
THÈSE
Pour obtenir le grade de

DOCTEUR DE la Communauté UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 7 Août 2006

Présentée par

Yoann GEOFFROY

Thèse dirigée par Gregor Gössler

préparée au sein INRIA Grenoble Rhône-Alpes
et de École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Un cadre général de causalité basé
sur les traces pour des systèmes à
composants

Thèse soutenue publiquement le 7 Décembre 2016,
devant le jury composé de :

Dr. Éric FABRE
Directeur de recherche, IRISA, Rapporteur
Dr. Louise TRAVÉ-MASSUYÈS
Directeur de Recherche, LAAS-CNRS, Rapporteur
Dr. Oded MALER
Directeur de recherche, CNRS-VERIMAG, Président
Prof. Oleg SOKOLSKY
Research Professor, University of Pennsylvania, Examinateur
Dr. Gregor Gössler
Chargé de recherche, INRIA Grenoble Rhône-Alpes, Directeur de thèse



2

Acknowledgements
La thèse est un animal bizarre. Une aventure de trois ans dont on connaît le
point de départ mais pas vraiment la destination. Ce voyage n’a pas toujours
été aisé, mais cela ne l’a pas empêché d’être enrichissant.

Je pense que les premières personnes a remercier sont celles qui m’ont
donné le goût de la recherche, cette curiosité d’essayer de comprendre les
choses. Mes parents ont été, a travers l’éducation qu’ils m’ont prodiguée, les
principaux acteurs de la construction de cette facette de ma personnalité. Si
mon père n’a pas vu la fin de mes pérégrinations, il a été présent tout au
long de ma thèse, ne serait-ce que par tout ce qu’il m’a enseigné et apporté.
Mes différents professeurs, durant mes (nombreuses) années d’études y ont
aussi participé.

Mais si ces derniers m’ont amené jusqu’à la thèse, les personnes que j’ai
côtoyé, et qui ont rendu ce périple plus agréable au jour le jour sont les
membres de l’équipe SPADES. J’ai pris beaucoup de plaisir à travailler dans
cette équipe. Que ce soit les repas, animés de discussions diverses et souvent
passionnées, les thés, les pauses et tous ces moments de vie du quotidien,
qui rendent le travail plus agréable. Je suis extrêmement reconnaissant à
Helen, qui a transformé la corvée des tâches administratives en de simples
formalités.

Je tiens à remercier particulièrement les non-permanents, avec qui nous
avons fait de nombreuses et parfois longues pauses, qui ont étés des dis-
tractions bienvenues aux divers problèmes du travail de thèses. En espérant
n’oublier personnes, merci à Dima, Vagelis, Gideon, Quentin, Willy, Adnan,
Cricri, Judas, Martin et Stephan.

Je remercie aussi Gregor Goësler, mon directeur de thèse, sans qui rien
n’aurait été possible, ainsi que pour les nombreux échanges et débats scien-
tifiques que nous avons eu.

Un grand merci à tous mes amis et ma famille. Ils m’ont soutenu, tout au
long de ma thèse, même si Grenoble n’est pas la porte à côté pour nombre
d’entre eux.

Enfin, un énorme merci à Marie-Cécilia. Si nos chemins ce sont main-
tenant séparés, elle a été mon équipière dans la vie pendant 7 ans, dont
l’intégralité de la thèse. C’est elle qui a dû supporter au quotidien tous les
tracas de la thèse et a été d’un immense réconfort lors de la mort de mon
père. Sans elle ce voyage aurait été moins facile et moins heureux, et je lui
suis reconnaissant d’avoir partagé ce dernier avec moi.



Contents

1 Introduction 5

2 State of the art 9
2.1 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Fault localisation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Spectrum-based fault localisation . . . . . . . . . . . . 13
2.2.2 Model-based fault localisation . . . . . . . . . . . . . . 16

2.3 Causality-based approaches . . . . . . . . . . . . . . . . . . . 20

3 Causality Analysis framework 27
3.1 Notation and General definitions . . . . . . . . . . . . . . . . 27
3.2 Causality Analysis definitions . . . . . . . . . . . . . . . . . . 32

3.2.1 General principle of Causality Analysis . . . . . . . . . 34
3.2.2 Cone of influence approach . . . . . . . . . . . . . . . . 38
3.2.3 Unaffected prefix approach . . . . . . . . . . . . . . . . 41

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Implementation 51
4.1 The Lustre synchronous language . . . . . . . . . . . . . . . 51
4.2 Translation from Lustre to SMTLib . . . . . . . . . . . . . . . 55
4.3 Instantiation of Lustre in Loca . . . . . . . . . . . . . . . . . 58

5 Combining white-box and black-box 65
5.1 Mixed framework definitions . . . . . . . . . . . . . . . . . . . 66
5.2 Causality definitions for the mixed framework . . . . . . . . . 71
5.3 Strategy synthesis for the mixed framework . . . . . . . . . . 74

5.3.1 Controller synthesis . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Translating traces into LTS . . . . . . . . . . . . . . . 75
5.3.3 Strategy synthesis . . . . . . . . . . . . . . . . . . . . . 81

3



4 CONTENTS

6 Game Framework for causality analysis 89
6.1 Game Framework . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Causality definitions . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Strategy synthesis for the game framework . . . . . . . . . . . 109

6.3.1 Winning strategy synthesis . . . . . . . . . . . . . . . . 110
6.3.2 Spoiling strategy synthesis . . . . . . . . . . . . . . . . 118

6.4 Finding fixes with the game framework . . . . . . . . . . . . . 124
6.4.1 Using the game framework as input to approaches to

find fixes. . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.2 Extending the game framework to find fixes . . . . . . 128

7 Impact of information on CA 131
7.1 Causality Analysis on reduced logs . . . . . . . . . . . . . . . 131

7.1.1 General results . . . . . . . . . . . . . . . . . . . . . . 132
7.1.2 Reduced logs in space . . . . . . . . . . . . . . . . . . 135
7.1.3 Reduced logs in time . . . . . . . . . . . . . . . . . . . 136
7.1.4 Reducing the logging by using extra information . . . . 148

7.2 Causality Analysis using fault models . . . . . . . . . . . . . . 149
7.2.1 Fault models . . . . . . . . . . . . . . . . . . . . . . . 150
7.2.2 Including fault models in causality analysis . . . . . . . 152
7.2.3 Horizontal causality, and cause minimisation . . . . . . 154
7.2.4 Dealing with multiple fault models . . . . . . . . . . . 157
7.2.5 Enhancing the precision using extra information . . . . 161

8 Conclusion 163
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.2 Future prospect . . . . . . . . . . . . . . . . . . . . . . . . . . 164



Section 1

Introduction

A widespread solution to be able to create complex systems is to resort
to component-based architecture. The idea is to create subsystems, namely
components, that will ensure certain functions of the system. This makes the
design process easier, as some smaller part can be designed and then merged
together. However, if components are a boon for designing systems, it is a
bane to analyse them. Indeed, the operation of assembling the components,
that will be referred as the composition, is generally complex and hard to
reverse. Therefore, it is hard to associate system level behaviour with the
components, as the components interact with one another, and the expression
of a bad behaviour is often not its cause.

Would a bad behaviour (called failure) be observed, it is desirable to to
be able to identify the components that are responsible for it. Indeed the
failure may occur in a safety critical system, thus endangering human lives,
or disrupt a service being provided, which is generally bad for the provider
it, both economically and in term of image. Identifying the components
responsible for a failure is the first step in being able to avoid the occurrence
of the failure, and repair it.

This identification problem is mainly studied by diagnosis and fault local-
isation. Even though those techniques can identify from which components
the failure stems from, they are not able to assess whether those components
are responsible for the failure or not. The ability to ascribe responsibility
is useful to chose the components that should be modified, or repaired, in
order to fix the failure, as well as in a legal framework, to be able to held
responsible the designer/builder of the incriminated components. One of the
approaches that is able to attribute responsibility in a component-based set-
ting is causality analysis. It uses a counter-factual approach (“what would
have happened, would this component not be faulty?”) to assess whether or
not a set of components is responsible for a system failure.

5



6 SECTION 1. INTRODUCTION

This thesis expands this framework in two ways. The first one is to ex-
tend the causality analysis framework from a black-box component setting
(components for which we know the expected behaviour, usually the ones di-
agnosis consider) to a mixed framework with both black-box and white-box
components (components for which we know the actual behaviour, usually
the ones considered in fault localisation). This extension is interesting be-
cause a lot of systems use off-the-shelf components (black-box) with custom
ones (white-box), and this approach provides a tool to ascribe responsibil-
ity to components in mixed systems, which, to our knowledge is a novelty.
Using a game, one is able to assess responsibility for systems composed of
both black-box and white-box components. This approach is a generalisation
of the causality analysis approach for the black-box components, and works
similarly to fault localisation techniques for the white-box components. The
approach relies on techniques that are close to the one used in controller
synthesis, and thus can generate fixes for the bug observed.

The second main axis is to study the impact of the amount of infor-
mation accessible on the construction of the counter-factuals. Having more
information, like the memory state of the components or a fault model for
the components, can be used to build more refined counter-factuals. Those
counter-factuals will be closer to what would have happened if components
had been fixed, thus yielding some more accurate responsibility assignment.
The other end of the spectrum is what happens with less information (miss-
ing variables in the trace, or missing portions of the trace). Some general
results are given, as well as a way of performing causality analysis on a par-
tial trace that yield the same results as the one performed on the full trace,
under certain assumptions.

This thesis will be divided as follow:

Section 2 will give an overview of the state of the art diagnosis, fault local-
isation and causality-based approaches.

Section 3 develops the base definitions used in the whole thesis, as well the
causality framework from [Gössler and Métayer, 2015].

Section 4 presents the implementation of the causality framework intro-
duced in the previous section.

Section 5 expands the causality analysis from a black-box approach to a
mixed one (black and white-box). It builds from the causality frame-
work from Section 3 and uses controller synthesis to assess causality.



7

Section 6 extends further the approach from the previous section, by con-
sidering a finer grain description of the system and using game to be
able to assess responsibility in the mixed systems.

Section 7 presents the impact of having less, or more, information on the
results of the causality analysis.

Section 8 concludes this thesis and gives some future perspectives and pos-
sible extensions of this work.



8 SECTION 1. INTRODUCTION



Section 2

State of the art

The approach developed in this thesis aims at blaming components of a sys-
tem for a global system failure. Another way to look at it is that some effects
are observed (namely the failure), that reflect some faults in the system, and
the approach aims at determining which faulty components are the cause for
the failure. In that respect, it is similar to the goal of both diagnosis and
fault localisation.

According to [Reiter, 1987], given a system description and an observa-
tion which contradicts this description, the diagnosis problem is to determine
the components of the system which, when assumed to be functioning abnor-
mally, will explain the discrepancy between the observed and correct system
behaviour. This problem is close to the Causality Analysis approach, and is
then of interest in this state of the art.

The thesis approach is in a black-box component setting, i.e. we have
access to a description of the correct behaviour of the components. Fault
localisation focuses on a white-box setting, where the actual behaviour can
be used, like the source code for instance. Fault localisation has a goal
similar to Causality Analysis: identifying the parts of the system where the
faults occurred. As defined in [Steinder and Sethi, 2004] Fault Localisation
is a process of deducing the exact source of a failure from a set of observed
failure indications, in a network context. In a program context, it can be
defined, as in [Alipour, 2012], as a task in software debugging to identify the
set of statements in a program that cause the program to fail.

The state of the art will focus on the fields of diagnosis, and fault and
bug localisation.

The approach presented in this thesis uses causality analysis, that aims
at linking causes to effect. There are different causal frameworks, but the
one used here is a counter-factual reasoning, i.e. a “what if” reasoning. For
instance, “what would have happened if this component had not behaved

9



10 SECTION 2. STATE OF THE ART

abnormally?”. Therefore, the state of the art will only develop causal frame-
works that use counter-factuals.

This section will be divided in three subsections. The first one will focus
on diagnosis. The second one will discuss of fault localisation. The last one
will present approaches from both fields that use a notion of causality.

The split between approaches that rely, or not on a causality notion is
motivated by the fact that causality approach are the closer to the one de-
veloped in this thesis, hence the fact of treating them in an independent
subsection, but they should be compared to the other techniques (gathered
the other subsections). What’s more, certain specific concepts need to be ex-
plained, in order to fully understand the causality approaches, which is why
the subsection will begin by a quick discussion on the notion of causality
itself.

Vocabulary definitions Throughout this document, the notions of error,
fault and failure will be used. Definitions will then be given for them in this
paragraph, inspired by the ones of [Laprie et al., 1990].

We suppose we are given a system. This system can be a program, a
network, a cyber-physical system,. . . This system is composed of sub-systems
(statements for a program, nodes for a network,. . . ) that will be called com-
ponents. Both the system and the components have an expected behaviour.

We also suppose we are given an observation of the functioning of the
system, or the components. E.g. an execution logs for a program, the outputs
of the sensors over time for a cyber-physical system. . . This observation is
called a trace.

An error is a defect in a hardware device, a program, a component,. . .
A fault is a component behaviour, in a component trace, that differs from

the component expected behaviour. It is the manifestation of an error.
Given a component, a trace is said to be faulty if it contains, at least, one

fault. By extension, the component is said to be faulty.
A failure is a system behaviour, in a system trace, that differs from the

system expected behaviour.
A failing trace is a system trace that contains, at least, one failure.
Here is an example of instantiation of those definitions to software: an

error is a mistake in the code, a fault is a bug, that is the result of the
execution of errors, and a failure is a software crash.

The different approaches presented in this section have in common that
given at least one failing trace, they aim at identifying the components, or



2.1. DIAGNOSIS 11

parts of the code, that are (likely) responsible for the failure, or the locations
where the faults occured.

A component that is a cause for a failure is also said to be responsible for
the failure.

2.1 Diagnosis

Diagnosis is a vast field, which has been widely studied. However, it is way
too extensive to fully cover it in this state of the art. Therefore, this state of
the art will focus on the precursor papers, and several others that are related
to fault localisation in programs.

One of the founding paper of the field is [Reiter, 1987]. It gives both a
definition of the diagnosis problem, and a general way of solving it, alongside
an application example to the medical field. The inputs of the approach
are a description of the system and a (failing) observation. A diagnosis is
a minimal set of components such that, if they are considered as behaving
abnormally, and all the other components behave normally, the observation
is consistent with the system description. This work formalises the notion
of diagnosis, in a way which is consistent with the non-formal definitions
used at the time. One important feature of this approach is that it is model
independent, as it externalises the queries that are specific to the model.

At a similar time as Reiter, [de Kleer and Williams, 1987] proposed a way
of diagnosing multiple faults. The approach has the same inputs as the pre-
vious one, with the addition of a probability of failure for each component.
It uses an inference procedure to give rise to symptoms (differences between
the observation and the system description). From those symptoms, conflict
sets (set of components that cannot be all behaving normally) and candi-
date sets (minimal sets of abnormally behaving components that explain the
symptoms) are computed. The algorithm chooses the best measurement to
be performed, in order to refine the diagnosis, using Shannon entropy to
discriminate between the different candidates. It gives a sequential way to
makes the diagnosis, in order to conclude. Note that it implies that you can
have access to the system, to actually perform the measurements, that it
will not change its behaviour over time, and that measuring does not affect
the outcome either. Note that those hypotheses apply to all incremental di-
agnosis that necessitate measurements, regardless of the theory of diagnosis
used.

The two previous approaches are said to be consistency-based diagno-
sis: they try to find diagnoses that are consistent with the observation.



12 SECTION 2. STATE OF THE ART

[Poole et al., 1987] proposed an abduction-based diagnosis. All the fault
models for each components are given, alongside an observation. This ap-
proach finds the component and the corresponding faults that explains the
observation. However, in the system that Causality Analysis aims at study-
ing, it is generally easier to have access to a system description, than all
the failure modes. What’s more, all the failure modes for each component
generally make for a bigger state space than a system description. Since
the abduction-based approaches differ greatly from the one developed in this
thesis, they will not be further treated.

In [Console et al., 1993], the authors showed that those theory of diagno-
sis are applicable to programs. If you derive a specification from the source
code, and possibly fault models, alongside a failing trace, you have the inputs
for the diagnosis problem. Those approaches can therefore be used as fault
localisation techniques in programs.

Diagnosis is often tightly connected to fixing faults in physical systems.
This is the case of [Madre et al., 1989] that performs a diagnosis on the
system, and proposes a fix for the faulty components, by replacing them
with a Boolean equation. [Heh-Tyan et al., 1990] improved this technique
by using the topology of the system and proposing a new algorithm for the
fix.
In [Jobstmann et al., 2012] the idea is transposed to components that are
finite-state machines, and properties that are either invariants or linear-time
temporal logic (LTL) formulae. The authors model the diagnosis and fixing
problem as an infinite game. The approach is complete for invariant, and
“works well in practice” for LTL formulae.

[Pons et al., 2015] proposed a way of performing diagnosis on hybrid sys-
tems. The core of the paper lies in the way they transform the hybrid system
into an automaton, and how they build a causal system description (that re-
flects influence of variables over variables, rather than causal relations). This
causal model description is then used to perform an incremental diagnosis,
using Reiter framework. One of the most interesting aspect of this paper is
that using model transformation, they are able to apply Reiter’s approach,
which was mostly used on simple models, to hybrid systems, which are ar-
guably a very complicated model.

2.2 Fault localisation

In fault localisation, the effect of the fault (the failure) is observed, and the
goal is to pinpoint the fault(s) from which the failure stems from. There are



2.2. FAULT LOCALISATION 13

two main approaches to fault localisation: spectrum-based and model-based.
The first one consist in analysing a big set of traces from the system, in order
to pinpoint the possible localisation of the fault(s). The second one uses the
model to infer the fault(s) localisation that induced the failure present in a
given trace.

2.2.1 Spectrum-based fault localisation

In today’s context, it is not unusual to have access to a large set of traces. In
the design phase, systematic, or at least large, testing is widely used, creating
big sets of traces for which the outcome, failing or non-failing (passing), is
known. Another way to have access to a lot of traces are the reports from
the users.

Those big sets of traces can be analysed using suitable statistical al-
gorithm (machine learning, pattern recognition, data-mining,. . . ), in order
to extract information about the program, that can be used to track the
bugs. Those approaches will be called statistical techniques, as suggested in
[Pal and Mohiuddin, 2013]. All the techniques presented here are dynamical
techniques, i.e. they analyse specific runs, static techniques will be treated
in other subsections.

Those techniques do not compare directly to the approach developed
in this thesis, as they need a set of traces, and not a single faulty trace.
Nevertheless, it is interesting to make a quick presentation of such techniques,
as, given those set of traces, they are very efficient at pinpointing the fault
location. What’s more, those techniques aim at reducing the amount of
information the developer needs to look at, in order to locate the bugs in
a program, e.g. it isolates a set of statements, of a path in the control-flow
graph. It is close to the blaming objective.

It is worth mentioning that similar techniques that aim at generating
invariants for programs exists (such as DySy [Csallner et al., 2008], DAIKON
[Ernst et al., 2007] or PRECIS/PREAMBL [Sagdeo et al., 2011]). However,
since their goal does not fit in the blaming framework, I will not detail them.

General principle The statistical techniques have common ground. The
code is first instrumented to gather some information about the program
execution. Then, a large number of traces is generated. Afterwards, this
set of traces is analysed to extract likely invariants or bugs (via some form
of predicators) of the programs. Even though the number of traces is large,
it does not cover the whole state-space of the program, and not necessarily
all the errors, as the error needs to be executed, and result in a fault to be
detected. Consequently, it is possible to have generated invariants that are



14 SECTION 2. STATE OF THE ART

only true for this set of traces, but not in the general case. Similarly, the
bug predicators might be true on non-buggy traces that are not present in
the considered set, giving rise to false-positives.

Several of those approaches use an iterative process, where the set of
traces is analysed, and the code re-instrumented to get finer invariants/bug
predicators.

One of the main advantages of those techniques is that they can tackle
multiple bugs/infer multiple invariants. It stems from the fact that they have
access to a large set of traces, where statistical tools can be used.

Where those techniques differ is in the information they use to both in-
strument the program and analyse the traces. In term of instrumentation,
we can mention the data, the control-flows, the program paths, the memory
state,. . .

In the next paragraphs, some of those techniques will be presented.

Testing phase approaches During the test phase of a program, most of
the code is instrumented, and test case are run. The traces are labelled as
passing (no failure) or failing (a failure occurred). Since this instrumentation
is generally done during the testing phase, the overhead of fault localisation is
just running the localisation algorithms, and it helps pinpointing the origins
of the bugs quite accurately.

The approaches used in the testing phase have access to both the source
code and a big set of labelled traces.

TARANTULA have been introduced in [Jones et al., 2002]. The under-
lying idea behind this approach is that statements that are more executed
in faulty traces are more likely to be faulty. The statements are then sorted
according to how often they are executed in faulty runs, helping the pro-
grammer on the selection of which statements to explore to fix the bugs.
This technique has been compared to four other similar techniques in [Jones and Harrold, 2005],
namely nearest neighbour ([Renieris and Reiss, 2003]), set union ([Agrawal et al., 1995]),
set inclusion ([Pan and Spafford, 1992]) and Cause Transitions ([Cleve and Zeller, 2005]).
Set union performs the set difference between the set of statements executed
in a faulty trace, and the set of the statements executed in a passing traces.
The resulting set is used as an initial set of suspicious statements.
Set intersection uses dynamic-slice-based heuristic that identify a set of “blamed”
node, and then rank the other nodes according to how the “blamed” nodes
are dependent on the node being ranked.
Nearest neighbour takes a faulty trace and a set of passing traces as input.
It selects the passing trace the closest to the failing one, and perform a set



2.2. FAULT LOCALISATION 15

union on those traces
Cause transitions performs a binary search of the memory states of a pro-
gram between a passing test case and a failing test case.
TARANTULA outperforms those four techniques, in term of effectiveness of
the fault localisation, and has the same efficiency as the least computation-
ally expansive one.

A crosstab-based statistical method is proposed in [Wong et al., 2008].
For each statement, a degree of association with the outcome (be it failing
or passing), and a quantity reflecting if the statement is associated with the
failure or the success of the run. The statements are then split in five classes,
according to how much the statements are associated with the failure or the
success. The statements highly associated with the failure are to be examined
first.
This technique is more effective than TARANTULA (it pinpoints fault more
accurately) and has a comparable efficiency (computational cost).

CBI and related techniques In [Liblit et al., 2005], the authors have
presented an approach that was later implemented in CBI (Cooperative Bug
Isolation), in 2007. This approach first instruments the code, then gathers
a big set of traces, containing the information instrumented. Lastly, an
algorithm ranks the different bug predicators, given how well they predict
bugs. Then the best predicator of the most severe bugs are removed, and the
next most severe bug is considered, and so on.
This approach is able to capture most of the bugs from a thousand traces, up
to several dozen thousands, for the rarest bugs. It has been used in several
widely used software.

[Ball and Larus, 1996], [Jiang and Su, 2007] and [Arumuga Nainar et al., 2007]
advocate that control flow paths give more information to locate bug than
predicates. Therefore, PATHGEN ([Jiang and Su, 2007]) extends CBI by
associating the bugs with control flow paths, instead of bug predicators. In
terms of performance, it is better than CBI, as paths are more informative
than a collection of statements. However, the choice of which parts of the
code to instrument might prove to be difficult.

In [Chilimbi et al., 2009], another extension of CBI is proposed. HOLMES
associate bugs with control flow paths, like PATHGEN, but the instrumenta-
tion performed is different. HOLMES instruments control flow paths, instead
of predicates, leading to a way smaller overhead. The performances are com-
parable to PATHGEN, though it is not proven to be better. However, the
light instrumentation induce a smaller overhead on the execution of the pro-



16 SECTION 2. STATE OF THE ART

gram.
The three previous approach only take into account the failing runs, while

SOBER ([Liu et al., 2005, Liu et al., 2006]) also considers the passing runs.
The authors associate each predicate with an evaluation bias (ratio of passing
runs where the predicate is true). If the evaluation bias is very different from
a normal distribution, it is a good bug predicator. Performance wise, this
approach is better than the previous ones. However, it was compared on a
“best case scenario” (namely the Siemens test suite), that provides a large
number of traces, that are accurately labelled.

Non-parametric bug localisation techniques The approaches presented
in the previous paragraph all rely on a distribution assumption of the oc-
currence of the bug predicates (namely a normal distribution). However,
[Hu et al., 2008] and [Zhang et al., 2009] showed that this assumption is gen-
erally not true, and the distribution for the good bug predicator is very far
from the normal distribution.

[Hu et al., 2008] uses an approach very similar from HOLMES, but with
a Mann-Whitney test to rank the predicates, that does not rely on any nor-
mality hypothesis. This makes the bug location more accurate, while keeping
a computational cost close to the one of HOLMES.

Bug localisation using evaluation sequence. In [Zhang et al., 2010],
both CBI and SOBER are transformed by using evaluation sequence, in-
stead of simple bug predicators. The resulting DES_CBI and DES_SOBER
outperform the original ones, in term of accuracy of the bug localisation,
while maintaining a similar computational cost.

We can conclude, from the papers presented here, that not making any
assumption on the distribution of the bug predicators, and using execution
paths, or evaluation sequences, further enhance already efficient techniques.

2.2.2 Model-based fault localisation

Contrary to the statistical approaches, the ones discussed here do not rely
on a set of gathered traces, but on a single failing trace. Since they cannot
perform a statistical analysis on a set of traces, some more information must
be used, such as a specification, an implementation or the system itself.
Those approaches are closer to the causality analysis framework, as it only
has access to the same inputs.



2.2. FAULT LOCALISATION 17

The next paragraphs will present some of those techniques. They will not
be fully developed, but their general principle will be given, and some recent
influential papers.

Program slicing Program slicing was introduced by [Weiser, 1981, Weiser, 1982].
It consists in a backward search of the fault, starting from the program fail-
ure. Statements are pruned by using the control and data flow to keep the
statements from which the failure has a dependency. This reduced number
of statements is called a slice, and narrows the portion of code that must be
examined for debugging.

Since slices tend to be quite big, [Lyle and Weiser, 1987] developed the
notion of program dice. It uses a principle close to [Pan and Spafford, 1992],
as it makes the set difference between static slices of correct and incorrect
variables. However, some statements can only be removed by predicting
run-time values. Following this observation, [Agrawal and Horgan, 1990] in-
troduced the dynamic program slicing, that performs the slice using run-time
information.

Dynamic program slicing has been extensively studied, some interesting
papers in the field will be discussed in the remainder of the paragraph. Pro-
gram slicing can capture the execution of bad statements, but cannot cope
with the omission of a statement execution due to a fault.
[Zhang et al., 2005, Zhang et al., 2007] addressed this issue by introducing
the concept of implicit dependencies and relevant slicing. Some missing de-
pendencies are obtained using delta-debugging.
Another way to overcome this issue is proposed in [Agrawal et al., 1995,
Wong and Qi, 2004]. The idea is to consider blocks instead of statements.
A block depends on another block if a statement in this block depends on
something contained in the block it depends on. The fact that blocks contain
more than one statement means that the slice is less likely to miss relevant
statements. On the other hand, it also means that the slices are bigger.

Though it is not exactly program slicing, [Wang et al., 2006] proposed a
technique which relies on a similar principle. Given a failure and an execution
trace, a weakest pre-condition is computed backwardly from the failure. A
minimal proof of infeasibility is then computed. Since the trace is considered
as a word of statements, the proof of infeasibility is a set of minimal words,
thus a set of sequence of statements. Since this technique uses the code
and some run-time information, it is close to dynamic program slicing. The
authors claim that their technique is superior to dynamic program slicing.
however, their claim is only based on two toy examples, and not formally
proven.



18 SECTION 2. STATE OF THE ART

Delta-debugging Given a set of possible inputs for a program, delta-
debugging aims at reducing this set to the smallest subset of inputs that lead
to the program failure. It was first introduced in [Zeller and Hildebrandt, 2002],
and further expanded in [Zeller, 2002, Cleve and Zeller, 2005]. The under-
lying idea is that smaller inputs cover less code than bigger inputs. An
important assumption is that inputs can be simplified, which is not always
possible.
A shortcoming of this technique is that is treats all the possible inputs as a
list, which might be big. Hierarchical delta-debugging ([Misherghi and Su, 2006])
addresses this problem by taking into account the structure of the input to
reduce the set of inputs to explore. Using a coarser version of the algorithm
at the beginning, it prunes a large portion of the inputs that is irrelevant.
Besides the speedup, it also also give more precises results, as the output is
a structured tree.

[Misherghi and Su, 2006] proposes a combination of both delta-debugging
and slicing to narrow down the part of code to explore. The idea is to perform
a delta-debugging, thus yielding a minimum set of inputs. A forward slice if
performed on this minimum set, as well as a backward slice from the failure.
The output of the approaches is the set of statements that are in both the
backward and forward slice. This technique gives some more precise results
than both delta-debugging and program slicing.

Counter-example simplification and explanation The approaches pre-
sented in this paragraph aim at making the faulty trace more understandable,
rather than pinpointing the location of the faults. It is especially interesting
if the system considered are very complex, or there are multiple faults, as
then the automated fault localisation may fail. When it is the case, human
must look into the complex traces, and simplifying, them is important to
ease that examination.

In the context of concurrent program, one of the main difficulty with
analysing the trace are all the context switches (change from the execution
of one thread to the execution of another one). Following this observation,
[Jalbert and Sen, 2010] proposed an algorithm that raises a trace equivalent
to the faulty trace with a minimum number of context switches. The idea is
to try to eliminate the context switches that do not contribute to the bug,
beginning by the last one, and trying to add the statements from this context
switch to the previous execution of the thread, or the next one. The problem
being NP-hard, the authors proposed a heuristic that yields a simplified trace
that is either easier to understand than the simplest one, or the simplest one
itself.



2.2. FAULT LOCALISATION 19

In [Jin et al., 2004], the concept of fated and free segment in a trace
is introduced. A free segment is a segment where the system could have
made a “choice” that would have avoided the failure, a fated segment is one
where there was no such possibility. The inputs of the system are split into
two sets: those controlled by the environment and those controlled by the
system. The authors proposed to build a game where the system tries to
avoid the failure, and the environment tries to make the system fail. The
states are partitioned in an “onion ring” fashion, characterised by the number
of “mistakes” the system must make in order to enable the environment to
have a winning strategy. The ring are the fated parts and the transition
between the rings the free segments. This approach is especially interesting
for very long traces, as the person analysing the trace can focus on the free
segments. However, the partition between the system and the environment
is not necessarily trivial to make, and the computational cost being too high,
they must rely on a heuristic.

In the context of counter-examples produced by model-checking, [Ball et al., 2003]
proposed to use additional information that is anyway computed by the
model-checker to help understanding the traces. When a failing trace is
found, it is compared with passing traces generated by the model-checker.
“Halt” statements, that ensure that the same failing trace will not be yield
again, are introduced. By adding those “halt” statements, this approach
makes sure that every failing trace are generated. In a similar fashion to
[Pan and Spafford, 1992], those failing traces are contrasted with the pass-
ing traces to highlight the problematic parts. This approach is very efficient,
but since it uses model-checking does not scale very well.

[Groce and Visser, 2003] introduced an approach that resemble the pre-
vious one. Given a failing trace, it computes all the similar passing and
failing traces using model-checking. It yields a big set of traces, like in Sec-
tion 2.2.1. The authors proposed to perform an invariant, a transition and
a minimal transformation analysis on the generated set of traces. The main
contribution of this paper is the generation of the set of traces, that can have
many application, such as making a query on a passing trace that the user
suspects to be “close to” failing traces. Note that this approach could have
been in Section 2.3, as the underlying idea can be seen as a causal reasoning.
Whatsoever, it was presented in the current section, as it does not rely on
an explicit causality definition.

Reduction of the fault localisation to Max-SAT [Jose and Majumdar, 2010]
designed a reduction of the fault localisation problem to a Max-SAT problem.
A Max-SAT-solver is a SAT-solver that supports “soft-constraints”. A soft-



20 SECTION 2. STATE OF THE ART

constraint, is a constraint that may be false. Soft-constraints are generally
weighted, and the Max-SAT-solver returns a counter-example that maximise
the cumulative weight of the satisfied soft-constraints. The input value and
the program property are hard constraints, whereas the translation of the
statements are soft constraints. The Max-SAT solver returns an Unsat core,
i.e. a set of soft constraints that cannot be true while all other constraints
are. Unsat core then reflect a set of statements that are problematic, with
regards to the property, given the input of the program. Performance wise,
the translation of the statements to a SAT problem can easily blowup compu-
tationally, so there are some scaling issues. However, the approach is general,
and can be used at different granularity level. What’s more, it is very efficient
on small but complex problem, and since the solver part is externalised, this
approach will benefit from the future progress of the Max-SAT Solvers.

2.3 Causality-based approaches

Causality have been extensively studied in philosophy (for instance, Aristotle
treated this topic). However, one of the framework that is the more resilient
to several problematic examples, and that suits well computing science is the
counter-factual theory of causation ([Menzies, 2014]). The idea of counter-
factual was first introduce in 1748, by Hume ([Hume, 2004]), however, the
most influential theory is that of Lewis ([Lewis, 1973]), which was revised in
[Lewis, 2000]. In [Lewis, 1973], Lewis exposed a definition of counter-factual
which is: “Where c and e are two distinct actual events, e causally depends
on c if and only if, if c were not to occur e would not occur”. This is the basis
of the counter-factual reasoning, the idea that if the cause is not present,
then the effect is not either. Note that the previous proposition implies that
the cause is always present if the effect is.
This notion of causation is pushed further, by the introduction of the notion
of causal chain. “e causally depends on c if there exist a causal chain leading
from c to e”. This is basically a transitivity relation, i.e. if c is a cause of d,
and d a cause of e, c is a cause of e. The definitions of Lewis are general,
therefore, there might be some problem due to the fact that, in real life,
you can always think of a crazy scenario. For instance, if the action c of a
person is a cause for event e, one might argue that the fact that this person
was not killed by a meteorite before doing her action is a cause for e. This
problem was not entirely addressed in the 1973 definitions. In order to tackle
this issue, Lewis defined, in [Lewis, 2000], the notion of influence: “Where c
and e are distinct events, c influences e if and only if there is a substantial
range of c1, c2, . . . of different not-too-distant alterations of c (including



2.3. CAUSALITY-BASED APPROACHES 21

the actual occurrence of c) and there is a range of e1, e2, . . . of alterations
of e, at least some of which differ, such that if c1 had occurred, e1 would
have occurred, and if c2 had occurred, e2 would have occurred, and so on.”.
This definition is able to deal with the “meteorite” example, because this
scenario is very unlikely, and we can have a “substantial range” of similar
causes without resorting to this crazy scenario. It formalises the idea of a
set of world close enough to what actually happens. However, this model is
still too general to be used in computing science. The Structural Equation
Framework, developed in [Hitchcock, 2001, Woodward and Hitchcock, 2003]
can more easily be applied to computing science, as it will be discussed
in the next paragraph. The other paragraph will treat of counter-factual
approaches that do rely on a model of the system as a normal behaviour
description, rather than structural equations.

Structural Equation Framework One of the first, and most influential,
paper on counter-factual reasoning in computer science is [Halpern and Pearl, 2001b,
Halpern and Pearl, 2001a]. The authors formalised the structural equation
framework, and proposed a definition of actual cause, and of explanation.

This framework makes the distinction between the exogenous variable U ,
the context of the system, the endogenous variable V , the variables belonging
to the system. The system is associated with a causal model M , which links
every variable x in V with a function Fx that deterministically returns the
value it should take, given an assignation for every other variables.

Given a system, a context u, a causal model M , a predicate ϕ, X = x
(the assignation x to the variable in X) is an actual cause to ϕ if, AC1. the
situation can actually happen, given M and u, AC2. changing the values
X to x′ falsifies ϕ (removing the cause removes the effect) and modifying
other variables in V \ X does not falsify ϕ, and lastly AC3. is minimal.
Besides AC1., which is trivially necessary to make counter-factual analysis
interesting, AC2. and AC3. define a rather strong definition for actual
causes, as the actual cause must be minimal (AC3) and counter-factually
responsible, and other variables must not be counter-factually responsible.

One could argue that this definition only yields causes in a given context,
therefore, the authors introduced the concept of explanation. The inputs are
the same as for the actual cause, besides the fact that u is replaced by a set
of K of contexts. Roughly, the idea is that X = x is an explanation for ϕ if,
whenever X = x is true in u, X = x is a sufficient cause for ϕ (it enforces
AC1. and AC2., but not necessarily AC3.), and X must be the minimal set
such that the previous holds.

Those two definitions accurately assign responsibility for most of the



22 SECTION 2. STATE OF THE ART

causality examples that are generally hard to accurately treat. However,
one of the main weaknesses of this approach is the causal model. Firstly,
though it can model precedence between events, it cannot model timed sys-
tems. Secondly, the result of the analysis is highly dependant on the causal
model, which is generally not available. Therefore, the person building the
model could “orient” the outcome, by making certain modelling choices.

One of the interesting follow-up on Halpern and Pearl model is [Beer et al., 2012].
It extends the definitions to causal models described in Labelled Transition
System (LTS) and formulae in Linear Temporal Logic (LTL). It fixes one
of the main drawback of the previous approach, namely the incapacity to
handle timed systems. The authors used those definitions to highlight events
that are causes for the failure in a trace. The complexity of the approach
being too high, they propose a heuristic that turns out to give more intuitive
explanations than the full algorithm.

In later work, Chockler and Halpern ([Chockler and Halpern, 2004]) added
a notion of degree of responsibility to the framework. Intuitively it quantifies
the number of changes that need to be made to the context (u), in order to
make X = x a cause of ϕ. For example, if an election where a given number
of votes must be reached in order to win is won by one vote, the degree of
blame is 1 for each voter (one change of vote changes the outcome of the
election). If the election is won by 10 votes, each voter has a degree of blame

of
1

10
(10 persons need to change their vote to change the outcome).

The notion of degree of responsibility can be further extended with a prob-
ability associated with each context u. By weighting the degree of blame,
using this probabilities, a more accurate measure can be made. Indeed, the
less likely scenarii will have a lesser weight in the degree of blame.
In [Chockler et al., 2008], the degree of responsibility is used in a Symbolic
Trajectory Evaluation to determine which inputs to use to refine the model,
in hardware model-checking. It enhanced the performance considerably, com-
pared to other similar techniques.
The results that can be obtained using the degree are illustrated in [Chockler et al., 2015],
where they apply the framework to a legal case, namely the death of Baby
P. This paper shows that using a causality analysis approach, they get simi-
lar results to what the jury decided. However, it suffers the usual problems
of the approaches with causal model, which is, “how to choose the causal
model?”, with an additional layer with the choice of the probabilities for the
different possible contexts.
This notion of degree of responsibility has also been used in [Debbi and Bourahla, 2013]



2.3. CAUSALITY-BASED APPROACHES 23

to generate the “most indicative” counter-examples to a Probabilistic Com-
putation Tree Logic (PCTL) formula applied to a Discrete-Time Markov
Chain (DTMC). A probabilistic model-checker is used to generate counter-
examples, and the notion of degree of blame is utilised to assess which
counter-example is the “most indicative” (counter-example with the least
number of paths, and higher probability). However, the authors fail to ex-
plain how to exploit this most indicative counter-example.
In [Kuntz et al., 2011], the framework is extended with a notion of order be-
tween events, thanks to priority AND operator (P −AND, which is true if
its inputs become true in a given order). Using this priority notion and the
actual cause from [Halpern and Pearl, 2001b], the authors are able to build
fault trees from a probabilistic model-checker counter-example.

Model-based causality analysis Several causal models do not use the
notion of structural equation, but a notion of “normality”. That is a descrip-
tion of how the world usually is, or normally is. This causality notion is very
close to the influential one, introduced by Lewis. [Kayser and Nouioua, 2005]
advocate an actor based approach, whit the notions of should, able and hold.
From those, the authors track back to a “primary anomaly”, which is con-
sidered to be the cause. In [Dupin de Saint Cyr Bannay, 2008], a distance
metric is used to compute the closest normal trajectory to a failing trajec-
tory. Contrasting the two gives some information about the causes of the
failure.
Those approaches have in common the fact that they contrast the failing
trace with counter-factual traces that are normal, and close to the initial
failing trace. They resemble diagnosis, with a causal relation added on top
of the normality notion. What’s more, the idea of contrasting failing and
passing (or “normal”) traces is present in numerous approaches presented in
this state of the art.
Contrary to the Halpern and Pearl framework this framework has not re-
ceived much attention.

In [Groce et al., 2006], the authors develop a technique close to delta-
debugging, adding a notion of causality. Given a failing trace and a program
specification, they build the closest passing trace, via a model-checker and a
distance metric. The counter-example is found by altering the input values,
until the closest passing trace is found. The counter-example and the pass-
ing trace are contrasted using delta-slicing, thus pinpointing the problematic
parts of the code. This approach gives a narrower portion of code to explore
(a couple of lines), compared to other techniques, in the examples treated
by the authors. However, the user might need to give some assumptions for



24 SECTION 2. STATE OF THE ART

the tool to conclude (since the specification is more abstract than the im-
plementation). What’s more, due to the way the algorithm is implemented,
this approach cannot deal with more than one cause.

The approach used in this thesis was first introduced in [Gössler and Le Métayer, 2013].
It will be presented at great length in Section 3, but a broad idea will be
developed here. Given a failing trace and a set of components, forming
a system, this approach returns the sets of components that are causes of
the system level violation. It proceeds as follows given a set of “suspected”
components, the faults from those components are removed from the failing
trace. From this “pruned” trace, all the possible traces are built, using the
component specifications to prolong the traces. This gives rise to a set of
counter-factuals on which we can apply causality definitions.
A similar approach is proposed in [Datta et al., 2015]. It considers program
actions instead of components. Though I did not prove it formally, my in-
tuition is that this approach, in its current state, yields coarser results than
causality analysis. However, what is proposed in [Datta et al., 2015] seems
to be in an early stage.

Conclusion

As shown in this state of the art, localising the cause(s) of a failure is a very
complex problem that is studied by many communities. If you have access
to big set of traces, obviously the approaches from Section 2.2.1 are the most
efficient, since they can factor in statistical data about the passing and failing
traces.

However, the approach developed in this thesis only has access to a faulty
trace and a specification for the model. The model-based approaches are
various but generally rely on principle close to causality, by contrasting failing
and passing traces or failing traces with the specified behaviour.

Note that the frontier drawn between the causality-based approaches and
some model-based is a bit arbitrary, since delta-debugging and the model-
checking approaches use a notion of counter-factual, by contrasting the failing
trace with passing traces close to it. This is not surprising, since counter-
factual reasoning is quite intuitive, and very efficient at establishing causal
relations.

However, Section 2.3 showed that generally, using an explicit causality no-
tion, oftentimes Halpern and Pearl one, enhances the performance of existing
approaches. This is due to the fact that an explicit causal relation usually is
good way of determining responsibility or making choices in a fault localisa-
tion or diagnosis setup, since it describes well the links between the failure



2.3. CAUSALITY-BASED APPROACHES 25

and the faults.
This thesis will show further development of the approach introduced

in [Gössler and Le Métayer, 2013]. This approach uses a causality notion
different from Halpern and Pearl that does not relies on structural equation,
which is the major drawback of their causality notion, while coping with
problematic causality examples. What’s more, Section 5 will introduce a way
to mix white-box and black-box fault localisation, which, to my knowledge,
has not been studied.



26 SECTION 2. STATE OF THE ART



Section 3

Causality Analysis framework

In this section, the notions and notations that will be used in the remain-
ing of the thesis will be introduced. The first subsection will focus on the
formalisation of the system, and some general notations. The next one will
contain definitions related to causality, as well as two ways of building the
counter-factuals. The last one will illustrate the causality analysis with var-
ious example, showing some of the issues that can be tackled using causality
analysis.

3.1 Notation and General definitions

Notation Index: The index are generally noted with i, j or k. The set of
values indexes can take are generally noted I. We note [n..m], with n,m ∈ N
for {n, n+1, . . . ,m−1,m}. If n > m, [n..m] = ∅. The boundaries for integer
value will generally be noted with n or m.

Vector: The vectors are are underlined, e.g. v. Let n = |v| be the size
of the vector. v can also be represented as a sequence of values indexed
by [0..n]: v = (vi)i∈[0..n]. We note v[i] = vi the ith value of v. We note
v[n..m] = (vi)i∈[n..m] the subvector of v from the nth to the mth value. For
the sake of conciseness, we note v[n..] for v[n..|v| − 1]. We note () for the
empty vector.

Size and cardinal: The cardinal of a set I is noted |I|. Likewise, the size
of a vector v is noted |v|.

Sequence: The notations defined for vectors (e.g. v[i]) will also be used
for sequences. Let D be a set. We note D∗ for the set of all possible finite
sequences over D. We note Dω the set of all infinite sequences over D.
D∞ = D∗ ∪Dω.

27



28 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

General definitions This paragraph will present the formal definitions of
a system, a trace,. . . that will be used throughout this document.

The base model chosen for this thesis is data flow synchronous language
([Halbwachs et al., 1991a]), like Lustre, Lucid, Signal. . . Those language
are used to program reactive system ([Berry, 1989, Halbwachs et al., 1989]).
A reactive system reacts to the inputs of an environment as fast as the envi-
ronment evolves.
The data flow part refers to a system architecture with components linked
by data flows. Those data flows can be seen as pins, wires or, more generally,
links that carry the data from one component to others . It means that the
components take some input flows and transform them into output flows.
This formalism is well suited to represent circuit, network,. . . The communi-
cation are handled by variable sharing.
The fact that the language is synchronous is an hypothesis that the compu-
tation in the system reacts instantaneously to the environment. It obviously
cannot be true in practice, but if the computation is fast enough, then the
system can react to an event from the environment before another one occurs.

This model was chosen for several reasons. Firstly, it is used in many
safety critical domains, such as aircraft software, nuclear power plant com-
mands or embedded systems in general. Those are domains that would
greatly benefit from causality analysis, as it can help pinpointing the causes
for a failure, using the logs. Another reason is that it is intuitive, and there-
fore easy to understand. This makes the definitions and examples simpler.
Another advantage of this model is the synchronous communications (i.e. the
communication are synchronised on a global clock for the whole systems).
This removes several problems that come with asynchronous communica-
tion, such as interleaving. It means that we can build interesting causality
definitions and framework that can be expanded afterwards to asynchronous
communication models.

However, great care will be taken, in this manuscript, at making the
definitions as independent as possible from the model. The attention of the
reader will be drawn to the definitions that are directly dependent from the
model. Nonetheless, the fact that the two causality frameworks developed in
section 3.2 are adapted from other models ([Gössler and Le Métayer, 2013,
Gössler and Métayer, 2015]) shows a good independence from the model.

Definition 1 (Flow f) A flow f is a tuple (namef , Df ), with namef the
name of the flow and Df its domain.

A flow can be seen as a typed variable, with namef its name and Df its
type. Note that a flow can be shared by different components.



3.1. NOTATION AND GENERAL DEFINITIONS 29

Definition 2 (Possible behaviours B) Let f = (namef , Df ) be a flow,
the possible behaviours on this flow are Bf = D∞f .

By notation abuse, we note BF =

(

×
f∈F

Df

)∞
, with F a set of flows.

A trace over a flow is a sequence of value from domain of the flow (trf ∈
Bf ).

Given a set of flows F, an element tr of BF is called a trace over F. A
trace over F is one of all the possible sequences over F

Example 1 For instance, here is a trace tr over a Boolean flow f :

Time 0 1 2 3
Value true true false true

Which can also noted tr = (true, true, false, true)

Definition 3 (Prefix v) Let tr, tr′ ∈ B be two traces. tr prefixes tr′, noted
tr v tr′, if |tr| 6 |tr′| ∧ tr = tr′[0..|tr| − 1].

We note @ for strict prefixes. tr @ tr′ = tr v tr′ ∧ tr 6= tr′ .
Let F be a set of flows and TR ⊆ BF be a set of traces, TR is prefix-closed

if ∀tr ∈ TR, {tr′ ∈ BF | tr′ v tr} ⊆ TR.
Let F be a set of flows and TR ⊆ BF be a set of traces, its supremum is

defined as follow: sup(TR) = {tr ∈ TR | ∀tr′ ∈ TR, tr 6@ tr′}. Similarly, its
infimum is min(TR) = {tr ∈ TR | ∀tr′ ∈ TR, tr′ 6@ tr}.

Definition 4 (Projection π) Let f ∈ F be a flow and tr = (trg)g∈F be a
trace such that tr ∈ BF, the projection tr over f is πf (tr) = trf .

We also define a projection on a set of flows as follow: let E ⊆ F be a set
of flows and tr = (trg)g∈F be a trace over F. The projection of tr over E is
πE(tr) = (trg)g∈E.

Definition 5 (Upward projection π↑) Let E and F be two sets of flows
such that E ⊆ F, and tr ∈ BE a trace over E. The upward projection of tr
over F is π↑F(tr) = {tr′ ∈ BF | πE(tr′) = tr}

The upward projection consist in projecting on a “bigger” set of flows F than
the one of the trace (E). It raises a set of traces that match the initial traces
on E.

By extension, let TR be a set of traces over E, π↑F(TR) = {tr ∈ BF | ∃tr′ ∈
TR, πE(tr) = tr′}



30 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

Definition 6 (Receptive) Let E and F be two set of flows, such that E ⊆ F
and S ⊆ BF. S is receptive, with respect to E if ∀tr ∈ BE,∃tr′ ∈ S, πE(tr′) =
tr.

Definition 7 (Component C) A component C is a tuple (IC , OC ,SC) with:

• IC the set of its input flows,

• OC the set of its output flows,

• SC its specification. SC is such that SC ⊆ BIc∪Oc, SC is prefix-closed
and receptive with respect to IC

The specification must be prefix-closed because the system evolves step
by step, and if it was not prefix-closed, there would be possible behaviours
that would be allowed, but not reachable in a step-wise manner. E.g. if
(1, 1) ∈ SC , but (1) /∈ SC , it is not possible to reach (1, 1), since the compo-
nent cannot do (1) in the first time-step.
The specification must be receptive so that the component cannot be blocked
by the reception of inputs. This hypothesis alongside the prefix-closed one
implies that any trace generated by the component, that respects the speci-
fication, can be continued, whatever are the inputs.

Note that the receptive hypothesis does not imply that the component
must be able to perform meaningful computation for any inputs. It can
have a fail state if the inputs it is given do not respect certain criteria. For
instance, a square root component could output error if it is given a negative
input.

The component formalisation here is non-deterministic, which is more
general than the data flow synchronous languages. It can be easily changed
to be deterministic, by having the specification be a complete prefix-closed
function from BIc to BOc . However, it does not impact the approach, so for
the sake of generality, non-deterministic specifications are accepted.

Let C be a component, by notation abuse, we write πC for πIC∪OC
and

similarly everywhere the subscript is supposed to be a set of flows.

Property 1 Let C be a component. ∀tr ∈ BC , tr /∈ SC =⇒ ∀tr′ ∈ BC , tr v
tr′ =⇒ tr′ /∈ SC

This property is a direct consequence of the prefix-closed hypothesis on
SC .

This property means that once a component is faulty, it remains faulty.
It means that the specifications behave as a safety property.



3.1. NOTATION AND GENERAL DEFINITIONS 31

Example 2 An example of component would be a pump, that takes in input
a command compump, in the form of a natural, and outputs a volume of liquid
outpump, which is the minimum between the command, and the maximum
output 10. We then have:

• Ipump = (compump,N)

• Opump = (outpump, [0..10])

• Spump = {tr ∈ Bpump | ∀i ∈ [0..|tr|−1], πoutpump(tr[i]) = min(πcompump(tr[i]), 10)}

The specification is clearly both prefix-closed and receptive with respect to IC.

Definition 8 (System S) A system S is a tuple (C,F,P , BM) with:

• C is the set of components of the system.

• F is the set of flows of the system. F =
⋃

C∈C

(IC ∪ OC) such that,

∀f ∈ F,∃C,C ′ ∈ C, (f ∈ OC ∧ f ∈ O′C) =⇒ C = C ′ and ∀f, f ′ ∈
setF, namef = namef ′ =⇒ f = f ′.

• P is a safety property on the system. It is such that P ⊆ BF.

• BM is the behavioural model of the system. BM ⊆ BF prefix-closed.

The hypothesis on the flows, in the second item, means that a flow is, at
most, the output of one component. Each flow must have a unique name,
hence ensuring that no different flows can be equal.
P is a safety property, i.e. if tr /∈ P , then ∀tr′ ∈ BF, tr v tr′ =⇒ tr′ /∈ P .
It means that if the system failed, it will remain in this failing state as the
system evolves.
The behavioural model represents all the possible behaviours that the system
can achieve. It reflects the physical, hardware, software. . . limitations of
the system. Note that contrary to the specification, there is no receptive
hypothesis, as the some system inputs might not be possible to achieve.

Example 3 Here is an example of a system.
The components are the pump presented in example 2 and a tank.

The tank takes outpump in input and outputs the volume it currently contains,
which is the sum of the volume from the pump and the volume the tank
contained on the previous instant. The tank is initially empty. We then have

• Itank = {(outpump, [0..10])}



32 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

• Otank = {(voltank,N)}

• Stank = {tr ∈ Btank | tr 6= () =⇒ πvoltank
[0] = πoutpump [0]) ∧ |tr| >

0 =⇒ (∀i ∈ [1..|tr| − 1], πvoltank
[i] = πvoltank

[i− 1] + πoutpump [i])}

S = (C,F,P , BM), with:

• C = {pump, tank}

• F = {(compump,N), (outpump, [0..10]), (voltank,N)}

• P = {tr ∈ BF | ∀i ∈ [0..|tr| − 1], πvoltank
(tr[i]) 6 5}

• BM = BF

The hypothesis on F is verified, since the outpump is part of two compo-
nents, but is only an output of pump.
P means that the tank should not overflow, if we suppose it has a capacity of
5. Here, there is no restriction on the behavioural model.

3.2 Causality Analysis definitions

As explained in the previous section, the approach developed in this thesis,
uses a counter-factual approach. The approach takes a system, a specification
for each component, a system property, a faulty system trace, and a set of
suspected components as inputs. The faults from the suspected components
are removed from the faulty system trace. The set of all possible traces
prolonging the resulting trace is build, and called the counter-factuals. In
those counter-factuals, the suspected components should behave according
to their specification and no non-faulty component should become faulty. A
causality definition is then checked on those counter-factuals.

Example 4
Let us illustrate a very naive way of applying this approach to an exam-
ple. The system we consider is the one described in example 3, composed
of a pump and a tank, with P being that the tank should not overflow, i.e.
voltank 6 5 at all time.

The correct scenario is the following, the tank is initially empty (voltank =
0), the command asks the pump to deliver 2 during 2 time-frame, and then
to stop. In the end the tank should have voltank = 4, which does not violate
the property.



3.2. CAUSALITY ANALYSIS DEFINITIONS 33

Time 0 1 2 3
compump 0 2 2 0
outpump 0 2 2 0
voltank 0 2 4 4

The faulty scenario is the same, except the pump does not stop at the
instant 3 and outputs 2. The tank then overflows, as it volume become 6.
The component faults are underlined, the system property violation are in
red. This convention will be used throughout this manuscript.

Time 0 1 2 3
compump 0 2 2 0
outpump 0 2 2 2
voltank 0 2 4 6

The set of suspected components is {pump}, since it is the only one that
is faulty. We start by removing the fault from this component, which gives
us the following trace:

Time 0 1 2 3
compump 0 2 2 0
outpump 0 2 2
voltank 0 2 4 6

This trace is problematic, as we cannot build a consistent trace where the
pump behaves accordingly to its specification as outpump should be 0 at time 3,
but it would make the tank faulty, as voltank should then be 4. Therefore, we
need a way of assessing the impact of the faults from the suspected components
on the rest of the system. What our intuition tells us here is that if we remove
the faulty value for the pump, we must also remove the resulting 6 for voltank,
since the value of voltank depends on outpump, leading to the following trace:

Time 0 1 2 3
compump 0 2 2 0
outpump 0 2 2
voltank 0 2 4

From this pruned trace, we can build the correct scenario. By fixing the
behaviour of the pump, the failure does not happen in the counter-factuals,
then {pump} is a necessary cause (it is necessary for pump to be faulty for
the failure to happen). Other causality definition will be presented later in
this section.



34 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

This section will be divided in three subsections. The first one will present
the general principle of causality analysis. The next ones will present two
approaches that instantiate this general principle. The first one is adapted
from [Gössler and Le Métayer, 2013]. It relies on the construction of a cone
of influence that over-approximates the impact of the component faults on the
rest of the system. This approach is both easy to understand and apply, but
sometimes results in causality analysis that does not match the intuition.
The second approach is adapted from [Gössler and Métayer, 2015], which
enhances [Gössler and Le Métayer, 2013], by being less pessimistic on the
impact of the faults on the rest of the system, resulting in more intuitive
results for causality analysis.

3.2.1 General principle of Causality Analysis

As explained previously, the idea of the causality analysis approach is to build
counter-factuals from a failing trace, using the specification of the system to
complete the part of the trace that have been removed. We assume we are
given a system S = (C,F,P , BM). The counter-factuals will be noted CF .
CF takes a trace tr and a set of suspected components I as arguments. Here
are some properties over the counter-factuals that hold for every instanciation
of the causality analysis framework.

Requirement 1 (Behaviour enforcement) CF ⊆ BM .

Trivially, the counter-factuals should be possible behaviours of the system.

Requirement 2 (No fault introduction) ∀C ∈ C, πC(tr) ∈ SC =⇒
πC(CF (tr, I)) ∈ SC.

The CF cannot “break” components which were behaving according to their
specification. It means that the construction of the counter-factual does not
introduce any fault. Note that the hypothesis that the specifications are
receptive is important here, so that we can always prolong traces, without
violating the specifications.

Requirement 3 (Suspect repair) ∀C ∈ C, C ∈ I =⇒ ∀tr′ ∈ CF (tr, I), πC(tr′) ∈
SC.

The counter-factuals should respect the specification of the components in
I. It means that the counter-factuals remove the faulty behaviours from the
suspected components. Removing the faults of the suspected components is
the core idea of the approach. This requirement enforces this idea.



3.2. CAUSALITY ANALYSIS DEFINITIONS 35

Requirement 4 (No impact from non-faulty components) ∀(I, I ′) ∈
C, I ⊆ I ′ ∧ (∀C ∈ I ′ \ I, πC(tr) ∈ SC) =⇒ CF (tr, I) = CF (tr, I ′).

This means that components that respect their specification do not impact
the CF . This is important, as we only want to blame components that are
faulty.

Requirement 5 (Conservation of the non-impacted trace parts)

∀C ∈ (C \ (I), C not "impacted" by the faults from I
=⇒ πC(CF (tr, I)[0..|tr| − 1]) = πC(tr)

Note that this definition is not formal, since natural language is used in it.
It is due to the fact that the way of assessing the impact of the faults on the
rest of the system is the difference between the instanciations of causality
analysis. This hypothesis is central in making this approach counter-factual,
as it means that we want to stay as close as possible to the initial trace, by
not modifying its “non-impacted” parts.

Once the construction of the counter-factual has been defined, we can
build different definitions of causality. For all the remaining definitions in
this subsection, we assume we are given a system S = (C,F,P , BM), a
failing trace tr such that tr ∈ BM \ P , and a set of suspected components
I ∈ C.

Definition 9 (Weak Necessary Causality (necweak)) I is a weak neces-
sary cause for the failure in tr, noted necweak(tr, I) if CF (tr, I) ∩ P 6= ∅.

A set suspected component I is a weak necessary cause of the failure
in tr if some traces in the counter-factuals, where the component in I have
been fixed, respect the property. It means that removing the faults from the
components in I sometimes makes it possible to avoid the failure.

Definition 10 (Necessary Causality (nec)) I is a necessary cause for
the failure in tr, noted nec(tr, I) if CF (tr, I) ⊆ P.

A set of suspected components I is a necessary cause of the failure in tr if all
the traces in the counter-factuals, where the component in I have been fixed,
respect the property. It means that removing the faults from the components
in I always avoids the failure. It is a necessary cause, as it is necessary that
those components’ faults are there, in order for the failure to happen.
This notion of causality is stronger that the weak one (CF (tr, I) ⊆ P) =⇒
CF (tr, I) ∩ P 6= ∅, therefore, nec(tr, I) =⇒ necweak(tr, I).



36 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

Definition 11 (Sufficient Weak Cause (suffweak)) I is a weak sufficient
cause for the failure in tr, noted suff(tr, I), if sup(CF (tr,C \ I)) 6⊆ P
A set of suspected components I is weak sufficient cause of the failure in tr if
some finished traces in the counter-factuals, where the components not in I
have been fixed, do not respect the property. It means that repairing all the
components, but those in I, does not always fix the system. Note that the
sup here is important, as the prefixes of the longest traces may be non-failing
(for instance, the empty trace is non-failing). We want to check that their
are some traces for which the system eventually fails.

Definition 12 (Sufficient Cause (suff)) I is a sufficient cause for the fail-
ure in tr, noted suff(tr, I), if sup(CF (tr,C \ I)) ∩ P = ∅
A set of suspected components I is sufficient cause of the failure in tr if
all the traces in the counter-factuals, where the components not in I have
been fixed, do not respect the property. It means that repairing all the
components, but those in I, does not fix the system. We check that for all
traces, their is eventually a system failure. It is a sufficient cause, since the
faults of the components in I are enough to make the system fail.
This notion of causality is stronger that the weak one ((CF (tr,C \ I)∩P =
∅) =⇒ CF (tr,C \ I) 6⊆ P , therefore, suff(tr, I) =⇒ suffweak(tr, I).

Example 5 If the take the example 4, presented earlier in this section, with
the pump and the tank. The failing trace is:

Time 0 1 2 3
compump 0 2 2 0
outpump 0 2 2 2
voltank 0 2 4 6

As we saw previously, I = {pump} fixes the system, i.e. CF (tr, {pump}) ∈
P. Then, {pump} is a necessary cause.

Given the “non-impact from non-faulty components” (requirement 4), CF (tr, {pump, tank}) =
CF (tr, {pump}), since πtank(tr) ∈ Stank. Then {pump, tank} is also a nec-
essary cause. Note that we used a requirement to derive that {pump, tank}
was a necessary cause, but in the general, a superset of a necessary causes is
not always a necessary cause itself.

From requirement 4, it also follows that CF (tr, {tank}) = CF (tr, ∅).
Given “the conservation of the non-impacted trace parts” (requirement 5),
CF (tr, ∅) = {tr}. Since no component has been repaired, the trace has not
been impacted, and thus remains the same. We then have suff(tr, {pump, tank})
and suff(tr, {pump}), since CF (tr,C \ {pump, tank}) = CF (tr, ∅) = {tr},
CF (tr,C \ {pump}) = CF (tr, {tank}) = {tr} and tr /∈ P.



3.2. CAUSALITY ANALYSIS DEFINITIONS 37

Property 2 Given a system S = (C,F,P , BM). Let tr ∈ BM \ P be a
faulty trace, and I ⊆ C. nec(tr, I) =⇒ ¬ suff(tr,C\I) and suff(tr, I) =⇒
¬ nec(tr,C \ I).

The proof is derived from the definitions of causality. nec(tr, I) = CF (tr, I) ∈
P and suff(tr,C \ I) = CF (tr,C \ (C \ I))∩P = ∅) = (CF (tr, I)∩P = ∅).
Since CF (tr, I) ∈ P =⇒ ¬(CF (tr, I) ∩ P = ∅), and thus the first part of
the property. The second one is proved similarly.

This property means that if I is a necessary (resp. sufficient) cause, the
complementary of I is not a sufficient (resp. necessary) cause.

Note that all the definitions and properties from this subsection are inde-
pendent from the model chosen. They only rely on the fact that the system
is made of components (C) with a specification (SC), that there is a system
property (P), that the system has a set of possible behaviours (BM), and
the ability to project a system trace on a component (πC). As long as SC ,
P and BM are sets of traces, the definitions hold. All those elements should
be provided by the chosen model, which is usually true.

Definition 13 (Well-designed system) Let S = (C,F,P , BM) be a sys-
tem. S is well-designed if

⋂

C∈C

π↑F(SC) ⊆ P.

A well-designed system is a system where the composition of the specifi-
cation refines the system property. Here, the composition is simple, since the
communications are done by variable sharing, but a constraint representing
the communication might be necessary for other models. However, this def-
inition can be generalised, by requesting a composition definition alongside
the system model.

Theorem 1 (Soundness) If the system is well-designed, each cause con-
tains a component that is faulty.

Proof 1 Let S = (C,F,P , BM) be a system, and tr a failing trace over this
system.
Let I be a necessary cause, such that ∀C ∈ I, πC(tr) ∈ SC. By requirement 4
(no impact from non-faulty components), CF (tr, I) = CF (tr, ∅). By require-
ment 5 (conservation of the non-impacted trace parts), CF (tr, ∅) = {tr}.
Thus, CF (tr, I) 6⊆ P, which is a contradiction, since I is a necessary cause.
Let I be a sufficient cause, such that ∀C ∈ I, πC(tr) ∈ SC. It means that
I ′ = C \ I contains all faulty components. Thus, by requirement 3 (sus-
pect repair), ∀C ∈ I ′,∀tr′ ∈ CF (tr, I ′), πC(tr′) ∈ SC. By requirement 2
(no fault introduction), ∀C ∈ I,∀tr′ ∈ CF (tr, I ′), πC(tr′) ∈ SC. Then,



38 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

∀C ∈ C,∀tr′ ∈ CF (tr, I ′), πC(tr′) ∈ SC. Hence, since the system is well-
designed, CF (tr, I ′) ⊆ P, which is a contradiction. Since sup(CF (tr, I ′)) ⊆
CF (tr, I ′), sup(CF (tr, I ′)) ∈ P, which is a contradiction.

Note that the proof of soundness for the necessary cause does not use the
well-designed hypothesis, and is then a general result.

Theorem 2 (Completeness) If the system is well designed, each violation
of P has at least one necessary and at least one sufficient cause.

Proof 2 Let S = (C,F,P , BM) be a system, and tr a failing trace over this
system.
Let I be C. By requirement 5, CF (tr,C\C) = CF (tr, ∅) = {tr}. {tr}∩P =
∅, hence I is a sufficient cause to the failure in tr.
Let I be C. With the same reasoning as for the sufficient cause soundness
proof, ∀C ∈ C,∀tr′ ∈ CF (tr,C), πC(tr′) ∈ SC. Given the well-designed
hypothesis, CF (tr,C) ⊆ P, and I is a necessary cause.

Symmetrically to the soundness proof, the sufficient cause completeness
proof does not rely on the well-designed hypothesis, and is thus a general
result.

3.2.2 Cone of influence approach

This subsection presents an instanciation of causality analysis adapted from
[Gössler and Le Métayer, 2013]. The idea is to build a cone of influence span-
ning from the first fault of each suspected component, and adding to the cone
each component after it received data from a component in the cone. The
parts which are not in the cone are removed, and the counter-factuals are
built from this pruned trace. The cone is a coarse over-approximation of the
impact of the faults of the suspected components on the system, but is both
intuitive and easy to build.

Definition 14 (Cone of influence cone) Given a system S = (C,F,P , BM).
Let tr ∈ BM \ P be a faulty trace, and I ⊆ C. cone(tr,P) = (coneC)C∈C is
the vector of maximal indexes such that, ∀C ∈ C:

C ∈ I =⇒ coneC 6 fvC(tr) ∧ (3.1)

∀f ∈ IC ,∀C ′ ∈ C, coneC′ 6 fvC(tr) ∧ f ∈ OC′ =⇒ coneC 6 coneC′ (3.2)

With fvC(tr) = min({i ∈ [0..|tr| − 1]|πC(tr[0..i]) /∈ SC} ∪ {|tr|}



3.2. CAUSALITY ANALYSIS DEFINITIONS 39

fvC(tr) returns the index of the first violation of component C specification
in tr, or |tr| if SC is not violated in tr.
The constraint 3.1 makes sure that the suspected components enter the cone
at the latest when they violate their specification. It means that the cone
necessarily contains every violation of SC , if C is a suspected component.
Constraint 3.2 means that a component that is not faulty at a given time-
step, and receives data from a component inside the cone must be in the cone
as well.
The maximality of the indexes ensures that we make the component enter
the cone as late as possible.

This definition is not independent from the model chosen. However it can
easily be generalised by replacing constraint 3.2 as follow:

∀f ∈ IC ,∀C ′ ∈ C,
comm(C ′, C, lc′) 6 fvC(tr) ∧ f ∈ OC =⇒ lC 6 comm(C ′, C, lc′)

with comm(C ′, C, lc′) the minimum index such that C receives data from
C ′ sent at or after the instant lC′ , or |tr| if no communication occurs after lC′ .
Since the communications are synchronous and done by sharing a flow, the
first instant a component C receives data from a component C ′ at instant t
or after is either t if one of the output flow of C ′ is an input flow of C, or
|tr|. This gives us a definition equivalent to constraint 3.2.

Definition 15 (Cone Counter-factuals CFcone) Given a system S = (C,
F,P , BM). Let tr ∈ BM \P be a faulty trace, and I ⊆ C. Let cone(tr,P) =
(coneC)C∈C. The counter-factuals are defined as follow:

CFcone(tr, I) = {tr′ ∈ BM | ∀C ∈ C,

πC(tr[0.. coneC −1]) = πC(tr[0.. coneC −1]) ∧ (3.3)

πC(tr[0.. coneC −1]) ∈ SC =⇒ πC(tr′) ∈ SC} (3.4)

Constraint 3.3 makes sure that the projection of the counter-factual traces
of each component begins with the prefix of the initial trace not in the cone,
i.e. the non-impacted parts of the trace are kept as they were in the initial
trace.
Constraint 3.4 ensures that a component that respects its specification in the
pre-cone portion of the trace, does so on all the counter-factual traces.

Example 6 We apply the counter-factuals construction using cone to exam-
ple 4. We still have a system composed of a pump and a tank, with a faulty
trace as follow:



40 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

Time 0 1 2 3
compump 0 2 2 0
outpump 0 2 2 2
voltank 0 2 4 6

cone(tr, {pump}) = (3, 3). At time-step 3, pump enters the cone, as it
does not respect its specification. Since tank receives data from pump, it
enters the cone as soon as pump does, that is at time-step 3. If we build
the counter-factuals from this cone, we get the correct scenario, as expected.
{pump} then is a necessary cause.

cone(tr, {tank}) = (4, 4). tank never enters the cone. Since a non-
suspected component can enter the cone only if it receives data from a com-
ponent in the cone, pump never enters the cone. CF (tr, {tank}) = {tr} and
{tank} is not a necessary cause, as expected.

cone(tr, {pump, tank}) = cone(tr, {pump}) = (3, 3). Since pump never
enters the cone by being faulty, it enters the cone when receiving potentially
“corrupted” data from the faulty pump. This illustrates the “No impact from
non-faulty components requirement” (4).

This definition of counter-factuals does respect the requirements we de-
fined from the counter-factuals:

Behaviour enforcement (requirement 1): Trivially, CF ⊆ BM .

No fault introduction (requirement 2): A component is either non-faulty
in the prefix to the cone, or does not enter the cone (Constraints 3.1
and 3.2). Therefore, the counter-factuals only build trace where the
component trace is left as it was, or a non-faulty part of the trace is
prolonged with a non-faulty behaviour (constraint 3.4). Thus no fault
is introduced.

Suspect repair (requirement 3): Constraint 3.1 ensures that the prefix
of the initial trace for the suspected components trace is fault free.
Constraint 3.4 ensures that the prolongation remains in the specifica-
tion of the components. Accordingly, the suspected components are
repaired in the counter-factuals.

No impact from non-faulty components (requirement 4): Constraint
3.1 only has an impact if the suspected component is faulty, as fvC(tr) =
|tr| if the component is non-faulty. Therefore cone(tr, I) = cone(tr, I∪
{C}) if C is non-faulty. It follows that CF cone(tr, I) = CF cone(tr, I∪
{C}), which is the requirement.



3.2. CAUSALITY ANALYSIS DEFINITIONS 41

Conservation of the non-impacted trace part (requirement 5): The
cone computes the part of the trace that are considered impacted, and
constraint 3.3 ensures that the non-impacted parts of the trace are kept
as the initial trace, hence enforcing this requirement.

3.2.3 Unaffected prefix approach

This approach differs from the cone construction by the fact that, after re-
moving the faults from the faulty components, it shortens the traces of each
component if there is no consistent global trace for those components. It
uses the behavioural model to give keep a longer part of the initial trace,
thus being less pessimistic than the cone approach.

Definition 16 (Partial trace) Let C be a set of components. tr is a partial
trace over BC if ∃tr′ ∈ BC,∀C ∈ C, πC(tr) v πC(tr′).

A partial trace is a trace that may not have the same length on each com-
ponent.

We note BpartialF for the set of all partial traces over the set of flows F

Definition 17 (Critical prefix cp) Given a system S = (C,F,P , BM).
Let tr ∈ BM \P be a faulty trace, and I ⊆ C. The critical prefix is a partial
trace cp(tr, I) ∈ BpartialF such that:

(∀C ∈ C \ I, πC(cp(tr, I)) = πC(tr)) ∧

∀C ∈ I, (πC(cp(tr, I)) v πC(tr) ∧ πC(cp(tr, I)) ∈ SC∧
∀i ∈

[
(|πC(cp(tr, I))|+ 1)..(|tr| − 1)

]
πC(tr[0..i]) /∈ SC

The critical prefix is the partial trace for which the trace of the component
not suspected are left untouched, and the traces of the suspected component
are the longest that respect their specification.

Definition 18 (Trace extension (extend)) Let C be a component, and
tr, tr0 ∈ BC be traces over that component.

extendC(tr0, tr)

{
{tr′ ∈ SC | tr v tr′} if tr 6= tr0 ∧ tr ∈ SC
{tr} otherwise

The trace extension takes an initial trace tr0 and a trace tr to extend. If the
tr is different from the initial trace, and respects the component specification,
the trace extension is the set of all traces of the component specification that
are prefixed by tr. Otherwise, it returns tr.



42 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

Definition 19 (Unaffected prefixes UP ) Given a system S = (C,F,P,
BM). Let tr ∈ BM \P be a faulty trace and I ⊆ C. We define the unaffected
prefixes as follow. ∀C ∈ C,

tr1C = πC(cp(tr, I))

And ∀C ∈ C,∀j > 1:

trj+1
C = max{tr′ ∈ BC | tr′ v trji ∧ (∃tr′′ ∈ Bj, tr′ v tr′′}

Where Bj = sup{tr′ ∈ BM | ∀C ∈ C,∃trC ∈ extendC(πC(tr), trjC), πC(tr′) v
trC}

Let UP (tr, I) = tr′ ∈ BpartialF such that ∀C ∈ C, πC(tr′) = tr∗C, with
tr∗C = min

j
(trjC) be the partial trace that is unaffected by the failures of the

components in I.

Intuitively, the unaffected prefixes are built by removing the fault from
the suspected components, and then shortening the traces of the different
components. For each component, if the trace cannot be extended, the pre-
fixes are shortened. Then the impact of those changes is checked, and the
process is repeated if needed. Bj has a central role in checking whether a
trace can be extended or not. It corresponds to all the traces such that, for
each component, a trace from Bj prefixes a possible extension of the trace
for this component.
The result is a partial trace that could have been observed (i.e. there are
possible traces that are consistent with this partial traces) if the suspected
components would not have been faulty. The “suffixes” of this partial trace
have been impacted by the faults of the suspected components.

Definition 20 (Cone from unaffected prefixes (coneUP )) Given a sys-
tem S = (C,F,P, BM), tr ∈ BM \ P be a faulty trace and I ⊆ C. Let
UP (tr, I) be the unaffected prefixes. coneUP = (coneC)C∈C is a vector of
indexes such that, ∀C ∈ C,

coneC = |πC(UP (tr, I))|

As shown in this definition, it is very easy to go from the unaffected pre-
fixes to the cone, and vice-versa. Therefore, we can use the definition 15 of
counter-factuals from the cone approach.

The detail of the reasons why this instantiation of the causality framework
enforces the requirements will not be given, as the arguments are very similar



3.3. EXAMPLES 43

to the one given for the cone approach. Indeed, we have the same way of
building the counter-factuals and the unaffected prefixes do not contain the
faults from the suspected components (corresponding to constraint 3.1) for
the cone, neither the parts of the trace that are impacted by those faults
(corresponding to constraint 3.2 for the cone). Those are the only things we
used to prove that the properties were enforced, and therefore the proofs are
similar.

Similarly to the cone approach, the unaffected prefix one is independent
from the model. It relies on the same parts of the system as the cone one.
It is even “more” independent, as it has no need for a comm function, since
the communication check is embedded in the use of global traces during the
construction of the unaffected prefixes.

3.3 Examples

This subsection presents problematic examples, which will be treated with
both the cone and the unaffected prefixes approaches.

Example 7 (Non-suspected faulty component) This example illustrates
the fact that the unaffected prefixes are a tighter over-approximation of the
impact of the faults on the rest of the system than the cone one, and that it
deals better with non-suspected faulty components

This example has the same architecture as the running example 4, with
the pump and the tank. Here, we restrict the behavioural model, by adding
a constraint that reflects the fact that the tank cannot “create water”, i.e.
∀tr ∈ BM, ∀i ∈ [0..|tr| − 1], voltank[i] 6 voltank[i − 1] + outpump[i], with
voltank[−1] = 0, by convention. This constraint means that volume in the
tank is, at most, the previous volume, plus the water pumped into it.

The scenario is the following failing trace tr:

Time 0 1 2 3 4
compump 0 2 2 0 0
outpump 0 2 2 2 2
voltank 0 2 3 5 7

At the instants 3 and 4, the pump keeps pumping. At instant 2 the tank leaks
1, postponing the system failure by one instant. Our intuition is that the tank
is not a cause, as its fault actually delays the property violation (i.e. the tank
overflowing). On the other hand, pump should be a cause, as it should have
stopped, hence preventing the overflow. Out of the multiple faults, we want



44 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

to know which ones or which combinations of faults are responsible for the
systems failure.

Let us build the counter-factuals with the cone.
If only the pump is suspected, cone(tr, {pump}) = (3, 5). The tank never
enters the cone, as it is faulty upon receiving data from the faulty pump.
Whatever we do, since the failure is not in the cone, the counter-factuals will
necessarily be failing. Hence, CF (tr, {pump}) /∈ P and {pump} is not a
cause, which does not match our intuition.

If only the tank is suspected, cone(tr, {tank}) = (5, 2). The counter-
factuals are then

Time 0 1 2 3 4
compump 0 2 2 0 0
outpump 0 2 2 2 2
voltank 0 2 4 6 8

The failure actually happens earlier, and {tank} is not a cause, which matches
our intuition.
{pump, tank} is a necessary cause, as all the faults are removed (cone(tr, {pump, tank}) =

(3, 2)), we end up the following non-failing scenario:

Time 0 1 2 3 4
compump 0 2 2 0 0
outpump 0 2 2 0 0
voltank 0 2 4 4 4

Now, let us try with the unaffected prefixes.
If only pump is suspected, we have the following unaffected prefixes:

Time 0 1 2 3 4
compump 0 2 2 0 0
outpump 0 2 2
voltank 0 2 3

The projection of the trace over voltank is shorten, as the only possible value
for outpump[3] is 0, and voltank[3] = 5 which is greater than voltank[2] +
outpump[3] = 3 + 0 = 3. Since this is not a possible trace in BM , we re-
move this part of the trace.
Then CF (tr, {pump}) are the traces such that:

Time 0 1 2 3 4
compump 0 2 2 0 0
outpump 0 2 2 0 0
voltank 0 2 3 [0..3] [0..voltank[3]]



3.3. EXAMPLES 45

Here, for concision’s sake, some values are actually sets of possible values for
the flow, at a given instant. We then represent a set of traces, instead of a
unique one.
The values of voltank always remain lesser than 3, given the constraint in
BM . All those traces are non-failing, thus {pump} is a necessary cause, as
expected.

In a similar fashion to the cone approach, {tank} is not a necessary cause,
and {pump, tank} is.

The unaffected prefixes approach gives us a more intuitive result here be-
cause it uses the information given by BM to build the unaffected prefixes.
The part of the trace for voltank at instant 3 and 4 is removed because there is
no possible behaviour of the system, where the pump is not faulty that would
be consistent with the values of voltank at instant 3 and 4 in the initial trace.
What’s more, we do not need an explicit way of knowing when components
communicate, contrary to the cone approach, because it is embedded in BM .

This example also illustrates the fact that the causality analysis approach
can tackle the problem of faults that do not cause the failure, but delays it.
In this example, the result of the analysis matches the intuition, as tank is
not a necessary cause, nor a sufficient cause (since {pump} = C \ {tank} is
a necessary cause).

Example 8 (Causal over-determination) We consider a system similar
to the running example 4, where there are two pumps.

The definition of the system is the following. The set of components is
{pump1, pump2, tank}. The two pumps have the same definition as in 4. We
just add 1 and 2 to differentiate them.
The new definition for tank is the following:

• Itank = {(outpump1 , [0..10]), (outpump2 , [0..10])}

• Otank = {(voltank,N)}

• For simplicity sake, we define voltank[−1] = 0. Stank = {tr ∈ Btank |
∀i ∈ [0..|tr| − 1], voltank[i] = voltank[i− 1] + outpump1 [i] + outpump2 [i])}

The system definition is S = (C,F,P , BM), with:

• C = {pump1, pump2, tank}

• F = {compump1 , outpump1 , compump2 , outpump2 , voltank}

• P = {tr ∈ BF | ∀i ∈ [0..|tr|], πvoltank
(tr[i]) 6 5}



46 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

• BM = {tr ∈ BF | ∀i ∈ [0..|tr| − 1], πvoltank
(tr[i]) 6 πvoltank

(tr[i − 1]) +
πoutpump1

(tr[i]), πoutpump2
(tr[i]))}

The specification is similar to the one pump case, the volume inside the tank
is the sum of the previous volume, plus the volume pumped by the two pumps.

The scenario is the following failing trace:

Time 0 1 2
compump1 0 2 0
outpump1 0 2 2
compump2 0 2 0
outpump2 0 2 2
voltank 0 4 8

If the set of suspected components is {pump1}, the counter-factuals are
the following (with the cone and the unaffected prefixes):

Time 0 1 2
compump1 0 2 0
outpump1 0 2 0
compump2 0 2 0
outpump2 0 2 2
voltank 0 4 6

The failure still occurs, therefore {pump1} is not a necessary cause, but
{pump2} and {pump2, tank} are sufficient causes.

Symmetrically, we have {pump2} is not a necessary cause, but {pump1}
and {pump1, tank} are sufficient causes.

If the set of suspected components is {pump1, pump2}, the counter-factuals
are the following:

Time 0 1 2
compump1 0 2 0
outpump1 0 2 0
compump2 0 2 0
outpump2 0 2 0
voltank 0 4 4

Where the failure does not occur. Therefore, {pump1, pump2} is a necessary
cause, and {tank} is not a sufficient cause (which is trivial, since tank is
not faulty).

This example illustrates the concept of causal over-determination. It
means that both pump1 and pump2 fault are enough to make the system fail,



3.3. EXAMPLES 47

which is reflected by the fact that they are sufficient causes (fixing every com-
ponent but one of the pumps still leads to a failure). Therefore, in order to fix
the system, you need to fix both pump1 and pump2, which is reflected by the
fact that {pump1, pump2} is a necessary cause (fixing both pumps prevents
the failure from happening).

Example 9 (Joint causation) We consider a similar system to the two
pumps example 8, where the tank loses two units of liquid per unit of time
(there is a fix output flow of liquid from the tank).

The pumps have the same definition as in 8.
The new definition for tank is the following:

• Itank = {(outpump1 , [0..10]), (outpump2 , [0..10])}

• Otank = {(voltank,N)}

• For simplicity sake, we define voltank[−1] = 0. Stank = {tr ∈ Btank |
∀i ∈ [0..|tr|−1], voltank[i] = max(0, voltank[i−1]+outpump1 [i]+outpump2 [i])−
2)}

The system definition is S = (C,F,P , BM), with:

• C = {pump1, pump2, tank}

• F = {compump1 , outpump1 , compump2 , outpump2 , voltank}

• P = {tr ∈ BF | ∀i ∈ [0..|tr|], πvoltank
(tr[i]) 6 5}

• BM = {tr ∈ BF | ∀i ∈ [0..|tr|−1], πvoltank
(tr[i]) 6 max(0, πvoltank

(tr[i−
1]) + πoutpump1

(tr[i]) + πoutpump2
(tr[i]))− 2)}

The scenario is following failing trace:

Time 0 1 2 3
compump1 0 2 2 0
outpump1 0 2 2 2
compump2 0 2 2 0
outpump2 0 2 2 2
voltank 0 2 4 6

At instant 3, both pumps do not stop, thus overflowing the tank.
Let us build the counter-factuals (with the same result with both approaches)

for I = {pump1}.



48 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

Time 0 1 2 3
compump1 0 2 2 0
outpump1 0 2 2 0
compump2 0 2 2 0
outpump2 0 2 2 2
voltank 0 2 4 4

The failure does not occur anymore, so {pump1} is a necessary cause. Sym-
metrically, {pump2} is a necessary cause.

Similarly, {pump1, pump2} is a necessary cause. And since tank is not
faulty, CF (tr, {tank}) = {tr}, and since tr is faulty, C\{tank} = {pump1, pump2}
is a sufficient cause. However, {pump1} and {pump2} are not sufficient
causes, since {pump2} and {pump1} (and thus {pumpi, tank}) are necessary
causes.

This example illustrates the joint causality, i.e. a set of components that
must be faulty together in order to make the system fail. It means that fix-
ing one pump fixes the system, which is showed by the fact that {pump1}
and {pump2} are necessary causes. What’s more, the combined fault of the
two components is enough to make the system fail, which is reflected by the
fact that {pump1, pump2} is a sufficient cause. However, nor {pump1} or
{pump2} are sufficient causes, since repairing one pump ensures that the
system property is not violated anymore.

Example 10 (Early preemption) We go back to the over-determination
example (8), but add another constraint to the behavioural model. It defines
the behaviour of the faulty pumps as stuck, i.e. they keep outputting the same
value once they are faulty. We add the following constraint to the BM :
∀tr ∈ BM, ∀i ∈ [0..|tr| − 1], ∀k ∈ {1, 2}, πoutpumpk

(tr)[O..i] /∈ Spumpk =⇒
∀l ∈ [i..|tr| − 1], πoutpumpk

(tr)[l] = πoutpumpk
(tr)[i]

The scenario is the following failing trace:

Time 0 1 2
compump1 0 0 0
outpump1 0 0 4
compump2 0 0 0
outpump2 0 2 2
voltank 0 2 8

Let us build the counter-factuals for I = {pump1}:



3.3. EXAMPLES 49

Time 0 1 2 3
compump1 0 0 0 0
outpump1 0 0 0 0
compump2 0 0 0 0
outpump2 0 2 2 2
voltank 0 2 4 6

We build counter-factual that are longer than the initial trace. We suppose
that the input for each pump will remain 0 for all instant after instant 2, in
order to respect the property.

Here there are two ways to consider the counter-factuals. We either con-
sider infinite traces, or we stop it as soon as the initial trace ends. In the
infinite trace, pump1 is not a cause, as the failure eventually happens. In
the case of a length 3 trace, pump1 is a cause, as the failure does not happen
anymore.

This notion is called early preemption. pump2 would have eventually
caused the failure, but the failure of pump1 was so severe that it ended up mak-
ing the system fail before pump2 would have. This notion of early preemption
is important in a legal framework, as pump1 would generally be considered
as responsible, and not pump2. However, in a design context, or in a post-
mortem analysis, the fact the the failure would eventually have happened is
generally more interesting. By choosing if we consider infinite or initial trace
size counter-factuals, we can address both problems.

Example 11 (Non-monotonicity of the causality analysis) Let us con-
sider a very simple example with three components C1, C2, C3. Each com-
ponent Ci has an output outi, that should always be true. The property is
P = (out1 ⇔ out2) ∧ out3. This example has no temporal aspect, so we will
just consider one instant traces as vectors (out1, out2, out3).

The failing scenario is that all components output false. Then P = false.
Let us consider I = {C3}, then the counter-factual is (false, false, true),

P = (false⇔ false) ∧ true = true. Therefore, {C3} is a necessary cause.
Now, let us add C1 to the suspects. The counter-factual is (true, false, true),

and thus P = false. Even-though {C3} is included in {C2, C3}, {C2, C3} is
not a necessary cause, whereas {C3} was. It shows that causality is not mono-
tonic, with regard to the suspect set inclusion. The explanation here is simply
that the error of C1 is compensated by the one of C2, as false⇔ false = true,
which explains the non-monotonicity.

Note, that we can build a similar example for sufficient causality, as the
non-monotonicity stems from the counter-factuals construction, which is used
in both causality definitions.



50 SECTION 3. CAUSALITY ANALYSIS FRAMEWORK

Conclusion

This section presented the causality analysis principle, and two instantiations
of it. As shown in the example subsection, the approach is able to give an
intuitive result to all the problematic examples presented here, and inspired
from the ones of [Halpern and Pearl, 2001b]. Though simpler and more intu-
itive, the cone approach makes a coarser approximation that the unaffected
prefixes one, sometimes leading to counter-intuitive results.



Section 4

Implementation of the Causality
Analysis Framework for a
synchronous language

This section will present the Loca tool, developped by Gregor Gössler and
Lacramioara Astefanoaei, that implements the unaffected prefixes approach,
as well as an instantiation of the tool to the Lustre programming language.

This section will be divided in three subsection. The first one will present
the restricted Lustre language instantiated in Loca. The next one will
present the model transformation from Lustre to SMT. The last one will
detail how the functions from Loca have been instantiated to Lustre.

The contributions from this section are the instantiation of a restricted
version of Lustre into Loca, as well as a translation of restricted Lustre
into SMT that is suitable for prefixing the specifications with traces.

4.1 The Lustre synchronous language

The Lustre language was introduced in [Halbwachs et al., 1991b]. It a syn-
chronous data flow language, as presented in section 3.1. It has the particu-
larity to be functional, which gives it the property to be deterministic both
temporally and data-wise.

What was implemented is a subset of the Lustre language, that will
be referred as “restricted Lustre”. The main differences are that restricted
Lustre does not support current and when operators, the use of library,
external functions, arrays, custom types and declaring a constant without
declaring its type (it would add to type-check steps, which would be costly
for a not very important feature). Note that the library calls and array can

51



52 SECTION 4. IMPLEMENTATION

be emulated by, respectively, copying the functions/nodes called in the lustre
file, and replacing the arrays by several variables (since Lustre only supports
fix size arrays). current and when are , respectively, the up-sampling and
down-sampling operators. The reason we do not support multiple clocks is
not to have to perform clock calculus.

The idea of restricted Lustre is to keep the core of Lustre, while remov-
ing some features that would necessitate to compile the programs. Removing
the up and down-sampling operators reduces the possible problems that can
captured restricted Lustre. However, there are still a lot of interesting
examples and causal problems that can be model by restricted Lustre.

The rest of this subsection will present Lustre features that are provided
by restricted Lustre, as well as the syntax of restricted Lustre.

The two basic entities of and Lustre are the flows, presented earlier,
and nodes. The nodes can be seen as components.

Example 12 (Lustre node) Here is an example of the translation of the
pump from example 4 into a Lustre node:

node pump(com_pump: int) returns (out_pump: int);
let

out_pump = min(10, com_pump);
assert com_pump >= 0;

tel;

Node is a key-word that marks the beginning of the node. pump is the name
of the node. (com_pump : int) are the inputs of the node. After the colon,
the type of the variable is given. Lustre supports the Boolean, integer and
real types. (out_pump : int) after returns are the outputs of the node.
The part between let and tel; is the body of the node, that contains equations
that links the variables. Here, we have an equation that defines the value of
out_pump at each time-step as min(10, com_pump), as in the example.
At this stage, we have defined com_pump as an integer. However, in the
example, it is a natural. To add a constraint to the input of the pump, we
can use the assert construct. assert must be followed by a Boolean, that
will always hold. Here, we assert that com_pump >= 0, thus resulting in
com_pump being a natural. We could add an assertion on the output flow,
to ensure that it is in [0..10], but it is verified by construction.
This node is now equivalent to the definition given in Example 4, if we con-
sider that the integers of Lustre correspond to Z.



4.1. THE LUSTRE SYNCHRONOUS LANGUAGE 53

Lustre supports the call of nodes inside other nodes. In the previous
example, min actually does not exists in the standard functions of Lustre.
We can define a node min as follow:

Example 13 node min(a, b: int) returns (x: int);
let

x = if (a < b) a else b;
tel;
Note that the if statement is in the right part of the equation defining x,
contrary to the imperative languages. Here, at each instant, x = a if a < b
and x = b otherwise.

Lustre provides a function pre that returns the previous value of a flow.
In the formalisation of the synchronous language, pre(x) would translate into
∀tr ∈ Bx,∀i ∈ [0..|tr| − 1], pre(x)[i+ 1] = x[i].
An initialising function → is also provided. x = 0− > statement gives the
constraint ∀tr, πx(tr[0]) = 0.

Here is the translation of the tank into Lustre, that illustrates the use
of pre and →:

Example 14 node tank(out_pump: int) returns (vol_tank: int);
let

vol_tank = out_pump -> out_pump + pre(vol_tank);
assert 0 <= out_pump and out_pump <= 10;

tel;
This node has the expected behaviour to return out_pump[0] at instant 0 and
out_pump[i] + vol_tank[i− 1] for the instant i > 0.

Constants and local variable can also be defined in Lustre.
Lustre needs the program to be “causal”. The definition is different

from the one used in this thesis. It means that there is no loop in the data
dependencies that is not “broken” by a pre. For example, if a depends on b
and b on a, the compilation will not take place. However, if a depends on b
and b on pre(a), there will be no problem. This constraint makes it easy to
check whether a program is causal or not. However, it excludes some “causal”
programs, for which their is a unique solution to the value of the variable
from a dependency loop.

Restricted Lustre syntax The chosen syntax for a restricted Lustre
program is the following, with [x]∗ for any repetition of x, [x]+ any repetition
of x at least one time, [x]? for x at most once and ’x’ for x written as is in
the program:



54 SECTION 4. IMPLEMENTATION

program ::= [node]+

node ::= ’node’ ’(’ params ’)’ ’returns’ ’(’ params ’)’ node_body

params ::= param | param ’;’ params
param ::= idents ’:’ type
ident ::= [’A’-’Z’’a’-’z’][’A’-’Z’’a’-’z’’0’-’9’’-’’_’]*
idents ::= ident [, ident]*
type ::= ’int’ | ’real’ | ’bool’

node_body ::= [local]* ’let’ equations ’tel’ [’;’]?
local ::= ’var’ [param ’;’]+

| ’const’ [ident [’:’ type]? ’=’ expression ’;’]+

equations ::= [eq_or_as]+
eq_or_as ::= equation | ’assert’ expression ’;’
equation ::= left_part ’=’ expression ’;’
left_part ::= ’(’ idents ’)’ | idents
expression ::= indent

| value
| unary expression
| expression binary expression
| ’if’ expression ’then’ expression ’else’ expression
| call
| ’(’ expression ’)’

call ::= ident ’(’ expressions ’)’
expressions ::= expression [, expression]*
unary ::= ’pre’ | ’-’ | ’not’
binary ::= ’->’ | ’+’ | ’-’ | ’*’ | ’/’ | ’div’ | ’mod’

| ’<’ | ’>’ | ’<=’ | ’>=’ | ’<>’ | ’=’
| ’or’ | ’and’ | ’nor’ | ’xor’ | ’=>’

value ::= ’true’ | ’false’ | [’0’-’9’][[.][’0’-’9’]*]?

The most important definitions are the following. A program is a repeti-
tion of at least one node. A node is a declaration of inputs, one of outputs
and a body. The body contains local variables and constants, followed by
equations and assertions. An equation is a variable name on the left and an
expression on the right.

This syntax is inspired from the Lustre reference manual ([Erwan Jahier, 2016]).



4.2. TRANSLATION FROM LUSTRE TO SMTLIB 55

4.2 Translation from Lustre to SMTLib
As showed in [Hagen and Tinelli, 2008, Hagen, 2008], Lustre can be trans-
lated into first-order logic formulae. Therefore, we chose to use a SMT
([Biere et al., 2009]) translation for the implementation. This choice was
also motivated by the fact that it means that several different “off the shelf”
SMT-solvers could be used, and that it would prove useful if other models
were to be instantiated in Loca using SMT, as some SMT function would
have already been implemented.

The translation have been made into SMTLib ([Barrett et al., 2015]),
which is a unified language for SMT-solvers that is supported by most of
the existing SMT-solvers. Note that this thesis was not published when I
designed the translation myself, but the results are similar, since I did it in
early 2015.

The logic used by the SMT-solver must support uninterpreted functions,
Booleans, integers and reals. The need for Booleans, integers and reals is
straightforward, since they are the types supported by restricted Lustre.
Uninterpreted functions are used to be able to increasingly add some con-
straints to the functions, thus making it easier to prefix a specification, as
well as being able to tackle the faulty components, for which we do not know
the behaviour.
If properties on infinite traces are to be checked, it should also support quan-
tifiers. When the properties are bounded, we can add manually enforce the
constraints for each instant, up to the bound. Nevertheless, it is way more
compact and convenient to have a quantification, if the bound is high, and
is likely to be more efficient, since SMT solvers generally have some optimi-
sations on quantifiers.
Note that this is an idealised Lustre that we describe, as the integer are
unbounded, and the reals are not floating point numbers.

Here are the translations of Lustre into SMTLib inspired from [Barrett et al., 2015]:

Flow A flow is defined as an uninterpreted function, which take a natural
as parameter:

(declare-fun flow_name (Nat) Type)

flow_name should be replaced by the name of the flow and Type by
its type.
Since it is an uninterpreted function, we can add constraints on it, but
do not need to fully define it.

Assertions The assertions are translated as follow:



56 SECTION 4. IMPLEMENTATION

(assert t(expression))

We note t(x) for the translation of x into SMT. We simply assert the
expression, requiring it to be true.

Equations For each equation we create a new uninterpreted function, that
enforces the equality between the two members of the equation. Note
that we use that in order to be able to choose when the equation con-
straint should be verified, as we need force the value sometimes (e.g.
when prefixing a trace), due to causality analysis. If there is no need
to remove the constraint, the equation can universally be quantified,
using an assert, constraining the value of the uninterpreted function
representing the flow.

(define-fun flow_name_eq (n Nat) Type
(= (flow_name n) (t(expression) n)))

Expressions The expression are transformed from the Lustre operator
notation, to the parenthesised notation used in SMTLib (i.e. a and b
becomes (and a b). Most of the operators do not need any translations,
as they are provided natively by SMTLib. The exceptions are the “if
then else” statements, the temporal operator (pre and − >) and the
calls.

If then else To translate if c then t else e, we use the ite built-in as
follow:

(ite t(c) t(t) t(e))

pre pre(x) is translated as follow:

(t(x) n-1)

Supposing n is the index used.

→ a→ b is translated as follow:

(ite (= n 0) t(a) t(b))

Supposing n is the index used.
Note that a = pre(x) will not be compiled by Lustre, since x
does not have a value for n = −1. Therefore, there should always
be an initialisation as follow: a = b→ pre(x).



4.2. TRANSLATION FROM LUSTRE TO SMTLIB 57

Call If a node call is made, like node_name(args), we replace the
occurrence of the call by the output flow of the node that is called,
and translate the node called. This may give rise to some problems
which are solved by doing some pre-treatment, in order to list the
instantiation needed by the node.

Nodes A node is translated by declaring all the variables of the node,
translating the equations and the assertions, and if needed, translat-
ing the nodes that are called inside the initial node. Then, a function
node_step is created, that supposes each equation, assertion and the
called node step functions to be true. This is motivated by the same
reason described for the equations.

For instance, let us suppose we want to translate a node incr that
increment it input by one, calling an add node:

node incr(in: int) returns (out: int);
let

out = add(in, 1);
tel;

node add(a, b: int) returns (x: int);
let

x = a + b;
tel;

The translation would be:

(declare-fun in (Nat) Int)
(declare-fun out (Nat) Int)
(declare-fun add_x (Nat) Int)
(define-fun out_eq (n Nat) Int (= (out n) (add_x n)))

(declare-fun add_a (Nat) Int)
(declare-fun add_b (Nat) Int)
(define-fun add_x_eq (n Nat) Int
(= (add_x n) (+ (add_a n) (add_b n))))

(define-fun add_step (n Nat) Bool (add_x_eq n))
(define-fun add_a_eq (n Nat) Bool (= (add_a n) (in n)))
(define-fun add_b_eq (n Nat) Bool (= (add_b n) 1))
(define-fun incr_step (n Nat) Bool
(and (out_eq n) (add_step n) (add_a_eq n) (add_b_eq n))



58 SECTION 4. IMPLEMENTATION

The indented part corresponds to the translation of the called node
add. In the node that calls, we add equations that constrain the values
of the inputs of the called node, depending of the arguments passed in
the call. Here, add_a = in and add_b = 1, since the call is add(in, 1).
The last two lines are the step function. Note that it needs the equation
functions, the arguments equations and the step function of the called
node to be true.

Tuple Nodes might have more than on output. In that case, the left part
of the equation is a tuple. For instance, would nodename(args) have
three outputs, an equation with this node would be:

(a, b, c) = node_name(args);

In order to be able to translate such an equation, a pre-treatment is per-
formed, after the Lustre program have been fully parsed. The above
equation into simple equations of the form a = out1_node_called,
to instantiate the different calls (especially if a node is called several
times).

4.3 Instantiation of Lustre in Loca
Loca is an implementation of the approaches from [Gössler and Le Métayer, 2013,
Goessler and Astefanoaei, 2014] developed by Gregor Gössler and Lacramioara
Astefanoaei. It uses a core algorithm that relies on functions that should be
instantiated for the different models. The programming language used is
Scala ([Odersky, 2004]). It is a multi-paradigm language, that supports
functional programming and is strongly and statically typed and compiles
into java bytecode. The functional aspect and the strong type system makes
it a good choice to implement formal methods algorithm.

As explained in the previous sections, a translation of Lustre into SMTLib
was chosen. Since the SMT queries are externalised, the SMT-Solver z3
([de Moura and Bjørner, 2008]) was selected. The reasons for this choice are
manifold. Contrary to most of the solvers, that have a partial support of
SMTLib, z3 provides a full support of SMTLib. It provides all the logics
necessary to causality analysis, including the quantifiers. It is top tier, per-
formance wise. Lastly, it supports MAX-SMT, that we consider using in the
future, to implement the frameworks form Sections 5 and 6.

The argument of the program is a configuration file containing the path
to the (compiling) Lustre file with all the node, the name of the main node,
the name of the system property and a trace file. The specification is given as



4.3. INSTANTIATION OF LUSTRE IN LOCA 59

a Lustre node, that should contain an assertion that is true if the property
is satisfied, and false otherwise.

The rest of the section will present how the functions necessary to re-
stricted Lustre have been instantiated.

initModel This function is the one that fetches the model and provides it to
the rest of the program. The Lustre file is parsed into abstract types
representing the different entities of Lustre (nodes, flows, equations,
expressions,. . . ).
Once the Lustre program have been parsed, a pre-treatment is per-
formed, to split the equations of the form (a, b, c) = node_called(args).
What’s more, a list containing the instantiations of nodes that would
be create by calling the program is created. This is the list of compo-
nents that will be used throughout execution of Loca.
Every abstract types representing the Lustre entities have a .toSMTLib
method. It is then easy to build a SMTLib version of any of these en-
tities, by just calling this method.

sat The sat checks whether a trace satisfies a component specification. In
order to verify it the node is translated into SMTLib, so is the trace.
The node step function is supposed to be true for the length of the
trace, and the solver is called on this model. If the solver returns
“SAT”, it means that the trace is consistent with the specification of
the component. “Unsat” means that it is not the case.

Sat is used to check whether a trace is consistent with a component
specification. C.sat(tr) would translate in the formal causality frame-
work as tr ∈ SC .

semanticLength This function takes a trace as inputs and returns the
length of the trace. Given that Lustre is synchronous, a trace is
just a sequence of vectors of values. The length is trivially the length
of the sequence. In other models, it may be more complicated.

getSemanticPrefix This function takes a trace and a length and returns
the prefix of the trace of the given length. It is also simple here, we
just return the prefix of the sequence of the given length.

prefixTr This function takes a component and a trace, and prefixes the trace
to the component. The Lustre abstract node has a trace attribute.
When it is present, the toSMTLib method prefixes the trace and does
not suppose that the step function is true, for the length of the trace.
We then just change the trace attribute to the trace given in argument



60 SECTION 4. IMPLEMENTATION

in a copy the component (not to change the initial object, and remain
functional).

Example 15 Let us suppose we have the following node:

node add(a, b: int) returns (x: int);
let

x = a + b;
tel;

and we want to prefix ((1, 2, 3), (3, 2, 5)) to it (with (v, y, z) correspond-
ing to a = v, b = y and x = z, at a given instant). We simply translate
the node add into SMT, and add constraint for the first two ticks as
follow:

(declare-fun add_x (Nat) Int)
(declare-fun add_a (Nat) Int)
(declare-fun add_b (Nat) Int)
(define-fun add_x_eq (n Nat) Int

(= (add_x n) (+ (add_a n) (add_b n))))
(define-fun add_step (n Nat) Bool (add_x_eq n))
(assert (and (= (a 0) 1) (= (b 0) 2) (= (x 0) 3)))
(assert (and (= (a 1) 3) (= (b 1) 2) (= (x 1) 5)))

The first six lines correspond to the translation of add into SMT. The
last two ones correspond to constraining the first and second instant
values to be as in the prefix.

Let us suppose that we want to prefix tr to the component C, it would
translate in the formal causality framework as:

C.prefixTr(tr) = {tr′ ∈ BC | tr′ ∈ SC ∧ πC(tr′[0..|tr| − 1) = tr}

Which is used in the building of the counter-factuals, as in Definition
15.

isReachableComplete This component takes a system trace, the list of all
components, a component index and a complete predicate (a predicate
provides a way of knowing that the end of the trace have been reached,
for a given component), and returns true if the end of trace can be



4.3. INSTANTIATION OF LUSTRE IN LOCA 61

reached for the considered component (designated by the index). We
simply translate the system into SMTLib using the compose function,
prefixing the trace, and adding a an assertion that the system step
function should be true while the predicate holds (since a predicate is a
length in the Lustre instantiation, it means from 0 to the predicate).
“Sat” means that the end of the trace can be reached, and true is
returned.

The intuition behind this function is that given a system trace prefix,
component C is able to reach instant i of the initial trace, if all the
components are prefixed with the system trace. This is used to build
the unaffected prefixes, by checking whether C can reach instant i, or
if the prefix must be shortened.

compose It is a method of the nodes that takes a list of nodes in argument,
and returns the composition of the component with the components of
the list. To do so, we call the toSMTLib function of the component,
with the list of components in argument. When a node is called, if it
is in the list of components, the one from the list is used. Otherwise,
the specification is used. Given the pre-treatment, the main system
node is the first one of the list of all nodes (since a call tree is build
during the pre-treatment). Therefore, when we need to build the whole
system, we can just call compose from the first component of the list
of components.

Intuitively, given a set of all the system components (which might have
been prefixed) this function returns the composition of all those com-
ponents. It can be seen as the set of all the possible traces, rather than
a composition. Note that to emulate the faulty components behaviour,
we simply enforce the possible prefix, but do not constrain the rest of
the behaviour at all (beside component input and output types).

refine This is a method of the nodes. It takes a specification and a set of
predicates in arguments, and returns if the node refines the specifica-
tion, up to the predicate. In order to verify it, we transform the node
into SMTLib. The negation of the property is added to the SMTLib
file, and the step function is supposed to be true, up to the predicates.
If the solver call returns “Unsat”, the node refines the property, as there
is no behaviour that can falsify the property. The function then returns
true.

Intuitively, since this method is called from a system composition (which
can be seen as a set of traces TR, if we suppose that the specification to



62 SECTION 4. IMPLEMENTATION

verify P , TR.refine(P) can be seen in the formal causality framework
as TR ∈ P . It is notably used to check necessary causality, by checking
whether CF (tr, I) ⊆ P).

inconsistentWith This function was not described in the presentation of
Loca, but it is used when the sufficient causality is to be checked. It has
the same arguments as the previous function, but verifies that the node
has no behaviour that satisfies the property. Similarly to the refine,
we translate the node and the property (not its negation) into SMTLib
and make a solver call. If the result is “Unsat”, it means that the node
has no behaviour that satisfies the property, and inconsistentWith
returns true.

Intuitively, if refine checks TR ∈ P , inconsistentWith checks sup(TR)∩
P) = ∅. It is notably used to check sufficient causality.

Conclusion

The instantiation was tested on several examples. It gave the expected
causality analysis result for all of them. For a system with 8 nodes (4 of
them faulty) and a trace of length 15, the result is given in a couple of sec-
onds. However, the approach should not scale very well in number of faulty
components, since the causality check is made on each subset of the set of
faulty component, which result on a complexity of 2 to the power of faulty
components (O(2nf ), with nf the number of faulty components).
Concerning the length of the trace, it depends on how non-deterministic
the system is. Lustre systems generally are deterministic, however, non-
determinism can be introduced by adding node inputs that are not “wired”.
If you want to add a non-deterministic variable to a node, you simply add an
input to this node that is unconstrained. You can also consider the values of
this input as being given by an oracle. For a deterministic system, the worst
case complexity grow logarithmically to the length of the trace, since a di-
chotomous search is performed along the trace (O(ln(l))). This dichotomous
search is performed for each component (O(nC), with nC the number of com-
ponent). For the number of components, the same determinism argument
arise. For a deterministic system, the complexity of one search grows linearly
to the number of equations and assertion in the call tree (O(ne)). On deter-
ministic systems, the SMT-Solver answers very fast, as long as there is enough
memory. We end up with a complexity 2nf ×O(ln(l))×O(nC)×ne× cSMT ),
with cSMT the cost of a SMT call.

As shown in [Hagen and Tinelli, 2008, Hagen, 2008], it is possible to trans-
late the multi-clock model in SMT, except for the when operator (down-



4.3. INSTANTIATION OF LUSTRE IN LOCA 63

sampling), that can only be translated in certain cases. It would be inter-
esting to extend the current implementation, to take into account the clock
calculus, so the failure induced by the clocks can be tackled.



64 SECTION 4. IMPLEMENTATION



Section 5

Combining white-box and
black-box components in
Causality Analysis

As shown in Section 2, their are numerous approaches that have goals similar
to blaming for either the black-box components (e.g. components for which
we know the specification, but not necessarily the model/implementation) or
the white-box components (e.g. components for which we know the model/implementation,
but not necessarily a specification). However, to my knowledge, their is no
approach that treats both at the same time. Therefore, this section proposes
a way of combining the causality analysis with white-box and black-box com-
ponents.

This section presents such an approach, namely the mixed approach. It
is close to the vanilla approach (the causality analysis approach introduced
in Section 3), but adds a layer of controller synthesis to check whether or not
the white-box components had a way of avoiding the failure. The idea is to
use the counter-factuals to generate all the possible traces close to an initial
failing trace (tr), such that some black-box components (in I) are fixed, and
some white-box components (inR) can act “as they want”, regardless of what
they did in the initial trace. It means that all the possible behaviours for
the components in R are generated. From those counter-factuals, we try to
make a controller synthesis, to check if the components in R had a way to
prevent the failure.

This approach is rich enough to be used in a debugging or designing phase.
It acts as a combination of diagnosis (which is usually used on black-box
components) and fault localisation (usually used on white-box components).
However, it lacks some tools to be usable as a responsibility assignment tool,
as it will be discussed in Section 6.

65



66 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

This section is divided in three subsections. The first one presents the
general definitions necessary to be able to perform a causality analysis in the
mixed framework. The second one gives some causality definitions with this
new framework. The third one shows how to perform the synthesis.

All the concepts and results that are developed here are contributions
from this thesis.

5.1 Mixed framework definitions

This section will introduce some definitions and tools needed to perform the
causality analysis in the mixed framework.

Definition 21 (Mixed System S) A mixed system is a system S = (C,F,P , BM)
such that C = CW ] CB, with CW the set of white-box components and CB
the set of black-box component.

A mixed system is a system for which the set of component is split between
a set of black-box components and a set of white-box components. The
black-box components are the ones we considered since the beginning of the
manuscript. The white-box components are components for which we have
access to a model, an implementation, or the actual system, instead of a
more abstract specification. Formally, a white-box component is defined like
a black-box component, though the S is referred as the model, instead of
specification (of the black-box components).
We suppose that the white-box components always respect their model, con-
trarily to the black-box ones that can violate their specification.
It is important to understand that contrary to the black-box components,
the white-box components do not have a notion of normality (see Section 2.3
for a discussion on notion of normality in causality analysis), since they do
not have a specification. The model describes all the possible behaviours,
but does gives us any information on the ones that are normal or expected,
hence the hypothesis that the model is always respected.

In this section, we suppose we are a mixed system S = (C,F,P , BM).

Definition 22 (Mixed framework counter-factuals (CFmixed)) Let CF
be a counter-factual definition, that takes a trace and a set of suspected com-
ponents in arguments. Let tr be a system trace, I ⊆ CB a set of suspected
components and R ⊆ CW a set of protagonists. CFmixed(tr, I,R) is the set
of traces CF (tr, I ∪ R) where we consider that ∀C ∈ R, πC(tr) /∈ SC.



5.1. MIXED FRAMEWORK DEFINITIONS 67

In the mixed counter-factuals, we add the R arguments, that correspond to
a set of white-box components. The idea is to build all the possible traces
close to tr, such that the faults from I are removed, and the protagonist can
chose any possible behaviour.
By definition, the white-box components cannot be faulty. That is the rea-
son we add the fact that they are considered as faulty for the whole trace,
in the “vanilla” counter-factual definition, thus generating all the possible
behaviours consistent with tr for the said protagonists. For instance, in the
cone approach, if C is a protagonist, then coneC = 0, since it is always con-
sidered as faulty. Therefore, all the possible behaviours will be built for C,
since the counter-factuals will be generated from the very first instant for C.

Let us illustrate the Mixed framework counter-factuals with an example.

Example 16 In order to ease the use of this example for the next definitions,
we will leave the realm of pumps and tanks for a simpler system.

The system is composed of two black-box components, C1, that has no
input and always output true, and C3, a two input OR gate, alongside a
white-box component C2 that has no input, and a random Boolean output.
The system property is that C3 output should always be true.

Here are the formal definitions of the components:
C1:

• IC1 = ∅

• OC1 = {(Out1,B)}

• SC1 = {true}ω

C2:

• IC2 = ∅

• OC2 = {(Out2,B)}

• SC2 = Bω

C3:

• IC3 = {(Out1,B), (Out2,B)}

• OC3 = {(Out3,B)}

• SC3 = {tr ∈ BC3 | ∀i ∈ [0..|tr| − 1], πOut3(tr[i]) = πOut1(tr[i]) ∨
πOut2(tr[i])}



68 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

P = {tr ∈ BF | πOut3(tr) = (true)i∈[0..|tr|−1]}

Here is a failing trace tr:

Time 0 1 2 3
Out1 true true false false
Out2 false true true false
Out3 true true true false

In this trace, at instant 2, C1 becomes faulty, and starts outputting false.
This does not immediately create a failure, since C2 outputs true. Then at
instant 3, C2 outputs false and the failure occurs.

Here is CFmixed(tr, {C1}, ∅):
Time 0 1 2 3
Out1 true true true true
Out2 false true true false
Out3 true true true true

Since the protagonist argument is the emptyset, the behaviour is the same as
the vanilla counter-factuals, i.e. CF (tr, {C1}), and it fixes the system.

Here is CFmixed(tr, ∅, {C2}):
Time 0 1 2 3
Out1 true true false false
Out2 B B B B
Out3 true true Out2[2] Out2[3]

We note a set instead of a value, if a flow can take multiple values, and f [i]
for πf (tr[i]).
Here, one can see how the behaviour differs of CFmixed(tr, ∅, {C2}) from the
one of CF (tr, ∅) (i.e. the counter-factuals with no protagonist), as Out2 can
be true or false, regardless of the value in the initial trace.
Note that the model is a simple coin toss, however, it could be more complex,
like never the same output three times in a row, or the possible output values
could depend on inputs, and the mixed framework counter-factuals should re-
spect this model.
Our intuition tells us that by always outputting true, C2 can enforce the speci-
fication, however, this will be generated by the synthesis, that will be discussed
later in this section.

Here is CFmixed(tr, {C1}, {C2}):



5.1. MIXED FRAMEWORK DEFINITIONS 69

Time 0 1 2 3
Out1 true true true true
Out2 B B B B
Out3 true true true true

Here the fact that we fix the faulty C1 ensures that the property is verified,
whatever C2 does. All the possible behaviours for C2 have been generated,
since R is equal to {C2}. We can see the impact of R = {C2}, compared to
CFmixed(tr, {C1}, ∅), in the fact that Out2 = B, instead of its initial value in
tr, for each instant.

Given that the formal definition of the synthesis necessitates several new
concepts rather lengthy to introduce, the synthesis step will be abstracted by
a function, in order to be able to introduce the causality definitions faster,
thus giving a better understanding of the specificity and capabilities of this
new framework, and the possible application to debugging/design, without
flooding the reader with too many definitions. The method to actually per-
form the synthesis will be presented in Section 5.3.

Definition 23 (Winning strategy (WINmixed)) Let CF be a counter-factuals
definition, that takes a trace and a set of suspected components in arguments.
Let tr be a system trace, I ⊆ CB a set of suspected components and R ⊆ CW

a set of protagonist.
There exist a winning strategy, noted WINmixed(tr, I,R), if there exist a
way of controlling the choices of the components in R such that the set of
controlled traces controlled(tr, I,R) ⊆ CFmixed(tr, I,R) is prefix-closed and
such that ∀tr′ ∈ controlled(tr, I,R),:

tr′ ∈ P ∧ ∃tr′′ ∈ (sup(CFmixed(tr, I,R)) ∩ controlled(tr, I,R)), tr′ v tr′′

There is a winning strategy, if the “choices” of the components in R can
be made such that all the controlled traces are non-failing, and they all are
prefixes of a “final” trace. The prefix-closure and the fact that all the traces
in controlled prefix a “final” non-failing trace ensures that the controller is
non-blocking, i.e. it does not enforce the property by preventing the system
from evolving. A winning strategy is then a non-blocking way of constraining
the system never to fail. What’s more, in the current formalisation of the
system, it is not possible to model a blocking behaviour.

This definition will be further formalised later on in Section 5.3, so let us
illustrate it with an example, to give a good idea of the way it is supposed
to work.



70 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

Example 17 The system is the same as the one in Example 16.
Given the following mixed counter-factuals for R = {C2}:

Time 0 1 2 3
Out1 true true false false
Out2 B B B B
Out3 true true Out2[2] Out2[3]

It is obvious that by always choosing true, C2 ensures that the system will
never fail. This can be translated by a controller that forces the output of C2

to true, at every instant.

Let us now consider a slightly different system where C3 is an AND gate,
instead of an OR gate.
The mixed counter-factuals for this new system, if we consider the same
initial trace as the previous ones and R = {C2} are:

Time 0 1 2 3
Out1 true true false false
Out2 B B B B
Out3 Out2[0] Out2[1] false false

Here a way for C2 to ensure that no failure occurs is to output true if Out1
is true, and “refuse” to output anything otherwise, thus blocking the system.
This way, Out3 would never be false. However, this is not a valid strategy,
as the controller should not be blocking.

Definition 24 (Spoiling behaviour (SPOILmixed)) Let CF be a counter-
factuals definition, that takes a trace and a set of suspected components in
arguments. Let tr be a system trace, I ⊆ CB a set of suspected components
and R ⊆ CW a set of protagonist. CFmixed(tr, I,R) is a spoiling behaviour,
noted SPOILmixed(tr, I,R), if sup(CFmixed(tr, I,R)) ∩ P = ∅.

The idea is that even with changing the non-deterministic values of the com-
ponent in R and fixing the one in I, the system always eventually fails. Note
that we cannot get the result from this definition using WIN while trying
to enforce the complementary of P , since SPOIL introduces the notion of
“eventually” violating P .

The second counter-factuals of Example 17 (where C3 is a and gate)
is a spoiling behaviour, as the system will eventually fail, whatever is the
behaviour of C2.



5.2. CAUSALITY DEFINITIONS FOR THE MIXED FRAMEWORK 71

5.2 Causality definitions for the mixed frame-
work

This section will show how to adapt the previous causality definitions, and
what the result of the causality analysis means, from a designer perspective,
as well as some new definitions.

The design situation considered here is that there is one failing trace, like
a bug report, or a result of a scenario, and the mixed framework causality is
used to help the designer in choosing the components to fix/control, in order
to avoid the failure.

In the whole section, we suppose we are given a mixed system S =
(F,C,P , BM) with C = CW ]CB, a faulty trace tr ∈ BM \P and a counter-
factuals definition CF .

Definition 25 (Necessary cause (necmixed)) Let I ⊆ C be a set of sus-
pected components, I is a necessary cause, noted necmixed(tr, I), if WINmixed(tr, I∩
CB, I ∩ CW ).

Intuitively, it means that if we fix the black-box components in I, it is possible
to control the white-box components such that the failure from tr never
happens.

From a designer perspective, would the black-box components be non-
faulty, there is a way of controlling the white-box ones such that the failure
is always avoided. Making sure that the black-box components are non-faulty
can be achieved by some dependability means, like redundancy, choosing a
more resilient off-the-shelf component that respect the initial specification.
Controlling the white-box components can either be done locally, in certain
cases, or by adding a global controller.
The fact that I is not a cause is actually interesting as well, since it gives the
designer the information that more black-box components should be fixed,
or more white-box components controlled.

Note that by construction, if I ⊆ CB, necmixed(tr, I) = nec(tr, I), where
nec uses CF , since CF (tr, I) = CFmixed(tr, I, ∅). It means that this defini-
tion is a generalisation of the previous one (Definition 10).

Example 18 Let us consider the first part of Example 17, where C3 is an
OR gate.

Given the following failing trace:



72 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

Time 0 1 2 3
Out1 true true false false
Out2 true true true false
Out3 true true true false

We can build the mixed counter-factuals for R = {C2}:
Time 0 1 2 3
Out1 true true false false
Out2 B B B B
Out3 true true Out2[2] Out2[3]

As long as C2 outputs true when Out1 is false, the system will not fail. This
is controllable, since Out2 = ¬Out1 is a controller. Therefore, I = {C2} is
a mixed necessary cause.

If we build the mixed counter-factuals for I = {C1}, we get:

Time 0 1 2 3
Out1 true true true true
Out2 true true true false
Out3 true true true true

Those counter-factuals are the same as CF (tr, I). Since they respect the
system property, I = {C1} is a mixed necessary cause, as it should be, since
{C1} is a necessary cause in the vanilla framework.

Definition 26 (Sufficient cause (suffmixed)) Let I ⊆ C be a set of sus-
pected components, I is a sufficient cause, noted suffmixed(tr, I), if SPOILmixed(tr, (C\
I) ∩ CB, (C \ I) ∩ CW ).

Intuitively, even by fixing the black-box components from the complimentary
of I, and considering all the possible behaviours of the white-box ones from
I the failure is deemed to happen.

From a designer perspective the fact that suspect is a sufficient cause
means that more components must be removed from I, in order to fix the
failure. The fact that suspect is not a sufficient cause means that subsets
of C \ I are possible candidates to fix the system. Since computing the
counter-factuals for I is necessary to perform the synthesis, it is interesting
to perform the SPOIL check (i.e. verifying if suffmixed(tr,C\I)) to make sure
it is of use to actually perform the synthesis.

Note that this definition also is a generalisation of the vanilla causality
framework sufficient causality one (Definition 12), for the same reasons as
the necessary causality ones (suffmixed(tr, I ∪ CW ) = suff(tr, I) if I ⊆ CB).



5.2. CAUSALITY DEFINITIONS FOR THE MIXED FRAMEWORK 73

Example 19 Let us consider the second part of Example 17, where C3 is an
AND gate.

Given the following failing trace:

Time 0 1 2 3
Out1 true true false false
Out2 true true true false
Out3 true true false false

Let us build the mixed counter-factuals for I = C \ {C1} = {C2, C3}:

Time 0 1 2 3
Out1 true true false false
Out2 B B B B
Out3 Out2[0] Out2[1] false false

We can see that Out3 is bound to be false at instant 2 and 3, whatever value
C2 chooses. Therefore, {C1} is a sufficient cause.

Let us build the mixed counter-factuals for I = C \ {C2} = {C1, C3}:

Time 0 1 2 3
Out1 true true true true
Out2 true true true false
Out3 true true true false

The counter-factuals eventually become faulty. Hence, {C2} is a mixed suffi-
cient cause, as well as a sufficient cause in the vanilla framework.

Definition 27 (System fix fixmixed) I is a system fix, noted fixmixed(tr, I),
if ∀I ′ ⊆ C, I ⊆ I ′ =⇒ necmixed(tr, I ′).

It means that if we fix at least I∩CB, and at least the components in I∩CW

are controlled, the system cannot fail.
Note that the quantification could only be on I ∩ CB, because if R has a
winning strategy, any superset R′ of R trivially has one, by applying the
same strategy as R, for the component in I, and keeping the behaviour as
in the traces for the components in I ′ \ I. However, the black-box causality
framework has shown that black-box cause are not monotonous (e.g. if two
faults compensate one another, fixing one might make the system fail), hence
the need for a quantification over the black-box components.



74 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

From a designer perspective, it is interesting because it means that fixing
I ∩CB and controlling I ∩CW ensures that the system will not fail as in tr.

We can define a notion of minimal fix. I is a minimal fix, if I is a fix
and ∀I ′ ⊂ I,¬fix(tr, I ′). This is important for the designer as it gives him
the minimum sets of components it has to control/fix, in order to avoid the
failure.

If we consider Example 19 both {C1} and {C2} are system fixes, since
any superset of them are mixed necessary causes.

Definition 28 (Unavoidable cause una) I is an unavoidable cause, noted
una(tr, I), if ∀I ′ ⊆ C, I ⊆ I ′ =⇒ suff(tr, I ′).

It means that if you do not fix, any component from I ∩ CB and do not
control any component from I ∩ CW , the system necessarily fail.
As for the previous example, only the quantification on the black-box is nec-
essary, because if the behaviour is spoiling while being able to control CW \I,
it is also when controlling less components (CW \ I ′), since controlling more
components means that more possible behaviours are generating, hence giv-
ing more possibilities for the behaviour not to be spoiling.

From a designer perspective, it means that there is no point in trying to
prevent the failure if none of the components in I is fixed/controlled.

Similarly to the system fix, we can define a notion of minimal unavoid-
able cause. This gives sets of components from which at least one must be
fixed/controlled, in order to have a shot at preventing the failure.

5.3 Strategy synthesis for the mixed framework

The causality definitions presented in Section 5.2 rely on the computation of
a winning strategy. In that sense, they can be seen as two players games,
with the protagonist against the rest of the system. The problem of finding
a strategy can therefore be reduced to a controller synthesis problem, where
the controllable moves are made by the player (namely the protagonist), and
the uncontrollable moves are made by the rest of the system.

This section is divided into three subsections. The first one presents
the principle of controller synthesis, as well as a short bibliography on the
domain. The second one gives a method to translate traces into labelled
transition systems (LTS). The last one introduces the synthesis on LTS, as
well as its application to our framework



5.3. STRATEGY SYNTHESIS FOR THE MIXED FRAMEWORK 75

5.3.1 Controller synthesis

The community of Discrete-Event System (DES) has studied at great length
the problem of controller synthesis. Ramadge andWonham proposed an algo-
rithm to compute controller for DES in [Ramadge and Wonham, 1987] that
they enhanced in [Ramadge and Wonham, 1989]. [Cassandras and Lafortune, 1999]
proposes an overview of the DES domain, with a chapter dedicated to con-
troller synthesis.

The principle of controller synthesis is to split the events in two sets.
The first one is the set of controllable events and the other one is the set
of uncontrollable ones. The controller can choose the controllable events
to generate (e.g. which value to output, in the mixed framework). A sys-
tem property (oftentimes a safety one) is to be enforced by the controller.
Controller synthesis consists in building a controller that ensures that the
property is always verified, whatever the environment does. For safety prop-
erty, a controller that does not permit any event might enforce the property.
Thus, the controller synthesis problem is to find the most permissive con-
troller. The algorithm proposed by [Ramadge and Wonham, 1987] works by
first generating the state-space, and then removing recursively the control-
lable transitions that lead to the violation of the property.

[Asarin et al., 1995] proposed to use controller synthesis to perform pro-
gram synthesis, using some symbolic tools from verification, as well as an
extension from discrete time to continuous time. [Ehlers et al., 2016] is a
comprehensive survey of the current state of supervisory control and reactive
synthesis.

5.3.2 Translating traces into LTS

A formalism to describe how the system evolves during a step will be in-
troduced, as well as a way of transforming a set of traces into a labelled
transition system (LTS).

During the compilation of a Lustre program, the system is flattened
(i.e. the node structured is translated in one big node). Then, a topological
sort of the flows is performed, that reflects the dependencies over the flows
([Halbwachs et al., 1991b]). This flow order gives a partial order that reflects
the dependencies between the flows. The following definition gives a way of
representing the evolution of the system during a step.

Definition 29 (Partial step s) Let F be a set of flows and ≺ be a partial



76 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

order over F. A partial step s = (sf )f∈F is an element of×
f∈F

(Df ∪ {undef})

such that:

∀f ∈ F, sf 6= undef =⇒ (∀f ′ ∈ F, f ′ ≺ f =⇒ sf ′ 6= undef)

undef means that the flow has no value yet. ≺ corresponds to the partial
order yield by the topological sort. If a flow f ′ is “greater” than another one
f , it means that the evaluation of its value depends, possibly indirectly, on
the value of f . A partial step captures what happens during the evaluation
of a global step in a system, ensuring that if a flow is evaluated (i.e. different
from undef), all its dependencies have already been evaluated too.

Let v = (vf )f∈F ∈
⋃

f∈F

(Df ∪ {undef}) be a valuation for the flows in F,

we note PS(v) the set of all possible partial steps over F that are consistent
with ≺ such that ∀s ∈ PS(v),∀f ∈ F, sf = vf ∨ sf = undef .

Example 20 If we consider the system from Example 16, Out1 ≺ Out3 and
Out2 ≺ Out3, since Out3 depends on Out1 and Out2.

This is not the case in this system, but if there was another flow f such
that f ≺ Out1, then, we would have f ≺ Out3, since the partial order is
transitive.

Let (true, false, true) be a valuation for (Out1, Out2, Out3. Then PS((true, false, true)) =

{(undef, undef, undef), (true, undef, undef), (undef, false, undef),

(true, false, undef), (true, false, true)}

Note that (true, undef, true) is not in PS((true, false, true)), because Out3
would be valuated before Out2, which is not possible, since Out2 ≺ Out3.

Definition 30 (Labelled Transition System (LTS)) A LTS is a tuple
L = (Q, q0,Σ,→) where:

• Q is a set of states

• q0 is an initial state

• Σ is a set of symbols

• →⊆ Q× Σ×Q a transition function.



5.3. STRATEGY SYNTHESIS FOR THE MIXED FRAMEWORK 77

As mentioned earlier, we need to describe the evolution of the system at
a level within a step. This is called a microstep semantic. It was introduced
because it ensures the closure of synchronous systems under concurrent com-
position ([Benveniste et al., 2003]). Though this is not the only solution to
ensure the closure, this is the one we consider here, as it is simple, and is the
one used in Lustre. The idea is to reduce a step to a sequence of elementary
microsteps, here the valuation of one flow. The flow can be evaluated if its
dependencies have been valuated, as defined in the partial step. A conve-
nient and understandable way of representing the evolution of the system is
to use a LTS where the states are labelled by a prefix (the already evaluated
steps), alongside a partial step (that is being valued), and the transitions are
labelled by the valuation of the flows (i.e. the name of the flow and the cho-
sen value). It is easy to represent the possible interleaving of the valuation
during a step with such a representation.

Definition 31 (System evolution LTS (LTSsys)) We suppose we are given
the partial order ≺ for the system S. Let TR ⊆ BF be a set of system
traces. The corresponding system evolution LTS, noted LTSsys(TR) is the
tuple lCF = (Q, q0,Σ,→) such that:

• Q is the greatest set such that Q ⊆
(
BM ××

f∈F
(Df ∪ {undef})

)
and

∀tr′ ∈ BM, ∀tr′′ ∈ TR,
(
tr′ v tr′′ =⇒

(
(tr′, (undef)f∈F) ∈ Q ∧ ({tr′[0..|tr′| − 2]} × PS(tr′[tr′ − 1])) ⊆ Q

))

• q0 = ((), (undef)f∈F).

• Σ = {ε} ∪
⋃

F∈F

({namef} ×Df )

• → is such that ∀tr′ ∈ BF,
(
(tr′, (undef)f∈F) ∈ Q ∧ (tr′[0..|tr′| − 2], tr′[tr′ − 1]) ∈ Q

)

=⇒
(
(tr′[0..|tr′| − 2], tr′[tr′ − 1]), ε, (tr′, (undef)f∈F)

)
∈→ ∧ (5.1)

∀s, s′ ∈×
f∈F

(Df ∪ {undef}),
(
(tr′, s) ∈ Q ∧ (tr′, s′) ∈ Q ∧ enables(s, s) 6= ⊥

)
=⇒

((tr′, s), enables(s, s′), (tr′, s′)) ∈→ (5.2)



78 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

With enables(s, s′) = (f, s′f ) if ∃!f ∈ F,
(
(sf = undef ∧ s′f 6= undef) ∧

(∀f ′ ∈ (F \ {f}), sf ′ = s′f ′) ∧ (∀f ′ ∈ F, f ′ ≺ f =⇒ sf 6= undef)
)
and

⊥ otherwise.

Given a set of traces TR, we build a LTS corresponding to all the possible
evolutions of the system that lead to a trace in TR. It means that it does
not only represents the traces in TR, but also the prefixes of those traces,
and all the possible transitional evolution of a step from a trace to that trace
extended by one step.
A state is a tuple containing a trace and a partial step. The state space
corresponds to all the prefixes of the traces in TR, alongside the transitional
partial steps between those prefixes.
The initial state is the tuple with the empty trace and the totally undefined
partial step.
The transitions are labelled with the name of the flow that becomes valued,
alongside the chosen value.
We allow a transition between a fully valued partial step to the trace ex-
tended with this fully valued partial step, with an undefined partial step as
the second part of the state (Constraint 5.1). It corresponds to finishing a
global instant, and starting the new one. We also allow all the transitions
between partial steps such that the differences between them correspond to
the valuation of exactly one flow f , with the constraint that all the flows
f depends on (i.e. the flows f ′ ∈ F such that f ′ ≺ f) have been valued
(Constraint 5.2).

Example 21 Let us translate a trace of the system from Example 16 into a
LTS.

The trace tr considered is the following:

Time 0 1
Out1 true false
Out2 false B
Out3 true Out2[1]

A trace instant will be represented as (Out1, Out2, Out3), with the Outi re-
place by a Boolean value. For instance, instant 0 is (true, false, true). A
trace is represented as a sequence of instants. For instance, if Out2 is false
at instant 1, the tr[0..1] = ((true, false, true), (true, false, true)).

The partial order for the flows is Out1 ≺ Out3 and Out2 ≺ Out3. The
possible partial step for instant 1 are then PS((true, false, true)) = {(undef, undef, undef), (true, undef, undef), (undef, false, undef), (true,
false, undef), (true, false, true)}.

For readability sake, we note t for true, f for false and u for undef in
the LTS. Here is the LTS corresponding to the first step.



5.3. STRATEGY SYNTHESIS FOR THE MIXED FRAMEWORK 79

(
(), (u, u, u)

)
start

(
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, f, u)

)

(
(), (t, f, t)

)

(Out1, t) (Out2, f)

(Out2, f) (Out1, t)

(Out3, t)

The states correspond to PS((true, false, true)) and the transitions are la-
belled by the name flow that becomes valued between the states and its value.
Though it would be possible to value Out1 and Out2 at the same time (since
they both have no dependency), there is no transition from ((), (u, u, u)) to
((), (t, f, u)), since it corresponds to the valuation of two flows at the same
time. Nonetheless, it would be possible to optimise the graph by removing the
“diamond” with a transition corresponding to two valuation, since the order
is of no importance here (whatever is the ordering, the LTS ends up in state
((), (t, f, u))). Another solution would be to choose one ordering that respects
≺, and use it throughout the graph. It makes the graph more compact, but it
means that there are less possible ways of controlling the system.

Let us prolong this LTS with the second step:



80 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

(
(), (u, u, u)

)
start

(
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, f, u)

)

(
(), (t, f, t)

)

(
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out1, t) (Out2, f)

(Out2, f) (Out1, t)

(Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

To go from instant 0 to instant 1, an ε-transition finishes the previous step
and starts a new one, with a fresh partial state.

As we can see in the example, the system evolution LTS corresponding to
finite traces are directed acyclic graphs (DAG). This is due to the fact that
both the traces and the partial step can only “grow”, i.e. the trace cannot
become shorter and the partial step cannot have less valued flows than before.

We could introduce a more complex class of LTS to be able to represent
a model as a cyclic LTS. They could be appended to DAG, since DAG are
well suited to represent prefixes of traces. However, those cyclic LTS can
ultimately be unfolded into (possibly infinite) DAG.



5.3. STRATEGY SYNTHESIS FOR THE MIXED FRAMEWORK 81

One could argue that we could drop the partial steps, and focus on the
trace. However, it is not possible with a trace granularity to clearly define the
possible “plays”, as the values of some component flows depend on the values
of other ones. Therefore, we need a finer granularity, namely the partial step.

5.3.3 Strategy synthesis

In this section we will present a formalism to compute the strategies suited
for our problem that is close to the one proposed in [Asarin et al., 1995].

Definition 32 (Safe function (safe)) Let L = (Q, q0,Σ,→) be a LTS,
Σu ⊆ Σ a set of labels and P ⊆ Q be a set of states. Let Qf = {q ∈ P |
∀(σ, q′) ∈ (Σ×Q), (q, σ, q′) 6∈→} the set of final states of L.

safe(P ) =
∞⋂

i=0

OKi(P ), with OK0(P ) = P ∩Q, OKk+1(P ) = OK(OKk(P ))

and OK(X) = {q ∈ X |:

(q = q0 ∨ ∃q′ ∈ X, ∃σ ∈ Σ, (q′, σ, q) ∈→) ∧ (5.3)

(q 6∈ Qf ) =⇒((
∀σ ∈ Σu,∀q′ ∈ Q, (q, σ, q′) ∈→ =⇒ q′ ∈ X

)
∧

(
∃(σ′, q′′) ∈ (Σ, X), (q, σ′, q′′) ∈→

))
} (5.4)

Σu is the set of uncontrollable events.
Intuitively, given a set of traces, safe returns a set of states included in P (i.e.
states that verify a property) that cannot be exited using an uncontrollable
transition, while being lively.
OK+1 enforces two properties. The first one corresponds to Constraint 5.3.
It means that each state is either the initial state, or is the successor of a
state in X. Constraint 5.4 means that either q is a final state (q ∈ Qf ), or it
has a successor in X and every transition from q labelled by a symbol in Σu

leads to a state in X.
If the considered LTS are DAG, the fact that each state has at least one
predecessor and one successor means that safe(P ) returns a subset of states
from P such that every state in safe(P ) is reachable from the initial state
and some final state is reachable without the transition labelled by Σu leading
outside of safe(P ). If the LTS are not DAG, if q0 is in safe(P ), then some
infinite cycle (the specification/composition) or final state is in safe(P ), as
by definition, safe(P ) does not contain blocking state, nor state that have



82 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

no predecessor. Note that if the graph is not a DAG, there might be cycles
that are not reachable from q0, however, at least one cycle of final state is.
If the traces are infinite, there is no notion of final state, however, every
state of an infinite trace always has a successor, therefore, safe also works
on infinite traces.
If the initial state is not in OKi(P ), it does not make sense to pursue the
search for the fix-point, since no “final” trace is reachable from the empty
trace, so no system run is possible, and safe(P ) will converge to the empty
set, or cycles not reachable from q0 if the graph is not a DAG. Similarly,
if every “final” states (or cycles for a non-DAG) are removed from OKi(P ),
the synthesis can stop, as it will converge to the empty set (for DAG) or
non-reachable cycle (for non-DAG).

Example 22 To illustrate the safe function, we will use arbitrary LTS that
illustrates the functioning of the function, because the ones created from
counter-factuals rapidly become big and hard to read.

Let us consider the following LTS:

0start

1 2

3 4 5

u c

c c c u

The controllable transitions are labelled by c, the uncontrollable are labelled
by a red u. The “bad” states are red.

Here, P = {0, 1, 4, 5}. Therefore, OK0(P ) = {0, 1, 4, 5}.
We then build OK1(P ). 0 remains in OK1(P ), since its only uncontrol-

lable successor, 1 is in OK1(P ). The same goes for 1, since 1 is reachable
from 0, its controllable outgoing transition leads to 4, that is in OK1(P ), and
the outgoing transition to 3 (not in P ) is controllable (and thus can be for-
bidden). 4 is a final state and has 1 as predecessor, so 4 remains in OK1(P ).
Lastly, 5 is not reachable anymore, so it is removed from OK1(P ).

OK1(P ) = {0, 1, 4}, which is the fix-point for this LTS. We get the fol-
lowing LTS, with the removed parts faded:



5.3. STRATEGY SYNTHESIS FOR THE MIXED FRAMEWORK 83

0start

1 2

3 4 5

u c

c c c u

We get safe(P ) = {0, 1, 4}, which contains at least one path from the initial
state 0, to a final state, here, 4. Though safe(P ) is supposed to be a state
set, it is more readable as a LTS, therefore the presented graph is the one
where only the transition from safe(P ) to safe(P ) are kept.

Let us consider a second LTS:

0start

1 2

3 4 5

c u

c u c u

The difference with the first one is simply that the labelling of the outgoing
transition from 0 have been swapped.

• OK0(P ) = {0, 1, 4, 5}.

• OK1(P ) = {1, 4}, since 0 has an uncontrollable transition to 2, which
is not in OK1(P ).

• OK2(P ) = {4}, since 1 does not have a predecessor anymore.

• OK3(P ) = ∅, since 4 does not have a predecessor anymore.

Then, safe(P ) = ∅. It shows that if the initial state is removed from OKi(P ),
safe converges to the emptyset, since every state will eventually not have a
predecessor for the DAG. We can then stop the computation of OKi(P ), if
no initial state remains in OKi(P ). For graphs that are not DAG, it does



84 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

not make sense to finish the computation if 0 is not in OKi(P ), since in our
framework it would mean that this trace cannot be safely reached, since the
LTS represents the traces growing in length.

Lastly, let us consider another LTS:

0start

1 2

3 4 5

c u

c u c u

Here all the final states are bad.

• OK0(P ) = {0, 1, 2}.

• OK1(P ) = {0}, since 1 and 2 do not have any successor anymore.

• OK2(P ) = ∅, since 0 do not have any successor anymore.

Then safe(P ) = ∅. It shows that the computation of OKi(P ) can stop as
soon as there is no final state or infinite path in OKi(P ) anymore, since it
will converge to the emptyset.

Definition 33 (Strategy synthesis for LTS) Let (Q, q0,Σ,→) be a LTS,
P ⊆ Q be a safety property and Σc]Σu = Σ be a partition between controllable
and uncontrollable labels. Let Qf be the set of final states of the LTS. A
strategy strat ⊆ (Q×Σc) to enforce P is synthesised as follow: ∀q ∈ safe(P ),

strat(q) =
{
σ ∈ Σc | ∀q′ ∈ Q,

(
(q, σ, q′) ∈→) =⇒ q′ ∈ safe(P )

)}

Such that ∀q ∈ safe(P ), q ∈ Qf ∨ strat(q) 6= ∅

A strategy ensures that for all state in OK(P ), all the controllable transitions
that are enabled, and all the uncontrollable transitions, lead to a state in
OK(P ). Whats more, it ensures that the controller is lively by ensuring that
strat(q) is not empty if q is not a final state.



5.3. STRATEGY SYNTHESIS FOR THE MIXED FRAMEWORK 85

Definition 34 (Mixed framework property (Pmixed)) Let S = (F,C,P , BM)
be a mixed framework system. Let LTSsys(P) = (Q, q0,Σ,→) be the LTS
build from P. Pmixed = Q is the set of states corresponding to the mixed
framework property.

This is the translation of the property in the state space of the LTS. It
represents all the states that respect the system property.
Note that since P is a safety property, it is prefix-closed, therefore LTSsys(P)
only adds the partial step states to the property.

Definition 35 (Winning strategy (WINmixed)) Let CF be a counter-factual
definition, that takes a trace and a set of suspected components in argu-
ments. Let tr be a system trace, I ⊆ CB a set of suspected components
and R ⊆ CW a set of protagonist. Let L = LTSsys(CFmixed(tr, I,R)) be
the LTS build from CFmixed(tr, I,R) and Pmixed is the LTS property build
form P. There is a winning strategy if ((), (undef)f∈F) ∈ safe(PLTS), with
Σu =×

f∈E
(Df ∪ {undef})

)
, with E = F \

⋃

C∈R

Oc.

This formal definition is consistent with the one given earlier. The idea is
that if safe(PLTS) contains the empty trace, there is a possible controller
that ensures the system to remain in a subset of PLTS. It means that the
controlled system is always non-failing, and the controller is non-blocking.
The uncontrollable transitions are all the ones that do not correspond to an
output from a component in R. If the empty trace is not safe(PLTS), then
the system cannot be controlled in a non-blocking fashion to ensure the sys-
tem to be non-failing.

Let us illustrate the strategy synthesis with an example.

Example 23 We consider the LTS produced in Example 21, on the or gate
system:



86 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX

(
(), (u, u, u)

)
start

(
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, f, u)

)

(
(), (t, f, t)

)

(
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out1, t) (Out2, f)

(Out2, f) (Out1, t)

(Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

If we run the safe function on this LTS, with R = {C2}, we get:



5.3. STRATEGY SYNTHESIS FOR THE MIXED FRAMEWORK 87

(
(), (u, u, u)

)
start

(
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, f, u)

)

(
(), (t, f, t)

)

(
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out1, t) (Out2, f)

(Out2, f) (Out1, t)

(Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

As expected, this is controllable, if C2 does not output false during the second
instant. There is then a winning strategy.

Since we compute safe to check if there is a winning strategy, we can
actually build the winning strategy from safe, as shown in Definition 33.

Conclusion

This section developed a technique to mix white and black-box components
in the causality approach. This approach uses the counter-factuals from the
vanilla approach and builds on it. The result of the causality analysis gives
some interesting information in a design/debugging framework.

A way of synthesising the strategy is also given.
As mentioned earlier, this framework cannot cope with responsibility as-

signment. The next Section will show how to deal with this issue.



88 SECTION 5. COMBINING WHITE-BOX AND BLACK-BOX



Section 6

Game Framework for causality
analysis

Section 5 introduced a framework that gives insight in a design perspective.
However, the strategy synthesis supposes that a perfect knowledge of the
system state is accessible to all the components. In a blaming framework, it
is a problem, as it will be illustrated in the following example.

Example 24 The system we consider is the simple three Boolean compo-
nents setting from Example 16, where C3 reflects that the outputs of C1 and
C2 are equal.

The failing trace is the following:

Time 0 1 2 3
Out1 true true false false
Out2 true true false true
Out3 true true true false

Let us build the counter-factuals for I = ∅ and R = {C2}:

Time 0 1 2 3
Out1 true true false false
Out2 B B B B
Out3 Out2[0] Out2[1] ¬Out2[2] ¬Out2[3]

There is an obvious strategy, which is to always have Out2 = Out1.

The example showed that there is a possible strategy, which means that
it is possible to add a controller, or modify the system such that the failure
is avoided. However, C2 is not supposed to have access to the value of Out1

89



90 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

(since Out1 is not an input of C2), neither is it expected to be evaluated after
Out1 is valued. Even though C2 is a necessary cause in the mixed framework,
it does not make sense to hold C2 responsible for the failure, as it does not
have a local strategy that avoids the failure, with the information it has access
to. What’s more, holding it responsible assumes that Out1 should be valued
before Out2, which is not necessary for the system to function as specified.
It shows that we need a richer framework to be able to correctly assign
responsibility, by both taking into account the information components have
access to, and the actual constraints there are on the system.

This section will present such a framework. It will be divided in four
subsections, in a similar fashion to Section 5. The first one will present the
definitions we need to perform causality analysis in the game framework.
The second one will adapt the causality definitions from Section 5.2, and will
develop some new ones that are suited to a responsibility viewpoint. The
third one will give a method to synthesise the strategies at a component
level. The last one will present two ways of using this framework to find
fixes.

6.1 Game Framework

As Example 24 showed, one of the issue of responsibility assignment lies in
the fact that the model needs to be able to correctly assess the information
each component has access to, in order to check whether the component had
a way of avoiding the failure, given the information it had.

With this constraint in mind, we need to move to a framework that rep-
resents better how the system is actually evolving. Firstly, we move from
the specification to “step function”. There is extensive work in the literature
about compiling synchronous dataflow system descriptions into actual code.
A solution is to have a single-loop code that infinitely repeats itself, as dis-
cussed in [Halbwachs et al., 1991b]. This is the approach we chose here, as
it is widely used, and specifically is the one used in Lustre.
The component specifications/models we now consider are abstractions of
this single-loop model. We call those “single-loop” specifications/models step
specifications/models.

The motivation to move to a “step function” framework is to better assess
the information the component has access to when it computes its output. In-
deed, in a responsibility mindset, it does not make sense to held a component
responsible for a failure that could have been avoided would the component



6.1. GAME FRAMEWORK 91

have access to more information. The directing idea in this section is to be
as cautious as possible when assigning responsibility, in particular, by having
a finer grain model for the components.

Definition 36 (Step specification/model (Ŝ)) Let I, O and M be dis-
tinct sets of flows. A Step specification/model is a function that takes an
input from DI × DM and outputs a set of elements from DO × 2DM , with
DF =×

f∈F
Df , such that:

∀(i,mem) ∈ (DI ×MEM), Ŝ(i,mem) 6= ∅

With MEM the greater set such that ∀mem ∈ MEM, ∃(i,mem′) ∈ (DI ×
MEM), ∃o ∈ DO, (o,mem) ∈ Ŝ(i,mem′)

Given a current memory state and inputs, the step specification returns all
the possible outputs, alongside all the possible next memory states, for each
possible output. It describes more realistically what the component has ac-
cess to, while computing its output, than S. The constraint is here to ensure
that the step specification is DI ×MEM accepting, i.e. it has at least one
possible output for each input and each possible memory states that Ŝ can
produce.
MEM is introduced because there is no need to be accepting for each pos-
sible memory state. Indeed, if a component is an integer memory flow that
ends up taking its value in [0..3], it does not make sense to constraint the
step specification to be accepting for each possible integer.

Given a component specification/model S, we suppose we are able to infer
the corresponding step specification/model Ŝ such that recursively executing
Ŝ builds exactly S. It is important to be able to go from the specifications to
the step specifications, in order to compare the vanilla and the mixed frame-
work to this one. Generally speaking, the system is not specified using a set
of traces, and are also generally compiled into a single-loop code. Therefore,
it is very likely to actually have access to a one step specification.
In the case of a step specification (i.e. for black-box components), we also
suppose that M is minimal. This minimality criterion is here to ensure that
Ŝ uses the minimum memory possible to be able to compute the next step.
It means that the implementation of the specification/actual system has, at
least, as much information as Ŝ. This is important, because, as we do not
know how the specification has been implemented in the actual system, we
must use the “worst case scenario”, in term of how much information the
component has. Note that the minimality criterion definition here is a bit



92 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

fuzzy, given the generality of the framework. It could be the number of
memory flows. However, some memory flows might represent complicated
data structures. It could be the cardinal of DM . However, if one chooses
integer for a memory flow that is only three valued, any arbitrary number
of three valued flows will make for a smaller domain, though retaining way
more information. Anyhow, the idea is that the component has access to
the minimal information necessary to ensure it is able to enforce its specifi-
cation. E.g. a component that returns the previous value of its input will
only have one memory flow, of the same type as the input, not a sequence
of all the previous values. The sequence of all previous input values ensures
to be able to enforce the specification, but only keeping the previous one is
the minimal amount of data needed to ensure the specification, and thus the
one we assume the component has access to.
For the models, we have access to the actual behaviour, and therefore the
internal memory used in the system. The memory state is the one used in
the system, and not necessarily the minimal one.

In practice, the specifications/models are not designed as sets of traces,
but as set of constraints, programs,. . . A specification in Lustre is already
a one step specification. Therefore, it is easy to have access to the “one step”
specification.

Example 25 This example will show a step specification derived from a spec-
ification, and a step model, as well as a step model.

Let us consider the usual pump. The definition is the following:

• Ipump = {(compump,N)}

• Opump = {(outpump, [0..2])}

• Spump = {tr ∈ Bpump | ∀i ∈ [0..|tr|], πoutpump(tr[i]) = πcompump(tr[i])}

The corresponding step specification is:

• Ipump = {(compump,N)}

• Opump = {(outpump, [0..2])}

• mempump = ∅

• Ŝpump = (outpump = compump)



6.1. GAME FRAMEWORK 93

Here, the translation from the specification to the step specification is sim-
ple, since the pump is memoryless. It just consists in removing the universal
quantifiers on the specification.

Let us now consider a more complex component, namely a white-box tank,
which outputs some liquids, corresponding to a command outtank and that can
dump one unit of liquid, at each time-step.

• Itank = {(outpump, [0..2]), (outtank, [0..2])}

• Otank = {(voltank,N)}

• memtank = {(pre_voltank,N), (dump, [0..1])}, with pre_voltank the pre-
vious value of voltank. We note a′ for the previous value of a.

• Ŝtank is such that:

– dump = random([0..1]), with random that randomly returns a
value from a set.

– voltank = pre_vol′tank + outpump − dump− outtank
– pre_voltank = voltank

We note f ′ for the previous value of f . Here, the dump variable represents
the non-deterministic part of this white-box component, namely how much
liquid the tank dumps at a given time-step. It is not necessary to create a
dump variable, we can just replace dump by random([0..1]) in the definition
of voltank. However, in order to ease the comprehension of the examples, the
“non-determinism” will be made explicit, by using variables that reflects it,
such as dump in this component.

Note that the order in which the statements in the specification are eval-
uated is important, as dump is used in voltank, and voltank in pre_voltank =
voltank.

Definition 37 (Step component (C)) A step component is a tuple C =
(I, O,M, Ŝ), with I the set of input flows, O the set of output flows, M the
set of internal memory flows, and Ŝ a one step specification/model.

We simply add a set of memory flows to the tuple, to reflect the fact that
they need to be added, to go from the specification/model framework to the
step one.



94 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

Definition 38 (Game system (S)) A game system S = (C,F,P , BM)
is a mixed system (i.e. C = CB ] CW ) such that the components are step
components, F =

⋃

C∈C

(IC ∪ OC ∪ MC), P ⊆ BF′ and BM ⊆ BF′, with

F′ =
⋃

C∈C

(IC ∪OC)

A game system is basically a mixed system for which the components have
a step specification/model instead of a specification. This change is passed
on to F, since the internal memory is added to the set of flows of the system.
However, the specification and behavioural models remain on the “initial” set
of flows (namely F′), since they reflect a global view-point, and do not have
access to the internal state of the components.

Definition 39 (Causality game G) Given a game system S = (C,F,P , BM),
a causality game G is a tuple (tr,M,R,A,P ′), where

• tr ∈ (BF′ \ P) is the faulty trace (with F′ defined as in Definition 38).

• M ⊆ CB is a set of black-box components.

• R ⊆ CW is a set of white-box components which are the protagonists.

• A ⊆ CW is a set of white-box components which are the antagonists.

• P ′ ⊆ BF′ is a safety property over the possible traces of the system.

Such that R∩A = ∅.

A causality game is a two players game, where the protagonist controls all
the components in R, and similarly, the antagonist controls all the compo-
nents in A. The goal of R is to ensure that P ′ remains true on all the traces
built, given tr andM. The goal of A is to ensure that P ′ will eventually be
violated.
tr andM are the usual arguments we use to build the counter-factuals (M
corresponds to I, it is renamed to “modified”, as it does not necessarily rep-
resent the suspects). tr is the initial faulty trace. M is a set of black-box
components for which we will repair the faulty behaviour in tr. The result
of the counter-factuals reconstruction is a set of traces “consistent” with tr,
where the behaviour of the components inM is non-faulty.
As in the mixed-framework, R is a set of white-box components for which
we authorise more behaviours than the one in tr, i.e. behaviours that are
consistent with the reconstructed traces from tr, but not necessarily the one



6.1. GAME FRAMEWORK 95

chosen in tr. A works in a similar fashion.
The shift to a game framework is motivated by the ability to have a set of
components, A, that are actively trying to make the system fail.
Note that this game definition does not explain how the game is played, but
rather the setup of the game. We still need a one more definition before
being able to actually explain how to “play” the game.

Definition 40 (Strategy strat) Let C = (I, O,M, Ŝ) be a step component,
a strategy strat for this component is a step specification such that strat ⊆ Ŝ.

A strategy is a restriction of the step specification that remains a step spec-
ification. It means that the “amount” of non-determinism is reduced, but a
strategy remains I accepting.

In the white-box tank from Example 25, a strategy is more restrictive
way of choosing dump than a total random. For instance, dump could the
parity of outpump.

Note that this definition of strategy explains why A and R do not form
a partition of the white-box components because the behaviour of a “player”
component can be different from the one in the initial trace tr.

Even though the component strategy only relies on the information the
component has access to, the choice of the strategies is coordinated. E.g. the
strategies for all the components in R (similarly A) are chosen as a whole,
even if each strategy is local to the component. It is motivated by the fact
that we want to check the responsibility of sets of components, that can
choose strategies as a set, but perform the strategy locally. It is in the same
line of thought as the remarks raised by Example 24, we want to blame a set
of components on the information it had during the system run, and not on
information it does not have access to.

Definition 41 (Outcomes outcome) Given a game system S = (C,F,P , BM)
and a game G = (tr,M,R,A,P) and strat = {stratC}C∈R∪A be a set of
strategies for each protagonist and antagonist component. Let MEM =×
f∈E

(Df ) with E =
⋃

C∈C

(memC). We suppose we are given the initial mem-

ory state mem0 ∈ MEM . We also suppose we are given a similar(tr,TR)
function from (BM × 2BM) × 2BM that given a trace tr and a set of traces
returns the set of traces that are the most similar to tr.
outcome(G, strat) builds all the possible traces, as follow:

TR0 = {((), {mem0})}, with () the empty trace.

The traces are then extended as follow:



96 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

• We suppose TRi ∈ 2E with E = BM × 2MEM has already been com-
puted.

• Let POSSIBLE(TRi) =
⋃

(tr′,MEMtr′ )∈TRi

(possible((tr′,MEMtr′))) With

possible such that:
∀(tr′,MEMtr′) ∈ E, possible((tr′,MEMtr′)) =

{(tr′′,MEMtr′′) ∈ E |

|tr′′| = i+ 1 ∧ tr′′[0..i− 1] = tr′[0..i− 1] ∧ (6.1)

∀f ∈ F, (∀C ∈ C, f /∈ OC ∧ i < |πf (tr)|) =⇒ (πf (tr
′′[i]) = πf (tr[i])) ∧

(6.2)

∀C ∈ (R∪A),

∀mem ∈ πC(MEMtr′′),∃mem′ ∈ πC(MEMtr′) s.t.

(πOC
(tr′′[i]),mem) ∈ stratC(πIC (tr′′[i]),mem′) ∧ (6.3)

∀C ∈ (Cnf ),

∀mem ∈ πC(MEMtr′′),∃mem′ ∈ πC(MEMtr′) s.t.

(πOC
(tr′′[i]),mem) ∈ ŜC(πIC (tr′′[i]),mem′)} (6.4)

with Cnf =
(
CW \(R∪A)

)
∪M∪{C ∈ (CB \M) | π(tr[0..k+1] ∈ SC},

with k = max({l ∈ [0..i− 1] | πC(tr[0..l] = πC(tr′[0..l]})

• TRi+1 = {tr′,MEMtr′) ∈ POSSIBLE(TRi) |

tr′ ∈ similar(tr, TRACESi+1)}

With TRACESi+1 =
⋃

(tr′,MEMtr′ )∈POSSIBLE(TR)

({tr′}).

outcomes(G, stratR, stratA) = TRk such that TRk cannot be extended any-
more.

The outcome function computes all the traces, given a game, an initial trace
and a set of strategies.
The idea is to start from the empty trace, alongside the initial memory state
(mem0), which correspond to the memory state of the different components
when they are initialised. The trace is then extended by one step, using



6.1. GAME FRAMEWORK 97

POSSIBLE. The output of POSSIBLE is the set of all possible exten-
sions of the input set of traces by one step. This set of possible traces is then
filtered using similar, to keep only the traces that are the most consistent
with the initial failing traces. The process of extension is then repeated.
This extension assumes that the traces can be extended indefinitely, or that
a maximum length has been chosen. It is not always possible to extend a
trace, but taking it into account in this definition would further complicate
this already involved definition. It would be easy to add another filtering
that allow to keep traces that cannot be extended, to tackle this issue.
possible is built to respect certain rules. The constraint 6.1 is here to ensure
that we are just extending the traces from TRi by one time-step. The con-
straint 6.2 ensures that the input of the systems (flows that are not “plugged”
to the output of any component) have the same values as in the initial trace
tr (if there is one). Constraint 6.3 ensures that the “players”, i.e. the com-
ponents that are protagonist, or antagonist, respect the strategy they have
chosen. Constraint 6.4 ensures that the white-box components which are
not “players”, the components that should be repaired (i.e. in M) and the
black-box components that respect their specification before their behaviour
being modified, respect their specification. This is what Cnf (components
non-faulty) represents: the non-player white-box (

(
CW \(R∪A)

)
), the “mod-

ified” black-box components (M) and the non-faulty black-box ones. The
non-faulty black-box components are the one such that they were non-faulty
the first time their behaviour was modified. k represents the last instant tr
and tr′ coincide on C, and at k+1, C was not faulty in tr. This construction
of Cnf ensures the no fault introduction requirement (2). Note that this check
is made for every tr′, it means that C could be non-faulty in a given trace
that is being prolonged, but not in every prolonged ones. This is the main
reason this framework builds some more accurate counter-factuals than the
ones that use a notion of cone/unaffected prefixes. This approach is closer
to the framework introduced in [Gössler and Stefani, 2016].
This operation gives us a set of traces, POSSIBLE(TRi), that are all the
possible extensions of the traces in TRi, and that respect the constraints
above, alongside the possible memory states for those extensions. We now
select only the traces that are the most similar to the initial trace. This
similarity can be that the maximum number of flow values are similar to the
initial trace, or that the maximum number of component behaviours are the
same as in tr. This similarity function correspond to 5 (Conservation of the
non-impacted trace parts).
The state of the internal memories of the components are constrained by 6.3
and 6.4. For each possible extension tr′′ of a trace tr′, one element of the
projection of MEMtr′′ over a component C must be consistent with one of



98 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

the previous possible memory states from MEMtr′ . This ensures that all
the possible memory states are generated, thus building as many traces as
possible, while keeping a consistency with what information the components
have. Note that the similar function does not take the memory state into
account, as it only uses the traces in TRACES(TRi), i.e. the trace extended,
without the possible memory states. It is motivated by the fact that we do
not have access to the internal state of the system from the initial trace tr,
and therefore, it cannot be used to assess the similarity to this initial trace.
In this definition, similar is applied at each step. It means that less traces
will be generated at each step, but that the similarity is “local”, with respect
to the time-step. It is also possible not to apply similar at each step, but
only to the final set of traces. Overall, it will yield outcomes that are closer
to the initial trace, as traces that were not the closest ones at a given instant
might end up being the closest ones when fully extended. However, applying
similar at the end means way more computation cost and memory usage.
The result of outcome corresponds to the output of CFmixed, from the mixed
framework, where the behaviour of the components in R and A is constraint
by a strategy. Note that if we chose ŜC for those components, the results
are the same as CFmixed (all the possible behaviours of R and A that are
consistent with tr) but with a counter-factual definition that corresponds to
outcome.

We note ΠC the set of all possible strategies for the component C, and
ΠC =×

C∈C
(ΠC) for the Cartesian product of all the sets of strategies of the

components in C.

Definition 42 (Winning strategy) Given a causality game G = (tr,M,R,A,P).
R has a winning strategy stratR ∈ ΠR if ∀stratA ∈ ΠA, outcome(G, stratA∪
stratR) ⊆ P

Given a causality game G, we define WIN(G) a Boolean function which re-
turns true if their is a winning strategy for the protagonist in the causality
game. It means that WIN(G) is true if R can always prevent the system from
going in a state that violates P . This definition is the extension of Definition
23 to the game framework.

Definition 43 (Spoiling strategy) Given a causality game G = (tr,M,R,A,P).
A has a spoiling strategy stratA ∈ ΠA if ∀stratR ∈ ΠR, sup(outcome(G, stratA∪
stratR))∩P = ∅, with sup(TR) = {tr′ ∈ TR | ∀tr′′ ∈ TR, tr′ = tr′′∨¬(tr′′ v
tr′)}



6.1. GAME FRAMEWORK 99

Given a causality game G, we define SPOIL(G) a Boolean function which
returns true if there is a spoiling strategy for the antagonist in the causality
game. It means that A can always eventually force the system in a failing
state where P is no longer verified. This definition is the extension of Defini-
tions 24 to the game framework. It is necessary to define SPOIL, as it cannot
be build from WIN and tweaking the game, because of the eventuality notion
that is introduced with the sup. Contrary to Definition 24, where there was
no real notion of strategy (thus the name spoiling behaviour), as no set of
components was actively trying to make the failure happen, here A tries to
create a system failure.

Example 26 Let us consider a system composed of a controller, two pumps
and a tank.

The pumps are the usual ones (pump1 and pump2). When they are faulty,
their output value never changes (which is reflected in BM).

The tank is the one described in Example 25, with two pumps instead of
one:

• Itank = {(outpump1 , [0..2]), (outpump2 , [0..2]), (outtank, [0..4])}

• Otank = {(voltank,N)}

• memtank = {(pre_voltank,N), (dump, [0..1])}

• Ŝtank is such that:

– dump = random([0..1]), with random that choose randomly a
value in a set.

– voltank = pre_vol′tank + outpump1 + outpump2 − dump− outtank
– pre_voltank = voltank

The property P is that outtank should be between 0 and 5.
The controller is as follow:

• Icontrol = {(voltank,N), (outpump1 , [0..2]), (outpump2 , [0..2]), (outtank, [0..4])}

• Ocontrol = {(compump1 , [0..2]), (compump2 , [0..2])}

• memcontrol = {(pump1_fault,B), (pre_pump1_fault,B), (pump2_fault,B),
(pre_pump2_fault,B), (pre_voltank,N), (pre_outpump1 , [0..2]), (pre_outpump2,
[0..2])}, with pre_name the precedent value of name and pumpi_fault
a variable chosen by the controller to reflect the fact that it believes
pumpi to be faulty.



100 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

• The specification is complicated. However, the idea is to ensure that
voltank should be as close as 3 as possible at the end of the instant.
pump1_fault = pump2_fault = false, the controller will command to
both pump to output a flow. If one of the two is true, the controller will
take into account that it cannot change the value of the broken pump.
If both are true, the controller does not have any impact on the system
anyways.

Note that we consider that pump1_fault and pump2_fault are non-deterministic.
However, the specification is deterministic, while the inputs values and the
two internal values have been chosen.

Let us consider the following trace:

Time 0 1 2 3 4
outtank 4 1 2 2 2

pump1_fault false false false false false
pump2_fault false false false false false
compump1 2 2 1 1 1
outpump1 2 2 2 2 2
compump2 2 2 1 1 1
outpump2 2 2 1 1 1
dump false false false false false
voltank 0 3 4 5 6

At instant 2, the first pump becomes faulty, and stuck outputting 2. This ends
up causing a system failure after 3 instants. However, would the pump1_fault
have actually reflected the fact that pump1 was faulty, the command would
have avoided the failure by taking the stuck value into account. Similarly, the
tank could have dumped some liquid to prevent the overflow.

Since we make the non-determinism of the white-box components ex-
plicit, we can use them in the similar function of the play-through. The
similar function returns the traces of possible where the choices remains
as close as possible and the black-box output values are kept as is. I.e.
similar(possible, tr) = {tr′ ∈ possible | ∀tr′′ ∈ possible,maintained(tr′, tr) >
maintained(tr′′, tr)}, with maintained(tr, tr′) = |{f ∈ F∪ND | πf (tr[|tr|−
1]) = πf (tr

′[|tr| − 1])}|, with ND the set of flows representing the non-
determinism of the non-playing white-box components (in CW \ (R ∪ A)).
For instance, NDcontrol = {(pump1_fault,B), (pump2_fault,B)}. main-
tained basically counts the number of flows for which that values are the
same between the two traces.



6.1. GAME FRAMEWORK 101

Let us consider the outcome if the strategy strat for control is to chose the
correct value for pump1_fault, outcome((tr, ∅, {control}, ∅,P), {strat}, ∅):

Time 0 1 2 3 4
outtank 4 1 2 2 2

pump1_fault false false true true true
pump2_fault false false false false false
compump1 2 2 2 2 2
outpump1 2 2 2 2 2
compump2 2 2 0 0 0
outpump2 2 2 0 0 0
dump false false false false false
voltank 0 3 3 3 3

Since the pump1_fault is the right one, control adapts its commands ac-
cordingly and the volume in the tank, that remains at 3 after instant 1, as is
aimed at. Note that tank does not changes its strategy, as reducing its output
by one would not make it closer to the initial trace. Therefore, there exist a
winning strategy, so WIN((tr, ∅, {control}, ∅,P)).

Now, let us consider the outcome if we fix pump1, and that the strategy
strattank for the tank is to systematically dump, outcome((tr, {pump1}, {control}, ∅,P), {strattank}, ∅):

Time 0 1 2 3 4
outtank 4 1 2 2 2

pump1_fault false false false false false
pump2_fault false false false false false
compump1 2 2 2 2 2
outpump1 2 2 2 2 2
compump2 2 2 1 1 1
outpump2 2 2 1 1 1
dump true true true true true
voltank -1 2 2 2 2

At the first instant, voltank has the value −1, thus violating the specification.
Afterwards, voltank has the value 2, as the controller does not know that one
unit of liquid will be dumped, and aims at 3. This trace is the closest to the
initial one, since the choices are the same for control, and the outputs of
the pumps are the same as in the initial trace. Therefore, this is a spoiling
strategy, and SPOIL((tr, ∅, {control}, ∅,P)).

Considering only the black-box aspect, this approach is similar to the
one in [Gössler and Stefani, 2016], where the approach starts by removing



102 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

the faults (and not the suffixes) and then grafting the removed parts, and
the one impacted by the changes, with correct behaviours. Here, we do that
in one pass, through Constraint 6.4 (the one on black-box and non playing
white-box components) and the similar function. However, the approach
in [Gössler and Stefani, 2016] is able to keep bigger parts of the trace, by
changing the trace in an early instant, if it means a reconstructed trace
closer to the initial one. Since we build the trace incrementally here, we do
not have this way of taking into account the “future” of the trace. However,
when applying the similar function at the end of the trace extension, the
result should be analogous.

6.2 Causality definitions
This paragraph will present causality definitions adapted from the mixed
framework, and some new ones that the game framework enables. As for
Section 5.1, the result of causality analysis will be discussed from a design
perspective. In addition, they will be analysed from a responsibility point
of view as well. As explained earlier, this game framework is largely moti-
vated by the fact that the mixed framework does not allow us to assess the
responsibility of the sets of components, since the synthesis is global. This
is the usual responsibility assignment, with both black-box and white-box
components, instead of only back-box ones.

The design setting we consider is the same as in Section 5.1. Concerning
the responsibility assessment setting, we suppose that a failing trace is given,
as well as black and white-box component specifications/models and a system
property, and that we try to assess the responsibility of sets of components
in the failure.

In those definitions, we suppose we are given a game system S = (C,F,P , BM),
and a faulty trace tr ∈ BM \ P .

Definition 44 (Necessary cause (nec)) Let I ⊆ C be a set of suspected
components, I is a necessary cause, noted nec(tr, I), if WIN(G), with G =
(tr, I ∩ CB, I ∩ CW , ∅,P).

Intuitively, the set suspects are a fix for the system. For the black-box com-
ponents, the idea is the same as the usual approach, repairing them fixes the
system. On the white-box component side, it means that they had a set of
local strategies that could have avoided the failure. Combined, it means that,
would the black-box suspects have not been faulty, the white-box suspects
had a way of avoiding the failure. I ∩ CW can force the system to behave
according to P , if I ∩ CB is fixed.



6.2. CAUSALITY DEFINITIONS 103

If I ⊆ CB, and CFblack−box(tr, I) = outcome((tr, I, ∅, ∅,P), ∅, ∅), this defini-
tion gives the same result as the black-box one.
If I ∩ CB = ∅, it means that the white-box components in I could have
chosen local strategies to ensure that the system would not fail, even with
all the faulty component left as is.

From a designer viewpoint, it means that the models can be modified
locally to be able to avoid the failure, as long as the black-box components
in I are fixed.
From a responsibility assignment view-point, it means that there was a way
of avoiding the failure, by doing forbidding some non-deterministic options,
i.e. a winning local strategy was available, for the white-box components
from I and repairing the black-box from I. It means that the failure could
have been avoided. However, tr might be a crazy scenario, which was not
really foreseeable during the design phase. If not, it shows a defect from the
designer, and assigning responsibility makes sense.

Let us illustrate this definition with an example.

Example 27 The system considered and the trace is the one of Example 26.
As show in Example 26, the controller had a winning strategy, therefore,

nec(tr, {control}).

If we consider I = {pump1}, we get the following counter-factuals:

Time 0 1 2 3 4
outtank 4 1 2 2 2

pump1_fault false false false false false
pump2_fault false false false false false
compump1 2 2 1 1 1
outpump1 2 2 1 1 1
compump2 2 2 1 1 1
outpump2 2 2 1 1 1
dump false false false false false
voltank 0 3 3 3 3

The white-box components keep their choices as they were, and only the out-
put of pump1 is modified, thus giving us the closest trace to the initial one.
WIN((tr, ∅, {pump1}, ∅,P)), {pump1} is a necessary cause.

If I = {tank}, if strattank is to dump if its volume would become strictly
greater that 3 without dumping, we get outcome((tr, ∅, {tank}, ∅,P), strattank, ∅):



104 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

Time 0 1 2 3 4
outtank 4 1 2 2 2

pump1_fault false false false false false
pump2_fault false false false false false
compump1 2 2 1 1 1
outpump1 2 2 2 2 2
compump2 2 2 1 1 1
outpump2 2 2 1 1 1
dump false true true true true
voltank 0 3 3 3 3

The system property is not violated. The similar function prevents the con-
troller from switching strategy, since it would mean that the trace is less sim-
ilar to the initial one, thus producing the only possible outcome. Therefore,
nec(tr, {tank}).

Both white-box components had a possible strategy that lead to avoid the
failure. Then, they both are necessary causes, so is pump1, the only faulty
black-box component.

Definition 45 (Sufficient cause suff) Let I ⊆ C be a set of suspected
components, I is a sufficient cause, noted suff(tr, I) if SPOIL(G), with
G = (tr,CB \ I,CW \ I, ∅,P).

It means that even if we fix the components in CB \ I, the system will even-
tually fail, whatever the components in CW \ I do.
If I∩CW = CW , and CFblack−box(tr,CB\I) = outcome((tr,CB\I, ∅, ∅,P), ∅, ∅),
this definition has a similar behaviour as suffblack−box(tr, I) in the black-box
only approach.

From a designer point of view, it means that in order to have local fixes,
some more white-box components must be modified and more black-box com-
ponents must be fixed.
From a responsibility assessment viewpoint, it means that the components
not in I are not responsible, as they did not have any way of avoiding the fail-
ure, at a local level. On the other hand, the strategy/faults from the suspect
are sufficient for the failure to happen. In order to assess the responsibility,
it is interesting to contrast results with and without a component. For in-
stance, if we have suff(tr, I ∪ {C}) and ¬ suff(tr, I), C can be considered as
responsible, as its inclusion in the suspects or not changes the outcome of
suff. We can define a notion of minimal sufficient cause (as usual, by the min-
imality of I), thus giving us set of components for which the strategies/faults
had a critical impact on the outcome. However, it can be a bit too fast to



6.2. CAUSALITY DEFINITIONS 105

arise responsibility for the white-box components from that, as the scenario
might have not been foreseeable, and thus not taking it into account was not
realistic.

Example 28 The system is the same as in Example 26, with the following
trace:

Time 0 1 2 3 4
outtank 4 1 4 3 3

pump1_fault false false true true true
pump2_fault false false false false false
compump1 2 2 2 2 2
outpump1 2 2 0 0 0
compump2 2 2 2 2 2
outpump2 2 2 2 2 2
dump false false false false false
voltank 0 3 1 0 -1

Here, if we do not fix pump1, nothing can be done to avoid the failure, as
pump2 is already at its maximum output. Therefore, suff(tr, {pump1})

Note that if the tank chooses to dump at instant 0, the property is violated
at the first instant. However, this trace is less similar to the initial one than
the one where not dump occurs. Therefore, {tank} is not a sufficient cause,
as if we fix pump1, the failure does not occur.

Definition 46 (System fix fix) I is a system fix, noted fix(tr, I), if ∀I ′ ⊆
C, I ⊆ I ′ =⇒ nec(tr, I ′).

It means that if we fix at least I∩CB, and at least the components in I∩CW

try to enforce P , the system cannot fail. Note that The quantification could
only be on I ∩ CB, because if R has a winning strategy, R′ ⊇ R also has
one. However, the black-box causality framework has shown that black-box
cause are not monotonous (e.g. if two faults compensate one another, fixing
one might make the system fail).

We can define a notion of minimal fix. I is a minimal fix, if I is a fix and
∀I ′ ⊂ I,¬fix(tr, I ′).

From a designer point of view, a minimal fix is a set of components such
that if the black-box ones are fixed, there is a way of constraining locally the
model the white-box ones such that the failure is always avoided.
From a responsibility assessment point of view, a minimal system fix is a



106 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

set of components that can be considered as responsible, if the scenario is
foreseeable, as their was a way of systematically preventing the failure.

If we consider the results from Example 27, {tank}, {control} and {pump1}
are system fix, as all there supersets are necessary causes. It means that fix-
ing any of them is enough to fix the system.

Definition 47 (Unavoidable cause una) I is an unavoidable cause, noted
una(tr, I), if ∀I ′ ⊆ C, I ⊆ I ′ =⇒ suff(tr, I ′).

It means that if you do not fix, at least, I ∩CB and at least I ∩CW are not
protagonists, the system necessarily fail.
As for the previous example, only the quantification on the black-box is
necessary, because if ∅ has a spoiling strategy (which can be considered as
being a spoiling behaviour) against R, it also does against R′ ⊆ R.

Similarly to the system fix, we can define a notion of minimal unavoidable
cause.

From a designer point of view, an unavoidable cause raises a set of com-
ponents for which at least one must be fixed/modified, in order to be able
to have a shot at avoiding the failure. A minimal unavoidable cause is more
interesting, as removing one component form I ensures to be able to fix the
system.
From a responsibility assessment point of view, C \ I is a set of components
that cannot be held responsible as they never had a way of avoiding the
failure. On the other hand, if I is minimal, the strategies/faults from the
components in I are critical to the failure. Therefore, the black-box compo-
nents can be held responsible, and the white-box ones as well, if the scenario
was foreseeable.

Example 29 The system is the same as in Example 26, with the following
trace:

Time 0 1 2 3 4
outtank 4 1 1 2 2

pump1_fault false false false false false
pump2_fault false false false false false
compump1 2 2 1 1 1
outpump1 2 2 2 2 2
compump2 2 2 1 1 1
outpump2 2 2 1 1 1
dump true true true true true
voltank -1 2 3 3 3



6.2. CAUSALITY DEFINITIONS 107

Here, whatever the over components do, they cannot prevent the tank from
making the system fail.

An interesting aspect of this example is also that pump1 is not a cause. It
shows that with this approach, we can have a failure than are not caused by
black-box component faults. What’s more, the fault occurs after the failure of
the system, showing that a failure can occur without any fault.

Definition 48 (Weak malicious cause malweak) Let I ⊆ C be a set of
suspected component. Let A = I ∩ CW . I is a weak malicious cause, noted
malweak(tr, I), if:

∀stratA ∈ ΠA,∃tr′ ∈ outcome((tr, ∅, ∅,A), ∅, stratA), tr v tr′ (6.5)

such that,

∀R ⊆ CW \ A,∀M ⊆ CB \ I,∀stratR ∈ ΠR,

outcome((tr,M,R,A), stratR, stratA) ∩ P = ∅ (6.6)

Constraint 6.5 reflect the fact that tr is a trace which is consistent with
stratA, as there is a trace tr′ in outcome((tr, ∅, ∅,A), ∅, stratA) that is pre-
fixed by tr. Constraint 6.6 means that whatever set of white-box components
not in I you oppose to A, as long as the black-box components in I are not
fixed, stratA is a spoiling strategy.
This definition is close to the unavoidable cause, with an important differ-
ence, which is that the suspects strategy made the system fail.
This definition shows that A is used to add another level of granularity to
the approach by being able to cope with sets of component that try to make
the system fail.
Note that una(tr, I) 6=⇒ weak_mal(tr, I), it might not be possible to
build a local strategy that ensures the failure, even-though a global one was
available (since the run resulted in a failure).

This definition does not really gives much information from a designer
point of view. From a responsibility assessment point of view, I can be
malicious, as one strategy consistent with the initial trace is always spoiling.
If ¬una(tr, I) ∧ weak_mal(tr, I) I is more likely to be malicious, as some
strategies that are consistent with what happened in tr are spoiling ones, but
not all the possible behaviours lead to a failure (since ¬una(tr, I)).

The strategy used in Example 29 is a spoiling strategy that coincide
with the initial trace, thus {tank} is both an unavoidable cause and weak a
malicious cause.



108 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

Definition 49 (Malicious cause mal) Let I ⊆ C be a set of suspected
component. Let A = I ∩ CW . I is a malicious cause, noted mal(tr, I), if:

∃stratA ∈ ΠA,∃tr′ ∈ outcome((tr, ∅, ∅,A), ∅, stratA), tr v tr′ (6.7)

such that,

∀R ⊆ CW \ A,∀M ⊆ CB \ I,∀stratR ∈ ΠR,

outcome((tr,M,R,A), stratR, stratA) ∩ P = ∅ (6.8)

The difference with the weak malicious is the fact that the quantifier on the
spoiling strategy is universal. It means that every possible strategies that
are consistent with the initial trace lead to a failure, as long as the black-box
components in I∩CB are not repaired. It means that the suspected white-box
components only had spoiling strategies. Note that the universal quantifier is
here to ease the understanding, as using ŜC for each component in A ensures
that all possible strategies are covered, as a strategy is a restriction of the
specification, thus ŜC being a spoiling strategy implies that every strategy
is.

From a responsibility assessment point of view, I is most likely malicious,
or the design choices made cannot cope with the scenario represented by tr,
and the system must be modified.

Note thatmal(tr, I) =⇒ una(tr, I), since the behaviours from una(tr, I)
are necessarily produced if A has access to all the possible strategies.
{tank} is a malicious cause as well, as any strategy that starts with a

dump leads to a failure at instant 1.

Definition 50 (Resilient resil) Let I ⊆ C be a set of suspected compo-
nent. Let A = I ∩CW . The system is I-resilient, noted resil(tr, I), if exists
C′ ⊆ (C \ I), such that WIN((tr,M,R, I ∩ CW )), with R = C′ ∩ CW and
M = C′ ∩ CB.

It means that there exists a set of protagonists R and black-box components
M, such that if the components inM are repaired, R always has a winning
strategy against I∩CW even though the components in I∩CB remain faulty.
Intuitively, the system is resilient to the fault and the malicious behaviours
of the suspected components.
This definitions shows that the framework can capture even complicated def-
initions. From a designer point of view, it gives a tool to ensure that the sys-
tem cannot fail because of a given set of components, for a given scenario. An
example is that a system pacemaker-heart should be {pacemaker}-resilient,
i.e. the pacemaker cannot make the heart fail (which would have some dire



6.3. STRATEGY SYNTHESIS FOR THE GAME FRAMEWORK 109

consequences). Another example is that it ensures that some critical data
cannot be accessed by a set of components trying to retrieve the said data.

Example 30 If we consider Example 28 again, which relies on the following
scenario:

Time 0 1 2 3 4
outtank 4 1 4 3 3

pump1_fault false false true true true
pump2_fault false false false false false
compump1 2 2 2 2 2
outpump1 2 2 0 0 0
compump2 2 2 2 2 2
outpump2 2 2 2 2 2
dump false false false false false
voltank 0 3 1 0 -1

If we consider I = {pump2, tank}, we can build the following play-
through, withM = {pump1} and R = {control}:

Time 0 1 2 3 4
outtank 2 2 3 3 3

pump1_fault false false false false false
pump2_fault false false false false false
compump1 2 2 2 2 2
outpump1 2 2 2 2 2
compump2 2 2 2 2 2
outpump2 2 2 2 2 2
dump true true true true true
voltank 1 2 2 2 2

By repairing pump1 and keeping the pumpi_faults at false, the tank cannot
make the system fail. If it does not dump, the volume of the tank will be 3 if
it does, it will be 2. Every other play-through with those players will always
lead to a win. Therefore, resil(tr, {pump2, tank}).

6.3 Strategy synthesis for the game framework
As for the mixed approach, the game approach relies on the computation of
strategies. Though the framework can be seen as a three players game (the
protagonist, the antagonist and the environment), in all the definitions that



110 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

exist in the mixed framework only have a protagonist. Therefore, we can use
a two players synthesis similar to the one used in Section 5.3. In the case of
the malicious definitions, since the quantification is universal, by considering
the antagonist as the only player and add the protagonist components to the
environment, we actually get the expected result. Indeed, having a strategy
against the most general strategy accessible by the protagonists (i.e. their
model) encompasses any possible strategy.
We can also build a synthesis for the spoiling strategies. The idea is to
eliminate recursively the states that lead to a state where the property cannot
be violated.

This section will present a refinement to the synthesis proposed in Sec-
tion 5.3, to fit the partial information constraint, as well as some illustrative
examples. The section will be divided in two subsections. The first one will
present how to synthesise the winning strategies, while the second will show
how to synthesise the spoiling ones.

The LTS formalism to represent the counter-factual, as well as the defini-
tion of a strategy synthesis (Definition 33) will be reused as they were defined
in Section 5.3.

6.3.1 Winning strategy synthesis

In order to compute the strategies, we use a safe function (like Definition
32 of Section 5.3) that take into account the information accessible to the
component.

Definition 51 (Safe function for the game framework (safegame)) Let
L = (Q, q0,Σ,→) be a LTS, ΣC ] Σu ⊆ Σ a partition of the labels and P be
a set of states. Let L′ = (Q, q0,Σ,→).

safegame(P,L
′,Σu) =

∞⋂

i=0

game_OKi(L
′) with (Q, q0,Σ,→) ∩ (Q′, q0,Σ′,→′

) = (Q ∩Q′, q0,Σ ∩ Σ′,→ ∩ →′) and:

game_OK0(L
′) = (Q ∩ P, q0,Σ,→),

game_OKk+1(L
′) = game_OK+1(game_OKk(L

′)) and

game_OK+1((Qx, q
0
x,Σx,→x)) = (OK+1(Qx), q

0
x,Σx,→+1)

With →+1=→x \{(q, σ, q′) ∈→x|

q /∈ OK+1(Qx) ∨ q′ /∈ OK+1(Qx) ∨ (6.9)



6.3. STRATEGY SYNTHESIS FOR THE GAME FRAMEWORK 111

∃(k, k′) ∈ (OK+1(Qx)× (Q \OK+1(Qx))),
(
(k ≡σ q) ∧ (k, sigma, k′) ∈→x

)

(6.10)
With OK+1 as in Definition 32, with Qf = {q ∈ (P ∩ Q) | ∀(σ, q′) ∈ (Σ ×
Q), (q, σ, q′) 6∈→}, and q ≡σ q′ being true meaning that q and q′ are equivalent
for the component that fires σ.

This definition shifts from considering a set of states to a full LTL. The idea
is to restrict the state space (with OK+1 from Definition 32) and then trim
the transitions that have either the source or the destination that is no longer
in the state space (Constraint 6.9).
It also removes the transition fired from q if a transition labelled similarly
is fired from a state in OK+1(Qx) k to a state outside of OK+1(Qx) k. q is
equivalent to k for σ (i.e. (q ≡σ q′) = true) means that the state is the same
from the perspective of the component that corresponds to σ. This is the
idea of the ≡ operator, but it will be further explained in the next definition.

Example 31 To illustrate the safegame function, we adapt LTS from Ex-
ample 22.

Let us consider the following LTS:

0start

1 2

3 4 5

u c0

c1 c0 c2 u

The red transitions are uncontrollable, and the black ones are.
We consider that all the states are equivalent, whatever is the label.
Here, Q0 = Q ∩ P = {0, 1, 4, 5}. Q1 = OK+1({0, 1, 4}), since is not

reachable from a state in Q0

→0= {(0, u, 1), (0, c0, 2), (1, c1, 3), (1, c0, 4), (2, c2, 4), (2, u, 5)}. We remove
(0, c0, 2), (1, c1, 3), (2, c2, 4) and (2, u, 5), as they originate, or lead to a state
that is not in OK+1(P ). We aslo remove (1, c0, 4), as it is labelled with c0,
and the transition (0, c0, 2) goes from 0 (in OK+1(P )), which is c0-equivalent
to 4, to 2 (not in OK+1(P )). We get →1= {(0, u, 1)}.

We get the following LTS for game_OK1(P ):



112 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

0start

1 2

3 4 5

u c0

c1 c0 c2 u

The result will then converge to the empty LTS.
The difference with Example 22 is that transition (1, c0, 4) has been re-

moved, making 4 unreachable. Since there is no reachable final state in
game_OK1(P ), then safegame(P ) will be the empty LTS.

Definition 52 (σ-equivalent (≡σ)) Let S = (C,F,P , BM) be a game sys-
tem, ≺ be a partial order for the system and TR ⊆ BF be a set of traces. Let
L = (Q, q0,Σ,→) be the LTS build from TR.

∀q, q′ ∈ Q, (q ≡ε q′) = false (6.11)

∀q, q′ ∈ Q, ∀(name, v) ∈ σ, q ≡(name,v) q
′ =
(

(6.12)

∃C ∈ C,∃f = (namef , Df ) ∈ OC , (name = namef ) ∧ (6.13)
(
∀e ∈ (IC∪OC∪MC), e ≺ f =⇒ (πe(q) = πe(q

′)∧πe(q) 6= undef)
))

(6.14)

The intuition for this definition is that q ≡ω q′ is true if σ corresponds to
the valuation of a component (C) output f and the values of the flows from
C from which f depends on are the same in q and q′. I.e., q and q′ are the
same from C perspective on those flows.
Constraint 6.11 makes sure that the equivalence is false, if the label is ε. By
definition, an epsilon transition is not fired by a component, and thus there
is no component to compare q and q′.
Implicitly, we suppose that the label is not the epsilon one in Constraint 6.12,
since (name, v) cannot be the epsilon label.
Constraint 6.13 ensures that the label corresponds to a valuation by a com-
ponent. Indeed, if not, it means that it is the valuation of a system input,
which does not originate from a component and, as for Constraint 6.11, there
is no component to compare q and q′.
Lastly, Constraint 6.14 ensures that the state q and q′ are equivalent from
the component prospective. They are if the values of the flows from which



6.3. STRATEGY SYNTHESIS FOR THE GAME FRAMEWORK 113

f depends on are the same. We only take into account the flows from which
f depends on, because they are the only ones relevant to the choice of the
valuation of f .
Note that if q and k are σ-equivalent, their successors also are, since the differ-
ence between a state and its successor is exactly the valuation corresponding
to the label.

Definition 53 (LTS property (PLTS)) Let S = (C,F,P , BM) be a game
system and ≺ be a partial order for the system. Let P ′ = {tr ∈ F | πF′(tr) ∈
P}, with F′ =

⋃

C∈C

(IC ∪ OC). (Q, q0, σ,→) = LTSsys(P ′) is the mixed LTS

build the set of traces P ′. PLTS = Q is the set of states of the build LTS.

First, we build P ′ by, essentially, an upward project P to F. Note that
in a game system, F includes the memory flows of the components, while P
is defined on F’ (all the input and output flows of the components). Then, a
LTS is build from P ′, using the LTSsys. We then take the set of states from
this LTS, which gives us the set of non-failing states upward projected on F.

Definition 54 (Winning strategy (WINgame)) Let tr be a system trace,
M ⊆ CB a set of suspected components, R ⊆ CW a set of protagonist and
A ⊆ (CW \ R).
Let LTSgame be the LTS build from outcome((tr,M,R,A,P), {ŜC}C∈(R∪A))
and PLTS is the LTS property build form P.
There is a winning strategy if ((), (undef)f∈F) is in the set of states of
safegame(PLTL, LTSgame,Σu), with Σu =×

f∈E
(Df ∪ {undef})

)
, with E =

F \
⋃

C∈R

(Ic ∪Oc ∪MC).

This definition is very similar to the winning strategy definition from the
mixed framework (33) . The differences are the initial LTS, here it is build
with outcome, and the fact that the property is “upward projected” over
F (which also contains the flows that correspond to the components mem-
ory). To generate the counter-factuals LTS, we use outcome, with their step
specifications, ŜC , as strategy for each protagonists and antagonists. It acts
similarly to CFmixed, i.e. it only constraints the protagonists and antagonists
with their possible behaviours, regardless what they output in the initial
trace. Since, by definition, the strategies are restrictions of the step specifi-
cations, all the possible strategies behaviours are generated. Since safegame
generates a LTS for which each state has a successor, or is final, we indeed
generate strategies, i.e. restrictions of the step specification that is lively (at



114 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

least the one “close” to the initial trace tr). We just need to extend this “re-
stricted” strategy to the other possible states, to get a full fledged accepting
strategy.

Let us illustrate the strategy synthesis with an example.

Example 32 We consider the LTS used in Example 23, i.e. the one that
illustrated the strategy synthesis for the mixed framework:

(
(), (u, u, u)

)
start

(
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, f, u)

)

(
(), (t, f, t)

)

(
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out1, t) (Out2, f)

(Out2, f) (Out1, t)

(Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

The system property is that Out3 should always be true (i.e. the current
valuation can be (_,_, u) or (_,_, t)). The result for the mixed framework
strategy synthesis was basically to forbid the (Out2, f) transition in the lower
part of the LTS (after the epsilon transition). Let us see how this example is
treated by the game approach synthesis.

Here is the interesting step in the synthesis, it corresponds to game_OK2

for the considered LTS:



6.3. STRATEGY SYNTHESIS FOR THE GAME FRAMEWORK 115

(
(), (u, u, u)

)
start

(
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, f, u)

)

(
(), (t, f, t)

)

(
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out1, t) (Out2, f)

(Out2, f) (Out1, t)

(Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, t)

What happened at this step is that the state
(
(t, f, t), (f, f, u)

)
got removed, as

it had no successor. Therefore, the transition (Out2, f) was removed. Since
C2 has no input, all the transitions labelled by (Out2, f) are also removed
(since all the states of C2 where out2 is not valued are equivalent), thus dis-
connecting the initial state from the rest of the graph. Therefore, safegame
converges to the empty LTS.
This was actually to be expected, as from C2 perspective, it is not possible to
differentiate the transitions labelled (Out2, f), that are in the upper part of
the graph (and are safe), from the one in the lower part of the graph (that are
not safe). Therefore, there is no local strategy, whereas, there was a global
one. Thus C2 cannot be considered responsible for the failure, since it could
not avoid it with the information it had.

Let us now consider the following example, where C2 can output either
true or false in the upper part of the graph:



116 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

(
(), (u, u, u)

)
start

(
(), (u, t, u)

) (
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, t, u)

) (
(), (t, f, u)

)

(
(), (t, t, t)

) (
(), (t, f, t)

)

(
(t, t, t), (u, u, u)

)

(
(t, t, t), (u, t, u)

) (
(t, t, t), (f, u, u)

) (
(t, t, t), (u, f, u)

)

(
(t, t, t), (f, t, u)

) (
(t, t, t), (f, f, u)

)

(
(t, t, t), (f, t, t)

) (
(t, t, t), (f, f, f)

) (
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out2, t)
(Out1, t)

(Out2, f)

(Out1, t)
(Out2, t) (Out2, f)

(Out1, t)

(Out3, t) (Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

The uncontrollable transitions are labelled in red. The bad states (i.e. not
respecting P) are red.

Here is safegame(L,PLTS,Σu) for C2 being the only controllable compo-
nent:



6.3. STRATEGY SYNTHESIS FOR THE GAME FRAMEWORK 117

(
(), (u, u, u)

)
start

(
(), (u, t, u)

) (
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, t, u)

) (
(), (t, f, u)

)

(
(), (t, t, t)

) (
(), (t, f, t)

)

(
(t, t, t), (u, u, u)

)

(
(t, t, t), (u, t, u)

) (
(t, t, t), (f, u, u)

) (
(t, t, t), (u, f, u)

)

(
(t, t, t), (f, t, u)

) (
(t, t, t), (f, f, u)

)

(
(t, t, t), (f, t, t)

) (
(t, t, t), (f, f, f)

) (
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out2, t)
(Out1, t)

(Out2, f)

(Out1, t)
(Out2, t) (Out2, f)

(Out1, t)

(Out3, t) (Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

The right part of the graph is totally removed, as the transitions labelled by
(Out2, f) are forbidden. However, their is a possible strategy, that translates
locally, for C2, to always output true.
This result is different from the one we would have using the mixed framework
synthesis, since only the problematic transitions labelled (Out2, f), in the
lower right part of the graph would have been removed, thus allowing the
transition labelled (Out2, f) in the upper part of the graph. However, this
controller cannot be translated to a local strategy for C2, since C2 does not
have the information to decide whether it should, or not, perform a (Out2, f)
transition.

With the Definition 54, we are able to synthesise a global strategy that
is consistent with what information the components have access to. We can



118 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

then define a projection function, to give rise to local strategies for each
component that is controllable.

By construction, safegame builds a LTS that is a restriction of the counter-
factuals. Therefore, the “strategy” that is synthesised is not, per se, a strat-
egy, as it is not enabling for all the possible inputs. However, by construction
(since the LTS represents the execution of traces, and the empty trace is in
safegame) the generated strategy is accepting over the states from safegame
(since a non-final state with no outgoing transition is removed). Therefore,
to get a full fledged strategy, one just need to take a strategy that coincide
with the one synthesised on the states that are the same as the one appearing
in the synthesis, and Ŝ otherwise.

6.3.2 Spoiling strategy synthesis

The problem of synthesis is very similar for the spoiling and the winning
strategies. The idea is to reach a set of states in the two cases. For the
winning strategies, the goal is to reach states that corresponds to a finished
non-faulty trace. For the spoiling strategies, the goal is to reach states for
which the property is not verified. Therefore, it is possible to compute the
spoiling strategies by slightly modifying the functions used in the computa-
tion of the winning strategies.

Definition 55 (Unsafe function unsafe) Let L = (Q, q0,Σ,→) be a LTS,
Σu ⊆ Σ a set of labels and P be a set of states such that P represents a safety
property. Let Qf = Q \ P the set of final states of L.

unsafe(P ) =
∞⋂

i=0

KOi(P ) is the fix-point of KOi(P ), with KO0(P ) = Q,

KOk+1(P ) = KO+1(KOk(P )) and KO+1(X) = {q ∈ x |:

(q = q0 ∨ ∃q′ ∈ X, ∃σ ∈ Σ, (q′, σ, q) ∈→) ∧ (6.15)

(q 6∈ Qf ) =⇒((
∀σ ∈ Σu,∀q′ ∈ Q, (q, σ, q′) ∈→ =⇒ q′ ∈ X

)
∧

(
∃(σ′, q′′) ∈ (Σ, X), (q, σ′, q′′) ∈→

))
} (6.16)

From the set of all states in the LTS, unsafe builds the set of states that
eventually lead to a final state, whatever the uncontrollable transition are
fired. Since the set of final states are the failing states, this function builds
the set of states that eventually lead to a failure.



6.3. STRATEGY SYNTHESIS FOR THE GAME FRAMEWORK 119

The differences with the safe function only lies in the initial set of states
(Q instead of P ∩ Q) and the final states (the failing states instead of the
final non-failing traces). The difference in the initial set of states is just
an “optimisation”, as the properties we consider are safety ones, it is not
possible to leave Q and then reenter it, therefore, safe would converge to
the same result, when starting from Q instead of P ∩ Q (up to parts of the
graph unreachable from the initial state). However, we did not make any
assumption over P in the safe definition, whereas we suppose it represents a
safety property here.
The KO function is exactly the same as OK: it filters out non-final states
with no successor, and the non-initial states with no predecessor. The reason
it removes the states corresponding to non-failing finished trace, is because
such a state is non-final and has no successor, and is therefore removed,
like OK would do with the failing ones, would safe start from Q. The
predecessors of those states are themselves removed if they have no successor,
for the same reason, and so on.
Note that we can stop when a failing state is reached because P represents a
safety property (that is if a successor of a state in P leaves P , its successors
never reenter P ). If not, we would have needed the final states to correspond
to finished failing traces.

Let us illustrate the unsafe function with an example.

Example 33 We consider a LTS that is similar to the ones in Example 22:

0start

1 2

3 4 5

c c

c u c u

The controllable transitions are labelled by c, the uncontrollable are labelled
by a red u. The “bad” states are red, i.e. the states not in P .

Qf = Q \ P = {3, 5}, and KO0(P ) = Q = {0, 1, 2, 3, 4, 5}.
Let us now build the different KOi(P ).

• KO1(P ) = {0, 1, 2, 3, 5}. 4 is removed, because it does not have a
successor in KO0(P ) and is not final.



120 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

• KO2(P ) = {0, 2, 3, 5}. 1 is removed, because it has an uncontrollable
transition leaving KO1(P ).

• KO3(P ) = {0, 2, 5}. 3 is removed, because it has no predecessor in
KO2(P ).

We have reached the fix-point here, and unsafe(P ) = {0, 2, 5}, which gives
us the following LTS:

0start

1 2

3 4 5

c c

c u c u

Definition 56 (Spoiling strategy SPOILgame) Let tr be a system trace,
M ⊆ CB a set of suspected components, R ⊆ CW a set of protagonist and
A ⊆ (CW \ R).
Let LTSgame be the LTS build from outcome((tr,M,R,A,P), {ŜC}C∈(R∪A))
and PLTS is the LTS property build form P.
There is a winning strategy if ((), (undef)f∈F) ∈ unsafegame(LTSgame,PLTL,Σu),
with Σu =×

f∈E
(Df∪{undef})

)
, with E = F\

⋃

C∈A

(Ic∪Oc∪MC) and unsafegame

defined as safegame (Definition 51), with the safe function replaced by the
unsafe one.

Since unsafe builds a set a states that must not be left, similarly safe, we
can build unsafegame just by replacing the use of safe by the use of unsafe.
The way of forbidding transition is the very same. This gives us a way of
synthesising spoiling strategies.

Example 34 Let us illustrate the functioning of SPOILgame on the second
LTS of Example 32:



6.3. STRATEGY SYNTHESIS FOR THE GAME FRAMEWORK 121

(
(), (u, u, u)

)
start

(
(), (u, t, u)

) (
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, t, u)

) (
(), (t, f, u)

)

(
(), (t, t, t)

) (
(), (t, f, t)

)

(
(t, t, t), (u, u, u)

)

(
(t, t, t), (u, t, u)

) (
(t, t, t), (f, u, u)

) (
(t, t, t), (u, f, u)

)

(
(t, t, t), (f, t, u)

) (
(t, t, t), (f, f, u)

)

(
(t, t, t), (f, t, t)

) (
(t, t, t), (f, f, f)

) (
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out2, t)
(Out1, t)

(Out2, f)

(Out1, t)
(Out2, t) (Out2, f)

(Out1, t)

(Out3, t) (Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

The uncontrollable transitions are labelled in red. The bad states (i.e. not
respecting P) are red.

Here is unsafegame, for this LTS and C2 being the controllable component.



122 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

(
(), (u, u, u)

)
start

(
(), (u, t, u)

) (
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, t, u)

) (
(), (t, f, u)

)

(
(), (t, t, t)

) (
(), (t, f, t)

)

(
(t, t, t), (u, u, u)

)

(
(t, t, t), (u, t, u)

) (
(t, t, t), (f, u, u)

) (
(t, t, t), (u, f, u)

)

(
(t, t, t), (f, t, u)

) (
(t, t, t), (f, f, u)

)

(
(t, t, t), (f, t, t)

) (
(t, t, t), (f, f, f)

) (
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out2, t)
(Out1, t)

(Out2, f)

(Out1, t)
(Out2, t) (Out2, f)

(Out1, t)

(Out3, t) (Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

As expected, by always outputting false, C2 can ensure that the system even-
tually fail. Note that this is the complimentary of the winning strategy. How-
ever, this is not a general result, and is due to the fact that this example is
extremely simple.

For instance, if we consider the first LTS of Example 22, there is a spoiling
strategy, whereas there was no winning one. The LTS is the following:



6.3. STRATEGY SYNTHESIS FOR THE GAME FRAMEWORK 123

(
(), (u, u, u)

)
start

(
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, f, u)

)

(
(), (t, f, t)

)

(
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out1, t) (Out2, f)

(Out2, f) (Out1, t)

(Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

Here is unsafegame, for this LTS and C2 being the controllable component:



124 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

(
(), (u, u, u)

)
start

(
(), (t, u, u)

) (
(), (u, f, u)

)

(
(), (t, f, u)

)

(
(), (t, f, t)

)

(
(t, f, t), (u, u, u)

)

(
(t, f, t), (u, t, u)

) (
(t, f, t), (f, u, u)

) (
(t, f, t), (u, f, u)

)

(
(t, f, t), (f, t, u)

) (
(t, f, t), (f, f, u)

)

(
(t, f, t), (f, t, t)

) (
(t, f, t), (f, f, f)

)

(Out1, t) (Out2, f)

(Out2, f) (Out1, t)

(Out3, t)

ε

(Out2, t)
(Out1, f)

(Out2, f)

(Out1, f) (Out2, t) (Out2, f) (Out1, f)

(Out3, t) (Out3, f)

The reason there is a spoiling strategy and not a winning one, is because
(Out2, f) is removed in the winning strategy synthesis, thus disconnecting the
initial state from the rest of the graph. In the case of the spoiling strategy,
(Out2, t) is forbidden, which does not impact the upper part of the graph.

6.4 Finding fixes with the game framework

This section will present two ways to find fixes with the game approach. The
first one is to use the output of the game approach as the input of techniques
that contrast passing and failing traces. The second one is to slightly modify
the framework, to be able to find fixes “natively”.

6.4.1 Using the game framework as input to approaches
to find fixes.

In [Xuan et al., 2016], the authors propose a method to find and fix bugs
in conditional statements (i.e. if-then-else statements) for Java programs.



6.4. FINDING FIXES WITH THE GAME FRAMEWORK 125

The reason they focus on conditional statements stems from the observation
that a large portion of the bugs (in their data-set, 12, 5% of the one change
commits are on conditional statements). The approach needs a test suite,
which contains at least one faulty trace that captures the bug to fix. The
first step is to use angelic values (i.e. replacing values at runtime by arbitrary
ones, namely the value of the conditions here) to transform a failing trace into
a passing one. Once such a transformation is found, they use a SMT-based
technique to synthesise, if possible, the new conditions.

The first step of the approach can be performed with the mixed approach
or the game approach. Indeed, by changing the conditions in the white-box
components to choices, we can get, if there is one, a strategy that fixes the
bug. The second step of the [Xuan et al., 2016] approach can then be used
to find a possible fix for the conditional statements.

Let us illustrate how it would function with an example.

Example 35 The system is the same as in Example 26, pump1_fault would
represent a condition that recognise that pump1 is faulty and pump2_fault
a condition that recognise that pump2 is faulty.
Let us consider the following trace.

Time 0 1 2 3 4
outtank 4 1 2 2 2

pump1_fault false false false false false
pump2_fault false false false false false
compump1 2 2 1 1 1
outpump1 2 2 2 2 2
compump2 2 2 1 1 1
outpump2 2 2 1 1 1
dump false false false false false
voltank 0 3 4 5 6

As seen in the example, if we consider I = {control}, here is a possible
passing trace:



126 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

Time 0 1 2 3 4
outtank 4 1 2 2 2

pump1_fault false false false true true
pump2_fault false false false false false
compump1 2 2 1 2 2
outpump1 2 2 2 2 2
compump2 2 2 1 0 0
outpump2 2 2 1 0 0
dump false false false false false
voltank 0 3 4 4 4

The angelic values for pump1_fault are (false, false, false, true, true).
From there, a fix could be computed for pump1_fault which would be

pump1_fault = false→
(
pre(pump1_fault)∨(pre(compump1) = pre(outpump1))

)
.

The reason we use the pre in the synthesis is because we cannot add variables
that have a dependency chain on themselves. Therefore, the controller cannot
detect the fault when it occurs, but the next instant at the earliest.

By using the mixed or the game approach for the first step of [Xuan et al., 2016],
we replace the test suite by a failing trace and a model of the system.

Note that this is also possible to take into account several failing traces
using the mixed or the game approach for the first step.

Example 36 Let us consider the same system as in Example 35, with the fix
taken into account, but with the addition of an output for the pumps, KOi,
with i the number of the pump, that reflects an auto-diagnosis of the pumps.
These flows would be inputs of control.

Time 0 1 2 3 4
outtank 4 1 2 0 2

pump1_fault false false false false false
pump2_fault false false false false false
compump1 2 2 1 1 1
KO1 false true true true true

outpump1 2 2 2 2 2
compump2 2 2 1 1 1
KO2 false false false false false

outpump2 2 2 1 1 1
dump false false false false false
voltank 0 3 4 6 6



6.4. FINDING FIXES WITH THE GAME FRAMEWORK 127

Here, pump1 detects its fault at instant 1, and since this information is not
taken into account by control, the tank overflows at instant 3

Let us build a play-through where I = {Control}:
Time 0 1 2 3 4
outtank 4 1 2 0 2

pump1_fault false false false false false
pump2_fault false false true true true
compump1 2 2 2 2 2
KO1 false true true true true

outpump1 2 2 2 2 2
compump2 2 2 0 0 0
KO2 false false false false false

outpump2 2 2 0 0 0
dump false false false false false
voltank 0 3 3 5 5

The angelic values for pump1_fault are (false, false, true, true, true).
From there, a fix could be computed for pump1_fault which would be

pump1_fault = false→ (pre(pump1_fault) ∨ (pre(KO1)).
Note that this fix is compatible with the previous one, and we can combine

them into:

pump1_fault = false→
(
pre(pump1_fault) ∨

(pre(KO1) ∧ (pre(compump1) = pre(outpump1)
)

This Subsection showed that the counter-factuals build with the mixed or
the game approach can also be used as an input to approaches that rely on a
passing trace close from a failing one. Using the game approach is necessary
when you want to ensure that the conditions added only rely on informa-
tion from the component. If you can modify the amount of information the
component has access to, the mixed approach is enough.

The argument to use the mixed/game approach is the following: since the
synthesis is necessary to most of the causality definition, its result can then be
used as a set of passing traces close to the initial one. The “closeness” notion
relies on the one used by the way of building the counter-factuals. Those
passing traces can then be used as the input of the methods that contrast
passing with failing traces. The reason those approaches can be a good way
of generating the traces is because they use an explicit causality definition
to build the said traces, and as Section 2.3 has shown, results are generally
better when using an explicit causality definition. This claim, however is not
based on testing or any proof, but on a general observation.



128 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

6.4.2 Extending the game framework to find fixes

In Section 6, we defined the strategies as respecting the specification. It
means that the strategy only controls the non-deterministic choices of the
component. It could be interesting the have richer strategies in order to be
able to propose fixes to a buggy white-box component.

Definition 57 (expanded strategy s̃trat) Let C = (IC , OC ,MC , Ŝ) be a
component, let S̃ be a step mode over (IC , OC ,MC) such that Ŝ ⊆ S̃. A
expanded strategy is a a step model such that s̃trat ⊆ S̃

Here, the idea is to expand the possible behaviours for the component C from
Ŝ to S̃, and then taking the strategies in this new bigger set of behaviours.
S̃\Ŝ is basically some slack that is authorised on the model of the component.

Let us consider an example.

Example 37 The system we study has the same architecture as Example 26,
i.e. a controller, two pumps and a tank. For simplicity sake, we remove the
non-deterministic choice from the controller.

However, we consider S̃tank which is the same as Ŝtank with the exception
that can dump 0, 1 or 2 unit of liquid (instead of 0 or 1).

The considered trace is the following:

Time 0 1 2 3 4
outtank 0 4 2 2 2
compump1 2 2 1 1 1
outpump1 2 2 2 2 2
compump2 1 2 1 1 1
outpump2 1 2 2 2 2
dump 0 0 -1 -1 -1
voltank 3 3 4 5 6

Here, since the two pumps become faulty, the tank cannot prevent the over-
flow, even when dumping at each timestep. Therefore, there is no winning
strategy with Ŝtank.

If we consider the generalised strategies for R = {tank}, there are several
winning strategies, like:



6.4. FINDING FIXES WITH THE GAME FRAMEWORK 129

Time 0 1 2 3 4
outtank 0 4 2 2 2
compump1 2 2 1 1 1
outpump1 2 2 2 2 2
compump2 1 2 1 1 1
outpump2 1 2 2 2 2
dump 0 0 -1 -1 -2
voltank 3 3 4 5 5

Here, dump takes the value −2 at the last timestep. It solves the problem,
but is not really satisfactory, in term of a general fix.

A strategy that better matches the intuition is:

Time 0 1 2 3 4
outtank 0 1 4 4 4
compump1 2 1 2 2 2
outpump1 2 1 2 2 2
compump2 1 0 2 2 2
outpump2 1 0 2 2 2
voltank 3 3 3 3 3

Here, the tank dumps 2 whenever not doing so would result in its volume
becoming greater than 3.

Obviously, the second version is better, however the first one does solve
the problem.

This example showed that there generally are many possible solutions
for the fix. This problem could be tackled by having multiple failing traces,
which may refine the fix. Another way would be to propose several strategies
to the user, and let him choose the best one.

Though the framework can find fixes in theory, in practice, it may be hard
to actually synthesise the strategies, with the slack introduced increasing the
size of the state-space. However, with very specific slack (like here, adding
one more possible value to dump), it may be possible to synthesise the fixes
on small systems.

Conclusion

This section presented an extension to the mixed-framework that is twofold.
The first one is to move from the global ticks perspective to a finer grain
description of the system that takes into account the evolution of the sys-
tem during a step. This required to change the specifications/models to step



130 SECTION 6. GAME FRAMEWORK FOR CAUSALITY ANALYSIS

specifications/models, that better represent the functioning of the compo-
nents. It enabled us to be able to assess the responsibility of components
or set of components on a failure. The way we treat the sets of components
is to suppose that they can coordinate on a global level the choice of their
strategies, however, the strategies are locals, meaning that the components
only have access to the information they are supposed to have access to at
runtime.

The second extension is to move to a game framework, that enables us
to add a second player. We can then emulate behaviours where a set of
components chose their strategies to try to make the system fail, while the
protagonists try to prevent the failure. It opens up a lot of possibilities, in
terms of new definitions, as was shown in Section 6.2. Those definitions are
interesting both in a design mindset (can we prevent this set of components
from making the system fail) or in a responsibility one (are the strategies
that may correspond to what happened in the initial trace always spoiling
ones).

This section also describes a way of computing the winning and spoiling
strategies in practice. Nevertheless, the offset, in term of computation cost, of
eliminating the transitions in the LTS has not been assessed, and we cannot
use the classic results from the controller synthesis.

Lastly, extensions to automated fix generator are sketched in Section 6.4.



Section 7

Impact of information on the
Causality Analysis framework

This section presents some studies on the impact of the amount of informa-
tion we have access to on the accuracy of causality analysis (being able to
accurately assess responsibility), and some extensions that can be derived
from this impact. This section will be divided in two subsections.
The first one will present some results on causality analysis performed on
reduced logs. For systems that have a lot of components and/or that run
for an extensive period of time, the traces can become big. Being able to
perform causality on reduced logs is then important, to reduce the amount
of data necessary, and possibly reducing the cost of the analysis, by having
less data to process .
The second subsection is a generalisation of the work in [Wang et al., 2015].
Though the faulty behaviour can be embedded in the system behavioural
model, it is not convenient to use in practice, since a new behavioural model
must be computed if a fault model changes, and local fault models are easier
to manipulate than a global behavioural model. This subsection gives a gen-
eral framework to use fault models in causality analysis, as well as a method
to refine the causes and a way to be able to reduce the number of analyses
performed, if components have multiple fault modes.

All the results presented in this section are contributions from this thesis.

7.1 Causality Analysis on reduced logs

The idea is to perform causality analysis on partial logs, without losing too
much in accuracy. Here the notion of partial log is either traces that do not

131



132 SECTION 7. IMPACT OF INFORMATION ON CA

cover the whole execution (e.g. only the last 10 ticks, or every other tick),
that are called partial in time, or traces that do not contain every variable
(e.g. only the inputs of the components), those are called partial in space.
There is very little to change to the current framework to allow the use
partial logs, since it reasons on global traces from the behavioural model.
The traces in the counter-factuals must match the unaffected-prefixes, and
even-though the unaffected prefixes are partial, the counter-factuals can still
be built. Nonetheless, the set of counter-factuals will be bigger if the logs
are partial, since the possible behaviours will be less constrained.

The first subsection will present general properties on partial log. The
second one will feature some ideas and thoughts about partial logs in space.
The third one will introduce a method to keep the same precision with partial
logs in time, under certain assumptions. The last one will present some
thoughts on how adding some information to the logs may help reducing
them overall.

7.1.1 General results

This section will formalise causality analysis on reduced logs and give some
results about necessary and sufficient causality on those logs.

Definition 58 (Log) Let F be a set of flows. A log is a element of LOGF =(

×
f∈F

Df ∪ {⊥}
)∞

, with Df the domain of a flow, and ⊥ denoting an absence

of logged information.

A log is a trace which can lack some information. For instance, if f is a
Boolean flow, (true,⊥, false) is a log over f . The ⊥ value could be any
possible value from the domain of f , i.e. true of false, here.

Definition 59 (Counter-factuals on log (CFlog)) Given a system S =
(C,F,P , BM). Let log ∈ LOGF be a log over F, and I ⊆ C be a set of
suspected components. The counter-factuals on log is defined a follow:

CFLOG(log, I) =
⋃

tr∈TR(log)

(CF (tr, I))

With TR(log) = {tr ∈ BM | |tr| = |log|∧∀f ∈ F,∀i ∈ [0..|tr|−1], πf (log[i]) 6=
⊥ =⇒ πf (log[i]) = πf (tr[i])} the set of all possible traces corresponding to
the log.



7.1. CAUSALITY ANALYSIS ON REDUCED LOGS 133

The counter-factuals on a log is the union of all counter-factuals of the traces
which can corresponds to the log. What TR(log) is to build the set of possible
system traces that may corresponds to log and have the same length.

The definition of necessary and sufficient causality are transposed to the
logs by replacing CF (tr, I) by CF (log, I) in the definitions. We then get
necLOG and suffLOG.

Theorem 3 Given a system S = (C,F,P , BM). Let log ∈ LOGF be a log
and tr ∈ TR be a corresponding trace (with TR as in Definition 59).

necLOG(log, I) =⇒ nec(tr, I)

By definition, CF (tr, I) ⊆ CFLOG(log, I), therefore, (CFLOG(log, I) ⊆ P) =⇒
(CF (tr, I) ⊆ P), which given the definitions of necessary causality gives us
the theorem.

This theorem means that if I is a necessary cause on the log, it is as well
on the corresponding trace. It means that the necessary cause is conservative
over the logs.

Theorem 4 Given a system S = (C,F,P , BM). Let log = LOGF be a log
and tr ∈ TR be a corresponding trace (with TR as in Definition 59).

¬ necLOG(log, I) 6=⇒ ¬ nec(tr, I)

suffLOG(log, I) 6=⇒ suff(tr, I)

¬ suffLOG(log, I) 6=⇒ ¬ suff(tr, I)

¬ necLOG(log, I) means that CFLOG(log, I) 6⊆ P . However, basic set theory
tells us that (A ⊆ B ∧B 6⊆ P) 6=⇒ A 6⊆ P , hence we have do not have any
information on CF (tr, I) 6⊆ P , thus the result from the theorem.
It is easy to build a counter example to suffLOG(log, I) =⇒ suff(tr, I), as
it will be shown in Example 38.
¬ suffLOG(log, I) means that sup(CFLOG(log, I)) ∩ P 6= ∅. However, (A ⊆
B∧(B∩P 6= ∅) 6=⇒ (A∩P 6= ∅), hence we have do not have any information
on CF (tr, I) ∩ P = ∅, thus the result from the theorem.
Those two theorems shows that only the fact that I is a necessary cause on
the log can be transposed to the actual trace. Thus, we need some other
hypotheses to be able to transpose the causality analysis results from the log
the trace actual trace that is represented by the log.



134 SECTION 7. IMPACT OF INFORMATION ON CA

Example 38 Let us consider a system with two components, C1 and C2. C1

has only one Boolean output, Out1, that should always be true. C2 is the
identity and has Out1 as its Boolean input, and Out2 as its Boolean output.
The system property is that Out2 should always be true. The behavioural
model is that C2 cannot output true more that two times in a row, Let us
suppose we have the following trace tr:

Time 0 1
Out1 true true false
Out2 true true false

The partial log log is the following:

Time 0 1 2
Out1 true true ⊥
Out2 true true false

Let us suppose that I = {C1}. The counter-factual are the following for tr:

Time 0 1
Out1 true true
Out2 true true

The counter-factuals must stop at the second tick, because of the BM . If the
trace is extended, C2 must become faulty, which is not authorised in the cone,
nor unaffected-prefixes approach.

Now, let us build the counter-factuals if we suppose that ⊥ is replaced by
false at the second tick:

Time 0 1 2 . . .
Out1 true true true . . .
Out2 true true false . . .

This is the prefix to any counter-factual produced with the trace where ⊥
correspond to true. They are always failing, and prefixed by the counter-
factuals from the trace.

We have sup(CFLOG(log, I))∩P = ∅) and ¬sup(CF (tr, I))∩P 6= ∅), i.e.
suffLOG(log, I)∧¬ suff(tr, I), which is a counter-example to suffLOG(log, I) 6=⇒
suff(tr, I).



7.1. CAUSALITY ANALYSIS ON REDUCED LOGS 135

7.1.2 Reduced logs in space

As explained previously, the idea is not to log certain variables while keeping
an accurate causality analysis.

Example 39 Let us consider the following architecture:

C1

C2

C3

P

The nodes are components and the directed arcs are flows. If an arc is
directed from a component, the corresponding flow is an output flow of the
component. If an arc is directed at a component, the corresponding flow is
an input of the component.

The node P corresponds to the system property. It only depends on the
outputs from the components C1 and C2. Since C1 and C2 do not receive
data from C3, not logging C3 will not change the outcome of the causality
analysis.

One might be tempted not to log the output from C2 to C3, but it might
be important to verify whether C2 satisfies its specification or not.

The previous example shows how we can perform causality analysis on
partial logs in space, without losing any accuracy.

Here is an algorithm that could be applied to compute which flows should
be logged, supposing we are given a system S = (C,F,P , BM).

1. Recursively compute the set of flows on which P depends. I.e. compute
the set flows, named E, P depends on, then the set of flows E depends
on, and so forth. The result is stored EP .

2. C′ = {C ∈ C | ∃f ∈ EP , f ∈ IC ∪ OC}, for all component C in C′
compute EC , in a similar fashion to EP , adding to C′ each component
that has a flow in a EC .

3. Elog = EP ∪
⋃

C∈C′

EC is the set of flows that should be logged.



136 SECTION 7. IMPACT OF INFORMATION ON CA

This is naive algorithm to compute the dependencies. However there
might more efficient (eliminating more flows) ways to do so, such as slicing
for programs. Nonetheless, it shows an example of an offline analysis that
might reduce the number of flows that needs to be logged. If applied to
example 39, it would remove the flow from C3, and the one going from C2

to C3, depending on whether or not the respect of the specification of C2

depends on it.
A more refined algorithm could use further information, for instance

taking into account the behavioural model, to perform a finer analysis of
the dependencies. It is also worth considering online tools, like monitoring
([Liao and Cohen, 1992]), in order to decide whether a flow should be logged
or not. This is a similar idea to the one of dynamic slicing here, the moni-
toring is used to assess whether or not a flow needs to be logged, based on
runtime information.

7.1.3 Reduced logs in time

Contrary to the logs reduced in space, every variable are logged, however the
logs do not contain the whole trace for each of them, but a sub-trace. Some
definitions will first be introduced, and an approach that enable causality
analysis, with no loss of accuracy, on partial logs in time will be presented.

There will be a lot of new definitions introduced in this section, so here is
the underlying idea, so that the reader can know where all this is going. The
way we ensure that we can perform the same causality analysis with partial
logs and a full trace, is to make sure that we build the same counter-factuals.
To do so, the grey-components are introduced, that have some information
on how long a trace is needed to compute their outputs (namely the critical
length). Using the critical length, it is possible to build logs called “critical
logs” that will enable the construction of counter-factuals that are the same
as the ones build from the full trace.

For the remainder of the subsubsection, we suppose we are given a system
S = (C,F,P , BM)

Definition 60 (Grey-box component) A grey-box component is a com-
ponent C = (IC , OC ,SC , LC), with a critical length vector LC = (lCf )f∈IC∪OC

such that ∀tr, tr′ ∈ SC , ∀i ∈ [0..(min(|tr|, |tr′|)− 2)],,
(
∀f ∈ IC , (πf (tr[max(0, i− lCf + 1)..i]) = πf (tr

′[max(0, i− lCf + 1)..i]) ∧

∀f ∈ OC , πf (tr[max(0, i− lCf +1)..i−1]) = πf (tr
′[max(0, i− lCf +1)..i−1]))

)

=⇒ tr[i] = tr′[i]



7.1. CAUSALITY ANALYSIS ON REDUCED LOGS 137

Intuitively, a grey-box component is a component for which the output at an
instant t only depends on the inputs f from t− lCf + 1 to t and the outputs
f ′ from t− lCf ′ + 1 to t− 1.
Note that if the premise is true, tr[i] = tr′[i] only corresponds to the con-
straint ∀f ∈ OC , πf (tr[i]) = πf (tr

′[i]), since the equality is supposed in the
premise for the input flows.
This definition implicitly supposes that the component only has one initial
state. It would be possible to take into account different initial states, by
adding them as a prerequisite (like initial_statetr = initial_statetr′). This
only impacts the trace from 0 to lCf − 1. However, for simplicity sake, we
only consider components with one initial state (like in Lustre).
The property only needs to hold on the non-faulty behaviours.
A flow for which all the values must be kept will have a critical length lCf =∞.

Example 40 Here are examples of components, with their respective critical
length.

Let add0 be a component with one input a and one output x. This com-
ponent returns to x the value of a plus one.
An example of trace on add0 is Tr = ((1, 2), (4, 5), (2, 3), (12, 13)).
The output at a given instant only depends on the current value of a. The
critical lengths are thus ladd0a = 1 and ladd0x = 0

Let add1 be such that x is the sum of a, and the previous value of a (i.e.
x[t] = a[t] + a[t− 1]). x[0] is initialised at a[0].
An example of trace on add1 is Tr = ((1, 1), (4, 5), (2, 6), (12, 14)). The out-
put at a given instant only depends on the current value of a, and the previous
one. Therefore, ladd1a = 2 and ladd1x = 0.

Let us now consider add2 which waits two values of a to output the sum
on x (i.e. if x[t − 1] = ⊥, x[t] = a[t] + a[t − 1], else x[t] = ⊥). We note ⊥
when x does not output a value.
An example of trace on add2 is Tr = ((1,⊥), (4, 5), (2,⊥), (12, 14)).
The output at a given instant only depends on the current and previous value
of a, and the previous value of x (actually the value of the output is not
important, only the presence or absence of a value is). Therefore, ladd2a = 2
and ladd2x = 2.

Let us consider a last example add3. Every two values of a, x is updated to
be sum of a and its previous value (i.e. if (t mod 2) = 1, x[t] = a[t]+a[t−1],
else, x[t] = x[t− 1]).
An example of trace on add3 is Tr = ((1, 0), (4, 5), (2, 5), (12, 14)).
If we consider a sub-trace ((0, 0), (0, 0), (0, 0)), we cannot determine if the
next x should be the current a, or 0. We need to know the parity of the
number of a received. Therefore, ladd3a = 2 and ladd3x =∞.



138 SECTION 7. IMPACT OF INFORMATION ON CA

This example illustrates that components with close specifications can
have different critical lengths, depending on the information needed to com-
pute the outputs of the component, and what we can infer on the internal
state of the component from its inputs and outputs. In those examples, la
corresponds to the data needed to compute the current value of x, and lx
corresponds to the data we need to keep (alongside the last la values of a),
in order to have an idea of the current internal state of the component.

In order to be conservative, the critical length is the worst case value. If
we consider add3, most of the traces actually have a critical length of 2 for
x. However, the only sub-trace for which ladd3x need to be ∞ instead of 2 is
((0, 0), (0, 0), (0, 0)).

Definition 61 (Property critical length LP) Let F be a set of flow, and
P a system property. Let FP = {f ∈ F | ∃(tr, tr′) ∈ (BF,BF\{f}), πF\{f}(tr) =
tr′ ∧ tr′ ∈ πF\{f}(P) ∧ tr /∈ P}. LP = (lPf )f∈FP is the critical length of the
component CP = (FP , {(OKP ,B)},SP , LP) such that

SP = {tr ∈ BCP | ∀i ∈ [0..|tr| − 1], OKP [i] = πFP (tr[0..i]) ∈ πFP (P)}

Intuitively, FP is the set of flows the property depends on. We build a
component that has FP as input, and a Boolean flow OKP . OKP is true
when the trace is in P , and false otherwise. Since P only depends on FP ,
restricting the property to this set gives the same result as if we evaluate P on
all the flows. The critical length of P is the critical length of the component
CP . By construction, SP is prefix-closed and FP receptive.

We also suppose that for each flow f , we have a critical length lBMf ,
computed from the constraints in BM , using the construction of a similar
component CBM = (FBM , OKBM ,SBM) for the behavioural model. For in-
stance, in Example 10 (early preemption), the constraint that states that
a faulty pump keeps the same output when faulty means that we need the
previous value of the pump output to be able to compute the next (faulty)
one. Then lBMoutpump

= 2.
Note that if BM = BF, then FBM = ∅, and thus, the behavioural model has
no impact on the critical lengths.

We build the vector of maximal critical length as follow: L = (lf )f∈F with
∀f ∈ F, lf = max({lCf | C ∈ C ∧ f ∈ IC ∪ OC} ∪ {lPf | f ∈ FP} ∪ {lBMf |
f ∈ FBM}). This is the set containing the maximum critical length for every
flow. The max function is applied to the set of all critical lengths that are
related to the flow.

Let us illustrate the notion of critical length with an example.



7.1. CAUSALITY ANALYSIS ON REDUCED LOGS 139

Example 41 Let us consider the system that is similar to the one from
Example 26, but with only one pump (i.e. pump, a controller and a tank).
However, here, the specification will be regular ones, and not step ones.

pump The pump has the usual input, the usual output, but its domain is
[0..2] and the output can only be altered by 1 at each tick. The specifi-
cation is the following:

• Ipump = {(compump, [0..2])}
• Opump = {(outpump, [0..2])}
• Spump = {tr ∈ Bpump | ∀i ∈ [O..|tr|−1], πoutpump(tr[i]) = πoutpump(tr[i−

1])+sgn(πcompump(tr[i]), πoutpump(tr([i−1]))}, with πoutpump(tr[−1]) =
0 and sgn(a, b) = −1 if a− b < 0, 1 if a− b > 0 and 0 otherwise.

tank The tank now has a second input corresponding to the output of liquid
taken from the tank.

• Itank = {(outpump, [0..2]), (outtank, [0..2])}
• Otank = {(voltank,Z)}
• Stank = {tr ∈ Bpump | ∀i[0..|tr| − 1], πvoltank

(tr[i]) = πvoltank
(tr[i −

1]) + πoutpump(tr[i])− πouttank
(tr[i])}, with πvoltank

(tr[−1]) = 0

control The controller takes outpump, voltank and outtank as inputs and out-
puts compump.

• Icontrol = {(outpump, [0..2]), (voltank,Z), (outtank, [0..2])}
• Ocontrol = {(compump, [0..2])}
• The specification is a bit complicated. The idea that sums it up is
that it tries to get the future value voltank as close as possible from
3, supposing all components are non-faulty.

System property The system property is that the volume in the tank should
always be between 0 and 5. P = {tr ∈ BF | ∀i ∈ [0..|tr|−1]πvoltank

(tr[i] ∈
[0..5]}.

Behavioural model BM is such that the tank can “leak”, at maximum, 1
unit of liquid over a period of two time-step.

Here are the different critical lengths:

pump lpumpcompump
= 1 and lpumpoutpump

= 2, since outpump depends on it previous
value and the current value of compump.



140 SECTION 7. IMPACT OF INFORMATION ON CA

tank ltankoutpump
= 1, ltankouttank

= 1 and ltankvoltank
= 2. voltank depends on its previous

value, the current one of outpump and outtank.

control lcontroloutpump
= 2, lcontrolouttank

= 1, lcontrolvoltank
= 2 and lcontrolcompump

= 1. Control tries
to keep the future value of voltank as close as possible from 3. To do so,
it predicts the values that should be output by the different components.
Therefore, the critical length are the maximum of those of the other
components.

System property P only depends on the current value of voltank. Hence,
lPvoltank

= 1.

Behavioural model BM depends on the previous and current value of
voltank, and its previous and current expected value. Then, the critical
lengths are the same as the tank one, incremented by one (to get the pre-
vious expected value). lBoutpump

M = 2, lBouttank
M = 2 and lBvoltank

M = 3.

By taking the maximum of the different critical lengths for each flow, we get
the following vector of maximum critical length: L = (lcompump , loutpump , louttank

, lvoltank
)

with lcompump = 1, loutpump = 2, louttank
= 2 and lvoltank

= 3.

Definition 62 (Partial log) Let F be a set of flow tr is a partial log over
BF if ∃tr′ ∈ BF,∀f ∈ F, πf (tr) = πf (tr

′[(|tr′| − |πf (tr)|)..])

A partial log is a trace that contains suffixes of a complete trace for each
flow, such that all the suffixes finishes at the same instant. We do not need to
resort to an absence value ⊥ as in Definition 58 (log), since all the unknown
value are in prefixes of the log.

We note BpartF all the possible partial logs over F.

Definition 63 (Critical log cl) Let tr ∈ BF be a trace and L = (lf )f∈F
the vector of maximal critical length for each flow. Let FP and FBM as in
Definition 61. Let (coneC)C∈C = cone(tr,C) (with cone the function that
builds the cone for the counter-factuals), coneP = min({i ∈ [0..|tr| − 1] |
tr[0..i] /∈ P} ∪ {|tr|}) and coneBM = min({coneC | C ∈ C ∧ (∃f ∈ FBM , f ∈
IC ∪OC)} ∪ {|tr|}). The critical log, noted cl(tr, L) ∈ BpartF is the partial log
such that, ∀f ∈ F,

(fe(f, tr) 6= |tr| =⇒ πf (cl(tr, L)) = πf (tr[max(fe(f, tr)− lf ], 0)..])) ∧
(7.1)

(fe(f, tr) = |tr| =⇒ πf (cl(tr, L)) = ε)) (7.2)

With fe(f, tr) = min({coneC | C ∈ C ∧ f ∈ IC ∪ OC} ∪ {coneP | f ∈
FP} ∪ {coneBM | f ∈ FBM})



7.1. CAUSALITY ANALYSIS ON REDUCED LOGS 141

fe corresponds to the first entry of the flow into the cone.
The critical log is a partial log that contains, for each flow, the suffix of the
initial trace containing the first entry of the flow in the cone, and the previous
data corresponding to the critical length for that flow. Intuitively, this is the
minimal data we need to build the counter-factuals, if we know the first fault
for each components.
Constraint 7.1 is here to ensure that if a flow enters the cone, it is logged,
as well as the previous data corresponding to the critical length. Constraint
7.2 treats the case of the flows that never enters the cone, and are thus not
logged. If we treated them as in Constraint 7.1, their critical length would
be logged, which is not necessary.
Note that for the grey-box approach, contrary to the regular of causality,
the granularity shifted from the components to the flows. This is due to the
fact that a flow might belong to several components and/or P and/or BM .
Therefore, it is important to partially log for each flow, as reasoning with the
components might result in logging too much. Indeed, any information we
need is in the critical log, since all the part that are in the cone are, and all
the data needed to prolong the traces is also, thanks to the critical length.

Example 42 This example shows the critical logs for a trace on the system
presented in Example 41.

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2 0 0 0
outpump 1 2 2 2 1 1 2 2 1 1
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3 5 5 6

At instant 7, the pump does not reduce its output and at instant 8 the tank
leaks one unit of fluid. For cone(tr,C), conepump = conetank = conecontrol =
7, since the pump communicates with the two other components. coneP = 9,
since the property is violated at instant 9. Lastly, coneBM = 7, since the
minimum value of a component cone that contains a flow that impact the
BM is 7. If we take into account the critical length, we get fe(compump, tr) =
7− 1 + 1 = 7, fe(outpump,tr) = 7− 2 + 1 = 6, fe(outtank, tr) = 7− 2 + 1 = 6
and fe(voltank, tr) = 7− 3 + 1 = 5.

Here is the corresponding critical log, with the removed part of the trace
greyed:



142 SECTION 7. IMPACT OF INFORMATION ON CA

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2 0 0 0
outpump 1 2 2 2 1 1 2 2 1 1
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3 5 5 6

We can see in this example that the size of the critical logs is about
one third of the initial trace. This stems from the fact that a big part of
the trace, where the components behave accordingly to their specification, is
removed. Would the non-faulty part be longer, the reduction would be even
more important. Because this is a toy example with only three components,
all the components are logged as soon as one component is faulty. However,
on bigger systems, with more complex topology, not all the components are
impacted when one component is faulty.

Property 3 Let tr ∈ BF, I ⊆ C be a set of suspected components and
fv = (fvC)C∈C with fvC = min(i ∈ [0..|tr| − 1] | πC(tr[0..i]) /∈ SC ∪ {|tr|}).
We can compute cone(tr, I) using fv and the information of the system.

From definition 14 (Cone of influence), it comes that cone(tr, I) only depends
on the first instant the components in I become faulty (Constraint 3.1),
the topology of the system and the fact that non-suspected component that
should enter the cone are faulty or not (Constraint 3.2). Therefore, we can
infer cone(tr, I) from fv.

This result only applies to the synchronous framework, since we can derive
the fact that components communicate using the topology. For this property
to hold in the general case, we would have to introduce another critical
length, corresponding to the communication model, and do a more thorough
analysis of the critical logs, to determine if components communicate with
one another.

Definition 64 (Counter-factuals with partial logs (CFpl)) Let tr ∈ BpartF
be a partial log, n be the number of instants since the beginning of the execu-
tion, when tr ends, I ⊆ C be a set of suspected components, fv = (fvC)C∈C
the first violations as defined in property 3 and L = (lf )f∈F the vector of max-
imal critical length for each flow. The counter-factuals using partials logs are
defined as follow: CFpl(tr, I, fv, n) = {tr′ ∈ BM, ∀C ∈ C,

∀f ∈ IC ∪OC , πf (tr
′[nf .. coneC −1]) = πC(tr[0.. coneC −1− nf ]) ∧ (7.3)

fvC > coneC =⇒ πC(tr′) ∈ SC} (7.4)

With ∀f ∈ F, nf = n − |πf (tr)| and (coneC)C∈C computed from the first
violations and the system topology.



7.1. CAUSALITY ANALYSIS ON REDUCED LOGS 143

The definition is the usual one, besides the fact that Constraint 7.3 is only
on the parts that are logged. Constraint 7.4 is equivalent to the constraint
usually used, since fvC > coneC means that the component is not faulty
upon entering the cone.

Contrary to the counter-factuals on log definition (CFLOG, Def. 58) from
Section 7.1.1, we do need to resort to the union of the counter-factuals for all
the possible corresponding traces because we have access to the exact cone,
via the first violations. This means that all the possible corresponding trace
uses the same cone, which is the real one.

Lemma 1 Let tr ∈ BF be a trace, L = (l′f )f∈F be the set of maximal critical
length and fv = (fvC)C∈C the first violations as defined in property 3. Let
(coneC)C∈C be the cone for I, build using fv.
Let TR = {tr′ ∈ BpartF | ∃tr′′ ∈ CF (tr, I),∀f ∈ F, πf (tr′) = πf (tr

′′[max(fe(f, tr)−
l′f ], 0)..])} and:
TR′ = {tr′ ∈ BpartF | ∃tr′′ ∈ CFcl(cl(tr, L), I, fv, |tr| − 1),∀f ∈ F, πf (tr′) =
πf (tr

′′[max(fe(f, tr) − l′f ], 0)..])}. TR = TR′, with fe as in 63, using
cone(tr, I).

The result of this lemma is that the counter-factuals coincide after the entry
of the flows in the critical logs, be they build with the critical logs, or the
full trace.
TR (respectively TR′) is the set of partial traces that start for each flow the
first time it becomes logged, and coincide with a full trace from CF (tr, I)
(resp. CFcl(cl(tr, L), I, fv, |tr| − 1)).
Since the demonstration is quite complicated, an example will be introduced
first to give the intuition behind the lemma first.

Example 43 This example uses the critical log presented in Example 42:

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2 0 0 0
outpump 1 2 2 2 1 1 2 2 1 1
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3 5 5 6

We are also given the first violation for each component, i.e. fvpump = 7,
fvtank = 8 and fvcontrol = 10. We are also given |tr| = 10.

Let us build the counter-factuals for I = {pump}.
Using fv, we compute cone(tr, I) = (7, 7, 7). It give us the following

unaffected prefixes:



144 SECTION 7. IMPACT OF INFORMATION ON CA

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2
outpump 1 2 2 2 1 1 2
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3

outtank being only a component input, it is not shorten. For instant 7, the
value of outtank being 0, and the previous volume of the tank being 3, the
control component will output 0. Since the pump respects its specification,
it will reduce its output by one, resulting in 1 for outpump. Similarly, the
tank respects its specification, and will increase its volume by 1, i.e. the value
output by the pump, and so on. We get the following counter-factual:

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2 0 0 0
outpump 1 2 2 2 1 1 2 1 0 0
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3 4 4 4

Would the grey part have been used to build this counter-factual, the recon-
structed part would be the same, since the value computed only depends on
the data that have been critically logged.

To show how the BM is handled, let us consider the counter-factuals for
I = {tank}. conetank = conecontrol = 8 and conepump = 10, which give us the
following unaffected prefixes::

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2 0
outpump 1 2 2 2 1 1 2 2 1 1
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3 5

Note that outpump is not cut down, since it is an output from the pump, which
is already faulty when it should enter the cone. However, since the command
from the control will remain the same as in the initial trace, it is sensible to
consider that the pump would not have changed its behaviour.

The counter-factuals are the following:

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2 0 0 0
outpump 1 2 2 2 1 1 2 2 1 1
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3 5 [5..6] 6 if voltank[8] = 5, else [6..7]



7.1. CAUSALITY ANALYSIS ON REDUCED LOGS 145

Since voltank[7] = 5 is the expected value (computed using voltank[6], outpump[7]
and outtank[7]), it is possible that the tank leaks at instant 8, hence the [5..6].
If voltank[8] = 5, the tank cannot leak at instant 9, since it can only leak once
over two ticks, therefore the voltank[9] = 5. If voltank[8] = 6, we are in the
same situation as in the previous instant, where the tank can leak, thus the
[6..7].
Similarly to the counter-factuals for I = {pump}, the data used has been
logged. Therefore the counter-factuals on the critical logs and on the full
trace coincide after the flows are logged, and the counter-factuals would have
been the same if the grey parts had been used.

Proof 3 Given Property 3, the cone in CFcone and CFpl are the same. It is
noted cone = (coneC)C∈C.
∀f ∈ F, if = fe(f, tr)− lf , the first instant f is logged in the critical prefix.
To make the proof more readable, we note cl for cl(tr, L), CFcone for CFcone(tr, I)
and CFpl for CFpl((cl(tr, L), I, fv, |tr| − 1)).

Given Constraints 3.3 and 7.3 (conservation of the non-impacted parts),
∀tr′ ∈ CFcone,∀f ∈ F, πf (tr′[if ..fe(f, tr) − 1]) = πf (tr[if ..fe(f, tr) − 1])
and ∀tr′ ∈ CFpl,∀f ∈ F, πf (tr′[if ..fe(f, tr) − 1]) = πf (cl[0..lf − 1]). Since,
by definition of cl, ∀f ∈ F, πf (cl[0..lf − 1]) = πf (tr[if ..fe(f, tr) − 1]), then,
∀(tr′, tr′′) ∈ (CFcone×CFpl),∀f ∈ F, πf (tr′[if ..fe(f, tr)]−1) = πf (tr[if ..fe(f, tr)]−
1). For each flow, from the first instant it is logged to the first instant it en-
ters the cone, all the traces in both counter-factuals coincide.

Given Definitions 63 (critical logs) and 61 (property critical length, used
as it is for BM), ∀tr′, tr′′ ∈ BM, ∀i ∈ [if ..|tr| − 1], (∀f ∈ FBM , πf (tr′[if −
lf ..i]) = πf (tr

′′[if − lf ..i])) =⇒ (∀f ∈ F, πOKBM
(tr′[i]) = πOKBM

(tr′[i])), i.e.
(∃t̂r ∈ BM, tr′[if ..] = t̂r[if ..]) = (∃t̂r ∈ BM, tr′′[if ..] = t̂r[if ..]). Since tr is
an actual trace and BM is prefix closed,

(
(∀i ∈ [if ..|tr| − 1], πOKBM(tr[i]) =

true) ∧ (∀f ∈ F, πf (tr[0..if − 1]) = πf (tr[0..if − 1])) =⇒ tr′ ∈)
)
, and a

trace prefixed by tr before the if and for which OKBM is always true after
the if is a valid t̂r. Hence, given what was shown in the previous para-
graph, {tr′ ∈ BpartF | ∃tr′′ ∈ BM, ∀f ∈ F, πf (tr′′[if ..fecone(tr, f) − 1]) =
πC(cl[0..fecone(tr, f) − if − 1]) ∧ πC(tr′′[nC ..]) = πC(tr′))} = {tr′ ∈ BpartF |
∃tr′′ ∈ BM, ∀f ∈ F, πf (tr′′[if ..fecone(tr, f)− 1]) = πC(
tr[if ..fecone(tr, f) − 1]) ∧ πf (tr′′[if ..]) = πf (tr

′))}. It means that the set
of partial logs that respects Constraint 3.3 (the first constraint for the cone
counter-factuals) and the one that respect Constraint7.3 (the first constraint
for the counter-factuals with partial logs) coincide on the parts that are after
the entry in the critical logs.



146 SECTION 7. IMPACT OF INFORMATION ON CA

Similarly, we prove the same property the second constraint of the counter-
factuals (constraints 3.4 and 7.4). Since {tr′ ∈ BM | constraint1∧constraint2} =
{tr′constraint1}∩{tr′constraint2}, with constrainti a Boolean over BM , we
have the result of the lemma.

Lemma 2 Let tr ∈ BF be a trace, L = (l′f )f∈F be the set of maximal critical
length and fv = (fvC)C∈C the first violations as defined in property 3. Let
cone(tr, I) = (coneC)C∈C be the cone for I, build using fv. Let I ⊆ C be a
set of suspected component. If the system is well designed (the composition
of the specification refines the property), then

(CFcl(cl(tr, L), I, fv, |tr| − 1) ⊆ P) = (CFcone(tr, I) ⊆ P)

(sup(CFcl(cl(tr, L), I, fv, |tr| − 1)) ∩ P = ∅) = (sup(CFcone(tr, I)) ∩ P = ∅)

Intuitively, if the system is well-designed, the inclusion of counter-factuals on
the critical logs in the property is equal to the inclusion of counter-factuals
on the initial trace in the property. The same is true for the disjunction with
the property.

Proof 4 We keep the same notation as in the previous proof.
Using the well-designed hypothesis and the definition of the cone, the unaf-
fected prefixes UP corresponding to cone(tr,C) respect the specification of all
the components. Therefore, UP ∈ P. In a similar fashion to the part on
the previous proof dealing with the BM , we can prove the that ∀tr′, tr′′ ∈
BM, ∀i ∈ [if ..|tr| − 1], (∀f ∈ FP , πf (tr′[if − lf ..i]) = πf (tr

′′[if − lf ..i])) =⇒
(∀f ∈ F, πOKP (tr′[i]) = πOKP (tr′[i])). It means that the respect of the prop-
erty coincide on the logged part for the counter-factuals with the critical log
and the trace. Hence, since P is a safety property, and we know that the trace
respect the property before entering the log, we get the result of the lemma.

Theorem 5 Let tr ∈ BF be a trace, L = (l′f )f∈F be the set of maximal critical
length and fv = (fvC)C∈C the first violations as defined in property 3. Let
(coneC)C∈C be the cone for I, build using fv. Let I ⊆ C be a set of suspected
component. If the system is well designed (the composition of the specification
refines the property), then

nec(tr, I) = neccl(cl(tr, L), I, fv, |tr| − 1))

suff(tr, I) = suffcl(cl(tr, L), I, fv, |tr| − 1))



7.1. CAUSALITY ANALYSIS ON REDUCED LOGS 147

This theorem means that the causality analysis on the critical logs and the
initial trace gives the same result.
This theorem is directly deduced from the two previous lemmas.

Let us illustrate this result with an example.

Example 44 We consider the followup of example 42, and the counter-
factuals we build.

For I = {pump}, the counter-factual is:

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2 0 0 0
outpump 1 2 2 2 1 1 2 1 0 0
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3 4 4 4

The property being that the volume of the tank must be between 0 and 5,
this trace respect the system property. We have all the data we need to com-
pute that the trace respects the property, and since it was necessarily true
before entering the log, we know that CFcl(cl(tr, L), I, fv, |tr| − 1) ∈ P, thus
CFcone(tr, I) ∈ P and {pump} is a necessary cause.

For I = {tank}, the counter-factuals are:

Time 0 1 2 3 4 5 6 7 8 9
compump 2 2 2 2 1 1 2 0 0 0
outpump 1 2 2 2 1 1 2 2 1 1
outtank 0 1 2 1 1 1 2 0 0 0
voltank 1 2 2 3 3 3 3 5 [5..6] 6 if voltank[8] = 5, else [6..7]

As the red parts shows, sup(CFcl(cl(tr, L), I, fv, |tr| − 1)) ∩ P = ∅. Thus
sup(CFcone(tr, I)) ∩ P = ∅ and {pump} is a sufficient cause.

This result is strong, since under the assumption that we have the critical
log, we get the exact result of the causality analysis on the full trace. The
result goes further than that, since the counter-factuals are the same. There-
fore, even with other causality definitions, it should be possible to keep this
equivalence between the critical logs and the full trace, as long as the data
to evaluate all the elements of the causality are logged.

The critical length is information that can be computed offline, and might
be available from the design phase.

One of the main drawbacks of this approach is that we need the first
violations (fv). However, there are classes of system, where it is available,
e.g. monitored systems. It might be hard to have a monitored system that



148 SECTION 7. IMPACT OF INFORMATION ON CA

can detect the faults right away. Nevertheless, as long as the fault detection
is just delayed by a bounded amount of time, we can add that delay to the
critical length.

The assumption of the well designed system can be removed if we can
have access the fact that the system property is violated, in a similar fashion
to the way we have access to the fact that the components are faulty. For
instance, if the system property is that the program should not crash, this is
easy to check, without the need of the trace.

Besides reducing the size of the logs, these results also opens the door to
online causality analysis. If it is possible to have access to enough computing
power, and that the system is deterministic, it is possible to start the causality
analysis as soon as a component becomes faulty. When components become
faulty, the causality analysis can be performed on the critical logs, and if the
system is deterministic, it means that the counter-factuals is a unique trace,
that can be prolonged every time new data is acquired.

Lastly, even though the grey-box approach here have been presented and
proved for the cone, it is also true for the unaffected prefixes approach, since
the unaffected prefixes are “longer” than the one computed with the cone,
thus the data needed for them is available, since the data is available for the
cone.

7.1.4 Reducing the logging by using extra information

In this section two ways of reducing the logs have been proposed: in space
and in time. Extra information can help for both approaches.

For reduced log in space, one of the problems is that some information is
lost because some flows are not logged. If a component has different modes
of functioning, and some of the modes do not rely on some of the component
flows, logging a flow corresponding to the mode and the relevant component
flows is enough, thus reducing the logs in space. This is typically where the
monitoring could be used, to check, online, if the flows should be logged.

In a similar fashion to the grey-box components, we could use the infor-
mation that the component is behaving according to its specification, not to
log certain flows. For instance, if we can infer the outputs from the inputs,
it is not necessary to log the outputs, as long as the component is not faulty.
This might be used to enhance the benefit of the grey-box component even
further.

Concerning the grey-box component, extra information may help reduce
the critical length. Indeed, if we go back to Example 40, specifically to add3.
This component outputs the sum of the current value and previous input



7.2. CAUSALITY ANALYSIS USING FAULT MODELS 149

value every two tick and maintain the output the other ticks. The critical
length was +∞, because for a sequence of inputs that are 0, the output will
remain 0, and we cannot infer if the output is maintained or computed, at
a given instant. If this information is output, via a Boolean flow (called
parity), for instance, the critical length becomes 2. Whats more, we do not
need to log the parity at every tick, but just the one when the component
become logged, since we can infer the parity just from one correct value of
it. Another solution would be to use monitoring to log the necessary data.
As long as there is no sequence of the form ((0, 0), (0, 0), (0, 0)), only the last
two ticks are enough. If such a sequence arises, the values just before the
sequence must be kept, as well as the length of the sequence.

7.2 Causality Analysis using fault models

One of the problems we face while building the counter-factuals is that we do
not know the faulty behaviour of the components. BM might constraint the
possible faulty behaviours, but it is supposed to reflect system level restriction
of the behaviour, e.g. if the maximum power accessible by the system is a
given value, then the sum of the power consumed must be lesser than that
value. It would be interesting to be able to build more accurate counter-
factuals by using explicit fault models to prolong the traces. It would be the
faulty version of using the specification.

Another interesting addition is that it would enable to perform horizon-
tal causality analysis. It could be phrased as: “does the faults from those
components caused the fault from another one”. It shifts the focus from the
system level property (vertical causality) to the component specifications.
We need to be able to use a fault model for the components to be able to
modify the behaviour of faulty components more accurately, with the fault
models, which yields more interesting results for horizontal causality.

This section will present a generalisation of the work from [Wang et al., 2015].
It will be divided in five subsections. The first one will introduce the notion
of fault model. The next one will present how to adapt the definitions for
the cone and unaffected prefixes to take into account the fault models. Hor-
izontal causality will be discussed in the third one. The fourth one will show
how to tackle the fact that components might have multiple fault modes,
that could be used in the causality analysis. The last one will present some
idea on how to enhance further the accuracy, by adding extra information.



150 SECTION 7. IMPACT OF INFORMATION ON CA

7.2.1 Fault models

A fault model describes the behaviour of a component when it is faulty.
This paper ([Avizienis et al., 2004]) gives an overview of the possible failure
modes. Failure can be seen as system level fault models. However they
can be transposed at a component level, since those definitions relies on
specifications and services.
[Powell, 1992] discusses the coverage of failure modes. The notion of partial
order between the failure modes, reflecting the relative severity of the failure
modes, developed in [Powell, 1992], will be transposed to the fault modes
from this section.

Definition 65 (Fault model) Let C = (IC , OC ,SC). A fault model for
this component is a partially ordered set of behaviours, called fault modes,
included in BC, noted FMC = (M,≺) such that M = {M0, . . . ,Mn} and
Mi ≺Mk =⇒ Mi ⊆Mk.

Let us illustrate the fault models with an example:

Example 45 Let us suppose we have a component C, that is the Boolean
identity, with one input and one output. We will consider five possible fault
modes:

Stuck at true The component always outputs true.

Stuck at false The component always outputs false.

Stuck a true when switched The component becomes stuck at true if it
starts outputting true.

Stuck a false when switched The component becomes stuck at false if it
starts outputting false.

Random output The component randomly outputs true or false.

The less severe modes are the struck at true, or false, as they are easier
to spot. The moment the component became faulty is any instant during the
first sequence of true (false) where the component can be diagnosed as faulty.

Time 0 1 2 3 4
Input false true false true false

Expected output false true false true false
Actual output false true false true true



7.2. CAUSALITY ANALYSIS USING FAULT MODELS 151

We suppose the fault mode here is stuck at true. The underlined values are
the possible instants where the component can be faulty. The red values are
the one where the component is recognised as faulty. Here the component
became faulty either at instant 3 or 4, but is faulty for sure at instant 4, as
its behaviour derives from the expected one.

The stuck when “switched” modes are more severe than the “stuck at”
ones, as the component can be faulty for longer, without being detected. Let
us consider the same trace as previously for stuck at true when the mode is
stuck at true when switched.

Time 0 1 2 3 4
Input false true false true false

Expected output false true false true false
Actual output false true false true true

We know for sure that the component was not faulty at instant 1, because if it
were faulty, it should have been stuck, and would have output true at instant
2. However, it could be faulty at instant 2, as it outputs false, which is one
tick earlier than stuck at true. Therefore, this mode is mode severe than the
stuck at one.

Lastly, let us consider the random output fault mode on the trace:

Time 0 1 2 3 4
Input false true false true false

Expected output false true false true false
Actual output false true false true true

Here, the component could have been faulty since the very beginning of the
trace, since (false, true, false, true) is a possible faulty behaviour for this mode.
It is the hardest mode to detect, and thus the most severe.

The partial order is:

• Stuck at true ≺ Stuck at true when switched ≺ Random output and

• Stuck at false ≺ Stuck at false when switched ≺ Random output

This example illustrates how fault models work. Given an observation,
some modes might be ruled out, but more than one can apply.

In the next two subsections, we suppose that the mode can be identi-
fied, as well as when the component becomes faulty. Ways to deal with the
multiple possible fault modes will be discussed in Subsection 7.2.4.



152 SECTION 7. IMPACT OF INFORMATION ON CA

7.2.2 Including fault models in causality analysis

In this section, since we suppose the fault mode is identified, we consider
that for a component C, the fault model is a single behaviour FM ⊆ BC . We
suppose that components come with a fault model, and are of the following
form C = (IC , OC ,SC ,FMC).

Definition 66 (Cone with fault model (coneFM)) Given a system S =
(C,F,P , BM). Let tr ∈ BM \P be a faulty trace, and I ⊆ C. cone(tr,P) =
(coneC)C∈C is the vector of maximal indexes such that, ∀C ∈ C:

C ∈ I =⇒ coneC 6 fvC(tr) ∧ (7.5)

∀f ∈ IC ,∀C ′ ∈ C, f ∈ OC′ =⇒ coneC 6 coneC′ (7.6)

The only difference with the initial definition 14 is that constraint 7.6 has
been relaxed, and any component is added to the cone, even when it is faulty.
It means that the suspect components enter the cone when they become
faulty, and any component that receive data from a component inside the
cone is added to the cone.

To have a similar behaviour with the unaffected prefixes, we only need to
modify the extend function as follow:

Definition 67 (Trace extension with fault model (extendFM)) Let C be
a component, and tr, tr0 ∈ BC be traces over that component.

extendC(tr0, tr)




{tr′ ∈ SC | tr v tr′} if tr 6= tr0 ∧ tr ∈ SC
{tr′ ∈ FMC | tr v tr′} if tr 6= tr0 ∧ tr /∈ SC
{tr} otherwise

We add to the extend function a way to extend the trace for the component
that are faulty that uses the fault model. This change is enough, since extend
is used in all the subsequent definition, to check whether the trace can be
extended or not.

As explained in section 3.2 the definition of the counter-factuals is the
same for both approached, since the cone can easily be transformed in unaf-
fected prefixes, and vice-versa. Therefore, only a definition for the cone will
be given.

Definition 68 Given a system S = (C,F,P , BM). Let tr ∈ BM \ P be a
faulty trace, and I ⊆ C. Let (coneC)C∈C = cone(tr,P). The counter-factuals
are defined as follow:

CFFM(tr, I) = {tr′ ∈ BM | ∀C ∈ C,



7.2. CAUSALITY ANALYSIS USING FAULT MODELS 153

πC(tr[0.. coneC −1]) = πC(tr[0.. coneC −1]) ∧ (7.7)

πC(tr[0.. coneC −1]) ∈ SC =⇒ πC(tr′) ∈ SC} ∧ (7.8)

πC(tr[0.. coneC −1]) /∈ SC =⇒ πC(tr′) ∈ FMC} (7.9)

Constraint 7.9 is added, to prolong the traces of the faulty components. This
will yield tighter counter-factuals, since the faulty traces are constrained by
both BM and FMC .

Example 46 (Non-suspected faulty component, with fault model)
This example is the same as the example 7, i.e. the running example with one
pump and a tank, and the faulty behaviour of the tank embedded in BM . Here
we transfer this faulty behaviour from BM to FMtank (it can leak, anytime,
any quantity). BM is all the possible behaviours of the system once again,
and the following fault models is added to the tank:

FMtank = {tr ∈ BC | ∀i ∈ [0..|tr| − 1], voltank[i] 6 voltank[i− 1] + outpump[i]}

With voltank[−1] = 0, by convention.
The cone approach failed to give rise to the intuitive causes. Let us apply

the approach taking the fault model into account, for the cone approach.
The failing scenario is the following:

Time 0 1 2 3 4
compump 0 2 2 0 0
outpump 0 2 2 2 2
voltank 0 2 3 5 7

The problematic causality analysis happened when the suspected compo-
nent were I = {pump}. Here the cone is (3, 3). pump enters the cone at
instant 3 because it is suspected and faulty. Since tank receives data from
a component in the cone, it enters it, in the fault model approach, without
regards to the fact that it is faulty or not.

Thus the counter-factuals are the following:

Time 0 1 2 3 4
compump 0 2 2 0 0
outpump 0 2 2 0 0
voltank 0 2 3 [0..3] [0..voltank[3]]

The counter-factuals respect the system property, and {pump} is a necessary
cause, as expected.



154 SECTION 7. IMPACT OF INFORMATION ON CA

With the fault model approach, an example that was not treated properly
by the cone approach now is. It also shows that the reason the unaffected
prefixes could tackle this example and not the cone approach is because the
unaffected prefixes take into account the behavioural model in the construc-
tion of the “cone”.

Note the the unaffected prefixes is still superior to the cone approach,
even taking into account the fault model, because it gives rise to a cone that
is less pessimistic. In the worst case the unaffected prefixes give the same
cone as the cone approach, but generally, the cone built by the unaffected
prefixes is included in the cone one.

7.2.3 Horizontal causality, and cause minimisation

As presented previously, the horizontal causality aims at showing the causal
relations between the faults of different components. Those relations, as well
as causality definition properties, can be used to minimise the causes, in
order to return minimal sets of components for causes.

Definition 69 (Horizontal counter-factuals (CFh)) Let tr be a system
trace, I a set of suspected components, and C ∈ {C ′ ∈ C \ I | πC(tr) /∈ SC}
a non-suspected faulty component. The horizontal counter-factuals, noted
CFh(tr, I, C), are the same as the one of definition 68 (counter-factuals with
fault models), except for C, for which the Constraints 7.8 and are 7.9 are
replaced by ∀tr′ ∈ CFh(tr, I, C):

ff(C, tr) 6 coneC =⇒ πC(tr′) ∈ FMC ∧

ff(C, tr) > coneC =⇒ πC(tr′) ∈ SC
With ff(C, tr) the first instant where the component can be faulty, according
to FMC.

Intuitively, if the component can have been faulty before entering the cone,
or when it entered the cone, we prolong its behaviour using the fault model.
If not we use the specification. This choice is driven by the fact that if the
component already have received corrupted data before becoming faulty, we
cannot know whether it became faulty because of it, or was bound to become
faulty.
Note that the fact that we use FMC does not necessarily implies that the
counter-factuals do not respect the specification of the component. If we con-
sider the stuck at true when switched, as long as no true have to be output,
followed, at some point, by a false, the faulty and the correct behaviours
coincide.



7.2. CAUSALITY ANALYSIS USING FAULT MODELS 155

Definition 70 (Horizontal necessary causality (nech)) Given a system
S = (C,F,P , BM). Let tr ∈ BF a trace and C such that πC(tr) /∈ SC a faulty
component and I ⊆ C a set of suspected components such that C /∈ I. I is a
horizontal cause for the faults of C, noted nech(tr, I, C), if πC(CFh(tr, I)) ⊆
SC.

I is an horizontal necessary cause for the faults of C, if repairing the com-
ponents in I in the counter-factuals fixes the component. If the component
could not be faulty (according to FMC) upon entering the cone, I will always
be a necessary horizontal cause. If not, the faulty behaviour of the compo-
nent might coincide with the correct one, I thus being a necessary horizontal
cause for the fault of C.

Definition 71 (Horizontal sufficient cause suffh) Given a system S =
(C,F,P , BM). Let tr ∈ BF a trace and C such that πC(tr) /∈ SC a faulty
component and I ⊆ C a set of suspected components such that C /∈ I. I
is a horizontal sufficient cause for the faults of C, noted suffh(tr, I, C), if
πC(sup(CFh(tr, (C \ I) \ {C}))) ∩ SC = ∅.

I is a horizontal sufficient cause for the faults of C if fixing every components,
but the one in I and C does not fix C. As usual with sufficient causality, we
consider only the “finished” traces, as we want to check that the component
specification is eventually violated.

When analysing the causality on a system, we do if for each possible
subset of the faulty components (2C′ , with C′). It may give rise to a lot of
possible causes, especially a the faults of some components is a cause of the
faults of other ones. It can be hard to analyse a very large set of causes,
and some may not be relevant. Thus, it would be interesting to be a able to
minimise the sets of causes.

Let tr be a system trace, and S be the set of sets of components such that
∀I ∈ S, cause(tr, I), with cause a causality definition (e.g. nec). Here is an
algorithm to minimise the sets of causes:

1. Elimination of the non-faulty components We build S′ =
{
I ⊆ C |

∃I ′ ∈ S, I = I ′ ∩ {C ∈ C | πC(tr) /∈ SC}
}
. Here, the non-faulty com-

ponents are removed, since they are not relevant to causality analysis.

2. Minimisation using horizontal cause We build S′′ =
⋃

I∈S′
(reduceh(I)),

with reduceh(I) = {I ′ ⊆ I | ∀C ∈ (I \ I ′),∃I ′′ ⊆ I ′, nech(tr, I ′′, C) ∨
(suffh(tr, I ′′, C) ∧ ¬ suffh(tr, ∅, C))}.



156 SECTION 7. IMPACT OF INFORMATION ON CA

reduceh generates all the susbsets of I where all the components for
which there is a horizontal cause in the subset are removed from I.
If I ′ is in reduceh(I), then for all components C in I ′\I, the fault of C is
caused by a subset of I ′. To assess if the faults of C is caused by I ′′, we
check nech(tr, I ′′, C)∨ (suffh(tr, I ′′, C)∧¬ suffh(tr, ∅, C)), i.e. suspect′′
is a necessary cause for the faults of C, or suspect′′ is a sufficient cause
for the faults of C and C is not faulty by itself (¬ suffh(tr, ∅, C))).
The idea behind this reduction is that if a component fault is caused by
another set of components, then it should not be a cause, and should
then be removed from the suspect set. The fact that the horizontal
causes are not empty ensures that ∅ is not in S′′. However it means
that we do not necessarily have nec(tr, I) for all set in S′′ anymore.

3. Set minimisation Smin = inf(S′′). We remove all the set for which
there is a subset that also is a cause. Indeed, C is always a necessary
cause. However, it is not an interesting cause. We rather have minimal
causes, which the infimum provides.

4. Second horizontal minimisation

S′min = {I ∈ Smin | ∀I ′ ∈ Smin,

(∀C ∈ I, causeh(tr, I ′, C)) =⇒ (∀C ′ ∈ I ′, causeh(tr, I, C ′))}
With causeh(tr, I, C) = ∃I ′ ⊆ I, nech(tr, I ′, C) ∨ (suffh(tr, I ′, C) ∧
¬ suffh(tr, ∅, C)).
This new minimisation removes the cause I for which their exists an-
other cause I ′ that provides an horizontal cause for each components
of I, unless I provides an horizontal cause for each component of I ′.
However, if I is a horizontal cause for each components I ′, and recip-
rocallly , it would not make sense to remove any of them (their is no
reason to prioritise one over the other), or both (two minimal causes
would be removed).

Let us illustrate the cause minimisation with an example.

Example 47 Let us consider a system formed of four components a, b, c and
d. Let tr be a failing trace over the system. d is the only non-faulty compo-
nents in tr. The necessary causes are S =

{
{a}, {a, d}, {a, b}, {a, b, d}, {b, c}, {b, c, d}, {a, b, c}, {a, b, c, d}

}
.

Let us minimise this set of causes.

1. We remove the non-faulty components, i.e. d. We get S′ =
{
{a}, {a, b}, {b, c}, {a, b, c}

}
.



7.2. CAUSALITY ANALYSIS USING FAULT MODELS 157

2. The horizontal cause relation are that b is an horizontal cause for a.
It has an impact on {a, b} and {a, b, c}. reduceh({a, b}) =

{
{a, b}, {b}

}

and reduceh({a, b, c}) =
{
{b, c}, {a, b, c}

}
. We get S′′ =

{
{a}, {b}, {a, b}, {b, c}, {a, b, c}

}

3. We pursue by minimising this set Smin =
{
{a}, {b}

}

4. Lastly, we perform the second horizontal minimisation {{b}}, since {b}
is an horizontal cause to the faults of a.

{a, b} was a cause, but there is a reduced cause {b}, since b is a cause of
the fault in a. {b, c} is removed, because {b} is a cause. Here, we see the
importance of the order, since {a, b} would have been removed, since it is a
superset of {a}, if the step 3. was performed before the 2.
The intuition to reduce {a, b} to {b} is that the faults of b cause the faults in
a, thus only b should be held responsible. Since {b} is a cause, {b, c} should
be eliminated, as it is bigger than {b}.
The reason we remove {a} is because {b} is a horizontal cause of the faults
of a.
Note that {b} is the minimal cause, but note a fix. indeed, step 2. removes
some components from the causes, thus maybe changing the cause to a new
set which is not a fix.

This example shows that it is possible to reduce significantly the set of
causes. However, a lot of information is lost. It would be interesting, when
presenting this minimised set of cause, to give access to the reason some
causes were removed.

7.2.4 Dealing with multiple fault models

As explained earlier, being able to isolate one fault mode for a given trace
is very unlikely, and generally, several fault modes are possible. In order to
tackle this issue, three methods will be proposed.

A general note is that only the fault modes of the non-suspected faulty
(before the cone) components are relevant, as they are the only one for which
a fault mode is used.

Conservative method In this method, we only consider the most severe
fault mode, when doing the analysis. This is conservative, since it assumes
the worst. However, it does not necessarily yield better results than the
normal approach, since generally the worst fault mode is a random one (up
to some component constraints), which end up being BC .
It gives the same result as constraining BM with all the different most severe
fault modes.



158 SECTION 7. IMPACT OF INFORMATION ON CA

Exhaustive approach Here, we simply test every possible combination of
fault modes for every non-suspected faulty component. The obvious problem
is the combinatorial explosion, since another exponential blowup is added to
the fact that we have to do the analysis for every subset of the faulty compo-
nent. Here, in addition, we have to test every possible combination of fault
modes for each possible non-suspected faulty (before the cone) components.

However, it gives more accurate results, since some suspect might be cause
only for certain fault modes, but not for other.

Mode coverage approach Oftentimes, the fault modes are given with a
probability of occurrence. For instance, the FMECA standard ([US Department of Defense, 1949])
is widely used in safety critical sector, such as aerospace, the military sec-
tor or the medical field. Another widely used technique to assess possible
failures during the design phase is the fault tree analysis, which comes with
probabilities of failure.

Usually, the most severe modes have probabilities that are significantly
lesser than the one of the less severe ones. This can be used to assess which
mode should be used during the causality analysis. Using the probabilities
and some properties of causality analysis, a coverage of the modes, given the
chosen mode, can be computed, thus guiding the fault modes to chose, or
giving a confidence measure in the result of the analysis. The notion of mode
coverage will be introduced to show how this idea can be applied.

In this section, the cone approach will be treated, as it only impacts the
counter-factuals construction. However, those results hold for the unaffected
prefixes approach (where the “cone” construction is impacted by the fault
mode).

Property 4 (Necessary causality inclusion) Let tr be a system trace,
I ⊆ C, C ∈ C \ I such that πC(tr) /∈ SC be a non suspect faulty component
and M0

C ,M1
C be two fault modes for C, such that M0

C ≺ M1
C. We note I i

when Mi
C is used in the counter-factuals.

• nec(tr, I1) =⇒ nec(tr, I0)

The only difference between CF (tr, I0) and CF (tr, I1) comes from con-
straint 7.9 (prolongation for faulty components) from definition 68 (counter-
factuals with fault model). Therefore, ∀tr′ ∈ CF (tr, suspecti), πC(tr′) ∈Mi.
Since M0 ≺M1, M0 ⊆M1. Hence, CF (tr, I0) ⊆ CF (tr, I1), from which the
properties follow.



7.2. CAUSALITY ANALYSIS USING FAULT MODELS 159

This property means that if for a given mode, the suspect is a necessary
cause, it is also the case for the less severe modes.
Note that it follows from the property that ¬ nec(tr, I0) =⇒ ¬ nec(tr, I1).

Definition 72 (Necessary cause fault mode coverage cover) Let tr be
a system trace, I the set of suspected component. Let C′ = {C ∈ C \ I |
πC(tr) /∈ SC} the set of faulty non-suspected components. Let mode =
(MC)C∈C′ be the chosen mode for the counter-factuals. For each component,
we suppose we are given a probability of occurrence function p for all the fault
modes, such that ∀C ∈ C,

( ∑

M∈FMC

p(M)
)

= 1. cover is defined as follow:

cover =





∏

C∈C′

set_p({M ∈ FMC |M �MC}) if nec(tr, I)

∏

C∈C′

(1− set_p(FMC \ {M ∈ FMC |MC �M})) if ¬ nec(tr, I)

With set_p(FM′) =
∑

M∈(FM′∪{MC})

p(M).

Using the previous property, we can compute the coverage of the chosen fault
modes. Let us look at the case where the suspect is a necessary cause. The
coverage is the product of the probability of all the modes for which we know
the result of the causality analysis for sure. Given a fault mode, for each
mode that are less severe than it, the suspect are still a necessary cause.
The total probability is set_p, when nec(tr, I), since we consider all the
modes that are supersets of MC . When ¬ nec(tr, I), it gets all little trickier,
since we want to exclude all the supersets of MC , hence the use 1 minus the
probability of being a subset of MC . The product of the coverage of each
components gives us the total coverage.

Let us illustrate the notion of coverage with an example.

Example 48 The system we consider has component with three fault modes
such that M0 ≺ M1 ≺ M2, and with an order of magnitude between the
different mode probabilities, i.e. p(M0) = 10p(M1) and p(M1) = 10p(M2).
This is not unusual to have such difference between the modes, since the more
severe modes generally means that the component have been more severely
damaged or impacted, which is less likely.

Let tr be a system trace and I be a set of suspected component. Here is
a table giving the coverage, in function of the result of the causality analysis,
the number of faulty non-suspected components, and the mode chosen.



160 SECTION 7. IMPACT OF INFORMATION ON CA

Result of the analysis nec(tr, I) ¬ nec(tr, I)
Mode chosen M0 M1 M2 M0 M1 M2

0 1 1 1 1 1 1
1 0.9 0.99 1 1 0.09 0.009
2 0.81 0.98 1 1 10−3 8× 10−5

5 0.59 0.96 1 1 10−6 6× 10−11

10 0.35 0.91 1 1 9× 10−11 4× 10−21

This tabular shows that when there are not too many faulty non-suspected
components (let n be the number of such components), performing the anal-
ysis on the less severe mode gives very good coverage, since if I is not a
necessary cause, we get full coverage. If it is, we get 0.9n. It gives us a
coverage of 0.9, 0.81 and 0.72 for n equal to 1, 2, and 3. For n = 1, it is a
good coverage. For higher values of n, the coverage may be insufficient.

Therefore, it could be a good idea to perform more than one analysis, with
different choices of fault model. If you do so, you can sum the coverage with
the previous one.

For instance, let us suppose that n = 2. A first causality analysis is per-
formed. Since M0 gives the maximum coverage if we do not have any informa-
tion about the outcome (0.81 and 1), those are the fault modes that are chosen.
If I is not a necessary cause, the coverage is 1, so the analysis can stop. If I
is a necessary cause, we know that for 81% of the possible fault mode combi-
nation, pondered by the probability of occurrence, I is a cause. There is still
19% to explore. If we take M0 for one of the faulty non-suspected component,
and M1 for the other, the coverage become p(M0)×set_p({M0,M1)}) = 89%
if nec(tr, I) and set_co_p(∅)× set_co_p({M0)}) = 8.9%. It then increases
the coverage by 89% − 81% = 8% if nec(tr, I), and 10% otherwise, which
ends up being a total coverage of 89% or 91%. If we do the analysis, but
swap the modes for the two components, we achieve a new increase by 8%
(nec for the new fault mode setup), 9% (¬ nec for both setups) or 10% (¬ nec
for this setup and nec for the other), with a total coverage between 97% and
100%, which is almost total, to total coverage.

If we take the same example with a factor 5 between the probabilities of
the fault modes, instead of 10, we get a coverage of from 91% (with nec for
all fault models combination, which give 66% + 13% + 13%) to 100%. We
can enhance the 91% to 94% with an extra analysis.

We can achieve almost full to full coverage, performing three analyses,
instead of nine (|FM|2).

If we consider an example with a factor 10 between the fault modes, and
three non-suspected faulty components, we get a coverage between 97% to
100% in 7 analyses. Note that 7 is the worst case, 97% can be achieved in 4



7.2. CAUSALITY ANALYSIS USING FAULT MODELS 161

analyses, and 100% after one.
Here, we almost get full coverage with seven analyses instead of twenty

seven.

This example shows that using a choice of fault mode driven by maximis-
ing the coverage, we can achieve almost full coverage, without performing all
the possible fault modes combination.

What’s more, even when performing an exhaustive analysis, the fault
mode probabilities can be used to ponder the different results, giving a more
representative result for the causality analysis. A very improbable fault com-
bination that leads to I being a cause has then less weight than a very
probable fault mode combination for which I is not a cause.

Note that given the theorem 4 (sufficient causality results are not trans-
posable to tighter constraints) of Subsection 7.1, this result cannot be trans-
posed to the sufficient causality, because of the sup in the sufficient cause
definition.

7.2.5 Enhancing the precision using extra information

The specification is an abstraction of the actual behaviour of the component.
Thus, having more information logged can help building counter-factuals that
are closer to what would actually have happened.

Having access to extra information can also help knowing in which fault
mode a component is. For instance, having access to the inner state of the
component may help determining the fault mode, as well as whether the
component is faulty or not. If not giving a deterministic assessment of the
fault mode, it may modify the probability of the different modes, thus helping
better optimising the coverage approach.

Another effect of extra information would be to constraint the counter-
factuals more. Indeed, by logging more information, it may reduce the pos-
sible values a component can output, with the constraint of the extra infor-
mation. It means that the counter-factuals would be closer to what would
have happened.

Conclusion

This section presented several new results. The first one is that, excluding
the case where a suspect is a necessary cause on a partial trace, we do not
have any information about the causality analysis result on the full trace from
an analysis on a partial trace. The grey-box component approach proposes
a way of having the same result of the causality analysis on the full trace



162 SECTION 7. IMPACT OF INFORMATION ON CA

and on critical logs. Though a way of assessing the fact that component are
faulty or not, at runtime, is needed, this approach can reduce significantly
the amount of data to log and to process, especially on system runs where
the failure occurs shortly after the first fault.

The second subsection presented a way to use fault models explicitly in
causality analysis. Those fault models can be used to refine the causes, by
checking the relation between component faults. Those relations can be used
to perform a reduction of the cause sets, thus giving a more accurate causality
analysis. Whats more, a way of assessing the coverage of multiple analyses is
proposed, in case the components have multiple fault modes. The coverage
helps both checking if all the possible fault mode combinations have been
covered, and choosing the next analysis to perform.

Lastly, the previous subsection showed some intuition on the benefit that
can bring the use of extra information, to both reduce the needed logs and
helping enhancing the precision of the causality analysis.



Section 8

Conclusion

8.1 Summary

This thesis expands the causality analysis framework (from [Gössler and Le Métayer, 2013,
Gössler and Métayer, 2015]) in several ways.

The first one is to put causality analysis into perspective, thus drawing
requirements that are the basis of the approach.

An instantiation of approach for the synchronous data-flow systems (namely
Lustre) has been implemented in the existing Loca tool.

The first main contribution of this document is to move causality analysis
from a purely black-box setting to a mixed one. Two different frameworks
are proposed. The mixed-one is a straight up extension of the causality
analysis framework, as it uses the counter-factuals to generate all the possible
behaviours for a set of white-box components (protagonists), while fixing the
faults of a set of black-box ones. A controller synthesis is then performed
on those counter-factuals, to check whether a global strategy was accessible
to the protagonists, would the black-box ones being fixed, that would avoid
the failure. From this, we can build several causality definitions, that have
a practical interpretation in a design perspective. Having such a tool for
mixed framework systems is desirable, as systems mixing black and white-
box components are very common, given the widespread use of off-the-shelf
components. A way of performing the synthesis is also proposed, using the
techniques developed for controller synthesis.

However, this extension is not enough to be able to use the mixed frame-
work as a responsibility assignment tool. This problem arises from the fact
that the synthesis is made at a system level, and thus does not take into ac-
count the information the components have access to, while computing their
outputs. Therefore, a more expressive framework has been developed in this

163



164 SECTION 8. CONCLUSION

document: the game framework. The first difference with the mixed one is to
refine the system description from a global tick granularity to a granularity
that is able to assess how the flows are valued during a time-step. The second
enhancement is to use a game to build the counter-factuals. This allow to
add another player, namely the antagonists, that uses strategies to make the
system fail. What’s more, the counter-factuals are built using a more ad-
vanced approach, similar to the one proposed in [Gössler and Stefani, 2016],
that gives rise to counter-factuals that are more accurate. With those en-
hancements, the game-framework is a full-fledged responsibility ascription
framework for mixed systems. The causality definitions from the previous
frameworks can be adapted to this new one, and some new definitions are
possible, thanks to the addition of the antagonists. A refinement of the syn-
thesis proposed for the mixed framework is proposed to compute winning
strategies and spoiling strategies for the game framework.

The effect of the amount of information accessible to build the counter-
factuals is also explored. Usually, performing causality analysis on a partial
trace does not give any insight on the results for the full trace. The grey-
box components concept provides a way of being able to make sure that the
result of the causality analysis is the same with the critical logs and with the
full trace. This is an important result, as traces may be very big, and this
technique helps reducing the size of the logs needed to be able to perform
the causality analysis, without loosing in accuracy.
The impact on causality analysis of having more information on the system is
also studied. Namely the introduction of a fault model for the components.
This helps having better counter-factuals, as the faulty behaviours of the
components are better reconstructed. Although the precision is enhanced,
this is at the cost of a computational blowup. The coverage can be used
to mitigate this extra cost, while giving a confidence value on the results
obtained. The fault models can also be used with horizontal causality (first
introduced in [Wang et al., 2015]), thus refining the responsibility ascription,
and reducing the set of “responsible” components to minimal ones.

8.2 Future prospect

The results obtained in this thesis open up some new research directions.

Applying the new frameworks to real life systems This thesis devel-
ops the mixed and the game framework. Their capabilities are assessed in a
theoretical way. It would be interesting to implement those frameworks and
apply them to real life system failures. This would gives some insight on how



8.2. FUTURE PROSPECT 165

the results of the different causality definitions can be used, as well as the
scalability. It would help establish the mixed and the game frameworks as
design/responsibility ascription tools.

Extending the approaches to other system models The systems
considered in this manuscript are synchronous data-flow ones. They have
been chosen because they are simple to understand, and the communications
model is straight-forward. Besides, this system class is often used to develop
safety critical systems, which benefit from having access to responsibility
assignment tools. Nevertheless, a great care has been given to making the
frameworks as general as possible, having a minimum of constructs relying
on the system models. What’s more, experience has shown that causality
analysis is easy to instantiate to different models. Therefore, the frameworks
developed in this thesis are a sound basis to be able to expand them to more
complex system models, with more complicated communication models. This
would allow to be able to have access to a responsibility ascription tool for
more classes of systems.

Developing conservative heuristics Synthesis usually resorts to model-
checking which generally scales poorly. Therefore, heuristics will be needed
in order to treat big systems. The idea of conservative (i.e. that a cause gen-
erated by the heuristic is also a cause when applying the normal approach)
heuristics is closely tied to the work in Section 7. Indeed the grey-box compo-
nents, for instance give a heuristic to keep the exact same result as the vanilla
causality analysis on critical logs. The different results from this section are
a basis to create those heuristics.

On the fly causality analysis The grey-box components framework as-
sesses the minimum amount of information needed to compute counter-
factuals that are the same as the one from the full trace. Would they be
combined with fault detection mechanism, it would be possible to start build-
ing counter-factuals as soon as faulty components are detected. Monitored
systems are particularly suited for such an approach, as they have build in
fault detection and logging mechanisms. Being able to assess responsibility
in real time can be very useful when a critical failure occurs, as it gives set
of components that are responsible for the failure. Those causes can be used
to choose which components should be fixed first, in order to get the system
back to a non-failing state. Having optimal fixes (by weighting the causes,
e.g. a reparation cost or time) means that you can fix the system in most
efficient and fast way.



166 SECTION 8. CONCLUSION

Exploring further the impact of additional information Section 7
sketches some ideas on the impact of having access to extra-information on
causality analysis. Be it to reduce the needed logs, or enhancing the accuracy
of causality analysis, having access to the inner state of components, or
other information can be helpful. This is an interesting direction for future
research.

Accountability by design The idea is to consider accountability during
the design phase, thus making it easier to perform the causality analysis on
the finished system. This ties well with the impact of information on causality
analysis aspect of this thesis, as for instance, by design, logging only certain
flows from the components might be enough to perform a complete causality
analysis, if the system is designed for it. Another interesting area to explore
is the externalisation of inner variables to ease causality analysis, and it is
better to address those concerns during the design phase. An initial work
was produced during this thesis on a contract class that would ease causality
analysis. However, it was hard to logically link this work to the two main axes
(mixed framework and information impact) and was not mature enough to be
a meaningful contribution. Nevertheless, it is a solid basis to start exploring
accountability by design.



Bibliography

[Agrawal and Horgan, 1990] Agrawal, H. and Horgan, J. R. (1990). Dynamic
program slicing. SIGPLAN Not., 25(6):246–256.

[Agrawal et al., 1995] Agrawal, H., Horgan, J. R., London, S., and Wong,
W. E. (1995). Fault localization using execution slices and dataflow tests.
In Software Reliability Engineering, 1995. Proceedings., Sixth International
Symposium on, pages 143–151.

[Alipour, 2012] Alipour, A. (2012). Automated fault localization techniques;
a survey. Technical Report Oregon State University.

[Arumuga Nainar et al., 2007] Arumuga Nainar, P., Chen, T., Rosin, J., and
Liblit, B. (2007). Statistical debugging using compound boolean predi-
cates. In Proceedings of the 2007 International Symposium on Software
Testing and Analysis, ISSTA ’07, pages 5–15, New York, NY, USA. ACM.

[Asarin et al., 1995] Asarin, E., Maler, O., and Pnueli, A. (1995). Symbolic
controller synthesis for discrete and timed systems, pages 1–20. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[Avizienis et al., 2004] Avizienis, A., Laprie, J. C., Randell, B., and
Landwehr, C. (2004). Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and Secure Com-
puting, 1(1):11–33.

[Ball and Larus, 1996] Ball, T. and Larus, J. R. (1996). Efficient path pro-
filing. In Proceedings of the 29th Annual ACM/IEEE International Sym-
posium on Microarchitecture, MICRO 29, pages 46–57, Washington, DC,
USA. IEEE Computer Society.

[Ball et al., 2003] Ball, T., Naik, M., and Rajamani, S. K. (2003). From
symptom to cause: Localizing errors in counterexample traces. SIGPLAN
Not., 38(1):97–105.

167



168 BIBLIOGRAPHY

[Barrett et al., 2015] Barrett, C., Fontaine, P., and Tinelli, C. (2015). The
SMT-LIB Standard: Version 2.5. Technical report, Department of Com-
puter Science, The University of Iowa. Available at www.SMT-LIB.org.

[Beer et al., 2012] Beer, I., Ben-David, S., Chockler, H., Orni, A., and Tre-
fler, R. J. (2012). Explaining counterexamples using causality. Formal
Methods in System Design, 40(1):20–40.

[Benveniste et al., 2003] Benveniste, A., Caspi, P., Edwards, S. A., Halb-
wachs, N., Le Guernic, P., and De Simone, R. (2003). The synchronous
languages 12 years later. Proceedings of the IEEE, 91(1):64–83.

[Berry, 1989] Berry, G. (1989). Real time programming : special purpose or
general purpose languages. Research Report RR-1065, INRIA.

[Biere et al., 2009] Biere, A., Biere, A., Heule, M., van Maaren, H., and
Walsh, T. (2009). Handbook of Satisfiability: Volume 185 Frontiers in Ar-
tificial Intelligence and Applications. IOS Press, Amsterdam, The Nether-
lands, The Netherlands.

[Cassandras and Lafortune, 1999] Cassandras, C. and Lafortune, S. (1999).
Introduction to Discrete Event Systems. Kluwer.

[Chilimbi et al., 2009] Chilimbi, T. M., Liblit, B., Mehra, K., Nori, A. V.,
and Vaswani, K. (2009). Holmes: Effective statistical debugging via effi-
cient path profiling. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 34–44, Washington, DC, USA.
IEEE Computer Society.

[Chockler et al., 2015] Chockler, H., Fenton, N., Keppens, J., and Lagnado,
D. A. (2015). Causal analysis for attributing responsibility in legal cases. In
Proceedings of the 15th International Conference on Artificial Intelligence
and Law, ICAIL ’15, pages 33–42, New York, NY, USA. ACM.

[Chockler et al., 2008] Chockler, H., Grumberg, O., and Yadgar, A. (2008).
Tools and Algorithms for the Construction and Analysis of Systems: 14th
International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceedings, chapter Efficient
Automatic STE Refinement Using Responsibility, pages 233–248. Springer
Berlin Heidelberg, Berlin, Heidelberg.



BIBLIOGRAPHY 169

[Chockler and Halpern, 2004] Chockler, H. and Halpern, J. Y. (2004). Re-
sponsibility and blame: A structural-model approach. J. Artif. Intell. Res.
(JAIR), 22:93–115.

[Cleve and Zeller, 2005] Cleve, H. and Zeller, A. (2005). Locating causes
of program failures. In Proceedings of the 27th International Conference
on Software Engineering, ICSE ’05, pages 342–351, New York, NY, USA.
ACM.

[Console et al., 1993] Console, L., Friedrich, G., and Dupré, D. T. (1993).
Model-based diagnosis meets error diagnosis in logic programs (extended
abstract). In Proceedings of the First International Workshop on Auto-
mated and Algorithmic Debugging, AADEBUG ’93, pages 85–87, London,
UK, UK. Springer-Verlag.

[Csallner et al., 2008] Csallner, C., Tillmann, N., and Smaragdakis, Y.
(2008). Dysy: Dynamic symbolic execution for invariant inference. In
Proceedings of the 30th International Conference on Software Engineer-
ing, ICSE ’08, pages 281–290, New York, NY, USA. ACM.

[Datta et al., 2015] Datta, A., Garg, D., Kaynar, D. K., Sharma, D., and
Sinha, A. (2015). Program actions as actual causes: A building block for
accountability. CoRR, abs/1505.01131.

[de Kleer and Williams, 1987] de Kleer, J. and Williams, B. C. (1987). Di-
agnosing multiple faults. Artif. Intell., 32(1):97–130.

[de Moura and Bjørner, 2008] de Moura, L. and Bjørner, N. (2008). Z3: An
Efficient SMT Solver, pages 337–340. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Debbi and Bourahla, 2013] Debbi, H. and Bourahla, M. (2013). Generating
diagnoses for probabilistic model checking using causality. CIT, 21(1):13–
23.

[Dupin de Saint Cyr Bannay, 2008] Dupin de Saint Cyr Bannay, F. (2008).
Scenario Update Applied to Causal Reasoning (regular paper). In Brewka,
G. and Lang, J., editors, International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), Sydney, Australia, 16/09/2008-
19/09/2008, pages 188–197, http://www.aaai.org/Press/press.php. AAAI
Press.



170 BIBLIOGRAPHY

[Ehlers et al., 2016] Ehlers, R., Lafortune, S., Tripakis, S., and Vardi, M. Y.
(2016). Supervisory control and reactive synthesis: a comparative intro-
duction. Discrete Event Dynamic Systems, pages 1–52.

[Ernst et al., 2007] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S.,
Pacheco, C., Tschantz, M. S., and Xiao, C. (2007). The daikon system
for dynamic detection of likely invariants. Sci. Comput. Program., 69(1-
3):35–45.

[Erwan Jahier, 2016] Erwan Jahier, Pascal Raymond, N. H. (2016). The
lustre v6 reference manual.

[Goessler and Astefanoaei, 2014] Goessler, G. and Astefanoaei, L. (2014).
Blaming in component-based real-time systems. In Mitra, T. and Reineke,
J., editors, 2014 International Conference on Embedded Software, EM-
SOFT 2014, New Delhi, India, October 12-17, 2014, pages 7:1–7:10. ACM.

[Gössler and Le Métayer, 2013] Gössler, G. and Le Métayer, D. (2013). A
general trace-based framework of logical causality. In International Work-
shop on Formal Aspects of Component Software, pages 157–173. Springer.

[Gössler and Métayer, 2015] Gössler, G. and Métayer, D. L. (2015). A gen-
eral framework for blaming in component-based systems. Sci. Comput.
Program., 113:223–235.

[Gössler and Stefani, 2016] Gössler, G. and Stefani, J.-B. (2016). Fault As-
cription in Concurrent Systems, pages 79–94. Springer International Pub-
lishing, Cham.

[Groce et al., 2006] Groce, A., Chaki, S., Kroening, D., and Strichman, O.
(2006). Error explanation with distance metrics. Int. J. Softw. Tools
Technol. Transf., 8(3):229–247.

[Groce and Visser, 2003] Groce, A. and Visser, W. (2003). Model Checking
Software: 10th International SPIN Workshop Portland, OR, USA, May 9–
10, 2003 Proceedings, chapter What Went Wrong: Explaining Counterex-
amples, pages 121–136. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Hagen, 2008] Hagen, G. (2008). VERIFYING SAFETY PROPERTIES OF
LUSTRE PROGRAMS: AN SMT-BASED APPROACH. PhD thesis, The
University of Iowa.

[Hagen and Tinelli, 2008] Hagen, G. and Tinelli, C. (2008). Scaling up the
formal verification of lustre programs with smt-based techniques. In For-
mal Methods in Computer-Aided Design, 2008. FMCAD ’08, pages 1–9.



BIBLIOGRAPHY 171

[Halbwachs et al., 1991a] Halbwachs, N., Caspi, P., Raymond, P., and Pi-
laud, D. (1991a). The synchronous data flow programming language lustre.
Proceedings of the IEEE, 79(9):1305–1320.

[Halbwachs et al., 1991b] Halbwachs, N., Caspi, P., Raymond, P., and Pi-
laud, D. (1991b). The synchronous dataflow programming language lustre.
In Proceedings of the IEEE, pages 1305–1320.

[Halbwachs et al., 1989] Halbwachs, N., Pilaud, D., Ouabdesselam, F., and
Glory, A. (1989). Specifying, programming and verifying real-time systems
using a synchronous declarative language. In Sifakis, J., editor, Automatic
Verification Methods for Finite State Systems, International Workshop,
Grenoble, France, June 12-14, 1989, Proceedings, volume 407 of Lecture
Notes in Computer Science, pages 213–231. Springer.

[Halpern and Pearl, 2001a] Halpern, J. Y. and Pearl, J. (2001a). Causes
and explanations: A structural-model approach - part II: explanations.
In Nebel, B., editor, Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington,
USA, August 4-10, 2001, pages 27–34. Morgan Kaufmann.

[Halpern and Pearl, 2001b] Halpern, J. Y. and Pearl, J. (2001b). Causes and
explanations: A structural-model approach: Part 1: Causes. In Breese,
J. S. and Koller, D., editors, UAI ’01: Proceedings of the 17th Conference
in Uncertainty in Artificial Intelligence, University of Washington, Seattle,
Washington, USA, August 2-5, 2001, pages 194–202. Morgan Kaufmann.

[Heh-Tyan et al., 1990] Heh-Tyan, L., Jia-Horng, T., and Chen-Shang, L.
(1990). Efficient automatic diagnosis of digital circuits. In Computer-
Aided Design, 1990. ICCAD-90. Digest of Technical Papers., 1990 IEEE
International Conference on, pages 464–467.

[Hitchcock, 2001] Hitchcock, C. (2001). The intransitivity of causation re-
vealed in equations and graphs. The Journal of Philosophy, 98(6):273–299.

[Hu et al., 2008] Hu, P., Zhang, Z., Chan, W. K., and Tse, T. H. (2008).
Fault localization with non-parametric program behavior model. In 2008
The Eighth International Conference on Quality Software, pages 385–395.

[Hume, 2004] Hume, D. (2004). An Enquiry Concerning Human Understand-
ing. Dover philosophical classics. Dover Publications.

[Jalbert and Sen, 2010] Jalbert, N. and Sen, K. (2010). A trace simplification
technique for effective debugging of concurrent programs. In Proceedings of



172 BIBLIOGRAPHY

the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’10, pages 57–66, New York, NY, USA.
ACM.

[Jiang and Su, 2007] Jiang, L. and Su, Z. (2007). Context-aware statistical
debugging: From bug predictors to faulty control flow paths. In Proceed-
ings of the Twenty-second IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’07, pages 184–193, New York, NY,
USA. ACM.

[Jin et al., 2004] Jin, H., Ravi, K., and Somenzi, F. (2004). Fate and free
will in error traces. International Journal on Software Tools for Technology
Transfer, 6(2):102–116.

[Jobstmann et al., 2012] Jobstmann, B., Staber, S., Griesmayer, A., and
Bloem, R. (2012). Finding and fixing faults. J. Comput. Syst. Sci.,
78(2):441–460.

[Jones and Harrold, 2005] Jones, J. A. and Harrold, M. J. (2005). Empiri-
cal evaluation of the tarantula automatic fault-localization technique. In
Proceedings of the 20th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’05, pages 273–282, New York, NY,
USA. ACM.

[Jones et al., 2002] Jones, J. A., Harrold, M. J., and Stasko, J. (2002). Vi-
sualization of test information to assist fault localization. In Proceedings
of the 24th International Conference on Software Engineering, ICSE ’02,
pages 467–477, New York, NY, USA. ACM.

[Jose and Majumdar, 2010] Jose, M. and Majumdar, R. (2010). Cause
clue clauses: Error localization using maximum satisfiability. CoRR,
abs/1011.1589.

[Kayser and Nouioua, 2005] Kayser, D. and Nouioua, F. (2005). About
Norms and Causes. International Journal on Artificial Intelligence Tools,
14(1-2):7–23.

[Kuntz et al., 2011] Kuntz, M., Leitner-Fischer, F., and Leue, S. (2011).
Computer Safety, Reliability, and Security: 30th International Confer-
ence,SAFECOMP 2011, Naples, Italy, September 19-22, 2011. Proceed-
ings, chapter From Probabilistic Counterexamples via Causality to Fault
Trees, pages 71–84. Springer Berlin Heidelberg, Berlin, Heidelberg.



BIBLIOGRAPHY 173

[Laprie et al., 1990] Laprie, J.-C., Béounes, C., and Kanoun, K. (1990). Def-
inition and analysis of hardware- and software-fault-tolerant architectures.
Computer, 23(7):39–51.

[Lewis, 1973] Lewis, D. (1973). Causation. Journal of Philosophy,
70(17):556–567.

[Lewis, 2000] Lewis, D. (2000). Causation as influence. Journal of Philoso-
phy, 97(4):182–197.

[Liao and Cohen, 1992] Liao, Y. and Cohen, D. (1992). A specificational
approach to high level program monitoring and measuring. IEEE Trans-
actions on Software Engineering, 18(11):969–978.

[Liblit et al., 2005] Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan,
M. I. (2005). Scalable statistical bug isolation. SIGPLAN Not., 40(6):15–
26.

[Liu et al., 2006] Liu, C., Fei, L., Yan, X., Han, J., and Midkiff, S. P. (2006).
Statistical debugging: A hypothesis testing-based approach. IEEE Trans.
Software Eng., 32(10):831–848.

[Liu et al., 2005] Liu, C., Yan, X., Fei, L., Han, J., and Midkiff, S. P. (2005).
Sober: statistical model-based bug localization. In Wermelinger, M. and
Gall, H. C., editors, ESEC/SIGSOFT FSE, pages 286–295. ACM.

[Lyle and Weiser, 1987] Lyle, J. R. and Weiser, M. (1987). Automatic Pro-
gram Bug Location by Program Slicing. In 2nd International Conference
on Computers and Applications, pages 877–882, Peking. IEEE Computer
Society Press, Los Alamitos, California, USA.

[Madre et al., 1989] Madre, J. C., Coudert, O., and Billon, J. P. (1989).
Automating the diagnosis and the rectification of design errors with priam.
In Computer-Aided Design, 1989. ICCAD-89. Digest of Technical Papers.,
1989 IEEE International Conference on, pages 30–33.

[Menzies, 2014] Menzies, P. (2014). Counterfactual theories of cau-
sation. http://plato.stanford.edu/archives/spr2014/entries/
causation-counterfactual/.

[Misherghi and Su, 2006] Misherghi, G. and Su, Z. (2006). Hdd: Hierarchical
delta debugging. In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 142–151, New York, NY, USA.
ACM.

http://plato.stanford.edu/archives/spr2014/entries/causation-counterfactual/
http://plato.stanford.edu/archives/spr2014/entries/causation-counterfactual/


174 BIBLIOGRAPHY

[Odersky, 2004] Odersky, M. (2004). The scala programming language.

[Pal and Mohiuddin, 2013] Pal, D. and Mohiuddin, R. (2013). Automated
bug localization of software programs : A survey report. Technical report,
Univerisity of Illinois at Urbana-Champaign.

[Pan and Spafford, 1992] Pan, H. and Spafford, E. H. (1992). Heuristics
for automatic localization of software faults. Technical report, Purdue
University.

[Pons et al., 2015] Pons, R., Subias, A., and Travé-Massuyès, L. (2015). It-
erative hybrid causal model based diagnosis: Application to automotive
embedded functions. Engineering Applications of Artificial Intelligence,
37:319–335.

[Poole et al., 1987] Poole, D., Goebel, R., and Aleliunas, R. (1987). Theorist:
A logical reasoning system for defaults and diagnosis. In Cercone, N. and
McCalla, G., editors, The Knowledge Frontier, pages 331–352. Springer,
New York.

[Powell, 1992] Powell, D. (1992). Failure mode assumptions and assumption
coverage. In Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers.,
Twenty-Second International Symposium on, pages 386–395.

[Ramadge and Wonham, 1987] Ramadge, P. and Wonham, W. (1987). Su-
pervisory control of a class of discrete event processes. SIAM J. Control
and Optimization, 25(1).

[Ramadge and Wonham, 1989] Ramadge, P. and Wonham, W. (1989). The
control of discrete event systems. Proceedings of IEEE, 77(1):81–98.

[Reiter, 1987] Reiter, R. (1987). A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57 – 95.

[Renieris and Reiss, 2003] Renieris, M. and Reiss, S. P. (2003). Fault local-
ization with nearest neighbor queries. In ASE, pages 30–39. IEEE Com-
puter Society.

[Sagdeo et al., 2011] Sagdeo, P., Athavale, V., Kowshik, S., and Vasudevan,
S. (2011). Precis: Inferring invariants using program path guided cluster-
ing. In Automated Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on, pages 532–535.



BIBLIOGRAPHY 175

[Steinder and Sethi, 2004] Steinder, M. and Sethi, A. S. (2004). A survey of
fault localization techniques in computer networks. Science of Computer
Programming, 53(2):165 – 194. Topics in System Administration.

[US Department of Defense, 1949] US Department of Defense (1949). Pro-
cedures for performing a failure mode, effects and criticality analysis.

[Wang et al., 2006] Wang, C., Yang, Z., Ivančić, F., and Gupta, A. (2006).
Automated Technology for Verification and Analysis: 4th International
Symposium, ATVA 2006, Beijing, China, October 23-26, 2006. Proceed-
ings, chapter Whodunit? Causal Analysis for Counterexamples, pages
82–95. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Wang et al., 2015] Wang, S., Geoffroy, Y., Gössler, G., Sokolsky, O., and
Lee, I. (2015). A Hybrid Approach to Causality Analysis. In RV 2015
- 6th International Conference on Runtime Verification, volume 9333 of
LNCS, Vienna, Austria.

[Weiser, 1981] Weiser, M. (1981). Program slicing. In Proceedings of the
5th International Conference on Software Engineering, ICSE ’81, pages
439–449, Piscataway, NJ, USA. IEEE Press.

[Weiser, 1982] Weiser, M. (1982). Programmers use slices when debugging.
Commun. ACM, 25(7):446–452.

[Wong et al., 2008] Wong, E., Wei, T., Qi, Y., and Zhao, L. (2008). A
crosstab-based statistical method for effective fault localization. In Pro-
ceedings of the 2008 International Conference on Software Testing, Veri-
fication, and Validation, ICST ’08, pages 42–51, Washington, DC, USA.
IEEE Computer Society.

[Wong and Qi, 2004] Wong, W. E. and Qi, Y. (2004). An execution slice
and inter-block data dependency-based approach for fault localization.
In Proceedings of the 11th Asia-Pacific Software Engineering Conference,
APSEC ’04, pages 366–373, Washington, DC, USA. IEEE Computer So-
ciety.

[Woodward and Hitchcock, 2003] Woodward, J. and Hitchcock, C. (2003).
Explanatory generalizations, part i: A counterfactual account. Noûs,
37(1):1–24.

[Xuan et al., 2016] Xuan, J., Martinez, M., DeMarco, F., Clement, M., Mar-
cote, S. L., Durieux, T., Berre, D. L., and Monperrus, M. (2016). Nopol:



176 BIBLIOGRAPHY

Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering, PP(99):1–1.

[Zeller, 2002] Zeller, A. (2002). Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, SIGSOFT ’02/FSE-10, pages 1–10, New
York, NY, USA. ACM.

[Zeller and Hildebrandt, 2002] Zeller, A. and Hildebrandt, R. (2002). Sim-
plifying and isolating failure-inducing input. IEEE Trans. Softw. Eng.,
28(2):183–200.

[Zhang et al., 2005] Zhang, X., He, H., Gupta, N., and Gupta, R. (2005). Ex-
perimental evaluation of using dynamic slices for fault location. In Proceed-
ings of the Sixth International Symposium on Automated Analysis-driven
Debugging, AADEBUG’05, pages 33–42, New York, NY, USA. ACM.

[Zhang et al., 2007] Zhang, X., Tallam, S., Gupta, N., and Gupta, R. (2007).
Towards locating execution omission errors. SIGPLAN Not., 42(6):415–
424.

[Zhang et al., 2009] Zhang, Z., Chan, W. K., Tse, T. H., Hu, P., and Wang,
X. (2009). Is non-parametric hypothesis testing model robust for statistical
fault localization? Information & Software Technology, 51(11):1573–1585.

[Zhang et al., 2010] Zhang, Z., Jiang, B., Chan, W., Tse, T., and Wang, X.
(2010). Fault localization through evaluation sequences. Journal of Sys-
tems and Software, 83(2):174 – 187. Computer Software and Applications.


	Introduction
	State of the art
	Diagnosis
	Fault localisation
	Spectrum-based fault localisation
	Model-based fault localisation

	Causality-based approaches

	Causality Analysis framework
	Notation and General definitions
	Causality Analysis definitions
	General principle of Causality Analysis
	Cone of influence approach
	Unaffected prefix approach

	Examples

	Implementation
	The Lustre synchronous language
	Translation from Lustre to SMTLib
	Instantiation of Lustre in Loca

	Combining white-box and black-box
	Mixed framework definitions
	Causality definitions for the mixed framework
	Strategy synthesis for the mixed framework
	Controller synthesis
	Translating traces into LTS
	Strategy synthesis


	Game Framework for causality analysis
	Game Framework
	Causality definitions
	Strategy synthesis for the game framework
	Winning strategy synthesis
	Spoiling strategy synthesis

	Finding fixes with the game framework
	Using the game framework as input to approaches to find fixes.
	Extending the game framework to find fixes


	Impact of information on CA
	Causality Analysis on reduced logs
	General results
	Reduced logs in space
	Reduced logs in time
	Reducing the logging by using extra information

	Causality Analysis using fault models
	Fault models
	Including fault models in causality analysis
	Horizontal causality, and cause minimisation
	Dealing with multiple fault models
	Enhancing the precision using extra information


	Conclusion
	Summary
	Future prospect


