
HAL Id: tel-01682908
https://theses.hal.science/tel-01682908v1

Submitted on 12 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantics and implementation of an extension of ML for
proving programs

Rodolphe Lepigre

To cite this version:
Rodolphe Lepigre. Semantics and implementation of an extension of ML for proving programs. Pro-
gramming Languages [cs.PL]. Université Grenoble Alpes, 2017. English. �NNT : 2017GREAM034�.
�tel-01682908�

https://theses.hal.science/tel-01682908v1
https://hal.archives-ouvertes.fr

Semantics and Implementation
of an Extension of ML for

Proving Programs

Rodolphe Lepigre

Table of contents

4.7 Typing stacks 79
4.6 Adequacy 73
4.5 Call-by-value realizability semantics 66
4.4 Typing judgments for values and terms 63
4.3 Sorts and higher-order types 60
4.2 Quanti{cation and membership type 59
4.1 Observational equivalence type 57

4 Types and realizability semantics 57

3.5 Canonical values 54
3.4 Inequivalences from counter-examples 51
3.3 Equivalences from reduction 48
3.2 Compatible equivalence relations 46
3.1 Equivalence relation and properties 43

3 Observational equivalence of programs 43

2.6 Classi{cation of processes 39
2.5 Full syntax and operational semantics 35
2.4 Computational e|fects and ��-calculus 34
2.3 Call-by-value Krivine machine 31
2.2 Evaluation contexts and reduction 28
2.1 The pure �-calculus 25

2 Untyped calculus and abstract machine 25

1.7 Thesis overview 24
1.6 Related work and similar systems 22
1.5 Handling undecidability 21
1.4 Dependent functions and relaxed restriction 20
1.3 A brief history of value restriction 17
1.2 Proofs of ML programs 15
1.1 Writing functional programs 12

1 From Programming to Program Proving 11

Remerciements 9

References 167

« Résumé substantiel » (en français) 159

7.8 An in{nite tape lemma on streams 154
7.7 Lookup function with an exception 153
7.6 Sorted lists and insertion sort 149
7.5 Lists and their vector subtypes 146
7.4 Unary natural numbers and totality 140
7.3 Booleans and tautologies 137
7.2 Encoding of strict product types 135
7.1 Concrete syntax and syntactic sugars 133

7 Implementation and examples 133

6.7 Toward (co-)inductive types and recursion 125
6.6 Normalisation, safety and consistency 122
6.5 Completeness on pure data types 121
6.4 Semantics of subtyping 110
6.3 Typing and subtyping rules 107
6.2 Symbolic witnesses and local subtyping 106
6.1 Interests of subtyping 105

6 Introducing subtyping into the system 105

5.7 Understanding our new equivalence 103
5.6 Derived type system 100
5.5 Final instance of our model 95
5.4 Semantics for semantical value restriction 92
5.3 Semantical value restriction 89
5.2 The limits of the value restriction 85
5.1 Dependent function types 83

5 A model for a semantical value restriction 83

Remerciements

Je tiens en premier lieu à remercier mes deux directeurs de thèse, Christophe Ra|falli
et Pierre Hyvernat, sans qui ce travail n'aurait jamais vu le jour. En particulier, merci à
Christophe pour son grand enthousiasme et ses innombrables idées (bonnes, mauvaises, ou
pour devenir riche), mais également pour nos trop nombreuses pauses café. Merci à Pierre
pour ses relectures attentives, son soutien sans faille, ainsi que pour son immense culture
des énigmes, casse-têtes et travaux de John Horton Conway (dont je n'ai malheureusement
pas terminé la lecture...). Merci également à Karim Nour pour avoir accepté de nous prêter
son habilitation, en attendant celle de Christophe qui est « presque terminée » depuis bien
trop longtemps. Je souhaite également adresser mes plus sincères remerciements à Thierry
Coquand et à Alexandre Miquel, pour m'avoir fait l'honneur de rapporter cette thèse, ainsi
que pour leurs nombreuses remarques et suggestions. Merci également à Andreas Abel, à
Frédéric Blanqui et à Laurent Regnier d'avoir accepté de compléter mon jury. En particulier,
merci à Andreas et à Frédéric pour leurs nombreuses notes et corrections, et merci à
Laurent d'avoir été un président du jury exemplaire.

Depuis le début de ma thèse, le LAMA m'a o|fert un environnement de travail dans
lequel je me suis pleinement épanoui, aussi bien sur le plan scienti{que que sur le plan
personnel. Je suis donc in{niment reconnaissant envers tous les membres du laboratoire
avec qui j'ai pu interagir durant mon court séjour. En particulier, j'ai eu le plaisir de
travailler et de partager mes pauses déjeuner avec les membres de l'équipe LIMD, qui
interviennent au département d'informatique (incluant bien entendu Christophe et Pierre).
J'ai trouvé en ces personnes bien plus que de simples collègues, et je suis vraiment peiné
que nos chemins doivent se séparer bientôt. Merci donc à Tom Hirschowitz pour son
aide avec Coq, pour sa contribution au pavage de salles de bains en école primaire, mais
aussi pour m'avoir fait découvrir son modèle de virilité. Merci à Jacques-Olivier Lachaud
pour ses e|forts de dérision envers mon travail (et surtout l'égalité à droite), pour nos
nombreuses discussions sur la connerie humaine, et également pour son humour tranchant
(en particulier lors des soutenances de projet des étudiants). Merci à Xavier Provençal pour
son aide avec les enseignements, pour m'avoir encouragé à perdre mon temps à cliquer
sur des cookies, mais aussi pour sa solidarité avec mon penchant pour les burgers et la
nourriture forte en fromage (dont l'intersection est bien entendu non vide). Merci à Clovis
Eberhart pour sa complicité dans la lecture des travaux douteux d'un certain Professeur
des Universités CNU, pour ses tentatives d'explications de concepts catégoriques, mais
également pour de nombreux fous rires provoqués par les perles de nos étudiants. Merci
à Pierre Villemot pour son intrusion dans notre équipe, pour sa grande culture mathéma-
tique, et pour son enthousiasme vis-à-vis de la représentation des constructibles en Caml
(qu'il faudra bien entreprendre un jour).

9

Je voudrais aussi remercier toutes les thésardes et tous les thésards avec qui j'ai eu
l'occasion de partager un fond de couloir. En particulier, merci à Marion Foare qui m'a suivi
(ou que j'ai suivie), depuis la licence de mathématiques jusqu'aux galères administratives de
la thèse, en passant par les maths à modeler. Merci aussi à Lama Tarsissi pour nous avoir
fait découvrir la cuisine libanaise, et pour ses très bonnes relations avec l'école doctorale.
Merci également à Boulos El Hilany, Bilal Al Taki, Michel Raibaut et à tous les autres. J'en
pro{te pour mentionner également quelques thésards de la génération précédente. Merci
à Florian Hatat pour ses précieux conseils (notamment d'ordre administratifs), pour le
champagne, ainsi que pour son aide avec les problèmes techniques de dernière minute.
Merci à Pierre-Étienne Meunier de m'avoir permis de programmer (ma thèse en) Patoline,
ce qui à pu me faire perdre un peu de temps, occasionnellement. Merci également à Thomas
Seiller pour ses encouragements dans des moments de doute.

En{n, je voudrai remercier mes parents et mes grand parents, qui ont toujours été là
pour moi (et en tout cas jamais bien loin). Merci aussi à mon petit frère Charles, à mes
cousins bourguignons Lucie et Clément ainsi qu'à leurs parents, à mes belles sõurs Elin
et Mirain et à mes beaux parents, à feu Minette, aux abeilles et au reste de ma famille (en
France comme au Pays de Galles). Pour {nir, un grand merci à Branwen, qui accomplit
l'exploit de me supporter au quotidien.

10

[In 1949,] as soon as we started programming, we found to

our surprise that it wasn't as easy to get programs right as we

had thought. Debugging had to be discovered. I can remem-

ber the exact instant when I realised that a large part of my

life from then on was going to be spent in znding mistakes in

my own programs.

Maurice Wilkes (1913-2010)

Since the apparition of the very {rst computers, every generation of programmers has been
faced with the issue of code reliability. Statically typed languages such as Java, Haskell,
OCaml, Rust or Scala have addressed the problem by running syntactic checks at compile
time to detect incorrect programs. Their strongly typed discipline is especially useful when
several incompatible data objects have to be manipulated together. For example, a program
computing an integer addition on a boolean (or function) argument is immediately rejected.
In recent years, the bene{t of static typing has even begun to be recognised in the dynam-
ically typed languages community. Static type checkers are now available for languages like
Javascript [Microso{t 2012, Facebook 2014] or Python [Lehtosalo 2014].

In the last thirty years, signi{cant progress has been made in the application of type
theory to computer languages. The Curry-Howard correspondence, which links the type
systems of functional programming languages to mathematical logic, has been explored in
two main directions. On the one hand, proof assistants like Coq or Agda are based on very
expressive logics. To prove their consistency, the underlying programming languages need
to be restricted to contain only programs that can be proved terminating. As a result, they
forbid the most general forms of recursion. On the other hand, functional programming
languages like OCaml or Haskell are well-suited for programming, as they impose no
restriction on recursion. However, they are based on inconsistent logics, which means that
they cannot be used for proving mathematical formulas.

11

From Programming to1
Program Proving

The aim of this work is to provide a uniform environment in which programs can be
designed, speci{ed and proved. The idea is to combine a full-öedged ML-like program-
ming language with an enriched type system allowing the speci{cation of computational
behaviours. This language can thus be used as ML for type-safe general programming,
and as a proof assistant for proving properties of ML programs. The uniformity of the
framework implies that programs can be incrementally re{ned to obtain more guarantees.
In particular, there is no syntactic distinction between programs and proofs in the system.
This means that programming and proving features can be mixed when constructing proofs
or programs. For instance, proofs can be composed with programs for them to transport
properties (e.g., addition carrying its commutativity proof). In programs, proof mechanisms
can be used to eliminate dead code (i.e., portions of a program that cannot be reached
during its execution).

1.1 Writing functional programs

In this thesis, our {rst goal is to design a type system for a practical, functional program-
ming language. Out of the many possible technical choices, we decided to consider a
call-by-value language similar to OCaml or SML, as they have proved to be highly practical
and ef{cient. Our language provides polymorphic variants [Garrigue 1998] and SML style
records, which are convenient for encoding data types. As an example, the type of lists can
be de{ned and used as follows.

type rec list�a� = [Nil ; Cons of {hd : a ; tl : list}]

val rec exists : �a, (a � bool) � list�a� � bool =

fun pred l {

case l {

Nil � false

Cons[c] � if pred c.hd { true } else { exists pred c.tl }

}

}

val rec fold_left : �a b, (a � b � a) � a � list�b� � a =

fun f acc l {

case l {

Nil � acc

Cons[c] � fold_left f (f acc c.hd) c.tl

}

}

12

The exists function takes as input a predicate and a list, and it returns a boolean indicat-
ing whether there is an element satisfying the predicate in the list. The fold_left function
iterates a function on all the elements of a list, gathering the result in an accumulator which
initial value is given. For example, the exists function can be implemented with fold_left

as follows, but this version does not stop as soon as possible when an element satisfying the
predicate is found.

val exists : �a, (a � bool) � list�a� � bool =

fun pred l {

let f = fun acc e { if pred e { true } else { acc } };

fold_left f false l

}

Note that both exists and fold_left are polymorphic, they can for instance be applied
to lists containing elements of an arbitrary type. In our syntax, polymorphism is explicitly
materialised using universally quanti{ed type variables.

Polymorphism is an important feature as it allows for more generic programs. In
general, ML-like languages only allow a limited form of polymorphism on let-bindings. In
these systems, generalisation can only happen on expressions of the form ÷let x = t in uø.
As a consequence, the following function is rejected by the OCaml type checker.

let silly_ocaml : ('a � 'a) � unit � unit option =

fun f u � f (Some (f u))

In our system, polymorphism is not limited: universal quanti{cation is allowed anywhere
in types. Our types thus contain the full power of System F [Girard 1972, Reynolds 1974]. In
particular, the equivalent of silly_ocaml is accepted by our type-checker.

include lib.option

val silly : (�a, a � a) � {} � option�{}� =

fun f u { f Some[f u] }

In fact, System F polymorphism is not the only form of quanti{cation that is supported
in our system. It also provides existential types, which are an essential {rst step towards
the encoding of a module system supporting a notion of abstract interface. Moreover, our
system is based on higher-order logic, which means that types are not the only objects that
can be quanti{ed over in types. In particular, we will see that quanti{ers can range over
terms in the next section.

The programming languages of the ML family generally include e|fectful operations,
for example references (i.e., mutable variables). Our system is no exception as it provides

13

control operators. As {rst discovered by Timothy G. Grif{n [Grifzn 1990], control operators
like Lisp's call/cc can be used to give a computational interpretation to classical logic. On
the programming side, they can be seen as a form of exception mechanism. For example,
the following de{nition of exists, using fold_left, stops as soon as possible when there
is an element satisfying the predicate in the list.

val exists : �a, (a � bool) � list�a� � bool =

fun pred l {

save k {

let f = fun acc e { if pred e { restore k true } else { acc } };

fold_left f false l

}

}

Here, the continuation is saved in a variable k before calling the fold_left function, and it
is restored with the value true if an element satisfying the predicate is found. In this case,
the evaluation of fold_left is simply aborted.

Our control operators can also be used to de{ne programs whose types correspond to
logical formulas that are only valid in classical logic. For instance, the type of the following
programs corresponds to Peirce's law, the principle of double negation elimination and the
law of the excluded middle.

val peirce : �a b, ((a � b) � a) � a =

fun x {

save k { x (fun y { restore k y }) }

}

// Usual definition of logical negation

type neg�a� = a � �x, x

val dneg_elim : �a, neg�neg�a� � � a =

peirce

// Disjoint sum of two types (logical disjunction)

type either�a,b� = [InL of a ; InR of b]

val excl_mid : �a, {} � either�a, neg�a� � =

fun _ {

save k { InR[fun x { restore k InL[x] }] }

}

14

Note that the de{nition of excl_mid contains a dummy function constructor. Its presence
is required for a reason related to value restriction (see Section). It would not be
necessary if excl_mid was not polymorphic in a. Moreover, note that dneg_elim can be
de{ned to be exactly peirce thanks to subtyping (see Chapter).

From a computational point of view, manipulating continuations using control oper-
ators can be understood as cheating. For example excl_mid (or rather, excl_mid {})
saves the continuation and immediately returns a (possibly false) proof of neg �a � . Now,
if this proof is ever applied to a proof of a (which would result in absurdity), the program
backtracks and returns the given proof of a. This interpretation in terms of cheating has
been well-known for a long time (see, for example, [Wadler 2003, Section 4]).

1.2 Proofs of ML programs

The system presented in this thesis is not only a programming language, but also a proof
assistant focusing on program proving. Its proof mechanism relies on equality types of the
form t � u, where t and u are arbitrary (possibly untyped) terms of the language itself.
Such an equality type is inhabited by {} (i.e., the record with no {elds) if the denoted
equivalence is true, and it is empty otherwise. Equivalences are managed using a partial
decision procedure that is driven by the construction of programs. An equational context
is maintained by the type checker to keep track of the equivalences that are assumed
to be true during the construction of proofs. This context is extended whenever a new
equation is learned (e.g., when a lemma is applied), and equations are proved by looking for
contradictions (e.g., when two di|ferent variants are supposed equivalent).

To illustrate the proof mechanism, we will consider simple examples of proofs on
unary natural number (a.k.a. Peano numbers). Their type is given below, together with the
corresponding addition function de{ned using recursion on its {rst argument.

type rec nat = [Zero ; Succ of nat]

val rec add : nat � nat � nat =

fun n m {

case n { Zero � m | Succ[k] � Succ[add k m] }

}

As a {rst example, we will show that add Zero n � n for all n. To express this property
we can use the type �n: 	 , add Zero n � n, where 	 can be thought of as the set of all the
usual program values. This statement can then be proved as follows.

val add_z_n : �n: 	 , add Zero n � n = {}

15

6

1.3

Here, the proof is immediate (i.e., {}) as we have add Zero n � n by de{nition of the add

function. Note that this equivalence holds for all n, whether it corresponds to an element of
nat or not. For instance, it can be used to show add Zero true � true.

Let us now show that for every n we have add n Zero � n. Although this property looks
similar to add_z_n, the following proof is invalid.

// val add_n_z : �n: 	 , add n Zero � n = {}

Indeed, the equivalence add n Zero � n does not hold when n is not a unary natural
number. In this case, the computation of add n Zero will produce a runtime error. As
a consequence, we need to rely on a form of quanti{cation that only ranges over unary
natural numbers. This can be achieved with the type �n
nat, add n Zero � n, which
corresponds to a (dependent) function taking as input a natural number n and returning a
proof of add n Zero � n. This property can then be proved using induction and case
analysis as follows.

val rec add_n_z : �n
nat, add n Zero � n =

fun n {

case n {

Zero � {}

Succ[k] � let ih = add_n_z k; {}

}

}

If n is Zero, then we need to show add Zero Zero � Zero, which is immediate by de{nition
of add. In the case where n is Succ[k] we need to show add Succ[k] Zero � Succ[k].
By de{nition of add, this can be reduced to Succ[add k Zero] � Succ[k]. We can then
use the induction hypothesis (i.e., add_n_z k) to learn add k Zero � k, with which we can
conclude the proof.

It is important to note that, in our system, a program that is considered as a proof
needs to go through a termination checker. Indeed, a looping program could be used to
prove anything otherwise. For example, the following proof is rejected.

// val rec add_n_z_loop : �n
nat, add n Zero � n =

// fun n { let ih = add_n_z_loop n; {} }

It is however easy to see that add_z_n and add_n_z are terminating, and hence valid.
In the following, we will always assume that the programs used as proofs have been
shown terminating.

16

There are two main ways of learning new equations in the system. On the one hand,
when a term t is matched in a case analysis, a branch can only be reached when the
corresponding pattern C[x] matches. In this case we can extend the equational context with
the equivalence t � C[x]. On the other hand, it is possible to invoke a lemma by calling the
corresponding function. In particular, this must be done to use the induction hypothesis in
proofs by induction like in add_z_n or the following lemma.

val rec add_n_s : �n m
nat, add n Succ[m] � Succ[add n m] =

fun n m {

case n {

Zero � {}

Succ[k] � let ind_hyp = add_n_s k m; {}

}

}

In this case, the equation corresponding to the conclusion of the used lemma is directly
added to the context. Of course, more complex results can be obtained by combining more
lemmas. For example, the following proves the commutativity of addition using a proof by
induction with add_n_z and add_n_s.

val rec add_comm : �n m
nat, add n m � add m n =

fun n m {

case n {

Zero � let lem = add_n_z m; {}

Succ[k] � let ih = add_comm k m;

let lem = add_n_s m k; {}

}

}

Many more examples of proofs and programs are provided in Chapter (and even more
with the implementation of the system). Each of them (including those in the current
chapter) have been automatically checked upon the generation of this document. They are
thus correct with respect to the implementation.

1.3 A brief history of value restriction

A soundness issue related to side-e|fects and call-by-value evaluation arose in the seventies
with the advent of ML. The problem stems from a bad interaction between side-e|fects and
Hindley-Milner polymorphism. It was {rst formulated in terms of references, as explained
in [Wright 1995, Section 2]. To extend an ML-style language with references, the naive

17

7

approach consist in de{ning an abstract type 'a ref and polymorphic procedures with the
following signature (given in OCaml syntax).

type 'a ref

val ref : 'a � 'a ref

val (:=) : 'a ref � 'a � unit

val (!) : 'a ref � 'a

Here, the function ref takes as input a value of some type and creates a new reference
cell containing an element of the corresponding type. The value of a reference can then be
updated using the in{x operator (:=) (to be pronounced ÷setø), and its value can be
obtained using the pre{x operator (!) (to be pronounced ÷getø).

These immediate additions quickly lead to trouble when working with polymorphic
references. The problem can be demonstrated by the following example, which is accepted
by the naive extension of the type system.

let l = ref [] in

l := [true]; (List.hd !l) + 1

On the {rst line, variable l is given the polymorphic type 'a list ref, which can be uni{ed
both with bool list ref and int list ref on the second line. This is an obvious violation of
type safety, which is the very purpose of a type system.

To solve the problem, alternative type systems such as [To{te 1990, Damas 1982, Leroy 1991,
Leroy 1993] were designed. However, they all introduced a complexity that contrasted with
the elegance and simplicity of ML systems (see [Wright 1995, Section 2] and [Garrigue 2004,

Section 2] for a detailed account). A simple and elegant solution was {nally found by Andrew
Wright in the nineties. He suggested restricting generalisation (i.e., introduction of poly-
morphism) to syntactic values [Wright 1994, Wright 1995].

In ML, generalisation usually happens in expressions of the form ÷let x = u in tø, called
let-bindings. The type-checking of such an expression proceeds by inferring the type of
the term u, which may contain uni{cation variables. The type of u is then generalized by
universally quantifying over these uni{cation variables. Finally, the term t is type-checked
under the assumption that x has the most general type of u. With value restriction, the
generalisation of the type of u only happens if u is a syntactic value. Consequently, the
example above is rejected since ref [] is not a value, and hence its inferred type '_a list

ref is only weakly polymorphic (i.e., it can only be uni{ed with exactly one, yet unknown
type). Thus, it cannot be uni{ed with both bool list ref and nat list ref.

As mentioned in Section , the system presented in this thesis does not include
references, but control structures. One way of extending ML with control structures is
again to introduce an abstract type equipped with polymorphic operations.

18

1.1

type 'a cont

val callcc : ('a cont � 'a) � 'a

val throw : 'a cont � 'a � 'b

The function callcc corresponds to the control operator call/cc, which was {rst introduced
in the Scheme programming language. When called, this function saves the current continu-
ation (i.e., the current state of the program's environment) and feeds it to the function it
is given as an argument. The continuation can be restored in the body of this function
using the throw function.

As for references, the addition of control structures breaks the type safety of ML in
the presence of polymorphism. A complex counterexample was {rst discovered by Robert
Harper and Mark Lillibridge [Harper 1991].

let c = callcc

(fun k � ((fun x � x), (fun f � throw k (f, (fun _ � ())))))

in

print_string ((fst c) "Hello world!");

(snd c) (fun x � x+2)

Intuitively, the program {rst saves the continuation and builds a pair c containing two
functions. The {rst one is simply the identity function. The second one takes a function f

as argument and calls throw to restore the previously saved continuation. It then replaces
c with a pair containing f and a constant function. Consequently, the {rst element of the
pair c can be used as the (polymorphic) identity function as long as the second element of c
has not been used. However, when the second element of c is called with a function g, then
g becomes the {rst element of c and the computation restarts. This is problematic since
the function fun x � x+2 is then applied to a value of type string, which is thus fed to an
integer addition.

During type-checking, the type that is inferred for the pair c (prior to generalisation)
is ('_a � '_a) * (('_a � '_a) � unit). Thus, in absence of value restriction, the last
two lines of the counterexample are type-checked under the assumption that c has the
polymorphic type ('a � 'a) * (('a � 'a) � unit). In particular, the type 'a � 'a can be
uni{ed with both string � string and int � int. As with references, the value restric-
tion forbids such uni{cations.

Note that it is relatively easy to translate the counter example into our language.
Indeed, terms of the form callcc (fun k � t) are translated to save k � t and terms of
the form throw k u to restore k u. Moreover, as our system contains system F, value restric-
tion needs to be stated di|ferently. It appears on the typing rule for the introduction of the
universal quanti{er. In the system, value restriction corresponds to only applying this rule
to terms that are values.

19

1.4 Dependent functions and relaxed restriction

One of the main features of our system is a dependent function type. It is essential for
building proofs as it provides a form of typed quanti{cation. However, combining call-by-
value evaluation, side-e|fects and dependent functions is not straightforward. Indeed, if t
is a dependent function of type �x
a, b �x � and if u has type a, then is it not always the
case that t u evaluates to a value of type b �u � . As a consequence, we need to restrict the
application of dependent functions to make sure that it is type safe. The simplest possible
approach consists in only allowing syntactic values as arguments of dependent functions,
which is another instance of the value restriction. It is however not satisfactory as it
considerably weakens the expressiveness of dependent functions. For example, add_n_z
cannot be used to prove add (add Zero Zero) Zero � add Zero Zero. Indeed, the term add

Zero Zero is not a value, which means that it cannot be used as argument of a dependent
function. This problem arises very oùten as proofs rely heavily on dependent functions. As
a consequence, the value restriction breaks the modularity of our proof system.

Surprisingly, our equality types provide a solution to the problem. Indeed, they allow
us to identify terms having the same observable computational behaviour. We can then
relax the restriction to terms that are equivalent to some value. In other words, we consider
that a term u is a value if we can {nd a value v such that u � v. This idea can be
applied whenever value restriction was previously required. Moreover, the obtained system
is (strictly) more expressive that the one with the syntactic restriction. Indeed, {nding a
value that is equivalent to a term that is already a value can always be achieved using
reöexivity. Although this new idea seems simple, establishing the soundness of the obtained
system is relatively subtle [Lepigre 2016].

In practice, using a term as a value is not always immediate. For example, the system
is not able to directly prove that add n m is a value, provided that n and m are two natural
numbers. It is however possible to establish this fact internally as follows.

val rec add_total : �n m
nat, �v: 	 , add n m � v =

fun n m {

case n {

Zero � {}

Succ[k] � let ih = add_total k m; {}

}

}

Here, add_total proves that for any values n and m in the type nat, there is some value v

such that add n m � v. Note that we did not speci{cally require v to be a natural number
as this is usually not necessary in practice. Thanks to add_total, we can give a proof of the
associativity of our addition function.

20

val rec add_asso : �n m p
nat, add n (add m p) � add (add n m) p =

fun n m p {

let tot_m_p = add_total m p;

case n {

Zero � {}

Succ[k] � let tot_k_m = add_total k m;

let ih = add_asso k m p; {}

}

}

Note that the proof requires two calls to add_total. The {rst one is used in both the base
case and the induction case. It is required so that the system can unfold the de{nition of
add n (add m p) according to the head constructor of n. As we are in call-by-value, we can
only reduce the de{nition of a function when it is applied to values. It is the case here as n is
a variable and add m p is equivalent to some value, as witnessed by tot_m_p. The second call
to add_total is required for a similar reason in the successor case.

1.5 Handling undecidability

Typing and subtyping are most likely to be undecidable in our system. Indeed, it contains
Mitchell's variant of System F [Mitchell 1991] for which typing and subtyping are both known
to be undecidable [Tiuryn 1996, Tiuryn 2002, Wells 1994, Wells 1999]. Moreover, as argued in
[Lepigre 2017], we believe that there are no practical, complete semi-algorithms for exten-
sions of System F like ours. Instead, we propose an incomplete semi-algorithm that may fail
or even diverge on a typable program. In practice we almost never meet non termination,
but even in such an eventuality, the user can always interrupt the program to obtain a
relevant error message. This design choice is a very important distinguishing feature of
the system. To our knowledge, such ideas have only be used (and implemented) in some
unpublished work of Christophe Ra|falli [Ra|falli 1998, Ra|falli 1999] and in [Lepigre 2017].

One of the most important ideas, that makes the system practical and possible to imple-
ment, is to only work with syntax-directed typing and subtyping rules. This means that
only one of our typing rules can be applied for each di|ferent term constructor. Similarly,
we have only two subtyping rules per type constructor: one where it appears on the leùt of
the inclusion, and one where it appears on the right. As type-checking can only diverge in
subtyping, an error message can be built using the last applied typing rule. Moreover, all the
undecidability of the system is concentrated into the management of uni{cation variables,
termination checking and equivalence derivation.

As a proof of concept, we implemented our system in a prototype called PML2. The last
version of its source code is available online (). Its implementation
mostly follows the typing and subtyping rules of the system given in Chapter . Overall,

21

6
http://lepigre.fr/these/

our system provides a similar user experience to statically typed functional languages like
OCaml or Haskell. In such languages, type annotations are also required for advanced
features like polymorphic recursion.

1.6 Related work and similar systems

To our knowledge, the combination of call-by-value evaluation, side-e|fects and depen-
dent products has never been achieved before. At least not for a dependent product fully
compatible with e|fects and call-by-value. For example, the Aura language [Jia 2008] forbids�dependency on terms that are not values in dependent applications. Similarly, the F

language [Swamy 2011] relies on (partial) let-normal forms to enforce values in argument
position. Daniel Licata and Robert Harper have de{ned a notion of positively dependent
types [Licata 2009] which only allow dependency over strictly positive types. Finally, in
languages like ATS [Xi 2003] and DML [Xi 1999] dependencies are limited to a speci{c
index language.

The system that seems the most similar to ours is NuPrl [Constable 1986], although it
is inconsistent with classical reasoning and not e|fectful. NuPrl accommodates an obser-
vational equivalence relation similar to ours (Howe's squiggle relation [Howe 1989]). It is
partially reöected in the syntax of the system. Being based on a Kleene style realizability
model, NuPrl can also be used to reason about untyped terms.

The central part of this paper consists in the construction of a classical realizability
model in the style of Jean-Louis Krivine [Krivine 2009]. We rely on a call-by-value presen-
tation which yields a model in three layers (values, terms and stacks). Such a technique
has already been used to account for classical ML-like polymorphism in call-by-value in
the work of Guillaume Munch-Maccagnoni [Munch 2009]. It is here extended to include
dependent products. Note that our main result (Theorem) is unrelated to Lemma 9 in
Munch-Maccagnoni's work [Munch 2009].

The most actively developed proof assistants following the Curry-Howard correspon-
dence are Coq and Agda [CoqTeam 2004, Norell 2008]. The former is based on Coquand
and Huet's calculus of constructions and the latter on Martin-Lúf's dependent type theory
[Coquand 1988, Martin-Löf 1982]. These two constructive theories provide dependent types,
which allow the de{nition of very expressive speci{cations. Coq and Agda do not directly
give a computational interpretation to classical logic. Classical reasoning can only be done
through a negative translation or the de{nition of axioms such as the law of the excluded
middle. In particular, these two languages are not e|fectful. However, they are logically
consistent, which means that they only accept terminating programs. As termination check-
ing is a dif{cult (and undecidable) problem, many terminating programs are rejected.
Although this is not a problem for formalizing mathematics, this makes programming
tedious. In our system, only proofs need to be shown terminating. Moreover, it is possible
to reason about non-terminating and even untyped programs.

22

5.4.15

The TRELLYS project [Casinghino 2014] aims at providing a language in which a consis-
tent core interacts with type-safe dependently-typed programming with general recursion.
Although the language de{ned in [Casinghino 2014] is call-by-value and e|fectful, it su|fers
from value restriction like Aura [Jia 2008]. The value restriction does not appear explicitly
but is encoded into a well-formedness judgement appearing as the premise of the typing
rule for application. Apart from value restriction, the main di|ference between the language
of the TRELLYS project and ours resides in the calculus itself. Their calculus is Church-style
(or explicitly typed) while ours is Curry-style (or implicitly typed). In particular, their terms
and types are de{ned simultaneously, while our type system is constructed on top of an
untyped calculus.

Another similar system can be found in the work of Alexandre Miquel on the implicit
calculus of inductive constructions [Miquel 2001], in which quanti{ers are Curry-style. This
system has been extended with classical logic at the level of propositions [Miquel 2007], but
the considered language is call-by-name. As a consequence, it does not have to deal with
the soundness issues that arise in call-by-value.

The PVS system [Owre 1996] is similar to ours as it is based on classical higher-order
logic. However this tool does not seem to be a programming language, but rather a speci{-
cation language coupled with proof checking and model checking utilities. It is nonetheless
worth mentioning that the undecidability of PVS's type system is handled by generating
proof obligations. The Why3 language [Filliâtre 2013] also relies on generated proof obliga-
tions but it embeds a programming language (called WhyML) corresponding to a very
restricted subset of ML. Our system takes a completely di|ferent approach and relies on a
non-backtracking type-checking algorithm. Although our system is likely to be undecidable,
we argue as in [Lepigre 2017] that this seems not to be a problem in practice and allows for
a simpler implementation of the type system.

Several systems have been proposed for proving ML programs. ProPre [Manoury 1992]
relies on a notion of algorithms, corresponding to equational speci{cations of programs.
It is used in conjunction with a type system based on intuitionistic logic. Although it is
possible to use classical logic to prove that a program meets its speci{cation, the underlying
programming language is not e|fectful. Similarly, the PAF! system [Baro 2003] implements
a logic supporting proofs of programs, but it is restricted to a purely functional subset
of ML. Another approach for reasoning about purely functional ML programs is given in
[Régis-Gianas 2007], where Hoare logic is used to specify program properties. Finally, it is
also possible to reason about ML programs (including e|fectful ones) by compiling them
down to higher-order formulas [Chargueraud 2010, Chargueraud 2011], which can then be
manipulated using an external prover like Coq [CoqTeam 2004]. In this case, the user is
required to master at least two languages, contrary to our system in which programming
and proving take place in a uniform framework.

23

1.7 Thesis overview

The starting point of this thesis is an untyped, call-by-value language. It is de{ned in
Chapter , following a gentle introduction to the �-calculus and its evaluation in abstract
machines. The formal de{nition of our language is itself based on an abstract environment
machine, which allows us to account for computational e|fects easily. Another bene{t of this
presentation is that it provides a natural de{nition of contextual equivalence. It is given in
Chapter , where a broader class of relations is studied.

A higher-order type system for our language, together with its semantics, is then
de{ned in Chapter . Its most singular feature is an equality type over terms, that is
interpreted using the untyped notion of equivalence described in Chapter . This enables
the speci{cation of program properties that can then be proved using equational reasoning.
The adequacy of our type system with respect to its semantics is then proved using classical
realizability techniques. As our language is call-by-value, the interpretation of types is
spread among three sets related by orthogonality: a set of values, a set of evaluation contexts
and a set of terms.

The type system de{ned in Chapter provides a weak form of dependent function type,
which can be used to preform typed quanti{cation. However, value restriction is required
on the arguments of dependent functions, which makes them practically useless. Chapter

provides a solution to this problem by proposing a relaxed restriction expressed using
observational equivalence. The soundness of this new approach is established by construct-
ing a novel (and somewhat surprising) realizability model. It relies on a new instruction,
that internalises our notion of program equivalence into the reduction relation of our
abstract machine. For the de{nition of reduction and equivalence not to be circular, we
need to rely on a strati{ed construction of these relations.

In Chapter , a more practical approach is taken. The system is extended with a notion
of subtyping, which yields a system that can be directly implemented with syntax-directed
rules. While remaining compatible with the realizability model of Chapter , our notion of
subtyping is able to handle all the connectives that do not have algorithmic contents. This
means that quanti{ers and equality types are only managed by subtyping. At the end of
Chapter , we sketch the extension of the system with inductive and coinductive types, and
with general recursion. To this aim, we rely on a recently submitted paper [Lepigre 2017].

Finally, Chapter is dedicated to examples of programs and proofs and to discussions
on the implementation of the system. The source code of the prototype is distributed with
this document. The latest version of the prototype, this document and other attached {les
are available online ().

24

http://lepigre.fr/these/

7

6

5

6

5

4

2
4

3

2

In this chapter, we introduce the programming language that will be considered throughout
this thesis. Its operational semantics is expressed in terms of an abstract machine, which
will allow us to account for computational e|fects.

2.1 The pure �-calculus

In this thesis, we consider a programming language of the ML family, similar to OCaml or
SML. Like every functional language, its syntax is based on the �-calculus. Introduced by
Alonzo Church in the Thirties, the �-calculus [Church 1941] is a formalism for representing
computable functions, and in particular recursive functions. As shown by Alan Turing, the
�-calculus is a universal model of computation [Turing 1937].

De{nition 2.1.1. The terms of the �-calculus (or �-terms) are built from a countable� �alphabet of variables (or �-variables) V = x, y , z� . The set of all the �-terms is denoted	

 and is de{ned as the language recognised by the following bnf grammar.

t , u ::= x | �x.t | t u x
 V	

A term of the form �x.t is called an abstraction (or �-abstractions) and a term of the form
t u is called an application.

Remark 2.1.2. Throughout this thesis, the de{nition of languages using bnf grammars
will implicitly introduce a naming convention for meta-variables. For example, the above
de{nition implies that the letters t and u (with a possible subscript) will always be used
to denote elements of .

25

Untyped calculus and2
abstract machine

Intuitively, a �-abstraction �x.t forms a function by binding the variable x in the term t.
This would be denoted x � t in common mathematics. Similarly, a term of the form t u

denotes the application of (the function) t to (the argument) u . This would be denoted� �t u in common mathematics.

Remark 2.1.3. As �-terms have a tree-like structure, parentheses are sometimes required
for disambiguation. For example, the term �x.t u can be read both as (�x.t) u and as
�x.(t u). To lighten the notations we will consider application to be leùt-associative and to
have higher precedence than abstraction. As a consequence, we will always read the term
�x.t x u as �x.((t x) u).

Remark 2.1.4. The syntax of the �-calculus only allows for one-place functions. To form a
function of two arguments (or more) one must rely on Curry{cation. Indeed, a function of
two arguments can be seen as a function of one argument returning a function. Following
this scheme, the multiple arguments of the function are given in turn, and not simulta-� �neously. As an example, the function x, y � x can be encoded as �x.�y.x.

Although this is not reöected explicitly in the syntax of �-terms, a �-variable may play
two very di|ferent roles. It can be used either as a constant, like y in the constant function
�x.y, or as a reference to a binder, like x in the identity function �x.x. Variable binding
and the associated notions of free and bound variable are hence essential.

� � � �De{nition 2.1.5. Given a term t, we denote by FV t the set of its free �-variables and BV t	 	

the set of its bound �-variables. These sets are de{ned inductively on the structure of the
term t.

Remark 2.1.6. Nothing prevents a �-variable to have both free and bound occurrences in
a term. For example, in t = �x.y �y.x y the {rst occurrence of y is free while its second� � � �� � � �occurrence is bound. We have y
 FV t = y and y
 BV t = x, y .	 	

When a �-abstraction (i.e., a function) is applied to an argument, we obtain a term
of the form (�x.t) u , called a �-redex. The reduction of such �-redexes plays an essential
role in computation. Intuitively, the reduction of the �-redex (�x.t) u will be performed by
replacing every occurrence of the bound variable x by u in the term t. This operation, called
substitution, is formally de{ned as follows.

26

�x�VF 	 = �x� �x�VB 	 = �

�t.x��VF 	 = �x���t�VF 	 �t.x��VB 	 = �x���t�VB 	�u t�VF 	 = �u�VF 	��t�VF 	 �u t�VB 	 = �u�VB 	��t�VB 	

De{nition 2.1.7. Let t
 and u
 be two �-terms, and x
 V be a �-variable. We	

denote t[x� u] the term t in which every free occurrence of x has been replaced by u .
This operation is de{ned inductively on the structure of t.

Substitution is a subtle notion, and care should be taken to avoid capture of variables.
For example, let us consider the function �x.�y.x which takes an argument x and returns
a constant function with value x. If we apply this function to y, the expected result is a
constant function with value y. However, if we blindly substitute x with y in �y.x we
obtain the identity function �y.y. Indeed, the free variable y has been captured and now
references a binder that had (coincidentally) the same name.

To solve this problem, we need to make sure that whenever a substitution t[x� u]� � � �is performed, no free variable of u is bound in t (i.e., FV u � BV t = �). Although we	 	

cannot rename the free variables of u , it is possible to rename the bound variables of
t. Indeed, changing the name of a bound variable has no e|fect on the computational
behaviour of a term. Two terms that are equivalent up to the names of their bound variables
are said to be �-equivalent.

� �De{nition 2.1.8. The �-equivalence relation � � × is de{ned, like in [Krivine 1990],�

as the smallest relation such that:
if x
 V then x � x,�	

if t � t and u � u then t u � t u ,� � �1 2 1 2 1 1 2 2

if t [x � y] � t [x � y] for only {nitely many y
 V then �x .t � �x .t .�1 1 2 2 	 1 1 2 2�

Lemma 2.1.9. Given a term t
 and a {nite set of variables � �V , it is always possible	� �to {nd a term t
 such that t � t and BV t �� = �.�0 0 	 0

Proof. A full proof is available in [Krivine 1990, Lemma 1.11].

De{nition 2.1.10. Let t
 and u
 be two �-terms, and x
 V be a �-variable. We	

denote t[x� u] the capture-avoiding substitution of x by u in t. It is de{ned as t [x� u]0� � � �where t
 is a term such that t � t and BV t � FV u = �. Such a term exists�0 0 	 0

according to Lemma .

27

2.1.9

]u�x[x = u]u�x[)t.y�(=]u�x[t.y�

]u�x[y = y]u�x[)t2 t1(=]u�x[t2]u�x[t1

]u�x[)t.x�(= t.x�

2.2 Evaluation contexts and reduction

To de{ne the most general notion of reduction over �-terms, we need to be able to refer
to any �-redex. To this aim, we introduce the notion of evaluation context. Intuitively, a
context will consist in a term with a hole (i.e., a place-holder for a subterm) and it will allow
us to focus on any particular subterm of a term.

��De{nition 2.2.11. The set of evaluation contexts is de{ned as the language recognised
by the following bnf grammar.

E, F ::= [] | �x.E | E t | t E x
 V , t
 	

��De{nition 2.2.12. Given a term u
 and an evaluation context E
 , we denote
E[u] the term formed by putting u into the hole of the evaluation context E. It is de{ned
by induction on the structure of E as follows.

Remark 2.2.13. Note that free variables of a term u may be captured when forming E[u].
For example, if we take u = x and E = �x.�y.[] then x is free in u , but it does not appear
free in E[u] = �x.�y.x.

� ���De{nition 2.2.14. Given a set of evaluation contexts C � , we denote R C � ×
the �-reduction relation induced by C. It is de{ned as the smallest relation such that for
every E
 C, for every terms t
 and u
 , and for every variable x
 V we have	

the following. � � � �E[(�x.t) u] , E[t[x� u]]
 R C

� � � ���De{nition 2.2.15. The general �-reduction � � × is de{ned as R . We say�

that the term t
 is in �-normal-form if there is no u
 such that t � u . We�
�� � � �denote � the reöexive, transitive closure of � .��

� �The general �-reduction relation � is non-deterministic. Indeed, given a term t,�

there might be two (di|ferent) terms u and u such that t � u and t � u . For exam-1 2 � 1 � 2

ple, ((�x .x) �x .x) ((�x .x) �x .x) can either reduce to (�x .x) ((�x .x) �x .x) or1 1 2 2 3 3 4 4 2 2 3 3 4 4

to ((�x .x) �x .x) (�x .x). Indeed, we can focus on the �-redex (�x .x) �x .x using1 1 2 2 4 4 1 1 2 2

the evaluation context [] ((�x .x) �x .x), or on the �-redex (�x .x) �x .x using the3 3 4 4 3 3 4 4

evaluation context ((�x .x) �x .x) []. Although it is non-deterministic, the general �-1 1 2 2� �reduction relation � has the Church-Rosser property [Church 1936].�

28

]u[]	[= u]u[)t E(= t]u[E

]u[)E.x�(=]u[E.x�]u[)E t(=]u[E t

�Theorem 2.2.16. Let t
 be a term. If there are u
 and u
 such that t � u1 2 1�
� � �and t � u , then there must be u
 such that u � u and u � u .2 1 2� � �

Proof. A full proof is available in [Church 1936] or [Barendregt 1981] for example.

Intuitively, the Church-Rosser property enforces a weak form of determinism. Indeed, it
implies that a program can only compute one particular result, even if it can be attained
in several di|ferent ways.

In the following, we are going to consider an e|fectful language that does not have the
Church-Rosser property. As a consequence, we will need to restrict ourselves to a deter-
ministic subset of the general �-reduction relation. If we were to work with a completely
non-deterministic reduction relation, it would be extremely dif{cult to reason about our
language. Programs would not only compute di|ferent possible results, but also terminate
in a non-deterministic way.

The choice of the order in which �-redexes are reduced is called an evaluation strategy.
The two evaluation strategies that are the most widely used in practice are called call-by-

name and call-by-value. They both reduce outermost �-redexes {rst, and do not reduce
�-redexes that are contained in the body of a �-abstraction. This means that the term
�x.(�y.y) x is considered to be in normal form and cannot be evaluated further. In call-by-
name, terms that are in function position are reduced {rst, and the computation of their
arguments is delayed to the time of their e|fective use. In call-by-value, both arguments
and functions are evaluated before performing the �-reduction. One way to formalize these
evaluation strategies is to restrict the notion of evaluation context, to only allow focusing on
the �-redex that is going to be reduced next.

� �� �De{nition 2.2.17. The set of call-by-name evaluation contexts N � is de{ned as the
language recognised by the following bnf grammar.

E, F ::= [] | E t t

� � � ���The call-by-name reduction relation � � × is de{ned as R N .N

In call-by-value, both the function and its argument need to be evaluated before the
application can be performed. Consequently, two di|ferent call-by-value strategies can be
de{ned: leùt-to-right and right-to-leùt call-by-value evaluation. The former evaluates the
terms that are in function position {rst and the latter evaluates the terms that are in
argument position {rst. Although leùt-to-right call-by-value evaluation is most widely used,
some practical languages like OCaml use right-to-leùt evaluation. In this thesis, we make
the same choice and only consider right-to-leùt call-by-value evaluation.

29

De{nition 2.2.18. A term t is said to be a value if it is either a �-variable or a �-abstraction.
The set � of all the values is generated by the following bnf grammar.	

v , w ::= x | �x.t x
 V	

� �� �De{nition 2.2.19. The set of right-to-leùt call-by-value evaluation contexts � � is
de{ned as the language recognised by the following bnf grammar.

E, F ::= [] | E v | t E v
 , t
 	

� � � ���The right-to-leùt call-by-value reduction relation � � × is de{ned as R � .�

Remark 2.2.20. Leùt-to-right call-by-value evaluation can be de{ned using the evaluation
contexts generated by the following bnf grammar.

E, F ::= [] | E t | v E t
 , v
 	

A given term of the �-calculus may reduce in very di|ferent ways depending on what
evaluation strategy is chosen. For example, the evaluation of (�y.z) ((�x.x x) (�x.x x))

stops in one step in call-by-name

(�y.z) ((�x.x x) (�x.x x)) � zN

and it goes into a loop in call-by-value.

(�y.z) ((�x.x x) (�x.x x)) � (�y.z) ((�x.x x) (�x.x x))�

Remark 2.2.21. Our reduction relations can be alternatively de{ned using deduction rules.� �A deduction rule is formed using premisses P and a conclusion C separated by ani 1�i�n

horizontal bar.

P � P1 n

C

The meaning of such a rule is that the conclusion C can be deduced when all the premisses
P are true. In particular, if there is no premise then the conclusion can be deducedi

immediately. Using this formalism, the call-by-name reduction corresponds to the smallest
relation satisfying the following two rules.

t � t1 N 2

t u � t u(�x.t) u � t[x� u] 1 N 2N

30

� �Similarly, the right-to-leùt call-by-value reduction relation � corresponds to the smallest�

relation satisfying the following three rules.

u � u t � t1 � 2 1 � 2

t u � t u t v � t v(�x.t) v � t[x� v] 1 � 2 1 � 2�

In this thesis, �-terms and programs in general will be evaluated in an abstract machine
called a Krivine machine [Krivine 2007]. This machine will emulate the right-to-leùt evalu-� �ation relation � . It will provide us with a computational framework in which programs�

and their evaluation contexts can be manipulated easily.

2.3 Call-by-value Krivine machine

In the previous section, we introduced the syntax of the �-calculus and the evaluation of
�-terms. We will now reformulate these de{nitions in terms of a call-by-value Krivine
abstract machine [Krivine 2007]. Our presentation will di|fer from the original machine,
which is call-by-name. Although call-by-value Krivine machines have rarely been published,
they are well-known in the classical realizability and compiler communities.

The main idea behind the Krivine abstract machine is to think of a term t
 as a0� � ��pair t , E
 × � such that t = E[t] (the term t is said to be in head position). Using0 � �this representation, �-reduction proceeds in two steps. First, the machine state t , E is� �transformed into a state of the form (�x.u) v , F , in such a way that E[t] = F[(�x.u) v].� �The �-redex can then be reduced to obtain the state u[x� v] , F . This behaviour can
be attained using the following reduction rules, which are obtained naturally from the
de{nition of right-to-leùt call-by-value evaluation.

� � � �t u , E � u , E[t []] when u � 	� � � �v , E[t []] � t v , E� � � �t v , E � t , E[[] v] when t � 	� � � �v , E[[] w] � v w , E� � � �(�x.t) v , E � t[x� v] , E

The four {rst rules are responsible for bringing the next �-redex (according to our reduc-
tion strategy) in head position, and the last rule performs the �-reduction. Note that the
{rst four rules do not change the represented term, and only move arguments or functions
between the term and the evaluation context. Our set of reduction rules can be simpli{ed to
the following, by composing the last two pairs of rules.

31

� � � �t u , E � u , E[t []]� � � �v , E[t []] � t , E[[] v]� � � ��x.t , E[[] v] � t[x� v] , E

The {rst rule is used to focus on the argument of an application, to compute it {rst.
When the argument has been evaluated to a value, the second rule can be used to swap
the argument with the unevaluated function. The computation can then continue with the
evaluation of the function, which should (hopefully) evaluate to a �-abstraction. If this is the
case, the third rule can be applied to actually perform the �-reduction.

The state of the abstract machine can be seen as a zipper [Huet 1997] on the tree
structure of a term. Indeed, the term that is in head position is the subterm on which
the machine is focusing. It is also worth noting that the machine manipulates evaluation
contexts from the inside out, which results in a heavy syntax. However, it is possible to
represent right-to-leùt call-by-value evaluation contexts using a stack of functions (i.e.,
terms) and argument (i.e., values). We will take this approach in the following.

De{nition 2.3.22. Values, terms, stacks and processes are generated by the following bnf

grammar. The names of the corresponding sets are displayed on the leùt.

� � v , w ::= x | �x.t x
 V	 	� � t , u ::= v | t u� �� � , � ::= � | v . � | [t]�� �×� p , q ::= t � �

The syntactic distinction between terms and values is speci{c to the call-by-value presenta-
tion, they would be collapsed in call-by-name. Intuitively, a stack can be thought of as an
evaluation context represented as a list of terms and values. The values can be seen as
arguments to be fed to the term in the context, and the terms can be considered as
functions to which the term in the context will be applied. The symbol � is used to denote
an empty stack. A process t � � forms the state of our abstract machine, and its reduction
will consist in the interaction between the term t and its evaluation context encoded into
the stack �.

Since our calculus is call-by-value, only values are (and should be) substituted to �-
variables during evaluation. From now on, we will hence work with the following de{nition
of substitution. In particular, a substitution of the form t[x� u] will be forbidden if u is
not a syntactic value.

De{nition 2.3.23. Let t
 be a term, x
 V be a �-variable and v
 be a value. We	 	

denote t[x� v] the capture-avoiding substitution of x by v in t.

32

� � � � � �De{nition 2.3.24. The reduction relation
 � ×� × ×� is the smallest relation
�� �satisfying the following rules. We denote
 its reöexive and transitive closure.

t u � �
 u � [t]�
v � [t]�
 t � v . �

�x.t � v . �
 t[x� v] � �

Three reduction rules are used to handle call-by-value evaluation. When an application is
encountered, the function is stored in a stack-frame in order to evaluate its argument {rst.
Once the argument has been completely computed, a value faces the stack-frame containing
the function. At this point the function can be evaluated and the value is stored in the stack,
ready to be consumed by the function as soon as it evaluates to a �-abstraction. A capture-
avoiding substitution can then be performed to e|fectively apply the argument to the
function. As an example, (�x.x y) �z.z � � reduces to y � � as follows and it cannot evaluate
further.

� �Remark 2.3.25. It is possible to prove that the abstract machine and its
 reduction� �relation indeed implement the � evaluation on �-terms. Although this result is notv

required here, it has been formalised by the author in the Coq proof assistant [CoqTeam

2004]. The proof sketch is available online ().

Remark 2.3.26. A leùt-to-right call-by-value machine can be de{ned in a similar way by
swapping the roles of terms and values in stacks (stack frames contain values and terms are
pushed on the stack). The reduction relation is then the following.

t u � �
 t � u . �RL

v � u . �
 u � [v]�RL

v � [�x.t]�
 t[x� v] � �RL

The state of our abstract machine contains two parts: a term being evaluated (i.e., the
term in head position) and its evaluation context (i.e., the stack). As a consequence, it is
possible to de{ne reduction rules that manipulate the stack (i.e., the evaluation context)
as a {rst class object. Such reduction rules produce computational e|fects.

33

http://lepigre.fr/these/cbvMachine.v

��z.z�)y x.x�(
 �]y x.x�[�z.z�

 �.z.z��y x.x�

 ��y)z.z�(

 �]z.z�[�y

 �.y�z.z�

 ��y

2.4 Computational effects and ��-calculus

In the programming languages community, computational e|fects (a.k.a. side-e|fects) refer
to modi{cations made by a program to its environment as a byproduct of the computation
of its result. For example, a program may generate computational e|fects by writing to a
tape, or by modifying the value of a global memory cell. In our calculus, the environment of
a program (i.e., a term) only consists of an evaluation context encoded as a stack. Compu-
tational e|fects can hence be produced if a program is able to modify the stack as a whole
during its evaluation in the abstract machine.

We are now going to extend our calculus and our abstract machine with operations
allowing the manipulation of the stack. More precisely, we will provide a way to save the
stack (i.e., the evaluation context), so that it can be restored at a later stage. A natural way to
extend our language is to use the syntax of (Philippe de Groote's variant of) Michel Parigot's
��-calculus [Parigot 1992, de Groote 1994]. We hence introduce a new binder ��.t capturing
the current stack in the �-variable � . The stack can then be restored in t using the syntax
[�]u .

� �De{nition 2.4.27. Let V = � , � , � be a countable set of �-variables (or stack variables)!

disjoint from V . Values, terms, stacks and processes are now generated by the following	

grammar. The names of the corresponding sets are displayed on the leùt.

� � v , w ::= x | �x.t x
 V	 	� � t , u ::= v | t u | ��.t | [�]t� �� � , � ::= � | � | v . � | [t]� �
 V!� �×� p , q ::= t � �

Note that terms of the form [�]t will only be available to the user if � is a stack variable.
Allowing arbitrary stacks allows us to substitute �-variables by stacks during computation.
Like with �-variable, we will need to be careful and avoid variable capture. However, we will
not give the full details this time.

� � � �De{nition 2.4.28. Given a value, term, stack or process ", we denote FV " (resp. BV ")	 	� � � �the set of its free (resp. bound) �-variables and FV " (resp. BV ") the set of its free (resp.! !

bound) �-variables. These sets are de{ned in a similar way to De{nition .

De{nition 2.4.29. Let t
 be a term, �
 � be a stack and �
V be a �-variable. We!

denote t[�� �] the (capture-avoiding) substitution of � by � in t.

� �De{nition 2.4.30. The reduction relation
 is extended with two new reduction rules.

34

2.1.5

t u � �
 u � [t]�
v � [t]�
 t � v . �

�x.t � v . �
 t[x� v] � �
��.t � �
 t[�� �] � �
[�]t � �
 t � �

When the abstract machine encounters a �-abstraction ��.t, the current stack � is substi-
tuted to the �-variables � . Consequently, every subterm of the form [�]u in t becomes [�]u .
When the machine then reaches a state of the form [�]u � �, the current stack � is erased,
and computation resumes with the stored stack �. For example, if t and v are arbitrary
terms and values, then the process �x.��.t [�]x � v . � reduces as follows.

�x.��.t [�]x � v . �
 ��.t[x� v] [�]v � �

 t[x� v] [�]v � �

 [�]v � [t[x� v]]�

 v � �

Note that when a stack is erased, arbitrary terms might be erased. In particular, we could
have chosen t = # = (�x.x x) �x.x x in the previous example, although the reduction of
this term does not terminate. Indeed, we have

for every possible stack �.
The abstract machine de{ned in this section can be used for evaluating terms of

the ��-calculus. Although this language is very elegant and concise, it is not suitable for
practical programming. In the following section, our language will be extended with records
(i.e., tuples with named {elds) and variants (i.e., constructors and pattern-matching). We
will thus obtain a simple language with a concise formal de{nition, but that will be closer
to being a practical programming language.

2.5 Full syntax and operational semantics

In this section, we present the syntax and the reduction relation of the abstract machine
that will be considered throughout this thesis. Although the following extends de{nitions
given in the previous sections, we choose not to avoid repetitions so that this section
remains completely self-contained.

In this thesis, we consider a language expressed in terms of a Krivine Abstract Machine

[Krivine 2007]. Our machine has the peculiarity of being call-by-value, which requires a

35

��#
 �]x x.x�[�x x.x�

 �.x x.x��x x.x�
 ��#

syntax formed with four entities: values, terms, stacks and processes. Note that the distinc-
tion between terms and values is speci{c to our call-by-value presentation, they would be
collapsed in call-by-name.

� �De{nition 2.5.31. We require three disjoint, countable sets of variables: V = x, y , z�	� � � �for �-variables, V = � , � , � for �-variables, V = a , b , c� for term variables.! $

As usual, �-variables and �-variables will be bound in terms to respectively form functions
and capture continuations. Term variables are intended to be substituted by (unevaluated)
terms, and not only values. They will be bound in types to express properties ranging over
the set of all terms (see Chapter).

De{nition 2.5.32. Values, terms, stacks and processes are mutually inductively de{ned as
the languages recognised by the following bnf grammar. The names of the corresponding
sets are displayed on the leùt.

� � v , w ::= x | �x.t | C [v] | {(l = v) } | �	 k i i i
I� � t , u ::= a | v | t u | ��.t | [�]t | v.l | [v | (C [x]� t)] | Y | % | &k i i i t,v v,t v,wi
I� �� � , ' ::= � | � | v . � | [t]�� �×� p , q ::= t � �

Terms and values form a variation of the ��-calculus [Parigot 1992], enriched with ML-like
constructs (i.e., records and variants). Values of the form C [v] (where k
 �) correspondk

to variants, or constructors. Note that they always have exactly one argument in our
language. Case analysis on variants is performed using the syntax [v | (C [x]� t)], ini i i i
I

which the pattern C [x] is mapped to the term t for all i in I � �. Similarly, valuesi i i fin

like {(l = v) } correspond to records, which are tuples with named {elds. The projectioni i i
I

operation v.l can be used to access the value labelled l in a record v.k k

Remark 2.5.33. The syntax [v | (C [x]� t)] for matchings and the syntax {(l = v) }i i i i ii
I i
I

for records are part of our meta-language. We only use them as shortcuts to designate
arbitrary lists of patterns or record {elds. In the actual syntax, the full list of patterns or
{elds always needs to be speci{ed. For example, we would write {l = v ; l = v } for a1 1 2 2� �record or [v | C [x]� t | C [x]� t] for a case analysis when I = 1, 2 .1 1 1 2 2 2

Terms of the form Y denote a {xpoint, which can be used for general recursion. Theyt,v

roughly corresponds to OCaml's ÷let recø construct. The value � and terms of form % orv,t

& are only included for technical purposes. In particular, they are not intended to be usedv,w

for programming. The value � will be used in the de{nition of our semantics (see Chapters
and). Terms of the form % will help us to distinguish records from other sorts of valuesv,t

36

64

4

in our de{nition of observational equivalence (see Chapter). Finally, terms of the form
& will be used to obtain an essential property of our realizability model (see Chapter ,v,w

Theorem).
A stack can be either the empty stack �, a stack variable � , a value pushed on top of a

stack v .�, or a stack frame containing a term on top of a stack [t]�. The need for two stack
constructors is speci{c to the call-by-value presentation as a stack not only needs to store
the arguments to functions, but also the functions themselves while their arguments are
being computed. In call-by-name only the arguments are stored in the stack.

Remark 2.5.34. We enforce values in constructors, record {elds, projections and case
analysis. This makes the calculus simpler because only �-reduction needs to manipulate the
stack. Syntactic sugar such as the following can be de{ned to hide these restrictions.

t.l � (�x.x.l) t C [t] � (�x.C [x]) tk k k k

Note that the elimination of such syntactic sugar corresponds to a form of partial let-
normalization [Moggi 1989] or A-normalization [Flanagan 1993]. The translation can hence
be seen as a natural compilation step [Tarditi 1996, Chlipala 2005].

� � � �De{nition 2.5.35. Given a value, term, stack or process " we denote FV " (resp. FV " ,	 !� �FV ") the set of free �-variables (resp. free �-variables, term variables) contained in ". We$ � � � � � � � �also denote FV " = FV " � FV " � FV " the set of all the free variables of ". We say	 ! $
� �� �that " is closed if FV " = �. We denote the set of all the closed values, the set of all	

�the closed terms and � the set of all the closed stacks.

� �De{nition 2.5.36. A substitution is a map ' such that for all x
V we have ' x
 , for all	 	� � � ��
V we have ' �
 � and for all a
V we have ' a
 . For ' to be a substitution,! $� �we also require that ' () (for only {nitely many (
 V �V �V . We denote S the	 ! $� � � �� �set of all the substitutions and dom ' = (| ' () (the domain of the substitution
'. In particular, the substitution '
 S is called the identity substitution and is de{ned asid� �' (= (for all (
 V �V �V .id 	 ! $

De{nition 2.5.37. For every '
 S we denote '[x� v] the substitution remapping variable� �� � � �� � � �x
V to v
 in '. In particular, '[x� v] x = v and '[x� v] (= ' (if () x.	 	

Similarly, we denote '[�� �] the substitution remapping �
 V to �
 � in ' and!

'[a� t] the substitution remapping a
V to t
 in '. In the case where ' = ' we will$ id

write [x� v], [�� �] and [a� t].

37

5.4.15
5

3

De{nition 2.5.38. Let '
 S be a substitution and " be a value, term, stack or process.
We denote "' the value, term, stack or process formed by simultaneously substituting� � � �(without capture) every variable (
 FV " with ' (in ".

De{nition 2.5.39. Given ' , '
 S we denote ' *' the substitution formed by composing1 2 1 2� �� � � � �� � �' and ' . It is de{ned by taking ' *' (= ' (' for all (
 dom ' and it1 2 1 2 2 1 2

coincides with ' on every other variables. In particular, if " is a value, term, stack or1

process we will have "(' *') = ("')' .1 2 2 1

Processes form the internal state of our abstract machine. They are to be thought of
as a term put in some evaluation context represented using a stack. Intuitively, the stack �
in the process t � � contains the arguments to be fed to t. Since we are in call-by-value
the stack also handles the storing of functions while their arguments are being evaluated.
This is why we need stack frames (i.e., stacks of the form [t]�). The operational semantics� �of our language is given by a relation
 over processes.

� � � � � �De{nition 2.5.40. The relation
 � ×� × ×� is de{ned as the smallest relation
satisfying the following reduction rules.

t u � �
 u � [t]� � �v � [t]�
 t � v . � when v � V � �	

�x.t � v . �
 t[x� v] � �
��.t � �
 t[�� �] � �
[�]t � �
 t � �

{(l = v) }.l � �
 v � � when k
 Ii i k ki
I

[C [v] | (C [x]� t)] � �
 t [x � v] � � when k
 Ik i i i i ii
I

Y � �
 t (�x.Y) v � �t,v t,x

% � �
 u � �{(l = v) },ui i i
I� � [t]�
 � � �
� � v . �
 � � �

[� | (C [x]� t)] � �
 � � �i i i i
I�.l � �
 � � �k

+ � k� � � � � �We will denote
 its transitive closure,
 its reöexive-transitive closure and
 its
k-fold application.

The {rst three rules are those that handle �-reduction. When the abstract machine encoun-
ters an application, the function is stored in a stack-frame in order to evaluate its argument
{rst. Once the argument has been completely computed, a value faces the stack-frame
containing the function. At this point the function can be evaluated and the value is stored

38

in the stack ready to be consumed by the function as soon as it evaluates to a �-abstraction.
A capture-avoiding substitution can then be performed to e|fectively apply the argument to
the function. The fourth and {ùth rules rules handle the classical part of computation. When
a �-abstraction is reached, the current stack is captured and substituted for the correspond-
ing �-variable. Conversely, when a term of the form [�]t is reached, the current stack is
discarded and evaluation resumes with the process t � �. In addition to the reduction rules
for �-reduction and stack manipulation, we provide reduction rules for handling record
projection, case analysis and recursion using a {xpoint operator.

A rule is then provided for reducing processes of the form % � � to u � � whenv,u

the value v is a record. Note that if v is not a record then no reduction rule apply on
processes of the form % � �. These facts will be used in Chapter to show that records,v,u

�-abstractions and other forms of values have a di|ferent computational behaviour in our
abstract machine. The last four rules are used to handle the special value �. Intuitively, �
may consume the surrounding part of its computational environment when it consists of a
term in function position, a value in argument position, a case analysis or a projection. This
will be discussed further when de{ning the semantical interpretation of our type system in
Chapter and Chapter .

� �Remark 2.5.41. Our reduction relation
 does not provide any way of reducing processes
of the form & � �. We will give a reduction rule for such processes in Chapter . However,v,w

they can be considered as constants for now.

Theorem 2.5.42. Let '
 S be a substitution and p, q
 ×� be two processes. If p
 q
� + k � + k(resp. p
 q, p
 q, p
 q) then p'
 q' (resp. p'
 q', p'
 q', p'
 q').

Proof. Case analysis on the reduction rules, all rules being local.

2.6 Classification of processes

We are now going to give the vocabulary that will be used to describe some speci{c classes
of processes. In particular we need to identify processes that are to be considered as the
evidence of a successful computation, and those that are to be recognised as the expression
of a failure of the machine (i.e., a crash).

De{nition 2.6.43. A process p
 ×� is said to be:
znal if p = v � � for some value v
 ,	
&-like if p = & � � for some values v , w
 and a stack �
 �,v,w 	

blocked if there is no q
 ×� such that p
 q,
stuck if it is not {nal nor &-like and if p' is blocked for every substitution ',

39

5

64

3

� �non-terminating if there is an in{nite sequence of processes p such that p = pi 0i
�

and for all i
 � we have p
 p .i i+1

When a process becomes stuck, non-terminating or &-like during its reduction, it will
remain so forever. In particular, no substitution will ever be able to turn it into a process
that might lead to a successful end of computation (i.e., reduce to a {nal process).

Lemma 2.6.44. Let p
 ×� be a process and '
 S be a substitution. If p is {nal (resp.
&-like, stuck, non-terminating), then so is p'.

Proof. If p is {nal then p = v � � for some v
 . Since (v � �)' = v' � �' = v' � � the	

process p' is also {nal. If p is &-like then p = & � � for some v, w
 and �
 �.v,w 	

Since (& � �)' = (&)' � �' = & � �' the process p' is also &-like. If p is stuck,v,w v,w v',w'

then we suppose that there is a substitution '
 S such that (p')' is not blocked. This0 0

contradicts the fact that p is stuck since p(' *') = (p')' is not blocked, and hence the0 0 � �process p' is stuck. Finally, if p is non-terminating then we have a sequence p suchi i
�

that p = p and p
 p for all i
 �. To show that p' is non-terminating we need to0 i i+1� �construct a sequence q such that q = p' and q
 q for all i
 �. We can takei 0 i i+1i
�

q = p ' for all i
 �. Indeed, we have q = p' since p = p and for all i
 � we havei i 0 0

p '
 p ' by Lemma as p
 p .i i+1 i i+1

Lemma 2.6.45. A process is stuck if and only if it is of one of the following forms, where n,
m , k
 � and I, J, K � � such that k � K.fin

C [v].l � � (�x.t).l � � C [v] � w. � {(l = v) } � v . �n m m n i i i
I

[�x.t | (C [x]� t)] � � [{(l = v) } | (C [x]� t)] � �i i i i i j j ji
I i
I j
J

[C [v] | (C [x]� t)] � � {(l = v) }.l � �k i i i i i ki
K i
K

% � � % � � % � ��x.t,u C [v],u �,un

Proof. Using a simple case analysis we {rst rule out the thirteen forms of processes that� �immediately reduce using
 . As stuck processes are neither {nal nor &-like, we can again
rule out two forms of processes. We are now leùt with eighteen forms of processes, among
which seven are not stuck (see the proof of Lemma). It is easy to see that the eleven
remaining forms of processes are stuck. Indeed, given their structure no reduction rule will
ever apply to them, even aùter a substitution.

The proof of Lemma has been (partially) checked using OCaml's exhaustivity checker
for patterns. Indeed, the abstract syntax tree corresponding to our language can be encoded
into OCaml data types easily. It is then possible to use pattern matching to enumerate

40

2.6.45

2.6.46

2.5.42

possible forms of processes in such a way that it is neither redundant nor incomplete (i.e.,
that the OCaml compiler does not complain with a warning). The OCaml source {le used for
this purpose is available online ().

Lemma 2.6.46. A blocked process p
 ×� is either stuck, {nal, &-like, or of one of the
following seven forms.

x.l � � x � v . � [x | (C [x]� t)] � �k i i i i
I

x � [t]� % � � a � � v � �x,u

Proof. As for Lemma , we can rule out the thirteen forms of processes that immedi-� �ately reduce using
 , {nal processes and &-like processes. Aùter ruling out the eleven
forms of stuck processes of Lemma we are leùt with seven forms of processes. It
remains to show that they are not stuck by {nding a substitution '
 S unlocking their
reduction. For processes of the {rst four forms we can take ' = [x� �] since we have
respectively �.l � �'
 � � �', � � v' . �'
 � � �', [� | (C [x]� t ')] � �
 � � �'k i i i i
I

and � � [t']�'
 � � �'. For a process of the form % � � we take can ' = [x� {}] asx,u

% � �'
 u' � �'. For a process of the form a � � we can take ' = [a� {l = {}}.l]{},u' k k

as {l = {}}.l � �'
 {} � �'. For a process of the form v � � we can take ' = [�� [{}]�]k k

as we will have v' � [{}]�
 {} � v' . � if v) � and v' � [{}]�
 � � � otherwise.

41

2.6.45

2.6.45

http://lepigre.fr/these/classi{cation.ml

42

In this chapter, we introduce an equivalence relation over programs. Two programs will be
considered equivalent if and only if they have the same observable behaviour in terms of
computation. General equational properties will then be derived for any equivalence rela-
tion satisfying speci{c compatibility conditions. These properties will then be essential for
the de{nition of our realizability semantics in the next chapters. Moreover, they will be used
for implementing a partial decision procedure for program equivalence.

3.1 Equivalence relation and properties

We will now consider a notion of observational equivalence over terms. More precisely, we will
say that two terms are equivalent if and only if they have the same computational behaviour
in every evaluation context. Using the formalism of our abstract machine, it is very easy
to quantify over every such context. Indeed, it only amounts to quantifying over every
stack. In this thesis, the considered observable behaviour is successful termination (versus
non-termination or runtime error). We will consider that a process terminates successfully
if it eventually reduces to a {nal process.

� � � �De{nition 3.1.1. Let % � ×� × ×� be a relation such that for every {nal process
p
 ×�, there is no q
 ×� such that p%q. We say that a process p
 ×� converges

�for the relation %, and we write p� , if there is a {nal process q
 ×� such that p% q. If%
p does not converge we say that it diverges (for the relation %) and we write p .%

Note that the previous de{nition is rather general, but we will only use it with relations� �extending
 . Of course, such extensions should not allow {nal processes to be reduced.
Indeed, this would go against the intuition that they are the evidence of a successfully
terminated computation.

43

Observational equivalence3
of programs

The idea now is to relate terms that form converging processes against exactly the same
stacks. However, quantifying only over stacks leads to free variables being undistinguish-
able. To avoid this problem, we not only quantify over stacks, but also over substitutions. In
this way, our equivalence relation will work with both closed and open terms.

� �De{nition 3.1.2. The relation � � × is de{ned as follows.

� � � �� �� = t , u | � �
� , �'
S, t' � � � + u' � � �

� �Lemma 3.1.3. � is an equivalence relation.

Proof. Immediate.

� �We will now show that our equivalence relation � is well-behaved with respect to

substitutions. First, we are going to check that arbitrary substitutions preserve equivalence.
This property is summarised in the following theorem.

Theorem 3.1.4. Let t, u
 be two terms and '
 S be a substitution. If we have t � u

then t' � u'.

Proof. Let us take '
 S and �
 � and prove (t')' � � � + (u')' � � � , which0 0 0 0 0 0

can be rewritten as t(' *') � � � + u(' *') � � � . We can thus conclude using the0 0 0 0

de{nition of t � u with the substitution ' *' and the stack � .
 0 0

Another essential property of our equivalence relation is extensionality. In other words,
it is possible to replace equals by equals at any place in terms without changing their
observed behaviour. This property is expressed in the following two theorems.

Theorem 3.1.5. Let v , v
 be values, t
 be a term and x
 V be a �-variable. If1 2 	 	

v � v then t[x� v] � t[x� v].

1 2 1 2

Proof. We are going to prove the contrapositive so we suppose t[x� v] � t[x� v] and1 2

we show v � v . Let us {rst assume that neither v nor v is equal to � or to a �-variable.1 2 1 2

By de{nition, we know that there is a stack � and a substitution ' such that we have
(t[x� v])' � � � and (t[x� v])' � � (up to symmetry). As x is bound we can rename1 2

it so that (t[x� v])' = t'[x� v '] and (t[x� v])' = t'[x� v ']. To {nish the proof,1 1 2 2

we need to {nd a stack � and a substitution ' such that v ' � � � and v ' � � 0 0 1 0 0 2 0 0

(up to symmetry). We can take � = [�x.t']� and ' = ' since by de{nition we have0 0

� �v ' � [�x.t']�
 t'[x � v '] � � � and v ' � [�x.t']�
 t'[x � v '] � � . Note that1 1 2 2

44

here, it is essential that v ' and v ' are not equal to � or to some �-variable as otherwise1 2

the {rst reduction steps could not be taken.
It remains to show that v � v in the cases where v , v or both are equal to �1 2 1 2

or a �-variable. First, we can assume that v) v as otherwise we would immediately1 2 � �get a contradiction with t[x� v] � t[x� v] by reöexivity of � . As a consequence,
1 2

we cannot have v = v = � or v = v = x
 V . Now, if v = � and v � V then we1 2 1 2 	 1 2 	

can distinguish them using the stack � = [{}]�. Indeed, we have � � [{}]�
 � � �� and

v � [{}]�
 {} � v . � since we cannot have v = �. In a symmetric way, we can also2 2 2

distinguish v and v when v = � and v � V . Now, if we have v = � and v = x
V1 2 2 1 	 1 2 	

then we can tell them apart using the substitution ' = [x� {}] and the stack � = [{}]�.
Indeed, we have v ' � � = � � [{}]�
 � � �� and v ' � � = {} � [{}]�
 {} � [{}]� . The1 2

same goes if v = x
V and v = �. Now, if v = x
V and v = x
V then they can1 	 2 1 1 	 2 2 	

be easily distinguished with Theorem and a substitution replacing x and x with two1 2

non-equivalent values. If we have v = x
V and v is neither a variable nor � then we can1 	 2

use the substitution ' = [x� �] and the stack � = [{}]� to tell v and v apart. Indeed, in1 2

this case we have v ' � � = � � [{}]�
 � � �� and v ' � � = v ' � [{}]�
 {} � v ' . � .1 2 2 2

A symmetric reasoning can be used in the case where v is not � nor a variable and1

v = x
 V .2 	

Lemma 3.1.6. Let p
 ×� be a process, a
V be a term variable and t be a term such$
�that p[a� t] � . Either there is a value v
 such that p
 v � � or there is a stack	

��
 � such that p
 a � �.

�Proof. There must be a blocked process q such that p
 q. If it were not the case p

would be non-terminating, and hence p[a� t] would also be non-terminating according to
�Lemma . This would hence contradict the hypothesis that p[a� t] � . Since p
 q we

�obtain p[a� t]
 q[a� t] by Theorem and hence q[a� t] � . We can then proceed

by case analysis according to Lemma as q is blocked. If q is not of the form v � �
nor of the form a � � then q[a� t] is a blocked process that is not {nal. Consequently, we
obtain a contradiction with q[a� t] � .

Theorem 3.1.7. Let u , u and t
 be three terms and a
 V be a term variable. If1 2 $

u � u then t[a� u] � t[a� u].

1 2 1 2

Proof. Let us suppose u � u and show t[a� u] � t[a� u]. We take a stack �, a

1 2 1 2

substitution ' and we show (t[a� u])' � � � + (t[a� u])' � � � . As we are free to1 2

rename a we may assume (t[a� u])' = t'[a� u '], (t[a� u])' = t'[a� u '] and1 1 2 2� �a � FV � . Consequently our goal is now t'[a� u '] � � � + t'[a� u '] � � � . By1 2

symmetry we can suppose that t'[a� u '] � � � and show t'[a� u '] � � � . Let us now1 2

45

2.6.46
2.5.42

2.6.44

3.1.4

consider the reduction of the process t' � �. According to Lemma there are two
possibilities.

� �If t' � �
 v � � for some value v
 then (t' � �)[a� u]
 (v � �)[a� u] by	 2 2
� � �Theorem . This rewrites to t'[a� u] � �
 v[a� u] � � as a � FV � , and2 2

hence we obtain t'[a� u] � � � .2

� �If t' � �
 a � � for some stack �
 � then (t' � �)[a� u]
 (a � �)[a� u]0 0 1 0 1

�and (t' � �)[a� u]
 (a � �)[a� u] by Theorem . We thus assume that2 0 2

(a � �)[a� u] � and show (a � �)[a� u] � . We will build a sequence of stacks0 1 0 2

+� �� starting with � and such that (a � �)[a� u]
 (a � �)[a� u] for alli 0 i 1 i+1 1i�n

i < n. Note that the sequence has to be {nite since otherwise there would be an
in{nite sequence of reductions from (a � �)[a� u]. To de{ne � we consider the0 1 i+1

�process u � � . We have (a � �)[a� u]
 (a � �)[a� u] = (u � �)[a� u] by1 i 0 1 i 1 1 i 1

transitivity and hence (u � �)[a� u] � . According to Lemma there are two1 i 1

�possibilities for the reduction of u � � . Either u � �
 v � � for some value v and1 i 1 i

�the sequence ends with n = i, or u � �
 a � � for some stack � and in this case we1 i

take � = �.i+1

To end the proof, we will now show (a � �)[a� u] � for all i � n. For i = 0 thisi 2

will give us (a � �)[a� u] � which is the expected result. For i = n we know that0 2

�u � �
 v � �� , and hence u � � � since u � u . As a consequence, we obtain
1 n 2 n 1 2

that (a � �)[a� u] = (u � �)[a� u] � by Lemma . Let us now supposen 2 2 n 2

that we have (a � �)[a� u] = u � � [a� u] � for some i < n and show thati+1 2 2 i+1 2

(a � �)[a� u] = u � � [a� u] � . Since we know u � u we can deduce that
i 2 2 i 2 1 2

�u � � [a� u] � . Moreover, since u � �
 a � � we may use Theorem to1 i+1 2 1 i i+1

�obtain u � � [a� u] = (u � �)[a� u]
 (a � �)[a� u] = u � � [a� u].1 i 2 1 i 2 i+1 2 2 i+1 2

As a consequence, we have u � � [a� u] � from which we obtain u � � [a� u] �1 i 2 2 i 2

since u � u .
1 2

3.2 Compatible equivalence relations

� �The purpose of the theorems given in the previous section was to show that � is a form

of congruence. This property will be essential to the construction of our realizability model
and semantics in the following chapter.

� �De{nition 3.2.8. An equivalence relation � � × is said to be a congruence if it
satis{es the following conditions.

Given t, u
 , if t � u then for all '
 S we have t' � u'.
Given v , v
 , t
 and x
 V , if v � v then t[x� v] � t[x� v].1 2 	 	 1 2 1 2

Given u , u , t
 and a
 V , if u � u then t[a� u] � t[a� u].1 2 $ 1 2 1 2

� �Theorem 3.2.9. The relation � is a congruence.

46

2.5.42

2.6.44

3.1.6

2.5.42

2.5.42

3.1.6

Proof. Combination of Theorem , Theorem and Theorem .

The precise de{nition of our equivalence relation will not play a direct role in our
construction. In fact, we will be able to build several di|ferent models using several di|ferent
equivalence relations. To use such an equivalence, we will only have to make sure that it is a� �congruence and that it is compatible with � in some sense. Of course, this property will
� �hold for � itself, but we will eventually need to use a di|ferent, compatible equivalence

relation starting from Chapter .

� � � �De{nition 3.2.10. An equivalence relation � � × is said to be compatible with � ,

or (simply) compatible, if it satis{es the following conditions. � � � �For all terms t, u
 such that t � u we have t � u (i.e., � � �).

Given t, u
 , if for every stack �
 � there is a process p
 ×� such that both
� �t � �
 p and u � �
 p, then t � u . � � � �Let t , t be arbitrary terms such that x
 FV t � FV t . If there is a closed term1 2 	 1 	 2

� � �u
 such that t [x� v] � [u]�
 v � � and t [x� v] � [u]�
 v � � for all v
 1 2 	

and �
 �, then t [x� v] � t [x� v] implies v � v for all v , v
 .1 1 2 2 1 2 1 2 	

� �Note that the second and third conditions require the equivalence to include the

reduction relation in some sense. Of course, this is only an intuition as the equivalence
relation ranges over terms while the reduction relation ranges over processes.

Remark 3.2.11. In the third condition of De{nition , the role of the term u is to extract� �(or project out) the value v from t [x� v] and t [x� v], along the relation
 .1 2

� �Theorem 3.2.12. The relation � is compatible.

Proof. The {rst condition is immediate. To prove the second condition let us suppose
� �that for all �
 � we have a p
 ×� such that t � �
 p and u � �
 p. Let us take

�
 �, '
 S and show that we have t' � � � + u' � � � . We now consider a0 0 0 0 0 0

� �renaming substitution ! mapping every variable of FV � to a distinct fresh variable.0
-1 � � � �Note that ! has an inverse ! mapping ! (to (for all (
 dom $. We thus obtain

-1 -1 -1t' � � = (t' � � !)! = (t � � !)(' *!) and u' � � = (u � � !)(' *!). Our0 0 0 0 0 0 0 0 0 0

hypothesis then gives us a common reduct p of t � � ! and u � � !. We can thus use0 0 0
-1 -1�Lemma to conclude, since it gives us t' � � = (t � � !)(' *!)
 p (' *!)0 0 0 0 0 0

-1 -1�and u' � � = (u � � !)(' *!)
 p (' *!).0 0 0 0 0 0

Let us now prove the third condition. We take t , t
 and we suppose that we have1 2
� � �u
 such that t [x� v] � [u]�
 v � � and t [x� v] � [u]�
 v � � for all v
 and1 2 	

�
 �. Let us take v , v
 such that v � v and show that t [x� v] � t [x� v]. By1 2 	 1 2 1 1 2 2

47

2.5.42

3.2.10

5

3.1.73.1.53.1.4

de{nition we know that there is �
 � and '
 S such that v ' � � � and v ' � � 0 0 1 0 0 2 0 0

(up to symmetry). We need to {nd �
 � and '
 S such that (t [x� v])' � � � and1 1 1 1 1 1

(t [x� v])' � � . We consider a renaming substitution ! mapping the free variable of2 2 1 1

-1� to distinct fresh variables, and we denote ! its inverse. We will now show that0
-1� = [u]� ! and ' = ' *! are suitable. According to our main hypothesis, we have1 0 1 0

� �t [x� v] � �
 v � � ! and t [x� v] � �
 v � � !. We can thus use Lemma to1 1 1 1 0 2 2 1 2 0
�conclude with (t [x� v])' � [u]� = (t [x� v] � �)'
 (v � � !)' = v ' � � � ,1 1 0 0 1 1 1 1 1 0 1 1 0 0

�and similarly (t [x� v])' � �
 v ' � � .2 2 0 0 2 0 0

From now on and until the end of the current chapter we will consider properties of� �compatible equivalences in general. In particular, we will use the symbol � to denote an� �arbitrary compatible equivalence. Moreover, we will always assume that � is a congru-
ence. Although this property is rarely required in this chapter, it will be absolutely necessary
for using an equivalence relation in the de{nition of our semantics.

3.3 Equivalences from reduction

� �The main aim of a compatible equivalence relation � is to identify terms with the same
computational behaviour. In particular, taking reduction steps does not fundamentally
change the observable computational behaviour of a term. We can thus derive several
primitive equivalences using the second property of compatible equivalences (De{nition

), that is recalled below as a lemma.

Lemma 3.3.13. Let t, u
 be two terms. If for all stacks �
 � there is a process
� �p
 ×� such that t � �
 p and u � �
 p then t � u .

Proof. By de{nition of a compatible equivalence.

�Lemma 3.3.14. Let t, u
 be two terms. If we have t � �
 u � � for every stack �
 �
then t � u .

Proof. Direct consequence of Lemma using p = u � �.

Based on the reduction rules of our abstract machine, we can derive six immediate
equivalences. They correspond to record projection, case analysis, unfolding of the {xpoint
combinator, elimination of special terms of the form % , and the erasure of a projectionv,u

or a case analysis by the special value �. The corresponding reduction rules do not involve
an interaction with the stack. In particular, they do not ÷observeø the stack and they leave
it unchanged.

48

3.3.13

3.2.10

2.5.42

Theorem 3.3.15. Let I � � be a {nite set of indices such that v
 , x
 V andi 	 i 	fin

t
 for all i
 I. Let v
 be a value, x
 V be a �-variable and t, u
 be terms.i 	 	

The following equivalences hold.

{(l = v) }.l � v if k
 I Y � t (�x.Y) vi i k k t,v t,xi
I

[C [v] | (C [x]� t)] � t [x � v] if k
 I % � uk i i i k k {(l = v) },ui ii
I i
I

�.l � � [� | (C [x]� t)] � �k i i i i
I

� �Proof. For every equivalence t � t that we need to prove, the de{nition of
 gives us1 2

t � �
 t � � for all �
 �. As a consequence, we can use Lemma .1 2

� �To go a little bit further, we can look at the {rst three rules of
 , which are used
to handle �-reduction (see De{nition). In particular, these rules can be composed
immediately when a �-abstraction is applied to a value. This corresponds exactly to a call-
by-value �-reduction step. Similar reasoning can be used to obtain two other equivalences
involving the special value �.

Theorem 3.3.16. For every x
V , t
 and v
 such that v) � and v � V we have	 	 	

(�x.t) v � t[x� v].

Proof. For all �
 � we have (�x.t) v � �
 v � [�x.t]�
 �x.t � v . �
 t[x� v] � �, we
can thus conclude using Lemma . Note that the second reduction step can only be
taken because v is not equal to � or to a �-variable.

Theorem 3.3.17. The equivalence � v � � holds for every value v
 that is not a	

�-variable. Similarly, the equivalence t � � � holds for every term t
 .

Proof. If v) � then for all �
 � we have � v � �
 v � [�]�
 � � v . �
 � � � since
v is not a �-variable. If v = � then for all �
 � we have � � � �
 � � [�]�
 � � �. In
both cases Lemma gives us � v � �. For all �
 � we have t � � �
 � � [t]�
 � � �
and thus we can also use Lemma to obtain t � � �.

The reduction rule for processes of the form ��.t � � is inherently non-local. Indeed,
the bound �-variable can be substituted anywhere in t and any reduction rule may apply
aùterwards (depending on the form of t and �). However, we can still derive equivalences
corresponding to the usual reduction rules of the ��-calculus [Parigot 1992]. In particular,
we can obtain two equivalences corresponding to call-by-value structural reductions.

� � � �Theorem 3.3.18. For every t, u
 and � , �
 V such that � � FV t and � � FV u!

we have t (��.u) � ��.t u[�� [t]�].

49

3.3.14
3.3.14

3.3.14

2.5.40

3.3.14

Proof. Since for every stack � we have t (��.u) � �
 ��.u � [t]�
 u[�� [t]�] � [t]�
and ��.t u[�� [t]�] � �
 t u[�� [t]�] � �
 u[�� [t]�] � [t]� we can conclude using
Lemma .

� � � �Theorem 3.3.19. For every t
 , � , �
 V and v
 such that � � FV t � FV v and! 	� �v � V � � we have (��.t) v � ��.t[�� v .�] v.	

Proof. Since we have (��.t) v � �
 v � [��.t]�
 ��.t � v . �
 t[�� v . �] � v . � and
��.t[�� v .�] v � �
 t[�� v . �] v � �
 v � [t[�� v . �]]�
 t[�� v . �] � v . � for all
stack �, we can conclude using Lemma .

Similarly, the following theorem provides an equivalence corresponding to renaming. Note
that our version of renaming is more general than the one found in [Parigot 1992] as our
formalism includes stacks. Indeed, only �-variables can be used in named terms in the
original version of the ��-calculus.

Theorem 3.3.20. For every �
 �, �
 V and t
 we have [�]��.t � [�]t[�� �].!

Proof. As [�]��.t � �
 ��.t � �
 t[�� �] � � and [�]t[�� �] � �
 t[�� �] � � we can
conclude using Lemma .

As a named term has the e|fect of erasing the whole stack, terms that are applied (as
functions) to a named term can always be removed. Similarly, values used as arguments of
a named term can be removed as they will never be considered. The following two theorems
will hence allow us to discard unnecessary subterms as early as possible, when attempting to
prove an equivalence.

� �Theorem 3.3.21. For every t
 , �
 � and v
 such that v � V � � the equivalence	 	

([�]t) v � [�]t holds.

Proof. Since for every stack � we have ([�]t) v � �
 v � [[�]t]�
 [�]t � v . �
 t � � and
[�]t � �
 t � � we can conclude using Lemma .

Theorem 3.3.22. For every t, u
 and �
 � we have t ([�]u) � [�]u .

Proof. Since we have t ([�]u) � �
 [�]u � [t]�
 u � � and [�]u � �
 u � � for every
stack �, we can conclude using Lemma .

We can also remark that using two consecutive �-abstractions leads to saving the
same stack twice. We can thus obtain the same computational behaviour by saving the

50

3.3.13

3.3.13

3.3.13

3.3.13

3.3.13

stack only once. Similarly, using two named terms in a row is the same as using only the
later one.

Theorem 3.3.23. For every � , �
 V and t
 we have ��.��.t � ��.t[���].!

Proof. We have ��.��.t � �
 ��.t[�� �] � �
 (t[�� �])[�� �] � � and we also have
��.t[���] � �
 (t[���])[�� �] � �. To be able to conclude using Lemma we
need to show that (t[�� �])[�� �] = (t[���])[�� �]. This is immediate as we may� � � �assume � � FV � and � � FV � up to renaming.! !

Theorem 3.3.24. For every � , �
 � and t
 we have [�][�]t � [�]t.1 2 1 2 2

Proof. As we have [�][�]t � �
 [�]t � �
 t � � and [�]t � �
 t � � for all � we can1 2 2 1 2 2 2

use Lemma .

Finally, we provide two last equivalences allowing the simpli{cation of terms involving
�-abstractions. For instance, if the variable bound by a �-abstraction does not occur in its
body, then it can be removed. Similarly, it is not useful to restore a stack right aùter it has
been saved.

� �Theorem 3.3.25. For every �
 V and t
 such that � � FV t we have ��.t � t.! !

Proof. As we have ��.t � �
 t[�� �] � � = t � � we can use Lemma .

Theorem 3.3.26. For every �
 V and t
 we have ��.[�]t � ��.t.!

Proof. As ��.[�]t � �
 [�]t[�� �] � � = t[�� �] � � and ��.t � �
 t[�� �] � � for
all � we can use Lemma .

Note that we can compose the previous two theorems to obtain ��.[�]t � t in the case� �where � � FV t . This can be seen as a form of ,-equivalence for �-abstraction, as!

remarked by Michel Parigot in [Parigot 1992].

3.4 Inequivalences from counter-examples

Using the theorems of the previous section, it is possible to derive equivalences in a
direct way. However, we will sometimes need to reason in an indirect way by exhibiting a
contradiction. We will hence provide several means of identifying inequivalences. The idea
here is to rely on the {rst property of compatible equivalences (De{nition), which is
recalled in the following lemma.

51

3.2.10

3.3.13

3.3.14

3.3.13

3.3.13

Lemma 3.4.27. For all terms t, u
 such that t � u we have t � u . This exactly
� � � �means that we have � � � .

Proof. By de{nition of a compatible equivalence.

We will now state two lemmas that will be convenient for proving inequivalences using� �the de{nition of
 . The former will in fact be exactly equivalent to Lemma (through
its contrapositive), and the latter will directly follow.

De{nition 3.4.28. Given t and u
 , the negations of t � u and t � u are respectively

denoted t � u and t � u .

Lemma 3.4.29. Let t, u
 be two terms. If there is a stack �
 � and a substitution
'
 S such that t' � � � p and u' � � p then t � u .

� �Proof. By de{nition of � we have t � u . We can thus conclude that t � u using

(the contrapositive of) Lemma .

Lemma 3.4.30. Let t, u
 be two terms. If there is a stack �
 � such that we have
t � � � and u � � then t � u .

Proof. Immediate consequence of Lemma using � and ' = ' .id

We will now start by showing that records with di|ferent {elds cannot be equivalent.
Similarly, we will show that variants with di|ferent constructors are never equivalent. In
both cases, it is not dif{cult to {nd a stack distinguishing the two values.

Theorem 3.4.31. Let m , n
 � be two natural numbers and v, w
 be two values. If we	

have m) n then C [v] � C [w].m n

Proof. We can apply Lemma with � = [�y.[y | C [z]� {}]]�. Indeed, C [v] � � �m m

since C [v] � �
 �y.[y | C [z]� {}] � C [v] . �
 [C [v] | C [z]� {}] � �
 {} � �. Moreover,m m m m m

we have C [w] � � as C [v] � �
 �y.[y | C [z]� {}] � C [w] . �
 [C [w] | C [z]� {}] � �n n m n n m

and [C [w] | C [z]� {}] � � is stuck since m) n.n m

Theorem 3.4.32. Let I , I be two sets of indices such that for all i
 I we have v
 1 2 1 i 	

and for all i
 I we have w
 . If I) I then {(l = v) } � {(l = w) }.2 i 	 1 2 i i i ii
I i
I1 2

Proof. Since I) I there must be k such that k
 I and k � I (up to symmetry). We can1 2 1 2

hence apply Lemma with the stack � = [�x.x.l]�. Indeed, {(l = v) } � � � sincek i i
i
I1

52

3.4.30

3.4.30

3.4.29

3.4.27

3.4.27

{(l = v) } � �
 �x.x.l � {(l = v) } . �
 {(l = v) }.l � �
 v � �. Moreover, wei i k i i i i k ki
I i
I i
I1 1 1

have {(l = w) } � �
 �x.x.l � {(l = w) } . �
 {(l = w) }.l � �, and as k � Ii i k i i i i k 2i
I i
I i
I2 2 2

we know that {(l = w) }.l � � is stuck.i i ki
I2

Similarly, we can show that a record and a variant can never be equivalent. Indeed,
pattern-matching on a record will lead to a stuck state.

Theorem 3.4.33. Let m
 � be a natural number, v
 be a value and I be a {nite set	

of indices such that v
 for all i
 I. We have C [v] � {(l = v) }.i 	 m i i i
I

Proof. We can apply Lemma using the stack � = [�y.[y | C [z]� {}]]�. Indeed, wem

have C [v] � � � like in the proof of Theorem . Moreover, {(l = v) } � � sincem i i

i
I

{(l = v) } � �
 �y.[y | C [z]� {}] � {(l = v) } . �
 [{(l = v) } | C [z]� {}] � � andi i m i i i i mi
I i
I i
I

the process [{(l = v) } | C [z]� {}] � � is stuck.i i mi
I

Theorem 3.4.34. Let m
 � be a natural number, v
 be a value, x
V be a �-variable	 	

and t
 be a term. We have C [v] � �x.t.m

Proof. As for Theorem we can apply Lemma using � = [�y.[y | C [z]� {}]]�.m

Indeed, �x.t � � since �x.t � �
 �y.[y | C [z]� z] � �x.t . �
 [�x.t | C [z]� z] � � andm m

the process [�x.t | C [z]� z] � � is stuckm

We will now show that a record {(l = v) } cannot be equivalent to a �-abstractioni i i
I

�x.t. The most natural approach consists in using record projection to obtain a stuck state
on the �-abstraction. In other words, we can use a stack of the form [�y.y.l]� providedk

that k
 I. However, this technique does not work with the empty record {} (i.e., when
I = �). In this case, a possible solution is to use a stack of the form v . � where v is a
value such that t[x� v] � � � (obviously, {(l = v) } � v . � is stuck). However, there isi i
 i
I

no guarantee that such a value v exists. If there is none, then it seem to be impossible to
distinguish {} from �x.t without relying on a speci{c term constructor like % . Terms ofv,u

this form were added to the calculus for this very purpose.

Theorem 3.4.35. Let x
V be a �-variable, t
 be a term and I � � be a {nite set of	 fin

indices such that v
 for all i
 I. We have �x.t � {(l = v) }.i 	 i i i
I

Proof. We can use Lemma with � = [�y.%]�. Indeed, we have {(l = v) } � � �y,{} i i
i
I

as {(l = v) } � �
 �y.% � {(l = v) } . �
 % � �
 {} � � and �x.t � � asi i y,{} i i {(l = v) },{}i i
i
I i
I i
I

�x.t � �
 �y.% � �x.t . �
 % � � and % � � is stuck.y,{} �x.t,{} �x.t,{}

53

3.4.30

3.4.303.4.33

3.4.31
3.4.30

To conclude this section, we consider two more ways of deriving an inequivalence
when working with records and variants. Provided that two values stored in a given record
{eld or in a constructor are not equivalent, it is possible to derive that the two records
or the two variants are not equivalent. We will here need to rely on the third property of
compatible equivalences (De{nition), that is recalled below as a lemma.

� � � �Lemma 3.4.36. Let t , t be two arbitrary terms with x
 FV t � FV t . If there is a1 2 	 1 	 2
� � �closed term u
 such that t [x� v] � [u]�
 v � � and t [x� v] � [u]�
 v � � for all1 2

v
 and �
 �, then t [x� v] � t [x� v] implies v � v for all v , v
 .	 1 1 2 2 1 2 1 2 	

Proof. By de{nition of a compatible equivalence.

Theorem 3.4.37. Let m
 � be a natural number and v , v
 be two values. If v � v1 2 	 1 2

then C [v] � C [v].m 1 m 2

Proof. Let us take u = �y.[y | C [z]� z] and t = t = C [x]. For all v
 and �
 �m 1 2 m 	

we have C [v] � [u]�
 u � C [v] . �
 [C [v] | C [z]� z] � �
 v � �. As a consequencem m m m

we can apply Lemma with v and v to obtain that C [v] � C [v] implies v � v .1 2 m 1 m 2 1 2

We can thus conclude as this is the contrapositive of what we want to show.

Theorem 3.4.38. Let I be a {nite set of indices such that for all i
 I we have v , w
 . Ifi i 	

there is k
 I such that v � w then {(l = v) } � {(l = w) }.k k i i i ii
I i
I

Proof. We will show the contrapositive, so we suppose {(l = v) } � {(l = w) }. Wei i i ii
I i
I

then take k
 I and prove that v � w . Let us de{ne the term t to be the recordk k 1

{(l = v) } in which the value v has been replaced by the variable x. Similarly, we de{nei i ki
I

t to be the record {(l = w) } in which the value w has been replaced by x. We can then2 i i ki
I

conclude with Lemma using t , t and u = �y.y.l .1 2 k

3.5 Canonical values

The idea now is to characterise the equivalence classes of the di|ferent forms of values. The
results presented here will be required in Chapter to show that the semantics of our types
is well-formed in some sense. We will {rst start by showing that � is only equivalent to
itself among all values. Similarly, it is possible to show that �-variables are only equivalent
to themselves.

Theorem 3.5.39. Let v
 be a value. We have � � v if and only if v = �.	

54

4

3.4.36

3.4.36

3.2.10

Proof. If v = � then we immediately have � � v by reöexivity. It remains to show that
� � v for every value v) �. In the case where v � V we can use Lemma with the	

stack [{}]� as we have � � [{}]�
 � � �� and v � [{}]�
 {} � v . � . If v = x
V then we	

can use Lemma with ' = [x� {}] and � = [{}]� since v' � � = {} � [{}]�
 {} � {} . �

and � � [{}]�
 � � �� as above.

Theorem 3.5.40. Let x
V be a �-variable and v
 be a value. The equivalence x � v	 	

holds if and only if v = x.

Proof. If v = x then we have v � x by reöexivity. It remains to show that x � v for
every value v) x. In the case where v = � we can conclude immediately using Theorem

. If v = y
V then we can use Lemma with ' = [x� {}][y� �] and � = [{}]�.	

Indeed, we have x' � � = {} � [{}]�
 {} � {} . � and v' � � = � � [{}]�
 � � �� . Finally,

if v) � and v � V then we can use Lemma with ' = [x� �] and � = [{}]�. Indeed,	

x' � � = � � [{}]�
 � � �� and v' � � = v' � [{}]�
 {} � [v']� .

We will now characterise the values that are equivalent to a given variant, and those
that are equivalent to a given record. In both cases, the equivalent values have the same
structure and equivalent subvalues.

Theorem 3.5.41. Let m
 � be a natural number and v, w
 be values. The equivalence0 	

C [v] � w holds if and only if w = C [w] for some w
 such that w � v.m 0 0 m 	

Proof. Let us {rst assume w = C [w] for some w
 such that w � v. Provided that0 m 	� �� is a congruence, we can use its extensionality property with the term t = C [x] tom

obtain C [v] � w = C [w].m 0 m

Let us now suppose that C [v] � w and show that w is of the form C [w] for somem 0 0 m

w
 such that w � v. We reason by case on the possible forms of the value w . Using	 0

Theorems , , , and we obtain w = C [w] for some w
 .0 m 	

Now, if w � v then we immediatly obtain that C [v] � C [w] using Theorem . As am m

consequence, it must be that v � w.

Theorem 3.5.42. Let I be a {nite set of indices such that v
 for all i
 I, andi 	

let w
 be a value. The equivalence {(l = v) } � w holds if and only if we have	 i i i
I

w = {(l = w) } for some values w
 such that w � v for all i
 I.i i i 	 i ii
I

Proof. Let us {rst assume that w = {(l = w) } with v � w for all i
 I and showi i i ii
I � �{(l = v) } � {(l = w) }. Up to renaming, we may assume I = i
 � | 1� i � ni i i ii
I i
I� �with n = I . For all 0 � k � n we de{ne % = {(l = r) } where r = w if i < k andk i i i ii
I

r = v otherwise. We have % = {(l = v) } and % = {(l = w) }, so we need to showi i 0 i i n i ii
I i
I

55

3.4.37
3.4.313.4.333.4.343.5.393.5.40

3.4.29

3.4.293.5.39

3.4.29

3.4.30

that % � % . We are going to prove that % � % for all 0 � k � n by induction on k .0 n 0 k

When k = 0 this is immediate by reöexivity. Let us now suppose that % � % for some0 k

0 � k < n and show that % � % . By transitivity, it is enough to show % � %0 k+1 k k+1� � � �which follows from the extensionality of � since we assumed v � w (and � isk k

a congruence).
Let us now suppose {(l = v) } � w and show that w is of the form {(l = w) }i i i ii
I i
I

with w � v for all i
 I. Using Theorems , , , and we obtaini i

w = {(l = w) } with w
 for all i
 I. Now, if v � w for some k
 I then wei i i 	 k ki
I

immediately get {(l = v) } � {(l = w) } using Theorem . As a consequence, iti i i ii
I i
I

must be that v � w for all k
 I.k k

To conclude this chapter, we provide a last theorem establishing that �-abstractions
can only be equivalent to �-abstractions.

Theorem 3.5.43. Let x
V be a �-variable, t
 be a term and v
 be a value. If the	 	

equivalence �x.t � v holds, then there must be y
 V and u
 such that v = �y.u .	

Proof. We reason by case on the possible forms of v. Using Theorems , ,
and we obtain that v cannot be �, a �-variable, a record nor a variant. The only
remaining possibility is that v = �y.u for some y
 V and u
 .	

56

3.4.34
3.4.353.5.393.5.40

3.4.38

3.4.323.4.333.4.353.5.393.5.40

In this chapter, we present a new type system whose distinguishing feature is an embedded
notion of program equivalence. It enables the speci{cation of equational properties over
programs, which can then be proved using equational reasoning. Our types are interpreted
using standard classical realizability techniques, which allows for a semantical justi{cation
of our typing rules.

4.1 Observational equivalence type

One of the main goals of this thesis is to build a type system that can be used to reason
about programs. To achieve this goal, we need to be able to specify program behaviours
using types. We hence introduce equality types of the form t � u , where t and u are
(possibly untyped) terms. Note that here, the equivalence symbol is part of the syntax� �and does not refer to a speci{c equivalence relation. An equivalence relation � will
however be used for the semantical interpretation of equality types. We will require that it� �is a congruence (De{nition) and compatible with � (De{nition), but it will

remain otherwise unspeci{ed. In other words, it will be considered as a parameter of our
type system and semantics.

Intuitively, an equality type t � u will be interpreted as - (i.e., logical truth or the
biggest type) if the equivalence t � u holds, and as . (i.e., logical absurdity or the smallest
type) otherwise. For example, the type (�x.x) �x.x��x.x will be equivalent to - as we
have (�x.x) �x.x � �x.x according to Theorem . However, the type �x.x� {} will
be equivalent to . as �x.x � {} according to Theorem . Of course, a compatible
equivalence relation is likely to be undecidable. Indeed, such equivalence relations are� �similar to � , which is itself undecidable.

Theorem 4.1.1. Given t, u
 it is undecidable whether t � u or t � u .

57

3.4.35
3.3.16

3.2.103.2.8

Types and realizability4
semantics

Proof. We are going to encode the halting problem H using equivalence. Given a closedt
�term t
 , H can be stated as t � �� in our system. Let us consider a closed termt

�#
 such that # � � for all �
 �. For example, we can take # = (�x.x x) �x.x x

3as # � � is non-terminating for all �
 � since # � �
 # � �. We will now show that

H is equivalent to [�]t � #. Let us suppose H and show [�]t � #. We need to {nd at t

stack �
 � such that [�]t � � � and # � � . This is in fact true for all � as # � �

by hypothesis and [�]t � �
 t � �� since we supposed H . We now suppose [�]t � # andt

show H . By de{nition, there must be a stack �
 � such that [�]t � � � since # � � t 0 0

for all �
 �. Since [�]t � �
 t � �, we immediately obtain H .0 t

As a consequence, we cannot hope to decide, in general, whether an equivalence holds or
not. We will hence need to rely on a partial decision procedure that will only approximate
our observational equivalence relation.

In the system, proving a program equivalence amounts to showing that the correspond-
ing equality type is inhabited. However, an equivalence type may also be used as an assump-
tion. For example, it is possible to de{ne a function whose input type is an equivalence. As
a consequence, we need a form of context to store the set of program equivalences that are
assumed to be true during a proof. This context will also be extended automatically during
the construction of a proof (e.g., when entering branches of a case analysis).

� �De{nition 4.1.2. An equational context / � 0 × is a {nite set of pairs of terms
denoting hypothetical equivalences. For convenience, equational contexts we will repre-
sented using lists generated using the following bnf grammar.

/ ::= � | / , t � u t , u

During the construction of a proof, the equational context grows with new hypotheses
and equivalences need to be proved eventually. As mentioned previously, we rely on a partial
decision procedure that is supposed correct, but remains otherwise unspeci{ed. Such a
decision procedure has been successfully implemented to work with our prototype language
(). Although we cannot hope for completeness, we will argue that it
is a good enough approximation of our equivalent relation in practice.

De{nition 4.1.3. Given an equational context / and a substitution ', we say that ' reali÷es� �/ and we write ' � / if for every t , u
 / we have t' � u'.

De{nition 4.1.4. Let / be an equational context and t
 and u
 be two terms. We
write / 1 t � u if our (yet unspeci{ed) decision procedure is able to show that for every
substitution ' such that ' � / we have t' � u'.

58

http://lepigre.fr/these/

4.2 Quantification and membership type

Although equality types can be used to derive simple equational properties, their use is
rather limited without a form of quanti{cation. Indeed, they only allow the derivation
of static equivalences like (�x.x) {} � {}, but they cannot be used to show more general
properties like ÷(�x.x) v � v for every value vø. Terms can contain free variables of several
sorts: �-variables (i.e., value variables), term variables and �-variables (i.e., stack variables).
As open terms may appear in types, and in particular in equality types, it is natural to allow
universal and existential quanti{cation over all three sorts of variables. This will enable the
speci{cation of properties such as �y.(�x.x) y� y or �x.�y.x� y � C [x]�C [y] insidek k

the system.

Remark 4.2.5. The forms of quanti{cation described here range over all closed values,
terms or stacks regardless of their types.

Remark 4.2.6. It is not clear whether quanti{cation over stacks has a practical use. We
only include it as it {ts well in the framework at no extra cost.

Quantifying over all the closed values or terms is not always enough. Indeed, we oùten
need to quantify over the values or the terms of a given type only. For example if we
quantify over a �-variable that is used in a case analysis, then a runtime error will be
produced for values that do not correspond to matched constructors. This would not
happen when quantifying over value of the appropriate sum type only.

To achieve typed quanti{cation we introduce a membership type constructor t
A

where t is a term and A is a type. The elements of t
A are those of A that are equivalent
to t. In particular, t
A is empty if t does not have type A. Intuitively, t
A can be
read as the proposition ÷t has type Aø, but we will see later that a more appropriate
interpretation would be ÷t realizes Aø. Using membership, we can use the well-known
relativised quanti{cation scheme to obtain a dependent function type.

� B � �x.(x
A � B)x
A

The dependent function type exactly correspond to typed quanti{cation as its elements
can only be applied to values of type A. Other values are simply {ltered out. Note that
we can de{ne a dependent pair type using existential quanti{cation as follows.

2 B � �x.{l : x
A ; l : B}x
A 1 2

59

We can also de{ne the same kind of type constructors by quantifying over term variables in
the exact same way.

� B � �a.(a
A � B) 2 B � �a.{l : a
A ; l : B}a
A a
A 1 2

Remark 4.2.7. Note that these encodings only make sense (i.e., correspond to dependent
types) if the variable that is quanti{ed over does not appear in A.

4.3 Sorts and higher-order types

Our type system allows universal and existential quanti{cation over several sorts of objects.
There are {rst-order quanti{ers ranging over values, terms and stacks, as shown in the
previous section. And the system also provides second order quanti{cation (i.e., quanti{-
cation over types), which corresponds to System F polymorphism and type abstraction.
All of these di|ferent forms of quanti{ers are handled uniformly in the syntax and in the
semantics thanks to a higher-order formulation.

The higher-order features of the system allow us to de{ne (and quantify over) types
with parameters of any sort. For example, we can de{ne a type parametrised by another
type and a term. This leads to a system in which it is syntactically correct to use a (not
fully applied) parametric type, or even a term, as a proposition. This does not make sense,
and hence we must make sure that this does not happen. The usual approach to tackle this
problem is to assign a form of type (called sort) to the types themselves. This will give use
the guarantee that our types are ÷well-formedø.

� �De{nition 4.3.8. We denote S = 3 , 	 , $, ! our set of atomic sorts. It contains the0

sort of propositions 3, the sort of values 	, the sort of terms $ and the sort of stacks !.

De{nition 4.3.9. The set of all sorts S is generated from the set of atomic sorts S using the0

following bnf grammar.

s , r ::= 4 | s � r 4
 S0

The language of sorts only contains constants and an arrow constructor for functions.
Our ÷sort systemø will in fact be very similar to the simply typed �-calculus. In particular,
the syntax of our types will contain a constructor for building functions (i.e., �-abstraction)
and a corresponding constructor for application.

� �De{nition 4.3.10. We require a countable set V = X,Y, Z� of propositional variables3

that does not intersect with V , V and V .	 $!

60

� �De{nition 4.3.11. We require a countable set of variables V = (, � , 5� containing the
ssets V ,V ,V and V . Given a variable (
V, we will sometimes write (to mean that (is	 $! 3

to be considered as a variable of sort s.

De{nition 4.3.12. The set of types (or formulas) 6 is built from V, , and � using the	

following bnf grammar.

s s� �6 A, B ::= v | t | � | (| ((�A) | A(B) | A � B | t
A | A 7 t� u | {(l : A) }i i i
I
s s| [(C : A)] | �(.A | �(.Ai i i
I

Our syntax contain values, terms and stacks, as they will correspond to types of sort 	, $
and !. We then have variables of all sorts, abstraction to build types with an arrow sort
and application. All the remaining constructors are used to build propositions (i.e., actual
formulas) which will be given sort 3. Note that the quanti{ers may range over types of
any sort. They are hence very general.

Remark 4.3.13. The bnf grammar of De{nition is ambiguous. For example, values
are given twice as they are contained in terms. Some variables of V are also given more
than once as V , V and V are contained in values, terms and stacks respectively.	 $!

To track the sort of variables in types we need to introduce a form of context. It can
then be used to de{ne our notion of well-formed type using a deduction rule system. We
will then only consider types that can be shown well-formed in this system.

� �De{nition 4.3.14. A sorting context is a {nite map 2 over V such that for all (
 dom 2 we� �have 2 (
 S. For convenience, we will represent sorting contexts using comma-separated
lists of sort assignments generated by the following bnf grammar.

2 ::= � | 2 , (: s (
 V, s
 S

De{nition 4.3.15. A sorting judgment is a triple of a sorting context 2, a type A and a sort s

denoted 2 1 A : s. We say that the sorting judgment 2 1 A : s is valid if and only if it
can be derived using the deduction rules of Figure .

The main role of the sorting rules is to keep track of the sort of the free variables. The
rules on the {rst {ve lines of Figure simply traverse the structure of values, terms and
stacks to save the sort of the free variables in the context. Note that the {rst rule on the
sixth line is also used for value, term and stack variables.

61

4.1

4.1

4.3.12

� �2 1 v : 	2 , x : 	 1 t : $ 2 1 v : 	 i i
I

2 1 �x.t : 	 2 1 {(l = v) } : 	2 1 C[v] : 	 i i i
I

2 1 v : 	 2 1 t : $ 2 1 u : $
2 1 � : 	 2 1 v : $ 2 1 t u : $

2 , � : ! 1 t : $ 2 1 � : ! 2 1 t : $ 2 1 v : 	
2 1 ��.t : $ 2 1 v.l : $2 1 [�]t : $

� �2 1 v : 	 2 , x : 	 1 t : $ 2 1 t : $ 2 1 v : 	i i i
I

2 1 Y : $2 1 [v | (C [x]� t)] : $ t,vi i i i
I

2 1 v : 	 2 1 t : $ 2 1 v : 	 2 1 w : 	
2 1 % : $ 2 1 & : $ 2 1 � : !v,t v,w

2 1 v : 	 2 1 � : ! 2 1 t : $ 2 1 � : !
2 1 v . � : ! 2 , (: s 1 (: s2 1 [t]� : !

2 , (: s 1 A : r 2 1 A : s � r 2 1 B : s 2 1 A : 3 2 1 B : 3
s 2 1 A � B : 32 1 A(B) : r2 1 ((�A) : s � r

� � � �2 1 A : 3 2 1 A : 3 2 , (: s 1 A : 3i ii
I i
I
s2 1 {(l : A) } : 3 2 1 [(C : A)] : 3 2 1 �(.A : 3i i i ii
I i
I

2 , (: s 1 A : 3 2 1 A : 3 2 1 t : $ 2 1 u : $ 2 1 t : $ 2 1 A : 3
s 2 1 A 7 t� u : 3 2 1 t
A : 32 1 �(.A : 3

Figure 4.1 û Sorting rules.

As an example �x.x � {} is not well-formed as the type at the leùt of the arrow does
not have sort 3 (it has sort 	 or $). However, (X � [C : {} | C : X])([C : {} | C : {}]) is a0 1 2 3

well-formed type of sort 3, as shown by the following proof tree.

X : 3 1 {} : 3 X : 3 1 X : 3
X : 3 1 [C : {} | C : X] : 3 1 {} : 3 1 {} : 30 1

1 (X� [C : {} | C : X]) : 3 � 3 1 ([C : {} | C : {}]) : 30 1 2 3

1 (X� [C : {} | C : X])([C : {} | C : {}]) : 30 1 2 3

62

As types contain the �-calculus, we need to consider their reduction and normalisation.
First we de{ne the notion of �-reduction in a type.

sDe{nition 4.3.16. We call a redex a type of the form ((�A)(B), and we say that a type
is in normal form if it does not contain any redex. The reduction relation over types is the� �smallest relation 8 � 6×6 such that:

s sfor every redex ((�A)(B) we have ((�A)(B) 8 A[(� B] and� �8 is contextually closed (i.e., reduction considers all the redexes in a type).
�� �We denote 8 its reöexive and transitive closure.

� �Remark 4.3.17. The 8 relation should not be confused with the call-by-value reduction
relation of our abstract machine. In particular, it cannot be used to evaluate terms.

Theorem 4.3.18. Let 2 be a sorting context, A
 6 be a type and s
 S be a sort. If the
sorting judgment 2 1 A : s is valid, then there is a unique type B
 6 such that B is in

�normal form, A 8 B and the sorting judgment 2 1 B : s is valid.

Proof. Our language of types can be seen as an instance of the simply typed �-calculus
sextended with countably many constants. For instance, a type of the form �(.A can� �be encoded using a constant � of sort s � 3 � 3. Note that an in{nite number ofs

constants is required to encode product types, sum types, records and pattern-matchings
as they can be indexed by any {nite subset of �. As a consequence, the theorem follows
from well-known properties of the simply typed �-calculus with the subtyping relation
induced by the axiom 	 � $ on base types (see, e.g., [Mitchell 1996]).

In the following sections, we will always consider well-formed types. As a consequence, we
may also assume that a type is in normal form as we can always normalise well-formed
types according to the previous theorem.

4.4 Typing judgments for values and terms

As our language is call-by-value and has operations generating side-e|fects, we need to be
careful to achieve type-safety. In particular, some of our typing rules will not apply to terms,
but only to values (as mentioned in Chapter). Here, value restriction will be encoded using
two forms of judgments: usual typing judgments ranging over terms (including values), and
a restricted form of judgments ranging over values only.

To be able to assign types to terms containing free variables we will need our typing
judgments to carry a form of context. It will provide us with a way of assuming a type for
each of the free variables of the typed term. They will include �-variable and �-variable but
no term variables.

63

1

2 , x : 	 : | : 9, x : A ; / 1 t : B
Ax �i

2 , x : 	 : | : 9, x : A ; / 1 x : A 2 : | : 9 ; / 1 �x.t : A � Bval val

2 : | : 9 ; / 1 v : A 2 : | : 9 ; / 1 t : A � B 2 : | : 9 ; / 1 u : Aval � �e

2 : | : 9 ; / 1 v : A 2 : | : 9 ; / 1 t u : B

. .2 , � : ! : | : 9, � : A ; / 1 t : A 2 , � : ! : | : 9, � : A ; / 1 t : A ��� 	
.2 : | : 9 ; / 1 ��.t : A 2 , � : ! : | : 9, � : A ; / 1 [�]t : B

2 , (: s : | : 9 ; / 1 v : A 2 , x : 	 , (: s : | : 9, x : A ; / 1 t : Cval � �eis s2 : | : 9 ; / 1 v : �(.A 2 , x : 	 : | : 9, x : �(.A ; / 1 t : Cval

s2 : | : 9 ; / 1 t : �(.A 2 1 B : s 2 : | : 9 ; / 1 t : A[(� B] 2 1 B : s
� � ie s2 : | : 9 ; / 1 t : A[(� B] 2 : | : 9 ; / 1 t : �(.A

2 , x : 	 : | : 9, x : A ; / , x � t 1 u : C 2 : | : 9 ; / 1 t : A / 1 u � u1 2
 7e i

2 , x : 	 : | : 9, x : t
A ; / 1 u : C 2 : | : 9 ; / 1 t : A 7 u � u1 2

2 : | : 9 ; / 1 v : A 2 , x : 	 : | : 9, x : A ; / , u � u 1 t : Cval 1 2
 7i e

2 : | : 9 ; / 1 v : v
A 2 , x : 	 : | : 9, x : A 7 u � u ; / 1 t : Cval 1 2

2 : | : 9 ; / 1 v : {(l : A) } k
 I 2 : | : 9 ; / 1 v : A k
 Ival i i val ki
I × +e i

2 : | : 9 ; / 1 v.l : A 2 : | : 9 ; / 1 C [v] : [(C : A)]k k val k i i i
I

��2 : | : 9 ; / 1 v : Aval i i i
I ×i

2 : | : 9 ; / 1 {(l = v) } : {(l : A) }val i i i ii
I i
I

��2 : | : 9 ; / 1 v : [(C : A)] 2 , x : 	 : | : 9, x : A ; / , v � C [x] 1 t : Bval i i i i i i i ii
I i
I +e

2 : | : 9 ; / 1 [v | (C [x]� t)] : Bi i i i
I

��2 : | : 9 x � w ; / 1 v[x� w] : A[x� w] / 1 w � w1 val 1 1 1 2 �	, 	��2 : | : 9 x � w ; / 1 v[x� w] : A[x� w]2 val 2 2

��2 : | : 9 x � w ; / 1 t[x� w] : A[x� w] / 1 w � w1 1 1 1 2 �$, 	��2 : | : 9 x � w ; / 1 t[x� w] : A[x� w]2 2 2

��2 : | : 9 a � u ; / 1 v[a� u] : A[a� u] / 1 u � u1 val 1 1 1 2 �	,$��2 : | : 9 a � u ; / 1 v[a� u] : A[a� u]2 val 2 2

��2 : | : 9 a � u ; / 1 t[a� u] : A[a� u] / 1 u � u1 1 1 1 2 �$,$��2 : | : 9 a � u ; / 1 t[a� u] : A[a� u]2 2 2

Figure 4.2 û Typing rules.

64

� �De{nition 4.4.19. A typing context is a {nite map 9 over V � V such that 9 x
 6 for	 !� � � � � �all x
 dom 9 �V and 9 �
 6 for all �
 dom 9 �V . For convenience, we will	 !

represent typing contexts using comma-separated lists of type assignments generated by
the following bnf grammar. Note that variables can only be mapped once in a context, the
order in which they appear is thus irrelevant.

.9 ::= � | 9, x : A | 9, � : A x
 V , �
 V , A
 6	 $

The full context of typing judgments will be built using a typing context and an
equational context. As these contexts may contain types and hence free variables, we need
to de{ne a notion of well-formedness for these two forms of contexts.

De{nition 4.4.20. Given a sorting context 2, we say that a typing context 9 is well-formed� � � �and write 2 1 9 if for all x
 dom 9 �V we have 2 1 9 x : 3 and 2 1 x : 	, and for all	� � � ��
 dom 9 �V we have 2 1 9 � : 3 and 2 1 � : !.!

De{nition 4.4.21. Given a sorting context 2, we say that an equational context / is� �well-formed and write 2 1 / if for all t , u
 2 we have 2 1 t : $ and 2 1 u : $.

Using our three forms of contexts, we can now de{ne our actual judgments. Again,
a notion of well-formedness need to be considered as our judgments contain objects of
di|ferent sorts, which all need to be well-formed.

De{nition 4.4.22. A value judgement is a tuple of a typing context 9, an equational context
/, a value v
 and a type A
 6 that is denoted 9 ; / 1 v : A. We say that such a	 val

judgment is well-formed under the sorting context 2, and we write 2 : | : 9 ; / 1 v : A, ifval

and only if we have 2 1 9, 2 1 /, 2 1 v : 	 and 2 1 A : 3.

De{nition 4.4.23. A term judgement is a tuple of a typing context 9, an equational context
/, a term t
 and a type A
 6 that is denoted 9 ; / 1 t : A. We say that such a
judgment is well-formed under the sorting context 2, and we write 2 : | : 9 ; / 1 t : A, if and
only if we have 2 1 9, 2 1 /, 2 1 t : $ and 2 1 A : 3.

We can now give the typing rules of our system, which will involve both value and term
judgments. Moreover, rules having a premise of the form / 1 t � u can only be applied if
our (yet unspeci{ed) equivalence decision procedure is able to show that t is equivalent to u

in the equational context / (see the {rst section of this chapter).

De{nition 4.4.24. A value or term judgment is said to be valid if it can be derived using the
typing rules of Figure .

65

4.2

The typing rules of our system, and hence our typing derivations, only involve well-formed
judgments. In particular, a typing rule can only be applied if all the involved judgments
are well-formed.

Remark 4.4.25. Note that the � rule cannot apply if (appears in the contexts 9 and / ori

in t. This would prevent the conclusion judgment to be well-formed.

As our system is call-by-value and has e|fects, the � rule needs value restriction toi

remain sound. In our formalism, this means that the � rule only applies to value judgments.i

The
 rule requires value restriction as well, as otherwise the system cannot be provedi

sound. As the
 rule will be involved in the derivation of the typing rule for the eliminationi

of the dependent function type at the beginning of Chapter , the latter will also need value
restriction.

4.5 Call-by-value realizability semantics

The abstract machine presented in Chapter is part of a classical reali÷ability machinery that
will be built upon here. We aim at obtaining a semantical interpretation of our higher-order
type system. In particular, a proposition (i.e., a type of sort 3) will be interpreted by three
sets: a set of values, a set of stacks and a set of terms. As always in classical realizability, the
model is parametrised by a pole, which serves as an exchange point between the world of
programs and the world of execution contexts, encoded as stacks.

� � � �De{nition 4.5.26. Given a reduction relation % � ×� × ×� , a pole is a set of
processes � � ×� which is %-saturated (i.e., closed under backward reduction). More
formally, if we have q
 � and p%q then p
 �.

It is important to note that in the remaining of this chapter, we will consider, if not
otherwise speci{ed, a {xed (but arbitrary) pole �.

The notion of orthogonality is central in Krivine's classical realizability. In this frame-
work a type is interpreted (or realized) by programs computing corresponding values. This
interpretation is spread in a three-layered construction, even though it is fully determined
by the {rst layer and the choice of the pole. The {rst layer consists of a set of values that
we will call the raw semantics. It gathers all the syntactic values that should be considered
as having the corresponding type. As an example, if we were to consider the type of natural� �numbers, its raw semantics would be the set | n
 � where is some encoding of n.n n

The second layer, called falsity value, is a set containing every closed stack that is a candidate
for building a valid process using any value from the raw semantics. The notion of validity
depends on the choice of the pole. The third layer, called truth value is a set of closed
terms that is built by iterating the process once more. The formalism for the two levels of

66

2

5

^ ^

� � �orthogonality is given in the following de{nitions. Recall that , and � denote the set	

of closed values, closed terms and closed stacks respectively.

� . �De{nition 4.5.27. For every set : � we de{ne a set : � � as follows.	

. �� �: = �
 � | � v
: , v � �
 �
� . �De{nition 4.5.28. For every set ; � � we de{ne a set ; � as follows.

. �� �; = t
 | � �
 ;, t � �
 �
We now give several general properties of orthogonality, which hold in every call-by-

value classical realizability model. They will be useful when proving the soundness of our
type system.

� ..Lemma 4.5.29. If : � is a set of values, then : � : .	

..Proof. We take v
 : and show v
 : . By de{nition we need to show v � �
 � for all
. .stacks �
 : . This is immediate by de{nition of : .

� . .Lemma 4.5.30. Let :,; � be sets of closed values. If : � ; then ; � : .	

. .Proof. Let us suppose that : � ;, take �
 ; and show that �
 : . By de{nition, we
know that for all v
 ; we have v � �
 �. Since : � ;, this is also true for all v
 :, and

.hence �
 : .

�Lemma 4.5.31. Let :, ; � be sets of closed values. If ; � : then : � ; .	

.Proof. Let us suppose that ; � : , take t
 : and show that t
 ; . By de{nition,
. . .we know that for all �
 : we have t � �
 �. Since ; � : , this is also true for all

. ..�
 ; , and hence t
 ; .

�Lemma 4.5.32. Let :, ; � be sets of closed values. If : � ; then : � ; .	

. .Proof. Let us suppose that : � ; and apply Lemma to obtain ;
 : . We can
then conclude using Lemma .

When choosing a pole, it is important to check that it does not yield a degenerate
model. In particular we need to check that no term is able to face every stack. If it were the
case, such a term could be used as a proof of ..

67

4.5.31
4.5.30

�De{nition 4.5.33. A pole � � ×� is said to be consistent if for every closed term t

there is a stack � such that t � � � �.

In this thesis, another property will be required of our poles. As we are in the presence
of an equivalence relation over terms, we will need our poles to be closed under this relation
in some sense. This will allow us to derive the same properties for equivalent terms, and
handle them uniformly.

De{nition 4.5.34. Given an equivalence relation % � × , a pole � � ×� is said to
�be %-extensional if for every closed terms t, u
 such that t%u , and for every stack

�
 �, we have t � �
 � if and only if u � �
 �.

From now on, and until the end of this chapter, we will only consider poles that are both� � � ��-extensional and %-saturated for some reduction relation % � ×� × ×� such that� � � �
 � %. This information will be kept implicit most of the time. Note that %, much like �
is a parameter of our type system and realizability semantics.

� �Theorem 4.5.35. Let : � be a set of closed values and t, u
 be two closed terms.	
.. ..With an �-extensional pole, if t
 : and t � u then u
 : .

. ..Proof. By de{nition we need to take �
 : and show that u � �
 �. Since t
 : we
have t � �
 � and hence we can conclude using the �-extensionality of our pole since we
have t � u .

In our realizability model, the well-formed closed types will be interpreted by the
elements of a set de{ned according to their sort. Such a set can be seen as the interpre-
tation, in the model, of the sort themselves.

� �De{nition 4.5.36. To every sort s
 S we associate a set s de{ned as follows.

� � �� � � � � �	 = $ = ! = �	
� �s�� � � � � �� �� �3 = P
 0 /� | �
 P s � r = r	

Note that a type of sort 3 will be interpreted by a set of closed values containing the special� �value �. It is also required for this set to be closed under the equivalence relation � .
�� �This means that for all :
 3 and for all closed values v, w
 such that v
 : and	

v � w we also have w
 :.

Remark 4.5.37. The presence of the value � in the interpretation of types of sort 3 is
not important for the current chapter, nor for Chapter . It will however play a crucial

68

5

role in Chapter , where the semantical interpretation of propositions will be required to
be non-empty.

The semantical interpretation of types usually relies on a substitution (or interpretation
function) to interpret free variables. Here, we will use another common method consisting
in extending the syntax of types with the elements of the model. We will thus substitute
free variables with such elements of the model, which will allow us to interpret closed types
only. Of course, an open type can always be made into a closed types by replacing its free
variables by elements of the interpretation of the corresponding sorts.

De{nition 4.5.38. We extend the syntax of types with the elements of the model. As a
� � � �consequence, we will consider that s � 6 for every sort s . Note that this is already

true for s = 	, s = $ and s = !. We will oùten use the letter : to denote an element of the
model in the syntax. Our system is also extended with the following sorting rule.

� �:
 s

2 1 : : s

De{nition 4.5.39. Given a sorting context 2, we call a valuation over 2 a {nite map ' such
� �� � � � � �that for all (
 dom 2 we have ' (
 2 (. If A
 6 is a type and s
 S is a sort such

that 2 1 A : s then we denote A' the type formed by applying ' to A.

� � � �Lemma 4.5.40. Let 2 and 2 be two sorting contexts such that dom 2 � dom 2 = �.1 2 1 2

Let A
 6 be a type and s
 S be a sort such that 2 , 2 1 A : s. If ' is a valuation over1 2� � � �2 such that dom ' � dom 2 = � then 2 1 A' : s.1 2 2

Proof. Simple induction on the derivation of 2 , 2 1 A : s by replacing the variables of1 2

2 by their value in '. During the induction 2 will grow when going through the rules that1 2

extend the context. The proof for the other rules can be handled immediately by induction
hypothesis. The only interesting case is the axiom

2 , 2 1 (: s1 2

� �for which there are two cases. Either (
 dom 2 and the derivation remains an axiom,2 � �� � � � � �or (
 dom 2 . In this second case we have (
 dom ' and thus (' = ' (
 s . As1

a consequence the derivation becomes the following.

� �� �' (
 s

� �2 1 ' (: s2

69

6

Lemma 4.5.41. Let 2 be a sorting context, A
 6 be a type and s
 S be a sort such that
we have 2 1 A : s. If ' is a valuation over 2 then 1A' : s.

Proof. Direct consequence of Lemma by taking 2 = 2 and 2 = �.1 2

We can now give the interpretation of our type constructors in our model. In particular,
the elements of the model such as values, terms or stacks will be interpreted as themselves.

� �De{nition 4.5.42. To every closed type A
 6 we associate a set A called its interpre-

tation. It is de{ned inductively on the structure of A as follows.

� � � � � � � �Remark 4.5.43. We have A 7 t� u = A if t � u and A 7 t� u = � otherwise.
� � � �� �We also have t
A = � if there is no v
 A such that v � t.

Theorem 4.5.44. Let 2 be a sorting context, A
 6 be a type and s
 S be a sort. If we have
� � � �a derivation of 2 1 A : s and if ' is a valuation over 2 then A'
 s .

Proof. The proof is done by induction on the derivation of 2 1 A : s. We reason by case on
the last rules used in the deduction tree. In the case of the rule

� �:
 s

2 1 : : s

the proof is trivial. For the {rst eighteen rules of Figure , the proof is immediate using
the induction hypothesis. The remaining cases are treated below. Note that we recall the
corresponding rules aùter the proof of each case.

70

4.1

4.5.40

�:� = :
�)A�(s(� = �]:�([A��:
�)B(A� = ��B���A�
�B�A� = ������B� ..
]v�x[t,�����A�
v�|t.x��
�A
t� = �����t�v|�A�
v�
�u�t7A� = �����u�t|�A�
v�
�})Ai:l i(

I
i
{� = ����������Ai

�
vi,I
i�|})vi=l i(
I
i

{�
�])Ai:Ci(

I
i
[� = ����������Ai

�
v|]v[Ci�< I
i

�A.(s�� = �]:�([A�= �s�
:

�A.(s�� = �]:�([A�< �s�
:

� � � �In the case of the arrow type, we need to show (A � B)'
 3 . By induction
�� � � � � � � � � �hypothesis, we know A'
 3 and B'
 3 , which give us A' � and	

.. � �� � � � � �B' � . Consequently, A' � B' is well-de{ned and A' � B' � . By	� � � �de{nition, we also have �
 A' � B' so it only remains to show that A' � B' is� �closed under � . According to Theorem we know that the only value that is equal
to � is itself. As a consequence, we only have to consider values that are equivalent to a

�� � � ��-abstraction of A' � B' . Let us take �x.t
 A' � B' and a value w
 such	

that �x.t � w. According to Theorem we have w = �y.u for some y
 V and	� � � � � �u
 . To show that �y.u
 A' � B' we take a value v
 A' � � and we show
.. ..� � � � � �u[y� v]
 B' . Since �x.t
 A' � B' we know that t[x� v]
 B' and

thus it is enough to show u[y� v] � t[x� v] according to Theorem . Now, since� ��x.t � �y.u and � is a congruence (De{nition) we have (�x.t) v � (�y.u) v.� �Moreover, since � is a compatible equivalence relation (De{nition) then we can
use Lemma to obtain (�x.t) v � t[x� v] and (�y.u) v � u[y� v] since we know� �that v) � and v is closed. We can thus conclude using the transitivity of � .

2 1 A : 3 2 1 B : 3
2 1 A � B : 3

� �� �In the case of the product type, we need to show that : = {(l : A) }'
 3 . Fori i i
I
�� � � � � �all i
 I, the induction hypothesis tells us that A '
 3 , which implies A ' � .i i 	

�As a consequence, we obtain : � . We also know that �
 : so it only remains	� �to show that : is closed under � . According to Theorem we know that the
only value that is equal to � is itself. As a consequence, we only have to consider

�values that are records. Let us take {(l = v) }
 : and a value w
 such thati i 	i
I

{(l = v) } � w and show that w
 :. According to Theorem , w must be ofi i i
I � �the form {(l = w) } with v � w for all i
 I. We can thus conclude since A ' isi i i i ii
I� �closed under � . � �2 1 A : 3i i
I

2 1 {(l : A) } : 3i i i
I

In the case of the sum type, we can use the same reasoning as for the product type to
�� �obtain that : = [(C : A)]' � . By de{nition, we also have �
 : so we onlyi i 	i
I � �have to show that : is closed under � . As it is de{ned as a union, it is enough to� �show that all of its components are themselves closed under � . In particular, it is� �the case for � according to Theorem . Let us now take i
 I and show that

� � � �� �� �C [v] | v
 A ' is closed under � . This follows from Theorem since A ' isi i i� �closed under � . � �2 1 A : 3i i
I

2 1 [(C : A)] : 3i i i
I

� � � �In the case of the universal type, we need to show that (�(.A)'
 3 . As we� �are free to rename (we may assume that (� dom ' and hence our goal rewrites
� � � � � ��(.A' = A'[(�:]
 3 . By induction hypothesis, we know that for= � �:
 s

71

3.5.41
3.5.39

3.5.42

3.5.39

3.3.16
3.2.10

3.2.8
4.5.35

3.5.43

3.5.39

� � � � � �all :
 s we have A'[(�:]
 3 . We can thus conclude since an arbitrary
� � � �intersection of elements of 3 is trivially an element of 3 .

2 , (: s 1 A : 3
2 1 �(.A : 3

In the case of the existential type, we can use a similar reasoning as for the universal
� �type. We only need to remark that an arbitrary union of elements of 3 is trivially an

� �element of 3 .
2 , (: s 1 A : 3
2 1 �(.A : 3

� � � �In the case of the membership type, we need to show t'
A'
 3 . By induction
�� � � � � � � �hypothesis, we know t' = t'
 $ = and A'
 3 . As a consequence, the set

�� � � � � �� � � �t'
A' = v
 A' | v � t' � � is well-de{ned and we have t'
A' � .	� � � �It remains to show that t'
A' is closed under � but this follows immediately by
construction and using Theorem .

2 1 t : $ 2 1 A : 3
2 1 t
A : 3

� � � �In the case of the restriction type, we need to show A' 7 t' � u'
 3 . Using
� � � �the {rst induction hypothesis, we know that A'
 3 . Now, using the second

�� � � �and third induction hypotheses we also know that t' = t'
 $ = and that
�� � � �u' = u'
 $ = . Consequently, the equivalence t � u is well-de{ned, and thus

� � � �A' 7 t' � u' is either equal to A' (which contains � already), in which case we
� �� � � �can conclude immediately, or to � . In this second case we obtain �
 3 using

Theorem .
2 1 A : 3 2 1 t : $ 2 1 u : $

2 1 A 7 t� u : 3

To conclude this section, we provide two lemmas that will allow us to show that the� �interpretation of a propositions is compatible with the equivalence relation � . More
precisely, we will show that substituting a value (resp. a term) with an equivalent value
(resp. term) in a proposition does not change its semantical interpretation.

Lemma 4.5.45. Let 2 be a sorting context, A
 6 be a type, x
V be a �-variable and v ,	 1

v
 be values such that 2 , x : 	 1 A : 3, 2 1 v : 	 and 2 1 v : 	. If ' is a valuation2 	 1 2� � � �over 2 and if v ' � v ' then we have A'[x� v '] = A'[x� v '] .1 2 1 2

� � � � � � � �Proof. According to Theorem , we have v ' = v '
 	 and v ' = v '
 	1 1 2 2

since we have 2 1 v : 	 and 2 1 v : 	. As a consequence, '[x� v '] and '[x� v '] are1 2 1 2� � � �both valuations over the sorting context 2 , x : 	, and thus we obtain A'[x� v ']
 31� � � �and A'[x� v ']
 3 using Theorem once again. We will now show, by induction2

72

4.5.44

4.5.44

3.5.39

3.5.39

� � � �on the derivation of 2 , x : 	 1 A : 3, that A'[x � v '] = A'[x � v '] . The only1 2

interesting cases (that are not immediate by induction hypothesis) are membership and
restriction. In the case of membership

2 1 t : $ 2 1 A : 3
2 1 t
A : 3

� � � �we need to show that (t
A)'[x� v '] = (t
A)'[x� v '] . By de{nition, we need to1 2� � � �� � � �show v
 A'[x� v '] | v � t'[x� v '] = v
 A'[x� v '] | v � t'[x� v '] . As1 1 2 2� � � �we know that A'[x� v '] = A'[x� v '] by induction hypothesis, we only need to1 2 � �show that t'[x� v '] � t'[x� v ']. This follows from the fact that � is a congruence1 2

since we have v ' � v '. In the case of restriction1 2

2 1 A : 3 2 1 t : $ 2 1 u : $
2 1 A 7 t� u : 3

� � � �we have to prove (A 7 t � u)'[x� v '] = (A 7 t � u)'[x� v '] . By de{nition, we1 2

need to show that t'[x� v '] � u'[x� v '] if and only if t'[x� v '] � u'[x� v ']1 1 2 2� � � �since A'[x � v '] = A'[x � v '] by induction hypothesis. We can then conclude1 2

since we have t'[x� v '] � t'[x� v '] and u'[x� v '] � u'[x� v '] using again the1 2 1 2� �fact that � is a congruence.

Lemma 4.5.46. Let 2 be a sorting context, A
 6 be a type, a
V be a term variable and$

u , u
 be terms such that 2 , a : $ 1 A : 3, 2 1 u : $ and 2 1 u : $. If ' is a valu-1 2 	 1 2� � � �ation over 2 and if u ' � u ' then A'[a� u '] = A'[a� u '] .1 2 1 2

Proof. The proof is very similar to that of Lemma .

4.6 Adequacy

Now that the interpretation of our types in our model has been speci{ed, we need to show
that our typing rules actually agree with the semantics. Intuitively, we need to check that
whenever our type system can be used to prove that a term t has type A, then t is indeed
in the term level interpretation of A. This will be summarised in the following theorem,
but we {rst need the following de{nition. It will play a similar role as De{nition for
typing contexts.

De{nition 4.6.47. Let 2 be a sorting context, ' be a valuation over 2 and 9 be a typing
context such that 2 1 9 is derivable. We say that ' realizes 9 and we write ' � 9 if for

� �� � � � � � �� � �� �every x
 dom 9 �V we have ' x
 9 x ' � � and for every �
 dom 9 �V we	 !
.� �� � � � ��have ' �
 9 x ' .

73

4.1.3

4.5.45

Theorem 4.6.48. Let 2 be a sorting context, 9 be a typing context, / be an equational
context and A
 6 be a type. Let ' be a valuation over 2 such that ' � 9 and ' � /.

..� �If t is a term such that 2 : | : 9 ; / 1 t : A is derivable, then t'
 A' .
� � � �If v is a value such that 2 : | : 9 ; / 1 v : A is derivable, then v'
 A' � � .val

Proof. We proceed by induction on the derivation of the judgment 2 : | : 9 ; / 1 v : A orval

2 : | : 9 ; / 1 t : A, and we reason by case on the last used rule. Note that the deduction rules
are recalled below the proof of the corresponding case.

� � � �In the case of (Ax), we immediately have x' = '(x)
 A' � � since ' � 9, x : A.
Ax

2 , x : 	 : | : 9, x : A ; / 1 x : Aval

..� �If the last used rule is (�) then we need to show v'
 A' . By induction hypothesis
� �we know v'
 A' , hence we can conclude using Lemma .

2 : | : 9 ; / 1 v : Aval �
2 : | : 9 ; / 1 v : A

� � � �If the last used rule is (�) then we need to show (�x.t)'
 (A � B)' � � . As wei

are free to rename x we can assume (�x.t)' = �x.t' and our goal hence rewrites
� � � � � �as �x.t'
 A' � B' . By de{nition, we need to take v
 A' � � and prove

..� �(t')[x� v]
 B' . We can thus conclude by induction hypothesis using the valu-
ation '[x� v] since we know that v) �.

2 , x : 	 : | : 9, x : A ; / 1 t : B
�i

2 : | : 9 ; / 1 �x.t : A � Bval

..� �If the last used rule is (�) then we need to show (t u)' = t' u'
 B' . Lete
.� �us take �
 B' and show t' u' � �
 �. Since t' u' � �
 u' � [t']� and �

..� �is saturated, it is enough to show u' � [t']�
 �. As u'
 A' by induction
.� � � �hypothesis, it only remains to show [t']�
 A' . Let us take v
 A' and show

that v � [t']�
 �. If v = � then we have � � [t']�
 � � � so it is enough to show
� �� � �
 � since � is saturated. This is immediate as �
 B' . Now, if v) � then we

have v � [t']�
 t' � v .� and since � is saturated, it is enough to show t' � v .�
 �.
..� �By induction hypothesis t'
 A' � B' , hence it only remains to show that we

.� � � �have v . �
 A' � B' . Let us now take w
 A' � B' and show w � v . �
 �.
If w = � then we have � � v . �
 � � � and it is again enough that � � �
 � as � is
saturated. If w = �x.f then we have �x.f � v . �
 f[x� v] � � and as � is saturated,

.� �it is enough to show f[x � v] � �
 �. Since �
 B' it only remains to show
..� � � � � �f[x� v]
 B' , but this is true by de{nition of A' � B' since v
 A' and

we have v) �.
2 : | : 9 ; / 1 t : A � B 2 : | : 9 ; / 1 u : A

�e

2 : | : 9 ; / 1 t u : B

74

4.5.29

..� �If the last used rule is (�) then we need to show that (��.t)'
 A' . As we are
free to rename � , we can assume that (��.t)' = ��.t' and thus our goal rewrites

.. .� � � �as ��.t'
 A' . Let us now take a stack �
 A' and show ��.t' � �
 �.
Since ��.t' � �
 t'[�� �] � � and � is saturated, it is enough to show that we have
t'[�� �] � �
 �. We can then conclude by induction hypothesis with the valuation
'[�� �]. .2 , � : ! : | : 9, � : A ; / 1 t : A

�
2 : | : 9 ; / 1 ��.t : A

..� ���If the last used rule is () then we need to show ([�]t)' = ['(�)]t'
 B' . Let
.� �us take �
 B' and show ['(�)]t' � �
 �. Since ['(�)]t' � �
 t' � '(�) and

� is saturated, it is enough to show t' � '(�)
 �. By induction hypothesis we know
.. .� � � �t'
 A' and hence we only need to show '(�)
 A' . This is immediate since
.' � 9, � : A . .2 , � : ! : | : 9, � : A ; / 1 t : A ��	

.2 , � : ! : | : 9, � : A ; / 1 [�]t : B
s� � � �If the last used rule is (�) then we need to show v'
 (�(.A)' � � . As we are freei

s� � � �� � � �to rename (we can show v'
 �(.A' � � = A'[(�:] � � . Hence= � �:
 s� � � � � �we take :
 s and show v'
 A'[(�:] � � . We have v' = v'[(�:] since
(cannot appear in v as otherwise the conclusion judgment would not be well-formed.
We can thus conclude by induction hypothesis using the valuation '[(�:].

2 , (: s : | : 9 ; / 1 v : Aval �is2 : | : 9 ; / 1 v : �(.Aval

..� �If the last used rule is (�) then we need to show t'
 (A[(� B])' . By induc-e
..s� �tion hypothesis we have t'
 (�(.A)' , and as a consequence we need to show

.. ..s� � � �that (�(.A)' � (A[(� B])' . According to Lemma , it is enough to
s� � � �show (�(.A)' � (A[(� B])' . As we are free to rename (our goal rewrites as

s s� � � � � � � � � ��(.A' � A'[(� B'] . Since �(.A' = A'[(�:] and B'
 s we= � �:
 s

can conclude. s2 : | : 9 ; / 1 t : �(.A 2 1 B : s
�e

2 : | : 9 ; / 1 t : A[(� B]
..s� �If the last used rule is (�) then we need to show t'
 (�(.A)' . By inductioni

..� �hypothesis we have t'
 (A[(� B])' , and as a consequence we need to show that
.... s� � � �(A[(� B])' � (�(.A)' . According to Lemma it is enough to show

s� � � �(A[(� B])' � (�(.A)' and as we are free to rename (our goal rewrites as
s s� � � � � � � � � �A'[(� B'] � �(.A' . Since �(.A' = A'[(�:] and B'
 s we< � �:
 s

can conclude.
2 : | : 9 ; / 1 t : A[(� B] 2 1 B : s

� is2 : | : 9 ; / 1 t : �(.A

75

4.5.32

4.5.32

..� �If the last used rule is (�) then we need to show t'
 C' . Since we are free toe
s s s� � � �� � � �rename (we have '(x)
 (�(.A)' � � = �(.A' � � using ' � 9, x : �(.A. By

� � � �de{nition, the means that '(x)
 A'[(�:] and thus there must be :
 s< � �:
 s� �such that '(x)
 A'[(�:] . We can hence conclude using the induction hypothesis��with the valuation ' (� : .

2 , x : 	 , (: s : | : 9, x : A ; / 1 t : C
�es2 , x : 	 : | : 9, x : �(.A ; / 1 t : C
..� �If the last used rule is (
) then we need to show u'
 C' . To apply the inductione � � � �hypothesis, we need to check that '(x)
 A' � � and that '(x) � t', provided

� � � � � �� � � � � �'(x)
 t'
A' � � . By de{nition t'
A' = v
 A' | v � t' � � so we
� �must indeed have '(x)
 A' and '(x) � t' since v) �.

2 , x : 	 : | : 9, x : A ; / , x � t 1 u : C

e

2 , x : 	 : | : 9, x : t
A ; / 1 u : C

� � � �In the case of (
) we need to show that v'
 v'
A' � � . By induction hypothesisi� � � �we have v'
 A' � � so we only have to prove v' � v', which follows from the� �reöexivity of � .
2 : | : 9 ; / 1 v : Aval
i

2 : | : 9 ; / 1 v : v
Aval

..� �If the last used rule is (7) then we need to show t'
 A' 7 u ' � u ' . Using1 2i � � � �the right premise we know that u ' � u ' and hence A' 7 u ' � u ' = A' by1 2 1 2

.. ..� � � �de{nition. Consequently we have A' 7 u ' � u ' = A' by Lemma1 2
..� �and hence we can conclude since t'
 A' by induction hypothesis.

2 : | : 9 ; / 1 t : A / 1 u � u1 2 7
i

2 : | : 9 ; / 1 t : A 7 u � u1 2

..� �If the last used rule is (7) then we need to show t'
 C' . To be able to apply the
e � �� � � �induction hypothesis, we only have to show ' x
 A' � � and u ' � u ' under the1 2� �� � � �assumption that ' x
 A' 7 u ' � u ' � �) �. This immediately follows from1 2� �the de{nition of A' 7 u ' � u ' since it contains '(x) and '(x)) �.1 2

2 , x : 	 : | : 9, x : A ; / , u � u 1 t : C1 2 7
e

2 , x : 	 : | : 9, x : A 7 u � u ; / 1 t : C1 2

� � � �If the last used rule is (×) then we need to show {(l = v ') }
 {(l : A ') } � � .i i i i ii
I i
I� � � �By de{nition it is enough to show that v '
 A ' � � for all i
 I. This exactlyi i

corresponds to the induction hypotheses.

��2 : | : 9 ; / 1 v : Aval i i i
I ×i

2 : | : 9 ; / 1 {(l = v) } : {(l : A) }val i i i ii
I i
I

76

4.5.32

..� �If the last used rule is (×) then we need to show (v.l)' = v'.l
 A ' . Let use k k k
.� �take �
 A ' and show v'.l � �
 �. By induction hypothesis we know thatk k � �� � � � � �v'
 {(l : A) }' � � and thus v' = {(l = v) } with v
 A � � for alli i i i i ii
I i
I

i
 I. Since {(l = v ') }.l � �
 v ' � � and � is saturated, it is enough to showi i k ki
I .� � � � � �v ' � �
 �. This is immediate since �
 A ' and v '
 A ' � � .k k k k

2 : | : 9 ; / 1 v : {(l : A) } k
 Ival i i i
I ×e

2 : | : 9 ; / 1 v.l : Ak k

� � � �If the last used rule is (+) then we need to show C [v']
 [(C : A ')] � � . Byk i ii i
I� � � �de{nition, it is enough to show that v'
 A ' � � since k
 I. This is exactly thek

induction hypothesis.
2 : | : 9 ; / 1 v : A k
 Ival k +i

2 : | : 9 ; / 1 C [v] : [(C : A)]val k i i i
I
..� �If the last used rule is (+) then we need to show [v | (C [x]� t)]'
 B' . As wei i ie i
I ..� �are free to rename x for all i
 I our goal rewrites as [v' | (C [x]� t ')]
 B' .i i i i i
I.� �Let us take �
 B' and show [v' | (C [x]� t ')] � �
 �. By the {rst inductioni i i i
I� � � �hypothesis v'
 [(C : A ')] � � so it must be that v' = C [w] for some k
 I andi i ki
I� � � �w
 A ' � � . As � is saturated and [C [w] | (C [x]� t ')] � �
 t '[x � w] � �k k i i i k ki
I

it is enough to show t '[x � w] � �
 �. Consequently, we only have to show thatk k
.. .� � � �t '[x � w]
 B' since �
 B' . Note that neither B, A nor v may contain thek k k

variable x as otherwise some judgment would not be well-formed. As a consequence,k� � � � � � � �we have B'[x � w] = B' , A '[x � w] = A ' and v'[x � w] = v'. Tok k k k k

be able to conclude using the induction hypothesis, we need to show that the valuation
� � � �'[x � w] realizes 9, x : A ; / , v � C [x]. As ' realizes 9 ; / and as w
 A ' � �k k k k k k� �it only remains to show v' � C [w], which follows from the reöexivity of � .k

��2 : | : 9 ; / 1 v : [(C : A)] 2 , x : 	 : | : 9, x : A ; / , v � C [x] 1 t : Bval i i i i i i i ii
I i
I +e

2 : | : 9 ; / 1 [v | (C [x]� t)] : Bi i i i
I

� � � �If the last used rule is (�) then we need to show (v[x� w])'
 (A[x� w])' � � .	 , 	 2 2� � � �As we are free to rename x our goal rewrites as v'[x� w ']
 A'[x� w '] � � .2 2

According to our second premise we have w ' � w ' and thus Lemma gives us1 2� � � �A'[x� w '] = A'[x� w '] . We also obtain v'[x� w '] � v'[x� w '] using2 1 2 1� �� �the fact that � is a congruence. Now, since we know that A'[x� w '] is closed1� �� � � �under � , it only remains to show that we have v'[x� w ']
 A'[x� w '] � � .1 1 ��To be able to conclude by induction hypothesis, we need to show that ' � 9 x � w .1��As we know that ' � 9 x � w we only need to show that for every type B appearing2� � � �in 9 we have (B[x� w])' = (B[x� w])' . As we are again free to rename x, this1 2� � � �rewrites as B'[x� w '] = B'[x� w '] . We can then conclude the proof using1 2

Lemma once more.

77

4.5.45

4.5.45

��2 : | : 9 x � w ; / 1 v[x� w] : A[x� w] / 1 w � w1 val 1 1 1 2 �	, 	��2 : | : 9 x � w ; / 1 v[x� w] : A[x� w]2 val 2 2

If the last used rule is (�) then the proof is similar to the previous case, using the$, 	
.. ..fact that : = : implies : = : (i.e., Lemma).1 2 1 2

��2 : | : 9 x � w ; / 1 t[x� w] : A[x� w] / 1 w � w1 1 1 1 2 �$, 	��2 : | : 9 x � w ; / 1 t[x� w] : A[x� w]2 2 2

If the last used rule is (�) then the proof is the same as for the (�) case, using	 ,$, 	

Lemma instead of Lemma .

��2 : | : 9 a � u ; / 1 v[a� u] : A[a� u] / 1 u � u1 val 1 1 1 2 �	,$��2 : | : 9 a � u ; / 1 v[a� u] : A[a� u]2 val 2 2

If the last used rule is (�) then the proof is the same as for the (�) case, using$,$ $, 	

again Lemma instead of Lemma .

��2 : | : 9 a � u ; / 1 t[a� u] : A[a� u] / 1 u � u1 1 1 1 2 �$,$��2 : | : 9 a � u ; / 1 t[a� u] : A[a� u]2 2 2

Thanks to adequacy (Theorem), it is possible to prove properties of our language
and type system by choosing appropriate poles. For instance, we can easily check that
closed, typed terms normalise using a pole containing only processes reducing to a {nal� �state. Note that here, we need to {x the parameters of the system. We will consider � to� � � �be � and % to be
 in the following theorem.

�Theorem 4.6.49. Every closed, typed term normalises. More precisely, for all t
 such
� �� �that 1t : A is derivable there is v
 � � such that t � �
 v � �.	

�� �Proof. We consider the pole � = p
 �� | � v
 , p
 v � � which is trivially satu-	

rated. We will {rst check that it is also � -extensional. Let us suppose that t � u and

�that t � �
 �. By de{nition of �, there must be a value v such that t � �
 v � �, and

thus we have t � � � . Since t � u we can deduce u � � � , and thus there must be a

value w such that u � �
 w � �. This exactly means that u � �
 �.

We can now apply Theorem with the pole � and the empty substitution ' toid
.. .� � � �obtain t
 A . By de{nition, this means that t � �
 � for every stack �
 A . In

.� �particular, we have t � �
 � as we trivially have �
 A . This exactly means that there
�is a value v
 such that t � �
 v � �. It remains to show that v is closed and di|ferent	

from �. This is immediate as none of our reduction rules may introduce � or a free variable,
and a closed typable term contain neither.

78

4.6.48

4.6.48

4.5.454.5.46

4.5.454.5.46

4.5.32

Using similar techniques, it will be possible to prove a stronger safety property in
� �Chapter . In particular, we will show that terms of type A reduce to values of A ,

provided that A is a pure data type. Roughtly, this will corespond to types that do not contain
arrows. In particular, we will use the fact that the value interpretation of such a type does
not depend on the choice of the pole.

Remark 4.6.50. We do not prove any type safety result here as our realizability model and� �type system will be altered in Chapters and . In particular, the reduction relation � that
will be introduced in Chapter will allow for simpler proofs.

4.7 Typing stacks

In our system, the typing rule for the named terms of the ��-calculus is limited to stack
variables. As a consequence, terms can only contain terms of the form [�]t when � is a
stack variable. .2 , � : ! : | : 9, � : A ; / 1 t : A ��	

.2 , � : ! : | : 9, � : A ; / 1 [�]t : B

It is however possible to generalise this typing rule to accept more stacks, provided that
they can be typed in some sense.

De{nition 4.7.51. A stack judgement is a tuple of a typing context 9, an equational context
./, a stack �
 � and a type A
 6 that is denoted 9 ; / 1 � : A . We say that such a

.judgment is well-formed under the sorting context 2, and we write 2 : | : 9 ; / 1 � : A , if
and only if we have 2 1 9, 2 1 /, 2 1 � : ! and 2 1 A : 3.

Using a stack judgment, the typing rule for named terms can replaced by the following,
provided that we have enough rules for typing stacks.

.2 : | : 9 ; / 1 t : A 2 : | : 9 ; / 1 � : A ��	
2 : | : 9 ; / 1 [�]t : B

To recover our previous typing rule for named terms, we need at least a rule for handling
stack variables. This typing rule is very similar to the axiom rule (Ax), as it refers to
the context.

.Ax
. .2 , � : ! : | : 9, � : A ; / 1 � : A

. ��Using (Ax), the old () rule can be derived as follows.

.Ax
. . .2 , � : ! : | : 9, � : A ; / 1 t : A 2 , � : ! : | : 9, � : A ; / 1 � : A ��	
2 , � : ! : | : 9, � : A ; / 1 [�]t : B

79

5
56

6

.In addition to the (Ax) rule, we provide two rules for stacks formed by pushing a
value on a stack, or stack frames. Note that it is also possible to give a typing rule for the
empty stack. We will not use it here as it requires all the processes of the form v � � to be in
the pole. .2 : | : 9 ; / 1 v : A 2 : | : 9 ; / 1 � : Bval 	>	

.2 : | : 9 ; / 1 v . � : A � B

.2 : | : 9 ; / 1 t : A � B 2 : | : 9 ; / 1 � : B ��	 	
.2 : | : 9 ; / 1 [t]� : A

Semantically, we will interpret stack judgments in a similar way as value and term
judgments. The new adequacy lemma will then involve the three forms of judgments.

� � � �Lemma 4.7.52. Let A, B
 6 be two types such that 1A : 3 and 1B : 3. If v
 A � �
. .� � � �and �
 B then v . �
 A � B .

� �Proof. Let us take a value w
 A � B and show that w � v . �
 �. If w = � then we
have � � v . �
 � � � and thus it is enough to show that � � �
 � since � is saturated.

.� � � �This is immediate as �
 B and �
 B . If w = �x.t then since � is saturated
.� �and �x.t � v . �
 t[x� v] � � it is enough to show t[x� v] � �
 �. As �
 B this

..� � � �amounts to showing that t[x� v]
 B , but this follows by de{nition of A � B as
� � � �v
 A � � .

Theorem 4.7.53. Let 2 be a sorting context, 9 be a typing context, / be an equational
context and A
 6 be a type. Let ' be a valuation over 2 such that ' � 9 and ' � /.

..� �If 2 : | : 9 ; / 1 t : A is derivable, then t'
 A' .
.. � �If 2 : | : 9 ; / 1 � : A is derivable, then �'
 A' .

� � � �If 2 : | : 9 ; / 1 v : A is derivable, then v'
 A' � � .val

Proof. As for Theorem , the proof is done by induction of the derivation of the typing��judgments. For all the rules of Figure but () the proof is exactly the same as for
Theorem . Four new cases are displayed below.

..� ���If the last used rule is () then we need to show [�']t'
 B' . Let us take
.� ��
 B' and show [�']t' � �
 �. Since [�']t' � �
 t' � �' and � is saturated,

..� �it is enough to show t' � �'
 �. This is immediate since t'
 A' by induction
.� �hypothesis and �'
 A' .

.2 : | : 9 ; / 1 t : A 2 : | : 9 ; / 1 � : A ��	
2 : | : 9 ; / 1 [�]t : B

.. � �If the last used rule is (Ax) then we immediately get �' = '(�)
 A' since we
.know that we have ' � 9, � : A .

80

4.6.48
4.2

4.6.48

.Ax
. .2 , � : ! : | : 9, � : A ; / 1 � : A

.� �If the last used rule is (>) then we need to show v' .�'
 A' � B' . This follows
.� � � �� �from Lemma since we have v'
 A' � � and �'
 B' by induction

hypothesis. .2 : | : 9 ; / 1 v : A 2 : | : 9 ; / 1 � : Bval 	>	
.2 : | : 9 ; / 1 v . � : A � B

.� ���If the last used rule is () then we need to show [t']�'
 A' . Let us take
� �v
 A' and show v � [t']�'
 �. If v = � then we have � � [t']�'
 � � �' and

� �since � is saturated it is enough to show � � �'
 �. This is immediate as �
 B'
.� �and �'
 B' by induction hypothesis. We can now suppose that v) � and thus

� � � �v
 A' � � . As � is saturated and v � [t']�'
 t' � v . �' it is enough to show
..� �t' � v . �'
 �. By induction hypothesis we know t'
 A' � B' and thus it is

.� �enough to show v . �'
 A' � B' . This follows from Lemma since we have
.� � � �� �v
 A' � � and �'
 B' .

.2 : | : 9 ; / 1 t : A � B 2 : | : 9 ; / 1 � : B ��	 	
.2 : | : 9 ; / 1 [t]� : A

Of course, Theorem can still be proved in the extended system with exactly the same
proof, but using the extended adequacy lemma.

81

4.6.49

4.7.52

4.7.52

82

In this chapter, we consider the encoding of dependent types (i.e., a form of typed quanti{-
cation) into our system. However, the expressiveness of such constructs is considerably
limited by the value restriction. To solve this issue we introduce the notion of semantical

value restriction, which allows the system to accept many more programs. Obtaining a model
justifying semantical value restriction will require us to change our notions of reduction and
observational equivalence.

5.1 Dependent function types

It is possible to encode dependent types into our system to obtain a form of quanti{cation
over the values (or terms) of a given type. This encoding relies on the well-known relativised
quanti{cation scheme, and it was suggested by Alexandre Miquel.

De{nition 5.1.1. Let A, B
 6 be two types, x
 V be a �-variable and a
 V be a term	 $

variable. We will use the following notations for representing dependent function types
ranging over values and terms respectively.

� B � �x.(x
A � B) � B � �a.(a
A � B)x
A a
A

Of course, we do not need to give additional sorting rules since � B and � B are onlyx
A a
A

syntactic sugars. However, we can use the following typing rules to work with dependent
functions more easily. ��2 , x : 	 : | : 9, x : A ; / 1 t : B y � x

�	, i

2 : | : 9 ; / 1 �x.t : � Bval y
A

��2 , x : 	 : | : 9, x : A ; / 1 t : B a � x
�$, i

2 : | : 9 ; / 1 �x.t : � Bval a
A

83

A model for a semantical5
value restriction

2 : | : 9 ; / 1 t : � B 2 : | : 9 ; / 1 v : Ax
A val �	, e

2 : | : 9 ; / 1 t v : B[x� v]

2 : | : 9 ; / 1 t : � B 2 : | : 9 ; / 1 v : Aa
A val �$, e

2 : | : 9 ; / 1 t v : B[a� v]

Note that both elimination rules require the value restriction on their second premise. In
other words, dependent functions can only be applied to values. The four new typing rules
can immediately be used to extend the type system as they are derivable. Hence, we do not
have to extend our adequacy lemma (Theorem or Theorem).

Lemma 5.1.2. The typing rules for the dependent function types are derivable.

Proof. The derivations for each of the new rules is given below.

2 , x : 	 : | : 9, x : A ; / 1 t : B[y� x]
Wk

2 , y : 	 , x : 	 : | : 9, x : A ; / 1 t : B[y� x]
Wk

2 , y : 	 , x : 	 : | : 9, x : A ; / , x � y 1 t : B[y� x]
�$, 	

2 , y : 	 , x : 	 : | : 9, x : A ; / , x � y 1 t : B

e

2 , y : 	 , x : 	 : | : 9, x : y
A ; / 1 t : B
�i

2 , y : 	 : | : 9 ; / 1 �x.t : y
A � Bval �i

2 : | : 9 ; / 1 �x.t : �y.(y
A � B)val Def
2 : | : 9 ; / 1 �x.t : � Bval y
A

2 , x : 	 : | : 9, x : A ; / 1 t : B[a� x]
Wk

2 , a : $, x : 	 : | : 9, x : A ; / 1 t : B[a� x]
Wk

2 , a : $, x : 	 : | : 9, x : A ; / , x � a 1 t : B[a� x]
�$,$

2 , a : $, x : 	 : | : 9, x : A ; / , x � a 1 t : B

e

2 , a : $, x : 	 : | : 9, x : a
A ; / 1 t : B
�i

2 , a : $: | : 9 ; / 1 �x.t : a
A � Bval �i

2 : | : 9 ; / 1 �x.t : �a.(a
A � B)val Def
2 : | : 9 ; / 1 �x.t : � Bval a
A

2 : | : 9 ; / 1 t : � B 2 : | : 9 ; / 1 v : Ax
A valDef
i

2 : | : 9 ; / 1 t : �x.(x
A � B) 2 : | : 9 ; / 1 v : v
Aval� �e

2 : | : 9 ; / 1 t : v
A � B[x� v] 2 : | : 9 ; / 1 v : v
A
�e

2 : | : 9 ; / 1 t v : B[x� v]

84

4.7.534.6.48

2 : | : 9 ; / 1 t : � B 2 : | : 9 ; / 1 v : Aa
A valDef
i

2 : | : 9 ; / 1 t : �a.(a
A � B) 2 : | : 9 ; / 1 v : v
Aval� �e

2 : | : 9 ; / 1 t : v
A � B[a� v] 2 : | : 9 ; / 1 v : v
A
�e

2 : | : 9 ; / 1 t v : B[a� v]

Remark 5.1.3. Note that in the typing rules we consider, the variable bound by the depen-
dent type (i.e., x or a respectively) does not appear free in the type A. In fact, this restriction
is not necessary, and we could adapt the rules accordingly. However, the considered types
would not correspond to dependent functions anymore.

Our encoding of the dependent products makes sense with respect to the semantics.
Indeed, their interpretation is similar to the arrow type as it contains functions, but the
type of their body depends on the value of the input.

Lemma 5.1.4. If A, B
 6 are types such that 1A : 3 and x : 	 1 B : 3 are derivable then
we have the following.

..� � � � � �� �� � � �� B = �x.t | � v
 A � � , t[x� v]
 B[x� v] � �x
A

Similarly, if a : $ 1 B : 3 is derivable then we have the following.

..� � � � � �� �� � � �� B = �x.t | � v
 A � � , t[x� v]
 B[a� v] � �a
A

Proof. The proof is done using simple equational reasoning starting from the de{nition
� � � �of �x.(x
A � B) and �a.(a
A � B) respectively.

� �The proof for �a.(a
A � B) is similar but it requires Lemma .

5.2 The limits of the value restriction

In languages like OCaml, the value restriction is not so problematic. Indeed, it is only
required on the typing rule for polymorphism, and programmers almost never notice it
as they mostly de{ne functions (which are values). Moreover, if an instance of the value
restriction is encountered, one can always use a dummy �-abstraction (or an ,-expansion)
to transform a term into a value. A common example of this situation arises when working

85

4.5.46

�B� A
x� = �)B�A
x(.x��
= ,�]:�x[B�A
:� ..

? �	�
:

= ������]:�x[B� ..
]v�x[t,�����A
:�
v�|t.x��? �	�
:

= ������]:�x[B� ..
]v�x[t,�����:�w|�A�
w�
v�,�	�
:�|t.x��
= ������]v�x[B� ..
]v�x[t,�����A�
v�|t.x��

with combinators (e.g., parser combinators) and partial application. As an example, let us
consider the code below (written in OCaml syntax).

(* type 'a gr *)

(* val any : char gr *)

(* val seq : 'a gr � 'b gr � ('a * 'b) gr *)

let mono = seq any

let poly = fun g � seq any g

Here, t gr represents a parser (or grammar) returning a value of type t. The atomic parser
any reads one character on the parsed stream and returns its value. The combinator seq

takes as input two parsers and puts them in sequence to obtain a new parser. The return
value of this new parser is a couple of the return values of the parsers it is build with. Now,
if seq is partially applied with the parser any, the expected result is a combinator taking as
input a parser g, and returning a parser for the sequence build with any and g. Of course,
we want this new combinator to be as generic as possible, so that it can be applied to any
parser, with any return type. However, the combinator mono de{ned above is only weakly
polymorphic. This means that we will only be able to apply it to parsers of one {xed (but
yet unknown) type. Of course, seq any is not a value, and the value restriction applies. To
solve this lack of generality, we need to rely on an ,-expansion as in poly, which has the
expected type 'a gr -> (char, 'a) gr.

As the de{nition of seq is probably something like fun p1 p2 -> body, the value restric-
tion is actually not required in mono. Indeed, the evaluation of seq any would instantly
reduce to a value (without any side-e|fect) in one �-reduction. This means that seq any

could actually be considered a value. However, as discussed in Chapter , the value restric-
tion is a very simple and elegant way to ensure the soundness of the type system. For this
reason, the limitations discussed here do not pose a big enough problem to motivate the
design of a more complex criterion in usual ML-like languages.

In our system, however, the value restriction is not only required on the introduction
rule for the universal quanti{er, but also on the introduction rule for the membership
predicate. As it is used to derive the (�) and (�) rules, the value restriction is enforced	 , e $, e

on the argument of dependent functions. It is indeed necessary as an unrestricted (
)i

rule breaks the consistency (and the type safety) of our system. To support this claim, we
will consider the system in which (
) has been replaced by the following (unrestricted)i

typing rule.
2 : | : 9, / 1 t : A

i ,.

2 : | : 9, / 1 t : t
A

In this system, the following (unrestricted) typing rule for the elimination of the dependent
function type can be derived (see the typing derivation below the rule).

86

1

2 : | : 9, / 1 t : � B 2 : | : 9, / 1 u : Aa
A �e,.

2 : | : 9, / 1 t u : B[a� u]

2 : | : 9 ; / 1 t : � Ba
A Def
2 : | : 9 ; / 1 t : �a.(a
A � B) 2 : | : 9 ; / 1 u : A

�
e i,.

2 : | : 9 ; / 1 t : u
A � B[a� u] 2 : | : 9 ; / 1 u : u
A
�e

2 : | : 9 ; / 1 t u : B[a� u]

For convenience, we will also introduce a strong application rule that can also be
derived directly using (
). This typing rule will be used to keep track of the argumenti ,.

used for a function, while typing the function itself.

2 : | : 9 ; 2 1 t : u
A � B 2 : | : 9 ; 2 1 u : A
�e,
,.

2 : | : 9 ; 2 1 t u : B

2 : | : 9 ; / 1 u : A

i ,.

2 : | : 9 ; / 1 t : u
A � B 2 : | : 9 ; / 1 u : u
A
�e

2 : | : 9 ; / 1 t u : B

We will now build a counter-example to the consistency of the system extended with
the (
) rule for the membership predicate. We will construct a typable term that reducesi ,.

to a value that does not belong to the expected type. We consider the term t u de{ned
thanks to the following subterms.

�In many reduction steps, we have t u � �
 C [{}] � �. To obtain our counter-example, we1

will show that t u has type [C : {} | C : {} 7 u F[{}]� F[{}]]. For every stack �
 � we have the0 1

following reduction sequence.

As a consequence, Lemma tells us that u F[{}] � T[{}]. As a consequence, it cannot be
that u F[{}] � F[{}] and thus the type [C : {} | C : {} 7 u F[{}]� F[{}]] is equivalent to [C : {}]0 1 0

(i.e., they have the same semantical interpretation). This means that if we manage to show

87

3.3.14

t

��

=

]}

)

{

]

[

}

F

{

[

u

T

f(

�

]

)

u

)

[

]

�

}

]

{

}

[

{

F

[

F

f(

v.

�

_

.

�

]

(

}

.

{

f

[

�

F�

v

u

=

]]

�

}

.

{

]

[

}

C

{

0

[

�

F

]

�

_

]

[

]

T

}

|

{

]

[

}

F

{

.

[

_

C

�

1

]

�

�

]

.

_

]

[

}

F

{

|

[

y

F

[

[

.

�

y

]

�

_[

u

T|

=

]}

]

{

]

[

}

T

{

�

[

]

F

_

.

[

_

F

�

|

]

x

�

[

[

.

�

x

]

�

_[T

|]

�

}

�

{

]

[

]

T

}

�

{

]

[

_

F

[

.

F

_

|

�

x

]

[

�

.

.

x

]

�

}

.

{

�

[

�

F[�]_[T|]}{[T�]_[F|]}{[F[

 ��]}{[T

that t u has type [C : {} | C : {} 7 u F[{}]� F[{}]], then we will have a contradiction to the0 1 � �type safety as t u reduces to C [{}], which is not contained in [C : {}] .1 0

In the typing derivation displayed below, the type B is de{ned as [T : {} | F : {}], the type C

is de{ned as [C : {} | C : {} 7 f F[{}]� F[{}]], the context 9 is de{ned as f : B � B, the context0 1 1
.9 is de{ned as f : B � B, y : B , y � f F[{}] and 9 is de{ned as � : B � B , x : B. Note2 3

that the proof is split into three pieces so that it may {t in one page. The {rst two pieces,
labeled p and p respectively, should be plugged in the main part of the proof (i.e., the1 2

third piece) at corresponding premises.

×i

9 , y � F[{}] 1 {} : {} y � f F[{}] , y � F[{}] 1 f F[{}] � F[{}]2 val 7 ×ie

9 , y � F[{}] 1 {} : {} 7 f F[{}]� F[{}] 9 , y � T[{}] 1 {} : {}2 val 2 val+ +e e

9 , y � F[{}] 1 C [{}] : C 9 , y � T[{}] 1 C [{}] : C2 val 1 2 val 0� �Ax
9 1 y : B 9 , y � F[{}] 1 C [{}] : C 9 , y � T[{}] 1 C [{}] : C2 val 2 1 2 0 +e

f : B � B, y : B , y � f F[{}] 1 [y | F[_]�C [{}] | T[_]�C [{}]] : C1 0
e

f : B � B, y : (f F[{}])
B 1 [y | F[_]�C [{}] | T[_]�C [{}]] : C1 0 �	

f : B � B 1 �y.[y | F[_]�C [{}] | T[_]�C [{}]] : (f F[{}])
B � Cval 1 0 p1�

×i

9 1 {} : {}3 val +i

9 1 F[{}] : B3 val �
9 1 F[{}] : B3 �×i i

9 1 {} : {} 9 1 �_.F[{}] : B � B3 val 3 val+ �i

9 1 T[{}] : B 9 1 �_.F[{}] : B � B3 val 3 ��� 	Ax
9 1 x : B 9 1 T[{}] : B 9 1 [�]�_.F[{}] : B3 val 3 3 +e

.� : B � B , x : B 1 [x | F[_]�T[{}] | T[_]� [�]�_.F[{}]] : B
�i.� : B � B 1 �x.[x | F[_]�T[{}] | T[_]� [�]�_.F[{}]] : B � Bval �

.� : B � B 1 �x.[x | F[_]�T[{}] | T[_]� [�]�_.F[{}]] : B � B
�

1��.�x.[x | F[_]�T[{}] | T[_]� [�]�_.F[{}]] : B � B
p2�

×i

9 1 {} : {}1 val +Ax i

9 1 F[{}] : B9 1 f : B � B 1 val1 valp ��1

9 1 v : (f F[{}])
B � C 9 1 f : B � B 9 1 F[{}] : B1 val 1 1� � ×ie

9 1 v : (f F[{}])
B � C 9 1 f F[{}] : B 9 1 {} : {}1 1 1 val� +Ax ie,
,.

9 1 v (f F[{}]) : C 9 1 T[{}] : B9 1 f : B � B1 1 val1 val� ��i

9 1 �_.v (f F[{}]) : B � C 9 1 f : B � B 9 1 T[{}] : B1 val 1 1� �e

9 1 �_.v (f F[{}]) : B � C 9 1 f T[{}] : B1 1 �e

f : B � B 1 (�_.v (f F[{}])) (f T[{}]) : [C : {} | C : {} 7 f F[{}]� F[{}]]0 1 �$, i

1 �f.(�_.v (f F[{}])) (f T[{}]) : � [C : {} | C : {} 7a F[{}]� F[{}]]val a
B�B 0 1 � p2

1�f.(�_.v (f F[{}])) (f T[{}]) : � [C : {} | C : {} 7a F[{}]� F[{}]] 1u : B � Ba
B�B 0 1 �e,.

1(�f.(�_.v (f F[{}])) (f T[{}])) u : [C : {} | C : {} 7 u F[{}]� F[{}]]0 1

88

As we have shown that the unrestricted introduction rule for the membership type is
unsound, there is no hope of encoding an unrestricted elimination rule for the dependent
function type into our system. Indeed, only the membership types are able to link the
world of terms and the world of types thanks to their semantics. The limitation imposed by
the value restriction on dependent functions leads to an expressiveness problem. Indeed,
it completely forbids the composition of dependent functions which is very common in
practice (especially for building proofs). In Chapter we will consider several examples
including proofs on the natural numbers and the concatenation of vectors (i.e., lists of
{xed length) which could not be accepted under the usual syntactic restriction. For such
examples to work in our system, we need another criterion accepting more programs, while
still preserving soundness.

5.3 Semantical value restriction

As discussed in the previous section, value restriction is an issue in the presence of the
membership type (and thus the dependent function type). To solve the related expressive-
ness problem, the author introduced the notion of semantical value restriction [Lepigre 2016].
The main idea is to relax the restriction to allow terms ÷behaving like valuesø, and not
syntactic values only. Thanks to our notion of observational equivalence, this property can
be expressed easily in the syntax. Indeed, we will substitute a typing rule like

2 : | : 9 ; / 1 t : � B 2 : | : 9 ; / 1 v : Aa
A val �$, e

2 : | : 9 ; / 1 t v : B[a� v]

with the following rule, where the restriction to values on the second premise is replaced
by a third premise involving equivalence.

2 : | : 9 ; / 1 t : � B 2 : | : 9 ; / 1 u : A / 1 u � va
A

2 : | : 9 ; / 1 t u : B[a� u]

This third premise requires the term u to be equivalent to some value v. Of course, it is
perfectly possible for u not to be a syntactic value itself.

Remark 5.3.5. Semantical value restriction is a strict relaxation of value restriction. Indeed,
value restriction exactly corresponds to a version of semantical value restriction in which
we would only be able to use reöexivity to show that two terms are equivalent.

In the syntax, semantical value restriction will be presented as a simple extension of
our type system with the following, seemingly obvious, typing rule.

2 : | : 9 ; / 1 v : A �
2 : | : 9 ; / 1 v : Aval

89

7

It should not be confused with our (�) rule, which premise is a value judgment and which
conclusion is a term judgment. Our new (�) rule allows us to transform a term judgment
into a value judgment, provided that the considered term is a value. The (�) rule can then$,$

be used to obtain a proof of 2 : | : 9 ; / 1 v : A from a proof of 2 : | : 9 ; / 1 t : A, provided
that / 1 t � v can be proved. This technique can be used, for example, to derive a relaxed
version of the membership introduction typing rule.

Lemma 5.3.6. The following typing rule is derivable in our system extended with (�).

2 : | : 9 ; / 1 t : A / 1 t � v

i ,$

2 : | : 9 ; / 1 t : t
A

Proof. We can use the following derivation.

2 : | : 9 ; / 1 t : A / 1 t � v
�$,$

2 : | : 9 ; / 1 v : A �
2 : | : 9 ; / 1 v : Aval
i

2 : | : 9 ; / 1 v : v
Aval �
2 : | : 9 ; / 1 v : v
A / 1 t � v

�$,$

2 : | : 9 ; / 1 t : t
A

We can then derive a relaxed version of the elimination rule for the dependent function
type. Again, it requires proving that a term is equivalence to some value.

Lemma 5.3.7. The following typing rule is derivable in our system extended with (�).

2 : | : 9 ; 2 1 t : � B 2 : | : 9 ; 2 1 u : A / 1 u � va
A �e,$

2 : | : 9 ; / 1 t u : B[a� u]

Proof. Using Lemma we can use the following derivation in the system extended with
the (
) rule.i ,$

2 : | : 9 ; 2 1 t : � Ba
A Def
2 : | : 9 ; 2 1 t : �a.(a
A � B) 2 : | : 9 ; 2 1 u : A / 1 u � v

�
e i,$

2 : | : 9 ; 2 1 t : u
A � B[a� u] 2 : | : 9 ; 2 1 u : u
A
�e

2 : | : 9 ; / 1 t u : B[a� u]

Additionally, semantical value restriction allows us to derive a strong typing rule for
general application. It can be seen as a relaxed form of the following rule (which can be
derived easily in the initial system).

90

5.3.6

2 : | : 9 ; / 1 t : v
A � B 2 : | : 9 ; / 1 v : Aval �e,

2 : | : 9 ; / 1 t v : B

The aim of such a rule is to keep track of the argument that will be applied to a function,
when typing the function itself. This is useful, in particular, when this argument is used in
a case analysis. However, in its restricted form, this typing rule is not very useful since a
term like (�x.[x | (C [x]� t)]) v is equivalent to [v | (C [x]� t)], and thus the samei i i i i ii
I i
I

e|fect can be obtained using the (�). With semantical value restriction, we can derive a$,$

stronger, relaxed rule.

Lemma 5.3.8. The following typing rule is derivable in our system extended with (�).

2 : | : 9 ; / 1 t : u
A � B 2 : | : 9 ; / 1 u : A / 1 u � v
�e,
,$

2 : | : 9 ; / 1 t u : B

Proof. Using again Lemma to obtain the (
) rule, we can use the following derivation.i ,$

2 : | : 9 ; / 1 u : A / 1 u � v

i ,$

2 : | : 9 ; / 1 t : u
A � B 2 : | : 9 ; / 1 u : u
A
�e

2 : | : 9 ; / 1 t u : B

The (�) rule can be used to obtain the following rule for a generalised form of casee,
,$

analysis ranging over terms (and not only values).

��2 : | : 9 ; / 1 t : [(C : A)] 2 , x : 	 : | : 9, x : A ; / , t � C [x] 1 t : B / 1 t � vi i i i i i i ii
I i
I +e,$

2 : | : 9 ; / 1 (�x.[x | (C [x]� t)]) t : Bi i i i
I

Without such a rule, it would be impossible to preserve the equivalences of the form
t � C [x] in the premises. We would only know that x � C [x], which is not enough sincei i i i

we would have no way of linking x to t. The derivation of (+) is given below. Note that wee,$

will omit the sorting contexts for the proof to be more concise. We will also use the notation
@ for the context 9, x : [(C : A)].i i i
I

@ , x : A ; / , t � C [x] 1 t : Bi i i i i1 Wk
@ , x : A ; / , x � t ; t � C [x] 1 t : Bi i i i i1 ��Ax �$,$

@ ; / , x � t 1 x : [(C : A)] @ , x : A ; / , x � t ; x � C [x] 1 t : Bval i i i i i i ii
I i
I +e

@ ; / , x � t 1 [x | (C [x]� t)] : Bi i i i
I
e

@ ; / 1 [x | (C [x]� t)] : Bi i i i
I �i

9 ; / 1 �x.[x | (C [x]� t)] : t
[(C : A)] � Bval i i i i ii
I i
I �
9 ; / 1 �x.[x | (C [x]� t)] : t
[(C : A)] � B 9 ; / 1 t : [(C : A)] / 1 t � vi i i i i i ii
I i
I i
I �e,
,$

9 ; / 1 (�x.[x | (C [x]� t)]) t : Bi i i i
I

91

5.3.6

Of course, the derivation of all the new typing rules introduced in this section is
conditioned to the soundness of semantical value restriction. As a consequence, we need
to adapt our model so that the (�) rule is adequate. As we will see in the next sections, the
required modi{cations are highly non-trivial and require changing our notions of reduction
and equivalence.

5.4 Semantics for semantical value restriction

As mentioned in the previous section, semantical value restriction can be enabled in our
system by extending it with the (�) typing rule (recalled below).

2 : | : 9 ; / 1 v : A �
2 : | : 9 ; / 1 v : Aval

In order to give a semantical justi{cation to this rule (i.e., to show that it is adequate), we
� �need to {nd a model in which the following property holds for every :
 3 .

.. �: � � :	

This property is not true in general, and in particular it is not true in our current model.
A counter-example is given in the following theorem.

� � � �Theorem 5.4.9. If we choose � as our equivalence relation and
 as our reduction rela-

.. �� �tion then there is a pole � and a set of values :
 3 such that : � contains strictly	

more values that :.

�� �Proof. Let us consider the pole � = p
 ×� | � v
 , p
 v � � and show that the	
..� � �� � � �set : = v
 | v � �x.# � � is suitable. As we have � by Lemma
	 	 	

. ... � � .. �it is enough to show : = since in this case we get �: = . Of course, there	 	 	
� �are many values that are in , but not in :. For example, we have {}
 but {} � �x.#	 	

according to Theorem .
.� . �Since : � we must have : A by Lemma , so it only remains to show that	 	

.. � .: � . Let us take a stack �
 : . By de{nition, we know w � �
 � for all w
 :. Let	
�us take a value v
 and show that v � �
 �. If v = � then this is immediate since0 	 0 0�
 : so we can assume v) �. We reason by case on the form of the stack �.0

If � = �, then v � �
 � by de{nition of �.0
.If � = � for some �
V then it cannot be that �
 : . If it were the case, we would!

have �x.# � �
 �, which cannot be true since this process is blocked.
.If � = w. � for some value w
 and stack �
 � then it cannot be that �
 : . If	

it were the case, we would have �x.# � w. �
 # � �
 �, which cannot be true since
this process is non-terminating.

92

4.5.30
3.4.35

4.5.29

If � = [t]� for some term t
 and stack �
 � then we consider the reduction of
the process t � z . � where z
 V is a fresh �-variable. We know that t � z . � cannot	

be non-terminating, as otherwise (t � z . �)[z � �x.#] = t � �x.# . � would also be
.non-terminating according to Lemma . This would contradict [t]�
 : since we

have �x.# � [t]�
 t � �x.# . �. Consequently, there is q
 ×� such that z � [t]�
 q.
We now reason by case analysis following Lemma . If q is {nal, then q[z � v] is
also {nal by Lemma , and thus v � [t]�
 �. In all the other cases but z � [t]�0 0

the process q[z � �x.#] is either still blocked or non-terminating, which contradicts
.the fact that [t]�
 : . In the last case we can iterate the proof in a similar way as

for Theorem . In the case where also get that �x.# � [t]�
 � since this process
is non-terminating.

� �The idea now is to use our equivalence relation � to extend the reduction relation
� �
 with a new, surprising reduction rule. It will reduce processes having the form & � �v,w

to v � � in the case where v � w, and remain stuck otherwise. With such a reduction

rule, the de{nitions of reduction and equivalence become interdependent. Consequently,
we need to be very careful so that everything remains well-de{ned. We will rely on a
strati{ed construction of both reduction and equivalence.

� � � �De{nition 5.4.10. For every i
 � we de{ne two relations � and � as follows.i i

Here, all the relations are well-de{ned as there is no circularity. In particular, we have� � � �� =
 since there is no natural number that is strictly smaller than 0. This implies0 � � � �that we also have � = �0

� �Lemma 5.4.11. For every i
 �, the relation � is an equivalence relation.i

Proof. Immediate.

We can then de{ne our actual reduction relation and equivalence relation as a union
and an intersection over the previously de{ned relations.

� � � �De{nition 5.4.12. We de{ne a reduction relation � and an equivalence relation � .

� � � � � � � �� = � � = �iB i?
i
� i
�

93

3.1.7

2.6.44
2.6.46

2.6.44

��i� = �w�
j

v,i<j�|���v,��& w,v����
�
��i� = ��

j
��'u+�

j
��'t,S
'�,�
��,i�j�|�u,t��

� � � � � � � �Remark 5.4.13. We have � � � and � � � . Consequently, the constructioni i+1 i+1 i� � � � � � � �of � and � converges. In fact, � and � form a {xpoint at ordinal C.i ii
� i
�

Surprisingly, this property will not be explicitly required in the following.

� �Lemma 5.4.14. The relation � is an equivalence relation.

Proof. Immediate using Lemma since an intersection of equivalence relations is itself
an equivalence relation.

For convenience, the de{nition of our new reduction and equivalence relations can be� � � �expressed in the following way, where � denotes the negation of � .

� �Note that the de{nition of � corresponds exactly to what we aimed for: an extension of� �
 with a reduction rule for &-like terms carrying two non-equivalent values.

Theorem 5.4.15. Let � � ×� be a �-saturated set of processes such that for every p
 �
� �we have p� and � � �
 �. If :
 3 then we have the following property.�

..: � � :	

..Proof. We need to show that for every value v
 : we also have v
 :. We are going to
..show the contrapositive, so let us assume v � : and show v � : . By de{nition, we need

.to {nd a stack �
 : such that v � � � �. We will take � = [�x.&][�]� and show that itx,v
.is suitable. We {rst need to prove that �
 : so we take w
 : and we show w � �
 �.

If w = � then � � � � � � [�]� � � � �
 � and we can thus conclude since � is
�-saturated. Otherwise, if w) � then we have the following.

w � � � �x.& � w. [�]� � & � [�]� � w � [�]� � � � w. � � � � �
 �x,v w,v

� �Note that we have v � w since v � : and : is closed under � . We can thus conclude
using again the fact that � is �-saturated. It now remains to show that v � � � �. It0

cannot be that v = � since we assumed v � :. As a consequence, we have the following.

v � � � �x.& � v . [�]� � & � [�]�x,v v,v �

� �Here, & � [�]� is blocked since v � v by reöexivity of � and thus v � � � �.v,v

94

5.4.11

��� = ��
i

��'u+�
i

��'t,S
'�,�
��,�
i�|�u,t��
��� = �

i
��'u��

i
��'t,S
'�,�
��,�
i�|�t,u�,�u,t��

��� = �w�v|���v,��& w,v����
�

Remark 5.4.16. Theorem only gives us the required property of the model for poles of
terminating processes (i.e., processes that eventually reduce to a {nal states). This limitation
is not a problem here as we will only consider poles having this property.

5.5 Final instance of our model

� � � �The reduction relation � and the equivalence relation � give us an essential property for
semantical value restriction. However, we need to verify some properties before being able� �to {x the parameters of our model de{nitively. There is no problem in adopting � as our� �reduction relation as it contains
 . Nevertheless, we need to check that our equivalence� � � �relation � is a congruence and that it is compatible with � . Let us {rst show that it

is indeed a congruence.

Theorem 5.5.17. Let t, u
 be two terms and '
 S be a substitution. If we have t � u

then t' � u'.

Proof. Let us take i
 �, '
 S and �
 � and prove (t')' � � � + (u')' � � � ,0 0 0 0 0 0 0i i0 0

which can be rewritten as t(' *') � � � + u(' *') � � � . We can thus conclude by0 0 0 0i i0 0

de{nition of t � u using i , the substitution ' *' and the stack � .0 0 0

Theorem 5.5.18. Let v , v
 be values, t
 be a term and x
V be a �-variable. If1 2 	 	

v � v then we have t[x� v] � t[x� v].1 2 1 2

Proof. We are going to prove the contrapositive so we suppose t[x � v] � t[x � v]1 2

and we show v � v . Let us {rst assume that neither v nor v is equal to � or to a1 2 1 2

�-variables. By de{nition, we know that there i
 �, �
 � and '
 S such that we have
(t[x� v])' � � � and (t[x� v])' � � (up to symmetry). As x is bound we can rename1 2i i

it so that (t[x� v])' = t'[x� v '] and (t[x� v])' = t'[x� v ']. To {nish the proof,1 1 2 2

we need to {nd i
 �, �
 � and '
 S such that v ' � � � and v ' � � (up0 0 0 1 0 0 2 0 0i i0 0

to symmetry). We can take i = i, � = [�x.t']� and ' = ' since by de{nition we have0 0 0
� �v ' � [�x.t']� � t'[x� v '] � � � and v ' � [�x.t']� � t'[x� v '] � � . Note thati i1 1 2 2i i

here, it is essential that v ' and v ' are not equal to � or to some �-variable as otherwise1 2

the {rst reduction steps could not be taken.
It remains to show that v � v in the cases where v , v or both are equal to � or a1 2 1 2

�-variable. First, we can assume that v) v as otherwise we would immediately get a1 2 � �contradiction with t[x� v] � t[x� v] by reöexivity of � . As a consequence, we cannot1 2

have v = v = � or v = v = x
V . Now, in all the other cases we must have v � v1 2 1 2 	 1 2

according to Theorems and so we get v � v .1 2

95

3.5.403.5.39

5.4.15

Lemma 5.5.19. Let p
 ×� be a process, t
 be a term and a
V be a term variable.$

If we have p[a� t] � for some k
 � then there is a blocked process q
 ×� such that
k

�p
 q and either
q = v � � for some value v
 ,	
q = a � � for some stack �
 �,
k) 0 and q = & � � for some values v, w
 and �
 �. Moreover, in this casev,w 	

we know that v[a� t] � w[a� t] for some j < k .
j

Proof. If p is non-terminating then so is p[a� t] according to Lemma . Since� � � �
 � � this contradicts p[a� t] � and thus there must be a blocked process q
 ×�k k
� �such that p
 q. Using Theorem we obtain p[a� t]
 q[a� t], which tells us��that q[a� t] � . This means that q cannot be stuck, as otherwise q a � t would also
k

be stuck by Lemma and this would contradict q[a� t] � . Let us now suppose that
k

p = & � � for some v, w
 and �
 �. Since & � � � there must be j < k (andv,w 	 v',w' k

thus k) 0) such that v' � w', otherwise we would obtain a contradiction. According to
j

Lemma it remains to rule the following forms for q, where b) a.

x.l � � x � v . � [x | (C [x]� t)] � �k i i i i
I

x � [t]� % � � b � � v � �x,u

If q was of one of these forms, then q[a� t] would still be blocked, which would again
contradict q[a� t] � .

k

Lemma 5.5.20. Let u , u , t
 be three terms and a
 V be a term variable. For all1 2 $

k
 �, if u � u then t[a� u] � t[a� u].k k1 2 1 2

Proof. We do a proof by induction on k . If k = 0 then this property exactly corresponds to
Theorem . Let us now take k > 0, suppose u � u and show t[a� u] � t[a� u].k k1 2 1 2

By de{nition, we need to take �
 �, '
 S and show the following.

(t[a� u])' � � � + (t[a� u])' � � �1 2k k

Since a is bound we are free to rename it so we may assume (t[a� u])' = t'[a� u '],1 1� � � � � �(t[a� u])' = t'[a� u '] and a � FV � � FV t � FV t . By symmetry, we can thus2 2 $ $ 1 $ 2

suppose t'[a� u '] � � � and show t'[a� u '] � � � .1 2k k� �We will now build a sequence t , � , l de{ned in such a way that for all i
 Ii i i i
I
�we have t'[a� u '] � � � t [a� u '] � � [a� u '] in l steps. We will also requirek1 i 1 i 1 i� �l to be increasing and to have a strictly increasing subsequence. Under this conditioni i
I

our sequence will be {nite. If it was in{nite, t'[a� u '] � � would be non-terminating,1

and this would contradict t'[a� u '] � � � . As a consequence, our sequence has a {nite1 k

96

3.1.7

2.6.46

2.6.44

2.5.42

2.6.44

� �number n +1 of elements (for some n
 �), and we can denote it t , � , l . To showi i i i�n� �that l has a strictly increasing subsequence, we will ensure that it does not have threei i�n

equal consecutive values.� �To de{ne t , � , l we consider the reduction of the process t' � �. Since we have0 0 0

(t' � �)[a� u '] = t'[a� u] � � � we can apply Lemma to obtain a blocked1 1 k
jprocess p such that t' � �
 p. We thus take t � � = p and l = j. According to0 0 0

jTheorem we have (t' � �)[a� u ']
 t [a� u '] � � [a� u ']. Consequently, we1 0 1 0 1
�can deduce that (t' � �)[a� u '] � t [a� u '] � � [a� u '] in l = j steps.k1 0 1 0 1 0� �To de{ne t , � , l we consider the process t � � . By construction we knowi+1 i+1 i+1 i i

�that t'[a� u '] � � � t [a� u '] � � [a� u '] in l steps. According to Lemma ,k1 i 1 i 1 i

t � � can only be of three di|ferent shapes.i i

If t � � = v � � for some v
 then the sequence ends with n = i.i i 	

If t = a then we consider the process t [a� u '] � � . By construction we knowi i 1 i

(t [a� u '] � �)[a� u '] � and Lemma gives us a blocked process p such thati 1 i 1 k
j jt [a� u '] � �
 p. By Theorem (t [a� u '] � �)[a� u ']
 p[a� u '],i 1 i i 1 i 1 1

�and hence t [a� u '] � � [a� u '] � p[a� u '] in j steps. We then take as aki 1 i 1 1

de{nition t � � = p and l = l + j.i+1 i+1 i+1 i

Now, is it possible to have j = 0? This can only happen when t [a� u '] � � is ofi 1 i

one of the three forms of Lemma . It cannot be of the form a � � as we assumed
that a does not appear in u '. If it is of the form v � �, then we reached the end of1

the sequence with i = n so there is no problem. We only have to be careful when
t [a� u '] = & . In this case, we will make sure that we always have l > l (seei 1 v,w i+2 i+1

the following case).
If t = & for some v, w
 then we know v[a� u '] � w[a� u '] for somei v,w 	 1 1m

m < k . Hence, we have t [a� u '] � � = & � � � v[a� u '] � �ki 1 i v[a�u '],w[a�u '] i 1 i1 1

by de{nition. Moreover, t [a� u '] � � [a� u '] � v[a� u '] � � [a� u '] byki 1 i 1 1 i 1
�� �de{nition of � . Since t[a� u '] � � � t [a� u '] � � [a� u '] in l steps wek k1 i 1 i 1 i

�get that t[a� u '] � � � v[a� u '] � � [a� u '] in l +1 steps, and hence we havek1 1 i 1 i

(v[a� u '] � �)[a� u '] = v[a� u '] � � [a� u '] � .1 i 1 1 i 1 k

We now consider the reduction of the process v[a� u '] � � . According to Lemma1 i
jthere is a blocked process p such that v[a� u '] � �
 p. Using Theorem1 i

jwe obtain v[a� u '] � � [a� u ']
 p[a� u '] from which we can deduce that we1 i 1 1
�have v[a� u '] � � [a� u '] � p[a� u '] in j steps. We then take t � � = pk1 i 1 1 i+1 i+1

and l = l + j +1 (and thus l > l).i+1 i i+1 i� �Intuitively t , � , l mimics the reduction of the process t[a� u '] � � while makingi i i 1i�n

explicit every substitution of a and every reduction of a &-like state.
To end the proof we will show that for all i � n we have t [a� u '] � � [a� u '] � .i 2 i 2 k

For i = 0 this will give us t[a� u '] � � � , which is the expected result. As by construc-2 k

tion t � � = v � �, we have t [a� u '] � � [a� u '] = v[a� u '] � � from which wen n n 2 n 2 2

get t [a� u '] � � [a� u '] � . We now suppose that t [a� u '] � � [a� u '] �n 2 n 2 i+1 1 i+1 2k k

97

2.5.425.5.19

5.5.19

2.5.42
5.5.19

5.5.19

2.5.42

5.5.19

for 0 � i < n and show that t [a� u '] � � [a� u '] � . By construction t � � can be ofi 1 i 2 i ik

two shapes since only t � � can be of the form v � �.n n
�If t = a then we have u ' � � � t � � . As a consequence, Theorem giveski 1 i i+1 i+1

us u ' � � [a� u '] � t [a� u '] � � [a� u '] from which we can deduce thatk1 i 2 i+1 2 i 2

we have u ' � � [a� u '] � by induction hypothesis. Since u � u by hypothesis,k1 i 2 1 2k

we obtain u ' � � [a� u '] = (t � �)[a� u '] � .2 i 2 i i 2 k

If t = & then we have v � � � t � � . As a consequence, Theorem giveski v,w i i+1 i+1

us v[a� u '] � � [a� u '] � t [a� u '] � � [a� u ']. Using the inductionk2 i 2 i+1 2 i+1 2

hypothesis we obtain v[a� u '] � � [a� u '] � . It remains to show that we have2 i 2 k
�& � � [a� u '] � v[a� u '] � � [a� u ']. We need to {nd j < kkv[a�u '],w[a�u '] i 2 2 i 22 2

such that v[a� u '] � w[a� u ']. By construction, there is m < k such that we2 2k

have v[a� u '] � w[a� u '], and we will show v[a� u '] � w[a� u ']. Using1 1 2 2m m

the global induction hypothesis twice, we obtain that v[a� u '] � v[a� u '] andm1 2

that w[a� u '] � w[a� u ']. Now if we suppose v[a� u '] � w[a� u '] thenm m1 2 2 2

we have v[a� u '] � v[a� u '] � w[a� u '] � v[a� u '], which contradictsm m m1 2 2 1

v[a� u '] � w[a� u ']. Hence we must have v[a� u '] � w[a� u '].1 1 2 2m m

Theorem 5.5.21. Let u , u , t
 be three terms and a
V be a term variable. If u � u1 2 $ 1 2

then t[a� u] � t[a� u].1 2

Proof. We suppose that u � u which means that u � u for all i
 �. We need toi1 2 1 2

show that t[a� u] � t[a� u] so we take i
 � and show t[a� u] � t[a� u]. Byi1 2 0 1 20

hypothesis we have u � u and hence we can conclude using Lemma .i1 20

� �Theorem 5.5.22. The relation � is a congruence.

Proof. Combination of Theorem , Theorem and Theorem .

� �Now that we have proved � to be a congruence, it remains to show that it is� �compatible with � . Intuitively, this will provide us with suf{cient conditions for proving

equivalences based on Chapter .

Theorem 5.5.23. For every terms t, u
 such that t � u we have t � u .

Proof. Immediate by de{nition.

Theorem 5.5.24. Let t, u
 be two terms. If for every stack �
 � there is a process
� �p
 ×� such that both t � �
 p and u � �
 p, then t � u .

98

3

5.5.215.5.185.5.17

5.5.20

2.5.42

2.5.42

Proof. By de{nition, we need to take i
 �, �
 � and '
 S and show that we have0 0 0� � � �t' � � � + u' � � � . Since
 � � , it is enough to {nd a common reduct ofi0 0 0 0 0i i0 0 � �t' � � and u' � � using
 . We consider a renaming substitution ! mapping the0 0 0 0
-1� � � �variables of FV � to distinct fresh variables. Note that ! has an inverse ! mapping ! (0

-1 -1� �to (for all (
 dom $. We thus obtain t' � � = (t' � � !)! = (t � � !)(' *!) and0 0 0 0 0 0
-1u' � � = (u � � !)(' *!). By hypothesis, t � � ! and u � � ! have a common reduct0 0 0 0 0 0

-1 -1�p . We can thus use Lemma to obtain t' � � = (t � � !)(' *!)
 p (' *!)0 0 0 0 0 0 0
-1 -1�and u' � � = (u � � !)(' *!)
 p (' *!).0 0 0 0 0 0

� � � �Theorem 5.5.25. Let t , t
 be two terms such that x
 FV t � FV t . If there is a term1 2 	 1 	 2
�u
 such that for all terms v
 and stacks �
 � we have t [x� v] � [u]�
 v � �	 1

�and t [x� v] � [u]�
 v � �, and if t [x� v] � t [x� v] for some values v , v
 ,2 1 1 2 2 1 2 	

then we have v � v .1 2

Proof. Let us take v , v
 such that v � v and show that t [x� v] � t [x� v]. By1 2 	 1 2 1 1 2 2

de{nition there is i
 �, �
 � and '
 S such that v ' � � � and v ' � � (up to0 0 0 1 0 0 2 0 0i i0 0

symmetry). We need to {nd i
 �, �
 � and '
 S such that (t [x� v])' � � � and1 1 1 1 1 1 1 i1

(t [x� v])' � � . We consider a renaming substitution ! mapping the free variable of2 2 1 1 i1 -1� to distinct fresh variables, and we denote ! its inverse. We will now show that i = i ,0 1 0
-1� = [u]� ! and ' = ' *! are suitable. According to our main hypothesis, we have1 0 1 0

� �t [x� v] � �
 v � � ! and t [x� v] � �
 v � � !. We can thus use Lemma1 1 1 1 0 2 2 1 2 0
�to obtain (t [x� v])' � [u]� = (t [x� v] � �)'
 (v � � !)' = v ' � � � , and1 1 0 0 1 1 1 1 1 0 1 1 0 0 i 0

�similarly (t [x� v])' � �
 v ' � � .2 2 0 0 2 0 0 i 0

� � � �Theorem 5.5.26. The relation � is compatible with � .

Proof. Combination of Theorem , Theorem and Theorem .

� � � �Now that we have {xed our reduction relation to be � and our equivalence to be � ,
the adequacy lemma is still valid. However, we can now extend our type system with the
typing rule that we aimed for.

2 : | : 9 ; / 1 v : A �
2 : | : 9 ; / 1 v : Aval

We can thus extend the adequacy lemma provided that our pole � contains only terminat-
ing processes and that � � �
 � (i.e., requirements of Theorem).

Theorem 5.5.27. Let 2 be a sorting context, 9 be a typing context, / be an equational
context and A
 6 be a type. Let ' be a valuation over 2 such that ' � 9 and ' � /.

..� �If 2 : | : 9 ; / 1 t : A is derivable, then t'
 A' .
.. � �If 2 : | : 9 ; / 1 � : A is derivable, then �'
 A' .

99

5.4.15

5.5.255.5.245.5.23

2.5.42

2.5.42

� � � �If 2 : | : 9 ; / 1 v : A is derivable, then v'
 A' � � .val

Proof. As for Theorems and , the proof is done by induction of the derivation
of the typing judgments. For all the rules of Figure and the rules for typing stacks
given in Theorem the proof does not change. We only have to be concerned with our

..� � � �� �new (�) rule. We need to show v'
 A' � � , knowing that v'
 A' by induction
..� � � �hypothesis. According to Theorem , every value of A' is also in A' . As a

consequence, it only remains to show v') �. In the case where v is a �-abstraction, a
variant or a record this is immediate. If v = x
 V then this is also immediate since by	� �de{nition '(x)) � for all x
 dom ' . Finally, it cannot be that v = � since it cannot
be introduced by any of our typing rules. In particular, it cannot be brought into focus
by rules handling equivalence as this would require replacing a term or a value that was
equivalent to �. However, � is only equivalent to itself according to Theorem .

We have now obtained a model allowing the use of semantical value restriction. We
will see in the next section that the presence of coercion rules between value and terms
judgments will allow us to make the type system a lot simpler by only considering one
form of judgments.

5.6 Derived type system

Now that our type system contains both the (�) and the (�) typing rules, it is always possible
to switch between term and value judgments (at least when the subject of the considered
judgment is a value). As a consequence, we will simply forget about the value judgments and
only work using term judgments. The obtained system will be simpler, in particular it will
have less typing rules.

Note that all the typing rules of our new system will be derivable in the current one. As a
consequence, we will not need to go through a new adequacy lemma, nor a modi{cation of
our semantics. In fact, the derivation of our new typing rules will mostly consist in compos-
ing the current typing rules with (�) on the conclusion. For example, we will derive the new
arrow introduction rule (�) as follows.i ,$

2 , x : 	 : | : 9, x : A ; / 1 t : A
�i

2 : | : 9 ; / 1 �x.t : A � Bval �
2 : | : 9 ; / 1 �x.t : A � B

As for value judgments appearing in a premise, we will simply precompose them with the
(�) rule. For example, we will derive the new product elimination rule (×) as follows.e,$

2 : | : 9 ; / 1 v : {(l : A) }i i i
I �
2 : | : 9 ; / 1 v : {(l : A) } k
 Ival i i i
I ×e

2 : | : 9 ; / 1 v.l : Ak k

100

3.5.39

5.4.15

4.7.53
4.2

4.7.534.6.48

2 : | : 9 ; / 1 t : A � B 2 : | : 9 ; / 1 u : A
Ax �$ e

2 , x : 	 : | : 9, x : A ; / 1 x : A 2 : | : 9 ; / 1 t u : B

2 , x : 	 : | : 9, x : A ; / 1 t : B.Ax �i ,$. . 2 : | : 9 ; / 1 �x.t : A � B2 , � : ! : | : 9, � : A ; / 1 � : A

. .2 , � : ! : | : 9, � : A ; / 1 t : A 2 : | : 9 ; / 1 t : A 2 : | : 9 ; / 1 � : A ��� 	
2 : | : 9 ; / 1 ��.t : A 2 : | : 9 ; / 1 [�]t : B

. .2 : | : 9 ; / 1 v : A 2 : | : 9 ; / 1 � : B 2 : | : 9 ; / 1 t : A � B 2 : | : 9 ; / 1 � : B ��$	>	 	 	
. .2 : | : 9 ; / 1 v . � : A � B 2 : | : 9 ; / 1 [t]� : A

2 , (: s : | : 9 ; / 1 t : A / 1 t � v 2 , x : 	 , (: s : | : 9, x : A ; / 1 t : C
� �ei,$s s2 : | : 9 ; / 1 t : �(.A 2 , x : 	 : | : 9, x : �(.A ; / 1 t : C

s2 : | : 9 ; / 1 t : �(.A 2 1 B : s 2 : | : 9 ; / 1 t : A[(� B] 2 1 B : s
� � ie s2 : | : 9 ; / 1 t : A[(� B] 2 : | : 9 ; / 1 t : �(.A

2 , x : 	 : | : 9, x : A ; / , x � t 1 u : C 2 : | : 9 ; / 1 t : A / 1 u � u1 2
 7e i

2 , x : 	 : | : 9, x : t
A ; / 1 u : C 2 : | : 9 ; / 1 t : A 7 u � u1 2

2 : | : 9 ; / 1 t : A / 1 t � v 2 , x : 	 : | : 9, x : A ; / , u � u 1 t : C1 2
 7i ,$ e

2 : | : 9 ; / 1 t : t
A 2 , x : 	 : | : 9, x : A 7 u � u ; / 1 t : C1 2

2 : | : 9 ; / 1 v : {(l : A) } k
 I 2 : | : 9 ; / 1 v : A k
 Ii i ki
I × +e,$ i ,$

2 : | : 9 ; / 1 v.l : A 2 : | : 9 ; / 1 C [v] : [(C : A)]k k k i i i
I

��2 : | : 9 ; / 1 v : Ai i i
I ×i ,$

2 : | : 9 ; / 1 {(l = v) } : {(l : A) }i i i ii
I i
I

��2 : | : 9 ; / 1 v : [(C : A)] 2 , x : 	 : | : 9, x : A ; / , v � C [x] 1 t : Bi i i i i i i ii
I i
I +e,$

2 : | : 9 ; / 1 [v | (C [x]� t)] : Bi i i i
I

��2 : | : 9 x � w ; / 1 t[x� w] : A[x� w] / 1 w � w1 1 1 1 2 �$, 	��2 : | : 9 x � w ; / 1 t[x� w] : A[x� w]2 2 2

��2 : | : 9 a � u ; / 1 t[a� u] : A[a� u] / 1 u � u1 1 1 1 2 �$,$��2 : | : 9 a � u ; / 1 t[a� u] : A[a� u]2 2 2

Figure 5.3 û Derived typing rules.

101

The full set of our new rules is displayed in Figure . Note that some rules, like
(�) for example, remain unchanged. All the modi{ed rules but (�) and (
) can bei ,$ i ,$e

derived immediately as demonstrated above. The rules (�) and (
) are instances of thei ,$ i ,$

semantical value restriction. The former can be derived as follows, and a derivation for the
latter was given in a previous section.

2 , (: s : | : 9 ; / 1 t : A / 1 t � v
�$,$

2 , (: s : | : 9 ; / 1 v : A �
2 , (: s : | : 9 ; / 1 v : Aval �is2 : | : 9 ; / 1 v : �(.Aval �

s2 : | : 9 ; / 1 v : �(.A / 1 t � v
�$,$

s2 : | : 9 ; / 1 t : �(.A

With our new set of typing rules, it is very easy to derive introduction and elimination
rules for the dependent product type. Using the (
) rule, semantical value restriction isi ,$

immediately propagated to the elimination rules of the dependent product type.

2 , x : 	 : | : 9, x : x
A ; / 1 t : B[a� x]
�	

2 : | : 9 ; / 1 �x.t : � Ba
A

2 : | : 9 ; / 1 t : � B 2 : | : 9 ; / 1 u : A / 1 u � va
A �e

2 : | : 9 ; / 1 t u : B[a� u]

2 , x : 	 : | : 9, x : x
A ; / 1 t : B[a� x]
Wk

2 , a : $, x : 	 : | : 9, x : x
A ; / 1 t : B[a� x]
Wk -

2 , a : $, x : 	 : | : 9, x : x
A ; / , x � a 1 t : B[a� x] / , x � a 1 x � a
�$,$

2 , a : $, x : 	 : | : 9, x : a
A ; / , x � a 1 t : B

e

2 , a : $, x : 	 : | : 9, x : A ; / , x � a 1 t : B

e

2 , a : $, x : 	 : | : 9, x : a
A ; / 1 t : B
� -i

2 , a : $: | : 9 ; / 1 �x.t : a
A � B / 1 �x.t � �x.t
�i

2 : | : 9 ; / 1 �x.t : �a.(a
A � B)
Def

2 : | : 9 ; / 1 �x.t : � Ba
A

2 : | : 9 ; / 1 t : � Ba
A Def
2 : | : 9 ; / 1 t : �a.(a
A � B) 2 : | : 9 ; / 1 u : A / 1 u � v

� �e e

2 : | : 9 ; / 1 t : u
A � B[a� u] 2 : | : 9 ; / 1 u : u
A
�e

2 : | : 9 ; / 1 t u : B[a� u]

102

5.3

Remark 5.6.28. Dually, it is possible to encode a form of dependent pair type using exis-
tential quanti{cation and product types. As for the dependent functions, the membership
predicate is used to bridge the world of terms and the world of types.

2 B � �x.{l : x
A ; l : B} 2 B � �a.{l : a
A ; l : B}x
A 1 2 a
A 1 2

As dependent pair types are based on records (which can only contain values in our system),
their use is rather limited. It seems however possible to rely on a dependent product type
to obtain satisfactory typing rules based on terms of the following form.

(�x.�y.{l = x ; l = y}) t t1 2 1 2

5.7 Understanding our new equivalence

To better understand our new de{nition of equivalence, we can compare it to another
equivalence relation with a more intuitive de{nition. The de{nition of this new relation,� � � �denoted � , will be very similar to that of � (see Chapter). It can be seen as the�
� �observational equivalence induced by �

� �De{nition 5.7.29. The relation � � × is de{ned as follows.�

� � � �� �� = t , u | � �
� , �'
S, t' � � � + u' � � �� � �

� �Lemma 5.7.30. The relation � � × is an equivalence relation.�

Proof. Immediate.

Theorem 5.7.31. If t, u
 are two terms such that t � u then t � u . In other words,�� � � �we have � � ��

Proof. Let us suppose that t � u , take �
 � and take '
 S. By symmetry we can0 0

assume that t' � � � and show that u' � � � . By de{nition there is i
 � such0 0 0 0 0� �
that t' � � � . Since t � u we know that for all i
 �, �
 � and '
 S we have0 0 i 0

t! � � � + u! � � � . This is true in particular for i = i , � = � and ' = ' . We hence0 0 0i i

obtain u' � � � which give us u' � � � .0 0 0 0i �0

Remark 5.7.32. The converse implication is not true in general, that is we do not have� � � �� A � . A counter-example is given by the terms t = & and u = �x.x since� �x.x,{}

t � u but t � u (and thus t � u). More generally, if p, q
 ×� are processes, having�

p� � q� does not always imply p� � q� for every natural number i
 �.� � i i

103

3

� �As shown by the Theorem , our � relation is more {ne-grained (i.e., it discriminates� �more terms than �). However, its formulation does not really provide more intuition� � �on the behaviour of our equivalence relation. Indeed, the de{nition of � still involves� � � �� , an thus the de{nition of � is still very subtle, even if its statement remains�
relatively simple.

In the end, what really matters to us is for our equivalence relation to be compatible
with the notion of reduction. And in fact, the only part of the reduction relation that will� �matter in practice is
 . Indeed, &-like terms are only provided in the system for obtaining
a well-behaved semantics. In particular, we do not want to expose them to the users of our� � � �implementation. It is thus enough for � to be compatible with � .

Remark 5.7.33. Allowing the user to work with and reason about &-like terms would not be
such a bad idea. Indeed, it could allow the encoding of mathematical objects into pure terms
of the language. In particular, it would be interesting to investigate the possibility of using
the following alternative reduction rules for &-like processes.

& � � � C [{}] � � when v � wv,w 0

& � � � C [{}] � � when v � wv,w 1

They would allow the de{nition of non-computable functions in our language by giving
complete access to our equivalence relation. This would allow, for example, the de{nition
of functions like �x.�y.& (i.e., a general equality function).x,y

104

5.7.31

In this chapter, we reformulate the de{nition of our system to account for subtyping.
The main idea is to transform the typing rules that do not have algorithmic contents into
subtyping rules. For instance, quanti{ers, {xpoints, membership types and equality types
will be handled using subtyping.

6.1 Interests of subtyping

There is no denying that polymorphism and type abstraction are essential features for
programming in a generic way. They lead to programs that are shorter, more modular,
easier to understand and hence more reliable. Although subtyping provides similar perspec-
tives, it is considerably less widespread among programming languages. Practical languages
only rely on limited forms of subtyping for their module system [MacQueen 1984], or for the
use of polymorphic variants [Garrigue 1998]. Overall, subtyping is useful for both product
types (e.g., records or modules) and sum types (e.g., polymorphic variants). It provides
canonical injections between a type and its subtypes. For example, the natural numbers may
be de{ned as a subtype of the integers.

The downside of subtyping is that it is dif{cult to incorporate in complex systems like
Haskell or OCaml. For example, OCaml provides polymorphic variants [Garrigue 1998] for
which complex annotated types are inferred. For instance, one would expect the following
OCaml function to be given the type [`T | `F] � [`T | `F].

let neg = function `T � `F | `F � `T

Indeed, the variance of the arrow type conveys enough information: neg can be applied
to elements of any subtype of [`T | `F] (e.g., [`T]) and produces elements of any super-
type of [`T | `F] (e.g. [`T | `F | `M]). OCaml infers the type [<`T | `F] � [>`T |

105

Introducing subtyping6
into the system

`F] in which subtypes and supertypes are explicitly tagged. This is not very natural and
hides a complex mechanism involving polymorphic type variables. More discussion on
the limitations of OCaml's polymorphic variants, can be found in [Castagna 2016], for
example.

In this thesis, we will show that it is possible to design a practical type system based
on subtyping for our language. It allows for a rather straight-forward implementation
following the typing and subtyping rules that will be given in the following sections.
In particular, the typing and subtyping procedures are directed by the syntax of terms
and types respectively. The ideas presented here were introduced in a joint work with
Christophe Ra|falli [Lepigre 2017].

6.2 Symbolic witnesses and local subtyping

Several related technical innovations are required to include subtyping into our system. In
particular, we will need to generalise the usual subtyping relation A D B (meaning ÷A is a
subtype of Bø) using a local subtyping relation t
 A D B. It will be interpreted as ÷if t has
type A then it also has type Bø. Usual subtyping is then recovered using choice operators
inspired from Hilbert's Epsilon and Tau functions [Hilbert 1934]. In our system, the choice
operator � (t �B) denotes a value v of type A such that t[x� v] does not have type B.x
A

If no such term exists, then an arbitrary term of type A can be chosen. We can then take
� (x �B)
 A D B as a de{nition of A D B.x
A

Remark 6.2.1. Of course, for the choice operator � (t�B) to be well-de{ned we will needx
A

the interpretation of every type to be non-empty. It is the case in [Lepigre 2017] as the model
is based on Girard's reducibility candidates [Girard 1972, Girard 1989]. Here, we will use the
special value � as it is contained in the interpretation of all types by construction. This is its
very purpose.

Choice operators can be used to replace the notion of free variables, and hence suppress
the need for typing contexts. The contexts will then be limited to an equational context
containing closed terms. Intuitively, � (t �B) denotes a counterexample to the fact thatx
A

�x.t has type A � B. Consequently, we will use the following rule for typing �-abstractions.

/ 1 t[x� � (t �B)] : Bx
A

/ 1 �x.t : A � B

It can be read as a proof by contradiction as its premise is only valid when there is no value
v of type A such that t[x� v] does not have type B. The axiom rule is then replaced by the
following typing rule for choice operators.

/ 1 � (t �B) : Ax
A

106

Obviously, the same trick can be used for �-variables and �-abstractions. As choice opera-
tors for values, choice operators for stacks will always need to be interpreted (even if there
is no stack satisfying the property they carry). As a consequence, we will need to make sure
that the set of stacks associated to each type contains at least one element.

The use of choice operators and the elimination of typing contexts will play an essential
role in the de{nition of our type system. Indeed, they will allow us to handle quanti{ers
using our local subtyping relation only. As a consequence, we will work with syntax-
directed typing rules and most of the work will be done using subtyping. We will thus
introduce two new type constructors � (t
A) and � (t �A) corresponding to choiceX X

operators for picking a type satisfying the denoted properties. For example, � (t � B) isX

a type such that the term t does not have type B[X� � (t � B)]. Intuitively, � (t � B)X X

is a counter-example to the judgment ÷t has type �X.Bø. Hence, to show that t has type
�X.B it will be enough to show that it has type B[X� � (t � B)]. As a consequence, theX

introduction rule for the universal quanti{er is subsumed by the following local subtyping
rule.

/ 1 t
 A D B[X� � (t �B)] / 1 t � vX

/ 1 t
 A D �X.B

Note that it includes a premise stating that the term t carried by the judgments should be
equivalent to a value. This corresponds to the semantical value restriction condition in our
new system with subtyping.

In conjunction with local subtyping, choice operators allow the derivation of many valid
permutations of quanti{ers and connectives. For example, subtyping relations like

�X.�Y.A D �Y.�X.A {l : �X.A ; l : �X.B} D �X.{l : A ; l : B}1 2 1 2

can be easily obtained thanks to our syntax-directed subtyping rules. In particular, they
do not include a transitivity rule, and this is a good thing since such a rule could not be
implemented. Indeed, it would require the system to guess an intermediate type. Transi-
tivity is generally admissible in subtyping systems. In our system however, it is an open
problem whether a form of transitivity is admissible. However, type annotations of the form�� � �t : A : B : C can always be used to decompose a proof of t : C into proofs of t : A,
t
 A D B and t
 B D C. Such annotations are also required in the implementations of
systems having a transitivity rule. Indeed, without annotations the system would need to
guess the intermediate types A and B.

6.3 Typing and subtyping rules

We will now give the formal de{nition of our new type system with subtyping. We will
reuse some of the formalism given in Chapter , but modi{cations will be required. For

107

4

instance, we will need to extend the language of values, stacks and formulas to include
choice operators.

De{nition 6.3.2. We extend the language of formulas 6 with new constructors � (t
A)(:s

and � (t �A) representing choice operators. They will be made available in the syntax,(:s

and will provide an alternative presentation of quanti{ers. Note that our system needs to
be extended with the following two sorting rules.

2 1 t : $ 2 , (: s 1 A : 3 2 1 t : $ 2 , (: s 1 A : 3
2 1 � (t
A) : s 2 1 � (t �A) : s(:s (:s

To introduce value and stack witnesses into our system, we will need to make a
distinction between values, terms, stacks and formulas that may contain value and stack
witnesses and those that may not.

De{nition 6.3.3. We extend the syntax of values with a new constructor � (t �B), wherex
A

x
V is a �-variables, t
 is a term and A, B
 6 are propositions. Similarly, the syntax	

of stacks is extended with a new constructor � (t �A), where �
 V is a �-variable,�
¬A !

t
 is a term and A
 6 is a proposition. Note that our system needs to be extended with
the following two sorting rules.

x : 	 1 A : 3 x : 	 1 t : $ x : 	 1 B : 3 � : ! 1 A : 3 � : ! 1 t : $
2 1 � (t �B) : 	 2 1 � (t �A) : !x
A �
¬A

It is important to note that no other variable than x may be bound in A, t or B in the {rst
rule. Similarly, only � can be bound in t and B in the second one. These restrictions are
required for the de{nition of our semantics.

De{nition 6.3.4. We will refer to values, terms and stacks that may contain value and stack
witnesses as raw values, raw terms and raw stacks. The corresponding sets will be denoted

+ + + , and � respectively.	

Before going into our new typing and subtyping rules, we will extend the syntax of
formulas one more time. Indeed, our current system (and its semantics) does not allow for
all the basic subtyping relations that we could hope for. For instance, if I � I then it is1 2

possible to show that [(C : A)] is a subtype of [(C : A)] in the system. However,i i i ii
I i
I1 2

the corresponding relation on product types is not satis{ed by our semantics. Intuitively,
the elements of the type {(l : A) } must be of the form {(l = v) }. In particular, theyi i i ii
I i
I

cannot have additional record {elds. One solution to this problem would be to amend the
semantics of product types. Instead, we will keep our original, strict product type, and intro-
duce another extensible product type.

108

De{nition 6.3.5. The syntax of formulas 6 is extended with an extensible product type

constructors {(l : A) ;E}. Our system again requires a new sorting rule.i i i
I

� �2 1 A : 3i i
I

2 1 {(l : A) ;E} : 3i i i
I

We will now give the new typing and subtyping rules of our system, which will contain
three (and in fact four) new forms of judgments.

De{nition 6.3.6. A general typing judgment is a triple of an equational context /, a raw
+term t
 and a formula A
 6 that is denoted / 1 t : A. A general stack judgment is a

+triple of an equational context /, a raw stack �
 � and a formula A
 6 that is denoted
/ 1 � : ¬A. A pointed subtyping judgment is a quadruple of an equational context /, a raw

+term t
 and two formulas A, B
 6 that is denoted / 1 t
 A D B. We will use the
notation / 1 A D B when the term t is equal to � (x �B).x
A

To keep track of the special value � in our judgments, we will use inequalities of the
form v) �. They will be de{ned in terms of an equivalence, so we do not need to extend
our de{nitions formally.

�De{nition 6.3.7. Given a closed value v
 we will use the notation v) � for the	

syntactic equivalence (�x.{}) v � {} in equational contexts.

As shown by the following lemma, this notation provides the right intuition as it agrees
with the semantics.

�Lemma 6.3.8. Given a closed value v
 we have (�x.{}) v � {} if and only if v is	

di|ferent from �.

Proof. Let us {rst assume that v) � and show (�x.{}) v � {}. Since v is closed, it cannot
be a �-variable and so we can conclude immediately using Theorem . For the other
direction we show the contrapositive so we assume v = � and we show (�x.{}) v � {}.
According to Theorem we have (�x.{}) � � � and so it is enough to show � � {}.
This follows from Theorem .

De{nition 6.3.9. A general typing judgment, general stack judgment or pointed subtyping
judgment is said to be valid if it can be derived using the rules of Figures and .

There is nothing too surprising about our new typing rules. Note however that, in the
case where our equivalence decision procedure is unable to prove a premise of the form
/ 1 v � t in a local subtyping rule, one can always fallback to the (Gen) rule.

109

6.56.4

3.5.39
3.3.17

3.3.16

/ 1 �x.t
 A � B D C / , � (t �B)) � 1 t[x� � (t �B)] : Bx
A x
A �i

/ 1 �x.t : C

/ 1 � (t �B)
 A D C / 1 � (t �B)) �x
A x
A Ax
/ 1 � (t �B) : Cx
A

/ 1 t : A � B / 1 u : A / 1 t : u
A � B / 1 u : A / 1 v � u
� �e e,

/ 1 t u : B / 1 t u : B

/ 1 t[�� � (t �A)] : A / 1 u : A / 1 � : ¬A / 1 B DA .�
¬A ��� 	 Ax
/ 1 ��.t : A / 1 � (t �A) : ¬B/ 1 [�]u : B �
¬A

/ 1 v : A / 1 � : ¬B / 1 C DA � B / 1 t : A � B / 1 � : ¬B ��	>	 	 	
/ 1 v . � : ¬C / 1 [t]� : ¬A

� �/ 1 {(l = v) }
 {(l : A) } D C / 1 v : A/ 1 v : {l : A ;E} i i i i i ik i
I i
I i
I× ×e i

/ 1 v.l : A / 1 {(l = v) } : Ck i i i
I

� �/ 1 v : [(C : A)] / 1 t [x � � (t �C)] : Ci i i i x
A 7C [x]�v ii i i ii
I i
I +e

/ 1 [v | (C [x]� t)] : Ci i i i
I

/ 1 v : A / 1 C [v]
 [C : A] D Bk k +i

/ 1 C [v] : Bk

Figure 6.4 û Typing rules for terms and stacks.

6.4 Semantics of subtyping

We will now adapt our model to work with our new typing and subtyping rules. The
main problem that we need to solve is the interpretation of raw terms, values and stacks.
In particular, we need to provide an interpretation to our choice operators. In [Lepigre 2017],

� �the choice operator � (t�B) is interpreted using a value v
 A such that t[x� v] is inx
A � �the semantics of B. In the case where no such value exists, an arbitrary member of A is
� �chosen. Here, a crucial point is that the set A should not be empty. It is the case here as

� �by construction we have �
 A for every proposition A. This special value � will thus be
understood as an unde{ned value witness.

110

/ , w) � 1 w
 A DA / , w) � 1 t w
 B D B / 1 t � v2 1 1 2 � w = � (t x�B)x
A 22/ 1 t
 A � B DA � B1 1 2 2

� �I D I / 1 (�x.[x | C [x]� x]) t
 A D B / 1 t � v1 2 i i i i i i
I1 +

/ 1 t
 [(C : A)] D [(C : B)]i i i ii
I i
I1 2

� � � � ��/ 1 ' (� ' (� �/ 1 (�x.x.l) t
 A D B / 1 t � v 1 2i i i � �(
FV Ai
I × AxD
/ 1 t : A' DA'/ 1 t
 {(l : A) } D {(l : B) } 1 2i i i ii
I i
I

� �I D I / 1 (�x.x.l) t
 A D B / 1 t � v2 1 i i i / 1 A D Bi
I2 × Genext

/ 1 t : A D B/ 1 t
 {(l : A) ;E} D {(l : B) ;E}i i i ii
I i
I1 2

� �I D I / 1 (�x.x.l) t
 A D B / 1 t � v2 1 i i i i
I2 ×D

/ 1 t
 {(l : A) } D {(l : B) ;E}i i i ii
I i
I1 2

/ 1 t
 A D B[(� � (t �B)] / 1 v � t/ 1 t
 A[(�C] D B (:s� �l rs s/ 1 t
 �(.A D B / 1 t
 A D �(.B

/ 1 t
 A[(� � (t
A)] D B / 1 t � v/ 1 t
 A D B[(�C] (:s� �r ls s/ 1 t
 A D �(.B / 1 t
 �(.A D B

/ , u � u 1 t
 A D B / 1 v � t / 1 t
 A D B / 1 u � u1 2 1 27 7
l r/ 1 t
 A 7 u � u D B / 1 t
 A D B 7 u � u1 2 1 2

/ , t � u 1 t
 A D B / 1 t � v / 1 t
 A D B / 1 t � u / 1 t � v

l r

/ 1 t
 u
A D B / 1 t
 A D u
B

Figure 6.5 û Local subtyping rules.

Lemma 6.4.10. Let p
 ×� be a process such that � � p. If there is q
 ×� such
that p � q then � � q.

� �Proof. Most reduction rules of � only build a new process using components of the
process p being evaluated. Hence, they cannot make � appear it was not already present in
p. The remaining rules are related to binders, and obviously if t, v and � do not contain �,
then neither do t[x� v] or t[�� �].

Similarly, if a variable does not appear in a process then it cannot appear during reduction.
In particular, the evaluation of a closed process never produces an open process.

111

In the semantics, raw values, raw terms and raw stacks will be interpreted using values,
terms and stacks with the same structure. The underlying choice operators will thus be
replaced by elements of the corresponding syntactic category.

+ + +De{nition 6.4.11. Given a raw value v
 (resp. raw term t
 , raw stack �
 �), we	� � � � � �denote v
 (resp. t
 , �
 �) its semantical interpretation. It is de{ned induc-	

tively as follows.

It is important to note that, from now on, raw values, raw terms and raw stacks
may appear in types of any sort. However, up to the interpretation of such raw syntactic
elements, the semantics of our types will remain the same as in Chapter . Indeed, we will
consider that a raw value, raw term or raw stack is equal to its interpretation (and thus to
a value, term and stack respectively). We will however need to account for witnesses of
the form � (t
A) and � (t �A) in their semantical interpretation. Intuitively, these(:s (:s

witnesses will be understood as formulas of the corresponding sort satisfying the denoted
property.

De{nition 6.4.12. We extend the de{nition of the interpretation of types (De{nition)
in such a way that:

..� � � � � � � �� (t
A) = : such that :
 s and, if possible, t
 A[(�:] ,(:s

..� � � � � � � �� (t �A) = : such that :
 s and, if possible, t � A[(�:] .(:s � �Note that for every sort s
 S it is easy to see that s) �. As a consequence, the
interpretation of a type is always well-de{ned.

112

4.5.42

4

�x� = x ��]t[� = ���]�t�[
�t.x�� = �t�.x� �})vi=l i(

I
i
{� = })�vi

�=l i(
I
i

{

�]v[C� =]�v�[C �)B�t(� A
x
� = �B� ..��]v�x[t�|�����]v�x[A�
v

��� = � �)B�t(� A
x
� = esiwrehto�

�a� = a �t.��� = �t�.��
�u t� = �u� �t� �t]�[� = �t�]���[
�lk.v� = lk.�v� �])t i�]x i[Ci(

I
i
|v[� =])�t i

��]x i[Ci(
I
i

|�v�[
�Y v,t

� = Y �v�,�t� �& w,v
� = & �w�,�v�

�% t,v
� = % �t�,�v� ��� = �

��� = � �)A�t(� A¬
�� = �B� ..��]���[t�|�]���[A� .
�

��.v� = ���.�v� �)A�t(� A¬
�� = esiwrehto�]�[

Remark 6.4.13. Although this is not explicitly mentioned, the interpretation of our choice
� � � �� �operators should be compatible with the de{nition of � . For instance, if t � u then

� � � �we require � (t � B) = � (u � B) (and similarly for the other forms of choicex
A x
A
.. ..� � � � � � � �operators). This is possible since t[x� v]
 B if and only if u[x� v]
 B� �as the interpretation of our types is closed under � . Note that this means that we will

� � � �also have � (t �B) = � if and only if � (u �B) = � since the interpretation ofx
A x
A� �our types is closed under � .

De{nition 6.4.14. We also extend De{nition with an interpretation for the extensible
product type. It is de{ned as follows.

� �� � � �� � � �{(l : A) ;E} = {(l = v) } | I � K � � i
 I , v
 A � � � �i i i i i ii
I i
K

We will now give the interpretation of our di|ferent forms of judgments in the seman-
tics, and prove the adequacy of the semantics with respect to the typing rules given in
Figures and .

+ +De{nition 6.4.15. Let t
 be a raw term, �
 � be a raw stack and A, B
 6 be two
.. .� � � � � � � �types. We will write t � A if t
 A , � � A if �
 A and t � A D B if t � A

implies t � B.

Lemma 6.4.16. Let A, B
 6 be two types such that � (x �B) � A D B. In this casex
A� � � �we have A � B .

� �Proof. We proceed by case on the de{nition of v = � (x � B) . If v) � then wex
A
..� � � � � �have v
 A and v � B . This is a contradiction since v � B by Theorem . If

..� � � � � �� �v = � then for all w
 A � � we have w
 B and w
 B thanks to Theorem
� � � � � � � �. Moreover, �
 A and �
 B so we indeed have A � B .

+Theorem 6.4.17. Let / be an equational context, A, B
 6 be closed types and t

� � � �� �be a raw term. If for all t , t
 / the equivalence t � t holds then we have1 2 1 2

the following.
� �If / 1 t : A is valid then we have t � A. Moreover, if t is a value then t) �.

If / 1 � : ¬A is valid then we have � � A.
If / 1 t
 A D B is valid then we have t � A D B.

Proof. We do a proof by induction on the structure of the proof of / 1 t : A, the proof
of / 1 � : ¬A and the proof of / 1 t
 A � B respectively. We consider the last rules
used in the proof.

113

5.4.15

4.5.29

6.56.4

4.5.42

In the case of the (�) rule, we need to show that �x.t � C. According to the {rsti

induction hypothesis, it is enough to show �x.t � A � B. Let us now suppose that there
..� � � � � �� �is a value v
 A � � such that t[x� v] � B . In this case we get a contra-

� �diction with our induction hypothesis since we must have � (x � B)) � andx
A
.. ..� � � � � � � �t[x� � (x�B)] � B . As a consequence, we know that t[x� v]
 B forx
A� � � � � �� �all v
 A � � , which exactly means that �x.t
 A � B . We can thus conclude

using Theorem .

/ 1 �x.t
 A � B D C / , � (t �B)) � 1 t[x� � (t �B)] : Bx
A x
A �i

/ 1 �x.t : C

In the case of the (�) rule, we need to show that t u � B, which is the same ase
.. .� � � � � � � � � � � �t u
 B . We thus take �
 B and we show that t u � �
 �. Since

..� � � � � � � �� �� is � -saturated, it is enough to show u � [t]�
 �. As u
 A by our
.� � � � � �second induction hypothesis, we will prove that [t]�
 A . We thus take v
 A

� � � �and show that we have v � [t]�
 �. If v = � then we have � � [t]� � � � � and� �since � is � -saturated it is enough to show � � �
 �, which is immediate since
.� � � � � � � � � ��
 B and �
 B . Now, if v) � then v � [t]� � t � v . � and as � is � -

..� � � � � �saturated it is enough to show t � v . �
 �. Since t
 A � B according
..� �to the {rst induction hypothesis, we only have to show that v . �
 A � B so we

� �take w
 A � B and show that w � v . �
 �. If w = � then � � v . � � � � �� �and it is enough to show � � �
 � as � is � -saturated. This is immediate since
.� � � ��
 B and �
 B . If w = �x.f then �x.f � v . � � f[x� v] � � and it is enough

.� �� �to show f[x� v] � �
 � since � is � -saturated. As �
 B it only remains to
..� � � � � � � �show f[x� v]
 B , but this is true by de{nition of A � B since v
 A � � .

/ 1 t : A � B / 1 u : A
�e

/ 1 t u : B

In the case of the (Ax) rule, we need to � (t�B) � C. Using the induction hypothesis,x
A

it is enough to show � (t �B) � A. Moreover, according to Lemma we onlyx
A� � � � � �need to prove � (t �B)
 A , which follows by de{nition since �
 A . More-x
A� �over, we obtain � (t �B)) � using the right premise with Lemma .x
A

/ 1 � (t �B)
 A D C / 1 � (t �B)) �x
A x
A Ax
/ 1 � (t �B) : Cx
A

In the case of the (�) rule, we need to show that t u � B, which is the same ase,

.. .� � � � � � � � � � � �t u
 B . We thus take �
 B and we show t u � �
 �. Since �

� � � �� � � �is � -saturated, it is enough to show u � [t]�
 �. Now, as our pole is � -
� � � �extensional and we know that u � v for a value v, it is enough to show that

� � � � � �v � [t]�
 �. If v = � then we can conclude as for the (�) rule and otherwisee
..� � � � � � � �� �we can show t � v . �
 � as � is � -saturated. As t
 u
A � B by

114

6.3.8

4.5.29

4.5.29

.� � � �our {rst induction hypothesis, we only need to show v . �
 u
A � B . We thus
� � � �take a value w
 u
A � B and show w � v . �
 �. If w = � then we can

conclude as for the (�) rule. If w = �x.f then we can again take a reduction stepe� � � � � �and show that f[x� v] � �
 �, for which it is enough to show f[x� v]
 B . To
� � � � � � � �conclude using the de{nition of u
A � B we need to show v
 u
A � � .

� � � � � � � � � �Since we have v) � and u � v we only need to show v
 A . Using
..� � � �Theorem it is enough to show v
 A , which follows from Theorem

..� � � � � � � �as u
 A by our second induction hypothesis since u � v .

/ 1 t : u
A � B / 1 u : A / 1 v � u
�e,

/ 1 t u : B

In the case of the (�) rule, we need to show that ��.t � A, which is the same as
.. .� � � � � � � � � ���. t
 A . We thus take �
 A and show ��. t � �
 �. Since � is � -

.� � � � � �saturated, it is enough to show t [�� �] � � = t[�� �] � �
 � and as �
 A
..� � � �we only need to show t[�� �]
 A . Let us now suppose that there is a stack

. ..� � � � � ��
 A such that t[�� �] � A . In this case we can assume that we have
� �� = � (t �A) but this contradicts the induction hypothesis which tells us that�
¬A

.. ..� � � � � � � �t[�� � (t �A)]
 A . As a consequence, we have t[�� �]
 A for�
¬A
.� �all �
 A . In particular, this is true for � = �.

/ 1 t[�� � (t �A)] : A�
¬A �
/ 1 ��.t : A

��In the case of the () rule, we need to show that [�]u � B, which is the same as
.. .� � � � � � � � � � � �[�] u
 B . We thus take �
 B and show that [�] u � �
 �. As � is

� � � �� �� -saturated, it is enough to show u � �
 � but this is immediate since we have
.. .� � � � � � � �u
 A and �
 A by induction hypothesis.

/ 1 u : A / 1 � : ¬A ��	
/ 1 [�]u : B

.In the case of the (Ax) rule, we need to show that � (t�A) � B, which is the same�
¬A
.� � � �as � (t�A)
 B . By induction hypothesis, we know that � (x�A) � B DA�
¬A x
B� � � �and thus we can apply Lemma to get B � A . Using Lemma we then

. . .� � � � � � � �obtain A � B and thus it is enough to show � (t �A)
 A . We now�
¬A� �reason by case on the de{nition of � (t �A) . It is either de{ned to be a stack in�
¬A
.� ��
 A (with some properties) in which case we can conclude immediately, or it is

� �de{ned to be the stack [�]�. In this second case we take v
 A and show v � [�]�
 �.
If v = � then we have � � [�]� � � � � and otherwise we have v � [�]� � � � v .� �� � � � �. We can then conclude since � is � -saturated and � � �
 �.

/ 1 B DA .Ax
/ 1 � (t �A) : ¬B�
¬A

115

4.5.306.4.16

4.5.355.4.15

In the case of the (>) rule, we need to show that v . � � C, which is the same as
.� � � � � �v . �
 C . Using Lemmas and with the third induction hypothesis

. . .� � � � � � � � � �we have A � B � C . It is hence enough to show v . �
 A � B , so
� � � � � �we take w
 A � B and show w � v . �
 �. If w = � then it is enough to

.� � � � � �� �show � � �
 � as � is � -saturated. This is immediate since �
 B by the
� �second induction hypothesis and �
 B . If w = �x.f then it is enough to show that

� � � � � �f[x� v] � �
 � as � -saturated. Using the second induction hypothesis, we only
.. ..� � � � � � � � � �need to show f[x� v]
 B . As v
 A and v) � by our {rst induction

� �hypothesis conclude by de{nition of A � B using Theorem .

/ 1 v : A / 1 � : ¬B / 1 C DA � B 	>	
/ 1 v . � : ¬C

��In the case of the () rule, we need to show that [t]� � A, which is the same as
.� � � � � � � � � � � �[t] �
 A . We thus take v
 A and show v � [t] �
 �. If v = � we

� � � � � � � �have � � [t] � � � � � and since � is � -saturated we only need to show
.� � � � � �� � �
 �. This is immediate as �
 B by our second induction hypothesis

� � � � � � � � � � � �and �
 B . If v) � then we have v � [t] � � t � v . � and since � is � -
� � � �saturated, it is enough to show t � v . �
 �. By the {rst induction hypothesis we

.. .� � � � � � � �have t
 A � B so we only need to show v . �
 A � B . This can be done
as in the proof of the previous case.

/ 1 t : A � B / 1 � : ¬B ��	 	
/ 1 [t]� : ¬A

In the case of the (×) rule, we need to show that v.l � A, which is the same ase k
.. .� � � � � � � �v .l
 A . We thus take �
 A and show that v .l � �
 �. By inductionk k

..� � � � � �hypothesis, we know that v
 {l : A ;E} and that v) �. Moreover, usingk� � � � � �Theorem we obtain v
 {l : A ;E} and thus v = {(l = w) } with k
 Ik i i i
I� � � �and v
 A . As a consequence we only need to prove w � �
 � since � is � -k k
.� � � �saturated. This is immediate as w
 A and �
 A .k

/ 1 v : {l : A ;E}k ×e

/ 1 v.l : Ak

In the case of the (×) rule, we need to show {(l = v) } � C. Using the {rst inductioni i i i
I� � � �hypothesis, it is enough to show that {(l = v) }
 {(l : A) } . By de{nition,i i i ii
I i
I� � � � � �we need to show that v
 A � � for all i
 I. This follows by Theoremi i

using the induction hypotheses.

� �/ 1 {(l = v) }
 {(l : A) } D C / 1 v : Ai i i i i ii
I i
I i
I ×i

/ 1 {(l = v) } : Ci i i
I

In the case of the (+) rule, we need to show [v | (C [x]� t)] � C, which is the samei i ie i
I.. .� � � � � � � �as [v | (C [x]� t)]
 C . We thus take a stack �
 C and show thati i i i
I

116

5.4.15

5.4.15

5.4.15

6.4.164.5.30

� � � �[v | (C [x]� t)] � �
 �. Using the {rst induction hypothesis (together withi i i i
I � � � �� �Theorem) we learn that v
 [(C : A)] and that v) �. As a consequence,i i i
I� � � � � �� �v = C [w] for some k
 I and w
 A � � . As � is � -saturated we onlyk k k i� � � �need to show t [x � w] � � = t [x � w] � �
 �. Let us assume that it isk k k k k k� � � �� �false and {nd a contradiction. Since w
 A � � and v = C [w] we havek i k k� � � �� �w
 A 7C [w]� v � � . As a consequence � (t �C)) � since wk i k k x
A 7C[x]�v k kk k k

is a possible de{nition for the witness. This contradicts the induction hypothesis since
..� �� �it implies t [x � � (t �C)] � C .k k x
A 7C[x]�v kk k k � �/ 1 v : [(C : A)] / 1 t [x � � (t �C)] : Ci i i i x
A 7C [x]�v ii i i ii
I i
I +e

/ 1 [v | (C [x]� t)] : Ci i i i
I

In the case of the (+) rule, we need to show C [v] � B. Using the second inductionki � � � �hypothesis and Lemma , it is enough to show C [v]
 [C : A] . By de{nition,k k� � � � � �it is enough to show v
 A � � which follows from the {rst induction hypothesis
and Theorem .

/ 1 v : A / 1 C [v]
 [C : A] D Bk k +i

/ 1 C [v] : Bk

In the case of the (Ax) rule, we need to show t � A' DA' . It is enough to showD 1 2
.. ..� � � � � � � �A' = A' since in this case we will have A' = A' which implies1 2 1 2� � � �� � � � � �our goal. For every �-variable or term variable (
 FV A we have ' (� ' (.1 2

As a consequence, we can conclude with a simple proof by induction using Theorems
and to substitute one variable at a time.

� � � � ��/ 1 ' (� ' (1 2 � �(
FV A
AxD

/ 1 t : A' DA'1 2

In the case of the (Gen) rule, we need to show that t � A D B. Using the induction
� � � �hypothesis with Lemma we obtain A � B , and we can thus conclude using

Lemma .
/ 1 A D B

Gen
/ 1 t : A D B

In the case of the (�) rule, we need to show that t � A � B DA � B . We thus1 1 2 2
.. ..� � � � � � � �assume t
 A � B and show that we have t
 A � B . Now, as � is1 1 2 2

..� � � � � � � �� �� -extensional and v � t for some value v, we know that v
 A � B1 1
..� � � �and we only have to show that v
 A � B . With Theorem we even2 2� � � � � � � � � �have v
 A � B and we can show v
 A � B . If v = � then this1 1 2 2� �is immediate as we have �
 A � B by de{nition. Let us now suppose that2 2

..� � � � � �� �v = �x.f and that for all w
 A � � we have f[x� w]
 B . If we have1 1
..� � � � � � � �� �t w
 B for all w
 A � � then, since we have t � �x.f, we can use2 2

..� �Theorems and to get (�x.f) w
 B . We can then use Theorem2
..� �to obtain f[x� w]
 B for the same reason. This exactly means that we have2

117

3.3.165.5.214.5.35

5.4.15

4.5.32
6.4.16

5.5.215.5.18

5.4.15

4.5.29

5.4.15

..� � � � � � � �v = �x.f
 A � B . Finally, let us suppose that t w � B for some value2 2 2� � � �� �w
 A � � . We can assume that w = � (t x�B) and thus the {rst induction2 x
A 22
..� � � �hypothesis gives us w
 A . We then obtain that f[x� w]
 B by de{nition of1 1� � � �A � B . Now, using again Theorems and we obtain f[x� w] � t w1 1

and thus we get a contradiction with the second induction hypothesis.

/ , w) � 1 w
 A DA / , w) � 1 t w
 B D B / 1 t � v2 1 1 2 � w = � (t x�B)x
A 22/ 1 t
 A � B DA � B1 1 2 2

In the case of the (+) rule, we need to show t � [(C : A)] D [(C : B)]. As ini i i ii
I i
I1 2� � � �the case of the (�) rule, we know that t � v so we can assume that we have
� � � � � �� � � �v
 [(C : A)] and show that v
 [(C : B)] . If v = � then the proof isi i i ii
I i
I1 2 � �trivial as for the (�) rule. As a consequence, we may assume that v = C [w] for somek� � � �� �k
 I and w
 A � � . Thus, we only need to show that w
 B . Let us now1 k k� � � �consider the term (�x.[x | C [x]� x]) t = (�x.[x | C [x]� x]) t . As we havek k k k k k� � � � � �t � v = C [w], we know (�x.[x | C [x]� x]) t � (�x.[x | C [x]� x]) C [w].k k k k k k k k� �Using Theorems and we even obtain (�x.[x | C [x]� x]) t � w. We cank k k� �hence conclude using the induction hypothesis, the � -extensionality of the pole and
Theorem .

� �I D I / 1 (�x.[x | C [x]� x]) t
 A D B / 1 t � v1 2 i i i i i i
I1 +

/ 1 t
 [(C : A)] D [(C : B)]i i i ii
I i
I1 2

In the case of the (×) rule, we need to show t � {(l : A) } D {(l : B) }. As ini i i ii
I i
I� � � �the case of the (�) rule, we know that t � v so we can assume that we have
� � � � � �� � � �v
 {(l : A) } and show that v
 {(l : B) } . Again, if v = � then thei i i ii
I i
I� � � � � �proof is trivial. Hence, we may assume v = {(l = v) } and v
 A � � fori i i ii
I � �all index i
 I. As a consequence, we only need to show that v
 B for all i
 I.i i� � � �Let us take k
 I and consider the term (�x.x.l) t = (�x.x.l) t . As we havek k� � � � � �t � v = {(l = v) }, we know (�x.x.l) t � (�x.x.l) {(l = v) }. We theni i k k i ii
I i
I� �obtain (�x.x.l) t � v using Theorems and . We can hence concludek k � �using the induction hypothesis, the � -extensionality of the pole and Theorem .

� �/ 1 (�x.x.l) t
 A D B / 1 t � vi i i i
I ×

/ 1 t
 {(l : A) } D {(l : B) }i i i ii
I i
I

In the case of the (×) rule, the proof is similar to the (×) case. Since we know thatext� � � � � � � �� � � �t � v we can assume v
 {(l : A) } and show that v
 {(l : B) } . Ifi i i ii
I i
I1 2� � � �v = � then the proof is trivial so we may assume that v = {(l = v) } with I � Ii i 1i
I� � � �and v
 A for all index i
 I . As a consequence, we only need to show v
 B fori i 1 i i� � � �all i
 I . Let us take k
 I and consider the term (�x.x.l) t = (�x.x.l) t . As we2 2 k k� � � � � �have t � v = {(l = v) }, we know (�x.x.l) t � (�x.x.l) {(l = v) }. Usingi i k k i ii
I i
I

118

5.4.15
3.3.153.3.16

5.4.15

3.3.153.3.16

5.5.213.3.16

� �Theorems and we obtain (�x.x.l) t � v . We can hence conclude usingk k� �the induction hypothesis, the � -extensionality of the pole and Theorem .

� �I D I / 1 (�x.x.l) t
 A D B / 1 t � v2 1 i i i i
I2 ×ext

/ 1 t
 {(l : A) ;E} D {(l : B) ;E}i i i ii
I i
I1 2

In the case of the (×) rule, the proof is exactly the same as for (×) with I = I .D ext 1

� �I D I / 1 (�x.x.l) t
 A D B / 1 t � v2 1 i i i i
I2 ×D

/ 1 t
 {(l : A) } D {(l : B) ;E}i i i ii
I i
I1 2

sIn the case of the (�) rule, we need to show that t � �(.A D B. We thus suppose thatl
st � �(.A and show t � B. By induction hypothesis, it is enough to prove t � A[(�C]

.. ..s� � � �and thus we will show �(.A � A[(�C] . According to Lemma , it is
s� � � �enough to show �(.A � A[(�C] , which is immediate by de{nition.

/ 1 t
 A[(�C] D B
�ls/ 1 t
 �(.A D B

sIn the case of the (�) rule, we need to show that t � A D �(.B. We thus suppose thatr
.... ..s� � � � � � � � � � � �t
 A and show that t
 �(.B . We have t
 B[(� � (t �B)](:s� � � �� �by induction hypothesis. Moreover, as the pole is � -extensional and v � t for

..� � � �some value v, we have v
 B[(� � (t �B)] according to Theorem . For(:s
..s� � � �the same reason, it will be enough for us to show that v
 �(.B . With Theorem

s� � � � � � � �we even have v
 B[(� � (t �B)] and we can show v
 �(.B . We(:s
..� � � � � �now suppose that there is :
 s such that t � B[(�:] . We can thus assume

..� � � � � � � �that B[(� � (t �B)] = B[(�:] , which contradicts t
 B[(�:] . As a(:s
..� � � � � �consequence, it must be that for every formula :
 s we have t
 B[(�:] ,

� � � �or equivalently v
 B[(�:] using Theorems and . This immediately
s� � � �implies that v
 �(.B .

/ 1 t
 A D B[(� � (t �B)] / 1 v � t(:s �rs/ 1 t
 A D �(.B

In the case of the (�) rule, the proof is similar as for the (�) rule. We need to showr l
s sthat t � A D �(.B so we suppose t � A and show t � �(.B. Using the induction

hypothesis, we know that t � B[(� C]. As a consequence, we only need to show
.... s s� � � � � �B[(�C] � �(.B . This immediatly follows from the de{nition of �(.B

using Lemma .
/ 1 t
 A D B[(�C]

�rs/ 1 t
 A D �(.B

In the case of the (�) rule, the proof is similar as for the (�) rule. We need to showl r
s sthat t � �(.A D B so we suppose t � �(.A and show t � B. To be able to use the

..� � � �induction hypothesis, we need to show that t
 A[(� � (t
A)] , provided(:s

119

4.5.32

5.4.154.5.35

5.4.15

4.5.35

4.5.32

5.4.15
3.3.153.3.16

..s� � � � � � � �that t
 �(.A . As we have v � t we can use Theorems and ,
s� � � � � � � �assume v
 �(.A and show v
 A[(� � (t
A)] . We will now suppose,(:s

..� � � � � �by contradiction, that for every element : of s we have t � A[(�:] and
� � � �thus v � A[(�:] using again Theorems and . This is a contradiction

s� � � � � �since this exactly means that v � �(.A . Hence, there must be :
 s such that
..� � � � � � � �t
 A[(�:] . We can thus suppose A[(� � (t
A)] = A[(�:] which(:s

..� � � �gives us t
 A[(� � (t
A)] . We can thus conclude the proof using Theorems(:s

and one more time.

/ 1 t
 A[(� � (t
A)] D B / 1 t � v(:s �ls/ 1 t
 �(.A D B

In the case of the (7) rule, we need to show that t � A 7 u � u D B. We thus assume1 2l� � � � � � � �that we have t
 A 7 u � u and we show t
 B . As in the case of the1 2� � � � � � � �(�) rule, we know that t � v so we can assume that we have v
 A 7 u � u1 2� � � � � �and we can show v
 B . Now, if v = � then we can conclude immediately.
� � � � � � � � � �Otherwise, we have v
 A and u � u by de{nition of A 7 u � u . As a1 2 1 2� � � � � � � �consequence, we get v
 B by induction hypothesis (using u � u).1 2

/ , u � u 1 t
 A D B / 1 v � t1 2 7
l/ 1 t
 A 7 u � u D B1 2

In the case of the (7) rule, we need to show that t � A D B 7 u � u . We thus assume1 2r

t � A and show t � B 7 u � u . Using the induction hypothesis, we know that t � B.1 2 � � � �We will thus conclude the proof by showing B 7 u � u = B , which implies1 2
.. ..� � � � � � � �B 7 u � u = B . This is immediate since u � u by hypothesis.1 2 1 2

/ 1 t
 A D B / 1 u � u1 2 7
r/ 1 t
 A D B 7 u � u1 2

In the case of the (
) rule, we need to show that t � u
A D B. We thus assumel

that we have t � u
A and show t � B. As in the case of the (�) rule, we know that
..� � � � � � � � � � � �t � v so we can assume that we have v
 u
A and show v
 B . As

� � � � � � � � � � � �v
 u
A , we have v � u and v
 A by de{nition. We can thus conclude
� � � � � � � �by using the induction hypothesis to get v
 B since we know t � u .

/ , t � u 1 t
 A D B / 1 t � v

l

/ 1 t
 u
A D B

In the case of the (
) rule, we need to show that t � A D u
B. We thus supposer

that t � A and show t � u
B. Using the {rst induction hypothesis, we know that
� � � �� �t � B. Now, as the pole is � -extensional and v � t for some value v, we can
� � � �use Lemma and Theorem to obtain v
 B . For a similar reason, it

..� � � � � �is enough to show that v
 u
B . By de{nition of u
B , it only remains

120

5.4.154.5.35

5.4.154.5.35

5.4.154.5.35

5.4.154.5.35

� � � � � � � �� �to show v � u , which follows by transitivity of � knowing v � t and
� � � �t � u .

/ 1 t
 A D B / 1 t � u / 1 t � v

r

/ 1 t
 A D u
B

6.5 Completeness on pure data types

In the previous section, the semantics was shown to be adequate with respect to our
typing rules. In other words, typed programs really are what they are expected to be in the
semantics. Our adequacy lemma (Theorem) is thus a soundness result, and we are
now going to wonder about completeness.

Although we cannot hope for a full completeness of our semantics, it is still possible
to show that our system is complete when restricted to simple enough types. In particular,
we will consider types that do not contain arrow (or function) types. They will not contain
quanti{ers either.

De{nition 6.5.18. A type A
 6 is said to be a pure data type if it is only constructed using
sum types and strict product types. In other words, a pure data type is generated by the
following bnf grammar. We will denote 6 the set of all the pure data types.0

� �6 A, B ::= {(l : A) } | [(C : A)]0 i i i ii
I i
I

Here, pure data types are rather limited. However, if the system was extended with induc-
tive types, then they could also be included in the de{nition. As a consequence, pure data
types would contain, for example, unary natural numbers or lists.

� � � �Theorem 6.5.19. Let A
 6 be a pure data type. For every value v
 A � � the judgment0

1 v : A is derivable.

Proof. We do a proof by induction on the structure of A. If it is of the form {(l : A) }i i i
I� � � �then by de{nition v = {(l = v) } with v
 A � � since v) �. As a consequence,i i i ii
I

the induction hypotheses give us a proof of 1 v : A for all k
 I. We can thus build ak k

proof of 1 {(l = v) } : {(l : A) } as follows.i i i ii
I i
I

AxD ��1 {(l = v) }
 {(l : A) } D {(l : A) } 1 v : Ai i i i i i i ii
I i
I i
I i
I ×i

1 {(l = v) } : {(l : A) }i i i ii
I i
I

Note that the base case of our induction is the empty record type {}. In this case the above
proof does not have any open premise.

121

6.4.17

If A is of the form [(C : A)] then by de{nition we have v = C [w] with k
 Ii i ki
I� � � �and w
 A � � since v) �. Our induction hypothesis hence gives us a derivation ofk

1w : A that we can use to build a proof of 1C [w] : [(C : A)] as follows.k k i i i
I
AxD� �k � I 1 (�x.[x | C [x]� x]) C [w]
 A DA 1C [w] � C [w]k k k k k k k k +

1w : A 1C [w]
 [C : A] D [(C : A)]k k k k i i i
I +i

1C [w] : [(C : A)]k i i i
I

6.6 Normalisation, safety and consistency

Thanks to our new adequacy lemma (Theorem), we can now study the proper-
ties of our system. Although a normalisation result was already given in Chapter , we
cannot reuse it since our type system and its semantics have been modi{ed. We will
however use very similar techniques, which consist in considering particular examples
of poles.

In this thesis, the choice of a pole is more constrained than it usually is the framework
of classical realizability (e.g., [Krivine 2009, Miquel 2011]). Indeed, the only property that is
commonly required of a pole is to be saturated under the reduction relation of the abstract
machine (i.e., to be closed under backward reduction). Here however, we need to ask for� �more properties. Our poles need to be � -extensional for the semantics of our types to be
closed under equivalence. Moreover, they must satisfy the conditions of our main theorem
(Theorem). In particular they must only contain terminating processes and they must
include the process � � �.

�Theorem 6.6.20. Every closed, typed term normalises. More precisely, for every term t

� �� �such that 1t : A is derivable, there is v
 � � such that t � � � v � �.	

�� �Proof. We consider the pole � = p
 �� | � v
 , p � v � � which is trivially	

saturated. Moreover, this pole only contains processes that reduce to a {nal state. Let us
now verify that � is �-extensional. We thus suppose that t � u and that t � �
 �. By

�de{nition of �, there must be a value v such that t � � � v � �. This means that there
�must be k
 � such that t � � � v � �, and hence we have t � � � . Since t � u wek �

�can deduce u � � � , and thus there must be a value w such that u � � � w � �. As ak�
�consequence, we have u � � � w � �, which gives us u � �
 �.

�We can now apply Theorem with the pole � and obtain t � A. Since t
 ,
..� � � �it cannot contain any choice operator and we have t = t
 A by de{nition. This

.� �means that t � �
 � for every stack �
 A . In particular, we have t � �
 � as we trivi-
. �� �ally have �
 A . This exactly means that there is a value v
 such that t � � � v � �.	

It remains to show that v is closed and di|ferent from �. This follows from the fact that t � �

122

6.4.17

5.4.15

4
6.4.17

is closed and that it does not contain � since none of our reduction rules can introduce free
variables or the value �.

Now that we have proved normalisation, we will show that our system is type safe. In
other words, a typed program is expected to reduce to a value of the corresponding type.
For instance, a program which type corresponds to some encoding of the natural numbers
is expected to evaluate to a value representing a natural number. As usual in classical
realizability, we do not prove type safety for all types. In particular, safety is never proved
for types containing function arrows. We will here restrict ourselves to pure data types.

Remark 6.6.21. The restriction to pure data types is not a problem in practice. For example,
functions can only be observed through their application. In particular, placing a function
in a well-typed context will only allow us to observe well-typed output. Similar arguments
apply to all the type constructors that are not directly considered for type safety.

Even when we restrict to pure data types, the proof of type safety is subtle in our
system. The dif{cult part consist in showing that the pole de{ned from the value level
interpretation of a pure data type is �-extensional. This is in fact possible thanks (again)
to our & term constructor.v,w

�Theorem 6.6.22. For every closed term t
 such that 1t : A for a pure data type	
�� � � �A
 6 , there is a value v
 A � � such that t � � � v � �.0

�� �� �Proof. We consider the pole � = p
 �� | � v
 A , p � v � � which is triviallyA

saturated. Moreover, this pole only contains processes that reduce to a {nal state. Note
� �that the set A can be used in the de{nition of � because A is a pure data type. InA

particular, the type A does not contain arrow types. If they did, the de{nition would be
circular as the pole is used in the interpretation of the arrow type. Let us now verify
that � is �-extensional. We thus suppose that t � u and that t � �
 � . By de{nitionA A

�� �there must be a value v
 A such that t � � � v � �. Now, since t � u there must be
� � �w
 such that u � � � w � � and it remains to show that w
 A . To conclude, it is	 � � � �enough to show w � v as we know that A is closed under � . Let us now apply the

�substitution ' = [�� [�x.&]�] to t � �. We thus obtain (t � �)' � v' � [�x.&]� andv,x v,x

since A is a pure data types, it is easy to see that v cannot contain terms (since they only
appear in �-abstractions) nor stacks (since they only appear in terms). As a consequence,

� 2we have (t � �)' � v � [�x.&]� � & � �, which is stuck. As a consequence, we knowv,x v,v

that t' � �' � �. Now, since we have t � u , we can apply Theorem and obtain that
u' � �' � �. By applying reduction steps, we obtain that w' � [�x.&]� is not in � either.v,x

2Now, since we have w' � [�x.&]� � & � � then we also know that & � � � �. Thisv,x v,w' v,w'� � � �can only be true if w' � v. Now, since A is closed under � then it must be that

123

4.5.35

� � � �w'
 A . As mentioned above, the elements of A cannot contain the empty stack
� �symbol � and thus we have w' = w, which gives w
 A .

�We can now apply Theorem with the pole � and obtain t � A. Since t
 A
..� � � �it cannot contain any choice operator, and thus we have t = t
 A by de{nition.

.� �This means that t � �
 � for every stack �
 A . In particular, we have t � �
 �A A
.� � � �as we trivially have �
 A . This exactly means that there is a value v
 A such that

�t � � � v � �. Moreover, v) � since a typed term cannot contain �.

One of the applications of our type safety theorem is to show the consistency of the
system. In particular, we can immediately show that the type [] (i.e., the empty sum type) is
empty. In other words, there should be no typable program of type [].

�Theorem 6.6.23. There is no closed term t
 such that 1t : [] is derivable.

�Proof. Let us assume that there a term t
 that 1t : []. As [] is a pure data type we
�� �can apply Theorem to obtain a value v
 [] such that t � � � v � �. However,

� � � �we have [] = � so it must be that v = �. This is a contradiction since we know that
the process t � � does not contain �, and thus v � � cannot contain � either according to
Lemma .

In our system, there are many ways of building an empty type. As a consequence,
Theorem is not enough for ensuring the consistency of the system as it only considers
the type []. However, the other forms of empty type can be handled using typing. Let
us consider the type �X.X, which also denotes an empty type. Let us suppose that we
have a term t such that 1t : �X.X and t does not contain �. We can then build the
following typing derivation, which gives a term of type [].

AxD
1� (x � [])
 [] D []x
�X.X �l

1� (x � [])
 �X.X D []x
�X.XAx AxD

1�x.x
 (�X.X) � [] D (�X.X) � [] 1� (x � []) : []x
�X.X �i

1�x.x : (�X.X) � [] 1t : �X.X
�e

1(�x.x) t : []

The existence of such a term contradicts Theorem and thus there cannot exist terms
such as t. Similar proofs can be made for other forms of empty types.

124

6.6.23

6.6.23

6.4.10

6.6.22

6.4.17

6.7 Toward (co-)inductive types and recursion

The type system described in this chapter does not yet contain all the ingredients required
for a practical programming language and proof system. Indeed, it lacks inductive types
and does not allow recursion. In this section, we will hint toward the inclusion of these
features. To this aim, we will rely on the approach described in [Lepigre 2017] by Christophe
Ra|falli and the author. In particular, we will extend the system with typing rules allowing
the construction of in{nite typing and subtyping derivations. We will then rely on a notion
of syntactic ordinals to show that they are well-founded and thus correct.

In the system, ordinals will be handled using another atomic sort, which will auto-
matically provide us with quanti{cation over ordinals. In our types, ordinals will be used
to annotate inductive (and coinductive) types with a size information. As a consequence,
they will allow us to extend our system with sized types [Hughes 1996, Abel 2008, Lepigre

2017]. In the semantics, syntactic ordinals will be interpreted using actual ordinals.

De{nition 6.7.24. We denote by 4 the sort of syntactic ordinals. From now on, we will
consider that it is contained in our set of atomic sorts S and thus 4
 S.0

De{nition 6.7.25. The set of all the syntactic ordinals is generated from a set of ordinal� �variables V = F , , , G� using the following bnf grammar.4

+� �O $, H ::= F | I | $+1 | � (t
A) F
 V , t
 , A
 6F<$ 4

Our syntactic ordinals are formed using variable, the constant I, the successor symbol
and choice operators of the form � (t
A). Note that we need to extend the system withF<$

the following three sorting rules.

2 1 $: 4 2 1 $: 4 2 , F : 4 1 t : $ 2 , F : 4 1 A : 3
2 1 I : 4 2 1 $+1 : 4 2 1 � (t
A) : 4F<$

In the model, syntactic ordinals will be interpreted using actual ordinals, as is done
in [Lepigre 2017]. In particular, I will be interpreted by an ordinal that is large enough to
ensure the convergence of all {xpoints in the semantics of our types.

� �De{nition 6.7.26. Given a syntactic ordinal $, we denote $ the ordinal corresponding to
� �its interpretation. In particular, we de{ne I to be the set of all the ordinals smaller or

� �� �equal to the cardinal of the set 0 3 . The interpretation of the other syntactic ordinals is
de{ned inductively as follows.

125

� � � �We will use the notation O for the ordinal I +C, which is the set of all the ordinals
that can be represented in our syntax.

Remark 6.7.27. As in the previous chapter, the multiple extensions of the language that
are given in this chapter are not independent. As our syntactic elements are all de{ned
mutually inductively, every single modi{cation leads to global changes. In particular, the
de{nition of types (and thus of raw terms) is a|fected.

We will now extend the syntax of our types with two constructors denoting the least
or greatest {xpoint of a parametric type. Intuitively, these types will allow us to construct
inductive and coinductive types. As we are using sized types, our {xpoint constructors will
have the peculiarity of carrying an ordinal. In particular, a {xpoint carrying the ordinal I
will correspond to usual (not sized) types.

De{nition 6.7.28. We extend the syntax of formulas 6 with a least {xpoint constructor
� X.A and a greatest {xpoint constructor J X.A. Both of these constructors carry an$ $

ordinal. Note that we need to extend our system with the following sorting rules.

2 , X : 3 1 A : 3 2 1 $: 4 2 , X : 3 1 A : 3 2 1 $: 4
2 1 � X.A : 3 2 1 J X.A : 3$ $

Moreover, we will implicitly assume that in these constructions, the variable X only appears
positively in A (i.e., it is in covariant position).

De{nition 6.7.29. In the semantics, sized inductive and coinductive types are interpreted
in the usual way, as pre-{xpoints and post-{xpoints respectively.

o o� � � � � � � �� � � �� �� X.A = X � A � J X.A = X � A B ?$ $ 	� � � �o < $ o < $

Before giving the new subtyping rule for handling inductive and coinductive type, we
need to extend the context of our judgments with a so-called positivity context.

De{nition 6.7.30. A positivity context is a list of syntactic ordinals assumed to be positive.
For convenience, we will represent such contexts using comma-separated lists of syntactic
ordinals generated by the following bnf grammar.

 ::= � | , $ $
 O

126

�o� = o �)A
t(� $<F� = �]o�F[A� ..
�]o�F[t�|o

�1+$� = 1+�$� �)A
t(� $<F� = esiwrehto0

 1 $ � H 1 $ � Hi � 0 i+1 i -1

 1 $ � $ 1 $+1� H 1 $ � H+1
i i i

 , $ 1 $ � H 1 $ � H
i -1 i

 , $ 1 � (t
A) � H 1 � (t
A) � HF<$ F<$i i

Figure 6.6 û Rules of ordinal ordering.

 ; / 1 t
 A D B[X� � X.B] ; / 1 t
 A[X� J X.A] D BI I� Jr,I l,I

 ; / 1 t
 A D � X.B ; / 1 t
 J X.A D BI I

 ; / 1 t
 A D B[X� � X.B] 1 H < $H � r

 ; / 1 t
 A D � X.B$

 ; / 1 t
 A[X� J X.A] D B 1 H < $H Jl

 ; / 1 t
 J X.A D B$

 , $; / 1 t
 A[X� � X.A] D B / 1 v � t� (t
A[X�� X.A])F<$ F � l

 ; / 1 t
 � X.A D B$

 , $; / 1 t
 A D B[X� J X.B] / 1 v � t� (t�B[X�J X.B])F<$ F Jr

 ; / 1 t
 A DJ X.B$

Figure 6.7 û Local subtyping rules for inductive and coinductive types.

We will say that a positivity context is valid if the interpretation of every syntactic
� �ordinal $ of is strictly positive (i.e., $ > 0).

In the system, positivity contexts will be necessary for the derivation of ordering judgments
on syntactic ordinals. They will be used to make sure that {xpoints can be unfolded in
subtyping judgments.

De{nition 6.7.31. An ordering judgment is a tuple of a positivity context , syntactic ordinals
$ and H and an integer i
 � denoted 1 $ � H. An ordering judgment is said to be valid

i

if it can be derived using the deduction rules given in Figure . Note that we will write
 1 $ < H when i = 1.

127

6.6

De{nition 6.7.32. We extend our system with the six subtyping rules given in Figure .
Note that all the other rules need to be modi{ed to contain a positivity context. However,
there is no dif{culty in doing so as they only need to transmit this context.

Intuitively, the (�) rule allows the unrolling of a least {xpoint on the right side ofr,I

the subtyping relation. This rule can only be applied when the limit of the {xpoint has been
reached, and it is always the case with the ordinal I. When the ordinal is too small to make
the {xpoint converge, the (�) rule can be applied. However, it requires {nding an ordinal Hr

that is strictly smaller than the ordinal $ carried by the {xpoint. In particular, this ensures
that $ was not equal to 0, and thus that the {xpoint can be unrolled. When a least {xpoint
appears on the leùt side of a pointed subtyping relation, the (�) rule can be applied. In thisl

case, a choice operator is used to obtain some ordinal such that the leùt part of the judgment
is satis{ed. If no such ordinal exist, then 0 is chosen and thus the premise of the rule is
immediate. The three rules for handling the greatest {xpoint constructor are dual to those
for the least {xpoint constructor.

Handling recursion requires providing a typing rule for our {xpoint term constructor.
However, this is not enough because in practice we will need (part of) our positivity contexts
to be communicated between part of the typing trees to be able to establish that an in{nite
typing proof is well-founded. As a consequence, we also introduce two new type connectives
that will be used for this purpose. In particular, they will allow us to give stronger rules for
the typing of �-abstractions and pattern matchings.

De{nition 6.7.33. We extend the syntax of formulas 6 with two new type constructors
A 7 and 8A called positivity restriction and positivity implication. The former is a
variant of our restriction constructor for equivalences and the latter denotes an implication
(with no algorithmic contents) depending on a positivity context. Note that we need to
extend the system with the following sorting rules.

� � � �2 1 A : 3 2 1 $: 4 2 1 A : 3 2 1 $: 4$
 $

2 1 A 7 : 3 2 1 8A : 3

De{nition 6.7.34. In the semantics, positivity restriction and positivity implication are
interpreted as follows.

Remark 6.7.35. It would be perfectly possible to add an implication connective similar to
 8A but depending on an equivalence instead of a list of ordinals. It is in fact included in
the implementation of the system.

128

6.7

� 7A� = 0>�$�,
$�nehw�A� � 7A� = esiwrehto���
�A8 � = 0>�$�,
$�nehw�A� �A8 � = esiwrehto 	

 , ; / 1 t
 A D B / 1 v � t ; / 1 t
 A D B D 0 07 7
l,4 r,4 ; / 1 t
 A 7 D B ; / 1 t
 A D B 7 0 0

 ; / 1 t
 A D B � , ; / 1 t
 A D B0 08 8l,4 r,4

 ; / 1 t
 8A D B ; / 1 t
 A D 8B0 0

 ; / 1 �x.t
 8 (A � B) D C , ; / 1 t[x� � (t �B)] : B0 0 x
A �i ,4
 ; / 1 �x.t : C

� � ; / 1 v : A ; / 1 v
 A � [(C : A)] 7 , ; / 1 t [x � � (t �C)] : Ci i 0 0 i i x
A 7C[x]�v ii i ii
I i
I +e,4

 ; / 1 [v | (C [x]� t)] : Ci i i i
I

 , ; / 1 t[x� �x.Y] : A � B ; / 1 �x.Y
 8 (A � B) D C0 �r.t,x �r.t,x 0
Y

 ; / 1 �x.Y : C�r.t,x

Figure 6.8 û Typing and subtyping rules for the handling of recursion.

We will now extend our system with a last set of typing and local subtyping rules
for handling recursion. We will then prove that all the rules introduced in this section
are adequate.

De{nition 6.7.36. We extend the system with the seven rules of Figure .

We can now put everything together and prove yet another adequacy lemma. However, we
{rst need to give the interpretation of ordinal ordering judgments.

Lemma 6.7.37. If the judgment 1 $ � $ is derivable and for every syntactic ordinal1 2i� �$
 , we have $ > 0, then the following holds.
� � � �If i K 0 then $ + i � $,1 2� � � �if i � 0 then $ � $ + i.1 2

Here, we use the notation o + i for the i-th successor of the ordinal o. Note that in
� � � �particular, 1 $ < $ is derivable then we have $ < $.1 2 1 2

Proof. A complete proof is given in [Lepigre 2017, Lemma 1.10].

Theorem 6.7.38. Let be a positivity context, / be an equational context, A, B
 6
+be closed types and t
 be a closed raw term. If for every syntactic ordinal $
 we

� � � � � �� �have $ > 0 and if for every t , t
 / the equivalence t � t holds then we have1 2 1 2

the following.
� �If ; / 1 t : A is valid then we have t � A. Moreover, if t is a value t) �.

129

6.8

If ; / 1 � : ¬A is valid then we have � � A.
If ; / 1 t
 A D B is valid then we have t � A D B.

Proof. The proof proceeds as for Theorem with the exception of the management of
the positivity context. For all the rules that were given in previous sections of the current
chapter, the adaptation is immediate as the positivity context is only transmitted. As a
consequence, we only consider the rules that were introduced in this section.

In the case of the (�) rule, we need to show that t � A D � X.B. By inductionr,I I

hypothesis, we know that t � A D B[X� � X.B] so we can conclude immediately asI� � � �we know that � X.B = B[X� � X.B] as the {xpoint has been reached.I I

 ; / 1 t
 A D B[X� � X.B]I � r,I

 ; / 1 t
 A D � X.BI

In the case of the (J) rule, the proof is dual to the (�) case.r,I r,I

 ; / 1 t
 A[X� J X.A] D BI Jl,I

 ; / 1 t
 J X.A D BI

In the case of the (�) rule, we need to show that t � A D � X.B. According to Lemmar $� � � � � � � � � �we have H < $ and thus we have B[X� � X.B] = � X.B � � X.B .H H+1 $

We can thus conclude using Lemma and the induction hypothesis. It is important
that X only appears positively in B to obtain the inclusion directly.

 ; / 1 t
 A D B[X� � X.B] 1 H < $H � r

 ; / 1 t
 A D � X.B$

In the case of the (J) rule, the proof is dual to the (�) case.l r

 ; / 1 t
 A[X� J X.A] D B 1 H < $H Jl

 ; / 1 t
 J X.A D B$

� �In the case of the (�) rule, we need to show that t � � X.A D B. If we have $ = 0l $� � � �� �then we can conclude immediately as in this case � X.A = � � B and thus$
.. ..� � � � � �� X.A � B by Lemma . We can thus suppose that $ > 0 in the$

following so that we can use the induction hypothesis. Let now suppose that we have
.. ..� � � � � � � �t
 � X.A and show t
 B . By our second hypothesis, we have a value v$� � � �such that t � v . As a consequence we can work at the value level thanks to Theorem

� � � � � � � �. We can thus suppose that v
 � X.A and show v
 B . By de{nition of$
o� � � � � � � �� �� X.A we know that there is an ordinal o < $ such that v
 X � A � . As a$

consequence, the choice operator � (v
A[X� � X.A]) = � (t
A[X� � X.A])F<$ F F<$ F� � � �is well-de{ned and thus we have v
 A[X� � X.A] . We can hence� (t
A[X�� X.A])F<$ F � � � �apply the induction hypothesis (again using Theorem) to get v
 B .

130

5.4.15

5.4.15

4.5.32

4.5.32
6.7.37

6.4.17

 , $; / 1 t
 A[X� � X.A] D B / 1 v � t� (t
A[X�� X.A])F<$ F � l

 ; / 1 t
 � X.A D B$

In the case of the (J) rule, the proof is dual to the (�) case.r l

 , $; / 1 t
 A D B[X� J X.B] / 1 v � t� (t�B[X�J X.B])F<$ F Jr

 ; / 1 t
 A DJ X.B$

In the case of the (7) rule, the proof is similar as for (7) Theorem .
l,4 l

 , ; / 1 t
 A D B / 1 v � t0 7
l,4 ; / 1 t
 A 7 D B0

In the case of the (7) rule, the proof is similar as for (7) in Theorem .
r,4 r

 ; / 1 t
 A D B D 0 7
r,4 ; / 1 t
 A D B 7 0

In the case of the (8) rule, we need to show t � 8A D B. Thanks to our secondl,4 0

premise we know that all the ordinals in are positive. As a consequence we know0� � � �that 8A = A . We can thus conclude using Theorem and the induction0

hypothesis.
 ; / 1 t
 A D B � 0 8l,4

 ; / 1 t
 8A D B0

In the case of the (8) rule, we need to show t � A D 8B. We thus suppose thatr,4 0
.. ..� � � � � � � �t
 A and show t
 8B . If the ordinals of are not all positive then0 0

�� �the proof is immediate as 8B = . If all the ordinals are positive then we can0 	

immediately conclude using the induction hypothesis.

 , ; / 1 t
 A D B0 8r,4

 ; / 1 t
 A D 8B0

In the case of the (�) rule, we need to show �x.t � C. Using the {rst inductioni ,4

hypothesis it is enough to show �x.t � 8 (A � B). Let us {rst assume that some0
�� �ordinal of is equal to 0. In this case 8 (A � B) = and thus we have0 0 	� � � ��x. t
 8 (A � B) so we can conclude with Lemma . Now, if only0 0� � � �contains positive ordinals then we have 8 (A � B) = A � B and we can use0

the second induction to conclude the proof as in the (�) case.i

 ; / 1 �x.t
 8 (A � B) D C , ; / 1 t[x� � (t �B)] : B0 0 x
A �i ,4
 ; / 1 �x.t : C

In the case of the (+) rule, we need to show [v | (C [x]� t)] � C. By our {rsti i ie,4 i
I..� � � � � �induction hypothesis we have v
 A and v) �. Thanks to our second induc-
� � � �tion hypothesis combined with Theorem we obtain v
 [(C : A)] 7 andi i 0i
I

thus we know that the ordinals of are all positive as otherwise this would imply0

131

5.4.15

4.5.29

4.5.32

6.4.17

6.4.17

� � � � � �v) �. As a consequence, we have [(C : A)] 7 = [(C : A)] and we cani i 0 i ii
I i
I

{nish the proof as in the case of (+) rule since we can use the remaining inductione

hypotheses.

� � ; / 1 v : A ; / 1 v
 A � [(C : A)] 7 , ; / 1 t [x � � (t �C)] : Ci i 0 0 i i x
A 7C[x]�v ii i ii
I i
I +e,4

 ; / 1 [v | (C [x]� t)] : Ci i i i
I

In the case of the (Y) rule, we need to show �x.Y � C. Using the second induction�r.t,x

hypothesis it is enough to show �x.Y � 8 (A � B). As for the (�) case, if �r.t,x 0 0i,4

contains some ordinal that is equal to 0 then we can conclude immediately. We can
thus assume that all the ordinals of are positive, which means that we can use the0 � � � �right induction hypothesis and that we have 8 (A � B) = A � B . We need to0

..� � � �prove �x.Y
 A � B for which it is enough to show �x.Y
 A � B� � � ��r. t ,x �r. t ,x� � � �according to Theorem . By de{nition, we need to take a value v
 A � � and
.. .� � � �show Y
 B . We thus take �
 B and we prove Y � �
 �. As � is� � � ��r. t ,v �r. t ,v

� � �� �� -saturated and we have Y � � � t[r� �x.Y] � v . � we only need to� ��r. t ,v �r.t,x� �show t[r� �x.Y] � v . �
 �. According to our {rst induction hypothesis it only�r.t,x
.� �remains to show that we have v . �
 A � B . This follows easily from the fact that

.� � � �� �v
 A � � and that �
 B .

 , ; / 1 t[x� �x.Y] : A � B ; / 1 �x.Y
 8 (A � B) D C0 �r.t,x �r.t,x 0
Y

 ; / 1 �x.Y : C�r.t,x

Even with all the new rules introduced in this section, the system is still not quite
ready to be usable. In fact, a notion of circular proofs and an associated notion of well-
foundedness needs to be introduced in the system. It is possible to apply the framework
de{ned in [Lepigre 2017, Section 3] to obtain circular proofs because the syntax used for
ordinals is exactly the same as ours, and the system presented in the paper requires a
very similar construction. Aùter obtaining a notion of circular proofs, it would be possible
to extend Theorem so that it is proved by ordinal induction on the circular proofs,
provided that they have been shown well-founded. We do not go into the details here for
lack of time as this is still a work in progress.

132

6.7.38

5.4.15

In this last chapter, we consider examples of programs and proofs that can be written and
manipulated using our prototype implementation. This restricted set of examples is not
intended to give an exhaustive view of our language. Their only purpose is to demonstrate
its expressiveness through a selected set of examples.

7.1 Concrete syntax and syntactic sugars

Although it is conveniently short, the abstract syntax that was used since Chapter is not
suitable for actual programming. Throughout this chapter, we will rely on the syntax used
by the prototype implementation of the system. Some examples of programs written with
this concrete syntax were already considered in Chapter . We will now give some elements
of the translation from the concrete syntax to the abstract syntax.

Remark 7.1.1. Although we will not give the full details, it would be possible to give a precise
de{nition of the translation of terms and types between the two syntaxes.

At the top level of the concrete syntax, there are three di|ferent ways of de{ning
meta-variable: the de{nition of an expression of a given sort, the de{nition of a type and
the de{nition of a value. The de{nition of an expression simply amounts to giving a name
to some higher-order term of our language (i.e., to an element of 6 of an arbitrary sort).
Examples of such de{nitions are given below.

def delta : 	 = fun x { x x }

def rapp�t:$, u:$ � : $ = u t

def omega : $ = rapp�delta, delta�

def neg�a:3� : 3 = a � �x:3, x

133

1

2

Implementation and7
examples

Note that higher-order de{nitions can have arguments, which are given in angle brackets.
Sort annotations are given for the arguments, as well as for the global (fully applied)
expression. For example, the expression rapp (reversed application) given above has the sort
$� $� $, and to be used as an element of sort $ it needs to be provided with two arguments
of sort $ as in the de{nition of omega. Of course, any term of sort 	 also has sort $ and
the sort of expressions can be inferred most of the time (i.e., it does not always have to
be provided by the user).

As it is very common to de{ne types (i.e., expressions of sort 3), a speci{c syntax is
provided to do so. However, it is completely equivalent to using a standard de{nition as
it is only syntactic sugar. As a consequence, the following two de{nitions of the type of
booleans are equivalent.

type boolean = [True; False]

def boolean : 3 = [True; False]

Type de{nitions can also have arguments, and the rec or corec keyword can be used to
make a type de{nition inductive or coinductive. For example, the type of lists and the type
of streams can be de{ned as follows (equivalent higher-order de{nitions are also given).

type rec list�a:3� = [Nil; Cons of {hd : a; tl : list}]

type corec stream�a:3� = {} � {hd : a; tl : stream}

def list�a:3� : 3 = � list [Nil; Cons of {hd : a; tl : list}]

def stream�a:3� : 3 = J stream {} � {hd : a; tl : stream}

Note that the name of the constructors are uppercase identi{ers, while lowercase identi{ers
are used everywhere else. In particular, constructor names and label names are not limited
as in the abstract syntax.

Finally, values can be de{ned and type-checked using the val keyword. As for types, the
rec keyword can be used and it makes the de{nition recursive. For example, we can de{ne
the following functions on lists, using the built-in type bool and the option �a � type from
the standard library.

val is_empty : �a, list�a� � bool =

fun l {

case l {

Nil � true

Cons[_] � false

}

}

134

include lib.option

// type option�a� = [None; Some of a]

val rec last : �a, list�a� � option�a� =

fun l {

case l {

Nil � None

Cons[c] �

case c.tl {

Nil � Some[c.hd]

Cons[_] � last c.tl

}

}

}

Note that the body of functions and the patterns of case analyses are wrapped in curly
brackets (like in the Rust language). This will also be the case for conditionals, but they
will only be introduced later.

Another important remark about our concrete syntax is that we allow terms which are
not values everywhere, including in records and variants. This is in fact translated to the
limited abstract syntax as discussed in Remark . For example, the term Some[c.hd]

in the above example is translated to (fun x { Some[x] }) c.hd internally.
In the concrete syntax, �-abstractions and �-abstractions can be written using the

syntax fun x { t } and save k { t } respectively. Note that they can take multiple arguments
at once. For example, fun x y { t } is the same as fun x { fun y { t } }. A continuation (or
stack) k can be restored using the syntax restore k t, which corresponds to named terms in
the abstract syntax.

7.2 Encoding of strict product types

As discussed in the previous chapter, the most natural semantics for product types in
presence of subtyping allows for extensible records. In other words, it is always possible
to provide more {elds than necessary. However, product types with a {xed set of {elds
oùten arise in practice. For this reason, we introduced so-called strict product types, which
were used to state our type safety theorem (Theorem). In this section, we will show
that it is possible to encode strict records into the system, without extending it with two
di|ferent forms of product types.

Let us {rst consider the ÷unitø type, corresponding to the empty product. In our system,
a {rst attempt at de{ning such a type would be to use an extensible record with no {elds.
However, as indicated by its name, this type contains many more elements that the empty
record (written {} in our system).

135

6.6.22

2.5.34

type wrong_unit = { E }

// It is inhabited by the empty record.

val u : wrong_unit = {}

// And in fact by any record...

val u_aux : wrong_unit = {l = {}}

To avoid extending the system with strict record types, it is possible to use one of the
following three encodings for the unit type. They rely on the membership type, optionally
combined with existential quanti{cation and restriction.

type unit1 = {}
 { E }

type unit2 = �x: 	 , x
 ({ E } | x � {})

type unit3 = �x: 	 , (x
 { E }) | x � {}

Note that these types are all equivalent semantically. In the implementation, we chose to use
the de{nition unit1 in place of the syntactic sugar {} (strict product type with no {elds).
We can thus use the following de{nition for a reasonable unit type.

type unit = {}
 { E }

// type unit = {}

// It is inhabited by the empty record.

val u : unit = {}

// But not by any other record.

// val fail : unit = {l = {}}

In fact, we can show that every value of unit is equivalent to the empty record {} with
the following proof.

val true_unit : �x
unit, x � {} = fun x { {} }

The encoding of strict products is not limited to the unit type. A similar encoding can be
used for any record type, and it is made accessible in the syntax using the strict product type
notation. For instance, the type of pairs pair �a,b � can be encoded as follows.

type pair�a,b� = � x y: 	 , {fst = x; snd = y}
 {fst : a; snd : b; E }

// type pair�a,b� = {fst : a ; snd : b}

136

val couple : � a b, a � b � pair�a,b� =

fun x y { {fst = x ; snd = y} }

val pi1 : � a b, pair�a,b� � a = fun p { p.fst }

val pi2 : � a b, pair�a,b� � b = fun p { p.snd }

As for the unit type, it is possible to show that the elements of a pair type are indeed
records with exactly two {elds fst and snd.

val true_pair : �a b, �p
pair�a,b�, �x y: 	 , p � {fst = x ; snd = y} =

fun p { {} }

7.3 Booleans and tautologies

Aùter de{ning the (one element) {} (or unit) type in the previous section, we will now
consider the (two elements) type of booleans. It can be encoded as usual using a poly-
morphic variant type as follows.

type boolean = [False of {}; True of {}]

// type boolean = [False; True]

Note that our variants need to have exactly one argument, which will here be {} on both
the True and False constructors. However, if no argument type is speci{ed, then {} is
used implicitly.

In practice, booleans are oùten used together with conditional structures. There are
several (non-equivalent) ways of de{ning them in our language. A {rst possibility is to
de{ne a condition function with three arguments as follows.

val cond_fun : � a, boolean � a � a � a =

fun c e1 e2 { case c { True � e1 | False � e2 } }

However, this function leads to both the expressions for the ÷thenø and ÷elseø branches to be
evaluated, before a choice is made. This is not the semantics that is expected in practice, as
it would be rather inef{cient.

In our language, we can encode the usual conditional structures using a term macro
cond, with three term arguments. This is made possible by the higher-order features of
our language.

def cond�c:$, e1:$, e2:$ � : $ =

case c { True � e1 | False � e2 }

137

Although such a macro is not typed at the time of its de{nition (it is only given a sort), it is
expanded and type-checked each time it is used. For instance, cond can be used to de{ne
the following alternative de{nition of cond_fun.

val cond_fun : � a, boolean � a � a � a =

fun c e1 e2 { cond�c, e1, e2� }

In the following, we will prefer using the built-in bool type, rather that the boolean type
de{ned above. Although they are completely equivalent, only the bool type will allow us to
use the syntax for conditional structures. For example, the following de{nition of cond_fun
can be given for bool.

val cond_fun : � a, bool � a � a � a =

fun c e1 e2 { if c { e1 } else { e2 } }

It is exactly equivalent to the one using the boolean type. The only di|ference lies in
the name of the constructors, which are hidden to the user in the bool type. Only the
conditional structures and the usual boolean constants can be accessed by the user.

Higher-order macros similar to cond can also be used to obtain conjunction and
disjunction operators having the expected (lazy) semantics. This feature is in fact useful
in many ways, we will see in a further section that it can even be used to encode a form of
proof tactics.

def land�b1:$, b2:$ � =

if b1 { b2 } else { false }

def lor�b1:$, b2:$ � =

if b1 { true } else { b2 }

Before going further, we are going to de{ne a set of usual boolean operators. We will
then prove that they behave as expected in the system.

val not : bool � bool =

fun a { if a { false } else { true } }

val or : bool � bool � bool = fun a b { lor�a, b� }

val and : bool � bool � bool = fun a b { land�a, b� }

val imp : bool � bool � bool = fun a b { lor�not a, b� }

val xor : bool � bool � bool = fun a b { if a { not b } else { b } }

val eq : bool � bool � bool = fun a b { xor a (not b) }

138

We will now consider the law of the excluded middle (on booleans). It can be stated
and proved as follows in the system.

val excl_mid : �x
bool, or x (not x) � true =

fun b { if b { {} } else { {} } }

Remark 7.3.2. The law of the excluded middle on booleans is not to be confused with
the term using control operators that was given in the introduction. Indeed, they live in
completely di|ferent levels of the system.

As the type of booleans contain only {nitely many elements, properties can always
be proved by exhaustively listing the di|ferent cases. This is what was done above for
excl_mid, but it was not too tedious as there were only two cases. This will not be the case
anymore when considering properties with more parameters. For example, let us consider
the reöexivity, commutativity of the eq function.

val eq_refl : �a
bool, eq a a � true =

fun a { if a { {} } else { {} } }

val eq_comm : �a b
bool, eq a b � eq b a =

fun a b {

if a { if b { {} } else { {} } }

else { if b { {} } else { {} } }

}

val eq_asso : �a b c
bool, eq (eq a b) c � eq a (eq b c) =

fun a b c {

if a {

if b { if c { {} } else { {} } }

else { if c { {} } else { {} } }

} else {

if b { if c { {} } else { {} } }

else { if c { {} } else { {} } }

}

}

To simplify the writing of such trivial proofs, it is possible to use term macros de{ned using
higher-order de{nitions. Such macros can then be used to prove any tautology with a given
number of arguments on booleans.

139

def auto1�a:$ � : $ = if a { {} } else { {} }

def auto2�a:$, b:$ � : $ = if a { auto1�b� } else { auto1�b� }

def auto3�a:$, b:$, c:$ � : $ = if a { auto2�b,c� } else { auto2�b,c� }

val eq_refl_auto : �a
bool, eq a a � true =

fun a { auto1�a� }

val eq_comm_auto : �a b
bool, eq a b � eq b a =

fun a b { auto2�a,b� }

val eq_asso_auto : �a b c
bool, eq (eq a b) c � eq a (eq b c) =

fun a b c { auto3�a,b,c� }

7.4 Unary natural numbers and totality

It is now time to consider a {rst example of data type with in{nitely many elements:
unary natural numbers. Their de{nition was already given in Chapter , together with some
simple proofs. Let us start by recalling the de{nition of unary natural numbers, together
with their addition and multiplication functions.

type rec nat = [Zero; Succ of nat]

val rec add : nat � nat � nat =

fun n m {

case n {

Zero � m

Succ[k] � Succ[add k m]

}

}

val rec mul : nat � nat � nat =

fun n m {

case n {

Zero � Zero

Succ[k] � add m (mul k m)

}

}

As add and mul are de{ned using recursion on their {rst argument, it is immediate to show
add Zero n � n and mul Zero n � Zero for every n.

140

1

val add_zero_v : �v: 	 , add Zero v � v = {}

val mul_zero_v : �v: 	 , mul Zero v � Zero = {}

Note that these properties are proved by quantifying over every possible value v. Whether
it is a unary natural number or not is not important as add Zero v and mul Zero v can
still be unfolded. In fact, the add function can always be given an arbitrary value as second
argument as it is never considered in a case analysis.

Of course, it is possible to show similar properties by quantifying only on natural
numbers using dependent functions.

val add_zero_n : �n
nat, add Zero n � n = fun _ { {} }

val mul_zero_n : �n
nat, mul Zero n � Zero = fun _ { {} }

However, such de{nitions will never need to be used in practice since the more general
add_zero_v and mul_zero_v have trivial proofs. This means that they can be obtained
immediately by unfolding de{nitions, and thus it will never be necessary to invoke them.
In particular, the user will never need to call add_zero_n or mul_zero_n to prove the
corresponding equivalences.

Let us now consider the commutativity of the add function, which is a more interesting
example. To obtain these properties, two lemmas are required. We need to prove that add
n Zero � n for every unary number n, and that add n Succ[m] � Succ[add n m] for every
unary numbers n and m. These two properties can be obtained easily using a case analysis
and induction.

val rec add_n_zero : �n
nat, add n Zero � n =

fun n {

case n {

Zero � {}

Succ[k] � let ih = add_n_zero k; {}

}

}

val rec add_succ : �n m
nat, add n Succ[m] � Succ[add n m] =

fun n m {

case n {

Zero � {}

Succ[k] � let ih = add_succ k m; {}

}

}

141

A proof of the commutativity of add is then obtained in a similar way, but the two previously
proved lemmas are used.

val rec add_comm : �n m
nat, add n m � add m n =

fun n m {

case n {

Zero � let lem = add_n_zero m; {}

Succ[k] � let ih = add_comm k m;

let lem = add_succ m k; {}

}

}

Note that in the system, a lemma is used by calling the corresponding function. Similarly,
using an induction hypothesis corresponds to performing a recursive call. A proof can thus
only be correct if it terminates on every possible input. Otherwise, obviously invalid proofs
would be allowed by using a ÷non decreasing induction hypothesisø.

With more complex examples, it is oùten required to establish the totality of functions.
In other words, we need to show that the application of a function to any value (of the right
type) produces a value. As an example, we will show that the add function is total.

val rec add_total : �n m
nat, �v: 	 , add n m � v =

fun n m {

case n {

Zero � {}

Succ[k] � let ih = add_total k m; {}

}

}

Using add_total twice, it is then possible to show that the addition function corresponds
to an associative operation.

val rec add_asso : �n m p
nat, add n (add m p) � add (add n m) p =

fun n m p {

let tot_m_p = add_total m p;

case n {

Zero � {}

Succ[k] � let tot_k_m = add_total k m;

let ih = add_asso k m p; {}

}

}

142

To conclude this section, we will prove the commutativity of the mul function. This
result requires three intermediate lemmas. First, we need to show that mul n Zero �

Zero for every unary number n and that mul is total. It is then necessary to show that
mul n Succ[m] � add (mul n m) n for all n and m. These three properties are rather
straight-forward to obtain, even if longer proofs are harder to read.

val rec mul_n_zero : �n
nat, mul n Zero � Zero =

fun n {

case n {

Zero � {}

Succ[k] � let ih = mul_n_zero k; {}

}

}

val rec mul_total : �n m
nat, �v: 	 , mul n m � v =

fun n m {

case n {

Zero � {}

Succ[k] � let ih = mul_total k m;

let lem = add_total m (mul k m); {}

}

}

val rec mul_succ : �n m
nat, mul n Succ[m] � add (mul n m) n =

fun n m {

case n {

Zero � {}

Succ[k] �

let lem = mul_succ k m;

let tot = mul_total k m;

let tot = add_total m (mul k m);

let lem = add_succ (add m (mul k m)) k;

let lem = add_asso m (mul k m) k;

let tot = mul_total k Succ[m]; {}

}

}

The commutativity of mul then follows using yet another proof by induction, using each
of the above lemmas.

143

val rec mul_comm : �n m
nat, mul n m � mul m n =

fun n m {

case n {

Zero � let lem = mul_n_zero m; {}

Succ[k] � let ih = mul_comm m k;

let lem = mul_succ m k;

let tot = mul_total k m;

let lem = add_comm (mul k m) m; {}

}

}

One possible way for making a proof more readable is to give type annotations. They
can be used to specify explicitly the equivalences that are being shown when using lemmas,
but also for checking that some properties can be derived at a given point in the proof. We
give below another version of mul_comm annotated in this way.

val rec mul_comm : �n m
nat, mul n m � mul m n =

fun n m {

case n {

Zero � let ded : mul Zero m � Zero = {};

let lem : mul m Zero � Zero = mul_n_zero m; {}

Succ[k] � let ded : mul Succ[k] m � add m (mul k m) = {};

let ih : mul k m � mul m k = mul_comm k m;

let lem : mul m Succ[k] � add (mul m k) m = mul_succ m k;

let tot : (�v: 	 , mul k m � v) = mul_total k m;

let lem : add (mul k m) m � add m (mul k m) =

add_comm (mul k m) m;

{}

}

}

Here, we add type annotations on used lemmas to explicit the properties they prove. We
also extend the proof with intermediate steps using local de{nitions. They allow us to check
that some property can be deduced in the current context, while showing more reasoning
steps. Note that the names chosen for the local de{nitions are never used, they can hence
be seen as a form of comments (we could also write _ to avoid giving explicit names). Only
the equations that are transparently added to the context matter. Using this discipline, the
proofs are not only more readable, but also easier to write.

Another, more satisfactory way of obtaining more readable proofs is to use again the
higher-order layer of our system to de{ne ÷tacticsø. We will here use a t_deduce tactic

144

to check that some equation holds in the current context, and a t_show tactic to prove a
property using a given proof.

def t_deduce�f:3� : $ = ({} : f)

def t_show�f:3, p:$ � : $ = (p : f)

We can then modify our commutativity proof to obtain the following, which is a lot more
readable than our original proof. Note that here, we use semicolons to put proof steps in
sequence. It is encoded as usual using a dummy redex.

val rec mul_comm : �n m
nat, mul n m � mul m n =

fun n m {

case n {

Zero � t_deduce�mul Zero m � Zero�;

t_show�mul m Zero � Zero, mul_n_zero m�

Succ[k] � t_deduce�mul Succ[k] m � add m (mul k m)�;

t_show�mul k m � mul m k, mul_comm k m�;

t_show�mul m Succ[k] � add (mul m k) m, mul_succ m k�;

t_show�(�v: 	 , mul k m � v), mul_total k m�;

t_show�add (mul k m) m � add m (mul k m), add_comm (mul k m) m�

}

}

We could even introduce syntactic sugar for our tactics into the parser of our language to
obtain the following, very satisfactory proof.

val rec mul_comm : �n m
nat, mul n m � mul m n =

fun n m {

case n {

Zero � deduce mul Zero m � Zero;

show mul m Zero � Zero using mul_n_zero m

Succ[k] � deduce mul Succ[k] m � add m (mul k m);

show mul k m � mul m k using mul_comm k m;

show mul m Succ[k] � add (mul m k) m

using mul_succ m k;

show �v: 	 , mul k m � v using mul_total k m;

show add (mul k m) m � add m (mul k m)

using add_comm (mul k m) m

}

}

145

7.5 Lists and their vector subtypes

We will now consider the type of lists containing elements of a {xed type, given as a
parameter. As usual, operations on lists will be polymorphic in this parameter.

type rec list�a:3� = [Nil ; Cons of {hd : a ; tl : list}]

According to the above de{nition, a list is either empty (Nil constructor), or built using
a smaller list and an element (Cons constructor). Note that the argument of the Cons

constructor is formed using a product (or record) type with two elements. The label hd
denotes the head of the list (i.e., its {rst element) and tl denotes its tail.

Remark 7.5.3. The type that is stored under the tl label is list and not list �a � due to the
encoding of the ÷type recø construct. It is formed using a higher-order function which body
contains a {xpoint construction over a variable named list.

As for the natural number, it is possible to de{ne the usual functions on lists, including
exists or rev_append (see Chapter). Many more functions are given in the standard
library of the prototype, together with its source code. Here, we will only focus on the map

and length functions, which are given below.

val rec map : �a b:3, (a � b) � list�a� � list�b� =

fun f l {

case l {

Nil � Nil

Cons[c] � Cons[{hd = f c.hd; tl = map f c.tl}]

}

}

val rec length : �a:3, list�a� � nat =

fun l {

case l {

Nil � Zero

Cons[c] � Succ[length c.tl]

}

}

The map function applies the function given as {rst argument to all the elements of the list
given as second argument. The length function simply computes a unary natural number
corresponding to the length of the list given as argument. We will now prove the totality of

146

1

these two functions because it will be needed later. Note that the totality of the map function
can only be established ifs {rst argument is itself total.

// total�f,a� means that f is total on the domain a.

def total�f: 	 ,a:3� : 3 = �x
a, �v: 	 , f x � v

val rec map_total : �a b:3, �f
(a � b),

total�f,a� � �l
list�a�, �v: 	 , map f l � v =

fun fn ft ls {

case ls {

Nil � {}

Cons[c] �

let lem = ft c.hd;

let ih = map_total fn ft c.tl; {}

}

}

val rec length_total : �a:3, �l
list�a�, �v: 	 , v � length l =

fun l {

case l {

Nil � {}

Cons[c] � let ind = length_total c.tl; {}

}

}

We will now show that two successive uses of map on a list, with two di|ferent functions,
is the same as applying map once using the composition of the two functions. To do so, we
will {rst need to show that the composition of two total functions is itself total.

val compose_total : �a b c:3, �f
(a � b), �g
(b � c),

total�f,a� � total�g,b� � total�(fun x { g (f x) }), a� =

fun f g ftot gtot a {

show �v: 	 , f a � v using ftot a;

show �w: 	 , g (f a) � w using gtot (f a)

}

We can then state and prove our lemma as follows, using a proof by induction together with
our di|ferent totality results.

147

val map_map : �a b c:3, �f
(a � b), �g
(b � c), total�f,a� � total�g,b� �

�l
list�a�, map g (map f l) � map (fun x { g (f x) }) l =

fun f g ftot gtot {

fix fun map_map ls {

case ls {

Nil � {}

Cons[c] �

let hd = c.hd; let tl = c.tl;

let tgf = compose_total f g ftot gtot hd;

let lem = ftot hd;

let lem = map_total f ftot tl;

let ind = map_map tl; {}

}

}

}

Note that the proof by induction starts at the level of the ÷fixø keyword, which takes the
{xpoint of the functions that immediately follows it. In fact, our ÷val recø construct is
exactly encoded in this way.

In our system, it is possible to encode the type of vectors (i.e., lists of a given length)
using a restriction on the type of lists. In other words, vectors of length s will be de{ned
as the type of all lists l such that length l � s. The type of vectors will hence have two
parameters. The former will give the type of the elements contained in the vectors and the
latter will be the size parameter, in the form of a term.

type vec�a:3, s:$ � = �l: 	 , l
(list�a� | length l � s)

We can then de{ne a concatenation function app on vector. It produces a vector which
length is the sum of the lengths of its two arguments. Note that the de{nition of app

requires the use of length_total.

val rec app : �a:3, �m n: 	 , vec�a, m� � vec�a, n� � vec�a, add m n� =

fun l1 l2 {

case l1 {

Nil � l2

Cons[c] � length_total c.tl;

Cons[{hd = c.hd; tl = app c.tl l2}]

}

}

148

We can now de{ne a ternary concatenation function on vectors as follows, using two calls to
app. To be able to de{ne this function, the totality of the add function is required.

val app3 : �a:3, �m n p: 	 , vec�a,m� � vec�a,n� � vec�a,p�

� vec�a, add m (add n p)� =

fun l1 l2 l3 {

let lem = add_total (length l2) (length l3);

app l1 (app l2 l3)

}

It is important to note that an element of vec �a,s � can always be used as an element
of list �a � , independently of s. In fact, vec �a,s � is a subtype of list �a � .

val vec_to_list : �a:3, �s:$, vec�a,s� � list�a� = fun x { x }

Note that we will never need to use the function vec_to_list to turn a vector into a list. A
vector can be seen as a list directly, without relying on any form of coercion.

7.6 Sorted lists and insertion sort

We will now consider the insertion sort algorithm, and prove that it actually produces
sorted lists. Before going further, we will start by de{ning a type ord �a � that will be
represent an ordering relation together with its properties.

type ord�a:3� = �cmp: 	 ,

{ cmp : cmp
 (a � a � bool)

; tot : �x y
a, �v: 	 , cmp x y � v

; dis : �x y
a, or (cmp x y) (cmp y x) � true }

If we ignore the leading existential, an ordering relation simply consist in a product (or
record) type containing a comparison function, a proof of its totality and a proof that every
element can be compared. The existential quanti{er is only there to make the comparison
function accessible in the types of the other {elds.

Remark 7.6.4. An element of type ord �a � does not really correspond to an ordering
relation as transitivity is included. Although it could very well be given, it is not required
for insertion sort.

We can then de{ne our isort function in the usual way, using an intermediate
function insert, inserting an element in a sorted list.

149

val rec insert : �a:3, ord�a� � a � list�a� � list�a� =

fun o x l {

case l {

Nil � Cons[{hd = x; tl = Nil}]

Cons[c] �

let hd = c.hd; let tl = c.tl;

if o.cmp x hd { Cons[{hd = x ; tl = l}] } else {

let tl = insert o x tl;

Cons[{hd = hd ; tl = tl}]

}

}

}

val rec isort : �a:3, ord�a� � list�a� � list�a� =

fun o l {

case l {

Nil � Nil

Cons[c] � insert o c.hd (isort o c.tl)

}

}

Until the end of this section, our goal will be to show that for any ordering relation o and list
l, the list isort o l is indeed sorted.

A {rst step in this direction consists in specifying what it means to be sorted. We
hence de{ne a boolean valued program taking as input an ordering relation and a list, and
indicating whether the list is sorted.

val rec sorted : �a:3, �o
ord�a�, �l
list�a�, bool =

fun o l {

case l {

Nil � true

Cons[c1] �

let hd = c1.hd; let tl = c1.tl;

case tl {

Nil � true

Cons[c2] � let hd2 = c2.hd;

land�(o.cmp) hd hd2, sorted o tl�

}

}

}

150

Most remarkably, we can even de{ne the type of sorted lists using the restriction operator.
Indeed, sorted lists are lists on which the sorted function returns true.

type slist�a:3,o:$ � = �l: 	 , l
(list�a� | sorted o l � true)

At the end of this section we will be able to de{ne another version of isort that can be
given the type �a:3, �o
ord �a �, list �a � � slist �a,o � .

To build our proof, we will {rst need to establish the totality of the insert and isort

functions. This can be done straightforwardly with the following proofs.

val rec insert_total :

�a:3, �o
ord�a�, �x
a, �l
list�a�, �v: 	 , insert o x l � v =

fun o x l {

case l {

Nil � {}

Cons[c1] �

let hd = c1.hd; let tl = c1.tl;

let lem = o.tot x hd;

if o.cmp x hd {

{}

} else {

let ih = insert_total o x tl; {}

}

}

}

val rec isort_total :

�a:3, �o
ord�a�, �l
list�a�, �v: 	 , isort o l � v =

fun o l {

case l {

Nil � {}

Cons[c] �

let ih = isort_total o c.tl;

let lem = insert_total o c.hd (isort o c.tl); {}

}

}

It is then necessary to show that inserting an element in a sorted list yields a sorted list. The
proof of this lemma is not complicated either, but the case analysis is a bit tedious due to
the lack of deep pattern matching.

151

val rec isorted : �a, �o
ord�a�, �x
a, �l
slist�a,o�, sorted o (insert o x l) � true =

fun o x l {

case l {

Nil � {}

Cons[c1] �

let lem = o.tot x c1.hd;

if o.cmp x c1.hd { {} } else {

let lem = o.tot c1.hd x;

let lem = o.dis x c1.hd;

case c1.tl {

Nil � {}

Cons[c2] � let lem = insert_total o x c2.tl;

let lem = o.tot c1.hd c2.hd;

let lem = o.tot x c2.hd;

if o.cmp c1.hd c2.hd {

let lem = isorted o x c1.tl;

if o.cmp x c2.hd { {} } else { {} }

} else { }

}

}

}

}

Remark 7.6.5. The symbol (pronounced ÷scissorsø) can be used to mark a branch of the
code as unreachable when there is an equational contradiction. Here, we must have o.cmp

c1.hd c2.hd � true as otherwise the hypothesis that l is sorted would be contradicted.
Note that can be replaced by any term of the language as it will never be run.

We can then prove that isort produces lists that are sorted using a simple proof by
induction as follows.

val rec isort_sorted : �a, �o
ord�a�, �l
list�a�, sorted o (isort o l) � true =

fun o l {

case l {

Nil � {}

Cons[c] � let lem = isort_total o c.tl;

let ind = isort_sorted o c.tl;

let lem = isorted o c.hd (isort o c.tl); {}

}

}

152

Finally, we can obtain a sorting function which return type indicates that the produced
list is sorted. As for vectors, the type of sorted lists is a subtype of lists. As a consequence,
a sorted list can be used as a list transparently.

val isort_full : �a, �o
ord�a�, list�a� � slist�a,o� =

fun o l {

let tot = isort_total o l;

let lem = isort_sorted o l;

isort o l

}

7.7 Lookup function with an exception

We will consider an example of a program that relies on control operators as exceptions. We
will take the common example of a lookup function on the type of lists. However, the type of
our exception will carry a proof that the element that is looked for is in the list. To encode
this property, we will rely on the exists function (given in Chapter).

val rec exists : �a, (a � bool) � list�a� � bool =

fun pred l {

case l {

Nil � false

Cons[c] � if pred c.hd { true } else { exists pred c.tl }

}

}

Our lookup function (named find) can the be de{ned as follows, using a logical
negation as the type of the exception.

val rec find : �a:3, �pred
(a � bool), total�pred,a� � �l
list�a�,

neg�exists pred l � false� � a =

fun pred pred_tot l exc {

case l {

Nil � exc {}

Cons[c] �

let lem = pred_tot c.hd;

if pred c.hd { c.hd }

else { find pred pred_tot c.tl exc }

}

}

153

1

Note that the exception exc can only be called if we are able to feed it with a proof that no
element of the list satisfy the predicate pred. As a consequence, we are guaranteed that the
exception cannot be raised if the list contains an element satisfying pred.

To conclude, let us give two examples of function de{ned using find. The {rst one
will simply call find and wrap its result in the usual option �a � type.

val find_opt :

�a:3, �pred
(a � bool), total�pred,a� � list�a� � option�a� =

fun pred pred_tot l {

save a {

some (find pred pred_tot l (fun _ { restore a none }))

}

}

The second one does the same, but it looks for an element satisfying the predicate into a
list of lists.

val rec find_list :

�a:3, �pred
(a � bool), total�pred,a� �

list�list�a� � � option�a� =

fun pred pred_tot l {

case l {

Nil � none

Cons[c] �

save a {

let f = fun _ { restore a (find_list pred pred_tot c.tl) };

some (find pred pred_tot c.hd f)

}

}

}

Note that the recursive call of find_list is done inside the exception handler provided
to find.

7.8 An infinite tape lemma on streams

To conclude this chapter, we will consider an example of program that can only be written
in a classical setting (i.e., with control operators). We are going to de{ne a function on
streams of natural numbers, that extracts from its input a stream of odd numbers, or a
stream of even numbers. First, we need to de{ne odd and even numbers in our language.

154

val rec is_odd : nat � bool =

fun n {

case n {

Zero � false

Succ[m] �

case m {

Zero � true

Succ[p] � is_odd p

}

}

}

type odd = {v
nat | is_odd v � true }

type even = {v
nat | is_odd v � false}

Note that here, we use a ÷set typeø syntax similar to that of NuPrl [Constable 1986]. It is
encoded as follows in our system.

type odd = �v: 	 , v
(nat | is_odd v � true)

type even = �v: 	 , v
(nat | is_odd v � false)

Before going further, we need to establish that the odd function is total. It will be
required when we decide whether a given number of the input stream is odd or even.

val rec odd_total : �n
nat, �v: 	 , is_odd n � v =

fun n {

case n {

Zero � {}

Succ[m] �

case m {

Zero � {}

Succ[p] � odd_total p

}

}

}

We also need to de{ne the type of streams, together a related type corresponding to streams
with an explicit size annotation (or ordinal) o. Intuitively, this size annotation indicates the
number of elements that are available in the stream.

155

type corec stream�a� = {} � {hd : a; tl : stream}

type sized_stream�o,a� = Jo stream {} � {hd : a; tl : stream}

We can now de{ned the itl_aux function, which will be used to build our main in{nite
tape lemma function. Note that this function uses abort, which logically amounts to the ex

falso quodlibet principle. Size annotations are also required on the type of itl_aux, for our
type-checking algorithm to prove its termination.

val abort : �y, (�x,x) � y = fun x { x }

val rec itl_aux :

�a b, neg�sized_stream�a,even� � �

neg�sized_stream�b,odd� � � neg�stream�nat� � =

fun fe fo s {

let hd = (s {}).hd;

let tl = (s {}).tl;

use odd_total hd;

if is_odd hd {

fo (fun _ {

{hd = hd; tl = save o {

abort (itl_aux fe (fun x { restore o x }) tl)}}

})

} else {

fe (fun _ {

{hd = hd; tl = save e {

abort (itl_aux (fun x { restore e x }) fo tl)}}

})

}

}

Intuitively, the itl_aux function looks at the head of its third argument (a stream of
natural numbers). Depending on whether this number is odd or even, the function then
calls one of its {rst two arguments, which corresponds to a partially constructed stream
of even or odd numbers. The read number is then added to this stream, and a recursive
call is made to continue the construction.

Remark 7.8.6. It is surprising that our prototype implementation is able to establish the
termination of itl_aux. Indeed, at each call, an element is added to one of two streams.
Moreover, this example does not satisfy the usually required semi-continuity condition (see,
for example, [Abel 2008]).

156

Using itl_aux, it is then possible to de{ne the itl function corresponding to our
in{nite tape lemma.

val itl : stream�nat� � [InL of stream�even�; InR of stream�odd�] =

fun s {

save a {

InL[save e { restore a InR[save o {

abort (itl_aux (fun x { restore e x}) (fun x { restore o x }) s)

}] }]

}

}

This function starts by saving two continuations, corresponding to the constructors InL and
InR of the return type, and then calls itl_aux on the input stream. The very fact that we can
write itl proves that it is possible to extract a stream of odd numbers or a stream of even
numbers from any stream of natural numbers.

157

158

« Résumé substantiel » (en français)

Au cours des dernières années, les assistants à la preuves on fait des progrès consi-
dérables et ont atteint un grand niveau de maturité. Ils ont permit la certi{cation de
programmes complexes tels que des compilateurs et même des systèmes d'exploitation.
Néanmoins, l'utilisation d'un assistant de preuve requiert des compétences techniques
très particulières, qui sont très éloignées de celles requises pour programmer de manière
usuelle. Pour combler cet écart, nous entendons concevoir un langage de programmation
de style ML supportant la preuve de programmes. Il combine au sein d'un même outil
la öexibilité de ML et le {n niveau de spéci{cation o|fert par un assistant de preuve.
Autrement dit, le système peut être utilisé pour programmer de manière fonctionnelle et
fortement typée, tout en permettant l'obtention de nouvelles garanties au besoin.

On étudie donc un langage en appel par valeurs dont le système de type étend une
logique d'ordre supérieur. Il comprend un type égalité (entre programmes non typés), un
type de fonctions dépendantes, la logique classique et du sous-typage. La combinaison de
l'appel par valeurs, des fonctions dépendantes et de la logique classique est connu pour
poser des problèmes de cohérence. Pour s'assurer de la correction du système (cohérence
logique et süreté à l'exécution), on propose un cadre théorique basé sur la réalisabilité
classique de Krivine. Le modèle repose sur une propriété essentielle qui lie les di|férents
niveaux d'interprétation des types d'une manière novatrice.

On démontre aussi l'expressivité de notre système en se basant sur son implanta-
tion dans un prototype. Il peut être utilisé pour prouver des propriétés de programmes
standards tels que la fonction « map » sur les listes ,ou le tri par insertion.

Chapitre 1, introduction

Depuis l'apparition des premiers ordinateurs, chaque génération de programmeurs à du
faire face au problème de la {abilité du code. Les langages statiquement typés tels que Java,
Haskell, OCaml, Rust ou Scala ont attaqué ce problème avec des véri{cations statiques,
au moment de la compilation, pour détecter des programmes incorrects. Leur typage fort
est particulièrement utile quand plusieurs objets incompatibles doivent être manipulés au
même moment. Par exemple, un programme qui calcule une addition sur un booléen (ou
une fonction) est immédiatement rejeté. Durant les dernières années, les avantages du
typage statique ont même été reconnus au sein de la communauté des langages dynami-
quement typés. Des systèmes de véri{cation statique du typage sont dorénavant disponibles
pour Javascript [Microso{t 2012, Facebook 2014] ou Python [Lehtosalo 2014].

Dans les trente dernières années, des progrès signi{catifs ont été fait dans l'application
de la théorie des types aux langages de programmation. La correspondance de Curry-

159

Howard, qui lie les systèmes de types des langages de programmation fonctionnels à la
logique mathématique, a été explorée dans deux directions principales. D'un côté, les assis-
tants à la preuve comme Coq ou Agda sont basés sur des logiques très expressives [Coquand

1988, Martin-Löf 1982]. Pour montrer leur cohérence logique, les langages de programmation
sous-jacents doivent être restreints aux programmes qui peuvent être montrés terminant.
Ils interdisent donc les formes de récursion les plus générales. De l'autre côté, les langages
de programmation fonctionnelle comme OCaml ou Haskell sont adaptés à la programma-
tion, car ils n'imposent pas de restriction sur la récursion. Cependant, ils sont basés sur des
logiques qui ne sont pas cohérentes, ce qui implique qu'ils ne peuvent pas être utilisés pour
démontrer des formules mathématiques.

Le but de ce travail est de fournir un environnement uniforme au sein duquel des
programmes peuvent être écrits, spéci{és, et prouvés. L'idée est de combiner un langage
de programmation à la ML complet, avec un système de type enrichi pour permettre la
spéci{cation de comportements calculatoires. Ce langage peut donc être utilisé comme ML
pour programmer en tirant pro{t d'un typage statique fort, mais aussi comme un assistant
à la preuve pour démontrer des propriétés de programmes ML. L'uniformité du système
permet, en outre, de raf{ner les programmes petit à petit, pour obtenir de plus en plus
de garanties. En particulier, il n'y a pas de distinction syntaxique entre les programmes
et les preuves dans le système. On peut donc mélanger preuves et programmes durant la
construction de preuves ou de programmes. Par exemples, on peut utiliser des mécanismes
de preuve au sein de programmes a{n qu'ils portent des propriétés (par exemple, l'addition
avec sa commutativité). Les programmes peuvent utiliser des mécanismes de preuve pour
éliminer du code mort (ne pouvant pas être atteint à l'exécution).

Dans cette thèse, notre but premier est de mettre au point un système de type pour
un langage de programmation fonctionnelle, utilisable en pratique. Parmi les nombreux
choix techniques possibles, nous avons décidé de considérer un langage en appel par valeur
similaire à OCaml ou SML, ces derniers ayant fait leurs preuves en terme d'ef{cacité et
d'utilisation. Notre langage comporte des variants polymorphes [Garrigue 1998] et des types
enregistrements à la SML, qui sont très pratiques pour encoder des types de données. Par
exemple, le type des listes peut être dé{ni et utilisé de la manière suivante.

type rec list�a� = [Nil ; Cons of {hd : a ; tl : list}]

val rec exists : �a, (a � bool) � list�a� � bool =

fun pred l {

case l {

Nil � false

Cons[c] � if pred c.hd { true } else { exists pred c.tl }

}

}

160

Ici, la fonction polymorphe exists prend comme paramètre un prédicat et une liste, et elle
indique si (au moins) un élément de la liste satisfait le prédicat.

Le système présenté ici n'est pas seulement un langage de programmation, mais aussi
un assistant à la preuve, et en particulier à la preuve de programmes. Son mécanisme de
preuve est basé sur des types égalités de la forme t � u, oý t et u sont des programmes
arbitraires du langage. Un tel type égalité est habité par (ou contient) {} (c'est à dire
l'enregistrement vide) si l'équivalence dénotée est vraie, et il est vide sinon. Les équivalences
sont gérées en utilisant une procédure partielle de décision, qui est dirigée par la construc-
tion de programmes. Un contexte d'équations est maintenu par l'algorithme de typage,
a{n de stocker les équivalences supposées correctes durant la construction de la preuve
de typage. Ce contexte est étendu quand une nouvelle équation est apprise (par exemple,
quand un lemme est appliqué), et une équation est prouvée en cherchant une contradiction
(par exemple, quand deux variants di|férents sont supposés égaux).

Pour illustrer le fonctionnement des preuves, nous allons considérer l'exemple très
simple des entiers naturels en représentation unaire (les nombres de Peano). Leur type
est donné ci-dessous, avec la fonction d'addition correspondante, dé{nie par récurrence
sur son premier argument.

type rec nat = [Zero ; Succ of nat]

val rec add : nat � nat � nat =

fun n m {

case n { Zero � m | Succ[k] � Succ[add k m] }

}

Comme premier exemple, nous allons montrer add Zero n � n pour tout n. Pour exprimer
cette propriété, on utilise le type �n: 	 , add Zero n � n, oý 	 peut être vu comme l'ensemble
de tous les programmes complètement évalués. Cette énoncé peut ensuite être démontré
comme suit.

val add_z_n : �n: 	 , add Zero n � n = {}

Ici, la preuve est immédiate (c'est à dire, {}) comme add Zero n � n se déduit directement
de la dé{nition de la fonction add. Notez que cette équivalence est vraie pour tout n, qu'il
corresponde à un élément de nat ou pas. Par exemple, on peut montrer sans problème
l'équivalence add Zero true � true.

Regardons maintenant l'énoncé �n: 	 , add n Zero � n. Bien qu'il soit très similaire à
add_z_n en apparence, il ne peut pas être démontré. En e|fet, la relation add n Zero � n

n'est pas vraie quand n n'est pas un entier unaire. Dans ce cas, l'évaluation de add n Zero

produit une erreur à l'exécution. En conséquence, on devra se reposer sur une forme de

161

quanti{cation dont le domaine se limite aux entiers unaires. Ceci peut être réalisé avec
le type �n
nat, add n Zero � n, qui corresponds à une fonction (dépendante) prenant
en entrée un entier n, et retournant une preuve de add n Zero � n. Cette propriété peut
ensuite être prouvée en utilisant de l'induction (programme récursif) et une analyse par cas
({ltrage par motif).

val rec add_n_z : �n
nat, add n Zero � n =

fun n {

case n {

Zero � {}

Succ[k] � let ih = add_n_z k; {}

}

}

Si n est Zero, alors on doit montrer add Zero Zero � Zero, qui est immédiat par dé{nition
de add. Dans le cas oý n est Succ[k] on doit montrer add Succ[k] Zero � Succ[k]. Par
dé{nition de add, cette équation se réduit en Succ[add k Zero] � Succ[k]. Il suf{t donc
de montrer add k Zero � k en utilisant l'hypothèse d'induction (add_n_z k).

Chapitre 2, calcul non typé

Dans ce chapitre, on introduit le langage de programmation qui sera utilisé dans toute
la suite de cette thèse. Sa sémantique opérationnelle est exprimée à l'aide d'une machine
abstraite, qui nous permettra de considérer des opérations produisant des e|fets de bord.
Comme tout langage de programmation fonctionnelle, notre système est base sur le �-
calcul. Créé par Alonzo Church dans les années trente, le �-calcul [Church 1941] est un
formalisme permettant la représentation de fonctions calculables, et en particulier de fonc-
tions récursives. Comme l'a démontré Alan Turing, le �-calcul est un modèle de calcul universel

[Turing 1937].
Les termes du �-calcul (appelés �-termes) sont construits à partir d'un alphabet dénom-� �brable de variables (appelées �-variables) V = x, y , z� . L'ensemble de tous les �-termes	

est généré par la grammaire bnf suivante.

t , u ::= x | �x.t | t u x
 V	

Un terme de la forme �x.t est appelé abstraction (ou �-abstractions) et un terme de
la forme t u est appelé application. Le langage que nous considérons dans cette thèse
est en fait exprimé sous la forme d'une machine abstraite comprenant quatre catégories
syntaxiques (valeurs, termes, piles et processus) générées par la grammaire bnf suivante.

162

� � v , w ::= x | �x.t | C [v] | {(l = v) } | �	 k i i i
I� � t , u ::= a | v | t u | ��.t | [�]t | v.l | [v | (C [x]� t)] | Y | % | &k i i i t,v v,t v,wi
I� �� � , ' ::= � | � | v . � | [t]�� �×� p , q ::= t � �

Let termes et valeurs forment une variante du ��-calculus [Parigot 1992], enrichit avec des
éléments des langages à la ML (enregistrements et variants). Les valeurs de la forme C [v]k

(avec k
 �) correspondent à des variants (ou constructeurs). Un {ltrage par motif peut
être e|fectué sur les variants avec la syntaxe [v | (C [x]� t)], oý le motif C [x] esti i i i ii
I

associés au terme t pour tout i dans I � �. D'une manière similaire, les valeurs de lai fin

forme {(l = v) } correspondent à des enregistrements, qui sont des n-uplets avec desi i i
I

composantes nommées. L'opération de projection v.l peut être utilisée pour accéder à lak

valeur stockées sous le label l dans v.k

Les processus forment l'état interne de notre machine abstraite. On peut en fait voir un
processus comme un terme, placé dans un contexte d'évaluation représenté par une pile.
Intuitivement, la pile � du processus t � � contient les paramètres qui seront fournit à t.
Comme on est en appel par valeur, les piles stockent également les fonctions durant
l'évaluation de leurs arguments. C'est pourquoi on a besoin de piles de la forme [t]�. La� �sémantique opérationnelle de notre langage est donnée par la relation
 dé{nie sur les
processus en utilisant les règles de réduction suivantes.

t u � �
 u � [t]� � �v � [t]�
 t � v . � si v � V � �	

�x.t � v . �
 t[x� v] � �
��.t � �
 t[�� �] � �
[�]t � �
 t � �

{(l = v) }.l � �
 v � � si k
 Ii i k ki
I

[C [v] | (C [x]� t)] � �
 t [x � v] � � si k
 Ik i i i i ii
I

Y � �
 t (�x.Y) v � �t,v t,x

% � �
 u � �{(l = v) },ui i i
I� � [t]�
 � � �
� � v . �
 � � �

[� | (C [x]� t)] � �
 � � �i i i i
I�.l � �
 � � �k

Les trois premières règles sont celles qui prennent en charge la �-réduction, c'est à dire
l'évaluation standard des termes du �-calcul. Quand la machine abstraite rencontre une
application, la fonction est stockée sur la pile jusqu'à ce que son argument ait été complète-
ment évalué. Une fois l'argument calculé, un valeur fait face à la pile contenant la fonction,
on peut donc utiliser la second règle pour mettre la fonction en position d'évaluation et son

163

argument en position d'argument, prêt à être consommé dés que la fonction se sera évalué
en une �-abstraction. À ce moment là, on pourra réaliser une substitution sans capture en
utilisant la troisième règle, pour que l'application prenne e|fet. Le but des règles suivantes
est de prendre en charge l'évaluation des programmes formés avec les autres constructeurs
du langage (e|fets, enregistrements, variants, récursion).

Chapitre 3, équivalence observationnelle

Dans ce chapitre, on introduit une relation d'équivalence sur les termes du langage. Deux
termes sont considérés équivalent si et seulement si ils ont le même comportement obser-
vable en terme de calcul. Des propriétés générales sont ensuite obtenues pour toute rela-
tion d'équivalence satisfaisant certaines contraintes. Ces propriétés sont essentielles pour
la dé{nition de la sémantique de réalisabilité dans les chapitres suivants. De plus, elles
nous permettent d'implanter une procédure partielle de décision pour l'équivalence de
programmes.

L'idée principale de ce chapitre est de considérer une forme d'équivalence observa-
tionnelle. En d'autre termes, deux programmes seront considérés équivalent dés lors qu'ils
ont le même comportement observable dans tous les contextes d'évaluation. Ici, on obser-
vera simplement, pour chaque pile, si le processus formé calcule une valeur ou produit
une erreur (ou ne termine pas). On quanti{era également sur toutes les substitutions
pour les variables libres, de manière à pouvoir comparer des termes ouverts. La relation� �� � × est donc dé{nie comme suit.

� � � �� �� = t , u | � �
� , �'
S, t' � � � + u' � � �

Chapitre 4, système de type et sémantique

Dans ce chapitre, on présente un nouveau système de type, qui se distingue grâce à une
notion d'équivalence de programme embarquée. Elle permet de spéci{er des propriétés
équationnelles de programmes, qui sont ensuite prouvées par des raisonnements équation-
nels sur les programmes. Nos types sont interprétés en utilisant des techniques standard de
la réalisabilité classique, qui nous permettent de donner une justi{cation sémantique à nos
règles de typage.

L'interprétation des types est dé{nie inductivement, de manière usuelle. Il faut quand
même remarquer que, du fait de l'appel par valeur, l'interprétation du type des fonctions
requiert trois niveaux d'interprétation (valeurs, piles, termes) liés par orthogonalité. Plus

� �précisément, on dé{nira l'interprétation A d'un type comme l'ensemble de ses valeurs,

164

.� �et on obtiendra ensuite par orthogonalité un ensemble de piles A , puis un ensemble de
..� �termes A de la manière suivante.

. .. .� � � � � � � �� � � �A = �
 � | � v
 A , v � � � A = t
 | � �
 A , t � � �

En particulier, le type restriction, dénotant une conjonction sémantique sans contenu
� � � �algorithmique, sera interprété comme A 7 t� u = A si on a t � u en accord avec

� � � �la section précédente. Sinon, on prendra A 7 t� u = . , c'est à dire la même inter-
prétation que le type vide ..

Chapitre 5, restriction aux valeurs

Dans ce chapitre, nous considérons l'encodage des types dépendants, qui sont une forme
de quanti{cation typée dans notre système. Cependant, l'expressivité de ces derniers est
considérablement limitée par la restriction aux valeurs. Pour résoudre ce problème, on
introduit dans le système la notion de restriction aux valeurs sémantique, qui permet au
système d'accepter bien plus de programmes. Obtenir un modèle justi{ant la restriction aux

valeurs sémantique nécessite de changer à la fois la sémantique opérationnelle et la dé{nition
de l'équivalence de programmes.

L'idée ici est de considérer qu'un terme t est une valeur, si il existe une valeur v telle
que t � v. On pourra donc donner des règles de typage relâchées, plus générales, qui auront
une prémisse de la forme / 1 t � v. Pour rendre notre modèle de réalisabilité compatible
avec cette idée, il est absolument nécessaire que les di|férents niveaux d'interprétation des
types satisfassent la relation suivante.

..� � � �v
 A � v
 A

En d'autre termes, si une valeur est présente dans l'interprétation d'un type au niveau des
termes, alors elle était déjà présente au niveau des valeurs. Plus précisément, on demandera

..� � � �à ce que l'opération A � A , qui peut être vue comme une forme de complétion,
n'introduise pas de nouvelles valeurs.

Bien que cette propriété soit naturelle, elle n'est pas satisfaite en général dans les
modèles de réalisabilité classique (en appel par valeurs). La dé{nition d'un modèle ayant
cette propriété est le résultat central de cette thèse [Lepigre 2016]. Il est obtenu en étendant
la syntaxe des termes avec une opération permettant de tester des équivalences durant la
réduction de la machine abstraite.

165

Chapitre 6, sous-typage

Dans ce chapitre, on reformule la dé{nition de notre système de type pour inclure du
sous-typage. L'idée principale est de transformer les règles de typage qui n'ont pas de
contenu algorithmique en règles de sous-typage. En particulier, les quanti{cateurs, points
{xes, appartenance et égalités seront gérés au sein du sous-typage.

Dans le cadre de cette thèse, le sous-typage à deux intérêts principaux. En premier
lieux, il permet de donner un formulation du système qui est dirigée par la syntaxe. En
d'autre termes, une et une seule règle de typage peut être appliquée pour un terme donné
(peu importe le type correspondant), et une et une seule règle de sous-typage peut être
appliquée étant donné deux types (modulo quelques subtilités). Il est en fait surprenant
qu'on puisse obtenir un ensemble de règles aussi satisfaisant pour une implantation, malgré
la très probable non décidabilité du typage et du sous-typage dans notre système (c'est une
extension de System F [Wells 1999]).

Sur le plan technique, nous considérons une notion de sous-typage bien particulière
(appelé sous-typage pointé) de la forme t
 A D B, et nous faisons appel à des opérateurs
de choix inspirés des travaux de Hilbert (voir [Lepigre 2017]).

Chapitre 7, programmes et preuves

Dans ce dernier chapitre, nous considérons des exemples de programmes et de preuves qui
peuvent être écrits et manipulés par le prototype que nous avons implanté. Cet ensemble
restreint d'exemples n'a pas pour but de présenter le système de manière exhaustive. Ils
visent seulement à démontrer l'expressivité du système, à travers une sélection d'exemples.
Tous les exemples données dans ce chapitre ont été véri{és par notre prototype à la produc-
tion de ce document. Ils sont donc acceptés par notre implémentation sans qu'aucune
modi{cation soit nécessaire.

Une partie des exemples considérés concernent les listes, avec certains de leurs sous-
types. En particulier, on considère le type des vecteurs (listes de taille {xée) et les listes
triées. On démontre ainsi, par exemple, qu'il est possible de reöéter par le typage qu'une
fonction de tri (ici le tri par insertion) transforme une liste en une liste triée.

Pour {nir le chapitre, on considère quelque exemples utilisant la logique classique. En
particulier, on dé{nit un programme qui est en fait extrait de la preuve classique d'un
lemme sur les listes in{nies d'entiers (ou « stream »). On dé{nit ainsi une fonction qui,
étant donné une liste in{nie d'entiers, retourne une sous-liste in{nie de nombre pairs, ou
une sous-liste in{nie de nombres impairs. Il n'est évidemment pas possible d'écrire un tel
programme hors d'un cadre classique.

166

References

Semi-Continuous Si÷ed Types and Termination, Andreas Abel, Logical Methods in
Computer Science, Volume 4, Number 2.
[Barendregt 1981] The Lambda Calculus - Its Syntax and Semantics, Hendrik P. Barendregt,
North-Holland.

Conception et implémentation d'un système d'aide à la spécizcation et à la preuve de

programmes ML, Sylvain Baro, Thèse de l'Université Paris Diderot.
Combining Proofs and Programs in a Dependently Typed Language, Chris

Casinghino, Vilhelm Sjúberg and Stephanie Weirich, proceedings of POPL.
Set-Theoretic Types for Polymorphic Variants, Giuseppe Castagna, Tommaso

Petrucciani and Kim Nguyen, proceedings of ICFP.
Program verizcation through characteristic formulae, Arthur Charguéraud,

proceedings of ICFP.
Characteristic formulae for the verizcation of imperative programs, Arthur

Charguéraud, proceedings of ICFP.
Strict bidirectional type checking, Adam Chlipala, Leaf Petersen and Robert

Harper, proceedings of TLDI.
Some properties of conversion, Alonzo Church and John Barkley Rosser Sr.,

Transactions of the American Mathematical Society, Volume 36, Number 3.
[Church 1941] The Calculi of Lambda-Conversion, Alonzo Church, Annals of Mathematical Stud-
ies, Volume 6.

Implementing Mathematics with the Nuprl proof development system, Robert. L.
Constable, S. F. Allen, H. M. Bromley et al., Prentice Hall.

The Coq Proof Assistant Reference Manual, Coq Development Team, LogiCal
Project.

The Calculus of Constructions, Thierry Coquand and Gérard Huet, Information
and Computation, Volume 76, Issue 2-3.

Principal Type-Schemes for Functional Programs, Luís Damas and Robin Milner,
proceedings of POPL.

Flow - A static type checker for Javascript, Facebook Inc., open source.
Why3 - Where Programs Meet Provers, Jean-Christophe Filliâtre and Andrei

Paskevich, proceedings of ESOP, Lecture Notes in Computer Science, Volume 7792.
The Essence of Compiling with Continuations, Cormac Flanagan, Amr Sabry,

Bruce Duba et al., proceedings of PLDI.
Programming with Polymorphic Variants, Jacques Garrigue, proceedings of the

ML Workshop.
Relaxing the Value Restriction, Jacques Garrigue, proceedings of FLOPS.

167

[Garrigue 2004]

[Garrigue 1998]

[Flanagan 1993]

[Filliâtre 2013]
[Facebook 2014]

[Damas 1982]

[Coquand 1988]

[CoqTeam 2004]

[Constable 1986]

[Church 1936]

[Chlipala 2005]

[Chargueraud 2011]

[Chargueraud 2010]

[Castagna 2016]

[Casinghino 2014]

[Baro 2003]

[Abel 2008]

[Girard 1972] Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supér-

ieur, Jean-Yves Girard, Thèse de l'Université Paris VII.
Proofs and Types, Jean-Yves Girard, Paul Taylor and Yves Lafont, Cambridge

University Press.
A Formulae-as-Types Notion of Control, Timothy G. Grif{n, proceedings of POPL.
ML with callcc is unsound, Robert Harper and Mark Lillibridge, Message posted

to the SML mailing list.
Grundlagen der Mathematik I, David Hilbert and Paul Bernays, Grundlehren der

mathematischen Wissenschaùten.
Equality in La÷y Computation Systems, Douglas J. Howe, proceedings of LICS.

The Zipper, Gérard Huet, Journal of Functional Programming, Volume 7.
Proving the Correctness of Reactive Systems Using Si÷ed Types, John Hughes, Lars

Pareto and Amr Sabry, proceedings of POPL.
AURA: a Programming Language for Authori÷ation and Audit, L. Jia, J. Vaughan, Karl

Mazurak et al., proceedings of ICFP.
Lambda-calcul, types et modèles, Jean-Louis Krivine, Masson.
A call-by-name lambda-calculus machine, Jean-louis Krivine, Higher Order and

Symbolic Computation.
Reali÷ability in Classical Logic, Jean-Louis Krivine, Panoramas et Synthèses,

Volume 27.
mypy - Optional static typing for Python, Jukka Lehtosalo, Open source project.

A Classical Reali÷ability Model for a Semantical Value Restriction, R. Lepigre,
proceedings of ESOP, Lecture Notes in Computer Science, Volume 9632.

Practical Subtyping for System F with Si÷ed (Co-)Induction, Rodolphe Lepigre and
Christophe Ra|falli, Submitted.

Polymorphic Type Inference and Assignment, Xavier Leroy and Pierre Weis, in the
proceedings of POPL.

Polymorphism by Name for References and Continuations, Xavier Leroy, in the
proceedings of POPL.

Positively Dependent Types, Daniel Licata and Robert Harper, in the proceedings
of PLPV.

Modules for Standard ML, David MacQueen, proceedings of LFP.
ProPre A Programming Language with Proofs, Pascal Manoury, Michel Parigot

and Marianne Simonot, Lecture Notes in Computer Science, Volume 624.
Constructive Mathematics and Computer Programming, Per Martin-Lúf, Studies

in Logic the Foundations of Mathematics, Volume 104.
TypeScript - Javascript that scales, Microsoùt, Open source project.

Le Calcul des Constructions Implicites : Syntaxe et Sémantique, Alexandre Miquel,
Thèse de l'Université Paris VII.

168

[Miquel 2001]
[Microso{t 2012]

[Martin-Löf 1982]

[Manoury 1992]
[MacQueen 1984]

[Licata 2009]

[Leroy 1993]

[Leroy 1991]

[Lepigre 2017]

[Lepigre 2016]
[Lehtosalo 2014]

[Krivine 2009]

[Krivine 2007]
[Krivine 1990]

[Jia 2008]

[Hughes 1996]
[Huet 1997]
[Howe 1989]

[Hilbert 1934]

[Harper 1991]
[Grifzn 1990]

[Girard 1989]

Classical Program Extraction in the Calculus of Constructions, Alexandre Miquel,
proceedings of CSL.

Existential witness extraction in classical reali÷ability and via a negative translation,
Alexandre Miquel, Logical Methods in Computer Science.

An Extension of System F with Subtyping, L. Cardelli, S. Martini, J. C. Mitchell
et al., proceedings of TACS.

Foundations for Programming Languages, John C. Mitchell, MIT Press.
Computational Lambda-Calculus and Monads, Eugenio Moggi, in the proceedings

of LICS.
Focalisation and Classical Realisability, Guillaume Munch-Maccagnoni, in the

proceedings of CSL.
Dependently Typed Programming in Agda, Ulf Norell, Lecture notes from the

Summer School in Advanced FP.
PVS: Combining Specizcation, Proof Checking and Model Checking, S. Owre, S. Rajan,

J. Rushby et al., Lecture Notes In Computer Science.
Lambda-Mu-calculus: an algorithmic interpretation of classical natural deduction,

Michel Parigot, proceedings of LPAR.
System F-eta, Christophe Ra|falli.
An optimi÷ed complete semi-algorithm for system F-eta, Christophe Ra|falli.

Towards a Theory of Type Structure, John C. Reynolds, proceedings Colloque
sur la Programmation.

Des types aux assertions logiques : preuve automatique ou assistée de propriétés

sur les programmes fonctionnels, Yann Régis-Gianas, Thèse de l'Université Paris Diderot.
Secure Distributed Programming with Value-Dependent Types, Nikhil Swamy, Juan

Chen, C. Fournet et al., proceedings of ICFP.
TIL: A Type-Directed Optimi÷ing Compiler for ML, D. Tarditi, G. Morrisett, P.

Cheng et al., proceedings of PLDI.
The Subtyping Problem for Second-Order Types is Undecidable, Jerzy Tiuryn and

Pawel Urzyczyn, Proceedings of LICS.
The Subtyping Problem for Second-Order Types is Undecidable, Jerzy Tiuryn and

Pawel Urzyczyn, Information and Computation, Volume 179.
Type Inference for Polymorphic References, Mads Toùte, Information and Compu-

tation, Volume 89, Issue 1.
Computability and Lambda-Deznability, Alan Turing, Journal of Symbolic Logic.

Call-by-value is dual to call-by-name, Philip Wadler, SIGPLAN Notices 38(9).
Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent

and Undecidable, Joe B. Wells, Proceedings of LICS.
Typability and type checking in System F are equivalent and undecidable, Joe B. Wells,

Annals of Pure and Applied Logic, Volume 98.

169

[Wells 1999]

[Wells 1994]
[Wadler 2003]
[Turing 1937]

[To{te 1990]

[Tiuryn 2002]

[Tiuryn 1996]

[Tarditi 1996]

[Swamy 2011]

[Régis-Gianas 2007]

[Reynolds 1974]
[Ra|falli 1999]
[Ra|falli 1998]

[Parigot 1992]

[Owre 1996]

[Norell 2008]

[Munch 2009]

[Moggi 1989]
[Mitchell 1996]

[Mitchell 1991]

[Miquel 2011]

[Miquel 2007]

A Syntactic Approach to Type Soundness, A. K. Wright and M. Felleisen, Infor-
mation and Computation, Volume 15, Issue 1.

Simple Imperative Polymorphism, Andrew K. Wright, Lisp and Symbolic Compu-
tation, Volume 8, Number 4.

Dependent Types in Practical Programming, Hongwei Xi and Frank Pfenning, in the
proceedings of POPL.

Applied Type System: Extended Abstract, Hongwei Xi, proceedings of TYPES.
On the Relation between the Lambda-Mu-Calculus and the Syntactic Theory of

Sequential Control, Philippe de Groote, Lecture Notes in Computer Science.

170

[de Groote 1994]
[Xi 2003]

[Xi 1999]

[Wright 1995]

[Wright 1994]

171

Résumé

Au cours des dernières années, les assistants de preuves on fait des progrès considérables et ont
atteint un grand niveau de maturité. Ils ont permit la certi{cation de programmes complexes tels
que des compilateurs et même des systèmes d'exploitation. Néanmoins, l'utilisation d'un assistant
de preuve requiert des compétences techniques très particulières, qui sont très éloignées de celles
requises pour programmer de manière usuelle. Pour combler cet écart, nous entendons concevoir
un langage de programmation de style ML supportant la preuve de programmes. Il combine au
sein d'un même outil la öexibilité de ML et le {n niveau de spéci{cation o|fert par un assistant
de preuve. Autrement dit, le système peut être utilisé pour programmer de manière fonctionnelle et
fortement typée tout en autorisant l'obtention de nouvelles garanties au besoin.

On étudie donc un langage en appel par valeurs dont le système de type étend une logique
d'ordre supérieur. Il comprend un type égalité entre les programmes non typés, un type de fonction
dépendant, la logique classique et du sous-typage. La combinaison de l'appel par valeurs, des
fonctions dépendantes et de la logique classique est connu pour poser des problèmes de cohérence.
Pour s'assurer de la correction du système (cohérence logique et süreté à l'exécution), on propose
un cadre théorique basé sur la réalisabilité classique de Krivine. Le modèle repose sur une propriété
essentielle qui lie les di|férent niveaux d'interprétation des types d'une manière novatrice.

On démontre aussi l'expressivité de notre système en se basant sur son implantation dans
un prototype. Il peut être utilisé pour prouver des propriétés de programmes standards tels que
la fonction « map » sur les listes ou le tri par insertion....

Abstract

In recent years, proof assistant have reached an impressive level of maturity. They have led to the
certi{cation of complex programs such as compilers and operating systems. Yet, using a proof
assistant requires highly specialised skills and it remains very di|ferent from standard program-
ming. To bridge this gap, we aim at designing an ML-style programming language with support
for proofs of programs, combining in a single tool the öexibility of ML and the {ne speci{cation
features of a proof assistant. In other words, the system should be suitable both for programming
(in the strongly-typed, functional sense) and for gradually increasing the level of guarantees met
by programs, on a by-need basis.

We thus de{ne and study a call-by-value language whose type system extends higher-order
logic with an equality type over untyped programs, a dependent function type, classical logic and
subtyping. The combination of call-by-value evaluation, dependent functions and classical logic is
known to raise consistency issues. To ensure the correctness of the system (logical consistency and
runtime safety), we design a theoretical framework based on Krivine's classical realizability. The
construction of the model relies on an essential property linking the di|ferent levels of interpre-
tation of types in a novel way.

We {nally demonstrate the expressive power of our system using our prototype implementa-
tion, by proving properties of standard programs like the map function on lists or the insertion sort.

