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Chapitre 1

Introduction générale

La convection de Rayleigh-Bénard résulte d'une stratification instable en densité du fluide induite par un gradient vertical de température. Ce système est considéré comme un cas d'école classique pour étudier théoriquement et expérimentalement la formation des motifs convectifs. Cette configuration affiche une dynamique riche qui a servi à aborder de manière originale la transition graduelle du laminaire au turbulent. En outre, elle apparaît dans une large gamme d'échelles allant de l'échelle millimétrique dans les dispositifs de refroidissement des boîtiers électroniques aux échelles planétaires et stellaires. Il n'est donc pas étonnant que cette configuration continue à faire l'objet d'un grand nombre d'études depuis les travaux de Bénard [1] et Rayleigh [5].

Pour rendre compte de cette instabilité thermo-convective, on considère l'expérience modèle où un fluide est confiné entre deux plaques horizontales séparées d'une distance d. Les plaques supérieure et inférieure sont maintenues respectivement à des températures constantes T0 -∆ T /2 et T0 + ∆ T /2, où ∆ T > 0 et T0 est la température de référence : la moyenne des températures des parois supérieure et inférieure. Si la différence de température entre les deux plaques est suffisamment faible, le fluide reste au repos et le transfert thermique s'effectue par conduction. La solution du problème est hydrostatique et le profil vertical de la température est linéaire. Cependant, lorsque ∆ T dépasse une valeur critique, la situation devient instable, le phénomène moteur (poussée d'Archimède) devient plus important que les phénomènes résistants (frottements visqueux et dissipation thermique), et la convection démarre avec l'émergence de motifs convectifs qui peuvent se présenter généralement sous forme de rouleaux, carrés ou hexagones. D'autres structures plus complexes peuvent apparaître selon les conditions expérimentales. Le paramètre de contrôle est le nombre adimensionnel de Rayleigh Ra qui se présente sous la forme de rapport entre la Pour les fluides Newtoniens, la configuration de Rayleigh-Bénard a fait l'objet de nombreuses études théoriques et expérimentales. Le lecteur peut trouver plus de détails dans Bodenschatz et al. [2], Koschmieder [4] et Getling [3]. Cette approche permet d'apprécier l'influence des différentes non linéarités au voisinage des conditions critiques. Elle permet notamment de déterminer la nature de la bifurcation et le motif de convection.

Dans le chapitre III nous nous sommes intéressés à l'influence d'une conductivité thermique finie de la paroi sur les conditions critiques et la structure des champs dynamique et thermique au voisinage du seuil de convection. Cette étude a été motivée par la divergence des résultats de la littérature. La méthodologie est identique à celle développée dans le deuxième chapitre, excepté qu'il faut tenir compte de la perturbation de la température dans les plaques.

Le chapitre IV est une extension de l'étude effectuée dans le chapitre précédent au cas où les deux plaques n'ont pas la même conductivité thermique. Ce qui introduit une brisure de symétrie par rapport au plan médian. Le diagramme de stabilité des motifs de convection dans un plan défini par le rapport des conductivités thermiques des plaques à celle du fluide est déterminé.

Dans le chapitre V, une analyse linéaire et faiblement non-linéaire de la convection de Rayleigh-Bénard pour un fluide rhéofluidifiant dont la viscosité dépend de la température est effectuée. Dans ce chapitre, nous examinerons l'influence de la variation non linéaire de la viscosité avec le cisaillement en présence d'une brisure de symétrie par rapport au plan médian induite par la thermodépendance de la viscosité sur la nature de la bifurcation et la compétition entre les motifs de convection dans un réseau carré et dans un réseau hexagonal.

Dans le sixième chapitre, nous présentons une étude expérimentale de la convection (Cité en page 4.)

[5] L. Rayleigh. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag., 32(192) Résumé : Dans ce chapitre nous présentons une analyse linéaire et faiblement non linéaire des instabilités thermo-convectives de Rayleigh-Bénard pour des fluides rhéofluidifiants. Notre objectif est d'étudier l'influence du glissement à la paroi et de la variation non linéaire de la viscosité avec le taux de cisaillement sur la nature de la bifurcation et l'intensité de convection. L'équation de Navier est utilisée pour décrire le glissement avec frottement à la paroi. Le comportement rhéologique du fluide est décrit par le modèle Carreau. L'analyse faiblement non linéaire est conduite pour les trois motifs susceptibles d'apparaître au seuil de la convection : rouleaux, carrés et hexagones. Les résultats obtenus montrent que : (i) le glissement à la paroi a un effet déstabilisant et conduit à des structures de longueurs d'onde plus grandes ; (ii) la rhéolfluidification favorise le développement d'une bifurcation sous critique et (iii) le coefficient de transfert de chaleur augmente lorsque les effets rhéofluidifiants sont plus marqués.

Ce chapitre est présenté sous forme d'article intitulé "Weakly nonlinear analysis of Rayleigh-Bénard convection in shear-thinning fluids : nature of the bifurcation and pattern selection" et publié dans le "Journal of Fluid Mechanics. (J. Fluid Mech.)", 2015, vol. 767, pp. 696 734. Doi : 10.1017/jfm.2015.64.

Abstract :

A linear and weakly nonlinear analysis of convection in a layer of shear-thinning fluids between two horizontal plates heated from below is performed. The objective is to examine the effects of the nonlinear variation of the viscosity with the shear rate on the nature of the bifurcation, the planform selection problem between rolls, squares and hexagons, and the consequences on the heat transfer coefficient. Navier's slip boundary conditions are used at the top and bottom walls. The shear-thinning behavior of the fluid is described by the Carreau model. By considering an infinitesimal perturbation, the critical conditions, corresponding to the onset of convection, are determined. At this stage, non-Newtonian effects do not play. The critical Rayleigh number decreases and the critical wave number increases when the slip increases. For a finite amplitude perturbation, nonlinear effects enter in the dynamic. Analysis of the saturation coefficients at cubic order in the amplitude equations shows that the nature of the bifurcation depends on the rheological properties, i.e. the fluid characteristic time and shear-thinning index. For weakly shear-thinning fluids, the bifurcation is supercritical and the heat transfer coefficient increases, as compared to the Newtonian case. When the shear-thinning character is large enough, the bifurcation is subcritical, pointing out the destabilizing effect of the nonlinearities arising from the rheological law. Departing from the onset, the weakly nonlinear analysis is carried out up to fifth order in the amplitude expansion. The flow structure, the modification of the viscosity field and the Nusselt number are characterized. The competition between rolls, squares and hexagons is investigated. Unlike [1], it is shown that in the supercritical regime, only rolls are stable near onset.

Introduction

When a thin horizontal fluid layer is heated from below and cooled from above, a density stratification appears because of the thermal expansion of the fluid. This stratification is potentially unstable : when the temperature difference between the bottom and the top exceeds a threshold value controlled by the viscosity and heat diffusivity, by a small amount, convection sets in various forms of ordered regular patterns. Since the pioneering studies of Bénard (1900) and Rayleigh (1916), a large number of theoretical and experimental investigations were devoted to the study of this buoyancy-driven instability. Reviews can be found in Getling [23] and Bodenschatz, Pesch & Ahlers [7]. Some of these studies were concerned with the nonlinear competition between different structures that develop above the linear convective threshold. It is found that, under Boussinesq approximations with a linear variation of the density with the temperature, rolls are stable right above onset (Schluter,Lortz & Busse [47]) . If the Boussinesq approximation is invalid, hexagons are preferred to rolls (Busse [9,10]) due to triad wavevector resonance. Comparatively to the Newtonian fluids, very few studies were devoted to non-Newtonian fluids. In the following, a literature review on convection in a horizontal layer of non-Newtonian fluid heated from below and cooled from above is presented. Most non-Newtonian fluids have two common properties : viscoelasticity and shear-thinning. Polymer and colloïd solutions as well as particulate dispersions display this behavior above a certain concentration threshold. The influence of an elastic response, particularly, the possibility of oscillatory convection due to the elastic restoring forces has been discussed in the literature. According to Vest & Arpaci [START_REF] Vest | Overstability of a viscoelastic fluid layer heated from below[END_REF], Sokolov & Tanner [START_REF] Sokolov | Convective stability of a general viscoelastic fluid heated from below[END_REF], Shenoy & Mashelkar [START_REF] Shenoy | Advances in heat transfer[END_REF] and Larson [32], viscoelastic effects may in principle produce an oscillatory instability at a lower Rayleigh number than the Newtonian stationary mode. However, the observation of the oscillating cells requires a very high temperature difference incompatible with realistic experimental conditions (Larson [32]). Oscillatory convection was observed for binary viscoelastic fluids, when the binary fluid aspects are significant compared to the thermal diffusion, such as in DNA suspension (Kolodner [29]). The problem of pattern selection in viscoelastic fluids has also been considered in the literature, e.g., by Li & Khayat [33]. Using an Oldroyd-B model, they found that, near onset, rolls or hexagons can be stable, depending on secondary parameters.

Hereafter, we neglect the elastic response. We focus only on the shear-thinning effects, i.e., the influence of nonlinear decrease of the viscosity with the shear-rate.

Review on Rayleigh-Bénard convection in shear-thinning fluids

To our knowledge, the first experimental investigation of convection in a shear-thinning fluid layer confined between two horizontal plates was carried out by Pierre & Tien [START_REF] St | Experimental investigation of natural convection heat transfer in confined space for non-newtonian fluid[END_REF].

The fluids used were aqueous solutions of Methocel (1w%) and Carbopol 934 (0.5, 0.75 and 1w%). The rheological behavior of these fluids was described by a power-law model, with a shear-thinning index ranging between 0.4 and 1. The results were presented in terms of a correlation relating the Nusselt number N u to Rayleigh and Prandtl numbers, for 10 5 ≤ Ra ≤ 10 6 . Later on Tsuei & Tien [START_REF] Tsuei | Free convection heat transfer in a horizontal layer of non newtonian fluid[END_REF] extended this correlation to a wider range, 10 3 ≤ Ra ≤ 10 6 . For power-law fluids, Rayleigh and Prandtl numbers are defined with a viscosity calculated at a characteristic shear-rate, which is the inverse of the thermal diffusion time. Tien, Sheng & Sun [START_REF] Tien | Thermal instability of a horizontal layer of non newtonian fluid heated from below[END_REF] attempted to establish a stability criterion for shearthinning fluids described by a power-law model. As indicated by the authors, the linear marginal stability curve cannot be determined, because of the unphysical infinite viscosity, at zero shear-rate, introduced by the rheological model. An approximate method was used for the determination of the critical Rayleigh number. It was based on the energy principle of Chandrasekhar [13] : Instability occurs at the minimum temperature gradient at which a balance can be steadily maintained between the kinetic energy dissipated by viscosity and the internal energy released by the buoyancy force. The solution in the limit of Newtonian fluids was used for power-law model at zero shear-rate. The critical Rayleigh number was determined for two convective patterns : rolls and hexagons. The authors found that the critical Rayleigh number decreases when the shear-thinning index decreases. This evolution was also found in their experimental measurements using aqueous solutions of carboxymethylcellulose, described by a power-law model with a shear-thinning index 0.75 ≤ n p ≤ 1.

Liang & Acrivos [34] conducted an experimental study of the buoyancy-driven convection in horizontal layers of dilute aqueous solutions of polyacrylamide (Separan AP 30 at 0.5 and 1w%). These fluids are shear-thinning with approximately constant viscosity at low shear-rate. The variation of the viscosity was about one order of magnitude over a strain-rate variation of three orders of magnitude. Liang & Acrivos [34] found that the critical Rayleigh number is practically the same as for a Newtonian fluid and that the shear-thinning behavior tends to increase the heat transfer.

The first numerical computation of the onset of convection in a horizontal layer of a shear-thinning fluid was done by Ozoe & Churchill [38]. Two rheological models were considered : power-law and Ellis model. This later model has the advantage to converge to the Newtonian behavior in the limit of zero rate of strain. However, for certain range of rheological parameters, the viscosity in the Ellis model is not differentiable at zero shear-stress. The computations were carried out for roll-cells with both rigid and dragless vertical boundaries. This later case corresponds to a roll inside a periodic row of counter-rotating rolls.

The critical Rayleigh number was obtained by extrapolating the Nusselt (N u) curve to N u = 1. Qualitatively, the influence of the shear-thinning on the critical Rayleigh number and on the Nusselt number are similar to those obtained by Tien et al. [START_REF] Tien | Thermal instability of a horizontal layer of non newtonian fluid heated from below[END_REF]. Nevertheless, the critical values found by Ozoe and Churchill are higher than those given by Tien et al. [START_REF] Tien | Thermal instability of a horizontal layer of non newtonian fluid heated from below[END_REF]. The same trends were observed for rigid and dragless vertical boundaries. In a companion paper, Ozoe & Churchill [START_REF] Ozoe | Hydrodynamic stability and natural convection in newtonian and non-newtonian fluids heated from below[END_REF] presented the computed results in terms of a correlation relating the Nusselt number to the shear-thinning index :

N u N u newt = 0.87n 2 p -2.28n p + 2.41, (2.1) 
for Ra c ≤ Ra ≤ 2 Ra c and 0.5 ≤ n p < 1.

The case of very viscous fluids (infinite Prandtl number) with a power-law model and 0.11 ≤ n p ≤ 1 was considered by Parmentier [START_REF] Parmentier | A study of thermal convection in non-newtonian fluids[END_REF]. Numerical solutions were obtained in two-dimensional periodic convective modes. Parmentier [START_REF] Parmentier | A study of thermal convection in non-newtonian fluids[END_REF] shows that when the Rayleigh number is based on a strain-rate squared averaged viscosity, a good correlation for the heat transfer is obtained over a wide range of Rayleigh numbers. Three decades later, the two dimensional Rayleigh-Bénard convection for a power-law fluid in a rectangular cavity with adiabatic vertical walls, was investigated numerically by Lamsaadi, Naimi & Hasnaoui [31] and Alloui et al. [2]. Their findings are qualitatively in agreement with the literature. The decrease of power-law index, n induces a precocious onset of convection and enhances the rate of heat transfer. Alloui et al. [2] explain that for power law fluids, the system is unconditionally stable to infinitesimal disturbances. Note that Lamsaadi et al. [31] and Alloui et al. [2] considered a shallow rectangular cavity heated and cooled with uniform heat fluxes. In this case, the system convects with one cell. Relying on a parallel flow concept for infinite aspect ratio, Alloui et al. [2] show that the onset of convection occurs at subcritical Rayleigh number.

Weakly nonlinear stability analysis of thermal convection for shear-thinning fluid bet-ween two plates maintained at different temperatures was performed by Balmforth &

Rust [4]. Assuming a two-dimensional situation, with stress-free boundary conditions, the authors found that when the degree of shear-thinning α = |dµ/dΓ| Γ=0 is greater than 24/(601 π 4 ) the bifurcation becomes subcritical. In the previous expression, the viscosity µ and the second invariant of the strain rate deformation Γ (defined by equation 2.8) are rendered dimensionless using the zero shear-rate viscosity and thermal-diffusion time as characteristic scales. Recently, a systematic weakly nonlinear analysis for Carreau fluid in two and three-dimensional situation with stress-free boundary conditions was carried out by Albaalbaki & Khayat [1]. When the convection takes place in the form of rolls, the threshold value of α for a subcritical bifurcation found was 14 × 10 -4 , in disagreement with Balmforth & Rust [4]. Albaalbaki & Khayat [1] found also, that depending on the degree of shear-thinning, the fluid can convect in the form of rolls, squares or hexagons.

This result is surprising. Usually, near the onset of convection, hexagons are observed in convection systems lacking midplane reflection symmetry such as in fluids with strongly temperature-dependent viscosity (Palm [START_REF] Palm | On the tendency towards hexagonal cells in steady convection[END_REF] ; Golubitsky, Swift & Knoblock [24]) or in Bénard-Marangoni convection (Thess & Bestehorn [55]). Indeed, in such systems, quadratic terms present in amplitude equations enable triadic resonant wavevector interactions that can explain the occurence of hexagons near onset. In §2.5.5.4, it will be shown that under Boussines approximations, with identical boundary conditions at the two horizontal plates, the non-Newtonian terms do not break the midplane reflection.

Objectives, methodology and outline of the paper

Here, we consider shear-thinning fluids with a finite zero shear-rate viscosity µ 0 . The Carreau [12] model (equation 2.9) is adopted to describe the nonlinear variation of the viscosity µ with the second invariant of the strain-rate tensor Γ. This model is chosen because it has a sound theoretical basis, and is C ∞ with respect to Γ, unlike the power-law model or the general Carreau-Yasuda model, which are singular at Γ = 0. Interestingly, the Carreau model approaches the power-law model, as the viscosity µ 0 or the characteristic time λ of the fluid become large.

In light of the previous works, there are two points that need to be re-examined. The first one concerns the critical value of the degree of shear thinning, α, above which the bifurcation becomes subcritical. This value was determined only for stress-free boundary we examine the relevance of the principle of maximum heat transfer for non-Newtonian fluids. Calculation at higher order allows one to characterize the convection for a significant departure from the critical conditions, in particular, through a correlation for the Nusselt number using a generalized Rayleigh number as suggested by Parmentier [START_REF] Parmentier | A study of thermal convection in non-newtonian fluids[END_REF].

The article is organized as follows. In section 2.2, the governing equations of mass, momentum and energy are presented in dimensionless form. Section 2.3 deals with the linear stability theory. The influence of the slip parameter on the critical Rayleigh number and critical wavenumber is examined. In section 2.4, the main steps of the weakly nonlinear analysis are outlined. The results are presented and discussed in section 2.5. The nature of the bifurcation is determined and the competition between different patterns near onset is analyzed. It is found that only rolls are stable. This result is confirmed in section 2.6, by computing higher-order Landau constants. The flow structure, the modification of the viscosity field and the heat transfer for steady rolls are described in section 2.7. Finally, section 2.8 is devoted to a concluding discussion. 

Physical and mathematical model

d P dẑ = -ρ 0 ĝ 1 -β T -T0 and Tcond -T0 = δ T 2 1 - 2ẑ d , (2.2) 
with ρ0 the fluid density at the reference temperature and ĝ the acceleration due to gravity.

The z-axis is directed upwards, with its origin located at the bottom plate. The stability of the hydrostatic solution is considered by introducing temperature and pressure perturbation as well as a fluid motion. Boussinesq approximation is adopted, i.e., the temperature dependence of the fluid properties can be neglected except for the temperature-induced density difference in the buoyancy force. The heat production due to viscosity is neglected. Using the units d2 /κ, d, κ/ d and ∆ T for time, length, velocity and temperature, the dimensionless perturbation equations are :

∇ • u = 0 , (2.3) 1 P r ∂u ∂t + (u • ∇) u = -∇p + Ra θ e z + ∇ • τ , (2.4 
)

∂θ ∂t + u • ∇θ = u • e z + ∇ 2 θ . (2.5)
Here, e z denotes the unit vector in the vertical direction, u(x, t) the fluid velocity, p(x, t) and θ(x, t) represent the pressure and temperature deviations from their values in the conductive state. We denote (x, y, z) as the components of the position vector x, and (u, v, w) the components of the velocity vector u. The Rayleigh number Ra and the Prandtl number P r are

Ra = ρ0 ĝ β δ T d3 κ μ0 ; P r = μ0 ρ0 κ . (2.6) Chapitre 2.
Generally, for non-Newtonian fluids, P r ≫ 1, i.e., the viscous diffusion time is shorter than the thermal diffusion time.

Rheological model and parameters

The fluid is assumed to be purely viscous and shear-thinning. The viscous stress-tensor

τ = µ (Γ) γ with γ = ∇u + (∇u) T (2.7)
the rate-of-strain tensor, of second invariant

Γ = 1 2 γij γij . (2.8)
The Carreau model is given by

μ -μ∞ μ0 -μ∞ = 1 + λ2 Γ nc-1 2 , (2.9) 
with μ0 and μ∞ the viscosities at low and high shear rate, (n c < 1) the shear-thinning index, λ the characteristic time of the fluid. The location of the transition from the Newtonian plateau to the shear-thinning regime is determined by λ, since 1/ λ defines the characteristic shear rate for the onset of shear-thinning. Increasing λ reduces the Newtonian plateau to lower shear rates. The infinite shear viscosity, μ∞ , is generally associated with a breakdown of the fluid, and is frequently significantly smaller (10 -3 to 10 -4 times smaller) than μ0 , see Bird, Amstrong & Hassager [6] and Tanner [START_REF] Tanner | Engineering rheology[END_REF]. The ratio μ∞ /μ 0 will be thus neglected in the following. The dimensionless effective viscosity is then

µ = μ μ0 = 1 + λ 2 Γ nc-1 2 with λ = λ d2 /κ . (2.10) 
The Newtonian behavior, μ = μ0 , is obtained by setting n c = 1 or λ = 0.

For a small amplitude disturbance, the viscosity can be expanded about the hydrostatic solution,

µ = 1 + n c -1 2 λ 2 Γ + 1 2 n c -1 2 n c -3 2 λ 4 Γ 2 + ... (2.11)
At lowest nonlinear order, a relevant rheological parameter is the 'degree of shear-thinning'

α = dµ dΓ Γ=0 = 1 -n c 2 λ 2 .
(2.12)

Boundary conditions with slip

The plates are not permeable, i.e.,

u • n = 0, (2.13) 
n being the unit vector normal to the wall, pointing towards the fluid. Concerning the component of the fluid velocity tangent to the plates, it can be significantly affected by liquid-surface wall interactions. Polymer melts and solutions usually slip at a plane wall (Denn [16]). This slip may result from an adhesive failure of the polymer chains at the solid surface or from disentanglement between chains adsorbed to the wall and those in the polymer bulk (Brochard & de Gennes [8] ; Baljon & Robbins [3]). Another class of complex fluids prone to wall slip are colloidal suspensions and emulsions. In this case, slip arises from a depletion of particles adjacent to the shearing surfaces (Barnes [5]). The wall slip is often modeled macroscopically using Navier's slip law. This law is adopted in the present study, to take into account of a possible wall slip. For purely viscous non-Newtonian fluids, the tangent velocity u t is proportional to the tangent wall shear stress τ t via an empirical coefficient L s , called slip parameter (Ferras, Nobrega & Pinho [18]) :

u t = L s τ t , (2.14) 
with

u t = u -(u • n) n, τ t = τ • n -τ n n and τ n = n • τ • n.
No-slip boundary conditions (NSBC) are recovered by setting L s = 0. SFBC are recovered in the limit L s → +∞. As can be seen in (2.20) below, the product L s µ can be seen as a 'slip length'. Hereafter, L s is assumed to be a constant parameter, that depends only on the precise nature of the interface and of the fluid.

For the temperature, as already stated,

θ = 0 at z = 0, 1. (2.15)

Midplane reflection or 'Boussinesq' symmetry

The governing equations (2.4), (2.5) with the constitutive equation (2.7) and the boundary conditions (2.13)-(2.15) are reflection-symmetric about the midplane z = 1/2. The action of this so-called Boussinesq symmetry is

[u, v, w, θ, p] (t, x, y, z) → [u, v, -w, θ, p] (t, x, y, 1 -z).
This symmetry plays an essential role in the pattern selection.

Reduction : elimination of the pressure

The pressure field is eliminated by applying the curl to (2.4). Then, we take curl curl of (2.4). Using the continuity equation, and projecting onto e z , we get the following evolution equations for the vertical vorticity ζ = ∂v/∂x -∂u/∂y and the vertical velocity w :

1 P r ∂ζ ∂t + e z • ∇ × [(u • ∇) u] = ∆ζ + e z • ∇ × [∇ • (µ -1) γ] , (2.16 
)

1 P r ∂∆w ∂t -e z • [∇ × ∇ × ((u.∇) u)] = ∆ 2 w + Ra ∆ H θ - (2.17) [∇ × ∇ × [∇ • (µ -1) γ]] • e z , ∂θ ∂t + u • ∇θ = w + ∆θ, (2.18) 
where the 'horizontal Laplacian'

∆ H = ∂ 2 ∂x 2 + ∂ 2 ∂y 2 .
From the continuity equation and the vertical vorticity definition, one deduces the horizontal velocity components :

∆ H u = - ∂ 2 w ∂x∂z - ∂ζ ∂y ; ∆ H v = - ∂ 2 w ∂y∂z + ∂ζ ∂x . (2.19)
The boundary conditions are

w = 0, θ = 0, u = L s µ ∂u ∂z , v = L s µ ∂v ∂z , at z = 0, (2.20) 
w = 0, θ = 0, u = -L s µ ∂u ∂z , v = -L s µ ∂v ∂z , at z = 1. (2.21)
For horizontal Fourier modes to be used below, it is interesting to combine the two boundary conditions at each plane by taking their derivatives with respect to x and y, to obtain the equivalent conditions 

∂w ∂z = L s µ ∂ 2 w ∂z 2 -
G 11 (z) f (x, y) exp (st) , (2.25) 
with f (x, y) = exp (ik x x + ik y y), k = (k x , k y , 0) the horizontal wavenumber and s = s r +is i a complex number. This leads to the differential equations

s P r -1 D 2 -k 2 F 11 = -k 2 RaG 11 + D 2 -k 2 2 F 11 , (2.26) 
s G 11 = F 11 + (D 2 -k 2 )G 11 , (2.27) 
with D the derivative with respect to z and k the norm of the vector k. The boundary conditions are

F 11 = 0 , DF 11 -L s D 2 F 11 = 0 , G 11 = 0 at z = 0, (2.28) 
F 11 = 0 , DF 11 + L s D 2 F 11 = 0 , G 11 = 0 at z = 1. (2.29)
It is easy to show that the principle of exchange of stability still holds, i.e. s i = 0, when Navier's slip boundary conditions are used. The set of differential equations (2.26)- (2.27) is an eigenvalue problem where s is the eigenvalue and X 11 = (F 11 , G 11 ) the eigenvector.

It can be written

s M • X 11 = L • X 11 . (2.30)
Since any multiple of the eigenvector X 11 is also a solution of (2.30), and for symmetry reasons, X 11 can be normalized such that

G 11 (z = 1/2) = 1.
(2.31)

A spectral Chebyshev method is used. The eigenfunctions F 11 and G 11 are expanded in terms of the Chebyshev polynomials, T j , The critical mode is such that w and θ are even with respect to the midplane reflection symmetry. Hence, according to (2.19), u and v are odd. For SFBC, the critical mode is obtained analytically : 

F 11 (z) = N j=0 a j T j (2 z -1) , G 11 (z) = N j=0 b j T j (2 z -1) . ( 2 
w = 3π 2 2 sin (πz) f (x, y) , θ = sin(πz)f (x, y), (2.33) 
u = 3π cos(πz) ∂f ∂x , v = 3π cos(πz) ∂f ∂y . ( 2 

Adjoint eigenvalue problem : Adjoint mode

For vectors fields f and g, one defines a scalar product by

f , g = 1 0 f • g dz . (2.35)
To the direct problem (2.30) corresponds the adjoint problem

s M + • X ad = L + • X ad with X ad = (F ad , G ad ) , (2.36) 
where the adjoint operators M + and L + are defined by

X ad , M • X = M + • X ad , X , X ad , L • X = L + • X ad , X , (2.37) 
where X fulfills the 'linear' boundary conditions (2.28). By integrating by part we get the linear adjoint problem and the corresponding boundary conditions

s P r -1 D 2 -k 2 F ad = D 2 -k 2 2 F ad + G ad , (2.38) 
s G ad = -k 2 Ra F ad + D 2 -k 2 G ad , (2.39) 
with

F ad = 0 , DF ad -L s D 2 F ad = 0 , G ad = 0 at z = 0, (2.40) 
F ad = 0 , DF ad + L s D 2 F ad = 0 , G ad = 0 at z = 1. (2.41)
The solution of these equations is obtained using the same method as for the direct problem.

Similarly, the normalization adopted for the adjoint mode is

G ad (z = 1/2) = 1. (2.42) 
At Ra = Ra c , the so-called adjoint critical mode does not depend on the Prandtl number.

It is displayed in figure 2.3 for three values of the slip parameter. For SFBC, the critical adjoint mode is given by

w + = - 4 9π 4 sin (πz) f (x, y) , θ + = sin(πz)f (x, y) , (2.43 
)

u + = - 8 9π 5 cos(πz) ∂f ∂x , v + = - 8 9π 5 cos(πz) ∂f ∂y . (2.44)
Note that F ad is three order of magnitude smaller than G ad . This indicates that the system is more receptive to thermal perturbations than to velocity perturbations. 

Characteristic time of the instability

In slightly supercritical conditions, the growth rate s can be approximated using Taylor expansion,

s = ε τ 0 + O(ε 2 ) with ε = Ra -Ra c Ra c . (2.45) 
The determination of the characteristic time τ 0 of the instability follows the methodology described in Cross [14]. The details are given in Appendix 2.9.1. for NSBCs (Segel [48] ; Cross [14] ; Daniels & Ong [15]) to

τ 0 = 2 3 π 2 1 + P r P r (2.47) 
for SFBCs (Newell & Whitehead [37]). The effect of L s is all the more significant when the Prandtl number is low.

Weakly nonlinear stability analysis : Formulation and procedure

For given boundary conditions, the critical Rayleigh number for the onset of convection, determined from the linear stability analysis, depends only on the norm k c of the wavevec- A weakly nonlinear analysis using the amplitude expansion method is adopted as a first approach. At leading order, one writes Omitting the temporal dependence, the planform function

w(x, y, z, t) = f (x, y, t) F 11 (z) + c.c. , θ(x, y, z, t) = f (x, y, t) G 11 (z) + c.c. ,(2.48) with f (x, y, t) = N p=1 A p (t) exp (i k p • r), |k p | = k c
f (x, y) = 2A cos(k c x) for rolls, f (x, y) = 2 [A 1 cos(k c x) + A 2 cos(k c y)] for squares, f (x, y) = 2 A 1 cos(k c x) + A 2 cos(- 1 2 k c x + √ 3 2 k c y) + A 3 cos(- 1 2 k c x - √ 3 2 k c y)
for hexagons.

The weakly nonlinear analysis is applied to each of these three patterns. To avoid overloading the article, the details of the method are presented only for rolls.

Principles of the amplitude expansion method : Case of rolls

The amplitude expansion method was introduced by Stuart [START_REF] Stuart | On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. part 1. the basic behaviour in plane Poiseuille flow[END_REF] and Watson [START_REF] Watson | On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. part 1. the development of a solution for plane Poiseuille flow and for plane Couette flow[END_REF] and later modified by Reynolds, Merle & Potter [START_REF] Reynolds | Finite amplitude instability of parallel shear flows[END_REF]. It was surveyed by Herbert ([25,26]). The amplitude expansion method was shown to be equivalent to the center manifold reduction, which is another technique for deriving the Landau equation (Fujimura [19,20]). For a roll pattern, the problem is two-dimensional : ∂/∂y = 0, v = 0 and ζ = 0. The interaction of the fundamental with itself and with its complex conjugate generates higher harmonics and a modification of the basic state. It is natural to write the nonlinear perturbation as the Fourier series

[u(x, z, t), w(x, z, t), θ(x, z, t)] = +∞ n=-∞ [u n (z, t), w n (z, t), θ n (z, t)] E n , (2.49) 
with E n = e inkcx and ink c u n = -Dw n .

(2.50)

The growth of the disturbance or transitory evolutions are taken into account by the temporal evolution of the Fourier coefficients u n , w n and θ n . Because w and θ are real, we have w -n = w * n and θ -n = θ * n , where the star denotes complex conjugation. Substituting (2.49) and (2.50) into (2.17) and (2.18) and separating out the coefficients of like exponentials, we obtain an infinite set of nonlinear partial differential equations for the Fourier components w n and θ n :

1 P r ∂ ∂t S n w n = S n 2 w n -n 2 k 2 c Ra θ n + [N I w ] E n + [N V ] E n , (2.51) 
∂ ∂t θ n = w n + S n θ n + [N I θ ] E n , (2.52) 
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with

S n = D 2 -n 2 k 2 c , (2.53) 
[N I w ] E n , [N I θ ] E n and [N V ]
E n the coefficients of E n in the nonlinear inertial and viscous terms respectively. The nonlinearity and coupling of the infinite set of partial differential equations (2.51), (2.52) make its solution difficult. However, if the amplitude A(t) of the fundamental mode (w 1 , θ 1 ) is small, the Fourier components w n and θ n can be sought using a perturbation method expanding around the solution of the linear problem :

(w 1 (z, t), θ 1 (z, t)) = A(t) (F 1 (z, t), G 1 (z, t)) .
(2.54)

The amplitude of the perturbation is defined by setting

A(t) = θ 1 (z = 1/2, t). (2.55)
It is clear that, if the fundamental mode is O(A) at leading order, then the leading term of (w 2 , θ 2 ) is O(A 2 ), due to the nonlinear forcing terms. The same reasoning applied for higher harmonics indicates that

(w n (z, t), θ n (z, t)) = A n (t) (F n (z, t), G n (z, t)) if n > 0 , (2.56) 
and 

(w 0 (z, t), θ 0 (z, t)) = A 2 (t) (F 0 (z, t), G 0 (z, t)) . ( 2 
1 P r n g + ∂ ∂t S n F n = S n 2 F n -n 2 k 2 c Ra G n + [N I w ] E n A n + [N V ] E n A n , (2.58) n g + ∂ ∂t G n = F n + S n G n + [N I θ ] E n A n , (2.59) 
where the subscript E n A n means the coefficient of E n A n and g = 1/A dA/dt. The time evolution of the amplitude A(t) is given by the Stuart-Landau equation

g = 1 A dA dt = +∞ m=0 g m A 2m , (2.60) 
where in particular g 0 = s, the linear eigenvalue. Since

F n (G n ) is O(1) or O(A 2 ) as A → 0,
the nonlinearities generate terms in ascending powers of A 2 . Hence, F n and G n are expanded as follows : and G n,2m+n ,

F n (z, t) = +∞ m=0 F n,2m+n (z)A 2m , G n (z, t) = +∞ m=0 G n,2m+n (z)A 2m . ( 2 
L 1nm F n,2m+n + L 2nm G n,2m+n = [N I w ] E n A 2m+n + [N V ] E n A 2m+n -(1/P r) m j=1 (2(m -j) + n) g j S n F n,2(m-j)+n , (2.62) 
-F n,2m+n + L 3nm G n,2m+n = [N I θ ] E n A 2m+n - m j=1 (2(m -j) + n) g j G n,2(m-j)+n , (2.63) 
with

L 1nm = 1 P r (2m + n) sS n -S 2 n , L 2nm = n 2 k 2 c Ra , L 3nm = (2m + n) s -S n .

Solution procedure

The set of differential equations (2.62), (2.63) is solved sequentially beginning from n = 1 and m = 0. The problem n = 1, m = 0 is the linear problem (2.26), (2.27), which gives the critical point around which the harmonic-amplitude expansion is carried out. The problem n = 0, m = 1 yields the first correction of the conductive temperature profile. The problem n = 2, m = 0 yields the first harmonic of the fundamental mode. The problem n = 1, m = 1 yields the feedback coefficient g 1 of the fundamental mode. More precisely, g 1 is determined using the condition for the solvability of the equation corresponding to the modification of the fundamental mode. The calculations were continued up to order A 7 in amplitude for rolls and order A 5 for squares and hexagons. Note that, according to (2.11), the influence of the non-linearity of the rheological behavior appears only at orders A 3 , A 5 and A 7 .
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Results and discussion

This section is divided into five subsections. The first three subsections are devoted to the modification of the base state, the generation of the first harmonic as well as coupling modes for squares and hexagons, induced by the interaction of the fundamental mode with itself and its complex conjugate. These elements are necessary for the calculation of the first Landau constant that determines the nature of the bifurcation. This is done in the fourth subsection. The fifth subsection deals with the competition between different patterns of convection.

Modification of the conductive temperature profile

The interaction of the fundamental (2.48) with itself through the nonlinear quadratic terms produces a correction of the basic state : 

N p=1 A 2 p F 02 (z)

First harmonic of the fundamental

A first harmonic term N p=1 A 2 p F 22 (z)E 2kp.

Quadratic interaction between Fourier modes with different wavevectors

The quadratic interaction of the fundamental mode with itself generates the first harmonic mode described in the above section, but also modes resulting from the interaction between modes with wavevectors k p and k q (p = q). In the present study, the wavevectors lie on either a square or hexagonal lattice in the wavevector plane. 

Square lattice

With k 1 = k c e x and k 2 = k c e y , modes generated at order A 1 A 2 are

A 1 A 2 F A 1 A 2 (z) G A 1 A 2 (z) exp [i (k 1 + k 2 ) • r] + c.c. , (2.71) 
and 

A 1 A 2 FA 1 A 2 (z) ḠA 1 A 2 (z) exp [i (k 1 -k 2 ) • r] + c.c. ( 2 
D 2 -2k 2 c 2 -2(s/P r) (D 2 -2k 2 c ) F A 1 A 2 -2k 2 c Ra G A 1 A 2 = (2/P r) F 11 D 3 F 11 + (DF 11 ) D 2 F 11 -(4/P r) k 2 c F 11 (DF 11 ] , (2.73) 
D 2 -2k 2 c -2s G A 1 A 2 + F A 1 A 2 = 2F
F A 1 A 2 (z) = - 27 100 π 2 π P r + 1 sin (2πz) , (2.75) 
G A 1 A 2 = -π 27 + 150P r 473P r sin (2πz) . (2.76) 
Note that, at order A 1 A 2 , the nonlinear inertial terms in (2.16) cancel, and the vertical vorticity ζ obeys a diffusion equation : it thus can be ignored.

Hexagonal lattice

With

k 1 = k c e x , k 2 = k c - 1 2 e x + √ 3 2 e y and k 3 = k c - 1 2 e x - √ 3 
2 e y , modes generated at order A p A q with 1 ≤ p ≤ 3, 1 ≤ q ≤ 3 and p = q are

A p A q F ApAq (z) G ApAq (z) exp [i (k p + k q ) • r] + c.c., (2.77) 
and

A p A q FApAq (z) ḠApAq (z) exp [i (k p -k q ) • r] + c.c. (2.78)
The functions F ApAq and G ApAq satisfy (2.83)

D 2 -k 2 c 2 -2(s/P r) D 2 -k 2 c F ApAq -k 2 c Ra G ApAq = (1/P r) F 11 D 3 F 11 + 2 (DF 11 ) D 2 F 11 -3k 2 c F 11 (DF 11 ) , (2.79) D 2 -k 2 c -2s G ApAq + F ApAq = 2F
As for squares, the amplitude of modes arising from the quadratic coupling between modes with vector k p and k q is more important than that of the first harmonic.

Modification of the fundamental at cubic order : nature of the bifurcation

The nonlinear interactions between the fundamental, its first harmonic, the modification of the conductive temperature profile and modes generated through different couplings, lead to a cubic correction O(A 3 p ) to the fundamental mode. The first Landau coefficient accounts for the feedback of these nonlinear interactions on the fundamental mode. It is determined for the three convective patterns and the nature of the bifurcation is deduced.

The nonlinearity of the rheological law intervenes through the term (µ -1) γ in (2.16) and

(2.17). At cubic order, because of (2.11), it reduces to :

(µ -1) γ = -α Γ γ.
(2.84) 
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(3)

(c) (d)
Figure 2.8: Modes generated in an hexagonal lattice at the critical conditions for P r = 10 : factor of A p A q exp [i (k p + k q ) .r] in (a) and (b) and A p A q exp [i (k pk q ) .r] in (c) and (d).

(1) L s = 0, (2) L s = 0.1, (3) L s = 10 4 . .

Bifurcation to rolls

The modification of the fundamental at order A 3 is governed by (2.62) and (2.63) with

m = n = 1, i.e., S 2 1 -3 s P r S 1 F 13 -k 2 c Ra G 13 = g 1 P r S 1 F 11 -[N I w ] E 1 A 3 -[N V ] E 1 A 3 , (2.85) (S 1 -3s) G 13 + F 13 = g 1 G 11 -[N I θ ] E 1 A 3 .
(2.86)

The boundary conditions are

F 13 = 0 , DF 13 -L s D 2 F 13 = αL s ∂ ∂x Γ ∂u ∂z E 1 A 3
, G 13 = 0 at z = 0, (2.87)

F 13 = 0 , DF 13 + L s D 2 F 13 = -αL s ∂ ∂x Γ ∂u ∂z E 1 A 3 , G 13 = 0 at z = 1. (2.88)
Generally, these boundary conditions are inhomogeneous. They are homogeneous only for SF and NSBC, since

F 13 = DF 13 = 0 at z = 0, 1 for NSBC, (2.89) 
F 13 = D 2 F 13 = 0 at z = 0, 1 for SFBC.
(2.90)

The system (2.85), (2.86) can be written

L • X 13 = g 1 M • X 11 -N I -N V + 3 s M • X 13 with X 13 = (F 13 , G 13 ) .
(2.91)

The nature of the bifurcation is determined at the critical conditions, i.e., s = 0.

In order to calculate the first Landau coefficient g 1 from the Fredholm solvability condition, i.e., orthogonality of the inhomogeneous part of (2.91) to the null-space of the adjoint operator of L, we decompose X 13 into a homogeneous X 13H and inhomogeneous X 13N H parts :

X 13 = X 13H + X 13N H . (2.92) X 13H satisfies L • X 13H = g 1H M • X 11 -N I -N V , (2.93) 
with homogeneous boundary conditions, i.e. F 13H = DF 13H -L s D 2 F 13H = 0 at z = 0 and similarly at z = 1. By applying the solvability condition to (2.93), we obtain 

g 1H = N I + N V , Xad , Xad = X ad M • X 11 , X ad . ( 2 
L • X 13H = g 1 M • X 11 -N I -N V -L • X 13N H . (2.95)
By applying the solvability condition to (2.95), we get

g 1 = g 1H + L • X 13N H , Xad . (2.

96)

The technique of solution adopted is to iterate a few times between (2.91) and (2.96).

At the start, X 13N H is assumed to be identically zero in (2.96). A first approximation to g 1 is then obtained : g

= g 1H . This is put into (2.91). which is solved, at the critical conditions, with non-homogeneous boundary conditions, to obtain a first approximation of X 13 . Using (2.92), a first approximation of X 13N H is deduced. Then X 13N H is put into (2.96). This process is repeated until it converges to a desired level of accuracy. Note that (2.91) and (2.93) are solved with an additional condition

X 13 = X 13H = 0 at z = 1/2, (2.97) 
as suggested by Herbert ([25] ; [26]) ; Sen & Venkateswarlu [START_REF] Sen | On the stability of plane Poiseuille flow to finiteamplitude disturbances, considering the higher-order Landau coefficients[END_REF] ; Generalis & Fujimura [22].

Without this normalization, X 13 is defined up to an arbitrary multiple of the solution X 11

of the linear problem (2.30). Finally, g 1 can be written as the sum of three contributions.

The first one arises from the nonlinear inertial terms N I, the second one from the nonlinear viscous terms N V and the third one from the inhomogeneity of the boundary conditions,

g 1 = g I 1 + g V 1 + g N H 1 (2.98) with g I 1 = N I, Xad , g V 1 = N V , Xad , g N H 1 = L • X 13N H , Xad . (2.99)
Using (2.84), the contribution of the nonlinear viscous term g V 1 can be written as

g V 1 = -αg N N 1 , (2.100) 
with α defined by (2.12) and g N N

1
that does not depend on the rheological parameters.

Similarly, it can be shown that X 13N H = -α X13NH , where X13NH does not depend on the rheological parameters. Hence

g N H 1 = -αg BC 1 with g BC 1 = L • X13NH , Xad (2.101) Chapitre 2.
Note that, for NS and SFBC,

X 13N H = 0 thus g BC 1 = 0 . (2.102)
The first Landau constant g 1 as well as the different contributions g I 1 , g V 1 and g N H In figure 2.9(a), g I 1 in plotted as a function of L s . As expected, g I 1 is negative, i.e., the bifurcation is supercritical for a Newtonian fluid. The absolute value of g I 1 decreases with increasing L s , i.e., slip promotes the development of the convection. For SFBC, an analytical expression of g I 1 is obtained,

g I 1 = - 9 π 4 8 P r 1 + P r . (2.103)
The contribution of the nonlinear inertial terms gathers the feedback from thermal advection terms and velocity terms :

g I 1 = N I w (F 22 |F 11 ) , Fad + N I θ (G 22 |F 11 ) , Gad + N I θ (F 22 |G 11 ) , Gad + N I θ (G 02 |F 11 ) , Gad .
(2.104)

For P r ≥ 1, the analysis of the different terms shows that g I 1 is dominated by the nonlinear thermal convection terms, more precisely the term involving G 02 , the modification of the conductive temperature. The contributions of the other nonlinear inertial term is practically negligible.

In figure 2.9(b), we plot g N N 1 as a function of L s for different values of P r. For SFBC, an analytical expression is obtained,

g N N 1 = - 1803 π 8 64 P r 1 + P r . ( 2 

.105)

As can be observed, g N N 1 is negative, and

g V 1 = -αg N N 1 > 0.
Therefore, shear-thinning effects promote a subcritical bifurcation, which is understandable since the viscosity, which damps convection, is reduced.

Concerning g N H

1 , its absolute value does not exceed g 1 /100. The maximum value is reached at L s ≈ 0.1.

In figure 2.10 we plot g 1 as a function of L s at P r = 10 and different values of α. For low shear thinning effects, g 1 < 0 and the bifurcation is supercritical, while for sufficiently high shear-thinning effects, g 1 > 0 and the bifurcation is subcritical. Using (2.98) and

(2.100), the critical degree of shear-thinning α c above which the bifurcation changes from supercritical to subcritical is given by

α c = g I 1 g N N 1 + g BC 1 .
(2.106) Figure 2.11 shows the variation of α c as a function of P r for NS and SFBC. For this latter case, we have

α c = 24 601 π 4 ≈ 4.1 × 10 -4 .
(2.107)

This result agrees with Balmforth & Rust [4] but disagrees with the value α c = 14 × 10 -4

found by Albaalbaki & Khayat [1]. For NSBC, and P r ≥ 1, α c = 2.15 × 10 -4 . The plot of α c vs L s for P r = 10 is visible in figure 2.14, which also displays some results for two other patterns.

Bifurcation to squares

As compared to rolls, for square patterns, the modification of the fundamental comprises an additional term, which arises from the interaction of modes with wavevectors 

k 1 = k c e x
w = F 13 (z) A 3 1 e ikcx + A 3 2 e ikcy + c.c. + F13 (z) A 2 2 A 1 e ikcx + A 2 1 A 2 e ikcy + c.c. ,
and similarly for θ by replacing F by G. The amplitude equations for A 1 and A 2 are obtained using symmetries introduced by the square lattice. Employing crystallographic terminology (Golubitsky et al. [24] ; McKenzie [36] ; Silber & Knoblock [START_REF] Silber | Pattern selection in ferrofluids[END_REF]), these are the symmetries of a square D 4 in addition to the two-torus T 2 of translation in the two horizontal directions. Requiring equivariance with respect to the group D 4 × T 2 leads to the amplitude equations

dA 1 dt = s A 1 + g 1 A 2 1 + λ 1 A 2 2 A 1 , (2.108 
)

dA 2 dt = s A 2 + g 1 A 2 2 + λ 1 A 2 1 A 2 .
(2.109)

Equivariance under the midplane reflection implies that the self-saturation coefficient g 1 and the coupling coefficient λ 1 are real.

Equations satisfied by F13 (z) and G13 (z) are similar to that satisfied by F 13 (z) and G 13 (z),

i.e. (2.85) and (2.86) respectively, by replacing g 1 by λ 1 and evaluating the nonlinear forcing terms that are factor of A 2 2 A 1 exp (ik c x). At criticality, s = 0, the coupling coefficient λ 1 is obtained with a solvability condition. As for g 1 , it can be written

λ 1 = λ I 1 -αλ N N 1 -αλ BC 1 .
(2.110)

For SFBC,

λ I 1 = - 9π 4 (120 + 72P r + 673P r 2 ) 3784 P r (1 + P r) , λ N N 1 = - 921π 8 P r 32(1 + P r) , λ BC 1 = 0. (2.111)
The critical value of α above which the bifurcation to squares becomes subcritical,

α c = g I 1 + λ I 1 (g N N 1 + λ N N 1 ) + (g BC 1 + λ BC 1 )
.

(2.112) 

Bifurcation to hexagons

For hexagonal patterns, the modification of the fundamental modes reads

w = F 13 (z) A 3 1 e ik 1 •r + A 3 2 e ik 2 •r + A 3 3 e ik 3 •r + c.c. (2.114) 
+ F13 (z) A 2 2 + A 2 3 A 1 e ik 1 •r + A 2 3 + A 2 1 A 2 e ik 2 •r + A 2 1 + A 2 2 A 3 e ik 3 •r + c.c. ,
and similarly for θ by replacing F by G. The amplitude equations for A 1 , A 2 and A 3 are obtained using symmetries introduced by the hexagonal lattice. The symmetry group that leaves the hexagonal lattice invariant is D 6 × T 2 ; D 6 represents the rotational (2π/3) and reflection symmetries. The amplitude equations are (Golubitsky et al. [24]) : c x). The determination of δ 1 follows the same procedure as for g 1 and λ 1 . As previously, the coupling coefficient δ 1 can be written

dA 1 dt = sA 1 + g 1 A 2 1 + δ 1 A 2 2 + A 2 3 A 1 . ( 2 
δ 1 = δ I 1 -αδ N N 1 -αδ BC 1 .
(2.116) For SFBC

δ I 1 = - 9π 4 (1728 + 1113P r + 1273P r 2 ) 65000 P r (1 + P r) , δ N N 1 = - 2175 π 8 P r 64 (1 + P r) , δ BC 1 = 0. (2.117)
The critical value of the degree of shear-thinning α above which the bifurcation to hexagons becomes subcritical

α c = g I 1 + 2δ I 1 (g N N 1 + 2δ N N 1 ) + (g N H 1 + 2δ BC 1 )
.

(2.118)

The variation of α c as function of P r is plotted in figure 2.13 for NS and SFBC. In this latter case,

α c = 24 (3456 + 2226P r + 33599P r 2 ) 16664375π 4 P r 2 . (2.119)
Finally, the figure 2.14 shows α c vs L s for rolls, squares and hexagons, at P r = 10.

From now on, for the sake of simplicity, in order to not overload this article, we restrict ourselves to the two limiting cases L s = 0, NSBC, or L s = +∞, SFBC.

Remark

In this study, the midplane reflection symmetry is not broken (see Appendix 2.9.4). The amplitude equation at cubic order does not contain a quadratic term. Therefore, the bifurcation is of pitchfork type. It is either supercritical or subcritical depending on the sign of the cubic term. In the presence of non-Boussinesq effects, for instance, in fluids with thermodependent viscosity, the midplane reflection symmetry is broken and a quadratic term appears in the amplitude equation. In general, the presence of the quadratic term can lead to a bifurcation of transcritical type with an hexagonal planform.

Pattern selection

In this section, we investigate the competition between rolls and squares, and between rolls and hexagons, when we depart from the critical conditions. The calculation proceeds in two stages. First, the possible steady states solutions of the amplitude equations are determined. Then, their linear stability is considered. However, this study requires the prior evaluation of the saturation and coupling coefficients in the amplitude equations, outside the critical conditions.

Saturation and coupling coefficients outside the critical conditions

Departing sufficiently from the critical conditions, we can no longer assume s = 0 in the equations that describe the modification of the fundamental at cubic order. Hence, these equations become unconditionally solvable. To calculate g 1 , λ 1 or δ 1 , an iterative process is used as suggested by Sen & Venkateswarlu [START_REF] Sen | On the stability of plane Poiseuille flow to finiteamplitude disturbances, considering the higher-order Landau coefficients[END_REF]. Details of the procedure are given in Appendix 2.9.2.

0 0.1 0.2 0.3 1 1.2 1.4 1.6 1.8 2 ε g 1 I /g 1 I (ε = 0) , g 1 NN /g 1 NN (ε = 0) (1) (2) (3) (4) Figure 2.15: For rolls, ratios g I 1 /g I 1 (ε = 0) and g N N 1 /g N N 1 (ε = 0) vs the reduced Rayleigh number, ε. (1) g I 1 /g I 1 (ε = 0) for SFBC ; (2) g I 1 /g I 1 (ε = 0) for NSBC ; (3) g N N 1 /g N N 1 (ε = 0) for SFBC and (4) g N N 1 /g N N 1 (ε = 0) for NSBC.
Figure 2.15 shows the variation of the ratios 

g I 1 (ε)/g I 1 (ε = 0) and g N N 1 (ε)/g N N 1 (ε = 0) vs the reduced Rayleigh number ε = Ra/Ra c -1.
(5)

(1) by the sign of the eigenvalues χ i of the Jacobian matrix J ij = ∂f i ∂A j evaluated at the steady states. In the following, the stability of the stationary solutions is examined in details.
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(i) Conduction state, A 1 = A 2 = 0. The stability eigenvalues associated to this state are

χ 1 = χ 2 = s.
The conductive state is stable if ε < 0 and unstable if ε > 0.

(ii) Steady convection with rolls,

A 1 = -s/g 1 , A 2 = 0 or A 1 = 0, A 2 = -s/g 1 .
The associated eigenvalues are : χ 1 = -2s and χ 2 = s g 1 -λ 1 g 1 . In the supercritical regime, according to figures 2.10 and 2.16(a), g 1 and λ 1 are negative and |λ 1 | > |g 1 |. Thus stable rolls appear at a supercritical bifurcation from ε = 0. In the neighborhood of the points (ε, α) where g 1 changes sign, the stability of rolls cannot be determined and a higher order analysis is required. In the subcritical regime, roll solutions exist but are unstable.

(iii) Steady convection with square patterns,

A 1 = A 2 = -s/(g 1 + λ 1 ). The associated eigenvalues are χ 1 = -2s and χ 2 = 2 s (λ 1 -g 1 ) λ 1 + g 1 .
In the supercritical regime, g 1 and λ 1 are negative and |λ 1 | > |g 1 |, therefore χ 2 > 0 and squares are unstable. As explained by

Fauve [17], when |λ 1 | > |g 1 |, the interaction between the two sets of rolls is too strong and one of the two sets of rolls nonlinearly damps out the other. As indicated previously, this interaction is more stronger with increasing shear-thinning effects (figure 2.16a). At cubic order, the stability of the squares cannot be determined in the region where g 1 + λ 1 changes sign. In the subcritical regime, square solutions exist but are unstable.

Pattern selection on a hexagonal lattice

The system of amplitude equations satisfying the symmetry requirements of a hexagonal lattice is given by (2.115). The stationary solutions are determined and their linear stability is investigated.

(i) Steady convection with rolls,

A 1 = -s/g 1 , A 2 = A 3 = 0. The eigenvalues associated to this state are χ 1 = -2 s and χ 2 = χ 3 = s g 1 -δ 1 g 1 .
In the supercritical regime, according to figures 2.10 and 2.16(b), δ 1 and g 1 are negative and

|δ 1 | > |g 1 |, thus χ 3 < 0.
As on the square lattice, stable rolls appear supercritically from ε = 0. This analysis is not valid in the vicinity of the points (ε, α) where g 1 changes sign.

(ii) Steady convection with hexagons,

A 1 = A 2 = A 3 = -s/ (g 1 + 2δ 1 ). The associated eigenvalues are χ 1 = -2s, χ 2 = χ 3 = 2s δ 1 -g 1 g 1 + 2δ 1 .
In the supercritical regime, g 1 and δ 1 are negative and |δ 1 | > |g 1 |, thus χ 3 > 0 and hexagons are unstable. This analysis is not valid in the vicinity of the points (α, ε) where g 1 + 2δ 1 changes sign. In the subcritical regime, hexagon solutions exist but are unstable.

Comparison with Albaalbaki & Khayat [1]

Finally, our results show that only rolls are stable near critical conditions. Furthermore, shear-thinning effects reinforce convection in the form of rolls. This contradicts Albaalbaki & Khayat [1] findings, where stable squares and hexagons were found near critical conditions. For an hexagonal lattice, Albaalbaki & Khayat [1] wrote the amplitude equations up to O(A 4 ), where we denote O(A) the common order of magnitude of the amplitudes

A 1 , A 2 , A 3 
of all modes. They indicated that the terms of O(A 2 ) vanish, but that terms of O(A 4 ) -the terms proportional to a 5 , a 6 , a 7 in their equation (3.14) or to a 5 + a 6 + 2a 7 in their equation (5.6) -play an important role, because "non-Newtonian effects are symmetry breaking" (their §5.2 p. 527).

In fact, non-Newtonian effects do not break the midplane reflection symmetry. Therefore all the even terms in the amplitude equations vanish. In the Appendix 2.9.4, detailed calculations are provided to show that the coefficients a 5 , a 6 , a 7 in equation (3.14) of Albaalbaki & Khayat [1] vanish.

Maximum heat transport principle

For Newtonian fluids, Malkus & Veronis [35] introduced the maximum heat transport principle : "the only stable solution is the one of maximum heat transport". Schluter et al.

[47] confirmed this principle for slightly supercritical conditions.

Here, we show that the maximum heat transport principle is valid for shear-thinning fluids, i.e., the maximum heat transport is obtained for the only stable solution : rolls.

The heat transfer through the horizontal fluid layer is described by the Nusselt number, N u, the ratio of the total heat flux to the purely conductive heat flux in the absence of fluid flow. It can be calculated either at the lower or upper plate. At the lower plate, we have

N u = 1 - ∂ θ ∂z z=0 = 1 - N p=1 A 2 p (DG 02 ) z=0 , (2.120) 
where the overbar denotes the horizontal average over one wavelength, N = 1 corresponds to rolls, N = 2 to squares and N = 3 to hexagons. The unperturbed solution, N u = 1, corresponds to the hydrostatic solution. The second term of N u refers to the convective transfer. As it can be seen in figure 2.5, (DG 02 ) z=0 < 0. Using the stationary solutions found in the previous subsection, we obtain : 

N u r = 1 +

Solutions at higher order -Range of validity

So far, the results were obtained using amplitude equations truncated at O A 3 . For a significant deviation from the critical conditions, terms of higher order become large and should be taken into account. A weakly nonlinear expansion was carried out up to O A 5 ; for rolls, the expansion was extended to O A 7 . Amplitude equations at O A 5 for squares and hexagons, stationary solutions and the eigenvalues of the associated Jacobian matrices are given in the Appendix C. The analysis of the stability of the various patterns shows once again that, for supercritical conditions, only rolls are stable for NS and SFBC. For subcritical conditions, the solutions for the three patterns are unstable.

The range of validity of these results may be estimated roughly as 0 ≤ ε ≤ ε 0 , where ε 0 is the reduced Rayleigh number at which the viscosity perturbation, µ -1, reaches 30%.

Using this criterion, the figure 2.17 shows the curve (α, ε 0 ) for rolls calculated at O A 7 .

Below this curve, rolls are stable. With increasing shear-thinning effects, nonlinear terms increases rapidly, reducing ε 0 , i.e., the range of validity of the weakly nonlinear theory.

Heat transfer, flow structure and viscosity field in roll solutions

It is found that only rolls are stable near onset. In the present section, information on the heat transfer, the flow structure and viscosity field in rolls are provided. The influence of shear-thinning will be emphasized.

Heat transfer

Using (2.49) combined with (2.50), (2.57) and (2.61), one obtains :

N u = 1 - M m=1 A 2m (DG 0,2m ) z=0 .
(2.124) Figure 2.18 shows, for a Newtonian fluid with NSBC, the evolution of the Nusselt number as a function of ε, depending on the order of truncation of the computations. Our results are in good agreement with the numerical solution of (2.17) and (2.18) obtained using the spectral code of Plaut & Busse [START_REF] Plaut | Low-Prandtl-number convection in a rotating cylindrical annulus[END_REF], at least up to ε = 0.35, when series are truncated at O A 7 . A good agreement is also observed with the numerical results of Plows [START_REF] Plows | Some numerical results for two-dimensional steady laminar Bénard convection[END_REF]. For indication, the correlation

N u = 1 + ε 1 + ε 1 0.6992 -0.00472P r -1 + 0.00382P r -2 ,
(2.125)

proposed by Schluter et al. [START_REF] Schluter | On the stability of steady finite amplitude convection[END_REF] using a weakly nonlinear approach is also represented.

The influence of the shear-thinning behavior is illustrated by figure 2.19(a). The curves are dotted when the range of validity ε 0 (α) is exceeded. The Nusselt number increases with increasing shear-thinning effects in agreement with Pierre & Tien [START_REF] St | Experimental investigation of natural convection heat transfer in confined space for non-newtonian fluid[END_REF] ; Liang & Acrivos [34] ; Ozoe & Churchill [38] ; Tsuei & Tien [START_REF] Tsuei | Free convection heat transfer in a horizontal layer of non newtonian fluid[END_REF] and Albaalbaki & Khayat [1]. This is is a consequence of the increase of the rolls amplitude. According to Parmentier [START_REF] Parmentier | A study of thermal convection in non-newtonian fluids[END_REF], a good correlation of the Nusselt number with a generalized Rayleigh number is obtained when Ra is based on the average viscosity defined by

µ = S µ γij γij ds S γij γij ds , (2.126) 
where S is the domain is the viscosity of the fluid in the region of high shear-rate. Also, the situation with SFBC is rather different, compare figures 2.20(a) and 2.20(b). The re-organization of the rates of deformation in the roll solutions between NS and SFBC is, in fact, a complex process, which is continuous but not monotonous as suggested by the figure 2.14.

0 ≤ x ≤ 2π/k c , 0 ≤ z ≤ 1,

Viscosity field

Conclusion

We studied the influence of shear-thinning effects on the convection in a horizontal layer of an inelastic shear-thinning fluid using the Carreau model as a typical rheological model. To take into account the possibility of wall slip, Navier's slip law has been used at the top and bottom walls. As the fluid has a finite viscosity at zero shear-rate, the critical Rayleigh number and wavenumber remain unchanged with respect to the Newtonian case.

In agreement with Webber [START_REF] Webber | The destabilizing effect of boundary slip on Bénard convection[END_REF] and Kuo & Chen [30], it is found that slip boundary condition has a destabilizing effect.

The nature of the bifurcation to rolls, squares and hexagons has been determined using a three-dimensional weakly nonlinear analysis. The bifurcation is supercritical for moderately shear-thinning effects and becomes subcritical for strongly shear-thinning effects. In the case of a bifurcation to steady rolls with stress-free boundary conditions, the critical value α c of the degree of shear-thinning above which the bifurcation becomes subcritical found here confirms that given by Balmforth & Rust [4], but contradicts the computations done by Albaalbaki & Khayat [1]. In the case of slip with friction, new results were provided, where α c is given as a function of L s for the three convective all other situations, α c depends on P r. Nevertheless, for P r ≥ 10, this dependency is no longer significant (figures 2.11, 2.12, 2.13 ).

The analysis of the amplitude equations at cubic order for squares or hexagons has shown that the ratios between the coupling coefficients and the self saturation coefficient are greater than 1. Moreover, these ratios increase with increasing degree of shear-thinning and Rayleigh number. This reflects a strong interaction between sets of rolls that constitute squares or hexagons and this interaction is more stronger with increasing α.

As a consequence, only rolls are stable, and this stability is reinforced by shear-thinning effects. These results, which contradict Albaalbaki & Khayat [1], as explained in §2.5.5.4, are consistent with the maximum heat-transfer principle : the Nusselt number for rolls is larger than that for squares or hexagons. The influence of the shear-thinning on the pattern selection was confirmed by considering amplitude equation at the fifth order. A rough estimation of the range of validity of the weakly nonlinear approach used has been proposed. This range of validity decreases with increasing shear-thinning effects (figure 2.17).

Finally, roll solutions have been computed with an amplitude equation at the seventh order in the supercritical regime. The relevance of a "Parmentier-Rayleigh number", as defined by Parmentier [START_REF] Parmentier | A study of thermal convection in non-newtonian fluids[END_REF] for power-law fluids has been confirmed for the Carreau fluids studied here, for mildly nonlinear convection above onset (figure 2. 19).

In the present study, the temperature dependence of the viscosity has not been taken into account. The inclusion of temperature-dependence of viscosity will affect the onset of instability, the symmetry properties of the system, the value of α c and the preferred mode of convection. For Newtonian fluids, Busse & Frick [11] and Jenkins [28] showed that the roll planform is preferred for low ratios r of the viscosities at the top and bottom boundaries. For larger values of r, the square planform is the preferred mode of convection.

At still larger values of r, subcritical bifurcation is predicted. The experiments of White [START_REF] White | The planforms and the onset of convection with a temperature dependentviscosity[END_REF] confirmed these tendencies. Based on our analysis of the pattern selection, -the stability of rolls are reinforced by the shear-thinning behavior -we think that the limit value of the ratio r, below which the roll planform is the preferred mode of convection, will be larger for shear-thinning fluids. The study of the effects of the temperature-dependent viscosity in this system is under way.

Coming back to a Boussinesq model with a viscosity that does not depend on the temperature, it would also be interesting to study the subcritical regime, and investigate strongly subcritical convection.

Finally, we stress that there are very few experimental data in the literature. Additional experiments are needed, particularly, for shear-thinning fluids for which the bifurcation should be subcritical, according to the present model. 

Appendix

F 11 (Ra, k c ) = F 11 (Ra c , k c ) + O(ε) , G 11 (Ra, k c ) = G 11 (Ra c , k c ) + O(ε). (2.
τ -1 0 = -k 2 Ra c G 11 , F ad c + d/P r (2.129) with c = G 11 , G ad , d = (D 2 -k 2 )F 11 , F ad (2.130)
which do not depend on the Prandtl number. The integrals involved are evaluated numerically using Clenshaw-Curtis quadrature method (Trefethen [57]).

2.9.2 Calculation of the saturation and coupling coefficients outside the critical conditions (i) A first approximation of g 1 is given by :

g 1 = N I + N V , Xad . (2.131) (ii) A first approximation of X 13 is solution of : L • X 13 -3 s M • X 13 = g 1 M • X 11 -N I -N V , (2.132) 
which has to be solved with the boundary conditions (2.87). (iii) A correction of g 1 is given by 2.9.3 Amplitude equations, sationary solutions, eigenvalues of the

g 1 = N I + N V , Xad -2 s M • X 13 , Xad . ( 2 

Jacobian matrices

Amplitude equations at quintic order as given by Hoyle [27] and Fujimura & Yamada [21], are recalled, and their stationary solutions and stability in the supercritical regime, in the range of validity of our analysis, is studied.

2.9.3.1 Amplitude equation on a square lattice

dA 1 dt = sA 1 + g 1 |A 1 | 2 + λ 1 |A 2 | 2 A 1 + g 2 |A 1 | 4 + λ 2 |A 2 | 4 A 1 + ϕ |A 2 | 2 |A 1 | 2 A 1 , dA 2 dt = sA 2 + g 1 |A 2 | 2 + λ 1 |A 1 | 2 A 2 + g 2 |A 2 | 4 + λ 2 |A 1 | 4 A 2 + ϕ |A 2 | 2 |A 1 | 2 A 2 .
The stationary solutions and the eigenvalues of the Jacobian matrix are :

-Steady convection with rolls :

A 2 1 = -g 1 -g 2 1 -4g 2 s 2g 2 , A 2 = 0 .
The eigenvalues associated to this state are

χ 1 = s + 3 g 1 A 2 1 + 5 g 2 A 4 1 and χ 2 = s + λ 1 A 2 1 + λ 2 A 4 1 .
We have checked numerically that , χ 1 , χ 2 are negative, i.e., rolls are stable. -Steady convection with squares :

A 2 1 = A 2 2 = -(g 1 + λ 1 ) -(g 1 + λ 1 ) 2 -4 (g 2 + λ 2 + ϕ) s 2 (g 2 + λ 2 + ϕ) .
The eigenvalues assciated to this state are

χ 1 = s + (3 g 1 -λ 1 ) A 2 1 + (5 g 2 -3λ 2 + ϕ) A 4 1 , χ 2 = s + 3 (g 1 + λ 1 ) A 2 1 + 5 (g 2 + λ 2 + ϕ) A 4 1 .
We have checked numerically that χ 1 and χ 2 are positive, i.e., squares are unstable.

Amplitude equation on an hexagonal lattice

dA 1 dt = sA 1 + g 1 |A 1 | 2 + δ 1 |A 2 | 2 + |A 3 | 2 A 1 + g 2 |A 1 | 4 + δ 2 |A 2 | 4 + |A 3 | 4 A 1 + ς 1 |A 2 | 2 + |A 3 | 2 A 1 + ς 2 |A 2 | 2 |A 3 | 2 A 1 + ς 3 A * 1 (A * 2 ) 2 (A * 3 ) 2 .
Equations for dA 2 /dt, dA 1 /dt are obtained by cyclic permutations of A 1 , A 2 , A 3 .

The stationary solutions and the eigenvalues of the Jacobian matrix are :

-Steady convection with rolls :

A 2 1 = -g 1 -g 2 1 -4g 2 s 2g 2 , A 2 = A 3 = 0 .
The eigenvalues associated to this state are

χ 1 = s + 3 g 1 A 2 1 + 5 g 2 A 4 1 , χ 2 = s + δ 1 A 2 1 + δ 2 A 4 1 .
We have checked numerically that χ 1 , χ 2 are negative, i.e. , rolls are stable.

-Steady convection with hexagons :

A 2 1 = A 2 2 = A 2 3 = -(g 1 + 2δ 1 ) -(g 1 + 2δ 1 ) 2 -4s [g 2 + 2 (δ 2 + ς 1 ) + ς 2 + ς 3 ] 2 [g 2 + 2 (δ 2 + ς 1 ) + ς 2 + ς 3 ] .
The eigenvalues associated to this state are

χ 1 = χ 2 = s + 3g 1 A 2 1 + (5g 2 -2δ 2 + ς 1 -2ς 2 ) A 4 1 , χ 3 = s + 3 (g 1 + 2δ 1 ) A 2 1 + (5g 2 + 10δ 2 + 7ς 1 + 10ς 2 )
. We have checked that these eigenvalues are positive, i.e., hexagons are unstable.

Symmetry properties under the midplane reflection -Comparison with Albaalbaki & Khayat [1]

For an hexagonal lattice, Albaalbaki & Khayat (2011) wrote the amplitude equations up to O(A 4 ), where we denote O(A) the common order of magnitude of the amplitudes A 1 , A 2 , A 3 of the fundamental modes. They indicated (in their §5.2 p. 527) that the terms of O(A 2 ) vanish, but that terms of O(A 4 ) exist, because 'non-Newtonian effects are symmetry breaking'. Let us show that this does not hold, i.e., that the corresponding coefficients a 5 , a 6 and a 7 in their equation (3.14) vanish. For this purpose, we use SFBC like [START_REF] Albaalbaki | Pattern selection in the thermal convection of nonnewtonian fluids[END_REF], though this result is also fulfilled with the more general boundary conditions (2.13). The coefficients a 5 , a 6 , a 7 of the equation (3.14) of Albaalbaki & Khayat (2011) are given with our notations by

a 5 , a 6 , a 7 = 1 0 [N V ] F ad dz 1 0 M X 11 • X ad dz , (2.134) 
with F ad ∝ sin (πz) according to our equation (3.20), M , X 11 and X ad defined in §3, N V the nonlinear viscous terms in the equation for the vertical velocity (2.16),

N V = [∇ × ∇ × [∇ • (µ -1) γ]] • e z .
(2.135)

[N V ] designates the contributions in N V proportional to (A 1 ) 2 A 2 A 3 for a 5 , |A 1 | 2 A * 2 A * 3 for a 6 , |A 2 | 2 A * 2 A * 3 + |A 3 | 2 A * 2 A * 3 for a 7 .
In (2.135), because of equation (2.10), the nonlinear viscous terms that can give contributions of order A 4 read

N V = -α [∇ × ∇ × (∇ • Γ γ)] • e z = - α 2 [∇ × ∇ × [∇ • ( γpq γpq γij e i ⊗ e j )]] • e z . (2.136) 
With SFBC, equations (5.1) and (5.7) show that a fundamental mode coupled with itself does not generate velocity modes of order A 2 . Therefore, focusing on the calculation of a 5

for the sake of simplicity, the contributions proportional to

(A 1 ) 2 A 2 A 3 in (2.136) are, first, those due to γpq = A 1 γ[1] pq multiplied by itself and γij = A 2 A 3 γ[2] ij , second those due to γpq = A 1 γ[1] pq multiplied by γpq = A 2 A 3 γ[2] pq and γij = A 1 γ[1] ij .
The superscripts [1] and [2] refer to the fundamental mode and to modes arising from the quadratic interaction between Fourier modes with different wavevectors, as calculated in §5.3.2. The nonlinear terms of (2.136) proportional to (A 1 ) 2 A 2 A 3 can thus be developed as

[N V ] = ∂ ∂z ∂ 2 ∂x 2 t xx + ∂ 2 ∂y 2 t yy - ∂ 2 ∂x 2 t zz - ∂ 2 ∂y 2 t zz + 2 ∂ 2 ∂x∂y t xy + ∂ 2 ∂z 2 - ∂ 2 ∂x 2 ∂t xz ∂x + ∂ 2 ∂z 2 - ∂ 2 ∂y 2 ∂t yz ∂y (2.137) with t ij = -α Γ [1] γ[2] ij + Γ [1,2] γ[1] ij , Γ [1] = 1 2 γ[1] pq γ[1] pq , Γ [1,2] = 1 2 γ[1] pq γ[2] pq . (2.138) We map z ∈ [0, 1] into z ∈ [-1/2, 1/2] by defining z = z -1/2. Let us demonstrate that [N V ] (-z) = -[N V ](z), i.e., that [N V ] is odd.
-For the fundamental mode, according to equations (3.11) and (3.12), one has

u ∝ cos (πz) = -sin(πz) ; u(-z) = -u(z), v ∝ cos (πz) = -sin(πz) ; v(-z) = -v(z), w ∝ sin (πz) = cos(πz) ; w(-z) = w(z),
and

∂u ∂ z (-z) = ∂u ∂ z (z) ; ∂v ∂ z (-z) = ∂v ∂ z (z) ; ∂w ∂ z (-z) = - ∂w ∂ z (z). Therefore, under z → -z, γ[1] xx , γ[1] yy , γ[1] zz , γ[1]
xy are odd and γ [1] xz , γ [1] yz are even. Consequently,

Γ [1] = 1 2 γ[1] pq γ[1]
pq is even, i.e., Γ [1] (-z) = Γ [1] (z).

-For the modes arising from the quadratic interaction between fundamental modes with different wavevectors, according to equations (5. 19) and (5.20) combined with (2.18), one has

u ∝ cos (2πz) = -cos(2πz) ; u(-z) = u(z), v ∝ cos (2πz) = -cos(2πz) ; v(-z) = v(z), w ∝ sin (2πz) = -sin(2πz) ; w(-z) = -w(z),
and

∂u ∂ z (-z) = - ∂u ∂ z (z) ; ∂v ∂ z (-z) = - ∂v ∂ z (z) ; ∂w ∂ z (-z) = ∂w ∂ z (z). Therefore, under z → -z, γ[2] xx , γ[2] yy , γ[2] zz , γ[2]
xy are even and γ [2] xz , γ [2] yz are odd. The symmetry properties of γ [2] ij are opposite to that of

γ[1] ij . Hence, Γ [1,2] = 1 2 γ[1] pq γ[2]
pq is odd, i.e. Γ [1,2] (z) = -Γ [1,2] (-z). Consequently, γ [2] ij and Γ [1] γ [2] ij have the same symmetry properties as Γ [1,2] 

[N V ](-z) = -[N V ](z) (2.139)
On the other hand, F ad (z), given by equation (3.20),

F ad (z) ∝ sin(πz) = cos(πz), (2.140) Chapitre 2.
is even under z → -z. Finally, the product [N V ]F ad is odd under z → -z, hence

1/2 -1/2
[N V ]F ad dz = 0, i.e., a 5 = 0.

(2.141)

The proof that a 6 , a 7 vanish is quite similar, since when one applies the complex conjugate, the functions of z implied in all modes are unchanged. 

Introduction

Recently, a weakly nonlinear stability analysis of thermal convection in a layer of a non-Newtonian fluid between two horizontal plates, of infinite thermal conductivity, heated from below was considered by Bouteraa et al. [3]. Assuming the fluid purely viscous and shear-thinning, they studied the influence of shear-thinning effects on the nature of the primary bifurcation and the pattern selection. The possibility of wall slip was taken into account by using Navier's slip law at top and bottom walls. It was shown that the bifurcation is supercritical for moderately shear-thinning effects and becomes subcritical for strongly shear-thinning effects. The critical value of the degree of shear-thinning α c defined by Eq. (3.14), above which the bifurcation becomes subcritical is determined as a function of a dimensionless slip length parameter. It is demonstrated that near the threshold of the convection, only rolls are stable and this stability is reinforced by the shear-thinning behavior.

In experimental situations, however, the thermal conductivity of the plates is finite. Furthermore, in some situations, the plates are much poorer conductors than the fluid. For instance, in LeGal & Croquette [22], the plates are made of Plexiglas and the fluid is water. The ratio ξ of the thermal conductivity of the plates kp to the thermal conductivity of the fluid k is ξ = 0.4. In Gorius et al. [14], a layer of mercury is bound by two plates made of a resin, with a ratio ξ = 0.23. In Kebiche [19] and Kebiche et al. [20], the horizontal plates are made of Polycarbonate and the fluid is an aqueous solution of CarboxyMethylCellulose or Carbopol, the ratio ξ is estimated to ξ = 0.25. In these situations, as well as those encountered in some engineering convection problems and in geophysics, the assumption that the plates are held at fixed and uniform temperatures loses its validity. The boundary conditions that have to be satisfied are continuity of temperature and heat flux at the interface between the fluid and the plate.

For a Newtonian fluid, the effect of imperfect conducting plates on the Rayleigh-Bénard convection was investigated by several authors. First, in the linear theory frame, Sparrow et al. [33] and Hurle et al. [17] (see also Riahi [31], Clever & Busse [8] and Holmedal et al. [16] for plates of arbitrary thicknesses and conductivities) showed that the critical Rayleigh number Ra c and the critical wave number k c , vary continuously from 1708 to 720 and from 3.11 to 0, when the ratio of thermal conductivities decreases from infinity to zero. According to Cerisier et al. [6] a temperature fluctuation occurring in the liquid close to a nearly insulating plate persists and distorts the temperature distribution. This temperature distortion can lead to an instability of the fluid layer. As a consequence, the temperature gradient is small and the fluid organizes in a pattern with a small wavenumber.

Exploiting the fact that for nearly insulating walls (ξ << 1), the horizontal scale of convection is much larger than the depth of the fluid, Busse & Riahi [4] considered weakly nonlinear three-dimensional solutions in the case of infinitely thick plates. They showed that near the onset, square convection cells are the stable planform, in contrast with two-dimensional rolls which are the only stable convection pattern in a symmetrical situation with isothermal boundary conditions. This result was confirmed and extended to fully nonlinear convection, with plates of finite thickness, by Proctor [29] using a "shallow water theory" adapted for the Rayleigh-Bénard convection by Chapman & Proctor [7].

Afterwards, Jenkins & Proctor [18] considered three-dimensional finite-amplitude thermal convection with finite thickness and finite thermal conductivity of the bounding plates.

They determined the critical value ξ c of the thermal conductivities ratio at which the preferred planform changes from square cell (ξ < ξ c ) to roll (ξ > ξ c ), as function of the Prandlt number. When the thickness of the plates is of the same order as that of the fluid layer and for P r ≥ 10, rolls should be observed when ξ > 1 and squares when ξ < 1. This is in agreement with LeGal & Croquette's experiments [22]. For low Prandtl number, say P r ≤ 0.1, Jenkins & Proctor [18] found that ξ c ∝ P r 4 .

The objective of the present paper is twofold. Firstly, to study the influence of shear-thinning effects on ξ c . Secondly, to determine the nature of the primary bifurcation depending on the shear-thinning degree and the ratio of thermal conductivities. We hope that our findings will shed new light on the interpretation of the results obtained by Kebiche [19] and Kebiche et al. [20], although the fluid used in [20] is not only shear-thinning but has also a yield stress.

The paper is organized as follows. In section 3.2, the mathematical formulation of the problem is presented. In section 3.3, the linear stability analysis for the onset of convective flow is reinvestigated. The critical Rayleigh number (Ra c ) and wavenumber (k c ) are determined as a function of ξ. Section 3.4 presents briefly the procedure used in the weakly nonlinear stability analysis. The results are discussed in section 3.5. The critical value of the shear-thinning degree above which the bifurcation becomes subcritical is determined as a function of ξ. The pattern selection near the threshold of convection is investigated in terms of α and ξ. For a significant deviation from the critical conditions, higher-order solutions are computed in section 3.6. Section 3.7 provides information on the flow structure and the heat transfer. A concluding discussion is given in the last section of the paper.

Problem formulation

General equations and parameters

We consider a layer of shear-thinning fluid of depth d confined between two horizontal plates that are infinite in extent and which have a thickness Λ d, where Λ is of order unity. The outer surface of the bottom and top plates are kept at constant temperatures respectively T0 + ∆ T /2 and T0 -∆ T /2, with ∆ T > 0. The fluid has density ρ, thermal conductivity k, thermal coefficient expansion (at constant pressure) β and viscosity μ0 at zero shear rate. The thermal conductivity of the slabs is kp . Because of the thermal expansion, the temperature difference between the two plates, induces a vertical density stratification. Heavy cold fluid is above a light warm fluid. For small ∆ T , the fluid remains at rest and the heat is transferred by conduction. In the fluid, 0 < ẑ < d, the hydrostatic solution and the temperature profile are :

d P dẑ = -ρ 0 ĝ 1 -β T -T0 and Tcond = T0 + ∆ T 1 + 2Λ/ξ 1 2 - ẑd , (3.1) 
where, ĝ is the acceleration due to gravity. Here, the z-axis is directed upwards, with the origin located at the bottom plate. The reference temperature T0 is the temperature in the middle of the fluid layer and ρ0 is the fluid density at T0 . The temperature difference between the top and the bottom of the fluid layer is ∆ Tf = ∆ T /(1 + 2Λ/ξ).

The temperature profile in the top and bottom plates are :

Tcond = T0 + ∆ T ξ + 2Λ 1 - 1 2 ξ - ẑd , d ≤ ẑ ≤ (1 + Λ) d (3.2) 
and ∆ Tf , pressure and stresses with κμ 0 / d2 . Using these scales, the dimensionless perturbation equations read :

Tcond = T0 + ∆ T ξ + 2Λ 1 2 ξ - ẑd , -Λ d ≤ ẑ ≤ 0. ( 3 
∇ • u = 0, (3.4) 1 P r ∂u ∂t + u • ∇u = -∇p + Ra θ e z + ∇ • τ , (3.5 
)

∂θ ∂t + u • ∇θ = u • e z + ∇ 2 θ , (3.6) 
in the fluid, and

∂ θ ∂t = κp κ ∇ 2 θ , (3.7) 
in the bounding slabs. Here, e z denotes the unit vector in the vertical direction, u(x, t) = ue x + ve y + we z is the fluid velocity and p(x, t) and θ(x, t) represent the pressure and temperature deviations from their values in the conduction state. The temperature perturbation in the slabs is denoted θ(x, t). The position vector x has components x, y, z. The Rayleigh number Ra and the Prandtl number P r are defined by : Ra = ρ0 ĝ β∆ Tf d3 κ μ0 ; P r = μ0 ρ0 κ .

(3.8)

Rheological model and parameters

The fluid is assumed to be purely viscous and shear-thinning. The viscous stress-tensor

τ = µ (Γ) γ with γ = ∇u + (∇u) T (3.9)
the rate-of-strain tensor, of second invariant

Γ = 1 2 γij γij . (3.10) 
The Carreau model is given by

μ -μ∞ μ0 -μ∞ = 1 + λ2 Γ nc-1 2 , (3.11) 
with μ0 and μ∞ the viscosities at low and high shear rate, (n c < 1) the shear-thinning index, λ the characteristic time of the fluid. The location of the transition from the Newtonian plateau to the shear-thinning regime is determined by λ, since 1/ λ defines the characteristic shear rate for the onset of shear-thinning. Increasing λ reduces the Newtonian plateau to lower shear rates. The infinite shear viscosity, μ∞ , is generally associated with a breakdown of the fluid, and is frequently significantly smaller (10 -3 to 10 -4 times smaller) than μ0 , see Bird et al. [2] and Tanner [35]. The ratio μ∞ /μ 0 will be thus neglected in the following.

The dimensionless effective viscosity is then

µ = μ μ0 = 1 + λ 2 Γ nc-1 2 with λ = λ d2 /κ . (3.12)
The Newtonian behavior, μ = μ0 , is obtained by setting n c = 1 or λ = 0.

For a small amplitude disturbance, the viscosity can be expanded about the hydrostatic solution,

µ = 1 + n c -1 2 λ 2 Γ + 1 2 n c -1 2 n c -3 2 λ 4 Γ 2 + ... (3.13) 
At lowest nonlinear order, a relevant rheological parameter is the 'degree of shearthinning'

α = dµ dΓ Γ=0 = 1 -n c 2 λ 2 .
(3.14)

Boundary conditions

For the perturbation velocity u, the conditions imposed on the top and bottom plates are either no-slip (no-slip boundary conditions NSBC), which implies

u = 0 at z = 0, 1 (3.15) 
or stress-free (stress-free boundary conditions SFBC), which implies

∂u ∂z = ∂v ∂z = w = 0 at z = 0, 1 (3.16) 
For thermal boundary conditions, a constant and uniform temperature is assumed on the outer surface of each plate

θ = 0 at z = -Λ, 1 + Λ (3.17)
The continuity condition for temperature and heat flux are

θ = θ at z = 0, 1, (3.18 
)

Dθ = ξD θ at z = 0, 1. (3.19) 
Where D ≡ ∂ ∂z and ξ = kp k .

Reduction : elimination of the pressure

In the momentum equations, the pressure field can be eliminated using the curl of Eq.

(3.5). We then take the curl of Eq. (3.5) one more time. Using the continuity equation, and projecting onto e z , we get the following evolution equations for the vertical vorticity ζ and the vertical velocity w :

∂ζ ∂t + e z • ∇ × [(u • ∇) u] = P r ∆ζ + P r e z • ∇ × [∇ • (µ -1) γ] , (3.20 
)

1 P r ∂∇ 2 w ∂t -e z • [∇ × ∇ × [(u.∇) u]] = ∆ 2 w + Ra ∇ 2 H θ - (3.21) [∇ × ∇ × [∇ • (µ -1) γ]] • e z , ∂θ ∂t + (u • ∇) θ = w + ∇ 2 θ , (3.22) 
∂ θ ∂t = κp κ ∇ 2 θ , (3.23) 
where

ζ = ∂v ∂x - ∂u ∂y and ∇ 2 H = ∂ 2 ∂x 2 + ∂ 2 ∂y 2 .
From the continuity equation and the vertical vorticity definition, one can deduce the horizontal velocity components (u , v) :

∇ 2 H u = - ∂ 2 w ∂x∂z - ∂ζ ∂y ; ∇ 2 H v = - ∂ 2 w ∂y∂z + ∂ζ ∂x . (3.24) 
The boundary conditions for w are :

w = Dw = 0 at z = 0, 1 for NSBC, (3.25) 
and

w = D 2 w = 0 at z = 0, 1 for SFBC. (3.26)
For the temperature, the boundary conditions are :

θ = 0 at z = -Λ, 1 + Λ, (3.27) 
θ = θ at z = 0, 1, (3.28 
)

Dθ = ξD θ at z = 0, 1. (3.29) 
In the following, as in Chapman & Proctor [7], Proctor [29] and Carriere et al. [5], we will assume that κp /κ = ξ.

Linear stability analysis

Critical conditions and critical modes

In the linear theory, u and θ are assumed infinitesimal. The nonlinear terms in (3.20)-(3.22) can be neglected. We obtain :

1 P r ∂ζ ∂t = ∆ζ , (3.30 
)

1 P r ∂∆w ∂t = ∆ 2 w + Ra∆ H θ , (3.31 
) 

∂θ ∂t = w + ∆θ , (3.32) 
∂ θ ∂t = κp κ ∆ θ. ( 3 
    =     F 11 (z) G 11 (z) G11 (z)     f (x, y) exp (s t) , (3.34) 
where s = s r + is i , is a complex number and f (x, y) satisfies the two-dimensional Helmoltz equation ∆ H f = -k 2 f . Here k is the norm of the horizontal wavenumber k.

Substituting (3.34) into (3.31)-(3.33), leads to the differential equations

s P r -1 D 2 -k 2 F 11 = -k 2 RaG 11 + D 2 -k 2 2 F 11 , (3.35) 
s G 11 = F 11 + (D 2 -k 2 )G 11 , (3.36) 
s G11 = κp κ (D 2 -k 2 ) G11 . (3.37) 
It may be shown easily that s is real. The principle of exchange of stabilities holds and hence the instability sets in a stationary convection. The boundary conditions are :

F 11 = DF 11 = 0 at z = 0, 1
For NSBC (3.38)

F 11 = D 2 F 11 = 0 at z = 0, 1 For SFBC (3.39) G11 = 0 at z = -Λ, 1 + Λ, (3.40) 
G 11 = G11 at z = 0, 1 (3.41 
)

DG 11 = ξD G11 at z = 0, 1 (3.42) 
The set of differential equations (3.35)-(3.37) is an eigenvalue problem where s is the eigenvalue and X 11 = (F 11 , G 11 , G11 ) the eigenvector. It can be written

s M • X 11 = L • X 11 . (3.43) 
Actually, Eq. (3.37) can be solved analytically : Jenkins and Proctor [18], Carriere et al. [5] and Cerisier et al. [6]. The wavelength of the convection becomes larger with decreasing ξ and the critical Rayleigh number Ra c is also reduced.

G11 (z) = G 11 (z = 1) sinh k (1 + Λ -z) sinh kΛ ; 1 ≤ z ≤ 1 + Λ , (3.44) 
G11 (z) = G 11 (z = 0) sinh k (Λ + z) sinh kΛ ; -Λ ≤ z ≤ 0 , (3.45 
Indeed, when a temperature fluctuation occurs in the liquid close to highly conducting wall, it easily relaxes. Whereas, it can persist and distorts the temperature distribution when the thermal conductivity of the boundary is very low. This temperature distortion can lead to an instability of the fluid. As a consequence, the critical Rayleigh number is smaller [6].

From mathematical point of view, the decrease of Ra c is caused by the weakening of the thermal boundary conditions (3.28), (3.29) for θ as ξ decreases from 10 3 to 10 -3 .

Note that for a given thermal conductivities ratio, the critical Rayleigh number for NSBC is greater than that for SFBC. The physical reason is quite intuitive. In the case of NSBC, the friction of the fluid against the wall dissipates more energy, therefore a higher thermal gradient has to be imposed so that the convection can start.

When the convection flow starts, it distorts the originally horizontal isotherms. Since, this deviation from the basic state occurs in the fluid layer as well as in the wall boundary, where the diffusion rate is smaller than in the fluid when ξ < 1, the wavelength of the convection pattern becomes larger with decreasing the thermal conductivity of the plate [37] (see rature gradient for the onset of convection as ξ decreases. For the same reason, the vertical velocity is lower for SFBC than for NSBC.

Characteristic time of the instability

Near the onset of convection, the growth rate Re(s) of the perturbation may be approximated using Taylor expansion of s around the critical conditions :

s = ε τ 0 + O ε 2 with ε = Ra -Ra c Ra c , (3.49) 
where τ 0 is the characteristic time for the instability to grow. The determination of τ 0 can be obtained either by evaluating ds dε ε=0 (s is calculated for different values of ε, around ε = 0) or by following the methodology described by Cross [9], Plaut [27]. Explicitly, τ 0 is given by

τ -1 0 = -k 2 c Ra c G 11 , F ad G 11 , G ad + G11 , Gad + 1/P r (D 2 -k 2 )F 11 , G ad .
(3.50)

In the previous equation, (F ad , G ad ) is the adjoint mode, solution of the adjoint eigenvalue problem (Appendix 3.9.1). The inner product between two functions f and g is defined by f, g = 1+Λ -Λ f g dz. The integrals are evaluated numerically by means of Clenshaw and Curtis method, in terms of the critical conditions. Note that we consider F 11 = G 11 = 0 inside the slabs and G11 = 0 in the fluid domain. Figure 3.4 shows the variation of τ 0 as a function of ξ. As it can be observed, the characteristic time of instability, τ 0 , varies weakly with the thermal conductivities ratio, ξ, when roughly ξ > 1. However, when ξ < 1, i.e. kp < k, τ 0 increases significantly with decreasing ξ, because the temperature field in the solid evolves on a more longer time with decreasing the thermal conductivity of the plates. Hence, at given ε, the growth of the instability is slower and of longer duration as ξ decreases.

Weakly nonlinear stability analysis

Principles and procedure

A standard weakly nonlinear convection analysis using the amplitude expansion method is adopted as a first approach to investigate nonlinear effects (see Stuart [34], Watson [36],

Reynolds & Potter [30], Sen & Venkateswarlu [32], Fujimura & Yamada [11], Generalis & Fujimura [12]). At leading order, one writes

w(x, y, z, t) = f (x, y, t) F 11 (z) + c.c., (3.51) 
θ(x, y, z, t) = f (x, y, t) G 11 (z) + c.c., (3.52) 
θ(x, y, z, t) = f (x, y, t) G11 (z) + c.c.

(3.53)

The planform function which describes the convection pattern is

f (x, y, t) = N p=1 A p (t) exp (i k p • r) (3.54) 
where |k p | = k c , and A p (t) the amplitude of the perturbation. According to the normalization of the eigenfunctions used in the linear theory, A p (t) represents the amplitude of the thermal perturbation measured at the midplane. Configuration with N = 1 corresponds to rolls and N = 2 to squares. The weakly nonlinear analysis is applied to each of these patterns. The configuration with N = 3 corresponding to hexagons is not considered here.

Further calculations show that this three-dimensional pattern is unstable.

In the neighborhood of the critical conditions, the dynamics are assumed to be determined by the fundamental disturbance with wavenumber k = k c , its higher harmonics generated by the nonlinear self-interactions and the modification of the base state due to the interaction with the complex conjugate. As in Stuart [34], Watson [36], Herbert [15], the disturbance is expanded in harmonic series and the coefficient of each harmonic is further expanded in an asymptotic series with disturbance amplitude as a small parameter.

In the case of rolls, the velocity and the temperature disturbances are expanded as follows :

w(x, z; t), θ(x, z; t), θ(x, z; t)

= m=1 F 0,2m (z), G 0,2m (z), G0,2m (z) |A| 2m +(3.55) n=1 m=0 F n,n+2m) (z), G n,n+2m) (z), Gn,n+2m) (z) |A| 2m A n E n + c.c. ,
where c.c. means the complex conjugate of its preceding expression, E n = e inkcx , n denotes the harmonic index and m indicates the asymptotic order. The time evolution of the amplitude A(t) is given by the Stuart-Landau equation

dA dt = g 0 A + g 1 |A| 2 A + g 2 |A| 4 A + ... (3.56) 
In Eq. (3.56), g 0 = s is the linear growth rate and g 1 is the first Landau constant also a first correction to the linear growth rate. The sign of g 1 determines whether the nature of the bifurcation is supercritical (g 1 < 0) or subcritical (g 1 > 0). If g 1 < 0, the nonlinearities tend to saturate the instability, whereas, if g 1 > 0, nontrivial equilibrium solution exists only if ε < 0, but is unstable. It can be shown that g 1 is the sum of contributions of two terms g I 1 arising from the nonlinear inertial terms and g V 1 arising from the nonlinear viscous terms. Since at the lowest order µ = 1 -αΓ, Eq. (3.13) and (3.14), with α = 1-nc 2 λ 2 , then

g 1 = g I 1 + g V 1 with g V 1 = -αg N N 1 (3.57)

Numerical method

In the above section, the nonlinear stability problem is reduced to a sequence of differential equations. As in the linear problem, they are solved using a spectral collocation method based on Chebyshev polynomials. The differential equations are collocated at Gauss-Lobatto points. The integrals involved in the determination of the first Landau constant are calculated using Clenshaw and Curtis method.

Results and discussion

Bifurcation to rolls

The first Landau constant g 1 as well as the different contributions g I 1 and g N N 1 are determined for different critical sets (Ra c , k c , ξ, P r).

In Fig. 3.5(a) , we plot g I 1 as a function of ξ. As expected, g I 1 is negative, i.e., the bifurcation is supercritical for a Newtonian fluid. The absolute value of g I 1 decreases with decreasing ξ and |g I 1 | → 0 when ξ → 0. Note that g I 1 is sensitive to change in ξ mainly when 0.1 ≤ ξ ≤ 5. For P r ≥ 1, the analysis of the contribution to g I 1 arising from the different nonlinear interactions shows that g I 1 is dominated by the nonlinear thermal convection terms involving the modification of the conductive temperature profile, for all the range of ξ considered. The contribution of the nonlinear inertial term is practically negligible. As it can be observed, g N N 1 is negative, and g

V 1 = -αg N N 1 > 0.
Therefore, shear-thinning effects promote a subcritical bifurcation, which is understandable since the viscosity, which damps convection, is reduced. In Fig. 3.6 we plot g 1 as a function of ξ for different values of α between 0 and 5 × 10 -4 . At ξ = 10 3 , "perfect heat conductor", the bifurcation is supercritical, g 1 < 0, for low shear-thinning effects and subcritical, g 1 > 0, for sufficiently high shear-thinning effects. At ξ < 0.8, the bifurcation is supercritical for the range of α considered. Using Eqs. (3.57), the critical degree of shear-thinning α c above which the bifurcation changes from supercritical to subcritical is given by The more ξ is low, the more the degree of shear-thinning α of the fluid must be high to obtain a subcritical bifurcation. It must be even higher in the case of SFBC than in NSBC.

α c = g I 1 g N N 1 . ( 3 
These results are related to the reduction of the convection intensity when ξ decreases as shown by Fig. 3.2a and Fig. 3.2b, and therefore to a lower modification of the viscosity.

Note that, the largest variation of α c with ξ occurs mainly for 10 -2 ≤ ξ ≤ 10. 

Bifurcation to squares

For square patterns, considered as the superposition of two perpendicular sets of rolls, the amplitude equations are [13] :

dA 1 dt = s A 1 + g 1 A 2 1 + λ 1 A 2 2 A 1 , (3.59 
)

dA 2 dt = s A 2 + g 1 A 2 2 + λ 1 A 2 1 A 2 . (3.60) 
As for g 1 , the coefficient of cross saturation λ 1 is obtained by invoking the solvability condition and can be written as :

λ 1 = λ I 1 -αλ N N 1 . (3.61) 
The numerical results indicate that λ I 1 and λ N N 1 are negative and their variation with ξ is similar to that of g I 1 and g N N 1

respectively. The critical value of α above which, the bifurcation becomes subcritical is given by

α c = g I 1 + λ I 1 (g N N 1 + λ N N 1 ) (3.62)
The variation of α c as a function of ξ, at P r = 10, is depicted in Fig. 3.8 for NSBC and 

(2) (4) The influence of Prandtl number on α c is shown in Figure 3.9 for two limit values of ξ : 10 -3 and 10 3 . At ξ = 10 3 ("perfect heat conductor"), the occurrence of subcritical convection is practically independent of P r when P r ≥ 10. The nonlinear inertial terms ((u • ∇)u term) in Eq. (3.5) which in dimensionless units are multiplied by P r -1 have no influence from P r = 10, whereas, at ξ = 10 -3 (very poor heat conductor), the nonlinear inertial terms play practically no role from P r ≈ 0.1, this is not surprising since the intensity of convection is strongly damped when ξ << 1.

At low Prandtl number, say P r < 0.05, α c increases strongly with decreasing P r.

Pattern selection

In this section, we investigate the pattern selection on a square lattice. The calculation proceeds in two stages. First, the possible steady states solutions of the amplitude equations are determined. Then, their linearized stability is determined by computing the eigenvalues of the linearized system around each solution. A solution is stable if all its eigenvalues are negative.

The system of amplitude equations for a square lattice are given by Eqs (3.59) and (3.60).

The coefficients s, g 1 and λ 1 in these equations depend on the rheological parameters and on the reduced Rayleigh number ε = (Ra -Ra c ) /Ra c . The stationary solutions are obtained by setting f i (A 1 , A 2 ) = 0, where f i is the right hand side of the amplitude equations. Their stability is determined by the sign of the eigenvalues χ i of the Jacobian matrix J ij = ∂f i ∂A j evaluated at the steady states. In the following, the stability of the stationary solutions is examined in details.

(i) Conduction state, A 1 = A 2 = 0. The eigenvalues associated to this state are χ 1 = χ 2 = s.

The conduction state is stable if ε < 0 and undergoes a stationary bifurcation at ε = 0.

(ii) Steady convection with rolls parallel to e x or e y , A 1 = -s/g 1 , A 2 = 0 or A 1 = 0, A 2 = -s/g 1 . The eigenvalues associated to this state are :

χ 1 = -2s and χ 2 = s g 1 -λ 1 g 1 .
(iii) Steady convection with square patterns, A 1 = A 2 = -s/(g 1 + λ 1 ). The eigenvalues associated to this steady state are χ 1 = -2s and χ 2 = 2 s (λ 1 -g 1 ) λ 1 + g 1 .

In the supercritical regime, i.e. s > 0 and χ 1 < 0. The sign of χ 2 depends on the ratio λ 1 /g 1 . α = 0, ξ c = 1. This result is in agreement with that given by Jenkins and Proctor [18]. With increasing shear thinning effects, the interaction between the two sets of rolls of a square-cell increases, reducing by this way, ξ c . 

It is represented in

Solutions at higher order

(5) 

Heat transfer, flow structure and viscosity field

In the present section, information on the heat transfer, the flow structure and viscosity field in rolls and squares are provided. The influence of shear-thinning will be emphasized.

Heat transfer

The heat transfer through the horizontal fluid layer is described by the Nusselt number, N u, the ratio of the total heat flux to the purely conductive heat flux in the absence of fluid flow. It can be calculated either at the lower or upper plate. At the lower plate, we have

N u = 1 - ∂ θ ∂z z=0 = 1 - N p=1 M m=1 A 2m p (DG 02m ) z=0 -S A 2 1 A 2 2 (DG 04 ) z=0 , (3.63)
where the overbar denotes the horizontal average over one wavelength, N = 1 corresponds to rolls and N = 2 to squares, M = 1, when the series (3.56) is truncated at the third order, and M = 2, when (3.56) is truncated at the fifth order, S = 1 for squares and S = 0 for rolls. The term DG 04 arises from the interaction between modes with different eigenvectors. The unperturbed solution, N u = 1, corresponds to the hydrostatic solution.

The second term of N u refers to the convective transfer. ). For low values of ξ, the influence of shear-thinning effects is reduced. Figure 3.14 shows N u -1 as a function of ε for rolls and squares at two values of ξ : 0.1 and 1. At ξ = 0.1, the Nusselt number is larger for squares than for rolls, while at ξ = 1, N u is greater for rolls than for squares. The differences are small but notable and in agreement with the maximum heat transfer principle : the only stable solution is the one of maximum heat transport (Malkus & Veronis [24])

Viscosity field

The viscosity distribution for rolls and square cells, computed at the fifth order in amplitude, is shown in Fig. 3.15 for ε = 0.2. Two values of ξ are considered. The first one is ξ = 1000, where rolls are stable and the second one is ξ = 0.1 where squares are stable.

For the rheological parameters, we set n and λ such that α = 0.2α c .

Rolls, ξ = 1000 with NSBC. The viscosity field and the flow structure are illustrated by 

Conclusion

We have investigated the influence of shear-thinning effects on the convection in a horizontal layer of a shear-thinning fluid between two horizontal symmetric plates of finite thermal conductivity. The rheological behavior of the fluid is described by the Carreau model. The critical Rayleigh number Ra c and wavenumber k c for the onset of convection are determined as a function of the ratio ξ of the thermal conductivity of the plates to that of the fluid. As the fluid viscosity at zero shear rate is constant, the values of Ra c and k c in NSBC and SFBC are in very good quantitative agreement with those given in the literature for a Newtonian fluid. Additional results dealing with the characteristic time of instability τ 0 are provided. It is found that τ 0 increases significantly when ξ < 1, the growth of the instability is slower and of longer duration. The nature of the bifurcation to rolls and squares has been determined using a three-dimensional weakly nonlinear approach of amplitude equations. The critical value of the shear-thinning degree α c above which the bifurcation becomes subcritical is determined as a function of ξ. It is shown that α c increases with decreasing ξ due to the reduction of the convection intensity. For the same reason, the limit value of Prandtl number from which the nonlinear inertial ((u • ∇)u)terms of inertia can be neglected varies from 10 for a "perfect heat conductor" to 0.1 for a very poor heat conductor. The stability of rolls and squares is then investigated as a function of ξ and the rheological parameters. In the Newtonian case, squares are stable when ξ < 1, in agreement with [18]. In the case of shear-thinning fluids, an additional nonlinear coupling between modes is introduced by the rheological law. This leads to a decrease of the critical value of ξ below which squares are stable.

By considering the amplitude expansion at the fifth order, the range of validity of the weakly nonlinear analysis is extended and the domain of stability of the square pattern in the (ξ, ε) plane is determined. These results are consistent with the maximum heat-transfer principle.

In the weakly nonlinear approach, it is assumed implicitly that the dynamics is dominated by the fundamental mode. We intend to analyze the stability of the convective patterns, in the space Rayleigh-wavenumber, as a function of ξ and shear-thinning effects.

appendix

Adjoint mode

First, we need to define an inner product between two vectors f and g by

f , g = 1+Λ -Λ f • gdz.
(3.64)

The adjoint mode X ad associated to the critical mode X 11 , verifies the adjoint eigenvalue problem

L + • X ad = 0. (3.65)
The adjoint operator L + of operator L is defined by

X ad , L • X = L + • X ad , X . (3.66)
3.9.2 Modification of the conductive temperature profile at order

A 2
The correction of the conductive temperature profile in the fluid at order A 2 satisfies the following equation : 

(D 2 -2s)G 02 =

Abstract :

The objective of the present work is to investigate the Rayleigh-Bénard convection in non-Newtonian fluids with arbitrary conducting boundaries. A linear and weakly nonlinear analysis is performed. The rheological behavior of the fluid is described by the Carreau model. As a first step, the critical Rayleigh number and wavenumber for the onset of convection are computed as a function of the ratios ξ b and ξ t of the thermal conductivities of the bottom and top slabs to that of the fluid. In the second step, the preferred convection pattern is determined using an amplitude equation approach. The stability of rolls and squares is investigated as a function of (ξ b , ξ t ) and the rheological parameters.

The bounded region of (ξ b , ξ t ) space where squares are stable decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [2]. For a significant deviation from the critical conditions, the nonlinear convection terms and nonlinear viscous terms become stronger, reducing overall the stability domain of squares.

The largest Nusselt number, N u, is obtained for perfectly conducting boundaries. For a given ξ b , ξ t , the stable solution yields the largest Nusselt number. The enhancement of heat transfer due to shear-thinning effects is significantly reduced for poorly heat conducting plates.

Introduction

The problem of Rayleigh-Bénard convection (RBC) in Newtonian and non-Newtonian fluids layer heated from below and cooled from above remains one of the classical problems of fluid dynamics. In spite of intensive studies made in the past and extensive research work undertaken so far to understand the competition between convective structures (rolls, squares and hexagons) which are often influenced by the boundary conditions (see Holmedal et al. [14] ; Clever and Busse [8]) and other parameters such as temperature-dependence of viscosity (see White [38] ; Palm [27] ; Richter [33] ; Olivier and Booker [25] ; Busse and Frick [3] ; Jenkins [16]), there are still many outstanding issues that need to be answered. May be one of the most important question to be addressed is the effect of conductive horizontal plates on the heat transfer and the convection patterns. For instance, in geophysical problems and particularly in the context of the Earth's mantle convection, continents and oceans impose different thermal boundary conditions at the top of the mantle : continents act as insulators while a fixed temperature is imposed by oceans. These different thermal boundary conditions affect the convective flow and the heat transport in the Earth's mantle [11]. Actually, in most numerical investigations of RBC, the plates are assumed to be infinitely heat conducting, and a fixed temperature at the boundaries is imposed, while in engineering and geophysical problems as well as in laboratory experiments the boundaries have a finite conductivity. This may lead to a discrepancy between the experimental and the numerical/theoretical results. The ratios ξ b and ξ t between the thermal conductivities of the bottom and top slabs and that of the fluid may have a significant effect and must be taken into account as additional parameters [31].

The influence of the thermal conductivity of the boundaries on Rayleigh-Bénard convection was first investigated in the Newtonian case by Busse and Riahi [4] using a weakly nonlinear analysis. They considered the situation where ξ b = ξ t = ξ << 1 and found that the wavelength of convection flow becomes very large in comparison with the height of the layer and only square patterns are stable. This result was confirmed and extended to the fully nonlinear problem by Proctor [29] using a 'shallow water theory'. Afterwards, Jenkins and Proctor [17] determined the critical value of the thermal conductivities ratios ξ b = ξ t = ξ c at which the preferred planform changes from square cell to roll. For P r > 10, they found that the preferred planform is rolls when ξ > 1, and squares when ξ < 1. Le Gal et al. [21] carried out experiments to study Rayleigh-Bénard convection in silicone oil confined between two glass plates. So that ξ b = ξ t = ξ = 7. Near the threshold of convective instability, at ε < 0.021, they observed cells of square planforms. But when 0.024 < ε < 0.057, the amplitude of two mutually perpendicular roll sets underwent periodic oscillations in antiphase with another ; as ε was increased and convection became more intense, one set became predominant and then only roll still stable. This experiment was subsequently modified by Le Gal and Croquette [22] : glass was replaced by plexiglass and water was used as the working fluid, so that ξ = 0.4. In contrast to the preceding experiment, squares were observed in a wide range of ε values without any signs of destabilization. The authors think that in the first case, the silicone oil behaves as a mixture and the observed features were governed by the thermophoresis .

Although extensive studies have been devoted to understand the influence of the thermal boundary conditions on the Rayleigh-Bénard in Newtonian fluids, only a limited number of works have dealt with complex fluids. In comparison with the Newtonian system, the nonlinearity of the rheological law introduces an additional coupling in the velocity component. Recently, Bouteraa and Nouar [1] have investigated the influence of shear-thinning effects on the convection in a horizontal layer of a shear-thinning fluid between two horizontal symmetric plates of finite thermal conductivity. The rheological behavior of the fluid is described by the Carreau model. The authors found that : (i) the characteristic time of instability τ 0 increases significantly when ξ < 1, (ii) the critical value of the shear-thinning degree α c above which the bifurcation becomes subcritical increases with decreasing ξ, and (iii) the critical value ξ c at which the planform changes from square-cell solution (ξ < ξ c ) to two-dimensional roll solution (ξ > ξ c ) decreases with increasing shear-thinning effects.

In some experimental situations, ξ t = ξ b . For Newtonian fluids, Riahi [31] [32] has studied this problem and demonstrated, using a linear stability analysis of stationary flows the enormous influence of thermal boundary conditions (when ξ b = ξ t ) on the competition between the convection patterns. He found that squares are stable when rolls are unstable and vice versa, and always hexagonal patterns are unstable. No hysteresis effect is found.

In addition, Riahi [32] has also shown that square planforms are preferred in a bounded region Ω in the (ξ b , ξ t )-space coordinate system and rolls are favored only outside Ω. When P r < 0.025, the region Ω is quite small and disappears as P r = 0. However, for P r > 7, Ω is largest and nearly independent of P r. Using nonlinear developments, Clever and Busse [9] [8] demonstrated in the case of stress-free nearly insulating top plate and highly conducting no-slip lower plate, that two-dimensional rolls are stable near the onset, but become unstable at higher Rayleigh number and are replaced by which is called hexharoll convection.

From experimental point of view, Darbouli et al. [10] have investigated Rayleigh-Bénard convection for viscoplastic fluids confined in a cylindrical cell. They used two different horizontal plates of finite thermal conductivity. The bottom and upper walls are made respectively of copper alloy and glass. They used distilled water as Newtonian fluid to validate their experimental setup and an aqueous solution of Carbopol 940 as viscoplastic fluid. In these situations, the ratios ξ t and ξ b are estimated to ξ t = 2 and ξ b = 201.6 for both fluids (authors estimated that the solution of Carbopol 940 has the same thermal conductivity than water). Hence, it is no longer possible to rely on the assumption that the plates are held at fixed and uniform temperatures, which corresponds to plates with infinite thermal conductivity.

The purpose of the present work is to study the influence of arbitrary thermal-conducting top and bottom boundaries on nonlinear processes of Rayleigh Bénard convection, and to see the influence of the shear-thinning effect on the preferred flow pattern. The finite conductivity of the slabs remains one explanation for differences between results obtained in experiments and numerical investigations. We hope that our findings will shed new light on the interpretation of the results obtained by Darbouli et al. [10] although the fluid used is not only shear-thinning but has also a yield stress. In the fluid, 0 < ẑ < d, the hydrostatic solution and the temperature profile are :

Physical and mathematical model

d P dẑ = -ρ 0 ĝ 1 -β T -T0 and Tcond = T0 + ∆ T 1 + Λ/ξ (b) + Λ/ξ (t) 1 2 - ẑd , (4.1) 
where, ĝ is the acceleration due to gravity. Here, the z-axis is directed upwards, with the origin located at the bottom plate. The reference temperature T0 is the temperature in the middle of the fluid layer and ρ0 is the fluid density at T0 . Here, T0 = T1 -1/2 + Λ/ξ b ∆ Tf , where T1 is the temperature on the outer surface of the bottom plate and ∆ Tf the temperature difference between the top and the bottom of the fluid layer :

∆ Tf = ∆ T /(1 + λ/ξ t + Λ/ξ (b) ).
The temperature profile in the top and bottom plates are :

Tcond = T0 + ∆ T ξ t + Λ (1 + ξ t /ξ b ) 1 + Λ 2 1 - ξ t ξ b - 1 2 ξ t - ẑd , (4.2) 
d ≤ ẑ ≤ (1 + Λ) d
and

Tcond = T0 + ∆ T ξ b + Λ (1 + ξ b /ξ t ) 1 2 ξ b - Λ 2 1 -ξ b /ξ t - ẑd , -Λ d ≤ ẑ ≤ 0. (4.3)
When the bottom and top plates are poor thermal conductors, a large part of ∆ T occurs across the plates, and remains only a small part ∆ Tf of ∆ T , acting as the driving force for the convection. When ∆ Tf , exceeds a critical value, the convection sets in and a socalled convective patterns emerge. The stability of the hydrostatic solution is considered by introducing temperature and pressure perturbation as well as a fluid motion. Boussinesq approximation is adopted, i.e., the temperature dependence of the fluid properties can be neglected except for the temperature induced density difference in the buoyant force that drives the flow. The heat production due to viscosity is neglected. Distances are scaled with d, velocity with κ/ d, where κ is the thermal diffusivity of the fluid, time with d2 /κ, temperature with ∆ Tf , pressure and stresses with κμ 0 / d2 . Using these scales, the dimensionless perturbation equations read :

∂∇ 2 w ∂t -e z • [∇ × ∇ × [(u.∇) u]] = P r ∆ 2 w + Ra P r ∇ 2 H θ - (4.4) P r [∇ × ∇ × [∇ • (µ -1) γ]] • e z , ∂θ ∂t + (u • ∇) θ = w + ∇ 2 θ , (4.5) 
in the fluid, and

∂ θ ∂t = κ(b,t) p κ ∇ 2 θ , (4.6) 
in the bounding slabs. Here, e z denotes the unit vector in the vertical direction, w = u(x, t).e z is the vertical velocity field and θ(x, t) represents the temperature deviations from their values in the conduction state. The temperature perturbation in the slabs is denoted θ(x, t). The position vector x has components x, y, z. The pressure was eliminated by applying twice the rotation to the momentum balance equation. The state of the fluid is controlled by two dimensionless variables. These are the Rayleigh number Ra which measures the ratio between the driving buoyancy and the damping forces, and the Prandtl number P r which represents the ratio between thermal and viscous diffusion times :

Ra = ρ0 ĝ β∆ Tf d3 κ μ0 ; P r = μ0 ρ0 κ . (4.7) 

Rheological model and parameters

In the present study the behavior of the shear-thinning fluid is described by the Carreau model given by :

μ -μ∞ μ0 -μ∞ = 1 + λ2 Γ nc-1 2 with Γ = 1 2 γij γij . (4.8) 
Here, μ0 and μ∞ are the viscosities at low and high shear rate, (n c < 1) the power-law exponent characterizing the shear-thinning regime and λ the characteristic time of the fluid.

The location of the transition from the Newtonian plateau to the shear-thinning regime is determined by λ, since 1/ λ defines the characteristic shear rate marking the onset of shear-thinning. The infinite shear viscosity, μ∞ , is generally associated with a breakdown of the fluid, and is frequently significantly smaller (10 -3 to 10 -4 times smaller) than μ0 , see Bird et al. [30] and Tanner [35]. The ratio μ∞ /μ 0 will be thus neglected in the following.

The dimensionless effective viscosity is then

µ = μ μ0 = 1 + λ 2 Γ nc-1 2 with λ = λ d2 /κ . (4.9) 
The Newtonian behavior, μ = μ0 , is obtained by setting n c = 1 or λ = 0. For a small amplitude disturbance, the viscosity can be expanded about the hydrostatic solution,

µ = 1 + n c -1 2 λ 2 Γ + 1 2 n c -1 2 n c -3 2 λ 4 Γ 2 + ... (4.10) 
At lowest nonlinear order, a relevant rheological parameter is the 'degree of shear-thinning'

α = dµ dΓ Γ=0 = 1 -n c 2 λ 2 . (4.11) 

Boundary conditions

For the perturbation velocity w, we imposed a realistic boundary conditions on the top and bottom plates : The slabs are rigid, thus enforcing the no-slip boundary conditions (NSBC), which implies

w = Dw = 0 at z = 0, 1. (4.12) 
For thermal boundary conditions, a constant and uniform temperature is assumed on the outer surface of each plate

θ = 0 at z = -Λ, 1 + Λ (4.13) Chapitre 4.
The continuity condition of temperature and heat flux at the interface liquid/solid reads

θ = θ at z = 0, 1, (4.14) 
Dθ = ξ (b,t) D θ at z = 0, 1. (4.15) 
Where D ≡ ∂ ∂z and ξ (b,t) = k(b,t) p k . As Chapman and Proctor [7] and Carriere et al. [5], we have assumed that k(b,t)

p k = κ(b,t) p κ .
Remark : Following Holmedal et al. [14], applying the transformation

u, v, w, p, θ, θb,t , z -→ u, v, -w, p, -θ, -θb,t , 1 -z (4.16) 
to Eqs. (4.4) -(4.6), (4.14) and (4.15), it can be shown that the problem is invariant if ξ b , ξ t -→ ξ t , ξ b . Therefore, the preferred convection pattern, its stability and the heat transfer is not modified if the bottom slab is replaced by the top slab and vice versa.

Linear stability analysis

Critical conditions and critical modes

In the linear theory, u and θ are assumed infinitesimal. The nonlinear terms in (4.4)-(4.5) can be neglected. We obtain :

1 P r ∂∆w ∂t = ∆ 2 w + Ra∆ H θ , (4.17) 
∂θ ∂t = w + ∆θ , (4.18) 
∂ θ ∂t = κ(b,t) p κ ∆ θ. (4.19) 
At this stage, no non-Newtonian effects enter the problem. For equations (4.17)-(4.19), we seek a normal mode solution

w(x, y, z, t) = F 11 (z)f (x, y) exp (s t) (4.20) θ(x, y, z, t) = G 11 (z)f (x, y) exp (s t) (4.21) θ(x, y, z, t) = G11 (z)f (x, y) exp (s t) , (4.22) 
where, s = s r + is i is a complex number and f (x, y) satisfies the two-dimensional Helmoltz equation ∆ H f = -k 2 f . Here k is the norm of the horizontal wavenumber k. Substituting (4.20)-(4.22) into (4.17)-(4.19), leads to the differential equations

s P r -1 D 2 -k 2 F 11 = -k 2 RaG 11 + D 2 -k 2 2 F 11 , (4.23) 
s G 11 = F 11 + (D 2 -k 2 )G 11 , (4.24) 
s G11 = κ(b,t) p κ (D 2 -k 2 ) G11 . (4.25) 
It may be shown easily that s is real. The boundary conditions are :

F 11 = DF 11 = 0 at z = 0, 1 (4.26) 
G11 = 0 at z = -Λ, 1 + Λ, (4.27) 
G 11 = G11 at z = 0, 1 (4.28) 
DG 11 = ξ (b,t) D G11 at z = 0, 1 . (4.29) 
The set of differential equations (4.23)-(4.25) is an eigenvalue problem where s is the eigenvalue and X 11 = (F 11 , G 11 , G11 ) the eigenvector. It can be written

s M • X 11 = L • X 11 . (4.30) 
Actually, Eq. 4.25 can be solved analytically : 

G11 (z) = G 11 (z = 1) sinh k(t) (1 + Λ -z) sinh k(t) Λ ; 1 ≤ z ≤ 1 + Λ , (4.31) 
G11 (z) = G 11 (z = 0) sinh k(b) (Λ + z) sinh k(b) Λ ; -Λ ≤ z ≤ 0 , (4.32) 
DG 11 = ±ξ (b,t) k(b,t) G 11 coth k(b,t) Λ ; z = 0, 1. (4.33) 
The eigenvalue problem (4.23)-(4.24) with the boundary conditions (4.33) is solved using a Chebyshev collocation method. By setting s = 0, one obtains the marginal stability curve Ra(k). The minimum of this curve gives the critical Rayleigh number Ra c and the corresponding wavenumber k c . Ra c allows us to determine the critical ∆ Tf at which the system changes from the hydrostatic state to the state of cellular motion and k c provides information about the horizontal periodicity of the patterns at the onset of convection. We recall that the transition from the rest state to the convective state is independent of the Prandtl number. 

Characteristic time of the instability

Near the onset of convection, the growth rate Re(s) of the perturbation may be approximated using Taylor expansion,

s = ε τ 0 + O ε 2 with ε = Ra -Ra c Ra c . (4.34) 
The characteristic time τ 0 of instability to grow is obtained by evaluating (ds/dε) ε=0 ; s is calculated for different values of ε near ε = 0. Figure 4.4 shows the variation of τ 0 as a function of ξ (b,t) . As it can be observed, the characteristic time of instability increases significantly as the thermal conductivities ratios decrease. This can be explained by the fact that the thermal disturbance evolves on a very long time scale in the solid compared to that of the fluid when the slabs are a very poor heat conductors compared to the fluid.

The following asymptotic limits are found : (i) τ 0 = 0.055 for perfectly heat conducting boundaries (ξ b > 100 and ξ t > 100) ; (ii) τ 0 = 0.1 for one insulating boundary and the other one perfectly conducting ; (iii) τ 0 → ∞ for insulating boundaries.

Weakly nonlinear stability analysis : Pattern selection

As it is known, linear stability analysis yields the onset of instability and the critical wave number. It is unable to give unique predictions for the form or evolution of the resulting patterns at a finite distance above the onset of convection [13] ; this is so because the eigenvalue problem is degenerate, since to one eigenvalue Ra there corresponds an infinite number of possible patterns with the same wave number k [20]. The pattern selection is determined by the nonlinear terms. A weakly nonlinear analysis is adopted as a first approach to investigate nonlinear effects in the competition between rolls and squares. Hexagons configuration is not considered here. Further calculations show that this three-dimensional planform is unstable when the temperature dependence of the viscosity (a) [10] experimental device.
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:~~~Haa The wide region, Φ, corresponds to the Newtonian case and can be bounded approximately by the lines ξ b + ξ t ≤ 2 and ξ t = ξ b + 0.7. The ascertainment that squares are stable in this domain can be rationalized as follows. When the walls are poor heat conductors compared to the fluid, the convection intensity is low and the vertical velocity of the liquid w is small [37]. So, this reflects a weak interaction between sets of rolls that constitute squares knowing that no two rolls predominates the other. As a consequence, only squares planforms are stable.
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By introducing the shear-thinning character, the convection intensity increases [28] [23]

[26] [36], thereby increasing the interaction between the two sets of rolls that constitute squares. As a consequence, one of the two sets of rolls nonlinearly damps out the other and the squares become unstable contrary to rolls which become the preferred form of convection [2]. As illustrated in Fig. 4.5, the region Φ decreases with increasing shear-thinning effects.

With increasing the reduced Rayleigh number ε = (Ra -Ra c )/Ra c , the nonlinear convection terms and non linear viscous terms become stronger, reducing the stability region of squares as illustrated in Figs. 4.6 and 4.7.

These results are consistent with the maximum heat-transfer principle, "the only stable solution is the one of maximum heat transport" [24]. The Nusselt number is defined by

N u = 1 - ∂ θ ∂z z=0 . (4.35)
The overbar denotes the horizontal average. 

Conclusion

In the present study we have investigated a linear and a weakly nonlinear stability poor heat conductors. It is therefore more difficult to detect experimentally the onset of convection than in the case of 'good heat conductors'. This could explain the fact that Ra c found by Kebiche et al. [18] and Darbouli et al. [10] is larger that that predicted by the linear theory.

Finally, we think that the present findings are useful to experimental observations since the finite conductivity of the walls plays a primordial role in the Rayleigh-Bénard convection and it can be a source of divergence between experimental observations and theoretical predictions.

Subsequent developments of the present work will concern the secondary instabilities of the primary pattern described here. Details on the secondary instabilities can be found in Ref. [15]. L'objectif est de déterminer l'influence de la variation non linéaire de la viscosité avec le cisaillement en présence d'une brisure de symétrie par rapport au plan médian induite par la thermodépendance de la viscosité sur la nature de la bifurcation et la compétition entre les motifs de convection dans un réseau carré et dans un réseau hexagonal. Les résultats numériques montrent que la valeur critique du degré de rhéofluidification, α c , á partir de laquelle la bifurcation vers les hexagones est sous-critique décroit lorsque le rapport de viscosité r = µ max /µ min augmente. Par contre pour les carrés et les rouleaux, α c augmente pour des valeurs modérées de r, atteint un maximum, puis décroit. L'analyse de la compétition entre les différents motifs montre que la rhéofluidification combinée avec la thermodépendance de la viscosité tend à augmenter le domaine de stabilité des carrés ou des hexagones, alors qu'en situation où la viscosité est indépendante de la température (symétrie par rapport au plan médian), le caractère rhéofluidifiant favorise et stabilise une convection sous forme de rouleaux.

Abstract :

A linear and weakly nonlinear analysis of convection in a layer of a shear-thinning fluid, with temperature dependent viscosity, between two horizontal plates heated from below is performed. The influence of shear-thinning effects combined with the variation of the rheological parameters with temperature on the nature of the bifurcation and pattern selection is investigated. The rheological behavior of the fluid is described by the Carreau model. The relationship between the viscosity and the temperature is assumed of exponential type. The critical value of the shear-thinning degree, α c , above which the bifurcation is subcritical is determined as a function of the viscosity ratio, for three convection patterns : rolls, squares and hexagons. It is shown that for hexagons, α c decreases with increasing the viscosity ratio. Whereas for squares and rolls, α c increases with increasing r = µ max /µ min at low and moderate viscosity ratio. Analysis of the competition between the different patterns show that shear-thinning effects in presence of thermodependence of viscosity favor formation of squares or hexagons ; whereas shear-thinning effects favor and stabilize two-dimensional rolls in the situation where the viscosity does not dependent on temperature [4].

Introduction

Rayleigh-Bénard convection in a fluid layer which viscosity depends on temperature is an important problem, because of its interest in many industrial and natural systems such the convection in the Earth mantle and in magma chambers. The viscosity, µ, is much lower near the heated lower plate than near the cold upper plate. This spatially varying viscosity modifies the onset of convection. Furthermore, the variation of µ with the temperature, T , causes an additional nonlinear coupling between the velocity and the temperature fields and breaks the up-down reflection symmetry with respect to the midplane of the fluid layer. These features will affect the onset of convection and the selection of the convection pattern.

The effect of a temperature dependent viscosity on the onset of convection was first studied by Palm [14]. Assuming stress-free boundary conditions with a cosine law for the function µ(T ), analytical expressions of the critical Rayleigh number, Ra c , and wavenumber k c are derived. In these expressions, Ra c and k c differ by O (∆µ/µ 0 ) 2 from that obtained with constant viscosity. The Rayleigh number is defined with the viscosity µ 0 evaluated at the mean of the temperature boundaries, and ∆µ is the viscosity variation between the top and bottom boundaries. It is shown that Ra c and k c decrease with increasing the ratio, r, of the viscosities at the top and bottom plates. Busse and Frick [6] assumed, for numerical convenience, a linear dependence of the viscosity on temperature. The onset of convection is determined in the case of rigid boundary conditions. The variation of Ra c and k c as a function of the viscosity ratio r is quite similar to that obtained by Palm [14] using cosine law for µ(T ). As pointed out by Busse and Frick [6], for cosine and linear functions µ(T ), the viscosity at the midplane equals to the average viscosity of the static layer, this is why Ra c decreases with increasing r. Stengel et al. [20] adopted a more realistic law for µ(t) : exponential or superexponential. In this case, the average viscosity exceeds the value used in the definition of Ra c . The critical Rayleigh number Ra c for fluids with exponential and super-exponential viscosity variation is nearly constant at low values of the viscosity ratio, r ; increases at moderate values of r, reaching a maximum at a ratio of about 3000, and then decreases. This behavior is explained by a simple physical argument based on the idea that convection begins first in the sublayer with maximum Rayleigh-number.

Whereas, for cosine and linear laws µ(t), the convection occurs throughout the entire fluid layer. The variation of Ra c with r, was checked by Stengel et al. [20] and White [24] using glycerol and golden syrup respectively as a fluid test. The onset of two-dimensional convection with strongly temperature dependent viscosity has been also considered by Bottaro and Metzener [3], assuming Arrhenius law. In this case, the viscosity ratio depends on the temperature difference across the fluid layer and on the temperature level, while for exponential law, the viscosity ratio depends only on the temperature difference.

According to Solomatov [19], when the viscosity ratio exceeds 3000, a stagnant lid regime occurs, where a thick cold boundary layer develops at the top plate. Such regime was observed for Ra up to 10 8 by Davaille and Jaupart [9].

The effect of weakly temperature-dependent viscosity on the planform near the critical conditions, has been studied by Palm [14], Palm et al. [15], Busse [5]. They found that near the onset, the convection occurs in the form of hexagons, when r is small. If the Rayleigh number is increased slightly, hexagons become unstable to rolls solution. A formula for the range of Rayleigh numbers where the hexagons are stable was proposed by Palm et al. [15].

It is shown that the extent of the interval where the hexagons are stable is proportional to the inverse of the fluid depth to the sixth power. Experimental planform studies performed by Hoard et al. [12] and Stengel et al. [20] confirm qualitatively the results of the weakly nonlinear theory at low values of r. The quantitative disagreement may be due partly to the influence of the lateral walls and also to the fact that the Rayleigh numbers considered are probably outside the domain of validity of the theory.

Besides rolls and hexagons, a new planform of squares was observed at large viscosity variations Stengel et al. [20] and White [24]. The planform selection problem between rolls and squares was analyzed by Busse and Frick [6] with the assumption that the viscosity varies linearly with temperature. They found that near the critical conditions, rolls are preferred for low values of r, but squares are preferred for large values of r. The change from rolls to squares occurs at r ≈ 2. Jenkins [13] used a weakly nonlinear method to investigate the stability of squares. In the case of a linear variations of the viscosity with temperature, he found that the transition from rolls to squares occurs at r ≈ 3.2. The disagreement with Busse and Frick [6] was not clarified in the literature. For exponential fluids, Jenkins [13] found that the transition occurs at r ≈ 3.

To our knowledge, the influence of nonlinear rheology on the pattern selection in the Rayleigh-Bénard convection problem, taking into account the variation of the rheological parameters with the temperature has not been considered in the literature. Shear-thinning fluids are the most kind of non-Newtonian fluids and are characterized by a decreasing viscosity with increasing shear rate. Furthermore, their viscosity may vary strongly with temperature.

The objective of the present paper is to investigate the influence of shear-thinning effects on the nature of the primary bifurcation, the pattern selection and the flow structure, taking into account the dependence of the viscosity on temperature. This paper is organized as follows. We start with the governing equations in Sec. 5.2. The linear stability analysis is presented in Sec. 5.3. In Sec. 5.4, the weakly nonlinear method is briefly presented, then the nature of the bifurcation, pattern selection and flow structure are described. The results are summarized in Sec.5.5.

Basic equations

Hereafter, quantities with hats are dimensional quantities. We consider a layer of shearthinning fluid of depth d confined between two impermeable horizontal plates, infinite in extent, which are perfect heat conductors. The bottom and top plates are kept at constant temperatures, respectively T0 + δ T /2 and T0 -δ T /2, with δ T > 0. The fluid has density ρ, thermal diffusivity κ, thermal expansion coefficient β and viscosity μ0 at zero shear-rate.

In the absence of convection, the heat conducting state is described by

û = 0 and Tcond -T0 = δ T 2 1 - 2ẑ d , (5.1) 
where û is the fluid velocity and T0 the mean of the boundary temperatures. The zaxis is directed upwards, with its origin located at the bottom plate. The stability of the hydrostatic solution is considered by introducing temperature and pressure perturbation as well as a fluid motion. Using the units d2 /κ, d, κ/ d and ∆ T for time, length, velocity and temperature, with κ the thermal diffusivity, the dimensionless perturbation equations are :

∇ • u = 0 , (5.2) 1 P r ∂u ∂t + (u • ∇) u = -∇p + Ra θ e z + ∇ • τ , (5.3) 
∂θ ∂t + u • ∇θ = u • e z + ∇ 2 θ . (5.4) 
Here, e z denotes the unit vector in the vertical direction, u(x, t) the fluid velocity, p(x, t) and θ(x, t) represent the pressure and temperature deviations from their values in the conductive state. The Boussinesq approximations are taken into account, i.e., the variation of the density is neglected except in the buoyancy term. Denote (x, y, z) the components of the position vector x, and (u, v, w) the components of the velocity vector u. The Rayleigh depends on b and on δ T , but not on the temperature level. For a small amplitude disturbance, the viscosity can be expanded about the hydrostatic solution,

µ = µ b [1 -cθ + ...] 1 + n c -1 2 λ 2 Γ + ... (5.11) 
At the second order Taylor expansion of 1 + λ 2 Γ nc-1

2 , a relevant rheological parameter, i.e., the 'degree of shear-thinning' appears :

α = dµ dΓ Γ=0 = 1 -n c 2 λ 2 .
(5.12)

Boundary conditions

For the velocity field, no-slip boundary conditions (NSBC) are considered. For the temperature deviation, the thermal conductivity of the boundaries is assumed much larger than that of the fluid, so that their temperature remains 'fixed'. The boundary conditions are :

θ = u = v = w = 0 on z = 0, 1. (5.13) 

Reduction : elimination of the pressure

The pressure field is eliminated by applying the curl to (5.3). Then, we take curl curl of (5.3). Using the continuity equation, and projecting onto e z , we get the following evolution equations for the vertical vorticity ζ = ∂v/∂x -∂u/∂y and the vertical velocity w :

1 P r ∂ζ ∂t + e z • ∇ × [(u • ∇) u] = µ b ∆ζ + dµ b dz ∂ζ ∂z + e z • ∇ × [∇ • (µ -µ b ) γ] , (5.14 
) 1 P r ∂∆w ∂t -e z • [∇ × ∇ × ((u.∇) u)] = Ra ∆ H θ + µ b ∆ 2 w + (5.15) 2 dµ b dz ∆ ∂w ∂z + d 2 µ b dz 2 ∂ 2 w ∂z 2 -∆ H w + [∇ × ∇ × [∇ • (µ -µ b ) γ]] • e z , ∂θ ∂t + u • ∇θ = w + ∆θ, (5.16) 
where the 'horizontal Laplacian'

∆ H = ∂ 2 ∂x 2 + ∂ 2 ∂y 2 .
From the continuity equation and the vertical vorticity definition, one deduces the horizontal velocity components :

∆ H u = - ∂ 2 w ∂x∂z - ∂ζ ∂y ; ∆ H v = - ∂ 2 w ∂y∂z + ∂ζ ∂x .
(5.17)

The boundary conditions are

θ = w = ∂w ∂z = 0 at z = 0, 1 (5.18) 
(5.19)

Linear stability analysis

Onset of convection

In the linear theory, u and θ are assumed infinitesimal. By neglecting the nonlinear terms in (5.14)-(5.16), one obtains the linear problem : 

1 P r ∂ζ ∂t = µ b ∆ζ + dµ b dz dζ dz , (5.20 
G 11 (z) f (x, y) exp (st) , (5.23) 
with f (x, y) = exp (ik x x + ik y y), k = (k x , k y , 0) the horizontal wavenumber and s = s r +is i a complex number. This leads to the differential equations (5.27)

s P r -1 D 2 -k 2 F 11 = µ b D 2 -k 2 2 F 11 + 2Dµ b D 2 -k 2 DF 11 + D 2 µ b D 2 + k 2 F 11 -k 2 Raθ , (5.24) 
s G 11 = F 11 + (D 2 -k 2 )G 11 , (5.25 
Since any multiple of the eigenvector X 11 is also a solution of (5.27), and for symmetry reasons, X 11 can be normalized such that

G 11 (z = 1/2) = 1. (5.28) 
A spectral Chebyshev method is used to determine the critical Rayleigh number and the critical wave number [4]. The marginal stability curve Ra(k) is obtained by the condition s(Ra, k) = 0. Using 20 Chebyshev polynomials, the first eigenvalue, i.e. that for which the real part is the largest, is calculated with an accuracy of 10 increases rapidly. In this regime, the convection is governed by a sublayer that is more unstable than the full layer Stengel et al. [20].

The results of Busse and Fick [6] can be reproduced by a linear approximation of the exponential law (5.9). Figure 5.2 displays the profiles of the vertical velocity eigenfunction and 

Characteristic time of instability

Near the onset of convection, the growth rate Re(s) of the perturbation may be approximated using Taylor expansion,

s = ε τ 0 + O ε 2 with ε = Ra -Ra c Ra c . (5.29) 
The characteristic time τ 0 for instability to grow can be determined either by evaluating (ds/dε) ε=0 , i.e. s is calculated for different values of ε, near ε = 0, or by following the methodology described by Cross [7], Plaut [16]. Explicitly, it is given by

τ -1 0 = -k 2 c P rRa c G 11 , F ad G 11 , G ad + (D 2 -k 2 )F 11 , G ad , (5.30) 
where (F ad , G adj ) is the adjoint eigenmode solution of the adjoint eigenvalue problem at the critical conditions. Figure 5.3 shows the variation of τ 0 as a function of r. Globally, τ 0 decreases with increasing r. This behavior is significant when r ≥ 100.

Weakly nonlinear stability analysis

Principles and procedure

A standard weakly nonlinear convection analysis using the amplitude expansion method is adopted as a first approach to investigate nonlinear effects [21,23,17,18,10,11] 

(1) 

Pattern selection

On a square lattice, the steady state solutions of (5.35) and (5.36) are the conduction state (A1 = A2 = 0), the roll planform, A 1 = -s/g 1 , A 2 = 0), and the square planform,

A 1 = A 2 = -s/(g 1 + λ 1 )
. The linear stability analysis of each of rolls and squares in the supercritical regime depends on the sign of the ratio (λ 1 -g 1 ) / (λ 1 + g 1 ). For a Newtonian fluid, it is found that the stable planform changes from rolls at low values of r to squares at higher values of r where λ 1 -g 1 λ 1 + g 1 < 0. The changeover occurs at r ≈ 2. This value is different from that calculated by Jenkins [13], who found that rolls are stable until r = 3.2.

Because of the lack of agreement, additional computations were performed by considering a linear variation of the viscosity with temperature. It is found that the roll planform is stable until r ≈ 2 in agreement with Busse and Frick [6] while Jenkins [13] found r ≈ 3.

For shear-thinning fluids, the change from rolls to squares occurs at slightly lower value of r comparatively to a Newtonian fluid as it is indicated in Fig. 5.5 On a hexagonal lattice, the steady states solutions of (5.34) are : conduction state, roll solution and hexagon planform. The linear stability of hexagons and rolls in the supercritical regime depends on the sign of the ratio δ 1 -g 1 2δ 1 + g 1 , represented in Fig. 5.6 as a function of r. The onset of convection is in form of hexagons, in the interval of r, where δ 1 -g 1 2δ 1 + g 1 < 0. For a Newtonian fluid, hexagons are stable in a narrow interval 1.041 < r < 1.089. Outside, this interval, roll planform is the stable solution. For a Carreau fluid, with n = 0.5 and λ = 0.02, hexagons are stable in the interval 1.045 < r < 1.11, slightly larger than for a Newtonian fluid.

Analysis of the competition between rolls and squares and between rolls and hexagons show that the shear-thinning behavior in presence of a thermodependency of viscosity tends to favor formation of squares or hexagons, while in the case where it is assumed that µ does not depend on T , shear-thinning effects favor and stabilize roll patterns. Figure 5.6 is obtained by truncating the series (5.34) at cubic order in amplitude. For a significant deviation from the critical conditions, terms of higher order become and should be taken into account. Weakly nonlinear expansion was then carried out at fifth order in amplitude. Figure 5.7 shows the stability domain of hexagons in the plane (ε, r). It is delimited by continuous lines for a Newtonian fluid and by dashed lines for a Carreau fluid with n = 0.5, λ = 0.02. The stability domain of hexagons enlarges with increasing the deviation from the critical conditions in agreement with Busse [5]. However, it is very interesting to observe that the stability of hexagons becomes significantly larger for a shear-thinning Carreau fluid. 

1 1.1 1.2 1.3 1.4 -4 -2 0 2 4 r δ 1 -g 1 2δ 1 +g 1 (1) (2) 
(2) (2) 

Flow structure : viscosity field

The viscosity distribution and velocity field for a hexagonal cell computed at the fifth order in amplitude are shown in Fig. 5.8 at z = 0.1 and z = 0.9. The lower viscosity occurs at the lower boundary and around the center of the cell. The center of the cell is a region of upwelling warm fluid which spreads out over the upper surface and sinks at the perimeter.

Conclusion

We with increasing the viscosity ratio in the case of hexagonal patterns, whereas α c increases with increasing r at moderate values of r, reaches a maximum, then decreases for rolls and squares. The competition between rolls and hexagons and between rolls and squares was then investigated. It is shown that shear-thinning effects combined with the thermodependency of the viscosity tend to favor squares or hexagons. This tendency becomes more significant with increasing the deviation from the critical conditions. These results may be related to the experimental study of Rayleigh-Bénard convection for shear-thinning fluids (aqueous solutions of xanthan-gum) performed recently by Darbouli et al. [8]. It is shown that with increasing the shear-thinning behavior, the stability domain of three-dimensional patterns (probably hexagons) increases.

Chapitre 6

Experimental investigation of Rayleigh-Bénard convection of shear-thinning fluids in a cylindrical cell pour la solution de Xanthane à 0.12%, les hexagones restent stables pour toute la gamme onset, the shape of the convection pattern, the range of Rayleigh number where hexagons and rolls are stable, and the role of the shear-thinning behavior. Note that, recently we have shown [2], that shear-thinning effects favor and stabilize the convection in form of two-dimensional rolls.

The objective of the present study is to complete Darbouli et al. [8] investigation using shadowgraph visualization method. It will be shown that indeed for sufficiently strong shear-thinning behavior, the convection pattern at onset is in the form of hexagons.

The competition between hexagons and rolls will be studied for different values of the shear-thinning degree and for two aspects ratio : AR = 4 and AR = 3.

The paper is organized as follows. In Sec.6.2, the Rayleigh-Bénard device is described, and the physical and rheological properties of the fluids used are given. In Sec.6.3, the experimental results for Newtonian and shear-thinning fluids are discussed. The summary of the main findings is given in Sec.6.4. about 180 minutes, which is more than 20 times the characteristic time for the instability to grow [2].

Observation of the convective patterns is realized by using standard shadowgraph technique (Fig. 6.2). For this technique and in order to avoid chromatic aberrations in the optical system and the fluid layer, and to avoid also the production of interference fringes that obscure the shadowgraph effect, the light source should be monochromatic and incoherent. Therefore Light Emitting Diode LED was found to be a good compromise. To get a pseudo-point source, a 0.3 mm diam pinhole was glued above the LED surface. This technique is not perfect and has some drawbacks [13], however, it helps to have good results.

For the characteristics of the optical arrangement see table 6.1. To study the rheological behavior of each fluid, AR2000 rheometer was used with a cone and plate geometry characterized by 60 diameter mm and 1 • angle. The rheograms were determined at different temperatures to account for the variation of the viscosity with temperature.

Newtonian fluid

The Newtonian fluid used in this study is an anhydrous Glycerol solution, whose thermo-physical properties can be found in [16]. Based on the data given in [16], Stengel et al. [20] proposed the following relations for undiluted solution of Glycerol in the where C p is the thermal capacity and β the thermal expansion coefficient.

The density ρ is given by the suppliers VWR and the thermal conductivity k p is given by [21] : with ζ 2 0 = 0.149, and Ra c the critical Rayleigh number for an infinite aspect ratio. If we assume that the previous can also be used in the case where the viscosity depends on the temperature, then Ra c (∞) = 1717 [20] and Ra c = 1756. The viscosity ratio at the onset is r = 1.91 (see Fig. 6.6).

ρ =

Convection patterns

Irregular convection patterns are observed at the onset. One may distinguish rolls and squares. According to [12], near the onset of convection, the convective patterns are very sensitive to secondary effects such as the shape of the container, non uniform heating and eventually defects in the boundary conditions [6][9]. Actually, observation of squares and rolls is in agreement with the weakly nonlinear theory [4], [10], where it is shown that the transition from rolls to squares occurs at r = 2, which is very close to our experimental conditions.

With increasing the Rayleigh number, the nonlinear inertial terms become stronger, squares disappear progressively and at Ra ≈ 2 × Ra cexp , only rolls are observed. Note that the rolls has a tendency to form an "arch", they terminate with their axis perpendicular to the side wall. This configuration is well known in the literature [18] [7] and observed in different geometries when the ratio between the thermal conductivities of the sidewalls and that of the fluid is close to 1 [7].

w% Xanthan solution :

At the onset of convection, ∆T c = 5 • C, Ra cexp = 1680 with a viscosity ratio of r = 1.12. Regular hexagons are formed when the convection set in (Fig. 6.11.1), in agreement with the weakly nonlinear theory ( [3] [10]). The hexagons remained stable up to ε = 1. This first step is followed by a transition zone, hexagons-rolls, which extends until ε = 1.54. From this value until the end of the experiment, stable rolls are observed. The transition zone between stable hexagons and stable rolls is very complex and time-dependent. Different types of instabilities seem to occur such as zigzag and cross-roll instability. 0.12 w% Xanthan solution : At the onset of convection ∆T c = 9.4 • C, Ra cexp = 1655 with a viscosity ratio r = 1.24. Hexagonal patterns are formed when the convection set in, and remained stable until ε = 1.07. From ε = 1.07, rolls appear (Fig. 6.13.2) and a coexistence region extends to ε = 1.21 as shown in Figs 6.13.2-6.13.4. From ε = 1.21, hexagons regain their stability until the end of the experiment. This restabilization of hexagons is termed "re-entrance" in the literature [19], [15]. It was observed in an experiment done by [19],

where a compressible fluid (SF6) is used. We believe that in our case, this re-entrance phenomenon is induced by the shear-thinning behavior. We propose the following possible mechanism : The decrease of the viscosity with the temperature breaks the up-down symmetry. The shear-rate near the bottom wall, where the fluid is less viscous, is larger than that near the upper wall where the fluid is more viscous. As the viscosity decreases with increasing the shear rate, the asymmetry between the top and bottom walls will be strengthened. In other words, shear-thinning effects increase non-Boussinesq effects.

Our results dealing with the stability domain of hexagons and rolls are summarized in Fig. 6.14

Conclusion

Experimental investigation of Rayleigh-Bénard convection in a cylindrical cell for shearthinning fluids was performed. A shadowgraph method was used to visualize the convection Concerning the pattern selection, for the Glycerol solution, which viscosity is strongly thermodependent, a mixture of squares and rolls is observed at the onset of convection, in agreement with the weakly nonlinear theory. From Ra ≈ 1.5 × Ra cexp , the convection is in the form rolls.

For the Xanthan solutions, hexagonal patterns are observed at the onset in agreement with the weakly nonlinear theory.

-For the thin fluid layer (d = 15 mm, AR = 4), the hexagons remained stable over all the range of Rayleigh numbers considered, i.e., until Ra ≈ 2.5 × Ra cexp .

-For the thick layer (d = 20 mm, AR = 3), the "reentrance" hexagons phenomenon is observed. This result is new, in the sense that the strength of non-Boussinesq effects is weak (the fluids are weakly thermodependent). We believe that the "reentrance" hexagons is due to shear-thinning effects. A possible mechanism is proposed. 

Conclusion et perspectives

Une étude théorique et expérimentale de la convection de Rayleigh-Bénard pour un fluide non-Newtonien rhéofluidifiant a été effectuée. L'objectif principal a été de déterminer l'influence du caractère rhéofluidifiant qui se caractérise par une décroissance non linéaire de la viscosité lorsque le cisaillement augmente, sur la nature de la bifurcation primaire, les motifs de convection, la structure de l'écoulement et le transfert de chaleur.

Généralement, les fluides non-Newtoniens ont une viscosité qui peut dépendre assez fortement de la température, en outre selon l'état de surface de la paroi, un glissement peut apparaître à l'interface fluide paroi. La conductivité thermique de la paroi peut être beau- 

  poussée d'Archimède et les deux effets dissipatifs : Ra = ρ0 ĝ β∆ Tf d3 κ μ0 . (1.1) Dans l'équation précédente, ρ0 est la densité du fluide, ĝ l'accélération due à la gravité, β le coefficient de dilatation thermique, ∆ Tf la différence de température entre la couche de fluide adjacente à la paroi chaude et la couche de fluide adjacente à la paroi froide, d la distance entre les plaques, κ la diffusivité thermique du fluide et μ0 la viscosité dynamique.

  Cependant, les fluides rencontrés dans les secteurs industriels ou en géophysique sont pour la grande majorité des fluides non-Newtoniens. Leurs viscosités peuvent montrer des comportements complexes et peuvent être très sensibles aux conditions physiques qui règnent dans l'environnement de fluide : température, cisaillement, etc... . Le caractère rhéologique le plus commun à l'ensemble des fluides non-Newtoniens, est le caractère rhéofluidifiant qui se traduit par une décroissance non linéaire de la viscosité avec le cisaillement. Ces fluides sont présents dans une large gamme de domaines industriels tels que les domaines pétrolier, cosmétique, géophysique, agroalimentaire etc... . L'étude effectuée ici s'intéresse à la convection de Rayleigh-Bénard dans des fluides supposés purement rhéofluidifiants. Il s'agit de comprendre comment la non linéarité de la loi rhéologique intervient dans la convection. Cependant, les fluides non-Newtoniens rencontrés dans les procédés industriels ou dans des systèmes naturels ont une viscosité qui peut dépendre fortement de la température. En plus, selon l'état de surface de la paroi, des phénomènes physico-chimiques peuvent induire un glissement à la paroi . Enfin, souvent pour des raisons de commodité expérimentale, les parois ont une conductivité thermique finie, parfois inférieure à celle du fluide. Notre étude doit donc rendre compte de ces différents aspects. Elle comporte une partie théorique et une partie expérimentale. La partie théorique permet de fixer un certain nombre de repères qui permettent d'analyser les résultats expérimentaux. Pour ce faire, nous nous proposons tout d'abord d'étudier dans le Chapitre II, l'influence d'un glissement aux parois sur l'instabilité de Rayleigh-Bénard. Dans la première partie de ce chapitre, nous présentons une brève revue bibliographique sur les travaux de recherche effectués pour étudier cette instabilité thermo-convective dans les cas des fluides Newtoniens et non-Newtoniens. Dans la deuxième partie et moyennant une analyse linéaire de stabilité, le nombre de Rayleigh critique et le nombre d'onde critique seront déterminés en fonction de la longueur de glissement et seront comparés aux données existantes dans la littérature. La troisième partie est une analyse faiblement non linéaire.

de

  Rayleigh Bénard pour un fluide rhéofluidifiant dans une géométrie cylindrique. Deux rapports d'aspect sont considérés AR = 4 et AR = 3. Après avoir présenté le dispositif expérimental, les fluides utilisés et leur caractérisation rhéologique, nous décrirons les résultats expérimentaux obtenus par ombroscopie. L'ensemble de ces travaux ont été effectués dans le cadre d'un programme de recherche blanc ANR intitulé ThIM : Instabilités Thermoconvectives dans des fluides Micro-structurés). Bibliographie [1] H. Bénard. Les tourbillons cellulaires dans une nappe liquide. Méthodes optiques d'observation et d'enregistrement. J. phys. (Paris), 10(1) :254-266, 1901. (Cité en page 3.) [2] E. Bodenschatz, W. Pesch, and G. Ahlers. Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech., 32(1) :709-778, 2000. (Cité en page 4.) [3] A.V. Getling. Rayleigh-Bénard convection : structures and dynamics, volume 11. World Scientific, 1998. (Cité en page 4.) [4] E.L. Koschmieder. Bénard cells and Taylor vortices. Cambridge University Press, 1993.

Chapitre 2 .

 2 conditions (SFBC) which are not quite physical, and moreover the existing results are contradictory. The second point concerns the competition between different patterns of convection near the criticality. Only Albaalbaki & Khayat[1] dealt with this problem, using SFBC.The purpose of the present work is to revisit the Rayleigh-Bénard problem for shearthinning fluids using more general boundary conditions, with both slip and stress, i.e., Navier-type boundary conditions with a slip parameter. Note that, for Newtonian fluids with a Navier slip boundary conditions, only the linear stability of the Rayleigh-Bénard problem has been studied by Webber[START_REF] Webber | The destabilizing effect of boundary slip on Bénard convection[END_REF] and Kuo & Chen[30]. Here, a general weakly nonlinear analysis is performed. The calculation of the saturation coefficient at the cubic order allows to determine the nature of the bifurcation depending on the slip and rheological parameters. The study of the stability of fixed points of amplitude equations allows one to analyze the competition between different convection patterns near onset. Then,
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 21 General equations and parametersHereafter, quantities with hats are dimensional quantities. We consider a layer of shearthinning fluid of depth d confined between two horizontal plates, infinite in extent, which are perfect heat conductors. The bottom and top plates are kept at constant temperatures, respectively T0 + δ T /2 and T0 -δ T /2, with δ T > 0. The fluid has density ρ, thermal diffusivity κ, thermal expansion coefficient β and viscosity μ0 at zero shear-rate. Because of the thermal expansion, the temperature difference between the two plates induces a vertical density stratification. Heavy cold fluid is above a light warm fluid. For small δ T , the fluid remains at rest and the heat is transferred by conduction. The hydrostatic solution for the pressure P and the temperature profile are :
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 325 By canceling the residual (sM • X 11 -L • X 11 ) at the (N + 1) collocation points (Gauss-Lobatto points) z j = 1 2 cos πj N + 1 , for j = 0, 1, ..., N , one obtains a matrix eigenvalue problem solved using the QZ algorithm with Matlab. The marginal stability curve Ra(k) is obtained by the condition s(Ra, k) = 0. Using 20 Chebyshev polynomials, the first eigenvalue, i.e. that for which the real part is the largest, is calculated with an accuracy of 10 -4 . The minimum of the marginal stability curves gives the critical Rayleigh number Ra c and critical wave number k c . Figure 2.1 displays the variation of Ra c and k c as a function of the dimensionless slip parameter. These results are in very good quantitative agreement with those obtained by Webber [61] and Kuo & Chen[30]. The critical Rayleigh number decreases with increasing slip parameter L s , from 1707.7 (NSBC) to 27 π 4 /4 = 657.SFBC). The slip has therefore a destabilizing effect. The critical wavenumber decreases with increasing L s , from 3.116 (NSBC) to π/ √ 2 = 2.221 (SFBC). Additional properties of the critical mode are given by F 11 and G 11 at the critical conditions. They are displayed in figure 2.2 for different values of L s . Here, F 11 (z) and G 11 (z) are real-valued functions.
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 2122 Figure 2.1: Critical Rayleigh number (a) and critical wavenumber (b) as function of the slip parameter.

Figure 2 . 3 :

 23 Figure 2.3: Adjoint functions at critical conditions, and different values of L s : (1) L s = 0 (NSBC) ; (2) L s = 0.1 and (3) L s = 10 4 very close to SFBC.

Figure 2 .

 2 4 shows the variation of τ 0 as a function of L s for different values of P r. It increases from τ 0 = 1 + 1.9544 P r 38.4429 P r (2.46)

Figure 2 . 4 :( 7 )

 247 Figure 2.4: Characteristic time of instability as a function of L s for different Prandtl numbers. (1) P r = 1 ; (2) P r = 1.5 ; (3) P r = 2 ; (4) P r = 3 ; (5) P r = 5 ; (6) P r = 10 ; (7) P r = 100.

  , and A p (t) the amplitude of the perturbation. According to the normalization of the eigenfunctions used in the linear theory, A p (t) represents the amplitude of the thermal perturbation measured at the midplane. Configuration with N = 1 corresponds to rolls, N = 2 to squares and N = 3 to hexagons.

Figure 2 . 5 :

 25 Figure 2.5: Modification of the conductive temperature profile at the critical conditions for P r = 10 and different values of L s : (1) L s = 0 NSBC ; (2) L s = 0.1 and (3) L s = 10 4 very close to SFBC.

Figure 2 . 6 :

 26 Figure 2.6: First harmonic of the fundamental at the critical conditions for P r = 10 and different values of L s : (1) L s = 0 NSBC ; (2) L s = 0.1 and (3) L s = 10 4 very close to SFBC.

Figure 2 . 7 :

 27 Figure 2.7: Modes generated in a square lattice at order A 1 A 2 , at the critical conditions, for P r = 10, and different values of L s : (1) L s = 0 (NSBC) ; (2) L s = 0.1 and (3) L s = 10 4 very close to SFBC.

1 are

 1 determined for different critical sets (Ra c , k c , L s , P r) and different values of the degree of shear-thinning α. The integrals in (2.99) are evaluated numerically by means of Clenshaw and Curtis method.

Figure 2 . 9 :

 29 Figure 2.9: Contribution of the nonlinear inertial terms (a) and nonlinear viscous terms (b) to the first cubic Landau constant, vs the slip parameter L s for different values of the Prandtl number : (1) P r = 1, (2) P r = 5, (3) P r = 10.
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 210211 Figure 2.10: Cubic Landau constant vs L s at P r = 10 and different values of α : (1) α = 0, i.e. Newtonian case ; (2) α = 6.25 × 10 -6 ; (3) α = 10 -4 ; (4) α = 2.25 × 10 -4 ; (5) α = 3.0625 × 10 -4 ; (6) α = 4 × 10 -4 .
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 2212 Figure 2.12 shows the variation of α c as a function of P r for NS and SFBC. In this latter case,

Figure 2 . 13 :

 213 Figure 2.13: Critical value of the degree of shear-thinning α c above which the bifurcation to hexagons becomes subcritical, vs Prandtl number.

Figure 2 . 14 :

 214 Figure 2.14: For rolls (R), squares (S) and hexagons (H), critical value of the degree of shear-thinning α c , vs the slip parameter L s for P r = 10.

  Figure 2.15 shows the variation of the ratios gI 1 (ε)/g I 1 (ε = 0) and g N N 1 (ε)/g N N 1 (ε = 0) vs the reduced Rayleigh number ε = Ra/Ra c -1.The contribution to g 1 of the non Newtonian viscous terms increases more rapidly than that of the inertial terms. At ε = 0, the saturation coefficient g 1 = g I 1 -αg N N 1

Figure 2 . 16 :

 216 Figure 2.16: For squares and hexagons, ratios (a) λ 1 /g 1 and (b) δ 1 /g 1 vs the reduced Rayleigh number, at P r = 10 and different values of α in the case of NSBC. (1) α = 0, Newtonian fluid, (2) α = 0.1 α c , (3) α = 0.2 α c , (4) α = 0.3 α c , (5) α = 0.4 α c , (6) α = 0.5 α c , (7) α = 0.6 α c and (8) α = 0.7 α c .

Figure 2 .

 2 Figure2.17: Curves, (α, ε 0 ), that delimit roughly the domain of validity of the weakly nonlinear approach at O A 7 , for rolls.

Figure 2 . 18 :

 218 Figure 2.18: Variation of the Nusselt number vs reduced Rayleigh number for a Newtonian fluid at P r = 6.8, with NSBC. Dotted lines : computations at O A 3 (1), O A 5 (2), O A 7 (3). (•) Schluter et al.[START_REF] Schluter | On the stability of steady finite amplitude convection[END_REF]'s relation, (⋆) . Plows[START_REF] Plows | Some numerical results for two-dimensional steady laminar Bénard convection[END_REF], ( ) numerical solution of (2.17) and (2.18) based on the spectral code of Plaut & Busse[START_REF] Plaut | Low-Prandtl-number convection in a rotating cylindrical annulus[END_REF].
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 219 Figure 2.19: For rolls at P r = 10, n c = 0.5 and NSBC. (a) Nusselt number vs the reduced Rayleigh number for different values of α. (1) α = 0, Newtonian fluid, (2) α = 0.1 α c , (3) α = 0.2 α c , (4) α = 0.3 α c , (5) α = 0.4 α c , (6) α = 0.5 α c , (7) α = 0.6 α c and (8) α = 0.7 α c . (b) Nusselt number vs the reduced Parmentier Rayleigh number ε. (continuous line) Newtonian fluid, (o) α = 0.1 α c , (⋄) α = 0.2 α c , (△) α = 0.3 α c , ( ) α = 0.4 α c , (+) α = 0.5 α c , (×) α = 0.6 α c .

Figure 2 .

 2 Figure 2.20(a) shows the viscosity distribution for a Carreau fluid with α = 0.2 α c and ε = 0.2, in the case of NSBC. For comparison, the case of SFBC, discussed by Albaalbaki & Khayat [1] is shown in figure 2.20(b). With NSBC, the interior of the roll is practically isoviscous with µ ≈ 1. The viscosity is minimal at the wall where the shear-rate is maximal. It is weakly reduced at the four corners of the roll because of the elongational rate γzz =-γxx , displayed in figure2.20(d). The computation of the viscous dissipation indicates that this one is weak at the interior of a roll where the viscosity is high. In agreement with Parmentier[START_REF] Parmentier | A study of thermal convection in non-newtonian fluids[END_REF], it is found that the buoyant potential energy is dissipated by the viscosity in the region of high shear-rate. Note that the average viscosity defined by(2.126) 

Figure 2 . 20 :

 220 Figure 2.20: Viscosity distribution over a roll for Carreau fluid with α = 0.2 α c , P r = 10, ε = 0.2, in the case of (a) NSBC and (b) SFBC. Continuous lines denote streamlines. (c) Contours of γ xz 2 and (d) γ xx
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 91 Determination of the characteristic time τ 0 It is assumed that F 11 and G 11 are continuous around Ra c :
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 3 amplitude Rayleigh-Bénard convection in a shear-thinning fluid between plates of finite conductivity : rolls versus squares Contents 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2.1 General equations and parameters . . . . . . . . . . . . . . . . . 71 3.2.2 Rheological model and parameters . . . . . . . . . . . . . . . . . 73 3.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.4 Reduction : elimination of the pressure . . . . . . . . . . . . . . . 74 3.3 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . 76 3.3.1 Critical conditions and critical modes . . . . . . . . . . . . . . . 76 3.3.2 Characteristic time of the instability . . . . . . . . . . . . . . . . 79 3.4 Weakly nonlinear stability analysis . . . . . . . . . . . . . . . . 83 3.4.1 Principles and procedure . . . . . . . . . . . . . . . . . . . . . . . 83 3.4.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 85 3.5.1 Bifurcation to rolls . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.5.2 Bifurcation to squares . . . . . . . . . . . . . . . . . . . . . . . . 87 3.5.3 Pattern selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.6 Solutions at higher order . . . . . . . . . . . . . . . . . . . . . . 91 3.7 Heat transfer, flow structure and viscosity field . . . . . . . . 93 3.7.1 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.7.2 Viscosity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.9 appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.9.1 Adjoint mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.9.2 Modification of the conductive temperature profile at order A 2 . 99Résumé : En utilisant une analyse faiblement non linéaire, nous avons déterminé dans le chapitre précédent la valeur critique du degré de rhéofluidification à partir duquel la bifurcation devient sous-critique. Nous avons aussi étudié l'influence de la rhéofluidification sur la sélection des motifs de convection au voisinage des conditions critiques, en tenant compte d'un éventuel glissement à la paroi. L'objectif du présent chapitre est de compléter cette étude en analysant l'influence de la conductivité finie des parois horizontales et de la rhéofluidification sur la compétition entre les rouleaux et les carrés. Cette étude a été motivée par des divergences existantes dans la littérature. Le nombre de Rayleigh critique Ra c et le nombre d'onde critique k c sont déterminés en fonction du rapport de la conductivité thermique des plaques à celle du fluide ξ. La nature de la bifurcation pour les rouleaux et les carrés est ensuite étudiée et la valeur critique de α c est déterminée en fonction de ξ. Enfin, la stabilité des rouleaux et des carrés a été étudiée en fonction de ξ et des paramètres rhéologiques. Le présent chapitre est rédigé sous forme d'article intitulé "Finite amplitude Rayleigh-Bénard convection in a shear-thinning fluid between plates of finite conductivity : rolls versus squares" et publié dans " Physical Review E (Phys. Rev. E)", 01/2016; 92(6 -1) : 063017. DOI : 10.1103/P hysRevE.92.063017Abstract :A linear and weakly nonlinear analysis of convection in a layer of a shear-thinning fluid, with temperature dependent viscosity, between two horizontal plates heated from below is performed. The influence of shear-thinning effects combined with the variation of the rheological parameters with temperature on the nature of the bifurcation and pattern selection is investigated. The rheological behavior of the fluid is described by the Carreau model. The relationship between the viscosity and the temperature is assumed of exponential type. The critical value of the shear-thinning degree, α c , above which the bifurcation is subcritical is determined as a function of the viscosity ratio, for three convection patterns : rolls, squares and hexagons. It is shown that for hexagons, α c decreases with increasing the viscosity ratio. Whereas for squares and rolls, α x increases with increasing r at low and moderate viscosity ratio. Analysis of the competition between the different patterns show that shear-thinning effects in presence of thermodependence of viscosity favor formation of squares or hexagons ; whereas shear-thinning effects favor and stabilize two-dimensional rolls in the situation where the viscosity does not dependent on temperature[3].

. 3 )

 3 When ξ is low, a large part of ∆ T occurs across the plates, and remains only a small part ∆ Tf of ∆ T , acting as the driving force for the convection. When ∆T f , exceeds a critical value, the buoyancy force overcomes, the dissipative effects, i.e., viscous and heat diffusion, the convection sets in and a so-called convective patterns emerge. The stability of the hydrostatic solution is considered by introducing temperature and pressure perturbation as well as a fluid motion. Boussinesq approximation is adopted, i.e., the temperature dependence of the fluid properties can be neglected except for the temperature induced density difference in the buoyant force that drives the flow. The heat production due to viscosity is neglected. Here and in what follows, the quantities with hat (.) are dimensional. Distances are scaled with d, velocity with κ/ d, where κ is the thermal diffusivity of the fluid, time with d2 /κ (characteristic time scale of thermal diffusion), temperature with

47 )

 47 ) with k = k 2 + sκ/κ p . Hence, the eigenvalue problem (3.35)-(3.37) can be restrained to the fluid domain, i.e. Eqs (3.35) -(3.36), with the boundary conditions DG 11 = ±ξ kG 11 coth kΛ ; z = 0, 1. (3.46) The eigenvalue problem (3.35)-(3.36) with the boundary conditions (3.46) is solved using a Chebyshev collocation method. The functions, F 11 and G 11 are expanded in series of Chebyshev polynomial series of order N . The 2 (N + 1) unknowns are determined at the Gauss-Lobatto nodes Since k depends on s, an iterative process is implemented. The eigenvector X 11 is normalized such that G 11 (z = 1/2) = 1. (3.48) The marginal stability curve Ra(k) is determined by the condition s = 0. The minimum of the marginality stability curve gives the critical Rayleigh number Ra c and k c respectively. Figure 3.1 displays the variation of Ra c and k c as a function of the ratio ξ of the thermal conductivity of the plates to that of the fluid in the case of NSBC and SFBC. The dimensionless thickness of the plates is fixed at Λ = 1. These results are in very good quantitative agreement with those obtained by Sparrow et al. [33], Proctor[29],
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 333 Fig. 3.3, where contours of the temperature perturbation are represented for three situations : (i) ξ = 0.1, a poor heat conductor, (ii) ξ = 1, k = kp and (iii) ξ = 10 3 , "a perfect heat conductor". The contours shape and the convection scale at ξ = 0.1 (Fig. 3.3a) are fundamentally different from those at ξ = 10 3 , "perfect heat conductor", (Fig. 3.3c).
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 331 Figures 3.2a and 3.2b show that the vertical velocity is strongly damped with decreasing the thermal conductivity of the wall. This is a consequence of the reduction of the tempe-

Figure 3 . 2 :

 32 Figure 3.2: Eigenfunctions at critical conditions and different values of ξ : (1) ξ = 10 -3 ; (2) ξ = 10 -1 ; (3) ξ = 10 0 and (4) ξ = 10 3 in the case of NSBC (a-c) and SFBC (b-d).
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 3334 Figure 3.3: Temperature perturbation contours for three values of the thermal conductivity ratio ξ : (a) ξ = 0.1, poor heat conductor, (b) ξ = 1, kp = k and (c) ξ = 1000, "perfect heat conductor". In this latter case, the temperature perturbation in the liquid relaxes at the boundaries.

  Substituting expansions (3.55) and (3.56) into (3.21)-(3.23) yields after some algebra the differential equation for any F n,2m+n , G n,2m+n and Gn,2m+n , which are solved sequentially beginning from n = 1 and m = 0. The problem with harmonic index n = 1 and amplitude order m = 0 is the linear stability problem (3.35)-(3.37). The problem n = 0, m = 1 is O(A 2 ) correction of the conductive temperature profile due to nonlinear interactions (Appendix 3.9.2). The problem n = 2, m = 0 is the first harmonic of the fundamental mode which manifests at order O(A 2 ). The problem n = 1, m = 1 is O(A 3 ) correction to the fundamental mode. It contains non homogeneous terms due to nonlinear interactions. The application of the Fredholm alternative allows the determination of the first Landau constant which appears in the time derivative of w, θ and θ.
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 5837 Figure 3.7 shows the variation of α c as a function of ξ at P r = 10, for NSBC and SFBC.

Figure 3 . 5 :

 35 Figure 3.5: Contribution of the nonlinear inertial terms (a) and nonlinear viscous terms (b) to the first cubic Landau constant, as a function of the ratio ξ at P r = 10. Curves (1) and (2) correspond to NSBC and SFBC respectively.

Figure 3 . 6 :

 36 Figure 3.6: Cubic Landau constant as a function of ξ in the case of NSBC with P r = 10 and different values of α : (1) α = 0, i.e. Newtonian case ; (2) α = 1×10 -5 ; (3) α = 5×10 -5 ; (4) α = 10 -4 ; (5) α = 2.5 × 10 -4 ; (6) α = 3.5 × 10 -4 ; (7) α = 5 × 10 -4 .
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 3738 Figure 3.7: For rolls, critical value of the degree of shear-thinning α c , vs the thermalconductivities ratio ξ at P r = 10 for (a) NSBC and (b) SFBC.
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 39 Figure 3.9: Critical value of the degree of shear-thinning α c = dµ dΓ Γ=0 c as a function of Prandtl number. Case of square patterns. (1) NSBC with ξ = 10 3 ; (2) SFBC with ξ = 10 3 ; (3) NSBC with ξ = 10 -3 ; (4) SFBC with ξ = 10 -3 .

Fig. 3 .

 3 10 as a function of ξ for different values of α. When |λ 1 | > |g 1 |, χ 2 is positive and the squares are unstable. According to [10], the interaction between the two sets of rolls is too strong and one of the two sets of rolls nonlinearly damps out the other. When |λ 1 | < |g 1 |, χ 2 < 0 and the squares are stable. The critical value of ξ at which the planform of convection changes from square-cell solution (ξ < ξ c ) to two-dimensional roll solution (ξ > ξ c ) is given as a function of α in Fig. 3.11. In the Newtonian case, i.e.

Figure 3 .

 3 Figure 3.11 is obtained by truncating the series (3.56) to the first Landau constant,i.e. at cubic order in A. For a significant deviation from the critical conditions, terms of higher order become large and should be taken into account. A weakly nonlinear expansion was then carried out up to fifth-order in amplitude. Figure3.12 shows the evolution of ξ c versus the reduced Rayleigh number, ε, for different values of the constant time of the
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 3103113 Figure 3.10: Ratio of the cross saturation coefficient λ 1 to the saturation coefficient g 1 versus the ratio of the thermal conductivities ξ for different values of the shear-thinning degree α in the case of NSBC. (1) α = 0 ; (2) α = 2.5 × 10 -5 ; (3) α = 5.625 × 10 -5 ; (4) α = 10 -4 ; (5) α = 1.5625 × 10 -4 .

Figure 3 .

 3 Figure 3.13 shows for a two-dimensional roll solution computed at the fifth-order, the evolution of N u-1 as a function of ε for different values of ξ. The Nusselt number decreases with decreasing ξ, because of the decrease of the perturbation heat flux at the boundaries.This is illustrated for instance by Fig.3.16 in Appendix 3.9.2, where (dG 0,2 /dz) at z = 0, 1 decreases with decreasing ξ. When ξ → 0, i.e. for poorly conducting plates, we recover the situation of fixed heat flux, the temperature gradient does not fluctuate, ∂θ/∂z = 0 and N u → 1. The convection in the fluid layer will not contribute to the overall heat transfer. For ξ = 1000, to represent the case of perfectly conducting walls, our results are in good agreement with the numerical solution of (3.21) and (3.22) obtained using the spectral code of[28], at least up to ε = 0.25. The influence of shear-thinning effects is illustrated by the dotted curves. The Nusselt number increases with increasing shear-thinning effects (Pierre & Tien[26], Liang & Acrivos[23], Ozoe & Churchill[25], Lamsaadi et al.[21], Aloui et al.[1], Bouteraa et al.[3]). For low values of ξ, the influence of shear-thinning effects is reduced. Figure3.14 shows N u -1 as a function of ε for rolls and squares at two values of
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 3313 Fig 3.15(a). The interior of the roll is practically isoviscous with µ ≈ 1. The viscosity is minimal at the wall where the shear-rate is maximal. It is weakly reduced at the four corners of the roll because of the elongational rate γzz = -γxx .

Figure 3 . 14 :

 314 Figure 3.14: Nusselt number as a function of the reduced Rayleigh number ε in the case of NSBC with P r = 10 and for two values of ξ. (a) Newtonian fluid, (b) shear-thinning fluid with n = 0.5 and λ = 0.02. The Continuous lines correspond to rolls and the dashed lines to squares.
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 315 Figure 3.15: Flow structure and viscosity distribution over a roll (a, ξ = 1000) and a square (b, ξ = 0.1) at ε = 0.2, with NSBC, α = 0.2α c and P r = 10. For the square, the horizontal velocity field is shown at z = 0.8. (c) Vertical velocity profile in the square cell center for NSBC and SFBC. .

Chapitre 3 .

 3 figure), the viscosity is weakly reduced. The viscosity is minimal at locations (dark region in the figure) where the shear rates γxz and γyz are maximal.
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 3163 Figure 3.16: Modification of the conductive temperature profile at the critical conditions for P r = 10 and different values of ξ : (1) ξ = 10 -3 ; (2) ξ = 10 -1 ; (3) ξ = 10 0 and (4) ξ = 10 3 in the case of NSBC (a) and SFBC (b).
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 21 General equations and parametersWe consider a horizontal layer of a shear-thinning fluid of height d confined between two horizontal plates that are infinite in extent and which have a thickness Λ d, where Λ is of order unity. The outer surface of the bottom and top plates are kept at constant temperatures respectively T0 +∆ T /2 and T0 -∆ T /2, with ∆ T > 0. The fluid has density ρ, thermal conductivity k, thermal coefficient expansion (at constant pressure) β and viscosity μ0 at zero shear rate. The top slab has a thermal conductivity kt p and a thermal diffusivity κt p . The corresponding quantities for the bottom slab are denoted kb p and κb p . Here and in what follows, (t) and (b) refer to the top and bottom and the quantities with hat (.) are dimensional. Because of the thermal expansion, the temperature difference between the two plates, induces a vertical density stratification. Heavy cold fluid is above a light warm fluid. For small ∆ T , the fluid remains motionless and the heat is transferred by conduction, with a linear temperature profile across the fluid layer.

  with k(b,t) = k 2 + sκ/κ (b,t) p . Hence, the eigenvalue problem (4.23)-(4.25) can be restrained to the fluid domain, i.e. Eqs (4.23) -(4.24), with the boundary conditions

Figure 4 .

 4 1 displays the variation of Ra c and k c as a function of the ratio ξ b for different values of ξ t . The dimensionless thickness of the plates is fixed at Λ = 1. As expected, the critical conditions are the same if the upper plate is exchanged with the lower one. We recover the following asymptotic limits : (i) Ra c = 1707.7 and k c = 3.12 for two perfectly conducting boundaries, (ii) Ra c = 720 and k c → 0 for two insulating boundaries and (iii) Ra c = 1296 and k c = 2.55 for one insulating boundary and the other one perfectly conducting. When either ξ b or ξ t or both are low, the wavelength of the convection becomes larger and the critical Rayleigh number Ra c is reduced. Mathematically, the decrease of Ra c is caused by the weakening of the thermal boundary conditions (4.28),(4.29) for the temperature fluctuations θ as ξ b or ξ t or both decrease from 10 3 to 10 -3 . These results are in very good quantitative agreement with those obtained by Sparrow et al. [34], Proctor [29], Jenkins and Proctor [17], Carriere et al. [5] and Cerisier et al. [6]. From a physical point of view, it means that when a thermal fluctuations occurs in the fluid close to infinitely conducting boundaries, it easily relaxes. However, when either ξ b or ξ t or both have a low conductivity, the wall temperature fluctuations can persist and become a supplementary source of instability for the bulk, and then decreasing Ra c . The experimental values of Ra c and k c found by Kebiche et al. [18] and Darbouli et al. [10] are different from those predicted by the linear theory. In Figure 4.2, the eigenfunctions, F 11 , G 11 and G11 are presented for different combinations of the conductivities of the upper and lower plates. Note that the symmetry of F 11 is little influenced by the thermal boundary conditions. As indicated above, the temperature fluctuation doesn't relax at the wall when ξ t,b < 1. With decreasing ξ b,t , the fluctuation of the temperature gradient decreases. When, ξ t,b << 1, ∂θ/∂z → 0 and the situation of fixed heat flux at the boundary is recovered. Contours of the temperature perturbation are represented in Fig. 4.3, for three situations. The first one (Fig.4.3a) represents the classical case where the boundaries are "good heat conductor". The second situation (Fig.4.3b) corresponds to the experimental device used by Kebiche et al. [19]. The horizontal plates are made of Polycarbonate with ξ t = ξ b = 0.25. The third situation (Fig.4.3c) corresponds to the experimental device used by Darbouli et al. [10] where ξ t = 2 and ξ b = 201.6. As we can see, the coupling between the temperature perturbation θ in the fluid and that in the horizontal plates θ is specific for each situation. With decreasing ξ b,t , the horizontal scale of the convection motion increases and the vertical diffusion rate becomes greater than the horizontal one.

Figure 4 . 1 :

 41 Figure 4.1: Critical Rayleigh number (a) and critical wavenumber (b) as function of ξ b for different values of ξ t . The thick black line corresponds to the case ξ t = ξ b . The symbols are the theoretical values of Ra c and k c corresponding to experimental devices used in the literature : ( ) Kebiche et al. [19], (•) Darbouli et al. [10] and ( * ) Hassan et al [12].

Figure 4 . 2 :

 42 Figure 4.2: Eigenfunctions (a) F 11 (vertical velocity) and (b) G 11 , G11 (temperature perturbation) for different values of ξ b , ξ t : (1) ξ b = ξ t = 0.1 ; (2) ξ b = ξ t = 0.25 ; (3) ξ b = 201.6, ξ t = 2 ; (4) ξ b = ξ t = 10 3 .

Figure 4 . 3 :

 43 Figure 4.3: Temperature perturbation contours for three Rayleigh-Bénard situations : (a) ξ b = ξ t = 1000 "good heat conductor", (b) ξ b = ξ t = 0.25 corresponding to Kebiche et al. [19] experimental device and (c) ξ b = 201.6 ; ξ t = 0.25 corresponding to Darbouli et al.

Figure 4 . 4 :

 44 Figure 4.4: Characteristic time of instability vs thermal conductivities ratio ξ b at Pr = 10 in the case of ξ t = ξ b ; ξ t = 10 -3 ; ξ t = 10 -1 ; ξ t = 1 and ξ t = 10 3 .

Figure 4 .

 4 Figure 4.5 shows, at critical conditions, the stability regions of square planforms in the (ξ b , ξ t )-space coordinate system at P r = 10 for a Newtonian fluid and Carreau fluids with n = 0.5 and different values of the dimensionless constant time λ. Squares are stable in the region bounded by the axis and the stability curve. Rolls are stable outside this region. In agreement with Riahi [32], stability curves are symmetric about the line ξ b = ξ t .

Figure 4 .

 4 8 shows the variation of the Nusselt number as a function of ε for different thermal boundary considered in laboratory experiments. The largest Nusselt number is obtained for perfectly heat conducting slabs. For ξ t << 1 and ξ b << 1, Nu is weakly larger for square-cell solution than for two-dimensional roll solution, but the difference is systematic. Shear-thinning effects reduce the viscous friction at the wall, which leads to an increase of the convection intensity and therefore of the Nusselt number as it is illustrated by Fig.4.9. However, the enhancement of the heat transfer by shear-thinning effects is significantly reduced for poorly heat conducting plates.

Figure 4 . 5 :

 45 Figure 4.5: Stability boundary of squares in the (ξ b , ξ t )-space coordinate system at P r = 10 for a Newtonian fluid (λ = 0) and Carreau fluids with n = 0.5 two values of λ : domain Ψ, λ = 0.01 and domain Γ, λ = 0.02 .

Figure 4 . 6 :

 46 Figure 4.6: Stability boundary of squares in the (ξ b , ξ t )-space coordinate system for a Newtonian fluid at P r = 10 and three different values of the reduced Rayleigh number ε. (thick line) ε = 0 ; (thin line) ε = 0.05 ; (dotted line) ε = 0.1.

Figure 4 . 7 :

 47 Figure 4.7: Stability boundary of squares in the (ξ b , ξ t )-space coordinate system for a Carreau fluid with n = 0.5 and λ = 0.01 at P r = 10 and two different values of ε.
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 4849 Figure 4.8: Nusselt number versus reduced the reduced Rayleigh number, ε, for a Newtonian fluid with different thermal boundary conditions used in laboratory experiments : (1) ξ t = ξ b = 0.25 (Kebiche et al. [18]) ; (2) ξ t = ξ b = 0.4 (LeGal and Croquette [21] ; (3) ξ t = 2 and ξ b = 201.6 (Darbouli et al. [10]) ; (4) ξ t = ξ b = 10 3 . (dashed line) : the planform convection is a square ; (continuous line) : the planform convection is a two dimensional roll.
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F 11 =

 11 ) with D the derivative with respect to z and k the norm of the vector k. The boundary conditions are DF 11 = G 11= 0 at z = 0, 1 . (5.26) It is easy to show that the principle of exchange of stability still holds, i.e. s i = 0, when the viscosity profile is not uniform. The set of differential equations (5.24)-(5.25) is an eigenvalue problem where s is the eigenvalue and X 11 = (F 11 , G 11 ) the eigenvector. It can be written s M • X 11 = L • X 11 .

- 4 .

 4 The minimum of the marginal stability curves gives the critical Rayleigh number Ra c and critical wave number k c . In the case of exponential fluids, figure 5.1 displays the variation of the critical Rayleigh number for the onset of convection, Ra c , as well as the critical wave number, k c , as a function of the viscosity ratio r for no-slip boundary conditions (NSBC) and stress-free boundary conditions (SFBC). This later was added only as a validation test. Our results are in very quantitative agreement with those obtained by Stengel et al. [20]. As indicated by these authors, three different ranges of the viscosity ratio can be distinguished : (i) At low viscosity ration, 0 ≤ r ≤ 1.5, Ra c and k c are almost constant ; (ii) at moderate viscosity ratio, 1.5 ≤ r ≤ 8, Ra c increases with increasing r and k c is nearly constant or decreases slightly for SFBC. The viscosity variation in the moderate viscosity ratio stabilizes the onset of convection ; (iii) for large viscosity ratio, Ra c decreases with increasing r and k c
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 5152 Figure 5.1: Exponential fluid. Critical Rayleigh number (a) and critical wavenumber (b) as function of the viscosity ratio. (1) NSBC, (2) SFBC.

Figure 5 . 4 :

 54 Figure 5.4: Critical value of the shear-thinning degree, α c , versus the viscosities ratio r at P r = 10 for the convection patterns considered : (1) rolls ; (2) squares ; (3) hexagons.

Figure 5 . 5 :

 55 Figure 5.5: Graph of λ 1 -g 1 λ 1 + g 1 as a function of the viscosity r for an exponential viscosity function. (1) Newtonian fluid ; (2) Carreau fluid with n = 0.5, λ = 0.02.
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 56 Figure 5.6: Graph of δ 1 -g 1 2δ 1 + g 1 as a function of the viscosity r for an exponential viscosity function. (1) Newtonian fluid ; (2) Carreau fluid with n = 0.5, λ = 0.02.
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 57 Figure 5.7: Stability region of hexagons bounded by continuous line curves for a Newtonian fluid (1) and by dashed line for a Carreau fluid (2) with n = 0.5, λ = 0.02.

Figure 5 . 8 :

 58 Figure 5.8: Viscosity variation across a hexagonal cell for a Carreau fluid with n = 0.5, λ = 0.02 at ε = 0.1 on the plane (a) z = 0.9 and (b) z = 0.1.

  have investigated the influence of shear-thinning on the Rayleigh-Bénard convection for a Carreau shear-thinning fluid, taking into account the variation of the viscosity with temperature. The dependence of the viscosity on temperature was assumed of exponential type. The critical Rayleigh number Ra c for the onset of convection was determined as a function of the viscosity ratio, r, across the fluid layer. Initially, Ra c increases with r reaches a maximum at r ≈ 3000, then decreases. These results are in very good agreement with those given in the literature for a Newtonian fluid, since the viscosity of the fluid at zero shear rate is constant. The nature of the bifurcation to rolls, squares and hexagons was determined using a weakly nonlinear analysis. It is shown that the critical value of the shear-thinning degree α c , above which the bifurcation becomes subcritical decreases Chapitre 5.

  Résumé : Nous présentons une étude expérimentale de la convection de Rayleigh-Bénard d'un fluide rhéofluidifiant dans une géométrie cylindrique. Deux rapports d'aspect (rapport entre le rayon de la plaque horizontale et la hauteur de la cavité cylindrique) sont considérés AR = 4 et AR = 3. Les motifs de convection sont visualisés par ombroscopie. Les fluides utilisés sont des solutions de Xanthane à deux concentrations 0.1% et 0.12% en masse. Leur viscosité varie faiblement avec la température. Pour l'ensemble des expériences effectuées, la convection démarre sous forme d'hexagones. La transition hexagones-rouleaux a été ensuite étudiée. Pour la plus petite épaisseur de la cavité cylindrique, d = 15 mm, et

6. 2 Figure 6 . 1 :

 261 Figure 6.1: Cross-section of the experimental apparatus : the actual convective layer lies between two sapphire plates .

Figure 6 . 2 :

 62 Figure 6.2: Optical arrangement.

Figure 6 . 3 :

 63 Figure6.3: Shear viscosity µ of anhydrous Glycerol versus temperature T . The stars are our measurements. The blue continuous line is the exponential fit Eq.6.5 and the dashed green line is the ratio r between viscosities at upper and lower walls defined in Eq. (6.6).

  1257 [kg/m 3 ] (6.3) k = 0.286 [W/(m. • C)] (at T = 24 • C) (6.4) The variation of Glycerol viscosity versus temperature is presented in Fig.6.3 (red stars & blue curve). This figure clearly shows that the Glycerol is a strong thermodependent fluid.The variation of the viscosity with the temperature can be fitted by an exponential law :µ(T ) = µ 0 (T ref ) × exp(-b × (T -T ref )) with b = 0.083 • C -1 . (6.5)Here, b measures the sensitivity of the viscosity to variation of temperature and T ref a reference temperature (T ref = 24 • C)). At this temperature, the viscosity at zero shear rate is µ 0 = 0.956 P a.s.

2 3. 27 × 10 - 5 bFigure 6 . 5 :

 22710565 Figure 6.5: The dashed curve corresponds to 0.12% Xanthan concentration and the solid curve corresponds to 0.1% Xanthan concentration.
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 324 Experimental results 6.3.1 Newtonian fluid : Glycerol 6.3.1.1 Onset of convectionThe onset of convection is determined by the appearance of a pattern on the shadowgraph screen. The critical temperature difference is ∆T = 7.8 • C, the critical Rayleigh number is Ra cexp = 1719. Theoretically, the critical Rayleigh number depends on the aspect ratio. According to[5] [17], Ra c is given by Ra c = π 2 AR) 2 Ra c (∞) + Ra c (∞), (6.12)
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Figure 6 . 6 :

 66 Figure 6.6: Ra c versus viscosity ratio r for the exponential fluid. Solid line represents our numerical results and star ( * ) represents the value of Ra c corresponding to Glycerol.

Figure 6 . 7 :

 67 Figure 6.7: Shadowgraphic image of the appearence of convection for Glycerol at the onset of convection.
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 68 Figure 6.8: Shadowgraphic image of the appearence of convection for Glycerol for : (1) Ra = 1.5 × Ra cexp ; (2) Ra = 2 × Ra cexp .
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 69 Figure 6.9: Patterns convection for 0.1% Xanthan solution and AR = 4. (1) : ε = 0 ; (2) : ε = 0.66 ; (3) : ε = 0.9 ; (4) : ε ≥ 1.
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 610 Figure 6.10: Hexagon patterns for 0.12% Xanthan solution and AR = 4. (1) : ε = 0 ; (2) : ε = 0.5 ; (3) : ε = 0.7 ; (4) : ε ≥ 1.

Figure 6 .

 6 Figure 6.11: Roll-hexagon transition for 0.1% Xanthan solution and AR = 3 (Part I). (1) : ε = 0 ; (2) : ε = 1 ; (3) : ε = 1.4 ; (4) : ε = 1.44 ;(5) : ε = 1.45 ; (6) : ε = 1.46 ; (7) : ε = 1.48 ; (8) : ε = 1.5 ; (9) : ε = 1.52.

Figure 6 .

 6 Figure 6.12: Roll-hexagon transition for 0.1% Xanthan solution and AR = 3 (Part II). (10) : ε = 1.52 ; (11) : ε = 1.52 ; (12) : ε = 1.53 ; (13) : ε = 1.53 ;(14) : ε = 1.54 ; (15) : ε = 1.6 ;
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 613 Figure 6.13: Patterns convection for 0.12% Xanthan solution and AR = 3. (1) : ε = 0 ; (2) : ε = 1.07 ; (3) : ε = 1.1 ; (4) : ε = 1.11 ;(5) : ε = 1.2 ; (6) : ε = 1.3.
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 614 Figure 6.14: Sketch of the stability domains for rolls and hexagons for both 0.1% and 0.12% Xanthan solutions. (a) : AR = 4 and (b) : AR = 3.

  coup plus importante ou plus faible que celle du fluide, selon les systèmes considérés. Ces différents aspects ont été pris en considération dans notre étude. L'approche théorique est basée sur une analyse linéaire et faiblement non linéaire de la stabilité d'une couche de fluide horizontale, d'étendue supposée infinie et délimitée verticalement par deux parois. La paroi inférieure est chauffée et la paroi supérieure est refroidie. Le comportement rhéologique du fluide est décrit par le modèle de Carreau. À l'état de base, le fluide est au repos et sa viscosité est constante. Le comportement non-Newtonien n'intervient pas au niveau de l'analyse linéaire. Les conditions de démarrage de la convection sont alors identiques à celles d'un fluide Newtonien. Nous avons calculé le nombre de Rayleigh critique et le nombre d'onde critique pour une large gamme de paramètres de glissement, de conductivité thermique de la paroi et de thermodépendance. Nos résultats sont en très bon accord avec ceux existant dans la littérature. Globalement, le glissement réduit le frottement à la paroi, la convection démarre alors plus tôt, c'est-à-dire à un nombre de Rayleigh plus faible qu'en situation d'adhérence. La longueur d'onde, donc la taille des motifs dans le plan horizontal est plus grande. Une conductivité thermique de la paroi plus faible que celle du fluide, réduit aussi le nombre de Rayleigh critique et fait augmenter la longueur d'onde par comparaison au cas où les plaques sont supposées isothermes (conductivité thermique infinie de la paroi). La décroissance de la viscosité avec la température est exprimée par une loi exponentielle. Elle fait introduire un paramètre supplémentaire dans l'analyse de stabilité, à savoir le rapport r entre la viscosité à la paroi froide et celle à la paroi chaude. Lorsque r ≤ 3000, Ra c augmente avec r. A partir de r ≈ 3000, la convection s'effectue dans une sous couche de fluide adjacente à la paroi chaude et se traduit par une décroissance de Ra c lorsque r augmente. L'analyse faiblement non linéaire permet de comprendre l'influence de la non linéarité supplémentaire introduite par le comportement rhéologique sur la nature de la bifurcation et les motifs de convection au voisinage des conditions critiques. Intuitivement, l'introduction d'une perturbation d'amplitude finie peut réduire suffisamment la viscosité du fluide pour faire démarrer la convection à un nombre de Rayleigh inférieur à celui prévu par la théorie linéaire. Nous avons calculé la valeur critique du degré de rhéofluidification, α c , à partir duquel, la bifurcation devient sous-critique. En présence de glissement, l'intensité de convection est plus faible qu'en situation d'adhérence, il n'est donc pas étonnant de trouver que α c est plus important en situation de glissement qu'en situation d'adhérence. De la même façon, une conductivité thermique faible de la paroi, réduit l'intensité de convection et donc conduit à une augmentation de α c . En présence de la thermodépendance de la viscosité, α c dépend du rapport de viscosité r et du motif de convection. Une faible thermodépendance réduit α c et favorise une bifurcation sous critique pour les hexagones. Dans le cas d'une convection sous formes de rouleaux ou carrés, α c augmente d'abord avec r passe un maximum ensuite diminue. Pour ce qui est motifs de convection au voisinage des conditions critiques, nous avons démontré dans un premier temps, qu'en situation extrême de parois isothermes avec une viscosité non thermodépendante, la convection ne pouvait se faire que sous formes de rouleaux. La non linéarité du comportement rhéologique favorisait et stabilisait les rouleaux contrairement à ce qui était indiqué dans la littérature. Ce résultat est aussi valable en présence de glissement à la paroi. Une conductivité thermique faible de la paroi (paroi isolante) favorise une bifurcation sous forme de carrés. Les hexagones sont instables. Du fait de la non linéarité du modèle rhéologique, la valeur critique, ξ c , du rapport de conductivité ξ = k paroi /k f luide , à partir duquel on passe d'une convection avec des carrés ξ < ξ c à une convection avec des rouleaux, ξ > ξ c diminue lorsque le degré de rhéofluidification augmente. La compétition rouleaux-carrés et rouleaux-hexagones a été ensuite étudiée en tenant compte de la thermodépendance de la viscosité. Contrairement au cas non-thermodépendant, les résultats montrent que le caractère rhéofluidifiant a tendance à favoriser une convection sous forme de motifs tri-dimensionnels plutôt que des rouleaux. Ce résultat est encore plus significatif, lorsqu'on s'éloigne des conditions critiques, en menant l'analyse faiblement non linéaire au moins à l'ordre quintique en amplitude. Dans ces différentes situations, l'analyse du transfert de chaleur pour les différents, montre que le nombre de Nusselt est maximal pour la structure la plus stable en accord avec le principe de transfert de chaleur maximal. Des expériences ont été effectuées pour déterminer la forme des motifs de convection au voisinage et loin des conditions critiques où les termes non linéaires d'inertie commencent à devenir importants. Une cellule cylindrique a été construite pouvant avoir deux rapports d'aspect AR = (rayon de la paroi horizontale / hauteur du fluide) = 3 et AR = 4. Les motifs de convection sont visualisés par ombroscopie. Les fluides utilisés sont des solutions de Xanthane à deux concentrations différentes. Les conditions critiques d'apparition de la convection sont globalement en accord avec l'analyse théorique. Pour ce qui est des motifs de convection, des résultats originaux sur la compétition et la zone de transition rouleauxhexagones ont été obtenus. Pour le rapport d'aspect AR = 4, et pour le fluide le plus rhéofluidifiant, les hexagones restent stables jusqu'à un nombre de Rayleigh Ra ≈ 2.5 × Ra cexp . Pour le rapport d'aspect AR = 3, le phénomène de restabilisation des hexagones est mis en évidence. Un mécanisme possible basé sur le caractère rhéofluidifiant est proposé. Pour terminer, nous proposons quelques perspectives -L'approche théorique a été effectuée au voisinage des conditions critiques, en supposant que la convection est dominée par le mode fondamental. Cependant, lorsqu'on s'écarte des conditions critiques, d'autres modes deviennent instables et peuvent conduire à des instabilités secondaires, telles que les instabilités zigzag ou Eckhauss. -Analyse fortement non linéaire de la compétition rouleaux-hexagones. On devrait déterminer et caractériser les zones de transition rouleaux-hexagones. -D'un point de vue expérimental, les essais expérimentaux devraient se poursuivre pour d'autres concentrations de Xanthane avec éventuellement des rapports d'aspect plus élevés. -Il serait aussi intéressant d'effectuer simultanément des mesures de vitesse et de la visualisation par ombroscopie. Convection de Rayleigh-Bénard pour des fluides rhéofluidifiants : Approche théorique et expérimentale Résumé : Une étude théorique et expérimentale de la convection de Rayleigh-Bénard pour un fluide non-Newtonien rhéofluidifiant a été effectuée. L'approche théorique consiste en une analyse linéaire et faiblement non linéaire de l'instabilité thermo-convective d'une couche horizontale d'un fluide non-Newtonien, d'étendue supposée infinie dans le plan horizontal, chauffée par le bas et refroidie par le haut. Le comportement rhéofluidifiant est décrit par le modèle de Carreau. Pour ce modèle, les conditions critiques d'instabilité du régime conductif sont les mêmes que pour un fluide Newtonien. L'objectif de l'analyse faiblement non linéaire consiste à déterminer d'une part la valeur critique du degré de rhéofluidification à partir duquel la bifurcation primaire devient sous critique et d'autre part l'influence de rhéofluidification sur la sélection du motif de convection au voisinage des conditions critiques, en tenant compte d'un éventuel glissement à la paroi, d'une conductivité thermique finie de celle-ci et de la thermodépendance de la viscosité. Les conséquences sur le champ de viscosité et l'évolution du nombre de Nusselt sont caractérisées. L'approche expérimentale consiste à visualiser par ombroscopie les motifs de convection qui se développent dans une cellule cylindrique. Deux rapports d'aspect ont été considérés : AR = 3 et AR = 4. Les fluides utilisés sont des solutions aqueuses de Xanthan à différentes concentrations. L'influence du degré de rhéofluidification combiné avec la thermodépendance de la viscosité sur le domaine de stabilité des rouleaux et des hexagones ainsi que sur la zone de transitions rouleauxhexagones est mise en évidence. Mots clés : Fluide non-Newtonien, rhéofluidifiant, convection de Rayleigh-Bénard, motif de convection Rayleigh-Bénard convection in shear-thinning fluids : Theoretical and experimental approaches Abstract : Theoretical and experimental study of Rayleigh-Bénard convection in a non-Newtonian shear-thinning fluid was performed. The theoretical approach consists in a linear and a weakly nonlinear of thermo-convective instability in a horizontal layer of a non-Newtonian fluid, assumed infinite in extent, heated from below and cooled from above. The rheological behavior of the fluid is described by the Carreau model. For this rheological model, the critical threshold is the same as for a Newtonian fluid. The objective of the weakly non linear analysis is to determine on one hand the critical value of the shear-thinning degree above which the bifurcation becomes
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								A 2 p G 02 (z). Equations
							p=1
	for F 02 and G 02 are obtained by setting n = 0, m = 1 in (2.62) and (2.63). The factor of
	A 2 E 0 arising from the nonlinear inertial term in (2.62) vanishes, therefore
		F 02 = 0.					(2.64)
	As shown in Plaut et al.[44], this symmetry property is linked with the fact that the
	separatrices between rolls are straight. The correction of the conductive temperature profile
	satisfies						
	(D 2 -2s)G 02 = 2 [G 11 (DF 11 ) + F 11 (DG 11 )] ,	(2.65)
	with						
	G 02 = 0 at z = 0 and z = 1.		(2.66)
	As for the linear problem, equation (2.65) with the boundary conditions (2.66) is solved
	numerically using a spectral Chebyshev collocation method. Figure 2.5 shows the modifi-
	cation of the conductive temperature profile at order A 2 for three values of L s . The warm
	upflow and cold downflow fluid tend to reduce the vertical temperature gradient of the
	basic state. For L s → ∞, the numerical results are in very good quantitative agreement with the analytical solution
	G 02 (z) = -	3π 4	sin(2πz) for SFBC.		(2.67)

  11 D 3 F 11 -DF 11 D 2 F 11 , (2.68) F 22 + (S 2 -2s) G 22 = F 11 (DG 11 ) -G 11 (DF 11 ) .

	r is also produced by the interaction of the
	fundamental (2.48) with itself, through the quadratic nonlinear terms of the perturbations
	equations (2.17). Equations for F 22 and G 22 are obtained by setting n = 2, m = 0 in (2.62)
	and (2.63) and extracting the factor of A 2 p E 2kp.r in the nonlinear terms. We obtain	
	S 2 2 -2(s/P r) S 2 F 22 -4 k 2 c Ra G 22 = (2/P r) F (2.69)
	The boundary conditions on F 22 and G 22 are identical to the ones on F 11 and G 11 , equation
	(2.28). The results are shown in figure 2.6. For SFBC, we have	
	F 22 = G 22 = 0	(2.70)
	in agreement with the numerical results obtained at large L s .	

  .72) Since F 11 and G 11 are real, (F A 1 A 2 , G A 1 A 2 ) and FA 1 A 2 , ḠA 1 A 2 are identical and real. They satisfy

  11 (DG 11 ) . A 1 A 2 , G A 1 A 2 ) are the same as the ones on (F 11 , G 11 ). The functions F A 1 A 2 and G A 1 A 2 are shown in figure 2.7 for different values of L s . The coupling between the modes exp(ik c x) and exp(ik c y) is significant and it is more important in the situation of wall adhesion than for SFBC. In this latter case, at the critical conditions,
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  11 (DG 11 ) + G 11 (DF 11 ) . Boundary conditions on F ApAq , G ApAq and FApAq , ḠApAq are the same as the ones on (F 11 , G 11 ). In figure 2.8, the functions F ApAq , G ApAq , FApAq and ḠApAq are plotted at the critical conditions, P r = 10 and different values of the slip parameter. For SFBC, at the

	The functions FApAq and ḠApAq satisfy					
	D 2 -3k 2 c D 2 -3k 2 c -2s ḠApAq + FApAq = 2F 11 (DG 11 ) -G 11 (DF 11 ) , 2 -(2s/P r) D 2 -3k 2 c c Ra ḠApAq = FApAq -3 k 2 c F 11 (DF 11 ) , (3/P r) F 11 D 3 F 11 -k 2	(2.81)
	critical conditions,									
	F ApAq = -	9 π 3 104	1 +	3 P r	sin(2πz) , G ApAq = -	3π 52	9 +	1 P r	sin(2πz),	(2.82)
	FApAq = -	81π 3 5000	3 +	11 P r	sin(2πz) , ḠApAq = -	3π 2500	121 +	27 P r	sin(2πz).
											(2.80)

  The same iterative procedure is used to evaluate the coupling coefficients λ 1 and δ 1 , by replacing X 13 in (2.131)-(2.133) by X13 and X13 respectively.

	.133)
	Iterations between (2.132) and (2.133) are then performed until convergence.

  γ[1] ij . As a result, t ij given by equation (2.138) has the symmetry properties of γ[2] ij . Hence, t xx , t yy , t zz , t xy are even, xy are odd and t xz , t yz are odd. Therefore, [N V ] given by equation (2.137) is odd, i.e.

	∂ ∂ z t xx ,	∂ ∂ z t yy ,	∂ ∂ z t zz ,	∂ ∂ z t

Table 6 .

 6 2: Carreau rheological parameters of Xanthan solutions

	Concentration =0.1 %	
	µ 0 (P a.s)	0.427
	λ (s)	9.857
	n	0.378
	α = (1-n)λ 2 2 b ( • C -1 ) Concentration =0.12 %	9.82 × 10 -6 2.2 × 10 -2
	µ 0 (P a.s)	0.820
	λ (s)	17.15
	n	0.378
	α = (1-n)λ 2	

in the case of NSBC.
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 Chapitre 5.number Ra and the Prandtl number P r are Ra = ρ0 ĝ β δ T d3 κ μ0 ; P r = μ0 ρ0 κ .

(5.5)

The reference viscosity, μ0 , is the zero-shear rate viscosity evaluated at T0 , i.e. the mean of the boundary temperatures.

Rheological model and parameters

The fluid is assumed to be purely viscous and shear-thinning. The viscous stress-tensor

the rate-of-strain tensor, of second invariant

We assume a Carreau-law fluid where the viscosity depends exponentially on temperature,

with µ 0 = μ0 / μ0 and µ ∞ = μ∞ / μ0 the viscosities at low and high shear rate, b the thermodependency coefficient which measures the sensitivity of viscosity to variation in temperature, n c < 1 the shear-thinning index, λ the characteristic time of the fluid. The characteristic shear rate for the onset of shear-thinning is determined by 1/ λ. The infinite shear viscosity, μ∞ , is generally significantly smaller (10 3 to 10 4 times smaller) than μ0 , [2,22]. The ratio μ∞ /μ 0 will be thus neglected in the following. The dimensionless effective viscosity is then 

(3) The planform function which describes the convection pattern is

where |k p | = k c , and A p (t) the amplitude of the perturbation. Configuration with N = 1 corresponds to rolls, N = 2 to squares and N = 3 to hexagons. The weakly nonlinear analysis is applied to each of these patterns.

In hexagonal lattice, the time evolution of the amplitudes A p (t) is given by the Stuart-Landau equations. At cubic order, In a square lattice, the amplitude equations are

Following Bouteraa et al. [4], it can be shown that the saturation coefficient g 1 and the cross-saturation coefficients λ 1 and δ 1 can be written as the sum of contributions of three terms, g I 1 , λ I 1 , δ I 1 arising from the nonlinear inertial terms,

arising from the nonlinear viscous terms, and g T 1 , λ T 1 , δ T 1 arising from the thermodependency of the viscous terms :

Globally, τ 0 decreases with increasing the viscosity contrast. Such variation becomes more significant when r ≥ 100 and for large Pr.

Nature of the bifurcation

The numerical results show that : (i) g I 1 , λ I 1 and δ I 1 are negative, i.e. the nonlinear inertial terms favor a supercritical bifurcation as expected ;

1 are positive, i.e., shear-thinning effects favor a subcritical bifurcation as indicated in the literature [1,4] ;

(iii) δ T 1 is negative, i.e. the thermodependency favors a subcritical bifircation for hexagons. For squares and rolls, δ T 1 and λ T 1 are positive for low values of r and negative for sufficiently large values of r.

For hexagons, the bifurcation is subcritical when g 1 + δ 1 > 0 and supecritical when g 1 + δ 1 < 0. The critical value of the shear-thinning degree, α c , above which the bifurcation is subcritical is given by

Similar expressions can be written for rolls and square patterns. Figure 5.4 shows in the (α, r) plane, the boundaries between subcritical and supercrtical bifurcation for hexagons, rolls and squares.

In the case of a Newtonian fluid, α = 0, hexagonal pattern may form at subcritical Rayleigh number when the viscosities ratio r > 1.3. This limit value decreases with increases shearthinning effects (curve 3 in Fig. 5.4). Subcritical bifurcation to squares may happen when r ≥ 9 with α = 0. Curve 2 in Fig. 5.4 shows the influence of shear-thinning effects. Theoretically, subcritical bifurcation to rolls is possibler for strong viscosity contrast or strong shear-thinning effects (curve 1). 

Abstract :

We present an experimental study of Rayleigh Bénard convection in a cylindrical cell for shear-thinning fluids. Two aspect ratios, AR = radius / thickness of the cell, are considered, AR = 4 and AR = 3. The convection patterns are visualized by a shadowgraph method. The fluids used are Xanthan gum solutions with two weight concentrations : 0.1% and 0.12%. Their viscosity varies weakly with the temperature. At the onset of convection, hexagons are observed. The transition hexagons rolls is then studied. For the thin fluid layer and 0.12w% Xanthan gum solution, hexagons remain stable over all the range of Rayleigh numbers considered. For the thick layer and 0.12w% Xanthan gum, a "reentrant" hexagons phenomenon is observed. This result is new and a possible mechanism is proposed.

Introduction

Recently, Darbouli et al. [8] investigated experimentally, using the MRI technique, the Rayleigh-Bénard convection for shear-thinning fluids in a cylindrical cell with an aspect ratio AR = radius / thickness of the cell = 3. The fluids used are aqueous solutions of Xanthan gum at different concentrations. These fluids are shear-thinning and weakly elastic. At low concentration, the ratio, r, of the viscosity at the top boundary to that at the bottom at the onset of convection, is close to 1. In this situation, the convection occurs in the form of rolls. With increasing concentration, three-dimensional structures (probably hexagons) are observed at onset, which transform into rolls at higher Rayleigh number (≈ 2.5 × Ra c ). Based on the numerical and experimental works done for a Newtonian fluid, see for instance [12], [17] and [15], Darbouli et al. [8] attributed this result to non Oberbeck Boussinesq effects. Indeed, when the concentration increases, the viscosity increases, the temperature difference and therefore the viscosity ratio at onset increases. However, some points remain unclear, such as the nature of the primary bifurcation at the Once the constant b has been determined, we can calculate the viscosity ratio r between viscosities at top and bottom boundaries :

The evolution of r as a function of ∆T is shown in Fig. 6.3 (dashed curve). Note that the viscosity ratio plays a fundamental role in the pattern selection [20] [22] [4].

For each rheological measurement, it is important to change the fluid sample in order to that Glycerol absorbs mosture from the atmosphere, since it is hygroscopic..

Shear-thinning fluids

The shear-thinning fluids used in our experiments are aqueous polymeric solutions of Xanthan-gum obeying to the Carreau rheological model. Aqueous solutions were prepared at two concentrations, 0.1% and 0.12%, by adding Xanthan powder in small amounts, which were measured by an electronic high precision weighing scale, into deionized water.

A transparent and homogeneous solution is obtained after few hours of gentle stirring. The rheology of Xanthan solution typically evolves on time, and especially when the Xanthan concentration is high. It is therefore necessary to allow the solution to reach equilibrium.

THen, viscosity of the fluid is only shear-dependent.

The thermo-physical properties of 0.1% Xanthan solution have been measured by means of a calorimeter (µ dsc3 -SET ARAM ). In the range of temperature [20 • C, 60 • C], the following relations can be obtained :

)

As the thermo-physical properties of Xanthan solutions vary little in the range of concentrations aforementioned, we have only measured these properties for the concentration of 0.1%. The density and the thermal expansion coefficient were supposed identical with that of pure water [11]. At T = 24 • C, ρ and β are given as follows by [14] : 

where µ 0 and µ ∞ are the viscosities at low and high shear rate, b the sensitivity of the viscosity to variation of temperature, n c < 1 the shear-thinning index and λ the characteristic time of the fluid. The location of the transition from the Newtonian plateau to the shear-thinning regime is determined by λ, since 1/λ defines the characteristic shear rate for the onset of shear-thinning. Generally, µ ∞ ≪ µ 0 [1]. The rheological parameters of the Xanthan solutions used are given in table 6.2. Concerning the temperature-dependent viscosity of Xanthan solutions, the variation of r as a function of ∆T is shown in Fig. 6.5.

The thermodependency of the Xanthan aqueous solutions used are much weakes to that of Glycerol. 

Convection pattern

At the onset of convection, the pattern convection is in the form of hexagons (Fig. 6.9.1).

At Ra ≈ 1.5 × Ra cexp , the nonlinear inertial terms become stronger and rolls begin to invade progressively hexagons (Fig. 6.9.2). At Ra ≈ 2 × Ra cexp , only rolls are observed. As previously, the rolls end with their axis perpendicularly to the side wall (Fig. 6.9.4). Using equation (6.12), the theoretical Rayleigh number is Ra c = 1750. The difference between Ra cexp and Ra c suggests that the bifurcation is subcritical.

Convection pattern

Only hexagonal patterns are observed for all the range of Rayleigh number (Ra ≈ 2.5 × Ra cexp ) considered in our experiments. By comparison with the 0.1 w% Xanthan solution, it seems that with increasing shear-thinning effects, the stability domain of hexagons becomes larger (Fig. 6.10).

Influence of the aspect ratio

Similar experiments were performed using a cylindrical cell with an aspect ratio AR = 3, the thickness of the fluid layer is 20 mm.