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Résumé

Dans le chapitre 1, nous développons le concept de “corps d’Okounkov” pour une (1,1)-classe pseudo-
effective sur une variété kihlerienne compacte. Nous démontrons la formule de différentiabilité des volumes
de classes grosses pour les varétés kihleriennes sur lesquelles les cones nef modifiés et les cones nef coincident.
Comme conséquence, nous démontrons I'inégalité de Morse transcendante de Demailly pour ces variétés kih-
leriennes particuliéres, y compris les surfaces kiihleriennes. Ensuite, nous construisons le corps d’Okounkov
généralisé pour toute (1,1)-classe grosse, et nous donnons une caractérisation compléte des corps d’Okounkov
généralisés sur les surfaces. Nous démontrons que le volume euclidien standard du corps d’Okounkov cal-
cule le volume d’une classe grosse, tel que défini par Boucksom, ce qui permet de résoudre un probléme
proposé par Lazarsfeld et Mustata dans le cas des surfaces. Nous étudions aussi le comportement des corps
d’Okounkov généralisés sur le bord du cone gros.

Dans la deuxiéme partie, nous abordons des problémes liés & ’hyperbolicité en géométrie complexe.
Dans le chapitre 2, nous étudions la dégénérescence des courbes entiéres qui sont les feuilles de feuilletages
sur des variétés projectives. La premiére partie du chapitre 2 généralise 'approximation diophantienne de
McQuillan pour les feuilletages de dimension 1 avec des singularités absolument isolées. Comme application,
nous donnons une nouvelle preuve du théoréme de Brunella, & savoir que toutes les feuilles d’un feuilletage
générique de degré d > 2 dans CP™ sont hyperboliques. Dans la deuxiéme partie du chapitre 2, nous
introduisons la notion de singularités faiblement réduites pour les feuilletages de dimension 1. L’hypothése
de singularités faiblement réduites est moins exigeante que celle de singularités réduites, mais joue le méme
role dans I’étude de la conjecture de Green-Griffiths-Lang. Finalement, nous discutons d’une stratégie pour
démontrer la conjecture de Green-Griffiths-Lang pour les surfaces complexes.

Dans le chapitre 3, nous démontrons la non-dégénérescence de la mesure de volume au sens de Kobayashi-
Eisenman pour une variété dirigée singuliére (X,V), c’est-a-dire I’hyperbolicité de la mesure au sens de
Kobayashi de (X, V), lorsque le faisceau canonique de V' est gros au sens de Demailly.

Dans le chapitre 4, notre premier objectif est de traiter des questions d’effectivité liées aux conjectures
de Kobayashi et Debarre, en nous appuyant sur les travaux de Brotbek et de Brotbek-Darondeau. Ensuite,
nous combinons ces techniques pour étudier la conjecture sur 'amplitude des fibrés de Demailly-Semple
proposée par Diverio et Trapani, et nous obtenons des estimations effectives liées & ce probléme. Notre
résultat contient & la fois les conjectures de Kobayashi et Debarre, en plus de certaines estimations effectives.

Le but du chapitre 5 est double: d’une part, nous étudions une conjecture du type Fujita proposée par
Popa et Schnell, et nous donnons une borne effective linéaire sur la génération globale générique de I'image
directe du faisceau pluricanonique tordu. Nous abordons également la relation qui existe entre la valeur de
la constante de Seshadri et la borne optimale. D’autre part, nous donnons une réponse affirmative a une
question de Demailly-Peternell-Schneider dans un cadre plus général. Comme application, nous généralisons
les théorémes de Fujino et Gongyo sur les images des variétés de Fano faibles au cas KLT, et nous raffinons
un résultat de Broustet et Pacienza sur la connexité rationnelle de 'image.

Dans le chapitre 6, nous donnons une preuve concréte et constructive de ’équivalence entre la catégorie
de fibrés de Higgs semi-stables de classes de Chern nulles, et celle des représentations linéaires du groupe
fondamental d’une variété kihlerienne compacte lisse. Ce chapitre est rédigé en particulier pour les lecteurs
qui ne sont pas familiers avec la terminologie de la catégorie graduée différentielle, telle qu’elle a été utilisée
par Simpson pour démontrer ’équivalence ci-dessus sur les variétés projectives lisses. Il est aussi destiné
a exposer une preuve élémentaire de la correspondance de Corlette-Simpson pour les faisceaux de Higgs
semi-stables.






Abstract

In Part 1 of this thesis, we construct “Okounkov bodies" for an arbitrary pseudo-effective (1,1)-class
on a Kahler manifold. We prove the differentiability formula of volumes of big classes for Kahler manifolds
on which modified nef cones and nef cones coincide. As a consequence we prove Demailly’s transcendental
Morse inequality for these particular Kdhler manifolds; this includes K&hler surfaces. Then we construct
the generalized Okounkov body for any big (1,1)-class, and give a complete characterization of generalized
Okounkov bodies on surfaces. We show that this relates the standard Euclidean volume of the body to the
volume of the corresponding big class as defined by Boucksom; this solves a problem raised by Lazarsfeld
and Mustata in the case of surfaces. We also study the behavior of the generalized Okounkov bodies on the
boundary of the big cone.

Part 2 deals with Kobayashi hyperbolicity-related problems. Chapter 2’s goal is to study the degeneracy
of leaves of the one-dimensional foliations on higher dimensional manifolds, along the lines of [McQ98,
Bru99,McQO08,PS14|. The first part of Chapter 2 generalizes McQuillan’s Diophantine approximations
for one-dimensional foliations with absolutely isolated singularities, on higher dimensional manifolds. As
an application, we give a new proof of Brunella’s hyperbolicity theorem, that is, all the leaves of a generic
foliation of degree d > 2 in CP™ is hyperbolic. In the second part of Chapter 2 we introduce the so-called
weakly reduced singularities for one-dimensional foliations on higher dimensional manifolds. The “weakly
reduced singularities" assumption is less demanding than the one required for “reduced singularities", but
play the same role in studying the Green-Griffiths-Lang conjecture. Finally we discuss a strategy to prove
the Green-Griffiths-Lang conjecture for complex surfaces.

In Chapter 3, assuming that the canonical sheaf Ky is big in the sense of Demailly, we prove the
Kobayashi volume-hyperbolicity for any (possibly singular) directed variety (X, V).

In Chapter 4, our first goal is to deal with effective questions related to the Kobayashi and Debarre
conjectures, relying on the work of Damian Brotbek [Brol6] and his joint work with Lionel Darondeau
[BD15]. We then combine these techniques to study the conjecture on the ampleness of the Demailly-
Semple bundles raised by Diverio and Trapani [DT10], and also obtain some effective estimates related to
this problem. Our result integrates both the Kobayashi and Debarre conjectures, with some (non-optimal)
effective estimates.

The purpose of Chapter 5 is twofold: on the one hand we study a Fujita-type conjecture by Popa and
Schnell, and give an effective (linear) bound on the generic global generation of the direct image of the
twisted pluricanonical bundle. We also point out the relation between the Seshadri constant and the optimal
bound. On the other hand, we give an affirmative answer to a question by Demailly-Peternell-Schneider in a
more general setting. As applications, we generalize the theorems by Fujino and Gongyo on images of weak
Fano manifolds to the Kawamata log terminal cases, and refine a result by Broustet and Pacienza on the
rational connectedness of the image.

In Chapter 6, we give a concrete and constructive proof of the equivalence between the category of
semistable Higgs bundles with vanishing Chern classes and the category of all representations of the fun-
damental groups [Cor88, Sim88] on smooth K&hler manifolds. This chapter is written for the complex
geometers who are not familiar with the language of differential graded category used by Simpson to prove
the above equivalence on smooth projective manifolds, and for those who would like to see an elementary
proof of Corlette-Simpson correspondence for semistable Higgs bundles.
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Introduction (francais)



0.1. Le corps d’Okounkov généralisé

La théorie des corps d’Okounkov, développée indépendamment par Lazarsfeld et Mustatd [LMO09] et
par Kaveh et Khovanskii [KKO09], systématise une construction due & Okounkov [Oko96] ; elle généralise
le lien entre variétés toriques et polytopes rationnels, en associant un corps convexe & tout fibré en droites
sur une variété algébrique projective, via l'introduction d’une valuation adéquate sur le corps de fonctions
de cette variété.

Tous les résultats mentionnés ci-dessus concernent principalement les fibrés en droites. Comme [’ont
demandé Lazarsfeld et Mustati [LIMO09], une question naturelle est de savoir comment construire des corps
Okounkov pour les classes de cohomologie transcendantes dans le contexte de la géométrie kihlerienne, et
comment relier les volumes de ces classes & ceux des corps convexes associés. Dans le Chapitre 1, nous
étudions ce probléme de maniére systématique, et nous résolvons complétement ce probléme dans le cas des
surfaces kihleriennes.

Rappelons que, dans la construction des corps d’Okounkov pour les fibrés en droites gros, on doit
d’abord définir des fonctions de valuation des systémes linéaires gradués, & valeur dans un domaine euclidien,
relativement & un drapeau

Yo: X=Yy0oY12oY;>...0Y,10Y, ={p}

ou Y; est une sous-variété irréductible lisse de codimension ¢ dans X. Compte tenu de ’ensemble des
vecteurs de valuation normalisés, le corps d’Okounkov est obtenu par son enveloppe convexe. Cependant,
pour les classes transcendantes générales, il n’existe pas d’analogue holomorphe des fibrés en droites ; pour
combler ce manque, nous prenons l’ensemble des courants kihleriens a singularités analytiques dans les
classes transcendantes. Grace & la décomposition de Siu, nous sommes en mesure de définir de maniére
similaire une fonction de valuation.

Soient a € H*!(X,R) une classe grosse sur une variété kiihlerienne X de dimension n, et Y, un drapeau
sur X. Nous définissons S, comme l’ensemble des courants kihleriens dans « & singularités analytiques.
Nous définissons la fonction de valuation

v:S, — R"
T — vy, (T)=(T),...v.(T))
comme suit. Tout d’abord, nous définissons
v1(T) = sup{\ | T — \[Y1] = 0},

ou [Y7] est le courant d’intégration sur Y;. D’aprés la décomposition de Siu, nous savons que v;(7T) est le
coefficient v(T',Y7) du courant positif [Y7] apparaissant dans la décomposition de Siu de T'. Puisque T a des
singularités analytiques, la restriction T} := (T —v1[Y1])|y, est bien définie sur Y7, qui est encore un courant
kihlerien & singularités analytiques. Puis nous prenons

vo(T) = sup{X | T1 — A[Y2] = 0},
et nous continuons ainsi de définir les valeurs restantes v;(T) € R*.

DEFINTTION 0.1.1. Le corps d’Okounkov généralisé Ay, (o) < R™ par rapport au drapeau Y, est défini
comme ’adhérence de 'ensemble des vecteurs de valuation vy, (T').

Lorsque cette classe de cohomologie se trouve dans le groupe de Néron-Severi, en appliquant le théoréme
d’extension d’Ohsawa-Takegoshi, nous prouvons que le corps convexe nouvellement défini coincide avec le
corps d’Okounkov défini antérieurement.

THEOREME 1. (= Theorem A) Soient X une variété projective lisse de dimension n, L un fibré en droites
gros sur X et Y, un drapeau admissible fixé. Alors nous avons

0

1
A L)) =Ay,(L) = — L).
v.(e1(L)) = Ay, (L) nglmv(m )
En outre, dans la définition du corps d’Okounkov Ay, (L), il suffit de prendre ’adhérence de I’ensemble des
vecteurs de valuation normalisés au lieu de I’enveloppe convexe.

Un fait important pour les corps d’Okounkov est qu’on peut relier le volume d’un fibré en droites gros
au volume euclidien standard du corps d’Okounkov. II est tout a fait naturel de se demander si notre corps
convexe nouvellement défini pour les classes grosses se comporte de la méme maniére que celui d’origine.
Dans le cas des surfaces kihleriennes, nous donnons une caractérisation compléte des corps d’Okounkov
généralisés, et nous montrons que ce sont des polygones. En outre, nous obtenons une description explicite
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de la “ finitude” des polygones apparaissant comme les corps d’Okounkov généralisés. En particulier, cela
s’applique également aux cas originaux. Notre théoréme principal est le suivant :

THEOREME 2. (= Theorem B) Soient X une surface compacte kihlerienne, o € H1(X,R) une classe
grosse. Si C' est un diviseur irréductible de X, il existe des fonctions continues linéaires par morceaux

f7 g : [CL,S]HR+
oil f est convexe, g est concave et f < g, telles que A(a) < R? soit la région bornée par les graphes de f et
g:
Ala) = {(t.y) eR* [a<t < set f(t) <y <g(t)},
ot A(«) est le corps d’Okounkov généralisé par rapport au drapeau fixé

X 2C 2 {z},

et s =sup{t > 0 | a —tC grosse}. Si C est nef, a = 0 et f est croissante ; sinon, a = sup{t > 0| C <
E,k(a—1tC)}, ot Eypi = (g E4+(T) est le lieu base non-kihlerien de 7. En outre, A(«) est un polygone
fini dont le nombre de sommets est borné par 2p(X) + 2, ot p(X) est le nombre de Picard de X et

volx (o) = 2volgz (A(«)).

La preuve du théoréme ci-dessus est basée sur 'inégalité de Morse transcendante de Demailly pour les
surfaces kdhleriennes, et nous le montrons dans le cas des surfaces kihleriennes, en utilisant la décomposition
divisorielle de Zariski die & Boucksom. En outre, nos résultats s’appliquent également & certaines variétés
k&hleriennes de dimension supérieure.

THEOREME 3. (= Theorem F) Soit X une variété compacte kiilerienne de dimension n sur lequel le
cone nef modifie MAN coincide avec le cone nef A. Si o et 3 sont des classes nefs satisfaisant I'inégalité
a™ —na" 1.3 >0, alors a — 3 est grosse et volx(a — ) = a™ —na™" ! f.

Nous définissons également les corps d’Okounkov généralisés pour des classes pseudo-effectives pour les
surfaces kidhleriennes, et étudions leurs propriétés. Nous pouvons résumer nos résultats comme suit.

THEOREME 4. Soient X une surface kiihlerienne et « une classe pseudo-effective mais non grosse :

(i) si la dimension numérique vérifie n(a) = 0, alors pour toute courbe irréductible C' qui n’est pas
contenue dans la partie négative N(«) de la décomposition divisorielle de Zariski die a Boucksom, le
corps d’Okounkov généralisé s’écrit

Ay (@) =0 x vz (N(a)|o),

ou v, (N(a)|c) = v(N(a)|c, z) est le nombre de Lelong de N(«) en z ;
(ii) si n(a) =1, alors pour toute courbe irréductible C satisfaisant Z(«) - C' > 0, nous avons

Ay (@) = 0 x [vz(N(a)lo), va(N(a)lo) + Z(a) - C].

En particulier, la dimension numérique détermine la dimension du corps d’Okounkov généralisé.

0.2. Deégénérescence des courbes entiéres sur les variétés algébriques

Dans [McQ98], McQuillan a prouvé le théoréme suivant, qui résout partiellement la conjecture de
Green-Griffiths-Lang pour les surfaces complexes ayant un fibré cotangent gros :

THEOREME 0.2.1. Soient X une surface de type général et F un feuilletage holomorphe sur X, alors
toute courbe entiére f : C — X tangente & F n’est pas Zariski-dense.

La preuve originelle du Théoréme 0.2.1 est compliquée. Par la suite, de nombreux travaux [Bru99,PS14]
se sont attachés a expliquer et simplifier la preuve de McQuillan. Rappelons briévement 1’idée de la preuve
du théoréme 0.2.1. Supposons qu’il existe une courbe entiére Zariski-dense f : C — X qui est tangente &
F. Alors on peut associer & f un courant positif fermé T'[f] de bidimension (1,1), en suivant la méthode
introduite par McQuillan. Ensuite, on étudie les intersections du T[] avec le fibré tangent et le fibré normal
du feuilletage F respectivement. Les travaux ci-dessus montrent que ces deux nombres d’intersection sont
positifs. Cependant, puisque Kx est gros, on a T[f]- Kx > 0, et par 1’égalité K;(l = Tr + Nz, on aboutit
a une contradiction.

Le but du Chapitre 2 est d’étudier la dégénérescence des feuilles d’un feuilletage de dimension un sur les
variétés de dimension supérieure. Rappelons d’abord la formule suivante, qui est a la base de notre travail :



THEOREME 5. Soit (X, F) une paire 1-feuilletée kihlerienne. Si f : C — X est une courbe entiére
tangente a F dont I'image n’est pas contenue dans Sing(F), alors

{TUf1} - er(TF) + T(f, Tr) = {T )} - e1(Ox,(-1)) = 0,
ou Jr est un faisceau d’idéaux cohérent déterminé par les singularités de F, T'(f, Jr) est un nombre réel

non négatif représentant l'intersection de T'[f] avec Jr, et f[1) est le relevement de f au fibré projectivisé
P(Tx).

Si X est une surface complexe, comme dans la preuve de McQuillan [McQ98], quitte & considérer un
autre modeéle birationnel (X, F) — (X, F), le Théoréme 5 peut étre amélioré comme suit :

(0.2.1) T[f]-Tz =0,

ol f est relevement de f a X. I s’agit d’étendre ce résultat aux dimensions supérieures. Pour cela, nous
développons la théorie de McQuillan dans ce cadre.

THEOREME 6. (= Theorem G) Soit (X,F) une paire 1-feuilletée kihlerienne ayant des singularités
simples. Pour toute courbe entiére dont ’adhérence de Zariski mzamkl est de dimension au moins deux,
et qui est tangente & F, on a toujours

T[f] -Tr = 0.
Si on suppose en outre que Kx soit un fibré en droites gros, alors pour toute courbe entiére f tangente &
F, ou bien f est une feuille algébrique de F, ou bien 'image de f est contenue dans le lieu base augmenté
B, (Kz). En particulier, si Kz est ample, alors il n’existe pas d’application non constante f : C — X
tangente a F.

Comme application du Théoréme 6, nous redémontrons le théoréme de Brunella [Bru06, Corollary]
suivant.

THEOREME 0.2.2. (Brunella) Pour un feuilletage générique F de dimension un et de degré d > 2 sur
I’espace projectif complexe P, toutes les feuilles de F sont hyperboliques. Plus précisément, il n’existe pas
d’application non constante f : C — X tangente & F.

Pour un feuilletage ayant des singularités “ absolument isolées”, on dispose du théoréme de résolution
des singularités de [CCS97,Tom97] qui permet de se ramener & des singularités réduites. Plus précisément,
il existe une suite finie d’éclatements telle que les singularités de feuilletage soient simples. Nous avons le
résultat suivant.

THEOREME 7. (= Theorem H) Soit (X,F) une paire 1-feuilletée kihlerienne ayant des singularités
——Zariski
absolument isolées. Pour toute courbe entiére dont 'adhérence de Zariski f(C) " est de dimension au

moins deux, qui est tangent & F, il existe une suite finie d’éclatements telle que pour le nouveau modéle
birationnel (X, F), on ait

Tlf] Tz =0,
ou f:C— X sereleveen f:C — X.

La preuve du théoréme 6 repose fortement sur la réduction des singularités. Comme la motivation
originelle de McQuillan est d’étudier la conjecture de Green-Griffiths-Lang, nous suggérons d’introduire
un type de singularités dites faiblement réduites, pour les feuilletages de dimension un sur les variétés de
dimension supérieure. La condition correspondante est plus faible que celle mise en jeu par les sinularités dites
réduites, mais va jouer essentiellement le méme role dans ’étude de la conjecture de Green-Griffiths-Lang.
Notre théoréme est le suivant :

THEOREME 8. (=Theorem I) Soit X une variété projective de dimension n munie d’un feuilletage F de
dimension un ayant des singularités faiblement réduites. Si f est une courbe entiére Zariski-dense tangente
a F, satisfaisant T[f] - Kx > 0 (par exemple lorsque K x est gros), alors on a

T[f] det Nz <0
pour une certaine paire birationnelle (X, .7:')

On remarque que le résultat suivant de Brunella [Bru99, Theorem 2| implique une contradiction, si on
le combine avec le Théoréme 8 dans le cas des surfaces complexes.

THEOREME 9. Soit X une surface complexe munie d’un feuilletage F de dimension un. On suppose que
f:C — X est une courbe entiére Zariski-dense tangente a F, alors on a

T[f]-N]:ZO.
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Comme conséquence, nous obtenons immédiatement une autre preuve du théoréme de McQuillan 0.2.1
sans utiliser son “inégalité tautologique raffinée”. En outre, cela nous permet d’obtenir une nouvelle stratégie
pour étudier la conjecture de Green-Griffiths-Lang :

THEOREME 10. (= Theorem J) On suppose (conjecturalement) que le théoréme 9 s’étend & toute paire 1-
feuilletée kithlerienne (X, F), et que I’on a une suite finie d’éclatements telle que les singularités du feuilletage
F soient faiblement réduites. Alors, toute courbe entiére dans une surface projective de type général est
algébriquement dégénérée.

0.3. Hyperbolicité au sens de la mesure de Kobayashi
pour les variétés dirigées singuliéres de type général

Soit (X, V) une variété compleze dirigée, dans le sens de Demailly ; c’est-a-dire X est une variété
complexe munie d’un sous-fibré holomorphe V' < T'x (ou éventellement, d’un sous-espace linéaire holomorphe
pouvant présenter des singulariés). La philosophie de Demailly s’appuie sur le fait que certaines constructions
fonctorielles fonctionnent mieux dans la catégorie des variétés complexes dirigées [Dem95], méme dans le
“cas absolu”, c’est-a-dire le cas ou V = Tx. En général, les variétés dirigées sur lesquelles on travaille n’ont
aucune raison d’étre lisses. Un objectif naturel est d’étendre les résultats plus classiques de I’hyperbolicité
aux variétés dirigées. Soit (X, V) une variété dirigée singuliére , ou X est une variété projective lisse de
dimension n, et V' < Tx un sous-fibré holomorphe de rang rank(V’) = r. On définie le pseudo-volume (ou
mesure de volume) de Kobayashi-Eisenman comme suit :

DEFINITION 0.3.1. Le pseudo-volume de Kobayashi-Eisenman de (X,V') est défini par la densité in-
finitésimale

exy(§) :==inf{A>0; 3f : B, —» X, f(0) =z, Afs(r0) =&, fu(TB,) = V}.

Dans [Dem10]| Demailly introduit la notion faisceau canonique Ky pour toute variété dirigée singuliére
(X,V). Iy est démontré que si Ky est gros, alors toutes les courbes entiéres non constantes f : C — (X, V)
doivent satisfaire certaines équations différentielles algébriques globales. Dans ce chapitre, nous étudions le
pseudo-volume de Kobayashi-Eisenman d’une variété dirigée singuliére (X, V'), lorsque le faisceau canonique
Ky est gros. Notre résultat est le suivant :

THEOREME 11. (= Theorem K) Soit (X, V) une variété dirigée singuliére. On suppose que le faisceau
canonique Ky est gros. Alors le pseudo-volume de Kobayashi-Eisenman de (X, V') est génériquement non-
dégénére.

REMARK 0.1. Dans le cas absolu, le Théoréme 11 est montré dans [Gri71] et [KO71], et Demailly a
énoncé et démontré le théoréme 11 pour les variétés dirigées lisses [Dem95].

0.4. Autour de la conjecture de Diverio et Trapani

Vers 1970, S. Kobayashi a proposé les conjectures suivante pour les hypersurfaces de l'espace projectif
de grand degré d > d,, par rapport a la dimension. Les bornes optimales indiquées ci-dessous sont suggérées
par les travaux de Zaidenberg [Zai87].

CONJECTURE 0.4.1. Une hypersurface générique Xq — P**! de degré d est hyperbolique pour d > 2n+1
sin > 2.

CONJECTURE 0.4.2. Le complémentaire P\ X; est hyperbolique pour une hypersurface générique X, c
P™ de degré d = 2n + 1.

Depuis une quinzaine d’années, au moins trois techniques importantes ont été introduites pour étudier
ces conjectures :

(i) Champs de vecteurs méromorphes sur les espaces de jets introduits par Siu dans [Siu15] afin d’obtenir
davantage d’équations différentielles pour les courbes entiéres. L’idée consiste en une généralisation de
la technique de Voisin.

(ii) La stratégie développée par Demailly dans [Dem16] pour étudier la conjecture de Green-Griffiths-Lang.

(iii) La construction et l'utilisation par Brotbek [Bro16] de familles de variétés qui sont des déformations des
hypersurfaces de type Fermat (des techniques semblables ayant déja été mises en ceuvre antérieurement
par Brody-Green [BG77] et Nadel [Nad89]).

Les outils introduits dans les travaux précédents ont en commun les idées de la théorie des différentielles de
jets qui remontent aux travaux de Bloch [Blo26], et ont été développée dans les travaux de Green et Griffiths.
Dans [GGT9], a chaque variété X est associé une famille de fibrés maintenant appelés fibrés de différentielles
de jets de Green-Griffiths E,?ﬁT;’}, qui sont, grosso modo, des faisceaux d’équations différentielles d’ordre &
et de degré m pour les courbes holomorphes.



Les travaux [Brol6, Dem16] utilisent une version raffinée des fibrés introduits par Demailly dans
[Dem95]|, appelés maintenant fibrés de différentielles de jets de Demailly-Semple ou fibrés de differentielles
de jets invariants Ej ,,T5%. L’une des idées principales est que pour étudier les courbes entiéres tracées dans
X, la chose qui importe seulement est le lieu géométrique des courbes en question et non la fagon dont
elles sont, paramétrées. Demailly a ainsi été amené & considérer le sous-fibré Ey ,, % < EJGT% constitué
des éléments différentiels invariants par reparamétrage des jets des courbes. Dans ce contexte, Diverio a
montré dans [Div08] qu’il existe un théoréme d’annulation pour les fibrés de différentielles de jets lorsque
la codimension de la sous-variété dans PV est petite :

TuEOREME 0.4.1. (Diverio) Soit X < P une variété projective lisse de dimension n et de codimension
c. Sil<k<n/c, alors
HO(X, EESTY) = 0
pour tous m > 1.

Rappelons quelques propriétés des variétés dont le fibré cotangent est ample. Une des propriétés re-
marquables est qu’une variété & fibré cotangent ample est hyperbolique. Déterminer si une variété est
hyperbolique ou non, ou si une variété a un fibré cotangent ample sont, en général, des questions trés dif-
ficiles. De plus, il n’y a que relativement peu d’exemples connus de variétés a fibré cotangent ample. Nous
rappelons donc ci-dessous quelques situations ot cela se produit. Miyaoka, se basant sur des idées de Bo-
gomolov, a construit des exemples de surfaces a fibré cotangent ample comme intersection compléte dans
un produit de deux surfaces & fibré cotangent presque ample. Bogomolov a construit des variétés a fibré
cotangent ample comme l'intersection compléte dans un produit de variétés & fibré cotangent faiblement
gros (la construction a été détaillée par Debarre dans [Deb05]). Debarre a construit des variétés a fibré
cotangent ample comme intersection compléte dans une variété abélienne. Motivé par ce résultat, Debarre
a conjecturé un résultat analogue dans ’espace projectif. Récemment, en s’appuyant principalement sur
les idées et méthodes explicites découlant d’une série d’articles de Brotbek [Brol4, Brol5|, Brotbek et
Darondeau [BD15] et indépendamment S.-Y. Xie [Xiel5, Xiel6] sont parvenus & demontrer la conjecture
de Debarre :

THEOREME 0.4.2. (Brotbek-Darondeau, Xie) Soient X une variété projective lisse de dimension N, et A
un fibré en droites trés ample sur X. Alors il existe un nombre positif dy dépendant de la dimension N, telle
que pour tout ¢ = %, I'intersection compléte de ¢ hypersurfaces générique dans |A%| a un fibré cotangent
ample, dés lors que § > dy.

En outre, Xie a donné une borne inférieure effective pour le degré dy := NV ’. Bien que le travail
de Brotbek et Darondeau ne soit pas effectif en ce qui concerne le degré, leur méthode renforce les calculs
cohomologiques faits dans [Brol5], et donne une construction géométrique élégante. Celle-ci consiste a
définir une application ¥ du fibré cotangent relatif projectivisé P(€,/5) vers une certaine famille " — G,
appelée “Grassmannianne universelle” dans la section 4.4. Elle est utilisée pour construire beaucoup de formes
différentielles symétriques globales avec une torsion négative, en prenat le tiré en arriére pour récupérer de la
positivité sur 2. Afin de controler le lieu base, nous avons été conduits & utiliser le théoréme de Nakamaye
(voir [Laz04, Théoréme 10.3.5] ou [Bir13, Théoréme 1.3])), qui affirme que pour un fibré en droites gros
et nef L, le lieu base augmenté B (L) coincide avec le lieu base “ nul” Null(L). Dans ce cas, L est choisi
comme étant le fibré en droites tautologique .Z sur la Grasssmannienne universelle /. Dans le Chapitre 4,
nous obtenons un théoréme de Nakamaye effectif pour ce fibré L. Comme conséquence, nous obtenons une
borne inférieure assez nettement meilleure que celle de Xie :

THEOREME 12. Avec les mémes notations que dans le Théoréme 0.4.2, on peut prendre

dy = 4co(2N —1)%%°*tt L 6N — 3,

olt ¢o := [MFL].
D’autre part, en introduisant une nouvelle compactification de I’ensemble des jets réguliers J,T5® /Gy,
Brotbek est parvenu a développer les idées dans [BD15] et & démontrer la conjecture de Kobayashi [Bro16].

L’énoncé est le suivant :

THEOREME 0.4.3. (Brotbek) Soient X une variété projective lisse de dimension n, et A un fibré en
droites trés ample sur X. Alors il existe un nombre positif dx , dépendant de la dimension n, tel que pour
tout d > dg ,, un hypersurface générique dans |A?| soit hyperbolique au sens de Kobayashi.

Le principal outil nouveau introduit par Brotbek est une construction de wronskiens liés & la tour de
Demailly-Semple, qui associe des sections d’un fibré en droites aux jets invariants globaux. En fait, avant le
travail de Brotbek, on n’avait pas de fagon efficace de construire des differentielles de jets invariants globaux,
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sauf par la technique des connexions méromorphes introduites par Nadel [Nad89] et développées plus loin
par Demailly-El Goul [DEG97]. Cependant, il existe certaines obstructions difficiles & surmonter pour
obtenir la positivité du fibré en droites tautologique dans la tour de Demailly-Semple, en raison de la nature
géométrique “ tordue” de la compactification des fibrés de jets (ref. [Dem95]). Dans ce contexte, Brotbek a
introduit une fagon astucieuse d’éclater les faisceaux d’idéaux définis par les wronskiens. Afin d’obtenir une
borne inférieure dg , dans le Théoréme 0.4.3, il suffit d’obtenir la génération effective du faisceau d’idéaux
défini par les wronskiens. Dans la section 4.2.3, nous étudions ce problme et obtenons ainsi une borne
effective pour la conjecture de Kobayashi :

THEOREME 13. Avec la méme notation que dans le Théorme 0.4.3, on peut prendre
dgn =n""H(n +1)2"F5,

Dans la méme veine que la conjecture de Debarre, dans [D'T10], Simone Diverio et Stefano Trapani ont
posé la conjecture généralisée suivante :

CONJECTURE 0.4.3. (Diverio-Trapani) Soit X < P¥ Iintersection compléte de ¢ hypersurfaces génériques
de degré suffisamment grand. Alors, Ej, ,,,T% est ample lorsque k > % —1. En particulier, X est hyperbolique
au sens de Kobayashi.

Dans le Chapitre 4, en suivant les méthodes géométriques élégantes de [BD15] et [Bro16] pour la preuve
des conjectures Debarre et Kobayashi, nous démontrons le théoréme suivant :

THEOREME 14. (= Theorem L) Soient X une variété projective lisse de dimension n, et A un fi-
bré en droites trés ample sur X. Soit Z < X lintersection compléte de ¢ hypersurfaces génériques dans
|HO (X, Ox(dA))|. Alors pour tout entier positif k > 2 — 1, Z est quasi-k-jet ample (voir Définition 4.2.1
ci-dessous) lorsque d > 2¢([2])"T*2n™*¢. En particulier, Z est hyperbolique au sens de Kobayashi.

Comme notre définition de “quasi-k-jet ample” coincide avec ’amplitude du fibré cotangent lorsque
k = 1, le Théoréme 14 contient les conjectures de Kobayashi (¢ = 1) et Debarre (¢ > %), avec certaines
estimations effectives (non-optimales).

Quitte a prendre une borne inférieure légérement plus grande, en nous appuyant sur une astuce de

factorisation due a Xie [Xiel5], nous pouvons obtenir une borne inférieure uniforme :

THEOREME 15. (= Theorem M) Soient X une variété projective lisse de dimension n, et A un fibré en
droites trés ample sur X. Pour tout c-tuple d := (dy, ..., d.) tel que d, = ¢2n®"T2¢([2])2"+2¢+4 pour tout p
tel que 1 < p < ¢, et pour toutes hypersurfaces générales H), € | A |, Iintersection compléte Z := Hin...nH,

est quasi-k-jet ample lorsque k > k.

En utilisant la relation qui existe entre les fibrés tautologiques dans les tours de Demailly-Semple et les
fibrés de différentielles de jets invariants, nous prouvons le théoréme suivant sur la conjecture de Diverio-
Trapani :

THEOREME 16. (= Theorem N) Définissons q := Zg — H;:1 |Ad»| comme la famille universelle des

Q‘|)2n+20+4

- pour chaque 1 <

c-intersections complétes d’hypersurfaces dans []7_, [A%|, ot d, = >n?"2¢(]
p < c. Définissons U < H;:1 |A»| comme l'ouvert de Zariski de H;:1 |Ad»| au dessus duquel ¢ : 2 :=
¢ (U) — U est une fibration lisse.

Alors pour chaque j » 0, il existe un sous-fibré V; Ek,jmT}}/U défini sur 27, dont la restriction de V; a
la fibre générale Z de ¢ est un fibré ample. De plus, pour tout = € Z fixé et tout k-jet de courbe holomorphe

régulier [f]: (C,0) — (Z,z), il existe P; € H*(Z,V;|z ® A™!) tel que
Pi(f',.... ) #o0.

En d’autres termes, ce théoréme montre que nous pouvons trouver un sous-fibré des fibrés de différen-
tielles de jets invariants qui est ample et tel que son lieu de base de Demailly-Semple défini dans [DR13, Sec-
tion 2.1] est vide.

0.5. Applications des théorémes d’extension de L? aux problémes d’images directes

Une des applications marquantes de la technique de Bochner-Kodaira-Nakano-Hoérmander est le théoréme
d’extension L? de Ohsawa-Takegoshi [OT87]. Par la suite, de nombreux travaux se sont attachés & améliorer
les bornes effectives obtenues et & développer des approches plus algébriques. On peut citer ainsi les travaux
de Manivel, Siu, Berndtsson, Popovici, Blocki, Guan-Zhou, Junyan Cao [Man93, Siu95, Ber96, Pop05,
Blo13,GZ15,Caol14|. Plus récemment, Demailly a généralisé le théoréme d’extension aux sous-variétés
non nécessairement réduites, sous des conditions (probablement optimales) de courbure [Dem15a]. Il faut



mentionner ici que les résultats d’extension de Ohsawa-Takegoshi ont de nombreuses conséquences fonda-
mentales en géométrie algébrique et analytiques : approximation des courants positifs fermés, résultats de
positivité de la courbure de la métrique de Bergman, invariance des plurigenres par déformation, confirmation
de la conjecture de litaka dans le cas oil la base est une variété abélienne, etc.

Dans le Chapitre 5, nous utilisons le résultat d’extension de Demailly et le théoréme d’extension pluri-
canonique de Berndtsson et Paun [BP08] pour étudier deux problémes sur la positivité des images directes.
Tout d’abord, nous étudions une conjecture de Popa et Schnell :

CONJECTURE 0.5.1. (Popa-Schnell) Soient f : X — Y une application surjective entre deux variétés
projectives non singuliéres X et Y, ou dim(Y") = n, et L un fibré en droites ample sur Y. Alors, pour tout
k = 1, le faisceau

fo(K )(?k) ®L
est engendré par ses sections pour [ = k(n + 1).

Dans [PS14], Popa et Schnell ont prouvé la conjecture dans le cas ou L est un fibré en droites ample
et engendré par ses sections globales, lorsque dim(X) = 1. Dans une prépublication récente [Dutl7], en
appliquant le travail d’Angehrn et Siu, Dutta a amélioré le résultat de Popa et Schnell, mais avec une borne
quadratique de [ en termes de la dimension n :

l>k(<n;1)+sg.

Dans le Chapitre 5, en appliquant le résultat d’extension de Demailly ainsi que la méthode de 'invariance
des plurigenres de Paun [Pau07], nous montrons le théoréme suivant :

THEOREME 17. (= Theorem O) Soient f : X — Y une application surjective entre deux variétés
projectives non singuliéres X et Y, ot dim(Y) = n, et L un fibré en droites ample sur Y. Si y est une valeur
réguliére de f, alors pour tout k£ > 1, le faisceau

f«(K) @ L!

est, en point donné y € Y, engendré par ses sections pourvu que

k(L(any)J b,

ou €(L,y) > 0 est la constante de Seshadri de L au point y. En particulier, lorsque ¢(L,y) > 1 aux points
en position trés générale y € Y, alors la conjecture 0.5.1 est valable pour les points en position générale en
Y ; c’est-a-dire que 'image directe

fo(K )(?k) ®L
est engendrée par ses sections aux points de Y en position générale, dés que [ > k(n + 1).

D’aprés un résultat de Ein-Kiichle-Lazarsfeld [EKL95], il existe une borne inférieure universelle pour la
constante de Seshadri. Plus précisément, pour un point en position trés générale y € Y | e(L,y) = ﬁm.
En appliquant ce résultat, nous obtenons une estimation effective pour la conjecture 0.5.1 :

THEOREME 18. (= Theorem P) Soient f : X — Y une application surjective entre deux variétés
projectives non singuliéres X et Y, ot dim(Y) = n, et L un fibré en droites ample sur Y. Alors pour chaque
k > 1, 'image directe

fo(K) e L

est engendrée par ses sections aux points de Y en position générale pour tout [ > k(n? + 1).

Par rapport au résultat de Dutta, notre borne de [ est aussi quadratique en termes de la dimension
n mais légérement plus faible que la sienne. Cependant, si nous utilisons un résultat bien connu dans
la théorie de Mori que Ky + (n + 1)L est semi-ample pour tout fibré en droites ample L et le théoréme
d’extension pluricanonique de Berndtsson-Piun [BP08], nous obtenons une borne pour [ linéaire en termes
de la dimension n.

THEOREME 19. (= Theorem Q) Soient f : X — Y une application surjective entre deux variétés
projectives non singuliéres X et Y, ou dim(Y) = n, et L un fibré en droites ample sur Y. Alors pour tout
k = 1, 'image directe

KR @ L%

est engendrée par ses sections aux points de Y en position générale, dés que [ = k(n + 1) + n? —n.

La deuxiéme partie du Chapitre 5 est consacrée a ’étude d’une question de Demailly-Peternell-Schneider
posée dans [DPS01] :
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PROBLEME 1. Soient f: X — Y une application surjective entre deux variétés projectives normales Q-
Gorenstein. Lorsque — K x est pseudo-effectif et que son lieu de base non-nef ne se projette pas surjectivement,
sur Y, — Ky est-il pseudo-effectif?

Inspiré par le travail récent de J. Cao sur l'isotrivialité locale de I’application d’Albanese d’une variété a
fibré anticanonique nef [Cao16], nous répondons positivement au probléme 1 lorsque X et Y sont remplacées
par des paires :

THEOREME 20. (= Theorem R) Soit f : X — Y une application surjective entre deux paires (X, D) et
(Y, A), ou (X, D) est log-canonique et A est un Q-diviseur (pas nécessairement effectif) sur Y. On suppose
que —(Kx + D) — f*A est pseudo-effectif, et que le lieu base non-nef B_ ( —(Kx+D)- f*A) ne se projette
pas surjectivement sur Y. Alors —Ky — A est pseudo-effectif et le lieu base non-nef est contenu dans
f(B_(=Kx —D— f*A)) uZ U Zp, ot Z est la sous-variété minimale de Y telle que f: X\f~1(Z) - Y\Z
soit une fibration lisse, et ot Zp est une union au plus dénombrable de sous-variétés propres contenant Z
telle que pour tout y ¢ Zp, la paire (f~*(y), D}s-1(,)) soit aussi log-canonique.

Le théoréme suivant de Fujino et Gongyo [FG14] est une conséquence directe du Théoréme 20 :

THEOREME 0.5.1. (Fujino-Gongyo) Soit f : X — Y une fibration lisse entre deux variétés projectives
lisses. Soient D un Q-diviseur effectif sur X tel que (X, D) soit log-canonique, avec Supp(D) un diviseur a
croisements normaux, et Supp(D) & croisements normaux relativement au dessus de Y. Soit A un Q-diviseur
(pas nécessairement effectif) sur Y. Si —(Kx + D) — f*A est nef, alors —Ky — A est aussi nef.

En outre, nous montrons le théoréme suivant :

THEOREME 21. (= Theorem S) Avec les méme notations dans le Théoréme 20, on suppose que (X, D)
est klt, que —Kx — D — f*A est gros et que son lieu de base non-nef B_(—Kx — D — f*A) ne domine pas
Y. Alors —Ky — A est gros et son lieu base non-nef est contenu dans f(B_(—Kx — D — f*A)) u Z U Zp.

En combinant les Théorémes 20 et 21, nous prouvons le théoréme suivant, qui est une généralisation
d’un théoréme de Fujino et Gongyo [FG12] sur I'image des variétés de Fano faibles :

THEOREME 22. (= Theorem T) Soit f : X — Y une fibration lisse entre deux variétés projectives lisses,
et soit D un Q-diviseur effectif sur X tel que (X, D) soit klt, avec (X, D)x,) klt pour tout y € Y. Soit A

un Q-diviseur (pas nécessairement effectif) sur Y. Si —Kx — D — f*A est gros et nef, alors —Ky — A est
aussi gros et nef.

Nous utilisons le Théoréme 21 afin de raffiner un résultat de Broustet et Pacienza sur la connexité
rationnelle de 'image [BrP11, Théoréme 1.2] :

THEOREME 23. (= Theorem U) Avec les mémes notations que dans le Théoréme 20, on suppose que
(X, D) et (Y,A) sont deux paires klt. Si —(Kx + A+ f*A) est gros et si son lieu base non-nef B_(—Kx —
D — f*A) ne domine pas Y, alors Y est rationnellement connexe modulo f(B,(—KX —-D-— f*A)) uZuZp,
ce qui signifie que pour tout point général y € Y, il existe une courbe rationnelle R, joignant y & un point
de f(BL(—Kx —D— f*A)) v Zu Zp.

REMARQUE 1. Avec les mémes hypotheéses et notations que dans le Théoréme 23, dans [BrP11], Broustet
et Pacienza ont montré que Y est uniréglée.

0.6. Une remarque sur la correspondance de Corlette-Simpson

Sur une variété kihlerienne X, on appelle fibré de Higgs la donnée d’un couple (E,0), ou E est un
fibré holomorphe sur X et € une forme différentielle réguliére de degré 1 a valeurs dans le fibré des endo-
morphismes End(E), satisfaisant l'identité 6 A § = 0. En 1965, Narasimhan et Seshadri établissaient une
correspondance bijective entre I’ensemble des classes d’équivalence de représentations unitaires irréductibles
du groupe fondamental 7 d’une surface de Riemann compacte X, et ’ensemble des classes d’isomorphisme de
fibrés vectoriels stables de degré 0 sur X. La correspondance fut étendue a toute variété projective lisse par
Donaldson [Don85], puis & toute variété kihlérienne compacte par Uhlenbeck et Yau [UY86]. Le résultat
fondamental de C. Simpson [Sim88| donne une caractérisation des fibrés de Higgs sur lesquels il existe une
métrique de Yang-Mills.

Par la suite, C. Simpson a trouvé un analogue pour les représentations linéaires quelconques. Le résultat
essentiel de Simpson [Sim92], qui repose en partie sur les résultats de Corlette [Cor88], et surtout sur ceux
de Donaldson [Don87], consiste & établir une équivalence de catégories entre la catégorie des représentations
linéaires du groupe fondamental d’une variété projective lisse, celle des fibrés plats, et celle des fibrés de Higgs
semi-stables de classes de Chern nulles. Ceci se traduit, quand on fixe le rang r, par ’existence de trois
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espaces de modules grossiers Mg(r), Mpr(r) et Mpei(r) associés & de tels objets ; ces variétés algébriques
ont méme ensemble de points fermés, mais les structures algébriques différent.

Le but du chapitre 6 est de donner une preuve concréte et constructive de la correspondance de Simpson
entre la catégorie des représentations linéaires du groupe fondamental d’une variété compacte kihlerienne
lisse, et celle des fibrés de Higgs semi-stables de classes de Chern nulles. Le résultat est le suivant :

THEOREME 24. (= Theorem V) Soit X une variété compacte kihlerienne lisse. Alors les énoncés suivants
sont équivalents :

(i) E est un fibré plat sur X ; B
(ii) il existe une structure de fibré de Higgs (F,0,0) sur E, et (E, ) posséde une filtration :

{0} = (Eo,0p) = (E1,01) © ... € (B, 0p) = (E,6)

ou les (E;,6;) sont des sous-faisceaux de Higgs de (E,#) tels que chaque gradué (E;,0;)/(E;—1,0;—1)
soit un fibré de Higgs stable de classes de Chern nulles.
(iii) E est un fibré de Higgs semi-stable de classes de Chern nulles.

Dans le chapitre 6, nous ne prouvons que ’équivalence entre (i) et (ii) dans le Théoréme 24. L’implication
(ii) = (iii) est triviale. Pour montrer que (iii) implique (ii), il suffit de montrer que tous les gradués dans
la filtration de Jordan-Holder dun fibré de Higgs semi-stable de classes de Chern nulles sont des faisceaux
localement libres. Dans [DPS94], les auteurs ont prouvé ce résultat pour les fibrés sans champ de Higgs 6.
Dans [Sim92, Théoréme 2|, lorsque X est projectif, Simpson a utilisé le théoréme de restriction de Mehta
et Ramanathans afin de montrer le Théoréme 24. Dans une prépublication récente [NZ15], en appliquant
le flot de Yang-Mills-Higgs pour construire la métrique approximative de Hermite-Einstein pour les fibrés de
Higgs semi-stables, et en combinant ceci avec les techniques de [DPS94], Y.-C. Nie et X. Zhang ont prouvé
Pimplication (iii) = (ii).

En particulier, si le champ de Higgs disparait, le résultat de Simpson suivant est une conséquence directe
du Théoréme 24 :

THEOREME 0.6.1. (Simpson) Soit X une variété compacte kihlerienne lisse. On suppose que le fibré
holomorphe E sur X posséde une filtration
(0.6.1) {0} =EycE,c---cE,=F
tel que tous les gradués Ey/Fj_1 soient hermitiens plats. Alors la connexion de Gauss-Manin Dy de E est
compatible avec la connexion hermitienne naturelle sur le gradué Fy/Fy_1 pour chaque k = 1,...,p.
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0.7. Generalized Okounkov Bodies

The theory of Okounkov bodies, first introduced by Okounkov, and systematically developed by Lazars-
feld and Mustatd [LMO09] as well as by Kaveh and Khovanskii [KKO09], aims at generalizing the notion of
the Newton polytope of a projective toric variety. Its main purpose is to associate a convex body in the
Euclidean space to a big line bundle on a projective manifold.

All the results mentioned above are mainly concerned with the line bundles. As was asked by Lazarsfeld
and Mustatd [LMO09], a natural question would be to construct Okounkov bodies for transcendental coho-
mology classes in the Kidhler geometry setting, and to realize the volumes of these classes by convex bodies
as well. In Chapter 1, we have studied this problem in a systematic way, and we have solved this problem
completely in the case of K&hler surfaces.

It should be stressed that in the construction of Okounkov bodies for big line bundles, one first has to
define valuation-like functions from the graded linear systems of the line bundle to the Euclidean domain,
with respect to a fixed flag

Yo: X =YY oY,o...0Y,_1 0Y, ={p},

where Y; is a smooth irreducible subvariety of codimension ¢ in X. Then the Okounkov body is obtained by
taking the convex hull of the set of normalized valuation vectors. However, for general transcendental classes,
there is no holomorphic analogue of the linear system of the line bundle; instead of this, we consider the set
of Kéhler currents with analytic singularities in the transcendental classes. Thanks to the Siu decomposition
theorem, it is possible to define a valuation-like function very much as in the algebraic situation.

Let a € HY1(X,R) be a big class on a n-dimensional Kiihler manifold X, and let Y, be a fixed flag on
X. Set S, to be the set of Kihler currents in o with analytic singularities. We define the valuation-like
function

v:S, — R"

T — vy, (T)= i (T),...vn(T))
as follows. First, set

v1(T) = sup{\ | T — A\[Y1] = 0},
where [Y7] is the current of integration over Y;. By Siu’s decomposition, we know that v1(T) is the coef-
ficient v(T,Y7) of the positive current [Y7] appearing in the Siu decomposition of T'. Since T has analytic
singularities, the restriction T := (T — v1[Y1])|y, is well-defined over Y7, which is still a K&hler current with
analytic singularities. Then take

vo(T) = sup{A | T1 — A\[Y2] = 0},
and continue in this manner to define the remaining values v;(T) € R™.

DEFINITION 0.7.1. The generalized Okounkov bodies Ay, (o) € R™ with respect to the flag Y, is defined
to be closure of the set of valuation vectors vy, (T).

When this cohomology class happens to lie in the Néron-Severi group, by applying the Ohsawa-Takegoshi
extension Theorem, we prove that the newly defined convex body coincides with the original Okounkov body.

THEOREM 1. (= Theorem A) Let X be a smooth projective variety of dimension n, L be a big line bundle
on X and Y, be a fized admissible flag. Then we have

0

Ay, (ei(L)) = Ay, (L) = |

m=1

Moreover, in the definition of Okounkov body Ay, (L), it suffices to take the closure of the set of normalized
valuation vectors instead of the closure of the convex hull.

%y(mL).

An important fact for the Okounkov bodies is that one can relate the volume of a given big line bundle to
the standard Euclidean volume of its Okounkov body. It is quite natural to wonder whether our newly defined
convex body for big classes behaves similarly as the original Okounkov body. In the case of Kéhler surfaces,
we give a complete characterization of generalized Okounkov bodies, and show that they must always be
finite polygons. Moreover, we obtain an explicit description for the “finiteness" of the polygons appearing as
generalized Okounkov bodies of big classes. In particular, this also holds for the original Okounkov bodies.
Our main theorem is the following

THEOREM II. (= Theorem B) Let X be a compact Kihler surface, o« € H>*(X,R) be a big class. If C
is an irreducible divisor of X, there are piecewise linear continuous functions

f?g : |:CI,7S]'—>R+
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with f convex, g concave, and f < g, such that A(a) = R? is the region bounded by the graphs of f and g:
Ale) ={(t,y) eR? |a <t < s,and f(t) <y < g(t)}.
Here A(«) is the generalized Okounkov body with respect to the fized flag
X o C 2 {z},

and s = sup{t > 0 | « — tC is big}. If C is nef, a = 0 and f(t) is increasing; otherwise, a = sup{t > 0 |
C € E,x(a—tC)}, where Epx := (g E+(T) for T ranging among the Kdhler currents in o, which is the
non-Kdhler locus. Moreover, A(«) is a finite polygon whose number of vertices is bounded by 2p(X) + 2,
where p(X) is the Picard number of X, and

volx (o) = 2volgz (A(«)).

The proof of the above theorem is based on Demailly’s transcendental Morse inequality for Kéhler sur-
faces, and we achieved this in the case of Kahler surface using Boucksom’s Divisorial Zariski decomposition.
Moreover, our results also hold for some special Kdhler manifolds of higher dimensions.

THEOREM III. (= Theorem 1.3.5) Let X be a compact Kaihler manifold of dimension n on which the
modified nef cone MN coincides with the nef cone N'. If o and 3 are nef classes satisfying the inequality
a™ —na™ - B> 0, then a — f3 is big and volx (o — B) = a™ —na™ 1. 3.

We also define the generalized Okounkov bodies for pseudo-effective classes in Kéhler surfaces, and study
their properties. We summarize our results as follows

THEOREM IV. (= Theorem F') Let X be a Kdhler surface and « be a pseudo-effective that is not big.

(i) If the numerical dimension n(«) = 0, then for any irreducible curve C' which is not contained in the
negative part N(«) of Boucksom’s divisorial Zariski decomposition, we have a generalized Okounkov
body of the form

Aca)(@) =0 x v (N(a)lo),

where vz (N (a)|c) = v(N(a)|c,x) is the Lelong number of N(«) at x;
(ii) if n(«) = 1, then for any irreducible curve C satisfying Z(«) - C > 0, we have

Acay(@) =0 x [vz(N(a)|o), va(N(a)le) + Z(a) - C].

In particular, the numerical dimension determines the dimension of the generalized Okounkov body.

0.8. Dengeneracy of Entire Curves on Higher dimensional Manifolds

In [McQ98], McQuillan proved the following theorem, which partially solved the Green-Griffiths-Lang
conjecture for complex surfaces with big cotangent bundle:

THEOREM 0.8.1. (McQuillan) Let X be a surface of general type and F a holomorphic foliation on X.
Then no entire curve F : C — X tangent to F can be Zariski dense.

The original proof of Theorem 0.8.1 is rather involved. Somewhat later, several works appeared (e.g.
[Bru99, PS14]), attempting to explain and simplify McQuillan’s proof. Let us recall briefly the idea in
proving Theorem 0.8.1. Assume that there exists a Zariski dense entire curve f : C — X which is tangent
to F. Then, one can study the intersection properties of the Ahlfors current T[f], which is a representative
of a (n —1,n — 1)-cohomology class in X, with the tangent bundle and the normal bundle of the foliation F
respectively. The above works provided that both of the intersections numbers are non-negative. However,
since Kx is big, then T[f] - Kx > 0, and by the equality K;(l = Tr + N, a contradiction is obtained.

The goal of this paper is to study the degeneration of leaves of the one-dimensional foliations on higher
dimensional manifolds, inspired by the work [McQ98,Bru99,McQO08,PS14]. Let us first recall the following
fundamental intersection formula [McQ98, Bru99,PS14]|, which is the basis of our work:

THEOREM 0.8.2. (Brunella-McQuillan-Pdaun-Sibony) Let (X, F) be a Kihler 1-foliated pair. If f : C —
X is an entire curve tangent to F whose image is not contained in Sing(F), then

{TIf1} - e(TF) + T(f, TF) = {TLfiyl} - a1 (0x, (1)) =0,

where Jr is a coherent ideal sheaf determined by the singularity of F, and T(f, JF) is a non-negative real
number representing the “intersection” of T f] with Jr (see Remark 2.2.1 for the Definition), fi1y is the lift
of f to the projectivized bundle P(Tx).



14

3 If X is a complex surface, as is proved by McQuillan [McQ98], after passing to some birational model
(X,F) — (X,F), Theorem 0.8.2 can be improved to the extent that

(0.8.1) T[f]-Tz =0,

where f is the lift of f to X. By pursuing his philosophy of “Diophantine approximation" for foliations, we
can generalize (0.8.1) to higher dimensional manifolds:

THEOREM V. (= Theorem G) Let (X,F) be a I-foliated pair with simple singularities (see Definition
2.8.2, and if X is a complex surface, simple singularities are reduced ones). For any entire curve whose
———Zariski
Zariski closure f(C) T s of dimension at least 2, which is also tangent to F, one always has

T[f] -Tr = 0.

If one further assumes that Kx is a big line bundle, then for any entire curve f tangent to F, either f
is an algebraic leaf of F, or the image of f is contained in the augmented base locus B, (Kr) of Kr. In
particular, if Kz is ample, then there exists no nonconstant transcendental entire curve f : C — X tangent
to F.

As an application of Theorem V, we can give a new proof of the following elegant theorem by Brunella
[Bru06, Corollary]

THEOREM 0.8.3. (Brunella) For a generic foliation by curves F of degree d = 2 on the complex projective
space P™, that is, F is generated by a generic holomorphic section (a rational vector field)

se H'(P", Tpn ® O(d — 1)),

all the leaves of F are hyperbolic. More precisely, there exists no nonconstant f : C — P™ tangent to F (and
possibly passing through Sing(F)).

For any one-dimensional foliation with absolutely isolated singularities (see Definition 2.3.1), by the
reduction theorems [CCS97, Tom97], one can take a finite sequence of blow-up’s to make the singularities
simple. We thus have the following result:

THEOREM VI. (= Theorem H) Let F be a foliation by curves on the n-dimensional complex manifold X,
such that the singular set Sing(F) of the foliation F is a set of absolutely isolated singularities. If f : C —» X

—Zariski
is an entire curve whose Zariski closure f(C) T s of dimension at least 2, which is also tangent to F,

then one can blow-up X a finite number of times to get a new birational model ()N(,J?) such that

T[f]- Tz >0,

where f is the lift of f to X.

The proof of Theorem V relies heavily on the reduction of singularities. According to the original
motivation of McQuillan is to study the Green-Griffiths-Lang conjecture, we introduce the so-called weakly
reduced singularities (see Definition 2.3.4) for one-dimensional foliations on higher dimensional manifolds.
They are less demanding than the reduced ones, but play the same role in studying the Green-Griffiths-Lang
conjecture. Our theorem is as follows:

THEOREM VII. (=Theorem I) Let X be a projective manifold of dimension n endowed with a one-
dimensional foliation F with weakly reduced singularities. If f is a Zariski dense entire curve tangent to F,
satisfying T[f] - Kx > 0 (e.g. Kx is big), then we have

T[f]-det Nz <0
for some birational model (X,]:')

REMARK 0.8.1. Our definition of “weakly reduced singularities" is actually weaker than the usual concept
of reduced singularities, which always requires a lot of checking (e.g. through a classification of singularities).
We only need to focus on the multiplier ideal sheaf of Jr, instead of trying to understand the exact behavior
of singularities.

It is notable that the following result due to Brunella [Bru99, Theorem 2] implies a conclusive contra-
diction in combination with Theorem VII, in the case of complex surfaces.

THEOREM 0.8.4. (Brunella) Let X be a complex surface endowed with a foliation F (no assumption is
made for singularities of F here). If f : C — X is a Zariski dense entire curve tangent to F, then we have

T[f]-N]:ZO.
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Therefore, we get another proof of McQuillan’s Theorem 0.8.1 without using the refined formula (0.8.1)
immediately. This leads us to observe that if one could resolve arbitrary singularities of one-dimensional
foliations into weakly reduced ones, and generalize the previous Brunella Theorem to higher dimensional
manifolds, one could infer the Green-Griffiths conjecture for surfaces of general type.

THEOREM VIII. (= Theorem J) Assume that Theorem 0.8.4 holds for any directed variety (X, F) where
X is a base of arbitrary dimension and F has rank 1, and that one can resolve the singularities of F
into weakly reduced ones. Then every entire curve drawn in a projective surface of general type must be
algebraically degenerate.

0.9. Kobayashi Volume-Hyperbolicity for (Singular) Directed Varieties

Let (X,V) be a complex directed manifold, i.e X is a complex manifold equipped with a holomorphic
subbundle V' < Tx. The philosophy behind the introduction of directed manifolds, as initially suggested
by J.-P. Demailly, is that, there are certain fonctorial constructions which work better in the category of
directed manifolds [Dem95]. This is so even in the “absolute case”, i.e. in the case V = Tx. In general,
singularities of V' cannot be avoided, even after blowing-up, and V can be seen as a coherent subsheaf of
Tx such that Tx/V is torsion free. Such a sheaf V' is a subbundle of Tx outside of an analytic subset of
codimension at least 2, which we denote here by Sing(V). The Kobayashi-Eisenman volume measure can
also be defined for such (singular) directed pairs (X, V).

DEFINITION 0.9.1. Let (X, V) be a directed manifold with dim(X) = n and let rank(V) = r. Then the
Kobayashi-Eisenman volume measure of (X, V) is the pseudometric defined on any £ € A"V, for x ¢ Sing(V'),
by

ek y(§) =if{A>0; 3f: B, — X, f(0) =z, Mu(r0) =¢&, fu(Th,) < V},

a—‘zl A oo A == is the unit r-vector of C” at the origin. One says

where B, is the unit ball in C" and 79 = 3
that (X, V) is Kobayashi measure hyperbolic if e’y  is generically positive definite, i.e. positive definite on a

Zariski open set.

In [Dem10] the author also introduced the concept of canonical sheaf Ky for any singular directed
variety (X, V'), and he showed that the “bigness" of Ky implies that all non constant entire curves f : C —
(X,V) must satisfy certain global algebraic differential equations. In this note, we study the Kobayashi-
Eisenman volume measure of the singular directed variety (X, V'), and give another geometric consequence
of the bigness of y. Our main theorem is as follows:

THEOREM IX. (= Theorem K) Let (X,V) be a compact complex directed variety (where V is possibly
singular), and let rank(V) = r, dim(X) = n. If V is of general type (see Definition 3.3 below), with a base
locus Bs(V) ¢ X, then (X, V) is Kobayashi measure hyperbolic.

REMARK 0.2. In the absolute case, Theorem IX is proved in [Gri71] and [KO71]; for a smooth directed
variety it is proved in [Dem95].

0.10. Effective Results On the Diverio-Trapani Conjecture

The famous Kobayashi conjecture states that a general hypersurface in P™ of sufficient large degree
d > dk , is Kobayashi hyperbolic. In the last 15 years, at least three important techniques were introduced
to study this problem: Siu’s slanted vector fields for higher order jet spaces [Siul5], Demailly’s approach for
the study of the Green-Griffiths-Lang conjecture through directed varieties strongly of general type [Dem16],
and Brotbek’s recent construction of families of varieties which are deformations of Fermat type hypersurfaces
[Bro16]. In the works [Bro16,Dem16], several important techniques for the study of hyperbolicity-related
problems are developed using énvariant jet differentials Ej ,,T%; these were introduced by J.-P. Demailly
in [Dem95]|, and can be seen as a variant of the Green-Griffiths jets E,S’SlT;‘; initialed by Green-Griffiths
[GGT79], with the additional property that they are invariant under the reparametrization; both types of jets
generalize to higher orders the symmetric differentials S™T%. However, when trying to enforce positivity for
jet bundles of the complete intersection of hypersurfaces in P%V, one cannot expect to achieve this for lower
order jet differentials if the codimension of subvariety is small, as was proved by Diverio [DivO08|:

THEOREM 0.10.1. (Diverio) Let X < PN be a smooth complete intersection of hypersurfaces of any
degree in PV, Then
HY(X,EJST%) =0
forallm=>=1 and 1 <k < dim(X)/codim(X).



16

On the other hand, the hyperbolicity should be enhanced by taking an intersection of a larger number
of projective hypersurfaces of high degree. Debarre verified this in the case of abelian varieties, by proving
that the intersection of at least % sufficiently ample general hypersurfaces in an N-dimensional abelian
variety has an ample cotangent bundle. He further conjectured that the analogous statement should also
hold for complete intersections in projective space. Very recently, relying mainly on the ideas and explicit
methods arising in the series of articles by Brotbek [Brol4,Brol5], Brotbek and Darondeau [BD15] and
independently S.-Y. Xie [Xiel5,Xiel6] proved the Debarre conjecture::

THEOREM 0.10.2. (Brotbek-Darondeau, Xie) Let X be any smooth projective variety of dimension N,
and let A be a very ample line bundle on X. Then there exists a positive number dy depending only on the
dimension N, such that for each ¢ > %, the complete intersection of ¢ general hypersurfaces in |A%| has an
ample cotangent bundle as soon as § = dy.

Moreover, Xie was able to give an effective lower bound on hypersurface degrees dy := NV ° Although
the work by Brotbek and Darondeau is not effective as far as the lower bound dy is concerned, they were able
to strengthen the cohomological computations of [Bro15], and produced an elegant geometric construction,
which defines a map ¥ from the projectivized relative cotangent bundle P(€2, /5) to a certain family 2 — G.
We called & the universal Grassmannian in Section 4.4. It is used to construct a lot of global symmetric
differential forms with a negative twist, by pulling-back the positivity on . In order to make the base
locus empty, they apply Nakamaye’s Theorem (see [Laz04, Theorem 10.3.5] or [Bir13, Theorem 1.3]) which
asserts that for a big and nef line bundle L on a projective variety, the augmented base locus B (L) coincides
with the null locus Null(L). In this case, L is taken to be the tautological line bundle . on the universal
Grasssmannian %. In Chapter 4, we obtain an effective result for a slightly weaker statement than the
Nakamaye result used by Brotbek and Darondeau, that is still sufficient to complete the argument. In this
way, as a consequence of their work, we obtain a better lower bound than Xie’s:

THEOREM X. With the same notation in Theorem 0.10.2, one can take

dn = 4co(2N — 1)%0Tt L 6N — 3,
where ¢g == | Y.
On the other hand, by introducing a new compactification of the set of regular jets J, Ty */Gy, Brotbek
was able to fully develop the ideas in [BD15] to prove the Kobayashi conjecture [Bro16]. His statement is
the following;:

THEOREM 0.10.3. (Brotbek) Let X be a smooth projective variety of dimension n. For any very ample
line bundle A on X and any d > dk n, a general hypersurface in |A4| is Kobayashi hyperbolic. Here dy .,
depends only the dimension n.

The main new tool Brotbek introduced is a Wronskian construction related to the Demailly-Semple tower,
which associates sections of the line bundle to global invariant jet differentials. In fact, before Brotbek’s work,
we had few ways of constructing invariant jet differentials except the technique of meromorphic connections
introduced by Nadel [Nad89] and developed further by Demailly-El Goul [DEG97]. However, there are
certain insuperable obstructions to the positivity of the tautological line bundle on the Demailly-Semple
towers, due to the compactification of the jet bundles (ref. [Dem95]). Brotbek introduced a clever way to
blow-up the ideal sheaves defined by the Wronskians, which behaves well in families; as a consequence he was
able to apply the openness property of ampleness for the higher order jet bundles to prove the hyperbolicity
for general hypersurfaces. In order to make the lower bound dg ,, in Theorem 0.10.3 effective, one needs to
make some noetherianity arguments effective as well. Along with the Nakmaye theorem, there is another
constant me (X, L) which reflects the stability of Wronskian ideal sheaf when the positivity of the line
bundle L increases. In Section 4.2.3 we study Brotbek’s Wronskians and prove an effective generation result
for Wronskian ideal sheaves. In this way, by adapting Brotbek’s result, we have been able obtain an effective
bound for the Kobayashi conjecture.

THEOREM XI. With the same notation in Theorem 0.10.3, one can take
dgn =n""H(n +1)>"2,

REMARK 0.3. By using Siu’s technique of slanted vector fields on higher jet spaces outlined in the
survey [Siu02], and the Algebraic Morse Inequality of Demailly and Trapani, the first effective lower bound
for degrees of hypersurfaces that are weakly hyperbolic (one says that a variety X is weakly hyperbolic
if all its entire curves lie in a proper subvariety Y & X) was given by Diverio, Merker and Rousseau
[DMR10]. They indeed confirmed the Green-Griffiths-Lang conjecture for generic hypersurfaces in P of
degree d > 2(n=1)° Later on, by means of a very elegant combination of his holomorphic Morse inequalities
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and of non probabilistic interpretation of higher order jets, Demailly was able to improve the lower bound
to d > {%4 (n log (nlog(24n))> J [Dem10]. The latest best known bound is d > (5n)?n™ by Darondeau

[Dar15]. In the recent published paper [Siul5], Siu provided more details to his strategy in [Siu02] to
complete his proof of the Kobayashi conjecture, but it seems quite difficult to derive explicit degree bounds
from [Siul5].

In the same vein as the Debarre conjecture, in [DT10], Simone Diverio and Stefano Trapani raised the
following generalized conjecture:

CONJECTURE 0.10.1. (Diverio-Trapani) Let X — PV be the complete intersection of ¢ general hyper-
surfaces of sufficiently high degree. Then, Ej ,,T% is ample provided that k£ > % — 1, and therefore X is
hyperbolic.

In Chapter 4, following the elegant geometric methods in [BD15] and [Brol6] on the Debarre and
Kobayashi conjectures, we prove the following theorem:

THEOREM XII. (= Theorem L) Let X be a projective manifold of dimension n endowed with a very ample
line bundle A. Let Z < X be the complete intersection of ¢ general hypersurfaces in | H° (X, ﬁX(dA)) |. Then
for any positive integer k = 2 — 1, Z has the almost k-jet ampleness property (see Definition 4.2.1 below)
provided that d = 2c([2])" T 2n"*e. In particular, Z is Kobayashi hyperbolic.

Since our definition of almost 1-jet ampleness coincides with the ampleness of the cotangent bundle,
Theorem XII contains both the Kobayashi (¢ = 1) and Debarre conjectures (¢ > %), with some (non-
optimal) effective estimates.

At the expense of a slightly larger bound, based on a factorization trick due to Xie [Xiel5], we are able
to prove the following stronger result:

THEOREM XIII. (= Theorem M) Let X be a projective manifold of dimension n and A a very ample
line bundle on X. For any c-tuple d := (dy,...,d.) such that d, = *n**+2¢([2])2"+2¢T4 for each 1 < p <,
for general hypersurfaces H, € |Adv|, their complete intersection Z := Hy n ...~ H. is almost k-jet ample
provided that k = k.

Moreover, there exists a uniform (e, ..., ex) € N¥ which only depends on n, such that Oz, (e1, ..., ex)
is big and such that its augmented base locus satisfies

B+(ﬁzk (617 EERE) ek)) < Z}?i“g

where Z,fing is the set of points in Zy, which can not be reached by the k-th lift f1,7(0) of any regular germ of
curves f : (C,0) - Z.

From the relation between tautological bundles on the Demailly-Semple towers and invariant jet bundles,
we prove the following theorem on the Diverio-Trapani conjecture:

THEOREM XIV. (= Theorem N) Set q := 23 — H;zl |Adv| to be the universal family of c-complete
intesections of hypersurfaces in H;:1 |Ad» |, where d, > 02n2"+2c([%])2”+2”4 for each 1 < p < c. Set
Ucllo |Ad| to be a Zariski open set of [1- |Adr| such that when restricted to 2 = q~1(U), q is a
smooth fibration. Then for every j » 0, there exists a subbundle V; — EkyjmT:f{/U defined on 2, whose
restriction to the general fiber Z of q is an ample vector bundle. Moreover, fix any x € Z, and any regular
k-jet of holomorphic curve [f] : (C,0) — (Z,z); then for every j » 0 there exists global jet differentials
P; € HY(Z,V;|z ® A™') (hence they are of order k and weighted degree jm) that do not vanish when
evaluated on the k-jet defined by (f', f",..., f)).

In other words, this theorem shows that, one can find a subbundle of the invariant jet bundle, which is
ample, and such that its Demailly-Semple locus defined in [DR13, Section 2.1] is empty.

0.11. Applications of the L?>-Extension Theorems to Direct Image Problems

One of the most important achievements of the Bochner-Kodaira-Nakano-Hérmander L? theory is the
extension result established by T. Ohsawa and K. Takegoshi [OT87]|. Later on, this theorem was subse-
quently refined by Manivel, Siu, Berndtsson, Popovici, Blocki, Guan-Zhou, Junyan Cao [Man93, Siu95,
Ber96,Pop05,Blo13,GZ15,Caol4], and very recently Demailly proved a very general extension theorem
for non necessarily reduced subvarieties, under (probably) optimal curvature conditions [Dem15a]. The
application of L2-extension theorems to both algebraic and analytic geometry yields fundamental results in
many circumstances: various forms of approximation of closed positive currents, study of the adjoint linear
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systems, deformational invariance of plurigenera, positivity of direct images and recent results on the litaka
conjecture, to quote only a few.

In Chapter 5, we apply Demailly’s recent extension theorem, and the pluricanonical extension theorem
by Berndtsson and Piun [BPO08] to study two open problems on the positivity of direct images. First, we
study a Fujita-type conjecture by Popa and Schnell:

CONJECTURE 0.11.1. (Popa-Schnell) Let f : X — Y be a morphism of smooth projective varieties, with
dim(Y') = n, and let L be an ample line bundle on Y. Then, for every k > 1, the sheaf

F+(KgH® L'
is globally generated for any I > k(n + 1).

In [PS14], Popa and Schnell proved the conjecture in the case when L is an ample and globally generated
line bundle, and in general when dim(X) = 1. In a recent preprint [Dut17], applying the work of Angehrn
and Siu, Dutta was able to remove the global generation assumption on L, by making a statement about
generic global generation, with a quadratic bound on [ in terms of the dimension n:

l>k(<n;1) +1).

In Chapter 5 by applying Demailly’s recent work on the Ohsawa-Takegoshi type extension theorem
[Dem1b5a] as well as Pdun’s proof of Siu’s invariance of plurigenera [Pau07]|, we are able to prove the
following theorem:

THEOREM XV. (= Theorem O) Let f : X — Y be a surjective morphism between smooth projective
varieties, with dim(Y") = n, and let L be an ample line bundle on Y. If y is a regular value of f, then for
every k = 1, the sheaf

f+(E) @ L
is generated by global sections at y for any

> K| i |+ 0

Here e(L,y) > 0 is the Seshadri constant of L at the point y. In particular, if the Seshadri constant satisfies
e(L,y) = 1 at a very general point y € Y, then Conjecture 0.11.1 holds true for general points in Y'; that is,
the direct image

fo (BN ® L'
is generated by global sections at the generic point of Y for any !l > k(n + 1).
By a result of Ein-Kiichle-Lazarsfeld [EKL95], there is a universal generic bound for the Seshadri

constant depending only on the dimension of the manifold, namely, for a very generic point y € Y, e(L, y) = %
Applying their result, we can get an effective estimate for Conjecture 0.11.1:

THEOREM XVI. (= Theorem P) Let f : X — Y be a surjective morphism between smooth projective
varieties, with dim(Y") = n, and let L be an ample line bundle on Y. Then for any k > 1, the direct image

(KL
is generated by global sections at the generic point of Y for any | > k(n? + 1).

Compared to the bound on [ obtained by Dutta, ours is also quadratic on n but slightly weaker than
hers. However, if we apply a well-known result in the Mori-theory that Ky + (n + 1)L is semi-ample for any
ample line bundle L, and use the pluricanonical extension theorem by Berndtsson-Paun [BP08] instead, we
can obtain a linear bound for I.

THEOREM XVII. (= Theorem Q) Let f : X — Y be a surjective morphism between smooth projective
manifolds, and let L be an ample line bundle on Y. Then for every k > 1, the sheaf

[ K @ L®
is generated by global sections at the generic y € Y for any | = k(n + 1) +n? —n.

The goal of second part of Chapter 5 is to study a question by Demailly-Peternell-Schneider in [DPS01]:

PrOBLEM 0.11.1. Let X and Y be normal projective Q-Gorenstein varieties. Let f : X — Y be a
surjective morphism. If —Kx is pseudo-effective and its non-nef locus does not project onto Y, is —Ky
pseudo-effective?
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Inspired by the recent work of J. Cao on the local isotriviality on the Albanese map of projective
manifolds with nef anticanonical bundles [Ca016], we give an affirmative answer to the above problem when
X and Y are replaced by pairs:

THEOREM XVIIL. (= Theorem R) Let f : X — Y be a surjective morphism from a log-canonical pair
(X, D) to the smooth projective manifold Y. Let A be a (not necessarily effective) Q-divisor on' Y. Suppose
that —(Kx +D)— f*A is pseudo-effective, and the non-nef locus B_ (—(KX +D)—f*A) does not project onto
Y. Then —Ky — A is pseudo-effective with its non-nef locus contained in f(B,(—KX —D—f*A)) SYACYAL
where Z is the minimal proper subvariety on Y such that f : X\f~1(Z) — Y\Z is a smooth fibration, and
Zp is an at most countable union of proper subvarieties containing Z such that for every y ¢ Zp, the pair
(f7*(y), D1 j-1(y)) is also lc.

The following theorem by Fujino and Gongyo [FG14] is a direct consequence of our Theorem XVIII.

THEOREM 0.11.1. (Fujino-Gongyo) Let f : X — Y be a smooth fibration between smooth projective
varieties. Let D be an effective Q-divisor on X such that (X, D) is lc, Supp(D) is a simple normal crossing
divisor, and Supp(D) is relatively normal crossing over Y. Let A be a (not necessarily effective) Q-divisor
on'Y. Assume that —(Kx + D) — f*A is nef. Then so is —Ky — A.

Moreover, we can also use analytic methods to prove the following theorem.

THEOREM XIX. (= Theorem S) With the same notations in Theorem XVIII. Assume further that
(X,D) is klt, —Kx — D — f*A is big and its non-nef locus B_(—Kx — D — f*A) does not dominate Y,
then —Ky — A is big with its non-nef locus contained in f(B_(~Kx — D — f*A)) u Z u Zp.

As a combination of Theorem XVIII and XIX, we prove the following Theorem, which is a generalization
of a theorem by Fujino and Gongyo [FG12] on the image of weak Fano manifolds.

THEOREM XX. (= Theorem T) Let f : X — Y be a smooth fibration between two smooth manifolds X
and Y. Let D be an effective Q-divisor such that (X, D) is kit, and (X, D)x,) is also kit for every y e Y.
Let A be a (not necessarily effective) Q-divisor onY. If —Kx — D — f*A is big and nef, then —Ky — A is
also big and nef.

Finally, we apply Theorem XIX to strengthen a result by Broustet and Pacienza on the rational con-
nectedness of the image [BrP11, Theorem 1.2]:

THEOREM XXI. (= Theorem U) With the same notation in Theorem XVIII. Assume that (X, D) and
(Y, A) are both kit pairs. If —(Kx + A+ f*A) is big and its non-nef locus B_(—Kx — D — f*A) does not
dominate Y, then Y is rational connected modulo f(B,(—KX —-D— f*A)) U Z U Zp, that is, there exists
an irreducible component V of B_(—Ky — A) such that for any general point y of Y, there exists a rational
curve R, passing through y and intersecting V.

REMARK 0.4. With the same assumption and notation as in Theorem XXI, Broustet and Pacienza
proved in [BrP11] that the image is uniruled.

0.12. A Remark on the Corlette-Simpson Correspondence

A Higgs bundle is a pair (E, ) consisting of a holomorphic vector bundle E and a Higgs field 6, that
is a holomorphic 1-form taking values in End(E) such that 6 A 6 = 0. In [Sim88] Simpson generalized the
Donaldson-Uhlenbeck-Yau Theorem [Don85, UY86]: the latter states that holomorphic vector bundles on
Ké&hler manifolds admit Hermitian-Einstein metrics if and only if they are stables; Simpson’s generalization
instead deals with Higgs bundles over the (possibly non-compact) Kéhler manifolds with certain boundary
conditions.

Later on, in [Sim92], by introducing the differential graded categories [Sim92, Section 3|, plus the
formality isomorphism [Sim92, Lemma 2.2], Simpson extended the equivalence between the category of
polystable Higgs bundles with vanishing Chern classes and the category of semi-simple representations of
fundamental groups [Cor88, Sim88], to extensions of irreducible objects on smooth projective manifolds
[Sim92, Corollary 3.10].

The purpose of Chapter 6 is to give a concrete and constructing proof of Simpson’s correspondence for
semistable Higgs bundles on Kdahler manifolds. Our presentation is also written for complex geometers who
are not familiar with the language of differential graded categories, and for readers who want an elementary
proof of the Simpson correspondence for semistable Higgs bundles. The result is the following

THEOREM XXII. (= Theorem V) Let X be a compact Kdhler manifold. Then the following statements
are equivalent
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(i) E is a flat vector bundle over X ;
(ii) there is a structure of Higgs bundle (E,0,0) over E, such that it admits a filtration of Higgs bundles

{0} = (Eo,ao) (e (E1,01) c...C (Emyem) = (E,Q)

where 0; := 0|g,, such that the grade terms (E;, 0;)/(Ei—1,0;—1) are stable Higgs bundles with vanishing
Chern classes.
(iii) E is a semistable Higgs bundle with vanishing Chern classes.

In Chapter 6, we only (re)prove the equivalence between (i) and (ii) in Theorem V. The implication (ii)
= (iii) is trivial. To show that (iii) implies (ii), one only needs to prove that the Jordan-Holder filtrations
of the semistable Higgs bundles with vanishing Chern classes are still a filtration of Higgs bundles rather
than Higgs sheaves. In [DPS94], the authors proved this result for pure vector bundles, i.e. when the Higgs
field 0 vanishes. In [Sim92, Theorem 2|, if X is projective, Simpson proved a a slightly stronger result,
namely that any reflexive semistable Higgs bundle with vanishing Chern classes is an extension of stable
Higgs bundles with vanishing Chern classes. His proof uses arguments that are similar to those employed
in Mehta-Ramanathan’s work about restriction of semistable sheaves to hyperplane sections. In a recent
paper [NZ15], using the Yang-Mills-Higgs flow to construct the approximate Hermitian-Einstein structure
for semistable Higgs bundles, combined with the techniques in [DPS94], Y.-C. Nie and X. Zhang proved
the implication (iii) = (ii).

In particular, if the Higgs field vanishes, one obtains a direct proof of the following result also due to
Simpson.

THEOREM 0.12.1. (Simpson) Let X be a compact Kdihler manifold. Suppose that the holomorphic vector
bundle E on X admits a filtration

(0.12.1) (=EycEc---cE,=E

such that the quotients Ey,/Ey_1 are hermitian flat vector bundles. Then the natural Gauss-Manin connection
Dg on E is compatible with the natural hermitian flat connection on the quotient Ey/Ey_1 for every k =

1,...,p.

In [DPS94], the authors introduced the definition of a numerically flat vector bundle (see also Definition
6.2.2), and proved that every numerically flat vector bundle admits a filtration as (0.12.1). Recently, using
Theorem 0.12.1, J. Cao proved the conjecture that, for any smooth projective manifold with — K x nef, the
Albanese map of X is locally isotrivial [Cao17]|. For this, he applied an elegant criterion of [CH13| which
relates the numerical flatness property to the local isotriviality of the fibration.
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CHAPTER 1

Transcendental Morse Inequality and Generalized Okounkov Bodies

1.1. INTRODUCTION

In [Oko96] Okounkov introduced a natural procedure to associate a convex body A(D) in R™ to any
ample divisor D on an n-dimensional projective variety. Relying on the work of Okounkov, Lazarsfeld
and Mustata [LMO09], and Kaveh and Khovanskii [KK09, KK10], have systematically studied Okounkov’s
construction, and associated to any big divisor and any fixed flag of subvarieties a convex body which is now
called the Okounkov body.

We now briefly recall the construction of the Okounkov body. We start with a complex projective variety
X of dimension n. Fix a flag

Yo: X=Yy2oY1oY;>...0Y, 10Y,={p}

where Y; is a smooth irreducible subvariety of codimension ¢ in X. For a given big divisor D, one defines a
valuation-like function
p=py,p: (H(X,0x(D)) - {0}) — Z".
as follows. First set p; = pi(s) = ordy, (s). Dividing s by a local equation of Y7, we obtain a section
31€ H'(X,0x(D — uY7))
that does not vanish identically along Y;. We restrict 51 on Y] to get a non-zero section
s1 € H'(Y1, Oy, (D — 11 1)),

then we write pa(s) = ordy,(s1), and continue in this fashion to define the remaining integers p;(s). The
image of the function p in Z" is denoted by wp(D). With this in hand, we define the Okounkov body of D
with respect to the fized flag Y, to be

A(D) = Ay, (D) = closed convex hull ( U e -,u(mD)) < R™
m
m=1

According to the open question raised in the final part of [LMO09], it is quite natural to wonder whether
one can construct “arithmetic Okounkov bodies" for an arbitrary pseudo-effective (1,1)-class a on a Ké&hler
manifold, and realize the volumes of these classes by convex bodies as well. In this chapter, using positive
currents in a natural way, we give a construction of a convex body A(«) associated to such a class «, and
show that this newly defined convex body coincides with the Okounkov body when o € NSg(X).

THEOREM A. Let X be a smooth projective variety of dimension n, L be a big line bundle on X and Y,
be a fived admissible flag. Then we have
o
A(cr (L)) = A(L) = — L).
(@) = aw) = | ovimd
Moreover, in the definition of Okounkov body A(L), it suffices to take the closure of the set of normalized
valuation vectors instead of the closure of the convex hull.

By Theorem A, we know that our definition of the Okounkov body for any pseudo-effective class could
be treated as a generalization of the original Okounkov body. A very interesting problem is to find out
exactly which points in the Okounkov body A(L) are given by valuations of sections. This is expressed by
saying that a rational point of A(L) is “valuative". By Theorem A we can give some partial answers to this
question which have been given in [KL14] in the case of surfaces.

COROLLARY 1.1.1. Let X be a projective variety of dimension n and Y, be an admissible flag. If L is a
big line bundle, then any rational point in int(A(L)) is a valuative point.

It is quite natural to wonder whether our newly defined convex body for big classes behaves similarly
as the original Okounkov body. In the situation of complex surfaces, we give an affirmative answer to the
question raised in [LMO9Y], as follows:

23
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THEOREM B. Let X be a compact Kihler surface, « € HYY(X,R) be a big class. If C is an irreducible
divisor of X, there are piecewise linear continuous functions

fog o las] >Ry
with f convex, g concave, and f < g, such that A(a) < R? is the region bounded by the graphs of f and g:
Ala) ={(t,y) eR* |a <t <s,and f(t) <y <g(t)}
Here A(«) is the generalized Okounkov body with respect to the fized flag
X 20 2 {z},

and s = sup{t > 0 | « — tC is big}. If C is nef, a = 0 and f(t) is increasing; otherwise, a = sup{t > 0 |
C C E,x(a—tC)}, where Enx := (g E+(T) for T ranging among the Kihler currents in o, which is the
non-Kdhler locus. Moreover, A(«) is a finite polygon whose number of vertices is bounded by 2p(X) + 2,
where p(X) is the Picard number of X, and

volx (o) = 2volgz (A(«)).

In [LMO09], it was asked whether the Okounkov body of a divisor on a complex surface could be an
infinite polygon. In [KLM10], it was shown that the Okounkov body is always a finite polygon. Here we
give an explicit description for the “finiteness" of the polygons appearing as generalized Okounkov bodies of
big classes, and conclude that it also holds for the original Okounkov bodies by Theorem A.

As one might suspect from the construction of Okounkov bodies, the Euclidean volume of A(D) has a
strong connection with the growth of the groups H%(X, Ox (mD)). In [LMO09], the following precise relations
were shown:

n

(1.1.1) n! - volgn (A(D)) = volx (D) := lim kihO(X, Ox (kD)).

k—o0
The proof of (1.1.1) relies on properties of sub-semigroups of N**! constructed from the graded linear series
{H°(X,Ox(mD))}m=0. However, when « is a big class which does not belong to NSg(X), there are no
such algebraic objects which correspond to volx (), and we only have the following analytic definition due
to Boucksom [Bou02]:

volx (o) 1= supJ .,
T Jx

where T ranges among all positive (1,1)-currents. Therefore, it is quite natural to propose the following
conjecture:

CONJECTURE 1.1.1. Let X be a compact Kdihler manifold of dimension n. For any big class o €
HY'(X,R), we have
1

volgn (A(a)) = ] -volx ().

In Theorem B, we prove this conjecture in dimension 2. Our method is to relate the Euclidean volume
of the slice of the generalized Okounkov body to the differential of the volume of the big class. We prove the
following differentiability formula for volumes of big classses.

THEOREM C. Let X be a compact Kéhler surface and « be a big class. If 5 is a nef class or f = {C}
where C is an irreducible curve, we have

d

—|  volx(a+t8) =2Z(c)- B,

dt|,_o

where Z(a) is the divisorial Zariski decomposition of « defined in Section 1.2.6.

A direct corollary of this formula is the transcendental Morse inequality:

THEOREM D. Let X be a compact Kihler surface. If o and 3 are nef classes satisfying the inequality
a? —2a- B >0, then o — f3 is big and volx (a — 3) = a? — 2a - 3.

In higher dimension, we also have a differentiability formula for big classes on some special Kahler
manifolds.

THEOREM E. Let X be a compact Kihler manifold of dimension n on which the modified nef cone MN
coincides with the nef cone N'. If . € HV1(X,R) is a big class, B € HV1(X,R) is a nef class, then

1

(1.1.2) volx (o + ) = volx () + nJ Z(a+tp)" L. B dt.
0
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As a consequence, volx (o +t3) is C! for t € RT and we have

(1.1.3) % voly (o + 1) = nZ(a +tef)" " 3
t=to

forto = 0.

Finally, we study the generalized Okounkov bodies for pseudo-effective classes in K&hler surfaces. We
summerize our results as follows

THEOREM F. Let X be a Kdihler surface, a be any pseudo-effective but not big class,

(i) if the numerical dimension n(a) = 0, then for any irreducible curve C which is not contained in the
negative part N(«), we have the generalized Okounkov body

A(C@)(a) =0 x I/m(N(OL)|0),
where v, (N (a)|c) = v(N(a)|c,x) is the Lelong number of N(«) at x;
(il) if n(«) = 1, then for any irreducible curve C satisfying Z(a) - C > 0, we have
An(0) = 0 x [1a(N(@)|e), (N (@)|e) + Z(a) - O,

In particular, the numerical dimension determines the dimension of the generalized Okounkov body.

1.2. TECHNICAL PRELIMINARIES

1.2.1. S1U DECOMPOSITION. Let T be a closed positive current of bidegree (p, p) on a complex manifold
X. We denote by v(T, z) its Lelong number at a point 2z € X. For any ¢ > 0, the Lelong upperlevel sets are
defined by
E(T):={zxe X,v(T,z) = c}.

In [Siu74], Siu proved that E.(T) is an analytic subset of X, of codimension at least p. Moreover, T' can be
written as a convergent series of closed positive currents

+00

T =Y v(T,Z)[Zk] + R

k=1
where [Z;] is a current of integration over an irreducible analytic set of dimension p, and R is a residual
current with the property that dim E.(R) < p for every ¢ > 0. This decomposition is locally and globally
unique: the sets Zj, are precisely the p-dimensional components occurring in the upperlevel sets E.(T), and
v(T, Zy) := inf{v(T,x)|z € Zy} is the generic Lelong number of T along Z.

1.2.2. CURRENTS WITH ANALYTIC SINGULARITIES. A closed positive (1,1) current T on a compact
complex manifold X is said to have analytic (resp. algebraic) singularities along a subscheme V(Z) defined
by an ideal Z if there exists some ¢ € R~ (resp. Q=) such that locally we have

T = gddc log(|f1]? + ... + | fel?) + dd°v

where f1,..., fr are local generators of 7 and v € LS, (resp. and additionally, X and V(Z) are algebraic).
Moreover, if v is smooth, T will be said to have mild analytic singularities. In these situations, we call the
sum Y, v (T, D)D which appears in the Siu decomposition of T the divisorial part of T. Using the Lelong-
Poincaré formula, it is straightforward to check that the divisorial part > v (T, D)D of a closed (1,1)-current
T with analytic singularities along the subscheme V' (Z) is just the divisorial part of V(Z), times the constant
¢ > 0 appearing in the definition of analytic singularities. The residual part R has analytic singularities in
codimension at least 2. If we denote E4(T) := {z € X|v(T,z) > 0}, then E,(T) is exactly the support of
V(Z). Moreover, if V & E, (T) for some smooth variety V, T|y := £dd®log(|f1|> + ...+ |fe[*)|v + ddv]y is
well defined, for |f1|? + ...+ |fx|? and v are not identically equal to —co on V. It is easy to check that this
definition does not depend on the choice of the local potential of T

DEFINITION 1.2.1. Ifa € H;él(X, R) is a big class, we define its non-Kahler locus as E, i := [\ E4+(T)
for T ranging among the Kdhler currents in a.

We will usually use the following theorem due to Collins and Tosatti.
THEOREM 1.2.2 ( [CT13|). Let X be a compact Kihler manifold of dimension n. Given a nef and big
class a, we define a subset of X which measures its non-Kdhlerianity, namely the null locus
Nulle):= ] WV,
§, adimV =0
where the union is taken over all positive dimensional irreducible analytic subvarieties of X. Then we have
Null(a) = B,k ().
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1.2.3. REGULARIZATION OF CURRENTS. We will need Demailly’s regularization theorem ( [Dem92]) for
closed (1,1)-currents, which enables us to approximate a given current by currents with analytic singularities,
with a loss of positivity that is arbitrary small. In particular, we could approximate a Ké&hler current T'
inside its cohomology class by Kihler currents T} with algebraic singularities, with a good control of the
singularities. A big class therefore contains plenty of Kéhler currents with analytic singularities.

THEOREM 1.2.3. Let T be a closed almost positive (1,1)-current on a compact complex manifold X, and
fix a Hermitian form w. Suppose that T = ~ for some real (1,1)-form v on X. Then there exists a sequence
Ty of currents with algebraic singularities in the cohomology class {T'} which converges weakly to T, such
that Ty, = v — exw for some sequence € > 0 decreasing to 0, and v(T, x) increases to v(T, x) uniformly with
respect to x € X.

1.2.4. CURRENTS WITH MINIMAL SINGULARITIES. Let 77 = 6 + dd®p; and Ty = 0 + ddps be two
closed almost positive (1,1)-currents on X, where 6; are smooth forms and ¢; are almost pluri-subharmonic
functions, we say that T} is less singular than Ty (write Ty < T3) if we have @9 < 1 + C for some constant
C.

Let « be a class in H;g(X, R) and v be a smooth real (1,1)-form, we denote by a[v] the set of closed
almost positive (1,1)-currents T' € o with T' > . Since the set of potentials of such currents is stable by
taking a supremum, we conclude by standard pluripotential theory that there exists a closed almost positive
(1,1)-current Tinin,, € @[y] which has minimal singularities in a[y]. Tiin, is well defined modulo dd°L®.
For each € > 0, denote by Tiyin,e = Tin,e(@) a current with minimal singularities in a[—w], where w is some
reference Hermitian form. The minimal multiplicity at x € X of the pseudo-effective class « € Hggl (X,R) is
defined as

v(o, x) := sup V(Tmin,e, ).
e>0

For a prime divisor D, we define the generic minimal multiplicity of « along D as
v(a, D) := inf{v(a, z)|z € D)}.
We then have v(a, D) = sup,~.o ¥(Tmin,e, D).

1.2.5. LEBESGUE DECOMPOSITION. A current 7' can be locally seen as a form with distribution coeffi-
cients. When T is positive, the distributions are positive measures which admit a Lebesgue decomposition
into an absolutely continuous part (with respect to the Lebesgue measure on X) and a singular part. There-
fore we obtain the decomposition T' = Ty + Tging, With Tye (resp. Tging) globally determined thanks to the
uniqueness of the Lebesgue decomposition.

Now we assume that T is a (1,1)-current. The absolutely continuous part Ty, is considered as a (1,1)-form
with LllOC coefficients, and more generally we have T,. > v whenever T >  for some real smooth real form
7. Thus we can define the product TF, of T,. almost everywhere. This yields a positive Borel (k, k)-form.

1.2.6. MODIFIED NEF CONE AND DIVISORIATL ZARISKI DECOMPOSITION. In this subsection, we collect
some definitions and properties of the modified nef cone and divisorial Zariski decomposition. See [Bou04]
for more details.

DEFINITION 1.2.4. Let X be compact complex manifold, and w be some reference Hermitian form. Let
a be a class in Halél(X, R).
(i) « is said to be a modified Kahler class iff it contains a Kéhler current T with v(T, D) = 0 for all prime
divisors D in X.
(ii) « is said to be a modified nef class iff, for every e > 0, there exists a closed (1,1)-current T, > —ew
and v(Te, D) = 0 for every prime D.

REMARK 1.2.1. The modified nef cone MN is a closed convex cone which contains the nef cone N.
When X is a Kihler manifold, MN is just the interior of the modified Kéhler cone MK.

REMARK 1.2.2. For a complex surface, the K&hler (nef) cone and the modified Kdhler (modified nef)
cone coincide. Indeed, analytic singularities in codimension 2 of a K&hler current T are just isolated points.
Therefore the class {T'} is a Kéhler class.

DEFINITION 1.2.5. The negative part of a pseudo-effective class a € H;él (X,R) is defined as N(«) :=
>w(a, D)D. The Zariski projection of a is Z(a) := a — {N(«)}. We call the decomposition o = Z(a) +
{N ()} the divisorial Zariski decomposition of «.

REMARK 1.2.3. We claim that the volume of Z(«a) is equal to the volume of a. Indeed, if T is a

positive current in «, then we have T > N(a) since T € a[—ew] for each € > 0 and we conclude that
T — T — N(«) is a bijection between the positive currents in « and those in Z(«). Furthermore, we notice
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that (T — N(&))ac = Thae, and thus by the definition of volume of the pseudo-effective classes we conclude
that volx (a) = volx (Z(«)).

DEFINITION 1.2.6. (i) A family D1,... , D, of prime divisors is said to be an exceptional family iff
the convex cone generated by their cohomology classes meets the modified nef cone at 0 only.
(ii) An effective R-divisor E is said to be exceptional iff its prime components constitute an exceptional
family.

We have the following properties of exceptional divisors:

THEOREM 1.2.7. (i) An effective R-divisor E is exceptional iff Z(E) = 0.

(ii) If E is an exceptional effective R-divisor, we have E = N({E}).

(iii) If D1,..., Dy is an exceptional family of primes, then their classes {D1},...,{D,} are linearly inde-
pendent in NSg(X) < HY(X,R). In particular, the length of the exceptional families of primes is
uniformly bounded by the Picard number p(X).

(iv) Let X be a surface, a family D1,..., D, of prime divisors is exceptional iff its intersection matrix
(D; - Dj) is negative definite.

In this chapter, we need the following properties of the modified nef cone MA and the divisorial Zariski
decomposition due to Boucksom (ref. [Bou04]). We state these properties without proofs.

THEOREM 1.2.8. Let a € HV1(X,R) be a pseudo-effective class. Then we have:

(i) Its Zariski projection Z(«) is a modified nef class.
(il) Z(o) = « iff « is modified nef.
(i) Z(«) is big iff « is.

REMARK 1.2.4. Let X be a complex Kihler surface. For a big class « € HYY(X,R), Z(«) is a big and
modified nef class. By Remark 1.2.1, any modified nef class is nef, it follows that Z(«) is big and nef.

THEOREM 1.2.9. (i) The map o — N(«) is convex and homogeneous on pseudo-effective class cone
E. It is continuous on the interior of £.
(ii) The Zariski projection Z : £ — MN is concave and homogeneous. It is continuous on the interior of

E.

THEOREM 1.2.10. Let p be a big and modified nef class. Then the primes Dy, ..., D, contained in the

non-Kdhler locus E,x(p) form an exceptional family A, and the fiber of Z over p is the simplicial cone
Z7'(p) = p + Vi (A), where Vi (A) ==X oy RiA{D}.

THEOREM 1.2.11. Let X be a compact surface. If « € HY1 (X, R) is a pseudo-effective class, its divisorial
Zariski decomposition a« = Z(a)+{N ()} is the unique orthogonal decomposition of o with respect to the non-
degenerate quadratic form q(a) := §a? into the sum of a modified nef class and the class of an exceptional
effective R-divisor.

REMARK 1.2.5. Let X be a surface, « is the class of an effective Q-divisor D on a projective surface,
the divisorial Zariski decomposition of « is just the original Zariski decomposition of D.

1.3. TRANSCENDENTAL MORSE INEQUALITY

1.3.1. PROOF OF THE TRANSCENDENTAL MORSE INEQUALITY FOR COMPLEX SURFACES. The main
goal of this section is to prove the differentiability of the volume function and the transcendental Morse
inequality for complex surfaces. In fact, in the next subsection we will give a more general method to prove
the transcendental Morse inequality for Kahler manifolds on which modified nef cones MN coincide with
the nef cones N; this includes Kihler surfaces. However, since the methods and results here are very special
in studying generalized Okounkov bodies, we will treat complex surface and higher dimensional Ké#hler
manifolds separately. Throughout this subsection, if not specially mentioned, X will stand for a complex
Kihler surface. We denote by ¢(a) := {a? the quadratic form on H'!(X,R). By the Hodge index theorem,
(HY'(X,R),q) has signature (1,h"!(X) — 1). The open cone {a € H"(X,R)|q(a) > 0} has thus two
connected components which are convex cones, and we denote by P the component containing the Kahler
cone K.

LEMMA 1.3.1. Let X be a compact Kdihler manifold of dimension n. If o € HYY(X,R) is a big class,
Be HYY(X,R) is a nef class, then N(a +t8) < N(«) as effective R-divisors for t = 0. Furthermore, when
t is small enough, the prime components of N(a + t83) will be the same as those of N(«a).
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PROOF. Since f is nef, by Theorem 1.2.9, we have
N(a+1t8) < N(a) +tN(B8) = N(a).

Since the map a — N(a) is convex on pseudo-effective class cone &, it is continuous on the interior of &,
and thus the theorem follows. [l

THEOREM 1.3.1. If a € HYY(X,R) is a big class and 3 € HY'(X,R) is a nef class, then

(1.3.1) volx (o +t8) =2Z(a) - B

dt|,_q

PrOOF. By Lemma 1.3.1, there exists an € > 0 such that when 0 < t < ¢, we can write N(a + t3) =
>y ai(t)N;, where 0 < a;(t) < a;(0) =: a;, and each q;(t) is a continuous and decreasing function with
respect to t. According to the orthogonal property of divisorial Zariski decomposition (ref. Theorem 1.2.11),
Z(a+tp) -N(a+tB) = 0fort = 0. Since Z(a +tp) is modified nef and thus nef (by Remark 1.2.2), we have
Z(a+tB) - N; = 0 for every i. When 0 <t < ¢, we have a;(t) > 0 for i = 1,...,r, therefore, Z(a + t3) is
orthogonal to each {NN;} with respect to q. We denote by V = HU1(X, R) the finite vector space spanned by
{N1},...,{N,}, by V* the orthogonal space of V with respect to g. Thus a+t8 = Z(a+t8)+>._, a;(t){N;}
is the decomposition in the direct sum V@ V. We decompose 8 = B+ + By in the direct sum V1 @V, and
we have

Z(a+tB) = Z(a) + t87,

r

DL ai®{N} = D) ai{Ni} + tBo.

i=1

=

1=

Since volx (a + t3) = volx (Z(a +tB)) = Z(a + tB)? (by Remark 1.2.3), it is easy to deduce that

—|  volx(a+tB) =2Z(a)- B+ =2Z(a) - .
dt|,_,

The last equality follows from By € V and Z(a) € V4. We get the first half of Theorem C. O

To prove the transcendental Morse inequality for complex surfaces, we will need a criterion for bigness
of a class:

THEOREM 1.3.2. Let o and f3 be two nef classes such that o> — 2o - 3 > 0, then o — 3 is a big class.

PROOF. We denote by P the connected component of the open cone {a € HV(X,R) | g(a) > 0}
containing the Kihler cone K, then P < £°. As a consequence of the Nakai-Moishezon criterion for surfaces
(ref. [Lam99]), we know that, if 7 is a real (1,1)-class with ¥2 > 0, then ~ or —v is big. Since o and 3 are
both nef, we have that (o —t3)? > 0 for 0 < ¢ < 1. This means that o — ¢/ is contained in some component,
of the open cone {o € HY1 (X, R)|g(a) > 0}. But since « is big, a —t3 is contained in P < B, and a fortiori
a— [ is. O

Now we are ready to prove the transcendental Morse inequality for complex surfaces.

PrOOF OF THEOREM D. By Theorem 1.3.2, when a? — 2 - 8 > 0, the cohomology class o — /3 is big.
By the differentiability formula (1.3.1), we have
1

volx (a — ) :az—Zf Z(a—tp) - p dt.

0
Since the Zariski projection Z : £ — MN is concave and homogeneous by Theorem 1.2.9, we have
a=Z(a)zZla—1t8)+ Z(tB) = Z(a —tp).
Since f is nef, we have
a-f=Z(a—1tp)- B,
and thus
volx (a — B) = a* — 2a - .

In the last part of this subsection, we prove the second half of Theorem C.

THEOREM 1.3.3. Let a € HYY(X,R) be a big class and C be an irreducible divisor, then

(1.3.2) 4 volx (o +tC) =2Z(a) - C.
dt|,_,
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Proor. It suffices to prove the theorem for C not nef. Thus we have C? < 0. Write N(a) = >,/_, a; N,
where each N; is prime divisor. If C € E, x(Z(a)), we deduce that Z(«) - C = 0 by Theorem 1.2.2, and
{C,N1,...,N,} forms an exceptional family by Theorem 1.2.10. Thus we have

Z(a+tC) = Z(a),
and
N(a+tC) = N(a) +tC

for t = 0. The theorem is thus proved in this case.
From now on we assume C' & E,x(Z(a)), thus we have Z(«) - C' > 0 and C & Supp(N(«)). We define

bl c- Nl
= _g-1. :
by C-N,
where S = (s;;) denotes the intersection matrix of {Ny,..., N,}. By Theorem 1.2.11 we know that S is

negative definite satisfying s;; > 0 for all i # j. We claim that Z(a) + t({C} + >;_, b;{NN;}) is big and nef

ifo<t< fz(g#. We need the following lemma from [BKS03] to prove our claim.

LEMMA 1.3.2. Let A be a negative definite r x r-matriz over the reals such that a;; = 0 for all i # j.
Then all entries of the inverse matriz A~! are < 0.

By Lemma 1.3.2 we know that all entries of S~! are < 0, thus b; > 0 for all 1 < j < r and we get the
bigness of Z(a) + t({C} + >i_, bi{N;}). By the construction of b;, we have
(Z(e) +t({C} + D bifNi})) - N; =0
i=1
for 1 <j <r,and
(Z(a) +t({C} + D b:i{N:})) - C > 0
i=1

for0 <t < 7%. Thus we have the nefness and our claim follows. Since the divisorial Zariski decompo-

sition is orthogonal and unique (see Theorem 1.2.11), we conclude that

T

(1.3.3) N(a+H{C}) = ¥ (a;i — th;)N;,
(1.3.4) Z(a+t{C}) = Z(a) + t{C} + i thi{N;},

for ¢ small enough. Since voly(a + tC) = Z(a + t{C})?, we have thus also obtained formula (1.3.2) in this
case.

O

1.3.2. TRANSCENDENTAL MORSE INEQUALITY FOR SOME SPECIAL KAHLER MANIFOLDS. One can
modify the proof of Theorem D a little bit, to extend the transcendental Morse inequality to K&hler mani-
folds whose modified nef cone MAN coincides with the nef cone A. In this subsection, we assume X to be a
compact Kéhler manifold of dimension n which satisfies this condition.

LEMMA 1.8.3. If o € E°, then the divisorial Zariski decomposition o = Z(a) + N () is such that
Z(a)" ' N(a) =0.

REMARK 1.3.1. Lemma 1.3.3 is very similar to the Corollary 4.5 in [BDPP13]: If a € Exg, then the
divisorial Zariski decomposition o = Z(a) + N(«) is such that (Z(a)""')- N(a) = 0. However, the proof
of [ BDPP13] is based on the orthogonal estimate for divisorial Zariski decomposition of Eng, which is still
a conjecture for a € €. Here we will use Theorem 1.2.2 to prove this lemma directly.

PrOOF OF LEMMA 1.3.3. By Theorem 1.2.8, if « is big, then Z(«) is big and modified nef, thus nef
by the assumption for X. By Theorem 1.2.10, the primes Dy,..., D, contained in the non-Kahler locus
E,k(Z(a)) form an exceptional family, and o = Z(a) + >,;_, a;D; for a; > 0 . Since Null(Z(a)) =
E.x(Z(a)) by Theorem 1.2.2, we have Z(a)"~!- D; = 0 for each i, and thus Z(a)" - N(a) = 0. The
lemma is proved. O
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PrOOF OF THEOREM E. By Lemma 1.3.1, there exists € > 0 such that the prime components of N(«+
t3) will be the same when 0 < ¢ < e. Moreover if we denote N(a +t3) = Y.\_, a;(t)N;, then each a;(¢) is
continuous and decreasing satisfying a;(t) > 0. By Lemma 1.3.3, we have

Z(a+tB)" - N(a+18) = Y ai(t)Z(a+t8)" " - N; = 0.
i=1
Since Z(a +1tf3) is modified nef thus nef, we deduce that Z(a+t8)" ' N, =0for0<t<eandi=1,...,r.

Since a;(t) is continuous and decreasing, it is almost everywhere differentiable. Thus Z(a + t8) =
a+tB—>_, a;(t)N;is an a.e. differentiable and continuous curves in the finite dimensional space H*!(X,R)
parametrized by t. Meanwhile, since o — o™ is a polynomial in H'!(X,R), we thus deduce that volx (o +
tB) = Z(a+tB)™ is an a.e. differentiable function with respect to t. Therefore, if volx (a4 ¢8) and a;(t) are
both differentiable at ¢t = tg, we have

d T
T volx (o + t8) = nZ(a + toB)" " - (B = ). ai (to) N;) = nZ(a + toB)" " - B.
t=to i=1
Since volx (a + tf) is increasing and continuous, it is also a.e. differentiable and thus we have
Sd
volx (o + sp) = volx(a)+ J 7 volx (o + t5)dt
0
(1.3.5) = volx(a)+ nf Z(a+tp)" 1 B dt.
0

for 0 < s < e. Since Z(a + tf) is continuous (by Theorem 1.2.9), by (1.3.5) we deduce that volx (a + t3) is
differentiable with respect to ¢ and its derivative

d
— volx (e +tB) = nZ(a + toB)" 1 - B.
dt|,_y,

O

In order to prove transcendental Morse inequality, we will need the following bigness criterion obtained
in [Xial3| and [Pop14].

THEOREM 1.3.4. Let X be an n-dimensional compact Kdihler manifold. Assume « and 3 are two nef
classes on X satisfying a™ —na™ ' -5 >0, then a — f3 is a big class.

The proof of the next theorem is similar to that of Theorem D and is therefore omitted.

THEOREM 1.3.5. Let X be a compact Kdihler manifold on which the modified nef cone MN and the
nef cone N coincide. If o and B are nef cohomology classes of type (1,1) on X satisfying the inequality

a" —na""'-3>0. Then o — 3 contains a Kihler current and volx (o — 3) = o™ — na™~! - j.
REMARK 1.3.2. In [BFJ09], the authors proved the following differentiability theorem:
d
(1.3.6) % volx (L +tD) = n(L" ') - D,

t=to
where L is a big line bundle on the smooth projective variety X and D is a prime divisor. The right-hand side
of the equation above involves the positive intersection product (L"~1) € Hgal’"_l(X, R), first introduced
in the analytic context in [BDPP13]. Theorem E could be seen as a transcendental version of (1.3.6) for
some special Kahler manifolds. In the general K&hler situation, we propose the following conjecture:

CONJECTURE 1.3.6. Let X be a Kdihler manifold of dimensional n, « be a big class. If 5 is a pseudo-
effective class, then we have

% . volx (a + tf) = nda™ 1) - 3.

1.4. GENERALIZED OKOUNKOV BODIES ON KAHLER MANIFOLDS

1.4.1. DEFINITION AND RELATION WITH THE ALGEBRAIC CASE. Throughout this subsection, X will
stand for a Kdhler manifold of dimensional n. Our main goal in this subsection is to generalize the definition
of Okounkov body to any pseudo-effective class o € H*'(X,R). First of all, we define a valuation-like
function. For any positive current T € o with analytic singularites, we define the valuation-like function

T->v(T)=vy,(T)= (n(T),...v,(T))

as follows. First, set
vi(T) = sup{A | T = A[Yi] > 0},
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where [Y7] is the current of integration over Y7. By Section 1.2.1 we know that 14 (T') is the coefficient (T, Y1)
of the positive current [Y;] appearing in the Siu decomposition of T'. Since T has analytic singularities, by
the arguments in Section 1.2.2, T} := (T —v1[Y1])|y, is a well-defined positive current in the pseudo-effective
class (o — v1{Y1})|y; and it also has analytic singularities. Then take

vo(T) = sup{A | Ty — A\[Ya] = 0},
and continue in this manner to define the remaining values v;(T) € R*.

REMARK 1.4.1. If one assumes o € NSz (X), there exists a holomorphic line bundle L such that « =
c1(L). If D is the divisor of some holomorphic section sp € H%(X,Ox (L)), then we have

v([D]) = u(sp),
where p is the valuation-like function appeared in the definition of the original Okounkov body. Roughly
speaking our definition of valuation-like function has a bigger domain of definition and thus the image of our

valuation-like function contains | J;,_; L p(mL).

For any big class «, we define a Q-convez body Ag(a) (resp. R-convex body Ag(c)) to be the set of
valuation vectors v(T'), where T ranges among all the Kéhler (resp. positive) currents with algebraic (resp.
analytic) singularities. Then Ag(a) € Ag(e). It is easy to check that this is a convex set in Q™ (resp.
R™). Indeed, for any two positive currents Tp and T; with algebraic (resp. analytic) singularities, we have
v(eTy + (1 — €)T1) = ev(Tp) + (1 — €)v(Th) for 0 < e < 1 rational (resp. real). It is also obvious to see the
homogeneous property of Ag(«), that is, for all ¢ € Qt, we have

Ag(ca) = cAg(a).
Indeed, since we have v(cT) = cv(T) for all c € RT, the claim follows directly.

ExaMPLE 1.1. Let L be a line bundle of degree ¢ > 0 on a smooth curve C' of genus g. Then we have
Ag(ei(L)) =Qn[0,¢).
Since NSg(C') = H(C,R), for any ample class o on C' we have
Ag(a) =Qn [0,a-C).
LEMMA 1.4.1. Let « be a big class, then the R-convex body Ag(«) lies in a bounded subset of R™.

PRrOOF. It suffices to show that there exists a b > 0 large enough such that v;(T") < b for any positive
current 7' with analytic singularities. We fix a K&hler class w. Choose first of all b > 0 such that

(a — blyl) . wnil < 0.
This guarantees that v1(T') < by since a — b1Y; ¢ £. Next choose by large enough so that
(a0 —aY1)|y, — baYa) -w" 2 <0

for all real numbers 0 < a < b;. Then v5(T) < by for any positive current 7" with analytic singularities.
Continuing in this manner we construct b; > 0 for i = 1,...,n such that v;(T) < b; for any positive current
T with analytic singularities. We take b = max{b;}. O

LEMMA 1.4.2. For any big class o, Ag(w) is dense in Agr(«), in particular we have Ag(a) = Ar(a).

PROOF. It is easy to verify that if 7" is a Kéhler current with analytic singularities, then for any € > 0,
there exists a Kahler current S, with algebraic singularities such that ||v(S.) — v(T)|| < € with respect to the
standard norm in R™. For the general case, We fix a Kahler current Ty € i©(L) with algebraic singularities.
Then for any positive current T with analytic singularities, T, := (1 —€)T + €T is still a K&hler current. By
Lemma 1.4.1, ||v(T.) — v(T)|| = €||(v(To) — v(T))| will tend to 0 since v(T') is uniformly bounded for any
positive current T with analytic singularities. Thus Ag(«) is dense in Ag(«). O

Now we study the relations between Ag(ci(L)) and A(L) for L a big line bundle on X. First we begin
with the following two lemmas.

LeMMA 1.4.3. Let L be a big line bundle on the projective variety X of dimension n, with a singular
Hermitian metric h = e™% satisfying
O =dd°¢p = ew
for some € > 0 and a given Kdhler form w. If the restriction of @ on a smooth hypersurface Y is not identically

equal to —o0, then there exists a positive integer mg which depends only on'Y so that any holomorphic section
sm € H(Y, Oy (mL) @ Z(meyp|y)) can be extended to S,, € H*(X,Ox(mL) ® Z(my)) for any m = mo.

We need the following Ohsawa-Takegoshi extension theorem to prove Lemma 1.4.3.
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THEOREM 1.4.1. Let X be a smooth projective variety, Y be a smooth divisor defined by a holomorphic
section of the line bunle H with a smooth metric hg = e~ V. If L is a holomorphic line bunle with a singular
metric h = e~?, satisfying the curvature assumptions

dd¢ =0
and
dd®¢ = ddd“y

with 6 > 0, then for any holomorphic section s € H°(Y,Oy(Ky + L) ® Z(hly)), there ezists a global
holomorphic section S € H*(X,Ox(Kx + L +Y)®Z(h)) such that S|y = s.

PROOF OF LEMMA 1.4.3. Taking a smooth metric e=% and e~" on Y and K x, we can choose my large
enough satisfying the curvature assumptions

dd“(m¢ —n —1) =0
and
dd® (me — 0 — ) > dd*t

for any m = my.

By Theorem 1.4.1, any holomorphic section s € HO(Y, Oy (Ky + (mL — Kx —Y)|y) ® Z(h™]y)) can
be extended to a global holomorphic section S € H°(X,Ox(mL) ® Z(h™)) such that S|y = s. By the
adjunction theorem, we have (Kx +Y)|y = Ky, thus the lemma is proved.

O

LeEMMA 1.4.4. Let L be a big line bundle on the Riemann surface C with a singular Hermitian metric
h = e~% such that ¢ has algebraic singularities and

O =dd°¢ > ew

for some € > 0. Then for a fixed point p, there exists an integer k > 0 such that we have a holomorphic
section s, € H(C,Oc (kL) ® Z(h*)) satisfying ord,(si) = kv(iO h,p).

PrOOF. Since ¢ has algebraic singularities, we have the following Lebsegue decomposition

T
iOr.n = (1OL 1)ac + Z Ci%4,

i=1
where each ¢; > 0 is rational and z1,...,x, are the log poles of i©p ; (possibly p is among them). Since we
have
T
f i(OLn)ac + Y, ¢ = deg(L),
c i=1
thus

Z c; < deg(L).
i=1

By Riemann-Roch theorem there exists an integer k£ > 0 satisfying

(i) kc; is integer,
(ii) there is a holomorphic section s € H%(C, O¢ (kL)) such that ord,, (sx) = kc; and ord, (sg) = kv(iOp 4, p).

Thus sy, is locally integrable with respect to the weight e~*%. The theorem is proved.
O

THEOREM 1.4.2. Let X be a smooth projective manifold of dimension n. For any Kdahler current T €
c1(L) with algebraic singularities, there exists a holomorphic section s € HY(X,Ox (kL)) such that u(s) =
kv(T), i.e., we have

1
v(T) e —p(mL).
M

In particular,
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PRrOOF. First, set v; = v;(T) and define
To:=T, Ty := (To —vi[YiDlvis - »Tne1 = (Tn—2 — Vn—1[Ya—1])lv,_:;
Lo:=L—uY1, L := Loly, —v2Ya, ... ,Lp—2:= Ly_3ly,_, — Vn—1Yn—1.

Since Ty > ew, we have Ty > ewly,, ..., Th—1 > ewl|y,_,. Since each v; is rational, we could find an
integer m to make each muy; be integer so that each mL; is a big line bundle on Y;. If we can prove

then we will have

by the homogeneous property Lv(mT) = v(T). Thus we can assume that each v;(T) is an integer after we
replace L by mL and T by mT.

Firstly, since Ty € ¢1(L) is a Kéhler current with algebraic singularities, there exists a singular metric
h = e~%° on L whose curvature current is Ty and ¢ has algebraic singularities; on the other hand, there is a
canonical metric e~ on Oy, (Y1) such that dd°ny = [Y1] in the sense of currents, thus by the definition of 14
we deduce that hg := e~¥0T170 ig a singular metric of Lo such that —yq + 179 does not vanish identically on
Y1, and hgly, is a singular metric of Ly|y, with algebraic singularities whose curvature current is 77 > ew|y, .

Secondly, there is a canonical singular metric e~ of Oy, (Y3) on Y7 with the curvature current [Y3]. Thus
the singular metric hy := holy, +€"2" of the big line bundle L gives a curvature current 77 — v5[Ya] = ewly,.
We continue in this manner to define the remaining singular metrics h; := h;_1]y, + "+ of the big line
bundle L; on Y; with curvature current 7; — v;41[Yi+1] = ewly, for i = 0,...,n — 1. It is easy to see that
hily,,, is well-defined.

By Lemma 1.4.3, there exists a kg such that for each k > kg, the following short sequence is exact

(L4.1) HO(Yii1, Oy, , (kLiot) @ T(HE,)) — HO(V;, Oy, (kLi_y) ® T(hE_,|y,)) — 0

fori=1,...,n—1.

Now we begin our construction. T,,_; is the curvature current of the singular metric h,_sly, , of
L, _sly,_, over the Riemann surface Y,,_;. By Lemma 1.4.4, there exists a k > ko and a holomorphic section
Sp_1€ H'(Y, 1,0y, (kL,_2) ®Z(h* 4|y, ,)), such that ordy(sp—1) = kv(Th-1,p) = kv,

By the exact sequence (1.4.1), s,,—1 could be extend to

3n_o€ H'(Y, 5,0y, ,(kL, 2)®ZI(hE_,)).

Now we choose a canonical section t,,_5 of H°(Y,,_2, Oy, ,(Y,_1)) such that the divisor of ¢,,_5 is ¥,,_1. We

define s,,_o := En_gtﬁ?fg‘l, by the construction of hy,_g := hy_3ly,_, + €’"=1""=2_ we obtain that
sn—2 € H*(Yn_2, Oy, ,(kLn—3) @ Z(h}; sy, ,)-
We can continue in this manner to construct a section so € H°(X, Ox (kL)) and by our construction we have
w(so) = (kvi, ... kvy,) = kv(T),

this concludes the theorem.
O

PROPOSITION 1.4.1. For any big line bundle L and any admissible flag Y,, one has Ag(c1(L)) = A(L).
In particular,
@
U Lom
2 m

Proor. Firstly, since Ag(ci(L)) is a convex set in Q7, its closure in R™ denoted by Ag(ci(L)) is also
a closed convex set. By Proposition 1.4.2, we have
1
Ve Y
thus
AQ(Cl(L)) < A(L)
By Remark 1.4.1, we have |~ v(mL) € Agr(c1(L)), thus by the definition of Okounkov body A(L), we
deduce that

’mlm

A(L) € Agr(c1(L)).
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By Lemma 1.4.2, we have Ag(c1(L)) = Ar(c1(L)), thus the theorem is proved.
O

REMARK 1.4.2. By Proposition 1.4.1, in the definition of the Okounkov body A(L), it suffices to close
up the set of normalized valuation vectors instead of the closure of the convex hull of this set.

REMARK 1.4.3. It is easy to reprove that the Okounkov body A(L) depends only on the numerical
equivalence class of the big line bundle L. Indeed, if L and Ly are numerically equivalent, we have ¢;(L;) =
C1 (LQ) thus

Ag(e1(L1)) = Ag(er(L2)).
By Proposition 1.4.1, we have
A(L1) = A(Ls).

Now we are ready to find some valuative points in the Okounkov bodies.

PrROOF OF COROLLARY 1.1.1. In [LMO09] we know that volg» (A(L)) = volx (L) > 0 by the bigness of
L. Since we have A(L) = Ag(c1(L)) by Proposition 1.4.1, then for any p € int(A(L)) n Q", there exists an

)
n-simplex A,, containing p with all the vertices lying in Ag(c1(L)). Since Ag(cq(L)) is a convex set in Q7,
we have A, N Q™ < Ag(c1(L)), and thus

Ag(er(L)) 2 int(A(L)) N Q™.

0
From Theorem 1.4.2 we have Ag(cq(L U

m

1
— ), thus we get the inclusion
1 m

[e¢]

nt(A(L) 0 Q" < |J ~u(mi),

m=1
which means that all rational interior points of A(L) are valuative. O
Pursuing the same philosophy as in Proposition 1.4.1, it is natual to extend results related to Okounkov

bodies for big line bundles, to the more general case of an arbitrary big class a € H(X,R). We propose
the following definition.

DEFINITION 1.4.3. Let X be a Kdhler manifold of dimension n. We define the generalized Okounkov
body of a big class o € HY1(X,R) with respect to the fived flag Yo by

Ala) = Ag(a) = Ag(a).
We have the following properties for generalized Okounkov bodies:

PROPOSITION 1.4.2. Let « and 8 be big classes, w be any Kdihler class. Then:
(1) Ala) + A(B) < Ao+ p).
(ii) volgn (A(w)) > 0.
(iii) A(a) =)o Al + ew).
PROOF. (i) is obvious from the definition of generalized Okounkov body. To prove (ii), we use induction
for dimension. The result is obvious if n = 1, assume now that (ii) is true for n — 1. We choose ¢t > 0
small enough such that w — tY; is still a Kahler class. By the main theorem of [CT14], any Kéhler current
T € (w —tY7)|y, with analytic singularities can be extended to a Kahler current T' € w — tY7, thus we have

W) [Vt x R™™ =t x A((w = t¥1)]y,),
where A((w — tY7)|y,) is the generalized Okounkov body of (w — tY1)|y, with respect to the flag
Y1oY,o...0Y, ={p}

By the induction, we have volgn—1 (A((w—tY1)|y,)) > 0. Since A(w) contains the origin, we have volgn (A(w)) >
" Now we are ready to prove (iii). By the concavity we have

Ala+ ew) + A(e2 — e1)w) € A(a + €w)
if 0 < €1 < €. Since A(w) contains the origin, we have

Ale) () Alar + ew),
e>0

and
Ala+ ew) € Ala + ew).
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From the concavity property, we conclude that volg- (A(« + tw)) is a concave function for ¢ > 0, thus
continuous. Then we have
volgr ([] Ala + ew)) = volgs (A(a)) > 0.
e>0

Since

A(a + ew) and A(«) are both closed and convex, we have

Ala) = [ Al + ew).

>0

e>0

O

REMARK 1.4.4. We don’t know whether volg~ (A(«)) is independent of the choice of the admissible flag.
However, in the next subsection we will prove that in the case of surfaces we have

volx (o) = 2volgz (A(()),

in particular the Euclidean volume of the generalized Okounkov body is independent of the choice of the

flag. We conjecture that

volgn (A(a)) = % -volx (),

as we proposed in the introduction.

1.4.2. GENERALIZED OKOUNKOV BODIES ON COMPLEX SURFACES. Now we will mainly focus on gen-
eralized Okounkov bodies of compact Kéhler surfaces. In this section, X denotes a compact K&hler surface.
We fix henceforth an admissible flag

X oC 2 {z},

on X, where C c X is an irreducible curve and x € C is a smooth point.

DEFINITION 1.4.4. For any big class « € H>*(X,R), we denote the restricted R-convex body of o along
C by Ag x|c(c), which is defined to be the set of Lelong numbers v(T'|c,x), where T € o ranges among all
the positive currents with analytic singularities such that C &€ E,(T). The restricted Okounkov body of «
along C' is defined as

Axio(a) := Ag x|c(@).

When a = ¢;(L) for some big line bunle L on X, it is noticeable that Ax|c(a) = Ax|c(L), where
Ax|c(L) is defined in [LMO09]|. When L is ample, we have Ax|c(L) = A(L|c). Indeed, it is suffice to show
that for any section s € H(C, O¢(L)), there exists an integer m such that s®™ can be extended to a section
Sm € H°(X,Ox(mL)). This can be garanteed by Kodaira vanishing theorem. When « is any ample class,
there is a very similar theorem which has appeared in the proof of Proposition 1.4.2. However, the proof
there relies on the difficult extension theorem in [CT14]. Here we give a simple and direct proof when X is
a complex surface. Anyway, the idea of proof here is borrowed from [CT14].

PROPOSITION 1.4.3. If a is an ample class, then we have
Axic(a) = Ale|c) = [0,a-C].

PRrROOF. From Definition 1.4.4, we have Ay|c(a) S A(alc). It suffices to prove that for any Kéhler
current T € a|¢ with mild analytic singularities, we have a positive current T € o with analytic singularites
such that T'|¢ = T. First we choose a Kéhler form w € a. By assumption, we can write T = w|y + dd°¢ for
some quasi-plurisubharmonic function ¢ on C' which has mild analytic singularities. Our goal is to extend
¢ to a function ® on X such that w + dd°® is a Kdhler current with analytic singularities.

Choose € > 0 small enough so that

T = w|¢ +idd°p = 3ew,
holds as currents on C. We can cover C by finitely many charts {W; }1<;<n satisfying the following properties:

(i) On each W;(j < k) there are local coordinates (zy)7 zéj)) such that C(\W; = {zéj) = 0} and
s . .
o =5 log|ot + g;(1")

where g; (z%j)) is smooth and bounded on W, (| C. We denote the single pole of T in W;(j < k) by z;;
(ii) on each W;(j > k) the local potential ¢ is smooth and bounded on W; (1 C;
(iil) ;¢ Wj fori=1,...,k and j # i.
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Define a function ¢; on W, (with analytic singularities) by

Do [P AP it j>k,
eie” ) = 1 ¢ @2 1,002 ) ()2
gjlog(|z1j %+ 1257 1%) + g5(21”) + Alzy”| if j<k,
where A > 0 is a constant. If we shrink the W;’s slightly, still preserving the property that C' < |JW;, we
can choose A sufficiently large so that
w+ddp; = 2ew

holds on Wj for all j. We also need to construct slightly smaller open sets W/ cc U; c< W; such that
U W] is still a covering of C'.

By construction ¢; is smooth when j > k, and ¢, is smooth outside the log pole z; when j < k. By
property (iii) above, we can glue the functions ¢; together to produce a Kéhler current

T = wly + dd°F > ew

defined in a neighborhood U of C in X, thanks to Richberg’s gluing procedure. Indeed, ¢; is smooth on
W; (Y W; for any j # i, which is a sufficient condition in using the Richberg technique. From the construction
of @, we know that @|c = ¢, @ has log poles at every z; and is continuous outside 1, ..., zy.

On the other hand, since « is an ample class, there exists a rational number § > 0 such that o — 6{C}
is still ample, thus we have a Kahler form wy € a — 6{C}. We can write wy + 6[C] = w + dd°¢, where ¢ is
smooth outside C, and for any point z € C, we have

)
6 =5 log|zl + 0(1),

where 25 is the local equation of C.
Since ¢ is continuous outside C, we can choose a large constant B > 0 such that ¢ > @ — B in a
neighborhood of 0U. Therefore we define

_Jmax{@,¢+B} onU
- |eo+B on X — U,
which is well defined on the whole of X, and satisfies w + dd°® > €'w for some € > 0. Since ¢ = —0 on C,
while @|c = ¢, it follows that ®|c = .
We claim that ® also has analytic singularities. Since around z;, we have

~ Cj
P21, 22) = S log(|1]” + |22]*) + O(1),

and 5
P(21, 20) = §1Og |22|* + O(1),

for some local coordinates (z1,z2) of ;. Thus locally we have
~ 1 o o
max{@, ¢ + A} = 3 log(|21 %% + |22]? + |22%°) + O(1).

Since ® is continuous outside x1,...,xx, our claim is proved.
O

LEMMA 1.4.5. Let o be a big and nef class on X, then for any ¢ > 0, there exsists a Kdhler current
T. € o with analytic singularities such that the Lelong number v(T,,x) < € for any point in X. Moreover,
T. also satisfies
E(T) = Eux(a).

PROOF. Since « is big, there exists a Kéhler current with analytic singularities such that E,(Tp) =
E,k(a) and Ty > w for some Kahler form w. Since « is also a nef class, for any § > 0, there exists a smooth
form 65 in o such that s > —dw. Thus Ts := 6Ty + (1 — §)fs = 6w is a Kéhler current with analytic
singularities satisfying that

E(Ts) = E4(To) = Enk (),
and
Z/(T(;, .T) = (SV(T(), .Z‘)
for any « € X. Since the Lelong number v(Ty, z) is an upper continuous function (thus bounded from above),
v(Ts,x) converges uniformly to zero as § tends to 0. The lemma is proved. O

PROPOSITION 1.4.4. Let « be a big and nef class, C & E,x(«). Then we have
Axic(a) = Alale) = [0,a - C].
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PRrOOF. Asumme E, k(a) = [J;_, C;, where each C; is an irreducible curve. By Lemma 1.4.5, for any
€ > 0 there exists a Kdhler current 7, € o with analytic singularities such that

E(T.) = E i () = Null(a U C;
and v(T,,z) < € for all x € X. Thus the Siu decomposition

Te = Re + Z ai,eC'L
i=1
satisfies 0 < a;c < €, and R, is a Kéhler current whose analytic singularities are isolated points. By
Remark 1.2.1, the cohomology class {R.} is a Kahler class and converges to a as ¢ — 0. In particular,
{R¢}-C —a-C| < Ae, where A is a constant.
By Proposition 1.4.3, there exists a Kahler current S, € {R.} with analytic singularities such that
C ¢ EL(Se) and —e < v(Se|¢,z) — {Re} - C < 0. Thus T := Sc + ¥,._; ;,C; is a Kéhler current in o with
analytic singularities, and —(1+ A)e < v(T!|¢,z) —a-C. Since « is big and nef, there exists a Kéhler current
P, in o with analytic singularities such that v(P|c,z) < e. Therefore, by the definition of Ax|c(a) and the
convexity property we deduce that [0,a-C] € Ax|c(a). On the other hand, Ay |c(a) € A(alc) = [0,a-C]
by definition. The proposition is proved.
O

LEMMA 1.4.6. Let « be a big class on X with divisorial Zariski decomposition o = Z(«) + N(«). Assume
that C & E,k(Z(a)), so that C & Supp(N(«)) by Theorem 1.2.10. Moreover, set

fla) =va(N(a)le), gla) =va(N(a)le) + Z(a) - C,
where vz (N(a)|c) = v(N(a)|c,x). Then the restricted Okounkov body of o along C' is the interval

AX\C(Oé) = [f(a),g(a)]

Proor. First, by Remark 1.2.3 we conclude that T'+— T — N(«) is a bijection between the positive
currents in « and those in Z(«), thus we have

EnK (05) = EnK(Z(a)) U supp(N(a)),

and
(1.4.2) CE E.x(Z(a) < C<E E,k(a).

By the assumption of theorem, N(«a)|¢ is a well-defined positive current with analytic singularites on C. By
the definition of Ag x|c (), we have

Ag xjc(a) = Ag x|c(Z(a)) + vz (N(a)|c)-
We take the closure of the sets to get

Axic(a) = Axic(Z(a)) + va(N(a)|c).
Since « is big, thus Z(«) is big and nef, and by Proposition 1.4.4 we have Ax|c(Z(a)) = [0, Z(a) - C]. We
have proved the lemma.
O

DEFINITION 1.4.5. If « is big and [ is pseudo-effective, then the slope of B with respect to a is defined
as
s =s(a,B) =sup{t > 0| o —t3 is big}.

REMARK 1.4.5. Since the big cone is open, we know that {¢t > 0 | & > t/3} is an open set in R*. Thus
a — s belongs to the boundary of the big cone denoted by o€, and volx(a — sf) = 0.

PrOOF OF THEOREM B. For t € [0, s), we put oy = a — t{C}, and let Z; := Z(a;) and N; := N(a:) be
the positive and negative part of the divisorial Zariski decomposition of «;.

(i) First we assume C is nef. By Theorem 1.2.10, the prime divisors in F,x(Z(ay)) form an excep-
tional family, thus C' & E,x(Z(a;)) and C & Eni (o) by (1.4.2). By Lemma 1.4.6 we have Ax|c(a;) =
e (Nilo), Zi - C + va(Ni] o))

By the definition of R-convex body and restrict R-convex body, we have

Oé) ﬂt xR =1tx AR,X\C(at)‘
Thus

tXARchoét CA]R ﬂth
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However, since both A x(a) and Ag x|c(at) are closed convex sets in R? and R, we have

t x Ag xjolon) = Ar(e)[ )t x R,

therefore
(1.4.3) t x Axjc(ar) = Ala)[ )t x R.

Let
@) =va(Nelc) s g(t) = Z¢ - C + va(Nelc),
then A(a)()[0,s) x R is the region bounded by the graphs of f(t) and g(¢).

Now we prove the piecewise linear property of f(¢) and g(¢). By Lemma 1.3.1, we have N;, < Ny,
if 0 < ¢ < ta < s, thus f(¢) is increasing. Since Ny is an exceptional divisor by Theorem 1.2.11, the
number of the prime components of N; is uniformly bounded by the Picard number p(X). Thus we can
denote N; = >_, a;(t)N;, where a;(t) > 0 is an increasing and continuous function. Moreover, there
exsists 0 = tg < t; < ... < t;; = s such that the prime components of N; are the same when ¢ lies in the
interval (¢;,t;4+1) for i = 0,...,k—1, and the number of prime components of N; will increase at every ¢; for
1=1,...,k—1. We write s; = %foriz 1,... k.

We denote the linear subspace of H'!(X,R) spanned by the prime components of Ny, by V;, and let
V.- be the orthogonal space of V; with respect to ¢. By the proof of Lemma 1.3.1, for ¢ € (¢;_1,t;) we have

(1.4.4) Zi = Zs, + (si —t){C}
(1.4.5) Ny = N, + (si = 1)C),

where {C}i is the projection of {C} to V*, and C’l“ is a linear combination of the prime components of
N, satisfying that the cohomology class {CZ“} is equal to the projection of {C} to V;. By Theorem 1.2.10,
the cohomology classes of prime components of N, are all independent, thus CZ” is uniquely defined. The
piecewise linearity property of f(¢) and ¢(¢) follows directly from (1.4.4) and (1.4.5), and thus f(¢) and ¢(¢)
can be continuously extended to s. Therefore we conclude that A(«) is the region bounded by the graphs of
f(t) and g(t) for t € [0, s], and the vertices of A(«) are contained in the set {(¢;, f(t;)), (tj, g(t;)) € R? | i,5 =
0,...,k}. This means that a vertex of A(a) may only occur for those ¢ € [0, s], where a new curve appears
in N;. Since r < p(X), the number of vertices is bounded by 2p(X) + 2. The fact that f(¢) is convex and
g(t) concave is a consequence of the convexity of A(«).
By (1.4.3), we have

2volgs(Afa)) = 2 L volp(A o (an)dt

= 2f Zy - Cdt
0
= volx (o) — volx (a — sC)
= volx ().
where the second equality follows by Proposition 1.4.4, the third one by Theorem 1.3.1 and the last one by
Remark 1.4.5. We have proved the theorem under the assumption that C' is nef.

(i) Now we prove the theorem when C is not nef, i.e., C?> < 0. Recall that a := sup{t > 0 | C <
E.k(ay)}. By (1.4.2), if C € E,k(a) for some t € [0,s), we have C € E,x(Z(a:)). By the proof in
Theorem 1.3.3 we have

Z(a;)-C =0,
Z(ar) = Z(ay),

for 0 < 7 < ¢t. Thus we have
{0<t<s|C<E Ek(ay)} = (a,s),

and A(«) is contained in [a, s] x R. By Theorem 1.3.3 we also have

S

2volgs (A(a)) — 2f vola(A xjo (ar))dt

a

:2J Zy - Cdt

volx (ag) — volx (a)

volx ().
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Since the prime components of Ny, is contained in that of Ny, if a < ¢; <2 < s, using the same arguments
above, we obtain the piecewise linear property of f(¢) and g(¢) which can also be extended to s. The theorem
is proved completely. O

REMARK 1.4.6. If X is a projective surface, by the main result in [BKS03], the cone of big divisors of X
admits a locally finite decomposition into locally polyhedral subcones such that the support of the negative
part in the Zariski decomposition is constant on each subcone. It is noticeable that if we only assume X to
be Kéhler, this decomposition still holds if we replace the cone of big divisors by the cone of big classes and
use divisorial Zariski decomposition instead. This property ensures that the generalized Okounkov bodies
should also be polygons.

1.4.3. GENERALIZED OKOUNKOV BODIES FOR PSEUDO-EFFECTIVE CLASSES. Throughout this subsec-
tion, X will stand for a K&hler surface if not specially mentioned. Our main goal in this subsection is to
study the behavior of generalized Okounkov bodies on the boundary of the big cone.

DEFINITION 1.4.6. Let X be any Kdihler manifold, if o € HY'(X,R) is any pseudo-effective class. We
define the generalized Okounkov body A(«) with respect to the fized flag by

Ale) =[] Al + ew),

>0

where w is any Kdhler class.

It is easy to check that our definition does not depend on the choice of w, and if « is big, by Proposition
1.4.2, the definition is consistent with Definition 1.4.3. Now we recall the definition of numerical dimension
for any real (1,1)-class.

DEFINITION 1.4.7. Let X be a compact Kdihler manifold. For a class a € HY'(X,R), the numerical
dimension n(«) is defined to be —0 if a is not pseudo-effective, and

n(a) = max{p € N, {(a?) # 0},
if a is pseudo-effective.

We recall that the right-hand side of the equation above involves the positive intersection product {(a?) €
HYP(X,R) defined in [BDPP13]. When X is a Kahler surface, we simply have

n(a) = max{pe N, Z(a)? # 0}, pe{0,1,2}.

If n(a) = 2, « is big and the situation is studied in the last subsection. Throughout this subsection, we
assume « € 0€.

LEMMA 1.4.7. Let {N1,...,N,} be an exceptional family of prime divisors, w be any Kdihler class. Then
there exists unique positive numbers by, ..., b, such that w + >,._, b;N; is big and nef satisfying Null(w +

Z:=1 biNi) = U:=1 N;.

PROOF. If we set

bl w - Nl

o= -5"t :

b, w - N,
where S denotes the intersection matrix of {Ny,..., N, }, we have (w+>,;_, b;N;) - N; =0for j =1,...,7.
By Lemma 1.3.2, we conclude that all b; are positive and thus w + >, b;N; is big and nef. O

PROPOSITION 1.4.5. Let o be any pseudo-effective class with N(«) = Y.\, a;N;, w be a Kdhler class.
Then for e > 0 small enough, we have the divisorial Zariski decomposition

Zlo+aw) = Z(0) + e+ Y b)),

i=1

N(o+ew) = Z(ai —€b;)N;,
i=1

where b; is the positive number defined in Lemma 1.4.7.

PROOF. Since Z(a) + e(w + >;_, b;N;) is nef and orthogonal to all N; by Lemma 1.4.7, by Theorem
1.2.11, if € satisfies that a; — eb; > 0 for all ¢, the divisorial decomposition in the proposition holds. O
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If n(a) = 0, we have Z(a) = 0 and thus @ = >,,_, a;N; is an exceptional effective R-divisor. We fix a
flag
X 2 C 2 {z},
where C' # N; for all i. Then we have

THEOREM 1.4.8. For any pseudo-effective class o whose numerical dimension n(«) = 0, we have
Ay (@) =0 x v (N(a)le).

PROOF. We asumme N(a) = Y,'_; a;N;. Fix a Kihler class w, by Proposition 1.4.5, for € small enough
we have

(1.4.6) Z(a+ ew) = e(w + ZT: biN;),
(1.4.7) N(a+ew) = i(ai — eb;) Ny,
i=1

where b; is the positive number defined in Lemma 1.4.7. Since T'+— T — N(« + ew) is a bijection between
the positive currents in a + ew and those in Z(« + ew), we have

r

Ala + ew) = eA(w + > 0:iN) + (D (a;i — ebi) N;),

= i=1

where v (37 (a; — €bi) N;) = V(o) (21 (a; — €b;) N;) is the valuation-like function defined in Section 1.4.1.

Thus the diameter of A(a + ew) converges to 0 when € tends to 0, and we conclude that A(a) is a single
point in R2. Since

A(a+ew)ﬂ0xR = 0xAxjcla+ew)
= 00X [Ux(N(a+ ew)|o),vz(N(a + ew)|e) + Z(a + ew) - C1,
by (1.4.6) and (1.4.7) we have

Al)[ )0 xR =0x Vw(i a;Nilo),
1=1

and we prove the first part of Theorem F.. O

If n(a) = 1, Z(«) is nef but not big. If there exists one irreducible curve C such that Z(«a) - C > 0, we
fix the flag
X o C 2 {x},

then we have
THEOREM 1.4.9. For any pseudo-effective class o whose numerical dimension n(a) = 1, we have
Ala) =0 x [z(N(a)|c), va(N(a)lc) + Z(a) - C].

PROOF. By the assumption Z(«)-C > 0 we know that C' & Supp(N(«)). By Proposition 1.4.5, when e
small enough, the divisorial Zariski decomposition for « + ew is

(1.4.8) Z(a+ ew) = Z(a) + e(w + ZT: biN;),
(149) N(a + Gw) = i(ai — sz)Nl

where b; is the positive number defined in Lemma 1.4.7. Combine (1.4.8) and (1.4.9), we have

A(a)ﬂOxR = mA(a+ew)ﬂ0xR

e>0

= (0 x [va(N(a+ ew)|c), va (N (o + ew)|c) + Z(a + ew) - C]

e>0

= 0x [} aiNilo), v} aiNilo) + Z(a) - CI.
i=1 i=1
Since we have

volgz (A(a)) = liH(l) volg: (Ao + ew)) = lim Z(a + ew)? = 0,

e—0
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and A(a) is a closed convex set, we conclude that there are no points of A(«) which lie outside 0 x R as
volg (A(a) ()0 x R) = Z(a) - C > 0. We finish the proof of Theorem F. O
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CHAPTER 2

Degeneracy of Entire Curves on Higher Dimensional Manifolds

2.1. INTRODUCTION

In [McQ98], McQuillan proved the following striking theorem, which partially solved the Green-
Griffiths-Lang conjecture for complex surfaces with big cotangent bundle:

THEOREM 2.1.1. (McQuillan) Let X be a surface of general type and F a holomorphic foliation on X.
Then any entire curve F : C — X tangent to F can not be Zariski dense.

The original proof of Theorem 2.1.1 is rather involved. Later on, there are several works (e.g. [Bru99,
PS14]) appeared to explain and simplify McQuillan’s proof. Let us recall the idea in proving Theorem 2.1.1
briefly. Assumes that there exists a Zariski dense entire curve f : C — X which is tangent to F. Then, one
studies the intersection of the Ahlfors current T'[f], which is a representative of a (n — 1, n — 1)-cohomology
class in X, with the tangent bundle and the normal bundle of the foliation F respectively. The above works
proved that both of the intersections numbers are positive. However, since Kx is big, then T[f] - Kx > 0,
and by the equality K;(I = Tr + Nz, a contradiction is obtained.

The goal of the chapter is to study the entire curves tangent to the foliation with certain singularities on
higher dimensional manifolds, by pursuing the same philosophy in [McQ98|. Let us first recall the following
fundamental intersection formula [Bru97,McQ98,PS14], which is the basis of our work:

THEOREM 2.1.2. (Brunella-McQuillan-Paun-Sibony) Let (X, F) be a Kdihler 1-foliated pair. If f : C —
X is an entire curve tangent to F whose image is not contained in Sing(F), then

Tf],aTF) + T(f, Tr) = Tlfil), Ox,(=1)) = 0,
where Jx is a coherent ideal sheaf determined by the singularity of F, and T(f, JF) is a non-negative real

number representing the “intersection” of T[f] with Jr ; this number will be defined later.

If X is a complex surface, as is proved by McQuillan [McQ98], after passing to some birational modle
(X,F) — (X,F), Theorem 2.1.2 can be improved to the extent that

(2.1.1) T[f]-Tz =0,

where f is the lift of f to X. By pursuing his philosophy of “Diophantine approximation", we can generalize
(2.1.1) to higher dimensional manifolds, under some assumptions on the foliation:

THEOREM G. Let (X, F) be a 1-foliated pair with simple singularities (see Definition 2.3.2). For any

———Zariski
an entire curve whose Zariski closure f(C) T s of dimension at least 2, which is also tangent to F, we
always have
T[f] - T+ = 0.

If we further assume that Kx is a big line bundle, then the image of f is contained in B (Kx). In particular,
if Kr is ample, then there exists no nonconstant transcendental entire curve f : C — X tangent to F.

As an application of Theorem G, we can give a new proof of the following elegant theorem by Brunella
[Bru06, Corollary]

THEOREM 2.1.3. (Brunella) For a generic foliation by curves F of degree d = 2 on the complex projective
space P™, that is, F is generated by a generic holomorphic section (a rational vector field)

se H(P",Tp» ® O(d — 1)),

all the leaves of F are hyperbolic. More precisely, there exists no nonconstant f : C — P™ tangent to F (and
possibly passing through Sing(F)).

Since for any one-dimensional foliation with absolutely isolated singularities (see Definition 2.3.1), by the
reduction theorems [CCS97,Tom97] one can take a finite sequence of blowing-up’s to make the singularities
simple. We thus have the following result:

45
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THEOREM H. Let F be a foliation by curves on the n-dimensional complex manifold X, such that the

singular set Sing(F) of the foliation F is a set of absolutely isolated singularities. If f : C — X is an entire
————Zariski

curve whose Zariski closure f(C) is of dimension at least 2, which is also tangent to F, then one can
blow-up X a finite number of times to get a new birational model (X, F) such that
T(f]- Tz > 0.

On the other hand, Theorem 2.1.2 leads us to the fact that the error term T'(f, J) is controllable, if
the singularities of F are not too “bad” (they are called weakly reduced singularities in Section 2.3.2). The
theorem is as follows:

THEOREM 1. Let X be a projective manifold of dimension n endowed with a 1-dimensional foliation F
with weakly reduced singularities. If f is a Zariski dense entire curve tangent to F, satisfying T[f]- Kx > 0
(e.g. Kx is big), then we have

T[f] - det Ny <0
for some birational pair (X, F).

REMARK 2.1.1. Our definition of “weakly reduced singularities" is actually weaker than the usual concept
of reduced singularities, which always requires a lot of checking (e.g. a classification of singularities). We
only need to focus on the multiplier ideal sheaf of Jr, instead of trying to understand the exact behavior of
singularities.

It is notable that the following strong result due to Brunella [Bru99, Theorem 2| implies a conclusive
contradiction in combination with Theorem I, in the case of complex surfaces.

THEOREM 2.1.4. (Brunella) Let X be a complex surface endowed with a foliation F (no assumption is
made for singularities of F here). If f : C — X is a Zariski dense entire curve tangent to F, then we have

T[f]-Nzg=0.

Therefore, we get another proof of McQuillan’s Theorem 2.1.1 without using the refined formula (2.1.1)
immediately. This leads us to observe that if one can resolve any singularities of the 1-dimensional foliation
F into weakly reduced ones, and generalize the previous Brunella Theorem to higher dimensional manifolds,
one could infer the Green-Griffiths conjecture for surfaces of general type.

THEOREM J. Assume that Theorem 2.1.4 holds for a directed variety (X, F) where X is a base of
arbitrary dimension and F has rank 1, and that one can resolve the singularities of F into weakly reduced
ones. Then every entire curve drawn in a projective surface of general type must be algebraically degenerate.

2.2. TECHNICAL PRELIMINARIES

2.2.1. NOTATIONS AND DEFINITIONS. In this subsection, we briefly recall the value distribution theory
for coherent ideal sheaves [NW14, Setion 2.4], and some basic knowledge for foliation by curves [Brull,
Chapter 1 and 2].

For any coherent ideal sheaf 7 on a complex manifold X, one can construct a global quasi-plurisubarmonic
function ¢ 7 on X such that

v =log(Q; lg:l*) + O(1)

where (g;) are local holomorphic functions that generate the ideal 7. We call ¢ 7 the characteristic function
associated to the coherent sheaf J, which is well-defined up to some bounded function on X. For any entire
curve f: C — X whose image is not contained in the subscheme Z(7), one writes

v 0 f(M)lam = Y, vilog|r — > +0(1),
ITjl<r
where A(r) denotes the disk of radius r in C, and v; is called the multiplicity of f along J.
In a related way, we define the proximity function of f with respect to J by
1 27

my,g(r) = o7 o f(re')ds,

“or ),
and the counting function of f with respect to J by
Nyg(r):= ), vjlog

.
Irl<r 7]
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Let us take a log resolution p : X — X of J such that p~1(J) = O (—=D), let f denote to be the lift

of f to X so that p of = f, and let ©p be the curvature form of D with respect to some smooth hermitian
metric on O(D).
Now we recall the following formula, which will be very useful in what follows.

THEOREM 2.2.1. (Jensen formula) For r > 1 we have

27 27
(2.2.1) J dtJ o(rei®)do — if ()b,
A(t) 271' 271'

in particular if ¢ is a quasi-plurisubharmonic function, then for r large enough we have

dt 2m )
f ‘[ gp(reze)dG + O(1).
A(t) 27T

Then the following First Main Theorem due to Nevanlinna is an immediate consequence of (2.2.1) [PS14,
Theorem 3.6]

THEOREM 2.2.2. As r — o0, one has

Tj o, (r) = Npg(r) +mysg(r) + O().

Let F be a 1-dimension foliation on a complex manifold X of dimension n. Then we can take an open
covering {Ug }aer such that on each U, there exists v, € H*(Uy, Tx|r,) which generates F, and such that
the v, coincide up to multiplication by nowhere vanishing holomorphic functions {g.s}:

Vo = Gaplp

if Uy nUg # &. The functions {g,s} define a Céch cohomology class H'(X, O%), which is a line bundle
over X. It is called the cotangent bundle of 7, and denoted here by T (or Kr).

If we take any smooth hermitian metric w on X, then w induces a natural singular metric hs; on Tr.
Indeed, on each U,, the local weight ¢, of hs = e~¥= is given by

(2.2.2) Pa = —loglvall = —log ) abahwe, 7,

where v, = Y, a (za)a 0 - with respect to the coordinate system zo = (za,1;---;%a,n) 00 Uy, and w =

=1 "o
\/lewa,ijdzmi AdZg, .
We are going to define a coherent ideal sheaf Jr on X reflecting the behavior of the singularies of F.
On each U, the generators of Jr are precisely the coefficients (a’,) of the vector v, defining F, and it is
easy to see that this does not depend on the choice of the local coordinate charts (Uy, z4).

If we fix a smooth metric h on Tz, then there exists a globally defined function ¢4 such that
h = hgse ¥
We know that

(2.2.3) s = log [va |2,

modulo a bounded function, and by the very definition, @5 is the characteristic function associated to the
coherent sheaf Jr.

All the constructions explained above can be generalized to log pairs naturally. Let us recall the following
definition.

DEFINITION 2.2.1. Let X be a smooth K#hler manifold, D a simple normal crossing divisor and F a
foliation by curves defined on X. We say that F is defined on the log pair (X, D) if each component of D
is invariant by F. Such (X, F, D) is called a Kdahler 1-foliated triple.

The logarithmic tangent bundle Tx{— log D> with respect to the pair (X, D) is the locally free sheaf gen-
erated by the vector fields (z,»a%i)i:l .k and ( )z k+1,...,n With respect to some local coordinates (21, .. ., 2)
such that D is locally defined by {z|z122 - - 2 = 0}. Dually, the logarithmic cotangent bundle Qx{log D) is
locally free Ox-module generated by (CZ)zzlk and (dz;);—k+1,... n- Hence, any smooth hermitian metric

wx,p on Tx{(—log D) can be locally written as

k
wxp = VI Z dzz/\dzj 4 9Rev/—1 Z M +4/—1 Z w;zdz; A dzj,

i,j=1 i>k>j & i,j=k+1
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where (w;;) is a smooth positive definite hermitian matrix. If (X, F, D) is a Kéahler 1-foliated triple, such
that on some coordinate charts (Uy, 24 ),

k n
Vo = Z Ro,jOo A7 Z Qg
=1 é’z,m- 6za,i

i=k+1

is the generator of 7 on U,. Then wx p induces a singular hermitian metric hs p on T whose local weight
is given by

SDOz,D = - 1Og ‘/Uali)(,p = - logz azOéa%‘wl;
4,3
We denote by Jr p the coherent ideal sheaf on X generated by the functions (a?,). In general we have
Jr < Jr.p,

and the inclusion may be strict. If we find a smooth metric h = h, pe™%*? on 17, then it is easy to check
that ¢, p is the characteristic function associated with Jr p.

We also denote by X; := P(Tx(—log D)) the projectivized bundle, and wx p induces a natural smooth
metric h; on the tautological bundle O (—1).

2.2.2. BASIC RESULTS ABOUT AHLFORS CURRENTS. In this subsection, we will briefly recall the defi-
nitions and properties of Ahlfors currents, which were first introduced and studied by McQuillan [McQ98].

Let X be a Kahler manifold with w the Kdhler form, and let f be an entire curve on X. Then we can
associate to f a closed positive current of (n — 1,n — 1) type as follows. First for any r > 0, one defines a
positive (n — 1,n — 1)-current T,.[f] by

(2.2.4) (L) = L)

where 7 is any smooth 2-form on X, and Ty ,(r) := SI %SA(t) f*n is the Nevanlinna’s order function.

From [McQ98,Bru99|, one can find a suitable sequence of (r;) that tends to infinity, such that the weak

limit of T, [f] is a closed positive current. It is denoted by T'[f] and called the Ahlfors current of f. For

any line bundle L, we always use the notation T'[f] - L to denote the cohomology intersection {T[f]}-c1(L).
It is noticeable that T'[f] depends on not only the choice of w, but also the sequence (ry). On the other

hand, as is proved in [McQ98,Pau03], it is not indispensable to assume that w is Kéhler in (2.2.4). It

suffice to assume that w is a closed semi-positive form satisfying
Ty (T

lim D) oo 0,

ri=o Ty (rk)

with respect to some Kahler form &.

The following “strongly nef" property of Ahlfors current is a direct consequence of the First Main
Theorem:

PRrROPOSITION 2.2.1. Let L be a big line bundle on a K&hler manifold X. If f : C — X is an entire
curve on X such that its image is not contained in the augmented base locus B (L) of L |Laz04, Definition
10.3.2], then (T[f],c1(L)) > 0.

PROOF. Since the image of f is not contained in B (L), by the definition of the augmented base locus,
one can find an effective divisor E whose support does not contain f(C), such that

L=A+E,

where A is an Q-ample divisor, and “=" means numerically equivalent. We take a smooth hermitian metric
hg on E such that the proximity function of f with respect to E is also non-negative. Since the counting
function of f with respect to F is always non-negative, then by the First Main Theorem

T[f]- E =<T[f],Ons (E)) = 0.
By the ampleness of A, we have
T A0,
and thus
Tfl1-L=T[f]-A+T[f]-E>0.
O

DEFINITION 2.2.2. An entire curve f : C — X is said to be rational iff f admits a factorization in the

form f = go R, where R : C — P! is a rational function and g : P' — X is a rational curve. f is said to be
——Zariski
transcendental if the Zariski closure f(C) " of f is of dimension at least 2.
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We have the following criterion for an entire curve to be rational [Dem97, Corollaire 1.7]:

PROPOSITION 2.2.2. Any entire curve f : C — X is rational if and only if Ty, (r) = O(logr). In
particular, if f is transcendental, then
1~ Tfaw (T) _
m ————— = +00
r—w logr
Let us recall the following logarithmic derivative lemma [Dem97, Lemme 3.7], which will be very useful
in our arguments.

LEMMA 2.2.1. (logarithmic derivative lemma) Let f be a meromorphic function on C. Then

1> L f(re'?)
2. — : < " .
(2.2.5) 57 s log™ | Fre® |df < O(log Tf,.,(r) + logr)

Let (X,V) be a smooth directed variety, that is, a complex manifold X equipped with a subbundle
V < T'x. Denote by X; the projectivized bundle P(V'), and 7 : X; — X the natural projection map. Fix a
hermitian metric w on X. It induces a smooth metric ~ on the tautological line bundle Ox, (1). Then for
any 0 < 0 « 1, wy := 7w + 00,(Ox, (1)) is a hermitian metric on X;. For any entire curve f : C — X
tangent to V, it is easy to see that there is a canonical lift of f to X, defined by
fup @) = (f @), [F' D
such that 7(f17) = f, and we have the following lemma:
LEMMA 2.2.2. Assume that (X,w) is a Kdhler manifold and f is transcendental. Then
Ty o we, (7
tim inf o)
r—+0 I}thl(r)

In particular, we can define the Ahlfors current T'[fj;;] with respect to the semi-positive form 7*w in such
a way that mT[fj11] = T[f].

PROOF. Since f’(7) can be seen as a section of the bundle I (Ox,(—1)), by the Lelong-Poincaré formula
we have
(2.2.6) ddlog|f'()|2 = . pibr, — f{i1Onx (Ox, (—1))
| |<r

on A(r), where u; is the vanishing order of f/'(7) at 7;. Thus we get

J T mem©Ox )= 3 plog - f @f dde log | /(7).
A(t) Ity <r it ot Jag
27 ) 1 2 )
(2.2.7) = X mlos - 5 f log |/ (rei®) 2d6 + — f log |'(¢*) 2. d6),
[t;]<r 0 2m Jo

where the last equality is a consequence of the Jensen formula (2.2.1). Let (¢4 )aes be a partition of unity
subcoordinate to the covering (Uy )aes of X. We can take a finite family of logarithms of global meromorphic
fuctions (log ta;)aes1<j<n as local coordinates for Uy, and by the logarithmic derivative lemma (2.2.5), we
have

1 o + i0\|2 o
3 | et e = o [ eator® I e s

aeJ

< ZZCJ 1og+|@jEel9;| do

aeJ j=1
< O(log™ Ty (r) +logr),
where C' is some constant. Since f is transcendental, by Proposition 2.2.2 we have

Tt
lim =Lt/ (r)

= +00,
r>+o  logr
and thus

—
P Tya(r)

21
f log | f'(re'®)|2d6 = 0.

0
By (2.2.7) we have

(2.2.8) lim inf

r—+00

T dt 1 2m )
— 1E.Onx (Ox, (—1 >liminf—7f log | f'(re®®)|2d6 = 0.
5, o) o [ sl

r—+00
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Since w1 = 7*w + 00, (Ox, (1)) is a hermitian metric on X5, we have

" dt " dt
T = | T i = Tpma) 48 [ T [ gi0n(0x, (1),
1 At) 1 At)

By Tyw(r) = Ty, x#w(r) we obtain

Tr o awe(T
lim inf oyt (r)

> 1.
r—+w Tf[1]7w1 (T)

Hence we can replace w; by 7*w in the definition of Ahlfors current T'[f(;1], and the equality Tf[l],ﬁ*n(r) =
Ty ,(r) for any smooth (1,1)-form 1 on X then yields

T T fiyl = TIf]

Similarly we have the following lemma in [Bru99, p. 198]:

LEMMA 2.2.3. Let p: X — X be a bimeromorphic morphism between Kihler manifolds X and X. Fix
a Kahler metric w on X. If f : C — X is an entire curve whose image is not contained in the exceptional
locus, then for the lift f on X, and we can define the Ahlfors current T[f] with respect to the semi-positive
Kéhler form p*w such that

p+T[f] = T[],
REMARK 2.2.1. For any coherent ideal sheaf 7 whose zero scheme does not contain the image of f :
C — X, one can take a log resolution p : X — X of J with p*J = O (—D), and by Lemma 2.2.3 one can
find a suitable sequence (rj) such that
; Trow () _ o Trew) ()

T -D= 1 =
LD = g ) e Ty ()

where O(D) is a curvature form of D with respect to some smooth metric. By Theorem 2.2.2; we know that

T[f]- D does not depend on the log resolution of 7, which is denoted by T'(f, 7).

Finally let us recall the following Tautological Inequality by McQuillan [McQ98, Theorem 0.2.5], which
can be seen as a geometric interpretation of the logarithmic derivative lemma:

THEOREM 2.2.3. (tautological inequality) Let f : (C,T¢) — (X,V) be a transcendental entire curve in
X, where (X, V) is a smooth directed variety. Then we have

Tlfryl - Opvy(—1) = 0.
PrOOF. By (2.2.8) we have

lim inf
"ot Ty (1)

T dt
J 7] fﬁ]@h* (Op(v)(*l)) = 0.
A(t)

1

From Lemma 2.2.2 we can take 7*w as the semi-positive form used in the definition of the Ahlfors current
of T'[f{1}], where 7 : P(V)) — X is the natural projection. The equality T, (r) = T}, »*.(r) then implies

) 1
Tl Orw) (=D = I 70
[1],T*w

T dt

f 7J\ fﬁ]@h* (Op(v)(*l)) = 0.
1 A(t)

2.2.3. INTERSECTION WITH THE TANGENT BUNDLE.

THEOREM 2.2.4. Let X be a Kdihler manifold equipped with a 1-dimensional foliation F, and let f : C —
X be a transcendental entire curve tangent to F such that its image is not contained in Sing(F). Then we
have

(2.2.9) Tf1 Tr + T(f, Jr) = T[fiy] - Ox,(-1) = 0.

Proor. Let (U,) be a partition of unit of X such that F is generated by some vector fields v, €
['(Ua, Tx|v,) on U,. Denote by Q, = f~1(U,). Since f(C) is not contained in Sing(F), then on each Q,,

(2.2.10) F1(r) = Xa(m)vals(r)
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for some meromorphic function A, (7). We denote by n; the multiplicities of A\, (7) at 7;, and they may be
negative only if f(7;) € Sing(F). Ao (7) can not have essential singularity since n; + v; > 0, where v; is the
multiplicity of f along Jr, that is,

ddlog |val2 o f(7)|awy = Y. viloglr — 7> + O(1).
|mil<r

Since vo = gapvs for some nowhere vanishing function gog € O*(Uy n Up), then if 7, € Qo N Qg, Aq
and Ag have the same multiplicity at 7;, and thus 7; does not depend on the partition on unity. By the
Lelong-Poincaré formula and (2.2.10) we have

ddlog|f'(T)[Z = X} mdr, + ddClog|val? o £(7)

Imjl<r
(2.2.11) = ) e — f*On,,

[7jl<r
where h is the singular metric on T defined in (2.2.2) whose local weight is ¢, = —log |v,|?. If we fix a
smooth metric h on Tx, then there exists a globally defined function ¢, such that

h = hse %s,
and oy is the characteristic function associated to the coherent sheaf Jr. By (2.2.11), we have
(2.2.12) ddlog | f'(7)|2 = f*dd°ps = > 0., — [*OR(TF).

Imjl<r

on A(r). Combining (2.2.6) with (2.2.12) we have
Z Mj(;Tj —fﬁ]e)hl(OXl(—l)>—f*ddC<ps = Z nj(STj _f*(_)h(T]:)?
|mj|<r |mi|<r

where hy is the smooth metric on Ox, (—1) induced by w, and p; is the multiplicity of f’(7) at 7;. Hence,
p; —1nj = vj, and we have
FROR(TF) = = X, vibr, + {0 (Ox, (=1)) + f*ddp,

I75l<r

on each A(r). By the definition (2.2.4),

1 " dt
L v o1 i e e
1 "t 1 .
Tf’“(r)ﬁ t L(t) TinOn (Ox. (=) Ty(r) |r_,»Z<TVJ 1]
11 if 11 0
gy eI |, e e
1 "t . B
- wa(v")f1 tL(t) f10n, (Ox, (1))

1

(2.2.13) - WNLJ; (7') - Tful,(r)mf’jf (7")’

where Ny 7.(r) and my 7. (r) are the counting and proximity function of f with respect to Jr, and the
second equality above is a consequence of the Jensen formula. Since T[f] is the weak limit of the positive
current T, [f] for some sequence 7, — +0, we have

Tf] - Tr = lim (T, [f], On(TF))-
Tk —>+00
From Theorem 2.2.2, Remark 2.2.1 and Lemma 2.2.2 we conclude that
Tf],0n(Tr)) +T(f, Tr) = Tlfiy] - Ox,(=1) = 0.
O

In fact, Lr := Kr ® Jr is the canonical sheaf of the foliation F defined by J.-P. Demailly in studying
the Green-Griffiths-Lang conjecture [Dem15b, Definition 1.4, by using admissible metric. We recall his
definition for foliations of general type:
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DEFINITION 2.2.3. (Demailly) We say that the rank 1 sheaf ICr is “big" if if the invertible sheaf p*/Cr
is big in the usual sense for any log resolution p : X - X of Kr. Finally, we say that (X, F) is of general
type if there exists some birational model (X', ) of (X, F) such that Kz is big. The base locus Bs(F) of
F is defined to be

BS(F) = [ Ve © pta (B (1K %,)),
where v, : (Xa,Fa) — (X, F) varies among all the birational morphisms of X, and pig : (Xo,Fa) —
(Xa, Fo) is some log resolution of Kz .

The above Theorem 2.2.4 then gives another proof of the Generalized Green-Griffiths conjecture for rank
1 foliations formulated in [Dem12]. Moreover we can specify more precisely the subvariety containing the
images of all transcendental curves tangent to the foliation. The theorem is as follows:

COROLLARY 2.2.1. Let (X,F) be a projective 1-foliated manifold of general type. If f: C —> X is a
transcendental entire curve tangent to F, its image must be contained in Sing(F) u Bs(F). In particular,
any entire curve tangent to F must be algebraically degenerate.

PROOF. Assume that the image of f is not contained in Sing(F) u Bs(F), and we proceed by contradic-
tion. By Definition 2.2.3, there exists a birational morphism v, : (X4, Fo) — (X, F) such that the invertible
sheaf p:KCx, is big in the usual sense, for some log resolution g : X, — X, of Kr,, and such that the
image of f, is not contained in B (2K £, ), where fo is the lift of f to X,. We denote by f, the lift of f
to X,. By Proposition 2.2.1 we have

(T[fa), 1 (paKx,)) > 0.

By Remark 2.2.1 and the fact that (uo)«T[fo] = T[fa], we get
T[fa] . K]:a - T(fa?j]:a) = T[fa] ' /’I/:;K}—a > 0

However, since f is transcendental, by Theorem 2.2.4 we infer

T[fa] : T]:a + T(faa j]—'(,) = 07
and the contradiction is obtained by observing that ¢;(Kx,) = —c1(Tx,). O

REMARK 2.2.2. In Chapter 3 we generalize the above theorem to any singular directed variety (X, V)
(without assuming V' to be involutive), by applying the Ahlfors-Schwarz Lemma. In the proof, the canonical
sheaf plays a crucial role (and it arises in a natural way).

By a result due to Takayama [Tak08, Theorem 1.1], for any projective manifold X of general type, every
irreducible component of B (Kx) is uniruled. It is natural to ask the following similar question:

PRrROBLEM 2.2.1. Let (X,F) be a projective 1-foliated manifold of general type. Is every irreducible
component of Bs(F) uniruled?

We also need the following logarithmic version of Theorem 2.2.4:

THEOREM 2.2.5. Let (X, F,D) be a Kihler 1-foliated triple, and let f : C — X be a transcendental
entire curve tangent to F such that its image is not contained in Sing(F) v |D|, where |D| is the support of
D. Then we have

) N (r)
T[f]-Tr + T(f,Jr.p) = {T[f], Ox,(~1)) > — liminf L2~

= —NW(f, D
r—+00 Tf,w(r) (f’ )7

where fi is the lift of f on X| := P(Tx{—1log D)), and N](c%(r) is the truncated counting function of f with
respect to D defined by
O N T
Nf’D(r) = Z log ol
|7jl<r.f(r;)eD
ProOF. We adopt the same notation and concepts introduced in Section 2.2.1. Let (U, ) be a partition
of unity on X. On each U, we have

I o
Vo = ) Zj@ha— + Qo=
j=1 az] i=k+1 0zi
as the generator of F, where 2; -2, = 0 is the local equation of D in U,. The hermitian metric wx p
induces a singular metric hs,p on Tr with local weight

- 2 _ i qJ
Pa,p = —log|valy, , = —logZaaaawg.
0,J
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If h = hse™¥=P is a smooth metric on 1’7, then ¢, p is the characteristic function associated with Jr p.
Since the image of f is not contained in Sing(F) u |D|, on Q, := f~1(U,) we have

(2.2.14) Fir) = (%, o j}vfkﬂ, L E) = A (@ (), an (1)),
1 k

where A, (7) is the meromorphic functions with poles only contained in f~!(Sing(F) u |D|). By (2.2.14) we
know that f(7;) € D implies f(7;) € Sing(F). Indeed, if f(7;) € D, then A\, has a pole of order at least 1 at
7;, and such poles can only occur when f(7;) € Sing(F).

Observe that f'(7) can be seen as a meromorphic section of fFOx (—1), where

fi(r) = (f(). [F'(7)])
is the canonical lift of f to X;. Then on Q, n A(r) we have
ddlog|f'(Niy, = D, mide + Frddlogvall, .
|75 |<r,m;€Q0a

where 7; is the vanishing order of A, (7) on 7;. Since vy = gagvg, we see that n; does not depend on the
partition of unity, and thus on A(r) we have

(2.2.15) ddlog | f'(T)2, , = ) nide, — [*Ou(TF) + f*dd ¢, p.
|75l<r
On the other hand, since wy p induces a natural smooth metric on Tx(—log D), as well as a smooth
hermitian metric h; on Ox (—1), thus
(2.2.16) ddlog | f' (T2, = dd°log |F' (D)7, = X, mi0r, = f103,(Ox,(~1)
o<|rj|<r

on A(r), where y; is the vanishing order of f'(t). By (2.2.14) we know that p; = —1 if and only if f(7;) € |D|,
and otherwise y; > 0. Then by using the logarithmic derivative lemma again as in Lemma 2.2.2, we find

- Npp(r)
(2.2.17) T[f1] - Ox,(-1) = _lrlgirolof Tyl
We can combine (2.2.15) and (2.2.16) together to obtain
FRORTF) == >, wide, + >, mide + FFO5, (0%, (—1)) + f*dd°ps p
0<|rj|<r Irs]<r

on A(r). By arguments very similar to those in the proof of Theorem 2.2.4, we get

T[f1-©n(TF) + T(f,Tr.p) = T[] - Ox,(-1),
and the theorem follows from (2.2.17). O

2.3. DEGENERACY OF LEAVES OF FOLIATIONS: THEORIES
AND APPLICATIONS

2.3.1. “DIOPHANTINE APPROXIMATIONS" IN HIGHER DIMENSIONAL MANIFOLDS
AND APPLICATIONS TO BRUNELLA’S HYPERBOLCITY THEOREM. In this subsection, we study the entire
curves tangent to foliations on higher dimensional manifolds. We can generalize McQuillan’s “Diophantine
Approximations" for foliations with absolutely isolated singularties. First let us start with some relevant
definitions and properties in [CCS97, Tom97|.

DEFINITION 2.3.1. Let F be a foliation by curves on a n-dimensional complex manifold X. An isolated
singularity p € Sing(F) is said to be absolutely isolated singularity (A.LS.) if all the singularities of the
blowing up tree of py are isolated. More precisely, if we consider an arbitrary sequence of blowing-up’s

(X, F) <= (X1), Fay) <= - <= (Xy, Fm))

where the center of each blow-up 7; is a singular point p; 1 € SingF(;_;), then all singularties of F,, over
the exceptional fiber are isolated.

Since locally the foliation F is generated by a holomorphic vector field v = >7" | al(z) , the linear
part of F at p is defined by
Ly mp/m2 — my,/m2.
A singular point p € Sing(F) is called reduced if m,(F) = 1 and the linear part of F at p has at least one
non-zero eigenvalue. We shall say that p € Sing(F) is a non-dicritical singularity of F if 7=1(p) is invariant
by F, where 7 is the blow-up of p. Otherwise p is called a dicritical singularity.
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Let (X, F, D) be a 1-foliated triple with absolutely isolated singularities. We assume that all singularities
of F lie on D (this can always be achieved after one blowing-up). Fix a point p € Sing(F) and denote by
e = e(D,p) the number of irreducible components of D through p. Then the vector field generating F can
locally be written as

- 0 = %
v= ) zja;(z)z— + a;(2)5—,

where 2125 ...z, = 0 is the local equation of D at p.

DEFINITION 2.3.2. Assume that p is an absolutely isolated singularity of 7 and e = 1. Then p is a
stmple point if one of the following two possibilities occurs:
(A) a1(0) = 0, the curve (22 = ... = z, = 0) is invariant by F (up to an adequate formal choice of
coordinates) and the linear part £, of v|p is of rank n — 1.
(B) @1(0) = X # 0, the multiplicity of the eigenvalue A is one and if p is another eigenvalue of the linear
part of £,, then £ ¢ Q..
Assume that e > 2. Then p is a simple corner if (up to a reordering of (z1,...,2,)), we have a1(0) =
A#0,a2(0) = pand § ¢ Q.
We say that p is a simple singularity if it is a simple point or a simple corner.

The simple singularities for an n-dimensional vector field can be thought of a final forms in the sense
that they are persistent under new blowing-up. This generalizes those obtained by Seidenberg [Sei68] in
the two-dimensional cases.

PROPOSITION 2.3.1. Assume that p is a simple singularity of the 1-foliated triple (X, F, D). Let u : X >
X be the blowing-up of X with the center p and F := p~(p) the exceptional divisor. Set D := u~(D U {p})
and F to be the induced foliation. Then:
(a) Each irreducible component of D is invariant by F.
(b) If pe Sing(]—w") N E, then p is also a simple singularity of F with respect to the induced 1-foliated triple
(X, F,D). More precisely:
(b-1) if p is a simple point, there is exactly one simple point in Sing(]?) N E. The other points in
Sing(}w") N E are simple corners. Moreover, p and p have the same type (A) or (B) of Definition
2.3.2.
(b-2) If p is a simple corner, then all points in Sing(F) n E are simple corners.

In [CCS97] and [Tom97]|, they proved the following reduction theorem for foliations with absolutely
isolated singularities, which extended the Seidenberg’s Theorem to higher dimensional manifolds:

THEOREM 2.3.1 (Camacho-Cano-Sad-Tom). Let (X, F, D) be a 1-foliated triple with absolutely isolated
singularities. Then there exists a finite sequence of blowing-up’s
(X, F) <= (X1y, Fy) <= -+ <= (X(n), Fny)
satisfying the following property:
(i) the center of each blow-up ; is a singular point p; 1 € Sing(F(;_1)).
(i3) (X(ny, F(n)) is a 1-foliated triple with only simple singularities.
(iii) All the singularities of F .y are non-dicritical.
In [CCS97, Theorem 6], the authors gives the final form of the simple singularities (which is, of course,
absolutely isolated), and we summarize the properties of simple singularities as follows:

PROPOSITION 2.3.2. Let (X, F, D) be a 1-foliated triple with simple singularities, such that all singular-
ities of F lie on D. For any p € Sing(F), one can take a local coordinates (z1,...,z2,) of a neighborhood of
p such that {z125...2. = 0} is the local equation of D at p, and the linear part £, of a generator of F at p

° 0 Z 0
v = zja;=— + ; =—,
j; 8zj iz 821-

=e+1
can be written in the following Jordan form:
0 0

+ /\s+jzs+2j827

s k
0
L, = Z /\iZi07 + Z()\s+j25+2j_1 + Zs+gj) X
i=1 j=1 5425

i : azs+2j71

where e < s, Aj¢0f0rj:2,...,s+k;%¢(@+ fori #j,i,5=1,...,s+k,j # 1.

If we denote by (X'7 F, ﬁ) the induced 1-foliated triple obtained by the blowing-up px : X > X at p with
the exceptional divisor F, then
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(i) E is invariant by F.
(ii) The singularities of the induced foliation

Slng(]}) NE= {ﬁla o 7ﬁ87ﬁ8+1;ﬁ8+37 o 7ﬁ8+2k71}7

where p; is the origin of the affine coordinate (Z1,..., Z,) given by

Z] = R1Rjyee-3 %) = Zjyee-y2n = Zniyj-

(iii) If p is a simple point, then §; is the only simple point among Sing(F) n E, and other p;’s are simple
corners. Moreover, p; and p have the same type (A) or (B) of Definition 2.3.2.
(iv) Tz = p*Tr.

Let us recall the following definition of separatrix of the foliation.

DEFINITION 2.3.3. Let F be a foliation by curves defined on some open domain U < C™. A separatriz
of the singular holomorphic foliation F at the point p € Sing(F) is a local leaf L < (U, p)\Sing(F) whose
closure L U p is a germ of analytic curve.

Based on the properties of the simple singularities in Definition 2.3.2 and Proposition 2.3.2, we can prove
that, after any blowing-up, the separatrix can only pass to certain singularities.

THEOREM 2.3.2. With the same notation as in Proposition 2.3.2, we have

(i) if p is a simple corner (i.e. e > 2), each separatriz of F at p must be contained in D.

(ii) Assume that p is a simple point. Let (X, F, D) be the induced 1-foliated triple obtained by the blowing-
up at p with the exceptional divisor E, and C be a separatriz at p which is not contained in D, then
the lift C intersects with E only at p, which is the unique simple point in Slng(]:) N E by Proposition
2.8.1.

PROOF. Assume that we have a separatrix C' of F at p which is not contained in D. We take a local
parametrization f : (C,0) — (C,p) for this separatrix, then in the local coordinate system (z1,...,z2y,)
introduced in Proposition 2.3.2, we have

(f{(T)’ - 7fT/L(T)) = 77(7') ’ (fl(T)al(f)’ .- ~7fe(7)ae(f);ae+1(f)> s 7an(f))

for some meromorphic function 7(7) whose poles only appear at 0. By the assumption that C'is not contained

in D, for each i = 1,...,e, fi(7) is not identically equal to zero. We denote by v; the vanishing order of
fi(T) at 0 for ¢ = 1...,n, which are all non-negative integers.
If p is a simple corner, then e = 2 and Ay = a3(0) # 0, and we have
f5(7)

nras(r) = £

This implies that the order of pole of n(7) at 0 must be 1. If we denote by n(r) = @ with b(7) some germ
of holomorphic function satisfying b(0) # 0, then
b(O) . )\2 = Uy > 0.
Similarly we also have
b(O) . )\1 =V > 07
thus :\\—; = l’j—; € Q4, which is a contradiction. Thus any separatrix at the simple corner must be contained

in D, and we proved the claim (i). . 3
Suppose that p is a simple point (i.e. e = 1). For the lift C of C' on X, we have

é NnEe Sll’lg(ﬁ) NE= {ﬁlﬁ s 7ﬁsvﬁs+1aﬁs+3a s aﬁs+2k—1}-

First we assume that C' n E = {p;} for some j > 2. Then p; is the origin of the affine coordinate (z1,..., z,)

21 = 212]‘,...72]‘ = Zjy.-y2n = gnéj,
and thus the lift f(7): (C,0) — (C",0) of f(7) is given by

: 7 fi(r) f;l()

(fi(r) ..., fulT)) = ( IO fir1(7) fn(’]’))

fitr) ()

7fj(7—)a

Hence for any i # j
Vi > Vj,
and we have

fi () = Am(7) (£5(7) + o(7)).
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b(T)

Then we can set n(7) = with b(7) some germ of holomorphic function satisfying 5(0) # 0, such that

b(O) . )\j = I/j > 0.
Since
/ b(7)
fi(r) = n(m) fr(r)as (f(7)) = 7]”1(7)@1(]”(7))»
thus Ay = a1(0) = v1/b(0) which implies that % = 2 € Q.. This is a contradiction.
We can also derive Claim (ii) from Claim (i) dlrectly. Indeed, since E is invariant under F, by the fact

that C is not contained in E, we see that C' n E must be contained in Sing(F) n E. However, $; is the only
simple point by Proposition 2.3.2, by Claim (i) we conclude that

CnE={pn}
We finish the proof of the Theorem. O

LeMMA 2.3.1. Let X be a smooth projective manifold, and L an ample line bundle over X. Let

———Zar
f: C — X be any entire curve whose Zariski closure Z := f(C)  is of dimension r > 2, and f’(0) # 0. Take
any open neighborhood U containing p := f(0) with coordinates (21, ..., 2,) such that f( ) =(t,0,...,0) in

U. For any m € N, we define the ideal sheaf Z,, := (27, 22, ..., 2,). Then for any c € Q* with % <c<l1,
we have
for m » 0.

PROOF. The lemma will be proved if HY(Z,|m¢|L ® Z,,|z) # 0. Indeed, since L is ample, by Serre
Vanishing Theorem, for m » 0 we have H'(X, |[m¢|L ® Zz), and thus any section

se HY(Z,|m°|L®Tn|z) # 0
can be extended to a section
Se HY(X,|m|L®Ty).
Let 1 X — X be a log resolution of Z,, with u*Z,, = O (—D). Then there is an effective divisor
E ~|mf|u*L - D,
which does not contain Z. Here “ ~ ” represents the linear equivalence. Hence we have
mC|T(f] - L~ T(f.T) = Im°|T[f] - (L — D) = T[f] - E >0,
where the last inequality is due to the First Main Theorem.
By Riemann-Roch Theorem, we have
dimH®(Z, |m¢|L|z) ~ |m¢|" > m,

and the defining equations for sections given by Z,, is m. Thus if m » 0, there always exists a non zero
section in H%(Z,|m°|L ® Z,,|z) # 0. The lemma is proved. O

The geometric understanding of Lemma 2.3.1 is the following interpretation:

ProprosITION 2.3.3. Let X be a smooth projective manifold, and let f : C — X be a transcendental
entire curve. We take an infinite sequence of blowing-up’s

™ e T Tn41
X<—1X(1)<—2---<—X(n)<—+-~-

such that each m; : X(;) — X(;_1) is obtained by the blowing-up at p; 1 := f(;_1)(0) with the exceptional
divisor E;, where f;_1y: C — X(;_y) is the lift of f to X(;_;). Then we have

k—+o0
PRrOOF. After taking finite blowing-ups, we can assume that f’'(0) # 0. Take any open neighborhood U
containing po := f(0) with coordinates (z1,...,2y,) such that f(¢) = (¢,0,...,0) in U. Then p; is the origin
of the affine coordinates (z§ N )) for 77 1(U) defined by
21 = zil), zy = z§1)z§1), ceeyZp = zgl)zfll).
Set py := mpomp_10---om. We can inductively define the coordinates (zgk), ok )) such that under this

coordinates py, is the origin, and Ej, = {zgk) = 0}. Then we have

(a2 ) = (& A 2R,
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which implies
MZIk c OXk(_kEk)-
Then for any ample line bundle L, when k£ >» 0,

ol
?“ wino

1 1
Tlfwy] - B < ET(f(k),/izIk) = ET(f, Tk) <
where the last inequality is due to Lemma 2.3.1 by setting ¢ = % By passing k to infinity we obtain our
result.
Moreover, we will prove a more general result. Fix two positive integers k and s. We denote by 7y s k41 =
Thts O Mhys—10...0Mhy1: X(rys) — X(r) the composition of blowing-ups, and E,(CHS) = (wkﬂ,kﬂ);l(Ek)
the strict transform of Ej. Set Is(k) c OX(k) to be the ideal sheaf defined by

(47,2, ()
Then we have
k+s k+s k+s
(Wk+s7k+1)*1:gk) = OX(ir (*El(c:; - 2E,(€+§ - SEI(HJ; ))v
and
(7Tk,+s7]€+i+1)*Ek,+i = Elgj_-:é) + E]E:]jr-"l_i)l + .« + EI(CIT:‘;S)
Then

k+s k+s k+s
T(fu),I) = Tlfirsn]- (BSR4 2B00) 4 4 sERTS)

= T[foss)]- (Z(Wk+s,k+i+1)*Ek+i)

=1
= Y Tlfos)] - iy
=1

By (2.3.2) we also have
(2.3.3) lim T'(f), Z) = 0.

k—+0

Indeed, Proposition 2.3.3 can be extended to a more general form:

ProprosiTION 2.3.4. Let X be a projective manifold and Z be an irreducible analytic subset of X of
dimension r > 2. For some py € Z, assume that there exists an infinite sequence of blowing-up’s
X<1X(1) &...J‘_nX(n) Jnrt o
such that each 7; : Xy = X@-1) i obtained by the blowing-up at some p;_1 € E;_1nZ;_1\FE,_,, where F;_;
is the exceptional divisor of m;_1, E/_, and Z;_; are the strict transforms (m;_1)5 ' E;_» and (m;_1)5 " (Zi_2).
Then for any % < ¢ < 1 and some ample line bundle L on X, when k£ » 0, there always exists sections
s € HY (X(k), |k il ® (’)X(k)(—kEk)) which do not vanish on Z. Here we set uy := 7 0 g1 0 -+~ 0 my.

Thanks to Proposition 2.3.3, we can prove the following result, which can be seen as a generalization of
McQuillan’s “Diophantine approximation" for foliations on higher dimensional manifolds.

THEOREM 2.3.3. Let (X, F) be a I-foliated pair with simple singularities. For any transcendental entire
curve f : C — X tangent to F, we always have

T[f]-TF > 0.

If we further assume that Kx is a big line bundle, then the image of f is contained in B, (Kx). In particular,
if Kr is ample, then there exists no nonconstant transcendental entire curve f : C — X tangent to F.

PROOF. By Property (iv) in Proposition 2.3.2, for (X, F) obtained by blowing-up of any simply singu-
larity p, we have

TUf) Tr = TUf) - w*Tr = T(f] - Tr,
where p is the blowing-up and f is the lift. Thus after one blowing-up, we can assume that (X, F, D) is
a 1-foliated triple with simple singularities, such that all singularities of F lie on D. We adopt the same
notation as in Proposition 2.3.2.
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Fix a simple point py € Sing(F). We denote by 7 the least non-negative integer k such that Py (0) # 0.

%
0z7

Take an infinite sequence of blowing-up’s
(2:34) (X, F,D) < (X1, Fay, Day) <= -+ & (X(ry, Fiiys Diy) -+

such that the center of each blow-up ; is the unigque simple point p;_; € Sing(F;—1) n E;_1, where E;
is the exceptional divisor of the blowing-up m;_1. In other words, this sequence (2.3.4) is the iteration of
the blowing-up’s in Proposition 2.3.2. For each ¢ > 0, one define the non-negative positive integer 7; for the
simple p; as ng for pg, and it is easy to verify that they are invariant under the blowing-up’s:

770:’]71:~..:77k:o...
By Theorem 2.2.5, we have

(2.35)  TUf]-Tr = Tlfo)] Tra, = =T (k) TFay Do) — N (fik)» Sing(Fiiy) 0 D),

where N ( fy, Sing(Fx) n Dy) is the truncated counting function, and the first equality in (2.3.5) is due to
Property (iv) in Proposition 2.3.2. Therefore, in order to show that T[f] - T > 0, we need to prove that
the right-hand-side (RHS for short) of (2.3.5) tends to 0 as k — +o0. By Definition 2.3.2, we know that the
coherent ideal sheaf Jr,  p, is not trivial at p € Sing(F()) if and only if p is a simple point of type (A).
On the other hand, from Claim (i) in Theorem 2.3.2, the entire curve f(;) intersects with D, only at simple
points, which implies that, only simple points in Sing(F(;)) contributes to the truncated counting function

N(l)(f(k), D1y). In conclusion, we only need to study the contributions of simple points to RHS of (2.3.5).
Fix any simple point pg € Sing(F). If f(C) does not contain pg, then by the very definition,

N (fwy, 1 (o)) =0

for all £k > 0, where g := m o mp_1 0+ -+ omy is the composition of the blowing-up’s. If f passes to pg, then
by Property (ii) in Theorem 2.3.2, the blowing-up’s procedure introduced in Theorem 2.3.3 coincides with
that in (2.3.4). Thus we can apply the result in Theorem 2.3.3 to show that

T(fx)] - Ex — 0.
By Claim (ii) in Theorem 2.3.2 again, f(C) n ;' (po) < Ej, then by the First Main Theorem, T[fa] - Ex
dominates the counting function N (f), 14" (po)). Thus we conclude that

(236) lim N(l)(f(k), Slng(]-"(k)) N D(k)) =0.

k—+400

However, from Claim (ii) in Theorem 2.3.2 we see that the truncated counting function is stable under the
blowing-up’s in (2.3.4), that is, for each k > 0, we have

N(l)(f(k), Slng(}'(k)) (@) D(k)) = N(l)(f(k+1), Sing(f(k+1)) [ D(k+1))~
Then by (2.3.6), the truncated counting functions N(l)(f(k), D) are always zero.

Take an open set U containing py as the unique singularity in Sing(F). If pg is of type (B), then g = 0,
and for any k > 0, on the open set Uy, := M;I(U), we have

TF 0Dy = OX -

Thus all the singularities in Sing(F(x)) N Uy have non contribution to T'(f(x), T7,.D, )-

If po is of type (A), then s := ny > 0. If f passes to pg, then then by Property (ii) in Theorem 2.3.2
again, the blowing-up’s procedure introduced in Theorem 2.3.3 coincides with that in (2.3.4). After taking
finite blowing-up’s, we can assume that f : (C,0) — (X, pg) with f’(0) # 0. First, we will show that on Uy

j]-'(k),D(k) = ng)7
where Iék) is the ideal introduced in the proof of Theorem 2.3.3. Then all the contributions of all singularities

in Uy, to T(f(r)» TFu.D.y) are equal to T(f(k),ng)), which tends to 0 as k — +o by (2.3.3).

In the coordinates (ng)’ e z,(Lk)) introduced in Proposition 2.3.1, Ej, is defined by {z%k) = 0}, the local
vector field v generating F(;) has the following form

k 0 = 0
v =z >b1<z<k>>rz(k) + Y bi(z®) —m
1 =2 4

Since f(t) = (t,0,...,0) is tangent to F ), thus for each 2 <i < n,
bi(t,0,...,0) = 0.
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By Proposition 2.3.1, py is of the same type as pp, and thus by the definition, the linear part £,|g, of v|p
is of rank n — 1. That is, the Jacobian determinant of the functions

(bg(O,Zék), .. .,z(k)), .. .,bn(O,zék)7 . z(k)))

n e n
with respect to (zék), ol z%k)) is non-zero locally. Then
{2y (2F)) = b3 (2M)) = ... = b, () = 0}

defines the local separatrix f() : (C,0) — (X(x),pr). Since the vanishing order of by (f((t)) at 0 is s, we
see that the ideal defined by (b1, ba,...,b,) is 7). We thus proved that Jz,, b, = Ox-

If f(C) does not contain the type (A) simple point po, then f)(C) also avoids pg, and the counting
function N(f(x),px) = 0. By the First Main Theorem 2.2.2, the contributions made by all the singularities
in Uk, to T(f(x), TFu).D1y) are equal to the proximity function m(fx, J7,.D,)- If we can show that

k:ErJrrloo m(fk)s TFuy,0iy) = 0,

we will finish the proof that the RHS of (2.3.5) tends to 0 as k¥ — +o0 (may pass to a subsequence).
Case 1: there is a subsequence k; tends to infinity such that the closure (in the Euclidean topology) f(,)(C)
omits pg,. Then by the definition of the proximity function, we have

m(f(ki)’j]:(ki)’D(k‘i)) =0
for such k;’s tending to infinity.
————Zariski ————Zariski

Case 2: Assume that when k > ko, we always have py € f(,)(C) M Set Zry = [(ho)(C) T We

denote by Tris k41 = This © Thys—10 ... 0 The1 © X(hts) — X(x) the composition of blowing-
ups, and E,(CHS) := (Tpyskt1)s (Ex) the strict transform of Ej. Then for each s > 0, the strict
transform Zp, s := (7Tk+s,k0+1);1(Z) contains pr+s. The pair (X, Z,) and the blowing-up’s
(2.3.4) thus satisfy the condition in Proposition 2.3.4. We apply the result in Proposition 2.3.4 and
the First Main Theorem to obtain that

|| T[f]- L = Tfu] - |E )k L = Tfr] - kEx
for any k > kg. This proves that

k—400
Since when restricted on U, we have
k+s k+s k+s
(Trk-&-s,k-&-l)*jf(k),D(k) = OUkJrs(_EIEy:i ) - 2E]E;+g ) T e T SE]E;J:; ))7

thus
% k
. +s
(2.3.8) m(f(k)7 jf(k)yD(k)) = m(f(k+s)a (7Tk+87k+1)*k7-7'—(k)7D(k)) = Z J- m(f(k+s)7 E}(g+j ))'
j=1

Set Z(xy to be the maximal ideal at pj, then

k+s k+s k+s
(Mhrsis1) Ly = Ov, ., (Bt — BEEY) — = BHY),
and thus
(2.3.9) m(f iy L) = M fers)ys (Thrsnsr) " Liwy) = Y| m(f(k+s)7E](ciJ;S))-
j=1

One combines (2.3.7), (2.3.8) and (2.3.9) to obtain

s—1 S
kETwm(f(k)7jf(k),D<k>) = kETw;m(f(k+i),I(k+i)) < kETw;T[fkw] - Epyi = 0.

In conclusion, we prove that, after taking a subsequence, we always have
kEr-{-loc T(f(k)v jf(k)vD(k)) = 0.

Since the truncated functions N(l)(f(k), D) are always zero, by (2.3.5) we see that
T[f]-e(TF) = 0.
If we further assume that Kz is a big line bundle, then by Proposition 2.2.1, f(C) is contained in the

augmented base locus B (Kx). In particular, if K is ample, then B, (Kx) = ¢J, and thus there is no
non-constant transcendental entire curve tangent to F. This completes the proof of the theorem. O
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Say that a foliation by curves on the complex projective space CP™ is of degree d(= 0) if it is generated
by a nontrivial holomorphic section (a rational vector field)

se H'(CP", Tcpr @ O(d — 1)).

Let Fol(d,n) denote the space of one-dimensional holomorphic foliations of degree d on CP™. As an appli-
cation of Theorem 2.3.3, we give a new proof of the following theorem by Brunella [Bru06]:

THEOREM 2.3.4. For a generic foliation F by curves of degree d in the complex projective space CP", if
n =2 and d = 2, then there exists no nonconstant f : C — CP"™ tangent to F (and possibly passing through
the singularities Sing(F) ). In particular, all the leaves of F are hyperbolic.

PrOOF. Based a result by Lins Neto and Soares [LS96, Theorem II], for d > 2, there exists an open
and Zariski dense U < Fol(d, n), such that for any F € U, it has the following two properties:

(i) all the singularities of F are isolated and hyperbolic, that is, around the singular point p of F, the linear
part of the vector field v generating the foliation F has eigenvalues A1, ..., A, satisfying

A # RN, Vj#k.

(ii) No algebraic curve is invariant by F.

Then by Proposition 2.3.2, all the singularities of F are absolutely isolated and moreover they are simple
singularities.

Assume that there exists an entire curve f : C — CP" tangent to F. Then by Property (ii) above f is
transcendental. However, since Kr = Ocpn(d — 1), if d > 2, then it is ample, and by Theorem 2.3.3 f must
be constant. This proves the theorem. O

REMARK 2.3.1. In [Bru06], Brunella prove that if there exists an entire curve tangent to a generic
foliation F € U, then

T[f]- N» = 0.

His methods rely on his deep intuition on the dynamical properties of the leaf space around the hyperbolic
singularities of the foliation. He proved that either the invariant measure associated to the Ahlfors currents
is concentrated on the periodic trajectories of the induced real 1-dimension foliation on the sphere around
the isolated singularity, which is identically zero since the general foliation by curves in CP™ has no invariant
algebraic curves; or the leaf space is parametrized by a real analytic subvariety on which the residue of the
foliated one-form representing the normal bundle Nz measured with the Alhfors current is zero.

2.3.2. INTERSECTION WITH THE NORMAL BUNDLE. In Section 2.3.1, we spent a lot of effort in proving
McQuillan’s Diophantine approximation for foliations on higher dimensional manifolds, which relies heavily
on the reduction of singularities. The original motivation of McQuillan is to study the Green-Griffiths-Lang
conjecture. In this subsection, we will introduce so-called weakly reduced singularities which play the same
role in the McQuillan Theory, but are less demanding. As an application for Theorem 2.2.4, we will study
the intersection of T[f] with the normal bundle; i.e. with ¢;(/Nx). Before anything else, we begin with the
following definition.

DEFINITION 2.3.4. Let X be a Kahler manifold endowed with a foliation F by curves. We say that F
has weakly reduced singularities if

(i) for some log resolution m : X — X of Jr, we have Tz = n*Tr, where F is the induced foliation of
it F;
(ii) the L? multiplier ideal sheaf Z(J7) of Jr is equal to Oy, i.e., at each p € X, assume that the vector
field v is the local generator of F around p, then for any f € Ox ,, we have
If1? 1
—=€cL
ol < e
where w is any smooth hermitian metric on X.
With the previous definition, we have the following theorem.

THEOREM 2.3.5. Let X be a projective manifold of dimension n endowed with a foliation F by curves
with weakly reduced singularities. If f: C — X is a transcendental entire curve tangent to F, whose image
is not contained in Sing(F) and satisfies {T[f], Kx) >0 (e.g. Kx is big), then we have

T[f] - det Ny < 0
for some birational modification (X, F) of (X, F).
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PRrROOF. From the standard short exact sequence
0—Tr—Tx — Nr—0
that holds outside of a codimension 2 subvariety, we have
Kx +TF = —det Ng.
By the definition of multiplier ideal sheaves [Laz04, Definition 9.2.3], we have
I(JTF) = 7T*(K)”(/X - D),

where 7: X — X is a log resolution of Jr satisfying the condition in Definition 2.3.4, such that #*Jr =
Ox(=D). Since K,y — D is an Z-divisor, we know that Z(Jr) = Ox if and only if Ky x — D is effective.

By the assumption that the image of f is not contained in Sing(F), i.e. in the zero scheme of Jr, we know
that the image of f is not contained in the support of the exceptional divisor, and thus

T(f] - (Kg)x — D) > 0.

Therefore we have

T[f] . (KX' +T]:-) = T[f] . (W*KX +7r*T—F+KX/X)
> T[f]- (#*Kx + n*Tx + D)

where the last equality follows from the fact that 7, T[f] = T[f] and T(f, Jr) = T[f]- D. Since by Theorem
2.2.4 we have

T[f]-Tr+T(f,TF) 20,
then

~T[f]-det Np = T[f]- (K¢ + Tz) > T[f] - Kx > 0.
The theorem is proved. 0

From Definition 2.3.2, we see that any foliation F with simple singularities is also weakly reduced. Since
for any complex surface equipped with a foliation (X, F), the singularity is always absolutely isolated, and
thus after taking a finite sequence of blowing-up’s the singularities of the foliation are weakly reduced. Then
we can get another proof of McQuillan’s theorem without using his “Diophantine approximation”

THEOREM 2.3.6. Let X be a complex surface of general type endowed with a foliation F. Then any
entire curve tangent to F is algebraically degenerate.

PROOF. Assume that we have a Zariski dense entire curve f : C — X tangent to F. We proceed by
contradiction.

By Seidenberg’s theorem [Sei68] there is a finite sequence of blowing-up’s 7 : X — X such that the
singularities of the induced foliation F are weakly reduced, and the lift f of f to X is still Zariski dense.
Thus by Theorem 2.3.5 we have

T[f] Nz <0
for some birational pair (X, F) which is obtained by resolving the ideal J. 7. However, Theorem 2.1.4 tells
us that

T[f]- Nz=20
and we get a contradiction. O

2.3.3. S1U’s REFINED TAUTOLOGICAL INEQUALITY. In [Siu02] Y-T. Siu proved McQuillan’s “refined
tautological inequality” by applying the traditional function-theoretical formulation. We will give here an
improvement of this result. First we begin with the following lemma due to Siu.

LEMMA 2.3.2. Let U be an open neighborhood of 0 in C™ and 7 : U — U be the blow-up at 0. Then
™ (Ou () cIp® (Q%<— log E)), where Zg is the ideal sheaf of the exceptional divisor E.

THEOREM 2.3.7. Let H be an ample line bundle on a projective manifold X of dimension n. Let Z be
a finite subset of X and f : C — X be an entire curve. Let 0 € H*(X,S'Qx ® (klH)) be such that f*o is
not identically zero on C. Let W be the zero divisor of o in X1 := P(Tx), and 7 : Y — X be the blow-up of
Z with E := 7~Y(Z). Then we have
1

(2.3.10) z

Npw (r) + Tj g, (r) — N

7 Fomy (r) < kTt e, (r) + O(log Tye, (r) +logr),
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where N}};Z (r) is the truncated counting function with respect to the ideal myz, and O (resp. Og) is the
curvature of H (resp. Op) with respect to some smooth metric hy (resp. hg).

REMARK 2.3.2. In [Siu02] and [McQ98], a slightly weaker inequality is obtained comparatively to
(2.3.10), with mym, (r) in place of T; o (r) — N}%Z (r).

PROOF OF THEOREM 2.3.7. Let 7 = n*0. By Lemma 2.3.2, 7 is a holomorphic section of S'(Qy (log F))®
7*(klH) over Y and 7 vanishes to order at least [ on E. Let sg be the canonical section of E. If we divide
by s&, then 7 := -I; is a holomorphic section of S'(Qy (log E)) ® 7*(kIH) ® (—IE) over Y. We now prove

SE
that

(2.3.11) (P D pepgrs = lo(F D),

where f'(t) is the derivative of f in T¢{(—log E) (see Definition 2.2.14). To make things simple we assume
[ = 1. Let p be a point in Z and let U be a small open set containing p such that locally we have

n
o= Z a;dz; ® 6®k,
i=1
where e is the local section of H and p is the origin. The blow-up at p is the complex submanifold of U x P71
defined by w,z; = wyz; for 1 < j # k < n, where [w; : ... : w,] are the homogeneous coordinates of P". In
the affine coordinate chart w; # 0 we have the relation

(Zh Z21W2,y ... ,len) = (Zlv 22y ey Z’n)a
thus
n n
T=2z <(a1 + Z a;w;)dlog z1 + Z aidwi> ® (1*e)®k,
i=2 i=2
and f(t) = (f1, %, ce %) in the local coordinate (z1,ws, ..., w,). Thus
p fif fn
f@w=(],<%xuw<y
fih fi
with respect to the local section (zla—‘zl, ﬁ, cee aw ) of T'¢(— log E> It is easy to check the equality (2.3.11).

By the logarithmic derivative lemma again we know that - 0 "logT||7(f(re )|, 4 pen and
— H
= 3” 10g+||F(f’(rei9))||7r*h%kz®hz®z are both of the order O(log T} e, (r) + logr). Using logz = log* x —
log™ % for any z > 0, we obtain
I 1
9 10g+ 1 ~ :
27 Jo IsB' o f(re)lI7,,
27
1 . 1

o 1Og =
2m Jo I (F(re® )2,

ZZmﬁE(r) =

N

27 _
— g J, I g OO

27
T 1 T
= 77[ log||7' f ))Hi*h%kl + 27Tf0 log HT(f( 0))H727*h%kl
27 _
b [ g PO g + OW)
27 _
= _71 log||7(f'(r ))”i*h%m + O(logTt,0, () +logr)

27
(2.3.12) = _EJ log||a(f’(re“’))\|i%kl + O(logTye, (r) + logr),
0

where the last equality is due to equality (2.3.11). Observe that there is a natural isomorphism betweem
HY(X,S'(Qx) ® (klH)) and H°(X;,Ox, (1) ® p*(klH)), where X; := P(Tx) and p is its projection to X.
We denote by P, the corresponding section of o in H°(X;,Ox, () ® p*(klH)), whose zero divisor is W.

Then we have

1P (g (8) - () g = (/0 g
and thus on A(r) we have

N(@(f/(#),r) = Ny () +1 Y iy

|Til<r | j|
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where N(o(f'(t)),r) is the counting function of o(f'(t)) and p; is the vanishing order of f'(¢) at 7;. Therefore,
by applying the Jensen formula to the last term in (2.3.12) we obtain
(2.3.13) 2lm; (1) + 2N (o (f'(t),7) < 2kiT}e,(r) + O(log Tye,(r) + logr)).
Since we have . ,
N+ Y] HiTrr = Ny (1) = Nj ()
I7jl<r,f(rj)eZ I

then by applying Nevanlinna’s First Main Theorem to (f, E) we get
Tfo,(r) = Ni g(r) +mg g(r) + O(1),

and we can combine this with (2.3.13) to obtain

1
1
T} 0, (r) = Niow, (1) + 7 N7 w(r) < Ky, (r) + Olog Tye,, (r) + logr)).

Now we have the following refined tautological equality:

THEOREM 2.3.8. Let X be a Kdhler manifold of dimension n and f : C — X be a transcendental entire
curve. Then for any finite set Z we have

. - - NWM iy Mmz (1)
T[f[l]] OX1( 1) = T(f7 mZ) Nf’mz = m(fa mZ) = Th_)ngo Tf,@H (’I") :
ProOF. First we choose k large enough, in such a way that Ox, (1) ® p*(kH) is ample over X;. When
we choose [ sufficient large, Ox, (1) ® p*(lkH) will be very ample over X;. Hence there exists a section
o€ HY(X1,0x, () ® p*(lkH)) whose defect is zero, i.e.

Niyw (T)
N(fp, W) := lim —H— 2
(f[l] ) 0 Tf,(—)H(Tk)

where W is the zero divisor of o, and where the last equality comes from (T[f],Og) = 1. Since f is
transcendental, by Theorem 2.2.2 we have

= T'f) Ox, () @ p*(IkH)) = {T[fiy], Ox, (1)) + kL,

T
lim ~f:°H (r)
r—ow  logr

We can thus divide both sides in (2.3.10) by Ty.e, (r) and take r — oo to obtain

= +o0.

1
7N(f[1],W) +T(f,mz) — N}}T)nz <k,
and we obtain the formula in the theorem. O

2.4. TOWARDS THE GREEN-GRIFFITHS CONJECTURE

In order to pursue the similar strategy and prove the Green-Griffiths conjecture for any complex surface
X of general type, one needs to know the existence of a 1-dimensional foliation directing any given Zariski
dense entire curve f: C — X. The condition of ¢;(X)? — c2(X) > 0 ensures the existence of multi-foliation
on X such that any entire curve should be tangent to it. The difficulty in proving the general case is that, we
can not ensure that there exists such a (multi)-foliation on X itself. However, inspired by a very recent work
of Demailly [Dem15b]|, we believe that his definition of a variety “strongly of general type" is in some sense
akin to the construction of foliations. Although one cannot construct foliations on X directly, one can prove
the existence of some special multi-foliations in certain Demailly-Semple tower of X. Indeed, in [Dem10]
the following theorem has been proved:

THEOREM 2.4.1. Let (X,V) be a directed variety of “general type" (cf. [Dem12] for the definition of
general type when V' is singular), then Ox, (m) @ mjf (O(—71x(1 + $+...+ $)A) is big thus has sections for

m >» k> 1, where Xy, is the k-th stage of Demailly-Semple tower of X and A is an ample divisor on X.

By the Fundamental Vanishing theorem we know that for every entire curve f : C — X, the k-jet

Jiey + € — X, satisfies
ik (C) < Bs(H® (X, Ox, (m) @ mi A7) & X

Assume that we have an entire curve f : C — X such that its image in X is Zariski dense. By the
above theorem of Demailly, there exists an N > 0 such that the lift of f on the Nth-stage Demailly-Semple
tower can not be Zariski dense in Xy, therefore we can find an integer k > 0 such that f;) is Zariski dense
in X for each 0 < j < k, while the Zariski closure of the image of f;41) is Z & X1 which project onto
Xj. Since rank(Tx) = 2, Z is thus a divisor of Xj,1. From the relation between Pic(X}) and Pic(X) we
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know that Ox, (Z) ~ Ox, (a) @7} ;(B), for some B € Pic(X), a€ 7ZF and ap = m. Therefore the projection
Te+1,k © 4 — Xj is a ramified m : 1 cover, which defines a rank 1 multi-foliation 73, < Vj, on X}, and
Jr 1 (C,Tc) — (X, Vi) is tangent to this foliation. We define the linear subspace W < T, < Tx, |z to be
the closure
W .= TZ’ (@) Vk+1

taken on a suitable Zariski open set Z' < Z.., where the intersection Tz n Vj11 has constant rank and
is a subbundle of T%z/. As is observed in [Dem15b], we know that rankWW = 1 which is an 1-dimensional
foliation. We first resolve the singularities of Z to get a birational model (Z, F) of (Z,W) such that Z is
smooth, then by the assumption in Theorem J we take a further finite sequence of blow-ups to get a new
birational model (Y, F) of (Z,F), such that F has only weakly reduced singularities. We now obtain a
generically finite morphism p : Y — X}, and the lift of f to Y denoted by g : C — Y is still a Zariski dense
curve tangent to F satisfying g = p o fi. Then we have

Ky "“p*KXk + R,

where R is an effective divisor whose support is contained in the ramification locus of p. We will call X}, the
critical Demailly-Semple tower for f.

Now we state our conjectures about reduction of singularities to weakly reduced ones, and the general-
ization of Brunella Theorem to higher dimensional manifolds:

_ ConyectTure 2.4.1. Let (X, F) be a Kéhler 1-foliated pair. Then one can obtain a new birational model
(X, F) of (X, F) by taking finite blowing-ups such that F has weakly reduced singularities.

REMARK 2.4.1. From Proposition 2.3.2 it is easy to show that foliations with absolutely isolated singu-
larities can be resolved into weakly reduced ones after finite blowing-up’s.

CONJECTURE 2.4.2. Let (X, F) be a Kahler 1-foliated pair. Suppose that there is a Zariski dense entire
curve f: C — X tangent to F, then we have

T[f]-det Nr > 0.

REMARK 2.4.2. If the singular set of F is not discrete, it is difficult to construct a smooth 2-form in
c1(det Nx) as that appearing in Baum-Bott Formula [Bru04, Chapter 3|. Probably we should find some
representation in the leafwise cohomology, i.e. cohomology group for laminations.

We can show that Conjecture 2.4.1 and 2.4.2 suffice to prove the Green-Griffiths conjecture for complex
surfaces:

ProoF oF THEOREM J. Since we have
det Tx, = ki gdet Tx ® Ox, (k+ 1,k,...,2),
(7x,5)« T fix] = Tlf7] for k=4,
by the tautological inequality and the condition of general type we have

k

Tfiug] - det T, = = > (k= j + 2)T[fi;)] - Ox, (—1) = KT [f], Kx) < 0.
j=1

Thus we obtain
Tly]- Ky =T[fx] - Kx, + Tg]- R > 0.
Conjecture 2.4.1 tells us that we can find a new birational pair (Y, F) of (Y,F) with weakly reduced
singularities, then by Theorem I we have
T[§] - det Nx < 0,

which is a contradiction to Conjecture 2.4.2; thus any entire curve must be algebraic degenerate. O



CHAPTER 3

Kobayashi Volume-Hyperbolicity for Directed Varieties

3.1. INTRODUCTION

Let (X,V) be a complex directed manifold, i.e X is a complex manifold equipped with a holomorphic
subbundle V' < Tx. The philosophy behind the introduction of directed manifolds, as initially suggested
by J.-P. Demailly, is that, there are certain fonctorial constructions which work better in the category of
directed manifolds (ref. [Dem12]). This is so even in the “absolute case”, i.e. in the case V = T'x. In general,
singularities of V' cannot be avoided, even after blowing-up, and V' can be seen as a coherent subsheaf of
Tx such that Tx/V is torsion free. Such a sheaf V is a subbundle of T'x outside of an analytic subset of
codimension at least 2, which we denote here by Sing(V). The Kobayashi-Eisenman volume measure can
also be defined for such (singular) directed pairs (X, V).

DEFINITION 3.1. Let (X,V) be a directed manifold with dim(X) = n and let rank(V) = r. Then the
Kobayashi-Eisenman volume measure of (X, V) is the pseudometric defined on any £ € A"V, for x ¢ Sing(V),
by

e;(,V(&) = ll’lf{A > 0; Elf 1B, — X, f(O) =, Af>i<(7-0) = fa f*(TIBw) < V}v

where B, is the unit ball in C" and 7p = 5%1 NERRIV a% is the unit r-vector of C" at the origin. One says
that (X, V) is Kobayashi measure hyperbolic if e’y  is generically positive definite, i.e. positive definite on a

Zariski open set.

In [Dem12] the author also introduced the concept of canonical sheaf Ky for any singular directed
variety (X, V'), and he showed that the “bigness" of Ky implies that all non constant entire curves f: C —
(X, V) must satisfy certain global algebraic differential equations. In this note, we study the Kobayashi-
Eisenman volume measure of the singular directed variety (X,V), and give another geometric consequence
of the bigness of Ky . Our main theorem is as follows:

THEOREM K. Let (X,V) be a compact complex directed variety (where V is possibly singular), and let
rank(V) = r, dim(X) = n. If V is of general type (see Definition 3.3 below), with a base locus Bs(V) ¢ X
(see also Definition 3.3), then (X,V) is Kobayashi measure hyperbolic.

REMARK 3.2. In the absolute case, Theorem K is proved in [Gri71] and [KO71]; for a smooth directed
variety it is proved in [Dem12].

3.2. PROOF OF THE MAIN THEOREM

PRrOOF. Since the singular set Sing(V) of V is an analytic set of codimension > 2, the top exterior
power A"V of V is a coherent sheaf of rank 1, and it admits a generically injective morphism to its bidual
(A"V)** which is an invertible sheaf (and therefore, can be seen as a line bundle). We give below an explicit
construction of the multiplicative cocycle which represents the line bundle (A"V)**.

Since V' < Tx is a coherent sheaf, we can take a covering by open coordinate balls {U,} satisfying

the following property: on each U,, there exist sections e§”‘>, . .,eg;) € I'(Uy, Tx|v,) which generate the
coherent sheaf V on U,. Thus the sections egf‘) At A egf) € N(U,, A" Tx|v, ) with (iq,...,,) varying among

all r-tuples of (1,...,k,) generate the coherent sheaf A"V|y_, which is a subsheaf of A"Tx|y,. Denote
vga) = ez(-f“) Ao A egf). Then, since codim(Sing(V)) = 2 we know that the common zero set of the family of
sections v§‘”‘> is contained in Sing(V'), and thus all tensors vl(,a) are proportional via meromorphic factors. By
simplifying in a given section vf,s‘) the common zero divisor of the various meromorphic quotients vf,oa) /vf,a),
one obtains a section v, € I'(Uy, A"Tx|v,,) (uniquely defined up to an invertible factor), and holomorphic
functions {A\; € O(U,)} which do not have common factors, such that vga) = Arv, for all I. From this
construction we can see that on U, n Ug, v, and vg coincide up to multiplication by a nowhere vanishing

holomorphic function, i.e.
Va = GJaplp
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on Uy, nUg # &, where gopg € O%(Uy n Ug). This multiplicative cocycle {gns} defines the line bundle
(ATV)*** If we take a Kahler metric w on X, it induces a smooth hermitian metric H, on A"Tx, and from
the natural inclusion A"V — A"T'x, w also induces a singular hermitian metric hs of (A"V)*** whose local
weight ¢, is equal to log |va|%,r. It is easy to show that h, has analytic singularities, and that its set of
singularities satisfies Sing(h,) < Sing(V'). Indeed, we have Sing(hs) = |J,{p € Ualva(p) = 0}. Now, one
gives the following definition.

DEFINITION 3.3. With the notations above, (X, V) is called to be of general type if there exists a singular
hermitian metric 4 on the invertible sheaf (A"V)*** with analytic singularities satisfying the following two
conditions:

(1) The curvature current O, > ew, i.e., it is a Kéhler current.
(2) h is more singular than hg, that is, there exists a globally defined quasi-psh function x which is
bounded from above such that
eX -h = hg.

Since h and h, has both analytic singularities, y also has analytic singularities, and thus eX is a continuous
function. Moreover, eX(P) > 0 if p ¢ Sing(h). We define the base locus of V to be

Bs(V) := ﬂSing(h),
h

where h varies among all the singular metrics on (A"V)*** satisfying Properties (1) and (2) above.

Now fix a point p ¢ Bs(V) uSing(V) ; then by Definition 3.3 we can find a singular metric h on (A"V)***
with analytic singularities satisfying Properties (1) and (2) above, and p ¢ Sing(h). Let f be any holomorphic
map from the unit ball B, = C" to (X, V) such that f(0) = p, then on each f~1(U,) we have

0
o = a®) .
I+ ((%1 A A atr) a'® (t) - valy,

where a(®)(t) is meromorphic functions, with poles contained in f~1(Sing(V') n U, ), and satisfies

0 0
f*(atl/\.../\atT>

which is bounded on any relatively compact set.

2

= O - JvalF, = ol (O - e,
H’V‘

Therefore, a—‘zl A -+ A 52 can be seen as a (meromorphic!) section of f*(A"V)**, and thus we set
0 0 |?
(1) 5(t) = |2 A A = |al@ (@) - et
atl (9tr f*h_l

where ¢, is the local weight of h. By Property (2) above, there exists a globally defined quasi-psh function
x on X which is bounded from above such that
0 0
(e )

Now we define a semi-positive metric ¥ on B, by putting ¥ := f*w, then we have

@ o(t) = X/ 2

H’V‘

el 0
(3) ‘f*(aTl/\/\ﬁ)
det

where C(z) is a bounded function on X which does not depend on f, and we take C; to be its upper bound.
One can find a conformal factor A(¢) so that v := A\¥ satisfies

dety = 5(t)=.

A < Co(f(t)) < C4,

Combining (2) and (3) together, we obtain

Since Oy, = ew, by (1) and (2) we have

€ € € _xof
if*w e ﬁry 2 716 27 fy
207

By Property (2) in Definition 3.3 applied to h, there exists a constant Co > 0 such that

dd®log det vy =

X
e 2r > CQ.
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Denote A := <2 and it is a universal constant which does not depend on f. Then by Ahlfors-Schwarz
207
Lemma (see Lemma 3.4 below) we have
27
r+1
0(0) < .
0= ()
Since p ¢ Sing(h) U Sing(V'), then we have eX(P) > 0, and thus

0 o\ r+1\*"
f _— . x(p) = x(p) . (1=

A

Since f is taken to be arbitrary, we conclude by Definition 3.1 that the Kobayashi-Eisenman volume measure
ey is positive definite outside of
Bs(V) u Sing(V'), and therefore, (X, V) is Kobayashi measure hyperbolic. O

H,

LEMMA 3.4 (Ahlfors-Schwarz). Let v = /=1 v;x(t)dt; Adty be an almost everywhere positive hermitian
form on the ball B(0, R) < C" of radius R, such that

—Ricci(y) := v/—100logdety > Ay
in the sense of currents, for some constant A > 0. Then

det(7)(t) < (7;4;21) - 1 —

[¢]2
~ RY

REMARK 3.5. If V' is regular, then V is of general type if and only if A"V* is a big line bundle. In this
situation, the base locus Bs(V) = B, (A"V'), where B (A"V*) is the augmented base locus for the big line
bundle A"V* (ref. [Laz04]).

With the notations above, we define the coherent ideal sheaf Z(V') to be germ of holomorphic functions
which is locally bounded with respect to hg, i.e., Z(V) is the integral closure of the ideal generated by the
coefficients of v, in some local trivialization of A"Tx. We denote Ky := A"V*** and Ky := Ky Q Z(V) :
the sheaf Ky is defined in [Dem12] to be the canonical sheaf of (X, V). It is easy to show that the zero
scheme of Z(V) is equal to Sing(hs) = Sing(V). The sheaf Ky is said to be a big sheaf iff for some log
resolution p : X — X of Z(V) with p*Z(V) = O%(=D), the invertible sheaf ;* Ky — D is big in the usual
sense. Now we have the following statement:

PROPOSITION 3.2.1. V is of general type if and only if Ky is big. Moreover, we have
BS(V) < (B (" Ky — D)) U Sing(hy) < (B, (4* Ky — D)) U Sing(V).

PRrROOF. By Definition 3.3, the condition that Ky is a big sheaf implies that Ky and p*Ky — D are
both big line bundles. For m >» 0, we have an isomorphism

(4) p* HO(X, (mKy — A)@Z(V)™) 2 HY(X, mp*Ky — p* A —mD).
Let us fix a very ample divisor A. Then for m » 0, the base locus (in the usual sense) B(mu* Ky —mD —pu*A)
is stably contained in B (u* Ky — D) (ref. [Laz04]). Thus we can take a m » 0 to choose a basis s1, ..., s €

HO(X, mu*Ky —mD — p*A), whose common zero is contained in B (u* Ky — D). By the isomorphism (4)
there exists {e;}1<i<k = HY(X, (mKy — A) @ Z(V)™) such that

p*(ei) = si.
We define a singular metric h,, on mKy — A by putting
1%
|£|,2Lm =g for e (mKy — A)g.
Do leil?

Choose a smooth metric hy on A such that the curvature ©4 > ew is a smooth Ké&hler form. Then
h = (hnh A)i defines a singular metric on Ky with analytic singularities, such that its curvature current
O, = %@A > Sw. From the construction we know that h is more singular than h,, and Sing(h) <
u(By (p* Ky — D)) v Sing(hs). O

REMARK 3.6. Thanks to Proposition 3.2.1 we could have taken Definition 3.3 as another equivalent
definition of the bigness of Ky, one that is more analytic. By Theorem K we can replace the condition that
V is of general type by the bigness of Iy, and we see in this way that the definition of the canonical sheaf
of a singular directed variety is very natural.

A direct consequence of Theorem K is the following corollary, which was suggested in [GPR13]:
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COROLLARY 3.7. Let (X,V) be directed varieties with rank(V') = r, and f be a holomorphic map from
C" to (X, V) with generic maximal rank. Then if Ky is big, the image of f is contained in Bs(V) < X.

The famous conjecture by Green-Griffiths states that in the absolute case the converse of Theorem K
should be true. It is natural to ask whether we have similar results for arbitrary directed varieties. A result
by Marco Brunella [Brull] gives a weak converse of Theorem K for every 1-directed variety:

THEOREM 3.8. Let X be a compact Kdihler manifold equipped with a singular holomorphic foliation F
by curves. Suppose that F contains at least one leaf which is hyperbolic, then the canonical bundle Kx is
pseudoeffective.

Indeed, Brunella proved more than the results stated in the above theorem. By putting on K precisely
the Poincaré metric of hyperbolic leaves, he constructed a singular hermitian metric h on Kz (possibly
not with analytic singularities), such that the set of points where h is locally unbounded is the polar set
Sing(F) u Parab(F), where Parab(F) is the union of parabolic leaves, and such that the curvature ©y, of
the metric h is a positive current. In this vein, a natural question is:

QUESTION 3.9. Can Brunella’s theorem be strengthened by stating that when a foliation (X, F) admits
a hyperbolic leaf, then not only Kz is pseudo-effective, but also the canonical sheaf Kr = Kr ® Z(F) is
pseudoeffective? In other words, can we find a singular hermitian metric h on Kz with the curvature ©y, is
a positive current, and h is more singular than hs? (Recall that h is the singular metric on K induced by
a hermitian metric on Tx).

REMARK 3.10. In [McQO8] the author introduces the definition of canonical singularities for foliations,
in dimension 2 this definition is equivalent to reduced singularities in the sense of Seidenberg. The generic
foliation by curves of degree d in CP™ is another example of canonical singularities. In this situation, one
cannot expect to improve the “bigness" of the canonical sheaf Iz by blowing-up. Indeed, this birational
model is “stable" in the sense that, 7,z = Kz for any birational model = : ()N(,]T') — (X, F). However,
on a complex surface endowed with a foliation F with reduced singularities, if f is an entire curve tangent
to the foliation, and T'[f] is the Ahlfors current associated with f, then in [McQ98] it is shown that the
lower bound for T'[f] - ¢1(Tx) can be improved by an infinite sequence of blowing-ups. Indeed, for certain
singularities, the separatrices containing them are rational curves, and thus the lifted entire curve will not
pass through these singularities. In the literature [Bru99, McQ98] this type of singularities is sometimes
called “small", i.e. the lifted entire curve will not pass to these singularities. Since T[f] - ¢1(TF) is related
to value distribution, these “small" singularities do not have any negative contribution to the lower bound
for T[f] - c1(T), which will be substantially increased by the effect of performing blow-ups. In Chapter 2
This “Diophantine approximation" idea has been generalized to higher dimensions.



CHAPTER 4

Effective Results on The Diverio-Trapani Conjecture

ABsTrACT. The aim of this work is to study the conjecture on the ampleness of Demailly-Semple bundles
raised by Diverio and Trapani, and also obtain some effective estimates related to this problem.

4.1. INTRODUCTION

In recent years, an important technique in studying hyperbolicity-related problems is #nvariant jet
differentials Fy ., T% introduced by J.-P. Demailly, which can be seen as a generalization to higher order of
symmetric differentials, but invariant under the reparametrization. To prove hyperbolicity-type statements
for projective manifolds, one needs to construct (many) global jet differentials vanishing on an ample divisor
on the given manifold X (cf. Theorem 4.2.3 below). If one deal the with positivity for jet bundles of the
complete intersection of hypersurfaces in PV, as was proved in [Div08], one cannot expect to achieve this
for lower order jet differentials if the codimension of subvariety is small:

THEOREM 4.1.1. (Diverio) Let X = PN be a smooth complete intersection of hypersurfaces of any degree
in PN, Then
HY(X,EFST%) =0
forallm =1 and 1 < k < dim(X)/codim(X).

On the other hand, in principle, the positivity (or hyperbolicity) of a generic complete intersection in the
projective space should be increased by cutting more and more with projective hypersurfaces of high degree.
In [Deb05], Debarre verified this in the case of abelian variety, in which he proved that the intersection of
at least % sufficiently ample general hypersurfaces in an N-dimensional abelian variety has ample cotangent
bundle. Motivated by this result, he conjectured that the analogous statement holds in the projective space:

CONJECTURE 4.1.1. (Debarre) The cotangent bundle of the intersection in PV of at least % general
hypersurfaces of sufficiently high degree is ample.

The first important result in this direction was obtained by Brotbek in [Brol4], where he was able
to prove the Debarre conjecture for complete intersection surfaces in P*. Later, in [Brol5] he proved
the ampleness of the cotangent bundle of the intersection of at least 3"4_2 general hypersurfaces of high
degree in P™. Very recently, based on the ideas and explicit methods arising in [Brol5], Brotbek and

Darondeau [BD15] and independently S.-Y. Xie [Xiel5,Xiel6] proved the Debarre conjecture:

THEOREM 4.1.2. (Brotbek-Darondeau, Xie) Let X be any smooth projective variety of dimension N, and
A a very ample line bundle on X, there exists a positive number dy depending only on the dimension N,

such that for each ¢ > %, the complete intersection of ¢ general hypersurfaces in |A°| has ample cotangent
bundle.

Moreover, Xie was able to give an effective lower bound on hypersurface degrees dy := NV . Although
the work by Brotbek and Darondeau is not effective on the lower bound dy, growing from some interpretation
of the cohomological computations in [Brol5], they established an elegant geometric construction, which
defines a map ¥ from the projectivized relative cotangent bundle P(€2, /5) to a certain family %" — G, which
we called the universal Grassmannian in Section 4.4, to construct a lot of global symmetric differential
forms with a negative twist by pulling-back the positivity on ¢/. In order to make the base locus empty,
they applied the Nakamaye Theorem, which asserts that for a big and nef line bundle L on a projective
variety, the augmented base locus By (L) coincides with the null locus Null(L), to the tautological line
bundle .Z on the universal Grasssmannian %'. In Section 4.4, we obtain an effective result (see Theorem
4.4.3) related to the Nakamaye Theorem they used, which is a bit weaker but still valid in their proof. Thus
based on their work we can obtain a better lower bound

dy = 4co(2N —1)%%°*tt L 6N — 3,

where ¢o = | Y],
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On the other hand, by introducing a new compactification of the set of regular jets J, Ty ® /Gy, Brotbek
was able to fully develop the ideas in [BD15] to prove the Kobayashi conjecture [Bro16]. His statement is
thus the following;:

THEOREM 4.1.3. (Brotbek) Let X be a smooth projective variety of dimension n. For any very ample
line bundle A on X and any d > di ., a general hypersurface in |A4| is Kobayashi hyperbolic. Here dr.n
depends only the dimension n.

In [Bro16], the main new tool he constructed is the Wronskians on the Demailly-Semple tower, which
associates sections of the line bundle to global invariant jet differentials. As there are certain insuperable
obstructions to the positivity of the tautological line bundle on the Demailly-Semple towers, due to the
compactification of the jet bundles (ref. [Dem95]), Brotbek introduced a clever way to blow-up the ideal
sheaves defined by the Wronskians, which behaves well in families, so that he was able to apply the openness
property of ampleness for the higher order jet bundles to prove the hyperbolicity for general hypersurfaces. In
order to make the lower bound dg , in Theorem 4.1.3 effective, one needs to obtain some effective estimates
arising in some noetherianity arguments. As well as the Nakamaye Theorem, there is another constant
Moo (Xk, L) (see Section 4.2.3) which reflects the stability of Wronskian ideal sheaf when the positivity of
the line bundle L increases. In Section 4.2.3 we study Brotbek’s Wronskians and prove the effective finite
generation for Wronskian ideal sheaf (Theorem 4.2.4), and thus based on Brotbek’s result we were able to
obtain an effective bound for the Kobayasi conjecture

dgn =n"TH(n +1)>"2,

REMARK 4.1.1. By using Siu’s technique of slanted vector fields on higher jet spaces outlined in his
survey [Siu02], and the Algebraic Morse Inequality by Demailly and Trapani, the first effective lower bound
for the degree of the general hypersurface which is weakly hyperbolic (say that a variety X is weakly
hyperbolic if all its entire curves lie in a proper subvariety ¥ < X) was given by Diverio, Merker and
Rousseau [DMR10|, where they confirmed the Green-Griffiths-Lang conjecture for generic hypersurfaces
in P of degree d > 2n=1° " Later on, by means of a very elegant combination of his holomorphic Morse
inequalities and a probabilistic interpretation of higher order jets, Demailly was able to improve the lower

bound to d > l’? (nlog (n log(24n)))nJ [Dem10]. The latest best known bound was d > (5n)*n™ by

Darondeau [Dar15]. In the recent published paper [Siulb], Siu provided more details to his strategy
in [Siu02] to complete his proof of the Kobayashi conjecture, and the bound on the degree following [Siul5]
are very difficult to make explicit.

In the same vein as the Debarre conjecture, in [DT10], Simone Diverio and Stefano Trapani raised the
following generalized conjecture:

CONJECTURE 4.1.2. (Diverio-Trapani) Let X < PY be the complete intersection of ¢ general hyper-
surfaces of sufficiently high degree. Then, Ej ,,T% is ample provided that k > % — 1, and therefore X is
hyperbolic.

In this chapter, based mainly on the elegant geometric methods in [BD15] and [Bro16] on the Debarre
and Kobayashi conjectures, we prove the following theorem:

THEOREM L. Let X be a projective manifold of dimension n endowed with a very ample line bundle
A. Let Z < X be the complete intersection of ¢ general hypersurfaces in |H°(X,Ox(dA))|. Then for
any positive integer k > % — 1, Z has almost k-jet ampleness (see Definition 4.2.1 below) provided that
d = 2c([2])ret2nnte. In particular, Z is Kobayashi hyperbolic.

c
Since our definition for almost 1-jet ampleness coincides with ampleness of cotangent bundle, then our
Main Theorem integrates both the Kobayashi (¢ = 1) and Debarre conjectures (¢ > %), with some (non-
optimal) effective estimates.
At the expense of a slightly larger bound, based on a factorization trick due to Xie [Xiel5], we are able
to prove the following stronger result:

THEOREM M. Let X be a projective manifold of dimension n and A a very ample line bundle on X.
For any c-tuple d := (dy,...,d.) such that d, = c*n*"*2¢([2])2"H2¢H for each 1 < p < ¢, for general
hypersurfaces H, € |Ad»|, their complete intersection Z := Hy n...n H, has almost k-jet ampleness provided
that k > ko.

Moreover, there exists a uniform (e, ..., ex) € N¥ which only depends on n, such that Oz, (e1, ..., ex)
is big and its augmented base locus

B+(ﬁzk (617 EERE) ek)) < Zsing
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where Z,fing is the set of points in Zy, which can not be reached by the k-th lift f1,1(0) of any regular germ of
curves [ : (C,0) — Z.

From the relation between tautological bundles on the Demailly-Semple towers and invariant jet bundles,
we prove the following theorem on the Diverio-Trapani conjecture:

THEOREM N. Set q := 23 — H;:1 |Adr| to be the universal family of c-complete intesections of hyper-
surfaces in [15_y |A%|, where d, = *n®"2¢([2])2" 4244 for each 1 < p < c. Set U < [];_, |A%] to be
a Zariski open set of H;:1 |Adr| such that when restricted to 2" := q~*(U), q is a smooth fibration. Then
for every j » 0, there exists a subbundle V; — EkvjmT:;L’/U defined on Z , whose restriction to the general

fiber Z of q is an ample vector bundle. Moreover, fix any x € Z, and any regular k-jet of holomorphic
curve [f] : (C,0) — (Z,x), then for every j » O there exists global jet differentials P; € H*(Z,V;|7z @ A7)
(hence they are of order k and weighted degree jm) does not vanish when evaluated on the k-jet defined by

(o f"e s f®).

In other words, this theorem shows that, we can find a subbundle of the invariant jet bundle, which is
ample, and its Demailly-Semple locus defined in [DR13, Section 2.1] is empty.

4.2. TECHNICAL PRELIMINARIES AND LEMMAS

4.2.1. INVARIANT JET DIFFERENTIALS. Let (X, V) be a directed manifold, i.e. a pair where X is a
complex manifold and V' < Tx a holomorphic subbundle of the tangent bundle. One defines J,V — X
to be the bundle of k-jets of germs of parametrized curves in X, that is, the set of equivalent classes of
holomorphic maps f : (C,0) — (X, z) which are tangent to V, with the equivalence relation f ~ g if and
only if all derivatives f()(0) = g)(0) coincide for 0 < j < k, when computed in some local coordinate system
of X near x. From now no, if not specially mentioned, we always assume that V' = Tx. The projection map
pr + JgTx — X is simply taken to be [f] — f(0). If (21,...,2,) are local holomorphic coordinates on an
open set 2 © X, the elements [f] of any fiber Jj ,, z € 2, can be seen as C"-valued maps

f=(f1, -, fa) : (C,0) > Q = C"™,

and they are completetely determined by their Taylor expansion of order k£ at ¢t = O:

t2 th
f@#) =2+ tf0) + 5 f(0) + .+ 5 FP(0) + Ot ).
In these coordinates, the fiber Ji , can thus be identified with the set of k-tuples of vectors

(1o &) = (F1(0), £7(0), ..., f*(0)) e C™.

Let G be the group of germs of k-jets of biholomorphisms of (C,0), that is, the group of germs of

biholomorphic maps
t—»gp(t):a1t+a2t2+~-~+aktk, aleC*7aje(C,j>2,

in which the composition law is taken modulo terms t; of degree j > k. Then Gy is a k-dimensional
nilpotent complex Lie group, which admits a natural fiberwise right action on J;Tx. The action consists of
reparametrizing k-jets of maps f : (C,0) — X by a biholomorphic change of parameter ¢ : (C,0) — (C,0)
defined by (f, ) — f o . The corresponding C*-action on k-jets is described in coordinates by

A (7 By = (N AR PR,

Green-Griffiths introduced the vector bundle E,?%T; whose fibers are complex valued polynomials
Q(f', f",..., f)) on the fibres of J,T'x, of weighted degree m with respect to the C*-action, i.e., Q(Af’, A2 f",
AQUf 7., fR), for all A€ C* and (f, f”,..., f*) € JiV. One calls EGST% the bundle of jet dif-
ferentials of order k and weighted degree m. Let U < X be an open set with local coordinate (z1,..., z5),
then any local section P € T'(U, EgST%|v) can be written as

ca(2)(d*2)® (d?2)22 - - - (dF2)2,
[ar|+2|az|+...+k|ak|=m
where c,(2) € T(U, Oy) for any a := (a1,...,a;) € (N?)F, such that for any holomorphic curve v : Q — U
with Q < C, we have
P([(t) = > ca (7)) (Y ()™ (V)7 - (Y ()™ e T(2, Oq),
lo [+2]az[+... +Elag |=m

where [v] : Q@ — JyTx |y is the natural lifted holomorphic curve on J;Tx induced by .

o AR FR)Y =
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However, we are more interested in the more geometric context introduced by J.-P. Demailly in [Dem95]:
the subbundle Ej, ,,V* < E,?SLV* which is a set of polynomial differential operators Q(f’, f”, ..., f*)) which
are invariant under arbitrary changes of parametrization, that is, for any ¢ € Gy, we have

QU(f o), (fon)....(Fo)) = O"QU [, F)).
The bundle Ej ,,V* is called the bundle of invariant jet differentials of order k and degree m. A very
natural construction for invariant jet differentials is Wronskians. In [Bro16] Brotbek introduced a type of
Wronskians induced by global sections in some linear system. We will recall briefly his constructions in
Section 4.2.3.

4.2.2. DEMAILLY-SEMPLE JET BUNDLES. Let X be a complex manifold of dimension n. If V is a sub-
bundle of rank r, one constructs a tower of Demailly-Semple k-jet bundles mp_1 1, : (X, Vi) = (Xk—1, Vi—1)
that are P"~!-bundles, with dimX = n + k(r — 1) and rank(V}) = r. For this, we take (Xo, Vp) = (X, V),
and for every k > 1, inductively we set X := P(Vi_1) and

Vi = (kal,k);lﬁxk(—l) c TXk,
where Ox, (1) is the tautological line bundle on X} = P(Vi_1), mx—1,% : X — Xi—1 the natural projection
and (mp—1k)x = drgp_1k : Tx, — W:_Lkak_l its differential. By composing the projections we get for all
pairs of indices 0 < j < k natural morphisms
Tkt Xe = Xjo (k) = (dmje)lvi : Vi = (m5,6) "V
and for every k-tuple a = (ay, ...,ax) € Z*F we define
ﬁxk (a) = ®1gj<kﬂ';ikﬁxj (aj).
We also have an inductively defined k-th lifting for germs of holomorphic curves such that fi;; : (C,0) — X,
is obtained as fi)(t) = (fir—1)(t). [f{x_y(t)])- Moreover, if one denote by

T8V = {[f]x € JLV|f'(0) # 0}
the space of regular k-jets tangent to V, then there exists a morphism
JEV - X,
[f1 — fpa(0)

reg

whose image is an open set in X}, denote by X;°®, which can be identified with the quotient J,* /G, [Dem95,
Theorem 6.8]. In other words, X, < X is the set of elements fi;)(0) in X}, which can be reached by all
regular germs of curves f, and set Xzi“g = X\X.®, which is a divisor in Xj;. Thus X} is a relative
compactification of J;°® /Gy, over X. Dealing with hyperbolicity problems, we are allowed to have small base
locus contained in X;"¢ [Dem95, Section 7.

We will need the following parametrizing theorem due to J.-P. Demailly [Dem95, Corollary 5.12]:

THEOREM 4.2.1. Let (X,V) be a directed variety. For any wo € Xy, there exists an open neighborhood
Uw, of wo and a family of germs of curves (fy)wev,, , tangent to V depending holomorphically on w such
that

w(

(fu)w1(0) =w and  (fu)p_17(0) # 0, Vw € U,.
In particular, (fw)/[k—u(o) gives a local trivialization of the tautological line bundle Ox, (—1) on U,.

By [Dem95, Theorem 6.8], we have the following isomorphism between Demailly-Semple jet bundles
and invariant jet differentials:

THEOREM 4.2.2. (Direct image formula) Let (X, V) be a directed variety. The direct image sheaf
(4.2.1) (T0.k)%Ox, (M) = Ej V'

can be identified with the sheaf of holomorphic sections of Ey, ., V*. In particular, for any line bundle L, we
have the following isomorphism induced by (7o r)x:

(4.2.2) (mo.)s « H*(Xk, Ox, (m) @ ,L) => H(X, Byl V @ L).
Moreover, let a = (ay,...,a;) € ZF and m = a1 + ... + ay, then we have
(4.2.3) (T0.1)4 Ox, (a) = F" By V*

where FaEk,mV* is the subbundle of polynomials Q(f, f",...,f®) e Ei . V* involving only monomials
(fCNE such that

log1 + 240+ ...+ (k—98)lk <asp1+ ...+ ag
foralls=0,...,k—1.
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Therefore, with the notations in Theorem 4.2.1, for any given local invariant jet differential P €
LU, ExmV*|u), the inverse image under (mp )s is the section in

op S F(U’LU07 ﬁxk (m)|Uwo)
defined by

(4.2.4) op(w) = P(fi,, flrs- s PN ((Fuo) ey (0))

The general philosophy of the theory of (invariant) jet differentials is that their global sections with
values in an anti-ample divisor provide algebraic differential equations which every entire curve must satisfy,
which is an application of Ahlfors-Schwarz lemma. The following Fundamental Vanishing Theorem shows
the obstructions to the existence of entire curves:

THEOREM 4.2.3. (Demailly, Green-Griffiths, Siu-Yeung) Let (X, V) be a directed projective variety and
f:C — (X,V) an entire curve tangent to V.. Then for every global section P € H° (X, EpxmV*® ﬁ(fA))

where A is an ample divisor of X, one has P(f', f",...,f®)) = 0. In other word, if we denote by s the
unique section in H°(Xy,, Ox, (m) ®776",k(—A)) corresponding to P induced by the isomorphism (4.2.2), and
Z(s) = Xy the base locus of this section, then f;;1(C) < Z(s).

Now we state the following definition which describes the positivity of the the invariant jet bundles:

DEFINITION 4.2.1. Let X be a projective manifold. We say that X has almost k-jet ampleness if and only
if there exists a k-tuple of positive integers (a1, ..., ax) such that Ox, (ai,...,ax) is big and its augmented
base locus satisfies the condition

B+(ﬁxk (al, PN ,ak)) = Xzing.

By applying Theorem 4.2.3, we can quickly conclude that, if X has almost k-jet ampleness, then its
Demailly-Semple locus [DR13, Section 2.1] is an empty set, and thus X is Kobayashi hyperbolic.

4.2.3. BROTBEK’S WRONSKIANS. In this subsection, we will study the property of the Wronskians
constructed by Brotbek in [Bro16], which associates any k + 1 sections of a given line bundle L to invariant
k-jet differentials of weighted degree k' := w, that is, sections in H(X, Ey »T% ® LFT!). We prove
that, the Wronskians factorizes through a natural morphism from the bundle J*&x (L) of k-jet sections of
L to the invariant jet bundles Fy 1 T% ® L*+1. Moreover, we obtain an “effective finite generation" of the
k-th Wronskian ideal sheaf w (X}, L) (see also Theorem 4.2.4 below).

Let X be an n-dimensional compact complex manifold. If (z1,...,z,) are local holomorphic coordi-
nates on an open set U c X, then since J;Tx is a locally trivial holomorphic fiber bundle, we have the
homeomorphism

Jk:TX|U ~U x (an,

which is given by [f] — (f(0), f/(0),..., f#(0)).
For any holomorphic function g € &(U), and 1 < j < k, there exists an induced holomorphic function

dg] (9) on O(p;,*(U)), defined by
a5 (9) (£(0), £/(0),.., P (0)) == (g )P (0).
Moreover, we have the following lemma

LEMMA 4.2.1. For any k > 1, we have dgg] (9) e (U, EGETE), and

(425) i (9) = 2 cal2)(d 2) (d22)% - - (d2)0,
lot [+2] @z |+...+k|ag| =k

such that for each o := (ay,..., 1) € (NV)F, co(2) € I'(U, Oy) is a Z-linear combination of %(z) with
18] < k.

PRrROOF. We will prove the lemma by induction on k. For k = 1, we simply have

d(9) =

i=1

gi (2)dz € T(U, Tf),

and thus the statements are true for k = 1.
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Suppose that dgc] (g9) has the form (4.2.5), then we have

kt1 - i Nas—er g4l assite; .
dg]Jr](g) = Z ZZ AL (dhy) g(d+1z) 1.¢.+J”.(dkz)k
o [+2] g |44k | =k i=1 j=
) 1 a1te; k g
|y |4+2] g |+ +k|ag | =k j=1
where e; = (1,0,...,0),...,e, = (0,...,0,1) is the standard basis in Z". If the lemma is true for k, so is
k + 1. Thus the lemma holds for any k € N. O

Since the bundle
EQUTY = @ BLTS
m=0
is a bundle of graded algebras (the product is obtained simply by taking the product of polynomials). There
are natural inclusions EE‘E} c E,?fl. of algebras, hence

EGTY = | BYOTR

k=0

is also an (commutative) algebra. Then for any (k + 1) holomorphic functions go,...,gx € O(U), one can
associate them to a natural k-jet differentials of order k and weighted degree k' := @, say Wronskians,
in the following way

) (go) - dY ](Qk)

Wu(go,-- -, 9k) = : : L(U, EFETE).

i) (go) - dp) <gk>

If we set
Wulgo,-- - gx) = > b (2)(d'2) (d%2)2 - - - (dF2)™*

log [+2]az|+...+Ek|ag|=k'

then for each o := (ay,...,a) € (N)¥ with |ay| + 2|ag| + ... + k|lag| = k', by Lemma 4.2.1 there exists
{aap € Z}g—(py.....8.).18;|<k» Such that we have

(4.2.6) = D aap azﬁo R
|B5|<k

By the properties of the Wronskian, for any permutation o € Sym({0,1,...,k}), we always have

WU(QO’(O)?""gO’(k)) = ( )Slgna WU(g()?“'agk)a
and thus a.g = (—l)Sig“(U)aw(ﬁ). Here o(B) := (By(0), - -+ s Bo(k))-

On the other hand, for any holomorphic line bundle A on X, one can define the bundle J*A of k-jet
sections of A by (J*A), = O,(A)/(METL. 0,(A)) for every x € X, where M, is the maximal ideal of &,.
Then J* A has a filtration whose graded bundle is ®o<,<rSPT% ® O(A). Set ey to be a holomorphic frame
of A and (zi,...,2,) analytic coordinates on an open subset U — X. The fiber (J*A), can be identified
with the set of Taylor developments of order k:

Z cs(z — )P ey,
la|<k
and the coefficients cs define coordinates along the fibers of J*A. Thus one has a natural local trivialization
of J*A given by
Uy :UxClk - J*A|y,
(x,co) — Y, ca(z—x) ey,
Bely

where
={B=(B1,...,Bn) e N"[|B] < k}.

For any local section s = sy - ey € T'(U, A), one has a natural map (no more a &y-module morphism!)

i : T(U, A) - T(U, J*A),
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which is given by

L ool sy
\I/U1 oipg(s)(x) = (=, s

The local coordinates (z1,...,2,) on U also induces a natural local trivialization of the bundle of jet
differentials EE%T{; — U. Indeed, as any local section of P € I'(U, EggT)”HU) is given by
Ca(2)(d' ) (dP2)72 - - (d"2)*,
|ar|+2|az|+...+k|ag|=m

where ¢, (z) € I'(U, Op) for any «, one has the natural local trivialization of E,?

CT% — X given by
dy:UxCvm — EJITH
(Z7Ca) s Z Ca(dlz)al(sz)O‘Z-"(dkz)ak,
|t |+2]az|+...+k|ak|=m
where
T = {0 = (0, ax) € (N")¥ || + 2ag] + ... + ko] = m}.

Now we define a multi-linear map

k+1
(4.2.7) p:]]ch - chew
(4.2.8) (coBor--rChp) = (D) GaBCosCLA: *** Ch gy )ac, o

B:=(Bo,---,Bk)

where a,g € Z arises from (4.2.6). By the property that a.g = (—l)Sig“(")aag(ﬁ) for any permutation o, the
multi-linear map [ is alternating, and thus there exists a unique linear map

E /\k+1(cfk —)(Clk’kl7

such that i = pow. Here the map
k+1

w e H(clk - /\k+1C1k
which associates to k + 1 vectors from C’* their exterior product.
By the local trivialization ¥y and ®y, ¢ induces a bundle morphism
Wy« AMTH TR Oy) — By T
defined by

1x
U x Akl 22 7 x ¢lew

oo e

abtLgh gy Y pSGT
Composing with iy : T'(U, Oy) — T'(U, J* Oy ), we recover Brotbek’s Wronskians Wy
k)

Wy« AFPYHO(U, 0y) =55 AR HO (U, JR0y) — HO(U, AR TR0y W, go, EgoTE).

An important fact for the Wronskian is that, it is invariant under the Gy action [Bro16, Proposition

2.2]:
LEMMA 4.2.2. With the notation as above, Wi (9o, - - -, g&) € Er w175, where k' := k(kTH)
In other words, the bundle morphism Wy factors through the subbundle
EywT < EFSTE.
Now we consider the Demailly-Semple k-jet bundle of (X, V%) of the direct variety (X, Tx) constructed
in Section 4.2.2. Fix coordiantes (z1,...,2,) on U, Tx|y can be trivialized with the basis {%, R % .

Set Uy := Xi N ﬂ&,lc(U), and under that trivialization we have

Ui =U X Ry ks
where R, i, is some rational variety introduced in [Dem95, Theorem 9.1]. Moreover, the tautological bundle
(4.2.9) Ox, (Vv = pr3(Or, (1)),
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where pry : Uy — R, i is the projection on the factor R, ;. By the direct image formula (4.2.1)
(ﬂ-o,k)*ﬁXk (m) = Ek7mT;7

we conclude that, under the above trivialization, the direct image (7o x )« induces a natural isomorphism (or
a local trivialization of the vector bundle Ej ,,T7})

(4.2.10) v : U x H (R, Or,, . (m)) = Ep T4

Moreover, under the trivialization ®;, the inclusion Ey ,, T% < ESS T is also a constant linear injective
map, that is, there exists an injective linear map v : F*™ — Cl»m such that

1
U><Fk7mi>U><(Clk’m

% | C GG %
Ek,mTX|U Ek,mTX‘U'

Here we denote F*™ := HY(R,, 1, Ox,, ,(m)).

Therefore, under the trivializations ¢y and ¥y, the factorised bundle morphism Wy is still a constant
linear map. That is, there exists a linear map 7 : AF+H1CHx — F** guch that p = vor and we have the
following diagram:

X 1Ixp 1x
U x AbHICh 2220 7w FRE 22 7« Clem

W
Ak+1jkﬁU 7 Ek’k/T5(—> EE:%T;HU

We set
S = Image(ﬂ) - HO(RN,ka ﬁRn,k(k/))a

and denote by 7, © O, , the base ideal of the linear system S. Denote g to be the ideal sheaf pr3(Z, x)
on Up.

On the other hand, one has a natural global construction for the invariant jet differentials on X: let L
be any holomorphic line bundle on X, for any sq,...,sx € H'(X, L), if we choose a local trivialization of L
above U, we define

WU(S(), ey Sk) = WU(SO,U, PN Sk,U) € F(U7 Ekyk/Tgv),
and if gluing together, we have the global section [Bro16, Proposition 2.3]:

PROPOSITION 4.2.1. For any sq, ..., s, € H'(X, L), thelocally defined jet differential equations Wy (sq, .. . , s)
glue together into a global section

W(so,...,s) € H(X, By T% @ LF*1).
The proof of the proposition follows from the fact that for any sy € T'(U, Oy), we have
Wu(susou,---,Susku) = SZHWU(SO,U, ce s SkU)-
We will denote by
(4.2.11) W(50s- -y 8K) = (To)s " W(so,...,s%) € H (X, Ox, (K) ® Wa"kLkH)

the inverse image of the Wronskian W (so, ..., sx) under the global isomorphism (4.2.2) induced by the direct
image (7o) -
Now let

W(Xy, L) == Span{w(so, . .-, 5n)|S0,-.,5n € H(X, L)} « H*(Xy, Ox, (k) ®7r6'<’k(Lk+1))

be the associated sublinear system of H(Xy, Ox, (') @ 7, (L*')). One defines the k-th Wronskian ideal

sheaf of L, denoted by to(Xy, L), to be the base ideal b(W(Xk, L)) of the linear system W(Xy, L).
By the definition, if A is any line bundle on X, and s € H°(X, A), we have

W(s-50,...,5 8x) ="' W(sg,...,8%) € H(X, By p T% ® LF1 @ AFF1).
Thus if L is very ample we have a chain of inclusions

(X, L) cw(Xg, L2 c...cw(X, L™) ...
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By the Noetherianity, this increasing sequence stabilizes after some mq (Xg, L), and we denote the obtained
asymptotic ideal by

(4.2.12) oo (Xk, L) := w0 (X, L™) for any m = me (X, L).
An important property for to(Xy, L) is the following in [Bro16, Lemma 2.4]:
LEMMA 4.2.3. If L generates k-jets at every point of X, that is, for any x € X, the map
HY(X,L) > L® Ox o/ MY} = (J¥L),
is surjective, where M, is the maximal ideal of &, then
Supp(Ox, /w(Xk, L)) = X}
For any very ample line bundle L, assume that L|y can be trivialized. Now we will compare the globally

defined asymptotic Wronskian ideal sheaf wy, (X, L) with our locally defined ;.
When restricted to Uy, := 7r0_7,1€(U), the global map
w(o) | AFFLO(X, O3 (L)) — HO (X, O, (K) @ o (1F1))
defined in (4.2.11) can be localized as the following
Wy

wy : ARFLHO(X, Ox (L)) —=lo AR+1HO(U, JF L) HOU, AF+LT* ) HO(U, By o TY)

ln zelwul zzl%l ?Zl‘PUl
-1

U "oi ~ ,
AMFLHO(X, Oy (L)) Ll AR T, U x CIF) —% o HO(U, U x AFHICIN) 2 HO(U, U x FWF).

where HO(U,U x AFT1CIF), HO(U,U x C™) and HO(U,U x F**') are the sets of sections of the trivial
bundles, and we also use the relation Ox, (k')|y, = pr3(Or, , (k') in (4.2.9) to identify

HO(U,U x F*'y = HO(Uy, Ox,(K)|uv,)-
Then by the definition we have
w(Xy, L)|u, = b({wu(so A ... A sk)|so,..., s, € H(X,L)}).
Now we choose arbitrary sections so,...,s, € H°(X, Ox (L)), we have
h(so A ... A sgp)i=lgo W5t oipy(so A ... Asp) e D(UU x ARFICI),
which is a holomorphic section of the trivial bundle U x A*¥+*1C/* — U. Thus
wu(son...ASk)=Doh(sgA...ASk)

is a a holomorphic section of the trivial bundle U x F¥¥ — U, where o : A¥T1CIx — FFF ig o C-linear
map.
Recall that
T := b(Image(?)) € Or,, ,
is the base ideal of the linear system Image(?) = H®(R, k, Or, ,(K')), and 1oy is defined to be the ideal

sheaf pri(Z, ) on Ug. Thus the zero scheme of 7o h(sg A ... A si) is contained in wy. As sg,...,s; are
arbitrary, we always have
(4213) m(Xk,L)|Uk C y.

On the other hand, suppose that the line bundle L generates k-jets, i.e., the C-linear map
H(X,L) — (J*L),

is surjective for any € X. Then for any z € U, any vector e € AF*1C!*, there exists r(k + 1) sections
{sjito<j<ki<i<r € H°(X, L) such that

e= Z h(s0i A oo A Sk ().
i=1

Therefore, the set of images wy(e)(z) = F*F for any x € U, and thus the ideal sheaf (X}, L), when
restricted to each fiber x x R, < Uy, is equal to Z,, . That is, if we denote by

(P Rn,k — Up
which is induced the inclusive map « x R, x — U x R, k, the inverse image of (X, L) under i,

i*(w(Xy, L)) =i, ' (X}, L) ®iz1 oy, ORous
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is the same as Z,, . Thus we have

As U is any open set on X with local coordinates (z1,...,2,) such that L|y can be trivialized, from the
inclusive relation (4.2.13) we see that

w(Xg, L) = w(Xy, L) = ... = (X, LF) = ...,

and thus we conclude that, for any ample line bundle L which generates k-jets everywhere, the k-th Wronskian
ideal sheaf of L coincides with the asymptotic ideal sheaf

m(Xk7L) = moo(Xk7L).

Moreover, from the local relation (4.2.14), we see that this asymptotic ideal sheaf does not depend on the
choice of the very ample line bundle L, which was also proved by Brotbek in [Brol6, Lemma 2.6]. We
denote by wy (Xy) the asymptotic Wronskian ideal sheaf.

In conclusion, we have the following theorem:

THEOREM 4.2.4. If L generates k-jets at each point of X, then (X, L) = 105 (Xx) and me (Xg, L) = 1.
In particular, if L is known to be only very ample, we have w(Xy,, L*) = w0, (X%) and mo(Xy, L) = k.

As was shown in [Brol6, Lemma 2.6], w4 (X)) behaves well under restriction, that is, for any directed
variety (Y, Vy) with Y < X and V3 < Vx|y, under the induced inclusion Y}, © X}, one has

o (X&) |y, = 060 (Yz)-

4.2.4. BLOW-UPS OF THE WRONSKIAN IDEAL SHEAF. This subsection are mainly borrowed from
[Brol6]. We will state some important results without proof, and the readers who are interested in the
details are encouraged to refer to [Brol6, Section 2.4].

From [Dem95, Theorem 6.8], Ox, (1) is only relatively big, and X ,f "8 i the obstruction to the ampleness

of Ox, (1). However, for the hyperbolicity problems, X,fmg is negligible since X} is a relative compactification
of J,°%/Gy = X;*® over X, and for every non-constant entire curve f on X, its k-th lift fi;) : C — X}, can

not be contained in X,fing. Thus we want to find a good and fonctorial compactification of X;°® such that
the tautological line bundle is ample. Brotbek introduced a clever way to overcome this difficulty.
For any directed manifold (X, V'), we denote by

X 1= Bl (x,) (Xk) = Xi
the blow-up of X along wy(Xy), and F the effective Cartier divisor on X, such that
O, (=F) = v oo, (Xp).
Take a very ample line bundle L on X, for any m > 0, and any sq,...,s; € H'(X, L™), there exists
&(50,- .., 5%) € HO (Xk, Vi (Ox,(F) @ mi, L)) @ ﬁXk(—F)),
such that

vEw(so, ..., 8k) = SF - (S0, ..., Sk)-

Here sp € HO(X}, F) is the tautological section. Then by Theorem 4.2.4, for any & € X}, and any m > k,
there exists s, ..., sy € H°(X,L™) such that

W(50,---,8k) (W) # 0.

The blow-ups is fonctorial thanks to the fact that the asymptotic Wronskian ideal sheaf behaves well under
restriction. Namely, if (Y, Vy) < (X, Vx) is a sub-directed variety, then Y} is the strict transform of Y, in
X} under the blowing-up morphism vy : X, — Xj,. This fonctorial property also holds for families [Bro16,
Proposition 2.7]:

THEOREM 4.2.5. Let 2 2 T be a smooth and projective morphism between non-singular varieties. We
denote by 2! the k-th Demailly-Semple tower of the relative directed variety (2, Ty r). Take vy, : e%}krel —
ZE to be the blow-ups of the asymptotic Wronskian ideal sheaf v, (2. Then for any to € T writing
Xt := p~L(to), we have

v (Xegk) = Xigok-
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4.3. PROOF OF THE MAIN THEOREMS

4.3.1. FAMILIES OF COMPLETE INTERSECTIONS OF FERMAT-TYPE HYPERSURFACES. Let X be a pro-
jective manifold of dimension n endowed with a very ample line bundle A. We first construct a family
of complete intersection subvarieties in X cut out by certain Fermat-type hypersurfaces. For an integer
N > n, we fix N + 1 sections in general position 79,...,7y € H°(X, A). By “general position" we mean
that the hypersurfaces {7, = 0};,—0,.. n are all smooth and irreducibles ones, and they are simple normal
crossing. For any 1 < ¢ < n — 1, and two c-tuples of positive integers € = (e1,...,€.),0 = (01,...,0¢),
we construct the family X as follows: For any p = 1,...,¢, set I? := {I = (io,...,in)||I| = Jp} and

aP = (a’; e HY (X, Ox (epA)))l s For the positive integers r and k fixed later according to our needs, we
I|=06p

define the bihomogenous sections of Ox ((ep + (r+ k‘)ép)A) over X by

Fr@)(@)io— ), aj(a)r(@) ",
[]=6p

where a? varies in the parameter space S, := @, H° (X, Ox (epA)), and 7 := (19,...,7N)-

We then consider the family X < S; x ... x S, x X of complete intersection varieties in X defined by
those sections:
(4.3.1) X:={(a',...,a%z)e S x...x S, x X|F'(a')(z) = ... = F¢(a®)(z) = 0}.
We know that there is a non-empty Zariski open set S < 51 x ... x S, parametrizing smooth varieties and we
will work on X := qfl(S) N X, where ¢; is the natural projection from S7 x...x S, x X to S1 x...x S.. Set
A}, to be the k-th Demailly-Semple tower of the relative tangent bundle (X, T /g), and A} the blowing-up
of the asmptotic Wronskian ideal sheaf wy, (X)), and we would like to construct a regular morphism from

Xy (after shrinking a bit) to a suitable generically finite to one family and to “pull-back" the positivity from
the parameter space of this family. First we begin with a technical lemma by Brotbek [Bro16, Lemma 3.2]:

LEMMA 4.3.1. Let U be an open subset of X on which both A and T’x can be trivialized. Fix any
1< p<e Forany I = (ig,...,in) € IP, there exists a C-linear map

Y}, HO(X, e,A) — T(U, EESTE)

such that for any a € H°(X,¢e,A), d[g] (ar TRy = Tﬁld[lj;]U(a), where Ty = (To,v,...,7nv) is the local
trivialization of 7 over U.

Therefore, for any Iy, ..., I; € I’ and any ay,,...,ar, € H°(X,€,A) one can define
0 0
dgo],U(aIO) e d[fk],U(aIk)
(4.3.2) Wo i, 1.(ar, ... ar,) = : : eI (U ESSTE),
k k
dEO:!U(aIO) T dgk],U(aIk)

and by Lemma 4.3.1 we obtain
WU(GIOT(N’_MIO, ey alk‘l'(r-‘rk)]k) = T[;(IO+M+II“)WU,IO,...,Ik (CL[O, ey a[k).
From Proposition 4.2.1 one can also glue them together

LEMMA 4.3.2. For any Io,...,I; € I? and any ay,,...,ar, € H°(X,¢,A), the locally defined functions
Wu.i....1,(@1ys - - -, a1, ) can be glued together into a global section

Wfo,...Jk (alo, ey a[k) S HO(X, Ek)k/T; (9] A<k+1)(6p+k6”))

such that
(4.3.3) W(azo‘r(”k)[o, e aIkT(Hk)I’“) = TT(I°+"'+I’C)WIO7,__,1,€ (agy,-..,ar,).
We denote by
(4.3.4) Wi, (L - -5 ar,) € H(Xi, Ox, (k) @ m j AR th))
the inverse image of Wy, . 1, (ar,,-..,ar,) under the isomorphism (4.2.2), then by (4.3.3) we have
(4.3.5) w(ag, 7o qp AR = (71'6"7;67')7”([0+'”+I’°)w10’m)[k (ary,---,ar,)-

Hence for every 1 < p < ¢ we can construct a rational map given by the Wronskians
.S, x X --» P(AFICY)

(a7w) — ([w107~~~a1k(a107"‘7aIk)(w>])IO7uwIk€]Ip’
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]Ip (N+(§p)
where C" := @repC ~ C* %
CrLAaM 4.3.1. ®? factors through the Pliicker embedding
Pluc : Gryy 1 (CY) «— P(AFTICY).
Proof: For any wy € X}, by Theorem 4.2.1, one can find an open neighborhood U,,, of wy with U,,, < W()_,,lc(U),

where Al can be trivialized; and a family of germs of curves (f)wev,, depending holomorphically on w
with (fu)[x1(0) = w. Then for any a = (az)err € Sp and any 0 < j < k, we denote by
dUl, (a,w) == (¥} (ar)(fo s £0)) 1o € CF
and the local rational map
h 1S, x Uy, -+ Grjer(CY)
(4.3.6) (a,w) ~— Span(d?ﬂm (a,w),..., d[’f}m (a,w)).
We will show that this definition does not depend on the choice of wg. Indeed, by Definition 4.3.2 one has

P = Pluco®}, , which shows that ®” factor through Pluc and we still denote by ®7 : 5, x X, --» Gry1(C™)
by abuse of notation. |

Recall that X % is denoted to be the blow-up vy : X r — X of the asymptotic k-th Wronskian ideal sheaf
1., (X)), such that v, 'toe, (Xy) = O, (—F) for some effective cartier divisor F' on Xj. First, we have the
following

CLAIM 4.3.2. 1 induces a rational map
PP Sp X Xy - GrkH(CHP),
such that
S, x Xp

~ §P
1Ixvg ~
~

Spx X~ 2> grk+1(cﬂp)
Proof: By the definition of the asmptotic Wronskian ideal sheaf wq, (X} ), we have
w(aIDT(’"’Lk)I", o alkT(Hk)I’“) e H° (Xk, Ox, (k) ® wak,kA(kH)(ePHk“)&P) ® moo(Xk)).
Since (776"7]61')7'(1‘)*“'”’“) does not vanish along any irreducible component of the zero scheme of ., (X%), by
(4.3.5) we see that
Wy 1 (L, - -y an,) € HO(Xi, Ox, (k) @ AT R0) @ v (X3,)),
and thus there exists
@ttty - a,) € HY (K v (O, (W) @ 7, AR H90) @ 0 (<)),
such that

" N
Uk‘,wIU,ank (al()? et 7a[k) =SF - w[07~~A,Ik (aI()a ) aIk)~
Therefore, if we define the rational map

PP 8, x X --» P(AFFICY)
(@) = (@100, - an)(@),... e,
then on X & \F we have P = &P o 1, and thus P also factors through the Pliicker embedding
Pluc : Gryy 1 (CY) < P(AFTICY).

|
We are going to show that vy partially resolves the indeterminacy of ®P. To clarify this, we need to
introduce some notations. For any x € X, we set

N, == #{j€{0,...,N}|r;(z) # 0} and IZ := {I e I”, |77 (z) # 0}.
Since the 7;’s are in general position, and N > n, we have N, > 1 for all z € X. Then we define
Y= {ze X|N, =1} and X° := X\I.

Qbserve that if N > n, then X° = X, and if N = n, then ¥ is a finite set of points. We denote by
Xy = (mok o 1) 1 (X°). We have the following crucial lemma of resolution of indeterminacy due to
Brotbek [Bro16, Proposition 3.8]:
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LeEmMMA 4.3.3. (Brotbek) Suppose that
(%) Nznz2 k=1, € =>meu(Xg A) =Fkandd, >n(k+1).
Then there exists a non-empty Zariski open subset Uger, © S, such that the restriction 7| Usor px X2 is a
morphism:

Udef,p X X;;

P
ﬂxukl \

Uterp x X =% = Grpp1 (CF)
In Lemma ??rational, we have applied our Theorem 4.2.4 to set mq(Xg, A) = k.

4.3.2. MAPPING TO THE UNIVERSAL GRASSMANNIAN. Set Ugef := Udef,1 X . . . X Udet,c [ | S- We suppose
from now on that N >n > 2, ¢, > k > 1 and that ¢, > n(k + 1) for any 1 < p < c. Then by Lemma 4.3.3
we get a regular morphism

U Uger X X = Gpp1(01) X ... X Gpgr1(0e) x PV
(a,¢) — (®'(@"¢),...,9a%¢),[7"(9)]).
[77(&)] := [Tg(ﬂ'ovk o Vk(f)) P T};/(ﬂ'(),k o uk(f))], and we write Ggi1(dp) = GrkH((CHp) and G =
Gr+1(01) X ... Ggy1(d.) for brevity.
From now on we always assume that (k4 1)c > N. Using the natural identification
c” - HOPY,Opn (5))
(ar)rerr — Z arz’,
Ielr
we set % to be the universal Grassmannian defined by

W ={(A1,...,A,[2]) eG xPV|V1 <i<cVPeA,;: P([z]) =0}.

If we denote by p: & — G the first projection map, then p is a generically finite to one (may not surjective)
morphism. Set G® to be the set of points in G := Gg41(01) X ... Gg11(d.) such that the fiber of p: ¥ — G
is not a finite set, and we say that G is the non-finite loci of G.

We need to cover X by a natural stratification induced by the vanishing of the 7;’s. For any J
{0,...,N} and 1 < p < ¢ we define

X, ={zeX|rjx)=0=jecJ},
I, :={I eTI’|Supp(I) < {0,..., N\J},
Py ={[z]ePV|z; = 0iff j e J},
Xy := (mop ov) (X ;) and XEJ = Xk”] N X,‘; Set @y :=% n (G xP;) € G x PV, and G¥ also the
set of points in G such that the fiber of the first projection map py : #; — G is not a finite set.
Now set
Ué’cf)p = Udet,p N {ap € Sp|{Fp(ap)(m) =0}nX= @} and Ugep := Ulep 1 X -+ X Ul e 0 Udet-

Since X is a finite set, Uget p 1s @ non-empty Zariski open subset of Uget , for each p. Consider the universal
family of codimension ¢ smooth varieties # := (U3 x X) n X, then

(4.3.7) H N {Ujs x X} = .
We denote by 5! the k-th Demailly-Semple tower of the relative directed variety (7,7 5 /Ugef)‘ If j?fel

rel

is obtained by the blowing-up of the asymptotic Wronskian ideal sheaf wy(.7£), then by the arguments
in Section 4.2.4 we have

(]l % Vk)fl(%rel) _ %rel'
Moreover for any a € US,;, if we denote by Hax := 54 n ({a} x X)) and Hay := 25~ ({a} x X3),
then Vk|Ha.k : H’ak — Ha 1 is indeed the blowing-up of the asymptotic Wronskian ideal sheaf wq,(Ha ). By
(4.3.7), \I/\%rel is a regular morphsim. Set

prel | prel o %
kr,J =0 0 (Uger x Xk,1),

and we have the following
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PROPOSITION 4.3.1. For any J < {0,..., N}, when restricted to ijj?} the morphism V¥ factors through
@Jt
qu@,jﬁ} %ei?ll - %; < Gx Py

PRroOF. Since when restricted to Uj,; x XI?,J? ¥ factors through G x P;. Thus it suffices to prove that
V| .o factors through %, Since &P = &P o vy, it suffices to prove that the rational map
k

U:S8x X, --» GxPV
(a,w) — (®'(@"w),..., 2% "% w),[r"(w)])
factor through % when restricted to 4. Take any (a,wg) € s outside the indeterminacy of ¥, and
by Lemma 4.2.1 one can find a germ of curve f : (C,0) — (X,z := mox(wo)) with f37(0) = wp. Recall
that Hap 1= 4™ n ({a} x Xj) is the k-th Demailly-Semple tower of (Ha,Ts,). Therefore, we have
(£(0), £/(0),..., f®)(0)) € JiHa.

Take an open subset U X containing z such that A|y can be trivialized. Since H, is defined by the
equations

Fl(al)(z) := 2i11=6, al(z)r(z) R = 0,

Fe(a)(2) = Xyp1_s, a5(@) (@) 0T = 0,

then dg]Fp(a?”)l(f’7 o f®)) =0forany 1 <p<cand0<j < /4.~ By Lemma 4.3.1 we have dg]FP(aP) =
T ZII\:% dgj,]U(a?). By the definition for ®” (4.3.6), we see that ¥(a,wg) € #". This completes the proof
of the Proposition. O

To proceed further, we need another important technical lemma in [Bro16, Lemma 3.4] as follows

LEMMA 4.3.4. Suppose that € = mqy (X, A) = k. Fix any 1 < p < ¢. For any g € X, there exists an
open neighborhood Uy, < X of Wy satisfying the following. For any I € I” and 0 < ¢ < k there exists a
linear map

g, HO(X, 4%) — 0/(Us,)
such that for any (a?, ) € S, x Ug,, writting g*, (a?, ) = (97 (a})(@)) ,opp € C¥ ome has
(i) The Pliicker coordinates of ®(aP, ) are all vanishing if and only if
dim Span(gf ,(a?, @), ... ,gi.(a”,uﬁ)) <k+1
(i) If dim Span(gf ,(a?,d),... ,gz.(ap,ﬁ))) =k + 1, then
oP(a?, ) = Span(gh . (a”, ), ..., g ,(a”, b)) € Gryy1 (CT).
(iii) Define the linear map
(4.3.8) @ho S, — (C)FH
a? — (gg.(a" o), ... NG ).
Set x := mo 1 0 v (1g) and pE : (C")*+1 — (C%)*+1 the natural projection map, then one has
rankph o @ = (k + 1)#I7.
Here 17 := {I € I?|7!(x) # 0}.

Now we are ready to prove the following lemma, which is a variant of [Bro16, Lemma 3.9]:

LEMMA 4.3.5. (Avoiding exceptional locus) For any J < {0,...,N}. If 6, = (n — 1)(k + 1) + 1 for any
p=1,...,c, then there exists a non-empty Zariski open subset U; < Uj,; such that

O HGT) N (Us x X3 ,) = .
Here we define the map (which is a morphism by Lemma 4.3.3)
DUy x X — Grp1(61) x ... x Grp1(6e)
(a7§) = ((I)l(a17£),“.’(pc(ac7£)),

which is the composition 7, o U. Here 7, : G x PN — G is the first projection.
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PRrROOF. Fix any wg € X,ﬁ, we set « := m o Vk(Wo). Then there exists a unique J < {0,..., N} such
that € X, and we define the following analogues of %" parametrized by affine spaces

C

@J:: {(0410, sy ks .oy Q0 - - Qe [Z]) € H(CHP)kJrl X ]PJ‘Vl <P < 070 gj < k7api([z]) = O}’

p=1
é/: = {(04107 e Qe ey Q0 - -y Ok [z]) € 1_[((C]I.F})k"'1 X IPJ|V1 <p<e0<j <k au(z]) =0},

p=1
here we use the identification C*" ~ HO(PN, pn (6,)) and C% =~ HO(P,;, Op,(5,)). By analogy with G%,
we denote by Vi (resp. V%) the set of points in []7_, (C™")¥*! (resp. H;Zl(@lﬁ)k“) at which the fiber
in 7 (resp. f@:) is positive dimensional. ’

For every 1 < p < ¢ we take the linear map ¢%; : S, — (C"")*™! as in (4.3.8). By Lemma 4.3.4, for any
ae Uj, we have
®(a, o) = ([¢u, (@)],- ., [¢7, (a9)]),

here [¢l; (aP)] := Span(gf . (a, 1), ..., gh ,(aP, 1)) € Grgy1(C"). Then we have

®HGT) N (User x {t0}) = @y (V) 0 Uger = (2 © Puog) ™ (V') 0 Ulers

where we denote by
(&
92)’1130 : Sl X .. ~Sc - (Cﬂp)k+1

p=1
(P (@), 95, (%),

&
I
’97
»
=
!

and
c (&

Pu H(CHP)kJrl N H(Cﬂg)kJrl

p=1 p=1

is the natural projection map. By the above notations we have I, = I2 for any p = 1,...,c. Since the linear
map P © Py, is diagonal by blocks, by Lemma 4.3.4 we have

c C

rankpy © Gy, = Z rankph o @b, = Z (k + 1)#IP.
p=1 p=1
Therefore
dim (71 (GF) N (Uger x {ibo})) < dim((px © Guy) ™' (V)
dim(V55) + dim ker(py © )
dim(Vy5) + dim(Sy x ... x Se) — rank(ps © Pu,)

NN N

dim(V5%) + dim(Sy x ... x S) = Y (k + D#IP.

p=1

Since
C C

dim(V3%) = dim(] [(C™)F!) = codim(V57, [ [(C™7)*+Y)
p=1 p=1
= D1 (k+ D#I — codim(Vy5, [ [(C)F+1)
p=1 p=1
= D (k+ DHIE — codim(Vy%, [ [(C)*),
p=1 p=1
then we have

dim (@7 (GF) N Uges x {to}) < dim(S; x ... x S.) — codim(V5?;, 1_[(((3115)’““1)7
p=1
which yields
dim(®7H(GF) N Uges x Xp ;) < dim(Sy x ... x S.) — codim(V35, H(CF})’““) + dimXj.

p=1
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By a result due to Olivier Benoist [BD15, Corollary 3.2], we have

codim(V5%, [ [(C)**1) > min 4§, + 1.

1<p<c
p=1
Therefore, if
() dimX;, < HllIl op + 1,

1<p<c

“1(G%) doesn’t dominate Uj, via the projection U, x X,ﬁ,J — U3, and thus we can find a non-empty
Zariski open subset Uy < U, such that

THGT) N (U x XEy) = D,
Thus if min 6, > (n — 1)(k + 1) + 1, Condition & is always satisfied. We finish the proof of the

1<p<c

lemma. O

4.3.3. PULL-BACK OF THE PosITiviTY. For any c-tuple of positive integers e = (eq, ..., e.), we denote
by
L(e) := ﬁGk+1(51)(61) s ﬁGk+1(5c)(eC)’
which is a very ample line bundle on G. Since py : #; — G is a generically finite to one morphism, by the
Nakamaye Theorem (see [Laz04, Theorem 10.3.5] for smooth projective varieties, and [Bir13, Theorem 1.3]
for any projective scheme over any field), the augmented base locus B (p%L(e)) for p%L(e) coincides with
its exceptional locus (or say null locus)

Ey = {y € #|dim, (pjl(pJ(y))) >0},

which is contained in p;'(G%). Thus if ¢; » 0 for each 1 < i < ¢, we have

(4.3.9) Ej = Bs(pjL(e) ® fﬁﬁp,f(—l)) < py (GT),
where q; : %5 — P, is denoted to be the second projection map. In Section 4.4, we obtain an effective
estimate for e such that the inclusive relation in (4.3.9) holds. The theorem is the following

c 5k+1

THEOREM 4.3.1. With the above notations, set b, := —=—2—, then for any J < {0,..., N} and any
p
ae Z° with a, = by, for every 1 < p < ¢, we have

Bs(p3L(a) ® ¢} Opx (—1)) < Bs(p3L(b) ® ¢ Opn (-1)) < pj* (GT).

Since the technique in proving this theorem is of independent interest, we will leave the proof to Section
4.4.

REMARK 4.3.1. Since pjl(G?,O) may strictly contain the null locus Null(p*.Z|%,) = E;, Theorem 4.3.1
does not imply the Nakamaye Theorem used in [BD15] and [Bro16]. That is, for some J and a € N° with
a; = bj; for every j, the Null locus E; may be strictly contained in p% £(a) ®q’% Op~ (—1). However, as we will
see later, our proof of the Main Theorem only relies on the inclusive relation in (4.3.9). We thank Brotbek
for pointing this important reduction to us.

By (4.3.4) we have

(4.3.10)  W*(L(b) & Opn (—1)) = v (Ox, ( Zbk @ AT1BN) @ 0y ( Z
p=1 p=1

Here we set q(€,8,7) :=r—>.C_ b,(k+ 1)(e, + kb,). Observe that if we take

(M) ZC: bp(k+1)(ep + kbp) <7

then (4.3.10) becomes an invariant k-jet differential with a negative twist, which enables us to apply Theorem
4.2.3 to constrain all the entire curves. More precisely, we have the following theorem:

THEOREM 4.3.2. On an n-dimensional smooth projective variety X, equipped with a very ample line
bundle A. Let c be any integer satisfying 1 < c <n —1. If we take ko = [2] —1 and N = n, then for any
degrees (dy,...,d.) € (N)¢ satisfying

Je(e, 20y, I > . bylko + 1)(ep + ko), s:t.
p=1
(4.3.11) dp = 0p(r + ko) + € p=1,...,¢0),

36(6P>60::n(k0+1))’
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the complete intersection H := Hy ... H. of general hypersurfaces Hy € |A%|,... H. € |A%| has almost
k-jet ampleness.

PrOOF. We will prove the theorem in several steps. First observe that, the choice for (€,d,r, ¢, N, k)
in the Theorem fufills all the requirements in Condition %, # and &, and thus we are free to apply all the
corresponding theorems above. Based on the same vein in [BD15,Bro16], we have the following result

CraiM 4.3.3. Set Uyet := njUy. For any a € Upet, the line bundle

ﬁkabk @i AT @ O, ZbF\Hk

is nef on H, ;. Recall that we denote by g(e, 8,7) := r — Y1 bp(ko + 1)(ep + kodyp) >

Proof: In order to prove nefness, it suffices to show that for any irreducible curve, its intersection with
the line bundle is non-negative. For any fixed a € Uy, and any irreducible curve C' < H, j, one can find
the unique J < {0,..., N} such that Xy ; n C' =: C° is a non-empty Zariski open subset of C, and thus

C° c %%C’J. From Proposition 4.3.1, ¥ factors through % when restricted to L%%C,J, thus ¥|eo also factors
through %/, and by the properness of %, ¥|¢ factors through % as well. By Lemma 4.3.5 and the definition
of Uper, we have

d(C)nGF = @,
and thus

(C) ¢ p; (GF).
From Theorem 4.3.1 we know that

Bs(p5L(b) ® ¢50p,(—1)) < p; ' (GT),
which yields
¥(C) - (p5L(d)Rq50p,(-1)) = 0.

From the relation (4.3.10) we obtain that

c

'(Vk Ox,( Z AT 4(657”) ® 0O, i )

which proves the claim. [ ]
By [Dem95, Proposition 6.16], we can find an ample line bundle on X* of the form
A = V;:(ﬁxk (al, e ,ak) ®7T6k7kAa0) ® ﬁf(k(_F)

for some ay, ..., ar € N. Therefore, for any m > ag, the line bundle

[

V,f(ﬁxk(al,.. ,Qp_ 1,ak+2mbk ®7T0 A%~ mqe‘“ ®ﬁX Zmb +1)F |H .

p=1
is ample for any a € Uyef, and thus there exists e, ..., ex € N such that

viOx,(e1,...,ex) ® ﬁj(k(—eOFﬂﬁa,k

is ample. By the openness property of ampleness, one has a non-empty Zariski open subset Uample <
]_[ZC 1 (Hu,...,H:) € Uample, their intersection H := Hyn...n H, is a reduced smooth
variety of codimension ¢ in X, and the restriction of the line bundle v} Ox, (61, o ek) ® ﬁ’Xk(—qF)|ﬁk is

ample (recall that Hy, is denoted to be the blow-up of Hy, along too,(Hg)). Since the exceptional locus of the
blow-up v, : X}, — X}, is contained in X;®, then for the complete intersection H := Hy n ... H, of general
hypersurfaces Hy € |A%|, ..., H. € |A%]|, the augmented base locus of the line bundle
ﬁHk(el, e ,ek) = ﬁxk(el, e 78k)|Hk
is contained in Xzi“g nHy, and we conclude that Hj, has almost k-jet ampleness by the fact that X Zing nH;, =
H;"e.
O

Now we make some effective estimates based on Theorem 4.3.2. If we take
do = 8o (c(ko + 1) (ko + 8o + kodo — 1)V 4 ko + 1) + ko,

then any d > dy has a decomposition
d=(t+ko)do+¢€
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with ko < € < dg+ko and ¢ = (ko + 1) (ko + 0o + kodo — 1)58(%“)71 + 1, satisfying the conditions in Theorem
4.3.2. Therefore, the complete intersection H; n ... n H. of general hypersurfaces Hy,..., H. € |A?| with
d > dy has almost ko-jet ampleness. By [Dem95, Lemma 7.6], if a complex manifold Y has almost k-jet
ampleness, then it will also has almost I-jet ampleness for any [ > k. A computation gives a rough estimate
do < 2¢([2])"+T2n™*¢, and this completes the proof of Theorem L.

4.3.4. UNIFORM ESTIMATES FOR THE LOWER BOUNDS ON THE DEGREE. In Theorem 4.3.2, the lower
bound on the degrees is not uniform and it depends on the directions. In this subsection, we will adopt a
factorization trick due to Xie [Xiel5] to overcome this difficulty, but in the loss of slightly worse bound.
First, we began with the following lemma observed by Xie:

LeMMA 4.3.6. For all positive integers do every integer d > Jg + dy can be decomposed into
d = (do+1)a+ (dy +2)b
where a and b are nonnegative integers.

Let X be an n-dimensional smooth projective variety, equipped with a very ample line bundle A. Let ¢ be
any integer satisfying 1 < ¢ < [§]. Set ko = [2]—1, 0o := n(ko+1), 1o := c(ko+1)68(k°+1)71(1+k0+k050)+1,
and dg := do(ro + ko) + ko — 1. Then any c-tuple of integers in the form (dNO +1,...,do+1,do+2,...,do+ 2)
satisfies the condition (4.3.11). Take Z to be any complete intersection of ¢ general hypersurfaces in \ACZ°+1|

or |A%+2| and Zy is the variety obtained by the blow-up of Zj along the k-th asymptotic Wronskian ideal
sheaf w4, (Z);). From Section 4.2.4 we see that, the Wronskian ideal sheaf is fonctorial under restrictions and
thus Z;, = I/kfl(Zk), where vy, : X, — X is also the blow-up of the Wronskian ideal sheaf ., (Xy). From
Theorem 4.3.2 and Claim 4.3.3 we see that, the line bundle

vt (Ox, (03 VTR @ AT @ O (—edg T TR,
is nef. Take an ample line bundle on X}, of the form
vi (Ox, (a1, a) @5, A) ® O (= F)
where aq, ...,a; € N. Then the line bundle
v (ﬁxk (a1,...,aK_1,ax + aocég(k°+1)71k’)) ® ﬁXk( — (aocég(k“ﬂ)fl + 1)F) |Zk

is ample. Within this setting, we have

THEOREM 4.3.3. For any c-tuple d := (d,...,d.) such that d, > d}% +dy for each 1 < p < ¢, for general
hypersurfaces Hy, € |Adv|, their complete intersection Z := Hy ... H, has almost k-jet ampleness provided

that k > kq.
Moreover, there exists a uniform (e, e1,...,e.) € N°TL which does not depend on d, such that

l/;:(ﬁzk(el,...,ek)) ®ﬁ2k(—€0FZk)

is an ample line bundle, where where vy, : Zw — Zy, is also the blow-up of the Wronskian ideal sheaf wy(Zy,),
and Fz, is the effective cartier divisor on Zy such that 05 (—Fz,) = Vi (Zy).

PROOF. Let us denote by ¢ : 24 — H;:1 |Ad| the universal family of c-complete intesections of
hypersurfaces in []5_, [A%], i.e.

(4.3.12) Zai={(s1,...,5¢2) € | [ |A%] x X|Vp, s, € |A%| and s,(z) = 0}.

p=1
By Lemma 4.3.6 we have the following decompositions

dy = (do + 1)a, + (do + 2)b,

for each 1 < p < c¢. Consider the linear system V, = |A%| generated by sections in Sym“p|AJ0+1| X
SymbP|Ad°+2|, then for a generic choice of (s1,...,8.) € Vi X ... x V., their complete intersection ¥ =
le=1nSZs (may not be reduced) is a union of smooth codimension ¢ subvarieties Z', ..., Z! which are

complete intersections of ¢ general hypersurfaces in [A%+1| or |[A%+2|. By the arguments above the line
bundle

vy (ﬁxk (a1, ak_1,ak + aocég(kOH)_lk’)) ® ﬁf(k( — (aocdg(kOH)_l + 1)F) Z:




4.3. PROOF OF THE MAIN THEOREMS 87

is ample for each s = 1,...,l, and so is for Y. Since ampleness is open in families, this also holds for the
general fiber Z of q : 24 — H;Zl |Adr|, that is, for the complete intersection Z := Hy n ... n H. of any

general hypersurfaces in ]_[;=1 |Ad»|, the line bundle

Oz (a1,...,ak—1,a + aoc58(k°+l)_lk') ®0, ( - (aocég(kOH)_l + I)sz) =
vi(Ox,(a, ... ap-1, a1 + agc58(k°+1)_1k’)) ®0%, (- (a0058(k°+1)_1 +1)F) 2,
is ample. As the choice of a is independant of d, we obtain our theorem. O

Roughly, we can take the lower bound to be ¢?n?n2¢([2])2n+2e+d > d? + dy, and we finish the proof of
Theorem M.

4.3.5. ON THE DI1VERIO-TRAPANI CONJECTURE. In this subsection we will prove Theorem N. Let X
be a projective manifold of dimension n and A a very ample line bundle on X. Recall that we denote by
Xk is the blow-up of X}, along the asymptotic Wronskian ideal sheaf wq,(X}), and F the effective Cartier
divisor such that O (—F) = v} (we(Xg)). From the proof of Theorem 5.3.6, one can find a uniform

e := (eo,...,e.) € N such that, for the generic fiber Z of the universal family ¢ : Zg — []5_, |A%|
defined in (4.3.12), where d,, > d3 + dj for each 1 < p < ¢, the line bundle

(4.3.13) Vi Ox,(e1,...,e.) @ Og (—eoF)| 5 =viOz(e1,...,ec) ® Oy (—eoFz,)

is very ample. From Section 4.2.3 we can take an open covering {U,} of Z such that:

a) each Uy 1= 7r0_,1€(Ua) is a trivial product Uy X Rp—¢ i, Where R, _. ; is some smooth rational variety.

b) Set pry : Uy X Rp—ck — Ru—c,k to be the projection map. There exists an ideal sheaf Z,,_. 1 on Rp_c
such that

moo(Zk) = pr;k (In—c,k)~
Let us denote by puy : ﬁn,c,k — Ryu—ck the blow-up of R,,_. along Z,,_. 1, and E is the effective divisor
on Ry, —cx such that
On, . (—E) =i (Tn—ck)
Set Uyy 1= V,jl(Uak), then we have

Usy x Rn—c,k —— Uy,

lllxp,k luk

Ua X Rn—c,k — Uozk-

Therefore, my 1 o vy, Zx — Z is a local isotrivial family with fiber 7%n_c7k, and thus for any j > 0 the direct
image (o, 0 vk)«(j L) is always locally free on Z, here we denote by L := v 0z, (e1,...,e.)®04 (—eoFz,).
Since

(i)« (JL) = Oz, (jer, ..., jer) ®L;,
where Z; = (uk)*ﬁzk(— jeoFz,) is some ideal sheaf of Z; supported on Z,fi“g, by the Direct image formula
(4.2.3) we have

(4.3.14) (Mo 0 vi)w (L) © F'° By jm T3
where m = ey + ... + eg.

CrAiM 4.3.4. There exists a positive integer j; such that for each j > ji, the direct image (mo 1 ©
i)« (JL) € O(F'°Ey jmT%) is an ample vector bundle on Z.

Proof: Let us denote by Ay := A|z. As L is ample, one can find an integer jo » 0 such that for each j > jo,
all higher direct image sheaf R*(mo ; o 1)« (jL) vanishes, and jL — (mo x o v)* Az is ample.

Set Vj := (mox © z/k)*(jL — (mok © I/k)*Az) which is a local free sheaf for any 7 > 0. Consider any
coherent F on Z. Then by the degeneration of the Leray spectral sequence, for each j > jy, we have
(4.3.15) H (Z,V; ® F) = H(Zi, I’ ® (mo.1 0 k) * AL ® (w01 0 v1)* F)

for any ¢ > 0. Fix a point y € Z, with maximal ideal M, © &z. Then we have the exact sequence
0->My - Oz — Oz/M, — 0.
As L is ample, there exists a positive integer j(y) = jo such that

Hl(Z, Vi®@M,) = H! (Zk, '® (mo,k © Vk)*Agl ® (mo 1 © V;g)*./\/ly) =0
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for j = j(y), and so we see using the exact sequence above that V; is generated by its global sections at y.
The same therefore holds in a Zariski open neighborhood of y, and by the compactness of Z we can find a
integer j1 > jo such that Vj is globally generated when j > ji. Thus V;® Az = (mok 0 vk)«(jL) is an ample
vector bundle for any j > j;. |

Since the ampleness is open in families, then Claim 4.3.4 holds for general fibers of ¢ : 24 — [];_, |Ade .
Set U < [[;—, [A%| to be a Zariski open set of [ _; [A%| such that when restricted to & := ¢~ *(U), ¢

is a smooth fibration. Denote by % the k-th Demailly-Semple tower of (%, Ty ), and vy, : Y. — ¥, the
blowing-up of the asymptotic Wronskian ideal sheaf wo (%) with 0y (—Fa;,) = viws(%). Then for every
j » 0, we define the vector bundle V; on % by

‘/j = (TrO,k o Vk)*(l/;:ﬁﬁyk(jel, s ajen) ® ﬁé?/Ak(_jeOF@k))7
and its restriction to the general fiber Z of ¢ is
(Mo, o)« (Vi Oz (Jer, -, jen) ® Oy (—jeoFz,)),
which is ample by Claim 4.3.4. We finish the proof of the first part in Theorem N. Since L = v} 0y, (e1,...,e.)®
Oy (—eoFz,) is very ample on 7y, we can take j » 0 such that jL — (mo,k © Z/k)”‘AE1 is still very ample, and
by the relation
(k) (JL) = Oz, (jer,.. ., jex) ®L;,
we see that the base locus of
HO (Zk, ﬁzk (jel, e ,jek) ® (’/TO’k)*AEl ®Ij)

is contained in Zsing . We finish the proof of Theorem N.

4.4. EFFECTIVE ESTIMATES RELATED TO THE NAKAMAYE THEOREM

In this section we prove Theorem 4.3.1. For simplicity and to make this part readable, we give a complete
proof for ¢ = 1. The proof for the general cases is exact the same and we will show the general ideas for
that. We begin with some definitions and notations of the universal Grassmannian.

We consider V := H° (PN,ﬁPN((s)), that is, the space of homogeneous polynomials of degree § in
Clzo,.--,2n], and for any J < {0,..., N}, we set

Py :={[20,...,2n] € PY|z; = 0if j e J}.

Given any A € Gry.41(V) and [2] € PV, we write A([z]) = 0 if and only if P(z) =0 for all Pe A = V. We
then define the universal Grassmannian to be

(4.4.1) Y = {(A[2]) € Grier (V) x PY[A([2]) = 0},
and for any J < {0,..., N}, set
(442) @] =% n (Grk+1(V) X ]P])

From now on we always assume that kK + 1 > N, then p : % — Gri;1(V) is a generically finite to one
morphism. Denote g : % — P to be the projection on the second factor. Let .Z be the very ample line
bundle on Gry1(V) which is the pull back of (1) under the Pliicker embedding. Then p*.Z|a, is a big
and nef line bundle on %; for any J. For any J < {0,...,N} we denote by p; : #; — Gri1(V), and
qy : %; — P the projections. Similarly we set

E; :={y € #|dim,(p; " (ps(y))) > 0}

G7 =ps(Es) < Gria(V),
then E; = Null(p*Z|g,). For J = J we have #; = & and denote by £ := Eg and G* := GF.

Now we begin to prove Theorem 4.3.1. First of all suppose that ¢ =1 and k+ 1 = N. Then in this case
p: % — Grn(V) is a generically finite to one surjective morphism. We first deal with the case J = (.
Let us pick a smooth curve C in Gry(V) of degree 1, given by

A([to, t1]) := Span(29, 25, ... 2% 1, tozX + t123),

where [tg,t1] € P1. Indeed, the curve C is the line in the projective space P(ANV) defined by two vectors
A A A2y and 2§ A 28 A A 2% in ANV, which is of degree 1 with respect to the tautological
line bundle .. That is,

Z-C=1.

Now consider the hyperplane D in PV given by {[20,...,2n]|z0 + 2y = 0}. We have
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LEMMA 4.4.1. The intersection number of the curve p*C and the divisor ¢*D in % is 6V~'. Moreover,
pxq*D ~ 6N 1.2, where “~” stands for linear equivalence.

PROOF. An easy computation shows that p*C and ¢*D intersect only at the point
Span(z}, 29, ... 2% 1, 2% + (—=1)°T120) x [1,0...,0,-1] e &
with multiplicity 6™V —'. The first statement follows. By the projection formula we have
p«q*D - C = py(¢*D - p*C) = 6" .
As Pic(Gryn(V)) = Z with the generator £, then we get pyq*D ~ 6V ~1.% by the fact that & -C =1. O

We first observe that p*p.q* D — ¢* D is an effective divisor of #, and by Lemma 4.4.1 we conclude that
SN=1p* L — q*Opn (1) is effective. We also have a good control of the base locus as follows:

CLAIM 4.4.1. For any m > 6V, we always have
(4.4.3) Bs(mp*.Z — ¢*Opn (1)) < p~H(G™).
Proof: Pick any Ag ¢ G, p~1(Ay) is a finite set by the definition of G®. Thus one can choose a hyperplane
D e HY(PY, Opn (1)) such that Dng(p~'(Ao)) = &. From Lemma 4.4.1 we know that the divisor p*psq*D—
q* D is effective and lies in the linear system |6V~ 1p*.% — ¢*Opn (1)] of ¥
For any A € Gry(V), if we denote by
Int(A) := {[z] € Pn[|A([2]) = 0},

then ¢(p~'(A)) = Int(A). Hence the condition that Dngq(p™(A¢)) = & is equivalent to that Int(Ag) N D =
. However, for any A € p,q* D, we must have Int(A)nD # ¢, therefore Ag ¢ p.q*D. As A( was arbitrary,
we conclude that

Bs(6V1p*.Z — ¢* Opn (1)) < p~ 1 (G™).
As . is very ample on Gry(V), for any m > §V—1
Bs(mp*.Z — ¢* Opn (1)) < Bs(6™ " 1p*.Z — ¢* Opn (1)) < p~ 1 (G™).

The Claim is thus proved. |

, we have

Now we deal with the general case J < {0,..., N}. Without loss of generality we can assume that
J ={n+1,...,N}. First recall our previous notation p; : #; — Grn(V), and let ¢q; : %; — P; be the
second projection. For any Ag ¢ G%, the set p;'(Ag) = Int(Ag) N Py is finite. Thus one can choose a
generic hyperplane D € H(PY, Op~ (1)) such that Int(Ag) n D nP; = ¢&. One can further choose a proper
coordinate for PV such that D = {z,, = 0}.

Observe that # % PV is a local trivial fibration. Indeed, any linear transformation g € GL(CN+1)
induces a natural action § € GL(V), hence also a biholomorphism § of Gry(V). For any e € PV, §
maps the fiber ¢7'(e) to ¢7'(g(e)) bijectively. Since GLy11(C) acts transitively on PV, the fibration
% 4 PN can then be locally trivialized. Therefore @5 (D nPy) is a reduced divisor in #;. Set E :=
ps(¢; (D n Py)) set-theoretically. Then for any divisor H e |m%| on Gry(V) such that E ¢ H and
(%) & H, p(H) — ¢%(D nPy) is an effective divisor in |mp*.% — ¢%0p,(1)|. However, it may happen
that for any hyperplane D € PV all constructed divisors of the form pyq*(D) will always contain A,.

Choose a decomposition of V = V; @ V5 such that V; is spanned by the vectors {z® € V|a, = ... =
ay = 0} and V5 is spanned by other z*’s. Let us denote G to be the subgroup of the general linear group
GL(V) which is the lower triangle matrix with respect to the decomposition of V =V} @ V4 as follows:

I 0

(4.4.4) {ge GL(V)|g = [A B

] ,BeGL(V3), Ae Hom(Vi,V)}.

The subgroup G also induced a natural group action on the Grassmannian Gry (V'), and we have the following

LEMMA 4.4.2. Set H := p,(¢*D). Then for any g € G, E < g(H) and there exists a go € G such that
Ao ¢ go(H).

ProoOF. For any A € Gry(V), choose {s1,...,sy} € V which spans A. Let s; = u; + v; be the unique
decomposition of s; under V = V; @ Va. Then by E := p;(¢;'(D nP;)) we see that A € E if and only
if AN {u; =0} n P13 &, where PPl o= {[z0: -+ : 2n] € PN|z; = 0 for j > n}. For any g € GL(V),
g(A) is spanned by {g(s1),...,9(sn)}. By the definition of G, for any g € G, we have the decomposition
g(s;) = wu; + v; with respect to V = Vi @ Vo which keeps the V; factors invariant. Thus we prove the first
part of the claim.
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Set {t1,...,tn} < V which spans Ay and ¢; = u;+v; be the unique decomposition of ¢; under V = V;®Vs.
Since Int(Ag) N P! = &, we have nI¥. {u; = 0} nP"~! = &§. We can then choose the basis {t,...,ty}
spanning Aq properly, so that

) Nizifui =0} n P~ = 5

(ii) for some m = n, {uy,...,un} is a set of vectors in V; which is linearly independant;
(iil) wms1 =...=uny =0.
Then N {u; =0} N {z, =0} = PV 1= {[z: - :zy] € PV|z; = 0 for j < n}, and {v41,...,on} IS @

set of linearly independant vectors in V5.
Let us denote by A’ € Gry (V) spanned by

Uy = Uy

Uy = Uy

> o 1)
Up+1 1= Unp+1 + Zp+1

Uy, 1= um—i—zfn

- . 5 _ .0
Um+1 2= Um41 + Zmi1 = Zmy

N =un + 2% = 2%

Then Int(A’) n {z, = 0} = ¢, which is equivalent to that A’ ¢ H := p,q¢*(D). By the choice of A’
one can find a go € G such that go(A’) = Ag. Indeed, by linear independances of {v,,+1,...,vn} in V5 and
{u1,...,uy}in Vi, we can find a B € GL(V3) satisfying that B(z9) = v; for alli > m+1, and A € Hom(Vy, Vz)

such that A(u;) = v; for ¢ < n and A(u;) = v; — B(z;-;) forn+1<j<m. Set gg:= [i g] which is the
type (4.4.4), and by the construction of gy we have that go(A’) = Ag. Thus Ag ¢ go(H) and we finish the
proof of the claim. O

Since H € |6V 1%, go(H) still lies in [§™~1.%|. Indeed, since the complex general linear group GL(V)
is connected, the automorphism map of Gry(V) induced by go-action is homotopic to the identity map,
and thus the go action induces the identity on the cohomology groups. By Lemma 4.4.2, £ c go(H) and
Ao ¢ go(H). As ¢%(D nPy) is a reduced (Cartier) divisor on %7, the divisor

P (90(H)) — q5(D nPy) € |0V 'p5.2 — ¢ 0p, (1)

is effective and avoids the finite set p;'(Ap).
Since Ay € Gry(V) is any arbitrary point not contained in G%, thus the base locus of 6V~ 1p*.2 —
q%0p, (1) is totally contained in p;'(G%). In conclusion we have the following theorem:

THEOREM 4.4.1. Let & < Gry (V) x PN and % be the universal families defined in (4.4.1) and (4.4.2).
For any J < {0,..., N}, we have

Bs(mp*.Z — ¢* Opn (1)|a;,) < p; ' (GTF)
N-1

for any m =6

Fix any positive integer n < N. Consider P" as a subspace of PV defined by z,+1 = ... = zy = 0. Set
Vi = HO(IPjn, Opn(6)), and we have a natural inclusion Gry(V,) = Gry (V). For any J < {0,...,n}, we
denote by J :=J u{n+1,...,N}, and Pj := {[20,...,2n] € PV|z; = 0if j € J}. Set
Yy = {(A,[2]) € Grn (Vi) x P;]A([2]) = 0}.
Define pj : %, — Gry (V,) and ¢y : Y, — IP; the respective projections. Set

G% = {A € Gry(V,,)|p; (A) is not finite set}.
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Let # < Gry(V) x PV and %7 be the universal families defined in (4.4.1) and (4.4.2). There is a natural
inclusion 4, : Gry(V,,) < Grn(V), which induces the following inclusions:

@, Gry(Vy,) x Pj

T

W;——— Gry(V) x P;

Under the inclusion ¢,, we have
77 = G Gy (V).
From Theorem 4.4.1, for m > §V~! we also have
Bs(mp*Z — ¢*Opv(1)| 7)) = Bs(mp*ZL — ¢*Opn (1)|w,) 0 ¥
p}l(Gng) N @i}
(4.4.5) = 5;1(G7),
where p; : #; — Gry(V) and ¢ : #; — PP; are the projection maps. Since the pull back
i : Pic(Grn(V)) = Pic(Grn(Va))
is an isomorphism between the Picard groups, and .7, := i*.Z is still the tautological line bundle on
Gry(V,,). Then
mp*Z — q* Opn (1)l g7, = mp3 (L) — 33 0p, (1),

and by (4.4.5) we have

(4.4.6) Bs(mp% (%) — §50s,(1)) < 571 (GF).

We are in the situation to prove Theorem 4.3.1 for ¢ = 1 and general k +1 > N:

THEOREM 4.4.2. For any k+1 = N, set % < Grp1(V) x PN and % to be the universal families
defined in (4.4.1) and (4.4.2). For any J < {0,...,N}, and k+1 > N, we have

(4.4.7) Bs(mp*Z — ¢* Opv ()]w,) < p3 ' (GT)
for any m > 6.

PrOOF. Indeed, if we consider PV as a subspace in P**! defined by 2,1 = ... = 2541 = 0, the theorem
follows from (4.4.6) directly. O

The above theorem can be generalized to the case of products of Grassmannians. We first set N :=
c(k + 1), and denote V; := H®(PN,0pn(6;)) and G := [[;_; Grpi1(V;) for simplicity. Let & be the
generalized universal Grassmannian defined by
W= {(Ar,..., A 2) e G x PVV i, Ai([2]) = 0}.

Letp: % — G, q: % — PN and p; : Z — Grp11(8;) be the canonical projections to each factor; then p is
a generically finite to one morphism. Define a group homeomorphism

£:7° — Pic(G)
a= (a17"'7a0) = ﬁGrk+1(V1)(a1)' "ﬁGrk+1(Vc)(aC)

which is moreover an isomorphism.
We then define smooth lines {C;};—1, .. . in G, given by

, 5 6 5 52 6 5
Ai([to, t1]) == Span(z7", 2041 - -, Zpeyq) X SPaN(25%, 2070 -+ -5 Zpogg) X - - -
xSpan(toz;’ + 120", Zehir - - Zpey) X oo X SPAN(Z%, 298, -+ 5 Z(f 4 1y.)

for [to,t1] € PL. It is easy to verify that £(a) - C; = a; for each i. Consider the hyperplane D; of P" given
by {[20,--.,2n]|2 + 20 = 0}. Then we have
c k+1
LEMMA 4.4.3. The intersection number of the curve p*C; and the divisor ¢*D; in % is b; := jzjsi%.
Moreover, p.q*Opn (1) = £(b), where b = (by,...,b.).
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PROOF. It is easy to show that p*C; and ¢* D, intersect only at one point with multiplicity b;. By the
projection formula we have
p«q*D; - Ci = py(q* D; - p*Cy) = b;.
Since
Z(a)-C; = qy
for any a € Z¢. Thus
P«q*Di = psq* Opn (1) = L(b).

Then by similar arguments above, p*£(b) ® ¢* Opn~ (—1) is effective, and its base locus
(4.4.8) Bs(p*L(b) ® ¢* Opn (—1)) < p~H(G™),
where G is the set of points in G such that their p-fiber is not a finite set. We can then apply the
methods already used above to show that (4.4.8) also holds for all the strata #7 of ¢/, and for general k with
¢(k +1) = N. In conclusion, we have the following theorem

THEOREM 4.4.3. Let % be the generalized universal Grassmannian defined by

W= {(A1,..., A 2) € Grpy1 (V1) x ... x Grpy1 (Vo) x PNV 4, Ay([2]) = 0}

here V; := HO(]PN, Opn (51-)), and (k+ 1)c = N. Then for any strata %) := (G x Pj) n ¥, any a € Z° with

c_ oftt
a; > —I=—— for each i, we have

Bs(p*L(a) ® ¢* Opn (—1)|a, ) < p™(GT),
where G¥ is the set of points in G := [[_, Gry41(V;) with positive dimension fibers in ;.
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CHAPTER 5

Applications of the L? Extension Theorems to Direct Image
Problems

ABSTRACT. In the first part of the chapter, we study a Fujita-type conjecture by Popa and Schnell, and give
an effective bound on the generic global generation of the direct image of the twisted pluricanonical bundle.
We also point out the relation between the Seshadri constant and the optimal bound. In the second part,
we give an affirmative answer to a question by Demailly-Peternell-Schneider in a more general setting. As
an application, we generalize the theorems by Fujino and Gongyo on images of weak Fano manifolds to the
Kawamata log terminal cases, and refine a result by Broustet and Pacienza on the rational connectedness
of the image.

5.1. INTRODUCTION
The first goal of this chapter is to study the following conjecture by Popa and Schnell:

CONJECTURE 5.1.1. (Popa-Schnell) Let f : X — Y be a morphism of smooth projective varieties, with
dim(Y) = n, and let L be an ample line bundle on Y. Then, for every k > 1, the sheaf
fo(ERM ® L'
is globally generated for any [ > k(n + 1).

In [PS14], Popa and Schnell proved the conjecture in the case when L is an ample and globally generated
line bundle, and in general when dim(X) = 1. In a recent preprint [Dut17], Dutta was able to remove the
global generation assumption on L making a statement about generic global generation with weaker bound
on the twist, as in the work of Angehrn and Siu [AS95], on the effective freeness of adjoint bundles. Her
theorem is as follows:

THEOREM 5.1.1. (Dutta) Let f : X — Y be a morphism of smooth projective varieties, with dim(Y) = n,
and let L be an ample line bundle on Y. Then, for every m = 1, the sheaf
f(KH @ L!
is generated by global sections at a general point y €'Y, either

(a) for alll > k(("}') +1)
or
(b) for alll = k(n+ 1) when n < 4.

Here (”;1) is the Angehrn-Siu type bound in their work on the Fujita conjecture [AS95].
Inspired by Demailly’s recent work on the Ohsawa-Takegoshi type extension theorem [Deml5a] and

Paun’s proof of Siu’s invariance of plurigenera [Pau07], we are able to prove the following theorem:

THEOREM O. Let f : X — Y be a morphism of smooth projective varieties, with dim(Y') = n, and let L
be an ample line bundle on Y. If y is a regular value of f, then for every k > 1, the sheaf

fo (K @ L

is generated by global sections at y for any | > k([d[tLin +1). Here e(L,y) > 0 is the Seshadri constant of

L at the point y.

Motivated in part by his study of linear series in connection with the Fujita conjecture, Demailly intro-
duced the Seshadri constant to measure the local positivity of the ample line bundle at a point [Dem92].
After that Ein and Lazarsfeld systematically studied the Seshadri constant, and they first proved that for
any ample line bundle L on a projective surface Y, the Seshadri constant

e(L,y)>1
for a very general point on Y [EL93]. Inspired by this result, they further raised the following conjecture:

95
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CONJECTURE 5.1.2. (Ein-Lazarsfeld) Let Y be any projective manifold, and L any ample line bundle
on Y. Then the Seshadri constant
e(L,y) =1
at a very general point y € Y.

In [EKL95], they proved the existence of universal generic bound in a fixed dimension. However, the
bound is suboptimal by a factor of n = dim(Y").

THEOREM 5.1.2. (Ein-Kiichle-Lazarsfeld) Let Y be a projective variety, and L an ample line bundle on
Y. Then for any given § > 0, the locus
eYle(L,y) > —
yeYleL,y) > —
contains a Zariski-dense open set in'Y .

Applying Theorem 5.1.2 to our Theorem O, we have the following general result:

THEOREM P. Let f: X — Y be a morphism of smooth projective varieties, with dim(Y) = n, and let L
be an ample line bundle on'Y . Then for any k > 1, the direct image

(KL
is generated by global sections at the generic points of Y for any | = k(n? +1). In particular, if the manifold
Y satisfies Conjecture 5.1.2, then Conjecture 5.1.1 holds true for general points in Y; that is, the direct
image

(KL
is generated by global sections at the generic points of Y for any l > k(n + 1).

Compared to Theorem 5.1.1 by Dutta, our bound for [ is also quadratic on n but slightly weaker than
hers. However, if we apply the result that Ky + (n + 1)L is semi-ample for any ample line bundle L, we can
obtain a linear bound for .

THEOREM Q. Let f : X — Y be a morphism of smooth projective varieties, with dim(Y') = n, and let L
be an ample line bundle on Y. Then for every k > 1, the sheaf

f+(KY) @ L®!
is generated by global sections at the generic y € Y for any | > k(n + 1) + n? —n.

The second part of the chapter is to study a question by Demailly-Peternell-Schneider in [DPS01]:

PrROBLEM 5.1.1. Let X and Y be normal projective Q-Gorenstein varieties. Let f : X — Y be a
surjective morphism. If —Kx is pseudo-effective and its non-nef locus does not project onto Y, is —Ky
pseudo-effective?

Inspired by the recent work of J. Cao on the local isotriviality on the Albanese map of projective
manifolds with nef anticanonical bundles [Ca016], we give an affirmative answer to the above problem when
X and Y are smooth pairs:

THEOREM R. Let f : X — Y be a surjective morphism from a log-canonical (lc for short) pair (X, D)
to the smooth projective manifold Y. Let A be a (not necessarily effective) Q-divisor on Y. Suppose that
—(Kx + D) — f*A is pseudo-effective, and the non-nef locus B_ ( —(Kx+D)-— f*A) does mot project onto
Y. Then —Ky — A is pseudo-effective with its non-nef locus contained in f(B_(*KX fD*f*A)) uZuZp,
where Z is the minimal proper subvariety on'Y such that f : X\f~1(Z) — Y\Z is a smooth fibration, and
Zp is an at most countable union of proper subvarities containing Z such that for every y ¢ Zp, the pair
(f7*(y), Dy y-1(y)) is also lc.

The following theorem by Fujino and Gongyo [FG14] is a direct consequence of our Theorem R.

THEOREM 5.1.3. (Fujino-Gongyo) Let f : X — Y be a smooth fibration between smooth projective
varieties. Let D be an effective Q-divisor on X such that (X, D) is lc, Supp(D) is a simple normal crossing
divisor, and Supp(D) is relatively normal crossing over Y. Let A be a (not necessarily effective) Q-divisor
onY. Assume that —(Kx + D) — f*A is nef. Then so is —Ky — A.

Moreover, we can also use analytic methods to prove the following theorem.

THEOREM S. With the same notations in Theorem R. Assume further that (X, D) is klt, —Kx—D— f*A
is big and its non-nef locus B_(—Kx — D — f*A) does not dominate Y, then —Ky — A is big with its non-nef
locus contained in f(B_(—Kx — D — f*A)) u Z u Zp.
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As a combination of Theorem R and S, we prove the following Theorem, which is a generalization of a
theorem by Fujino and Gongyo [FG12].

THEOREM T. With the same notations in Theorem 5.1.3, if —Kx — D — f*A is big and nef, then
—Ky — A is also big and nef.

Finally, we apply Theorem S to refine a result by Broustet and Pacienza on the rational connectedness
of the image (compared to Theorem 5.5.5 below):

THEOREM U. Let X be a normal projective variety and D an effective Q-divisor on X such that Kx + D
is Q-Cartier. Let'Y be a normal and Q-Gorenstein projective variety with klt singularities. If f : X — Y s
a surjective morphism such that —(Kx + D) is big and the restriction of f to NNef(—Kx — D) | JNklt(X, D)
does not dominate Y, then Y is rational connected modulo NNef(—Ky-), that is, there exists an irreducible
component V' of NNef(—Ky ) such that for any general point y of Y there exists a rational curve R, passing
through y and intersecting V.

5.2. PRELIMINARY TECHNIQUES
5.2.1. SESHADRI CONSTANTS. In the work [Dem92], Demailly define the following Seshadri constant:

DEFINITION 5.2.1. Le L be a nef line bundle over a projective algebraic manifold X. To every point

x € X, one defines the number
L-C
L = inf ———
e(L,x) :=1in S(Coa)
where the infimum is taken over all reduced irreducible curves C' passing through x and v(C,z) is the
multiplicity of C' at x. e(L,x) will be called the Seshadri constant L at x.

On the other hand, Demailly also introduced another constant (L, x) for any nef line bundle L. First,
we begin with the following definition.

DEFINITION 5.2.2. A function ¢ : X —] — o0, +0] on a complex manifold X of dimension m is said to
be quasi-plurisubharmonic (quasi-psh for short) if 4 is locally the sum of a psh function and of a smooth
function (or equivalently, if v/—100% is locally bounded from below) . In addition, we say that v has neat
analytic singularities if every point x € X possesses an open neighborhood U on which 1 can be written

N
¥ = clog Z lg;|* +w(2)

j=1
where g; € O(U), ¢ > 0 and w(z) € €°(U).

DEFINITION 5.2.3. A singular metric h on the line bundle L is said to have a logarithmic pole of coefficient
v at a point x € X, if on a neighborhood U of x, the local weight ¢ of h can be written

p= VlogE |z — )? + w(z)
where v > 0 and w(z) € €*°(U). In this setting, we set v(h,x) := v.

Then we set
v(L,z) := supv(h, ),
h

where the supremum is taken over all singular hermitian metrics h of L with positive curvature current,
whose local weight ¢ has neat singularities and logarithmic poles at x.

The numbers (L, x) and (L, z) will be seen to carry a lot of useful information about the local positivity
of L. In case L is big and nef, these two constants coincide outside a certain proper subvariety of X
(see [Dem92, Theorem 6.4])

THEOREM 5.2.1. (Demailly) Let L be a big and nef line bundle over X. Then we have
e(L,z) =~(L,x)
for any x ¢ B, (L), where B, (L) is the augmented base locus of L (see [Laz04, Definition 10.2.2]). In
particular, if L is ample, then e(L,x) = v(L, z) holds everywhere.

As we mentioned in Section 5.1, in [EKL95], Ein, Kiichle and Lazarsfeld gave the existence of universal
generic bounds for the Seshadri constants in a fixed dimension.
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THEOREM 5.2.2. (Ein-Kiichle-Lazarsfeld) Let Y be an irreducible projective variety of dimension n, and
L a nef line bundle on Y. Suppose there exists a countable union B 'Y of proper subvarieties of Y plus a
positive real number o > 0 such that

(5.2.1) L' Zz(a-r)
for every irreducible subvariety Z 'Y of dimensionr (1 <r <n) with Z & B. Then
e(L,y) =«

for all y € Y outside a countable union of proper subvarieties in Y . In particular, for any ample line bundle
LonY,

(5.2.2) e(L,y) =

3=

for a very general point y.

The above theorem gives a lower bound on the Seshadri constant of a nef and big line bundle at a very
general point. However, as was also proved in [EKL95], for the ample line bundle, the above theorem is
valid on a Zariski-open set by the semi-continuity of the Seshadri constant of the ample line bundle. In other
word, let L be an ample line bundle on an irreducible projective variety Y. Suppose that there is a positive
rational number B and a smooth point y € Y for which one knows that

e(L,y) > B.

Then the locus
{zeYle(L,z) > B}

contains a Zariski-open dense set in Y.

5.2.2. L? EXTENSION THEOREM. Before we state Demailly’s Ohsawa-Takegoshi type Extension Theo-
rem, we begin with a definition in [Dem15al].

DEFINITION 5.2.4. If ¢ is a quasi-psh function on a complex manifold X, the multiplier ideal sheaf
7 (1) is the coherent analytic subsheaf of &x defined by

I W)y i={f€Ox,;3U > x,L |f|?e~Yd\ < 400}

where U is an open coordinate neighborhood of z, and d\ the standard Lebesgue measure in the corre-
sponding open chart of C™. We say that the singularities of i are log canonical along the zero variety

Y :=V(Z@W)if 7Z((1-e)) vy = Oxy for every € > 0.

If 4 possesses both neat and log canonical singularities, it is easy to show that the zero scheme V(_# (Y"))
is a reduced variety. In this case one can also associate in a natural way a measure dVyo ,[1] on the set
Y° := YY" of regular points of Y as follows. If g € €.(Y°) is a compactly supported continuous function on
Y°, and § compactly supported extension of g to X, we set

(5.2.3) f gdVyo ,[1] := limsup

J g(l’)dVXW .
t——0 JreX,t<y(z)<t+l

Here w is a Kéhler metric on X, and dVx, = ‘% In [Dem15a] Demailly proved that the limit does not
depend on the continuous extension g, and one gets in this way a measure with smooth positive density with
respect to the Lebesgue measure, at least on an (analytic) Zariski open set in Y°.

We are ready to recall the Ohsawa-Takegoshi type extension Theorem by Demailly. We only need a
special case of his very general statement:

THEOREM 5.2.3. (Demailly) Let X be a smooth projective manifold, and w a Kihler metric on X. Let L
be a holomorphic line bundle equipped with a (singular) hermitian metric h on X, and let ¢ : X —]— o0, 4+0]
be a quasi-psh function on X with neat analytic singularities. Let Y be the analytic subvariety of X defined
byY =V ( Z(Y)) and assume that 1 has log canonical singularities along Y, so thatY is reduced. Finally,
assume that the curvature current

i@L,h + av 71(351/) >0
for all a € [1,1 + 6] and some § > 0. Then for every section s € H° (YO, (Kx ® L)ryo) on Y° :=Y"8 such
that

| 1o Vi ol < e
Yo
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there is an extension of S € H°(X, Kx ® L) whose restriction to Y° is equal to s, such that

34
| oIS e avien < 5 [ 1o paviefv)
X Ye°

Here we set

e 2 if >0,
7= 1
— if z<0.

1+ 22

A direct consequence of Theorem 5.2.3 is the following extension theorem for fibrations:

COROLLARY 5.2.1. Let f: X — Y be a surjective morphism between smooth manifolds. For any ample
line bundle L on Y, any regular value y of f, if the Seshadri constant of L satisfies that

(5.2.4) e(L,y) > dim(Y) = n,

then for any pseudo-effective line bundle L, over X with a singular hermitian metric h such that O, , > 0,
and the restriction of h to X, is not identically zero, any section s of

H(Xy, (Ex ® f*L® L1)1x, ® 7 (hix,)).
can always be extended to a global one
SeH(X,Kx® f*L® L)
with certain L? estimates which do not depend on L.

PROOF. Since L is ample over Y, one can find a smooth hermitian metric hg on L with the curvature
form i©p p, > w, where w is some Kéhler form on Y.

By the lower bound of Seshadri constant €(L,y) > n, we can find a global quasi-psh function ¢ with
neat singularities on Y such that

(a) 1O n, + v/ —100¢ = 0;
(b)  is smooth outside y;
(¢) on a neighborhood W of y, we have

=01+ 6)nlog2 |z —y)? + w(2)
where § > 0 and w(z) € €*(W) with w(y) =0

Now set v := 1—J1ré<p o f, which is a quasi-psh function with neat singularities on X. Moreover, since y is the

regular value of f, the inverse image X, := f~'{y} is a closed smooth submanifold of codimension n in X,
and the multiplier ideal sheaf

S W) = JIY) = Ix,.

Here I% ? is the ideal sheaf consisting of germs of functions that have multiplicity > n at a general point of
X .

e
IE(”; :={f € Ox|ord,(f) = n for a general point x € X}.

Thus _# (¢) has log canonical singularities, and we have

107, b +10 s, pxn, + @/ =100y = 0
for all @€ [1,1 + §]. Then for any section s of
H°(X,, (Kx ® f*L®L1)1x, ® 7 (h1x,)).
we can apply Theorem 5.2.3 to extend s to a global section
SeH' (X,Kx® f*LRQL,® #(h))

such that

_ 34
L{ 7(5¢)|S|i,f*hohle YdVx . < 5 )y |5|i,f*h0h1dVXy,w[¢]~
Yy

Assume that dim(X) = m + n. From (5.2.3) one can then check that dVx, . [¢] is the smooth measure
supported on X, such that

m
Xy
' )

Wi
m

dVx, w[¥] = Co
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where Cj is some contant depending only on m,n. Since é depends only on €(L,y), write C := %C’O which
does not depend on L;. We thus obtain

wm
_ 1 X,
(5.2.5) JX 7(5¢)|S|3,f*h0h1€ YdVx .. < Co J-X |5|37f*h0h17/

1
m:
Y

where the L? estimate does not depend on L;. O

5.2.3. THE EXTENSION THEOREM FOR TWISTED PLURICANONICAL BUNDLES. We recall the following
twisted pluricanonical extension theorem, which was inspired by that used by J. Cao to prove the local triv-
iality of Albanese maps of projective manifolds with nef anticanonical bundles [Cao16]. It is a consequence
of [BP08, Section A.2].

THEOREM 5.2.4. Let Y be a n-dimensional projective manifold and let Ay be any line bundle on'Y such
that the difference Ay — Ky is an ample line bundle. Let f : X — 'Y be a surjective morphism from a smooth
projective manifold X to Y and L be a pseudo-effective line bundle on X with a possible singular metric hyp,
such that

Assume that for some reqular value z, we have
(i) all the sections of the bundle mKx_ + L extend near z,

1

(i1) HO(X=, (mEx. + Lix.)® J(hfx.)) # -
Then for y € Y such that
(a) y is the regular value of f,
(b) the Seshadri constant e(Ay — Ky ,y) > n,

the restriction map

1

HO(X,mKX/y + L + f*Ay) — HO(Xy, (mey + ery) (9 /(hFTXy))
is surjective. In particular, the choice of Ay depends only on'Y and is independent of f, L,m.
Proor. Thanks to [BP10, A.2.1], the conditions (i) and (i) imply that there exists a m-relative

Bergman type metric h,, g on mKxy + L with respect to hr such that i©p,, ,(mKx/,y + L) > 0. Thus
h = mﬁ_lhmg + %hL defines a possible singular metric on
~ m—1 1
L:=——(mK LY+ —L=(m-1)K L
m ( x/y + )er (m VKx;y + L,
with i©y(L) > 0.
0 L . .
Take any s € H°(X,, (mKx, + Lix,) ® /(erXy)), by the construction of the m-relative Bergman

Yy

kernel metric, |s[}; is 4°-bounded. Then we see that

9 2(m—1) 2
[ lRadve,. = [T s v,
y y wh*
2
< CJ ls|™ 1 dVx, w < +o0.
Xy  wh

We then can apply Corollary 5.2.1 to Ky + L+ f*(Ay — Ky), to extend s to a section in H°(X, Kx)y +

L+ f*Ay). In conclusion, the restriction

Y

HY(X,mKx)y + L+ [*Ay) = H*(X,,(mKx, + Lx,) ® 7 (hix,))

is surjective and the theorem is proved. O

5.3. ON THE CONJECTURE OF POPA AND SCHNELL

Let f: X — Y be the surjective morphism between smooth projective manifolds, and let L be an ample
line bundle on Y with a smooth hermitian metric hg such that the curvature form i©, > w for some Kéahler
metric w on Y. Assume that dim(Y’) = n and dim(X) = m + n. Fix any point y on Y which is the regular
value of f. Take any positive real number v such that

1

Then we have
e([nv]L,y) > n.
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Set, L := [nv]f* L with the smooth hermitian metric h = f*hgw], then we can restate Corollary 5.2.1 in the
following variant form:

PRrROPOSITION 5.3.1. There is a globally defined quasi-psh function vy defined over X and a positive
number ¢ such that, for any pseudo-effective line bundle L; equipped with the possible singular hermitian
metric hy, whose curvature current i©p, ,, = 0 and h; is not identically zero when restricted on X, for any
section

s€ H(X,, (Kx ® L® L1)1x, ® 7 (h)x,));
there is a global section
Se H'(X,Kx ® L® L1)
whose restriction to X, is s, such that

L Y(8%0)|S[2 5 ¢ dVx w < CL |52 7, VX, -

Y

Here dVXy,w = w;f!y , and C is some constant which does not depend on L.

Thus from Proposition 5.3.1, if we set L; to be the trivial bundle on X, we see that the following
morphism
HO(X, Kx @ [*LO™T) — HO(X,, (Kx ® [* L") x,)

is always surjective. As one can take v to be arbitrary close to ﬁ so that [nv] = lﬁJ + 1, we see that

the direct image f, Kx ® L®Le(ﬁy>J+l is generated by global sections at y. Since y is an arbitrary regular
value of f, we thus prove Theorem O for k£ = 1. In order to prove the theorem for any k£ > 2, we need to
apply the techniques in proving Siu’s invariance of plurigenera [Siu97] by Paun [Pau07].

PROOF. (Proof of Theorem O) Fix any k > 2 and any o € H (X, k(Kx + fx)rxy)- We want to find a
global section ¥ € HO (X, k(Kx + L)) whose restriction to X, is o.
Choose a very ample line bundle A on X such that for every » = 0,...,k — 1, the line bundle Fj, :=
r(Kx + L) + A is globally generated by sections
WY jor v, © HOX, Fy,p).
We then define inductively a sequence of line bundles
Fyri=(qgk+7)(Kx +L)+ A
for any ¢ > 0, and 0 < r < k — 1. By constructions we have
{Fq7r+1—KX+Fq7T+I~, if r<k—1,

(5.3.1) )
Fprio=Kx+F,1+L if r=k—1.

We are going to construct inductively families of sections, say {ugq’r)} j=1,....N,, of Fy . over X, together

(g,r) (g,r)

;" is an extension of v, where we set

with ad hoc L? estimates, such that each u

) L 0,r
vt = oY) e HOX F, ).

Now, by induction, assume that such {ug-q’r) }j=1....n, above can be constructed. Then F),, can be
equipped with a natural singular hermitian metric h,, defined by

€2
N,. s ?
S a2

such that i@hw > 0. Let hx, be the smooth hermitian metric of the canonical bundle Kx induced by

€l =

the volume form dVx ,, and set h = hKXiL to be the smooth metric on Kx + f), then by construction the
pointwise norm with respect to the metric hy , is

|’U(-0’T+1) 2
(¢,7+1)2 g hAr+ip, . B
oy i = SN 1,002 it r<k-1,
(5.3.2) SUT Chrha
(@+1.0)2 ol 0i> 712, .
|vj herh = SN 0T if r=k-—1.
Zj:l | 1 |flk—1hA
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where h 4 is a smooth hermitian metric on A with strictly positive curvature. Since the sections {UEO’T)}i:L N,
generates Fy ,)x,, there is a constant Cy > 0 such that (5.3.2) is uniformly 4 bounded above by C;. From

(5.3.1), it then follows from Proposition 5.3.1 that one can extend vj(-q’rﬂ) (or v\ if p = — 1) into a

section ug»q’rﬂ) (u§q+1’0) respectively) over X such that

OrU

r+1

J (5’¢O —to 2 |u q,r+1) 2 hq rﬁdVX’w < CQ if r<k-— ].,
(5.3.3)
J (6¢hg)e"° Z ufTHOR Vi < C if r=k—1

for some uniform constant Cs. From (5.3.2) (5.3.3) is equivalent to

Z r+1 ‘u(q7r+1)|2
f v (8thg)e v S WA QY W < Co i r<k— 1,
X e

. (}M) 2
1= hqk+7‘hA
(5.3.4) No 1 (ar+D)1g
— Zz 1 1% hak+kp , .
V(0%o)e™ " I AV, < Oy if r=k—1
X Zz 1 |U ’ |hqk+k: 1ha
Let us denote by
agk+r(T Z |U ‘ilqk+7-hA7

which is a quasi-psh and bounded non-negative smooth function on X. By the integrability of log~y(dvy)
and vy with respect to the standard Lebesgue measure over X, combined with the concavity property of the
logarithmic function as well as the Jensen inequality, we can find some constant C'5 and Cy such that

(5.3.5) f log 7dVXw Cs — J log v(0tp0)dVx o + J YodVx o < Cy
X aj—1 X X

for any [ > 1. Since a;(x) is a bounded smooth function on X, we can also find a constant C5 > Cy such
that

J loga1dVx ., < Cs.
X

Combined these inequalities together we obtain

for any { > 1. Set f, := log%, and we have the following properties:

(a) for any ¢ = 1, we have
f JqdVx . < Cs;
b'e
(b) the inequality
~ - 1
k@ﬁ(KX + L) ++/—100f, = *66}«“‘ (A)

holds true in the sense of currents on X;
(c) on X, the following equality is satisfied

farx, =loglofi, + ao(2)1x,

where ag(z) = logz |u(0 0 |n, is a smooth function on X.

By the mean value inequality for the psh functions, as a consequence of the properties (a) and (b), one
can show the existence of a uniform upper bound for the functions f, over X. Thus the sequence f,(z)
must have some subsequence which converges in L' topology on X to the potential f.., in the form of the
regularized limit

foo(2) :=limsup Tim _ f,, (C),

(—z qy—>+00
which satisfies } 7
k©;(Kx + L) +v—=100fx =0

as a current on X. Moreover, by Property (¢) fo is not identically —oo on X, as well as

(5.3.6) foo = loglol?, + 6(1)
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pointwise on Xj,.
Now we construct a singular hermitian metric hy on (k — 1)(Kx + L) defined by

he 1= ph—le= "5 foo

Then O, ((k —1)(Kx + L)) = 0. Write k(Kx + L) = Kx + (k— 1)(Kx + L) + L, where (k — 1)(Kx + L)
is equipped with the singular hermitian metric ho,. Since
5 2(k—1

2
|U|w,hhoo = |U|?Lhm = |ol,,f '|0|;’i

which is ¥ bounded, we then can apply Proposition 5.3.1 to extend o to a global section ¥ € H°(X, k(K x +
L)).
In conclusion, for any regular value y of the morphism f, the following morphism
HO(X, KR ® f*L%) - H°(X,, (KR* ® f*L¥)x,)
is always surjective for any [ > ﬁ Thus Theorem O is proved. (]
In order to improve the above quadratic bound to linear, we need to apply the twisted pluricanonical
extension theorem in Section 5.2.3 instead. First, we recall the following result arising from birational

geometry:

THEOREM 5.3.1. Let L be an ample line bundle over a projective n-fold Y, then the adjoint line bundle
Ky + (n+ 1)L is semi-ample.

Based on the Mori theory, one observes that n + 1 is the maximal length of extremal rays of smooth
projective n-folds, which shows that Ky + (n + 1)L is nef. By the base-point-free theorem, one can even
show that Ky + (n + 1)L is semiample. In his work on the Fujita conjecture [Dem96], Demailly also gave
an analytic proof for the fact that Ky + (n + 1)L is nef.

PRrOOF. (Proof of Theorem Q) By Theorem 5.2.2, the Seshadri constant
e(n®*+1)L,y) >n

for a generic y € Y. From Theorem 5.3.1, we see that Ky + (n + 1)L can be equipped with a smooth
hermitian metric A with semi-positive curvature. Applying Theorem 5.2.4, we see that for any m > 1, the
restriction map

HO (X, mKxy + (m—1)f*(Ky + (n+1)L) + f*(Ky + (n* + 1)L)) — H(X,,mKxx,)

is surjective for a generic y in Y. In other words, for any k& > 1 and any [ > k(n + 1) + n? — n, the direct
image
f(KR) © L®

is generated by global sections at the generic points of Y. This completes the proof of Theorem Q. O

5.4. ON A QUESTION OF DEMAILLY-PETERNELL-SCHNEIDER

In this section, we prove Theorem R and thus give an affirmative answer to Problem 5.1.1 in the case
that both X and Y are smooth manifolds.

PRrROOF. (Proof of Theorem R) Take a sufficient ample line bundle Ax on X such that Ax + D is ample,
and the direct image fi(Ax) is a torsion free coherent sheaf which is not only locally free but also globally
generated over the Zariski open set X° := X\f~1(Z). Then f,(Ax) is locally free outside a subvariety
W < Z of codimension at least 2. Set r to be the generic rank of f.(Ax), and denote by

det fu(Ax) := AT fu(Ax)™

to be the bidual of A" f.(Ax) which is an invertible sheaf over Y, then there is coherent ideal sheaf T
supported on W such that

/\Tf,;< (Ax) = det f*(Ax) ®I
Take a smooth hermitian metric h on Ax + D such that i©; > 3w for some Ké&hler metric w. Let us
also choose a very ample line bundle Ay on Y such that Ay — Ky generates n + 1 jets everywhere and
Ay +det fy(Ax) is also an ample line bundle on Y. In particular, the Seshadri constant e(Ay — Ky, y) > n
for any .

By the definition of non-nef locus, for any pseudo-effective line bundle F on X, we have

B_(E) = | J [ Bs(kAx + kmE).
meN keN
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Equivalently, in [BDPP13], it is shown that

B (F) - |J (B D),
meN T

where T runs over the set ¢1(E)[—-Lw] of all closed real (1,1)-currents T € ¢;(E) such that 7> —1w, and
E(T) denotes the locus where the Lelong numbers of T are strictly positive. By [Bou02], there is always
a current Tpin,,m Which achieves minimum singularities and minimum Lelong numbers among all members
of ¢1(E)[—-L1w] hence

B_(E) = | Bt (Tminm)-

meN

By Demailly’s regularization theorem in [Dem92b], for every m € N, we can find a closed (1,1)-current
T € ¢1(F) with neat singularities such that 7T, > f%w, and

E+ (Tmin,Qm) < E+ (Tm) < E+ (Tmin,m)~

Equivalently, there exists a singular hermitian metric h,, on E with neat singularities, such that the curvature

current

2

Set E:= —(Kx + D) — f*A. Since B,(— (Kx +D) - f*A) does not project onto Y, thus for any m € N,
Zm = f(E+(T,)) is a proper subvariety of Y, and the singular hermitian metric h&mh on —m(Kx + D) —
mf*A + Ax + D is smooth on X\ f~(Z,,).

For the Q-effective divisor D = 22:1 a; D;, there is a canonical singular hermitian metric hp defined on
D, with the local weight

t
op = Y, ailoglgil,
i=1
where g; € T'(U, Oy) is a holomorphic function locally defining D; on some open set U — X. Therefore, the
curvature current
iOp, = [D] =0,

and thus hp is a singular hermitian metric with neat singularities.

Recall that Zp is denoted to be the minimal set containing Z, such that for every y ¢ Zp, the pair

(Xy, D1x,) is also lc. Here we denote by X, := f~*(y). Since (X, D) is lc, thus Zp is an at most countable
union of proper subvarieties of Y. Indeed, the set

Vo= {y ¢ Z1(X,, (1= —)Dyx, ) is Kt}

is an Zariski open set of Y. Therefore, we have

o0]

ZD = U Y\Y;rr

m=1

Thus for the singular hermitian metric h,, := ﬁ%mhh%m_l on —mKx + Ax — mf*A, the multiplier ideal
sheaf

S (hx,) = £ (1= -)Dix,) = Ox,

for any y ¢ Z,, U Y\Y;,. Moreover, the curvature current 10, > w.

m

By Theorem 5.2.4 applied with L = —mKx + Ax — mf*A equipped with the hermitian metric h,,, the
restriction is surjective:

HY(X,mKx; —mKx + Ax —mf*A+ f*Ay) - H°(X,, Axx,)
for any y ¢ Z,, U Y\Y,,. In other words, the direct image sheaf
(541) f* (mKX/y —mKx +Ax — mf*A + f*Ay) = (—Ky — A)m RAy ® f*(Ax)

is generated by global sections over Y;,\Z,,, and by the assumption that f.(Ax) is locally free over Y\Z,
we conclude that the top exterior power

A((—Ky —A)" @Ay ® f«(Ax)) = (—Ky — A)"" @ A} @det fx(Ax) ®T

is also generated by global sections over Y,,,\Z,,. In particular, for every m € N, the base locus

(5.4.2) Bs((—Ky — A)" ® A} @ det fu(Ax)) © Zn | JY\Yon-
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By our choice of Ay, rAy + det f«(Ax) is an ample line bundle on Y, thus let m tends to infinity, we obtain
the pseudo-effectivity of —Ky — A. Moreover, from (5.4.2) we see that the non-nef locus

B_(—Ky — A) c Loj ZmUY\Ym = f(B—(_KX -D - f*A)) UZD

m=1

Hence Theorem R is proved. (|

If f is a smooth fibration, Supp(D) is a simple normal crossing divisor, and Supp(D) is relatively normal
crossing over Y, then the condition that (X, D) is lc implies that (X, D), ) is also lc for every y € Y. Thus
Zp = @. If —Kx —D— f*A'is nef, then B_(—Kx —D— f*A) = . Thus from Theorem R, B_(—Ky —A)
is also empty which implies that —Ky — A is nef. This completes our proof of Theorem 5.1.3.

By setting D = 0 and A = 0 in Theorem 5.1.3, the following theorem by Miyaoka is a direct consequence.

THEOREM 5.4.1. (Miyaoka) Let f : X — Y be a smooth morphism between smooth projective manifolds
X and Y. If —Kx is nef, then so is —Ky.

REMARK 5.4.1. The original proof of Miyaoka [Miy93] relies on the mod p reduction arguments. There
is also another Hodge theoretic proof by Fujino and Gongyo without using the mod p reduction arguments
[FG14].

REMARK 5.4.2. In [BBP13], for any pseudo-effective line bundle L, B_(L) is called restricted base
locus of L, and the non-nef locus NNef(L) [BBP13, Definition 1.7] is defined in terms of the asymptotic or
numerical vanishing orders attached to |L|. If the underlying projective variety X is smooth, then we have

B_(L) = NNef(L).

Since in this chapter we always assume that X and Y are smooth projective manifolds, we do not distinguish
these two equivalent objects.

REMARK 5.4.3. In [CZ13]|, M. Chen and Q. Zhang proved the similar result that, for the surjective
morphism from the log canonical pair (X, D) onto a Q-Gorenstein variety Y, if —(Kx + D) is nef, then —Ky
is pseudo-effective. In a very recent preprint [Oul7], W. Ou extended the theorem by Chen-Zhang to the
rational dominant maps, which was a crucial step in his proof of the generic nefness conjecture for tangent
sheaves by T. Peternell [Pet12, Conjecture 1.5].

5.5. ON THE INHERITANCE OF THE IMAGE

5.5.1. ON THE IMAGES OF WEAK KLT FANO MANIFOLDS. One says that a projective manifold X is
weak Fano if —Kx is big and nef. In the series of articles [FG12] and [FG14], Fujino and Gongyo studied
the image of weak Fano manifolds. They proved the following theorem:

THEOREM 5.5.1. (Fujino-Gongyo) Let f : X — Y be a smooth fibration between two smooth manifolds
X and Y. If X is weak Fano, then so is Y.

In this section, we are going to prove a more general theorem as follows:

THEOREM 5.5.2. Let f: X — Y be a surjective morphism between two smooth manifolds X andY . Let
D be an effective Q-divisor such that (X, D) is klt. Let A be a (not necessarily effective) Q-divisor on Y. If
—Kx — D — f*A is big and its non-nef locus B_(—Kx — D — f*A) does not project onto Y, then —Ky — A
is big.

ProOF. Take a very ample line bundle Ay over Y such that Ay generates n + 1 jets everywhere. Since
—Kx — D — f*Ais big, we can find a positive integer a such that —a(Kx + D + f*A) —2f* Ay is effective.
Fix any effective divisor £ € | —a(Kx + D+ f*A) —2f*Ay|. Since (X, D) is klt, then there exists a positive
integer m > a such that the multiplier ideal sheaf

(5.5.1) f(ﬁErxy) = /(- Dix,) = Ox,

m—1

for the generic fiber X,. We can also find a singular hermitian metric h; with neat singularities on —(m? —

a)(Kx + D + f*A) such that 10, > & for some Kéhler metric @ on X. Take some small rational number
€ > 0 such that #(h{,x ) = Ox, for the generic fiber X,.

On the other hand, since the non-nef locus B_(—Kx — D — f*A) does not project onto Y, from the proof
of Theorem R in Section 5.4, we can find a singular hermitian metric h, over —(m? —a)(Kx + D + f*A) with
neat singularities, such that 0, > —e® and the singularities of h. does not project onto Y. Set h := h{hl ¢
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which is also a hermitian metric on —(m? —a)(Kx + D + f*A), then we have i0; > €20 and the multiplier
ideal sheaf

(5.5.2) S (hix,) = Ox,
for the generic fiber X,.

Take a generic fiber X, of f such that y is the regular value of f, and both (5.5.1) and (5.5.2) are satisfied.
We equip the line bundle —m?(Kx + D + f*A) — 2f* Ay + m2D with the singular hermitian metric hg :=
hEhh%mz, where hg (resp. hp) is the tautological singular hermitian metric on —a(Kx + D+ f*A)—2f* Ay
( resp. D) induced by the effective divisor E (resp. D), such that

Oy, = [E]( resp. 10, = [D]).
Then we claim that the multiplier ideal sheaf /(hg”?xy) = Ox,. Indeed, for any s € Ox, ., let g, pp and

¢ be the weights of the metric hg, hp and h on a small neighborhood U < X, of a point z € X,,. Then by
the Holder inequality we have

|| spemssm e < ([ ey ([ e (] e < v,

U U U U

Here we use the conditions (5.5.1) and (5.5.2). By applying Theorem 5.2.4 with L = —m?(Kx + f*A) —

2f* Ay endowed with the singular hermitian metric hg, we obtained the desired surjectivity:

HY(X,m*Kx )y + (—m*Kx —m?f*A —2f*Ay) + f*Ay) —» H*(X,, f*(-m’Ky —m?A — Ay)x,) = C,

where [ is the number of the connected components of X,. In particular, we have the non-vanishing
HO(X, f*(—m*Ky —m*A — Ay)) # 0.

Now we claim that —m2Ky — m?A — Ay is a pseudo-effective line bundle over Y. Indeed, we first take a
stein factorization of f

x Ly Y,
where p : Y/ — Y is a finite surjective morphism and the morphism f’: X — Y’ has connected fibers. Then
we have an isomorphism
fi s HY(X, f*(-m*Ky —m?A — Ay)) = H(Y',p*(—m*Ky — m*A — Ay)),

which implies that the line bundle p* (—m? Ky —m?A — Ay) is effective. Since p : Y/ — Y is a finite surjective
morphism, by a result of S. Boucksom [Bou02, Proposition 4.2], —m?Ky —m?A — Ay is a pseudo-effective
line bundle, which also shows that —Ky — A is big. (|

Therefore, we can extend Theorem 5.5.1 to the weak klt Fano cases:

PrOOF OF THEOREM T. Sicen f is a smooth fibration, (X, D) is klt, and (X, D)x,) is also kit for
every y € Y, from the very definition of Zp in Theorem R we see that Zp = J. By the nefness of
—(Kx + D) — f*A, the set

B,(— (Kx + D) —f*A) = .
Thus from Theorem R we conclude that —Ky — A is nef. The bigness of —Ky — A follows from Theorem
T directly. This completes the proof. O

By setting D = 0 and A = 0 in Theorem T, we obtain Theorem 5.5.1 directly.

REMARK 5.5.1. If we only assume that —Kx is big, then the following example given in [FG12] shows
that, even if f is smooth, — Ky is not big.

ExAMPLE 5.1. Let E < P? be a smooth cubic curve. Consider f : X = Pg(0r @ Ogp(1)) > E =Y.
Then, we see that —K x is big. However, — Ky is not big since F is a smooth elliptic curve.

It is noticeable that, in [Paul2] S. Boucksom pointed out that the following theorem, which is a special
case of Theorem 1.2 in [Ber09], implies [FG12, Theorem 4.1] or [KMM92, Corollary 2.9]:

THEOREM 5.5.3. (Boucksom-Pdun) Let f : X — Y be a smooth fibration between two smooth manifolds.
If —Kx is semi-positive (strictly positive), then —Ky is semi-positive (strictly positive).

Finally, let us mention that, in [FG12], the authors raised the following conjecture, which was solved

very recently by C. Birkar and Y. Chen [BC16]:

THEOREM 5.5.4. (Fujino-Gongyo, Birkar-Chen) Let f : X — Y be a smooth fibration between two
smooth projective manifolds. If —K x is semi-ample, then so is —Ky .
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The proof in [BC16] relies on very deep consequences of the minimal model program in birational
geometry and of Hodge theory. It is an interesting question to know whether we can use pure analytic
methods to give a new proof of this theorem.

5.5.2. ON THE RATIONAL CONNECTEDNESS OF THE IMAGE. By Mori’s bend-and-break, Fano varieties
are uniruled; in fact by [Cam92, KMM92] a stronger result holds: the projective Fano variety is rationally
connected. Later on Q. Zhang and Hacon-McKernan proved that the same conclusion holds for a klt
pair (X, D) such that —(Kx + D) is big and nef [Zha06, HMO07]. This was generalized by Broustet and
Pacienza [BrP11, Theorem 1.2], who proved that a klt pair (X, D) with —(Kx + D) big is rationally
counected modulo the non-nef locus of —(Kx + D), that is, there exists an irreducible component V' of
B_( — (Kx + D)) such that for any general point x of X there exists a rational curve R, passing through
X and intersecting V. Moreover, they also proved the following result for the image:

THEOREM 5.5.5. (Broustet-Pacienza) Let (X, D) be a kit pair such that —(Kx + D) is big. Let f :
X --»>Y be a dominant rational map with connected fibers such that the non-nef locus of —(Kx + D) does
not dominate Y, then Y is uniruled.

In this subsection, we will refine their results in a more general setting. First, we need to extend Theorem
5.5.2 to surjective morphisms between singular varieties.

THEOREM 5.5.6. Let X be a normal projective variety and D an effective Q-divisor on X such that
Kx + D is Q-Cartier. Let Y be a normal and Q-Gorenstein projective variety. If f : X — Y is a surjective

morphism such that —(Kx + D) is big and the restriction of f to NNef(—Kx — D) | JNkIt(X, D) does not
dominate Y, then —Ky is also big.

PrROOF. Let p : Y/ — Y be a log-resolution of singularities of Y. Let 7 : X’ — X be a log resolution
of (X, D), such that the induced rational map f’: X’ — Y’ is in fact a morphism. We have the following
commutative diagram:

X —TsX
l fx i ;
, P

Y —Y.
Let D’ be an effective Q-divisor on X’ such that 7.(D’) = D and Kx: + D' = n*(Kx + D) + F, with F
effective and not having common components with D’. Note that

7(Nklt(X’, D)) < Nklt(X, D).
By [BBP13, Lemma 2.6], we also have
7 (NNef (= (Kx + D)) & NNef (~ (Kx + D)).
Thus by the assumption of the theorem, we have
(5.5.3) g(NNef(—-Kx/ — D' + F) LJNklt(X'7 D) cY
Take a very ample line bundle Ay over Y such that Ay generates n + 1 jets everywhere. We can take an
ample line Ay := p*Ay — E’ over Y’, where Ey = Zj ch;’s are exceptional divisors of p. Since —Kx — D
is big, so is —Kx — D’ + F, and we can find a positive integer a such that —a(Kx, + D' — F) — 2g* Ay is
effective. Fix any effective divisor E € | —a(Kx' + D' — F) —2g*Ay|. By (5.5.3), then there exists a positive
integer m > a such that the multiplier ideal sheaf
1 m ,

(5.5.4) S —Exy) = S (——Dix,) = Ox,
for the generic (smooth) fiber X; of g = po f’. We can also find a singular hermitian metric h; with neat

singularities on —(m? —a)(—Kx — D' + F) such that 19, > @ for some Kéhler metric @ on X’. Take some
small rational number ¢ > 0 such that 7 (h{,y,) = Ox; for the generic fiber X, .

On the other hand, from (5.5.3) the non-nef locus NNef(— K x: — D'+ F) does not project onto Y, from the
proof of Theorem R in Section 5.4, we can find a singular hermitian metric h, over —(m? —a)(Kx: + D' — F)
with neat singularities, such that i©;, > —e® and the singularities of h. does not project onto Y. Set
h := h§hl=¢ which is also a hermitian metric on —(m? —a)(Kx, + D’ — F), then we have i0;, > €20 and the
multiplier ideal sheaf

(5.5.5) S (hx,) = Ox,
for the generic fiber Xj of g: X' — V.
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Take a generic y € Y**® such that the fiber X of g is reduced and smooth, and both (5.5.4) and
(5.5.5) are satisfied. We equip the line bundle —m?(Kx: + D’ — F) — 2g* Ay + m?D’ with the singular
hermitian metric hgy := hEhh%T”2, where hg (resp. hpr) is the tautological singular hermitian metric on
—a(Kx + D' — F) —2¢g* Ay (resp. D) induced by the effective divisor E (resp. D), such that

O, = [E]( resp. i0y,, = [D]).

1
Then we claim that the multiplier ideal sheaf /(h(’)’ﬁ@) = Ox: . Indeed, for any s € Ox/ ., let g, ¢p and
v Y y
¢ be the weights of the metric hp, hp and h on a small neighborhood U = X, of a point z € X;. Then by
the Holder inequality we have

m—1

f \s\%—%”“’ﬂ's(j |s|2e*¢>ﬁ<f HT)%(I 52" 7ETE0) S < pop,
U U U U

Here we use the conditions (5.5.1) and (5.5.2). By applying Theorem 5.2.4 to the surjective morphism
g: X' —Y with L = —m?(Kx — F) — 2g* Ay endowed with the singular hermitian metric ho, we obtained
the desired surjectivity:
HO(X/’ mQKX’/Y + (—m?Kx: — 2g* Ay + m*F) + g*Ay) — HO(X;, (—m2g*Ky — g* Ay + m2F)rX;) £ 0.
In particular, we have the non-vanishing
H (X', g*(—m*’Ky — Ay) + m*F) # 0.

Note that g = forr. Since X is normal with F' the exceptional divisors of the birational morphism 7 : X’ — X,
we have the following isomorphism

HO(X' 7* f*(-m*Ky — Ay) + m*F) = H°(X, f*(-m*Ky — Ay)).
Now we repeat the same proof of Theorem 5.5.2 to show that —m? Ky — Ay~ is a pseudo-effective line bundle.

Thus — Ky is a big line bundle. O

PrOOF OF THEOREM U. The proof is more or less direct. By Theorem 5.5.6 we see that —Ky is big.
By Broustet-Pacienza’s Theorem [BrP11, Theorem 1.2], Y is rationally connected modulo the non-nef locus
B_(—Ky). The theorem is thus proved. O
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CHAPTER 6

Semi-stable Higgs Bundles with Vanishing Chern Classes
On Kéhler Manifolds

6.1. INTRODUCTION

Recently, J. Cao proved the conjecture that, for any smooth projective manifold whose anticanonical
bundle is nef, the Albanese map of X is locally isotrivial [Cao17]. He applied an elegant criteria in [CH13|
for the local isotriviality of the fibration, relying on the deep results for the numerically flat vector bundles
(see Definition 6.2.2 below) in [DPS94] and [Sim92]:

THEOREM 6.1.1. Let E be a numerically flat vector bundle over a Kdhler manifold X. Then
(i) [DPS94, Theorem 1.18] E admits a filtration

(6.1.1) {0}=EycE,c---cE,=F

by vector subbundles such that the quotients Ey/Eyx_1 are hermitian flat, that is, given by unitary
representations w1 (X) — U(rg). In particular, a vector bundle is numerically flat if and only if E is
semistable and all the Chern classes of E vanishes.

(i) [Stm92, Section 3] E is a local system V, and the underlying holomorphic vector bundles of E and
V' are the same; in the other word, any semistable vector bundle with vanishing Chern classes has a
holomorphic flat structure which is an extension of unitary flat bundles.

Moreover, in [Sim92], by introducing the notation of differential graded category [Sim92, Section 3], plus
the formality isomorphism [Sim92, Lemma 2.2], Simpson can extend the equivalence between the category of
polystable Higgs bundles with vanishing Chern classes and the category of semi-simple representations of the
fundamental groups, to extensions of irreducible objects on smooth projective manifolds [Sim92, Corollary
3.10].

The purpose of this chapter is to give a concrete and constructing proof of Simpson’s correspondence
for semistable Higgs bundles, for the complex geometers who are not familiar with the language of category.

THEOREM V. Let X be a compact Kihler manifold. Then the following statements are equivalent

(i) E is a flat vector bundle over X ; B
(ii) there is a structure of Higgs bundle (E,0,0) over E, such that it admits a filtration of Higgs bundles

{0} = (Eo,00) = (E1,01) < ... < (Em,0m) = (E,0)

where 0; := 0|g,, such that the grade terms (E;,6;)/(F;—1,0;—1) are stable Higgs bundles with vanishing
Chern classes.
(iii) E is a semistable Higgs bundle with vanishing Chern classes;

REMARK 6.1.1. In this chapter, we only (re)prove the equivalence between (i) and (ii) in Theorem V.
The implication (ii) = (iii) is trivial. To show that (iii) implies (ii), one only needs to prove that the Jordan-
Holder filtrations of the semistable Higgs bundles with vanishing Chern classes are still a filtration of Higgs
bundles, rather than Higgs sheaves. In [DPS94], they proved this result for pure vector bundles, i.e. the
Higgs fields 6 vanish. In [Sim92, Theorem 2|, if X is projective, Simpson proved a slightly stronger result that
any reflexive semistable Higgs bundle with vanishing Chern classes is an extension of stable Higgs bundles
with vanishing Chern classes, by the similar arguments of Mehta-Ramanathan’s work about restriction of
semistable sheaves to hyperplane sections. In a recent paper [NZ15], using the Yang-Mills-Higgs flow to
construct the approximate Hermitian-Einstein structure for semistable Higgs bundles, combined with the
techniques in [DPS94], Y.-C. Nie and X. Zhang proved the implication (iii) = (ii).

In particular, we give a direct proof of Part (ii) in Theorem 6.1.1.

THEOREM W. Let X be a compact Kihler manifold. Suppose that E be a numerically flat vector bundle
over X. Then the natural Gauss-Manin connection Dg on E is compatible with the natural hermitian flat
connection on the quotient Ey/Ey_1 for every k = 1,...,p, where Ey, is the vector bundle appearing in the
filtration (6.1.1).
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6.2. TECHNICAL PRELIMINARIES
6.2.1. Hicas BUNDLES. Let us recall the following definition of Higgs bundles and the stability.

DEFINITION 6.2.1. Let X be a n-dimensional Kéhler manifold with a fixed Kéhler metric w. A Higgs
bundle is a triple (E,dg,0), where E is a smooth vector bundle on X, dg is a (0, 1)-connection satisfying

the integrability condition 52E =0,and fis amap 0: E - E® A" (X, E) such that
(6.2.1) (0p +6)* =0.

By Koszul-Malgrange theorem, 0g gives rise to a holomorphic structure on E. Thus (6.2.1) is equivalent to
that B

0p(@) =0, and 6A60=0.
We say that a Higgs bundle (E, dg, ) is stable (resp. semistable) if for all f-invariant torsin-free coherent
subsheaves F' c E, say Higgs subsheaves of (F,0), we have

ci(det F) - wn=t ci(det E) - wn=t
w(F) = ———— ) = o (E
o (F) rank F' < (resp- <) rankF Ho(E)

where det F' = (A™kF F')** ig the determinant bundle of F, and we say that p.(F) is the slope of F with

respect to w. A Higgs bundle (F, 0, ) is polystable if it is a direct sum of stable Higgs bundles with the
same slope.

For any Higgs bundle (F,6) over a Kdhler manifold X, if h is a metric on FE, set D(h) to be its Chern
connection with D(h)%! = . Consider furthermore the connection
Dy, = D(h) + 6 +6;,

where 05 is the adjoint of § with respect to h, and let Fj, denote its curvature. Then the metric h on (E, 6)
is called Hermitian-Yang-Mills if
AFh = Hw (E)

6.2.2. HIGHER ORDER KAHLER IDENTITIES FOR HARMONIC BUNDLES. Let (V, D) is a flat bundle
with a metric h. Decompose D = d’ + d” into connections of type (1,0) and (0, 1) respectively. Let ¢’ and §”
be the unique (1,0) and (0, 1) connections respectively, such that the connections ¢’ +d” and d’ + §” preserve
the metric K. Set
d/ _ 5/ _ d// + 5// d/ + 6/
’ 0= ) 0= )

2 2 2
then we can decompose the connection D into
D=0+0+ 0+ 65,

here 6} is the adjoint of § with respect to h, and it is easy to verify that d + 0 is also a metric connection.
In general, the triple (V,d,6) might not be a Higgs bundle.
However, since the hermitian metric h on V can be thought of as a map
by, : X - GL(n,C)/U(n),

a deep theorem by Siu-Sampson shows that, if ®; happens to be a harmonic map, then (V,0,0) is a Higgs
bundle. Such a metric on V is called harmonic metric, and we say that (V, D, h) is a harmonic bundle.

(6.2.2) 6 =

Suppose (E, D, k) is a harmonic bundle. We denote the harmonic decomposition
(6.2.3) D"=0+0, D =0+6;.
Define the Laplacians

A = DD* + D*D
A// — D//(D//)* + (D//)*D//
and similarly A’. Then by [Sim92, Section 2| we have
(6.2.4) A =27 =27,

and thus the spaces of harmonic forms with coefficients in F are all the same, which are denoted by 2°(E).
We also have the following orthogonal decompositions of the space of E-valued forms with respect to the
L?-inner product:

AP(E) = A*(E)®Im(D) ®Im(D*)
— #P(E)®Im(D") ®Im((D")*)
= A7(E)®TIm(D') @ Im((D)*).
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Then we also have the following dd-lemma for harmonic bundles [Sim92, Lemma 2.1]:
LEMMA 6.2.1. (90-lemma) If (E, D, k) is a harmonic bundle, then
(6.2.5) Ker(D') n Ker(D") n (Im(D") + Im(D")) = Im(D'D").
We will define the de Rham cohomology Hiy (X, E) for the flat bundles. We identify E with the locally
constant sheaf of flat sections of E. Consider the sheaves of € differential forms with coefficients in E:
E— (#°E) 2 oY (BE) 2 ..,

which are fine, and thus the cohomology H]SR(X , E) is naturally isomorphic to the cohomology of the complex
of global sections
. 0 D 1 D 2 D
(A (E),DE) =A"(E) = A (E) = A“(F) = ...

which we denote by H' (X, E) = Ifxirgf'

Let us recall the following famous Corlette-Simpson Correspondence:

THEOREM 6.2.1. Let X be a compact Kdhler manifold of dimension n.

(i) [Cor88, Don87] A flat bundle V has a harmonic metric if and only if it arises from a semisimple
representation of the fundamental group m1(X).

(i) [Sim88] A Higgs bundle E has a Hermitian-Yang-Mills metric if and only if it is polystable. Such a
metric is harmonic if and only if chy(E) - w" ! = chy(E) - w2 = 0.

Then from Part (i) in Theorem 6.2.1 we see that, if the flat bundle arises from a semisimple representation
of the fundamental group 71 (X), there is a metric h on V such that the pair (0,6) constructed in (6.2.2) is
a Higgs bundle.

6.2.3. NUMERICALLY FLAT VECTOR BUNDLE. Let E be a holomorphic vector bundle of rank r over
a compact complex manifold X. We denote by P(E) the projectivized bundle of hyperplanes of E and by
Og(1) the tautological line bundle over P(E). Recall the following definition in [DPS94].

DEFINITION 6.2.2. Let X be a compact complex manifold.

(i) We say that a line bundle L is nef, if for any e > 0, there exists a smooth hermitian metric he on L
such that i©_(L) > —ew, where w is a fixed Kahler metric on X.
(ii) A holomorphic vector bundle E is said to be nef if Opgy(1) is nef over P(E).
(iii) We say that a holomorphic vector bundle E is numerically flat if both F and its dual E* is nef.

From Part (i) in Theorem 6.1.1 we see that, a vector bundle E is numerically flat if and only if it is a
representation of m (X) which is a successive extension of unitary representations.

6.3. PrROOFs OF MAIN THEOREMS

Proor oF THEOREM V. Let p : m(X) — GL(n,C) be the representation of the fundamental group
corresponding to the flat vector bundle E. After taking some conjugation, one can put the representation
in block upper triangular form

P F ... %
(6.3.1) ? pf *

0 0 .. pm
such that for every ¢ = 1,...,r, p; : m1(X) —» GL(r;,C) is an irreducible representations. Thus there is a

filtration of flat vector bundles
{0}=FEycEic...cE,=E
such that
(i) each Ej is invariant under the flat connection D, that is, Dg(E;) ¢ E; ® &/*(X);
(ii) the flat connection Dg on F, when restricted to each E;, induces also a flat connection D; on E;;

(iii) the quotient connection D; on Q; := E;/E;_; induced by Dpg is also flat, which corresponds to the
irreducible representation p; : m1(X) — GL(r;, C).
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Thus by Corlette’s Theorem (Theorem 6.2.1 (i)), we can find a (unique) harmonic metric h; such that
(Qi, Dy, h;) is an harmonic bundle. Thus for each i, there is a unique harmonic decomposition as (6.2.3)

where 6} is the adjoint of §; with respect to h;. Moreover, (); cam be equipped with a Higgs bundle structure
(Qi7 aiv 92)

For simplicity we first consider the case that E is an extension of an irreducible representation by another
one, that is, m = 2 and we have an exact sequence of flat vector bundles over X:

0->Q1—>E—>Q2—0,
and thus there is n € A! (X, Hom(Q2, Ql)) such that D is given by

_ D1 n
Dp = [ 0 DQ] '
We denote by D1 the corresponding flat connection on the bundle Hom(Q2, Q1) induced by D; and Ds.
Since both (Q1, D1, h1) and (Q2, D2, he) are both harmonic bundles, so is (Hom(Q2,Q1), Da,1, h1h%). Set

Dj ; and Dj | to be the harmonic decomposition of D ; as (6.2.3), and let Ay ; and Aj | to be the Laplacians
of Doy and Dj ; respectively. Then by (6.2.4) we have

Apy =247 .
Since D%, = 0, we have

D271 (77) = 0

If there is another n’ € A'(X,Hom(Q2, Q1)) such that 7’ = 1+ Dy 1(a) for some a € A°(X,Hom(Q2,Q1)),
then there exists a gauge transformation g € Aut(FE) such that

(6.3.3) goDgpog™ = Dg+ Dai(a).

Indeed, we can define

(6.3.4) g= [é _161

and it is easy to show that g satisfies (6.3.3). Thus Dg and Dg + D 1(a) defines the same flat bundle as E.
In other words, {n} € Hhg (X, Hom(Q2,Q1)) is the extension class corresponding to E.
Take a harmonic representation 7’ in the extension class {n}, then

Ag (') =245 (1),
in particular
(6.3.5) Dy, (f) = 0.
Let 7} and 7} to be the (1,0) and (0, 1)-part of 7’ respectively. Set

_ 01 ) ]
0 := 1210,
b [ 0 7
_ |0 m
o = [0 .
then from (6.3.5) it is easy to see that (0, 0r) is a Higgs bundle over X, which is compatible with the Higgs
bundle structures (Q;, d;,0;). We prove the theorem when m = 2.

and

For general m > 2, we will prove the theorem by inductions. Set V; := D1 @ ... ® D; to be the flat
connection on Q1 @ ... d Q;, and

Vi=Di®Dy®...®D};, V]:=D/®Dy®...®Dj,

where D; = D; + D! is the harmonic decomposition (6.3.2).
Then by induction, we can show that there is a flat connection D; on the smooth vector bundle @, @
...® Q; of the following form

D, B;
(6.3.6) D; = - ,

0 b



6.3. PROOFS OF MAIN THEOREMS 115

such that the pair (Q1®...®Q;, D;) defines the same flat vector bundle as E;. Here B; € A'(X,End(Q; @
..®Q);)) which is strictly upper-triangle such that
(6.3.7) V;(Bj) + Bj A Bj = 0.
CrAIM 6.3.1. Assume that we can find a proper B;_; € Al (X7 End(@Q:®... @Qj_l)) which is strictly
upper-triangle such that
(1) ijk(ijl) + Bj,1 A Bj,1 =0. ~
(ii) for D;j_; defined in (6.3.6), the pair (Q1 ® ... ® Qj_1,D;_1) defines a flat vector bundle which is
isomorphic to E;_;.
(ii)) V_y(Bj—1) = 0.
Then so is true for j.

Proof: Since FE; is an extension of E;_; by @;
0—>.Ej,1—>.Ej—>Qj—>07

we denote by 3 € Hbp (X, Hom(Q);, Ej,l)) the extension class. Choose any representative A € 3, then the
pair (Q1®...®Q;, f)j) defining the same holomorphic structure as F; has the following form:

D, ijlé aq
(6.3.8) Dj =
O _________________ Dj-1: a1
0 0 @ Dj

where A = a1 @ ... ®a;_1 with a; € A'(X,Hom(Q;,Q;)). Then by DJZ = 0, one has
(6.3.9) Dj10A+AoD;=0.

In particular, D, j_1(aj—1) = 0, where D, ; the connection on Hom(Q,, Q;) induced by D, and D;. Since
(Hom(Qj, Q:), Dy, hih¥) is also a harmonic bundle, we set D} ; and D7, to be the harmonic decomposition
of D;; as (6.2.3). From (6 2.4) we can find

¢j—1 € €7 (X, Hom(Qj,Qj-1))
such that A; j_1(aj—1 + Djj-1cj-1) = 0, where A;; (vesp. A’ ;) is the Laplacian of D;; (vesp. Dj,). Set
Al.—al@) @a] 1+(D —10¢j— 1+CJ 1OD)

then A; € . Indeed, if we denote by D, = ; the induced flat connection on Hom(Q;, E;_1) by the connections

D; and DJ 1, then A = A+ DH 1(0] 1) and thus A and A; belong to the same extension class, and
deﬁne the same flat vector bundle E;.
If we write A =/ @...®a)_y, then aj_q =aj—1+ Djj-1(cj—1). Moreover, since A; ;1 =2A% ,_;, we
have
! li
Gi-1(a5 1) = 0.
This gives us hints that we can use some ad hoc methods to find the proper A.

Assume now for some A = a; @ ... ®a;_1 € § such that D} (a;) = 0foralli = k+1,...,5 —1. By
(6.3.9) we have

j—1
D briai =0,
i=k+1

here by; is the projection of B;_; € A! (X7 End(Q1®...® Qj,l)) to the component A! (X7 Hom(Qi,Qk)).
By the assumption that V’;_;B;_1 = 0, we have D/, (bx;) = 0, then

0 = D]kD]k ak —|—D Z bmaz
i=k+1
Jj—1
= D}, Djr(ar) + Y, (D}y(bri)ai — beiD} ()
i=k+1

= D”kDJ r(ak).
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By applying Lemma 6.2.1 for D’ (ax), there exists ¢j € €% (X,Hom(Q;, Qk)) such that
D (ar) = =D} . Dj . (cx) = =D} 1. Djr(ck)-

Js
Set } ~
A:=A+D,;~(ck) = A+ (Dj_10ck +cxoDj)
which also belongs to the extension class 3, then

A= a/l @...@a;_l &) (ak + Dch(Ck)) Dakg1D...Daj_1.

That is, the components of A in A'(X, Hom(Q;,Q;)) fori = k+1,...,5 — 1 are the same as that of A, and
the component of A in A'(X, Hom(Q;, Qx)) are replaced by aj,+ D; (i), such that D) i (ax+Djk(cr)) = 0.
Thus by the induction we can choose A € 8 properly such that D;‘,k(ak) =0forall k=1,...,5— 1. Thisis
equivalent to

V5(Bj) = 0.
From the construction of Dj, it is a flat connection which defines the vector bundle E;. The claim is thus
proved. |

By the above claim we know that there exists n € A'(X,End(Q1 @ ...® Q,,)) which is strictly upper-
triangle, such that (Q1®...® Qm, Vm + 1) gives rise to the flat bundle F, and satisfies V, (n) = 0. By the
flatness of V,, + 71, we have

Vim(n) +nAn=0.

Then
(6.3.10) VI (n)+nAn=0.
Set _
o1 n’
op 1= T ,
0 3.
and
01 n
O0p =

0 .

Here i’ and 71" is the (1,0) and (0, 1)-part of 7 respectively, and D! = 0; + 0; is defined as (6.2.2). Then
(6.3.10) is equivalent to that (E,dg,0g) is a Higgs bundle over X. In this setting, for each 1 <i < m, E;
is a Higgs subbundle of F, and the induced Higgs bundle structure on the quotient E;/E;_; is the same as
(Qi, i, 0;). We thus proved that (i) implies (ii). The implication of (ii) to (i) is almost the same methods. [

We will quickly show that Theorem W is a special case of Theorem V.

Proor oF THEOREM W. From Part (i) in Theorem 6.1.1 we see that, a vector bundle E is numerically
flat if and only if it is a representation of m1(X) which is a successive extension of unitary representations.
Thus the connections on the quotient E;/FE; 1 are unitary ones, that is, there are no Higgs fields 6;, and it
is easy to show that so is for their successive extension F. O

In a forthcoming paper, we are going to study the following conjecture:

CONJECTURE 6.3.1. Let X be a compact Kdhler manifold, and let p : 71 (X) — GL(r,C) be a represen-
tation, with (E, D) the corresponding flat vector bundle. Fix a hermitian metric h on E. Take the harmonic
flow of the connection D introduced in [Cor88, (1)]

0A
— =-D,D}*0
ot AL 4 A,

where D4 = D + 64 such that D is the metric connection and 64 is self-adjoint, and DA’* is the adjoint of
D7 with respect to the metric h. Then the limited connection D, exists, which is also flat, and corresponds
to the representation which is the semisimplification of p.
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