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5.2.1 Evidence à la van Benthem and Pacuit . . . . . . . . . . . 50

5.2.2 Evidence on Topological Evidence Models . . . . . . . . . . 54

5.3 Justified Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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Chapter 1

Introduction

This dissertation brings together epistemic logic and topology. It studies formal
representations of the notion of evidence and its link to justification, justified
belief, knowledge, and evidence-based information dynamics, by using tools from
topology and (dynamic) epistemic logic.

Epistemic logic is an umbrella term for a species of modal logics whose main
objects of study are knowledge and belief. As a field of study, epistemic logic uses
modal logic and mathematical tools to formalize, clarify and solve the questions
that drive (formal) epistemology, and its applications extend not only to philoso-
phy, but also to theoretical computer science, artificial intelligence and economics
(for a survey, see van Ditmarsch et al., 2015a). Hintikka (1962) is considered the
founding father of modern epistemic logic. In his book Knowledge and Belief:
An Introduction to the Logic of the Two Notions (1962)—inspired by insights
in (von Wright, 1951)—Hintikka formalizes knowledge and belief as basic modal
operators, denoted by K and B, respectively, and interprets them using standard
possible worlds semantics based on (relational) Kripke structures. Ever since—as
Kripke semantics provides a natural and relatively easy way of modelling epis-
temic logics—it has been one of the prominent and most commonly used semantic
structures in epistemic logic, and research in this area has widely advanced based
on the formal ground of Kripke semantics.

However, standard Kripke semantics possesses some features that make the
notions of knowledge and belief it implements too strong—leading to the problem
of logical omniscience—and is lacking the ingredients that make it possible to talk
about the nature and grounds of acquired knowledge and belief. What triggered
the work presented in this dissertation is the latter issue: we not only seek an
easy way to model knowledge and belief, but also study the emergence, usage,
and transformation of evidence as an inseparable component of a rational and
idealized agent’s justified belief and knowledge.

For this purpose, topological spaces are proven to be natural mathematical
objects to formalize the aforementioned epistemic notions, and, in turn, evidence-
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2 Chapter 1. Introduction

based information dynamics: while providing a deeper insight into the evidence-
based interpretation of knowledge and belief, topological semantics also general-
izes the standard relational semantics of epistemic logic. Roughly speaking, topo-
logical notions like open, closed, dense and nowhere dense sets qualitatively and
naturally encode notions such as measurement/observation, closeness, smallness,
largeness and consistency, all of which will recur with an epistemic interpretation
in this dissertation. Moreover, topological spaces are equipped with well-studied
basic operators such as the interior and closure operators which—alone or in
combination with each other—succinctly interpret different epistemic modalities,
giving a better understanding of their axiomatic properties. To that end, we see
topological spaces as information structures equipped with an elegant and strong
mathematical theory that help to shed some light on the philosophical debates
surrounding justified belief and knowledge, and to gain more insights into learning
via evidence-acquisition.

The epistemic use of topological spaces as information structures can be
traced back to the 1930s and 1940s, where topological spaces served as models
for intuitionistic languages, and open sets are considered to be ‘pieces of evi-
dence’, ‘observable properties’ concerning the actual state (see, e.g., Troelstra
and van Dalen, 1988). This interpretation assigned to open sets constitutes the
basic epistemic motivation behind our use of topological models, and will return
often at various places (in modified forms) in the main body of this disserta-
tion. Variations of this idea can also be found in domain theory in computer
science (Abramsky, 1987, 1991; Vickers, 1989), and guide the research program of
“topological” formal learning theory initiated by Kelly and others (Kelly, 1996;
Schulte and Juhl, 1996; Kelly et al., 1995; Kelly and Lin, 2011; Baltag et al.,
2015c) in formal epistemology.

The literature connecting (modal) epistemic logic and topology is developed
based on two separate, yet strongly related topological settings. Our work in
this dissertation justly benefits from both approaches. The first direction stems
from the interior-based topological semantics of McKinsey (1941) and McKin-
sey and Tarski (1944) for the language of basic modal logic (some of the ideas
could already be found in Tarski, 1938 and Tsao-Chen, 1938). In this seman-
tics the modal operator 2 is interpreted on topological spaces as the interior
operator. These investigations took place in an abstract, mathematical context,
independent from epistemic/doxastic considerations. McKinsey and Tarski (1944)
not only proved that the modal system S4 is the logic of all topological spaces
(under the above-mentioned interpretation), but also showed that it is the logic
of any dense-in-itself separable metric space, such as the rational line Q, the real
line R, and the Cantor space, among others. This approach paved the way for
a whole new area of spatial logics, establishing a long standing connection be-
tween modal logic and topology (see, e.g., Aiello et al., 2007 for a survey on this
topic, in particular, see van Benthem and Bezhanishvili, 2007). Moreover, the
completeness results concerning the epistemic system S4 have naturally attracted
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epistemic logicians, and led to an epistemic re-evaluation of the interior seman-
tics, seeing topologies as models for information. One branch of the epistemic
logic-topology connection has thus been built on the interior-based topological
semantics, where the central epistemic notion studied is knowledge (see, e.g.,van
Benthem and Sarenac, 2004). What we add to this body of work, in Part I of this
dissertation, are the missing epistemic components evidence and belief, as well
as the dynamics of learning new evidence, strengthening the connection between
epistemic logic and topology. We do so by reanalyzing the neighbourhood-based
evidence models of van Benthem and Pacuit (2011) from a topological perspec-
tive. The way we represent evidence and how it connects to justified belief are
inspired by the approach in (van Benthem and Pacuit, 2011), and the evidence
transforming actions considered are adapted from the aforementioned influential
work.

The second topological approach to epistemic logic was initiated by Moss and
Parikh (1992). They introduced the so-called topologic, a bimodal framework to
formalize reasoning about sets and points in a single modal system. Their topo-
logical investigations have a strong motivation from epistemic logic, suggesting
that “simple aspects of topological reasoning are also connected with special-
purpose logics of knowledge” (Moss and Parikh, 1992, p. 95). The key element
Moss and Parikh (1992) introduced to the paradigm of epistemic logic is the ab-
stract notion of epistemic effort. Effort can, roughly speaking, be described as any
type of evidence-gathering—via, e.g., measurement, computation, approximation,
experiment or announcement—that can lead to an increase in knowledge. The
formalism of topologic therefore combines the static notion of knowledge with
the dynamic notion of effort, thus, it is strongly related to dynamic epistemic
logic (Baltag et al., 1998; van Ditmarsch et al., 2007; van Benthem, 2011; Baltag
and Renne, 2016). In Part II of this thesis, we build a bridge between the two
formalisms, which results in both conceptual and technical advantages. While
dynamic epistemic logic expands the array of dynamic attitudes it studies, the
topologic setting obtains epistemically more intuitive axiomatizations, clarifying
the meaning of effort by linking it to well-understood instances such as public and
arbitrary announcements.

***

The contributions of this thesis are presented in two parts. Below, we give a brief
overview of each chapter. Every chapter starts with a brief introduction further
elaborating its content and links to the relevant literature.

Chapter 2 provides the technical preliminaries that are essential for both parts
of the dissertation. This includes, in the first half, a very brief introduction to
the standard Kripke semantics for the basic modal logic. We recall the commonly
studied static systems for epistemic/doxastic logics and the corresponding rela-
tional properties that render these logics sound and complete. In the second part,
we introduce the elementary topological notions that will be used throughout this
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dissertation.

PART I: From Interior Semantics to Evidence Models

Part I is concerned with evidence-based interpretations of justified belief and
knowledge. Starting with a by-now-standard topological interpretation of knowl-
edge as the interior operator, we develop, in a gradual manner, a topological
framework that (1) can talk about evidence not only semantically, but also at
the syntactic level, thereby making the notion of evidence more explicit; (2)
takes evidence as the most primitive notion, and defines belief and knowledge
purely based on it, thereby linking these two crucial notions of epistemology at
a deeper, more basic level. These investigations have considerable philosophical
consequences as they allow us to discern, isolate, and study various aspects of the
notion of evidence, and its relation to justification, knowledge and belief.

Chapter 3 introduces the interior-based topological semantics of McKinsey and
Tarski (1944) as a way to model knowledge, points out its link to the standard
relational semantics, and motivates the interpretation of knowledge as the topo-
logical interior operator. It then discusses an existing topological semantics for
belief based on the derived set operator, and argues that it does not constitute
a satisfactory semantics for belief, especially when considered in tandem with
knowledge as the interior.

Chapter 4 shifts our focus from the topological interpretation of knowledge to the
topological interpretation of belief, and presents the first step toward developing a
topological theory of belief that works well in combination with knowledge as the
interior operator. More precisely, the first part of this chapter presents a review of
the topological belief semantics of (Özgün, 2013; Baltag et al., 2013), addressing
the following questions:

• Given the interior-based topological semantics for knowledge, how can we
construct a topological semantics for belief that can also address the problem
of understanding the relation between knowledge and belief? To what extent
do topological notions capture the intuitive meaning of the intended notion
of belief?

The proposed semantics for belief is derived from Stalnaker’s logical framework in
which belief is realized as a weakened form of knowledge (Stalnaker, 2006), which
leads to a belief logic of extremally disconnected spaces. While this static setting
provides a satisfactory answer for the above questions, the dynamic extension
with public announcement modalities runs into problems due to the structural
properties of extremally disconnected spaces. This leads to the search for a public
announcement friendly logic of knowledge and belief. The second part of this
chapter (based on Section 4.2 of Baltag et al., 2015a) is devoted to solving this
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issue, and the proposed solution consists in interpreting knowledge and belief on
hereditarily extremally disconnected spaces.

While this semantics for belief works well for Stalnaker’s strong notion of belief
as subjective certainty, from a more general perspective, it can be seen somewhat
restrictive for two reasons. It is based on rather exotic classes of topological spaces,
and the corresponding logics do not comprise evidence in a real sense as there
is no syntactic representation of it. This constitutes part of the motivation for
the next chapter, leading to more general and fundamental questions addressed
there.

Chapter 5 contains the main contribution of Part I. Resting on the assumption
that an agent’s rational belief is based on the available evidence, we try to unveil
the concrete relationship between an agent’s evidence, beliefs and knowledge,
and study the evidence dynamics that the designed static account supports. This
project is motivated by both philosophical and technical questions, as well as the
aforementioned drawbacks of our own work in Chapter 4. To be more precise, we
focus on the following questions, among others:

• How does a rational agent who is in possession of some possibly false, pos-
sibly mutually contradictory pieces of evidence put her evidence together in
a consistent way, and form consistent beliefs?

• What are the necessary and sufficient conditions for a piece of evidence to
constitute justification for one’s beliefs? What properties should a piece of
justification possess to entail (defeasible) knowledge?

• How does our formalization of the aforementioned notions help in under-
standing the discussions in formal epistemology regarding the link between
justified belief and knowledge?

• What are the complete axiomatizations of the associated logics of justified
belief, knowledge and evidence? Do they have the finite model property? Are
they decidable?

The above questions also drive the approach of van Benthem and Pacuit (2011);
van Benthem et al. (2012, 2014), which inspired our work considerably. Address-
ing the first question requires defining a “smart” way of aggregating the available
evidence, based on finite and consistent subcollections of it. Topologically, this
leads to a move from a topological subbasis to a basis. This generates a topo-
logical evidence structure that allows us to work with many epistemic modalities
capturing different notions of evidence, belief, and knowledge interpreted using
topological notions. The explicit use of topologies is one of the features of our
setting which separates it from that of van Benthem and Pacuit (2011). Once the
evidence aggregation method is set, we take a coherentist and holistic view on
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justification, and, roughly speaking, define it as a piece of evidence that is consis-
tent with every available evidence. Moreover, in our setting, defeasible knowledge
requires a true justification. We then use our topological setting to formalize sta-
bility and defeasibility theories of knowledge (Lehrer and Paxson, 1969; Lehrer,
1990; Klein, 1971, 1981), as well as relevant notions such as (non-)misleading ev-
idence, clarifying some of the philosophical debates surrounding them. Our main
technical results concern completeness, decidability and the finite model property
for the associated logics.

PART II: From Public Announcements to Effort

In Part II of this dissertation, we no longer discuss belief, but rather focus on
notions of knowledge as well as various types of information dynamics compris-
ing learning new evidence. This part takes the subset space setting of Moss and
Parikh (1992) as a starting point, and is centered around the notions of absolutely
certain knowledge and knowability as “potential knowledge”, as well as the connec-
tions between the abstract notion of epistemic effort encompassing any method
of evidence acquisition and the well-studied dynamic attitudes such as public and
arbitrary public announcements.

Chapter 6 provides the background for Part II and motivates the paradigm shift
between the two parts of this thesis. In particular, it introduces the subset space
semantics of Moss and Parikh (1992) and the topological public announcement
logic of Bjorndahl (2016).

Chapter 7 investigates extensions of the topological public announcement logic
of Bjorndahl (2016) with the effort modality of Moss and Parikh (1992), as well
as with a topological version of the arbitrary announcement modality of Balbiani
et al. (2008). This work is of both conceptual and technical interest, aiming at
clarifying the intuitively obvious, yet formally elusive connection between the
dynamic notions effort and its seemingly special instances: public and arbitrary
announcements. In particular, we address the following questions, and answer
them positive:

• Can we clarify the meaning of the effort modality by linking it to the afore-
mentioned dynamic modalities?

• Does treating the effort modality together with public announcements in a
topological setting provide any technical advantages regarding the complete
axiomatization of its associated logic, decidability and the finite model prop-
erty?

We give a complete axiomatization for the dynamic topologic of effort and public
announcements, which is epistemically more intuitive and, in a sense, simpler than
the standard axioms of topologic (Georgatos, 1993, 1994; Dabrowski et al., 1996).
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Our completeness proof is also more direct, making use of a standard canonical
model construction. Moreover, we study the relations between this extension and
other known logical formalisms, showing in particular that it is co-expressive with
the simpler and older logic of interior and global modality (Goranko and Passy,
1992; Bennett, 1996; Shehtman, 1999; Aiello, 2002), which immediately provides
an easy decidability proof both for the original topologic and for our extension.

Chapter 8 is concerned with the multi-agent generalization of the setting pre-
sented in the previous chapter. Modelling multi-agent epistemic systems in the
style of subset space semantics is not a trivial task. We start the chapter by lay-
ing out some problems one encounters while working with multi-agent extensions
of subset space logics. Our proposal for a multi-agent logic of knowledge and
knowability and its further extensions with public and arbitrary announcements
does not run into these problems and constitutes a novel semantics for the afore-
mentioned notions. In addition, the multi-agent setting presented in this chapter
is general enough not only to model fully introspective, i.e. S5-type knowledge,
but also to interpret S4, S4.2 and S4.3-types of knowledge. This contrasts with
and enriches the existing approaches to subset space semantics for knowledge,
since the other approaches, to the best of our knowledge, can only work with S5
knowledge.

Origin of the material

• Chapter 4 is based on:

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2015a). The topo-
logical theory of belief. Under review. Available online at
http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.pdf.

Part I of Chapter 4 (Sections 4.1-4.2.1) provides a review of (Özgün, 2013;
Baltag et al., 2013), whereas the remainder of the chapter contains material
not covered in (Özgün, 2013; Baltag et al., 2013) but presented in (Baltag
et al., 2015a).

• Chapter 5 is based on two papers, where the latter is an extended version
of the former:

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2016a). Justified
belief and the topology of evidence. In Proceedings of 23rd Workshop on
Logic, Language, Information and Computation (WoLLIC 2016), pp. 83-
103.

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2016b). Justified
belief and the topology of evidence–Extended version. Available online at
http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-21.text.pdf.
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• Chapter 7 is based on:

van Ditmarsch, H., Knight, S., and Özgün, A. (2014). Arbitrary announce-
ments on topological subset spaces. In Proceedings of the 12th European
Conference on Multi-Agent Systems (EUMAS 2014), pp. 252-266.

Baltag, A., Özgün, A., and Vargas-Sandoval, A. L. (2017). Topo-Logic as
dynamic epistemic logic. In Proceedings of the 6th International Workshop
on Logic, Rationality and Interaction (LORI 2017). To appear.

• Chapter 8 is based on:

van Ditmarsch, H., Knight, S., and Özgün, A. (2015b). Announcements
as effort on topological spaces. In Proceedings of the 15th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK 2015), pp. 283-
297.

van Ditmarsch, H., Knight, S., and Özgün, A. (2015c). Announcements as
effort on topological spaces–Extended version. Accepted for publication in
Synthese.

Moreover, although the main results of the following papers are not included in
this dissertation, the discussion concerning their conceptual content contributes
to the present work to a great extent.

van Ditmarsch, H., Knight, S., and Özgün, A. (2017). Private announce-
ments on topological spaces. Studia Logica. Forthcoming.

Bjorndahl, A., and Özgün, A. (2017). Logic and Topology for Knowledge,
Knowability, and Belief. In Proceedings of the 16th Conference on Theoret-
ical Aspects of Rationality and Knowledge (TARK 2017), pp. 88-101.



Chapter 2

Technical Preliminaries

In this chapter, we provide the technical preliminaries essential for the main body
of the thesis. The original work presented in Parts I and II is based on two differ-
ent, yet related topological frameworks. However, we occasionally resort to their
connection with the relational semantics and the well-developed completeness
results therein in order to obtain similar conclusions for the topological coun-
terpart. We therefore primarily use three different formal settings in developing
our original contribution: the standard relational semantics for the basic modal
logic, the interior-based topological semantics à la McKinsey and Tarski (1944),
and the subset space semantics introduced by Moss and Parikh (1992). While
the relational setting serves only as a technical tool utilized in Parts I and II,
the latter two topological settings have inspired the developments presented in
these parts. We leave the background details of these topological settings for later
chapters, and present here only the formal tools that are commonly used in both
parts.

Outline

Our presentation in this chapter is two-fold. Section 2.1 briefly discusses the stan-
dard relational semantics for the language of basic modal logic, and the unimodal
epistemic and doxastic systems that will be studied in later chapters. Section
2.2 introduces the purely topological preliminaries that will be used throughout
the thesis. Additionally, this chapter also serves the purpose of fixing our nota-
tion for the main body of this dissertation. Readers who are familiar with the
aforementioned topics should feel free to skip this chapter.

9
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2.1 Relational Semantics for Modal Logics (of

Knowledge and Belief)

Starting from the pioneering work of Hintikka (1962), if not earlier, modal logic
and its relational semantics—also known as Kripke semantics—have been the
main tools utilized in the formalization of knowledge and belief. Hintikka (1962)
interpreted knowledge and belief as normal modal operators, K and B, respec-
tively, on Kripke models. This enables us to formulate the properties of various
notions of knowledge and belief (of different strength and type) by using modal
formulas of a given epistemic/doxastic language.

In this section, we briefly present the standard relational semantics for the
basic modal language and define some well-known epistemic and doxastic logics.
This is in no way an exhaustive presentation of relational semantics for modal
epistemic and doxastic logics: we here aim to fix notation in order to ease the
presentation in the main chapters and summarize the results we later refer to.
The presentation in this section is based on the basic modal language since we
make use of the technical aspects of the relational setting to prove results almost
exclusively regarding unimodal epistemic/doxastic systems.

2.1.1. Definition. [Syntax of L2] The language of basic modal logic L2 is de-
fined recursively as

ϕ ::= p | ¬ϕ |ϕ ∧ ϕ |2ϕ,

where p ∈ prop, a countable set of propositional variables.

Abbreviations for the Boolean connectives ∨,→ and ↔ are standard, and ⊥ is
defined as p ∧ ¬p. We employ 3ϕ as an abbreviation for ¬2¬ϕ.

Since we, in general, work with the above defined modal language in an epis-
temic/doxastic setting, the particular languages we consider in this work typically
include, instead of 2, modalities such as K and B for knowledge and belief, re-
spectively. Accordingly, LK denotes the basic epistemic language and LB the basic
doxastic language defined as in Definition 2.1.1.

We are particularly interested in the modal systems that are commonly used
in the formal epistemology literature to represent notions of knowledge and be-
lief. Some of the interesting and widely used axioms and an inference rule formal-
izing properties of these notions are listed in Table 2.1.

We again use a similar notational convention as we did in case of the lan-
guages. For example, the axiom of Consistency for belief is denoted by (DB)
Bϕ → ¬B¬ϕ, Positive Introspection for knowledge is written as (4K) Kϕ →
KKϕ, etc.

Let CPL denote all instances of classical propositional tautologies (see, e.g.,
Chagrov and Zakharyaschev, 1997, Section 1.3 for an axiomatization of classical
propositional logic). Throughout this thesis, we use Hilbert-style axiom systems in



2.1. Relational Semantics for Modal Logics (of Knowledge and Belief) 11

(K2) 2(ϕ→ ψ)→ (2ϕ→ 2ψ) Normality
(D2) 2ϕ→ ¬2¬ϕ Consistency
(T2) 2ϕ→ ϕ Factivity
(42) 2ϕ→ 22ϕ Positive Introspection
(.22) ¬2¬2ϕ→ 2¬2¬ϕ Directedness
(.32) 2(2ϕ→ ψ) ∨2(2ψ → ϕ) Connectedness
(52) ¬2ϕ→ 2¬2ϕ Negative Introspection
(Nec2) from ϕ, infer 2ϕ Necessitation
(MP) from ϕ→ ψ and ϕ, infer ` ψ Modus Ponens

Table 2.1: Some unimodal axiom schemes and a rule of inference for 2

order to provide the syntactic definitions of the modal logics we work with. Recall
that, the weakest/smallest normal modal logic, denoted by K2, is defined as the
least subset of L2 containing all instances of propositional tautologies (CPL) and
(K2), and closed under the inference rules (MP) and (Nec2). Then, following
standard naming conventions, we define the following normal modal logics that
are used to represent knowledge and belief of agents with different reasoning
power, where L+(ϕ) denotes the smallest modal logic containing L and ϕ. In other
words, L+(ϕ) is the smallest set of formulas (in the corresponding language) that
contains L and ϕ, and is closed under the inference rules of L. For example:

KT2 = K2 + (T2)
S42 = KT2 + (42)

S4.22 = S42 + (.22)
S4.32 = S42 + (.32)
S52 = S42 + (52)

KD452 = K2 + (D2) + (42) + (52)

Table 2.2: Some normal (epistemic/doxastic) modal logics

While the systems S4K , S4.2K , S4.3K and S5K are considered to be logics for
knowledge of different strength, much work on the formal representation of belief
takes the logical principles of KD45B for granted (see, e.g., Baltag et al. (2008);
van Ditmarsch et al. (2007); Baltag and Smets (2008)). Hintikka (1962) consid-
ered S4K to be the logic of knowledge, S4.2K is defended by Lenzen (1978) and
Stalnaker (2006). Van der Hoek (1993); Baltag and Smets (2008) studied S4.3K
as epistemic logics for agents of stronger reasoning power. While the system S5K
is used in applications of logic in computer science (Fagin et al., 1995; Meyer and
van der Hoek, 1995; van Ditmarsch et al., 2007), it is, as a logic of knowledge,
often deemed to be too strong and rejected by philosophers (see, e.g., Hintikka,
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1962; Voorbraak, 1993, for arguments against S5K). In this thesis, we examine
each of the above systems in different topological frameworks. In the following,
we first present their standard relational semantics.

Before moving on to the standard relational semantics for the basic modal
logic, we briefly recall the following standard terminology for Hilbert-style axiom
systems, and set some notation. Given a logic L defined by a (finitary)1 Hilbert-
style axiom system, an L-derivation/proof is a finite sequence of formulas such
that each element of the sequence is either an axiom of L, or obtained from the
previous formulas in the sequence by one of the inference rules. A formula ϕ
is called L-provable, or, equivalently, a theorem of L, if it is the last formula of
some L-proof. In this case, we write `L ϕ (or, equivalently, ϕ ∈ L). For any set
of formulas Γ and any formula ϕ, we write Γ `L ϕ if there exist finitely many
formulas ϕ1, . . . , ϕn ∈ Γ such that `L ϕ1 ∧ · · · ∧ ϕn → ϕ. We say that Γ is L-
consistent if Γ 6`L ⊥, and L-inconsistent otherwise. A formula ϕ is consistent with
Γ if Γ∪{ϕ} is L-consistent (or, equivalently, if Γ 6`L ¬ϕ). Finally, a set of formulas
Γ is maximally consistent if it is L-consistent and any set of formulas properly
containing Γ is L-inconsistent, i.e. Γ cannot be extended to another L-consistent
set. We drop mention of the logic L when it is clear from the context.

2.1.2. Definition. [Relational Frame/Model] A relational frame F = (X,R) is
a pair where X is a nonempty set and R ⊆ X × X. A relational model M =
(X,R, V ) is a tuple where (X,R) is a relational frame and V : prop→ P(X) is
a valuation map.

Relational frames/models are also called Kripke frames/models. Throughout
this thesis, we use these names interchangeably. We say M = (X,R, V ) is a
relational model based on the frame F = (X,R). While elements of X are called
states or possible worlds, one of which represents the actual state of affairs, called
the actual or real state, R is known as the accessibility or indistinguishability
relation. We let R(x) = {y ∈ X | xRy}. The set R(x) represents the set of states
that the agent considers possible at x. This way, roughly speaking, a relational
structure models the agent’s uncertainty about the actual situation via the truth
conditions given in the following definition.

2.1.3. Definition. [Relational Semantics for L2] Given a relational modelM =
(X,R, V ) and a state x ∈ X, truth of a formula in the language L2 is defined
recursively as follows:

M, x |= p iff x ∈ V (p), where p ∈ prop
M, x |= ¬ϕ iff not M, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= 2ϕ iff for all y ∈ X, if xRy then M, y |= ϕ.

1In Chapter 8, we work with a proof system with an infinitary inference rule. The notion of
derivation for this infinitary logic, and other relevant notions, will be explained in Chapter 8.
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It follows from the above definition that

M, x |= 3ϕ iff there is y ∈ X such that xRy and M, y |= ϕ.

We adopt the standard notational conventions and abbreviations (see e.g.,
Blackburn et al., 2001, Chapter 1.3). If M does not make ϕ true at x, we write
M, x 6|= ϕ. In this case, we say that ϕ is false at x inM. When the corresponding
model is clear from the context, we write x |= ϕ for M, x |= ϕ.

We call a formula ϕ valid in a relational model M = (X,R, V ), denoted
by M |= ϕ, if M, x |= ϕ for all x ∈ X, and it is valid in a relational frame
F = (X,R), denoted by F |= ϕ, if M |= ϕ for every relational model based
on F . Moreover, we say ϕ is valid in a class K of relational frames, denoted by
K |= ϕ, if F |= ϕ for every member of this class, and it is valid, denoted by |= ϕ,
if it is valid in the class of all frames. These definitions can easily be extended to
sets of formulas in the following way: a set Γ ⊆ L2 is valid in a relational frame
F iff F |= ϕ for all ϕ ∈ Γ. We define ‖ϕ‖M = {x ∈ X | M, x |= ϕ} and call
‖ϕ‖M the truth set, or equivalently, extension of ϕ inM. In particular, we write
x ∈ ‖ϕ‖M for M, x |= ϕ. We omit the superscript M when the model is clear
from the context. The crucial concepts of soundness and completeness that link
the syntax and the semantics are defined standardly (see, e.g., Blackburn et al.,
2001, Chapter 4.1).

We conclude the section by listing the relational soundness and completeness
results for the important epistemic and doxastic logics defined in Table 2.2. To
do so, we first list in Table 2.3 some important frame conditions, and then define
some useful order theoretic notions that will also be used in later chapters.

Reflexivity (∀x)(xRx)
Transitivity (∀x, y, z)(xRy ∧ yRz → xRz)
Symmetry (∀x, y)(xRy → yRx)
Antisymmetry (∀x, y)(xRy ∧ yRx→ x = y)
Seriality (∀x)(∃y)(xRy)
Euclideanness (∀x, y, z)(xRy ∧ xRz → yRz)
Directedness (∀x, y, z)((xRy ∧ xRz)→ (∃w)(yRw ∧ zRw))
No right branching (∀x, y, z)((xRy ∧ xRz)→ (yRz ∨ zRy ∨ y = z))
Total (Connected) (∀x, y)(xRy ∨ yRx)

Preorder reflexive and transitive
Partial order reflexive, transitive and antisymmetric
Equivalence relation reflexive, transitive and symmetric

Table 2.3: Relevant Frame Conditions
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Following the traditional conventions in order theory, we also call a reflexive
and transitive relational frame (X,R) a preordered set; and a reflexive, transitive
and antisymmetric frame a partially ordered set, or, in short, a poset. The following
order theoretic notions will be useful in later chapters.

2.1.4. Definition. [Up/Down-set,Upward/Downward-closure] Given a preor-
dered set (X,R) and a subset A ⊆ X,

• A is called an upward-closed set (or, in short, an up-set) of (X,R) if for
each x, y ∈ X, xRy and x ∈ A imply y ∈ A;

• A is called a downward-closed set (or, in short, a down-set) of (X,R) if for
each x, y ∈ X, yRx and x ∈ A imply y ∈ A;

• the upward-closure of A, denoted by ↑A, is the smallest up-set of (X,R)
that includes A. In other words, ↑A = {y ∈ X | ∃x ∈ A with xRy};

• the downward-closure of A, denoted by ↓A, is the smallest down-set of
(X,R) that includes A. In other words, ↓A = {x ∈ X | ∃y ∈ A with xRy}.

For every element x ∈ X, we simply write ↑x and ↓x for the upward and
downward-closure of the singleton {x}, respectively.

We can now state some of the well-known relational soundness and com-
pleteness results. For a more detailed discussion, we refer to (Chagrov and Za-
kharyaschev, 1997; Blackburn et al., 2001).

2.1.5. Theorem (Relational (Kripke) Completeness).

• S42 is sound and complete with respect to the class of preordered sets;

• S4.22 is sound and complete with respect to the class of directed preordered
sets;

• S4.32 is sound and complete with respect to the class of total preordered
sets;

• S52 is sound and complete with respect to the class of frames with equiva-
lence relations;

• KD452 is sound and complete with respect to the class of serial, transitive
and Euclidean frames.

Following Theorem 2.1.5, we sometimes refer to a class of relational frames/
models by the name of its corresponding logic. For example, a preordered set is
also called an S4-frame. Similarly, a relational model based on a serial, transitive
and Euclidean frame is also called a KD45-model, etc.
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2.2 Background on Topology

In this section, we introduce the topological concepts that will be used through-
out this thesis. We refer to (Dugundji, 1965; Engelking, 1989) for a thorough
introduction to topology.

2.2.1. Definition. [Topological Space] A topological space is a pair (X, τ), where
X is a nonempty set and τ is a family of subsets of X such that

• X, ∅ ∈ τ, and

• τ is closed under finite intersections and arbitrary unions.

The set X is a space; the family τ is called a topology on X. The elements of
τ are called open sets (or opens) in the space. If for some x ∈ X and an open
U ⊆ X we have x ∈ U , we say that U is an open neighborhood of x. A set C ⊆ X
is called a closed set if it is the complement of an open set, i.e., it is of the form
X\U for some U ∈ τ . We let τ̄ = {X\U | U ∈ τ} denote the family of all closed
sets of (X, τ). Moreover a set A ⊆ X is called clopen if it is both closed and open.

A point x is called an interior point of a set A ⊆ X if there is an open
neighbourhood U of x such that U ⊆ A. The set of all interior points of A is
called the interior of A and is denoted by Int(A). Then, for any A ⊆ X, Int(A)
is an open set and is indeed the largest open subset of A, that is

Int(A) =
⋃
{U ∈ τ | U ⊆ A}.

Dually, for any x ∈ X, x belongs to the closure of A, denoted by Cl(A), if and
only if U ∩ A 6= ∅ for each open neighborhood U of x. It is not hard to see that
Cl(A) is the smallest closed set containing A, that is

Cl(A) =
⋂
{C ∈ τ̄ | A ⊆ C},

and that Cl(A) = X\Int(X\A) for all A ⊆ X. It is well known that the interior
Int and the closure Cl operators of a topological space (X, τ) satisfy the follow-
ing properties (the so-called Kuratowski axioms) for any A,B ⊆ X (see, e.g.,
Engelking, 1989, pp. 14-15)2:

(I1) Int(X) = X (C1) Cl(∅) = ∅
(I2) Int(A) ⊆ A (C2) A ⊆ Cl(A)
(I3) Int(A ∩B) = Int(A) ∩ Int(B) (C3) Cl(A ∪B) = Cl(A) ∪ Cl(B)
(I4) Int(Int(A)) = Int(A) (C4) Cl(Cl(A)) = Cl(A)

2The properties (I1)−(I4) (and, dually, (C1)−(C4)) are what render the knowledge modality
interpreted as the topological interior operator an S4-type modality. We will elaborate on this
in Chapter 3.
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A set A ⊆ X is called dense in X if Cl(A) = X and it is called nowhere dense
if Int(Cl(A)) = ∅. Moreover, the boundary of a set A ⊆ X, denoted by Bd(A), is
defined as Bd(A) = Cl(A)\Int(A).

A point x ∈ X is called a limit point (or accumulation point) of a set A ⊆ X if
for each open neighborhood U of x, we have A∩ (U\{x}) 6= ∅. The set of all limit
points of A is called the derived set of A and is denoted by d(A). For any A ⊆ X,
we also let t(A) = X\d(X\A). We call t(A) the co-derived set of A. Moreover, a
set A ⊆ X is called dense-in-itself if A ⊆ d(A). A space X is called dense-in-itself
if X = d(X).

2.2.2. Definition. [Topological Basis] A family B ⊆ τ is called a basis for a
topological space (X, τ) if every non-empty open subset of X can be written as
a union of elements of B.

We call the elements of B basic opens. We can give an equivalent definition
of an interior point by referring only to a basis B for a topological space (X, τ):
for any A ⊆ X, x ∈ Int(A) if and only if there is an open set U ∈ B such that
x ∈ U and U ⊆ A.

Given any family Σ = {Aα | α ∈ I} of subsets of X, there exists a unique,
smallest topology τ(Σ) with Σ ⊆ τ(Σ) (Dugundji, 1965, Theorem 3.1, page 65).
The family τ(Σ) consists of ∅, X, all finite intersections of the Aα, and all arbitrary
unions of these finite intersections. Σ is called a subbasis for τ(Σ), and τ(Σ) is
said to be generated by Σ. The set of finite intersections of members of Σ forms
a basis for τ(Σ).

2.2.3. Definition. [Subspace] Given a topological space (X, τ) and a nonempty
subset P ⊆ X, the topological space (P, τP ) is called a subspace of (X, τ) (induced
by P ) where τP = {U ∩ P | U ∈ τ}.

The closure ClP , the interior IntP and the derived set dP operators of the
subspace (P, τP ) can be defined in terms of the closure and interior operators of
(X, τ) as, for all A ⊆ P ,

ClP (A) = Cl(A) ∩ P
IntP (A) = Int((X\P ) ∪ A) ∩ P
dP (A) = d(A) ∩ P.

2.2.4. Definition. [Hereditary Property] A property of a topological space is
called hereditary if each subspace of the space possesses this property.

2.2.5. Lemma. For any two topological space (X, τ) and (X, τ ′), if τ ⊆ τ ′ then
Int τ (A) ⊆ Int τ ′(A) for all A ⊆ X.

We here end the presentation of the background material for this dissertation.
In the next chapter, we introduce the interior-based topological semantics for the
basic modal language and motivate the use of topological models in epistemic
logic.
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Chapter 3

The Interior Semantics

In this chapter, we provide the formal background for the interior-based topologi-
cal semantics for the basic modal logic that originates from the work of McKinsey
(1941), and McKinsey and Tarski (1944). In this semantics the modal operator 2
is interpreted on topological spaces as the interior operator. As briefly discussed
in Chapter 1, among other reasons, the fact that the epistemic system S4 is the
logic of all topological spaces, and the interpretation of open sets as ‘observable
properties’ or ‘pieces of evidence’ put the interior-based topological semantics on
the radar of epistemic logicians.

In the following, we briefly introduce the so-called topological interior seman-
tics, focusing particularly on its epistemic insights, and explain how and why
it constitutes a satisfactory interpretation for (evidence-based) knowledge, and,
consequently, why—in certain contexts—it forms a richer semantics than the re-
lational semantics. Our contribution in Part I is inspired by and developed on the
basis of this setting. In later chapters, we extend and enrich the interior semantics
in order to formalize different notions of (evidence-based) knowledge and justified
belief, as well as various notions of evidence possession.

Outline

Section 3.1 is a technical section introducing the interior semantics together with
its connection to the relational semantics (Section 3.1.2). In Section 3.1.3, we
list the general topological soundness and completeness results for the systems
S4, S4.2 and S4.3 that will be used in later chapters. Section 3.2 then explains
the motivation behind the use of the interior operator as a knowledge modality,
where the main focus will be on the underlying evidence-based interpretation.
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3.1 Background on the Interior Semantics

This section gives an overview of the essential technical preliminaries of the inte-
rior semantics. The presentation of this section follows (van Benthem and Bezhan-
ishvili, 2007, Section 2). The reader who is familiar with the source and topic
should feel free to continue with Section 3.2.

3.1.1 Syntax and Semantics

We work with the basic epistemic language LK as given in Definition 2.1.1. Since
we examine the interior semantics in an epistemic context, we prefer to use the
modality Kϕ (instead of 2ϕ) that is read as “the agent knows ϕ (is true)”. The
dual modality K̂ for epistemic possibility is defined as K̂ϕ := ¬K¬ϕ.

3.1.1. Definition. [Topological Model] A topological model (or, in short, a topo-
model) X = (X, τ, V ) is a triple, where (X, τ) is a topological space and V :
prop→ P(X) is a valuation function.

3.1.2. Definition. [Interior Semantics for LK ] Given a topo-model X=(X, τ, V )
and a state x ∈ X, truth of a formula in the langauge LK is defined recursively
as follows:

X , x |= p iff x ∈ V (p)
X , x |= ¬ϕ iff not X , x |= ϕ
X , x |= ϕ ∧ ψ iff X , x |= ϕ and X , x |= ψ
X , x |= Kϕ iff (∃U ∈ τ)(x ∈ U and ∀y ∈ U, X , y |= ϕ)

It is useful to note the derived semantics for K̂ϕ:

X , x |= K̂ϕ iff (∀U ∈ τ)(x ∈ U implies ∃y ∈ U, M, y |= ϕ)

Truth and validity of a formula ϕ of LK are defined in the same way as for
the relational semantics. We here apply similar notational conventions as we have
set in Section 2.1. We let [[ϕ]]X = {x ∈ X | X , x |= ϕ} denote the truth set,
or equivalently, extension of a formula ϕ in topo-model X . We emphasize the
difference between ||ϕ||M and [[ϕ]]X : while the former refers to the truth set in a
relational model under the standard relational semantics (Definition 2.1.3), the
latter is defined with respect to topo-models and the interior semantics (Definition
3.1.2). We again omit the superscript for the model when it is clear from the
context.

The semantic clauses for K and K̂ give us exactly the interior and the closure
operators of the corresponding model. In other words, according to the interior
semantics, we have

[[Kϕ]] = Int([[ϕ]])

[[K̂ϕ]] = Cl([[ϕ]]).
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3.1.2 Connection between relational and topological mod-
els

As is well known, there is a tight link between the relational semantics and the
interior semantics at the level of reflexive and transitive frames: every reflexive
and transitive Kripke frame corresponds to an Alexandroff space. The class of
reflexive and transitive frames therefore forms a subclass of all topological spaces.
This connection does not only help us to see how the interior semantics and the
relational semantics relate to each other and how the former extends the latter,
but it also provides a method to prove topological completeness results by using
the already established results for the relational counterpart.

3.1.3. Definition. [Alexandroff space] A topological space (X, τ) is an Alexan-
droff space if τ is closed under arbitrary intersections, i.e.,

⋂
A ∈ τ for any A ⊆ τ.

A topo-model X = (X, τ, V ) is called an Alexandroff model if (X, τ) is an
Alexandroff space. A very important feature of an Alexandroff space (X, τ) is
that every point x ∈ X has a smallest open neighbourhood. Given a reflexive and
transitive Kripke frame (X,R), we can construct an Alexandroff space (X, τR) by
defining τR to be the set of all up-sets of (X,R). The up-set R(x) = ↑x = {y ∈
X | xRy} forms the smallest open neighborhood containing the point x. It is then
not hard to see that the set of all down-sets of (X,R) coincides with the set of
all closed sets in (X, τR), and that for any A ⊆ X, we have Cl τR(A) = ↓A, where
Cl τR denotes the closure operator of (X, τR). Conversely, for every topological
space (X, τ), we define a specialization preorder vτ on X by

x vτ y iff x ∈ Cl({y}) iff (∀U ∈ τ)(x ∈ U implies y ∈ U).

(X,vτ ) is therefore a reflexive and transitive Kripke frame, i.e., a preordered
set. Moreover, we have that R = vτR , and that τ = τvτ if and only if (X, τ) is
Alexandroff (see, e.g., van Benthem and Bezhanishvili, 2007). Hence, there is a
natural one-to-one correspondence between reflexive and transitive Kripke models
and Alexandroff models. In particular, for any reflexive and transitive Kripke
model M = (X,R, V ), we set B(M) = (X, τR, V ), and for any Alexandroff
model X = (X, τ, V ), we can form a reflexive and transitive Kripke model A(X ) =
(X,vτ , V ). Moreover, any two models that correspond to each other in the above
mentioned way make the same formulas of LK true at the same states, as shown
in Proposition 3.1.4.

3.1.4. Proposition. For all ϕ ∈ LK,

1. for any reflexive and transitive Kripke model M = (X,R, V ) and x ∈ X,

M, x |= ϕ iff B(M), x |= ϕ;
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2. for any Alexandroff model X = (X, τ, V ) and x ∈ X,

X , x |= ϕ iff A(X ), x |= ϕ.

Therefore, reflexive and transitive Kripke models and Alexandroff models are
just different representations of each other with respect to the language LK .
In particular, the modal equivalence stated in Proposition 3.1.4-(1) constitutes
the key step that allows us to use the relational completeness results to prove
completeness with respect to the interior semantics.

3.1.3 Soundness and Completeness for S4K, S4.2K and S4.3K

Having explained the connection between reflexive-transitive Kripke models and
Alexandroff models, we can now state the topological completeness results for
S4K and its two normal extensions S4.2K and S4.3K that are of interests in later
chapters. In fact, Proposition 3.1.4-(1) entails the following more general result
regarding all Kripke complete normal extensions of S4K .

3.1.5. Proposition (van Benthem and Bezhanishvili, 2007). Every nor-
mal extension of S4K (over the language LK) that is complete with respect to the
standard relational semantics is also complete with respect to the interior seman-
tics.

Proof:
Let LK be a normal extension of S4K that is complete with respect to the rela-
tional semantics and ϕ ∈ LK such that ϕ 6∈ LK . Then, by relational completeness
of LK , there exists a relational model M = (X,R, V ) and x ∈ X such that
M, x 6|= ϕ. Since LK extends the system S4K , which is complete with respect
to reflexive and transitive Kripke models, R can be assumed to be at least re-
flexive and transitive. Then, by Proposition 3.1.4-(1), we obtain B(M), x 6|= ϕ. 2

We can therefore prove completeness of the Kripke complete extensions of
S4K with respect to the interior semantics via their relational completeness. What
makes the interior semantics more general than Kripke semantics is tied to sound-
ness. For example, S4K is not only sound with respect to Alexandroff spaces, but
also with respect to all topological spaces.

3.1.6. Theorem (McKinsey and Tarski, 1944). S4K is sound and complete
with respect to the class of all topological spaces under the interior semantics.

Similar results have also been proven for S4.2K and S4.3K for the following
restricted classes of topological spaces.

3.1.7. Definition. [Extremally Disconnected Space] A topological space (X, τ)
is called extremally disconnected if the closure of each open subset of X is open.
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For example, Alexandroff spaces constructed from directed preorders, i.e.,
from S4.2K-frames, are extremally disconnected. To elaborate, it is routine to
verify that, given a directed preordered set (X,R) and an up-set U of (X,R), the
downward-closure ↓U of the set U is still an up-set. Recall that Cl τR(U) = ↓U ,
where (X, τR) is the corresponding Alexandroff space and Cl τR is its closure op-
erator. Therefore, since the set of all up-sets of (X,R) forms the corresponding
Alexandroff topology τR, we conclude that (X, τR) is extremally disconnected.
This, in fact, establishes the topological completeness result for S4.2K via Propo-
sition 3.1.5. It is also well known that topological spaces that are Stone-dual to
complete Boolean algebras, e.g., the Stone-Čech compactification β(N) of the set
of natural numbers with a discrete topology, are extremally disconnected (Siko-
rski, 1964).

3.1.8. Definition. [Hereditarily Extremally Disconnected Space] A topological
space (X, τ) is called hereditarily extremally disconnected (h.e.d.) if every subspace
of (X, τ) is extremally disconnected.

Alexandroff spaces corresponding to total preorders, i.e., corresponding to
S4.3K-frames, are hereditarily extremally disconnected. To see this, observe that
for every nonempty Y ⊆ X, the subspace (Y, (τR)Y ) of (X, τR) is in fact the
Alexandroff space constructed from the subframe (Y,R ∩ (Y × Y )) of (X,R).
Moreover, every subframe of a total preorder (X,R) is still a total preorder,
thus, is also a directed preorder. Therefore, the correspondence between total
preorders and h.e.d spaces follows from the fact that Alexandroff spaces con-
structed from directed preorders are extremally disconnected. Another inter-
esting and non-Alexandroff example of an hereditarily extremally disconnected
space is the topological space (N, τ) where N is the set of natural numbers and
τ = {∅, all cofinite subsets of N}. In this space, the set of all finite subsets of N
together with ∅ and X completely describes the set of closed subsets with respect
to (N, τ). It is not hard to see that for any U ∈ τ , Cl(U) = N and Int(C) = ∅ for
any closed C with C 6= X. Moreover, every countable Hausdorff extremally dis-
connected space is hereditarily extremally disconnected (Blaszczyk et al., 1993).
For more examples of hereditarily extremally disconnected spaces, we refer to
(Blaszczyk et al., 1993).

3.1.9. Theorem (Gabelaia, 2001). S4.2K is sound and complete with respect
to the class of extremally disconnected topological spaces under the interior se-
mantics.

3.1.10. Theorem (Bezhanishvili et al., 2015). S4.3K is sound and com-
plete with respect to the class of hereditarily extremally disconnected topological
spaces under the interior semantics.
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3.2 The Motivation behind Knowledge as Inte-

rior

Having presented the interior semantics, we can now elaborate on its epistemic
significance that has inspired our work in this dissertation, in particular, the
content of Chapter 4 and Chapter 5.

We would first like to note that the conception of knowledge as interior is
not the only type of knowledge we study in this thesis. We even question whether
knowledge as interior is the “only” type of knowledge that a topological semantics
can account for and answer in the negative (see Chapters 5-7). However, the
aforementioned semantics can be considered as the most primitive, in a sense
as the most direct way of interpreting an epistemic modality in this setting. We
therefore argue that, even in this very basic form, the interior semantics works at
least as well as the standard relational semantics for knowledge, and, additionally,
it extends the relational semantics while admitting an evidential interpretation
of knowledge.

The interior semantics is naturally epistemic and extends the relational
semantics. The initial reason as to why the topological interior operator can
be considered as knowledge is inherent to the properties of this operator. As
noted in Section 2.2, the Kuratowski axioms (I1)-(I4) correspond exactly to the
axioms of the system S4K , when K is interpreted as the interior modality (see
Table 3.1 for the one-to-one correspondence). Therefore, elementary topological

S4K axioms Kuratowski axioms
(KK) K(ϕ ∧ ψ)↔ (Kϕ ∧Kψ) Int(A ∩B) = Int(A) ∩ Int(B)
(TK) Kϕ→ ϕ Int(A) ⊆ A
(4K) Kϕ→ KKϕ Int(A) ⊆ Int(Int(A))
(NecK) from ϕ, infer Kϕ Int(X) = X

Table 3.1: S4K vs. Kuratowski axioms

operators such as the interior operator, or, dually, the closure operator produces
the epistemic logic S4K with no need for additional constraints (also see Theorem
3.1.6). In other words, in its most general form, topologically modelled knowledge
is Factive and Positively Introspective, however, it does not necessarily possess
stronger properties. On the other hand, this in no way limits the usage of interior
semantics for stronger epistemic systems. In accordance with the case for the
relational semantics, we can restrict the class of spaces we work with and interpret
stronger epistemic logics such as S4.2K , S4.3K (see Theorems 3.1.9 and 3.1.10)
and S5K in a similar manner (see, e.g., van Benthem and Bezhanishvili, 2007,
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p. 253). To that end, topological spaces provide sufficiently flexible structures
to study knowledge of different strength. They are moreover naturally epistemic
since the most general class of spaces, namely the class of all topological spaces,
constitutes the class of models of arguably the weakest, yet philosophically the
most accepted normal system S4K . Moreover, as explained in Section 3.1.2, the
relational models for the logic S4K , and for its normal extensions, correspond to
the subclass of Alexandroff models (see Proposition 3.1.4). The interior semantics
therefore generalizes the standard relational semantics for knowledge.

One may however argue that the above reasons are more of a technical nature
showing that the interior semantics works as well as the relational semantics,
therefore motivate “why we could use topological spaces” rather than “why we
should use topological spaces” to interpret knowledge as opposed to using rela-
tional semantics. Certainly the most important argument in favour of the con-
ception of knowledge as the interior operator is of a more ‘semantic’ nature: the
interior semantics provides a deeper insight into the evidence-based interpretation
of knowledge.

Evidence as open sets. The idea of treating ‘open sets as pieces of evidence’ is
adopted from the topological semantics for intuitionistic logic, dating back to the
1930s (see, e.g., Troelstra and van Dalen, 1988). In a topological-epistemological
framework, typically, the elements of a given open basis are interpreted as observ-
able evidence, whereas the open sets of the topology are interpreted as properties
that can be verified based on the observable evidence. In fact, the connection be-
tween evidence and open sets comes to exist at the most elementary level, namely
at the level of a subbasis. We can think of a subbasis as a collection of observable
evidence that is directly obtained by an agent via, e.g., testimony, measurement,
approximation, computation or experiment. The family of directly observable
pieces of evidence therefore naturally forms an open topological basis: closure
under finite intersection captures an agent’s ability to put finitely many pieces
into a single piece, i.e., her ability to derive more refined evidence from direct
ones by combining finitely many of them together. Therefore, a topological space
does not only account for the plain conception of evidence as open sets, but it
is rich enough to differentiate various notions of evidence possession. The above-
mentioned correspondence between evidence and open sets constitutes the main
motivation behind the topological frameworks developed in this dissertation and
we will elaborate on different views and interpretations of topological evidence in
later chapters, starting with Chapter 5.

On the other hand, the basic epistemic language LK interpreted by the in-
terior semantics is clearly not expressive enough to distinguish different types of
open sets, e.g., it cannot distinguish a basic open from an arbitrary open, simply
because the only topological modality K is interpreted as an existential claim of
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an open neighbourhood of the actual state that entails the known proposition:

x ∈ KP iff x ∈ Int(P ) (3.1)

iff (∃U ∈ τ)(x ∈ U and U ⊆ P ) (3.2)

iff (∃U ∈ Bτ )(x ∈ U and U ⊆ P ) (3.3)

where Bτ is a basis for τ . Therefore, in its current form, the interior semantics
does not form a sufficiently strong setting to account for (various type of) evi-
dence possession alone. However, even based on this basic shape, the notion of
knowledge as the interior operator yields an evidential interpretation at a purely
semantic level. More precisely, from an extensional point of view1, a proposition
P is true at world x if x ∈ P . If an open U is included in a set P , then we can say
that proposition P is entailed/supported by evidence U . Open neighbourhoods U
of the actual world x play the role of sound (correct, truthful) evidence. There-
fore, as basic open sets are the pieces of observable evidence, (3.3) means that
the actual world x is in the interior of P iff there exists a sound piece of evidence
U that supports P . That is, according to the interior semantics, the agent knows
P at x iff she has a sound/correct piece of evidence supporting P . Moreover,
open sets will then correspond to properties that are in principle verifiable by the
agent: whenever they are true, they are supported by a sound piece of evidence,
therefore, can be known. Dually, we have

x 6∈ Cl(P ) iff (∃U ∈ τ)(x ∈ U and U ⊆ X\P ) (3.4)

meaning that closed sets correspond to falsifiable properties: whenever they are
false, they are falsified by a sound piece of evidence. These ideas have also been
used and developed in (Vickers, 1989; Kelly, 1996) with connections to episte-
mology, logic and learning theory.

The interior-based semantics for knowledge has been extended to multiple
agents (van Benthem et al., 2005), to common knowledge (Barwise, 1988; van
Benthem and Sarenac, 2004) to logics of learning and observational effort (Moss
and Parikh, 1992; Dabrowski et al., 1996; Georgatos, 1993, 1994), to topological
versions of dynamic-epistemic logic (Zvesper, 2010) (see Aiello et al., 2007, for a
comprehensive overview on the field). Belief on topological spaces, rather surpris-
ingly, has not been investigated and developed as much as knowledge, especially
in connection with topological knowledge.

3.3 Belief on Topological Spaces?

As explained in Section 3.2, as far as an evidential interpretation of knowledge
is concerned, the interior semantics improves the standard relational semantics,

1Extensional here means any semantic formalism that assigns the same meaning to sentences
having the same extension.
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most importantly, for the reason that evidential justification for knowing some-
thing is embedded in the semantics. It then seems natural to ask whether a
topological semantics can also account for notions of (evidentially) justified be-
lief. Answering this question constitutes one of the main goals of Part I of this
dissertation.

One of the crucial properties that distinguishes knowledge from belief is its
veracity (formalised by the axiom (TK)). However, no matter how idealized and
rational the agent is, it must be possible for her to believe false propositions,
yet she is expected to hold consistent beliefs (formalized by the axiom (DB)). To
the best of our knowledge, the first worked out topological semantics for belief is
proposed by Steinsvold (2006) in terms of the co-derived set operator. According
to the co-derived set interpretation of belief,

x ∈ BP iff (∃U ∈ τ)(x ∈ U and U\{x} ⊆ P ), (3.5)

i.e., x ∈ BP iff x ∈ t(P ). We here note that this topological semantics inter-
preting the modal operator 2 as the co-derived set operator, or dually, 3 as the
derived set operator was also pioneered by McKinsey and Tarski (1944), and later
extensively developed by the Georgian logic school led and inspired by Esakia,
and their collaborators (see, e.g., Esakia, 2001, 2004; Bezhanishvili et al., 2005,
2009; Beklemishev and Gabelaia, 2014; Kudinov and Shehtman, 2014). Steinsvold
(2006) was the first to propose to use this semantics to interpret belief, and proved
soundness and completeness for the standard belief system KD45B. This account
still requires having a truthful piece of evidence for the believed proposition, how-
ever, the proposition itself does not have to be true. Therefore, it is guaranteed
that the agent may hold false beliefs. However, as also discussed in (Baltag et al.,
2013; Özgün, 2013), and briefly recapped here, this semantics further guarantees
that in any topo-model and any state in this model, there is at least one false
belief, that is, the agent always believes the false proposition X\{x} at the actual
state x. This is the case because for any topological space (X, τ) and x ∈ X,
we have x 6∈ d({x}), i.e., x ∈ t(X\{x}), therefore, the clause (3.5) entails that
x ∈ B(X\{x}) always holds. This is an undesirable and disadvantageous prop-
erty, especially if we also want to study dynamics such as belief revision, updates
or learning. Always believing X\{x} prevents the agent to ever learning the ac-
tual state unless she believes everything. Formally speaking, x ∈ B({x}) iff the
singleton {x} is an open, and in this case, the agent believes everything at x.
In order to avoid these downsides and obtain KD45B, we have to work with the
so-call DSO-spaces, as shown by Steinsvold (2006). A DSO-space is defined to
be a dense-in-itself space (i.e., a space with no singleton opens) in which every
derived set d(A) is open.

Moreover, in a setting where knowledge as the interior and belief as the co-
derived set operator are studied together, we obtain the equality

KP = P ∩BP,
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stating that knowledge is true belief. Therefore, this semantics yields a formal-
ization of knowledge and belief that is subject to well-known Gettier counterex-
amples (Gettier, 1963).2

In the next chapter, we present another topological semantics proposed by
Baltag et al. (2013) for belief, in particular, for Stalnaker’s notion of belief as
subjective certainty (Stalnaker, 2006), in terms of the closure of the interior op-
erator on extremally disconnected spaces. Baltag et al. (2013) have argued that
this semantics is better behaved, especially when considered together with the
notion of knowledge as the interior operator. They moreover provided a sound-
ness and completeness result for the belief system KD45B with respect to the class
of extremally disconnected spaces, which extends the class of DSO-spaces. How-
ever, this setting still encounters problems when extended for public announce-
ments. We then propose a solution consisting in interpreting belief in a similar
way based on hereditarily extremally disconnected spaces, and axiomatize the
belief logic of hereditarily extremally disconnected spaces.

2This connection has also been observed in (Steinsvold, 2006, Section 1.11), and an alterna-
tive topological semantics for knowledge in terms of clopen sets is suggested without providing
any further technical results. Steinsvold (2006) does not elaborate on to what extend his pro-
posed semantics for knowledge could give new insight into the Gettier problem and leaves this
point open for discussion.



Chapter 4

A topological theory of “justified”
belief: an initial attempt

Understanding the relation between knowledge and belief is an issue of central
importance in epistemology. Especially after Gettier (1963) shattered the tradi-
tional account of knowledge as justified true belief, many epistemologists have
attempted to strengthen the latter to attain a satisfactory notion of the former.
According to this approach, one starts with a weak notion of belief (which is at
least justified and true) and tries to reach knowledge by making the chosen no-
tion of belief stronger in such a way that the defined notion of knowledge would
no longer be subject to Gettier-type counterexamples (Gettier, 1963).1 More re-
cently, there has also been some interest in reversing this project—deriving belief
from knowledge—or, at least, putting “knowledge first” (Williamson, 2000). In
this spirit, Stalnaker (2006) has proposed a formal framework in which belief is
realized as a weakened form of knowledge. More precisely, beginning with a logical
system in which both belief and knowledge are represented as primitives, Stal-
naker formalizes some natural-seeming relationships between the two, and proves
on the basis of these relationships that belief can be defined from knowledge. To
this end, Stalnaker’s syntactic formalization seems to be analogous to the afore-
mentioned status quo of the interior semantics for knowledge and of a topological
interpretation for belief, where the interpretation of knowledge is given and a
good semantics for belief is to be unveiled.

Baltag et al. (2013) and Özgün (2013), starting from Stalnaker’s formalism,
proposed to interpret belief, in particular Stalnaker’s belief, as subjective cer-
tainty, in terms of the closure of the interior operator on extremally disconnected
spaces (Section 4.2 explains the reason for restriction to extremally disconnected

1Among this category, we can mention the defeasibility analysis of knowledge (Lehrer and
Paxson, 1969; Lehrer, 1990; Klein, 1971, 1981), “no false lemma” account (Clark, 1963), the
sensitivity account (Nozick, 1981), the contextualist account (DeRose, 2009) and the safety
account (Sosa, 1999). For an overview of responses to the Gettier challenge and a detailed
discussion, we refer the reader to (Ichikawa and Steup, 2013; Rott, 2004).
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spaces). This static setting, developed based on extremally disconnected spaces,
however could not be extended with updates for public announcements due to
some structural properties of the extremally disconnected spaces (see Section
4.2.2). One way of dealing with this problem based on all topological spaces, lead-
ing to weakening of the underlying knowledge and belief logics, has been presented
in (Baltag et al., 2015b). In this chapter, we present a solution approaching the is-
sue from the opposite direction, namely, we propose to restrict the class of spaces
we work with to the class of hereditarily extremally disconnected spaces.

Outline

Section 4.1 presents Stalnaker’s combined system of knowledge and belief, and
lists the important aspects of his work that inspired (Özgün, 2013; Baltag et al.,
2013). In Section 4.2, we review the topological belief semantics of (Özgün, 2013;
Baltag et al., 2013), and, Section 4.2.2 recalls why updates do not work on ex-
tremally disconnected spaces. In Section 4.3, we introduce the material that goes
beyond (Özgün, 2013; Baltag et al., 2013), and model belief, conditional beliefs
and public announcements on hereditarily extremally disconnected spaces and
present several completeness results regarding KD45B and its extensions with
conditional beliefs and public announcements.

This chapter is based on (Baltag et al., 2015a).

4.1 Belief as subjective certainty

Stalnaker (2006) focuses on the properties of knowledge, belief and the relation
between the two. He approaches the problem of understanding the precise con-
nection between knowledge and belief from an unusual perspective by following
a “knowledge-first” approach. That is, unlike most proposals in the formal epis-
temology literature, he starts with a chosen notion of knowledge and weakens it
to obtain belief. He bases his analysis on a strong conception of belief as “subjec-
tive certainty”: from the point of the agent in question, her belief is subjectively
indistinguishable from her knowledge.

Stalnaker (2006) works with the bimodal language LKB given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ,

augmenting the logic S4K with the additional axioms schemes presented in Table
4.1.

Let Stal denote this combined logic.2 Most of the above axioms, such as S4K ,

2 What justifies the properties of knowledge and belief stated in Stal may be debatable,
though not in the scope of this dissertation. We refer to (Bjorndahl and Özgün, 2017) for a
topological-based reformulation of Stalnaker’s system.
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(DB) Bϕ→ ¬B¬ϕ Consistency of belief
(sPI) Bϕ→ KBϕ Strong positive introspection
(sNI) ¬Bϕ→ K¬Bϕ Strong negative introspection
(KB) Kϕ→ Bϕ Knowledge implies belief
(FB) Bϕ→ BKϕ Full belief

Table 4.1: Stalnaker’s additional axiom schemes

(DB), (KB), are widely taken for granted by many formal epistemologists (see
Section 2.1 for some sources). The properties (sPI) and (sNI) state that Stal-
naker’s agent has full introspective access to her beliefs. Finally, (FB) constitutes
the key property of belief as subjective certainty, the notion of belief Stalnaker
seeks to capture. In his setting, the agent fully believes ϕ iff she believes that
she knows it.3 He therefore studies a strong notion of belief that is very close to
knowledge.

From these first principles formalizing the interplay between knowledge and
belief, Stalnaker (2006) extracts the properties regarding the unimodal fragments
for knowledge and for belief, as well as a definition of belief in terms of knowledge.
More precisely, he shows that

• Stal derives S4.2K as the pure logic of knowledge (although only S4K was
initially assumed);

• Stal derives KD45B as the pure logic of belief; and

• it proves the equivalence Bϕ↔ K̂Kϕ.

He therefore argues—based on the first principles of the system Stal—that the
“true” logic of knowledge is S4.2K , that the “true” logic of belief is KD45B, and
that belief is definable in terms of knowledge as the epistemic possibility of knowl-
edge. As a conclusion of the last item, Stal constitutes a formalization of knowledge
and belief admitting conceptual priority of belief over knowledge. Moreover, given
the interior semantics for knowledge, the equation Bϕ ↔ K̂Kϕ yields a natural
topological semantics for full belief (Baltag et al., 2013; Özgün, 2013).

4.2 The Topological Semantics for Full Belief

The topological semantics for Stal, and in particular for full belief, was first stud-
ied in (Baltag et al., 2013; Özgün, 2013). They propose to extend the interior
semantics for knowledge by a semantic clause for belief, and model belief as the
closure of the interior operator on extremally disconnected spaces. The restriction

3The converse direction of (FB) is easily derivable in Stal.
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to the class of extremally disconnected spaces is imposed by the axioms of Stal,
that is, e.g., the axiom (DB) as well as the derived principles such as (KB) and
(.2K) define extremally disconnectness when K is interpreted as the interior op-
erators and B is interpreted as the closure of the interior operator (see Gabelaia,
2001, Theorem 1.3.3 for (.2K), and Özgün, 2013, Propositions 11 and 12 for (DB)
and (KB)). Baltag et al. (2013) provide several topological soundness and com-
pleteness results for both bimodal and unimodal cases, in particular for Stal and
KD45B, with respect to extremally disconnected spaces. In this section we give an
overview of their proposal and list some of the results. The proofs can be found
in (Özgün, 2013; Baltag et al., 2015a).

4.2.1. Definition. [Closure-interior semantics for LKB] Given a topo-model
X = (X, τ, V ), the semantics for the formulas in LKB is defined for Boolean
cases and Kϕ in the same way as in Definition 3.1.2. The semantics for Bϕ is
given by

[[Bϕ]] = Cl(Int([[ϕ]])).

Truth and validity of a formula as well as soundness and completeness of logics
are defined in the same way as for the interior semantics.

4.2.2. Theorem (Baltag et al., 2013). Stal is the sound and complete logic
of knowledge and belief on extremally disconnected spaces under the closure-
interior semantics.

Moreover, Stalnaker’s combined logic of knowledge and belief yields the sys-
tems S4.2K and KD45B. It has already been proven that S4.2K is sound and
complete with respect to the class of extremally disconnected spaces under the
interior semantics (see Theorem 3.1.9). This raises the question of topological
soundness and completeness for KD45B under the proposed semantics for belief
in terms of the closure and the interior operator.

4.2.3. Theorem (Baltag et al., 2013). KD45B is sound and complete with
respect to the class of extremally disconnected spaces under the closure-interior
semantics.

Theorem 4.2.3 therefore shows that the logic of extremally disconnected spaces
is KD45B when B is interpreted as the closure of the interior operator. Besides
these technical results, the closure-interior semantics of belief comes with an in-
trinsic philosophical and intuitive value, and certain advantages compared to the
co-derived set semantics as elaborated in the next section.
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4.2.1 What motivates topological full belief

The closure-interior semantics provides an intuitive interpretation of Stalnaker’s
conception of (full) belief as subjective certainty. It does so through the definitions
of the interior and closure operators and the concepts they represent, namely, the
notions of evidence and closeness. We have discussed the role of open sets as pieces
of evidence, and of open neighbourhoods of the actual state as pieces of truthful
evidence in Section 3.2. Moreover, it is well known that the closure operator
captures a topological, qualitative notion of closeness: x is said to be close to a
set A ⊆ X iff x ∈ Cl(A). Recalling the proposed topological semantics for full
belief, given a topological space (X, τ) and P ⊆ X, we have

x ∈ BP iff x ∈ Cl(Int(P )) (4.1)

iff x ∈ Cl(K(P )) (4.2)

iff (∀U ∈ τ)(x ∈ U implies U ∩KP 6= ∅) (4.3)

Therefore, following (4.2), topologically, the set of states in which the agent be-
lieves P is very close to the set of states in which the agent knows P . Taking
open sets as evidence pieces, (4.3) moreover states that an agent (fully) believes
P at a state x iff every sound piece of evidence she has at x is consistent with her
knowing P , i.e., she does not have any truthful evidence that distinguishes the
states in which she has belief of P from the states in which she has knowledge
of P . Belief, under this semantics, therefore becomes subjectively indistinguish-
able from knowledge. Hence, the closure-interior semantics naturally captures the
conception of belief as “subjective certainty”.

Moreover, the closure-interior belief semantics improves on the co-derived set
semantics for the following reasons: (1) belief as the closure of the interior op-
erator does not face the Gettier problem, at least not in the easy way in which
the co-derived set semantics does, when considered together with the conception
of knowledge as interior. More precisely, knowledge as interior cannot be de-
fined as (justified) true full belief since, in general, Int(P ) 6= Cl(Int(P ))∩P , i.e.,
KP 6= BP ∧P ; (2) the class of DSO-spaces with respect to which KD45B is sound
and complete under the co-derived set semantics is a proper subclass of the class
of extremally disconnected spaces (see Özgün, 2013, Proposition 13). Therefore,
the closure-interior semantics for KD45B is defined on a larger class of spaces.

Additionally, Özgün (2013) and Baltag et al. (2013) have studied a topologi-
cal analogue of static conditioning—capturing static belief revision—by providing
a topological semantics for conditional beliefs based on extremally disconnected
spaces. However, this framework encounters problems when extended to a dy-
namic setting by adding update modalities for public announcements, formalized
as model restriction by means of subspaces.
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4.2.2 Problems with updates for public announcements

The topological semantics and associated logics we have studied so far were static,
representing the epistemic state of an agent as isolated from receiving further in-
formation. Following the methodology of Dynamic Epistemic Logic (DEL), we
can also represent knowledge and belief change brought about by a piece of new
information by extending the static language with dynamic modalities, and de-
signing an update mechanism that transforms the initial model into an “updated”
structure. The resulting updated model expresses what is known/believed after
the chosen epistemic action has been performed (see, e.g., van Ditmarsch et al.,
2007; van Benthem, 2011; Baltag and Renne, 2016, for a detailed presentation of
DEL).

The first, and maybe the most well-known, epistemic action studied in the lit-
erature of DEL is the so-called public announcements introduced by Plaza (1989)
and Gerbrandy and Groeneveld (1997). Public announcements are concerned with
learning “hard” information, i.e. information that comes with an inherent war-
ranty of veracity, e.g. because of originating from an infallibly truthful source.4 In
DEL, in a qualitative setting based on relational semantics or a plausibility order,
public announcements are standardly modelled by restricting the initial model to
the truth set of the new information (see, e.g., Plaza, 1989, 2007; Gerbrandy
and Groeneveld, 1997; van Ditmarsch et al., 2007). Its natural topological ana-
logue, as recognized by Zvesper (2010); Baskent (2011, 2012) (among others), is
a topological update operator using the restriction of the original topology to the
subspace induced by a nonempty subset P . The described update mechanism for
public announcements is sometimes called update for hard information, or hard
update (van Benthem, 2011). In what follows, we simply refer to it as update.

In order for this interpretation to be successfully implemented, the subspace
induced by the new information P should possess the same structural properties
as the initial topology that renders the axioms of the underlying static knowl-
edge/belief system sound. More precisely, we demand that the subspace induced
by the new information P be in the class of structures with respect to which
the (static) knowledge/belief logics in question are sound and complete. How-
ever, since extremally disconnectedness is not a hereditary property, the above
mentioned topological interpretation of conditioning with true, hard informa-
tion cannot be implemented on extremally disconnected spaces. This is obviously
analogous to the problem of implementing updates on relational models based
on directed preorders (see, e.g., Balbiani et al., 2012, for a more general explana-
tion regarding preserving frame conditions in public announcement logic). Baltag
et al. (2015b) present a solution for this problem by changing the semantics for
belief as the interior of the closure of the interiors operator, and modelling public
announcements on all topological spaces. In Section 4.3 though, we confine the

4The “public” aspect of an announcements is relevant only in a multi-agent settings, encoding
the fact that all agents receive the same information conveyed by the announcement.
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topo-models to the largest subclass that preserves extremally disconnectedness
under taking arbitrary subspaces, namely to the class of hereditarily extremally
disconnected (h.e.d.) spaces. This also requires a re-evaluation of the underly-
ing static knowledge and belief systems. Before presenting the modified setting
based on h.e.d spaces, we explain the problem regarding updates on extremally
disconnected spaces in a more precise manner.

Topological updates for public announcements. We now consider the lan-
guage L!

KB obtained by adding to the language LKB (existential) dynamic public
announcement modalities 〈!ϕ〉ψ, reading “ϕ is true and after the public announce-
ment of ϕ, ψ becomes true”. The dual operator [!ϕ] is defined as usual as ¬〈!ϕ〉¬,
and [!ϕ]ψ reads as “after the public announcement of ϕ, ψ becomes true”.

4.2.4. Definition. [Restricted Model] Given a topo-model X = (X, τ, V ) and
ϕ ∈ L!

KB, the topo-model X ϕ = ([[ϕ]], τϕ, V ϕ) is called the restricted model, where

• [[ϕ]] = [[ϕ]]X ,

• τϕ = {U ∩ [[ϕ]] | U ∈ τ}, and

• V ϕ(p) = V (p) ∩ [[ϕ]], for any p ∈ prop.

In other words, ([[ϕ]], τϕ) is the subspace of (X, τ) induced by [[ϕ]]. The semantics
for the dynamic modalities 〈!ϕ〉ψ is then given as

[[〈!ϕ〉ψ]]X = [[ψ]]X
ϕ

.

Updates in general are expected to cause changes in an agent’s knowledge
and belief in some propositions, however, the way she reasons about her epis-
temic/doxastic state, in a sense the defining properties of the type of agent we
consider, should remain unaffected. This amounts to saying that any restricted
model should as well make the underlying static knowledge and belief logics
sound. In particular, as we work with rational, highly idealized normal agents
that hold consistent beliefs, we demand them not to lose these properties after
an update with true information. With respect to the closure-interior semantics,
these requirements are satisfied if and only if the resulting structure is extremally
disconnected: under the topological belief semantics, both the axiom of Normality

B(ϕ ∧ ψ)↔ (Bϕ ∧Bψ) (KB)

and the axiom of Consistency of Belief

Bϕ→ ¬B¬ϕ (DB)

characterize extremally disconnected spaces (Özgün, 2013, Propositions 11 and
12). Therefore, if the restricted model is not extremally disconnected, the agent
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comes to have inconsistent beliefs after an update with hard true information. In
order to avoid possible confusions, we note that B⊥ is never true with respect
to the closure-interior semantics since [[B⊥]] = Cl(Int(∅)) = ∅. By an agent
having inconsistent beliefs, we mean that she believes mutually contradictory
propositions such as ϕ and ¬ϕ at the same time, without in fact believing B⊥,
as also illustrated by the following example.

4.2.5. Example. Consider the Alexandroff topo-model X = (X, τ, V ) where
X = {x1, x2, x3, x4}, τ = {X, ∅, {x4}, {x2, x4}, {x3, x4}, {x2, x3, x4}} and V (p) =
{x1, x2, x3} and V (q) = {x2, x4} for some p, q ∈ prop. It is easy to see that
X corresponds to a directed reflexive transitive relational frame as depicted in
Figure 4.1a, where the reflexive and transitive arrows are omitted. It is easy to
check that (X, τ) is an extremally disconnected space and Bq → ¬B¬q is valid
in X . We stipulate that x1 is the actual state and p is truthfully announced. The
updated (i.e., restricted) model is then X p = ([[p]], τ p, V p) where [[p]] = {x1, x2, x3},
τ p = {[[p]], ∅, {x2}, {x3}, {x2, x3}}, V p(p) = {x1, x2, x3} and V p(q) = {x2}. Here,
([[p]], τ p) is not an extremally disconnected space (similarly, the underlying Kripke
frame is not directed) since {x3} is an open subset of ([[p]], τ p) but Clp({x3}) =
{x1, x3} is not open in ([[p]], τ p). Moreover, as x1 ∈ [[Bq]]X

p
= Clp(Intp({x2})) =

{x1, x2} and x1 ∈ [[B¬q]]Xp = Clp(Intp({x1, x3})) = {x1, x3}, the agent comes to
believe both q and ¬q, implying that the restricted model falsifies (DB) at x1.
Consequently, it also falsifies (KB) since [[B(q ∧ ¬q)]]X p = ∅.

x3

x1

x2

x4

(a) (X, τ, V )

x3

x1

x2

x4

(b) ([[p]], τp, V p)

Figure 4.1: Update of (X, τ, V ) by p.

One possible solution for this problem is extending the class of spaces we
work with: we can focus on all topological spaces instead of working with only
extremally disconnected spaces and provide semantics for belief in such a way that
the aforementioned problematic axioms become valid on all topological spaces.
This way, we do not need to worry about any additional topological property that
is supposed to be inherited by subspaces. This solution, unsurprisingly, leads to a
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weakening of the underlying static logic of knowledge and belief. It is well known
that the knowledge logic of all topological spaces under the interior semantics
is S4K (Theorem 3.1.6), and the (weak) belief logic of all topological spaces is
studied in (Baltag et al., 2015b). In the next section, we work out another solution
which approaches the issue from the opposite direction: we further restrict our
attention to hereditarily extremally disconnected spaces, thereby guaranteing that
no model restriction leads to inconsistent beliefs. As the logic of hereditarily
extremally disconnected spaces under the interior semantics is S4.3K (Theorem
3.1.10), the underlying static logic, in this case, would consist in S4.3K as the
logic of knowledge but again KD45B as the logic of belief as shown in the next
section.5

4.3 The Belief Logic of H.E.D Spaces

In this section, we present the underlying static logic of belief for the closure-
interior semantics, and then extend this setting based on h.e.d. spaces for condi-
tional beliefs and public announcements.

Even though we work with a more restricted class, the belief logic of h.e.d.
spaces is still KD45B. While the soundness of this system follows from Theorem
4.2.3 since every h.e.d. space is extremally disconnected, its topological complete-
ness will be shown by using its Kripke completeness. To this end, we first need to
build a connection between KD45-frames and h.e.d. spaces that is similar to the
one presented in Section 3.1.2, and prove their modal equivalence for the language
LB analogous to Proposition 3.1.4-(1).

4.3.1 Connection between KD45-frames and h.e.d. spaces

Recall that KD45-frames are serial, transitive and Euclidean Kripke frames. Since
truth of modal formulas with respect to the standard relational semantics is pre-
served under taking generated submodels (see, e.g., Blackburn et al., 2001, Propo-
sition 2.6), we can use the following simplified relational structures as Kripke
frames of KD45B.

4.3.1. Definition. [Brush/Pin]

• A relational frame (X,R) is called a brush if there exists a nonempty subset
C ⊆ X such that R = X × C;

• A brush is called a pin if |X\C| = 1.

5The logical counterpart of the fact that extremally disconnected spaces (S4.2-spaces) are
not closed under subspaces is that S4.2 is not a subframe logic (see Chagrov and Zakharyaschev,
1997, Section 9.4). The logical counterpart of the fact that hereditarily extremally disconnected
spaces (S4.3-spaces) are extremally disconnected spaces closed under subspaces is that the
subframe closure of S4.2 is S4.3, (see Wolter, 1993, Section 4.7).
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C

(a) Brush

C

(b) Pin

Figure 4.2: An example of a brush and of a pin, where the top ellipses illustrate
the final clusters and an arrow relates the state it started from to every element
in the cluster.

Clearly, if such a C exists, it is unique; call it the final cluster of the brush.
It is easy to see that every brush is serial, transitive and Euclidean (see Figure
4.2). For the proof of the following lemma see, e.g., (Chagrov and Zakharyaschev,
1997, Chapter 5) and (Blackburn et al., 2001, Chapters 2, 4).

4.3.2. Lemma. KD45B is a sound and complete with respect to the class of
brushes, and with respect to the class of pins. In fact, KD45B is sound and com-
plete with respect to the class of finite pins.

Similar to the construction in Section 3.1.2, we can build an Alexandroff h.e.d.
space from a given pin. The only extra step consists in taking the reflexive closure
of the initial pin. More precisely, for any frame (X,R), let R+ denote the reflexive
closure of R, defined as

R+ = R ∪ {(x, x) | x ∈ X}.

Given a pin (X,R), the set τR+ = {R+(x) | x ∈ X} constitutes a topology on
X. In fact, in this special case of pins, we have τR+ = {X, C, ∅} where C is the
final unique cluster of (X,R). Therefore, it is easy to see that (X, τR+) is an
Alexandroff h.e.d. space. In fact, (X, τR+) is a generalized Sierpiński space where
C does not have to be a singleton (see Figure 4.3).

This construction leads to a natural correspondence between pins and Alexan-
droff h.e.d. spaces. In particular, for any Kripke model M = (X,R, V ) based on
a pin, we set I(M) = (X, τR+ , V ). Moreover, any two such modelsM and I(M)
make the same formulas of LB true at the same states, as shown in Proposition
4.3.4.

4.3.3. Lemma. Let (X,R) be a pin and C denote the final cluster of (X,R),
and let Int and Cl denote the interior and closure operators, respectively, in the
topological space (X, τR+). Then for all x ∈ X and every A ⊆ X:

1. R(x) = C ∈ τR+;
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C

(a) (X,R)

C

(b) (X, τR+)

1

0

(c) Sierpiński space

Figure 4.3: From pins to Alexandroff h.e.d. spaces

2. Int(A) ∩ C 6= ∅ if and only if A ⊇ C;

3. Cl(A) = X if and only if A ∩ C 6= ∅;

4. if Cl(Int(A)) 6= ∅ then Cl(Int(A)) = X.

Proof:
(1) follows from the fact that R = X×C (Definition 4.3.1). (2) and (3) are direct
consequences of the construction of τR+ , that is, τR+ = {X, C, ∅}. And, (4) follows
from (2) and (3), since Cl(Int(A)) 6= ∅ implies that Int(A) 6= ∅. 2

4.3.4. Proposition. For all ϕ ∈ LB, any Kripke model M = (X,R, V ) based
on a pin and x ∈ X,

M, x |= ϕ iff I(M), x |= ϕ.

Proof:
The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that the
result holds for ψ; we must show that it holds also for ϕ := Bψ.

M, x |= Bψ iff R(x) ⊆ ||ψ||M (the relational semantics of B)

iff C ⊆ ||ψ||M (Lemma 4.3.3-1)

iff C ⊆ [[ψ]]I(M) (induction hypothesis)

iff Int([[ψ]]I(M)) ∩ C 6= ∅ (Lemma 4.3.3-2)

iff Cl(Int([[ψ]]I(M))) = X (Lemma 4.3.3-3)

iff x ∈ Cl(Int([[ψ]]I(M))) (Lemma 4.3.3-4)

iff I(M), x |= Bψ (the closure-interior semantics of B)

2
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4.3.5. Theorem. KD45B is sound and complete with respect to the class of
hereditarily extremally disconnected spaces under the closure-interior semantics.

Proof:
Soundness follows from Theorem 4.2.3 and the fact that every hereditarily ex-
tremally disconnected space is extremally disconnected. For completeness, let
ϕ ∈ LB such that ϕ 6∈ KD45B. Then, by Lemma 4.3.2, there exists a relational
model M = (X,R, V ), where (X,R) is a pin, and x ∈ X such that M, x 6|= ϕ.
Therefore, by Proposition 4.3.4, we obtain I(M), x 6|= ϕ. Since I(M) is heredi-
ratily extremally disconnceted, we obtain the desired result. 2

Theorem 4.3.5 therefore shows that the (belief) logic of h.e.d. spaces is also
KD45B. The class of h.e.d. spaces of course restricts the class of extremally dis-
connected spaces, however, it is still a larger class than the class of DSO-spaces.

4.3.6. Proposition. Every DSO-space is hereditarily extremally disconnected,
however, not every h.e.d. space is a DSO-space.

Proof:
Recall that a DSO-space is a dense-in-itself topological space (i.e., a space with no
singleton opens) in which every derived set d(A) is open. Let (X, τ) be a DSO-
space and (P, τP ) its subspace induced by the nonempty set P ⊆ X. Observe
that, for all A ⊆ P , we have dP (A) ∈ τP since d(A) ∈ τ and dP (A) = d(A) ∩ P .
Now suppose U ∈ τP and consider ClP (U). Since ClP (U) = dP (U) ∪ U and
dP (U) ∈ τP , we immediately obtain that ClP (U) ∈ τP . Therefore (P, τP ) is ex-
tremally disconnected. Hence, every subspace of (X, τ) (including in particular
(X, τ) itself) is extremally disconnected. As an example of an h.e.d. space that is
not DSO, consider the Sierpiński space given in Figure 4.3c: the Sierpiński space
has a singleton open, therefore, it is not dense-in-itself. 2

We can further generalize the belief semantics on h.e.d. spaces for static con-
ditioning.

4.3.2 Static conditioning: conditional beliefs

Static conditioning captures the agent’s revised beliefs about how the world was
before learning new information. This is in general implemented by conditional
belief operators Bϕψ read as “if the agent would learn ϕ, then she would come
to believe that ψ was the case before the learning” (Baltag and Smets, 2008, p.
12). Conditional beliefs therefore are static and hypothetical by nature, hinting at
possible future belief changes of the agent. In the DEL literature, the semantics
for conditional beliefs is generally given in terms of sphere models (Grove, 1988),
or equivalently, in terms of plausibility models (van Benthem, 2007; Baltag and
Smets, 2008; van Benthem and Pacuit, 2011).
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In this section, we provide a topological semantics for conditional beliefs based
on h.e.d. spaces. This topological semantics has been studied in (Özgün, 2013;
Baltag et al., 2013) based on extremally disconnected spaces, where the dynamic
extension encountered the problem explained in Section 4.2.2.

We can obtain the semantics for a conditional belief modality Bϕψ in a natural
and standard way by relativizing the semantics for the simple belief modality to
the extension of the learned formula ϕ. By relativization we mean a local change
that only affects one occurrence of the belief modality Bϕ, and that does not cause
a real change in the model. Similar to the case in (Özgün, 2013; Baltag et al.,
2013) for extremally disconnected spaces, we can relativize the belief semantics
in two different ways. To recap, given a topo-model X = (X, τ, V ) based on an
extremally disconnected topology τ , we can describe the extension of a belief
formula in the following equivalent ways

[[Bϕ]]
(1)
= Cl(Int([[ϕ]]))

(2)
= Int(Cl(Int([[ϕ]]))).

While the relativization of (1) leads to

[[Bϕψ]] = Cl([[ϕ]] ∩ Int([[ϕ]]→ [[ψ]])), (4.4)

the relativization of (2) results in

[[Bϕψ]] = Int([[ϕ]]→ Cl([[ϕ]] ∩ Int([[ϕ]]M → [[ψ]]))), (4.5)

where [[ϕ]]→ [[ψ]] is used as an abbreviation for (X\[[ϕ]]) ∪ [[ψ]].

However, as elaborated in (Özgün, 2013), the first semantics (4.4) does not
work well as a generalization of belief on extremally disconnected spaces, and
the same arguments still hold on h.e.d. spaces. For example, it validates the
equivalences

Kϕ↔ ¬B¬ϕ> ↔ ¬B¬ϕ¬ϕ

which give a rather unusual definition of knowledge in terms of conditional be-
liefs. The first of these equivalences also shows that the conditional belief operator
is not a normal modality (as the Necessitation rule for conditional beliefs stated
in Theorem 4.3.7 does not preserve validitiy). Moreover, this semantics validates
only a few of the AGM postulates stated in terms of conditional beliefs as in The-
orem 4.3.7 (see Alchourrón et al., 1985, for the classical AGM theory). On the
other hand, the second relativization does not possess any of the above flaws, and
moreover validates all the AGM postulates formulated in terms of conditional be-
liefs as shown below (see Baltag and Smets, 2008, 2006, for the treatment of AGM
theory in terms of conditional beliefs as a theory of static belief revision). We refer
to (Baltag et al., 2015a) for the proofs of the results stated in the remaining of
this chapter.
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4.3.7. Theorem. The following formulas are valid in h.e.d. spaces with respect
to the topological semantics for conditional beliefs and knowledge given in (4.5)

Normality: Bθ(ϕ→ ψ)→ (Bθϕ→ Bθψ)
Factivity: Kϕ→ ϕ
Persistence of Knowledge: Kϕ→ Bθϕ
Strong Positive Introspection: Bθϕ→ KBθϕ
Success of Belief Revision: Bϕϕ
Consistency of Revision: ¬K¬ϕ→ ¬Bϕ⊥
Inclusion: Bϕ∧ψθ → Bϕ(ψ → θ)
Rational Monotonicity: Bϕ(ψ → θ) ∧ ¬Bϕ¬ψ → Bϕ∧ψθ

Moreover, the Necessitation rule for conditional beliefs

from ϕ, infer Bψϕ

preserves validity.

Given the semantics in (4.5), we also obtain the following validities defining
conditional beliefs in terms of knowledge, and simple belief in terms of conditional
belief, respectively:

• Bϕψ ↔ K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ))),

• Bϕ↔ B>ϕ.

Adding these two equivalences to a complete axiomatization of S4.3K therefore
yields a complete logic of knowledge and conditional beliefs with respect to h.e.d.
spaces.

4.3.8. Theorem. The sound and complete logic KCB of knowledge and condi-
tional beliefs with respect to the class of h.e.d. spaces is obtained by adding the
following equivalences to any complete axiomatization of S4.3K :

1. Bϕψ ↔ K(ϕ→ 〈K〉(ϕ ∧K(ϕ→ ψ)))

2. Bϕ↔ B>ϕ

Against this static background, we can further axiomatize the logic of public
announcements, knowledge and conditional beliefs, following the standard DEL–
technique: This is done by adding to KCB a set of reduction axioms that give
us a recursive rewriting algorithm to step-by-step translate every formula con-
taining public announcement modalities to a provably equivalent formula in the
static language. The completeness of the dynamic system then follows from the
soundness of the reduction axioms and the completeness of the underlying static
logic (see, e.g., Section 7.4 of van Ditmarsch et al., 2007 for a detailed presenta-
tion of completeness by reduction, and see Wang and Cao, 2013 for an elaborate
discussion of axiomatizations of public announcement logics).
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4.3.9. Theorem. The sound and complete dynamic logic !KCB of knowledge,
conditional beliefs and public announcements with respect to the class of h.e.d.
spaces is obtained by adding the following reduction axioms to any complete ax-
iomatization of the logic KCB:

1. 〈!ϕ〉p ↔ (ϕ ∧ p)

2. 〈!ϕ〉¬ψ ↔ (ϕ ∧ ¬〈!ϕ〉ψ)

3. 〈!ϕ〉(ψ ∧ θ) ↔ (〈!ϕ〉ψ ∧ 〈!ϕ〉θ)

4. 〈!ϕ〉Kψ ↔ (ϕ ∧K(ϕ→ 〈!ϕ〉ψ))

5. 〈!ϕ〉Bθψ ↔ (ϕ ∧B〈!ϕ〉θ〈!ϕ〉ψ)

6. 〈!ϕ〉〈!ψ〉χ↔ 〈!〈!ϕ〉ψ〉χ

4.4 Conclusions and Continuation

In this chapter, we presented our very first attempt to formalize a notion of
evidence-based “justified” belief by using topological semantics based on ex-
tremally disconnected spaces, first proposed in (Özgün, 2013; Baltag et al., 2013).
The belief semantics based on hereditarily extremally disconnected spaces was
later investigated in (Baltag et al., 2015a).

To summarize, starting with the conception of knowledge as the interior opera-
tor, and building on Stalnaker’s principles regarding the relation between knowl-
edge and belief (Table 4.1), we proposed a topological semantics of belief as
subjective certainty in terms of the closure of the interior operator. While the
proposed topological semantics provides an intuitive and natural interpretation
for the conception of belief as subjective certainty (see Section 4.2.1), it also yields
the standard logic of belief KD45B both on extremally and hereditarily extremally
disconnected spaces (Theorems 4.2.3 and 4.3.5, respectively). The transition from
extremally disconnected spaces to hereditarily extremally disconnected spaces is
motivated by the fact that the topological semantics based on extremally dis-
connected spaces falls short of dealing with public announcements as shown in
Section 4.2.2. However, even this restricted class of h.e.d. spaces generalizes the
topological belief semantics based on the co-derived set operator since KD45B is
the logic of DSO-spaces when belief is interpreted as the co-derived set opera-
tor, and the class of DSO-spaces is a proper subclass of the class of h.e.d. spaces
(Proposition 4.3.6). Moreover, when studied in tandem with the notion of knowl-
edge as the interior, the belief semantics in terms of the closure of the interior
operator does not yield a definition of knowledge as true belief (unlike belief as
the co-derived set operator, see Section 3.3).

At a high level, this chapter takes a further small step toward developing
a satisfactory epistemic/doxastic formal framework in which we can talk about
evidential grounds of knowledge and belief. It does so by extending the interior-
based topological semantics for knowledge by a semantic clause for belief, which
arguably works better than the aforementioned proposal based on the co-derived
set operator. However, within the current setting, everything we can say about
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evidence has to be said at a purely semantic level (see Section 3.2 and Section
4.2.1 to recall the topological, evidence-related readings of knowledge and belief,
respectively). As we have not yet introduced any “evidence modalities”, the modal
language cannot really say anything concerning the link between evidence and
belief, or evidence and knowledge, let alone represent different notions of evidence
possession.

This provides motivation for the framework we develop in the next chap-
ter. Chapter 5, improving on the evidence logic of van Benthem and Pacuit (2011)
based on neighbourhood semantics, introduces a new topological semantics for
various notions of evidence, evidence-based justified belief, knowledge and learn-
ing, where the studied notions of evidence are made explicit in the corresponding
syntax via matching modalities.



Chapter 5

Justified Belief, Knowledge and the
Topology of Evidence

In this chapter, we propose a topological semantics for various notions of evidence,
evidence-based justification, belief, and knowledge, and explore the connection be-
tween these epistemic notions. The work presented in this chapter is to a great
extent based on taking a new, topological perspective to the models for evidence,
belief and evidence-management proposed by van Benthem and Pacuit (2011),
and developed further by van Benthem et al. (2012, 2014). The framework de-
veloped in this chapter moreover generalizes and improves on our own work on a
topological semantics for Stalnaker’s doxastic-epistemic logic presented in Chap-
ter 4.

The influential approach, initiated by van Benthem and Pacuit (2011); van
Benthem et al. (2012, 2014), represents evidence semantically—roughly speaking,
as sets of possible worlds—based on neighbourhood structures as well as syntac-
tically by introducing evidence modalities. Their setting goes beyond and gener-
alizes the formal treatment of the aforementioned epistemic notions in terms of
relational structures, such as Kripke and plausibility models, and non-relational
models, such as Grove sphere models. We here take a further step toward im-
proving the formal, modal theoretical treatment of evidence, justified belief and
knowledge by revealing the hidden topological structure of the evidence models of
van Benthem and Pacuit (2011). The topological perspective enables more fine-
grained and refined mathematical representations of various notions of evidence,
such as basic evidence, combined evidence, factive evidence and (non-)misleading
evidence, as well as relevant epistemic notions such as argument and justifica-
tion (based on evidence), and, in turn, justified belief and (in-)defeasible knowl-
edge. Consequently, we obtain a semantically and syntactically rich setting that
provides a more in-depth logical analysis regarding the role of evidence in reaching
an agent’s epistemic/doxastic state. We also examine several types of evidence
dynamics introduced in (van Benthem and Pacuit, 2011) and apply this setting to
analyze and address key issues in epistemology such as “no false lemma” Gettier
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examples, misleading defeaters, and undefeated justification versus undefeated
belief. Our main technical results are concerned with completeness, decidability
and finite model property for the associated logics.

Outline

Section 5.1 serves as a semi-formal introduction and summary of the chapter,
emphazising the important features of its content. In Section 5.2, we introduce
the evidence models of van Benthem and Pacuit (2011) as well as our topolog-
ical evidence models, and provide semantics for the notions of basic, combined
and factive evidence. We moreover provide topological definitions for argument
and justification. In Section 5.3, we propose a topological semantics for a no-
tion of justified belief while comparing our setting to that of van Benthem and
Pacuit (2011). We then generalize our semantics of (simple) belief for conditional
beliefs. Section 5.4 defines the model transformations induced by evidence-based
information dynamics such as public announcements, evidence addition, evidence
upgrade and feasible evidence combination. In Section 5.5, we propose a topolog-
ical interpretation for a notion of fallible knowledge and connect our formalism
to some important discussions emerged in the post-Gettier epistemology litera-
ture, such as stability/defeasibility theories of knowledge, misleading vs. genuine
defeaters etc. Finally, Section 5.6 presents all our technical results. The reader
who is interested in the technical aspect only can jump to Section 5.6 directly.

This chapter is based on (Baltag et al., 2016a,b)

5.1 Introduction

One of our main goals in this chapter, that we also share with van Benthem and
Pacuit (2011); van Benthem et al. (2012, 2014), is to study notions of belief and
knowledge for a rational agent who is in possession of some (possibly false, possibly
mutually contradictory) pieces of evidence. A central underlying assumption is
that an agent’s rational belief and knowledge is based on the available evidence,
namely, the evidence she has acquired via, e.g., direct observation, measurements,
testimony from others etc. We therefore do not take belief or knowledge as the
primitive notions, they are represented as “derived” notions purely based on
evidence. Toward designing a formal setting that can capture these ideas (among
others), we use the uniform evidence models of van Benthem and Pacuit (2011),
with a special focus on the topology generated by the evidence. In the following,
we provide a detailed overview of the epistemic notions studied in this chapter,
introduce the modalities we consider, and explain where our work stands in the
relevant literature.
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A crucial reason as to why the approach presented in this chapter improves
on the settings of Chapters 3 and 4 is that we here introduce evidence modali-
ties in order to also provide syntactic representations of notions of evidence, and
eventually to build evidence logics. In particular, we study the operator of “hav-
ing (a piece of) evidence for a proposition P” proposed by van Benthem and
Pacuit (2011), but we also investigate other interesting variants of this concept:
“having (combined) evidence for P”, “having a (piece of) factive evidence for
P” and “having (combined) factive evidence for P”. Table 5.1 below lists the
corresponding evidence modalities together with their intended readings.

E0ϕ the agent has a basic (piece of) evidence for ϕ
Eϕ the agent has a (combined) evidence for ϕ
20ϕ the agent has a factive basic (piece of) evidence for ϕ
2ϕ the agent has factive (combined) evidence for ϕ

Table 5.1: Evidence modalities and their intended readings

The basic pieces of evidence possessed by an agent are modelled as nonempty
sets of possible worlds. A combined evidence (or just “evidence”, for short) is any
nonempty intersection of finitely many pieces of evidence. This notion of evidence
is not necessarily factive1, since the pieces of evidence are possibly false (and pos-
sibly inconsistent with each other). The family of (combined) evidence sets forms
a topological basis, that generates what we call the evidential topology. This is
the smallest topology in which all the basic pieces of evidence are open, and it
will play an important role in our setting. In fact, the modality 2ϕ capturing the
concept of “having factive evidence for ϕ” coincides with the interior operator in
the evidential topology (see Section 5.2.2). We therefore use the interior semantics
of McKinsey and Tarski (1944) to interpret a notion of factive evidence (this is
unlike the case in Chapter 4, where the interior operator was treated as knowl-
edge). We also show that the two factive variants of evidence-possession operators
(20 and 2) are more expressive than the non-factive ones (E0 and E): when in-
teracting with the global modality, the two factive evidence modalities 20ϕ and
2ϕ can define the non-factive variants E0ϕ and Eϕ, respectively, as well as many
other doxastic/epistemic operators.

The notion of justified belief we study in this chapter will be defined purely
by means of the notions of evidence mentioned above. We propose a “coheren-
tist” semantics for justification and justified belief, that is obtained by extending,
generalizing, and (to an extent), streamlining the evidence-model framework for

1Factive evidence is true in the actual world. In epistemology it is common to reserve the
term “evidence” for factive evidence. But we follow here the more liberal usage of this term in
(van Benthem and Pacuit, 2011), which agrees with the common understanding in day to day
life, e.g. when talking about “uncertain evidence”, “fake evidence”, “misleading evidence” etc.
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beliefs introduced by van Benthem and Pacuit (2011). The main idea behind the
belief definition of van Benthem and Pacuit (2011) seems to be that the rational
agent tries to form consistent beliefs, by looking at all strongest finitely-consistent
collections of evidence, and she believes whatever is entailed by all of them.2 Their
belief definition therefore crucially depends on a notion of “strongest” evidence,
and it works well in the finite case (whenever the agent has finitely many pieces
of basic evidence) as well as in some infinite cases. But, as already noted in (van
Benthem et al., 2014), this setting has the shortcoming that it can produce incon-
sistent beliefs in the general infinite case. A more technical defect of this setting
is that the corresponding doxastic logic does not have the finite model property
(see van Benthem et al., 2012, Corollary 2.7 or van Benthem et al., 2014, Corol-
lary 1). In this chapter, we propose an “improved” semantics for evidence-based
belief, obtained by, in a sense, weakening the definition from (van Benthem and
Pacuit, 2011). According to us, a proposition P is believed if P is entailed by
sufficiently strong finitely-consistent collections of evidence. This definition co-
incides with the one of van Benthem and Pacuit (2011) for the models carrying
finite evidence collections, but involves a different generalization of their notion
in the infinite case. In fact, our semantics always ensures consistency of belief,
even when the available pieces of evidence are mutually inconsistent. We also
provide a formalization of argument and a “coherentist” view on justifications.
An argument essentially consists of one or more evidence sets supporting the
same proposition (thus providing multiple evidential paths towards a common
conclusion); a justification is an argument that is not contradicted by any other
available evidence. Our definition of belief is equivalent to requiring that P is
believed iff there is some (evidence-based) justification for P , therefore, accurately
captures the concept of “justified belief”. Our proposal is also very natural from
a topological perspective; it is equivalent to saying that P is believed iff it is true
in “almost all” epistemically possible states, where “almost all” is interpreted
topologically as “all except for a nowhere-dense set”. We moreover generalize this
belief semantics for conditional beliefs. Table 5.2 below lists the belief modalities
we study in this chapter.

Bϕ the agent has justified belief in ϕ
Bϕψ the agent believes ψ conditionally on ϕ

Table 5.2: Belief modalities and their intended readings

2To be sure, this is still vague since we have not yet specied what a “strongest finitely-
consistent collections of evidence” means (we return to formalize these notions in Section 5.2.1),
however, this much precision should be sufficient to explain the rough idea behind the belief
definition of van Benthem and Pacuit (2011), and our notion of justified belief studied in this
chapter.
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Moving on to knowledge, there are a number of different notions one may
consider. First, there is “absolutely certain” or “infallible” knowledge, akin to
Aumann’s concept of partitional knowledge (Aumann, 1999) or van Benthem’s
concept of hard information (van Benthem, 2007). In our single-agent setting,
this can be simply defined as the global modality (quantifying universally over
all epistemically possible states). There are very few propositions that can be
known in this infallible way (e.g., the ones known by introspection or by logical
proof). Most facts in science or real life are unknown in this sense. It is therefore
more interesting to look at notions of knowledge that are less-than-absolutely-
certain, namely, the so-called defeasible knowledge. In our framework, we consider
both absolutely certain knowledge and defeasible knowledge, but our main focus
will be on the latter notion. See Table 5.3 below for the corresponding knowledge
modalities and their readings.

[∀]ϕ the agent infallibly knows ϕ
Kϕ the agent fallibly (or defeasibly) knows ϕ

Table 5.3: Knowledge modalities and their intended readings

The famous Gettier counterexamples (Gettier, 1963) show that simply adding
“factivity” to belief will not give us a “good” notion of defeasible knowledge:
true (justified) belief is extremely fragile (i.e., it can be too easily lost), and
it is consistent with having only wrong justifications for an accidentally true
conclusion. We here formalize a notion of defeasible knowledge saying that “P
is (fallibly) known if there is a factive justification for P”. We therefore study a
notion of knowledge defined as correctly justified belief. As elaborated in Section
5.5.1, this less-than-absolutely-certain notion of knowledge finds its place in the
post-Gettier literature as being stronger than the one charaterized by the “no false
lemma” of Clark (1963) and weaker than the conception of knowledge described
by the defeasibility theory of knowledge championed by Lehrer and Paxson (1969);
Lehrer (1990); Klein (1971, 1981).

Yet another path leading to our setting in this chapter goes via our previ-
ous work (Baltag et al., 2013, 2015a), presented in Chapter 4, on a topological
semantics for the doxastic-epistemic axioms of Stalnaker (2006). Recall that Stal-
naker’s system Stal (see Table 4.1) is meant to capture a notion of fallible knowl-
edge, in close interaction with a notion of “strong belief” defined as subjective
certainty. The main principle specific to this system was that “believing implies
believing that you know” captured by the axiom of Full Belief (Bϕ→ BKϕ). The
topological semantics that we proposed for these concepts in (Özgün, 2013; Baltag
et al., 2013, 2015a) was overly restrictive (being limited to the rather unfamiliar
class of extremally disconnected and hereditarily extremally disconnected topolo-
gies). In this chapter, we show that these notions can be interpreted on arbitrary
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topological spaces, without changing their logic. Indeed, our definitions of belief
and knowledge can be seen as the natural generalizations to arbitrary topologies
of the notions in (Özgün, 2013; Baltag et al., 2013, 2015a).

We completely axiomatize the various resulting logics of evidence, knowledge,
and belief, and prove decidability and finite model property results. We moreover
study a few dynamic extensions, encoding different types of evidential dynam-
ics. Our technically most challenging result is the completeness of the richest
logic containing the two factive evidence modalities 20ϕ and 2ϕ, as well as the
global modality [∀]ϕ. This logic can define all the modal operators mentioned
above. While the other proofs are more or less routine, the proof of this result
involves a nontrivial combination of known methods.

5.2 Evidence, Argument and Justification

In this section, we introduce the (uniform) evidence models of van Benthem and
Pacuit (2011) as well as our topological version, and provide the formal seman-
tics of the evidence modalities given in Table 5.1. More precisely, we focus on
the operator “having a basic (piece of) evidence for a proposition P” (from van
Benthem and Pacuit, 2011), as well as the variants capturing “having (combined)
evidence for P”, “having a basic (piece of) factive evidence for P” and “having
(combined) factive evidence for P”. We explain how a rational agent can put
her basic evidence pieces together in a “finitely consistent” way toward forming
combined evidence, strongest and strong enough evidence, and eventually, her be-
liefs. We moreover provide topological definitions for argument and justification
purely based on evidence.

5.2.1 Evidence à la van Benthem and Pacuit

5.2.1. Definition. [Evidence Models (van Benthem and Pacuit, 2011)] An ev-
idence model is a tuple M = (X, E0, V ), where

• X is a nonempty set of possible world (or states),

• E0 ⊆ P(X) is a family of sets called basic evidence sets (or pieces of evi-
dence), satisfying X ∈ E0 and ∅ 6∈ E0, and

• V : prop→ P(X) is a valuation function.

The evidence models presented in (van Benthem and Pacuit, 2011; van Ben-
them et al., 2014) are more general, covering cases in which evidence depends on
the actual world, i.e., in which each state may be assigned different set of neigh-
bourhoods. In this chapter, however, we stick with what they call “uniform”
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models (given in Definition 5.2.1), which corresponds to working with agents who
are “evidence-introspective”3.

Note that evidence models are not necessarily based on topological spaces,
i.e., E0 is not defined to be a topology (it may not even constitute a topological
basis). However, topo-models given in Definition 3.1.1 constitute a special case of
evidence models.4 We would like to elaborate more on the structural properties of
evidence models and explain which epistemic concepts they intend to represent.

The family E0 is almost an arbitrary nonempty collection of subsets of a given
domain, carefully designed to capture certain aspects of the type of evidence
that is intended to be formalized. First of all, the subset E0 represents the set
of evidence the agent has acquired about the actual situation5 directly via, e.g.,
testimony, measurement, approximation, computation or experiment. It is the
collection of evidence the agent gathered so far, and it is all our rational, idealized
agent has to form her beliefs and knowledge. The collection of evidence the agent
possesses is uniform across the states, i.e., the set of evidence the agent has does
not depend on the actual state. This corresponds to working with an “evidence-
introspective” agent, that is, the agent is absolutely sure about what evidence
she has and what it entails.

The two properties of E0, namely, X ∈ E0 and ∅ 6∈ E0 impose the following
constraints, respectively:

• Tautologies are always evidence, and

• Contradictions never constitute direct evidence.

Unlike the common practice in epistemology, where the term “evidence” is
generally reserved for factive evidence, van Benthem and Pacuit (2011) and van
Benthem et al. (2012, 2014) follow a more liberal, in a sense, more realistic view
on evidence which agrees with the common usage in day to day life, e.g. when
talking about “uncertain evidence”, “fake evidence”, “misleading evidence”. They
not only consider evidence gathered from absolutely reliable and truthful sources,
but also take into account fallible information coming from a possibly unreli-
able source: a piece of evidence in E0 does not have to contain the actual state.
Moreover, the evidence gathered from different sources (or even from a single
source) may be mutually inconsistent: the intersection of evidence pieces may be
empty. Therefore, the evidence models of van Benthem and Pacuit (2011) (as

3Since we never consider the more general case and focus only on the topological extension
of their uniform evidence models, we use the term “evidence model” exclusively for the uniform
evidence models of van Benthem and Pacuit (2011); van Benthem et al. (2014), given above in
Definition 5.2.1.

4As an even more special case, we can also think of Grove/Lewis Sphere spaces. These are
topological spaces in which the open sets are “nested”, i.e. for every U,U ′ ∈ τ , we have either
U ⊆ U ′ or U ′ ⊆ U (see, e.g., Example 5.3.1).

5Standardly, as in the relational semantics and the interior semantics, the actual situation
is represented by a state x of X called the actual state or the real world.



52 Chapter 5. Justified Belief, Knowledge and the Topology of Evidence

well as our topological evidence models) take into account that the agent might
be collecting evidence from different sources that may or may not be reliable,
however, it is assumed that all her current sources are equally reliable (or equally
unreliable) as no special order or quantitative measure is defined on the elements
of E0. Under these assumptions, what is expected from a rational agent toward
forming consistent beliefs based on the collection of evidence pieces she has, is to
evaluate every piece of evidence she possesses in a coherent and holistic way, and
put them together in a finite and consistent manner. This leads to the notions of
(finite) bodies of evidence and combined evidence, conceptions with crucial roles
in formation of consistent beliefs based on fallible evidence, and of the evidential
topology. In what follows, we provide technical definitions of the evidence-related
auxiliary notions that are adopted from van Benthem and Pacuit (2011), and will
be used throughout this chapter.

Bodies of evidence, Evidential Support and Strength

We call a collection of evidence pieces F ⊆ E0 consistent if
⋂
F 6= ∅, and incon-

sistent otherwise. In order to ease the notation, we let A ⊆fin B to be read as A
is a finite subset of B.

5.2.2. Definition. [(Finite) Body of Evidence] Given an evidence model M =
(X, E0, V ), a body of evidence is a nonempty family F ⊆ E0 of evidence pieces such
that every nonempty finite subfamily is consistent. More formally, a nonempty
family F ⊆ E0 is a body of evidence if

(∀F ′ ⊆fin F )(F ′ 6= ∅ implies
⋂

F ′ 6= ∅).

A finite body of evidence F ⊆fin E0 is therefore simply a finite set of mutually
consistent pieces of evidence, that is, F ⊆fin E0 such that

⋂
F 6= ∅.

Therefore, a body of evidence is simply a collection of evidence pieces that has
the finite intersection property, and that represents the agent’s ability of putting
evidence pieces together in a finitely consistent way.

Given an evidence model M = (X, E0, V ), we denote by

F := {F ⊆ E0 | (∀F ′ ⊆fin F )(F ′ 6= ∅ implies
⋂

F ′ 6= ∅)}

the family of all bodies of evidence over M, and by

Ffin := {F ⊆fin E0 |
⋂

F 6= ∅}

the family of all finite bodies of evidence. Both the interpretation of evidence-
based belief of van Benthem and Pacuit (2011) and our proposal for justified
belief, as well as the notion of defeasible knowledge we study in this chapter
crucially rely on the notion of body of evidence. But, in order to be able to talk
about these evidence-based informational attitudes, we first need to specify what
it means for a proposition to be supported by a body of evidence.
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5.2.3. Remark. Throughout Sections 5.2-5.5, we use the following conventions
to ease the presentation. Given an evidence model M = (X, E0, V ) (or, a topo-
e-model M = (X, E0, τ, V ) defined later), we call any subset P ⊆ X a proposi-
tion. We say a proposition P ⊆ X is true at x if x ∈ P . The Boolean connec-
tives ¬, ∧, ∨, →, on propositions are defined standardly as set operations: for
any P,Q ⊆ X, we set ¬P := X\P , P ∧ Q := P ∩ Q, P ∨ Q := P ∪ Q and
P → Q := (X\P ) ∪ Q. Moreover, the Boolean constants > and ⊥ are given as
> := X and ⊥ := ∅. Following this convention, we define the semantics of the
aforementioned modal operators for evidence, belief and knowledge introduced in
Tables 5.1-5.3 as set operators from P(X) to P(X) (and for the binary modal-
ity of conditional belief, from P(X)× P(X) to P(X)). These set operators give
rise to the interpretations of the corresponding modalities of the full language L
(given in Section 5.6) in a standard way.

5.2.4. Definition. [Evidential Support] Given an evidence model M=(X, E0, V )
and a proposition P ⊆ X, a body of evidence F supports P if P is true in every
state satisfying all the evidence in F , i.e., if

⋂
F ⊆ P .

It is easy to see that a body of evidence F is inconsistent iff it supports every
proposition (since ∅ ⊆ P , for all P ). The strength order between bodies of evidence
is given by inclusion: F ⊆ F ′ means that F ′ is at least as strong as F . Note
that stronger bodies of evidence support more propositions: if F ⊆ F ′ then
every proposition supported by F is also supported by F ′. A body of evidence is
maximal (“strongest”) if it is a maximal element of the poset (F ,⊆), i.e., if it is
not a proper subset of any other such body. We denote by

Max⊆F := {F ∈ F | (∀F ′ ∈ F)(F ⊆ F ′ ⇒ F = F ′)}

the family of all maximal bodies of evidence of a given evidence model. By Zorn’s
Lemma, every body of evidence can be strengthened to a maximal body of evidence,
i.e.,

∀F ∈ F ∃F ′ ∈Max⊆F(F ⊆ F ′).

Therefore, in particular, every evidence model has at least one maximal body of
evidence, that is, Max⊆F 6= ∅.

In fact, for finite bodies of evidence, the notions of evidential support and
strength can be represented in a more concise way via the notion of combined
evidence, which, to anticipate further, is represented by basic open sets of the
evidential topology generated from E0 (see Section 5.2.2).

Combined Evidence and Evidential Basis

5.2.5. Definition. [Combined Evidence]
Given an evidence model M = (X, E0, V ), a combined evidence (or, evidence,
for short) is any nonempty intersection of finitely many basic evidence pieces. In
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other words, a nonempty subset e ⊆ X is a combined evidence if e =
⋂
F , for

some F ∈ Ffin.

A combined evidence therefore is just a repackaging of a finite body of evidence
in terms of its intersection. We denote by

E := {
⋂

F | F ∈ Ffin}

the family of all (combined) evidence, which in fact constitutes a topological basis
over X. We will return to the topological versions of evidence models in Section
5.2.2.

The definitions evidential support and strength are adapted for the elements of
E in an obvious way. A (combined) evidence e ∈ E supports a proposition P ⊆ X
if e ⊆ P . In this case, we also say that e is evidence for P . The natural strength
order between combined evidence sets therefore is given by the reverse inclusion:
e ⊇ e′ means that e′ is at least as strong as e. This is both to fit with the strength
order on bodies of evidence (since F ⊆ F ′ implies

⋂
F ⊇

⋂
F ′), and to ensure

that stronger evidence supports more propositions (since, if e ⊇ e′, then every
proposition supported by e is supported by e′).

Recall that E0 represents the collection of evidence pieces that are directly
observed by the agent. The elements of the derived set E therefore serve as indirect
evidence which is obtained by combining finitely many pieces of direct evidence
together in a consistent way. This does not mean that all of this evidence is
necessarily true. We say that some (basic or combined) evidence e ∈ E is factive
evidence at state x ∈ X whenever it is true at x, i.e., if x ∈ e. Similarly, a body of
evidence F is factive if all the pieces of evidence in F are factive, i.e., if x ∈

⋂
F .

Having presented the primary semantic concepts used in the representation of
(basic and combined) evidence, we proceed with our topological setting.

5.2.2 Evidence on Topological Evidence Models

For any nonempty set X and any family Σ of subsets of X, we can construct a
topology on this domain by simply closing Σ under finite intersections and arbi-
trary unions (see Section 2.2). Therefore, every evidence model M = (X, E0, V )
can be associated with an evidential topology that is generated by the set of basic
evidence pieces E0, or equivalently, by the family of all combined evidence E . In
this section, we introduce the topological evidence models, generated from evi-
dence models of van Benthem and Pacuit (2011) in the above described way, and
provide topological formalizations of a notion of argument and a “coherentist”
form of justification (in the spirit of Lehrer (1990)) based on the topological mod-
els. We moreover give the precise interpretations of the modalities E0ϕ and Eϕ
for basic and combined evidence possession, respectively, as well as their factive
versions 20ϕ and 2ϕ.
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5.2.6. Definition. [Topological Evidence Model] A topological evidence model
(or, in short, a topo-e-model) is a tuple M = (X, E0, τ, V ), where (X, E0, V ) is an
evidence model and τ = τE is the topology generated by the family of combined
evidence E (or equivalently, by the family of basic evidence sets E0), which is
called the evidential topology.

The families E0 and E obviously generate the same topology: E is the closure of
E0 under nonempty finite intersections. We denote the evidential topology by τE
only because the family E of combined evidence forms a basis of this topology.
Since any family E0 ⊆ P(X) generates a topology over X, topo-e-models are just
another presentation of evidence models described in Definition 5.2.1. We use this
special terminology to stress our focus on the topology, and to avoid ambiguities,
since our definition of belief in topo-e-models will be different from the definition
of belief in evidence models of van Benthem and Pacuit (2011).

Argument and Justification. Given a topo-e-model M = (X, E0, τ, V ) and a
proposition P ⊆ X, we say

• an argument for P is a union U =
⋃
E ′ of some nonempty family of (com-

bined) evidence E ′ ⊆ E , each separately supporting P (i.e., e ⊆ P for all
e ∈ E ′, or equivalently, U ⊆ P ).

Epistemologically, an argument for P provides multiple evidential paths e ∈ E ′
to support the common conclusion P . Topologically, an argument for P is the
same as a nonempty open subset of P : a set of states U is an argument for P iff
U ∈ τ and U ⊆ P . Therefore, the open Int(P ) forms the weakest (most general)
argument for P , since it is the largest open subset of P .

• A justification for P is an argument U for P that is consistent with every
(combined) evidence (i.e., U ∩ e 6= ∅ for all e ∈ E , that is, U ∩ U ′ 6= ∅ for
all U ′ ∈ τ\{∅}).

Justifications are thus defined to be arguments that are undefeated (i.e., whose
negations are not supported) by any available evidence or any other argument
based on this evidence. Topologically, a justification for P is just a dense open
subset of P : a set of states U is a justification for P iff U ∈ τ such that U ⊆ P
and Cl(U) = X. As for evidence, an argument or a justification U for P is said
to be factive (or “correct”) if it is true in the actual world, i.e., if x ∈ U .

The fact that arguments are open in the generated topology encodes the prin-
ciple that any argument should be evidence-based : whenever an argument is cor-
rect, then it is supported by some factive evidence. To anticipate further: in our
setting, justifications will form the basis of belief, while correct justifications will
form the basis of fallible (defeasible) knowledge. But before moving to justified be-
lief and fallible knowledge, we introduce a stronger, irrevocable form of knowledge
that is captured by the global modality.
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Infallible Knowledge: possessing hard information. We use [∀] for the
so-called global modality, which associates to every proposition P ⊆ X, some
other proposition [∀]P , given by putting:

[∀]P :=

{
X if P = X
∅ otherwise.

In other words, [∀]P holds (at any state) iff P holds at all states. In this setting,
[∀]P is interpreted as “absolutely certain, infallible knowledge”, defined as truth
in all the worlds that are consistent with the agent’s information6. This is a limit
notion capturing a very strong form of knowledge encompassing all epistemic pos-
sibilities. It is irrevocable, i.e., it cannot be lost or weakened by any information
gathered later. In this respect, [∀]P could be best described as possession of hard
information. Its dual [∃]P := ¬[∀]¬P expresses the fact that P is consistent with
(all) the agent’s hard information.

We would like to note here that infallible knowledge [∀]ϕ is not the most in-
teresting notion of knowledge we study in this chapter, and it is harshly criticized
by many epistemologists (see, e.g., Hintikka, 1962). However, having this strong
modality in our framework is useful for both conceptual and technical reasons:
while it helps us to see the difference between infallible and fallible knowledge,
the global modality, in general, adds to the expressive power of modal languages.
In particular, it will allow us to express all the other modalities we work with
in terms of only the modalities 20ϕ and 2ϕ when interacting with the global
modality [∀]ϕ (see Proposition 5.6.2).

Having Basic Evidence for a Proposition. Van Benthem and Pacuit (2011)
define, for every proposition P ⊆ X, another proposition E0P by 7:

E0P :=

{
X if ∃e ∈ E0 (e ⊆ P )
∅ otherwise.

The modal sentence E0P therefore intends to capture possession of basic (direct)
evidence for the proposition P , thus reads as “the agent has basic evidence for P”.
In other words, E0P states that P is supported by some basic piece of evidence.
Additionally, we introduce a factive version of this proposition, 20P , that is read
as “the agent has factive basic evidence for P”, and is given by

20P := {x ∈ X | ∃e ∈ E0 (x ∈ e ⊆ P )}.
6In a multi-agent model, some worlds might be consistent with one agent’s information, while

being ruled out by another agent’s information. Therefore, in a multi-agent setting, [∀i] will
only quantify over all the states in agent i’s current information cell (according to a partition Πi

of the state space reflecting agent i’s hard information). We will present a multi-agent epistemic
system in Chapter 8.

7Van Benthem and Pacuit (2011) denote this by 2P , and it is denoted by [E]P in (van
Benthem et al., 2014). We use E0P for this notion, since we reserve the notation EP for having
combined evidence for P , and 2P for having combined factive evidence for P .
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Having (Combined) Evidence for a Proposition. The above notions of
evidence possession based on having basic evidence for a propositions can be gen-
eralized to having (combined) evidence for a proposition. This way, we obtain two
other evidence operators: EP , meaning that “the agent has (combined) evidence
for P”, and 2P , meaning that “the agent has factive (combined) evidence for
P”. More precisely, EP and 2P are given as follows:

EP :=

{
X if ∃e ∈ E (e ⊆ P )
∅ otherwise

2P := {x ∈ X | ∃e ∈ E (x ∈ e ⊆ P )}.
Since E is a basis of the evidential topology τE , we have that the agent has

evidence for a proposition P iff she has an argument for P . So EP can also be
interpreted as “having an argument for P”. Similarly, 2P can be interpreted as
“having a correct argument for P”. Moreover, 2 operator for having combined
factive evidence coincides with the topological interior operator (see equations
(3.1)-(3.3) in Section 3.2), thus, it coincides with the knowledge operator under
the interior semantics presented in Chapter 3. This observation therefore points
to a major difference between the framework introduced in this chapter and the
approach based on the interior semantics presented in Chapters 3 and 4: while in
the interior semantics the interior operator represents “knowledge of” something,
in our interpretation the interior represents only “having true evidence for” some-
thing. The difference arises from the fact that an agent may be in possession of
some evidence that happens to be true, without the agent necessarily knowing,
or even believing, that this evidence is true. To better understand the difference,
we need a topological understanding of belief.

5.3 Justified Belief

In this section, we propose a topological semantics for a notion of evidence-based
justified belief. We do this by modifying, and in a sense, eliminating the “bugs”
in the belief definition proposed by van Benthem and Pacuit (2011) based on evi-
dence models. While our proposal coincides with that of van Benthem and Pacuit
(2011) on evidence models carrying a finite set of basic evidence pieces E0 and in
some infinite cases, in general ours is “better” behaved. To name a few reasons,
among others, our proposal leads to a notion of belief that is topologically natural,
always consistent, and in fact, it satisfies the axioms of the standard doxastic logic
KD45 on all topo-e-models. To better explain the origins and inspiration of our
proposal, we first recapitulate the belief definition of van Benthem and Pacuit
(2011). We then introduce our definition of justified belief, and show how and
when the two proposals coincide. We also provide several equivalent characteri-
zations of our proposed notion of justified belief, and generalize this setting for
conditional beliefs.
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5.3.1 Belief à la van Benthem and Pacuit

In their work, van Benthem and Pacuit (2011) present an evidence-based notion
of belief defined on the evidence models. According to their definition,

P is believed iff every maximal (i.e., strongest) body of evidence supports P .

We denote this notion by Bel. More formally, given an evidence model M =
(X, E0, V ) and a proposition P ⊆ X,

BelP holds (at any state) iff (∀F ∈Max⊆F)(
⋂

F ⊆ P ).8

However, as can be seen directly from the above definition, Bel is inconsistent on
evidence models whose every maximal body of evidence is inconsistent.

5.3.1. Example. Consider the evidence model M = (N, E0, V ), where the state
space is the set N of natural numbers, V (p) = ∅, and the basic evidence family
is E0 = {[n,∞) | n ∈ N} (see Figure 5.1). The only maximal body of evidence in
E0 is E0 itself. However,

⋂
E0 = ∅. So Bel⊥ holds in M.

. . . . . . . . .1 2 3 4

Figure 5.1: M = (N, E0, V )

This phenomenon only happens in (some cases of) infinite models, so it is not
due to the inherent mutual inconsistency of the available evidence. At a high
level, the source of the problem seems to be the tension between the way the
agent combines her evidence pieces and the way she forms her beliefs based her
evidence: while she puts her evidence pieces together in a finitely consistent way,
having consistent beliefs requires possibly infinite collections to have nonempty

8As already noticed in (van Benthem and Pacuit, 2011; van Benthem et al., 2014), in many
but not all cases, this is equivalent to treating plausibility models as a special case of evidence
models where the plausibility relation is given by the evidential plausibility order vE defined as

x vE y iff (∀e ∈ E0)(x ∈ e implies y ∈ e) iff (∀e ∈ E)(x ∈ e implies y ∈ e),

and applying the standard semantics of belief on plausibility models as “truth in all the most
plausible states”. The relation between evidence models and plausibility models, as well as the
connection between the notions of belief defined on these structures are subtle. We skip the
details on this issue here, and refer to (van Benthem and Pacuit, 2011, Section 5) and (van
Benthem et al., 2014, Section 3) for details.
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intersections. More precisely, even though it is guaranteed by definition that every
finite subfamily of a maximal body of evidence is consistent, the whole maximal
body of evidence may actually be inconsistent. Therefore, in order to avoid this
problem, we could instead focus on maximal finite bodies of evidence as blocks
of evidence forming beliefs: these are, by definition, guaranteed to be always
consistent. However, this solution inevitably restricts the class of evidence models
we can work with, simply because an infinite evidence model might not bear any
maximal finite body of evidence. To illustrate this, we can think of the evidence
model presented in Example 5.3.1: the set of basic evidence E0 is the only maximal
body of evidence in (N, E0, V ), and it is infinite. Therefore, in order to eventually
be able to provide a belief logic of all evidence models that formalizes a notion of
consistent belief, further adjustments in the definition of Bel are warranted. To
this end, we propose to “weaken” the belief definition of van Benthem and Pacuit
(2011) in the sense that we focus on all finite bodies of evidence that are “strong
enough” instead of focusing on all the “strongest” such bodies.

5.3.2 Our Justified Belief

It seems to us that the intended goal (only partially fulfilled) in (van Benthem
and Pacuit, 2011) was to ensure that the agents are able to form consistent
beliefs based on the (possibly false and possibly mutually contradictory) available
evidence. We think this to be a natural requirement for idealized rational agents,
and so we consider doxastic inconsistency to be “a bug, not a feature”, of the van
Benthem-Pacuit framework. Hence, we now propose a notion that produces in a
natural way—with no need for further restrictions—only consistent beliefs, and
also that agrees with the one in (van Benthem and Pacuit, 2011) in many cases
specified below.

The intuition behind our proposal is that a proposition P is believed iff it is
supported by all “sufficiently strong” evidence. We therefore say that P is believed,
and write BP , iff every finite body of evidence can be strengthened to some finite
body of evidence which supports P . More formally, given an evidence model M =
(X, E0, V ) and a proposition P ⊆ X,

BP holds (at any state) iff ∀F ∈ Ffin∃F ′ ∈ Ffin(F ⊆ F ′ and
⋂

F ′ ⊆ P ).

The notion of belief B (like Bel) is a “global” notion, which depends only on
the agent’s evidence, not on the actual world, so it is either true in all possible
worlds, or false in all possible worlds. We therefore have

BP :=

{
X if ∀F ∈ Ffin∃F ′ ∈ Ffin(F ⊆ F ′ and

⋂
F ′ ⊆ P )

∅ otherwise.

This reflects the assumption that beliefs are internal (and fully transparent) to
the agent (Baltag et al., 2008).
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It is easy to see that, unlike Bel, our notion of belief B is always consistent
(i.e., B⊥ = B∅ = ∅), since no finite body of evidence has an empty intersection.
Moreover, it satisfies the axioms of the standard doxastic logic KD45 (see Section
5.6.2). As shown in Example 5.3.2, our notion of belief B and Bel are in general
incompatible (even in cases when Bel is consistent). On the other hand, these two
notions coincide on a restricted class of evidence models (see Proposition 5.3.3).

5.3.2. Example. We now present two models showing that B and Bel are not
comparable in general. More precisely, the first example below illustrates that
BP does not imply BelP , and the second model shows that BelP does not imply
BP even when Bel is consistent.

Consider the evidence model M = (N ∪ {♠}, E0, V ), where N is the set of
natural numbers, V (p) = ∅, and the set of basic evidence is E0 = {ei | i ∈
N} ∪ {{n} | n ∈ N} where ei = [i,∞) ∪ {♠} (see Figure 5.2).
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Figure 5.2: M = (N ∪ {♠}, E0, V )

We then have that

Max⊆(F) = {{ei | i ∈ N}} ∪ {{ei | i ≤ n} ∪ {{m}} | n,m ∈ N with m ≥ n}.

Therefore, for any F∈Max⊆(F), we have⋂
F =

{
{♠} if F = {ei | i ∈ N},
{m} if F = {ei | i ≤ n} ∪ {{m}} with m ≥ n.

We thus obtain that
⋃
F∈Max⊆(F)

⋂
F = N∪{♠}. This means that Bel(N∪{♠}) =

Bel> holds in M, and moreover, N∪{♠} is the only proposition that is believed
according to the belief definition of van Benthem and Pacuit (2011). Thus, in
particular, Bel(N) = ∅, hence, Bel(N) does not hold in M (i.e., no state in
N ∪ {♠} makes Bel(N) true). On the other hand, we have F ∈ Ffin iff F =
{ei | i ∈ I}, or F = {ei | i ∈ I} ∪ {{m}} for some I ⊆fin N and m ≥ max(I),
where max(I) is the greatest natural number in I. Therefore, for every F ∈ Ffin,
we have⋂

F =

{
[max(I),∞) ∪ {♠} if F = {ei | i ∈ I},
{m} if F = {ei | i ∈ I} ∪ {{m}} for m ≥ max(I).

This implies that, any finite body F of the form {ei | i ∈ I} ∪ {{m}} already
supports N. Moreover, if F = {ei | i ∈ I}, there exists a stronger finite body F ′
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of the form F ′ = {ei | i ∈ I} ∪ {{m}} for some m ≥ max(I) that supports N.
We therefore have that B(N) holds in M. Hence, in general, BP does not imply
BelP .

Now consider the evidence model M′ = (N ∪ {♠}, E ′0, V ) based on the same
domain as M, and where V (p) = ∅ and the basic evidence family E ′0 = {[n,∞) ∪
{♠} | n ∈ N} (see Figure 5.3). The only maximal body of evidence in E ′0 is E ′0

. . . . . . ♠1 2 3 4

Figure 5.3: M′ = (N ∪ {♠}, E ′0, V )

itself, and
⋂
E ′0 = {♠}. Therefore, we have ¬Bel⊥ in M′, i.e., Bel is consistent in

M′. Moreover, in particular, Bel{♠} holds in M. On the other hand, for all finite
bodies F ∈ Ffin, we have {♠} (

⋂
F , implying that ¬B{♠} in M′. Therefore,

even when Bel is consistent, BelP does not imply BP .

There are some special cases where Bel and B do coincide. First of all, our
notion of belief B coincides with Bel on the evidence models with finite basic
evidence sets E0. More generally, Bel and B coincide on all maximally compact
evidence models: the ones in which every body of evidence is equivalent to a
finite body of evidence. More formally, an evidence model M = (X, E0, V ) is
called maximally compact if it satisfies the property

∀F ∈ F∃F ′ ∈ Ffin(
⋂

F =
⋂

F ′) (MC)

5.3.3. Proposition. For all maximally compact evidence models M=(X, E0, V )
and P ⊆ X, we have BelP = BP .

Proof:
Let M = (X, E0, V ) be a maximally compact evidence model and P ⊆ X.

(⊆) Suppose BelP holds in M, i.e., suppose that for all F ∈ Max⊆F , we
have

⋂
F ⊆ P . Now let F ′ ∈ Ffin. By Zorn’s Lemma, F ′ can be extended

to a maximal body of evidence F ′′ ∈ F . Note that, since F ′′ extends F ′, i.e.,
F ′ ⊆ F ′′, we have

⋂
F ′′ ⊆

⋂
F ′. Since M is maximally compact, there is F0 ∈ Ffin

such that
⋂
F ′′ =

⋂
F0. Now consider the family of evidence F0 ∪ F ′. Since⋂

F0 =
⋂
F ′′ ⊆

⋂
F ′, we have

⋂
(F0 ∪F ′) =

⋂
F0 ∩

⋂
F ′ =

⋂
F0 6= ∅. Therefore,

the family of evidence F0 ∪ F ′ is a finite body of evidence, i.e., F0 ∪ F ′ ∈ Ffin.
Obviously, F0 ∪ F ′ extends F ′, i.e., F ′ ⊆ F0 ∪ F ′. Moreover, since BelP holds in
M, we have that

⋂
F ′′ ⊆ P . We then obtain

⋂
(F0 ∪ F ′) =

⋂
F0 =

⋂
F ′′ ⊆ P .

We have therefore proven that the finite body of evidence F0∪F ′ extends F ′ and
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it entails P . As F ′ has been chosen arbitrarily from Ffin, we conclude that BP
holds in M.

(⊇) Suppose BP holds in M, i.e., suppose that for all F ∈ Ffin, there ex-
ists F ′ ∈ Ffin such that F ⊆ F ′ and

⋂
F ′ ⊆ P . Let F ′′ ∈ Max⊆F . Then,

since M is maximally compact, there exists F0 ∈ Ffin such that
⋂
F ′′ =

⋂
F0.

Moreover, since BP holds in M, there exists F1 ∈ Ffin such that F0 ⊆ F1 and⋂
F1 ⊆ P . Besides, since

⋂
F1 ⊆

⋂
F0 =

⋂
F ′′ and F ′′ is maximal, we in fact

have F1 ⊆ F ′′ (otherwise, there exists e ∈ E0 such that e ∈ F1 but e 6∈ F ′′.
Therefore, as

⋂
F1 ⊆

⋂
F ′′, we would have

⋂
F1 ⊆

⋂
(F ′′ ∪ {e}), and thus⋂

(F ′′ ∪{e}) 6= ∅, contradicting maximality of F ′′.) Therefore,
⋂
F ′′ ⊆

⋂
F1, and

thus,
⋂
F1 =

⋂
F ′′. Then, together with

⋂
F1 ⊆ P , we obtain

⋂
F ′′ ⊆ P . As F ′′

has been chosen arbitrarily from Max⊆F , we conclude that BelP holds in M. 2

Another important feature of our belief definition is that B is a purely topo-
logical notion, as stated in the following proposition which, in turn, constitutes a
justification for our use of topo-e-models rather than working with only evidence
models.

5.3.4. Proposition. In every topo-e-model M = (X, E0, τ, V ), the following are
equivalent, for any proposition P ⊆ X:

1. BP holds (at any state)
(i.e., ∀F ∈ Ffin∃F ′ ∈ Ffin(F ⊆ F ′ and

⋂
F ′ ⊆ P ));

2. every evidence can be strengthened to some evidence supporting P
(i.e., ∀e ∈ E ∃e′ ∈ E(e′ ⊆ e ∩ P ));

3. every argument (for anything) can be strengthened to an argument for P
(i.e., ∀U ∈ τ\{∅} ∃U ′ ∈ τ\{∅}(U ′ ⊆ U ∩ P ));

4. there is a justification for P , i.e., there is some argument for P which is
consistent with any available evidence
(i.e., ∃U ∈ τ(U ⊆ P and ∀e ∈ E(U ∩ e 6= ∅)));

5. P includes some dense open set
(i.e., ∃U ∈ τ(U ⊆ P and Cl(U) = X));

6. Int(P ) is dense in τ (i.e., Cl(Int(P )) = X), or equivalently, X\P is
nowhere dense (i.e., Int(Cl(X\P )) = ∅);

7. [∀]32P holds (at any state) (i.e., [∀]32P = X), or equivalently, [∀]32P 6=
∅.

Proof:
The equivalence between (1), (2) and (3) is easy, and follows directly from def-
initions of combined evidence and argument. The equivalence of (5) and (6) is
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also straightforward (recall that Int(P ) is the largest open contained in P ). The
equivalence between (4) and (5) simply follows from the definitions of arguments
and dense sets. For the equivalence of (6) and (7), recall that [∀] is the global
modality, 2 is interior and 3 is closure. For the equivalence of (3) and (4):

(3)⇒(4): Suppose (3) holds and consider the open set Int(P ). We will show
that Int(P ) is a justification for P , i.e., Int(P ) ∩ e 6= ∅ for all e ∈ E . Let e ∈ E .
By (3), since e ∈ E ⊆ τ\{∅}, there exists U0 ∈ τ\{∅} such that U0 ⊆ e ∩ P . We
then have Int(U0) ⊆ Int(e ∩ P ) = Int(e) ∩ Int(P ). Therefore, since U0 and e are
open sets, we obtain U0 ⊆ e∩Int(P ). As U0 6= ∅, we conclude that e∩Int(P ) 6= ∅.

(4)⇒(3): Suppose (4) holds, i.e., suppose that there exists U0 ∈ τ such that
(a) U0 ⊆ P and (b) U0 ∩ e 6= ∅ for all e ∈ E . Let U ∈ τ with U 6= ∅. Now
consider the open set U ∩U0. Since E is a basis of τ , there exists e ∈ E such that
e ⊆ U . Therefore, by (b), the intersection U ∩ U0 6= ∅, thus, U ∩ U0 ∈ τ\{∅}. By
(a), we also have U ∩ U0 ⊆ U ∩ P . 2

Proposition 5.3.4 deserves a closer look as it describes the topological proper-
ties of our notion of belief, as well as states that our belief is the same as justified
belief that is coherent with every available evidence. The equivalence between
(1), (2) and (3) shows that we can define BP in equivalent ways by using only
basic evidence pieces (i.e., the elements of E0), or by using only combined evi-
dence (i.e., the elements of E), or by using only the open sets of the generated
evidential topology τE . Proposition 5.3.4-(4) proves that our definition of belief
indeed gives us a conception of evidentially justified belief. The requirement that
any justification of a believed proposition must be open in the evidential topology
simply means that the justification is ultimately based on the available evidence;
while the requirement that the justification is dense (in the same topology) means
that all the agent’s beliefs must be coherent with all her evidence. Therefore, be-
lieved propositions, according to our definition, are those for which there is some
evidential justification that is consistent with all available (basic or combined)
evidence. Moreover, whenever a proposition P is believed, there exists a weak-
est (most general) justification for P , namely the open set Int(P ). Proposition
5.3.4-(5-7) provide topological reformulations of the above items. In particular,
Proposition 5.3.4-(6) shows that our proposal is very natural from a topological
perspective: it is equivalent to saying that P is believed iff the complement of P
is nowhere dense. Since nowhere dense sets are one of the topological concepts
of “small” or “negligible” sets, this amounts to believing propositions iff they are
true in almost all epistemically-possible worlds, where “almost all” spelled out
topologically as “everywhere but a nowhere dense part of the model”. Finally,
Proposition 5.3.4-(7) tells us that belief is definable in terms of the operators [∀]
and 2.

We will provide further technical results such as the soundness and complete-
ness of the belief logic with respect to the topo-e-models in Section 5.6.2. We now
proceed with formalizing a notion of conditional beliefs on topo-e-models.
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5.3.3 Conditional Belief on Topo-e-models

The belief semantics given in Section 5.3.2 can be generalized to conditional be-
liefs BQP by relativizing the simple belief definition BP to the given condition
Q, in a way similar to how we obtained conditional belief semantics in Section
4.3.2. However, this current setting requires a somewhat more careful treatment
(as recognized already in van Benthem and Pacuit, 2011) since some of the agent’s
evidence might be inconsistent with the condition Q. While evaluating beliefs un-
der the assumption that the given condition Q is true, one should focus only
on the evidence that is consistent with Q by neglecting the evidence pieces that
are disjoint with Q. Therefore, in order to define conditional beliefs, we need a
“relativized” version of the notion of consistent (bodies of) evidence.

Given an evidence model M = (X, E0, V ), for any subsets Q,A ⊆ X, we say
that A is Q-consistent iff Q ∩ A 6= ∅. Moreover, a body of evidence F is called
Q-consistent iff

⋂
F ∩ Q 6= ∅. We can then define conditional beliefs based on

these notions of “conditional consistency”. We say that P is believed given Q,
and write BQP , iff every finite Q-consistent body of evidence can be strengthened
to some finite Q-consistent body of evidence supporting the proposition Q → P
(i.e. ¬Q ∪ P )).

An analogue of Proposition 5.3.4 providing different characterizations can also
be proven for conditional belief:

5.3.5. Proposition. In every topo-e-model M = (X, E0, τ, V ), the following are
equivalent, for any two propositions P,Q ⊆ X with Q 6= ∅:

1. BQP holds (at any state);

2. every Q-consistent evidence can be strengthened to some Q-consistent evi-
dence supporting Q→ P
(i.e., ∀e ∈ E(e ∩Q 6= ∅ ⇒ ∃e′ ∈ E(e′ ∩Q 6= ∅ and e′ ⊆ e ∩ (Q→ P ))));

3. every Q-consistent argument can be strengthened to a Q-consistent argument
for Q→ P
(i.e., ∀U ∈ τ(U ∩Q 6= ∅ ⇒ ∃U ′ ∈ τ(U ′ ∩Q 6= ∅ and U ′ ⊆ U ∩ (Q→ P ))));

4. there is some Q-consistent argument for Q → P whose intersection with
any Q-consistent evidence is Q-consistent
(i.e., ∃U ∈ τ(U ∩ Q 6= ∅ and U ⊆ Q → P and ∀e ∈ E(e ∩ Q 6= ∅ ⇒
(U ∩ e) ∩Q 6= ∅)));

5. Q→ P includes some Q-consistent open set which is dense in Q
(i.e., ∃U ∈ τ(U ∩Q 6= ∅ and U ⊆ Q→ P and Q ⊆ Cl(U ∩Q)));

6. Int(Q→ P ) is dense in Q
(i.e., Q ⊆ Cl(Q ∩ Int(Q→ P )));
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7. ∀(Q→ 3(Q∧2(Q→ P ))) holds (at any state ) (i.e., ∀(Q→ 3(Q∧2(Q→
P ))) = X), or equivalently, ∀(Q→ 3(Q ∧2(Q→ P ))) 6= ∅.

Proof:
The equivalence between (1), (2), (3) is easy and directly follows from the se-
mantics of BQP , and the definitions of Q-consistent evidence and Q-consistent
argument. For the equivalence between (5) and (6), consider the weakest argu-
ment Int(Q→ P ) for Q→ P . And, for the equivalence of (6) and (7), recall that
[∀] is the universal quantifier, 2 is interior and 3 is closure. We here show only
the equivalence between (3) and (4), and between (4) and (5) in details.

(3)⇒(4): Suppose (3) holds and consider the weakest argument Int(Q→ P )
for Q → P . Since X ∈ E and X is Q-consistent, by (3), there exists a stronger
U ∈ τ such that U ∩ Q 6= ∅ and U ⊆ Q → P . Since Int(Q → P ) is the largest
open with Int(Q → P ) ⊆ Q → P , we obtain U ⊆ Int(Q → P ) ⊆ Q → P
for any such U , therefore, Int(Q → P ) is also Q-consistent. Let e ∈ E be such
that e ∩ Q 6= ∅. Therefore, since E ⊆ τ , by (3), there exists U ′ ∈ τ such that
U ′ ∩ Q 6= ∅ and U ′ ⊆ e ∩ (Q → P ). By the previous argument, we know that
U ′ ⊆ Int(Q→ P ), thus, U ′ ⊆ e∩Int(Q→ P ) 6= ∅. And, since U ′ is Q-consistent,
the result follows.

(4)⇒(3): Suppose (4) holds, i.e., suppose that there is U0 ∈ τ such that (a)
U0 ∩ Q 6= ∅, (b) U0 ⊆ Q → P and (c) for all e ∈ E with e ∩ Q 6= ∅, we have
(U0 ∩ e) ∩ Q 6= ∅. Let U ∈ τ be such that U ∩ Q 6= ∅ and consider the open set
U ∩ U0. Since U ∩ Q 6= ∅ and E is a basis for τ , there exists e0 ∈ E such that
e0 ⊆ U and e0 ∩Q 6= ∅. Therefore, by (c), we have that (U0 ∩ e0) ∩Q 6= ∅, thus,
the open set U0 ∩ e0 is Q-consistent. Moreover, since U0 ⊆ Q → P and e0 ⊆ U ,
we obtain U0 ∩ e0 ⊆ U ∩ (Q→ P ).

(4)⇔(5): For the left-to-right direction, suppose (4) holds as in the above case,
and toward showing Q ⊆ Cl(U0∩Q), let x ∈ Q and e ∈ E such that x ∈ e. There-
fore, e is Q-consistent, i.e., e ∩Q 6= ∅. Then, by (4), we obtain (U0 ∩ e) ∩Q 6= ∅,
implying that x ∈ Cl(U0 ∩ Q). For the right-to-left direction, suppose (5) holds
with U0 the witness and let e ∈ E be such that e∩Q 6= ∅. This means that there
is y ∈ e∩Q, thus, y ∈ Q. Then, by (5), y ∈ Cl(U0 ∩Q). Therefore, as y ∈ e ∈ E ,
we conclude (U0 ∩Q) ∩ e 6= ∅. 2

5.4 Evidence Dynamics

What we have presented so far focuses on how an agent forms beliefs based on
a fixed collection of evidence pieces she has gathered so far. However, collecting
and evaluating evidence is not a one-time process: the agent might receive fur-
ther information or re-evaluate her current evidence set, thus, she might need to
revise her beliefs and knowledge accordingly. There are different ways one can
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incorporate new information into the initial evidence structure depending on,
e.g., the information source and how the agent regards the new information. Van
Benthem and Pacuit (2011) presents a wide range of evidence dynamics as model
transformations, and in this section, we study their dynamic operators such as
public announcements, evidence addition, evidence upgrade and (a feasible ver-
sion of) evidence combination implemented on topo-e-models. While the only
domain changing operator is the so-called updates for public announcemets; ev-
idence addition, upgrade and combination only affect the agent’s initial basic
evidence set E0, and thus the combined evidence set E and the generated topol-
ogy τE . We here only describe the corresponding model changes and leave the
presentation of the corresponding dynamic logics for Section 5.6.6. Throughout
this section, we are given a topo-e-model M = (X, E0, τ, V ) and some proposition
P ⊆ X, with P 6= ∅.

Public Annoucements. Public announcements involve learning a new fact P
with absolute certainty. The announced proposition P is taken as “hard informa-
tion”, that is, a true information coming from an infallible source. The standard
way of interpreting this—as also mentioned in Section 4.2.2—is via model re-
strictions, both on relational and neighbourhood structures (see, e.g., Definition
4.2.4). For evidence models, this means keeping only the worlds in P and only
the P -consistent evidence pieces. Topologically, this is a move from the original
space (X, τ) to the subspace (P, τP ) induced by P .

5.4.1. Definition. [Public Announcements]
The model M!P = (X !P , E !P

0 , τ !P , V !P ) is defined as follows: X !P = P , E !P
0 =

{e ∩ P | e ∈ E0 with e ∩ P 6= ∅}, τ !P = {U ∩ P | U ∈ τ}, and V !P (p) = V (p) ∩ P
for each p ∈ prop.

It is easy to check that M!P is a topo-e-model with the set of combined evidence

E !P = {e ∩ P | e ∈ E with e ∩ P 6= ∅}.

Evidence addition. An agent can also regard and admit the new information
on par with her old evidence without assuming it is hard information. In this
case, the natural thing to do is to add the new piece of evidence to the initial
basic evidence set and generate the evidential topology from the new evidence
collection. This action simply describes the most straightforward way an agent
collects individually consistent evidence pieces.

5.4.2. Definition. [Evidence Addition]
The model M+P = (X+P , E+P

0 , τ+P , V +P ) is defined as follows: X+P = X, E+P
0 =

E0 ∪ {P}, τ+P is the topology generated by E+P
0 , and V +P = V .
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Again, M+P is a topo-e-model, since ∅ 6∈ E+P
0 and X+P = X ∈ E+P

0 , and τ+P is
the evidential topology generated by E+P

0 . Moreover, the set of combined evidence
E+P of M+P can be described as

E+P = E ∪ {e ∩ P | e ∈ E with e ∩ P 6= ∅},

which clearly constitutes a basis for τ+P .

Evidence upgrade. The operator of evidence upgrade ⇑P incorporates P into
all other pieces of evidence, thus making P the most important available evidence.

5.4.3. Definition. [Evidence Upgrade]
The model M⇑P = (X⇑P , E⇑P0 , τ⇑P , V ⇑P ) is defined as follows: X⇑P = X, E⇑P0 =
{e ∪ P | e ∈ E0} ∪ {P}, τ⇑P is the topology generated by E⇑P0 , and V ⇑P = V .

M⇑P is obviously a topo-e-model for the same reasons given above, and the set
of combined evidence E⇑P of M⇑P can be described as

E⇑P = {e ∪ P | e ∈ E} ∪ {P}.

The following observation proves that evidence upgrade with P in fact makes
the proposition P the most important evidence piece in the sense that the believed
propositions in M⇑P are exactly those entailed by P .

5.4.4. Proposition. Given a topo-e-model M = (X, E0, τ, V ) and propositions
P,Q ⊆ X with P,Q 6= ∅,

P ⊆ Q iff BQ holds in M⇑P .

Proof:
Suppose P 6⊆ Q. This means, by definition of E⇑P , that there is no argument
in M⇑P that supports Q (since every element e of E⇑P includes P ). Therefore,
by Proposition 5.3.4-(4), we obtain that BQ does not hold in M⇑P . For the
other direction, suppose P ⊆ Q and let e ∈ E⇑P . By the definition of E⇑P , ei-
ther e = P or there is e′ ∈ E such that e = e′ ∪ P . If e = P , then obviously
e ∩ Q = P ∩ Q = P 6= ∅ (where we used the assumption P ⊆ Q). If e = e′ ∪ P ,
then e ∩ Q = (e′ ∪ P ) ∩ Q = (e′ ∩ Q) ∪ (P ∩ Q) = (e′ ∩ Q) ∪ P ⊇ P 6= ∅ (where
we again used the assumption P ⊆ Q). Therefore, by Proposition 5.3.4-(4), we
obtain that BQ holds in M⇑P . 2
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Feasible evidence combination. Another dynamic operation considered in
(van Benthem and Pacuit, 2011) is evidence combination. We here adapt it to our
topological setting, which assumes that agents can combine only finitely many
pieces of evidence at a given time. This is what we call feasible evidence combi-
nation, in contrast to the infinitary combinations allowed in (van Benthem and
Pacuit, 2011). The dynamic operation of evidence combination is concerned with
internal re-evaluation of the evidence pieces the agent possesses, it does not in-
volve any new external information. Feasible evidence combination, intuitively
speaking, produces a model in which every evidence previously regarded as com-
bined evidence becomes a basic piece of evidence.

5.4.5. Definition. [Feasible Evidence Combination]
The model M# = (X#, E#

0 , τ
#, V #) is defined as follows: X# = X, E#

0 is the
smallest set closed under nonempty, finite intersections and containing E0, and
τ# is the topology generated by E#

0 , and V # = V .

M# is clearly a topo-e-model. In fact, since E#
0 is obtained by closing E0 under

finite and nonempty intersections, we have E#
0 = E# = E , and therefore, the

topology stays the same, i.e., τ = τ#.
The precise syntax capturing the above evidence dynamics, and the complete

axiomatizations of the corresponding logics will be provided in Section 5.6. We
now continue with our proposal for a defeasible type of knowledge based on topo-
e-models.

5.5 Knowledge

The only notion of knowledge we have considered so far in this chapter was the so-
called infallible knowledge—represented by the global modality [∀]—that conveys
absolute certainty (Section 5.2.2). However, there are very few things we could
know in this strong sense, maybe, say, only logical-mathematical tautologies. We
now define a “softer” (weaker) notion of knowledge that approximates better the
common usage of the word than infallible knowledge. In particular, in this section,
we study a notion of (fallible) knowledge based on factive justification. Formally,
given a topo-e-model M = (X, E0, τ, V ), we set

KP := {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ P and Cl(U) = X)},

stating thatKP holds at x iff P includes a dense open neighborhood of x. Similarly
to the cases for belief and conditional beliefs (see Propositions 5.3.4 and 5.3.5),
we can provide several equivalent definitions of KP on topo-e-models as follow.

5.5.1. Proposition. Let M = (X, E0, τ, V ) be a topo-e-model, and assume x ∈
X is the actual world. The following are equivalent for all P ⊆ X:
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1. KP holds at x in M
(i.e., ∃U ∈ τ (x ∈ U ⊆ P and Cl(U) = X));

2. there is some factive justification for P at x, i.e., there is some factive
argument for P at x which is consistent with any available evidence
(i.e., ∃U ∈ τ(x ∈ U ⊆ P and ∀e ∈ E(U ∩ e 6= ∅)));

3. Int(P ) contains the actual state and is dense in τ
(i.e., x ∈ Int(P ) and Cl(Int(P )) = X);

4. 2P ∧BP holds at x.

Proof:
The proof is similar to the proof of Proposition 5.3.4. For the equivalence between
(1) and (2), recall that E constitutes a basis for τ . The equivalence of (2) and
(3) is also straightforward (recall that Int(P ) is the largest open set contained in
P ). For the equivalence of (3) and (4), see Proposition 5.3.4-(6) and recall that
2 is interpreted as the interior operator. 2

Therefore, as the equivalence between Proposition 5.5.1-(1) and (2) shows, we
propose to define knowledge as correctly justified belief. In other words, we here
study a notion of knowledge that is characterized as belief based on true justifi-
cation. We would like to emphasize that the above-defined notion of knowledge
does not boil down to “justified true belief”. This would clearly be vulnerable to
Gettier-type counterexamples (Gettier, 1963). To explain better, we illustrate the
semantics we propose for justified belief and knowledge, as well as the connection
between the two notions in the example below.

5.5.2. Example. Consider the topo-e-model M = ([0, 1], E0, τ, V ), where E0 =
{(a, b) ∩ [0, 1] | a, b ∈ R, a < b} and V (p) = ∅. The generated topology τ is
the standard topology on [0, 1]. Let P = [0, 1]\{ 1

n
| n ∈ N} be the proposition

stating that “the actual state is not of the form 1
n
, for any n ∈ N” (see Figure

5.4). Since the complement ¬P = [0, 1]\P = { 1
n
| n ∈ N} is nowhere dense (i.e.,

Int(Cl(¬P )) = Int(¬P ) = ∅), the agent believes P , and e.g. U =
⋃
n≥1( 1

n+1
, 1
n
)

is a justification for P , that is, U is a dense open subset of P . This belief is true
at world 0 ∈ P . But this true belief is not knowledge at 0: no justification for P
is true at 0, since P does not include any open neighborhood of 0, so 0 6∈ Int(P )
and hence 0 6∈ KP . This shows that KP 6= P ∧ BP . Moreover, P is known in
all the other states x ∈ P\{0}, since

∀x ∈ P\{0} ∃ε > 0(x ∈ (x− ε, x+ ε) ⊆ P ),

therefore x ∈ Int(P ).
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Figure 5.4: ([0, 1], τ)

Going back to Stalnaker’s epistemic-doxastic system Stal, it is easy to see
that K together with justified belief B satisfies Stalnaker’s Full Belief principle
BP = BKP (see Table 4.1). These operators in fact satisfy all the axioms and
rules of the system Stal on all topo-e-models, thus, on all topological spaces,
not only on the restricted class of extremally disconnected spaces. We prove the
soundness and completeness of Stalnaker’s system Stal with respect to all topo-
e-models in Section 5.6.4.

One interesting property of this weaker type of knowledge is it being defea-
sible in the light of new information, even when the new information is true. In
contrast, the usual assumption in epistemic logic is that knowledge acquisition is
monotonic. As a result, logicians typically assume that knowledge is “irrevoca-
ble”: once acquired, it cannot be defeated by any further evidence gathered later.
In our setting, the only irrevocable knowledge is the absolutely certain one (true
in all epistemically-possible worlds), captured by the operator [∀]. Clearly, K is
not irrevocable.

5.5.1 Knowledge is defeasible

Gettier (1963)—with his famous counterexamples against the account of knowl-
edge as justified true belief—triggered an extensive discussion in epistemology
that is concerned with understanding what knowledge is, and in particular, with
identifying the exact properties and conditions that render a piece of justified true
belief knowledge. Epistemologists have made various proposals such as, among
others, the no false lemma (Clark, 1963), the defeasibility analysis of knowl-
edge (Lehrer and Paxson, 1969; Lehrer, 1990; Klein, 1971, 1981), the sensitivity
account (Nozick, 1981), the safety account (Sosa, 1999), and the contextualist
account (DeRose, 2009)9. While there is still very little agreement about these
questions, the extent of the post-Gettier literature at the very least shows that
the relation between justified belief and knowledge is very delicate, and it is not
an easy task, if possible, to identify a unique notion of knowledge that can deal
with all kinds of intuitive counterexamples. However, as Rott (2004) states, one
can accept that all these proposals “capture important intuitions that can in some
way or other be regarded as relevant to the question whether or not a given belief
constitutes a piece of knowledge” (Rott, 2004, p. 469). Providing an extensive
philosophical analysis regarding the aforementioned theories of knowledge is way

9For an overview of responses to the Gettier challenge and a detailed discussion, we refer
the reader to (Rott, 2004; Ichikawa and Steup, 2013).
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beyond the scope of this dissertation. However, in this section, we argue that
our conception of knowledge captured by the modality K is stronger than Clark’s
“no false lemma” (Clark, 1963), and very close to (though subtly different from)
the so-called defeasibility theory of knowledge held by Lehrer and Paxson (1969);
Lehrer (1990); Klein (1971, 1981).

Clark’s influential “no false lemma” proposal is to require a correct “justifi-
cation”—one that doesn’t use any falsehood—for a piece of belief to constitute
knowledge (Clark, 1963). As similar as this sounds to our knowledge K, our
proposal imposes a stronger requirement than Clark’s, since our concept of jus-
tification requires consistency with all the available (combined) evidence. In our
terminology, Clark only requires a factive argument for P . So Clark’s approach
is ‘local’, assessing a knowledge claim based only on the truth of the evidence
pieces (and the correctness of the inferences) that are used to justify it. Our
proposal is coherentist, and thus ‘holistic’, assessing knowledge claims by their
coherence with all of the agent’s acceptance system: justifications need to be
checked against all the other arguments that can be constructed from the agent’s
current evidence.

On the other hand, the defeasibility theory of knowledge, roughly speaking,
defends that knowledge can be defined as justified belief that cannot be defeated by
any factive evidence gathered later (though it may be defeated by false evidence).
Therefore, knowledge is equated with undefeated justified belief. In its simplest
version, as formalized by Stalnaker (2006), the agent knows P if and only if

1. P is true

2. she believes that P , and

3. her belief in P cannot be defeated by new factive information.

In other words, given a true proposition P , the agent knows P iff she does not
give up her belief in P after receiving any true information, i.e., her belief in P is
stable for true information. As Rott (2004) pointed out, this is a simple version
of defeasibility theory of knowledge as it requires only the belief in P itself to
be stable. For this reason, Rott (2004) calls this stable belief theory or stability
theory of knowledge. The above version has been challenged for being too weak
to form knowledge. The full-fledged version of the defeasibility theory, as held
by Lehrer and others, insists that, in order to know P , not only the belief in P
has to stay stable, but also its justification (i.e. what we call here “an argument
for P”) should be undefeated. More precisely, according to this strong version of
defeasibility theory, the agent knows P if and only if

1. P is true

2. she believes that P ,
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3. her belief in P cannot be defeated by new factive information, and

4. her justification is undefeated by new factive information.

In other words, for the agent to know P , there must exist an argument for
P that is believed conditional on every true evidence. Clearly, this implies that
the belief in P is stable, however, it is not at all obvious whether having stable
belief in P would imply its justification being undefeated. Indeed, Lehrer claims
that this is not the case. The problem is that, when confronted with various new
pieces of evidence, the agent might keep switching between different justifications
(for believing P ); thus, she may keep believing in P conditional on any such new
true evidence, without actually having any good, robust justification (i.e., one
that remains itself undefeated by all true evidence) (see Example 5.5.4). To have
knowledge, we thus need a stable justification.10

However, the above interpretation (of both the stability and the defeasibility
theory) was also attacked as being too strong : if we allow as potential defeaters
all factive propositions (i.e. all sets of worlds P containing the actual world),
then there are intuitive examples showing that knowledge KP can be defeated
(Klein, 1980, 1981). Here is such an example discussed by Klein (1981), a leading
proponent of the defeasibility theory. Loretta filled in her federal taxes, following
very carefully all the required procedures on the forms, doing all the calculations
and double checking everything. Based on this evidence, she correctly believes
that she owes $500, and she seems perfectly justified to believe this. So it seems
obvious that she knows this. But suppose now that, being aware of her own
fallibility, she asks her accountant to check her return. The accountant finds no
errors (when there are in fact some errors in her calculation, yet not affecting the
correct result that she owes $500), and so he sends her his reply reading “Your
return contains no errors”; but he inadvertently leaves out the word “no”. If
Loretta would learn the true fact that the accountant’s letter actually reads “Your
return contains errors”, she would lose her true belief that she owed $500! So it
seems that there exist defeaters that are true but “misleading”. We can formalize
this counterexample as follows, and show that our knowledge K is neither stable
nor indefeasible:

5.5.3. Example. Consider the model M = (X, E0, τ, V ), whereX = {x1, x2, x3},
V (p) = ∅, E0 = {X,O1, O2}, O1 = {x1, x2}, O2 = {x2, x3} (see Figure 5.5). The
resulting set of combined evidence is E = {X,O1, O2, {x2}}. Assume the actual
world is x1. Then O1 is known, since x1 ∈ Int(O1) = O1 and Cl(O1) = X. Now

10Lehrer uses the metaphor of an Ultra-Justification Game (Lehrer, 1990), according to which
‘knowledge’ is based on arguments that survive a game between the Believer and an omniscient
truth-telling Critic, who tries to defeat the argument by using both the Believer’s current “jus-
tification system” and any new true evidence (see Fiutek, 2013, Section 5.2 for a formalization
of Lehrer’s ultra-justification game).
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consider the model M+O3 = (X, E+O3
0 , τ+O3 , V ) obtained by adding the new ev-

idence O3 = {x1, x3} (as in Definition 5.4.2). We have E+O3
0 = {X,O1, O2, O3},

so E+O3 = {X,O1, O2, O3, {x1}, {x2}, {x3}}. Note that the new evidence is true
(x1 ∈ O3). However, O1 is not even believed in M+O3 anymore, since O1∩{x3} = ∅,
so O1 is no longer dense in τ+O3 . Therefore, O1 is no longer known after the true
evidence O3 was added!

x1 x2

x3

O1

O2

=⇒O3

x1 x2

x3

O1

O2

O3

Figure 5.5: From M to M+O3

Klein’s story corresponds to taking O1 to represent Loretta’s direct evidence
(based on careful calculations) that she owes $500, O2 to represent her prior
evidence (based on past experience) that the accountant doesn’t make mistakes
in his replies to her, and O3 the potential new evidence provided by the letter.
In conclusion, our notion of knowledge is incompatible with the above-mentioned
strong interpretations of both stability and defeasibility theory, thus confirming
the objections raised against them.

Klein’s solution is that one should exclude such misleading defeaters, which
may “unfairly” defeat a good justification. But how can we distinguish them from
genuine defeaters? Klein’s diagnosis, in Foley’s more succinct formulation, is that
“a defeater is misleading if it justifies a falsehood in the process of defeating
the justification for the target belief” (Foley, 2012, p. 96). In the example, the
falsehood is that the accountant had discovered errors in Loretta’s tax return. It
seems that the new evidence O3 (the existence of the letter as actually written)
supports this falsehood, but how? According to us, it is the combination O2 ∩O3

of the new (true) evidence O3 with the old (false) evidence O2 that supports
the new falsehood: the true fact (about the letter saying what it says) entails
a falsehood only if it is taken in conjunction with Loretta’s prior evidence (or
blind trust) that the accountant cannot make mistakes. So intuitively, misleading
defeaters are the ones which may lead to new false conclusions when combined
with some of the old evidence.

Misleading evidence and weakly indefeasible knowledge. We proceed
now to formalize the distinction between misleading and genuine (i.e., nonmis-
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leading) defeaters. Given a topo-e-model M = (X, E0, τ, V ), a state x ∈ X and a
proposition Q ⊆ X,

• Q is misleading at x ∈ X with respect to E if evidence-addition with Q
produces some false new evidence;

equivalently, and more formally, if there is some e ∈ E+Q\E such that x 6∈ e, i.e.,
if there is some e ∈ E such that x 6∈ (e∩Q) and (e∩Q) 6∈ E ∪ {∅}. A proposition
Q ⊆ X is called nonmisleading if Q is not misleading. It is easy to see that old
evidence e ∈ E is by definition nonmisleading with respect to E (i.e., each e ∈ E
is nonmisleading with respect to E), and new nonmisleading evidence must be
true (i.e., if Q ⊆ X is nonmisleading at x and Q 6∈ E , then x ∈ Q).

We are now in the position to formulate precisely the “weakened” versions of
both stability and defeasibility theories that we are looking for. The weak stability
theory will stipulate that the agent knows P if and only if

1. P is true

2. she believes that P ,

3. her belief in P cannot be defeated by any nonmisleading evidence,

On the other hand, the weak defeasibility theory requires that there exists some
justification (argument) for P that is undefeated by every nonmisleading proposi-
tion. More precisely, the weak defeasibility theory strengthens the above described
weak stability theory by the following “stable justification” clause:

4. her belief in its justification is undefeated by any nonmisleading evidence.

Finally, we also provide a third formulation, which one might call epistemic co-
herence theory, saying that P is known iff there exists some justification (argu-
ment) for P which is consistent with every nonmisleading proposition. While our
proposed notion of knowledge is stronger than the one described by the weak
stability theory, as illustrated by Example 5.5.4, it coincides with the ones de-
fined by the weak defeasibility and epistemic coherence theories (see Proposition
5.5.5). In particular, the following counterexample shows that weak stability is
(only a necessary, but) not a sufficient condition for knowledge K:

5.5.4. Example. Consider the model M = (X, E0, τ, V ), whereX = {x0, x1, x2},
V (p) = ∅, E0 = {X,O1, O2} with O1 = {x1}, O2 = {x1, x2} (see Figure 5.6). The
resulting set of combined evidence is E = E0. Assume the actual world is x0, and let
P = {x0, x1}. Then, P is believed in M (since its interior Int(P ) = {x1} is dense
in τ) but it is not known (since x0 6∈ Int(P ) = {x1}). However, we can show that
P is believed in M+Q for any nonmisleading Q at x0. For this, note that the family
of nonmisleading propositions (at x0) is E ∪ {P, {x0}} = {X,O1, O2, P, {x0}}. It
is easy to see that for each set Q in this family, BP holds in M+Q.
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x2

x1
x0 O1

O2P

Figure 5.6: M = (X, E0, V ): The continuous ellipses represent the currently avail-
able pieces of evidence, while the dashed ones represent the other nonmisleading
propositions.

One should stress that our counterexample agrees with the position taken by
most proponents of the defeasibility theory: stability of (justified) belief is not
enough for knowledge. Intuitively, what happens in the above example is that,
although the agent continues to believe P given any nonmisleading evidence, her
justification keeps changing. For example, while the only justification for believing
P in M is O1, the evidence O1 is no longer dense in model M+{x0}, therefore,
cannot constitute a justification for P in M+{x0}. On the other hand, another
argument in M+{x0}, namely {x0, x1} forms a justification for P in M+{x0}, thus
P is still believed in M+{x0}, but, based on a different justification. Therefore,
there is no uniform justification for P that works for every nonmisleading evidence
Q.

The next result shows that our notion of knowledge exactly matches the weak-
ened version of defeasibility theory, as well as the epistemic coherence formulation:

5.5.5. Proposition. Let M = (X, E0, τ, V ) be a topo-e-model, and x ∈ X is the
actual world. The following are equivalent for all P ⊆ X:

1. KP holds at x in M.

2. There is an argument (justification) for P that cannot be defeated by any
nonmisleading proposition; i.e. ∃U ∈ τ\{∅} such that U ⊆ P and BU holds
in M+Q for all nonmisleading Q ⊆ X (at x with respect to E).

3. There is an argument (justification) for P that is consistent with every non-
misleading proposition; i.e. ∃U ∈ τ\{∅} such that U ⊆ P and U ∩ Q 6= ∅
for all nonmisleading Q ⊆ X (at x with respect to E).

Proof:
(1) ⇒ (2): Suppose x ∈ KP . This means, by Proposition 5.5.1-(3), that

x ∈ Int(P ) and Cl(Int(P )) = X. Now consider the argument Int(P ). Obviously
Int(P ) ∈ τ\{∅} and Int(P ) ⊆ P . Let Q be a nonmisleading proposition at x with
respect to E , and Cl+Q and Int+Q denote the closure and the interior operators of
τ+Q, respectively. We only need to show that Int+Q(Int(P )) is dense in (X, τ+Q),
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i.e., that for all e ∈ E+Q, we have e ∩ Int+Q(Int(P )) 6= ∅. Let e ∈ E+Q. Then, by
the definition of E+Q, we have two cases: (1) e ∈ E , or (2) e 6∈ E but e = e′ ∩ Q
for some e′ ∈ E . Since Q is nonmisleading, the latter case entails that x ∈ e. If
e ∈ E , we have e ∩ Int+Q(Int(P )) 6= ∅ since Int(P ) ⊆ Int+Q(Int(P )) (by Lemma
2.2.5) and Int(P ) is dense in (X, τ). If e 6∈ E and e = e′ ∩ Q for some e′ ∈ E
with x ∈ e, we obtain x ∈ e ∩ Int+Q(Int(P )) since x ∈ Int(P ) ⊆ Int+Q(Int(P )),
thus, e ∩ Int+Q(Int(P )) 6= ∅. Therefore, Int+Q(Int(P )) is dense in (X, τ+Q), i.e.,
B(Int(P )) holds in M+Q.

(2) ⇒ (3): Suppose (2) holds, i.e., there is a U ∈ τ\{∅} such that U ⊆ P
and Cl+Q(Int+Q(U)) = X for all nonmisleading Q ⊆ X (at x with respect to E).
Let Q be nonmisleading at x with respect to E . Since Cl+Q(Int+Q(U)) = X, we
have that e ∩ Int+Q(U) 6= ∅ for all e ∈ E+Q. As Q is nonmisleading at x, we in
particular have ∅ 6= Q = Q∩X ∈ E+Q (by the definition of E+Q and the fact that
X ∈ E). Hence, it follows from (2) that Q∩ Int+Q(U) 6= ∅. Since Int+Q(U) ⊆ U ,
we obtain U ∩Q 6= ∅.

(3)⇒ (1): Assume that U ∈ τ\{∅} is such that U ⊆ P and U ∩Q 6= ∅ holds
for all nonmisleading Q (at x with respect to E). Clearly, this implies that U is
consistent with all e ∈ E , i.e., that e∩U 6= ∅ (since available evidence is by defini-
tion nonmisleading), so U is a justification for P (i.e., X = Cl(U) = Cl(Int(P ))).
So, to show that KP holds at x, it is enough to show that x ∈ Int(P ). For this,
take the proposition Q = {x}, which obviously is nonmisleading at x, hence by
(3) we must have U ∩ {x} 6= ∅, i.e. x ∈ U . Then, x ∈ U ∈ τ and U ⊆ P give us
x ∈ Int(P ), as desired. 2

5.6 Logics for evidence, justified belief, knowl-

edge, and evidence dynamics

This section constitutes the technical heart of this chapter and is devoted to our
results concerning soundness, completeness, decidability and finite model prop-
erty for several logics of evidence, belief and knowledge (Sections 5.6.2-5.6.5). We
then continue with introducing the formal syntax and the semantics for the afore-
mentioned dynamic evidence modalities for public announcements, evidence ad-
dition, evidence upgrade and feasible evidence combination, and provide sound
and complete axiomatizations for the associated logics (Section 5.6.6). In order
to keep this section self-contained and fix some notation, we first recapitulate, in
a concise way, the formal syntax and the semantics capturing the static notions
we have presented in the previous sections (Section 5.6.1).
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5.6.1 Logics for evidence, justified belief and knowledge

Syntax. The full (static) language L of evidence, belief, and knowledge we
consider is defined recursively by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E0ϕ | Eϕ | 20ϕ | 2ϕ | Bϕ | Bϕϕ | Kϕ | [∀]ϕ

where p ∈ prop. We employ the usual abbreviations for propositional connectives
>, ⊥, ∨,→,↔, and for the dual modalities B̂, K̂, Ê etc. except that some of them
have special abbreviations: [∃]ϕ := ¬[∀]¬ϕ and 3ϕ := ¬2¬ϕ. Several fragments
of the language L is of particular interest: LB the fragment having the belief
modality B as the only modality; LK having only the knowledge modality K;
and some bimodal fragments such as LKB having only operators K and B; L[∀]K
having only operators [∀] and K; and the trimodal fragment L[∀]202 having only
the modalities [∀], 20 and 2.

Semantics. We interpret the language L on topo-e-models in an obvious way,
following the definitions of the corresponding operators provided in previous sec-
tions.

5.6.1. Definition. [Topo-e-Semantics for L] Given a topo-e-model
M = (X, E0, τ, V ), we extend the valuation map V to an interpretation map
[[.]] : L → P(X) recursively as follows:

[[p]] = V (p)
[[¬ϕ]] = X\[[ϕ]]
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
[[E0ϕ]] = {x ∈ X | ∃e ∈ E0(e ⊆ [[ϕ]])}
[[Eϕ]] = {x ∈ X | ∃e ∈ E (e ⊆ [[ϕ]])}
[[20ϕ]] = {x ∈ X | ∃e ∈ E0 (x ∈ e ⊆ [[ϕ]])}
[[2ϕ]] = {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ [[ϕ]])}
[[Bϕ]] = {x ∈ X | ∃U ∈ τ (U ⊆ [[ϕ]] and Cl(U) = X)}
[[Bθϕ]] = {x ∈ X | ∃U ∈ τ (∅ 6= U ∩ [[θ]] ⊆ [[ϕ]] and Cl(U ∩ [[θ]]) ⊇ [[θ]])}
[[Kϕ]] = {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ [[ϕ]] and Cl(U) = X)}
[[[∀]ϕ]] = {x ∈ X | [[ϕ]] = X}

It is not hard to see that the above defined semantics for the modalities of
L corresponds exactly to the semantic operators given in Sections 5.2-5.5: e.g.
[[[∀]ϕ]] = [∀][[ϕ]], [[2ϕ]] = 2[[ϕ]] = Int([[ϕ]]), etc. Moreover, while all modalities
except for E0 and 20 capture topological properties of topo-e-models, i.e., they
can be interpreted directly in (X, τ), the expressivity of the full language goes
beyond the purely topological properties: the meaning of E0 and 20 does not only
depend on the evidential topology, but also depends on the basic evidence set E0.
From the point of expressivity, the most important fragment of L is the trimodal
language L[∀]202 since it is equally expressive as the full language L with respect
to the topo-e-models:
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5.6.2. Proposition. The following equivalences are valid in all topo-e-models:

1 . Bϕ↔ [∀]32ϕ 4 . Kϕ↔ 2ϕ ∧ [∀]32ϕ
2 . Eϕ↔ [∃]2ϕ 5 . Bθϕ↔ [∀](θ → 3(θ ∧2(θ → ϕ)))
3 . E0ϕ↔ [∃]20ϕ

Proof:
The proof follows easily from the semantics clauses of the modalities given in
Definition 3.1.2. 2

Therefore, all the other modalities of L can be defined in L[∀]202. In fact,
all our dynamic modalities can also be expressed in L[∀]202 (see Section 5.6.6).
For this reason, instead of focusing on the full language L, we present soundness,
completeness and decidability results for the factive evidence fragment L[∀]202:
its importance comes from its expressive power. We moreover provide sound and
complete axiomatizations for the pure doxatic fragment LB, the pure epistemic
fragments LK and L[∀]K , and finally for the epistemic-doxastic fragment LKB.
As the semantics of [∀], B and K can be defined only based on the evidential
topology (without referring to E0), we will state the corresponding soundness and
completeness results simply with respect to topo-models. For L[∀]202, we need the
complete structure of the topo-e-models as the semantics of 20 depends on the
basic evidence set E0, and cannot be recovered purely topologically.

5.6.2 The belief fragment LB: KD45B

In this section, we prove that the logic of belief on all topo-models is the standard
belief system KD45B, and it moreover has the finite model property with respect
to the class of topo-models.

Soundness of KD45B:

5.6.3. Lemma. Given a topological space (X, τ) and any two subsets U1, U2 ⊆ X,
if U1 is open dense and U2 is dense, then U1 ∩ U2 is dense.

Proof:
Let (X, τ) be a topological space and U1, U2 ⊆ X. Suppose U1 is an open dense
and U2 is a dense set in (X, τ). Since U1 is open and dense we have that W ∩ U1

is open and non-empty for any non-empty open set W . Thus, since U2 is dense,
we also have that (W ∩ U1) ∩ U2 6= ∅. Therefore, W ∩ (U1 ∩ U2) 6= ∅ for any
nonempty W ∈ τ , i.e., U1 ∩ U2 is dense as well. 2

5.6.4. Proposition. KD45B is sound with respect to the class of all topo-models.
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Proof:
The soundness, as usual, is shown by proving that all axioms are validities and
that all derivation rules preserve validities. The cases for the axioms (4B) and (5B)
and the inference rules are elementary, whereas the validity of (KB) in the class of
all topological spaces follows from Lemma 5.6.3 as follows. Let M = (X, E0, τ, V )
and ϕ, ψ ∈ LB. We need to show that [[B(ϕ ∧ ψ) ↔ Bϕ ∧ Bψ]] = X, i.e.,
that [[B(ϕ ∧ ψ)]] = [[Bϕ ∧ Bψ]]. Let x ∈ B(ϕ ∧ ψ). This implies, by the se-
mantics of B that [[B(ϕ ∧ ψ)]] = X, i.e., Cl(Int([[ϕ ∧ ψ]])) = X. We there-
fore obtain, X = Cl(Int([[ϕ ∧ ψ]])) = Cl(Int([[ϕ]]) ∩ Int([[ψ]])) ⊆ Cl(Int([[ϕ]])) ∩
Cl(Int([[ψ]])) = [[Bϕ ∧ Bψ]]. For the other direction, suppose x ∈ [[Bϕ ∧ Bψ]].
We therefore have x ∈ [[Bϕ]] and x ∈ [[Bψ]]. Then, by the semantics of B,
we obtain Cl(Int([[ϕ]])) = X and Cl(Int([[ψ]])) = X. This means that both
Int([[ϕ]]) and Int([[ψ]]) are dense in (X, τ). Hence, by Lemma 5.6.3, we obtain
Cl(Int([[ϕ]]) ∩ Int([[ψ]])) = X. Similarly to the argument above, we then have
X = Cl(Int([[ϕ]]) ∩ Int([[ψ]])) = Cl(Int([[ϕ ∧ ψ]])) = [[B(ϕ ∧ ψ)]]. 2

Completeness of KD45B:

For completeness, we use the connection between the KD45-Kripke frames and
topological spaces presented in Section 4.3.1. We only need to show that the
two semantics—the relational semantics and the proposed semantics on topo-e-
models—are equivalent for the language LB. To recall the definition of relational
frame called a pin, see Definition 4.3.1, page 37.

5.6.5. Proposition. For all ϕ ∈ LB and any Kripke model M = (X,R, V )
based on a pin,

‖ϕ‖M = [[ϕ]]I(M).

Proof:
The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for ψ; we must show that it holds also for ϕ := Bψ. Observe
that, given a Kripke model M = (X,R, V ) based on a pin (X,R) and ϕ ∈ LB,
we have

‖Bϕ‖M =

{
X if ‖ϕ‖M ⊇ C
∅ otherwise

and, [[Bϕ]]I(M) =

{
X if [[ϕ]]I(M) ⊇ C
∅ otherwise

where C is the final cluster of (X,R). By induction hyposthesis, we have [[ϕ]]I(M) =
‖ϕ‖M, therefore, [[Bϕ]]I(M) = ‖Bϕ‖M. 2

5.6.6. Theorem. KD45B is sound and complete with respect to the class of all
topo-e-models. Moreover, KD45B has the finite model property.
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Proof:
Soundness is given in Proposition 5.6.4. For completeness, let ϕ ∈ LB such that
ϕ 6∈ KD45B. Then, by Lemma 4.3.2, there exists a finite pin M = (X,R, V )
with ‖ϕ‖M 6= X. Thus, by Propositition 5.6.5, we have that [[ϕ]]I(M) 6= X,
where I(M) = (X, τR+ , V ) is the corresponding topological model. Since I(M) =
(X, τR+ , V ) is finite, we have also shown that KD45B has the finite model prop-
erty. 2

5.6.3 The knowledge fragments LK and L[∀]K: S4.2K and
Know[∀]K

In this section, we focus on the two knowledge fragments LK and L[∀]K , and
provide sound and complete axiomatizations for the associated logics. While the
fragment having only the modality K leads to the familiar system S4.2K , the full
knowledge fragment having both K and [∀] gives us the axiomatization Know[∀]K
presented below.

Soundness and Completeness of S4.2K

The proof of soundness is again a standard validity check. The relatively harder
case of the normality axiom (KK) for the knowledge modality K follows from
Lemma 5.6.3 and the fact that the interior operator commutes with finite inter-
sections (see, e.g., Table 3.1). For completeness, we follow a similar strategy as
in the proof of Theorem 5.6.6.

Let (X,R) be a transitive Kripke frame. A nonempty subset C ⊆ X is called
cluster if (1) for each x, y ∈ C we have xRy, and (2) there is no D ⊆ X such that
C ( D and D satisfies (1). A point x ∈ X is called a maximal point if there is no
y ∈ X such that xRy and ¬(yRx). We call a cluster a final cluster if all its points
are maximal. It is not hard to see that for any final cluster C of (X,R) and any
x ∈ C, we have R(x) = C. A transitive Kripke frame (X,R) is called cofinal if it
has a unique final cluster C such that for each x ∈ X and y ∈ C we have xRy.

5.6.7. Lemma. S4.2K is sound and complete with respect to the class of reflexive
and transitive cofinal frames.

Proof:
See, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5). 2

Recall that, given a reflexive and transitive Kripke frame (X,R), we can
construct an Alexandroff space (X, τR) by defining τR to be the set of all upsets
of (X,R) (see Section 3.1.2).
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5.6.8. Lemma. For every reflexive transitive cofinal frame (X,R) and nonempty
U ∈ τR, we have Cl(U) = X in (X, τR).

Proof:
Let (X,R) be a reflexive and transitive cofinal frame and let C ⊆ X denote its
final cluster. By construction, C ∈ τR and moreover C ⊆ U , for all nonempty
U ∈ τR. Therefore, for every nonempty U, V ∈ τR, we have V ∩ U ⊇ C 6= ∅.
Hence, Cl(U) = X for any nonempty U ∈ τR. 2

5.6.9. Proposition. For every reflexive and transitive cofinal Kripke modelM =
(X,R, V ) and all ϕ ∈ L[∀]K,

‖ϕ‖M = [[ϕ]]B(M),

where B(M) = (X, τR, V ).

Proof:
The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables, the Boolean connectives and the modality [∀] are elementary. So assume in-
ductively that the result holds for ψ; we must show that it holds also for ϕ := Kψ.
LetM = (X,R, V ) be a reflexive and transitive cofinal Kripke model, x ∈ X and
ϕ ∈ LK .

(⊆) Suppose x ∈ ‖Kψ‖M. This implies that x ∈ R(x) ⊆ ‖ψ‖M. By induction
hypothesis, we obtain R(x) ⊆ [[ψ]]B(M). Since x ∈ R(x) ∈ τR, we have x ∈
Int([[ψ]]B(M)). Then, by Lemma 5.6.8, Cl(Int([[ψ]]B(M))) = X. Therefore, x ∈
[[Kψ]]B(M).

(⊇) Suppose x ∈ [[Kψ]]B(M). This means, by the topological semantics of K,
that x ∈ Int([[ψ]]B(M)) and that Cl(Int([[ψ]]B(M))) = X. Then, by induction
hypothesis, x ∈ Int(‖ψ‖M) and Cl(Int(‖ψ‖M)) = X. The former implies that
there is an open set U ∈ τR such that x ∈ U ⊆ ‖ψ‖M. In particular, since R(x)
is the smallest open neighbourhood of x, we obtain R(x) ⊆ ‖ψ‖M. Therefore,
x ∈ ‖Kψ‖M. 2

5.6.10. Theorem. S4.2K is sound and complete with respect to the class of all
topo-models.

Proof:
For completeness, let ϕ ∈ LK such that ϕ 6∈ S4.2K . Then, by Lemma 5.6.7, there
exists a Kripke model M = (X,R, V ) based on the reflexive and transitive cofi-
nal frame (X,R) such that ‖ϕ‖M 6= X. Thus, by Propositition 5.6.9, we have
[[ϕ]]B(M) 6= X, where B(M) = (X, τR, V ) is the corresponding topological model.
2
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Soundness and Completeness of Know[∀]K:

The full knowledge fragment L[∀]K having both K and [∀] yields the axiomatic
system Know[∀]K given in Table 5.4 below.

(CPL) all classical propositional tautologies and (MP)
(S5[∀]) all S5 axioms and rules for the modality [∀]
(S4K) all S4 axioms and rules for the modality K
(Ax-1) [∀]ϕ→ Kϕ

(Ax-2) [∃]Kϕ→ [∀]K̂ϕ

Table 5.4: The axiomatization of Know[∀]K

5.6.11. Theorem. Know[∀]K is sound and complete with respect to the class of
all topo-models.

Proof:
Soundness is easy to see, we here only prove that the axiom ([∃]Kϕ → [∀]K̂ϕ)
is valid on all topo-models. Let M = (X, τ, V ) be a topo-model, ϕ ∈ L[∀]K , and
x ∈ X such that x ∈ [[[∃]Kϕ]]. This means that there exist y ∈ X such that
y ∈ Int([[ϕ]]) and Cl(Int([[ϕ]])) = X. Note that for any z ∈ X,

z ∈ [[K̂ϕ]] iff z 6∈ Int([[¬ϕ]]) or Cl(Int([[¬ϕ]])) 6= X,

(see Proposition 5.5.1-(3)). Therefore, in order to show [[K̂ϕ]] = X, it suffices to
show that Cl(Int([[¬ϕ]])) 6= X. Since y ∈ Int([[ϕ]]), we know that Int(Cl([[ϕ]])) 6= ∅
(as Int([[ϕ]]) ⊆ Int(Cl([[ϕ]]))). Hence, Cl(Int([[¬ϕ]])) 6= X. We therefore obtain
[[K̂ϕ]] = X, hence, [∀]K̂ holds everywhere in M.

For completeness, we use a well-known Kripke completeness result for the
logic obtained by extending S4.2K with the universal modality [∀]. More pre-
cisely, it has been shown in (Goranko and Passy, 1992) that the modal system
Know0

[∀]K := S5[∀] + S4.2K + ([∀]ϕ→ Kϕ), simply obtained by replacing (Ax-2)

in Table 5.4 by the axiom (.2K):=K̂Kϕ→ KK̂ϕ, is complete with respect to the
class of reflexive and transitive cofinal Kriple frames when K is interpreted as the
standard Kripke modality and [∀] as the global modality. It is not hard to see that
the axiom (.2K) is derivable in Know[∀]K (by using (Ax-1) and (Ax-2) in Table 5.4),
hence, Know[∀]K is stronger than Know0

[∀]K , i.e., that Know0
[∀]K ⊆ Know[∀]K . Let

ϕ ∈ L[∀]K such that ϕ 6∈ Know[∀]K . Thus, ϕ 6∈ Know0
[∀]K . Then, by the relational

completeness of Know0
[∀]K , there exists a reflexive and transitive cofinal Kripke

model M = (X,R, V ) such that ‖ϕ‖M 6= X. Then, by Proposition 5.6.9, we
obtain [[ϕ]]B(M) 6= X, where B(M) = (X, τR, V ). 2
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5.6.4 The knowledge-belief fragment LKB: Stal revisited

In this section, we show that Stalnaker’s system Stal of knowledge and belief (see
Table 4.1) is sound and complete with respect to the class of all topo-models under
the semantics of knowledge and belief presented in this chapter. Recall that, in
Chapter 4, we provided a topological completeness result for this system for the
restricted class of extremally disconnected spaces. Therefore, we here show that
the topological semantics presented in this chapter generalizes the one provided
in Chapter 4 for Stalnaker’s combined system Stal.

5.6.12. Theorem. Stal is sound and complete with respect to the class of all
topo-models.

Proof:
For soundness, we here only show the validity of the axiom (FB): the validity
proofs of the other axioms are either trivial or follow from the previous results. Let
M = (X, τ, V ) be a topo-model, ϕ ∈ LKB and x ∈ X. Suppose x ∈ [[Bϕ]]. Hence,
[[Bϕ]] 6= ∅. This implies, by the semantics of B, that [[Bϕ]] = Cl(Int([[ϕ]])) = X.
Recall that x ∈ [[Kϕ]] iff x ∈ Int([[ϕ]]) and Cl(Int([[ϕ]])) = X. By the assumption,
we already know that Cl(Int([[ϕ]])) = X. Thus, in this particular case, [[Kϕ]] =
Int([[ϕ]]). Therefore, X = Cl(Int([[ϕ]])) = Cl(Int(Int([[ϕ]]))) = Cl(Int([[Kϕ]]))
implying that BKϕ holds everywhere in M.

For completeness, we follow a similar method as in the proof of Theorem
5.6.11. Let ϕ ∈ LKB such that ϕ 6∈ Stal. Then, since `Stal Bϕ ↔ K̂Kϕ, there
exists a ψ ∈ LK such that `Stal ϕ ↔ ψ (this is obtained by replacing every oc-
currence of B in ϕ by K̂K). Therefore, ψ 6∈ Stal. Moreover, since S4.2K ⊆ Stal
(see Section 4.1), we obtain ψ 6∈ S4.2K . Then, by Theorem 5.6.10, there exists a
topo-model M = (X, τ, V ) such that [[ψ]] 6= X. Since Stal is sound with respect
to all topo-models and `Stal ϕ↔ ψ, we conclude [[ϕ]] 6= X. 2

5.6.5 The factive evidence fragment L[∀]202: Log∀220

The logic Log∀220
of factive evidence is given by the axiom schemas and inference

rules in Table 5.5 over the language L[∀]202.

This section presents the proof of the following theorem. Strong completeness
and strong finite model property are defined standardly (see, e.g., Blackburn
et al., 2001, Definition 4.10-Proposition 4.12 and Definition 6.6, respectively).

5.6.13. Theorem. The logic Log∀220
of factive evidence is sound and strongly

complete with respect to the class of all topo-models. Moreover, it has the strong
finite model property, therefore, it is decidable.
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(CPL) all classical propositional tautologies and (MP)
(S5[∀]) all S5 axioms and rules for the modality [∀]
(S42) all S4 axioms and rules for the modality 2

(420) 20ϕ→ 2020ϕ
Universality (U) [∀]ϕ→ 20ϕ
Factive Evidence (FE) 20ϕ→ 2ϕ
Pullout11 (20ϕ ∧ [∀]ψ)→ 20(ϕ ∧ [∀]ψ)
Monotonicity rule for 20 from ϕ→ ψ, infer 20ϕ→ 20ψ

Table 5.5: The axiomatization of Log∀220

The proof of Theorem 5.6.13 is technically the most challenging result of this
chapter. The key difficulty consists in guaranteeing that the natural topology
for which 2 acts as interior operator is exactly the topology generated by the
neighborhood family associated to 20. Though the main steps of the proof may
look familiar, involving known methods (a canonical quasi-model construction,
a filtration argument, and then making multiple copies of the worlds to yield a
finite model with the right properties), addressing the above-mentioned difficulty
requires a non-standard application of these methods, as well as a number of
additional notions and results, and a careful treatment of each of the steps. The
plan of the proof is as follows. Since the soundness proof is straightforward, we
here focus on completeness and the finite model property (then decidability fol-
lows immediately). We first prove strong completeness of Log∀220

with respect to
a canonical quasi-model. We then continue with proving the strong finite quasi-
model property for Log∀220

via a filtration argument. In the last step, we prove
that every finite quasi-model is equivalent to a finite Alexandroff quasi-model by
making multiple copies of the worlds in order to put the model in the right shape.
As Alexandroff quasi-models are modally equivalent to Alexandroff topo-e-models
(Proposition 5.6.14), the result follows.

Quasi-model Construction

A quasi-model is a tuple M = (X, E0,≤, V ), where (X, E0, V ) is an evidence
model and ≤ is a preorder such that every e ∈ E0 is an up-set of (X,≤) (see
Definition 2.1.4, page 14 to recall the definition of an up-set). Given a preordered
set (X,≤), the set Up≤(X) denotes the set of all up-sets of (X,≤). We use the
same notations as for topo-e-models, for example, E for the closure of E0 under
nonempty finite intersections, and τE for the topology generated by E .

The semantics for the language L[∀]202 on quasi-models is defined the same
way as on topo-e-models (see Definition 5.6.1), except that for 2 we (do not use
the topology, but instead we) use the standard Kripke semantics based on the
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relation ≤. More precisely, the semantics for the modalities [∀], 20 and 2 are
given by the following clauses:

‖[∀]ϕ‖M = {x ∈ X | ‖ϕ‖M = X}
‖20ϕ‖M = {x ∈ X | ∃e ∈ E0 (x ∈ e ⊆ ‖ϕ‖M)}
‖2ϕ‖M = {x ∈ X | ∀y ∈ X(x ≤ y implies y ∈ ‖ϕ‖M)}

We again omit the superscripts for the model when it is clear from the context.
A quasi-model M = (X, E0,≤, V ) is called Alexandroff if the topology τE is

Alexandroff and ≤ = vE is the specialization preorder. There is a natural one-
to-one correspondence between Alexandroff quasi-models and Alexandroff topo-
e-models, given by putting, for any Alexandroff quasi-model M = (X, E0,≤, V ),
B(M) = (X, E0, τE , V ). Moreover, M and B(M) satisfy the same formulas of
L[∀]202 at the same points, as shown in Proposition 5.6.14 below.

5.6.14. Proposition. For all ϕ ∈ L[∀]202 and every Alexandroff quasi-model
M = (X, E0,≤, V ), we have

‖ϕ‖M = [[ϕ]]B(M).

Proof:
The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables, the Boolean connectives and the modalities [∀] and 20 are trivial as the
semantics for these cases are defined exactly the same way in both structures.
For the modality 2, recall that it is interpreted as the interior operator of the
topology τE , thus, this case is analogous to Proposition 3.1.4-(1). 2

Therefore, as stated by Proposition 5.6.14, Alexandroff quasi-models provide
just another presentation of Alexandroff topo-e-models with respect to the lan-
guage L[∀]202.

5.6.15. Proposition. For every quasi-model M = (X, E0,≤, V ) the following
are equivalent:

1. M is Alexandroff (hence, equivalent to an Alexandroff topo-e-model);

2. τE = Up≤(X);

3. for every x ∈ X, ↑x is in τE .

Proof:
(1)⇒(3): Suppose M is Alexandroff, i.e., τE is Alexandroff and ≤ = vE . Let

x ∈ X. Then we have: ↑x = {y ∈ X | x ≤ y} = {y ∈ X | x vE y} = {y ∈
X | ∀U ∈ τE(x ∈ U ⇒ y ∈ U)} =

⋂
{U ∈ τE | x ∈ U}. Since τE is an Alexandroff

space, we have
⋂
{U ∈ τE | x ∈ U} ∈ τE , and hence ↑x =

⋂
{U ∈ τE | x ∈ U} ∈ τE .
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(3)⇒(2): It is easy to see that τE ⊆ Up≤(X) (since τE is generated by E0 and
every element of E0 is upward-closed with respect to ≤). Now let A ∈ Up≤(X).
Since A is upward-closed, we have A =

⋃
{↑x | x ∈ A}. Then, by (3) (and τE

being closed under arbitrary unions), we obtain A ∈ τE .
(2)⇒(1): Suppose τE = Up≤(X) and let A ⊆ τE . By (2), every U ∈ A is

upward-closed, hence,
⋂
A is upward-closed. Therefore, by (2),

⋂
A ∈ τE . This

proves that τE is Alexandroff. (2) also implies that ↑x is the least open neigh-
bourhood of x in τE , i.e., ↑x ⊆ U , for all U such that x ∈ U ∈ τE . Therefore,
≤ is included in vE . For the other direction, suppose x vE y. This implies, in
particular, that y ∈ ↑x (since x ∈ ↑x ∈ τE), i.e., x ≤ y. 2

Having introduced the auxiliary notions and facts, we are ready to prove
Theorem 5.6.13. This proof goes through three steps :

1. strong completeness for quasi-models;

2. strong finite quasi-model property; and

3. every finite quasi-model is modally equivalent to a finite Alexandroff quasi-
model (hence, to a topo-e-model).

Step 1: Strong Completeness for Quasi-Models. The proof follows via a
canonical quasi-model construction.

5.6.16. Lemma (Lindenbaum’s Lemma). Every Log∀220
-consistent set can be

extended to a maximally consistent one.

Let us now fix a consistent set of sentence Φ0. Our goal is to construct a
quasi-model for Φ0. By Lemma 5.6.16, there exists a maximally consistent set T0

such that Φ0 ⊆ T0. For any two maximally consistent sets T and S, we put:

T ∼ S iff for all ϕ ∈ L[∀]202 : ([∀]ϕ ∈ T ⇒ ϕ ∈ S) ,

T ≤ S iff for all ϕ ∈ L[∀]202 : (2ϕ ∈ T ⇒ ϕ ∈ S) .

Since [∀] is an S5 modality, ∼ is an equivalence relation. Similarly, as 2 is
an S4 modality, ≤ is a preorder. Moreover, since `Log∀220

[∀]ϕ→ 2ϕ (by axioms

(U) and (FE) in Table 5.5), we obtain that ≤ is included in ∼.

5.6.17. Definition. [Canonical Quasi-Model for T0] The canonical quasi model
for T0 is defined as M = (X, E0,≤, V ), where

• X := {T ⊆ L[∀]202 | T is a maximally consistent set with T ∼ T0};

• E0 := {2̂0ϕ | ϕ ∈ L[∀]202 with [∃]20ϕ ∈ T0}, where θ̂ := {T ∈ X | θ ∈ T}
for any θ ∈ L[∀]202;
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• ≤ is the restriction of the above preorder ≤ to X; and

• V (p) := p̂.

In the following, variables T, S, . . . range over X.

5.6.18. Lemma. M = (X, E0,≤, V ) is a quasi-model.

Proof:
In order to show that M is a quasi model, we need to show that (1) X ∈ E0 and
∅ 6∈ E0, (2) ≤ is a preorder, and (3) every element of E0 is upward-closed with
respect to ≤. Note that (2) follows from the fact that 2 is an S4 modality.

(1): Since `Log∀220
20> (by Nec[∀] and axiom (U) in Table 5.5), we have

2̂0> = X. Moreoever, by axiom (T[∀]), we obtain [∃]20> ∈ T0, hence, 2̂0> =
X ∈ E0. And, obviously, ∅ 6∈ E0.

(3): Let e ∈ E0. By the definition of E0, we have e = 2̂0ϕ for some ϕ ∈ L[∀]202

such that [∃]20ϕ ∈ T0. Now suppose T, S ∈ X with T ∈ 2̂0ϕ (i.e., 20ϕ ∈ T ) and
T ≤ S. Note that `Log∀220

20ϕ→ 220ϕ (by axioms (420) and (FE)). Therefore,

220ϕ ∈ T . Since T ≤ S, we then obtain 20ϕ ∈ S, i.e., S ∈ 2̂0ϕ. Thus, as S has
been chosen arbitrarily, we conclude that e is upward-closed with respect to ≤.

2

5.6.19. Lemma (Existence Lemma for [∀]). For every ϕ ∈ L[∀]202,

[̂∃]ϕ 6= ∅ iff ϕ̂ 6= ∅.

Proof:
(⇒) Suppose [̂∃]ϕ 6= ∅, i.e., there is T ∈ X such that T ∈ [̂∃]ϕ. This means

[∃]ϕ ∈ T . This implies that the set Γ := {[∀]ψ | [∀]ψ ∈ T} ∪ {ϕ} is consistent.
Otherwise, there exist finitely many sentences [∀]ψ1, . . . , [∀]ψn ∈ T such that
[∀]ψ1 ∧ . . . ∧ [∀]ψn → ¬ϕ is a theorem of Log∀220

. But then, since [∀] is an S5-
modality, we obtain that [∀]ψ1 ∧ . . .∧ [∀]ψn → [∀]¬ϕ is also a theorem. Hence, as
[∀]ψ1∧ . . .∧ [∀]ψn ∈ T , we get [∀]¬ϕ ∈ T , which combined with [∃]ϕ ∈ T , implies
that T is inconsistent, contradicting T being consistent. Therefore, given that Γ
is consistent, by Lindenbaum’s Lemma, there exists some maximally consistent
set S such that Γ ⊆ S. It is easy to see that this implies ϕ ∈ S and S ∼ T ∼ T0

(i.e., S ∈ X). Therefore, S ∈ ϕ̂ implying that ϕ̂ 6= ∅.
(⇐) Suppose ϕ̂ 6= ∅, i.e., there is T ∈ X such that T ∈ ϕ̂. Then, since

ϕ→ [∃]ϕ ∈ T (by axiom (T[∀])), we obtain [∃]ϕ ∈ T , implying that [̂∃]ϕ 6= ∅. 2

5.6.20. Lemma (Existence Lemma for 2). For every ϕ ∈ L[∀]202 and T ∈
X, T ∈ 3̂ϕ iff there is S ∈ ϕ̂ such that T ≤ S.
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Proof:
(⇒) Assume T ∈ 3̂ϕ, that is, 3ϕ ∈ T . This implies that the set Γ :=

{2ψ | 2ψ ∈ T}∪{ϕ} is consistent. Otherwise there exist finitely many sentences
2ψ1, . . . ,2ψn ∈ T such that (2ψ1 ∧ . . . ∧ 2ψn) → ¬ϕ is a theorem. But then,
since 2 is an S4-modality, we obtain that 2ψ1 ∧ . . . ∧ 2ψn → 2¬ϕ is also a
theorem. Hence, as 2ψ1 ∧ . . . ∧ 2ψn ∈ T , we get 2¬ϕ ∈ T , which combined
with 3ϕ ∈ T , implies that T is inconsistent, contradicting T being consistent.
Therefore, given that Γ is consistent, by Lindenbaum’s Lemma, there exists some
maximally consistent set S such that Γ ⊆ S. It is easy to see that this implies
ϕ ∈ S and T ≤ S. Since ≤ is included in ∼, we also obtain S ∼ T ∼ T0, i.e.,
S ∈ X. Therefore, S ∈ ϕ̂.

(⇐) Suppose there is S ∈ ϕ̂ such that T ≤ S. Then, by definition of ≤,
3ϕ ∈ T , i.e., T ∈ 3̂ϕ. 2

5.6.21. Lemma (Existence Lemma for 20). For every ϕ ∈ L[∀]202 and T ∈
X, T ∈ 2̂0ϕ iff there exist e ∈ E0 such that T ∈ e ⊆ ϕ̂.

Proof:
(⇒) Suppose T ∈ 2̂0ϕ, i.e. 20ϕ ∈ T . Since T ∼ T0, we get [∃]20ϕ ∈ T0. This

means 2̂0ϕ ∈ E0. Taking e := 2̂0ϕ, we get e ∈ E0 and T ∈ e. Moreover, since
`Log∀220

20ϕ→ ϕ, we obtain e = 2̂0ϕ ⊆ ϕ̂.

(⇐) Suppose there is e ∈ E0 such that T ∈ e ⊆ ϕ̂. Then, by the definition

of E0, we obtain that e = 2̂0θ for some θ such that [∃]20θ ∈ T0. Therefore,

T ∈ e = 2̂0θ ⊆ ϕ̂. This implies that the set Γ := {20θ} ∪ {∀ψ : ∀ψ ∈ T} ∪ {¬ϕ}
is inconsistent. Otherwise, by Lindenbaum’s Lemma, there exists a S ∈ X such
that 20 ∈ S and ¬ϕ ∈ S. The former means that S ∈ 2̂0θ and the latter
means (since S is maximal) that S 6∈ ϕ̂. Thus, S ∈ 2̂0θ\ϕ̂, contradicting the

assumption 2̂0θ ⊆ ϕ̂. Therefore, given that Γ is inconsistent, there exists a finite
set {[∀]ψ1, . . . , [∀]ψn} ⊆ Γ such that `

∧
i≤n[∀]ψi → (20θ → ϕ). Since [∀] is a

normal modality and T is maximal,
∧
i≤n[∀]ψi = [∀]γ for some [∀]γ ∈ T . We then

have

1. ` [∀]γ → (20θ → ϕ)

2. ` ([∀]γ ∧20θ)→ ϕ

3. ` 20([∀]γ ∧20θ)→ 20ϕ (Monotonicity of 20)

4. ` 2020([∀]γ ∧ θ)→ 20ϕ (Pullout axiom)

5. ` 20([∀]γ ∧ θ)→ 20ϕ (since `Log∀220
20ϕ↔ 2020ϕ)

6. ` ([∀]γ ∧20θ)→ 20ϕ (Pullout axiom)

Therefore, since [∀]γ,20θ ∈ T and T is maximal, we obtain 20ϕ ∈ T , i.e.,
T ∈ 2̂0ϕ. 2
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5.6.22. Lemma (Truth Lemma). For every formula ϕ ∈ L[∀]202, we have

‖ϕ‖M = ϕ̂.

Proof:
The proof follows standardly by subformula induction on ϕ, where the inductive
step for each modality uses the corresponding Existence Lemma, as usual. 2

5.6.23. Proposition. Log∀220
is sound and strongly complete for quasi-models.

Proof:
Let Φ0 be a Log∀220

-consistent set of formulas. Then, by Lindenbaum’s Lemma
(Lemma 5.6.16), Φ0 can be extended to a maximally consistent set T0. We can
then construct a canonical quasi-modelM = (X, E0,≤, V ) for T0 as in Definition
5.6.17, and by Lemma 5.6.22 obtain that M, T0 |= ϕ for all ϕ ∈ Φ0. 2

Step 2: Strong Finite Quasi-Model Property. In this section, we prove
that the logic Log∀220

has the strong finite quasi-model property. We do so via a
filtration argument using the canonical model described in Definition 5.6.17.

Let ϕ0 be a Log∀220
-consistent formula. By Lemma 5.6.16, there exist a max-

imally consistent set T0 such that ϕ0 ∈ T0. Consider the canonical quasi-model
M = (X, E0,≤, V ) for T0 (as given in Definition 5.6.17). We will use two facts
about this model:

1. ‖ϕ‖M = ϕ̂, for all ϕ ∈ L[∀]202; and

2. E0 = {2̂0ϕ | [∃]20ϕ ∈ T0} = {‖20ϕ‖M | [∃]20ϕ ∈ T0}.

Closure conditions for Σ: Let Σ be a finite set such that: (1) ϕ0 ∈ Σ; (2) Σ is
closed under subformulas; (3) if 20ϕ ∈ Σ then 220ϕ ∈ Σ; (4) Σ is closed under
single negations; (5) 20> ∈ Σ. For x, y ∈ X, put

x ≡Σ y iff for all ψ ∈ Σ (x ∈ ‖ψ‖M ⇐⇒ y ∈ ‖ψ‖M),

and denote by |x| := {y ∈ X | x ≡Σ y} the equivalence class of x modulo ≡Σ.
Also, put Xf := {|x| | x ∈ X}, and more generally put ef := {|x| | x ∈ e} for
every e ∈ E0. We now define a “filtrated model” Mf = (Xf , Ef0 ,≤f , V f ), where

• Xf := {|x| | x ∈ X};

• |x| ≤f |y| iff for all 2ψ ∈ Σ
(
x ∈ ‖2ψ‖M ⇒ y ∈ ‖2ψ‖M

)
;

• Ef0 := {ef | e = 2̂0ψ = ‖20ψ‖M ∈ E0 for some ψ such that 20ψ ∈ Σ};
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• V f (p) := {|x| : x ∈ V (p)}.

5.6.24. Lemma. Mf is a finite quasi-model (of size bounded by a computable
function of ϕ0).

Proof:
Since Σ is finite, there are only finitely many equivalence classes modulo ≡Σ.
Therefore, Xf is finite. In fact, Xf has at most 2|Σ| states. It is obvious that ≤f
is a preorder. Moreover, since X = ‖20>‖M and 20> ∈ Σ, we have Xf ∈ Ef0 .
Also, since e 6= ∅ for all e ∈ E0, we have each ef ∈ Ef0 nonempty. So we only
have to prove that the evidence sets ef are upward–closed. For this, let ef ∈ Ef0 ,
|x|, |y| ∈ Xf such that |x| ∈ ef and |x| ≤f |y|. We need to show that |y| ∈ ef . By

the definition of Ef0 , we know that e = 2̂0ψ = ‖20ψ‖M for some 20ψ ∈ Σ. From
|x| ∈ ef , it follows that there is some x′ ≡Σ x such that x′ ∈ e = ‖20ψ‖M, and
since 20ψ ∈ Σ, we have x ∈ ‖20ψ‖M. Therefore, since `Log∀220

20ψ → 220ψ

(this is easy to see from axioms (420) and (FE) stated in Table 5.5), we have
x ∈ ‖220ψ‖M. But 220ψ ∈ Σ (by the closure assumptions on Σ), so |x| ≤f |y|
gives us y ∈ ‖220ψ|‖M. By the axiom (T2), we obtain y ∈ ‖20ψ‖M = 2̂0ψ = e,
hence |y| ∈ ef . 2

5.6.25. Lemma (Filtration Lemma). For every formula ϕ ∈ Σ, we have

‖ϕ‖Mf

= {|x| | x ∈ ‖ϕ‖M}.

Proof:
The proof follows by subformula induction induction on ϕ ∈ Σ; cases for the
propositional variables, the Boolean connectives and the modalities [∀]ϕ and 2ϕ
are treated as usual (in the last case using the filtration property of ≤f that: if
x ≤ y than |x| ≤f |y|). We only prove here the inductive case for ϕ := 20ψ:

(⇒) Let |x| ∈ ‖20ψ‖M
f
. This means that there exists some ef ∈ Ef0 s.t.

|x| ∈ ef ⊆ ‖ψ‖Mf
. By the definition of Ef0 , there exists some χ such that 20χ ∈ Σ

and e = 2̂0χ = ‖20χ‖M ∈ E0. From |x| ∈ ef , it follows that there is some x′ ≡Σ x
such that x′ ∈ e = ‖20χ‖M, and since 20χ ∈ Σ, we have x ∈ ‖20χ‖M = e. Now
let y ∈ e be any element of e. Then, by the definition of ef and the assumption
that ef ⊆ ‖ψ‖Mf

, we obtain |y| ∈ ef ⊆ ‖ψ‖Mf
. So, |y| ∈ ‖ψ‖Mf

. Therefore, by
the induction hypothesis, y ∈ ‖ψ‖M, hence, e ⊆ ‖ψ‖M. Thus, we have found an
evidence set e ∈ E0 such that x ∈ e ⊆ ‖ψ‖M, i.e., shown that x ∈ ‖20ψ‖M.

(⇐) Let x ∈ ‖20ψ‖M. It is easy to see that [∃]20ψ ∈ x (since `Log∀220

20ψ → [∃]20ψ), and so also [∃]20ψ ∈ T0 (since x ∈ X, thus, x ∼ T0). This

means that the set e := 2̂0ψ = ‖20ψ‖M ∈ E0 is an evidence set in the canonical
model (see Definition 5.6.17), and since 20ψ ∈ Σ, we conclude that ef ∈ Ef0 .
We obviously have x ∈ e, and so |x| ∈ ef . Since `Log∀220

20ψ → ψ, we have
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e = ‖20ψ‖M ⊆ ‖ψ‖M, and hence ef ⊆ {|y| | y ∈ ‖ψ‖M} = ‖ψ‖Mf
(by the

induction hypothesis). Thus, we have found ef ∈ Ef0 such that |x| ∈ ef ⊆ ‖ψ‖Mf
,

i.e., shown that |x| ∈ ‖20ψ‖M
f
. 2

5.6.26. Theorem. Log∀220
has strong finite quasi-model property.

Proof:
Let ϕ0 be a Log∀220

-consistent formula. Then, by Lindenbaum’s Lemma (Lemma
5.6.16), ϕ0 can be extended to a maximally consistent set T0 such that ϕ0 ∈ T0.
We can then construct a canonical quasi-model M = (X, E0,≤, V ) for T0 as
in Definition 5.6.17, and by Lemma 5.6.22 obtain that M, T0 |= ϕ0. Then, by
Lemma 5.6.25, we have Mf , |T0| |= ϕ0, where Mf is the filtrated model of M
through the finite set Σ that is obtained by closing {ϕ0} under the closure condi-
tions (1)-(5). By Lemma 5.6.24, we know thatMf is a finite model whose size is
bounded by 2|Σ|, therefore we conclude that Log∀220

has the strong finite quasi-
model property. 2

Step 3: Equivalence of Finite Quasi-Models and Finite Alexandroff
Quasi-Models. In this section, we prove that every finite quasi-model is modally
equivalent to a finite Alexandroff quasi-model, and therefore, to a topo-e-model
with respect to the language L[∀]202.

Let M = (X, E0,≤, V ) be a finite quasi-model. We form a new structure
M̃ = (X̃, Ẽ0, ≤̃, Ṽ ), by putting:

• X̃ := X × {0, 1};

• Ṽ (p) := V (p)× {0, 1};

• (x, i)≤̃(y, j) iff x ≤ y and i = j;

• Ẽ0 := {ei | e ∈ E0, i ∈ {0, 1}} ∪ {eyi | y ∈ e ∈ E0, i ∈ {0, 1}} ∪ {X̃}, where
we used notations

– ei := e× {i} = {(x, i) | x ∈ e}, and

– eyi := ↑y × {i} ∪ e× {1− i} = {(x, i) | y ≤ x} ∪ e1−i.

5.6.27. Lemma. M̃ is a finite quasi-model.

Proof:
It is easy to see that M̃ is finite, in fact, it is of size 2·|X|. It is guaranteed by
definition that X̃ ∈ Ẽ0 and ∅ 6∈ Ẽ0. To show that every element of Ẽ0 is upward-
closed with respect to ≤̃, let ẽ ∈ Ẽ0 and (x, i), (y, j) ∈ X̃ such that (x, i) ∈ ẽ and
(x, i)≤̃(y, j). Then, by the definition of ≤̃, we know that x ≤ y and i = j. We
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have two cases: if ẽ = e × {i} for some e ∈ E0, then y ∈ e (since e is upward
closed with respect to ≤, x ∈ e and x ≤ y), therefore, (y, i) ∈ e × {i} = ẽ. If
ẽ = ezk for some z ∈ X and k ∈ {0, 1}, we again have two cases. If k = 1− i, then
the result follows as in the first case. If k = i, then ↑z× i ⊆ ẽ. Since (x, i) ∈ ẽ, we
obtain that z ≤ x, and thus, z ≤ y (since ≤ is transitive). We therefore conclude
that (y, i) ∈ ↑z × i ⊆ ẽ. 2

Notation: For any set Ỹ ⊆ X̃, put ỸX := {y ∈ X | (y, i) ∈ Ỹ for some i ∈
{0, 1}} for the set consisting of first components of all members of Ỹ . It is easy
to see that we have (Ỹ ∪ Z̃)X = ỸX ∪ Z̃X , and X̃X = X.

5.6.28. Lemma. If y ∈ e ∈ E0, i ∈ {0, 1} and ẽ ∈ {ei, eyi }, then we have:

1. ẽX = e;

2. eyi ∩ ei = ↑(y, i), where ↑(y, i) = {x̃ ∈ X̃ | (y, i)≤̃x̃} = {(x, i) | y ≤ x}.

Proof:
(1): If ẽ = ei, then ẽX = (e× {i})X = e. If ẽ = eyi , then ẽX = (↑y × {i})X ∪

(e× {1− i})X = ↑y ∪ e = e (since e is upward-closed and y ∈ e, so ↑y ⊆ e).
(2): eyi ∩ei = (↑y × {i} ∪ e× {1− i})∩(e× {i}) = (↑y∩e)×{i} = ↑y×{i} =

↑(y, i) (since ↑y ⊆ e). 2

5.6.29. Lemma. M̃ is an Alexandroff quasi-model (and thus also a topo-e-model).

Proof:
By Proposition 5.6.15, it is enough to show that, for every (y, i) ∈ X̃, the upward-
closed set ↑(y, i) is open in the topology τẼ generated by Ẽ0: this follows directly
from Lemma 5.6.28-(2). 2

5.6.30. Lemma (Modal-Equivalence Lemma). For all ϕ ∈ L[∀]202,

‖ϕ‖M̃ = ‖ϕ‖M × {0, 1}.

Proof:
The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables, the Boolean connectives and the modalities [∀]ϕ and 2ϕ are straightfor-
ward. We only prove here the inductive case for ϕ := 20ψ.

(⇒) Suppose that (x, i) ∈ ‖20ψ‖M̃. Then there exists some ẽ ∈ Ẽ0 such that

(x, i) ∈ ẽ ⊆ ‖ψ‖M̃ = ‖ψ‖M×{0, 1} (where we used the induction hypothesis for ψ
at the last step). From this, we obtain that x ∈ ẽX ⊆ (‖ψ‖M×{0, 1})X = ‖ψ‖M.
But by the construction of Ẽ0, ẽ ∈ Ẽ0 means that either ẽ = X̃ or there exist



5.6. Logics for evidence, justified belief, knowledge, and evidence dynamics 93

e ∈ E0, y ∈ e and j ∈ {0, 1} such that ẽ ∈ {ej, eyj}. If the former is the case, we
have x ∈ ẽX = X ⊆ ‖ψ‖M. Since X ∈ E0, by the semantics of 20, we obtain
x ∈ ‖20ψ‖M. If the latter is the case, by Lemma 5.6.28-(1), we have ẽX = e, so
we conclude that x ∈ ẽX = e ⊆ ‖ϕ‖M. Therefore, again by the semantics of 20,
we have x ∈ ‖20ψ‖M.

(⇐) Suppose that x ∈ ‖20ψ‖M. Then, there exists some e ∈ E0 such that
x ∈ e ⊆ ‖ψ‖M. Take now the set ei = e × {i} ∈ Ẽ0. Clearly, we have

(x, i) ∈ ei ⊆ ‖ψ‖M × {i} ⊆ ‖ψ‖M × {0, 1} = ‖ψ‖M̃ (where we used the in-

duction hypothesis for ψ at the last step), i.e., we have (x, i) ∈ ‖20ψ‖M̃. 2

5.6.31. Theorem. Every finite quasi-model is modally equivalent to a finite
Alexandroff quasi-model, therefore, to a topo-e-model with respect to the language
L[∀]202.

Proof:
The proof immediately follows from Lemma 5.6.30: the same formulas are satis-
fied at x in M as at (x, i) in M̃. 2

Proof of Theorem 5.6.13: Theorem 5.6.13 (completeness and finite model
property for topo-e-models) is thus obtained as an immediate corollary of Propo-
sition 5.6.23, Theorems 5.6.26 and 5.6.31.

5.6.6 Dynamics Extensions of L[∀]202

Moving on to dynamic extensions, we consider PDL-style languages L!
∀220

, L+
∀220

,

L⇑∀220
, and L#

∀220
obtained by adding to L[∀]202 dynamic modalities [!ϕ]ψ for pub-

lic announcements, respectively [+ϕ]ψ for evidence addition, [⇑ϕ]ψ for evidence
upgrade and [#]ψ for feasible evidence combination with the following intended
readings:

[!ϕ]ψ := ψ becomes true after the public announcement of ϕ

[+ϕ]ψ := ψ becomes true after ϕ is accepted as an admissible piece of evidence

[⇑ϕ]ψ := ψ becomes true after ϕ is accepted as the most important evidence

[#]ψ := ψ becomes true after the basic evidence is feasibly combined

The semantics for dynamic operators uses the corresponding model change
presented in Section 5.4 (as standard in Dynamic Epistemic Logic). More pre-
cisely, given a topo-e-model M = (X, E0, τ, V ) and x ∈ X, the semantics for the
above mentioned dynamic operators are defined as

x ∈ [[[!ϕ]ψ]] iff x ∈ [[ϕ]] implies x ∈ [[ψ]]M
![[ϕ]]

x ∈ [[[+ϕ]ψ]] iff x ∈ [[[∃]ϕ]] implies x ∈ [[ψ]]M
+[[ϕ]]

x ∈ [[[⇑ϕ]ψ]] iff x ∈ [[[∃]ϕ]] implies x ∈ [[ψ]]M
⇑[[ϕ]]

x ∈ [[[#]ϕ]] iff x ∈ [[ϕ]]M
#
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where we denote by [[ψ]]M
![[ϕ]]

the extension of ψ in the updated model M![[ϕ]],
etc. The precondition x ∈ [[ϕ]] in the above clause for public announcements
encodes the fact that public announcements are factive: so one can only update
with true sentences ϕ. The preconditions x ∈ [[[∃]ϕ]] in the clauses for evidence
addition and upgrade encodes the fact that, in order to qualify as (new) evidence,
ϕ has to be consistent (i.e. [[ϕ]] 6= ∅). In the following, we present the sound and
complete axiomatizations for the corresponding dynamic systems. These will be
obtain by adding a set of reduction axioms for each dynamic modality to the
axiomatization Log∀220

, as standard in Dynamic Epistemic Logic (Baltag et al.,
1998; van Ditmarsch et al., 2007; van Benthem, 2011). We only prove the validity
of the reduction axiom for the modality 20 in each case and leave the other cases
for the reader since they follow either trivially or similar to the case for 20.

5.6.32. Theorem. The sound and complete logic Log!
∀220

of evidence and public
announcements with respect to the class of all topo-e-models is obtained by adding
the following reduction axioms to the system Log∀220

:

1 . [!ϕ]p↔ (ϕ→ p) 5 . [!ϕ]2ψ ↔ (ϕ→ 2[!ϕ]ψ)
2 . [!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ) 6 . [!ϕ][∀]ψ ↔ (ϕ→ [∀][!ϕ]ψ)
3 . [!ϕ](ψ ∧ χ)↔ ([!ϕ]ψ ∧ [!ϕ]χ) 7 . [!ϕ][!ψ]χ↔ [!〈ϕ〉ψ]χ
4 . [!ϕ]20ψ ↔ (ϕ→ 20[!ϕ]ψ)

Proof:
Let M = (X, E0, τ, V ) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L!

∀220
.

Axiom-4:

x ∈ [[[!ϕ]20ψ]] iff x ∈ [[ϕ]] implies x ∈ [[20ψ]]M
![[ϕ]]

iff x ∈ [[ϕ]] implies ∃e ∈ E ![[ϕ]]
0 (x ∈ e ⊆ [[ψ]]M

![[ϕ]]

)

iff x ∈ [[ϕ]] implies ∃e′ ∈ E0(x ∈ e′ ∩ [[ϕ]] = e ⊆ [[ψ]]M
![[ϕ]]

)

(by defn. of E ![[ϕ]]
0 )

iff x ∈ [[ϕ]] implies ∃e′ ∈ E0(x ∈ e′ ⊆ [[[!ϕ]ψ]])

iff x ∈ [[ϕ]] implies x ∈ [[20[!ϕ]ψ]]

iff x ∈ [[ϕ→ 20[!ϕ]ψ]]

2

5.6.33. Theorem. The sound and complete logic Log+
∀220

of evidence and evi-
dence addition with respect to the class of all topo-e-models is obtained by adding
the axiom K+ and the Necessitation rule (Nec+) for the evidence addition modal-
ities as well as the following reduction axioms to Log∀220

:
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1. [+ϕ]p↔ ([∃]ϕ→ p)

2. [+ϕ]¬ψ ↔ ([∃]ϕ→ ¬[+ϕ]ψ)

3. [+ϕ](ψ ∧ χ)↔ ([+ϕ]ψ ∧ [+ϕ]χ)

4. [+ϕ]20ψ ↔ ([∃]ϕ→ (20[+ϕ]ψ ∨ (ϕ ∧ [∀](ϕ→ [+ϕ]ψ))))

5. [+ϕ]2ψ ↔ ([∃]ϕ→ (2[+ϕ]ψ ∨ (ϕ ∧2(ϕ→ [+ϕ]ψ))))

6. [+ϕ][∀]ψ ↔ ([∃]ϕ→ [∀][+ϕ]ψ)

Proof:
Let M = (X, E0, τ, V ) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L+

∀220
. Observe that

x ∈ [[[∃]ϕ]] implies [[ψ]]M
+[[ϕ]]

= [[[+ϕ]ψ]] (5.1)

Axiom-4:

x ∈ [[[+ϕ]20ψ]]

iff x ∈ [[[∃]ϕ]] implies x ∈ [[20ψ]]M
+[[ϕ]]

iff x ∈ [[[∃]ϕ]] implies ∃e ∈ E+[[ϕ]]
0 (x ∈ e ⊆ [[ψ]]M

+[[ϕ]]

)

iff x ∈ [[[∃]ϕ]] implies (∃e′ ∈ E0(x ∈ e′ ⊆ [[ψ]]M
+[[ϕ]]

) or (x ∈ [[ϕ]] ⊆ [[ψ]]M
+[[ϕ]]

))

(by defn. of E+[[ϕ]]
0 )

iff x ∈ [[[∃]ϕ]] implies (∃e′ ∈ E0(x ∈ e′ ⊆ [[[+ϕ]ψ]]) or x ∈ [[ϕ]] ⊆ [[[+ϕ]ψ]])
(by (5.1))

iff x ∈ [[[∃]ϕ]] implies ((x ∈ [[20[+ϕ]ψ]]) or (x ∈ [[ϕ]] and x ∈ [[[∀](ϕ→ [+ϕ]ψ]]))

iff x ∈ [[[∃]ϕ]] implies (x ∈ [[20[+ϕ]ψ]] or x ∈ [[ϕ ∧ [∀](ϕ→ [+ϕ]ψ]]))

iff x ∈ [[[∃]ϕ→ (20[+ϕ]ψ ∨ (ϕ ∧ [∀](ϕ→ [+ϕ]ψ)))]]

The proof for the modality 2 follows in a similar way with minor differences
because of the fact that for every e ∈ E+[[ϕ]] there is some combined evidence
e′ ∈ E such that either e = e′ or e = e′ ∩ [[ϕ]]. Therefore, we have

Axiom-5:

x ∈ [[[+ϕ]2ψ]]

iff x ∈ [[[∃]ϕ]] implies ∃e ∈ E+[[ϕ]](x ∈ e ⊆ [[ψ]]M
+[[ϕ]]

)

iff x ∈ [[[∃]ϕ]] implies ∃e′ ∈ E(x ∈ e′ ⊆ [[ψ]]M
+[[ϕ]]

or x ∈ e′ ∩ [[ϕ]] ⊆ [[ψ]]M
+[[ϕ]]

)

iff x ∈ [[[∃]ϕ]] implies ∃e′ ∈ E((x ∈ e′ ⊆ [[[+ϕ]ψ]])

or (x ∈ [[ϕ]] and x ∈ e′ ⊆ [[ϕ→ [+ϕ]ψ]]))

iff x ∈ [[[∃]ϕ]] implies (x ∈ [[2[+ϕ]ψ]] or (x ∈ [[ϕ]] and x ∈ [[2(ϕ→ [+ϕ]ψ]]))

iff x ∈ [[[∃]ϕ→ (2[+ϕ]ψ ∨ (ϕ ∧2(ϕ→ [+ϕ]ψ)))]]
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2

5.6.34. Theorem. The sound and complete logic Log⇑∀220
of evidence and evi-

dence upgrade with respect to the class of all topo-e-models is obtained by adding
the axiom K⇑ and the Necessitation rule (Nec⇑) for the evidence addition modal-
ities as well as the following reduction axioms to Log∀220

:

1. [⇑ϕ]p↔ ([∃]ϕ→ p)

2. [⇑ϕ]¬ψ ↔ ([∃]ϕ→ ¬[⇑ϕ]ψ)

3. [⇑ϕ](ψ ∧ χ)↔ ([⇑ϕ]ψ ∧ [⇑ϕ]χ)

4. [⇑ϕ]20ψ ↔ ([∃]ϕ→ ((20[⇑ϕ]ψ ∨ ϕ) ∧ [∀](ϕ→ [⇑ϕ]ψ)))

5. [⇑ϕ]2ψ ↔ ([∃]ϕ→ ((2[⇑ϕ]ψ ∨ ϕ) ∧ [∀](ϕ→ [⇑ϕ]ψ)))

6. [⇑ϕ][∀]ψ ↔ ([∃]ϕ→ [∀][⇑ϕ]ψ)

Proof:
Let M = (X, E0, τ, V ) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L⇑∀220

. Similar to
the above case, we have

x ∈ [[[∃]ϕ]] implies [[ψ]]M
⇑[[ϕ]]

= [[[⇑ϕ]ψ]] (5.2)

Axiom-4:

x ∈ [[[⇑ϕ]20ψ]]

iff x ∈ [[[∃]ϕ]] implies ∃e ∈ E⇑[[ϕ]]
0 (x ∈ e ⊆ [[ψ]]M

⇑[[ϕ]]

)

iff x ∈ [[[∃]ϕ]] implies (∃e′ ∈ E0(x ∈ e′ ∪ [[ϕ]] ⊆ [[ψ]]M
⇑[[ϕ]]

) or (x ∈ [[ϕ]] ⊆ [[ψ]]M
⇑[[ϕ]]

))

(by defn. of E⇑[[ϕ]]
0 )

iff x ∈ [[[∃]ϕ]] implies (∃e′ ∈ E0(x ∈ e′ ∪ [[ϕ]] ⊆ [[[⇑ϕ]ψ]])

or (x ∈ [[ϕ]] ⊆ [[[⇑ϕ]ψ]])) (by (5.2))

iff x ∈ [[[∃]ϕ]] implies (∃e′ ∈ E0(x ∈ e′ ⊆ [[[⇑ϕ]ψ]] and [[ϕ]] ⊆ [[[⇑ϕ]ψ]])

or (x ∈ [[ϕ]] ⊆ [[[⇑ϕ]ψ]]))

iff x ∈ [[[∃]ϕ]] implies (x ∈ [[20[⇑ϕ]ψ]] and x ∈ [[[∀](ϕ→ [⇑ϕ]ψ)]])

or (x ∈ [[ϕ ∧ [∀](ϕ→ [⇑ϕ]ψ)]])

iff x ∈ [[[∃]ϕ→ ((20[⇑ϕ]ψ ∨ ϕ) ∧ [∀](ϕ→ [⇑ϕ]ψ))]]

The validity of the axiom 5 follows similarly where we replace the basic evidence
set E0 by the corresponding combined evidence set E . 2
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5.6.35. Theorem. The sound and complete logic Log#
∀220

of evidence and feasi-
ble evidence combination with respect to the class of all topo-e-models is obtained
by adding the axiom K# and the Necessitation rule (Nec#) for the evidence addi-
tion modalities as well as the following reduction axioms to Log∀220

:

1 . [#]p↔ p 4 . [#]2ϕ↔ 2[#]ϕ
2 . [#]¬ϕ↔ ¬[#]ϕ 5 . [#]20ϕ↔ 2[#]ϕ
3 . [#](ϕ ∧ ψ)↔ ([#]ϕ ∧ [#]ψ) 6 . [#][∀]ϕ↔ [∀][#]ϕ

Proof:
Let M = (X, E0, τ, V ) be a topo-e-model, x ∈ X and ϕ ∈ L#

∀220
.

Axiom-5:

x ∈ [[[#]20ϕ]] iff x ∈ [[20ϕ]]M
#

iff ∃e# ∈ E#
0 (x ∈ e# ⊆ [[ϕ]]M

#

)

iff ∃e# ∈ E#
0 (x ∈ e# ⊆ [[[#]ϕ]])

iff ∃e ∈ E(x ∈ e ⊆ [[[#]ϕ]]) (since E#
0 = E# = E)

iff x ∈ [[2[#]ϕ]]

The validity of the axiom 5 follows similarly since E = E#. 2

5.7 Conclusions and Further Directions

In this chapter, we studied a topological semantics for various notions of evidence,
evidence-based justification, argument, (conditional) belief, and knowledge. We
did so by using topological structures based on the (uniform) evidence models of
van Benthem and Pacuit (2011). Several soundness, completeness, finite model
property and decidability results concerning the logics of belief, knowledge and
evidence on all topological (evidence) models have been shown. We also discussed
some dynamic evidence modalities such as public announcements, evidence ad-
dition, evidence upgrade and feasible evidence combination, and provided sound
and complete axiomatizations for the associated logics by means of a set of re-
duction axioms for each dynamic modality.

Our topological approach contributes to the evidence setting of van Benthem
and Pacuit (2011); van Benthem et al. (2012, 2014) in many ways. First of all, this
topological approach, we believe, gives mathematically more natural meanings to
the epistemic/doxastic modalities we considered by providing a precise match be-
tween epistemic and topological notions. The list of the epistemic notions studied
together with their topological counterparts is given in Table 5.6 below.
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Epistemology Topology
Basic Evidence Subbasis of a topology (E0)
(Combined) Evidence Basis of a topology (E)
Arguments Open Sets (τE)
Justifications Dense Open Sets
Belief Dense interior (nowhere dense complement)
Knowledge (of P ) x ∈ Int(P ) and Int(P ) is dense

Table 5.6: Matching epistemic and topological notions

Besides, concerning the belief interpretation, our proposal yields a notion of
belief that coincides with the one of van Benthem and Pacuit (2011) in “good”
cases, and that behaves better in general. More precisely, our justified belief is
always consistent, in fact, it satisfies the axioms and rules of the standard belief
system KD45B on all topological spaces (Section 5.6.2). It moreover admits a
natural topological reading in terms of dense-open sets (or equivalently, in terms
of nowhere dense sets) as “truth in most states of the model”, where “most” refers
to “everywhere but a nowhere dense part”. We have also shown that the logic
of evidence models under our proposed semantics has the finite model property,
whereas this was not the case in (van Benthem and Pacuit, 2011; van Benthem
et al., 2012, 2014).

The formalism developed in this chapter improves also on our own work on an-
other topological semantics for Stalnaker’s epistemic-doxastic system, presented
in Chapters 4. While in Chapters 3 and 4 we could talk about evidential grounds
of knowledge and belief only on a semantic level, the current setting provides syn-
tactic representations of evidence, therefore, makes the notion of evidence a part
of the logic. Moreover, we showed that knowledge and belief can be interpreted
on arbitrary topological spaces (rather than on extremally disconnected or h.e.d.
spaces), without changing their logic. To this end, the semantics of knowledge
and belief proposed in this chapter generalizes the setting of Chapter 4.

In the rest of this section, we name a few directions for future research:

Connection to “topological” formal learning theory. One line of inquiry
involves adding to the semantic structure a larger set E30 ⊇ E0 of potential evi-
dence, meant to encompass all the evidence that might be learnt in the future.
This would connect well with the topological program in Inductive Epistemology
started by Kelly and others (Kelly, 1996; Schulte and Juhl, 1996; Kelly et al.,
1995; Kelly and Lin, 2011; Baltag et al., 2015c), in which a topological version of
Formal Learning Theory is used to investigate convergence of beliefs to the truth
in the limit, when the agent observes a stream of incoming evidence. A formal
setting that involves both actual evidence E0 and potential evidence E30 ⊇ E0
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would combine coherentist justification with predictive learning. A logical syntax
appropriate for this setting could be obtained by extending our language with
operators borrowed from topo-logic (Moss and Parikh, 1992), such as an operator
3ϕ, expressing the fact that ϕ can become true after more evidence is learnt. In-
ductive learnability of ϕ is then captured by the formula 3Kϕ, where K is our
defeasible knowledge (rather than the absolutely certain knowledge operator of
topo-logic).

Multi-agent extensions. Another line of research involves extending our frame-
work to a multi-agent setting. It is straightforward to generalize our semantics to
multiple agents, though obtaining a completeness result might not be that easy.
However, the real interesting challenge comes when we look at notions of group
knowledge, for some group G of agents. For common knowledge, there are at least
two different natural options: (1) the standard Lewis-Aumann concept of the infi-
nite conjunctions of “everybody knows that everybody knows etc.” (Lewis, 1969;
Aumann, 1976), and (2) a stronger concept, based on shared evidence (the inter-
section

⋂
a∈G Ea0 of the evidence families Ea0 of all agents a ∈ G). The two concepts

differ in general, and this is related to Barwise’s older observation on the distinc-
tion of concepts of common knowledge in a topological framework (Barwise, 1988),
in contrast to Kripke models, where all the different versions collapse to the same
notion (see also van Benthem and Sarenac, 2004 and Bezhanishvili and van der
Hoek, 2014, Section 12.4.2.5 for a discussion on the different formalizations of
common knowledge on topological spaces). Similarly, in this evidence-based set-
ting, the standard notion of distributed knowledge does not seem appropriate to
capture a group’s epistemic potential. Standardly, a group of agents G is said to
have distributed (implicit) knowledge of ϕ if ϕ is implied by the knowledge of
all individuals in G pooled together (see, e.g., Fagin et al., 1995, Chapter 2 for
a standard treatment of distributed knowledge based on relation models). In our
setting though, a natural way to think about a group’s epistemic potential is to
let the agents share all their evidence, and compute their knowledge based on the
evidence family obtained by taking the union EG0 =

⋃
a∈G Ea0 of all the evidence

families Ea0 of all agents a in G. This corresponds to moving to the smallest topol-
ogy that includes all agents’ evidential topologies τa, which also gives us a natural
way to define a consistent notion of (potential) group belief. However, this setting
has some apparent ‘defects’, that is, some facts known by one individual in the
group might be defeated by another member’s false or misleading evidence, there-
fore, the individual knowledge of these facts will be lost after the group members
share all their evidence. This is in contrast with the standard notion of distributed
knowledge that is group monotonic: the distributed knowledge of a larger group
always includes the distributed knowledge of any of its subgroups, and so in par-
ticular it includes everything known by any member of the group. One option is
to simply give up the dogma that groups are always wiser than their members,
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and retain the evidence-based model of group knowledge as providing a better
representation of the epistemic potential of a group. Learning from others might
not always be epistemically beneficial: it all depends on the quality of the oth-
ers’ evidence. There are also ways to avoid this conclusion, pursued by Ramirez
(2015), via natural modifications of our models and by defining knowledge to
be undefeated by any potential evidence that the agent may learn. This way
Ramirez (2015) re-establishes group monotonicity, but showing completeness for
the resulting logic possess technical challenges (see Ramirez, 2015, for details).



Part II

From Public Announcements to
Effort
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Chapter 6

Topological Subset Space Semantics

In this chapter, we present the two topological frameworks, on the basis of which
the work presented in the second part of this dissertation was developed. The
first is the so-called subset space semantics of Moss and Parikh (1992), and its
topological version developed by Georgatos (1993, 1994) and Dabrowski et al.
(1996). The second is the topological public announcement formalism introduced
by Bjorndahl (2016). We also point out the connections and differences between
the epistemic use of topological spaces in Parts I and II of this thesis, especially
regarding the types of evidence represented and the notion of knowledge studied.

Outline

In Section 6.1, we present the subset space framework, providing its syntax and
semantics as well as the complete axiomatizations of the associated logics with
respect to subset spaces and topological spaces. Section 6.2 introduces the topo-
logical public announcement logic of Bjorndahl (2016), and provides several ex-
pressivity results concerning the languages studied in the aforementioned settings.

6.1 The Subset Space Semantics and TopoLogic

The formalism of “topologic”, introduced by Moss and Parikh (1992), and inves-
tigated further by Dabrowski et al. (1996), Georgatos (1993, 1994), Weiss and
Parikh (2002) and others, represents a single-agent subset space logic (SSL) for
the notions of knowledge and effort. One of the crucial aspects of this framework
is that it is concerned not only with the representation of knowledge, but also
aimed at giving an account of information gain or knowledge increase in terms
of observational effort.1 It is the latter feature of this work that makes the use

1Moss and Parikh (1992) is partly inspired by Vickers’ work on reconstruction of topology
via a logic of finite observation (Vickers, 1989).
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of subset spaces significant. While the knowledge modality Kϕ has the stan-
dard reading “the agent knows ϕ (is true)”, in the subset space setting, the effort
modality 2ϕ captures a notion of effort as any action that results in an increase in
knowledge and is read as “ϕ stays true no matter what further evidence-gathering
efforts are made”. The modality 2 therefore captures a notion of stability under
evidence-gathering. Effort can be in the form of measurement, computation, ap-
proximation, or even announcement, depending on the context and the informa-
tion source. To illustrate the underlying intuition of the subset space semantics,
and the notions of knowledge, effort, and evidence it represents, suppose for in-
stance, that you have measured your height and obtained a reading of 5 feet and
10 inches ±3 inches. The measuring devices we use to calculate such quantities al-
ways come with a certain error range, therefore giving us an approximation rather
than the precise value. With this measurement in hand, you cannot be said to
know whether you are less than 6 feet tall, as your measurement, i.e., the current
evidence you have, does not rule out that you are taller or shorter. However, if
you are able to spend more resources and take a more precise measurement, e.g.,
by using a more accurate meter with ± 1 error range, you come to know that
you are less than 6 feet tall (Bjorndahl and Özgün, 2017). Subset space logics are
designed to represent such situations, and therefore involve two modalities: one
for knowledge K, and the other one for effort 2.

The formulas in the bimodal language are interpreted on subset spaces (X,O),
where X is a nonempty domain and O is an arbitrary nonempty collection of
subsets of X. The elements of O represent possible observations, and more effort
corresponds to a more refined truthful observation, thus, a possible increase in
knowledge. A subset space is not necessarily a topological space, however, topo-
logical spaces do constitute a particular case of subset spaces and topological
reasoning provides the intuition behind this semantics, as we will elaborate be-
low.2 While presenting the most general case of subset spaces in this section, our
main results in later sections will still be based on purely topological models.

In this section, we provide the formal background for the subset space seman-
tics of Moss and Parikh (1992), explaining how these “topological” structures
constitute models that are well-equipped to give an account for evidence-based
knowledge and its dynamics. We also point out the differences and the connec-
tion between the two topological approaches developed in Chapter 5 and Part II,

2The subset space setting also comes with an independent technical motivation. Many of the
aforementioned sources are concerned with axiomatizing the logics of smaller classes of subset
spaces meeting particular closure conditions on the set of subsets O. For example, while Moss
and Parikh (1992) axiomatized the logic of subset spaces, Georgatos (1993, 1994) and Dabrowski
et al. (1996) provided an axiomatization of the logic of topological spaces, and complete lattice
spaces. Moreover, Georgatos (1997) axiomatized the logic of treelike spaces, and Weiss and
Parikh (2002) presented an axiomatization for the class of directed spaces. These results are
quite interesting from a modal theoretical perspective, however, in this dissertation, we are
primarily interested in the applications of topological ideas in epistemic logic. We therefore
focus on the epistemic motivation behind the topologic formalism.
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respectively. In particular, we compare the evidence representation on evidence
models of van Benthem and Pacuit (2011) with the one on subset models of Moss
and Parikh (1992), and in turn, the type of evidence-based knowledge studied on
these structures.

6.1.1 Syntax and Semantics

In their influential work, Moss and Parikh (1992) consider the bimodal language
LK2 given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | 2ϕ,

and interpret it on subset spaces, a class of models generalizing topological spaces.

6.1.1. Definition. [Subset Space/Model] A subset space is a pair (X,O), where
X is a nonempty set of states and O is a collection of subsets of X. A subset model
is a tuple X = (X,O, V ), where (X,O) is a subset space and V : prop→ P(X)
a valuation function.

It is not hard to see that subset spaces are just like the evidence models of van
Benthem and Pacuit (2011) (given in Definition 5.2.1), but with no constraints on
the set of subsets O.3 However, the way the truth of a formula is defined on subset
models leads to a crucial difference between the two settings, especially concerning
the type of evidence represented by the elements of O, and the characterization
of the notion of knowledge interpreted based on evidence. This point will become
clear once we present the formal semantics below.

Subset space semantics interprets formulas not at worlds x but at epistemic
scenarios of the form (x, U), where x ∈ U ∈ O. Let ES(X ) denote the collection
of all such pairs in X . Given an epistemic scenario (x, U) ∈ ES(X ), the set U is
called its epistemic range; intuitively, it represents the agent’s current information
as determined, for example, by the measurements she has taken. The language
LK2 is interpreted on subset spaces as follows:

6.1.2. Definition. [Subset Space Semantics for LK2] Given a subset space
model X = (X,O, V ) and an epistemic scenario (x, U) ∈ ES(X ), truth of a
formula in the language LK2 is defined recursively as follows:

X , (x, U) |= p iff x ∈ V (p), where p ∈ prop
X , (x, U) |= ¬ϕ iff not X , (x, U) |= ϕ
X , (x, U) |= ϕ ∧ ψ iff X , (x, U) |= ϕ and X , (x, U) |= ψ
X , (x, U) |= Kϕ iff (∀y ∈ U)(X , (y, U) |= ϕ)
X , (x, U) |= 2ϕ iff (∀O ∈ O)(x ∈ O ⊆ U implies X , (x,O) |= ϕ)

3We could in fact define the subset spaces exactly the same way as evidence models by
putting the constraints X ∈ O and ∅ 6∈ O. This would technically make no difference, however,
we here prefer to present the most general case.
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We say that a formula ϕ is valid in a model X , and write X |= ϕ, if X , (x, U) |= ϕ
for all scenarios (x, U) ∈ ES(X ). We say ϕ is valid, and write |= ϕ, if X |= ϕ
for all X . We let [[ϕ]]UX = {x ∈ U | X , (x, U) |= ϕ} denote the truth set, or
equivalently, extension of ϕ under U in the model X . We again omit the notation
for the model, writing simply (x, U) |= ϕ and [[ϕ]]U , whenever X is fixed.

Epistemic readings of subset space semantics: current vs potential ev-
idence

In subset space semantics, the points of the space represent “possible worlds”
(or, states of the world). However, having the units of evaluation as pairs of the
form (x, U)—rather than a single state x—allows us to distinguish the evidence
that the agent currently has in hand from the potential evidence she can in
principle obtain. More precisely, elements of O can be thought of as potential
pieces of evidence meant to encompass all the evidence that might be learnt in the
future, while the epistemic range U of an epistemic scenario (x, U) corresponds
to the current evidence, i.e., “evidence-in-hand” by means of which the agent’s
knowledge is evaluated.4 This is made precise in the semantic clause forKϕ, which
stipulates that the agent knows ϕ just in case ϕ is entailed by her factive5 evidence-
in-hand. The knowledge modality K therefore behaves like the global modality
within the given epistemic range U . For this reason, in various places, we will often
refer to K as the global modality. Thus, the type of knowledge captured by the
modality K in this setting is absolutely certain, infallible knowledge based on the
agent’s current truthful evidence. These points already underline the substantial
differences between the two evidence-based epistemic frameworks studied in this
thesis: while E0 of an evidence model (X, E0, V ) represents the set of evidence
pieces the agent has already acquired about the actual situation, the set O of a
subset model (X,O, V ) represents the set of potential evidence the agent can in
principle discover, even if she does not happen to personally have it in hand at
the moment. A subset model is therefore intended to carry all pieces of evidence
the agent currently has and can potentially gather later, hence, supports model-
internal means to interpret evidence-based information dynamics, as displayed,
e.g., by the effort modality.6 In this framework, more effort means acquiring more
evidence for the actual state of affairs, therefore, a better approximation of the
real state. The effort modality 2ϕ is thus interpreted in terms of neighbourhood-
shrinking and read as “ϕ is stably true under evidence-acquisition”, i.e., ϕ is true,
and will stay true no matter what further factive evidence is obtained.

4The term “evidence-in-hand” is borrowed from (Bjorndahl and Özgün, 2017), where the
elements of O are described as “evidence-out-there”.

5As in the previous chapters, x ∈ U expresses the factivity of evidence.
6In later sections, we study other dynamic modalities, such as the so-called public and

arbitrary announcement modalities, interpreted on topological spaces in the style of the effort
modality, that is, without leading to any global change in the initial model.
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As every topological space is a subset space, the above readings of the modal-
ities also apply to the topological models. However, the additional structure that
topological spaces possess helps us to formalize naturally some further aspects of
evidence aggregation (similar to Part I). For example, when O is closed under
finite intersections, we can consider the epistemic range U of a given epistemic
scenario (x, U) as a finite stream of truthful information (O1, . . . , On) the agent
has received and put together: x ∈ U =

⋂
i≤nOi ∈ O (Baltag et al., 2015c).

Moreover, as noted in (Moss and Parikh, 1992), we can express some topological
concepts in the language LK2 that, in fact, lead to concise modal reformulations
of verifiable and falsifiable propositions (as also noted in Georgatos, 1993). To
be more precise, given a topo-model X = (X, τ, V ) and a propositional variable
p ∈ prop, V (p) is open in τ iff p → 3Kp is valid in X . Recall that the open
sets of a topology are meant to represent potential evidence, i.e., properties of
the actual state that are in principle verifiable: whenever they are true, they are
supported by a sound piece of evidence that the agent can in principle obtain,
therefore, can be known (Vickers, 1989; Kelly, 1996). Therefore, we can state that

• p is verifiable in X iff p→ 3Kp is valid in X .

In contrast, V (p) is closed in τ iff 2K̂p → p is valid in X , and closed sets
correspond to properties that are in principle falsifiable: whenever they are false,
their falsity can be known. In a similar manner, this can be formalized in the
language LK2 as

• p is falsifiable in X iff ¬p → 3K¬p, or equivalently, 2K̂p → p is valid in
X .

As remarked in (Vickers, 1989; Kelly, 1996), the closure properties of a topology
are satisfied in this interpretation. First, contradictions (∅) and tautologies (X)
are in principle verifiable (as well as falsifiable). The conjunction p ∧ q of two
verifiable facts is also verifiable: if p ∧ q is true, then both p and q are true, and
since both are assumed to be verifiable, they can both be known, and hence p∧ q
can be known. Finally, if {pi | i ∈ I} is a (possibly infinite) family of verifiable
facts, then their disjunction

∨
i∈I pi is verifiable: in order for the disjunction to

be true, then there must exist some i ∈ I such that pi is true, and so pi can be
known (since it is verifiable), and as a result the disjunction

∨
i∈I pi can also be

known (by inference from pi).

6.1.2 Axiomatizations: SSL and TopoLogic

Moss and Parikh (1992) provided a sound and complete axiomatization of their
logic of knowledge and effort with respect to the class of subset spaces. Its purely
topological version was later studied by Georgatos (1993, 1994), and Dabrowski
et al. (1996), who independently provided complete axiomatizations and proved
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decidability. In this section, we give the axiomatizations for the logic of sub-
set spaces (SSL) and of topological spaces (TopoLogic). We state the relevant
completeness, decidability and finite model property results, and refer to the
aforementioned sources for their proofs.

The axiomatization of the subset space logic, denoted by SSL, is obtained by
augmenting the logic S5K + S42 for the language LK2 with the additional axiom
schemes (AP) and (CA) presented in Table 6.1.

(AP) (p→ 2p) ∧ (¬p→ 2¬p), for p ∈ prop Atomic Permanence
(CA) K2ϕ→ 2Kϕ Cross Axiom

Table 6.1: Additional axiom schemes of SSL

Therefore, the effort modality on subset spaces is S4-like. The axiom (AP)
states that the truth value of the propositional variables does not depend on the
given epistemic range, but only depends on the actual state. In fact, this is the
case for all Boolean formulas in LK2, and can be proven in the system SSL. The
cross axiom is also interesting since it links the two modalities of this system.

6.1.3. Theorem (Moss and Parikh, 1992). SSL is sound and complete with
respect to the class of all subset spaces.

It was shown in (Dabrowski et al., 1996) that the logic of subset spaces does not
have the finite model property, however, its decidability was proven by using non-
standard models called cross axiom models (see Dabrowski et al., 1996, Section
2.3).

Concerning the logic of topological spaces for LK2, i.e., the so-called TopoLogic,
it is axiomatized by adding the following axiom schemes to the axiomatization of
SSL:

(WD) 32ϕ→ 23ϕ Weak Directedness

(UN) 3ϕ∧K̂3ψ → 3(3ϕ∧K̂3ψ∧K3K̂(ϕ∨ψ)) Union Axiom

Table 6.2: Additional axiom schemes of TopoLogic

6.1.4. Theorem (Georgatos, 1993, 1994). TopoLogic is sound and complete
with respect to the class of all topological spaces. Moreover, it has the finite model
property, therefore, it is decidable.

The literature on subset space semantics goes far beyond the presentation of
this section. However, we here confine ourselves to the material we will use in
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later sections, and refer the reader to (Parikh et al., 2007) for a survey of the
further technical results, extensions, and variations of the topologic formalism.
In this dissertation, we are particularly interested in revealing the connection
between the effort modality, and the well-known dynamic epistemic modalities
such as the public and arbitrary announcement modalities. To that end, we use
the topological public announcements introduced by Bjorndahl (2016), presented
in the next section.

6.2 Topological Public Announcements

The epistemic motivation behind the subset space semantics and the dynamic na-
ture of the effort modality clearly suggests a link between the subset space setting
and dynamic epistemic logic, in particular dynamics known as public announce-
ments (Plaza, 1989, 2007; Gerbrandy and Groeneveld, 1997). The information
intake represented by the effort modality intuitively encompasses any method of
evidence acquisition, including public announcements, a precise and well-studied
instance. This connection was also noted by Georgatos (2011), and further stud-
ied in (Baskent, 2011, 2012; Balbiani et al., 2013; Wáng and Ågotnes, 2013b;
Bjorndahl, 2016), proposing different interpretations for the so-called public an-
nouncement modalities. For example, Baskent (2011, 2012) and Balbiani et al.
(2013) propose modelling public announcements on subset spaces by deleting the
states or the neighbourhoods falsifying the announcement, following the com-
mon approach in public announcement logics (see, e.g., van Ditmarsch et al.,
2007). However, this method is obviously not in the spirit of the effort modal-
ity, in the sense that effort, as interpreted on subset spaces, does not lead to a
global model change but manifests itself locally as a transition from one neigh-
bourhood to a smaller one, i.e., as a neighbourhood shrinking operator. To the
best of our knowledge, Wáng and Ågotnes (2013b) were the first to propose se-
mantics for public announcements on subset spaces in terms of epistemic range
refinement rather than model restriction. Bjorndahl (2016) then proposed a re-
vised topological semantics (in the style of subset space semantics) for the syntax
of public announcement logic (without the effort modality), that assumes as pre-
condition of learning ϕ the sentence int(ϕ), saying, roughly speaking, that ϕ is
(potentially) knowable. Topologically, this corresponds to the interior operator of
McKinsey and Tarski (1944). Bjorndahl’s formalism therefore brings three sepa-
rate yet connected logical frameworks together: public announcement logic, the
interior semantics of McKinsey and Tarski (1944), and the subset space seman-
tics of Moss and Parikh (1992). It thus constitutes a rich enough background
to study the connection between effort and the public announcements as well as
their connection to so-called arbitrary announcements.

In this section, we present Bjorndahl’s topological public announcement logic,
and briefly explain the main intuition and motivation behind his formalism. The
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main body of the work presented in Part II crucially relies on Bjorndahl’s setting,
and explores its extensions with the aforementioned dynamic modalities both in
single and multi-agent cases.

6.2.1 Syntax and Semantics

Bjorndahl (2016) considers the language L!
Kint given by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ,

where Kϕ is as in Section 6.1, [ϕ]ψ is the public announcement operator, and
int is called the “knowability” modality, which, in this setting, plays the role of
a precondition of an announcement (Bjorndahl, 2016). The operator [ϕ]ψ is of-
ten denoted by [!ϕ]ψ in the public announcement logic literature (as well as in
Part I); we skip the exclamation sign, but we will use the notation [!] for this
modality when we do not want to specify the announcement formula ϕ (so that
! functions as a placeholder for the content of the announcement). We prefer
this notation here to emphasize the difference from the update operators stud-
ied in Part I (which were interpreted in a standard way via model restrictions,
where the precondition of an announcement is only that the announced formula
is true). The dual modalities for Kϕ and [ϕ]ψ are defined as usual, and we let
cl(ϕ) := ¬int(¬ϕ).

Bjorndahl (2016) interprets the above language on topological spaces, in the
style of subset space semantics, by extending the subset space semantics of the
epistemic language LK with semantic clauses for the additional modalities.

6.2.1. Definition. [Topological Semantics for L!
Kint] Given a topo-model X =

(X, τ, V ) and an epistemic scenario (x, U) ∈ ES(X ), truth of formulas in L!
Kint

is defined for the propositional variables and the Boolean cases as in Definition
6.1.2, and the semantics for K, int(ϕ) and [ϕ]ψ is given recursively as

(x, U) |= Kϕ iff (∀y ∈ U)((y, U) |= ϕ)
(x, U) |= int(ϕ) iff x ∈ Int([[ϕ]]U)
(x, U) |= [ϕ]ψ iff (x, U) |= int(ϕ) implies (x, Int([[ϕ]]U)) |= ψ

where Int is the interior operator of (X, τ), and [[ϕ]]U is as defined on p. 106.

To elaborate, the semantic clause for K is exactly the same as in Definition
6.1.2, and is repeated here: as is standard in subset space semantics, knowledge is
entailed by the agent’s current evidence U . On the other hand, the precondition
of an announcement in Bjorndahl’s setting is captured by the topological inte-
rior operator that refers to the existence of a piece of factive potential evidence
entailing the announcement:

(x, U) |= int(ϕ) iff (∃O ∈ τ)(x ∈ O ⊆ [[ϕ]]U).
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More precisely, int(ϕ) means that ϕ is knowable at the actual state (though not
necessarily knowable in general, at other states) in the sense that there exists
some potential evidence—an open set containing the actual state—that entails ϕ.
Therefore, for the precondition of an announcement, Bjorndahl (2016) requires
not only that the announced formula is true, but also that it is entailed by a
piece of (factive) evidence the agent could possibly obtain. In this respect, a true
proposition cannot be announced if it does not have any open subsets including
the actual state. For example, on a topo-model with no singleton opens, the
agents can never know the actual state, not every true proposition can come
to be known (as in Georgatos, 1994, Example 1, p. 149). It is this evidence-
based interpretation of public announcements that makes Bjorndahl-style updates
different than standard update operators (interpreted via model restrictions). In
a framework where knowledge is based on the agent’s current evidence, and every
piece of evidence the agent might acquire later is represented within the given
model in terms of open sets of a topology, the operator int as the precondition for
learning something seems to be the right notion to consider. It is a good fit with
the intuition behind the subset space/topological semantics and the evidence-
based learning we study in this part (see Bjorndahl, 2016, for some examples).

6.2.2. Remark. It is worth noting that the intuition behind reading int(ϕ) as
“ϕ is knowable” can falter when ϕ is itself an epistemic formula. For instance, if
ϕ is the Moore sentence p∧¬Kp, then Kϕ is not satisfiable in any subset model,
in particular, 3Kϕ is never true. Therefore, in this sense, ϕ can never be known;
nonetheless, int(ϕ) is satisfiable. This is because int(ϕ) abstracts away from the
temporal and dynamic dimension of knowability, and is simply concerned with
potential knowledge. On the other hand, 3Kϕ is a dynamic schema that states
“the agent comes to know ϕ after having spent some effort, having acquired some
further evidence”. In this respect, int(ϕ) might be more accurately glossed as
“one could come to know what ϕ used to express (before you came to know
it)”. Since primitive propositions do not change their truth value based on the
agent’s epistemic state, this subtlety is irrelevant for propositional knowledge and
knowability (Bjorndahl and Özgün, 2017).7

Bjorndahl (2016) then proceeds with providing a sound and complete axiom-
atization for the associated dynamic logic PAL+

int (called public announcement
logic with int), using natural analogues of the standard reduction axioms of pub-
lic announcement logic, and shows that this formalism is co-expressive with the
simpler (and older) logic of interior int(ϕ) and global modality Kϕ (previously

7For a discussion of different notions of knowability and their link to Fitch’s famous Paradox
of Knowability (Fitch, 1963; Brogaard and Salerno, 2013), we refer the interested reader to
(Fuhrmann, 2014; van Ditmarsch et al., 2012). In particular, Fuhrmann (2014) discusses a
notion of knowability as potential knowledge in the spirit of ours, and van Ditmarsch et al.
(2012) consider dynamic notions of knowability.
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investigated by Goranko and Passy (1992); Bennett (1996); Shehtman (1999);
Aiello (2002), extending the work of McKinsey and Tarski (1944) on interior se-
mantics). The axiomatizations ELint and PAL+

int for the languages LKint and L!
Kint,

respectively, are given in Table 6.3.8

(I) Axioms of system ELint:
(CPL) all classical propositional tautologies and Modus Ponens
(S5K) all S5 axioms and rules for the knowledge modality K
(S4int) all S4 axioms and rules for the interior modality int
(K-int) Knowledge implies knowability : Kϕ→ int(ϕ)

(II) Additional reduction axioms of PAL+
int:

(Rp) [ϕ]p↔ (int(ϕ)→ p)
(R¬) [ϕ]¬ψ ↔ (int(ϕ)→ ¬[ϕ]ψ)
(R∧) [ϕ](ψ ∧ χ)↔ [ϕ]ψ ∧ [ϕ]χ
(RK) [ϕ]Kψ ↔ (int(ϕ)→ K[ϕ]ψ)
(Rint) [ϕ]int(ψ)↔ (int(ϕ)→ int([ϕ]ψ)
(R[comp]) [ϕ][ψ]χ↔ [int(ϕ) ∧ [ϕ]int(ψ)]χ

Table 6.3: The axiomatizations for ELint and PAL+
int.

We conclude the section by stating the completeness results for ELint and
PAL+

int, and continue our presentation in the next section with a detailed discussion
on the expressive power of L!

Kint and its fragments, also in comparison to LK2,
with respect to topo-models.

6.2.3. Theorem (Shehtman, 1999). ELint is sound and complete with respect
to the class of all topo-models.

Bjorndahl (2016) also presents a canonical topo-model construction for ELint (see
Bjorndahl, 2016, Theorem 1). He moreover proves the completeness and sound-
ness of PAL+

int:

6.2.4. Theorem (Bjorndahl, 2016). PAL+
int is sound and complete with re-

spect to the class of all topo-models.

8In Table 6.3, we present Bjorndahl’s original axiomatization as it appears in (Bjorndahl,
2016). In Chapter 7, we propose an alternative set of axioms for the public announcement
modality from which Bjorndahl’s axioms are derivable. For this reason, we denote his original
system by PAL+int, and reserve the more standard notation PALint for our version presented in
Chapter 7.
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6.2.2 Expressivity

This section provides several expressivity results concerning the above defined
languages with respect to topo-models. We focus in particular on the expressive
power of L!

Kint and its fragments as provided in (Bjorndahl, 2016), as well as the
connection between Lint and LK2 (see, e.g., Parikh et al., 2007, Section 4.3). The
reader who is familiar with the aforementioned sources can skip this section.

6.2.5. Theorem (Bjorndahl, 2016). L!
Kint, LKint and L!

K are equally expres-
sive with respect to topo-models.

Proof:
For the proof details of the co-expressivity between L!

Kint and LKint, we refer to
(Bjorndahl, 2016, Proposition 5). L!

Kint and its fragment L!
K are equally expressive

since the modality int can be defined in terms of the public announcement modal-
ities. In particular, for all ϕ ∈ L!

Kint, we have int(ϕ) ↔ 〈ϕ〉> valid in all topo-
models. To prove this, let X = (X, τ, V ) be a topo-models and (x, U) ∈ ES(X ).

(x, U) |= int(ϕ) iff x ∈ Int([[ϕ]]U) (by the semantics of int)

iff x ∈ Int([[ϕ]]U) and (x, Int([[ϕ]]U) |= >
iff (x, U) |= 〈ϕ〉> (by the semantics of public announ. [!])

2

On the other hand, not surprisingly, the modality int increases the expressive
power of the purely epistemic fragment LK . And, similarly, the global modality
K increases the expressivity of Lint:

6.2.6. Theorem. LKint is strictly more expressive than LK, and than Lint. More-
over, LK and Lint are incomparable.

Proof:
In order to show that LKint is strictly more expressive than LK , we use the
example in (Bjorndahl, 2016, Proposition 3).9 Consider the topo-models X =
({x, y}, 2{x,y}, V ) and Y = ({x, y}, {∅, {y}, {x, y}}, V ) such that V (p) = {x}
(see Figure 6.1). Let IntX and IntY denote the interior operators of X and
Y , respectively. It is obvious that X and Y are modally equivalent with re-
spect to LK . In other words, for all ϕ ∈ LK and all (z, U) ∈ ES(X ) ∩ ES(Y),
we have X , (z, U) |= ϕ iff Y , (z, U) |= ϕ (in Bjorndahl, 2016, this argument is
given by a notion of bisimulation). However, while X , (x, {x, y}) |= int(p) since

9The topo-models presented in this proof are in fact quite standard examples that are used
in order to compare the expressivity of the global modality and an S4-type Kripke modality
on relational structures. We here adopt these relational structures to our setting by presenting
them as topo-models.
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yxp ¬p

(a) X

yxp ¬p

(b) Y

Figure 6.1: Squares represent the open sets in the corresponding topologies.

x ∈ {x} = IntX ([[p]]{x,y}), we also have x 6∈ ∅ = IntY([[p]]{x,y}). Therefore, int(p)
can distinguish X , (x, {x, y}) from Y , (x, {x, y}), thus it cannot be equivalent to
any formula in LK .

To show that LKint is strictly more expressive than Lint, consider again the
model X = ({x, y}, 2{x,y}, V ), and the topo-model X ′ = ({x, y}, 2{x,y}, V ′) such
that V ′(p) = ∅ (see Figure 6.2).

yxp ¬p

(a) X

yx¬p ¬p

(b) X ′

Figure 6.2: Squares represent the open sets in the corresponding topologies.

Observe that, for all ϕ ∈ Lint, X , (y, {y}) |= ϕ iff X ′, (y, {y}) |= ϕ (this can be
shown easily by a subformula induction on ϕ). On the other hand, X , (y, {y}) |=
K̂p whereas X ′, (y, {y}) 6|= K̂p. Therefore, K̂p can distinguish X , (y, {y}) from
X ′, (y, {y}), thus it cannot be equivalent to any formula in Lint.

Moreover, the first example shows that int(p) ∈ Lint is not equivalent to any
formula in LK , and the second example shows that K̂p ∈ LK is not equivalent to
any formula in Lint, hence, Lint and LK are incomparable. 2

We also compare Lint and LK2, and thereby, see the exact connection between
the interior semantics and the subset space style topological semantics. We here
follow the presentation in (Parikh et al., 2007, Section 4.3). We first show that
Lint is embedded in the language LK2 via the following translation:

6.2.7. Definition. [Translation ∗ : Lint → LK2] For each ϕ ∈ Lint, the transla-
tion (ϕ)∗ of ϕ into LK2 is defined recursively as follows:

p∗ = p, where p ∈ prop
(¬ϕ)∗ = ¬(ϕ)∗

(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗
(int(ϕ))∗ = 3Kϕ∗
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6.2.8. Definition. [Bi-persistent Formula of LK2 (on topo-models)] A formula
ϕ ∈ LK2 is called bi-persistent if for all topo-models X = (X,O, V ), and all
(x, U), (x,O) ∈ ES(X ) we have (x,O) |= ϕ iff (x, U) |= ϕ.

6.2.9. Proposition. For all ϕ ∈ Lint, the corresponding formula ϕ∗ ∈ LK2 is
bi-persistent on topo-models.

Proof:
The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for ψ; we must show that it holds also for ϕ := int(ψ). Let
X = (X, τ, V ) be a topo-model and (x,O), (x, U) ∈ ES(X ). We then have

(x, U) |= (int(ψ))∗ iff (x, U) |= 3Kψ∗ (by the definition of ∗)
iff (∃U ′ ∈ τ)(x ∈ U ′ ⊆ U and (x, U ′) |= Kψ∗)

(by the semantics of 2)

iff (∃U ′ ∈ τ)(x ∈ U ′ ⊆ U and [[ψ∗]]U
′
= U ′)

(by the semantics of K)

Now, consider the set U ′∩O. It is easy to see that U ′∩O ∈ τ (since τ is a topol-
ogy), and that x ∈ U ′∩O ⊆ O. So, we only need to show that (x, U ′∩O) |= Kψ∗,
i.e., that U ′∩O = [[ψ∗]]U

′∩O. But, since ψ∗ is bi-persistent (by induction hypothe-
sis), U ′∩O ⊆ U ′ and [[ψ∗]]U

′
= U ′, we have [[ψ∗]]U

′∩O = [[ψ∗]]U
′∩O = U ′∩O. There-

fore, (x, U ′∩O) |= Kψ∗. Moreover, as x ∈ U ′∩O ⊆ O, we obtain (x,O) |= 3Kψ∗.
The other direction follows similarly. 2

6.2.10. Proposition (Dabrowski et al., 1996, Proposition 3.5). For all
ϕ ∈ Lint, all topo-models X = (X, τ, V ) and all (x, U) ∈ ES(X ),

(x, U) |= ϕ iff (x, U) |= ϕ∗.

Proof:
The proof follows by subformula induction on ϕ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for ψ; we must show that it holds also for ϕ := int(ψ). Let
X = (X, τ, V ) be a topo-model and (x, U) ∈ ES(X ) such that (x, U) |= int(ψ),
i.e., x ∈ Int([[ψ]]U). This means that there is O ∈ τ such that x ∈ O ⊆ [[ψ]]U .
Then, by induction hypothesis, we obtain O ⊆ [[ψ∗]]U , i.e., (y, U) |= ψ∗ for all
y ∈ O. By Proposition 6.2.9, we know that ψ∗ is bi-persistent on topo-models.
Therefore, we infer that (y,O) |= ψ∗ for all y ∈ O. Hence, by the semantics of
K, we obtain (x,O) |= Kψ∗. As x ∈ O ⊆ U , we conclude (x, U) |= 3Kψ∗. The
other direction follows similarly. 2
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Therefore, the language LK2 completely embeds the language Lint as its frag-
ment consisting of the propositional variables, and closed under the Boolean oper-
ators and the modalities 3K. As shown in (Parikh et al., 2007, Proposition 6.8),
the language LK2 is in fact strictly more expressive than Lint on topo-models:

6.2.11. Proposition (Parikh et al., 2007, Proposition 6.8). LK2 is
strictly more expressive than Lint with respect to topo-models.

Proof:
It follows from Proposition 6.2.10 that for every ϕ ∈ Lint, there exists ψ, namely
ϕ∗, such that ϕ and ϕ∗ are true at the same epistemic scenarios of every topo-
model. Moreover, the second example in the proof of Theorem 6.2.6 shows that
K̂p is not equivalent on the class of topo-models to ϕ∗ for any ϕ ∈ Lint (see Parikh
et al., 2007, Proposition 6.8 for a different example). 2

6.3 Conclusions and Continuation

In this chapter, we presented the subset space semantics introduced by Moss
and Parikh (1992), mainly focusing on its topological versions. While the stan-
dard TopoLogic formalism à la Georgatos (1993, 1994); Dabrowski et al. (1996)
completely axiomatizes the logic of topological spaces for the language LK2 of
knowledge and effort, Bjorndahl (2016) studies the variant LKint with the inte-
rior operator of McKinsey and Tarski (1944) and the knowledge modality K,
and its extension L!

Kint with a topological update operator. We therefore have
different axiomatizations for the class of topological spaces, using subset space
style semantics based on different languages. The expressivity results concerning
the aforementioned languages and their fragments have been discussed in Sec-
tion 6.2.2, and are summarized in Figure 6.3 below. As we see in Figure 6.3, the
languages LK2 and LKint are also co-expressive with respect to topo-models. We
leave the proof of this result for the next chapter (see Theorem 7.1.19).

At this stage we still do not have a logical formalism that analyzes the pub-
lic announcement modality and the effort modality in one system, although
Bjorndahl (2016) provides topological semantics for public announcements that
matches the way effort is evaluated on topological spaces. This constitutes one
of the topics of the next chapter: we extend the topologic framework with the
Bjorndahl-style update modalities, or equivalently, study the extensions of LKint

and L!
Kint by the effort modality 2, and develop a formal framework that eluci-

dates the relation between effort and public announcements.
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LK

LK2

LKint

Lint

L!
Kint L!

K

Thm 6.2.6

Thm 7.1.19

Thm 6.2.5 Thm 6.2.5
Prop. 6.2.11

Thm 6.2.6

Figure 6.3: Expressivity diagram (Arrows point to the more expressive languages,
and reflexive and transitive arrows are omitted. Arrows without tags can be ob-
tained as easy consequences from the others.)





Chapter 7

TopoLogic as Dynamic Epistemic Logic

This chapter studies two different extensions of Bjorndahl’s setting for topological
public announcements: one with the effort modality of Moss and Parikh (1992),
and the other with the so-called arbitrary announcement modality of Balbiani
et al. (2008). We first explore the logic of topological spaces for the language
L!
Kint2, obtained by extending Bjorndahl’s language L!

Kint with the effort modality
introduced in the previous chapter. This way, we design a formal framework which
reveals the link between effort and (topological) public announcements, resulting
in both conceptual and technical advantages.

Yet another close relative of both the effort modality and the public announce-
ment modalities is the so-called arbitrary announcement modality � that was
introduced by Balbiani et al. (2008) and studied on Kripke models. Roughly
speaking, the arbitrary announcement modality �ϕ is read as “ϕ stays true after
every announcement”. It therefore generalizes public announcements by quanti-
fying over all such announcements. On the other hand, the effort modality seems
stronger than the arbitrary announcement modality as the former quantifies over
all open neighbourhoods of the actual state, not only over the epistemically de-
finable ones. In this chapter, we also look at the connection between these three
dynamic operators, by providing a topological semantics for �ϕ that quantifies
universally over Bjorndahl-style public announcements (similar to the way stan-
dard arbitrary public announcement in (Balbiani et al., 2008) quantifies over
standard public announcements).

Outline

Section 7.1 presents the Dynamic TopoLogic which combines the topologic for-
malism with Bjorndahl’s public announcements presented in Chapter 6. While
Section 7.1.2 provides several expressivity results, Section 7.1.3 focuses on the
completeness proof of the proposed axiomatization for Dynamic TopoLogic. In
Section 7.2, we study arbitrary announcements on topo-models and demonstrate
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that, in fact, the arbitrary announcement and the effort modality are equivalent
in our single-agent framework.

This chapter is based on (van Ditmarsch et al., 2014; Baltag et al., 2017).

7.1 Dynamic TopoLogic

In this section, based on (Baltag et al., 2017), we investigate a natural extension
of topologic, obtained by adding to it Bjorndahl’s topological update operators. In
other words, we revisit TopoLogic as a dynamic epistemic logic with public an-
nouncements. The resulting “Dynamic TopoLogic” forms a logic of evidence-based
knowledge Kϕ, knowability int(ϕ), learning of new evidence [ϕ]ψ, and stability
2ϕ (of some truth ϕ) under any such evidence-acquisition.

To recall briefly, Moss and Parikh (1992) gave a sound and complete ax-
iomatization with respect to the class of all subset spaces (Theorem 6.1.3). The
axiomatization for topological spaces was later studied by Georgatos (1993, 1994)
and Dabrowski et al. (1996), who independently provided completeness and de-
cidability proofs for TopoLogic (Theorem 6.1.4). These existing completeness and
decidability results involve technically interesting, yet rather complicated con-
structions. Moreover, one of the main axioms of the original TopoLogic, the so-
called Union Axiom, capturing closure of the topology under binary unions (see
Table 6.2), is very complex and looks rather unintuitive from an epistemic per-
spective. Against this background, our investigations in this chapter lead to results
of conceptual and technical interest as the extended syntax explicates the notion
of effort in terms of public announcements, and entertains an epistemically more
intuitive and clear complete axiomatization.

In the following, we present several expressivity results concerning this ex-
tended language, denoted by L!

Kint2, and its fragments, and thus expand Figure
6.3. In particular, we show that this extension is co-expressive with Bjorndahl’s
language L!

Kint of topological public announcements (Bjorndahl, 2016), and there-
fore with the simpler language LKint. This elucidates the relationships between
TopoLogic and other modal (and dynamic-epistemic) logics for topology. In par-
ticular, TopoLogic is directly interpretable in the simplest logic of topo-models for
LKint, which immediately provides an easy decidability proof both for TopoLogic
and for our extension.

We also give a complete axiomatization for Dynamic TopoLogic, which is in a
sense more transparent than the standard axioms of TopoLogic. Although we have
more axioms, each of them is natural and easily readable, directly reflecting the
intuitive meanings of the connectives. More precisely, our axiomatization consists
of a slightly different version of Bjorndahl’s axiomatization of PAL+

int (ours includes
a few other standard axioms and rules of public announcement logic), together
with only two additional proof principles governing the behavior of the topologic
“effort” modality (2ϕ, what we call “stable truth”): an introduction rule and an
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elimination axiom. Everything to be said about the effort modality is therefore
fully captured by these two simple principles, which together express the fact that
this modality quantifies universally over all updates with any new evidence. In
particular, the complicated Union Axiom of TopoLogic (see Table 6.2) is not
needed in our system (though of course it can be proved from our axioms). Unlike
the existing completeness proofs of TopoLogic (Georgatos, 1993; Dabrowski et al.,
1996), ours makes direct use of a standard canonical topo-model construction (as,
e.g., the canonical topo-model construction for S4 in Aiello et al., 2003, Section
3).1 This simplicity shows the advantage of adding dynamic modalities: when
considered as a fragment of a dynamic-epistemic logic, topologic becomes a more
transparent and natural formalism, with intuitive axioms and canonical behavior.

7.1.1 Syntax, Semantics and Axiomatizations

The language L!
Kint2 of Dynamic TopoLogic is obtained by extending Bjorndahl’s

language L!
Kint with the effort modality 2 from the language of topologic LK2

(Moss and Parikh, 1992); or, equivalently, by extending the usual syntax of topo-
logic with both the interior operator int of McKinsey and Tarski (1944) and with
Bjorndahl’s dynamic modalities for topological public announcements. As noted
earlier, the interior operator is definable using topological public announcements
(by putting int(ϕ) = 〈ϕ〉>). Therefore, keeping the modality int in the language
as primitive is mainly a design decision, but it also simplifies our completeness
proof. Therefore, our syntax is essentially given by adding the language LK2 of
topologic only the dynamic public announcement modalities, hence, we use the
name “Dynamic TopoLogic”. We start our presentation by formally introducing
the syntax and semantics for Dynamic TopoLogic.

Syntax and Semantics. The language L!
Kint2 of Dynamic TopoLogic is defined

recursively by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ | 2ϕ,

where p ∈ prop. Several fragments of the language L!
Kint2 are of both technical

and conceptual interest. To recall, for the fragments of L!
Kint2, we use our standard

notational convention listing all the modalities of the corresponding language as a
subscript of L except that ! for public announcements appears as a superscript. For
example, Lint denotes the fragment of L!

Kint2 having only the modality int; LKint

having only the modalities K and int; LK2 having only the modalities K and 2;
L!
Kint having the modalities K, int and [!] etc.

1Dabrowski et al. (1996) also consider a canonical model, but their completeness proof of
TopoLogic uses McKinsey-Tarski’s theorem of the topological completeness of S4 (Theorem
3.1.6). In our setting, having the modality int that matches the topological interior operator in
the language makes it easier to directly build a canonical model.
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We interpret this language on topo-models in an obvious way by putting
together the subset space semantics for LK2 (Definition 6.1.2) and Bjorndahl’s
semantics for the fragment L!

Kint (Definition 6.2.1). This is recapitulated in the
following definition.

7.1.1. Definition. [Topological Semantics for L!
Kint2] Given a topo-model X =

(X, τ, V ) and an epistemic scenario (x, U) ∈ ES(X ), truth of formulas in L!
Kint2

is defined for the propositional variables and the Booleans as in Definition 6.1.2,
and the semantics for the modalities is given recursively as follows:

(x, U) |= Kϕ iff (∀y ∈ U)((y, U) |= ϕ)
(x, U) |= int(ϕ) iff x ∈ Int([[ϕ]]U)
(x, U) |= [ϕ]ψ iff (x, U) |= int(ϕ) implies (x, Int([[ϕ]]U)) |= ψ
(x, U) |= 2ϕ iff (∀O ∈ τ) (x ∈ O ⊆ U implies (x,O) |= ϕ)

Axiomatizations. Given a formula ϕ ∈ L!
Kint2, we denote by Pϕ the set of all

propositional variables occurring in ϕ (we will use the same notation for the neces-
sity and possibility forms defined in Definition 7.1.22). The Dynamic TopoLogic,
hereby denoted as DTLint, is the smallest subset of L!

Kint2 that contains the ax-
ioms, and is closed under the inference rules given in Table 7.1 below. The system
ELint is defined in a similar way over the language LKint by the axioms and in-
ference rules in group (I) of Table 7.1 (as also given in Table 6.3), and PALint is
defined over the language L!

Kint by the axioms and inference rules in groups (I)
and (II).

The first six items in Table 7.1 are standard. The Replacement of Equivalents
rule ([!]RE) for [!] says that updates are extensional, that is, learning equivalent
sentences gives rise to equivalent updates, while the reduction axiom (R[>]) says
that updating with tautologies is redundant. The reduction axioms (Rp), (R¬)
and (RK) are exactly the same as in the axiomatization PAL+

int of Bjorndahl
(2016), and the reduction law (R[!]) for the iterative announcements is equivalent
to (R[comp]) but formulated in a simpler way (see Table 6.3 for PAL+

int). Bjorndahl’s
axiomatization also includes reduction laws for the connective ∧ (denoted by
(R∧)) and the modality int (denoted by (Rint)), however, as shown in Proposition
7.1.2, these can be derived in PALint.The only key new components of our system
are the last axiom and inference rule for 2, i.e., the elimination axiom ([!]2-elim)
and the introduction rule ([!]2-intro) for the effort modality. Taken together,
they state that θ is a stable truth after learning ϕ iff θ is true after learning
every stronger evidence ϕ ∧ ρ. The left-to-right implication in this statement is
directly captured by ([!]2-elim), while the converse is captured by the rule ([!]2-
intro). The “freshness” of the variable p in this rule ensures that it represents
any “generic” further evidence. This is similar to the introduction rule for the
universal quantifier. In essence, the effort axiom and rule express the fact that
the effort modality is a universal quantifier (over potential evidence). One can
compare the transparency and simple nature of our axioms with the complexity
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(I) Axioms and rules of system ELint:
(CPL) all classical propositional tautologies and Modus Ponens
(S5K) all S5 axioms and rules for the knowledge modality K
(S4int) all S4 axioms and rules for the interior modality int
(K-int) Knowledge implies knowability : Kϕ→ int(ϕ)

(II) Additional axioms and rules for PALint:
(K!) [ϕ](ψ → θ)→ ([ϕ]ψ → [ϕ]θ)
(Nec!) from θ, infer [ϕ]θ
([!]RE) Replacement of Equivalents for [!]:

from ϕ↔ ψ, infer [ϕ]θ ↔ [ψ]θ

Reduction axioms :
(R[>]) [>]ϕ↔ ϕ
(Rp) [ϕ]p↔ (int(ϕ)→ p)
(R¬) [ϕ]¬ψ ↔ (int(ϕ)→ ¬[ϕ]ψ)
(RK) [ϕ]Kψ ↔ (int(ϕ)→ K[ϕ]ψ)
(R[!]) [ϕ][ψ]χ↔ [〈ϕ〉ψ]χ

(III) Axioms and rules of the effort modality for DTLint:
([!]2-elim) [ϕ]2θ → [ϕ ∧ ρ]θ (ρ ∈ L!

Kint2 arbitrary formula)
([!]2-intro) from ψ → [ϕ ∧ p]θ, infer ψ → [ϕ]2θ (p 6∈ Pψ ∪ Pθ ∪ Pϕ)

Table 7.1: The axiomatizations of DTLint,PALint and ELint

of the standard axiomatization of TopoLogic that contains, among others, the
rather intricate Union Axiom (also given in Table 6.2):

3ϕ ∧ K̂3ψ → 3(3ϕ ∧ K̂3ψ ∧K3K̂(ϕ ∨ ψ)) (UN)

Proposition 7.1.2 states some important theorems and inference rules derivable
in DTLint, which will be used in our completeness proofs. While the denotations
for the other items listed in the following proposition are obvious, (RE) is the full
rule of Replacement of Equivalents, where ϕ{ψ/χ} denotes the formula obtained
by replacing the occurrences of ψ in ϕ by χ.

7.1.2. Proposition. The first seven schemas and the rule (RE ) are provable
both in PALint and DTLint (for languages L!

Kint and L!
Kint2, respectively). The

ninth schema and the inference rule below can be derived in our full proof system
DTLint:
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1. (〈!〉) 〈ϕ〉ψ ↔ (int(ϕ) ∧ [ϕ]ψ)
2. (R⊥) [ϕ]⊥ ↔ ¬int(ϕ)
3. (R∧) [ϕ](ψ ∧ θ)↔ ([ϕ]ψ ∧ [ϕ]θ)
4. (Rint) [ϕ]int(ψ)↔ (int(ϕ)→ int([ϕ]ψ))
5. (R[int]) [int(ϕ)]ψ ↔ [ϕ]ψ
6. (R[comp]) [ϕ][ψ]χ↔ [int(ϕ) ∧ [ϕ]int(ψ)]χ
7. (R[p]) [ϕ][p]ψ ↔ [ϕ ∧ p]ψ (p ∈ prop arbitrary)
8. (RE) from ψ ↔ χ, infer ϕ↔ ϕ{ψ/χ}
9. (2-elim) 2θ → [ρ]θ (ρ ∈ L!

Kint2 arbitrary formula)
10. (2-intro) from ψ → [p]θ, infer ψ → 2θ (p 6∈ Pψ ∪ Pθ atom)

Proof:
We here present abridged derivations, some of the obvious steps are omitted. We
start with the 2-axioms and inference rules.

(2-elim):

1. `2θ ↔ [>]2θ (R[>])

2. `[>]2θ → [> ∧ ρ]θ, (for arbitrary ρ ∈ L!
Kint2) ([!]2-elim)

3. `[> ∧ ρ]2θ → [ρ]θ, (for arbitrary ρ ∈ L!
Kint2) (` (> ∧ ρ)↔ ρ and ([!]RE))

4. `2θ → [ρ]θ, (for arbitrary ρ ∈ L!
Kint2) (1-3, CPL)

(2-intro): proof follows analogously to the above case by using R[>], and
[!]2-intro with ϕ := >.

(RE): The proof follows standardly by subformula induction on ϕ. Suppose
` ψ ↔ χ. For the base case ϕ := ψ, we have ϕ{ψ/χ} = χ. Therefore, the
equivalence ` ϕ ↔ ϕ{ψ/χ} boils down to ` ψ ↔ χ, hence follows from the
assumption. Now assume inductively that the statement holds for σ and θ. The
cases for the Booleans, K and int are standard, where the latter two follows from
the corresponding K-axioms and Necessitation rules. For [!], we use (K!), (Nec!),
([!]RE). For 2, it is sufficient to show that we can derive the K-axiom (K2) and
the Necessitation rule (Nec2) for 2. The derivation of (Nec2) easily follows from
(Nec!) and (2-intro). For (K2), we have

1. `(2(θ → γ) ∧2θ)→ ([p](θ → γ) ∧ [p]θ) (p 6∈ Pθ ∪ Pγ, (2-elim))

2. `([p](θ → γ) ∧ [p]θ)→ [p]γ (K!)

3. `(2(θ → γ) ∧2θ)→ [p]γ (1, 2, CPL)

4. `(2(θ → γ) ∧2θ)→ 2γ (p 6∈ Pθ ∪ Pγ, (2-intro))

(〈!〉): follows from the definition 〈ϕ〉ψ := ¬[ϕ]¬ψ and the axiom (R¬).
(R∧): follows from (K!) and (Nec!).
(R⊥): is an easy consequence of (R∧), (Rp) and ([!]RE)
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(Rint):

1. ` int(ψ)↔ ¬[ψ]⊥ (R⊥)

2. ` [ϕ]int(ψ)↔ [ϕ]¬[ψ]⊥ (1, ([!]RE))

3. ` [ϕ]¬[ψ]⊥ ↔ (int(ϕ)→ ¬[ϕ][ψ]⊥) (R¬)

4. ` (int(ϕ)→ ¬[ϕ][ψ]⊥)↔ (int(ϕ)→ int(〈ϕ〉ψ)) ((R[!]), (R⊥))

5. ` [ϕ]int(ψ)↔ (int(ϕ)→ int(〈ϕ〉ψ)) (2-4, CPL)

6. ` (int(ϕ)→ int(〈ϕ〉ψ))↔ (int(ϕ)→ int(int(ϕ) ∧ [ϕ]ψ)) ((〈!〉), (RE))

7. ` (int(ϕ)→ int(int(ϕ) ∧ [ϕ]ψ))↔ (int(ϕ)→ (int(ϕ) ∧ int([ϕ]ψ)))
(S4int, (RE))

8. ` (int(ϕ)→ (int(ϕ) ∧ int([ϕ]ψ)))↔ (int(ϕ)→ int([ϕ]ψ)) (CPL)

9. ` [ϕ]int(ψ)↔ (int(ϕ)→ int([ϕ]ψ)) (5-8, CPL)

(R[int]): follows by subformula induction on ψ by using the reduction axioms
and the fact that int is an S4 modality. For case ψ := 2χ, we use ([!]2-elim) and
([!]2-intro).

Base case ψ := p

1. `[int(ϕ)]p↔ (int(int(ϕ))→ p) (Rp)

2. `(int(int(ϕ))→ p)↔ (int(ϕ)→ p) (S4int)

3. `(int(ϕ)→ p)↔ [ϕ]p (Rp)

4. `[int(ϕ)]p↔ [ϕ]p (1-3, CPL)

The cases for ψ := ¬χ, ψ := χ ∧ σ, ψ := Kχ and ψ := int(χ) follow in a similar
way by using the corresponding reduction axioms.

Case ψ := [χ]σ

1. `[int(ϕ)][χ]α↔ [〈int(ϕ)〉χ]α (R[!])

2. `[〈int(ϕ)〉χ]α↔ [int(int(ϕ)) ∧ [int(ϕ)]χ]α (〈!〉)
3. `[int(int(ϕ)) ∧ [int(ϕ)]χ]α↔ [int(ϕ) ∧ [int(ϕ)]χ]α (S4int, (RE))

4. `[int(ϕ) ∧ [int(ϕ)]χ]α↔ [int(ϕ) ∧ [ϕ]χ]α (IH on χ, (RE))

5. `[int(ϕ) ∧ [ϕ]χ]α↔ [〈ϕ〉χ]α ((〈!〉), (RE))

6. `[〈ϕ〉χ]α↔ [ϕ][χ]α (R[!])

7. `[int(ϕ)][χ]α↔ [ϕ][χ]α (1-6, CPL)

Case ψ := 2χ

We here only show the direction ` [int(ϕ)]2χ → [ϕ]2χ; the other direction
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follows similarly.

1. `[int(ϕ)]2χ→ [int(ϕ) ∧ p]χ (p 6∈ Pϕ ∪ Pχ, ([!]2-elim))

2. `[int(ϕ) ∧ p]χ↔ [int(int(ϕ) ∧ p)]χ (IH)

3. `[int(int(ϕ) ∧ p)]χ↔ [int(ϕ ∧ p)]χ (S4int, (RE))

4. `[int(ϕ ∧ p)]χ↔ [ϕ ∧ p]χ (IH)

5. `[int(ϕ)]2χ→ [ϕ ∧ p]χ (1-4, CPL)

6. `[int(ϕ)]2χ→ [ϕ]2χ (p 6∈ Pint(ϕ) ∪ Pχ, ([!]2-intro))

(R[comp]):

1. `[int(ϕ) ∧ [ϕ]int(ψ)]χ↔ [int(ϕ) ∧ int[ϕ]ψ)]χ ((Rint), (RE))

2. `[int(ϕ) ∧ int[ϕ]ψ)]χ↔ [int(int(ϕ)) ∧ int[ϕ]ψ)]χ (S4int, (RE))

3. `[int(int(ϕ)) ∧ int[ϕ]ψ)]χ↔ [int(int(ϕ) ∧ [ϕ]ψ)]χ (S4int, (RE))

4. `[int(int(ϕ) ∧ [ϕ]ψ)]χ↔ [int(ϕ) ∧ [ϕ]ψ]χ (R[int])

5. `[int(ϕ) ∧ [ϕ]ψ]χ↔ [〈ϕ〉χ]α ((〈!〉), (RE))

6. `[〈ϕ〉χ]α↔ [ϕ][χ]α (R[!])

7. `[int(ϕ) ∧ [ϕ]int(ψ)]χ↔ [ϕ][χ]α (1-6, CPL)

(R[p]):

1. `[ϕ][p]ψ ↔ [〈ϕ〉p]ψ (R[!])

2. `[〈ϕ〉p]ψ ↔ [int(ϕ) ∧ [ϕ]p]ψ ((〈!〉), (RE))

3. `[int(ϕ) ∧ [ϕ]p]ψ ↔ [int(ϕ) ∧ p]ψ ((Rp), (RE))

4. `[int(ϕ) ∧ p]ψ ↔ [int(int(ϕ) ∧ p)]ψ (R[int])

5. `[int(int(ϕ) ∧ p)]ψ ↔ [int(ϕ ∧ p)]ψ (S4int and (RE))

6. `[int(ϕ ∧ p)]ψ ↔ [ϕ ∧ p]ψ (R[int])

7. `[ϕ][p]ψ ↔ [ϕ ∧ p]ψ (1-6, CPL)

2

7.1.3. Corollary. PALint is sound and complete with respect to the class of all
topo-models.

Proof:
Soundness of PALint is easy to see. The completeness proof follows from Theorem
6.2.4 and Proposition 7.1.2: since Bjorndahl’s axiomatization PAL+

int is complete
and our system PALint can prove all his additional reduction rules (R∧), (Rint)
and (R[comp]), our system PALint is complete as well. 2
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7.1.2 Soundness and Expressivity

In this section, we introduce a more general class of models for our full language
L!
Kint2, called pseudo-models. These are a special case of the (even more general)

subset models of Moss and Parikh (1992). Pseudo-models include all topo-models,
as well as other subset models, but they have the nice property that the interior
operator int(ϕ) can still be interpreted in the standard way. These structures,
though interesting enough in themselves, are for us only an auxiliary notion,
playing an important technical role in our completeness proof of DTLint. For now
though, we first prove the soundness of our full system DTLint with respect to
pseudo-models (and thus also with respect to topo-models), and then provide
several expressivity results concerning the above defined languages with respect
to both topo and pseudo-models.

The definition of pseudo-models requires a few auxiliary notions, such as a
more general class of models called pre-models.

7.1.4. Definition. [Lattice spaces and Pre-models] A subset space (X,O) is
called a lattice space if ∅, X ∈ O, and O is closed under finite intersections and
finite unions. A pre-model (X,O, V ) is a triple where (X,O) is a lattice space and
V : Prop→ P(X) is a valuation map.

Although a lattice space (X,O) is not necessarily a topological space, the
family O constitutes a topological basis over X. Therefore, every pre-model X =
(X,O, V ) has an associated topo-model Xτ = (X, τO, V ), where τO is the topology
generated by O (i.e., the smallest topology on X such that O ⊆ τO).

Given a pre-model X = (X,O, V ), we define the semantics for L!
Kint2 on pre-

models for all pairs of the form (x, Y ), where Y ⊆ X is an arbitrary subset such
that x ∈ Y . It is important to notice that, for a given evaluation pair (x, Y ) on
a pre-model, the set Y is not necessarily an element of O. The reason for this
adjustment will be explained in Remark 7.1.6, after we have defined the semantics
for L!

Kint2 on pre-models.

7.1.5. Definition. [Pre-model Semantics for L!
Kint2] Given a pre-model and a

pair of the form (x, Y ) such that x ∈ Y ⊆ X, truth of formulas in L!
Kint2 is defined

for the propositional variables and the Booleans as in Definition 6.1.2, and the
semantics for the modalities is given recursively as follows:

(x, Y ) |= Kϕ iff (∀y ∈ Y )((y, Y ) |= ϕ)
(x, Y ) |= int(ϕ) iff x ∈ Int([[ϕ]]Y )
(x, Y ) |= [ϕ]ψ iff (x, Y ) |= int(ϕ) implies (x, Int([[ϕ]]Y )) |= ψ
(x, Y ) |= 2ϕ iff (∀O ∈ O)(x ∈ O ⊆ Y implies (x,O) |= ϕ)

where Int is the interior operator of τO.
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7.1.6. Remark. Notice that the consequent of the semantic clause for [ϕ]ψ re-
quires (x, Int([[ϕ]]Y )) to be a “well-defined” evaluation pair. If we were to restrict
the evaluation pairs in a pre-model to the so-called epistemic scenarios of the
form (x, U) with x ∈ U ∈ O (as in the case for topo-models), we could not have
guaranteed that a pair of the form (x, Int([[ϕ]]U)) would be well-defined: since pre-
models are not necessarily based on topological spaces, the open set Int([[ϕ]]U)
might not be an element of O. Therefore, in order to render the above defined
semantics well-defined for the public announcement modalities [ϕ]ψ, and thus, for
the language L!

Kint2, we have generalized the satisfaction relation on pre-models
to any pair (x, Y ) with x ∈ Y ⊆ X.

Validity on pre-models on the other hand is defined by restricting to epistemic
scenarios (x, U) such that x ∈ U ∈ O, as in the case for the topo-models. More
precisely, we say that a formula ϕ is valid in a pre-model X , and write X |= ϕ, if
X , (x, U) |= ϕ for all epistemic scenarios (x, U) ∈ ES(X ). A formula ϕ is valid,
denoted by |= ϕ, if X |= ϕ for all X . We are now ready to define pseudo-models
for the language L!

Kint2.

7.1.7. Definition. [Pseudo-models for L!
Kint2] A pseudo-model X = (X,O, V )

is a pre-model such that [[int(ϕ)]]U ∈ O, for all ϕ ∈ L!
Kint2 and U ∈ O.

It is obvious that the class of pseudo-models includes all topo-models, and
that all formulas of L!

Kint2 that are valid on pseudo-models are also valid on
topo-models: this is because the satisfaction relation for epistemic scenarios in
any pseudo-model that happens to be a topo-model agrees with the topo-model
satisfaction relation.

Soundness of DTLint

We now continue with the soundness proofs for DTLint with respect to topo and
pseudo-models. Once we prove the soundness of DTLint for pseudo-models, its
soundness for topo-models follows from the facts that every topo-model is a
pseudo-model and that validity on both structures is defined with respect to
epistemic scenarios. It is not hard to see that all the axiom schemas in group (I)
and (II) in Table 7.1 are valid, and the inference rules (Nec!) and ([!]RE) pre-
serve validity on pseudo-models. In the following, we focus on the axiom schema
([!]2-elim) and the inference rule ([!]2-intro).

7.1.8. Lemma. Let X = (X,O, V ) and X ′ = (X,O, V ′) be two pseudo-models
and ϕ ∈ L!

Kint2 such that X and X ′ differ only in the valuation of some p 6∈ Pϕ.
Then, for all U ∈ O, we have [[ϕ]]UX = [[ϕ]]UX ′.

Proof:
The proof follows by subformula induction on ϕ. The base case ϕ := q follows
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from the fact that V (q) = V ′(q) for all q ∈ Pϕ. The cases for Booleans are
straightforward, we here only prove the cases for the modalities.

Case ϕ := Kψ: Note that PKψ = Pψ. Then, by induction hypothesis (IH),
we have that [[ψ]]UX = [[ψ]]UX ′ . Due to the semantics of K, we have two cases (1) if
U = [[ψ]]UX = [[ψ]]UX ′ , then [[Kψ]]UX = [[Kψ]]UX ′ = U , and (2) if [[ψ]]UX = [[ψ]]UX ′ 6= U ,
then we have [[Kψ]]UX = [[Kψ]]UX ′ = ∅.

Case ϕ := int(ψ): Note that Pint(ψ) = Pψ. By the semantics of int, we have
[[int(ψ)]]UX = Int([[ψ]]UX ). Since X and X ′ generate the same topology τO (they are
based on the same lattice space), by IH, we obtain Int([[ψ]]UX ) = Int([[ψ]]UX ′), i.e.,
[[int(ψ)]]UX = [[int(ψ)]]UX ′ .

Case ϕ := [χ]ψ: Note that P[χ]ψ = Pχ ∪ Pψ. Suppose x ∈ [[[χ]ψ]]UX and
x ∈ Int([[χ]]UX ′). By IH, we have [[χ]]UX ′ = [[χ]]UX . Therefore, since X and X ′ generate
the same topology τO, we obtain Int([[χ]]UX ′) = Int([[χ]]UX ). Hence, since x ∈ [[[χ]ψ]]UX
and x ∈ Int([[χ]]UX ) ⊆ U , we have X , (x, Int([[χ]]UX )) |= ψ, i.e., x ∈ [[ψ]]

Int([[χ]]UX )

X .

Similarly, by IH, we then obtain x ∈ [[ψ]]
Int([[χ]]UX′ )

X ′ and therefore, x ∈ [[[χ]ψ]]UX ′ . The
other direction follows similarly.

Case ϕ := 2ψ: Suppose x ∈ [[2ψ]]UX . This means, by the semantics of 2, that
for all O ∈ O with x ∈ O ⊆ U we have that X , (x,O) |= ψ, i.e., that x ∈ [[ψ]]OX .
Therefore, by IH and the fact that P2ψ = Pψ, we obtain x ∈ [[ψ]]OX ′ . Since X
and X ′ carry the same collection O, we conclude that x ∈ [[2ψ]]UX ′ . The opposite
direction follows similarly. 2

7.1.9. Theorem. DTLint is sound with respect to the class of all pseudo-models
(and hence also with respect to the class of all topo-models).

Proof:
The soundness proof follows by a simple validity check. We here only prove that
([!]2-elim) is valid and ([!]2-intro) preserves validity on pseudo-models.

([!]2-elim): Let X = (X,O, V ) be a pseudo-model and (x, U) ∈ ES(X ) such
that (x, U) |= [θ]2ϕ. This means that if x ∈ Int([[θ]]U) then for all O ∈ O with
x ∈ O ⊆ Int([[θ]]U), we have (x,O) |= ϕ. Now let ρ ∈ L!

Kint2 and suppose
x ∈ Int([[θ ∧ ρ]]U). Since Int([[θ ∧ ρ]]U) = Int([[θ]]U) ∩ Int([[ρ]]U) ⊆ Int([[θ]]U), we
obtain x ∈ Int([[θ]]U). Thus, by the first assumption that (x,O) |= ϕ for all O ∈ O
such that x ∈ O ⊆ Int([[θ]]U), we in particular obtain (x, Int([[θ ∧ ρ]]U)) |= ϕ.
Hence, (x, U) |= [(θ ∧ ρ)]ϕ.

([!]2-intro): Suppose, toward a contradiction, that |= ψ → [θ ∧ p]ϕ and
6|= ψ → [θ]2ϕ where p 6∈ Pψ ∪ Pθ ∪ Pϕ. The latter means that there is a
pseudo-model X = (X,O, V ) and an epistemic scenario (x, U) ∈ ES(X ) such
that X , (x, U) |= ψ but X , (x, U) 6|= [θ]2ϕ, i.e., X , (x, U) |= 〈θ〉3¬ϕ. There-
fore, applying the semantics, we obtain x ∈ Int([[θ]]UX ) and there exists U0 ⊆
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Int([[θ]]UX ) such that x ∈ U0 and X , (x, U0) |= ¬ϕ. Now, consider the model
X ′ = (X,O, V ′) such that V ′(p) = U0 and V ′(q) = V (q) for all q ∈ prop
with p 6= q. Then, by Lemma 7.1.8, we have that [[ψ]]UX = [[ψ]]UX ′ , [[θ]]UX = [[θ]]UX ′ ,
and [[¬ϕ]]U0

X = [[¬ϕ]]U0

X ′ . Therefore, X ′, (x, U) |= ψ and X ′, (x, U0) |= ¬ϕ. It is
easy to see that Int([[θ ∧ p]]UX ′) = Int([[θ]]UX ′) ∩ Int([[p]]UX ′) = V ′(p) = U0 (since
Int([[p]]UX ′) = U0 ⊆ Int([[θ]]UX ) = Int([[θ]]UX ′)). We therefore obtain (1) x ∈ Int([[θ ∧
p]]UX ′) and (2) X ′, (x, Int([[θ∧ p]]UX ′)) |= ¬ϕ. Hence, by the semantics of [!], we have
X ′, (x, U) |= 〈θ ∧ p〉¬ϕ. Then, since X , (x, U) |= ψ and [[ψ]]UX = [[ψ]]UX ′ , we obtain
X ′, (x, U) |= ψ ∧ 〈θ ∧ p〉¬ϕ. Therefore, X ′, (x, U) 6|= ψ → [θ ∧ p]ϕ, contradicting
the validity of ψ → [θ ∧ p]ϕ. 2

Expressivity on pseudo and topo-models

In this part, we establish several expressivity results with respect to both pseudo
and topo-models, concerning our full language L!

Kint2 and its important fragments
L!
Kint,LKint and LK2 studied in Chapter 6. The reason to consider the more

general case of pseudo-models (not only topo-models) is that the co-expressivity of
the languages LKint and L!

Kint2 for pseudo-models will be used in the completeness
proof of DTLint (Corollary 7.1.37).

We first show the co-expressivity of L!
Kint and LKint with respect to pseudo-

models (Proposition 7.1.11). Its proof is standard, using the reduction laws to
push dynamic modalities inside the formulas and then eliminating them. This
requires an inductive proof on a non-standard complexity measure on formulas
in L!

Kint which induces a well-founded strict partial order on L!
Kint satisfying the

properties given in Lemma 7.1.10. Such a complexity measure is defined by Bjorn-
dahl (2016) to prove the co-expressivity of L!

Kint and LKint for topo-models (see
Bjorndahl, 2016, Proposition 5), as well as for the completeness result of PAL+

int

(see Bjorndahl, 2016, Corollary 1). Bjorndahl’s simple complexity measure on
L!
Kint would in fact suffice for our expressivity result on pseudo-models for the

languages LKint and L!
Kint. However, in order to prove the completeness of DTLint

(in Section 7.1.3), we need a complexity measure on the formulas of the extended
language L!

Kint2 taking into account the effort modality 2 as well. A similar com-
plexity measure will also be needed in Lemma 8.3.16 in Chapter 8. To this end, we
define a more elaborate complexity measure on L!

Kint2 that we can use throughout
this and the next chapter. The definition of this complexity measure is given in
Appendix A.1.

7.1.10. Lemma. There exists a well-founded strict partial order <S on formulas
of L!

Kint such that

1. ϕ ∈ Sub(ψ) implies ϕ <S ψ ,

2. int(ϕ)→ p <S [ϕ]p,

3. int(ϕ)→ ¬[ϕ]ψ <S [ϕ]¬ψ,

4. [ϕ]ψ ∧ [ϕ]χ <S [ϕ](ψ ∧ χ),
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5. int(ϕ)→ int([ϕ]ψ) <S [ϕ]int(ψ),

6. int(ϕ)→ K[ϕ]ψ <S [ϕ]Kψ,

7. [〈ϕ〉ψ]χ <S [ϕ][ψ]χ.

Proof:
See Lemmas A.1.4 and A.1.5. 2

7.1.11. Proposition. L!
Kint and LKint are co-expressive with respect to pseudo-

models. In other words, for every formula ϕ ∈ L!
Kint there exists a formula ψ ∈

LKint such that ϕ↔ ψ is valid in all pseudo-models.

Proof:
The proof follows by <S-induction on ϕ. The base case ϕ := p follows from
the fact that the languages L!

Kint and LKint are defined based on the same set of
propositional variables prop. The cases for the Booleans ϕ := ¬ψ, ϕ := ψ ∧ χ,
and the cases for the modalities ϕ := Kψ and ϕ := int(ψ) follow standardly using
Lemma 7.1.10-(1). We here only prove the cases for ϕ := Kψ, and ϕ := [ψ]χ:

Case ϕ := Kψ: Since ψ <S Kψ (Lemma 7.1.10-(1)), by induction hypothesis,
there exists a ψ′ ∈ LKint such that ψ ↔ ψ′ is valid in all pseudo-models. Then, by
the soundness of (RE) (which follows from Proposition 7.1.2 and Theorem 7.1.9),
we obtain |= Kψ ↔ Kψ′, where Kψ′ ∈ LKint.

Case ϕ := [ψ]χ: Theorem 7.1.9 implies that the reduction laws given in Table
7.1 and Proposition 7.1.2 for the language L!

Kint are valid in all pseudo-models.
Therefore, applying the appropriate reduction (e.g., if χ := p apply (Rp), if
χ := ¬σ apply (R¬) etc.) we obtain a formula γ ∈ L!

Kint such that [ψ]χ ↔ γ
is valid in all pseudo-models. By Lemma 7.1.10.(2-7), we know that γ <S [ψ]χ.
Hence, by induction hypothesis, there exists γ′ ∈ LKint such that |= γ ↔ γ′.
As γ is semantically equivalent to [ψ]χ, we conclude that |= [ψ]χ ↔ γ′, where
γ′ ∈ LKint. 2

Next, we prove that L!
Kint2 and LKint are equally expressive with respect to

pseudo-models. This result will also be useful in the completeness proof of DTLint
for topo-models (Corollary 7.1.38). In proving the co-expressivity of L!

Kint2 and
LKint, we follow a similar strategy as in (Balbiani et al., 2008; van Ditmarsch
et al., 2014). Our proof follows the same steps as in the proof of co-expressivity
between LKint and L!

Kint� for topo-models (see van Ditmarsch et al., 2014, Theo-
rem 19), where L!

Kint� denotes the extension of L!
Kint with the so-called arbitrary

announcement modality �. We will study the arbitrary announcement modality
�ϕ and its connection to the effort modality 2ϕ in Section 7.2.

The proof of the co-expressivity result between L!
Kint2 and LKint (as well as

the co-expressivity of LKint and L!
Kint�) relies on the fact that for every formula

ϕ in LKint, there exists a ψ ∈ LKint in “normal form” such that ϕ and ψ are
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semantically equivalent in pseudo(topo)-models. Normal forms for formulas in
the language LKint are defined similarly to the normal forms of the basic modal
language in such a way that the modality int can occur in the scope of K (see
Meyer and van der Hoek, 1995, for normal forms for the basic epistemic language).

7.1.12. Definition. [Normal form for the language LKint] We say a formula
ψ ∈ LKint is in normal form if it is a disjunction of conjunctions of the form

δ := α ∧Kβ ∧ K̂γ1 ∧ · · · ∧ K̂γn

where α, β, γi ∈ Lint for all 1 ≤ i ≤ n.

Our normal forms for the language LKint are similar to the so-called disjunctive
normal forms introduced in (Georgatos, 1993, Definition 34) for the language
LK2. More precisely, given a formula in LKint in normal form, we obtain a formula
in LK2 in disjunctive normal form in the sense of Georgatos (1993) by replacing
every occurrence of the modality int by 3K.

7.1.13. Lemma (Normal From Lemma). For every formula ϕ ∈ LKint there
is a formula ψ ∈ LKint in normal form such that ϕ ↔ ψ is valid in all pseudo-
models, therefore, also valid in all topo-models.

Proof:
The proof is given in Appendix A.2. 2

Having proven the Normal Form Lemma—the first crucial step toward the
desired expressivity results—we now proceed with the proof of Theorem 7.1.17.
For this, we need a few more validities in which bi-persistent formulas on pseudo-
models in the language L!

Kint2 play an important role. Bi-persistent formulas in
L!
Kint2 for pseudo-models are defined similarly as in Definition 6.2.8 with respect

to epistemic scenarios. Informally speaking, these are the formulas of L!
Kint2 whose

truth value on pseudo-models depends only on the actual state, not on the epis-
temic range.

7.1.14. Lemma. Every formula of Lint is bi-persistent on pseudo-models.

Proof:
The proof is similar to the proof of Proposition 6.2.9, by subformula induction on
ϕ: cases for the propositional variables and the Boolean connectives are elemen-
tary. So assume inductively that the result holds for ψ; we must show that it holds
also for ϕ := int(ψ). Let (X,O, V ) be a pseudo-model and (x,O), (x, U) ∈ ES(X ).
We then have

(x, U) |= int(ψ) iff x ∈ Int([[ψ]]U)

iff (∃U ′ ∈ O)(x ∈ U ′ ⊆ [[ψ]]U) (since O is a basis for τO)
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Now, consider the open set U ′ ∩ O. It is easy to see that x ∈ U ′ ∩ O. So,
we only need to show that U ′ ∩ O ⊆ [[ψ]]O. Let y ∈ U ′ ∩ O. Since y ∈ U ′, we
have that (y, U) |= ψ (by U ′ ⊆ [[ψ]]U). Then, by induction hypothesis, we obtain
(y,O) |= ψ, i.e., y ∈ [[ψ]]O. We therefore have that x ∈ U ′ ∩ O ⊆ [[ψ]]O, i.e., that
x ∈ Int([[ψ]]O) (since U ′ ∩ O ∈ O ⊆ τO). Therefore, (x,O) |= int(ψ). The other
direction follows similarly. 2

7.1.15. Proposition. For any ϕ, ϕi ∈ Lint, the following is valid in all pseudo-
models:

3(ϕ ∧Kϕ0 ∧
∧

1≤i≤n

K̂ϕi)↔ (ϕ ∧ int(ϕ0) ∧
∧

1≤i≤n

K̂(int(ϕ0) ∧ ϕi)) (EL2
n )

Proof:
The proof follows similarly to the proof of (van Ditmarsch et al., 2014, Proposition
18). Let X = (X,O, V ) be a pseudo-model and (x, U) ∈ ES(X ). It is important
to notice that every ϕ, ϕi ∈ Lint is bi-persistent, we will use this fact several times.

We prove the statement only for n = 1.
(⇒) Suppose (x, U) |= 3(ϕ ∧Kϕ0 ∧ K̂ϕ1). By the semantics, we have

(x, U) |= 3(ϕ∧Kϕ0∧K̂ϕ1) iff (∃V ∈ O)(x ∈ V ⊆ U and (x, V ) |= ϕ∧Kϕ0∧K̂ϕ1)

We therefore have (1) (x, V ) |= ϕ, (2) (x, V ) |= Kϕ0, and (3) (x, V ) |= K̂ϕ1.
We want to show that (x, U) |= ϕ∧ int(ϕ0)∧K̂(int(ϕ0)∧ϕ1). Now (1) and Lemma
7.1.14 imply (x, U) |= ϕ; and (2) implies that (x, V ) |= int(ϕ0). Then, by Lemma
7.1.14, we have (x, U) |= int(ϕ0) (since int(ϕ0) is bi-persistent).

In order to show (x, U) |= K̂(int(ϕ0) ∧ ϕ1), we need to prove that there is a
y ∈ U such that (y, U) |= int(ϕ0)∧ϕ1. Item (3) implies that there is a z ∈ V such
that (z, V ) |= ϕ1. Then, by Lemma 7.1.14, we have (z, U) |= ϕ1. Moreover, (2)
implies (z, V ) |= Kϕ0, and thus (z, V ) |= int(ϕ0). Then again by Lemma 7.1.14,
(z, U) |= int(ϕ0). So, (z, U) |= int(ϕ0) ∧ ϕ1, and thus (x, U) |= K̂(int(ϕ0) ∧ ϕ1).

(⇐) Suppose (x, U) |= ϕ ∧ int(ϕ0) ∧ K̂(int(ϕ0) ∧ ϕ1). We have:

(x, U) |= ϕ ∧ int(ϕ0) ∧ K̂(int(ϕ0) ∧ ϕ1)

iff (x, U) |= ϕ and (x, U) |= int(ϕ0) and ∃y ∈ U with (y, U) |= int(ϕ0) ∧ ϕ1

iff (x, U) |= ϕ and (x, U) |= int(ϕ0) and ∃y ∈ Int([[ϕ0]]U) with (y, U) |= ϕ1

We want to show (x, U) |= 3(ϕ ∧Kϕ0 ∧ K̂ϕ1), i.e., we want to prove that there
is a V ∈ O with x ∈ V ⊆ U such that (x, V ) |= ϕ ∧Kϕ0 ∧ K̂ϕ1.

We now claim that for V := Int([[ϕ0]]U), we obtain the desired result. It is
easy to see that x ∈ Int([[ϕ0]]U) ⊆ U (since (x, U) |= int(ϕ0)). And, since X is
a pseudo-model, it is guaranteed that Int([[ϕ0]]U) ∈ O. We want to show that
(x, Int([[ϕ0]]U)) |= ϕ∧Kϕ0∧ K̂ϕ1. Since (x, U) |= ϕ, by Lemma 7.1.14, we obtain
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(x, Int([[ϕ0]]U)) |= ϕ. Since Int([[ϕ0]]U)) ⊆ [[ϕ0]]U , we have that (z, U) |= ϕ0 for
all z ∈ Int([[ϕ0]]U). Therefore, as ϕ0 is bi-persistent (Lemma 7.1.14), we obtain
(z, Int([[ϕ0]]U) |= ϕ0 for all z ∈ Int([[ϕ0]]U), thus, (x, Int([[ϕ0]]U)) |= Kϕ0. By
the assumption, we have ∃y ∈ Int([[ϕ0]]U) such that (y, U) |= ϕ1, and thus, by
Lemma 7.1.14, we obtain (y, Int([[ϕ0]]U)) |= ϕ1. Therefore, by the semantics, we
have (x, Int([[ϕ0]]U)) |= K̂ϕ1. 2

The proof of the following lemma is straightforward, and follows directly from
the semantics for 3 and ∨.

7.1.16. Lemma. For all ϕ, ψ ∈ L!
Kint2, the formula 3(ϕ ∨ ψ) ↔ (3ϕ ∨ 3ψ) is

valid in all pseudo-models.

We now have sufficient machinery to show that L!
Kint2 and LKint are equally

expressive with respect to pseudo-models.

7.1.17. Theorem. L!
Kint2 and LKint are co-expressive with respect to pseudo-

models.

Proof:
We need to prove that for all ϕ ∈ L!

Kint2 there exists θ ∈ LKint such that ϕ↔ θ is
valid in all pseudo-models. The proof follows by subformula induction on ϕ. The
base case ϕ := p follows from the fact the languages LKint and L!

Kint2 are defined
based on the same set of propositional variables prop. The cases for the Booleans
ϕ := ¬ψ, ϕ := ψ ∧ χ, and the cases for the modalities ϕ := Kψ and ϕ := int(ψ)
follow standardly. We here only show the cases ϕ := [ψ]χ and ϕ := 3ψ.

Case ϕ := [ψ]χ: Since ψ and χ are subformulas of ϕ, by induction hypothesis,
there exists ψ′, χ′ ∈ LKint such that (a) |= ψ ↔ ψ′ and (b) |= χ↔ χ′. Then, by (a)
and the soundness of ([!]RE), we obtain |= [ψ]χ↔ [ψ′]χ. Moreover, by (b) and the
soundness of (RE), we have |= [ψ′]χ↔ [ψ′]χ′. Therefore, |= [ψ]χ↔ [ψ′]χ′. Notice
that [ψ′]χ′ ∈ L!

Kint\LKint. Then, by Proposition 7.1.11, there exists γ ∈ LKint such
that |= [ψ′]χ′ ↔ γ. We then conclude that |= [ψ]χ↔ γ, i.e., [ψ]χ is semantically
equivalent to γ ∈ LKint with respect to pseudo-models.

Case ϕ := 3ψ: By induction hypothesis, there exists ψ′ ∈ LKint such that
|= ψ ↔ ψ′. Then, by Lemma 7.1.13, there exists a γ ∈ LKint in normal form with
|= ψ′ ↔ γ, hence, we also have |= ψ ↔ γ. Therefore, by the soundness of (RE), we
obtain |= 3ψ ↔ 3γ. By Lemma 7.1.16, we can distribute 3 over the disjunction
γ. Since γ is in normal form, each disjunct of the resulting formula is of the form
3(ϕ∧Kϕ0 ∧ K̂ϕ1 ∧ K̂ϕ2 ∧ · · · ∧ K̂ϕn) where ϕ, ϕi ∈ Lint for all 0 ≤ i ≤ n. Then,
by Proposition 7.1.15, we can reduce these formulas to semantically equivalent
formulas of the form ϕ∧ int(ϕ0)∧ K̂(int(ϕ0)∧ϕ1)∧ · · · ∧ K̂(int(ϕ0)∧ϕn), hence,
obtain a formula in LKint that is semantically equivalent to 3ψ with respect to
pseudo-models. 2
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Theorem 7.1.17 will be used in the completeness proof of DTLint for topo-
models (Corollary 7.1.38). Concerning expressivity of L!

Kint2, we also obtain the
following result with respect to topo-models.

7.1.18. Corollary. L!
Kint2 and LKint are co-expressive with respect to topo-

models.

Proof:
This proof proceeds similarly to the proof of Theorem 7.1.17. Since every topo-
model is a pseudo-model, Proposition 7.1.15 holds for topo-models as well. More-
over, recall that LKint and L!

Kint are equally expressive with respect to topo-models
(see Theorem 6.2.5). Therefore, we can argue along the same lines as in Theo-
rem 7.1.17 and prove that for every formula ϕ ∈ L!

Kint2 there exists a formula
ψ ∈ LKint such that ϕ and ψ are semantically equivalent with respect to topo-
models. 2

Since LK2 ⊆ L!
Kint2, Corollary 7.1.18 also establishes that LKint is at least as

expressive as LK2 on topo-models. As shown in the next theorem, LKint and LK2

are in fact equally expressive for topo-models.

7.1.19. Theorem. LK2 and LKint are also co-expressive with respect to topo-
models.

Proof:
Corollary 7.1.18 shows that for every ϕ ∈ LK2 there is ψ ∈ LKint such that ϕ↔ ψ
is valid in all topo-models. We only need to show that for every χ ∈ LKint there is
θ ∈ LK2 such that |= χ↔ θ. Thus, suppose χ ∈ LKint. By Lemma 7.1.13, there is
χ′ ∈ LKint in normal form such that |= χ↔ χ′. As χ′ is in normal forms, we have
χ′ := δ1 ∨ · · · ∨ δm where each δi := α∧Kβ ∧ K̂γ1 ∧ · · · ∧ K̂γn with α, β, γi ∈ Lint

for all 1 ≤ i ≤ n. Now take an arbitrary δi = α ∧ Kβ ∧ K̂γ1 ∧ · · · ∧ K̂γn. By
Proposition 6.2.10 and the soundness of (RE), we have |= δi ↔ α∗ ∧ K(β∗) ∧
K̂(γ∗1) ∧ · · · ∧ K̂(γ∗n) where ∗ : Lint → LK2 is as given in Definition 6.2.7. Notice
that α∗ ∧ K(β∗) ∧ K̂(γ∗1) ∧ · · · ∧ K̂(γ∗n) ∈ LK2. Therefore, each canonical con-
junction δi of χ′ is semantically equivalent to a formula in LK2 with respect to
topo-models. Let δ∗i denote the formula in LK2 that is semantically equivalent
to δi (this is abuse of notation since ∗ is not defined for K). Hence, we obtain
(again by the soundness of (RE)) that |= χ′ ↔ δ∗1 ∨ · · · ∨ δ∗n. As |= χ ↔ χ′, we
conclude |= χ↔ δ∗1 ∨ · · · ∨ δ∗n, where δ∗1 ∨ · · · ∨ δ∗n ∈ LK2. 2

7.1.20. Corollary. L!
Kint2,L!

Kint, LKint and LK2 are all co-expressive with re-
spect to topo-models.
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Proof:
The proof follows easily from Corollary 7.1.18 and Theorem 7.1.19, since LKint ⊆
L!
Kint ⊆ L!

Kint2. 2

Moreover, recall that int can be defined by the public announcement modalities
as int(ϕ) := 〈ϕ〉>, hence, we also obtain that L!

K and L!
K2 are equally expressive

as their extensions with the modality int. These results are summarized in Figure
7.1 below.

LK

LK2

LKint

Lint

L!
Kint L!

K

L!
Kint2 L!

K2

Thm. 6.2.6

Thm. 7.1.19

Thm. 6.2.5 Thm. 6.2.5
Prop. 6.2.11

Thm. 6.2.6

Cor. 7.1.20

Cor. 7.1.20

int(ϕ) := 〈ϕ〉>

Figure 7.1: Expressivity diagram-updated with 2 (Arrows point to the more
expressive languages, and reflexive and transitive arrows are omitted. Arrows
without tags can be obtained as easy consequences from the others.)

As a direct corollary of the above expressivity results, we obtain decidabil-
ity and the finite model property for the dynamic logic of topo-models for the
language L!

Kint2 as well as for its fragments.

7.1.21. Corollary. The logic of topo-models for the language L!
Kint2 is decid-

able and has the finite model property (and thus all its fragments, including in
particular TopoLogic, have these properties).

Proof:
This follows from Corollary 7.1.20, together with the fact that LKint is eas-
ily shown to have these properties by a standard filtration argument (see e.g.,
Goranko and Passy, 1992, and Shehtman, 1999). 2
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7.1.3 Completeness of DTLint

In this section we prove the completeness of the proof system DTLint with re-
spect to (both pseudo and) topo-models. The plan of our proof is as follows.
We first prove completeness of DTLint with respect to a canonical pseudo-model,
consisting of maximally consistent witnessed theories. Roughly speaking, a max-
imally consistent theory is witnessed if every 3ϕ occurring in every “existential
context” in the theory is “witnessed” by some atomic formula p meaning that
〈p〉ϕ occurs in the same existential context in the theory. Next, we use the co-
expressivity of L!

Kint2 and LKint, as well as the fact that LKint cannot distinguish
between a pseudo-model and its associated topo-model, to show that DTLint is
complete with respect to the canonical topo-model (associated with the canonical
pseudo-model).

The appropriate notion of “existential context” is represented by possibility
forms (dual of necessity forms), in the following sense.

7.1.22. Definition. [Necessity and possibility forms for L!
Kint2] For any finite

string s ∈ ({ϕ→ | ϕ ∈ L!
Kint2} ∪ {K} ∪ {ψ | ψ ∈ L!

Kint2})∗ = NF , we define
pseudo-modalities [s] and 〈s〉. These pseudo-modalities are functions mapping any
formula ϕ ∈ L!

Kint2 to another formula [s]ϕ ∈ L!
Kint2 (necessity form), respectively

〈s〉ϕ ∈ L!
Kint2 (possibility form). The necessity forms are defined recursively as

[ε]ϕ = ϕ, [ϕ→, s]ϕ = ϕ→ [s]ϕ, [K, s]ϕ = K[s]ϕ, [ψ, s]ϕ = [ψ][s]ϕ, where ε is the
empty string. For possibility forms, we set 〈s〉ϕ := ¬[s]¬ϕ.

7.1.23. Lemma. For every necessity form [s], there exist formulas θ, ψ ∈ L!
Kint2

such that for all ϕ ∈ L!
Kint2, we have

` [s]ϕ iff ` ψ → [θ]ϕ.

Proof:
The proof is as in (Balbiani et al., 2008, Lemma 4.8). For s := ε, take ψ := >
and θ := >. It then follows by the axiom (R[>]). Otherwise, by the definition of
a necessity form, [s]ϕ is a formula of L!

Kint2 such that ϕ is entirely on the right
(or at the bottom), and is successively bounded by finitely many implications
χ →, knowledge modalities K, and announcements [χ′], in arbitrary order. By
rearranging the order of these symbols in a provably equivalent way, we can ob-
tain the required form ` ψ → [θ]ϕ. We start with the public announcement
modalities. By using the reduction laws of DTLint, we can push all the public
announcement modalities binding the components χ → and K of the necessity
form to the top of ϕ. To push them pass K, we use (RK), and for χ → we use
(R¬) and (R∧). We then obtain a formula that is provably equivalent to [s]ϕ,
but in which all public announcement modalities occurring in s are stacked on
top of ϕ. By using the axiom (R[!]), we can write all these public announcement
modalities as one announcement. We therefore obtain a formula that is provably
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equivalent to [s]ϕ of the following shape: a formula of the form [θ]ϕ is entirely
on the right, and is successively bounded by finitely many implications χ→, and
knowledge modalities K, in arbitrary order. This is still not in the required form
since we might have [θ]ϕ at the bottom preceded by a knowledge modality, i.e.,
the resulting formula might have the shape (· · · → K[θ]ϕ). However, since K is
of S5-type, we know that ` η → Kσ iff ` K̂η → σ. Therefore, we can push every
occurrence of the modality K bounding the consequent of an implication to the
antecedent as the epistemic possibility modality K̂. This way, we obtain a theo-
rem of the form χ1 → (χ2 → . . . (χn → [θ]ϕ)). Then, by classical propositional
logic, we know ` χ1 → (χ2 → . . . (χn → [θ]ϕ)) ↔ (

∧
1≤i≤n χi → [θ]ϕ), thus, we

have ` ψ → [θ]ϕ (where ψ :=
∧

1≤i≤n χi). Since every axiom used in the above
argument is an equivalence, we also have ` ψ → [θ]ϕ implies ` [s]ϕ. 2

7.1.24. Lemma. The following rule is admissible in DTLint:

if ` [s][p]ϕ then ` [s]2ϕ, where p 6∈ Ps ∪ Pϕ.

Proof:
Suppose ` [s][p]ϕ. Then, by Lemma 7.1.23, there exist θ, ψ ∈ L!

Kint2 such that
` ψ → [θ][p]ϕ. By the auxiliary reduction law (R[p]) in Proposition 7.1.2, we get
` ψ → [θ ∧ p]ϕ. By the construction of the formulas ψ and θ, we know that
Pψ ∪ Pθ ⊆ Ps, and so p 6∈ Pψ ∪ Pθ ∪ Pϕ. Therefore, by ([!]2-intro)), we have
` ψ → [θ]2ϕ. Applying again Lemma 7.1.23, we obtain ` [s]2ϕ. 2

7.1.25. Definition. For every countable set of propositional variables P, let
L!
Kint2(P) be the language of DTLint based only on the propositional variables in

P. Similarly, let NFP denote the corresponding set of strings defined based on
L!
Kint2(P).

• A P-theory is a consistent set of formulas in L!
Kint2(P), where “consistent”

means consistent with respect to the axiomatization of DTLint formulated
for L!

Kint2(P).

• A maximal P-theory is a P-theory Γ that is maximal with respect to ⊆
among all P-theories; in other words, Γ cannot be extended to another
P-theory.

• A P-witnessed theory is a P-theory Γ such that, for every s ∈ NFP and
ϕ ∈ L!

Kint2(P), if 〈s〉3ϕ is consistent with Γ then there is p ∈ P such
that 〈s〉〈p〉ϕ is consistent with Γ (i.e., if Γ ` [s][p]¬ϕ for all p ∈ P, then
Γ ` [s]2¬ϕ).

• A maximal P-witnessed theory Γ is a P-witnessed theory that is not a proper
subset of any P-witnessed theory.
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7.1.26. Lemma. For every maximal P-witnessed theory Γ, and every formula
ϕ, ψ ∈ L!

Kint2(P),

1. either ϕ ∈ Γ or ¬ϕ ∈ Γ,

2. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ,

3. ϕ ∈ Γ and ϕ→ ψ ∈ Γ implies ψ ∈ Γ.

7.1.27. Lemma. For every Γ ⊆ L!
Kint2(P), if Γ is a P-theory and Γ 6` ¬ϕ for

some ϕ ∈ L!
Kint2(P), then Γ ∪ {ϕ} is a P-theory. Moreover, if Γ is P-witnessed,

then Γ ∪ {ϕ} is also P-witnessed.

Proof:
Let Γ ⊆ L!

Kint2(P) be a P-theory and ϕ ∈ L!
Kint2(P) such that Γ 6` ¬ϕ. It is

then easy to see that Γ∪{ϕ} is consistent, and thus, is a P-theory. Now suppose
that Γ is P-witnessed but Γ ∪ {ϕ} is not P-witnessed. By the previous state-
ment, we know that Γ ∪ {ϕ} consistent. Therefore, the latter means that there
is s ∈ NFP and ψ ∈ L!

Kint2(P) such that Γ ∪ {ϕ} is consistent with 〈s〉3ψ but
Γ ∪ {ϕ} ` ¬〈s〉〈p〉ψ for all p ∈ P. This implies that Γ ∪ {ϕ} ` [s][p]¬ψ for all
p ∈ P. Therefore, Γ ` ϕ → [s][p]¬ψ for all p ∈ P. This means Γ ` [ϕ→, s][p]¬ψ
for all p ∈ P (since ϕ → [s][p]¬ψ := [ϕ→, s][p]¬ψ). Hence, as Γ is P-witnessed
and [ϕ→, s] is a necessity form, we obtain Γ ` [ϕ→, s]2¬ψ. By unraveling the
necessity form [ϕ→, s], we get Γ ` ϕ → [s]2¬ψ, thus, Γ ∪ {ϕ} ` [s]2¬ψ, i.e.,
Γ ∪ {ϕ} ` ¬〈s〉3ψ, contradicting the assumption that Γ ∪ {ϕ} is consistent with
〈s〉3ψ. 2

7.1.28. Lemma. If {Γi}i∈N is an increasing chain of P-theories such that Γi ⊆
Γi+1, then

⋃
n∈N Γn is a P-theory.

Proof:
The proof is standard. 2

7.1.29. Lemma (Lindenbaum’s Lemma). Every P-witnessed theory Γ can be
extended to a maximal P-witnessed theory TΓ.

Proof:
The proof proceeds by constructing an increasing chain Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γn ⊆
. . . of P-witnessed theories, where Γ0 := Γ, and each Γi is recursively defined.
Since we have to guarantee that each Γi is P-witnessed, we follow a two-fold
construction, where Γ0 = Γ+

0 := Γ. Let γ0, γ1, . . . , γn, . . . be an enumeration of
all pairs of the form γi = (si, ϕi) consisting of any necessity form si ∈ NFP and
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any formula ϕi ∈ L!
Kint2(P). Let (sn, ϕn) be the nth pair in the enumeration. We

then set

Γ+
n =

{
Γn ∪ {〈sn〉ϕn} if Γn 0 ¬ 〈sn〉ϕn
Γn otherwise

Note that the empty string ε is in NFP, and for every ψ ∈ L!
Kint2(P) we have

〈ε〉ψ := ψ by the definition of possibility forms. Therefore, the above enumeration
of pairs includes every formula ψ of L!

Kint2(P) in the form of its corresponding
pair (ε, ψ). By Lemma 7.1.27, each Γ+

n is P-witnessed. Then, if ϕn is of the form
ϕn := 3θ for some θ ∈ L!

Kint2(P), there exists a p ∈ P such that Γ+
n is consistent

with 〈sn〉〈p〉θ (since Γ+
n is P-witnessed). We then define

Γn+1 =


Γ+
n if Γn 0 ¬〈sn〉ϕn and ϕn is not of the form 3θ

Γ+
n ∪ {〈sn〉〈p〉θ} if Γn 0 ¬〈sn〉ϕn and ϕn := 3θ for some θ∈L!

Kint2(P)
Γn otherwise

where p ∈ P such that Γ+
n is consistent with 〈sn〉〈p〉θ. Again by Lemma 7.1.27, it

is guaranteed that each Γn is P-witnessed. Now consider the union TΓ =
⋃
n∈N Γn.

By Lemma 7.1.28, we know that TΓ is a P-theory. To show that TΓ is P-witnessed,
let s ∈ NFP and ψ ∈ L!

Kint2(P) and suppose 〈s〉3ψ is consistent with TΓ. The pair
(s,3ψ) appears in the above enumeration of all pairs, thus (s,3ψ) := (sm, ϕm)
for some m ∈ N. Hence, 〈s〉3ψ := 〈sm〉ϕm. Then, since 〈s〉3ψ is consistent with
TΓ and Γm ⊆ TΓ, we know that 〈s〉3ψ is in particular consistent with Γm. There-
fore, by the above construction, 〈s〉〈p〉ψ ∈ Γm+1 for some p ∈ P such that Γ+

m is
consistent with 〈s〉〈p〉ψ. Thus, as TΓ is consistent and Γm+1 ⊆ TΓ, we have that
〈s〉〈p〉ψ is also consistent with TΓ. Hence, we conclude that TΓ is P-witnessed. Fi-
nally, TΓ is also maximal by construction: otherwise there would be a P-witness
theory T such that TΓ ( T . This implies that there exists ϕ ∈ L!

Kint2(P) with
ϕ ∈ T but ϕ 6∈ TΓ. Then, by the construction of TΓ, we obtain Γi ` ¬ϕ for all
i ∈ N. Therefore, since TΓ ⊆ T , we have T ` ¬ϕ. Hence, since ϕ ∈ T , we conclude
T ` ⊥ (contradicting T being consistent). 2

7.1.30. Lemma (Extension Lemma). Let P be a countable set of propositional
variables and P′ be a countable set of fresh propositional variables, i.e., P∩P′ = ∅.
Let

∼
P = P ∪ P′. Then, every P-theory Γ can be extended to a

∼
P-witnessed theory

∼
Γ ⊇ Γ, and hence to a maximal

∼
P-witnessed theory TΓ ⊇ Γ.

Proof:
Let γ0, γ1, . . . , γn, . . . an enumeration of all formulas of the form γi := 〈si〉3ϕi
consisting of any si ∈ NF

∼
P, and every formula ϕi ∈ L!

Kint2(
∼
P) in the language. We

will recursively construct a chain of
∼
P-theories Γ0 ⊆ . . . ⊆ Γn ⊆ . . . such that

1. Γ0 = Γ,
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2. P′n := {p ∈ P′ : p occurs in Γn} is finite for every n ∈ N, and

3. for every γn := 〈sn〉3ϕn with sn ∈ NF
∼
P and ϕn ∈ L!

Kint2(
∼
P), if Γn 0

¬〈sn〉3ϕn then there is pm “fresh” such that 〈sn〉〈pm〉ϕn ∈ Γn+1. Otherwise
we will define Γn+1 = Γn.

For every γn, let P′(n) := {p ∈ P′ | p occurs either in sn or ϕn}. Clearly every

P′(n) is always finite. We now construct an increasing chain of
∼
P-theories recur-

sively. We set Γ0 := Γ, and let

Γn+1 =

{
Γn ∪ {〈sn〉〈pm〉ϕn} if Γn 0 ¬〈sn〉3ϕn
Γn otherwise,

where m is the least natural number greater than the indices in P′n ∪ P′(n), i.e.,

pm is fresh. We now show that
∼
Γ :=

⋃
n∈N Γn is a

∼
P-witnessed theory. First show

that
∼
Γ is a

∼
P-theory. By Lemma 7.1.28, it suffices to show by induction that every

Γn is a
∼
P-theory. Clearly Γ0 is a

∼
P-theory. For the inductive step suppose Γn is

consistent but Γn+1 is not. Hence, Γn 6= Γn+1 and moreover Γn+1 ` ⊥. Then,
since Γn+1 = Γn ∪ {〈sn〉〈pm〉ϕn}, we have Γn ` [sn][pm]¬ϕn. Therefore there ex-
ists {θ1, . . . , θk} ⊆ Γn such that {θ1, . . . , θk} ` [sn][pm]¬ϕn. Let θ =

∧
1≤i≤k θi.

Then ` θ → [sn][pm]¬ϕn, so ` [θ→, sn][pm]¬ϕn with pm /∈ Pθ ∪ Psn ∪ Pϕn .
Thus, by the admissible rule in Lemma 7.1.24, we obtain ` [θ→, sn]2¬ϕn, i.e.,
` θ → [sn]2¬ϕn. Therefore, θ ` ¬〈sn〉3ϕn. Since {θ1, . . . , θk} ⊆ Γn, we therefore
have Γn ` ¬〈sn〉3ϕn. But, this would mean Γn = Γn+1, contradicting our assump-

tion. Therefore Γn+1 is consistent and thus a
∼
P-theory. Hence, by Lemma 7.1.28,

∼
Γ is a

∼
P-theory. Condition (3) above implies that

∼
Γ is also

∼
P-witnessed. Then, by

Lindenbaum’s Lemma (Lemma 7.1.29), there is a maximal
∼
P-witnessed theory

TΓ such that TΓ ⊇
∼
Γ ⊇ Γ. 2

We are now ready to build the canonical pseudo-model. For a fixed countable
set of propositional variables P, we let for any maximal P-witnessed theories T
and S,

T ∼ S iff (∀ϕ ∈ L!
Kint2(P))(Kϕ ∈ T ⇒ ϕ ∈ S).

7.1.31. Definition. [Canonical Pseudo-Model for T0] Let T0 be a maximal P-
witnessed theory. The canonical pseudo-model for T0 is a tuple X c = (Xc,Oc, V c)
such that

• Xc = {T ⊆ L!
Kint2(P) | T is a maximal P-witnessed theory with T ∼ T0},

• Oc = {înt(ϕ) | ϕ ∈ L!
Kint2(P)}, where θ̂ = {T ∈ Xc | θ ∈ T} for any

θ ∈ L!
Kint2(P),



142 Chapter 7. TopoLogic as Dynamic Epistemic Logic

• V c(p) = {T ∈ Xc | p ∈ T}.

We let τ c denote the topology generated by Oc. The associated topo-model X c
τ =

(Xc, τ c, V c) is called the canonical topo-model for T0.

In order to show that X c = (Xc,Oc, V c) is indeed a pseudo-model, we need
a Truth Lemma for the language L!

Kint2. We therefore postpone the proof of X c

being a pseudo-model until after the proof of the Truth Lemma (Lemma 7.1.35)
for the completeness of DTLint. For now, we show that X c = (Xc,Oc, V c) is at
least a pre-model, hence, it is well-defined for the language L!

Kint2(P).

7.1.32. Lemma. X c = (Xc,Oc, V c) is a pre-model.

Proof:
It is easy to see that Xc, ∅ ∈ Oc, since înt(>) = Xc and înt(⊥) = ∅. We need
to show that Oc is closed under (1) finite intersections and (2) finite unions.
(1) closure under finite intersection follows from the normality of int, namely
from the fact that ` int(ϕ) ∧ int(ψ) ↔ int(ϕ ∧ ψ). (2) closure under finite union
follows from the fact that ` (int(ϕ) ∨ int(ψ)) ↔ int(int(ϕ) ∨ int(ψ)), and that
int(int(ϕ) ∨ int(ψ)) ∈ L!

Kint2(P). 2

7.1.33. Lemma. For every maximal P-witnessed theory T , the set {θ | Kθ ∈ T}
is a P-witnessed theory.

Proof:
Observe that, by axiom (TK), {θ | Kθ ∈ T} ⊆ T . Therefore, as T is consistent,
the set {θ | Kθ ∈ T} is consistent. Let s ∈ NFP and ψ ∈ L!

Kint2(P) such that
{θ | Kθ ∈ T} ` [s][p]¬ϕ for all p ∈ P. Then, by normality of K, T ` K[s][p]¬ϕ
for all p ∈ P. Since K[s][p]¬ϕ := [K, s][p]¬ϕ is a necessity form and T is P-
witnessed, we obtain T ` [K, s]2¬ϕ, i.e., T ` K[s]2¬ϕ. As T is maximal, we
have K[s]2¬ϕ ∈ T , thus [s]2¬ϕ ∈ {θ | Kθ ∈ T}. 2

7.1.34. Lemma (Existence Lemma). Let T ∈ Xc and ϕ, α ∈ L!
Kint2(P) such

that int(α) ∈ T and K[α]ϕ 6∈ T . Then, there is S ∈ Xc with int(α) ∈ S and
[α]ϕ 6∈ S.

Proof:
Let ϕ, α ∈ L!

Kint2(P) such that int(α) ∈ T and K[α]ϕ 6∈ T . The latter im-
plies that {ψ | Kψ ∈ T} 6` [α]ϕ, hence, {ψ | Kψ ∈ T} 6` ¬¬[α]ϕ. Then, by
Lemma 7.1.33 and Lemma 7.1.27, we obtain that {ψ | Kψ ∈ T} ∪ {¬[α]ϕ} is
a P-witnessed theory. Note that ` ¬[α]ϕ ↔ (int(α) ∧ [α]¬ϕ) (see Proposition
7.1.2-(〈!〉)). We therefore obtain that {ψ | Kψ ∈ T} ∪ {¬[α]ϕ} ` int(α), thus,
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{ψ | Kψ ∈ T} ∪ {¬[α]ϕ} 6` ¬int(α) (since {ψ | Kψ ∈ T} ∪ {¬[α]ϕ} is con-
sistent). Therefore, by Lemma 7.1.27, {ψ | Kψ ∈ T} ∪ {¬[α]ϕ} ∪ {int(α)} is
also a P-witnessed theory. We can then apply Lindenbaum’s Lemma (Lemma
7.1.29) and extend it to a maximal P-witnessed theory S such that int(α) ∈ S
and [α]ϕ 6∈ S. 2

7.1.35. Lemma (Truth Lemma). Let X c = (Xc,Oc, V c) be the canonical pseu-
do-model for a maximal P-witnessed theory T0 and ϕ ∈ L!

Kint2(P). Then, for all
α ∈ L!

Kint2(P) we have

[[ϕ]]înt(α) = 〈̂α〉ϕ.

Proof:
The proof follows by <S

d -induction on ϕ (the well-founded partial order <S
d on

L!
Kint2 is defined in Appendix A.1).

Base case ϕ := p

[[p]]înt(α) = înt(α) ∩ [[p]]X
c

(since p is bi-persistent)

= înt(α) ∩ V c(p) (by the semantics of p)

= înt(α) ∩ p̂ (by the definition of V c)

= int(α) ∧ p
∧

= int(α) ∧ (int(α)→ p)
∧

(by propositional tautologies)

= int(α) ∧ [α]p
∧

(by (Rp))

= 〈α〉p
∧

(Proposition 7.1.2-(〈!〉))

Induction Hyposthesis: For ψ<S
dϕ, we have [[ψ]]înt(α) = 〈̂α〉ψ for all α ∈ L!

Kint(P).

Case ϕ := ¬ψ

[[¬ψ]]înt(α) = înt(α)\[[ψ]]înt(α) (by the semantics of ¬)

= înt(α)\〈̂α〉ψ (by IH)

= înt(α) ∩ (Xc\〈̂α〉ψ)

= înt(α) ∩ ¬〈α〉ψ
∧

(since Xc\〈̂α〉ψ = ¬〈α〉ψ
∧

)

= int(α) ∧ ¬〈α〉ψ
∧

= int(α) ∧ [α]¬ψ
∧

= 〈α〉¬ψ
∧

(Proposition 7.1.2-(〈!〉))
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Case ϕ := ψ ∧ χ

[[ψ ∧ χ]]înt(α) = [[ψ]]înt(α) ∩ [[χ]]înt(α) (by the semantics of ∧)

= 〈α〉ψ
∧

∩ 〈α〉χ
∧

(by IH)

= 〈α〉ψ ∧ 〈α〉χ
∧

(by propositional tautologies)

= 〈α〉(ψ ∧ χ)
∧

(` (〈α〉ψ ∧ 〈α〉χ)↔ 〈α〉(ψ ∧ χ))

Case ϕ := Kψ

(⇒) Suppose T ∈ [[Kψ]]înt(α). This implies, by the semantic clause of K, that

T ∈ înt(α) and [[ψ]]înt(α) = înt(α). We want to show that T ∈ 〈α〉Kψ
∧

. By Propo-
sition 7.1.2-(〈!〉) and the reduction axiom (RK), we obtain ` 〈α〉Kψ ↔ int(α) ∧
K[α]ψ. We therefore only need to show that T ∈ înt(α) and T ∈ K[α]ψ

∧

. We have

the former by the assumption. Suppose toward contradiction that T 6∈ K[α]ψ
∧

,
i.e., K[α]ψ 6∈ T . Then, by Lemma 7.1.34, there exists S ∈ Xc such that int(α) ∈ S
and [α]ψ 6∈ S. Since ` 〈α〉ψ → [α]ψ, we obtain 〈α〉ψ 6∈ S. Therefore, by IH, we

have S 6∈ [[ψ]]înt(α). Since S ∈ înt(α), we then conclude [[ψ]]înt(α) 6= înt(α). By the se-

mantics of K, this means that [[Kψ]]înt(α) = ∅, contradicting our first assumption.

Hence, T ∈ int(α) ∧K[α]ψ
∧

= 〈α〉Kψ
∧

.

(⇐) Suppose T ∈ 〈α〉Kψ
∧

. Then, by the equality 〈α〉Kψ ↔ int(α) ∧ K[α]ψ,

we have T ∈ înt(α) and T ∈ K[α]ψ
∧

. Let S ∈ înt(α). Since S ∼ T and T ∈ K[α]ψ
∧

,
we also have [α]ψ ∈ S. Therefore, by Proposition 7.1.2-(〈!〉), we obtain 〈α〉ψ ∈ S.

This implies, by IH, that S ∈ [[ψ]]înt(α). As this holds for all S ∈ înt(α), we have

[[ψ]]înt(α) = înt(α). Hence, [[Kψ]]înt(α) = înt(α) 3 T .

Case ϕ := int(ψ)

(⇒) Suppose T ∈ [[int(ψ)]]înt(α). Then, by the semantics of int, there exists

U ∈ Oc such that T ∈ U ⊆ [[ψ]]înt(α) (since Oc constitutes a basis for τ c). Then,

by IH, we have U ⊆ 〈̂α〉ψ. By the construction of Oc, we know that U = înt(γ)
for some γ ∈ L!

Kint2(P). We therefore obtain that

T ∈ înt(γ) ⊆ 〈̂α〉ψ.

This means that, for all S ∈ înt(γ), we have S ∈ 〈̂α〉ψ. Therefore, the set {θ ∈
L!
Kint2(P) | Kθ ∈ T}∪{¬(int(γ)→ 〈α〉ψ)} is inconsistent. Otherwise, by Lemma

7.1.29, it could be extended to a maximally consistent P-witnessed theory T ′ such
that T ∼ T ′, int(γ) ∈ T ′ and 〈α〉ψ 6∈ T ′, a contradiction. Then, there exists a
formula χ ∈ {θ ∈ L!

Kint2(P) | Kθ ∈ T} such that ` χ → (int(γ) → 〈α〉ψ). Thus,
by the normality of K, we have ` Kχ → K(int(γ) → 〈α〉ψ). As Kχ ∈ T , we
obtain K(int(γ) → 〈α〉ψ) ∈ T . Then by axiom (K-int), we have int(int(γ) →
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〈α〉ψ) ∈ T . Since int is an S4 modality, we get int(γ) → int(〈α〉ψ) ∈ T . Since

T ∈ înt(γ), this implies int(〈α〉ψ) ∈ T . Moreover, we have

1. `int(〈α〉ψ)↔ int(int(α) ∧ [α]ψ) (Proposition 7.1.2-(〈!〉), (RE))

2. `int(int(α) ∧ [α]ψ)↔ (int(α) ∧ int([α]ψ)) (S4int)

3. `(int(α) ∧ int([α]ψ))↔ (int(α) ∧ (int(α)→ [α]int(ψ)))
(Proposition 7.1.2-(Rint))

4. `(int(α) ∧ (int(α)→ [α]int(ψ)))↔ (int(α) ∧ [α]int(ψ)))

5. `(int(α) ∧ [α]int(ψ)))↔ 〈α〉int(ψ) (Proposition 7.1.2-(〈!〉))
6. `int(〈α〉ψ)↔ 〈α〉int(ψ) (1-5, CPL)

Therefore, as T is maximal, we obtain 〈α〉int(ψ) ∈ T , i.e., T ∈ 〈α〉int(ψ)
∧

.

(⇐) Suppose T ∈ 〈α〉int(ψ)
∧

. This implies, by the above derivation, that T ∈
int(〈α〉ψ)
∧

. By the constraction of Oc, we have int(〈α〉ψ)
∧

∈ Oc. Moreover, by

the axiom (Tint), we obtain int(〈α〉ψ)
∧

⊆ 〈α〉ψ
∧

. By IH, we also have that 〈α〉ψ
∧

=

[[ψ]]înt(α). Therefore T ∈ int(〈α〉ψ)
∧

⊆ 〈α〉ψ
∧

= [[ψ]]înt(α), i.e., T ∈ Int([[ψ]]înt(α)) =

[[int(ψ)]]înt(α).

Case ϕ := 〈χ〉ψ

[[〈χ〉ψ]]înt(α) = {T ∈ înt(α) | (T, Int([[χ]]înt(α))) |= ψ}

= {T ∈ înt(α) | (T, [[int(χ)]]înt(α)) |= ψ} (by the semantics of int)

= {T ∈ înt(α) | (T, 〈α〉int(χ)
∧

|= ψ} (by IH, since int(χ) <S
d 〈χ〉ψ)

= [[ψ]]〈α〉int(χ)
∧

(since 〈α〉int(χ)
∧

⊆ înt(α))

= 〈〈α〉int(χ)〉ψ
∧

(by IH, since ψ <S
d 〈χ〉ψ)

= 〈α〉〈χ〉ψ
∧

(` 〈α〉〈χ〉ψ ↔ 〈〈α〉int(χ)〉ψ)

Note that ` 〈α〉〈χ〉ψ ↔ 〈〈α〉int(χ)〉ψ follows from (R[!]) and (R[int])).

Case ϕ := 2ψ

(⇒) Suppose T ∈ [[2ψ]]înt(α), i.e., (T, înt(α)) |= 2ψ. This means that for all

U ∈ O with T ∈ U ⊆ înt(α), we have (T, U) |= ψ. This in particular implies that

(T, înt(α)) |= [p]ψ for all p ∈ P. To show, let p ∈ P and suppose (T, înt(α)) |=
int(p), i.e., T ∈ Int([[p]]înt(α)) = [[int(p)]]înt(α). Since int(p) <S

d 2ψ (see Lemma

A.1.5-(2,4)), we know by IH that [[int(p)]]înt(α) = 〈α〉int(p)
∧

. But, as shown in the

case for the modality int above, ` 〈α〉int(p) ↔ int(〈α〉p), hence, [[int(p)]]înt(α) =

int(〈α〉p)
∧

, thus, [[int(p)]]înt(α) ∈ Oc. Hence, by the first assumption, we obtain

(T, Int([[p]]înt(α))) |= ψ, thus, (T, înt(α)) |= [p]ψ. Therefore, T ∈ [[[p]ψ]]înt(α) for
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all p ∈ P. Then, by IH (since [p]ψ <S
d 2ψ), we have [[[p]ψ]]înt(α) = 〈α〉[p]ψ

∧

,
thus, 〈α〉[p]ψ ∈ T . Hence, by Proposition 7.1.2-(〈!〉), int(α) ∧ [α][p]ψ ∈ T for all
p ∈ P. Since T is P-witnessed and maximal, we then obtain int(α) ∧ [α]2ψ ∈ T .
Then, by Proposition 7.1.2-(〈!〉), we conclude 〈α〉2ψ ∈ T .

(⇐) Suppose T ∈ 〈α〉2ψ
∧

. This means (by Proposition 7.1.2-(〈!〉)) that

T ∈ int(α) ∧ [α]2ψ
∧

, i.e., that int(α) ∈ T and [α]2ψ ∈ T . Then, by axiom ([!]2-
elim), we have that [α ∧ χ]ψ ∈ T for all χ ∈ L!

Kint2(P). We want to show that

T ∈ [[2ψ]]înt(α). Let U ∈ Oc such that T ∈ U ⊆ înt(α) and show T ∈ [[ψ]]U . By the

construction of Oc, we know that U = înt(γ) for some γ ∈ L!
Kint2(P). We there-

fore have that T ∈ U = înt(γ) = înt(γ) ∩ înt(α) = int(γ) ∧ int(α)
∧

= int(γ ∧ α)
∧

.
Hence, int(α ∧ γ) ∧ [α ∧ γ]ψ ∈ T . Therefore, by Proposition 7.1.2-(〈!〉) and the
fact that T is maximal, we obtain 〈α ∧ γ〉ψ ∈ T . Thus, by IH (since ψ <S

d 2ψ),

T ∈ [[ψ]]int(α ∧ γ)
∧

, i.e., T ∈ [[ψ]]U . 2

7.1.36. Lemma. X c = (Xc,Oc, V c) is a pseudo-model.

Proof:
Theorem 7.1.32 shows that X c = (Xc,Oc, V c) is a pre-model. In order to show
that it is indeed a pseudo-model, let ϕ ∈ L!

Kint2(P) and U ∈ Oc. We should show

that [[int(ϕ)]]U ∈ Oc, i.e., that [[int(ϕ)]]U = înt(ψ) for some ψ ∈ L!
Kint2(P). By the

construction ofOc, we know that U = înt(γ) for some γ ∈ L!
Kint2(P). By the Truth

Lemma (Lemma 7.1.35), we have [[int(ϕ)]]înt(γ) = 〈γ〉int(ϕ)
∧

. As argued in the case

for the modality int in the Truth Lemma, 〈γ〉int(ϕ)
∧

= int(〈γ〉ϕ)
∧

. Therefore, we

conclude that [[int(ϕ)]]U = [[int(ϕ)]]înt(γ) = int(〈γ〉ϕ)
∧

for int(〈γ〉ϕ) ∈ L!
Kint2(P).

Hence, X c = (Xc,Oc, V c) is a pseudo-model. 2

The next lemma shows that the language LKint cannot distinguish a pseudo-
model from its associated topo-model.

7.1.37. Lemma. Let X = (X,O, V ) be a pseudo-model and Xτ = (X, τO, V ) be
the associated topo-model. Then, for all ϕ ∈ LKint and (x, U) ∈ ES(X ), we have

X , (x, U) |= ϕ iff Xτ , (x, U) |= ϕ.

Proof:
The proof goes by subformula induction on ϕ and it is straightforward. We only
show the case for ϕ := int(ψ). Note that if U ∈ O then U ∈ τO (but not the other
way around).

X , (x, U) |= int(ψ) iff x ∈ Int([[ϕ]]UX ) (where Int is the interior operator of Xτ )
iff x ∈ Int([[ϕ]]UXτ ) (by IH: [[ϕ]]UXτ = [[ϕ]]UX )

iff Xτ , (x, U) |= int(ψ)



7.2. Topological Arbitrary Announcement Logic 147

2

7.1.38. Corollary. DTLint is complete for the canonical pseudo-models and
canonical topo-models (and so also complete with respect to the class of all pseudo-
models, as well as the class of all topo-models).

Proof:
Let ϕ be an DTLint-consistent formula, i.e., it is a Pϕ-theory. Then, by Lemma
7.1.30, it can be extended to a maximal prop-witnessed theory T . Let X c =
(Xc,Oc, V c) denote the canonical pseudo-model for T . Since ϕ ∈ T , by ax-

iom (R[>]), we obtain 〈>〉ϕ ∈ T , i.e., T ∈ 〈̂>〉ϕ. Thus, by Truth Lemma

(Lemma 7.1.35), we have that T ∈ [[ϕ]]
̂int(>)
X c , i.e., that X c, (T,Xc) |= ϕ (since

înt(>) = Xc). This proves the first completeness claim. As for the second, by the
co-expressivity of LKint and L!

Kint2 on pseudo-models (Corollary 7.1.18), there
exists a ψ ∈ LKint such that ϕ ↔ ψ is valid in all pseudo-models. We therefore
have X c, (T,Xc) |= ψ. By Lemma 7.1.37, we obtain X c

τ , (T,X
c) |= ψ where X c

τ

is the canonical topo-model. Using again the semantic equivalence of ϕ and ψ
(applied to the model X c

τ ), we conclude that X c
τ , (T,X

c) |= ϕ. 2

This result concludes the present section. In the next section, we present a
topological semantics for the so-called arbitrary announcement modality intro-
duced by Balbiani et al. (2008), and investigate its link to the effort modality of
Moss and Parikh (1992).

7.2 Topological Arbitrary Announcement Logic

Balbiani et al. (2008) proposed an extension of public announcement logic with a
dynamic operator that quantifies over public announcements and expresses what
becomes true after any announcement. More precisely, they consider the language
L!
K� (in its single-agent version here)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | [ϕ]ϕ | � ϕ,

where the construct [ϕ]ψ stands for the standard public announcement modal-
ity stating ‘after public announcement of ϕ, ψ (is true)’, and �ϕ represents the
arbitrary (public) announcement modality which is read as “after any announce-
ment, ϕ is true”. Balbiani et al. (2008) studied this modality on Kripke models
with equivalence relations by using the standard semantics for public announce-
ments in terms of model restrictions. More precisely, given a reflexive, transitive
and symmetric Kripke model M = (X,R, V ) and x ∈ X, Balbiani et al. (2008)
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propose to interpret the modality �ϕ as

M, x |= �ϕ iff (∀ψ ∈ L!
K)(M, x |= [ψ]ϕ)

iff (∀ψ ∈ L!
K)(M, x |= ψ implies Mψ, x |= ϕ)

where Mψ = (‖ψ‖, Rψ, V ψ) is the restriction of M to the truth set of ψ in
M.2 Unlike the effort modality 2ϕ which is read as “ϕ stays true no matter
what further evidence-gathering efforts are made”, the arbitrary announcement
modality �ϕ means “ϕ stays true after any epistemic announcement”. The latter
therefore quantifies only over epistemically definable subsets (�-free formulas of
the language) of a given model.3

In this case, for example, �Kϕ means that the agent comes to know ϕ, but
in the interpretation that there is a �-free formula ψ such that after announc-
ing it the agent knows ϕ. What becomes true or known by an agent after an
announcement can be expressed in this language without explicit reference to
the announced formula. Clearly, the meaning of the effort modality 2ϕ and of
the arbitrary announcement modality �ϕ are related in motivation, and their
readings suggest that while �ϕ generalizes [ψ]ϕ, the effort modality 2ϕ seems
more general than �ϕ. However, we cannot yet see the precise connection be-
tween these modalities at the formal level as they have been studied on differ-
ent semantic structures. In this section, we aim to explore the link between the
Bjorndahl-style topological updates, the effort modality, and a topological version
of the arbitrary announcement modality. To this end, based on (van Ditmarsch
et al., 2014), we extend the language L!

Kint by the arbitrary announcement oper-
ator �ϕ and propose a topological semantics for this modality by interpreting it
as a quantification over Bjorndahl-style updates on topological spaces. We then
show not only that L!

Kint� and L!
Kint2 are co-expressive for topo-models, but also

that—quite surprisingly—the effort modality 2 and the topological arbitrary an-
nouncement modality � are equivalent in the single-agent setting.

2To recall, ‖ψ‖ = ‖ψ‖M, Rψ = R ∩ ‖ψ‖ × ‖ψ‖, and V ψ(p) = V (p) ∩ ‖ψ‖ for all p ∈ prop.
3To be more precise, by an“epistemically definable subset” of a model M = (X,R, V ), we

mean a subset of X that corresponds to a truth set of a formula ψ ∈ L!
K in M. Since the

languages LK and L!
K are equally expressive with respect to Kripke models with equivalence

relations (Plaza, 1989), quantifying over the formulas of L!
K or the formulas of LK in the

semantic clause for �ϕ amounts to the same interpretation. Moreover, the reason as to why
the arbitrary announcement modality quantifies only over the formulas without � is to avoid a
possible circularity. Otherwise, if �ϕ were an announcement that plays a role in the evaluation
of �ϕ, checking the truth of �ϕ would require checking its truth (see Balbiani et al., 2008,
Section 2.3.1 for a more detailed discussion on the semantics of �ϕ). Van Ditmarsch et al.
(2016) present an arbitrary announcement logic, called fully arbitrary public announcement
logic, that allows �ϕ to quantify over formulas having arbitrary announcement operators, yet
does not encounter the above mentioned circularity. This logic is defined based on a language
with a proper class of auxiliary arbitrary announcement operators indexed by ordinals.
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Syntax and Semantics. We consider the language L!
Kint� obtained by extend-

ing L!
Kint with the arbitrary announcement modality �. In other words, L!

Kint� is
defined by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ | � ϕ

where p ∈ prop. We sometimes call the formulas in L!
Kint �-free formulas.

Given a topo-model X = (X, τ, V ) and an epistemic scenario (x, U) ∈ ES(X ),
truth of a formula in L!

Kint� is defined for Boolean cases, and the modalities K,
int and [!] as for L!

Kint in Definition 6.2.1. For the modality �, we propose the
following semantic clause.

7.2.1. Definition. [Semantics of arbitrary announcement] Given a topo-model
X = (X, τ, V ) and an epistemic scenario (x, U) ∈ ES(X ), the semantic clause for
the arbitrary announcement modality � reads

X , (x, U) |= �ϕ iff (∀ψ ∈ L!
Kint)(X , (x, U) |= [ψ]ϕ).

In other words, unravelling the above semantic clause, we model �ϕ as

(x, U) |= �ϕ iff (∀ψ ∈ L!
Kint)((x, U) |= int(ψ) implies (x, Int([[ψ]]U)) |= ϕ)

We therefore work with a topological version of the arbitrary announcement
modality in the sense that it quantifies over Bjorndahl’s public announcements
whose pre-condition is captured by the interior modality, and whose effect is
modelled in terms of neighbourhood shrinking.

Expressivity of L!
Kint� on topo-models

We will now prove that L!
Kint� and LKint are equally expressive with respect to

topo-models in the single-agent case (this will not be the case for the multi-
agent version we present in Chapter 8). The proof of this result follows similar to
the proof of Theorems 7.1.17 and 7.1.18. Thus, we first provide similar auxiliary
lemmas for the language L!

Kint�.

7.2.2. Proposition. The rule of Replacement of Provable Equivalents (RE) is
sound for L!

Kint� with respect to topo-models. More precisely, for all ϕ, ψ, χ ∈
L!
Kint�, if ψ ↔ χ is valid in all topo-models then so is ϕ↔ ϕ{ψ/χ}.

Proof:
Let ϕ, ψ, χ ∈ L!

Kint� and suppose |= ψ ↔ χ. We want to show that |= ϕ ↔
ϕ{ψ/ϕ}, and the proof follows by subformula induction on ϕ, where the base
case is ϕ := ψ. Let X = (X, τ, V ) be a topo-model and (x, U) ∈ ES(X ). For
the base case ϕ := ψ, we then have ϕ{ψ/χ} = χ. Therefore, ϕ ↔ ϕ{ψ/χ} boils
down to |= ψ ↔ χ, hence follows from the assumption. Now assume inductively
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that the statement holds for σ and θ. The cases for the Booleans K, int and [!]
are standard. We here only show the case of the new modality �:

Case ϕ := �θ: Note that (�θ){ψ/χ} = �(θ{ψ/χ}). We then have

(x, U) |= (�θ){ψ/χ}
iff (x, U) |= �(θ{ψ/χ})
iff (∀η ∈ L!

Kint)((x, U) |= [η](θ{ψ/χ})) (by the semantics of �)

iff (∀η ∈ L!
Kint)((x, U) |= int(η) implies (x, Int([[η]]U)) |= θ{ψ/χ})

(by the semantics of [!])

iff (∀η ∈ L!
Kint)((x, U) |= int(η) implies (x, Int([[η]]U)) |= θ)

(by the induction hypothesis on θ)

iff (∀η ∈ L!
Kint)((x, U) |= [η]θ) (by the semantics of [!])

iff (x, U) |= �θ (by the semantics of �)

2

7.2.3. Proposition. For any ϕ, ϕi ∈ Lint, the following is valid in all topo-
models:

|= �(ϕ ∧Kϕ0 ∧
∧

1≤i≤n

K̂ϕi)↔ (ϕ ∧ int(ϕ0) ∧
∧

1≤i≤n

K̂(int(ϕ0) ∧ ϕi)) (EL�
n )

Proof:
The proof is similar to the proof of Proposition 7.1.15. For the direction from
right-to-left, we take ϕ0 as the witness for �. 2

7.2.4. Lemma. For all ϕ, ψ ∈ L!
Kint�, the formula �(ϕ ∨ ψ) ↔ ( �ϕ ∨ �ψ) is

valid in all topo-models.

7.2.5. Theorem. L!
Kint� and LKint are equally expressive with respect to topo-

models.

Proof:
Analogous to the proof of Theorem 7.1.17. 2

We have therefore obtained the extended Figure 7.2 summarizing all the ex-
pressivity results we have provided on topo-models concerning the languages
L!
Kint2, L!

Kint�, and their subfragments.
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LK

LK2

LKint

Lint

L!
Kint L!

K

L!
Kint2 L!

K2

L!
Kint� L!

K�

Thm. 6.2.6

Thm. 7.1.19

Thm. 6.2.5 Thm. 6.2.5
Prop. 6.2.11

Thm. 6.2.6

Cor. 7.1.20

Cor. 7.1.20

int(ϕ) := 〈ϕ〉>

int(ϕ) := 〈ϕ〉>

Thm. 7.2.5

Figure 7.2: Expressivity diagram-updated with � (Arrows point to the more
expressive languages, and reflexive and transitive arrows are omitted. Arrows
without tags can be obtained as easy consequences from the others.)

We moreover prove that not only are L!
Kint� and L!

Kint2 co-expressive for
topo-models, but also that the effort modality 2 and the topological arbitrary
announcement modality � are equivalent, in the following sense (Baltag et al.,
2017):

7.2.6. Theorem. Let t : L!
Kint� → L!

Kint2 be the map that replaces each instance
of � with 2. Then for every ϕ ∈ L!

Kint�, we have that ϕ ↔ t(ϕ) is valid in all
topo-models.

Proof:
The proof is by subformula induction on ϕ. We skip the proof details, which could
be easily reconstructed, and provide only a sketch. The cases for the propositional
variables, the Booleans, and the modalities K and int are straightforward, since
t(p) = p; t(¬ψ) = ¬t(ψ); t(ψ ∧ χ) = t(ψ) ∧ t(χ); t(Kψ) = Kt(ψ); t(int(ψ)) =
int(t(ψ)) and t([ψ]χ) = [t(ψ)]t(χ). The relatively complicated case is ϕ := �ψ,
where t( �ψ) = 3t(ψ). The crucial part of the proof is that the elimination pro-
cedure for 3 and � are the same: they both go via normal forms and the
corresponding equivalences EL2

n and EL�
n (see Corollary 7.1.18 and Theorem
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7.2.5). Hence, two formulas only differing in the occurrences of 3 and � are
semantically equivalent to the same formula in LKint on topo-models. 2

Therefore, given the sound and complete axiomatization of DTLint (Table 7.1)
and the above link between the effort modality 2ϕ and the arbitrary announce-
ment modality �ϕ, we immediately obtain a sound and complete axiomatization
for the single-agent logic APALint of knowledge Kϕ, knowability int(ϕ), public an-
nouncements [ϕ]ψ, and arbitrary announcenements �ϕ with respect to the class
of all topo-models. The axiomatization of APALint is again given by the axiom
schemas in Table 7.1 defined over the language L!

Kint� (instead of L!
Kint2). In par-

ticular, the axiom ([!]2-elim) and the inference rule ([!]2-intro) are replaced by
([!]�-elim) and ([!]�-intro) given in Table 7.2, respectively

([!]�-elim) [ϕ]�θ → [ϕ ∧ ρ]θ (ρ ∈ L!
Kint� arbitrary formula)

([!]�-intro) from ψ → [ϕ ∧ p]θ, infer ψ → [ϕ] � θ (p 6∈ Pψ ∪ Pθ ∪ Pϕ)

Table 7.2: The axiom for �-elimination and the rule for �-introduction

We therefore obtain the following which, together with Theorem 7.2.6, gives
us the soundness and completeness of APALint.

7.2.7. Lemma. For all ϕ ∈ L!
Kint�, we have `APALint ϕ iff `DTLint t(ϕ).

7.2.8. Corollary. APALint is sound and complete with respect to the class of
all topo-models.

Proof:
For soundness, we focus only on the new axiom schema and the inference rule, and
show that ([!]�-elim) is valid and ([!]�-intro) preserves validity on topo-models.

([!]�-elim): Let X = (X, τ, V ) and (x, U) ∈ ES(X ) such that (x, U) |= [ϕ]�θ.
Then, by Theorem 7.2.6, we obtain (x, U) |= [t(ϕ)]2t(θ). Thus, by the soundness
of ([!]2-elim) for topo-models (Theorem 7.1.9), we have (x, U) |= [t(ϕ) ∧ ρ]t(θ)
for all ρ ∈ L!

Kint2. Let ρ′ ∈ L!
Kint�. Hence, t(ρ′) ∈ L!

Kint2, therefore we have
(x, U) |= [t(ϕ)∧ t(ρ′)]t(θ). Observe that [t(ϕ)∧ t(ρ′)]t(θ) = t([ϕ∧ρ′]θ). Therefore,
by Theorem 7.2.6 again, we obtain (x, U) |= [ϕ ∧ ρ′]θ. As ρ′ has been chosen
arbitrarily from L!

Kint�, we have the desired result.

([!]�-intro): Suppose |= ψ → [ϕ ∧ p]θ for some p 6∈ Pψ ∪ Pθ ∪ Pϕ. Then,
by Theorem 7.2.6, |= t(ψ → [ϕ ∧ p]θ), that is, |= t(ψ) → [t(ϕ) ∧ p]t(θ), by the
definition of t. Then, by the soundness of ([!]2-intro) (Theorem 7.1.9), we obtain
that |= t(ψ) → [t(ϕ)]2t(θ). Observe that t(ψ) → [t(ϕ)]2t(θ) = t([ψ] → [ϕ]�θ),
therefore, |= t([ψ] → [ϕ]�θ). Thus, again by Theorem 7.2.6, we have |= [ψ] →
[ϕ]�θ.
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For completeness, let ϕ ∈ L!
Kint� such that ϕ 6∈ APALint. Hence, by Lemma

7.2.7, we obtain that t(ϕ) 6∈ DTLint. Then, by Corollary 7.1.38, there exists a
topo-model X = (X, τ, V ) and an epistemic scenario (x, U) ∈ ES(X ) such that
X , (x, U) 6|= t(ϕ). Therefore, by Theorem 7.2.6, we conclude X, (x, U) 6|= ϕ. 2

7.3 Conclusions and Continuation

Our work presented in this chapter uses both the interior semantics of McKin-
sey and Tarski (1944) (together with the global modality as knowledge), and the
topological formalism introduced by Moss and Parikh (1992). Building on Bjorn-
dahl’s logic of knowledge Kϕ, knowability int(ϕ), and learning of new evidence
[ψ]ϕ (formalized as a “topological” public announcement modality, whose pre-
condition is captured by int(ϕ)), we developed the so-called Dynamic TopoLogic
that is obtained by adding the effort modality to Bjorndahl’s system. This way,
we believe that, at the very least, the meaning of the effort modality has become
more transparent as it is linked to the public announcement modalities [ψ]ϕ which
can be seen as a particular case of effort. This connection has been made precise
in the corresponding proof system by the axiom ([!]2-elim) and the inference rule
([!]2-intro). In Dynamic TopoLogic the behaviour of the effort modality is de-
scribed by using only the aforementioned axiom and inference rule, avoiding the
complicated Union Axiom of TopoLogic. While our completeness proof of DTLint
goes by a standard canonical model construction based on maximally consistent
witnessed theories, our expressivity results (Corollary 7.1.20) imply decidability
and the finite model property of the logics of topological spaces over the language
L!
Kint2 and its fragments (Corollary 7.1.21), by relying on the known decidability

and finite model property of LKint.

We moreover study a topological semantics for the arbitrary announcement
modality, and investigate its interplay with the effort modality. To the best of
our knowledge, the known completeness proofs for arbitrary announcement logics
(topological or relational) rely on infinitary axiomatizations formalized by using
necessity forms (see, e.g., Balbiani et al., 2008, 2013; Balbiani, 2015; Balbiani and
van Ditmarsch, 2015; also see Sections 8.2 and 8.3 for the multi-agent case). Al-
though Balbiani et al. (2008) propose a finitary axiomatization similar to ours
(Table 7.2), its completeness proof goes via the completeness of an infinitary sys-
tem4. On the other hand, our completeness proof of the finitary system APALint
does not involve a detour through an infinitary logic. Therefore, the effort modal-
ity helps to simplify and streamline the axiomatization of APALint.

4The finitary axiomatization proposed in (Balbiani et al., 2008) was later proven to be
unsound for the multi-agent case (see http://personal.us.es/hvd/APAL_counterexample.

pdf), and the error in the complexity measure in (Balbiani et al., 2008, Truth Lemma 4.13,
p. 327) is corrected in (Balbiani, 2015).
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Higher-order knowledge and dynamics of information change become more
interesting when more than one agent is involved. However, extending the sub-
set space style semantics to a setting involving multiple agents comes with some
challenges concerning the evaluation of higher-order knowledge. In particular, the
multi-agent case requires solving the complication of “jumping out of the epis-
temic range”. In the next chapter, we explain this problem and propose a solution
for it. We then study the multi-agent versions ELmint and PALmint of ELint and PALint,
respectively, as well as a multi-agent logic of arbitrary public announcements,
denoted by APALmint, interpreted on topological spaces in the style of subset space
semantics. The effort modality in multi-agent setting creates many challenges,
both technically and conceptually. We leave investigations for the effort modality
in a multi-agent setting for future.



Chapter 8

Multi-Agent Topo-Arbitrary
Announcement Logic

In this chapter, we propose a multi-agent logic of knowledge, knowability, public
and arbitrary announcements, interpreted on topological spaces in the style of
subset space semantics. More precisely, we generalize the single-agent setting
presented in Section 7.2 to a multi-agent setting wherein the multi-agent version
of L!

Kint� is defined similarly but with finitely many knowledge modalities Kiϕ
indexed for each agent, meaning that agent i knows ϕ.

As also recognized in (Baskent, 2007, Chapter 6) and (Wáng and Ågotnes,
2013a), a first step toward developing a multi-agent epistemic logic using topolog-
ical subset space semantics requires solving the problem of “jumping out of the
epistemic range” of an agent while evaluating higher-order knowledge formulas.
This issue occurs independently from the dynamic extensions. The general setup
is for any finite number of agents, but to demonstrate the challenges, consider
the case of two agents. If we extend the setup from the single agent case in the
straightforward way, then for each of two agents i and j there is an open set and
the semantic primitive becomes a triple (x, Ui, Uj) instead of a pair (x, U). Now

consider a formula like KiK̂jKip, for “agent i knows that agent j considers pos-
sible that agent i knows proposition p”. If this is true for a triple (x, Ui, Uj),

then K̂jKip must be true for any y ∈ Ui; but y may not be in Uj, in which

case (y, Ui, Uj) is not well-defined: we cannot interpret K̂jKip. Our solution to
this dilemma is to consider neighbourhoods that are not only relative to each
agent, but that are also relative to each state. This means that, when shifting the
viewpoint from x to y ∈ Ui, in (x, Ui, Uj), we simultaneously have to shift the
neighbourhood (and not merely the point in the actual neighbourhood) for the
other agent. Thus, we go from (x, Ui, Uj) to (y, Ui, Vj), where Vj may be different
from Uj: while the open set Uj represents j’s current evidence at x, the open Vj
represents j’s evidence (i.e., epistemic range) at y. Therefore, the neighbourhood
shift from Uj to Vj does not mean a change of agent j’s evidence set at the actual
state. While the tuple (x, Ui, Uj) represents the actual state and the view points
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of both agents, the component (y, Vj) of the latter tuple merely represents agent
j’s epistemic state from agent i’s perspective at y, a possibly different state from
the actual state x.

In order to define the epistemic range of each agent with respect to the state
in question, we employ a technique inspired by the standard neighbourhood se-
mantics (see, e.g., Chellas, 1980). We use a set of neighbourhood functions, deter-
mining the epistemic range relative to both the given state and the corresponding
agent. These functions need to be partial in order to render the semantics well-
defined for the dynamic modalities in the system, namely for the public and
arbitrary announcement modalities.

Moreover, using topological spaces enriched with a set of (partial) neighbour-
hood functions as models allows us to work with different notions of knowledge. In
the standard (single-agent) subset space setting (as in Chapters 6 and 7), as the
knowledge modality quantifies over the elements of a fixed neighbourhood, the S5
type knowledge is inherent to the way the semantics defined. With the approach
developed in this chapter, however, the epistemic range of an agent changes
according to the neighbourhood functions when the evaluation state changes.
Therefore, the valid properties of knowledge are determined by the constraints
imposed on the neighbourhood functions. To this end, we work with both S5 and
S4 types of knowledge in this chapter: while the former is the standard notion
of knowledge in the subset space setting, the latter reveals a novel aspect of our
approach, namely, the ability to capture different notions of knowledge.

Outline

Section 8.1 defines the syntax, structures, and semantics of our multi-agent logic
of arbitrary public announcements, APALmint, interpreted on topological spaces
equipped with a set of neighbourhood functions. Without arbitrary announce-
ments we get the logic PALmint, and with neither arbitrary nor public announce-
ments, the logic ELmint. In this section we also give two detailed examples illus-
trating the proposed semantics. In Section 8.2 we provide axiomatizations for
the logics: PALmint extends ELmint and APALmint extends PALmint. We moreover prove
their soundness and compare the expressive power of the associated multi-agent
languages L!

Kint�,L!
Kint and LKint with respect to multi-agent topo-models. In Sec-

tion 8.3 we demonstrate completeness for these logics. The completeness proof for
the epistemic fragment, ELmint, is rather different from the completeness proof for
the full logic APALmint. Section 8.4 adapts the logics to the case of S4 knowledge. In
Section 8.5 we compare our work to that of others, and Section 8.6 provides a
brief summary of the chapter while also discussing a possible interpretation of
the effort modality in the current multi-agent setting.

This chapter is based on (van Ditmarsch et al., 2015b,c).
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8.1 The Multi-Agent Arbitrary Announcement

Logic APALmint

We define the syntax, structures, and semantics of our multi-agent logic of knowl-
edge, knowability, public and arbitrary announcements. From now on, A denotes
a finite and nonempty set of agents.

8.1.1 Syntax and Semantics

The (multi-agent) language L!
Kint� is defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | int(ϕ) | [ϕ]ϕ | �ϕ

where p ∈ prop, and i ∈ A. Abbreviations for the connectives and the dual
modalities are defined as in the previous chapters; to recall, we in particular em-
ploy K̂iϕ := ¬Ki¬ϕ, and �ϕ := ¬�¬ϕ. Notice that we use the same denotation
L!
Kint� for both the single and multi-agent version of the above defined syntax.

Since we study the multi-agent version in this chapter, and the single-agent lan-
guage constitutes just a special case of the multi-agent extension, this should not
lead to any confusions. Similarly, we let LKint and L!

Kint denote the corresponding
multi-agent languages.

We interpret the language L!
Kint� on topological spaces endowed with (partial)

neighbourhood functions that for each agent i ∈ A assign an open neighbourhood
at a given state x. More precisely, given a topological space (X, τ), such a neigh-
bourhood function θ is defined from X to A → τ (i.e., the set of functions τA

from A to τ) as a partial function, denoted by θ : X ⇀ A → τ . We let D(θ)
denote the domain of θ, that is, the set of states in X for which θ is defined.

8.1.1. Definition. [(Partial) Neighbourhood Function]
Given a topological space (X, τ), a neighbourhood function set Φ on (X, τ) is a set
of (partial) neighbourhood functions θ : X ⇀ A → τ such that for all x ∈ D(θ),
for all i ∈ A, and for all U ∈ τ :

1. x ∈ θ(x)(i),

2. θ(x)(i) ⊆ D(θ),

3. for all y ∈ X, if y ∈ θ(x)(i) then y ∈ D(θ) and θ(x)(i) = θ(y)(i),

4. θU ∈ Φ,

where D(θ) is the domain of θ, and θU is the restricted/updated neighbourhood
function with D(θU) = D(θ) ∩ U and θU(x)(i) = θ(x)(i) ∩ U .
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The main role of the neighbourhood functions θ is to assign to each agent an
epistemic range at a given state. It simply defines the current evidence set of each
agent at the state in question. Each condition given in Definition 8.1.1 guarantees
certain requirements that render the semantics well-defined and meaningful for
the language L!

Kint�. In particular, with the help of the neighbourhood functions
we solve the problem of “jumping out of the epistemic range” explained in the
introduction. We will provide a more detailed explanation regarding the definition
of the neighbourhood functions together with our proposed semantics given in
Definition 8.1.4.

8.1.2. Definition. [Multi-agent Topo-model] A multi-agent topo-model is a
tuple X = (X, τ,Φ, V ), where (X, τ) is a topological space, Φ a neighbourhood
function set, and V : prop → P(X) a valuation function. The tuple (X, τ,Φ) is
called a multi-agent topo-frame.

Throughout this chapter, we call a multi-agent topo-model(-frame) simply a
topo-model(-frame). It will be clear from the context when we consider a single-
agent topo-model (X, τ, V ). Similar to the case of the single-agent framework,
given a topo-model X = (X, τ,Φ, V ), the open sets in τ are meant to represent
the evidence pieces that are potentially available for all the agents. In our multi-
agent setup, all agents have the same observational power, represented by each
topo-model carrying only one topology.

Formulas of L!
Kint� are interpreted on topo-models with respect to pairs of

the form (x, θ), where θ ∈ Φ and x ∈ D(θ). Such a pair is called a neighbourhood
situation, and θ(x)(i) corresponds to the epistemic range of agent i at x (with
respect to θ). The epistemic range θ(x)(i) represents the actual, current evidence
of the agent i at x and it is her only source of knowledge at state x with respect
to the neighbourhood situation (x, θ). This is stipulated in the semantic clause
for Ki in Definition 8.1.4 below. If (x, θ) is a neighbourhood situation in X we
write (x, θ) ∈ X .

The following lemma shows that the domain of every neighbourhood function
is open.

8.1.3. Lemma. For any topo-frame (X, τ,Φ) and θ ∈ Φ, we have D(θ) ∈ τ .

Proof:
Let (X, τ,Φ) be a topo-frame, θ ∈ Φ and x ∈ D(θ). By Definition 8.1.1-(1) and
-(2), we have x ∈ θ(x)(i) ∈ τ and θ(x)(i) ⊆ D(θ). Therefore, x ∈ Int(D(θ)).
Hence, D(θ) = Int(D(θ)), i.e., D(θ) ∈ τ . 2

8.1.4. Definition. [Topo-semantics for (multi-agent) L!
Kint�]

Given a topo-model X = (X, τ,Φ, V ) and a neighbourhood situation (x, θ) ∈ X ,
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the truth of a formula in the language L!
Kint� is defined recursively as follows:

X , (x, θ) |= p iff x ∈ V (p)
X , (x, θ) |= ¬ϕ iff not X , (x, θ) |= ϕ
X , (x, θ) |= ϕ ∧ ψ iff X , (x, θ) |= ϕ and X , (x, θ) |= ψ
X , (x, θ) |= Kiϕ iff (∀y ∈ θ(x)(i))(X , (y, θ) |= ϕ)
X , (x, θ) |= int(ϕ) iff x ∈ Int([[ϕ]]θ)
X , (x, θ) |= [ϕ]ψ iff X , (x, θ) |= int(ϕ) implies X , (x, θϕ) |= ψ
X , (x, θ) |= �ϕ iff (∀ψ ∈ L!

Kint)(X , (x, θ) |= [ψ]ϕ)

where p ∈ prop, [[ϕ]]θ = {y ∈ D(θ) | X , (y, θ) |= ϕ} and an updated neighbourhood
function θϕ : X ⇀ A → τ is defined such that θϕ = θInt([[ϕ]]θ). More precisely,
D(θϕ) = Int([[ϕ]]θ) and θϕ(x)(i) = θ(x)(i) ∩ Int([[ϕ]]θ) for all x ∈ D(θϕ).

When the model is not fixed, we use subscripts and write, e.g., [[ϕ]]θX , to denote the
model we work with. A formula ϕ ∈ L!

Kint� is valid in a topo-model X , denoted
X |= ϕ, iff X , (x, θ) |= ϕ for all (x, θ) ∈ X ; ϕ is valid, denoted |= ϕ, iff for all
topo-models X we have X |= ϕ. Soundness and completeness with respect to
topo-models are defined as usual.

Let us now elaborate on the structure of topo-models and the above semantics
we have proposed for L!

Kint�. For any topo-model X = (X, τ,Φ, V ), the agents’
current evidence, i.e., the epistemic range of each agent at a given state x, is
defined by (partial) functions θ ∈ Φ, where θ : X ⇀ A → τ . We allow for par-
tial functions in Φ, and close Φ under restricted functions θU where U ∈ τ (see
Definition 8.1.1, condition 4), so that updated neighbourhood functions are guar-
anteed to be well-defined elements of Φ. As briefly mentioned in Section 6.1.1,
one important feature of the subset space semantics is the local interpretation of
propositions: in the single-agent case, once the epistemic scenario (x, U) has been
picked, the rest of the model does not have any effect on the truth of the proposi-
tion in question. Similarly in our multi-agent setup, by choosing a neighbourhood
situation (x, θ), we localize the interpretation to an open subdomain of the whole
space, namely to D(θ), that includes the actual state x, and embeds an epistemic
range for each agent i ∈ A at every state in D(θ). For every θ ∈ Φ and x ∈ D(θ),
the function θ(x) : A → τ is defined to be a total function. It is therefore guar-
anteed that, given a neighbourhood situation (x, θ), the neighbourhood function
θ assigns to every agent in A an open neighbourhood of x. Moreover, the con-
ditions of neighbourhood functions given in Definition 8.1.1 make the semantics
work for the multi-agent setting. To be more precise, condition 1 guarantees that
θ always returns a factive evidence set for each agent at the actual state. Since the
neighbourhoods given by the neighbourhood functions depend not only on the
agent but also on the current state of the agent, and since x ∈ θ(x)(i) ⊆ D(θ) for
every x ∈ D(θ) and every i ∈ A (due to conditions 1 and 2), our semantics does
not face the problem of “jumping out of the epistemic range”, and thus does not
end up with ill-defined evaluation pairs in the interpretation of iterated epistemic
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formulas such as K̂jKip. Moreover, conditions (1) and (3) of Definition 8.1.1
ensure that the S5 axioms for each Ki are sound with respect to all topo-models:
each neighbourhood function θ ∈ Φ induces a partition on D(θ) for each agent
i ∈ A. We will see in Section 8.4 that our setting can be adapted to account for
the weaker S4, S4.2 and S4.3 notions of knowledge by relaxing the conditions on
the neighbourhood functions in Φ.

The semantics proposed for the propositional variables and the Booleans is
rather standard, similar to both the relational semantics and the classical sub-
set space semantics (see, e.g., Definition 6.1.2). Moreover, the semantics for the
modality int is similar to the semantics in the single-agent case. In particular, as
in the single-agent case, the truth value of the formulas in Lint on multi-agent
topo-models depends only on the actual state, not on the chosen neighbourhood
function. In this sense, the formulas of Lint are bi-persistent on multi-agent topo-
models.

8.1.5. Proposition. Given a topo-model X = (X, τ,Φ, V ), neighbourhood situ-
ations (x, θ1), (x, θ2) ∈ X , and a formula ϕ ∈ Lint,

(x, θ1) |= ϕ iff (x, θ2) |= ϕ.

Proof:
The proof follows along the same lines as the proof of Proposition 7.1.14 by
subformula induction on ϕ: cases for the propositional variables and the Booleans
are elementary. So assume inductively that the result holds for ψ; we must show
that it holds also for ϕ := int(ψ).

(x, θ1) |= int(ψ) iff x ∈ Int([[ψ]]θ1)

iff (∃U ∈ τ)(x ∈ U ⊆ [[ψ]]θ1) (by the definition of Int)

Now, consider the open set U ∩ D(θ2). Since (x, θ2) is a well-defined neighbour-
hood situation, x ∈ D(θ2). Moreover, by Lemma 8.1.3, we have D(θ2) ∈ τ . Hence,
we obtain x ∈ U ∩ D(θ2) ∈ τ . Thus, it suffices to show that U ∩ D(θ2) ⊆ [[ϕ]]θ2 .
Let y ∈ U ∩ D(θ2). Since U ∩ D(θ2) ⊆ U , we have by the assumption that
(y, θ1) |= ψ. Then, by IH, (y, θ2) |= ψ. As y has been chosen arbitrarily from
U ∩ D(θ2), we conclude that U ∩ D(θ2) ⊆ [[ψ]]θ2 , hence, x ∈ Int([[ψ]]θ2), i.e.,
(x, θ2) |= int(ψ). 2

We now take a closer look at the semantic clauses for the modalities in
L!
Kint�. Recall that the open sets in τ are meant to represent the evidence pieces

that can in principle be discovered by any agent in A. In other words, open sets of
a topology can be considered as the propositions that the agents can in principle
observe (but might not have observed yet). This interpretation was elaborated
in Section 6.1.1, p. 106. On the other hand, θ(x)(i) serves as agent i’s current
(factive) evidence at the actual state x (with respect to θ). Stating the semantic
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clause for knowledge given in Definition 8.1.4 in a slightly different way gives us
that

(x, θ) |= Kiϕ iff θ(x)(i) ⊆ [[ϕ]]θ,

i.e, according to our proposed semantics, agent i knows ϕ at x (with respect to θ)
iff his current evidence entails ϕ, similar to the case in the single-agent version.

As in the single agent case, the modality int serves as the precondition of an
announcement that represents knowability as an existential claim over the set τ
of pieces of evidence:

(x, θ) |= int(ϕ) iff (∃U ∈ τ)(x ∈ U ⊆ [[ϕ]]θ).

Therefore, whether the precondition of an announcement is fulfilled does not
depend on the agents’ epistemic states but depends only on the model in ques-
tion. Moreover, given the semantic clause for the public announcements

(x, θ) |= [ϕ]ψ iff (x, θ) |= int(ϕ) implies (x, θϕ) |= ψ,

and the definition of the updated neighbourhood function θϕ, the effect of an an-
nouncement is again modelled as open-set-shrinkage without leading to a global
change in the initial model. More precisely, a successful announcement ϕ trans-
forms the initial neighbourhood function θ to θϕ which assigns a more refined
epistemic range θ(x)(i)∩ Int([[ϕ]]θ) ⊆ θ(x)(i) to each agent i at the actual state x,
representing the effect of learning ϕ. We continue with some examples illustrating
the above defined semantics.

8.1.2 Examples

In this section we present two examples demonstrating how our multi-agent topo-
logical semantics works. The first example is a multi-agent version of an example
presented by Bjorndahl (2016) for the single-agent setting, and the second is con-
cerned with two agents learning bit by bit (finite) prefixes of a pair of infinite
binary sequences.

The Jewel in the Tomb

We illustrate our semantics by means of a multi-agent version of Bjorndahl’s
example in (Bjorndahl, 2016) about the jewel in the tomb. Indiana Jones (i) and
Emile Belloq (e) are both scouring for a priceless jewel placed in a tomb. The
tomb could either contain a jewel or not, the tomb could have been rediscovered
in modern times or not, and (beyond Bjorndahl (2016)), the tomb could be in
the Valley of Tombs in Egypt or not. The propositional variables corresponding
to these propositions are, respectively, j, d, and t. We represent a valuation of
these variables by a triple xyz, where x, y, z ∈ {0, 1}. Given the carrier set X =
{xyz | x, y, z ∈ {0, 1}}, the topology τ that we consider is generated by the basis
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consisting of the subsets {000, 100, 001, 101}, {010}, {110}, {011}, {111} (see
Figure 8.1). The idea is that one can only conceivably know (or learn) about the
jewel or the location on condition that the tomb has been discovered. Therefore,
{000, 100, 001, 101} has no strict subsets besides the empty set: if the tomb has
not yet been discovered, no one can have any information about the jewel or the
location. However, provided that the tomb has been discovered, the agents might
know whether or not it contains a jewel, and/or whether it is the Valley of Tombs
in Egypt. In this example, we stipulate that the actual state is 111.

100 101 011 111

000 001 010 110

Figure 8.1: Dashed squares represent the elements of the basis generating the
topology τ .

A topo-model X = (X, τ,Φ, V ) for this topology (X, τ) has Φ as the set
of all neighbourhood functions that are partitions of X for both agents, and
restrictions of these functions to open sets. A typical θ ∈ Φ describes complete
ignorance of both agents and is defined as θ(w)(i) = θ(w)(e) = X for all w ∈
X. A more interesting neighbourhood situation in this model is one wherein
Indiana and Emile have different knowledge. Let us assume that Emile has the
advantage over Indiana so far, as he knows the location of the tomb but Indiana
does not. This is the θ′ such that for all w ∈ X, θ′(w)(i) = X, whereas the
partition for Emile consists of sets {000, 100, 001, 101}, {110, 010}, {111, 011},
i.e., θ′(111)(e) = {111, 011}, etc (see Figure 8.2).

100 101 011 111

000 001 010 110

Figure 8.2: Patterned sets represent Emile’s neighbourhoods defined by θ′:
θ′(111)(e) = θ′(011)(e) = {111, 011}, θ′(010)(e) = θ′(110)(e) = {010, 110},
θ′(000)(e) = θ′(100)(e) = θ′(001)(e) = θ′(101)(e) = {000, 100, 001, 101}.

We now can evaluate what Emile knows about Indiana at 111. Firstly, Emile
knows that the tomb is in the Valley of Tombs in Egypt

X , (111, θ′) |= Ket (8.1)
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and he also knows that Indiana does not know that:

X , (111, θ′) |= Ke¬(Ki¬t ∨Kit) (8.2)

The statement (8.2) involves verifying X , (w, θ′) |= K̂it and X , (w, θ′) |= K̂i¬t for
all w ∈ θ′(111)(e) = {111, 011}, which is Emile’s current epistemic range. And
this is true for both elements 111 and 110 of θ′(111)(e), because θ′(110)(i) =
θ′(111)(i) = X, and 000, 001 ∈ X, and while X , (001, θ′) |= t, we also have
X , (000, θ′) |= ¬t. We can also check that Emile knows that Indiana considers it
possible that Emile doesn’t know the tomb’s location:

X , (111, θ′) |= KeK̂i¬(Ket ∨Ke¬t) (8.3)

Evaluating this goes beyond Emile’s initial epistemic range {111, 011} because,
e.g., for 111 ∈ θ′(111)(e), we have X , (111, θ′) |= K̂i¬(Ket∨Ke¬t) iff there exists
y0 ∈ θ′(111)(i) such that (y0, θ

′) |= ¬Ket∧¬K̂e¬t. Therefore, such an element y0

cannot be in Emile’s initial epistemic range {111, 011}, since (111, θ′) |= Ket and
(011, θ) |= Ket. In fact, it has to be the case that y0 ∈ {000, 001, 100, 101}. This
situation however does not create any problems in our setting since (y0, θ

′) is a
well-defined neighbourhood situation, and Emile’s epistemic range at y0 is defined
by θ′ as θ′(y0)(e) = {000, 001, 100, 101}.

Given their prior knowledge, announcements will change Emile and Indiana’s
knowledge in different ways. Consider the announcement of j. An important
point to notice is that the announcement of j does not only convey the infor-
mation [[j]]θ

′
= {100, 101, 110, 111} but that it also leads to learning Int([[j]]θ

′
) =

{110, 111}. This corresponds exactly to the fact that one can know about the
jewel on the condition that the tomb has already been rediscovered. Therefore,
the announcement of j evidences the fact that the tomb has already been discov-
ered, hence, it conveys more information than only j being true. This results in
Emile knowing everything but Indiana still being uncertain about the location:

X , (111, θ′) |= [j](Ke(j ∧ d ∧ t) ∧Ki(j ∧ d) ∧ ¬(Kit ∨Ki¬t)) (8.4)

Model checking this involves computing the epistemic ranges of both agents given
by the updated neighbourhood function (θ′)j at 111 (see Figure 8.3). Note that
Int([[j]]θ

′
) = {111, 110}. Therefore, (θ′)j(111)(e) = Int([[j]]θ

′
)∩θ′(111)(e) = {111},

and for Indiana (θ′)j(111)(i) = Int([[j]]θ
′
) ∩ θ′(111)(i) = {111, 110}.

There is an announcement after which Emile and Indiana know everything
(for example the announcement of j ∧ t):

X , (111, θ) |= �(Ke(j ∧ d ∧ t) ∧Ki(j ∧ d ∧ t)).

Observe that Int([[j ∧ t]]θ′) = {111}, thus, (θ′)j(111)(e) = (θ′)j(111)(j) = {111}.
Again, the announcement of j ∧ t carries the implication that the tomb has been
rediscovered. On the other hand, as long as the tomb has not been discovered,
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100 101 011 111

000 001 010 110

Figure 8.3: As D((θ′)j) = Int([[j]]θ
′
) = {111, 110}, the updated neighbour-

hood function (θ′)j is defined only for these points. Patterned sets again
represent Emile’s neighbourhoods defined by (θ′)j: (θ′)j(111)(e) = {111} and
(θ′)j(110)(e) = {110}. For Indiana, we have (θ′)j(111)(j) = (θ′)j(110)(i) =
{111, 110}.

nothing will make Emile (or Indiana) learn that it contains a jewel or where the
tomb is located:

X |= ¬d→ �(¬(Kej ∨Ke¬j) ∧ ¬(Ket ∨Ke¬t)).

Binary Strings

We begin the example by defining a topology over the set of ordered pairs of
binary strings, i.e., the domain of our topology is X = {0, 1}∞ × {0, 1}∞.

Note that we can consider X to be points in the unit square [0, 1]× [0, 1], by
looking at each element of {0, 1}∞ as the binary representation of a real number
in [0, 1]. So, for example, (01000..., 11000...) represents (.25, .75). This correspon-
dence is not one-to-one, because many points in [0, 1] have more than one possible
representation as binary strings. For example, 1000... and 0111... both represent
0.5. In fact, every fraction of the form i

2k
for some i, k ∈ N with 0 < i < 2k

has two possible representations, while every other element of [0, 1] has a unique
representation. Therefore, every element of [0, 1] × [0, 1] has either one, two, or
four possible representations in {0, 1}∞ × {0, 1}∞. Hence, we can consider each
element of {0, 1}∞ × {0, 1}∞ to represent one element of [0, 1]× [0, 1], but every
element of [0, 1]× [0, 1] does not represent a unique element of {0, 1}∞×{0, 1}∞.

Let us now introduce some notation. If s ∈ {0, 1}∞, for n ∈ N+, we let s|n be
the first n bits of s, and we let s[n] be the nth bit of s. As usual, we let {0, 1}∗ be
the set of finite strings over {0, 1} and for d ∈ {0, 1}∗, |d| is the length of d. For
d ∈ {0, 1}∗ we define Sd = {x ∈ {0, 1}∞ | x||d| = d}, in other words, Sd is the set
of all infinite binary strings that have d as a prefix. Note that Sε is in {0, 1}∞,
since ε is the empty string. Note also that when we consider the elements of
{0, 1}∞ as points on the unit interval, we can think of Sd as a certain subinterval
of the unit interval. More precisely, each Sd is the interval bounded by d

2|d|
and

d+1
2|d|

when d is viewed as the binary representation of a natural number. As above,
we cannot, however, go in the opposite direction and consider all such intervals to
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be sets of the form Sd, since there are multiple possible representations of some
of the points in [0, 1] as binary strings.

Now consider the topology τ generated by the set

B = {Sd | d ∈ {0, 1}∗}.

It is not hard to see that B indeed constitutes a basis over the domain {0, 1}∞:

1. Since Sε ∈ B, we have
⋃
B = {0, 1}∞.

2. For any U1, U2 ∈ B, we have either U1∩U2 = ∅, U1∩U2 = U1 or U1∩U2 = U2.
Therefore, B is closed under finite intersections.

For our example, we use the product space ({0, 1}∞×{0, 1}∞, τ×τ) and we have
two agents a and b. Intuitively speaking, agent a is concerned with the bits of the
first coordinate and agent b is concerned with the bits of the second coordinate
encoded as infinite binary strings. Let θε((x, y))(a) = θε((x, y))(b) = {0, 1}∞ ×
{0, 1}∞, and for i ∈ N+, let θi((x, y))(a) = Sx|i × {0, 1}∞, and let θi((x, y))(b) =
{0, 1}∞ × Sy|i , where D(θi) = {0, 1}∞ × {0, 1}∞. In other words, for agent a, the
neighbourhood function θi gives the set of pairs where the first component of the
pair agrees with x in the first i bits, and any possible second component of the
pair is allowed. Similarly for agent b. We note that θi+1 is always more informative
than θi. Finally, in order to obtain our neighbourhood function set Φ, we must
close the set of functions described above under open domain restrictions, so we
let Φ = {θ : X ⇀ {a, b} → τ | ∃i ∈ N+ ∪ {ε}, U ∈ τ such that θ = θUi }. It is
easy to see that Φ satisfies the properties of a neighbourhood function set given
in Definition 8.1.1.

In order to evaluate formulas on this topo-frame, we define atomic propositions

Prop = {xi | i ∈ N+} ∪ {yi | i ∈ N+}

where
V (xi) = {(x, y) ∈ {0, 1}∞ × {0, 1}∞ | x[i] = 1};
V (yi) = {(x, y) ∈ {0, 1}∞ × {0, 1}∞ | y[i] = 1}.

Intuitively speaking, the propositional variables refer to the x- and y-coordinates
of the pairs of infinite binary strings. We read xi as “the ith bit of the x-coordinate
is 1 ” and yi as “the ith bit of the y-coordinate is 1 ”.

We can now evaluate some formulas on the topo-model

X = ({0, 1}∞ × {0, 1}∞, τ × τ,Φ, V )

at the state (x, y) = (010000....., 110110.....) with respect to the neighbourhood
function θ1. In other words, we have that a knows that the first bit of x is 0,
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b knows that the first bit of y is 1, and both are ignorant about the other’s
bits. More formally, we have

X , ((x, y), θ1) |= Ka¬x1 a knows that x[1] = 0
X , ((x, y), θ1) |= Kby1 b knows that y[1] = 1
X , ((x, y), θ1) |= Ka¬(Kbx1 ∨Kb¬x1) a knows that b

does not know the value of x[1]
X , ((x, y), θ1) |= Kb¬(Kay1 ∨Ka¬y1) b knows that a

does not know the value of y[1].

Now consider announcements of the following form: given ((x, y), θn) (wherein a
and b know up to the nth bit of x and y, respectively), the announcement ϕn+1

x is
of the form ‘if the nth bit of x is 1, then the (n+1)st bit is j, and if the nth bit of
x is 0, then (n+ 1)st bit of x is 1− j’ with the restriction that the announcement
is indeed truthful and where j ∈ {0, 1}. So it can only be announced for j = 0
or j = 1 but not for both. In other words, ϕn+1

x is either of the form ‘the nth
bit of x is equal to its (n + 1)st bit’ or of the form ‘the nth bit of x is different
from its (n + 1)st bit’ but they cannot be announced at the same time as only
one of them can be truthful. Then, this announcement informs a but not b of
the value of the (n+ 1)st digit of x. For b it is merely an extension of the initial
sequences (that he is unable to distinguish anyway, as we will see) with either 1
or 0. But he does not know which is the real one. Then, the next announcement
ϕn+1
y informs b of the (n + 1)st bit of y in the same way. We can go on in the

same way, and successively announce the first n bits of both sequences by public
announcements in such a way that a learns every prefix of x and b learns every
prefix of y up to length n, as desired; but a remains uncertain about every bit in
the y-prefix that b learnt, and b remains uncertain about every bit in the x-prefix
that a learnt. For example, given that the agents a and b only learned their first
bits and that x = 010000 . . . and y = 110110 . . . , the next two announcements
are now:

ϕ2
x = (¬x1 → x2) ∧ (x1 → ¬x2)

ϕ2
y = (y1 → y2) ∧ (¬y1 → ¬y2)

where ϕ2
x truthfully states that “the first bit of the sequence x is different from

its second bit”, and ϕ2
y truthfully states that “the first and the second bit of y

are the same”. We then have that

Int([[ϕ2
x]]
θ1) = S01 × {0, 1}∞ ∪ S10 × {0, 1}∞

Int([[ϕ2
y]]
θ1) = {0, 1}∞ × S11 ∪ {0, 1}∞ × S00.
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θ(x, y)(b)

S0

S1

S0 S1

θ(x, y)(a)

(x, y)
Figure 8.4: Initial situation where
a knows the 1st bit of x is 0 and
b knows the first bit of y is 1,
and both are ignorant about the
other’s bit. We have θ((x, y))(a) =
S0 × {0, 1}∞ and θ((x, y))(b) =
{0, 1}∞ × S1.

⇓ 〈ϕ2
x〉

θϕ
2
x(x, y)(b)

θϕ
2
x(x, y)(a)

(x, y)

S0

S1

S00 S01 S10 S11

Figure 8.5: After the announce-
ment of ϕ2

x, we obtain the follow-
ing smaller neighbourhoods given
by the updated function θϕ

2
x :

θϕ
2
x((x, y))(a) = S01×{0, 1}∞, and

θϕ
2
x((x, y))(b) = (S01 ∪ S10)× S1.

⇓ 〈ϕ2
y〉

(θϕ
2
x)ϕ

2
y(x, y)(b)

(θϕ
2
x)ϕ

2
y(x, y)(a)

(x, y)
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Figure 8.6: After further announc-
ing ϕ2

y, the updated function

(θϕ
2
x)ϕ

2
y gives the neighbourhoods:

(θϕ
2
x)ϕ

2
y(x, y)(a) = S01×(S00∪S11),

and
(θϕ

2
x)ϕ

2
y(x, y)(b) = (S01∪S10)×S11

Figures 8.4-8.6 depict the neighbourhood transformations that result from the
announcement ϕ2

x and, after that, the announcement of ϕ2
y, consecutively. One
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can show (details omitted) that

X , ((x, y), θ1) |= �Kax2

X , ((x, y), θ1) |= 〈ϕ2
x〉(Kax2 ∧ ¬(Kbx2 ∨Kb¬x2))

X , ((x, y), θ1) |= 〈ϕ2
x〉〈ϕ2

y〉(Kby2 ∧ ¬(Kay2 ∨Ka¬y2))
X , ((x, y), θ2) |= Kax2.

After every finite sequence of such announcements, a knows a prefix of x and b
knows a prefix of y, and a is uncertain between two dual prefixes of y and b is
uncertain between two prefixes of x. So, for example, after 10 announcements, a
is uncertain whether y starts with 110110 or 001001, etc.

8.2 Axiomatizations, Soundness and Expressiv-

ity

We now provide the axiomatizations for multi-agent ELmint, PAL
m
int, and APALmint (in

Table 8.1), and prove their soundness with respect to the proposed semantics. The
axiomatization of APALmint involves an infinitary rule, denoted by (�ω-intro), that
is formalized using necessity forms. To this end, we first define necessity forms for
the language L!

Kint�. These necessity forms are defined similarly as in Definition
7.1.22, but involve a recursive clause for int and each Ki.

8.2.1. Definition. [Necessity and possibility forms for L!
Kint�] For any finite

string s ∈ ({ϕ→ | ϕ ∈ L!
Kint�} ∪ {Ki, int | i ∈ A} ∪ {ψ | ψ ∈ L!

Kint�})∗ = NF�,
we define pseudo-modalities [s] and 〈s〉. These pseudo-modalities are functions
mapping any formula ϕ ∈ L!

Kint� to another formula [s]ϕ ∈ L!
Kint� (neces-

sity form), respectively 〈s〉ϕ ∈ L!
Kint� (possibility form). The necessity forms

are defined recursively as [ε]ϕ = ϕ, [ϕ→, s]ϕ = ϕ → [s]ϕ, [Ki, s]ϕ = Ki[s]ϕ,
[int, s]ϕ = int([s]ϕ), [ψ, s]ϕ = [ψ][s]ϕ, where ε is the empty string. For possibility
forms, we set 〈s〉ϕ := ¬[s]¬ϕ.

The system APALmint is the smallest subset of the language L!
Kint� that contains the

axioms, and is closed under the inference rules given in Table 8.1. The system ELmint
is defined in a similar way over the language LKint by the axioms and inference
rules in group (I) of Table 8.1, and PALmint is defined over the language L!

Kint by
the axioms and inference rules in groups (I) and (II).

Let us now elaborate on these axiomatizations. The axiomatizations of multi-
agent ELmint and PALmint are straightforward generalizations of their single-agent
versions presented in Table 7.1.1 The axiom scheme (�-elim) is similar to (2-
elim) of DTLint, directly reflecting the semantics of the arbitrary announcement

1The axiom scheme R[>] given in Table 7.1 is derivable in PALmint for the multi-agent language
L!
Kint. This can be proven easily by ≤S-induction on ϕ using the reduction axioms. R[>] is also

derivable in APALmint for the language L!
Kint�: its proof follows by <Sd -induction on ϕ using

(�-elim) and (�ω-intro) (see Appendix A.1 for the definition of <Sd ).
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(I) Axioms and rules of system ELmint:
(CPL) all classical propositional tautologies and Modus Ponens
(S5K) all S5 axioms and rules for the knowledge modality Ki

(S4int) all S4 axioms and rules for the interior modality int
(K-int) Knowledge implies knowability : Kiϕ→ int(ϕ)

(II) Additional axioms and rules for PALmint:
(K!) [ϕ](ψ → θ)→ ([ϕ]ψ → [ϕ]θ)
(Nec!) from θ, infer [ϕ]θ
([!]RE) from ϕ↔ ψ, infer [ϕ]θ ↔ [ψ]θ

Reduction axioms :
(Rp) [ϕ]p↔ (int(ϕ)→ p)
(R¬) [ϕ]¬ψ ↔ (int(ϕ)→ ¬[ϕ]ψ)
(RK) [ϕ]Kiψ ↔ (int(ϕ)→ Ki[ϕ]ψ)
(R[!]) [ϕ][ψ]χ↔ [〈ϕ〉ψ]χ

(III) Axioms and rules of � for APALmint:
(�-elim) �ϕ→ [χ]ϕ (χ ∈ L!

Kint arbitrary formula)
(�ω-intro) from [s][ψ]χ for all ψ ∈ L!

Kint, infer [s]�χ

Table 8.1: The axiomatizations for multi-agent ELmint, PAL
m
int and APALmint.

modality �. On the other hand, the inference rule (�ω-intro) is infinitary, thus
making the multi-agent logic APALmint quite different from the other logics studied
in this dissertation. In an infinitary proof system the notion of a derivation is non-
standard since a derivation of a formula can involve infinitely many premises, in
particular within the axiomatic system of APALmint, an application of the rule (�ω-
intro) requires infinitely many premises. We can think of a derivation involving
an infinitary inference rule as a finite-depth tree with possibly infinite branching,
where the leaves are axioms or premises, the root is the derived formula, and a
step in the tree from child nodes to parent node corresponds to the application
of a derivation rule. Note that, due to the infinitary derivation rule (�ω-intro)
of APALmint, the set of formulas Γ deriving ϕ within this system can be infinite,
hence, the set of all theorems of APALmint cannot be defined by using the usual
notion of a derivation as a finite sequence of formulas where each element of
the sequence is either an axiom or obtained from the previous formulas in the
sequence by a rule of inference. The set of all theorems of APALmint is then defined
as the smallest subset of L!

Kint� that contains all the axioms, and is closed under
the inference rules given in Table 8.1. In this case, we write ϕ ∈ APALmint. We refer
to (Goldblatt, 1982, Chapter 2.4) for a more detailed discussion of infinitary proof
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systems, and to (Balbiani and van Ditmarsch, 2015, p. 70) for a discussion on
the axiomatizations of arbitrary announcement logics (see also Rybakov, 1997,
Chapter 5.4 for a precise treatment of infinitary calculi).2 On the other hand,
derivations in ELmint and PALmint are of the form of finite-depth trees with finite
branching, since their axiomatizations contain only finitary derivation rules.

8.2.2. Proposition. The following reduction schemas and the rule (RE) are
provable both in PALmint and APALmint (for languages L!

Kint and L!
Kint�, respectively).

1. (R⊥) [ϕ]⊥ ↔ ¬int(ϕ)
2. (R∧) [ϕ](ψ ∧ θ)↔ ([ϕ]ψ ∧ [ϕ]θ)
3. (Rint) [ϕ]int(ψ)↔ (int(ϕ)→ int([ϕ]ψ))
4. (RE) from ψ ↔ χ, infer ϕ↔ ϕ{ψ/χ}

Proof:
See Proposition 7.1.2: for (RE), we use (�-elim) and (�ω-intro) to prove the
K-axiom and the Necessitation rule for �. 2

We next provide some semantic results that will be helpful in the validity
proof of (R[!]).

8.2.3. Lemma. For any topo-model X = (X, τ,Φ, V ), θ ∈ Φ and ϕ, ψ ∈ L!
Kint�,

we have

1. [[ψ]]θ
ϕ

= [[〈ϕ〉ψ]]θ,

2. (θϕ)ψ = θ〈ϕ〉ψ, and

3. [[〈ϕ〉int(χ)]]θ = [[int(〈ϕ〉χ)]]θ.

Proof:
Let X = (X, τ,Φ, V ) be a topo-model, θ ∈ Φ and ϕ, ψ ∈ L!

Kint�. For (1) we have:

[[ψ]]θ
ϕ

= {y ∈ D(θϕ) | (y, θϕ) |= ψ}
= {y ∈ Int([[ϕ]]θ) | (y, θϕ) |= ψ} (D(θϕ) = Int([[ϕ]]θ))

= {y ∈ D(θ) | y ∈ Int([[ϕ]]θ) and (y, θϕ) |= ψ} (Int([[ϕ]]θ) ⊆ D(θ))

= {y ∈ D(θ) | (y, θ) |= 〈ϕ〉ψ} (by the semantics of [!])

= [[〈ϕ〉ψ]]θ

2Finitary alternatives for the axiomatizations of the multi-agent arbitrary announcement
logic (without the interior modality) based on Kripke models with equivalence relations were
considered in (Balbiani et al., 2008, Section 4). They, for example, proposed an axiomatiza-
tion with a ([!]2-intro)-like rule from Table 7.1. However, it was later proven that their infer-
ence rule was not sound in the multi-agent setting (see http://personal.us.es/hvd/APAL_

counterexample.pdf for the resounding counterexample). This counterexample also applies
in our setting as a special case. We are therefore not aware of a sound and complete finitary
axiomatization of a multi-agent logic of arbitrary announcements, neither for Kripke models
nor for topo-models.
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For (2): By Definition 8.1.4, we have that D(θ〈ϕ〉ψ) = Int([[〈ϕ〉ψ]]θ) and
D((θϕ)ψ) = Int([[ψ]]θ

ϕ
). We then obtain

D((θϕ)ψ) = Int([[ψ]]θ
ϕ

) = Int([[〈ϕ〉ψ]]θ) = D(θ〈ϕ〉ψ),

where the second equality follows by part (1). Therefore, (θϕ)ψ and θ〈ϕ〉ψ are
defined for the same states. Moreover, for any x ∈ D((θϕ)ψ) and i ∈ A, we have

(θϕ)ψ(x)(i)

= θϕ(x)(i) ∩ Int([[ψ]]θ
ϕ

)

= θ(x)(i) ∩ Int([[ϕ]]θ) ∩ Int([[ψ]]θ
ϕ

) (since Int([[ψ]]θ
ϕ
) ⊆ Int([[ϕ]]θ))

= θ(x)(i) ∩ Int(Int([[ϕ]]θ)) ∩ Int([[ψ]]θ
ϕ

) (by the properties of Int)

= θ(x)(i) ∩ Int([[int(ϕ)]]θ) ∩ Int([[ψ]]θ
ϕ

) (by the semantics of int)

= θ(x)(i) ∩ Int([[int(ϕ)]]θ ∩ [[ψ]]θ
ϕ

) (by the properties of Int)

= θ(x)(i) ∩ Int([[int(ϕ)]]θ ∩ [[〈ϕ〉ψ]]θ) (by Proposition 8.2.3-(1))

= θ(x)(i) ∩ Int([[int(ϕ) ∧ 〈ϕ〉ψ]]θ) (by the semantics of ∧)

= θ(x)(i) ∩ Int([[〈ϕ〉ψ]]θ) (by the semantics of int)

= θ〈ϕ〉ψ(x)(i) (by the definition of θ〈ϕ〉ψ)

For (3):

[[〈ϕ〉int(χ)]]θ = Int([[ϕ]]θ) ∩ [[int(χ)]]θ
ϕ

= Int(Int([[ϕ]]θ)) ∩ [[int(χ)]]θ
ϕ

(by the properties of Int)

= Int([[int(ϕ)θ)]]) ∩ Int([[χ]]θ
ϕ

) (by the semantics of int)

= Int([[int(ϕ)θ)]]) ∩ Int([[〈ϕ〉χ]]θ) (by Proposition 8.2.3-(1))

= Int([[int(ϕ)]]θ ∩ [[〈ϕ〉χ]]θ) (by the properties of Int)

= Int([[〈ϕ〉χ]]θ) (by the semantics of [!])

= [[int(〈ϕ〉χ)]]θ (by the semantics of int)

2

8.2.4. Proposition. APALmint is sound with respect to the class of all topo-models.

Proof:
The soundness of APALmint is, as usual, shown by proving that all axioms are
validities and that all derivation rules preserve validities. Having proved that,
soundness follows by induction on the depth of the derivation tree.

We prove the following cases: the first two cases shows the validity of the
reduction axioms (RK) and (R[!]), the next two illustrate the need for the con-
straint in Definition 8.1.1-(3), the fifth shows the validity of the axiom (K-int)
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which connects the modalities Ki and int, and the last two prove validity of the
axiom (�-elim) and validity preservation of the inference rule (�ω-intro). Let
X = (X, τ,Φ, V ) be a topo-model, (x, θ) ∈ X and ϕ, ψ, χ ∈ L!

Kint�.

(RK): Suppose (x, θ) |= [ϕ]Kiψ. This means that if (x, θ) |= int(ϕ) then
(x, θϕ) |= Kiψ. We want to show that (x, θ) |= int(ϕ)→ Ki[ϕ]ψ. Hence, suppose
also that (x, θ) |= int(ϕ) and let z ∈ θ(x)(i) such that (z, θ) |= int(ϕ), i.e., that
z ∈ Int([[ϕ]]θ). Then, by assumption, (x, θ) |= int(ϕ) implies that (x, θϕ) |= Kiψ.
In other words, (y, θϕ) |= ψ for all y ∈ θϕ(x)(i). Recall, by Definition 8.1.4, that
θϕ(x)(i) = θ(x)(i) ∩ Int([[ϕ]]θ). Thus, since z ∈ θ(x)(i) ∩ Int([[ϕ]]θ) = θϕ(x)(i),
we obtain (z, θϕ) |= ψ, implying together with the assumption z ∈ Int([[ϕ]]θ)
that (z, θ) |= [ϕ]ψ. Since z has been chosen arbitrarily from θ(x)(i), the results
holds for every element of θ(x)(i). Therefore, (x, θ) |= Ki[ϕ]ψ. Since we also have
(x, θ) |= int(ϕ), we conclude (x, θ) |= int(ϕ) → Ki[ϕ]ψ. The converse direction
follows similarly.

(R[!]):

(x, θ) |= [ϕ][ψ]χ

iff ((x, θ) |= int(ϕ) and (x, θϕ) |= int(ψ)) implies (x, (θϕ)ψ) |= χ

iff (x, θ) |= 〈ϕ〉int(ψ) implies (x, (θϕ)ψ) |= χ

iff (x, θ) |= int(〈ϕ〉ψ) implies (x, θ〈ϕ〉ψ) |= χ (Proposition 8.2.3-(2-3))

iff (x, θ) |= [〈ϕ〉ψ]χ (by the semantics of [!])

(4K): Suppose (x, θ) |= Kiϕ. This means, (y, θ) |= ϕ for all y ∈ θ(x)(i). Let
y ∈ θ(x)(i) and z ∈ θ(y)(i). By Definition 8.1.1-(3), θ(y)(i) = θ(x)(i) and Defini-
tion 8.1.1-(1) guarantees that θ(y)(i) 6= ∅. Therefore, by assumption, (z, θ) |= ϕ.
As z has been chosen from θ(y)(i) arbitrarily, we obtain (y, θ) |= Kiϕ. For the
similar reason, we also obtain (x, θ) |= KiKiϕ.

(5K): Suppose (x, θ) |= ¬Kiϕ. This means, (y0, θ) 6|= ϕ for some y0 ∈ θ(x)(i).
Let y ∈ θ(x)(i). By Definition 8.1.1-(3), θ(x)(i) = θ(y)(i). Therefore, as y0 ∈
θ(y)(i), by assumption, we have that there is a z ∈ θ(y)(i), namely z = y0,
such that (z, θ) 6|= ϕ. Thus, (y, θ) |= ¬Kiϕ. As y has been chosen from θ(x)(i)
arbitrarily, we conclude (x, θ) |= Ki¬Kiϕ.

(K-int): Suppose (x, θ) |= Kiϕ. This means, (y, θ) |= ϕ for all y ∈ θ(x)(i).
Hence, θ(x)(i) ⊆ [[ϕ]]θ. By Definition 8.1.1, θ(x)(i) is an open neighbourhood of
x, therefore, we obtain that x ∈ Int([[ϕ]]θ), i.e., (x, θ) |= int(ϕ).

(�-elim): Suppose (x, θ) |= �ϕ and let χ ∈ L!
Kint. By the semantics, we have

(x, θ) |= �ϕ iff (∀ψ ∈ L!
Kint)((x, θ) |= [ψ]ϕ). Therefore, in particular, (x, θ) |=

[χ]ϕ.

(�ω-intro): The proof follows by induction on the structure of the necessity
form s. We here show the base case [s] := [ε] and the inductive case [s] := [int, s].
All other inductive cases follow similarly.
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Base case s := ε: In this case, we have [s][ψ]χ = [ε][ψ]χ = [ψ]χ, and [s]�χ =
[ε]�χ = �χ. Suppose [ψ]χ is valid for all ψ ∈ L!

Kint. This means X , (x, θ) |= [ψ]χ
for all ψ ∈ L!

Kint, all topo-models X , and (x, θ) ∈ X . Therefore, by the semantics,
X , (x, θ) |= �χ for all topo-models X , and (x, θ) ∈ X . Hence, we conclude |= �χ.

Induction Hyposthesis: |= [s′][ψ]χ for all ψ ∈ L!
Kint, implies |= [s′]�χ

Case [s] := [int, s′]: In this case, we have [s][ψ]χ = [int, s′][ψ]χ = int([s′][ψ]χ).
Suppose that int([s′][ψ]χ) is valid for all ψ ∈ L!

Kint. This implies that [s′][ψ]χ
is valid for all ψ ∈ L!

Kint. Otherwise, there is a topo-model X = (X, τ,Φ, V )
and (x, θ) ∈ X such that X , (x, θ) 6|= [s′][ψ]χ for some ψ ∈ L!

Kint. This means
x 6∈ [[[s′][ψ]χ]]θ. Since Int([[[s′][ψ]χ]]θ) ⊆ [[[s′][ψ]χ]]θ, we also obtain that x 6∈
Int([[[s′][ψ]χ]]θ), i.e., X , (x, θ) 6|= int([s′][ψ]χ) contradicting validity of int([s′][ψ]χ).
Then, by IH, we have [s′]�χ valid. This means that [[[s′]�χ]]θ = D(θ) for every
topo-model X = (X, τ,Φ, V ) and all θ ∈ Φ. Since D(θ) ∈ τ (by Lemma 8.1.3), we
have D(θ) = Int(D(θ)) = Int([[[s′]�χ]]θ) = [[int([s′]�χ)]]θ. We can then conclude
that int([s′]�χ) is valid. 2

8.2.5. Corollary. ELmint and PALmint are sound with respect to the class of all
topo-models.

8.2.6. Corollary. LKint and L!
Kint are co-expressive with respect to topo-models.

Proof:
The proof follows similarly to the proof of Proposition 7.1.11. 2

On the other hand, unlike the case in the single-agent setting (see Theorem
7.2.5), multi-agent L!

Kint� is strictly more expressive than LKint. This is analogous
to the case in the setting of Balbiani et al. (2008) based on Kripke semantics.
The counterexample given in (Balbiani et al., 2008, Proposition 3.13) can be
adapted for our framework based on a discrete topology, as shown below. To make
the expressivity argument clearer, we first define a notion of partial bisimulation
that induces a modal invariance result for the language LK . This is the natural
analogue of the usual notion of bisimulation defined on multi-relational Kripke
models (see, e.g., Blackburn et al., 2001, Chapter 2.2).

8.2.7. Definition. [Partial Bisimulation (for LK)] Let two topo-models X =
(X, τ,Φ, V ) and X ′ = (X ′, τ ′,Φ′, V ) be given. A relation 
 between the set of
neighbourhood situations of X and X ′ is a partial bisimulation between X and X ′
iff for all (x, θ) ∈ X and (x′, θ′) ∈ X ′ with (x, θ) 
 (x′, θ′) the following conditions
are satisfied:

• Base: for all p ∈ prop, x ∈ V (p) iff x′ ∈ V ′(p).
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• Forth: for all i ∈ A and all y ∈ θ(x)(i), there exists y′ ∈ θ′(x′)(i) such that
(y, θ) 
 (y′, θ′)

• Back: for all i ∈ A and all y′ ∈ θ′(x′)(i), there exists y ∈ θ(x)(i) such that
(y, θ) 
 (y′, θ′).

8.2.8. Proposition. Let 
 be a partial bisimulation between topo-models X and
X ′ with (x, θ) 
 (x′, θ′), where (x, θ) ∈ X and (x′, θ′) ∈ X ′. Then for all ϕ ∈ LK,

X , (x, θ) |= ϕ iff X ′, (x′, θ′) |= ϕ.

Proof:
The proof follows standardly by subformula induction on ϕ. 2

8.2.9. Proposition. (Multi-agent) L!
Kint� is strictly more expressive than LKint

with respect to topo-models.

Proof:
The proof follows the same argument as (Balbiani et al., 2008, Proposition 3.13). It
is not hard to see that the modality int becomes redundant on topo-models based
on discrete spaces. More precisely, given a topo-model X = (X,P(X),Φ, V ) where
P(X) is a the set of all subsets of X, i.e., (X,P(X)) is the discrete space, for
all ϕ ∈ L!

Kint�, we have X |= ϕ ↔ int(ϕ). This fact and the modal invariance
result for the language LK given in Proposition 8.2.8 help us to adapt the coun-
terexample in (Balbiani et al., 2008, Proposition 3.13) to our setting based on
a discrete space in a straightforward way. The proof follows by contradiction:
suppose that ϕ ∈ L!

Kint� and LKint are equally expressive for (multi-agent) topo-
models, i.e., for all ϕ ∈ L!

Kint� there exists ψ ∈ LKint such that |= ϕ ↔ ψ.
Now consider the formula �(Kap ∧ ¬KbKap). By the assumption, there must
be ψ ∈ LKint such that |= ϕ ↔ ψ. To reach the desired contradiction, we
now construct two models which agree on ψ at the actual neighbourhood sit-
uations but disagree on �(Kap ∧ ¬KbKap). For this argument, it is crucial to
observe that any such ψ contains only finitely many propositional variables. As
we have countably many propositional variables, there is a propositional variable
q that does not occur in ψ (that is also different from p). Without loss of gen-
erality, suppose ψ is built using only one variable p. Consider the topo-models
X ′ = ({1, 0}, 2{1,0},Φ′, V ′) and X = ({10, 00, 11, 01}, 2{10,00,11,01},Φ, V ) such that
V ′(p) = {1}, and V (p) = {10, 11} and V (q) = {01, 11}. We compare X ′, (1, θ′)
with X , (10, θ), where θ′ and θ partition the corresponding models in such a way
that a cannot distinguish p-states from ¬p-states, while agent b can. More pre-
cisely, we set θ′(1)(a) = θ′(0)(a) = {1, 0} and θ′(1)(b) = {1}, θ′(0)(b) = {0} (see
Figure 8.7a). For X , we have θ partitioning the space in the way shown in Fig-
ure 8.7b: θ(00)(a) = θ(10)(a) = {10, 00} and θ(01)(a) = θ(11)(a) = {11, 01},
whereas θ(10)(b) = θ(11)(b) = {10, 11} and θ(00)(b) = θ(01)(b) = {00, 01}.
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θ′(1)(a) = θ′(0)(a)

10

(a) X ′

01

00

11 a

a10

(b) X

Figure 8.7: The straight round circles show the neighbourhoods of agent a, and
the dashed ones are for agent b.

It is then easy to see that, for the language LK build from the only proposi-
tional variable p, we have (1, θ′) 
 (10, θ), hence, X ′, (1, θ′) |= ψ iff X , (10, θ) |=
ψ. However, while X ′, (1, θ′) 6|= �(Kap ∧ ¬KbKap), we have X , (10, θ) |= 〈p ∨
q〉(Kap ∧ ¬KbKap), hence, X , (10, θ) |= �(Kap ∧ ¬KbKap). 2

8.3 Completeness

We now show completeness for ELmint, PALmint, and APALmint with respect to the
class of all topo-models. Completeness of ELmint is shown in a standard way via a
canonical model construction and a Truth Lemma that is proved by subformula
induction. Completeness for PALmint is shown by reducing each formula in L!

Kint

to a provably and semantically equivalent formula of LKint. The proof of the
completeness for APALmint becomes more involved. Reduction axioms for public
announcements no longer suffice in the APALmint case, and the inductive proof needs
a subinduction where announcements are considered. Moreover, the proof system
of APALmint has an infinitary derivation rule, namely the rule (�ω-into), and given
the requirement of closure under this rule, the maximally consistent sets for that
case are defined to be maximally consistent theories (see Section 8.3.2). Lastly,
the Truth Lemma requires the more complicated complexity measure on formulas
defined in Appendix A.1. There, we need to adapt the completeness proof in
(Balbiani and van Ditmarsch, 2015) to our setting.

8.3.1 Completeness of ELmint and PALmint

Recall that the logic ELmint is the familiar multi-modal normal system whose ax-
iomatization consists of the S4-type modality int, the S5-type modalities Ki and
the connecting axioms (K-int). Therefore, proofs of Lemma 8.3.1 and Lemma
8.3.2 below are standard (see, e.g., Blackburn et al., 2001, Proposition 4.16 and
Lemma 4.17, respectively).
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8.3.1. Lemma. For every maximally consistent set x of formulas in ELmint and
every formula ϕ, ψ ∈ LKint

1. ELmint ⊆ x,

2. ϕ ∈ x and ϕ→ ψ ∈ x implies ψ ∈ x,

3. ϕ ∈ x or ¬ϕ ∈ x,

4. ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.

8.3.2. Lemma (Lindenbaum’s Lemma). Each consistent set of ELmint can be ex-
tended to a maximally consistent set.

Let Xc be the set of all maximally consistent sets of ELmint. We define relations
∼i on Xc as

x ∼i y iff ∀ϕ ∈ LKint(Kiϕ ∈ x implies ϕ ∈ y).

Notice that the latter is equivalent to saying ∀ϕ ∈ LKint(Kiϕ ∈ x iff Kiϕ ∈ y)
since Ki is an S5 modality. As each Ki is of S5 type, every ∼i is an equivalence re-
lation, hence, it induces equivalence classes on Xc. Let [x]i denote the equivalence
class of x induced by the relation∼i. Moreover, we again set ϕ̂ = {y ∈ Xc | ϕ ∈ y}.

Our canonical model construction is similar to the one for the single-agent
case in (Bjorndahl, 2016). We give a comparison in Section 8.5.

8.3.3. Definition. [Canonical Model for ELmint] We define the canonical model
X c = (Xc, τ c,Φc, V c) as follows:

• Xc is the set of all maximally consistent sets of ELmint;

• τ c is the topological space generated by the subbasis

Σ = {[x]i ∩ înt(ϕ) | x ∈ Xc, ϕ ∈ LKint and i ∈ A};

• x ∈ V c(p) iff p ∈ x, for all p ∈ prop;

• Φc = {(θc)U | U ∈ τ c}, where we define θc : Xc → A→ τ c as θc(x)(i) = [x]i,
for x ∈ Xc and i ∈ A.

We first need to show that (Xc, τ c,Φc) is indeed a topo-frame.

8.3.4. Lemma. (Xc, τ c,Φc) is a topo-frame.
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Proof:
In order to show the above statement, we need to show that (Xc, τ c) is a topo-
logical space, and Φc satisfies the conditions in Definition 8.1.1. For the former,
we only need to show that Σ covers Xc, i.e., that

⋃
Σ = Xc, since τ c is gener-

ated by a subbasis, namely by Σ (in the way described in Chapter 2.2). Since
every element of Σ is a subset of Xc, we obviously have

⋃
Σ ⊆ Xc. Observe

moreover that, since înt(>) = Xc, we have [x]i ∩ înt(>) = [x]i ∈ Σ for each
x ∈ Xc and i ∈ A. Now let x ∈ Xc. Since every ∼i is an equivalence rela-
tion, in particular, each ∼i is reflexive, we have x ∈ [x]i. Therefore, we obtain⋃
x∈Xc [x]i = Xc ⊆

⋃
Σ for any i ∈ A. Hence, we conclude

⋃
Σ = Xc implying

that (Xc, τ c) is a topological space. We now show that Φc satisfies the conditions
in Definition 8.1.1. Let θ ∈ Φc. Thus, by definition of Φc, we have θ = (θc)U

for some U ∈ τ c (in particular, note that θc = (θc)X
c
). Therefore, we have that

D(θ) = D(θc) ∩ U = Xc ∩ U = U ⊆ Xc and θ(x)(i) = θc(x)(i) ∩ U = [x]i ∩ U
for any x ∈ D(θ) and i ∈ A. As argued above, [x]i ∈ Σ for all x ∈ Xc and each
i ∈ A. We therefore obtain that function θ is defined as a partial function such
that θ : Xc ⇀ A → τ c. For condition (1), let x ∈ D(θ). Since D(θ) = U and
θ(x)(i) = [x]i∩U , we also have x ∈ [x]i∩U = θ(x)(i) for all i ∈ A. Moreover, since
θ(x)(i) = [x]i∩U ⊆ U = D(θ), we also satisfy condition (2). For condition (3), let
y ∈ θ(x)(i). As θ(x)(i) = [x]i∩U , we have y ∈ [x]i and y ∈ D(θ). While the latter
proves the first consequent of condition (3), the former implies [y]i = [x]i since [x]i
is an equivalence class. We therefore obtain θ(y)(i) = [y]i∩U = [x]i∩U = θ(x)(i).
Condition (4) is satisfied by definition of Φc. 2

8.3.5. Lemma (Truth Lemma). For every ϕ ∈ LKint and for each x ∈ Xc,

ϕ ∈ x iff X c, (x, θc) |= ϕ.

Proof:
The proof follows by subformula induction on ϕ. The case for the propositional
variables follows from the definition of V c and the cases for the Booleans are
straightforward. We only show the cases ϕ := Kiψ and ϕ := int(ψ).

Case ϕ = Kiψ
(⇒) Suppose Kiψ ∈ x and let y ∈ θc(x)(i). Since y ∈ θc(x)(i) = [x]i, by

definition of ∼i, we have Kiψ ∈ y. Then, by axiom (TK), we obtain ψ ∈ y. Thus,
by IH, X c, (y, θc) |= ψ. Therefore X c, (x, θc) |= Kiψ.

(⇐) Suppose Kiψ 6∈ x. Then, {Kiγ | Kiγ ∈ x} ∪ {¬ψ} is a consistent set.
By Lemma 8.3.2, we can then extend it to a maximally consistent set y. As
{Kiγ | Kiγ ∈ x} ⊆ y, we have y ∈ [x]i meaning that y ∈ θc(x)(i). Moreover,
since ¬ψ ∈ y, we obtain ψ 6∈ y. Therefore, we have a maximally consistent set
y ∈ θc(x)(i) such that ψ 6∈ y. By IH, X c, (y, θc) 6|= ψ. Hence, X c, (x, θc) 6|= Kiψ.

Case ϕ = int(ψ)
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(⇒) Suppose int(ψ) ∈ x. Consider the set [x]i ∩ înt(ψ) for some i ∈ A.

Obviously, x ∈ [x]i∩înt(ψ) ∈ τ c (in fact, [x]i∩înt(ψ) ∈ Σ). Now let y ∈ [x]i∩înt(ψ).

Since y ∈ înt(ψ), we have int(ψ) ∈ y. Then, by (Tint) and since y is maximally
consistent, we have ψ ∈ y. Thus, by IH, we obtain (y, θc) |= ψ. Therefore,

y ∈ [[ψ]]θ
c
. This implies [x]i ∩ înt(ψ) ⊆ [[ψ]]θ

c
. And, since x ∈ [x]i ∩ înt(ψ) ∈ τ c, we

have x ∈ Int([[ψ]]θ
c
), i.e., (x, θc) |= int(ψ).

(⇐) Suppose (x, θc) |= int(ψ), i.e., x ∈ Int([[ψ]]θ
c
). Recall that the set of finite

intersections of the elements of Σ forms a basis, which we denote by BΣ, for τ c.
The assumption x ∈ Int([[ψ]]θ

c
) implies that there exists an open U ∈ BΣ such

that x ∈ U ⊆ [[ψ]]θ
c
. Given the construction of BΣ, U is of the form

U =
⋂
i∈I1

[x1]i ∩ · · ·
⋂
i∈In

[xk]i ∩
⋂

η∈Formfin

înt(η)

where I1, . . . , In are finite subsets of A, x1 . . . xk ∈ Xc and Formfin is a finite
subset of LKint. Since int is a normal modality, we can simply write

U =
⋂
i∈I1

[x1]i ∩ · · ·
⋂
i∈In

[xk]i ∩ înt(γ),

where
∧
η∈Formfin

η := γ. Since x is in each [xj]i with 1 ≤ j ≤ k, we have [xj]i = [x]i
for all such j. Therefore, we have

x ∈ U = (
⋂
i∈I

[x]i) ∩ înt(γ) ⊆ [[ψ]]θ
c

,

where I = I1 ∪ · · · ∪ In. This implies, for all y ∈ (
⋂
i∈I [x]i), if y ∈ înt(γ) then

ψ ∈ y. From this, we can say
⋃
i∈I{Kiσ | Kiσ ∈ x} ` int(γ)→ ψ. Then, there is

a finite subset Γ ⊆
⋃
i∈I{Kiσ | Kiσ ∈ x} such that `

∧
λ∈Γ λ→ (int(γ)→ ψ). It

then follows by the normality of int that

` (
∧
λ∈Γ

int(λ))→ int(int(γ)→ ψ)).

Observe that each λ ∈ Γ is of the form Kjα for some Kjα ∈
⋃
i∈I{Kiσ | Kiσ ∈

x} and we have ` Kiϕ ↔ int(Kiϕ). Therefore, ` (
∧
λ∈Γ λ) → int(int(γ) → ψ)).

Thus, since
∧
λ∈Γ λ ∈ x (by Γ ⊆ x and x being maximal), we have int(int(γ) →

ψ)) ∈ x. Then, by (Kint) and Lemma 8.3.1-(2), we obtain int(int(γ))→ int(ψ) ∈ x.

Moreover, since ` int(int(γ)) ↔ int(γ) and x ∈ înt(γ) (i.e., int(γ) ∈ x), we con-
clude int(ψ) ∈ x. 2

8.3.6. Theorem. ELmint is complete with respect to the class of all topo-models.
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Proof:
Let ϕ be a ELmint-consistent formula. Then, by Lemma 8.3.2, the singleton {ϕ}
can be extended to a maximally consistent set x of ELmint with ϕ ∈ x. Therefore,
by Lemma 8.3.5, we obtain X c, (x, θc) |= ϕ, where X c = (Xc, τ c,Φc, V c) is the
canonical model. 2

8.3.7. Theorem. PALmint is complete with respect to the class of all topo-models.

Proof:
This follows from Theorem 8.3.6 by reduction in a standard way: using the size
measure S(ϕ) given in Definition A.1.1 for the language L!

Kint provides the desired
result via Lemma A.1.5 (note that the strict orders <S and <S

d given in Definition
A.1.3 are equivalent on the language L!

Kint as given in Lemma A.1.4-(2)). We re-
fer to (van Ditmarsch et al., 2007, Chapter 7.4) for a detailed presentation of the
completeness method via reduction, and in particular to (Wang and Cao, 2013,
Theorem 10, p. 111) for an analogous proof. A similar proof for single-agent ELmint
is also presented in (Bjorndahl, 2016, Section 4). 2

8.3.2 Completeness of APALmint

We now reuse the technique of Balbiani and van Ditmarsch (2015) in the setting
of topological semantics. Given the closure requirement under the derivation rule
(�ω-intro), it seems more proper to call maximally consistent sets of APALmint
maximally consistent theories, as further explained below.

8.3.8. Definition. [Theory of APALmint]

• A set x of formulas is called a theory of APALmint (or simply, a theory) iff
APALmint ⊆ x and x is closed under Modus Ponens and (�ω-intro).

• A theory x is said to be consistent iff ⊥ 6∈ x.

• A theory x is maximally consistent iff x is consistent and any set of formulas
properly containing x is inconsistent.

The logic APALmint constitutes the smallest theory. Moreover, maximally con-
sistent theories of APALmint possess the usual properties of maximally consistent
sets:

8.3.9. Lemma. For any maximally consistent theory x of APALmint, and ϕ, ψ ∈
L!
Kint�

1. ϕ 6∈ x iff ¬ϕ ∈ x, and
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2. ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.

In the setting of our axiomatization based on the infinitary rule (�ω-intro), we
will say that a set x of formulas is consistent iff there exists a consistent theory y
such that x ⊆ y. Obviously, maximal consistent theories are maximal consistent
sets of formulas. Under the given definition of consistency for sets of formulas,
maximal consistent sets of formulas are also maximal consistent theories.

8.3.10. Definition. Let ϕ ∈ L!
Kint� and i ∈ A. Then x+ϕ := {ψ | ϕ→ ψ ∈ x},

Kix := {ϕ | Kiϕ ∈ x}, and int(x) := {ϕ | int(ϕ) ∈ x}.

8.3.11. Lemma. For every theory x of APALmint, ϕ ∈ L!
Kint� and agent i ∈ A,

1. x+ ϕ is a theory that contains x and ϕ,

2. Kix is a theory,

3. int(x) is a theory, and

4. int(x) ⊆ x.

Proof:
The proof is similar to the proof of Balbiani et al. (2008, Lemma 4.11) and here
we only prove items 3 and 4. Suppose x is a theory of APALmint and ϕ ∈ L!

Kint�.
(3): Suppose ϕ ∈ APALmint. Since ϕ is a theorem, by (Necint), int(ϕ) is a

theorem of APALmint as well. Therefore, int(ϕ) ∈ x meaning that ϕ ∈ int(x). Hence,
APALmint ⊆ int(x). Let us now show that int(x) is closed under (MP). Suppose
ϕ, ϕ → ψ ∈ int(x). This means, by the definition of int(x), that int(ϕ), int(ϕ →
ψ) ∈ x. By axiom (Kint), we have int(ϕ) → (int(ϕ → ψ) → int(ψ)) ∈ APALmint.
Thus, since APALmint ⊆ x and x is closed under (MP), we obtain int(ψ) ∈ x,
i.e., ψ ∈ int(x). Finally we show that int(x) is closed under (�ω-intro). Let s ∈
NF� and χ ∈ L!

Kint� such that [s][ψ]χ ∈ int(x) for all ψ ∈ L!
Kint. This means

int([s][ψ]χ) ∈ x for all ψ ∈ L!
Kint. As int([s][ψ]χ) is also a necessity form and x is

closed under (�ω-intro), we obtain int([s]�χ) ∈ x meaning that [s]�χ ∈ int(x).
We therefore conclude that int(x) is a theory.

(4): Suppose ϕ ∈ int(x). This means int(ϕ) ∈ x. By (Tint) and the fact that
APALmint ⊆ x, we have int(ϕ) → ϕ ∈ x. Therefore, since x is closed under (MP),
we obtain ϕ ∈ x. As ϕ has been taken arbitrarily from int(x), we conclude that
int(x) ⊆ x. 2

8.3.12. Lemma. Let ϕ ∈ L!
Kint�. For all theories x, x+ϕ is consistent iff ¬ϕ 6∈ x.

Proof:
Let x be a theory of APALmint. Then ¬ϕ ∈ x iff ϕ → ⊥ ∈ x (as ¬ϕ ↔ ϕ → ⊥
is a theorem, and x is closed under (MP)) iff ⊥ ∈ x + ϕ. Therefore, x + ϕ is
inconsistent iff ¬ϕ ∈ x, i.e., x+ ϕ is consistent iff ¬ϕ 6∈ x. 2
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8.3.13. Lemma (Lindenbaum’s Lemma). Each consistent theory x can be ex-
tended to a maximal consistent theory y such that x ⊆ y.

Proof:
The proof is the same as the proof of (Balbiani et al., 2008, Lemma 4.12). We
here recapitulate it in our notation to render the chapter self-contained. The proof
proceeds by constructing an increasing chain

y0 ⊆ y1 ⊆ . . . ⊆ yn ⊆ . . . ,

of consistent theories where y0 := x, and each yi will be recursively defined. At
each step, we have to guarantee that yi is consistent, APALmint is included in yi
and it is closed under (MP) and (�ω-intro). Let ψ0, ψ1, . . . be the enumeration
of all formulas in L!

Kint�, and set y0 = x. Now suppose we are at the (n+1)st
step of the construction, that is, yn has already been defined as a consistent the-
ory containing x. We first observe that either yn + ψn is consistent, or yn + ¬ψn
is consistent (but not both). Suppose otherwise, i.e., suppose both yn + ψn and
yn + ¬ψn are inconsistent. Then, by Lemma 8.3.12, we have both ¬ψ ∈ yn and
¬¬ψ ∈ yn. However, since ¬ψn → (¬¬ψn → ⊥) ∈ APALmint ⊆ yn and yn is closed
under (MP), we obtain ⊥ ∈ yn, contradicting consistency of yn. If yn + ψn is
consistent, we define yn+1 = yn +ψn. By Lemma 8.3.11-(1), it is guaranteed that
yn + ψn is a theory. If yn + ψn is inconsistent, we have ¬ψn ∈ yn (by Lemma
8.3.12). We then have two cases: (a) ψn is not a consequence of (�ω-intro) (b) ψn
is a consequence of (�ω-intro). If (a) is the case, we let yn+1 = yn. For (b), let
[s1]�χ1, [s2]�χ2, . . . , [sk]�χk be the enumeration of all possible representations
of ψn as a consequence of (�ω-intro). We now define another sequence y0

n, . . . , y
k
n

of consistent theories such that y0
n = yn and each yin with i ≤ k is recursively

defined and includes yn. Now suppose we are at the (i+1)st step of the construc-
tion, that is, yin has already been defined as a consistent theory containing yn.
This means, ¬[si]�χi ∈ yin (as ¬[si]�χi := ¬ψn ∈ yn ⊆ yin). Since yin is closed
under (�ω-intro), there exists ϕi ∈ L!

Kint such that [si][ϕi]χi 6∈ yin. Then we define
yi+1
n = yin+¬[si][ϕi]χi (by Lemmas 8.3.11-(1) and 8.3.12, yi+1

n is guaranteed to be
a consistent theory). Then, we set yn+1 = ykn. Now define y =

⋃
i∈N yi. We then

show that y is in fact a maximally consistent theory. Since APALmint ⊆ x = y0 ⊆ y,
we have APALmint ⊆ y. It is also easy to see that y is consistent (since every ele-
ment of the chain is consistent). Second, we prove y is closed under (MP). Let
ϕ, ϕ → ψ ∈ y. Then, by the construction of y, there is yn and ym in the above
chain such that ϕ ∈ yn and ϕ → ψ ∈ ym. W.l.o.g, we can assume n ≤ m, thus,
yn ⊆ ym. Hence, ϕ ∈ ym. Since ym is closed under (MP), we obtain ψ ∈ ym, thus,
ϕ ∈ y (since ym ⊆ y). Third, we show y is closed under (�ω-intro). Let s ∈ NF�

such that [s][ϕ]χ ∈ y for all ϕ ∈ L!
Kint, and suppose toward contradiction that

[s]�χ 6∈ y. This implies [s]�χ 6∈ yi for all yi in the above chain, since yi ⊆ y
for all i ∈ N. Moreover, observe that [s]�χ appears in the enumeration of all
formulas. Let [s]�χ := ψm. Since ψm 6∈ ym+1, we know that ym+1 6= ym+ψm. This
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means, by the definition of ym+1, that ym + ψm is inconsistent, thus, ¬ψm ∈ ym
(by Lemma 8.3.12). Then, by the construction of ym+1, it is guaranteed that there
is a η ∈ L!

Kint such that ¬[s][η]χ ∈ ym+1. As ym+1 ⊆ y, we obtain ¬[s][η]χ ∈ y,
contradicting consistency of y (since we assumed [s][ϕ]χ ∈ y for all ϕ ∈ L!

Kint). It
remains to show that y is maximal. Suppose otherwise, i.e., suppose that there
is a consistent theory y′ such that y ( y′. This implies that there is ϕ ∈ y′ but
ϕ 6∈ y. Hence, ϕ 6∈ yi for all i ∈ N. W.l.o.g, assume ϕ = ψm. Therefore, in
particular, ym + ϕ is inconsistent, hence, ¬ϕ ∈ ym. This implies ¬ϕ ∈ y′ (since
ym ⊆ y′), hence, both ϕ and ¬ϕ are in y′. Then, by Lemma 8.3.9-(2) and y′ being
closed under (MP), we obtain ⊥ ∈ y′, contradicting consistency of y′. Therefore,
y is a maximally consistent theory. 2

8.3.14. Lemma (Existence Lemma for Ki). Let ϕ ∈ L!
Kint� and i ∈ A. For

every theory x, if Kiϕ 6∈ x, then there is a maximally consistent theory y such
that Kix ⊆ y and ϕ 6∈ y.

Proof:
Let x be a theory of APALmint such that Kiϕ 6∈ x. Thus, ϕ 6∈ Kix. This implies that
¬¬ϕ 6∈ Kix: otherwise, since Kix is a theory (Lemma 8.3.11-(2)), thus, closed un-
der (MP), and ¬¬ϕ↔ ϕ ∈ APALmint, we would obtain ϕ ∈ Kix, contradicting the
assumption. Hence, by Lemma 8.3.12, Kix+ ¬ϕ is consistent. Then, by Lemma
8.3.13, there exists a maximally consistent theory y such that Kix+ ¬ϕ ⊆ y. By
Lemma 8.3.11-(1), we know that Kix ⊆ Kix + ¬ϕ and ¬ϕ ∈ Kix. Hence, we
conclude Kix ⊆ y and ϕ 6∈ y. 2

8.3.15. Lemma. Let ϕ ∈ L!
Kint� and x be a theory. Then, �ϕ ∈ x iff for all

ψ ∈ L!
Kint, [ψ]ϕ ∈ x.

Proof:
For the direction left-to-right, suppose �ϕ ∈ x. Then, by (�-elim) and (MP), we
have [ψ]ϕ ∈ x for all ψ ∈ L!

Kint. For the other direction, suppose [ψ]ϕ ∈ x for all
ψ ∈ L!

Kint. Consider the necessity form [s] := ε. We know that [ε][ψ]ϕ := [ψ]ϕ.
Thus, by assumption, [ε][ψ]ϕ for all ψ ∈ L!

Kint. Then, since x is closed under
(�ω-intro), [ε]�ϕ ∈ x, i.e., �ϕ ∈ x as well. 2

The definition of the canonical model for APALmint is the same as for ELmint,
except that the maximally consistent sets are maximally consistent theories of
APALmint. We now come to the Truth Lemma for the logic APALmint. Here we use
the complexity measure ψ <S

d ϕ (see Appendix A.1), and we recall that θc : Xc →
A→ τ c is defined as θc(x)(i) = [x]i, for x ∈ Xc and i ∈ A.
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8.3.16. Lemma (Truth Lemma). For every ϕ ∈ L!
Kint� and for each x ∈ Xc,

ϕ ∈ x iff X c, (x, θc) |= ϕ.

Proof:
Let ϕ ∈ L!

Kint� and x ∈ X c. The proof is by <S
d -induction on ϕ, where the case

ϕ = [ψ]χ is proved by a subinduction on χ. We therefore consider 13 cases, where
the base case ϕ := p as usual follows from the definition of V c.

Induction Hypothesis: for all ψ ∈ L!
Kint� and x ∈ X c, if ψ <S

d ϕ, then ψ ∈
x iff X c, (x, θc) |= ψ.

The Boolean cases follow standardly, where we observe that the subformula
order is subsumed under the <S

d order (see Lemma A.1.5-(1)). We proceed with
the cases ϕ = Kiψ and ϕ = int(ψ) respectively, and then with the subinduction
on χ for case announcement ϕ = [ψ]χ, and finally with the case ϕ = �ψ.

Case ϕ := Kiψ
For the direction from left-to-right, see (Truth) Lemma 8.3.5. For the opposite

direction, suppose Kiψ 6∈ x. Then, by Lemma 8.3.14, there exists a maximally
consistent theory y such that Kix ⊆ y and ψ 6∈ y. Then, by ψ <S

d Kiψ and
induction hypothesis (IH), we obtain (y, θc) 6|= ψ. Since Kix ⊆ y, we have y ∈ [x]i
meaning that y ∈ θc(x)(i). Therefore, by the semantics, X c, (x, θc) 6|= Kiψ.

Case ϕ := int(ψ)
For the direction from left-to-right, see (Truth) Lemma 8.3.5. For the opposite

direction, suppose int(ψ) 6∈ x. We want to show that x 6∈ Int([[ψ]]θ
c
), i.e., show

that for all U ∈ BΣ with x ∈ U , we obtain U 6⊆ [[ψ]]θ
c
, where BΣ is the basis of

X c constructed by closing Σ under finite intersections (as in the proof of Lemma
8.3.5). Let U ∈ BΣ such that x ∈ U . Given the construction of BΣ, U is of the
form

U = (
⋂
i∈I

[x]i) ∩ înt(γ),

where I and int(γ) are as in the proof of Lemma 8.3.5, case for the modality
int. In order to complete the proof, we need to construct a maximally consistent
theory y ∈ U such that y 6∈ [[ψ]]θ

c
. Therefore, this maximally consistent theory y

should satisfy the following properties:

1.
⋃
i∈I{Kiσ | Kiσ ∈ x} ⊆ y, i.e., y ∈

⋂
i∈I [x]i,

2. int(γ) ∈ y, i.e., y ∈ înt(γ),

3. ¬ψ ∈ y, or equivalently, ψ 6∈ y.

Toward the goal of finding this maximal consistent theory y, we first construct a
consistent theory z (that we later expand to the maximal consistent theory y).
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Consider the set of formulas

z0 :=
⋃
i∈I

{Kiσ | Kiσ ∈ x} ∪ {int(γ)} ∪ APALmint,

and close z0 under (MP) and (�ω-intro) to obtain z. It is guaranteed that z is
a theory since it includes APALmint and it is closed under (MP) and (�ω-intro).
Moreover, z0 ⊆ x, since (1)

⋃
i∈I{Kiσ | Kiσ ∈ x} ⊆ x and (2) int(γ) ∈ x

because x ∈ U = (
⋂
i∈I [x]i) ∩ înt(γ), and thus, x ∈ înt(γ). Therefore, z0 ⊆ x

and since z is the smallest theory containing z0 (by construction), we obtain
z ⊆ x. It follows that z is consistent since x is consistent. We now consider the
set int(z). Similarly, int(z) is a consistent theory such that int(z) ⊆ z ⊆ x (by
Lemma 8.3.11-(3,4) and x being a maximally consistent theory). Furthermore,⋃
i∈I{Kiσ | Kiσ ∈ x} ∪ {int(γ)} ⊆ int(z), since Kiσ ↔ int(Kiσ) ∈ APALmint and

Kiσ ∈ z for each i ∈ I, and similarly since int(γ) ↔ int(int(γ)) ∈ APALmint and
int(γ) ∈ z. In fact, given that z is the smallest theory constructed from z0 by
closing z0 under (MP) and (�ω-intro), and int(z) is also a consistent theory such
that z0 ⊆ int(z) ⊆ z, we obtain int(z) = z. Observe that, since int(ψ) 6∈ x and
z ⊆ x, we have int(ψ) 6∈ z. Therefore, the fact that int(ψ) 6∈ int(z) = z implies that
ψ 6∈ z. Finally, we extend the consistent theory z to the set of formulas z + ¬ψ.
By Lemma 8.3.11-(1), we know that z + ¬ψ is a theory such that z ⊆ z + ¬ψ
and ¬ψ ∈ z + ¬ψ. Moreover, since ψ 6∈ z, Lemma 8.3.12 implies that z + ¬ψ is
a consistent theory. Thus, by Lemma 8.3.13, there exists a maximally consistent
theory y such that z + ¬ψ ⊆ y. Hence, we have the maximally consistent theory
y with:

1.
⋃
i∈I{Kiσ | Kiσ ∈ x} ⊆ y, since

⋃
i∈I{Kiσ | Kiσ ∈ x} ⊆ z ⊆ y,

2. int(γ) ∈ y, since int(γ) ∈ z ⊆ y, and

3. ¬ψ ∈ y, since ¬ψ ∈ z + ¬ψ ⊆ y.

Therefore, y ∈ (
⋂
i∈I [x]i)∩ înt(γ) = U (by (1) and (2) above) such that y 6∈ [[ψ]]θ

c

(by (3) and IH). Thus, U 6⊆ [[ψ]]θ
c
. Since the basic open neighbourhood U of x

has been chosen from BΣ arbitrarily, we obtain x 6∈ Int([[ψ]]θ
c
).

Case ϕ := [ψ]χ: This case follows from a subinduction on χ.

Subcase ϕ := [ψ]p

[ψ]p ∈ x iff int(ψ)→ p ∈ x (Rp)

iff (x, θc) |= int(ψ)→ p (Lemma A.1.5-(5) and (IH))

iff (x, θc) |= [ψ]p (Rp)

Subcase ϕ := [ψ]¬η
Use (R¬), (IH), and Lemma A.1.5-(6) stating int(ψ)→ ¬[ψ]η <S

d [ψ]¬η.
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Subcase ϕ := [ψ](η ∧ σ)

Use (R∧), (IH), and Lemma A.1.5-(7) stating [ψ]η ∧ [ψ]σ <S
d [ψ](η ∧ σ).

Subcase ϕ := [ψ]int(η)

Use (Rint), (IH), and Lemma A.1.5-(8) stating int(ψ)→ int([ψ]η) <S
d [ψ]int(η).

Subcase ϕ := [ψ]Kiη

Use (RK), (IH), and Lemma A.1.5-(9) stating int(ψ)→ Ki[ψ]η <S
d [ψ]Kiη.

Subcase ϕ := [ψ][η]σ

Use (R[!]), (IH), and Lemma A.1.5-(10) stating [〈ψ〉η]σ <S
d [ψ][η]σ.

Subcase ϕ := [ψ]�σ
For all η ∈ L!

Kint, we have [ψ][η]σ <S
d [ψ]�σ since [ψ]�σ has one more �

than [ψ][η]σ (see Lemma A.1.5-(3-4)). Therefore, it suffices to show [ψ]�σ ∈
x iff ∀η ∈ L!

Kint([ψ][η]σ ∈ x). For the direction from right-to-left, assume that
for all η ∈ L!

Kint, [ψ][η]σ ∈ x. Notice that each [ψ][η]σ is a necessity form of
the shape [s][η]σ where s = ψ. Therefore, since x is closed under (�ω-intro), we
obtain [ψ]�σ ∈ x. For the opposite direction, suppose [ψ]�σ ∈ x. Observe that
[ψ]�σ → [ψ][η]σ ∈ APALmint for all η ∈ L!

Kint (this can easily be proven by (�-elim,
Nec!, K! and MP). Therefore, for all η ∈ L!

Kint, [ψ][η]σ ∈ x, since x is closed under
(MP). We can then obtain

[ψ]�σ ∈ x iff ∀η ∈ L!
Kint([ψ][η]σ ∈ x) (by the above argument)

iff (∀η ∈ L!
Kint)((x, θ

c) |= [ψ][η]σ) (IH, [ψ][η]σ <S
d [ψ]�σ)

iff (∀η ∈ L!
Kint)((x, θ

c) |= int(ψ) implies (x, (θc)ψ) |= [η]σ)

iff (x, θc) |= int(ψ) implies (∀η ∈ L!
Kint)((x, (θ

c)ψ) |= [η]σ)

iff (x, θc) |= int(ψ) implies (x, (θc)ψ) |= �σ
iff (x, θc) |= [ψ]�σ

This completes the case ϕ := [ψ]χ.

Case ϕ := �ψ
Again note that for all η ∈ L!

Kint, [η]ψ <S
d �ψ, since �ψ has one more � than

[η]ψ (see Lemma A.1.5-(3-4)). Therefore, we obtain

�ψ ∈ x iff (∀η ∈ L!
Kint�)([η]ψ ∈ x) (Lemma 8.3.15)

iff (∀η ∈ L!
Kint�)((x, θc) |= [η]ψ) (IH)

iff (x, θc) |= �ψ (by the semantics of �)

2

8.3.17. Theorem. APALmint is complete with respect to the class of all topo-
models, i.e., for all ϕ ∈ L!

Kint�, if ϕ is valid, then ϕ ∈ APALmint.
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Proof:
Let ϕ ∈ L!

Kint� such that ϕ 6∈ APALmint (recall that APALmint is the smallest theory).
Then, by Lemma 8.3.12, APALmint + ¬ϕ is a consistent theory, and, by Lemma
8.3.11-(1), we have ¬ϕ ∈ APALmint + ¬ϕ. By Lemma 8.3.13, the consistent the-
ory APALmint + ¬ϕ can be extended to a maximally consistent theory y such that
APALmint + ¬ϕ ⊆ y. Since y is maximally consistent and ¬ϕ ∈ y, we obtain ϕ 6∈ y
(by Proposition 8.3.9). Then, by Lemma 8.3.16 (Truth Lemma), we conclude
X c, (y, θc) 6|= ϕ. 2

8.4 S4 knowledge on multi-agent topo-models

As mentioned earlier, some of our results generalize to weaker versions of ELmint,
PALmint, and APALmint that have knowledge modalities of different strength, such as
S4, S4.2 and S4.3. More precisely, we can weaken the conditions on the neighbour-
hood functions given in Definition 8.1.1 in a way that the corresponding logics
on such weaker models embed only S4K , S4.2K or S4.3K types of knowledge. In
this section, we focus on the case S4K , and briefly state the required adjustments
for S4.2K and S4.3K .

Since the S4 type of knowledge does not satisfy the axiom (5K): ¬Kiϕ →
Ki¬Kiϕ and the key property that makes the axiom (5K) sound on topo-models
is Definition 8.1.1-(3), we weaken exactly this clause to obtain topo-models for
logics for knowledge of different strength.

8.4.1. Definition. [Weak Topo-Model] A weak multi-agent topological model
(weak topo-model) is a topo-model X = (X, τ,Φ, V ) as in Definition 8.1.1 with
clause 3 replaced by

3. for all y ∈ X, if y ∈ θ(x)(i) then y ∈ D(θ) and θ(y)(i) ⊆ θ(x)(i).

A weak topo-frame is defined analogously to Definition 8.1.2.

8.4.2. Definition. The axiomatization of wELmint is that of ELmint minus the ax-
iom (5K). The axiomatizations for wPALmint and wAPALmint are the obvious further
extensions as in Table 8.1.

Soundness of wELmint, wPAL
m
int, and wAPALmint with respect to weak topo-models

follow as in Proposition 8.2.4 and Corollary 8.2.5. As for completeness, we again
use a canonical model construction similar to the one for the stronger logics,
however, adapted for the S4-type knowledge. Let us first introduce some notation
and basic concepts.

Let Xc be the set of all maximally consistent sets of wELmint. We define relations
Rc
i on Xc as

xRc
iy iff ∀ϕ ∈ LKint(Kiϕ ∈ x implies ϕ ∈ y).
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Let Rc
i (x) denote the upward-closed set generated by x with respect to the relation

Rc
i , i.e., Rc

i (x) = {y ∈ Xc | xRc
iy}. Note that, since Ki is of S4-type, the canonical

relations Rc
i are reflexive and transitive. As usual, we set ϕ̂ = {y ∈ Xc | ϕ ∈ y}.

8.4.3. Definition. [Canonical Model for wELmint] We define the (weak) canonical
model X c = (Xc, τ c,Φc, V c) as follows:

• Xc is the set of all maximally consistent sets of wELmint;

• τ c is the topological space generated by the subbasis

Σ = {Rc
i (x) ∩ înt(ϕ) | x ∈ Xc, ϕ ∈ LKint and i ∈ A};

• x ∈ V c(p) iff p ∈ x, for all p ∈ prop;

• Φc = {(θc)U | U ∈ τ c}, where we define θc : Xc → A → τ c as θc(x)(i) =
Rc
i (x), for x ∈ Xc and i ∈ A.

Observe that (Xc, τ c,Φc) is a weak topo-frame. This can be shown as in the

proof of Lemma 8.3.4. As in the previous case we have înt(>) = Xc, thus, each
Rc
i (x) is an open set in τ c. Moreover, Φc satisfies the required properties of the

elements of Φ given in Definition 8.4.1. Observe that D(θc) = Xc and D((θc)U) =
U for all U ∈ τ c. Moreover, (θc)U(x)(i) = Rc

i (x) ∩ U when x ∈ U .

8.4.4. Lemma (Truth Lemma). For every ϕ ∈ LKint and for each x ∈ Xc

ϕ ∈ x iff X c, (x, θc) |= ϕ.

Proof:
Proof is similar to the proof of Lemma 8.3.5 except that we replace each [x]i by
Rc
i (x). 2

8.4.5. Theorem. wELmint, wPAL
m
int, and wAPALmint are complete with respect to

the class of all weak topo-models.

Proof:
For completeness of wELmint, let ϕ ∈ LKint such that wELmint 6` ϕ. This implies that
{¬ϕ} is a consistent set. Then, by Lindenbaum’s Lemma, it can be extended to
a maximally consistent set x such that ¬ϕ ∈ x. Therefore, by (Truth) Lemma
8.4.4, Xc, (x, θc) 6|= ϕ. For completeness of wPALmint, see proof of Theorem 8.3.7.
The completeness proof of APALmint follows similarly as in Theorem 8.3.17, how-
ever, the canonical model is the same as for wELmint, except that the maximally
consistent sets are maximally consistent theories of wAPALmint. 2

Moreover, by adding the following condition to Definition 8.4.1, we obtain
topo-models for S4.3K :
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• for all y, z ∈ X, if y, z ∈ θ(x)(i) then y, z ∈ D(θ) and either θ(y)(i) ⊆ θ(z)(i)
or θ(z)(i) ⊆ θ(y)(i).

The logics based on S4.2K on the other hand demand a more careful treatment
if dynamics are involved (as in Section 4.2.2). In particular, the condition on
neighbourhood functions that makes the axiom (.2K): K̂iKiϕ→ KiK̂iϕ valid on
topo-models is

• for all y, z ∈ X, if y, z ∈ θ(x)(i) then y, z ∈ D(θ) and θ(y)(i) ∩ θ(z)(i) 6= ∅.

However, the (.2K)-axiom may no longer hold after an update, as the intersection
of updated open neighbourhoods θϕ(y)(i) ∩ θϕ(z)(i) may have become empty
after the refinement. This is analogous to the problem presented in Section 4.2.2.
Therefore, in order to work with S4.2K in the present setting, we should drop
condition (4) of Definition 8.1.1, and confine ourselves to the epistemic fragment
wELmint + K̂iKiϕ→ KiK̂iϕ.

8.5 Comparison to other work

In this section we compare our work in greater detail to some of the prior literature
that we already referred to. In this comparison, a prominent position is taken by
an embedding from single-agent topological semantics to multi-agent topological
semantics and vice versa, wherein the (single-agent) work of Bjorndahl (2016)
and van Ditmarsch et al. (2014) play a large role. Bjorndahl’s use of the interior
operator and topological semantics motivated our own approach: our semantics
for LKint and L!

Kint are essentially multi-agent extensions of Bjorndahl’s semantics
for the single-agent versions of these languages. This is the topic of the first half
of this section. The second contains a review of other related works.

From multi-agent to single-agent. Throughout this section, we denote single-
agent topo-models (X, τ, V ) byM in order to distinguish them from multi-agent
topo-models X = (X, τ,Φ, V ) with neighbourhood functions. We moreover focus
on the single agent case, i.e., assume that A = {i}.

In the single-agent case, it is clear that a neighbourhood situation (x, θ) of
a given topo-model X = (X, τ,Φ, V ) reverts to an epistemic scenario (x, U) of
X− = (X, τ, V ), where U = θ(x)(i) and X− denotes X = (X, τ,Φ, V ) without
the Φ component. For the other direction, given a single-agent model (with-
out a neighbourhood function set) M = (X, τ, V ), for each epistemic scenario
(x, U) ∈ ES(M), we define a neighbourhood function θU : X ⇀ {i} → τ such
that D(θU) = U and θU(x)(i) = U for all x ∈ U . We therefore define the neigh-
bourhood function set for M as

ΦM := {θU | (x, U) ∈ ES(M)}.
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It is not hard to see that ΦM satisfies the properties given in Definition 8.1.2, and
thus is indeed a neighbourhood function set on the underlying topological space
of M. Therefore, M+ = (X, τ,ΦM, V ) constitutes a topo-model as described in
Definition 8.1.2, and it is constructed from M = (X, τ, V ).

In the following theorem, |=s refers to the satisfaction relation defined for
(single-agent) L!

Kint� on topo-models M = (X, τ, V ) with respect to epistemic
scenarios (x, U), as given in Definitions 6.2.1 and 7.2.1. The usual notation |=
is reserved for the satisfaction relation defined on (X, τ,Φ, V ) with respect to
neighbourhood situations as given in Definition 8.1.4.

8.5.1. Theorem.

1. For every M = (X, τ, V ), epistemic scenario (x, U) ∈ ES(M) and ϕ ∈
L!
Kint�,

M, (x, U) |=s ϕ iff M+, (x, θU) |= ϕ.

2. For every X = (X, τ,Φ, V ), neighbourhood situation (x, θ) ∈ X , and ϕ ∈
L!
Kint�,

X , (x, θ) |= ϕ iff X−, (x, θ(x)(i)) |=s ϕ.

Proof:
The proofs for both items follow similarly by <S

d -induction on the formulas in
single-agent L!

Kint�. The cases for the propositional variables, Booleans and the
modalities K and int are standard. The case ϕ := [ψ]χ for the public announce-
ment modality follows by subinduction on χ, by using the soundness of the re-
duction axioms with respect to both single and multi-agent topo-models. Here
we present only the subcase for χ = p and χ := �σ of item (1). The other cases
are similar.

Subcase ϕ := [ψ]p

M, (x, U) |=s [ψ]p iff M, (x, U) |=s int(ψ)→ p (the validity (Rp) for |=s)

iff M+, (x, θU) |= int(ψ)→ p (Lemma A.1.5-(5) and (IH))

iff M+, (x, θU) |= [ψ]p (the validity (Rp) for |=)

Subcase ϕ := [ψ]�σ

M+, (x, θU) |= [ψ]�σ
iff (∀η ∈ L!

Kint)(M+, (x, θU) |= [ψ][η]σ) (*)

iff (∀η ∈ L!
Kint)(M, (x, U) |=s [ψ][η]σ) (Lemma A.1.5-(4) and (IH))

iff M, (x, U) |=s [ψ]�σ (similar to (*))

*: see Lemma 8.3.16, subcase ϕ := [ψ]�σ. 2
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Theorem 8.5.1-(1) therefore states thatM, (x, U) andM+, (x, θU) are modally
equivalent with respect to L!

Kint�. Moreover, for all ϕ ∈ L!
Kint�,M |=s ϕ iffM+ |=

ϕ, i.e.,M andM+ are (globally) modally equivalent with respect to the same lan-
guage. Furthermore, Theorem 8.5.1-(2) shows that X , (x, θ) and X−, (x, θ(x)(i))
are modally equivalent with respect to L!

Kint�. However, X is not necessarily
(globally) modally equivalent to X−, as the following example demonstrates.

8.5.2. Example. The reason why X and X− are not necessarily modally equiva-
lent is that while X− reverts to using the full topology τ , the view on that in X is
restricted by Φ. For a counterexample, consider the topo-model X = (X, τ,Φ, V )
where X = {1, 2} and τ is the discrete topology on X. We set Φ = {θ} where
D(θ) = {2} and θ(2) = {2}. Hence, the only neighbourhood situation of X is
(2, θ). Finally we let V (p) = {1}. Therefore, X , (2, θ) |= ¬Kp and as (2, θ) is the
only neighbourhood situation of the model, we obtain X |= ¬Kp. On the other
hand, (1, {1}) is an epistemic scenario in X−, and X−, (1, {1}) |= Kp, therefore,
X− 6|= ¬Kp.

In the remainder of this section, we compare mainly three aspects of our work
to that of others in the relevant literature.

Multi-agent epistemic systems. Multi-agent epistemic systems with sub-
set space-like semantics have been proposed in (Heinemann, 2008, 2010; Baskent,
2007; Wáng and Ågotnes, 2013a), however, none of these are concerned with pub-
lic or arbitrary public announcements. An unorthodox approach to multi-agent
knowledge is proposed in (Heinemann, 2008, 2010). Roughly speaking, instead
of having a knowledge modality Ki for each agent as a primitive operator in his
syntax, Heinemann uses additional operators to define Ki and his semantics only
validates the S4-axioms for Ki. The necessitation rule for Ki does not preserve va-
lidity under the proposed semantics (Heinemann, 2008, 2010). On the other hand,
we follow the methods of dynamic epistemic logic in our multi-agent generaliza-
tion by extending the single-agent case with a knowledge modality Ki for each
agent and propose a multi-agent topological semantics for this language general
enough to model both S4 and S5 types of knowledge, and flexible enough for fur-
ther generalizations as shown in Section 8.4. Another multi-agent logic of subset
spaces is developed in (Wáng and Ågotnes, 2013a). This setting uses multi-agent
versions of both knowledge Ki and effort 2i, where, for example, 31K2p is read
as “agent 1 comes up with evidence so that agent 2 gets to know p” (Wáng
and Ågotnes, 2013a, p. 1160). They have left the question of how to model an
agent-independent effort operator open, while pointing out its connection to the
arbitrary announcement modality of Balbiani et al. (2008). Besides, no announce-
ments or further generalizations (unlike in their other, single-agent, work Wáng
and Ågotnes, 2013b) are considered in (Wáng and Ågotnes, 2013a), and a purely
topological case is left for future research. To this end, we believe our work in
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this chapter at least partially answers some of their open questions. Their use
of partitions for each agent instead of a single neighbourhood is compatible with
our requirement that all neighbourhoods for a given agent be disjoint. A further
difference from the existing literature is that we restrict our attention to topo-
logical spaces and prove our results by means of topological tools. For example,
our completeness proofs employ direct topological canonical model constructions
without a detour referring to different types of semantics and completeness results
therein.

Completeness proof. We applied the new completeness proof for arbitrary
public announcement logic of Balbiani and van Ditmarsch (2015) to a topological
setting. The modality int in our system demands a different complexity measure in
the Truth Lemma of the completeness proof of APALmint than in (Balbiani and van
Ditmarsch, 2015). Moreoever, we modified the complexity measure given in (van
Ditmarsch et al., 2015b) to make it work for both the completeness of APALmint and
of PALmint. The canonical modal construction is as in (Bjorndahl, 2016) with some
multi-agent modifications: we defined the set Σ from which the topology of the
canonical model is generated in a similar way as in (Bjorndahl, 2016), however,
having multiple agents renders this set weaker in the sense that while it constitutes
a basis in the single-agent case, it becomes a subbasis in the multi-agent setting.

Single agent case. In standard (single-agent) subset space semantics (Moss
and Parikh, 1992; Dabrowski et al., 1996) and in the later extensions (Wáng
and Ågotnes, 2013a; Bjorndahl, 2016; Balbiani et al., 2013; van Ditmarsch et al.,
2014), the modality K quantifies over the elements of a given open neighbourhood
U that is fixed from the beginning of the evaluation. This makes K behave like
a universal modality within U , therefore, S5K as an underlying epistemic system
becomes intrinsic to the semantics. However, in our proposal, the soundness of
the epistemic axioms (i.e., axioms involving only the modality K) depends on the
constraints posed on the neighbourhood functions and relaxing these constraints
enables us to work with weaker notions of knowledge as shown in Section 8.4. In
this sense, our approach generalizes the epistemic aspect of the aforementioned
literature. Moreover, Balbiani et al. (2013) proposed subset space semantics for
arbitrary announcements. However, their approach does not go beyond the single-
agent case and the semantics provided is in terms of model restriction.

8.6 Conclusions and Future Work

In this chapter, we proposed a multi-agent topological semantics for knowledge,
knowability, public and arbitrary announcements in the style of subset space
semantics. We in particular provided a multi-agent semantic framework, based
on topological spaces, that eliminates the so-called problem of “jumping out of the
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epistemic range” in the evaluation of higher-order knowledge formulas involving
different agents. In our setup all agents have the same observational power in the
sense that they have access to exactly the same collection of potential evidence,
represented by each topo-model carrying only one topology. In order to model the
informational attitudes of a group of agents with different observational powers,
one could associate a possibly different topology with each agent together with
a “common” topology representing all potential evidence. Moreover, the studied
notions of dynamics of “learning new evidence” brought about by announcements
were of public nature, and the information source was assumed to be external.
Van Ditmarsch et al. (2017) generalizes the topological public announcement
semantics of this chapter for semi-private announcement, again assuming the
information source to be external.

Unsurprisingly, working with S5-type of knowledge required a partitioning
of the (sub)domain of a topological space. This might seem like a restrictive re-
quirement since it rules out working with more familiar spaces such as the natural
topology of open intervals on the real line or the Euclidean space. However, as
long as multiple S5-type agents are concerned, we believe it is hard to avoid
such a restriction, if possible at all. We then axiomatized the multi-agent logic of
knowledge and knowability ELmint, its extension with public announcements PALmint,
and also with arbitrary public announcements APALmint. The arbitrary announce-
ment modality �ϕ capturing “stability of the truth of ϕ after any announcement”
comes closer to the intuition behind the effort modality 2ϕ as “stability of the
truth of ϕ after any evidence-acquisition”. These two modalities are proven to be
equivalent in the single-agent setting (see Theorem 7.2.6). However, the appro-
priate interpretation of effort in the multi-agent setting and its connection to the
arbitrary announcement modality still remain elusive and deserve a closer look.

The connection between the effort modality and the arbitrary announcement
modality has also been observed in (Wáng and Ågotnes, 2013a), however, pro-
viding a formal analysis regarding the link between these two modalities in a
multi-agent setting is not straightforward: there is not yet agreement on how to
interpret the effort modality in a multi-agent framework. The existing proposals
neither agree on the general framework, nor are they entirely compatible with each
other or with our multi-agent topological setting (see Section 8.5 for a comparison
with other work on multi-agent subset space semantics). This was not the case
in the single-agent version, since the effort modality originated in a single-agent
framework, and once we have a semantics for the public announcement modalities,
it is obvious how to generalize it for arbitrary announcements, namely by follow-
ing the intuitive reading of the arbitrary announcement modality as in (Balbiani
et al., 2008). In the following, we propose a semantics for the effort modality on
multi-agent topo-models that, we believe, fits well with the underlying dynamic
epistemic setting developed in this chapter. More precisely, we consider the below
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semantic clause for the effort modality on multi-agent topo-models

X , (x, θ) |= 2ϕ iff (∀U ∈ τ)(x ∈ U ⊆ D(θ) implies X , (x, θU) |= ϕ) (2-sem)

This interpretation fits well with and generalizes the arbitrary announcement
modality �ϕ, to recall, interpreted as

X , (x, θ) |= �ϕ iff (∀ψ ∈ L!
Kint)(x ∈ Int([[ψ]]θ) implies X , (x, θψ) |= ϕ),

To elaborate, �ϕ quantifies over all announceable formulas in L!
Kint, and in

turn, quantifies over all epistemically definable open subsets of D(θ), and checks
whether ϕ is true with respect to the corresponding updated functions θψ that
is obtained by restricting θ with the open set Int([[ψ]]θ). On the other hand, the
effort modality 2ϕ simply quantifies over all open subsets of D(θ), and checks
whether ϕ remains true with respect to the restricted neighbourhood functions
θU . These two modalities are proven to be equivalent in the single-agent case
(see Theorem 7.2.6), however, this result does not carry over to the multi-agent
setting. In fact, the above semantic clause for 2ϕ is analogous to what is called
“structural semantics for �ϕ”, which is stated as a possible alternative for the
interpretation of the arbitrary announcement modality in (Balbiani et al., 2008,
Section 2.3.1). We can then use the example presented in (Balbiani et al., 2008,
p. 310), which was based on a multi-agent Kripke model, to show that 2ϕ and
�ϕ do not coincide in our multi-agent setting either.

8.6.1. Example. (Balbiani et al., 2008, p. 310) We consider the following two-
agent example with agent a and b based on a discrete space. The topo-model we
use in this example is the same as X in Proposition 8.2.9 except for its valuation.
Let X = (X,P(X),Φ, V ) our topo-model where X = {x0, y0, x1, y1}, the topology
P(X) is the set of all subsets of X and V (p) = {x1, y1}. We stipulate that
the actual state is x1 and the neighbourhood function θ defining the epistemic
ranges of the agents induces a partition for each agent exactly as in Proposition
8.2.9, also see Figure 8.8a. Now consider the sentences 3(Kap ∧ ¬KbKap) and

�(Kap ∧ ¬KbKap). We have (x1, θ) |= 3(Kap ∧ ¬KbKap) since (x1, θ
U) |=

Kap ∧ ¬KbKap for U = {y0, y1, x1}. Moreover, observe that U is the only open
in (X,P(X)) such that (x1, θ

U) |= Kap ∧ ¬KbKap.
On the other hand, we have (x1, θ) 
 (y1, θ) and (x0, θ) 
 (y0, θ). Therefore,

since X is based on a discrete topology, we obtain by Proposition 8.2.8 that (1)
x1 ∈ [[ψ]]θ iff y1 ∈ [[ψ]]θ, and (2) x0 ∈ [[ψ]]θ iff y0 ∈ [[ψ]]θ, for all ψ ∈ LKint. Hence,
U 6= [[ψ]]θ for all ψ ∈ LKint (since the underlying space is discrete, we have [[ψ]]θ =
Int([[ψ]]θ)). Thus, there is no ψ ∈ LKint such that (x1, θ) |= 〈ψ〉(Kap ∧ ¬KbKap),
thus, (x1, θ) 6|= �(Kap ∧ ¬KbKap).

Therefore, unlike in the case of the single-agent setting, the effort and the
arbitrary announcement modalities behave very differently in the multi-agent
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Figure 8.8: The straight round circles show the neighbourhoods of agent a, and
the dashed ones are for agent b.

case. This should not be surprising. In essence, the arbitrary announcement
modality is quite “syntactical” as it quantifies over a set of formulas in a given
language, whereas the effort modality is comparatively very “semantical” as it
quantifies over subsets of a given domain regardless of whether the subsets are
epistemically definable or not. This difference disappears in the single-agent case
since both languages L!

Kint2 and L!
Kint� were co-expressive with the epistemic lan-

guage LKint. It falls outside of the scope of this dissertation, and so we leave for
a future work, to systematically investigate possible interpretations of the effort
modality and its behaviour in a multi-agent setting.



Appendix A

Technical Specifications

A.1 Complexity Measure for L!
K int2 and L!

K int�

In several proofs in Chapters 7 and 8 (such as Proposition 7.1.11, Lemmas 7.1.35
and 8.3.16), we need a complexity measure of the formulas of L!

Kint2 (as well
as of L!

Kint� and its multi-agent extension studied in Chapter 8) that induces
a well-founded strict partial order on the formulas of these languages satisfying
certain properties (that are given in Lemma A.1.5). For example, in Lemma
7.1.35, we need a complexity measure for which [p]ϕ is less complex than 2ϕ for
an arbitrary propositional variable p; while Lemma 8.3.16 requires [ψ]ϕ to be less
complex than �ϕ for arbitrary ψ ∈ L!

Kint. For this reason, subformula complexity
does not suffice. In this appendix, we define a complexity measure that has these
properties. Since the languages L!

Kint2 and L!
Kint� are defined in the same way, the

proposed complexity measure and the subsequent lemmas also hold for L!
Kint�,

as well as for the multi-agent L!
Kint�.

The appropriate complexity measure is composed of a measure S(ϕ) that is
a weighted count of the number of symbols and a measure d(ϕ) that counts the
number of the 2-modalities occurring in a formula. Although somewhat simpler
complexity measures would work for some of the lemmas mentioned above, we
here define one complexity measure, based on S and d, that induces a well-founded
partial order <S

d on L!
Kint2 (and on L!

Kint�) which works in every relevant proof.
The relation <S

d introduced below was first defined in (van Ditmarsch et al.,
2015c) for the language L!

Kint� (by adapting similar notions introduced before in,
e.g., Balbiani and van Ditmarsch, 2015; van Ditmarsch et al., 2015b).

195
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A.1.1. Definition. [Size of formulas in L!
Kint2] The size S(ϕ) of formula ϕ ∈

L!
Kint2 is defined as:

S(p) = 1,

S(¬ϕ) = S(ϕ) + 1,

S(ϕ ∧ ψ) = S(ϕ) + S(ψ) + 1,

S(Kϕ) = S(ϕ) + 1,

S(int(ϕ)) = S(ϕ) + 1,

S([ϕ]ψ) = 4(S(ϕ) + 4)S(ψ),

S(2ϕ) = S(ϕ) + 1.

A.1.2. Definition. [Depth of formulas in L!
Kint2] The 2-depth d(ϕ) of formula

ϕ ∈ L!
Kint2 is defined as:

d(p) = 0,

d(¬ϕ) = d(ϕ),

d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)},
d(Kϕ) = d(ϕ),

d(int(ϕ)) = d(ϕ),

d([ϕ]ψ) = max{d(ϕ), d(ψ)},
d(2ϕ) = d(ϕ) + 1

Finally, we define our intended complexity relation <S
d as lexicographic merge

of 2-depth and size, exactly as in (van Ditmarsch et al., 2015c) (adapted from
Balbiani and van Ditmarsch, 2015; van Ditmarsch et al., 2015b):

A.1.3. Definition. For any ϕ, ψ ∈ L!
Kint2, we put

• ϕ <S ψ iff S(ϕ) < S(ψ)

• ϕ <d ψ iff d(ϕ) < d(ψ)

• ϕ <S
d ψ iff (either d(ϕ) < d(ψ), or d(ϕ) = d(ψ) and S(ϕ) < S(ψ))

A.1.4. Lemma.

1. <S, <d, <
S
d are well-founded strict partial orders between formulas in L!

Kint2,

2. if ϕ, ψ ∈ L!
Kint, then ϕ <S

d ψ iff ϕ <S ψ.

A.1.5. Lemma. For all ϕ, ψ ∈ L!
Kint2,
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1. ϕ ∈ Sub(ψ) implies ϕ <S
d ψ ,

2. int(ϕ) <S
d [ϕ]ψ,

3. ϕ ∈ L!
Kint iff d(ϕ) = 0,

4. ϕ ∈ L!
Kint implies [ϕ]ψ <S

d 2ψ.

5. int(ϕ)→ p <S
d [ϕ]p,

6. int(ϕ)→ ¬[ϕ]ψ <S
d [ϕ]¬ψ,

7. [ϕ]ψ ∧ [ϕ]χ <S
d [ϕ](ψ ∧ χ),

8. int(ϕ)→ int([ϕ]ψ) <S
d [ϕ]int(ψ),

9. int(ϕ)→ K[ϕ]ψ <S
d [ϕ]Kψ,

10. [〈ϕ〉ψ]χ <S
d [ϕ][ψ]χ.

Proof:
The proof of this lemma follows from simple arithmetic calculations and many
items are obvious. We here prove the items (7), (8) and (10). Recall that we
define ϕ→ ψ as ¬(ϕ ∧ ¬ψ), so that S(ϕ→ ψ) = S(ϕ) + S(ψ) + 3.

(7) On the left-hand-side, we have S([ϕ]ψ∧[ϕ]χ) = 1+4(S(ϕ)+4)(S(ψ)+S(χ)).
However, S([ϕ](ψ ∧ χ)) = 4(S(ϕ) + 4)(1 + S(ψ) + S(χ)) = 4(S(ϕ) + 4) +
4(S(ϕ)+4)(S(ψ)+S(χ)). Thus, S([ϕ]ψ∧ [ϕ]χ) < S([ϕ](ψ∧χ)). Moreover,
d([ϕ]ψ ∧ [ϕ]χ) = max{d(ϕ), d(ψ), d(χ)} = d([ϕ](ψ ∧ χ)) (This is similar in
the other items). Therefore, by Definition A.1.3, we obtain [ϕ]ψ ∧ [ϕ]χ <S

d

[ϕ](ψ ∧ χ).

(8) On the left-hand-side, we obtain S(int(ϕ) → int([ϕ]ψ)) = S(int(ϕ)) +
S(int([ϕ]ψ))+3 = 1+S(ϕ)+1+S([ϕ]ψ)+3 = 5+S(ϕ)+4S(ϕ)S(ψ)+16S(ψ).
However, S([ϕ]int(ψ)) = 4(S(ϕ) + 4)S(int(ψ)) = 4(S(ϕ) + 4)(S(ψ) + 1) =
16 + 4S(ϕ) + 4S(ϕ)S(ψ) + 16S(ψ). Therefore, S(int(ϕ) → int([ϕ]ψ)) <
S([ϕ]int(ψ)). As in item (7) the 2-depth of both formulas is the same.
Therefore, int(ϕ)→ int([ϕ]ψ) <S

d [ϕ]int(ψ).

(10) We have that S([〈ϕ〉ψ]χ) = S([¬[ϕ]¬ψ]χ) = 4(S(¬[ϕ]¬ψ)+4)S(χ) = 4(5+
4(S(ϕ) + 4)(1 + S(ψ)))S(χ) = 4S(χ)(21 + 4S(ϕ) + 16S(ψ) + 4S(ϕ)S(ψ)).
On the other hand, S([ϕ][ψ]χ) = 4(S(ϕ)+4)4(S(ψ)+4)S(χ) = 4S(χ)(64+
16S(ϕ)+16S(ψ)+4S(ϕ)S(ψ)). Thus, S([〈ϕ〉ψ]χ) < S([ϕ][ψ]χ). Further, we
observe that d([〈ϕ〉ψ]χ) = max{d(ϕ), d(ψ), d(χ)} = d([ϕ][ψ]χ). Therefore,
[〈ϕ〉ψ]χ <S

d [ϕ][ψ]χ.

2

A.2 Proof of Lemma 7.1.13

Recall that a formula ψ ∈ LKint is said to be in normal form if it is a disjunction
of conjunctions of the form

δ := α ∧Kβ ∧ K̂γ1 ∧ · · · ∧ K̂γn
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where α, β, γi ∈ Lint for all 1 ≤ i ≤ n. Following the naming convention in (Meyer
and van der Hoek, 1995), we call the formula δ canonical conjunction and the
subformulas Kβ and 〈K〉γi prenex formulas.

In the following, we present the steps used in the proof of Lemma 7.1.13. This
proof was first presented in (van Ditmarsch et al., 2014) in a slightly different
way.

A.2.1. Lemma. If ψ ∈ LKint is in normal form and contains a prenex formula
σ, then ψ can be written as π ∨ (λ∧ σ), where π, λ and σ are all in normal form.

Proof:
See (Meyer and van der Hoek, 1995, Lemma 1.7.6.2). 2

A.2.2. Lemma. The following equivalence is a propositional tautology:

(ϕ1 ∨ · · · ∨ ϕn) ∧ (ψ1 ∨ · · · ∨ ψm)↔((ϕ1 ∧ ψ1) ∨ . . . (ϕ1 ∧ ψm)) ∨ ((ϕ2 ∧ ψ1) ∨ . . .
∨ (ϕ2 ∧ ψm)) ∨ · · · ∨ ((ϕn ∧ ψ1) ∨ · · · ∨ (ϕn ∧ ψm)).

We will show the following results for pseudo-models, however, it is not hard
to see that they all follow also for topo-models.

A.2.3. Lemma. For all ϕ, σ, β ∈ LKint, we have the following equivalences valid
in all pseudo-models:

1. int(ϕ ∨Kβ)↔ int(ϕ) ∨Kβ

2. int(ϕ ∨ 〈K〉β)↔ int(ϕ) ∨ 〈K〉β

3. int(ϕ ∨ (σ ∧Kβ))↔ (int(ϕ ∨ σ) ∧ (int(ϕ) ∨Kβ))

4. int(ϕ ∨ (σ ∧ 〈K〉β))↔ (int(ϕ ∨ σ) ∧ (int(ϕ) ∨ K̂β))

5. K(ϕ ∨ (σ ∧Kβ))↔ ((K(ϕ ∨ σ) ∧Kβ) ∨ (Kϕ ∧ ¬Kβ))

6. K(ϕ ∨ (σ ∧ K̂β))↔ ((K(ϕ ∨ σ) ∧ K̂β) ∨ (Kϕ ∧ ¬K̂β))

Proof:
Let X = (X,O, V ) be a pseudo-model, (x, U) ∈ ES(X ) and ϕ, σ, β ∈ LKint. The
key step in each item consists in the fact that K acts as the global modality
within the given epistemic range, i.e., that for any ϕ ∈ LKint, [[Kϕ]]U = U or
[[Kϕ]]U = ∅, and [[K̂ϕ]]U = U or [[K̂ϕ]]U = ∅.

1. (⇒) Suppose (x, U) |= int(ϕ ∨Kβ), i.e., x ∈ Int([[ϕ ∨Kβ]]U). This means,
x ∈ Int([[ϕ]]U ∪ [[Kβ]]U). We then have two cases:

(a) If [[Kβ]]U = U , then (x, U) |= Kβ, hence, (x, U) |= int(ϕ) ∨Kβ.
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(b) If [[Kβ]]U = ∅, then Int([[ϕ]]U ∪ [[Kβ]]U) = Int([[ϕ]]U), therefore, (x, U) |=
int(ϕ) implying that, (x, U) |= int(ϕ) ∨Kβ.

(⇐) Suppose (x, U) |= int(ϕ) ∨ Kβ, i.e., (x, U) |= int(ϕ) or (x, U) |= Kβ.
We again have two cases:

(a) If (x, U) |= int(ϕ), i.e., x ∈ Int([[ϕ]]U), we obtain x ∈ Int([[ϕ ∨ Kβ]]U)
(since [[ϕ]]U ⊆ [[ϕ ∨ Kβ]]U , and thus Int([[ϕ]]U) ⊆ Int([[ϕ ∨ Kβ]]U)). Thus,
(x, U) |= int(ϕ ∨Kβ).

(b) If (x, U) |= Kβ, then [[Kβ]]U = U . Thus, Int([[ϕ ∨Kβ]]U) = U . Hence,
x ∈ Int([[ϕ ∨Kβ]]U), i.e., (x, U) |= int(ϕ ∨Kβ).

2. Follows similar to item (1), using the fact that for any ϕ ∈ LKint, either
[[K̂ϕ]]U = U or [[K̂ϕ]]U = ∅.

3.

(x, U) |= int(ϕ ∨ (σ ∧Kβ))

iff x ∈ Int([[ϕ ∨ (σ ∧Kβ)]]U) (by the semantics of int)

iff (∃O ∈ τO)(x ∈ O ⊆ [[ϕ ∨ (σ ∧Kβ)]]U) (by the definition of Int)

iff (∃O ∈ τO)(x ∈ O ⊆ [[ϕ]]U ∪ ([[σ]]U ∩ [[Kβ]]U))

iff (∃O ∈ τO)(x ∈ O ⊆ ([[ϕ]]U ∪ [[σ]]U) ∩ ([[ϕ]]U ∪ [[Kβ]]U))

iff (∃O ∈ τO)(x ∈ O ⊆ [[ϕ]]U ∪ [[σ]]U and x ∈ O ⊆ [[ϕ]]U ∪ [[Kβ]]U)

iff x ∈ Int([[ϕ]]U ∪ [[σ]]U) and x ∈ Int([[ϕ]]U ∪ [[Kβ]]U)

iff (x, U) |= int(ϕ ∨ σ) and (x, U) |= int(ϕ ∨Kβ)
(by the semantics of int)

iff (x, U) |= int(ϕ ∨ σ) and (x, U) |= int(ϕ) ∨Kβ (by item (1))

iff (x, U) |= int(ϕ ∨ σ) ∧ (int(ϕ) ∨Kβ)

4. Follows similarly to item (3), by using item (2).

5. (⇒) Suppose (x, U) |= K(ϕ ∨ (σ ∧Kβ)). This means, by the semantics of
K, that [[ϕ ∨ (σ ∧Kβ)]]U = U . Therefore, we have

[[ϕ ∨ (σ ∧Kβ)]]U = [[(ϕ ∨ σ) ∧ (ϕ ∨Kβ)]]U = [[ϕ ∨ σ]]U ∩ [[ϕ ∨Kβ]]U = U.

We then have two cases:

(a) If [[Kβ]]U = U , then [[ϕ ∨ (σ ∧ Kβ)]]U = [[ϕ ∨ σ]]U = U . Therefore,
(x, U) |= K(ϕ ∨ σ) ∧Kβ.

(b) If [[Kβ]]U = ∅, then [[ϕ∨ (σ∧Kβ)]]U = [[ϕ]]U = U . Moreover, [[¬Kβ]]U =
U . Therefore, (x, U) |= Kϕ∧¬Kβ. Therefore, by (a) and (b), we conclude
that (x, U) |= (K(ϕ ∨ σ) ∧Kβ) ∨ (Kϕ ∧ ¬Kβ).
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(⇐) Suppose (x, U) |= (K(ϕ∨ σ)∧Kβ)∨ (Kϕ∧¬Kβ). We then have two
cases:

(a) If (x, U) |= K(ϕ ∨ σ) ∧Kβ, then [[ϕ ∨ σ]]U = U and [[Kβ]]U = U . The
latter implies that [[σ∧Kβ]]U = [[σ]]U ∩ [[Kβ]]U = [[σ]]U . We therefore obtain
[[ϕ ∨ (σ ∧Kβ)]]U = [[ϕ ∨ σ]]U = U . Hence, (x, U) |= K(ϕ ∨ (σ ∧Kβ)).

(b) (x, U) |= Kϕ ∧ ¬Kβ, then [[ϕ]]U = U and [[Kβ]]U = ∅. Therefore,
[[ϕ ∨ (σ ∧Kβ)]]U = [[ϕ]]U = U . Hence, (x, U) |= K(ϕ ∨ (σ ∧Kβ)).

6. Follows similarly to item (5), using the fact that for any ϕ ∈ LKint, either
[[K̂ϕ]]U = U or [[K̂ϕ]]U = ∅.

2

Proof of Lemma 7.1.13 (Normal Form Lemma): The proof follows by
subformula induction on ϕ, using Proposition 7.2.2 several times. The base case
ϕ := p follows easily since p ∈ Lint, thus, it is already in normal form. Now
assume inductively that the statement holds for ψ and χ, and show the cases for
the Booleans, K and int:

Case ϕ := ¬ψ: By induction hypothesis, we can assume w.l.o.g. that ψ is in
normal form. Thus, in particular, ψ := δ1 ∨ · · · ∨ δm where each δi is a canonical
conjunction. Hence, |= ϕ↔ (¬δ1 ∧ · · · ∧ ¬δm). We can then distribute ¬ of each
δi over the conjuncts. In other words, for each δi := α ∧Kβ ∧ K̂γ1 ∧ · · · ∧ K̂γn,
we have

|= ¬δi ↔ (¬α ∨ K̂¬β ∨K¬γ1 ∨ · · · ∨K¬γn)

where α, β, γi ∈ Lint for all 1 ≤ i ≤ n. Let us call ¬δi canonical disjunction.
Notice that each disjunct of ¬δi is still in the required form, i.e., each disjunct
is either a prenex formula or in Lint. By using Lemma A.2.2 repeatedly, we can
write ϕ in normal form, i.e., as disjunctions of canonical conjuncts.

Case ϕ := ψ ∧ χ: By induction hypothesis, w.l.o.g, we assume that ψ and χ
are in normal form. Therefore ψ := δ1∨· · ·∨δm and χ := δ′1∨· · ·∨δ′k where each δi
and δ′j is a canonical conjunct. Therefore, |= ϕ↔ ((δ1∨· · ·∨δm)∧ (δ′1∨· · ·∨δ′k)).
Then, by Lemma A.2.2, we easily obtain a formula θ in normal form such that
|= ϕ↔ θ.

Case ϕ := int(ψ): By induction hypothesis, w.l.o.g, assume ψ is in normal.
We also assume that ψ includes some prenex formula, otherwise we are done. By
Lemma A.2.1, we can consider ψ to be of the form ψ := π ∨ (λ ∧ σ) where σ is a
prenex formula occurring in ψ, and π and λ are in normal form. Then, we have
|= int(ψ)↔ int(π∨(λ∧σ)), and by Lemma A.2.3-(3) or (4) (depending on the form
of the prenex formula σ), we have |= int(π∨ (λ∧σ))↔ (int(π∨λ)∧ (int(π)∨σ)).
By repeating this procedure, we can push every prenex formula in the scope of int
to the top level, hence, obtain a semantically equivalent formula in normal form.
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Case ϕ := Kψ: Proof of this case is quite similar to the case for int, and follows
by using Lemma A.2.3-(5) and (6) instead. A similar argument is presented also
in (Meyer and van der Hoek, 1995, Theorem 1.7.6.4, p.37).





Bibliography

Abramsky, S. (1987). Domain Theory and the Logic of Observable Properties.
PhD thesis, University of London.

Abramsky, S. (1991). Domain theory in logical form. Annals of Pure and Applied
Logic, 51(1):1–77.

Aiello, M. (2002). Spatial Reasoning: Theory and Practice. PhD thesis, ILLC,
Univerisity of Amsterdam.

Aiello, M., van Benthem, J., and Bezhanishvili, G. (2003). Reasoning about
space: The modal way. Journal of Logic and Computation, 13(6):889–920.

Aiello, M., Pratt-Hartmann, I., and van Benthem, J. (2007). Handbook of Spatial
Logics. Springer Verlag, Germany.

Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985). On the logic of
theory change: Partial meet contraction and revision functions. Journal of
Symbolic Logic, 50(2):510–530.

Aumann, R. J. (1976). Agreeing to disagree. The Annals of Statistics, 4(6):1236–
1239.

Aumann, R. J. (1999). Interactive epistemology I: Knowledge. International
Journal of Game Theory, 28(3):263–300.

Balbiani, P. (2015). Putting right the wording and the proof of the truth lemma
for APAL. Journal of Applied Non-Classical Logics, 25(1):2–19.

Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., and de Lima,
T. (2008). ‘Knowable’ as ‘known after an announcement’. The Review of
Symbolic Logic, 1(3):305–334.

203



204 BIBLIOGRAPHY

Balbiani, P. and van Ditmarsch, H. (2015). A simple proof of the completeness
of APAL. Studies in Logic, 8(1):65–78.

Balbiani, P., van Ditmarsch, H., Herzig, A., and Lima, T. D. (2012). Some truths
are best left unsaid. In Advances in Modal Logic 9, pages 36–54.

Balbiani, P., van Ditmarsch, H., and Kudinov, A. (2013). Subset space logic with
arbitrary announcements. In Proceedings of the 5th Indian Conference on Logic
and Its Applications (ICLA 2013), pages 233–244. Springer.
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van Ditmarsch, H., Knight, S., and Özgün, A. (2014). Arbitrary announcements
on topological subset spaces. In Proceedings of the 12th European Conference
on Multi-Agent Systems (EUMAS 2014), pages 252–266. Springer.
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Samenvatting

Dit proefschrift gaat over logica’s van kennis, geloof en informatieverandering in
topologische ruimtes. Wij onderzoeken de formele representatie van bewijsmateri-
aal/aanwijzingen in relatie tot rechtvaardiging, gerechtvaardigd geloof, kennis, en
gemotiveerde informatieverandering. Topologische ruimtes zijn geschikt om deze
epistemische noties te formaliseren vanwege de wiskundige elegantie en episte-
misch rijke gegevensstructuren. We vervolgen nu met een overzicht van de inhoud
van het proefschrift.

Deel I onderzoekt de rol van bewijsmateriaal bij het vormen van gefundeerd
geloof en kennis door een rationeel handelende persoon. Bewijsmateriaal wordt
semantisch gerepresenteerd als een verzameling van mogelijke werelden en syn-
tactisch door middel van zogenaamde bewijsmodaliteiten in de logische taal.

Hoofdstuk 3 geeft een overzicht van de achtergrondliteratuur en motiveert Deel
I. Het definiëert voor de taal van de modale logica een topologische semantiek die
derhalve is gebaseerd op open deelverzamelingen, met het oog op epistemische in-
terpretaties. In dit hoofdstuk wordt het gebruik van topologische ruimtes voor de
modellering van kennis toegelicht, en bovendien geeft het een gedetailleerd over-
zicht van bekende resultaten uit de literatuur over het gebruik van topologische
ruimtes voor het modelleren van geloof.

Hoofdstuk 4 gaat voornamelijk over een topologische interpretatie van de notie
‘geloof’: wat kunnen topologische modellen doen voor de semantiek van reeds
bestaande epistemische en doxastische logica’s? Met name onderzoeken we de
notie van geloof als mogelijke kennis, waarvan de sematiek is afgeleid van de
op open deelverzamelingen gebaseerde semantiek voor kennis uit hoofdstuk 3.
We tonen correctheid en volledigheid aan voor de logica KD45B gëınterpreteerd
op zekere topologische modelklassen, namelijk de zogenaamde onvergelijkbare
ruimtes en de erfelijk-onvergelijkbare gescheiden ruimtes. Een uitbreiding van de
logica met openbare aankondigingen voor de laatste van deze twee modelklassen
wordt ook onderzocht. Het begrip bewijsvoering wordt beschreven op een puur
semantisch niveau, omdat de logische taal hier geen operatoren voor bevat.

213



214 Samenvatting

Hoofdstuk 5 is de belangrijkste bijdrage van Deel I van het proefschrift. Het
geeft een topologische semantiek voor de begrippen bewijsvoering, gemotiveerde
verantwoording, geloof, en kennis, inclusief verbanden tussen al deze epistemische
begrippen. De bijbehorende logische taal heeft nu wel modaliteiten voor bewijs-
voering, zodat alle verschillende aan bewijsvoering geliëerde begrippen expliciet
deel uitmaken van de logica. De resultaten in dit hoofdstuk blijven niet beperkt
tot een statische situatie en we presenteren eveneens dynamische noties, namelijk
acties zoals het toevoegen van bewijsvoering, het veranderen van de plausibiliteit
van bewijsvoering, het combineren van bewijsvoering uit verschillende bronnen,
en het verwerken van (onfeilbaar geachte) informatie uit openbare aankondigin-
gen. De belangrijkste technische resultaten zijn de volledigheid, beslisbaarheid en
eindige-modeleigenschap van de hiermee verbonden logica’s. Deze resultaten zijn
relevant voor de wijsbegeerte, omdat hiermee noties van kennis en geloof zijn te
formalizeren die zijn gebaseerd op de literatuur naar aanleiding van het werk van
Gettier.

Deel II gaat vooral over kennis en kennisverandering. Het onderzoekt de noties
absoluut zekere kennis en leerbaarheid als mogelijke kennis, evenals de wisselwer-
king tussen de epistemische notie van inspanning (moeite) voor bewijsvergaring.
Tevens komt het verband aan bod met uit de logische dynamiek welbekende be-
grippen als openbare aankondigingen and kwantificatie over dergelijke openbare
aankondigingen.

Hoofdstuk 6 geeft het achtergrondmateriaal voor Deel II. Het definiëert de
zogenaamde deelverzamelingsruimte-semantiek en een topologische versie van de
eerder genoemde openbare aankondigingen.

Hoofdstuk 7 presenteert een formeel raamwerk om de relatie te onderzoeken
tussen de belangrijke dynamische noties inspanning, openbare aankondiging, en
gekwantificeerde openbare aankondiging. De resultaten over het verband tussen
inspanning en openbare aankondiging verduidelijken wat ‘inspanning’ bij kennis-
vergaring eigenlijk betekent. De technische resultaten voor expressiviteit en vol-
ledigheid in dit hoofdstuk zijn eenvoudiger dan in eerder werk over deze materie
en geven daar, in zekere zin, beter inzicht in.

In hoofdstuk 8 wordt de logica van hoofdstuk 7 die was geformuleerd voor een
handelende persoon gegeneraliseerd naar een logica voor meerdere handelende
personen. We presenteren nu een logica waarin de kennis en de leerbaarheid van
meerdere personen wordt gemodelleerd, inclusief uitbreidigen hiervan met open-
bare aankondingen en kwantificatie daarover; steeds gëınterpreerd op topologische
ruimtes. We tonen correctheid en volledigheid aan van deze logica’s.

Wij concluderen dat dit proefschrift aan de ene kant verschillende bekende
epistemische en doxastische logica’s, inclusief dynamische uitbreidingen daarvan,
herinterpreteert vanuit topologisch perspectief en voorziet van een interpretatie
van verschillende noties van bewijsvoering, terwijl aan de andere kant dit proef-
schrift topologische technieken gebruikt de verdere ontwikkeling en uitbreiding
van bestaande logische analyses, resulterend in nieuwe logica’s voor bewijsvoe-
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ring en voor informatieverandering.





Abstract

This dissertation studies logics of knowledge, belief and information dynamics
using topological spaces as models. It is concerned with the formal representation
of evidence and its link to justification, justified belief, knowledge, and evidence-
based information dynamics. Topological spaces emerge naturally as mathemat-
ically elegant and epistemically rich information structures to formalize these
epistemic notions. In the following, we give an overview of the content of this
thesis.

Part I investigates the role of evidence in forming justified belief and knowledge
of a rational idealized agent, where evidence is represented semantically as sets
of possible worlds, as well as syntactically via evidence modalities.

Chapter 3 provides background material and motivation for Part I. It in-
troduces the interior-based topological semantics for the basic modal language,
focusing on its epistemic interpretation. In this chapter, we motivate the use of
topological spaces as models for knowledge, and discuss the status quo of the use
of topological spaces as belief models.

Chapter 4 focuses primarily on a topological interpretation of belief: how
topological models can contribute to the semantics of existing epistemic/doxastic
logics. In particular, we study a notion of belief defined as epistemic possibility
of knowledge, whose topological semantics is derived from the interior semantics
for knowledge presented in Chapter 3. We provide soundness and completeness
results for the belief logic KD45B with respect to the class of extremally and
hereditarily extremally disconnected spaces, and study public announcements
based on topological models in the latter class. The notion of evidence in this
setting is described at a purely semantic level as the corresponding syntax does
not have any components representing evidence.

Chapter 5 presents the main contribution of Part I. We propose a topological
semantics for various notions of evidence, evidence-based justification, belief, and
knowledge, and explore the connections between these epistemic notions. The cor-
responding syntax bears evidence modalities, making various notions of evidence
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an explicit part of the logic. Our investigations in this chapter are not limited
to a static setting. We discuss evidence-based actions such as evidence addition,
upgrade, and feasible evidence combination as well as receiving information from
infallible truthful sources via public announcements. Our main technical results
are concerned with completeness, decidability and the finite model property for
the associated logics. These investigations have philosophical consequences, as
they allow us to formalize some post-Gettier debates surrounding justified belief
and knowledge.

Part II focuses on knowledge and knowledge change. More precisely, it studies
the notions of absolutely certain knowledge and knowability as potential knowledge,
as well as the interplay between the notion of epistemic effort encompassing any
method of evidence acquisition and the well-studied dynamic attitudes such as
public and arbitrary public announcements.

Chapter 6 provides the background material of Part II, introducing subset
space semantics and a topological version of public announcements.

Chapter 7 designs a formal framework elucidating the relationship between
three dynamic notions of interest: effort, public announcements, and arbitrary
announcements. While the established link between effort and public announce-
ments makes the meaning of the intended notion of effort more transparent, our
technical results concerning expressivity and completeness simplify, and in a sense,
improve on some of the earlier approaches.

Finally, in Chapter 8, we generalize the single-agent setting presented in Chap-
ter 7 to a multi-agent setting. We present a multi-agent logic of knowledge and
knowability, as well as its extensions with public and arbitrary announcements,
interpreted on topological spaces. We provide soundness and completeness results
for the corresponding systems.

To sum up, this dissertation on one hand re-interprets some existing epistemic
and doxastic logics and their dynamic extensions from a topological perspective,
providing an evidence-based interpretation. On the other hand, it uses topological
tools to refine and extend earlier analysis, leading to novel logics of evidence and
information dynamics.
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Cette dissertation réunit logique épistémique et topologie. Elle étudie les représen-
tations formelles de la notion d’évidence1 et ses liens avec la justification, les
croyances justifiées, la connaissance, et la dynamique de l’information basée sur
évidence, en utilisant des outils venant de la topologie et de la logique épistémique
(dynamique).

La logique épistémique est un terme englobant une grande variété de logiques
modales dont les principaux objets d’étude sont la connaissance et la croyance. En
tant que champ d’investigation, la logique épistémique utilise la logique modale
et les mathématiques pour formaliser, clarifier et résoudre les questions qui mo-
tivent l’épistémologie (formelle), et ses applications s’étendent non seulement à
la philosophie, mais aussi à l’informatique fondamentale, l’intelligence artificielle
et l’économie (voir van Ditmarsch et al., 2015a pour un aperçu). Hintikka (1962)
est considéré comme le père fondateur de la logique épistémique moderne. Dans
son livre Knowledge and Belief: An Introduction to the Logic of the Two Notions
(1962)—inspiré par des idées de (von Wright, 1951)—Hintikka formalise connais-
sance et croyance comme des opérateurs modaux basiques, dénotés respective-
ment par K et B, et les interprète en utilisant la sémantique des mondes possi-
bles standard, basée sur les structures de Kripke (relationnelles). Depuis lors—la
sémantique de Kripke fournissant une façon naturelle et relativement aisée de
modéliser la logique épistémique—cela a été une des structures sémantiques les
plus proéminentes et fréquemment utilisées en logique épistémique, et la recherche
dans ce domaine a en grande partie avancé sur les bases formelles de la sémantique
de Kripke.

Cependant, la sémantique de Kripke standard possède certaines caractéris-
tiques qui rendent trop fortes les notions de connaissance et de croyance qu’elle

1Faute d’une meilleure traduction pour le mot anglais “evidence”, nous utilisons le terme
“évidence” pour désigner les éléments, indices, informations sur la base de quoi les croyances
sont construites; on pourrait dire aussi que l’évidence est la substance de ce qui constitue une
preuve.
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implémente—menant des problèmes d’omniscience logique—et il lui manque les
ingrédients qui permettent de parler de la nature et des bases de la connais-
sance et croyance acquises. C’est ce dernier problème qui est l’origine du travail
présenté dans cette dissertation : non seulement nous cherchons une façon simple
de modéliser la connaissance et la croyance, mais nous étudions aussi l’émergence,
l’usage, et la transformation d’évidence comme une composante inséparable des
croyances justifiées et de la connaissance d’un agent rationnel et idéal.

Dans ce but, nous montrons que les espaces topologiques sont des objets
mathématiques naturels pour formaliser les notions épistémiques mentionnées
ci-dessus, ainsi que la dynamique de l’information basée sur évidence : tout en
fournissant une compréhension plus profonde de l’interprétation à base d’évidence
de la connaissance et de la croyance, la sémantique topologique généralise aussi
la sémantique relationnelle standard de la logique épistémique. Schématiquement
parlant, les notions topologiques telles que ouverts, fermés, espaces denses et
denses nulle part encodent qualitativement et naturellement des notions telles que
pa mesure/observation, la proximité, la petitesse, la grandeur et la consistance, qui
toutes reviendront régulièrement dans cette dissertation avec une interprétation
épistémique. De plus, les espaces topologiques sont équipés d’opérateurs basiques
bien connus tels que les opérateurs d’intérieur et de clôture qui—seuls ou com-
binés—interprètent de manière succincte différentes modalités épistémiques, ap-
portant une meilleur compréhension de leurs propriétés axiomatiques. Dans ce
but, nous voyons les espaces topologiques comme des structures d’information
équipées d’une théorie mathématique forte et élégante qui aide à éclairer les
débats philosophiques entourant la connaissance et la croyance justifiée, et à
mieux comprendre le phénomène d’apprentissage par acquisition d’évidence.

L’usage épistémique des espaces topologiques comme structures d’information
remonte aux années 1930 et 1940, quand les espaces topologiques servaient de
modèles aux langages intuitionnistes, et les ensembles ouverts sont considérés
comme des ‘éléments d’évidence’, des ‘propriétés observables’ concernant l’état
actuel (voir, e.g., Troelstra and van Dalen, 1988). Cette interprétation assignée
aux ensembles ouverts constitue la motivation épistémique basique derrière notre
usage des modèles topologiques, et elle reviendra souvent à divers endroits (sous
des formes modifiées) dans le corps principal de cette dissertation. Des variantes
de cette idée peuvent aussi être trouvées dans la théorie des domaines en informa-
tique (Abramsky, 1987, 1991; Vickers, 1989), guidant le programme de recherche
de la théorie formelle “topologique” de l’apprentissage initiée entre autres par
Kelly (Kelly, 1996; Schulte and Juhl, 1996; Kelly et al., 1995; Kelly and Lin,
2011; Baltag et al., 2015c) en épistémologie formelle.

La littérature reliant la logique épistémique (modale) et la topologie est or-
ganisée autour de deux cadres topologiques distincts, quoique fortement liés.
Notre travail dans cette dissertation profite des deux approches. La première
direction vient de la sémantique topologique basée sur l’intérieur, de McKinsey
(1941) et McKinsey and Tarski (1944), pour le langage de la logique modale
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basique (certaines idées peuvent déjà être trouvées dans Tarski, 1938 et Tsao-
Chen, 1938). Dans cette sémantique l’opérateur modal 2 est interprété sur
les espaces topologiques comme l’opérateur d’intérieur. Ces recherches eurent
lieu dans un contexte mathématique abstrait, indépendant de considérations
épistémiques/doxastiques. McKinsey and Tarski (1944) non seulement prouvèrent
que le système modal S4 est la logique de tous les espaces topologiques (sous
l’interprétation mentionnée ci-dessus), mais ils montrèrent aussi que c’est la lo-
gique de tout espace métrique séparable dense dans lui-même, tel que la ligne
rationnelle Q, la ligne réelle R et l’espace de Cantor, parmi d’autres. Cette ap-
proche initia un tout nouveau domaine de logiques spatiales, établissant une con-
nection persistante entre logique modale et topologie (voir, e.g., Aiello et al.,
2007 pour une vue d’ensemble sur le sujet, en particulier, voir van Benthem and
Bezhanishvili, 2007). De plus, les résultats de complétude concernant le système
épistémique S4 ont naturellement attiré les logiciens épistémiques, menant à une
réévaluation épistémique de la sémantique de l’intérieur, voyant les topologies
comme des modèles pour l’information. Une branche de la connexion logique
épistémique-topologie a donc été bâtie sur la sémantique topologique basée sur
l’intérieur, où la notion épistémique centrale est la connaissance (voir, e.g., van
Benthem and Sarenac, 2004). Ce que nous ajoutons à cet ensemble de travaux,
dans la Partie I de cette dissertation, ce sont les composants épistémiques man-
quants d’évidence et de croyance, ainsi que la dynamique d’apprentissage de nou-
velle évidence, renforçant ainsi la connection entre logique épistémique et topolo-
gie. Pour ce faire nous réanalysons les modèles d’évidence à base de voisinages
de van Benthem and Pacuit (2011) d’un point de vue topologique. La façon dont
nous représentons l’évidence et comment elle se connecte avec la croyance justifiée
sont inspirés pas l’approche de (van Benthem and Pacuit, 2011), et les actions
de transformation d’évidence considérées sont adaptées de ce travail de grande
importance.

La seconde approche topologique pour la logique épistémique fut initiée par
Moss and Parikh (1992). Ils introduisirent la topologique, un cadre bimodal pour
formaliser le raisonnement à propos d’ensembles et de points dans un unique
système modal. Leurs recherches topologiques sont fortement motivées par la
logique épistémique, suggérant que “des aspects simples du raisonnement topolo-
gique sont aussi connectés avec des logiques spécialisées de la connaissance”
(Moss and Parikh, 1992, p. 95). L’élément clef que Moss and Parikh (1992)
introduisent dans le paradigme de la logique épistémique est la notion abstraite
d’effort épistémique. L’effort peut, pour parler simplement, être décrit comme
n’importe quel type de collecte d’évidence—via, e.g., mesure, calcul, approxima-
tion, expérimentation ou annonce—qui peut mener à une connaissance accrue.
Le formalisme de la topologique combine donc la notion statique de connais-
sance avec la notion dynamique d’effort, et est par conséquent fortement lié à la
logique épistémique dynamique (Baltag et al., 1998; van Ditmarsch et al., 2007;
van Benthem, 2011; Baltag and Renne, 2016). Dans la Partie II de cette thèse,
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nous établissons une connection entre les deux formalismes, et nous en tirons des
bénéfices à la fois conceptuels et techniques. Alors que la logique épistémique dy-
namique étend le domaine des attitudes dynamiques qu’elle étudie, le cadre de la
topologique obtient des axiomatisations épistémiquement plus intuitives, clarifi-
ant ainsi la signification de l’effort en le connectant à des exemples bien compris
tels que les annonces arbitraires et publiques.

***

Les contributions de cette thèse sont présentées en deux parties. Nous donnons
ci-dessous un aperçu approfondi de chaque chapitre.

Le chapitre 2 fournit les préliminaires techniques essentiels aux deux parties
de cette dissertation. Cela inclue, dans la première moitié, une très brève in-
troduction à la sémantique de Kripke standard pour la logique modale basique.
Nous rappelons les systèmes statiques habituellement étudiés pour les logiques
épistémiques/doxastiques et les propriétés relationnelles correspondantes qui ren-
dent ces logiques correctes et complètes. Le cadre relationnel sert seulement d’outil
technique utilisé dans les parties I et II dans le but d’atteindre des résultats tech-
niques dans le cadre topologique. Dans la seconde partie, nous introduisons les
notions topologiques élémentaires que nous utiliserons à travers cette dissertation.

Plan. La section 2.1 discute brièvement la sémantique relationnelle standard
pour le langage de la logique modale basique, et les systèmes épistémiques et
doxastiques unimodaux qui seront étudiés dans les chapitres ultérieurs. La sec-
tion 2.2 introduit les préliminaires purement topologiques qui seront utilisés dans
toute la thèse. De plus, ce chapitre sert aussi à fixer les notations pour le corps
principal de cette dissertation. Les lecteurs familiers avec les sujets mentionnés
ci-dessus devraient pouvoir passer ce chapitre sans problème.

PARTIE I : De la Sémantique de l’Intérieur aux Modèles
de Faits

La partie I concerne les interprétations à base d’évidence de la croyance justifiée
et de la connaissance. En commençant par une interprétation topologique main-
tenant standard de l’opérateur d’intérieur, nous développons graduellement un
cadre topologique qui (1) peut parler d’évidence non seulement sémantiquement,
mais aussi au niveau syntactique, rendant ainsi la notion d’évidence plus explicite;
(2) prend l’évidence comme notion la plus primitive, sur laquelle croyance et con-
naissance sont définies, reliant ainsi ces deux notions épistémologiques cruciales
de manière plus profonde et plus basique. Ces investigations ont des conséquences
philosophiques considérables puisqu’elles nous permettent de discerner, d’isoler,
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et d’étudier divers aspects de la notion d’évidence, et ses relations avec la justifi-
cation, la connaissance et la croyance.

Le chapitre 3 fournit les bases formelles de la sémantique topologique basée sur
l’intérieur pour la logique modale basique, qui remonte aux travaux de McKinsey
(1941) et McKinsey and Tarski (1944). Dans cette sémantique l’opérateur modal
2 est interprété sur des espaces topologiques comme l’opérateur d’intérieur. L’une
des raisons en est que le système épistémique S4 est la logique de tous les espaces
topologiques. Une autre est que l’interprétation des ensembles ouverts comme
‘propriétés observables’ ou ‘éléments d’évidence’ met la sémantique topologique
à base d’intérieurs sur le radar des logiciens épistémiques. Dans ce chapitre,
nous introduisons brièvement la sémantique topologique d’intérieurs, nous con-
centrant particulièrement sur ses idées épistémiques, et nous expliquons comment
et pourquoi elle constitue une interprétation satisfaisante pour la connaissance
(basée sur évidence), et, par conséquent, pourquoi—dans certains contextes—elle
forme une sémantique plus riche que la sémantique relationnelle. Nous discutons
ensuite une sémantique topologique de la croyance de la littérature, basée sur
l’opérateur d’ensemble dérivé, et nous argumentons qu’elle ne constitue pas une
sémantique satisfaisante pour la croyance, en particulier quand on la considère
conjointement avec la connaissance comme intérieur. Notre contribution dans la
partie I est inspirée de, et développée sur, les bases de ce cadre. Dans les chapitres
suivants, nous étendons et enrichissons la sémantique d’intérieur afin de formaliser
différentes notions de connaissance (basée sur évidence) et de croyance justifiée,
ainsi que différentes notions de possession d’évidence.

Plan. La section 3.1 est une section technique qui introduit la sémantique
d’intérieur ainsi que ses connections avec la sémantique relationnelle (section
3.1.2). Dans la section 3.1.3, nous listons les résultats topologiques généraux de
correction et complétude pour les systèmes S4, S4.2 et S4.3 qui seront utilisés dans
les chapitres suivants. La section 3.2 explique ensuite les motivations derrière
l’utilisation de l’opérateur d’intérieur comme modalité de connaissance, en met-
tant l’accent sur l’interprétation à base d’évidence sous-jacente.

Dans le chapitre 4 notre attention passe de l’interprétation topologique de la
connaissance à l’interprétation topologique de la croyance, et nous présentons
le premier pas vers le développement d’une théorie topologique de la croyance
qui fonctionne bien combinée avec la connaissance comme opérateur d’intérieur.
Plus précisément, la première partie de ce chapitre présente un examen de la
sémantique de croyance topologique de (Özgün, 2013; Baltag et al., 2013), traitant
les questions suivantes :

• Étant donnée la sémantique topologique d’intérieur pour la connaissance,
comment peut-on construire une sémantique topologique pour la croyance
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qui réponde aussi au problème de comprendre la relation entre connaissance
et croyance ?

• Dans quelle mesure les notions topologiques capturent-elles la signification
intuitive de la notion de croyance en question ?

Comprendre la relation entre connaissance et croyance est un problème central
en épistémologie. Tout spécialement après que Gettier (1963) a fait voler en éclat
la vision traditionnelle de la connaissance comme croyance vraie et justifiée, de
nombreux épistémologues ont tenté de renforcer cette dernière notion pour obtenir
une notion satisfaisante de la première. Dans cette approche, on commence avec
une notion faible de croyance (qui est au moins justifiée et vraie) et on essaye
d’atteindre la connaissance en renforçant la notion de croyance choisie de manière
à obtenir une notion de connaissance qui ne soit plus sujette aux contre-exemples
de type Gettier (Gettier, 1963). Plus récemment l’approche inverse—dériver la
croyance à partir de la connaissance—ou, du moins, mettre la “connaissance en
premier” (Williamson, 2000) a aussi été considérée. Dans cet esprit, Stalnaker
(2006) a proposé un cadre formel dans lequel la croyance est réalisée comme
une forme affaiblie de connaissance. Plus précisément, en commençant avec le
système logique donné en Table A.1, dans lequel la croyance et la connaissance

(K) K(ϕ→ ψ)→ (Kϕ→ Kψ) Normalité de la connaissance
(T) Kϕ→ ϕ Factualité de la connaissance
(PI) Kϕ→ KKϕ Introspection positive
(DB) Bϕ→ ¬B¬ϕ Consistance de la croyance
(sPI) Bϕ→ KBϕ Introspection positive forte
(sNI) ¬Bϕ→ K¬Bϕ Introspection négative forte
(KB) Kϕ→ Bϕ Connaissance implique croyance
(FB) Bϕ→ BKϕ Croyance complète

Table A.1: Schéma axiomatique de Stalnaker

sont toutes deux représentées comme primitives, Stalnaker formalise quelques re-
lations d’apparence naturelle entre les deux, et prouve sur la base de ces relations
que la croyance peut être définie à partir de la connaissance comme la possibilité
épistémique de connaissance :

Bϕ := ¬K¬Kϕ.

Dans ce but, la formalisation syntactique de Stalnaker semble être analogue au
status quo de la sémantique de l’intérieur pour la connaissance et de l’interpréta-
tion topologique de la croyance élaborée dans le chapitre 3, où nous donnons
l’interprétation de la connaissance et dévoilons une bonne sémantique pour la
croyance.
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Baltag et al. (2013) et Özgün (2013), en partant du formalisme de Stalnaker,
proposèrent d’interpréter la croyance, en particulier la croyance de Stalnaker,
comme certitude subjective, en termes de la clôture de l’opérateur d’intérieur
sur des espaces extrêmement discontinus. Tandis que ce cadre statique fournit
une réponse satisfaisante aux questions ci-dessus, l’extension dynamique par des
modalités d’annonces publiques rencontre des problèmes dûs aux propriétés struc-
turelles des espaces extrêmement discontinus. Cela mène à la quête d’une logique
de la connaissance et de la croyance adaptée aux annonces publiques. La seconde
partie de ce chapitre est dévolue à la résolution de ce problème, et la solution
que nous proposons consiste en une interprétation de la connaissance et de la
croyance sur des espaces héréditairement extrêmement discontinus.

Alors que cette sémantique pour la croyance fonctionne bien pour la notion
de croyance forte de Stalnaker comme certitude subjective, d’un point de vue plus
général elle peut être vue comme quelque peu restrictive pour deux raisons. Elle
est basée sur des classes d’espaces topologiques assez exotiques, et les logiques
correspondantes n’incluent pas réellement l’évidence car elles n’en ont pas de
représentation syntaxique. Cela constitue une partie de la motivation pour le
travail présenté dans le chapitre 5, menant aux questions plus générales et fon-
damentales que nous y traitons.

Plan. La section 4.1 présente le système combiné de Stalnaker pour la connais-
sance et la croyance, et liste les aspects importants de son travail qui inspirèrent
(Özgün, 2013; Baltag et al., 2013). Dans la section 4.2, nous passons en revue la
sémantique topologique de croyance de (Özgün, 2013; Baltag et al., 2013), et la
section 4.2.2 rappelle pourquoi les mises à jour ne fonctionnent pas sur les espaces
extrêmement discontinus. Dans la section 4.3, nous introduisons ce qui va au-delà
de (Özgün, 2013; Baltag et al., 2013), nous modélisons croyance, croyance con-
ditionnelle et annonces publiques sur les espaces héréditairement extrêmement
déconnectés, et nous présentons plusieurs résultats de complétude concernant
KD45B et ses extensions avec croyances conditionnelles et annonces publiques.

Le chapitre 5 contient la contribution principale de la partie I. En s’appuyant
sur l’hypothèse que la croyance rationnelle d’un agent est basée sur l’évidence
disponible, nous essayons de révéler la relation concrète entre l’évidence à dispo-
sition d’un agent, ses croyances et sa connaissance, et nous étudions la dynamique
de l’évidence supportée par la représentation statique mise au point. Ce projet
est motivé par des questions à la fois philosophiques et techniques, ainsi que
par les inconvénients susmentionnés de notre propre travail du chapitre 4. Plus
précisément, nous considérons entre autres les questions suivantes :

• Comment un agent en possession d’éléments d’évidence possiblement faux,
possiblement mutuellement contradictoires, réunit de manière consistante
son évidence et forme des croyances consistantes ?
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• Quelles sont les conditions nécessaires et suffisantes pour qu’un élément
d’évidence constitue une justification pour une croyance ?

• Quelles propriétés devrait posséder un élément d’évidence pour entrâıner
une connaissance (défaisable) ?

• Comment notre formalisation des notions susmentionnées aide-t-elle à com-
prendre les discussions en épistémologie formelle quant aux liens entre croy-
ance justifiée et connaissance ?

• Quelles sont les axiomatisations complètes des logiques associées de croy-
ance justifiée, connaissance et évidence ? Ont-elles la propriété du modèle
fini ? Sont-elles décidables ?

Ces questions guident aussi l’approche de van Benthem and Pacuit (2011);
van Benthem et al. (2012, 2014), qui inspira considérablement notre travail.
Les travaux influents de (van Benthem and Pacuit, 2011; van Benthem et al.,
2012, 2014) représentent l’évidence sémantiquement—pour faire simple, comme
des ensembles de mondes possibles—en se basant sur des structures de voisi-
nage, ainsi que syntaxiquement en introduisant des modalités d’évidence. Leur
cadre va au-delà et généralise le traitement formel des notions sémantiques citées
précédemment en termes de structures relationnelles, telles que modèles de Kripke
ou de plausibilité, et modèles non-relationnels, tels que les modèles de sphère de
Grove. Dans ce chapitre nous franchissons une étape de plus dans l’amélioration
du traitement théorique formel modal de l’évidence, de la croyance justifiée et de
la connaissance en révélant la structure topologique cachée des modèles d’évidence
de van Benthem and Pacuit (2011). La perspective topologique permet des repré-
sentations mathématiques plus précises et raffinées de diverses notions d’évidence
telles que l’évidence basique, l’évidence combinée, l’évidence vraie et l’évidence
non-trompeuse, ainsi que de notions épistémiques pertinentes telles que l’argument
et la justification (basée sur évidence) et, enfin, la croyance justifiée et la con-
naissance indéfectible. En conséquence, nous obtenons un cadre sémantiquement
et syntaxiquement riche qui fournit une analyse logique plus profonde quant au
rôle de l’évidence dans l’atteinte d’un état épistémique/doxastique par un agent.
Nous examinons aussi plusieurs types de dynamiques d’évidence introduits dans
(van Benthem and Pacuit, 2011) et nous appliquons ce cadre pour analyser et
aborder des problèmes clefs en épistémologie tels que les exemples de Gettier de
type “pas de lemme faux”, les contradicteurs trompeurs, et la justification non
contredite face à la croyance non contredite. Nos résultats techniques principaux
traitent de complétude, de décidabilité et de propriété du modèle fini pour les
logiques associées. Dans ce qui suit, nous fournissons un aperçu détaillé des no-
tions épistémiques étudiées dans ce chapitre, nous introduisons les modalités que
nous considérons, et nous expliquons où notre travail se situe par rapport à la
littérature concernée.
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Une raison cruciale pour laquelle notre approche présentée dans le chapitre 5
fait mieux que celles des chapitres 3 et 4 est qu’ici nous introduisons des modalités
d’évidence afin de fournir aussi des représentations syntactiques des notions d’évi-
dence, et finalement pour construire des logiques d’évidence. En particulier, nous
étudions l’opérateur “avoir un élément d’évidence pour une proposition P” pro-
posé pas van Benthem and Pacuit (2011), mais nous étudions aussi des variantes
intéressantes de ce concept : “avoir une évidence (combinée) pour P”, “avoir un
élément d’évidence vrai pour P” et “avoir une évidence (combinée) vraie pour
P”. La table A.2 ci-dessous liste les modalités d’évidence correspondantes ainsi
que leur lecture intuitive.

E0ϕ l’agent a un élément d’évidence pour ϕ
Eϕ l’agent a une évidence combinée pour ϕ
20ϕ l’agent a un élément d’évidence vrai pour ϕ
2ϕ l’agent a une évidence combinée vraie pour ϕ

Table A.2: Modalités d’évidence et leur lecture intuitive

Les éléments basiques d’évidence possédés par un agent sont modélisés comme
des ensembles non vides de mondes possibles. Une évidence combinée (ou sim-
plement “évidence”) est une intersection non vide d’un nombre fini d’éléments
d’évidence. Cette notion d’évidence n’est pas nécessairement vraie, puisque les
éléments d’évidence sont potentiellement faux et possiblement inconsistants en-
tre eux. Par évidence vraie nous entendons évidence qui est vraie dans le monde
actuel. En épistémologie il est commun de réserver le terme “évidence” pour
l’évidence vraie. Cependant nous suivons ici l’usage plus libéral fait de ce terme
dans (van Benthem and Pacuit, 2011), qui est en accord avec l’acception com-
mune de la vie de tous les jours, e.g. quand on parle d’ “évidence incertaine”,
de “fausse évidence”, d’“évidence trompeuse” etc.2 La famille des ensembles
d’évidence (combinée) forme une base topologique qui engendre ce que nous ap-
pelons la topologie évidentielle. Il s’agit de la plus petite topologie dans laquelle
tous les éléments basiques d’évidence sont ouverts, et elle jouera un rôle im-
portant dans notre formalisme. En fait, la modalité 2ϕ qui capture le concept
de “avoir une évidence vraie pour ϕ” cöıncide avec l’opérateur d’intérieur dans
la topologie évidentielle (voir section 5.2.2). Nous utilisons donc la sémantique
d’intérieur de McKinsey and Tarski (1944) pour interpréter une notion d’évidence
vraie (à la différence de ce qui est fait dans le chapitre 4, où l’opérateur d’intérieur
était traité comme connaissance). Nous montrons aussi que deux variantes vraies
d’opérateurs de possession d’évidence (20 et 2) sont plus expressives que celles
non vraies (E0 et E) : lorsqu’elles interagissent avec la modalité globale, les

2Bien sûr cela ne passe pas bien la traduction. En français on pourrait penser à “indice
incertain”, “faux indice”, “indice trompeur” etc.
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deux modalités d’évidence vraie 20ϕ et 2ϕ peuvent définir les variantes non
vraies E0ϕ et Eϕ, respectivement, ainsi que de nombreux autre opérateurs dox-
astiques/épistémiques.

La notion de croyance justifiée que nous étudions dans ce chapitre sera définie
purement à travers les notions d’évidence mentionnées ci-dessus. Nous proposons
une sémantique “cohérentiste” de la justification et de la croyance justifiée, que
nous obtenons en étendant, en généralisant et (dans une certaine mesure) en
profilant le cadre formel des modèles d’évidence pour les croyances introduit par
van Benthem and Pacuit (2011). L’idée principale derrière la définition de la
croyance de van Benthem and Pacuit (2011) semble être que l’agent rationnel
essaye de former des croyances consistantes en regardant toutes les plus fortes
collections d’évidence finiment consistantes, et elle crôıt tout ce qui est impliqué
par l’ensemble de ces dernières.3

Leur définition de la croyance dépend donc crucialement de la notion de “plus
forte” évidence, et elle fonctionne bien dans le cas fini (quand l’agent a un nombre
fini d’éléments d’évidence de base) ainsi que dans certains cas infinitaires. Mais,
comme déjà remarqué dans (van Benthem et al., 2014), ce cadre formel présente
l’inconvénient qu’il peut produire des croyances inconsistantes dans le cas infini-
taire général. Un défaut plus technique de ce cadre est que la logique doxastique
correspondante ne possède pas la propriété du modèle fini (voir van Benthem
et al., 2012, Corollary 2.7 ou van Benthem et al., 2014, Corollary 1). Dans ce
chapitre, nous proposons une sémantique “améliorée” pour la croyance basée sur
évidence obtenue en affaiblissant, en un sens, la définition de (van Benthem and
Pacuit, 2011). Selon nous, une proposition P est crue si P est impliquée par des
collections d’évidence finiment consistantes suffisamment fortes. Cette définition
cöıncide avec celle de van Benthem and Pacuit (2011) pour les modèles portant
des collections d’évidence finies, mais elle fait appel à une généralisation différente
de leur notion dans le cas infinitaire. En fait, notre sémantique assure toujours
la consistance des croyances, même lorsque les éléments d’évidence disponibles
sont mutuellement inconsistants. Nous fournissons aussi une formalisation de
l’argument et une vue “cohérentiste” des justifications. Un argument est essen-
tiellement constitué d’un ou plusieurs ensembles d’évidence supportant la même
proposition (fournissant donc de multiples chemins potentiels vers une conclusion
commune); une justification est un argument qui n’est contredit par aucune autre
évidence disponible. Notre définition de la croyance équivaut à demander que P
soit vraie ssi il y a quelque justification (basée sur évidence) pour P . Elle capture
donc correctement le concept de “croyance justifiée”. Notre proposition est aussi
très naturelle d’un point de vue topologique : elle est équivalente à dire que P

3Ceci est encore vague puisque nous n’avons pas encore spécifié ce que signifie “plus fortes
collections d’évidence finiment consistante” (nous formalisons ces notions dans la section 5.2.1.
Cependant ce niveau de précision devrait être suffisant pour expliquer l’idée derrière la définition
de croyance de van Benthem and Pacuit (2011), et notre notion de croyance justifiée étudiée
dans ce chapitre).
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est crue ssi elle est vraie dans “presque tous” les états épistémiquement possibles,
où “presque tous” est interprété topologiquement comme “tous sauf pour un en-
semble dense nulle part”. De plus, nous généralisons cette croyance sémantique
pour les croyances conditionnelles. La table A.3 ci-dessous liste les modalités de
croyance que nous étudions dans ce chapitre.

Bϕ l’agent a une croyance justifiée de ϕ
Bϕψ l’agent croit ψ à condition que ϕ

Table A.3: Modalités de croyance et leurs lectures intuitives

Quant à la connaissance, il y a un certain nombre de différentes notions qui
peuvent être considérées. Premièrement, il y a la connaissance “absolument cer-
taine” ou “infaillible”, proche du concept de connaissance partitionnelle d’Aumann
(Aumann, 1999) ou du concept d’information dure de van Benthem (van Benthem,
2007). Dans notre cadre mono-agent, cela peut être défini simplement comme la
modalité globale (qui quantifie universellement sur les états épistémiquement pos-
sibles). Il y a très peu de propositions qui peuvent être connues de cette manière
infaillible (e.g., celles connues par introspection ou par preuve logique). La plupart
des faits en science ou dans la vraie vie sont inconnus dans ce sens. Il est donc
plus intéressant de considérer des notions de connaissance moins qu’absolument
certaine, telle que la connaissance défaisable. Dans notre cadre, nous considérons
à la fois la connaissance absolument certaine et la connaissance défaisable, mais
nous nous intéressons plus particulièrement à cette dernière. Voir la table A.4 ci-
dessous pour les modalités de connaissance correspondantes et leur signification.

[∀]ϕ l’agent a la connaissance infaillible de ϕ
Kϕ l’agent sait ϕ de manière faillible (ou défaisable)

Table A.4: Modalités de connaissance et leurs significations intuitives

Les célèbres contre-exemples de Gettier (Gettier, 1963) montrent que simple-
ment ajouter la “véracité” la croyance ne nous donnera pas de “bonne” notion
de connaissance défaisable : la croyance vraie (justifiée) est extrêmement fragile
(i.e., elle peut être perdue trop facilement), et elle est consistante avec le fait
de n’avoir que des justifications erronées pour une conclusion accidentellement
vraie. Nous formalisons ici une notion de connaissance défaisable disant que “P
est connue (de manière faillible) s’il y a une justification vraie pour P ”. Nous
étudions par conséquent une notion de connaissance définie comme une croyance
correctement justifiée. Comme nous le développons en section 5.5.1, cette notion
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de connaissance moins qu’absolument certaine trouve sa place dans la littérature
post-Gettier en étant plus forte que celle caractérisée par le “pas de lemme faux”
de Clark (1963) et plus faible que la conception de la connaissance décrite par
la théorie de la défaisabilité de la connaissance défendue par Lehrer and Paxson
(1969); Lehrer (1990); Klein (1971, 1981).

Encore un autre chemin menant à notre cadre formel dans ce chapitre passe
par notre travail précédent (Baltag et al., 2013, 2015a), présenté dans le chapitre 4,
sur une topologie sémantique pour les axiomes doxastiques/épistémiques de Stal-
naker (2006). Rappelons que le système de Stalnaker présenté dans la table A.1
est fait pour capturer une notion de connaissance faillible, en forte interaction avec
une notion de “croyance forte” définie comme une certitude subjective. La princi-
pale idée spécifique à ce système était que “croire implique croire que l’on sait”,
idée capturée par l’axiome de Croyance complète (Bϕ→ BKϕ). La sémantique
topologique que nous avons proposée pour ces concepts dans (Özgün, 2013; Bal-
tag et al., 2013, 2015a) était trop restrictive (car limitée à la classe peu familière
des topologies extrêmement discontinues et héréditairement extrêmement dis-
continues). Dans le chapitre 5 nous montrons que ces notions peuvent être in-
terprétées sur des espaces topologiques arbitraires, sans changer leur logique. En
effet, nos définitions de croyance et de connaissance peuvent être vues comme les
généralisations naturelles aux topologies arbitraires des notions de (Özgün, 2013;
Baltag et al., 2013, 2015a).

Nous axiomatisons complètement les différentes logiques d’évidence, de con-
naissance et de croyance que nous obtenons, et nous établissions des résultats
de décidabilité et de propriété du modèle fini. De plus, nous étudions quelques
extensions dynamiques, en encodant différents types de dynamique d’évidence.
Techniquement, notre résultat le plus difficile est la complétude de la logique de
l’évidence vraie la plus riche Log∀220

, qui contient les deux modalités d’évidence
vraie 20ϕ et 2ϕ, ainsi que la modalité globale [∀]ϕ. L’axiomatisation de Log∀220

est donnée par les schémas d’axiomes et les règles d’inférence de la table A.5.

(CPL) toutes les tautologies propositionnelles classiques et
Modus Ponens (MP)

(S5[∀]) tous les axiomes de S5 et les règles pour la modalité [∀]
(S42) tous les axiomes de S4 et les règles pour la modalité 2

(420) 20ϕ→ 2020ϕ
Universalité (U) [∀]ϕ→ 20ϕ

Évidence Vraie (FE) 20ϕ→ 2ϕ
Retrait (20ϕ ∧ [∀]ψ)→ 20(ϕ ∧ [∀]ψ)
Monotonicité de 20 de ϕ→ ψ, on infère 20ϕ→ 20ψ

Table A.5: Axiomatisation de Log∀220
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Cette logique peut définir tous les opérateurs modaux que nous étudions dans
ce chapitre. Tandis que les autres preuves sont plus ou moins de l’ordre de
la routine, les résultats techniques mentionnés pour Log∀220

font intervenir une
combinaison non triviale de méthodes connues.

Plan. La section 5.1 sert d’introduction semi-formelle et de résumé du chapitre
comme ce qui précède, mettant l’accent sur les caractéristiques importantes de
son contenu. Dans la section 5.2 nous introduisons les modèles d’évidence de van
Benthem and Pacuit (2011) ainsi que nos modèles d’évidence topologiques, et
nous donnons la sémantique pour les notions d’élément d’évidence, d’évidence
combinée et d’évidence vraie. De plus, nous donnons des définitions topologiques
pour l’argument et la justification. Dans la section 5.3, nous proposons une
sémantique topologique pour une notion de croyance justifiée tout en comparant
notre système à celui de van Benthem and Pacuit (2011). Nous généralisons en-
suite notre sémantique de croyance (simple) à la croyance conditionnelle. La
section 5.4 définit les modèles de transformations induits par les dynamiques
d’information basées sur évidence telles que les annonces publiques, l’addition
d’évidence, l’amélioration d’évidence et la combinaison faisable d’évidence. Dans
la section 5.5 nous proposons une interprétation topologique pour une notion
de connaissance faillible et nous relions notre formalisme à certaines discussions
importantes qui ont émergé dans la littérature de l’épistémologie post-Gettier,
telles que les théories de stabilité/défaisabilité de la connaissance, contradicteurs
trompeurs contre contradicteurs sincères, etc. Finalement, la section 5.6 présente
tous nos résultats techniques. Le lecteur intéressé uniquement par les aspects
techniques peut sauter directement à la section 5.6.

PARTIE II : Des Annonces Publiques aux Efforts

Dans la Partie II de cette dissertation nous ne parlons plus de croyances, mais nous
nous concentrons sur certaines notions de connaissance ainsi que différents types
de dynamique d’information qui incluent l’apprentissage de nouvelle évidence.
Cette partie prend comme point de départ le cadre de l’espace des sous-ensembles
de Moss and Parikh (1992), et elle tourne autour des notions de connaissance
absolument certaine et connaissabilité comme “connaissance potentielle ”, ainsi
que des connections entre la notion abstraite d’effort épistémique, qui recouvre
toute méthode d’acquisition d’évidence, et certaines attitudes dynamiques bien
connues telles que les annonces publiques et les annonces publiques arbitraires.

Le chapitre 6 fournit les bases pour la Partie II et motive le changement de
paradigme entre les deux parties de cette thèse. En particulier, il introduit
la sémantique d’espace des sous-ensembles de Moss and Parikh (1992) et la
logique topologique d’annonces publiques de Bjorndahl (2016). Dans ce chapitre,
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nous mettons aussi en relief les connections et différences entre les utilisations
épistémiques des espaces topologiques dans les parties I et II de cette thèse, en
particulier en ce qui concerne les types d’évidence représentés et les notions de
connaissance étudiées.

Plan. La section 6.1 présente le cadre de l’espace des sous-ensembles, four-
nissant sa syntaxe et sémantique ainsi que les axiomatisations complètes des
logiques associées pour les espaces de sous-ensembles et les espaces topologiques.
La section 6.2 introduit la logique topologique d’annonces publiques de Bjorndahl
(2016) et présente plusieurs résultats d’expressivité pour les langages étudiés dans
les cadres formels mentionnés ci-dessus.

Le chapitre 7 étudie les extensions de la logique topologique d’annonces pu-
bliques de Bjorndahl (2016) avec la modalité d’effort de Moss and Parikh (1992),
ainsi qu’avec une version topologique de la modalité d’annonce arbitraire de Bal-
biani et al. (2008). Ce travail présente un intérêt tant conceptuel que technique,
en visant à clarifier la connection, intuitivement évidente mais difficile à saisir
formellement, entre les notions dynamiques d’effort et ce qui semble en être des
instanciations : les annonces publiques et arbitraires. Ces modalités sont données
en Table A.6 avec leurs lectures intuitives.

2ϕ ϕ reste vraie après tout effort
[ψ]ϕ après l’annonce publique de ψ, ϕ devient vraie
�ϕ ϕ reste vraie après toute annonce épistémique

Table A.6: Modalités dynamiques étudiées dans le chapitre 7 et leurs lectures
intuitives

En particulier, nous nous intéressons aux questions suivantes, et y répondons par
l’affirmative :

• Peut-on clarifier la signification de l’effort modal en le reliant aux modalités
dynamiques citées ci-dessus ?

• Traiter ensemble dans un même cadre topologique la modalité d’effort et les
annonces publiques fournit-il quelque avantage technique quant à l’axiomati-
sation complète, la décidabilité et la propriété du modèle fini de ses logiques
associées ?

Nous donnons l’axiomatisation complète de la logique topologique dynamique
de l’effort et des annonces publiques (appelée TopoLogique Dynamique) donnée
dans la table A.7 ci-dessous, et nous défendons l’idée qu’elle est plus intuitive et,
dans un sens, plus simple que les axiomes standards de la logique topologique
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(CPL) toutes les tautologies propositionnelles classiques et le (MP)
(S5K) tous les axiomes de S5 et les règles pour la modalité K
(S4int) tous les axiomes S4 et les règles pour la modalité int
(K-int) Connaissance implique connaissabilité: Kϕ→ int(ϕ)

(K!) [ϕ](ψ → θ)→ ([ϕ]ψ → [ϕ]θ)
(Nec!) de θ, on infère [ϕ]θ

([!]RE) Remplacement d’Équivalents pour [!]:
de ϕ↔ ψ, on infère [ϕ]θ ↔ [ψ]θ

Axiomes de réduction:
(R[>]) [>]ϕ↔ ϕ
(Rp) [ϕ]p↔ (int(ϕ)→ p)
(R¬) [ϕ]¬ψ ↔ (int(ϕ)→ ¬[ϕ]ψ)
(RK) [ϕ]Kψ ↔ (int(ϕ)→ K[ϕ]ψ)
(R[!]) [ϕ][ψ]χ↔ [〈ϕ〉ψ]χ

([!]2-elim) [ϕ]2θ → [ϕ ∧ ρ]θ (ρ ∈ L!
Kint2 une formula arbitraire)

([!]2-intro) de ψ → [ϕ ∧ p]θ, on infère ψ → [ϕ]2θ (p 6∈ Pψ ∪ Pθ ∪ Pϕ)

Table A.7: Les axiomatisations des TopoLogiques Dynamiques. Noter que Pϕ

dénote l’ensemble de toutes les variables propositionnelles qui apparaissent dans
ϕ.

(Georgatos, 1993, 1994; Dabrowski et al., 1996). Notre preuve de complétude
est aussi plus directe, utilisant une construction de modèle canonique standard.
De plus, nous étudions les relations entre cette extension et d’autres formalismes
logiques connus, montrant en particulier qu’elle est co-expressive avec la logique
d’intérieur et de modalité globale (Goranko and Passy, 1992; Bennett, 1996; She-
htman, 1999; Aiello, 2002), plus simple et plus ancienne.

Nous considérons aussi une sémantique topologique pour la modalité d’annonce
arbitraire, et nous étudions ses interactions avec la modalité d’effort. A notre
connaissance, les preuves de complétude connues pour les logiques d’annonces
arbitraires (topologiques ou relationnelles) reposent sur des axiomatisations in-
finitaires formalisées en ayant recours à des formes de nécessité (voir, e.g., Balbiani
et al., 2008, 2013; Balbiani, 2015; Balbiani and van Ditmarsch, 2015; voir aussi
les sections 8.2 et 8.3 pour le cas multi-agent). Bien que Balbiani et al. (2008)
propose une axiomatisation finitaire similaire à la nôtre, sa preuve de complétude
passe par la complétude d’un système infinitaire.4 A l’inverse, notre preuve de

4L’axiomatisation finitaire proposée dans (Balbiani et al., 2008) a par la suite été prouvée
incorrecte pour le cas multi-agent (voir http://personal.us.es/hvd/APAL_counterexample.
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complétude pour le système finitaire de la logique topologique d’annonces arbi-
traires ne fait pas de détour par une logique infinitaire. La modalité d’effort aide
donc à simplifier et profiler l’axiomatisation de la logique d’annonces arbitraires.

Plan. La section 7.1 présente la TopoLogique Dynamique qui combine le for-
malisme topologique avec les annonces publiques de Bjorndahl présentées dans le
chapitre 6. Alors que la section 7.1.2 présente plusieurs résultats d’expressivité, la
section 7.1.3 se concentre sur la preuve de complétude de l’axiomatisation pour la
TopoLogique Dynamique que nous proposons. Dans la section 7.2, nous étudions
les annonces arbitraires sur des topo-modèles et nous démontrons que, en fait,
l’annonce arbitraire et la modalité d’effort sont équivalentes dans notre cadre
mono-agent.

Le chapitre 8 étudie la généralisation au cas multi-agent du cadre formel présenté
dans le chapitre précédent. Nous rappelons brièvement que Moss and Parikh
(1992), dans le cadre mono-agent original des espaces de sous-ensembles, évalue
les formules du langage bimodal avec connaissance et modalités d’effort, dénotées
respectivement par K et 2, sur des espaces de sous-ensembles (X,O), où X est
un domaine non vide et O est un ensemble non vide de sous-ensembles de X.
Les formules sont interprétées non seulement par rapport à l’état courant, mais
aussi par rapport à un élément d’évidence vraie. L’unité d’évaluation est donc
une paire (x, U) telle que x ∈ U ∈ O, où le point x représente le véritable état des
choses, et l’ensemble U représente tous les points que l’agent considère possible,
i.e., sa portée épistémique.

Modéliser des systèmes multi-épistémiques multi-agents dans le style de la
sémantique des sous-espaces n’est pas chose facile. Comme (Baskent, 2007,
Chapitre 6) et (Wáng and Ågotnes, 2013a) le reconnaissent, développer une
logique épistémique multi-agents utilisant une sémantique topologique basée sur
les espaces de sous-ensembles requière d’abord de résoudre le problème du “saut
hors de la portée épistémique” d’un agent lors de l’évaluation de formules de con-
naissance d’ordre supérieur. Ce problème est indépendant d’éventuelles extensions
dynamiques. Le cadre général que nous considérons traite n’importe quel nom-
bre fini d’agents, mais afin d’illustrer le problème considérons ici le cas de deux
agents. Si nous étendons le cadre mono-agent de manière näıve, alors nous avons
un ensemble ouvert pour chacun des agents i et j, et la sémantique primitive de-
vient un triplet (x, Ui, Uj) au lieu d’une paire (x, U). Considérons maintenant une

formule telle que KiK̂jKip, pour “l’agent i sait que l’agent j considère possible
que l’agent i sache la proposition p”. Si cela est vrai pour un triplet (x, Ui, Uj),

alors K̂jKip doit être vraie pour tout y ∈ Ui; mais y pourrait ne pas être dans
Uj, auquel cas (y, Ui, Uj) n’est pas bien défini : nous ne pouvons y interpréter

pdf), et l’erreur dans l’analyse de complexité dans (Balbiani et al., 2008, Truth Lemma 4.13,
p. 327) est corrigée dans (Balbiani, 2015).
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K̂jKip. Notre solution à ce dilemme est de considérer des voisinages qui ne sont
pas seulement relatifs à chaque agent, mais sont aussi relatifs à chaque état. Cela
signifie que, lorsque dans (x, Ui, Uj) on change de point de vue de x à y ∈ Ui,
simultanément nous changeons aussi de voisinage (et non uniquement de point
dans le voisinage courant) pour l’autre agent. Par conséquent, nous passons de
(x, Ui, Uj) à (y, Ui, Vj), où Vj peut être différent de Uj : tandis que l’ouvert Uj
représente l’évidence courante (i.e., sa portée épistémique) de j en x, l’ouvert
Vj représente l’évidence de j en y. Ainsi, le changement de voisinage de Uj à Vj
ne signifie pas un changement d’ensemble d’évidence pour l’agent j dans l’état
courant. Tandis que le tuple (x, Ui, Uj) représente l’état courant et les points de
vue des deux agents, la composante (y, Vj) du second tuple (y, Ui, Vj)ne représente
que l’état épistémique de l’agent j du point de vue de l’agent i dans l’état y, qui
est un état possiblement différent de l’état actuel x.

Afin de définir la portée épistémique de chaque agent par rapport à l’état en
question, nous employons une technique inspirée de la sémantique des voisinages
standard (voir, e.g., Chellas, 1980). Nous utilisons un ensemble de fonctions de
voisinage, déterminant la portée épistémique relative à la fois à l’état donné et
l’agent correspondant. Ces fonctions doivent être partielles afin d’obtenir une
sémantique bien fondée pour les modalités dynamiques du système, à savoir les
modalités d’annonce publique et d’annonce arbitraire.

De plus, utiliser des espaces topologiques enrichis par un ensemble de fonc-
tions (partielles) de voisinage comme modèles nous permet de travailler avec
différentes notions de connaissance. Dans le cadre standard (mono-agent) des es-
paces de sous-ensembles (comme dans les chapitres 6 et 7), puisque la modalité
de connaissance quantifie sur les éléments d’un voisinage fixé, la connaissance de
type S5 est inhérente à la façon dont la sémantique est définie. En revanche,
avec l’approche développée dans ce chapitre, la portée épistémique d’un agent
change selon les fonctions de voisinage quand l’état d’évaluation change. Par
conséquence, les validités de la connaissance sont déterminées par les contraintes
imposées sur les fonctions de voisinage. Dans ce but, nous travaillons dans ce
chapitre à la fois avec la connaissance de type S5 et celle de type S4 : alors que
la première est la notion de connaissance standard dans le cadre des espaces de
sous-ensembles, la seconde révèle un nouvel aspect de notre approche, à savoir,
la possibilité de capturer différentes notions de connaissance. Cela contraste avec
et enrichit les approches existantes pour les sémantiques de connaissance basées
sur les espaces de sous-ensembles, car à notre connaissance, les autres approches
ne peuvent fonctionner qu’avec la connaissance S5.

Sans surprise, travailler avec la connaissance de type S5 dans notre cadre
multi-agents requière un partitionnement du (sous-)domaine d’un espace topolo-
gique. Cela pourrait sembler être une restriction puisque cela exclue de travailler
avec des espaces plus familiers tels que la topologie naturelle des intervalles ou-
verts sur la ligne réelle ou l’espace Euclidien. Cependant, lorsqu’on considère
de multiples agents de type S5, nous croyons qu’il est difficile voire impossible
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d’éviter une telle restriction. Nous axiomatisons la logique multi-agents de con-
naissance et connaissabilité ELmint, ses extensions avec annonces publiques PALmint,
ainsi qu’avec annonces publiques arbitraires APALmint (voir la table A.8 ci-dessous).
La modalité d’annonce arbitraire �ϕ, qui capture la “stabilité de la véracité de
ϕ après toute annonce” se rapproche de l’intuition derrière la modalité d’effort
2ϕ signifiant “stabilité de la véracité de ϕ après toute acquisition d’évidence”.
Nous prouvons que ces deux modalités sont équivalentes dans le cas mono-agent
(Théorème 7.2.6). Cependant, l’interprétation appropriée de l’effort dans le cas
multi-agents et ses liens avec la modalité d’annonce arbitraire demeurent dures
à saisir. Cela sort du cadre de cette dissertation, et nous laissons donc pour
de futurs travaux la tâche d’étudier de manière systématique les interprétations
possibles de la modalité d’effort et son comportement dans un cadre multi-agents.

(I) Axiomes et règles du système ELmint:
(CPL) toutes les tautologies propositionnelles classiques et le (MP)
(S5K) tous les axiomes et règles S5 pour la modalité Ki

(S4int) tous les axiomes et règles S4 pour la modalité int
(K-int) Connaissance implique connaissabilité: Kiϕ→ int(ϕ)

(II) Axiomes et règles supplémentaires pour PALmint:
(K!) [ϕ](ψ → θ)→ ([ϕ]ψ → [ϕ]θ)
(Nec!) de θ, on infère [ϕ]θ
([!]RE) de ϕ↔ ψ, on infère [ϕ]θ ↔ [ψ]θ

Axiomes de réduction:
(Rp) [ϕ]p↔ (int(ϕ)→ p)
(R¬) [ϕ]¬ψ ↔ (int(ϕ)→ ¬[ϕ]ψ)
(RK) [ϕ]Kiψ ↔ (int(ϕ)→ Ki[ϕ]ψ)
(R[!]) [ϕ][ψ]χ↔ [〈ϕ〉ψ]χ

(III) Axiomes et règles de � pour APALmint:
(�-elim) �ϕ→ [χ]ϕ (χ ∈ L!

Kint une formule arbitraire)
(�ω-intro) de [s][ψ]χ pour tout ψ ∈ L!

Kint, on infère [s]�χ

Table A.8: Axiomatisations pour les logiques multi-agents ELmint, PAL
m
int et APALmint.

Plan. La section 8.1 définit la syntaxe, les structures et la sémantique de notre
logique multi-agents d’annonces publiques arbitraires, APALmint, interprétée sur
des espaces topologiques équipés d’un ensemble de fonctions de voisinages. Sans
annonces arbitraires nous obtenons la logique PALmint, et sans annonces arbitraires
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ni publiques, la logique ELmint. Dans cette section nous donnons aussi deux ex-
emples détaillés illustrant les sémantiques proposées. Dans la section 8.2 nous
fournissons des axiomatisations pour nos logiques: PALmint étend ELmint et APALmint
étend PALmint. De plus, nous prouvons leur correction et comparons les pouvoirs
expressifs des langages multi-agent associés, L!

Kint�,L!
Kint et LKint, par rapport

aux topo-modèles multi-agents. En section 8.3 nous démontrons la complétude
pour ces logiques. La preuve de complétude pour le fragment épistémique, ELmint,
est assez différente de la preuve de complétude pour la logique complète APALmint.
La section 8.4 adapte les logiques au cas de la connaissance S4. Dans la sec-
tion 8.5 nous comparons notre travail avec la littérature, et la section 8.6 contient
un bref résumé du chapitre et une discussion sur une interprétation possible de
la modalité d’effort dans le système multi-agents actuel.

Origine de la matière de cette dissertation

• Le chapitre 4 est basé sur :

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2015a). The topo-
logical theory of belief. En cours d’évaluation. Disponible en ligne à
http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.pdf.

La partie I du chapitre 4 (sections 4.1-4.2.1) présente un aperçu de (Özgün,
2013; Baltag et al., 2013), tandis que le reste du chapitre est basé sur des
idées absentes de (Özgün, 2013; Baltag et al., 2013) mais présentées dans
(Baltag et al., 2015a).

• Le chapitre 5 se base sur deux articles, dont le second est une version étendue
du premier :

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2016a). Justified
belief and the topology of evidence. In Proceedings of 23rd Workshop on
Logic, Language, Information and Computation (WoLLIC 2016), pp. 83-
103.

Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S. (2016b). Justified
belief and the topology of evidence–Version étendue. Disponible en ligne à
http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-21.text.pdf.

• Le chapitre 7 est basé sur :

van Ditmarsch, H., Knight, S., and Özgün, A. (2014). Arbitrary announce-
ments on topological subset spaces. In Proceedings of the 12th European
Conference on Multi-Agent Systems (EUMAS 2014), pp. 252-266.

Baltag, A., Özgün, A., and Vargas-Sandoval, A. L. (2017). Topo-Logic as
dynamic epistemic logic. In Proceedings of the 6th International Workshop
on Logic, Rationality and Interaction (LORI 2017). A parâıtre.
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• Le chapitre 8 est basé sur :

van Ditmarsch, H., Knight, S., and Özgün, A. (2015b). Announcements
as effort on topological spaces. In Proceedings of the 15th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK 2015), pp. 283-
297.

van Ditmarsch, H., Knight, S., and Özgün, A. (2015c). Announcements as
effort on topological spaces–Version étendue. Accept pour publication dans
Synthese.

De plus, bien que les résultats principaux des articles suivants ne soient pas
inclus dans cette dissertation, la discussion concernant leur contenu conceptuel
contribue dans une large mesure au présent travail.

van Ditmarsch, H., Knight, S., and Özgün, A. (2017). Private announce-
ments on topological spaces. Studia Logica. A parâıtre.

Bjorndahl, A., and Özgün, A. (2017). Logic and Topology for Knowledge,
Knowability, and Belief. In Proceedings of the 16th Conference on Theoret-
ical Aspects of Rationality and Knowledge (TARK 2017), pp. 88-101.
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Affecting Meaning. Subjectivity and evaluativity in gradable adjectives.

ILLC DS-2015-02: Mathias Winther Madsen
The Kid, the Clerk, and the Gambler - Critical Studies in Statistics and Cog-
nitive Science



ILLC DS-2015-03: Shengyang Zhong
Orthogonality and Quantum Geometry: Towards a Relational Reconstruction
of Quantum Theory

ILLC DS-2015-04: Sumit Sourabh
Correspondence and Canonicity in Non-Classical Logic

ILLC DS-2015-05: Facundo Carreiro
Fragments of Fixpoint Logics: Automata and Expressiveness

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
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