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Summary

In statistical physics, the macroscopic information of interest for the systems under consideration can be
inferred from averages over microscopic configurations distributed according to probability measures µ
characterizing the thermodynamic state of the system. Due to the high dimensionality of the system (which
is proportional to the number of particles), these configurations are most often sampled using trajectories of
stochastic differential equations or Markov chains ergodic for the probability measure µ, which describes
a system at constant temperature. One popular stochastic process allowing to sample this measure is the
Langevin dynamics. In practice, the Langevin dynamics cannot be analytically integrated, its solution is
therefore approximated with a numerical scheme. The numerical analysis of such discretization schemes is
by now well-understood when the kinetic energy is the standard quadratic kinetic energy.

One important limitation of the estimators of the ergodic averages are their possibly large statistical
errors. Under certain assumptions on potential and kinetic energy, it can be shown that a central limit theorem
holds true. The asymptotic variance may be large due to the metastability of the Langevin process, which
occurs as soon as the probability measure µ is multimodal.

In this thesis, we consider the discretization of modified Langevin dynamics which improve the sampling
of the Boltzmann–Gibbs distribution by introducing a more general kinetic energy function U instead of the
standard quadratic one. We have in fact two situations in mind:

(a) Adaptively Restrained (AR) Langevin dynamics, where the kinetic energy vanishes for small momenta,
while it agrees with the standard kinetic energy for large momenta. The interest of this dynamics is
that particles with low energy are restrained. The computational gain follows from the fact that the in-
teractions between restrained particles need not be updated. Due to the separability of the position and
momenta marginals of the distribution, the averages of observables which depend on the position varia-
ble are equal to the ones computed with the standard Langevin dynamics. The efficiency of this method
lies in the trade-off between the computational gain and the asymptotic variance on ergodic averages
which may increase compared to the standard dynamics since there are a priori more correlations in
time due to restrained particles. Moreover, since the kinetic energy vanishes on some open set, the as-
sociated Langevin dynamics fails to be hypoelliptic. In fact, a first task of this thesis is to prove that
the Langevin dynamics with such modified kinetic energy is ergodic. The next step is to present a mat-
hematical analysis of the asymptotic variance for the AR-Langevin dynamics. In order to complement
the analysis of this method, we estimate the algorithmic speed-up of the cost of a single iteration, as a
function of the parameters of the dynamics.

(b) We also consider Langevin dynamics with kinetic energies growing more than quadratically at infinity,
in an attempt to reduce metastability. The extra freedom provided by the choice of the kinetic energy
should be used in order to reduce the metastability of the dynamics. In this thesis, we explore the
choice of the kinetic energy and we demonstrate on a simple low-dimensional example an improved
convergence of ergodic averages.
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An issue with the situations we consider is the stability of discretized schemes. In order to obtain a
weakly consistent method of order 2 (which is no longer trivial for a general kinetic energy), we rely on the
recently developped Metropolis schemes.
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Résumé

En physique statistique, l’information macroscopique d’intérêt pour les systèmes considérés peut être dé-
duite à partir de moyennes sur des configurations microscopiques réparties selon des mesures de probabilité
µ caractérisant l’état thermodynamique du système. En raison de la haute dimensionnalité du système (qui
est proportionnelle au nombre de particules), les configurations sont le plus souvent échantillonnées en uti-
lisant des trajectoires d’équations différentielles stochastiques ou des chaînes de Markov ergodiques pour
la mesure de Boltzmann-Gibbs µ, qui décrit un système à température constante. Un processus stochas-
tique classique permettant d’échantillonner cette mesure est la dynamique de Langevin. En pratique, les
équations de la dynamique de Langevin ne peuvent pas être intégrées analytiquement, la solution est alors
approchée par un schéma numérique. L’analyse numérique de ces schémas de discrétisation est maintenant
bien maîtrisée pour l’énergie cinétique quadratique standard. Une limitation importante des estimateurs des
moyennes sont leurs éventuelles grandes erreurs statistiques. Sous certaines hypothèses sur les énergies ciné-
tique et potentielle, il peut être démontré qu’un théorème de limite central est vrai. La variance asymptotique
peut être grande en raison de la métastabilité du processus de Langevin, qui se produit dès que la mesure de
probabilité µ est multimodale.

Dans cette thèse, nous considérons la discrétisation de la dynamique de Langevin modifiée qui amé-
liore l’échantillonnage de la distribution de Boltzmann-Gibbs en introduisant une fonction cinétique plus
générale à la place de la formulation quadratique standard. Nous avons en fait deux situations en tête : (a)
La dynamique de Langevin Adaptativement Restreinte, où l’énergie cinétique s’annule pour les faibles mo-
ments, et correspond à l’énergie cinétique standard pour les forts moments. L’intérêt de cette dynamique
est que les particules avec une faible énergie sont restreintes. Le gain vient alors du fait que les interactions
entre les particules restreintes ne doivent pas être mises à jour. En raison de la séparabilité des positions et
des moments marginaux de la distribution, les moyennes des observables qui dépendent de la variable de
position sont égales à celles calculées par la dynamique de Langevin standard. L’efficacité de cette méthode
réside dans le compromis entre le gain de calcul et la variance asymptotique des moyennes ergodiques qui
peut augmenter par rapport à la dynamique standards car il existe a priori plus des corrélations dans le temps
en raison de particules restreintes. De plus, étant donné que l’énergie cinétique est nulle sur un ouvert, la
dynamique de Langevin associé ne parvient pas à être hypoelliptique. La première tâche de cette thèse est de
prouver que la dynamique de Langevin avec une telle énergie cinétique est ergodique. L’étape suivante con-
siste à présenter une analyse mathématique de la variance asymptotique de la dynamique AR-Langevin. Afin
de compléter l’analyse de ce procédé, on estime l’accélération algorithmique du coût d’une seule itération,
en fonction des paramètres de la dynamique. (b) Nous considérons aussi la dynamique de Langevin avec
des énergies cinétiques dont la croissance est plus que quadratique à l’infini, dans une tentative de réduire la
métastabilité. La liberté supplémentaire fournie par le choix de l’énergie cinétique doit être utilisée afin de
réduire la métastabilité de la dynamique. Dans cette thèse, nous explorons le choix de l’énergie cinétique et
nous démontrons une convergence améliorée des moyennes ergodiques sur un exemple de faible dimension.
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Un des problèmes avec les situations que nous considérons est la stabilité des régimes discrétisés. Afin
d’obtenir une méthode de discrétisation faiblement cohérente d’ordre 2 (ce qui n’est plus trivial dans le cas
de l’énergie cinétique générale), nous nous reposons sur les schémas basés sur des méthodes de Metropolis.

iv



List of publications

Journal publications

(1) S. Redon, G. Stoltz, Z. Trstanova. Error analysis of modified Langevin dynamics. J. Stat. Phys.,
164(4):735–771, 2016.

(2) Z. Trstanova, S. Redon, Estimating the speed-up of Adaptively Restrained Langevin Dynamics,
arXiv:1607.01489, submitted to J. Comput. Phys., 2016.

(3) G. Stoltz, Z. Trstanova, Stable and accurate schemes for Langevin dynamics with general kinetic ener-
gies, arXiv:1609.02891, 2016.

Conference talks

(1) SIAM Conference on Mathematical Aspects of Materials Science, Philadelphia, USA, 2016.
(2) Congrès SMAI, Les Karellis, France, 2015

Posters

(1) Stochastic Numerical Algorithms, Multiscale Modeling and High-dimensional Data Analytics, ICERM,
Providence, USA, July 2016

(2) Computational Statistics and Molecular Simulation, Paris, France, February 2016
(3) Numerical Analysis of Stochastic PDEs, Inria Sofia-Antipolis, France, September 2015
(4) Multiscale Modeling of Materials, Ecole de Physique Les Houches, France, May 2015
(5) Multiscale Computational Methods in Materials Modeling Meeting, Edinburgh, UK, June 2014





Acknowledgments

First and foremost, I would like to thank both of my Ph.D. advisers: I am deeply grateful to Stephane Redon
for giving me the opportunity to work on such an exciting project, for his enthusiasm and encouragement in
the research. Stephane has never doubted my scientific skills, which was very important for my thesis and he
has always been open and supportive to deviate the research towards more mathematical aspects. I want to
thank him for introducing to me the world of algorithms, software development and research management,
which made my thesis so colorful.

I would like to express my sincere gratitude to Gabriel Stoltz, for accepting to advise my research,
the path of my thesis would have surely been different without his leading. I want to thank Gabriel for
his dedication as adviser, for his continuous support and patience, for sharing his immense mathematical
knowledge with me, for always demanding the highest quality of work and providing the most constructive
criticism, while being at the same time very positive, kind and pedagogic.

I would like to thank the reviewers for carefully reading the manuscript and for their thoughtful comments
and suggestions, and the members of the jury for their questions and comments during the defense, it was
an honor to defend my work in front of them. I must acknowledge the European Research Council and Inria
for funding my thesis project.

Next, I want to thank Sergei Grudinin, for sharing his interdisciplinary knowledge and his constructive
criticism, which led to many interesting discussions. I have been extremely lucky to have met Svetlana
Artemova, she has not only made my thesis possible by introducing the ARPS method in her thesis, but
has also been advising me in many practical aspects of molecular dynamics and algorithms. I found in
her a valuable friend who made my years in Grenoble unforgettable. Thank you, Sveta. My thanks go to
Léonard Jaillet and Marc Piuzzi for sharing their experience as researchers, mostly in the beginning of my
thesis. I also owe thanks to all the current and former members of NANO-D team at Inria, most importantly,
Krishna Kant-Singh, François Rousse, Alexandre Hoffmann, Jocelyn Gaté, Petr Popov, Semeho Edorh,
Emilie Neuveu, Silvia C. Dias Pinto, Khoa Nguyen, Guillaume Pages, and all the others, for working with
me during these years. I am very grateful to our assistants, Imma Presseguer and Julie Bourget, who have
been very helpful with the practical aspects of the life of a researcher.



I would like to thank the researchers from CERMICS, for making me feel welcome at their laboratory
where I used to come to discuss mathematics, my special thanks to Julien Roussel,Tom Hudson, Giacomo
Di Gesù, Athmane Bakhta and François Madiot.

I would like to thank Ralf Everaers, Nima Hamidi Siboni and other physicists from the Ecole de Phy-
sique Les Houches, who wanted to prove my thesis wrong, and while trying to do so, they taught me how
fascinating physics can be. These discussions inspired the very last chapter of this work.

I wish I could express how lucky I was to have met all the friends from Grenoble and Paris, who made
these cities my new home. My special thanks go to Bérengère, Marie and Antoine, Katka, Sofia, Diogo,
Dharam, George, Fabrice, Violeta, Alexandros, Mara and, Fabian and François (F&F), who had the door of
their apartment always open and full of movies, pizza and true friendship.

I am very grateful to my family, who gave me the opportunity to study and have always been the biggest
support in all my projects. Last, but for the greatest contribution, I must thank Giacomo, who has supported
me unconditionally during these years and has proven his strength (and stubbornness) overcoming any
distance to always get back to me. Grazie.

viii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Microscopic description of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Macroscopic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Sampling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Continuous stochastic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.4 Deterministic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Properties of the continuous dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Discretization of Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Computational challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.1 Stability and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.2 Metastability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.3 Computational cost per time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Adaptively Restrained Particle Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Error Analysis of Modified Langevin Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1 Modified Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Ergodicity of the modified Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Convergence of ergodic averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.2 Convergence of the law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.3 Regularity results for the evolution semi-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Analysis of the statistical error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.1 A Central Limit theorem for ergodic averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Perturbative study of the variance for the AR-Langevin dynamics . . . . . . . . . . . . . . . . . 52



2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.1 A simple one-dimensional system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 A more realistic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Proofs of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.1 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.2 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5.3 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.5.4 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Stable and accurate schemes for Langevin dynamics with general kinetic energies . . . . . . . . . 85
3.1 Discretization of the Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.1.1 A first order scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1.2 Second order schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.1.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Generalized Hybrid Monte-Carlo schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.3 Generalized Hybrid Monte-Carlo schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.1 Metropolization of the Hamiltonian part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3.2 Discretization of the fluctuation/dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.3 Complete Generalized Hybrid Monte-Carlo scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Adaptively restrained Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.1 Kinetic energy functions for AR Langevin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.2 Determining the best kinetic energy function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Some additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.5.1 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.5.2 Ergodicity of non-metropolized schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.5.3 Minorization condition for the GHMC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.5.4 Why proving a Lyapunov condition for the Metropolized scheme is difficult . . . . . . . . 116

4 Estimating the speed-up of Adaptively Restrained Langevin Dynamics . . . . . . . . . . . . . . . . . . . 121
4.1 Estimating the speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2 Algorithmic speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Description of the AR force update algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2.2 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3 Total speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.3.1 Percentage of restrained particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.3.2 Linear approximation of the variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

2



5 Extensions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1 Decreasing metastability with modified kinetic energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.1 Energy barrier in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.1.2 Energy barrier in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.1.3 Higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Retrieving correct dynamical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3 Quantifying convergence rates in L2(µ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3





1

Introduction

1.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Microscopic description of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Macroscopic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Sampling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Continuous stochastic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.4 Deterministic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Properties of the continuous dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Discretization of Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Computational challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4.1 Stability and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4.2 Metastability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4.3 Computational cost per time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Adaptively Restrained Particle Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Computer simulations are widely used in many scientific domains. Performing “numerical experiments”,
also known as "in silico", has become an important part of the research methodology. Molecular simulations
allow to bridge the gap between microscopic details and macroscopic observations. They have become a na-
tural step for verification or development of new theories serving as a "microscope" and a virtual laboratory.
Computer simulations reduce the number of experimental probes when searching for certain properties. For
example in drug design, molecular simulations allow to explore pharmacologically relevant binding confor-
mations and to choose some promising set of molecules which may then be tested experimentally [42]. In
materials science, simulations are used to suggest new materials with desired properties, especially under
experimental conditions that are inaccessible or expensive, such as high pressure or temperature [51].



Molecular simulations are very challenging because of the high dimensionality of simulated systems. The
amount of substance is measured in molar mass: the number of atoms in one mole is given by the Avogadro
number, a constant equal to 6.02× 1023. The typical time step used to integrate the equations is of the order
of 10−15s which corresponds to a fraction of usual periods of molecular vibrations (whose frequencies
often are in the range 1012 − 1014 Hz). The distance is measured in Angstroms (recall that 1Å = 10−10m).
Despite increasing computational capacity, it will not be possible to reach time and dimension scales that
are necessary for a sufficient exploration of many systems in the next decades. The challenge of molecular
simulations is therefore to find simplified physical models which are sufficiently accurate but also feasible
from the computational point of view. Their utility is evidenced by the awarding of the 2013 Nobel Prize
in Chemistry "for the development of multi-scale models for complex chemical systems" to Arieh Warshel,
Michael Levitt and Martin Karplus [131, 65].

In many systems, the interest lies in retrieving static, thermodynamic properties (pressure as a function
of temperature and density) or dynamical properties (transport coefficients, Arrhenius constant). The most
accurate description is provided by quantum mechanics. Numerical simulations based on quantum the-
ory [30] are computationally very complex and nowadays it is not possible to simulate the dynamics of
a system larger than a few hundreds of atoms- for typical wavefunctions based methods (Hartree-Fock or
Kohn-Sham[83]). Molecular dynamics (MD) was pioneered by Alder and Wainwright in the late 1950s [5]
in their study of the interactions of hard spheres. It approximates the quantum mechanical model by a clas-
sical framework allowing to capture many physical features relevant for understanding of the processes in
the nature. The connection between the micro and macro scales is provided by statistical physics [12]. There
are many introductory books for molecular simulations as for example [6, 48, 97, 76].

The limitation arising from of the time-scale motivated the development of methods increasing the effi-
ciency of molecular dynamics simulations. This remains an active research area. There are basically three
aspects which define the total computational time: the variance or the statistical error arising from the usually
slow and difficult exploration of the physical system, the time step in the discretization and the computati-
onal cost per time step. One of the methods accelerating molecular simulations are Adaptively Restrained
Particle Simulations (ARPS) proposed by [9]. This method modifies the physical model, more precisely the
kinetic energy, such that the computational cost per time step is reduced. The computational gain lies in a
temporarily freezing of a part of particles which is due to a modified definition of the kinetic energy of each
particle. Consequently, it is possible to avoid the update of interactions between the frozen particles. Since
the computation of the interactions at each time step is the bottleneck of particle simulations, this method
can provide a significant speed-up. One purpose of this thesis is to perform a mathematical and algorithmic
analysis of the ARPS method.

The introduction of this thesis is organized as follows: we first describe molecular dynamics in Section 1.1.
In Section 1.2 we review sampling methods that allow the computation of macroscopic properties from mi-
croscopic configurations. We then focus in Section 1.3 on Langevin dynamics, stating some results about the
convergence of continuous and discretized versions of this dynamics. We review computational challenges

2



Fig. 1.1: An example of molecular simulations in biology- simulation of pariacoto virus [119, 37]: structural
studies of viruses are very important to understand protein-protein and protein-RNA interactions as well
as to understand assembly pathways in RNA viruses. This model was visualized in SAMSON, a software
developed at NANO-D team in Inria.

of the computation of thermodynamics properties in Section 1.4 as well as computational methods which has
been proposed as a remedy. Finally, in Section 1.5 we review Adaptively Restrained Particle Simulations, a
method which has been the motivation of this thesis, and we highlight our contributions.

1.1 Molecular Dynamics

We introduce molecular dynamics in Section 1.1.1. We start by stating microscopic description of matter
as a system of interacting particles. We then explain in Section 1.1.2 how macroscopic properties can be
retrieved from the microscopic description by defining thermodynamic ensembles.

1.1.1 Microscopic description of matter

In molecular dynamics, matter consists of particles1 which obey laws of classical mechanics. They interact
with each other by forces which are usually described by potential energies initially derived from a quantum
mechanical model or from empirical models based on experiments (see Section 1.1.1.1 below).

Each particle is characterized by its position, momentum and mass. The momentum of a particle is
equal to the product of its mass and its velocity. Throughout this thesis, we denote by N the number of

1 Particles as it will be used in this thesis.
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Fig. 1.2: Periodic boundary conditions: the central simulation box is extended to infinite dimensional system
by considering its periodic images. For instance, the blue particle has neighbors within a radius (light orange
circle) which are periodic images of particles from the central box (light green circle cuts).

particles and by d the spatial dimension. The total dimension being d = N × D, we consider a set of
N > 1 particles in the periodic box D = (LT)DN where T = R\Z is the one-dimensional unit torus and
L > 0 the size of the simulation box. We denote by q = (q1, . . . , qN ) ∈ D the vector of all positions, by
p = (p1, . . . , pN ) ∈ RDN the vector of all momenta and by M = diag (m1, . . . ,mN ) the diagonal matrix
of the masses. The vector (q, p) ∈ E := D × RDN is called the microstate or point in phase space which is
the set of all positions and momenta for which the energy is finite.

Let us recall some commonly used boundary conditions. Periodic boundary conditions are usually used
in systems where all possible configurations can be obtained by a representative bulk portion of the system
(see Figure 1.2). This portion is the central simulation box which is then extended into an infinite dimensi-
onal system by considering its periodic images. In this case, each particle interacts not only with its direct
neighbors in the box but also with its periodic images. This has been found to work in practice, "despite
its artificiality". Infinite boundary conditions, i.e. setting the configuration space to RDN , correspond to an
isolated system. Open systems with inflows or outflows of energy or particles can also be considered, with
additional exchanges or forcings at the boundaries.

The rest of this section is organized as follows: we introduce models for particle-interactions by intro-
ducing potential energies in Section 1.1.1.1. We illustrate this on an example of a solvent-solute model.
In Section 1.1.1.2 we provide differential equations based on a Hamiltonian system which gives molecular
dynamics and we recall some basic properties.
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1.1.1.1 Particle interactions

The physical model of the system under study is encoded by the choice of the potential energy function
which defines the interactions between particles. Interaction potentials should ideally be obtained from
quantum mechanical computations based on an approximate numerical solution of the Schrödinger equa-
tion [30, 27]. In practice, due to the high computational complexity of the quantum models, this approach
is complemented by the development of computationally less expensive empirical potentials, which are im-
plemented in popular molecular dynamics packages such as AMBER, CHARMM, GROMACS, LAMMPS
and NAMD.

For instance, chemical bonds such as covalent bonds are sometimes treated as springs which are descri-
bed by a harmonic oscillator potential with frequency ω given by:

VHO(r) =
ω2

2
(r − r0)2 ,

where r denotes the distance between two particles, i.e. r = |qi − qj | for some i, j = 1, . . . , N , and r0 > 0

is a rest-length.
For another example consider a dimer model which is a simple solvent-solute toy-model (see Figure 1.3

for an illustration). In this example, atoms of the solute are linked through bonded interactions, while the
surrounding fluid particles are governed by non-bonded interactions. In this toy model, interactions between
the atoms of the central molecule never break, while the solvent particles can interact only with other par-
ticles within some distance. The interaction potential between the particles of the central molecule can be
modeled, for example, by a double well potential (depicted in Figure 1.4(Left)):

VD(r) = h

ñ
1− (r − r0 − w)2

w2

ô2

, (1.1)

where h and w are two positive parameters. There are two stable states: the first one, at r = r0, corresponds
to the compact state and the second one, at r = r0 +2w, corresponds to the stretched state. Solvent particles
interact through a Lennard-Jones pair potential [115], which is a model to describe fluids such as Argon:

VLJ(r) = 4ε

ñÅ
σ

r

ã12

−
Å
σ

r

ã6
ô
, (1.2)

where ε and σ are two positive parameters.
The total energy of the system is therefore a sum of potential energies due to the three kinds of interacti-

ons:
V (q) = VD(|q1 − q2|) + VSS(q3, . . . , qN ) + VDS(q), (1.3)

where q ∈ (LT)DN and the solvent-solvent and dimer-solvent potential energies respectively read

VSS(q3, . . . , qN ) =
∑

36i<j6N

VLJ(|qi − qj |), VDS(q) =
∑

i=1,...,2

∑
36j6N

VLJ(|qi − qj |).
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Fig. 1.3: Illustration of the dimer-solvent model: compact and stretched state of the dimer.

Fig. 1.4: (Left) Double-well potential. (Right) Lennard-Jones potential and the corresponding force.

The force acting on particle i is then fi = −∂qiV (q). See Figure 1.4(Right) for a plot of the Lennard-
Jones potential given by (1.2) and its derivative, with the two parameters ε and σ chosen equal to 1. In the
WCA (Weeks-Chandler-Andersen) model, which models a fluid of purely repulsive particles [36, 15], the
Lennard-Jones potential is moreover truncated at the radius r0 = 21/6σ:

VWCA(r) =

4ε

ñÅ
σ

r

ã12

−
Å
σ

r

ã6
ô

+ ε if r 6 r0,

0 if r > r0.

(1.4)

In the solvent-solute model, the interest lies in studying properties of the protein. However, the presence
of the solvent is representative of environments usually encountered in biological systems, such as water.
The protein might stabilize into different configurations with and without the correct surrounding medium.
Unfortunately, the solvent adds additional degrees of freedom which require care in modeling and signifi-
cantly increase the system size.
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1.1.1.2 Hamiltonian dynamics

In classical mechanics, the time evolution of the positions and momenta is governed by the following system
of differential equations:  q̇(t) = ∇pH (q(t), p(t))

ṗ(t) = −∇qH (q(t), p(t)) ,
(1.5)

where the initial condition is (q(0), p(0)) =
(
q0, p0

)
∈ E . The Hamiltonian function H : E → R corre-

sponds to the total energy of the system:

H(q, p) = V (q) + U(p), (1.6)

with the kinetic energy usually given by

U(p) = Ustd(p) =
N∑
i=1

p2
i

2mi
. (1.7)

Recall that pi ∈ RD for i = 1, . . . , N . The Hamiltonian is preserved by the dynamics. In other words,
this dynamical model describes a system isolated from any external influence: a system containing a con-
stant number of particles, with constant energy. The trajectories of the particles hence belong to a manifold
determined by the initial value of the energy.

Let us recall some properties of the Hamiltonian system (1.5). We denote by φt the flow of the Ha-
miltonian dynamics as an application which associates to some initial condition (q0, p0) the solution
(q(t), p(t)) = φt(q0, p0) to (1.5) at time t. Assume that φt exists for any t ∈ R. The following mathe-
matical and structural properties hold for Hamiltonian dynamics [53]:

• Symmetry. It holds that φ−t = φ−1
t .

• Time-reversibility. The Hamiltonian flow is reversible up to the momenta reversal, i.e.

φ−t = S ◦ φt ◦ S,

where the momentum reversal function is given by S(q, p) = (q,−p).
• Energy conservation. It holds that H(q(t), p(t)) = H(q(0), p(0)) for all t ∈ R.
• Volume preservation. For any measurable set B ⊂ E , and for all t ∈ R, the following holds

ˆ
φt(B)

dqdp =

ˆ
B
dqdp.

• Symplecticity. For H ∈ C2, the flow φt is a symplectic mapping, i.e.∇φTt J∇φt = J where

J =

(
0 Idd

−Idd 0

)
.
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From a practical point of view, the equations (1.5) cannot be solved analytically due to the high dimensi-
onality of the system and due to the nonlinearity of the potentials. The solutions are hence approximated by
a numerical integration of (1.5). We refer to [53] for an introduction to structure-preserving integration of
Hamiltonian schemes. Symplectic methods are used for the integration of Hamiltonian systems since, when
applied to Hamiltonian evolutions, they admit a modified equation which is Hamiltonian at all orders and
the energy is very well preserved over very long times. For this reason, symplectic schemes are relevant for
molecular dynamics, where the goal is to compute average properties at fixed energy.

The most common numerical scheme for (1.5), which is symplectic and has an error of second order with
respect to the time step size ∆t, is the Verlet scheme [126]: for an initial condition

(
q0, p0

)
∈ E , the solution

of (1.5) at time T = n∆t denoted as (qn∆t, pn∆t), is approximated by (qn, pn). The values (qn+1, pn+1)

are obtained starting from the configurations at the previous time step (qn, pn) in the following way:

Φ∆t(q
n, pn) =


pn+1/2 = pn −∇V (qn)

∆t

2
,

qn+1 = qn +M−1pn+1/2∆t,

pn+1 = pn+1/2 −∇V (qn+1)
∆t

2
.

(1.8)

At each time step, the forces −∇V acting on each particle need to be evaluated according to the new
positions. Despite the form of the Verlet method, it only needs one new force evaluation per timestep. This
implies that, at each time step, the evaluation of−∇V (qn+1) is of orderN2 a priori for bonded interactions,
while the update of positions and momenta is of order N . Therefore, the computation of the forces at each
time step is the computational bottleneck of particle simulations.

1.1.1.3 Computation of interactions

An important feature in most relevant molecular models is the presence chemical (covalent) bonds describing
the sharing of electrons between nuclei. The bonded interactions are complex and in a classical model
would need to incorporate potential energy terms involving atomic pairs, triples, 4-tuples, 5-tuples, etc., but
in practice are limited to length bonds (modelled by pair potentials), angle bonds (involving triples) and
sometimes dihedral bonds involving groups of four atoms. Non-bonded interactions include short-range and
long-range interactions and might disappear if the two particles get far enough from each other. Non-bonded
interactions can be treated using neighborlist algorithms, which decrease the computational complexity
of the computation of interactions [48]. Since in this case the potentials vanish behind the cut-off radius,
each particle only interacts with its neighbors, i.e. particles within the cut-off radius. The computational
complexity then becomes linear instead of quadratic in the number of particles. The most used neighbor-
lists are Verlet lists [126, 48], linked-cell lists [58] and a combination of both [11]. Verlet lists are based
on the distances between particles and then on creating lists of neighbors within some radius, usually taken
bigger than the cut-off radius of the short-range interactions. The linked-cell lists algorithm divides the
simulation box into sub-boxes bigger than the cut-off radius. Particles are then characterized according to

8



which sub-box they belong to. The interactions between particles are only updated among adjacent sub-
boxes. The most efficient approach combines both algorithms: the box is divided into sub-cells, and the lists
of neighbors are reduced by taking into account inter-particle distances. This algorithm is the most efficient
since distances do not have to be computed between all particles thanks to the division of the simulation box
into sub-cells of size rC (the cut-off radius), and the volume in which neighbors might be present is refined
from the volume given by (2rC)3 to 4

3πr
3
C .

1.1.2 Macroscopic description

A fundamental purpose of molecular simulation is the computation of macroscopic quantities, typically
through averages of functions of some variables of the system with respect to a given probability measure µ,
which defines the macroscopic state of the system [12]:

Eµ(ϕ) =

ˆ
E
ϕdµ . (1.9)

In this setting, the function ϕ is called an observable and the set of all possible microscopic configurations E
is called the phase space. We call the measure µ the macroscopic state of the system or the thermodynamic
ensemble.

In the following section, we present some commonly used thermodynamics ensembles.

1.1.2.1 Microcanonical ensemble

The purely deterministic molecular dynamics as described in the previous section by equation (1.5) is na-
turally associated with the microcanonical ensemble, also called the NVE ensemble, which describes a
system with constant number of particles (N) in a constant volume (V) and at constant energy (E). Be-
cause the energy is conserved, the stationary distribution µNVE = Z−1

E δH(q,p)−E(dqdp) corresponds to the
normalized uniform probability measure on the setM(E) of configurations according to the energy level
E:

M(E) = {(q, p) ∈ E |H(q, p) = E} .

More precisely, the measure δH(q,p)−E(dqdp) is defined through the expectations for an observable ϕ as

ˆ
M(E)

ϕ(q, p)δH(q,p)−E(dqdp) = lim
∆E→0

1

∆E

ˆ
N∆E

ϕ(q, p)dqdp,

where
N∆E = {(q, p) ∈ E |E 6 H(q, p) 6 E +∆E} .

The normalization constant then reads

ZE =

ˆ
M(E)

δH(q,p)−E(dqdp).
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For more details we refer for instance to [81].

1.1.2.2 Canonical ensemble

Unlike in the microcanonical ensemble, most systems in the nature are not strictly isolated but usually
interact with their environment, so that the energy varies. The environment can be modeled by a thermostat,
which keeps the energy constant in average and hence imposes a constant temperature. This corresponds to
the canonical ensemble, or the NVT ensemble, which is a system of N particles in a constant volume at a
constant temperature T . The invariant distribution is the Boltzmann distribution

µ(dq dp) = Z−1
µ e−βH(q,p) dq dp, Zµ =

ˆ
E

e−βH(q,p) dq dp < +∞, (1.10)

where the normalization constant Zµ is called the partition function and β > 0 is proportional to the inverse
temperature: β = (kBT )−1, where kB is the Boltzmann constant and T is the thermodynamical temperature.
An important property is that when the Hamiltonian is separable, the canonical measure is

µ (dqdp) = ν (dq)κ (dp) , (1.11)

where κ and ν are the momentum and position marginal probability measures given by:

ν(dq) = Z−1
ν e−βV (q)dq, Zν =

ˆ
D

e−βV (q)dq, (1.12)

and
κ(dp) = Z−1

κ e−βU(p)dp, Zκ =

ˆ
RDN

e−βU(p)dp. (1.13)

Note that due to the form of the kinetic energy (1.7) which is separable among the particles, the normalization
constant of the momenta marginal distribution can be simply computed:

Zκ =
N∏
i=1

ˆ
Rd

e
−β

p2
i

2mi dp =

Å
2π

β

ãDN/2 N∏
i=1

m
D/2
i .

Therefore, the sampling of the canonical distribution can be performed by independently sampling positions
from ν(dq) and momenta according to κ(dp).

To complete the understanding of the canonical ensemble, we provide some elements of its derivation.
We refer to [12] for a more detailed discussion. The basic idea is that the Boltzmann distribution can be
obtained by maximizing the entropy under the constraint that the energy is fixed in average. More precisely,
we consider some probability measure with a density ρ(q, p) with respect to the Lebesgue measure and such
that

ρ > 0,

ˆ
E
ρ(q, p)dqdp = 1,

ˆ
E
H(q, p)ρ(q, p)dqdp = E,
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for some energy level E. The first two conditions ensure that ρ is the density of a probability measure and
the last condition fixes a constant energy in average. The statistical entropy is defined as

G(ρ) = −
ˆ
E
ρ(q, p) ln ρ(q, p)dq dp.

The entropy quantifies the amount of information or disorder of the system. The canonical measure maxi-
mizes the entropy under all admissible probability measures on the phase space which conserve the energy
in average, i.e. the canonical measure is a solution of:

sup

ß
G(ρ), ρ ∈ L1 (E) , ρ > 0,

ˆ
E
ρ = 1,

ˆ
E
Hρ = E

™
. (1.14)

Denoting by λ, γ the Lagrange multipliers associated with the constraints in (1.14), the Euler-Lagrange
equation corresponding to the optimization problem (1.14) reads

G′(ρ) + λ+ γH = 0.

Since G′(ρ) = −1 − ln ρ, a possible minimizer is the measure with density exp(1 + λ+ γH(q, p)). The
Lagrange multiplier γ associated with the energy constraint is denoted by −β, while exp (1 + λ) becomes
the normalization constant Z−1

µ . It can be proved that it is also the unique minimizer [81, Section 1.2.3.2].
For example, the configurational temperature can be obtained as the ratio of macroscopic observables

which depend on the positions,

kBT =
Eµ
î
|∇V (q)|2

ó
Eµ [∆V (q)]

, (1.15)

and the kinetic temperature which is obtained as an average of a function of momenta:

kBT = Eµ [p · ∇U(p)] . (1.16)

1.1.2.3 Other ensembles

This work is focused on the canonical ensemble and we therefore only mention other possible ensembles
(see for instance [121] for an introduction).

In the isobaric-isothermal ensemble or the NPT ensemble, the temperature and pressure are conserved.
The volume of the simulations is held constant in average by the action of a piston, which keeps the pressure
constant [7, 46].

Finally, we mention the grand-canonical ensemble, denoted by µVT (constant chemical potential2 µ,
volume V and temperature T). In this ensemble, the number of particles is preserved in average, which is
controlled by the constant chemical potential µ.

2 Not to be confused with the canonical distribution (1.10).
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1.2 Sampling methods

One of the main challenges of computational statistical physics is the computation of macroscopic quanti-
ties as given by (1.9). In the most common setting, the distribution µ corresponds to the canonical ensem-
ble (1.10). Due to the high dimensionality of the system at hand, the averages (1.9) cannot be computed
directly. A remedy is to use the ergodic properties of the dynamics, which allow the approximation of (1.9)
by a time integral over trajectories of the dynamics. More precisely, the ergodic average of an observable ϕ
is computed as

lim
n→+∞

1

n

n−1∑
i=0

ϕ
Ä
qi, pi

ä
=

ˆ
E
ϕdµ, (1.17)

where (qi, pi)i>0 is a sequence of microscopic configurations obtained by an appropriate numerical method.
Basically, three types of numerical methods can be distinguished: discretizations of continuous stochastic

differential equations, Markov chain methods based on the Metropolis-Hastings algorithm and deterministic
dynamics on an extended phase-space. In this thesis we focus on the first two classes of methods.

This section is organized as follows: in Section 1.2.1 we introduce methods based on continuous sto-
chastic differential equations, the overdamped Langevin dynamics and Langevin dynamics. Since we focus
on Langevin dynamics in Section 1.3, we only briefly discuss in Section 1.2.1 how these SDEs can be used
to sample µ. In Section 1.2.2 we recall some basic properties of Markov chains and in Section 1.2.3 we in-
troduce methods based on the Metropolis-Hastings algorithm. Finally, in the last section we mention some
methods based on deterministic dynamics.

1.2.1 Continuous stochastic dynamics

Let us first consider a general stochastic differential equation (SDE) on Rd

dxt = b(xt)dt+ σ(xt)dWt (1.18)

where dWt ∈ Rm is the standard Brownian motion and b : Rd → Rd and σ : Rd → Rd×m are such that
there exists a unique (strong) solution (see for instance [99] for concrete assumptions). Then if there exists
an invariant probability measure π and the SDE is ergodic with respect to this measure π (this property
requiring appropriate assumptions on b and σ), the stochastic dynamics can be used as a sampling device in
the following sense: for an observable ϕ : Rd → R,

lim
t→∞

1

t

ˆ t

0
ϕ(xs)ds =

ˆ
Rd
ϕ(x)π(dx), almost surely (a.s.).

By this principle, the Boltzmann distribution (1.10) can be sampled using pathwise realizations of stochastic
differential equations such as Langevin dynamics or the overdamped Langevin dynamics, which we intro-
duce in this section.
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Langevin dynamics can be interpreted as a stochastic perturbation of the Hamiltonian system (1.5), which
models a coupling to a heat bath. It is defined by the following SDE: dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+ σ dWt,
(1.19)

where dWt is a standard DN -dimensional Wiener process and γ > 0 is the friction. The friction γ can be
a matrix and moreover it can depend on positions. For simplicity, we consider it to be a positive constant in
this work. The term σ dWt is a fluctuation term bringing energy into the system. This energy is dissipated
through the viscous friction term −γM−1pt dt. These two terms are connected through the fluctuation-
dissipation relation

σσT =
2γ

β
, (1.20)

which ensures that the canonical measure (1.10) with temperature kBT = β−1 is preserved (see Section 1.3.1).
In view of the separability of the Hamiltonian, the position and momenta marginals can be sampled

individually. When considering only the marginal of the distribution µ in the position variable as given
by (1.12), the overdamped Langevin dynamics (also called Brownian dynamics) can be used as a sampling
device since it leaves the distribution ν invariant. The overdamped Langevin dynamics is

dqt = −∇V (qt)dt+

 
2

β
dWt. (1.21)

As discussed in [81, Section 2.2.4], overdamped Langevin dynamics can be obtained from Langevin dyn-
amics by two limiting processes: either as a large friction limit γ → +∞ with time rescaled as γt, or as a
small mass limit m→ 0.

From a practical point of view, equations (1.19) and (1.21) cannot be solved exactly in general and need
to be discretized by introducing a finite time step ∆t such that the numerical solution xn approximates xn∆t
with x = (q, p) or x = q and for n = 0, . . . T/∆t. The resulting Markov chain (see Section 1.2.2), which is
used to compute (1.17) is hence obtained by numerical approximations at each time step. The discretization
of stochastic differential equations introduces a bias in the invariant distribution. This approach therefore
generates samples from a modified distribution µ∆t 6= µ, which can be shown to be close to µ for small time
step sizes. We discuss the properties of the continuous and discretized Langevin dynamics in Section 1.3.

1.2.2 Markov chains

A time-homogeneous Markov chain (xn)n>0 on E is a sequence of random variables sampled from a pro-
bability transition kernel P (x, dx′): at each iteration n, the new state xn+1 is sampled knowing only xn,
according to the probability distribution P (xn, dx′). The fact that each new configuration xn+1 only de-
pends on the previous one xn is called the Markov property. In other words, given the present, past and
future are conditionally independent. Since P (xn, dx′) is a probability distribution, the following normali-
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zation condition is satisfied:
∀x ∈ E ,

ˆ
E
P (x, dx′) = 1.

The study of the convergence of time homogeneous Markov chains is based on three concepts: stationa-
rity, reversibility and irreducibility.

(1) A probability distribution π is a stationary (or invariant) probability distribution of P when

ˆ
E
P (x, dx′)π(dx) = π

(
dx′
)
. (1.22)

If the distribution π possesses a density with respect to the Lebesgue measure, we write, with a slight
abuse of notation, π(dy) = π(y)dy.

(2) A chain P satisfies the detailed balance condition if

P
(
x, dx′

)
π (dx) = P

(
x′, dx

)
π
(
dx′
)
.

This is equivalent to the reversibility with respect to π, i.e. the law of (x0, x1, . . . , xn) when x0 ∼ π is the
same as the law of xn, . . . , x0. The reversibility of the chain with kernel P with respect to the measure
π implies the stationarity of π. Let us emphasize that reversibility is a sufficient, but not necessary
condition for the invariance.

(3) A Markov chain P is said to be (aperiodically) irreducible with respect to π, if for any measurable set A
such that π (A) > 0, and π-almost all initial condition x0, there exists n0 > 0 such that for any n > n0,

Pn
Ä
x0, A

ä
> 0,

where the nth step transition probability is defined as

Pn
(
xn, dx′

)
=

ˆ
y∈E

P (x, dy)Pn−1 (y, dx′) , P 1 (x, dx′) := P
(
x, dx′

)
.

A Markov chain, which satisfies the stationarity condition (1.22) and is aperiodically irreducible, is pathwise
ergodic [89, Theorem 17.1.7]:

Theorem 1.1. Let (xn)n>0 be a Markov chain with stationary probability measure π. If (xn)n>0 is aperi-
odically irreducible, then it is pathwise ergodic: for any bounded measurable function ϕ and π-almost all
initial conditions x0,

lim
n→+∞

1

n

n−1∑
i=0

ϕ
Ä
xi
ä

= Eπ (ϕ) a.s.

1.2.3 Metropolis-Hastings algorithm

Sampling methods based on Metropolis-Hasting algorithm are very popular in computational statistical
physics. The Metropolis-Hasting algorithm was introduced in [56, 87]. It generates a Markov chain which

14



is invariant under the distribution π, and consists of two steps: first, a proposal for the new configuration is
generated; then a decision to accept or reject the proposal is taken according to some probability rule. The
generation of the proposal as well as the acceptance rule are at the core of the concrete method.

Starting from some initial state xn, the Metropolis-Hastings algorithm generates a new configuration
xn+1 as follows:

(1) Propose a state x̃n+1 according to the proposition kernel T (xn, ·)
(2) Accept the proposal with probability min

(
1, r(xn, x̃n+1)

)
, where the Metropolis-Hastings ratio

reads
r(x, y) =

π(y)T (y, x)

π(x)T (x, y)
.

In this case, set xn+1 = x̃n+1. Otherwise set xn+1 = xn.

The probability transition kernel of the Metropolis-Hastings chain can be written as

P (x, dy) = min (1, r(x, y))T (x, y)dy +

Å
1−
ˆ
E

min
(
1, r(x, y′)

)
T (x, y′)dy′

ã
δx(dy).

The first term corresponds to the accepted transitions while the second term encodes all the rejected states.
It can be easily proven that the resulting Markov chain satisfies the detailed balance condition with

respect to the distribution π, and hence is invariant under π (for the complete proof we refer to [81, Section
2.1.2]). Let us mention that a non-reversible Metropolis-Hastings algorithm was proposed recently, by means
of a modification of the acceptance probability, using the notion of vorticity matrix [18]. The resulting
Markov chain is non-reversible, which allows to improve the convergence of the sampled chain.

The crucial part of the algorithm is the generation of the proposal. As we explain in the following section,
one common approach for generating a proposal is by numerical integration of some differential equation
reversible with respect to π with finite time step. The smaller the time step, the more accurate the numerical
approximation is and so the proposal is accepted with a higher probability. On the other hand, in order
to explore the whole phase space efficiently, the time step size should not be too small. In conclusion,
the efficiency of the Metropolis-Hastings algorithm is a trade-off between large moves that decorrelate the
iterates when they are accepted and small moves that are less rejected but do not decorrelate the iterates
much. In practical applications, the average rejection rate is usually chosen around 0.5. In some limiting
regimes it is possible to find the optimal rejection rate (see [104, 103] and the many extensions of this
approach).

In the following sections, we introduce three Metropolis-based methods for sampling the position mar-
ginal of the Boltzmann distribution (constructing Markov chains of the positions q): the random walk, the
Hybrid Monte-Carlo method and the Metropolis Adjusted Langevin dynamics.

1.2.3.1 Random walk

The simplest proposals for Metropolis-Hastings algorithm as in the original work [87] are based on symme-
tric moves. More precisely, consider the following proposition of the new configuration
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q′ = q +G, G ∼ N
Ä
0, σ2Idd

ä
,

where d is the dimension of the sampled space. The proposal probability kernel is in this case

T (q, dq′) = (2π)−d exp

(
−|q − q

′|2

2σ2

)
dq′.

Another option would be to consider a uniformly distributed random variable on the interval [−σ, σ]d,
instead. In this case the transition probability kernel becomes

T (q, dq′) = (2σ)−d 1(q′−q)∈(−σ,σ)d dq
′.

Both proposals might not be very well suited for the sampled distribution, since for small values of σ they
might create correlated successive moves or, for a large σ, the new configurations might be very unlikely.

1.2.3.2 Hybrid Monte-Carlo

Hybrid Monte-Carlo was first introduced in [40]. This method has been analyzed from a mathematical
view-point in [111, 31, 16, 24, 84]. Hybrid Monte Carlo3 is a Metropolis-Hastings type Markov chain
method based on a proposal generated by the numerical integration of the deterministic dynamics (1.5).
Since the deterministic dynamics is energy preserving, the momenta are initially re-sampled according to
the canonical distribution, which allows exploration of all energy levels. The proposal is accepted or rejected
with a probability given by the Metropolis ratio:

AH∆t
Ä
qn, pn, q̃n+1, p̃n+1

ä
= min

(
1, e−β(H(q̃n+1,p̃n+1)−H(qn,pn))

)
, (1.23)

where the energy H is given by (1.6).
The update of Markov chain of positions qn can be summarized as follows: for τ > 0,

(1) Draw pn according to the momenta marginal of the distribution (1.10), i.e. pn ∼ N (0, β/m).
(2) Propose (q̃n+1, p̃n+1) according to (Φ∆t(q

n, pn))bτ/∆tc given by (1.8) and computeH(q̃n+1, p̃n+1).
(3) Draw Un ∼ U [0, 1]. If Un 6 AH∆t

(
qn, pn+1, q̃n+1, p̃n+1

)
, set qn+1 = q̃n+1.

Otherwise set qn+1 = qn.

This method relies on the (believed) good properties of the deterministic dynamics: a fast exploration of
the phase space at constant energy levels together with a preservation of the Boltzmann distribution. The
rejection of the proposal occurs due to the discretization errors. The efficiency of the method is therefore
given by a trade-off between larger time step sizes and a tolerable rejection rate. In order to improve the
rejection rate, a method proposed by [63] uses an acceptance criterion based on a modified Hamiltonian,
which is preserved by the flow generated by the Verlet scheme at order ∆t4 and can formally be obtained

3 In the statistics community Hybrid Monte Carlo is called Hamiltonian Monte Carlo. The acronym HMC is however unchanged.
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through backward error analysis. The samples are then re-weighted in order to be distributed according
to the canonical distribution. However, in most cases, it is difficult or expensive to compute the modified
(Shadow) Hamiltonian, since it involves the Hessian of the potential.

1.2.3.3 Metropolis-Adjusted Langevin Algorithm

The Metropolis-Adjusted Langevin Algorithm (MALA) was introduced in the chemistry literature under
the name "Smart Monte Carlo" [108] and was rediscovered later on in the computational statistics litera-
ture [102].

It is a Metropolis-Hastings algorithm whose proposal function is obtained by an Euler-Maruyama dis-
cretization of the overdamped Langevin dynamics (1.21). For a given time step ∆t > 0 and a configuration
qn, the proposed move q̃n+1 reads

q̃n+1 = qn −∇V (qn)∆t+

 
2∆t

β
Gn,

where Gn are identically and independently distributed (i.i.d.) standard d-dimensional Gaussian random
variables. The proposal is then accepted or rejected according to the Metropolis-Hastings ratio

A∆t
Ä
qn, q̃n+1

ä
= min

Ñ
1,

e−βV (q̃n+1)T∆t
(
qn, q̃n+1

)
e−βV (qn)T∆t (q̃n+1, qn)

é
,

where the probability transition reads

T∆t
(
q, q′

)
=

Å
1

4π∆t

ãd/2
exp

(
−β |q

′ − q +∆t∇V (q)|2

4∆t

)
.

The generated Markov chain is irreducible with respect to the Lebesgue measure with ν as an invariant
probability measure. It is therefore ergodic, and reversible with respect to ν. We refer to [81, Section 2.2.1]
and references therein for further precisions.

When the drift function ∇V is globally Lipschitz and the time step size ∆t is small enough, MALA
is geometrically ergodic [102]. For non-globally Lipschitz drifts, the strong convergence of MALA to the
overdamped Langevin dynamics was proved in [25, 26]. Exponential convergence rates towards the invariant
measure (uniformly in the time step) up to exponentially small errors were stated in [22].

1.2.4 Deterministic dynamics

For a comprehensive review of deterministic methods we refer the reader to [76] for instance. Even though
these approaches are quite popular among some practitioners, their ergodicity has not been rigorously pro-
ved. On the contrary, a non-ergodic behavior was proved in [73] for harmonic oscillators and perturbations
of such system. The advantage of deterministic methods is, their fast convergence when they are ergodic: for
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observables in RanL, the associated error is of order 1/τ (where τ is the physical time), instead of 1/
√
τ as

given by the CLT for stochastic processes. More precisely, for φ ∈ RanL and ψ = L−1φ,

1

τ

ˆ τ

0
(Lψ) (q(t), p(t)) dt =

1

τ

ˆ τ

0

d

dt
ψ (q(t), p(t)) dt =

1

τ
(ψ (q(τ), p(τ))− ψ (q(0), p(0))) .

The issue is that the condition φ ∈ RanL is very restrictive. Note that L is a generator of purely Hamiltonian
dynamics. The proof of convergence cannot be extended to any observable since L−1 is not easily defined.

The simplest deterministic dynamics admitting the canonical measure as an invariant measure is the Nosé
dynamics [60, 91, 92, 93]. It is based on the Hamiltonian system (1.5) which is extended with an auxiliary
variable modeling the thermostat: 

q̇ = M−1p,

ṗ = −∇V (q)− ξp,

ξ̇ = Q−1
Ä
pTM−1p−NkBT

ä
,

where ξ is an additional variable with parameter Q > 0 ensuring that the measure e−βH(q,p)e−βQξ
2/2 is a

stationary state.
Note however that the ergodicity of deterministic methods can be restored by incorporating a stochastic

process [109, 79].

1.3 Langevin dynamics

We present Langevin dynamics in this section, since it is the fundamental dynamics used in this work. We
first discuss the convergence of the continuous dynamics in Section 1.3.1. We then present discretization
schemes in Section 1.3.2, together with results of numerical analysis.

1.3.1 Properties of the continuous dynamics

Langevin dynamics associated with a general Hamiltonian reads
dqt = ∇pH(qt, pt) dt,

dpt = −∇qH(qt, pt) dt− γ∇pH(qt, pt) dt+

 
2γ

β
dWt,

(1.24)

where dWt is a standard d-dimensional Wiener process and γ > 0 is the friction. As mentioned in
Section 1.2.1, it would possible to choose the matrices γ and σ as position-dependent in order to restrict
the action of the thermostat to the boundaries. In this thesis γ and σ are constant. As we have already
mentioned, the fluctuation-dissipation relation (1.20) ensures that the dynamics preserves the invariant mea-
sure, see (1.27) below. For the separable Hamiltonian (1.6), and since the standard kinetic energy as already
mentioned in (1.7) reads Ustd(p) = pTM−1p/2, Langevin dynamics simplifies to
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dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+

 
2γ

β
dWt.

(1.25)

The core of this work consists of considering a general kinetic energy function instead of the standard one,
i.e. a more general Langevin dynamics than the standard one (1.25), based on the formulation (1.24). In the
next section, we review some properties of Langevin dynamics (1.25).

1.3.1.1 Generator of the dynamics

Consider the general stochastic differential equation (1.18). Many properties of stochastic differential equa-
tions can be inferred from a differential operator, the infinitesimal generator (see for instance [99]). To define
it, introduce the semi-group Ps,t, which is the transition function Ps,t of a Markov process t 7→ xt defined
for any 0 6 s 6 t and any test function ϕ as

Ps,t(ϕ)(x) = E (ϕ(xt) |xs = x) .

The infinitesimal generator can then be defined by the following strong limit: for t > 0,

lim
s→0

Pt,t+s − Id

s
ϕ = Lϕ.

The infinitesimal generator of the process (xt)t>0, which is the solution of the stochastic differential equa-
tion (1.18), reads

L = b · ∇x +
1

2
σσT : ∇2

x ,

where the symbol : denotes the Frobenius inner product. The following property is a direct consequence of
the Itô formula and it shows the link between the generator L and the SDE: for any compactly supported
C∞ function ϕ,

d

dt
E [ϕ(xt) |x0 = x] |t=0 = Lϕ(x).

The generator of Langevin dynamics ( 1.25) reads

L = M−1p · ∇q −∇V · ∇p + γ

Å
−M−1p · ∇p +

1

β
∆p

ã
. (1.26)

A simple computation shows that the canonical distribution (1.10) is invariant under the dynamics (1.25),
i.e. for all C∞ functions φ with compact support,

ˆ
E
Lφ dµ = 0. (1.27)

The generator of the dynamics L also appears in the Fokker-Planck equation, which is the partial diffe-
rential equations that governs the evolution of the law ψ of xt:
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∂tψ = L†ψ, ψ(0) = ψ0,

where L† is the L2 adjoint of the operator L. The analysis of the convergence to the canonical measure
of the solution ψ can be studied in terms of the semi-group representation where it is reformulated as
the convergence of etL

†
ψ0 to the invariant measure µ. Moreover, by a dual viewpoint, we can study the

convergence of observables towards their expectations with respect to µ. More precisely, we consider the
average value at time t of a given observable, expressed using the semi-group etL asÄ

etLϕ
ä

(x) = E
[
ϕ(xt)

∣∣∣x0 = x
ó
.

Furthermore, the infinitesimal generator L appears in the Poisson equation for the asymptotic variance
of estimators based on time averages (see (1.48) below). The following framework can be used to study
the solutions of this equation. Let us consider the vector space B(E), which is a space of bounded linear
operators on a Banach space E with the operator norm

‖A‖B(E) = sup
f 6=0

‖Af‖E
‖f‖E

.

The Banach spaceE is typically a subspace of functions with average 0 with respect to the invariant measure,
i.e.
´
E ϕdµ = 0, which implies that etLϕ → 0 as t → ∞. A very useful result is the invertibility of the

generator L, and bounds on its inverse in B(E). Such results can be deduced from decay estimates on the
semi-group:

‖etL‖B(E) 6 Ce−λt, (1.28)

since this allows to write
L−1 = −

ˆ ∞
0

etLdt.

In conclusion, the bound (1.28) implies that the operator L is invertible on E with

‖L−1‖B(E) 6
C

λ
.

1.3.1.2 Convergence of ergodic averages

We recall in this section the basic components needed for proving the convergence of ergodic averages over
one trajectory for Langevin dynamics, i.e.

lim
t→∞

ϕ̂t = Eµ(ϕ) =

ˆ
E
ϕ dµ, a.s., ϕ̂t =

1

t

ˆ t

0
ϕ(qs, ps) ds . (1.29)

This property is automatically ensured by the existence of an invariant probability measure and the irredu-
cibility of the dynamics (see for instance [67, 88] for results on such convergences for possibly degenerate
diffusions). Since, by construction, an invariant probability measure is known (namely the canonical mea-
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sure (1.10)), it suffices to show that the process generated by the modified Langevin equation is irreducible
to deduce the convergence of ergodic averages.

As reviewed in [99], the most standard argument to prove the irreducibility of degenerate diffusions is
to prove the controllability of the dynamics relying on the Stroock-Varadhan support theorem (any open
set of the phase space can be reached with positive probability), and the regularity of the transition kernel
thanks to the hypoellipticity property. These conditions are satisfied for standard Langevin dynamics (see
for instance [85]).

• The controllability argument shows that

P ((qt, pt) ∈ A |(q0, p0) = (q, p)) > 0 (1.30)

when t > 0 and the setA is open. This approach was considered for Langevin dynamics in [99, 85, 117].
Consider an end point (q∗, p∗) ∈ A and fix t∗ > 0. The main idea is to construct a realization of
the Brownian motion such that the dynamics started at (q, p) ends in (q∗, p∗). This can be achieved by
considering a polynomial interpolation path Q(t) such that Q(0) = q, Q̇(t) = M−1p and Q(t0) =

q∗, Q̇(t0) = M−1p∗. The corresponding control u(t) is defined as u(0) = 0 and

MQ̈(t) = −∇V (Q(t))− γQ̇(t) +

 
2γ

β
u̇(t).

It holds then

u(t) =

 
β

2γ

Ç
MQ̇(t)− p+ γ (Q(t)− q) +

ˆ t

0
∇V (Q(s))ds

å
. (1.31)

By continuity of the solutions of the SDE with respect to the realizations of the Brownian motion, we can
conclude to (1.30). We refer the reader to [85, Lemma 3.4] for more details. Note that the construction
of the control is simple because there is a linear relationship between Q̇ and P .

• To extend 1.30 to any setA of positive measure, the second step is to prove the regularity of the transition
kernel. The following theorem allows to prove that, even though the generator of Langevin dynamics and
its adjoint are not elliptic, they have some regularizing properties. This property is known as hypoellip-
ticity.
In order to state the result, we denote by [A,B] = AB −BA the commutator of two operators A,B.

Theorem 1.2 (Hörmander [61, 62]). Consider C∞ vector fields on the d-dimensional space Y

Aj =
d∑
i=1

Aj,i(y)∂yi ,

and introduce the operator

A = A0 +
J∑
j=1

A†jAj ,
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where A†j is the (formal) adjoint of Aj on L2(Y). Assume that the Lie algebra spanned by {Aj}j=0,...,J ,
{[Aj , Ak]}j,k=0,...,J , {[[Aj , Ak], Al]}j,k,l=0,...,J , . . . , has maximal rank d at every point y ∈ Y . Then A
is hypoelliptic: there exists ε > 0 such that Af ∈ Hs

loc implies f ∈ Hs+ε
loc .

In particular, solutions f of the equation Af = 0 are C∞.
For Langevin dynamics, the generator (1.26) of the process can be rewritten as

L = X0 −
d∑
j=1

X†jXj ,

where
X0 = M−1p · ∇q −∇V · ∇p − γM−1p · ∇p, Xj =

 
γ

β
∂pj ,

and X†j = −Xj is the adjoint of Xj on the flat space L2(E). We next compute, for j = 1, . . . , d, the
commutators

[X0, Xj ] = X0Xj −XjX0 =

 
γ

β

1

mj

Ä
∂qj − γ∂pj

ä
. (1.32)

It is possible to recover the full algebra of derivatives by an appropriate combination of X1, . . . , Xd

and [X0, X1], . . . , [X0, Xd], since the standard kinetic energy (1.7) is such that ∂2
pjUstd(p) = 1

mj
. This

proves that the generator of Langevin dynamics L is hypoelliptic. In fact, the result can be extended to
prove that ∂t − L and ∂t − L† are hypoelliptic on R × E . This allows to show that the transition kernel
of Langevin dynamics admits a C∞ density for t > 0.

1.3.1.3 Convergence of the law

In this section we provide some methods for proving the convergence to equilibrium of Langevin dynamics
in terms of the law of the process, i.e. etLϕ → Eµ(ϕ) when t → ∞, implied by estimates similar to (1.28)
in appropriate spaces.

Hypocoercivity

Hypocoercivity shows the convergence in H1(µ) which can be turned to a convergence in L2(µ) using
hypoelliptic regularization. The main idea is to introduce some mixed derivatives in q and p in a modified
scalar product in order to retrieve some dissipation in the q direction. This idea was already present in the
computations performed in [117, Section 3], and was later generalized by Villani in [127]. An application
of the general hypocoercivity framework to Langevin dynamics was performed in [55] (see also [82]).

More precisely, the coercivity is obtained in the Hilbert space H1(µ) ∩ L2
0(µ), where

H1(µ) =
{
ϕ ∈ L2(µ)

∣∣∣∇pϕ,∇qϕ ∈ L2(µ)
}
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is endowed with a scalar product different from the canonical one:

〈ϕ1, ϕ2〉H1(µ) = 〈ϕ1, ϕ2〉L2(µ) + 〈∇qϕ1,∇qϕ2〉L2(µ) + 〈∇pϕ1,∇pϕ2〉L2(µ).

Although hypocoercivity eventually provides decay estimates in H1(µ), we introduce the following scalar
product:

〈〈u, v〉〉 = 〈u, v〉+ a〈∇pu,∇pv〉 − b〈∇pu,∇qv〉 − b〈∇qu,∇pv〉+ c〈∇qu,∇qv〉, (1.33)

where, for simplicity of notation, we denote by 〈·, ·〉 the standard scalar product on L2(µ). This scalar
product is equivalent to the canonical scalar product on H1(µ) if and only if the following condition is
satisfied:

a, c > 0, ac− b2 > 0. (1.34)

Hypocoercivity provides decay estimates of the evolution semi-group in the following sense: there exist
C > 1 and κ > 0 such that for any t > 0,

‖etL‖B(H1(µ)∩L2
0(µ)) 6 C e−κt, ∀t > 0. (1.35)

The interest of the hypocoercive approach is that the final optimal constants C and κ can be made quite
explicit in terms of the various factors.

The passage from bounds in H1(µ) to bounds in L2(µ) follows from hypoelliptic regularization results
(see [127, Theorem A.8] or [55, Section 6.1]). For∇2V ∈ L∞(D), it can be proved that there exists K > 0

such that, for any ϕ ∈ L2(µ),

‖∇petLϕ‖L2(µ) + ‖∇qetLϕ‖L2(µ) 6
K

t3/2
‖ϕ‖L2(µ), ∀0 < t 6 1.

Combining this inequality and (1.35) with t0 = 1, for instance, we can conclude that, for t > 1 and
ϕ ∈ L2

0(µ),

‖etLϕ‖2L2(µ) 6 〈〈e
tLϕ, etLϕ〉〉 6 e−2κ(t−t0)〈〈et0Lϕ, et0Lϕ〉〉 6 ‹C e−2κt‖ϕ‖2L2(µ),

which gives the claimed exponential decay in L2(µ).
In fact, it is possible to directly obtain exponential convergence in L2 by the approach recently presented

in [39] (for more details see also Chapter 5).

Weighted L∞ spaces

An alternative functional framework for proving the exponential convergence is provided by weighted L∞-
spaces. This method is based on the elementary derivation provided in [54], with similar results already
obtained in [89] and reviewed in [99]. This result is less quantitative in terms of the convergence rates than
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the approach by hypocoercivity. However, it can be applied in many situations where the hypocoercivity ap-
proach fails; for instance for proving the ergodicity of discrete dynamics [78], non-reversible dynamics [64]
or non-hypoelliptic dynamics (see Chapter 2).

In order to state the exponential convergence result, we introduce the weighted L∞ space:

L∞K =

ß
f measurable

∣∣∣∣ ‖f‖L∞K :=

∥∥∥∥ fK
∥∥∥∥
L∞

< +∞
™

(1.36)

for some Lyapunov function K : E → [1,+∞). We define Lyapunov functions Kn such that

Kn 6 Kn+1, ∀n > 0.

We introduce the space S of smooth functions ϕ ∈ C∞ (E) for which, for any k ∈ Nd, there existsmk ∈ N

such that ∂kϕ ∈ L∞Kmk
(E). An example for previously defined functions is Kn(x) = 1 + |x|n for some

n > 2. In this case, the functions in S and their derivatives, grow at most polynomially. We define the space
S̃ as a subset of the space S which contains functions with average zero with respect to µ:

S̃ =

ß
f ∈ S

∣∣∣∣ˆ
E
f dµ = 0

™
.

We introduce the general setting as proposed in [54] and in the sequel, we apply it on Langevin dynamics.
In [54], two sufficient conditions for the exponential convergence are stated: a Lyapunov condition and a
minorization condition.

We denote by P the evolution operator, here P = et0L for some t0 > 0. The Lyapunov condition makes
sure that the dynamics returns to the region of the configuration space where the value of the Lyapunov
function are not too large. It reads:

Assumption 1.3 (Lyapunov condition) There exists a function K : X → [1,+∞) and constants b > 0

and a ∈ (0, 1) such that
(PK)(x) 6 aK(x) + b, ∀x ∈ X. (1.37)

The second necessary condition is the minorization condition:

Assumption 1.4 (Minorization condition) There exists a constant η ∈ (0, 1) and a probability measure λ
such that

inf
x∈C

P (x,dy) > η λ(dy),

where C = {x ∈ X | K(x) 6 Cmax} for some Cmax > 1 + 2b/(1 − α), where a, b are introduced in
Assumption 1.3.

This condition ensures that there is a sufficiently strong coupling of the evolution in the region where the
Lyapunov function is bounded by Cmax. When the configuration space is compact, or when the set C is
compact, this condition is easy to prove for SDEs since it is implied by the irreducibility property and some
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regularity results on the density of the transition kernel. As we have already mentioned, the latter result is
provided by hypoellipticity, which holds for Langevin dynamics.

When the Lyapunov and minorization conditions hold true, the following convergence result is obtai-
ned [54]:

Theorem 1.5 (Exponential convergence in weighted L∞-spaces). Suppose that Assumptions 1.3 and 1.4
hold. Then P admits a unique invariant probability measure π. This measure is such that

ˆ
X
Kdπ < +∞. (1.38)

Moreover, there exist C > 0 and r ∈ (0, 1) such that, for any ϕ ∈ L∞K (X) and any n ∈ N,∥∥∥∥∥Pnϕ−
ˆ
X
ϕdπ

∥∥∥∥∥
L∞K

6 Crn
∥∥∥∥∥ϕ−

ˆ
X
ϕdπ

∥∥∥∥∥
L∞K

. (1.39)

For the standard Langevin dynamics whereX = E (recall that the position space is compact) and π = µ,
the Lyapunov condition holds with the Lyapunov function

Kn(q, p) = 1 + |p|2n (1.40)

for n > 1, since

LKn(q, p) = −pT∇V (q)− γn
Å
pTM−1p− n+ d− 2

β

ã
|p|n−2

6 − γn

m+
|p|n + ‖∇V ‖L∞ |p|+

γn(n+ d− 2)

β
|p|n−2,

with m+ = max(m1, . . . ,md). Therefore there exists bn > 0 such that

LKn 6 − γn

2m+
Kn + bn.

This inequality implies (1.37) (see [82] for more details). Moreover, we have already discussed why the
minorization condition is satisfied, so this allows to state the following convergence result.

Theorem 1.6 (Langevin dynamics: Exponential convergence of the law). Consider Langevin dyna-
mics (1.25). The invariant measure µ is unique. Moreover, for any n > 2 there exist constants Cn and
λn > 0 such that

∀f ∈ L∞Kn , ∀ t > 0,

∥∥∥∥etLf − ˆ
E
fdµ

∥∥∥∥
L∞Kn

6 Cne−λnt ‖f‖L∞Kn . (1.41)

We define the projection on the functions with zero average with respect to the measure µ by
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Πµf = f −
ˆ
E
fdµ (1.42)

and the space fiL∞Ks = Πµ
(
L∞Ks

)
. The ergodicity result of Theorem 1.6 allows us to conclude that the operator

L is invertible on fiL∞Ks since the following operator equality holds on B
ÄfiL∞Ksä, the Banach space of bounded

operators on fiL∞Ks :
L−1 =

ˆ +∞

0
etL dt. (1.43)

Corollary 1.1. For any n > 2 it holds that

∥∥∥L−1
∥∥∥
B
ÄfiL∞Knä 6 Cn

λn
, (1.44)

where λ,C are the constants introduced in Theorem 1.6.

1.3.1.4 A Central Limit theorem for ergodic averages

Recall that the estimator ·̂ of a given observable ϕ is defined (see (1.29)) as

ϕ̂t =
1

t

ˆ t

0
ϕ(qs, ps)ds.

We have explained in Section 1.3.1.1 how to prove that the almost sure convergence (1.29) holds for Lange-
vin dynamics. The Central limit theorem (CLT) then provides convergence rates parametrized by the asymp-
totic variance. In order show that a CLT holds, we first show that the asymptotic variance is well-defined.
This quantity reads

σ2
ϕ = lim

t→+∞
tVarµ(ϕ̂t), (1.45)

where

tVarµ(ϕ̂t) = tEµ[(ϕ̂t)
2 − (Eµϕ̂t)

2] = tEµ

[Ç
1

t

ˆ t

0
Πµϕ(qs, ps)ds

å2]
.

The expectations are with respect to initial conditions (q0, p0) ∼ µ and for all realizations of the stochastic
dynamics. Note that the invariance of µ allows to write Eµϕ̂t = Eµϕ. In the following we rewrite (1.45) in
terms of the semi-group etL and we use the estimates obtained in the previous section in order to show that
the variance is well-defined.

We expand tVarµ(ϕ̂t) as
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tVarµ(ϕ̂t) =
1

t

ˆ t

0

ˆ t

0
Eµ [Πµϕ(qs, ps)Πµϕ(qr, pr)] ds dr

=
2

t

ˆ t

0

ˆ s

0
Eµ [Πµϕ(qs, ps)Πµϕ(qr, pr)] ds dr,

= 2

ˆ t

0

Ç
1− s

t

å
Eµ [Πϕ(qs, ps)Πµϕ(q0, p0)] ds

= 2

ˆ t

0

Ç
1− s

t

åˆ
E

Ä
esLΠµϕ

ä
Πµϕdµ ds,

(1.46)

where we used
Eµ [Πµϕ(qs, ps)Πµϕ(qr, pr)] = Eµ [Πµϕ(qs−r, ps−r)Πµϕ(q0, p0)]

which is implied by the stationarity of µ. We assume the following decay estimates of the semi-group esL

in a functional space E ⊂ L2
0(µ):

‖esL‖B(E ) 6 C e−κs, ∀t > 0, (1.47)

for some constant C ∈ R+ and κ > 0. We have shown in the previous section how to obtain such estimates:
by hypocoercivity techniques where E is L2

0(µ) or H1(π) ∩ L2
0(π), or by the techniques for weighted-L∞

spaces where E is L̃∞K (E). Then the dominated convergence theorem shows for ϕ ∈ E that

tVarµ(ϕ̂t) −−−−→
t→+∞

σ2
ϕ,

with

σ2
ϕ = 2

ˆ +∞

0

ˆ
E
(esLΠµϕ)Πµϕ dµ ds = −2

ˆ
E
(L−1Πµϕ)Πµϕ dµ. (1.48)

Note that the integral on the right hand side is well-defined if and only if the solution Φ of the Poisson
equation

LΦ = Πµϕ (1.49)

belongs to E ⊂ L2(µ). By Corollary 1.1, the operator L−1 is a well-defined bounded operator on fiL∞Kn(E)

for n > 2 (and an equivalent result holds on L2
0(µ) or H1(π) ∩ L2

0(π) by hypocoercivity results).
If the Poisson equation (1.49) has a solution in L2(µ) and the initial conditions are distributed according

to µ, the results obtained in [17] show that a CLT holds, i.e.

√
t ’Πµϕt

law−−−−→
t→+∞

N (0, σ2
ϕ).

In order to conclude this section, let us introduce a notion of correlation time in order to compare the
asymptotic variance (1.48) and the asymptotic variance obtained by averages of independent and identically
distributed (i.i.d.) random variables (qn, pn)n>1 with common law µ. For ϕ ∈ L2(µ), a CLT holds for the
estimator
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÷ϕiid
Niter

=
1

Niter

Niter∑
n=1

ϕ(qn, pn), (1.50)

whose asymptotic variance is given by

σ2
ϕ,iid = lim

Niter→+∞
NiterEµ

ñÅŸ�Πµϕiid
Niter

ã2
ô

=

ˆ
E
(Πµϕ)2dµ.

We define θcorr,ϕ as some correlation time and express the asymptotic variance (1.48) for time averages
estimates with ergodic SDEs as

σ2
ϕ = θcorr,ϕσ

2
ϕ,iid. (1.51)

In other words, in order to have an estimator of the same quality as the one based on Niter i.i.d. samples,
integration times of order t = Niterθcorr,ϕ should be considered.

1.3.2 Discretization of Langevin dynamics

The Hamiltonian dynamics can be recovered as the limit γ → 0 of Langevin dynamics. Therefore, many
discretization schemes for Langevin dynamics are obtained by appropriate modifications of the schemes
for Hamiltonian dynamics (1.5). One of the first and most popular schemes for the integration of Langevin
dynamics (1.25) is the so-called Brünger-Brooks-Karplus (BBK) scheme proposed by [28]. Even though
there exist schemes with better properties, it is widely implemented in numerous simulation packages. Many
others schemes have been proposed for Langevin dynamics, see for instance [76]. We focus here on schemes
based on a splitting of the generator of the dynamics in the case where the position space is compact. In this
situation, the ergodicity of the discretized process can be proven, and hence there is no need for implicit
schemes or a Metropolization of the dynamics in order to ensure the existence of an invariant probability
measure.

1.3.2.1 Splitting strategies

A systematic way of designing a discretization scheme of (1.25) is by splitting the generator (1.26). This
technique is based on the approach used for the discretization of deterministic dynamics (see [53]). The
most common splitting schemes for Langevin dynamics are of order 1 or 2. It is theoretically possible to
design schemes of an arbitrary order. However, an order higher than two is often not an option for particle
simulations, not only because such schemes require multiple forces evaluation per time step (which may
be unacceptable due to the system size), but more importantly because the time step size is limited by the
stability properties of the dynamics.

Consider an operator X such that X = A1 +A2. The evolution operator of the dynamics with generator
X is e∆tX . Its discrete counterpart is the operator associated with the one-step numerical scheme under
consideration. It is characterized by the action on a test function ϕ:

P∆tϕ(x) = E
Ä
ϕ
Ä
xn+1

ä
|xn = x) .
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It is possible to infer the weak order from the error after one step (see also [90] and Section 1.3.2.2 below):
under some technical conditions, the numerical scheme has a weak order α > 1 if

P∆tϕ = e∆tXϕ+O
Ä
∆tα+1

ä
. (1.52)

The Lie-Trotter splitting is a first-order splitting, whose evolution operator reads

PLie
t ϕ = etA1etA2ϕ.

A second order in the time step size can be achieved by the Strang splitting which has the evolution operator

P Strang
t ϕ = etA1/2etA2etA1/2ϕ.

The order of the splitting is obtained through the Baker-Campbell-Hausdorff (BCH) formula [53], which
states that for two operators A1 and A2 there exists an operator Zt such that

etA1etA2 = eZt ,

with

Zt = t (A1 +A2) +
t2

2
[A1, A2] + O

Ä
t2
ä
, [A1, A2] = A1A2 −A2A1.

By comparing the formal expansion of the operator e∆tX one can easily see that the Lie-Trotter splitting
formally is first order accurate in the time step size ∆t:

e∆tX = e∆tA1e∆tA2 + O
Ä
∆t2

ä
.

By the same principle we can see that the Strang splitting has order 2:

e∆tX = e∆tA1/2e∆tA2e∆tA1/2 + O
Ä
∆t3

ä
.

This approach can be applied to the stochastic differential equation (1.25). For a fixed time step size
∆t > 0, we denote the evolution operator of the discretization scheme by P∆t. This operator is defined for
the Markov chain (qn, pn) as follows: for any smooth observable ϕ,

P∆tϕ(q, p) = E
Ä
ϕ(qn+1, pn+1) | (qn, pn) = (q, p)

ä
.

In this framework, the formal equality (1.52) should be understood in the following sense: there is α ∈ N

such that for a given ϕ ∈ S (recall that S is a space of functions and their derivatives growing at most
polynomially, that we introduced in Section 1.3.1.3), there exist K,∆t∗ > 0 for which

P∆tϕ = e∆tLϕ+∆tα+1r∆t,ϕ, for any 0 < ∆t 6 ∆t∗, (1.53)
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with the remainder ‖r∆t,ϕ‖L∞K 6 K for some scale function K, and the operator L is given by (1.26).
The generator (1.26) can be decomposed into three operators:

A := M−1p · ∇q, B := −∇V (q) · ∇p, LFD := −M−1p · ∇p +
1

β
∆p , (1.54)

The generator of the fluctuation-dissipation part is denoted by γLFD, while the generator of the Hamiltonian
part is LHam = A+B. Note that L = LHam + γLFD. The elementary dynamics associated with LFD is the
following Ornstein-Uhlenbeck process:

dpt = −γM−1pt dt+

 
2γ

β
dWt, (1.55)

which can be solved analytically as

pt = αtp0 +

 
2γ

β

ˆ t

0
αt−sdWs , αt := e−γM

−1t. (1.56)

A Lie-Trotter splitting of the elementary evolutions generated by A,B, γLFD provides six possible first-
order splitting schemes of the general form

PZ,Y,X∆t = e∆tZ e∆tY e∆tX ,

with all possible permutations (Z, Y,X) of (A,B, γLFD). For instance, the numerical scheme associated
with PB,A,γLFD

∆t reads 

p̃n+1 = pn −∆t∇V (qn),

qn+1 = qn +∆tM−1p̃n+1,

pn+1 = α∆tp̃
n+1 +

√
1− α2

∆t

β
M Gn,

(1.57)

where (Gn)n>0 are i.i.d. Gaussian random vectors with identity covariance. Second-order splitting schemes
are obtained by a Strang splitting of the elementary evolutions generated by A,B, γLFD. There are again
six possible schemes, which are of the general form

PZ,Y,X,Y,Z∆t = e∆tZ/2 e∆tY/2 e∆tX e∆tY/2 e∆tZ/2,

with the same possible orderings as for first-order schemes.
Another class of methods which may be useful can also be obtained through a Lie-Trotter splitting

between the Hamiltonian and the fluctuation-dissipation provided the Hamiltonian part is discretized at
order 2 at least [23, 3]:

P∆t = e∆tA/2e∆tγBe∆tA/2e∆tγLFD , (1.58)
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where the Hamiltonian part is integrated by a Strang splitting of the operator e∆tLHam , such as the one
correspondingly to the Verlet scheme (1.8). This scheme is called Geometric Langevin algorithm (GLA),
and it reads: 

pn+1/2 = pn −∇V (qn)
∆t

2
,

qn+1 = qn +M−1pn+1/2∆t,

p̃n+1 = pn+1/2 −∇V (qn+1)
∆t

2
,

pn+1 = α∆tp̃
n+1 +

√
1− α2

∆t

β
MGn.

(1.59)

1.3.2.2 Numerical analysis

The standard numerical analysis of SDEs traditionally distinguishes two types of discretization errors [90,
68]:

(1) Weak error estimates. There exists α ∈ R+ such that, for any compactly supported C∞ test function ϕ
and finite time horizon T > 0, there are C > 0 and ∆t∗ > 0 for which, for any 0 < ∆t 6 ∆t∗,

sup
06n6T/∆t

|E[ϕ(xn)]− E[ϕ(xn∆t)]| 6 C∆tα.

As stated in Theorem 2.1 of [90], the order α in these error estimates is determined by the error over one
time step and some control of the moments of the numerical scheme and the continuous dynamics, i.e.
the formal equality (1.53).

(2) Strong error estimates in Lp-norm. There exists α ∈ R+ for which, for any time horizon T , there is
C > 0 and ∆t∗ > 0 such that, for any 0 < ∆t 6 ∆t∗,

sup
06n6T/∆t

(E|xn − xn∆t|p)1/p 6 C∆tα.

The constants C and ∆t∗ > 0 depend on ϕ and T . In fact, the constant C is obtained via some (discrete)
Gronwall estimate, as in the standard numerical analysis of ordinary differential equations. It hence, in
general, increases exponentially with time. The above error estimates are therefore not relevant to long-time
convergence since the prefactor C is not uniformly controlled in time.

1.3.2.3 Ergodicity of the discretized dynamics

For molecular dynamics, the interest is rather on the error behavior in the ergodic limit. The discretized Lan-
gevin dynamics provides samples (qn, pn) for the approximations of ergodic averages (1.9) by the estimator

ϕ̂Niter,∆t =
1

Niter

Niter−1∑
n=0

ϕ (qn, pn) . (1.60)
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Once the irreducibility and the invariance of a probability measure µ∆t (6= µ) of the Markov chain are
proved, the Law of Large Numbers ensures that

lim
Niter→∞

ϕ̂Niter =

ˆ
E
ϕ(q, p) dµ∆t (q, p) = Eµ∆t (ϕ) a.s.

The total error can be decomposed into two error terms:

ϕ̂Niter − Eµ (ϕ) =
(
Eµ∆t

(
ϕ
)
− Eµ (ϕ)

)
+
(
ϕ̂Niter − Eµ∆t (ϕ)

)
. (1.61)

The first term corresponds to the systematic error (bias) determined by the error on the invariant measure
due to the finite time step used for the discretization (see Section 1.3.2.4). The second term corresponds to
the statistical error, which we address in Section 1.3.2.5.

The ergodicity of the splitting schemes presented in Section 1.3.2.1 can be proved for compact position
spaces [78]. For unbounded position spaces, a geometric convergence has been shown only for implicit
schemes (see [85, 71]).

The proof of the ergodicity of the splitting schemes for compact position spaces provided in [78] is,
similarly to the continuous dynamics, based on the fact that a minorization and a Lyapunov condition hold
for the discretization scheme (described by an evolution operator P∆t).

• Uniform minorization condition: for any T > 0 large enough and any fixed p∗ > 0, there exist ∆t∗ >
0, κ > 0 and a probability measure ν such that, for any bounded, measurable non-negative function f ,
for any 0 < ∆t 6 ∆t∗ and any (q, p) ∈ E ,

inf
|p|6p∗

î
(P∆t)

dT/∆te f
ó

(q, p) > κ

ˆ
E
fdν.

• Uniform Lyapunov condition: there exists ∆t∗ > 0 such that for any s∗ ∈ N and 0 < ∆t 6 ∆t∗, there
exist b > 0 and a ∈ [0, 1) such that for any 0 < s 6 s∗

P∆tKs 6 e−a∆tKs + b,

where Ks(p) = 1 + |p|2s has already been introduced in (1.40).

This approach was used in [78] in order to prove the ergodicity of first and second order splitting schemes
for compact position spaces, and obtain resolvent bounds uniform with respect to ∆t.

Theorem 1.7. Consider one of the discretization schemes with the evolution operator P∆t obtained through
splitting of order 1 or 2 as introduced in Section 1.3.2.1. Then for any γ > 0, there exists ∆t∗ for which
there is a unique invariant measure µ∆t with finite moments: for any s > 1 and 0 < ∆t < ∆t∗,

ˆ
E
Ksdµ∆t <∞.
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Moreover the following exponential convergence holds: for any s > 1, there exist λ,K > 0 such that for all
ϕ ∈ L∞Ks and 0 < ∆t 6 ∆t∗,

∀n > 0,

∥∥∥∥Pn∆tϕ− ˆ
E
ϕ dµ∆t

∥∥∥∥
L∞Ks

6 Ke−λn∆t ‖ϕ‖L∞Ks . (1.62)

In particular, ∥∥∥∥∥
Å

Id− P∆t
∆t

ã−1
∥∥∥∥∥
B(L∞Ks)

6
K

λ
.

In general, in order to ensure the existence of an invariant measure, the numerical method can be con-
nected to a Metropolis-Hastings step.

1.3.2.4 Error on the invariant measure

The discretized Langevin dynamics based on splitting schemes in compact position spaces admits a unique
invariant measure µ∆t (see Theorem 1.7), which is different from the canonical measure µ. The difference
between µ and µ∆t can be estimated from the weak error of the discretization schemes provided the nume-
rical scheme induces an ergodic Markov chain. In the following section, we recall the framework reviewed
in [82], which can be used to study splitting schemes for Langevin dynamics (1.25) as in [78].

More specifically, we assume that the continuous dynamics, with generator L, admits a unique invariant
measure µ and that the numerical scheme with discrete evolution operator P∆t admits an invariant measure
µ∆t. Moreover suppose that, for a C∞ function ϕ and a given integer α, the evolution operator can be
expanded as

P∆tϕ = ϕ+∆tA1ϕ+∆t2A2ϕ+ · · ·+∆tα+1Aα+1ϕ+∆tα+2rϕ,∆t, (1.63)

for some remainder term rϕ,∆t such that ‖r∆t,ϕ‖L∞K 6 K and a scale function K with values in [1,+∞) .
The operators Ak are identified in practice by Taylor expansions with an integral remainder and an average
over the randomness.

The following theorem characterizes the error on the invariant measure.

Theorem 1.8 ([82]). Suppose that the operatorsA−1
1 and (A∗1)−1 leave S̃ invariant, and that an expansion

such as (1.63) holds for any ϕ ∈ S and α ∈ N, with a remainder rϕ,∆t for which there existK > 0,m ∈ N

and ∆t∗ > 0 (all depending on ϕ and α) such that

‖rϕ,∆t‖L∞Km
6 K, ∀∆t 6 ∆t∗.

Assume in addition that the operators Ak leave S invariant for any k > 1, that there exists α > 1 such
that, for any ϕ ∈ S , ˆ

E
Akϕ dµ = 0, ∀k ∈ {1, . . . , α}, (1.64)
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and that gα+1 = A∗α+11 ∈ S̃ . Finally, assume that the numerical scheme admits an invariant measure µ∆t
which integrates all scale functions:

ˆ
E
Kn dµ∆t < +∞, ∀n > 0.

Then, there exists L > 0 such that, for any 0 < ∆t 6 ∆t∗,

ˆ
E
ϕ dµ∆t =

ˆ
E
ϕ dµ+∆tα

ˆ
E
ϕfα+1 dµ+∆tα+1Rϕ,∆t, (1.65)

with |Rϕ,∆t| 6 L and where
fα+1 = − (A∗1)−1 gα+1 ∈ S̃ . (1.66)

Note that for a method of weak order α it holdsAk = Lk/k! for 1 6 k 6 α. However, the previous theo-
rem suggests that, if the operators in the expansion are such thatAk = akLk with some prefactor ak 6= 1/k!

for some 1 6 k 6 α, the dynamics might preserve the invariant measure up to error terms of order ∆tα+1,
even though its weak order is not α. We also refer to [3], where Langevin dynamics is discretized by sche-
mes for which the operators Ak are quite different from Lk although the invariant measure µ∆t is still close
to µ.

The application of the previous theorem on the GLA scheme (1.59) immediately gives that, even though
this scheme has a weak error 1, the resulting error on the invariant measure is of order 2 (since the generators
LFD and LHam preserve the measure as needed for (1.64)).

The leading order (1.66) in the expansion (1.65) can be explicitly computed and estimated as an integra-
ted correlation function thanks to the following connection: for ϕ ∈ S̃ ,

ˆ
E
ϕfα+1 dµ = −

ˆ
E
(L−1Πϕ)gα+1 dµ =

ˆ +∞

0

ˆ
E

Ä
etLΠϕ

ä
gα+1 dµ dt = −

ˆ ∞
0

E [ϕ(qt, pt)gα+1(q0, p0)] dt.

This approach was proposed and applied to Langevin dynamics in [78]. An alternative option to eliminate
the leading-order error term is to use Romberg extrapolation [118].

1.3.2.5 Asymptotic variance of trajectorial averages

The statistical error ϕ̂Niter − Eµ∆t(ϕ) usually dominates the error on the computation of ergodic avera-
ges (1.61). As for the continuous dynamics, a Central Limit Theorem holds true for an ergodic Markov
chain once the asymptotic variance is well-defined. The statistical error of an observable ϕ ∈ L∞K (µ∆t) ⊂
L2(µ∆t) therefore behaves in the limit Niter →∞ as a Gaussian random variable with asymptotic variance
given by
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σ2
∆t = lim

Niter→∞
NiterVarµ∆t

Ä
ϕ̂Niter,∆t

ä
= Eµ∆t

Ä
[Π∆tϕ]2

ä
+ 2

∞∑
n=1

Eµ∆t
î
Π∆tϕ(qn, pn)Π∆tϕ(q0, p0)

ó
=

ˆ
E
Π∆tϕ

îÄ
2 (Id− P∆t)−1 − Id

ä
Π∆tϕ

ó
dµ∆t

(1.67)

where
Π∆tϕ := ϕ−

ˆ
E
ϕdµ∆t.

The above limit is obtained from the dominated convergence theorem, once the Poisson equation

(Id− P∆t)Φ = Π∆tϕ

has a solution in L2(µ∆t). This result is provided by estimates similar to (1.62) where an exponential decay
rate uniform with respect to the time step ∆t is obtained. For more details we refer to [82]. In conclusion,
for Niter simulation steps, the statistical error is of order

σ∆t√
Niter

=
σ∆t
√
∆t√
T

.

Note that the variance can be rewritten as

∆tσ2
ϕ,∆t = 2

ˆ
E

(Π∆tϕ)

ñÅ
Id− P∆t
∆t

ã−1

Π∆tϕ

ô
dµ∆t −∆t

ˆ
E
|Π∆tϕ|2 dµ∆t .

Since weakly consistent numerical methods are such that

Id− P∆t

∆t
ϕ = Lϕ+O (∆t) ,

it suggests that
lim
∆t→0

∆tσ2
ϕ,∆t = σ2

ϕ,

i.e. the variance of the discretized process converges to the variance of the continuous process σ2 as ∆t
tends to 0 (see [82] for a rigorous proof).

1.4 Computational challenges

The main computational challenges in molecular dynamics arise from the time and space scales under con-
sideration. In order to achieve sufficient precision in the computation of thermodynamics averages, the
simulation needs to capture relevant physical phenomena, which occur at long physical times (of the order
of a micro-second (10−6s) up to several hours and more [110]). On the other hand, at the atomistic level,
the simulation time steps are of the order of a femto-second (10−15 s) due to stability limitations on the
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Verlet integration [130]. Moreover, performing a single step is already computationally expensive due to the
number of degrees of freedom under consideration.

There are three main factors that influence the speed of convergence measured in terms of computational
time: the asymptotic variance of time averages, the maximal admissible time step size for the discretization
and the computational effort per time step. In the next sections we discuss these three aspects.

1.4.1 Stability and accuracy

One of the limiting factors for molecular dynamics simulations is the maximal admissible time step size.
It is usually limited by the highest frequency mode in the model. From a mathematical point of view, the
maximal time step size is determined by the stability threshold of the discretization scheme. For pedagogical
purpose, we consider the dynamics (1.5) in the case of a harmonic potential with unit mass and pulsation ω
in dimension one, for which the Hamiltonian reads

H(q, p) =
1

2
ω2q2 +

1

2
p2.

The quadratic form of the harmonic potential allows us to write the one-step iteration of the Verlet
scheme (1.8) as the following linear update:

(
qn+1

pn+1

)
= A

(
qn

pn

)
, A =

á
1− (ω∆t)2

2
∆t

−ω2∆t

Ç
1− (ω∆t)2

4

å
1− (ω∆t)2

2

ë
. (1.68)

In order to obtain a trajectory (qn, pn)n>0 which is bounded, the eigenvalues of the matrix A must have
moduli smaller than 1. This is the case if and only if

ω∆t < 2. (1.69)

For discretizations of Langevin dynamics (1.25), the stability of the scheme is understood as the existence
of an invariant measure µ∆t. The stability conditions of discretization schemes for Langevin dynamics can
be studied for harmonic problems using a spectral analysis of the matrices encoding the transition operators
similar to (1.69) [76, 75].

An alternative option is for instance the application of an implicit method which can be unconditionally
stable in the step size. The issue is that such schemes are unconditionally stable in the linear case, but not in
the non-linear case. There are also other problems, such as the cost of iterations due to the fix-point method
used to solve non-linear systems [76].

Multiple time-stepping methods allow to reduce the instability in molecular dynamics. The RESPA met-
hod achieves an increase in the total integration time step by separating fast and slow degrees of freedom and
integrating them with different time step size [124, 123, 122, 125]. Another widely used group of methods
corresponds to constrained dynamics [32, 35], where stiff bond stretches are removed. For more details we
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refer to [81, 76] and references therein. In [13, 95] a method based on changing the mass matrix in order to
increase the time steps used in the simulation was proposed.

Finally, a careful analysis of the leading-order error terms of the splitting schemes for Langevin dynamics
shows that the order of the splitting operators matters: in the limit of infinite friction, the BAOAB scheme4

has a leading order correction whose average with respect to momentum vanishes. This property provides
accuracy of effective order 2 on the configurational sampling instead of effective order 1 as in other splittings
(for instance ABOBA) [74]. This method was also recently combined with constrained Langevin dynamics,
allowing a substantial increase of the maximal admissible time step size [77].

1.4.2 Metastability

In many practical applications, potentials which govern the dynamics of the system are very complicated
and the sampling process is metastable. Metastability is characterized by the multi-modality of the position
marginal of the sampled distribution. A distribution is called multi-modal when it possesses regions of high
probability separated from each other by regions with very low probability. In molecular simulations, this
implies that the dynamics remains trapped in some region for a long time due to energetic or entropic
barriers. In order to illustrate the metastability due to energetic barriers, the complicated energy landscape is
usually compared to a mountain range, which must be explored entirely in order to obtain correct averages of
observables of interest. The transitions between the valleys require bigger "climbing" effort, and occur rarely.
Most of the simulation time is therefore spent in the valleys, which are "over-explored". The main interest
is therefore the passage to another valley, which provides new information necessary for the correctness of
the computed average.

A simple example which illustrates a metastable dynamics is Langevin dynamics with a double-well
potential, which can be5 given by the following function in dimension 1:

VDW(q) =
h

1

(q − w)2 + 1

(q + w)2

, (1.70)

where h is the height and ±w are the positions of the wells. Figure 1.5(Left) presents a plot of VDW. The
potential possess two energy minima separated by a possibly high energy region. Figure 1.5(Right) shows the
temporal evolution of the positions which oscillate around two values with only rare transitions in-between.

Another cause of the metastability are entropic barriers. A paradigmatic example of this situation are two
boxes with periodic boundary conditions except in one direction, and connected by a very narrow channel.
The potential energy is zero and the stochastic process (qt)t>0 is thefore a simple random walk. There are no
energetic barriers in this direction, metastability solely arises from entropic effects: it takes a long time for

4 Recall the construction of the discretization scheme based on the splitting of the generator as for instance (1.58). Note that "O"

corresponds to LFD in this manuscript.
5 We use this function since it is very simple to modify it for more modes. A more common double-well function is given by

(q2 − w2)2 with some parameter w as presented in Section 1.1.1.1.
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Fig. 1.5: (Left) One-dimensional double-well potential (1.70) with h = 5 and w = 1. (Right) Evolution of
the position as a function of time (γ = 1 and β = 1).

a particle to pass from one box into another since the accessible space for the system to leave a metastable
state is very small.

These two causes of metastability (energetic and entropic) can be distinguished according to the scaling
of the transition rates with respect to the temperature: when the temperature decreases (i.e. β increases),
the typical time scale to leave a metastable region grows exponentially fast with respect to β for energetic
barriers, in accordance with results from large deviation theory [47]; while for an entropic barrier, a change
in temperature is (asymptotically) equivalent to a linear rescaling in time.

The metastability implies that the asymptotic variance σ2
ϕ of the time averages defined in (1.48) is rela-

tively high. Since the statistical error is of order σϕ√
Niter

, the number of the simulation steps Niter which are
necessary for achieving a certain statistical precision might be very large.

Variance reduction techniques

Many techniques were introduced to reduce the variance of trajectory averages computed with discretizati-
ons of SDEs and hence to decrease the statistical error in the estimated averages [29]. These methods can
be characterized according to whether they (i) target a given observable, i.e. try to reduce σ2

ϕ for a given ϕ;
or (ii) all possible observables, i.e. the objective is to decrease

sup
ϕ∈L2(π)

σ2
ϕ

‖ϕ‖L2(π)2

= sup
‖ϕ‖L2(π)61

2

ˆ
X
Πϕ(−L−1Πϕ)dπ.

Control variate techniques6 belong to the first class of variance reduction methods. This approach was
proposed in the computational statistics literature [8, 57] and in the statistical physics literature [10]. Instead
of computing the ergodic average Eµ [ϕ] of the observable ϕ, it is based on the estimator Eµ [ϕ− φ], where

6 Also known as known as the zero-variance principle in the statistical physics literature.
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an additional observable φ was introduced such that E [φ] = 0. The suggestion is to find φ such that the
variance σ2

ϕ−φ is smaller than σ2
ϕ.

Stratification is a general-purpose variance reduction method. It decomposes the difficult sampling pro-
blem into easier sampling problems. The local averages are then re-weighted according to the canonical
weight of the region itself [112]. This method can be made practical by using approaches developed in sta-
tistics [49, 86, 69] or by thermodynamic integration, which constrains the dynamics on the levels sets and
varies the level set constant to sample the full space. See [81] for an introduction to this method.

The key idea of importance sampling is to change the measure which is sampled into a measure which is
easier to sample. This is most commonly done by replacing the potential energy function V in the dynamics
by a modified potential V + ‹V . The modified Langevin dynamics associated with the potential V + ‹V ,
namely 

dq̃t = M−1p̃tdt,

dp̃t = −∇
(
V + ‹V )(q̃t)dt− γM−1p̃tdt+

 
2γ

β
dWt,

is ergodic for the modified canonical probability measure µ
Ṽ

= Z−1

Ṽ
e−βṼ µ. The fundamental observation

to retrieve averages with respect to µ with realizations of the modified dynamics is that

ˆ
E
ϕ(q)µ(dq dp) =

ˆ
E
ϕ eβṼ dµ

Ṽˆ
E

eβṼ dµ
Ṽ

. (1.71)

In the practice, instead of the estimator

ϕ̂Ṽt =

ˆ t

0
ϕ(q̃s) eβṼ (q̃s)ds

ˆ t

0
eβṼ (q̃s)ds

, (1.72)

its discretized version is used

ϕ̂ṼNiter,∆t
=

Niter∑
n=0

ϕ(q̃n) eβṼ (q̃n)

Niter∑
n=0

eβṼ (q̃n)

, (1.73)

where q̃n is an approximation of q̃n∆t. In order for importance sampling to be efficient, the weights eβṼ (qn)

should not be too degenerate. For a fixed observable, it is possible to optimize the modified potential [33].
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Non-reversible dynamics

Methods based on adding non-reversible terms into the dynamics allow to keep the same measure invariant
while possibly decreasing the asymptotic variance. For an application to overdamped Langevin dynamics
see [41, 100].

Sampling reactive paths

In order to improve the efficiency of the simulation of paths over long times in terms of improved transition
rates, accelerated dynamics techniques are usually applied. There are three basic methods: Parallel Replica
method [129], Hyperdynamics [128] and the Temperature Accelerated Dynamics [113]. See [4, 80] for
reviews on these methods.

1.4.3 Computational cost per time step

Many methods focus on reducing the dimensionality of the simulated system in order to lower the compu-
tational cost per time step and hence accelerate the simulations in terms of wall-clock time. In some cases,
reducing the number of degrees of freedom even allows to increase the stability threshold on the time step.
This is the purpose for example of coarse-graining techniques. These methods, as for example dissipative
particle dynamics [59, 44], model groups of particles (for instance a molecule) by some effective parti-
cles. The interactions between such particles are determined by averaging over the fully detailed system.
We also refer to [66, 106] for a few selected works on the coarse-graining methods. Many methods couple
multiple-scales models into multi-resolution simulations [96, 43].

Incremental algorithms allow in certain cases to reduce the algorithmic cost per time step by reusing
some part of the information from the previous step. This approach was applied in several contexts, e.g. for
modeling hydrocarbon systems ([20]), proteins ([107]), and for electronic structure calculations ([21]).

In order to conclude this section let us remark that due to the dimensionality of molecular simulations
the parallelization of simulations is necessary and therefore all methods should be designed in a way such
that the parallelization is possible and efficient.

1.5 Adaptively Restrained Particle Simulations

Adaptively Restrained Particle Simulations (ARPS) is a method proposed in [9] with the aim of accelerating
particle simulations. The key idea is to modify the dynamics in order to reduce the computational cost per
time step by decreasing the cost of the force computation, which is the most expensive part. This is achieved
by "restraining" some particles temporarily: a particle is restrained if its position has not changed between
two successive time steps. Since particle interactions typically depend on relative positions, this makes it
possible to skip the computation of interactions between restrained particles in the update of the force. On
Figure 1.6 we illustrate this by a cartoon of a simulation of particles: the left picture represents a simulation
of some solute (orange) particles surrounded by solvent particles (blue) and the picture on the right hand

40



Fig. 1.6: Particle simulation: standard one (left) and ARPS method (right).

size shows a modification of the solvent particles by the ARPS method. The restrained particles are colored
in grey. One can easily imagine that skipping all interactions between the restrained particles dramatically
reduces the amount of interactions which need to be computed.

The restraining of the particles is achieved by modifying the kinetic energy function. More precisely, the
standard kinetic energy function (which is a quadratic function of the momenta) is replaced by a function
which is zero for small values of momenta. Looking at the Verlet scheme (1.8), one can immediately see that
if the kinetic energy of the particle i vanishes in the neighborhood of a value pni at step n, so does its gradient
and the position remains unchanged, i.e. qn+1

i = qni . In the ARPS method, the kinetic energy function is a
sum of individual contributions

UAR(p) =
N∑
i=1

u(pi)

which are parameterized by two constants 0 6 emin < emax. For large values of momenta, the modified
individual kinetic energies are equal to the standard kinetic energy of one particle, but they vanish for small
momenta:

u(pi) =



0 for
p2
i

2mi
6 emin,

p2
i

2mi
for

p2
i

2mi
> emax,

s

Ç
p2
i

2mi

å
for

p2
i

2mi
∈ [emin, emax] .

A spline s smoothly interpolates between these two limiting regimes. The Hamiltonian of this dynamics
reads

HAR(q, p) = V (q) + UAR(p),

and the invariant measure of the associated Langevin dynamics (assuming e−βHAR ∈ L1(E)) is therefore
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Fig. 1.7: (Left) Standard quadratic kinetic energy function Ustd (solid lines), and an example of an AR
kinetic energy function u with parameters emax = 2 and emin = 1 (dashed line). (Right) The corresponding
marginal canonical densities associated with the kinetic energy function.

µ(dq dp) = Z−1
µ e−βHAR(q,p) dq dp, Zµ =

ˆ
E

e−βHAR(q,p) dq dp < +∞.

Due to the separability of the position and momenta marginals of the distribution, the averages of observables
which depend on the position variable are equal to the ones computed with the standard Langevin dynamics,
i.e.

EµAR [ϕ(q)] = Eµstd
[ϕ(q)] ,

where µstd(q, p) = Z−1
stde−βUstd(p)e−βV (q)dpdq is the canonical distribution with the standard kinetic energy

Ustd given by (1.7). A possible choice of the values of the parameters in the individual AR kinetic energy u,
as well as the associated canonical distribution of momenta Z−1

u e−βu(p) dp are depicted in Figure 1.7 when
the dimension is 1.

Note that, due to the additive structure of the kinetic energy, the momenta pi are independent and iden-
tically distributed (i.i.d.) under the canonical measure. It is however possible to choose different parameters
emin and emax for different particles, for example to focus calculations on a specific part of the particle sy-
stem, in which case the momenta are still independent but not longer identically distributed. Such a situation
is for example the solvent solute model already mentioned in Section 1.1.1.1.
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1.6 Contributions

The main contributions of this thesis can be summarized as follows:

• The content of Chapter 2 was published in [98]. Motivated by the ARPS method which introduces a
modified general kinetic energy, we consider general modified Langevin dynamics with Hamiltonian
H(q, p) = V (q) + U(p). We prove the ergodicity both in terms of almost-sure convergence of time
averages along a single realization, and convergence of the law of the process, in the case where the
kinetic energy is a perturbation of the standard kinetic energy, i.e. under the assumption that there exists
C > 0 such that

∀p ∈ Rd,
∣∣∣M−1p−∇U(p)

∣∣∣ 6 C. (1.74)

We also provide a result on the regularity of the evolution semi-group, adapted from similar estimates
for standard Langevin dynamics in [117]. These results hold even if U vanishes on some open set.
Such estimates allow us to analyze the statistical error. We state in particular a Central Limit Theorem
for ϕ̂t, and perform a perturbative study of the asymptotic variance of the AR-Langevin dynamics in
some limiting regime. Our theoretical findings are illustrated by numerical simulations, both in a simple
one-dimensional case where the variance can be accurately computed using an appropriate Galerkin
approximation, as well as for a more realistic system for which we resort to Monte-Carlo simulations.

• In Chapter 3 we again consider Langevin dynamics with general kinetic energy and focus on the case
when the kinetic energy is a local perturbation of the standard kinetic energy (see (1.74)). We study the
discretization of such dynamics in order to achieve a second order accuracy on the average properties and
construct algorithms which are numerically stable. We metropolize such dynamics and use this approach
to quantify the stability of the dynamics in terms of the average rejection rate. Moreover, we propose an
alternative definition to [9] of the AR-kinetic energy function which has better stability properties. This
work is preprinted as [114].

• In Chapter 4, we study the parametrization of the Adaptively Restrained (AR) Langevin dynamics. We
propose an analysis of the influence of the parameters on the total achievable speed-up. A previous
work [9] has shown numerically that there exists a choice of parameters for which this method is effi-
cient. We consider all factors which determine the total speed-up with respect to (1.19). We show that
from the average properties of the AR-Langevin dynamics, which depend on the choice of the parame-
ters, it is possible to estimate the computational cost. By adding information about the variance, it is
also possible to predict the total speed-up as a function of the chosen parameters. We therefore comple-
ment the understanding of the method and propose a strategy for finding optimal parameters in practical
applications on various systems. This work corresponds to the preprint [120].

• Finally, in the last chapter, we consider Langevin dynamics with general kinetic energies. We present
numerical examples where a special form of the kinetic energy improves the sampling of metastable sys-
tems. This work is currently in progress, but some preliminary results are presented in the preprint [114].

——————————————————–
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2

Error Analysis of Modified Langevin Dynamics

Summary. In this chapter we consider Langevin dynamics associated with a modified kinetic energy vanis-
hing for small momenta. This allows us to freeze slow particles, and hence avoid the re-computation of
inter-particle forces, which leads to computational gains. On the other hand, the statistical error may incre-
ase since there are a priori more correlations in time. The aim of this chapter is first to prove the ergodicity
of the modified Langevin dynamics (which fails to be hypoelliptic), and next to analyze how the asymptotic
variance on ergodic averages depends on the parameters of the modified kinetic energy. Numerical results
illustrate the approach, both for low-dimensional systems where we resort to a Galerkin approximation of
the generator, and for more realistic systems using Monte Carlo simulations.

The results presented in this chapter were published in [98].
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We consider the computation of macroscopic quantities through averages of functions of the variables
of the system with respect to the Boltzmann-Gibbs probability measure µ introduced in (1.10). Numeri-
cally, high-dimensional averages (1.9) with respect to µ are often approximated as ergodic averages over
realizations of appropriate stochastic differential equations (SDEs):

lim
t→∞

ϕ̂t = Eµ(ϕ) a.s., ϕ̂t :=
1

t

ˆ t

0
ϕ(qs, ps) ds . (2.1)

A typical dynamics to this end is the Langevin dynamics (1.24). As we explained in Section 1.3.2.3, there
are two main sources of error in the computation of average properties such as Eµ(A) through time averages
as in (1.29): a systematic bias and statistical errors. In this chapter, we focus on the statistical error, the sys-
tematic bias being discussed in Chapter 3. Statistical errors may be large when the dynamics is metastable,
i.e. when the system remains trapped for a very long time in some region of the configuration space (called
a metastable region) before hopping to another metastable region. As we discussed in Section 1.4.2, many
techniques have been introduced in order to reduce the variance.

The mathematical analysis we provide is inspired by the ARPS method introduced in Section 1.5, where
the kinetic energy of each particle is more drastically modified in order to reduce the variance for a gi-
ven computational effort in wall-clock time: it is set to 0 when the particle’s momenta are small, while it
remains unchanged for larger momenta. Adaptively restrained particle simulations may yield a significant
algorithmic speed-up Sa when a sufficiently large number of particles are restrained at each time step (see
Chapter 4). Unfortunately, restraining particles even temporarily may lead to more correlated iterates, which
may translate into an increase of the statistical error σ2

mod compared to the statistical error σ2
std observed

for standard Langevin dynamics. The actual speed-up of the method (see Chapter 4), in terms of the total
wall-clock time needed to achieve a given precision in the estimation of an observable, should therefore be
expressed as:

Stotal = Sa
σ2

std

σ2
mod

. (2.2)

Our aim here is to quantify the increase in the variance as a function of the parameters of the modified kinetic
energy. In fact, a first task is to prove that the Langevin dynamics with modified kinetic energy is indeed
ergodic, and that the variance is well defined. This is unclear at first sight since the modified dynamics fails
to be hypoelliptic (see Section 1.3.1.2 and the discussion in Section 2.2.1).

This chapter is organized as follows. In Section 2.1, we introduce the modified Langevin dynamics we
consider, and present the particular case of the AR-Langevin dynamic. The ergodicity of these dynamics is
proved in Section 2.2, both in terms of almost-sure convergence of time averages along a single realization,
and convergence of the law of the process. We also provide a result on the regularity of the evolution semi-
group, adapted from similar estimates for standard Langevin dynamics in [117]. Such estimates allow us to
analyze the statistical error in Section 2.3. We state in particular a Central Limit Theorem for ϕ̂t, and perform
a perturbative study of the asymptotic variance of the AR-Langevin dynamics in some limiting regime. Our
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theoretical findings are illustrated by numerical simulations in Section 2.4, both in a simple one-dimensional
case where the variance can be accurately computed using an appropriate Galerkin approximation, as well
as for a more realistic system for which we resort to Monte-Carlo simulations. The proofs of our results are
gathered in Section 2.5.

2.1 Modified Langevin dynamics

We consider a system of N particles with periodic conditions as described in Section 1.1.1. Recall that the
spatial dimension is D, so that the total dimension of the system is d := D ×N .

In order to possibly increase the rate of convergence of the ergodic averages (2.1), we modify the Lange-
vin dynamics (1.19) by changing the kinetic energy. More precisely, instead of the standard quadratic kinetic
energy Ustd given by (1.7), we introduce a general kinetic energy function U : Rd → R. The total energy of
the system is then characterized by the Hamiltonian

H(p, q) = U(p) + V (q). (2.3)

In order to ensure that the measure e−βH(q,p) dq dp can be normalized, and in order to simplify the mathe-
matical analysis, we make in the sequel the following assumption.

Assumption 2.1 The potential energy function V belongs to C∞(D,R), and U ∈ C∞(Rd,R) grows suffi-
ciently rapidly at infinity in order to ensure that e−βU ∈ L1(Rd).

The Langevin dynamics (1.24) simplifies, for the separable Hamiltonian (2.3),
dqt = ∇U(pt) dt,

dpt = −∇V (qt) dt− γ∇U(pt) dt+

 
2γ

β
dWt.

(2.4)

The generator of the process (2.4) reads

L = ∇U · ∇q −∇V · ∇p + γ

Å
−∇U · ∇p +

1

β
∆p

ã
. (2.5)

Recall the canonical distribution (1.10) which is

µ(dq dp) = Z−1
µ e−βH(q,p) dq dp, Zµ =

ˆ
E

e−βH(q,p) dq dp < +∞.

A simple computation shows that the distribution (1.10) is invariant under the dynamics (2.4), i.e. for all
C∞ functions φ with compact support, ˆ

E
Lφ dµ = 0.
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Note that, in view of the separability of the Hamiltonian, for any kinetic energy U , the marginal of the
distribution µ in the position variables is ν given by (1.12). In particular, this marginal distribution coincides
with the one of the standard Langevin dynamics (1.19) (we will show in Section 2.2 that the modified
Langevin dynamics is ergodic). This allows to straightforwardly estimate canonical averages of observables
depending only on the positions with the modified Langevin dynamics (2.4). In fact, there is no restriction
in generality in considering observables depending only on the positions, since general observables ϕ(q, p)

depending both on momenta and positions can be reduced to functions of the positions only by a partial
integration in the momentum variables. This partial integration is often very easy to perform since momenta
are independent Gaussian random variables under the canonical measure associated with the standard kinetic
energy.

2.2 Ergodicity of the modified Langevin dynamics

There are several notions of ergodicity for stochastic processes (see Section 1.3.1.2) and Section 1.3.1.3 for
an introduction). We focus here on two of them: the convergence of ergodic averages over a single trajectory,
and the convergence of the law of the process.

2.2.1 Convergence of ergodic averages

As explained in Section 1.3.1.2, the convergence of ergodic averages over one trajectory is automatically
ensured by the existence of an invariant probability measure and the irreducibility of the dynamics. Since,
by construction, an invariant probability measure is known (namely the canonical measure (2.1)), it suffices
to show that the process generated by the modified Langevin equation is irreducible to be able to conclude
the convergence of ergodic averages.

As reviewed in Section 1.3.1.2, the most standard argument to prove the irreducibility of degenerate
diffusions is to prove the controllability of the dynamics relying on the Stroock-Varadhan support theorem,
and the regularity of the transition kernel thanks to some hypoellipticity property. These conditions are
satisfied for standard Langevin dynamics, but not for the modified Langevin dynamics we consider, since
the Hessian of the kinetic energy function may not be invertible on an open set. This is the case for the AR
kinetic energy function presented in Section 1.5.

To illustrate this point, let us show for instance how the standard way of proving hypoellipticity fails. As
we explained in Section 1.3.1.2, in order to apply Theorem 1.2, the first task is to rewrite the generator (2.5)
of the process as

L = X0 −
d∑
j=1

X†jXj ,

where
X0 = ∇U · ∇q −∇V · ∇p − γ∇U · ∇p, Xj =

 
γ

β
∂pj ,
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and X†j is the adjoint of Xj on the flat space L2(E). We next compute, for j = 1, . . . , d, the commutators

[X0, Xj ] = X0Xj −XjX0 =

 
γ

β
∇
Ä
∂pjU

ä
· (∇q − γ∇p) .

When ∇2U is invertible (which is the case for Ustd), it is possible to recover the full algebra of derivatives
by an appropriate combination of X1, . . . , Xd and [X0, X1], . . . , [X0, Xd]. Here, we consider a situation
when this is not the case and, even more dramatically, where the Hessian may vanish on an open set. In
this situation, [X0, Xj ] = 0 on the same open set, and in fact all iterated commutators [X0, [. . . [X0, Xj ]]]

also vanish. Note that also the proof of the controllability based on the construction of a control (1.31) faces
similar issues.

We solve this problem by a direct constructive approach, where we see the modified dynamics as a
perturbation of the standard Langevin dynamics. We rely on the following assumption:

Assumption 2.2 The kinetic energy function U ∈ C∞ of the modified Langevin dynamics is such that

‖∇U −∇Ustd‖L∞ 6 Gstd (2.6)

for some constant Gstd < +∞, where Ustd is defined in (1.7).

Under this assumption, we can prove that the modified Langevin dynamics is irreducible by proving an
appropriate minorization condition, which crucially relies on the compactness of the position space D (see
Section 2.5.2 for the proof).

Lemma 2.1 (Minorization condition). Suppose Assumption 2.2 holds. Then for any fixed p∗ > 0 and
t > 0, there exists a probability measure νp∗,t on D × Rd and a constant κ > 0 such that, for every Borel
set B ∈ B(E),

P
Å

(qt, pt) ∈ B
∣∣∣∣ |p0| 6 p∗

ã
> κ νp∗,t(B),

with νp∗,t(B) > 0 when |B| > 0.

The minorization condition implies the irreducibility of the dynamics, so that the following convergence
result readily follows.

Theorem 2.3 (Convergence of ergodic averages). When Assumption 2.2 holds, ergodic averages over tra-
jectories almost surely converge to the corresponding canonical average:

∀ϕ ∈ L1(µ), lim
t→+∞

1

t

ˆ t

0
ϕ(qs, ps)ds =

ˆ
E
ϕdµ a.s.
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2.2.2 Convergence of the law

As explained in Section 1.3.1.3, there are various functional frameworks to measure the convergence of
the law of the process. The approach by hypocoercivity fails, since the generator of the modified Langevin
dynamics is not hypoelliptic, and hence the condition (1.34) is not satisfied.

We consider here weighted L∞ estimates on the semi-group etL as described in Section 1.3.1.3. Recall
the weighted L∞ space L∞K defined in (1.36). In order to prove the exponential convergence of the law, we
rely on the result of [54], which states that if a Lyapunov condition and a minorization condition hold, then
the sampled chain converges exponentially fast to its steady state in the following sense.

Theorem 2.4 (Exponential convergence of the law). Suppose that Assumption 2.2 holds. Then the invari-
ant measure µ is unique, and for any s ∈ N∗, there exist constants Cs, λs > 0 such that

∀ϕ ∈ L∞Ks , ∀ t > 0,

∥∥∥∥etLϕ− ˆ
E
ϕdµ

∥∥∥∥
L∞Ks

6 Cse
−λst ‖ϕ‖L∞Ks . (2.7)

The minorization condition is already stated in Lemma 2.1, while the appropriate Lyapunov condition
reads as follows (see Section 2.5.1 for the proof, which uses the same strategy as [78] and [64]).

Lemma 2.2 (Lyapunov Condition). Suppose that Assumption 2.2 holds. Then, for any s > 1 and t > 0,
there exist b > 0 and a ∈ [0, 1) such that

etLKs 6 aKs + b.

2.2.3 Regularity results for the evolution semi-group

We provide in this section decay estimates for the spatial derivatives of etLϕ, following the approach pio-
neered in [117] and further refined in [71]. These estimates can in fact be extended in a straightforward way
to modified Langevin dynamics with Hessians bounded from below by a positive constant. Our aim in this
section is to provide decay estimates for the spatial derivatives of etLϕ in the situation when∇2U fails to be
strictly convex, for instance because∇2U vanishes on an open set as is the case for AR-Langevin dynamics.

In order to state our results, we first need to define the weighted Sobolev spaces W n,∞
Ks for n ∈ N:

W n,∞
Ks =

{
ϕ ∈ L∞Ks

∣∣∣∣ ∀k ∈ N2d, |k| 6 n, ∂kϕ ∈ L∞Ks
}
.

These spaces gather all functions which grow at most like Ks, and whose derivatives of order at most n
all grow at most like Ks. Recall the space of smooth functions S , which is the vector space of functions
ϕ ∈ L2 (µ) such that, for any n > 0, there exists r ∈ N for which ϕ ∈ W n,∞

Kr .
We also make the following assumption on the kinetic energy function, which can be understood as a

condition of “almost strict convexity” of the Hessian∇2U .
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Assumption 2.5 The kinetic energy U ∈ S has bounded second-order derivatives:

sup
|j|=2

∥∥∥∂jU∥∥∥
L∞

<∞ , (2.8)

and there exist a function Uν ∈ S and constants ν > 0 and Gν > 0 such that

∇2Uν > ν > 0 (2.9)

and
‖∇ (U − Uν)‖L∞ 6 Gν . (2.10)

Remark 2.1. A natural choice for the function Uν in Assumption 2.5 is Ustd. The condition (2.9) then holds
with ν = 1/max(m1, . . . ,mN ). Moreover, (2.8) holds as soon as U is a local perturbation of Ustd. The
most demanding condition is therefore (2.10), especially if Gν has to be small as in Lemma 2.3 below.

By following the same strategy as in [71, Proposition A.1.] (which refines the results already obtained
in [117]), and appropriately taking care of the lack of strict positivity of the Hessian ∇2U by assuming that
Gν is sufficiently small, we prove the following result in Section 2.5.3.

Recall the orthogonal projection Πµ onto the orthogonal of the kernel of the operator L (with respect to
the L2(µ) scalar product) defined in (1.42).

Lemma 2.3. Suppose that Assumptions 2.2 and 2.5 hold, and fix ϕ ∈ S . For any n > 1, there exist
ñ, sn ∈ N and λn > 0 such that, for s > sn and Gν 6 ρs, in Equation (2.10), with ρs > 0 sufficiently small
(depending on s but not on n), there is r ∈ N and C > 0 for which

∀t > 0, ∀ |k| 6 n,
∥∥∥∂ketLΠµϕ

∥∥∥
L∞Ks

6 C ‖ϕ‖
W ñ,∞
Kr

e−λnt. (2.11)

The parameter ρs can in fact be made explicit, see (2.34) below. The decay estimate (2.11) shows that
the derivatives of the evolution operator can be controlled in appropriate weighted Hilbert spaces. Note
however that the Lyapunov functions entering the estimates are not the same a priori on both sides of the
inequality (2.11). Let us emphasize, though, that we can obtain a control in all spaces L∞Ks for s sufficiently
large (depending on the order of derivation).

2.3 Analysis of the statistical error

The asymptotic variance characterizes the statistical error (see Section 1.3.1.4). In Section 2.3.1, we show
that the asymptotic variance is well defined for the modified Langevin dynamics. We can in fact prove a
stronger result, namely that a Central Limit Theorem (CLT) holds for ergodic averages over one trajectory.
In a second step, we more carefully analyze in Section 2.3.2 the properties of the variance of the AR-
Langevin dynamics by proving a linear response result in the limit of a vanishing lower bound on the kinetic
energies. To obtain the latter results, we rely on the estimates provided by Lemma 2.3.
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2.3.1 A Central Limit theorem for ergodic averages

Let us first write the asymptotic variance in terms of the generator of the dynamics. We have defined fiL∞Ks =

Πµ
(
L∞Ks

)
, since L∞Ks ⊂ L2(µ). The ergodicity result (2.7) allows us to conclude that the operator L is

invertible on fiL∞Ks since the operator equality (1.43) holds on B
ÄfiL∞Ksä. This leads to the following resolvent

bounds (the second part being a direct corollary of Lemma 2.3).

Corollary 2.1. Suppose that Assumption 2.2 holds. Then, for any s ∈ N∗,

∥∥∥L−1
∥∥∥
B
Ä
L̃∞Ks

ä 6 Cs
λs
, (2.12)

where λs, Cs are the constants introduced in Theorem 2.4. Suppose in addition that Assumption 2.5 holds,
and fix ϕ ∈ S . For any n > 1, there exist ñ, sn ∈ N and λn > 0 such that, for s > sn and Gν 6 ρs with
ρs > 0 sufficiently small (depending on s but not on n), there is r ∈ N and C > 0 for which

∀ |k| 6 n,
∥∥∥∂kL−1Πµϕ

∥∥∥
L∞Ks

6
C

λn
‖ϕ‖

W ñ,∞
Kr

. (2.13)

This already allows us to conclude that the asymptotic variance of the time average ϕ̂t defined in (2.1) is
well defined for any observable ϕ ∈ L∞Kr due to the computation provided in (1.46)-(1.48). The asymptotic
variance reads

σ2
ϕ = 2

ˆ
E

(Πµϕ)
Ä
−L−1Πµϕ

ä
dµ.

In fact, a Central Limit Theorem can be shown to hold for ϕ̂t using standard results (see e.g. [17]).

2.3.2 Perturbative study of the variance for the AR-Langevin dynamics

Our aim in this section is to better understand, from a quantitative viewpoint, the behavior of the asymptotic
variance for the AR-Langevin dynamics (1.48), at least in some limiting regime where the parameter emin

is small. For larger values, we need to rely on numerical simulations (see Section 2.4).
The regime where both emin and emax go to 0 is somewhat singular since the transition from U(p) = 0

to U(p) = Ustd(p) becomes quite abrupt, which prevents a rigorous theoretical analysis. The regimes where
either emin or emax go to infinity are also of dubious interest since the dynamics strongly perturbs the
standard Langevin dynamics. Therefore, we restrict ourselves to the situation where emin → 0 with emax

fixed.
In order to highlight the dependence of the AR kinetic energy function on the restraining parameters

0 6 emin < emax, we denote it by Uemin,emax in the remainder of this section. Let us however first give a
more precise definition of this function, having in mind that emax is fixed while emin eventually goes to 0.
We introduce to this end an interpolation function f0,emax ∈ C∞ (R) such that

0 6 f0,emax 6 1, f0,emax(x) = 1 for x 6 0, f0,emax(x) = 0 for x > emax, (2.14)
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Fig. 2.1: (Left) Functions f0,emax and femin,emax for emax = 2 and emin = 1. (Right) Standard kinetic energy
function Ustd, as well as two AR kinetic energy functions Uemin,emax with emax = 2 and emin = 0 or 1.

and
∀n > 1, f

(n)
0,emax

(0) = f
(n)
0,emax

(emax) = 0.

We next define an interpolation function femin,emax obtained from the function f0,emax by an appropriate shift
of the lower bound and a rescaling. More precisely, femin,emax(x) = f0,emax(θemin(x)) with

θemin(x) :=


x− emin, for x 6 emin,

emax

emax − emin
(x− emin), for emin 6 x 6 emax,

x, for x > emax.

(2.15)

A plot of femin,emax is provided in Figure 2.1(Left).

Definition 2.1 (AR kinetic energy function). For two parameters 0 6 emin < emax, the AR kinetic energy
function Uemin,emax is defined as

Uemin,emax(p) :=
N∑
i=1

uemin,emax(pi), (2.16)

where the individual kinetic energy functions are

uemin,emax(pi) :=



0, for
p2
i

2mi
6 emin,ñ

1− femin,emax

Ç
p2
i

2mi

åô
p2
i

2mi
, for

p2
i

2mi
∈ [emin, emax],

p2
i

2mi
, for

p2
i

2mi
> emax.

(2.17)
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Of course, Uemin,emax(p) converges to U0,emax(p) as emin → 0. The limiting kinetic energy function
U0,emax corresponds to what we call the Zero-emax-AR-Langevin dynamics (see Figure 2.1(Right) for an
illustration). Let us emphasize that the limiting dynamics is not the standard Langevin dynamics, so that
the expansion in powers of emin of the variance we provide is with respect to the limiting variance of the
dynamics corresponding to U0,emax . To simplify the notation, we denote by σ2(emin) the variance associated
with the kinetic energy Uemin,emax .

Proposition 2.1. There exist e∗max > 0 and K ∈ R such that, for any 0 < emax 6 e∗max,

∀0 6 emin 6
emax

2
, σ2(emin) = σ2(0) + K emin + O(e2

min). (2.18)

The proof can be read in Section 2.5.4. The assumption that emax is sufficiently small ensures that Assump-
tion 2.5 holds (see Section 2.5.4.3). The result is formally clear. The difficulty in proving it is that the kinetic
energy is not a smooth function of emin because the shift function is only piecewise smooth.

Remark 2.2. An inspection of the proof of Proposition 2.1 shows that the linear response result can be
generalized to non-zero values of emin and in fact to linear responses in the parameter emax as well. For
the latter case, we consider f0,emax(x) = f0,1(x/emax). Denoting now by σ2(emin, emax) the variance
associated with the kinetic energy Uemin,emax , it can be proved that, for 0 < emin < emax not too large, there
are a, b ∈ R such that, for δ, η ∈ R sufficiently small,

σ2(emin + δ, emax + η) = σ2(emin, emax) + aδ + bη + O(η2 + δ2).

2.4 Numerical results

The aim of this section is to quantify the evolution of the variance of AR-Langevin dynamics as the parame-
ters of the kinetic energy function are modified. We first consider in Section 2.4.1 a simple system in spatial
dimension 1, for which the variance can be very precisely computed using a Galerkin-type approximation.
We next consider more realistic particle systems in Section 2.4.2, relying on molecular dynamics simulati-
ons to estimate the variance. In this section, the function f0,emax(x) is chosen to be of the form f0,1(x/emax),
with f0,1 a fifth-order spline function.

2.4.1 A simple one-dimensional system

We first consider a single particle in spatial dimension d = 1, in the periodic domain D = 2πT and at
inverse temperature β = 1. In this case, it is possible to directly approximate the asymptotic variance (1.48)
using some Galerkin discretization, as in [101] or [72].

We denote by Lemin,emax the generator of the modified Langevin dynamics associated with the AR ki-
netic energy function Uemin,emax defined in (2.16), by µemin,emax the associated canonical measure, and by
Πemin,emax the projector onto functions of L2(µemin,emax) with average 0 with respect to µemin,emax .
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For a given observable ϕ, we first approximate the solution of the following Poisson equation:

− Lemin,emaxΦϕ = Πemin,emaxϕ, (2.19)

and then compute the variance as given by (1.48):

σ2
ϕ = 2

ˆ
E
Φϕ ϕdµemin,emax .

To achieve this, we introduce the basis functions ψnk(q, p) := Gk(q)Hn(p), where Gk(q) = (2π)−1/2eikq

(for k ∈ Z) and Hn(p) are the Hermite polynomials:

Hn(p) = (−1)nep
2/2 d

n

dpn

(
e−p

2/2
)
, ∀n ∈ N.

The choice of Gk is natural in view of the spatial periodicity of the functions under consideration, while
Hermite polynomials are eigenfunctions of the generator associated with the Ornstein-Uhlenbeck process
on the momenta for the standard quadratic kinetic energy p2/2. Note however that, when the kinetic energy
is modified as Uemin,emax , the Hermite polynomials are no longer orthogonal for the L2(µemin,emax) scalar
product.

We approximate the Poisson equation (2.19) on the basis VNG,NH = Span{ψnk}06n6NH ,−NG6k6NG
for given integers NG, HH > 1, and we look for approximate solutions of the form Πemin,emaxΦ

NG,NH
ϕ with

ΦNG,NHϕ =
NH∑

n=−NH

NG∑
k=0

[bNG,NH ]nk ψnk,

where bNG,NH is a vector of size (2NG + 1)(NH + 1). Restricting (2.19) to VNG,NH leads to

MNG,NH bNG,NH = aNG,NH , (2.20)

where MNG,NH is a matrix of size (2NG + 1)(NH + 1)× (2NG + 1)(NH + 1) and aNG,NH a vector of size
(2NG + 1)(NH + 1), whose entries respectively read

[MNG,NH ]nk,ml = 〈ψml,−Lemin,emaxψnk〉L2(µemin,emax ) ,

[aNG,NH ]ml = 〈ψml, Πemin,emaxϕ〉L2(µemin,emax ) .

The approximated solution ΦNG,NHϕ of the Poisson equation (2.19) can therefore be computed by sol-
ving (2.20). Note however that some care is needed at this stage sinceLemin,emax is not invertible on VNG,NH ,
because the basis functions {ψnk}06n6NH ,−NG6k6NG are not of integral 0 with respect to µemin,emax . We
correct this by performing a singular value decomposition of MNG,NH , removing the component of aNG,NH
associated with the singular value 0, and computing the inverse of MNG,NH on the subspace generated
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Fig. 2.2: Convergence of the Galerkin approximation in the basis size NG and NH = 2NG − 1: approx-
imation of the variance of observable ϕ = V for the standard dynamics and the AR dynamics with fixed
parameter emax = 2 and various values of emin.

by the eigenvectors associated with non-zero eigenvalues. In practice, we compute the entries of aNG,NH
and MNG,NH by numerical quadrature. Since the Hermite polynomials are no longer orthogonal for the
L2(µemin,emax) scalar product, quadratures are required both in position and momentum variables. The vari-
ance is finally approximated as

σ2
ϕ(NG, NH) = 2

ˆ
E
ϕΦNG,NHϕ dµemin,emax = 2bTNG,NHaNG,NH .

In the simulations presented in this section, the potential is V (q) = cos(q), the observable under study is
ϕ = V , and we always set NH = 2NG−1. Figure 2.2 presents the convergence of the variance with respect
to the basis size, for the standard Langevin dynamics and the AR Langevin dynamics with emax = 2 and
various values of emin. The results show that the choice NG = 12 is sufficient in all cases to approximate
the asymptotic value. We checked in addition in one case, namely for the standard dynamics, that the values
we obtain are very close to a reference value obtained with NG = 30: the relative variation is of order 10−8

for NG = 10, 10−10 for NG = 12 and 10−11 for NG = 14. We therefore set NG = 12 in the remainder of
this section.

The variation of the computed variance for ϕ = V is plotted in Figure 2.3 for various parameters 0 6

emin < emax of the AR-Langevin dynamics. Note that, as expected, the variance increases with increasing
values of emin for fixed emax, but also with increasing values of emax for fixed emin. We next illustrate
the linear response results of Proposition 2.1 and Remark 2.2 in Figures 2.4 and 2.5: in both situations,
the variance increases linearly when the parameter under consideration is varied in a sufficiently small
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neighborhood of its initial value. After that initial regime, nonlinear variations appear. Note also that the
relative increase of the variance is more pronounced as a function of emax than emin.

Remark 2.3. In practice, the idea usually is to set the lower bound emin sufficiently large when performing
Monte Carlo simulations, in order to decrease as much as possible the computational cost (see Chapter 4).
The gap emax − emin should however not be too small in order to have a sufficiently smooth transition from
a vanishing kinetic energy to a quadratic one. This requires therefore emax to be quite large if emin is large.
The results presented in Figure 2.5 suggest that this may not be the optimal choice, unless the algorithmic
speed-up is quite large.

2.4.2 A more realistic system

In order to study the variation of the variance as a function of emin and emax in systems of higher dimensions,
we resort to Monte Carlo simulations. This requires discretizing the AR-Langevin dynamics (5). We resort to
a scheme of weak order 2 for the standard kinetic energy obtained by a splitting strategy where the generator
of the modified Langevin dynamics (2.5) is decomposed into three parts:

A := ∇U(p) · ∇q, B := −∇V (q) · ∇p, LFD := −∇U(p) · ∇p +
1

β
∆p .

The transition kernel obtained by a Strang splitting reads P∆t = eγ∆tLFD/2e∆tB/2e∆tAe∆tB/2eγ∆tLFD/2.
Contrarily to the standard kinetic energy functions, the elementary evolution associated with LFD cannot
be integrated analytically. We approximate eγ∆t/2LFD by a midpoint rule, encoded by a transition kernel
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P γ,LFD
∆t . This gives the following discretization scheme:

pn+1/4 = pn − γ∇U
Ç
pn+1/4 + pn

2

å
∆t

2
+

 
γ∆t

β
Gn,

pn+1/2 = pn+1/4 −∇V (qn)
∆t

2
,

qn+1 = qn +∇U(pn+1/2)∆t,

pn+3/4 = pn+1/2 −∇V (qn+1)
∆t

2
,

pn+1 = pn+3/4 − γ∇U
Ç
pn+1 + pn+3/4

2

å
∆t

2
+

 
γ∆t

β
Gn+1/2,

(2.21)

where Gn, Gn+1/2 are i.i.d. standard d-dimensional Gaussian random variables. The first and the last line
are obtained by implicit schemes, solved in practice by a fixed point strategy (the termination criterion being
that the distance between successive iterates is smaller than 10−10, and the initial iterate being provided by a
Euler-Maruyama step). By following the same approach as in [78], it can indeed be proved that this scheme
is of weak order 2 for the standard kinetic energy; see Chapter 3 for further precisions as well as for the
construction of a scheme for the modified Langevin dynamics which has weak order 2 .

The ergodicity of some second-order schemes was proved for the standard Langevin dynamics in [78].
Since the AR-Langevin dynamics can be seen as a perturbation of the standard Langevin dynamics, it can
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Fig. 2.5: Same as Figure 2.4. Fixed lower bound emin = 0, and reference value emax = 2.

be proved by combining the proofs from [78] and the proof of Theorem 2.4 that, when 0 6 emin < emax

are sufficiently small, the corresponding discretization of the AR-Langevin dynamics remains ergodic (see
Chapter 3). The corresponding invariant measure is denoted by µemin,∆t. It also follows by the results of [78]
that the error on averages of smooth observables ϕ ∈ S with respect to µemin,∆t is of order 2 for the standard
kinetic energy, i.e. there exists a ∈ R such that

ˆ
E
ϕdµemin,∆t =

ˆ
E
ϕdµemin + a∆t2 + O

Ä
∆t3

ä
.

See Chapter 3 for error estimates for more general kinetic energies. As already mentioned in Remark 2.3,
the reduction of the gap between the parameters emin and emax reduces the smoothness of the transition
between the restrained dynamics and the full dynamics. This raises issues in the stability of the scheme,
which can be partly cured by resorting to a Metropolis-Hastings correction ([87, 56] as done in Chapter 3.

We consider the system of dimer surrounded by solvent described in Section 1.1.1.1. It is composed
of N = 49 particles in dimension 2, so that d = 98 and D = (LT)2N . The masses are set to 1 for all
particles. Among these particles, two particles (numbered 1 and 2 in the following) are designated to form
a dimer while the others are solvent particles. All particles, except the two particles forming the dimer,
interact through a purely repulsive WCA pair potential (1.4) with two positive parameters εLJ and σLJ and
r0 = 21/6σLJ. The interaction potential between the two particles of the dimer is a double-well potential
given by (1.1). Recall that the potential VD has two energy minima. The first one, at r = r0, corresponds to
the compact state. The second one, at r = r0 + 2w, corresponds to the stretched state. The total energy of
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the system is therefore, for q ∈ (LT)dN with d = 2, equal to (1.3). We choose β = 1, εLJ = 1, σLJ = 1,
h = 1, w = 1, and set the particle density ρ = N/L2 to 0.56 in the numerical results presented in this
section, sufficiently high to ensure that the solvent markedly modifies the distribution of configurations of
the dimer compared to the gas phase.

The source of metastability in the system is the double-well potential on the dimer. In such a system, it
makes sense to restrain only solvent particles (since they account for most of the computational cost), and
keep the standard kinetic energy for the particles forming the dimer (since the observable depends on their
positions). As noted in Section 1.5, the method allows us to choose different individual kinetic energies for
different particles. Since the solvent interacts with the dimer, we study how the variance of time averages of
observables related to the configuration of the dimer, such as the dimer potential energy ϕ = VD, depends
on the restraining parameters chosen for the solvent particles. We also estimate the variance of time averages
based on observables depending only on the solvent degrees of freedom, such as the solvent-solvent potential
energy ϕ = VSS.

The asymptotic variance of time averages for a given observable ϕ is estimated by approximating the
integrated auto-correlation function

σ2
ϕ = 2

ˆ ∞
0

Eµemin,emax
[(Πµϕ) (q0, p0) (Πµϕ) (qt, pt)] dt,

where the expectation is with respect to initial conditions (q0, p0) ∼ µemin,emax and all realizations of the
AR-Langevin dynamics. This is done by first truncating the upper bound in the integral by a sufficiently
large time Tcorr, and using a trapezoidal rule:

σ2
ϕ ≈ σ2

ϕ,M,∆t := ∆t

Ñ‹CM0
2

+
Icorr∑
j=1

‹CMj é (2.22)

where Icorr =
ö
Tcorr
∆t

ù
, and the empirical averages over M realizations of trajectories of Icorr steps are

defined as ‹CMj := CMj − ϕ̂Mj ϕ̂M0 , j ∈ {1, . . . , Icorr} ,

with

CMj :=
1

M

M∑
m=1

ϕ(qmj , p
m
j )ϕ(qm0 , p

m
0 ), ϕ̂Mj :=

1

M

M∑
m=1

ϕ(qmj , p
m
j ) .

The initial condition (qm+1
0 , pm+1

0 ) for the (m+ 1)th trajectory is obtained from the last configuration of
the mth configuration, namely (qm+1

Icorr
, pm+1
Icorr

). Figure 2.6 presents the auto-correlation function obtained for
ϕ = VD. The results show that the choice Tcorr = 3 is reasonable.

The results of [78] and Corollary (3.3) show that the errors on the approximation of the variance should
be of order ∆t2 when Tcorr → +∞ for the standard kinetic energy. For more general kinetic energies we
however expect that errors will be of order a1∆t + a2∆t

2 with a1 small (see Chapter 3 for more details).
This is illustrated in Figures 2.7, 2.8, 2.9 and 2.10, which present the convergence of σ2

ϕ,M,∆t as a function
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Fig. 2.6: Auto-correlation function Eµ [(Πµϕ) (p0, q0) (Πµϕ) (pt, qt)] for ϕ = VD as a function of time.

of ∆t for M = 3 × 106. It is possible to extrapolate the value of the variance at ∆t = 0 by fitting σ2
ϕ,M,∆t

as a0 + a1∆t
2. It turns out that, for the specific observable under consideration, a convergence consistent

with weak order 2 is observed (see also Figure (3.2b) which suggests that it is difficult to observe the lack of
second order when the fluctuation-dissipation part has weak order 1). Note that the errors on the variance are
bigger in the case emin = 2.7, which is expected due to the smaller gap between the parameters emax, emin.
In the sequel, all the reported approximations of the variance are obtained by computing σ2

ϕ,M,∆t for 6
values of the time step ∆t, and extrapolating to the limit ∆t → 0 as in Figures 2.7, 2.8, 2.9 and 2.10.
More precisely, the time steps are chosen as ∆t0,k = k × 10−3 for k = 1, . . . , 6 when emin = 0, and
∆te∗min,k

= k × 10−4 for e∗min = 2.7. For intermediate values of emin, the time steps ∆temin,k are obtained
by a linear interpolation between ∆t0,k and ∆te∗min,k

.
The variations as a function of emin of the approximations of the variances σ2

ϕ(emin) for the solvent-
solvent potential energy VSS and the dimer potential energy VD are reported in Figures 2.11 and 2.12.
Surprisingly, even though the solvent particles are restrained, the variance of the solvent-solvent potential
decreases linearly for moderately small values of emin; whereas, as expected, the variance of the dimer po-
tential, which is only implicitly influenced by the restraining parameters, increases linearly for these values
of emin. In order to more easily compare the impacts of the restraining procedure, we plot in Figure 2.13
the relative differences of the variance σ2(emin) and the variance of Zero-emax-AR dynamics σ2

ϕ(0) as a
function of emin. For the two observables under consideration, the impact of an increase of the parameter
emin on the variance associated with the dimer potential is much weaker than on the variance related to
the solvent potential. We also provide in Figure 2.14 the percentage of restrained particles, which directly
depends on the restraining parameter emin and dictates the algorithmic speed-up (see Chapter 3). This sup-
ports the idea that the use of the AR-Langevin method for heterogeneous systems can be beneficial when
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the AR parameters are set to non-zero values for the part of the system which is not directly of interest (e.g.
the solvent), while the standard kinetic energy should be kept for the degrees of freedom that are directly
involved in the observable (e.g. the dimer).
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2.5 Proofs of the results

2.5.1 Proof of Lemma 2.2

The modified Langevin equation can be written as a perturbation of the Langevin equation, namely
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dqt =

Ä
M−1pt −Z(pt)

ä
dt,

dpt = −∇V (qt)dt− γ
Ä
M−1pt −Z(pt)

ä
dt+

 
2γ

β
dWt,

(2.23)

where Z(p) := ∇Ustd(p)−∇U(p) = M−1p−∇U(p) is uniformly bounded as |Z(p)| 6 Gstd in view of
Assumption 2.2. By a direct integration in time of the momenta dynamics,
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pt = e−γtp0 + Ft + Gt, Ft =

ˆ t

0

(
−∇V (qs) + γZ(ps)

)
e−γ(t−s) ds, (2.24)

where

Gt =

 
2γ

β

ˆ t

0
e−γ(t−s)dWs
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is a Gaussian random variable with mean zero and covariance
(
1− e−2γt

)
β−1. Note also that Ft is uni-

formly bounded; more precisely, |Ft| 6 ‖∇V ‖L∞ /γ +Gstd.
Let us first consider the case s = 1. We introduce αt := e−γt < 1 for a given time t > 0. With this

notation,

|pt|2 = |αtp0 + Ft + Gt|2 = α2
t |pt|

2 + 2αtp
T
t (Ft + Gt) + |Ft|2 + 2FtGt + |Gt|2

6 α2
t (1 + ε) |pt|2 +

Å
2 +

1

4ε

ã
F2
t + |Gt|2 + 2αtp

T
t Gt,

where we used Young’s inequality to obtain the last line, with a constant ε > 0 sufficiently small so that
α2
t (1 + ε) < 1. We next take the expectation of the previous inequality, conditionally to the filtration of

events up to time t. Since E
î
pTt Gt | Ft

ó
= 0, it follows

E
ï
K1(qt, pt)

∣∣∣∣Ft

ò
6 α2(1 + ε)K1(qt, pt) +R,

for some constant R > 0. This shows the Lyapunov condition for n = 1. The higher order conditions
(n > 1) can be proved as in [64, Section 5.1.5], by noting that |pt|2s is equal to α2s

t |p0|2s plus some lower
order polynomial in p0.

2.5.2 Proof of Lemma 2.1

The main idea is, as in [64, Section 5.1.5], to compare the modified Langevin dynamics to the standard
Langevin dynamics with zero forces, for which a minorizing measure νp∗,t can be explicitly constructed.
From the rewriting (2.23), we deduce, in view of the momenta evolution (2.24),

qt = q0 +

ˆ t

0

(
ps −Z(ps)

)
ds = q0 +

ˆ t

0
e−γsp0 ds+ G̃t + ‹Ft,

where periodic boundary conditions are considered, and‹Ft :=

ˆ t

0
Fs ds−

ˆ t

0
Z(ps) ds, G̃t =

ˆ t

0
Gs ds.

Note that ‹Ft is bounded as ∣∣∣‹Ft∣∣∣ 6 Ç
‖∇V ‖L∞

γ
+ 2Gstd

å
t,

whereas G̃t is a Gaussian random variable, which is correlated to Gt. A simple computation shows that
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V := E
î
(G̃t,Gt)T (G̃t,Gt)

ó
=

(
Vqq Vqp
Vpq Vpp

)
,



Vqq =
1

βγ

Å
2t− 1

γ

Ä
3− 4αt + α2

t

äã
,

Vqp =
1

βγ
(1− αt)2 ,

Vpp =
1

β

Ä
1− α2

t

ä
,

where αt = e−γt is the same constant as in Section 2.5.1. Therefore, for a given measurable set B ∈ B(E),

P
Å

(qt, pt) ∈ B
∣∣∣∣ |p0| 6 p∗

ã
> P

ÅÄ
G̃t,Gt

ä
∈ B − (Qt,Pt)

∣∣∣∣ |p0| 6 p∗

ã
, (2.25)

where
Qt := q0 +

1− αt
γ

p0 + ‹Ft, Pt := αtp0 + Ft,

are both bounded by some constant R > 0 (depending on p∗ and t) when |p0| 6 p∗. Note that there is an
inequality in (2.25) since we neglect in fact the periodic images of qt when writing it as Qt + G̃t, the latter
two quantities being interpreted as elements of Rd. Since the matrix V is definite positive, we can finally
consider the following minorizing measure:

νp∗,t(B) := Z−1
R inf
|Q|,|P|6R

ˆ
B−(Q,P)

exp

Ç
−x

TV−1x

2

å
dx,

where ZR > 0 is a normalization constant. The proof is concluded by defining κ = (2π)−d det (V)−1/2 ZR.

2.5.3 Proof of Lemma 2.3

2.5.3.1 General structure of the proof

The proof follows the strategy of [71, Proposition A.1]. We recall in this section the general outline of
this proof, and highlight the required extensions. The proofs of these extensions are then provided in
Section 2.5.3.2. Without restriction of generality, and in order to simplify the notation, we assume that
ϕ = Πµϕ. We introduce weight functions

πs(p) :=
1

Ks(p)
,

where the Lyapunov functions Ks are defined in (1.40). We also define

u(t, q, p) =
Ä
etLϕ

ä
(q, p) = E [ϕ(qt, pt) | (q0, p0) = (q, p)] .

The following result, central in this proof, gives estimates on derivatives of u(t) in the weighted spaces
L2(πs) (see Section 2.5.3.2 for the proof).
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Lemma 2.4. Suppose that Assumptions 2.2 and 2.5 hold. For any n > 1, there exists λn > 0 and sn ∈ N

such that, for s > sn and Gν 6 ρs with ρs > 0 sufficiently small, there is r ∈ N and C > 0 for which

∀ |k| 6 n,

ˆ
E

∣∣∣∂ku(t, q, p)
∣∣∣2 πs(p) dp dq 6 C ‖ϕ‖2Wn,∞

Kr
exp(−λt). (2.26)

Assume in the sequel that Gν 6 ρs for s sufficiently large. In view of the estimates (2.26), and using the
fact that ∂jπs(p) = ψj,s(p)πs(p) with ψj,s(p)→ 0 as |p| → +∞, we obtain that, for any n > 1, there exist
sn ∈ N such that, for s > sn, it is possible to find r ∈ N and C > 0 for which

∀ |k|+ |`| 6 n, ∀t > 0,

ˆ
E

∣∣∣∣∂`(∂ku(t, q, p)πs(p)
)∣∣∣∣2 dp dq 6 C ‖ϕ‖2

W ñ,∞
Kr

exp(−λt).

By the Sobolev embedding theorem, we can conclude that, for any n > 1, there exist sn, ñ ∈ N such that,
for s > sn and provided Gν 6 ρs, it is possible to find r ∈ N and C > 0 for which

∀|k| 6 n,
∣∣∣∂ku(t, q, p)

∣∣∣πs(p) 6 C ‖ϕ‖2
W ñ,∞
Kr

exp(−λt).

This concludes the proof of Lemma 2.3.

2.5.3.2 Proof of Lemma 2.4

The main tool in the proof of Lemma 2.4 is the following estimate, which is the counterpart of [71,
Lemma A.6] for our modified Langevin dynamics.

Lemma 2.5. Let A be a linear operator. Assume that U ∈ S and ∆U ∈ L∞. There exists an integer s∗
such that, for all s > s∗, there is a constant ωs > 0 for which the following inequality holds true for any
ζ, T > 0:

exp(ζT )

ˆ
E
|Au(t)|2 πs dq dp+

2γ

β

ˆ T

0
exp(ζt)

Åˆ
E
|∇pAu(t)|2 πs dq dp

ã
dt

6
ˆ
E
|Au(0)|2 πs dq dp

+ (ωs + γ ‖∆U‖L∞ + ζ)

ˆ T

0
exp(ζt)

Åˆ
E
|Au(t)|2 πs dp dq

ã
dt

+ 2

ˆ T

0
exp(ζt)

Åˆ
E

[A,L]u(t) Au(t)πs dq dp

ã
dt .

(2.27)

In fact, a careful inspection of the proof shows that, since U ∈ S , it is possible to avoid the assumption
∆U ∈ L∞ by appropriately increasing the Lyapunov index s. Since∆U ∈ L∞ for AR-Langevin dynamics,
we however keep this assumption.

Proof. A simple computation shows that
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2LAu(t)Au(t) = L
Ä
|Au(t)|2

ä
− 2γ

β
|∇pAu(t)|2 . (2.28)

The formal adjoint of the operator L in L2(E) is given by

L† = − (∇U · ∇q −∇V · ∇p) + γ

Å
∆U +∇U · ∇p +

1

β
∆p

ã
.

In view of Assumption 2.2, there exists therefore ωs > 0 such that

L†πs =

ñ
− (∇V + γ∇U) · ∇Ks

Ks
+ γ∆U − γ

β

∆Ks
Ks

+
2γ

β

|∇Ks|2

K2
s

ô
πs

6 (ωs + γ ‖∆U‖L∞)πs. (2.29)

With this estimation, we can follow exactly the proof of [71, Lemma A.6], i.e. write the expression for
d
dt

î
exp(ζt) |Au(t)|2

ó
, use (2.28), integrate the resulting expression in time and with respect to πs dq dp (for

s sufficiently large), and finally use (2.29) to deduce (2.27).

Let us now prove Lemma 2.4. The complete proof is done by induction on n. We provide here the
complete proofs for n = 0 and n = 1, and only sketch the extension to higher orders of derivation since the
proof follows the same lines as in [71, Appendix A].

Case n = 0.

Recall first that, in view of Assumption 2.2, the exponential convergence of the law provided by Theorem 2.4
holds. Denote by λ` the corresponding exponential rate of decay for a given ` ∈ N∗. For any r ∈ N, we
directly obtain the following decay estimates in L2(πl) when l > 2r + d/2: there exists ‹Cl,r > 0 such that

ˆ
E
|u(t)|2 πl 6 ‹Cl,r e−2λrt ‖ϕ‖2L∞Kr .

Note that this corresponds to the case n = 0 in Lemma 2.4.

Case n = 1.

We now prove the estimates in the case n = 1. We first apply Lemma 2.5 with A = Id: there exists s∗ ∈ N

such that, for all s > s∗ and ζ < 2λr, there is C > 0 and r ∈ N for which

∀T ∈ R+,

ˆ T

0
exp(ζt)

ïˆ
E
|∇pu(t, q, p)|2 πs(p) dq dp

ò
dt 6 C ‖ϕ‖2L∞Kr . (2.30)

In order to control derivatives in q, the key idea, going back to [117], is to use mixed derivatives α∂pi − ∂qi
(for some parameter α > 0). This allows indeed to retrieve some dissipation in the q direction when∇2U is
positive definite. The next lemma is the most important part of our proof since we show how to extend the
use of mixed derivatives to the case when∇2U is not positive definite.
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Lemma 2.6. Consider the operator Lα := α∇p −∇q for some parameter α ∈ R. There exists s∗ ∈ N such
that, for s > s∗ and provided Gν 6 ρs (for some constant ρs > 0 defined in (2.34) below), there is r ∈ N,
ζ < 2λr, α > 0 and C > 0 for which

∀T > 0,

ˆ T

0
exp(ζt)

ïˆ
E

Ä
|Lαu(t, q, p)|2 + |∇pLαu(t, q, p)|2

ä
πs(p) dq dp

ò
dt

6 C ‖ϕ‖2
W 1,∞
Kr

.

(2.31)

Proof. Define Lα,i := α∂pi − ∂qi for i ∈ {1, . . . , d}. The commutator of Lα,i and L is

[Lα,i,L] = −α (∇p∂piU) · (γ∇p −∇q) + (∇q∂qiV ) · ∇p
= −α (∇p∂piU) · Lα − α (γ − α) (∇p∂piU) · ∇p + (∇q∂qiV ) · ∇p .

Introducing CV := supi,j=1,...,d

∥∥∥∂2
qiqjV

∥∥∥
L∞

, a simple computation shows that

2
d∑
i=1

Lα,iu(t)[Lα,i,L]u(t) =

= −2α
d∑
i=1

d∑
j=1

Liu(t)
Ä
∂pj∂piU

ä
Lα,ju(t)

+ 2α(α− γ)
d∑
i=1

Lα,iu(t) (∇∂piU) · ∇pu(t) + 2
d∑
i=1

Lα,iu(t)∇ (∂qiV ) · ∇pu(t)

6 (ε1 + ε2 − 2να) |Lαu(t)|2 − 2α
d∑
i=1

d∑
j=1

Lα,iu(t)∂pj∂pi(U − Uν)Lα,ju(t)

+
α2(γ − α)2

ε1

(
sup
|j|=2

∥∥∥∂jU∥∥∥2

L∞

)
|∇pu(t)|2 +

C2
V

ε2
|∇pu(t)|2

for any ε1, ε2 > 0. With this preliminary computation, we can now choose A = Lα,i in Lemma 2.5 and
sum over i = 1, . . . , d: for s > s∗ with s∗ sufficiently large,
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exp(ζT )

ˆ
E
|Lαu(t)|2 πs dq dp+

2γ

β

ˆ T

0
exp(ζt)

(ˆ
E

d∑
i=1

|∇pLα,iu(t)|2 πs dq dp
)
dt

6
ˆ
E
|Lαu(0)|2 πs dq dp

+
Ä
ωs + γ ‖∆U‖2L∞ + ζ + ε1 + ε2 − 2να

äˆ T

0
exp(ζt)

Åˆ
E
|Lαu(t)|2 πs dq dp

ã
dt (2.32)

− 2α

ˆ T

0
exp(ζt)

Åˆ
E
Lαu(t)T

[
∇2(U − Uν)

]
Lαu(t)πs dq dp

ã
dt (2.33)

+
α2(γ − α)2

ε1

(
sup
|j|=2

∥∥∥∂jU∥∥∥2

L∞

) ˆ T

0
exp(ζt)

Åˆ
E
|∇pu(t)|2 πs dq dp

ã
dt

+
C2
V

ε2

ˆ T

0
exp(ζt)

Åˆ
E
|∇pu(t)|2 πs dq dp

ã
dt .

Since Lαu(0) = (α∇p−∇q)ϕ ∈ W̃ 1,∞
Kr for some integer r 6 s∗ (upon increasing s∗), and in view of (2.30),

the first and the two last terms of the right hand side of the above inequality can be controlled uniformly in
time for ζ < 2λr.

It remains to take care of the terms (2.32) and (2.33). Our strategy is to prove that they are negative when
ζ < 2λr, and can hence be transfered to the left-hand side of the inequality. To simplify the notation, we
denote ‹U := U − Uν . Recall that, by Assumption 2.5, it holds ‖∇‹U‖L∞ 6 Gν . An integration by parts
shows that

−
ˆ
E

d∑
j=1

Lα,iu(t)
Ä
∂pj∂pi

‹UäLα,ju(t)πs dq dp =

ˆ
E

Ä
∇‹U · Lαu(t)

ä
divp (Lαu(t)) πs dq dp

+

ˆ
E

d∑
j=1

Ä
∂pi
‹UäLα,ju(t)

(
∂pjLα,iu(t)

)
πs dq dp+

ˆ
E

d∑
j=1

Ä
∇‹U · Lαu(t)

ä (
∇πs · Lαu(t)

)
dq dp.

With this expression we now bound the term (2.33) by

− 2α

ˆ T

0
exp(ζt)

Ñˆ
E

d∑
i=1

d∑
j=1

Liu(t)
Ä
∂pj∂pi

‹UäLju(t)πs dq dp

é
dt

6 2(1 + Gs)αε3

∥∥∥∇‹U∥∥∥
L∞

ˆ T

0
exp(ζt)

Åˆ
E
|Lu(t)|2 πs dq dp

ã
dt

+
2α

ε3

∥∥∥∇‹U∥∥∥
L∞

ˆ T

0
exp(ζt)

(ˆ
E

d∑
i=1

|∇pLiu(t)|2 πs dq dp
)
dt,

where we have used Young’s inequality and introduced a constant Gs ∈ R+ such that |∇pπs| 6 Gsπs.
The following conditions are therefore sufficient to ensure that (2.32) and (2.33) are non-positive when

ζ < 2λr: there exists α > 0 such that
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ωs + γ ‖∆U‖2L∞ + ζ − 2να+ 2αε3(Gs + 1)
∥∥∥∇‹U∥∥∥

L∞
< 0

and
2γ

β
>

2α

ε3

∥∥∥∇‹U∥∥∥
L∞

.

These conditions can be restated as

ωs + γ ‖∆U‖2L∞ + ζ

2
(
ν − ε3(Gs + 1)

∥∥∥∇‹U∥∥∥
L∞

) < α <
γε3

β
∥∥∥∇‹U∥∥∥

L∞

.

Since ζ can be chosen arbitrarily small (while still being positive), the latter condition holds provided∥∥∥∇‹U∥∥∥
L∞

: ∥∥∥∇‹U∥∥∥
L∞

<
2γνε3

β(ωs + γ ‖∆U‖2L∞ + ζ) + 2γ(Gs + 1)ε2
3

.

After optimization with respect to ε3, this leads to the final condition

∥∥∥∇‹U∥∥∥
L∞

<

√
ν2γ

2β(ωs + γ ‖∆U‖2L∞ + ζ)(Gs + 1)
.

In conclusion, defining

ρs =

√
ν2γ

2β(ωs + γ ‖∆U‖2L∞)(Gs + 1)
, (2.34)

we see that the estimate (2.31) holds when the constant Gν from Assumption 2.5 satisfies Gν 6 ρs.

The remainder of the proof of Lemma 2.4 is very similar to the corresponding proof in [71]. We first
combine (2.30) and Lemma 2.6: there exists s∗ ∈ N such that for s > s∗ there exist an integer r, a sufficiently
small ζ < 2λr and ρs > 0 such that if Gν 6 ρs, then there is a constant C > 0 for which

∀T > 0,

ˆ T

0
exp(ζt)

Åˆ
E
|∇qu(t)|2 πs dq dp

ã
dt 6 C ‖ϕ‖2

W 1,∞
Kr

. (2.35)

We can now again apply Lemma 2.5, and sum the estimates obtained withA = ∂pi . Before stating the result,
we bound the integrand of the term involving the commutator [∂pi ,L] (for i = 1, . . . , d) as:∣∣∣∣∣∣

d∑
i=1

[∂pi ,L]u(t)∂piu(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
d∑
i=1

∇p(∂piU) · (∇q − γ∇p)u(t) ∂piu(t)

∣∣∣∣∣∣
6 d

(
sup
|j|=2

∥∥∥∂jU∥∥∥2

L∞

)
|(∇q − γ∇p)u(t)| |∇pu(t)|

6 d

(
sup
|j|=2

∥∥∥∂jU∥∥∥2

L∞

) ï
1

2
|∇qu(t)|2 +

Å
γ +

1

2

ã
|∇pu(t)|2

ò
.

Then, for s > s∗ (with s∗ sufficiently large) and for all T > 0,
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exp(ζT )

ˆ
E
|∇pu(t)|2 πs dq dp

6
ˆ
E
|∇pu(0)|2 πs dq dp+ d

(
sup
|j|=2

∥∥∥∂jU∥∥∥
L∞

)ˆ T

0
exp(ζt)

Åˆ
E
|∇qu(t)|2 πs dq dp

ã
dt

+

(
ωs + ζ + sup

|j|=2

∥∥∥∂jU∥∥∥
L∞

(d+ 2γd+ γ)

)ˆ T

0
exp(ζt)

Åˆ
E
|∇pu(t)|2 πs dq dp

ã
dt.

In view of (2.30) and (2.35) and since ∇pu(0) = ∇pA ∈ W̃ 1,∞
K
r̃

for some integer r̃ ∈ N, we see that there
exists s∗ > 1 sufficiently large such that, for any s > s∗ and ζ > 0 sufficiently small, and providedGν 6 ρs,
there is a constant C > 0 and an integer r for which

ˆ
E
|∇pu(t)|2 πs dq dp 6 C ‖ϕ‖2

W 1,∞
Kr

exp(−ζT ).

To conclude to Lemma 2.4 for n = 1, it remains to apply Lemma 2.5 with A = ∇q in order to obtain an
estimate similar to the one above, but for |∇qu(t)|2. This is possible in view of the following bounds on the
commutator: for all i = 1, . . . , d,∣∣∣∣ [∂qi ,L]u(t)∂qiu(t)

∣∣∣∣ = |∇ (∂qiV ) · ∇pu(t)∂qiu(t)| 6 |∇pu(t)|2 + C2
V |∂qiu(t)|2 .

General n.

The remainder of the proof is done by induction of n and relies on the control of the commutators
î
∂kq ,L

ó
with |k| = n, which are independent of U , as well as∣∣∣î∂kp ,Lóψ∣∣∣ 6 ∑

i∈N2d

|i|6n

Pi
∣∣∣∂iψ∣∣∣ ,

where Pi are positive polynomial functions that depend on the polynomial growth of U and its derivatives.
These polynomial functions can be controlled with Lyapunov weights for sufficiently large indices. In addi-
tion, the same approach as in the proof of Lemma 2.6 is used to estimate the extra term arising from missing
positivity of∇2U , namely

− 2α

ˆ T

0
exp(ζt)

Ñˆ
E

d∑
i=1

d∑
j=1

Lα,i
Ä
∂nq u(t)

ä î
∂2
pipj (U − Uν)

ó
Lα,j

Ä
∂nq u(t)

ä
πs dq dp

é
dt

6 2(1 + Gs)αε3

∥∥∥∇‹U∥∥∥
L∞

ˆ T

0
exp(ζt)

Åˆ
E

∣∣∣Lα Ä∂nq u(t)
ä∣∣∣2 πs dq dpã dt

+
2α

ε3

∥∥∥∇‹U∥∥∥
L∞

ˆ T

0
exp(ζt)

Åˆ
E

∣∣∣∇pLα Ä∂nq u(t)
ä∣∣∣2 πs dq dpã dt.
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Therefore, the result is obtained when the same condition (2.34) on Gν is satisfied. Note however that this
condition depends on s, hence on n since s has to be larger than some index sn.

2.5.4 Proof of Proposition 2.1

2.5.4.1 General structure of the proof

We define the AR perturbation function as

Demin(p) := ∇U0,emax(p)−∇Uemin,emax(p) . (2.36)

This allows to write the generator Lemin,emax of the AR-Langevin dynamics (2.5) as a perturbation of the
generator L0,emax :

Lemin,emax = L0,emax −Demin(p) · L̃, L̃ := ∇q − γ∇p.

For notational convenience we omit the subscript emax and simply writeLemin := Lemin,emax . We also denote
by µemin the invariant measure associated with Lemin , and by Πemin the projection

Πeminf = f −
ˆ
E
f dµemin .

For a given observable ϕ ∈ S , the asymptotic variance associated with the corresponding time averages
reads, in view of (1.48):

σ2
ϕ(emin) = −2

ˆ
E
Φϕ,eminϕdµemin , (2.37)

where Φϕ,emin ∈ S is the unique solution in L∞Ks (s being such that ϕ ∈ L∞Ks) of the following Poisson
equation:

LeminΦϕ,emin = Πeminϕ, ΠeminΦϕ,emin = 0. (2.38)

Similarly, the limiting variance for emin = 0 can be rewritten as

σ2
ϕ(0) = −2

ˆ
E
Φϕ,0ϕdµ0, L0Φϕ,0 = Π0ϕ, Π0Φϕ,0 = 0. (2.39)

In order to prove the convergence of (2.37) to (2.39) and to identify the linear term in emin, the idea is to
expand µemin and Φϕ,emin in powers of emin. To this end, we rewrite the Poisson equation (2.38) as

Π0

Ä
Π0 − L−1

0 Π0Demin · L̃
ä
Φϕ,emin = L−1

0 Π0ϕ.

The operator L−1
0 Π0Demin · L̃ is not bounded (since L̃ contains derivatives in q, which cannot be controlled

by L0), so that it is not possible to write the inverse of Π0−L−1
0 Π0Demin · L̃ as some Neumann series. It is

however possible to consider a pseudo-inverse operator by truncating the Neumann series at order n. This
motivates the introduction of the following approximation of the solution of (2.38):
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Φnϕ,emin
:=

n∑
k=0

Ä
L−1

0 Π0Demin · L̃
äk L−1

0 Π0ϕ .

The corresponding approximation of the variance reads

σ2
ϕ,n(emin) := −2

ˆ
E

Ä
ΠeminΦ

n
ϕ,emin

ä
ϕdµemin . (2.40)

The connection with the exact variance (2.37) is given by the following lemma, which is proved in
Section 2.5.4.5. We introduce a critical value e∗max such that Assumption 2.5 is satisfied for 0 6 emin 6

emax/2 and emax 6 e∗max (see Section 2.5.4.3). This allows to resort to Lemma 2.3.

Lemma 2.7. Fix 0 < emax 6 e∗max. Then, for any ϕ ∈ S and for all n > 1, there exists a constantCϕ,n > 0

such that
∀ 0 6 emin 6

emax

2
,

∣∣∣σ2
ϕ(emin)− σ2

ϕ,n(emin)
∣∣∣ 6 Cϕ,ne

n+1
min .

The key point in the proof of Lemma 2.7 are the following estimates (see Section 2.5.4.4 for the proof).

Lemma 2.8. Fix 0 < emax 6 e∗max and ϕ ∈ S . For any n > 1, there exist sn, ln ∈ N such that, for any
s > sn, there is rn ∈ N and C̃n > 0 for which

∀ 0 6 emin 6
emax

2
,

∥∥∥ÄL−1
0 Π0Demin · L̃

än
Π0ϕ

∥∥∥
L∞Ks

6 C̃ne
n
min ‖ϕ‖W ln,∞

Krn
.

Proposition 2.1 now straightforwardly follows by combining Lemma 2.7 and the following expansion in
powers of emin of the truncated variance (whose proof can be read in Section 2.5.4.6).

Proposition 2.2. Fix 0 < emax 6 e∗max. There exists a constant K ∈ R such that, for any n > 1 and
0 6 emin 6 emax/2 sufficiently small,

σ2
ϕ,n(emin) = σ2

ϕ(0) + K emin + O(e2
min).

2.5.4.2 Technical results on expansions with respect to emin

Recall that the function f0,emax (with f0,emax defined in (2.14)) belongs to C∞(R, [0, 1]). The next result
shows that the same is true for

femin,emax = f0,emax ◦ θemin ,

with θemin defined in (2.15). This is not obvious a priori since θemin is only piecewise C∞, with singularities
on the first order derivative at emin and emax. In fact, it can even be proved that femin,emax − f0,emax and all
its derivatives are small when emin is small.

75



Lemma 2.9. For any 0 6 emin < emax, the function femin,emax belongs to C∞(R, [0, 1]). Moreover, its
derivatives have a compact support in [0, emax]. Finally, for any n0 ∈ N and δ > 0, there exists a constant
Cn0,emax,δ > 0 such that

∀ 0 6 n 6 n0, ∀ emin ∈ [0, emax − δ],
∥∥∥f (n)
emin,emax

− f (n)
0,emax

∥∥∥
L∞

6 Cn0,emax,δemin. (2.41)

Proof. The function θemin is defined piecewise on three intervals [0, emin), (emin, emax) and (emax,+∞).
In the interior of each interval, both f0,emax and θemin are C∞, and so is therefore their composition. In
addition, femin,emax is constant on (emax,+∞), hence all derivatives vanish on this interval. To prove that
femin,emax is C∞ with derivatives of compact support, it therefore suffices to prove that all derivatives can
be extended by continuity at the points emin and emax.

Since f0,emax is constant outside the interval [emin, emax], a simple computation shows that, for n > 1,

(f0,emax ◦ θemin)(n) (x) =


0 for 0 6 x < emin,Å

emax

emax − emin

ãn
f

(n)
0,emax

(θemin(x)) for emin < x < emax,

0 for x > emax.

(2.42)

It is therefore obvious to check the continuity at emin and emax since all derivatives of f0,emax vanish at 0
and emax, and θemin(emin) = 0 while θemin(emax) = emax.

Moreover, it is easy to check that |θemin(x)− x| 6 emin, so that the estimate (2.41) already follows in
the case n = 0 since f0,emax is Lipschitz continuous. To obtain the same result for higher order derivatives,
we note that the n-th order derivative can be rewritten as

f (n)
emin,emax

= f
(n)
0,emax

◦ θemin + f
(n)
0,emax

◦ θemin

ÅïÅ
emax

emax − emin

ãn
− 1

ò
1[emin,emax]

ã
.

Therefore, f (n)
emin,emax − f

(n)
0,emax

is the sum of (i) f (n)
0,emax

(θemin)− f (n)
0,emax

, which is of order emin in L∞ norm
by the same argument as before since f (n)

0,emax
is Lipschitz continuous; and (ii) a remainder term of order emin

since f (n)
0,emax

◦ θemin is uniformly bounded; while for any 0 < δ < emax there exists Rn,δ > 0 such that

∀ emin ∈ [0, emax − δ],
∣∣∣∣Å emax

emax − emin

ãn
− 1

∣∣∣∣ 6 Rn,δemin .

This allows to obtain the desired result.

In view of the definition (2.16)-(2.17) of Uemin,emax(p) =
∑N
i=1 uemin,emax(pi), we can deduce the fol-

lowing estimates on Uemin,emax − U0,emax and its derivatives, which allow in particular to control Demin . To
state the result, we introduce
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CK :=

®
p ∈ Rd

∣∣∣∣∣ ∀i = 1, . . . N,
p2
i

2mi
6 K

´
.

Corollary 2.2. For any 0 6 emin < emax, the function Uemin,emax belongs to C∞. For any n > 0 and
|α| = n, the function ∂α (Uemin,emax − U0,emax) has a compact support in Cemax . Moreover, for any n0 > 0

and δ > 0, there exists a constant Cn0,δ,emax > 0 such that

∀ |α| 6 n0, ∀ emin ∈ [0, emax − δ], ‖∂αUemin,emax − ∂αU0,emax‖L∞ 6 Cn0,δ,emaxemin . (2.43)

In order to obtain more precise statements about the behavior of the functions femin,emax(x) for small
values of emin, a natural idea would be to perform Taylor expansions with respect to this parameter. The dif-
ficulty is however that the derivatives with respect to emin of the shift function θemin(x) are not continuous in
x. This prevents to write directly remainders of order e2

min. Before stating the precise result in Lemma 2.11,
we need another technical ingredient.

Lemma 2.10. Fix emax > 0 and define τ̃(x) :=
x− emax

emax
. Then, for any n > 0 and δ > 0, there exists

Cn,δ > 0 such that

∀ emin ∈ [0, emax − δ],

∥∥∥∥∥∥f
(n)
0,emax

◦ θemin − f
(n)
0,emax

emin
− f (n+1)

0,emax
◦ τ̃

∥∥∥∥∥∥
L∞

6 Cn,δ emin . (2.44)

Proof. Note that, formally, τ̃ is the derivative of θemin on [emin, emax] with respect to emin, evaluated at
emin = 0. Recall also |θemin(x)− x| 6 emin. Simple computations show that there exists Cδ > 0 such that

∀x ∈ R+,

∣∣∣∣∣θemin(x)− x
emin

− τ̃(x)

∣∣∣∣∣ 6 Cδemin .

Since f0,emin ∈ C∞, there exists t ∈ [0, 1] such that

f
(n)
0,emax

Ä
θemin (x)

ä
− f (n)

0,emax
(x) = f

(n+1)
0,emax

(
x+ t

Ä
θemin(x)− x

ä)Ä
θemin(x)− x

ä
. (2.45)

Therefore, for x ∈ [0, emax],
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∣∣∣∣∣∣f
(n)
0,emax

(θemin (x))− f (n)
0,emax

(x)

emin
− f (n+1)

0,emax
(x)τ̃(x)

∣∣∣∣∣∣
=

∣∣∣∣∣f (n+1)
0,emax

(
x+ t

Ä
θemin(x)− x

ä)θemin(x)− x
emin

− f (n+1)
0,emax

(x)τ̃(x)

∣∣∣∣∣
6
∣∣∣∣f (n+1)

0,emax

(
x+ t

Ä
θemin(x)− x

ä)
− f (n+1)

0,emax
(x)

∣∣∣∣
∣∣∣∣∣θemin(x)− x

emin

∣∣∣∣∣+ ∣∣∣f (n+1)
0,emax

(x)
∣∣∣ ∣∣∣∣∣θemin(x)− x

emin
− τ̃(x)

∣∣∣∣∣
6
Å∥∥∥f (n+2)

0,emax

∥∥∥
L∞([0,emax])

+ Cδ
∥∥∥f (n+1)

0,emax

∥∥∥
L∞([0,emax])

ã
emin,

(2.46)
where we have used the following equality: there exists α ∈ [0, 1] such that

f
(n+1)
0,emax

(
x+ t

Ä
θemin(x)− x

ä)
− f (n+1)

0,emax
(x) = t f

(n+2)
0,emax

(
x+ α

Ä
θemin(x)− x

ä)Ä
θemin(x)− x

ä
,

together with the bound |θemin(x)− x| 6 emin.

Lemma 2.11. Fix emax > 0. There exist functions Di ∈ C∞(Rd) (for i = 1, . . . , N ), with compact support
in Cemax , such that, for 0 < δ < emax and r ∈ N, there is Cr,δ > 0 such that

emin ∈ [0, emax − δ] , ‖Demin,i − eminDi‖W r,∞ 6 Cr,δe
2
min. (2.47)

Proof. Recall that the functions Demin,i : RD → RD are defined, for i = 1, . . . , N , as

Demin,i(p) =

ñ
femin,emax

Ç
|pi|2

2mi

å
− f0,emax

Ç
|pi|2

2mi

åô
pi
mi

+
|pi|2

2mi

ñ
f ′emin,emax

Ç
|pi|2

2mi

å
− f ′0,emax

Ç
|pi|2

2mi

åô
pi
mi

.

We next define, for i = 1, . . . , N , the function

Di(p) :=



ñ
f ′0,emax

Ç
|pi|2

2mi

å
+
|pi|2

2mi
f ′′0,emax

Ç
|pi|2

2mi

åô
τ̃

Ç
|pi|2

2mi

å
pi
mi
, for

|pi|2

2mi
∈ [0, emax] ,

0, for
|pi|2

2mi
> emax,

where τ̃ is defined in Lemma 2.10. Recall that f0,emax ∈ C∞ and f (n)
0,emax

have compact support on [0, emax]

for n > 1. Therefore, Di ∈ C∞ also has compact support in Cemax .
The case r = 0 of (2.47) follows directly from Lemma 2.10 with n = 0 and n = 1. Let us now consider

the case r = 1 more carefully. To simplify the presentation, we consider separately the two terms in the
sums defining the functions Demin,i and Di, i.e. Demin,i = Demin,i,1 +Demin,i,2 and Di = Di,1 + Di,2 with
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Demin,i,1(p) =

ñ
femin,emax

Ç
|pi|2

2mi

å
− f0,emax

Ç
|pi|2

2mi

åô
pi
mi
,

and

Di,1(p) :=


f ′0,emax

Ç
|pi|2

2mi

å
τ̃

Ç
|pi|2

2mi

å
pi
mi
, for

|pi|2

2mi
∈ [0, emax] ,

0, for
|pi|2

2mi
> emax.

We present the estimates only for the difference Demin,i,1/emin −Di,1 since similar computations allows to
control the difference Demin,i,2/emin −Di,2. For α, α′ ∈ {1, . . . , D}, we denote by pi,α the αth component
of the momentum of the ith particle and by Demin,i,1,α′ and Di,1,α′ the α′th components of Demin,i,1 and
Di,1. Then, for pi ∈ Cemax ,∣∣∣∣∂pi,α ÅDemin,i,1,α′

emin
−Di,1,α′

ã
(p)

∣∣∣∣ =

6
δα,α′

mi

∣∣∣∣∣∣∣
f0,emax ◦ θemin
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|pi|2
2mi

)
− f0,emax
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2mi

)
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Ç
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2mi
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|pi,αpi,α′ |
m2
i
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f ′0,emax

◦ θemin
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|pi|2
2mi

)
θ′emin

(
|pi|2
2mi

)
− f ′0,emax

(
|pi|2
2mi

)
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∣∣∣∣∣∣∣
+
|pi,αpi,α′ |
m2
i

∣∣∣∣∣f ′′0,emax
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|pi|2

2mi
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Ç
|pi|2

2mi
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− f ′0,emax

Ç
|pi|2

2mi

å
1

emax

∣∣∣∣∣
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δα,α′

mi
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(
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2mi
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2mi
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(
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2mi
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2mi
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Ç
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å
− f ′0,emax

Ç
|pi|2

2mi
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(
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2mi
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(
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∣∣∣∣∣∣∣ ,

where we used τ̃ ′ (x) = 1/emax for x ∈ [0, emax]. The first two terms in the last inequality can be bounded
by C∗emin for some constant C∗ ∈ R+ in view of Lemma 2.10. For the last two terms, distinguish the cases
pi ∈ Ci,emin and pi ∈ Ci,emax\Ci,emin , where for K > 0 we define

Ci,K :=

®
pi ∈ RD

∣∣∣∣∣ |pi|22mi
6 K

´
.
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When pi ∈ Ci,emin , the third term disappears since θ′emin
(x) = 1 on [0, emin]. In addition,

sup
pi∈Ci,emin

|pi|2

m2
i

6
2emin

mi
,

so that ∥∥∥∥∂pi,α ÅDemin,i,1,α′

emin
−Di,1,α′

ã∥∥∥∥
L∞(Ci,emin)

6
Å
C∗ +

2

miemax

∥∥∥f ′0,emax

∥∥∥
L∞([0,emin])

ã
emin .

When pi ∈ Ci,emax\Ci,emin , we use θ′emin
(x) = emax/(emax− emin) for x ∈ [emin, emax], so that there exists

Cδ > 0 such that

sup
x∈[emin,emax]

∣∣∣∣∣θ′emin
(x)− 1

emin
− 1

emax

∣∣∣∣∣ 6 Cδemin, sup
x∈[emin,emax]

∣∣∣θ′emin
(x)− 1

∣∣∣ 6 1

emax − emin
6

1

δ
.

(2.48)
Using these bounds as well as the inequality |θemin(x)− x| 6 emin and (2.45) for n = 1, it follows∥∥∥∥∂pi,α ÅDemin,i,1,α′

emin
−Di,1,α′

ã∥∥∥∥
L∞(Ci,emax )

6
Å
C∗ +

2emax

miδ

∥∥∥f ′′0,emax

∥∥∥
L∞

+ Cδ
∥∥∥f ′0,emax

∥∥∥ã emin .

This concludes the proof of (2.47) for r = 1.
Bounds on higher order derivatives are obtained in a similar fashion, relying on the fact that ∂2

xθemin(x) =

0 except at the singularity points emin, emax as well as ∂2
xτ̃(x) = 0 for x 6= emax.

We end this section with a last technical result.

Lemma 2.12. Fix emax > 0. Then for any f ∈ L1 (µ0), there exist af ∈ R such that, for 0 < δ < emax,

∀emin ∈ [0, emax − δ] ,ˆ
Rd
f (p) e−βUemin (p)dp =

ˆ
Rd
f (p) e−βU0(p)dp+ afemin + O

Ä
e2

min

ä
.

(2.49)

Proof. Recall that Uemin(p) =
∑N
i=1 uemin,emax(pi). Note that

uemin,emax(pi)− u0,emax(pi) =
p2
i

2mi

ñ
f0,emax

Ç
p2
i

2mi

å
− femin,emax

Ç
p2
i

2mi

åô
.

Manipulations similar to the ones used to prove (2.47) allow to show that there exists a function U ∈ C∞

with compact support in Cemax such that, for 0 < δ < emax and r ∈ N, there is Cr,δ > 0 for which

emin ∈ [0, emax − δ] , ‖Uemin − U0 − eminU‖W r,∞ 6 Cr,δe
2
min . (2.50)

This allows to write
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Uemin = U0 + eminU + e2
min
‹Uemin ,

with ‹Uemin uniformly bounded in L∞. Moreover since Uemin − U0 ∈ C∞ also has a compact support, we
easily obtain

e−βUemin − e−βU0

emin
= e−βU0

e−βemin

(
U+eminŨemin

)
− 1

emin
= −βU e−βU0 + emin

“Uemin e−βU0 ,

with “Uemin uniformly bounded in L∞. Therefore, there exists a constant R > 0 such that∣∣∣∣∣∣∣∣∣
ˆ

Rd
fe−βUemindp−

ˆ
Rd
fe−βU0dp

emin
+ β

ˆ
Rd
f U e−βU0dp

∣∣∣∣∣∣∣∣∣ 6 Remin ,

so that (2.49) follows with af := −β
ˆ

Rd
Uf e−βU0 dp.

2.5.4.3 Verification of Assumption 2.5

In order to use Lemma 2.3, we need to check that Assumption 2.5 holds with Gν as small as wanted for
appropriate values of emin, emax. The first condition (2.8) is easy to check, so we concentrate on the last
two conditions. The reference kinetic energy function Uν in Lemma 2.3 is chosen as the standard kinetic
energy Ustd(p) = pTM−1p/2, so that ν = 1/mini=1,...,N . It therefore remains to check the last condition.
An inspection of the proof of Lemma 2.3 reveals that it holds provided emin, emax are such that (2.34) holds.
Straightforward computations show that

∇pi (Uemin − Ustd) =
pi
mi

ñ
1− femin,emax

Ç
p2
i

mi

åô
− pi|pi|2

m2
i

f ′emin,emax

Ç
p2
i

mi

å
,

so that, using the fact that Uemin,emax −Ustd has compact support in Cemax (hence |pi| 6
√

2miemax) and in
view of the expression (2.42) of f ′emin,emax

, the following bound holds:

‖∇pi (Uemin,emax − Ustd)‖L∞ 6

 
2emax

mi
+

 
8e3

max

mi

emax

emax − emin

∥∥∥f ′0,emax

∥∥∥
L∞

.

Similarly, there exists a constant C > 0 (depending on f ′0,emax
, f ′′0,emax

and m1, . . . ,mN ) such that

‖∆Uemin,emax‖L∞ 6 C

[
1 +

Ç
e2

max

emax − emin

å2]
.

It is then easy to see that (2.34) holds upon choosing 0 < emin 6 emax/2 with emax > 0 sufficiently small.
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2.5.4.4 Proof of Lemma 2.8

Denote by A the operator L−1
0 Π0

Ä
Demin · L̃

ä
. By Corollary 2.2, for any n > 0 and 0 6 emin 6 emax/2,

there exists a constant Rn > 0 such that

∀ |α| 6 n,
∥∥∥∂αpDemin

∥∥∥
L∞

6 Rn emin.

By the resolvent estimate (2.7), there exists for any s ∈ N∗ a constant Cs > 0 such that

∀f ∈fiL∞Ks , ∥∥∥L−1
0 f

∥∥∥
L∞Ks

6 Cs ‖f‖L∞Ks .

Therefore, choosing an integer s for which ϕ ∈W 1,∞
Ks , there exists a constant C > 0 such that

‖A (Π0ϕ)‖L∞Ks 6 Cs
∥∥∥Demin · L̃ (Π0ϕ)

∥∥∥
L∞Ks

6 C ‖Demin‖L∞ ‖ϕ‖W 1,∞
Ks

6 CR0 emin ‖ϕ‖W 1,∞
Ks

.

By the same principle, using the fact that, by (2.47), there is for any r > 0 a constant Cr > 0 such that

‖Demin‖W r,∞ 6 Cremin,

and in view of (2.13), there exist, for any l > 0, integers α > l and sl ∈ N such that, for all s > sl, there is
a constant C > 0 and an integer r ∈ N for which

‖A (Π0ϕ)‖
W l,∞
Ks

6 Cemin ‖ϕ‖Wα,∞
Kr

.

By recurrence, there exist, for any n > 1, integers sn, ln > 0 such that, for all s > sn, there is r ∈ N and‹C > 0 for which
‖An (Π0ϕ)‖L∞Ks 6

‹Cenmin ‖ϕ‖W ln,∞
Kr

.

This gives the claimed result.

2.5.4.5 Proof of Lemma 2.7

We start by writing the difference between the variance (2.37) and the truncated one (2.40):

σ2
ϕ(emin)− σ2

ϕ,n(emin) = −2

ˆ Ä
Φϕ,emin −ΠeminΦ

n
ϕ,emin

ä
ϕdµemin . (2.51)

A simple computation gives

ΠeminLemin

Ä
Φϕ,emin − Φnϕ,emin

ä
= −Πemin

Ä
Demin · L̃

ä Ä
L−1

0 Π0Demin · L̃
än L−1

0 Π0ϕ .
(2.52)
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We first use Lemma 2.8: there exist sn, ln ∈ N such that, for s > sn, there is rn ∈ N and C > 0 such
that ∥∥∥ÄL−1

0 Π0Demin · L̃
än L−1

0 Π0ϕ
∥∥∥
W 1,∞
Ks

6 Cenmin ‖ϕ‖W ln,∞
Krn

.

Therefore, using (2.43) and (2.52), there exists some constant Rn > 0 such that∥∥∥ΠeminLemin

Ä
Φϕ,emin − Φnϕ,emin

ä∥∥∥
L∞Ks

6 Rne
n+1
min ‖ϕ‖W ln,∞

Krn
.

We finally apply L−1
emin

to both sides of (2.52): in view of (2.12), it follows

∥∥∥Πemin

Ä
Φϕ,emin − Φnϕ,emin

ä∥∥∥
L∞Ks

6
RnCs
λs

en+1
min ‖ϕ‖W ln,∞

Krn
.

The result is then a direct consequence of the equality (2.51).

2.5.4.6 Proof of Proposition 2.2

Looking at (2.40), there are three objects which depend on the parameter emin: the projection Πemin , the
truncated solution of the Poisson equation Φnϕ,emin

and the modified measure µemin .
We first expand Φnϕ,emin

in terms of Φϕ,0 as

Φnϕ,emin
= L−1

0 Π0ϕ+
Ä
L−1

0 Π0Demin · L̃
ä
L−1

0 Π0ϕ+
n∑
k=2

Ä
L−1

0 Π0Demin · L̃
äk L−1

0 Π0ϕ

= Φϕ,0 +
Ä
L−1

0 Π0Demin · L̃
ä
Φϕ,0 +

n∑
k=2

Ä
L−1

0 Π0Demin · L̃
äk
Φϕ,0 .

Estimates on Φϕ,0 and its derivatives in terms of ϕ can be obtained with (2.13). Lemma 2.8 then allows to
estimate the higher order terms in the above equality: there exists s ∈ N and C > 0 such that∥∥∥Φnϕ,emin

− Φϕ,0 −
Ä
L−1

0 Π0Demin · L̃
ä
Φϕ,0

∥∥∥
L∞Ks

6 C e2
min.

By combining these estimates with (2.47), we obtain

Φnϕ,emin
= Φϕ,0 + emin

Ä
L−1

0 Π0D · L̃
ä
Φϕ,0 + e2

minRemin , (2.53)

whereRemin is uniformly bounded in L∞Ks due to (2.47) for emin small enough (upon possibly increasing s).
With the notation of Lemma 2.12, for any f ∈ L1 (µ0),

ˆ
E
f dµemin =

ˆ
E
fe−βUemin

ˆ
E

e−βUemin

=

ˆ
E
f dµ0 +

af − a1

ˆ
E
f dµ0ˆ

E
e−βU0

emin + ‹Remine
2
min, (2.54)
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with ‹Remin uniformly bounded for emin small enough. Finally, by combining (2.53) and (2.54), we see that
there exists K ∈ R such that

σ2
ϕ,n(emin) = −2

ˆ
E
Φϕ,0ϕdµ0 + K emin + O

Ä
e2

min

ä
. (2.55)
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3

Stable and accurate schemes for Langevin dynamics with general kinetic
energies

Summary. We study Langevin dynamics with a kinetic energy different from the standard, quadratic one
in order to accelerate the sampling of the Boltzmann–Gibbs distribution. We consider two cases: kinetic
energies which are local perturbations of the standard kinetic energy around the origin, where they vanish
(this corresponds to the so-called adaptively restrained Langevin dynamics); and more general non-globally
Lipschitz energies. We develop numerical schemes which are stable and of weak order two, by considering
splitting strategies where the discretizations of the fluctuation/dissipation are corrected by a Metropolis
procedure. We use the newly developed schemes for two applications: optimizing the shape of the kinetic
energy for the adaptively restrained Langevin dynamics, and reducing the metastability of some toy models
with non-globally Lipschitz kinetic energies that we present in Chapter 5.

The results presented in this chapter are preprinted in [114].
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In practice, the Langevin dynamics (2.4) cannot be analytically integrated. Its solution is therefore ap-
proximated with a numerical scheme. The numerical analysis of such discretization schemes is by now
well-understood when U is the standard quadratic kinetic energy (see Section (1.3.2)).

In this chapter, we consider the discretization of modified Langevin dynamics which improves the sam-
pling of the Boltzmann–Gibbs distribution by introducing a more general kinetic energy function U instead
of the standard quadratic one. We have in mind the adaptively restrained Langevin dynamics, although we
later apply this approach at the importance sampling strategy in Chapter 5.

The main issue with the situations we consider is the stability of discretized schemes. Several works
indicate that explicit discretizations of Langevin-type dynamics with non-globally Lipschitz force fields are
often unstable (in the sense that the corresponding Markov chains do not admit invariant measures), see
e.g. [85]. We face such situations here even for compact position spaces when∇U is not globally Lipschitz.
For adaptively restrained Langevin dynamics, the difficulties arise from the possibly abrupt transition from
the region where the kinetic energy vanishes to the region where it coincides with the standard one. Nume-
rical evidence reported in Section 2.4 and Chapter 4 indicates that such a fast transition provides a favorable
trade-off between the reduced algorithmic complexity and the increase in the asymptotic variance. Abrupt
transitions however lead to large “kinetic” forces ∇U(p) in some regions and hence limit admissible ti-
mesteps. As for the stabilization of the Euler-Maruyama discretization of overdamped Langevin dynamics
in [105], we suggest to use a Metropolis acceptance/rejection step [87, 56] in order to ensure the stability of
the methods under consideration. Such a stabilization leads to schemes which can be seen as one step Hybrid
Monte Carlo (HMC)1 algorithms [40] with partial refreshment of the momenta, studied for instance in [25]
for the standard kinetic energy. Here, in order to obtain a weakly consistent method of order 2 (which is no
longer trivial when the fluctuation/dissipation cannot be analytically integrated), we rely on the Metropolis
schemes studied in [45].

This chapter is organized as follows. In Section 3.1, which is not contained in [114], we recall possible
strategies for the discretization of modified Langevin dynamics (2.4). We describe in Section 3.3 the genera-
lized Hybrid Monte Carlo scheme we consider, and prove that it is weakly consistent of order 2. We next turn
to numerical results relying on the stability properties of the Metropolized scheme. Finally, in Section 3.4
we propose, for the AR-Langevin method, a better kinetic energy function than the one originally suggested
in [9].

3.1 Discretization of the Langevin dynamics

Throughout this section, we work in a compact position space D. We consider in all this chapter kinetic
energies U ∈ S and potentials V ∈ C∞ which are smooth functions satisfying Assumption 2.1. We denote
by

1 Also called "Hamiltonian Monte-Carlo" in the statistics community.
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LHam = ∇U · ∇q −∇V · ∇p, LFD = γ

Å
−∇U · ∇p +

1

β
∆p

ã
, (3.1)

such that L = LHam + LFD is the generator of the dynamics (2.4).
As we reviewed in Section 1.3.2.1, one appealing strategy to construct numerical schemes for Lange-

vin dynamics is to resort to a splitting scheme between the Hamiltonian part of the dynamics (typically
integrated with a Verlet scheme (3.31)) and the fluctuation/dissipation dynamics on the momenta. The cor-
responding dynamics reads

dpt = −γ∇U(pt) dt+

 
2γ

β
dWt, (3.2)

with generator LFD. The momenta marginal distribution κ given by (1.13) is invariant under this dynamics.
In order to state rigorous results, we work with functions growing at most polynomially. More precisely,

introducing the weight function2 Kα(q, p) = 1 + |q|α + |p|α, we recall the following spaces of functions
growing at most as Kα at infinity (already defined in (1.36))

L∞Kα =

ß
f measurable, ‖f‖L∞Kα =

∥∥∥∥ fKα
∥∥∥∥
L∞

< +∞
™
.

In order to make more concise statements, we will simply say that a sequence of functions f∆t grows at
most polynomially in (q, p) uniformly in ∆t when there exist K,α,∆t∗ > 0 such that

sup
0<∆t6∆t∗

‖f∆t‖L∞Kα 6 K. (3.3)

Recall the vector space S of smooth functions which, together with all their derivatives, grow at most
polynomially.

Under the following assumptions on U the process (3.2) admits solutions for all times t > 0 (see for
instance [70] and references therein):

Assumption 3.1 (1) U ∈ C∞ grows at most polynomially;
(2) There exists a bounded function U1 ∈ C∞

Ä
Rd
ä

with bounded derivatives and a convex function U2 ∈
C∞

Ä
Rd
ä

such that U = U1 + U2;
(3) There exists strictly positive real numbers κ1 and κ2 such that

〈x,∇U(x)〉 > κ1 |x|2 − κ2 ∀x ∈ Rd;

(4) For all k ∈ N ˆ
Rd
|x|2k e−2U(x)dx <∞.

2 Note that for a compact space the weight functions reduce to Kα(q, p) = 1 + |p|α.
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When Assumption 3.1 is satisfied, it was shown in [70, Proposition 2.7] that the evolution semigroup etLFD

preserves S .
The dynamics (3.2) cannot be analytically integrated, except for very specific kinetic energies such as

the standard kinetic energy (1.7). However, by a simple extension of the results of [78] the splitting schemes
(either Lie or Strang) based on a weakly second order consistent discretization of (3.2) and a Verlet scheme
for the Hamiltonian part are globally weakly consistent, of weak order 1 for Lie-Trotter-based splittings
and of weak order 2 for Strang based splittings. In the case when the kinetic energy is a perturbation of the
standard kinetic energy, in the sense of

∇U −∇Ustd ∈ C∞0 , (3.4)

we show that the numerical schemes admit a unique invariant probability measure µ∆t. Note that (3.4)
implies Assumption 3.1. Moreover, it is possible to prove exponential convergence rates which are uniform
in the timestep ∆t and depend only on the physically elapsed time. This allows also to state error estimates
on the invariant measure µ∆t and on integrated correlation functions. We obtained such results by adapting
the proofs of the corresponding statements in [78], upon replacing ∇Ustd(p) = M−1p with ∇U(p) =

M−1p+ Z(p) where Z ∈ C∞0 .
On the other hand, when the condition (2.6) is not satisfied, it may not be possible to prove the existence

of a unique invariant measure for the splitting schemes. The main obstruction is that the Markov chain
corresponding to the discretization of the elementary fluctuation/dissipation dynamics (3.2) may itself be
transient. This would be the case for instance for non-globally Lipschitz force fields ∇U and the Euler-
Maruyama discretization [105]. This observation motivates resorting to a Metropolis correction in order to
ensure the existence of an invariant probability distribution which we present in Section 3.3.

3.1.1 A first order scheme

In this section, we present a discretization scheme of order 1 of the Langevin dynamics (2.4) and prove
exponential convergence rates which are uniform in ∆t.

The scheme we consider is based on the Lie-Trotter splitting:
p̃n+1 = pn −∇V (qn)∆t

qn+1 = qn +∇U
Ä
p̃n+1

ä
∆t

pn+1 = ΦFD
∆t (pn, Gn),

(3.5)

where Gn are i.i.d. standard d-dimensional Gaussian random variables. We integrate the fluctuation-
dissipation dynamics (3.2) by the following first order scheme:

pn+1 = ΦFD
∆t (pn, Gn) = α∆tp

n + γ∆tZ(pn) +

√
1− α2

∆t

β
MGn, (3.6)
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where α∆t is defined in (1.56) and the AR-perturbation function is defined as

Z(p) := ∇U(p)−M−1p. (3.7)

Note that this scheme is based on the fact that, under condition (2.6), the modified Langevin dynamics can
be written as a perturbation of the standard dynamics. The following lemma shows that the scheme (3.6) has
a weak error of order 1.

Lemma 3.1. Suppose that Assumption 2.2 and (3.4) hold. The discretization scheme (3.6) has a weak error
of order 1 in the time step size∆t with the following expansion of the generator: for any smooth test function
ϕ ∈ S , there exist ∆t∗,K, α > 0 such that

PFD
∆t ϕ = ϕ+∆tLFDϕ+∆t2RFD

∆t,ϕ, (3.8)

where sup0<∆t6∆t∗ ‖RFD
∆t,ϕ‖L∞Kα 6 K. Moreover, PFD

∆t maps functions growing at most polynomially into
functions growing at most polynomially: for any α ∈ N, there exist α′ ∈ N and Cα > 0 such that

∀f ∈ L∞Kα ,
∥∥∥PFD

∆t f
∥∥∥
L∞Kα

6 Cα‖f‖L∞Kα′
. (3.9)

Proof. The scheme (3.6) can be interpreted as a Lie-Trotter splitting of the operator LFD such that

LFD = LFD,std + LFD,pert,

where LFD,std corresponds to the operator of the fluctuation-dissipation equation in the case of the standard
kinetic energy, i.e.

LFD,std = −M−1p · ∇p +
1

β
∆p, (3.10)

and LFD,pert is the perturbation operator, which is given by

LFD,pert = Z(p) · ∇p. (3.11)

Recall that Z ∈ C∞0 . The dynamics associated with the operator (3.10) can be integrated analytically accor-
ding to (1.56). We write

e∆tLFD,stdϕ = ϕ+∆tLFD,stdϕ+∆t2Rstd
∆tϕ

with an integral remainder

Rstd
∆tϕ =

ˆ 1

0
(1− θ)eθ∆tLFD,stdL2

FD,stdϕ dθ.

In [70, Proposition 2.7], the following bounds on e∆tLFD,std were proven : for ϕ ∈ S there exists a constant
λ > 0 such that for any k ∈ N there exist nk ∈ N and mk ∈ N and Ck > 0 such that for all t > 0
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∥∥∥∂ketLstdϕ
∥∥∥
L∞Kmk

6 Cke
−λt ‖ϕ‖L∞Knk

.

This implies e∆tLFD,std : S → S . Therefore, we obtain that Rstd
∆tϕ grows at most polynomially uniformly

in ∆t.
The dynamics which corresponds to the operator (3.11) is approximated by a first order scheme with the

evolution operator:
P pert
∆t ϕ(p) = ϕ (p+∆tZ(p)) ,

which satisfies, for any ϕ ∈ S ,

P pert
∆t ϕ = ϕ+∆tZ(p) · ∇ϕ(p) +∆t2Rpert

∆t ϕ (3.12)

with an integral remainder

Rpert
∆t ϕ = Z(p)T

Çˆ 1

0
(1− θ)∇2ϕ(p+ θ∆tZ(p)) dθ

å
Z(p).

Since Z ∈ C∞0 , it is easy to see that Rpert
∆t ϕ grows at most polynomially uniformly in ∆t.

Finally, we compute

PFD
∆t ϕ = P pert

∆t e∆tLFD,stdϕ = P pert
∆t

Ä
ϕ+∆tLFD,stdϕ+∆t2Rstd

∆tϕ
ä

=
Ä
ϕ+∆tLFD,stdϕ+∆t2Rstd

∆tϕ
ä

+∆tLFD,pert

Ä
ϕ+∆tLFD,stdϕ+∆t2Rstd

∆tϕ
ä

+∆t2Rpert
∆t

Ä
ϕ+∆tLFD,stdϕ+∆t2Rstd

∆tϕ
ä

= ϕ+∆t (LFD,stdϕ+ LFD,pertϕ) +∆t2
Ä
Rstd
∆tϕ+ LFD,pertLFD,stdϕ+Rpert

∆t ϕ
ä

+∆t3
Ä
LFD,pertR

std
∆tϕ+Rpert

∆t LFD,stdϕ
ä

+∆t4Rpert
∆t R

std
∆tϕ

(3.13)

and we conclude with (3.8) as well as to (3.9) since the concatenations of the remainders grow at most
polynomially uniformly in ∆t.

For the evolution operator of the scheme (3.5) the following expansion holds true:

PLie
∆t ϕ = e∆tLϕ+∆t2r∆t,ϕ,

where the remainder r∆t,ϕ grows at most polynomially in (q, p) uniformly in ∆t. The proof is similar to the
proof of Lemma 3.4, we therefore omit this part (see also Section 3.1.2).

The ergodicity was proved for the continuous dynamics under Assumption 2.2 and for compact posi-
tion spaces D in Chapter 2 (see Theorem 2.4). Under these assumptions, the ergodicity of the discretized
scheme (3.5) can be proven. The following result is based on the approach in [78] by obtaining Lyapunov
and minorization conditions. The proof can be read in Section 3.5.1.
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Lemma 3.2. Suppose that Assumption 2.2 holds and that U ∈ S is such that ‖Z‖L∞ 6 Z . The
scheme (3.5) is ergodic: for any γ > 0, there exist ∆t∗ such that there exists a unique invariant measure
µ∆t with finite moments. Moreover, for any s > 1 and 0 < ∆t < ∆t∗,

ˆ
E
Ksdµ∆t <∞,

and the following exponential convergence holds: there exist λs,Ks > 0 such that for almost all (q, p) ∈ E
and for all ϕ ∈ L∞Ks and 0 < ∆t 6 ∆t∗,

∀n > 0,

∥∥∥∥Pn∆tϕ− ˆ
E
ϕdµ∆t

∥∥∥∥
L∞Ks

6 Kse
−λsn∆t ‖ϕ‖L∞Ks . (3.14)

Having this results and (3.8) at hand, it is possible to prove the first order accuracy of averages with
respect to the invariant measure (see Theorem 1.8).

Corollary 3.1. Suppose that Assumption 2.2 holds and that U ∈ S is such that ‖Z‖L∞ 6 Z . The discreti-
zation (3.5) has an error on the averages of order 1: there exist a function f ∈ S such that for any smooth
ϕ there exist ∆t∗ > 0 and C > 0 such that, for all 0 < ∆t 6 ∆t∗,

ˆ
E
ϕ(q, p)dµ∆t =

ˆ
E
ϕ(q, p)dµ+∆t

ˆ
E
ϕ(q, p)f(q, p)dµ∆t +R∆t,ϕ∆t

2,

where |R∆t,ϕ| 6 C.

3.1.2 Second order schemes

In this section, we apply results from [2, 78, 82] in order to construct a discretization scheme for (2.4),
which has an error on the average properties of order 2 in the timestep. For this purpose we discretize the
fluctuation-dissipation equation (3.2) by a modified scheme of weak order 2 and we deduce that the resulting
scheme for (2.4), which is obtained via Lie-Trotter or Strang splitting of L into LHam and LFD, provides a
second order accuracy on the average properties.

The Hamiltonian part with the generator PHam
∆t is usually approximated by a second order splitting, here

the Verlet scheme, i.e.
(qn+1, pn+1) = ΦVerlet

∆t (qn, pn) ,

given by (1.8). This corresponds to the evolution operator

PHam
∆t = e∆tB/2e∆tAe∆tB/2 (3.15)

with the operators defined in (1.54). In order to be consistent with the order of the Hamiltonian part, we also
need to discretize (3.2) by a scheme of (at least) second order. There are plenty of schemes satisfying this
requirement. We could for example simply construct a second order scheme by Strang instead of Lie-Trotter
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splitting of the operator LFD as done in the proof of Lemma 3.1 with an analytic integral of LFD,std and a
second order discretization of LFD,pert.

Motivated by the midpoint scheme in (2.21), we use the approach by modified equations from [1, 132].
We construct a second order scheme by a modification of the following first order scheme, which is based
on the first order approximation of the midpoint scheme:

pn+1 = ΦEM,∆t(p
n) = pn − γ∇U

Ç
pn − γ∆t

2
∇U (pn) +

1

2

 
2γ∆t

β
Gn
å
∆t+

 
2γ∆t

β
Gn . (3.16)

The discretized modified equation of weak order 2 (for the proof see [45]) reads

pn+1 = pn − γ∇U
Ç
pn − γ∆t

2
∇U (pn) +

1

2

 
2γ∆t

β
Gn
å
∆t− γ2

4β
∇ (∆U (pn))∆t2 +

 
2γ∆t

β
Gn .

(3.17)
We denote by PFD,2

∆t the associated evolution operator. Note that in the case of the standard kinetic energy
Ustd, the correction term∇ (∆U) (pn) disappears and hence (3.16) already provides a numerical scheme of
weak order 2.

Under the assumption U ∈ S , it is possible to state the following expansion of the evolution operator
similarly to the result in [45]:

PFD,2
∆t ϕ = e∆tLFDϕ+∆t3RFD,ϕ

∆t , (3.18)

with the remainder RFD
∆t,ϕ grows at most polynomially in p uniformly in ∆t, and PFD,2

∆t maps functions
growing at most polynomially into functions growing at most polynomially, i.e. for any s′ ∈ N, there exists
s ∈ N and Cs > 0 such that, for all ∆t 6 ∆t∗,

∀ϕ ∈ L∞Ks′ ,
∥∥∥PFD,2

∆t ϕ
∥∥∥
L∞Ks

6 Cs ‖ϕ‖L∞Ks′
. (3.19)

Remark 3.1. Note that, in general, the modified equations such as (3.17) are not applied to discretize the
overdamped Langevin dynamics

dqt = −∇V (qt) dt+

 
2

β
dWt,

due to the computational effort of evaluation of the higher derivatives of the potential. Here, the computation
of the modification term in (3.17) does not significantly increase the computational complexity, because the
kinetic energy function U can be chosen to be separable among the particles, hence equation (1.55) reduces
to d = DN one-dimensional equations.

On the other hand, it was proved in [78] that the evolution operator of the Hamiltonian part (3.31) satisfies
the following expansion: if U, V ∈ S , then for all smooth ϕ ∈ S and 0 < ∆t 6 ∆t∗ small enough,

PHam
∆t ϕ = e∆tLHamϕ+∆t3RHam

∆t ϕ (3.20)
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where the remainder grows at most polynomially in (q, p) uniformly ∆t. Moreover PHam
∆t satisfies that for

any s′ ∈ N, there exists s ∈ N and Cs > 0 such that, for all ∆t 6 ∆t∗,

∀ϕ ∈ L∞Ks′ ,
∥∥∥PHam

∆t ϕ
∥∥∥
L∞Ks

6 Cs ‖ϕ‖L∞Ks′
. (3.21)

In order to numerically integrate (2.4), we consider the Strang splitting between the operators LHam and
LFD which corresponds to the following evolution operator:

P Strang
∆t = PFD,2

∆t/2P
Ham
∆t PFD,2

∆t/2 . (3.22)

Of course, the resulting scheme has weak order 2 with the following expansion: for every ϕ ∈ S ,

P Strang
∆t ϕ = ϕ+∆tLϕ+

∆t2

2
L2ϕ+∆t3r∆t,ϕ, (3.23)

with the remainder r∆t,ϕ growing at most polynomially in (q, p) uniformly in ∆t. The proof of the expan-
sion (3.23) is similar to the proof of Lemma 3.4. By the same arguments it is possible to prove an expansion
of the generator obtained by the Lie-Trotter splitting

PGLA
∆t = PHam

∆t PFD,2
∆t . (3.24)

More precisely, there exist an operator A, such that for every ϕ ∈ S ,

PGLA
∆t ϕ = ϕ+∆tLϕ+∆t2

Å
1

2
L2 +A

ã
ϕ+∆t3r∆t,ϕ, (3.25)

with the remainder r∆t,ϕ growing at most polynomially in (q, p) uniformly in ∆t. The operator A =

[LHam,LFD] preserves the invariant measure µ, i.e.

ˆ
E
Aϕdµ = 0 . (3.26)

Hence, the Lie-Trotter splitting gives a second order accuracy on the invariant measure (see the corollary
below).

Under Assumption 2.2, the dynamics is ergodic with an invariant measure µ (see Theorem 2.4) and,
similarly to the first order scheme (3.5), we can prove that the second order schemes with evolution ope-
rators P Strang

∆t and PGLA
∆t are ergodic with respect to some measure µ∆t in the sense of Lemma 3.2. The

corresponding proof is a simple modification of the proof from Section 3.5.2.
Using the expansion of the evolution operator (3.23) or (3.25), we deduce the second order error on the

invariant measure for both splittings, which is a direct application of Theorem 1.8.

Corollary 3.2. Suppose Assumption 2.2 holds. The schemes induced by P Strang
∆t and PGLA

∆t preserve the
invariant measure at order 2 in the time step size: there exists a function f ∈ S such that for any smooth ϕ
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there exist ∆t∗ > 0 and C > 0 such that for 0 < ∆t 6 ∆t∗,

ˆ
E
ϕ(q, p)dµ∆t =

ˆ
E
ϕ(q, p)dµ+∆t2

ˆ
E
ϕ(q, p)f(q, p)dµ∆t +R∆t,ϕ∆t

3,

where |R∆t,ϕ| 6 C.

Remark 3.2. An exchange of the order of the operators in the scheme, for instance considering PHam
∆t PFD

∆t

instead of PFD
∆t P

Ham
∆t , does not change the order of the scheme. However note that, by an application of the

TU-Lemma it is possible to obtain the expression of the invariant measure of one scheme when the expression
for another one is given (see [78] for more details).

Recall that, if the estimate (3.14) holds for a generator P∆t, we control its resolvent: there exists C > 0

such that, for 0 < ∆t 6 ∆t∗, ∥∥∥∥∥
Å

Id− P∆t
∆t

ã−1
∥∥∥∥∥

B
Ä
L̃∞Ks

ä 6 C.

Weak error estimates also determine the error on the computation of the transport coefficients. The following
corollary is an application of [78, Corollary 2.3], since the expansions (3.23) and (3.25) can be rewritten as

− Id− P∆t
∆t

ϕ = Lϕ+
∆t

2
L2ϕ+∆t2r∆t,ϕ.

It states that for a scheme with weak error of order 2, the properties computed through Green-Kubo formula
can be computed with a second-order accuracy when using the trapezoidal rule for integrating the auto-
correlation function.

Corollary 3.3. We consider the scheme given by P Strang
∆t . For two smooth observables ϕ,ψ ∈ S̃ , there exist

K > 0 and ∆t∗ > 0 such that for any 0 < ∆t 6 ∆t∗,

ˆ +∞

0
E [ψ (qt, pt)ϕ (q0, p0)] dt

=
∆t

2
E∆t

Ä
ψ∆t,0

Ä
q0, p0

ä
ϕ
Ä
q0, p0

ää
+∆t

+∞∑
n=1

E∆t
Ä
ψ∆t (qn, pn)ϕ

Ä
q0, p0

ää
+∆t2rψ,ϕ∆t

(3.27)

with
∣∣∣rψ,ϕ∆t

∣∣∣ 6 K and ψ∆t,0 = ψ −
´
E ψdµ∆t.

Obviously, dynamical properties of the Langevin dynamics with a general kinetic energy are different
from the dynamical properties of the standard Langevin dynamics. The previous corollary characterizes the
error due to the discretization by the finite time step size with respect to the continuous dynamics. In order
to retrieve dynamical properties of the corresponding standard Langevin dynamics, the modified dynamics
should be unbiased (for instance via Girsanov formula [34], an approach which needs to be explored for this
dynamics, see perspectives in Chapter 5).
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In practical applications, the computation of (3.27) is done by truncating the upper bound in the inte-
gral by a sufficiently large time Tcorr, and by using a trapezoidal rule. We have used this approach for an
estimation of the asymptotic variance in (2.22).

Remark 3.3. If the interest lies only in the configurational sampling from the invariant distribution, a natu-
ral extension is to resort to a Generalized Langevin equation [94] by introducing a new variable R ∈ Rd.
This approach is motivated by considering (1.55) as the overdamped Langevin equation, which can be seen
as a limit in the friction constant γFD of the following Langevin dynamics:

dpt = M−1
FDRt dt,

dRt = −∇U(pt) dt− γFDM
−1
FDRt dt+

 
2γFD

β
dWt,

(3.28)

where dWt is a standard d-dimensional Wiener process and γFD > 0 is a friction constant and MFD > 0.
The numerical integration of (3.28) can be done by a scheme such as (1.59), since the function W (R) :=
R2

2MFD
is quadratic and hence the fluctuation-dissipation part can be solved analytically. The splitting stra-

tegies for the standard Langevin dynamics [78, 23] provide a second-order accuracy on the invariant me-
asure µFD(p,R) = Z−1

FD,Re−βU(p)e−βW (R)dp dR. Strang splitting between the Hamiltonian part and the
fluctuation-dissipation part, formally PFD,R

∆t/2 P
Verlet
∆t PFD,R

∆t/2 , gives then a weak error of order 2.
The Hamiltonian of the whole dynamics, in this case, reads HFD(q, p,R) = V (q) +W (R) +U(p) with

an invariant measure
µ̃(q, p,R) = ν(q)µFD(p,R).

Recall that, the computational bottleneck is the evaluation of f(q) = −∇V (q). Hence the extension into
an additional variable which requires only a linear complexity, will not significantly increase the computa-
tional cost per time step. On the other hand, when the kinetic energy function is chosen such that it helps to
decrease the computational complexity in the forces update (consider for example the AR-Langevin dyna-
mics, or the kinetic energy function from Section 5.1), the total cost of the integration of the whole dynamics
or the necessary number of time steps can be reduced.

3.1.3 Numerical results

In Section 3.1.3.1 we illustrate using a simple numerical example that the modified scheme (3.16) for the
fluctuation-dissipation equation has second order accuracy for the calculation of averages. We also confirm
the predictions of Corollary 3.2: schemes obtained through a Lie-Trotter and Strang splitting between (3.31)
and (3.16) provide averages that are accurate at order two in the timestep size.

In order to numerically determine the error order on the invariant measure for a given numerical scheme,
we plot the relative error

r(∆t) =
|ϕ̂Niter,∆t − ϕ̂0|

|ϕ̂0|
(3.29)

of the estimator ϕ̂Niter,∆t given by (1.60) with respect to the exact value ϕ̂0 at ∆t = 0.
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3.1.3.1 The fluctuation-dissipation equation

First, we consider only the fluctuation-dissipation equation (3.2) for two AR-kinetic energies with different
parameters (see Section 3.4 for the definition of the AR-kinetic energy as given by (3.49) with a C3 inter-
polation spline) and a three dimensional system of 27 particles with zero forces, an ideal fluid system3. We
choose γ = 1 and β = 1. We compare the discretizations discussed this chapter: the first order scheme (3.16)
and the two second order schemes, which are (3.17) and the GLE-like scheme (3.28) discretized by (1.59).
We choose various time step sizes and integrate the dynamics over Niter ≈ 1010 time steps. We compute the
ergodic average of the kinetic temperature, an observable given by T (p) = p · ∇U(p), for which we know
the exact value at equilibrium Eµ (T (p)) = β−1 (see (1.16)). Figure 3.1 shows the relative error over the
time step size. The error slopes confirm the theoretical orders of the numerical methods.

3.1.3.2 The Langevin equation

In the next example, we numerically confirm the second order error on average properties as given by
Corollary 3.2 for the full Langevin dynamics. We consider the system of N = 27 particles in a 3D periodic
domain at density 0.3, inverse temperature β = 1 and friction γ = 1. Particles are interacting by the WCA
potential (1.4) with parameters εLJ = 1 and σLJ = 1 truncated at the distance rLJ = 21/6σLJ (the same
system as in Section 2.4.2). We consider the AR-kinetic energy function with emax = 2 and emin = 1.
We measure the averages of two observables: the kinetic temperature T (p) and the potential energy V (q).
Unlike for the kinetic temperature, we do not know the exact expected value of the potential. In order to
obtain an approximation of this value, we interpolate the values obtained over ∆t by a linear or quadratic
function according to the order of the method. We then evaluate the interpolation function at ∆t = 0 which
gives an approximation for Eµ (V (q)).

We observe in Figure 3.2b that the second order accuracy of the Strang splitting of the Hamiltonian
part is destroyed when the fluctuation-dissipation part is integrated by a first order scheme4 (Lie-Trotter
splitting between (3.31) and (3.16), denoted as "GLA 1"). On the other hand, Lie-Trotter and Strang splitting
between (3.31) and (3.17) shows second order accuracy ("GLA" and "Strang"). Note in Figure 3.2 where we
plot the relative error for the potential energy V (q), we do not observe the first order for GLA 1, all schemes
show second order.

3 The fluctuation-dissipation equations are separable in all dimensions, the 27 particles hence act as parallel replicas/realizations.
4 Note that a similar scheme was used in [9] to integrate the AR-Langevin dynamics. The fluctuation-dissipation equation was

integrated with an Euler-Maruyama scheme, while we use here an explicit-midpoint. Both schemes however are of weak order 1.
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Fig. 3.1: Error order of the discretization schemes for fluctuation-dissipation equation. We plot the relative
error (3.29) for the kinetic temperature T (p) over the time step for various discretizations of the fluctuation-
dissipation equation (1.55): explicit mid-point scheme (3.16) (EM), its second order modification (3.17)
(EM Modif) and the GLE extension (3.28) discretized by (1.59). The AR-kinetic energy is parametrized by
vmax = 2 and vmin = 1.

3.2 Generalized Hybrid Monte-Carlo schemes

We present in this section a generalized Hybrid Monte-Carlo (GHMC) scheme to discretize the Langevin
dynamics with non-quadratic kinetic energies. HMC is a Metropolis-Hastings method based on a proposal
generated by the integration of the deterministic Hamiltonian dynamics. The proposal is then accepted or
rejected according to the Metropolis rule. The rejection of the proposal occurs due to discretization errors.
The efficiency of the method is therefore a trade-off between larger simulated physical times (which calls
for larger timesteps) and not too large rejection rates (which places an upper limit on possible timesteps).

We metropolize the Langevin dynamics with a general kinetic energy in two steps: first, we metropolize
the Hamiltonian part as in the standard single-step HMC method (see Section 3.3.1); in a second step, we
add a weakly consistent discretization of the elementary fluctuation/dissipation stabilized by a Metropolis
procedure (see Section 3.3.2). The complete algorithm is summarized in Section 3.3.3.

3.3 Generalized Hybrid Monte-Carlo schemes

We present in this section a generalized Hybrid Monte-Carlo (GHMC) scheme to discretize the Langevin
dynamics with non-quadratic kinetic energies. For an introduction to HMC and some of its generalizations,
we refer for instance the reader to [81, Section 2.2.3]. In essence, HMC is a Metropolis-Hastings method
based on a proposal generated by the integration of the deterministic Hamiltonian dynamics. The proposal
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(a) Kinetic temperature

(b) Potential energy

Fig. 3.2: Illustration of Corollary 3.2. We consider the potential energy V (q) and the kinetic temperature
T (p) for various integration schemes of the AR- Langevin dynamics with the AR kinetic energy function
with parameters vmin = 1 and vmax = 2 and confirm the predicted error orders on the average properties by
plotting the relative error (3.29) over the time step.

is then accepted or rejected according to the Metropolis rule. The rejection of the proposal occurs due to
discretization errors. The efficiency of the method is therefore a trade-off between larger simulated physical
times (which calls for larger timesteps) and not too large rejection rates (which places an upper limit on
possible timesteps).
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We metropolize the Langevin dynamics with a general kinetic energy in two steps: first, we metropolize
the Hamiltonian part as in the standard single-step HMC method (see Section 3.3.1); in a second step, we
add a weakly consistent discretization of the elementary fluctuation/dissipation stabilized by a Metropolis
procedure (see Section 3.3.2). The complete algorithm is summarized in Section 3.3.3.

3.3.1 Metropolization of the Hamiltonian part

Let us describe the one-step HMC method we use to discretize the Hamiltonian part of the dynamics: dqt = ∇U(pt) dt,

dpt = −∇V (qt) dt.
(3.30)

Starting from a configuration (qn, pn) ∈ E , a new configuration (q̃n+1, p̃n+1) = Φ∆t(q
n, pn) ∈ E is propo-

sed using the Verlet scheme 
pn+1/2 = pn −∇V (qn)

∆t

2
,

q̃n+1 = qn +∇U(pn+1/2)∆t,

p̃n+1 = pn+1/2 −∇V (q̃n+1)
∆t

2
.

(3.31)

The proposal is then accepted with probability

AHam
∆t (qn, pn) = min

(
1, exp

(
−β
[
H (Φ∆t(q

n, pn))−H (qn, pn)
]))

. (3.32)

If the proposal is rejected, a momentum reversal is performed and the next configuration is set to (qn+1, pn+1) =

(qn,−pn) (see the discussion in [81, Section 2.2.3] for a motivation of the momentum reversal). In summary,
the new configuration isÄ

qn+1, pn+1
ä

= ΨHam
∆t (qn, pn,Un)

= 1{Un6AHam
∆t (qn,pn)}Φ∆t (qn, pn) + 1{Un>AHam

∆t (qn,pn)} (qn,−pn) ,
(3.33)

where (Un)n>0 is a sequence of independent and identically distributed (i.i.d.) random variables uniformly
distributed in [0, 1]. A simple proof shows that the canonical measure µ is invariant by the scheme (3.33).
The corresponding Markov chain is however of course not ergodic with respect to µ since momenta are
not resampled or randomly modified at this stage (this will be done by the discretization of the fluctua-
tion/dissipation, see Section 3.3.3 for the complete GHMC scheme).

Without any discretization error (i.e. if the Hamiltonian dynamics was exactly integrated, so that the
energy would be constant), the proposal would always be accepted. Since the Verlet scheme is of order 2,
we expect the energy difference H (Φ∆t(q

n, pn)) − H (qn, pn) to be of order ∆t3. The following lemma
makes this intuition rigorous and quantifies the rejection rate 1 − AHam

∆t in terms of the timestep ∆t and
derivatives of the potential and kinetic energy functions.
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Lemma 3.3. Assume that U, V ∈ S and that the canonical measure µ admits moments of all order in q, p.
Then there exist K,∆t∗, α > 0 such that the rejection rate of the one-step HMC scheme (3.33) admits the
following expansion: for any ∆t ∈ (0, ∆t∗],

0 6 1−AHam
∆t = ∆t3ξ+ +∆t4r∆t , (3.34)

with sup0<∆t6∆t∗ ‖r∆t‖L∞Kα 6 K. Moreover, the leading order of the rejection rate is given by ξ+ :=

max (0, ξ) with

ξ = −LHamH2, H2(q, p) =
1

12

ï
−1

2
∇V (q)T∇2U(p)∇V (q) +∇U(p)T∇2V (q)∇U(p)

ò
. (3.35)

As discussed in the introduction, the crucial part of the sampling usually is the sampling of the marginal
of the canonical measure µ in the position variable. There is therefore some freedom in the choice of U . The
expression of the rejection rate (3.35) suggests that U should be chosen such that derivatives of order up to 3
are not too large, in order for ξ̄ to be as small as possible. This remark is used in Section 3.4 to improve the
kinetic energy functions currently considered in adaptively restrained Langevin dynamics.

Proof. The idea of the proof is that, according to results of backward analysis [53], the first order modified
Hamiltonian H+∆t2H2 should be preserved at order ∆t5 over one timestep. The rejection rate is therefore
given, at dominant order, by −∆t2[H2(Φ∆t(q, p))−H2(q, p)] ' −∆t3(LHamH2)(q, p).

To identify H2 and make the previous reasoning rigorous, we write the proposal (3.31) as

Φ∆t (q, p) =

Ü
q +∇U

Å
p−∇V (q)

∆t

2

ã
∆t,

p−∇V (q)
∆t

2
−∇V

Å
q +∇U

Å
p−∇V (q)

∆t

2

ã
∆t

ã
∆t

2

ê
,

so that

Φ∆t (q, p) =

(
q

p

)
+∆t

(
∇U(p)

−∇V (q)

)
− ∆t2

2

(
∇2U(p)∇V (q)

∇2V (q)∇U(p)

)

+
∆t3

4

Ö
1

2
D3U(p) : ∇V (q)⊗2

∇2V (q)∇2U(p)∇V (q)−D3V (q) : ∇U(p)⊗2

è
+∆t4R∆t(q, p),

(3.36)

where the remainder R∆t(q, p) grows at most polynomially in (q, p), uniformly in ∆t (this is easily seen
by performing Taylor expansions with integral remainders). Denoting by y = (q, p)T , we note that the
Hamiltonian dynamics (3.30) can be reformulated as

ẏ = F (y), F (y) =

(
∇U(p)

−∇V (q)

)
.
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This implies that

ÿ = DF (y)F (y) = −
(
∇2U(p)∇V (q)

∇2V (q)∇U(p)

)
,

and
...
y =

(
D3U(p) : ∇V (q)⊗2 −∇2U(p)∇2V (q)∇U(p)

−D3V (p) : ∇U(p)⊗2 +∇2V (q)∇2U(p)∇V (q)

)
.

Therefore, denoting by φt the flow of the Hamiltonian dynamics (3.30), it holds

Φ∆t(q, p) = φ∆t(q, p) +∆t3G(q, p) +∆t4‹R∆t(q, p), (3.37)

where

G(q, p) =
1

12

Ö
− 1

2
D3U(p) : ∇V (q)⊗2 + 2∇2U(p)∇2V (q)∇U(p)

−D3V (q) : ∇U(p)⊗2 +∇2V (q)∇2U(p)∇V (q)

è
,

and the remainder ‹R∆t(q, p) grows at most polynomially in (q, p) uniformly in ∆t. A simple computation
shows that

G =

(
∇pH2(q, p)

−∇qH2(q, p)

)
,

with H2 defined in (3.35). Note that for the standard kinetic energy Ustd, this expression reduces to the one
derived in [52, 116].

From the error estimate (3.37), we compute

H(Φ∆t(q, p))−H(q, p) = H(φ∆t(q, p))−H(q, p) +∆t3G(q, p)∇H(q, p) +∆t4“R∆t(q, p)
= −∆t3LHamH2(q, p) +∆t4“R∆t(q, p),

where the remainder “R∆t(q, p) grows at most polynomially in (q, p) uniformly in∆t. This allows to identify
ξ = −LHamH2 as the leading order term of the energy variation over one step. In order to compute the
expected rejection rate, we rely on the inequality

x+ −
x2

+

2
6 1−min

Ä
1, e−x

ä
6 x+, x+ = max(0, x).

This implies that
0 6 AHam

∆t (qn, pn) = ∆t3ξ+ (qn, pn) +∆t4R∆t(q
n, pn) , (3.38)

where the remainder R∆t grows at most polynomially in (q, p) uniformly in ∆t, which concludes the proof.

As a corollary of the estimates (3.34) on the rejection rate and the consistency result (3.37) for the scheme
without rejections, we can obtain weak-type expansions for the evolution operator
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P̃Ham
∆t ϕ(q, p) = EU

î
ΨHam
∆t (q, p,U)

ó
= ϕ (Φ∆t(q, p)) +

Ä
1−AHam

∆t (q, p)
ä (
ϕ(q,−p)− ϕ(Φ∆t(q, p))

)
.

Since AHam
∆t (q, p) ∈ [0, 1] and Φ∆t(q, p) grows at most polynomially in (q, p) uniformly in ∆t, a direct

inspection of the latter expression shows that the operator P̃Ham
∆t maps functions growing at most polyno-

mially into functions growing at most polynomially: for any α ∈ N, there exist α′ ∈ N and Cα > 0 such
that

∀f ∈ L∞Kα ,
∥∥∥P̃Ham

∆t f
∥∥∥
L∞Kα

6 Cα‖f‖L∞Kα′
. (3.39)

In order to understand the behavior of the evolution operator for small ∆t, we first note that, for instance by
the techniques reviewed in [78, Section 4.3], it can be shown that, for any ϕ ∈ S ,

ϕ (Φ∆t(q, p)) = ϕ+∆tLHamϕ+
∆t2

2
L2

Hamϕ+∆t3RVerlet
∆t ϕ,

where RVerlet
∆t ϕ grows at most polynomially in (q, p) uniformly in ∆t. Therefore, by (3.38),

P̃Ham
∆t ϕ = ϕ+∆tLHamϕ+

∆t2

2
L2

Hamϕ+∆t3RHam
∆t ϕ, (3.40)

where the remainder

RHam
∆t ϕ(q, p) =

Ä
1−AHam

∆t (q, p)
ä (
ϕ(q,−p)− ϕ(Φ∆t(q, p))

)
+RVerlet

∆t ϕ(q, p).

grows at most polynomially in (q, p) uniformly in ∆t.

3.3.2 Discretization of the fluctuation/dissipation

In order to construct a GHMC scheme for (2.4), we need to generate momenta distributed according to

κ(dp) = Z−1
κ e−βU(p) dp, (3.41)

which are then used as initial conditions in the Hamiltonian part of the scheme. This can be achieved through
a discretization of the fluctuation-dissipation, corrected by a Metropolis procedure.

We use here a scheme proposed in [45] for the elementary dynamics (3.2). The proposal function is given
by

p̃n+1 = ΦFD
∆t (pn, Gn) = pn − γ∇U

Ç
pn +

1

2

 
2γ∆t

β
Gn
å
∆t+

 
2γ∆t

β
Gn , (3.42)

where (Gn)n>0 is a sequence of i.i.d. standard d-dimensional Gaussian random variables. It seems that the
computation of the probability density of going from a given momentum p to a new one p′ is difficult since
ΦFD
∆t (p,G) depends nonlinearly onG. It turns out however that the proposal (3.42) can itself be interpreted as

the output of some one-step HMC scheme, starting from a random conjugate variable Rn := Gn/
√
β ∈ Rd
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and for an effective timestep h =
√

2γ∆t:
pn+1/2 = pn +Rn

h

2
,

Rn+1 = Rn −∇U(pn+1/2)h,

p̃n+1 = pn+1/2 +Rn+1h

2
.

(3.43)

The Hamiltonian dynamics which is discretized by this scheme is the one associated with the energy

E(p,R) = U(p) +
1

2
R2.

Therefore, the acceptance rule for the proposal (3.42) is

AFD
∆t (pn, Gn) = min

(
1, exp

(
−β
[
E
Ä
p̃n+1, Rn+1

ä
− E(pn, Rn)

]))
.

In summary, the new momentum is therefore given by

pn+1 = ΨFD
∆t (pn, Gn,Un) = pn + 1{Un6AFD

∆t (pn,Gn)}
Ä
ΦFD
∆t (pn, Gn)− pn

ä
. (3.44)

For the same reason as in Remark 3.1, the efficiency of the Metropolization procedure of the fluctua-
tion/dissipation does not degrade as the dimension increases in the case when the kinetic energy is a sum of
individual contributions:

U(p) =
d∑
i=1

u(pi).

In this case, the dynamics in each component can indeed be Metropolized independently of the other com-
ponents.

In [45], the properties of the scheme (3.42) were studied for compact spaces. It is however possible to
adapt some of the results obtained in this work when U(p) and all its derivatives grow at most polynomially,
and the marginal κ defined in (3.41) admits moments of all orders. In this case, the rejection rate scales
as ∆t3/2 (which in fact can also be obtained directly from Lemma 3.3 for the effective timestep h =
√

2γ∆t). Moreover, since ΦFD
∆t (p,G) grows at most polynomially in (p,G) uniformly in ∆t, the evolution

operator
P̃FD
∆t ϕ(p) = EU ,G

î
ϕ
Ä
ΨFD
∆t (p,G,U)

äó
= EG

î
AFD
∆t (p,G)ϕ

Ä
ΦFD
∆t (p,G)

äó
+
Ä
1− EG

î
AFD
∆t (p,G)

óä
ϕ(p),

maps functions growing at most polynomially into functions growing at most polynomially: for any α ∈ N,
there exist α′ ∈ N and Cα > 0 such that

∀f ∈ L∞Kα ,
∥∥∥P̃FD

∆t f
∥∥∥
L∞Kα

6 Cα‖f‖L∞Kα′
. (3.45)
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Finally, the following weak-type expansion holds true by [45, Lemma 3]: for ϕ ∈ S ,

P̃FD
∆t ϕ = ϕ+∆tLFDϕ+

∆t2

2
L2

FDϕ+∆t5/2RFD
∆t ϕ, (3.46)

where the remainder RFD
∆t ϕ grows at most polynomially in (q, p) uniformly in ∆t.

3.3.3 Complete Generalized Hybrid Monte-Carlo scheme

The complete scheme for the metropolized Langevin dynamics with general kinetic energy is obtained by
concatenating the updates (3.33) and (3.44). Depending on whether Lie or Strang splittings are considered,
and also on the order in which the operations are performed, several schemes can be considered. For instance,
the scheme characterized by the evolution operator PGHMC

∆t = PFD
∆t P

Ham
∆t corresponds to first updating the

momenta with (3.44), and then updating both positions and momenta according to (3.33).
All such splitting schemes preserve the invariant measure µ by construction. They are also all of weak

order at least 1. A second weak order accuracy can however be obtained for Strang splittings, as made
precise in the following lemma.

Lemma 3.4. Consider PGHMC
∆t = P̃FD

∆t/2P̃
Ham
∆t P̃FD

∆t/2 or PGHMC
∆t = P̃Ham

∆t/2 P̃
FD
∆t P̃

Ham
∆t/2 . Then, for any ϕ ∈ S ,

there exist ∆t∗,K, α > 0 such that

PGHMC
∆t ϕ = ϕ+∆tLϕ+

∆t2

2
L2ϕ+∆t5/2r∆t,ϕ, (3.47)

where sup0<∆t6∆t∗ ‖r∆t,ϕ‖L∞Kα 6 K.

Proof. This result is a direct consequence of the estimates (3.40)-(3.46). We however sketch the proof for
completeness. Fix ϕ ∈ S . In view of (3.46),

P̃FD
∆t/2P̃

Ham
∆t P̃FD

∆t/2ϕ = P̃FD
∆t/2P̃

Ham
∆t ϕ̃+∆t5/2P̃FD

∆t/2P̃
Ham
∆t RFD

∆t ϕ,

where

ϕ̃ =

Ç
Id +

∆t

2
LFD +

∆t2

8
L2

FD

å
ϕ ∈ S .

The remainder P̃FD
∆t/2P̃

Ham
∆t RFD

∆t ϕ grows at most polynomially in (q, p) uniformly in ∆t by (3.39)- (3.45).
We next use (3.40) to write

P̃FD
∆t/2P̃

Ham
∆t ϕ̃ = P̃FD

∆t/2ϕ̂+∆t3P̃FD
∆t/2R

Ham
∆t ϕ̃,

where

ϕ̂ =

Ç
Id +∆tLHam +

∆t2

2
L2

Ham

åÇ
Id +

∆t

2
LFD +

∆t2

8
L2

FD

å
ϕ ∈ S .
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The remainder P̃FD
∆t/2R

Ham
∆t ϕ̃ grows at most polynomially in (q, p) uniformly in ∆t by (3.45). By applying

again (3.46), we finally obtain that

P̃FD
∆t/2P̃

Ham
∆t P̃FD

∆t/2ϕ = ∆t5/2R∆t,ϕ

+

Ç
Id +

∆t

2
LFD +

∆t2

8
L2

FD

åÇ
Id +∆tLHam +

∆t2

2
L2

Ham

åÇ
Id +

∆t

2
LFD +

∆t2

8
L2

FD

å
ϕ,

where the remainderR∆t,ϕ grows at most polynomially in (q, p) uniformly in∆t. The conclusion follows by
expanding the last term on the right-hand side, grouping together terms of order ∆t and ∆t2, and gathering
the higher order terms in the remainder.

As corollary of the weak error expansion (3.47), error estimates on dynamical properties such as integra-
ted correlation functions can be deduced with the techniques from [78] provided an exponential convergence
of (PGHMC

∆t )nϕ towards Eµ(ϕ) is proved in the spaces L∞Kα , with a rate depending on the physical time n∆t,
uniformly in∆t. A typical way to obtain such estimates is to establish a Lyapunov condition for the functions
Kα and a minorization condition on a compact space, in order to apply the results from [89, 54]. Although
we were able to prove a minorization condition in the case when U −Ustd is bounded and the position space
D is compact (see Section 3.5.3), we were not able to establish a Lyapunov condition (see Section 3.5.4).
The problem is that, even for compact position spaces and standard, quadratic kinetic energies, the rejection
rate of the fluctuation/dissipation part of the scheme degenerates as |p| → +∞. Such difficulties were al-
ready encountered in the study of Metropolized Langevin-type algorithms on unbounded spaces, where the
problem was taken care of by an appropriate truncation of the accessible space [22].

3.4 Adaptively restrained Langevin dynamics

The aim of this section is to devise better kinetic energy functions for the AR-Langevin dynamics, allowing
for larger timesteps in the simulations. In Section 3.4.1, for ease of reading, we recall the kinetic energy
function used in the original AR-Langevin dynamics that we have introduced in Section 1.5 and we also
propose an alternative kinetic energy function. The relevance of this alternative energy function is studied
in Section 3.4.2, where we use the rejection rates of the GHMC algorithm to quantify the stability of the
schemes under consideration. In essence, we fix an admissible rejection rate, and find the largest timestep
for which the rejection is lower or equal to this tolerance.

3.4.1 Kinetic energy functions for AR Langevin

In AR Langevin, the standard kinetic energy is replaced by a kinetic energy which vanishes for small values
of momenta and matches the standard kinetic energy for sufficiently large values of momenta. The transition
between these two regions is made in the original model [9] by an interpolation spline sorg which ensures the
regularity of the transition on the kinetic energy itself. More precisely, introducing two energy parameters
0 < emin < emax,
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Uorg(p) =
N∑
i=1

u(pi) where u(pi) =



0 for
p2
i

2mi
6 emin,

sorg

Ç
p2
i

2mi

å
for

p2
i

2mi
∈ [emin, emax] ,

p2
i

2mi
for

p2
i

2mi
> emax.

(3.48)

The function sorg is such that x 7→ sorg(x)1x∈[emin,emax] + x1x>emax is C2. The original AR-Langevin
kinetic energy was motivated by some physical interpretation in terms of momentum-dependent masses.
One unpleasant feature of the definition (3.48) is that the derivatives∇U which appear in the dynamics (2.4)
are typically large at the transition points (see Figure 3.3b). Since the dynamics is determined by∇U , a more
satisfactory approach seems to interpolate the kinetic force ∇U between 0 in the region of small momenta
and M−1p in the region of large momenta. We introduce to this end a second spline function snew and
define, for two velocity parameters 0 < emin < emax,

Unew(p) =
d∑
i=1

u(pi) where u(pi) =



Seminemax for
|pi|
mi

6 emin,

snew (pi) for
|pi|
mi
∈ [emin, emax] ,

p2
i

2mi
for

|pi|
mi

> emax

(3.49)

where Seminemax is a constant ensuring the continuity of the kinetic energy. Figure 3.3a represents the al-
ternative kinetic energy (3.49) as a function of the momenta for various choices of the parameters. Fi-
gure 3.3b compares the derivatives of the original and new kinetic energies. Note that the alternative ki-
netic energy (3.49) leads to a smaller maximal value of the kinetic force ∇U than the original AR kinetic
energy (3.48). This is also true for higher order derivatives of U .

It is difficult to directly compare the canonical distributions of momenta associated with Uorg and Unew.
For instance, it is not possible in general to ensure that these two distributions coincide for small and large
momenta, because of the normalization constant in the probability distribution. In the sequel, we consider
emin = mie

2
min/2 and emax = mie

2
max/2 for the ith particle, in order to have a constant kinetic energy

(resp. a standard kinetic energy) in the same energy intervals.

3.4.2 Determining the best kinetic energy function

Since the AR-kinetic energy in general has derivatives larger than the ones of the standard kinetic energy,
the timestep should be reduced in order to preserve the stability of the numerical method. We characterize in
this section the possible reduction of the timestep due to the modification of the kinetic energy. As described
in Section 3.3.3, we metropolize the AR-Langevin dynamics by first integrating the Hamiltonian with (3.33)
and then the fluctuation-dissipation part with (3.44). This corresponds to the evolution operator PGHMC

∆t =

P̃Ham
∆t P̃FD

∆t .
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(a) The AR-kinetic energy function (3.49) for various

choice of parameters emin and emax.

(b) Gradient interpolation of the kinetic energy (Unew) ver-

sus function interpolation (Uorg).

Fig. 3.3: Comparison between the AR-kinetic energy function (3.49) and the original AR kinetic
energy (3.48).

Recall that the average rejection rate of the Hamiltonian and fluctuation/dissipation parts, namely (with
expectations over (q, p) ∼ µ and over the random variables G,U used in the updates)

RHam(∆t) := E
Ä
1−AHam

∆t

ä
, RFD(∆t) := E

î
1−AFD

∆t (Ψ(p,G,U))
ó
,

respectively scale as ∆t3 and ∆t3/2 (see Lemma 3.3). We consider three kinds of AR-kinetic energies:
the original function interpolation (3.48), and two interpolation functions (3.49) based on the gradient. More
precisely, we either choose a linear spline or a C2 spline by a polynomial of order 5 on the gradient∇U . The
corresponding kinetic energies are respectively C2 and C3. The aim is to check the scaling of the rejection
rates in terms of powers of ∆t, and to estimates the prefactors for the various kinetic energies.

We consider a system of 64 particles of mass mi = 1 in a three dimensional periodic box with particle
density ρ = 0.56. The particles interact by a purely repulsive WCA pair potential, which is a truncated
Lennard-Jones potential [115]:

VWCA(r) =

4εLJ

ñÅ
σLJ

r

ã12

−
Å
σLJ

r

ã6
ô

+ εLJ if r 6 r0,

0 if r > r0,

where r denotes the distance between two particles, εLJ and σLJ are two positive parameters and r0 =

21/6σLJ. In our simulations the parameters of the potential are set to εLJ = 1, σLJ = 1, while the parameters
of the AR-Langevin dynamics (2.4) are set to γ = 1, β = 1.

Figure 3.4 shows the average rejection rates for the AR parameters emax = 2 and emin = 1 for Unew,
as well as emax = 2 and emin = 0.5 for Uorg. This choice of parameters corresponds to ∼ 30% per-
cent of particles which are frozen for both AR-kinetic energies, i.e. which are in the region where ∇U
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(a) Hamiltonian part (b) Fluctuation-dissipation part.

Fig. 3.4: Average rejection rates of GHMC as a function of the timestep for various kinetic energies (see
text). The scaling of the rejection rates corresponds to the predicted orders, i.e. ∆t3 for the Hamiltonian part
and ∆t3/2 for the fluctuation-dissipation part.

vanishes (see [120] for a thorough discussion on the link between the percentage of frozen particles and
the algorithmic speed-up). Note that the predicted scalings of the rejection rates are recovered in all ca-
ses. The prefactor is however larger for the kinetic energy Uorg from [9] than for Unew, especially for the
fluctuation-dissipation part. The prefactor is also slightly smaller for the kinetic energy based on the gradient
interpolation with a linear function, which is fortunate since ∇U has a lower computational cost than for
interpolations based on higher order splines.

In order to quantify the dependence of the prefactors in the rejection rate on the concrete choice of
the parameters in the kinetic energy function, we compute the relative deviation of the prefactor from the
reference provided by simulations with the standard kinetic energy. Figure 3.5 plots for various values of the
parameter emin (for fixed emax = 2) the relative deviation between the prefactors inferred from simulation
results such as the ones presented in Figure 3.4. To this end, we perform a least-square fit in a log-log scale
to determine the prefactor C such that the rejection rate is approximately equal to C∆tα (with α = 3 for
the Hamiltonian part, and α = 3/2 for the fluctuation/dissipation). For each value of the parameters, we
compute the relative variation of the prefactor with respect to the reference prefactor Cstd provided by the
rejection rate obtained for the standard kinetic energy:

δC =
C

Cstd
− 1.

The relative variation δC depends on the parameters emin, emax (or emin, emax, depending on the context). As
emin → emax, the derivatives of the kinetic energy function have larger absolute values (recall Figure 3.3b).
The dynamics is therefore less stable, which translates into larger values of the prefactor in the rejection rate
as emin increases (see Figure 3.5). Moreover, the relative increase of the prefactor is larger for Uorg than for
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Fig. 3.5: Relative deviation of the prefactor in the scaling of the average rejection for the Hamiltonian part
as a function of the timestep ∆t. The data is extracted from the results presented in Figure 3.4a.

Unew. In conclusion, the new definition of the AR-kinetic energy improves the numerical properties of the
method, as demonstrated by a smaller prefactor in the rejection rate of the GHMC scheme.

We are now in a position to determine the variations in the admissible timesteps as a function of the
kinetic energies. To this end, we fix a rejection rate for the Hamiltonian part since this subdynamics mixes
information in the positions and momenta, and involves the forces−∇V (q) which are often the cause of the
stability limitations. Similar results are however obtained for the fluctuation/dissipation part, see Figure 3.7.

In our tests, we set the target rejection rate to two values:RHam(∆t) ∈ {0.001, 0.5}. Figure 3.6 presents
the timesteps ∆t achieving the desired rejection rates (normalized by ∆tstd, the timestep corresponding to
the given rejection rate for the standard quadratic energy), for the kinetic energy Unew (with an interpolation
spline such that Unew ∈ C3) and for various values of the parameters. We observe that the timestep should
be reduced with respect to the standard case when the transition becomes somewhat sharper, i.e. for δ
approaching 1. Surprisingly, we observe that for smaller values of δ, the timestep can in fact be increased
compared to standard Langevin dynamics.

3.5 Some additional proofs

3.5.1 Proof of Lemma 3.2

We follow the proof from [78] which is based on a Lyapunov condition which is uniform in the timestep and
a minorization condition [85]. We start by proving a Lyapunov condition, i.e. for any s∗ ∈ N there exists
∆t > 0 small enough and constants Ca, Cb > 0 such that, for any 1 6 s 6 s∗,
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(a) Rejection rate fixed at 0.001 (b) Rejection rate fixed at 0.5

Fig. 3.6: Timesteps normalized by ∆tstd (the time step corresponding to the same rejection rate for the
standard kinetic energy) corresponding to a fixed rejection rate in the Hamiltonian part for various values of
δ = vmin/vmax and the kinetic energy (3.49).

(a) Rejection rate fixed at 0.001 (b) Rejection rate fixed at 0.5

Fig. 3.7: Timesteps corresponding to a fixed rejection rate in the fluctuation-dissipation part for various
values of δ = vmin/vmax and the kinetic energy (3.49).

P∆tKs 6 e−Ca∆tKs + Cb∆t.

Recall that Z is such that there exists Z > 0 such that ‖Z‖L∞ 6 Z and that the standard dynamics
corresponds to Ustd(p) = pTM−1p. We define m > 0 such that m 6M 6 m−1. We compute

E
[Ä
pn+1

ä2
]
6 α2(pn)2 + 2αγZ∆tpn + γ2Z 2∆t2 +

1

β
Tr
îÄ

1− α2
∆t

ä
M2

ó
6
Ä
εγ∆t+ α2

ä
(pn)2 +

Å
γ∆t

ε
α2 + γ2∆t2

ã
Z 2 +

1− α2
∆t

βm2
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where we used the Young inequality. The choice ε = m ensures, for ∆t sufficiently small, thatÄ
εγ∆t+ e−2mγ∆t

ä
6 e−Ca∆t, with Ca =

γm

2
.

Moreover, there exists Cb > 0 such thatÅ
γ∆t

m
α2 + γ2∆t2

ã
Z 2 +

1− α2
∆t

βm2
6 Cb∆t.

for Cb > 0. Hence, there exists Ca ∈ (0, 1) and Cb > 0 such that

P∆tKs(pn+1) = E
î
Ks(pn+1) | Fn

ó
6 e−Ca∆tKs + Cb∆t. (3.50)

Following the same approach as in [78], the corresponding estimates can be obtained for a general power
s > 2. We also omit the minorization condition, since it can be obtained by combining the proof for the
minorization condition in [78] by using the same approach as in proof of Lemma 2.1, where the minorizing
measure is constructed by comparing the modified dynamics with the standard dynamics with zero forces.
The key point here is that the additional perturbations ∆t

∑n
i=1 Z(pi) (for n∆t 6 T ) are bounded (see

Section 3.5.2.1).

3.5.2 Ergodicity of non-metropolized schemes

We prove the ergodicity of a scheme which is a proposal for the GHMC scheme, because we use it in the
proof for the metropolized scheme. More precisely, we consider

pn+1/2 = pn −∇V (qn)
∆t

2
,

q̃n+1 = qn +∇U(pn+1/2)∆t,

p̃n+1 = pn+1/2 −∇V (q̃n+1)
∆t

2
.

pn+1 = p̃n+1 − γ∇U
Ç
p̃n+1 +

1

2

 
2γ∆t

β
Gn
å
∆t+

 
2γ∆t

β
Gn .

(3.51)

The evolution operator of this scheme reads

P∆t = PFD
∆t P

Ham
∆t

where PFD
∆t is the evolution operator of the scheme (3.42) and PHam

∆t corresponds to (3.31). This scheme has
order 1 due to the first order scheme used for an integration of the fluctuation-dissipation part. However, the
proof can be easily extended in order to prove the ergodicity of a second order scheme such as (3.22), where
the fluctuation-dissipation part is integrated by, for instance, (3.17).
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3.5.2.1 Minorization condition

Recall the definition of the perturbation function Z in (3.7). The position and momenta updates obtained by
the scheme given by (3.42) and (3.31) can be written as

q̃n+1 = qn +
pn

m
∆t+ Z(p̃n+1)∆t− 1

2
∇V (qn)∆t

= q0 +
∆t

m

n∑
k=0

pn +∆t
n∑
k=0

Z(p̃k+1)− 1

2
∆t

n∑
k=0

∇V (qk)

and

p̃n+1 =

Å
1− γ∆t

m

ã
pn −∆t

Å
1− γ∆t

m

ã
∇V

Ä
qn+1

ä
− γ∆tZ(p̂n+1) +

1

2

 
2γ∆t

β
(1 + α)Gn

= αnp0 +∆t
n∑
k=0

αn−k∇V (qk)− γ∆t
n∑
k=0

αn−1−kZ(p̂k) +
1

2

 
2γ∆t

β
(1 + α)

n∑
k=0

αn−1−kGk,

where we introduced the notation α := 1− γ∆t
m . We write

p̃n = Pn + G n
p , q̃n = Dn + G n

q , (3.52)

with

Pn := αnp0 +∆t
n−1∑
k=0

αn−k∇V (qk)− γ∆t
n−1∑
k=0

αn−1−kZ(p̂k),

Dn := q0 +
∆t

m

n−1∑
k=0

Pk +∆t
n−1∑
k=0

Z(p̃k+1)− 1

2
∆t

n−1∑
k=0

∇V (qk),

and the two centered Gaussian variables

G n
p :=

1

2

 
2γ∆t

β
(1 + α)

n−1∑
k=0

αn−1−kGk,

G n
q :=

∆t

m

n−1∑
k=1

G k
p .

(3.53)

Note that Pn and Dn are uniformly bounded.
The variance of the centered Gaussian vector (Gq,Gp) reads

Vn = EGR
î
(Gq,Gp)

T (Gq,Gp)
ó

=

(
Vnqq Vnqp
Vnpq Vnpp

)
, (3.54)

where
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Vnqq = ξ2∆t
2

m2

n−2∑
k=0

Ñ
k∑
j=0

αj

é2

Vnqp = ξ2∆t

m

1

1− α

n−1∑
k=1

αk − α2k−2

Vnpp = ξ2
n−1∑
k=0

α2(n−1−k),

with ξ := 1
2

√
2γ∆t
β (1 + α). A simple computation allows to verify that for a fixed T > 0 and n = bT/∆tc,

the limit ∆t → 0 corresponds to the variance Vcont of the limiting continuous process, which is given by
(see [78]) 

Vcont
qq =

1

βγ

Å
2T − M

γ

Ä
3− 4α̃T + α̃2

T

äã
,

Vcont
qp =

M

γβ
(1− α̃T )2 ,

Vcont
pp =

M

β

Ä
1− α̃2

T

ä
,

where we denote α̃T := e−
γT
m .

There exists ∆t∗ > 0 such that for any 0 < ∆t 6 ∆t∗ and n = bT/∆tc the variance Vn in (3.54)
satisfies Vn > Vcont/2 > 0. By following the approach from [78] that there exists a probability measure ν
and κ > 0, such that for any Borel set A ⊂ E ,

P ((q̃n, p̃n) ∈ A|
∣∣∣p0
∣∣∣ 6 p∗

)
= P

(
(G n
q ,G

n
p ) ∈

Ä
Aq −Dn, Anp −Pn

ä ∣∣∣∣∣∣p0
∣∣∣ 6 p∗

)
> κν(A). (3.55)

3.5.2.2 Lyapunov condition

We prove the Lyapunov condition for the fluctuation-dissipation part: there exists Ca ∈ (0, 1) and c > 0

such that
P∆tKs(pn+1) = E

î
Ks(pn+1) | Fn

ó
6 e−Ca∆tKs + c∆t. (3.56)

We again show the case s = 2 only, since the generalization to s > 2 follows by the same arguments as
in [78].

We write

E
(Ä
ΦFD
∆t (p,G)

ä2
)
6

ñÅ
1− γ∆t

m

ã2

+ ε∆t

ô
p2 +

2γ∆t

β
+ γ2Z 2∆t

Å
9

4ε
+∆t

ã
.

For the Hamiltonian part, we write

ΦHam
∆t (q, p) = p−∇V (q)

∆t

2
−∇V

Å
q +

ÅÅ
p− 1

2
∇V (q)∆t

ã
1

m
+ Z

Å
p− 1

2
∇V (q)∆t

ãã
∆t

ã
∆t

2

and we obtain
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Ä
ΦHam
∆t (qn, pn)

ä2
6 (1 + ε̃∆t)(pn)2 + ‖∇V ‖2L∞ ∆t

2 + ‖∇V ‖2L∞ ∆tε̃
−1

6 (1 + ε̃∆t)(pn)2 + CHam∆t.

We conclude that the Lyapunov condition is satisfied for (3.51) since we find ε, ε̃ > 0 such that (1 +

ε̃∆t)e−Ca∆t 6 e−C̃a∆t with C̃a > 0 which gives

PHam
∆t PFD

∆t K2 6 (1 + ε̃∆t)PFD
∆t K2 + CHam∆t 6 (1 + ε̃∆t)e−Ca∆tK2 + CHam∆t 6 e−C̃a∆tK2 + CHam∆t

for K2(p) := 1 + |p|2.

3.5.3 Minorization condition for the GHMC scheme

Recall that the position space D is compact. For the metropolized scheme, we rely on the minorization con-
dition obtained for the un-metropolized scheme in Section 3.5.2.1. More precisely, starting from

∣∣p0
∣∣ 6 p∗,

the probability that a metropolized trajectory reaches the set A in n steps is bounded from below by requi-
ring that no rejection occurs (hence the trajectory is the same as the one obtained without metropolization),
and that the momenta remain in a compact set (which allows to uniformly bound the rejection rate). We
introduce, for R > p∗,

BR =
{
p ∈ Rd

∣∣∣ |p| 6 R
}
,

and denote by Nn the random variable counting the number of rejections until the nth step (both in the
fluctuation/dissipation part and in the Hamiltonian part). For a given measurable set A and

∣∣p0
∣∣ 6 p∗,

we therefore consider a lower bound on the probability P
(
(qn, pn) ∈ A |

∣∣p0
∣∣ 6 p∗

)
corresponding to the

additional conditions Nn = 0 and pk ∈ BR at all steps 0 6 k 6 n:

P
(
(qn, pn) ∈ A |

∣∣∣p0
∣∣∣ 6 p∗

)
> P

(
(qn, pn) ∈ A, Nn = 0, (p0, . . . , pn) ∈ Bn+1

R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗

)
= P

(
(q̃n, p̃n) ∈ A, Nn = 0, (p̃0, . . . , p̃n) ∈ Bn+1

R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗

)
= P

(
(q̃n, p̃n) ∈ A, (p̃0, . . . , p̃n) ∈ Bn+1

R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗

)
P
(
Nn = 0

∣∣∣(q̃n, p̃n) ∈ A, (p̃0, . . . , p̃n) ∈ Bn+1
R ,

∣∣∣p0
∣∣∣ 6 p∗

)
.

(3.57)
The last term can be estimated by using the expression of the rejection rate and the fact that the variables
remain in a compact set: there exists CR ∈ R+ such that

0 6 1− max
(q̃,p̃)∈D×BR

AFD(q̃, p̃) 6 CFD
R ∆t3/2.

and CHam
R ∈ R+ such that

0 6 1− max
(q̃,p̃)∈D×BR

AHam(q̃, p̃) 6 CHam
R ∆t3.
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Then,

P
(
Nn = 0

∣∣∣(q̃n, p̃n) ∈ A, (p̃0, . . . , p̃n) ∈ Bn+1
R ,

∣∣∣p0
∣∣∣ 6 p∗

)
>
Ä
1− CFD

R ∆t3/2
än Ä

1− CHam
R ∆t3

än
.

(3.58)
In addition,

P
(

(q̃n, p̃n) ∈ A, (p̃0, . . . , p̃n) ∈ Bn+1
R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗

)
= P ((q̃n, p̃n) ∈ A |

∣∣∣p0
∣∣∣ 6 p∗

)
P
{

(p̃0, . . . , p̃n) ∈ Bn+1
R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗ , (q̃n, p̃n) ∈ A

}
.

The first probability is bounded from below by κν(A) given by (3.55) using the minorization condition for
the un-metropolized dynamics (see (3.55)). Let us prove that the second probability is very close to 1 when
A ⊂ D ×BR/4 (for R large), which will give us a minorization condition for the probability measure

ν̃(E) =
ν
(
E ∩ (D ×BR/4)

)
ν(D ×BR/4)

,

which has support in D ×BR/4.
The first task is to rewrite the probability stated for p̃k in terms of the underlying Gaussian increments.

Due to (3.52) we can write

p̃n+1 = Pn+1 + αnMn, Mn =
1

2

 
2γ∆t

β
(1 + α)α

n∑
k=0

Gk

αk+1
,

with Pn+1 bounded by p∗+(n+1)∆t(γZ +‖∇V ‖L∞). The sequenceMn+1 is a sequence of martingales
with independent increments. It is then possible to apply the Kolmogorov inequality [19, Theorem 22.4]
which states that for X1, . . . , Xn are independent with zero mean and finite variances, the maxima of partial
sums satisfy the following inequality, for α > 0,

P
ï

max
16k6n

|Sk| > α

ò
6

1

α2
Var [Sn] .

In order to do so, we write

P
Ä
(p̃0, . . . , p̃n) ∈ Bn+1

R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗ , (q̃n, p̃n) ∈ A)

= P
{Ä
P 1 + αM1, . . . , P

n + αnMn

ä
∈ Bn+1

R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗ , (q̃n, p̃n) ∈ A

}
.

We now consider 0 6 n 6 T/∆t, and choose R > 0 sufficiently large so that p∗ + (γZ + ‖∇V ‖L∞)T 6

R/4. Note also that αn 6 1. The condition ∣∣∣P k + αkMk

∣∣∣ > R
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for some k ∈ {1, . . . , n} then implies |Mk| > 3R/4, so that

P
(

(p̃0, . . . , p̃n) ∈ Bn+1
R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗, (q̃n, p̃n) ∈ A

)
= 1− P

(
(p̃0, . . . , p̃n) 6∈ Bn+1

R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗, (q̃n, p̃n) ∈ A

)
= 1− P

Å
max

k=1,...,n

∣∣∣p̃k∣∣∣ > R

∣∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗, (q̃n, p̃n) ∈ A

ã
> 1− P

ß
max

k=1,...,n
|Mk| >

3R

4

∣∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗, (q̃n, p̃n) ∈ A

™
.

Since p̃n ∈ A ⊂ D ×BR/4 and hence |Mn| 6 α−n(|Pn|+R/4) 6 R/2, we see that

sup
k=1,...,n

|Mk −Mn| >
R

4
,

which can be rephrased as

sup
k=1,...,n

∣∣∣∣∣∣
n∑

j=k+1

Gj

αj+1

∣∣∣∣∣∣ > R

4(1 + α)α

 
2β

γ∆t
.

Since the above sum is a sum of independent increment of mean 0, Kolmogorov inequality shows that there
exists a constant CT > 0 such that

P

 sup
k=1,...,n

∣∣∣∣∣∣
n∑

j=k+1

Gj

αj+1

∣∣∣∣∣∣ > R

4(1 + α)α

 
2β

γ∆t

 6
CT
R2

.

Since this estimate holds irrespectively of the set A ⊂ D ×BR/4, we finally obtain

P
Ä
(p̃0, . . . , p̃n) ∈ Bn+1

R

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗, (q̃n, p̃n) ∈ A) > 1− CT

R2
.

To conclude the proof, we first choose R > 0 sufficiently large (such that CT /R2 6 1/2). This determi-
nes the constants CFD

R and CHam
R . Gathering all the estimates, and for A ⊂ D ×BR/4, it holds

P
(Ä
qdT/∆te, pdT/∆te) ∈ A

∣∣∣ ∣∣∣p0
∣∣∣ 6 p∗

)
>

1

2
P
(

(q̃dT/∆te, p̃dT/∆te) ∈ A
∣∣∣ ∣∣∣p0

∣∣∣ 6 p∗
)

(1− CFD
R ∆t3/2)dT/∆te(1− CHam

R ∆t3)dT/∆te.

The latter two factors converge to 1 as ∆t→ 0, so they remain uniformly positive for ∆t sufficiently small.
We conclude by obtaining a minorization condition as in (3.55).

3.5.4 Why proving a Lyapunov condition for the Metropolized scheme is difficult

In this section we show why the proof for the Lyapunov condition fails for the Metropolized scheme for the
fluctuation-dissipation equation with proposal (3.44). Of course, the same issue appears also in the complete
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Metropolized scheme with generator PGHMC
∆t introduced in Section 3.3.3. More precisely, we show that the

rejection rate degenerates as |p| → ∞ for the standard kinetic energy, i.e. the perturbation function Z ≡ 0.
We would like to obtain a Lyapunov condition as in (3.56). We recall that for s > 0

PFD
∆t Ks(q, p) = 1 + EUn,Gn

î
(pn+1)s

ó
(3.59)

with pn+1 given by (3.44). The expectation with respect to Un can be easily computed. Note that the propo-
sal (3.42) simplifies for the standard kinetic energy as

ΦFD
∆t (p,G) = (1− δ) p+

 
2mδ

β
(1− δ) G.

where we defined δ := γ∆t
m . The acceptance rule for the proposal (3.42) is

AFD
∆t (p,G) = min (1, exp (−βα∆(p,G))) ,

where the rejection rule is given by

α∆t (p,G) := E
Ä
ΦFD,Verlet
∆t

Ä
p,G/

√
β
ää
− E

Ä
p,G/

√
β
ä

with ΦFD,Verlet
∆t (p,G) defined in (3.43) and E(p,R) = Ustd(p) + 1

2R
2. We next rewrite α∆t as

α∆t (p,G) = − δ
2

2β

Å
1− 1

2
δ

ã
G2 − 1

2

√
2 (1− δ) δ3/2

√
mβ

pG+
δ2

2m
p2

= − δ
2

2β

Å
1− 1

2
δ

ã
(G−G−)(G−G+),

with

G− = −
 

2β

mδ
p, G+ = −

√
2βδm

m (2− δ)
p.

We decompose the rejection rule according to α∆t(p,G) > 0 (which corresponds toG ∈ [G−, G+]) or not :

√
2π EG {min (1, exp (−βα∆t (pn, G)))} =

ˆ G−

−∞
e−g

2/2 dg +

ˆ G+

G−

e−βα∆t(p,g)−g
2/2 dg +

ˆ +∞

G+

e−g
2/2 dg

=
√

2π G (G−) +

ˆ G+

G−

e−βα∆t(p,g)−g
2/2 dg +

√
2π G (G+),

(3.60)
where the error function is bounded by

G (R) =
1√
2π

ˆ ∞
R

e−g
2/2dg 6 Ce−|R|

2/2. (3.61)

In order to compute the middle integral, we rewrite
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α∆t(p,G) +
G2

2
= a (G− b)2 + c

where

a :=
1

2

Ç
1 +

Å
1

2
δ − 1

ã
δ2

β

å
, b :=

 
2β

m

(1− δ) δ3/2

(2β − 2δ2 + δ3)
p

and c := c̃|p|2 with

c̃ =
(2β − δ) δ2

2m (2β − 2δ2 + δ3)
.

When ∆t is sufficiently small, namely δ/2 < β and δ < 1, the constants c̃ and a are positive. Note that

lim
∆t→0

c̃

∆t2
=

1

2

γ2

m3
.

After a change of variables, we transform to a standard Gaussian and compute the middle integral in (3.60):

ˆ G+

G−

e−α∆t(p,g)−g
2/2 dg =

√
2π√
a

e−c̃|p|
2 Ä

G
Ä√

aG− +
√
ab
ä
− G

Ä√
aG+ +

√
ab
ää
.

We bound the error functions by

G
Ä√

aG− +
√
ab
ä
6 C3e−c3(δ) p

2

4 , c3(δ) :=
(2β − δ2)2

(+β − 2δ2 + δ3)δm
=

1

8

βδ

m
+O(δ2)

G
Ä√

aG+ +
√
ab
ä
6 C4e−c4(δ) p

2

4 , c4(δ) :=
δ(2β − 2δ + δ2)2

(2β − 2δ2 + δ3)m(δ − 2)2
=

1

2

β

mδ
+O(δ2),

with C3, C4 > 0. Since for δ sufficiently small and β > δ/2 it holds that c3(δ) > c̃ and c4(δ) > c̃, we obtain
that for some C5 > 0 ˆ G+

G−

e−α∆t(p,g)−g
2/2 dg 6

√
2π√
a

e−C5δ2|p|2 .

Note that
G (G−) 6 C1e−

β
δm

p2
, G (G+) 6 C2e

− δβ

m(2−δ)2
p2

,

for some C1, C2 > 0 and we conclude by estimating (3.60) by

1√
2π

EGA
FD
∆t (p,G) 6

√
2π C1e−

β
δm

p2
+

√
2π√
a

e−C5δ2|p|2 +
√

2π C2e
− δβ

m(2−δ)2
p2

6 C6e−C7δ2|p|2/2,

(3.62)

for C6, C7 > 0. The acceptance rate therefore degenerates as p� 1/∆t.
In order to conclude, we consider (3.59) and we write for a polynomial function f ,

EU ,G(f(pn+1)) = EG(AFD
∆t (pn, Gn)f(Φ∆t(p

n, Gn))) + (1− EG(AFD
∆t (pn, Gn)))f(pn).
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For |p| → +∞, the term f(Φ∆t(p,G)) grows polynomially. However, for |p| → +∞ it holds that
EG(AFD

∆t (p,G)) → 0 exponentially due to estimates (3.62). By similar arguments as above, it follows that
EG(AFD

∆t (p,G)f(Φ∆t(p,G))) → 0 for |p| → ∞. In conclusion, if follows that EU ,G(f(pn+1)) → f(pn)

and hence it is not possible to obtain any Lyapunov condition.
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4

Estimating the speed-up of Adaptively Restrained Langevin Dynamics

Summary. In this chapter, we analyze the influence of the parameters of the Adaptively Restrained Lange-
vin dynamics on the total achievable speed-up. In particular, we estimate both the algorithmic speed-up,
resulting from incremental force updates, and the influence of the change of the dynamics on the asymptotic
variance. This allows us to propose a practical strategy for the parametrization of the method. We validate
these theoretical results by representative numerical experiments.

This work has been submitted in [120].
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In this chapter, we analyze the efficiency of the Adaptively Restrained Langevin dynamics. We study
the gain associated with the reduction of the computational complexity of the force update quantified by an
algorithmic speed-up factor Sa > 1. On the other hand, as we showed in Chapter 2, the asymptotic variance
of time averages σ2

AR given by the Central Limit Theorem, differs from the asymptotic variance σ2
std of the

standard Langevin dynamics, since the dynamics is modified. The actual speed-up of the method in terms
of wall-clock time is therefore an interplay between the algorithmic speed-up and the variances.

Since the method is parametrized by two constants, it is not obvious how to choose these parameters
in order to achieve an optimal speed-up. Of course, the algorithmic speed-up depends on the percentage of
restrained particles. The percentage of restrained particles is a non-linear function of the parameters, hence



it is not trivial how to best choose their values. Our aim in this paper is to propose a strategy for choosing
the parameters of the AR method.

This chapter is organized as follows: in Section 4.1 we give a definition of speed-up and we introduce a
formula for the total speed-up with the AR approach. In the next two sections we analyze how this formula
depends on the parametrization: in Section 4.2 we analyze the computational complexity of the method
and we express the corresponding algorithmic speed-up. This part is followed by Section 4.3, in which we
give a relation between the restraining parameters and the percentage of restrained particles, as well as an
approach for obtaining the linear approximation of the variance with respect to the restraining parameters.
By combining all the necessary parts, we propose a practical strategy for the parametrization of the method
and we illustrate the theoretical results by numerical simulations in Section 4.4.

4.1 Estimating the speed-up

In this section we introduce a framework for the complexity analysis of the AR dynamics in the case of
pair-wise interactions, which are the most common interactions in numerous applications. Note that the
discussion below can be easily generalized to interactions present in classical force-fields. The force acting
on each particle i is a sum of interactions with all other particles.

The information about the state of the particle allows us to lower the computational cost of the computa-
tion of pair-wise interactions between the particles. We consider the potential

V (q) =
N∑
j=1
i 6=j

v(rij)

and the force acting on the particle i which is given by

fi(q) := −∂qiV (q) = −
N∑
j=1
i 6=j

v′(rij)
qi − qj
rij

, rij = |qi − qj | . (4.1)

The change of the force between two time steps only depends on active particles that have moved since
the last time step with respect to this particle. This allows us to avoid the computation of pair-wise inte-
ractions between restrained particles, hence lower the computational complexity. In order to quantify the
computational cost of the force update, we define the force function f : R→ R such that f := v′. Then the
computational cost of the force update is defined as the number of times the force function f is called. The
speed-up of AR dynamics, due to the decreasing of the computational complexity in the force update, with
respect to the non-adaptive method which updates all interactions, defines the algorithmic speed-up. Since
the computational complexity depends on the ratio of restrained particles, which is a quantity that varies at
each time step, we consider averages over the whole simulation. More precisely, we denote by CAR,n the
computational cost of the force update in the AR-method at time step n and by Cstd,n the computational cost
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of a standard, non-adaptive method. We denote byNiter = T/∆t the number of time steps in the simulation.
Then the algorithmic speed-up Sa is the ratio of the average computational cost “Cstd := Eµstd

[Cstd] in the
standard method and the average computational cost “CAR := EµAR [CAR] in the AR method:

Sa :=

limNiter→∞
1

Niter

Niter∑
n=0

Cstd,n

limNiter→∞
1

Niter

Niter∑
n=0

CAR,n

=
“Cstd“CAR

. (4.2)

Note that the computational complexities in both cases are bounded functions of the number of particles
and, due to the ergodicity of the dynamics, which was proved in Chapter 2 the averages in (4.2) almost
surely converge.

However, the important point is the reduction of the error for a given wall-clock duration. We focus here
on the statistical error, which is often the dominant source of errors. In order to express the total speed-up
with respect to the standard method, we need to consider not only the algorithmic speed-up, but also the
modification of the asymptotic variance which depends on the concrete choice of the kinetic energy (see
expression (1.67)). We define the total speed-up Stotal as a ratio of the wall-clock time, which is needed
by using the AR-method in order to achieve some statistical precision, and the wall-clock time needed for
reaching the same precision by the standard method:

Stotal :=
Twlck

std

Twlck
AR

. (4.3)

Recall that, for an observable ϕ, we denoted by σ2
∆t the asymptotic variance of the sampling from the

discretized dynamics and by σ2 the asymptotic variance of the continuous dynamics. From the Central
Limit Theorem, the statistical error at time T is given by

ϕ̂T = Eµ (ϕ) + εTG,

where εT is of order σ√
T

and G ∼ N (0, 1). Hence the number of time steps Niter = T/∆t needed in order
to have a statistical error of order εT is

Niter =
σ2
∆t

ε2
T

.

The corresponding wall-clock time is therefore obtained by considering the average cost “C as

Twlck = Niter
“C .

Taking into account that∆tσ2
∆t ∼ σ2 (for time steps small enough, recall Section 1.3.2.5), the total speed-up

Stotal defined in (4.3) can be expressed as
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Stotal =
“Cstd“CAR

σ2
std,∆t

σ2
AR,∆t

= Sa

σ2
std,∆t

σ2
AR,∆t

≈ Sa
σ2

std

σ2
AR

∆tAR

∆tstd
. (4.4)

The last two terms in (4.4) become equal for small values of ∆t and it is therefore sufficient to study the
variance of the continuous process σ2

std and σ2
AR. As we have already mentioned, the choice of the modified

kinetic energy should not change the stability properties of the standard dynamics. This would otherwise
require us to choose a smaller time step size ∆tAR, which would lead to a smaller total speed-up Stotal.
Unfortunately, this is the case of the kinetic energy defined in [9]. Still, the stability can be significantly
improved by using the kinetic energy given by (3.49) instead. In this case, the stability properties become
comparable to the ones of the standard dynamics (see Chapter 3). We therefore assume in this chapter that
∆tstd = ∆tAR.

The computation in (4.4) shows the trade-off between the algorithmic speed-up and the change in va-
riance. Both the algorithmic speed-up Sa and the AR variance σ2

AR depend on the parameters of the AR
dynamics. As already showed in [9], in some applications, the restraining parameters can be chosen such
that the total speed-up satisfies Stotal > 1. Therefore, there are systems for which this method can be ef-
ficient, even though this might be counter-intuitive since one could suggest that in order to accelerate the
sampling, the system should move “faster” and not be restrained. Note however that the wall-clock duration
of the force update step depends on the implementation and on the complexity of the evaluation of ϕ. Hence,
the same physical model with variance σ2, can have various algorithmic speed-ups Sa. Finally, an interesting
observation is, that due to the separability of the Hamiltonian, the algorithmic speed-up does not depend on
the potential.

4.2 Algorithmic speed-up

The goal of this section is to propose a methodology to analyze the algorithmic speed-up Sa (defined in (4.2))
of AR dynamics as a function of the percentage of restrained particles. We first describe the adaptive algo-
rithm for computing forces, and we estimate the corresponding computational cost. In the last part, we also
consider the effort for updating neighbor lists used for updating of short-ranged interactions and we obtain
an estimation of the algorithmic speed-up per time step.

4.2.1 Description of the AR force update algorithm

For simplicity, we consider a system of N particles where only pair-wise interactions take place. In AR
dynamics, this sum can be split into three kinds of interactions depending on the state of the two interacting
particles: active-active, active-restrained and restrained-restrained. We define the set of indices of active
particles IA and restrained particles IR. Then, sum (4.1) can be re-written as

fi =
∑
j∈IA
j 6=i

fij +
∑
j∈IR
j 6=i

fij . (4.5)
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The force acting on particle i in the next time step n+ 1 can be formally obtained using the old position qn:

fnew
i = fold

i +
Ä
fnew
i − fold

i

ä
, fold

i =
∑
j

fij(q
n), fnew

i =
∑
j

fij(q
n+1) . (4.6)

Since, for the set of restrained particles, positions have not changed since the previous time step, one can
easily see that

∀i ∈ IR,
∑
j∈IR
j 6=i

fnew
ij − fold

ij = 0 .

The computation in (4.6) is therefore reduced to subtracting the old and adding the new active-restrained
and active-active interactions. This simple remark provides in fact a key point for the reduced complexity of
the AR algorithm.

In a standard simulation, when taking into account Newton’s third law fij = −fji, the computational
cost of pair-wise interactions is N(N−1)

2 . The resulting quadratic complexity in the number of particles
is not favorable due to the system size, and therefore neighbor lists are usually introduced (see Section
1.1.1.3). Neighbor lists can be used in systems where forces vanish after a certain cut-off distance, so that
each particle only interacts with a relatively limited number of neighbors. For simplicity, we consider a
homogenous system where we assume that the number of neighbors C of a particle is the same for each
particle. Taking into account that, for each pair (i, j), we may only compute the force fij and deduce fji
thanks to Newton’s third law, the number of interactions reduces to NC

2 .
We take as an example the first order discretization scheme (3.5) which can be formalized in the following

way:

Input: Initial conditions p0, q0

Output: pn, qn

for each time step and each particle do
B: Update momenta ;
A: Update positions ;

Update neighbor-lists ;
Update forces ;

O: Update momenta in fluctuation-dissipation part (FD) ;

end
Algorithm 1: Algorithm for (3.5) in the case of the standard dynamics.

In AR dynamics, the information about which particles are going to move after the position update is
already available after updating the momenta B, since the kinetic energy will not change anymore. The
algorithm above may thus be modified in the following way:
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Input: Initial conditions p0, q0

Output: pn, qn

For each particle i, initialize force fi;
for each time step and each particle do

B: Update momenta;
Create lists of active and restrained particles;
Subtract active-active and active-restrained interactions;

A: Update positions;
Update neighbor-lists;
Add active-active and active-restrained interactions;

O: Update momenta in FD;
end

Algorithm 2: Algorithm for (3.5) using adaptive forces updates.

Updating neighbor lists normally consists in re-assigning each particle to a specific grid cell (in our
implementation we used a combination of Verlet lists and linked-cell lists. In AR dynamics, restrained
particles do not have to be re-assigned, and neighbor lists may be updated more efficiently. More precisely,
the complexity of updating the neighbor lists goes from O(N) the number of particles, to O(K), where K
is the number of active particles.

Note that the force function f is called in both AR force updates (subtract and add steps), since we need
to evaluate forces for positions at the previous time step. It would be possible to avoid updating forces twice
by saving all pairwise forces, but this may result in a quadratic space complexity. We will not analyze this
case, although it would result in a larger algorithmic speed-up and lead to less restrictive conditions on the
efficiency of AR dynamics.

Note that there is a slight overhead due to computing the AR kinetic energy functions ∇U , which is
more complicated than in the standard case. Still, this involves O(N) additional operations, and can be
neglected compared to the cost of the force update in practical applications. Furthermore, the overhead
mostly comes from the transition regime since∇U vanishes for restrained particles and becomes M−1p for
the full-dynamics state.

Note that a similar strategy for incremental force update may be applied to other splitting schemes
of the modified Langevin equations. However, the status of a particle (active, in transition or restrained)
depends on the state of the momenta before the position update, and hence this status should not be destroyed
by updating momenta between two position updates. Using the same notation as in Section 1.3.2.1 (with
O := γLFD), this implies that the second order splittings BAOAB1 and OABAO are not directly suited for
a modification by the AR dynamics algorithm, since between the two position updates A, the momentum
changes by either O or B step. On the other hand, ABOBA, BOAOB, OBABO and AOBOA can be used,

1 BAOAB denotes a scheme with the evolution operator e∆tB/2e∆tA/2e∆tγLFDe∆tA/2e∆tB/2.
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since the lists of active particles can be created before the position update A and hence active-active and
active-restrained interactions can be subtracted and added after the position update A.

4.2.2 Complexity analysis

At each time step, the computational cost of the force update depends on the percentage of restrained parti-
cles. Let us denote the number of active particles byK = αN , where α ∈ [0, 1] is the average ratio of active
particles. The number of restrained particles is then N −K. We are going to formalize the computational
complexity of the force update as a function of the ratio of restrained particles, denoted by ρ := 1− α.

We recall that we have considered the average computational cost over the whole trajectory in equation
(4.2), since the instantaneous computational cost may vary at each time step. Because, in the algorithm ana-
lyzed in this chapter, we add and subtract pairwise forces, the computational complexity of the force update
in an AR simulation is lower than a regular force update if and only if a sufficient number of particles is
restrained. We are thus going to analyze which conditions on the number of restrained particles are sufficient
to obtain a speed-up larger than one, when a standard simulation has a linear or quadratic complexity2. This
analysis can be extended to other force update algorithms.

4.2.2.1 Quadratic complexity

Let us first consider a standard (non-adaptive) simulation with a quadratic-complexity force update algo-
rithm, i.e. when no neighbor-lists are used. In this case, the number of interactions computed at every time
step is Cstd := N(N−1)

2 . In AR dynamics, we do not need to recompute interactions between restrained
particles, hence we only update interactions involving active particles, either with other active particles, or
with restrained particles. As a result, the computational cost for the AR force update is3:

CAR := 2

Ç
K(K − 1)

2
+K(N −K)

å
= (2N − αN − 1)Nα .

and Cstd > CAR is satisfied for
α < 0.29 (4.7)

andN > 1−2α
2α2−4α+1

. The inferior bound on the number of particles is not a restrictive condition for molecular
dynamics, where the number of particles is usually much bigger. (For example, for α = 0.28, the number
of particles N must be larger than 12.) More importantly, this implies that at least 71% of particles must be
restrained in order for this force update algorithm to be beneficial, in which case the algorithmic speed-up
is:

Sa,1 =
Cstd

CAR
=

N − 1

2(Nρ+N − 1)(1− ρ)
.

2 The quadratic complexity corresponds to bonded interactions and the linear complexity to non-bonded, in which case the neig-

hbor lists can be applied.
3 The factor of 2 comes from the need to subtract old forces (with previous positions) and add new forces (with current positions).
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When the number of particles tends to infinity, this becomes

S∞a,1 = lim
N→∞

Sa(N) =
1

2(ρ+ 1)(1− ρ)
. (4.8)

Note that if the double computation of forces can be avoided (for example by storing previous pairwise
forces), the complexity becomes

CAR,2 :=
CAR

2
,

so that CAR,2 > Cstd is achieved for any α < 1 and N > 1
1−α , resulting in the following speed-up:

Sa,2 =
N − 1

(Nρ+N − 1) (1− ρ)
, S∞a,2 =

1

(ρ+ 1)(1− ρ)
.

4.2.2.2 Linear complexity

Let us now consider the (much more frequent) case where the complexity of the force update is linear, e.g.
when forces become sufficiently small after a given cutoff distance rcut, and neighbor lists may be used to
efficiently determine which particles are interacting. The reference complexity is therefore Cstd,NL = NC

2 ,
where C is the (average) number of neighbors. The algorithm for the adaptive force update is as follows:
for all active particles compute interactions with their neighbors, and between the active neighbors use
fij = −fji. The total number of interactions to be updated in the AR dynamics algorithm is then:

CAR,NL := 2

Ñ
K∑
i=1

∑
j∈LA(i)

1 +
K∑
i=1

∑
j∈LR(i)

1

é
= 2

Å
KCA

2
+KCR

ã
=

Å
1− α

2

ã
αCN , (4.9)

where the set LA(i) ⊂ IA contains the indices of the active neighbors of the particle i, LR(i) ⊂ IR

contains the indices of the restrained neighbors, CA = αC and CR = ρC. The necessary condition for
Cstd,NL > CAR,NL is then

α < 0.293 . (4.10)

Note that this condition does not depend on N , nor on C. The AR dynamics algorithm is more efficient in
number of operations for forces update if and only if the percentage of restrained particles is bigger than
70, 7%. The algorithmic speed-up is hence

SNL :=
Cstd

CAR,NL
=

1

2α(2− α)
=

1

2(1− ρ2)
. (4.11)

Again, avoiding the double re-computation of force components from the old positions for the active par-
ticles, removes a factor of 2 from CAR,NL and the computational cost becomes CAR,NL =

Ä
1
2 − α

ä
αCN ,

which implies an unconditional algorithmic speed-up Sa =
(
1− ρ2

)−1.
An important conclusion is that an incremental force update is computationally beneficial if the percen-

tage of restrained particles is larger than a thresholdR. We may thus modify Algorithm 2 as follows:
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Input: Initial conditions p0, q0. Output: pn, qn

For each particle i, initialize the force fi;
for each time step and each particle do

B: Update momenta;
Create lists of active and restrained particles;

if ρ > R then
Subtract active-active and active-restrained interactions;

A: Update positions;
Add active-active and active-restrained interactions;

else
A: Update positions;

Update forces with the standard approach;
end

Update neighbor-lists;
O: Update momenta in FD;

end
Algorithm 3: Improvement of Algorithm 2 by using the condition on the ratio of restrained particles
ρ given by the constantR > 0.

Finally, we consider the case where the neighbor lists are updated at each time step4. This is not usually
done in practical applications, where neighbor lists are updated only after a certain time period which can
be computed from the maximal velocity of the particles. The cost per time step then extends in re-assigning
N particles into the grid, which gives order of NC/2 + N operations. In the AR simulation, only active
particles need to be re-assigned into the grid. Therefore, the cost per time step computed in (4.9) becomes

CAR,NL :=

Å
1− α

2

ã
αCN + αN .

Assuming that there are C neighbors in average, the resulting speed-up is:

Sa =
C + 2

2(1− ρ)(Cρ+ C + 1)
. (4.12)

4.3 Total speed-up

As explained above, the total speed-up (4.2) reachable by AR dynamics when estimating observables de-
pends on both the computational complexity of the force update, and the variance of the AR dynamics.

In this section, we first analyze how the percentage of restrained particles depends on the restraining
parameters emin and emax. Then, we approximate the variance of the AR dynamics by a linear function.
Combining both, we finally express the total speed-up as a function of emin and emax.

4 Note that this can be easily modified in order to express the update of neighbor-lists every time period T .
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4.3.1 Percentage of restrained particles

The percentage of restrained particles can be computed from the average occupation of the restrained state
of each particle. In other words, it is the probability that the momenta of one particle belong to the restrained
region of phase space. For the AR kinetic energy function (3.49), the average occupation of the restrai-
ned state R(vmin, vmax) of particle i with parameters vmin and vmax is the expected value of the indicator
function of the absolute values of all momenta components of one particle being smaller than the restraining
parameter vmin.

We denote by µvmin,vmax the invariant measure which corresponds to the AR kinetic energy function with
parameters vmin and vmax and we compute

R(vmin, vmax) =

ˆ
Rd
1{ |pi|

mi
6vmin

}µvmin,vmax =
(2vminmi)

D exp (−βDSvmin,vmax)

Zp(vmin, vmax)
, (4.13)

where the momenta normalization constant of the particle i is simply Zp = zD, with

z(vmin, vmax) =

ˆ{
|pi|
mi

6vmin

} e−βSvmin,vmax dp+

ˆ{
|pi|
mi

>vmax

} e
−β

p2
i

2mi dp

+

ˆ{
|pi|
mi
∈[vmin,vmax]

} e−βs(pi)dp

= (2vminmi) e−βSvmin,vmax +
»

2πmiβ−1 − 2

ˆ mivmax

0
e
−β p2

2mi dp

+

ˆ mivmax

mivmin

e−βs(pi)dp+

ˆ −mivmin

−mivmax

e−βs(pi)dp .

(4.14)

Note that in the standard dynamics Zp = (2πmi/β)3/2.
Finally, considering a system consisting of particles with various restraining parameters vimin and vimax,

the total average percentage of restrained particles can be computed as an average over the individual values
R(vimin, v

i
max) of each particle. Denoting by Nvmin,vmax the number of particles with parameters vmin and

vmax and by N the set of all chosen pairs (vmin, vmax), the total average percentage of restrained particles5

Rtotal ∈ [0, 1] is given by

Rtotal =
1

N

∑
(vmin,vmax)∈N

Nvmin,vmaxR(vmin, vmax) . (4.15)

For example, the percentage of restrained particles for a system consisting of a dimer that follows standard
dynamics and that is surrounded by solvent particles following AR dynamics with non-zero parameters vmin

and vmax is:

RDS
total =

NSolv

Ntotal
RSolv(vmin, vmax) ,

5 Note that this corresponds to the notation ρ = Rtotal in Section 4.2.
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Fig. 4.1: Average occupation of the restrained state with respect to the parameter ratio. We computed
Rtotal = R(vmin, vmax) for one particle in 3D according to (4.13) for various vmax and various values of the
parameter ratio δ ∈ [0.7, 0.98] (black to orange or bottom to top lines) such that vmin = δvmax. The blue
line is the value 70% of restrained particles which corresponds to the necessary condition for Sa > 1.

since, in standard dynamics, the average occupation of the restrained state is zero and RDimer = 0.
In conclusion, the algorithmic speed-up Sa can be estimated using the computational complexity of the

algorithm (see Section 4.2) with the speed-up being a function of ρ = Rtotal.
Figure 4.1 shows, for U defined in (3.49), the average occupation of the restrained stateR(vmin, vmax) as

a function of vmax for various δ ∈ [0.5, 0.98] such that vmax = δvmin in dimension three. We depicted also
the value 70% of restrained particles which corresponds to the necessary condition for Sa > 1 (given by (4.7)
or (4.10)). We observe on this figure that the bigger δ, the bigger average occupation of the restrained state.
Figure 4.2 shows the dependence of R(vmin, vmax) on the temperature. This suggests that the restraining
parameters should be scaled with respect to the temperature kBT .

Finally, Figure 4.3 shows Rtotal(vmin, vmax) as a function of both parameters. Note that the highest
value of percentage of restrained particles is located close to the diagonal, i.e. when the gap between the
parameters vmin and vmax is small.

4.3.2 Linear approximation of the variance

In Chapter 2, we proved that there exists a regime in which the variance from the AR dynamics simulations
can be approximated by a linear function of the restraining parameters: for a given observable, there exists
v∗max small enough such that for vmax < v∗max there exist constants c1, c2 ∈ R such that for vmin ∈ [0, vmax]

σ2
AR(vmin + ζ, vmax + η) = σ2

AR(vmin, vmax) + c1ζ + c2η + O
Ä
ζ2 + η2

ä
. (4.16)
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Fig. 4.2: Average occupation of the restrained state with respect to the temperature. We computed Rtotal =
R(vmin, vmax) of a particle in 3D according to (4.13) for vmax and vmin = 0.95vmax and for various tempe-
ratures kBT = [1, 100] (black to orange or top to bottom lines).

The total speed-up of the wall-clock time needed to reach a certain statistical precision (4.4) can hence
be expressed in terms of the restraining parameters using (4.16) as

Stotal ≈ Sa(vmin, vmax)
σ2(0, 0)

σ2(0, 0) + c1vmin + c2vmax

= Sa(vmin, vmax)
1

1 + c1
σ2(0,0)

vmin + c2
σ2(0,0)

vmax
.

(4.17)

The gap between the restraining parameters vmin and vmax should be big enough to ensure a smooth tran-
sition between the full and the restrained dynamics and prevent numerical instabilities. Note, however, that
in the numerical experiments performed in Section 2.4, where the variance was computed for a simple 1D
system, it was shown that the relative increase of the variance with respect to the full-dynamics parameter
vmax is more significant than with respect to the restraining parameter vmin. This result is not surprising,
since the gap between the parameters smooths out the dynamics, which translates into an increase of cor-
relations. This implies that the optimal strategy is to choose the gap between the parameters as small as
possible while still maintaining the numerical stability and keeping the systematical error sufficiently low
(i.e. the error on the computed averages, arising from the fact that µ 6= µ∆t). At the same time, the restrai-
ning parameters should give the desired percentage of restrained particles Rtotal. For example, in the case
when δ = vmin/vmax = 0.98, the relative derivative of the restrained energy of one particle R(vmin, vmax)

with respect to vmax, almost vanishes after the value vmax = 5. Hence this is a critical value after which
the growth of function R(vmin, vmax) slows down (see again Figure 4.1). Having in mind that the variance
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Fig. 4.3: Percentage of restrained particles over vmin and vmax. We considered the system described in
Section 4.4 with the AR kinetic energy function chosen according to (3.49). We computed the percentage of
restrained particles (4.15) for various values 0 6 vmin 6 0.95vmax.

locally increases with respect to vmax, this implies that, in this region, the efficiency of the algorithmic
speed-up does not grow fast enough with increasing vmax, while the variance might be still growing. In this
case, either the gap δ should be chosen smaller, or one must ensure that the variance does not grow too fast,
in order to compensate the variance growth with the algorithmic speed-up.

It is easy to estimate the algorithmic speed-up Sa. The problematic part is to estimate the sensitivity
of the variance of a given observable with respect to the modification by the restrained dynamics, i.e. the
estimation of c1 and c2 in (4.17). This can be done by a linear interpolation in the pre-processing part, which
should involve at least three AR dynamics simulations in order to estimate the constants c1 and c2. Finally,
(4.17) allows to have a complete expression for the total speed-up as a function of the parameters vmin and
vmax. Choosing δ = vmin/vmax as small as possible, one can find the optimal vmax which produces the
highest total speed-up (see Section 4.4 for a numerical example).

We thus propose the following guidelines to estimate the total speed-up Stotal with respect to the para-
meters vmin and vmax:

(1) Choose the order (scale) of the restraining parameters vmin and vmax for each particle according to
its mass, its role in the system and the temperature kBT .

(2) Choose the minimal gap δ between vmin and vmax with respect to the numerical stability.
(3) Compute the percentage of restrained particles Rtotal according to (4.13), (4.14) and (4.15).
(4) Compute the algorithmic speed-up Sa according to the implementation algorithm according to

Section 4.2.
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(5) Estimate the linear approximation of the variance σ2
AR(δvmax, vmax) for the observable A.

(6) Find the optimal value of vmax (with vmin = δvmax) by maximizing Stotal(vmin, vmax).

4.4 Numerical illustration

In order to illustrate the theoretical results from the previous section, we consider a system of N = 64

particles consisting of a dimer (q1, q2) surrounded by 62 solvent particles (q3, . . . , qN ) in space dimension
D = 3. This model is representative of many systems, where the macroscopic property only depends on a
small part of the simulated system.

We use periodic boundary conditions with box-length such that the density is 0.4. We consider reduced
units such that particles have identical masses mi = 1 and the temperature is chosen so that β = 1.
The friction constant in the Langevin equations is γ = 1. Solvent particles interact with each other and
with the dimer particles by a WCA potential (1.4) with parameters εLJ = 1 and σLJ = 1 with a cut-off
distance rLJ = 21/6. Dimer particles interact with each-other with a double-well potential (1.1) with width
w = 1 and height h = 1. This system is the same as the one in Section 2.4. We discretize the modified
Langevin equations (2.4) by a second-order scheme (OBABO) with time step size ∆t = 0.001 and perform
Niter ≈ 109 time steps.

We use neighbor-lists based on the cut-off distance of the Lennard-Jones potential rLJ, according to
Algorithm 3. The average number of neighbors is estimated as C = 0.25. We run one reference simulation
in the standard dynamics.

In the AR simulations, we consider non-zero restraining parameters on the solvent only, and we let dimer
particles follow the standard dynamics. In order to demonstrate the dependence of the total speed-up Stotal

on the restraining parameters vmin and vmax, we consider the following observables: the dimer distance
AD(q1, q2) = |q1 − q2|, the dimer potential AV (q1, q2) = VDW (|q1 − q2|) and the kinetic temperature
T (p) = p · ∇U(p). The first two observables only depend on the positions of the dimer particles, hence
we expect that the variance will not be much modified even for large restraining parameters. The function
T (p) depends on the momenta of all particles p and satisfies 〈T 〉µvmin,vmax

= kBT . The knowledge of the
exact average allows us to verify that the time step size ∆t is chosen sufficiently small in order to make the
systematic error on the averages smaller than 1% even for vmax = 10. The asymptotic variance σ2 of a time
average for a given observable A is estimated by approximating the integrated auto-correlation function by
a trapezoidal rule as (2.22).

First, we confirm theoretical predictions for the algorithmic speed-up Sa. In our simulations, we measure
the time per force update, as well as the time per time step. We compare the measured speed-up, which is a
ratio of the measured time in the standard dynamics and the AR dynamics, with the estimated speed-up in
the force update (4.11) and for the overall time step (4.12). Figure 4.4 shows that the predicted algorithmic
speed-up corresponds to the measured algorithmic speed-up in our simulation.
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Fig. 4.4: Comparison of the analytically estimated algorithmic speed-up with the measured one. We con-
sidered a system described in Section 4.4. We measured the algorithmic speed-up Sa of the forces update
function and the total time step, with respect to the parameters vmax and vmin = 0.8vmax. The computed
speed up in forces update (4.11) corresponds to the measured one, as well as the algorithmic speed-up per
time step (4.12). Note that the measured Sa of the forces update is equal to one for small values of vmax,
which is due to the implementation of the condition on the adaptive forces update as proposed in Algorithm 3
which assures Sa > 1.

Figure 4.5 plots the estimated relative variation of the variance of three observables as a function of the
parameters vmax for vmin = δvmax with δ = 0.5. The variance of T is modified more drastically than the
variance of observables measured on the dimer with growing vmax.

Finally, combining the algorithmic speed-up Sa(vmin, vmax) with the variance σ2(vmin, vmax), we es-
timate the total speed-up according to (4.4). This is depicted on Figure 4.6. We again consider δk ∈
{0.5, 0.8, 0.9} in order to demonstrate the impact of the gap between the parameters δ = vmin/vmax on
the total speed-up Stotal: the smaller the gap, the larger Stotal becomes. Also, it holds that Stotal > 1 for the
dimer observables only (up to 4), and not for the global observable T . This supports the idea that we can
speed-up the computation of macroscopic properties that depend on unrestrained degrees of freedom, i.e.
those of the dimer in this example.

It is easy to compute the algorithmic speed-up Sa. The problematic part is the determination of the
sensitivity of the observable on the restraining parameters (see again Figure 4.5). Since the variance can be
approximated by a linear function of the restraining parameters at least locally, we can compute the slopes
cvmax such that6 σ2(vmin, vmax) ≈ σ2(vmin, vmax) + cvmaxvmax from three AR simulations with parameters
(v1

min, v
1
max), (v1

min, v
2
max), (v2

min, v
1
max). More precisely, this allows us to approximate the total speed-up as

6 Note that, in this linear approximation, we consider a fixed ratio δ such that vmin = δvmax.
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Fig. 4.5: Relative deviation of the asymptotic variance from the variance in the standard dynamics. We con-
sidered a system of described in Section 4.4. We measured the variance of the dimer distanceAD (green), the
dimer potential ADW (black) and the temperature T (blue) in various parametrization of the AR dynamics.
We plotted the relative deviation of the variance from the variance in the standard dynamics for parameters
vmax with δ = 0.8. Note that the variance is more perturbed for T than for the other two observables, which
depend only on the dimer particles.

Stotal(vmin, vmax) ≈ Sa(vmin, vmax)
1

1 + cvmax
σ2(0,0)

vmax
. (4.18)

We choose (vmin, vmax) ∈ {(3, 6), (3, 7), (2, 6)} and we estimate the slope cvmax . Table 4.1 shows the com-
parison with the slope directly obtained from simulations with fixed δ = 0.9 and δ = 0.8 for vmax ∈ [1, 10]

(see Figure 4.5). This confirms that it is possible to capture the quantitative behavior of the relative slope

cvmax/σ
2
Ai

(0, 0) δ = 0.9: 3 points δ = 0.9: vmax ∈ [0, 10]

ADW 0.017863 0.016452

AD 0.043855 0.042729

δ = 0.8: 3 points δ = 0.8: vmax ∈ [0, 10]

ADW 0.016426 0.015028

AD 0.039587 0.039787

Table 4.1: Comparison of the relative deviation of the variance, obtained from linear interpolation of three
points and the interpolation of values obtained from many simulations.

cvmax/σ
2
ϕ(0, 0) from only three AR simulations. Note that the same approach could be used to determine
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Fig. 4.6: Numerical estimation of the total speed-up depending on the parameters ratio. We estimated the
total speed-up Stotal given by (4.4) for system described in Section 4.4. The algorithmic speed-up as well
as the variance (see Figure 4.5) were obtained directly from the measurements in the simulation, i.e. not
from the analytical formula. On the plot the results are showed for three observables (various color and line
styles). The various markers correspond to different value of δ: the marker "open circles" corresponds to
δ = 0.5, the marker "star" corresponds to δ = 0.8 and the marker "plus sign" corresponds to δ = 0.9, such
that δ = vmin/vmax. The bigger is δ, the more particles are restrained and hence the bigger is the algorithmic
speed-up.

the behavior of the variance as a function of different temperatures by measuring the variance only at a few
points.

We have obtained an estimation of the variance σ2(vmin, vmax). This allows us to express the total speed-
up Stotal as a function of vmin and vmax, which is depicted on Figure 4.7 for AD.

Remark 4.1. It would be possible to push the parameters in Figure 4.7 in order to achieve a higher speed-
up, up to the moment when the variance increase would start countering the algorithmic speed-up. Since
the total speed-up depends on the simulated system and a concrete observable function, it does not make
much sense to try and find the limit for our toy model. Moreover, for large parameters values, it is difficult to
converge the quadratures in (4.14) and computationally too expensive to obtain the estimates numerically in
the sense of Figure 4.7. Nevertheless, we believe Figure 4.7 provides a good understanding of the qualitative
behavior of the total speed-up.
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Fig. 4.7: Analytical estimation of the total speed-up. We estimated the expected total speed-up Stotal for the
observable dimer distance AD with respect to parameters vmin and vmax (vmax 6 0.95vmax). The variance
was estimated from three points as a linear function of vmin and vmax and we used the analytical estimation
of Sa according to (4.12). Only Stotal > 1 is plotted.
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5

Extensions and perspectives

Summary. This chapter presents several works on progress. The aim of the first one is to find kinetic energy
functions which allow to reduce the metastability of standard Langevin dynamics. We discuss also other
extensions such as the unbiasing of the dynamical properties of the modified Langevin dynamics through
appropriate Girsanov weights; and present some ideas to compare the convergence rates between various
Langevin dynamics in quantitative way by a recently introduced hypocoercive approach.

5.1 Decreasing metastability with modified kinetic energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.1 Energy barrier in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.2 Energy barrier in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.3 Higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Retrieving correct dynamical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 Quantifying convergence rates in L2(µ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1 Decreasing metastability with modified kinetic energies

In this section we present work on progress on the reduction of metastability by introducing specific kinetic
energy functions. These preliminary results have been preprinted as [114].

We consider Langevin dynamics with kinetic energies growing more than quadratically at infinity, in
an attempt to reduce the metastability. Recall indeed that the crucial part of the sampling of the canonical
measure is the position marginal ν(dq) = Z−1

ν e−βV (q) dq. The marginal distribution of µ in the variable q
is always ν, whatever the choice of the kinetic energy U . The extra freedom provided by U can be used in
order to reduce the metastability of the dynamics.

According to our preliminary results, we propose to choose the kinetic energy similar to the potential
energy. We demonstrate on a simple low-dimensional example that such a modification of the dynamics can



lead to a faster exploration of the phase-space and hence to improved convergence rates in wall-clock time.
An exploration of this idea for high dimensional problems requires further work.

In the following numerical experiments, we discretize the Langevin dynamics (2.4) by the GHMC
scheme summarized in Section 3.3.3 with γ = 1, m = 1 and ∆t = 0.001.

5.1.1 Energy barrier in 1D

In the first example, we consider a 1D system, described by the multi-well potential

V (q) = h
Ä
|q − 1|−2 + |q + 1|−2 + |q − 2|−2 + |q + 2|−2

ä−1
,

see Figure 5.1(Left) for an illustration. There are three energetic barriers, which separate the four metastable
regions in which the particle spends more time. We choose the prefactor h = 10 and perform simulations
at the inverse temperature β = 1. For the same realization of Brownian motion, we consider five different
kinetic energy functions:

(1) the standard one U1(p) = p2/2;
(2) a higher order polynomial function with shift U2(p) = |2p− 4|4 /4;
(3) the same kinetic energy function as the potential energy function U3 ≡ V ;
(4) a double-well function U4(p) =

Ä
|x− 1|−2 + |x+ 1|−2

ä−1
;

(5) and a "heavy tail" function U5(p) = |p|5/4 (5/4)−1.

On Figure 5.1(Right) we plot instantaneous positions (left) and momenta (right) over the number of time
steps for kinetic energies Ui with i = 1, . . . 5 (top to bottom). We observe that for the standard kinetic
energy positions q switch between the two biggest metastable states separated at zero only twice during the
Niter = 106 time steps. On the other hand, we observe that the dynamics exhibits more transitions for any
other choice of the kinetic energy as described above. The most numerous transitions are obtained with the
kinetic energies U2 and U3.

5.1.2 Energy barrier in 2D

In order to confirm the findings of the previous section in a two-dimensional system (i.e q = (x, y) ∈ R2),
we consider the potential already considered in [81]:

V (x, y) =
1

6

(
4
Ä
−x2 − y2 + w

ä2
+ 2h

Ä
x2 − 2

ä2
+
Ä
(x+ y)2 − w

ä2
+
Ä
(x− y)2 − w

ä2
)
, (5.1)

where we choose w = 1 and h = 5. This potential can be seen as some effective double well potential in the
x direction (see Figure 5.2 for contour plots). The metastability of Langevin dynamics is caused by some
energetic barrier in this direction at x = 0.

Various kinetic energies can be considered. We focus on the following ones:

(1) the standard kinetic energy U1(x, y) = (x2 + y2)/2;
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Fig. 5.1: (Right) Instantaneous values of positions and momenta with five kinetic energy functions and
the multi-well potential (left). Kinetic energy functions (from top to bottom): standard one, i.e. U1(p) =
p2/2; higher order polynomial function with shift, i.e. U2(p) = |2p− 4|4 /4; multi-well, i.e. the kinetic
energy function is the same one as the potential energy function U3 ≡ V ; double-well function U4(p) =Ä
|x− 1|−2 + |x+ 1|−2

ä−1
; and "heavy tail" function, i.e. U5(p) = |p|5/4 (5/4)−1.

Fig. 5.2: Two dimensional double-well potential (5.1). We compute expected exit times between the starting
configuration A := (1, 0) and the target set B := {(x, y) : x 6 −1 and |y| 6 0.5}.

(2) a fifth order polynomial in both directions U2(x, y) =
Ä
|x|5 + |y|5

ä
/5, which provides an example of

light-tailed distribution of momenta;
(3) a heavy tailed function distribution of momenta, corresponding to the choice

U3(x, y) =
4

5

î
|x|5/4 + |y|5/4

ó
;
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(a) Standard kinetic energy function. (b) Same kinetic energy function as the potential energy

function, i.e. U ≡ V .

Fig. 5.3: Positions as a function of time for the modified Langevin dynamics with the two-dimensional
double well potential (5.1), and two different kinetic energy functions. The simulation time is T = 1000,
and the same realization of the Brownian motion is used in both cases. For the same number of simulation
steps, there are more crossings between the wells for the dynamics with the modified kinetic energy (Right)
than for the standard one (Left). The coloring corresponds to the values of the potential energy.

(4) the same function as the potential function U4 ≡ V ;
(5) a double-well function in the x-direction and a quadratic function in the y−direction:

U5(x, y) = VDW(x) +
y2

2
, VDW(x) =

Ä
|x− 1|−2 + |x+ 1|−2

ä−1
.

This function somewhat approximates V , so we expect the distribution of momenta under the canonical
measure associated with U5 to be close to the one associated with U4;

Figure 5.3 presents two realizations for a physical time T = 1000 and an inverse temperature β = 1, for the
choices U1 and U4 above. Note that, for the standard kinetic energy U1, there is only one crossing from one
well to the other during the simulation time. On the other hand, there are many more crossings for U4.

In order to quantify the reduction of the metastability gained by modifying the kinetic energy function,
we numerically estimate the expected hitting time between two sets separated by the energetic barrier. We
start in fact from a given initial condition, which corresponds to the initial set A := {(1, 0)}. We then com-
pute the number of simulation steps necessary to reach the set B := {(x, y) : x 6 −1 and |y| 6 0.5} (see
Figure 5.2 for an illustration). The expected hitting time is estimated by an average over 1000 independent
realizations of the exit process. We report in Table 5.1 the average physical time needed to reach the set B
for each choice of the kinetic energy function, as well as the speed-up relative to the results obtained with
the standard kinetic energy. Note that the exit time is almost three time smaller with U4. Intuitively, heavy
tailed distributions of momenta (corresponding to U3 here) could be thought of as being interesting since
they allow for larger velocities, which may facilitate the transition from one well to the other. This is howe-
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Kinetic energy U1 = Ustd U2 U3 U4 U5

Thit 297.2 [±9.5] 259.2 [±7.8] 307.0 [±9.6] 101.7 [±3.2] 203.4 [±6.3]

Speed up Thit/Tstd 1 1.155 0.97 2.92 1.46

Table 5.1: Expected hitting times according to the choice of the kinetic energy functions Ui (see text). Errors
bars determined by 95% confidence intervals are reported in brackets.

Fig. 5.4: Mean exit times over 2000 realizations as a function of β ∈ {3, 4, 5, 6, 7, 8, 9, 10}.

ver not the case. On the other hand, we observe that the double-well-like functions (U4 and U5) are most
helpful to reduce the metastability of the dynamics and allow for more transitions from the region around
x = −1 to the region around x = 1. Note that the exit time is almost three time smaller with U4. Moreover,
in Figure 5.4, we plot the average physical time needed to reach the set B as a function of the inverse tem-
perature β. We observe an exponential growth of the hitting time with respect to β which is characteristic
for metastability caused by energetic barriers in the low temperature limit by the Eyring-Kramers law (see
for instance the presentation and the references in [14, 82]). We fit the hitting times as

Thit(β) = CeβE ,

for some energy level E. For the results presented in Figure 5.4, the energy level E is the same for all
kinetic energies, but the prefactor C is different; in fact smaller for the modified kinetic energy U5 than for
the standard kinetic energy U1.

5.1.3 Higher dimensions

The excellent reduction in metastability we obtain on the simple low-dimensional systems above motivates
us to test the relevance of this approach for higher dimensional systems.
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5.1.3.1 Biasing reaction coordinates

A first track is to modify only the kinetic energy on the velocity of some reaction coordinate summarizing
slow degrees of freedom, keeping the standard kinetic energy for faster degrees of freedom.

More precisely, we aim at performing numerical simulations of a dimer-solvent system described in
Section 1.1.1.1. The reaction coordinate ξ : D → [0, 1] describing the transition between the compact and
stretched state of the dimer is given by (for more details see [81, Section 1.3.2.4])

ξ(q) =
|q1 − q2| − r0

2w
.

The results from the previous section suggest that we can choose the kinetic energy of the dimer particles
the same as the potential energy. On the other hand, we can use the standard kinetic energy for the solvent
particles (see also the discussion about the solvent particles below). More precisely, an appealing idea is to
consider a double-well energy on the relative momentum (p1 − p2) · e12, where

e12 =
q1 − q2

|q1 − q2|

is the unit vector is the direction of the line of centers of the particles; the remaining components of the
relative momentum, as well as p1 + p2, having quadratic kinetic energies.

Let us discuss some tracks to further generalize this approach, for a reaction coordinate which is a
function ξ : Rd → Rd̃ with d̃ 6 d, such that (ξqt))t>0 is a metastable process. A key quantity to this end is
the effective velocity of the reaction coordinate:

vξ(q, p) = ∇ξ(q)TM−1p,

see [81, Section 3.3.1.3] for an interpretation of this quantity. When an approximation vξ(p) of this function
as a function of the momenta only is available, the kinetic energy can be chosen to be

U(p) = umod(vξ(p)) + ‹Ustd(p⊥ξ ),

where p⊥ξ is the component of p in the direction orthogonal to vξ(p), i.e.

p⊥ξ = p− p · vξ(p)
|vξ(p)|2

,

and ‹Ustd is a quadratic kinetic energy in dimension d− d̃.

5.1.3.2 Solvent-solute models

Since the kinetic energy can be chosen separately for each particle, we can choose also a specific kinetic
energy for the solvent particles when a solvent-solute model is considered. Basically, we can consider two
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options which can reduce the wall-clock time. The first option is to use a parametrization of AR kinetic
energy which gives a high percentage of restrained solvent particles and hence significantly decreases the
computational cost per time step. Alternatively, we can increase the maximal admissible time step by the
following strategy: we have demonstrated that for some specific values the AR-Langevin dynamics is more
stable and allows to take a bigger integration time step (Figures 3.6). This suggests to choose a specific
AR kinetic energy according to the vibrational frequencies of particles (a characterization already used for
methods like RESPA in order to integrate slower and faster degrees of freedom separately [121]). We expect,
that this effect is similar to increasing the effective mass of fast vibrational modes. More precisely, light
particles (for instance atoms of hydrogen in water molecules) can have AR kinetic energy with parameters
vmin = 0 and vmax big enough and heavier particles could have the standard kinetic energy. For instance,
the results presented in Figure 3.6 suggest that for the values vmin = 0 and vmax = 6 the dynamics admits a
timestep 1.8 times bigger than for the standard dynamics. Since the maximal time step in the simulation is
limited by the highest vibrational frequencies, we believe that this idea might help to increase the maximal
time step of the discretized dynamics. Note that a change of the kinetic energy function is easy to implement
and does not require a much higher computational cost. Again, a trade off between the maximal time step
size and the variance should be considered in order to confirm the variance reduction in the wall-clock time.

Remark 5.1. In order to slow down the dynamics and to increase the maximal admissible time step size
∆t, the relativistic kinetic energy was suggested1 for the Langevin dynamics. The relativistic kinetic energy
reads

Urel(p) =
»
|p|2 c2 +m2c4,

where c is the maximal speed (i.e. the speed of light in the relativistic theory). This can be understood also
as an automatic way of tuning the mass according to the speed of the particle. Even though this approach
allows to increase the maximal time step, its efficiency is not clear since the asymptotic variance increases
significantly.

5.2 Retrieving correct dynamical properties

In this thesis, we focused on the computation of the ergodic averages with respect to µ. Langevin dynamics
are however also used to predict dynamical properties such as transport coefficients or exit times. Of course,
a non-standard the kinetic energy changes the dynamical behavior of the dynamics. However, many methods
are used to accelerate the sampling of reactive paths change the original dynamics (for instance, simulations
at different temperatures are combined in parallel tempering method [50]). As already explored in [34],
a possible remedy in order to retrieve correct physical dynamical properties of modified dynamics is to
introduce Girsanov weights on the samples.

Let us recall that in the case of the AR-Langevin dynamics, we have studied the asymptotic variance,
which already is a dynamical property since it can be interpreted as some integrated autocorrelation function.

1 An idea suggested by Ralf Everaers at a summer-school at Ecole de Physique des Houches in May 2015.
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We expect that it is possible to extend the results of Proposition 2.1, which shows linear expansion in the
AR parameters of the asymptotic variance, to other dynamical properties.

5.3 Quantifying convergence rates in L2(µ)

The numerical results from Section 5.1 suggest that some kinetic energy functions might reduce the metas-
tability of the dynamics. It may also be possible to compare in quantitative fashion explicit upper bounds
on the convergence rate obtained by the modified hypocoercive approach introduced in [38, 39]. This would
allow to state rigorous results on the choice of the best kinetic energy.

Let us describe the approach of Dolbeault, Mouhot and Schmeiser [39] in a few words. It is based on the
introduction of a modified entropy functional

H(g) =
1

2
‖g‖L2(µ) + ε 〈Ag, g〉L2(µ) ,

for some (small) ε > 0 and where the (bounded) operator A reads

A = −
Ä
1−ΠL2

HamΠ
ä−1

ΠLHam, (Πg)(q) =

ˆ
Rd
g(q, p)κ(p).

It turns out thatH(g) induces a norm equivalent to the L2(µ) norm. In addition, when the marginal measures
ν and κ satisfy Poincare inequalities, it is possible to obtain a functional inequality similar to a Poincare
inequality in the norm induced by H. This can then be translated into an exponential convergence of the
semigroup: there exist C, λ > 0 such that, for ϕ ∈ L2(µ) with average 0 with respect to µ,∥∥∥etLϕ∥∥∥

L2(µ)
6 Ce−λt ‖ϕ‖L2(µ) .

The proof in [39] is currently written only for a quadratic kinetic energy. The aim would be to extend it to
more general choices U(p), and to quantify as precisely as possible the dependence on U of the convergence
rate λ and the prefactor C in the above inequality.
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