Philippe Balbiani 
  
Johan Van Benthem 
  
Didier Galmiche 
  
Fen- Rong Liu 
  
Olivier Roy 
  
Frank Veltman 
  
Yde Venema 
  
Sophia Knight 
  
Adam Bjorndahl 
  
Julia Ilin 
  
Lucia Vargas Sandoval 
  
Nina Gierasimczuk 
  
Karine Gigengack 
  
Tanja Kassenaar 
  
Peter Van 
  
Ormonth Merci 
  
Christelle Leveque 
  
Keywords: conditional beliefs

First of all, I would like to thank my supervisors Nick Bezhanishvili, Hans van Ditmarsch and Sonja Smets who together created the most supportive team, both academically and personally, I could ask for. I want to thank them for countless hours they spent teaching me logic

Introduction

This dissertation brings together epistemic logic and topology. It studies formal representations of the notion of evidence and its link to justification, justified belief, knowledge, and evidence-based information dynamics, by using tools from topology and (dynamic) epistemic logic.

Epistemic logic is an umbrella term for a species of modal logics whose main objects of study are knowledge and belief. As a field of study, epistemic logic uses modal logic and mathematical tools to formalize, clarify and solve the questions that drive (formal) epistemology, and its applications extend not only to philosophy, but also to theoretical computer science, artificial intelligence and economics (for a survey, see van Ditmarsch et al., 2015a). [START_REF] Hintikka | Knowledge and Belief: An Introduction to the Logic of the Two Notions[END_REF] is considered the founding father of modern epistemic logic. In his book Knowledge and Belief: An Introduction to the Logic of the Two Notions (1962)-inspired by insights in [START_REF] Von Wright | An Essay in Modal Logic[END_REF]-Hintikka formalizes knowledge and belief as basic modal operators, denoted by K and B, respectively, and interprets them using standard possible worlds semantics based on (relational) Kripke structures. Ever since-as Kripke semantics provides a natural and relatively easy way of modelling epistemic logics-it has been one of the prominent and most commonly used semantic structures in epistemic logic, and research in this area has widely advanced based on the formal ground of Kripke semantics.

However, standard Kripke semantics possesses some features that make the notions of knowledge and belief it implements too strong-leading to the problem of logical omniscience-and is lacking the ingredients that make it possible to talk about the nature and grounds of acquired knowledge and belief. What triggered the work presented in this dissertation is the latter issue: we not only seek an easy way to model knowledge and belief, but also study the emergence, usage, and transformation of evidence as an inseparable component of a rational and idealized agent's justified belief and knowledge.

For this purpose, topological spaces are proven to be natural mathematical objects to formalize the aforementioned epistemic notions, and, in turn, evidence-based information dynamics: while providing a deeper insight into the evidencebased interpretation of knowledge and belief, topological semantics also generalizes the standard relational semantics of epistemic logic. Roughly speaking, topological notions like open, closed, dense and nowhere dense sets qualitatively and naturally encode notions such as measurement/observation, closeness, smallness, largeness and consistency, all of which will recur with an epistemic interpretation in this dissertation. Moreover, topological spaces are equipped with well-studied basic operators such as the interior and closure operators which-alone or in combination with each other-succinctly interpret different epistemic modalities, giving a better understanding of their axiomatic properties. To that end, we see topological spaces as information structures equipped with an elegant and strong mathematical theory that help to shed some light on the philosophical debates surrounding justified belief and knowledge, and to gain more insights into learning via evidence-acquisition.

The epistemic use of topological spaces as information structures can be traced back to the 1930s and 1940s, where topological spaces served as models for intuitionistic languages, and open sets are considered to be 'pieces of evidence', 'observable properties' concerning the actual state (see, e.g., [START_REF] Troelstra | Constructivism in mathematics : an introduction[END_REF]. This interpretation assigned to open sets constitutes the basic epistemic motivation behind our use of topological models, and will return often at various places (in modified forms) in the main body of this dissertation. Variations of this idea can also be found in domain theory in computer science (Abramsky, 1987[START_REF] Abramsky | Domain theory in logical form[END_REF][START_REF] Vickers | Topology via logic[END_REF], and guide the research program of "topological" formal learning theory initiated by Kelly and others [START_REF] Kelly | The Logic of Reliable Inquiry[END_REF][START_REF] Schulte | Topology as epistemology[END_REF][START_REF] Kelly | Reliable Belief Revision[END_REF][START_REF] Kelly | A simple theory of theoretical simplicity[END_REF][START_REF] Baltag | On the solvability of inductive problems: A study in epistemic topology[END_REF] in formal epistemology.

The literature connecting (modal) epistemic logic and topology is developed based on two separate, yet strongly related topological settings. Our work in this dissertation justly benefits from both approaches. The first direction stems from the interior-based topological semantics of [START_REF] Mckinsey | A solution of the decision problem for the lewis systems S2 and S4, with an application to topology[END_REF] and McKinsey and [START_REF] Mckinsey | The algebra of topology[END_REF] for the language of basic modal logic (some of the ideas could already be found in [START_REF] Tarski | Der aussagenkalkül und die topologie[END_REF][START_REF] Tsao-Chen | Algebraic postulates and a geometric interpretation for the lewis calculus of strict implication[END_REF]. In this semantics the modal operator 2 is interpreted on topological spaces as the interior operator. These investigations took place in an abstract, mathematical context, independent from epistemic/doxastic considerations. [START_REF] Mckinsey | The algebra of topology[END_REF] not only proved that the modal system S4 is the logic of all topological spaces (under the above-mentioned interpretation), but also showed that it is the logic of any dense-in-itself separable metric space, such as the rational line Q, the real line R, and the Cantor space, among others. This approach paved the way for a whole new area of spatial logics, establishing a long standing connection between modal logic and topology (see, e.g., [START_REF] Aiello | Handbook of Spatial Logics[END_REF] for a survey on this topic, in particular, see [START_REF] Van Benthem | Modal logics of space[END_REF]. Moreover, the completeness results concerning the epistemic system S4 have naturally attracted epistemic logicians, and led to an epistemic re-evaluation of the interior semantics, seeing topologies as models for information. One branch of the epistemic logic-topology connection has thus been built on the interior-based topological semantics, where the central epistemic notion studied is knowledge (see, e.g.,van [START_REF] Van Benthem | The geometry of knowledge[END_REF]. What we add to this body of work, in Part I of this dissertation, are the missing epistemic components evidence and belief, as well as the dynamics of learning new evidence, strengthening the connection between epistemic logic and topology. We do so by reanalyzing the neighbourhood-based evidence models of van Benthem and Pacuit ( 2011) from a topological perspective. The way we represent evidence and how it connects to justified belief are inspired by the approach in [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF], and the evidence transforming actions considered are adapted from the aforementioned influential work.

The second topological approach to epistemic logic was initiated by [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]. They introduced the so-called topologic, a bimodal framework to formalize reasoning about sets and points in a single modal system. Their topological investigations have a strong motivation from epistemic logic, suggesting that "simple aspects of topological reasoning are also connected with specialpurpose logics of knowledge" (Moss and Parikh, 1992, p. 95). The key element [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] introduced to the paradigm of epistemic logic is the abstract notion of epistemic effort. Effort can, roughly speaking, be described as any type of evidence-gathering-via, e.g., measurement, computation, approximation, experiment or announcement-that can lead to an increase in knowledge. The formalism of topologic therefore combines the static notion of knowledge with the dynamic notion of effort, thus, it is strongly related to dynamic epistemic logic [START_REF] Baltag | The logic of public announcements, common knowledge, and private suspicions[END_REF][START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF][START_REF] Van Benthem | Logical Dynamics of Information and Interaction[END_REF][START_REF] Baltag | Dynamic epistemic logic[END_REF]. In Part II of this thesis, we build a bridge between the two formalisms, which results in both conceptual and technical advantages. While dynamic epistemic logic expands the array of dynamic attitudes it studies, the topologic setting obtains epistemically more intuitive axiomatizations, clarifying the meaning of effort by linking it to well-understood instances such as public and arbitrary announcements.

***

The contributions of this thesis are presented in two parts. Below, we give a brief overview of each chapter. Every chapter starts with a brief introduction further elaborating its content and links to the relevant literature.

Chapter 2 provides the technical preliminaries that are essential for both parts of the dissertation. This includes, in the first half, a very brief introduction to the standard Kripke semantics for the basic modal logic. We recall the commonly studied static systems for epistemic/doxastic logics and the corresponding relational properties that render these logics sound and complete. In the second part, we introduce the elementary topological notions that will be used throughout this dissertation.

PART I: From Interior Semantics to Evidence Models

Part I is concerned with evidence-based interpretations of justified belief and knowledge. Starting with a by-now-standard topological interpretation of knowledge as the interior operator, we develop, in a gradual manner, a topological framework that ( 1) can talk about evidence not only semantically, but also at the syntactic level, thereby making the notion of evidence more explicit; [START_REF]int(ϕ ∨ K β) ↔ int(ϕ) ∨ K β 3. int(ϕ ∨ (σ ∧ Kβ)) ↔ (int(ϕ ∨ σ)[END_REF] takes evidence as the most primitive notion, and defines belief and knowledge purely based on it, thereby linking these two crucial notions of epistemology at a deeper, more basic level. These investigations have considerable philosophical consequences as they allow us to discern, isolate, and study various aspects of the notion of evidence, and its relation to justification, knowledge and belief.

Chapter 3 introduces the interior-based topological semantics of [START_REF] Mckinsey | The algebra of topology[END_REF] as a way to model knowledge, points out its link to the standard relational semantics, and motivates the interpretation of knowledge as the topological interior operator. It then discusses an existing topological semantics for belief based on the derived set operator, and argues that it does not constitute a satisfactory semantics for belief, especially when considered in tandem with knowledge as the interior.

Chapter 4 shifts our focus from the topological interpretation of knowledge to the topological interpretation of belief, and presents the first step toward developing a topological theory of belief that works well in combination with knowledge as the interior operator. More precisely, the first part of this chapter presents a review of the topological belief semantics of ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF], addressing the following questions:

• Given the interior-based topological semantics for knowledge, how can we construct a topological semantics for belief that can also address the problem of understanding the relation between knowledge and belief ? To what extent do topological notions capture the intuitive meaning of the intended notion of belief ?

The proposed semantics for belief is derived from Stalnaker's logical framework in which belief is realized as a weakened form of knowledge [START_REF] Stalnaker | On logics of knowledge and belief[END_REF], which leads to a belief logic of extremally disconnected spaces. While this static setting provides a satisfactory answer for the above questions, the dynamic extension with public announcement modalities runs into problems due to the structural properties of extremally disconnected spaces. This leads to the search for a public announcement friendly logic of knowledge and belief. The second part of this chapter (based on Section 4.2 of Baltag et al., 2015a) is devoted to solving this issue, and the proposed solution consists in interpreting knowledge and belief on hereditarily extremally disconnected spaces.

While this semantics for belief works well for Stalnaker's strong notion of belief as subjective certainty, from a more general perspective, it can be seen somewhat restrictive for two reasons. It is based on rather exotic classes of topological spaces, and the corresponding logics do not comprise evidence in a real sense as there is no syntactic representation of it. This constitutes part of the motivation for the next chapter, leading to more general and fundamental questions addressed there.

Chapter 5 contains the main contribution of Part I. Resting on the assumption that an agent's rational belief is based on the available evidence, we try to unveil the concrete relationship between an agent's evidence, beliefs and knowledge, and study the evidence dynamics that the designed static account supports. This project is motivated by both philosophical and technical questions, as well as the aforementioned drawbacks of our own work in Chapter 4. To be more precise, we focus on the following questions, among others:

• How does a rational agent who is in possession of some possibly false, possibly mutually contradictory pieces of evidence put her evidence together in a consistent way, and form consistent beliefs?

• What are the necessary and sufficient conditions for a piece of evidence to constitute justification for one's beliefs? What properties should a piece of justification possess to entail (defeasible) knowledge?

• How does our formalization of the aforementioned notions help in understanding the discussions in formal epistemology regarding the link between justified belief and knowledge?

• What are the complete axiomatizations of the associated logics of justified belief, knowledge and evidence? Do they have the finite model property? Are they decidable?

The above questions also drive the approach of van Benthem and Pacuit (2011); van [START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF], which inspired our work considerably. Addressing the first question requires defining a "smart" way of aggregating the available evidence, based on finite and consistent subcollections of it. Topologically, this leads to a move from a topological subbasis to a basis. This generates a topological evidence structure that allows us to work with many epistemic modalities capturing different notions of evidence, belief, and knowledge interpreted using topological notions. The explicit use of topologies is one of the features of our setting which separates it from that of [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. Once the evidence aggregation method is set, we take a coherentist and holistic view on justification, and, roughly speaking, define it as a piece of evidence that is consistent with every available evidence. Moreover, in our setting, defeasible knowledge requires a true justification. We then use our topological setting to formalize stability and defeasibility theories of knowledge [START_REF] Lehrer | Knowledge: Undefeated justified true belief[END_REF][START_REF] Lehrer | Theory of Knowledge[END_REF][START_REF] Klein | A proposed definition of propositional knowledge[END_REF][START_REF] Klein | Certainty, a Refutation of Scepticism[END_REF], as well as relevant notions such as (non-)misleading evidence, clarifying some of the philosophical debates surrounding them. Our main technical results concern completeness, decidability and the finite model property for the associated logics.

PART II: From Public Announcements to Effort

In Part II of this dissertation, we no longer discuss belief, but rather focus on notions of knowledge as well as various types of information dynamics comprising learning new evidence. This part takes the subset space setting of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] as a starting point, and is centered around the notions of absolutely certain knowledge and knowability as "potential knowledge", as well as the connections between the abstract notion of epistemic effort encompassing any method of evidence acquisition and the well-studied dynamic attitudes such as public and arbitrary public announcements.

Chapter 6 provides the background for Part II and motivates the paradigm shift between the two parts of this thesis. In particular, it introduces the subset space semantics of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] and the topological public announcement logic of [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF].

Chapter 7 investigates extensions of the topological public announcement logic of [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] with the effort modality of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], as well as with a topological version of the arbitrary announcement modality of [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]. This work is of both conceptual and technical interest, aiming at clarifying the intuitively obvious, yet formally elusive connection between the dynamic notions effort and its seemingly special instances: public and arbitrary announcements. In particular, we address the following questions, and answer them positive:

• Can we clarify the meaning of the effort modality by linking it to the aforementioned dynamic modalities?

• Does treating the effort modality together with public announcements in a topological setting provide any technical advantages regarding the complete axiomatization of its associated logic, decidability and the finite model property?

We give a complete axiomatization for the dynamic topologic of effort and public announcements, which is epistemically more intuitive and, in a sense, simpler than the standard axioms of topologic [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF][START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF].

Our completeness proof is also more direct, making use of a standard canonical model construction. Moreover, we study the relations between this extension and other known logical formalisms, showing in particular that it is co-expressive with the simpler and older logic of interior and global modality [START_REF] Goranko | Using the universal modality: Gains and questions[END_REF][START_REF] Bennett | Modal logics for qualitative spatial reasoning[END_REF][START_REF] Shehtman | Everywhere" and "Here[END_REF][START_REF] Aiello | Spatial Reasoning: Theory and Practice[END_REF], which immediately provides an easy decidability proof both for the original topologic and for our extension.

Chapter 8 is concerned with the multi-agent generalization of the setting presented in the previous chapter. Modelling multi-agent epistemic systems in the style of subset space semantics is not a trivial task. We start the chapter by laying out some problems one encounters while working with multi-agent extensions of subset space logics. Our proposal for a multi-agent logic of knowledge and knowability and its further extensions with public and arbitrary announcements does not run into these problems and constitutes a novel semantics for the aforementioned notions. In addition, the multi-agent setting presented in this chapter is general enough not only to model fully introspective, i.e. S5-type knowledge, but also to interpret S4, S4.2 and S4.3-types of knowledge. This contrasts with and enriches the existing approaches to subset space semantics for knowledge, since the other approaches, to the best of our knowledge, can only work with S5 knowledge.

• Chapter 7 is based on:

van Ditmarsch, H., Knight, S., and Özgün, A. (2014). Arbitrary announcements on topological subset spaces. In Proceedings of the 12th European Conference on Multi-Agent Systems (EUMAS 2014), pp. 252-266.

Baltag, A., Özgün, A., and Vargas-Sandoval, A. L. (2017). Topo-Logic as dynamic epistemic logic. In Proceedings of the 6th International Workshop on Logic, Rationality and Interaction (LORI 2017). To appear.

• Chapter 8 is based on:

van Ditmarsch, H., Knight, S., and Özgün, A. (2015b). Announcements as effort on topological spaces. In Proceedings of the 15th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2015), pp. 283-297.

van Ditmarsch, H., Knight, S., and Özgün, A. (2015c). Announcements as effort on topological spaces-Extended version. Accepted for publication in Synthese.

Moreover, although the main results of the following papers are not included in this dissertation, the discussion concerning their conceptual content contributes to the present work to a great extent.

Chapter 2 Technical Preliminaries

In this chapter, we provide the technical preliminaries essential for the main body of the thesis. The original work presented in Parts I and II is based on two different, yet related topological frameworks. However, we occasionally resort to their connection with the relational semantics and the well-developed completeness results therein in order to obtain similar conclusions for the topological counterpart. We therefore primarily use three different formal settings in developing our original contribution: the standard relational semantics for the basic modal logic, the interior-based topological semantics à la [START_REF] Mckinsey | The algebra of topology[END_REF], and the subset space semantics introduced by [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]. While the relational setting serves only as a technical tool utilized in Parts I and II, the latter two topological settings have inspired the developments presented in these parts. We leave the background details of these topological settings for later chapters, and present here only the formal tools that are commonly used in both parts.

Outline

Our presentation in this chapter is two-fold. Section 2.1 briefly discusses the standard relational semantics for the language of basic modal logic, and the unimodal epistemic and doxastic systems that will be studied in later chapters. Section 2.2 introduces the purely topological preliminaries that will be used throughout the thesis. Additionally, this chapter also serves the purpose of fixing our notation for the main body of this dissertation. Readers who are familiar with the aforementioned topics should feel free to skip this chapter. order to provide the syntactic definitions of the modal logics we work with. Recall that, the weakest/smallest normal modal logic, denoted by K 2 , is defined as the least subset of L 2 containing all instances of propositional tautologies (CPL) and (K 2 ), and closed under the inference rules (MP) and (Nec 2 ). Then, following standard naming conventions, we define the following normal modal logics that are used to represent knowledge and belief of agents with different reasoning power, where L+(ϕ) denotes the smallest modal logic containing L and ϕ. In other words, L+ (ϕ) is the smallest set of formulas (in the corresponding language) that contains L and ϕ, and is closed under the inference rules of L. For example:

KT 2 = K 2 + (T 2 ) S4 2 = KT 2 + (4 2 ) S4.2 2 = S4 2 + (.2 2 ) S4.3 2 = S4 2 + (.3 2 ) S5 2 = S4 2 + (5 2 ) KD45 2 = K 2 + (D 2 ) + (4 2 ) + (5 2 )
Table 2.2: Some normal (epistemic/doxastic) modal logics While the systems S4 K , S4.2 K , S4.3 K and S5 K are considered to be logics for knowledge of different strength, much work on the formal representation of belief takes the logical principles of KD45 B for granted (see, e.g., Baltag et al. (2008);[START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF]; [START_REF] Baltag | A qualitative theory of dynamic interactive belief revision[END_REF]. [START_REF] Hintikka | Knowledge and Belief: An Introduction to the Logic of the Two Notions[END_REF] considered S4 K to be the logic of knowledge, S4.2 K is defended by [START_REF] Lenzen | Recent Work in Epistemic Logic[END_REF] and [START_REF] Stalnaker | On logics of knowledge and belief[END_REF]. [START_REF] Van Der Hoek | Systems for knowledge and beliefs[END_REF]; [START_REF] Baltag | A qualitative theory of dynamic interactive belief revision[END_REF] studied S4.3 K as epistemic logics for agents of stronger reasoning power. While the system S5 K is used in applications of logic in computer science [START_REF] Fagin | Reasoning About Knowledge[END_REF][START_REF] Meyer | Epistemic Logic for AI and Computer Science[END_REF][START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF], it is, as a logic of knowledge, often deemed to be too strong and rejected by philosophers (see, e.g., [START_REF] Hintikka | Knowledge and Belief: An Introduction to the Logic of the Two Notions[END_REF][START_REF] Voorbraak | As Far as I Know[END_REF], for arguments against S5 K ). In this thesis, we examine each of the above systems in different topological frameworks. In the following, we first present their standard relational semantics.

Before moving on to the standard relational semantics for the basic modal logic, we briefly recall the following standard terminology for Hilbert-style axiom systems, and set some notation. Given a logic L defined by a (finitary) 1 Hilbertstyle axiom system, an L-derivation/proof is a finite sequence of formulas such that each element of the sequence is either an axiom of L, or obtained from the previous formulas in the sequence by one of the inference rules. A formula ϕ is called L-provable, or, equivalently, a theorem of L, if it is the last formula of some L-proof. In this case, we write L ϕ (or, equivalently, ϕ ∈ L). For any set of formulas Γ and any formula ϕ, we write Γ L ϕ if there exist finitely many formulas ϕ 1 , . . . , ϕ n ∈ Γ such that L ϕ 1 ∧ • • • ∧ ϕ n → ϕ. We say that Γ is Lconsistent if Γ L ⊥, and L-inconsistent otherwise. A formula ϕ is consistent with Γ if Γ∪{ϕ} is L-consistent (or, equivalently, if Γ L ¬ϕ). Finally, a set of formulas Γ is maximally consistent if it is L-consistent and any set of formulas properly containing Γ is L-inconsistent, i.e. Γ cannot be extended to another L-consistent set. We drop mention of the logic L when it is clear from the context.

Definition.

[Relational Frame/Model] A relational frame F = (X, R) is a pair where X is a nonempty set and R ⊆ X × X. A relational model M = (X, R, V ) is a tuple where (X, R) is a relational frame and V : prop → P(X) is a valuation map.

Relational frames/models are also called Kripke frames/models. Throughout this thesis, we use these names interchangeably. We say M = (X, R, V ) is a relational model based on the frame F = (X, R). While elements of X are called states or possible worlds, one of which represents the actual state of affairs, called the actual or real state, R is known as the accessibility or indistinguishability relation. We let R(x) = {y ∈ X | xRy}. The set R(x) represents the set of states that the agent considers possible at x. This way, roughly speaking, a relational structure models the agent's uncertainty about the actual situation via the truth conditions given in the following definition.

2.1.3. Definition. [Relational Semantics for L 2 ] Given a relational model M = (X, R, V ) and a state x ∈ X, truth of a formula in the language L 2 is defined recursively as follows:

M, x |= p iff x ∈ V (p), where p ∈ prop M, x |= ¬ϕ iff not M, x |= ϕ M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ M, x |= 2ϕ
iff for all y ∈ X, if xRy then M, y |= ϕ.

It follows from the above definition that M, x |= 3ϕ iff there is y ∈ X such that xRy and M, y |= ϕ.

We adopt the standard notational conventions and abbreviations (see e.g., Blackburn et al., 2001, Chapter 1.3). If M does not make ϕ true at x, we write M, x |= ϕ. In this case, we say that ϕ is false at x in M. When the corresponding model is clear from the context, we write x |= ϕ for M, x |= ϕ.

We call a formula ϕ valid in a relational model M = (X, R, V ), denoted by M |= ϕ, if M, x |= ϕ for all x ∈ X, and it is valid in a relational frame F = (X, R), denoted by F |= ϕ, if M |= ϕ for every relational model based on F. Moreover, we say ϕ is valid in a class K of relational frames, denoted by K |= ϕ, if F |= ϕ for every member of this class, and it is valid, denoted by |= ϕ, if it is valid in the class of all frames. These definitions can easily be extended to sets of formulas in the following way: a set Γ ⊆ L 2 is valid in a relational frame F iff F |= ϕ for all ϕ ∈ Γ. We define ϕ M = {x ∈ X | M, x |= ϕ} and call ϕ M the truth set, or equivalently, extension of ϕ in M. In particular, we write x ∈ ϕ M for M, x |= ϕ. We omit the superscript M when the model is clear from the context. The crucial concepts of soundness and completeness that link the syntax and the semantics are defined standardly (see, e.g., Blackburn et al., 2001, Chapter 4.1).

We conclude the section by listing the relational soundness and completeness results for the important epistemic and doxastic logics defined in Table 2.2. To do so, we first list in Table 2.3 some important frame conditions, and then define some useful order theoretic notions that will also be used in later chapters. Following the traditional conventions in order theory, we also call a reflexive and transitive relational frame (X, R) a preordered set; and a reflexive, transitive and antisymmetric frame a partially ordered set, or, in short, a poset. The following order theoretic notions will be useful in later chapters.

Reflexivity

2.1.4. Definition. [Up/Down-set,Upward/Downward-closure] Given a preordered set (X, R) and a subset A ⊆ X,

• A is called an upward-closed set (or, in short, an up-set) of (X, R) if for each x, y ∈ X, xRy and x ∈ A imply y ∈ A;

• A is called a downward-closed set (or, in short, a down-set) of (X, R) if for each x, y ∈ X, yRx and x ∈ A imply y ∈ A;

• the upward-closure of A, denoted by ↑A, is the smallest up-set of (X, R) that includes A. In other words, ↑A = {y ∈ X | ∃x ∈ A with xRy};

• the downward-closure of A, denoted by ↓A, is the smallest down-set of (X, R) that includes A. In other words, ↓A = {x ∈ X | ∃y ∈ A with xRy}.

For every element x ∈ X, we simply write ↑x and ↓x for the upward and downward-closure of the singleton {x}, respectively.

We can now state some of the well-known relational soundness and completeness results. For a more detailed discussion, we refer to [START_REF] Chagrov | Modal Logic, volume 35 of Oxford logic guides[END_REF][START_REF] Blackburn | Modal Logic[END_REF].

2.1.5. Theorem (Relational (Kripke) Completeness).

• S4 2 is sound and complete with respect to the class of preordered sets;

• S4.2 2 is sound and complete with respect to the class of directed preordered sets;

• S4.3 2 is sound and complete with respect to the class of total preordered sets;

• S5 2 is sound and complete with respect to the class of frames with equivalence relations;

• KD45 2 is sound and complete with respect to the class of serial, transitive and Euclidean frames.

Following Theorem 2.1.5, we sometimes refer to a class of relational frames/ models by the name of its corresponding logic. For example, a preordered set is also called an S4-frame. Similarly, a relational model based on a serial, transitive and Euclidean frame is also called a KD45-model, etc.

Background on Topology

In this section, we introduce the topological concepts that will be used throughout this thesis. We refer to [START_REF] Dugundji | Topology. Allyn and Bacon Series in Advanced Mathematics[END_REF][START_REF] Engelking | General topology[END_REF] for a thorough introduction to topology.

2.2.1. Definition. [Topological Space] A topological space is a pair (X, τ ), where X is a nonempty set and τ is a family of subsets of X such that • X, ∅ ∈ τ, and

• τ is closed under finite intersections and arbitrary unions.

The set X is a space; the family τ is called a topology on X. The elements of τ are called open sets (or opens) in the space. If for some x ∈ X and an open U ⊆ X we have x ∈ U , we say that U is an open neighborhood of x. A set C ⊆ X is called a closed set if it is the complement of an open set, i.e., it is of the form X\U for some U ∈ τ . We let τ = {X\U | U ∈ τ } denote the family of all closed sets of (X, τ ). Moreover a set A ⊆ X is called clopen if it is both closed and open.

A point x is called an interior point of a set A ⊆ X if there is an open neighbourhood U of x such that U ⊆ A. The set of all interior points of A is called the interior of A and is denoted by Int(A). Then, for any A ⊆ X, Int(A) is an open set and is indeed the largest open subset of A, that is

Int(A) = {U ∈ τ | U ⊆ A}.
Dually, for any x ∈ X, x belongs to the closure of A, denoted by Cl (A), if and only if U ∩ A = ∅ for each open neighborhood U of x. It is not hard to see that Cl (A) is the smallest closed set containing A, that is

Cl (A) = {C ∈ τ | A ⊆ C},
and that Cl (A) = X\Int(X\A) for all A ⊆ X. It is well known that the interior Int and the closure Cl operators of a topological space (X, τ ) satisfy the following properties (the so-called Kuratowski axioms) for any A, B ⊆ X (see, e.g., Engelking, 1989, pp. 14-15) 

2 : (I1) Int(X) = X (C1) Cl (∅) = ∅ (I2) Int(A) ⊆ A (C2) A ⊆ Cl (A) (I3) Int(A ∩ B) = Int(A) ∩ Int(B) (C3) Cl (A ∪ B) = Cl (A) ∪ Cl (B) (I4) Int(Int(A)) = Int(A) (C4) Cl (Cl (A)) = Cl (A)
A set A ⊆ X is called dense in X if Cl (A) = X and it is called nowhere dense if Int(Cl (A)) = ∅. Moreover, the boundary of a set A ⊆ X, denoted by Bd (A), is defined as Bd (A) = Cl (A)\Int(A).

A point x ∈ X is called a limit point (or accumulation point) of a set A ⊆ X if for each open neighborhood U of x, we have A ∩ (U \{x}) = ∅. The set of all limit points of A is called the derived set of A and is denoted by d(A). For any A ⊆ X, we also let t(A) = X\d(X\A). We call t(A) the co-derived set of A. Moreover, a set

A ⊆ X is called dense-in-itself if A ⊆ d(A). A space X is called dense-in-itself if X = d(X).

Definition. [Topological Basis]

A family B ⊆ τ is called a basis for a topological space (X, τ ) if every non-empty open subset of X can be written as a union of elements of B.

We call the elements of B basic opens. We can give an equivalent definition of an interior point by referring only to a basis B for a topological space (X, τ ): for any A ⊆ X, x ∈ Int(A) if and only if there is an open set U ∈ B such that x ∈ U and U ⊆ A.

Given any family Σ = {A α | α ∈ I} of subsets of X, there exists a unique, smallest topology τ (Σ) with Σ ⊆ τ (Σ) (Dugundji, 1965, Theorem 3.1, page 65). The family τ (Σ) consists of ∅, X, all finite intersections of the A α , and all arbitrary unions of these finite intersections. Σ is called a subbasis for τ (Σ), and τ (Σ) is said to be generated by Σ. The set of finite intersections of members of Σ forms a basis for τ (Σ).

Definition.

[Subspace] Given a topological space (X, τ ) and a nonempty subset P ⊆ X, the topological space (P, τ P ) is called a subspace of (X, τ ) (induced by P ) where τ P = {U ∩ P | U ∈ τ }.

The closure Cl P , the interior Int P and the derived set d P operators of the subspace (P, τ P ) can be defined in terms of the closure and interior operators of (X, τ ) as, for all A ⊆ P , Cl P (A) = Cl (A) ∩ P Int P (A) = Int((X\P ) ∪ A) ∩ P d P (A) = d(A) ∩ P.

Definition. [Hereditary Property]

A property of a topological space is called hereditary if each subspace of the space possesses this property.

2.2.5. Lemma. For any two topological space (X, τ ) and (X, τ ), if τ ⊆ τ then Int τ (A) ⊆ Int τ (A) for all A ⊆ X.

We here end the presentation of the background material for this dissertation. In the next chapter, we introduce the interior-based topological semantics for the basic modal language and motivate the use of topological models in epistemic logic.

Part I From Interior Semantics to

Evidence Models Chapter 3 The Interior Semantics

In this chapter, we provide the formal background for the interior-based topological semantics for the basic modal logic that originates from the work of [START_REF] Mckinsey | A solution of the decision problem for the lewis systems S2 and S4, with an application to topology[END_REF], and [START_REF] Mckinsey | The algebra of topology[END_REF]. In this semantics the modal operator 2 is interpreted on topological spaces as the interior operator. As briefly discussed in Chapter 1, among other reasons, the fact that the epistemic system S4 is the logic of all topological spaces, and the interpretation of open sets as 'observable properties' or 'pieces of evidence' put the interior-based topological semantics on the radar of epistemic logicians.

In the following, we briefly introduce the so-called topological interior semantics, focusing particularly on its epistemic insights, and explain how and why it constitutes a satisfactory interpretation for (evidence-based) knowledge, and, consequently, why-in certain contexts-it forms a richer semantics than the relational semantics. Our contribution in Part I is inspired by and developed on the basis of this setting. In later chapters, we extend and enrich the interior semantics in order to formalize different notions of (evidence-based) knowledge and justified belief, as well as various notions of evidence possession.

Outline

Section 3.1 is a technical section introducing the interior semantics together with its connection to the relational semantics (Section 3.1.2). In Section 3.1.3, we list the general topological soundness and completeness results for the systems S4, S4.2 and S4.3 that will be used in later chapters. Section 3.2 then explains the motivation behind the use of the interior operator as a knowledge modality, where the main focus will be on the underlying evidence-based interpretation. 19

Background on the Interior Semantics

This section gives an overview of the essential technical preliminaries of the interior semantics. The presentation of this section follows (van Benthem and Bezhanishvili, 2007, Section 2). The reader who is familiar with the source and topic should feel free to continue with Section 3.2.

Syntax and Semantics

We work with the basic epistemic language L K as given in Definition 2.1.1. Since we examine the interior semantics in an epistemic context, we prefer to use the modality Kϕ (instead of 2ϕ) that is read as "the agent knows ϕ (is true)". The dual modality K for epistemic possibility is defined as Kϕ := ¬K¬ϕ.

3.1.1. Definition. [Topological Model] A topological model (or, in short, a topo- model) X = (X, τ, V
) is a triple, where (X, τ ) is a topological space and V : prop → P(X) is a valuation function.

Definition.

[Interior Semantics for L K ] Given a topo-model X =(X, τ, V ) and a state x ∈ X, truth of a formula in the langauge L K is defined recursively as follows:

X , x |= p iff x ∈ V (p) X , x |= ¬ϕ iff not X , x |= ϕ X , x |= ϕ ∧ ψ iff X , x |= ϕ and X , x |= ψ X , x |= Kϕ iff (∃U ∈ τ )(x ∈ U and ∀y ∈ U, X , y |= ϕ)
It is useful to note the derived semantics for Kϕ:

X , x |= Kϕ iff (∀U ∈ τ )(x ∈ U implies ∃y ∈ U, M, y |= ϕ)
Truth and validity of a formula ϕ of L K are defined in the same way as for the relational semantics. We here apply similar notational conventions as we have set in Section 2.1. We let [ [ϕ]] X = {x ∈ X | X , x |= ϕ} denote the truth set, or equivalently, extension of a formula ϕ in topo-model X . We emphasize the difference between ||ϕ|| M and [ [ϕ]] X : while the former refers to the truth set in a relational model under the standard relational semantics (Definition 2.1.3), the latter is defined with respect to topo-models and the interior semantics (Definition 3.1.2). We again omit the superscript for the model when it is clear from the context.

The semantic clauses for K and K give us exactly the interior and the closure operators of the corresponding model. In other words, according to the interior semantics, we have

[[Kϕ]] = Int([[ϕ]]) [[ Kϕ]] = Cl ([[ϕ]]).

Connection between relational and topological models

As is well known, there is a tight link between the relational semantics and the interior semantics at the level of reflexive and transitive frames: every reflexive and transitive Kripke frame corresponds to an Alexandroff space. The class of reflexive and transitive frames therefore forms a subclass of all topological spaces. This connection does not only help us to see how the interior semantics and the relational semantics relate to each other and how the former extends the latter, but it also provides a method to prove topological completeness results by using the already established results for the relational counterpart.

3.1.3. Definition. [Alexandroff space] A topological space (X, τ ) is an Alexandroff space if τ is closed under arbitrary intersections, i.e., A ∈ τ for any A ⊆ τ.

A topo-model X = (X, τ, V ) is called an Alexandroff model if (X, τ
) is an Alexandroff space. A very important feature of an Alexandroff space (X, τ ) is that every point x ∈ X has a smallest open neighbourhood. Given a reflexive and transitive Kripke frame (X, R), we can construct an Alexandroff space (X, τ R ) by defining τ R to be the set of all up-sets of (X, R). The up-set R(x) = ↑x = {y ∈ X | xRy} forms the smallest open neighborhood containing the point x. It is then not hard to see that the set of all down-sets of (X, R) coincides with the set of all closed sets in (X, τ R ), and that for any A ⊆ X, we have Cl τ R (A) = ↓A, where Cl τ R denotes the closure operator of (X, τ R ). Conversely, for every topological space (X, τ ), we define a specialization preorder τ on X by

x τ y iff x ∈ Cl ({y}) iff (∀U ∈ τ )(x ∈ U implies y ∈ U ).
(X, τ ) is therefore a reflexive and transitive Kripke frame, i.e., a preordered set. Moreover, we have that R = τ R , and that τ = τ τ if and only if (X, τ ) is Alexandroff (see, e.g., [START_REF] Van Benthem | Modal logics of space[END_REF]. Hence, there is a natural one-to-one correspondence between reflexive and transitive Kripke models and Alexandroff models. In particular, for any reflexive and transitive Kripke model M = (X, R, V ), we set B(M) = (X, τ R , V ), and for any Alexandroff model X = (X, τ, V ), we can form a reflexive and transitive Kripke model A(X ) = (X, τ , V ). Moreover, any two models that correspond to each other in the above mentioned way make the same formulas of L K true at the same states, as shown in Proposition 3.1.4. 3.1.4. Proposition. For all ϕ ∈ L K , 1. for any reflexive and transitive Kripke model M = (X, R, V ) and x ∈ X,

M, x |= ϕ iff B(M), x |= ϕ; 2. for any Alexandroff model X = (X, τ, V ) and x ∈ X, X , x |= ϕ iff A(X ), x |= ϕ.
Therefore, reflexive and transitive Kripke models and Alexandroff models are just different representations of each other with respect to the language L K . In particular, the modal equivalence stated in constitutes the key step that allows us to use the relational completeness results to prove completeness with respect to the interior semantics. Having explained the connection between reflexive-transitive Kripke models and Alexandroff models, we can now state the topological completeness results for S4 K and its two normal extensions S4.2 K and S4.3 K that are of interests in later chapters. In fact, Proposition 3.1.4-( 1) entails the following more general result regarding all Kripke complete normal extensions of S4 K .

3. 1.5. Proposition (van Benthem and Bezhanishvili, 2007). Every normal extension of S4 K (over the language L K ) that is complete with respect to the standard relational semantics is also complete with respect to the interior semantics.

Proof:

Let L K be a normal extension of S4 K that is complete with respect to the relational semantics and ϕ ∈ L K such that ϕ ∈ L K . Then, by relational completeness of L K , there exists a relational model M = (X, R, V ) and x ∈ X such that M, x |= ϕ. Since L K extends the system S4 K , which is complete with respect to reflexive and transitive Kripke models, R can be assumed to be at least reflexive and transitive. Then, by , we obtain B(M), x |= ϕ. 2

We can therefore prove completeness of the Kripke complete extensions of S4 K with respect to the interior semantics via their relational completeness. What makes the interior semantics more general than Kripke semantics is tied to soundness. For example, S4 K is not only sound with respect to Alexandroff spaces, but also with respect to all topological spaces. 3.1.6. Theorem (McKinsey and Tarski, 1944). S4 K is sound and complete with respect to the class of all topological spaces under the interior semantics.

Similar results have also been proven for S4.2 K and S4.3 K for the following restricted classes of topological spaces.

Definition. [Extremally Disconnected Space

] A topological space (X, τ ) is called extremally disconnected if the closure of each open subset of X is open.
For example, Alexandroff spaces constructed from directed preorders, i.e., from S4.2 K -frames, are extremally disconnected. To elaborate, it is routine to verify that, given a directed preordered set (X, R) and an up-set U of (X, R), the downward-closure ↓U of the set U is still an up-set. Recall that Cl τ R (U ) = ↓U , where (X, τ R ) is the corresponding Alexandroff space and Cl τ R is its closure operator. Therefore, since the set of all up-sets of (X, R) forms the corresponding Alexandroff topology τ R , we conclude that (X, τ R ) is extremally disconnected. This, in fact, establishes the topological completeness result for S4.2 K via Proposition 3.1.5. It is also well known that topological spaces that are Stone-dual to complete Boolean algebras, e.g., the Stone-Čech compactification β(N) of the set of natural numbers with a discrete topology, are extremally disconnected [START_REF] Sikorski | Boolean Algebras[END_REF].

3.1.8. Definition. [Hereditarily Extremally Disconnected Space] A topological space (X, τ ) is called hereditarily extremally disconnected (h.e.d.) if every subspace of (X, τ ) is extremally disconnected.

Alexandroff spaces corresponding to total preorders, i.e., corresponding to S4.3 K -frames, are hereditarily extremally disconnected. To see this, observe that for every nonempty Y ⊆ X, the subspace (Y,

(τ R ) Y ) of (X, τ R ) is in fact the Alexandroff space constructed from the subframe (Y, R ∩ (Y × Y )) of (X, R).
Moreover, every subframe of a total preorder (X, R) is still a total preorder, thus, is also a directed preorder. Therefore, the correspondence between total preorders and h.e.d spaces follows from the fact that Alexandroff spaces constructed from directed preorders are extremally disconnected. Another interesting and non-Alexandroff example of an hereditarily extremally disconnected space is the topological space (N, τ ) where N is the set of natural numbers and τ = {∅, all cofinite subsets of N}. In this space, the set of all finite subsets of N together with ∅ and X completely describes the set of closed subsets with respect to (N, τ ). It is not hard to see that for any U ∈ τ , Cl (U ) = N and Int(C) = ∅ for any closed C with C = X. Moreover, every countable Hausdorff extremally disconnected space is hereditarily extremally disconnected [START_REF] Blaszczyk | Spaces which are hereditarily extremely disconnected[END_REF].

For more examples of hereditarily extremally disconnected spaces, we refer to [START_REF] Blaszczyk | Spaces which are hereditarily extremely disconnected[END_REF].

3.1.9. Theorem [START_REF] Gabelaia | Modal definability in topology[END_REF]. S4.2 K is sound and complete with respect to the class of extremally disconnected topological spaces under the interior semantics.

The Motivation behind Knowledge as Interior

Having presented the interior semantics, we can now elaborate on its epistemic significance that has inspired our work in this dissertation, in particular, the content of Chapter 4 and Chapter 5.

We would first like to note that the conception of knowledge as interior is not the only type of knowledge we study in this thesis. We even question whether knowledge as interior is the "only" type of knowledge that a topological semantics can account for and answer in the negative (see . However, the aforementioned semantics can be considered as the most primitive, in a sense as the most direct way of interpreting an epistemic modality in this setting. We therefore argue that, even in this very basic form, the interior semantics works at least as well as the standard relational semantics for knowledge, and, additionally, it extends the relational semantics while admitting an evidential interpretation of knowledge.

The interior semantics is naturally epistemic and extends the relational semantics. The initial reason as to why the topological interior operator can be considered as knowledge is inherent to the properties of this operator. As noted in Section 2.2, the Kuratowski axioms (I1)-(I4) correspond exactly to the axioms of the system S4 K , when K is interpreted as the interior modality (see Table 3.1 for the one-to-one correspondence). Therefore, elementary topological

S4 K axioms Kuratowski axioms (K K ) K(ϕ ∧ ψ) ↔ (Kϕ ∧ Kψ) Int(A ∩ B) = Int(A) ∩ Int(B) (T K ) Kϕ → ϕ Int(A) ⊆ A (4 K ) Kϕ → KKϕ Int(A) ⊆ Int(Int(A)) (Nec K ) from ϕ, infer Kϕ Int(X) = X Table 3.1: S4 K vs. Kuratowski axioms
operators such as the interior operator, or, dually, the closure operator produces the epistemic logic S4 K with no need for additional constraints (also see Theorem 3.1.6). In other words, in its most general form, topologically modelled knowledge is Factive and Positively Introspective, however, it does not necessarily possess stronger properties. On the other hand, this in no way limits the usage of interior semantics for stronger epistemic systems. In accordance with the case for the relational semantics, we can restrict the class of spaces we work with and interpret stronger epistemic logics such as S4.2 K , S4.3 K (see Theorems 3.1.9 and 3.1.10) and S5 K in a similar manner (see, e.g., van Benthem and Bezhanishvili, 2007, p. 253). To that end, topological spaces provide sufficiently flexible structures to study knowledge of different strength. They are moreover naturally epistemic since the most general class of spaces, namely the class of all topological spaces, constitutes the class of models of arguably the weakest, yet philosophically the most accepted normal system S4 K . Moreover, as explained in Section 3.1.2, the relational models for the logic S4 K , and for its normal extensions, correspond to the subclass of Alexandroff models (see Proposition 3.1.4). The interior semantics therefore generalizes the standard relational semantics for knowledge.

One may however argue that the above reasons are more of a technical nature showing that the interior semantics works as well as the relational semantics, therefore motivate "why we could use topological spaces" rather than "why we should use topological spaces" to interpret knowledge as opposed to using relational semantics. Certainly the most important argument in favour of the conception of knowledge as the interior operator is of a more 'semantic' nature: the interior semantics provides a deeper insight into the evidence-based interpretation of knowledge.

Evidence as open sets. The idea of treating 'open sets as pieces of evidence' is adopted from the topological semantics for intuitionistic logic, dating back to the 1930s (see, e.g., [START_REF] Troelstra | Constructivism in mathematics : an introduction[END_REF]. In a topological-epistemological framework, typically, the elements of a given open basis are interpreted as observable evidence, whereas the open sets of the topology are interpreted as properties that can be verified based on the observable evidence. In fact, the connection between evidence and open sets comes to exist at the most elementary level, namely at the level of a subbasis. We can think of a subbasis as a collection of observable evidence that is directly obtained by an agent via, e.g., testimony, measurement, approximation, computation or experiment. The family of directly observable pieces of evidence therefore naturally forms an open topological basis: closure under finite intersection captures an agent's ability to put finitely many pieces into a single piece, i.e., her ability to derive more refined evidence from direct ones by combining finitely many of them together. Therefore, a topological space does not only account for the plain conception of evidence as open sets, but it is rich enough to differentiate various notions of evidence possession. The abovementioned correspondence between evidence and open sets constitutes the main motivation behind the topological frameworks developed in this dissertation and we will elaborate on different views and interpretations of topological evidence in later chapters, starting with Chapter 5.

On the other hand, the basic epistemic language L K interpreted by the interior semantics is clearly not expressive enough to distinguish different types of open sets, e.g., it cannot distinguish a basic open from an arbitrary open, simply because the only topological modality K is interpreted as an existential claim of an open neighbourhood of the actual state that entails the known proposition:

x ∈ KP iff x ∈ Int(P ) (3.1) iff (∃U ∈ τ )(x ∈ U and U ⊆ P ) (3.2) iff (∃U ∈ B τ )(x ∈ U and U ⊆ P ) (3.3)
where B τ is a basis for τ . Therefore, in its current form, the interior semantics does not form a sufficiently strong setting to account for (various type of) evidence possession alone. However, even based on this basic shape, the notion of knowledge as the interior operator yields an evidential interpretation at a purely semantic level. More precisely, from an extensional point of view (3.3) means that the actual world x is in the interior of P iff there exists a sound piece of evidence U that supports P . That is, according to the interior semantics, the agent knows P at x iff she has a sound/correct piece of evidence supporting P . Moreover, open sets will then correspond to properties that are in principle verifiable by the agent: whenever they are true, they are supported by a sound piece of evidence, therefore, can be known. Dually, we have

x ∈ Cl (P ) iff (∃U ∈ τ )(x ∈ U and U ⊆ X\P ) (3.4)
meaning that closed sets correspond to falsifiable properties: whenever they are false, they are falsified by a sound piece of evidence. These ideas have also been used and developed in [START_REF] Vickers | Topology via logic[END_REF][START_REF] Kelly | The Logic of Reliable Inquiry[END_REF] with connections to epistemology, logic and learning theory. The interior-based semantics for knowledge has been extended to multiple agents [START_REF] Van Benthem | Modal logics for products of topologies[END_REF], to common knowledge [START_REF] Barwise | Three views of common knowledge[END_REF][START_REF] Van Benthem | The geometry of knowledge[END_REF] to logics of learning and observational effort [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF][START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF][START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF], to topological versions of dynamic-epistemic logic [START_REF] Zvesper | le formalisme topologique avec les annonces publiques de Bjorndahl présentées dans le chapitre 6. Alors que la section 7.1.2 présente plusieurs résultats d'expressivité, la section 7.1.3 se concentre sur la preuve de complétude de l'axiomatisation pour la TopoLogique Dynamique que nous proposons[END_REF] (see [START_REF] Aiello | Handbook of Spatial Logics[END_REF], for a comprehensive overview on the field). Belief on topological spaces, rather surprisingly, has not been investigated and developed as much as knowledge, especially in connection with topological knowledge.

Belief on Topological Spaces?

As explained in Section 3.2, as far as an evidential interpretation of knowledge is concerned, the interior semantics improves the standard relational semantics, 1 Extensional here means any semantic formalism that assigns the same meaning to sentences having the same extension.

most importantly, for the reason that evidential justification for knowing something is embedded in the semantics. It then seems natural to ask whether a topological semantics can also account for notions of (evidentially) justified belief. Answering this question constitutes one of the main goals of Part I of this dissertation.

One of the crucial properties that distinguishes knowledge from belief is its veracity (formalised by the axiom (T K )). However, no matter how idealized and rational the agent is, it must be possible for her to believe false propositions, yet she is expected to hold consistent beliefs (formalized by the axiom (D B )). To the best of our knowledge, the first worked out topological semantics for belief is proposed by [START_REF] Steinsvold | Topological models of belief logics[END_REF] in terms of the co-derived set operator. According to the co-derived set interpretation of belief,

x ∈ BP iff (∃U ∈ τ )(x ∈ U and U \{x} ⊆ P ), (3.5) 
i.e., x ∈ BP iff x ∈ t(P ). We here note that this topological semantics interpreting the modal operator 2 as the co-derived set operator, or dually, 3 as the derived set operator was also pioneered by [START_REF] Mckinsey | The algebra of topology[END_REF], and later extensively developed by the Georgian logic school led and inspired by Esakia, and their collaborators (see, e.g., [START_REF] Esakia | Weak transitivity-restitution[END_REF][START_REF] Esakia | Intuitionistic logic and modality via topology[END_REF][START_REF] Bezhanishvili | Some results on modal axiomatization and definability for topological spaces[END_REF][START_REF] Bezhanishvili | Spectral and T 0 -spaces in d-semantics[END_REF][START_REF] Beklemishev | Topological Interpretations of Provability Logic[END_REF][START_REF] Kudinov | Derivational Modal Logics with the Difference Modality[END_REF]. [START_REF] Steinsvold | Topological models of belief logics[END_REF] was the first to propose to use this semantics to interpret belief, and proved soundness and completeness for the standard belief system KD45 B . This account still requires having a truthful piece of evidence for the believed proposition, however, the proposition itself does not have to be true. Therefore, it is guaranteed that the agent may hold false beliefs. However, as also discussed in [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]Özgün, 2013), and briefly recapped here, this semantics further guarantees that in any topo-model and any state in this model, there is at least one false belief, that is, the agent always believes the false proposition X\{x} at the actual state x. This is the case because for any topological space (X, τ ) and x ∈ X, we have x ∈ d({x}), i.e., x ∈ t(X\{x}), therefore, the clause (3.5) entails that x ∈ B(X\{x}) always holds. This is an undesirable and disadvantageous property, especially if we also want to study dynamics such as belief revision, updates or learning. Always believing X\{x} prevents the agent to ever learning the actual state unless she believes everything. Formally speaking, x ∈ B({x}) iff the singleton {x} is an open, and in this case, the agent believes everything at x.

In order to avoid these downsides and obtain KD45 B , we have to work with the so-call DSO-spaces, as shown by [START_REF] Steinsvold | Topological models of belief logics[END_REF]. A DSO-space is defined to be a dense-in-itself space (i.e., a space with no singleton opens) in which every derived set d(A) is open. Moreover, in a setting where knowledge as the interior and belief as the coderived set operator are studied together, we obtain the equality

KP = P ∩ BP,
stating that knowledge is true belief. Therefore, this semantics yields a formalization of knowledge and belief that is subject to well-known Gettier counterexamples [START_REF] Gettier | Is justified true belief knowledge?[END_REF]. 2In the next chapter, we present another topological semantics proposed by [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF] for belief, in particular, for Stalnaker's notion of belief as subjective certainty [START_REF] Stalnaker | On logics of knowledge and belief[END_REF], in terms of the closure of the interior operator on extremally disconnected spaces. [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF] have argued that this semantics is better behaved, especially when considered together with the notion of knowledge as the interior operator. They moreover provided a soundness and completeness result for the belief system KD45 B with respect to the class of extremally disconnected spaces, which extends the class of DSO-spaces. However, this setting still encounters problems when extended for public announcements. We then propose a solution consisting in interpreting belief in a similar way based on hereditarily extremally disconnected spaces, and axiomatize the belief logic of hereditarily extremally disconnected spaces.

Chapter 4

A topological theory of "justified" belief: an initial attempt Understanding the relation between knowledge and belief is an issue of central importance in epistemology. Especially after [START_REF] Gettier | Is justified true belief knowledge?[END_REF] shattered the traditional account of knowledge as justified true belief, many epistemologists have attempted to strengthen the latter to attain a satisfactory notion of the former. According to this approach, one starts with a weak notion of belief (which is at least justified and true) and tries to reach knowledge by making the chosen notion of belief stronger in such a way that the defined notion of knowledge would no longer be subject to Gettier-type counterexamples [START_REF] Gettier | Is justified true belief knowledge?[END_REF].1 More recently, there has also been some interest in reversing this project-deriving belief from knowledge-or, at least, putting "knowledge first" [START_REF] Williamson | Knowledge and its Limits[END_REF]. In this spirit, [START_REF] Stalnaker | On logics of knowledge and belief[END_REF] has proposed a formal framework in which belief is realized as a weakened form of knowledge. More precisely, beginning with a logical system in which both belief and knowledge are represented as primitives, Stalnaker formalizes some natural-seeming relationships between the two, and proves on the basis of these relationships that belief can be defined from knowledge. To this end, Stalnaker's syntactic formalization seems to be analogous to the aforementioned status quo of the interior semantics for knowledge and of a topological interpretation for belief, where the interpretation of knowledge is given and a good semantics for belief is to be unveiled. [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF] and Özgün (2013), starting from Stalnaker's formalism, proposed to interpret belief, in particular Stalnaker's belief, as subjective certainty, in terms of the closure of the interior operator on extremally disconnected spaces (Section 4.2 explains the reason for restriction to extremally disconnected Chapter 4. A topological theory of "justified" belief: an initial attempt spaces). This static setting, developed based on extremally disconnected spaces, however could not be extended with updates for public announcements due to some structural properties of the extremally disconnected spaces (see Section 4.2.2). One way of dealing with this problem based on all topological spaces, leading to weakening of the underlying knowledge and belief logics, has been presented in (Baltag et al., 2015b). In this chapter, we present a solution approaching the issue from the opposite direction, namely, we propose to restrict the class of spaces we work with to the class of hereditarily extremally disconnected spaces.

Outline

Section 4.1 presents Stalnaker's combined system of knowledge and belief, and lists the important aspects of his work that inspired ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]. In Section 4.2, we review the topological belief semantics of ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF], and, Section 4.2.2 recalls why updates do not work on extremally disconnected spaces. In Section 4.3, we introduce the material that goes beyond ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF], and model belief, conditional beliefs and public announcements on hereditarily extremally disconnected spaces and present several completeness results regarding KD45 B and its extensions with conditional beliefs and public announcements. This chapter is based on (Baltag et al., 2015a). [START_REF] Stalnaker | On logics of knowledge and belief[END_REF] focuses on the properties of knowledge, belief and the relation between the two. He approaches the problem of understanding the precise connection between knowledge and belief from an unusual perspective by following a "knowledge-first" approach. That is, unlike most proposals in the formal epistemology literature, he starts with a chosen notion of knowledge and weakens it to obtain belief. He bases his analysis on a strong conception of belief as "subjective certainty": from the point of the agent in question, her belief is subjectively indistinguishable from her knowledge.

Belief as subjective certainty

Stalnaker ( 2006) works with the bimodal language L KB given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ,
augmenting the logic S4 K with the additional axioms schemes presented in the key property of belief as subjective certainty, the notion of belief Stalnaker seeks to capture. In his setting, the agent fully believes ϕ iff she believes that she knows it. 3 He therefore studies a strong notion of belief that is very close to knowledge.

From these first principles formalizing the interplay between knowledge and belief, [START_REF] Stalnaker | On logics of knowledge and belief[END_REF] extracts the properties regarding the unimodal fragments for knowledge and for belief, as well as a definition of belief in terms of knowledge. More precisely, he shows that • Stal derives S4.2 K as the pure logic of knowledge (although only S4 K was initially assumed);

• Stal derives KD45 B as the pure logic of belief; and

• it proves the equivalence Bϕ ↔ KKϕ.

He therefore argues-based on the first principles of the system Stal-that the "true" logic of knowledge is S4.2 K , that the "true" logic of belief is KD45 B , and that belief is definable in terms of knowledge as the epistemic possibility of knowledge. As a conclusion of the last item, Stal constitutes a formalization of knowledge and belief admitting conceptual priority of belief over knowledge. Moreover, given the interior semantics for knowledge, the equation Bϕ ↔ KKϕ yields a natural topological semantics for full belief [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]Özgün, 2013).

The Topological Semantics for Full Belief

The topological semantics for Stal, and in particular for full belief, was first studied in [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]Özgün, 2013). They propose to extend the interior semantics for knowledge by a semantic clause for belief, and model belief as the closure of the interior operator on extremally disconnected spaces. The restriction to the class of extremally disconnected spaces is imposed by the axioms of Stal, that is, e.g., the axiom (D B ) as well as the derived principles such as (K B ) and (.2 K ) define extremally disconnectness when K is interpreted as the interior operators and B is interpreted as the closure of the interior operator (see Gabelaia, 2001, Theorem 1.3.3 for (.2 K ), andÖzgün, 2013, Propositions 11 and12 for (D B ) and (K B )). [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF] provide several topological soundness and completeness results for both bimodal and unimodal cases, in particular for Stal and KD45 B , with respect to extremally disconnected spaces. In this section we give an overview of their proposal and list some of the results. The proofs can be found in ( Özgün, 2013;Baltag et al., 2015a).

4.2.1.

Definition. [Closure-interior semantics for L KB ] Given a topo-model X = (X, τ, V ), the semantics for the formulas in L KB is defined for Boolean cases and Kϕ in the same way as in Definition 3.1.2. The semantics for Bϕ is given by

[[Bϕ]] = Cl (Int([[ϕ]])).
Truth and validity of a formula as well as soundness and completeness of logics are defined in the same way as for the interior semantics. [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]. Stal is the sound and complete logic of knowledge and belief on extremally disconnected spaces under the closureinterior semantics.

Theorem

Moreover, Stalnaker's combined logic of knowledge and belief yields the systems S4.2 K and KD45 B . It has already been proven that S4.2 K is sound and complete with respect to the class of extremally disconnected spaces under the interior semantics (see Theorem 3.1.9). This raises the question of topological soundness and completeness for KD45 B under the proposed semantics for belief in terms of the closure and the interior operator. 4.2.3. Theorem [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]. KD45 B is sound and complete with respect to the class of extremally disconnected spaces under the closure-interior semantics.

Theorem 4.2.3 therefore shows that the logic of extremally disconnected spaces is KD45 B when B is interpreted as the closure of the interior operator. Besides these technical results, the closure-interior semantics of belief comes with an intrinsic philosophical and intuitive value, and certain advantages compared to the co-derived set semantics as elaborated in the next section.

What motivates topological full belief

The closure-interior semantics provides an intuitive interpretation of Stalnaker's conception of (full) belief as subjective certainty. It does so through the definitions of the interior and closure operators and the concepts they represent, namely, the notions of evidence and closeness. We have discussed the role of open sets as pieces of evidence, and of open neighbourhoods of the actual state as pieces of truthful evidence in Section 3.2. Moreover, it is well known that the closure operator captures a topological, qualitative notion of closeness: x is said to be close to a set A ⊆ X iff x ∈ Cl (A). Recalling the proposed topological semantics for full belief, given a topological space (X, τ ) and P ⊆ X, we have

x ∈ BP iff x ∈ Cl (Int(P )) (4.1) iff x ∈ Cl (K(P )) (4.2) iff (∀U ∈ τ )(x ∈ U implies U ∩ KP = ∅) (4.3)
Therefore, following (4.2), topologically, the set of states in which the agent believes P is very close to the set of states in which the agent knows P . Taking open sets as evidence pieces, (4. [START_REF])) of int)[END_REF] moreover states that an agent (fully) believes P at a state x iff every sound piece of evidence she has at x is consistent with her knowing P , i.e., she does not have any truthful evidence that distinguishes the states in which she has belief of P from the states in which she has knowledge of P . Belief, under this semantics, therefore becomes subjectively indistinguishable from knowledge. Hence, the closure-interior semantics naturally captures the conception of belief as "subjective certainty".

Moreover, the closure-interior belief semantics improves on the co-derived set semantics for the following reasons: (1) belief as the closure of the interior operator does not face the Gettier problem, at least not in the easy way in which the co-derived set semantics does, when considered together with the conception of knowledge as interior. More precisely, knowledge as interior cannot be defined as (justified) true full belief since, in general, Int(P ) = Cl (Int(P )) ∩ P , i.e., KP = BP ∧P ; ( 2) the class of DSO-spaces with respect to which KD45 B is sound and complete under the co-derived set semantics is a proper subclass of the class of extremally disconnected spaces (see Özgün, 2013, Proposition 13). Therefore, the closure-interior semantics for KD45 B is defined on a larger class of spaces.

Additionally, Özgün (2013) and [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF] have studied a topological analogue of static conditioning-capturing static belief revision-by providing a topological semantics for conditional beliefs based on extremally disconnected spaces. However, this framework encounters problems when extended to a dynamic setting by adding update modalities for public announcements, formalized as model restriction by means of subspaces.

Problems with updates for public announcements

The topological semantics and associated logics we have studied so far were static, representing the epistemic state of an agent as isolated from receiving further information. Following the methodology of Dynamic Epistemic Logic (DEL), we can also represent knowledge and belief change brought about by a piece of new information by extending the static language with dynamic modalities, and designing an update mechanism that transforms the initial model into an "updated" structure. The resulting updated model expresses what is known/believed after the chosen epistemic action has been performed (see, e.g., [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF][START_REF] Van Benthem | Logical Dynamics of Information and Interaction[END_REF][START_REF] Baltag | Dynamic epistemic logic[END_REF], for a detailed presentation of DEL).

The first, and maybe the most well-known, epistemic action studied in the literature of DEL is the so-called public announcements introduced by [START_REF] Plaza | Logics of public communications[END_REF] and [START_REF] Gerbrandy | Reasoning about information change[END_REF]. Public announcements are concerned with learning "hard" information, i.e. information that comes with an inherent warranty of veracity, e.g. because of originating from an infallibly truthful source. 4 In DEL, in a qualitative setting based on relational semantics or a plausibility order, public announcements are standardly modelled by restricting the initial model to the truth set of the new information (see, e.g., [START_REF] Plaza | Logics of public communications[END_REF]Plaza, , 2007;;[START_REF] Gerbrandy | Reasoning about information change[END_REF][START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF]. Its natural topological analogue, as recognized by [START_REF] Zvesper | le formalisme topologique avec les annonces publiques de Bjorndahl présentées dans le chapitre 6. Alors que la section 7.1.2 présente plusieurs résultats d'expressivité, la section 7.1.3 se concentre sur la preuve de complétude de l'axiomatisation pour la TopoLogique Dynamique que nous proposons[END_REF]; [START_REF] Baskent | Geometric public announcement logics[END_REF][START_REF] Baskent | Public announcement logic in geometric frameworks[END_REF] (among others), is a topological update operator using the restriction of the original topology to the subspace induced by a nonempty subset P . The described update mechanism for public announcements is sometimes called update for hard information, or hard update [START_REF] Van Benthem | Logical Dynamics of Information and Interaction[END_REF]. In what follows, we simply refer to it as update.

In order for this interpretation to be successfully implemented, the subspace induced by the new information P should possess the same structural properties as the initial topology that renders the axioms of the underlying static knowledge/belief system sound. More precisely, we demand that the subspace induced by the new information P be in the class of structures with respect to which the (static) knowledge/belief logics in question are sound and complete. However, since extremally disconnectedness is not a hereditary property, the above mentioned topological interpretation of conditioning with true, hard information cannot be implemented on extremally disconnected spaces. This is obviously analogous to the problem of implementing updates on relational models based on directed preorders (see, e.g., [START_REF] Balbiani | Some truths are best left unsaid[END_REF], for a more general explanation regarding preserving frame conditions in public announcement logic). Baltag et al. (2015b) present a solution for this problem by changing the semantics for belief as the interior of the closure of the interiors operator, and modelling public announcements on all topological spaces. In Section 4.3 though, we confine the topo-models to the largest subclass that preserves extremally disconnectedness under taking arbitrary subspaces, namely to the class of hereditarily extremally disconnected (h.e.d.) spaces. This also requires a re-evaluation of the underlying static knowledge and belief systems. Before presenting the modified setting based on h.e.d spaces, we explain the problem regarding updates on extremally disconnected spaces in a more precise manner.

Topological updates for public announcements. We now consider the language L ! KB obtained by adding to the language L KB (existential) dynamic public announcement modalities !ϕ ψ, reading "ϕ is true and after the public announcement of ϕ, ψ becomes true". The dual operator [!ϕ] is defined as usual as ¬ !ϕ ¬, and [!ϕ]ψ reads as "after the public announcement of ϕ, ψ becomes true".

4.2.4. Definition. [Restricted Model] Given a topo-model X = (X, τ, V ) and ϕ ∈ L ! KB , the topo-model X ϕ = ([[ϕ]], τ ϕ , V ϕ ) is called the restricted model, where • [[ϕ]] = [[ϕ]] X , • τ ϕ = {U ∩ [[ϕ]] | U ∈ τ }, and • V ϕ (p) = V (p) ∩ [[ϕ]], for any p ∈ prop.
In other words, ([ [ϕ]], τ ϕ ) is the subspace of (X, τ ) induced by [[ϕ]]. The semantics for the dynamic modalities !ϕ ψ is then given as

[[ !ϕ ψ]] X = [[ψ]] X ϕ .
Updates in general are expected to cause changes in an agent's knowledge and belief in some propositions, however, the way she reasons about her epistemic/doxastic state, in a sense the defining properties of the type of agent we consider, should remain unaffected. This amounts to saying that any restricted model should as well make the underlying static knowledge and belief logics sound. In particular, as we work with rational, highly idealized normal agents that hold consistent beliefs, we demand them not to lose these properties after an update with true information. With respect to the closure-interior semantics, these requirements are satisfied if and only if the resulting structure is extremally disconnected: under the topological belief semantics, both the axiom of Normality

B(ϕ ∧ ψ) ↔ (Bϕ ∧ Bψ) (K B )
and the axiom of Consistency of Belief

Bϕ → ¬B¬ϕ (D B )
characterize extremally disconnected spaces ( Özgün, 2013, Propositions 11 and 12). Therefore, if the restricted model is not extremally disconnected, the agent comes to have inconsistent beliefs after an update with hard true information. In order to avoid possible confusions, we note that B⊥ is never true with respect to the closure-interior semantics since [[B⊥]] = Cl (Int(∅)) = ∅. By an agent having inconsistent beliefs, we mean that she believes mutually contradictory propositions such as ϕ and ¬ϕ at the same time, without in fact believing B⊥, as also illustrated by the following example.

4.2.5. Example. Consider the Alexandroff topo-model X = (X, τ, V ) where

X = {x 1 , x 2 , x 3 , x 4 }, τ = {X, ∅, {x 4 }, {x 2 , x 4 }, {x 3 , x 4 }, {x 2 , x 3 , x 4 }} and V (p) = {x 1 , x 2 , x 3 } and V (q) = {x 2 ,
x 4 } for some p, q ∈ prop. It is easy to see that X corresponds to a directed reflexive transitive relational frame as depicted in Figure 4.1a, where the reflexive and transitive arrows are omitted. It is easy to check that (X, τ ) is an extremally disconnected space and Bq → ¬B¬q is valid in X . We stipulate that x 1 is the actual state and p is truthfully announced. The updated (i.e., restricted) model is then

X p = ([[p]], τ p , V p ) where [[p]] = {x 1 , x 2 , x 3 }, τ p = {[[p]], ∅, {x 2 }, {x 3 }, {x 2 , x 3 }}, V p (p) = {x 1 , x 2 , x 3 } and V p (q) = {x 2 }.
Here, ([ [p]], τ p ) is not an extremally disconnected space (similarly, the underlying Kripke frame is not directed) since

{x 3 } is an open subset of ([[p]], τ p ) but Cl p ({x 3 }) = {x 1 , x 3 } is not open in ([[p]], τ p ). Moreover, as x 1 ∈ [[Bq]] X p = Cl p (Int p ({x 2 })) = {x 1 , x 2 } and x 1 ∈ [[B¬q]] Xp = Cl p (Int p ({x 1 , x 3 })) = {x 1 , x 3
}, the agent comes to believe both q and ¬q, implying that the restricted model falsifies (D B ) at x 1 . Consequently, it also falsifies (K B ) since [[B(q ∧ ¬q)]] X p = ∅.

x 3

x 1

x 2

x 4

(a) (X, τ, V )

x 3 x 1 x 2 x 4 (b) ([[p]], τ p , V p )
Figure 4.1: Update of (X, τ, V ) by p.

One possible solution for this problem is extending the class of spaces we work with: we can focus on all topological spaces instead of working with only extremally disconnected spaces and provide semantics for belief in such a way that the aforementioned problematic axioms become valid on all topological spaces. This way, we do not need to worry about any additional topological property that is supposed to be inherited by subspaces. This solution, unsurprisingly, leads to a weakening of the underlying static logic of knowledge and belief. It is well known that the knowledge logic of all topological spaces under the interior semantics is S4 K (Theorem 3.1. [START_REF]that K acts as the global modality within the given epistemic range, i.e., that for any ϕ ∈ L Kint[END_REF], and the (weak) belief logic of all topological spaces is studied in (Baltag et al., 2015b). In the next section, we work out another solution which approaches the issue from the opposite direction: we further restrict our attention to hereditarily extremally disconnected spaces, thereby guaranteing that no model restriction leads to inconsistent beliefs. As the logic of hereditarily extremally disconnected spaces under the interior semantics is S4.3 K (Theorem 3.1.10), the underlying static logic, in this case, would consist in S4.3 K as the logic of knowledge but again KD45 B as the logic of belief as shown in the next section.5 

The Belief Logic of H.E.D Spaces

In this section, we present the underlying static logic of belief for the closureinterior semantics, and then extend this setting based on h.e.d. spaces for conditional beliefs and public announcements.

Even though we work with a more restricted class, the belief logic of h.e.d. spaces is still KD45 B . While the soundness of this system follows from Theorem 4.2.3 since every h.e.d. space is extremally disconnected, its topological completeness will be shown by using its Kripke completeness. To this end, we first need to build a connection between KD45-frames and h.e.d. spaces that is similar to the one presented in Section 3.1.2, and prove their modal equivalence for the language L B analogous to .

Connection between KD45-frames and h.e.d. spaces

Recall that KD45-frames are serial, transitive and Euclidean Kripke frames. Since truth of modal formulas with respect to the standard relational semantics is preserved under taking generated submodels (see, e.g., Blackburn et al., 2001, Proposition 2.6), we can use the following simplified relational structures as Kripke frames of KD45 B . Clearly, if such a C exists, it is unique; call it the final cluster of the brush. It is easy to see that every brush is serial, transitive and Euclidean (see Figure 4. [START_REF]int(ϕ ∨ K β) ↔ int(ϕ) ∨ K β 3. int(ϕ ∨ (σ ∧ Kβ)) ↔ (int(ϕ ∨ σ)[END_REF]. For the proof of the following lemma see, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5) and (Blackburn et al., 2001, Chapters 2, 4).

4.3.1. Definition. [Brush/Pin] • A relational frame (X, R) is called a brush if there exists a nonempty subset C ⊆ X such that R = X × C; • A brush is called a pin if |X\C| = 1. C (a) Brush C (b) Pin

4.3.2.

Lemma. KD45 B is a sound and complete with respect to the class of brushes, and with respect to the class of pins. In fact, KD45 B is sound and complete with respect to the class of finite pins.

Similar to the construction in Section 3.1.2, we can build an Alexandroff h.e.d. space from a given pin. The only extra step consists in taking the reflexive closure of the initial pin. More precisely, for any frame (X, R), let R + denote the reflexive closure of R, defined as

R + = R ∪ {(x, x) | x ∈ X}.
Given a pin (X, R), the set τ R + = {R + (x) | x ∈ X} constitutes a topology on X. In fact, in this special case of pins, we have τ R + = {X, C, ∅} where C is the final unique cluster of (X, R). Therefore, it is easy to see that (X, τ R + ) is an Alexandroff h.e.d. space. In fact, (X, τ R + ) is a generalized Sierpiński space where C does not have to be a singleton (see Figure 4. [START_REF])) of int)[END_REF].

This construction leads to a natural correspondence between pins and Alexandroff h.e.d. spaces. In particular, for any Kripke model M = (X, R, V ) based on a pin, we set I(M) = (X, τ R + , V ). Moreover, any two such models M and I(M) make the same formulas of L B true at the same states, as shown in Proposition 4. 3.4. 4.3.3. Lemma. Let (X, R) be a pin and C denote the final cluster of (X, R), and let Int and Cl denote the interior and closure operators, respectively, in the topological space (X, τ R + ). Then for all x ∈ X and every A ⊆ X: 

1. R(x) = C ∈ τ R + ; C (a) (X, R) C (b) (X, τ R + ) 1 0 (c) Sierpiński space
3. Cl (A) = X if and only if A ∩ C = ∅; 4. if Cl (Int(A)) = ∅ then Cl (Int(A)) = X.
Proof:

(1) follows from the fact that R = X × C (Definition 4.3.1). ( 2) and ( 3) are direct consequences of the construction of τ R + , that is, τ R + = {X, C, ∅}. And, (4) follows from ( 2) and ( 3 

Proof:

The proof follows by subformula induction on ϕ; cases for the propositional variables and the Boolean connectives are elementary. So assume inductively that the result holds for ψ; we must show that it holds also for ϕ := Bψ. 

M, x |= Bψ iff R(x) ⊆ ||ψ|| M (the relational semantics of B) iff C ⊆ ||ψ|| M (Lemma 4.3.3-1) iff C ⊆ [[ψ]] I(M) (induction hypothesis) iff Int([[ψ]] I(M) ) ∩ C = ∅ (Lemma 4.3.3-2) iff Cl (Int([[ψ]] I(M) )) = X (Lemma 4.3.3-3) iff x ∈ Cl (Int([[ψ]] I(M)

Proof:

Recall that a DSO-space is a dense-in-itself topological space (i.e., a space with no singleton opens) in which every derived set d(A) is open. Let (X, τ ) be a DSOspace and (P, τ P ) its subspace induced by the nonempty set P ⊆ X. Observe that, for all A ⊆ P , we have d P (A) ∈ τ P since d(A) ∈ τ and d P (A) = d(A) ∩ P . Now suppose U ∈ τ P and consider Cl P (U ). Since Cl P (U ) = d P (U ) ∪ U and d P (U ) ∈ τ P , we immediately obtain that Cl P (U ) ∈ τ P . Therefore (P, τ P ) is extremally disconnected. Hence, every subspace of (X, τ ) (including in particular (X, τ ) itself) is extremally disconnected. As an example of an h.e.d. space that is not DSO, consider the Sierpiński space given in Figure 4.3c: the Sierpiński space has a singleton open, therefore, it is not dense-in-itself.

2

We can further generalize the belief semantics on h.e.d. spaces for static conditioning.

Static conditioning: conditional beliefs

Static conditioning captures the agent's revised beliefs about how the world was before learning new information. This is in general implemented by conditional belief operators B ϕ ψ read as "if the agent would learn ϕ, then she would come to believe that ψ was the case before the learning" (Baltag and Smets, 2008, p. 12). Conditional beliefs therefore are static and hypothetical by nature, hinting at possible future belief changes of the agent. In the DEL literature, the semantics for conditional beliefs is generally given in terms of sphere models [START_REF] Grove | Two modellings for theory change[END_REF], or equivalently, in terms of plausibility models [START_REF] Van Benthem | Dynamic logic for belief revision[END_REF][START_REF] Baltag | A qualitative theory of dynamic interactive belief revision[END_REF][START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF].

In this section, we provide a topological semantics for conditional beliefs based on h.e.d. spaces. This topological semantics has been studied in ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF] based on extremally disconnected spaces, where the dynamic extension encountered the problem explained in Section 4.2.2.

We can obtain the semantics for a conditional belief modality B ϕ ψ in a natural and standard way by relativizing the semantics for the simple belief modality to the extension of the learned formula ϕ. By relativization we mean a local change that only affects one occurrence of the belief modality Bϕ, and that does not cause a real change in the model. Similar to the case in ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF] for extremally disconnected spaces, we can relativize the belief semantics in two different ways. To recap, given a topo-model X = (X, τ, V ) based on an extremally disconnected topology τ , we can describe the extension of a belief formula in the following equivalent ways

[[Bϕ]] (1) = Cl (Int([[ϕ]])) (2) = Int(Cl (Int([[ϕ]]))).
While the relativization of ( 1) leads to

[[B ϕ ψ]] = Cl ([[ϕ]] ∩ Int([[ϕ]] → [[ψ]])), (4.4) 
the relativization of ( 2) results in

[[B ϕ ψ]] = Int([[ϕ]] → Cl ([[ϕ]] ∩ Int([[ϕ]] M → [[ψ]]))), (4.5) 
where [ [ϕ]] → [[ψ]] is used as an abbreviation for (X\

[[ϕ]]) ∪ [[ψ]].
However, as elaborated in ( Özgün, 2013), the first semantics (4.4) does not work well as a generalization of belief on extremally disconnected spaces, and the same arguments still hold on h.e.d. spaces. For example, it validates the equivalences Kϕ ↔ ¬B ¬ϕ ↔ ¬B ¬ϕ ¬ϕ which give a rather unusual definition of knowledge in terms of conditional beliefs. The first of these equivalences also shows that the conditional belief operator is not a normal modality (as the Necessitation rule for conditional beliefs stated in Theorem 4.3.7 does not preserve validitiy). Moreover, this semantics validates only a few of the AGM postulates stated in terms of conditional beliefs as in Theorem 4.3.7 (see [START_REF] Alchourrón | On the logic of theory change: Partial meet contraction and revision functions[END_REF], for the classical AGM theory). On the other hand, the second relativization does not possess any of the above flaws, and moreover validates all the AGM postulates formulated in terms of conditional beliefs as shown below (see Baltag andSmets, 2008, 2006, for the treatment of AGM theory in terms of conditional beliefs as a theory of static belief revision). We refer to (Baltag et al., 2015a) for the proofs of the results stated in the remaining of this chapter.

4.3.7. Theorem. The following formulas are valid in h.e.d. spaces with respect to the topological semantics for conditional beliefs and knowledge given in (4. [START_REF]Suppose (x, U ) |= K(ϕ ∨ (σ ∧ Kβ)). This means, by the semantics of K, that[END_REF] Normality:

B θ (ϕ → ψ) → (B θ ϕ → B θ ψ) Factivity: Kϕ → ϕ Persistence of Knowledge: Kϕ → B θ ϕ Strong Positive Introspection: B θ ϕ → KB θ ϕ Success of Belief Revision: B ϕ ϕ Consistency of Revision: ¬K¬ϕ → ¬B ϕ ⊥ Inclusion: B ϕ∧ψ θ → B ϕ (ψ → θ) Rational Monotonicity: B ϕ (ψ → θ) ∧ ¬B ϕ ¬ψ → B ϕ∧ψ θ
Moreover, the Necessitation rule for conditional beliefs from ϕ, infer B ψ ϕ preserves validity.

Given the semantics in (4. [START_REF]Suppose (x, U ) |= K(ϕ ∨ (σ ∧ Kβ)). This means, by the semantics of K, that[END_REF], we also obtain the following validities defining conditional beliefs in terms of knowledge, and simple belief in terms of conditional belief, respectively:

• B ϕ ψ ↔ K(ϕ → K (ϕ ∧ K(ϕ → ψ))), • Bϕ ↔ B ϕ.
Adding these two equivalences to a complete axiomatization of S4.3 K therefore yields a complete logic of knowledge and conditional beliefs with respect to h.e.d. spaces.

4.3.8. Theorem. The sound and complete logic KCB of knowledge and conditional beliefs with respect to the class of h.e.d. spaces is obtained by adding the following equivalences to any complete axiomatization of S4.3 K :

1. B ϕ ψ ↔ K(ϕ → K (ϕ ∧ K(ϕ → ψ)))

Bϕ ↔ B ϕ

Against this static background, we can further axiomatize the logic of public announcements, knowledge and conditional beliefs, following the standard DELtechnique: This is done by adding to KCB a set of reduction axioms that give us a recursive rewriting algorithm to step-by-step translate every formula containing public announcement modalities to a provably equivalent formula in the static language. The completeness of the dynamic system then follows from the soundness of the reduction axioms and the completeness of the underlying static logic (see, e.g., Section 7.4 of [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF] for a detailed presentation of completeness by reduction, and see [START_REF] Wang | On axiomatizations of public announcement logic[END_REF] for an elaborate discussion of axiomatizations of public announcement logics).

4.3.9. Theorem. The sound and complete dynamic logic !KCB of knowledge, conditional beliefs and public announcements with respect to the class of h.e.d. spaces is obtained by adding the following reduction axioms to any complete axiomatization of the logic KCB:

1. !ϕ p ↔ (ϕ ∧ p) 2. !ϕ ¬ψ ↔ (ϕ ∧ ¬ !ϕ ψ) 3. !ϕ (ψ ∧ θ) ↔ ( !ϕ ψ ∧ !ϕ θ) 4. !ϕ Kψ ↔ (ϕ ∧ K(ϕ → !ϕ ψ)) 5. !ϕ B θ ψ ↔ (ϕ ∧ B !ϕ θ !ϕ ψ) 6. !ϕ !ψ χ ↔ ! !ϕ ψ χ

Conclusions and Continuation

In this chapter, we presented our very first attempt to formalize a notion of evidence-based "justified" belief by using topological semantics based on extremally disconnected spaces, first proposed in ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]. The belief semantics based on hereditarily extremally disconnected spaces was later investigated in (Baltag et al., 2015a).

To summarize, starting with the conception of knowledge as the interior operator, and building on Stalnaker's principles regarding the relation between knowledge and belief (Table 4. [START_REF]Suppose (x, U )[END_REF], we proposed a topological semantics of belief as subjective certainty in terms of the closure of the interior operator. While the proposed topological semantics provides an intuitive and natural interpretation for the conception of belief as subjective certainty (see Section 4.2.1), it also yields the standard logic of belief KD45 B both on extremally and hereditarily extremally disconnected spaces (Theorems 4.2.3 and 4.3.5,respectively). The transition from extremally disconnected spaces to hereditarily extremally disconnected spaces is motivated by the fact that the topological semantics based on extremally disconnected spaces falls short of dealing with public announcements as shown in Section 4.2.2. However, even this restricted class of h.e.d. spaces generalizes the topological belief semantics based on the co-derived set operator since KD45 B is the logic of DSO-spaces when belief is interpreted as the co-derived set operator, and the class of DSO-spaces is a proper subclass of the class of h.e.d. spaces (Proposition 4.3.6). Moreover, when studied in tandem with the notion of knowledge as the interior, the belief semantics in terms of the closure of the interior operator does not yield a definition of knowledge as true belief (unlike belief as the co-derived set operator, see Section 3.3).

At a high level, this chapter takes a further small step toward developing a satisfactory epistemic/doxastic formal framework in which we can talk about evidential grounds of knowledge and belief. It does so by extending the interiorbased topological semantics for knowledge by a semantic clause for belief, which arguably works better than the aforementioned proposal based on the co-derived set operator. However, within the current setting, everything we can say about evidence has to be said at a purely semantic level (see Section 3.2 and Section 4.2.1 to recall the topological, evidence-related readings of knowledge and belief, respectively). As we have not yet introduced any "evidence modalities", the modal language cannot really say anything concerning the link between evidence and belief, or evidence and knowledge, let alone represent different notions of evidence possession.

This provides motivation for the framework we develop in the next chapter. Chapter 5, improving on the evidence logic of van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF] based on neighbourhood semantics, introduces a new topological semantics for various notions of evidence, evidence-based justified belief, knowledge and learning, where the studied notions of evidence are made explicit in the corresponding syntax via matching modalities.

Chapter 5

Justified Belief, Knowledge and the Topology of Evidence

In this chapter, we propose a topological semantics for various notions of evidence, evidence-based justification, belief, and knowledge, and explore the connection between these epistemic notions. The work presented in this chapter is to a great extent based on taking a new, topological perspective to the models for evidence, belief and evidence-management proposed by [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF], and developed further by [START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF]. The framework developed in this chapter moreover generalizes and improves on our own work on a topological semantics for Stalnaker's doxastic-epistemic logic presented in Chapter 4.

The influential approach, initiated by van Benthem and Pacuit (2011); van [START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF], represents evidence semantically-roughly speaking, as sets of possible worlds-based on neighbourhood structures as well as syntactically by introducing evidence modalities. Their setting goes beyond and generalizes the formal treatment of the aforementioned epistemic notions in terms of relational structures, such as Kripke and plausibility models, and non-relational models, such as Grove sphere models. We here take a further step toward improving the formal, modal theoretical treatment of evidence, justified belief and knowledge by revealing the hidden topological structure of the evidence models of van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. The topological perspective enables more finegrained and refined mathematical representations of various notions of evidence, such as basic evidence, combined evidence, factive evidence and (non-)misleading evidence, as well as relevant epistemic notions such as argument and justification (based on evidence), and, in turn, justified belief and (in-)defeasible knowledge. Consequently, we obtain a semantically and syntactically rich setting that provides a more in-depth logical analysis regarding the role of evidence in reaching an agent's epistemic/doxastic state. We also examine several types of evidence dynamics introduced in (van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF] and apply this setting to analyze and address key issues in epistemology such as "no false lemma" Gettier examples, misleading defeaters, and undefeated justification versus undefeated belief. Our main technical results are concerned with completeness, decidability and finite model property for the associated logics.

Outline

Section 5.1 serves as a semi-formal introduction and summary of the chapter, emphazising the important features of its content. In Section 5.2, we introduce the evidence models of van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF] as well as our topological evidence models, and provide semantics for the notions of basic, combined and factive evidence. We moreover provide topological definitions for argument and justification. In Section 5.3, we propose a topological semantics for a notion of justified belief while comparing our setting to that of [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. We then generalize our semantics of (simple) belief for conditional beliefs. Section 5.4 defines the model transformations induced by evidence-based information dynamics such as public announcements, evidence addition, evidence upgrade and feasible evidence combination. In Section 5.5, we propose a topological interpretation for a notion of fallible knowledge and connect our formalism to some important discussions emerged in the post-Gettier epistemology literature, such as stability/defeasibility theories of knowledge, misleading vs. genuine defeaters etc. Finally, Section 5.6 presents all our technical results. The reader who is interested in the technical aspect only can jump to Section 5.6 directly. This chapter is based on (Baltag et al., 2016a,b) 

Introduction

One of our main goals in this chapter, that we also share with [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF][START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF], is to study notions of belief and knowledge for a rational agent who is in possession of some (possibly false, possibly mutually contradictory) pieces of evidence. A central underlying assumption is that an agent's rational belief and knowledge is based on the available evidence, namely, the evidence she has acquired via, e.g., direct observation, measurements, testimony from others etc. We therefore do not take belief or knowledge as the primitive notions, they are represented as "derived" notions purely based on evidence. Toward designing a formal setting that can capture these ideas (among others), we use the uniform evidence models of [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF], with a special focus on the topology generated by the evidence. In the following, we provide a detailed overview of the epistemic notions studied in this chapter, introduce the modalities we consider, and explain where our work stands in the relevant literature.

A crucial reason as to why the approach presented in this chapter improves on the settings of Chapters 3 and 4 is that we here introduce evidence modalities in order to also provide syntactic representations of notions of evidence, and eventually to build evidence logics. In particular, we study the operator of "having (a piece of) evidence for a proposition P " proposed by van Benthem and Pacuit ( 2011), but we also investigate other interesting variants of this concept: "having (combined) evidence for P ", "having a (piece of) factive evidence for P " and "having (combined) factive evidence for P ". Table 5.1 below lists the corresponding evidence modalities together with their intended readings.

E 0 ϕ
the agent has a basic (piece of) evidence for ϕ Eϕ the agent has a (combined) evidence for ϕ 2 0 ϕ the agent has a factive basic (piece of) evidence for ϕ 2ϕ the agent has factive (combined) evidence for ϕ Table 5.1: Evidence modalities and their intended readings

The basic pieces of evidence possessed by an agent are modelled as nonempty sets of possible worlds. A combined evidence (or just "evidence", for short) is any nonempty intersection of finitely many pieces of evidence. This notion of evidence is not necessarily factive 1 , since the pieces of evidence are possibly false (and possibly inconsistent with each other). The family of (combined) evidence sets forms a topological basis, that generates what we call the evidential topology. This is the smallest topology in which all the basic pieces of evidence are open, and it will play an important role in our setting. In fact, the modality 2ϕ capturing the concept of "having factive evidence for ϕ" coincides with the interior operator in the evidential topology (see Section 5.2.2). We therefore use the interior semantics of [START_REF] Mckinsey | The algebra of topology[END_REF] to interpret a notion of factive evidence (this is unlike the case in Chapter 4, where the interior operator was treated as knowledge). We also show that the two factive variants of evidence-possession operators (2 0 and 2) are more expressive than the non-factive ones (E 0 and E): when interacting with the global modality, the two factive evidence modalities 2 0 ϕ and 2ϕ can define the non-factive variants E 0 ϕ and Eϕ, respectively, as well as many other doxastic/epistemic operators.

The notion of justified belief we study in this chapter will be defined purely by means of the notions of evidence mentioned above. We propose a "coherentist" semantics for justification and justified belief, that is obtained by extending, generalizing, and (to an extent), streamlining the evidence-model framework for 1 Factive evidence is true in the actual world. In epistemology it is common to reserve the term "evidence" for factive evidence. But we follow here the more liberal usage of this term in [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF], which agrees with the common understanding in day to day life, e.g. when talking about "uncertain evidence", "fake evidence", "misleading evidence" etc.

beliefs introduced by van Benthem and Pacuit (2011). The main idea behind the belief definition of van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF] seems to be that the rational agent tries to form consistent beliefs, by looking at all strongest finitely-consistent collections of evidence, and she believes whatever is entailed by all of them.2 Their belief definition therefore crucially depends on a notion of "strongest" evidence, and it works well in the finite case (whenever the agent has finitely many pieces of basic evidence) as well as in some infinite cases. But, as already noted in [START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF], this setting has the shortcoming that it can produce inconsistent beliefs in the general infinite case. A more technical defect of this setting is that the corresponding doxastic logic does not have the finite model property (see [START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF], Corollary 2.7 or van Benthem et al., 2014, Corollary 1). In this chapter, we propose an "improved" semantics for evidence-based belief, obtained by, in a sense, weakening the definition from [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. According to us, a proposition P is believed if P is entailed by sufficiently strong finitely-consistent collections of evidence. This definition coincides with the one of van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF] for the models carrying finite evidence collections, but involves a different generalization of their notion in the infinite case. In fact, our semantics always ensures consistency of belief, even when the available pieces of evidence are mutually inconsistent. We also provide a formalization of argument and a "coherentist" view on justifications. An argument essentially consists of one or more evidence sets supporting the same proposition (thus providing multiple evidential paths towards a common conclusion); a justification is an argument that is not contradicted by any other available evidence. Our definition of belief is equivalent to requiring that P is believed iff there is some (evidence-based) justification for P , therefore, accurately captures the concept of "justified belief". Our proposal is also very natural from a topological perspective; it is equivalent to saying that P is believed iff it is true in "almost all" epistemically possible states, where "almost all" is interpreted topologically as "all except for a nowhere-dense set". We moreover generalize this belief semantics for conditional beliefs. Table 5.2 below lists the belief modalities we study in this chapter.

Bϕ

the agent has justified belief in ϕ B ϕ ψ the agent believes ψ conditionally on ϕ Table 5.2: Belief modalities and their intended readings Moving on to knowledge, there are a number of different notions one may consider. First, there is "absolutely certain" or "infallible" knowledge, akin to Aumann's concept of partitional knowledge [START_REF] Aumann | Interactive epistemology I: Knowledge[END_REF] or van Benthem's concept of hard information [START_REF] Van Benthem | Dynamic logic for belief revision[END_REF]. In our single-agent setting, this can be simply defined as the global modality (quantifying universally over all epistemically possible states). There are very few propositions that can be known in this infallible way (e.g., the ones known by introspection or by logical proof). Most facts in science or real life are unknown in this sense. It is therefore more interesting to look at notions of knowledge that are less-than-absolutelycertain, namely, the so-called defeasible knowledge. In our framework, we consider both absolutely certain knowledge and defeasible knowledge, but our main focus will be on the latter notion. See Table 5.3 below for the corresponding knowledge modalities and their readings.

[∀]ϕ the agent infallibly knows ϕ Kϕ the agent fallibly (or defeasibly) knows ϕ Table 5.3: Knowledge modalities and their intended readings

The famous Gettier counterexamples [START_REF] Gettier | Is justified true belief knowledge?[END_REF] show that simply adding "factivity" to belief will not give us a "good" notion of defeasible knowledge: true (justified) belief is extremely fragile (i.e., it can be too easily lost), and it is consistent with having only wrong justifications for an accidentally true conclusion. We here formalize a notion of defeasible knowledge saying that "P is (fallibly) known if there is a factive justification for P ". We therefore study a notion of knowledge defined as correctly justified belief. As elaborated in Section 5.5.1, this less-than-absolutely-certain notion of knowledge finds its place in the post-Gettier literature as being stronger than the one charaterized by the "no false lemma" of [START_REF] Clark | Knowledge and grounds: A comment on Mr. Gettier's paper[END_REF] and weaker than the conception of knowledge described by the defeasibility theory of knowledge championed by [START_REF] Lehrer | Knowledge: Undefeated justified true belief[END_REF]; [START_REF] Lehrer | Theory of Knowledge[END_REF]; [START_REF] Klein | A proposed definition of propositional knowledge[END_REF][START_REF] Klein | Certainty, a Refutation of Scepticism[END_REF].

Yet another path leading to our setting in this chapter goes via our previous work [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF](Baltag et al., , 2015a)), presented in Chapter 4, on a topological semantics for the doxastic-epistemic axioms of [START_REF] Stalnaker | On logics of knowledge and belief[END_REF]. Recall that Stalnaker's system Stal (see Table 4. [START_REF]Suppose (x, U )[END_REF] is meant to capture a notion of fallible knowledge, in close interaction with a notion of "strong belief" defined as subjective certainty. The main principle specific to this system was that "believing implies believing that you know" captured by the axiom of Full Belief (Bϕ → BKϕ). The topological semantics that we proposed for these concepts in ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]Baltag et al., , 2015a) ) was overly restrictive (being limited to the rather unfamiliar class of extremally disconnected and hereditarily extremally disconnected topologies). In this chapter, we show that these notions can be interpreted on arbitrary topological spaces, without changing their logic. Indeed, our definitions of belief and knowledge can be seen as the natural generalizations to arbitrary topologies of the notions in ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]Baltag et al., , 2015a)).

We completely axiomatize the various resulting logics of evidence, knowledge, and belief, and prove decidability and finite model property results. We moreover study a few dynamic extensions, encoding different types of evidential dynamics. Our technically most challenging result is the completeness of the richest logic containing the two factive evidence modalities 2 0 ϕ and 2ϕ, as well as the global modality [∀]ϕ. This logic can define all the modal operators mentioned above. While the other proofs are more or less routine, the proof of this result involves a nontrivial combination of known methods.

Evidence, Argument and Justification

In this section, we introduce the (uniform) evidence models of van Benthem and Pacuit ( 2011) as well as our topological version, and provide the formal semantics of the evidence modalities given in Table 5.1. More precisely, we focus on the operator "having a basic (piece of) evidence for a proposition P " (from van Benthem and Pacuit, 2011), as well as the variants capturing "having (combined) evidence for P ", "having a basic (piece of) factive evidence for P " and "having (combined) factive evidence for P ". We explain how a rational agent can put her basic evidence pieces together in a "finitely consistent" way toward forming combined evidence, strongest and strong enough evidence, and eventually, her beliefs. We moreover provide topological definitions for argument and justification purely based on evidence. Benthem andPacuit 5.2.1. Definition. [Evidence Models (van Benthem and Pacuit, 2011)] An evidence model is a tuple M = (X, E 0 , V ), where

Evidence à la van

• X is a nonempty set of possible world (or states),

• E 0 ⊆ P(X) is a family of sets called basic evidence sets (or pieces of evidence), satisfying X ∈ E 0 and ∅ ∈ E 0 , and

• V : prop → P(X) is a valuation function.
The evidence models presented in [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF] are more general, covering cases in which evidence depends on the actual world, i.e., in which each state may be assigned different set of neighbourhoods. In this chapter, however, we stick with what they call "uniform" models (given in Definition 5.2.1), which corresponds to working with agents who are "evidence-introspective" 3 .

Note that evidence models are not necessarily based on topological spaces, i.e., E 0 is not defined to be a topology (it may not even constitute a topological basis). However, topo-models given in Definition 3.1.1 constitute a special case of evidence models. 4 We would like to elaborate more on the structural properties of evidence models and explain which epistemic concepts they intend to represent.

The family E 0 is almost an arbitrary nonempty collection of subsets of a given domain, carefully designed to capture certain aspects of the type of evidence that is intended to be formalized. First of all, the subset E 0 represents the set of evidence the agent has acquired about the actual situation 5 directly via, e.g., testimony, measurement, approximation, computation or experiment. It is the collection of evidence the agent gathered so far, and it is all our rational, idealized agent has to form her beliefs and knowledge. The collection of evidence the agent possesses is uniform across the states, i.e., the set of evidence the agent has does not depend on the actual state. This corresponds to working with an "evidenceintrospective" agent, that is, the agent is absolutely sure about what evidence she has and what it entails.

The two properties of E 0 , namely, X ∈ E 0 and ∅ ∈ E 0 impose the following constraints, respectively:

• Tautologies are always evidence, and

• Contradictions never constitute direct evidence.

Unlike the common practice in epistemology, where the term "evidence" is generally reserved for factive evidence, van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF][START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Fuhrmann | Knowability as potential knowledge[END_REF] follow a more liberal, in a sense, more realistic view on evidence which agrees with the common usage in day to day life, e.g. when talking about "uncertain evidence", "fake evidence", "misleading evidence". They not only consider evidence gathered from absolutely reliable and truthful sources, but also take into account fallible information coming from a possibly unreliable source: a piece of evidence in E 0 does not have to contain the actual state. Moreover, the evidence gathered from different sources (or even from a single source) may be mutually inconsistent: the intersection of evidence pieces may be empty. Therefore, the evidence models of van Benthem and Pacuit (2011) (as 3 Since we never consider the more general case and focus only on the topological extension of their uniform evidence models, we use the term "evidence model" exclusively for the uniform evidence models of [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF], given above in Definition 5.2.1.

4 As an even more special case, we can also think of Grove/Lewis Sphere spaces. These are topological spaces in which the open sets are "nested", i.e. for every U, U ∈ τ , we have either U ⊆ U or U ⊆ U (see, e.g., Example 5.3.1).

5 Standardly, as in the relational semantics and the interior semantics, the actual situation is represented by a state x of X called the actual state or the real world.

well as our topological evidence models) take into account that the agent might be collecting evidence from different sources that may or may not be reliable, however, it is assumed that all her current sources are equally reliable (or equally unreliable) as no special order or quantitative measure is defined on the elements of E 0 . Under these assumptions, what is expected from a rational agent toward forming consistent beliefs based on the collection of evidence pieces she has, is to evaluate every piece of evidence she possesses in a coherent and holistic way, and put them together in a finite and consistent manner. This leads to the notions of (finite) bodies of evidence and combined evidence, conceptions with crucial roles in formation of consistent beliefs based on fallible evidence, and of the evidential topology. In what follows, we provide technical definitions of the evidence-related auxiliary notions that are adopted from van Benthem and Pacuit ( 2011), and will be used throughout this chapter.

Bodies of evidence, Evidential Support and Strength

We call a collection of evidence pieces F ⊆ E 0 consistent if F = ∅, and inconsistent otherwise. In order to ease the notation, we let A ⊆ f in B to be read as A is a finite subset of B.

Definition. [(Finite) Body of Evidence

] Given an evidence model M = (X, E 0 , V ), a body of evidence is a nonempty family F ⊆ E 0 of evidence pieces such that every nonempty finite subfamily is consistent. More formally, a nonempty family F ⊆ E 0 is a body of evidence if

(∀F ⊆ f in F )(F = ∅ implies F = ∅).
A finite body of evidence F ⊆ f in E 0 is therefore simply a finite set of mutually consistent pieces of evidence, that is,

F ⊆ f in E 0 such that F = ∅.
Therefore, a body of evidence is simply a collection of evidence pieces that has the finite intersection property, and that represents the agent's ability of putting evidence pieces together in a finitely consistent way. Given an evidence model M = (X, E 0 , V ), we denote by

F := {F ⊆ E 0 | (∀F ⊆ f in F )(F = ∅ implies F = ∅)}
the family of all bodies of evidence over M, and by

F f in := {F ⊆ f in E 0 | F = ∅}
the family of all finite bodies of evidence. Both the interpretation of evidencebased belief of van Benthem and Pacuit (2011) and our proposal for justified belief, as well as the notion of defeasible knowledge we study in this chapter crucially rely on the notion of body of evidence. But, in order to be able to talk about these evidence-based informational attitudes, we first need to specify what it means for a proposition to be supported by a body of evidence.

5.2.3.

Remark. Throughout Sections 5.2-5.5, we use the following conventions to ease the presentation. Given an evidence model M = (X, E 0 , V ) (or, a topoe-model M = (X, E 0 , τ, V ) defined later), we call any subset P ⊆ X a proposition. We say a proposition P ⊆ X is true at x if x ∈ P . The Boolean connectives ¬, ∧, ∨, →, on propositions are defined standardly as set operations: for any P, Q ⊆ X, we set ¬P := X\P , P ∧ Q :

= P ∩ Q, P ∨ Q := P ∪ Q and P → Q := (X\P ) ∪ Q.
Moreover, the Boolean constants and ⊥ are given as := X and ⊥ := ∅. Following this convention, we define the semantics of the aforementioned modal operators for evidence, belief and knowledge introduced in Tables 5.1-5.3 as set operators from P(X) to P(X) (and for the binary modality of conditional belief, from P(X) × P(X) to P(X)). These set operators give rise to the interpretations of the corresponding modalities of the full language L (given in Section 5.6) in a standard way.

Definition. [Evidential Support

] Given an evidence model M=(X, E 0 , V ) and a proposition P ⊆ X, a body of evidence F supports P if P is true in every state satisfying all the evidence in F , i.e., if F ⊆ P .

It is easy to see that a body of evidence F is inconsistent iff it supports every proposition (since ∅ ⊆ P , for all P ). The strength order between bodies of evidence is given by inclusion: F ⊆ F means that F is at least as strong as F . Note that stronger bodies of evidence support more propositions: if F ⊆ F then every proposition supported by F is also supported by F . A body of evidence is maximal ("strongest") if it is a maximal element of the poset (F, ⊆), i.e., if it is not a proper subset of any other such body. We denote by

M ax ⊆ F := {F ∈ F | (∀F ∈ F)(F ⊆ F ⇒ F = F )}
the family of all maximal bodies of evidence of a given evidence model. By Zorn's Lemma, every body of evidence can be strengthened to a maximal body of evidence, i.e.,

∀F ∈ F ∃F ∈ M ax ⊆ F(F ⊆ F ).
Therefore, in particular, every evidence model has at least one maximal body of evidence, that is, M ax ⊆ F = ∅.

In fact, for finite bodies of evidence, the notions of evidential support and strength can be represented in a more concise way via the notion of combined evidence, which, to anticipate further, is represented by basic open sets of the evidential topology generated from E 0 (see Section 5.2.2).

Combined Evidence and Evidential Basis

Definition. [Combined Evidence]

Given an evidence model M = (X, E 0 , V ), a combined evidence (or, evidence, for short) is any nonempty intersection of finitely many basic evidence pieces. In other words, a nonempty subset e ⊆ X is a combined evidence if e = F , for some F ∈ F f in .

A combined evidence therefore is just a repackaging of a finite body of evidence in terms of its intersection. We denote by

E := { F | F ∈ F f in }
the family of all (combined) evidence, which in fact constitutes a topological basis over X. We will return to the topological versions of evidence models in Section 5.2.2.

The definitions evidential support and strength are adapted for the elements of E in an obvious way. A (combined) evidence e ∈ E supports a proposition P ⊆ X if e ⊆ P . In this case, we also say that e is evidence for P . The natural strength order between combined evidence sets therefore is given by the reverse inclusion: e ⊇ e means that e is at least as strong as e. This is both to fit with the strength order on bodies of evidence (since F ⊆ F implies F ⊇ F ), and to ensure that stronger evidence supports more propositions (since, if e ⊇ e , then every proposition supported by e is supported by e ).

Recall that E 0 represents the collection of evidence pieces that are directly observed by the agent. The elements of the derived set E therefore serve as indirect evidence which is obtained by combining finitely many pieces of direct evidence together in a consistent way. This does not mean that all of this evidence is necessarily true. We say that some (basic or combined) evidence e ∈ E is factive evidence at state x ∈ X whenever it is true at x, i.e., if x ∈ e. Similarly, a body of evidence F is factive if all the pieces of evidence in F are factive, i.e., if x ∈ F .

Having presented the primary semantic concepts used in the representation of (basic and combined) evidence, we proceed with our topological setting.

Evidence on Topological Evidence Models

For any nonempty set X and any family Σ of subsets of X, we can construct a topology on this domain by simply closing Σ under finite intersections and arbitrary unions (see Section 2.2). Therefore, every evidence model M = (X, E 0 , V ) can be associated with an evidential topology that is generated by the set of basic evidence pieces E 0 , or equivalently, by the family of all combined evidence E. In this section, we introduce the topological evidence models, generated from evidence models of van Benthem and Pacuit (2011) in the above described way, and provide topological formalizations of a notion of argument and a "coherentist" form of justification (in the spirit of [START_REF] Lehrer | Theory of Knowledge[END_REF] based on the topological models. We moreover give the precise interpretations of the modalities E 0 ϕ and Eϕ for basic and combined evidence possession, respectively, as well as their factive versions 2 0 ϕ and 2ϕ.

Definition. [Topological Evidence Model]

A topological evidence model (or, in short, a topo-e-model) is a tuple M = (X, E 0 , τ, V ), where (X, E 0 , V ) is an evidence model and τ = τ E is the topology generated by the family of combined evidence E (or equivalently, by the family of basic evidence sets E 0 ), which is called the evidential topology.

The families E 0 and E obviously generate the same topology: E is the closure of E 0 under nonempty finite intersections. We denote the evidential topology by τ E only because the family E of combined evidence forms a basis of this topology. Since any family E 0 ⊆ P(X) generates a topology over X, topo-e-models are just another presentation of evidence models described in Definition 5.2.1. We use this special terminology to stress our focus on the topology, and to avoid ambiguities, since our definition of belief in topo-e-models will be different from the definition of belief in evidence models of [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF].

Argument and Justification. Given a topo-e-model M = (X, E 0 , τ, V ) and a proposition P ⊆ X, we say

• an argument for P is a union U = E of some nonempty family of (combined) evidence E ⊆ E, each separately supporting P (i.e., e ⊆ P for all e ∈ E , or equivalently, U ⊆ P ).

Epistemologically, an argument for P provides multiple evidential paths e ∈ E to support the common conclusion P . Topologically, an argument for P is the same as a nonempty open subset of P : a set of states U is an argument for P iff U ∈ τ and U ⊆ P . Therefore, the open Int(P ) forms the weakest (most general) argument for P , since it is the largest open subset of P .

• A justification for P is an argument U for P that is consistent with every (combined) evidence (i.e., U ∩ e = ∅ for all e ∈ E, that is,

U ∩ U = ∅ for all U ∈ τ \{∅}).
Justifications are thus defined to be arguments that are undefeated (i.e., whose negations are not supported) by any available evidence or any other argument based on this evidence. Topologically, a justification for P is just a dense open subset of P : a set of states U is a justification for P iff U ∈ τ such that U ⊆ P and Cl (U ) = X. As for evidence, an argument or a justification U for P is said to be factive (or "correct") if it is true in the actual world, i.e., if x ∈ U .

The fact that arguments are open in the generated topology encodes the principle that any argument should be evidence-based : whenever an argument is correct, then it is supported by some factive evidence. To anticipate further: in our setting, justifications will form the basis of belief, while correct justifications will form the basis of fallible (defeasible) knowledge. But before moving to justified belief and fallible knowledge, we introduce a stronger, irrevocable form of knowledge that is captured by the global modality.

Infallible Knowledge: possessing hard information. We use [∀] for the so-called global modality, which associates to every proposition P ⊆ X, some other proposition [∀]P , given by putting:

[∀]P := X if P = X ∅ otherwise.
In other words, [∀]P holds (at any state) iff P holds at all states. In this setting, [∀]P is interpreted as "absolutely certain, infallible knowledge", defined as truth in all the worlds that are consistent with the agent's information 6 . This is a limit notion capturing a very strong form of knowledge encompassing all epistemic possibilities. It is irrevocable, i.e., it cannot be lost or weakened by any information gathered later. In this respect, [∀]P could be best described as possession of hard information. Its dual [∃]P := ¬[∀]¬P expresses the fact that P is consistent with (all) the agent's hard information.

We would like to note here that infallible knowledge [∀]ϕ is not the most interesting notion of knowledge we study in this chapter, and it is harshly criticized by many epistemologists (see, e.g., [START_REF] Hintikka | Knowledge and Belief: An Introduction to the Logic of the Two Notions[END_REF]. However, having this strong modality in our framework is useful for both conceptual and technical reasons: while it helps us to see the difference between infallible and fallible knowledge, the global modality, in general, adds to the expressive power of modal languages. In particular, it will allow us to express all the other modalities we work with in terms of only the modalities 2 0 ϕ and 2ϕ when interacting with the global modality [∀]ϕ (see Proposition 5.6.2).

Having Basic Evidence for a Proposition. Van Benthem and Pacuit (2011) define, for every proposition P ⊆ X, another proposition E 0 P by 7 :

E 0 P := X if ∃e ∈ E 0 (e ⊆ P ) ∅ otherwise.
The modal sentence E 0 P therefore intends to capture possession of basic (direct) evidence for the proposition P , thus reads as "the agent has basic evidence for P ".

In other words, E 0 P states that P is supported by some basic piece of evidence.

Additionally, we introduce a factive version of this proposition, 2 0 P , that is read as "the agent has factive basic evidence for P ", and is given by

2 0 P := {x ∈ X | ∃e ∈ E 0 (x ∈ e ⊆ P )}.
6 In a multi-agent model, some worlds might be consistent with one agent's information, while being ruled out by another agent's information. Therefore, in a multi-agent setting, [∀ i ] will only quantify over all the states in agent i's current information cell (according to a partition Π i of the state space reflecting agent i's hard information). We will present a multi-agent epistemic system in Chapter 8.

7 Van Benthem and Pacuit ( 2011) denote this by 2P , and it is denoted by [E]P in [START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF]. We use E 0 P for this notion, since we reserve the notation EP for having combined evidence for P , and 2P for having combined factive evidence for P .

Having (Combined) Evidence for a Proposition. The above notions of evidence possession based on having basic evidence for a propositions can be generalized to having (combined) evidence for a proposition. This way, we obtain two other evidence operators: EP , meaning that "the agent has (combined) evidence for P ", and 2P , meaning that "the agent has factive (combined) evidence for P ". More precisely, EP and 2P are given as follows:

EP := X if ∃e ∈ E (e ⊆ P ) ∅ otherwise 2P := {x ∈ X | ∃e ∈ E (x ∈ e ⊆ P )}.
Since E is a basis of the evidential topology τ E , we have that the agent has evidence for a proposition P iff she has an argument for P . So EP can also be interpreted as "having an argument for P ". Similarly, 2P can be interpreted as "having a correct argument for P ". Moreover, 2 operator for having combined factive evidence coincides with the topological interior operator (see equations (3.1)-(3.3) in Section 3.2), thus, it coincides with the knowledge operator under the interior semantics presented in Chapter 3. This observation therefore points to a major difference between the framework introduced in this chapter and the approach based on the interior semantics presented in Chapters 3 and 4: while in the interior semantics the interior operator represents "knowledge of" something, in our interpretation the interior represents only "having true evidence for" something. The difference arises from the fact that an agent may be in possession of some evidence that happens to be true, without the agent necessarily knowing, or even believing, that this evidence is true. To better understand the difference, we need a topological understanding of belief.

Justified Belief

In this section, we propose a topological semantics for a notion of evidence-based justified belief. We do this by modifying, and in a sense, eliminating the "bugs" in the belief definition proposed by van Benthem and Pacuit ( 2011) based on evidence models. While our proposal coincides with that of van Benthem and Pacuit (2011) on evidence models carrying a finite set of basic evidence pieces E 0 and in some infinite cases, in general ours is "better" behaved. To name a few reasons, among others, our proposal leads to a notion of belief that is topologically natural, always consistent, and in fact, it satisfies the axioms of the standard doxastic logic KD45 on all topo-e-models. To better explain the origins and inspiration of our proposal, we first recapitulate the belief definition of van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. We then introduce our definition of justified belief, and show how and when the two proposals coincide. We also provide several equivalent characterizations of our proposed notion of justified belief, and generalize this setting for conditional beliefs.

Belief à la van Benthem and Pacuit

In their work, van Benthem and Pacuit ( 2011) present an evidence-based notion of belief defined on the evidence models. According to their definition, P is believed iff every maximal (i.e., strongest) body of evidence supports P .

We denote this notion by Bel. More formally, given an evidence model M = (X, E 0 , V ) and a proposition P ⊆ X, BelP holds (at any state) iff (∀F ∈ M ax ⊆ F)( F ⊆ P ).8 

However, as can be seen directly from the above definition, Bel is inconsistent on evidence models whose every maximal body of evidence is inconsistent.

5.3.1.

Example. Consider the evidence model M = (N, E 0 , V ), where the state space is the set N of natural numbers, V (p) = ∅, and the basic evidence family is

E 0 = {[n, ∞) | n ∈ N} (see Figure 5.

1). The only maximal body of evidence in

E 0 is E 0 itself. However, E 0 = ∅. So Bel⊥ holds in M. . . . . . . . . . 1 2 3 4 Figure 5.1: M = (N, E 0 , V )
This phenomenon only happens in (some cases of) infinite models, so it is not due to the inherent mutual inconsistency of the available evidence. At a high level, the source of the problem seems to be the tension between the way the agent combines her evidence pieces and the way she forms her beliefs based her evidence: while she puts her evidence pieces together in a finitely consistent way, having consistent beliefs requires possibly infinite collections to have nonempty

x E y iff (∀e ∈ E 0 )(x ∈ e implies y ∈ e) iff (∀e ∈ E)(x ∈ e implies y ∈ e),
and applying the standard semantics of belief on plausibility models as "truth in all the most plausible states". The relation between evidence models and plausibility models, as well as the connection between the notions of belief defined on these structures are subtle. We skip the details on this issue here, and refer to (van Benthem and Pacuit, 2011, Section 5) and (van Benthem et al., 2014, Section 3) for details.

intersections. More precisely, even though it is guaranteed by definition that every finite subfamily of a maximal body of evidence is consistent, the whole maximal body of evidence may actually be inconsistent. Therefore, in order to avoid this problem, we could instead focus on maximal finite bodies of evidence as blocks of evidence forming beliefs: these are, by definition, guaranteed to be always consistent. However, this solution inevitably restricts the class of evidence models we can work with, simply because an infinite evidence model might not bear any maximal finite body of evidence. To illustrate this, we can think of the evidence model presented in Example 5.3.1: the set of basic evidence E 0 is the only maximal body of evidence in (N, E 0 , V ), and it is infinite. Therefore, in order to eventually be able to provide a belief logic of all evidence models that formalizes a notion of consistent belief, further adjustments in the definition of Bel are warranted. To this end, we propose to "weaken" the belief definition of van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF] in the sense that we focus on all finite bodies of evidence that are "strong enough" instead of focusing on all the "strongest" such bodies.

Our Justified Belief

It seems to us that the intended goal (only partially fulfilled) in (van Benthem and Pacuit, 2011) was to ensure that the agents are able to form consistent beliefs based on the (possibly false and possibly mutually contradictory) available evidence. We think this to be a natural requirement for idealized rational agents, and so we consider doxastic inconsistency to be "a bug, not a feature", of the van Benthem-Pacuit framework. Hence, we now propose a notion that produces in a natural way-with no need for further restrictions-only consistent beliefs, and also that agrees with the one in (van Benthem and Pacuit, 2011) in many cases specified below. The intuition behind our proposal is that a proposition P is believed iff it is supported by all "sufficiently strong" evidence. We therefore say that P is believed, and write BP , iff every finite body of evidence can be strengthened to some finite body of evidence which supports P . More formally, given an evidence model M = (X, E 0 , V ) and a proposition P ⊆ X, BP holds (at any state

) iff ∀F ∈ F f in ∃F ∈ F f in (F ⊆ F and F ⊆ P ).
The notion of belief B (like Bel) is a "global" notion, which depends only on the agent's evidence, not on the actual world, so it is either true in all possible worlds, or false in all possible worlds. We therefore have

BP := X if ∀F ∈ F f in ∃F ∈ F f in (F ⊆ F and F ⊆ P ) ∅ otherwise.
This reflects the assumption that beliefs are internal (and fully transparent) to the agent (Baltag et al., 2008).

It is easy to see that, unlike Bel, our notion of belief B is always consistent (i.e., B⊥ = B∅ = ∅), since no finite body of evidence has an empty intersection. Moreover, it satisfies the axioms of the standard doxastic logic KD45 (see Section 5.6.2). As shown in Example 5.3.2, our notion of belief B and Bel are in general incompatible (even in cases when Bel is consistent). On the other hand, these two notions coincide on a restricted class of evidence models (see Proposition 5.3.3).

5.3.2.

Example. We now present two models showing that B and Bel are not comparable in general. More precisely, the first example below illustrates that BP does not imply BelP , and the second model shows that BelP does not imply BP even when Bel is consistent.

Consider the evidence model M = (N ∪ {♠}, E 0 , V ), where N is the set of natural numbers, V (p) = ∅, and the set of basic evidence is

E 0 = {e i | i ∈ N} ∪ {{n} | n ∈ N} where e i = [i, ∞) ∪ {♠} (see Figure 5.2). . . . . . . ♠ 1 e 1 2 e 2 3 e 3 4 e 4 Figure 5.2: M = (N ∪ {♠}, E 0 , V )
We then have that

M ax ⊆ (F) = {{e i | i ∈ N}} ∪ {{e i | i ≤ n} ∪ {{m}} | n, m ∈ N with m ≥ n}.
Therefore, for any F ∈M ax ⊆ (F), we have

F = {♠} if F = {e i | i ∈ N}, {m} if F = {e i | i ≤ n} ∪ {{m}} with m ≥ n.
We thus obtain that F ∈M ax ⊆ (F ) F = N∪{♠}. This means that Bel(N∪{♠}) = Bel holds in M, and moreover, N ∪ {♠} is the only proposition that is believed according to the belief definition of van Benthem and Pacuit ( 2011). Thus, in particular, Bel(N) = ∅, hence, Bel(N) does not hold in M (i.e., no state in N ∪ {♠} makes Bel(N) true). On the other hand, we have

F ∈ F f in iff F = {e i | i ∈ I}, or F = {e i | i ∈ I} ∪ {{m}} for some I ⊆ f in N and m ≥ max(I),
where max(I) is the greatest natural number in I. Therefore, for every F ∈ F f in , we have

F = [max(I), ∞) ∪ {♠} if F = {e i | i ∈ I}, {m} if F = {e i | i ∈ I} ∪ {{m}} for m ≥ max(I).
This implies that, any finite body F of the form 

{e i | i ∈ I} ∪ {{m}} already supports N. Moreover, if F = {e i | i ∈ I},
E 0 = {[n, ∞) ∪ {♠} | n ∈ N} (see Figure 5.3). The only maximal body of evidence in E 0 is E 0 . . . . . . ♠ 1 2 3 4 Figure 5.3: M = (N ∪ {♠}, E 0 , V )
itself, and E 0 = {♠}. Therefore, we have ¬Bel⊥ in M , i.e., Bel is consistent in M . Moreover, in particular, Bel{♠} holds in M. On the other hand, for all finite bodies F ∈ F f in , we have {♠} F , implying that ¬B{♠} in M . Therefore, even when Bel is consistent, BelP does not imply BP .

There are some special cases where Bel and B do coincide. First of all, our notion of belief B coincides with Bel on the evidence models with finite basic evidence sets E 0 . More generally, Bel and B coincide on all maximally compact evidence models: the ones in which every body of evidence is equivalent to a finite body of evidence. More formally, an evidence model M = (X, E 0 , V ) is called maximally compact if it satisfies the property

∀F ∈ F∃F ∈ F f in ( F = F ) (MC) 5.3.3.
Proposition. For all maximally compact evidence models M=(X, E 0 , V ) and P ⊆ X, we have BelP = BP .

Proof:

Let M = (X, E 0 , V ) be a maximally compact evidence model and P ⊆ X. (⊆) Suppose BelP holds in M, i.e., suppose that for all F ∈ M ax ⊆ F, we have

F ⊆ P . Now let F ∈ F f in . By Zorn's Lemma, F can be extended to a maximal body of evidence F ∈ F. Note that, since F extends F , i.e., F ⊆ F , we have F ⊆ F . Since M is maximally compact, there is F 0 ∈ F f in such that F = F 0 . Now consider the family of evidence F 0 ∪ F . Since F 0 = F ⊆ F , we have (F 0 ∪ F ) = F 0 ∩ F = F 0 = ∅. Therefore, the family of evidence F 0 ∪ F is a finite body of evidence, i.e., F 0 ∪ F ∈ F f in . Obviously, F 0 ∪ F extends F , i.e., F ⊆ F 0 ∪ F . Moreover, since BelP holds in M, we have that F ⊆ P . We then obtain (F 0 ∪ F ) = F 0 = F ⊆ P .
We have therefore proven that the finite body of evidence F 0 ∪ F extends F and it entails P . As F has been chosen arbitrarily from F f in , we conclude that BP holds in M.

(⊇) Suppose BP holds in M, i.e., suppose that for all F ∈ F f in , there exists

F ∈ F f in such that F ⊆ F and F ⊆ P . Let F ∈ M ax ⊆ F. Then, since M is maximally compact, there exists F 0 ∈ F f in such that F = F 0 . Moreover, since BP holds in M, there exists F 1 ∈ F f in such that F 0 ⊆ F 1 and F 1 ⊆ P . Besides, since F 1 ⊆ F 0 = F and F is maximal, we in fact have F 1 ⊆ F (otherwise, there exists e ∈ E 0 such that e ∈ F 1 but e ∈ F . Therefore, as F 1 ⊆
F , we would have F 1 ⊆ (F ∪ {e}), and thus (F ∪ {e}) = ∅, contradicting maximality of F .) Therefore, F ⊆ F 1 , and thus, F 1 = F . Then, together with F 1 ⊆ P , we obtain F ⊆ P . As F has been chosen arbitrarily from M ax ⊆ F, we conclude that BelP holds in M. 2Another important feature of our belief definition is that B is a purely topological notion, as stated in the following proposition which, in turn, constitutes a justification for our use of topo-e-models rather than working with only evidence models.

Proposition.

In every topo-e-model M = (X, E 0 , τ, V ), the following are equivalent, for any proposition P ⊆ X:

1. BP holds (at any state) (i.e., ∀F ∈ F f in ∃F ∈ F f in (F ⊆ F and F ⊆ P ));
2. every evidence can be strengthened to some evidence supporting P (i.e., ∀e ∈ E ∃e ∈ E(e ⊆ e ∩ P ));

3. every argument (for anything) can be strengthened to an argument for P (i.e., ∀U ∈ τ \{∅} ∃U ∈ τ \{∅}(U ⊆ U ∩ P ));

4. there is a justification for P , i.e., there is some argument for P which is consistent with any available evidence (i.e., ∃U ∈ τ (U ⊆ P and ∀e ∈ E(U ∩ e = ∅)));

5. P includes some dense open set (i.e., ∃U ∈ τ (U ⊆ P and Cl (U ) = X));

6. Int(P ) is dense in τ (i.e., Cl (Int(P )) = X), or equivalently, X\P is nowhere dense (i.e., Int(Cl (X\P )) = ∅);

7.

[∀]32P holds (at any state) (i.e., [∀]32P = X), or equivalently, [∀]32P = ∅.

Proof:

The equivalence between ( 1), ( 2) and ( 3) is easy, and follows directly from definitions of combined evidence and argument. The equivalence of ( 5) and ( 6) is also straightforward (recall that Int(P ) is the largest open contained in P ). The equivalence between ( 4) and ( 5) simply follows from the definitions of arguments and dense sets. For the equivalence of ( 6) and ( 7), recall that [∀] is the global modality, 2 is interior and 3 is closure. For the equivalence of ( 3) and ( 4):

(3)⇒( 4): Suppose ( 3) holds and consider the open set Int(P ). We will show that Int(P ) is a justification for P , i.e., Int(P ) ∩ e = ∅ for all e ∈ E. Let e ∈ E. By ( 3), since e ∈ E ⊆ τ \{∅}, there exists U 0 ∈ τ \{∅} such that U 0 ⊆ e ∩ P . We then have Int(U 0 ) ⊆ Int(e ∩ P ) = Int(e) ∩ Int(P ). Therefore, since U 0 and e are open sets, we obtain U 0 ⊆ e∩Int(P ). As U 0 = ∅, we conclude that e∩Int(P ) = ∅.

(4)⇒( 3): Suppose (4) holds, i.e., suppose that there exists

U 0 ∈ τ such that (a) U 0 ⊆ P and (b) U 0 ∩ e = ∅ for all e ∈ E. Let U ∈ τ with U = ∅. Now consider the open set U ∩ U 0 . Since E is a basis of τ , there exists e ∈ E such that e ⊆ U . Therefore, by (b), the intersection U ∩ U 0 = ∅, thus, U ∩ U 0 ∈ τ \{∅}. By (a), we also have U ∩ U 0 ⊆ U ∩ P . 2 
Proposition 5.3.4 deserves a closer look as it describes the topological properties of our notion of belief, as well as states that our belief is the same as justified belief that is coherent with every available evidence. The equivalence between ( 1), ( 2) and ( 3) shows that we can define BP in equivalent ways by using only basic evidence pieces (i.e., the elements of E 0 ), or by using only combined evidence (i.e., the elements of E), or by using only the open sets of the generated evidential topology τ E . proves that our definition of belief indeed gives us a conception of evidentially justified belief. The requirement that any justification of a believed proposition must be open in the evidential topology simply means that the justification is ultimately based on the available evidence; while the requirement that the justification is dense (in the same topology) means that all the agent's beliefs must be coherent with all her evidence. Therefore, believed propositions, according to our definition, are those for which there is some evidential justification that is consistent with all available (basic or combined) evidence. Moreover, whenever a proposition P is believed, there exists a weakest (most general) justification for P , namely the open set Int(P ). Proposition 5.3.4-(5-7) provide topological reformulations of the above items. In particular, shows that our proposal is very natural from a topological perspective: it is equivalent to saying that P is believed iff the complement of P is nowhere dense. Since nowhere dense sets are one of the topological concepts of "small" or "negligible" sets, this amounts to believing propositions iff they are true in almost all epistemically-possible worlds, where "almost all" spelled out topologically as "everywhere but a nowhere dense part of the model". Finally, tells us that belief is definable in terms of the operators [∀] and 2.

We will provide further technical results such as the soundness and completeness of the belief logic with respect to the topo-e-models in Section 5.6.2. We now proceed with formalizing a notion of conditional beliefs on topo-e-models.

Conditional Belief on Topo-e-models

The belief semantics given in Section 5.3.2 can be generalized to conditional beliefs B Q P by relativizing the simple belief definition BP to the given condition Q, in a way similar to how we obtained conditional belief semantics in Section 4.3.2. However, this current setting requires a somewhat more careful treatment (as recognized already in van Benthem and Pacuit, 2011) since some of the agent's evidence might be inconsistent with the condition Q. While evaluating beliefs under the assumption that the given condition Q is true, one should focus only on the evidence that is consistent with Q by neglecting the evidence pieces that are disjoint with Q. Therefore, in order to define conditional beliefs, we need a "relativized" version of the notion of consistent (bodies of) evidence.

Given an evidence model M = (X, E 0 , V ), for any subsets

Q, A ⊆ X, we say that A is Q-consistent iff Q ∩ A = ∅. Moreover, a body of evidence F is called Q-consistent iff F ∩ Q = ∅.
We can then define conditional beliefs based on these notions of "conditional consistency". We say that P is believed given Q, and write B Q P , iff every finite Q-consistent body of evidence can be strengthened to some finite Q-consistent body of evidence supporting the proposition Q → P (i.e. ¬Q ∪ P )).

An analogue of Proposition 5.3.4 providing different characterizations can also be proven for conditional belief: 5.3.5. Proposition. In every topo-e-model M = (X, E 0 , τ, V ), the following are equivalent, for any two propositions P, Q ⊆ X with Q = ∅:

1. B Q P holds (at any state); 2. every Q-consistent evidence can be strengthened to some Q-consistent evidence supporting

Q → P (i.e., ∀e ∈ E(e ∩ Q = ∅ ⇒ ∃e ∈ E(e ∩ Q = ∅ and e ⊆ e ∩ (Q → P )))); 3. every Q-consistent argument can be strengthened to a Q-consistent argument for Q → P (i.e., ∀U ∈ τ (U ∩ Q = ∅ ⇒ ∃U ∈ τ (U ∩ Q = ∅ and U ⊆ U ∩ (Q → P )))); 4. there is some Q-consistent argument for Q → P whose intersection with any Q-consistent evidence is Q-consistent (i.e., ∃U ∈ τ (U ∩ Q = ∅ and U ⊆ Q → P and ∀e ∈ E(e ∩ Q = ∅ ⇒ (U ∩ e) ∩ Q = ∅))); 5. Q → P includes some Q-consistent open set which is dense in Q (i.e., ∃U ∈ τ (U ∩ Q = ∅ and U ⊆ Q → P and Q ⊆ Cl (U ∩ Q))); 6. Int(Q → P ) is dense in Q (i.e., Q ⊆ Cl (Q ∩ Int(Q → P ))); 7. ∀(Q → 3(Q∧2(Q → P ))) holds (at any state ) (i.e., ∀(Q → 3(Q∧2(Q → P ))) = X), or equivalently, ∀(Q → 3(Q ∧ 2(Q → P ))) = ∅.
Proof:

The equivalence between ( 1), ( 2), ( 3) is easy and directly follows from the semantics of B Q P , and the definitions of Q-consistent evidence and Q-consistent argument. For the equivalence between ( 5) and ( 6), consider the weakest argument Int(Q → P ) for Q → P . And, for the equivalence of ( 6) and ( 7), recall that [∀] is the universal quantifier, 2 is interior and 3 is closure. We here show only the equivalence between ( 3) and ( 4), and between ( 4) and ( 5) in details.

(3)⇒( 4): Suppose ( 3) holds and consider the weakest argument Int(Q → P ) for Q → P . Since X ∈ E and X is Q-consistent, by ( 3), there exists a stronger

U ∈ τ such that U ∩ Q = ∅ and U ⊆ Q → P . Since Int(Q → P ) is the largest open with Int(Q → P ) ⊆ Q → P , we obtain U ⊆ Int(Q → P ) ⊆ Q → P for any such U , therefore, Int(Q → P ) is also Q-consistent. Let e ∈ E be such that e ∩ Q = ∅. Therefore, since E ⊆ τ , by (3), there exists U ∈ τ such that U ∩ Q = ∅ and U ⊆ e ∩ (Q → P ). By the previous argument, we know that U ⊆ Int(Q → P ), thus, U ⊆ e ∩ Int(Q → P ) = ∅. And, since U is Q-consistent, the result follows.
(4)⇒( 3): Suppose (4) holds, i.e., suppose that there is (4)⇔( 5): For the left-to-right direction, suppose (4) holds as in the above case, and toward showing Q ⊆ Cl (U 0 ∩ Q), let x ∈ Q and e ∈ E such that x ∈ e. Therefore, e is Q-consistent, i.e., e ∩ Q = ∅. Then, by (4), we obtain

U 0 ∈ τ such that (a) U 0 ∩ Q = ∅, (b) U 0 ⊆ Q → P and (c) for all e ∈ E with e ∩ Q = ∅, we have (U 0 ∩ e) ∩ Q = ∅. Let U ∈ τ be such that U ∩ Q = ∅
(U 0 ∩ e) ∩ Q = ∅, implying that x ∈ Cl (U 0 ∩ Q).
For the right-to-left direction, suppose ( 5) holds with U 0 the witness and let e ∈ E be such that e ∩ Q = ∅. This means that there is y ∈ e ∩ Q, thus, y ∈ Q. Then, by ( 5

), y ∈ Cl (U 0 ∩ Q). Therefore, as y ∈ e ∈ E, we conclude (U 0 ∩ Q) ∩ e = ∅. 2 

Evidence Dynamics

What we have presented so far focuses on how an agent forms beliefs based on a fixed collection of evidence pieces she has gathered so far. However, collecting and evaluating evidence is not a one-time process: the agent might receive further information or re-evaluate her current evidence set, thus, she might need to revise her beliefs and knowledge accordingly. There are different ways one can incorporate new information into the initial evidence structure depending on, e.g., the information source and how the agent regards the new information. Van Benthem and Pacuit ( 2011) presents a wide range of evidence dynamics as model transformations, and in this section, we study their dynamic operators such as public announcements, evidence addition, evidence upgrade and (a feasible version of) evidence combination implemented on topo-e-models. While the only domain changing operator is the so-called updates for public announcemets; evidence addition, upgrade and combination only affect the agent's initial basic evidence set E 0 , and thus the combined evidence set E and the generated topology τ E . We here only describe the corresponding model changes and leave the presentation of the corresponding dynamic logics for Section 5.6.6. Throughout this section, we are given a topo-e-model M = (X, E 0 , τ, V ) and some proposition P ⊆ X, with P = ∅.

Public Annoucements. Public announcements involve learning a new fact P with absolute certainty. The announced proposition P is taken as "hard information", that is, a true information coming from an infallible source. The standard way of interpreting this-as also mentioned in Section 4.2.2-is via model restrictions, both on relational and neighbourhood structures (see, e.g., Definition 4.2.4). For evidence models, this means keeping only the worlds in P and only the P -consistent evidence pieces. Topologically, this is a move from the original space (X, τ ) to the subspace (P, τ P ) induced by P .

Definition. [Public Announcements]

The model M !P = (X !P , E !P 0 , τ !P , V !P ) is defined as follows: X !P = P , E !P 0 = {e ∩ P | e ∈ E 0 with e ∩ P = ∅}, τ !P = {U ∩ P | U ∈ τ }, and

V !P (p) = V (p) ∩ P for each p ∈ prop.
It is easy to check that M !P is a topo-e-model with the set of combined evidence

E !P = {e ∩ P | e ∈ E with e ∩ P = ∅}.
Evidence addition. An agent can also regard and admit the new information on par with her old evidence without assuming it is hard information. In this case, the natural thing to do is to add the new piece of evidence to the initial basic evidence set and generate the evidential topology from the new evidence collection. This action simply describes the most straightforward way an agent collects individually consistent evidence pieces.

Definition. [Evidence Addition]

The model M +P = (X +P , E +P 0 , τ +P , V +P ) is defined as follows:

X +P = X, E +P 0 = E 0 ∪ {P }, τ +P
is the topology generated by E +P 0 , and

V +P = V .
Again, M +P is a topo-e-model, since ∅ ∈ E +P 0 and X +P = X ∈ E +P 0 , and τ +P is the evidential topology generated by E +P 0 . Moreover, the set of combined evidence E +P of M +P can be described as

E +P = E ∪ {e ∩ P | e ∈ E with e ∩ P = ∅},
which clearly constitutes a basis for τ +P .

Evidence upgrade. The operator of evidence upgrade ⇑P incorporates P into all other pieces of evidence, thus making P the most important available evidence.

Definition. [Evidence Upgrade]

The model M ⇑P = (X ⇑P , E ⇑P 0 , τ ⇑P , V ⇑P ) is defined as follows:

X ⇑P = X, E ⇑P 0 = {e ∪ P | e ∈ E 0 } ∪ {P }, τ ⇑P is the topology generated by E ⇑P 0 , and V ⇑P = V .
M ⇑P is obviously a topo-e-model for the same reasons given above, and the set of combined evidence E ⇑P of M ⇑P can be described as

E ⇑P = {e ∪ P | e ∈ E} ∪ {P }.
The following observation proves that evidence upgrade with P in fact makes the proposition P the most important evidence piece in the sense that the believed propositions in M ⇑P are exactly those entailed by P . 5.4.4. Proposition. Given a topo-e-model M = (X, E 0 , τ, V ) and propositions P, Q ⊆ X with P, Q = ∅,

P ⊆ Q iff BQ holds in M ⇑P .
Proof: Suppose P ⊆ Q. This means, by definition of E ⇑P , that there is no argument in M ⇑P that supports Q (since every element e of E ⇑P includes P ). Therefore, by , we obtain that BQ does not hold in M ⇑P . For the other direction, suppose P ⊆ Q and let e ∈ E ⇑P . By the definition of E ⇑P , either e = P or there is e ∈ E such that e = e ∪ P . If e = P , then obviously e ∩ Q = P ∩ Q = P = ∅ (where we used the assumption P

⊆ Q). If e = e ∪ P , then e ∩ Q = (e ∪ P ) ∩ Q = (e ∩ Q) ∪ (P ∩ Q) = (e ∩ Q) ∪ P ⊇ P = ∅ (
where we again used the assumption P ⊆ Q). Therefore, by , we obtain that BQ holds in M ⇑P .

2

Feasible evidence combination. Another dynamic operation considered in (van Benthem and Pacuit, 2011) is evidence combination. We here adapt it to our topological setting, which assumes that agents can combine only finitely many pieces of evidence at a given time. This is what we call feasible evidence combination, in contrast to the infinitary combinations allowed in [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. The dynamic operation of evidence combination is concerned with internal re-evaluation of the evidence pieces the agent possesses, it does not involve any new external information. Feasible evidence combination, intuitively speaking, produces a model in which every evidence previously regarded as combined evidence becomes a basic piece of evidence.

Definition. [Feasible Evidence Combination]

The model

M # = (X # , E # 0 , τ # , V #
) is defined as follows: X # = X, E # 0 is the smallest set closed under nonempty, finite intersections and containing E 0 , and τ # is the topology generated by E # 0 , and

V # = V .
M # is clearly a topo-e-model. In fact, since E # 0 is obtained by closing E 0 under finite and nonempty intersections, we have E # 0 = E # = E, and therefore, the topology stays the same, i.e., τ = τ # .

The precise syntax capturing the above evidence dynamics, and the complete axiomatizations of the corresponding logics will be provided in Section 5.6. We now continue with our proposal for a defeasible type of knowledge based on topoe-models.

Knowledge

The only notion of knowledge we have considered so far in this chapter was the socalled infallible knowledge-represented by the global modality [∀]-that conveys absolute certainty (Section 5.2.2). However, there are very few things we could know in this strong sense, maybe, say, only logical-mathematical tautologies. We now define a "softer" (weaker) notion of knowledge that approximates better the common usage of the word than infallible knowledge. In particular, in this section, we study a notion of (fallible) knowledge based on factive justification. Formally, given a topo-e-model M = (X, E 0 , τ, V ), we set

KP := {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ P and Cl (U ) = X)},
stating that KP holds at x iff P includes a dense open neighborhood of x. Similarly to the cases for belief and conditional beliefs (see Propositions 5.3.4 and 5.3.5), we can provide several equivalent definitions of KP on topo-e-models as follow.

5.5.1. Proposition. Let M = (X, E 0 , τ, V ) be a topo-e-model, and assume x ∈ X is the actual world. The following are equivalent for all P ⊆ X:

1. KP holds at x in M (i.e., ∃U ∈ τ (x ∈ U ⊆ P and Cl (U ) = X));
2. there is some factive justification for P at x, i.e., there is some factive argument for P at x which is consistent with any available evidence (i.e., ∃U ∈ τ (x ∈ U ⊆ P and ∀e ∈ E(U ∩ e = ∅)));

3. Int(P ) contains the actual state and is dense in τ (i.e., x ∈ Int(P ) and Cl (Int(P )) = X);

4. 2P ∧ BP holds at x.

Proof:

The proof is similar to the proof of Proposition 5.3.4. For the equivalence between ( 1) and ( 2), recall that E constitutes a basis for τ . The equivalence of ( 2) and ( 3) is also straightforward (recall that Int(P ) is the largest open set contained in P ). For the equivalence of ( 3) and ( 4), see Proposition 5.3.4-( 6) and recall that 2 is interpreted as the interior operator. 2Therefore, as the equivalence between Proposition 5.5.1-( 1) and ( 2) shows, we propose to define knowledge as correctly justified belief. In other words, we here study a notion of knowledge that is characterized as belief based on true justification. We would like to emphasize that the above-defined notion of knowledge does not boil down to "justified true belief". This would clearly be vulnerable to Gettier-type counterexamples [START_REF] Gettier | Is justified true belief knowledge?[END_REF]. To explain better, we illustrate the semantics we propose for justified belief and knowledge, as well as the connection between the two notions in the example below.

5.5.2. Example. Consider the topo-e-model M = ([0, 1], E 0 , τ, V ), where E 0 = {(a, b) ∩ [0, 1] | a, b ∈ R, a < b} and V (p) = ∅. The generated topology τ is the standard topology on [0, 1]. Let P = [0, 1]\{ 1 n | n ∈ N} be the proposition stating that "the actual state is not of the form 1 n , for any n ∈ N" (see Figure 5.4). Since the complement ¬P = [0, 1]\P = { 1 n | n ∈ N} is nowhere dense (i.e., Int(Cl (¬P )) = Int(¬P ) = ∅)
, the agent believes P , and e.g.

U = n≥1 ( 1 n+1 , 1 n ) is a justification for P , that is, U is
a dense open subset of P . This belief is true at world 0 ∈ P . But this true belief is not knowledge at 0: no justification for P is true at 0, since P does not include any open neighborhood of 0, so 0 ∈ Int(P ) and hence 0 ∈ KP . This shows that KP = P ∧ BP . Moreover, P is known in all the other states x ∈ P \{0}, since Going back to Stalnaker's epistemic-doxastic system Stal, it is easy to see that K together with justified belief B satisfies Stalnaker's Full Belief principle BP = BKP (see Table 4. [START_REF]Suppose (x, U )[END_REF]. These operators in fact satisfy all the axioms and rules of the system Stal on all topo-e-models, thus, on all topological spaces, not only on the restricted class of extremally disconnected spaces. We prove the soundness and completeness of Stalnaker's system Stal with respect to all topoe-models in Section 5.6.4.

∀x ∈ P \{0} ∃ > 0(x ∈ (x -, x + ) ⊆ P ), therefore x ∈ Int(P ).
One interesting property of this weaker type of knowledge is it being defeasible in the light of new information, even when the new information is true. In contrast, the usual assumption in epistemic logic is that knowledge acquisition is monotonic. As a result, logicians typically assume that knowledge is "irrevocable": once acquired, it cannot be defeated by any further evidence gathered later. In our setting, the only irrevocable knowledge is the absolutely certain one (true in all epistemically-possible worlds), captured by the operator [∀]. Clearly, K is not irrevocable.

Knowledge is defeasible

Gettier (1963)-with his famous counterexamples against the account of knowledge as justified true belief-triggered an extensive discussion in epistemology that is concerned with understanding what knowledge is, and in particular, with identifying the exact properties and conditions that render a piece of justified true belief knowledge. Epistemologists have made various proposals such as, among others, the no false lemma [START_REF] Clark | Knowledge and grounds: A comment on Mr. Gettier's paper[END_REF], the defeasibility analysis of knowledge [START_REF] Lehrer | Knowledge: Undefeated justified true belief[END_REF][START_REF] Lehrer | Theory of Knowledge[END_REF][START_REF] Klein | A proposed definition of propositional knowledge[END_REF][START_REF] Klein | Certainty, a Refutation of Scepticism[END_REF], the sensitivity account [START_REF] Nozick | Philosophical Explanations[END_REF], the safety account [START_REF] Sosa | How to defeat opposition to moore[END_REF], and the contextualist account (DeRose, 2009)9 . While there is still very little agreement about these questions, the extent of the post-Gettier literature at the very least shows that the relation between justified belief and knowledge is very delicate, and it is not an easy task, if possible, to identify a unique notion of knowledge that can deal with all kinds of intuitive counterexamples. However, as [START_REF] Rott | Stability, strength and sensitivity: Converting belief into knowledge[END_REF] states, one can accept that all these proposals "capture important intuitions that can in some way or other be regarded as relevant to the question whether or not a given belief constitutes a piece of knowledge" (Rott, 2004, p. 469). Providing an extensive philosophical analysis regarding the aforementioned theories of knowledge is way beyond the scope of this dissertation. However, in this section, we argue that our conception of knowledge captured by the modality K is stronger than Clark's "no false lemma" [START_REF] Clark | Knowledge and grounds: A comment on Mr. Gettier's paper[END_REF], and very close to (though subtly different from) the so-called defeasibility theory of knowledge held by [START_REF] Lehrer | Knowledge: Undefeated justified true belief[END_REF]; [START_REF] Lehrer | Theory of Knowledge[END_REF]; [START_REF] Klein | A proposed definition of propositional knowledge[END_REF][START_REF] Klein | Certainty, a Refutation of Scepticism[END_REF].

Clark's influential "no false lemma" proposal is to require a correct "justification"-one that doesn't use any falsehood-for a piece of belief to constitute knowledge [START_REF] Clark | Knowledge and grounds: A comment on Mr. Gettier's paper[END_REF]. As similar as this sounds to our knowledge K, our proposal imposes a stronger requirement than Clark's, since our concept of justification requires consistency with all the available (combined) evidence. In our terminology, Clark only requires a factive argument for P . So Clark's approach is 'local', assessing a knowledge claim based only on the truth of the evidence pieces (and the correctness of the inferences) that are used to justify it. Our proposal is coherentist, and thus 'holistic', assessing knowledge claims by their coherence with all of the agent's acceptance system: justifications need to be checked against all the other arguments that can be constructed from the agent's current evidence.

On the other hand, the defeasibility theory of knowledge, roughly speaking, defends that knowledge can be defined as justified belief that cannot be defeated by any factive evidence gathered later (though it may be defeated by false evidence). Therefore, knowledge is equated with undefeated justified belief. In its simplest version, as formalized by [START_REF] Stalnaker | On logics of knowledge and belief[END_REF], the agent knows P if and only if 1. P is true 2. she believes that P , and 3. her belief in P cannot be defeated by new factive information.

In other words, given a true proposition P , the agent knows P iff she does not give up her belief in P after receiving any true information, i.e., her belief in P is stable for true information. As [START_REF] Rott | Stability, strength and sensitivity: Converting belief into knowledge[END_REF] pointed out, this is a simple version of defeasibility theory of knowledge as it requires only the belief in P itself to be stable. For this reason, [START_REF] Rott | Stability, strength and sensitivity: Converting belief into knowledge[END_REF] calls this stable belief theory or stability theory of knowledge. The above version has been challenged for being too weak to form knowledge. The full-fledged version of the defeasibility theory, as held by Lehrer and others, insists that, in order to know P , not only the belief in P has to stay stable, but also its justification (i.e. what we call here "an argument for P ") should be undefeated. More precisely, according to this strong version of defeasibility theory, the agent knows P if and only if 1. P is true 2. she believes that P , 3. her belief in P cannot be defeated by new factive information, and 4. her justification is undefeated by new factive information.

In other words, for the agent to know P , there must exist an argument for P that is believed conditional on every true evidence. Clearly, this implies that the belief in P is stable, however, it is not at all obvious whether having stable belief in P would imply its justification being undefeated. Indeed, Lehrer claims that this is not the case. The problem is that, when confronted with various new pieces of evidence, the agent might keep switching between different justifications (for believing P ); thus, she may keep believing in P conditional on any such new true evidence, without actually having any good, robust justification (i.e., one that remains itself undefeated by all true evidence) (see Example 5.5.4). To have knowledge, we thus need a stable justification. 10However, the above interpretation (of both the stability and the defeasibility theory) was also attacked as being too strong: if we allow as potential defeaters all factive propositions (i.e. all sets of worlds P containing the actual world), then there are intuitive examples showing that knowledge KP can be defeated [START_REF] Klein | Misleading evidence and the restoration of justification[END_REF][START_REF] Klein | Certainty, a Refutation of Scepticism[END_REF]. Here is such an example discussed by [START_REF] Klein | Certainty, a Refutation of Scepticism[END_REF], a leading proponent of the defeasibility theory. Loretta filled in her federal taxes, following very carefully all the required procedures on the forms, doing all the calculations and double checking everything. Based on this evidence, she correctly believes that she owes $500, and she seems perfectly justified to believe this. So it seems obvious that she knows this. But suppose now that, being aware of her own fallibility, she asks her accountant to check her return. The accountant finds no errors (when there are in fact some errors in her calculation, yet not affecting the correct result that she owes $500), and so he sends her his reply reading "Your return contains no errors"; but he inadvertently leaves out the word "no". If Loretta would learn the true fact that the accountant's letter actually reads "Your return contains errors", she would lose her true belief that she owed $500! So it seems that there exist defeaters that are true but "misleading". We can formalize this counterexample as follows, and show that our knowledge K is neither stable nor indefeasible:

5.5.3. Example. Consider the model M = (X, E 0 , τ, V ), where X = {x 1 , x 2 , x 3 }, V (p) = ∅, E 0 = {X, O 1 , O 2 }, O 1 = {x 1 , x 2 }, O 2 = {x 2 , x 3 } (see Figure 5.5). The resulting set of combined evidence is E = {X, O 1 , O 2 , {x 2 }}. Assume the actual world is x 1 . Then O 1 is known, since x 1 ∈ Int(O 1 ) = O 1 and Cl (O 1 ) = X. Now consider the model M +O 3 = (X, E +O 3 0 , τ +O 3 , V ) obtained by adding the new ev- idence O 3 = {x 1 , x 3 } (as in Definition 5.4.2). We have E +O 3 0 = {X, O 1 , O 2 , O 3 }, so E +O 3 = {X, O 1 , O 2 , O 3 , {x 1 }, {x 2 }, {x 3 }}. Note that the new evidence is true (x 1 ∈ O 3 ). However, O 1 is not even believed in M +O 3 anymore, since O 1 ∩{x 3 } = ∅, so O 1 is no longer dense in τ +O 3 . Therefore, O 1 is no longer known after the true evidence O 3 was added! x 1 x 2 x 3 O 1 O 2 =⇒ O 3 x 1 x 2 x 3 O 1 O 2 O 3 Figure 5.5: From M to M +O 3
Klein's story corresponds to taking O 1 to represent Loretta's direct evidence (based on careful calculations) that she owes $500, O 2 to represent her prior evidence (based on past experience) that the accountant doesn't make mistakes in his replies to her, and O 3 the potential new evidence provided by the letter. In conclusion, our notion of knowledge is incompatible with the above-mentioned strong interpretations of both stability and defeasibility theory, thus confirming the objections raised against them.

Klein's solution is that one should exclude such misleading defeaters, which may "unfairly" defeat a good justification. But how can we distinguish them from genuine defeaters? Klein's diagnosis, in Foley's more succinct formulation, is that "a defeater is misleading if it justifies a falsehood in the process of defeating the justification for the target belief" (Foley, 2012, p. 96). In the example, the falsehood is that the accountant had discovered errors in Loretta's tax return. It seems that the new evidence O 3 (the existence of the letter as actually written) supports this falsehood, but how? According to us, it is the combination O 2 ∩ O 3 of the new (true) evidence O 3 with the old (false) evidence O 2 that supports the new falsehood: the true fact (about the letter saying what it says) entails a falsehood only if it is taken in conjunction with Loretta's prior evidence (or blind trust) that the accountant cannot make mistakes. So intuitively, misleading defeaters are the ones which may lead to new false conclusions when combined with some of the old evidence.

Misleading evidence and weakly indefeasible knowledge. We proceed now to formalize the distinction between misleading and genuine (i.e., nonmis-leading) defeaters. Given a topo-e-model M = (X, E 0 , τ, V ), a state x ∈ X and a proposition Q ⊆ X,

• Q is misleading at x ∈ X with respect to E if evidence-addition with Q produces some false new evidence;

equivalently, and more formally, if there is some e ∈ E +Q \E such that x ∈ e, i.e., if there is some e ∈ E such that x ∈ (e ∩ Q) and (e 

∩ Q) ∈ E ∪ {∅}. A proposition Q ⊆ X is called nonmisleading if Q is not misleading. It
(i.e., if Q ⊆ X is nonmisleading at x and Q ∈ E, then x ∈ Q).
We are now in the position to formulate precisely the "weakened" versions of both stability and defeasibility theories that we are looking for. The weak stability theory will stipulate that the agent knows P if and only if 1. P is true 2. she believes that P , 3. her belief in P cannot be defeated by any nonmisleading evidence, On the other hand, the weak defeasibility theory requires that there exists some justification (argument) for P that is undefeated by every nonmisleading proposition. More precisely, the weak defeasibility theory strengthens the above described weak stability theory by the following "stable justification" clause: 4. her belief in its justification is undefeated by any nonmisleading evidence.

Finally, we also provide a third formulation, which one might call epistemic coherence theory, saying that P is known iff there exists some justification (argument) for P which is consistent with every nonmisleading proposition. While our proposed notion of knowledge is stronger than the one described by the weak stability theory, as illustrated by Example 5.5.4, it coincides with the ones defined by the weak defeasibility and epistemic coherence theories (see Proposition 5.5.5). In particular, the following counterexample shows that weak stability is (only a necessary, but) not a sufficient condition for knowledge K: Figure 5.6). The resulting set of combined evidence is E = E 0 . Assume the actual world is x 0 , and let P = {x 0 , x 1 }. Then, P is believed in M (since its interior Int(P ) = {x 1 } is dense in τ ) but it is not known (since x 0 ∈ Int(P ) = {x 1 }). However, we can show that P is believed in M +Q for any nonmisleading Q at x 0 . For this, note that the family of nonmisleading propositions (at

5.5.4. Example. Consider the model M = (X, E 0 , τ, V ), where X = {x 0 , x 1 , x 2 }, V (p) = ∅, E 0 = {X, O 1 , O 2 } with O 1 = {x 1 }, O 2 = {x 1 , x 2 } (see
x 0 ) is E ∪ {P, {x 0 }} = {X, O 1 , O 2 , P, {x 0 }}. It is easy to see that for each set Q in this family, BP holds in M +Q . x 2 x 1 x 0 O 1 O 2 P Figure 5.6: M = (X, E 0 , V ):
The continuous ellipses represent the currently available pieces of evidence, while the dashed ones represent the other nonmisleading propositions.

One should stress that our counterexample agrees with the position taken by most proponents of the defeasibility theory: stability of (justified) belief is not enough for knowledge. Intuitively, what happens in the above example is that, although the agent continues to believe P given any nonmisleading evidence, her justification keeps changing. For example, while the only justification for believing P in M is O 1 , the evidence O 1 is no longer dense in model M +{x 0 } , therefore, cannot constitute a justification for P in M +{x 0 } . On the other hand, another argument in M +{x 0 } , namely {x 0 , x 1 } forms a justification for P in M +{x 0 } , thus P is still believed in M +{x 0 } , but, based on a different justification. Therefore, there is no uniform justification for P that works for every nonmisleading evidence Q.

The next result shows that our notion of knowledge exactly matches the weakened version of defeasibility theory, as well as the epistemic coherence formulation: 5.5.5. Proposition. Let M = (X, E 0 , τ, V ) be a topo-e-model, and x ∈ X is the actual world. The following are equivalent for all P ⊆ X:

1. KP holds at x in M.
2. There is an argument (justification) for P that cannot be defeated by any nonmisleading proposition; i.e. ∃U ∈ τ \{∅} such that U ⊆ P and BU holds in M +Q for all nonmisleading Q ⊆ X (at x with respect to E).

3.

There is an argument (justification) for P that is consistent with every nonmisleading proposition; i.e. ∃U ∈ τ \{∅} such that U ⊆ P and U ∩ Q = ∅ for all nonmisleading Q ⊆ X (at x with respect to E).

Proof:

(1) ⇒ (2): Suppose x ∈ KP . This means, by Proposition 5.5.1-( 3), that x ∈ Int(P ) and Cl (Int(P )) = X. Now consider the argument Int(P ). Obviously Int(P ) ∈ τ \{∅} and Int(P ) ⊆ P . Let Q be a nonmisleading proposition at x with respect to E, and Cl +Q and Int +Q denote the closure and the interior operators of τ +Q , respectively. We only need to show that Int +Q (Int(P )) is dense in (X, τ +Q ), i.e., that for all e ∈ E +Q , we have e ∩ Int +Q (Int(P )) = ∅. Let e ∈ E +Q . Then, by the definition of E +Q , we have two cases: [START_REF]Suppose (x, U )[END_REF] e ∈ E, or (2) e ∈ E but e = e ∩ Q for some e ∈ E. Since Q is nonmisleading, the latter case entails that x ∈ e. If e ∈ E, we have e ∩ Int +Q (Int(P )) = ∅ since Int(P ) ⊆ Int +Q (Int(P )) (by Lemma 2.2.5) and Int(P ) is dense in (X, τ ). If e ∈ E and e = e ∩ Q for some e ∈ E with x ∈ e, we obtain x ∈ e ∩ Int +Q (Int(P )) since x ∈ Int(P ) ⊆ Int +Q (Int(P )), thus, e ∩ Int +Q (Int(P )) = ∅. Therefore, Int +Q (Int(P )) is dense in (X, τ +Q ), i.e., B(Int(P )) holds in M +Q .

(2) ⇒ (3): Suppose ( 2) holds, i.e., there is a U ∈ τ \{∅} such that U ⊆ P and Cl +Q (Int +Q (U )) = X for all nonmisleading Q ⊆ X (at x with respect to E). Let Q be nonmisleading at x with respect to E. Since Cl +Q (Int +Q (U )) = X, we have that e ∩ Int +Q (U ) = ∅ for all e ∈ E +Q . As Q is nonmisleading at x, we in particular have

∅ = Q = Q ∩ X ∈ E +Q (by the definition of E +Q and the fact that X ∈ E). Hence, it follows from (2) that Q ∩ Int +Q (U ) = ∅. Since Int +Q (U ) ⊆ U , we obtain U ∩ Q = ∅.
(3) ⇒ (1): Assume that U ∈ τ \{∅} is such that U ⊆ P and U ∩ Q = ∅ holds for all nonmisleading Q (at x with respect to E). Clearly, this implies that U is consistent with all e ∈ E, i.e., that e ∩ U = ∅ (since available evidence is by definition nonmisleading), so U is a justification for P (i.e., X = Cl (U ) = Cl (Int(P ))). So, to show that KP holds at x, it is enough to show that x ∈ Int(P ). For this, take the proposition Q = {x}, which obviously is nonmisleading at x, hence by ( 3) we must have U ∩ {x} = ∅, i.e. x ∈ U . Then, x ∈ U ∈ τ and U ⊆ P give us x ∈ Int(P ), as desired. 2

5.6 Logics for evidence, justified belief, knowledge, and evidence dynamics

This section constitutes the technical heart of this chapter and is devoted to our results concerning soundness, completeness, decidability and finite model property for several logics of evidence, belief and knowledge (Sections 5.6.2-5.6.5). We then continue with introducing the formal syntax and the semantics for the aforementioned dynamic evidence modalities for public announcements, evidence addition, evidence upgrade and feasible evidence combination, and provide sound and complete axiomatizations for the associated logics (Section 5.6.6). In order to keep this section self-contained and fix some notation, we first recapitulate, in a concise way, the formal syntax and the semantics capturing the static notions we have presented in the previous sections (Section 5.6.1).

Logics for evidence, justified belief and knowledge

Syntax. The full (static) language L of evidence, belief, and knowledge we consider is defined recursively by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E 0 ϕ | Eϕ | 2 0 ϕ | 2ϕ | Bϕ | B ϕ ϕ | Kϕ | [∀]ϕ
where p ∈ prop. We employ the usual abbreviations for propositional connectives , ⊥, ∨, →, ↔, and for the dual modalities B, K, Ê etc. except that some of them have special abbreviations: [∃]ϕ := ¬[∀]¬ϕ and 3ϕ := ¬2¬ϕ. Several fragments of the language L is of particular interest: L B the fragment having the belief modality B as the only modality; L K having only the knowledge modality K; and some bimodal fragments such as L KB having only operators K and B; L [∀]K having only operators [∀] and K; and the trimodal fragment L [∀]2 0 2 having only the modalities [∀], 2 0 and 2.

Semantics. We interpret the language L on topo-e-models in an obvious way, following the definitions of the corresponding operators provided in previous sections.

Definition.

[Topo-e-Semantics for L] Given a topo-e-model M = (X, E 0 , τ, V ), we extend the valuation map V to an interpretation map [[.]] : L → P(X) recursively as follows:

[[p]] = V (p) [[¬ϕ]] = X\[[ϕ]] [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]] [[E 0 ϕ]] = {x ∈ X | ∃e ∈ E 0 (e ⊆ [[ϕ]])} [[Eϕ]] = {x ∈ X | ∃e ∈ E (e ⊆ [[ϕ]])} [[2 0 ϕ]] = {x ∈ X | ∃e ∈ E 0 (x ∈ e ⊆ [[ϕ]])} [[2ϕ]] = {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ [[ϕ]])} [[Bϕ]] = {x ∈ X | ∃U ∈ τ (U ⊆ [[ϕ]] and Cl (U ) = X)} [[B θ ϕ]] = {x ∈ X | ∃U ∈ τ (∅ = U ∩ [[θ]] ⊆ [[ϕ]] and Cl (U ∩ [[θ]]) ⊇ [[θ]])} [[Kϕ]] = {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ [[ϕ]] and Cl (U ) = X)} [[[∀]ϕ]] = {x ∈ X | [[ϕ]] = X}
It is not hard to see that the above defined semantics for the modalities of L corresponds exactly to the semantic operators given in Sections 5.2-5.5: e.g.

[[[∀]ϕ]] = [∀][[ϕ]], [[2ϕ]] = 2[[ϕ]] = Int([[ϕ]]
), etc. Moreover, while all modalities except for E 0 and 2 0 capture topological properties of topo-e-models, i.e., they can be interpreted directly in (X, τ ), the expressivity of the full language goes beyond the purely topological properties: the meaning of E 0 and 2 0 does not only depend on the evidential topology, but also depends on the basic evidence set E 0 . From the point of expressivity, the most important fragment of L is the trimodal language L [∀]2 0 2 since it is equally expressive as the full language L with respect to the topo-e-models: 5.6.2. Proposition. The following equivalences are valid in all topo-e-models:

1 . Bϕ ↔ [∀]32ϕ 4 . Kϕ ↔ 2ϕ ∧ [∀]32ϕ 2 . Eϕ ↔ [∃]2ϕ 5 . B θ ϕ ↔ [∀](θ → 3(θ ∧ 2(θ → ϕ))) 3 . E 0 ϕ ↔ [∃]2 0 ϕ Proof:
The proof follows easily from the semantics clauses of the modalities given in Definition 3.1.2.

2

Therefore, all the other modalities of L can be defined in L [∀]2 0 2 . In fact, all our dynamic modalities can also be expressed in L [∀]2 0 2 (see Section 5.6.6). For this reason, instead of focusing on the full language L, we present soundness, completeness and decidability results for the factive evidence fragment L [∀]2 0 2 : its importance comes from its expressive power. We moreover provide sound and complete axiomatizations for the pure doxatic fragment L B , the pure epistemic fragments L K and L [∀]K , and finally for the epistemic-doxastic fragment L KB . As the semantics of [∀], B and K can be defined only based on the evidential topology (without referring to E 0 ), we will state the corresponding soundness and completeness results simply with respect to topo-models. For L [∀]2 0 2 , we need the complete structure of the topo-e-models as the semantics of 2 0 depends on the basic evidence set E 0 , and cannot be recovered purely topologically.

The belief fragment L B : KD45 B

In this section, we prove that the logic of belief on all topo-models is the standard belief system KD45 B , and it moreover has the finite model property with respect to the class of topo-models.

Soundness of KD45 B : 5.6.3. Lemma. Given a topological space (X, τ ) and any two subsets

U 1 , U 2 ⊆ X, if U 1 is open dense and U 2 is dense, then U 1 ∩ U 2 is dense. Proof: Let (X, τ ) be a topological space and U 1 , U 2 ⊆ X. Suppose U 1 is an open dense and U 2 is a dense set in (X, τ ). Since U 1 is open and dense we have that W ∩ U 1
is open and non-empty for any non-empty open set W . Thus, since U 2 is dense, we also have that (

W ∩ U 1 ) ∩ U 2 = ∅. Therefore, W ∩ (U 1 ∩ U 2 ) = ∅ for any nonempty W ∈ τ , i.e., U 1 ∩ U 2 is dense as well. 2 
5.6.4. Proposition. KD45 B is sound with respect to the class of all topo-models.

Proof:

The soundness, as usual, is shown by proving that all axioms are validities and that all derivation rules preserve validities. The cases for the axioms (4 B ) and (5 B ) and the inference rules are elementary, whereas the validity of (K B ) in the class of all topological spaces follows from Lemma 5.6.3 as follows. Let M = (X, E 0 , τ, V ) and ϕ, ψ

∈ L B . We need to show that [[B(ϕ ∧ ψ) ↔ Bϕ ∧ Bψ]] = X, i.e., that [[B(ϕ ∧ ψ)]] = [[Bϕ ∧ Bψ]]. Let x ∈ B(ϕ ∧ ψ).
This implies, by the se- 

mantics of B that [[B(ϕ ∧ ψ)]] = X, i.e., Cl (Int([[ϕ ∧ ψ]])) = X. We there- fore obtain, X = Cl (Int([[ϕ ∧ ψ]])) = Cl (Int([[ϕ]]) ∩ Int([[ψ]])) ⊆ Cl (Int([[ϕ]])) ∩ Cl (Int([[ψ]])) = [[Bϕ ∧ Bψ]].
(Int([[ϕ]]) ∩ Int([[ψ]])) = X.
Similarly to the argument above, we then have

X = Cl (Int([[ϕ]]) ∩ Int([[ψ]])) = Cl (Int([[ϕ ∧ ψ]])) = [[B(ϕ ∧ ψ)]]. 2 
Completeness of KD45 B :

For completeness, we use the connection between the KD45-Kripke frames and topological spaces presented in Section 4.3.1. We only need to show that the two semantics-the relational semantics and the proposed semantics on topo-emodels-are equivalent for the language L B . To recall the definition of relational frame called a pin, see Definition 4.3.1, page 37.

5.6.5. Proposition. For all ϕ ∈ L B and any Kripke model M = (X, R, V ) based on a pin, ) .

ϕ M = [[ϕ]] I(M

Proof:

The proof follows by subformula induction on ϕ; cases for the propositional variables and the Boolean connectives are elementary. So assume inductively that the result holds for ψ; we must show that it holds also for ϕ := Bψ. Observe that, given a Kripke model M = (X, R, V ) based on a pin (X, R) and ϕ ∈ L B , we have

Bϕ M = X if ϕ M ⊇ C ∅ otherwise and, [[Bϕ]] I(M) = X if [[ϕ]] I(M) ⊇ C ∅ otherwise
where C is the final cluster of (X, R). By induction hyposthesis, we have [ [ϕ]]

I(M) = ϕ M , therefore, [[Bϕ]] I(M) = Bϕ M . 2 
5.6.6. Theorem. KD45 B is sound and complete with respect to the class of all topo-e-models. Moreover, KD45 B has the finite model property.

Proof:

Soundness is given in Proposition 5.6.4. For completeness, let ϕ ∈ L B such that ϕ ∈ KD45 B . Then, by Lemma 4.3.2, there exists a finite pin M = (X, R, V ) with ϕ M = X. Thus, by Propositition 5.6.5, we have that [ [ϕ]] I(M) = X, where In this section, we focus on the two knowledge fragments L K and L [∀]K , and provide sound and complete axiomatizations for the associated logics. While the fragment having only the modality K leads to the familiar system S4.2 K , the full knowledge fragment having both K and [∀] gives us the axiomatization Know [∀]K presented below.

I(M) = (X, τ R + , V ) is the corresponding topological model. Since I(M) = (X, τ R + , V ) is

Soundness and Completeness of S4.2 K

The proof of soundness is again a standard validity check. The relatively harder case of the normality axiom (K K ) for the knowledge modality K follows from Lemma 5.6.3 and the fact that the interior operator commutes with finite intersections (see, e.g., Table 3. [START_REF]Suppose (x, U )[END_REF]. For completeness, we follow a similar strategy as in the proof of Theorem 5.6.6. Let (X, R) be a transitive Kripke frame. A nonempty subset C ⊆ X is called cluster if (1) for each x, y ∈ C we have xRy, and ( 2) there is no D ⊆ X such that C D and D satisfies [START_REF]Suppose (x, U )[END_REF]. A point x ∈ X is called a maximal point if there is no y ∈ X such that xRy and ¬(yRx). We call a cluster a final cluster if all its points are maximal. It is not hard to see that for any final cluster C of (X, R) and any x ∈ C, we have R(x) = C. A transitive Kripke frame (X, R) is called cofinal if it has a unique final cluster C such that for each x ∈ X and y ∈ C we have xRy.

5.6.7. Lemma. S4.2 K is sound and complete with respect to the class of reflexive and transitive cofinal frames.

Proof:

See, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5).

2

Recall that, given a reflexive and transitive Kripke frame (X, R), we can construct an Alexandroff space (X, τ R ) by defining τ R to be the set of all upsets of (X, R) (see Section 3.1.2).

5.6.8. Lemma. For every reflexive transitive cofinal frame (X, R) and nonempty U ∈ τ R , we have Cl(U ) = X in (X, τ R ).

Proof:

Let (X, R) be a reflexive and transitive cofinal frame and let C ⊆ X denote its final cluster. By construction, C ∈ τ R and moreover C ⊆ U , for all nonempty U ∈ τ R . Therefore, for every nonempty

U, V ∈ τ R , we have V ∩ U ⊇ C = ∅. Hence, Cl(U ) = X for any nonempty U ∈ τ R . 2 
5.6.9. Proposition. For every reflexive and transitive cofinal Kripke model M = (X, R, V ) and all ϕ ∈ L [∀]K , ) ,

ϕ M = [[ϕ]] B(M
where B(M) = (X, τ R , V ).

Proof:

The proof follows by subformula induction on ϕ; cases for the propositional variables, the Boolean connectives and the modality [∀] are elementary. So assume inductively that the result holds for ψ; we must show that it holds also for ϕ := Kψ.

Let M = (X, R, V ) be a reflexive and transitive cofinal Kripke model, x ∈ X and ϕ ∈ L K . (⊆) Suppose x ∈ Kψ M . This implies that x ∈ R(x) ⊆ ψ M . By induction hypothesis, we obtain R( ) ). Then, by Lemma 5.6.8,Cl (Int([[ψ ) . This means, by the topological semantics of K,

x) ⊆ [[ψ]] B(M) . Since x ∈ R(x) ∈ τ R , we have x ∈ Int([[ψ]] B(M
]] B(M) )) = X. Therefore, x ∈ [[Kψ]] B(M) . (⊇) Suppose x ∈ [[Kψ]] B(M
that x ∈ Int([[ψ]] B(M) ) and that Cl (Int([[ψ]] B(M) )) = X. Then, by induction hypothesis, x ∈ Int( ψ M ) and Cl (Int( ψ M )) = X. The former implies that there is an open set U ∈ τ R such that x ∈ U ⊆ ψ M . In particular, since R(x)
is the smallest open neighbourhood of x, we obtain R(x) ⊆ ψ M . Therefore, x ∈ Kψ M . 2 5.6.10. Theorem. S4.2 K is sound and complete with respect to the class of all topo-models.

Proof:

For completeness, let ϕ ∈ L K such that ϕ ∈ S4.2 K . Then, by Lemma 5.6.7, there exists a Kripke model M = (X, R, V ) based on the reflexive and transitive cofinal frame (X, R) such that ϕ M = X. Thus, by Propositition 5.6.9, we have

[[ϕ]] B(M) = X, where B(M) = (X, τ R , V ) is the corresponding topological model. 2 
5.6.4 The knowledge-belief fragment L KB : Stal revisited

In this section, we show that Stalnaker's system Stal of knowledge and belief (see Table 4. [START_REF]Suppose (x, U )[END_REF] is sound and complete with respect to the class of all topo-models under the semantics of knowledge and belief presented in this chapter. Recall that, in Chapter 4, we provided a topological completeness result for this system for the restricted class of extremally disconnected spaces. Therefore, we here show that the topological semantics presented in this chapter generalizes the one provided in Chapter 4 for Stalnaker's combined system Stal.

5.6.12. Theorem. Stal is sound and complete with respect to the class of all topo-models.

Proof:

For soundness, we here only show the validity of the axiom (FB): the validity proofs of the other axioms are either trivial or follow from the previous results. Let

M = (X, τ, V ) be a topo-model, ϕ ∈ L KB and x ∈ X. Suppose x ∈ [[Bϕ]]. Hence, [[Bϕ]] = ∅. This implies, by the semantics of B, that [[Bϕ]] = Cl (Int([[ϕ]])) = X. Recall that x ∈ [[Kϕ]] iff x ∈ Int([[ϕ]]) and Cl (Int([[ϕ]])) = X.
By the assumption, we already know that

Cl (Int([[ϕ]])) = X. Thus, in this particular case, [[Kϕ]] = Int([[ϕ]]). Therefore, X = Cl (Int([[ϕ]])) = Cl (Int(Int([[ϕ]]))) = Cl (Int([[Kϕ]]))
implying that BKϕ holds everywhere in M.

For completeness, we follow a similar method as in the proof of Theorem 5.6.11. Let ϕ ∈ L KB such that ϕ ∈ Stal. Then, since Stal Bϕ ↔ KKϕ, there exists a ψ ∈ L K such that Stal ϕ ↔ ψ (this is obtained by replacing every occurrence of B in ϕ by KK). Therefore, ψ ∈ Stal. Moreover, since S4.2 K ⊆ Stal (see Section 4. [START_REF]Suppose (x, U )[END_REF], we obtain ψ ∈ S4.2 K . Then, by Theorem 5.6.10, there exists a topo-model M = (X, τ, V ) such that [[ψ]] = X. Since Stal is sound with respect to all topo-models and Stal ϕ ↔ ψ, we conclude [ [ϕ]] = X. 2

5.6.5 The factive evidence fragment

L [∀]2 0 2 : Log ∀22 0
The logic Log ∀22 0 of factive evidence is given by the axiom schemas and inference rules in Table 5.5 over the language L [∀]2 0 2 . This section presents the proof of the following theorem. Strong completeness and strong finite model property are defined standardly (see, e.g., Blackburn et al., 2001, Definition 4.10-Proposition 4.12 and Definition 6.6, respectively).

5.6.13. Theorem. The logic Log ∀22 0 of factive evidence is sound and strongly complete with respect to the class of all topo-models. Moreover, it has the strong finite model property, therefore, it is decidable. all S4 axioms and rules for the modality 2

(4 2 0 ) 2 0 ϕ → 2 0 2 0 ϕ Universality (U) [∀]ϕ → 2 0 ϕ Factive Evidence (FE) 2 0 ϕ → 2ϕ Pullout 11 (2 0 ϕ ∧ [∀]ψ) → 2 0 (ϕ ∧ [∀]ψ) Monotonicity rule for 2 0 from ϕ → ψ, infer 2 0 ϕ → 2 0 ψ Table 5.5: The axiomatization of Log ∀22 0
The proof of Theorem 5.6.13 is technically the most challenging result of this chapter. The key difficulty consists in guaranteeing that the natural topology for which 2 acts as interior operator is exactly the topology generated by the neighborhood family associated to 2 0 . Though the main steps of the proof may look familiar, involving known methods (a canonical quasi-model construction, a filtration argument, and then making multiple copies of the worlds to yield a finite model with the right properties), addressing the above-mentioned difficulty requires a non-standard application of these methods, as well as a number of additional notions and results, and a careful treatment of each of the steps. The plan of the proof is as follows. Since the soundness proof is straightforward, we here focus on completeness and the finite model property (then decidability follows immediately). We first prove strong completeness of Log ∀22 0 with respect to a canonical quasi-model. We then continue with proving the strong finite quasimodel property for Log ∀22 0 via a filtration argument. In the last step, we prove that every finite quasi-model is equivalent to a finite Alexandroff quasi-model by making multiple copies of the worlds in order to put the model in the right shape. As Alexandroff quasi-models are modally equivalent to Alexandroff topo-e-models (Proposition 5.6.14), the result follows.

Quasi-model Construction

A quasi-model is a tuple M = (X, E 0 , ≤, V ), where (X, E 0 , V ) is an evidence model and ≤ is a preorder such that every e ∈ E 0 is an up-set of (X, ≤) (see Definition 2.1.4, page 14 to recall the definition of an up-set). Given a preordered set (X, ≤), the set U p ≤ (X) denotes the set of all up-sets of (X, ≤). We use the same notations as for topo-e-models, for example, E for the closure of E 0 under nonempty finite intersections, and τ E for the topology generated by E.

The semantics for the language L [∀]2 0 2 on quasi-models is defined the same way as on topo-e-models (see Definition 5.6. [START_REF]Suppose (x, U )[END_REF], except that for 2 we (do not use the topology, but instead we) use the standard Kripke semantics based on the relation ≤. More precisely, the semantics for the modalities [∀], 2 0 and 2 are given by the following clauses:

[∀]ϕ M = {x ∈ X | ϕ M = X} 2 0 ϕ M = {x ∈ X | ∃e ∈ E 0 (x ∈ e ⊆ ϕ M )} 2ϕ M = {x ∈ X | ∀y ∈ X(x ≤ y implies y ∈ ϕ M )}
We again omit the superscripts for the model when it is clear from the context.

A quasi-model M = (X, E 0 , ≤, V ) is called Alexandroff if the topology τ E is Alexandroff and ≤ = E is the specialization preorder.
There is a natural oneto-one correspondence between Alexandroff quasi-models and Alexandroff topoe-models, given by putting, for any Alexandroff quasi-model M = (X, E 0 , ≤, V ), B(M) = (X, E 0 , τ E , V ). Moreover, M and B(M) satisfy the same formulas of L [∀]2 0 2 at the same points, as shown in Proposition 5.6.14 below.

5.6.14. Proposition. For all ϕ ∈ L [∀]2 0 2 and every Alexandroff quasi-model M = (X, E 0 , ≤, V ), we have ) .

ϕ M = [[ϕ]] B(M

Proof:

The proof follows by subformula induction on ϕ; cases for the propositional variables, the Boolean connectives and the modalities [∀] and 2 0 are trivial as the semantics for these cases are defined exactly the same way in both structures. For the modality 2, recall that it is interpreted as the interior operator of the topology τ E , thus, this case is analogous to .

2

Therefore, as stated by Proposition 5.6.14, Alexandroff quasi-models provide just another presentation of Alexandroff topo-e-models with respect to the language L [∀]2 0 2 . 5.6.15. Proposition. For every quasi-model M = (X, E 0 , ≤, V ) the following are equivalent:

1. M is Alexandroff (hence, equivalent to an Alexandroff topo-e-model); 2. τ E = U p ≤ (X); 3. for every x ∈ X, ↑x is in τ E .
Proof:

(1)⇒( 3): Suppose M is Alexandroff, i.e., τ E is Alexandroff and

≤ = E . Let x ∈ X. Then we have: ↑x = {y ∈ X | x ≤ y} = {y ∈ X | x E y} = {y ∈ X | ∀U ∈ τ E (x ∈ U ⇒ y ∈ U )} = {U ∈ τ E | x ∈ U }. Since τ E is an Alexandroff space, we have {U ∈ τ E | x ∈ U } ∈ τ E , and hence ↑x = {U ∈ τ E | x ∈ U } ∈ τ E .
(3)⇒( 2): It is easy to see that τ E ⊆ U p ≤ (X) (since τ E is generated by E 0 and every element of E 0 is upward-closed with respect to ≤). Now let A ∈ U p ≤ (X). Since A is upward-closed, we have A = {↑x | x ∈ A}. Then, by ( 3) (and τ E being closed under arbitrary unions), we obtain A ∈ τ E .

(2)⇒( 1): Suppose τ E = U p ≤ (X) and let A ⊆ τ E . By ( 2), every U ∈ A is upward-closed, hence, A is upward-closed. Therefore, by ( 2), A ∈ τ E . This proves that τ E is Alexandroff. ( 2) also implies that ↑x is the least open neighbourhood of x in τ E , i.e., ↑x ⊆ U , for all U such that x ∈ U ∈ τ E . Therefore, ≤ is included in E . For the other direction, suppose x E y. This implies, in particular, that y ∈ ↑x (since x ∈ ↑x ∈ τ E ), i.e., x ≤ y.

2

Having introduced the auxiliary notions and facts, we are ready to prove Theorem 5.6.13. This proof goes through three steps:

1. strong completeness for quasi-models; 2. strong finite quasi-model property; and 3. every finite quasi-model is modally equivalent to a finite Alexandroff quasimodel (hence, to a topo-e-model).

Step 1: Strong Completeness for Quasi-Models. The proof follows via a canonical quasi-model construction.

5.6.16. Lemma (Lindenbaum's Lemma). Every Log ∀22 0 -consistent set can be extended to a maximally consistent one.

Let us now fix a consistent set of sentence Φ 0 . Our goal is to construct a quasi-model for Φ 0 . By Lemma 5.6.16, there exists a maximally consistent set T 0 such that Φ 0 ⊆ T 0 . For any two maximally consistent sets T and S, we put:

T ∼ S iff for all ϕ ∈ L [∀]2 0 2 : ([∀]ϕ ∈ T ⇒ ϕ ∈ S) , T ≤ S iff for all ϕ ∈ L [∀]2 0 2 : (2ϕ ∈ T ⇒ ϕ ∈ S) .
Since [∀] is an S5 modality, ∼ is an equivalence relation. Similarly, as 2 is an S4 modality, ≤ is a preorder. Moreover, since Log ∀22 0 [∀]ϕ → 2ϕ (by axioms (U) and (FE) in Table 5. [START_REF]Suppose (x, U ) |= K(ϕ ∨ (σ ∧ Kβ)). This means, by the semantics of K, that[END_REF], we obtain that ≤ is included in ∼.

5.6.17. Definition. [Canonical Quasi-Model for T 0 ] The canonical quasi model for T 0 is defined as M = (X, E 0 , ≤, V ), where

• X := {T ⊆ L [∀]2 0 2 | T is a maximally consistent set with T ∼ T 0 }; • E 0 := { 2 0 ϕ | ϕ ∈ L [∀]2 0 2 with [∃]2 0 ϕ ∈ T 0 }, where θ := {T ∈ X | θ ∈ T } for any θ ∈ L [∀]2 0 2 ;
• ≤ is the restriction of the above preorder ≤ to X; and

• V (p) := p.
In the following, variables T, S, . . . range over X.

5.6.18. Lemma. M = (X, E 0 , ≤, V ) is a quasi-model.

Proof:

In order to show that M is a quasi model, we need to show that (1) X ∈ E 0 and ∅ ∈ E 0 , ( 2) ≤ is a preorder, and ( 3) every element of E 0 is upward-closed with respect to ≤. Note that ( 2) follows from the fact that 2 is an S4 modality.

(1): Since Log ∀22 0 2 0 (by Nec [∀] and axiom (U) in Table 5.5), we have ): Let e ∈ E 0 . By the definition of E 0 , we have e = 2 0 ϕ for some ϕ ∈ L [∀]2 0 2 such that [∃]2 0 ϕ ∈ T 0 . Now suppose T, S ∈ X with T ∈ 2 0 ϕ (i.e., 2 0 ϕ ∈ T ) and T ≤ S. Note that Log ∀22 0 2 0 ϕ → 22 0 ϕ (by axioms (4 2 0 ) and (FE)). Therefore, 22 0 ϕ ∈ T . Since T ≤ S, we then obtain 2 0 ϕ ∈ S, i.e., S ∈ 2 0 ϕ. Thus, as S has been chosen arbitrarily, we conclude that e is upward-closed with respect to ≤. Proof:

2 0 = X. Moreoever, by axiom (T [∀] ), we obtain [∃]2 0 ∈ T 0 , hence, 2 0 = X ∈ E 0 . And, obviously, ∅ ∈ E 0 . ( 3 
(⇒) Suppose [∃]ϕ = ∅, i.e., there is T ∈ X such that T ∈ [∃]ϕ. This means [∃]ϕ ∈ T . This implies that the set Γ := {[∀]ψ | [∀]ψ ∈ T } ∪ {ϕ} is consistent.
Otherwise, there exist finitely many sentences

[∀]ψ 1 , . . . , [∀]ψ n ∈ T such that [∀]ψ 1 ∧ . . . ∧ [∀]ψ n → ¬ϕ is a theorem of Log ∀22 0 . But then, since [∀] is an S5- modality, we obtain that [∀]ψ 1 ∧ . . . ∧ [∀]ψ n → [∀]¬ϕ is also a theorem. Hence, as [∀]ψ 1 ∧ . . . ∧ [∀]ψ n ∈ T , we get [∀]¬ϕ ∈ T , which combined with [∃]ϕ ∈ T , implies
that T is inconsistent, contradicting T being consistent. Therefore, given that Γ is consistent, by Lindenbaum's Lemma, there exists some maximally consistent set S such that Γ ⊆ S. It is easy to see that this implies ϕ ∈ S and S ∼ T ∼ T 0 (i.e., S ∈ X). Therefore, S ∈ ϕ implying that ϕ = ∅.

(⇐) Suppose ϕ = ∅, i.e., there is

T ∈ X such that T ∈ ϕ. Then, since ϕ → [∃]ϕ ∈ T (by axiom (T [∀] )), we obtain [∃]ϕ ∈ T , implying that [∃]ϕ = ∅. 2
5.6.20. Lemma (Existence Lemma for 2). For every ϕ ∈ L [∀]2 0 2 and T ∈ X, T ∈ 3ϕ iff there is S ∈ ϕ such that T ≤ S.

Proof:

(⇒) Assume T ∈ 3ϕ, that is, 3ϕ ∈ T . This implies that the set Γ := {2ψ | 2ψ ∈ T } ∪ {ϕ} is consistent. Otherwise there exist finitely many sentences 2ψ 1 , . . . , 2ψ n ∈ T such that (2ψ 1 ∧ . . . ∧ 2ψ n ) → ¬ϕ is a theorem. But then, since 2 is an S4-modality, we obtain that 2ψ 1 ∧ . . . ∧ 2ψ n → 2¬ϕ is also a theorem. Hence, as 2ψ 1 ∧ . . . ∧ 2ψ n ∈ T , we get 2¬ϕ ∈ T , which combined with 3ϕ ∈ T , implies that T is inconsistent, contradicting T being consistent. Therefore, given that Γ is consistent, by Lindenbaum's Lemma, there exists some maximally consistent set S such that Γ ⊆ S. It is easy to see that this implies ϕ ∈ S and T ≤ S. Since ≤ is included in ∼, we also obtain S ∼ T ∼ T 0 , i.e., S ∈ X. Therefore, S ∈ ϕ.

(⇐) Suppose there is S ∈ ϕ such that T ≤ S. Then, by definition of ≤, 3ϕ ∈ T , i.e., T ∈ 3ϕ. 2 5.6.21. Lemma (Existence Lemma for 2 0 ). For every ϕ ∈ L [∀]2 0 2 and T ∈ X, T ∈ 2 0 ϕ iff there exist e ∈ E 0 such that T ∈ e ⊆ ϕ.

Proof:

(⇒) Suppose T ∈ 2 0 ϕ, i.e. 2 0 ϕ ∈ T . Since T ∼ T 0 , we get [∃]2 0 ϕ ∈ T 0 .
This means 2 0 ϕ ∈ E 0 . Taking e := 2 0 ϕ, we get e ∈ E 0 and T ∈ e. Moreover, since

Log ∀22 0 2 0 ϕ → ϕ, we obtain e = 2 0 ϕ ⊆ ϕ.
(⇐) Suppose there is e ∈ E 0 such that T ∈ e ⊆ ϕ. Then, by the definition of E 0 , we obtain that e = 2 0 θ for some θ such that [∃]2 0 θ ∈ T 0 . Therefore, T ∈ e = 2 0 θ ⊆ ϕ. This implies that the set Γ := {2 0 θ} ∪ {∀ψ : ∀ψ ∈ T } ∪ {¬ϕ} is inconsistent. Otherwise, by Lindenbaum's Lemma, there exists a S ∈ X such that 2 0 ∈ S and ¬ϕ ∈ S. The former means that S ∈ 2 0 θ and the latter means (since S is maximal) that S ∈ ϕ. Thus, S ∈ 2 0 θ\ ϕ, contradicting the assumption 2 0 θ ⊆ ϕ. Therefore, given that Γ is inconsistent, there exists a finite set {

[∀]ψ 1 , . . . , [∀]ψ n } ⊆ Γ such that i≤n [∀]ψ i → (2 0 θ → ϕ). Since [∀] is a normal modality and T is maximal, i≤n [∀]ψ i = [∀]γ for some [∀]γ ∈ T . We then have 1. [∀]γ → (2 0 θ → ϕ) 2. ([∀]γ ∧ 2 0 θ) → ϕ 3. 2 0 ([∀]γ ∧ 2 0 θ) → 2 0 ϕ (Monotonicity of 2 0 ) 4. 2 0 2 0 ([∀]γ ∧ θ) → 2 0 ϕ (Pullout axiom) 5. 2 0 ([∀]γ ∧ θ) → 2 0 ϕ (since Log ∀22 0 2 0 ϕ ↔ 2 0 2 0 ϕ) 6. ([∀]γ ∧ 2 0 θ) → 2 0 ϕ (Pullout axiom)
Therefore, since [∀]γ, 2 0 θ ∈ T and T is maximal, we obtain 2 0 ϕ ∈ T , i.e., T ∈ 2 0 ϕ. 5. 6.22. Lemma (Truth Lemma). For every formula ϕ ∈ L [∀]2 0 2 , we have

ϕ M = ϕ.

Proof:

The proof follows standardly by subformula induction on ϕ, where the inductive step for each modality uses the corresponding Existence Lemma, as usual. 2

5.6.23. Proposition. Log ∀22 0 is sound and strongly complete for quasi-models.

Proof:

Let Φ 0 be a Log ∀22 0 -consistent set of formulas. Then, by Lindenbaum's Lemma (Lemma 5.6.16), Φ 0 can be extended to a maximally consistent set T 0 . We can then construct a canonical quasi-model M = (X, E 0 , ≤, V ) for T 0 as in Definition 5.6.17, and by Lemma 5.6.22 obtain that M, T 0 |= ϕ for all ϕ ∈ Φ 0 . 2

Step 2: Strong Finite Quasi-Model Property. In this section, we prove that the logic Log ∀22 0 has the strong finite quasi-model property. We do so via a filtration argument using the canonical model described in Definition 5.6.17. Let ϕ 0 be a Log ∀22 0 -consistent formula. By Lemma 5.6.16, there exist a maximally consistent set T 0 such that ϕ 0 ∈ T 0 . Consider the canonical quasi-model M = (X, E 0 , ≤, V ) for T 0 (as given in Definition 5.6.17). We will use two facts about this model:

1. ϕ M = ϕ, for all ϕ ∈ L [∀]2 0 2 ; and 2. E 0 = { 2 0 ϕ | [∃]2 0 ϕ ∈ T 0 } = { 2 0 ϕ M | [∃]2 0 ϕ ∈ T 0 }.
Closure conditions for Σ: Let Σ be a finite set such that: (1)

ϕ 0 ∈ Σ; (2) Σ is closed under subformulas; (3) if 2 0 ϕ ∈ Σ then 22 0 ϕ ∈ Σ; (4) Σ is closed under single negations; (5) 2 0 ∈ Σ. For x, y ∈ X, put x ≡ Σ y iff for all ψ ∈ Σ (x ∈ ψ M ⇐⇒ y ∈ ψ M ),
and denote by |x| := {y ∈ X | x ≡ Σ y} the equivalence class of x modulo ≡ Σ . Also, put X f := {|x| | x ∈ X}, and more generally put e f := {|x| | x ∈ e} for every e ∈ E 0 . We now define a "filtrated model "

M f = (X f , E f 0 , ≤ f , V f ),
where

• X f := {|x| | x ∈ X}; • |x| ≤ f |y| iff for all 2ψ ∈ Σ x ∈ 2ψ M ⇒ y ∈ 2ψ M ; • E f 0 := {e f | e = 2 0 ψ = 2 0 ψ M ∈ E 0 for some ψ such that 2 0 ψ ∈ Σ}; • V f (p) := {|x| : x ∈ V (p)}.
5.6.24. Lemma. M f is a finite quasi-model (of size bounded by a computable function of ϕ 0 ).

Proof:

Since Σ is finite, there are only finitely many equivalence classes modulo ≡ Σ . Therefore, X f is finite. In fact, X f has at most 2 |Σ| states. It is obvious that ≤ f is a preorder. Moreover, since X = 2 0 M and 2 0 ∈ Σ, we have X f ∈ E f 0 . Also, since e = ∅ for all e ∈ E 0 , we have each e f ∈ E f 0 nonempty. So we only have to prove that the evidence sets e f are upward-closed. For this, let e f ∈ E f 0 , |x|, |y| ∈ X f such that |x| ∈ e f and |x| ≤ f |y|. We need to show that |y| ∈ e f . By the definition of E f 0 , we know that e = 2 0 ψ = 2 0 ψ M for some 2 0 ψ ∈ Σ. From |x| ∈ e f , it follows that there is some x ≡ Σ x such that x ∈ e = 2 0 ψ M , and since 2 0 ψ ∈ Σ, we have x ∈ 2 0 ψ M . Therefore, since Log ∀22 0 2 0 ψ → 22 0 ψ (this is easy to see from axioms (4 2 0 ) and (FE) stated in Table 5.5), we have x ∈ 22 0 ψ M . But 22 0 ψ ∈ Σ (by the closure assumptions on Σ), so |x| ≤ f |y| gives us y ∈ 22 0 ψ| M . By the axiom (T 2 ), we obtain y ∈ 2 0 ψ M = 2 0 ψ = e, hence |y| ∈ e f . 2 5.6.25. Lemma (Filtration Lemma). For every formula ϕ ∈ Σ, we have

ϕ M f = {|x| | x ∈ ϕ M }.

Proof:

The proof follows by subformula induction induction on ϕ ∈ Σ; cases for the propositional variables, the Boolean connectives and the modalities [∀]ϕ and 2ϕ are treated as usual (in the last case using the filtration property of ≤ f that: if x ≤ y than |x| ≤ f |y|). We only prove here the inductive case for ϕ := 2 0 ψ: (⇒) Let |x| ∈ 2 0 ψ M f . This means that there exists some e f ∈ E f 0 s.t. |x| ∈ e f ⊆ ψ M f . By the definition of E f 0 , there exists some χ such that 2 0 χ ∈ Σ and e = 2 0 χ = 2 0 χ M ∈ E 0 . From |x| ∈ e f , it follows that there is some x ≡ Σ x such that x ∈ e = 2 0 χ M , and since 2 0 χ ∈ Σ, we have x ∈ 2 0 χ M = e. Now let y ∈ e be any element of e. Then, by the definition of e f and the assumption that e f ⊆ ψ M f , we obtain |y| ∈ e f ⊆ ψ M f . So, |y| ∈ ψ M f . Therefore, by the induction hypothesis, y ∈ ψ M , hence, e ⊆ ψ M . Thus, we have found an evidence set e ∈ E 0 such that x ∈ e ⊆ ψ M , i.e., shown that

x ∈ 2 0 ψ M . (⇐) Let x ∈ 2 0 ψ M . It is easy to see that [∃]2 0 ψ ∈ x (since Log ∀22 0 2 0 ψ → [∃]2 0 ψ),
and so also [∃]2 0 ψ ∈ T 0 (since x ∈ X, thus, x ∼ T 0 ). This means that the set e := 2 0 ψ = 2 0 ψ M ∈ E 0 is an evidence set in the canonical model (see Definition 5.6.17), and since 2 0 ψ ∈ Σ, we conclude that e f ∈ E f 0 . We obviously have x ∈ e, and so |x| ∈ e f . Since Log ∀22 0 2 0 ψ → ψ, we have e = 2 0 ψ M ⊆ ψ M , and hence e f ⊆ {|y| | y ∈ ψ M } = ψ M f (by the induction hypothesis). Thus, we have found e f ∈ E f 0 such that |x| ∈ e f ⊆ ψ M f , i.e., shown that |x| ∈ 2 0 ψ M f . 2 5.6.26. Theorem. Log ∀22 0 has strong finite quasi-model property.

Proof: Let ϕ 0 be a Log ∀22 0 -consistent formula. Then, by Lindenbaum's Lemma (Lemma 5.6.16), ϕ 0 can be extended to a maximally consistent set T 0 such that ϕ 0 ∈ T 0 .

We can then construct a canonical quasi-model M = (X, E 0 , ≤, V ) for T 0 as in Definition 5.6.17, and by Lemma 5.6.22 obtain that M, T 0 |= ϕ 0 . Then, by Lemma 5.6.25, we have M f , |T 0 | |= ϕ 0 , where M f is the filtrated model of M through the finite set Σ that is obtained by closing {ϕ 0 } under the closure conditions ( 1)-( 5). By Lemma 5.6.24, we know that M f is a finite model whose size is bounded by 2 |Σ| , therefore we conclude that Log ∀22 0 has the strong finite quasimodel property. 2

Step 3: Equivalence of Finite Quasi-Models and Finite Alexandroff Quasi-Models. In this section, we prove that every finite quasi-model is modally equivalent to a finite Alexandroff quasi-model, and therefore, to a topo-e-model with respect to the language L [∀]2 0 2 . Let M = (X, E 0 , ≤, V ) be a finite quasi-model. We form a new structure M = ( X, Ẽ0 , ≤, Ṽ ), by putting: 5.6.27. Lemma. M is a finite quasi-model.

• X := X × {0, 1}; • Ṽ (p) := V (p) × {0, 1}; • (x, i) ≤(y, j) iff x ≤ y and i = j; • Ẽ0 := {e i | e ∈ E 0 , i ∈ {0, 1}} ∪ {e y i | y ∈ e ∈ E 0 , i ∈ {0, 1}} ∪ { X},

Proof:

It is easy to see that M is finite, in fact, it is of size 2•|X|. It is guaranteed by definition that X ∈ Ẽ0 and ∅ ∈ Ẽ0 . To show that every element of Ẽ0 is upwardclosed with respect to ≤, let ẽ ∈ Ẽ0 and (x, i), (y, j) ∈ X such that (x, i) ∈ ẽ and (x, i) ≤(y, j). Then, by the definition of ≤, we know that x ≤ y and i = j. We have two cases: if ẽ = e × {i} for some e ∈ E 0 , then y ∈ e (since e is upward closed with respect to ≤, x ∈ e and x ≤ y), therefore, (y, i) ∈ e × {i} = ẽ. If ẽ = e z k for some z ∈ X and k ∈ {0, 1}, we again have two cases. If k = 1 -i, then the result follows as in the first case. If k = i, then ↑z × i ⊆ ẽ. Since (x, i) ∈ ẽ, we obtain that z ≤ x, and thus, z ≤ y (since ≤ is transitive). We therefore conclude that (y, i) ∈ ↑z × i ⊆ ẽ.

2

Notation: For any set Ỹ ⊆ X, put ỸX := {y ∈ X | (y, i) ∈ Ỹ for some i ∈ {0, 1}} for the set consisting of first components of all members of Ỹ . It is easy to see that we have ( Ỹ ∪ Z) X = ỸX ∪ ZX , and XX = X.

5.6.28. Lemma. If y ∈ e ∈ E 0 , i ∈ {0, 1} and ẽ ∈ {e i , e y i }, then we have:

1. ẽX = e;

2. e y i ∩ e i = ↑(y, i), where ↑(y, i) (

= {x ∈ X | (y, i) ≤x} = {(x, i) | y ≤ x}. Proof: (1) 
): e y i ∩ e i = (↑y × {i} ∪ e × {1 -i}) ∩ (e × {i}) = (↑y ∩ e) × {i} = ↑y × {i} = ↑(y, i) (since ↑y ⊆ e). 2 
5.6.29. Lemma. M is an Alexandroff quasi-model (and thus also a topo-e-model).

Proof: By Proposition 5.6.15, it is enough to show that, for every (y, i) ∈ X, the upwardclosed set ↑(y, i) is open in the topology τ Ẽ generated by Ẽ0 : this follows directly from . 2 5.6.30. Lemma (Modal-Equivalence Lemma).

For all ϕ ∈ L [∀]2 0 2 , ϕ M = ϕ M × {0, 1}.

Proof:

The proof follows by subformula induction on ϕ; cases for the propositional variables, the Boolean connectives and the modalities [∀]ϕ and 2ϕ are straightforward. We only prove here the inductive case for ϕ := 2 0 ψ. (⇒) Suppose that (x, i) ∈ 2 0 ψ M. Then there exists some ẽ ∈ Ẽ0 such that (x, i) ∈ ẽ ⊆ ψ M = ψ M ×{0, 1} (where we used the induction hypothesis for ψ at the last step). From this, we obtain that x ∈ ẽX ⊆ ( ψ M × {0, 1}) X = ψ M . But by the construction of Ẽ0 , ẽ ∈ Ẽ0 means that either ẽ = X or there exist e ∈ E 0 , y ∈ e and j ∈ {0, 1} such that ẽ ∈ {e j , e y j }. If the former is the case, we have x ∈ ẽX = X ⊆ ψ M . Since X ∈ E 0 , by the semantics of 2 0 , we obtain x ∈ 2 0 ψ M . If the latter is the case, by , we have ẽX = e, so we conclude that x ∈ ẽX = e ⊆ ϕ M . Therefore, again by the semantics of 2 0 , we have x ∈ 2 0 ψ M .

(⇐) Suppose that x ∈ 2 0 ψ M . Then, there exists some e ∈ E 0 such that x ∈ e ⊆ ψ M . Take now the set e i = e × {i} ∈ Ẽ0 . Clearly, we have (x, i) ∈ e i ⊆ ψ M × {i} ⊆ ψ M × {0, 1} = ψ M (where we used the induction hypothesis for ψ at the last step), i.e., we have (x, i) ∈ 2 0 ψ M. 2

5.6.31. Theorem. Every finite quasi-model is modally equivalent to a finite Alexandroff quasi-model, therefore, to a topo-e-model with respect to the language L [∀]2 0 2 .

Proof:

The proof immediately follows from Lemma 5.6.30: the same formulas are satisfied at x in M as at (x, i) in M. 2

Proof of Theorem 5.6.13: Theorem 5.6.13 (completeness and finite model property for topo-e-models) is thus obtained as an immediate corollary of Proposition 5.6.23, Theorems 5.6.26 and 5.6.31.

Dynamics Extensions of L

[∀]2 0 2
Moving on to dynamic extensions, we consider P DL-style languages The semantics for dynamic operators uses the corresponding model change presented in Section 5.4 (as standard in Dynamic Epistemic Logic). More precisely, given a topo-e-model M = (X, E 0 , τ, V ) and x ∈ X, the semantics for the above mentioned dynamic operators are defined as

L ! ∀22 0 , L + ∀22 0 , L ⇑ ∀22 0 ,
x ∈ [[[!ϕ]ψ]] iff x ∈ [[ϕ]] implies x ∈ [[ψ]] M ![[ϕ]] x ∈ [[[+ϕ]ψ]] iff x ∈ [[[∃]ϕ]] implies x ∈ [[ψ]] M +[[ϕ]] x ∈ [[[⇑ϕ]ψ]] iff x ∈ [[[∃]ϕ]] implies x ∈ [[ψ]] M ⇑[[ϕ]] x ∈ [[[#]ϕ]] iff x ∈ [[ϕ]] M #
where we denote by [[ψ]] M ![ [ϕ]] the extension of ψ in the updated model M ![ [ϕ]] , etc. The precondition x ∈ [ [ϕ]] in the above clause for public announcements encodes the fact that public announcements are factive: so one can only update with true sentences ϕ. The preconditions x ∈ [[[∃]ϕ]] in the clauses for evidence addition and upgrade encodes the fact that, in order to qualify as (new) evidence, ϕ has to be consistent (i.e. [ [ϕ]] = ∅). In the following, we present the sound and complete axiomatizations for the corresponding dynamic systems. These will be obtain by adding a set of reduction axioms for each dynamic modality to the axiomatization Log ∀22 0 , as standard in Dynamic Epistemic Logic [START_REF] Baltag | The logic of public announcements, common knowledge, and private suspicions[END_REF][START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF][START_REF] Van Benthem | Logical Dynamics of Information and Interaction[END_REF]. We only prove the validity of the reduction axiom for the modality 2 0 in each case and leave the other cases for the reader since they follow either trivially or similar to the case for 2 0 .

5.6.32. Theorem. The sound and complete logic Log ! ∀22 0 of evidence and public announcements with respect to the class of all topo-e-models is obtained by adding the following reduction axioms to the system Log ∀22 0 :

1 . [!ϕ]p ↔ (ϕ → p) 5 . [!ϕ]2ψ ↔ (ϕ → 2[!ϕ]ψ) 2 . [!ϕ]¬ψ ↔ (ϕ → ¬[!ϕ]ψ) 6 . [!ϕ][∀]ψ ↔ (ϕ → [∀][!ϕ]ψ) 3 . [!ϕ](ψ ∧ χ) ↔ ([!ϕ]ψ ∧ [!ϕ]χ) 7 . [!ϕ][!ψ]χ ↔ [! ϕ ψ]χ 4 . [!ϕ]2 0 ψ ↔ (ϕ → 2 0 [!ϕ]ψ)
Proof: Let M = (X, E 0 , τ, V ) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L ! ∀22 0 .

Axiom-4:

x ∈ [[[!ϕ]2 0 ψ]] iff x ∈ [[ϕ]] implies x ∈ [[2 0 ψ]] M ![[ϕ]] iff x ∈ [[ϕ]] implies ∃e ∈ E ![[ϕ]] 0 (x ∈ e ⊆ [[ψ]] M ![[ϕ]] ) iff x ∈ [[ϕ]] implies ∃e ∈ E 0 (x ∈ e ∩ [[ϕ]] = e ⊆ [[ψ]] M ![[ϕ]] ) (by defn. of E ![[ϕ]] 0 ) iff x ∈ [[ϕ]] implies ∃e ∈ E 0 (x ∈ e ⊆ [[[!ϕ]ψ]]) iff x ∈ [[ϕ]] implies x ∈ [[2 0 [!ϕ]ψ]] iff x ∈ [[ϕ → 2 0 [!ϕ]ψ]] 2 
5.6.33. Theorem. The sound and complete logic Log + ∀22 0 of evidence and evidence addition with respect to the class of all topo-e-models is obtained by adding the axiom K + and the Necessitation rule (Nec + ) for the evidence addition modalities as well as the following reduction axioms to Log ∀22 0 :

1. [+ϕ]p ↔ ([∃]ϕ → p) 2. [+ϕ]¬ψ ↔ ([∃]ϕ → ¬[+ϕ]ψ) 3. [+ϕ](ψ ∧ χ) ↔ ([+ϕ]ψ ∧ [+ϕ]χ) 4. [+ϕ]2 0 ψ ↔ ([∃]ϕ → (2 0 [+ϕ]ψ ∨ (ϕ ∧ [∀](ϕ → [+ϕ]ψ)))) 5. [+ϕ]2ψ ↔ ([∃]ϕ → (2[+ϕ]ψ ∨ (ϕ ∧ 2(ϕ → [+ϕ]ψ)))) 6. [+ϕ][∀]ψ ↔ ([∃]ϕ → [∀][+ϕ]ψ) Proof: Let M = (X, E 0 , τ, V ) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L + ∀22 0 . Observe that x ∈ [[[∃]ϕ]] implies [[ψ]] M +[[ϕ]] = [[[+ϕ]ψ]] (5.1)
Axiom-4:

x ∈ [[[+ϕ]2 0 ψ]] iff x ∈ [[[∃]ϕ]] implies x ∈ [[2 0 ψ]] M +[[ϕ]] iff x ∈ [[[∃]ϕ]] implies ∃e ∈ E +[[ϕ]] 0 (x ∈ e ⊆ [[ψ]] M +[[ϕ]] ) iff x ∈ [[[∃]ϕ]] implies (∃e ∈ E 0 (x ∈ e ⊆ [[ψ]] M +[[ϕ]] ) or (x ∈ [[ϕ]] ⊆ [[ψ]] M +[[ϕ]] )) (by defn. of E +[[ϕ]] 0 ) iff x ∈ [[[∃]ϕ]] implies (∃e ∈ E 0 (x ∈ e ⊆ [[[+ϕ]ψ]]) or x ∈ [[ϕ]] ⊆ [[[+ϕ]ψ]]) (by (5.1)) iff x ∈ [[[∃]ϕ]] implies ((x ∈ [[2 0 [+ϕ]ψ]]) or (x ∈ [[ϕ]] and x ∈ [[[∀](ϕ → [+ϕ]ψ]])) iff x ∈ [[[∃]ϕ]] implies (x ∈ [[2 0 [+ϕ]ψ]] or x ∈ [[ϕ ∧ [∀](ϕ → [+ϕ]ψ]])) iff x ∈ [[[∃]ϕ → (2 0 [+ϕ]ψ ∨ (ϕ ∧ [∀](ϕ → [+ϕ]ψ)))]]
The proof for the modality 2 follows in a similar way with minor differences because of the fact that for every e ∈ E +[ [ϕ]] there is some combined evidence e ∈ E such that either e = e or e = e ∩ [ [ϕ]]. Therefore, we have Axiom-5:

x ∈ [[[+ϕ]2ψ]] iff x ∈ [[[∃]ϕ]] implies ∃e ∈ E +[[ϕ]] (x ∈ e ⊆ [[ψ]] M +[[ϕ]] ) iff x ∈ [[[∃]ϕ]] implies ∃e ∈ E(x ∈ e ⊆ [[ψ]] M +[[ϕ]] or x ∈ e ∩ [[ϕ]] ⊆ [[ψ]] M +[[ϕ]] ) iff x ∈ [[[∃]ϕ]] implies ∃e ∈ E((x ∈ e ⊆ [[[+ϕ]ψ]]) or (x ∈ [[ϕ]] and x ∈ e ⊆ [[ϕ → [+ϕ]ψ]])) iff x ∈ [[[∃]ϕ]] implies (x ∈ [[2[+ϕ]ψ]] or (x ∈ [[ϕ]] and x ∈ [[2(ϕ → [+ϕ]ψ]])) iff x ∈ [[[∃]ϕ → (2[+ϕ]ψ ∨ (ϕ ∧ 2(ϕ → [+ϕ]ψ)))]]
5.6.34. Theorem. The sound and complete logic Log ⇑ ∀22 0 of evidence and evidence upgrade with respect to the class of all topo-e-models is obtained by adding the axiom K ⇑ and the Necessitation rule (Nec ⇑ ) for the evidence addition modalities as well as the following reduction axioms to Log ∀22 0 :

1. [⇑ϕ]p ↔ ([∃]ϕ → p) 2. [⇑ϕ]¬ψ ↔ ([∃]ϕ → ¬[⇑ϕ]ψ) 3. [⇑ϕ](ψ ∧ χ) ↔ ([⇑ϕ]ψ ∧ [⇑ϕ]χ) 4. [⇑ϕ]2 0 ψ ↔ ([∃]ϕ → ((2 0 [⇑ϕ]ψ ∨ ϕ) ∧ [∀](ϕ → [⇑ϕ]ψ))) 5. [⇑ϕ]2ψ ↔ ([∃]ϕ → ((2[⇑ϕ]ψ ∨ ϕ) ∧ [∀](ϕ → [⇑ϕ]ψ))) 6. [⇑ϕ][∀]ψ ↔ ([∃]ϕ → [∀][⇑ϕ]ψ)
Proof: Let M = (X, E 0 , τ, V ) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L ⇑ ∀22 0 . Similar to the above case, we have

x ∈ [[[∃]ϕ]] implies [[ψ]] M ⇑[[ϕ]] = [[[⇑ϕ]ψ]]
(5.2)

Axiom-4:

x ∈ [[[⇑ϕ]2 0 ψ]] iff x ∈ [[[∃]ϕ]] implies ∃e ∈ E ⇑[[ϕ]] 0 (x ∈ e ⊆ [[ψ]] M ⇑[[ϕ]] ) iff x ∈ [[[∃]ϕ]] implies (∃e ∈ E 0 (x ∈ e ∪ [[ϕ]] ⊆ [[ψ]] M ⇑[[ϕ]] ) or (x ∈ [[ϕ]] ⊆ [[ψ]] M ⇑[[ϕ]] )) (by defn. of E ⇑[[ϕ]] 0 ) iff x ∈ [[[∃]ϕ]] implies (∃e ∈ E 0 (x ∈ e ∪ [[ϕ]] ⊆ [[[⇑ϕ]ψ]]) or (x ∈ [[ϕ]] ⊆ [[[⇑ϕ]ψ]])) (by (5.2)) iff x ∈ [[[∃]ϕ]] implies (∃e ∈ E 0 (x ∈ e ⊆ [[[⇑ϕ]ψ]] and [[ϕ]] ⊆ [[[⇑ϕ]ψ]]) or (x ∈ [[ϕ]] ⊆ [[[⇑ϕ]ψ]])) iff x ∈ [[[∃]ϕ]] implies (x ∈ [[2 0 [⇑ϕ]ψ]] and x ∈ [[[∀](ϕ → [⇑ϕ]ψ)]]) or (x ∈ [[ϕ ∧ [∀](ϕ → [⇑ϕ]ψ)]]) iff x ∈ [[[∃]ϕ → ((2 0 [⇑ϕ]ψ ∨ ϕ) ∧ [∀](ϕ → [⇑ϕ]ψ))]]
The validity of the axiom 5 follows similarly where we replace the basic evidence set E 0 by the corresponding combined evidence set E. 5.6.35. Theorem. The sound and complete logic Log # ∀22 0 of evidence and feasible evidence combination with respect to the class of all topo-e-models is obtained by adding the axiom K # and the Necessitation rule (Nec # ) for the evidence addition modalities as well as the following reduction axioms to Log ∀22 0 :

1 . [#]p ↔ p 4 . [#]2ϕ ↔ 2[#]ϕ 2 . [#]¬ϕ ↔ ¬[#]ϕ 5 . [#]2 0 ϕ ↔ 2[#]ϕ 3 . [#](ϕ ∧ ψ) ↔ ([#]ϕ ∧ [#]ψ) 6 . [#][∀]ϕ ↔ [∀][#]ϕ Proof: Let M = (X, E 0 , τ, V ) be a topo-e-model, x ∈ X and ϕ ∈ L # ∀22 0 .
Axiom-5:

x

∈ [[[#]2 0 ϕ]] iff x ∈ [[2 0 ϕ]] M # iff ∃e # ∈ E # 0 (x ∈ e # ⊆ [[ϕ]] M # ) iff ∃e # ∈ E # 0 (x ∈ e # ⊆ [[[#]ϕ]]) iff ∃e ∈ E(x ∈ e ⊆ [[[#]ϕ]]) (since E # 0 = E # = E) iff x ∈ [[2[#]ϕ]]
The validity of the axiom 5 follows similarly since E = E # . 2

Conclusions and Further Directions

In this chapter, we studied a topological semantics for various notions of evidence, evidence-based justification, argument, (conditional) belief, and knowledge. We did so by using topological structures based on the (uniform) evidence models of van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. Several soundness, completeness, finite model property and decidability results concerning the logics of belief, knowledge and evidence on all topological (evidence) models have been shown. We also discussed some dynamic evidence modalities such as public announcements, evidence addition, evidence upgrade and feasible evidence combination, and provided sound and complete axiomatizations for the associated logics by means of a set of reduction axioms for each dynamic modality.

Our topological approach contributes to the evidence setting of van Benthem and Pacuit (2011); van [START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF] in many ways. First of all, this topological approach, we believe, gives mathematically more natural meanings to the epistemic/doxastic modalities we considered by providing a precise match between epistemic and topological notions. The list of the epistemic notions studied together with their topological counterparts is given in Table 5 Besides, concerning the belief interpretation, our proposal yields a notion of belief that coincides with the one of van Benthem and Pacuit (2011) in "good" cases, and that behaves better in general. More precisely, our justified belief is always consistent, in fact, it satisfies the axioms and rules of the standard belief system KD45 B on all topological spaces (Section 5.6.2). It moreover admits a natural topological reading in terms of dense-open sets (or equivalently, in terms of nowhere dense sets) as "truth in most states of the model", where "most" refers to "everywhere but a nowhere dense part". We have also shown that the logic of evidence models under our proposed semantics has the finite model property, whereas this was not the case in [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF][START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF].

The formalism developed in this chapter improves also on our own work on another topological semantics for Stalnaker's epistemic-doxastic system, presented in Chapters 4. While in Chapters 3 and 4 we could talk about evidential grounds of knowledge and belief only on a semantic level, the current setting provides syntactic representations of evidence, therefore, makes the notion of evidence a part of the logic. Moreover, we showed that knowledge and belief can be interpreted on arbitrary topological spaces (rather than on extremally disconnected or h.e.d. spaces), without changing their logic. To this end, the semantics of knowledge and belief proposed in this chapter generalizes the setting of Chapter 4.

In the rest of this section, we name a few directions for future research:

Connection to "topological" formal learning theory. One line of inquiry involves adding to the semantic structure a larger set E 3

0 ⊇ E 0 of potential evidence, meant to encompass all the evidence that might be learnt in the future. This would connect well with the topological program in Inductive Epistemology started by Kelly and others [START_REF] Kelly | The Logic of Reliable Inquiry[END_REF][START_REF] Schulte | Topology as epistemology[END_REF][START_REF] Kelly | Reliable Belief Revision[END_REF][START_REF] Kelly | A simple theory of theoretical simplicity[END_REF][START_REF] Baltag | On the solvability of inductive problems: A study in epistemic topology[END_REF], in which a topological version of Formal Learning Theory is used to investigate convergence of beliefs to the truth in the limit, when the agent observes a stream of incoming evidence. A formal setting that involves both actual evidence E 0 and potential evidence E 3 0 ⊇ E 0 would combine coherentist justification with predictive learning. A logical syntax appropriate for this setting could be obtained by extending our language with operators borrowed from topo-logic [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], such as an operator 3ϕ, expressing the fact that ϕ can become true after more evidence is learnt. Inductive learnability of ϕ is then captured by the formula 3Kϕ, where K is our defeasible knowledge (rather than the absolutely certain knowledge operator of topo-logic).

Multi-agent extensions. Another line of research involves extending our framework to a multi-agent setting. It is straightforward to generalize our semantics to multiple agents, though obtaining a completeness result might not be that easy. However, the real interesting challenge comes when we look at notions of group knowledge, for some group G of agents. For common knowledge, there are at least two different natural options: ( 1) the standard Lewis-Aumann concept of the infinite conjunctions of "everybody knows that everybody knows etc." [START_REF] Lewis | Convention: A Philosophical Study[END_REF][START_REF] Aumann | Agreeing to disagree[END_REF], and ( 2) a stronger concept, based on shared evidence (the intersection a∈G E a 0 of the evidence families E a 0 of all agents a ∈ G). The two concepts differ in general, and this is related to Barwise's older observation on the distinction of concepts of common knowledge in a topological framework [START_REF] Barwise | Three views of common knowledge[END_REF], in contrast to Kripke models, where all the different versions collapse to the same notion (see also van Benthem and Sarenac, 2004 and Bezhanishvili and van der Hoek, 2014, Section 12.4.2.5 for a discussion on the different formalizations of common knowledge on topological spaces). Similarly, in this evidence-based setting, the standard notion of distributed knowledge does not seem appropriate to capture a group's epistemic potential. Standardly, a group of agents G is said to have distributed (implicit) knowledge of ϕ if ϕ is implied by the knowledge of all individuals in G pooled together (see, e.g., [START_REF] Fagin | Reasoning About Knowledge[END_REF], Chapter 2 for a standard treatment of distributed knowledge based on relation models). In our setting though, a natural way to think about a group's epistemic potential is to let the agents share all their evidence, and compute their knowledge based on the evidence family obtained by taking the union E G 0 = a∈G E a 0 of all the evidence families E a 0 of all agents a in G. This corresponds to moving to the smallest topology that includes all agents' evidential topologies τ a , which also gives us a natural way to define a consistent notion of (potential) group belief. However, this setting has some apparent 'defects', that is, some facts known by one individual in the group might be defeated by another member's false or misleading evidence, therefore, the individual knowledge of these facts will be lost after the group members share all their evidence. This is in contrast with the standard notion of distributed knowledge that is group monotonic: the distributed knowledge of a larger group always includes the distributed knowledge of any of its subgroups, and so in particular it includes everything known by any member of the group. One option is to simply give up the dogma that groups are always wiser than their members, and retain the evidence-based model of group knowledge as providing a better representation of the epistemic potential of a group. Learning from others might not always be epistemically beneficial: it all depends on the quality of the others' evidence. There are also ways to avoid this conclusion, pursued by [START_REF] Ramirez | Topological models for group knowledge and belief[END_REF], via natural modifications of our models and by defining knowledge to be undefeated by any potential evidence that the agent may learn. This way [START_REF] Ramirez | Topological models for group knowledge and belief[END_REF] re-establishes group monotonicity, but showing completeness for the resulting logic possess technical challenges (see Ramirez, 2015, for details).

Part II From Public Announcements to Effort

Chapter 6

Topological Subset Space Semantics

In this chapter, we present the two topological frameworks, on the basis of which the work presented in the second part of this dissertation was developed. The first is the so-called subset space semantics of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], and its topological version developed by [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF] and [START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF]. The second is the topological public announcement formalism introduced by Bjorndahl ( 2016). We also point out the connections and differences between the epistemic use of topological spaces in Parts I and II of this thesis, especially regarding the types of evidence represented and the notion of knowledge studied.

Outline

In Section 6.1, we present the subset space framework, providing its syntax and semantics as well as the complete axiomatizations of the associated logics with respect to subset spaces and topological spaces. Section 6.2 introduces the topological public announcement logic of [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF], and provides several expressivity results concerning the languages studied in the aforementioned settings.

The Subset Space Semantics and TopoLogic

The formalism of "topologic", introduced by [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], and investigated further by [START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF][START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF], [START_REF] Weiss | Completeness of certain bimodal logics for subset spaces[END_REF] and others, represents a single-agent subset space logic (SSL) for the notions of knowledge and effort. One of the crucial aspects of this framework is that it is concerned not only with the representation of knowledge, but also aimed at giving an account of information gain or knowledge increase in terms of observational effort. 1 It is the latter feature of this work that makes the use of subset spaces significant. While the knowledge modality Kϕ has the standard reading "the agent knows ϕ (is true)", in the subset space setting, the effort modality 2ϕ captures a notion of effort as any action that results in an increase in knowledge and is read as "ϕ stays true no matter what further evidence-gathering efforts are made". The modality 2 therefore captures a notion of stability under evidence-gathering. Effort can be in the form of measurement, computation, approximation, or even announcement, depending on the context and the information source. To illustrate the underlying intuition of the subset space semantics, and the notions of knowledge, effort, and evidence it represents, suppose for instance, that you have measured your height and obtained a reading of 5 feet and 10 inches ±3 inches. The measuring devices we use to calculate such quantities always come with a certain error range, therefore giving us an approximation rather than the precise value. With this measurement in hand, you cannot be said to know whether you are less than 6 feet tall, as your measurement, i.e., the current evidence you have, does not rule out that you are taller or shorter. However, if you are able to spend more resources and take a more precise measurement, e.g., by using a more accurate meter with ± 1 error range, you come to know that you are less than 6 feet tall (Bjorndahl and Özgün, 2017). Subset space logics are designed to represent such situations, and therefore involve two modalities: one for knowledge K, and the other one for effort 2.

The formulas in the bimodal language are interpreted on subset spaces (X, O), where X is a nonempty domain and O is an arbitrary nonempty collection of subsets of X. The elements of O represent possible observations, and more effort corresponds to a more refined truthful observation, thus, a possible increase in knowledge. A subset space is not necessarily a topological space, however, topological spaces do constitute a particular case of subset spaces and topological reasoning provides the intuition behind this semantics, as we will elaborate below. 2 While presenting the most general case of subset spaces in this section, our main results in later sections will still be based on purely topological models.

In this section, we provide the formal background for the subset space semantics of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], explaining how these "topological" structures constitute models that are well-equipped to give an account for evidence-based knowledge and its dynamics. We also point out the differences and the connection between the two topological approaches developed in Chapter 5 and Part II, 2 The subset space setting also comes with an independent technical motivation. Many of the aforementioned sources are concerned with axiomatizing the logics of smaller classes of subset spaces meeting particular closure conditions on the set of subsets O. For example, while [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] axiomatized the logic of subset spaces, [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF] and [START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF] provided an axiomatization of the logic of topological spaces, and complete lattice spaces. Moreover, Georgatos (1997) axiomatized the logic of treelike spaces, and [START_REF] Weiss | Completeness of certain bimodal logics for subset spaces[END_REF] presented an axiomatization for the class of directed spaces. These results are quite interesting from a modal theoretical perspective, however, in this dissertation, we are primarily interested in the applications of topological ideas in epistemic logic. We therefore focus on the epistemic motivation behind the topologic formalism.

respectively. In particular, we compare the evidence representation on evidence models of van Benthem and Pacuit ( 2011) with the one on subset models of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], and in turn, the type of evidence-based knowledge studied on these structures.

Syntax and Semantics

In their influential work, [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] consider the bimodal language L K2 given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | 2ϕ,
and interpret it on subset spaces, a class of models generalizing topological spaces.

6.1.1. Definition. [Subset Space/Model] A subset space is a pair (X, O), where X is a nonempty set of states and O is a collection of subsets of X. A subset model is a tuple X = (X, O, V ), where (X, O) is a subset space and V : prop → P(X) a valuation function.

It is not hard to see that subset spaces are just like the evidence models of van Benthem and Pacuit (2011) (given in Definition 5.2. [START_REF]Suppose (x, U )[END_REF], but with no constraints on the set of subsets O. 3 However, the way the truth of a formula is defined on subset models leads to a crucial difference between the two settings, especially concerning the type of evidence represented by the elements of O, and the characterization of the notion of knowledge interpreted based on evidence. This point will become clear once we present the formal semantics below.

Subset space semantics interprets formulas not at worlds x but at epistemic scenarios of the form (x, U ), where x ∈ U ∈ O. Let ES(X ) denote the collection of all such pairs in X . Given an epistemic scenario (x, U ) ∈ ES(X ), the set U is called its epistemic range; intuitively, it represents the agent's current information as determined, for example, by the measurements she has taken. The language L K2 is interpreted on subset spaces as follows:

6.1.2. Definition. [Subset Space Semantics for L K2 ] Given a subset space model X = (X, O, V ) and an epistemic scenario (x, U ) ∈ ES(X ), truth of a formula in the language L K2 is defined recursively as follows:

X , (x, U ) |= p iff x ∈ V (p), where p ∈ prop X , (x, U ) |= ¬ϕ iff not X , (x, U ) |= ϕ X , (x, U ) |= ϕ ∧ ψ iff X , (x, U ) |= ϕ and X , (x, U ) |= ψ X , (x, U ) |= Kϕ iff (∀y ∈ U )(X , (y, U ) |= ϕ) X , (x, U ) |= 2ϕ iff (∀O ∈ O)(x ∈ O ⊆ U implies X , (x, O) |= ϕ)
We say that a formula ϕ is valid in a model X , and write X |= ϕ, if X , (x, U ) |= ϕ for all scenarios (x, U ) ∈ ES(X ). We say ϕ is valid, and write |= ϕ, if X |= ϕ for all X . We let

[[ϕ]] U X = {x ∈ U | X , (x, U )
|= ϕ} denote the truth set, or equivalently, extension of ϕ under U in the model X . We again omit the notation for the model, writing simply (x, U ) |= ϕ and [[ϕ]] U , whenever X is fixed.

Epistemic readings of subset space semantics: current vs potential evidence

In subset space semantics, the points of the space represent "possible worlds" (or, states of the world). However, having the units of evaluation as pairs of the form (x, U )-rather than a single state x-allows us to distinguish the evidence that the agent currently has in hand from the potential evidence she can in principle obtain. More precisely, elements of O can be thought of as potential pieces of evidence meant to encompass all the evidence that might be learnt in the future, while the epistemic range U of an epistemic scenario (x, U ) corresponds to the current evidence, i.e., "evidence-in-hand" by means of which the agent's knowledge is evaluated.4 This is made precise in the semantic clause for Kϕ, which stipulates that the agent knows ϕ just in case ϕ is entailed by her factive5 evidencein-hand. The knowledge modality K therefore behaves like the global modality within the given epistemic range U . For this reason, in various places, we will often refer to K as the global modality. Thus, the type of knowledge captured by the modality K in this setting is absolutely certain, infallible knowledge based on the agent's current truthful evidence. These points already underline the substantial differences between the two evidence-based epistemic frameworks studied in this thesis: while E 0 of an evidence model (X, E 0 , V ) represents the set of evidence pieces the agent has already acquired about the actual situation, the set O of a subset model (X, O, V ) represents the set of potential evidence the agent can in principle discover, even if she does not happen to personally have it in hand at the moment. A subset model is therefore intended to carry all pieces of evidence the agent currently has and can potentially gather later, hence, supports modelinternal means to interpret evidence-based information dynamics, as displayed, e.g., by the effort modality. 6 In this framework, more effort means acquiring more evidence for the actual state of affairs, therefore, a better approximation of the real state. The effort modality 2ϕ is thus interpreted in terms of neighbourhoodshrinking and read as "ϕ is stably true under evidence-acquisition", i.e., ϕ is true, and will stay true no matter what further factive evidence is obtained.

As every topological space is a subset space, the above readings of the modalities also apply to the topological models. However, the additional structure that topological spaces possess helps us to formalize naturally some further aspects of evidence aggregation (similar to Part I). For example, when O is closed under finite intersections, we can consider the epistemic range U of a given epistemic scenario (x, U ) as a finite stream of truthful information (O 1 , . . . , O n ) the agent has received and put together: [START_REF] Baltag | On the solvability of inductive problems: A study in epistemic topology[END_REF]. Moreover, as noted in [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], we can express some topological concepts in the language L K2 that, in fact, lead to concise modal reformulations of verifiable and falsifiable propositions (as also noted in [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF]. To be more precise, given a topo-model X = (X, τ, V ) and a propositional variable

x ∈ U = i≤n O i ∈ O
p ∈ prop, V (p) is open in τ iff p → 3Kp is valid in X .
Recall that the open sets of a topology are meant to represent potential evidence, i.e., properties of the actual state that are in principle verifiable: whenever they are true, they are supported by a sound piece of evidence that the agent can in principle obtain, therefore, can be known [START_REF] Vickers | Topology via logic[END_REF][START_REF] Kelly | The Logic of Reliable Inquiry[END_REF]. Therefore, we can state that

• p is verifiable in X iff p → 3Kp is valid in X .
In contrast, V (p) is closed in τ iff 2 Kp → p is valid in X , and closed sets correspond to properties that are in principle falsifiable: whenever they are false, their falsity can be known. In a similar manner, this can be formalized in the language L K2 as

• p is falsifiable in X iff ¬p → 3K¬p, or equivalently, 2 Kp → p is valid in X .
As remarked in [START_REF] Vickers | Topology via logic[END_REF][START_REF] Kelly | The Logic of Reliable Inquiry[END_REF], the closure properties of a topology are satisfied in this interpretation. First, contradictions (∅) and tautologies (X) are in principle verifiable (as well as falsifiable). The conjunction p ∧ q of two verifiable facts is also verifiable: if p ∧ q is true, then both p and q are true, and since both are assumed to be verifiable, they can both be known, and hence p ∧ q can be known. Finally, if {p i | i ∈ I} is a (possibly infinite) family of verifiable facts, then their disjunction i∈I p i is verifiable: in order for the disjunction to be true, then there must exist some i ∈ I such that p i is true, and so p i can be known (since it is verifiable), and as a result the disjunction i∈I p i can also be known (by inference from p i ).

Axiomatizations: SSL and TopoLogic

Moss and Parikh (1992) provided a sound and complete axiomatization of their logic of knowledge and effort with respect to the class of subset spaces. Its purely topological version was later studied by [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF], and [START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF], who independently provided complete axiomatizations and proved decidability. In this section, we give the axiomatizations for the logic of subset spaces (SSL) and of topological spaces (TopoLogic). We state the relevant completeness, decidability and finite model property results, and refer to the aforementioned sources for their proofs.

The axiomatization of the subset space logic, denoted by SSL, is obtained by augmenting the logic S5 K + S4 2 for the language L K2 with the additional axiom schemes (AP) and (CA) presented in Table 6 Therefore, the effort modality on subset spaces is S4-like. The axiom (AP) states that the truth value of the propositional variables does not depend on the given epistemic range, but only depends on the actual state. In fact, this is the case for all Boolean formulas in L K2 , and can be proven in the system SSL. The cross axiom is also interesting since it links the two modalities of this system. 6.1.3. Theorem [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]. SSL is sound and complete with respect to the class of all subset spaces.

It was shown in [START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF] that the logic of subset spaces does not have the finite model property, however, its decidability was proven by using nonstandard models called cross axiom models (see Dabrowski et al., 1996, Section 2.3).

Concerning the logic of topological spaces for L K2 , i.e., the so-called TopoLogic, it is axiomatized by adding the following axiom schemes to the axiomatization of SSL:

(WD) 32ϕ → 23ϕ
Weak Directedness (UN) 3ϕ∧ K3ψ → 3(3ϕ∧ K3ψ∧K3 K(ϕ∨ψ)) Union Axiom Table 6.2: Additional axiom schemes of TopoLogic 6.1.4. Theorem [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF]. TopoLogic is sound and complete with respect to the class of all topological spaces. Moreover, it has the finite model property, therefore, it is decidable.

The literature on subset space semantics goes far beyond the presentation of this section. However, we here confine ourselves to the material we will use in later sections, and refer the reader to [START_REF] Parikh | Topology and epistemic logic[END_REF] for a survey of the further technical results, extensions, and variations of the topologic formalism. In this dissertation, we are particularly interested in revealing the connection between the effort modality, and the well-known dynamic epistemic modalities such as the public and arbitrary announcement modalities. To that end, we use the topological public announcements introduced by Bjorndahl ( 2016), presented in the next section.

Topological Public Announcements

The epistemic motivation behind the subset space semantics and the dynamic nature of the effort modality clearly suggests a link between the subset space setting and dynamic epistemic logic, in particular dynamics known as public announcements [START_REF] Plaza | Logics of public communications[END_REF](Plaza, , 2007;;[START_REF] Gerbrandy | Reasoning about information change[END_REF]. The information intake represented by the effort modality intuitively encompasses any method of evidence acquisition, including public announcements, a precise and well-studied instance. This connection was also noted by [START_REF] Georgatos | Updating knowledge using subsets[END_REF], and further studied in [START_REF] Baskent | Geometric public announcement logics[END_REF][START_REF] Baskent | Public announcement logic in geometric frameworks[END_REF][START_REF] Balbiani | Subset space logic with arbitrary announcements[END_REF][START_REF] Wáng | Subset space public announcement logic[END_REF][START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF], proposing different interpretations for the so-called public announcement modalities. For example, [START_REF] Baskent | Geometric public announcement logics[END_REF][START_REF] Baskent | Public announcement logic in geometric frameworks[END_REF] and [START_REF] Balbiani | Subset space logic with arbitrary announcements[END_REF] propose modelling public announcements on subset spaces by deleting the states or the neighbourhoods falsifying the announcement, following the common approach in public announcement logics (see, e.g., [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF]. However, this method is obviously not in the spirit of the effort modality, in the sense that effort, as interpreted on subset spaces, does not lead to a global model change but manifests itself locally as a transition from one neighbourhood to a smaller one, i.e., as a neighbourhood shrinking operator. To the best of our knowledge, [START_REF] Wáng | Subset space public announcement logic[END_REF] were the first to propose semantics for public announcements on subset spaces in terms of epistemic range refinement rather than model restriction. [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] then proposed a revised topological semantics (in the style of subset space semantics) for the syntax of public announcement logic (without the effort modality), that assumes as precondition of learning ϕ the sentence int(ϕ), saying, roughly speaking, that ϕ is (potentially) knowable. Topologically, this corresponds to the interior operator of [START_REF] Mckinsey | The algebra of topology[END_REF]. Bjorndahl's formalism therefore brings three separate yet connected logical frameworks together: public announcement logic, the interior semantics of [START_REF] Mckinsey | The algebra of topology[END_REF], and the subset space semantics of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]. It thus constitutes a rich enough background to study the connection between effort and the public announcements as well as their connection to so-called arbitrary announcements.

In this section, we present Bjorndahl's topological public announcement logic, and briefly explain the main intuition and motivation behind his formalism. The main body of the work presented in Part II crucially relies on Bjorndahl's setting, and explores its extensions with the aforementioned dynamic modalities both in single and multi-agent cases.

Syntax and Semantics

Bjorndahl ( 2016) considers the language L ! Kint given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ,
where Kϕ is as in Section 6.1, [ϕ]ψ is the public announcement operator, and int is called the "knowability" modality, which, in this setting, plays the role of a precondition of an announcement [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF]. The operator [ϕ]ψ is often denoted by [!ϕ]ψ in the public announcement logic literature (as well as in Part I); we skip the exclamation sign, but we will use the notation [!] for this modality when we do not want to specify the announcement formula ϕ (so that ! functions as a placeholder for the content of the announcement). We prefer this notation here to emphasize the difference from the update operators studied in Part I (which were interpreted in a standard way via model restrictions, where the precondition of an announcement is only that the announced formula is true). The dual modalities for Kϕ and [ϕ]ψ are defined as usual, and we let cl(ϕ) := ¬int(¬ϕ).

Bjorndahl (2016) interprets the above language on topological spaces, in the style of subset space semantics, by extending the subset space semantics of the epistemic language L K with semantic clauses for the additional modalities.

Definition. [Topological Semantics for L !

Kint ] Given a topo-model X = (X, τ, V ) and an epistemic scenario (x, U ) ∈ ES(X ), truth of formulas in L ! Kint is defined for the propositional variables and the Boolean cases as in Definition 6.1.2, and the semantics for K, int(ϕ) and [ϕ]ψ is given recursively as

(x, U ) |= Kϕ iff (∀y ∈ U )((y, U ) |= ϕ) (x, U ) |= int(ϕ) iff x ∈ Int([[ϕ]] U ) (x, U ) |= [ϕ]ψ iff (x, U ) |= int(ϕ) implies (x, Int([[ϕ]] U )) |= ψ
where Int is the interior operator of (X, τ ), and [ [ϕ]] U is as defined on p. 106.

To elaborate, the semantic clause for K is exactly the same as in Definition 6.1.2, and is repeated here: as is standard in subset space semantics, knowledge is entailed by the agent's current evidence U . On the other hand, the precondition of an announcement in Bjorndahl's setting is captured by the topological interior operator that refers to the existence of a piece of factive potential evidence entailing the announcement:

(x, U ) |= int(ϕ) iff (∃O ∈ τ )(x ∈ O ⊆ [[ϕ]] U ).
More precisely, int(ϕ) means that ϕ is knowable at the actual state (though not necessarily knowable in general, at other states) in the sense that there exists some potential evidence-an open set containing the actual state-that entails ϕ. Therefore, for the precondition of an announcement, [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] requires not only that the announced formula is true, but also that it is entailed by a piece of (factive) evidence the agent could possibly obtain. In this respect, a true proposition cannot be announced if it does not have any open subsets including the actual state. For example, on a topo-model with no singleton opens, the agents can never know the actual state, not every true proposition can come to be known (as in Georgatos, 1994, Example 1, p. 149). It is this evidencebased interpretation of public announcements that makes Bjorndahl-style updates different than standard update operators (interpreted via model restrictions). In a framework where knowledge is based on the agent's current evidence, and every piece of evidence the agent might acquire later is represented within the given model in terms of open sets of a topology, the operator int as the precondition for learning something seems to be the right notion to consider. It is a good fit with the intuition behind the subset space/topological semantics and the evidencebased learning we study in this part (see [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] for some examples).

Remark.

It is worth noting that the intuition behind reading int(ϕ) as "ϕ is knowable" can falter when ϕ is itself an epistemic formula. For instance, if ϕ is the Moore sentence p ∧ ¬Kp, then Kϕ is not satisfiable in any subset model, in particular, 3Kϕ is never true. Therefore, in this sense, ϕ can never be known; nonetheless, int(ϕ) is satisfiable. This is because int(ϕ) abstracts away from the temporal and dynamic dimension of knowability, and is simply concerned with potential knowledge. On the other hand, 3Kϕ is a dynamic schema that states "the agent comes to know ϕ after having spent some effort, having acquired some further evidence". In this respect, int(ϕ) might be more accurately glossed as "one could come to know what ϕ used to express (before you came to know it)". Since primitive propositions do not change their truth value based on the agent's epistemic state, this subtlety is irrelevant for propositional knowledge and knowability (Bjorndahl and Özgün, 2017).7 

Bjorndahl (2016) then proceeds with providing a sound and complete axiomatization for the associated dynamic logic PAL + int (called public announcement logic with int), using natural analogues of the standard reduction axioms of public announcement logic, and shows that this formalism is co-expressive with the simpler (and older) logic of interior int(ϕ) and global modality Kϕ (previously investigated by [START_REF] Goranko | Using the universal modality: Gains and questions[END_REF]; [START_REF] Bennett | Modal logics for qualitative spatial reasoning[END_REF]; [START_REF] Shehtman | Everywhere" and "Here[END_REF]; [START_REF] Aiello | Spatial Reasoning: Theory and Practice[END_REF], extending the work of [START_REF] Mckinsey | The algebra of topology[END_REF] 

: (R p ) [ϕ]p ↔ (int(ϕ) → p) (R ¬ ) [ϕ]¬ψ ↔ (int(ϕ) → ¬[ϕ]ψ) (R ∧ ) [ϕ](ψ ∧ χ) ↔ [ϕ]ψ ∧ [ϕ]χ (R K ) [ϕ]Kψ ↔ (int(ϕ) → K[ϕ]ψ) (R int ) [ϕ]int(ψ) ↔ (int(ϕ) → int([ϕ]ψ) (R [comp] ) [ϕ][ψ]χ ↔ [int(ϕ) ∧ [ϕ]int(ψ)]χ
Table 6.3: The axiomatizations for EL int and PAL + int .

We conclude the section by stating the completeness results for EL int and PAL + int , and continue our presentation in the next section with a detailed discussion on the expressive power of L ! Kint and its fragments, also in comparison to L K2 , with respect to topo-models. [START_REF] Shehtman | Everywhere" and "Here[END_REF]. EL int is sound and complete with respect to the class of all topo-models.

Theorem

Bjorndahl ( 2016) also presents a canonical topo-model construction for EL int (see Bjorndahl, 2016, Theorem 1). He moreover proves the completeness and soundness of PAL + int :

6.2.4. Theorem [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF]. PAL + int is sound and complete with respect to the class of all topo-models.

Expressivity

This section provides several expressivity results concerning the above defined languages with respect to topo-models. We focus in particular on the expressive power of L ! Kint and its fragments as provided in [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF], as well as the connection between L int and L K2 (see, e.g., Parikh et al., 2007, Section 4.3). The reader who is familiar with the aforementioned sources can skip this section. 6.2.5. Theorem [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF]. L ! Kint , L Kint and L ! K are equally expressive with respect to topo-models.

Proof:

For the proof details of the co-expressivity between L ! Kint and L Kint , we refer to (Bjorndahl, 2016, Proposition 5). L ! Kint and its fragment L ! K are equally expressive since the modality int can be defined in terms of the public announcement modalities. In particular, for all ϕ ∈ L ! Kint , we have int(ϕ) ↔ ϕ valid in all topomodels. To prove this, let X = (X, τ, V ) be a topo-models and (x, U ) ∈ ES(X ).

(x, U ) |= int(ϕ) iff x ∈ Int([[ϕ]] U )
(by the semantics of int)

iff x ∈ Int([[ϕ]] U ) and (x, Int([[ϕ]] U ) |= iff (x, U ) |= ϕ (by the semantics of public announ. [!]) 2 
On the other hand, not surprisingly, the modality int increases the expressive power of the purely epistemic fragment L K . And, similarly, the global modality K increases the expressivity of L int : 6.2.6. Theorem. L Kint is strictly more expressive than L K , and than L int . Moreover, L K and L int are incomparable.

Proof:

In order to show that L Kint is strictly more expressive than L K , we use the example in (Bjorndahl, 2016, Proposition 3).9 Consider the topo-models X = ({x, y}, 2 {x,y} , V ) and Y = ({x, y}, {∅, {y}, {x, y}}, V ) such that V (p) = {x} (see Figure 6.1). Let Int X and Int Y denote the interior operators of X and Y, respectively. It is obvious that X and Y are modally equivalent with respect to L K . In other words, for all ϕ ∈ L K and all (z, U [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] argument is given by a notion of bisimulation). However, while X , (x, {x, y}) |= int(p) since x ∈ {x} = Int X ([ [p]] {x,y} ), we also have

) ∈ ES(X ) ∩ ES(Y), we have X , (z, U ) |= ϕ iff Y, (z, U ) |= ϕ (in
x ∈ ∅ = Int Y ([[p]] {x,y} ). Therefore, int(p)
can distinguish X , (x, {x, y}) from Y, (x, {x, y}), thus it cannot be equivalent to any formula in L K .

To show that L Kint is strictly more expressive than L int , consider again the model X = ({x, y}, 2 {x,y} , V ), and the topo-model X = ({x, y}, 2 {x,y} , V ) such that V (p) = ∅ (see Figure 6.2). Observe that, for all ϕ ∈ L int , X , (y, {y}) |= ϕ iff X , (y, {y}) |= ϕ (this can be shown easily by a subformula induction on ϕ). On the other hand, X , (y, {y}) |= Kp whereas X , (y, {y}) |= Kp. Therefore, Kp can distinguish X , (y, {y}) from X , (y, {y}), thus it cannot be equivalent to any formula in L int . Moreover, the first example shows that int(p) ∈ L int is not equivalent to any formula in L K , and the second example shows that Kp ∈ L K is not equivalent to any formula in L int , hence, L int and L K are incomparable.

2

We also compare L int and L K2 , and thereby, see the exact connection between the interior semantics and the subset space style topological semantics. We here follow the presentation in (Parikh et al., 2007, Section 4.3). We first show that L int is embedded in the language L K2 via the following translation: 6.2.7. Definition. [Translation * : L int → L K2 ] For each ϕ ∈ L int , the translation (ϕ) * of ϕ into L K2 is defined recursively as follows:

p * = p, where p ∈ prop (¬ϕ) * = ¬(ϕ) * (ϕ ∧ ψ) * = ϕ * ∧ ψ * (int(ϕ)) * = 3Kϕ * 6.2.8. Definition. [Bi-persistent Formula of L K2 (on topo-models)] A formula ϕ ∈ L K2 is called bi-persistent if for all topo-models X = (X, O, V ), and all (x, U ), (x, O) ∈ ES(X ) we have (x, O) |= ϕ iff (x, U ) |= ϕ.
6.2.9. Proposition. For all ϕ ∈ L int , the corresponding formula ϕ * ∈ L K2 is bi-persistent on topo-models.

Proof:

The proof follows by subformula induction on ϕ; cases for the propositional variables and the Boolean connectives are elementary. So assume inductively that the result holds for ψ; we must show that it holds also for ϕ := int(ψ). Let X = (X, τ, V ) be a topo-model and (x, O), (x, U ) ∈ ES(X ). We then have

(x, U ) |= (int(ψ)) * iff (x, U ) |= 3Kψ * (by the definition of * ) iff (∃U ∈ τ )(x ∈ U ⊆ U and (x, U ) |= Kψ * )
(by the semantics of 2) The other direction follows similarly. 2 6.2.10. Proposition (Dabrowski et al., 1996, Proposition 3.5). For all ϕ ∈ L int , all topo-models X = (X, τ, V ) and all (x, U ) ∈ ES(X ),

iff (∃U ∈ τ )(x ∈ U ⊆ U and [[ψ * ]] U = U ) (
(x, U ) |= ϕ iff (x, U ) |= ϕ * .

Proof:

The proof follows by subformula induction on ϕ; cases for the propositional variables and the Boolean connectives are elementary. So assume inductively that the result holds for ψ; we must show that it holds also for ϕ := int(ψ). Let X = (X, τ, V ) be a topo-model and ( 

Therefore, the language L K2 completely embeds the language L int as its fragment consisting of the propositional variables, and closed under the Boolean operators and the modalities 3K. As shown in (Parikh et al., 2007, Proposition 6.8), the language L K2 is in fact strictly more expressive than L int on topo-models: 6.2.11. Proposition (Parikh et al., 2007, Proposition 6.8). L K2 is strictly more expressive than L int with respect to topo-models.

Proof:

It follows from Proposition 6.2.10 that for every ϕ ∈ L int , there exists ψ, namely ϕ * , such that ϕ and ϕ * are true at the same epistemic scenarios of every topomodel. Moreover, the second example in the proof of Theorem 6.2.6 shows that Kp is not equivalent on the class of topo-models to ϕ * for any ϕ ∈ L int (see Parikh et al., 2007, Proposition 6.8 for a different example). 2

Conclusions and Continuation

In this chapter, we presented the subset space semantics introduced by [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], mainly focusing on its topological versions. While the standard TopoLogic formalism à la [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF]; [START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF] completely axiomatizes the logic of topological spaces for the language L K2 of knowledge and effort, [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] studies the variant L Kint with the interior operator of [START_REF] Mckinsey | The algebra of topology[END_REF] and the knowledge modality K, and its extension L ! Kint with a topological update operator. We therefore have different axiomatizations for the class of topological spaces, using subset space style semantics based on different languages. The expressivity results concerning the aforementioned languages and their fragments have been discussed in Section 6.2.2, and are summarized in Figure 6.3 below. As we see in Figure 6.3, the languages L K2 and L Kint are also co-expressive with respect to topo-models. We leave the proof of this result for the next chapter (see Theorem 7. 1.19).

At this stage we still do not have a logical formalism that analyzes the public announcement modality and the effort modality in one system, although [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] provides topological semantics for public announcements that matches the way effort is evaluated on topological spaces. This constitutes one of the topics of the next chapter: we extend the topologic framework with the Bjorndahl-style update modalities, or equivalently, study the extensions of L Kint and L ! Kint by the effort modality 2, and develop a formal framework that elucidates the relation between effort and public announcements. Chapter 7

L K L K2 L Kint L int L ! Kint L ! K Thm 6.

TopoLogic as Dynamic Epistemic Logic

This chapter studies two different extensions of Bjorndahl's setting for topological public announcements: one with the effort modality of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], and the other with the so-called arbitrary announcement modality of [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]. We first explore the logic of topological spaces for the language L ! Kint2 , obtained by extending Bjorndahl's language L ! Kint with the effort modality introduced in the previous chapter. This way, we design a formal framework which reveals the link between effort and (topological) public announcements, resulting in both conceptual and technical advantages.

Yet another close relative of both the effort modality and the public announcement modalities is the so-called arbitrary announcement modality that was introduced by [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] and studied on Kripke models. Roughly speaking, the arbitrary announcement modality ϕ is read as "ϕ stays true after every announcement". It therefore generalizes public announcements by quantifying over all such announcements. On the other hand, the effort modality seems stronger than the arbitrary announcement modality as the former quantifies over all open neighbourhoods of the actual state, not only over the epistemically definable ones. In this chapter, we also look at the connection between these three dynamic operators, by providing a topological semantics for ϕ that quantifies universally over Bjorndahl-style public announcements (similar to the way standard arbitrary public announcement in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] quantifies over standard public announcements).

Outline

Section 7.1 presents the Dynamic TopoLogic which combines the topologic formalism with Bjorndahl's public announcements presented in Chapter 6. While Section 7.1.2 provides several expressivity results, Section 7.1.3 focuses on the completeness proof of the proposed axiomatization for Dynamic TopoLogic. In Section 7.2, we study arbitrary announcements on topo-models and demonstrate 119 that, in fact, the arbitrary announcement and the effort modality are equivalent in our single-agent framework.

This chapter is based on [START_REF] Van Ditmarsch | Arbitrary announcements on topological subset spaces[END_REF]Baltag et al., 2017).

Dynamic TopoLogic

In this section, based on (Baltag et al., 2017), we investigate a natural extension of topologic, obtained by adding to it Bjorndahl's topological update operators. In other words, we revisit TopoLogic as a dynamic epistemic logic with public announcements. The resulting "Dynamic TopoLogic" forms a logic of evidence-based knowledge Kϕ, knowability int (ϕ), learning of new evidence [ϕ]ψ, and stability 2ϕ (of some truth ϕ) under any such evidence-acquisition.

To recall briefly, [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] gave a sound and complete axiomatization with respect to the class of all subset spaces (Theorem 6.1.3). The axiomatization for topological spaces was later studied by [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF] and [START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF], who independently provided completeness and decidability proofs for TopoLogic (Theorem 6.1.4). These existing completeness and decidability results involve technically interesting, yet rather complicated constructions. Moreover, one of the main axioms of the original TopoLogic, the socalled Union Axiom, capturing closure of the topology under binary unions (see Table 6.2), is very complex and looks rather unintuitive from an epistemic perspective. Against this background, our investigations in this chapter lead to results of conceptual and technical interest as the extended syntax explicates the notion of effort in terms of public announcements, and entertains an epistemically more intuitive and clear complete axiomatization.

In the following, we present several expressivity results concerning this extended language, denoted by L ! Kint2 , and its fragments, and thus expand Figure 6.3. In particular, we show that this extension is co-expressive with Bjorndahl's language L ! Kint of topological public announcements [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF], and therefore with the simpler language L Kint . This elucidates the relationships between TopoLogic and other modal (and dynamic-epistemic) logics for topology. In particular, TopoLogic is directly interpretable in the simplest logic of topo-models for L Kint , which immediately provides an easy decidability proof both for TopoLogic and for our extension.

We also give a complete axiomatization for Dynamic TopoLogic, which is in a sense more transparent than the standard axioms of TopoLogic. Although we have more axioms, each of them is natural and easily readable, directly reflecting the intuitive meanings of the connectives. More precisely, our axiomatization consists of a slightly different version of Bjorndahl's axiomatization of PAL + int (ours includes a few other standard axioms and rules of public announcement logic), together with only two additional proof principles governing the behavior of the topologic "effort" modality (2ϕ, what we call "stable truth"): an introduction rule and an elimination axiom. Everything to be said about the effort modality is therefore fully captured by these two simple principles, which together express the fact that this modality quantifies universally over all updates with any new evidence. In particular, the complicated Union Axiom of TopoLogic (see Table 6.2) is not needed in our system (though of course it can be proved from our axioms). Unlike the existing completeness proofs of TopoLogic [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF], ours makes direct use of a standard canonical topo-model construction (as, e.g., the canonical topo-model construction for S4 in Aiello et al., 2003, Section 3). 1 This simplicity shows the advantage of adding dynamic modalities: when considered as a fragment of a dynamic-epistemic logic, topologic becomes a more transparent and natural formalism, with intuitive axioms and canonical behavior.

Syntax, Semantics and Axiomatizations

The language L ! Kint2 of Dynamic TopoLogic is obtained by extending Bjorndahl's language L ! Kint with the effort modality 2 from the language of topologic L K2 [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]; or, equivalently, by extending the usual syntax of topologic with both the interior operator int of [START_REF] Mckinsey | The algebra of topology[END_REF] and with Bjorndahl's dynamic modalities for topological public announcements. As noted earlier, the interior operator is definable using topological public announcements (by putting int(ϕ) = ϕ ). Therefore, keeping the modality int in the language as primitive is mainly a design decision, but it also simplifies our completeness proof. Therefore, our syntax is essentially given by adding the language L K2 of topologic only the dynamic public announcement modalities, hence, we use the name "Dynamic TopoLogic". We start our presentation by formally introducing the syntax and semantics for Dynamic TopoLogic.

Syntax and Semantics. The language L ! Kint2 of Dynamic TopoLogic is defined recursively by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ | 2ϕ,
where p ∈ prop. Several fragments of the language L ! Kint2 are of both technical and conceptual interest. To recall, for the fragments of L ! Kint2 , we use our standard notational convention listing all the modalities of the corresponding language as a subscript of L except that ! for public announcements appears as a superscript. For example, L int denotes the fragment of L ! Kint2 having only the modality int; L Kint having only the modalities K and int; L K2 having only the modalities K and 2; L ! Kint having the modalities K, int and [!] etc.

We interpret this language on topo-models in an obvious way by putting together the subset space semantics for L K2 (Definition 6.1.2) and Bjorndahl's semantics for the fragment L ! Kint (Definition 6.2.1). This is recapitulated in the following definition.

Definition. [Topological Semantics for L !

Kint2 ] Given a topo-model X = (X, τ, V ) and an epistemic scenario (x, U ) ∈ ES(X ), truth of formulas in L ! Kint2 is defined for the propositional variables and the Booleans as in Definition 6.1.2, and the semantics for the modalities is given recursively as follows:

(x, U ) |= Kϕ iff (∀y ∈ U )((y, U ) |= ϕ) (x, U ) |= int(ϕ) iff x ∈ Int([[ϕ]] U ) (x, U ) |= [ϕ]ψ iff (x, U ) |= int(ϕ) implies (x, Int([[ϕ]] U )) |= ψ (x, U ) |= 2ϕ iff (∀O ∈ τ ) (x ∈ O ⊆ U implies (x, O) |= ϕ)
Axiomatizations. Given a formula ϕ ∈ L ! Kint2 , we denote by P ϕ the set of all propositional variables occurring in ϕ (we will use the same notation for the necessity and possibility forms defined in Definition 7. 1.22). The Dynamic TopoLogic, hereby denoted as DTL int , is the smallest subset of L ! Kint2 that contains the axioms, and is closed under the inference rules given in Table 7.1 below. The system EL int is defined in a similar way over the language L Kint by the axioms and inference rules in group (I) of Table 7.1 (as also given in Table 6. [START_REF])) of int)[END_REF], and PAL int is defined over the language L ! Kint by the axioms and inference rules in groups (I) and (II).

The first six items in Table 7.1 are standard. The Replacement of Equivalents rule ([!]RE) for [!] says that updates are extensional, that is, learning equivalent sentences gives rise to equivalent updates, while the reduction axiom (R[ ]) says that updating with tautologies is redundant. The reduction axioms (R p ), (R ¬ ) and (R K ) are exactly the same as in the axiomatization PAL + int of Bjorndahl ( 2016), and the reduction law (R [!] ) for the iterative announcements is equivalent to (R [comp] ) but formulated in a simpler way (see Table 6.3 for PAL + int ). Bjorndahl's axiomatization also includes reduction laws for the connective ∧ (denoted by (R ∧ )) and the modality int (denoted by (R int )), however, as shown in Proposition 7.1.2, these can be derived in PAL int .The only key new components of our system are the last axiom and inference rule for 2, i.e., the elimination axiom ([!]2-elim) and the introduction rule ([!]2-intro) for the effort modality. Taken together, they state that θ is a stable truth after learning ϕ iff θ is true after learning every stronger evidence ϕ ∧ ρ. The left-to-right implication in this statement is directly captured by ([!]2-elim), while the converse is captured by the rule ([!]2intro). The "freshness" of the variable p in this rule ensures that it represents any "generic" further evidence. This is similar to the introduction rule for the universal quantifier. In essence, the effort axiom and rule express the fact that the effort modality is a universal quantifier (over potential evidence). One can compare the transparency and simple nature of our axioms with the complexity (I) Axioms and rules of system EL int : (CPL) all classical propositional tautologies and Modus Ponens (S5 K ) all S5 axioms and rules for the knowledge modality K (S4 int ) all S4 axioms and rules for the interior modality int (K-int)

Knowledge implies knowability: Kϕ → int(ϕ)

(II) Additional axioms and rules for PAL int :

(K ! ) [ϕ](ψ → θ) → ([ϕ]ψ → [ϕ]θ) (Nec ! ) from θ, infer [ϕ]θ ([!]RE) Replacement of Equivalents for [!]: from ϕ ↔ ψ, infer [ϕ]θ ↔ [ψ]θ Reduction axioms: (R[ ]) [ ]ϕ ↔ ϕ (R p ) [ϕ]p ↔ (int(ϕ) → p) (R ¬ ) [ϕ]¬ψ ↔ (int(ϕ) → ¬[ϕ]ψ) (R K ) [ϕ]Kψ ↔ (int(ϕ) → K[ϕ]ψ) (R [!] ) [ϕ][ψ]χ ↔ [ ϕ ψ]χ
(III) Axioms and rules of the effort modality for DTL int :

([!]2-elim) [ϕ]2θ → [ϕ ∧ ρ]θ (ρ ∈ L ! Kint2 arbitrary formula) ([!]2-intro) from ψ → [ϕ ∧ p]θ, infer ψ → [ϕ]2θ (p ∈ P ψ ∪ P θ ∪ P ϕ )
Table 7.1: The axiomatizations of DTL int , PAL int and EL int of the standard axiomatization of TopoLogic that contains, among others, the rather intricate Union Axiom (also given in Table 6.2):

3ϕ ∧ K3ψ → 3(3ϕ ∧ K3ψ ∧ K3 K(ϕ ∨ ψ)) (UN)
Proposition 7.1.2 states some important theorems and inference rules derivable in DTL int , which will be used in our completeness proofs. While the denotations for the other items listed in the following proposition are obvious, (RE) is the full rule of Replacement of Equivalents, where ϕ{ψ/χ} denotes the formula obtained by replacing the occurrences of ψ in ϕ by χ.

7.1.2. Proposition. The first seven schemas and the rule (RE ) are provable both in PAL int and DTL int (for languages L ! Kint and L ! Kint2 , respectively). The ninth schema and the inference rule below can be derived in our full proof system DTL int :

1. ( ! ) ϕ ψ ↔ (int(ϕ) ∧ [ϕ]ψ) 2. (R ⊥ ) [ϕ]⊥ ↔ ¬int(ϕ) 3. (R ∧ ) [ϕ](ψ ∧ θ) ↔ ([ϕ]ψ ∧ [ϕ]θ) 4. (R int ) [ϕ]int(ψ) ↔ (int(ϕ) → int([ϕ]ψ)) 5. (R[int]) [int(ϕ)]ψ ↔ [ϕ]ψ 6. (R [comp] ) [ϕ][ψ]χ ↔ [int(ϕ) ∧ [ϕ]int(ψ)]χ 7. (R [p] ) [ϕ][p]ψ ↔ [ϕ ∧ p]ψ (p ∈ prop arbitrary) 8. (RE) from ψ ↔ χ, infer ϕ ↔ ϕ{ψ/χ} 9. (2-elim) 2θ → [ρ]θ (ρ ∈ L ! Kint2 arbitrary formula) 10. (2-intro) from ψ → [p]θ, infer ψ → 2θ (p ∈ P ψ ∪ P θ atom)
Proof:

We here present abridged derivations, some of the obvious steps are omitted. We start with the 2-axioms and inference rules.

(2-elim):

1. 2θ ↔ [ ]2θ (R[ ]) 2. [ ]2θ → [ ∧ ρ]θ, (for arbitrary ρ ∈ L ! Kint2 ) ([!]2-elim) 3. [ ∧ ρ]2θ → [ρ]θ, (for arbitrary ρ ∈ L ! Kint2 ) ( ( ∧ ρ) ↔ ρ and ([!]RE)) 4. 2θ → [ρ]θ, (for arbitrary ρ ∈ L ! Kint2 ) (1-3, CPL)
(2-intro): proof follows analogously to the above case by using R[ ], and [!]2-intro with ϕ := .

(RE): The proof follows standardly by subformula induction on ϕ. Suppose ψ ↔ χ. For the base case ϕ := ψ, we have ϕ{ψ/χ} = χ. Therefore, the equivalence ϕ ↔ ϕ{ψ/χ} boils down to ψ ↔ χ, hence follows from the assumption. Now assume inductively that the statement holds for σ and θ. The cases for the Booleans, K and int are standard, where the latter two follows from the corresponding K-axioms and Necessitation rules. For [!], we use (K ! ), (Nec ! ), ([!]RE). For 2, it is sufficient to show that we can derive the K-axiom (K 2 ) and the Necessitation rule (Nec 2 ) for 2. The derivation of (Nec 2 ) easily follows from (Nec ! ) and (2-intro). For (K 2 ), we have 

1. (2(θ → γ) ∧ 2θ) → ([p](θ → γ) ∧ [p]θ) (p ∈ P θ ∪ P γ , (2-elim)) 2. ([p](θ → γ) ∧ [p]θ) → [p]γ (K ! ) 3. (2(θ → γ) ∧ 2θ) → [p]γ (1, 2, CPL) 4. (2(θ → γ) ∧ 2θ) → 2γ (p ∈ P θ ∪ P γ , (2-intro)) ( 
1. int(ψ) ↔ ¬[ψ]⊥ (R ⊥ ) 2. [ϕ]int(ψ) ↔ [ϕ]¬[ψ]⊥ (1, ([!]RE)) 3. [ϕ]¬[ψ]⊥ ↔ (int(ϕ) → ¬[ϕ][ψ]⊥) (R ¬ ) 4. (int(ϕ) → ¬[ϕ][ψ]⊥) ↔ (int(ϕ) → int( ϕ ψ)) ((R [!] ), (R ⊥ )) 5. [ϕ]int(ψ) ↔ (int(ϕ) → int( ϕ ψ)) (2-4, CPL) 6. (int(ϕ) → int( ϕ ψ)) ↔ (int(ϕ) → int(int(ϕ) ∧ [ϕ]ψ)) (( ! ), (RE)) 7. (int(ϕ) → int(int(ϕ) ∧ [ϕ]ψ)) ↔ (int(ϕ) → (int(ϕ) ∧ int([ϕ]ψ))) (S4 int , (RE)) 8. (int(ϕ) → (int(ϕ) ∧ int([ϕ]ψ))) ↔ (int(ϕ) → int([ϕ]ψ)) (CPL) 9. [ϕ]int(ψ) ↔ (int(ϕ) → int([ϕ]ψ))
(5-8, CPL)

(R[int]): follows by subformula induction on ψ by using the reduction axioms and the fact that int is an S4 modality. For case ψ := 2χ, we use ([!]2-elim) and

([!]2-intro).
Base case

ψ := p 1. [int(ϕ)]p ↔ (int(int(ϕ)) → p) (R p ) 2. (int(int(ϕ)) → p) ↔ (int(ϕ) → p) (S4 int ) 3. (int(ϕ) → p) ↔ [ϕ]p (R p ) 4. [int(ϕ)]p ↔ [ϕ]p (1-3, CPL)
The cases for ψ := ¬χ, ψ := χ ∧ σ, ψ := Kχ and ψ := int(χ) follow in a similar way by using the corresponding reduction axioms.

Case

ψ := [χ]σ follows similarly. 1. [int(ϕ)]2χ → [int(ϕ) ∧ p]χ (p ∈ P ϕ ∪ P χ , ([!]2-elim)) 2. [int(ϕ) ∧ p]χ ↔ [int(int(ϕ) ∧ p)]χ (IH) 3. [int(int(ϕ) ∧ p)]χ ↔ [int(ϕ ∧ p)]χ (S4 int , (RE)) 4. [int(ϕ ∧ p)]χ ↔ [ϕ ∧ p]χ (IH) 5. [int(ϕ)]2χ → [ϕ ∧ p]χ (1-4, CPL) 6. [int(ϕ)]2χ → [ϕ]2χ (p ∈ P int(ϕ) ∪ P χ , ([!]2-intro)) (R [comp] ): 1. [int(ϕ) ∧ [ϕ]int(ψ)]χ ↔ [int(ϕ) ∧ int[ϕ]ψ)]χ ((R int ), (RE)) 2. [int(ϕ) ∧ int[ϕ]ψ)]χ ↔ [int(int(ϕ)) ∧ int[ϕ]ψ)]χ (S4 int , (RE)) 3. [int(int(ϕ)) ∧ int[ϕ]ψ)]χ ↔ [int(int(ϕ) ∧ [ϕ]ψ)]χ (S4 int , (RE)) 4. [int(int(ϕ) ∧ [ϕ]ψ)]χ ↔ [int(ϕ) ∧ [ϕ]ψ]χ (R[int]) 5. [int(ϕ) ∧ [ϕ]ψ]χ ↔ [ ϕ χ]α (( ! ), (RE)) 6. [ ϕ χ]α ↔ [ϕ][χ]α (R [!] ) 7. [int(ϕ) ∧ [ϕ]int(ψ)]χ ↔ [ϕ][χ]α (1-6, CPL) (R [p] ): 1. [ϕ][p]ψ ↔ [ ϕ p]ψ (R [!] ) 2. [ ϕ p]ψ ↔ [int(ϕ) ∧ [ϕ]p]ψ (( ! ), (RE)) 3. [int(ϕ) ∧ [ϕ]p]ψ ↔ [int(ϕ) ∧ p]ψ ((R p ), (RE)) 4. [int(ϕ) ∧ p]ψ ↔ [int(int(ϕ) ∧ p)]ψ (R[int]) 5. [int(int(ϕ) ∧ p)]ψ ↔ [int(ϕ ∧ p)]ψ (S4 int and (RE)) 6. [int(ϕ ∧ p)]ψ ↔ [ϕ ∧ p]ψ (R[int]) 7. [ϕ][p]ψ ↔ [ϕ ∧ p]ψ (1-6, CPL) 2 7.1.3.
Corollary. PAL int is sound and complete with respect to the class of all topo-models.

Proof:

Soundness of PAL int is easy to see. The completeness proof follows from Theorem 6.2.4 and Proposition 7.1.2: since Bjorndahl's axiomatization PAL + int is complete and our system PAL int can prove all his additional reduction rules (R ∧ ), (R int ) and (R [comp] ), our system PAL int is complete as well.

Soundness and Expressivity

In this section, we introduce a more general class of models for our full language L ! Kint2 , called pseudo-models. These are a special case of the (even more general) subset models of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]. Pseudo-models include all topo-models, as well as other subset models, but they have the nice property that the interior operator int(ϕ) can still be interpreted in the standard way. These structures, though interesting enough in themselves, are for us only an auxiliary notion, playing an important technical role in our completeness proof of DTL int . For now though, we first prove the soundness of our full system DTL int with respect to pseudo-models (and thus also with respect to topo-models), and then provide several expressivity results concerning the above defined languages with respect to both topo and pseudo-models.

The definition of pseudo-models requires a few auxiliary notions, such as a more general class of models called pre-models. Although a lattice space (X, O) is not necessarily a topological space, the family O constitutes a topological basis over X. Therefore, every pre-model X = (X, O, V ) has an associated topo-model X τ = (X, τ O , V ), where τ O is the topology generated by O (i.e., the smallest topology on X such that O ⊆ τ O ).

Given a pre-model X = (X, O, V ), we define the semantics for L ! Kint2 on premodels for all pairs of the form (x, Y ), where Y ⊆ X is an arbitrary subset such that x ∈ Y . It is important to notice that, for a given evaluation pair (x, Y ) on a pre-model, the set Y is not necessarily an element of O. The reason for this adjustment will be explained in Remark 7.1.6, after we have defined the semantics for L ! Kint2 on pre-models. Kint2 is defined for the propositional variables and the Booleans as in Definition 6.1.2, and the semantics for the modalities is given recursively as follows:

(x, Y ) |= Kϕ iff (∀y ∈ Y )((y, Y ) |= ϕ) (x, Y ) |= int(ϕ) iff x ∈ Int([[ϕ]] Y ) (x, Y ) |= [ϕ]ψ iff (x, Y ) |= int(ϕ) implies (x, Int([[ϕ]] Y )) |= ψ (x, Y ) |= 2ϕ iff (∀O ∈ O)(x ∈ O ⊆ Y implies (x, O) |= ϕ)
where Int is the interior operator of τ O .

7.1.6. Remark. Notice that the consequent of the semantic clause for [ϕ]ψ requires (x, Int([[ϕ]] Y )) to be a "well-defined" evaluation pair. If we were to restrict the evaluation pairs in a pre-model to the so-called epistemic scenarios of the form (x, U ) with x ∈ U ∈ O (as in the case for topo-models), we could not have guaranteed that a pair of the form (x, Int([[ϕ]] U )) would be well-defined: since premodels are not necessarily based on topological spaces, the open set Int([[ϕ]] U ) might not be an element of O. Therefore, in order to render the above defined semantics well-defined for the public announcement modalities [ϕ]ψ, and thus, for the language L ! Kint2 , we have generalized the satisfaction relation on pre-models to any pair (x, Y ) with x ∈ Y ⊆ X.

Validity on pre-models on the other hand is defined by restricting to epistemic scenarios (x, U ) such that x ∈ U ∈ O, as in the case for the topo-models. More precisely, we say that a formula ϕ is valid in a pre-model X , and write X |= ϕ, if X , (x, U ) |= ϕ for all epistemic scenarios (x, U ) ∈ ES(X ). A formula ϕ is valid, denoted by |= ϕ, if X |= ϕ for all X . We are now ready to define pseudo-models for the language L ! Kint2 .

7.1.7. Definition. [Pseudo-models for

L ! Kint2 ] A pseudo-model X = (X, O, V ) is a pre-model such that [[int(ϕ)]] U ∈ O, for all ϕ ∈ L ! Kint2 and U ∈ O.
It is obvious that the class of pseudo-models includes all topo-models, and that all formulas of L ! Kint2 that are valid on pseudo-models are also valid on topo-models: this is because the satisfaction relation for epistemic scenarios in any pseudo-model that happens to be a topo-model agrees with the topo-model satisfaction relation.

Soundness of DTL int

We now continue with the soundness proofs for DTL int with respect to topo and pseudo-models. Once we prove the soundness of DTL int for pseudo-models, its soundness for topo-models follows from the facts that every topo-model is a pseudo-model and that validity on both structures is defined with respect to epistemic scenarios. It is not hard to see that all the axiom schemas in group (I) and (II) in Table 7.1 are valid, and the inference rules (Nec ! ) and ([!]RE) preserve validity on pseudo-models. In the following, we focus on the axiom schema ([!]2-elim) and the inference rule ([!]2-intro).

7.1.8. Lemma. Let X = (X, O, V ) and X = (X, O, V ) be two pseudo-models and ϕ ∈ L ! Kint2 such that X and X differ only in the valuation of some p ∈ P ϕ . Then, for all U ∈ O, we have

[[ϕ]] U X = [[ϕ]] U X .

Proof:

The proof follows by subformula induction on ϕ. The base case ϕ := q follows

5. int(ϕ) → int([ϕ]ψ) < S [ϕ]int(ψ), 6. int(ϕ) → K[ϕ]ψ < S [ϕ]Kψ, 7. [ ϕ ψ]χ < S [ϕ][ψ]χ.

Proof:

See Lemmas A. 1.4 and A.1.5. 2 7.1.11. Proposition. L ! Kint and L Kint are co-expressive with respect to pseudomodels. In other words, for every formula ϕ ∈ L ! Kint there exists a formula ψ ∈ L Kint such that ϕ ↔ ψ is valid in all pseudo-models.

Proof:

The proof follows by < S -induction on ϕ. The base case ϕ := p follows from the fact that the languages L ! Kint and L Kint are defined based on the same set of propositional variables prop. The cases for the Booleans ϕ := ¬ψ, ϕ := ψ ∧ χ, and the cases for the modalities ϕ := Kψ and ϕ := int(ψ) follow standardly using . We here only prove the cases for ϕ := Kψ, and ϕ := [ψ]χ:

Case ϕ := Kψ: Since ψ < S Kψ (Lemma 7.1.10-( 1)), by induction hypothesis, there exists a ψ ∈ L Kint such that ψ ↔ ψ is valid in all pseudo-models. Then, by the soundness of (RE) (which follows from Proposition 7.1.2 and Theorem 7.1.9), we obtain |= Kψ ↔ Kψ , where Kψ ∈ L Kint .

Case ϕ := [ψ]χ: Theorem 7.1.9 implies that the reduction laws given in Table 7.1 and Proposition 7.1.2 for the language L ! Kint are valid in all pseudo-models. Therefore, applying the appropriate reduction (e.g., if χ := p apply (R p ), if χ := ¬σ apply (R ¬ ) etc.) we obtain a formula γ ∈ L ! Kint such that [ψ]χ ↔ γ is valid in all pseudo-models. By , we know that γ < S [ψ]χ. Hence, by induction hypothesis, there exists γ ∈ L Kint such that |= γ ↔ γ . As γ is semantically equivalent to [ψ]χ, we conclude that |= [ψ]χ ↔ γ , where γ ∈ L Kint .

2

Next, we prove that L ! Kint2 and L Kint are equally expressive with respect to pseudo-models. This result will also be useful in the completeness proof of DTL int for topo-models (Corollary 7. 1.38). In proving the co-expressivity of L ! Kint2 and L Kint , we follow a similar strategy as in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF][START_REF] Van Ditmarsch | Arbitrary announcements on topological subset spaces[END_REF]. Our proof follows the same steps as in the proof of co-expressivity between L Kint and L ! Kint for topo-models (see van Ditmarsch et al., 2014, Theorem 19), where L ! Kint denotes the extension of L ! Kint with the so-called arbitrary announcement modality . We will study the arbitrary announcement modality ϕ and its connection to the effort modality 2ϕ in Section 7.2.

The proof of the co-expressivity result between L ! Kint2 and L Kint (as well as the co-expressivity of L Kint and L ! Kint ) relies on the fact that for every formula ϕ in L Kint , there exists a ψ ∈ L Kint in "normal form" such that ϕ and ψ are semantically equivalent in pseudo(topo)-models. Normal forms for formulas in the language L Kint are defined similarly to the normal forms of the basic modal language in such a way that the modality int can occur in the scope of K (see [START_REF] Meyer | Epistemic Logic for AI and Computer Science[END_REF] for normal forms for the basic epistemic language). 7.1.12. Definition. [Normal form for the language L Kint ] We say a formula ψ ∈ L Kint is in normal form if it is a disjunction of conjunctions of the form

δ := α ∧ Kβ ∧ Kγ 1 ∧ • • • ∧ Kγ n where α, β, γ i ∈ L int for all 1 ≤ i ≤ n.
Our normal forms for the language L Kint are similar to the so-called disjunctive normal forms introduced in (Georgatos, 1993, Definition 34) for the language L K2 . More precisely, given a formula in L Kint in normal form, we obtain a formula in L K2 in disjunctive normal form in the sense of [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF] by replacing every occurrence of the modality int by 3K.

7. 1.13. Lemma (Normal From Lemma). For every formula ϕ ∈ L Kint there is a formula ψ ∈ L Kint in normal form such that ϕ ↔ ψ is valid in all pseudomodels, therefore, also valid in all topo-models.

Proof:

The proof is given in Appendix A.2.

2

Having proven the Normal Form Lemma-the first crucial step toward the desired expressivity results-we now proceed with the proof of Theorem 7.1.17. For this, we need a few more validities in which bi-persistent formulas on pseudomodels in the language L ! Kint2 play an important role. Bi-persistent formulas in L ! Kint2 for pseudo-models are defined similarly as in Definition 6.2.8 with respect to epistemic scenarios. Informally speaking, these are the formulas of L ! Kint2 whose truth value on pseudo-models depends only on the actual state, not on the epistemic range.

7.1.14. Lemma. Every formula of L int is bi-persistent on pseudo-models.

Proof:

The proof is similar to the proof of Proposition 6.2.9, by subformula induction on ϕ: cases for the propositional variables and the Boolean connectives are elementary. So assume inductively that the result holds for ψ; we must show that it holds also for ϕ := int(ψ). Let (X, O, V ) be a pseudo-model and (x, O), (x, U ) ∈ ES(X ). We then have

(x, U ) |= int(ψ) iff x ∈ Int([[ψ]] U ) iff (∃U ∈ O)(x ∈ U ⊆ [[ψ]] U ) (since O is a basis for τ O ) Now, consider the open set U ∩ O. It is easy to see that x ∈ U ∩ O. So, we only need to show that U ∩ O ⊆ [[ψ]] O . Let y ∈ U ∩ O. Since y ∈ U , we have that (y, U ) |= ψ (by U ⊆ [[ψ]] U ). Then, by induction hypothesis, we obtain (y, O) |= ψ, i.e., y ∈ [[ψ]] O . We therefore have that x ∈ U ∩ O ⊆ [[ψ]] O , i.e., that x ∈ Int([[ψ]] O ) (since U ∩ O ∈ O ⊆ τ O ). Therefore, (x, O) |= int(ψ).
The other direction follows similarly. 2

7.1.15. Proposition. For any ϕ, ϕ i ∈ L int , the following is valid in all pseudomodels:

3(ϕ ∧ Kϕ 0 ∧ 1≤i≤n Kϕ i ) ↔ (ϕ ∧ int(ϕ 0 ) ∧ 1≤i≤n K(int(ϕ 0 ) ∧ ϕ i )) (EL 2 n )
Proof:

The proof follows similarly to the proof of (van Ditmarsch et al., 2014, Proposition 18). Let X = (X, O, V ) be a pseudo-model and (x, U ) ∈ ES(X ). It is important to notice that every ϕ, ϕ i ∈ L int is bi-persistent, we will use this fact several times. We prove the statement only for n

= 1. (⇒) Suppose (x, U ) |= 3(ϕ ∧ Kϕ 0 ∧ Kϕ 1 )
. By the semantics, we have

(x, U ) |= 3(ϕ∧Kϕ 0 ∧ Kϕ 1 ) iff (∃V ∈ O)(x ∈ V ⊆ U and (x, V ) |= ϕ∧Kϕ 0 ∧ Kϕ 1 )
We therefore have ( 1 In order to show (x, U ) |= K(int(ϕ 0 ) ∧ ϕ 1 ), we need to prove that there is a y ∈ U such that (y, U ) |= int(ϕ 0 ) ∧ ϕ 1 . Item ( 3) implies that there is a z ∈ V such that (z, V ) |= ϕ 1 . Then, by Lemma 7.1.14, we have (z, U ) |= ϕ 1 . Moreover, ( 2) implies (z, V ) |= Kϕ 0 , and thus (z, V ) |= int(ϕ 0 ). Then again by Lemma 7.1.14,(z

, U ) |= int(ϕ 0 ). So, (z, U ) |= int(ϕ 0 ) ∧ ϕ 1 , and thus (x, U ) |= K(int(ϕ 0 ) ∧ ϕ 1 ). (⇐) Suppose (x, U ) |= ϕ ∧ int(ϕ 0 ) ∧ K(int(ϕ 0 ) ∧ ϕ 1
). We have:

(x, U ) |= ϕ ∧ int(ϕ 0 ) ∧ K(int(ϕ 0 ) ∧ ϕ 1 ) iff (x, U ) |= ϕ and (x, U ) |= int(ϕ 0 ) and ∃y ∈ U with (y, U ) |= int(ϕ 0 ) ∧ ϕ 1 iff (x, U ) |= ϕ and (x, U ) |= int(ϕ 0 ) and ∃y ∈ Int([[ϕ 0 ]] U ) with (y, U ) |= ϕ 1
We want to show (x, U ) |= 3(ϕ ∧ Kϕ 0 ∧ Kϕ 1 ), i.e., we want to prove that there is a

V ∈ O with x ∈ V ⊆ U such that (x, V ) |= ϕ ∧ Kϕ 0 ∧ Kϕ 1 .
We now claim that for Lemma 7.1.14,we obtain (x,Int([[ϕ 

V := Int([[ϕ 0 ]] U ), we obtain the desired result. It is easy to see that x ∈ Int([[ϕ 0 ]] U ) ⊆ U (since (x, U ) |= int(ϕ 0 )). And, since X is a pseudo-model, it is guaranteed that Int([[ϕ 0 ]] U ) ∈ O. We want to show that (x, Int([[ϕ 0 ]] U )) |= ϕ ∧ Kϕ 0 ∧ Kϕ 1 . Since (x, U ) |= ϕ, by
0 ]] U )) |= ϕ. Since Int([[ϕ 0 ]] U )) ⊆ [[ϕ 0 ]] U , we have that (z, U ) |= ϕ 0 for all z ∈ Int([[ϕ 0 ]] U ).
Therefore, as ϕ 0 is bi-persistent (Lemma 7.1.14) 2

The proof of the following lemma is straightforward, and follows directly from the semantics for 3 and ∨.

7.1.16. Lemma. For all ϕ, ψ ∈ L ! Kint2 , the formula 3(ϕ ∨ ψ) ↔ (3ϕ ∨ 3ψ) is valid in all pseudo-models.

We now have sufficient machinery to show that L ! Kint2 and L Kint are equally expressive with respect to pseudo-models.

7.1.17. Theorem. L ! Kint2 and L Kint are co-expressive with respect to pseudomodels.

Proof:

We need to prove that for all ϕ ∈ L ! Kint2 there exists θ ∈ L Kint such that ϕ ↔ θ is valid in all pseudo-models. The proof follows by subformula induction on ϕ. 

[ψ ]χ ↔ [ψ ]χ . Therefore, |= [ψ]χ ↔ [ψ ]χ . Notice that [ψ ]χ ∈ L ! Kint \L Kint .
Then, by Proposition 7.1.11, there exists γ ∈ L Kint such that |= [ψ ]χ ↔ γ. We then conclude that |= [ψ]χ ↔ γ, i.e., [ψ]χ is semantically equivalent to γ ∈ L Kint with respect to pseudo-models.

Case ϕ := 3ψ: By induction hypothesis, there exists ψ ∈ L Kint such that |= ψ ↔ ψ . Then, by Lemma 7.1.13, there exists a γ ∈ L Kint in normal form with |= ψ ↔ γ, hence, we also have |= ψ ↔ γ. Therefore, by the soundness of (RE), we obtain |= 3ψ ↔ 3γ. By Lemma 7.1.16, we can distribute 3 over the disjunction γ. Since γ is in normal form, each disjunct of the resulting formula is of the form

3(ϕ ∧ Kϕ 0 ∧ Kϕ 1 ∧ Kϕ 2 ∧ • • • ∧ Kϕ n ) where ϕ, ϕ i ∈ L int for all 0 ≤ i ≤ n.
Then, by Proposition 7.1.15, we can reduce these formulas to semantically equivalent formulas of the form ϕ

∧ int(ϕ 0 ) ∧ K(int(ϕ 0 ) ∧ ϕ 1 ) ∧ • • • ∧ K(int(ϕ 0 ) ∧ ϕ n ),
hence, obtain a formula in L Kint that is semantically equivalent to 3ψ with respect to pseudo-models.

2

Proof:

The proof follows easily from Corollary 7.1.18 and Theorem 7.1.19, since

L Kint ⊆ L ! Kint ⊆ L ! Kint2 . 2 
Moreover, recall that int can be defined by the public announcement modalities as int(ϕ) := ϕ , hence, we also obtain that L ! K and L ! K2 are equally expressive as their extensions with the modality int. These results are summarized in Figure 7.1 below. As a direct corollary of the above expressivity results, we obtain decidability and the finite model property for the dynamic logic of topo-models for the language L ! Kint2 as well as for its fragments.

L K L K2 L Kint L int L ! Kint L ! K L ! Kint2 L ! K2 Thm.
7.1.21. Corollary. The logic of topo-models for the language L ! Kint2 is decidable and has the finite model property (and thus all its fragments, including in particular TopoLogic, have these properties).

Proof:

This follows from Corollary 7.1.20, together with the fact that L Kint is easily shown to have these properties by a standard filtration argument (see e.g., [START_REF] Goranko | Using the universal modality: Gains and questions[END_REF][START_REF] Goranko | Using the universal modality: Gains and questions[END_REF][START_REF] Shehtman | Everywhere" and "Here[END_REF]. 2

Completeness of DTL int

In this section we prove the completeness of the proof system DTL int with respect to (both pseudo and) topo-models. The plan of our proof is as follows.

We first prove completeness of DTL int with respect to a canonical pseudo-model, consisting of maximally consistent witnessed theories. Roughly speaking, a maximally consistent theory is witnessed if every 3ϕ occurring in every "existential context" in the theory is "witnessed" by some atomic formula p meaning that p ϕ occurs in the same existential context in the theory. Next, we use the coexpressivity of L ! Kint2 and L Kint , as well as the fact that L Kint cannot distinguish between a pseudo-model and its associated topo-model, to show that DTL int is complete with respect to the canonical topo-model (associated with the canonical pseudo-model).

The appropriate notion of "existential context" is represented by possibility forms (dual of necessity forms), in the following sense. 

L ! Kint2 ] For any finite string s ∈ ({ϕ→ | ϕ ∈ L ! Kint2 } ∪ {K} ∪ {ψ | ψ ∈ L ! Kint2 }) * = N F
, we define pseudo-modalities [s] and s . These pseudo-modalities are functions mapping any formula

ϕ ∈ L ! Kint2 to another formula [s]ϕ ∈ L ! Kint2 (necessity form), respectively s ϕ ∈ L ! Kint2 (possibility form).
The necessity forms are defined recursively as such that for all ϕ ∈ L ! Kint2 , we have

[ ]ϕ = ϕ, [ϕ→, s]ϕ = ϕ → [s]ϕ, [K, s]ϕ = K[s]ϕ, [ψ, s]ϕ = [ψ][s]ϕ,
[s]ϕ iff ψ → [θ]ϕ.

Proof:

The proof is as in (Balbiani et al., 2008, Lemma 4.8). For s := , take ψ := and θ := . It then follows by the axiom (R[ ]). Otherwise, by the definition of a necessity form, [s]ϕ is a formula of L ! Kint2 such that ϕ is entirely on the right (or at the bottom), and is successively bounded by finitely many implications χ →, knowledge modalities K, and announcements [χ ], in arbitrary order. By rearranging the order of these symbols in a provably equivalent way, we can obtain the required form ψ → [θ]ϕ. We start with the public announcement modalities. By using the reduction laws of DTL int , we can push all the public announcement modalities binding the components χ → and K of the necessity form to the top of ϕ. To push them pass K, we use (R K ), and for χ → we use (R ¬ ) and (R ∧ ). We then obtain a formula that is provably equivalent to [s]ϕ, but in which all public announcement modalities occurring in s are stacked on top of ϕ. By using the axiom (R [!] ), we can write all these public announcement modalities as one announcement. We therefore obtain a formula that is provably equivalent to [s]ϕ of the following shape: a formula of the form [θ]ϕ is entirely on the right, and is successively bounded by finitely many implications χ →, and knowledge modalities K, in arbitrary order. This is still not in the required form since we might have [θ]ϕ at the bottom preceded by a knowledge modality, i.e., the resulting formula might have the shape (• • • → K[θ]ϕ). However, since K is of S5-type, we know that η → Kσ iff Kη → σ. Therefore, we can push every occurrence of the modality K bounding the consequent of an implication to the antecedent as the epistemic possibility modality K. This way, we obtain a theorem of the form For every countable set of propositional variables P, let L ! Kint2 (P) be the language of DTL int based only on the propositional variables in P. Similarly, let N F P denote the corresponding set of strings defined based on L ! Kint2 (P).

χ 1 → (χ 2 → . . . (χ n → [θ]ϕ)). Then, by classical propositional logic, we know χ 1 → (χ 2 → . . . (χ n → [θ]ϕ)) ↔ ( 1≤i≤n χ i → [θ]ϕ),
• A P-theory is a consistent set of formulas in L ! Kint2 (P), where "consistent" means consistent with respect to the axiomatization of DTL int formulated for L ! Kint2 (P). • A maximal P-theory is a P-theory Γ that is maximal with respect to ⊆ among all P-theories; in other words, Γ cannot be extended to another P-theory.

• A P-witnessed theory is a P-theory Γ such that, for every s ∈ N F P and ϕ ∈ L ! Kint2 (P), if s 3ϕ is consistent with Γ then there is p ∈ P such that s p ϕ is consistent with Γ (i.e., if Γ [s] [p]¬ϕ for all p ∈ P, then Γ [s]2¬ϕ).

• A maximal P-witnessed theory Γ is a P-witnessed theory that is not a proper subset of any P-witnessed theory.

2. P n := {p ∈ P : p occurs in Γ n } is finite for every n ∈ N, and 3. for every γ n := s n 3ϕ n with s n ∈ N F ∼ P and ϕ n ∈ L ! Kint2 ( ∼ P), if Γ n ¬ s n 3ϕ n then there is p m "fresh" such that s n p m ϕ n ∈ Γ n+1 . Otherwise we will define Γ n+1 = Γ n .

For every γ n , let P (n) := {p ∈ P | p occurs either in s n or ϕ n }. Clearly every P (n) is always finite. We now construct an increasing chain of ∼ P-theories recursively. We set Γ 0 := Γ, and let

Γ n+1 = Γ n ∪ { s n p m ϕ n } if Γ n ¬ s n 3ϕ n Γ n otherwise,
where m is the least natural number greater than the indices in P n ∪ P (n), i.e., p m is fresh. We now show that

∼ Γ := n∈N Γ n is a ∼ P-witnessed theory. First show that ∼
Γ is a ∼ P-theory. By Lemma 7.1.28, it suffices to show by induction that every Lindenbaum's Lemma (Lemma 7.1.29), there is a maximal ∼ P-witnessed theory

Γ n is a ∼ P-theory. Clearly Γ 0 is a ∼ P-theory. For the inductive step suppose Γ n is consistent but Γ n+1 is not. Hence, Γ n = Γ n+1 and moreover Γ n+1 ⊥. Then, since Γ n+1 = Γ n ∪ { s n p m ϕ n }, we have Γ n [s n ][p m ]¬ϕ n . Therefore there ex- ists {θ 1 , . . . , θ k } ⊆ Γ n such that {θ 1 , . . . , θ k } [s n ][p m ]¬ϕ n . Let θ = 1≤i≤k θ i . Then θ → [s n ][p m ]¬ϕ n , so [θ→, s n ][p m ]
T Γ such that T Γ ⊇ ∼ Γ ⊇ Γ. 2 
We are now ready to build the canonical pseudo-model. For a fixed countable set of propositional variables P, we let for any maximal P-witnessed theories T and S,

T ∼ S iff (∀ϕ ∈ L ! Kint2 (P))(Kϕ ∈ T ⇒ ϕ ∈ S).
7.1.31. Definition. [Canonical Pseudo-Model for T 0 ] Let T 0 be a maximal Pwitnessed theory. The canonical pseudo-model for T 0 is a tuple

X c = (X c , O c , V c ) such that • X c = {T ⊆ L ! Kint2 (P) | T is a maximal P-witnessed theory with T ∼ T 0 }, • O c = { int(ϕ) | ϕ ∈ L ! Kint2 (P)}, where θ = {T ∈ X c | θ ∈ T } for any θ ∈ L ! Kint2 (P), • V c (p) = {T ∈ X c | p ∈ T }.
We let τ c denote the topology generated by O c . The associated topo-model X c τ = (X c , τ c , V c ) is called the canonical topo-model for T 0 .

In order to show that X c = (X c , O c , V c ) is indeed a pseudo-model, we need a Truth Lemma for the language L ! Kint2 . We therefore postpone the proof of X c being a pseudo-model until after the proof of the Truth Lemma (Lemma 7.1.35) for the completeness of DTL int . For now, we show that X c = (X c , O c , V c ) is at least a pre-model, hence, it is well-defined for the language L ! Kint2 (P).

7.1.32. Lemma. X c = (X c , O c , V c
) is a pre-model.

Proof:

It is easy to see that X c , ∅ ∈ O c , since int( ) = X c and int(⊥) = ∅. We need to show that O c is closed under ( 1) finite intersections and ( 2) finite unions.

(1) closure under finite intersection follows from the normality of int, namely from the fact that int(ϕ) ∧ int(ψ) ↔ int(ϕ ∧ ψ). ( 2) closure under finite union follows from the fact that (int(ϕ

) ∨ int(ψ)) ↔ int(int(ϕ) ∨ int(ψ)), and that int(int(ϕ) ∨ int(ψ)) ∈ L ! Kint2 (P). 2 
7.1.33. Lemma. For every maximal P-witnessed theory T , the set {θ | Kθ ∈ T } is a P-witnessed theory.

Proof:

Observe that, by axiom [p]¬ϕ for all p ∈ P. Then, by normality of K, T K[s] [p]¬ϕ for all p ∈ P. Since K[s] [p]¬ϕ := [K, s] [p]¬ϕ is a necessity form and T is Pwitnessed, we obtain T

(T K ), {θ | Kθ ∈ T } ⊆ T . Therefore, as T is consistent, the set {θ | Kθ ∈ T } is consistent. Let s ∈ N F P and ψ ∈ L ! Kint2 (P) such that {θ | Kθ ∈ T } [s]
[K, s]2¬ϕ, i.e., T K[s]2¬ϕ. As T is maximal, we have K[s]2¬ϕ ∈ T , thus [s]2¬ϕ ∈ {θ | Kθ ∈ T }. 2 7.1.34. Lemma (Existence Lemma). Let T ∈ X c and ϕ, α ∈ L ! Kint2 (P) such that int(α) ∈ T and K[α]ϕ ∈ T . Then, there is S ∈ X c with int(α) ∈ S and [α]ϕ ∈ S. Proof: Let ϕ, α ∈ L ! Kint2 (P) such that int(α) ∈ T and K[α]ϕ ∈ T . The latter im- plies that {ψ | Kψ ∈ T } [α]ϕ, hence, {ψ | Kψ ∈ T } ¬¬[α]ϕ.
Then, by Lemma 7. 1.33 and Lemma 7.1.27,we obtain 

that {ψ | Kψ ∈ T } ∪ {¬[α]ϕ} is a P-witnessed theory. Note that ¬[α]ϕ ↔ (int(α) ∧ [α]¬ϕ) (see Proposition 7.1.2-( ! )). We therefore obtain that {ψ | Kψ ∈ T } ∪ {¬[α]ϕ} int(α), thus, {ψ | Kψ ∈ T } ∪ {¬[α]ϕ} ¬int(α) (since {ψ | Kψ ∈ T } ∪ {¬[α]ϕ} is con- sistent). Therefore, by Lemma 7.1.27, {ψ | Kψ ∈ T } ∪ {¬[α]ϕ} ∪ {int(α)
} is also a P-witnessed theory. We can then apply Lindenbaum's Lemma (Lemma 7.1.29) and extend it to a maximal P-witnessed theory S such that int(α) ∈ S and [α]ϕ ∈ S. 2

7. 1.35. Lemma (Truth Lemma). Let X c = (X c , O c , V c ) be the canonical pseudo-model for a maximal P-witnessed theory T 0 and ϕ ∈ L ! Kint2 (P). Then, for all α ∈ L ! Kint2 (P) we have

[[ϕ]] int(α) = α ϕ.

Proof:

The proof follows by < S d -induction on ϕ (the well-founded partial order < S d on L ! Kint2 is defined in Appendix A. [START_REF]Suppose (x, U )[END_REF].

Base case ϕ := p

[[p]] int(α) = int(α) ∩ [[p]] X c (since p is bi-persistent) = int(α) ∩ V c (p) (by the semantics of p) = int(α) ∩ p (by the definition of V c ) = int(α) ∧ p = int(α) ∧ (int(α) → p) (by propositional tautologies) = int(α) ∧ [α]p (by (R p )) = α p (Proposition 7.1.2-( ! ))
Induction Hyposthesis: For ψ< S d ϕ, we have [[ψ]] int(α) = α ψ for all α ∈ L ! Kint (P).

Case ϕ := ¬ψ

[[¬ψ]] int(α) = int(α)\[[ψ]] int(α) (by the semantics of ¬) = int(α)\ α ψ (by IH) = int(α) ∩ (X c \ α ψ) = int(α) ∩ ¬ α ψ (since X c \ α ψ = ¬ α ψ ) = int(α) ∧ ¬ α ψ = int(α) ∧ [α]¬ψ = α ¬ψ (Proposition 7.1.2-( ! )) Case ϕ := ψ ∧ χ [[ψ ∧ χ]] int(α) = [[ψ]] int(α) ∩ [[χ]] int(α)
(by the semantics of ∧) α) . This implies, by the semantic clause of K, that

= α ψ ∩ α χ (by IH) = α ψ ∧ α χ (by propositional tautologies) = α (ψ ∧ χ) ( ( α ψ ∧ α χ) ↔ α (ψ ∧ χ)) Case ϕ := Kψ (⇒) Suppose T ∈ [[Kψ]] int(
T ∈ int(α) and [[ψ]] int(α) = int(α).
We want to show that T ∈ α Kψ . By Proposition 7.1.2-( ! ) and the reduction axiom (R K ), we obtain α Kψ ↔ int(α) ∧ K[α]ψ. We therefore only need to show that T ∈ int(α) and T ∈ K[α]ψ . We have the former by the assumption. Suppose toward contradiction that T ∈ K[α]ψ , i.e., K[α]ψ ∈ T . Then, by Lemma 7.1.34, there exists S ∈ X c such that int(α α) . As this holds for all S ∈ int(α), we have α) . Then, by the semantics of int, there exists α) (since O c constitutes a basis for τ c ). Then, by IH, we have U ⊆ α ψ. By the construction of O c , we know that U = int(γ) for some γ ∈ L ! Kint2 (P). We therefore obtain that

) ∈ S and [α]ψ ∈ S. Since α ψ → [α]ψ, we obtain α ψ ∈ S. Therefore, by IH, we have S ∈ [[ψ]] int(α) . Since S ∈ int(α), we then conclude [[ψ]] int(α) = int(α). By the se- mantics of K, this means that [[Kψ]] int(α) = ∅, contradicting our first assumption. Hence, T ∈ int(α) ∧ K[α]ψ = α Kψ . (⇐) Suppose T ∈ α Kψ . Then, by the equality α Kψ ↔ int(α) ∧ K[α]ψ, we have T ∈ int(α) and T ∈ K[α]ψ . Let S ∈ int(α).
[[ψ]] int(α) = int(α). Hence, [[Kψ]] int(α) = int(α) T . Case ϕ := int(ψ) (⇒) Suppose T ∈ [[int(ψ)]] int(
U ∈ O c such that T ∈ U ⊆ [[ψ]] int(
T ∈ int(γ) ⊆ α ψ.
This means that, for all S ∈ int(γ), we have S ∈ α ψ. Therefore, the set {θ ∈

L ! Kint2 (P) | Kθ ∈ T } ∪ {¬(int(γ) → α ψ)} is inconsistent.
Otherwise, by Lemma 7.1.29, it could be extended to a maximally consistent P-witnessed theory T such that T ∼ T , int(γ) ∈ T and α ψ ∈ T , a contradiction. Then, there exists a formula χ ∈ {θ ∈ L ! Kint2 (P) | Kθ ∈ T } such that χ → (int(γ) → α ψ). Thus, by the normality of K, we have Kχ → K(int(γ) → α ψ). As Kχ ∈ T , we obtain K(int(γ) → α ψ) ∈ T . Then by axiom (K-int), we have int(int(γ) → 2 7.1.38. Corollary. DTL int is complete for the canonical pseudo-models and canonical topo-models (and so also complete with respect to the class of all pseudomodels, as well as the class of all topo-models).

Proof:

Let ϕ be an DTL int -consistent formula, i.e., it is a P ϕ -theory. Then, by Lemma 7.1.30, it can be extended to a maximal prop-witnessed theory T . Let X c = (X c , O c , V c ) denote the canonical pseudo-model for T . Since ϕ ∈ T , by axiom (R[ ]), we obtain ϕ ∈ T , i.e., T ∈ ϕ. Thus, by Truth Lemma (Lemma 7.1.35), we have that

T ∈ [[ϕ]] int( ) X c , i.e., that X c , (T, X c ) |= ϕ (since int( ) = X c
). This proves the first completeness claim. As for the second, by the co-expressivity of L Kint and L ! Kint2 on pseudo-models (Corollary 7.1.18), there exists a ψ ∈ L Kint such that ϕ ↔ ψ is valid in all pseudo-models. We therefore have X c , (T, X c ) |= ψ. By Lemma 7.1.37, we obtain X c τ , (T, X c ) |= ψ where X c τ is the canonical topo-model. Using again the semantic equivalence of ϕ and ψ (applied to the model

X c τ ), we conclude that X c τ , (T, X c ) |= ϕ. 2 
This result concludes the present section. In the next section, we present a topological semantics for the so-called arbitrary announcement modality introduced by [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF], and investigate its link to the effort modality of [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]. [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] proposed an extension of public announcement logic with a dynamic operator that quantifies over public announcements and expresses what becomes true after any announcement. More precisely, they consider the language L ! K (in its single-agent version here)

Topological Arbitrary Announcement Logic

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | [ϕ]ϕ | ϕ,
where the construct [ϕ]ψ stands for the standard public announcement modality stating 'after public announcement of ϕ, ψ (is true)', and ϕ represents the arbitrary (public) announcement modality which is read as "after any announcement, ϕ is true". [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] studied this modality on Kripke models with equivalence relations by using the standard semantics for public announcements in terms of model restrictions. More precisely, given a reflexive, transitive and symmetric Kripke model M = (X, R, V ) and x ∈ X, [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] propose to interpret the modality ϕ as

M, x |= ϕ iff (∀ψ ∈ L ! K )(M, x |= [ψ]ϕ) iff (∀ψ ∈ L ! K )(M, x |= ψ implies M ψ , x |= ϕ)
where M ψ = ( ψ , R ψ , V ψ ) is the restriction of M to the truth set of ψ in M. 2 Unlike the effort modality 2ϕ which is read as "ϕ stays true no matter what further evidence-gathering efforts are made", the arbitrary announcement modality ϕ means "ϕ stays true after any epistemic announcement". The latter therefore quantifies only over epistemically definable subsets ( -free formulas of the language) of a given model. 3 In this case, for example, Kϕ means that the agent comes to know ϕ, but in the interpretation that there is a -free formula ψ such that after announcing it the agent knows ϕ. What becomes true or known by an agent after an announcement can be expressed in this language without explicit reference to the announced formula. Clearly, the meaning of the effort modality 2ϕ and of the arbitrary announcement modality ϕ are related in motivation, and their readings suggest that while ϕ generalizes [ψ]ϕ, the effort modality 2ϕ seems more general than ϕ. However, we cannot yet see the precise connection between these modalities at the formal level as they have been studied on different semantic structures. In this section, we aim to explore the link between the Bjorndahl-style topological updates, the effort modality, and a topological version of the arbitrary announcement modality. To this end, based on [START_REF] Van Ditmarsch | Arbitrary announcements on topological subset spaces[END_REF], we extend the language L ! Kint by the arbitrary announcement operator ϕ and propose a topological semantics for this modality by interpreting it as a quantification over Bjorndahl-style updates on topological spaces. We then show not only that L ! Kint and L ! Kint2 are co-expressive for topo-models, but also that-quite surprisingly-the effort modality 2 and the topological arbitrary announcement modality are equivalent in the single-agent setting.

2 To recall, ψ = ψ M , R ψ = R ∩ ψ × ψ , and V ψ (p) = V (p) ∩ ψ for all p ∈ prop.
3 To be more precise, by an"epistemically definable subset" of a model M = (X, R, V ), we mean a subset of X that corresponds to a truth set of a formula ψ ∈ L ! K in M. Since the languages L K and L ! K are equally expressive with respect to Kripke models with equivalence relations [START_REF] Plaza | Logics of public communications[END_REF], quantifying over the formulas of L ! K or the formulas of L K in the semantic clause for ϕ amounts to the same interpretation. Moreover, the reason as to why the arbitrary announcement modality quantifies only over the formulas without is to avoid a possible circularity. Otherwise, if ϕ were an announcement that plays a role in the evaluation of ϕ, checking the truth of ϕ would require checking its truth (see Balbiani et al., 2008, Section 2.3.1 for a more detailed discussion on the semantics of ϕ). Van Ditmarsch et al. ( 2016) present an arbitrary announcement logic, called fully arbitrary public announcement logic, that allows ϕ to quantify over formulas having arbitrary announcement operators, yet does not encounter the above mentioned circularity. This logic is defined based on a language with a proper class of auxiliary arbitrary announcement operators indexed by ordinals.

that the statement holds for σ and θ. The cases for the Booleans K, int and [!] are standard. We here only show the case of the new modality :

Case ϕ := θ: Note that ( θ){ψ/χ} = (θ{ψ/χ}). We then have

(x, U ) |= ( θ){ψ/χ} iff (x, U ) |= (θ{ψ/χ}) iff (∀η ∈ L ! Kint )((x, U ) |= [η](θ{ψ/χ})) (by the semantics of ) iff (∀η ∈ L ! Kint )((x, U ) |= int(η) implies (x, Int([[η]] U )) |= θ{ψ/χ}) (by the semantics of [!]) iff (∀η ∈ L ! Kint )((x, U ) |= int(η) implies (x, Int([[η]] U )) |= θ)
(by the induction hypothesis on θ)

iff (∀η ∈ L ! Kint )((x, U ) |= [η]θ) (by the semantics of [!]) iff (x, U ) |= θ
(by the semantics of ) 2 7.2.3. Proposition. For any ϕ, ϕ i ∈ L int , the following is valid in all topomodels:

|= (ϕ ∧ Kϕ 0 ∧ 1≤i≤n Kϕ i ) ↔ (ϕ ∧ int(ϕ 0 ) ∧ 1≤i≤n K(int(ϕ 0 ) ∧ ϕ i )) (EL n ) Proof:
The proof is similar to the proof of Proposition 7.1.15. For the direction from right-to-left, we take ϕ 0 as the witness for . 2 7.2.4. Lemma. For all ϕ, ψ ∈ L ! Kint , the formula (ϕ ∨ ψ) ↔ ( ϕ ∨ ψ) is valid in all topo-models. 7.2.5. Theorem. L ! Kint and L Kint are equally expressive with respect to topomodels.

Proof:

Analogous to the proof of Theorem 7.1.17.

2

We have therefore obtained the extended Figure 7.2 summarizing all the expressivity results we have provided on topo-models concerning the languages L ! Kint2 , L ! Kint , and their subfragments. We moreover prove that not only are L ! Kint and L ! Kint2 co-expressive for topo-models, but also that the effort modality 2 and the topological arbitrary announcement modality are equivalent, in the following sense (Baltag et al., 2017):

L K L K2 L Kint L int L ! Kint L ! K L ! Kint2 L ! K2 L ! Kint L ! K Thm.
7.2.6. Theorem. Let t : L ! Kint → L !
Kint2 be the map that replaces each instance of with 2. Then for every ϕ ∈ L ! Kint , we have that ϕ ↔ t(ϕ) is valid in all topo-models.

Proof:

The proof is by subformula induction on ϕ. We skip the proof details, which could be easily reconstructed, and provide only a sketch. The cases for the propositional variables, the Booleans, and the modalities K and int are straightforward, since (χ). The relatively complicated case is ϕ := ψ, where t( ψ) = 3t(ψ). The crucial part of the proof is that the elimination procedure for 3 and are the same: they both go via normal forms and the corresponding equivalences EL 2 n and EL n (see Corollary 7.1.18 and Theorem 7.2.5). Hence, two formulas only differing in the occurrences of 3 and are semantically equivalent to the same formula in L Kint on topo-models.

t(p) = p; t(¬ψ) = ¬t(ψ); t(ψ ∧ χ) = t(ψ) ∧ t(χ); t(Kψ) = Kt(ψ); t(int(ψ)) = int(t(ψ)) and t([ψ]χ) = [t(ψ)]t
2

Therefore, given the sound and complete axiomatization of DTL int (Table 7.1) and the above link between the effort modality 2ϕ and the arbitrary announcement modality ϕ, we immediately obtain a sound and complete axiomatization for the single-agent logic APAL int of knowledge Kϕ, knowability int (ϕ), public announcements [ϕ]ψ, and arbitrary announcenements ϕ with respect to the class of all topo-models. The axiomatization of APAL int is again given by the axiom schemas in Table 7.1 defined over the language L ! Kint (instead of L ! Kint2 ). In particular, the axiom ([!]2-elim) and the inference rule ([!]2-intro) are replaced by ([!] -elim) and ([!] -intro) given in Table 7.2, respectively

([!] -elim) [ϕ] θ → [ϕ ∧ ρ]θ (ρ ∈ L ! Kint arbitrary formula) ([!] -intro) from ψ → [ϕ ∧ p]θ, infer ψ → [ϕ] θ (p ∈ P ψ ∪ P θ ∪ P ϕ )
Table 7.2: The axiom for -elimination and the rule for -introduction

We therefore obtain the following which, together with Theorem 7.2.6, gives us the soundness and completeness of APAL int . 7.2.7. Lemma. For all ϕ ∈ L ! Kint , we have APAL int ϕ iff DTL int t(ϕ).

7.2.8. Corollary. APAL int is sound and complete with respect to the class of all topo-models.

Proof:

For soundness, we focus only on the new axiom schema and the inference rule, and show that ([!] -elim) is valid and ([!] -intro) preserves validity on topo-models.

([!] -elim): Let X = (X, τ, V ) and (x, U ) ∈ ES(X ) such that (x, U ) |= [ϕ] θ.
Then, by Theorem 7.2.6, we obtain (x, U ) |= [t(ϕ)]2t(θ). Thus, by the soundness of ([!]2-elim) for topo-models (Theorem 7.1.9), we have (

x, U ) |= [t(ϕ) ∧ ρ]t(θ) for all ρ ∈ L ! Kint2 . Let ρ ∈ L ! Kint . Hence, t(ρ ) ∈ L ! Kint2 , therefore we have (x, U ) |= [t(ϕ) ∧ t(ρ )]t(θ). Observe that [t(ϕ) ∧ t(ρ )]t(θ) = t([ϕ ∧ ρ ]θ).
Therefore, by Theorem 7.2.6 again, we obtain (x, U ) |= [ϕ ∧ ρ ]θ. As ρ has been chosen arbitrarily from L ! Kint , we have the desired result.

([!] -intro): Suppose |= ψ → [ϕ ∧ p]θ for some p ∈ P ψ ∪ P θ ∪ P ϕ . Then, by Theorem 7.2.6, |= t(ψ → [ϕ ∧ p]θ), that is, |= t(ψ) → [t(ϕ) ∧ p]t(θ)
, by the definition of t. Then, by the soundness of ([!]2-intro) (Theorem 7.1.9), we obtain

that |= t(ψ) → [t(ϕ)]2t(θ). Observe that t(ψ) → [t(ϕ)]2t(θ) = t([ψ] → [ϕ] θ), therefore, |= t([ψ] → [ϕ] θ).
Thus, again by Theorem 7.2.6, we have

|= [ψ] → [ϕ] θ.
For completeness, let ϕ ∈ L ! Kint such that ϕ ∈ APAL int . Hence, by Lemma 7.2.7, we obtain that t(ϕ) ∈ DTL int . Then, by Corollary 7.1.38, there exists a topo-model X = (X, τ, V ) and an epistemic scenario (x, U ) ∈ ES(X ) such that X , (x, U ) |= t(ϕ). Therefore, by Theorem 7.2.6, we conclude X, (x, U ) |= ϕ. 2

Conclusions and Continuation

Our work presented in this chapter uses both the interior semantics of McKinsey and Tarski ( 1944) (together with the global modality as knowledge), and the topological formalism introduced by [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]. Building on Bjorndahl's logic of knowledge Kϕ, knowability int(ϕ), and learning of new evidence [ψ]ϕ (formalized as a "topological" public announcement modality, whose precondition is captured by int(ϕ)), we developed the so-called Dynamic TopoLogic that is obtained by adding the effort modality to Bjorndahl's system. This way, we believe that, at the very least, the meaning of the effort modality has become more transparent as it is linked to the public announcement modalities [ψ]ϕ which can be seen as a particular case of effort. This connection has been made precise in the corresponding proof system by the axiom ([!]2-elim) and the inference rule

([!]2-intro).
In Dynamic TopoLogic the behaviour of the effort modality is described by using only the aforementioned axiom and inference rule, avoiding the complicated Union Axiom of TopoLogic. While our completeness proof of DTL int goes by a standard canonical model construction based on maximally consistent witnessed theories, our expressivity results (Corollary 7.1.20) imply decidability and the finite model property of the logics of topological spaces over the language L ! Kint2 and its fragments (Corollary 7.1.21), by relying on the known decidability and finite model property of L Kint .

We moreover study a topological semantics for the arbitrary announcement modality, and investigate its interplay with the effort modality. To the best of our knowledge, the known completeness proofs for arbitrary announcement logics (topological or relational) rely on infinitary axiomatizations formalized by using necessity forms (see, e.g., [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF][START_REF] Balbiani | Subset space logic with arbitrary announcements[END_REF][START_REF] Balbiani | Putting right the wording and the proof of the truth lemma for APAL[END_REF][START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF]; also see Sections 8.2 and 8.3 for the multi-agent case). Although [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] propose a finitary axiomatization similar to ours (Table 7.2), its completeness proof goes via the completeness of an infinitary system4 . On the other hand, our completeness proof of the finitary system APAL int does not involve a detour through an infinitary logic. Therefore, the effort modality helps to simplify and streamline the axiomatization of APAL int .

Higher-order knowledge and dynamics of information change become more interesting when more than one agent is involved. However, extending the subset space style semantics to a setting involving multiple agents comes with some challenges concerning the evaluation of higher-order knowledge. In particular, the multi-agent case requires solving the complication of "jumping out of the epistemic range". In the next chapter, we explain this problem and propose a solution for it. We then study the multi-agent versions EL m int and PAL m int of EL int and PAL int , respectively, as well as a multi-agent logic of arbitrary public announcements, denoted by APAL m int , interpreted on topological spaces in the style of subset space semantics. The effort modality in multi-agent setting creates many challenges, both technically and conceptually. We leave investigations for the effort modality in a multi-agent setting for future.

Chapter 8

Multi-Agent Topo-Arbitrary Announcement Logic

In this chapter, we propose a multi-agent logic of knowledge, knowability, public and arbitrary announcements, interpreted on topological spaces in the style of subset space semantics. More precisely, we generalize the single-agent setting presented in Section 7.2 to a multi-agent setting wherein the multi-agent version of L ! Kint is defined similarly but with finitely many knowledge modalities K i ϕ indexed for each agent, meaning that agent i knows ϕ.

As also recognized in (Baskent, 2007, Chapter 6) and (Wáng and Ågotnes, 2013a), a first step toward developing a multi-agent epistemic logic using topological subset space semantics requires solving the problem of "jumping out of the epistemic range" of an agent while evaluating higher-order knowledge formulas. This issue occurs independently from the dynamic extensions. The general setup is for any finite number of agents, but to demonstrate the challenges, consider the case of two agents. If we extend the setup from the single agent case in the straightforward way, then for each of two agents i and j there is an open set and the semantic primitive becomes a triple (x, U i , U j ) instead of a pair (x, U ). Now consider a formula like K i Kj K i p, for "agent i knows that agent j considers possible that agent i knows proposition p". If this is true for a triple (x, U i , U j ), then Kj K i p must be true for any y ∈ U i ; but y may not be in U j , in which case (y, U i , U j ) is not well-defined: we cannot interpret Kj K i p. Our solution to this dilemma is to consider neighbourhoods that are not only relative to each agent, but that are also relative to each state. This means that, when shifting the viewpoint from x to y ∈ U i , in (x, U i , U j ), we simultaneously have to shift the neighbourhood (and not merely the point in the actual neighbourhood) for the other agent. Thus, we go from (x, U i , U j ) to (y, U i , V j ), where V j may be different from U j : while the open set U j represents j's current evidence at x, the open V j represents j's evidence (i.e., epistemic range) at y. Therefore, the neighbourhood shift from U j to V j does not mean a change of agent j's evidence set at the actual state. While the tuple (x, U i , U j ) represents the actual state and the view points of both agents, the component (y, V j ) of the latter tuple merely represents agent j's epistemic state from agent i's perspective at y, a possibly different state from the actual state x.

In order to define the epistemic range of each agent with respect to the state in question, we employ a technique inspired by the standard neighbourhood semantics (see, e.g., [START_REF] Chellas | Modal logic[END_REF]. We use a set of neighbourhood functions, determining the epistemic range relative to both the given state and the corresponding agent. These functions need to be partial in order to render the semantics welldefined for the dynamic modalities in the system, namely for the public and arbitrary announcement modalities.

Moreover, using topological spaces enriched with a set of (partial) neighbourhood functions as models allows us to work with different notions of knowledge. In the standard (single-agent) subset space setting (as in Chapters 6 and 7), as the knowledge modality quantifies over the elements of a fixed neighbourhood, the S5 type knowledge is inherent to the way the semantics defined. With the approach developed in this chapter, however, the epistemic range of an agent changes according to the neighbourhood functions when the evaluation state changes. Therefore, the valid properties of knowledge are determined by the constraints imposed on the neighbourhood functions. To this end, we work with both S5 and S4 types of knowledge in this chapter: while the former is the standard notion of knowledge in the subset space setting, the latter reveals a novel aspect of our approach, namely, the ability to capture different notions of knowledge.

Outline

Section 8.1 defines the syntax, structures, and semantics of our multi-agent logic of arbitrary public announcements, APAL m int , interpreted on topological spaces equipped with a set of neighbourhood functions. Without arbitrary announcements we get the logic PAL m int , and with neither arbitrary nor public announcements, the logic EL m int . In this section we also give two detailed examples illustrating the proposed semantics. In Section 8.2 we provide axiomatizations for the logics: PAL m int extends EL m int and APAL m int extends PAL m int . We moreover prove their soundness and compare the expressive power of the associated multi-agent languages L ! Kint , L ! Kint and L Kint with respect to multi-agent topo-models. In Section 8.3 we demonstrate completeness for these logics. The completeness proof for the epistemic fragment, EL m int , is rather different from the completeness proof for the full logic APAL m int . Section 8.4 adapts the logics to the case of S4 knowledge. In Section 8.5 we compare our work to that of others, and Section 8.6 provides a brief summary of the chapter while also discussing a possible interpretation of the effort modality in the current multi-agent setting.

This chapter is based on (van Ditmarsch et al., 2015b,c).

The Multi-Agent Arbitrary Announcement

Logic APAL m int We define the syntax, structures, and semantics of our multi-agent logic of knowledge, knowability, public and arbitrary announcements. From now on, A denotes a finite and nonempty set of agents.

Syntax and Semantics

The (multi-agent) language L ! Kint is defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | K i ϕ | int(ϕ) | [ϕ]ϕ | ϕ
where p ∈ prop, and i ∈ A. Abbreviations for the connectives and the dual modalities are defined as in the previous chapters; to recall, we in particular employ Ki ϕ := ¬K i ¬ϕ, and ϕ := ¬ ¬ϕ. Notice that we use the same denotation L ! Kint for both the single and multi-agent version of the above defined syntax. Since we study the multi-agent version in this chapter, and the single-agent language constitutes just a special case of the multi-agent extension, this should not lead to any confusions. Similarly, we let L Kint and L ! Kint denote the corresponding multi-agent languages.

We interpret the language L ! Kint on topological spaces endowed with (partial) neighbourhood functions that for each agent i ∈ A assign an open neighbourhood at a given state x. More precisely, given a topological space (X, τ ), such a neighbourhood function θ is defined from X to A → τ (i.e., the set of functions τ A from A to τ ) as a partial function, denoted by θ : X A → τ . We let D(θ) denote the domain of θ, that is, the set of states in X for which θ is defined. 8. 1.1. Definition. [(Partial) Neighbourhood Function] Given a topological space (X, τ ), a neighbourhood function set Φ on (X, τ ) is a set of (partial) neighbourhood functions θ : X A → τ such that for all x ∈ D(θ), for all i ∈ A, and for all U ∈ τ :

The main role of the neighbourhood functions θ is to assign to each agent an epistemic range at a given state. It simply defines the current evidence set of each agent at the state in question. Each condition given in Definition 8.1.1 guarantees certain requirements that render the semantics well-defined and meaningful for the language L ! Kint . In particular, with the help of the neighbourhood functions we solve the problem of "jumping out of the epistemic range" explained in the introduction. We will provide a more detailed explanation regarding the definition of the neighbourhood functions together with our proposed semantics given in Definition 8. A multi-agent topo-model is a tuple X = (X, τ, Φ, V ), where (X, τ ) is a topological space, Φ a neighbourhood function set, and V : prop → P(X) a valuation function. The tuple (X, τ, Φ) is called a multi-agent topo-frame.

Throughout this chapter, we call a multi-agent topo-model(-frame) simply a topo-model(-frame). It will be clear from the context when we consider a singleagent topo-model (X, τ, V ). Similar to the case of the single-agent framework, given a topo-model X = (X, τ, Φ, V ), the open sets in τ are meant to represent the evidence pieces that are potentially available for all the agents. In our multiagent setup, all agents have the same observational power, represented by each topo-model carrying only one topology.

Formulas of L ! Kint are interpreted on topo-models with respect to pairs of the form (x, θ), where θ ∈ Φ and x ∈ D(θ). Such a pair is called a neighbourhood situation, and θ(x)(i) corresponds to the epistemic range of agent i at x (with respect to θ). The epistemic range θ(x)(i) represents the actual, current evidence of the agent i at x and it is her only source of knowledge at state x with respect to the neighbourhood situation (x, θ). This is stipulated in the semantic clause for K i in Definition 8. 1.4 below. If (x,θ) is a neighbourhood situation in X we write (x, θ) ∈ X .

The following lemma shows that the domain of every neighbourhood function is open. [Topo-semantics for (multi-agent) L ! Kint ] Given a topo-model X = (X, τ, Φ, V ) and a neighbourhood situation (x, θ) ∈ X , formulas such as Kj K i p. Moreover, conditions ( 1) and ( 3) of Definition 8.1.1 ensure that the S5 axioms for each K i are sound with respect to all topo-models: each neighbourhood function θ ∈ Φ induces a partition on D(θ) for each agent i ∈ A. We will see in Section 8.4 that our setting can be adapted to account for the weaker S4, S4.2 and S4.3 notions of knowledge by relaxing the conditions on the neighbourhood functions in Φ.

The semantics proposed for the propositional variables and the Booleans is rather standard, similar to both the relational semantics and the classical subset space semantics (see, e.g., Definition 6.1.2). Moreover, the semantics for the modality int is similar to the semantics in the single-agent case. In particular, as in the single-agent case, the truth value of the formulas in L int on multi-agent topo-models depends only on the actual state, not on the chosen neighbourhood function. In this sense, the formulas of L int are bi-persistent on multi-agent topomodels.

8.1.5. Proposition. Given a topo-model X = (X, τ, Φ, V ), neighbourhood situations (x, θ 1 ), (x, θ 2 ) ∈ X , and a formula ϕ ∈ L int ,

(x, θ 1 ) |= ϕ iff (x, θ 2 ) |= ϕ.

Proof:

The proof follows along the same lines as the proof of Proposition 7.1.14 by subformula induction on ϕ: cases for the propositional variables and the Booleans are elementary. So assume inductively that the result holds for ψ; we must show that it holds also for ϕ := int(ψ).

(x, θ 1 ) |= int(ψ) iff x ∈ Int([[ψ]] θ 1 ) iff (∃U ∈ τ )(x ∈ U ⊆ [[ψ]] θ 1 )
(by the definition of Int) 

U ∩ D(θ 2 ), we conclude that U ∩ D(θ 2 ) ⊆ [[ψ]] θ 2 , hence, x ∈ Int([[ψ]] θ 2 ), i.e., (x, θ 2 ) |= int(ψ). 2 
We now take a closer look at the semantic clauses for the modalities in

L ! Kint .
Recall that the open sets in τ are meant to represent the evidence pieces that can in principle be discovered by any agent in A. In other words, open sets of a topology can be considered as the propositions that the agents can in principle observe (but might not have observed yet). This interpretation was elaborated in Section 6. 1.1, p. 106. On the other hand, θ(x)(i) serves as agent i's current (factive) evidence at the actual state x (with respect to θ). Stating the semantic clause for knowledge given in Definition 8.1.4 in a slightly different way gives us that (x, θ)

|= K i ϕ iff θ(x)(i) ⊆ [[ϕ]] θ ,
i.e, according to our proposed semantics, agent i knows ϕ at x (with respect to θ) iff his current evidence entails ϕ, similar to the case in the single-agent version.

As in the single agent case, the modality int serves as the precondition of an announcement that represents knowability as an existential claim over the set τ of pieces of evidence:

(x, θ) |= int(ϕ) iff (∃U ∈ τ )(x ∈ U ⊆ [[ϕ]] θ ).
Therefore, whether the precondition of an announcement is fulfilled does not depend on the agents' epistemic states but depends only on the model in question. Moreover, given the semantic clause for the public announcements

(x, θ) |= [ϕ]ψ iff (x, θ) |= int(ϕ) implies (x, θ ϕ ) |= ψ,
and the definition of the updated neighbourhood function θ ϕ , the effect of an announcement is again modelled as open-set-shrinkage without leading to a global change in the initial model. More precisely, a successful announcement ϕ transforms the initial neighbourhood function θ to θ ϕ which assigns a more refined epistemic range θ(x)(i) ∩ Int([ [ϕ]] θ ) ⊆ θ(x)(i) to each agent i at the actual state x, representing the effect of learning ϕ. We continue with some examples illustrating the above defined semantics.

Examples

In this section we present two examples demonstrating how our multi-agent topological semantics works. The first example is a multi-agent version of an example presented by [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] for the single-agent setting, and the second is concerned with two agents learning bit by bit (finite) prefixes of a pair of infinite binary sequences.

The Jewel in the Tomb

We illustrate our semantics by means of a multi-agent version of Bjorndahl's example in [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] about the jewel in the tomb. Indiana Jones (i) and Emile Belloq (e) are both scouring for a priceless jewel placed in a tomb. The tomb could either contain a jewel or not, the tomb could have been rediscovered in modern times or not, and (beyond [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF], the tomb could be in the Valley of Tombs in Egypt or not. The propositional variables corresponding to these propositions are, respectively, j, d, and t. We represent a valuation of these variables by a triple xyz, where x, y, z ∈ {0, 1}. Given the carrier set X = {xyz | x, y, z ∈ {0, 1}}, the topology τ that we consider is generated by the basis consisting of the subsets {000, 100, 001, 101}, {010}, {110}, {011}, {111} (see Figure 8. [START_REF]Suppose (x, U )[END_REF]. The idea is that one can only conceivably know (or learn) about the jewel or the location on condition that the tomb has been discovered. Therefore, {000, 100, 001, 101} has no strict subsets besides the empty set: if the tomb has not yet been discovered, no one can have any information about the jewel or the location. However, provided that the tomb has been discovered, the agents might know whether or not it contains a jewel, and/or whether it is the Valley of Tombs in Egypt. In this example, we stipulate that the actual state is 111. A topo-model X = (X, τ, Φ, V ) for this topology (X, τ ) has Φ as the set of all neighbourhood functions that are partitions of X for both agents, and restrictions of these functions to open sets. A typical θ ∈ Φ describes complete ignorance of both agents and is defined as θ(w)(i) = θ(w)(e) = X for all w ∈ X. A more interesting neighbourhood situation in this model is one wherein Indiana and Emile have different knowledge. Let us assume that Emile has the advantage over Indiana so far, as he knows the location of the tomb but Indiana does not. This is the θ such that for all w ∈ X, θ (w)(i) = X, whereas the partition for Emile consists of sets {000, 100, 001, 101}, {110, 010}, {111, 011}, i.e., θ (111)(e) = {111, 011}, etc (see Figure 8. b knows that the first bit of y is 1, and both are ignorant about the other's bits. More formally, we have

X , ((x, y), θ 1 ) |= K a ¬x 1 a knows that x[1] = 0 X , ((x, y), θ 1 ) |= K b y 1 b knows that y[1] = 1 X , ((x, y), θ 1 ) |= K a ¬(K b x 1 ∨ K b ¬x 1 ) a knows that b does not know the value of x[1] X , ((x, y), θ 1 ) |= K b ¬(K a y 1 ∨ K a ¬y 1 ) b knows that a
does not know the value of y [START_REF]Suppose (x, U )[END_REF].

Now consider announcements of the following form: given ((x, y), θ n ) (wherein a and b know up to the nth bit of x and y, respectively), the announcement ϕ n+1

x is of the form 'if the nth bit of x is 1, then the (n + 1)st bit is j, and if the nth bit of x is 0, then (n + 1)st bit of x is 1 -j' with the restriction that the announcement is indeed truthful and where j ∈ {0, 1}. So it can only be announced for j = 0 or j = 1 but not for both. In other words, ϕ n+1

x is either of the form 'the nth bit of x is equal to its (n + 1)st bit' or of the form 'the nth bit of x is different from its (n + 1)st bit' but they cannot be announced at the same time as only one of them can be truthful. Then, this announcement informs a but not b of the value of the (n + 1)st digit of x. For b it is merely an extension of the initial sequences (that he is unable to distinguish anyway, as we will see) with either 1 or 0. But he does not know which is the real one. Then, the next announcement ϕ n+1 y informs b of the (n + 1)st bit of y in the same way. We can go on in the same way, and successively announce the first n bits of both sequences by public announcements in such a way that a learns every prefix of x and b learns every prefix of y up to length n, as desired; but a remains uncertain about every bit in the y-prefix that b learnt, and b remains uncertain about every bit in the x-prefix that a learnt. For example, given that the agents a and b only learned their first bits and that x = 010000 . . . and y = 110110 . . . , the next two announcements are now:

ϕ 2 x = (¬x 1 → x 2 ) ∧ (x 1 → ¬x 2 ) ϕ 2 y = (y 1 → y 2 ) ∧ (¬y 1 → ¬y 2 )
where ϕ 2

x truthfully states that "the first bit of the sequence x is different from its second bit", and ϕ 2 y truthfully states that "the first and the second bit of y are the same". We then have that x , we obtain the following smaller neighbourhoods given by the updated function θ ϕ 2

Int([[ϕ 2 x ]] θ 1 ) = S 01 × {0, 1} ∞ ∪ S 10 × {0, 1} ∞ Int([[ϕ 2 y ]] θ 1 ) = {0, 1} ∞ × S 11 ∪ {0, 1} ∞ × S 00 . θ(x, y)(b) S 0 S 1 S 0 S 1 θ(x,
x : θ ϕ 2

x ((x, y))(a) = S 01 × {0, 1} ∞ , and θ ϕ 2

x ((x, y))(b) = (S 01 ∪ S 10 ) × S 1 . all S5 axioms and rules for the knowledge modality K i (S4 int ) all S4 axioms and rules for the interior modality int (K-int) Knowledge implies knowability:

⇓ ϕ 2 y (θ ϕ 2 x ) ϕ 2 y (x, y)(b) (θ ϕ 2 x )
K i ϕ → int(ϕ)
(II) Additional axioms and rules for PAL m int :

(K ! ) [ϕ](ψ → θ) → ([ϕ]ψ → [ϕ]θ) (Nec ! ) from θ, infer [ϕ]θ ([!]RE) from ϕ ↔ ψ, infer [ϕ]θ ↔ [ψ]θ
Reduction axioms: modality . On the other hand, the inference rule ( ω -intro) is infinitary, thus making the multi-agent logic APAL m int quite different from the other logics studied in this dissertation. In an infinitary proof system the notion of a derivation is nonstandard since a derivation of a formula can involve infinitely many premises, in particular within the axiomatic system of APAL m int , an application of the rule ( ωintro) requires infinitely many premises. We can think of a derivation involving an infinitary inference rule as a finite-depth tree with possibly infinite branching, where the leaves are axioms or premises, the root is the derived formula, and a step in the tree from child nodes to parent node corresponds to the application of a derivation rule. Note that, due to the infinitary derivation rule ( ω -intro) of APAL m int , the set of formulas Γ deriving ϕ within this system can be infinite, hence, the set of all theorems of APAL m int cannot be defined by using the usual notion of a derivation as a finite sequence of formulas where each element of the sequence is either an axiom or obtained from the previous formulas in the sequence by a rule of inference. The set of all theorems of APAL m int is then defined as the smallest subset of L ! Kint that contains all the axioms, and is closed under the inference rules given in Table 8.1. In this case, we write ϕ ∈ APAL m int . We refer to (Goldblatt, 1982, Chapter 2.4) for a more detailed discussion of infinitary proof systems, and to (Balbiani and van Ditmarsch, 2015, p. 70) for a discussion on the axiomatizations of arbitrary announcement logics (see also Rybakov, 1997, Chapter 5.4 for a precise treatment of infinitary calculi). 2 On the other hand, derivations in EL m int and PAL m int are of the form of finite-depth trees with finite branching, since their axiomatizations contain only finitary derivation rules. 8.2.2. Proposition. The following reduction schemas and the rule (RE) are provable both in PAL m int and APAL m int (for languages L ! Kint and L ! Kint , respectively).

(R p ) [ϕ]p ↔ (int(ϕ) → p) (R ¬ ) [ϕ]¬ψ ↔ (int(ϕ) → ¬[ϕ]ψ) (R K ) [ϕ]K i ψ ↔ (int(ϕ) → K i [ϕ]ψ) (R [!] ) [ϕ][ψ]χ ↔ [ ϕ ψ]χ (III) Axioms and rules of for APAL m int : ( -elim) ϕ → [χ]ϕ (χ ∈ L ! Kint arbitrary formula) ( ω -intro) from [s][ψ]χ for all ψ ∈ L ! Kint , infer [s] χ
1. (R ⊥ ) [ϕ]⊥ ↔ ¬int(ϕ) 2. (R ∧ ) [ϕ](ψ ∧ θ) ↔ ([ϕ]ψ ∧ [ϕ]θ) 3. (R int ) [ϕ]int(ψ) ↔ (int(ϕ) → int([ϕ]ψ)) 4. (RE) from ψ ↔ χ, infer ϕ ↔ ϕ{ψ/χ}
Proof: See Proposition 7.1.2: for (RE), we use ( -elim) and ( ω -intro) to prove the K-axiom and the Necessitation rule for . 2

We next provide some semantic results that will be helpful in the validity proof of (R [!] ). Proof: Let X = (X, τ, Φ, V ) be a topo-model, θ ∈ Φ and ϕ, ψ ∈ L ! Kint . For ( 1) we have:

[[ψ]] θ ϕ = {y ∈ D(θ ϕ ) | (y, θ ϕ ) |= ψ} = {y ∈ Int([[ϕ]] θ ) | (y, θ ϕ ) |= ψ} (D(θ ϕ ) = Int([[ϕ]] θ )) = {y ∈ D(θ) | y ∈ Int([[ϕ]] θ ) and (y, θ ϕ ) |= ψ} (Int([[ϕ]] θ ) ⊆ D(θ)) = {y ∈ D(θ) | (y, θ) |= ϕ ψ} (by the semantics of [!]) = [[ ϕ ψ]] θ
2 Finitary alternatives for the axiomatizations of the multi-agent arbitrary announcement logic (without the interior modality) based on Kripke models with equivalence relations were considered in (Balbiani et al., 2008, Section 4). They, for example, proposed an axiomatization with a ([!]2-intro)-like rule from Table 7.1. However, it was later proven that their inference rule was not sound in the multi-agent setting (see http://personal.us.es/hvd/APAL_ counterexample.pdf for the resounding counterexample). This counterexample also applies in our setting as a special case. We are therefore not aware of a sound and complete finitary axiomatization of a multi-agent logic of arbitrary announcements, neither for Kripke models nor for topo-models. 

((θ ϕ ) ψ ) = Int([[ψ]] θ ϕ ). We then obtain D((θ ϕ ) ψ ) = Int([[ψ]] θ ϕ ) = Int([[ ϕ ψ]] θ ) = D(θ ϕ ψ ),
where the second equality follows by part [START_REF]Suppose (x, U )[END_REF]. Therefore, (θ ϕ ) ψ and θ ϕ ψ are defined for the same states. Moreover, for any x ∈ D((θ ϕ ) ψ ) and i ∈ A, we have

(θ ϕ ) ψ (x)(i) = θ ϕ (x)(i) ∩ Int([[ψ]] θ ϕ ) = θ(x)(i) ∩ Int([[ϕ]] θ ) ∩ Int([[ψ]] θ ϕ ) (since Int([[ψ]] θ ϕ ) ⊆ Int([[ϕ]] θ )) = θ(x)(i) ∩ Int(Int([[ϕ]] θ )) ∩ Int([[ψ]] θ ϕ )
(by the properties of Int)

= θ(x)(i) ∩ Int([[int(ϕ)]] θ ) ∩ Int([[ψ]] θ ϕ )
(by the semantics of int)

= θ(x)(i) ∩ Int([[int(ϕ)]] θ ∩ [[ψ]] θ ϕ ) (by the properties of Int) = θ(x)(i) ∩ Int([[int(ϕ)]] θ ∩ [[ ϕ ψ]] θ ) (by Proposition 8.2.3-(1)) = θ(x)(i) ∩ Int([[int(ϕ) ∧ ϕ ψ]] θ ) (by the semantics of ∧) = θ(x)(i) ∩ Int([[ ϕ ψ]] θ ) (by the semantics of int) = θ ϕ ψ (x)(i)
(by the definition of θ ϕ ψ )

For ( 3): (χ)]] θ ϕ (by the properties of Int)

[[ ϕ int(χ)]] θ = Int([[ϕ]] θ ) ∩ [[int(χ)]] θ ϕ = Int(Int([[ϕ]] θ )) ∩ [[int
= Int([[int(ϕ) θ )]]) ∩ Int([[χ]] θ ϕ )
(by the semantics of int) 

= Int([[int(ϕ) θ )]]) ∩ Int([[ ϕ χ]] θ ) (by Proposition 8.2.3-(1)) = Int([[int(ϕ)]] θ ∩ [[ ϕ χ]] θ ) (

Proof:

The soundness of APAL m int is, as usual, shown by proving that all axioms are validities and that all derivation rules preserve validities. Having proved that, soundness follows by induction on the depth of the derivation tree.

We prove the following cases: the first two cases shows the validity of the reduction axioms (R K ) and (R [!] ), the next two illustrate the need for the constraint in Definition 8. 1.1-(3), the fifth shows the validity of the axiom (K-int) which connects the modalities K i and int, and the last two prove validity of the axiom ( -elim) and validity preservation of the inference rule ( ω -intro). Let X = (X, τ, Φ, V ) be a topo-model, (x, θ) ∈ X and ϕ, ψ, χ ∈ L ! Kint . (R K ): Suppose (x, θ) |= [ϕ]K i ψ. This means that if (x, θ) |= int(ϕ) then (x, θ ϕ ) |= K i ψ. We want to show that (x, θ) |= int(ϕ) → K i [ϕ]ψ. Hence, suppose also that (x, θ) |= int (ϕ) and let z ∈ θ(x)(i) such that (z, θ) |= int (ϕ), i.e., that z ∈ Int([ [ϕ]] θ ). Then, by assumption, (x, θ) |= int (ϕ) implies that (x, θ ϕ ) |= K i ψ.

In other words, (y, θ ϕ ) |= ψ for all y ∈ θ ϕ (x)(i). Recall, by Definition 8. 1.4, that

θ ϕ (x)(i) = θ(x)(i) ∩ Int([[ϕ]] θ ). Thus, since z ∈ θ(x)(i) ∩ Int([[ϕ]] θ ) = θ ϕ (x)(i),
we obtain (z, θ ϕ ) |= ψ, implying together with the assumption z ∈ Int([ [ϕ]] θ ) that (z, θ) |= [ϕ]ψ. Since z has been chosen arbitrarily from θ(x)(i), the results holds for every element of θ(x)(i). Therefore, (x, θ) |= K i [ϕ]ψ. Since we also have (x, θ) |= int(ϕ), we conclude (x, θ) |= int(ϕ) → K i [ϕ]ψ. The converse direction follows similarly.

(R [!] ): As z has been chosen from θ(y)(i) arbitrarily, we obtain (y, θ) |= K i ϕ. For the similar reason, we also obtain (x, θ) |= K i K i ϕ.

(x, θ) |= [ϕ][ψ]χ iff ((x, θ) |= int(ϕ) and (x, θ ϕ ) |= int(ψ)) implies (x, (θ ϕ ) ψ ) |= χ iff (x, θ) |= ϕ int(ψ) implies (x, (θ ϕ ) ψ ) |= χ iff (x, θ) |= int( ϕ ψ) implies (x, θ ϕ ψ ) |= χ (Proposition 8.
(5 K ): Suppose (x, θ) |= ¬K i ϕ. This means, (y 0 , θ) |= ϕ for some y 0 ∈ θ(x)(i). Let y ∈ θ(x)(i). By Definition 8. 1.1-(3), θ(x)(i) = θ(y)(i). Therefore, as y 0 ∈ θ(y)(i), by assumption, we have that there is a z ∈ θ(y)(i), namely z = y 0 , such that (z, θ) |= ϕ. Thus, (y, θ) |= ¬K i ϕ. As y has been chosen from θ(x)(i) arbitrarily, we conclude (x, θ) |= K i ¬K i ϕ. • Forth: for all i ∈ A and all y ∈ θ(x)(i), there exists y ∈ θ (x )(i) such that (y, θ) (y , θ )

• Back: for all i ∈ A and all y ∈ θ (x )(i), there exists y ∈ θ(x)(i) such that (y, θ) (y , θ ).

8.2.8. Proposition. Let be a partial bisimulation between topo-models X and X with (x, θ) (x , θ ), where (x, θ) ∈ X and (x , θ ) ∈ X . Then for all ϕ ∈ L K ,

X , (x, θ) |= ϕ iff X , (x , θ ) |= ϕ.

Proof:

The proof follows standardly by subformula induction on ϕ. 2 8.2.9. Proposition. (Multi-agent) L ! Kint is strictly more expressive than L Kint with respect to topo-models.

Proof:

The proof follows the same argument as (Balbiani et al., 2008, Proposition 3.13). It is not hard to see that the modality int becomes redundant on topo-models based on discrete spaces. More precisely, given a topo-model X = (X, P(X), Φ, V ) where P(X) is a the set of all subsets of X, i.e., (X, P(X)) is the discrete space, for all ϕ ∈ L ! Kint , we have X |= ϕ ↔ int (ϕ). This fact and the modal invariance result for the language L K given in Proposition 8.2.8 help us to adapt the counterexample in (Balbiani et al., 2008, Proposition 3.13) to our setting based on a discrete space in a straightforward way. The proof follows by contradiction: suppose that ϕ ∈ L ! Kint and L Kint are equally expressive for (multi-agent) topomodels, i.e., for all ϕ ∈ L ! Kint there exists ψ ∈ L Kint such that |= ϕ ↔ ψ. Now consider the formula (K a p ∧ ¬K b K a p). By the assumption, there must be ψ ∈ L Kint such that |= ϕ ↔ ψ. To reach the desired contradiction, we now construct two models which agree on ψ at the actual neighbourhood situations but disagree on (K a p ∧ ¬K b K a p). For this argument, it is crucial to observe that any such ψ contains only finitely many propositional variables. As we have countably many propositional variables, there is a propositional variable q that does not occur in ψ (that is also different from p). Without loss of generality, suppose ψ is built using only one variable p. Consider the topo-models X = ({1, 0}, 2 {1,0} , Φ , V ) and X = ({10, 00, 11, 01}, 2 {10,00,11,01} , Φ, V ) such that V (p) = {1}, and V (p) = {10, 11} and V (q) = {01, 11}. We compare X , (1, θ ) with X , (10, θ), where θ and θ partition the corresponding models in such a way that a cannot distinguish p-states from ¬p-states, while agent b can. More precisely, we set θ It is then easy to see that, for the language L K build from the only propositional variable p, we have (1, θ ) (10, θ), hence, X , (1, θ ) |= ψ iff X , (10, θ) |= ψ. However, while X , (1, θ ) |= (K a p ∧ ¬K b K a p), we have X , (10, θ) |= p ∨ q (K a p ∧ ¬K b K a p), hence, X , (10, θ) |= (K a p ∧ ¬K b K a p). 2

Completeness

We now show completeness for EL m int , PAL m int , and APAL m int with respect to the class of all topo-models. Completeness of EL m int is shown in a standard way via a canonical model construction and a Truth Lemma that is proved by subformula induction. Completeness for PAL m int is shown by reducing each formula in L ! Kint to a provably and semantically equivalent formula of L Kint . The proof of the completeness for APAL m int becomes more involved. Reduction axioms for public announcements no longer suffice in the APAL m int case, and the inductive proof needs a subinduction where announcements are considered. Moreover, the proof system of APAL m int has an infinitary derivation rule, namely the rule ( ω -into), and given the requirement of closure under this rule, the maximally consistent sets for that case are defined to be maximally consistent theories (see Section 8.3.2). Lastly, the Truth Lemma requires the more complicated complexity measure on formulas defined in Appendix A.1. There, we need to adapt the completeness proof in [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF] to our setting.

Completeness of EL m

int and PAL m int Recall that the logic EL m int is the familiar multi-modal normal system whose axiomatization consists of the S4-type modality int, the S5-type modalities K i and the connecting axioms (K-int). Therefore, proofs of Lemma 8.3.1 and Lemma 8.3.2 below are standard (see, e.g., Blackburn et al., 2001, Proposition 4.16 and Lemma 4.17, respectively). 8.3.2. Lemma (Lindenbaum's Lemma). Each consistent set of EL m int can be extended to a maximally consistent set.

Let X c be the set of all maximally consistent sets of EL m int . We define relations

∼ i on X c as x ∼ i y iff ∀ϕ ∈ L Kint (K i ϕ ∈ x implies ϕ ∈ y).
Notice that the latter is equivalent to saying ∀ϕ ∈ L Kint (K i ϕ ∈ x iff K i ϕ ∈ y) since K i is an S5 modality. As each K i is of S5 type, every ∼ i is an equivalence relation, hence, it induces equivalence classes on X c . Let [x] i denote the equivalence class of x induced by the relation ∼ i . Moreover, we again set ϕ = {y ∈ X c | ϕ ∈ y}.

Our canonical model construction is similar to the one for the single-agent case in [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF]. We give a comparison in Section 8.5.

Definition. [Canonical Model for EL m

int ] We define the canonical model X c = (X c , τ c , Φ c , V c ) as follows:

• X c is the set of all maximally consistent sets of EL m int ;

• τ c is the topological space generated by the subbasis

Σ = {[x] i ∩ int(ϕ) | x ∈ X c , ϕ ∈ L Kint and i ∈ A}; • x ∈ V c (p) iff p ∈
x, for all p ∈ prop;

• Φ c = {(θ c ) U | U ∈ τ c }, where we define θ c : X c → A → τ c as θ c (x)(i) = [x] i , for x ∈ X c and i ∈ A.
We first need to show that (X c , τ c , Φ c ) is indeed a topo-frame.

8.3.4. Lemma. (X c , τ c , Φ c
) is a topo-frame.

(⇒) Suppose int(ψ) ∈ x. Consider the set [x] i ∩ int(ψ) for some i ∈ A.

Obviously, x ∈ [x] i ∩ int(ψ) ∈ τ c (in fact, [x] i ∩ int(ψ) ∈ Σ). Now let y ∈ [x] i ∩ int(ψ).
Since y ∈ int(ψ), we have int(ψ) ∈ y. Then, by (T int ) and since y is maximally consistent, we have ψ ∈ y. Thus, by IH, we obtain (y, θ c ) |= ψ. Therefore,

y ∈ [[ψ]] θ c . This implies [x] i ∩ int(ψ) ⊆ [[ψ]] θ c . And, since x ∈ [x] i ∩ int(ψ) ∈ τ c , we have x ∈ Int([[ψ]] θ c ), i.e., (x, θ c ) |= int(ψ). (⇐) Suppose (x, θ c ) |= int(ψ), i.e., x ∈ Int([[ψ]] θ c ).
Recall that the set of finite intersections of the elements of Σ forms a basis, which we denote by B Σ , for τ c . The assumption

x ∈ Int([[ψ]] θ c ) implies that there exists an open U ∈ B Σ such that x ∈ U ⊆ [[ψ]] θ c . Given the construction of B Σ , U is of the form U = i∈I 1 [x 1 ] i ∩ • • • i∈In [x k ] i ∩ η∈Form fin int(η)
where I 1 , . . . , I n are finite subsets of A, x 1 . . . x k ∈ X c and Form fin is a finite subset of L Kint . Since int is a normal modality, we can simply write

U = i∈I 1 [x 1 ] i ∩ • • • i∈In [x k ] i ∩ int(γ),
where η∈Form fin η := γ. Since x is in each [x j ] i with 1 ≤ j ≤ k, we have [x j ] i = [x] i for all such j. Therefore, we have

x ∈ U = ( i∈I [x] i ) ∩ int(γ) ⊆ [[ψ]] θ c , where I = I 1 ∪ • • • ∪ I n . This implies, for all y ∈ ( i∈I [x] i ), if y ∈ int(γ) then ψ ∈ y. From this, we can say i∈I {K i σ | K i σ ∈ x} int(γ) → ψ. Then, there is a finite subset Γ ⊆ i∈I {K i σ | K i σ ∈ x} such that λ∈Γ λ → (int(γ) → ψ). It then follows by the normality of int that ( λ∈Γ int(λ)) → int(int(γ) → ψ)).
Observe that each λ ∈ Γ is of the form K j α for some

K j α ∈ i∈I {K i σ | K i σ ∈ x} and we have K i ϕ ↔ int(K i ϕ). Therefore, ( λ∈Γ λ) → int(int(γ) → ψ)).
Thus, since λ∈Γ λ ∈ x (by Γ ⊆ x and x being maximal), we have int(int(γ) → ψ)) ∈ x. Then, by (K int ) and , we obtain int(int(γ)) → int(ψ) ∈ x. Moreover, since int(int(γ)) ↔ int(γ) and x ∈ int(γ) (i.e., int(γ) ∈ x), we conclude int(ψ) ∈ x. 2 8.3.6. Theorem. EL m int is complete with respect to the class of all topo-models.

2. ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.

In the setting of our axiomatization based on the infinitary rule ( ω -intro), we will say that a set x of formulas is consistent iff there exists a consistent theory y such that x ⊆ y. Obviously, maximal consistent theories are maximal consistent sets of formulas. Under the given definition of consistency for sets of formulas, maximal consistent sets of formulas are also maximal consistent theories. 

Proof:

The proof is similar to the proof of Balbiani et al. (2008, Lemma 4.11) and here we only prove items 3 and 4. Suppose x is a theory of APAL m int and ϕ ∈ L ! Kint . ( 3 We therefore conclude that int(x) is a theory.

(4): Suppose ϕ ∈ int (x). This means int(ϕ) ∈ x. By (T int ) and the fact that APAL m int ⊆ x, we have int(ϕ) → ϕ ∈ x. Therefore, since x is closed under (MP), we obtain ϕ ∈ x. As ϕ has been taken arbitrarily from int(x), we conclude that int(x) ⊆ x. 2 8.3.12. Lemma. Let ϕ ∈ L ! Kint . For all theories x, x+ϕ is consistent iff ¬ϕ ∈ x. Proof: Let x be a theory of APAL m int . Then ¬ϕ ∈ x iff ϕ → ⊥ ∈ x (as ¬ϕ ↔ ϕ → ⊥ is a theorem, and

x is closed under (MP)) iff ⊥ ∈ x + ϕ. Therefore, x + ϕ is inconsistent iff ¬ϕ ∈ x, i.e., x + ϕ is consistent iff ¬ϕ ∈ x.
means, by the definition of y m+1 , that y m + ψ m is inconsistent, thus, ¬ψ m ∈ y m (by Lemma 8.3.12). Then, by the construction of y m+1 , it is guaranteed that there is a η ∈ L ! Kint such that ¬[s][η]χ ∈ y m+1 . As y m+1 ⊆ y, we obtain ¬[s][η]χ ∈ y, contradicting consistency of y (since we assumed [s] [ϕ]χ ∈ y for all ϕ ∈ L ! Kint ). It remains to show that y is maximal. Suppose otherwise, i.e., suppose that there is a consistent theory y such that y y . This implies that there is ϕ ∈ y but ϕ ∈ y. Hence, ϕ ∈ y i for all i ∈ N. W.l.o.g, assume ϕ = ψ m . Therefore, in particular, y m + ϕ is inconsistent, hence, ¬ϕ ∈ y m . This implies ¬ϕ ∈ y (since y m ⊆ y ), hence, both ϕ and ¬ϕ are in y . Then, by Lemma 8.3.9-( 2) and y being closed under (MP), we obtain ⊥ ∈ y , contradicting consistency of y . Therefore, y is a maximally consistent theory. 2 8.3.14. Lemma (Existence Lemma for K i ). Let ϕ ∈ L ! Kint and i ∈ A. For every theory x, if K i ϕ ∈ x, then there is a maximally consistent theory y such that K i x ⊆ y and ϕ ∈ y.

Proof: Let x be a theory of APAL m int such that K i ϕ ∈ x. Thus, ϕ ∈ K i x. This implies that ¬¬ϕ ∈ K i x: otherwise, since K i x is a theory ), thus, closed under (MP), and ¬¬ϕ ↔ ϕ ∈ APAL m int , we would obtain ϕ ∈ K i x, contradicting the assumption. Hence, by Lemma 8.3.12, K i x + ¬ϕ is consistent. Then, by Lemma 8.3.13, there exists a maximally consistent theory y such that K i x + ¬ϕ ⊆ y. By Lemma 8.3.11-( 1), we know that K i x ⊆ K i x + ¬ϕ and ¬ϕ ∈ K i x. Hence, we conclude K i x ⊆ y and ϕ ∈ y. 2

The definition of the canonical model for APAL m int is the same as for EL m int , except that the maximally consistent sets are maximally consistent theories of APAL m int . We now come to the Truth Lemma for the logic APAL m int . Here we use the complexity measure ψ < S d ϕ (see Appendix A. [START_REF]Suppose (x, U )[END_REF], and we recall that θ c : X Since the S4 type of knowledge does not satisfy the axiom (5 K ): ¬K i ϕ → K i ¬K i ϕ and the key property that makes the axiom (5 K ) sound on topo-models is Definition 8. 1.1-(3), we weaken exactly this clause to obtain topo-models for logics for knowledge of different strength. A weak topo-frame is defined analogously to Definition 8.1.2.

c → A → τ c is defined as θ c (x)(i) = [x] i , for x ∈ X c and i ∈ A. Proof: Let ϕ ∈ L ! Kint such that ϕ ∈ APAL m int (recall

Definition. The axiomatization of wEL m

int is that of EL m int minus the axiom (5 K ). The axiomatizations for wPAL m int and wAPAL m int are the obvious further extensions as in Table 8.1.

Soundness of wEL m

int , wPAL m int , and wAPAL m int with respect to weak topo-models follow as in Proposition 8.2.4 and Corollary 8.2.5. As for completeness, we again use a canonical model construction similar to the one for the stronger logics, however, adapted for the S4-type knowledge. Let us first introduce some notation and basic concepts.

Let X c be the set of all maximally consistent sets of wEL m int . We define relations

R c i on X c as xR c i y iff ∀ϕ ∈ L Kint (K i ϕ ∈ x implies ϕ ∈ y).
• for all y, z ∈ X, if y, z ∈ θ(x)(i) then y, z ∈ D(θ) and either θ(y

)(i) ⊆ θ(z)(i) or θ(z)(i) ⊆ θ(y)(i).
The logics based on S4.2 K on the other hand demand a more careful treatment if dynamics are involved (as in Section 4.2.2). In particular, the condition on neighbourhood functions that makes the axiom (.

2 K ): Ki K i ϕ → K i Ki ϕ valid on topo-models is • for all y, z ∈ X, if y, z ∈ θ(x)(i) then y, z ∈ D(θ) and θ(y)(i) ∩ θ(z)(i) = ∅.
However, the (.2 K )-axiom may no longer hold after an update, as the intersection of updated open neighbourhoods θ ϕ (y)(i) ∩ θ ϕ (z)(i) may have become empty after the refinement. This is analogous to the problem presented in Section 4.2.2. Therefore, in order to work with S4.2 K in the present setting, we should drop condition (4) of Definition 8.1.1, and confine ourselves to the epistemic fragment wEL m int + Ki K i ϕ → K i Ki ϕ.

Comparison to other work

In this section we compare our work in greater detail to some of the prior literature that we already referred to. In this comparison, a prominent position is taken by an embedding from single-agent topological semantics to multi-agent topological semantics and vice versa, wherein the (single-agent) work of [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] and van Ditmarsch et al. ( 2014) play a large role. Bjorndahl's use of the interior operator and topological semantics motivated our own approach: our semantics for L Kint and L ! Kint are essentially multi-agent extensions of Bjorndahl's semantics for the single-agent versions of these languages. This is the topic of the first half of this section. The second contains a review of other related works.

From multi-agent to single-agent. Throughout this section, we denote singleagent topo-models (X, τ, V ) by M in order to distinguish them from multi-agent topo-models X = (X, τ, Φ, V ) with neighbourhood functions. We moreover focus on the single agent case, i.e., assume that A = {i}.

In the single-agent case, it is clear that a neighbourhood situation (x, θ) of a given topo-model X = (X, τ, Φ, V ) reverts to an epistemic scenario (x, U ) of X -= (X, τ, V ), where U = θ(x)(i) and X -denotes X = (X, τ, Φ, V ) without the Φ component. For the other direction, given a single-agent model (without a neighbourhood function set) M = (X, τ, V ), for each epistemic scenario (x, U ) ∈ ES(M), we define a neighbourhood function θ U : X {i} → τ such that D(θ U ) = U and θ U (x)(i) = U for all x ∈ U . We therefore define the neighbourhood function set for M as

Φ M := {θ U | (x, U ) ∈ ES(M)}.
It is not hard to see that Φ M satisfies the properties given in Definition 8.1.2, and thus is indeed a neighbourhood function set on the underlying topological space of M. Therefore, M + = (X, τ, Φ M , V ) constitutes a topo-model as described in Definition 8.1.2, and it is constructed from M = (X, τ, V ).

In the following theorem, |= s refers to the satisfaction relation defined for (single-agent) L ! Kint on topo-models M = (X, τ, V ) with respect to epistemic scenarios (x, U ), as given in Definitions 6.2.1 and 7.2.1. The usual notation |= is reserved for the satisfaction relation defined on (X, τ, Φ, V ) with respect to neighbourhood situations as given in Definition 8.1.4. 8.5.1. Theorem.

For every

M = (X, τ, V ), epistemic scenario (x, U ) ∈ ES(M) and ϕ ∈ L ! Kint , M, (x, U ) |= s ϕ iff M + , (x, θ U ) |= ϕ.
2. For every X = (X, τ, Φ, V ), neighbourhood situation (x, θ) ∈ X , and

ϕ ∈ L ! Kint , X , (x, θ) |= ϕ iff X -, (x, θ(x)(i)) |= s ϕ.

Proof:

The proofs for both items follow similarly by < S d -induction on the formulas in single-agent L ! Kint . The cases for the propositional variables, Booleans and the modalities K and int are standard. The case ϕ := [ψ]χ for the public announcement modality follows by subinduction on χ, by using the soundness of the reduction axioms with respect to both single and multi-agent topo-models. Here we present only the subcase for χ = p and χ := σ of item [START_REF]Suppose (x, U )[END_REF]. The other cases are similar. and( 2) shows that X , (x, θ) and X -, (x, θ(x)(i)) are modally equivalent with respect to L ! Kint . However, X is not necessarily (globally) modally equivalent to X -, as the following example demonstrates. 8.5.2. Example. The reason why X and X -are not necessarily modally equivalent is that while X -reverts to using the full topology τ , the view on that in X is restricted by Φ. For a counterexample, consider the topo-model X = (X, τ, Φ, V ) where X = {1, 2} and τ is the discrete topology on X. We set Φ = {θ} where D(θ) = {2} and θ(2) = {2}. Hence, the only neighbourhood situation of X is (2, θ). Finally we let V (p) = {1}. Therefore, X , (2, θ) |= ¬Kp and as (2, θ) is the only neighbourhood situation of the model, we obtain X |= ¬Kp. On the other hand, (1, {1}) is an epistemic scenario in X -, and X -, (1, {1}) |= Kp, therefore, X -|= ¬Kp.

Subcase

ϕ := [ψ]p M, (x, U ) |= s [ψ]p iff M, (x, U ) |= s int(ψ) → p (the validity (R p ) for |= s ) iff M + , (x, θ U ) |= int(ψ) → p
IH)) iff M + , (x, θ U ) |= [ψ]p (the validity (R p ) for |=) Subcase ϕ := [ψ] σ M + , (x, θ U ) |= [ψ] σ iff (∀η ∈ L ! Kint )(M + , (x, θ U ) |= [ψ][η]σ) (*) iff (∀η ∈ L ! Kint )(M, (x, U ) |= s [ψ][η]σ) (Lemma A.
In the remainder of this section, we compare mainly three aspects of our work to that of others in the relevant literature.

Multi-agent epistemic systems. Multi-agent epistemic systems with subset space-like semantics have been proposed in [START_REF] Heinemann | Topology and knowledge of multiple agents[END_REF][START_REF] Heinemann | Logics for multi-subset spaces[END_REF][START_REF] Baskent | Topics in subset space logic[END_REF]Wáng and Ågotnes, 2013a), however, none of these are concerned with public or arbitrary public announcements. An unorthodox approach to multi-agent knowledge is proposed in [START_REF] Heinemann | Topology and knowledge of multiple agents[END_REF][START_REF] Heinemann | Logics for multi-subset spaces[END_REF]. Roughly speaking, instead of having a knowledge modality K i for each agent as a primitive operator in his syntax, Heinemann uses additional operators to define K i and his semantics only validates the S4-axioms for K i . The necessitation rule for K i does not preserve validity under the proposed semantics [START_REF] Heinemann | Topology and knowledge of multiple agents[END_REF][START_REF] Heinemann | Logics for multi-subset spaces[END_REF]. On the other hand, we follow the methods of dynamic epistemic logic in our multi-agent generalization by extending the single-agent case with a knowledge modality K i for each agent and propose a multi-agent topological semantics for this language general enough to model both S4 and S5 types of knowledge, and flexible enough for further generalizations as shown in Section 8.4. Another multi-agent logic of subset spaces is developed in (Wáng and Ågotnes, 2013a). This setting uses multi-agent versions of both knowledge K i and effort 2 i , where, for example, 3 1 K 2 p is read as "agent 1 comes up with evidence so that agent 2 gets to know p" (Wáng andÅgotnes, 2013a, p. 1160). They have left the question of how to model an agent-independent effort operator open, while pointing out its connection to the arbitrary announcement modality of [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]. Besides, no announcements or further generalizations (unlike in their other, single-agent, work [START_REF] Wáng | Subset space public announcement logic[END_REF] are considered in (Wáng and Ågotnes, 2013a), and a purely topological case is left for future research. To this end, we believe our work in this chapter at least partially answers some of their open questions. Their use of partitions for each agent instead of a single neighbourhood is compatible with our requirement that all neighbourhoods for a given agent be disjoint. A further difference from the existing literature is that we restrict our attention to topological spaces and prove our results by means of topological tools. For example, our completeness proofs employ direct topological canonical model constructions without a detour referring to different types of semantics and completeness results therein.

Completeness proof. We applied the new completeness proof for arbitrary public announcement logic of [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF] to a topological setting. The modality int in our system demands a different complexity measure in the Truth Lemma of the completeness proof of APAL m int than in [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF]. Moreoever, we modified the complexity measure given in (van Ditmarsch et al., 2015b) to make it work for both the completeness of APAL m int and of PAL m int . The canonical modal construction is as in [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] with some multi-agent modifications: we defined the set Σ from which the topology of the canonical model is generated in a similar way as in [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF], however, having multiple agents renders this set weaker in the sense that while it constitutes a basis in the single-agent case, it becomes a subbasis in the multi-agent setting.

Single agent case. In standard (single-agent) subset space semantics [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF][START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF] and in the later extensions (Wáng and Ågotnes, 2013a;[START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF][START_REF] Balbiani | Subset space logic with arbitrary announcements[END_REF][START_REF] Van Ditmarsch | Arbitrary announcements on topological subset spaces[END_REF], the modality K quantifies over the elements of a given open neighbourhood U that is fixed from the beginning of the evaluation. This makes K behave like a universal modality within U , therefore, S5 K as an underlying epistemic system becomes intrinsic to the semantics. However, in our proposal, the soundness of the epistemic axioms (i.e., axioms involving only the modality K) depends on the constraints posed on the neighbourhood functions and relaxing these constraints enables us to work with weaker notions of knowledge as shown in Section 8.4. In this sense, our approach generalizes the epistemic aspect of the aforementioned literature. Moreover, Balbiani et al. (2013) proposed subset space semantics for arbitrary announcements. However, their approach does not go beyond the singleagent case and the semantics provided is in terms of model restriction.

Conclusions and Future Work

In this chapter, we proposed a multi-agent topological semantics for knowledge, knowability, public and arbitrary announcements in the style of subset space semantics. We in particular provided a multi-agent semantic framework, based on topological spaces, that eliminates the so-called problem of "jumping out of the epistemic range" in the evaluation of higher-order knowledge formulas involving different agents. In our setup all agents have the same observational power in the sense that they have access to exactly the same collection of potential evidence, represented by each topo-model carrying only one topology. In order to model the informational attitudes of a group of agents with different observational powers, one could associate a possibly different topology with each agent together with a "common" topology representing all potential evidence. Moreover, the studied notions of dynamics of "learning new evidence" brought about by announcements were of public nature, and the information source was assumed to be external. Van Ditmarsch et al. (2017) generalizes the topological public announcement semantics of this chapter for semi-private announcement, again assuming the information source to be external.

Unsurprisingly, working with S5-type of knowledge required a partitioning of the (sub)domain of a topological space. This might seem like a restrictive requirement since it rules out working with more familiar spaces such as the natural topology of open intervals on the real line or the Euclidean space. However, as long as multiple S5-type agents are concerned, we believe it is hard to avoid such a restriction, if possible at all. We then axiomatized the multi-agent logic of knowledge and knowability EL m int , its extension with public announcements PAL m int , and also with arbitrary public announcements APAL m int . The arbitrary announcement modality ϕ capturing "stability of the truth of ϕ after any announcement" comes closer to the intuition behind the effort modality 2ϕ as "stability of the truth of ϕ after any evidence-acquisition". These two modalities are proven to be equivalent in the single-agent setting (see Theorem 7.2.6). However, the appropriate interpretation of effort in the multi-agent setting and its connection to the arbitrary announcement modality still remain elusive and deserve a closer look.

The connection between the effort modality and the arbitrary announcement modality has also been observed in (Wáng and Ågotnes, 2013a), however, providing a formal analysis regarding the link between these two modalities in a multi-agent setting is not straightforward: there is not yet agreement on how to interpret the effort modality in a multi-agent framework. The existing proposals neither agree on the general framework, nor are they entirely compatible with each other or with our multi-agent topological setting (see Section 8.5 for a comparison with other work on multi-agent subset space semantics). This was not the case in the single-agent version, since the effort modality originated in a single-agent framework, and once we have a semantics for the public announcement modalities, it is obvious how to generalize it for arbitrary announcements, namely by following the intuitive reading of the arbitrary announcement modality as in [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]. In the following, we propose a semantics for the effort modality on multi-agent topo-models that, we believe, fits well with the underlying dynamic epistemic setting developed in this chapter. More precisely, we consider the below case. This should not be surprising. In essence, the arbitrary announcement modality is quite "syntactical" as it quantifies over a set of formulas in a given language, whereas the effort modality is comparatively very "semantical" as it quantifies over subsets of a given domain regardless of whether the subsets are epistemically definable or not. This difference disappears in the single-agent case since both languages L ! Kint2 and L ! Kint were co-expressive with the epistemic language L Kint . It falls outside of the scope of this dissertation, and so we leave for a future work, to systematically investigate possible interpretations of the effort modality and its behaviour in a multi-agent setting.

1. ϕ ∈ Sub(ψ) implies ϕ < S d ψ , 2. int(ϕ) < S d [ϕ]ψ, 3. ϕ ∈ L ! Kint iff d(ϕ) = 0, 4. ϕ ∈ L ! Kint implies [ϕ]ψ < S d 2ψ. 5. int(ϕ) → p < S d [ϕ]p, 6. int(ϕ) → ¬[ϕ]ψ < S d [ϕ]¬ψ, 7. [ϕ]ψ ∧ [ϕ]χ < S d [ϕ](ψ ∧ χ), 8. int(ϕ) → int([ϕ]ψ) < S d [ϕ]int(ψ), 9. int(ϕ) → K[ϕ]ψ < S d [ϕ]Kψ, 10. [ ϕ ψ]χ < S d [ϕ][ψ]χ.

Proof:

The proof of this lemma follows from simple arithmetic calculations and many items are obvious. We here prove the items ( 7), ( 8) and ( 10). Recall that we define ϕ → ψ as ¬(ϕ ∧ ¬ψ), so that S(ϕ → ψ) = S(ϕ) + S(ψ) + 3. 

]χ) = max{d(ϕ), d(ψ), d(χ)} = d([ϕ][ψ]χ). Therefore, [ ϕ ψ]χ < S d [ϕ][ψ]χ.
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A.2 Proof of Lemma 7. 1.13 Recall that a formula ψ ∈ L Kint is said to be in normal form if it is a disjunction of conjunctions of the form

δ := α ∧ Kβ ∧ Kγ 1 ∧ • • • ∧ Kγ n
Dit proefschrift gaat over logica's van kennis, geloof en informatieverandering in topologische ruimtes. Wij onderzoeken de formele representatie van bewijsmateriaal/aanwijzingen in relatie tot rechtvaardiging, gerechtvaardigd geloof, kennis, en gemotiveerde informatieverandering. Topologische ruimtes zijn geschikt om deze epistemische noties te formaliseren vanwege de wiskundige elegantie en epistemisch rijke gegevensstructuren. We vervolgen nu met een overzicht van de inhoud van het proefschrift. Deel I onderzoekt de rol van bewijsmateriaal bij het vormen van gefundeerd geloof en kennis door een rationeel handelende persoon. Bewijsmateriaal wordt semantisch gerepresenteerd als een verzameling van mogelijke werelden en syntactisch door middel van zogenaamde bewijsmodaliteiten in de logische taal.

Hoofdstuk 3 geeft een overzicht van de achtergrondliteratuur en motiveert Deel I. Het definiëert voor de taal van de modale logica een topologische semantiek die derhalve is gebaseerd op open deelverzamelingen, met het oog op epistemische interpretaties. In dit hoofdstuk wordt het gebruik van topologische ruimtes voor de modellering van kennis toegelicht, en bovendien geeft het een gedetailleerd overzicht van bekende resultaten uit de literatuur over het gebruik van topologische ruimtes voor het modelleren van geloof.

Hoofdstuk 4 gaat voornamelijk over een topologische interpretatie van de notie 'geloof': wat kunnen topologische modellen doen voor de semantiek van reeds bestaande epistemische en doxastische logica's? Met name onderzoeken we de notie van geloof als mogelijke kennis, waarvan de sematiek is afgeleid van de op open deelverzamelingen gebaseerde semantiek voor kennis uit hoofdstuk 3. We tonen correctheid en volledigheid aan voor de logica KD45 B geïnterpreteerd op zekere topologische modelklassen, namelijk de zogenaamde onvergelijkbare ruimtes en de erfelijk-onvergelijkbare gescheiden ruimtes. Een uitbreiding van de logica met openbare aankondigingen voor de laatste van deze twee modelklassen wordt ook onderzocht. Het begrip bewijsvoering wordt beschreven op een puur semantisch niveau, omdat de logische taal hier geen operatoren voor bevat. Hoofdstuk 5 is de belangrijkste bijdrage van Deel I van het proefschrift. Het geeft een topologische semantiek voor de begrippen bewijsvoering, gemotiveerde verantwoording, geloof, en kennis, inclusief verbanden tussen al deze epistemische begrippen. De bijbehorende logische taal heeft nu wel modaliteiten voor bewijsvoering, zodat alle verschillende aan bewijsvoering geliëerde begrippen expliciet deel uitmaken van de logica. De resultaten in dit hoofdstuk blijven niet beperkt tot een statische situatie en we presenteren eveneens dynamische noties, namelijk acties zoals het toevoegen van bewijsvoering, het veranderen van de plausibiliteit van bewijsvoering, het combineren van bewijsvoering uit verschillende bronnen, en het verwerken van (onfeilbaar geachte) informatie uit openbare aankondigingen. De belangrijkste technische resultaten zijn de volledigheid, beslisbaarheid en eindige-modeleigenschap van de hiermee verbonden logica's. Deze resultaten zijn relevant voor de wijsbegeerte, omdat hiermee noties van kennis en geloof zijn te formalizeren die zijn gebaseerd op de literatuur naar aanleiding van het werk van Gettier.

Deel II gaat vooral over kennis en kennisverandering. Het onderzoekt de noties absoluut zekere kennis en leerbaarheid als mogelijke kennis, evenals de wisselwerking tussen de epistemische notie van inspanning (moeite) voor bewijsvergaring. Tevens komt het verband aan bod met uit de logische dynamiek welbekende begrippen als openbare aankondigingen and kwantificatie over dergelijke openbare aankondigingen.

Hoofdstuk 6 geeft het achtergrondmateriaal voor Deel II. Het definiëert de zogenaamde deelverzamelingsruimte-semantiek en een topologische versie van de eerder genoemde openbare aankondigingen.

Hoofdstuk 7 presenteert een formeel raamwerk om de relatie te onderzoeken tussen de belangrijke dynamische noties inspanning, openbare aankondiging, en gekwantificeerde openbare aankondiging. De resultaten over het verband tussen inspanning en openbare aankondiging verduidelijken wat 'inspanning' bij kennisvergaring eigenlijk betekent. De technische resultaten voor expressiviteit en volledigheid in dit hoofdstuk zijn eenvoudiger dan in eerder werk over deze materie en geven daar, in zekere zin, beter inzicht in.

In hoofdstuk 8 wordt de logica van hoofdstuk 7 die was geformuleerd voor een handelende persoon gegeneraliseerd naar een logica voor meerdere handelende personen. We presenteren nu een logica waarin de kennis en de leerbaarheid van meerdere personen wordt gemodelleerd, inclusief uitbreidigen hiervan met openbare aankondingen en kwantificatie daarover; steeds geïnterpreerd op topologische ruimtes. We tonen correctheid en volledigheid aan van deze logica's.

Wij concluderen dat dit proefschrift aan de ene kant verschillende bekende epistemische en doxastische logica's, inclusief dynamische uitbreidingen daarvan, herinterpreteert vanuit topologisch perspectief en voorziet van een interpretatie van verschillende noties van bewijsvoering, terwijl aan de andere kant dit proefschrift topologische technieken gebruikt de verdere ontwikkeling en uitbreiding van bestaande logische analyses, resulterend in nieuwe logica's voor bewijsvoe-

Abstract

This dissertation studies logics of knowledge, belief and information dynamics using topological spaces as models. It is concerned with the formal representation of evidence and its link to justification, justified belief, knowledge, and evidencebased information dynamics. Topological spaces emerge naturally as mathematically elegant and epistemically rich information structures to formalize these epistemic notions. In the following, we give an overview of the content of this thesis.

Part I investigates the role of evidence in forming justified belief and knowledge of a rational idealized agent, where evidence is represented semantically as sets of possible worlds, as well as syntactically via evidence modalities.

Chapter 3 provides background material and motivation for Part I. It introduces the interior-based topological semantics for the basic modal language, focusing on its epistemic interpretation. In this chapter, we motivate the use of topological spaces as models for knowledge, and discuss the status quo of the use of topological spaces as belief models.

Chapter 4 focuses primarily on a topological interpretation of belief: how topological models can contribute to the semantics of existing epistemic/doxastic logics. In particular, we study a notion of belief defined as epistemic possibility of knowledge, whose topological semantics is derived from the interior semantics for knowledge presented in Chapter 3. We provide soundness and completeness results for the belief logic KD45 B with respect to the class of extremally and hereditarily extremally disconnected spaces, and study public announcements based on topological models in the latter class. The notion of evidence in this setting is described at a purely semantic level as the corresponding syntax does not have any components representing evidence.

Chapter 5 presents the main contribution of Part I. We propose a topological semantics for various notions of evidence, evidence-based justification, belief, and knowledge, and explore the connections between these epistemic notions. The corresponding syntax bears evidence modalities, making various notions of evidence 217 an explicit part of the logic. Our investigations in this chapter are not limited to a static setting. We discuss evidence-based actions such as evidence addition, upgrade, and feasible evidence combination as well as receiving information from infallible truthful sources via public announcements. Our main technical results are concerned with completeness, decidability and the finite model property for the associated logics. These investigations have philosophical consequences, as they allow us to formalize some post-Gettier debates surrounding justified belief and knowledge.

Part II focuses on knowledge and knowledge change. More precisely, it studies the notions of absolutely certain knowledge and knowability as potential knowledge, as well as the interplay between the notion of epistemic effort encompassing any method of evidence acquisition and the well-studied dynamic attitudes such as public and arbitrary public announcements.

Chapter 6 provides the background material of Part II, introducing subset space semantics and a topological version of public announcements.

Chapter 7 designs a formal framework elucidating the relationship between three dynamic notions of interest: effort, public announcements, and arbitrary announcements. While the established link between effort and public announcements makes the meaning of the intended notion of effort more transparent, our technical results concerning expressivity and completeness simplify, and in a sense, improve on some of the earlier approaches.

Finally, in Chapter 8, we generalize the single-agent setting presented in Chapter 7 to a multi-agent setting. We present a multi-agent logic of knowledge and knowability, as well as its extensions with public and arbitrary announcements, interpreted on topological spaces. We provide soundness and completeness results for the corresponding systems.

To sum up, this dissertation on one hand re-interprets some existing epistemic and doxastic logics and their dynamic extensions from a topological perspective, providing an evidence-based interpretation. On the other hand, it uses topological tools to refine and extend earlier analysis, leading to novel logics of evidence and information dynamics.

Résumé

Cette dissertation réunit logique épistémique et topologie. Elle étudie les représentations formelles de la notion d'évidence1 et ses liens avec la justification, les croyances justifiées, la connaissance, et la dynamique de l'information basée sur évidence, en utilisant des outils venant de la topologie et de la logique épistémique (dynamique).

La logique épistémique est un terme englobant une grande variété de logiques modales dont les principaux objets d'étude sont la connaissance et la croyance. En tant que champ d'investigation, la logique épistémique utilise la logique modale et les mathématiques pour formaliser, clarifier et résoudre les questions qui motivent l'épistémologie (formelle), et ses applications s'étendent non seulement à la philosophie, mais aussi à l'informatique fondamentale, l'intelligence artificielle et l'économie (voir van Ditmarsch et al., 2015a pour un aperçu). [START_REF] Hintikka | Knowledge and Belief: An Introduction to the Logic of the Two Notions[END_REF] est considéré comme le père fondateur de la logique épistémique moderne. Dans son livre Knowledge and Belief: An Introduction to the Logic of the Two Notions (1962)-inspiré par des idées de (von Wright, 1951)-Hintikka formalise connaissance et croyance comme des opérateurs modaux basiques, dénotés respectivement par K et B, et les interprète en utilisant la sémantique des mondes possibles standard, basée sur les structures de Kripke (relationnelles). Depuis lors-la sémantique de Kripke fournissant une façon naturelle et relativement aisée de modéliser la logique épistémique-cela a été une des structures sémantiques les plus proéminentes et fréquemment utilisées en logique épistémique, et la recherche dans ce domaine a en grande partie avancé sur les bases formelles de la sémantique de Kripke.

Cependant, la sémantique de Kripke standard possède certaines caractéristiques qui rendent trop fortes les notions de connaissance et de croyance qu'elle Résumé implémente-menant des problèmes d'omniscience logique-et il lui manque les ingrédients qui permettent de parler de la nature et des bases de la connaissance et croyance acquises. C'est ce dernier problème qui est l'origine du travail présenté dans cette dissertation : non seulement nous cherchons une façon simple de modéliser la connaissance et la croyance, mais nous étudions aussi l'émergence, l'usage, et la transformation d'évidence comme une composante inséparable des croyances justifiées et de la connaissance d'un agent rationnel et idéal.

Dans ce but, nous montrons que les espaces topologiques sont des objets mathématiques naturels pour formaliser les notions épistémiques mentionnées ci-dessus, ainsi que la dynamique de l'information basée sur évidence : tout en fournissant une compréhension plus profonde de l'interprétation à base d'évidence de la connaissance et de la croyance, la sémantique topologique généralise aussi la sémantique relationnelle standard de la logique épistémique. Schématiquement parlant, les notions topologiques telles que ouverts, fermés, espaces denses et denses nulle part encodent qualitativement et naturellement des notions telles que pa mesure/observation, la proximité, la petitesse, la grandeur et la consistance, qui toutes reviendront régulièrement dans cette dissertation avec une interprétation épistémique. De plus, les espaces topologiques sont équipés d'opérateurs basiques bien connus tels que les opérateurs d'intérieur et de clôture qui-seuls ou combinés-interprètent de manière succincte différentes modalités épistémiques, apportant une meilleur compréhension de leurs propriétés axiomatiques. Dans ce but, nous voyons les espaces topologiques comme des structures d'information équipées d'une théorie mathématique forte et élégante qui aide à éclairer les débats philosophiques entourant la connaissance et la croyance justifiée, et à mieux comprendre le phénomène d'apprentissage par acquisition d'évidence.

L'usage épistémique des espaces topologiques comme structures d'information remonte aux années 1930 et 1940, quand les espaces topologiques servaient de modèles aux langages intuitionnistes, et les ensembles ouverts sont considérés comme des 'éléments d'évidence', des 'propriétés observables' concernant l'état actuel (voir, e.g., Troelstra and van Dalen, 1988). Cette interprétation assignée aux ensembles ouverts constitue la motivation épistémique basique derrière notre usage des modèles topologiques, et elle reviendra souvent à divers endroits (sous des formes modifiées) dans le corps principal de cette dissertation. Des variantes de cette idée peuvent aussi être trouvées dans la théorie des domaines en informatique (Abramsky, 1987[START_REF] Abramsky | Domain theory in logical form[END_REF][START_REF] Vickers | Topology via logic[END_REF], guidant le programme de recherche de la théorie formelle "topologique" de l'apprentissage initiée entre autres par Kelly [START_REF] Kelly | The Logic of Reliable Inquiry[END_REF][START_REF] Schulte | Topology as epistemology[END_REF][START_REF] Kelly | Reliable Belief Revision[END_REF][START_REF] Kelly | A simple theory of theoretical simplicity[END_REF][START_REF] Baltag | On the solvability of inductive problems: A study in epistemic topology[END_REF] en épistémologie formelle.

La littérature reliant la logique épistémique (modale) et la topologie est organisée autour de deux cadres topologiques distincts, quoique fortement liés. Notre travail dans cette dissertation profite des deux approches. La première direction vient de la sémantique topologique basée sur l'intérieur, de [START_REF] Mckinsey | A solution of the decision problem for the lewis systems S2 and S4, with an application to topology[END_REF][START_REF] Mckinsey | The algebra of topology[END_REF], pour le langage de la logique modale basique (certaines idées peuvent déjà être trouvées dans [START_REF] Tarski | Der aussagenkalkül und die topologie[END_REF][START_REF] Tsao-Chen | Algebraic postulates and a geometric interpretation for the lewis calculus of strict implication[END_REF]. Dans cette sémantique l'opérateur modal 2 est interprété sur les espaces topologiques comme l'opérateur d'intérieur. Ces recherches eurent lieu dans un contexte mathématique abstrait, indépendant de considérations épistémiques/doxastiques. [START_REF] Mckinsey | The algebra of topology[END_REF] non seulement prouvèrent que le système modal S4 est la logique de tous les espaces topologiques (sous l'interprétation mentionnée ci-dessus), mais ils montrèrent aussi que c'est la logique de tout espace métrique séparable dense dans lui-même, tel que la ligne rationnelle Q, la ligne réelle R et l'espace de Cantor, parmi d'autres. Cette approche initia un tout nouveau domaine de logiques spatiales, établissant une connection persistante entre logique modale et topologie (voir, e.g., [START_REF] Aiello | Handbook of Spatial Logics[END_REF] pour une vue d'ensemble sur le sujet, en particulier, voir van [START_REF] Van Benthem | Modal logics of space[END_REF]. De plus, les résultats de complétude concernant le système épistémique S4 ont naturellement attiré les logiciens épistémiques, menant à une réévaluation épistémique de la sémantique de l'intérieur, voyant les topologies comme des modèles pour l'information. Une branche de la connexion logique épistémique-topologie a donc été bâtie sur la sémantique topologique basée sur l'intérieur, où la notion épistémique centrale est la connaissance (voir, e.g., van Benthem and Sarenac, 2004). Ce que nous ajoutons à cet ensemble de travaux, dans la Partie I de cette dissertation, ce sont les composants épistémiques manquants d'évidence et de croyance, ainsi que la dynamique d'apprentissage de nouvelle évidence, renforçant ainsi la connection entre logique épistémique et topologie. Pour ce faire nous réanalysons les modèles d'évidence à base de voisinages de van Benthem and Pacuit (2011) d'un point de vue topologique. La façon dont nous représentons l'évidence et comment elle se connecte avec la croyance justifiée sont inspirés pas l'approche de (van Benthem and Pacuit, 2011), et les actions de transformation d'évidence considérées sont adaptées de ce travail de grande importance.

La seconde approche topologique pour la logique épistémique fut initiée par [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF]. Ils introduisirent la topologique, un cadre bimodal pour formaliser le raisonnement à propos d'ensembles et de points dans un unique système modal. Leurs recherches topologiques sont fortement motivées par la logique épistémique, suggérant que "des aspects simples du raisonnement topologique sont aussi connectés avec des logiques spécialisées de la connaissance" (Moss and Parikh, 1992, p. 95). L'élément clef que [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] introduisent dans le paradigme de la logique épistémique est la notion abstraite d'effort épistémique. L'effort peut, pour parler simplement, être décrit comme n'importe quel type de collecte d'évidence-via, e.g., mesure, calcul, approximation, expérimentation ou annonce-qui peut mener à une connaissance accrue. Le formalisme de la topologique combine donc la notion statique de connaissance avec la notion dynamique d'effort, et est par conséquent fortement lié à la logique épistémique dynamique [START_REF] Baltag | The logic of public announcements, common knowledge, and private suspicions[END_REF][START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF][START_REF] Van Benthem | Logical Dynamics of Information and Interaction[END_REF][START_REF] Baltag | Dynamic epistemic logic[END_REF]. Dans la Partie II de cette thèse, nous établissons une connection entre les deux formalismes, et nous en tirons des bénéfices à la fois conceptuels et techniques. Alors que la logique épistémique dynamique étend le domaine des attitudes dynamiques qu'elle étudie, le cadre de la topologique obtient des axiomatisations épistémiquement plus intuitives, clarifiant ainsi la signification de l'effort en le connectant à des exemples bien compris tels que les annonces arbitraires et publiques.

***

Les contributions de cette thèse sont présentées en deux parties. Nous donnons ci-dessous un aperçu approfondi de chaque chapitre.

Le chapitre 2 fournit les préliminaires techniques essentiels aux deux parties de cette dissertation. Cela inclue, dans la première moitié, une très brève introduction à la sémantique de Kripke standard pour la logique modale basique. Nous rappelons les systèmes statiques habituellement étudiés pour les logiques épistémiques/doxastiques et les propriétés relationnelles correspondantes qui rendent ces logiques correctes et complètes. Le cadre relationnel sert seulement d'outil technique utilisé dans les parties I et II dans le but d'atteindre des résultats techniques dans le cadre topologique. Dans la seconde partie, nous introduisons les notions topologiques élémentaires que nous utiliserons à travers cette dissertation.

Plan. La section 2.1 discute brièvement la sémantique relationnelle standard pour le langage de la logique modale basique, et les systèmes épistémiques et doxastiques unimodaux qui seront étudiés dans les chapitres ultérieurs. La section 2.2 introduit les préliminaires purement topologiques qui seront utilisés dans toute la thèse. De plus, ce chapitre sert aussi à fixer les notations pour le corps principal de cette dissertation. Les lecteurs familiers avec les sujets mentionnés ci-dessus devraient pouvoir passer ce chapitre sans problème.

PARTIE I : De la Sémantique de l'Intérieur aux Modèles de Faits

La partie I concerne les interprétations à base d'évidence de la croyance justifiée et de la connaissance. En commençant par une interprétation topologique maintenant standard de l'opérateur d'intérieur, nous développons graduellement un cadre topologique qui (1) peut parler d'évidence non seulement sémantiquement, mais aussi au niveau syntactique, rendant ainsi la notion d'évidence plus explicite;

(2) prend l'évidence comme notion la plus primitive, sur laquelle croyance et connaissance sont définies, reliant ainsi ces deux notions épistémologiques cruciales de manière plus profonde et plus basique. Ces investigations ont des conséquences philosophiques considérables puisqu'elles nous permettent de discerner, d'isoler, et d'étudier divers aspects de la notion d'évidence, et ses relations avec la justification, la connaissance et la croyance.

Le chapitre 3 fournit les bases formelles de la sémantique topologique basée sur l'intérieur pour la logique modale basique, qui remonte aux travaux de [START_REF] Mckinsey | A solution of the decision problem for the lewis systems S2 and S4, with an application to topology[END_REF][START_REF] Mckinsey | The algebra of topology[END_REF]. Dans cette sémantique l'opérateur modal 2 est interprété sur des espaces topologiques comme l'opérateur d'intérieur. L'une des raisons en est que le système épistémique S4 est la logique de tous les espaces topologiques. Une autre est que l'interprétation des ensembles ouverts comme 'propriétés observables' ou 'éléments d'évidence' met la sémantique topologique à base d'intérieurs sur le radar des logiciens épistémiques. Dans ce chapitre, nous introduisons brièvement la sémantique topologique d'intérieurs, nous concentrant particulièrement sur ses idées épistémiques, et nous expliquons comment et pourquoi elle constitue une interprétation satisfaisante pour la connaissance (basée sur évidence), et, par conséquent, pourquoi-dans certains contextes-elle forme une sémantique plus riche que la sémantique relationnelle. Nous discutons ensuite une sémantique topologique de la croyance de la littérature, basée sur l'opérateur d'ensemble dérivé, et nous argumentons qu'elle ne constitue pas une sémantique satisfaisante pour la croyance, en particulier quand on la considère conjointement avec la connaissance comme intérieur. Notre contribution dans la partie I est inspirée de, et développée sur, les bases de ce cadre. Dans les chapitres suivants, nous étendons et enrichissons la sémantique d'intérieur afin de formaliser différentes notions de connaissance (basée sur évidence) et de croyance justifiée, ainsi que différentes notions de possession d'évidence.

Plan. La section 3.1 est une section technique qui introduit la sémantique d'intérieur ainsi que ses connections avec la sémantique relationnelle (section 3.1.2). Dans la section 3.1.3, nous listons les résultats topologiques généraux de correction et complétude pour les systèmes S4, S4.2 et S4.3 qui seront utilisés dans les chapitres suivants. La section 3.2 explique ensuite les motivations derrière l'utilisation de l'opérateur d'intérieur comme modalité de connaissance, en mettant l'accent sur l'interprétation à base d'évidence sous-jacente.

Dans le chapitre 4 notre attention passe de l'interprétation topologique de la connaissance à l'interprétation topologique de la croyance, et nous présentons le premier pas vers le développement d'une théorie topologique de la croyance qui fonctionne bien combinée avec la connaissance comme opérateur d'intérieur. Plus précisément, la première partie de ce chapitre présente un examen de la sémantique de croyance topologique de ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF], traitant les questions suivantes :

• Étant donnée la sémantique topologique d'intérieur pour la connaissance, comment peut-on construire une sémantique topologique pour la croyance [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF][START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF], en partant du formalisme de Stalnaker, proposèrent d'interpréter la croyance, en particulier la croyance de Stalnaker, comme certitude subjective, en termes de la clôture de l'opérateur d'intérieur sur des espaces extrêmement discontinus. Tandis que ce cadre statique fournit une réponse satisfaisante aux questions ci-dessus, l'extension dynamique par des modalités d'annonces publiques rencontre des problèmes dûs aux propriétés structurelles des espaces extrêmement discontinus. Cela mène à la quête d'une logique de la connaissance et de la croyance adaptée aux annonces publiques. La seconde partie de ce chapitre est dévolue à la résolution de ce problème, et la solution que nous proposons consiste en une interprétation de la connaissance et de la croyance sur des espaces héréditairement extrêmement discontinus.

Alors que cette sémantique pour la croyance fonctionne bien pour la notion de croyance forte de Stalnaker comme certitude subjective, d'un point de vue plus général elle peut être vue comme quelque peu restrictive pour deux raisons. Elle est basée sur des classes d'espaces topologiques assez exotiques, et les logiques correspondantes n'incluent pas réellement l'évidence car elles n'en ont pas de représentation syntaxique. Cela constitue une partie de la motivation pour le travail présenté dans le chapitre 5, menant aux questions plus générales et fondamentales que nous y traitons.

Plan. La section 4.1 présente le système combiné de Stalnaker pour la connaissance et la croyance, et liste les aspects importants de son travail qui inspirèrent ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]. Dans la section 4.2, nous passons en revue la sémantique topologique de croyance de ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF], et la section 4.2.2 rappelle pourquoi les mises à jour ne fonctionnent pas sur les espaces extrêmement discontinus. Dans la section 4.3, nous introduisons ce qui va au-delà de ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF], nous modélisons croyance, croyance conditionnelle et annonces publiques sur les espaces héréditairement extrêmement déconnectés, et nous présentons plusieurs résultats de complétude concernant KD45 B et ses extensions avec croyances conditionnelles et annonces publiques.

Le chapitre 5 contient la contribution principale de la partie I. En s'appuyant sur l'hypothèse que la croyance rationnelle d'un agent est basée sur l'évidence disponible, nous essayons de révéler la relation concrète entre l'évidence à disposition d'un agent, ses croyances et sa connaissance, et nous étudions la dynamique de l'évidence supportée par la représentation statique mise au point. Ce projet est motivé par des questions à la fois philosophiques et techniques, ainsi que par les inconvénients susmentionnés de notre propre travail du chapitre 4. Plus précisément, nous considérons entre autres les questions suivantes :

• Comment un agent en possession d'éléments d'évidence possiblement faux, possiblement mutuellement contradictoires, réunit de manière consistante son évidence et forme des croyances consistantes ?

• Quelles sont les conditions nécessaires et suffisantes pour qu'un élément d'évidence constitue une justification pour une croyance ?

• Quelles propriétés devrait posséder un élément d'évidence pour entraîner une connaissance (défaisable) ?

• Comment notre formalisation des notions susmentionnées aide-t-elle à comprendre les discussions en épistémologie formelle quant aux liens entre croyance justifiée et connaissance ?

• Quelles sont les axiomatisations complètes des logiques associées de croyance justifiée, connaissance et évidence ? Ont-elles la propriété du modèle fini ? Sont-elles décidables ?

Ces questions guident aussi l'approche de van Benthem and Pacuit (2011); van [START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF], qui inspira considérablement notre travail. Les travaux influents de (van Benthem and Pacuit, 2011;[START_REF] Van Benthem | Evidence logic: A new look at neighborhood structures[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF] représentent l'évidence sémantiquement-pour faire simple, comme des ensembles de mondes possibles-en se basant sur des structures de voisinage, ainsi que syntaxiquement en introduisant des modalités d'évidence. Leur cadre va au-delà et généralise le traitement formel des notions sémantiques citées précédemment en termes de structures relationnelles, telles que modèles de Kripke ou de plausibilité, et modèles non-relationnels, tels que les modèles de sphère de Grove. Dans ce chapitre nous franchissons une étape de plus dans l'amélioration du traitement théorique formel modal de l'évidence, de la croyance justifiée et de la connaissance en révélant la structure topologique cachée des modèles d'évidence de van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. La perspective topologique permet des représentations mathématiques plus précises et raffinées de diverses notions d'évidence telles que l'évidence basique, l'évidence combinée, l'évidence vraie et l'évidence non-trompeuse, ainsi que de notions épistémiques pertinentes telles que l'argument et la justification (basée sur évidence) et, enfin, la croyance justifiée et la connaissance indéfectible. En conséquence, nous obtenons un cadre sémantiquement et syntaxiquement riche qui fournit une analyse logique plus profonde quant au rôle de l'évidence dans l'atteinte d'un état épistémique/doxastique par un agent. Nous examinons aussi plusieurs types de dynamiques d'évidence introduits dans (van Benthem and Pacuit, 2011) et nous appliquons ce cadre pour analyser et aborder des problèmes clefs en épistémologie tels que les exemples de Gettier de type "pas de lemme faux", les contradicteurs trompeurs, et la justification non contredite face à la croyance non contredite. Nos résultats techniques principaux traitent de complétude, de décidabilité et de propriété du modèle fini pour les logiques associées. Dans ce qui suit, nous fournissons un aperçu détaillé des notions épistémiques étudiées dans ce chapitre, nous introduisons les modalités que nous considérons, et nous expliquons où notre travail se situe par rapport à la littérature concernée.

Une raison cruciale pour laquelle notre approche présentée dans le chapitre 5 fait mieux que celles des chapitres 3 et 4 est qu'ici nous introduisons des modalités d'évidence afin de fournir aussi des représentations syntactiques des notions d'évidence, et finalement pour construire des logiques d'évidence. En particulier, nous étudions l'opérateur "avoir un élément d'évidence pour une proposition P " proposé pas van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF], mais nous étudions aussi des variantes intéressantes de ce concept : "avoir une évidence (combinée) pour P ", "avoir un élément d'évidence vrai pour P " et "avoir une évidence (combinée) vraie pour P ". La table A.2 ci-dessous liste les modalités d'évidence correspondantes ainsi que leur lecture intuitive. En épistémologie il est commun de réserver le terme "évidence" pour l'évidence vraie. Cependant nous suivons ici l'usage plus libéral fait de ce terme dans [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF], qui est en accord avec l'acception commune de la vie de tous les jours, e.g. quand on parle d' "évidence incertaine", de "fausse évidence", d'"évidence trompeuse" etc.2 La famille des ensembles d'évidence (combinée) forme une base topologique qui engendre ce que nous appelons la topologie évidentielle. Il s'agit de la plus petite topologie dans laquelle tous les éléments basiques d'évidence sont ouverts, et elle jouera un rôle important dans notre formalisme. En fait, la modalité 2ϕ qui capture le concept de "avoir une évidence vraie pour ϕ" coïncide avec l'opérateur d'intérieur dans la topologie évidentielle (voir section 5.2.2). Nous utilisons donc la sémantique d'intérieur de [START_REF] Mckinsey | The algebra of topology[END_REF] La notion de croyance justifiée que nous étudions dans ce chapitre sera définie purement à travers les notions d'évidence mentionnées ci-dessus. Nous proposons une sémantique "cohérentiste" de la justification et de la croyance justifiée, que nous obtenons en étendant, en généralisant et (dans une certaine mesure) en profilant le cadre formel des modèles d'évidence pour les croyances introduit par van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF]. L'idée principale derrière la définition de la croyance de van Benthem and Pacuit (2011) semble être que l'agent rationnel essaye de former des croyances consistantes en regardant toutes les plus fortes collections d'évidence finiment consistantes, et elle croît tout ce qui est impliqué par l'ensemble de ces dernières. 3 Leur définition de la croyance dépend donc crucialement de la notion de "plus forte" évidence, et elle fonctionne bien dans le cas fini (quand l'agent a un nombre fini d'éléments d'évidence de base) ainsi que dans certains cas infinitaires. Mais, comme déjà remarqué dans [START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF], ce cadre formel présente l'inconvénient qu'il peut produire des croyances inconsistantes dans le cas infinitaire général. Un défaut plus technique de ce cadre est que la logique doxastique correspondante ne possède pas la propriété du modèle fini (voir van Benthem et al., 2012, Corollary 2.7 ou van Benthem et al., 2014, Corollary 1). Dans ce chapitre, nous proposons une sémantique "améliorée" pour la croyance basée sur évidence obtenue en affaiblissant, en un sens, la définition de (van Benthem and Pacuit, 2011). Selon nous, une proposition P est crue si P est impliquée par des collections d'évidence finiment consistantes suffisamment fortes. Cette définition coïncide avec celle de van Benthem and Pacuit (2011) pour les modèles portant des collections d'évidence finies, mais elle fait appel à une généralisation différente de leur notion dans le cas infinitaire. En fait, notre sémantique assure toujours la consistance des croyances, même lorsque les éléments d'évidence disponibles sont mutuellement inconsistants. Nous fournissons aussi une formalisation de l'argument et une vue "cohérentiste" des justifications. Un argument est essentiellement constitué d'un ou plusieurs ensembles d'évidence supportant la même proposition (fournissant donc de multiples chemins potentiels vers une conclusion commune); une justification est un argument qui n'est contredit par aucune autre évidence disponible. Notre définition de la croyance équivaut à demander que P soit vraie ssi il y a quelque justification (basée sur évidence) pour P . Elle capture donc correctement le concept de "croyance justifiée". Notre proposition est aussi très naturelle d'un point de vue topologique : elle est équivalente à dire que P 3 Ceci est encore vague puisque nous n'avons pas encore spécifié ce que signifie "plus fortes collections d'évidence finiment consistante" (nous formalisons ces notions dans la section 5.2.1. Cependant ce niveau de précision devrait être suffisant pour expliquer l'idée derrière la définition de croyance de van [START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF], et notre notion de croyance justifiée étudiée dans ce chapitre).

est crue ssi elle est vraie dans "presque tous" les états épistémiquement possibles, où "presque tous" est interprété topologiquement comme "tous sauf pour un ensemble dense nulle part". De plus, nous généralisons cette croyance sémantique pour les croyances conditionnelles. La table A.3 ci-dessous liste les modalités de croyance que nous étudions dans ce chapitre.

Bϕ

l'agent a une croyance justifiée de ϕ B ϕ ψ l'agent croit ψ à condition que ϕ

Table A.3: Modalités de croyance et leurs lectures intuitives Quant à la connaissance, il y a un certain nombre de différentes notions qui peuvent être considérées. Premièrement, il y a la connaissance "absolument certaine" ou "infaillible", proche du concept de connaissance partitionnelle d'Aumann [START_REF] Aumann | Interactive epistemology I: Knowledge[END_REF] ou du concept d'information dure de [START_REF] Van Benthem | Dynamic logic for belief revision[END_REF]. Dans notre cadre mono-agent, cela peut être défini simplement comme la modalité globale (qui quantifie universellement sur les états épistémiquement possibles). Il y a très peu de propositions qui peuvent être connues de cette manière infaillible (e.g., celles connues par introspection ou par preuve logique). La plupart des faits en science ou dans la vraie vie sont inconnus dans ce sens. Il est donc plus intéressant de considérer des notions de connaissance moins qu'absolument certaine, telle que la connaissance défaisable. Dans notre cadre, nous considérons à la fois la connaissance absolument certaine et la connaissance défaisable, mais nous nous intéressons plus particulièrement à cette dernière. Voir la table A.4 cidessous pour les modalités de connaissance correspondantes et leur signification.

[∀]ϕ l'agent a la connaissance infaillible de ϕ Kϕ l'agent sait ϕ de manière faillible (ou défaisable)

Table A.4: Modalités de connaissance et leurs significations intuitives

Les célèbres contre-exemples de Gettier [START_REF] Gettier | Is justified true belief knowledge?[END_REF] montrent que simplement ajouter la "véracité" la croyance ne nous donnera pas de "bonne" notion de connaissance défaisable : la croyance vraie (justifiée) est extrêmement fragile (i.e., elle peut être perdue trop facilement), et elle est consistante avec le fait de n'avoir que des justifications erronées pour une conclusion accidentellement vraie. Nous formalisons ici une notion de connaissance défaisable disant que "P est connue (de manière faillible) s'il y a une justification vraie pour P ". Nous étudions par conséquent une notion de connaissance définie comme une croyance correctement justifiée. Comme nous le développons en section 5.5.1, cette notion Résumé de connaissance moins qu'absolument certaine trouve sa place dans la littérature post-Gettier en étant plus forte que celle caractérisée par le "pas de lemme faux" de [START_REF] Clark | Knowledge and grounds: A comment on Mr. Gettier's paper[END_REF] et plus faible que la conception de la connaissance décrite par la théorie de la défaisabilité de la connaissance défendue par [START_REF] Lehrer | Knowledge: Undefeated justified true belief[END_REF]; [START_REF] Lehrer | Theory of Knowledge[END_REF]; [START_REF] Klein | A proposed definition of propositional knowledge[END_REF][START_REF] Klein | Certainty, a Refutation of Scepticism[END_REF].

Encore un autre chemin menant à notre cadre formel dans ce chapitre passe par notre travail précédent [START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF](Baltag et al., , 2015a)), présenté dans le chapitre 4, sur une topologie sémantique pour les axiomes doxastiques/épistémiques de [START_REF] Stalnaker | On logics of knowledge and belief[END_REF]. Rappelons que le système de Stalnaker présenté dans la table A.1 est fait pour capturer une notion de connaissance faillible, en forte interaction avec une notion de "croyance forte" définie comme une certitude subjective. La principale idée spécifique à ce système était que "croire implique croire que l'on sait", idée capturée par l'axiome de Croyance complète (Bϕ → BKϕ). La sémantique topologique que nous avons proposée pour ces concepts dans ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]Baltag et al., , 2015a) ) était trop restrictive (car limitée à la classe peu familière des topologies extrêmement discontinues et héréditairement extrêmement discontinues). Dans le chapitre 5 nous montrons que ces notions peuvent être interprétées sur des espaces topologiques arbitraires, sans changer leur logique. En effet, nos définitions de croyance et de connaissance peuvent être vues comme les généralisations naturelles aux topologies arbitraires des notions de ( Özgün, 2013;[START_REF] Baltag | The topology of belief, belief revision and defeasible knowledge[END_REF]Baltag et al., , 2015a)).

Nous axiomatisons complètement les différentes logiques d'évidence, de connaissance et de croyance que nous obtenons, et nous établissions des résultats de décidabilité et de propriété du modèle fini. De plus, nous étudions quelques extensions dynamiques, en encodant différents types de dynamique d'évidence. Techniquement, notre résultat le plus difficile est la complétude de la logique de l'évidence vraie la plus riche Log ∀22 0 , qui contient les deux modalités d'évidence vraie 2 0 ϕ et 2ϕ, ainsi que la modalité globale [∀]ϕ. L'axiomatisation de Log ∀22 0 est donnée par les schémas d'axiomes et les règles d'inférence de la table A.5. 2011). Nous généralisons ensuite notre sémantique de croyance (simple) à la croyance conditionnelle. La section 5.4 définit les modèles de transformations induits par les dynamiques d'information basées sur évidence telles que les annonces publiques, l'addition d'évidence, l'amélioration d'évidence et la combinaison faisable d'évidence. Dans la section 5.5 nous proposons une interprétation topologique pour une notion de connaissance faillible et nous relions notre formalisme à certaines discussions importantes qui ont émergé dans la littérature de l'épistémologie post-Gettier, telles que les théories de stabilité/défaisabilité de la connaissance, contradicteurs trompeurs contre contradicteurs sincères, etc. Finalement, la section 5.6 présente tous nos résultats techniques. Le lecteur intéressé uniquement par les aspects techniques peut sauter directement à la section 5.6.

PARTIE II : Des Annonces Publiques aux Efforts

Dans la Partie II de cette dissertation nous ne parlons plus de croyances, mais nous nous concentrons sur certaines notions de connaissance ainsi que différents types de dynamique d'information qui incluent l'apprentissage de nouvelle évidence. Cette partie prend comme point de départ le cadre de l'espace des sous-ensembles de [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF], et elle tourne autour des notions de connaissance absolument certaine et connaissabilité comme "connaissance potentielle ", ainsi que des connections entre la notion abstraite d'effort épistémique, qui recouvre toute méthode d'acquisition d'évidence, et certaines attitudes dynamiques bien connues telles que les annonces publiques et les annonces publiques arbitraires.

Le chapitre 6 fournit les bases pour la Partie II et motive le changement de paradigme entre les deux parties de cette thèse. En particulier, il introduit la sémantique d'espace des sous-ensembles de [START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] et la logique topologique d'annonces publiques de Bjorndahl (2016). Dans ce chapitre, Résumé nous mettons aussi en relief les connections et différences entre les utilisations épistémiques des espaces topologiques dans les parties I et II de cette thèse, en particulier en ce qui concerne les types d'évidence représentés et les notions de connaissance étudiées.

Plan. La section 6.1 présente le cadre de l'espace des sous-ensembles, fournissant sa syntaxe et sémantique ainsi que les axiomatisations complètes des logiques associées pour les espaces de sous-ensembles et les espaces topologiques. La section 6.2 introduit la logique topologique d'annonces publiques de [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] et présente plusieurs résultats d'expressivité pour les langages étudiés dans les cadres formels mentionnés ci-dessus.

Le chapitre 7 étudie les extensions de la logique topologique d'annonces publiques de [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] avec la modalité d'effort de Moss and Parikh (1992), ainsi qu'avec une version topologique de la modalité d'annonce arbitraire de [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF]. Ce travail présente un intérêt tant conceptuel que technique, en visant à clarifier la connection, intuitivement évidente mais difficile à saisir formellement, entre les notions dynamiques d'effort et ce qui semble en être des instanciations : les annonces publiques et arbitraires. Ces modalités sont données en Table A • Peut-on clarifier la signification de l'effort modal en le reliant aux modalités dynamiques citées ci-dessus ?

• Traiter ensemble dans un même cadre topologique la modalité d'effort et les annonces publiques fournit-il quelque avantage technique quant à l'axiomatisation complète, la décidabilité et la propriété du modèle fini de ses logiques associées ?

Nous donnons l'axiomatisation complète de la logique topologique dynamique de l'effort et des annonces publiques (appelée TopoLogique Dynamique) donnée dans la table A.7 ci-dessous, et nous défendons l'idée qu'elle est plus intuitive et, dans un sens, plus simple que les axiomes standards de la logique topologique Table A.7: Les axiomatisations des TopoLogiques Dynamiques. Noter que P ϕ dénote l'ensemble de toutes les variables propositionnelles qui apparaissent dans ϕ. [START_REF] Georgatos | Modal Logics for Topological Spaces[END_REF][START_REF] Georgatos | Knowledge theoretic properties of topological spaces[END_REF][START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF]. Notre preuve de complétude est aussi plus directe, utilisant une construction de modèle canonique standard. De plus, nous étudions les relations entre cette extension et d'autres formalismes logiques connus, montrant en particulier qu'elle est co-expressive avec la logique d'intérieur et de modalité globale [START_REF] Goranko | Using the universal modality: Gains and questions[END_REF][START_REF] Bennett | Modal logics for qualitative spatial reasoning[END_REF][START_REF] Shehtman | Everywhere" and "Here[END_REF][START_REF] Aiello | Spatial Reasoning: Theory and Practice[END_REF], plus simple et plus ancienne.

Nous considérons aussi une sémantique topologique pour la modalité d'annonce arbitraire, et nous étudions ses interactions avec la modalité d'effort. A notre connaissance, les preuves de complétude connues pour les logiques d'annonces arbitraires (topologiques ou relationnelles) reposent sur des axiomatisations infinitaires formalisées en ayant recours à des formes de nécessité (voir, e.g., [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF][START_REF] Balbiani | Subset space logic with arbitrary announcements[END_REF][START_REF] Balbiani | Putting right the wording and the proof of the truth lemma for APAL[END_REF][START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF]; voir aussi les sections 8.2 et 8.3 pour le cas multi-agent). Bien que [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] propose une axiomatisation finitaire similaire à la nôtre, sa preuve de complétude passe par la complétude d'un système infinitaire. 4 A l'inverse, notre preuve de Résumé d'éviter une telle restriction. Nous axiomatisons la logique multi-agents de connaissance et connaissabilité EL m int , ses extensions avec annonces publiques PAL m int , ainsi qu'avec annonces publiques arbitraires APAL m int (voir la table A.8 ci-dessous). La modalité d'annonce arbitraire ϕ, qui capture la "stabilité de la véracité de ϕ après toute annonce" se rapproche de l'intuition derrière la modalité d'effort 2ϕ signifiant "stabilité de la véracité de ϕ après toute acquisition d'évidence". Nous prouvons que ces deux modalités sont équivalentes dans le cas mono-agent (Théorème 7.2.6). Cependant, l'interprétation appropriée de l'effort dans le cas multi-agents et ses liens avec la modalité d'annonce arbitraire demeurent dures à saisir. Cela sort du cadre de cette dissertation, et nous laissons donc pour de futurs travaux la tâche d'étudier de manière systématique les interprétations possibles de la modalité d'effort et son comportement dans un cadre multi-agents. 
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 42 Figure 4.2: An example of a brush and of a pin, where the top ellipses illustrate the final clusters and an arrow relates the state it started from to every element in the cluster.
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 43 Figure 4.3: From pins to Alexandroff h.e.d. spaces

  ), since Cl (Int(A)) = ∅ implies that Int(A) = ∅. 2 4.3.4. Proposition. For all ϕ ∈ L B , any Kripke model M = (X, R, V ) based on a pin and x ∈ X, M, x |= ϕ iff I(M), x |= ϕ.

  there exists a stronger finite body F of the form F = {e i | i ∈ I} ∪ {{m}} for some m ≥ max(I) that supports N. We therefore have that B(N) holds in M. Hence, in general, BP does not imply BelP .Now consider the evidence model M = (N ∪ {♠}, E 0 , V ) based on the same domain as M, and where V (p) = ∅ and the basic evidence family

  and consider the open set U ∩ U 0 . Since U ∩ Q = ∅ and E is a basis for τ , there exists e 0 ∈ E such that e 0 ⊆ U and e 0 ∩ Q = ∅. Therefore, by (c), we have that (U 0 ∩ e 0 ) ∩ Q = ∅, thus, the open set U 0 ∩ e 0 is Q-consistent. Moreover, since U 0 ⊆ Q → P and e 0 ⊆ U , we obtain U 0 ∩ e 0 ⊆ U ∩ (Q → P ).

Figure 5

 5 Figure 5.4: ([0, 1], τ )

  For the other direction, suppose x ∈ [[Bϕ ∧ Bψ]]. We therefore have x ∈ [[Bϕ]] and x ∈ [[Bψ]]. Then, by the semantics of B, we obtain Cl (Int([[ϕ]])) = X and Cl (Int([[ψ]])) = X. This means that both Int([[ϕ]]) and Int([[ψ]]) are dense in (X, τ ). Hence, by Lemma 5.6.3, we obtain Cl

  tautologies and (MP) (S5 [∀] ) all S5 axioms and rules for the modality [∀] (S4 2 )

2 5. 6 .

 26 19. Lemma (Existence Lemma for [∀]). For every ϕ ∈ L [∀]2 0 2 , [∃]ϕ = ∅ iff ϕ = ∅.

  where we used notations e i := e × {i} = {(x, i) | x ∈ e}, and e y i := ↑y × {i} ∪ e × {1 -i} = {(x, i) | y ≤ x} ∪ e 1-i .

:

  If ẽ = e i , then ẽX = (e × {i}) X = e. If ẽ = e y i , then ẽX = (↑y × {i}) X ∪ (e × {1 -i}) X = ↑y ∪ e = e (since e is upward-closed and y ∈ e, so ↑y ⊆ e).

  and L # ∀22 0 obtained by adding to L [∀]2 0 2 dynamic modalities [!ϕ]ψ for public announcements, respectively [+ϕ]ψ for evidence addition, [⇑ϕ]ψ for evidence upgrade and [#]ψ for feasible evidence combination with the following intended readings: [!ϕ]ψ := ψ becomes true after the public announcement of ϕ [+ϕ]ψ := ψ becomes true after ϕ is accepted as an admissible piece of evidence [⇑ϕ]ψ := ψ becomes true after ϕ is accepted as the most important evidence [#]ψ := ψ becomes true after the basic evidence is feasibly combined
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 61 Figure 6.1: Squares represent the open sets in the corresponding topologies.
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 62 Figure 6.2: Squares represent the open sets in the corresponding topologies.

  by the semantics of K) Now, consider the set U ∩ O. It is easy to see that U ∩ O ∈ τ (since τ is a topology), and that x ∈ U ∩O ⊆ O. So, we only need to show that (x, U ∩O) |= Kψ * , i.e., that U ∩ O = [[ψ * ]] U ∩O . But, since ψ * is bi-persistent (by induction hypothesis), U ∩O ⊆ U and [[ψ * ]] U = U , we have [[ψ * ]] U ∩O = [[ψ * ]] U ∩O = U ∩O. Therefore, (x, U ∩O) |= Kψ * . Moreover, as x ∈ U ∩O ⊆ O, we obtain (x, O) |= 3Kψ * .

  ! ): follows from the definition ϕ ψ := ¬[ϕ]¬ψ and the axiom (R ¬ ). (R ∧ ): follows from (K ! ) and (Nec ! ). (R ⊥ ): is an easy consequence of (R ∧ ), (R p ) and ([!]RE) (R int ):

  7.1.4. Definition. [Lattice spaces and Pre-models] A subset space (X, O) is called a lattice space if ∅, X ∈ O, and O is closed under finite intersections and finite unions. A pre-model (X, O, V ) is a triple where (X, O) is a lattice space and V : Prop → P(X) is a valuation map.

7. 1 . 5 .

 15 Definition. [Pre-model Semantics for L ! Kint2 ] Given a pre-model and a pair of the form (x, Y ) such that x ∈ Y ⊆ X, truth of formulas in L !

  ) (x, V ) |= ϕ, (2) (x, V ) |= Kϕ 0 , and (3) (x, V ) |= Kϕ 1 . We want to show that (x, U ) |= ϕ∧int(ϕ 0 )∧ K(int(ϕ 0 )∧ϕ 1 ). Now (1) and Lemma 7.1.14 imply (x, U ) |= ϕ; and (2) implies that (x, V ) |= int(ϕ 0 ). Then, by Lemma 7.1.14, we have (x, U ) |= int(ϕ 0 ) (since int(ϕ 0 ) is bi-persistent).

  , we obtain (z, Int([[ϕ 0 ]] U ) |= ϕ 0 for all z ∈ Int([[ϕ 0 ]] U ), thus, (x, Int([[ϕ 0 ]] U )) |= Kϕ 0 . By the assumption, we have ∃y ∈ Int([[ϕ 0 ]] U ) such that (y, U ) |= ϕ 1 , and thus, by Lemma 7.1.14, we obtain (y, Int([[ϕ 0 ]] U )) |= ϕ 1 . Therefore, by the semantics, we have (x, Int([[ϕ 0 ]] U )) |= Kϕ 1 .

  The base case ϕ := p follows from the fact the languages L Kint and L ! Kint2 are defined based on the same set of propositional variables prop. The cases for the Booleans ϕ := ¬ψ, ϕ := ψ ∧ χ, and the cases for the modalities ϕ := Kψ and ϕ := int(ψ) follow standardly. We here only show the cases ϕ := [ψ]χ and ϕ := 3ψ. Case ϕ := [ψ]χ: Since ψ and χ are subformulas of ϕ, by induction hypothesis, there exists ψ , χ ∈ L Kint such that (a) |= ψ ↔ ψ and (b) |= χ ↔ χ . Then, by (a) and the soundness of ([!]RE), we obtain |= [ψ]χ ↔ [ψ ]χ. Moreover, by (b) and the soundness of (RE), we have |=
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 71 Figure 7.1: Expressivity diagram-updated with 2 (Arrows point to the more expressive languages, and reflexive and transitive arrows are omitted. Arrows without tags can be obtained as easy consequences from the others.)

  7.1.22. Definition. [Necessity and possibility forms for

  where is the empty string. For possibility forms, we set s ϕ := ¬[s]¬ϕ. 7.1.23. Lemma. For every necessity form [s], there exist formulas θ, ψ ∈ L ! Kint2

  thus, we have ψ → [θ]ϕ (where ψ := 1≤i≤n χ i ). Since every axiom used in the above argument is an equivalence, we also have ψ → [θ]ϕ implies [s]ϕ. 2 7.1.24. Lemma. The following rule is admissible in DTL int : if [s][p]ϕ then [s]2ϕ, where p ∈ P s ∪ P ϕ . Proof: Suppose [s][p]ϕ. Then, by Lemma 7.1.23, there exist θ, ψ ∈ L ! Kint2 such that ψ → [θ][p]ϕ. By the auxiliary reduction law (R [p] ) in Proposition 7.1.2, we get ψ → [θ ∧ p]ϕ. By the construction of the formulas ψ and θ, we know that P ψ ∪ P θ ⊆ P s , and so p ∈ P ψ ∪ P θ ∪ P ϕ . Therefore, by ([!]2-intro)), we have ψ → [θ]2ϕ. Applying again Lemma 7.1.23, we obtain [s]2ϕ. 2 7.1.25. Definition.

  ¬ϕ n with p m / ∈ P θ ∪ P sn ∪ P ϕn . Thus, by the admissible rule in Lemma 7.1.24, we obtain [θ→, s n ]2¬ϕ n , i.e., θ → [s n ]2¬ϕ n . Therefore, θ ¬ s n 3ϕ n . Since {θ 1 , . . . , θ k } ⊆ Γ n , we therefore have Γ n ¬ s n 3ϕ n . But, this would mean Γ n = Γ n+1 , contradicting our assumption. Therefore Γ n+1 is consistent and thus a ∼ P-theory. Hence, byLemma 7.1.28, 

  Since S ∼ T and T ∈ K[α]ψ , we also have [α]ψ ∈ S. Therefore, by Proposition 7.1.2-( ! ), we obtain α ψ ∈ S. This implies, by IH, that S ∈ [[ψ]] int(
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 72 Figure 7.2: Expressivity diagram-updated with (Arrows point to the more expressive languages, and reflexive and transitive arrows are omitted. Arrows without tags can be obtained as easy consequences from the others.)

8. 1 . 3 .

 13 Lemma. For any topo-frame (X, τ, Φ) and θ ∈ Φ, we have D(θ) ∈ τ . Proof: Let (X, τ, Φ) be a topo-frame, θ ∈ Φ and x ∈ D(θ). By Definition 8.1.1-(1) and -(2), we have x ∈ θ(x)(i) ∈ τ and θ(x)(i) ⊆ D(θ). Therefore, x ∈ Int(D(θ)). Hence, D(θ) = Int(D(θ)), i.e., D(θ) ∈ τ . 2 8.1.4. Definition.
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 81 Figure 8.1: Dashed squares represent the elements of the basis generating the topology τ .
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 82 Figure 8.2: Patterned sets represent Emile's neighbourhoods defined by θ : θ (111)(e) = θ (011)(e) = {111, 011}, θ (010)(e) = θ (110)(e) = {010, 110}, θ (000)(e) = θ (100)(e) = θ (001)(e) = θ (101)(e) = {000, 100, 001, 101}.
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 185 Figure 8.5: After the announcement of ϕ 2x , we obtain the following smaller neighbourhoods given by the updated function θ ϕ 2x : θ ϕ 2x ((x, y))(a) = S 01 × {0, 1} ∞ , and θ ϕ 2x ((x, y))(b) = (S 01 ∪ S 10 ) × S 1 .
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 23 Lemma. For any topo-modelX = (X, τ, Φ, V ), θ ∈ Φ and ϕ, ψ ∈ L ! Kint , we have 1. [[ψ]] θ ϕ = [[ ϕ ψ]] θ , 2. (θ ϕ ) ψ = θ ϕ ψ, and 3. [[ ϕ int(χ)]] θ = [[int( ϕ χ)]] θ .

For ( 2 )

 2 : By Definition 8.1.4, we have that D(θ ϕ ψ ) = Int([[ ϕ ψ]] θ ) and D

2 8. 2 . 4 .

 224 by the properties of Int)= Int([[ ϕ χ]] θ ) (by the semantics of [!]) = [[int( ϕ χ)]] θ(by the semantics of int) Proposition. APAL m int is sound with respect to the class of all topo-models.

  2.3-(2-3)) iff (x, θ) |= [ ϕ ψ]χ (by the semantics of [!]) (4 K ): Suppose (x, θ) |= K i ϕ. This means, (y, θ) |= ϕ for all y ∈ θ(x)(i). Let y ∈ θ(x)(i) and z ∈ θ(y)(i). By Definition 8.1.1-(3), θ(y)(i) = θ(x)(i) and Definition 8.1.1-(1) guarantees that θ(y)(i) = ∅. Therefore, by assumption, (z, θ) |= ϕ.

(

  K-int): Suppose (x, θ) |= K i ϕ. This means, (y, θ) |= ϕ for all y ∈ θ(x)(i). Hence, θ(x)(i) ⊆ [[ϕ]] θ . By Definition 8.1.1, θ(x)(i) is an open neighbourhood of x, therefore, we obtain that x ∈ Int([[ϕ]] θ ), i.e., (x, θ) |= int(ϕ). (-elim): Suppose (x, θ) |= ϕ and let χ ∈ L ! Kint . By the semantics, we have (x, θ) |= ϕ iff (∀ψ ∈ L ! Kint )((x, θ) |= [ψ]ϕ). Therefore, in particular, (x, θ) |= [χ]ϕ. ( ω -intro): The proof follows by induction on the structure of the necessity form s. We here show the base case [s] := [ ] and the inductive case [s] := [int, s]. All other inductive cases follow similarly.

  (1)(a) = θ (0)(a) = {1, 0} and θ (1)(b) = {1}, θ (0)(b) = {0} (see Figure 8.7a). For X , we have θ partitioning the space in the way shown in Figure 8.7b: θ(00)(a) = θ(10)(a) = {10, 00} and θ(01)(a) = θ(11)(a) = {11, 01}, whereas θ(10)(b) = θ(11)(b) = {10, 11} and θ(00)(b) = θ(01)(b) = {00, 01}.

Figure 8

 8 Figure 8.7: The straight round circles show the neighbourhoods of agent a, and the dashed ones are for agent b.
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 31 Lemma. For every maximally consistent set x of formulas in EL m int and every formula ϕ, ψ ∈ L Kint1. EL m int ⊆ x, 2. ϕ ∈ x and ϕ → ψ ∈ x implies ψ ∈ x, 3. ϕ ∈ x or ¬ϕ ∈ x, 4. ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.

8. 3 .

 3 10. Definition. Let ϕ ∈ L ! Kint and i ∈ A. Then x+ϕ := {ψ | ϕ → ψ ∈ x}, K i x := {ϕ | K i ϕ ∈ x}, and int(x) := {ϕ | int(ϕ) ∈ x}. 8.3.11. Lemma. For every theory x of APAL m int , ϕ ∈ L ! Kint and agent i ∈ A, 1. x + ϕ is a theory that contains x and ϕ, 2. K i x is a theory, 3. int(x) is a theory, and 4. int(x) ⊆ x.

  ): Suppose ϕ ∈ APAL m int . Since ϕ is a theorem, by (Nec int ), int(ϕ) is a theorem of APAL m int as well. Therefore, int(ϕ) ∈ x meaning that ϕ ∈ int(x). Hence, APAL m int ⊆ int(x). Let us now show that int(x) is closed under (MP). Suppose ϕ, ϕ → ψ ∈ int(x). This means, by the definition of int(x), that int(ϕ), int(ϕ → ψ) ∈ x. By axiom (K int ), we have int(ϕ) → (int(ϕ → ψ) → int(ψ)) ∈ APAL m int . Thus, since APAL m int ⊆ x and x is closed under (MP), we obtain int(ψ) ∈ x, i.e., ψ ∈ int(x). Finally we show that int(x) is closed under (ω -intro). Let s ∈ N F and χ ∈ L ! Kint such that [s][ψ]χ ∈ int(x) for all ψ ∈ L ! Kint . This means int([s][ψ]χ) ∈ x for all ψ ∈ L ! Kint . As int([s][ψ]χ) is also a necessity form and x is closed under ( ω -intro), we obtain int([s] χ) ∈ x meaning that [s] χ ∈ int(x).

2 8. 3 .

 23 15. Lemma. Let ϕ ∈ L ! Kint and x be a theory. Then, ϕ ∈ x iff for all ψ ∈ L ! Kint , [ψ]ϕ ∈ x. Proof: For the direction left-to-right, suppose ϕ ∈ x. Then, by ( -elim) and (MP), we have [ψ]ϕ ∈ x for all ψ ∈ L ! Kint . For the other direction, suppose [ψ]ϕ ∈ x for all ψ ∈ L ! Kint . Consider the necessity form [s] := . We know that [ ][ψ]ϕ := [ψ]ϕ. Thus, by assumption, [ ][ψ]ϕ for all ψ ∈ L ! Kint . Then, since x is closed under ( ω -intro), [ ] ϕ ∈ x, i.e., ϕ ∈ x as well.
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 41 Definition. [Weak Topo-Model] A weak multi-agent topological model (weak topo-model) is a topo-model X = (X, τ, Φ, V ) as in Definition 8.1.1 with clause 3 replaced by 3. for all y ∈ X, if y ∈ θ(x)(i) then y ∈ D(θ) and θ(y)(i) ⊆ θ(x)(i).
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 88 Figure 8.8: The straight round circles show the neighbourhoods of agent a, and the dashed ones are for agent b.

( 7 )

 7 On the left-hand-side, we have S([ϕ]ψ∧[ϕ]χ) = 1+4(S(ϕ)+4)(S(ψ)+S(χ)). However, S([ϕ](ψ ∧ χ)) = 4(S(ϕ) + 4)(1 + S(ψ) + S(χ)) = 4(S(ϕ) + 4) + 4(S(ϕ) + 4)(S(ψ) + S(χ)). Thus, S([ϕ]ψ ∧ [ϕ]χ) < S([ϕ](ψ ∧ χ)). Moreover, d([ϕ]ψ ∧ [ϕ]χ) = max{d(ϕ), d(ψ), d(χ)} = d([ϕ](ψ ∧ χ)) (This is similar in the other items). Therefore, by Definition A.1.3, we obtain [ϕ]ψ ∧ [ϕ]χ < S d [ϕ](ψ ∧ χ).(8) On the left-hand-side, we obtain S(int(ϕ) → int([ϕ]ψ)) = S(int(ϕ)) + S(int([ϕ]ψ))+3 = 1+S(ϕ)+1+S([ϕ]ψ)+3 = 5+S(ϕ)+4S(ϕ)S(ψ)+16S(ψ). However, S([ϕ]int(ψ)) = 4(S(ϕ) + 4)S(int(ψ)) = 4(S(ϕ) + 4)(S(ψ) + 1) = 16 + 4S(ϕ) + 4S(ϕ)S(ψ) + 16S(ψ). Therefore, S(int(ϕ) → int([ϕ]ψ)) < S([ϕ]int(ψ)). As in item (7) the 2-depth of both formulas is the same. Therefore, int(ϕ) → int([ϕ]ψ) < S d [ϕ]int(ψ). (10) We have that S([ ϕ ψ]χ) = S([¬[ϕ]¬ψ]χ) = 4(S(¬[ϕ]¬ψ) + 4)S(χ) = 4(5 + 4(S(ϕ) + 4)(1 + S(ψ)))S(χ) = 4S(χ)(21 + 4S(ϕ) + 16S(ψ) + 4S(ϕ)S(ψ)). On the other hand, S([ϕ][ψ]χ) = 4(S(ϕ) + 4)4(S(ψ) + 4)S(χ) = 4S(χ)(64 + 16S(ϕ)+16S(ψ)+4S(ϕ)S(ψ)). Thus, S([ ϕ ψ]χ) < S([ϕ][ψ]χ). Further, we observe that d([ ϕ ψ

  a un élément d'évidence pour ϕ Eϕ l'agent a une évidence combinée pour ϕ 2 0 ϕ l'agent a un élément d'évidence vrai pour ϕ 2ϕ l'agent a une évidence combinée vraie pour ϕ Table A.2: Modalités d'évidence et leur lecture intuitive Les éléments basiques d'évidence possédés par un agent sont modélisés comme des ensembles non vides de mondes possibles. Une évidence combinée (ou simplement "évidence") est une intersection non vide d'un nombre fini d'éléments d'évidence. Cette notion d'évidence n'est pas nécessairement vraie, puisque les éléments d'évidence sont potentiellement faux et possiblement inconsistants entre eux. Par évidence vraie nous entendons évidence qui est vraie dans le monde actuel.

  pour interpréter une notion d'évidence vraie (à la différence de ce qui est fait dans le chapitre 4, où l'opérateur d'intérieur était traité comme connaissance). Nous montrons aussi que deux variantes vraies d'opérateurs de possession d'évidence (2 0 et 2) sont plus expressives que celles non vraies (E 0 et E) : lorsqu'elles interagissent avec la modalité globale, les Résumé deux modalités d'évidence vraie 2 0 ϕ et 2ϕ peuvent définir les variantes non vraies E 0 ϕ et Eϕ, respectivement, ainsi que de nombreux autre opérateurs doxastiques/épistémiques.

  de S5 et les règles pour la modalité [∀] (S4 2 )tous les axiomes de S4 et les règles pour la modalité 2(4 2 0 ) 2 0 ϕ → 2 0 2 0 ϕ Universalité (U) [∀]ϕ → 2 0 ϕ Évidence Vraie (FE) 2 0 ϕ → 2ϕ Retrait (2 0 ϕ ∧ [∀]ψ) → 2 0 (ϕ ∧ [∀]ψ) Monotonicité de 2 0 de ϕ → ψ, on infère 2 0 ϕ → 2 0 ψ Table A.5: Axiomatisation de Log ∀22 0Cette logique peut définir tous les opérateurs modaux que nous étudions dans ce chapitre. Tandis que les autres preuves sont plus ou moins de l'ordre de la routine, les résultats techniques mentionnés pour Log ∀22 0 font intervenir une combinaison non triviale de méthodes connues.Plan. La section 5.1 sert d'introduction semi-formelle et de résumé du chapitre comme ce qui précède, mettant l'accent sur les caractéristiques importantes de son contenu. Dans la section 5.2 nous introduisons les modèles d'évidence de van Benthem and Pacuit (2011) ainsi que nos modèles d'évidence topologiques, et nous donnons la sémantique pour les notions d'élément d'évidence, d'évidence combinée et d'évidence vraie. De plus, nous donnons des définitions topologiques pour l'argument et la justification. Dans la section 5.3, nous proposons une sémantique topologique pour une notion de croyance justifiée tout en comparant notre système à celui de van Benthem and Pacuit (

  propositionnelles classiques et le (MP) (S5 K ) tous les axiomes de S5 et les règles pour la modalité K (S4 int ) tous les axiomes S4 et les règles pour la modalité int (K-int)Connaissance implique connaissabilité: Kϕ → int(ϕ)(K ! ) [ϕ](ψ → θ) → ([ϕ]ψ → [ϕ]θ) (Nec ! ) de θ, on infère [ϕ]θ ([!]RE) Remplacement d' Équivalents pour [!]: de ϕ ↔ ψ, on infère [ϕ]θ ↔ [ψ]θ Axiomes de réduction: (R[ ]) [ ]ϕ ↔ ϕ (R p ) [ϕ]p ↔ (int(ϕ) → p) (R ¬ ) [ϕ]¬ψ ↔ (int(ϕ) → ¬[ϕ]ψ) (R K ) [ϕ]Kψ ↔ (int(ϕ) → K[ϕ]ψ) (R [!] ) [ϕ][ψ]χ ↔ [ ϕ ψ]χ ([!]2-elim) [ϕ]2θ → [ϕ ∧ ρ]θ (ρ ∈ L ! Kint2 une formula arbitraire) ([!]2-intro) de ψ → [ϕ ∧ p]θ, on infère ψ → [ϕ]2θ (p ∈ P ψ ∪ P θ ∪ P ϕ )

  (I) Axiomes et règles du système EL m int : (CPL) toutes les tautologies propositionnelles classiques et le (MP) (S5 K ) tous les axiomes et règles S5 pour la modalité K i (S4 int ) tous les axiomes et règles S4 pour la modalité int (K-int) Connaissance implique connaissabilité:K i ϕ → int(ϕ) (II) Axiomes et règles supplémentaires pour PAL m int : (K ! ) [ϕ](ψ → θ) → ([ϕ]ψ → [ϕ]θ) (Nec ! ) de θ, on infère [ϕ]θ ([!]RE) de ϕ ↔ ψ, on infère [ϕ]θ ↔ [ψ]θAxiomes de réduction:(R p ) [ϕ]p ↔ (int(ϕ) → p) (R ¬ ) [ϕ]¬ψ ↔ (int(ϕ) → ¬[ϕ]ψ) (R K ) [ϕ]K i ψ ↔ (int(ϕ) → K i [ϕ]ψ) (R [!] ) [ϕ][ψ]χ ↔ [ ϕ ψ]χ (III) Axiomes et règles de pour APAL m int : ( -elim) ϕ → [χ]ϕ (χ ∈ L ! Kint une formule arbitraire) ( ω -intro) de [s][ψ]χ pour tout ψ ∈ L ! Kint , on infère [s] χ
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 2 1: Some unimodal axiom schemes and a rule of inference for 2
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Table 2 .

 2 

	Total (Connected)	(∀x, y)(xRy ∨ yRx)
	Preorder	reflexive and transitive
	Partial order	reflexive, transitive and antisymmetric
	Equivalence relation	reflexive, transitive and symmetric

(∀x)(xRx) Transitivity (∀x, y, z)(xRy ∧ yRz → xRz) Symmetry (∀x, y)(xRy → yRx) Antisymmetry (∀x, y)(xRy ∧ yRx → x = y) Seriality (∀x)(∃y)(xRy) Euclideanness (∀x, y, z)(xRy ∧ xRz → yRz) Directedness (∀x, y, z)((xRy ∧ xRz) → (∃w)(yRw ∧ zRw)) No right branching (∀x, y, z)((xRy ∧ xRz) → (yRz ∨ zRy ∨ y = z)) 3: Relevant Frame Conditions

  3.1.3 Soundness and Completeness for S4 K , S4.2 K and S4.3 K

Table 4 .

 4 1. Let Stal denote this combined logic. 2 Most of the above axioms, such as S4 K ,

	(D B )	Bϕ → ¬B¬ϕ	Consistency of belief
	(sPI)	Bϕ → KBϕ	Strong positive introspection
	(sNI)	¬Bϕ → K¬Bϕ	Strong negative introspection
	(KB)	Kϕ → Bϕ	Knowledge implies belief
	(FB)	Bϕ → BKϕ	Full belief
		Table 4.1: Stalnaker's additional axiom schemes
	(D B ), (KB), are widely taken for granted by many formal epistemologists (see
	Section 2.1 for some sources). The properties (sPI) and (sNI) state that Stal-

naker's agent has full introspective access to her beliefs. Finally, (FB) constitutes

  Theorem. KD45 B is sound and complete with respect to the class of hereditarily extremally disconnected spaces under the closure-interior semantics.

	4.3.5. Proof:	
	Soundness follows from Theorem 4.2.3 and the fact that every hereditarily ex-
	tremally disconnected space is extremally disconnected. For completeness, let
	ϕ ∈ L B such that ϕ ∈ KD45 B . Then, by Lemma 4.3.2, there exists a relational
	model M = (X, R, V ), where (X, R) is a pin, and x ∈ X such that M, x |= ϕ.
	Therefore, by Proposition 4.3.4, we obtain I(M), x |= ϕ. Since I(M) is heredi-
	ratily extremally disconnceted, we obtain the desired result.	2
	Theorem 4.3.5 therefore shows that the (belief) logic of h.e.d. spaces is also
	KD45 B . The class of h.e.d. spaces of course restricts the class of extremally dis-
	connected spaces, however, it is still a larger class than the class of DSO-spaces.
	4.3.6. Proposition. Every DSO-space is hereditarily extremally disconnected,
	however, not every h.e.d. space is a DSO-space.
	))		(Lemma 4.3.3-4)
	iff I(M), x |= Bψ	(the closure-interior semantics of B)
			2

  is easy to see that old evidence e ∈ E is by definition nonmisleading with respect to E (i.e., each e ∈ E is nonmisleading with respect to E), and new nonmisleading evidence must be true

  finite, we have also shown that KD45 B has the finite model property. 2 5.6.3 The knowledge fragments L K and L [∀]K : S4.2 K and Know [∀]K

  .6 below.

	Epistemology	Topology
	Basic Evidence	Subbasis of a topology (E 0 )
	(Combined) Evidence	Basis of a topology (E)
	Arguments	Open Sets (τ E )
	Justifications	Dense Open Sets
	Belief	Dense interior (nowhere dense complement)
	Knowledge (of P )	x ∈ Int(P ) and Int(P ) is dense
	Table 5.6: Matching epistemic and topological notions

Table 6 .

 6 

	.1.

1: Additional axiom schemes of SSL

  on interior semantics). The axiomatizations EL int and PAL + int for the languages L Kint and L ! Kint , respectively, are given in Table6.3. 8 

		(I) Axioms of system EL int :
	(CPL)	all classical propositional tautologies and Modus Ponens
	(S5 K )	all S5 axioms and rules for the knowledge modality K
	(S4 int )	all S4 axioms and rules for the interior modality int
	(K-int)	Knowledge implies knowability: Kϕ → int(ϕ)
		(II) Additional reduction axioms of PAL + int

  Int([[ψ]] U ). This means that there is O ∈ τ such that x ∈ O ⊆ [[ψ]] U .Then, by induction hypothesis, we obtain O ⊆ [[ψ * ]] U , i.e., (y, U ) |= ψ * for all y ∈ O. By Proposition 6.2.9, we know that ψ * is bi-persistent on topo-models. Therefore, we infer that (y, O) |= ψ * for all y ∈ O. Hence, by the semantics of K, we obtain (x, O) |= Kψ

x, U ) ∈ ES(X ) such that (x, U ) |= int(ψ), i.e., x ∈ * . As x ∈ O ⊆ U , we conclude (x, U ) |= 3Kψ * . The other direction follows similarly.

  Now, consider the open set U ∩ D(θ 2 ). Since (x, θ 2 ) is a well-defined neighbourhood situation, x ∈ D(θ 2 ). Moreover, by Lemma 8.1.3, we have D(θ 2 ) ∈ τ . Hence, we obtainx ∈ U ∩ D(θ 2 ) ∈ τ . Thus, it suffices to show that U ∩ D(θ 2 ) ⊆ [[ϕ]] θ 2 . Let y ∈ U ∩ D(θ 2 ). Since U ∩ D(θ 2 ) ⊆ U ,we have by the assumption that (y, θ 1 ) |= ψ. Then, by IH, (y, θ 2 ) |= ψ. As y has been chosen arbitrarily from

Table 8 .

 8 1: The axiomatizations for multi-agent EL m int , PAL m int and APAL m int .

  that APAL m int is the smallest theory). Then, byLemma 8.3.12, APAL m int + ¬ϕ is a consistent theory, and, by, we have ¬ϕ ∈ APAL m int + ¬ϕ. By Lemma 8.3.13, the consistent theory APAL m int + ¬ϕ can be extended to a maximally consistent theory y such that APAL m int + ¬ϕ ⊆ y. Since y is maximally consistent and ¬ϕ ∈ y, we obtain ϕ ∈ y (by Proposition 8.3.9). Then, byLemma 8.3.16 (Truth Lemma), we conclude X c , (y, θ c ) |= ϕ. 28.4 S4 knowledge on multi-agent topo-modelsAs mentioned earlier, some of our results generalize to weaker versions of EL m int , PAL m int , and APAL m int that have knowledge modalities of different strength, such as S4, S4.2 and S4.3. More precisely, we can weaken the conditions on the neighbourhood functions given in Definition 8.1.1 in a way that the corresponding logics on such weaker models embed only S4 K , S4.2 K or S4.3 K types of knowledge. In this section, we focus on the case S4 K , and briefly state the required adjustments for S4.2 K and S4.3 K .

  Theorem 8.5.1-(1) therefore states that M, (x, U ) and M + , (x, θ U ) are modally equivalent with respect to L ! Kint . Moreover, for all ϕ ∈ L ! Kint , M |= s ϕ iff M + |= ϕ, i.e., M and M + are (globally) modally equivalent with respect to the same language. Furthermore, Theorem 8.5.1-(

		1.5-(4) and (IH))
	iff M, (x, U ) |= s [ψ] σ	(similar to (*))

*: see Lemma 8.3.16, subcase ϕ := [ψ] σ. 2

Table A .

 A .6 avec leurs lectures intuitives. 6: Modalités dynamiques étudiées dans le chapitre 7 et leurs lectures intuitives En particulier, nous nous intéressons aux questions suivantes, et y répondons par l'affirmative :

	2ϕ	ϕ reste vraie après tout effort
	[ψ]ϕ	après l'annonce publique de ψ, ϕ devient vraie
	ϕ	ϕ reste vraie après toute annonce épistémique

  Table A.8: Axiomatisations pour les logiques multi-agents EL m int , PAL m int et APAL m int . Plan. La section 8.1 définit la syntaxe, les structures et la sémantique de notre logique multi-agents d'annonces publiques arbitraires, APAL m int , interprétée sur des espaces topologiques équipés d'un ensemble de fonctions de voisinages. Sans annonces arbitraires nous obtenons la logique PAL m int , et sans annonces arbitraires ni publiques, la logique EL m int . Dans cette section nous donnons aussi deux exemples détaillés illustrant les sémantiques proposées. Dans la section 8.2 nous fournissons des axiomatisations pour nos logiques: PAL m int étend EL m int et APAL m int étend PAL m int . De plus, nous prouvons leur correction et comparons les pouvoirs expressifs des langages multi-agent associés, L ! Kint , L ! Kint et L Kint , par rapport aux topo-modèles multi-agents. En section 8.3 nous démontrons la complétude pour ces logiques. La preuve de complétude pour le fragment épistémique, EL m int , est assez différente de la preuve de complétude pour la logique complète APAL m int . La section 8.4 adapte les logiques au cas de la connaissance S4. Dans la section 8.5 nous comparons notre travail avec la littérature, et la section 8.6 contient un bref résumé du chapitre et une discussion sur une interprétation possible de la modalité d'effort dans le système multi-agents actuel.

In Chapter 8, we work with a proof system with an infinitary inference rule. The notion of derivation for this infinitary logic, and other relevant notions, will be explained in Chapter 8.

The properties (I1)-(I4) (and, dually, (C1)-(C4)) are what render the knowledge modality interpreted as the topological interior operator an S4-type modality. We will elaborate on this in Chapter

3.1.10. Theorem (Bezhanishvili et al., 2015). S4.3 K is sound and complete with respect to the class of hereditarily extremally disconnected topological spaces under the interior semantics.

This connection has also been observed in(Steinsvold, 2006, Section 1.11), and an alternative topological semantics for knowledge in terms of clopen sets is suggested without providing any further technical results.[START_REF] Steinsvold | Topological models of belief logics[END_REF] does not elaborate on to what extend his proposed semantics for knowledge could give new insight into the Gettier problem and leaves this point open for discussion.

Among this category, we can mention the defeasibility analysis of knowledge[START_REF] Lehrer | Knowledge: Undefeated justified true belief[END_REF][START_REF] Lehrer | Theory of Knowledge[END_REF][START_REF] Klein | A proposed definition of propositional knowledge[END_REF][START_REF] Klein | Certainty, a Refutation of Scepticism[END_REF], "no false lemma" account[START_REF] Clark | Knowledge and grounds: A comment on Mr. Gettier's paper[END_REF], the sensitivity account[START_REF] Nozick | Philosophical Explanations[END_REF], the contextualist account (DeRose,

2009) and the safety account[START_REF] Sosa | How to defeat opposition to moore[END_REF]. For an overview of responses to the Gettier challenge and a detailed discussion, we refer the reader to[START_REF] Ichikawa | The analysis of knowledge[END_REF][START_REF] Rott | Stability, strength and sensitivity: Converting belief into knowledge[END_REF].

What justifies the properties of knowledge and belief stated in Stal may be debatable, though not in the scope of this dissertation. We refer to(Bjorndahl and Özgün, 2017) for a topological-based reformulation of Stalnaker's system.

The converse direction of (FB) is easily derivable in Stal.

The "public" aspect of an announcements is relevant only in a multi-agent settings, encoding the fact that all agents receive the same information conveyed by the announcement.

The logical counterpart of the fact that extremally disconnected spaces (S4.2-spaces) are not closed under subspaces is that S4.2 is not a subframe logic (seeChagrov and Zakharyaschev, 1997, Section 9.4). The logical counterpart of the fact that hereditarily extremally disconnected spaces (S4.3-spaces) are extremally disconnected spaces closed under subspaces is that the subframe closure of S4.2 is S4.3, (seeWolter, 1993, Section 4.7).

To be sure, this is still vague since we have not yet specied what a "strongest finitelyconsistent collections of evidence" means (we return to formalize these notions in Section 5.2.1), however, this much precision should be sufficient to explain the rough idea behind the belief definition of[START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF], and our notion of justified belief studied in this chapter.

As already noticed in[START_REF] Van Benthem | Dynamic logics of evidence-based beliefs[END_REF][START_REF] Van Benthem | Evidence and plausibility in neighborhood structures[END_REF], in many but not all cases, this is equivalent to treating plausibility models as a special case of evidence models where the plausibility relation is given by the evidential plausibility order E defined as

For an overview of responses to the Gettier challenge and a detailed discussion, we refer the reader to[START_REF] Rott | Stability, strength and sensitivity: Converting belief into knowledge[END_REF][START_REF] Ichikawa | The analysis of knowledge[END_REF].

Lehrer uses the metaphor of an Ultra-Justification Game[START_REF] Lehrer | Theory of Knowledge[END_REF], according to which 'knowledge' is based on arguments that survive a game between the Believer and an omniscient truth-telling Critic, who tries to defeat the argument by using both the Believer's current "justification system" and any new true evidence (see Fiutek, 2013, Section 5.2 for a formalization of Lehrer's ultra-justification game).

[START_REF] Moss | Topological reasoning and the logic of knowledge[END_REF] is partly inspired by Vickers' work on reconstruction of topology via a logic of finite observation[START_REF] Vickers | Topology via logic[END_REF].103

We could in fact define the subset spaces exactly the same way as evidence models by putting the constraints X ∈ O and ∅ ∈ O. This would technically make no difference, however, we here prefer to present the most general case.

The term "evidence-in-hand" is borrowed from(Bjorndahl and Özgün, 2017), where the elements of O are described as "evidence-out-there".

As in the previous chapters, x ∈ U expresses the factivity of evidence.

In later sections, we study other dynamic modalities, such as the so-called public and arbitrary announcement modalities, interpreted on topological spaces in the style of the effort modality, that is, without leading to any global change in the initial model.

For a discussion of different notions of knowability and their link to Fitch's famous Paradox of Knowability[START_REF] Fitch | A logical analysis of some value concepts[END_REF][START_REF] Brogaard | Fitch's paradox of knowability[END_REF], we refer the interested reader to[START_REF] Fuhrmann | Knowability as potential knowledge[END_REF][START_REF] Van Ditmarsch | Everything is knowable[END_REF]. In particular, Fuhrmann (2014) discusses a notion of knowability as potential knowledge in the spirit of ours, and van Ditmarsch et al. (2012) consider dynamic notions of knowability.

In Table6.3, we present Bjorndahl's original axiomatization as it appears in[START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF]. In Chapter 7, we propose an alternative set of axioms for the public announcement modality from which Bjorndahl's axioms are derivable. For this reason, we denote his original system by PAL + int , and reserve the more standard notation PAL int for our version presented in Chapter 7.

The topo-models presented in this proof are in fact quite standard examples that are used in order to compare the expressivity of the global modality and an S4-type Kripke modality on relational structures. We here adopt these relational structures to our setting by presenting them as topo-models.

[START_REF] Dabrowski | Topological reasoning and the logic of knowledge[END_REF] also consider a canonical model, but their completeness proof of TopoLogic uses McKinsey-Tarski's theorem of the topological completeness of S4 (Theorem 3.1.6). In our setting, having the modality int that matches the topological interior operator in the language makes it easier to directly build a canonical model.

The finitary axiomatization proposed in[START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] was later proven to be unsound for the multi-agent case (see http://personal.us.es/hvd/APAL_counterexample. pdf), and the error in the complexity measure in(Balbiani et al., 2008, Truth Lemma 4.13, p. 327) is corrected in[START_REF] Balbiani | Putting right the wording and the proof of the truth lemma for APAL[END_REF].

The axiom scheme R[ ] given in Table7.1 is derivable in PAL m int for the multi-agent language L ! Kint . This can be proven easily by ≤ S -induction on ϕ using the reduction axioms. R[ ] is also derivable in APAL m int for the language L ! Kint : its proof follows by < S d -induction on ϕ using ( -elim) and ( ω -intro) (see Appendix A.1 for the definition of < S d ).

ring en voor informatieverandering.

Faute d'une meilleure traduction pour le mot anglais "evidence", nous utilisons le terme "évidence" pour désigner les éléments, indices, informations sur la base de quoi les croyances sont construites; on pourrait dire aussi que l'évidence est la substance de ce qui constitue une preuve.

Bien sûr cela ne passe pas bien la traduction. En français on pourrait penser à "indice incertain", "faux indice", "indice trompeur" etc.

L'axiomatisation finitaire proposée dans[START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] a par la suite été prouvée incorrecte pour le cas multi-agent (voir http://personal.us.es/hvd/APAL_counterexample.
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Soundness and Completeness of Know [∀]K :

The full knowledge fragment L [∀]K having both K and [∀] yields the axiomatic system Know [∀]K given in Table 5.4 below. (CPL) all classical propositional tautologies and (MP) (S5 [∀] ) all S5 axioms and rules for the modality [∀] (S4 K ) all S4 axioms and rules for the modality K (Ax- [START_REF]Suppose (x, U )[END_REF] [∀]ϕ → Kϕ (Ax- [START_REF]int(ϕ ∨ K β) ↔ int(ϕ) ∨ K β 3. int(ϕ ∨ (σ ∧ Kβ)) ↔ (int(ϕ ∨ σ)[END_REF] [∃]Kϕ → [∀] Kϕ

Table 5.4: The axiomatization of Know [∀]K 5.6.11. Theorem. Know [∀]K is sound and complete with respect to the class of all topo-models.

Proof:

Soundness is easy to see, we here only prove that the axiom ([∃]Kϕ → [∀] Kϕ) is valid on all topo-models. Let M = (X, τ, V ) be a topo-model, ϕ ∈ L ). Hence, Cl (Int([[¬ϕ]])) = X. We therefore obtain [ [ Kϕ]] = X, hence, [∀] K holds everywhere in M.

For completeness, we use a well-known Kripke completeness result for the logic obtained by extending S4.2 K with the universal modality [∀]. More precisely, it has been shown in [START_REF] Goranko | Using the universal modality: Gains and questions[END_REF]) that the modal system Know 0

[∀]K := S5 Kϕ), simply obtained by replacing (Ax-2) in Table 5.4 by the axiom (.2 K ):= KKϕ → K Kϕ, is complete with respect to the class of reflexive and transitive cofinal Kriple frames when K is interpreted as the standard Kripke modality and [∀] as the global modality. It is not hard to see that the axiom (.2 K ) is derivable in Know [∀]K (by using (Ax-1) and (Ax-2) in Table 5.4), hence, Know [∀]K is stronger than Know 0

[∀]K , i.e., that Know 0

Then, by the relational completeness of Know 0

[∀]K , there exists a reflexive and transitive cofinal Kripke model M = (X, R, V ) such that ϕ M = X. Then, by Proposition 5.6.9, we obtain [ [ϕ]] B(M) = X, where B(M) = (X, τ R , V ). from the fact that V (q) = V (q) for all q ∈ P ϕ . The cases for Booleans are straightforward, we here only prove the cases for the modalities.

Case ϕ := Kψ: Note that P Kψ = P ψ . Then, by induction hypothesis (IH), we have that [[ψ

Due to the semantics of K, we have two cases [START_REF]Suppose (x, U )[END_REF] if

Case ϕ := int(ψ): Note that P int(ψ) = P ψ . By the semantics of int, we have [[int(ψ)

. Since X and X generate the same topology τ O (they are based on the same lattice space), by IH, we obtain Int(

, [[int(ψ)]] U X = [[int(ψ)]] U X . Case ϕ := [χ]ψ: Note that P [χ]

Therefore, since X and X generate the same topology τ O , we obtain Int(

Similarly, by IH, we then obtain

and therefore, x ∈ [[ [χ]ψ]] U X . The other direction follows similarly. 7.1.9. Theorem. DTL int is sound with respect to the class of all pseudo-models (and hence also with respect to the class of all topo-models).

Proof:

The soundness proof follows by a simple validity check. We here only prove that ([!]2-elim) is valid and ([!]2-intro) preserves validity on pseudo-models.

([!]2-elim): Let X = (X, O, V ) be a pseudo-model and (x, U ) ∈ ES(X ) such that (x, Int([[θ]] U X ) such that x ∈ U 0 and X , (x, U 0 ) |= ¬ϕ. Now, consider the model X = (X, O, V ) such that V (p) = U 0 and V (q) = V (q) for all q ∈ prop with p = q. Then, by Lemma 7.1.8, we have that [[ψ

Expressivity on pseudo and topo-models

In this part, we establish several expressivity results with respect to both pseudo and topo-models, concerning our full language L ! Kint2 and its important fragments L ! Kint , L Kint and L K2 studied in Chapter 6. The reason to consider the more general case of pseudo-models (not only topo-models) is that the co-expressivity of the languages L Kint and L ! Kint2 for pseudo-models will be used in the completeness proof of DTL int (Corollary 7.1.37).

We first show the co-expressivity of L ! Kint and L Kint with respect to pseudomodels (Proposition 7.1.11). Its proof is standard, using the reduction laws to push dynamic modalities inside the formulas and then eliminating them. This requires an inductive proof on a non-standard complexity measure on formulas in L ! Kint which induces a well-founded strict partial order on L ! Kint satisfying the properties given in Lemma 7.1.10. Such a complexity measure is defined by [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF] to prove the co-expressivity of L ! Kint and L Kint for topo-models (see Bjorndahl, 2016, Proposition 5), as well as for the completeness result of PAL + int (see [START_REF] Bjorndahl | Topological subset space models for public announcements[END_REF], Corollary 1). Bjorndahl's simple complexity measure on L ! Kint would in fact suffice for our expressivity result on pseudo-models for the languages L Kint and L ! Kint . However, in order to prove the completeness of DTL int (in Section 7. 1.3), we need a complexity measure on the formulas of the extended language L ! Kint2 taking into account the effort modality 2 as well. A similar complexity measure will also be needed in Lemma 8.3.16 in Chapter 8. To this end, we define a more elaborate complexity measure on L ! Kint2 that we can use throughout this and the next chapter. The definition of this complexity measure is given in Appendix A.1.

7.1.10.

Lemma. There exists a well-founded strict partial order < S on formulas of L ! Kint such that

Theorem 7.1.17 will be used in the completeness proof of DTL int for topomodels (Corollary 7.1.38). Concerning expressivity of L ! Kint2 , we also obtain the following result with respect to topo-models. 7.1.18. Corollary. L ! Kint2 and L Kint are co-expressive with respect to topomodels.

Proof:

This proof proceeds similarly to the proof of Theorem 7.1.17. Since every topomodel is a pseudo-model, Proposition 7.1.15 holds for topo-models as well. Moreover, recall that L Kint and L ! Kint are equally expressive with respect to topo-models (see Theorem 6.2.5). Therefore, we can argue along the same lines as in Theorem 7.1.17 and prove that for every formula ϕ ∈ L ! Kint2 there exists a formula ψ ∈ L Kint such that ϕ and ψ are semantically equivalent with respect to topomodels.

2

Since L K2 ⊆ L ! Kint2 , Corollary 7.1.18 also establishes that L Kint is at least as expressive as L K2 on topo-models. As shown in the next theorem, L Kint and L K2 are in fact equally expressive for topo-models.

7.1.19. Theorem. L K2 and L Kint are also co-expressive with respect to topomodels.

Proof: Corollary 7. 1.18 shows that for every ϕ ∈ L K2 there is ψ ∈ L Kint such that ϕ ↔ ψ is valid in all topo-models. We only need to show that for every χ ∈ L Kint there is θ ∈ L K2 such that |= χ ↔ θ. Thus, suppose χ ∈ L Kint . By Lemma 7.1.13, there is χ ∈ L Kint in normal form such that |= χ ↔ χ . As χ is in normal forms, we have

By Proposition 6.2.10 and the soundness of (RE), we have

Therefore, each canonical conjunction δ i of χ is semantically equivalent to a formula in L K2 with respect to topo-models. Let δ * i denote the formula in L K2 that is semantically equivalent to δ i (this is abuse of notation since * is not defined for K). Hence, we obtain (again by the soundness of (RE)

7.1.20. Corollary. L ! Kint2 , L ! Kint , L Kint and L K2 are all co-expressive with respect to topo-models.

any formula ϕ i ∈ L ! Kint2 (P). Let (s n , ϕ n ) be the nth pair in the enumeration. We then set

Note that the empty string is in N F P , and for every ψ ∈ L ! Kint2 (P) we have ψ := ψ by the definition of possibility forms. Therefore, the above enumeration of pairs includes every formula ψ of L ! Kint2 (P) in the form of its corresponding pair ( , ψ). By Lemma 7.1.27, each Γ + n is P-witnessed. Then, if ϕ n is of the form ϕ n := 3θ for some θ ∈ L ! Kint2 (P), there exists a p ∈ P such that Γ + n is consistent with s n p θ (since Γ + n is P-witnessed). We then define

where p ∈ P such that Γ + n is consistent with s n p θ. Again by Lemma 7.1.27, it is guaranteed that each Γ n is P-witnessed. Now consider the union T Γ = n∈N Γ n . By Lemma 7.1.28, we know that T Γ is a P-theory. To show that T Γ is P-witnessed, let s ∈ N F P and ψ ∈ L ! Kint2 (P) and suppose s 3ψ is consistent with T Γ . The pair (s, 3ψ) appears in the above enumeration of all pairs, thus (s, 3ψ) := (s m , ϕ m ) for some m ∈ N. Hence, s 3ψ := s m ϕ m . Then, since s 3ψ is consistent with T Γ and Γ m ⊆ T Γ , we know that s 3ψ is in particular consistent with Γ m . Therefore, by the above construction, s p ψ ∈ Γ m+1 for some p ∈ P such that Γ + m is consistent with s p ψ. Thus, as T Γ is consistent and Γ m+1 ⊆ T Γ , we have that s p ψ is also consistent with T Γ . Hence, we conclude that T Γ is P-witnessed. Finally, T Γ is also maximal by construction: otherwise there would be a P-witness theory T such that T Γ T . This implies that there exists ϕ ∈ L ! Kint2 (P) with ϕ ∈ T but ϕ ∈ T Γ . Then, by the construction of T Γ , we obtain Γ i ¬ϕ for all i ∈ N. Therefore, since T Γ ⊆ T , we have T ¬ϕ. Hence, since ϕ ∈ T , we conclude T ⊥ (contradicting T being consistent). 2

7.1.30. Lemma (Extension Lemma). Let P be a countable set of propositional variables and P be a countable set of fresh propositional variables, i.e., P∩P = ∅. Proof: Let γ 0 , γ 1 , . . . , γ n , . . . an enumeration of all formulas of the form γ i := s i 3ϕ i consisting of any s i ∈ N F ∼ P , and every formula ϕ i ∈ L ! Kint2 ( ∼ P) in the language. We will recursively construct a chain of

Therefore, as T is maximal, we obtain α int(ψ) ∈ T , i.e., T ∈ α int(ψ) .

(⇐) Suppose T ∈ α int(ψ) . This implies, by the above derivation, that T ∈ int( α ψ) . By the constraction of O c , we have int( α ψ) ∈ O c . Moreover, by the axiom (T int ), we obtain int( α ψ) ⊆ α ψ . By IH, we also have that [[int(χ)]] int(α) ) |= ψ} (by the semantics of int) α) , i.e., (T, int(α)) |= 2ψ. This means that for all α) . Since int(p) < S d 2ψ (see 4)), we know by IH that [[int(p)]] int(α) = α int (p) . But, as shown in the case for the modality int above, α int(p) ↔ int( α p), hence, [[int(p)]] int(α) = int( α p) , thus, [[int(p)]] int(α) ∈ O c . Hence, by the first assumption, we obtain (T, Int([ [p]] int(α) )) |= ψ, thus, (T, int(α)) |= [p]ψ. Therefore, T ∈ [[ [p]ψ]] int(α) for all p ∈ P. Then, by IH (since [p] 

By the construction of O c , we know that U = int(γ) for some γ ∈ L ! Kint2 (P). We therefore have that Therefore, and the fact that T is maximal, we obtain α ∧ γ ψ ∈ T . Thus, by IH (since

. By the construction of O c , we know that U = int(γ) for some γ ∈ L ! Kint2 (P). By the Truth Lemma (Lemma 7.1.35), we have [[int(ϕ)]] int(γ) = γ int (ϕ) . As argued in the case for the modality int in the Truth Lemma, γ int(ϕ) = int( γ ϕ) . Therefore, we conclude that [[int(ϕ)

The next lemma shows that the language L Kint cannot distinguish a pseudomodel from its associated topo-model.

Proof:

The proof goes by subformula induction on ϕ and it is straightforward. We only show the case for ϕ := int(ψ). Note that if U ∈ O then U ∈ τ O (but not the other way around).

Syntax and Semantics. We consider the language L ! Kint obtained by extending L ! Kint with the arbitrary announcement modality . In other words, L ! Kint is defined by the grammar

where p ∈ prop. We sometimes call the formulas in L ! Kint -free formulas. Given a topo-model X = (X, τ, V ) and an epistemic scenario (x, U ) ∈ ES(X ), truth of a formula in L ! Kint is defined for Boolean cases, and the modalities K, int and [!] as for L ! Kint in Definition 6.2.1. For the modality , we propose the following semantic clause.

Definition. [Semantics of arbitrary announcement]

Given a topo-model X = (X, τ, V ) and an epistemic scenario (x, U ) ∈ ES(X ), the semantic clause for the arbitrary announcement modality reads

In other words, unravelling the above semantic clause, we model ϕ as

We therefore work with a topological version of the arbitrary announcement modality in the sense that it quantifies over Bjorndahl's public announcements whose pre-condition is captured by the interior modality, and whose effect is modelled in terms of neighbourhood shrinking.

Expressivity of L ! Kint on topo-models We will now prove that L ! Kint and L Kint are equally expressive with respect to topo-models in the single-agent case (this will not be the case for the multiagent version we present in Chapter 8). The proof of this result follows similar to the proof of Theorems 7.1.17 and 7.1.18. Thus, we first provide similar auxiliary lemmas for the language L ! Kint .

We want to show that |= ϕ ↔ ϕ{ψ/ϕ}, and the proof follows by subformula induction on ϕ, where the base case is ϕ := ψ. Let X = (X, τ, V ) be a topo-model and (x, U ) ∈ ES(X ). For the base case ϕ := ψ, we then have ϕ{ψ/χ} = χ. Therefore, ϕ ↔ ϕ{ψ/χ} boils down to |= ψ ↔ χ, hence follows from the assumption. Now assume inductively the truth of a formula in the language L ! Kint is defined recursively as follows:

where

When the model is not fixed, we use subscripts and write, e.g., [[ϕ]] θ X , to denote the model we work with.

for all topo-models X we have X |= ϕ. Soundness and completeness with respect to topo-models are defined as usual.

Let us now elaborate on the structure of topo-models and the above semantics we have proposed for L ! Kint . For any topo-model X = (X, τ, Φ, V ), the agents' current evidence, i.e., the epistemic range of each agent at a given state x, is defined by (partial) functions θ ∈ Φ, where θ : X A → τ . We allow for partial functions in Φ, and close Φ under restricted functions θ U where U ∈ τ (see Definition 8.1.1, condition 4), so that updated neighbourhood functions are guaranteed to be well-defined elements of Φ. As briefly mentioned in Section 6.1.1, one important feature of the subset space semantics is the local interpretation of propositions: in the single-agent case, once the epistemic scenario (x, U ) has been picked, the rest of the model does not have any effect on the truth of the proposition in question. Similarly in our multi-agent setup, by choosing a neighbourhood situation (x, θ), we localize the interpretation to an open subdomain of the whole space, namely to D(θ), that includes the actual state x, and embeds an epistemic range for each agent i ∈ A at every state in D(θ). For every θ ∈ Φ and x ∈ D(θ), the function θ(x) : A → τ is defined to be a total function. It is therefore guaranteed that, given a neighbourhood situation (x, θ), the neighbourhood function θ assigns to every agent in A an open neighbourhood of x. Moreover, the conditions of neighbourhood functions given in Definition 8.1.1 make the semantics work for the multi-agent setting. To be more precise, condition 1 guarantees that θ always returns a factive evidence set for each agent at the actual state. Since the neighbourhoods given by the neighbourhood functions depend not only on the agent but also on the current state of the agent, and since x ∈ θ(x)(i) ⊆ D(θ) for every x ∈ D(θ) and every i ∈ A (due to conditions 1 and 2), our semantics does not face the problem of "jumping out of the epistemic range", and thus does not end up with ill-defined evaluation pairs in the interpretation of iterated epistemic and he also knows that Indiana does not know that:

The statement (8. In fact, it has to be the case that y 0 ∈ {000, 001, 100, 101}. This situation however does not create any problems in our setting since (y 0 , θ ) is a well-defined neighbourhood situation, and Emile's epistemic range at y 0 is defined by θ as θ (y 0 )(e) = {000, 001, 100, 101}.

Given their prior knowledge, announcements will change Emile and Indiana's knowledge in different ways. Consider the announcement of j. An important point to notice is that the announcement of j does not only convey the information [[j]] θ = {100, 101, 110, 111} but that it also leads to learning Int([[j]] θ ) = {110, 111}. This corresponds exactly to the fact that one can know about the jewel on the condition that the tomb has already been rediscovered. Therefore, the announcement of j evidences the fact that the tomb has already been discovered, hence, it conveys more information than only j being true. This results in Emile knowing everything but Indiana still being uncertain about the location:

Model checking this involves computing the epistemic ranges of both agents given by the updated neighbourhood function (θ ) j at 111 (see Figure 8. [START_REF])) of int)[END_REF]. Note that 111)(e) = {111}, and for Indiana (θ ) j (111

There is an announcement after which Emile and Indiana know everything (for example the announcement of j ∧ t):

Again, the announcement of j ∧ t carries the implication that the tomb has been rediscovered. On the other hand, as long as the tomb has not been discovered, nothing will make Emile (or Indiana) learn that it contains a jewel or where the tomb is located:

Binary Strings

We begin the example by defining a topology over the set of ordered pairs of binary strings, i.e., the domain of our topology is

Note that we can consider X to be points in the unit square [0, 1] × [0, 1], by looking at each element of {0, 1} ∞ as the binary representation of a real number in [0, 1]. So, for example, (01000..., 11000...) represents (.25, .75). This correspondence is not one-to-one, because many points in [0, 1] have more than one possible representation as binary strings. For example, 1000... and 0111... both represent 0.5. In fact, every fraction of the form i 2 k for some i, k ∈ N with 0 < i < 2 k has two possible representations, while every other element of [0, 1] has a unique representation. Therefore, every element of [0, 1] × [0, 1] has either one, two, or four possible representations in {0, 1} ∞ × {0, 1} ∞ . Hence, we can consider each element of {0,

Let us now introduce some notation. If s ∈ {0, 1} ∞ , for n ∈ N + , we let s| n be the first n bits of s, and we let s 

It is not hard to see that B indeed constitutes a basis over the domain {0, 1} ∞ :

1. Since S ∈ B, we have B = {0, 1} ∞ .

2. For any U 1 , U 2 ∈ B, we have either

Therefore, B is closed under finite intersections.

For our example, we use the product space ({0, 1} ∞ × {0, 1} ∞ , τ × τ ) and we have two agents a and b. Intuitively speaking, agent a is concerned with the bits of the first coordinate and agent b is concerned with the bits of the second coordinate encoded as infinite binary strings. Let θ ((x, y)

In other words, for agent a, the neighbourhood function θ i gives the set of pairs where the first component of the pair agrees with x in the first i bits, and any possible second component of the pair is allowed. Similarly for agent b. We note that θ i+1 is always more informative than θ i . Finally, in order to obtain our neighbourhood function set Φ, we must close the set of functions described above under open domain restrictions, so we let Φ = {θ :

It is easy to see that Φ satisfies the properties of a neighbourhood function set given in Definition 8. 1.1. In order to evaluate formulas on this topo-frame, we define atomic propositions

Intuitively speaking, the propositional variables refer to the x-and y-coordinates of the pairs of infinite binary strings. We read x i as "the ith bit of the x-coordinate is 1 " and y i as "the ith bit of the y-coordinate is 1 ". We can now evaluate some formulas on the topo-model

at the state (x, y) = (010000....., 110110.....) with respect to the neighbourhood function θ 1 . In other words, we have that a knows that the first bit of x is 0, can show (details omitted) that

After every finite sequence of such announcements, a knows a prefix of x and b knows a prefix of y, and a is uncertain between two dual prefixes of y and b is uncertain between two prefixes of x. So, for example, after 10 announcements, a is uncertain whether y starts with 110110 or 001001, etc.

Axiomatizations, Soundness and Expressivity

We now provide the axiomatizations for multi-agent EL m int , PAL m int , and APAL m int (in Table 8. [START_REF]Suppose (x, U )[END_REF], and prove their soundness with respect to the proposed semantics. The axiomatization of APAL m int involves an infinitary rule, denoted by ( ω -intro), that is formalized using necessity forms. To this end, we first define necessity forms for the language L ! Kint . These necessity forms are defined similarly as in Definition 7.1.22, but involve a recursive clause for int and each K i . 

, where is the empty string. For possibility forms, we set s ϕ := ¬[s]¬ϕ.

The system APAL m int is the smallest subset of the language L ! Kint that contains the axioms, and is closed under the inference rules given in Table 8.1. The system EL m int is defined in a similar way over the language L Kint by the axioms and inference rules in group (I) of Table 8.1, and PAL m int is defined over the language L ! Kint by the axioms and inference rules in groups (I) and (II).

Let us now elaborate on these axiomatizations. The axiomatizations of multiagent EL m int and PAL m int are straightforward generalizations of their single-agent versions presented in Table 7.1. 1 The axiom scheme ( -elim) is similar to (2elim) of DTL int , directly reflecting the semantics of the arbitrary announcement Base case s := : In this case, we have

Kint , all topo-models X , and (x, θ) ∈ X . Therefore, by the semantics, X , (x, θ) |= χ for all topo-models X , and (x, θ) ∈ X . Hence, we conclude |= χ.

Induction Hyposthesis: |=

Then, by IH, we have [s ] χ valid. This means that [[[s ] χ]] θ = D(θ) for every topo-model X = (X, τ, Φ, V ) and all θ ∈ Φ. Since D(θ) ∈ τ (by Lemma 8.1.3), we have 

Proof:

The proof follows similarly to the proof of Proposition 7.1.11. 2

On the other hand, unlike the case in the single-agent setting (see Theorem 7.2.5), multi-agent L ! Kint is strictly more expressive than L Kint . This is analogous to the case in the setting of [START_REF] Balbiani | Knowable' as 'known after an announcement[END_REF] based on Kripke semantics. The counterexample given in (Balbiani et al., 2008, Proposition 3.13) can be adapted for our framework based on a discrete topology, as shown below. To make the expressivity argument clearer, we first define a notion of partial bisimulation that induces a modal invariance result for the language L K . This is the natural analogue of the usual notion of bisimulation defined on multi-relational Kripke models (see, e.g., Blackburn et al., 2001, Chapter 2.2). 8.2.7. Definition. [Partial Bisimulation (for L K )] Let two topo-models X = (X, τ, Φ, V ) and X = (X , τ , Φ , V ) be given. A relation between the set of neighbourhood situations of X and X is a partial bisimulation between X and X iff for all (x, θ) ∈ X and (x , θ ) ∈ X with (x, θ) (x , θ ) the following conditions are satisfied:

Proof:

In order to show the above statement, we need to show that (X c , τ c ) is a topological space, and Φ c satisfies the conditions in Definition 8.1.1. For the former, we only need to show that Σ covers X c , i.e., that Σ = X c , since τ c is generated by a subbasis, namely by Σ (in the way described in Chapter 2.2). Since every element of Σ is a subset of X c , we obviously have Σ ⊆ X c . Observe moreover that, since int( ) = X c , we have [x] i ∩ int( ) = [x] i ∈ Σ for each x ∈ X c and i ∈ A. Now let x ∈ X c . Since every ∼ i is an equivalence relation, in particular, each ∼ i is reflexive, we have x ∈ [x] i . Therefore, we obtain

) is a topological space. We now show that Φ c satisfies the conditions in Definition 8.1.1. Let θ ∈ Φ c . Thus, by definition of Φ c , we have θ = (θ c ) U for some U ∈ τ c (in particular, note that θ c = (θ c ) X c ). Therefore, we have that

for any x ∈ D(θ) and i ∈ A. As argued above, [x] i ∈ Σ for all x ∈ X c and each i ∈ A. We therefore obtain that function θ is defined as a partial function such that θ :

, we also satisfy condition [START_REF]int(ϕ ∨ K β) ↔ int(ϕ) ∨ K β 3. int(ϕ ∨ (σ ∧ Kβ)) ↔ (int(ϕ ∨ σ)[END_REF]. For condition ( 3), let y ∈ θ(x)(i). As θ(x)(i) = [x] i ∩ U , we have y ∈ [x] i and y ∈ D(θ). While the latter proves the first consequent of condition ( 3), the former implies [y] i = [x] i since [x] i is an equivalence class. We therefore obtain θ(y

Condition ( 4) is satisfied by definition of Φ c . 2 8.3.5. Lemma (Truth Lemma). For every ϕ ∈ L Kint and for each x ∈ X c ,

Proof:

The proof follows by subformula induction on ϕ. The case for the propositional variables follows from the definition of V c and the cases for the Booleans are straightforward. We only show the cases ϕ := K i ψ and ϕ := int(ψ). By Lemma 8.3.2, we can then extend it to a maximally consistent set y. As {K i γ | K i γ ∈ x} ⊆ y, we have y ∈ [x] i meaning that y ∈ θ c (x)(i). Moreover, since ¬ψ ∈ y, we obtain ψ ∈ y. Therefore, we have a maximally consistent set y ∈ θ c (x)(i) such that ψ ∈ y. By IH, X c , (y, θ c ) |= ψ. Hence, X c , (x, θ c ) |= K i ψ.

Case ϕ = int(ψ)

Proof: Let ϕ be a EL m int -consistent formula. Then, by Lemma 8.3.2, the singleton {ϕ} can be extended to a maximally consistent set x of EL m int with ϕ ∈ x. Therefore, by Lemma 8.3.5, we obtain X c , (x, θ c ) |= ϕ, where

8.3.7. Theorem. PAL m int is complete with respect to the class of all topo-models.

Proof:

This follows from Theorem 8.3.6 by reduction in a standard way: using the size measure S(ϕ) given in Definition A.1.1 for the language L ! Kint provides the desired result via Lemma A.1.5 (note that the strict orders < S and < S d given in Definition A.1.3 are equivalent on the language L ! Kint as given in Lemma A.1.4-( 2)). We refer to (van Ditmarsch et al., 2007, Chapter 7.4) for a detailed presentation of the completeness method via reduction, and in particular to (Wang and Cao, 2013, Theorem 10, p. 111) for an analogous proof. A similar proof for single-agent EL m int is also presented in (Bjorndahl, 2016, Section 4). 2

Completeness of APAL m int

We now reuse the technique of [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF] in the setting of topological semantics. Given the closure requirement under the derivation rule ( ω -intro), it seems more proper to call maximally consistent sets of APAL m int maximally consistent theories, as further explained below.

Definition. [Theory of APAL m int ]

• A set x of formulas is called a theory of APAL m int (or simply, a theory) iff APAL m int ⊆ x and x is closed under Modus Ponens and ( ω -intro).

• A theory x is said to be consistent iff ⊥ ∈ x.

• A theory x is maximally consistent iff x is consistent and any set of formulas properly containing x is inconsistent.

The logic APAL m int constitutes the smallest theory. Moreover, maximally consistent theories of APAL m int possess the usual properties of maximally consistent sets: 8.3.9. Lemma. For any maximally consistent theory x of APAL m int , and ϕ, ψ ∈ L ! Kint 1. ϕ ∈ x iff ¬ϕ ∈ x, and 8. 3.13. Lemma (Lindenbaum's Lemma). Each consistent theory x can be extended to a maximal consistent theory y such that x ⊆ y.

Proof:

The proof is the same as the proof of (Balbiani et al., 2008, Lemma 4.12). We here recapitulate it in our notation to render the chapter self-contained. The proof proceeds by constructing an increasing chain

of consistent theories where y 0 := x, and each y i will be recursively defined. At each step, we have to guarantee that y i is consistent, APAL m int is included in y i and it is closed under (MP) and ( ω -intro). Let ψ 0 , ψ 1 , . . . be the enumeration of all formulas in L ! Kint , and set y 0 = x. Now suppose we are at the (n+1)st step of the construction, that is, y n has already been defined as a consistent theory containing x. We first observe that either y n + ψ n is consistent, or y n + ¬ψ n is consistent (but not both). Suppose otherwise, i.e., suppose both y n + ψ n and y n + ¬ψ n are inconsistent. Then, by Lemma 8.3.12, we have both ¬ψ ∈ y n and ¬¬ψ ∈ y n . However, since ¬ψ n → (¬¬ψ n → ⊥) ∈ APAL m int ⊆ y n and y n is closed under (MP), we obtain ⊥ ∈ y n , contradicting consistency of y n . If y n + ψ n is consistent, we define y n+1 = y n + ψ n . By , it is guaranteed that y n + ψ n is a theory. If y n + ψ n is inconsistent, we have ¬ψ n ∈ y n (by Lemma 8.3.12). We then have two cases: (a) ψ n is not a consequence of ( ω -intro) (b) ψ n is a consequence of ( ω -intro). If (a) is the case, we let y n+1 = y n . For (b), let [s 1 ] χ 1 , [s 2 ] χ 2 , . . . , [s k ] χ k be the enumeration of all possible representations of ψ n as a consequence of ( ω -intro). We now define another sequence y 0 n , . . . , y k n of consistent theories such that y 0 n = y n and each y i n with i ≤ k is recursively defined and includes y n . Now suppose we are at the (i+1)st step of the construction, that is, y i n has already been defined as a consistent theory containing y n . This means, and 8.3.12, y i+1 n is guaranteed to be a consistent theory). Then, we set y n+1 = y k n . Now define y = i∈N y i . We then show that y is in fact a maximally consistent theory. Since APAL m int ⊆ x = y 0 ⊆ y, we have APAL m int ⊆ y. It is also easy to see that y is consistent (since every element of the chain is consistent). Second, we prove y is closed under (MP). Let ϕ, ϕ → ψ ∈ y. Then, by the construction of y, there is y n and y m in the above chain such that ϕ ∈ y n and ϕ → ψ ∈ y m . W.l.o.g, we can assume n ≤ m, thus, y n ⊆ y m . Hence, ϕ ∈ y m . Since y m is closed under (MP), we obtain ψ ∈ y m , thus, ϕ ∈ y (since y m ⊆ y). Third, we show y is closed under (

Kint , and suppose toward contradiction that [s] χ ∈ y. This implies [s] χ ∈ y i for all y i in the above chain, since y i ⊆ y for all i ∈ N. Moreover, observe that [s] χ appears in the enumeration of all formulas. Let [s] χ := ψ m . Since ψ m ∈ y m+1 , we know that y m+1 = y m +ψ m . This 8. 3.16. Lemma (Truth Lemma). For every ϕ ∈ L ! Kint and for each x ∈ X c ,

Proof: Let ϕ ∈ L ! Kint and x ∈ X c . The proof is by < S d -induction on ϕ, where the case ϕ = [ψ]χ is proved by a subinduction on χ. We therefore consider 13 cases, where the base case ϕ := p as usual follows from the definition of V c .

Induction Hypothesis: for all

The Boolean cases follow standardly, where we observe that the subformula order is subsumed under the < S d order (see Lemma A.1.5-( 1)). We proceed with the cases ϕ = K i ψ and ϕ = int(ψ) respectively, and then with the subinduction on χ for case announcement ϕ = [ψ]χ, and finally with the case ϕ = ψ. Case ϕ := K i ψ For the direction from left-to-right, see (Truth) Lemma 8.3.5. For the opposite direction, suppose K i ψ ∈ x. Then, by Lemma 8.3.14, there exists a maximally consistent theory y such that K i x ⊆ y and ψ ∈ y. Then, by ψ < S d K i ψ and induction hypothesis (IH), we obtain (y, θ c ) |= ψ. Since K i x ⊆ y, we have y ∈ [x] i meaning that y ∈ θ c (x)(i). Therefore, by the semantics, X c , (x, θ c ) |= K i ψ.

Case ϕ := int(ψ) For the direction from left-to-right, see (Truth) Lemma 8.3.5. For the opposite direction, suppose int(ψ) ∈ x. We want to show that x ∈ Int([[ψ]] θ c ), i.e., show that for all U ∈ B Σ with x ∈ U , we obtain U ⊆ [[ψ]] θ c , where B Σ is the basis of X c constructed by closing Σ under finite intersections (as in the proof of Lemma 8.3.5)

where I and int(γ) are as in the proof of Lemma 8.3.5, case for the modality int. In order to complete the proof, we need to construct a maximally consistent theory y ∈ U such that y ∈ [[ψ]] θ c . Therefore, this maximally consistent theory y should satisfy the following properties:

3. ¬ψ ∈ y, or equivalently, ψ ∈ y.

Toward the goal of finding this maximal consistent theory y, we first construct a consistent theory z (that we later expand to the maximal consistent theory y).

Consider the set of formulas

and close z 0 under (MP) and ( ω -intro) to obtain z. It is guaranteed that z is a theory since it includes APAL m int and it is closed under (MP) and ( ω -intro). Moreover,

, and thus, x ∈ int(γ). Therefore, z 0 ⊆ x and since z is the smallest theory containing z 0 (by construction), we obtain z ⊆ x. It follows that z is consistent since x is consistent. We now consider the set int(z). Similarly, int(z) is a consistent theory such that int(z) ⊆ z ⊆ x (by 4) and x being a maximally consistent theory). Furthermore,

int and K i σ ∈ z for each i ∈ I, and similarly since int(γ) ↔ int(int(γ)) ∈ APAL m int and int(γ) ∈ z. In fact, given that z is the smallest theory constructed from z 0 by closing z 0 under (MP) and ( ω -intro), and int(z) is also a consistent theory such that z 0 ⊆ int(z) ⊆ z, we obtain int(z) = z. Observe that, since int(ψ) ∈ x and z ⊆ x, we have int(ψ) ∈ z. Therefore, the fact that int(ψ) ∈ int(z) = z implies that ψ ∈ z. Finally, we extend the consistent theory z to the set of formulas z + ¬ψ. By , we know that z + ¬ψ is a theory such that z ⊆ z + ¬ψ and ¬ψ ∈ z + ¬ψ. Moreover, since ψ ∈ z, Lemma 8.3.12 implies that z + ¬ψ is a consistent theory. Thus, by Lemma 8.3.13, there exists a maximally consistent theory y such that z + ¬ψ ⊆ y. Hence, we have the maximally consistent theory y with: 1) and ( 2) above) such that y ∈

Case ϕ := [ψ]χ: This case follows from a subinduction on χ. 

), (IH), and ). Therefore, it suffices to show

For the direction from right-to-left, assume that for all η ∈ L !

int for all η ∈ L ! Kint (this can easily be proven by ( -elim, Nec ! , K ! and MP). Therefore, for all η ∈ L ! Kint , [ψ][η]σ ∈ x, since x is closed under (MP). We can then obtain

This completes the case ϕ := [ψ]χ.

Case ϕ := ψ Again note that for all η ∈ L ! Kint , [η]ψ < S d ψ, since ψ has one more than [η]ψ (see . Therefore, we obtain

(by the semantics of ) We define the (weak) canonical model X c = (X c , τ c , Φ c , V c ) as follows:

• X c is the set of all maximally consistent sets of wEL m int ; • τ c is the topological space generated by the subbasis

x, for all p ∈ prop; ), for x ∈ X c and i ∈ A. Observe that (X c , τ c , Φ c ) is a weak topo-frame. This can be shown as in the proof of Lemma 8.3.4. As in the previous case we have int( ) = X c , thus, each ) is an open set in τ c . Moreover, Φ c satisfies the required properties of the elements of Φ given in Definition 8.4.1. Observe that D(θ c ) = X c and D(( 8.4.4. Lemma (Truth Lemma). For every ϕ ∈ L Kint and for each x ∈ X c ϕ ∈ x iff X c , (x, θ c ) |= ϕ.

Proof:

Proof is similar to the proof of Lemma 8.3.5 except that we replace each [x] i by R c i (x). 2 8.4.5. Theorem. wEL m int , wPAL m int , and wAPAL m int are complete with respect to the class of all weak topo-models.

Proof:

For completeness of wEL m int , let ϕ ∈ L Kint such that wEL m int ϕ. This implies that {¬ϕ} is a consistent set. Then, by Lindenbaum's Lemma, it can be extended to a maximally consistent set x such that ¬ϕ ∈ x. Therefore, by (Truth) Lemma 8.4.4, X c , (x, θ c ) |= ϕ. For completeness of wPAL m int , see proof of Theorem 8.3.7. The completeness proof of APAL m int follows similarly as in Theorem 8.3.17, however, the canonical model is the same as for wEL m int , except that the maximally consistent sets are maximally consistent theories of wAPAL m int .

Moreover, by adding the following condition to Definition 8.4.1, we obtain topo-models for S4.3 K : semantic clause for the effort modality on multi-agent topo-models

This interpretation fits well with and generalizes the arbitrary announcement modality ϕ, to recall, interpreted as

To elaborate, ϕ quantifies over all announceable formulas in L ! Kint , and in turn, quantifies over all epistemically definable open subsets of D(θ), and checks whether ϕ is true with respect to the corresponding updated functions θ ψ that is obtained by restricting θ with the open set Int([[ψ]] θ ). On the other hand, the effort modality 2ϕ simply quantifies over all open subsets of D(θ), and checks whether ϕ remains true with respect to the restricted neighbourhood functions θ U . These two modalities are proven to be equivalent in the single-agent case (see Theorem 7.2.6), however, this result does not carry over to the multi-agent setting. In fact, the above semantic clause for 2ϕ is analogous to what is called "structural semantics for ϕ", which is stated as a possible alternative for the interpretation of the arbitrary announcement modality in (Balbiani et al., 2008, Section 2.3.1). We can then use the example presented in (Balbiani et al., 2008, p. 310), which was based on a multi-agent Kripke model, to show that 2ϕ and ϕ do not coincide in our multi-agent setting either.

8.6.1. Example. (Balbiani et al., 2008, p. 310) We consider the following twoagent example with agent a and b based on a discrete space. The topo-model we use in this example is the same as X in Proposition 8.2.9 except for its valuation. Let X = (X, P(X), Φ, V ) our topo-model where X = {x 0 , y 0 , x 1 , y 1 }, the topology P(X) is the set of all subsets of X and V (p) = {x 1 , y 1 }. We stipulate that the actual state is x 1 and the neighbourhood function θ defining the epistemic ranges of the agents induces a partition for each agent exactly as in Proposition 8.2.9, also see Figure 8.8a. Now consider the sentences 3

On the other hand, we have (x 1 , θ) (y 1 , θ) and (x 0 , θ) (y 0 , θ). Therefore, since X is based on a discrete topology, we obtain by Proposition 8.2.8 that ( 1)

Therefore, unlike in the case of the single-agent setting, the effort and the arbitrary announcement modalities behave very differently in the multi-agent Appendix A

Technical Specifications

A.1 Complexity Measure for L ! Kint2 and L !

Kint

In several proofs in Chapters 7 and 8 (such as Proposition 7. 1.11,Lemmas 7.1.35 and 8.3.16), we need a complexity measure of the formulas of L ! Kint2 (as well as of L ! Kint and its multi-agent extension studied in Chapter 8) that induces a well-founded strict partial order on the formulas of these languages satisfying certain properties (that are given in Lemma A.1.5). For example, in Lemma 7.1.35, we need a complexity measure for which [p]ϕ is less complex than 2ϕ for an arbitrary propositional variable p; while Lemma 8.3.16 requires [ψ]ϕ to be less complex than ϕ for arbitrary ψ ∈ L ! Kint . For this reason, subformula complexity does not suffice. In this appendix, we define a complexity measure that has these properties. Since the languages L ! Kint2 and L ! Kint are defined in the same way, the proposed complexity measure and the subsequent lemmas also hold for L ! Kint , as well as for the multi-agent L ! Kint . The appropriate complexity measure is composed of a measure S(ϕ) that is a weighted count of the number of symbols and a measure d(ϕ) that counts the number of the 2-modalities occurring in a formula. Although somewhat simpler complexity measures would work for some of the lemmas mentioned above, we here define one complexity measure, based on S and d, that induces a well-founded partial order < S d on L ! Kint2 (and on L ! Kint ) which works in every relevant proof. The relation < S d introduced below was first defined in (van Ditmarsch et al., 2015c) for the language L ! Kint (by adapting similar notions introduced before in, e.g., [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF]van Ditmarsch et al., 2015b).

A.1.1. Definition. [Size of formulas in L !

Kint2 ] The size S(ϕ) of formula ϕ ∈ L ! Kint2 is defined as:

Kint2 is defined as:

Finally, we define our intended complexity relation < S d as lexicographic merge of 2-depth and size, exactly as in (van Ditmarsch et al., 2015c) (adapted from [START_REF] Balbiani | A simple proof of the completeness of APAL[END_REF]van Ditmarsch et al., 2015b):

A.1.4. Lemma.

1. < S , < d , < S d are well-founded strict partial orders between formulas in

where α, β, γ i ∈ L int for all 1 ≤ i ≤ n. Following the naming convention in [START_REF] Meyer | Epistemic Logic for AI and Computer Science[END_REF], we call the formula δ canonical conjunction and the subformulas Kβ and K γ i prenex formulas.

In the following, we present the steps used in the proof of Lemma 7.1.13. This proof was first presented in [START_REF] Van Ditmarsch | Arbitrary announcements on topological subset spaces[END_REF] in a slightly different way.

A.2.1. Lemma. If ψ ∈ L Kint is in normal form and contains a prenex formula σ, then ψ can be written as π ∨ (λ ∧ σ), where π, λ and σ are all in normal form.

Proof:

See (Meyer and van der Hoek, 1995, Lemma 1.7.6.2).

2

The following equivalence is a propositional tautology:

We will show the following results for pseudo-models, however, it is not hard to see that they all follow also for topo-models.

A.2.3. Lemma. For all ϕ, σ, β ∈ L Kint , we have the following equivalences valid in all pseudo-models: where α, β, γ i ∈ L int for all 1 ≤ i ≤ n. Let us call ¬δ i canonical disjunction.

Notice that each disjunct of ¬δ i is still in the required form, i.e., each disjunct is either a prenex formula or in L int . By using Lemma A.2.2 repeatedly, we can write ϕ in normal form, i.e., as disjunctions of canonical conjuncts. Case ϕ := ψ ∧ χ: By induction hypothesis, w.l.o.g, we assume that ψ and χ are in normal form. Therefore ψ := δ 1 ∨• • •∨δ m and χ := δ 1 ∨• • •∨δ k where each δ i and δ j is a canonical conjunct. Therefore, |= ϕ ↔ ((δ

Then, by Lemma A.2.2, we easily obtain a formula θ in normal form such that |= ϕ ↔ θ.

Case ϕ := int(ψ): By induction hypothesis, w.l.o.g, assume ψ is in normal. We also assume that ψ includes some prenex formula, otherwise we are done. By Lemma A.2.1, we can consider ψ to be of the form ψ := π ∨ (λ ∧ σ) where σ is a prenex formula occurring in ψ, and π and λ are in normal form. Then, we have |= int(ψ) ↔ int(π∨(λ∧σ)), and by or (4) (depending on the form of the prenex formula σ), we have |= int(π ∨ (λ ∧ σ)) ↔ (int(π ∨ λ) ∧ (int(π) ∨ σ)). By repeating this procedure, we can push every prenex formula in the scope of int to the top level, hence, obtain a semantically equivalent formula in normal form. Résumé qui réponde aussi au problème de comprendre la relation entre connaissance et croyance ?

• Dans quelle mesure les notions topologiques capturent-elles la signification intuitive de la notion de croyance en question ?

Comprendre la relation entre connaissance et croyance est un problème central en épistémologie. Tout spécialement après que [START_REF] Gettier | Is justified true belief knowledge?[END_REF] a fait voler en éclat la vision traditionnelle de la connaissance comme croyance vraie et justifiée, de nombreux épistémologues ont tenté de renforcer cette dernière notion pour obtenir une notion satisfaisante de la première. Dans cette approche, on commence avec une notion faible de croyance (qui est au moins justifiée et vraie) et on essaye d'atteindre la connaissance en renforçant la notion de croyance choisie de manière à obtenir une notion de connaissance qui ne soit plus sujette aux contre-exemples de type Gettier [START_REF] Gettier | Is justified true belief knowledge?[END_REF]. Plus récemment l'approche inverse-dériver la croyance à partir de la connaissance-ou, du moins, mettre la "connaissance en premier" [START_REF] Williamson | Knowledge and its Limits[END_REF] a aussi été considérée. Dans cet esprit, [START_REF] Stalnaker | On logics of knowledge and belief[END_REF] a proposé un cadre formel dans lequel la croyance est réalisée comme une forme affaiblie de connaissance. Plus précisément, en commençant avec le système logique donné en Table A Bϕ := ¬K¬Kϕ.

Dans ce but, la formalisation syntactique de Stalnaker semble être analogue au status quo de la sémantique de l'intérieur pour la connaissance et de l'interprétation topologique de la croyance élaborée dans le chapitre 3, où nous donnons l'interprétation de la connaissance et dévoilons une bonne sémantique pour la croyance.