk]. Let F ′ =

(
{R′1, . . . ,R′m′}, ],Non-Shuffled

)
, and R′j = n[u

′
j ,v
′
j ] for j ∈ [1,m′].

Let α̂(R) be a vocabulary of a range R. Then the size of a vocabulary of L is defined by Formula 4.28.

|α̂(L)| =
∑̀
k=1

mk∑
j=1

|α̂(Rkj )|+
m′∑
j=1

|α̂(R′j)| (4.28)

The number of operators in the LTL encoding of the antecedent requirement A with a non-repeated
context ∇ = Non-Repeated is defined by Sum 4.29. Here the summands are: 1 (resp. 2 ) is the number
of operators in the Exclusiveness (resp. RangeNR) after simplifications; 3 is the number of operators
in the OrderNR; 4 is the total number of operators in the components MaxOneNR and FirstF ′. We
take into account that α̂(F ′) = {i}, i.e.,

∑m′

j=1 |α̂(R′j)| = 1.

1
∑̀
k=1

mk∑
j=1

|α̂(Rkj )| ×
[∑̀
k=1

mk∑
j=1

|α̂(Rkj )|+ 1

]

2 + 4
∑̀
k=1

mk∑
j=1

[
|α̂(Rkj )|

(
|α̂(Rkj )| − 1

)]

3 + 4
∑̀
k=2

[ mk∑
j=1

|α̂(Rkj )| ×
mk−1∑
j=1

|α̂(Rk−1j )|
]

+ 4 8
∑̀
k=1

mk∑
j=1

|α̂(Rkj )|

(4.29)
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No. Configuration of A ∇ LTL
Encoding

|Operators| SPOT
Monitor

1.
(
a < b < c� i | ∇

) Repeat.
Appendix B.1.1

78 Figure B.1(b)
Non-Rep. 62 Figure B.1(a)

2.
((
{a, b, c, d},∧

)
� i | ∇

) Repeat.
Appendix B.1.2

99 Figure B.4(b)
Non-Rep. 75 Figure B.4(a)

3.
((
{a, b[1,2]},∧

)
<

(
{c, d},∨

)
� i | ∇

) Repeat.
Example 4.5.5

168 Figure 4.14(b)
Non-Rep. 144 Figure 4.14(a)

4.
((
{a, b},∧

)
<

(
{c, d[1,2]},∨

)
� i | ∇

) Repeat.
Appendix B.1.3

168 Figure B.5(b)
Non-Rep. 144 Figure B.5(a)

5.
((
{a, b[1,2]},∨

)
<

(
{c, d},∧

)
� i | ∇

) Repeat.
Appendix B.1.4

168 Figure B.7(b)
Non-Rep. 144 Figure B.7(a)

6.
((
{a, b},∨

)
<

(
{c, d[1,2]},∧

)
� i | ∇

) Repeat.
Appendix B.1.5

168 Figure B.9(b)
Non-Rep. 144 Figure B.9(a)

7.

((
{a, b},∧

)
<

(
{c, d},∨

)
Repeat.

Appendix B.1.6
210 Figure B.11(b)

<
(
{e, f},∧

)
� i | ∇

)
Non-Rep. 177 Figure B.11(a)

Table 4.2 Configurations of A =
(
P � i | ∇

)
tested with SPOT tool. For all fragments � = Non-Shuffled.

No. Configuration of T LTL
Encoding

|Operators| SPOT
Monitor

1.
(
a =⇒

(
{b, c},∧

)
<

(
{x, y},∧

)
| t
)

Appendix B.2.1 169 Figure B.13

2.
(
a <

(
{b, c[1,2]},∧

)
=⇒

(
{x, y},∧

)
| t
)

Appendix B.2.2 253 Figure B.15

3.
(
a =⇒

(
{b, c},∧

)
<

(
{x, y[1,2]},∧

)
| t
)

Appendix B.2.3 271 Figure B.17

4.
(
a <

(
{b, c},∨

)
=⇒

(
{x, y},∧

)
| t
)

Appendix B.2.4 163 Figure B.19

5.
(
a <

(
{b, c[1,2]},∨

)
=⇒

(
{x, y},∧

)
| t
)

Appendix B.2.5 247 Figure B.21

6.
((
{a, b},∧

)
< c =⇒

(
{x, y[1,2]},∧

)
| t
)

Appendix B.2.6 271 Figure B.23

7.
((
{a, b},∨

)
=⇒ c <

(
{x, y[1,2]},∧

)
| t
)

Appendix B.2.7 253 Figure B.25

8.
((
{a, b},∨

)
<

(
{c, d},∧

)
=⇒

(
{x, y[1,2]},∧

)
| t
)

Appendix B.2.8 378 Figure B.27

Table 4.3 Configurations of T = (P =⇒ Q | t) tested with SPOT tool. For all fragments � = Non-Shuffled.

The number of operators in the LTL encoding of A with a repeated context ∇ = Repeated is Sum 4.30
where 1 (resp. 2 , 3 ) is the number of LTL operators in Exclusiveness (resp. Range, Order)
component; 4 defines the total number of operators in the components MaxOne, FirstF ′ and AfterF ′.

1
∑̀
k=1

mk∑
j=1

|α̂(Rkj )| ×
[∑̀
k=1

mk∑
j=1

|α̂(Rkj )|+ 1

]

2 + 5
∑̀
k=1

mk∑
j=1

[
|α̂(Rkj )|

(
|α̂(Rkj )| − 1

)]

3 + 5
∑̀
k=2

[ mk∑
j=1

|α̂(Rkj )| ×
mk−1∑
j=1

|α̂(Rk−1j )|
]

4 + 15
∑̀
k=1

mk∑
j=1

|α̂(Rkj )|

(4.30)

The number of operators in the LTL encoding of T =
(
P =⇒ Q | t

)
is defined by Sum 4.31. Here, 1

defines the number of LTL operators in Exclusiveness component, 2 and 3 are numbers of operators
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in the components Range and RangeF ′ respectively, 4 and 5 are respectively numbers of operators in
the Order and the OrderF ′, finally 6 is the total number of operators in the components MaxOne,
FirstF ′ and AfterF ′.

1

(∑̀
k=1

mk∑
j=1

|α̂(Rkj )|+
m′∑
j=1

|α̂(R′j)|
)
×
(∑̀
k=1

mk∑
j=1

|α̂(Rkj )|+
m′∑
j=1

|α̂(R′j)| − 1

)

2 + 5
∑̀
k=1

mk∑
j=1

[
|α̂(Rkj )|

(
|α̂(Rkj )| − 1

)]
×

m′∑
j=1

|α̂(R′j)|

3 + 5
∑̀
k=1

mk∑
j=1

|α̂(Rkj )| ×
m′∑
j=1

[
|α̂(R′j)|

(
|α̂(R′j)| − 1

)]

4 + 5
∑̀
k=2

[ mk∑
j=1

|α̂(Rkj )| ×
mk−1∑
i=1

|α̂(Rk−1i )|
]
×

m′∑
j=1

|α̂(R′j)|

5 + 5

m′∑
j=1

|α̂(R′j)| ×
m`∑
j=1

|α̂(R`j)| ×
m1∑
j=1

|α̂(R1
j )|

6 + 15

m′∑
j=1

|α̂(R′j)| ×
∑̀
k=1

mk∑
j=1

|α̂(Rkj )|

(4.31)

Formulas 4.29, 4.30 and 4.31 show that the length of the proposed LTL encoding for loose-ordering
properties is linear (quadratic) in the size of their vocabularies (see the summand 1 in the respective
formulas). The formulas will be used in Chapter 7 to define the complexities of the PSL monitors [PF08;
Fer11].

4.5.3.4 Remark: When Ranges are Shuffled

In Section 4.5.3.3 we provided the approximate length of the LTL encoding for a loose-ordering L = F1 <
· · · < F` < F ′ under assumption that ranges of the fragments Fks and F ′ are not shuffled. To encode a
fragment F =

(
{R1, . . . ,Rm}, ],Shuffled

)
with shuffled ranges and the conjunctive semantics ] = ∧ (resp.

the disjunctive semantics ] = ∨), the idea would be to encode explicitly each sequence defined by F as a
nesting of next “#” operators.

Example 4.5.6. – Consider a shuffled fragment
(
{n1, n22},∧,Shuffled

)
. It defines that exactly one

occurrence of n1 and exactly two occurrences of n2 should occur; the order of occurrences is not fixed. To
encode the fragment into LTL, one needs to encode explicitly all possible permutations of occurrences of
n1 and n2: (

n1 ∧#(n2 ∧#n2)
)
∨
(
n2 ∧#(n1 ∧#n2)

)
∨
(
n2 ∧#(n2 ∧#n1)

)
�

Such encoding is as explosive as encoding into SERE (see Sec. 4.5.2). Moreover, as it was stated in
Section 4.5.3.2, the semantics of the nested LTL formulas as well as the semantics of their conjunction is
not clear, thus it is hard to get the encoding right.

Summary
In this chapter, we have defined loose-ordering specification primitives which allow definition of order and
number non-determinism. Using loose-orderings we have defined the specification patterns: an antecedent
requirement to define assumptions, and a timed implication constraint to specify guarantees of components.
The properties of our case study serve examples for these new concepts. We have seen that although it
is possible to encode loose-orderings into regular expressions and linear temporal logic, doing so may
cause explosion either in the length of obtained formulas, or in the size of vocabularies. Therefore, using
specification languages based on regular expressions and LTL (e.g., PSL) for expressing and checking
loose-orderings may not be very efficient.

Yuliia ROMENSKA Ph.D Thesis 87/230





Chapter 5
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In this chapter, we define recognizers for loose-ordering properties. It is the first step towards efficient
SystemC monitors. A recognizer is a machine which gets a sequences of names, one name per step,
and delivers a Boolean output when any name violates a recognized property. We build recognizers in
a compositional way: we propose primitive recognizers for ranges, the recognizers for fragments, loose-
orderings, etc., are compositions of those primitive recognizers. The compositional structure facilitates
the correctness checking of the obtained machines. We validate the recognizers and their compositions by
an exhaustive testing of their encodings in Lustre.

5.1 Introduction
We want to check at simulation that the design satisfies loose-ordering properties defined in Chapter 4.
To perform online checking, we define recognizers of the properties. Our recognizers are machines with
counters, which (i) read sequences of inputs of I and/or outputs of O of a specified component, one name
per step, (ii) (potentially) increase counters if names of interest occur, and (iii) deliver outputs when
respective loose-ordering properties are violated. Properties are violated if any of the counters exceeds or
falls behind its specified range. The names of (I ∪O) which do not appear in the properties are ignored.
Let s = n0n1 . . . be a sequence of names of (I ∪O). Online checking of a loose-ordering property consists
in ensuring that the property holds on each prefix s′ = n0 . . . nk of s (for any k > 0), i.e., the recognizer
of the property never delivers error output. The first name nk of s on which the recognizer complains
corresponds to a step where violation of the property occurs.

Checking of properties relies on pattern matching of loose-orderings which can happen anywhere in a
sequence s = n0n1 . . . . For instance, the antecedent requirement with non-repeated context A =

(
P �

i | Non-Repeated
)
holds, if the first occurrence of i is preceded by at least one occurrence of P (Fig. 5.1).

time (occurrences of names)

P i . . .

Figure 5.1 Example of a sequence satisfying A = (P � i | Non-Repeated).
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time (occurrences of names)

P

P

P

i1

2

3

. . .

Figure 5.2 Overlapping of a loose-ordering P: the first occurrence of P validates i.

To detect occurrences of a loose-ordering P, one solution would be to start a new recognizer at each
step as if P started there [Tom+09; GHR03]. Taking advantage of the restrictions of the loose-ordering
language (see Table 4.1) we use only one continuous recognizer to detect occurrences of P (see Sec. 2.4).

A Continuous Recognizer of a Loose-Ordering We say that a loose-ordering P holds on a subse-
quence s′ = nk . . . nk+m of s, if (i) the projection of s′ on names of P is a sequence defined by P, and (ii)
the first and the last letters of s′ are names of P (resp. Q). We call an occurrence of a loose-ordering P
a subsequence on which P holds. If a subsequence s′ = nk . . . nk+m contains several overlapping occur-
rences of a loose-ordering (e.g., see 1 , 2 and 3 , in Fig. 5.2), the very first occurrence ( 1 ) is taken into
account.

To detect occurrences of P, we use only one continuous recognizer. The machine re-initializes when
it fails to recognize a loose-ordering of a subsequence s′ = nk . . . nk+m. Re-initialization means that the
machine restarts by moving to its initial state and resets all its counters; when any name of P occurs,
the re-initializing recognizer may start the recognition of P again. The definition of such a machine is
possible due to the limitations of the loose-orderings language. We take advantage of the fact that parts
of P (fragments, ranges) do not share names. It allows us to define (i) one counter per name of P, and
(ii) disjoint sets of counters for parts of P. If the recognition of one part (a range of a fragment) fails, i.e.,
the respective counter (or counters) has a value which is not in a specified interval, the whole P should
be restarted since there is no hope that P will ever hold on the current subsequence of names.

Limitations of Re-initializing Recognizers Our continuous recognizer of P works only if its complete
re-initialization is possible, i.e., all counters can be reset. It means that the first fragment of P should
have the non-shuffled semantics.

Compositional Building of Recognizers We built our recognizers in a compositional way. A com-
position is defined by the syntax tree of a loose-ordering property. The leaves of the tree correspond to
elementary recognizers for ranges. The elementary recognizer has a counter and works in a recognition
context defining which names should occur before or after respective ranges, etc. The recognition con-
text is propagated downward in the syntax tree of the property. The elementary recognizers are either
re-initializing, or they may report errors. In the former (resp. latter) case, occurrences of names of
recognition context which violate a range make the recognizer to re-start (resp. to report an error).

A recognizer for any node which is not a leaf, i.e., a node representing a fragment, a loose-ordering,
etc., is the composition of the recognizers for its children nodes. Our approach is in the spirit of [PF08;
Bor+06], it facilitates the correctness checking of the composite recognizers [MAB06].

Organization of the Chapter In Section 5.2, we consider the recognition principle and give a brief
overview of the compositional building of the recognizers for loose-orderings. In Section 5.3, we define a
recognition context of the elementary recognizers of ranges. Section 5.4 presents a detailed definition of
all types of the recognizers. In Section 5.5, we discuss the validation of the recognizers.

5.2 Recognition Principle
Recognizing a Range The recognizer of a range R = n[u,v] works in a recognition context. The context
defines which names should have occurred before, immediately after, far after the range, and names of
other ranges of the same fragment. When R is being recognized: (i) names that should have happened
before, lose their turn and should not occur again; (ii) names that go immediately after the range may
stop the recognition of R; (iii) names that are expected to appear far after R cannot stop recognition of R
and they should not occur, (iv) names of other ranges of a parent fragment depending on the fragment’s
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semantics � may appear either: (i) before and after a range (� = Non-Shuffled), or (ii) before, after
and while the range (� = Shuffled). The recognizer has a counter; it increases when a name n of a
range occurs. The names of the context should not occur when the recognizer is active and it has not
recognized an occurrence of a range, i.e., the value of the counter is not in [u, v]. If the recognizer of
a range is continuous, it re-starts when a violation happens; otherwise, the recognizer reports an error.
When the elementary recognizer is stopped and it has detected an occurrence of a range, it delivers a
Boolean output.

Recognizing a Fragment The recognizer of a fragment F =
(
{R1, . . . ,Rm}, ],�

)
is the synchronous

parallel composition of the elementary recognizers of the ranges Rjs. Each of those elementary recognizers
has a context which is derived from F and other ranges. When the recognizer of F makes a step on an
occurrence of a name appearing in F , all elementary recognizers for ranges make a step, and one of
them increases its counter. The continuous recognizer of F is made of the continuous recognizers of the
Rjs; such recognizer restarts if any of its ranges is violated. The error reporting recognizer of F is made
of the elementary recognizers of the Rjs reporting errors; such recognizer signals an error if any of the
Rjs is violated (i.e., the corresponding elementary recognizer delivers an error output). A fragment F is
recognized (the range delivers a Boolean output), if all (] = ∧) or at least one (] = ∨) of its ranges is
recognized (the elementary recognizers deliver respective Boolean outputs).

Recognizing a Loose-Ordering The recognizer of a loose-ordering L = F1 < · · · < F` produces an
output when it detects an occurrence of L. It ignores (loops) names which are not of L. The recognizer
is made by composing sequentially recognizers of the fragments Fks. When L is being recognized, only
one recognizer of the Fks is active at a time; an occurrence of a name can make the recognizer of Fk−1
(k > 1) to signal its termination, and the recognizer of Fk to start. An occurrence of L is successfully
recognized, if the last fragment of L signals its termination.

The recognition of L is restarted, if (i) a loose-ordering L appears in A =
(
P � i | ∇

)
or it is the left

loose-ordering of T =
(
P =⇒ Q | t

)
, i.e., L = P, (ii) any of the recognizers of its fragments Fks detects a

violation. The continuous recognizer of L is made of the continuous recognizers of the Fks.
The recognition of L reports an error, if (i) a loose-ordering L is the right loose-ordering of T =

(
P =⇒

Q | t
)
, i.e., L = Q, (ii) the recognizer of L detects a violation of L. The recognizer of L in this case is

made of the error reporting recognizers of the Fks.

Recognizing Loose-Ordering Properties The recognizer of an antecedent requirement
A =

(
P � i | ∇

)
is made of the continuous recognizer of P. On each occurrence of a name of A

the recognizer updates its state. If A has a non-repeated context (∇ = Non-Repeated), when the first i
occurs the recognizer of A checks if an occurrence of P has been detected at least once before. If A has
a repeated context (∇ = Repeated), when i occurs the recognizer checks if an occurrence of P has been
detected since the previous occurrence of i.

The recognizer of a timed implication constraint T =
(
P =⇒ Q | t

)
is sequentially composed of the

continuous recognizer of P and the error reporting recognizer of Q. When P is detected, recognition of
Q is started. If the recognizer of Q is active, all attempts to re-start the recognizer are ignored.

5.3 Recognition Context
A recognizer of a range works in a recognition context, depending on where the range appears in the syntax
tree of an antecedent requirement or a timed implication constraint. Consider for example the property
of Figure 5.3. While recognizing n[2,8]4 : (i) n1, n2 and n3 should not occur, since they are supposed to
have happened before. (ii) n5 should not occur unless n4 has occurred at least twice, this is because the
parent fragment F2 disables shuffling. Notice that n5 can occur both before and after the range n[2,8]4

since it belongs to F2. (iii) n6 should not occur until n4 has been observed at least twice, in which case
it stops the recognition of the range n[2,8]4 (and starts the recognition of the appropriate range). (iii) i
should not occur since it must take place after n4 and it may not act as a stopping condition. Moreover,
the recognizer for a range depends on whether its parent fragment has the conjunctive (∧) or disjunctive
(∨), shuffled (Shuffled) or non-shuffled (Non-Shuffled) semantics, and the position of the fragment in the
parent loose-ordering (the fragment is the first, the second, etc).

The context for a range recognizer is therefore made of: (i) the semantics s in {∧,∨} and sh in
{Non-Shuffled,Shuffled} of the parent fragment; (ii) the index of the parent fragment idx ∈ N and the
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Inherited
Attributes:
B, C, Ac, Af ,
s, sh, idx, `

Synthesized
Attribute:
α

Example for n[2,8]
4 : B = {n1,n2,n3}, C = {n5}, Ac = {n6}, Af = {i},

s = ∨, sh = Non-Shuffled, idx = 2, ` = 3, α = {n4}

(
P � i | Non-Repeated

)
F1 < F2 < F3

(
{R1,R2,R3},∧,Non-Shuffled

)
n
[2,3]
1 n

[2,3]
2 n

[2,3]
3

(
{R1,R2},∨,Non-Shuffled

)
n
[2,8]
4 n

[1,1]
5

(
{R1},∧,Non-Shuffled

)
n
[1,1]
6

Figure 5.3 A syntax tree of the loose-ordering property
(
({n[2,3]

1 , n
[2,3]
2 , n

[2,3]
3 },∧,Non-Shuffled) <

({n[2,8]
4 , n5},∨,Non-Shuffled) < n6 � i | Non-Repeated

)
.

number of fragments in a parent loose-ordering ` ∈ N (idx and ` define the position of the fragment); (ii)
the set B of names that should have occurred before (like n1 in the above example); (iii) the set C of
names of the other ranges of the parent fragment (like n5 for n[2,8]4 ) (iv) the set Ac of names that will be
required to happen just after the range, and may therefore act as delimiters for the end of the range (like
n6); (v) the set Af of names that will be required to happen after, but cannot serve as delimiters (like i).
We denote the context as a tuple (B,C,Ac, Af , s, sh, idx, `).

Different names of the recognition context of a range are treated differently depending on the place of
the range in the syntax tree of a parent property. Thus, if the parent fragment of the range is a fragment
of the left loose-ordering P of A (resp. T ) (like ({n[2,8]4 , n5},∧) in Fig. 5.3), all names which should not
occur when the range is being recognized (like n1) re-start the recognizer. If the parent fragment of the
range is a fragment of the right loose-ordering Q of T , all names which take place not in an appropriate
time (e.g., names of B) make the recognizer to move to the error state, i.e., they are forbidden. The
parameters of the recognition context sh, idx and ` define the type of an elementary recognizer that
should be used for the recognition of a range (see Sec. 5.4.1).

The derivation of the contexts for the leaves (ranges) of the syntax tree of an antecedent requirement
A or a timed implication T can be defined by means of an attribute grammar (see formal definition in
Chapter 6). The list of its main attributes is shown in Figure 5.3. The derivation principle is the follow-
ing: Starting from an antecedent requirement A or a timed implication T , the contexts are propagated
downwards in the syntax tree to the leaves (ranges). This can be expressed easily with one synthesized
and eight inherited attributes shown in Figure 5.3. The synthesized attribute is α (denotes a set of names
appearing in the formula of each node) since evaluation of the context for a particular node depends on
names of other parts of the formula.

5.4 Building Recognizers
The recognizers of loose-ordering properties of either the “antecedent requirement” or “timed implication
constraint” type are built of the continuous and error reporting recognizers of loose-orderings. The recog-
nizers of loose-orderings are built from the elementary recognizers with counters of ranges of appropriate
type. We distinguish five types of the recognizers of ranges: error-reporting, re-initializing, resetting,
stopping and mixed resetting-stopping. The elementary recognizer of the error-reporting type has an error
state where it moves if a range is violated. The composition of such elementary recognizers defines the
error-reporting recognizers of fragments which are used to build the error-reporting recognizers of loose-
orderings (Fig. 5.4). If any of those recognizers reports an error, the recognizer of a loose-ordering signals
an error.

Other types of elementary recognizers of ranges are used to build the continuous recognizer of a loose-
ordering L = F1 < · · · < F` (Fig. 5.5).

1. The elementary recognizer of the re-initializing type resets its counter and moves to the idle state
when names of the recognition context take place before a range is detected. The composition of the
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start1

. . .

ok1

err1
Error reporting

recognizer
of F1

start2

. . .

ok2

err2
Error reporting

recognizer
of F2

start`

. . .

ok`

err`
Error reporting

recognizer
of F`

. . .

Figure 5.4 Building the error reporting recognizer of L = F1 < · · · < F`.

start1

. . .

ok1

Resetting
recognizer

of F1

start2

. . .

ok2

Re-initializing
recognizer

of F2

start`

. . .

ok`

Stopping
recognizer

of F`
. . .

Figure 5.5 Building the continuous recognizer of L = F1 < · · · < F`.

elementary recognizers of this type is the continuous recognizer of a fragment of L which is neither
the first, nor the last.

2. The resetting recognizers of ranges on occurrences of certain names of the context reset their counters
but stay active waiting for their names to come. They are used to build the recognizer of the first
fragment F1 of L. Resetting occurs when, for instance, one of the elementary recognizers detects too
many occurrences of names of the corresponding range of F1. In this case, the recognizers of other
ranges of F1 should reset their counters, because the recognition of their ranges should be repeated.

3. The stopping recognizer of a range re-initializes if names of the recognition context occur before a
range is recognized. The recognizer can be stopped by any name of the context (e.g., name of B, Af ,
etc.) if that name occurs after the range is detected. The elementary recognizers of the stopping
type are used to build the continuous recognizer of the last fragment of L.

4. The mixed resetting-stopping recognizers of ranges can both reset and stop when some names of the
recognition context occur. They are used if L has only one fragment.

The rest of the section is organized as follows. In Section 5.4.1, we define different types of the ele-
mentary recognizers of ranges in details. In Section 5.4.2, we build the composite recognizers of fragments
and loose-orderings. In Section 5.4.3, we discuss definitions of the recognizers of loose-ordering properties.

5.4.1 Elementary Recognizers of Ranges
An elementary recognizer of a rangeR = n[u,v] is an extended Mealy machine with a counter (see definition
in Sec. 2.2.1.3). The counter is increasing when the name n of the range occurs. Inputs are names of
the parent loose-ordering property of R; outputs are emitted either when an occurrence of R is detected
(i.e., R holds), or when the range is violated. The elementary recognizer loops when names which do
not appear in the parent property occur. The behavior of our elementary recognizers depends on the
recognition context of ranges, specifically on the semantics of a parent fragment of a range (shuffled
� = Shuffled or non-shuffled � = Non-Shuffled) defined by the parameter s of the context, and the
position of the parent fragment in the parent loose-ordering defined by the parameters idx and `. We
propose the following set of elementary recognizers:

1. Rerror
non-shuffled (resp. Rerror

shuffled) is the elementary recognizer with the error state of ranges appearing
in a fragment with the non-shuffled (resp. shuffled) semantics.

2. Rre-init
non-shuffled (resp. Rre-init

shuffled) is the re-initializing recognizer of ranges appearing in a fragment with
the non-shuffled (resp. shuffled) semantics, such that the recognizer can only re-initialize, it does
not reset and can be stopped only by names of Ac appearing immediately after the range.

3. Rstop
non-shuffled (resp. Rstop

shuffled) is the elementary recognizer of ranges appearing in a fragment with
the non-shuffled (resp. shuffled) semantics, which can be stopped by any name of the context.

4. Rreset
non-shuffled is the elementary recognizer of ranges appearing in a fragment with the non-shuffled

semantics, which can reset.
5. Rreset,stop

non-shuffled is the elementary recognizer of ranges appearing in a fragment with the non-shuffled
semantics, which can reset and can be stopped by any name of the context.
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We do not provide the continuous recognizer with a resetting ability of ranges appearing in a fragment
with shuffled semantics. In the following sections we give detailed definition of the listed elementary
recognizers.

5.4.1.1 Recognizers Reporting Errors

Figure 5.6 shows the elementary recognizer Rerror
non-shuffled of a range R = n[u,v] with the error state and

context. Rerror
non-shuffled recognizes a range which belongs to a fragment with the non-shuffled semantics.

The recognizer is started with the input start, termination is signaled by the outputs ok or nok. In s0, it
is idle and waits to be started; s5 is the error state; in s1, it is started and waits for the first occurrence
of its name n; in s3, it is counting the occurrences with a counter cpt; in s2, it is started and waits for
the first occurrence of its name n, another range of the same fragment has started; in s4, the minimum
number of occurrences of n have been recognized, and another range of the same fragment has started.
When the recognizer is in s4 it means that the range has occurred, thus, any occurrence of the name n
causes an error.

When the recognizer Rerror
non-shuffled is started, occurrences of names that should have occurred before

the range (names of B of the context) and occurrences of names that should happen after the range and
do not serve delimiters (names of Af ) always cause errors. If names of other ranges of the parent fragment
of R[u,v] (names of C) or names which go immediately after the range (names of Ac) occur when (i) the
recognizer is counting the occurrences of n in s3 and (ii) the minimum number of occurrences of n was
not detected, those names cause an error. If the range was detected (i.e., n occurred at least u times),
occurrences of names of Ac stop the recognizer Rerror

non-shuffled.

Termination of Rerror
non-shuffled is defined by the semantics s of the parent fragment of R = n[u,v]. If

the semantics is disjunctive (s= ∨), the recognizer can be stopped before it detects any occurrence of n,
otherwise the recognizer reports an error.

Figure 5.7 shows the elementary recognizer Rerror
shuffled of ranges appearing in a fragment with the shuffled

semantics; the recognizer has an error state. Unlike its counterpart in Figure 5.6, the recognizer while
counting occurrence of its name n in s3, accepts occurrences of names of other ranges of the same fragment
(names of C).

5.4.1.2 Continuous Recognizers

Re-initializing Recognizers Figure 5.8 (resp. Figure 5.9) shows the continuous recognizer
Rre-init
non-shuffled (resp. Rre-init

shuffled) of ranges appearing in a fragment with the non-shuffled (resp. shuffled)
semantics. It is symmetric to the elementary recognizer Rerror

non-shuffled (resp. Rerror
shuffled) with an error state.

The elementary recognizer reporting errors and the re-initializing continuous recognizer implement the
same termination principle (see above). Unlike Rerror

non-shuffled (resp. Rerror
shuffled), the continuous recognizer

does not report an error when unexpected names of the recognition context occur (e.g., names of Af ).
Instead the machine re-initializes moving to the idle state s0.

Stopping Recognizers Figure 5.10 (resp. Figure 5.11) shows the continuous recognizer
Rstop
non-shuffled (resp. Rstop

shuffled) of a range R = n[u,v] belonging to a fragment with the non-shuffled (resp.

shuffled) semantics. The recognizer is re-initializing, as its counterpart Rre-init
non-shuffled (resp. Rre-init

shuffled) the
machine moves to the idle state s0 if names interrupting an occurrence of the range occur (names of B,
Af , Ac). If Rstop

non-shuffled detects a range n[u,v], it can be stopped by any name of a parent property. When
it is stopped the machine produces a Boolean output. The elementary recognizer stops if it detects the
maximum number of occurrences of n, and n occurs again. In this case the recognizer produces the output
stop. Through input stopC the recognizer is notified if any of the recognizers of companion ranges has
stopped due to the number of occurrence of names exceeding the defined ranges.
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s0

s2

s5

s1 s3 s4

start

start.n.C/
[cpt=0]

start.C/
[cpt=0]

start.n/
[cpt=1]

[cpt>=u]
Ac/ok

Ac/ok

C/ n/
[cpt=1]

n/[cpt=1]

C/

[s=∧]Ac/err
Af/err
B/err

Af/err
B/err
Ac/err

[cpt>=u]
C/

Af/err
B/err

n/err

C/

[cpt<v]n/
[cpt+=1]

true/err

[cpt<u]Ac/err
[cpt<u]C/err
[cpt=v]n/err
Af/err
B/err

[s=∨]
Ac/nok

start

B

C

Ac

Af

α = n

err

nok

okRerrornon-sh.

Figure 5.6 The error-reporting elementary recognizer Rerrornon-shuffled of a range R = n[u,v] appearing a
fragment with the non-shuffled semantics (� = Non-Shuffled). s, B,Ac, Af , C are the context. cpt is
a counter; {start, n,B,Ac, Af , C} are inputs; {err, ok, nok} are outputs. Each transition is of the form
[condition]input/output[action] where input is a Boolean formula and output is a set.
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s1 s3

start.n.C/
[cpt=0]

start

start.C/
[cpt=0]

start.n/
[cpt=1]

[cpt>=u]
Ac/ok

C/ n/
[cpt=1]

n/[cpt=1]

C/

[s=∧]Ac/err
Af/err
B/err

Af/err
B/err
Ac/err

C/

[cpt<v]n/
[cpt+=1]

true/err

[s=∨]
Ac/nok

[cpt<u]Ac/err
[cpt=v]n/err
Af/err
B/err

start

B

C

Ac

Af

α

err

nok

okRerrorshuff.

Figure 5.7 The error-reporting elementary recognizer Rerrorshuffled of a range appearing in a fragment with the
shuffled semantics (� = Shuffled).
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Figure 5.8 The re-initializing elementary recognizer Rre-initnon-shuffled of a range appearing in a fragment with the
non-shuffled semantics (� = Non-Shuffled).
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Figure 5.9 The re-initializing elementary recognizer Rre-initshuffled of a range appearing in a fragment with the shuffled
semantics (� = Shuffled).
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Figure 5.10 The stopping elementary recognizer Rstopnon-shuffled of a range appearing in a fragment with the
non-shuffled semantics (� = Non-Shuffled).
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Figure 5.11 The stopping elementary recognizer Rstopshuffled of a range appearing in a fragment with the shuffled
semantics (� = Shuffled).
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Figure 5.12 The resetting elementary recognizer Rresetnon-shuffled of a range appearing in a fragment with non-
shuffled semantics (� = Non-Shuffled).

Resetting Recognizers Figure 5.12 shows the continuous recognizer Rreset
non-shuffled of a rangeR = n[u,v]

belonging to a fragment with the non-shuffled semantics. The recognizer is re-initializing, as its counterpart
Rre-init
non-shuffled, the machine moves to the idle state s0 if names interrupting an occurrence of the range

occur (names of B, Af , Ac). Rreset
non-shuffled can reset. Resetting means that the recognizer (potentially)

discards already detected occurrences of n; the reset is activated with the input rstC. The reset may
happen if:

(i) names of companion ranges (names of C) occur before the minimum number of n was detected,
(ii) the maximum number of occurrences of n was exceeded,
(iii) the maximum number of occurrences of names of companion ranges (names of C) was exceeded.

The recognizer Rreset
non-shuffled signals the reset with the output rst.

Mixed Resetting-Stopping Recognizers The recognizer Rreset,stop
non-shuffled combines stopping and reset-

ting features of the continuous recognizers Rstop
non-shuffled (Fig. 5.10) and Rreset

non-shuffled (Fig. 5.12). We do
not provide the definition of the machine here.
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5.4.2 Composite Recognizers
The elementary recognizers of ranges are used to construct recognizers of fragments and loose-orderings.
The continuous recognizer of a fragment (resp. a loose-ordering) is the composition of the continuous
recognizers of their ranges. The recognizer of a fragment (resp. a loose-ordering) with the error state
is the composition of the recognizers with error states of the ranges appearing in that fragment (resp.
loose-ordering).

5.4.2.1 Recognizers of Fragments

Consider a fragment F =
(
{R1, . . . ,Rm}, ],�

)
, where ] ∈ {∧,∨} and � ∈ {Non-Shuffled, Shuffled}. The

recognizer of F is the synchronous parallel composition of the recognizers of the Rjs. The type of
elementary recognizers being composed (shuffled or non-shuffled) is defined by the semantics � of F and
the position of F in a parent loose-ordering. Each of the elementary recognizers has a context depending
on the other ranges of F (the set of names C) and the context inherited from F (the sets of names B, Ac,
Af and the semantics s). The recognizer of F signals termination with the output ok if all the recognizers
for the Ris have signaled termination, i.e., produced ok or nok.

Recognizers Reporting Errors The recognizer of a fragment F =
(
{R1, . . . ,Rm}, ],�

)
, ] ∈ {∧,∨},

� ∈ {Non-Shuffled, Shuffled} with the error state is the synchronous parallel composition of the elementary
recognizers of the Rjs reporting errors. Equation 5.1 (resp. Equation 5.2) defines the recognizer of F
with the non-shuffled (resp. shuffled) semantics.

Ferrornon-shuffled = Rerror
non-shuffled,1 × · · · × Rerror

non-shuffled,m (5.1)

Ferrorshuffled = Rerror
shuffled,1 × · · · × Rerror

shuffled,m (5.2)

Here, “×” is an operator of the synchronous product of Mealy machines (see Definition 4 in Sec. 2.2.1).
For j ∈ [1,m], Rerror

non-shuffled,j (resp. R
error
shuffled,j) is the elementary recognizer of ranges reporting errors (see

Sec. 5.4.1.1). For instance, consider a fragment
F =

(
{n[2,8]4 , n5},∨,Non-Shuffled

)
. Figure 5.13 shows the synchronous product of the elementary rec-

ognizers of the ranges n[2,8]4 and n5. The recognizer of F signals an error with the output err when any
of the recognizers of the Rjs detects an error.

If a fragment F has the non-shuffled semantics (� = Non-Shuffled), at any time the composed elemen-
tary recognizers of ranges can be in one of the following global states: (i) all are idle (state s0); (ii) all are
waiting (in state s1); (iii) exactly one recognizer is counting (state s3) and all others are either still waiting
for their names to come (state s2) or have already recognized their ranges (state s4). If the semantics s
inherited from the parent fragment F is disjunctive (i.e. s=∨), each recognizers can be stopped before it
has even started counting, provided that at least one of the other ranges of F has started recognizing a
sequence of its name (e.g., see Fig. 5.13).

If a fragment F has the shuffled semantics (� = Shuffled) (e.g., F =
(
{n[2,8]4 , n5},∨,Shuffled

)
, see

Fig. 5.14), then the composed elementary recognizers can be in the following global states: (i) all are idle
(state s0); (ii) all are waiting (in state s1), (iii) some recognizers are counting their names (state s3) and
others are still waiting for their names to come (state s2), (iv) all recognizers are counting their names
(state s3). The stopping mechanism of the recognizers is defined by the semantics s inherited from the
parent fragment F , it is defined by the rules described above.

Continuous Recognizers The continuous recognizer of a fragment F = ({R1, . . . ,Rm}, ],�) is the
synchronous parallel composition of the continuous elementary recognizers of the ranges Rjs. The con-
tinuous elementary recognizers (re-initializing, stopping or resetting) have the same set of global states as
their error reporting counterparts (see above). If the recognizer of F is made of the re-initializing elemen-
tary recognizers of ranges, the recognizer re-initializes when the recognizes of the ranges of F re-initialize.
Equation 5.3 (resp. Equation 5.4) defines the re-initializing recognizer of F with the non-shuffled (resp.
shuffled) semantics.

Fre-initnon-shuffled = Rre-init
non-shuffled,1 × · · · × Rre-init

non-shuffled,m (5.3)

Fre-initshuffled = Rre-init
shuffled,1 × · · · × Rre-init

shuffled,m (5.4)
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Figure 5.13 The synchronous product of the elementary recognizers of ranges of a fragment F =
({n[2,8]

4 , n5},∨,Non-Shuffled) with error states.
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Figure 5.14 The synchronous product of the elementary recognizers of ranges of a fragment F =
({n[2,8]

4 , n5},∨,Shuffled) with error states.

Here, for j ∈ [1,m], Rre-init
non-shuffled,j (resp. R

re-init
shuffled,j) is the continuous re-initializing recognizer of ranges

(see Sec. 5.4.1.2).
The resetting recognizer of a fragment is the synchronous parallel composition of the resetting elemen-

tary recognizers of ranges. For example, Figure 5.15(a) shows a circuit diagram of the recognizer for a
fragment:

F =
(
{n[2,3]1 , n

[2,3]
2 , n

[2,3]
3 },∧,Non-Shuffled

)
which is the synchronous parallel composition of the resetting elementary recognizers (Fig. 5.15(b)) of the
ranges n[2,3]j for all j ∈ [1, 3]. Resetting of the recognizers works as follows:

1. The elementary recognizer resets the recognizers of other ranges when, in state s3, it detects more
occurrences of its name than it is specified by a range (e.g., n1 occurs 4 times). Those ranges need
to occur again. The reset is done by producing rst output.
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(a) A circuit diagram of the synchronous product.
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(b) The resetting elementary recognizer of a range

Figure 5.15 The synchronous product of the resetting elementary recognizers of ranges of F =
({n[2,3]

1 , n
[2,3]
2 , n

[2,3]
3 },∧,Non-Shuffled). Rresetnon-shuffled is a recognizer of n[2,3]

j for j ∈ [1, 3].

2. Any elementary recognizer of a range (e.g., n[2,3]2 ) can be reset either if it has already detected an
occurrence of the range (i.e., the recognizer is in s4), or if any of the companion ranges starts (e.g.,
n
[2,3]
1 ) before the recognizer detects the minimum number of occurrences of name of its range.

Formally, the resetting recognizer of a fragment with the non-shuffled semantics is defined in Equation 5.5.

Fresetnon-shuffled =
(
Rreset
non-shuffled,1 × · · · × Rreset

non-shuffled,m

)
\[rst1, . . . , rstm] (5.5)

Here, for j ∈ [1,m], Rreset
non-shuffled,j is the resetting recognizer of ranges (see Sec. 5.4.1.2), “\” is the

encapsulation operator (see Sec. 2.2.1.2 in the background chapter). We do not define the resetting
recognizer of a fragment F with shuffled semantics.

Similarly, we define the stopping recognizer of a fragment with with non-shuffled (resp. shuffled)
semantics in Equation 5.6 (resp. Equation 5.7).

Fstopnon-shuffled =
(
Rstop
non-shuffled,1 × · · · × Rstop

non-shuffled,m

)
\[stop1, . . . , stopm] (5.6)

Fstopshuffled =
(
Rstop
shuffled,1 × · · · × Rstop

shuffled,m

)
\[stop1, . . . , stopm] (5.7)

Here, for any j ∈ [1,m], Rstop
non-shuffled,j (resp. R

stop
shuffled,j) is the stopping continuous recognizer of ranges

(see Sec. 5.4.1.2).
Figure 5.16 shows interfaces (inputs and outputs) of the recognizers of fragments of different types.
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Fstopnon-sh.(shuff.)

Figure 5.16 Circuit diagrams of the recognizers of fragments. Arrows from the left are inputs, arrows to the right
are outputs.

5.4.2.2 Recognizers of Loose-Orderings

Consider a loose-ordering L = F1 < · · · < F`. The recognizer for L is made by composing sequentially the
recognizers of the Fks: to start recognizing L, we have to send start to the recognizer of fragment F1; for
any k ∈ [1, `− 1], the output ok of the recognizer of Fk is connected to the input start of the recognizer
of Fk+1. The output ok of the last fragment signals the stop of the recognizer of L. Notice that, at any
time only one of the fragments’ recognizers can have its ranges in a non-idle state.

The error reporting recognizer of L is composed from the error reporting recognizers of the Fks.
It signals an error when any of the recognizers of the Fks detects an error.

The continuous recognizer of L is composed from the continuous recognizers of the Fks, such that
the recognizer of the first fragment F1 is resetting, the recognizer of the last fragment F` is stopping, and
the recognizers for other fragments are re-initializing.

Figure 5.17 shows a circuit diagram of the continuous recognizer of a loose-ordering

L =
(
{n[2,3]1 , n

[2,3]
2 , n

[2,3]
3 },∧,Non-Shuffled

)
<
(
{n[2,8]4 , n5},∨,Non-Shuffled

)
< n6.

Here, Fresetnon-shuffled,1 is the recognizer of the first fragment defined in Figure 5.15(a) (see Sec. 5.4.2.1),

Fre-initnon-shuffled,2 is the re-initializing recognizer of the second non-shuffled fragment of L, Fstopnon-shuffled,3 is
the stopping fragment of the third non-shuffled fragment of the loose-ordering.
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start2 ok2
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start3 ok3

B3

Ac3

Af3

α3

Fstopnon-sh.,3

n1 ∨ n2 ∨ n3∨
n4 ∨ n5

i

false

n6

.

Figure 5.17 A circuit diagram of the recognizer of a loose-ordering L.

5.4.3 Recognizers of Loose-Ordering Properties
The recognizers of loose-ordering properties A =

(
P � i | ∇

)
and T =

(
P =⇒ Q | t

)
use the continuous

recognizer of a loose-ordering P to detect its occurrences. The recognizer of A uses this information to
check the allowance of occurrences of i. The recognizer of T when P is detected may start the error
reporting recognizer of a loose-ordering Q.

5.4.3.1 A Recognizer of an Antecedent Requirement

The recognizer of an antecedent requirement A =
(
P � i | ∇

)
with the non-repeated context ∇ =

Non-Repeated whenever i occurs, checks if P has been recognized at least once before the first occurrence
of i (see Fig. 5.18(a)). The recognizer of A with the repeated context ∇ = Repeated whenever i occurs,
checks if P has been recognized at least once since the previous occurrence of i (Fig. 5.18(b)). If P has
not been detected, both recognizers report errors. The recognizer of A is continuous.

5.4.3.2 A Recognizer of a Timed Implication Constraint

The recognizer of a timed implication constraint T =
(
P =⇒ Q | t

)
is made by composing sequentially

the continuous recognizer of P and the error reporting recognizer of Q (Fig. 5.19). When the condition is
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(a) A non-repeated context: ∇ = Non-Repeated
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(b) A repeated context: ∇ = Repeated

Figure 5.18 A circuit diagram of a recognizer of an antecedent requirement A = (P � i | ∇): P is the continuous
recognizer of P.

fulfilled (i.e., an occurrence of P is detected), the checking of promises is started (i.e., the recognizer of Q
is started). When the recognizer of Q is active, it ignores the start. The recognizer of T reports an error
if the loose-ordering Q is violated, i.e., the respective recognizer enters the error state. The recognizer of
T is continuous.

startp okp

Bp

. . .
αp

P

startq errq

Bq

. . .
αq

Q

.

Figure 5.19 A circuit diagram of the recognizer for a timed implication constraint T = (P =⇒ Q | t): P (resp.
Q) is the continuous (resp. error reporting) recognizer of P (resp. Q).

5.5 Validation
The elementary recognizers with contexts of ranges, and the synchronous compositions defined in Sec-
tions 5.4.2 and 5.4.3 were programmed in Lustre1 [Cas+87; Hal+91; EJ] . The correctness of these
constructions with respect to the intuitive semantics given in Section 4.4 has been checked with a formal
testing tool.

5.5.1 Implementing Recognizers in Lustre

The implementation principle is the following: Each elementary recognizer of ranges is implemented as a
Lustre node. Inputs (resp. outputs) of the elementary recognizer are inputs (resp. outputs) of the node.
The implementation is the set of Boolean equations encoding the recognizer. We define one Boolean
variable per state, and one Boolean variable per output. We use Lustre asserts (see Sec. 2.2.1.4) to
ensure that names of loose-ordering properties do not occur simultaneously. Figure 5.20 provides the
Lustre implementation of the resetting continuous elementary recognizer of ranges.

We implement recognizers of fragments (resp. loose-orderings, an antecedent requirement, a timed
implication constraint) with the dataflow connections of the Lustre nodes implementing the composed
recognizers. For example, Figure 5.21 provides the Lustre implementation of the resetting continuous
recognizer of a fragment

F =
(
{n[2,3]1 , n

[2,3]
2 , n

[2,3]
3 },∧,Non-Shuffled

)
.

1Lustre is the synchronous language (see Sec. 2.2.1.4).
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The synchronous product of the resetting elementary recognizers of the ranges n[2,3]j (for all j ∈ [1, 3])
corresponds to the dataflow connections of the Lustre nodes range_reset_non_shuffled implementing
those recognizers (see Fig. 5.20).

5.5.2 Obtaining Monitors from the Lustre Implementation
The Lustre compiler generates a C implementation from the Lustre implementation. The library of
monitors obtained in such a way can be then used for checking loose-ordering properties of the design
at simulation. It can cause difficulties though, for instance, if one needs to instantiate a monitor which
is not in a library. The monitors produced by the Lustre compiler are not compositional, i.e., the C
implementation cannot be reused to build monitors by hand. Moreover, writing Lustre code is not a
“usual” skill of the engineers. To overcome the problem, in the next chapter we provide a SystemC library
of the primitive monitors of parts of loose-ordering properties (ranges, fragment, etc.) and show how
monitors of arbitrary loose-ordering properties can be built from those primitive monitors.

1 node range_reset_non_shuffled(u, v: int;
2 s, start , n, C, Ac , Af , B, rst_c: bool)
3 returns (s0, s1, s2, s3, s4, rst , ok, nok: bool);
4 var cpt: int;
5 let
6 -- ensuring that names do not occur simultaneously
7 assert (#(B, Ac)); assert (#(B, Af)); assert (#(B, C)); assert (#(B, n));
8 assert (#(Ac , Af)); assert (#(Ac , C)); assert (#(Ac, n)); assert (#(Af, C));
9 assert (#(Af , n)); assert (#(C, n));

10
11 -- encoding transitions
12 s0 = true -> pre(s0 and not(start )) or
13 pre((s1 or s2 or s3 or s4) and (Ac or B or Af));
14
15 s1 = false -> pre(s0 and start and not(n) and not(C)) or
16 pre(s1 and not(n or C or Ac or B or Af));
17
18 s2 = false -> pre(s0 and start and C) or
19 pre((s1 or s2) and C) or
20 pre(s3 and C and cpt <u) or
21 pre(s3 and C and rst_c and cpt >=u) or
22 pre(s4 and C and rst_c) or
23 pre(s2 and not(Ac or B or Af or n));
24
25 s3 = false -> pre(s0 and start and n) or
26 pre((s1 or s2 or s3 or s4) and n) or
27 pre(s3 and not(C or Ac or B or Af));
28
29 s4 = false -> pre(s3 and C and not(rst_c) and cpt >=u) or
30 pre(s4 and C and not(rst_c)) or
31 pre(s4 and not(n or Ac or B or Af or C and rst_c ));
32
33 -- the counter
34 cpt = 0 -> if pre(s0 and start and not n) then 0 else
35 if pre((s0 or s1 or s2 or s4) and n) then 1 else
36 if pre(s3 and n and cpt < v) then pre(cpt)+1 else
37 pre(cpt);
38
39 -- the outputs
40 ok = (s3 and Ac and (cpt >=u or cpt <=v)) or (s4 and Ac);
41 nok = (s2 and not(s) and Ac);
42 rst = (s3 and C and cpt <u) or (s3 and n and cpt=v);
43 tel

Figure 5.20 Lustre implementation of the resetting continuous elementary recognizer Rresetnon-shuffled of ranges.

Summary
This chapter has presented efficient recognizers for loose-orderings. Their efficiency is enabled by the
syntactic constraints put on the loose-ordering language. The constraints state that different parts of
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1 node fragment_reset_non_shuffled_and(start , n1, n2, n3, Ac, Af , B: bool)
2 returns (s01 , s11 , s21 , s31 , s41 ,
3 s02 , s12 , s22 , s32 , s42 ,
4 s03 , s13 , s23 , s33 , s43 , ok: bool);
5 var rst1 , rst2 , rst3 ,
6 ok1 , ok2 , ok3 ,
7 nok1 , nok2 , nok3 ,
8 s: bool;
9 u1, v1 , u2 , v2 , u3 , v3: int;

10 let
11 s=true;
12 u1=2; v1=3; u2=2; v2=3; u3=2; v3=3;
13
14 (s01 , s11 , s21 , s31 , s41 , rst1 , ok1 , nok1) =
15 range_reset_non_shuffled(u1 , v1, s, start , n1 , n2 or n3 , Ac , Af , B,
16 rst2 or rst3);
17
18 (s02 , s12 , s22 , s32 , s42 , rst2 , ok2 , nok2) =
19 range_reset_non_shuffled(u2 , v2, s, start , n2 , n1 or n3 , Ac , Af , B,
20 rst1 or rst3);
21
22 (s03 , s13 , s23 , s33 , s43 , rst3 , ok3 , nok3) =
23 range_reset_non_shuffled(u3 , v3, s, start , n3 , n1 or n2 , Ac , Af , B,
24 rst1 or rst2);
25
26 --due to conjunctive semantics:
27 ok = ok1 and ok2 and ok3;
28 tel

Figure 5.21 Lustre implementation of the resetting recognizer of F = ({n[2,3]
1 , n

[2,3]
2 , n

[2,3]
3 },∧,Non-Shuffled).

loose-orderings (i.e., fragments, ranges, etc.) do not share names. It means that one can “cut” a sequence
of names on fragments in a unique way, and define a recognition context for each of those fragments.

The recognizers of loose-orderings are built compositionally from the elementary recognizers for ranges.
The elementary recognizers work in a recognizer context. In this chapter, we have shown the implemen-
tation of the recognizers and their compositions in Lustre; the implementation was used to ensure the
correctness of the recognizers. In the next chapter, we show how to implement the recognizers in SystemC,
and how to use the obtained SystemC monitors for capturing synchronization bugs of SystemC/TLM vir-
tual prototypes.
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Chapter 6

Monitoring Principles and SystemC
Implementation
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In this chapter, we present our principles for monitoring SystemC/TLM models. The chapter describes
a direct translation of loose-ordering properties into efficient SystemC monitors. The translation relies on
the attribute grammar of the loose-ordering language, and the recognizers of its parts (loose-orderings,
fragments, ranges). We show how to build a monitor on the example of one of our running example’s
properties. In Chapter 7, we compare the time and memory complexities of the monitors obtained through
our direct translation with the respective complexities of monitors corresponding to the PSL encoding of
those properties.

6.1 Introduction
Our goal is to check at simulation time that a SystemC/TLM model of the system conforms its specifica-
tion, i.e., it satisfies all defined properties. It can be done by means of monitoring. The idea is to define
a monitor of a property and, when the simulation is running, make the monitor to check the property
at certain evaluation points. Although monitoring is well studied for the RTL design [Men; Syna; Cad;
Aba+00; MAB07b; MAB06], it remains challenging, when the design is defined at the TLM abstraction
level.

6.1.1 Challenges in Monitoring SystemC/TLM Models
6.1.1.1 Non-Intrusive Monitors

Monitoring SystemC/TLM models should not be intrusive. This is because additional code may change
the behavior of the examined SystemC/TLM model. This is particularly true in the case of monitors
defined as SystemC modules. To make monitors non-intrusive, for instance, aspect-oriented approaches
were investigated [NHd06; Kal+09; Kal+10]. Thus, [NHd06] was the first proposed methodology that
allowed direct Assertion-Based Verification (ABV) of the TLM without additional abstract models. The
key idea of the approaches [NHd06; Kal+09; Kal+10] is the following: Monitors are defined as aspects.

107/230



6.1. Introduction

A B C

Bus

•
•

•

irq1

irq2

i-socket

MonitorP

Figure 6.1 A TLM platform with a monitor: MonitorP is a monitor of a component A which checks a loose-
ordering property P .

An aspect encapsulates methods, called advices. An advice is an action activated by an aspect before,
after or around (in substitution of) the execution of the code addressed by the corresponding join point.
A join point is a point in the control flow (e.g., a method execution). Monitors defined by aspects are
weaved into SystemC code at compile time or at runtime by an aspect weaver [SGSP02]. Although aspect-
oriented methods of checking properties are claimed to be non-intrusive, they are restrictive. They either
can be applied to only certain categories of TL models [NHd06], or report results of checking relatively
simple temporal properties consisting of only one temporal operator [Kal+09; Kal+10]. Aspect-oriented
programming elements are available in HVLs 1 e [IJ04] and OpenVera [Synb] from Synopsys.

In [PF08; Fer11] authors propose a relatively non-intrusive approach. The original SystemC code
undergoes few modifications that essentially correspond to (i) defining straightforward subclasses for the
communication channels under observation, and (ii) using these inherited classes instead of their parent
classes. The inherited classes should override all the methods related to the relevant events. Monitors
are defined as C++ classes. They are registered in the inherited communication channels. At simulation,
when events occur, the channels notify all registered monitors about those events.

6.1.1.2 Evaluation of Properties

The semantics of properties at the RT level is defined with regard to execution traces. At the synchronous
RT level, the observations that constitute these traces are made of clock edges. Monitors defined at this
level of abstraction (e.g., the FoCs checker generator [Aba+00; Foc; Aba+00; MH03] from IBM, the Horus
technology [MAB07b]) evaluate properties at each edge of the clock.

When the hardware design is defined at transactional level, one needs to reconstruct the time scale from
sequence of events in order to check properties. The concept of event is generally defined as “something
happening during the evolution of the system” (e.g., sending/receiving a transaction). The meaning of
event and sequence of events is settled depending on the type of the monitored properties. In [BFF05]
and [BFP07] a sequence is defined based on the relation “happens before” proposed by Lamport in [Lam78]
to order a sequence of events related to several processes of the design. [PF08] states that observation
points are set when the properties needs to be reevaluated, i.e., each time a variable of the property has
possibly been modified. The variable is modified, if an appropriate event occurs in the corresponding
channel. A sequence of events is defined as a trace made of all the events that enable the observation of
updated values for the variables involved in the property.

6.1.2 Monitoring Loose-Ordering Properties
Our monitoring model is inspired by [PF08; Fer11]. Our monitors are external to the SystemC/TLM
design. They capture events occurring in the communication channels of TL components (Fig. 6.1). We
consider communication channels for exchanging transactions and interrupts. The former are implemented
by means of TLM initiator/target sockets (e.g., i-socket in Fig. 6.1). The latter are implemented by means
of SystemC sc_signal<bool> channels (e.g., irq1 and irq2 in Fig. 6.1). Events are sending/receiving
transactions/interrupts. A monitor may capture events of several communication channels of a component.
Any TL component can (potentially) have several monitors. A monitor checks at simulation time the
correctness of one loose-ordering property.

Let P be a loose-property of a component A. To enable online monitoring of P , one needs:

(i) to instantiate a monitor for P (e.g, MonitorP);
1HVL stads for Hardware Verification Language
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Subject<T,E>

vector<Observer<T,E>* >* Obs

Attach(Observer<T,E>*)
Detach(Observer<T,E>*)
NotifyObservers(E*)

Observer<T,E>

Update(E*)

Wrapper<T,E>

vector<Monitor<T, E>* >* Ms

AttachMonitor(Monitor<T,E>*)
DetachMonitor(Monitor<T,E>*)
Update(E*)

♦

Obs

Monitor<T,E>

update(E*)
Ms

♦

◦

for all o in Obs {
o->Update(E*)

}
◦

for all m in Ms {
m->update(E*)

}

Figure 6.2 The monitoring model.

(ii) to instrument the SystemC/TLM model of A by substituting ordinary communication channels with
their monitorable versions, i.e., channels which can register the monitor of P and notify it when
communication events occur (in Fig. 6.1 irq1, irq2 and i-socket are monitorable, see details below);

(iii) to define the correspondence between communication events and names of P .

At simulation time, (some) communication events may update the state of the monitor of P . If the
monitor detects a violation of P , it stops the simulation and provides the information about an event(s)
which caused the error. If P is of an “antecedent requirement” type, this information can be used by the
designer to establish an initiator of a transaction or an interrupt that caused the error, i.e., the actual
source of the design’s malfunction. If P is of a “timed implication constraint” type, the description of the
erroneous event may help to identify the exact point in the SystemC implementation of A which violated
P .

6.1.2.1 The Monitoring Model

Figure 6.2 shows our model. It relies on the classical observer pattern [Gam+95] and it is inspired
by [Pie07]. The abstract class Subject is inherited by monitorable channels. It maintains the set of
observers Obs registered by means of the Attach(...) method. Observers are containers of moni-
tors; they implement the Observer interface. When event e occurs, a channel (e.g., irq1) calls the
NotifyObservers(e) method of the base Subject class to notify the registered observers about the event.
When the method is invoked, the observers update states of their monitors. Monitors implement the
interface Monitor which defines the update(...) method.

Our model is generic: all the abstract classes are C++ templates. They are parameterized by the type
of names T of a loose-ordering property, and the type of events E occurring in the channels. Both types
can be any user-defined structure.

6.1.2.2 Primitive Monitors of Loose-Ordering Properties

Our SystemC monitors of loose-ordering properties are compositional. We use the attribute grammar
of the loose-ordering language proposed in Sec. 5.3; the SystemC implementation is a straightforward
implementation of the grammar. Each node of the syntax tree of a loose-ordering formula is defined by
a SystemC monitor. Leafs of the tree are SystemC monitors of ranges which implement corresponding
elementary recognizers defined in Chapter 5 (see Sec. 5.4.1). Those monitors keep a recognition context.
Based on the semantic rules of the attribute grammar, the constructed monitor of a loose-ordering property
checks the well-formedness of the property. If the property is not well-formed, the SystemC monitor alerts
and it cannot be used for on-line monitoring. If the property is well-formed, the recognition context for
primitive monitors of ranges is evaluated. When the checking and initialization are finished, the monitoring
can be started.

All monitors have a step(...) function. Its call is propagated downwards in the hierarchy of the
monitors. The function is called each time when an event occurs, i.e., the state of the monitors needs to
be updated. If any of the monitors detects an error, the composite monitor reports an error and provides
information about the location of the detected malfunction.

To be used with our monitoring model (see Sec. 6.1.2.1 above), the primitive monitors of loose-
orderings are embedded into classes which inherit the Monitor abstract class (Fig. 6.2). Those classes call
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. . .

X0

X1

. . .

X2

. . .

X3

. . .

(a) Synthesized attributes of X0 may depend on the at-
tributes of X1, X2, X3 and the inherited attributes of X0

. . .

X0

X1

. . .

X2

. . .

X3

. . .

(b) Inherited attributes of X1 may depend on the syn-
thesized attributes of X2, X3 and all attributes of X0

Figure 6.3 Semantic rules of an attributed grammar illustrated on a fragment of a derivation tree. X0, . . . , X3

are nodes. The symbol “↓” (resp. “↑”) denotes the inherited (resp. synthesized) attributes of Xi.

the step(...) method of the embedded monitors whenever the update(...) function inherited from
the Monitor is invoked.

In the following sections we discuss in details SystemC implementation of the primitive monitors of
loose-ordering properties (Sec. 6.2), their integration into our monitoring model (Sec. 6.3), and provide
definition of monitorable communication channels (Sec. 6.4). For illustration purpose, we construct a
monitor of one of the loose-orderings of the IPU and show how the monitor can be used to ensure
correctness of the component.

6.2 A Library of Primitive Monitors: SystemC Implementation
To implement monitors of loose-ordering properties in SystemC, we use the attribute grammar of the
loose-ordering language mentioned in Sec. 5.3. In this section we provide its formal definition. The
grammar allows (i) to construct monitors compositionally, (ii) to generate monitors automatically, (iii)
to compute recognition contexts for each part of the properties (ranges, fragments, etc.), (iv) to check
the well-formedness of those monitors (i.e., the well-formedness of respective loose-ordering properties
w.r.t. the definitions provided in Chapter 4). The grammar defines one production rule per term of
the language (a range R, a fragment F , etc.). The attributes of the grammar are used to evaluate
the recognition contexts of ranges and check the well-formedness. The SystemC implementation is the
straightforward encoding of the grammar’s production rules: classes represent terms of the grammar; they
provide methods for the context evaluation and run-time monitoring. The evaluation of loose-ordering
properties relies on the recognizers defined in Chapter 5.

6.2.1 Attribute Grammar of the Language of Loose-Orderings
The attribute grammar in Figure 6.4 defines the language of loose-orderings. It instantiates the abstract
grammar for well-formed loose-ordering formulas provided in Figure 4.1 (see Chapter 4). The bold capital
letters and symbols are non-terminals of the grammar. The set of production rules are highlighted in red.

Each non-terminal X is associated with two disjoint sets of attributes: ↑ I(X) stands for the set
of inherited attributes of X, ↓ S(X) stands for the set of synthesized attributes of X. Each attribute
takes a value from some associated domain (e.g., sets, integers). The attributes’ values are defined by
rules associated with the productions of the grammar. The rules of a production X0 → X1 . . . Xk are as
follows:

1. Each synthesized attribute in S(X0) is defined in terms of the attributes I(X0)∪A(X1)∪· · ·∪A(Xk)
where for all i ∈ [1, k], A(Xi) is the set of all attributes of Xi (see Fig. 6.3(a)).

2. Each inherited attribute in I(Xi) is defined in terms of the attributes in A(X0)∪S(X1)∪· · ·∪S(Xk)
for all i ∈ [1, k] (see Fig. 6.3(b))

Each production X0 → X1 . . . Xk may have a set of conditions on the attributes’ values. We denote
the production rules of the attribute grammar as

X0 ↑S(X0)↓I(X0)→X1 . . . Xk

< conditions over A(X0) ∪A(X1) ∪ · · · ∪A(Xk) >

[ definition of ∀x ∈ S(X0) ∪ I(X1) ∪ · · · ∪ I(Xk) ]
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A ↑α→
(
P � N | ∇∇∇

)
< α(P) ∩ {val(N)} = ∅; val(N) ∈ I >
[ α(A) = α(P) ∪ {val(N)};
B(P) = ∅; Ac(P) = {i}; Af (P) = ∅ ]

T ↑α→
(
P =⇒Q | T

)
[ α(G) = α(P) ∪ α(Q);
B(P) = ∅; Ac(P) = σ(Q); Af (P) = α(Q)\σ(Q);
B(Q) = ∅; Ac(Q) = σ(P); Af (Q) = α(P)\σ(P) ]

P ↑α,σ↓B,Ac,Af
→ L

< α(P) ⊆ I ∪O >
[ α(P) = α(L); σ(P) = α(L);
B(resp. Ac, Af )(L) = B(resp. Ac, Af )(P); idx(L) = 0 ]

Q ↑α,σ↓B,Ac,Af
→ L

< α(Q) ⊆ O >
[ α(Q) = α(L); σ(Q) = α(L);
B(resp. Ac, Af )(L) = B(resp. Ac, Af )(Q); idx(L) = 0 ]

L ↑α,σ↓B,Ac,Af ,idx→
F

[ α(L) = α(F); σ(L) = α(F);
B(F) = B(L); Ac(F) = Ac(L); Af (F) = Af (L); idx(F) = idx(L) + 1 ]

| F < L′
< α(F) ∩ α(L′) = ∅ >
[ α(L) = α(F) ∪ α(L′); σ(L) = α(F);
B(F) = B(L); Ac(F) = σ(L′); Af (F) = α(L′)\σ(L′) ∪Ac(L) ∪Af (L);
idx(F) = idx(L) + 1;
B(L′) = B(L) ∪ α(F); Ac(L′) = Ac(L); Af (L′) = Af (L);
idx(L′) = idx(L) + 1 ]

F ↑α↓B,Ac,Af ,idx→
(
{X}, ]]],���

)
[ α(F) = α(X );
B(resp. Ac, Af )(X ) = B(resp. Ac, Af )(F); C(X ) = ∅;
β(X ) = ∅; s(X ) = val(]]]); sh(X ) = val(���) ]

X ↑α↓B,Ac,Af ,C,β,s,sh →
R

[ α(X ) = α(R);
B(resp. Ac, Af , s, sh)(R) = B(resp. Ac, Af , s, sh)(X ); C(R) = β(X ) ]

| R,X ′
< α(R) ∩ α(X ′) = ∅ >
[ α(X ) = α(R) ∪ α(X ′);
B(resp. Ac, Af , s, sh)(R) = B(resp. Ac, Af , s, sh)(X ); C(R) = β(X ) ∪ α(X ′);
B(resp. Ac, Af , s, sh)(X ′) = B(resp. Ac, Af , s, sh)(X ); C(X ′) = ∅;
β(X ′) = β(X ) ∪ α(R) ]

R ↑α↓B,Ac,Af ,C,s,sh → N[U,V]

[ α(R) = {val(N)} ]

Figure 6.4 The attribute grammar defining the language of loose-orderings.
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6.2.1.1 The Non-Terminals

The bold capital letters and symbols in Figure 6.4 are non-terminals. Their meaning is the following:

(i) R (resp. F , L) defines a range (resp. a fragment, a loose-ordering);

(ii) P (resp. Q) defines a loose-ordering made of both inputs and outputs (resp. only outputs);

(iii) A (resp. T ) defines an antecedent requirements (resp. a timed implication constraint);

(iv) the auxiliary non-terminal X defines the set of ranges;

(v) the non-terminals N, ∇∇∇, T, U, V represent respectively the names of the formulas of (I ∪ O),
the context of an antecedent requirement (repeated or non-repeated), time of a timed implication
constraint, lower and upper bounds of a range. Their definition is not shown for convenience. To get
their respective values, we use the val(...) function. T, U and V define integers. ∇∇∇ defines values
of the set {Non-Repeated,Repeated};

(vi) the non-terminals ]]], ��� define the semantics of a fragment: conjunctive or disjunctive, shuffled or
non-shuffled; their values are accessed by means of the val(...) function. ]]] defines Boolean values,
��� defines values of the set {Non-Shuffled,Shuffled}.

6.2.1.2 The Attributes

The non-terminals corresponding to the terms of the loose-ordering language (R, X , etc.,) have inherited
and synthesized attributes.

– The inherited attributes:

(i) the inherited attributes B, C, Ac and Af correspond to the respective sets of names of a
recognition context (see Sec. 5.3);

(ii) the inherited attributes s and sh of R and X define semantics of the parent F ;
(iii) the inherited attribute β of the non-terminal X , representing a set of ranges {R1, . . . ,Rm}, is

used to compute the set of names C of companion ranges of a range Rj (for j ∈ [1,m]);
(iv) the inherited attribute idx of the non-terminals F and L is used to define the position of a

fragment in a parent loose-ordering.

– The synthesized Attributes:

(i) the synthesized attribute α defines the vocabulary of a part of the formula represented by the
respective non-terminal,

(ii) the synthesized attribute σ of the non-terminals L, P and Q representing a loose-ordering
F1 < · · · < F` is used to evaluate the set of names Ac which immediately follow a fragment Fk
of the loose-ordering (for k ∈ [1, `]).

6.2.1.3 The Semantic Rules and Conditions

The rules of the productions define the evaluation of the recognition context. The conditions ensure the
well-formedness of the formula as it is defined in Section 4.4 (see Fig. 4.1). The conditions are checked
after the vocabulary α is evaluated.

Example 6.2.1. – Consider an antecedent requirement((
{n[2,3]1 , n

[10,15]
2 },∧,Non-Shuffled

)
< n3 � i | Non-Repeated

)
.

Its parse tree is shown in Figure 6.5. For convenience (i) the non-terminalsN,∇∇∇, U andV are omitted and
their values are substituted directly in the respective nodes of the tree; (ii) indices are used to distinguish
different occurrences (instantiations) of the non-terminals L, F , X and R. In Figure 6.5 the occurrences
of the non-terminals are shown the values of their attributes. The conditions are not illustrated since they
all hold (the formula is well-formed). For each node t of the derivation tree the value of α synthesized at t
is the union of the αs of the children nodes of t. The synthesized attribute σ of a node t′ instantiating L
is equal to the set of names α of the left-most child node (which represents a fragment) of t′. All inherited
attributes are propagated downward. They are re-evaluated (if needed) at each node according to the
semantic rules defined in Figure 6.4. �
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↑ α = {n3}
↓ B = {n1, n2}
↓ Ac = {i}
↓ Af = ∅
↓ C = ∅
↓ β = ∅
↓ s = ∧
↓ sh = Non-Sh.

A(
P � i | Non-Repeated

)
L1

F1 L2

(
{X1},∧,Non-Shuff.

)
F2

R1 X2

(
{X3},∧,Non-Shuff.

)

R2 R3n
[2,3]
1

n
[10,15]
2 n

[1,1]
3

↑ α = {n1}
↓ B = ∅
↓ Ac = {n3}
↓ Af = {i}
↓ C = {n2}
↓ s = ∧
↓ sh = Non-Sh.

↑ α = {n2}
↓ B = ∅
↓ Ac = {n3}
↓ Af = {i}
↓ C = {n1}
↓ s = ∧
↓ sh = Non-Sh.

↑ α = {n3}
↓ B = {n1, n2}
↓ Ac = {i}
↓ Af = ∅
↓ C = ∅
↓ s = ∧
↓ sh = Non-Sh.

↑ α = {n1, n2}
↓ B = ∅
↓ Ac = {i}
↓ Af = ∅
↓ C = ∅
↓ β = ∅
↓ s = ∧
↓ sh = Non-Sh. ↑ α = {n2}

↓ B = ∅
↓ Ac = {n3}
↓ Af = {i}
↓ C = {n1}
↓ β = {n1}
↓ s = ∧
↓ sh = Non-Sh.

↑ α = {n1, n2}
↓ B = ∅
↓ Ac = {n3}
↓ Af = {i}
↓ idx = 1

↑ α = {n3}
↓ B = {n1, n2}
↓ Ac = {i}
↓ Af = ∅
↓ idx = 2

↑ α = {n1, n2, n3}
↑ σ = {n1, n2}
↓ B = ∅
↓ Ac = {i}
↓ Af = ∅

↑ α = {n3}
↑ σ = {n3}
↓ B = {n1, n2}
↓ Ac = {i}
↓ Af = ∅
↓ idx = 1

↑ α = {n1, n2, n3}
↑ σ = {n1, n2}
↓ B = ∅
↓ Ac = {i}
↓ Af = ∅
↓ idx = 0

↑ α = {n1, n2, n3, i}

Figure 6.5 A derivation tree for an antecedent requirement
(
({n[2,3]

1 , n
[10,15]
2 },∧,Non-Shuffled) < n3 � i |

Non-Repeated
)
. “↑ x” (resp. “↓ y”) means that x (resp. y) is a synthesized (resp. inherited) attribute.

6.2.2 SystemC Implementation
The SystemC implementation of the primitive monitors of loose-orderings is straightforward. We define
one class per non-terminal of the attribute grammar (see Fig. 6.6 and Fig. 6.7). Instantiations (objects)
of those classes are primitive monitors of parts of a loose-ordering property (ranges, fragments, etc.).
They keep pointers to the monitors of the children nodes of those parts in the syntax tree of a property
(e.g., see Fig. 6.8). The implementation is generic; all the defined classes are C++ templates. They are
parameterized with the type of names T constituting the loose-ordering properties.

6.2.2.1 Primitive Monitors and Recognition Context

The abstract class Range represents ranges; it corresponds to the non-terminalR of the attribute grammar.
All the primitive monitors implementing elementary recognizers of ranges defined in Section 5.4.1 inherit
from this abstract class (Fig. 6.6). Note that there is one primitive monitor per elementary recognizer.
For instance, the class RangeStopNonShuff implements the continuous stopping recognizer of a range
appearing in a fragment with non-shuffled semantics. Primitive monitors keep a pointer to a recognition
context, a name of a range, a state of the monitor (it corresponds to the current state of the elementary
recognizer), a counter, the parameters u and v of a range n[u,v].

A context is implemented by a class Context. It is a container of the sets of names defined by the
recognition context (Sec. 5.3).

The class RangesSet defines the set of ranges; it corresponds to the non-terminal X of the grammar.
The class Fragment (Fig. 6.6) defines a monitor of a fragment; it corresponds to the non-terminal F .

The monitor has two Boolean variables semantics and shuffle defining the semantics of a fragment;
the true value of the former (resp. the latter) means that the fragment has conjunctive (resp. shuffled)
semantics. The monitor possesses a pointer to a parent loose-ordering of the fragment, and an integer
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Term<T>

getNames()
initContext(Context<T>*)
isWellFormed()
start()
step(T)
isError()
reset()
isIdle()

Range<T>

T* name
Context<T>* cntx
int cpt, state
int u, v

RangesSet<T>

Range<T>* R
RangesSet<T>* X

Fragment<T>

RangesSet<T>* X
bool semantics
bool shuffle
bool flagActive
int idx
LooseOrdering<T>* parent

isActive()

LooseOrdering<T>

Fragment<T>* F
LooseOrdering<T>* L

isActive()
getNamesOfFirstFragment()

LooseOrderingOutputs<T>

R

♦

X
♦

X

♦

F
♦

L

♦

parent

♦

Context<T>

vector<T>* B
vector<T>* Ac
vector<T>* Af
vector<T>* C
bool semantics

isNameBefore()
isNameAfterClose()
isNameAfterFar()
isNameCompanion()
addNameBefore()
addNameAfterClose()
addNameAfterFar()
addNameCompanion()
setSemantics()
getSemantics()

♦

cntx

RangeErrorShuff<T>

RangeErrorNonShuff<T>

RangeReInitShuff<T>

RangeReInitNonShuff<T>

RangeStopShuff<T>

RangeStopNonShuff<T>

RangeResetNonShuff<T>

RangeResetStopNonShuff<T>

Figure 6.6 SystemC Implementation of the primitive monitors of loose-orderings: the class diagram. Part I.
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Term<T>

getNames()
initContext(Context<T>*)
isWellFormed()
start()
step(T)
isError()
reset()
isIdle()

LooseOrdering<T>

Fragment<T>* F
LooseOrdering<T>* L

isActive()
getNamesOfFirstFragment()

LooseOrderingOutputs<T>

AntecedentRequirement<T>

LooseOrdering<T>* P
T* i
bool context

TimedImplicationConstraint<T>

LooseOrdering<T>* P
LooseOrderingOutputs<T>* Q
unsigned int time

P

P

Q

Figure 6.7 SystemC Implementation of the primitive monitors of loose-orderings: the class diagram. Part II.

s1:RangeSet<int>

RangeSet<int>* X
Range<int>* R

s2:RangeSet<int>

RangeSet<int>* X = NULL
Range<int>* R

s3:RangeSet<int>

RangeSet<int>* X = NULL
Range<int>* R

f1:Fragment<int>

RangeSet<int>* X

f2:Fragment<int>

RangeSet<int>* X

l1:LooseOrdering<int>

LooseOrdering<int>* L
Fragment<int>* F

l2:LooseOrdering<int>

LooseOrdering<int>* L = NULL
Fragment<int>* F

a:AntecedentRequirement<int>

/* i, false */
LooseOrdering<int>* P

r1:RangeResetNonShuff<int>

/* n[2,3]
1 */

r2:RangeResetNonShuff<int>

/* n[10,15]
2 */

r3:RangeStopNonShuff<int>

/* n[1,1]
3 */

Figure 6.8 Structure of a monitor of the antecedent requirement
(
({n[2,3]

1 , n
[10,15]
2 },∧,Non-Shuffled) < n3 � i |

Non-Repeated
)
.
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variable idx used to define the position of the fragment in the parent loose-ordering and to check the
well-formedness of the monitor (see Sec. 6.2.2.5 below).

The LooseOrdering class defines a monitor of a loose-ordering; it corresponds to the non-terminals L
and P . The inherited class LooseOrderingOutputs defines a monitor of a loose-ordering made of only
outputs; it represents the non-terminal Q (Fig. 6.6).

The classes AntecedentRequirement and TimedImplicationConstraint correspond to the
non-terminals A and T respectively (Fig. 6.7). They define monitors of loose-ordering properties. A
monitor of an antecedent requirement A =

(
P � i | ∇

)
keeps a pointer to the checked name i, and

a Boolean variable context defining the context; if it is true, the context is repeated. A monitor of
a timed-implication constraint T =

(
P =⇒ Q | t

)
keeps an integer parameter time used to measure

SystemC simulation time.

6.2.2.2 Interface of SystemC Monitors

Ranges, fragments, loose-orderings, etc. are terms of loose-ordering formulas. Their monitors implement
the interface defined by the abstract class Tert:

(i) getNames(), initContext(Context<T>*), isWellFormed() are methods used respectively to get
names of a term, to compute a recognition context, to check conditions on a vocabulary of the term;

(ii) start() (resp. reset()) starts (resp. resets) a monitor;
(iii) isError() (resp. isIdle()) allows checking if a monitor is in error state (resp. idle);
(iv) the method step(T) checks if name of type T is allowed to occur; this is the method used for

monitoring.

In addition to the inherited interface, some monitors define additional methods. Thus, the Fragment
and LooseOrdering classes have a method isActive() which allows to check if a respective monitor is
active.

6.2.2.3 Construction of a Monitor

A SystemC monitor of a loose-ordering property is constructed in a “bottom-up” way. First, primitive
monitors of ranges are instantiated. Then, these monitors are used to construct the monitor of the
property. Consider, for instance, the IPU of our running example (Sec. 3.2.1.3). It has a property of
the “timed implication constraint” type stating that “if face recognition starts properly with the defined
image address, the IPU reads the analyzed image and images from the external gallery, and then sends
an interrupt (the positive edge of the interrupt followed by the negative edge) within 500 nanoseconds.”
(see T1-IPU, Sec. 3.4.2). This is formally defined by Formula 6.1.(

set-img-addr < start =⇒
(
{read-img[100,19000], read-gl-img[10000,2000000]},∧,Shuffled

)
< set-irq-pos < set-irq-neg | 500ns

) (6.1)

Figure 6.9 illustrates the construction of a monitor of the loose-ordering property defined by Formula 6.1.
Here, for instance, lines 21 – 26 show the construction of a monitor of the fragment:(

{read-img[100,19000], read-gl-img[10000,2000000]},∧,Shuffled
)
.

The monitors of the ranges are objects of the class RangeErrorShuff, since the fragment appears in the
right loose-ordering of the property and it has shuffled semantics (� = Shuffled). When the monitor
of the fragment is instantiated (line 26), the Boolean parameters defining semantics of the fragment are
specified.

We have implemented a tool which enables the automatic generation of monitors from loose-ordering
properties. Our tool gets a definition of a property and, if the property is syntactically correct, returns a
monitor.

6.2.2.4 Computation of Recognition Context

To compute the recognition context of primitive monitors of ranges, one needs to call the
initContext(Context<T>*) method of the class AntecedentRequirement (resp. TimedImplication-
Constraint). The invocation of the method is propagated downward in the tree of the monitors. At each
level, the context is re-evaluated w.r.t. the semantic rules of the attribute grammar.
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1 /* consturction of a monitor of the left loose -ordering p
2 /*the first fragment */
3 Range <int >* r1p=new RangeResetNonShuff <int >( SET_IMG_ADDR ,1,1);
4 RangesSet <int >* s1p=new RangesSet <int >(r1p , NULL);
5 // Boolean parameters of f1p: conjunctive , non -shuffled , first , not last
6 Fragment <int >* f1p=new Fragment <int >(s1p , true , false , true , false);
7
8 /*the second fragment */
9 Range <int >* r2p=new RangeStopNonShuff <int >(START ,1,1);

10 RangesSet <int >* s2p=new RangesSet <int >(r2p , NULL);
11 // Boolean parameters of f2p: conjunctive , non -shuffled , not first , last
12 Fragment <int >* f2p=new Fragment <int >(s2p , true , false , false , true);
13
14 LooseOrdering <int >* p2=new LooseOrdering <int >(f2p , NULL);
15 f2 ->setParent(p2);
16 LooseOrdering <int >* p=new LooseOrdering <int > (f1p , p2);
17 f1 ->setParent(p);
18
19 /* construction of a monitor of the right loose -ordering */
20 /*the first fragment */
21 Range <int >* r1q=new RangeErrorShuff <int >(READ_IMG , 100, 19000);
22 Range <int >* r2q=new RangeErrorShuff <int >( READ_GL_IMG , 1000 ,2000000);
23 RangesSet <int >* s2q=new RangesSet <int >(r2q , NULL);
24 RangesSet <int >* s1q=new RangesSet <int >(r1q , s2q);
25 // Boolean parameters of f1q: conjunctive , shuffled , first , not last
26 Fragment <int >* f1q=new Fragment <int >(s1q , true , true , true , false );
27
28 /*the second fragment */
29 Range <int > r3q=new RangeErrorNonShuff <int >( SET_IRQ_POS , 1,1);
30 RangesSet <int >* s3q=new RangesSet <int >(r3q , NULL);
31 // Boolean parameters of f2q: conjunctive , non -shuffled , first , not last
32 Fragment <int >* f2q=new Fragment <int >(s3q , true , false , true , false);
33
34 /*the third fragment */
35 Range <int > r4q=new RangeErrorNonShuff <int >( SET_IRQ_NEG , 1,1);
36 RangesSet <int >* s4q=new RangesSet <int >(r4q , NULL);
37 // Boolean parameters of f3q: conjunctive , non -shuffled , not first , last
38 Fragment <int >* f3q=new Fragment <int >(s4q , true , false , false , true);
39
40 LooseOrderingOutputs <int >* q3=new LooseOrderingOutputs <int >(f3q , NULL);
41 LooseOrderingOutputs <int >* q2=new LooseOrderingOutputs <int >(f2q , q3);
42 LooseOrderingOutputs <ing >* q=new LooseOrderingOutputs <ing >(f1q , q2);
43
44 TimedImplicationConstraint <int >* t=
45 new TimedImplicationConstraint <int >(p, q, 500);

Figure 6.9 Construction of a monitor of the loose-ordering property defined by Formula 6.1.

6.2.2.5 Well-Formedness Checking

When a monitor of a property is constructed, the well-formedness of the property can be checked by
calling the function isWellFormed(). The method implements conditions of the attribute grammar on
the vocabularies of different parts of the property.

The call of the method also ensures the structural well-formedness of a monitor. A monitor of a
fragment is well-formed, if it is composed from the primitive monitors of ranges of the type corresponding
to the semantics and the position of the fragment (see Sec. 5.4.2.1). For instance, a monitor of a fragment
with shuffled semantics(

{read-img[100,19000], read-gl-img[10000,2000000]},∧,Shuffled
)
,

which appears in the right loose-ordering of the property 6.1 should be constructed from monitors of
ranges of the RangeErrorShuff type. When monitors are generated with our tool, they are correct by
construction.

6.2.2.6 Evaluation of a Property

The evaluation of a property is performed by means of the function step(name). A step of the monitor of
the antecedent requirement A =

(
P � i | ∇

)
is shown in Figure 6.10. It consists of a step of the monitor
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1 /* AntecedentRequirement */
2 // LooseOrdering <T>* P
3
4 void step(T name){
5 P->step(name);
6 if (name == i && !P->isError ()
7 && context == true){
8 P->reset ();
9 P->start (); }}

Figure 6.10 A step of the AntecedentRequire-
ment<T>.

1 /* TimedImplicationConstraint */
2 // LooseOrdering <T>* P
3 // LooseOrderingOutputs <T>* Q
4 void step(T name){
5 if (P->isActive ()){
6 P->step(name);
7 if (P->isStop ()){
8 P->reset ();
9 Q->start ();

10 Q->step(name);
11 }} else if (Q->isActive ()){
12 Q->step(name);
13 if (Q->isStop ()){
14 Q->reset ();
15 P->start ();
16 P->step(name); }}}

Figure 6.11 A step of the TimedImplication-
Constraint<T>.

1 /* LooseOrdering */
2 // Fragment <T>* F
3 // LooseOrdering <T>* L
4
5 void step(T name){
6 if (F->isActive ()){
7 F->step(name);
8 if (F->isStop ()){
9 if (L != NULL){

10 L->start ();
11 L->step(name);
12 }}} else if (L != NULL)
13 L->step(name );}

Figure 6.12 A step of the LooseOrdering<T>.

1 /* Fragment */
2 // RangesSet <T>* X
3
4 void step(T name){
5 X->step(name );}
6
7 /* RangesSet */
8 // RangesSet <T>* X
9 // Range <T>* R

10
11 void step(T name){
12 R->step ();
13 if (X != NULL) X->step ();}

Figure 6.13 A step of the Fragment<T>. new line
new line

of a loose-ordering P (line 5) and, if the semantics of A is repeated (∇ = Repeated), reset of the monitor
of P (lines 6 – 9).

Figure 6.11 shows a step of the monitor of the timed implication constraint
T =

(
P =⇒ Q | t

)
. It performs a step on an active loose-ordering P (lines 5, 6) or Q (lines 11,

12). If the active loose-ordering P (resp. Q) is stopped, it is reset and the alternating loose-ordering Q
(resp. P) starts and performs a step (lines 7 – 10 and lines 13 – 16 respectively).

The monitor of the LooseOrdering type performs a step on the monitor of a fragment, if it is active
(see Fig. 6.12, lines 6, 7). If the monitor of a fragment is active and the performed step stops it, the
monitor of the following fragment is started through the start of the nested monitor of a loose-ordering
(lines 8 – 11). If the monitor of a fragment is passive, the step is called on the monitor of the next fragment
(though the nested monitor of a loose-ordering).

A step of the monitor of a fragment (see Fig. 6.13) consists of the steps of all monitors of its ranges
through the nested monitors of the RangesSet type.

The primitive monitors of ranges implement the elementary recognizers defined in Section 5.4.1. When
the method step(name) is called, those monitors trigger one transition of the corresponding elementary
recognizers, updating the state and (possibly) increasing the counter cpt. To establish which transition
should be taken, one defines if the name should occur before, immediately after, etc.

6.3 Monitors of Loose-Ordering Properties
The primitive monitors of loose-orderings defined in Section 6.2 are independent from our monitoring
model (see Sec. 6.1.2.1). To monitor loose-ordering properties of the antecedent requirement and the
timed implication constraint type, we define the monitors shown in Figure 6.14(a); they inherit from
the Monitor abstract class. The class MonitorA (resp. MonitorT) possesses a pointer to the monitor of
the AntecedentRequirement (resp. TimedImplicationConstraint) type. The monitors also have pools
of names represented by the class NamePool which are used to map communication events to names of
loose-ordering properties. The implementation is completely generic; our approach works whatever type
of events E and type of names T are.
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Monitor<T,E>

update(E*)

MonitorA<T,E>

AntecedentRequirement<T>* A
NamesPool<E>* namesPool

MonitorT<T,E>

TimedImplicationConstraint<T>* T
NamesPool<E>* namesPool

(a) Class diagram

1 /* MonitorA <T,E> */
2 // AntecedentRequirement <T>* A
3 // NamesPool <E>* namesPool
4
5 void update(E* e){
6 T* name = namesPool ->getName(e);
7 if (name != NULL){
8 A->step(&name); }
9 if (A->isError ()){

10 cout <<"Violation of A\n";
11 exit (1); }}

(b) Update of the MonitorA<T,E>

1 /* MonitorT <T,E> */
2 // TimedImplicationConstraint <T>* T
3 //NamesPool <E>* namesPool
4
5 void update(E* e){
6 T* name = namesPool ->getName(e);
7 if (name != NULL){
8 T->step(&name);
9 } if (T->isError ()){

10 cout <<"Violation of T\n";
11 exit (1); }}

(c) Update of the MonitorT<T,E>

Figure 6.14 The monitors of loose-ordering properties.

Figures 6.14(b) and 6.14(c) show the implementation of the update(E* e)method of the MonitorA and
the MonitorT respectively. The implementation consists of (i) identifying the name of a property based
on a descriptor of event e (line 11 in both figures), (ii) making a step of the monitor of the antecedent
requirement (resp. the timed implication constraint), if the name is in the pool (lines 7, 8 in both figures),
(iii) checking if after the performed step the monitor of the property entered the error state (lines 9, 11
in both figures).

6.4 Monitorable SystemC/TLM Channels
We are interested in monitoring loose-ordering properties occurring on the boarder (interface) of TLM
components. Thus, the entities of a virtual prototype, where the (potentially) monitored events can
occur, are those enabling inter-component communications. Specifically, they are: (i) SystemC signal
channels modeling signal interrupts, (ii) TLM initiator/target ports which implement the communication
by means of transactions. To enable run-time monitoring of the TL model’s behavior, we define the
observable version for each of the listed entities in the sense that any communication event (e.g., sending
a transaction) is visible to the monitors of loose-orderings. The observable SystemC signal channels and
TLM ports inherit the class Subject<T,E> (Sec. 6.1.2.1), thus they may have the set of monitors attached.

6.4.1 Observable Signal Channels
We define our own channel class sc_signal_obs as it is shown in Figure 6.15. The class inherits from the
provided SystemC sc_signal<bool> channel and from the Subject<T,Event>. It possesses a descriptor
of an event Event* e which may occur. An event occurring in a considered channel is defined as the
change of the channel’s value. The value changes any time the method write() of the sc_signal<bool>
is called. To capture the change of the value, the method is redefined such that a value of the descriptor
e is updated, and all registered observers of the sc_signal_obs are notified and provided with the event
descriptor e (see Fig. 6.15(b)).
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Subject<T,Event>

vector<Observer<T,Event>* >* Obs

Attach(Observer<T,Event>*)
Detach(Observer<T,Event>*)
NotifyObservers(Event*)

sc_signal<bool>

write(const bool&)
read()
update()
...

sc_signal_obs

Event* e

(a) The class sc_signal_obs

void write( const bool& value_ ){
/*call write() of the base class*/
sc_signal <bool >:: write(value_ );

/*form a descriptor of event*/
if (value_ ){

(e->_irq_event ).op = POS;
NotifyObservers(e);

} else {
if (! init_flag ){

(e->_irq_event ).op = NEG;
NotifyObservers(e); }

init_flag = 0; }}

(b) Redefinition of write()

Figure 6.15 Observable SystemC channel.

6.4.2 Observable SystemC/TLM Sockets
We define observable TLM sockets initiator_socket_obs<M, bool MULTISOCKET=false>
(Fig. 6.16(a)) and target_socket_obs<M, bool MULTISOCKET=false> (Fig. 6.16(b)). The parameter
M of the templates is the type of the component possessing the initiator (resp. target) socket. Provided
that the implementation of the TLM model is in SystemC, M is always a SystemC module sc_module.
The second parameter MULTISOCKET is used to specify whether the initiator (resp. target) socket can be
connected to several target (resp. initiator) sockets2. By default the point-to-point connectivity is set,
i.e., one socket can be connected to only one other socket. The defined classes have pointers to a parent
module and a descriptor of events occurring in observable sockets.

2Strictly speaking the MULTISOCKET parameter determines if the respective SystemC socket (which is the base class of the
TLM socket) is a multisocket. A multisocket can be connected to more than one SystemC channel (see Sec. 2.1.5).
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SystemC/TLM-2.0

Subject<T,Event>

vector<Observer<T,Event>* >* Obs

Attach(Observer<T,Event>*)
Detach(Observer<T,Event>*)
NotifyObservers(Event*)

sc_port
<tlm_fw_transport_if<tlm_base_protocol_types>,

MULTIPORT?0:1>

tlm_initiator_socket<CHAR_BIT*sizeof(uint32_t),
tlm_base_protocol_types, MULTIPORT?0:1>

sc_export<tlm_bw_transport_if
<tlm_base_transport_types> > m_export

tlm_bw_transport_if
<tlm_base_protocol_types>

initiator_socket_obs
<M, bool MULTIPORT=false>

Event* e
M* mod

write(const uint32_t&, uint32_t, int port=0)
read(const uint32_t&, uint32_t, int port=0)

...

(a) Observable initiator socket

Subject<T,Event>

vector<Observer<T,Event>* >* Obs

Attach(Observer<T,Event>*)
Detach(Observer<T,Event>*)
NotifyObservers(Event*)

SystemC/TLM-2.0

sc_export
<tlm_fw_transport_if<tlm_base_protocol_types> >

tlm_target_socket<CHAR_BIT*sizeof(uint32_t),
tlm_base_protocol_types, MULTIPORT?0:1>

sc_port<tlm_bw_transport_if
<tlm_base_transport_types> > m_port

tlm_fw_transport_if
<tlm_base_protocol_types>

b_transport(tlm_generic_payload tr, sc_time& t)

target_socket_obs
<M, bool MULTIPORT=false>

Event* e
M* mod

...

(b) Observable target socket

Figure 6.16 Observable SystemC/TLM sockets.
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1 /* initiator_socket_obs */
2 // using namespace tlm , sc_core
3 // Event* e
4 // sc_time time
5
6 tlm_response_status read(const uint32_t& addr , uint32_t& data , int port =0){
7 tlm_generic_payload tr;
8
9 /* form transaction */

10 tr.set_command(TLM_READ_COMMAND );
11 tr.set_address(addr);
12 ...
13 /* send transaction */
14 (*this)[port]->b_transport(tr , time);
15
16 /* form a descriptor of event */
17 (e->_reg_event ).addr = addr;
18 (e->_reg_event ).op = READ;
19 (e->_reg_event ).val=*( reinterpret_cast <uint32_t*>(trans.get_data_ptr ()));
20
21 /* notify monitors */
22 NotifyObservers(e);
23 return tr.get_response_status (); }

Figure 6.17 The read method of the class initiator_socket_obs<sc_module>.

6.4.2.1 Observable Initiator Socket

The observable initiator socket is derived from the TLM socket
tlm_initiator_socket<...> and inherits the combined TLM transport interface
tlm_bw_transport_if<...> (Fig. 6.16(a)). It provides two methods write(const uint32_t&, uint32_t,
int port=0) and read(const uint32_t&, uint32_t, int port=0) (e.g., see Fig. 6.17) to forward re-
spectively write and read transactions. These methods can be accessed by the parent module of the socket
for communication purposes. The transactions are formed based on the arguments of the methods. The
first (resp. the second) argument defines the address (resp. the data) of the transaction. The argument
port defines the number of the connected target sockets to which the formed transaction should be sent
(it is relevant only if the initiator socket can be connected to several target sockets, i.e., MULTIPORT=true).

When either the write(...) or read(...) method is called by the parent component, i.e., a com-
munication event occurs, a descriptor of the event e is formed and all attached observers (monitors) are
notified with the call of the method NotifyObservers(e), which is inherited by the observable initiator
socket from the Subject<T, Event>.

6.4.2.2 Observable Target Socket

The base class of the observable target socket is the
tlm_target_socket<...> defined as a part of TLM-2.0. The observable target socket implements
the TLM combined interface tlm_fw_transport_if<...> (Fig. 6.16(b)), specifically its virtual method
b_transport(...) enabling blocking communication3. The implementation of this interface ensures that
the previously described initiator socket can be connected to the defined target socket.

The invocation of the method b_transport(...) corresponds to occurrence of an input event of
the parent component of the observable target socket. When b_transport(tlm_generic_payload tr,
sc_time& t) is called, a descriptor of the occurring event is formed, the transaction tr is executed on
the parent component of the socket, and the monitors attached to the target socket are notified provided
with the defined event descriptor. The described implementation of the method is in Figure 6.18.

Summary
In this chapter, we have presented the direct translation of loose-ordering properties into SystemC mon-
itors. We have enumerated monitoring principles of SystemC/TLM and have presented our model for
monitoring the loose-ordering properties. We have defined the library of primitive SystemC monitors and

3Recall, the blocking transport interfaces of TLM-2.0 are provided for transactions which can be finished within a single
functional call.
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1 /* target_socket_obs */
2 // using namespace tlm , sc_core
3 // Event* e
4 // sc_time time
5 // sc_module* mod
6
7 void b_transport(tlm_generic_payload& tr, sc_time& t){
8 (void) t;
9 uint32_t addr = static_cast <uint32_t >(tr.get_address ());

10 uint32_t& data = *( reinterpret_cast <uint32_t*>(tr.get_data_ptr ()));
11
12 /*form descriptor of event , execute transaction */
13 (e->_reg_event ).addr = addr;
14 (e->_reg_event ).val = data;
15 switch(tr.get_command ()) {
16 case TLM_READ_COMMAND:
17 tr.set_response_status(mod ->read(addr , data ));
18 (e->_reg_event ).op = READ;
19 break;
20 case TLM_WRITE_COMMAND:
21 tr.set_response_status(mod ->write(addr , data ));
22 (e->_reg_event ).op = WRITE;
23 break;
24 case TLM_IGNORE_COMMAND:
25 break;
26 default:
27 tr.set_response_status(TLM_COMMAND_ERROR_RESPONSE );
28 }
29
30 /* notify monitors */
31 NotifyObservers(e); }

Figure 6.18 The target_socket_obs<sc_module> class definition: the b_transport() method.

have shown how they could be used for construction of monitors of arbitrary properties. Our library is
based on the attribute grammar of the loose-ordering language. Finally, we have presented the observable
SystemC/TLM communication channels which can notify monitors about communication events.

In the next chapter, we compare the complexity of our direct monitors with the complexities of monitors
available for PSL.
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The experiments presented in this chapter consist of two parts. The first part is the comparison of
the time and memory complexities of the direct SystemC monitors of the loose-ordering properties with
the respective complexities of the PSL monitors defined in [PF08; FP10]. To perform the comparison,
we use the encoding of the loose-ordering properties into PSL as proposed in Chapter 4. The purpose of
the second part of the experiments is to show that the synchronization bugs of the intercom system (see
Chapter 3) can be detected with the direct SystemC monitors. We show that the monitors help in finding
the sources of those bugs.

The chapter is organized as follows: In Section 7.1, we compute and compare the complexities of the
monitors. In Section 7.2, we build the SystemC monitors for the loose-ordering properties of the intercom
system, and show how the monitors detect the synchronization bugs. In Section 7.2 we also show how
one can find the cause of the bugs based on the information provided by the monitors.

7.1 Comparing Complexities
We compare the time and memory complexities of the monitors for the loose-ordering properties. The
time complexity is the total number of operations in an imperative language used to implement a monitor.
The memory complexity is a monitor’s memory dump (i.e., the number of bits).

7.1.1 Experimental settings
We consider different configurations of the loose-ordering properties. For each configuration P we build
the direct SystemC monitor and the PSL monitor. We consider two strategies to obtain the monitors of
P (see Fig. 7.1):

(i) Drct is the direct translation of P into SystemC as defined in Chapter 6;
(ii) ViaPSL first translates P into PSL (see Chapter 4, Sec. 4.5.1), then the built PSL encoding is

translated into a SystemC monitor as described in [PF08].

For a fair comparison, we define the configurations of the loose-ordering properties only in the subset of
the loose-ordering language encoded into PSL (Fig. 7.1). Recall that the encoded subset defines (i) the
loose-ordering properties with only non-shuffled fragments, and (ii) the strict alternation of the loose-
ordering P and a name i (resp. a loose-ordering Q) of an antecedent requirement A =

(
P � i | ∇

)
(resp.

a timed implication constraint T =
(
P =⇒ Q | t

)
).

In this chapter, we provide detailed results only for the encoding of the loose-orderings into PSL by
means of the LTL operators. We do not analyze the Sequential Extended Regular Expressions (SERE)
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Language of Loose-Orderings

Strict Alternation
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MonitorAT

• time (ops)
• space (bits)

MonitorPSL
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• space (bits)

PSL (LTL)

Removal
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Explosion!

Drct Strategy ViaPSL Strategy

Figure 7.1 Experimental settings.

encoding because we do not have the actual implementation of the respective PSL monitors. In [BA14],
it is mentioned that the complexity of the SERE monitors is proportional to the length (i.e., the number
of SERE operators) of the respective SERE formulas. Provided that our encoding of the loose-ordering
properties into SERE leads to the combinatorial explosion of the length of the SERE formulas (see
Chapter 4, Sec. 4.5.2.3), we can assume that the time and memory complexities of the SERE monitors
are also exponential.

In Section 7.1.2 (resp. Section 7.1.3) below, we compute the complexities of the direct SystemC
monitors (resp. the PSL monitors). In Section 7.1.4, we present the obtained results and compare the
computed complexities.

7.1.2 The ViaPSL Strategy: Complexities of the PSL Monitors
According to [PF08] the time and memory complexities of the monitors generated with the ViaPSL
strategy are linear with regard to the length of the formula. As stated in [PF08; FP10], the PSL monitor of
a loose-ordering property P is built by interconnecting the primitive monitors. These primitive monitors
are associated with the PSL operators of P . To compute the time (resp. memory) complexity of the
monitor of P , we need:

(i) to compute the number of operations Ops (resp. the number of bits Bits) per primitive PSL monitor,
(ii) to compute the number of primitive monitors N constituting the monitor of P (this is equal to the

number of the PSL operators in P ),
(iii) finally, to multiply Ops (resp. Bits) by N .

The Number of Operations and Bits of a Primitive Monitor Figure 7.2 shows the examples
of the primitive PSL monitors from [PF08; Pie07]. Each primitive monitor performs approximately 13
operations. Each primitive monitor has approximately 8 Boolean variables which makes up to 64 bits.
Thus, Ops = 13, Bits = 64.

The Number of Primitive Monitors The PSL monitor of a loose-ordering property P is built from
N primitive monitors. N is equal to the number of PSL operators in P . If P is of the antecedent (resp.
timed implication constraint) kind, N is defined by Sum 4.30 (resp. Sum 4.31) derived in Chapter 4 (see
Sec. 4.5.3.3).

7.1.3 The Drct Strategy: Complexities of the Direct SystemC Monitors
We compute the time (resp. memory) complexity of the direct SystemC monitor as follows: First, we
compute the number of operations (resp. bits) of the elementary monitors of ranges, the composed
monitors of fragments and loose-orderings, and the monitors of the antecedent requirement and the timed
implication constraint (see Table 7.1). Then, for a loose-property P , we compute the number of monitors
of each kind in the derivation tree of P . Finally, to find the time (resp. memory) complexity of P , we
multiply the number of monitors of each kind by the respective number of operations (resp. bits), and sum
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1 class mnt_always: public Monitor {
2 protected:
3 bool reset_n , start , expr ,
4 checking , valid ,
5 start_always , start_t1 ,
6 valid_t;
7 public:
8 mnt_always(const char* n):
9 Monitor(n){

10 valit_t=true;
11 }
12 void update (){
13 //part 1
14 start_always=start|| start_t1;
15 //part 2
16 if(( reset_n ==false )||
17 (start_always ==false ))
18 valid_t=true;
19 else
20 if(expr==true)
21 valid_t=true;
22 else
23 valid_t=false;
24 //part 3
25 if(reset_n == false)
26 start_t1=false
27 else if (start ==true)
28 start_t1=true;
29 //part 4
30 valid=valid_t;
31 //part 5
32 checking=start_always;
33 }};

(a) The PSL monitor of the “always” operator.
(Source: [PF08])

1 class mnt_impl:public Monitor{
2 protected:
3 bool reset_n , start , expr ,
4 checking , valid ,
5 start_impl , cond ,
6 valid_t;
7 public :
8 mnt_impl(const char *n):
9 Monitor(n){

10 valid_t = true;
11 }
12 void update (){
13 //part 1
14 start_impl=start && cond;
15 //part 2
16 if (( reset_n ==false )||
17 (start_impl == false))
18 valid_t = true;
19 else
20 if (expr == true)
21 valid_t = true;
22 else
23 valid_t = false;
24
25
26
27
28
29 //part 4
30 valid = valid_t;
31 //part 5
32 checking = start_impl;
33 }};

(b) The PSL monitor of the “->” operator.
(Source: [Pie07])

Figure 7.2 Primitive monitors for PSL operators.

Type of a monitor Time (ops) Space (bits)

RangeErrorNonShuff, RangeResetNonShuff, etc. ≈ 47 ≈ 232

RangeSet ≈ 13 ≈ 64

Fragment ≈ 6 ≈ 96

LooseOrdering, LooseOrderingOutputs ≈ 23 ≈ 64

AntecedentRequirement ≈ 10 ≈ 40

TimedImplicationConstraint ≈ 23 ≈ 64

Table 7.1 The time and memory complexities of the SystemC monitors.

up the results. To compute the complexities, we assume that the SystemC monitors, which are template
classes (see Chapter 6), are instantiated for integer names of P .

7.1.4 Comparison
Table 7.2 lists the configurations of the loose-ordering properties we consider and the respective time and
memory complexities of the monitors obtained with the Drct and ViaPSL strategies. The summand
∆ in the table stands for the complexity of the lexical analyzer which is supposed to be used together
with the PSL monitors in order to remove ranges (see Chapter 4, Sec. 4.5.3.2). The provided results
in Table 7.2 show that the time and memory complexities of the monitors of both strategies are linear
with regard to the length of a loose-ordering property P . The complexities of the Drct monitors do not
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Configurations
Drct ViaPSL(LTL)

time
(ops)

space
(bits)

time
(ops)

space
(bits)(

n� i | Repeated
)

≈ 99 ≈ 496 ≈ 182 + ∆ ≈ 896 + ∆(
n[100,19000] � i | Repeated

)
≈ 99 ≈ 496 ≈ 28× 109 + ∆ ≈ 137× 109 + ∆((

{n1, . . . , n4},∧
)
� i | Non-Repeated

)
≈ 279 ≈ 1384 ≈ 676 + ∆ ≈ 3328 + ∆((

{n1, . . . , n5},∧
)
� i | Non-Repeated

)
≈ 339 ≈ 1680 ≈ 780 + ∆ ≈ 3840 + ∆((

{n1, . . . , n10},∧
)
� i | Non-Repeated

)
≈ 639 ≈ 3160 ≈ 1300 + ∆ ≈ 6400 + ∆((

{n1, . . . , n20},∧
)
� i | Non-Repeated

)
≈ 1239 ≈ 6120 ≈ 2340 + ∆ ≈ 11520 + ∆(

n1 ⇒ n2 < n3 < n4 | t
)

≈ 379 ≈ 1888 ≈ 936 + ∆ ≈ 4608 + ∆(
n1 ⇒ n2 < · · · < n10 | t

)
≈ 913 ≈ 4624 ≈ 3510 + ∆ ≈ 17280 + ∆(

n1 ⇒ n2 < · · · < n20 | t
)

≈ 1803 ≈ 9184 ≈ 9880 + ∆ ≈ 48640 + ∆(
n1 ⇒ n

[100,19000]
2 < · · · < n20 | t

)
≈ 1803 ≈ 9184 ≈ 28× 109 + ∆ ≈ 137× 109 + ∆

Table 7.2 The comparison of the Drct and ViaPSL strategies. All fragments are non-shuffled.

depend on ranges. The time and memory complexities of the ViaPSL monitors explode when P contains
ranges.

7.2 Monitoring Loose-Ordering Properties
In this section, we build the SystemC monitors for the loose-ordering properties of our running example
provided in Section 3.4. The monitors are built as described in Chapter 6 (see Sec. 6.2.2.3). We use the
monitors to check that all loose-ordering properties are satisfied. Tables 7.3 and 7.4 present the results.
The first and the second columns of the tables are respectively the reference names and descriptions of the
bugs. The third column provides the reference name(s) of the loose-ordering(s) property(ies) which is(are)
violated. If a property is violated (e.g., A4-CPU), the respective monitor reports an error. The fourth
column lists the causes of the bugs. We establish the cause of each bug based on the information provided
by the monitors detecting the bugs. Some bugs were detected and localized by means of the monitors.
Some bugs were injected in order to ensure that the monitors detect the synchronization malfunctions of
the system.

Ref. Description Detection Cause of the Bugs

BS1 The Button-Start does not respond
whatever is the execution phase of the
system.

A1-TMR2 The timer TMR2 (used by the GPIO) is
started without the time scale being defined.

T6-CPU The CPU does not start the GPIO.

BS2
The display is always black.

T1-SEN The SEN does not send an interrupt when it
captures an image.

T6-CPU The CPU does not start the LCDC.

T7-CPU
T9-CPU

The CPU does not update the content of the
LCDC’s buffer.

BS3 The display shows nonsense. T7-CPU
T8-CPU

The SEN’s buffer is read while the component
is capturing an image.

Table 7.3 The detection and localization of the synchronization bugs which could appear in the TL model of the
intercom system. Part I.
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Ref. Description Detection Cause of the Bugs

BS4
The system gets stuck at the face recog-
nition: the Button-Start does not re-
spond, the same (currently analyzed)
image is shown on the display.

T1-IPU The IPU does not send an interrupt when the
face recognition terminates.

T4-CPU The CPU did not acknowledge a previously
received interrupt from the GPIO.

BS5 While the system performs the face
recognition, the display starts to show
the images being captured by the sen-
sor SEN at that moment of the system’s
execution.

T4-CPU The CPU did not disable interrupts of the
SEN before starting the face recognition.

BS6
For any user the system always returns
the “access-denied” image.

A2-IPU The face recognition is started and the size of
the image is not defined.

A2-IPU The face recognition is started and the size of
the image gallery is not defined.

BS7
The registered user gets the “access-
denied” notification

A4-IPU The confidence value of the IPU is read before
the respective face recognition terminates.

A3-IPU The image address is not specified before the
respective face recognition is started, and the
old one is used.

BS8 The registered user sees on the screen
a salutation image addressed to another
user.

A5-IPU The address of the reference image computed
by the IPU is read before the respective face
recognition terminates.

BS9
The unregistered user sees on the screen
a salutation image addressed to someone
else, and gets access into the building.

A4-IPU The confidence value of the IPU is read before
the respective face recognition terminates.

A5-IPU The image address is not specified before the
respective face recognition is started, and the
old one is used

BS10 Face recognition starts when the system
shows either the “access-denied” or salu-
tation image.

T4-CPU The CPU did not disable interrupts of the
GPIO before starting the face recognition.

BS11

After the first termination of the face
recognition, the system’s execution gets
stuck: the display shows either salu-
tation or “access-denied” image, the
Button-Start does not respond.

A1-TMR1 The timer TMR1 (used by the CPU) is started
without being configured with the time scale.

T3-CPU The CPU did not acknowledge a previously
received interrupt from the IPU.

T10-CPU The CPU did not activate the shutter of the
SEN when the time T elapsed.

BS12 The user does not see any notification
image on the screen when the face recog-
nition is finished.

T9-CPU The CPU did not start the timer and immedi-
ately proceeded to the activation of the SEN’s
shutter.

BS13 The Bus fails to establish the target
component for a transaction initiated by
the CPU.

A5-IPU The reference image of the IPU is read before
it is computed at least once (i.e., before at
least one face recognition terminates).

BS14
The Bus cannot establish the target
component for a transaction initiated by
the IPU.

A2-IPU
A3-IPU

The face recognition is started without the im-
age address being defined.

A2-IPU The face recognition is started without the ad-
dress of the image gallery being defined.

BS15 The Bus cannot establish the target
component for a transaction initiated by
the LCDC.

A2-LCDC The LCDC is started with an undefined ad-
dress of its buffer.

Table 7.4 The detection and localization of the synchronization bugs which could appear in the TL model of the
intercom system. Part II.
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Summary
In this chapter, we have compared the complexities of the direct SystemC monitors for the loose-ordering
properties and the PSL monitors. The obtained results show that the direct SystemC monitors are more
efficient than the PSL monitors. We also have shown that the monitors of the loose-ordering properties
can capture the synchronization bugs of the SystemC/TLM virtual prototype.
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In the first part of this work, we have presented the specification language based on loose-ordering
properties used in contract specifications. Now we would like to move further: we generalize loose-orderings
as much as possible to define an approach of generalized stubbing for systems-on-a-chip. The idea is that
any component can be a stub, given as a contract. Contracts are formally defined by sequence properties,
but not any specification language can be used here. We identify a set of constraints on languages defining
sequences to be used for contracts. We search for a compromise between expressivity and implementability
in a simulation framework.

In the second part of the document, we define the semantics of a contract and propose an execution
mechanics which allows early simulation with stubs. This chapter discusses the compromises on property
languages one should keep in mind when defining contracts. In the following Chapter 9, we introduce
implementation by encoding contracts into input/output state machines; the encoding can be seen as the
operation semantics of contracts. In Chapter 10, we show the implementation of the execution mechanics
in SystemC, and the experiments with our running examples; this serves a proof of concept for stubbing.

8.1 Introducing the Notion of Generalized Stubbing
The idea of stubbing is not new. Stubs are popular in agile methodologies for software development [And03;
Rub12; HF10] where they define a mock implementation of a design entity (e.g., a class, a function). In
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Figure 8.1 The verification framework for hardware designs.
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Figure 8.2 The testing framework for reactive systems.

hardware design stubs can play the role of traffic generators which produce stimuli for a hardware design
(Sec. 2.1.3), or replace a missing component.

8.1.1 Inspiration
Our stubbing method is inspired by three concepts: (i) testing hardware designs, (ii) testing reactive
systems, (iii) “design-by-contract” principle.

8.1.1.1 Testing Hardware Designs

The general method for testing a hardware design as presented in the Universal Verification Method-
ology (UVM) [AO14b], SystemC/SCV [Opeb], eRM [IJ04; Erm], SVM [Oli+12], etc. is illustrated in
Figure 8.1. A stimuli generator is in charge of producing inputs for the hardware design under verifi-
cation (DUV); an assertion checker is in charge of deciding whether the test passes. The input stimuli
may be described by means of dedicated languages which support random variables and ranges (System-
C/SCV [Opeb], CRAVE [Hae+12; LD14]). Generating the stimuli from such a constraint-based descrip-
tion involves some sort of constraint solving, for Boolean and numerical constraints [LD14]. Assertions
can be expressed with languages providing temporal logic constructs (e.g., PSL [CVK04]). Checking of
assertions can be performed either at simulation time, or offline on a set of simulation traces.

8.1.1.2 Testing Reactive Systems

Figure 8.2 illustrates the testing approach for reactive systems, in which the loop between the system
and its environment has to be taken into account. This is usually the case if the system under test is the
implementation of some control law: the outputs of the system at some point in time influence (through
the behavior of the environment) its future inputs. Generating the stimuli without taking this loop into
account is likely to produce unrealistic inputs. This is why the method includes an abstract model of the
environment, usually in the form of constraints, as in [Ray+98; JRB06].

The testing method is the following: the black box DUV and the environment play in turn. To avoid
cyclic dependencies, the specification of the environment is such that the input to the system (the output
of the environment) may only depend on the previous output of the system (the input of the environment).
When the system produces an output vector o, it is transmitted to the environment specification, which
produces the next input vector i for the system. The environment being modeled as a set of contraints
C between the inputs and outputs, this means: (i) performing a partial evaluation of C with the known
value o, which yields a simpler constraint C ′; (ii) solving C ′ to produce a value for i. At any step, the
inputs and outputs are given to the assertion checker, which plays the role of the test oracle. There are
companies (e.g., Argosim [Arg]) which implement this method in their tools.

8.1.1.3 “Design-by-Contract” Principle

The “design-by-contract” principle [Mey92] has been successfully applied to object-oriented program-
ming. Examples include Eiffel [Swi93], iContracts [Kra98], JASS [Bar+01], etc. JASS is particularly
interesting because it proposed to write assume clauses as temporal logic properties: for instance, it is
possible to express that an input parameter of a method should increase (considering the sequence of calls).
The assume/guarantee principles have been formalized for various types of software or hardware systems,
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Figure 8.3 Executing a system made of stubs. In this example C4 is a bus, a communication between C1 and
C2 through the bus involves G1, A4, G4 and A2.

for instance in [Ben+08] or [Bau+12]. Applications of (early) contracts include hardware optimization by
exploiting (sequential) don’t care sets [Dev91], modular verification [McM99], executable specifications for
synchronous languages [MM04], etc.

8.1.2 Generalized Stubbing for SoCs
The idea of our generalized stubbing mechanics is shown in Figure 8.3. We consider a set of components
exchanging data and synchronizing with each other; they are organized in a functional architecture. One
of the components can be a bus (like C4 in the picture). Each of the components is (potentially) a stub for
any other component: outputs of stubs-components (e.g., C1 in Fig. 8.3) are inputs for other components
(e.g., C2).

We choose to define stubs by contracts, i.e., an assume clause A, and a guarantee clause G (see Sec. 2.5).
In our opinion contracts are very suitable for stubbing, since they match gracefully the checking-generating
frameworks presented in Section 8.1.1. To simulate the system early in the design cycle, when only the
contracts are given, but not the detailed implementation of the components (or at least, not all of them),
the idea is the following: the guarantee clause G has to be used as a generator, while the assume clause
A has to be used as a checker. Fully implemented components of a system can be seen as stubs, where
the actual implementation plays the role of a generator.

The assume clause for a component C can depend on both the inputs and the outputs of C. An example
constraint is: a value computed by C can be read (the read operation is an input of C) only after the
termination of the computation has been signaled by an interrupt (this is an output of C). The guarantee
clauses also depend on inputs and outputs. They define obligations of components. An example constraint
is: whenever the computation of the component has been requested (with an input), its termination will
be signaled by an interrupt (an output) within some bounded delay. All these properties specify sequences
of events, and they are all safety (or bounded liveness) properties [AS87]. The properties can be defined,
for instance, by means of the loose-ordering language (see Chapter 4). The system-environment loop
presented in Section 8.1.1.2 is generalized to any number of components.

Following the principles of the TLM level of abstraction we consider asynchronous systems made of
stubs connected by oriented point-to-point connections. Communication between stubs is enabled by
FIFOs. Each stub has a unique input FIFO to preserve the order of inputs. Simulation of a system is
managed by a scheduler which activates stubs. An activated stub makes a “step” either by getting actual
input from the FIFO or by producing actual output and adding it to the FIFO of a target stub.

8.1.3 Constraints on Property Languages and Semantic Choices
To be used for stubbing, the language used to define assume (A) and guarantee (G) clauses should meet
several requirements. We make a trade-off between expressivity of contracts and implementability of
stubs, and accept to put constraints on property languages such that they can be used for our stubbing
framework. Thus, to implement stubs efficiently, we require the languages to have recognizers of a bounded
size. We also need to ensure the absence of backtracking when producing sequences in the generation
part.

Besides that, we have the semantic constraint: we want all stubs of a system to do something (i.e.,
produce outputs). If one stub only consumes inputs and never produces outputs, our interpretation is
that the stub is infinitely slow relatively to other stubs. We want to avoid such situations; we choose to
produce only productive runs of components (the runs when the components produce outputs). This can
be done by means of scheduling. There can be many scheduling policies; each scheduling allows to produce
a certain subset of all productive runs of a component (Fig. 8.4). This leads to a coverage problem which
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Runs

Productive runs

Runs produced
with SchSchSch

Figure 8.4 Runs of a component. Sch is a scheduling policy.

is out of scope of this work. To ensure that all runs are well covered, one could apply, for instance, a
method similar to [Hel+06] based on dynamic partial-order reduction techniques [FG05].

We choose to define a guarantee clause G in the implication form π ⇒ σ with some bound. The
intuitive meaning of π ⇒ σ is: when the left-had part π (a condition) is observed, the right-hand part
σ (an obligation) should occur within a bound. The right-hand part σ defines sequences of outputs that
are meant to be generated by a stub. Our choice is inspired by the implication operator α Z⇒ β of PSL
and SVA, where the semantics of the operator is not well defined (see Sec. 2.3.2.4). In this chapter, we
provide the clear semantics of π ⇒ σ.

8.1.4 Expected Benefits of Generalized Stubbing and Contributions
A structure of stubs with contracts facilitates the detection and localization of bugs at simulation time.
Contracts provide a blaming facility: if a stub (its assertion checking part) detects an error (e.g., A2
of C2 in Fig. 8.3), the component that has produced the corresponding inputs should be blamed (C1).
Moreover, assertion checkers constituting stubs can later be integrated in traditional testing framework for
hardware designs (see Sec. 8.1.1.1). Non-deterministic production of outputs by stubs enables investigation
of (potentially) more behaviors of the design than one may observe at simulation with TLM components.

The Contributions Our contributions consist of two linked parts interacting with each other. On the
one hand we define generalized stubbing as general as possible. On the other hand we ensure that it is
implementable and efficient. We do it by identifying constraints on property languages defining stubs.

The first part of contributions includes: (i) the generalized stubbing mechanics with sequence properties
for early simulation with SystemC/TLM virtual prototypes; (ii) the operational semantics of stubs, and
of a system made of stubs; (iii) the implementation of the execution mechanics in SystemC.

The second part of contributions includes: (i) the clarification of the semantics of properties of the
implication kind π ⇒ σ, (ii) the identification of the set of constrains on property languages of π ⇒ σ
which enables online exploitation of those properties either for checking or stubbing.

Organization of the Material In Section 8.2, we define productive runs of components. Section 8.3
provides the detailed definition of stubs made of contracts and lists the constraints on property languages.
In Section 8.6, we discuss the semantics of a system made of stubs. The operational semantics of stubs
and a stub-based system is defined in Chapter 9. The implementation of the execution mechanics for
stubs in SystemC and our experiments are discussed in Chapter 10.

8.2 Runs of Components, Prefixes, Fragments
We consider the behavior of components as sequences of some interesting elements, one element at a time.
We call elements of such sequences steps. Consider a component C with an input/output interface defined
by a pair (I,O), where I is the set of inputs, and O is the set of outputs (e.g., see Fig. 8.5).
Definition 13: Run — A run of a component C with the input/output interface (I,O) is an infinite
sequence of inputs of I and outputs of O of a component; only one interface name can occur at a time.

One letter of a run corresponds to one step of C: (i) if a letter is an input in I, the corresponding step
of C consists in getting one input from the environment, (ii) if a letter is an output in O, the corresponding
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Figure 8.5 A component with inputs I = {i1, i2, i3} and outputs O = {o1, o2, o3}.

step of C consists in producing one output. We need to express the fact that a component has a productive
behavior, i.e., it actually does something. We do it by introducing the notion of a productive run.
Definition 14: Productive Run — A run r = r0r1 . . . of a component C is productive if (i) r con-
tains outputs, (ii) only a bounded number of inputs can occur between any two consecutive outputs of r.
Formally:

{
∃n ∈ N : rn ∈ O
∃m ∈ N : ∀i, j ∈ N

(
(i ≤ j) ∧ (ri ∈ O) ∧ (rj ∈ O) ∧ ∀k ∈ (i, j) : rk ∈ I

)
→
(
j − i ≤ m

)
Definition 15: Projection — The projection of a sequence s on a vocabulary V is a sequence that
results by removing all names which are not in V :

ρ(s, V ) =


ε, if s = ε,

ρ(u, V ), if s = `u and ` /∈ V,
`ρ(u, V ), if s = `u and ` ∈ V.

Definition 16: Productive Run w.r.t. a Subset of Outputs — A run r = r0r1 . . . of a component
C is productive with respect to a subset of outputs O′ ⊆ O if the projection of r on I ∪O′ is a productive
run.

For instance, consider a component C shown in Figure 8.5. Runs of the form i1o1(i1o2)∗o3 are pro-
ductive; moreover, they are productive runs w.r.t. {o1, o2, o3}. Each run of the form i1o1(i1)∗o3 is not a
productive run because the number of times i1 can occur between o1 and o3 is not bounded.

Notice, the definition of a scheduling policy for a stub mentioned in Section 8.1.3 consists in choosing
the maximum number of inputs which can occur between any two successive outputs of the stub’s runs
(for more details see Sec. 8.3).

When discussing property languages we will refer to prefixes and fragments of runs. They are defined
below.
Definition 17: Prefix of a Run — A prefix of a run r = r0r1 . . . is a sequence r′ = r0 . . . rk for k ∈ N.

Definition 18: Fragment of a Run — A fragment of a run r = r0r1 . . . is a sequence r′ = rk . . . rk+m

for k,m ∈ N.

8.3 Expressivity of Contracts vs Implementability of Stubs
When we use a contract with an assume clause A and a guarantee clause π ⇒ σ with a bound for our
stubbing framework, we can encounter several problems. Checking A is relatively easy: we only require
that the property languages used for A have recognizers; this is discussed in more details in Section 8.4.
The problems appear when we deal with π ⇒ σ:

1. The first problem we face is the absence of a clear semantics of the implication operator π ⇒ σ.
2. Second, we need an efficient implementation of π ⇒ σ for our stubbing framework.
3. Finally, we should solve a kind of a scheduling problem to ensure that:

• the implementation produces productive runs,
• if there are several guarantee clauses π1 ⇒ σ1, . . . , πm ⇒ σm, bounds of all πi ⇒ σis are

preserved.

To solve the problems, we accept to put constraints on the property languages of π and σ. Our constrains
are a compromise between generality of our stubbing framework and its implementability.
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8.3.1 Semantics of the Implication Operator
Although properties of the implication form α Z⇒ β are already part of some assertion languages (e.g.,
PSL [18505]), they cannot be directly applied for our stubbing framework because they may define liveness
properties [AS87] (see Sec. 2.3.2.5). Moreover, semantics of α Z⇒ β is not well-defined and it may depend
on a vendor of a property checking tool implementing the operator. For instance, it is unclear how
overlapping of α and β is treated.

We partially solve the boundedness problem of π ⇒ σ by restricting the language used for σ to be
bounded. We call a language bounded, if there exists a bound on the length of all sequences of the
language. We define the semantics of the overlapping of π and σ, and the overlapping of several instances
of π (see Sec. 8.5 below). Our choices can be discussed, they have consequences for expressivity of π ⇒ σ.
Nevertheless, we think that having the clear semantics is always a good starting point for any specification.
Moreover, we know exactly what we do and it helps us in investigating other problems related to π ⇒ σ
and our stubbing framework (see below).

8.3.2 Efficient Implementation
To use π ⇒ σ for our stubbing framework, the idea is to recognize π and to generate σ, when a recognizer
of π detects an occurrence of π. To provide the efficient implementation, we need a recognizer of π of
a bounded size. We put a constraint on a property language of π and require it to have a continuous
recognizer (see Sec. 2.4). Moreover, we need to ensure the absence of backtracking when producing σ.
When there are several guarantee clauses π1 ⇒ σ1 . . . πm ⇒ σm, the need for backtracking can appear, for
instance, if the generation of σk makes the generation of other σjs (j 6= k) infeasible (i.e., the generation
reaches a dead-end). We solve the problems by requiring that σis do not share names. Notice that this
constraint also ensures that the guarantee clauses are not contradictory at the logical level.

8.3.3 Productive Runs and a Necessary Condition for Bounds
With the stubbing framework we want to produce productive runs. Moreover, when there are several
guarantee clauses π1 ⇒ σ1 . . . πm ⇒ σm, we need to ensure that the bound of each πi ⇒ σi (for i ∈ [1,m])
is preserved. To ensure the productiveness of runs, one should perform the scheduling by choosing the
maximum number of inputs K which can appear between any two consecutive outputs of σis. Notice
that the productive runs produced with such scheduling are also productive w.r.t. to the outputs of
each guarantee clause. In this work we do not investigate the impact of the value of K on the subset of
produced productive runs; we assume that this value is given.

To ensure bounds of (πi ⇒ σi)s, we require that (πi ⇒ σi)s do not form cycles (the guarantee clauses
do not depend on the outputs of each other). We define a cycle formally in Section 8.5.3. In Section 8.5.4,
we show that, given the maximum number of inputs between any two consecutive outputs of σis, and
provided that (πi ⇒ σi)s are cycle-free, it is always possible to compute bounds of (πi ⇒ σi)s statically.

In the sections below, we discuss in details assume (A) and guarantee (π ⇒ σ) clauses. In Section 8.5,
we analyze our semantic choices for π ⇒ σ, and discuss the accepted restrictions on property languages
of π and σ.

8.4 Implementation of an Assume Clause
An assume clause A can define any language for which we can produce a recognizer. A is meant to be
checked on successive prefixes of a run r = r0r1 . . . at each step. If A does not constrain some interface
name x ∈ (I ∪ O), occurrences of x are ignored by A. Checking consists in ensuring that the projection
of any prefix r′ of r on the names of A does not violate A. The first letter of r on which A does not hold
corresponds to the step on which A fails.

Example 8.4.1. An assume clause – Consider a component C with the interface shown in Figure 8.5.
Consider an assume clause A of C as a regular expression (i1o1)∗. A prefix r1 = i2i1o3o3o1i3i1o1 or
a run of C satisfies A (the underlined inputs/outputs are ignored). The last letter of a prefix r2 =
i2i1o3o3o1i3i1o1o1 of a run of C violates A. �

When several assume clauses A1, . . . , An are defined for the component C the implicit semantics is
their conjunction.
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time (a sequence of names of I ∪O)∆

π
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σ
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∆
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Figure 8.6 Intuitive semantics of a guarantee clause π ⇒ σ: if π holds, σ should hold afterwards within a known
bound ∆.

To use an assume clause A for stubbing, we need a recognizer of A. The recognizer ignores names
which are not constrained by A. It is always active. The first step at which the recognizer complains
corresponds to a step where the violation of A occurs.

Example 8.4.2. An Assume Clause of the IPU – Recall the Image Processing Unit (IPU) from our
running example. The component has an assume clause A which states: before face recognition is started
the IPU needs to be provided at least once with the address of the image to be analyzed (set-img-addr),
the size of the image (set-img-size), the size of the gallery (set-gl-size) and the address of the gallery
(set-gl-addr). The property can be defined by means of the loose-ordering language (Sec. 4.4.3) as follows:((

{set-img-add, set-img-size, set-gl-size, set-gl-addr},∧,Non-Shuffled
)
� start | Non-Repeated

)
The recognizer of the assume clause A is defined in Section 5.4.3.1. �

8.5 Restrictions on Property Languages of a Guarantee Clause
and Semantic Choices

We choose a guarantee clause to be of the form π ⇒ σ, where π is defined on (I ∪O) and σ is defined on
O. To explain the semantics of π ⇒ σ, we refer to fragments of a run on which π and σ hold.
Definition 19: α-fragment — Let α be a property. A fragment r′ = rk . . . rk+m of a run, on which
α holds, is called an α-fragment. We say that α holds on a fragment r′ = rk . . . rk+m of a run if (i) the
projection of r′ on the names of α satisfies α, i.e., ρ(r′,Vα) |= α where Vα stands for names of α; (ii) the
first and the last letters of r′ belong to Vα.

An α-fragment is minimal in the sense that it has “borders” which are names of α. Any number of
names which are not of α can occur during the α-fragment. We use α-fragments to explain the semantics
of a guarantee clause π ⇒ σ.

Example 8.5.1. π-fragment – Consider a run r = o1i1o3o3i2o1i1i1i3o2i2i2 . . . . Assume that π is a
regular expression defining only the sequence i1i2. The run r contains at least two π-fragments:

r = o1 i1 o3 o3 i2︸ ︷︷ ︸
π−fragment

o1 i1 i1 i3 o2 i2︸ ︷︷ ︸
π−fragment

i2 . . .

�

8.5.1 Semantic Choices
The meaning of a guarantee clause (π ⇒ σ) is the following: if π holds, σ should hold afterwards within a
known bound ∆ (Fig. 8.6), and if π holds again, σ should be repeated. A bound ∆ of σ is the maximum
number of steps which may happen between the end of a π-fragment and the end of the respective σ-
fragment. A σ-fragment can start either immediately after a corresponding π-fragment (e.g., see 1 in
Fig. 8.6), or after several steps (e.g., see 2 in Fig. 8.6). A property language of σ should be bounded, i.e.,
there exists a bound on the length of all sequences of the language.

There are two possible overlapping situations. The first case is the overlapping of several π-fragments
(e.g., see Fig. 8.7). We make a semantic choice: the first π-fragment ( 1 in Fig. 8.7) is taken into account,
and all others (e.g., 2 and 3 ) are ignored.

The second case is the overlapping of π- and σ-fragments (Fig. 8.8). It may happen either because of
shared names of π and σ, or because names of π occur in σ-fragments. We choose the following semantics.
If we have a π-fragment (e.g., 1 in Fig. 8.8), we should have a σ-fragment within a bound ∆. There are
several cases:
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Figure 8.7 Example of overlapping π-fragments.
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Figure 8.8 Overlapping of π- and σ-fragments: only π-fragments finishing after σ-fragments are taken into
account.

(i) if another π-fragment finishes after the σ-fragment (e.g., 2 , 3 and 7 in Fig. 8.8), it is taken into
account (i.e., another σ-fragment will take place);

(ii) if another π-fragment finishes during the σ-fragment (e.g., 4 , 5 , 6 ), it is ignored;
(iii) if another π-fragment finishes before the σ-fragment (e.g., 8 ), it is ignored.

8.5.2 Continuous Recognition of π
To integrate π ⇒ σ in our stubbing framework, we need to perform efficient online recognition of a
property language of π. π can occur everywhere in a run. There are many ways to recognizer the
language of π. One of them is to start a new instance of the recognizer at each step, as if π starts there
(e.g., see [Tom+09; GHR03]). The drawback of this solution is that it may lead to the recognizer of an
unbounded size [GHR03]; this may cause implementation difficulties.

We decide to restrict a property language of π to be a language which has a deterministic efficient
continuous recognizer (see Sec. 2.4 in Chapter 2). Anyone who uses the framework should check that the
language (s)he defines has this property. Although in Section 2.4 we describe continuous recognizers of
regular languages, a complete study of the kind of languages one can use for the generalized stubbing is
out of scope of this work. Notice that the language of loose-orderings defined in Chapter 4 can be used
for π, since it has a continuous recognizer (see Chapter 5).

8.5.3 Defining Several Guarantee Clauses
A component C can (potentially) define several guarantee clauses (πi ⇒ σi)s. The implicit semantics is
conjunction. The clauses can be conflicting and/or form cycles

8.5.3.1 Conflicting Guarantee Clauses

We say that two guarantee clauses πi ⇒ σi and πj ⇒ σj are in conflict, if when both πi and πj are
observed, there is no way to produce σi and σj .

Example 8.5.2. Conflicting Guarantee clauses – Consider a component C with an interface as in
Figure 8.5. Consider two guarantee clauses π1 ⇒ σ1, π2 ⇒ σ2 of C such that: π1 and π2 define a singleton
{i1}; σ1 (resp. σ2) defines a singleton {o1o2} (resp. {o2o1}). π1 ⇒ σ1 and π2 ⇒ σ2 are in conflict because
satisfaction of one violates the other. When π1 and π2 are observed, we should start producing σ1 and
σ2, and it is impossible. �

Moreover, when several σis share an output o ∈ O, we have to decide if each σi produces its “own”
occurrence of o, or if one o is sufficient to satisfy all σis. We remove both problems by assuming that σis do
not share names. This constraint also ensures that there is no need for backtracking in the implementation.
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Figure 8.9 A bound ∆1 of π1 ⇒ σ1 cannot be computed if π2 ⇒ σ2 is a cycle such that outputs of σ2 are
π2-fragments.

time (a sequence of names of I ∪O)

π1 σ1

∆1

πi σi

∆i

πn σn

∆n. . .

. . .

Figure 8.10 Scheduling of σi-fragments.

8.5.3.2 Cycles

When there are several guarantee clauses (πi ⇒ σi)s such that some of them form cycles, it is not always
possible to compute statically bounds for all σis.
Definition 20: Cycle — A cycle is a sequence of guarantee clauses {(πi ⇒ σi)}m, m ≥ 1 such that πi
shares names with σi−1, and π1 shares names with σm.

Example 8.5.3. Guarantee Clauses forming a cycle – Consider a component C with an interface
as in Figure 8.5. Assume that guarantee clauses π1 ⇒ σ1 and π2 ⇒ σ2 are such that: π1 (resp. π2) defines
the set of sequences {i1, o3} (resp. {o1, o3}); σ1 (resp., σ2) defines a singleton {o1o4} (resp. {o2o3}). It is
easy to see that π1 shares names with σ2, and π2 shares names with σ1, thus π1 ⇒ σ1 and π2 ⇒ σ2 form
a cycle. Moreover, π2 ⇒ σ2 is a cycle by itself due to the output o3 shared by π2 and σ2. �

A bound ∆1 of π1 ⇒ σ1 from Example 8.5.3 is undefined: during a σ1-fragment (o1o4), infinitely
many σ2-fragments (o2o3) may take place due to π2-fragments (o3) finishing on the last output o3 of σ2
(Fig. 8.9). To ensure boundedness, we consider only cycle-free sets of guarantee clauses; absence of cycles
is the necessary condition for bounds. Cycle-freeness defines constraints on names of different parts of
guarantee clauses. In particular, it implies that π and σ do not share names.

8.5.4 Bounds of a Cycle-Free Set of Guarantee Clauses
We produce productive runs w.r.t. outputs of all guarantee clauses (πi ⇒ σi)s (see Def. 14, Sec. 8.2).
For that, we schedule outputs of σis by choosing the maximum number of inputs K which can occur
between any two consecutive outputs of σi-fragments. K also defines the number of inputs which can
occur between the end a π-fragment and the beginning of a corresponding σ-fragment.

When there is only one guarantee clause π ⇒ σ, we can statically compute a bound ∆: the bound
is equal to the sum of the longest sequence defined by σ, and the maximum number of inputs when σ
holds. We can find the length of the longest sequence of σ, since a property language of σ is bounded (see
Sec. 8.5). The maximum number of inputs, when σ holds, is equal the product of K and the length of
the longest sequence of σ.

When there are several guarantee clauses (πi ⇒ σi)s, a σi-fragment can be postponed, since (po-
tentially) many πk-fragments can be observed at the same time. Therefore, the σi-fragments should be
scheduled (e.g., see Fig. 8.10). We can statically calculate ∆i for each σi, if (πi ⇒ σi)s are cycle-free; the
bound ∆i of πi ⇒ σi is less then the sum of:

• the length of the longest sequence of σi,
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• the maximum number of inputs which can happen during a σi-fragment corresponding to the longest
sequence of σi,

• the sum of the lengths of the longest sequences of all σjs (j 6= i) which can overlap with σi.

To get the third summand, we assume the worst case that all σjs (j 6= i) can overlap with σi (this is equal
to m− 1, if the number of guarantee clauses is m).

8.5.5 Summary on Constraints
To provide the efficient implementation of the generation part of a stub, and to ensure bounds of guarantee
clauses (πi ⇒ σi)s, we require that

• the property languages of πis have deterministic continuous recognizers.

We also impose syntactic constraints on the property languages of πis and σis as follows:

• different σis do not share outputs,
• the guarantee clauses (πi ⇒ σi)s are cycle-free.

When all requirements are fulfilled, we can use (πi ⇒ σi)s for our stubbing framework.

8.6 Semantics of a System of Components
We consider a system made of stubs which are connected with oriented point-to-point connections repre-
senting an asynchronous system. One way to represent the behavior of such a system is the asynchronous
interleaving of its individual components (see Def. 6 in Sec. 2.2.2). Since asynchronous components are
never alive at the same time, we enable communication between components by using FIFOs. We asso-
ciate each component with a unique input FIFO to preserve order of inputs (e.g., see Fig. 8.12). If the
architecture of a system is such that a component Ci is directly connected to a component Cj , (some)
outputs of Ci are added to the FIFO of Cj . For instance, in Figure 8.12 stubs C1 and C2 are connected
to a stub C3, and C3 is connected to C1 and C2.

Stubs get sequences of inputs and produce sequences of outputs (Fig. 8.11). At each step, a stub can
either get one input, or produce one output. If an assume clause of a stub is violated, a stub may report
the error.

step

C

error

i1 i2 i3 i4 i1 i2

i4

i3

i2

i1
o1 o2 o3 o1 o1 o2

o3

o2

o1

Figure 8.11 A stub receiving (resp. producing) a sequence of inputs (resp. outputs).
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Figure 8.12 Simulation of a system made of stubs.
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One path in the full asynchronous product of stubs corresponds to one simulation of the system.
Simulation should be performed by a fair scheduler. It is a sequence of steps of stubs. At each step, a
stub activated by the scheduler either gets the first input from its fifo (if the fifo is not empty), or produces
one output. Outputs which a stub should produce are dynamically defined. The produced output is added
to the input FIFO of a target component. For instance, in Figure 8.12 a stub C1 (resp. C2) produced
an output x (resp. y) for a stub C3 once (resp. two times), and C3 produced an output o (resp. p) for
C1 (resp. C2) twice (resp. three times). If either its FIFO is empty or a stub does not have outputs to
provide, it does nothing. As soon as any of the stubs reports error, simulation stops.

When the simulation is running, FIFOs and stubs are monitored. When all the FIFOs are empty and
the stubs do not have outputs to produce, the simulation stops. When the length of any of the FIFOs
becomes too large, the simulation stops. The overflow of the FIFOs is likely, if there is a problem in the
definition of the stubs. It should not normally happen, since the system is supposed to be run by the fair
scheduler and contracts of the stubs are cyclic.

Summary
In this chapter, we have introduced our generalized stubbing framework and have explained how contracts
can be used for stubbing. In this chapter, we have been trying to find compromises between expressivity
of contracts and implementability of stubs. We have shown our semantic choices for contracts, and have
identified constraints on property languages. We have given an intuition about the semantics of a system
made of stubs. In the next chapter, we define the semantics of stubs and a stub-based system formally by
encoding assume and guarantee clauses into Mealy machines and their synchronous composition. This is
the first step toward the implementation of the stubbing mechanism in SystemC.
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In this chapter, we describe the implementation of the generalized stubbing mechanics by encoding
contracts into Mealy machines. We assume that contracts are well-formed, i.e., all constraints on the
property languages of assume and guarantee clauses defined in Chapter 8 are fulfilled. The theoretical
foundation of this chapter comprises the synchronous and asynchronous models for discrete concurrent
systems defined in Chapter 2 (Sec. 2.2). The reader is assumed to be familiar with the respective material.
The encoding is the operational semantics of both stubs and the system made of those stubs. It serves
the basis for the SystemC implementation of the execution mechanics presented in Chapter 10.

9.1 Principles
We choose to encode contracts into Mealy machines. Each assume clause A and each guarantee clause
π ⇒ σ of a contract is encoded into a Mealy machine; we have one Mealy machine per clause. A Mealy
machine encoding an assume clause A consumes inputs of a stub. A Mealy machine encoding a guarantee
clause π ⇒ σ produces outputs of a stub. The synchronous product of the consumer and producer machines
is the encoding of a contract. One transition of the synchronous product corresponds to one step of a
stub. The encoding has several sources of non-determinism:

1. When a stub makes a step, it can non-deterministically decide either to get an input, or to provide an
output. We interpret this source of non-determinism in our model as the absence of the information
about the relative speed of stubs.

2. A guarantee clause π ⇒ σ can (potentially) define several output sequences; those sequences are
produced non-deterministically.

When there are several guarantee clauses (πi ⇒ σi)s, we need to ensure that their bounds are preserved.
This is done in an operation way: we use counters of events to ensure that only a bounded number of
inputs can occur between any two consecutive outputs of the σis.
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encoding a stub

start
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Figure 9.1 A Mealy machine encoding a stub. Arrows from the left (resp. to the right) are inputs (resp. outputs).
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O prestart

I
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Figure 9.2 The encoding of a stub with an input/output interface (I,O). A is an assume clause, π ⇒ σ is a
guarantee clause.

The Structure of the Chapter In Section 9.2, we define in details the encoding of the contract into
Mealy machines. In Section 9.3, we define the encoding of the stub-based system’s semantics. Finally, in
Section 9.4, we summarize the choices on non-determinism in the implementation.

9.2 Encoding of a Contract
We consider a stub C with an input/output interface (I,O). A machine encoding C is a synchronous
parallel composition of the recognizers of assume clauses A1, . . . , An, and the Mealy machines encoding
guarantee clauses π1 ⇒ σ1, . . . , πm ⇒ σm. Figure 9.1 shows inputs and outputs of the Mealy machine
encoding C. The inputs are:

• inputs the stub (this is I),
• inputs enabling the production of outputs of the stub (this is P ).

The outputs of the Mealy machine are:

• outputs of the stub (this is O),
• error outputs (this is E).

Elements of the set P = {τ1, . . . , τm} are inputs which enable the production of outputs of the re-
spective guarantee clauses π1 ⇒ σ1, . . . , πm ⇒ σm. When τi occurs (for any i ∈ [1,m]), an output of σi
is (potentially) produced. Elements of the set E = {err1, . . . , errn} are error verdicts of the respective
guarantee clauses A1, . . . An. If errj is delivered (for any j ∈ [1, n]), the assume clause Aj is violated. One
step of the Mealy machine encoding a stub C corresponds to one step of C: if an input of I occurs, the
stub C gets one input; if an input of P occurs, the stub C produces one output. At each step, several
error outputs can be potentially delivered. This happens if either the consumed input or the produced
output violates any of the assume clauses Ajs. Notice, only one input of I or P can occur at a time;
moreover, inputs of I and P cannot occur simultaneously.

Figure 9.2 illustrates a circuit diagram of the synchronous product of a recognizer of an assume clause
A and a Mealy machine encoding a guarantee clause π ⇒ σ. Dashed lines in the figure represent the
synchronous product of Mealy machines with the encapsulation of respective signals (see the definition in
Sec. 2.2.1.2). The recognizer of A gets sequences of inputs of I and outputs of O, and delivers an error
output err when the assume clause is violated. The Mealy machine encoding π ⇒ σ produces sequences
of outputs of the stub according to the guarantee clause. Inputs of the Mealy machines of A and π ⇒ σ
are:

• inputs of the stub (I),
• outputs of the stub (this is pO in Fig. 9.2),
• inputs that enable the production of outputs (P ).
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prei pi s0 s1

i/ i/pii/

i/pi

Figure 9.3 The Mealy machine delivering the previous value of its input.

To break any cyclic dependencies which may appear due to outputs of the stub, we use the Mealy
machine which emits the previous value of its input (Fig. 9.3). This is similar to the pre(x) operator of
Lustre (see Sec. 2.2.1.4). If A (resp. π) does not depend on names of I ′ ⊆ I or O′ ⊆ O, the Mealy
machine encoding A (resp. π ⇒ σ) loops when it gets the ignored names.

In the sections below, we consider in details the recognizer of an assume clause A and the Mealy
machine encoding a guarantee clause π ⇒ σ.

9.2.1 Encoding of an Assume Clause
We propose to encode an assume clause A into a Mealy machine which is a recognizer of the property
language of A. When A is violated, the recognizer delivers an error output err. Figure 9.4 shows a circuit
diagram of the recognizer. The inputs pO = {po1, . . . , pok} correspond to the outputs of O = {o1, . . . , ok}
produced at the previous step. This fact should be taken into account by the recognizer: when poj ∈ pO
and i` ∈ I occur simultaneously, it should be interpreted as a sequence where the output oj ∈ O occurs first,
and then the input i` ∈ I takes place. By construction the elements of pO can occur only simultaneously
with either inputs of I or inputs of P .

A recognizer
Mealy machine

start

I
i1
. . .

i`

P
τ1
. . .

τm

po1
. . .

pok
pO

err

Figure 9.4 A circuit diagram of an error-reporting recognizer of an assume clause A.
.

Example 9.2.1. A Recognizer of an Assume Clause – Consider an assume clause A which states
that inputs i1 and i2 of a stub should alternate starting from the input i1. The assume clause is defined
as a regular expression (i1i2)∗. Figure 9.5 shows the Mealy machine recognizing the property language of
A. The state s0 is the idle state. The state s3 is the sink error state. �

s0 s1 s2 s3

start/ i1.i2/ i1.i2/ true/err

start.i1.i2/ i1/ i1/err

start.i1/

start.i2/err

i2/

i2/err

Figure 9.5 A recognizer of an assume clause A defined as (i1i2)∗.

9.2.1.1 Encoding of Several Assume Clauses

When there are several assume clauses A1, . . . , An, the resulting Mealy machine is the synchronous product
of Mealy machines encoding the Ais. All Mealy machines have inputs as shown in Figure 9.4. Error
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Figure 9.6 A circuit diagram of a continuous recognizer of π. Arrows from the left (resp. to the right) are inputs
(resp. outputs).

s0 s1 s2 s3

start.i1/

start.i1/ i1/ i2/

i1/
i1.i2.i3/
i1/ i1.i2.i3/

start.i1/ i1/

i2/
i3/

i3/ok

Figure 9.7 A deterministic continuous recognizer of π defining one sequence {i1i2i3}.

outputs of the recognizers of the Ais are outputs of the synchronous product. They form the set E =
{err1, . . . , errn} (see Fig. 9.1).

9.2.2 Encoding of a Guarantee Clause
The encoding of a guarantee clause π ⇒ σ is made by composing sequentially the continuous recognizer
of π, the generator of σ and the counter machine. The counter Mealy machine is used to ensure a bound
of π ⇒ σ.

9.2.2.1 A Continuous Recognizer of an Antecedent πππ

Figure 9.6 shows a continuous recognizer of π. The Mealy machine has the same set of inputs as the
recognizer of an assume clause. It gets sequences of inputs of I and outputs of O produced at the previous
step (the inputs of pO), The synchronous product is enabled by adding the inputs of P = {τ1, . . . , τm}.
The continuous recognizer loops when names which do not appear in π occur. The recognizer has a
special input pb used for scheduling (the input is connected to the counter Mealy machine, see details in
Sec. 9.2.2.4). Inputs of I can occur only if the input pb is absent. When the continuous recognizer detects
an occurrence of π, it delivers a Boolean value ok.

Example 9.2.2. A Continuous Recognizer – Consider π defining a singleton {i1i2i3}. Figure 9.7
illustrates a deterministic continuous recognizer of π. s0 is the initial state. The Mealy machine moves
when the names of π occur. If the recognizer detects matching with a prefix of the sequence i1i2i3, it
advances the recognition. Otherwise, the Mealy machine re-starts by moving either to the initial state
s0, if i2 or i3 occurs, or to s2, if i1 occurs. When the sequence i1i2i3 is recognized, the Mealy machine
emits the output ok and moves to the initial state s0. The input start is always true; thus, the machine
re-starts at the next step. �

9.2.2.2 A Generator of a Consequent σσσ

We choose to encode a generator of σ as a (potentially) non-deterministic Mealy machine. Our generator
is illustrated in Figure 9.8. For convenience, here we suppose that there is only one guarantee clause
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A generator
Mealy machine

start

I
i1
. . .

in

P τ

pO
po1

. . .
pok

ok

. . .
o1

ok
O

Figure 9.8 A circuit diagram of a generator Mealy machine of σ. Arrows from the left (resp. to the right) are
inputs (resp. outputs).

s0 s1 s2 s3 s4

start τ τ τ τ

start.τ τ/o τ/o τ/o

start.τ/o

τ/o
τ/o

τ/o

Figure 9.9 A Mealy machine generating sequences of a range o[2,4].

π ⇒ σ, i.e., (i) σ depends on all outputs O of the stub, and (ii) the set P is a singleton {τ} such that
τ enables the production of outputs of O. The generator can be activated with the input start. When
the machine is active and τ occurs, one of the outputs of O is emitted. When the generator finishes the
production of an output sequence, it emits the output ok and moves to the idle state. To enable the
synchronous product with the continuous recognizer of π, the generator can get as inputs all inputs I, all
inputs pO, and, if there are several guarantee clauses, all auxiliary inputs P\{τ}. The Mealy machine
generating σ loops on occurrences of inputs I, P\{τ} and pO .

Example 9.2.3. A Generator – Consider σ as a range o[2,4]. Figure 9.9 shows the Mealy machine
generating the property language of σ. The machine is idle in the state s0. In s1, the machine is active
and ready to start the generation. When the input τ occurs in the states s1, s2, s3, s4, the machine emits
the output o. In s2 (resp. s3), the machine non-deterministically decides to produce a sequence of either
two or three (resp. three or four) occurrences of o. When a sequence is generated, the Mealy machines
moves to the idle state s0. �

9.2.2.3 A Counter Mealy Machine

A circuit diagram of a counter Mealy machine is shown in Figure 9.10. The counter can be started (resp.
stopped) with the input start (resp. stop). When the counter is active, the input start is ignored, the
Mealy machine counts occurrences of step. The counter has a parameter K. When the number of steps
is equal to or greater than K, the counter emits the output bound. The machine can be reset with the
input reset. In this case the machine stays active, but re-starts the counting of steps from zero.

A counter
Mealy machine

reset

step

stop
start boundParameter: K

Figure 9.10 A circuit diagram of a counter Mealy machine. Arrows from the left (resp. to the right) are inputs
(resp. outputs). The machine emits bound, when step occurs more than K times without reset.
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A continuous
recognizer of π

start

I

P

pO

start

I

P

pO

pb

ok
A generator

Mealy machine
of σ

start

I

P

pO

OO

ok

A counter
Mealy machine

start

stepI =

reset

stop boundpre

Figure 9.11 The encoding of a guarantee clause π ⇒ σ.

9.2.2.4 The Synchronous Product

Figure 9.11 shows a circuit diagram of the synchronous parallel composition of the continuous recognizer
of π, the generator of σ, and the counter Mealy machine. When the continuous recognizer detects an
occurrence of π and emits the output ok, the counter machine and the generator machine of σ are started.
When the generator finishes the production of σ and emits the output ok, the counter machine is stopped.
Neither the counter nor the generator can be re-started when they are active. The counter machine is
reset whenever the generator of σ produces an output from O; the counter increases whenever any input
from I occurs. If the counter detects the maximum allowed number of inputs (which is specified by the
value of its parameter K), the counter emits bound. This output is connected to the input pb of the
continuous recognizer of π through the Mealy machine pre. By choosing the value of K one can perform
the scheduling of a stub and ensure the boundedness of π ⇒ σ.

9.2.2.5 Encoding Several Guarantee Clauses

When there are several guarantee clauses π1 ⇒ σ1, . . . , πm ⇒ σm, the encoding is the synchronous product
of the Mealy machines encoding all the (πi ⇒ σi)s. Each guarantee clause πi ⇒ σi (for all i ∈ [1,m])
has its own τi. This ensures that no spurious synchronizations between the σis occur when outputs are
produced. These inputs of the Mealy machines form the set P = {τ1, . . . , τm}.

9.2.3 Non-Deterministic Choice Between Inputs and Outputs and Its Inter-
pretation

In the proposed implementation, at each step of a stub the choice between getting an input, or producing
an output can be done non-deterministically (if the production is not forced by the counter machine, see
Sec. 9.2.2.4). This non-deterministic choice can result in the violation of assume clauses of the stub. For
instance, a stub B, with the inputs start, result and the output finish (see Fig. 9.12), can either get an
input (e.g., result) from its fifo, or provide an output (finish). Suppose that B assumes to get result
only after at least one finish. If a step of B consists in getting the input result from the fifo before
finish is produced, the assume clause of the stub is violated. If a step of B consists in producing the
output finish, the simulation continues normally. Our model is untimed and we interpret this kind of
non-determinism as the unknown relative speed of stubs.

A

activate

get-result B

start

result finish

A guarantees: activate, and then get-result B assumes: at least one finish before result

Figure 9.12 Specification of two connected stubs.
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C O. . .I . . .
A Mealy machine

encoding C

. . .I

. . .P

. . . O

. . . E

Figure 9.13 An input/output interface of a stub C (from the left), and the interface of a Mealy machine encoding
C (from the right).

9.3 Encoding of the Semantics of a Stub-Based System
We consider a system S made of stubs C1, . . . , Cn connected by oriented point-to-point connections and
exchanging data. The semantics of the system S is the total asynchronous interleaving of Mealy machines
encoding the Cis. We enable the communication between the asynchronous stubs by means of FIFOs.
Each stub has a single input FIFO. The FIFO ensures that the order of received inputs of I is preserved.
Each stub consumes inputs from its FIFO, and puts produced outputs to FIFOs of target stubs. One
path of the asynchronous product corresponds to one simulation of the system S. Each transition of the
path corresponds to a step of one of the stubs Cis of the system. The first transition where any of the
stubs delivers an error output(s) indicates a step where an error occurs. To choose one path (to perform
a simulation of a system), one needs to use a scheduler.

9.3.1 Definitions
Oriented point-to-point connections of the stubs Cis are defined by the system’s architecture.
Definition 21: Architecture — Let S be a system made of stubs C1, . . . , Cn. An architecture of the
system S is a function arch defined as follows: for each stub Ci, for each output o of the Ci, arch(o) = Cj
results in a stub Cj to which Ci is connected via the output o.

The asynchronous stubs Cis communicate by means of FIFOs.
Definition 22: Fifo — A FIFO F is a sequence of pairs (i, val), where i corresponds to one input port
of an associated stub, and val ∈ Dom is a value of the input i (Dom is a domain of values, it can be any
user-defined type).

In the sequel, we will denote the size of a FIFO F as |F |. To define the semantics of a system made
of stubs, we use three functions:

• peek (F ) = (i, val) returns (but does not remove) the first pair (i, val) of the FIFO,
• add

(
F, (i, val)

)
= F ′ adds a pair (i, val) to the FIFO F and returns the obtained FIFO F ′,

• poll (F ) = F ′ removes the first pair from F and returns the obtained FIFO F ′.

9.3.2 Semantics
The encoding of the system S is the asynchronous product of the Mealy machines encoding the stubs Cis.
A Mealy machine encoding a stub Ci is the synchronous product of Mealy machines encoding assume and
guarantee clauses of Ci.

9.3.2.1 Recall: Properties of the Synchronous Product

An input/output interface of a stub C is a pair (I,O), where I is the set of inputs, and O is the set of
outputs (Fig. 9.13). Consider C with assume clauses A1, . . . , An, and guarantee clauses π1 ⇒ σ1, . . . , πm ⇒
σm. The Mealy machine encoding C has the following interface (Fig. 9.13):

• Inputs are:

– the actual inputs of the stub C (this is I),
– auxiliary inputs which enable production of outputs of C (this is P ).

• Outputs are:

– the actual outputs of the stub C (this is O);
– error outputs (this is E).
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i/ i/err1, . . . , errp τ/o τ/o, err1, . . . , errp
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Figure 9.14 The types of transitions of the Mealy machine encoding a stub C: i ∈ I, τ ∈ P , {err1, . . . , errp} ⊆ E,
o ∈ O.

The elements of the set P = {τ1, . . . , τn} enable the production of pairwise disjoint sets of outputs of
C; this is because σis do not share outputs (see Sec. 8.5.5). The elements of the set E = {err1, . . . , errm}
are error outputs of the Mealy machine encoding C. They are delivered if assume clauses of C are violated.

Due to the way we build the synchronous product of the recognizers of assume clauses and the gener-
ators of guarantee clauses (see Sec. 9.2), the Mealy machine encoding C has transitions of only four types
(Fig. 10.1):

1 only one input of I occurs, no outputs are produced;
2 only one input of I occurs, error outputs of E are delivered;
3 only one input of P occurs, only one output of O is produced;
4 only one input of P occurs, only one output of O and (potentially) several error outputs of E are

produced.

9.3.2.2 Semantics of a System

Let the function arch be the architecture of the system S, and let F1, . . . , Fn be the input FIFOs of the
stubs C1, . . . , Cn respectively. A state of the system is made of the states of all its stubs Cis and all input
FIFOs Fis. We denote a state of a component Ci as ci and a state of a FIFO Fi as fi (for all i ∈ [1, n]).
We denote a state of the system as s =

[
(c1, . . . , cn), (f1, . . . , fn)

]
. We denote a transition of the system

as (s, `, s′), where ` is a label of a transition.
The semantics of the system S is define as follows: Rule 9.1 defines a step of the system S when

one of its stubs Ck get an actual input from a corresponding input FIFO Fk and no errors occur, i.e., a
transition of the type 1 is triggered. In this case: (i) Ck changes a state, (ii) the first element of Fk is
removed, and (iii) states of all other stubs and FIFOs are unchanged.

∃(ck, i/, c′k) in Ck, |fk| 6= 0, peek (fk) = (i, val)

∃
([

(c1, . . ., ck, . . ., cn), (f1, . . ., fk, . . ., fn)
]
, i/,

[
(c1, . . ., c

′
k, . . ., cn), (f1, . . ., f

′
k, . . ., fn)

])
in S

such that f ′k = poll(fk)

(9.1)

∃(ck, τ/o, c′k) in Ck, arch(o) = Cj

∃
([

(c1, . . ., ck, . . ., cn), (f1, . . ., fj , . . ., fn)
]
, τ/o,

[
(c1, . . ., c

′
k, . . ., cn), (f1, . . ., f

′
j , . . ., fn)

])
in S

such that f ′j = add(fj , o)

(9.2)

Rule 9.2 defines a step of the system S when one of its stubs Ck produces an actual output and no
errors occur, i.e., a transition of the type 3 is taken. In this case: (i) Ck changes its state, and (ii) the
produced output is added to the input FIFO of a target component Cj , and (iii) states of all other stubs
and FIFOs are unchanged.

The system has a global error state. If any of the stubs Cis makes a step and reports an error(s), i.e.,
a transition either of the type 2 or of the type 4 is triggered, the system moves to the global error state
and the simulation stops.
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i/
τ1/x τ1/y τ2/z j/

σ/p

(a) A state of a system with several outgoing transitions.

Ai

x

y

z

Bj p

(b) Input/output interfaces of two stubs of a system

Figure 9.15 A state of a system (a) with several outgoing transitions corresponding to steps of stubs (b). τ1, τ2
(resp. σ) enables production of outputs of a stub A (resp. B).

9.4 Choices on Non-Determinism
By construction the Mealy machine encoding the semantics of a system made of stubs is such that each
state of the Mealy machine can have several outgoing transitions triggered by occurrences of inputs
(transitions of the types 1 and 2 , see Fig. 10.1), and/or several outgoing transitions producing outputs
of the stubs (transitions of the types 3 and 4 ). Each transition corresponds to a step of some stub of
the system. There are several sources of non-determinism that should be controlled:

1. There is a non-deterministic choice between stubs to be activated; this corresponds to the choice of
a subset of the transitions (Fig. 9.15). This choice should be fair in order to avoid overflow of the
stubs’ fifos.

2. When a stub is chosen, one needs to decide if the stub gets an input or produces an output. For
instance, in Figure 9.15(a), it corresponds to the choice between the transition labeled by i/ and the
transitions with labels τ1/x, τ1/y, τ2/z, provided that the stub A is activated. The choice between
inputs and outputs is not completely free, because stubs should produce only productive runs.

3. Finally, the production of outputs of guarantee clauses (e.g., the choice between τ1/x, τ1/y and
τ2/z) is non-deterministic. This non-determinism can be completely free unless one cares about the
coverage of the specification.

Summary
In this chapter, we have introduced the encoding of stubs and systems made of stubs into Mealy machines.
This encoding is the implementation of our generalized stubbing mechanics, which is independent of any
programming language or a scheduler. In the next chapter, we show the realization of this implementation
in SystemC/TLM, as well as the experiments.
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This chapter provides the SystemC implementation of stubs and systems made of stubs. This im-
plementation serves a proof-of-concept of the generalized stubbing mechanics. There are many ways to
implement stubbing in SystemC; here we provide one of the possible implementations, which follows the
traditional style of defining SystemC/TLM components and virtual prototypes. Thus, it should be imme-
diately usable by people used to SystemC/TLM. The implementation is convenient in both cases: if one
develops a SystemC/TLM virtual prototype in a top-down manner, or wants to make the existing Sys-
temC/TLM model more abstract by adding non-determinism and removing some implementation details.
Our goal here is to show that the simulation with stubs works, and can be used to find synchronization
bugs early in the model of the system. To accomplish the goal, we choose an arbitrary scheduling policy
to activate stubs and produce their outputs; the scheduling is performed by the SystemC scheduler. The
SystemC implementation is the translation of the operational semantics of stub-based systems defined in
Chapter 9.

In this chapter we also show the experiments with the intercom system. The experiments demonstrate
that (i) the stubbing mechanics can save effort spent to write the model, (ii) it provides the capability to
expose bugs and to blame the faulty components, (iii) it can reduce simulation time.

The chapter is organized as follows: In Section 10.1, we present the SystemC implementation of the
generalized stubbing mechanics. Section 10.2 explains the simulation of a stub-based system with the
SystemC scheduler. Finally, in Section 10.3 we discuss the experiments with the running example.

10.1 Implementation Principles
We consider a system made of stubs. Each stub has assume A1, . . . , An and guarantee π1 ⇒ σi, . . . , πm ⇒
σm clauses; their property languages satisfy the requirements defined in Chapter 8. The SystemC imple-
mentation of the stub-based system defines:

• the communication mechanism,
• the implementation of stubs,
• the scheduling policy (this is discussed in Section 10.2).
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10.1.1 Enabling Communication
Stubs communicate by sending/receiving blocking transactions and interrupt requests. Transactions and
interrupt requests are inputs and outputs of the stubs. In our implementation stubs do not have explicit
input fifos; the order of inputs is preserved because transactions and interrupts are executed by means
of functional calls on target stubs, and they are sent by asynchronous components. Such communication
influences the subset of runs observed at simulation (this is discussed in Section 10.2.2.1). The commu-
nication principle by means of transactions is as described in Section 3.2.3.3. Interrupt requests are sent
as follows: if stub A sends an interrupt request to a stub B, it calls a function send_irq() of B. Notice
that we do not use here SystemC signal channels because they do not guarantee the preservation of the
interrupts’ order.

10.1.2 Implementing a Stub
The general idea of a stub’s implementation in SystemC is the following. A stub is a SystemC module,
which has a checking part for assume clauses A1, . . . , An, and a generation part for guarantee clauses
π1 ⇒ σ1, . . . , πm ⇒ σm. There are many ways to implement the checking part; for instance, in Figures 10.6
and 10.7 it is implemented as defensive code. The main requirement for the implementation is that it can
perform steps when inputs and/or outputs occur, and can deliver verdicts, if any of the assume clauses
A1, . . . , An are violated.

The generation part for guarantee clauses π1 ⇒ σ1, . . . , πm ⇒ σm is made of:

• the continuous recognizers of πis implemented, for instance, as defensive code (see Fig. 10.7). The
recognizers should perform steps when inputs and/or outputs of the stub occur, and deliver Boolean
values whenever occurrences of πis are detected;

• the generators of σis implemented by means of SystemC processes, one process per σi. Each process
has a while(true) loop; one iteration of the loop corresponds to the generation of one sequence
defined by σi (e.g., see Fig. 10.8). The generation starts, when an occurrence of a corresponding πi is
detected. Thus, when πi occurs, a SystemC immediate event is notified (start_event.notify());
this event can resume the generation process. When the generation of a sequence of σi is finished,
the process calls the wait(TIME) function.

In our implementation we use two types of SystemC events1; these events are notified in corresponding
states (phases) of the SystemC scheduling algorithm2:

• immediate events (e.g., start_event.notify()) are used to start generation processes of σis, when
corresponding πis are detected. The generation process of σi, waiting for the event start_event,
is resumed by the SystemC scheduler at the same evaluation when the event is notified, i.e., πi has
been detected;

• timed events (timeouts of wait(TIME)) are used by the generation processes to yield the control to
the scheduler. The generation process of σi, waiting for a timeout, is resumed by the scheduler after
advancement of the simulation time.

We need to take into account the scheduling algorithm of the SystemC kernel, in order to implement
the semantics of a guarantee clause π ⇒ σ. In particular, we need to check that overlapping of occurrences
of π and σ are treated as defined in Section 8.5.1. We also need to ensure bounds for guarantee clauses
and productiveness of stubs (this is discussed in Section 10.2.2.3).

Implementing the Semantics of a Guarantee Clause Immediate SystemC events are not persistent;
this can be a reason of the violation of the semantics of π ⇒ σ defined in Section 8.5.1. Recall, the
semantics of π ⇒ σ is such that whenever π occurs, σ should occur after within a bound. If at the same
evaluation phase the generation of σ is finished first (i.e., the generation process of σ calls wait(TIME)),
and then π occurs (the event start_event is notified), the detected occurrence of π will be “lost”, because
the generation process misses the notified event.

To avoid such situation, we use flags as follows: When π occurs, a flag is set. When the generation
process of σ is resumed after calling wait(TIME), it checks the flag: if the flag is set, the process directly
start generation of another occurrence of σ, otherwise it calls wait(start_event).

1The types of SystemC events are described in the background chapter (see Sec. 2.1.4.4).
2The scheduling algorithm of the SystemC kernel is explained in Section 2.1.4.8 of the background.
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Figure 10.1 The types of transitions of the Mealy machine encoding a stub-based system. se is the global error
state of the system.

10.2 Simulation with the SystemC Scheduler
A system made of stubs is executed by the SystemC scheduler. The scheduler produces a subset of runs
of the system. To describe this subset, we first briefly recall the encoding of a stub-based system into
Mealy machine proposed in Chapter 9; one path of this machine corresponds to one run of the system.
Afterwards, we analyze the influence of the communication mechanism and the implementation of stubs
on the system’s scheduling, i.e., the set of investigated paths of the system’s Mealy machine.

10.2.1 Recall: the Semantics of a Stub-Based System
By construction, the Mealy machine encoding a stub-based system is such that each its state can have
several outgoing transitions corresponding to steps of the system’s stubs; one transition per step. The
transitions can be of four types shown in Figure 10.1; these types correspond to two types of stubs’ steps:

• if a stub gets an input from its fifo and the input does not violate (resp. violates) the assume clause(s)
of the stub, a transition of type 1 (resp. 2 ) is taken; here, i is the input, and err1, . . . , errp are
error outputs,

• if the stub produces an output and the assume clause(s) are not violated (resp. are violated), a
transition of type 3 (resp. 4 ) is taken; here, o is the output, τ enables production of o, and as
before err1, . . . , errp are error outputs.

The system has a global error state, where it enters if transitions of the type 2 or 4 are triggered. This
is state se in Figure 10.1.

10.2.2 A Scheduling Algorithm
Our SystemC implementation and the non-preemptive nature of the SystemC scheduler define a subset
of the system’s runs which can be observed at simulation time.

10.2.2.1 Impact of the Communication Mechanism

The communication between stubs is implemented by means of functional calls. It means that stubs have
the same relative speed, and the non-deterministic choice between getting inputs and producing outputs
of stubs (see Sec. 9.4) is solved by choosing to get inputs as soon as they are provided (i.e., appear in the
stubs’ input fifos). This is done without any intervention of the SystemC scheduler.

For instance, consider two stubs A and B connected as shown in Figure 10.2(a). The implementation
is such that when A produces output y (e.g., a transaction), the output is immediately executed on the
target stub B (i.e., B gets input j), and the control returns to A. Figure 10.2(b) shows the transitions of
the Mealy machine encoding the system with A and B, which are triggered when A communicates with
B. The transition labeled with τ/y is triggered when A produces y; according to the semantics of the
system (see Sec. 9.3.2), the produced output is added to the input fifo of B. Then, the transition labeled
with j/ is triggered; the input j is removed from the B’s fifo and B makes a step. Notice that input j
can violate assume clauses of B, in this case the system enters the error state se and the simulation stops.
Also notice that our communication mechanism ensures that the input fifos always have at most size 1,
since inputs are immediately consumed by target stubs.
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A
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(a) Connected stubs

sk

s′k se

τ/y

j/ j/err1, . . . , errp

(b) The system’s transitions triggered when A sends out-
put y to B.

Figure 10.2 Impact of the communication mechanism on the execution of the stub-based system: output y of A
is connected to input j of B; τ enables production of y.

10.2.2.2 Impact of the Atomicity of SystemC Processes

SystemC process producing outputs of stubs has to yield by calling the wait() function, because the
SystemC scheduler is non-preemptive. An atomic step of the SystemC process corresponds to a sequence
of statements between two consecutive calls to wait(). Some of those statements can actually produce
outputs; therefore, several transitions of the system can be triggered as shown in Figure 10.3. Here, the
path from state sk to state s′k (or se) corresponds to one atomic step of the SystemC process generating
an output sequence of stub A. In sk, the process is resumed by the SystemC scheduler; in s′k, the process
yields by calling wait(). Notice, at any intermediate state the checking part of stub B, which consumes
the produced outputs, can (potentially) detect an error(s); in this state the system enters the error state
se and the simulation stops.

A
i y Bj p

(a) Connected stubs

sk

s′k se

τ/y

j/

j/err1, . . . , errp

τ/y

j/

τ/y

j/

j/err1, . . . , errp

j/err1, . . . , errp

(b) The system’s transitions triggered when A produces
output y.

Figure 10.3 Impact of the atomicity of the SystemC processes on the execution of the stub-based system: output
y of A is connected to input j of B; τ enables production of output y of A.
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// when π1 is detected:
xx flag1 = true;
xx start1.notify();

// generation of σ1:
void gen1(){
xx while(true){
xxxx if(!flag1)
xxxxxx wait(start1);
xxxx //produce outputs
xxxx wait(t′1);
xxxx //produce outputs
xxxx flag1 = false;
xxxx wait(t′′1);
}}

// when π2 is detected:
xx flag2 = true;
xx start2.notify();

// generation of σ2:
void gen2(){
xx while(true){
xxxx if(!flag2)
xxxxxx wait(start2);
xxxx //produce outputs
xxxx flag2 = false;
xxxx wait(t2);
}}

// when π3 is detected:
xx flag3 = true;
xx start3.notify();

// generation of σ3:
void gen3(){
xxxx if(!flag3)
xxxxxx wait(start3);
xxxx //produce outputs
xxxx wait(t′3);
xxxx //produce outputs
xxxx flag3 = false;
xxxx wait(t′′3);
}}

Figure 10.4 The SystemC implementation of three guarantee clauses πi ⇒ σi for i ∈ [1, 3].

10.2.2.3 Ensuring Bounds of Guarantee Clauses and Productiveness of Stubs’ Runs

In the proposed SystemC implementation bounds of guarantee clauses (πi ⇒ σi)s are mapped on simula-
tion time. The bound ∆ of a guarantee clause π ⇒ σ is equal to ∆ =

∑
Ti, where Tis are time arguments

of all calls to the wait() function in the generation process of σ. The advancement of simulation time in
the generation processes after each iteration of corresponding white(true) loops is mandatory to ensure
bounds. This also guarantees that runs of the stubs are productive.

10.2.2.4 Wrap-up: A Scheduling Principle

Consider a system made of stubs such that π1 ⇒ σ1, . . . , πk ⇒ σk are guarantee clauses of the stubs, and
gen1, . . . , genk are the corresponding SystemC processes producing output sequences defined by σ1, . . . , σk
respectively. Figure 10.4 schematically shows the implementation of three guarantee clauses. Here, when
πi is detected, event starti is notified and flag flagi is set; geni is the generation process of σi, and tis
are the process’s timeouts. The production of outputs is scheduled by the SystemC kernel as follows:

1. To start the simulation, at least one of the generation process of σis has to be able to produce
outputs. That is, one of the πis should be considered detected and the respective flag should be set
(e.g., flag1 of gen1 in Fig. 10.4).

2. At the evaluation phase, the SystemC scheduler resumes some generation process of σis that are
ready to produce outputs (e.g., gen1). Produced outputs can make other generation processes of σis
runnable, if those outputs constitute occurrences of corresponding πis (e.g., gen3 waiting for start3 is
resumed, if outputs produced by gen1 make an occurrence of π3). When the evaluation phase finishes,
some generation processes of σis are waiting for timeouts (e.g., gen1 and gen3 in Fig. 10.4 calling
respectively wait(t′1); or wait(t′′1); and wait(t′3); or wait(t′′3);), other generation processes are
waiting for occurrences of corresponding πis (e.g., gen2 calling wait(start2);.

3. When there are no runnable proccesses, the SystemC advances simulation time; some generation
processes waiting for timeouts (e.g., gen1 and gen3) can become runnable and the scheduler proceeds
to the evaluation phase.

4. The simulation stops either when any of the checking parts of the stubs is violated, or when none of
the generating processes can produce outputs. The latter situation happens if after the advancement
of simulation time there are no runnable processes, i.e., all the processes are waiting for occurrences
of corresponding πi.

10.2.2.5 Summary: the Sources of Non-Determinism and SystemC Scheduling

As stated in Section 9.4, a stub-based system has several sources of non-determinism:

• the activation of stubs,
• the choice of the type of a step (get an input or produce an output) performed by the activated
stub,
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Figure 10.5 The TLM platform of the Smart Intercom device with stubs.

• the choice of an output produced by the activated stub.

In the proposed SystemC implementation stubs are activated to get inputs as soon as those inputs
are received. The activation of stubs to produce outputs is controlled by means of yielding points of the
generation processes, which are implemented with the wait(TIME) function.

10.3 Experiments
This section shows the results of the experiments with the intercom system (see Chapter 3). The System-
C/TLM model of the intercom is loosely-timed; the components interact by means of blocking transactions.

10.3.1 Experimental Settings
For each component of the intercom system we define an interface and a contract; some contracts are
defined by means of the loose-ordering language presented in the first part of this document (e.g., see
Sec. 3.4). We compare three versions of the intercom system:

1. Full is the virtual prototype of the intercom system as it is defined in Chapter 3.
2. Def: some components are coupled with the SystemC monitors for loose-ordering properties (see

Chapter 6).
3. Stubs: some components of the intercom are coupled with the SystemC monitors for loose-ordering

properties, and others are replaced with stubs (Fig. 10.5); the stubs and components send/receive
interrupt requests by means of functional calls.

The criteria of the comparison are:

• effort spent to write the model of the system,
• capability to expose bugs and blame the faulty components,
• simulation time.

10.3.2 Observations and Results
Three types of simulations corresponding to three considered versions of the intercom have been performed:

1. The simulation of Full alone allows to see what types of bugs we can find in a detailed TLM model,
and how those bugs are detected. This is described in details in Chapter 3. The bugs BS1 – BS15
were detected with this type of simulation.

2. The simulation of Def version of the intercom helps not only to detect all the bugs of Full (BS1
– BS15), but also to find their sources. In particular, it has been established that some of the
bugs have several causes. The results on this simulation are provided in Section 7.2 (see Tables 7.3
and 7.4).
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3. When Stubs is simulated, since stubs implement contracts of the components, some of the intercom’s
synchronization bugs have been removed simply by construction. For instance, the simulation of
Def has established that the bug BS2 “the display of the intercom is always black” occurs either
because the CPU fails to respect its promises and “forgets” to start the LCDC, or because the SEN
“forgets” to send an interrupt request when it captures an image. This bug is removed from Stubs,
because the SEN and the CPU are replaced by their stubs which ensure that the components respect
their guarantees. The bugs BS3 “the display shows nonsense”, BS4 “the system gets stuck at face
recognition: Button-Start does not respond, the same (currently analyzed) image is shown on the
display”, BS12 “the user does not see any notification image on the screen when the face recognition
is finished” are removed by construction when the simulation with Stubs is performed. The rest
of the synchronization bugs of the intercom (e.g., BS7 “the registered used gets the access denied
notification”) have been detected and localized either by the checking parts of the stubs (e.g., BS7
has been detected by the checking part of the IPU’s stub), or by the SystemC monitors of the fully
implemented SystemC/TLM components.

The comparison of the simulations with three versions of the intercom system allows us to make the
following conclusions:

• Effort spent to write the model: the contract-only versions reduces the effort. For instance,
if we focus on the IPU, instead of describing the full behavior of the component (in our case the
procedure comparing images, see Sec. 3.2, Fig. 3.7), the contract-only version simply produces the
corresponding outputs of the component, ignoring data (see Fig. 10.8). Thus, it replaces a timing-
and function-precise sequences of memory reads by a random number of reads where data is ignored.
Moreover, contracts are more relaxed than detailed models, keeping only the essential interaction
effects. The simulation with contracts has the potential to cover more cases, and the software
validated with this new model is therefore more robust.

• Capability to expose bugs and blame the faulty components: this is where the gain is
the most significant. The contract-like specification style helps blaming the component in which
something has to be corrected (if the assume clause of the IPU complains, then the embedded
software that provides inputs to the IPU is to be blamed).

• Simulation time: if a component contains heavy function computations (e.g., the IPU imple-
menting actual face recognition), the simulation time for the contract-only version will be decreased
considerably.

Summary
In this section, we have presented one of the possible SystemC implementations of the generalized stubbing
mechanism. We have shown how to implement a stub as a SystemC module, how to define the architecture
of a system made of stubs, and how to integrate a stub into a SystemC/TLM virtual prototype. We also
have presented the experiments with the intercom system. The results showed (i) the proof of concept
for the simulation with stubs and its advantages, (ii) the application of the loose-ordering language to the
definition of stubs.
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Chapter 11
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The specification/verification method we propose in this work is compatible with most of work proposed
nowadays in the domain of electronic system verification. In this chapter, we provide high-level overview
of the related work with respect to both our loose-orderings and our generalized stubbing with contracts.

11.1 Functional Verification of SystemC/TLM
This work is targeting functional verification of SystemC/TLM. Thus, it is not surprising that the big
part of related work comes from the respective field. When checking functional correctness of the Sys-
temC/TLM design one may ask the following questions:

1. How to defined properties? Specifically, which specification language to choose and what aspects of
the design to capture?

2. How to interpret the defined properties?
3. How to ensure at simulation that the design satisfies its specification?
4. Finally, how to check quality of the used testbench? In other words, when one can be sure that

there are no behaviors of the design which would violate any of the properties?

In the following sections, we examine how different works answer these questions and compare those works
with our proposals.

11.1.1 Specification Languages and TLM assertions
The largest amount of related work is in the set of specification languages for hardware/software systems
(e.g., e [IJ04], Sugar/PSL [CVK04]). There are a lot of proposals for extensions of temporal logics, with
past or future operators, allowing the conjoint use of regular expressions, etc.
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Ecker et al. A conceptual language for specifying TL properties is presented in [Eck+06b]. The pro-
posed constructs of the language are interpreted on sequences of events of a TL model. The language is
(very) similar to PSL with semantics being adapted to asynchronous TL models. In [Eck+06a] a spe-
cialized language for transaction level assertions is defined. The language is a SystemC extension of SVA
which allows expression of properties on SystemC events. A possible implementation of the language is
described more precisely in [Eck+07]. This approach is appealing, but can be seen unnecessarily compli-
cated because the temporal fragments of PSL and SVA languages are rich enough to express a large range
of properties, even at the TLM level. To a certain extent, syntactic sugar could be considered, but new
semantic constructs are not necessary since various modalities (such as until, before) are present in the
language and are given a clean trace semantics.

Tabakov et al. [Tab+08] presents a temporal logic for SystemC, but focusing on what happens in the
simulation kernel.

Tomasena et al. In [Tom+09] the TLM assertions are defined as sequences of propositions about
transaction events occurrence in a defined order. Those propositions are combined to describe a transaction
events pattern by means of binary logical connectives (conjunction, disjunction, implication). Proposition
definition includes (i) a trigger part which specifies the sequential relationship between the time instants
of the transaction events involved in the evaluation of the property, (ii) time-out condition, and (iii)
expression which is evaluated only when the trigger is true. As the simulation of the DUV produces
events, the propositions of the property change their state. The authors claim that the proposed TL
assertions can be used to express system properties expressible in PSL. The time-out attribute of the
proposed TL assertions considers simulation time of the executable SystemC/TLM model.

As we see in Chapter 8 all of the existing specification languages can be used to define stubs in our
methodology, provided that they satisfy our requirements on property languages. Moreover, (i) automatic
translation into efficient monitors (observers) should be available, preferably in C or C++, and (ii) to
generate outputs, efficient Boolean/numerical constraint solvers should exist, at least for a subset of the
language, and offer an API in C or C++. In Chapter 4, it is shown that our loose-ordering properties
can be encoded in most of available specification languages supporting regular expressions and linear
temporal operators; however such encoding can lead to very inefficient monitoring (see Chapter 7). Our
loose-orderings can extend existing industrial specification languages with new constructs. Time-outs
defined in [Tom+09] are particularly interesting for us because they are similar to our concept of a bound
of a guarantee clause (Chapters 4 and 8).

11.1.2 Monitoring SystemC/TLM
When properties of a SystemC/TLM design are defined and encoded in some specification language, we
want to check their satisfaction at simulation. For that it is needed (i) to capture relevant events occurring
at the design when it is up and running, (ii) to have monitors of the properties which are updated on
occurrences of (some of) those events. Therefore, the related work on this matter includes monitoring
models of SystemC/TLM and construction of monitors for properties.

11.1.2.1 Monitoring and Property Evaluation Models

Despite difference in the vocabularies, most of the recently proposed monitoring models for SystemC/TLM
are similar. They all enable online checking of TLM assertions which specify communication protocols of
TL models. The properties are evaluated on sequence of events. The models rely on dedicated entities
which allow capturing of communication events. Those entities are either redefined classed of communi-
cation channels or special functions which are called when events occur. Implementation of the models
require some instrumentation of the original SystemC code with the defined entities. Most of the mon-
itoring models implement the observer patter [Gam+95] to notify monitors about occurrences of events.
When events occur, monitors change their state. Below we examine some of the monitoring models avail-
able for SystemC/TLM. Our monitoring model for online checking of loose-ordering properties, discussed
in details in Chapter 6, is inspired by the model proposed in [PF08].
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Pierre et al. In [PF08] the authors propose a method for monitoring SystemC/TLM specifications
which define properties regarding communication of the design. Properties are defined in the Foundation
Language (FL) class of PSL which represents the linear temporal logic, i.e., the properties are PSL formulas
made of the operators until!, always, etc. The semantics of the specification is defined on the execution
traces of a system at the TLM level. A trace is made of observation points, i.e., points where the assertions
needs to be re-evaluated. Assertions are re-evaluated each time a variable of the assertion has possibly
been modified, i.e., an appropriate event occurs in the corresponding communication channel. Hence, the
traces are made of all the events that enable the observation of updated values for the variables involved
in the assertions.

Monitoring of the design’s properties relies on the model defined in [Pie07] (see Fig. 11.1) and it
is inspired by the observer pattern. The approach is relatively non-intrusive, it allows monitoring of
properties that involve several channels possibly of different types. To monitor SystemC/TLM design at
simulation, one needs to defined observable subclasses for the channels under observation (Subjects) and
to use them in place of their parent classes. The observable channels and/or signals involved in a property
are observed by monitors enclosed in a wrapper associated with that property.

Figure 11.1 A model for observing transactions. (Source [Pie07])

In [PF10] the authors provide monitoring support for the PSL Modeling Layer which enables the use
of (global) auxiliary variables in assertions. It allows to monitor components with pipelined behavior
enabling the simultaneous processing of several data by considering reentrant assertions. Those asser-
tions are evaluated simultaneously for different data through the use of multiple checker instances with
local variables. For that the PSL syntax is extended with an appropriate syntactical construct, and the
semantics are accordingly adapted.

Xiong et al. In [XBZ10] properties defining the communication protocol of a TL model are formalized
in PSL. They can depend on fields of transactions, calculation results of several transactions, etc. PSL
properties are evaluated on the sequences of transactions. The order of those transactions is determined by
sorting respective timing information about their occurrence. If a TL model is untimed, a global counter
is used. The counter is increasing by one whenever a transaction event occurs.

Values of transactions parameters are extracted at simulation by dedicated functions associated with
respective TLM ports. To collect properties, the SystemC/TLM design is instrumented with dedicated
entities, called here monitors, according to the observer pattern. Those entities report transaction infor-
mation with current simulation time information to the global data collector whenever the data arrives,
i.e., every state change of a transaction. The notification mechanism is implemented outside the SystemC
simulation context.

Tomasena et al. In [Tom+09] TLM assertions are defined by means of XML files. Assertions are com-
munication properties of the TL model, they are defined as sequences of propositions about transaction
events occurring in a defined order (see Sec. 11.1.1). At simulation when the design produces communi-
cation events, the state of propositions changes. The time order is defined by the simulation time of the
SystemC scheduler. The assertion checking framework is supported by a library built on top of SystemC.
Figure 11.2 shows the proposed monitoring model. To integrate the framework within the SystemC simu-
lation and to perform evaluation, one needs to replace transactional ports with Monitorable Transactional
Ports (MTPs) provided by the framework, and register them in the assertions manager which is respon-
sible for the coordination of the monitoring process. The assertion manager parses the XML files where
assertions have been specified, and generates the list of assertions. One monitor is created per MTP. All
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monitors are registered inside the assertions manager which finds assertions with appropriate monitors.
The assertion manager supports the overlapping and non-overlapping modes. The overlapping mode may
contain several instances of the property; evaluation of a new instance of the property is (potentially)
started with each occurrence of the DUV’s event. Once the simulation of the DUV is finished, the asser-
tions manager collects the statistical information of the monitoring process and generates an XML report
file.

Figure 11.2 Verification framework with XML assertions. MTP_in, MTP_out are Monitorirable Transactional
Ports (Source [Tom+09])

Tabakov et al. In [TRV12] and [TV10], the authors propose monitors for checking properties for Sys-
temC. The monitors are built based on the temporal logic introduced in [Tab+08].

11.1.2.2 Compositional Building of Monitors

In this work we define direct translation of loose-orderings into efficient SystemC monitors (Chapter 5).
Our monitors are built in a compositional way, and can be automatically generated from a loose-ordering
property (Chapter 6). Similar approaches for producing monitors are discussed below. They all use
primitive monitors to build more complex monitors. Such composition building helps to ensure that the
obtained monitors are correct.

Dahan et al. [Dah+05] defines the translation of PSL to SystemC/C++. The translation consists
of three steps. First, each PSL property is translated into a nondeterministic finite automaton (NFA).
The NFA has a set of error states, entering an error state means that the design does not adhere to the
specification under the test conditions. Secondly, the NFA is converted into a deterministic automaton
(DFA). Finally, the DFA is translated to the target C++ language as defined in [Aba+00]. The generated
C++ checker consists of the checker logic (state machine transition function and the assertion condition)
generated from the PSL assertions, and the checker control code which calls the checker’s reset and
transition functions. It is the user’s responsibility (i.e., a part of the monitoring model definition), to define
(i) when the checker’s reset and transition functions should be invoked (i.e., when the generated monitor
is updated), and (ii) when to sample the design signal values to assign them to the corresponding checker
ports (i.e., when to capture the design’s events). The C++ checkers are wrapped into SystemC modules
that are later on connected as read-only monitors to the SystemC platform. Although the reported results
show that the checkers can be beneficial in finding, localizing and fixing bugs, the checkers are used only
for SystemC Bus Cycle Accurate model of the SoC and no evidence of their potential application to
SystemC/TLM models at higher abstraction levels is provided.

Pnueli et al. In [PZ06] monitors are referred to as testers. Temporal testers are non-deterministic
transducers which at any point (step) output a Boolean value if the corresponding temporal formula holds
starting at the current position, i.e., if the suffix of the input sequence is in the language of the formula.
A tester is compositional, it is constructed out of the testers for its sub-formulas. Testers for both the
LTL and SERE operators of PSL are defined. The authors state that for the SERE subset of PSL the
complexity of testers is linear in the size of the respective SERE formulas. To the best of our knowledge,
this work is purely theoretical and was not implemented in SystemC/C++.
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Pierre et al. The monitor in [PF08] is generated from the property thanks to a method that simply in-
terconnects the elementary monitors associated with the primitive operators of a PSL property (Fig. 11.3).
The method adapts the proved correct compositional construction of monitors at the RT level [MAB06].
In [MAB06] a monitor of a property takes as inputs the reset, the synchronization clock, a signal Start
that triggers the evaluation, and the signals of the DUV that are operands of the PSL operators in the
property (e.g., see Fig. 11.3). The primary outputs Checking and Valid are those of the rightmost PSL
operator. The true value of the former (resp. the latter) indicates that output Valid is effective at the
next synchronization time (resp. absence of error). The combined values of Checking and Valid indicate
whether the property is inactive, currently being computed, or known and passed or failed. Primitive sin-
gle operator monitors are interconnected to build complex monitors. The method is based on the syntax
tree of the property: the output Checking of a monitor of a parent operator is connected to input Start of
a monitor of its child operator (Fig. 11.3).

Figure 11.3 A composition monitor for the PSL property always(A->next![2](B before! C)). (Source [MAB06])

The extension of the construction method to TLM consists in transformation of each primitive primitive
monitor into a SystemC class. The main method of the SystemC classes is the update function. The
function corresponds to the evaluation of the property and it is called each time a notification by an
observable subject occurs (Fig. 11.4). An observer wraps the monitor, to activate this method when
necessary. [FP10; PF10; Pie+12] define the ISIS tool which allows generation of SystemC monitors from
PSL specification and enables automatic instrumentation of the verified model with those monitors. The
complexity of the generation is proportional to the size of the PSL expression.

always -> next! before!
update()update()update()

evaluation
evaluation evaluation evaluation

A Composite Monitor update()

outputs

event notification

Figure 11.4 Evaluation principle of SystemC primitive monitors of a PSL property
always(A->next!(B before! C)). (Source [Fer11])

Belhadj Amor et al. [BA14] extends the work of [FP10; PF10; Pie+12] with monitors for Sequential
Extended Regular Expressions (SERE) of PSL. The work is inspired by [MGB07; MAB07b]. The idea
is to define a primitive monitor per SERE operator (e.g., the concatenation operator “;”, the Kleene star
operator “∗”, etc., see Sec. 2.3.2.4) and to connect those primitive monitors according to the syntax tree
of the PSL property. Implementation of a monitor of a suffix implication operator r Z⇒ φ is particularly
interesting. Here, r is a SERE formula and φ can be either LTL or SERE formula of PSL. Each detection
of r starts evaluation of the new instance of the formula φ. For φ each evaluation instance aims at finding
violations of φ. Several evaluation instances can be evaluated simultaneously; each evaluation instance is
represented by a token propogated from the left-most monitors to the right-most monitors. To implement
this mechanism, each primitive monitor of SERE and LTL operators exists in two versions: monochrome
is used for the left part r, polychrome is used for the right part φ. In the former case only one token is
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Figure 11.5 The verification framework for hardware designs

propagated at a time. In the latter case several instances of tokens can be processed at the same time,
one token per evaluated instance.

11.1.3 Verification Methodologies and Libraries
Various verification methodologies and libraries are actively used for modeling and verification of mixed
hardware and software systems. All of them follow the generation/checking testing strategy illustrated in
Section 2.1.3 (Fig. 11.5). For system-level testing we complement these approaches with a generalized use
of the same ingredients (stimuli generation and assertion checking). As a consequence, the system-level
view requires less effort before starting the first testing experiments.

Verification Libraries Verification methodologies are supported with sets of libraries which enable
implementation of testbenches in different hardware verification languages (HDL) like e [IJ04], SystemVer-
ilog [ST12], SystemC [Sys]. In Figure 11.6 colors show in which HDL one can implement testbenches in
corresponding verification methodology.

2005
VMM

Synopsis

2006
AVM

Mentor Graphics

2002
eRM

Verisity

2007 URM
Cadence

2008 OVM
Vendor neutral

OVM-ML
Cadence
OVM-ML
Cadence

2010 UVM
Vendor neutral

UVM-ML
Cadence

OVL
Accellera

2012 SVM
Academia

Testbench implementation:

- IEEE 1647 (e) - IEEE 1800 (SystemVerilog) - IEEE 1666 (SystemC)

Figure 11.6 Taxonomy of verification methodologies for SoCs design. Arrows show ancestor-descendant relation.

Verification Methodologies Many verification methodologies for complex hardware/software systems
like SoCs have been proposed during the past decades (Fig. 11.6). They differ in specific features they
use for testbench construction (e.g., description of generated stimuli sequences, handling of DUT outputs,
etc.), the way they interact with and sample outputs of DUT, etc.

The e Reuse Methodology (eRM) [Erm] has been proposed by Vericity Design with the implementation
provided in e HDL. The eRM gave birth to the Universal Reuse Methodology (URM) [CDSb] introduced
by Cadence with the implementation in SystemVerilog. Independently Synopsis and Mentor Graphics de-
fined the Verification Methodology Manual (VMM) [Syn05; Ber+06; Inc16b] and the Advanced Verification
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Methodology (AVM) [Inc16a] respectively, both in SystemVerilog. AVM was the first open-source verifi-
cation solution. Cadence and Mentor Graphics joined their efforts to the Open Verification Methodology
(OVM) [Gla09; Inc05] with a later unification to the Universal Verification Methodology (UVM) [RM13;
HB15; Vas16] with Synopsys. OVM and UVM are the first vendor neutral verification methodologies
tested against many simulators. Originally they have implementation in SystemVerilog. Cadence de-
veloped multi-language support for OVM and UVM known as OVM-ML [CDSa] and UVM-ML [CDSc]
respectively. Under the multi-language umbrella OVM-ML and UVM-ML enable implementation of subset
of respective methodologies in e, SystemVerilog and SystemC.

Addionally, the Open Verification Library (OVL) [Fos06; AO14a] was developed by Accellera standard.
It enables assertion-based verification (ABV) of SoCs and provides the implementation in SystemVerilog
and SystemC. The library serves as repository of checking modules which can be instantiated as necessary
in test-benches and facilitates specific checking goals. For example, the OVL has a module for checking
that a specified expression must not change its value for a specified period of time. The OVM, the UVM
and the OVL inspired creation of the System Verification Methodology (SVM) [Oli+12] with the set of
SystemC libraries [FSO+12] for system level verification at TL level.

Some of the enumerated methodologies are obsolete and not used anymore (the AVM, the VMM).
Nowadays the UVM is the widely accepted Accellera standard. To the best of our knowledge the SVM
remains to be purely academic work and it is not adopted by the industry yet.

11.2 Functional Verification Through the Design Flow of SoCs
Our stubs of TL components (see Chapter 8) could be integrated in mixed platforms consisting of com-
ponents defined at different abstraction levels (e.g., TLM, RTL). Our loose-ordering properties could be
reused in the design flow.

11.2.1 Transactor-Based Verification: Properties Reuse
Our stubs could be integrated into mixed TL-RTL platforms by means of transactors. Transactor-Based
Verification1 (TBV) allows a mixed TL-RTL co-verification [JJ03]. A transactor works as a translator from
a TL functional call to an RTL sequence of statements (Fig. 11.7), i.e., it provides the mapping between
transaction-level requests, made by TL components, and detailed signal-level protocols on the interface
of RTL IPs. A transactor is associated with a pair of interfaces, one at RTL and one at transaction level.
Using transactors one can reuse loose-ordering properties for testing hardware design at RTL level.

In [BFF05] transactors are exploited to reuse PSL properties defined for TLM, at the RTL. The
effectiveness of reusing testbenches and assertions by TBV, with respect to their manual conversion, has
been theoretically proven in [BFP06].

In [KT07] a native assertion mechanism for TBV is defined. The mechanism is inspired by SVA and
PSL. It enables construction of assertions which are synchronized with events reported by callbacks.

The effectiveness of TBV can be improved if transactors specific for TLM-RTL communication are
automatically generated [BP06; BFD08; BP07; BF06].

11.2.2 Properties Refinement
Bombieri et al. [BFP07] defines incremental assertion-based verification methodology to check the
correctness of the TL-to-RTL design refinement. The methodology relies on reusing assertions and already
checked code; it is guided by an assertion coverage metrics. The methodology reuses assertions defined
at TL to check the functional correctness of the RTL implementation of the DUV by means of transactor
(see Sec. 11.2.1).

Pierre et al. In [PA13] PSL assertions expressing temporal requirements on the interactions and com-
munications in the SoC are refined automatically into their RTL counterparts. The work addresses the
issue of the modification of temporal granularity due to the introduction of actual communication channels
in place of abstract components. It proposes the set of transformation rules to refine a communication
(atomic transaction) into a sequence of events specific to RTL. Some of the defined rules allow definition of
specific delays for a communication. They allow to obtain definition of RTL properties stating that some
communication action is expected after a certain number of clock ticks. The rules translate PSL properties

1In some sources Transactor-Based Verification is also referred to as Transaction-Based Verification [Bra+00; KT07].
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Figure 11.7 The principle of Transactor-Based Verification. (Source [Bom+07])

of TLM with operators like until! into sequences of nested next![x] operators and implications defining
RTL properties. A formula next![x]φ is a formula which means that φ should hold after x instances
(e.g., clock ticks). The set of defined rules is independent from any ABV tools.

11.3 Contracts for SystemC/TLM

11.3.1 Contracts for Hardware Designs
The assume/guarantee reasoning have been formalized for various types of software or hardware sys-
tems. For instance, [Ben+08] defines a generic composition theory of contracts providing relations of
contract satisfaction and refinement; [Bau+12] builds a contract framework on top of any specification
theory (e.g., modal specifications [Rac+11], timed specifications [Ber+09]) which supports composition
and specification refinement.

Applications of (early) contracts include modular verification [McM99], executable specifications for
synchronous languages [MM04], hardware optimization by exploiting (sequential) don’t care sets [Dev91],
etc. A sequential don’t care [Dev91] corresponds to input sequences of vectors (e.g., 1011, 1011, 1000)
that does not appear at finite state machine modeling the chip. Such don’t cares are used to reduce the
number of states of state machines leading to area and performance optimization of the chip.

11.3.2 Other Uses of Formally-Defined Contracts
When contracts are formally defined for a set of components, a lot of manipulations can be done, apart
from solving constraints and producing one or several concrete random executions. For instance Inter-
face Automata [AH01] allow to compute the most liberal environment compatible with a component.
More related work can be found in [Bau+12] and [Rac+11] which unifies interface automata and modal
specifications.

11.4 Virtual Prototyping of SoCs

11.4.1 Early Detection of Bugs
In [Eng15] the author investigates the application of continuous integration processes (from agile methods)
to embedded systems testing. It relies on the intensive usage of virtual prototypes and simulation. The
work shows that the approach can significantly hasten development of a system due to bugs detected earlier
in the design flow. The traditional testing approach is meant to be used (see Section 11.1.3, Fig. 11.5).
In our work we go further. We turn the virtual platform into a test generation/test management system.
It allows faster continuous integration at subsystem-, system-, or large system-level testing.
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11.4.2 Raising Abstraction Level Beyond TLM
In [Eck+10] the authors propose the modeling styles which allows abstraction beyond the currently applied
TLM methodology. It enabled a higher modeling abstraction through merging hardware dependent low
level driver software with the HW interface. Thus, sequences of HW transactions can be merged to single
HW/SW transactions while preserving both the HW architecture and the low-level to high-level SW
interfaces. It allows to reduce the overall number of communication activities. A central resource model
is used to ensure that despite the increased level of abstraction it is possible to maintian a high degree of
timing accuracy.

Our generalized stubbing can be seen as an attempt to raise the abstraction level of the design beyond
TLM. In our work we focus on the definition of hardware components rather than software/hardware
interactions.
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Conclusions and Prospects
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12.1 Summary and Contributions
Systems-on-a-Chip (SoCs) are very complex. The complexity comes from the heterogeneous nature of
these systems, which include the hardware and software parts. To tackle this complexity, SystemC-
based Transaction Level Modeling (TLM) is used. SystemC/TLM allows defining high-level executable
component-based models for SoCs, called virtual prototypes. These models are used for the early de-
velopment of the embedded software, and the validation of the hardware. There are Assertion-Based
Verification (ABV) methods, which allow property checking of TL models early in the design flow. Never-
theless, TL models can be over-constrained, which means that they do not represent all the malfunctions
of the design. Our contributions consist of two orthogonal and complementary parts: On one hand, we
identify sources of over-constraints in TL models appearing due to the order of interactions between com-
ponents, and propose a notion of loose-ordering which allows to remove these over-constraints. On the
other hand, we propose a generalized stubbing mechanics which allows the very early simulation with Sys-
temC/TLM virtual prototypes. Globally, this work contributes to the very early detection and correction
of functional faults of SystemC/TLM virtual prototypes.

12.1.1 Context of the Work
A part of this work was about examining and experimenting with SystemC/TLM virtual prototypes of
SoCs. The experiments were done on the family of SoCs which have one or several CPUs running the
software, one or several hardware accelerators, a memory, inputs/outputs, one or several interconnects. I
have designed the intercom system which performs face recognition, and implemented its SystemC/TLM
virtual prototype (see Chapter 3). My running example was inspired by industrial case studies; it has
non-trivial synchronization protocols between components. By experimenting with the intercom’s virtual
prototype, I made several interesting observations which were the basis for the contributions of this thesis:

• The first observation is that it can be hard to find (detect) bugs of a SystemC/TLM virtual prototype,
when it is simulated without a clear specification of the system in mind. For instance, if the button
of the intercom does not respond, is it a bug?

• Second, even if the specification exists, very often it is implicit and not clearly defined. Thus, there
are no means that would help to find sources of potential bugs. For example, if the button of the
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intercom does not respond, is it the fault of the GPIO, or the embedded software? Or the timer of
the intercom? Or all of them?

• Third, when the specification is defined formally (i.e., by means of a specification language like
PSL), there should be tools which would allow checking of the properties at simulation time. And
again there are several difficulties: although there are many proposals in the academic world about
specification languages, many of them are either only abstract ideas (i.e., cannot serve practical
needs), or not very expressive, therefore cannot be really used to define properties of interest (see
Sec. 11.1.1). There are works providing ABV support for PSL specifications of TL models (see
Sec. 11.1.2.2). Nevertheless, the respective tools, even though claimed to be useful and efficient to
a certain extent, are not publicly available (see Sec. 11.1.2.2).

• Finally, I examined the “implicit” types of properties kept in mind when defining TL models. I made
an observation that most of these properties can be divided into two groups: the properties defining
the data expected by components, and the properties defining what the components should do.
Moreover, most of the properties of each type follow the same patterns, i.e., “get the configuration data
before a computation is started”. At the same time, I observed that the order in which components
get data is usually irrelevant. Here I discovered several interesting and unexpected things: even if
the components of TL models can get data in any order, sometimes they are defined in such a way
that they always provide some outputs in the same order (e.g., when they configure or start other
components). It means that at simulation time with such TL models only those behaviors of the
hardware are exposed, which correspond to the defined order. I made experiments with my running
example by changing the order of some interactions, and observed that some bugs, which were not
visible before has appeared. The study of related work has shown that the problem of specification
of the order non-determinism was not addressed, i.e., no ABV support was available.

Separately, I was searching for an answer of the fundamental question on abstraction levels: if one
wants to start with models above TLM, what kind of information can one accept to be not available yet?
And what kind of system properties can one expect to assess on such very abstract models? The answers
to these questions are the contributions of this thesis.

12.1.2 Contributions
Identification of Over-Constraints in TL Models I have identified that TL models can be over-
constraints due to the order of interactions between components. To capture such over-constraints, I have
proposed the notion of loose-ordering. By reviewing industrial case studies I have also identified a set of
primitive constructs (patterns) to define loose-ordering properties (Chapter 4).

A Tool for Generating Efficient Monitors for SystemC/TLM In this work, I have discovered
that with traditional specification languages based on temporal logic it can be hard to define order non-
determinism. Therefore, ABV methods provided for such specification are not appropriate for checking
loose-ordering properties; these methods either do not reflect the semantics of loose-orderings, or they are
not very efficient. I have extended ABV for SystemC/TLM by proposing different types of recognizers for
loose-orderings. My recognizers can report errors when loose-orderings are violated, or they continuously
try to detect occurrences of loose-orderings. The recognizers have been implemented in Lustre and
extensively tested with a formal testing tool. To integrate the loose-ordering properties into the ABV
framework and make them interoperable with the existing industrial standards, I have implemented a
library of efficient SystemC monitors for loose-orderings.

I have performed experiments with the intercom system. First, I defined loose-ordering properties for
the system’s components. Then, I built the SystemC monitors for those properties, and run a simulation
with the virtual prototype of the running example coupled with the monitors. With such simulation I
have not only detected all the synchronization bugs of the design, but also was able to find the bugs’
sources, which was problematic otherwise, specially if a bug had several causes.

A Generalized Stubbing Mechanics with Contracts for Early Simulation with Virtual Pro-
totypes of SoCs My proposal allows specifying SoC components which are not entirely determined on
the values of the exchanged data, the order of the interactions and/or the timing. It is built by gathering
ideas from testing approaches for hardware designs, testing approaches for real-time reactive systems,
and design-by-contract for hardware or software designs. I propose to define a stub of a component as a
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contract: an assume clause specifies what the component expects from its environment, and a guarantee
clause defines the obligation of the component, if it is placed in a proper environment. I propose to define
the guarantee clause in a form of an implication π ⇒ σ: when π occurs, σ should occur within a bound.
Both assume and guarantee clauses specify sequences of inputs and/or outputs which are supposed to be
respectively received and produced by the component. The main ideas behind the generalized stubbing
mechanics is that we can start with very abstract description of components, provided we have the infor-
mation on how they interact and create conflicts on shared resources, possibly with cyclic dependencies
(a component has some impact on the rest of the system, which itself impacts the component). The
contract-like specification style is very adequate to capture this type of dependencies. I want the stub-
bing framework to be as general as possible, and at the same time implementable and applicable to real,
industrial case studies. To achieve these two objectives, I make a compromise between the expressivity
of contracts and the implementability of stubs, and accept to put constraints on property languages of
assume and guarantee clauses. This leads us to several contributions:

• Identification of limitations on property languages and syntactic constraints to make stubbing imple-
mentable. To ensure the efficiency of the implementation, I require that the property language of
the left-hand part π of a guarantee clause π ⇒ σ has a deterministic continuous recognizer. When
there are several guarantee clauses (πi ⇒ σi)s, I also require that the left-hand parts σis do not
share names, and that the guarantee clauses do not form cycles (i.e., do not depend on the names
of each other).

• Identification of the type of scheduling required to simulate stub-based systems. A part from that, I
have identified the types of scheduling problems that should be addressed in order to run simulations
with stubs. In particular, we need to ensure that bounds of all guarantee clauses (πi ⇒ σi)s are
preserved (this can be done by counting events), and that the stubs are activated fairly.

• Operational semantics of a stub and a system made of stubs. The operational semantics shows
that the system made of stubs have several sources of non-determinism (e.g., the non-deterministic
production of outputs). This is where scheduling should be applied.

Additionally, when working on stubbing, I have discovered that the implication operator α Z⇒ β, which
inspired our guarantee clause and which is provided by specification languages like PSL, does not have
the well-defined semantics. The semantics of the operator can depend on the vendors implementing the
property checking tools, and it is often hidden from the users of those tools. Here I have contributed to
the specification of digital circuits proposing the following:

• Clarification of the semantics of properties of the implication kind. I have made several semantic
choices for the implication operator α Z⇒ β. Thus, I propose the semantics of the overlapping of
several occurrences of α, and the overlapping of occurrences of α and β. Moreover, my limitations
on the property languages and syntactic constraints on guarantee clauses (see above) enable online
exploitation of α Z⇒ β in both cases; as a part of ABV, and as a part of stubbing.

A Proof of Concept: A SystemC Implementation of the Generalized Stubbing Mechanics
As a proof of concept I have implemented the generalized stubbing mechanics with the SystemC scheduler.
The implementation allows to build a virtual prototype for systems made of stubs only, and to integrate
stubs with already existing SystemC/TLM components. This has been demonstrated on my running
example. The experiments showed that (i) less effort and time can be required to build virtual prototypes
with integrated stubs, (ii) stubs have the capability to detect bugs and blame faulty components. More-
over, the simulation with stubs can be faster, since the implementation details (e.g., the implementation
of computation algorithms) are omitted.

12.2 Prospects
This work opens several future prospects, which can be classified depending on the required amount of
further research, and the applicability in the industry or in the academic world.

12.2.1 Integrating Loose-Orderings into Existing Standards
For comparison purposes, I have encoded a subset of loose-orderings into PSL, and observed that the
encoding of order non-determinism into PSL is either non-trivial or explosive. Thus, the encoding into
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12.2. Prospects

LTL fragment of PSL is very hard, because the semantics of the conjunction and nesting of LTL operators
is not intuitive. Without special tools (e.g., SPOT) which would visualize the semantics of LTL formulas
(e.g., in the form of automata), it is very hard to assess the correctness of the obtained encodings. At
the same time the most intuitive and naive encoding of loose-ordering into Extended Sequential Regular
Expression (a fragment of PSL), consisting in the explicit enumeration of all total orders, provokes the
combinatorial explosion of the length of the obtained formula. I did not prove that my proposal is the best
possible way to encode the order non-determinism. Nevertheless, I think that having dedicated constructs
in specification languages like PSL is useful, and loose-orderings can be good candidates for that. It would
be also interesting to compare the expressive powers of PSL and the loose-ordering language.

12.2.2 Direct Prospects for the Academic World
Specifying Stubs This work provides recipes which enable early simulation with virtual prototypes
for SoCs. One of the recipes is the set of constraints on the property languages defining stubs. One
of the constraints is that the languages should have deterministic continuous recognizers. Although this
work presents continuous recognizers for regular languages (see Sec. 2.4), systematic work should be done
to identify types of languages which have this property, and therefore can be plugged in our stubbing
framework.

Solving the Coverage Problem The generalized stubbing mechanics has several sources of non-
determinism: at the system level there is a non-deterministic choice between stubs to be activated; at the
stub level, there are choices between inputs and outputs, as well as between different outputs of the stub.
All these choices can be controlled by a scheduler. Different scheduling policies allow observing subsets
of runs of stub-based systems. This leads to a coverage problem which is not directly addressed in this
work. It would be interesting to examine the influence of different scheduling algorithms on the subset of
observed runs, and to find a method which allows to improve the coverage of the system.

12.2.3 Long Term Prospects
The long term prospect of this work is the consideration of both functional and non-functional (e.g.,
energy consumption) properties of systems-on-a-chip. The theoretical results and implementations of this
thesis are ready to integrate the results obtained by STMicroelectronics and DOCEA Power (now Intel)
in the framework of HELP project1 on the modeling of energy consumption and temperature in high-level
models of systems-on-a-chip. Such integration will make my results compatible with the recent advances
in TLM power modeling. Moreover, the work on loose-ordering and relaxing constraints in models has
helped define a new promising research direction which aims to answer the question: how to define and
simulate models with loose-power information. This problem is already being addressed at Verimag.

1an ANR Arpege project http://www-verimag.imag.fr/PROJECTS/SYNCHRONE/HELP/

180/230 Verimag/UGA Yuliia ROMENSKA

http://www-verimag.imag.fr/PROJECTS/SYNCHRONE/HELP/


Appendix A

Lustre Implementation of
Loose-Orderings

1 node range_error_non_shuffled(u,v: int; s, start , n, C, Ac, Af, B: bool)
2 returns (err , ok, nok: bool);
3 var cpt: int; s0 , s1 , s2 , s3, s4, s5: bool;
4 let
5 -- ensuring that names do not occur simultaneously
6 assert (#(B, Ac)); assert (#(B, Af)); assert (#(B, C)); assert (#(B, n));
7 assert (#(Ac , Af)); assert (#(Ac , C)); assert (#(Ac, n)); assert (#(Af, C));
8 assert (#(Af , n)); assert (#(C, n));
9

10 -- encoding transitions
11 s0=true -> pre(s0 and not(start)) or pre(s2 and Ac and not(s)) or
12 pre(s3 and Ac and cpt >=u) or pre(s4 and Ac);
13 s1=false -> pre(s0 and start and not(n or C)) or
14 pre(s1 and not(n or C or Ac or Af or B));
15
16 s2=false -> pre(s0 and start and C) or pre(s1 and C) or
17 pre(s2 and not (n or Ac or Af or B));
18 s3=false -> pre(s0 and start and n) or pre((s1 or s2) and n) or
19 pre(s3 and not(C or Ac or Af or B or (n and cpt=v)));
20
21 s4=false -> pre(s3 and C and cpt >=u) or
22 pre(s4 and not(n or Ac or Af or B));
23 s5=false -> pre((s1 or s2 or s3 or s4) and (Af or B)) or
24 pre((s1 or (s2 and s)) and Ac) or
25 pre(s3 and (Ac or C) and cpt <u) or pre(s3 and n and cpt=v) or
26 pre(s4 and n) or pre(s5);
27
28 -- the counter
29 cpt=0 -> if pre(s0 and start and not(n)) then 0 else
30 if pre((s0 or s1 or s2) and n) then 1 else
31 if pre(s3 and n and cpt <v) then pre(cpt)+1 else pre(cpt);
32
33 -- the outputs
34 ok = (s3 and Ac and (cpt >=u and cpt <=v)) or (s4 and Ac);
35 nok = (s2 and Ac and not(s));
36 err = ((s1 or s2 or s3 or s4) and (Af or B)) or
37 ((s1 or (s2 and s)) and Ac) or (s3 and (Ac or C) and cpt <u) or
38 (s3 and n and cpt=v) or (s4 and n) or s5;
39 tel

Figure A.1 The Lustre implementation of the error reporting elementary recognizer Rerrornon-shuffled of ranges
appearing in a fragment with the non-shuffled semantics (� = Non-Shuffled).
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1 node range_error_shuffled(u,v: int; s, start , n, C, Ac, Af, B: bool)
2 returns (err , ok, nok: bool);
3 var cpt: int; s0 , s1 , s2, s3, s4: bool;
4 let
5 -- ensuring that names do not occur simultaneously
6 assert (#(B, Ac)); assert (#(B, Af)); assert (#(B, C)); assert (#(B, n));
7 assert (#(Ac , Af)); assert (#(Ac , C)); assert (#(Ac, n)); assert (#(Af, C));
8 assert (#(Af , n)); assert (#(C, n));
9

10 -- encoding transitions
11 s0=true -> pre(s0 and not(start)) or
12 pre(s2 and Ac and not(s)) or
13 pre(s3 and Ac and cpt >=u);
14
15 s1=false -> pre(s0 and start and not(n or C)) or
16 pre(s1 and not(n or C or Ac or Af or B));
17
18 s2=false -> pre(s0 and start and C) or
19 pre(s1 and C) or
20 pre(s2 and not (n or Ac or Af or B));
21
22 s3=false -> pre(s0 and start and n) or
23 pre((s1 or s2) and n) or
24 pre(s3 and not(Ac or Af or B or (n and cpt=v)));
25
26 s4=false -> pre((s1 or s2 or s3) and (Af or B)) or
27 pre((s1 or (s2 and s)) and Ac) or
28 pre(s3 and Ac and cpt <u) or
29 pre(s3 and n and cpt=v) or
30 pre(s4);
31
32 -- the counter
33 cpt=0 -> if pre(s0 and start and not(n)) then 0 else
34 if pre((s0 or s1 or s2) and n) then 1 else
35 if pre(s3 and n and cpt <v) then pre(cpt)+1 else
36 pre(cpt);
37
38 -- the outputs
39 ok = (s3 and Ac and (cpt >=u and cpt <=v));
40 nok = (s2 and Ac and not(s));
41 err = ((s1 or s2 or s3) and (Af or B)) or
42 ((s1 or (s2 and s)) and Ac) or
43 (s3 and Ac and cpt <u) or (s3 and n and cpt=v) or s4;
44 tel

Figure A.2 The Lustre implementation of the error reporting elementary recognizer Rerrorshuffled of ranges ap-
pearing in a fragment with the shuffled semantics (� = Shuffled).
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Appendix A. Lustre Implementation of Loose-Orderings

1 node range_stop_non_shuffled(u, v: int;
2 s, start , n, C, Ac , Af , B, stopC: bool)
3 returns (nok , ok, stop: bool);
4 var cpt: int; s0 , s1, s2, s3, s4: bool;
5 let
6 -- ensuring that names do not occur simultaneously
7 assert (#(B, Ac)); assert (#(B, Af)); assert (#(B, C)); assert (#(B, n));
8 assert (#(Ac , Af)); assert (#(Ac , C)); assert (#(Ac, n)); assert (#(Af, C));
9 assert (#(Af , n)); assert (#(C, n));

10
11 -- encoding transitions
12 s0=true -> pre(s0 and not(start)) or
13 pre((s1 or s2 or s3 or s4) and (Ac or Af or B)) or
14 pre((s2 or s4) and C and stopC) or
15 pre(s3 and (cpt <u and C or cpt >=u and C and stopC)) or
16 pre(cpt=v and n) or pre(s4 and n);
17
18 s1=false -> pre(s0 and start and not(n or C)) or
19 pre(s1 and not(n or Ac or Af or B or C));
20
21 s2=false -> pre(s0 and start and C) or pre(s1 and C) or
22 pre(s2 and not(n or Ac or Af or B or C and stopC ));
23
24 s3=false -> pre(s0 and start and n) or pre((s1 or s2) and n) or
25 pre(s3 and not(C or Ac or Af or B or n and cpt=v));
26
27 s4=false -> pre(s3 and cpt >=u and C and not(stopC)) or
28 pre(s4 and not(n or Ac or Af or B or C and stopC ));
29
30 -- the counter
31 cpt=0-> if pre(s0 and start and not(n)) then 0 else
32 if pre((s0 or s1 or s2) and n) then 1 else
33 if pre(s3 and n and cpt <v) then pre(cpt)+1 else
34 pre(cpt);
35
36 -- the outputs
37 ok=(s3 and cpt >=u and (Ac or Af or B or C and stopC)) or
38 (s3 and cpt=v and n) or (s4 and (Af or Ac or B or n or C and stopC ));
39 nok =(s2 and not(s) and (Ac or Af or B or C and stopC ));
40 stop=(s3 and cpt=v and n) or (s3 and cpt <u and C);
41 tel

Figure A.3 The Lustre implementation of the stopping elementary recognizer Rstopnon-shuffled of ranges appearing
in a fragment with the non-shuffled semantics (� = Non-Shuffled).
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1 node range_stop_shuffled(u,v: int; s, start , n, C, Ac, Af, B, stopC:bool)
2 returns (nok , ok, stop: bool);
3 var cpt: int; s0 , s1, s2, s3: bool;
4 let
5 -- ensuring that names do not occur simultaneously
6 assert (#(B, Ac)); assert (#(B, Af)); assert (#(B, C)); assert (#(B, n));
7 assert (#(Ac , Af)); assert (#(Ac , C)); assert (#(Ac, n)); assert (#(Af, C));
8 assert (#(Af , n)); assert (#(C, n));
9

10 -- encoding transitions
11 s0 = true -> pre(s0 and not(start )) or
12 pre((s1 or s2 or s3) and (Ac or Af or B)) or
13 pre(s2 and C and stopC) or
14 pre(s3 and (cpt=v and n or C and stopC ));
15
16 s1 = false -> pre(s0 and start and not(n or C)) or
17 pre(s1 and not(n or Ac or Af or B or C));
18
19 s2 = false -> pre(s0 and start and C) or pre(s1 and C) or
20 pre(s2 and not(n or Ac or Af or B or C and stopC ));
21
22 s3 = false -> pre(s0 and start and n) or pre((s1 or s2) and n) or
23 pre(s3 and not(C and stopC or Ac or Af or B or n and cpt=v));
24
25 -- the counter
26 cpt= 0-> if pre(s0 and start and not(n)) then 0 else
27 if pre((s0 or s1 or s2) and n) then 1 else
28 if pre(s3 and n and cpt <v) then pre(cpt)+1 else
29 pre(cpt);
30
31 -- the outputs
32 ok = (s3 and cpt >=u and (Ac or Af or B or C and stopC)) or
33 (s3 and cpt=v and n);
34 nok = (s2 and not(s) and (Ac or Af or B or C and stopC ));
35 stop = (s3 and cpt=v and n);
36 tel

Figure A.4 The Lustre implementation of the stopping elementary recognizer Rstopshuffled of ranges appearing in
a fragment with the shuffled semantics (� = Shuffled).
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Appendix A. Lustre Implementation of Loose-Orderings

1 node range_reinit_non_shuffled(u, v: int;
2 s, start , n, C, Ac , Af , B, rinitC: bool)
3 returns (nok , ok, rinit: bool);
4 var cpt: int; s0 , s1, s2, s3, s4: bool;
5 let
6 -- ensuring that names do not occur simultaneously
7 assert (#(B, Ac)); assert (#(B, Af)); assert (#(B, C)); assert (#(B, n));
8 assert (#(Ac , Af)); assert (#(Ac , C)); assert (#(Ac, n)); assert (#(Af, C));
9 assert (#(Af , n)); assert (#(C, n));

10
11 -- encoding transitions
12 s0 = true -> pre(s0 and not(start )) or
13 pre((s1 or s2 or s3 or s4) and (Ac or Af or B)) or
14 pre((s2 or s4) and C and rinitC) or
15 pre(s3 and (cpt <u and C or cpt=v and n)) or
16 pre(s3 and cpt >=u and C and rinitC) or
17 pre(s4 and n);
18
19 s1 = false -> pre(s0 and start and not(n or C)) or
20 pre(s1 and not(n or C or Ac or Af or B));
21
22 s2 = false -> pre(s0 and start and C) or
23 pre(s1 and C) or
24 pre(s2 and not(n or Ac or Af or B or C and rinitC ));
25
26 s3 = false -> pre(s0 and start and n) or
27 pre((s1 or s2) and n) or
28 pre(s3 and not(C or Ac or Af or B or n and cpt=v));
29
30 s4 = false -> pre(s3 and cpt >=u and C and not(rinitC )) or
31 pre(s4 and not(n or Ac or Af or B or C and rinitC ));
32
33 -- the counter
34 cpt= 0-> if pre(s0 and start and not(n)) then 0 else
35 if pre((s0 or s1 or s2) and n) then 1 else
36 if pre(s3 and n and cpt <v) then pre(cpt)+1 else
37 pre(cpt);
38
39 -- the outputs
40 ok = (s3 and Ac and (cpt >=u and cpt <=v)) or (s4 and Ac);
41 nok = (s2 and Ac and not(s));
42 rinit = (s3 and cpt=v and n) or (s3 and cpt <u and C);
43 tel

Figure A.5 The Lustre implementation of the re-initializing elementary recognizer Rre-initnon-shuffled of ranges
appearing in a fragment with the non-shuffled semantics (� = Non-Shuffled).
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1 node range_reinit_shuffled(u,v:int; s, start , n, C, Ac, Af, B, rinitC:bool)
2 returns (nok , ok, rinit: bool);
3 var cpt: int; s0 , s1 , s2 , s3: bool;
4 let
5 -- ensuring that names do not occur simultaneously
6 assert (#(B, Ac)); assert (#(B, Af)); assert (#(B, C)); assert (#(B, n));
7 assert (#(Ac , Af)); assert (#(Ac , C)); assert (#(Ac, n)); assert (#(Af, C));
8 assert (#(Af , n)); assert (#(C, n));
9

10 -- encoding transitions
11 s0 = true -> pre(s0 and not(start )) or
12 pre((s1 or s2 or s3) and (Ac or Af or B)) or
13 pre((s2 or s3) and C and rinitC) or
14 pre(s3 and n and cpt=v);
15
16 s1 = false -> pre(s0 and start and not(n or C)) or
17 pre(s1 and not(n or C or Ac or Af or B));
18
19 s2 = false -> pre(s0 and start and C) or
20 pre(s1 and C) or
21 pre(s2 and not(n or Ac or Af or B or C and rinitC ));
22
23 s3 = false -> pre(s0 and start and n) or
24 pre((s1 or s2) and n) or
25 pre(s3 and not(C and rinitC or Ac or Af or B or n and cpt=v));
26
27 -- the counter
28 cpt= 0-> if pre(s0 and start and not(n)) then 0 else
29 if pre((s0 or s1 or s2) and n) then 1 else
30 if pre(s3 and n and cpt <v) then pre(cpt)+1 else
31 pre(cpt);
32
33 -- the outputs
34 ok = (s3 and Ac and (cpt >=u and cpt <=v));
35 nok = (s2 and Ac and not(s));
36 rinit = (s3 and cpt=v and n);
37 tel

Figure A.6 The Lustre implementation of the re-initializing elementary recognizer Rre-initshuffled of ranges appearing
in a fragment with the shuffled semantics (� = Shuffled).
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Appendix B

Encoding of Loose-Orderings into PSL

B.1 Encoding of an Antecedent Requirement into LTL

B.1.1 Encoding of
(
a < b < c� i | ∇

)
into LTL

Consider the configuration of an antecedent requirement
(
a < b < c� i | ∇

)
. Its LTL encoding consists

of the following components:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ i)

)
∧�

(
¬(b ∧ c)

)
∧�

(
¬(b ∧ i)

)
(A1-Exclusiveness)

∧�
(
¬(c ∧ i)

)
�
(
a→ #(¬a U i)

)
∧�

(
b→ #(¬b U i)

)
∧�

(
c→ #(¬c U i)

)
(A1-MaxOne)

((
a→ #(¬a U i)

)
U i
)
∧
((
b→ #(¬b U i)

)
U i
)
∧
((
c→ #(¬c U i)

)
U i
)

(A1-MaxOneNR)

�
(
b→ (¬a U i)

)
∧�

(
c→ (¬b U i)

)
(A1-Order)

((
b→ #(¬a U i)

)
U i
)
∧
((
c→ #(¬b U i)

)
U i
)

(A1-OrderNR)

(
¬i U a

)
∧
(
¬i U b

)
∧
(
¬i U c

)
(A1-FirstF ′)

�
(
i→ #(¬i U a)

)
∧�

(
i→ #(¬i U b)

)
∧�

(
i→ #(¬i U c)

)
(A1-AfterF ′)

The LTL encoding of
(
a < b < c� i | Non-Repeated

)
with a non-repeated context is Conjunction B.1.

The LTL encoding of the antecedent requirement
(
a < b < c � i | Repeated

)
with a repeated context is

Conjunction B.2. Figures B.1(a) and B.1(b) show the monitors provided by the SPOT tool for Conjunc-
tions B.1 and B.2 respectively. Figure B.2 provides the LTL encoding of the property with a repeated
context in SPOT syntax.

A1-Exclusiveness ∧ A1-MaxOneNR ∧ A1-OrderNR ∧ A1-FirstF ′ (B.1)
A1-Exclusiveness ∧ A1-MaxOne ∧ A1-Order ∧ A1-FirstF ′ ∧ A1-AfterF ′ (B.2)
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B.1. Encoding of an Antecedent Requirement into LTL

s0 s1 s2 s3 s4
a b c i

else else else else
a, b, c,
i, else

(a) A non-repeated context ∇ = Non-Repeated

s0 s1 s2 s3
a b c

else else else else

i

(b) A repeated context ∇ = Repeated

Figure B.1 The SPOT monitor of the LTL encoding of (a < b < c� i | ∇). else stands for any name which is
not of {a, b, c, i}. Transitions which are not defined are forbidden.

1 ~ A1-Exclusiveness
2 G(!(a && b)) && G(!(a && c))&& G(!(a && i)) &&
3 G(!(b && c)) && G(!(b && i)) && G(!(c && i)) &&
4
5 ~ A1-MaxOne
6 G(a-> X(!a U i)) && G(b-> X(!b U i)) && G(c-> X(!c U i)) &&
7
8 ~ A1-Order
9 G(b-> (!a U i)) && G(c->(!b U i)) &&

10
11 ~ A1-FirstF ’
12 (!i U a) && (!i U b) && (!i U c) &&
13
14 ~ A1-AfterF ’
15 G(i -> X(!i U a)) && G(i -> X(!i U b)) && G(i -> X(!i U c))

Figure B.2 The LTL encoding of (a < b < c� i | Repeated) in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.1.2 Encoding of
((
{a, b, c, d},∧

)
� i | ∇

)
into LTL

Consider the configuration
((
{a, b, c, d},∧

)
� i | ∇

)
of an antecedent requirement. Its LTL encoding

consists of the following components:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ d)

)
∧�

(
¬(a ∧ i)

)
(A2-Exclusiveness)

∧�
(
¬(b ∧ c)

)
∧�

(
¬(b ∧ d)

)
∧�

(
¬(b ∧ i)

)
∧�

(
¬(c ∧ d)

)
∧�

(
¬(c ∧ i)

)
∧�

(
¬(d ∧ i)

)
�
(
a→ #(¬a U i)

)
∧�

(
b→ #(¬b U i)

)
∧�

(
c→ #(¬c U i)

)
(A2-MaxOne)

∧�
(
d→ #(¬c U i)

)
((
a→ #(¬a U i)

)
U i
)
∧
((
b→ #(¬b U i)

)
U i
)

(A2-MaxOneNR)

∧
(

(c→ #(¬c U i)
)
U i
)
∧
((
d→ #(¬d U i)

)
U i
)

(
¬i U a

)
∧
(
¬i U b

)
∧
(
¬i U c

)
∧
(
¬i U d

)
(A2-FirstF ′)

�
(
i→ #(¬i U a)

)
∧�

(
i→ #(¬i U b)

)
(A2-AfterF ′)

∧�
(
i→ #(¬i U c)

)
∧�

(
i→ #(¬i U d)

)
The encoding of

((
{a, b, c, d},∧

)
� i | Non-Repeated

)
with a non-repeated context by means of

temporal operators is defined by Conjunction B.3. The LTL encoding of the antecedent requirement((
{a, b, c, d},∧

)
� i | Repeated

)
with a repeated context into LTL is Conjunction B.4. Figures B.4(a)

and B.4(b) illustrate the SPOT monitors corresponding to Conjunctions B.3 and B.4 respectively. Fig-
ure B.3 provides the LTL encoding of the property with a repeated context in SPOT syntax.

A2-Exclusiveness ∧ A2-MaxOneNR ∧ A2-FirstF ′ (B.3)
A2-Exclusiveness ∧ A2-MaxOne ∧ A2-FirstF ′ ∧ A2-AfterF ′ (B.4)

1 ~ A2-Exclusiveness
2 G(!(a && b)) && G(!(a && c)) && G(!(a && d)) && G(!(a && i)) &&
3 G(!(b && c)) && G(!(b && d)) && G(!(b && i)) &&
4 G(!(c && d)) && G(!(c && i)) && G(!(d && i)) &&
5
6 ~ A2-MaxOne
7 G(a-> X(!a U i)) && G(b-> X(!b U i)) && G(c-> X(!c U i)) &&
8 G(d-> X(!c U i)) &&
9

10 ~ A2-FirstF ’
11 (!i U a) && (!i U b) && (!i U c) && (!i U d) &&
12
13 ~ A2-AfterF ’
14 G(i -> X(!i U a)) && G(i -> X(!i U b)) && G(i -> X(!i U c)) &&
15 G(i -> X(!i U d))

Figure B.3 The LTL encoding of
(
({a, b, c, d},∧)� i | Repeated

)
in SPOT syntax.
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B.1. Encoding of an Antecedent Requirement into LTL

s0

s2

s1

s3

s4

s6

s5

s7

s8

s9

s10

s11

s12

s13

s14

s15 s16

d

b

c

a

b

c

a

d

c

a

d
b

a

d
b

c

c

a

b

a

b

c

d

a

d

c

d

b

a

c

b

d

i

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else
a, b, c,
d, i, else

(a) A non-repeated context ∇ = Non-Repeated

s0

s2

s1

s3

s4

s6

s5

s7

s8

s9

s10

s11

s12

s13

s14

s15

d

b

c

a

b

c

a

d

c

a

d
b

a

d
b

c

c

a

b

a

b

c

d

a

d

c

d

b

a

c

b

d

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else

else

i

(b) A repeated context ∇ = Repeated

Figure B.4 The SPOT monitor of the LTL encoding of
(
({a, b, c, d},∧)� i | ∇

)
. else stands for any name which

is not of {a, b, c, d, i}. Transitions which are not defined are forbidden.
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Appendix B. Encoding of Loose-Orderings into PSL

B.1.3 Encoding of
((
{a, b},∧

)
<
(
{c, d[1,2]},∨

)
� i | ∇

)
into LTL

Consider the antecedent requirement
((
{a, b},∧

)
<
(
{c, d[1,2]},∨

)
� i | ∇

)
. After the removal of the

range d[1,2], the new vocabulary of the property is the set {a, b, c, d1, d2, i} (see Chapter 4, Sec. 4.5.3).
The LTL encoding of the property consists of the following components:

�
(
¬(a ∧ d1)

)
∧�

(
¬(a ∧ d2)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ b)

)
(A4-Exclusiveness)

∧�
(
¬(a ∧ i)

)
∧�

(
¬(d1 ∧ d2)

)
∧�

(
¬(d1 ∧ c)

)
∧�

(
¬(d1 ∧ b)

)
∧�

(
¬(d1 ∧ i)

)
∧�

(
¬(d2 ∧ c)

)
∧�

(
¬(d2 ∧ b)

)
∧�

(
¬(d2 ∧ i)

)
∧�

(
¬(c ∧ b)

)
∧�

(
¬(c ∧ i)

)
∧�

(
¬(b ∧ i)

)
�
(
a→ #(¬a U i)

)
∧�

(
b→ #(¬b U i)

)
(A4-MaxOne)

∧�
(
c→ #(¬c U i)

)
∧�

(
d1→ #(¬d1 U i)

)
∧�

(
d2→ #(¬d2 U i)

)
((
a→ #(¬a U i)

)
U i
)
∧
((
b→ #(¬b U i)

)
U i
)

(A4-MaxOneNR)

∧
((
c→ #(¬c U i)

)
U i
)
∧
((
d1→ #(¬d1 U i)

)
U i
)
∧
((
d2→ #(¬d2 U i)

)
U i
)

�
(
d1→ (¬d2 U i)

)
∧�

(
d2→ (¬d1 U i)

)
(A4-Range)

((
d1→ (¬d2 U i)

)
U i
)
∧
((
d2→ (¬d1 U i)

)
U i
)

(A4-RangeNR)

�
(
c→ (¬a U i)

)
∧�

(
c→ (¬b U i)

)
(A4-Order)

∧�
(
d1→ (¬a U i)

)
∧�

(
d1→ (¬b U i)

)
∧�

(
d2→ (¬a U i)

)
∧�

(
d2→ (¬b U i)

)
((
c→ (¬a U i)

)
U i
)
∧
((
c→ (¬b U i)

)
U i
)
∧
((
d1→ (¬a U i)

)
U i
)

(A4-OrderNR)

∧
((
d1→ (¬b U i)

)
U i
)
∧
((
d2→ (¬a U i)

)
U i
)
∧
((
d2→ (¬b U i)

)
U i
)

(
¬i U a

)
∧
(
¬i U b

)
∧
(
(¬i U c) ∨ (¬i U d1) ∨ (¬i U d2)

)
(A4-FirstF ′)

�
(
i→ #(¬i U a)

)
∧�

(
i→ #(¬i U b)

)
(A4-AfterF ′)

∧�
(
i→ #

(
(¬i U c) ∨ (¬i U d1) ∨ (¬i U d2)

))
The encoding of

((
{a, b},∧

)
<
(
{c, d[1,2]},∨

)
� i | Non-Repeated

)
with a non-repeated context into

LTL is Conjunction B.5. The corresponding SPOT monitor is shown in Figure B.5(a). The encoding of
the antecedent requirement

((
{a, b},∧

)
<
(
{c, d[1,2]},∨

)
� i | Repeated

)
with a repeated context into

LTL is Conjunction B.6. The corresponding SPOT monitor is in Figure B.5(b). Figure B.6 provides the
LTL encoding of the property with the repeated context in SPOT syntax.

A4-Exclusiveness ∧ A4-MaxOneNR ∧ A4-RangeNR ∧ A4-OrderNR ∧ A4-FirstF ′ (B.5)
A4-Exclusiveness ∧ A4-MaxOne ∧ A4-Range ∧ A4-Order ∧ A4-FirstF ′ ∧ A4-AfterF ′ (B.6)
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B.1. Encoding of an Antecedent Requirement into LTL

s0

s1

s2

s3

s4

s5

s6 s7

a b

b a

d1, d2 c

c d1, d2
i

else

else

else

else

else

else else

a, b, c,
d1, d2, i,
else

i

i

(a) A non-repeated context ∇ = Non-Repeated

s0

s1

s2

s3

s4

s5

s6

a b

b a

d1, d2 c

c d1, d2

else

else

else

else

else

else else ii

i

(b) A repeated context ∇ = Repeated

Figure B.5 The SPOT monitor for the LTL encoding of
(
({a, b},∧) < ({c, d[1,2]},∨)� i | ∇

)
. else stands for any

name which is not of {a, b, c, d1, d2, i}. “d1, d2” means that d1 and d2 cannot occur simultaneously. Transitions
which are not defined are forbidden.

1 ~ A4-Exclusiveness
2 G(!(a && d1)) && G(!(a && d2))&& G(!(a && c)) &&
3 G(!(a && b)) && G(!(a && i)) &&
4 G(!(d1 && d2)) && G(!(d1 && c)) && G(!(d1 && b)) &&
5 G(!(d1 && i)) &&
6 G(!(d2 && c)) && G(!(d2 && b)) && G(!(d2 && i)) &&
7 G(!(c && b)) && G(!(c && i)) && G(!(b && i)) &&
8
9 ~ A4-MaxOne

10 G(a -> X(!a U i)) && G(b -> X(!b U i)) && G(c -> X(!c U i)) &&
11 G(d1-> X(!d1 U i)) && G(d2-> X(!d2 U i)) &&
12
13 ~ A4-Range
14 G(d1 -> (!d2 U i)) && G(d2 -> (!d1 U i)) &&
15
16 ~ A4-Order
17 G(c-> (!a U i)) && G(c-> (!b U i)) &&
18 G(d1-> (!a U i)) && G(d1 -> (!b U i)) &&
19 G(d2-> (!a U i)) && G(d2 -> (!b U i)) &&
20
21 ~ A4-FirstF ’
22 (!i U a) && (!i U b) &&
23 ((!i U c) || (!i U d1) || (!i U d2)) &&
24
25 ~ A4-AfterF ’
26 G(i -> X(!i U a)) && G(i -> X(!i U b)) &&
27 G(i -> X((!i U c) || (!i U d1) || (!i U d2)))

Figure B.6 The LTL encoding of
(
({a, b},∧) < ({c, d[1,2]},∨)� i | Repeated

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.1.4 Encoding of
((
{a, b[1,2]},∨

)
<
(
{c, d},∧

)
� i | ∇

)
into LTL

Consider the antecedent requirement
((
{a, b[1,2]},∨

)
<
(
{c, d},∧

)
� i | ∇

)
. After the removal of the

range b[1,2], the new vocabulary of the property is the set {a, b1, b2, c, d, i} (see Chapter 4, Sec. 4.5.3). The
LTL encoding of the property consists of the following components:

�
(
¬(a ∧ b1)

)
∧�

(
¬(a ∧ b2)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ d)

)
(A5-Exclusiveness)

∧�
(
¬(a ∧ i)

)
∧�

(
¬(b1 ∧ b2)

)
∧�

(
¬(b1 ∧ c)

)
∧�

(
¬(b1 ∧ d)

)
∧�

(
¬(b1 ∧ i)

)
∧�

(
¬(b2 ∧ c)

)
∧�

(
¬(b2 ∧ d)

)
∧�

(
¬(b2 ∧ i)

)
∧�

(
¬(c ∧ d)

)
∧�

(
¬(c ∧ i)

)
∧�

(
¬(d ∧ i)

)
�
(
a→ #(¬a U i)

)
∧�

(
b1→ #(¬b1 U i)

)
∧�

(
b2→ #(¬b2 U i)

)
(A5-MaxOne)

∧�
(
c→ #(¬c U i)

)
∧�

(
d→ #(¬d U i)

)
((
a→ #(¬a U i)

)
U i
)
∧
((
b1→ #(¬b1 U i)

)
U i
)

(A5-MaxOneNR)

∧
((
b2→ #(¬b2 U i)

)
U i
)
∧
((
c→ #(¬c U i)

)
U i
)
∧
((
d→ #(¬d U i)

)
U i
)

�
(
b1→ (¬b2 U i)

)
∧�

(
b2→ (¬b1 U i)

)
(A5-Range)

((
b1→ (¬b2 U i)

)
U i
)
∧
((
b2→ (¬b1 U i)

)
U i
)

(A5-RangeNR)

�
(
c→ (¬a U i)

)
∧�

(
c→ (¬b1 U i)

)
∧�

(
c→ (¬b2 U i)

)
(A5-Order)

∧�
(
d→ (¬a U i)

)
∧�

(
d→ (¬b1 U i)

)
∧�

(
d→ (¬b2 U i)

)
((
c→ (¬a U i)

)
U i
)
∧
((
c→ (¬b1 U i)

)
U i
)
∧
((
c→ (¬b2 U i)

)
U i
)

(A5-OrderNR)

∧
((
d→ (¬a U i)

)
U i
)
∧
((
d→ (¬b1 U i)

)
U i
)
∧
((
d→ (¬b2 U i)

)
U i
)

(
(¬i U b1) ∨ (¬i U b2) ∨ (¬i U a)

)
∧
(
¬i U c

)
∧
(
¬i U d

)
(A5-FirstF ′)

�
(
i→ #

(
(¬i U b1) ∨ (¬i U b2) ∨ (¬i U a)

))
∧�

(
i→ #(¬i U c)

)
∧�

(
i→ #(¬i U d)

)
(A5-AfterF ′)

The encoding of
((
{a, b[1,2]},∨

)
<
(
{c, d},∧

)
� i | Non-Repeated

)
with a non-repeated context into

LTL is Conjunction B.7. The corresponding SPOT monitor is shown in Figure B.7(a). The encoding of((
{a, b[1,2]},∨

)
<
(
{c, d},∧

)
� i | Repeated

)
with a repeated context into LTL is Conjunction B.8. The

corresponding SPOT monitor is in Figure B.7(b). Figure B.8 provides the LTL encoding of the property
with the repeated context in SPOT syntax.

A5-Exclusiveness ∧ A5-MaxOneNR ∧ A5-RangeNR ∧ A5-OrderNR ∧ A5-FirstF ′ (B.7)
A5-Exclusiveness ∧ A5-MaxOne ∧ A5-Range ∧ A5-Order ∧ A5-FirstF ′ ∧ A5-AfterF ′ (B.8)
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B.1. Encoding of an Antecedent Requirement into LTL

s0

s1

s2

s3

s4

s5

s6 s7

a b1, b2

b1, b2 a

d c

c d

i

d

c

else

else

else

else

else

else else

d

c

a, b1, b2,
c, d, i,
else

(a) A non-repeated context ∇ = Non-Repeated

s0

s1

s2

s3

s4

s5

s6

a b1, b2

b1, b2 a

d c

c d

d

c

else

else

else

else

else

else else

d

c

i

(b) A repeated context ∇ = Repeated

Figure B.7 The SPOT monitor of the LTL encoding of
(
({a, b[1,2]},∨) < ({c, d},∧)� i | ∇

)
. else stands for any

name which is not of {a, b1, b2, c, d, i}. “b1, b2” means that b1 and b2 cannot occur simultaneously. Transitions
which are not defined are forbidden.

1 ~ A5-Exclusiveness
2 G(!(a && b1)) && G(!(a && b2))&& G(!(a && c)) &&
3 G(!(a && d)) && G(!(a && i)) &&
4 G(!(b1 && b2)) && G(!(b1 && c)) && G(!(b1 && d)) &&
5 G(!(b1 && i)) &&
6 G(!(b2 && c)) && G(!(b2 && d)) && G(!(b2 && i)) &&
7 G(!(c && d)) && G(!(c && i)) && G(!(d && i)) &&
8
9 ~ A5-MaxOne

10 G(a -> X(!a U i)) &&
11 G(b1-> X(!b1 U i)) && G(b2-> X(!b2 U i)) &&
12 G(c -> X(!c U i)) && G(d -> X(!d U i)) &&
13
14 ~ A5-Range
15 G(b1 -> (!b2 U i)) && G(b2 -> (!b1 U i)) &&
16
17 ~ A5-Order
18 G(c-> (!a U i)) && G(c-> (!b1 U i)) && G(c-> (!b2 U i)) &&
19 G(d-> (!a U i)) && G(d-> (!b1 U i)) && G(d-> (!b2 U i)) &&
20
21 ~ A5-FirstF ’
22 ((!i U b1) || (!i U b2) || (!i U a ))) &&
23 (!i U c) && (!i U d) &&
24
25 ~ A5-AfterF ’
26 G(i -> X((!i U b1) || (!i U b2) || (!i U a)) &&
27 G(i -> X(!i U c)) && G(i -> X(!i U d))

Figure B.8 The LTL encoding of
(
({a, b[1,2]},∨) < ({c, d},∧)� i | Repeated

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.1.5 Encoding of
((
{a, b},∨

)
<
(
{c, d[1,2]},∧

)
� i | ∇

)
into LTLT

Consider the antecedent requirement
((
{a, b},∨

)
<
(
{c, d[1,2]},∧

)
� i | ∇

)
. After the removal of the

range d[1,2], the new vocabulary of the property is the set {a, b, c, d1, d2, i} (see Chapter 4, Sec. 4.5.3).
The LTL encoding of the property consists of the following components:

�
(
¬(a ∧ d1)

)
∧�

(
¬(a ∧ d2)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ b)

)
(A6-Exclusiveness)

∧�
(
¬(a ∧ i)

)
∧�

(
¬(d1 ∧ d2)

)
∧�

(
¬(d1 ∧ c)

)
∧�

(
¬(d1 ∧ b)

)
∧�

(
¬(d1 ∧ i)

)
∧�

(
¬(d2 ∧ c)

)
∧�

(
¬(d2 ∧ b)

)
∧�

(
¬(d2 ∧ i)

)
∧�

(
¬(c ∧ b)

)
∧�

(
¬(c ∧ i)

)
∧�

(
¬(b ∧ i)

)
�
(
a→ #(¬a U i)

)
∧�

(
b→ #(¬b U i)

)
(A6-MaxOne)

∧�
(
c→ #(¬c U i)

)
∧�

(
d1→ #(¬d1 U i)

)
∧�

(
d2→ #(¬d2 U i)

)
((
a→ #(¬a U i)

)
U i
)
∧
((
b→ #(¬b U i)

)
U i
)

(A6-MaxOneNR)

∧
((
c→ #(¬c U i)

)
U i
)
∧
((
d1→ #(¬d1 U i)

)
U i
)
∧
((
d2→ #(¬d2 U i)

)
U i
)

�
(
d1→ (¬d2 U i)

)
∧�

(
d2→ (¬d1 U i)

)
(A6-Range)

((
d1→ (¬d2 U i)

)
U i
)
∧
((
d2→ (¬d1 U i)

)
U i
)

(A6-RangeNR)

�
(
c→ (¬a U i)

)
∧�

(
c→ (¬b U i)

)
(A6-Order)

∧�
(
d1→ (¬a U i)

)
∧�

(
d1→ (¬b U i)

)
∧�

(
d2→ (¬a U i)

)
∧�

(
d2→ (¬b U i)

)
((
c→ (¬a U i)

)
U i
)
∧
((
c→ (¬b U i)

)
U i
)
∧
((
d1→ (¬a U i)

)
U i
)

(A6-OrderNR)

∧
((
d1→ (¬b U i)

)
U i
)
∧
((
d2→ (¬a U i)

)
U i
)
∧
((
d2→ (¬b U i)

)
U i
)

(
(¬i U a) ∨ (¬i U b)

)
∧
(
¬i U c

)
∧
(
(¬i U d1) ∨ (¬i U d2)

)
(A6-FirstF ′)

�
(
i→ #

(
(¬i U a) ∨ (¬i U b)

))
∧�

(
i→ #(¬i U c)

)
(A6-AfterF ′)

∧�
(
i→ #

(
(¬i U d1) ∨ (¬i U d2)

))
The encoding of

((
{a, b},∨

)
<
(
{c, d[1,2]},∧

)
� i | Non-Repeated

)
with a non-repeated context into

LTL is Conjunction B.9. The corresponding SPOT monitor is shown in Figure B.9(a). The encoding of((
{a, b},∨

)
<
(
{c, d[1,2]},∧

)
� i | Repeated

)
with a repeated context into LTL is Conjunction B.10. The

corresponding SPOT monitor is in Figure B.9(b). Figure B.10 provides the LTL encoding of the property
with the repeated context in SPOT syntax.

A6-Exclusiveness ∧ A6-MaxOneNR ∧ A6-RangeNR ∧ A6-OrderNR ∧ A6-FirstF ′ (B.9)
A6-Exclusiveness ∧ A6-MaxOne ∧ A6-Range ∧ A6-Order ∧ A6-FirstF ′ ∧ A6-AfterF ′ (B.10)
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B.1. Encoding of an Antecedent Requirement into LTL

s0

s1

s2

s3

s4

s5

s6 s7

a b

b a

d1, d2 c

c d1, d2

d1, d2

c

i

else

else

else

else

else

else else

d1, d2

c

a, b, c,
d1, d2, i,
else

(a) A non-repeated context ∇ = Non-Repeated

s0

s1

s2

s3

s4

s5

s6

a b

b a

d1, d2 c

c d1, d2

d1, d2

c

else

else

else

else

else

else else

d1, d2

c

i

(b) A repeated context ∇ = Repeated

Figure B.9 The SPOT monitor of the LTL encoding of
(
({a, b},∨) < ({c, d[1,2]},∧)� i | ∇

)
. else stands for any

name which is not of {a, b, c, d1, d2, i}. “d1, d2” means that d1 and d2 cannot occur simultaneously. Transitions
which are not defined are forbidden.

1 ~ A6-Exclusiveness
2 G(!(a && d1)) && G(!(a && d2))&& G(!(a && c)) &&
3 G(!(a && b)) && G(!(a && i)) &&
4 G(!(d1 && d2)) && G(!(d1 && c)) && G(!(d1 && b)) &&
5 G(!(d1 && i)) &&
6 G(!(d2 && c)) && G(!(d2 && b)) && G(!(d2 && i)) &&
7 G(!(c && b)) && G(!(c && i)) && G(!(b && i)) &&
8
9 ~ A6-MaxOne

10 G(a -> X(!a U i)) && G(b -> X(!b U i)) && G(c -> X(!c U i)) &&
11 G(d1-> X(!d1 U i)) && G(d2-> X(!d2 U i)) &&
12
13 ~ A6-Range
14 G(d1 -> (!d2 U i)) && G(d2 -> (!d1 U i)) &&
15
16 ~ A6-Order
17 G(c-> (!a U i)) && G(c-> (!b U i)) &&
18 G(d1-> (!a U i)) && G(d1 -> (!b U i)) &&
19 G(d2-> (!a U i)) && G(d2 -> (!b U i)) &&
20
21 ~ A6-FirstF ’
22 ((!i U a) || (!i U b)) &&
23 (!i U c) && ((!i U d1) || (!i U d2)) &&
24
25 ~ A6-AfterF ’
26 G(i -> X((!i U a) || (!i U b))) &&
27 G(i -> X(!i U c)) && G(i->X((!i U d1) || (!i U d2)))

Figure B.10 The LTL encoding of
(
({a, b},∨) < ({c, d[1,2]},∧)� i | Repeated

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.1.6 Encoding of
((
{a, b},∧

)
<
(
{c, d},∨

)
<
(
{e, f},∧

)
� i | ∇

)
into LTL

Consider the antecedent requirement
((
{a, b},∧

)
<
(
{c, d},∨

)
<
(
{e, f},∧

)
� i | ∇

)
. The vocabulary

of the property is the set {a, b, c, d, e, f, i}. The LTL encoding of the property consists of the following
components:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ d)

)
∧�

(
¬(a ∧ e)

)
∧�

(
¬(a ∧ f)

)
(A7-Exclusiveness)

∧�
(
¬(a ∧ i)

)
∧�

(
¬(b ∧ c)

)
∧�

(
¬(b ∧ d)

)
∧�

(
¬(b ∧ e)

)
∧�

(
¬(b ∧ f)

)
∧�

(
¬(b ∧ i)

)
∧�

(
¬(c ∧ d)

)
∧�

(
¬(c ∧ e)

)
∧�

(
¬(c ∧ f)

)
∧�

(
¬(c ∧ i)

)
∧�

(
¬(d ∧ e)

)
∧�

(
¬(d ∧ f)

)
∧�

(
¬(d ∧ i)

)
∧�

(
¬(e ∧ f)

)
∧�

(
¬(e ∧ i)

)
∧�

(
¬(f ∧ i)

)
�
(
a→ #(¬a U i)

)
∧�

(
b→ #(¬b U i)

)
∧�

(
c→ #(¬c U i)

)
(A7-MaxOne)

∧�
(
d→ #(¬d U i)

)
∧�

(
e→ #(¬e U i)

)
∧�

(
f → #(¬f U i)

)
((
a→ #(¬a U i)

)
U i
)
∧
((
b→ #(¬b U i)

)
U i
)

(A7-MaxOneNR)

∧
((
c→ #(¬c U i)

)
U i
)
∧
((
d→ #(¬d U i)

)
U i
)

∧
((
e→ #(¬e U i)

)
U i
)
∧
((
f → #(¬f U i)

)
U i
)

�
(
c→ (¬a U i)

)
∧�

(
c→ (¬b U i)

)
∧�

(
d→ (¬a U i)

)
∧�

(
d→ (¬b U i)

)
(A7-Order)

∧�
(
e→ (¬c U i)

)
∧�

(
e→ (¬d U i)

)
∧�

(
f → (¬c U i)

)
∧�

(
f → (¬d U i)

)
((
c→ (¬a U i)

)
U i
)
∧
((
c→ (¬b U i)

)
U i
)
∧
((
d→ (¬a U i)

)
U i
)

(A7-OrderNR)

∧
((
d→ (¬b U i)

)
U i
)
∧
((
e→ (¬c U i)

)
U i
)
∧
((
e→ (¬d U i)

)
U i
)

∧
((
f → (¬c U i)

)
U i
)
∧
((
f → (¬d U i)

)
U i
)

(
¬i U a

)
∧
(
¬i U b

)
∧
(
(¬i U c) ∨ (¬i U d)

)
∧
(
¬i U e

)
∧
(
¬i U f

)
(A7-FirstF ′)

�
(
i→ #(¬i U a)

)
∧�

(
i→ #(¬i U b)

)
∧�

(
i→ #

(
(¬i U c) ∨ (¬i U d)

))
(A7-AfterF ′)

∧�
(
i→ #(¬i U e)

)
∧�

(
i→ #(¬i U f)

)
The encoding of

((
{a, b},∧

)
<
(
{c, d},∨

)
<
(
{e, f},∧

)
� i | Non-Repeated

)
with a non-repeated

context into LTL is Conjunction B.11. The corresponding SPOT monitor is shown in Figure B.11(a).
The encoding of the antecedent requirement

((
{a, b},∧

)
<
(
{c, d},∨

)
<
(
{e, f},∧

)
� i | Repeated

)
with

a repeated context into LTL is Conjunction B.12. The corresponding SPOT monitor is in Figure B.11(b).
Figure B.12 provides the LTL encoding of the property with the repeated context in SPOT syntax.

A7-Exclusiveness ∧ A7-MaxOneNR ∧ A7-OrderNR ∧ A7-FirstF ′ (B.11)
A7-Exclusiveness ∧ A7-MaxOne ∧ A7-Order ∧ A7-FirstF ′ ∧ A7-AfterF ′ (B.12)
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B.1. Encoding of an Antecedent Requirement into LTL

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9 s10

a b

b a

d c

f

e

c

d
e

f

f e

e f

i

else

else

else

else else

else

a, b, c,
d, e, f ,
i, else

else else else

else

(a) A non-repeated context ∇ = Non-Repeated

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

a b

b a

d c

f

e

c

d
e

f

f e

e f

else

else

else

else else

else

else else else

else

i

(b) A repeated context ∇ = Repeated

Figure B.11 The SPOT monitor for the LTL encoding of
(
({a, b},∧) < ({c, d},∨) < ({e, f},∧) � i | ∇

)
. else

stands for any name which is not of {a, b, c, d, e, f, i}. Transitions which are not defined are forbidden.

1 ~ A7-Exclusiveness
2 G(!(a && b)) && G(!(a && c))&& G(!(a && d)) && G(!(a && e)) &&
3 G(!(a && f)) && G(!(a && i)) &&
4 G(!(b && c))&& G(!(b && d)) && G(!(b && e)) && G(!(b && f)) &&
5 G(!(b && i)) &&
6 G(!(c && d)) && G(!(c && e)) && G(!(c && f)) && G(!(c && i)) &&
7 G(!(d && e)) && G(!(d && f)) && G(!(d && i)) &&
8 G(!(e && f)) && G(!(e && i)) &&
9 G(!(f && i)) &&

10
11 ~ A7-MaxOne
12 G(a-> X(!a U i)) && G(b-> X(!b U i)) && G(c-> X(!c U i)) &&
13 G(d-> X(!d U i)) && G(e-> X(!e U i)) && G(f-> X(!f U i)) &&
14
15 ~ A7-Order
16 G(c-> (!a U i)) && G(c-> (!b U i)) && G(d-> (!a U i)) && G(d-> (!b U i)) &&
17 G(e-> (!c U i)) && G(e-> (!d U i)) && G(f-> (!c U i)) && G(f-> (!d U i)) &&
18
19 ~ A7-FirstF ’
20 (!i U a) && (!i U b)&&((!i U c) || (!i U d))&&(!i U e) && (!i U f) &&
21
22 ~ A7-AfterF ’
23 G(i -> X(!i U a)) && G(i -> X(!i U b)) && G(i -> X((!i U c) || (!i U d))) &&
24 G(i -> X(!i U e)) && G(i -> X(!i U f))

Figure B.12 The LTL encoding of
(
({a, b},∧) < ({c, d},∨) < ({e, f},∧)� i | Repeated

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.2 Encoding of a Timed Implication Constraint into LTL

B.2.1 Encoding of
(
a =⇒

(
{b, c},∧

)
<
(
{x, y},∧

)
| t
)
into LTL

Consider the timed implication constraint
(
a =⇒

(
{b, c},∧

)
<
(
{x, y},∧

)
| t
)
. The LTL encoding of the

property consists of the following components:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ x)

)
∧�

(
¬(a ∧ y)

)
(T 1-Exclusiveness)

∧�
(
¬(b ∧ c)

)
∧�

(
¬(b ∧ x)

)
∧�

(
¬(b ∧ y)

)
∧�

(
¬(c ∧ x)

)
∧�

(
¬(c ∧ y)

)
∧�

(
¬(x ∧ y)

)
�
(
a→ #(¬a U x)

)
∧�

(
a→ #(¬a U y)

)
∧�

(
b→ #(¬b U x)

)
(T 1-MaxOne)

∧�
(
b→ #(¬b U y)

)
∧�

(
c→ #(¬c U x)

)
∧�

(
c→ #(¬c U y)

)
�
(
b→ (¬a U x)

)
∧�

(
b→ (¬a U y)

)
∧�

(
c→ (¬a U x)

)
∧�

(
c→ (¬a U y)

)
(T 1-Order)

�
(
x→ (¬b U a)

)
∧�

(
x→ (¬c U a)

)
∧�

(
y → (¬b U a)

)
(T 1-OrderF ′)

∧�
(
y → (¬c U a)

)
(¬x U a) ∧ (¬x U b) ∧ (¬x U c) ∧ (¬y U a) ∧ (¬y U b) ∧ (¬y U c) (T 1-FirstF ′)

�
(
x→ #(¬x U a)

)
∧�

(
x→ #(¬x U b)

)
∧�

(
x→ #(¬x U c)

)
(T 1-AfterF ′)

∧�
(
y → #(¬y U a)

)
∧�

(
y → #(¬y U b)

)
∧�

(
y → #(¬y U c)

)
The encoding of

(
a =⇒

(
{b, c},∧

)
<
(
{x, y},∧

)
| t
)
is defined by Conjunction B.13. Figure B.14

provides the LTL encoding of the property in SPOT syntax. The respective SPOT monitor is provided
in Figure B.13.

T 1-Exclusiveness ∧ T 1-MaxOne ∧ T 1-Order ∧ T 1-OrderF ′

∧ T 1-FirstF ′ ∧ T 1-AfterF ′
(B.13)

s0 s1

s2

s3

s4

s5

s6

a

b c

c b

x

y

else else

else

else

else

else

else

x

y

Figure B.13 The SPOT monitor of the LTL encoding of
(
a =⇒ ({b, c},∧) < ({x, y},∧) | t

)
. else stands for any

name which is not of {a, b, c, x, y}. Transitions which are not defined are forbidden.
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B.2. Encoding of a Timed Implication Constraint into LTL

1 ~ T1-Exclusiveness
2 G(!(a && b)) && G(!(a && c)) && G(!(a && x)) && G(!(a && y)) &&
3 G(!(b && c)) && G(!(b && x)) && G(!(b && y)) &&
4 G(!(c && x)) && G(!(c && y)) &&
5 G(!(x && y)) &&
6
7 ~ T1-MaxOne
8 G(a-> X(!a U x)) && G(a-> X(!a U y)) &&
9 G(b-> X(!b U x)) && G(b-> X(!b U y)) &&

10 G(c-> X(!c U x)) && G(c-> X(!c U y)) &&
11
12 ~ T1-Order
13 G(b-> (!a U x)) && G(b-> (!a U y)) &&
14 G(c-> (!a U x)) && G(c-> (!a U y)) &&
15
16 ~ T1-OrderF ’
17 G(x-> (!b U a)) && G(x->(!c U a)) &&
18 G(y-> (!b U a)) && G(y->(!c U a)) &&
19
20 ~ T1-FirstF ’
21 (!x U a) && (!x U b) && (!x U c) &&
22 (!y U a) && (!y U b) && (!y U c) &&
23
24 ~ T1-AfterF ’
25 G(x -> X(!x U a)) && G(x -> X(!x U b)) && G(x -> X(!x U c)) &&
26 G(y -> X(!y U a)) && G(y -> X(!y U b)) && G(y -> X(!y U c))

Figure B.14 The LTL encoding of
(
a =⇒ ({b, c},∧) < ({x, y},∧) | t

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.2.2 Encoding of
(
a <

(
{b, c[1,2]},∧

)
=⇒

(
{x, y},∧

)
| t
)
into LTL

Consider the timed implication constraint
(
a <

(
{b, c[1,2]},∧

)
=⇒

(
{x, y},∧

)
| t
)
. After the removal

of the range c[1,2], the new vocabulary is the set {a, b, c1, c2, x, y}. The LTL encoding of the property
consists of the following components:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c1)

)
∧�

(
¬(a ∧ c2)

)
∧�

(
¬(a ∧ x)

)
(T 2-Exclusiveness)

∧�
(
¬(a ∧ y)

)
∧�

(
¬(b ∧ c1)

)
∧�

(
¬(b ∧ c2)

)
∧�

(
¬(b ∧ x)

)
∧�

(
¬(b ∧ y)

)
∧�

(
¬(c1 ∧ c2)

)
∧�

(
¬(c1 ∧ x)

)
∧�

(
¬(c1 ∧ y)

)
∧�

(
¬(c2 ∧ x)

)
∧�

(
¬(c2 ∧ y)

)
∧�

(
¬(x ∧ y)

)
�
(
a→ #(¬a U x)

)
∧�

(
a→ #(¬a U y)

)
∧�

(
b→ #(¬b U x)

)
(T 2-MaxOne)

∧�
(
b→ #(¬b U y)

)
∧�

(
c1→ #(¬c1 U x)

)
∧�

(
c1→ #(¬c1 U y)

)
∧�

(
c2→ #(¬c2 U x)

)
∧�

(
c2→ #(¬c2 U y)

)
�
(
c1→ (¬c2 U x)

)
∧�

(
c1→ (¬c2 U y)

)
∧�

(
c2→ (¬c1 U x)

)
(T 2-Range)

∧�
(
c2→ (¬c1 U y)

)
�
(
b→ (¬a U x)

)
∧�

(
b→ (¬a U y)

)
∧�

(
c1→ (¬a U x)

)
(T 2-Order)

∧�
(
c1→ (¬a U y)

)
∧�

(
c2→ (¬a U x)

)
∧�

(
c2→ (¬a U y)

)
�
(
x→ (¬b U a)

)
∧�

(
x→ (¬c1 U a)

)
∧�

(
x→ (¬c2 U a)

)
(T 2-OrderF ′)

∧�
(
y → (¬b U a)

)
∧�

(
y → (¬c1 U a)

)
∧�

(
y → (¬c2 U a)

)
(
¬x U a

)
∧
(
¬x U b

)
∧
(
(¬x U c1) ∨ (¬x U c2)

)
∧ (T 2-FirstF ′)(

¬y U a
)
∧
(
¬y U b

)
∧
(
(¬y U c1) ∨ (¬y U c2)

)
�
(
x→ #(¬x U a)

)
∧�

(
x→ #(¬x U b)

)
(T 2-AfterF ′)

∧�
(
x→ #

(
(¬x U c1) ∨ (¬x U c2)

))
∧�

(
y → #(¬y U a)

)
∧�

(
y → #(¬y U b)

)
∧�

(
y → #

(
(¬y U c1) ∨ (¬y U c2)

))
The encoding of

(
a <

(
{b, c[1,2]},∧

)
=⇒

(
{x, y},∧

)
| t
)
into LTL is defined by Conjunction B.14.

Figure B.16 provides the LTL encoding of the property in SPOT syntax. The respective SPOT monitor
is shown in Figure B.15.

T 2-Exclusiveness ∧ T 2-MaxOne ∧ T 2-Range ∧ T 2-Order

∧ T 2-OrderF ′ ∧ T 2-FirstF ′ ∧ T 2-AfterF ′
(B.14)
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B.2. Encoding of a Timed Implication Constraint into LTL

s0 s1

s2

s3

s4

s5

s6

a

b c1, c2

c1, c2 b

x

y

else else

else

else

else

else

else

x

y

Figure B.15 The SPOT monitor of the LTL encoding of
(
a < ({b, c[1,2]},∧) =⇒ ({x, y},∧) | t

)
. else stands for

any name which is not of {a, b, c1, c2, x, y}. “c1, c2” means that c1 and c2 cannot occur simultaneously. Transitions
which are not defined are forbidden.

1 ~ T2-Exclusiveness
2 G(!(a && b)) && G(!(a && c1)) && G(!(a && c2)) && G(!(a && x)) &&
3 G(!(a && y)) &&
4 G(!(b && c1)) && G(!(b && c2)) && G(!(b && x)) && G(!(b && y)) &&
5 G(!(c1 && c2)) && G(!(c1 && x)) && G(!(c1 && y)) &&
6 G(!(c2 && x)) && G(!(c2 && y)) && G(!(x && y)) &&
7
8 ~ T2-MaxOne
9 G(a-> X(!a U x)) && G(a-> X(!a U y)) && G(b-> X(!b U x)) &&

10 G(b-> X(!b U y)) && G(c1-> X(!c1 U x)) && G(c1-> X(!c1 U y)) &&
11 G(c2-> X(!c2 U x)) && G(c2-> X(!c2 U y)) &&
12
13 ~ T2-Range
14 G(c1-> (!c2 U x)) && G(c1 -> (!c2 U y)) &&
15 G(c2-> (!c1 U x)) && G(c2 -> (!c1 U y)) &&
16
17 ~ T2-Order
18 G(b-> (!a U x)) && G(b-> (!a U y)) && G(c1-> (!a U x)) &&
19 G(c1-> (!a U y)) && G(c2-> (!a U x)) && G(c2-> (!a U y)) &&
20
21 ~ T2-OrderF ’
22 G(x-> (!b U a)) && G(x->(!c1 U a)) && G(x->(!c2 U a)) &&
23 G(y-> (!b U a)) && G(y->(!c1 U a)) && G(y->(!c2 U a)) &&
24
25 ~ T2-FirstF ’
26 (!x U a) && (!x U b) && ((!x U c1) || (!x U c2))&&
27 (!y U a) && (!y U b) && ((!y U c1) || (!y U c2))&&
28
29 ~ T2-AfterF ’
30 G(x-> X(!x U a)) && G(x-> X(!x U b)) && G(x-> X((!x U c1) || (!x U c2)))&&
31 G(y-> X(!y U a)) && G(y-> X(!y U b)) && G(y-> X((!y U c1) || (!y U c2)))

Figure B.16 The LTL encoding of
(
a < ({b, c[1,2]},∧) =⇒ ({x, y},∧) | t

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.2.3 Encoding of
(
a =⇒

(
{b, c},∧

)
<
(
{x, y[1,2]},∧

)
| t
)
into LTL

Consider the timed implication constraint
(
a =⇒

(
{b, c},∧

)
<
(
{x, y[1,2]},∧

)
| t
)
. After the removal of

the range y[1,2], the new vocabulary is the set {a, b, c, x, y1, y2}. The LTL encoding is the conjunction of
the following LTL formulas:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ x)

)
∧�

(
¬(a ∧ y1)

)
(T 3-Exclusiveness)

∧�
(
¬(a ∧ y2)

)
∧�

(
¬(b ∧ c)

)
∧�

(
¬(b ∧ x)

)
∧�

(
¬(b ∧ y1)

)
∧�

(
¬(b ∧ y2)

)
∧�

(
¬(c ∧ x)

)
∧�

(
¬(c ∧ y1)

)
∧�

(
¬(c ∧ y2)

)
∧�

(
¬(x ∧ y1)

)
∧�

(
¬(x ∧ y2)

)
∧�

(
¬(y1 ∧ y2)

)
�
(
a→ #(¬a U x)Big) ∧�

(
a→ #

(
(¬a U y1) ∨ (¬a U y2)

))
(T 3-MaxOne)

∧�
(
b→ #(¬b U x)

)
∧�

(
b→ #

(
(¬b U y1) ∨ (¬b U y2)

))
∧�

(
c→ #(¬c U x)

)
∧�

(
c→ #

(
(¬c U y1) ∨ (¬c U y2)

))

�
(
b→ (¬a U x)

)
∧�

(
b→

(
(¬a U y1) ∨ (¬a U y2)

))
(T 3-Order)

∧�
(
c→ (¬a U x)

)
∧�

(
c→

(
(¬a U y1) ∨ (¬a U y2)

))

�
(
y1→ (¬y2 U a)

)
∧�

(
y1→ (¬y2 U b)

)
∧�

(
y1→ #(¬y2 U c)

)
(T 3-RangeF ′)

∧�
(
y2→ (¬y1 U a)

)
∧�

(
y2→ (¬y1 U b)

)
∧�

(
y2→ #(¬y1 U c)

)
�
(
x→ (¬b U a)

)
∧�

(
x→ (¬c U a)

)
∧�

(
y1→ (¬b U a)

)
(T 3-OrderF ′)

∧�
(
y1→ (¬c U a)

)
∧�

(
y2→ (¬b U a)

)
∧�

(
y2→ (¬c U a)

)
(¬x U a) ∧ (¬x U b) ∧ (¬x U c) ∧ (¬y1 U a) ∧ (¬y1 U b) ∧ (¬y1 U c) (T 3-FirstF ′)
∧ (¬y2 U a) ∧ (¬y2 U b) ∧ (¬y2 U c)

�
(
x→ #(¬x U a)

)
∧�

(
x→ #(¬x U b)

)
∧�

(
x→ #(¬x U c)

)
(T 3-AfterF ′)

∧�
(
y1→ #(¬y1 U a)

)
∧�

(
y1→ #(¬y1 U b)

)
∧�

(
y1→ #(¬y1 U c)

)
∧�

(
y2→ #(¬y2 U a)

)
∧�

(
y2→ #(¬y2 U b)

)
∧�

(
y2→ #(¬y2 U c)

)
The LTL encoding of

(
a =⇒

(
{b, c},∧

)
<
(
{x, y[1,2]},∧

)
| t
)
is defined by Conjunction B.15. Fig-

ures B.18 provides the LTL encoding of the property in SPOT syntax. Figure B.17 shows the correspond-
ing SPOT monitor.

T 3-Exclusiveness ∧ T 3-MaxOne ∧ T 3-Order ∧ T 3-RangeF ′

∧ T 3-OrderF ′ ∧ T 3-FirstF ′ ∧ T 3-AfterF ′
(B.15)
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B.2. Encoding of a Timed Implication Constraint into LTL

s0 s1

s2

s3

s4

s5

s6

a

b c

c b

x

y1, y2

else else

else

else

else

else

else

x

y1, y2

Figure B.17 The SPOT monitor of the LTL encoding of
(
a =⇒ ({b, c},∧) < ({x, y[1,2]},∧) | t

)
. else stands

for any name which is not of {a, b, c, x, y1, y2}. “y1, y2” means that y1 and y2 cannot occur simultaneously.
Transitions which are not defined are forbidden.

1 ~ T3-Exclusiveness
2 G(!(a && b)) && G(!(a && c)) && G(!(a && x)) && G(!(a && y1)) &&
3 G(!(a && y2)) && G(!(b && c)) && G(!(b && x)) && G(!(b && y1)) &&
4 G(!(b && y2)) && G(!(c && x)) && G(!(c && y1)) && G(!(c && y2)) &&
5 G(!(x && y1)) && G(!(x && y2)) && G(!(y1 && y2)) &&
6
7 ~ T3-MaxOne
8 G(a-> X(!a U x)) && G(a-> X((!a U y1) || (!a U y2))) &&
9 G(b-> X(!b U x)) && G(b-> X((!b U y1) || (!b U y2))) &&

10 G(c-> X(!c U x)) && G(c-> X((!c U y1) || (!c U y2))) &&
11
12 ~ T3-Order
13 G(b-> (!a U x)) && G(b-> ((!a U y1) || (!a U y2))) &&
14 G(c-> (!a U x)) && G(c-> ((!a U y1) || (!a U y2))) &&
15
16 ~ T3-RangeF ’
17 G(y1 -> (!y2 U a)) && G(y1 -> (!y2 U b)) && G(y1 -> X(!y2 U c)) &&
18 G(y2 -> (!y1 U a)) && G(y2 -> (!y1 U b)) && G(y2 -> X(!y1 U c)) &&
19
20 ~ T3-OrderF ’
21 G(x-> (!b U a)) && G(x -> (!c U a)) && G(y1 -> (!b U a)) &&
22 G(y1 -> (!c U a)) && G(y2 -> (!b U a)) && G(y2 -> (!c U a)) &&
23
24 ~ T3-FirstF ’
25 (!x U a) && (!x U b) && (!x U c) && (!y1 U a) && (!y1 U b) && (!y1 U c) &&
26 (!y2 U a) && (!y2 U b) && (!y2 U c) &&
27
28 ~ T3-AfterF ’
29 G(x -> X(!x U a)) && G(x -> X(!x U b)) && G(x -> X(!x U c)) &&
30 G(y1 -> X(!y1 U a)) && G(y1 -> X(!y1 U b)) && G(y1 -> X(!y1 U c)) &&
31 G(y2 -> X(!y2 U a)) && G(y2 -> X(!y2 U b)) && G(y2 -> X(!y2 U c))

Figure B.18 The LTL encoding of
(
a =⇒ ({b, c},∧) < ({x, y[1,2]},∧) | t

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.2.4 Encoding of
(
a <

(
{b, c},∨

)
=⇒

(
{x, y},∧

)
| t
)
into LTL

Consider the timed implication constraint
(
a <

(
{b, c},∨

)
=⇒

(
{x, y},∧

)
| t
)
. The LTL encoding of

the property is defined by Conjunction B.16. Figure B.20 provides the LTL encoding of the property in
SPOT syntax. Figure B.19 shows the respective SPOT monitor.

T 4-Exclusiveness ∧ T 4-MaxOne ∧ T 4-Order ∧ T 4-OrderF ′

∧ T 4-FirstF ′ ∧ T 4-AfterF ′
(B.16)

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ x)

)
∧�

(
¬(a ∧ y)

)
(T 4-Exclusiveness)

∧�
(
¬(b ∧ c)

)
∧�

(
¬(b ∧ x)

)
∧�

(
¬(b ∧ y)

)
∧�

(
¬(c ∧ x)

)
∧�

(
¬(c ∧ y)

)
∧�

(
¬(x ∧ y)

)
�
(
a→ #(¬a U x)

)
∧�

(
a→ #(¬a U y)

)
∧�

(
b→ #(¬b U x)

)
(T 4-MaxOne)

∧�
(
b→ #(¬b U y)

)
∧�

(
c→ #(¬c U x)

)
∧�

(
c→ #(¬c U y)

)
�
(
b→ (¬a U x)

)
∧�

(
b→ (¬a U y)

)
∧�

(
c→ (¬a U x)

)
∧�

(
c→ (¬a U y)

)
(T 4-Order)

�
(
x→ (¬b U a)

)
∧�

(
x→ (¬c U a)

)
∧�

(
y → (¬b U a)

)
(T 4-OrderF ′)

∧�
(
y → (¬c U a)

)
(
¬x U a

)
∧
(
(¬x U b) ∨ (¬x U c)

)
∧
(
¬y U a

)
∧
(
(¬y U b) ∨ (¬y U c)

)
(T 4-FirstF ′)

�
(
x→ #(¬x U a)

)
∧�

(
x→ #

(
(¬x U b) ∨ (¬x U c)

))
(T 4-AfterF ′)

∧�
(
y → #(¬y U a)

)
∧�

(
y → #

(
(¬y U b) ∨ (¬y U c)

))

s0 s1

s2

s3

s4

s5

s6

a

b
c

c b

x

yx

y
else else

else

else

else

else

else

y

x

x

y

Figure B.19 The SPOT monitor for the LTL encoding of
(
a < ({b, c},∨) =⇒ ({x, y},∧) | t

)
. else stands for

any name which is not of {a, b, c, x, y}. Transitions which are not defined are forbidden.
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B.2. Encoding of a Timed Implication Constraint into LTL

1 ~ T4-Exclusiveness
2 G(!(a && b)) && G(!(a && c)) && G(!(a && x)) && G(!(a && y)) &&
3 G(!(b && c)) && G(!(b && x)) && G(!(b && y)) && G(!(c && x)) &&
4 G(!(c && y)) && G(!(x && y)) &&
5
6 ~ T4-MaxOne
7 G(a-> X(!a U x)) && G(a-> X(!a U y)) && G(b-> X(!b U x)) &&
8 G(b-> X(!b U y)) && G(c-> X(!c U x)) && G(c-> X(!c U y)) &&
9

10 ~ T4-Order
11 G(b-> (!a U x)) && G(b-> (!a U y)) &&
12 G(c-> (!a U x)) && G(c-> (!a U y)) &&
13
14 ~ T4-OrderF ’
15 G(x-> (!b U a)) && G(x-> (!c U a)) &&
16 G(y-> (!b U a)) && G(y-> (!c U a)) &&
17
18 ~ T4-FirstF ’
19 (!x U a) && ((!x U b) || (!x U c)) &&
20 (!y U a) && ((!y U b) || (!y U c)) &&
21
22 ~ T4-AfterF ’
23 G(x -> X(!x U a)) && G(x -> X((!x U b) || (!x U c))) &&
24 G(y -> X(!y U a)) && G(y -> X((!y U b) || (!y U c)))

Figure B.20 The LTL encoding of
(
a < ({b, c},∨) =⇒ ({x, y},∧) | t

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.2.5 Encoding of
(
a <

(
{b, c[1,2]},∨

)
=⇒

(
{x, y},∧

)
| t
)
into LTL

Consider the timed implication constraint
(
a <

(
{b, c[1,2]},∨

)
=⇒

(
{x, y},∧

)
| t
)
. After the removal

of the range c[1,2], the new vocabulary is the set {a, b, c1, c2, x, y}. The LTL encoding of the property
consists of the following components:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c1)

)
∧�

(
¬(a ∧ c2)

)
∧�

(
¬(a ∧ x)

)
(T 5-Exclusiveness)

∧�
(
¬(a ∧ y)

)
∧�

(
¬(b ∧ c1)

)
∧�

(
¬(b ∧ c2)

)
∧�

(
¬(b ∧ x)

)
∧�

(
¬(b ∧ y)

)
∧�

(
¬(c1 ∧ c2)

)
∧�

(
¬(c1 ∧ x)

)
∧�

(
¬(c1 ∧ y)

)
∧�

(
¬(c2 ∧ x)

)
∧�

(
¬(c2 ∧ y)

)
∧�

(
¬(x ∧ y)

)
�
(
a→ #(¬a U x)

)
∧�

(
a→ #(¬a U y)

)
∧�

(
b→ #(¬b U x)

)
(T 5-MaxOne)

∧�
(
b→ #(¬b U y)

)
∧�

(
c1→ #(¬c1 U x)

)
∧�

(
c1→ #(¬c1 U y)

)
∧�

(
c2→ #(¬c2 U x)

)
∧�

(
c2→ #(¬c2 U y)

)
�
(
c1→ (¬c2 U x)

)
∧�

(
c1→ (¬c2 U y)

)
∧�

(
c2→ (¬c1 U x)

)
(T 5-Range)

∧�
(
c2→ (¬c1 U y)

)
�
(
b→ (¬a U x)

)
∧�

(
b→ (¬a U y)

)
∧�

(
c1→ (¬a U x)

)
(T 5-Order)

∧�
(
c1→ (¬a U y)

)
∧�

(
c2→ (¬a U x)

)
∧�

(
c2→ ((¬a U y)

)
�
(
x→ (¬b U a)

)
∧�

(
x→ (¬c1 U a)

)
∧�

(
x→ (¬c2 U a)

)
(T 5-OrderF ′)

∧�
(
y → (¬b U a)

)
∧�

(
y → (¬c1 U a)

)
∧�

(
y → (¬c2 U a)

)
(
¬x U a

)
∧
(
(¬x U b) ∨ (¬x U c1) ∨ (¬x U c2)

)
(T 5-FirstF ′)

∧
(
¬y U a

)
∧
(
(¬y U b) ∨ (¬y U c1) ∨ (¬y U c2)

)
�
(
x→ #(¬x U a)

)
∧�

(
x→ #

(
(¬x U b) ∨ (¬x U c1) ∨ (¬x U c2)

))
(T 5-AfterF ′)

∧�
(
y → #(¬y U a)

)
∧�

(
y → #

(
(¬y U b) ∨ (¬y U c1) ∨ (¬y U c2)

))
The LTL encoding of

(
a <

(
{b, c[1,2]},∨

)
=⇒

(
{x, y},∧

)
| t
)
is defined by Conjunction B.17. Fig-

ure B.22 provides the LTL encoding of the property in SPOT syntax. The corresponding SPOT monitor
is shown in Figure B.21.

T 5-Exclusiveness ∧ T 5-MaxOne ∧ T 5-Range ∧ T 5-Order

∧ T 5-OrderF ′ ∧ T 5-FirstF ′ ∧ T 5-AfterF ′
(B.17)

Yuliia ROMENSKA Ph.D Thesis 207/230



B.2. Encoding of a Timed Implication Constraint into LTL

s0 s1

s2

s3

s4

s5

s6

a

b
c1, c2

c1, c2 b

x

yx

y
else else

else

else

else

else

else

y

x

x

y

Figure B.21 The SPOT monitor for the LTL encoding of
(
a < ({b, c[1,2]},∨) =⇒ ({x, y},∧) | t

)
. else stands for

any name which is not of {a, b, c1, c2, x, y}. “c1, c2” means that c1 and c2 cannot occur simultaneously. Transitions
which are not defined are forbidden.

1 ~ T5-Exclusiveness
2 G(!(a && b)) && G(!(a && c1)) && G(!(a && c2)) && G(!(a && x)) &&
3 G(!(a && y)) && G(!(b && c1)) && G(!(b && c2)) && G(!(b && x)) &&
4 G(!(b && y)) && G(!(c1 && c2)) && G(!(c1 && x)) && G(!(c1 && y)) &&
5 G(!(c2 && x)) && G(!(c2 && y)) && G(!(x && y)) &&
6
7 ~ T5-MaxOne
8 G(a-> X(!a U x)) && G(a-> X(!a U y)) && G(b-> X(!b U x)) &&
9 G(b-> X(!b U y)) && G(c1 -> X(!c1 U x)) && G(c1 -> X(!c1 U y)) &&

10 G(c2-> X(!c2 U x))&& G(c2 -> X(!c2 U y)) &&
11
12 ~ T5-Range
13 G(c1-> (!c2 U x)) && G(c1 -> (!c2 U y)) &&
14 G(c2-> (!c1 U x)) && G(c2 -> (!c1 U y)) &&
15
16 ~ T5-Order
17 G(b-> (!a U x)) && G(b-> (!a U y)) && G(c1-> (!a U x)) &&
18 G(c1-> (!a U y)) && G(c2 -> (!a U x)) && G(c2-> ((!a U y)) &&
19
20 ~ T5-OrderF ’
21 G(x-> (!b U a)) && G(x -> (!c1 U a)) && G(x -> (!c2 U a)) &&
22 G(y-> (!b U a)) && G(y -> (!c1 U a)) && G(y -> (!c2 U a)) &&
23
24 ~ T5-FirstF ’
25 (!x U a) && ((!x U b) || (!x U c1) || (!x U c2)) &&
26 (!y U a) && ((!y U b) || (!y U c1) || (!y U c2)) &&
27
28 ~ T5-AfterF ’
29 G(x -> X(!x U a)) && G(x -> X((!x U b) || (!x U c1) || (!x U c2))) &&
30 G(y -> X(!y U a)) && G(y -> X((!y U b) || (!y U c1) || (!y U c2)))

Figure B.22 The LTL encoding of
(
a < ({b, c[1,2]},∨) =⇒ ({x, y},∧) | t

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.2.6 Encoding of
((
{a, b},∧

)
< c =⇒

(
{x, y[1,2]},∧

)
| t
)

Consider the timed implication constraint
((
{a, b},∧

)
< c =⇒

(
{x, y[1,2]},∧

)
| t
)
. After the removal

of the range y[1,2], the new vocabulary is the set {a, b, c, x, y1, y2}. The LTL encoding of the property is
defined by Conjunction B.18. Figure B.24 provides the LTL encoding of the property in SPOT syntax.
The respective SPOT monitor is shown in Figure B.23.

T 6-Exclusiveness ∧ T 6-MaxOne ∧ T 6-Order ∧ T 6-RangeF ′

∧ T 6-OrderF ′ ∧ T 6-FirstF ′ ∧ T 6-AfterF ′
(B.18)

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ x)

)
∧�

(
¬(a ∧ y1)

)
(T 6-Exclusiveness)

∧�
(
¬(a ∧ y2)

)
∧�

(
¬(b ∧ c)

)
∧�

(
¬(b ∧ x)

)
∧�

(
¬(b ∧ y1)

)
∧�

(
¬(b ∧ y2)

)
∧�

(
¬(c ∧ x)

)
∧�

(
¬(c ∧ y1)

)
∧�

(
¬(c ∧ y2)

)
∧�

(
¬(x ∧ y1)

)
∧�

(
¬(x ∧ y2)

)
∧�

(
¬(y1 ∧ y2)

)
�
(
a→ #(¬a U x)

)
∧�

(
a→ #

(
(¬a U y1) ∨ (¬a U y2)

))
(T 6-MaxOne)

∧�
(
b→ #(¬b U x)

)
∧�

(
b→ #

(
(¬b U y1) ∨ (¬b U y2)

))
∧�

(
c→ #(¬c U x)

)
∧�

(
c→ #

(
(¬c U y1) ∨ (¬c U y2)

))

�
(
c→ (¬a U x)

)
∧�

(
c→

(
(¬a U y1) ∨ (¬a U y2)

))
(T 6-Order)

∧�
(
c→ (¬b U x)

)
∧�

(
c→

(
(¬b U y1) ∨ (¬b U y2)

))

�
(
y1→ (¬y2 U a)

)
∧�

(
y1→

(
(¬y2 U b) ∨ (¬y2 U c)

))
(T 6-RangeF ′)

∧�
(
y2→ (¬y1 U a)

)
∧�

(
y2→

(
(¬y1 U b) ∨ (¬y1 U c)

))

�
(
x→ (¬c U a)

)
∧�

(
x→ (¬c U b)

)
∧�

(
y1→ (¬c U a)

)
(T 6-OrderF ′)

∧�
(
y1→ (¬c U b)

)
∧�

(
y2→ (¬c U a)

)
∧�

(
y2→ (¬c U b)

)
(¬x U a) ∧ (¬x U b) ∧ (¬x U c) ∧ (¬y1 U a) ∧ (¬y1 U b) ∧ (¬y1 U c) (T 6-FirstF ′)
∧ (¬y2 U a) ∧ (¬y2 U b) ∧ (¬y2 U c)

�
(
x→ #(¬x U a)

)
∧�

(
x→ #(¬x U b)

)
∧�

(
x→ #(¬x U c)

)
(T 6-AfterF ′)

∧�
(
y1→ #(¬y1 U a)

)
∧�

(
y1→ #(¬y1 U b)

)
∧�

(
y1→ #(¬y1 U c)

)
∧�

(
y2→ #(¬y2 U a)

)
∧�

(
y2→ #(¬y2 U b)

)
∧�

(
y2→ #(¬y2 U c)

)
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B.2. Encoding of a Timed Implication Constraint into LTL

s0

s1

s2

s3 s4

s5

s6

a b

b a

c

x

y1, y2

else

else

else

else else

else

else

x

y1, y2

Figure B.23 The SPOT monitor for the LTL encoding of
(
({a, b},∧) < c =⇒ ({x, y[1,2]},∧) | t

)
. else stands

for any name which is not of {a, b, c, x, y1, y2}. “y1, y2” means that y1 and y2 cannot occur simultaneously.
Transitions which are not defined are forbidden.

1 ~ T6-Exclusiveness
2 G(!(a && b)) && G(!(a && c)) && G(!(a && x)) && G(!(a && y1)) &&
3 G(!(a && y2)) && G(!(b && c)) && G(!(b && x)) && G(!(b && y1)) &&
4 G(!(b && y2)) && G(!(c && x)) && G(!(c && y1)) && G(!(c && y2)) &&
5 G(!(x && y1)) && G(!(x && y2)) && G(!(y1 && y2))
6
7 ~ T6-MaxOne
8 G(a-> X(!a U x)) && G(a-> X((!a U y1) || (!a U y2))) &&
9 G(b-> X(!b U x)) && G(b-> X((!b U y1) || (!b U y2))) &&

10 G(c-> X(!c U x)) && G(c-> X((!c U y1) || (!c U y2))) &&
11
12 ~ T6-Order
13 G(c-> (!a U x)) && G(c-> ((!a U y1) || (!a U y2))) &&
14 G(c-> (!b U x)) && G(c-> ((!b U y1) || (!b U y2))) &&
15
16 ~ T6-RangeF ’
17 G(y1 -> (!y2 U a)) && G(y1 -> (!y2 U b)) && G(y1 -> (!y2 U c)) &&
18 G(y2 -> (!y1 U a)) && G(y2 -> (!y1 U b)) && G(y2 -> (!y1 U c)) &&
19
20 ~ T6-OrderF ’
21 G(x-> (!c U a)) && G(x-> (!c U b)) && G(y1 -> (!c U a))&&
22 G(y1 -> (!c U b)) && G(y2 -> (!c U a)) && G(y2 -> (!c U b)) &&
23
24 ~ T6-FirstF ’
25 (!x U a) && (!x U b) && (!x U c) && (!y1 U a) && (!y1 U b) &&
26 (!y1 U c) && (!y2 U a) && (!y2 U b) && (!y2 U c) &&
27
28 ~ T6-AfterF ’
29 G(x -> X(!x U a)) && G(x -> X(!x U b)) && G(x -> X(!x U c)) &&
30 G(y1 -> X(!y1 U a)) && G(y1 -> X(!y1 U b)) && G(y1 -> X(!y1 U c)) &&
31 G(y2 -> X(!y2 U a)) && G(y2 -> X(!y2 U b)) && G(y2 -> X(!y2 U c))

Figure B.24 The LTL encoding of
(
({a, b},∧) < c =⇒ ({x, y[1,2]},∧) | t

)
in SPOT syntax.
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Appendix B. Encoding of Loose-Orderings into PSL

B.2.7 Encoding of
((
{a, b},∨

)
=⇒ c <

(
{x, y[1,2]},∧

)
| t
)
into LTL

Consider the timed implication constraint
((
{a, b},∨

)
=⇒ c <

(
{x, y[1,2]},∧

)
| t
)
. After the removal of

the range y[1,2], the new vocabulary is the set {a, b, c, x, y1, y2}. The LTL encoding of the property is the
conjunction of the following formulas:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ x)

)
∧�

(
¬(a ∧ y1)

)
(T 7-Exclusiveness)

∧�
(
¬(a ∧ y2)

)
∧�

(
¬(b ∧ c)

)
∧�

(
¬(b ∧ x)

)
∧�

(
¬(b ∧ y1)

)
∧�

(
¬(b ∧ y2)

)
∧�

(
¬(c ∧ x)

)
∧�

(
¬(c ∧ y1)

)
∧�

(
¬(c ∧ y2)

)
∧�

(
¬(x ∧ y1)

)
∧�

(
¬(x ∧ y2)

)
∧�

(
¬(y1 ∧ y2)

)
�
(
a→ #(¬a U x)

)
∧�

(
a→ #

(
(¬a U y1) ∨ (¬a U y2)

))
(T 7-MaxOne)

∧�
(
b→ #(¬b U x)

)
∧�

(
b→ #

(
(¬b U y1) ∨ (¬b U y2)

))
∧�

(
c→ #(¬c U x)

)
∧�

(
c→ #

(
(¬c U y1) ∨ (¬c U y2)

))

�
(
c→ (¬a U x)

)
∧�

(
c→

(
(¬a U y1) ∨ (¬a U y2)

))
(T 7-Order)

∧�
(
c→ (¬b U x)

)
∧�

(
c→

(
(¬b U y1) ∨ (¬b U y2)

))

�
(
y1→

(
(¬y2 U a) ∨ (¬y2 U b)

))
∧�

(
y1→ (¬y2 U c)

)
(T 7-RangeF ′)

∧�
(
y2→

(
(¬y1 U a) ∨ (¬y1 U b)

))
∧�

(
y2→ (¬y1 U c)

)

�
(
x→

(
(¬c U a) ∨ (¬c U b)

))
∧�

(
y1→

(
(¬c U a) ∨ (¬c U b)

))
(T 7-OrderF ′)

∧�
(
y2→

(
(¬c U a) ∨ (¬c U b)

))
(
(¬x U a) ∨ (¬x U b)

)
∧
(
¬x U c

)
∧
(
(¬y1 U a) ∨ (¬y1 U b)

)
(T 7-FirstF ′)

∧
(
¬y1 U c

)
∧
(
(¬y2 U a) ∨ (¬y2 U b)

)
∧
(
¬y2 U c

)
�
(
x→ #

(
(¬x U a) ∨ (¬x U b)

))
∧�

(
x→ #(¬x U c)

)
(T 7-AfterF ′)

∧�
(
y1→ #

(
(¬y1 U a) ∨ (¬y1 U b)

))
∧�

(
y1→ #(¬y1 U c)

)
∧�

(
y2→ #

(
(¬y2 U a) ∨ (¬y2 U b)

))
∧�

(
y2→ #(¬y2 U c)

)
The encoding of

((
{a, b},∨

)
=⇒ c <

(
{x, y[1,2]},∧

)
| t
)
is defined by Conjunction B.19. Figure B.26

provides the LTL encoding of the property in SPOT syntax. The respective SPOT monitor is shown in
Figure B.25.

T 7-Exclusiveness ∧ T 7-MaxOne ∧ T 7-Order ∧ T 7-RangeF ′

∧ T 7-OrderF ′ ∧ T 7-FirstF ′ ∧ T 7-AfterF ′
(B.19)
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B.2. Encoding of a Timed Implication Constraint into LTL

s0

s1

s2

s3 s4

s5

s6

a b

b a

c

x

y1, y2

else

else

else

else else

else

else

c

x

c

y1, y2

Figure B.25 The SPOT monitor for the LTL encoding of
(
({a, b},∨) =⇒ c < ({x, y[1,2]},∧) | t

)
. else stands

for any name which is not of {a, b, c, x, y1, y2}. “y1, y2” means that y1 and y2 cannot occur simultaneously.
Transitions which are not defined are forbidden.

1 ~ T7-Exclusiveness
2 G(!(a && b)) && G(!(a && c)) && G(!(a && x)) && G(!(a && y1)) &&
3 G(!(a && y2)) && G(!(b && c)) && G(!(b && x)) && G(!(b && y1)) &&
4 G(!(b && y2)) && G(!(c && x)) && G(!(c && y1)) && G(!(c && y2)) &&
5 G(!(x && y1)) && G(!(x && y2)) && G(!(y1 && y2)) &&
6
7 ~ T7-MaxOne
8 G(a-> X(!a U x)) && G(a-> X((!a U y1) || (!a U y2))) &&
9 G(b-> X(!b U x)) && G(b-> X((!b U y1) || (!b U y2))) &&

10 G(c-> X(!c U x)) && G(c-> X((!c U y1) || (!c U y2))) &&
11
12 ~ T7-Order
13 G(c-> (!a U x)) && G(c-> ((!a U y1) || (!a U y2))) &&
14 G(c-> (!b U x)) && G(c-> ((!b U y1) || (!b U y2))) &&
15
16 ~ T7-RangeF ’
17 G(y1 -> ((!y2 U a) || (!y2 U b))) && G(y1 -> (!y2 U c)) &&
18 G(y2 -> ((!y1 U a) || (!y1 U b))) && G(y2 -> (!y1 U c)) &&
19
20 ~ T7-OrderF ’
21 G(x-> ((!c U a) || (!c U b))) &&
22 G(y1 -> ((!c U a) || (!c U b))) &&
23 G(y2 -> ((!c U a) || (!c U b))) &&
24
25 ~ T7-FirstF ’
26 ((!x U a) || (!x U b)) && (!x U c) &&
27 ((!y1 U a) || (!y1 U b)) && (!y1 U c) &&
28 ((!y2 U a) || (!y2 U b)) && (!y2 U c) &&
29
30 ~ T7-AfterF ’
31 G(x -> X((!x U a) || (!x U b))) && G(x -> X(!x U c)) &&
32 G(y1 -> X((!y1 U a) || (!y1 U b))) && G(y1 -> X(!y1 U c)) &&
33 G(y2 -> X((!y2 U a) || (!y2 U b))) && G(y2 -> X(!y2 U c))

Figure B.26 The LTL encoding of
(
({a, b},∨) =⇒ c < ({x, y[1,2]},∧) | t

)
in SPOT syntax.
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B.2.8 Encoding of
((
{a, b},∨

)
<
(
{c, d},∧

)
=⇒

(
{x, y[1,2]},∧

)
| t
)
into LTL

Consider the timed implication constraint
((
{a, b},∨

)
<
(
{c, d},∧

)
=⇒

(
{x, y[1,2]},∧

)
| t
)
. After the

removal of the range y[1,2], the new vocabulary is the set {a, b, c, d, x, y1, y2}. The LTL encoding of the
property consists of the following components:

�
(
¬(a ∧ b)

)
∧�

(
¬(a ∧ c)

)
∧�

(
¬(a ∧ d)

)
∧�

(
¬(a ∧ x)

)
(T 8-Exclusiveness)

∧�
(
¬(a ∧ y1)

)
∧�

(
¬(a ∧ y2)

)
∧�

(
¬(b ∧ c)

)
∧�

(
¬(b ∧ d)

)
∧�

(
¬(b ∧ x)

)
∧�

(
¬(b ∧ y1)

)
∧�

(
¬(b ∧ y2)

)
∧�

(
¬(c ∧ d)

)
∧�

(
¬(c ∧ x)

)
∧�

(
¬(c ∧ y1)

)
∧�

(
¬(c ∧ y2)

)
∧�

(
¬(d ∧ x)

)
∧�

(
¬(d ∧ y1)

)
∧�

(
¬(d ∧ y2)

)
∧�

(
¬(x ∧ y1)

)
∧�

(
¬(x ∧ y2)

)
∧�

(
¬(y1 ∧ y2)

)
�
(
a→ #(¬a U x)

)
∧�

(
a→ #

(
(¬a U y1) ∨ (¬a U y2)

))
(T 8-MaxOne)

∧�
(
b→ #(¬b U x)

)
∧�

(
b→ #

(
(¬b U y1) ∨ (¬b U y2)

))
∧�

(
c→ #(¬c U x)

)
∧�

(
c→ #

(
(¬c U y1) ∨ (¬c U y2)

))
∧�

(
d→ #(¬d U x)

)
∧�

(
d→ #

(
(¬d U y1) ∨ (¬d U y2)

))

�
(
c→ (¬a U x)

)
∧�

(
c→

(
(¬a U y1) ∨ (¬a U y2)

))
(T 8-Order)

∧�
(
c→ (¬b U x)

)
∧�

(
c→ (

(
¬b U y1) ∨ (¬b U y2)

))
∧�

(
d→ (¬a U x)

)
∧�

(
d→

(
(¬a U y1) ∨ (¬a U y2)

))
∧�

(
d→ (¬b U x)

)
∧�

(
d→

(
(¬b U y1) ∨ (¬b U y2)

))

�
(
y1→

(
(¬y2 U a) ∨ (¬y2 U b)

))
∧�

(
y1→ (¬y2 U c)

)
(T 8-RangeF ′)

∧�
(
y1→ (¬y2 U d)

)
∧�

(
y2→

(
(¬y1 U a) ∨ (¬y1 U b)

))
∧�

(
y2→ (¬y1 U c)

)
∧�

(
y2→ (¬y1 U d)

)

�
(
x→

(
(¬c U a) ∨ (¬c U b)

))
∧�

(
x→

(
(¬d U a) ∨ (¬d U b)

))
(T 8-OrderF ′)

∧�
(
y1→

(
(¬c U a) ∨ (¬c U b)

))
∧�

(
y1→

(
(¬d U a) ∨ (¬d U b)

))
∧�

(
y2→

(
(¬c U a) ∨ (¬c U b)

))
∧�

(
y2→

(
(¬d U a) ∨ (¬d U b)

))
(
(¬x U a) ∨ (¬x U b)

)
∧
(
¬x U c

)
∧
(
¬x U d

)
∧
(
(¬y1 U a) ∨ (¬y1 U b)

)
(T 8-FirstF ′)

∧
(
¬y1 U c

)
∧
(
¬y1 U d

)
∧
(
(¬y2 U a) ∨ (¬y2 U b)

)
∧
(
¬y2 U c

)
∧
(
¬y2 U d

)

�
(
x→ #

(
(¬x U a) ∨ (¬x U b)

))
∧�

(
x→ #(¬x U c)

)
(T 8-AfterF ′)

∧�
(
x→ #(¬x U d)

)
∧�

(
y1→ #

(
(¬y1 U a) ∨ (¬y1 U b)

))
∧�

(
y1→ #(¬y1 U c)

)
∧�

(
y1→ #(¬y1 U d)

)
∧�

(
y2→ #

(
(¬y2 U a) ∨ (¬y2 U b)

))
∧�

(
y2→ #(¬y2 U c)

)
∧�

(
y2→ #(¬y2 U d)

)
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B.2. Encoding of a Timed Implication Constraint into LTL

The LTL encoding of
((
{a, b},∨

)
<
(
{c, d},∧

)
=⇒

(
{x, y[1,2]},∧

)
| t
)
is defined by Conjunction B.20.

Figures B.28 and B.27 show respectively the LTL encoding of the property in SPOT syntax and the
corresponding SPOT monitor.

T 8-Exclusiveness ∧ T 8-MaxOne ∧ T 8-Order ∧ T 8-RangeF ′

∧ T 8-OrderF ′ ∧ T 8-FirstF ′ ∧ T 8-AfterF ′
(B.20)

s0

s1

s2

s3

s4

s5

s6

s7

s8

a b

b a

d c x

c

d

c d y1, y2d

c

else

else

else

else
else

else else

else

else

x

y1, y2

Figure B.27 The SPOT monitor for the LTL encoding of
(
({a, b},∨) < ({c, d},∧) =⇒ ({x, y[1,2]},∧) | t

)
. else

stands for any name which is not of {a, b, c, d, x, y1, y2}. “y1, y2” means that y1 and y2 cannot occur simultaneously.
Transitions which are not defined are forbidden.
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Appendix B. Encoding of Loose-Orderings into PSL

1 ~ T8-Exclusiveness
2 G(!(a && b)) && G(!(a && c)) && G(!(a && d)) && G(!(a && x)) &&
3 G(!(a && y1)) && G(!(a && y2)) && G(!(b && c)) && G(!(b && d)) &&
4 G(!(b && x)) && G(!(b && y1)) && G(!(b && y2)) && G(!(c && d)) &&
5 G(!(c && x)) && G(!(c && y1)) && G(!(c && y2)) && G(!(d && x)) &&
6 G(!(d && y1)) && G(!(d && y2)) && G(!(x && y1)) && G(!(x && y2)) &&
7 G(!(y1 && y2)) &&
8
9 ~ T8-MaxOne

10 G(a-> X(!a U x)) && G(a-> X((!a U y1) || (!a U y2))) &&
11 G(b-> X(!b U x)) && G(b-> X((!b U y1) || (!b U y2))) &&
12 G(c-> X(!c U x)) && G(c-> X((!c U y1) || (!c U y2))) &&
13 G(d-> X(!d U x)) && G(d-> X((!d U y1) || (!d U y2))) &&
14
15 ~ T8-Order
16 G(c-> (!a U x)) && G(c-> ((!a U y1) || (!a U y2))) &&
17 G(c-> (!b U x)) && G(c-> ((!b U y1) || (!b U y2))) &&
18 G(d-> (!a U x)) && G(d-> ((!a U y1) || (!a U y2))) &&
19 G(d-> (!b U x)) && G(d-> ((!b U y1) || (!b U y2))) &&
20
21 ~ T8-RangeF ’
22 G(y1 -> ((!y2 U a)|| (!y2 U b))) && G(y1 -> (!y2 U c)) &&
23 G(y1-> (!y2 U d)) &&
24 G(y2 -> ((!y1 U a)|| (!y1 U b))) && G(y2 -> (!y1 U c)) &&
25 G(y2-> (!y1 U d)) &&
26
27 ~ T8-OrderF ’
28 G(x-> ((!c U a) || (!c U b))) && G(x-> ((!d U a) || (!d U b))) &&
29 G(y1 -> ((!c U a) || (!c U b))) && G(y1 -> ((!d U a) || (!d U b))) &&
30 G(y2 -> ((!c U a) || (!c U b))) && G(y2 -> ((!d U a) || (!d U b))) &&
31
32 ~ T8-FirstF ’
33 ((!x U a) || (!x U b)) && (!x U c) && (!x U d) &&
34 ((!y1 U a) || (!y1 U b)) && (!y1 U c) && (!y1 U d) &&
35 ((!y2 U a) || (!y2 U b)) && (!y2 U c) && (!y2 U d) &&
36
37 ~ T8-AfterF ’
38 G(x -> X((!x U a) || (!x U b))) && G(x -> X(!x U c)) &&
39 G(x -> X(!x U d)) &&
40 G(y1 -> X((!y1 U a) || (!y1 U b))) && G(y1 -> X(!y1 U c)) &&
41 G(y1 -> X(!y1 U d)) &&
42 G(y2 -> X((!y2 U a) || (!y2 U b))) && G(y2 -> X(!y2 U c)) &&
43 G(y2 -> X(!y2 U d))

Figure B.28 The LTL encoding of
(
({a, b},∨) < ({c, d},∧) =⇒ ({x, y[1,2]},∧) | t

)
in SPOT syntax.
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Abstract
The work presented in this thesis deals with modeling, specification and testing of models of Systems-on-a-Chip (SoCs)
at the transaction abstraction level and higher. SoCs are heterogeneous: they comprise both hardware components
and processors to execute embedded software, which closely interacts with hardware. SystemC-based Transaction Level
Modeling (TLM) has been very successful in providing high-level executable component-based models for SoCs, also
called virtual prototypes (VPs). These models can be used early in the design flow for the development of the software
and the validation of the actual hardware. For SystemC/TLM virtual prototypes, Assertion-Based Verification (ABV)
allows property checking early in the design cycle, helping to find bugs early in the model and to save time and effort
that are needed for their fixing. TL models can be over-constrained, which means that they do not represent all the
behaviors of the hardware, and thus, do not allow detection of some malfunctions of the prototype. Our contributions
consist of two orthogonal and complementary parts: On the one hand, we identify sources of over-constraints in TL
models appearing due to the order of interactions between components, and propose a notion of loose-ordering which
allows to remove these over-constraints. On the other hand, we propose a generalized stubbing mechanism which allows
the very early simulation with SystemC/TLM virtual prototypes.

We propose a set of patterns to capture loose-ordering properties, and define a direct translation of these patterns
into SystemC monitors. Our generalized stubbing mechanism enables the early simulation with SystemC/TLM virtual
prototypes, in which some components are not entirely determined on the values of the exchanged data, the order of
the interactions and/or the timing. Those components have very abstract specifications only, in the form of constraints
between inputs and outputs. We show that essential synchronization problems between components can be captured
using our simulation with stubs. The mechanism is generic; we focus only on key concepts, principles and rules which
make the stubbing mechanism implementable and applicable for real, industrial case studies. Any specification language
satisfying our requirements (e.g., loose-orderings) can be used to specify the components, i.e., it can be plugged in the
stubbing framework. We provide a proof of concept to demonstrate the interest of using the simulation with stubs for
very early detection and localization of synchronization bugs of the design.

Keywords. System-on-a-Chip (SoCs), Transaction Level Modeling (TLM), Assertion-Based Verification (ABV), Contracts
and Specifications, Stubbing, Early Simulation.

Résumé
Les travaux présentés dans cette thèse portent sur la modélisation, la spécification et la vérification des modèles des
Systèmes sur Puce (SoCs) au niveau d’abstraction transactionnel et à un niveau d’abstraction plus élevé. Les SoCs
sont hétérogènes: ils comprennent des composants matériels et des processeurs pour réaliser le logiciel incorporé, qui
est en lien direct avec du matériel. La modélisation transactionnelle (TLM) basée sur SystemC a été très fructueuse à
fournir des modèles exécutables des SoCs à un haut niveau d’abstraction, aussi appelés prototypes virtuels (VPs). Ces
modèles peuvent être utilisés plus tôt dans le cycle de développement des logiciels, et la validation des matériels réels.
La vérification basée sur assertions (ABV) permet de vérifier les propriétés tôt dans le cycle de conception de façon à
trouver les défauts et faire gagner du temps et de l’effort nécessaires pour la correction de ces défauts. Les modèles
TL peuvent être sur-contraints, c’est-à-dire qu’ils ne presentent pas tous les comportements du matériel. Ainsi, ceci ne
permet pas la détection de tous les défauts de la conception. Nos contributions consistent en deux parties orthogonales
et complémentaires: D’une part, nous identifions les sources des sur-contraintes dans les modèles TLM, qui apparaissent
à cause de l’ordre d’interaction entre les composants. Nous proposons une notion d’ordre mou qui permet la suppression
de ces sur-contraintes. D’autre part, nous présentons un mécanisme généralisé de stubbing qui permet la simulation
précoce avec des prototypes virtuels SystemC/TLM.

Nous offrons un jeu de patrons pour capturer les propriétés d’ordre mou et définissons une transformation directe
de ces patrons en moniteurs SystemC. Notre mécanisme généralisé du stubbing permet la simulation précoce avec
les prototypes virtuels SystemC/TLM, dans lesquels certains composants ne sont pas entièrement déterminés sur les
valeurs des données échangées, l’ordre d’interaction et/ou le timing. Ces composants ne possèdent qu’une spécification
abstraite, sous forme de contraintes entre les entrées et les sorties. Nous montrons que les problèmes essentielles de la
synchronisation entre les composants peuvent être capturés à l’aide de notre simulation avec les stubs. Le mécanisme est
générique; nous mettons l’accent uniquement sur les concepts-clés, les principes et les règles qui rendent le mécanisme de
stubbing implémentable et applicable aux études de cas industriels. N’importe quel language de spécification satisfaisant
nos exigences (par ex. le langage des ordres mou) peut être utilisé pour spécifier les composants, c’est-à-dire il peut
être branché au framework de stubbing. Nous fournissons une preuve de concept pour démontrer l’intérêt d’utiliser la
simulation avec stubs pour la détection anticipée et la localisation des défauts de synchronisation du modèle.

Mots Clés. Systèmes sur Puce (SoCs), Modélisation au Niveau Transactionnel (TLM), Vérification Basée sur Assertions
(ABV), Contracts et Spécifications, Stubbing, Simulation Précoce.
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