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Even though modern retrieval systems typically use a multitude of features to rank documents, the backbone for search ranking is usually the standard retrieval models.

This thesis addresses a limitation of the standard retrieval models, the term mismatch problem, which happens when query terms fail to appear in relevant documents to the query. The term mismatch problem is a long standing problem in information retrieval. However, it was not well understood how often term mismatch happens in retrieval, how important it is for retrieval, or how it affects retrieval performance. This thesis answers the above questions, and proposes principled solutions to address this limitation.

This research is enabled by the formal definition of term mismatch. In this thesis, term mismatch is defined as the probability that a term does not appear in a document given that this document is relevant. Term mismatch definition is document and query dependent. Based on this fact, we propose several approaches for reducing term mismatch probability through modifying documents or queries. Our proposals are then followed by a quantitative analysis of term mismatch probability that shows how much the proposed approaches reduce term mismatch probability with maintaining the system performance. An essential component for achieving term mismatch probability reduction is the knowledge resource that defines terms and their relationships. A variety of knowledge resources are exploited, in our proposals, in order to produce effective modifications on documents or queries.

First, we propose a document modification approach according to a user query. The main idea of our document modification approach is to deal with mismatched query terms. A mismatched query term is a query term that does not appear in a given document. While prior research on document enrichment provides a static approach for document modification, we are concerned to only modify the document in case of mismatch. The modified document is then used in a standard retrieval model in order to obtain a mismatch aware retrieval model.

Second, we propose a semantic query expansion approach based on a collaborative knowledge resource. Prior research, for query expansion using collaborative resources, overwhelmingly focuses on the content of collaborative resources for extracting expansion terms. Whereas, we instead focus on the collaborative resource structure to obtain interesting expansion terms that contribute to reduce term mismatch probability, and as a result, improve the effectiveness of search.

Third, we propose a query expansion approach based on neural language models. Neural language models are proposed to learn term vector representations, called distributed neural embeddings. Distributed neural embeddings capture relationships between terms, and they obtained impressive results comparing with state of the art approaches in term similarity tasks. However, in information retrieval, distributed neural embeddings are newly started to be exploited. We propose to use distributed neural embeddings as a knowledge resource that defines term relationships. Then, we evaluate the effectiveness of this knowledge resource in a query expansion scenario.

Fourth, we apply the term mismatch probability definition for each contribution of the above contributions. We show how we use standard retrieval corpora with queries and relevance judgments to estimate the term mismatch probability. We estimate the term mismatch probability using original documents and queries, and we figure out how mismatch problem is clearly found in search systems for different types of indexing terms. Then, we point out how much our contributions reduce the estimated mismatch probability, and improve the system recall. As a result, we present how the modified document and query representations contribute to build a mismatch aware retrieval model that mitigate term mismatch problem theoretically and practically.

This dissertation shows the effectiveness of our proposals to improve retrieval performance. Experiments on seven different CLEF corpora show that these automatic interventions improve the retrieval recall without damaging the precision for different types of queries in different domains. Our experiments are conducted on corpora from two different domains: medical domain and cultural heritage domain. Moreover, we use two different types of indexing terms for representing documents and queries: words and concepts, and we exploit several types of relationships between indexing terms: hierarchical relationships, relationships based on a collaborative resource structure, relationships defined on distributed neural embeddings.

Promising research directions are identified where the term mismatch research may make a significance impact on improving the search scenarios.

Résumé

Les systèmes de recherche d'information utilisent généralement une multitude de fonctionnalités pour classer les documents. Néanmoins, un élément reste essentiel pour le classement, qui est les modèles standards de recherche d'information.

Cette thèse aborde une limitation fondamentale des modèles de recherche d'information, à savoir le problème de la disparité des termes <Term Mismatch Problem>, qui se produit lorsque les termes de la requête n'apparaissent pas dans les documents pertinents pour la requête. Le problème de la disparité des termes est un problème de longue date dans la recherche d'informations. Cependant, le problème de la récurrence de la disparité des termes n'a pas bien été défini dans la recherche d'information, son importance, et à quel point cela affecterai les résultats de la recherche. Cette thèse tente de répondre aux problèmes présentés ci-dessus, et ainsi propose des solutions afin de les traiter.

Nos travaux de recherche sont rendus possibles par la définition formelle de la probabilité de la disparité des termes. Dans cette thèse, la disparité des termes est définie comme étant la probabilité d'un terme ne figurant pas dans un document pertinent pour la requête. La définition de la disparité des termes dépend du document et de la requête. Cependant, nous identifions que la probabilité de la disparité des termes pourrait être réduite sur deux niveaux à savoir; au niveau du document et au niveau de la requête. De ce fait, cette thèse propose des approches pour réduire la probabilité de la disparité des termes sur ces deux derniers niveaux. De plus, nous confortons nos proposions par une analyse quantitative de la probabilité de la disparité des termes qui décrit de quelle manière les approches proposées permettent de réduire la probabilité de la disparité des termes tout en conservant les performances du système. Une composante essentielle pour réduire la disparité des termes est l'utilisation d'une ressource qui définit les termes et leurs relations. Diverses ressources sont exploitées dans nos propositions, afin d'apporter des modifications efficaces sur les documents ou les requêtes.

Au première niveau, à savoir le document, nous proposons une approche de modification des documents en fonction de la requête de l'utilisateur. Il s'agit de traiter les termes de la requête qui n'apparaissent pas dans le document. Bien que les approches de l'état de l'art sur l'enrichissement des documents ont proposés une approche statique pour la modification des documents. Cependant, notre proposions ne modifie le document qu'en cas de la disparité des termes. Le modèle de document modifié est ensuite utilisé dans un modèle standard de recherche afin d'obtenir un modèle permettant de traiter explicitement la disparité des termes.

Au second niveau, à savoir la requête, nous avons proposé deux majeures contributions. Premièrement, nous proposons une approche d'expansion de requête sémantique basée sur une ressource collaborative. Les travaux de l'état de l'art ont traité l'expansion des requêtes à l'aide de ressources collaboratives, se concentrent essentiellement sur le contenu des ressources collaboratives afin d'extraire les termes d'expansion. Cependant, nous nous concentrons plutôt sur la structure de ressources collaboratives afin d'obtenir des termes d'expansion intéressants qui contribuent à réduire la probabilité de la disparité des termes, et par conséquent, d'améliorer la qualité de la recherche.

Deuxièmement, nous proposons un modèle d'expansion de requête basé sur les modèles de langue neuronaux. Les modèles de langue neuronaux sont proposés pour apprendre les représentations vectorielles des termes dans un espace latent, appelées <Distributed Neural Embeddings>. Ces représentations vectorielles s'appuient sur les relations entre les termes permettant ainsi d'obtenir des résultats impressionnants en comparaison avec l'état de l'art dans les taches de similarité de termes. Cependant, en la recherche d'information, les représentations vectorielles ont pris une grande envergure. Nous proposons d'utiliser ces représentations vectorielles comme une ressource qui définit les relations entre les termes.

Nous adaptons la définition de la probabilité de la disparité des termes pour chaque contribution ci-dessus. Nous décrivons comment nous utilisons des corpus standard avec des requêtes et des jugements de pertinence pour estimer la probabilité de la disparité des termes. Premièrement, nous estimons la probabilité de la disparité des termes à l'aide les documents et les requêtes originaux. Ainsi, nous présentons les différents cas de la disparité des termes clairement identifiée dans les systèmes de recherche pour les différents types de termes d'indexation. Ensuite, nous indiquons comment nos contributions réduisent la probabilité de la disparité des termes estimée et améliorent le rappel du système. En fin, nous démontrons que la modification du document et les représentations des requêtes contribuent à construire un modèle de recherche permettant d'atténuer considérablement le problème de la disparité des termes théoriquement et pratiquement.

Cette thèse décèle l'efficacité de nos propositions pour améliorer la performance de la recherche. Les expériences sur sept collections CLEF montrent que cette intervention automatique améliore le rappel sans détériorer la précision pour les différents types de requêtes dans différents domaines. Nos expériences sont conduites sur des collections de données de deux domaines différents: le domaine médical et le domaine du patrimoine culturel. De plus, nous utilisons deux types différents de termes d'indexation pour les documents de représentation et les requêtes: mots et concepts, et nous exploitons plusieurs types de relations entre les termes d'indexation: des relations hiérarchiques, des relations basées sur la structure d'une ressource collaborative, et des relations définies sur les représentations vectorielles des termes.

Des directions de recherche prometteuses sont identifiées dans le domaine de la disparité des termes qui pourrait présenter éventuellement un impact significatif sur l'amélioration des scénarios de la recherche. 
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Introduction

For thousands of years, people have realized the importance of archiving and retrieving information. With the advent of computers, it became possible to store large amounts of information, and retrieving useful information from such amounts of information became a necessity. Information is normally organized, within search systems, into documents, e.g. web pages, books, etc. In general, users formulate their information needs through a request using a natural language, and then this request is used to search a document collection or a corpus in order to retrieve documents that fulfill user information needs. "Information Retrieval (IR) is a mechanism of selecting documents from a set of documents (corpus) to fulfill user needs of information" [START_REF] Rijsbergen | Information Retrieval[END_REF]. Information Retrieval can be also defined as "indirect communication process between the creation and the access of documents" [START_REF] Manning | Introduction to Information Retrieval[END_REF].

Figure 1.1 shows an Information Retrieval System schema, where a user has her information needs, and she normally expresses these needs through a request in her natural language. The role of an information retrieval system is then to build document and query representations, which are the machine adapted version of the document and the request, respectively. The retrieval system then compares query and document representations to decide if a document is relevant to a query. Finally, an information retrieval system returns a list of documents, generally ranked, that answer user information needs. Matching decides if a document is relevant to the query or not, according to the information retrieval system point of view. However, ranking when exists, defines an ordering among relevant documents with regard to a user query. We remark that the user's point of view about relevance is different from the system's point of view, where the first is between the user information needs and the original document, whereas the second is between query and document representations. An additional component often appears in an information retrieval system which is a knowledge resource. Knowledge resources, used in information retrieval, are widely heterogeneous in their nature. A knowledge resource could be integrated into an information retrieval system for building the document representation, for building the query, or for matching.

Indexing is defined as a process intended to represent, by indexing terms, the content of documents. Indexing terms differ from one information retrieval system to another, so it can be: keywords, noun phrases, n-grams, or concepts [START_REF] Chevallet | Domain knowledge conceptual intermedia indexing: Application to multilingual multimedia medical reports[END_REF]]. An indexing process is composed of several steps. First step is to annotate all the linguistic elements that will be used for representing a document. Then, identifying indexing terms that correspond these linguistic elements. Last, weighting indexing terms according to their importance within a document and/or within a document collection. For instance, a binary weighting assigns 0 for absent terms and 1 for present terms [Baeza-Yates & Ribeiro-Neto, 1999].

Beyond IR systems lie IR models, which formally determine the way in which information must be represented and retrieved. An IR model defines four main components or notions: a document representation, a query representation, a relevance or a retrieval decision from the system's point of view, and a ranking process. On the one hand, document and query representations differ from one IR model to another. In Vector Space Model, documents and queries are represented as vectors of indexing terms. Whereas, in probabilistic retrieval models, documents and queries are represented as bags of indexing terms1 . On the other hand, ranking is not always present in an IR model. 

Term Mismatch Problem

In natural languages, there are many ways to express the same meaning, similar meanings, or even related meanings. For instance, "Information Retrieval" and "Text Search", "Myocardial Infarction" and "Heart Attack", "AIDS" and "Acquired Immunodeficiency Syndrome", "Bacterial Infection of the Bone or Bone Marrow" and "Osteomyelitis", "Hepatomegaly" and "Enlarged Liver"1 , etc. This natural language feature gives each author the ability to have her own writing style. When the vocabulary of the query does not match the vocabulary of relevant documents, an information retrieval system will be unable to retrieve relevant documents. This problem is well known in information retrieval literature as Term Mismatch Problem [START_REF] Furnas | The vocabulary problem in human-system communication[END_REF].

Term mismatch is a central and a long standing problem in information retrieval, and has been heavily studied. However, it was not well understood how often term mismatch happens in retrieval, how important it is for retrieval, or how it affects retrieval performance. Furthermore, the proposed approaches do not provide principled ways or principled interventions for mitigating term mismatch problem.

Unfortunately, an important part of relevant documents may be missed by a retrieval system due to the term mismatch problem. This is perhaps not a big issue for general Web search where top precision is usually preferred. However, for more recall centric systems, missing even just a few relevant documents can be harmful. For instance, in medical record retrieval, failing to find a relevant case because of the term mismatch can sometimes be fatal.

Preliminary Definitions

Before defining term mismatch, we first recall some preliminary definitions within an information retrieval system. In a binary relevance assumption, where documents are either relevant or irrelevant with respect to a user query2 . For a document collection C, and a given query q, the set of all relevant documents for a query, denoted Rel(q), is defined as follows:

Rel(q) = {d ∈ C : Relevant(d, q)} (1.1)
where Relevant(d, q) means that the document d is relevant to the query q, form a user point of view. Then, we define the set of all retrieved documents for a query q, denoted Ret(q), as follows:

Ret(q) = {d ∈ C : Retrieved(d, q)} (1.2)
where Retrieved(d, q) means that the document d is retrieved in the result list for the query q, by an information retrieval system. Based on these two sets Rel(q) and Ret(q), we also distinguish three sets:

• The set Rel(q) \ Ret(q), which contains the set of relevant documents, from a user point of view, that are not retrieved by an information retrieval system. These documents are called silent documents.

• The set of relevant retrieved documents Rel(q) ∩ Ret(q), which contains the set of relevant documents, from a user point of view, that are retrieved by an information retrieval system. • The set of irrelevant retrieved documents Ret(q) \ Rel(q), which contains the set of irrelevant documents, from a user point of view, that are retrieved by an information retrieval system.

Figure 1.2, illustrates these sets which are used to define the evaluation metrics in information retrieval. 

Term Mismatch Definition

A formal definition of term mismatch has been proposed by [START_REF] Zhao | Modeling and Solving Term Mismatch for Full-Text Retrieval[END_REF]. Term mismatch occurs when documents and queries refer to the same meaning using different terms.

For each term t ∈ q, term mismatch is defined as the conditional probability that t does not appear in a document d given that this document is relevant. In the term mismatch conditional probability, we have the event that the term t is not appearing in a document d, denoted by t. Then, the second event that the document d is relevant, is denoted by R. Therefore term mismatch probability is denoted as P (t|R).

Term mismatch probability is estimated as the proportion of relevant documents which do not contain the term t, i.e relevant documents which are mismatched by a query term t. Therefore, term mismatch probability is defined as follows. Let t ∈ q: P (t|R) = |MisRel (t, q)| |Rel(q)| (1.3) where MisRel (t, q), M is refers to mismatched, and Rel refers to relevant, is the set of relevant documents which are mismatched by a query term t. MisRel (t, q) is defined as follows:

MisRel (t, q) = {d ∈ Rel(q) : t / ∈ d} (1. 4) where Rel(q) represents the set of relevant documents for a query q1 . d and q are represented by bags of terms. Term mismatch probability is query and document dependent by definition. However, term mismatch probability is independent on the matching. The complement of term mismatch, P (t|R) = 1-P (t|R), is defined as term recall, which is estimated as the proportion of relevant documents which contain a query term t.

Test corpora can be used for estimating term mismatch probability by considering judged relevant documents for each query in the collection. The estimation of term mismatch probability allows us to show how much a given collection suffers from term mismatch problem. For instance, the word "Papilledema" has a mismatch probability (0.08), in the query number (9) in the collection Image2010 of Image-CLEF campaign2 . Another example, the word "Hematuria" has a mismatch probability (0.78), in the query number (12) of the collection Case2012. In other words, 78% of relevant documents do not contain the term "Hematuria".

Query Mismatch Definition

In this section, we generalize term mismatch probability to the query level in order to define query mismatch probability, denoted P (q|R). Query mismatch probability is defined as the proportion of relevant documents which do not contain any query term. Put it formally:

P (q|R) = t∈q MisRel (t, q) |Rel(q)| (1.5)
Query mismatch probability is based on the intersection of all MisRel (t, q), for each t ∈ q.

Term Mismatch and Silence

Silence is one of the measures for evaluating the information retrieval system. Silence is defined as the proportion of relevant documents that are not retrieved for a given query:

Silence(q) = |Rel(q) \ Ret(q)| |Rel(q)| (1.6)
where Rel(q) \ Ret(q) is the set of silent documents for the query q.

In an information retrieval model based on the intersection between document and query terms, a silent document is defined as a relevant document that contains any of the query terms. Therefore, in this case, silence is equivalent to query mismatch probability, and can be defined using the same formula of query mismatch probability, as follows:

Silence(q) = P (q|R) = t∈q MisRel (t, q) |Rel(q)| (1.7)
Formally, a silent document appears in all MisRel (t, q), for each t ∈ q. The higher mismatch probability is over query terms, the bigger the number of documents in the set MisRel (t, q) is. As a result, the number of silent documents is bigger.

Figure 1.3, shows the set of silent documents for a query q, of two terms t 1 and t 2 . The set of relevant documents of q, Rel(q) = {d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , d 7 , d 8 , d 9 , d 10 , d 11 , d 12 , d 13 }. Silent documents are represented as red circles. The term t 1 does not belong to the following relevant documents MisRel (t 1 , q) = {d 7 , d 8 , d 9 , d 10 , d 11 , d 12 , d 13 }, and the term t 2 does not belong to the following relevant documents MisRel (t 2 , q) = {d 1 , d 2 , d 3 , d 4 , d 10 , d 11 , d 12 , d 13 }. Therefore, the silent documents for q are: MisRel (t 1 , q) ∩ MisRel (t 2 , q) = {d 10 , d 11 , d 12 , d 13 }.

The silence measure is the complementary measure of the recall (the ability of the system to retrieve all relevant documents): when silence decreases, recall increases. 

Reducing Term Mismatch Probability

We present in this section, based on the term mismatch definition, the principled ways for solving term mismatch problem through reducing the term mismatch probability.

Principles

To reduce the effect of term mismatch on the effectiveness of an information retrieval system, we should reduce the mismatch probability P (t|R). This probability is minimized by reducing the cardinality of the set MisRel (t, q). Actually, the set MisRel (t, q), is query and document dependent by definition (Equation 1.4). Therefore, we have two possibilities in order to reduce the cardinality of the set MisRel (t, q):

• Modifying the document representation: document can be modified using document enrichment approaches, that add new terms to a document representation in order to alleviate term mismatch problem. Document enrichment attempts to solve sparsity and insufficient sampling problems, particularly for short documents [START_REF] Rijsbergen | Information Retrieval[END_REF]. • Modifying the query representation: query expansion provides another way for solving term mismatch by including additional terms, called expansion terms, into the query in order to match a larger number of the relevant documents. Query expansion is challenging, as a bad formulation would be detrimental to the information retrieval system performance, and stable expansion algorithms are hard to obtain [START_REF] Carpineto | A survey of automatic query expansion in information retrieval[END_REF].

Limits

Considering only interesting terms to modify a query or a document is important to maintain the precision of an information retrieval system. Actually, reducing term mismatch probability can be easily obtained by adding all terms in the vocabulary into a query or a document representation. However, the performance of the IR system will be globally decreased. Therefore, the overall performance of the system can not be forgotten, while designing an effective proposal for solving term mismatch problem.

Knowledge Resources

An essential component for achieving term mismatch probability reduction is the knowledge resource. A knowledge resource is manually or automatically built, where it defines terms in a specific or a general domain, and their linguistic or semantic relationships. A crucial issue is the availability of an adequate knowledge resource for a target collection or a specific domain. Knowledge resources are not available in many specific domains, and even if they are available, most of them are not initially constructed to be used in information retrieval systems. Moreover, manual construction and updating of a knowledge resource is a costly process. Many manually constructed knowledge resources are found, such as ontologies, terminologies, dictionaries, thesaurus, collaborative resources, etc. Manually constructed knowledge resources vary in their nature and content. Collaborative resources, like encyclopedias, are examples of manually constructed knowledge resources. Collaborative resource content is continually created and updated via contributors. In addition to quantity (creating a new content), contributors work on improving quality as well (updating already existing content). Collaborative knowledge resources contents are also linked to each other. In addition, collaborative knowledge resources follow strict rules for maintaining the quality of their content and links.

Automatically constructed knowledge resources propose to establish a statistical connection between terms, where terms that appear in the same context1 tend to be similar, e.g. co-occurrence [START_REF] Rijsbergen | A theoretical basis for the use of co-occurrence data in information retrieval[END_REF], term relatedness [START_REF] Grefenstette | Use of syntactic context to produce term association lists for text retrieval[END_REF], mutual information [START_REF] Church | Word association norms, mutual information, and lexicography[END_REF], etc. Automatic approaches, for knowledge resource construction, are unable to identify specific relations like synonymy, hyponymy, meronymy, etc. However, they provide an effective way to measure how much two terms, in a document collection, are related. Recently, distributed neural networks were proposed to learn term vector representations, called distributed neural embeddings, using huge amounts of unstructured textual data. Distributed neural embeddings capture relationships between terms, and they obtained impressive results comparing with state of the art approaches in term similarity tasks [Mikolov et al., 2013a,b].

Manual term relation construction is a costly process. Therefore, the availability of an adequate manually constructed term relations for a target collection is not guaranteed, and even if they are available, most of them are not initially constructed to be used in information retrieval systems. For instance, a collection about legal cases needs a knowledge resource that defines legal terms and their relations. All these reasons lead to use more and more automatically constructed knowledge resources, or even explore the usefulness of already existing knowledge resources for improving the effectiveness of information retrieval systems.

Contributions

Term mismatch is a long standing and a central problem in information retrieval. This research retakes the definition of term mismatch P (t|R), which is defined as the proportion of relevant documents that do not contain the term t. First, we show how the mismatch probability affects the recall of an information retrieval system. Then, based on the term mismatch definition, we present the two possibilities for reducing the mismatch probability. Term mismatch is reduced either by modifying a document or a query representation. A document or a query is modified using a knowledge resource which is manually or automatically constructed. Figure 1.4, shows our contributions over an Information Retrieval System schema. We actually propose a fourth contribution on the evaluation of term mismatch probability.

Contribution 1: prior research, for document modification, provided a static approach for document enrichment. Whereas, we come up with a document modification approach that modifies a document representation according to a user query. Motivated by the definition of term mismatch probability, the proposed approach deals exclusively with mismatched query terms, i.e. query terms that do not appear in the document. The document is only modified when a mismatched query term shows a link to, at least, one document term.

Concerning query modification, we propose a couple of semantic query expansion ap- proaches in two different domains. In Contribution 2, we propose to use a collaborative knowledge resource for query expansion. Prior research, for query expansion using collaborative resources, focused on the content of a collaborative resource. We rather focus on the structure of a collaborative resource. Contribution 3: distributed neural networks are recently proposed to learn term vector representations, called distributed neural embeddings. Distributed term embeddings capture relationships between terms, and they obtained impressive results comparing with state of the art techniques in term similarity tasks [Mikolov et al., 2013a,b]. However, in information retrieval, distributed neural embeddings are newly started to be exploited. We propose to use distributed neural embeddings as a knowledge resource that defines term relationships. Then, we evaluate the effectiveness of this knowledge resource in a query expansion scenario.

In Contribution 4: we retake the term mismatch probability definition. We first apply the term mismatch probability definition for each contribution of our three contributions (Contributions 1 & 2 & 3). We then show how we use standard retrieval corpora with queries and relevance judgments to estimate term mismatch probability. We estimate the term mismatch probability using original documents and queries, and we figure out how mismatch problem is clearly found in search systems for different types of indexing terms. Then, we point out how our contributions reduce the estimated mismatch probability, and improving the system recall. As a result, we present how the modified document and query representations contribute to build a mismatch aware retrieval model that mitigate term mismatch problem theoretically and practically.

The term mismatch definition and estimation clarify the theoretical role of term mismatch as well as its practical significance. These understandings allow us to explain the behaviors of the current retrieval models and many retrieval techniques which exist as a body of empirical knowledge in the information retrieval filed but came about largely unexplained. These understandings about the core retrieval models and the term mismatch problem will guide the development of future retrieval techniques such as novel mismatch prediction methods, query expansion or diagnostic intervention approaches that would not have been possible without these understandings.

Organization of Dissertation

The rest of the dissertation is organized in three main parts: state of the art includes chapters 2 & 3 & 4, contributions include chapters 5 & 6 & 7 & 8. Chapter 9 concludes this dissertation. Finally, we recall the publications on which this work is based, in Chapter 10. After this introduction, which describes the general context of this work, its motivation, the problems that need to be solved, and a brief introduction of our contributions, the remaining of the dissertation is organized as follows:

State of the art

• Chapter 2. We present several examples of knowledge resources which are used in information retrieval systems. We detail their internal structure and the type of elements inside knowledge resources. We finally explain how knowledge-based information retrieval systems integrate these knowledge resources into an information retrieval process. • Chapter 3. We explain the motivations of query expansion approaches. We then describe the main steps of automatic query expansion: expansion terms acquisition, expansion terms selection and ranking, and query formulation and re-weighting. This modelization accounts for most automatic query expansion approaches. After that, we present a classification of automatic query expansion approaches according to the source which is used for finding expansion terms. • Chapter 4. We explain the motivations behind proposing the embeddings. We describe the evolution of term and document embeddings: from term-document matrix, to dimensionality reduction approaches which are applied to term-document matrix in order to obtain more compact and effective embeddings, and distributed neural embeddings which are proposed to avoid the heavy computational cost of dimensionality reduction techniques and produced even more effective embeddings. Last, we list the principle applications for term and document embeddings.

Contributions

• Chapter 5. Contribution 1: we propose to modify a document representation according to a user query and some knowledge about term relationships. The modified document reduces the estimated term mismatch probability, depending on the diversity and the number of the relationships used for modifying the document. The modified document is integrated into language models framework. As the modified document reduce the mismatch probability, the effectiveness of the retrieval model is increased. We expand the document by adding each mismatched query term t ∈ q, t / ∈ d, into the document if there is, at least, one term in the document related to this mismatched query term.

• Chapter 6. Contribution 2: we propose a semantic query expansion approach based on a collaborative knowledge resource structure for cultural heritage domain. We present our representation of a collaborative knowledge resource. Then, we explain how a collaborative knowledge resource structure is exploited for expanding cultural heritage queries. Last, we study the effectiveness of our semantic expansion method on the retrieval performance. • Chapter 7. Contribution 3 is limited to automatically build a knowledge resource based on distributed neural embeddings. As a result, each term is represented as an embedded vector of a fixed dimension. The knowledge resource is built for the medical domain using several medical corpora. We study the effectiveness of the learned distributed neural embeddings of terms, in information retrieval, by proposing a semantic query expansion approach based on these distributed neural embeddings. • Chapter 8. Contribution 4 applies the term mismatch probability definition for each contribution of our three contributions (Contributions 1 & 2 & 3). We also provide a quantitative analysis for term mismatch probability, where a significant portion of relevant documents for a query, are usually poorly ranked by common retrieval models and techniques. Standard retrieval corpora with queries and relevance judgments can be used to study the term mismatch objectively and quantitatively. We estimate term mismatch probability P (t|R) using queries and relevance judgments of stranded retrieval corpora. We compare between the original term mismatch probability and the reduced term mismatch probability using our three contributions. We finally present the impact of the reduced term mismatch probability using our contributions on improving the system recall.

Conclusions and perspectives

• Chapter 9. The general conclusions and the main perspectives of the thesis are presented here. • Chapter 10. We recall the publications on which this work is based.

Appendices

• Appendix A. We revisit, in this appendix, the Vector Space Model in Information Retrieval. The main difference between the revisited Vector Space Model and the classical Vector Space Model is the way with which document and query vectors are built. The revisited Vector Space Model is based on word embeddings. Document and query vectors are obtained by aggregating word embeddings of the words that mentioned within.

• Appendix B. We present, in this appendix, some examples of annotation tools for semantic indexing. We give an idea about how these tools actually look like, and how they are built. • Appendix C. We present, in this appendix, a detailed list of figures and tables that show the estimated term mismatch probability which is presented in Chapter 8, and the impact of the reduced term mismatch probability using our contributions on improving the system recall.

Part II STATE OF THE ART Chapter 2

Knowledge-Based Information Retrieval Systems

Introduction

Since the 90s of last century, the design and the development of knowledge resources (e.g. ontologies, thesauri, lexical databases, etc.), have become a popular area of research in computer science, invested by several communities including Artificial Intelligence (AI) and Information Retrieval (IR). Indeed, one of the reasons why these resources have become so important now, is due to the need of defining terms and their relations in order to standardize the communication.

In information retrieval, two users from two different domains may ask the same query. However, a document could be relevant to the first user but it is not relevant to the second user, because each user has its background knowledge. For instance, the meaning of "entity" in politics is different from its meaning in law, and it is different from its meaning in computer science. Therefore, there is always an external factor, different from a document and a query, that affects the relevance judgment. A knowledge resource could be general as WordNet [START_REF] Miller | Wordnet: A lexical database for english[END_REF], or for a specific area such as MeSH1 (Medical Subject Headings), and UMLS2 (Unified Medical Language System), in the medical domain.

In general, knowledge resources can be manually or automatically created. Knowledge resources are normally organized as a set of elements connected via some relations. Elements vary from simple words to more sophisticated elements like WordNet synsets or UMLS concepts. Relations range from linguistic relations into some semantic relations like: a heart is part of a body, or a pharmacologic substance treats a pathological function. <part of > and <treats> are two examples of semantic relations.

Knowledge-based information retrieval systems aim to integrate knowledge resources into an information retrieval process in order to overcome term mismatch problem. Knowledge resources could be exploited in indexing, in matching, in query reformulation, or in any combination of them. In this chapter, we detail how knowledge resources are integrated into indexing and into matching. The rest of this chapter is organized as follows. Section 2.2, presents several examples of knowledge resources that are normally used in information retrieval like: WordNet, UMLS, etc., and the fundamental elements that are found within them. Section 2.3, explores how knowledge resources are integrated into information retrieval systems to build a knowledge-based information retrieval system, in the matching, or in the indexing to achieve semantic indexing. Section 2.4, concludes this chapter.

Knowledge Resources

Concerning the knowledge resources used in information retrieval, their vocabularies range from simple words to some more abstract and sophisticated elements as UMLS concepts and WordNet synsets. Relations also range from simple linguistic relations, e.g. synonymy, to some conceptual or semantic relations. In the following, we present these elements and their definitions.

Fundamental Elements in Knowledge Resources

We present, in this section, the fundamental elements which are normally found in knowledge resources for knowledge-based information retrieval systems.

Word

Words are defined as the smallest linguistic elements that have a semantic and can stand by themselves [START_REF] Katamba | English Words: Structure, History, Usage[END_REF].

Term

A term refers to a word or sequence of words (mainly noun phrases), that can be selected by an analyst as concept label. A term consists of a single or several words. Single word term is called simple term, for instance, "hypertension", "trauma", etc. are examples of simple terms. However, a term that consists of several words is called complex or multi-word term like: "lung cancer" , "central nervous system", etc. A term has unambiguous meaning in a specific context or a specific domain [START_REF] Bourigault | Construction de ressources terminologiques ou ontologiques à partir de textes un cadre unificateur pour trois études de cas[END_REF].

Concept

A concept is defined as an element of thought. In the semiotic triangle (term, concept, object), the concept is a mental construct that represents the meaning of the term and refers to the object. The concept consists of a set of characteristics that are used to recognize a real-world or a virtual object [START_REF] Zargayouna | Recherche d'information sémantique : état des lieux[END_REF].

Terminological Concept

A terminological concept is the normalized meaning of the terms through a natural language definition. A terminological concept is an aggregation of terms that share the same meaning.

Each terminological concept has a unique preferred term. Preferred term is selected as a label for the terminological concept. The rest of terms are called non-preferred terms [Després & Szulman, 2008]. A concept that appears in a particular context is expressed by a preferred or non-preferred term. For example, the term "Neoplasm" is a preferred term. However, terms like "Cancer", "Tumors", "Benign Neoplasm", are non-preferred terms for the concept of "Neoplasm".

UMLS concepts and WordNet synsets are examples of terminological concepts. In WorNet, nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms, called synsets. Synsets are interlinked by means of semantic and lexical relations.

Named Entity

A named entity is a noun phrase that clearly identifies one item from a set of other items that have similar attributes. Examples of named entities are names, geographic locations, ages, phone numbers, companies and addresses. Wikipedia is a collaboratively-written online encyclopedia. Wikipedia is large, semi-structured and multilingual. Research has found that around 74% of Wikipedia pages correspond named entities [START_REF] Nothman | Transforming wikipedia into named entity training data[END_REF], so it has been used for named entity recognition and disambiguation. Each named entity is recognized by its article title which is normally composed of several words.

Knowledge Resource Examples in Information Retrieval

In this section, we present four knowledge resources which are integrated into information retrieval systems. WordNet which is a general purpose lexical resource, UMLS which is a metathesaurus in the medical domain, Wikipedia and YAGO which are two knowledge resources about named entities. Of course, there are many other resources, e.g. Open Directory Project (ODP)1 , DBpedia2 , etc. We choose to describe these knowledge resources, because they are often used in information retrieval. Moreover, we use UMLS and Wikipedia in our experiments.

Several knowledge resources are also used in other disciplines. For example, British National Corpus (BNC)3 in Natural Language Processing. FOAF 4 (from "friend of a friend"), Semantically-Interlinked Online Communities Project (SIOC)5 , etc., in Semantic Web. Resources in Semantic Web are normally formal and based on Description Logic.

Unified Medical Language System (UMLS)

UMLS is a multi-source knowledge base in the medical domain. It contains three sources of knowledge:

• UMLS Meta-thesaurus.
UMLS meta-thesaurus is a vocabulary database in the medical domain, extracted from many sources. Each source of them is called Vocabulary Source. The meta-thesaurus is organized into terminological concepts, which represent the common meaning of a set of strings extracted from different vocabulary sources. These terminological concepts are linked together through a variety of relations. There is a specific hierarchy for linking terminological concepts to their vocabulary sources. This hierarchy contains:

-Atom. The same string may appear in several vocabulary sources, so an atom is a specific string appearance in a given vocabulary source, with a unique atom identifier (AUI). -String. Atoms from several vocabulary sources which correspond the same string are grouped into one string with a unique string identifier (SUI). -Term. It is possible that different strings are lexical variants of each other, so these strings are linked to the same term with a unique term identifier (LUI). -Terminological concept. All terms which have the same meaning are grouped into a terminological concept with a unique concept identifier (CUI). UMLS semantic network contains a set of Semantic Types linked together using two different types of Semantic Relations.

-A set of hierarchical relation (ISA relation).

-A set of non-hierarchical relations. Non-hierarchical relations are categorized into five main categories: <Physically Related To>, <Spatially Related To>, <Temporally Related To>, <Functionally Related To>, and <Conceptually Related To>.

UMLS semantic network contains 133 semantic types, and 54 semantic relations. The purpose of the semantic network is to provide a consistent categorization of all termi-nological concepts in UMLS meta-thesaurus. Figure 2.2, shows the UMLS semantic network structure and how it is connected to UMLS meta-thesaurus. • UMLS SPECIALIST Lexicon and Lexical Tools.

SPECIALIST lexicon is a set of general English or bio-medical terms and words extracted from different sources. Each entry, in the lexicon, is a record called (lexical record unit). Each lexical record contains a list of lexical information about the related term or word: Lexical tools are designed for obtaining the base form of a term or word. In other words, these tools are used to abstract a word from any lexical extensions. Lexical tools include:

-Normalization (norm).

-Word index (wordInd).

-Lexical variant generation (lvg). 

WordNet

WordNet is an electronic lexical network developed since 1985 at Princeton University by a team of linguists and psycholinguists cognitive lab, under the direction of Georges A.Miller [START_REF] Miller | Wordnet: A lexical database for english[END_REF]. The advantage of WordNet lies in the diversity of the information it contains. WordNet contains a wide coverage of the English language. In addition, WordNet is a free and an open resource for research. WordNet covers the majority of nouns, verbs, adjectives and adverbs in the English language. WordNet is organized into a network of nodes and links. Each node, called synset (set of synonyms), consists of a set of synonyms. This means that synonyms have the same meaning are grouped together in one node to form a synset. Each synset has a specific meaning.

WordNet synsets are connected by semantic relations. The basic relationship between the terms of the same synset is synonymy. The different synsets are otherwise bounded by various semantic relations, among them: subsumption (hyperonymy-hyponymy), and composition (meronymy-holonymy). These relationships are formally defined as follows:

• Hyperonymy is the generic-specific or the class-instance relationship. A synset Y is a hypernym of a synset X when X is a type of Y . For example, <Fruit> is a hypernym of <Apple> and <Cherry>.

• Hyponymy is the specific-generic relationship. A synset X is a hyponym of a synset Y if X is a type of Y . For instance, <France> is hyponym of <Country>, <Horse> is hyponym of <Animal>. • Holonymy. A synset Y is holonym of a synset X if X is a part of Y . For example, <Body> is a holonym of <Arm>, as <Home> is holonym of a <Roof>. • Meronymy is the part of relationship. A synset X is a meronym of a synset Y if X is part of Y .
For instance, <Door>, <Engine> <Wheel>, etc. are meronym of <Car> 

Wikipedia

Wikipedia is an encyclopedia that represents a very large, high quality, and valuable knowledge source in natural language. Each Wikipedia article can refer to other Wikipedia articles using hyperlinks. Each article has two types of links: incoming and outgoing links. Incoming links are the set of articles that point to an article. Outgoing links are the set of articles that an article points to. We focus, in this section, on the research works that show the importance of using Wikipedia structure. Actuality, we propose a query expansion method that exploits Wikipedia structure to choose expansion terms.

Wikipedia has been a popular subject of study and has been exploited as a knowledge base for many different tasks. Bellomi and Bonato [START_REF] Bellomi | Network analysis for wikipedia[END_REF], analyze PageRank and hits on the Wikipedia link graph and provide lists of most authoritative pages, countries and cities, historical events, people and common nouns. The hits authority ranking reveals space (geographic locations), and time (periods and historical events) to be the main organizing categories in Wikipedia.

Milne and Witten [START_REF] Milne | An effective, low-cost measure of semantic relatedness obtained from wikipedia links[END_REF], use Wikipedia links to compute the semantic relatedness of concepts. They find that using only link information is more effective than measuring semantic relatedness using the Wikipedia category structure, which was done by Strube and Ponzetto [START_REF] Strube | Wikirelate! computing semantic relatedness using wikipedia[END_REF], and almost as effective as the more complex Wikipediabased Explicit Semantic Analysis algorithm by Gabrilovich and Markovitch [START_REF] Gabrilovich | Computing semantic relatedness using wikipedia-based explicit semantic analysis[END_REF].

Ahn et al. [START_REF] Ahn | Using wikipedia at the trec qa track[END_REF], were among the first to use Wikipedia as a knowledge resource to improve retrieval performance. Wikipedia has also been used to evaluate entity ranking techniques [START_REF] Pehcevski | Exploiting locality of wikipedia links in entity ranking[END_REF][START_REF] Vries | Overview of the inex 2007 entity ranking track[END_REF][START_REF] Zaragoza | Ranking very many typed entities on wikipedia[END_REF], and link-detection [START_REF] Huang | Overview of inex 2007 link the wiki track[END_REF]. Kaptein et al. [START_REF] Kaptein | Using wikipedia categories for ad hoc search[END_REF], successfully used the Wikipedia category structure to improve ad-hoc retrieval performance.

The link structure has also been used to measure semantic relatedness between Wikipedia articles. Milne and Witten [START_REF] Milne | An effective, low-cost measure of semantic relatedness obtained from wikipedia links[END_REF], derive the semantic relatedness of two Wikipedia articles from the link structure, and compare their technique against manually defined relatedness measures and find it to be very competitive. This link-based relatedness measure is used by Lizorkin et al. [START_REF] Lizorkin | Analysis of community structure in wikipedia[END_REF], to evaluate the semantic relatedness of Wikipedia articles clustered by a link-based community detection algorithm. They filter the dense link graph for computational reasons and retain only meaningful links, and find that the clustered articles show high levels of semantic relatedness. In a similar vein, Capocci et al. [START_REF] Capocci | Taxonomy and clustering in collaborative systems: The case of the on-line encyclopedia wikipedia[END_REF], investigate the overlap between Wikipedia articles clustered using link information and those grouped by categories and find that link-based clusters show very little overlap with the categorical organization of Wikipedia. Chernov et al. [START_REF] Chernov | Extracting semantic relationships between wikipedia categories[END_REF], use the Wikipedia link structure to infer semantically important relationships between categories. Categories are closely related if there are many links between the documents in these categories. For example, Wikipedia pages about capitol cities often have links to pages about countries and vice versa. As a consequence, these links connect documents that have a semantically important relationship and could be labeled as semantically important links. An extensive overview of using Wikipedia as a knowledge base for many different tasks is presented by Medelyan et al. [START_REF] Medelyan | Mining meaning from wikipedia[END_REF].

Yet Another Great Ontology -YAGO

YAGO is a knowledge resource of humanity. YAGO is automatically extracted from Wikipedia1 , WordNet2 , and GeoNames3 . Actually, YAGO contains over ten millions named entities (e.g. persons, organizations, towns, etc.), and hundreds of millions of information about these entities. YAGO has a Web interface that allows users to ask questions in the form of queries. YAGO is developed at the Max Planck Institute for Computer Science. YAGO is manually evaluated using 5.864 triplets 4 , and it has made an accuracy of 95.4% [START_REF] Hoffart | Yago2: A spatially and temporally enhanced knowledge base from wikipedia[END_REF]. with one or more relationships with other entities. For example, the entity <Leonardo da Vinci> has created the painting < The Last Supper >, and many other paintings.

Integrating Knowledge Resources into Information Retrieval Systems

Knowledge-based information retrieval systems exploit knowledge resources into retrieval systems in order to overcome term mismatch problem. Knowledge resources could be integrated into retrieval systems in indexing, in matching, in query reformulation. When a knowledge resource is integrated into indexing, we then talk about semantic indexing. In this section, we first talk about using knowledge resources in matching. We then present semantic indexing and its principles.

Using Knowledge Resources in Matching

We present, in this section, a class of retrieval models that attempt to solve term mismatch problem by exploiting indexing term relationships. Indexing term relationships are used to take into account non-matching query terms within a matching model. We present two categories of models that exploit term relationships within a matching model: Vector Space Model and Language Models.

Term Relation in Vector Space Model

Crestani [START_REF] Crestani | Exploiting the similarity of non-matching terms at retrieval time[END_REF], proposes a general framework to exploit indexing term relationships into the matching process within Vector Space Model. Relevance Status Value RSV , between a document d and a query q, is normally calculated as follows:

RSV (d, q) = t∈q w d (t) × w q (t) (2.1)
where w d (t) is the weight assigned to an indexing term t in a document d, and w q (t) is the weight assigned to an indexing term t in the query q.

In order to consider non-matching indexing terms from the query, Crestani exploits indexing term relationships by utilizing a similarity function SIM , that measure the strength of relationship between two indexing terms.

SIM (t i , t j ) =            1 if t i = t j 0 < SIM (t i , t j ) < 1 if t i and t j are semantically related 0 otherwise (2.2)
In fact, Crestani proposed to extend the previous RSV (Equation 2.1), in two ways. First, RSV is extended during the matching process, in case of mismatch: t ∈ q and t / ∈ d by determining the most similar document term t * to a query term t. As a result, the extended RSV max is defined:

RSV max (d, q) = t∈q SIM (t, t * ) × w d (t * ) × w q (t) (2.3)
when t = t * then SIM (t, t * ) = 1, and we return back to the (Equation 2.1). Second, RSV is extended by considering, not only the most similar term, but all the related terms from the document to a non-matched query term. As a result, the extended RSV tot is defined as follows:

RSV tot (d, q) = t∈q [ t ∈d SIM (t, t ) × w d (t )] × w q (t) (2.4)
The experimental results on the effectiveness of the above models prove that these models are significantly more effective than classical Vector Space Models. Nevertheless, the experimentations are carried out on small collections [START_REF] Crestani | Exploiting the similarity of non-matching terms at retrieval time[END_REF].

Term Relation in Language Models

Statistical translation models are shown as an effective way to mitigate the term mismatch [START_REF] Berger | Information retrieval as statistical translation[END_REF][START_REF] Karimzadehgan | Estimation of statistical translation models based on mutual information for ad hoc information retrieval[END_REF][START_REF] Zhai | Statistical Language Models for Information Retrieval[END_REF]. Statistical translation models incorporate term relationships into language models to reduce the gap between documents and queries. The idea is based on information theory where a translation model estimates the probability of translating a document to a user query. Term relation is modeled as a translation probability P (t|t ), which gives the probability of translating a term t into a term t, where related terms, to a given term, are considered as probable translations of this term.

Language Models in Information Retrieval

Language modeling approach in information retrieval is proposed by Ponte and Croft [START_REF] Ponte | A language modeling approach to information retrieval[END_REF]]. The basic idea, of language models, assumes that a query q is generated by a probabilistic model based on a document d. Language models are interested in estimating P (θ d |q), i.e. the probability that d generates an observed query q. By applying Bayes' formula, we have:

P (θ d |q) ∝ P (q|θ d ).P (θ d ) (2.5)
∝ means that the two sides give the same ranking. P (q|θ d ) the query likelihood for a given document d. P (θ d ) is often assumed to be uniform and thus can be discarded in document ranking. Therefore, the formula is rewritten after adding the log function as follows:

logP (q|θ d ) = t∈V #(t; q).logP (t|θ d ) (2.6)
where #(t; q) is the frequency of the term t in the query q, and V is the vocabulary set. Assuming a multinomial distribution, the simplest way to estimate P (t|θ d ) is the maximum likelihood estimator:

P ml (t|θ d ) = #(t; d) t ∈d #(t ; d) (2.7)
Due to the data spareness problem, the maximum likelihood estimator directly assign null to the unseen terms in a document. Smoothing is a technique to assign extra probability mass to the unseen terms in order to solve this problem. Two commonly used methods are Jelinek-Mercer and Dirichlet smoothing methods:

• Jelinek-Mercer smoothing is one of the smoothing technique based on adding an extra pseudo term frequency P (t|θ C ), as follows:

P λ (t|θ d ) = (1 -λ)P ml (t|θ d ) + λP (t|θ C ) (2.8)
where θ C is the collection model, and P (t|θ C ) is the probability for query term t in the collection language model. • Dirichlet smoothing is another smoothing technique based on adding an extra pseudo term frequency P (t|θ C ), as follows:

P µ (t|θ d ) = |d| |d| + µ P ml (t|θ d ) + µ |d| + µ P (t|θ C ) (2.9)
Actually, P ml (t|θ d ) plays the role of tf , and P (t|θ C ) plays the role of idf . In other words, P ml (t|θ d ) measures the importance of a term t in a document d, and P (t|θ C ) measures the importance of a term t in the collection C.

Statistical Translation Models

Statistical translation language models propose another way to estimate the probability P (t|θ d ). Statistical translation models estimate the probability that the query have been generated as a translation of the document, in order to assess the relevance between each document and a user query. In other words, statistical translation models allow the query likelihood to be computed based on a translation model of the form P (t|t ), which is the probability that a term t is semantically translated into a term t. As a result, the query likelihood can be calculated by using the following translation document model:

P t (t|θ d ) = t ∈d P t (t|t ) × P ml (t |θ d )
(2.10)

where P t (t|t ) is the probability of translating a term t into a term t. A document is scored by counting the matches between a query term and semantically related terms in the document. If P t (t|t ) only allows a term to be translated into itself, the simple exact matching query likelihood is achieved.

Statistical translation language models are identically smoothed as ordinary language models, we just replace the estimation of the maximum likelihood P ml (t|θ d ), by P t (t|θ d ), to obtain statistical translation language models using Jelinek-Mercer and Dirichlet smoothing, respectively, as follows: Statistical translation models are related to the second proposition of Crestani [START_REF] Crestani | Exploiting the similarity of non-matching terms at retrieval time[END_REF], where the idea is to consider the similarity between each query term and all document terms. The results obtained by statistical translation models show that integrating term similarity into language models is more effective than the existing approaches in information retrieval. However, Karimzadehgan and Zhai [START_REF] Karimzadehgan | Estimation of statistical translation models based on mutual information for ad hoc information retrieval[END_REF], noticed that the self-translation probabilities lead to non-optimal retrieval performance because it is possible that the value of P (t|t ) is higher than P (t|t) for a term t. Therefore, Karimzadehgan and Zhai [START_REF] Karimzadehgan | Estimation of statistical translation models based on mutual information for ad hoc information retrieval[END_REF] have defined a parameter to control the effect of the selftranslation.

P T M λ (t|θ d ) = (1 -λ)[
Statistical translation models integrate term relationships into language models through the probability P (t|t ). Related terms, to a given term, are considered as probable translations of this term. The translation probability is used to reflect the strength of relationship between two related terms.

Experimental results of statistical translation models, using mutual information to estimate translation probability, indicate that statistical translation models are more effective than the ordinary language models. In addition, statistical translation models are not so sensitive to the effect of smoothing, and they can be combined with pseudo-relevance feedback to further improve the performance [START_REF] Karimzadehgan | Estimation of statistical translation models based on mutual information for ad hoc information retrieval[END_REF]].

Term Relation and Term Similarity

Term relations have an important role in Information Retrieval Systems. It is well-known that ranking algorithms solely based on matching terms, between documents and queries, will fail to retrieve many relevant documents. For this reason, term relations, which are also called term similarity in literature, have been introduced to add new terms into the query/document representations that are related to the original query/document terms.

Measuring similarity between different elements: words, terms, concepts, etc., plays also an important role for integrating term relations into information retrieval models. Measuring similarity varies according to the resource where these elements are found and defined. Corpusbased and knowledge-based are two ways for measuring the similarity between two elements.

Corpus-based similarity approaches determine the similarity between words according to information gained from large corpora. Several methods belong to corpus-based approaches, among them: co-occurrences [START_REF] Lund | Producing high-dimensional semantic spaces from lexical co-occurrence[END_REF], latent semantic analysis [START_REF] Landauer | Latent semantic analysis: Theory, method and application[END_REF], mutual information [START_REF] Turney | Mining the web for synonyms: Pmi-ir versus lsa on toefl[END_REF].

Knowledge-based similarity approaches calculate the degree of similarity between elements using a knowledge resource [START_REF] Mihalcea | Corpus-based and knowledgebased measures of text semantic similarity[END_REF]. Several methods belong to knowledgebased similarity, among them: information content based like: Resnik [START_REF] Resnik | Using information content to evaluate semantic similarity in a taxonomy[END_REF], Lin [START_REF] Lin | An information-theoretic definition of similarity[END_REF], and Jiang & Conrath [START_REF] Jiang | Semantic similarity based on corpus statistics and lexical taxonomy[END_REF]. Path length like: Leacock & Chodorow [START_REF] Leacock | Corpus-based statistical sense resolution[END_REF], and Wu & Palmer [START_REF] Wu | Verbs semantics and lexical selection[END_REF]. Feature based approaches like: Tversky and Pirro [START_REF] Elavarasi | A survey on semantic similarity measure[END_REF]. Knowledge-based similarity is normally based on the internal hierarchy, on the internal structure, or on the internal taxonomy within a knowledge resource.

Using term relations, documents or queries are reformulated (i.e. usually expanded) to improve the retrieval effectiveness. Some reformulations are not as explicit as replacing query terms with new terms, but instead the reformulation process is implicit, such as in the spreading activation techniques [START_REF] Croft | I3r: A new approach to the design of document retrieval systems[END_REF][START_REF] Croft | Retrieving documents by plausible inference: An experimental study[END_REF], in which the expansion is actually acquired during the process of following links between nodes that represent terms or documents. Both query and document reformulation processes have been investigated.

Query reformulation has been extensively studied with many types of term relations in various IR frameworks [Cui et [START_REF] Xu | Query expansion using local and global document analysis[END_REF]. The well-known pseudo-relevance feedback process, which expands the initial query vocabulary by adding terms contained in previously retrieved documents, is one of the best query expansion approaches in terms of retrieval performance [START_REF] Lavrenko | Relevance based language models[END_REF]. Relevance feedback models find terms related to the entire query, which contains more information than individual terms and thus can produce better results. Document reformulation can be done offline without query inputs, thus being transparent to users and more efficient in terms of query response time. Offline processing, however, can be time-consuming and memory-expensive because it needs to process the associations of every term in every document of the entire collection, which is one of the reasons that document expansion was not popular until recent years. Term associations have been applied to document reformulation, in the LDA-based document model [START_REF] Wei | Lda-based document models for ad-hoc retrieval[END_REF], where documents are associated with related terms. Improvements have been obtained on several TREC collections with both of these two models, but they are both very expensive and difficult to apply to large collections, and parameter tuning for these models makes them even more expensive.

Semantic Indexing

Semantic indexing is the process of transforming the content of documents and queries from its original form (e.g. text), to a predefined meaning-based representation using terminological concepts (e.g. UMLS concepts or WordNet synsets). Semantic indexing analyzes a document or a query, to link each term to its appropriate terminological concept from several possible terminological concepts. For example, the term "Jaguar", may refer to several terminological concepts: a cat, a car or a plane, and within a given context, it should refer to one terminological concept among these terminological concepts. In [START_REF] Baziz | Conceptual indexing based on document content representation[END_REF], semantic indexing has been defined as an indexing approach based on the meaning of terms, where documents and queries are represented by a graph of WordNet synsets, as they use WordNet as a knowledge resource in the indexing. Several studies on semantic indexing have been done in this direction [START_REF] Abdulahhad | Information Retrieval (IR) Modeling by Logic and Lattice. Application to Conceptual IR[END_REF][START_REF] Baziz | Conceptual indexing based on document content representation[END_REF][START_REF] Dinh | Accès à l'information biomédicale : vers une approche d'indexation et de recherche d'information conceptuelle basée sur la fusion de ressources terminoontologiques[END_REF][START_REF] Krovetz | Lexical ambiguity and information retrieval[END_REF][START_REF] Liu | An effective approach to document retrieval via utilizing wordnet and recognizing phrases[END_REF][START_REF] Mihalcea | Pagerank on semantic networks, with application to word sense disambiguation[END_REF][START_REF] Sanderson | Word sense disambiguation and information retrieval[END_REF].

Semantic indexing is composed of two general steps:

• Annotating terms that will be used to represent a document or a query. Semantic indexing first annotate the text. When the annotation is done, the indexing process must continue by selecting and sometimes weighting the terminological concepts that corresponds each annotated term, and then by representing documents and queries. The system is then able to achieve the meaning-based matching between a query and a document.

Actually, concerning the annotation step there are many examples of annotation tools that annotate a text and maps it to terminological concepts, in a knowledge resource: PubMed ATM1 , MetaMap [START_REF] Aronson | Metamap: Mapping text to the umls meta-thesaurus[END_REF], MaxMatcher [START_REF] Zhou | PRICAI 2006: Trends in Artificial Intelligence: 9th Pacific Rim International Conference on Artificial Intelligence[END_REF]], Wikipedia-Miner2 . MetaMap [START_REF] Aronson | Metamap: Mapping text to the umls meta-thesaurus[END_REF], for example, maps medical text to UMLS concepts.

Concerning knowledge resources that are used for semantic indexing, we distinguish between two types of knowledge resources:

• Structured knowledge resources that provide information on the term relationships as synonyms, abbreviations, etc. For example, thesauri such as Roget's International Thesaurus [START_REF] Chapman | Roget's International Thesaurus[END_REF], dictionaries like Collins English Dictionary [J. Sinclair, 1995]), lexical resources such as WordNet [START_REF] Miller | Wordnet: A lexical database for english[END_REF]. These resources could be found in a general area like WordNet, or in a specific domain such as UMLS in the bio-medical field. • Unstructured knowledge resources such as document corpora. For instance, British National Corpus [B. Lou, 1995], Wall Street Journal Corpus [START_REF] Niwa | Co-occurrence vectors from corpora vs. distance vectors from dictionaries[END_REF], provide statistics on the distribution of words. Some other corpus are annotated with information about the meaning of words like Semcor Corpus [START_REF] Miller | A semantic concordance[END_REF], interest Corpus [START_REF] Bruce | Word-sense disambiguation using decomposable models[END_REF] are annotated with different knowledge resources such as Word-Net, LDOCE or Hector, etc. There are also resources like Word Sketch Engine, define the restrictions on how the words could be used together, and record the tendency of each word to appear regularly with other words. These document corpora could be used in the disambiguation step.

Disambiguation for Semantic Indexing

Word sense disambiguation (WSD) identifies the most appropriate terminological concept that corresponds an ambiguous term in a given context. This task is considered as a difficult problem to solve in semantic indexing process [START_REF] Mallery | Thinking about foreign policy: Finding an appropriate role for artificially intelligent computers[END_REF]. In general, the ambiguity of a term is linked to its multiple definitions in one or more knowledge resources. Each definition corresponds to a particular meaning of the term. Disambiguation approaches are based on knowledge resources to determine the terminological concept that corresponds a given term within a given context, from several possible terminological concepts. Disambiguation approaches could be divided into supervised and unsupervised approaches. Supervised disambiguation approaches need manual annotations. However, in the unsupervised disambiguation approaches no manual annotations are provided. In addition, disambiguation approaches could be divided according to the type of information which is used to select the appropriate terminological concept that corresponds an ambiguous term, into two approaches: graph based and domain based disambiguation.

Graph Based Disambiguation.

Graph based disambiguation is essentially achieved using the context of an ambiguous term, i.e. terms which are surrounding an ambiguous term. The choice of the most appropriate terminological concept depends on the distance of each terminological concept that corresponds an ambiguous term and the terminological concepts that correspond the surrounding terms. The distance is normally calculated using the relations between terminological concepts within a knowledge resource. The most appropriate terminological concept of an ambiguous term depends on its proximity to other terminological concepts that correspond the surrounding terms, using the structure of the knowledge resource.

Figure 2.6, illustrates how the proximity score is calculated for each candidate terminological concept. The term t 2 corresponds three concepts in the knowledge resource: c 21 , c 22 , c 23 . For the concept c 21 , the proximity score is calculated by considering all candidate terminological concepts of the surrounding terms t 1 and t 3 . The same strategy is used to calculate the proximity score for c 22 and c 23 . Then, the most appropriate terminological concept for t 2 is the concept that has the best proximity score. .

Different approaches are proposed to measure the distance between terminological concepts that correspond ambiguous terms:

• The shortest distance between the nodes that correspond the terminological concepts of terms [START_REF] Rada | Development and application of a metric on semantic nets[END_REF][START_REF] Sussna | Word sense disambiguation for free-text indexing using a massive semantic network[END_REF], or hypernyms [START_REF] Leacock | Using corpus statistics and wordnet relations for sense identification[END_REF]]. • Density of the terminological concepts of ambiguous terms [START_REF] Agirre | Word sense disambiguation using conceptual density[END_REF]. Density measure takes the following points into account:

-The length of the shortest path that connects the terminological concepts involved.

-The density of terminological concepts in the knowledge resource: terminological concepts in a dense part of the knowledge resource structure are relatively closer than those in a more sparse region. -The measure should be independent of the number of the terminological concepts we are measuring.

• Information content extracted from an annotated corpus. Each node or terminological concept in the knowledge resource structure or hierarchy carries a certain amount of information [START_REF] Jiang | Semantic similarity based on corpus statistics and lexical taxonomy[END_REF].

Graph based disambiguation is performed using the following steps:

• Building the semantic graph which corresponds to the terminological concepts that correspond to terms in a context where each node in the graph represents a particular terminological concept of an ambiguous term. • Link between nodes in the graph if there is a link between them in the knowledge resource structure.

• Compute a distance score for each node in the semantic graph, and then, classify the candidate terminological concepts according to their scores. • Finally, the best terminological concept is selected for each ambiguous term based on its score.

Domain Based Disambiguation.

Domain based disambiguation uses the information on the various sub-areas related to the terminological concepts in the knowledge resource [START_REF] Buitelaar | Domain-specific wsd[END_REF][START_REF] Gliozzo | Unsupervised domain relevance estimation for word sense disambiguation[END_REF].

The appropriate terminological concept of an ambiguous term is selected based on the comparison between the domains, such as WordNet domains, where each term meaning belongs to and the context where the term is appeared. Domain based disambiguation approaches represent each context and terminological concept by a vector, a vector in a multidimensional space in which each domain represents a dimension of the space. The value of each component is the relevance of the corresponding domain with respect to the terminological concept described by the vector.

• First step, the system builds a domain vector for the context of the term to be disambiguated (terms around the target term are used). • Second step, a domain vector is built for each terminological concept of the term to be disambiguated. • Finally, in the third step, calculating the similarity between context and each terminological concept vector using the cosine similarity or the dot product, and selecting the terminological concept that maximizes the similarity with the context vector.

The interest of using domain based disambiguation is that it does not require a high level of linguistic understanding, and it focuses on the exploitation of domains defined in the knowledge resource.

2.4. Summary 34

Semantic Indexing and Term Mismatch

Semantic indexing is proposed to solve the term mismatch problem. Assume the two synonymous terms t 1 and t 2 , which correspond to the same concept c. If the content of a document d is described using the term t 1 and a query q is asked using the term t 2 , then in this case, we get a mismatch between d and q. Whereas, if we replace the two terms t 1 and t 2 by their corresponding concept c, then d and q will be described using the same concept c. For example, the two terms "Myocardial Infarction" and "Heart Attack" correspond to the same concept "C0027051" in UMLS. As a result, the query will not mismatch the document as they contain the same concept.

Semantic indexing partially solves the term mismatch problem, because semantic indexing considers only synonymy between terms where semantic indexing maps synonym terms into the same concept. However, other types of relation between concepts are found. For instance, in the medical domain, if a document d contains the term "B-Cell", and the query about "Lymphocyte". These two terms are mapped into two different concepts. These two concepts are linked with an ISA relation, because "B-Cell" is a type of "Lymphocyte" in the adaptive immune system. Therefore, a document contains "B-Cell", is relevant to the query "Lymphocyte". However, a retrieval model that does consider relations between indexing terms is incapable to retrieve such a type of document.

Moreover, a term could be mapped into several terminological concepts in a knowledge resource which requires an additional disambiguation step for identifying the most appropriate terminological concept of the term within a given context. The fact that a term could be mapped into several terminological concepts, makes the retrieval system retrieves irrelevant documents if we consider all these terminological concepts in a document or a query representation. As a result, information retrieval system, using concepts, are less effective than classical keywordbased systems, because all retrieval heuristics and statistical studies are well adapted and made depending on keywords as indexing terms. However, meaning-based representation gives a different representation of documents and queries, from keyword-based representation, which improves the retrieval effectiveness when it combined with keyword-based systems [START_REF] Baziz | Conceptual indexing based on document content representation[END_REF].

Summary

We present, in this chapter, the importance of knowledge resources in information retrieval, and how they are concretely integrated into information retrieval process. Knowledge-based information retrieval systems exploit knowledge resources in order to make relevance judgment more precise and closer to the human way of judgment. Therefore, we have focused on the basic concepts of knowledge resources in information retrieval systems.

We have first presented several examples of knowledge resources that are used in information retrieval field: WordNet, UMLS, Wikipedia, YAGO, and their fundamental elements. We then detailed how knowledge resources are integrated into information retrieval process in order to mitigate term mismatch problem. More precisely, we have presented how knowledge resources are integrated into matching models via two models: Vector Space Model and Language Models. We have also presented semantic or conceptual indexing using knowledge resources, their essential steps, how semantic indexing supposed to solve term mismatch, and its shortcomings.

Using concepts and relations in IR has some drawbacks. In general, by using knowledge resources, two more external factors could affect the effectiveness of IR models. The precision and the correctness of the text to concepts annotation process. On the one hand, most of these tools are based on NLP techniques to detect noun phrases in text. Noun phrases detection is not a perfect process. On the other hand, the annotation process is an ambiguous process, because the same noun phrase could be mapped to more than one concept. Therefore, we need an extra step to select, among the candidate concepts, the most convenient concept with respect to a specific context.

The issue of knowledge resources incompleteness: in general, knowledge resources are incomplete, because it is very hard to build a knowledge resource containing all information about a specific domain. As an example, we can see the situation of UMLS. Although UMLS is the largest available resource in the medical domain, several studies show that many concepts and relations are missing in UMLS, and there are proposals to compensate this incompleteness [START_REF] Bodenreider | Lexically-suggested hyponymic relations among medical terms and their representation in the umls[END_REF].

Finally, we see that even these previous approaches address term mismatch problem. They do not consider any formal definition of term mismatch. More precisely, we see that there is a missing link between the proposed approaches and any formal definition of term mismatch.

Chapter 3 Automatic Query Expansion in Information Retrieval

Current information retrieval systems, including Web search engines, have a standard interface consisting of a single input box that allows users to formulate their information needs via a request using their natural language. Then, the request is used to search inside a document collection or a corpus in order to retrieve documents that fulfill the information needs. However, documents authors and users do not often use the same words, i.e. users usually tend not to use the same words appearing in documents as search words [START_REF] Carpineto | A survey of automatic query expansion in information retrieval[END_REF][START_REF] Furnas | The vocabulary problem in human-system communication[END_REF].

It is also observed that users submit short queries in several search systems. For example, the average length of web queries is less than two words [START_REF] Wen | Clustering user queries of a search engine[END_REF]. Queries usually lack sufficient terms to cover useful search terms and thus negatively affects the performance of web search in terms of both precision and recall. While there has been a slight increase in the number of long queries, the most prevalent queries are still those of one, two, and three words. The cultural heritage domain is also an example of search systems where users express their information needs using short queries [START_REF] Akasereh | A quantitative evaluation of query expansion in domain specific information retrieval[END_REF][START_REF] Petras | Cultural heritage in clef (chic) overview[END_REF]. The third example is the medical images search1 , where short queries are used to search image captions [START_REF] Clough | The CLEF 2003 Cross Language Image Retrieval Track[END_REF]. For short queries, the vocabulary problem has become even more serious because the paucity of query terms reduces the possibility of handling synonymy while the heterogeneity and size of data make the effects of polysemy more severe. The need for and the scope of automatic query expansion have thus increased.

To overcome the above problems, researchers have focused on using query expansion to help users to have a more effective query. Query expansion involves adding new terms to the existing search terms to generate an expanded query. A variety of knowledge resources have been exploited, for automatic query expansion, in order to find interesting expansion terms. Automatic query expansion is currently considered as an extremely promising study to improve the retrieval effectiveness. Moreover, there are signs that it is being adopted in commercial applications, especially for desktop and intranet searches [START_REF] Zhao | Modeling and Solving Term Mismatch for Full-Text Retrieval[END_REF]. For instance, Google Enterprise, MySQL, and Lucene provide the user with an automatic query expansion facility that can be turned on or off. In contrast, it has not yet been regularly employed in the major op-erational Web IR systems such as search engines. There are several explanations for the limited uptake of automatic query expansion in Web search. First, the fast response time required by Web search applications which may prevent the use of some computationally expensive query expansion approaches. Second, current automatic query expansion approaches are optimized to perform well on average, but are unstable and may cause degradation of search service for some queries. Also, the emphasis of automatic query expansion on improving recall (as opposed to guaranteeing high precision) is less important, given that there is usually an abundance of relevant documents and that many users look only at the first page of results [START_REF] Carpineto | A survey of automatic query expansion in information retrieval[END_REF] In this chapter, we present a classification of automatic query expansion approaches according to the knowledge resource which is used for finding expansion terms. We then describe the main computational steps for an automatic query expansion approach: from expansion terms acquisition, to expansion terms selection and ranking, and finally to query formulation and reweighting. This modelization accounts for most automatic query expansion approaches.

The rest of the chapter is organized as follows, section 3.1, presents a classification of automatic query expansion approaches according to the knowledge resource used for finding expansion terms. Section 3.2 details automatic query expansion steps. Finally, section 3.3, concludes the chapter.

Automatic Query Expansion Approaches

Automatic query expansion approaches can be classified into five main groups according to the nature of knowledge resource from where expansion terms are obtained: linguistic, corpusspecific, query-specific, search log analysis, and Web data. Each group can then be further split into a few sub-classes. In this section we discuss the main characteristics of each group.

Linguistic Approaches

Linguistic approaches are based on linguistic properties such as morphological, lexical, syntactic and semantic term relationships to expand a user query. Linguistic approaches are typically based on dictionaries, thesauri, or other similar knowledge resources such as WordNet. Expansion terms are usually generated independently of the full query and of the content of the document collection. A list of expansion terms is generated for each term in the vocabulary, using term relationships which are defined in the knowledge resource.

Most of work has focused on the use of WordNet [START_REF] Gonzalo | Indexing with wordnet synsets can improve text retrieval[END_REF][START_REF] Voorhees | Using wordnet to disambiguate word senses for text retrieval[END_REF][START_REF] Zhang | Concept based query expansion using wordnet[END_REF]. As already remarked, WordNet is very appealing for supporting automatic query expansion, but its application may raise several practical issues; e.g., lack of proper nouns and collocations, no exact match between query terms and WordNet synsets, one query term mapping to several noun synsets.

Corpus-Specific Approaches

Corpus-specific approaches analyze the content of the whole document collection, and then associate between each pair of terms, within the document collection, by co-occurrence [START_REF] Peat | The limitations of term co-occurrence data for query expansion in document retrieval systems[END_REF], by representing terms via vectors and comparing between term vectors [START_REF] Song | Discovering information flow using a high dimensional conceptual space[END_REF], by mutual information [START_REF] Hu | Improving retrieval performance by global analysis[END_REF], by term clustering [START_REF] Bast | Efficient interactive query expansion with complete search[END_REF], etc.

Mutual information assesses how much two terms are related, by analyzing the entire collection in order to calculate the association score between terms. For each query term, every term that has a high mutual information score with this query term is used to expand the user query.

Semantic vectors and neural probabilistic language models, propose a rich term representation in order to capture the correlation between terms. In these approaches, a term is represented by a vector in a high dimensional semantic space which is equipped with a metric. The metric can naturally encode the correlation between the corresponding terms. A typical instantiation of these approaches is to represent each term by a vector and to use a cosine or a distance between term vectors in order to measure term correlation [START_REF] Bengio | Neural Probabilistic Language Models[END_REF][START_REF] Serizawa | A study on query expansion based on topic distributions of retrieved documents[END_REF][START_REF] Widdows | The semantic vectors package: New algorithms and public tools for distributional semantics[END_REF].

Recently, several efficient Natural Language Processing methods, based on neural networks, are proposed to learn high quality vector representations of terms from a large amount of unstructured textual data with billions of words. These vector representations capture a large number of term relationships [Mikolov et al., 2013a,b].

Query-Specific Approaches

Local analysis involves the local context of the original query. The local context of the original query contains the top ranked documents retrieved by the original query. This local context is supposed to be more relevant to the query than the global context which is the whole document collection1 . Relevance feedback is the most common approach to achieve query specific expansion [START_REF] Lavrenko | Relevance based language models[END_REF][START_REF] Rocchio | Relevance feedback in information retrieval[END_REF]].

Search Log Analysis Approaches

Search log approaches are based on the user interaction with the retrieval system. Clicked documents have a strong probability to be relevant to the original user query. Therefore, instead of using top retrieved documents for query expansion like in the query specific approaches, only clicked documents are considered in these approaches.

Clicked document could be used for directly extracting expansion terms [START_REF] Cui | Query expansion by mining user logs[END_REF][START_REF] Riezler | Statistical machine translation for query expansion in answer retrieval[END_REF], or to build a graph for example that could be later used to calculate the association between queries [START_REF] Billerbeck | When query expansion fails[END_REF]].

Web Data Approaches

Several knowledge resources are available on the Web, and they have been used in the context of automatic query expansion, among them: anchor data and Wikipedia. Anchor data is chosen manually to represent a web page. Anchor texts often provide more accurate description of the page than the page itself. Anchor texts are collected and ranked to be used to expand a user query [START_REF] Dang | Query reformulation using anchor text[END_REF]. Anchor texts ranking could be made upon different criteria: frequency, intersection with the query, etc.

Wikipedia is another knowledge resource on the Web that has also been used in automatic query expansion. Several approaches, using Wikipedia, are proposed: based on Wikipedia structure and hyperlinks [START_REF] Bruce | AI 2012: Advances in Artificial Intelligence: 25th Australasian Joint Conference[END_REF]; Guisado-Gámez & Prat-Pérez, 2015], based on Wikipedia content, for instance, applying relevance feedback using top Wikipedia returned results to a user query [START_REF] Xu | Query dependent pseudo-relevance feedback based on wikipedia[END_REF], or based on a mix between Wikipedia structure and content [START_REF] Ganesh | Exploiting structure and content of wikipedia for query expansion in the context of question answering[END_REF] 

Automatic Query Expansion Steps

Automatic query expansion can be broken down into three steps: expansion terms acquisition, expansion terms selection and ranking, and finally query formulation and re-weighting. Each step is discussed, in turn, in the following sections. Figure 3.1, shows a general schema of an automatic query expansion method. 

Expansion Terms Acquisition

This step depends on the knowledge resource where expansion terms are found. The knowledge resource is processed in order to extract candidate expansion terms for the following steps. We present the following examples of the most common processing procedures:

Query-Specific Expansion

Pseudo-relevance feedback (PRF) is an example of query-specific approaches for query expansion. PRF assumes that the top-ranked documents returned for the initial query are relevant, and uses a sub set of the terms extracted from those documents for query expansion [START_REF] Buckley | Automatic query expansion using smart : Trec 3[END_REF][START_REF] Rocchio | Relevance feedback in information retrieval[END_REF]. In this step, terms in the top ranked documents are cleaned from tags, stop words, etc., tokenized, stemmed, and weighted. As a result, a list of weighted terms is obtained to be used in the following steps.

Corpus-Specific Expansion

Corpus-specif approaches analyze the content of the whole document collection, and then generate a correlation between each pair of terms by co-occurrence [START_REF] Peat | The limitations of term co-occurrence data for query expansion in document retrieval systems[END_REF], mutual information [START_REF] Hu | Improving retrieval performance by global analysis[END_REF], etc. As a result, we can obtain for each term, a weighted list of its all correlated terms in the document collection to be used in the following steps. Basically, in corpus-specif approaches, more the two terms appear in the same context1 , more they are correlated.

Search Log Based Expansion

In this example of a search log based methods, clicked document to a given query are considered to be relevant. The central idea of this method is that if a set of documents is often selected for the same queries, then the terms in these documents are strongly related to the query terms. Thus, a probabilistic correlation between query and document terms can be established based on the query logs. The probabilistic correlation can be used for selecting high-quality expansion terms for new queries [START_REF] Cui | Probabilistic query expansion using query logs[END_REF]. Based on this correlation, for each term a list of weighted terms could be obtained to be used in the following steps.

Web Data Based Expansion

Anchor data is an example of Web data that is exploited for query expansion. For instance, Dang and Croft [START_REF] Dang | Query reformulation using anchor text[END_REF], associate each anchor text with a link to a particular document. Then, they construct an anchor log that consists of pairs (anchor text, URL) where the anchor text corresponds to a query in a query log, and the URL is the associated link for the anchor text, which corresponds to a click in a query log. A correlation between query terms and anchor texts is built, and as a result a list weighted anchors is obtained to be used in the following steps.

Wikipedia is another example of Web data that is also exploited for query expansion. For instance, Xu et al. [START_REF] Xu | Query dependent pseudo-relevance feedback based on wikipedia[END_REF], retrieves top ranked articles from Wikipedia in response to a user query. Then, terms from the top ranked Wikipedia articles are cleaned from tags, stop words, etc., tokenized, stemmed, and weighted. As a result, a list of weighted terms is obtained to be used in the following steps.

Expansion Terms Selection and Ranking

In the second step of automatic query expansion, the candidate expansion terms, which are extracted in the first step, are ranked. Then, the top portion of the candidate expansion terms is used to expand the original query.

The input to this step is the original query and a list of candidate expansion terms, and the output is a set of expansion terms, associated with their correlation scores. The original query may be pre-processed to remove common words and/or extract important terms to be expanded (the importance being approximated e.g., by their inverse document frequency: idf ).

Two techniques could be identified to select and to rank expansion terms according to their relationship with the query.

Expansion Term Related to One Query Term

One of the obvious example is to rely on linguistic relationship between terms, like synonymy between terms, using linguistic resources such as WordNet [START_REF] Zhang | Concept based query expansion using wordnet[END_REF]. WordNet uses synsets to group synonyms. When a query term corresponds a WordNet synset, all synonyms belong to this query term synset are used to expand the user query.

In corpus-specific expansion, term relationships are defined using co-occurrence [START_REF] Peat | The limitations of term co-occurrence data for query expansion in document retrieval systems[END_REF], or mutual information [START_REF] Hu | Improving retrieval performance by global analysis[END_REF]. In this case, terms which have high co-occurrences or high mutual information scores with a query term, are used to expand the original query.

Before selecting expansion terms, expansion terms are ranked according to their similarity to a query term. The similarity reflects the strength of the relationship between terms. More the two terms are related, bigger the similarity is. Measuring term similarity is related to the type of relationship between expansion terms and a query term. To measure co-occurrence between two terms, Dice coefficient or Jaccard similarity, for example, are used. Dice coefficient between two terms t and t is defined as:

Dice(t, t ) = 2 × df t∧t df t + df t (3.1)
where df t∧t is the number of documents that contain both t and t , and df t , df t are the number of documents that contain t and t , respectively. Jaccard similarity between two terms t and t is defined as:

Jaccard(t, t ) = df t∧t df t∨t (3.2)
where df t∨t is the number of documents that contain t or t . Mutual information is another way to measure the similarity between two terms [START_REF] Church | Word association norms, mutual information, and lexicography[END_REF]]. Mutual information I(t, t ) between two terms t and t is defined as the following:

I(t, t ) = log 2 P (t, t ) P (t) × P (t ) + 1 (3.3)
where P (t, t ) is the probability that t and t co-occur within a certain context1 . P (t), P (t ) are the probability of occurrence t and t , respectively. We notice that the mutual information is symmetric.

In the context of hierarchical relation or specific-generic relation between terms, several similarity measures are proposed. Essentially, two types of approaches are found to calculate topological similarity between terms in a hierarchy.

• Edge-based. Edge-based uses the edges and their types as for calculating the similarity between two terms in the hierarchy. For instance, Path length [START_REF] Widdows | Geometry and Meaning[END_REF] and Cheng and Cline [START_REF] Cheng | A knowledge-based clustering algorithm driven by Gene Ontology[END_REF] are two examples of edge-based similarity measures. • Node-based. Node-based uses the nodes and their properties for calculating the similarity between two terms in the hierarchy. Resnik [START_REF] Resnik | Using information content to evaluate semantic similarity in a taxonomy[END_REF] and Lin [START_REF] Lin | An information-theoretic definition of similarity[END_REF] are two examples of node-based similarity measures.

Path length similarity between two terms t and t in a hierarchy is inversely proportional to the number of links along the shortest path between the terms:

P athSim(t, t ) = 1 distance(t, t ) + 1 (3.4)
where distance(t, t ) > 0, is the number of edges along the shortest path between t and t in the hierarchy.

Lin similarity [START_REF] Lin | An information-theoretic definition of similarity[END_REF], is based on the information content of the two terms t and t . If the information content of t or t is zero, then zero is returned as the similarity score, due to lack of data. Ideally, the information content of a term is zero only if that term is the root node, but when the frequency of a term is zero. Lin similarity is defined as follows:

LinSim(t, t ) = 2 × IC(lcs) IC(t) + IC(t ) (3.5)
where lcs is the least common subsumer (is the lowest (i.e. deepest) node that has both t and t as descendants), IC(t) is the information content of t. The value of Lin similarity is between zero and one.

Expansion Term Related to the Whole Query

If an expansion term is related to a query term, it is not necessarily to be strongly related to other query terms or even to the whole query [START_REF] Bai | Using query contexts in information retrieval[END_REF]. For instance, the query "Java Program" and the query "TV Program". The term "Arguments" is strongly related to the term "Program". However, by considering the whole query, "Arguments" is related to the first query "Java Program", but it is not related to the second query "TV Program". Therefore, the term "Arguments" is appropriate to expand "Java Program", but not "TV Program".

Expansion term related to the whole query could be obtained by extending the previous method where expansion terms are related to one query term. The idea is that if an expansion term is related to several individual query terms, then it is related to the whole query. Several works address these methods [Bai et propose a term-query based expansion method, which emphasizes the correlation of a term to the entire query. This correlation can be expressed as:

Co(t , q) = t∈q tf q(t) × Sim(t, t ) (3.6)
where tf q(t) is the term frequency of the term t in the query q, and Sim(t, t ) is the similarity between the two terms t and t . Pseudo-relevance feedback (PRF) assumes that the top-ranked documents returned for the initial query are relevant, and uses a sub set of the terms extracted from those documents for expansion [START_REF] Lavrenko | Relevance based language models[END_REF][START_REF] Rocchio | Relevance feedback in information retrieval[END_REF]. PRF belongs to this category, where expansion terms are extracted from the top-ranked documents returned for the initial query, and are supposed to be related to the whole query.

Either the correlation is calculated between expansion terms and a query term, or between expansion terms and the whole query, expansion terms are ranked according to the strength of this correlation. Then, a limited number of the ranked list are used to expand the original query, partly because the resulting query can be processed more rapidly, partly because the retrieval effectiveness of a small set of good terms is more successful than adding all candidate expansion terms, i.e. the number of expansion terms has a major impact on the effectiveness of query expansion approaches [START_REF] Harman | Information Retrieval, chap. Relevance Feedback and Other Query Modification Techniques[END_REF][START_REF] Weerkamp | Exploiting external collections for query expansion[END_REF].

After ranking the candidate expansion terms, the top portion is selected for expanding the original query. The selection is made on an individual basis, without considering the mutual dependencies between the expansion terms. This is, of course, a simplifying assumption, even though the experimental results show that the independence assumption may be justified [START_REF] Lin | Assessing the term independence assumption in blind relevance feedback[END_REF].

Expansion terms selection still a critical issue, and several works have discussed the optimal number of expansion terms [START_REF] Bernardini | FUB at TREC 2008 relevance feedback track: Extending rocchio with distributional term analysis[END_REF][START_REF] Chang | Query reformulation using automatically generated query concepts from a document space[END_REF][START_REF] Wong | Re-examining the effects of adding relevance information in a relevance feedback environment[END_REF], or the selection of good expansion terms that do not harm retrieval performance [START_REF] Billerbeck | Questioning query expansion: An examination of behaviour and parameters[END_REF][START_REF] Cao | Selecting good expansion terms for pseudo-relevance feedback[END_REF].

Query Formulation and Re-weighting

After ranking and selecting expansion terms in the previous step, expansion terms are integrated into the original query before submitting the expanded query into the retrieval system. Terms are re-weighted in the expanded query. In general, original query terms are more important than expansion terms. The most popular query re-weighting is modeled for relevance feedback [START_REF] Rocchio | Relevance feedback in information retrieval[END_REF][START_REF] Salton | Readings in information retrieval[END_REF]. A general formula could be defined as following:

weight(t, q ) = (1 -λ) × weight(t, q) if t ∈ q λ × correlation(t) if t / ∈ q (3.7)
where q is the expanded query, q is the original query, weight(t, q) weight of a term t in the original query, and correlation(t) is the correlation of an expansion term which is calculated in the previous step. The value of λ could be determined using a training data, if it is available, or experimentally using a free parameter [Amati & [START_REF] Amati | Probabilistic models of information retrieval based on measuring the divergence from randomness[END_REF], or could be learned and predicted for each new query [START_REF] Lv | Adaptive relevance feedback in information retrieval[END_REF]].

In the framework of language modeling [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF], relevance between document and query RSV (d, q) is calculated as following:

RSV (d, q) ∝ logP (q|θ d ) = t∈V #(t; q).logP (t|θ d ) (3.8)
In the framework of language modeling, the relevance between document and query RSV (d, q), could be also calculated using Kullback-Leibler divergence between the query language model and the document language model, as follows:

RSV (d, q) ∝ t∈V P (t|θ q ).log P (t|θ q ) P (t|θ d ) (3.9)
In this case, the query formulation and re-weighting step of automatic query expansion is naturally supported. Equation 3.9, estimates the query model by only considering original query terms, while the document model is also estimated taking into account unseen terms through probability smoothing. Thus, the question arises, whether it is possible to create a better query model by finding related terms with their associated probabilities and then using the corresponding query expansion model (EXP) to smooth the original query model, in the same way as the document model is smoothed with the collection model.

Several automatic query expansion methods are proposed for creating a query expansion model based on language models: model based on feedback documents [START_REF] Lavrenko | Relevance based language models[END_REF], model based on term relations [START_REF] Bai | Query expansion using term relationships in language models for information retrieval[END_REF], and model based on domain hierarchies [START_REF] Bai | Using query contexts in information retrieval[END_REF]. Regardless of the details of these three methods, the final expanded query model, using a linear smoothing [START_REF] Jelinek | Interpolated estimation of Markov source parameters from sparse data[END_REF], is given by: P (t|θ q ) = (1 -λ)P (t|θ q ) + λP (t|θ q EXP ) (3.10)

where θ q EXP corresponds query expansion model. This model can be seen as a generalization of the Equation 3.7.

Summary

Automatic query expansion has been proposed for solving term mismatch problem in information retrieval. In this chapter, we have presented how automatic query expansion works and the three steps for achieving expansion process: expansion terms acquisition, expansion terms selection and ranking, and query formulation and re-weighting. Expansion terms acquisition extracts candidate expansion terms from expansion terms resource. In the second step, candidate expansion terms are ranked according to their correlation to the original query and a limited number of these terms are selected to be used in the query formulation and re-weighting step. Query formulation and re-weighting integrates selected expansion terms, in the previous step, into the original query and the expanded query is ready to be submitted on the retrieval system. More available and freely accessible information means a greater need, or even an indispensable need, to search these information. More available knowledge resources means also a need for exploiting these knowledge resources in the information retrieval process. Automatic

Chapter 4

Term and Document Embeddings: Evolution and Applications

Introduction

Probabilistic information retrieval models and Vector Space Model represent documents and queries as bag of terms1 , where each term in the bag is independent of other terms [START_REF] Crestani | Exploiting the similarity of non-matching terms at retrieval time[END_REF]. The main weakness, in the independence assumption, is that it ignores term semantics. More precisely, each term has the same distance to other terms. For example, Insulin, Diabetes, and Computer are equally distant, despite the fact that, semantically, Diabetes should be closer to Insulin than Computer. Moreover, the term order is lost, and thus different sentences can have exactly the same representation, as long as the same terms are used.

Treating terms as discrete atomic units provides no useful information to an information retrieval model regarding the relationships that may exist between individual terms. This means that the model can leverage very little of what it has learned about insulin when it is processing data about diabetes (such that insulin is a treatment of the diabetes). Representing terms as unique, discrete units furthermore leads to data sparsity, and cause a mismatch between queries and documents within an information retrieval model.

Vector Space Model (VSM) has been proposed for the SMART information retrieval system, by Gerard Salton [START_REF] Salton | The SMART Retrieval System-Experiments in Automatic Document Processing[END_REF]. VSM represents each document as a vector or a point in a multidimensional space. Points that are close together in this space are semantically similar, and points that are far apart are semantically distant. A user query is also represented as a vector. Then, documents are ranked according to their cosine or distance to the query vector. Vector Space Model has inspired researchers in Natural Language Processing, to use it for semantic tasks where they obtained interesting results.

In Natural Language Processing, each term is also represented as a vector of predefined dimensions. The idea behind this representation is that terms occur in similar contexts tend to have similar meanings [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF][START_REF] Firth | A synopsis of linguistic theory 1930-1955[END_REF][START_REF] Harris | Papers on Syntax, chap. Distributional Structure[END_REF][START_REF] Wittgenstein | Philosophical Investigations[END_REF]. Term vector representation has several attractive properties. Term vector representations are used to measure the similarity between two terms without using any manually constructed knowledge resource. Given a collection of documents, each term is represented as a vector. Each dimen-sion within this vector corresponds a document, and the value in this dimension corresponds the importance of the term within the corresponding document. For example, [START_REF] Rapp | Word Sense Discovery Based on Sense Descriptor Dissimilarity[END_REF] uses term vector representations in order to discover a set of senses to an ambiguous term. Vector representation, for documents and terms, performs well for measuring term and document similarity [START_REF] Manning | Introduction to Information Retrieval[END_REF].

Vectors are also common in other domains. In machine learning, classification problem is to classify a set of items represented as vectors of features [START_REF] Mitchell | Machine Learning[END_REF][START_REF] Sebastiani | Machine learning in automated text categorization[END_REF] In this chapter, we are interested in two types of vectors: document and term vectors, because these two types are mostly used in information retrieval. In VSM, a document vector is a vector of the vocabulary length, where each dimension is the weight of the corresponding term in the document. The weight of a term in the document is based on the term frequency (tf ), or on the term frequency and the inverse document frequency (tf.idf ) [START_REF] Salton | A vector space model for automatic indexing[END_REF]. However, a term vector is a vector of the number of documents in the collection, where each vector dimension is the weight of the term in the corresponding document. A crucial issue in document and term vectors is that, each term is represented as an independent dimension2 . Therefore, several mathematical techniques are proposed to group similar dimensions to obtain more meaningful dimensions. For instance, Latent Semantic Indexing (LSI), applies Singular Value Decomposition (SVD) on document vectors, and then produce more compact document vectors, where similar terms are grouped together into the same dimension [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF]]. However, Latent Semantic Analysis (LSA), applies Singular Value Decomposition on term vectors [START_REF] Landauer | Latent semantic analysis: Theory, method and application[END_REF]. LSI and LSA assume that the produced vectors better capture the semantic content of documents and terms.

Neural language models are recently proposed for learning more compact term vectors, called distributed neural embeddings. These methods have been shown to produce vectors that also capture term relationships. In these approaches, a term is also represented by a vector and a cosine or a distance is used to measure term similarity between term vectors [Bengio et Distributed neural embeddings are shown impressive results in term similarity task. Distributed neural embeddings could be used as an automatic approach for building a knowledge resource for a specific or general domain. Then, this knowledge resource could be also integrated to the information retrieval process. In Chapter 7, we propose to use an automatically built knowledge resource, using neural networks, for query expansion in the medical domain. Our goal is to evaluate the effectiveness of these distributed neural embeddings for query expansion. Moreover, in the appendix A, we propose to revisit the Vector Space Model proposed by Salton [START_REF] Salton | The SMART Retrieval System-Experiments in Automatic Document Processing[END_REF]. The revisited Vector Space Model, proposes to aggregate distributed neural embeddings, of terms, in order to build document and query vectors, and evaluate the effectiveness of the resulting document and query vectors in an information retrieval system.

The rest of chapter is organized as follows. Section 4.2, presents the evolution of document and term vectors. Section 4.3, talks about the similarity measure which are normally used between vectors. Section 4.4, presents several applications for document and term vectors. Section 4.5, concludes the chapter.

Embeddings Evolution

In this section, we present the evolution of embeddings, and the motivations behind this evolution. Section 4.2.1, presents term-document matrix. Then, section 4.2.2, talks about dimensionality reduction which applies some mathematical techniques on term-document matrix in order to obtain more compact term and document embeddings. Last, section 4.2.3, details distributed neural embeddings which are proposed to avoid dimensionality reduction techniques by incrementally learning more compact and better quality embeddings.

Term-Document Matrix

In term-document matrix, row vectors correspond to terms, and column vectors correspond to documents. VSM [START_REF] Salton | The SMART Retrieval System-Experiments in Automatic Document Processing[END_REF], assumes that a column vector in a term-document matrix captures (to some degree) an aspect of the meaning of the corresponding document.

Suppose a document collection with n documents, and m unique terms. The matrix has m rows (one row for each unique term in the vocabulary), and n columns (one column for each document). Let t i be the i-th term in the vocabulary, and let d j be the jth document in the collection. The i-th row in the matrix is the row vector x i : and the j-th column is the column vector y j . The row vector x i , contains n dimensions, one dimension for each document, and the column vector y j , contains m dimensions, one dimension for each term.

The vector y j may seem to be a rather crude representation of the document d j . It tells us the weight of document terms, but the sequential order of the terms is lost. The vector does not attempt to capture the structure in the phrases, sentences, paragraphs, and chapters of the document. However, in spite of this crudeness, search engines work surprisingly well. Therefore, vectors seem to capture an important aspect of semantics.

Vector Space Model was arguably the first practical, useful algorithm for extracting semantic information from term usage. An intuitive justification for the term-document matrix is that the topic of a document will probabilistically influence the author's choice of terms when writing the document. If two documents have similar topics, then the two corresponding column vectors will tend to have similar patterns of numbers. VSM focused on measuring document similarity, treating a query to a search engine as a pseudo-document. The relevance between a document and a query is given by the similarity of their vectors.

Deerwester et al. [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF], have observed that we can shift the focus to measuring term similarity, instead of document similarity, by looking at row vectors in the term-document matrix, instead of column vectors. Deerwester et al. [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF], were inspired by the term-document matrix of Salton [START_REF] Salton | The SMART Retrieval System-Experiments in Automatic Document Processing[END_REF], but a document is not necessarily the optimal length of text for measuring term similarity. In general, we may have a term-context matrix, in which the context is given by terms, phrases, sentences, paragraphs, chapters, documents, or more exotic possibilities, such as sequences of characters or patterns.

The distributional hypothesis in linguistics assumes that terms occur in similar contexts tend to have similar meanings [START_REF] Harris | Papers on Syntax, chap. Distributional Structure[END_REF]. This hypothesis is the justification for using term vectors to measuring term similarity. A term may be represented by a vector in which the elements are derived from the occurrences of the term in various contexts, such as a fixed size window of terms [START_REF] Lund | Producing high-dimensional semantic spaces from lexical co-occurrence[END_REF], grammatical dependencies [START_REF] Lin | An information-theoretic definition of similarity[END_REF]Padó & Lapata, 2007], and richer contexts consisting of dependency links and selectional preferences on the argument positions [START_REF] Erk | A simple, similarity-based model for selectional preferences[END_REF]. As a result, similar row vectors in the term-context matrix indicate similar term meanings.

Dimensionality Reduction

Term-document matrix is often range from tens of thousands to millions of dimensions. Therefore, document and term vectors, within term-document matrix, are sparse and need an important computational power to treat them. Dimensionality reduction approaches are proposed to obtain more compact and more meaningful vectors at the same time. In the context of information retrieval, we identify several approaches, among them: Latent Semantic Analysis, Latent Dirichlet Allocation, and Random Indexing.

Latent Semantic Analysis and Indexing

Latent Semantic Analysis (LSA), also called Latent Semantic Indexing (LSI) [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF], is a fully automatic mathematical/statistical technique for extracting and inferring relations of expected contextual usage of terms in multiple contexts. Latent Semantic Analysis is based on a matrix-algebra method, called Singular Value Decomposition (SVD), which became a practical solution to such complex phenomena only after the advent of powerful digital computing machines and algorithms.

To construct a semantic space for a language:

• LSA builds term-context matrix X. Therefore, each matrix entry x ij contains the weight of t i in the context C j .

X =       x 11 . . . x 1n . . . . . . . . . x m1 . . . x mn       (4.1)
• Then, LSA applies singular value decomposition (SVD) to the term-context matrix. In SVD, a rectangular matrix is decomposed into the product of three other matrices. One component matrix describes the original row entries as vectors of derived orthogonal factor values U , another matrix describes the original column entries in the same way V , and the third matrix is a diagonal matrix containing scaling values Σ, such that when the three components are matrix-multiplied, the original matrix is reconstructed.

X = U ΣV T (4.2)
The dimensionality of the solution is simply reduced by deleting coefficients in the diagonal matrix, ordinarily starting with the smallest. In practice, for computational reasons, for very large corpora only a limited number of dimensions currently a few thousands can be constructed. Similarities between terms, between contexts and terms, and between contexts, are then computed as a cosine or any other vector-algebraic metric.

LSA vectors approximate the meaning of a term as its average effect on the meanings of contexts in which it occurs, and reciprocally approximates the meaning of a context as the average of the meanings of their terms. This kind of mutual constraint can be realized in other ways than SVD. For example, neural network models which is explained later in this chapter.

The use of a large and representative language corpus supports representation of the meanings of new contexts by statistical induction. In LSA and other embeddings approaches which are described in this chapter, there is no notion of multiple discrete senses or disambiguation. A term has the same effect on every context in which it occurs, and that in turn is the average of the vectors for all of the contexts in which it occurs. Thus, a term vector represents a mixture of all its senses, in proportion to the sum of their contextual usages.

Since both contexts and terms are represented as vectors, it is straightforward to compute the similarity between two contexts, a term and a context, and two terms. In addition, terms and/or contexts can be combined to create new vectors in the space. The process by which a new vector can be added to an existing LSA space is called folding-in. The cosine distance between vectors is used as the measure of their similarity for many applications because of its relation to the dot-product criterion and has been found effective in practice. To accurately update the SVD and thereby take into account new term frequencies and/or new terms, it requires considerable computation minor perturbations to the original term-document matrix which can produce different term and context vectors.

First tests of LSI, in information retrieval, were against standard collections of documents for which representative queries have been obtained. Knowledgeable humans have more or less exhaustively examined the whole database and judged which abstracts are and are not relevant to the topic described in each query statement. In these standard collections, LSI's performance ranged from just equivalent to the best prior methods up to about 30% better [START_REF] Landauer | An Introduction to Latent Semantic Analysis[END_REF]]. LSI has also been used successfully to match reviewers with papers to be reviewed based on samples of the reviewers' own papers [START_REF] Dumais | Automating the assignment of submitted manuscripts to reviewers[END_REF], and to select papers for researchers to read based on other papers they have liked [START_REF] Foltz | Personalized information delivery: An analysis of information filtering methods[END_REF]. LSA is language independent, and has been also used successfully in a wide variety of languages.

Probabilistic Latent Semantic Analysis (PLSA) is based on a mixture decomposition derived from a latent semantic model. This results in a more principled approach which has a solid foundation in statistics [START_REF] Hofmann | Probabilistic latent semantic analysis[END_REF]. PLSA has also its applications in information retrieval and filtering, natural language processing, machine learning, etc. [START_REF] Hofmann | Learning the similarity of documents: An information-geometric approach to document retrieval and categorization[END_REF].

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA), is a way of automatically discovering topics within a piece of text [START_REF] Blei | Latent dirichlet allocation[END_REF]. In more detail, LDA represents documents as a mixture of topics that spit out terms with certain probabilities. A topic is a probability distribution over a collection of terms, and a topic model is a formal statistical relationship between a group of observed and random variables that specifies a probabilistic procedure to generate the topics.

The central goal of a topic is to provide a thematic summary of a document collection. In other words, it answers the question: what are the themes discussed in these documents? A collection of news articles could discuss, for instance, political, sports, and business related themes.

LDA provides a generative model that describes how the documents in a document collection are created. Each document is a collection of terms. LDA describes how each document obtains its terms. This generative model emphasizes that documents contain multiple topics. For instance, a health article might have terms drawn from the topic related to "Seasons" such as "Winter", and terms drawn from the topic related to "Illnesses" such as "Flu". LDA works as follows:

• First step, reflects that each document contains topics in different proportion, e.g. one document may contain a lot of terms drawn from the topic on seasons and no term drawn from the topic about illnesses, while a different document may have an equal number of terms drawn from both topics. • Second step, reflects that each individual term in the document is drawn from one of the topics in proportion to the document's distribution over topics as determined in the first step. The selection of each term depends on the the distribution over the terms in the vocabulary as determined by the selected topic. Note that the generative model does not make any assumptions about the order of the terms in the documents, as the bag of terms assumption.

The central goal of topic modeling is to automatically discover the topics from a collection of documents, in which, each document or term is represented using its different proportion over all the topics. As a result, each document or term could be considered as a vector of a fixed dimensions. Each dimension corresponds a specific topic.

Latent Dirichlet Allocation has been widely used in many research areas, among them: ad-hoc retrieval [START_REF] Wei | Lda-based document models for ad-hoc retrieval[END_REF] 

Random Indexing

Random indexing builds incrementally a term space model. The main difference between random indexing and the previous approaches is that random indexing does require a separate dimension reduction phase. The basic idea is to accumulate context vectors based on the occurrence of terms in contexts [START_REF] Sahlgren | An introduction to random indexing[END_REF]. Using random indexing, each term or document is represented by two vectors:

• Index Vector. Contains a randomly assigned label. The random label is a vector filled mostly with zeros, except a handful of +1 and -1 that are located at random indexes. Index vectors are expected to be orthogonal. • Context Vector. Produced by scanning through the text. Each time a term appears in a context (e.g. within a document, or within a sliding window), that context's d-dimensional index vector is added to the context vector of the term in question. The number of nonzero values with the index vector has an impact on how random distortion will be distributed over the index and context vectors.

In nutshell, a term is represented as a sum of its contexts, and a context is represented as a sum of its terms. Random indexing has been used in text categorization [Sahlgren & Cöster, 2004], and in synonym finding to choose a synonym to a given term out of several provided alternatives [START_REF] Kanerva | Random indexing of text samples for latent semantic analysis[END_REF].

Distributed Neural Embeddings

Distributed representations of terms or documents, called distributed neural embeddings, have been proposed to avoid the cruse of dimensionality. In other words, distributed embeddings are proposed to avoid treating huge matrices using mathematical techniques like SVD [START_REF] Bengio | A neural probabilistic language model[END_REF]. Distributed neural embeddings are also based on the same hypothesis, used in term-context matrix, which is terms occur in similar contexts tend to have similar meanings. Distributed neural embeddings are normally learned using a neural network, where each term is finally represented as a real-valued vector of several hundreds of dimensions. Initially, neural probabilistic language model has been proposed using a feedforward neural network language model (NNLM). NNLM consists of an input layer, a projection layer, a hidden and an output layer. Learning is achieved using huge amounts of unstructured text data. This unstructured text data is divided into contexts of a fixed size. Contexts are passed incrementally to the neural network, where embeddings are learned with respecting the objetive function which should be maximized. The resulting term vectors carry relationships between terms, such as a city and the country it belongs to, e. For example, in the sentence <My cat climbed a tree>, we could use "my" "cat" "a" and "tree" as context terms for predicting "climbed" as a target term. CBOW network architecture is a NNLM network. The neural network architecture for CBOW consists of three layers: an input layer, a hidden layer, an output layer. The input layer contains multiple vectors with |V |dimension, as the number of context terms. The hidden layer contains d-dimension, where d is the length of the learned vectors. The output layer consists of one vector of |V |-dimension which corresponds the target term. A hierarchical softmax function, as an objective function, is used to evaluate the joint probability distribution of terms. in W d×|V | is also corresponds a term in the vocabulary. These two vectors are combined to obtain the final term vector.

Skip-Gram Model

Skip-gram architecture is similar to CBOW architecture. However, the idea is given a central term, the model aims to maximize the hierarchical softmax objective function that predicts the context around this central term [Mikolov et The composition of term vectors has been showed to be meaningful, to obtain a vector representation for more complex elements like sentences [Mikolov et al., 2013a,b]. For instance, we sum the two vectors that represent "Last" and "Supper", to obtain the vector that represents "Last Supper".

Distributed Document Embeddings

Following the impressive results to learn term embeddings using neural networks, researchers aimed to go beyond term level and to extend the model to achieve paragraph or document level [START_REF] Grefenstette | Multistep regression learning for compositional distributional semantics[END_REF][START_REF] Yessenalina | Compositional matrix-space models for sentiment analysis[END_REF]. Using document or sentence, as an input of the neural network, allows to obtain a vector representation of a document or a sentence, instead of composing term vectors to obtain these vectors [START_REF] Le | Distributed representations of sentences and documents[END_REF]. 

Conclusion

Distributed neural methods are efficient methods for learning term embeddings. Learned term embeddings are compact where they contain several hundreds of dimensions. Distributed neural methods learn incrementally term embeddings and frees us from the curse of dimensionality1 . Distributed neural methods provide a powerful set of tools for embedding languages. They are true to a generalization of the distributional hypothesis: meaning is inferred from use. They provide better ways of tying language learning to extra-linguistic contexts (images, knowledgebases, cross-lingual data).

Distributional methods are well motivated, empirically successful at term level, primarily oriented towards measuring term similarity. However, at document level, it is difficult for now to obtain the performance of classical information retrieval models [Desprès et al., 2016].

Vector Similarity

Vector similarity between two vectors is normally measured using the cosine or the euclidean distance. Let x and y be two n-dimension vectors.

x =< x 1 , x 2 , ..., x n > y =< y 1 , y 2 , ..., y n > (4.

3)

The cosine between x and y, cos(x, y), is calculated as follows:

cos(x, y) = x.y ||x||.||y|| cos(x, y) = n i=1 x i .y i n i=1 x 2 i . n i=1 y 2 i (4.4)
The important thing, in the cosine similarity, is the angle between the vectors. If x and y are weight vectors, a higher weight term will have a longer vector than a rare term, yet the terms might be synonyms.

The cosine ranges between [-1; 1]. When the vectors are orthogonal, the cosine is zero. With raw frequency vectors, which necessarily cannot have negative elements, the cosine cannot be negative. However, weighting and smoothing often introduce negative elements. For instance, vectors learned using neural networks lead often to negative elements, and a negative cosine.

Distance between two vectors is also used to measure the similarity between two vectors x and y. A distance measure distance(x, y), between vectors can easily be converted to a measure of similarity by inversion or subtraction, as follows.

sim(x, y) = 1 -distance(x, y) sim(x, y) = 1/distance(x, y) (4.5)

Many similarity measures have been proposed in IR [START_REF] Jones | Pictures of relevance: A geometric analysis of similarity measures[END_REF]. It is commonly said in IR that, properly normalized, the difference in retrieval performance using different measures is insignificant [START_REF] Rijsbergen | Information Retrieval[END_REF]. Often the vectors are normalized in some way (e.g., unit length or unit probability), before applying any similarity measure. Popular geometric measures of vector distance include Euclidean distance and Manhattan distance. Previous distance measures and the cosine similarity measure are compared on four different tasks involving term similarity, where they found that cosine similarity is the best [START_REF] Bullinaria | Extracting semantic representations from word cooccurrence statistics: A computational study[END_REF]. Other popular measures are the Dice and Jaccard coefficients [Wikipedia, 2016a,b].

Lee et al. [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF], have proposed a measure that focuses more on overlapping coordinates and less on the importance of negative features, i.e. coordinates where one word has a nonzero value and the other has a zero value. In their experiments, the Jaccard, Jensen-Shannon, and L1 measures seemed to perform best. Weeds et al. [START_REF] Weeds | Characterising measures of lexical distributional similarity[END_REF], studied the linguistic and statistical properties of the similar terms returned by various similarity measures and found that the measures can be grouped into three classes:

• High-frequency sensitive measures (cosine, Jensen-Shannon, skew, recall).

• Low-frequency sensitive measures (precision).

• Similar-frequency sensitive methods (Jaccard, Jaccard+MI, Lin, harmonic mean).

Given a term t, if we use a high-frequency sensitive measure to score other terms t i according to their similarity with t, higher frequency term will tend to get higher scores than lower frequency terms. Using low-frequency sensitive measures, there will be a bias towards lower frequency terms. Similar-frequency sensitive methods prefer a term t i that has approximately the same frequency as t.

In one experiment on determining the compositionality of collocations, high-frequency sensitive measures outperformed the other classes [START_REF] Weeds | Characterising measures of lexical distributional similarity[END_REF]. Determining the most appropriate similarity measure is inherently dependent on the similarity task, the sparsity of the statistics, the frequency distribution of the elements being compared, and the smoothing method applied to the matrix.

Embedding Applications

In this section, we survey some of the semantic applications of embeddings. The goal is to give an impression of the scope and the flexibility of embeddings for semantics. The following applications are grouped according to the type of embeddings involved: term embeddings or document embeddings. Note that this section is not exhaustive, and there are many more references and applications.

Document Vector Applications

Document embeddings are originally proposed to measure the semantic similarity of documents and queries in an information retrieval system, or between documents in a classification or clustering task. We mention, in the following, several applications of document similarity.

• Document Retrieval. The document vectors were first developed for document retrieval using VSM [START_REF] Salton | The SMART Retrieval System-Experiments in Automatic Document Processing[END_REF], and there is now a large body of literature on the VSM for document retrieval [START_REF] Manning | Introduction to Information Retrieval[END_REF]. The core idea is, given a query, rank the documents in order of decreasing cosine of the angles between the query vector and document vectors [START_REF] Salton | The SMART Retrieval System-Experiments in Automatic Document Processing[END_REF]. One variation on cross-lingual document retrieval, where a query in one language is used to retrieve documents in another language [START_REF] Littman | Cross-Language Information Retrieval, chap. Automatic Cross-Language Information Retrieval Using Latent Semantic Indexing[END_REF]]. • Document Clustering. Given a measure of document similarity, we can cluster a collection of documents into groups, such that the similarity tends to be high within a group, but low across groups [START_REF] Manning | Introduction to Information Retrieval[END_REF]. The clusters may be partitional [Pantel & Lin, 2002a], or may have a hierarchical structure [START_REF] Zhao | Evaluation of hierarchical clustering algorithms for document datasets[END_REF]. They may be nonoverlapping [START_REF] Croft | Clustering large files of documents using the single-link method[END_REF], or overlapping [START_REF] Zamir | Grouper: A dynamic clustering interface to web search results[END_REF]. Clustering algorithms also differ in how clusters are compared and abstracted. With single-link clustering, the similarity between two clusters is the maximum of the similarities between their members. Complete-link clustering uses the minimum of the similarities, and average-link clustering uses the average of the similarities [START_REF] Manning | Introduction to Information Retrieval[END_REF]]. • Document Classification. Given a training set of documents with class labels and a testing set of unlabeled documents, the task of document classification is to learn from the training set how to assign labels to the testing set [START_REF] Manning | Introduction to Information Retrieval[END_REF]. The labels may be the topics of the documents [START_REF] Sebastiani | Machine learning in automated text categorization[END_REF], the sentiment of the documents, e.g. positive versus negative product reviews [START_REF] Kim | Automatically assessing review helpfulness[END_REF], spam versus non-spam [START_REF] Blanzieri | A survey of learning-based techniques of email spam filtering[END_REF], or any other labels that might be inferred from the terms in the documents. When we classify documents, we are implying that the documents in a class are similar in some way. Thus document classification implies some notion of document similarity, and most machine learning approaches to document classification involve a document vectors [START_REF] Sebastiani | Machine learning in automated text categorization[END_REF]. A measure of document similarity, such as cosine, can be directly applied to document classification by using a nearest-neighbor algorithm. • Document Segmentation. The task of document segmentation is to partition a document into sections, where each section focuses on a different subtopic of the document. A document could be treated as a series of blocks, where a block is a sentence or a paragraph. The problem is to detect a topic shift from one block to the next by using the cosine between columns in a term-block frequency matrix to measure the semantic similarity between blocks [START_REF] Choi | Advances in domain independent linear text segmentation[END_REF]. A topic shift is signaled by a drop in the cosine between consecutive blocks. The block vectors are viewed as a small document vectors. • Question Answering. Given a simple question, Question Answering (QA) is to find a short answer to the question by searching in a large document collection. For instance, the following question <Who invented penicillin?>. Most algorithms for QA have four components, question analysis, document retrieval, passage retrieval, and answer extraction. Vector-based similarity measurements are often used for both document and passage retrieval [START_REF] Tellex | Quantitative evaluation of passage retrieval algorithms for question answering[END_REF]].

Term Vector Applications

Term embeddings are most suited for measuring the semantic similarity of terms. For example, we can measure the similarity of two terms by the cosine of the angle between their corresponding vectors. There are many applications for measuring term similarity.

• Term Similarity. Term similarity could be calculated using their vectors [START_REF] Deerwester | Indexing by latent semantic analysis[END_REF]. Term similarity has evaluated with 80 multiple-choice synonym questions from the Test of English as a Foreign Language (TOEFL), achieving human-level performance 64.4% [START_REF] Landauer | Latent semantic analysis: Theory, method and application[END_REF]. The documents used, for this test, had an average length of 151 words, which seems short for a document, but long for a context of a term. Other researchers soon switched to much shorter contexts, instead of documents. Lund and Burgess [START_REF] Lund | Producing high-dimensional semantic spaces from lexical co-occurrence[END_REF]] used a context window of ten terms. Rapp [START_REF] Rapp | Word Sense Discovery Based on Sense Descriptor Dissimilarity[END_REF] achieved 92.5% correct on the 80 TOEFL questions, using a fourterm context window (2 terms before and 2 terms after the target term, after removing stop words). The TOEFL results suggest that performance improves as the context window shrinks. It seems that the immediate context of a term is much more important than the distant context for determining the meaning of a term. • Term Clustering. Pereira et al. [START_REF] Pereira | Distributional clustering of english words[END_REF], have applied a hierarchical clustering of terms, using their vectors. In one experiment, the terms were nouns and the contexts were verbs for which the given nouns were direct objects. In another experiment, the terms were verbs and the contexts were nouns that were direct objects of the given verbs. Pantel and Lin [START_REF] Pantel | Document clustering with committees[END_REF], applied soft flat clustering to term vectors, where the context was based on a parsed text. These algorithms are able to discover different senses of polysemous terms, generating different clusters for each sense.

In effect, the different clusters correspond to the different concepts that underlie the terms.

• Term Classification. Term vectors are used to classify terms as positive (honest, intrepid) or negative (disturbing, superfluous) [START_REF] Turney | Measuring praise and criticism: Inference of semantic orientation from association[END_REF]. They used the General Inquirer1 (GI) lexicon to evaluate their algorithms. The GI lexicon includes 11,788 terms, labeled with 182 categories related to opinion, affect, and attitude. They have obtained an accuracy up to 65.27%, on a test set of 3596 terms. • Automatic Thesaurus Generation. WordNet is a popular tool for research in natural language processing, but creating and maintaining such lexical resources is labor intensive, so it is natural to wonder whether the process can be automated to some degree. This task can seen as an instance of term clustering (when the thesaurus is generated from scratch) or classification (when an existing thesaurus is automatically extended), but it is worthwhile to consider the task of automatic thesaurus generation separately from clustering and classification, due to the specific requirements of a thesaurus, such as the particular kind of similarity that is appropriate for a thesaurus. Several researchers have used word vectors specifically for the task of assisting or automating thesaurus generation [START_REF] Curran | Improvements in automatic thesaurus extraction[END_REF][START_REF] Grefenstette | Explorations in Automatic Thesaurus Discovery[END_REF][START_REF] Ruge | Foundations of Computer Science: Potential -Theory -Cognition, chap. Automatic detection of thesaurus relations for information retrieval applications[END_REF]]. • Context-sensitive spelling correction. People frequently confuse certain sets of terms, such as there, they're, and their. These confusions cannot be detected by a simple dictionary based spelling checker, where they require context-sensitive spelling correction. A term vector may be used to correct these kinds of spelling errors [START_REF] Jones | Contextual spelling correction using latent semantic analysis[END_REF]]. • Query Expansion. Queries submitted to search engines such as Google and Yahoo often do not directly match the terms in the most relevant documents. To alleviate this problem, the process of query expansion is used for generating new search terms that are consistent with the intent of the original query. Expansion terms for a given query could be selected using term vector representation, where most similar terms to query term are selected to expand the query.

Summary

Term embeddings are based on the idea that the meaning of terms is closely connected to the statistics of term usage, i.e. terms that appear in same contexts tend to be related or similar. Document embeddings are also based on a similar idea, where documents that use similar terms tend to be related, and this is the core of VSMs.

In this chapter, we have described the evolution of embeddings or vector representations of documents and terms. First, we presented term-document matrix which is based on term frequencies or weights within documents or contexts. Term-document matrix is sparse and often range from tens of thousands to millions of dimensions. Therefore, dimensionality reduction techniques are proposed to obtain more compact and meaningful embeddings, using mathematical techniques like SVD. However, dimensionality reduction suffers from the curse of dimensionality. As a result, Distributed neural embeddings are then invented to overcome the curse of dimensionality, where the embeddings are incrementally learned. We presented the usability of document and term embeddings in several applications. These applications are still applicable whatever the vector size or the way document and term vectors are obtained: term-document matrix, dimensionality reduction vectors, or distributed vectors.

Part III

CONTRIBUTIONS Chapter 5

A Query and Knowledge Dependent Document Representation

Introduction

Term mismatch is defined for a query term, as the probability that the term does not appear in a document given that this document is relevant (Equation 1.3). Term mismatch probability definition is document and query dependent.

In this chapter, we present our first contribution (Contribution 1), where we propose to modify a document representation d, according to a user query in order to reduce term mismatch probability. More precisely, we propose to consider mismatched query terms, i.e. query terms that do not appear in a document, in order to modify a document representation. If a query term does not belong to the document, it is not necessarily that the document does not talk about this query term. A mismatched query term could be implicitly mentioned in the document. For instance, a document talks about "Information Retrieval" is implicitly related to a query about "Text Search". In other words, the presence of "Information Retrieval" in the document means implicitly that the document is also about "Text Search". Terms and their relations are normally defined in a knowledge resource. Several types of relationships could be identified between terms such as: synonymy, hyponymy-hypernymy (specific-general), meronymyholonymy (part-whole), co-occurrence, mutual information, etc.

We propose to use term relationships, defined in a knowledge resource, in order to modify a document representation. A document representation is modified in order to consider mismatched query terms. We modify a document representation when we have at least a document term that shows a link to a mismatched query term [Almasri et al., 2014b,c]. When the document representation is modified, the term mismatch probability is reduced, and the modified document representation contributes to obtain a mismatch aware retrieval model. Language models for information retrieval have been proven as a very effective method for text retrieval [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF]. Actually, we are concerned with language models for information retrieval. Therefore, we propose to modify a document representation according to a user query. We then use the modified document in the language modeling framework in order to obtain a mismatch aware language modeling framework that reduces the effect of term mismatch problem on the retrieval performance. This chapter is organized as follows. Section 5.2, presents how the modified document is built. The integration of the modified document, into language models, is presented in section 5.3. Experimental results are in section 5.4. Section 5.5, discusses document and knowledge dependent query. Section 5.6, concludes this chapter.

Query and Knowledge Dependent Document Representation

The main goal of the modified document representation is to reduce term mismatch probability by considering mismatched query terms. A document representation is modified according to a user query q, and a knowledge resource K. The document representation reacts differently to different queries, which is different to prior research in document enrichment approaches.

Prior research in document enrichment, adopted a static approach for modifying a document representation which introduces major modifications on a document representation. Actually, static document modification approaches change significantly term distribution within documents, and also change the distribution of all documents in the document space, which may affect negatively the system performance. For these reasons, document enrichment approaches were mainly adopted for short documents, where the document content is sparse and insufficient to effectively apply standard retrieval models. However, in our proposal, we aim to make relevant documents closer to a user query during the matching process by applying minimal modifications on the term distribution within a document representation, which maintains the effectiveness of the retrieval model.

Modified Document Representation

We formally modify a document representation, to deal with an implicit mention of a mismatched query term, by taking into account term relationships defined in a knowledge resource. For each mismatched query term, if there is a document term related to a mismatched term according to a knowledge resource, a document representation is modified to consider this mismatched query term.

Figure 5.1, illustrates how we modify a document representation d, according to a knowledge resource K, and a user query q, in order to consider a mismatched query term t. The mismatched query term t ∈ q and t / ∈ d, is related to the document term t , according to a knowledge resource K. In other words, the mismatched query term t is implicitly mentioned in the document as its related term t belongs to the document. Therefore, we expand the document representation d, by the mismatched query term t, in order to obtain the modified document representation d q .

To put it formally, a modified document representation, denoted by d q , is obtained as follows:

d q = d ∪ misAware(q, K, d) (5.1)
where misAware(q, K, d) is a transformation that considers mismatched query terms, according to the query q, the knowledge resource K, and the document representation d. The transformation verifies implicit mentions of mismatched query terms in the document, and by using the knowledge resource. The transformation returns a set of terms that is added to a document representation d, to form the modified document representation d q .

The knowledge resource K, provides relationships between terms. A similarity function, denoted Sim(t, t ), can be defined between terms for measuring the strength of a relationship between two terms t and t within the knowledge resource K. Actually, Sim(t, t ) = 0, means that the two terms t and t are not related. Otherwise, the two terms are related.

For each mismatched query term t ∈ q and t / ∈ d, we check if the term is implicitly mentioned in d. In other words, if there is any document term t ∈ d, related to t according to the knowledge resource. To this end, two different cases are identified:

• A mismatched query term t ∈ q and t / ∈ d, is related to, at least, one document term. In this case, t belongs to the transformation that is used to modify a document representation.

• A mismatched query term t ∈ q and t / ∈ d, is related to any of document terms. In this case, t does not belong to the transformation.

Based on these two cases, we define the transformation misAware, which expands a document representation d, in order to obtain the modified document representation d q . misAware(q, K, d)

= {t|t ∈ q ∧ t / ∈ d, ∃t ∈ d, Sim(t, t ) = 0} (5.2)
We note that, if t is not related to any document term, then we do not have a corresponding t , and the mismatched query term t ∈ q and t / ∈ d, is not used to expand a document representation.

By returning to the Equation 5.1, and by replacing the transformation misAware with its value, we obtain the modified document as follows:

d q = d ∪ {t|t ∈ q ∧ t / ∈ d, ∃t ∈ d, Sim(t, t ) = 0} (5.3)
We see later in section 5.3.1 and section 5.3.2, how the modified document representation d q replaces the document representation d, within language models. Hence, a language model for a query q, will be estimated using to the modified document d q instead of d. We believe that the modified language model is aware of mismatched query terms and is more effective than ordinary language model.

Pseudo Frequency of Mismatched Query Terms

After modifying the document in order to consider mismatched query terms. We should define the frequency of these mismatched query terms in the modified document. We identify several cases, concerning the pseudo frequency of a mismatched query term t ∈ q and t / ∈ d, in the modified document d q , among them:

• First, the pseudo frequency of t is based on its most similar document term, denoted (MDM-MAX). We define t * ∈ d, as the most similar document term of t, as follows:

t * = argmax t ∈d Sim(t, t ) (5.4)
Now, we define the frequency of t in the modified document d q , as following:

#(t; d q ) = #(t * ; d).Sim(t, t * ) (5.5)
• Second, the pseudo frequency of t is based on all its related document terms, denoted (MDM-SUM). We define the frequency of t, as the summation of frequencies of all its related document terms, as follows:

#(t; d q ) = t ∈d #(t ; d).Sim(t, t ) (5.6)
• Third, the pseudo frequency of t is based on all its related document terms, denoted (MDM-AVG). We define the frequency of t, as the average of frequencies of all its related document terms, as follows:

#(t; d q ) = 1 n t ∈d #(t ; d).Sim(t, t ) (5.7)
where n is the number of related document terms to t.

Other aggregation functions, instead of summation, average, and maximum, could be used for defining the pseudo frequency of a mismatched query term t ∈ q and t / ∈ d, in the modified document d q . The pseudo frequency of the term t is then included into the modified document d q . Then, we calculate the length of the modified document |d q |, as follows:

|d q | = |d| + t∈q∧t / ∈d #(t; d q )
(5.8) 

Mismatch Aware Language Models

In this section, we present how we use the modified document within language models in order to obtain a mismatch aware retrieval model based on language models.

Mismatch Aware Dirichlet Smoothing

Dirichlet smoothing [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF], is a smoothing method that adds an extra probability mass P (t|θ C ), to deal with unseen terms, where θ C is the collection model. The main idea of our model is to integrate the modified document representation d q , into language models. The modified document representation which deals with mismatch query terms in order to reduce the mismatch probability. The reduction of mismatch probability helps to better retrieve relevant documents to a given query.

As we have seen in Dirichlet smoothing formula (Equation 2.9), there is two parts: the document likelihood part and the collection smoothing part. The modified document representation is integrated in the first part. Therefore, the document likelihood part, in the modified Dirichlet smoothing, is estimated using the modified document d q instead of d. We consider that if t does not occur in the initial document d, it occurs in the modified document d q , which is the result of expanding d according to a query q and a knowledge resource K. Now, the document likelihood of a term t is estimated according to the modified document representation d q . As a result, the modified Dirichlet smoothing for a term t, P µ (t|θ dq ) is written as follows:

P µ (t|θ dq ) = |d q | |d q | + µ P ml (t|θ dq ) + µ |d q | + µ P (t|θ C ) (5.9)

We note that in the special case where all the query terms occur in the document, we have |d q | = |d|, and that leads to two equal probabilities P µ (t|θ d ) = P µ (t|θ dq ).

Mismatch Aware Jelinek-Mercer Smoothing

Jelinek-Mercer smoothing [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF], is another smoothing method that adds an extra probability mass P (t|θ C ), to deal with unseen terms. Similarly to the previous discussion on the modified Dirichlet smoothing, we obtain the modified Jelinek-Mercer smoothing by estimating the document likelihood part using the modified document d q , instead of the document d. Therefore, the modified Jelinek-Mercer smoothing for a term t is written as follows:

P λ (t|θ dq ) = (1 -λ)P ml (t|θ dq ) + λP (t|θ C ) (5.10)
The estimation of P λ (t|θ dq ), using the modified document, provides a better ranking for the documents which do not explicitly contain all query terms, but they have related terms to mismatched query terms.

Experiments

We have two goals in our experiments. The first goal is to show the potential improvement on retrieval performance using the modified document. Second, comparing the retrieval perfor-mance of our mismatch aware language models with some high-performance state-of-the-art information retrieval models, which integrate term relationships in order to solve term mismatch problem. Concerning the effect of the modified document on reducing term mismatch probability, we see it later in Chapter 8.

The section is organized as follows: section 5.4.1, is dedicated to describe the corpora, on which we apply our model, and their statistics. Section 5.4.2, presents documents and queries representation. Section 5.4.3, talks about the indexing term relationships that we consider to modify the document and how the semantic similarity is computed. Section 5.4.4, reviews the metrics that we use to compare our model with state-of-the-art models. In section 5.4.5, we present baseline models that are used for comparison purposes. Section 5.4.6, shows the retrieval performance using the modified document, and compare it with other state-of-the-art models. Section 5.4.7, discusses the computational complexity of the modified document.

Test Corpora

ImageCLEF is a part of CLEF1 (Cross-Language Evaluation Forum), which is a yearly campaign for evaluation of multilingual information retrieval. For example, ImageCLEF2012 contains four main tracks: 1) Medical Image Classification and Retrieval, 2) Photo Annotation and Retrieval, 3) Plant Identification, and 4) Robot Vision. Medical Image Classification and Retrieval track contains three tasks: a) modality classification, b) ad-hoc image-based retrieval which is an image retrieval task using textual, image or mixed queries, and c) case-based retrieval: in this task the documents are journal articles extracted from PubMed2 and the queries are case descriptions. In this study, we only consider ad-hoc image-based and case-based corpora. In addition, we only use the textual part of corpora.

Five ImageCLEF corpora are used to apply our model.

• Ad-hoc image-based retrieval: Image2010, Image2011, Image2012, which contain short documents and queries. • Case-based retrieval: Case2011 and Case2012, which contain long documents and queries. Table 5.1, shows some statistics about our test corpora, avdl and avql are the average length of documents and queries, respectively. Statistics are calculated in both words and UMLS concepts, where we use UMLS concepts for representing documents and queries. 

Document and Query Representation

Semantic indexing is the process of transforming the content of documents and queries from its original form (e.g. text), to a predefined meaning-based representation using terminological concepts (e.g. graph of UMLS concepts or WordNet synsets). A domain knowledge defines concepts, their relations, and other information about them. In this experiments, documents and queries are represented by means of UMLS1 concepts. Therefore, we need a tool to map text to UMLS concepts. MetaMap is a tool for annotating text by UMLS concepts [START_REF] Aronson | Metamap: Mapping text to the umls meta-thesaurus[END_REF]. MetaMap proposes some concepts for a certain piece of text. MetaMap provides the basic annotation functionality, and maps medical text to UMLS concepts. Figure 5.4, shows the output of MetaMap when it is applied to the phrase "Pericardial Effusional", where we can see the candidate concepts of the whole phrase and its sub-phrases. In our experiments, we should mention that we maintain all candidate concepts and not only the mapping ones. Documents and queries are annotated using MetaMap. Using concepts allows us to investigate the semantic relations between concepts, in order to build our modified document representation. 

Term Relationships

We only consider, in our experiments, the hierarchical relationships or specific-generic relationships between indexing terms (UMLS concepts in our case). For instance, the terms "B-Cell" and "T-Cell" are more specific than the term "Lymphocyte". Therefore, when a user query contains the term "Lymphocyte", then, a document talking about "B-Cell" or "T-Cell" could be relevant to this query. We make the assumption that a term t is semantically related to a term t , iff t is a descendant of t in the term hierarchy within a knowledge resource K.

Assume a query term t, and t refers to a document term, from the vocabulary V . We define the semantic similarity function Sim(t, t ) as follows: The function Sim denotes the strength of the similarity between the two terms (the larger the value, the higher the similarity between these two terms). We propose to use a lightweight way to calculate the semantic similarity between terms. Our semantic similarity relies on a term hierarchy in a knowledge resource. The similarity between two terms t and t is the inverse of their smoothed distance, denoted distance(t, t ), between these two terms. We use the path length or the number of links in the hierarchy between two terms as a distance [START_REF] Widdows | Geometry and Meaning[END_REF].

Sim : V × V → [0, 1] : ∀t, t ∈ V, 0 ≤ Sim(t, t ) ≤ 1 (5.
The similarity score is inversely proportional to the number of nodes along the shortest path between the two terms. The shortest possible path occurs when the two terms are directly linked.

Sim(t, t ) = 1 1 + distance(t, t )
(5.12) 5.4.4. Metrics 73

Metrics

In order to compare the retrieval performance of our model and other state-of-the-art models, we use the Mean Average Precision (MAP), which is both recall and precision metric.

The statistical significance tests are used to verify if a system A is statistically better than another system B, and that it is not the pure coincidence that makes A better than B. As statistical significance test, we use Fisher's Randomization test at the p < 0.05 [START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF].

Baselines and Comparison Methods

The baseline and comparison methods for our experiments are the following:

• Language Models. From the language models family [START_REF] Ponte | A language modeling approach to information retrieval[END_REF] between terms into language models in order to reduce the gap between documents and queries. The idea is based on information theory where a translation model estimates the probability of translating a document into a user query according to the probability distribution P (t|t ), which gives the probability of translating a term t into a term t. Statistical translation models are based on language models. Therefore, statistical translation models could be built on any smoothing method of language models. In our experiments, we consider statistical translation models when they are combined with two smoothing methods: Dirichlet (Equation 5.15), and Jelinek-Mercer (Equation 5.16).

RSV T M DIR (d, q) = |q| × ln µ |d| + µ + t∈q #(t; q) × ln( |d| |d| + µ [ t ∈d P ml (t |θ d )P (t|t )] + µ |d| + µ P (t|θ C ))
(5.15) (5.16) 

RSV T M JM (d, q) = |q|×ln(λ)+ t∈q #(t; q)×ln((1-λ)[

Results and Performance Comparison

We now present the effect of modified document on the retrieval performance. As we mentioned previously, we have three variants of our modified document upon the way we calculate the pseudo frequency of a mismatched query term t ∈ q and t / ∈ d.

• First, the pseudo frequency of a mismatched query term is calculated using the frequency of the most similar term inside the document (Equation 5.5), denoted (MDM-MAX). • Second, the pseudo frequency of a mismatched query term is calculated by summing the frequencies of all related document terms to a mismatched term (Equation 5.6), denoted (MDM-SUM). • Third, the pseudo frequency of a mismatched query term is calculated by averaging the frequencies of all related document terms to a mismatched term, (Equation 5.7), denoted (MDM-AVG).

Our model is based on modifying document, and then we use the modified document in order to estimate language models. We compare between our model with language models and statistical translation models using two smoothing methods: Dirichlet and Jelinek-Mercer.

We only consider hierarchical relationships between concepts to modify the document. As a result, the performance of modified document is related to the number of general concepts within queries. We define a general concept as an internal node in the concept hierarchy, or a node which has at least one child. Table 5.2, shows the number of general concepts in all queries for our five test corpora.

Table 5.3, shows the results of our models MDM-MAX, MDM-SUM, and MDM-AVG, comparing with language models (LM), and statistical translation models (TM).

• First, MDM-MAX achieves a consistent performance improvement over ordinary language model for our five target corpora, which confirms our belief that estimating language model using the modified document is more effective than using the original document. Then, the improvement occurs in the studied corpora is independent to the length of documents and queries in these corpora. It seems to be similar for both types of collection: 1) short documents and queries, 2) long documents and queries. Finally, the improvement in the two collections: Image2010 and Case2012 is not statistically significant because:

-Image2010. General concepts present in a limited number of queries and not well distributed overall queries within Image2010. -Case2012. The rate of general concepts is not high enough comparing with other corpora to significantly affect the performance improvement.

In nutshell, the improvement is related to the rate of general concepts and their distribution within queries. We now check how MDM-MAX, our first variant, performs comparing with the statistical translation models. Table 5.3, shows that (MDM-MAX) is, in most cases, better than statistical translation models (TM). Significant tests using Fisher's Randomization [START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF], show that (MDM-MAX) is statistically better than ordinary language models in five cases, whereas statistical translation models are statistically better in three cases.

• Second, MDM-SUM is statically better than ordinary language model only in one case.

However, MDM-SUM seems to be equivalent in almost all cases with statistical translation model (TM). Actually, TM considers all related term to any query term during the matching. However, MDM-SUM considers all related terms to a mismatched query term. • Third, MDM-AVG seems to be equivalent to MDM-SUM. We only see some marginal differences in three cases.

Modified Model Computational Complexity

The time complexity of an algorithm for computing the ranking values using language models can be defined:

O(|q| × N ) (5.17)
where |q| is the query length, and N is the number of documents in the collection1 . Our modified document reduces the mismatch problem by dealing with mismatch query terms. Therefore, for each mismatched query term, we scan all document terms in order to verify if there is any document term related to the mismatched term. The previous scanning step makes the building of our modified document a costly step. As a result, the time complexity of the above algorithm for computing the ranking values using the modified document is defined as follows:

O(|q| × N × |C|) (5.18)
where |C| is the collection length, i.e number of terms in the collection However, we can instead avoid the above shortcoming during the indexing phase, where we inject term relationships into the inverted index. For instance, in our case, the presence of a given concept inside a document, means that each ancestor of this concept in the concept hierarchy is implicitly mentioned in the document. For example, in the medical domain, the presence of "B-Cell" in a document, means that "Lymphocyte" is implicitly mentioned in this document, and as a result, during the indexing phase we inject "Lymphocyte" in the document index. By doing this, we avoid scanning all document terms for each mismatched query term. Then, the time complexity of the algorithm for computing the ranking values using the modified document, after injecting term relationships into the inverted index, can be defined as follows:

O(|q| 2 × N ) (5.19)
We see that the complexity is almost similar to the original language models, where the query length |q|, is ignored comparing with the length of the collection |C|. However, the size of the inverted index is significantly increased. Table 5.4, shows the difference between the size of the classical index and the size of the modified document index. We note the the number of items in the inverted index is at least duplicated by only injecting hierarchical relationships between concepts.

Document and Knowledge Dependent Query

We discuss, in this section, why we expand a document representation according to a user query, and why we do not expand a user query according to a document. Our discussion is based on language models for information retrieval. Given a query q, and a document d. We discuss two cases:

• Let t ∈ q ∧ t / ∈ d : ∃t ∈ d ∧ Sim(t, t ) > 0.
We define the modified query q d , as follows:

q d = q ∪ {t } (5.20) • Let t ∈ q ∧ t / ∈ d : ∃t ∈ d ∧ Sim(t, t ) > 0.
In this case, we do not modify a user query.

The Retrieval Status Value RSV (d, q), between a document and a query, is defined using language models as follows:

RSV (d, q) = t∈q #(t; q).logP (t|θ d )

(5.21)

The Retrieval Status Value using the modified query q d :

RSV (d, q d ) = t∈q d #(t; q d ).logP (t|θ d ) = t∈q #(t; q).logP (t|θ d ) + logP (t |d) = RSV (d, q) + logP (t |d) (5.22)
where logP (t |d) ≤ 0, and as a result, RSV (d, q d ) ≤ RSV (d, q) which means that a document contains a related term to a mismatched query term will be ranked after a document does not contain any related term to a mismatched query term. In other words, the modified query behaves contradictory to our hypothesis.

Summary

We present, in this chapter, our first contribution which modifies a document representation according to a user query and some knowledge about term relationships. The main goal of the modified document is to deal with mismatched query terms. A document representation is expanded by a mismatched query term if there is, at least, one document term that show a relation to this mismatched term. The modified document is then integrated into language models to obtain mismatch aware language models. We consider two smoothing methods of language models: Dirichlet and Jelinek-Mercer. We present three variants for calculating the pseudo frequency of a mismatched query term within the modified document:

• Considering the frequency of the most related document term MDM-MAX.

• Considering the sum of frequencies of all related document terms MDM-SUM.

• Considering the average of frequencies of all related document terms MDM-AVG.

In our experiments, we only consider hierarchical relations between terms in order to build the modified document representation. Our experimental results, considering most related document term (MDM-MAX), indicate that our mismatch aware language models are statistically better than ordinary language models, and in most cases better than statistical translation models in Mean Average Precision. This improvement is independent of the length of documents and queries within test corpora, but it is related to the rate of general terms and their distribution inside queries. However, statistical translation models (TM), is better in almost all cases than considering all related document terms either by summing (MDM-SUM), or by averaging frequencies (MDM-AVG). In addition, MDM-SUM and MDM-AVG seem to be equivalent in all cases with only some marginal differences between them.

An important issue which makes the difference between our three variants is the pseudo frequency of a mismatched query term. Our three variants have the same effect on reducing Chapter 6

Exploiting A Collaborative Knowledge Resource Structure for Semantic Query Expansion

Introduction

We present, in this chapter, our second contribution (Contribution 2), where we propose to modify a user query in order to reduce term mismatch probability. More precisely, we propose a semantic query expansion approach based on a collaborative knowledge resource for selecting expansion terms. Prior research, for query expansion using collaborative resources, focused on the content of collaborative resources. We focus instead on the collaborative resource structure. Collaborative resource content is continually created and updated via contributors. In addition to quantity (creating a new content), contributors work on improving quality as well (updating already existing content). Contents, within collaborative knowledge resources, are also linked to each other. Moreover, collaborative knowledge resources follow strict rules for maintaining the quality of their content and structure.

Cultural heritage is one of the most valuable resources that store the accumulated knowledge of humankind. Nowadays, many organizations, such as museums and libraries, own huge collections that provide historical cultural data. Seekers querying these information, normally use short and precise queries that include named entities, e.g. persons, places, organizations, events, etc.

In this chapter, our query expansion approach is concerned with short and precise queries. Short queries have no sufficient information to express their semantic in a non ambiguous way, and frequently mismatch a majority of their relevant documents. For example, in the cultural heritage domain, the query "Last Supper" has a precise meaning which is the painting by "Leonardo da Vinci". However, a classical information retrieval model will retrieve documents containing the two words or one of them without giving any attention to the particular meaning of this query. The precise meaning of this query is difficult to infer only from the query. However, adding some semantically related terms1 to this query, like "Leonardo da Vinci" 2 , "Santa Maria delle Grazie" 1 , "Jesus", etc., clarifies the meaning of this query and enhances the ability of an information retrieval model to retrieve relevant documents.

Another example from the same domain, the query "Silent Film" which looks for documents on the history of silent films, their actors, and their directors. A document talking about "Charlie Chaplin", for instance, can be a relevant document to this query. However, a classical information retrieval model is incapable to retrieve this document without an additional information about the link between: "Silent Film" and "Charlie Chaplin". This may not be a big problem for queries with a large and diverse set of relevant documents, but would largely increase the chance of search failure when the number of relevant documents is limited.

Automatic query expansion approaches are proposed to address term mismatch problem. Automatic query expansion aims to find terms that could clarify a user query. Automatic query expansion leverages on several data sources and employs different methods for finding expansion terms [START_REF] Carpineto | A survey of automatic query expansion in information retrieval[END_REF]]. However, expansion term selection is challenging and requires a framework capable of adding interesting terms to a user query. The key point in any query expansion approach is to find expansion terms that can get a steady retrieval performance.

As we have seen in chapter 3, automatic query expansion is broken down into three steps: expansion terms acquisition, expansion terms selection and ranking, and finally query formulation and re-weighting. In our semantic query expansion approach, expansion terms are acquired from a collaborative knowledge resource. Therefore, we first present our representation of a collaborative knowledge resource. Then, based on our collaborative knowledge resource representation, we concretely define the criteria for selecting and ranking expansion terms. After that, we present how expansion terms are integrated into the original query to form the expanded query, and how we evaluate the expanded query The rest of chapter is organized as follows: section 6.2, presents our collaborative knowledge resource representation. Section 6.3, details our semantic query expansion approach. Section 6.4, shows how expanded queries are evaluated using language models. Our experiments and empirical results are presented in section 6.5. Finally, section 6.6 concludes the chapter.

Collaborative Knowledge Resource Representation

Our expansion term source is defined over a collaborative knowledge resource. Therefore, we first present our representation of a collaborative knowledge resource. Then, we move to detail the three steps of our semantic query expansion approach.

Collaborative Knowledge Resource as a Graph

We represent a collaborative knowledge resource as a graph G(A, L) of nodes A, connected by links L ⊆ A × A. The content of a node a ∈ A, could be an article like in Wikipedia, a concept definition like in terminological resources, a class like in ontologies, etc. Each node has a label or a title title(a), that describes the node content. Furthermore, each node is linked to other nodes. Relations between nodes L, are defined on A × A, where (a 1 , a 2 ) means that a node a 1 is linked to a node a 2 . We define the function linked(a), which returns the list of linked nodes to a, as follows:

linked : A → 2 A (6.1)
Based on the link structure of the collaborative resource, we assume that the greater the number of shared links between two nodes, the higher the similarity between them. Therefore, we propose to measure the similarity between two nodes, based on the collaborative resource structure, as the proportion of the number of shared links between them. Put it formally:

SIM (a1, a2) = |linked(a 1 ) ∩ linked(a 2 )| |linked(a 1 ) ∪ linked(a 2 )| (6.2)
which simply means that the similarity, between two nodes a 1 and a 2 , is directly proportional to the number of shared linked nodes between them linked(a 1 ) ∩ linked(a 2 ).

Term Polysemy

Two different nodes, in a collaborative resource, may share the same title, where each node defines one single special sense of this title. For example, in Wikipedia1 , the "Last Supper" may correspond many nodes, among them: "Last Supper" as the final meal according to Christian belief, and "Last Supper" as the painting of "Leonardo da Vinci".

We define a term t as a node title. Then, we define S(t) as the set of senses of a term t, or the set of nodes entitled by t:

S(t)) = {a ∈ A|title(a) = t} (6.3)
Each node corresponds a sense of the term t, as each term has many senses. Hence, we define the notion of popularity of a sense over a collaborative resource, and consequently of a node a. The popularity of a given sense, is defined as the probability to choose a particular sense a, given the term t, denoted as P (a|t).

Semantic Query Expansion Based on Collaborative Knowledge Resource Structure

Automatic query expansion follows three steps: expansion terms acquisition, expansion terms selection and ranking, and finally query formulation and re-weighting. In our semantic query expansion approach, expansion terms source is defined over a collaborative knowledge resource. Based on our collaborative resource representation, we define our expansion terms source and the criteria for selecting and ranking expansion terms from this resource. After that, we explain how expansion terms are integrated into the original query to form the expanded query.

Expansion Terms Acquisition

In our expansion approach, we are only interested in node titles, defined in a collaborative knowledge resource. More precisely, titles are the source of our expansion terms. We detail, on the following section how expansion terms are selected and ranked from collaborative resource node titles. Title precisely identifies the node, and it is short, natural, and recognizable. We believe that node titles provide a rich resource to obtain interesting expansion terms.

Expansion Terms Selection and Ranking

In this section, we explain how we use the collaborative resource graph in order to find a set of semantically related terms to a given term. In other words, we define our expansion terms selection and ranking mechanism. As we have previously mentioned, a term is simply a node title.

In order to obtain the k-most similar terms for a given term t using a collaborative resource graph, the main criteria for the number of selected terms for each sense a ∈ S(t) is its probability P (a|t). Term senses contributes, in expansion term selection, according to their probabilities.

Similar terms for each sense a ∈ S(t), are selected from node titles of linked(a). Formally, we define the function topSimT erm(t, k), that returns the k-most similar terms to a term t:

topSimT erm : T × N → 2 T ×R topSimT erm(t, k) = a∈S(t) topSimT itle(a, P (a|t) × k ) (6.4)
where the function topSimT itle returns the most similar node titles to a.

For example, assume a term t which has three senses: S(t) = {a 1 , a 2 , a 3 }. To obtain the k-most similar terms to t, we select k 1 most similar node titles to a 1 , k 2 most similar node titles to a 2 , and k 3 most similar node titles to a 3 , where:

k 1 = P (a 1 |t) × k k 2 = P (a 2 |t) × k k 3 = P (a 3 |t) × k
Now, the function topSimT itle that returns the most similar node titles to a node, is defined as follows:

topSimT itle : A × N → 2 T ×R topSimT itle(a, k) = {(title(x), sim)|(x, sim) ∈ topSim(a, k)} (6.5)
where the function topSim(a, k), return the k-most similar node to a, from linked(a), using (Equation 6.2).

To sum up, we consider node titles as expansion term source, where we believe that node titles are a rich resource of expansion terms. We explain, in this section, the process to obtain a set of semantically related terms to a given term. We move, in the next section, to the query formulation and re-weighting step. Therefore, we identify terms or titles in each query, and then we use the previous process in order to find related terms to each query term in order to expand it.

Query Formulation and Re-weighting

We now present our method for aggregating and integrating related terms to a given query over a collaborative knowledge resource graph. The first step is to identify terms or titles within a given query. The second step, is to expand these query terms using their most similar terms.

Query Annotation

In the context of text retrieval, a user formulates her need by a query q, which is represented as a sequence of words <w 1 w 2 ...w |q| >. For example, the sequence <Last Supper> is composed of two words, and it is different from the sequence <Supper Last>.

Based on this representation, we define the annotation of a sequence of words q into a collaborative knowledge resource. Given a query q =<w 1 , w 2 , ...., w |q| >:

• We denote by w x→y , a consecutive sub sequence of words of q, where 1 ≤ x ≤ y ≤ |q|.

• We define the function M (q), that annotates a query q by a set of collaborative resource titles or terms as follows:

M (q) = {w x→y |∃a ∈ A : title(a) = w x→y ∧ w x →y > w x→y : title(a) = w x →y } (6.6)
The function M , annotates a query q by a set of node titles. For instance, in Wikipedia, the query q = "Silent Film" is an example of a query that corresponds one node title. However, the query q = "Hiroshima and Nagasaki" contains two node titles. First title is "Hiroshima", and second title is "Nagasaki". Furthermore, the function M looks all the time for the longest match, i.e. the longest sub sequence that corresponds a node title.

Building Expanded Query

Given a query q that contains n terms. Each term is denoted as q i . q i = w x→y , ∀w x→y ∈ M (q) (6.7)

We expand each query term q i , by k expansion terms. For each query q, we collect a weighted set of n × k related terms. Then, we add them to q, in order to obtain the expanded query q , as follows: q = q ∪ q exp (6.8)

where q exp has n × k terms.

The expanded query q is constructed using the following steps. Given a query q:

• The expansion terms q exp , are the union of the k-most similar terms for each q i ∈ M (q). The k-most similar terms for each q i is obtained using topSimT erm(q i , k), where each term q i contributes equally by k terms in the expansion of q. Thus, we define the expanded query q , as follows: q = q ∪ q exp q exp = n i=1 {t|(t, sim) ∈ topSimT erm(q i , k)} (6.9) 6.4. Expanded Query Retrieval

• Terms are weighted in the expanded query q , as follows:

weight(t, q ) = 1 if t ∈ q α × sim if t ∈ q exp (6.10)
where (t, sim) ∈ topSimT erm(q i , k) if t ∈ q exp , and α ∈ [0, 1] is a tuning parameter determines the importance of expansion terms.

Expanded Query Retrieval

As we mentioned in the previous section, we choose the most similar nodes for each query term q i , and we use their titles as expansion terms to expand q. Now, we move from term space into unigram or word space as we use unigram language models in order to evaluate expanded queries. We therefore lexicalize these titles in order to get their words. Every word, within a term, takes the same weight of this term. For example, assume the query q ="Last Supper", and "Leonardo da Vinci" is an expansion term for this query, with a semantic similarity equals 0.8. We obtain the following word weights in the expanded query q : {weight("Last", q ) = 1, weight("Supper", q ) = 1, weight("Leonardo", q ) = α × 0.8, weight("V inci", q ) = α × 0.8}.

Our retrieval model runs queries which contain the original terms as well as the expansion terms. We use language models to evaluate expanded queries.

Language models in information retrieval have been proven as very effective models for text retrieval [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF]. The basic idea of language model is to assume that a query q, which is generated by a probabilistic model based on a document d. In our case, we evaluate the expanded query q instead of the original query q using language models. Jelinek-Mercer and Dirichlet are two smoothing methods of language models [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF]. Therefore, we use the expanded query q instead of original query q, inside these two smoothing methods as follows:

• Jelinek-Mercer smoothing is defined by the following formula:

RSV (q , d) = |q | × ln(λ) + w∈d∩q weight(w, q ) × ln((1 -λ)P ml (w|θ d ) + λP (w|θ C ))
• Dirichlet smoothing is defined by the following formula:

RSV (q , d) = |q | × ln( µ |d|+µ ) + w∈d∩q weight(w, q ) × ln( |d| |d|+µ P ml (w|θ d ) + µ |d|+µ P (w|θ C ))
where weight(w, q ) is the weight of a word w in the expanded query q (Equation 6.10).

As we see, the weight of a word w depends on the weight of the term t that w belongs to. If w belongs to an original query term then the weight equals to 1, and we return to the normal language model. However, if w belongs to an expansion term then the weight depends on the semantic similarity of the expansion term containing this word and the original query.

Experiments

We have two goals in our experiments. First goal is to show the potential improvement on retrieval performance using the expanded queries. Second goal is to compare the retrieval performance of our expansion approach with some high-performance state-of-the-art query expansion methods. Concerning the effect of the expansion terms on reducing term mismatch probability, we see it later in Chapter 8.

This section is organized as follows: section 6.5.1, is dedicated to describe the corpora, on which we apply our approach, and their statistics. Section 6.5.2, presents how documents and queries are represented. Section 6.5.3, presents the collaborative knowledge resource which we use for our semantic query expansion approach. Section 6.5.4, defines semantic relations between terms. Section 6.5.5, reviews the metrics that we use to compare our model with stateof-the-art models. In section 6.5.6, we present the baseline models that are used for comparison purposes. Section 6.5.7, lists our query expansion approach variants. Section 6.5.8, presents the retrieval performance using expanded queries, and compare it with other state-of-the-art models.

Test Corpora

Experiments are conducted on two English cultural heritage corpora1 : CHIC2012 and CHIC2013. Each collection contains 1,107,176 short documents2 , and 25 topics about named entities. We use only topic titles in our evaluation. These two corpora correspond semantic query enrichment task . This task differs from ad-hoc retrieval task which contains 50 queries in each collection. Table 6.1, shows some statistics about CHIC2012 and CHIC2013 corpora. avdl and avql, are the average length of documents and queries by means of words. Table 6.1: CHIC2012 and CHIC2013 English corpora statistics.

Corpus

#d #q avdl avql CHIC2012 1,107,176 25 54.1 1.96 CHIC2013 1,107,176 25 54.1 2

Document and Query Representations

Words are classically extracted from text after removing stop words and stemming. In our experiments, we eliminate stop words and stem the remaining words using Porter algorithm [START_REF] Porter | Readings in information retrieval[END_REF], to finally get the list of words that represents a document or a query. As a result, documents and queries are represented by means of words. We consider only the content of three meta-data of cultural heritage documents: identifier, title, and description. Figures 6.1 and 6.2, show an example of a query and a document from the CHIC2012, respectively. 

Wikipedia as a Collaborative Knowledge Resource

Wikipedia is a collaborative knowledge resource that represents a very large, high quality, and valuable knowledge resource in natural language. Moreover, Wikipedia is also a hypertext in which each Wikipedia article can refer to other Wikipedia articles using hyperlinks. We consider only internal links, i.e. links that target other Wikipedia articles.

Wikipedia as a Graph

A collaborative knowledge resource is represented as a graph in our query expansion approach. Therefore, Wikipedia is also represented as a graph. Each node, in Wikipedia graph, corresponds a Wikipedia article. Each article is linked to other articles using hyperlinks. We identify two types of links between Wikipedia articles: Incoming Links (I), and Outgoing Links (O).

I, O :

A → 2 A I(a) = {x ∈ A|(x, a) ∈ L} O(a) = {x ∈ A|(a, x) ∈ L}
where I(a) is the set of articles that point to a (Incoming Links) , and O(a) is the set of articles that a points to (Outgoing Links). The function linked(a), defined in a collaborative knowledge resource, can be defined over Wikipedia as: I(a), O(a), I(a) ∪ O(a), etc.

We define the similarity function (Equation 6.2), over Wikipedia as follows, two articles a 1 , a 2 ∈ A, are semantically related if they share articles that point to them, and if they share articles that a 1 and a 2 point to. Put it formally:

SIM (a1, a2) = |I(a 1 ) ∩ I(a 2 )| + |O(a 1 ) ∩ O(a 2 )| |I(a 1 ) ∪ O(a 1 )| + |I(a 2 ) ∪ O(a 2 )| (6.11)
where I(a) is the set of incoming links to a, and O(a) is the set of outgoing links from a.

Term Polysemy in Wikipedia

Two different Wikipedia articles may share the same title, where each article refers to one special single sense of this title. For example, "Last Supper" corresponds several articles entitled by "Last Supper" in Wikipedia. Figure 6.3, shows two of them. In the first article (or sense), "Last Supper" refers to the final meal according to Christian belief, where in the second article "Last Supper" refers to the painting of "Leonardo da Vinci". A term t, in Wikipedia, is an article title. S(t) is the set of articles, or senses, entitled by t. Each sense a ∈ S(t) can be a target of a hyperlink. The popularity, over Wikipedia, of a given sense is calculated as the probability to choose a particular sense a, given the term t. We estimate this probability by the maximum likelihood:

P (a|t) = | I(a) | x∈S(t) | I(x) | : a ∈ S(t) (6.12)
where | I(a) | is the number of incoming links for an article a, and x∈S(t) | I(x) | is the total number of incoming links for all articles entitled by t. 

Wikipedia Titles

Article title normally refers to the named entity which is described inside the article. Article titles are also used as a highlighted text with other articles. More precisely, the article, where these highlighted titles are used, shows outgoing links to the articles that correspond these highlighted titles. Moreover, a potential semantic link is found between each article and the titles which are highlighted within.

Figure 6.5, shows the first part of the abstract of the "Last Supper" painting article. We see in this part, three highlighted titles: "Mural", "Leonardo da Vinci", and "Santa Maria delle Grazie (Milan)". "Mural" is the type of this painting. "Leonardo da Vinci" is the painter who painted the "Last Supper". "Santa Maria delle Grazie (Milan)" is the place where this paining is situated. The example shows that the highlighted titles are semantically related to the article where these highlighted titles are mentioned. 

Term Relations

As we have presented previously, term relations are defined over Wikipedia. We select Wikipedia as a large knowledge resource which contains a huge number of articles about named entities.

Wikipedia covers 90% of our topics, i.e. 90% of topics in these two corpora correspond, at least, one Wikipedia article. We use Wikipedia-Miner API1 , in order to exploit Wikipedia's knowledge in our query expansion approach. We consider Wikipedia titles as candidate terms for expanding our queries. The similarity between terms is calculated using (Equation 6.11).

Metrics

We use the Mean Average Precision (MAP), in order to compare the retrieval performance of our approach and other state-of-the-art models, which is both recall and precision oriented metric.

The statistical significance tests are used to verify if a system A is statistically better than another system B, and that it is not the pure coincidence that makes A better than B. As statistical significance test, we use Fisher's Randomization test at the p < 0.05 [START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF].

Baselines and Comparison Methods

Documents are retrieved using two smoothing methods of language models: Jelinek-Mercer (JM) and Dirichlet (DIR) [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF]]. We use Indri2 search engine in order to achieve our experiments. The baseline and comparison methods for our experiments are the following:

• The baseline of our experiments are Dirichlet and Jelinek-Mercer smoothing methods of language models (LM) [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF]]. • Relevance language models (PRF) [START_REF] Lavrenko | Relevance based language models[END_REF]]: we sweep, in this case, over the number of expansion terms k ∈ {5, 10, 15, 20, 25, 30}, and the number of relevance feedback documents {5, 10, 15, 20, 25, 30}. • Besides, we also consider best result of the evaluation campaign. Best MAP achieved ,in CHIC2012 campaign for semantic enrichment task, is 0.34 [START_REF] Petras | Cultural heritage in clef (chic) overview[END_REF]. Table 6.2, shows the baselines and comparison methods for the two smoothing methods used in our experiments: Jelinek-Mercer and Dirichlet. We can see from this table that relevance models do not help to enhance the retrieval performance because of short queries and documents, and the limited number of relevant documents per query within the two target corpora: CHIC2012 and CHIC2013. These results are confirmed by the experiments made in [START_REF] Akasereh | Unine at clef 2012[END_REF][START_REF] Akasereh | Unine at clef 2013[END_REF], using several relevance feedback retrieval settings, on these two corpora.

Semantic Query Expansion Variants

To evaluate the different variants of our expansion approach, 2-fold cross-validation are performed by partitioning the topics into two sets. First set, contains topics from CHIC2012, and 6.10). We also sweep over three possibilities for the function linked, introduced in section 6.2.1.

linked(a) = I(a) OR linked(a) = O(a) OR linked(a) = I(a) ∪ O(a)
We optimize our method using Mean Average Precision (MAP), as a target metric.

Results and Performance Comparison

We test the three possibilities for the function linked in our semantic query expansion (SQE): I, O, and IO. Using I, means that the k expansion terms come from incoming links I, using O means that the k expansion terms come from outgoing links O, while using IO means that the k expansion terms come from both incoming and outgoing links. Results in Table 6.3 and Table 6.4 are obtained with best value of the tuning parameter α = 0.3. Results of our three variants {I, O, IO} using Jelinek-Mercer and Dirichlet are summarized in Table 6.3 and Table 6.4, respectively. Table 6.3 and Table 6.4, show the change in the number of expansion terms k ∈ {5, 10, 15, 20, 25, 30}, versus the change in MAP for our three variants of expansion approach and the two target corpora. We first observe a consistent performance improvement achieved which confirms our belief that using Wikipedia structure for query expansion improves the retrieval performance. Second, the improvement is correlated with the variant which is used for selecting expansion terms and the number of expansion terms. We distinct two cases:

• Expansion using only Incoming Links (I) or Outgoing Links (O): we observe that these two variants behave similarly with the change of the number of expansion terms. We see a slight difference in performance between them. In addition, the best MAP improvement, using different number of expansion terms, is achieved at 10 terms. After 10 terms, MAP improvement starts to decrease systematically due to the increasing of the noise generated by using a bigger number of expansion terms. • Expansion using both Incoming Links and Outgoing Links (IO): we observe that the best MAP is obtained using 20 expansion terms (10 from I and 10 from O). In this case, MAP improvement starts to decrease when we use more than 20 expansion terms. Results reported in the previous tables are depicted into Figure 6.6, where we see the retrieval performance in MAP as a function of number of expansion terms k. Figures 6.6(a) and 6.6(b) show MAP changes using Jelinek-Mercer and Dirichlet smoothing methods, respectively, for the two variants: (I) and (O), and for the two target corpora: CHIC2012 and CHIC2013. We observe that these two variants have a similar behavior over the two corpora and the two smoothing methods. Figures 6.6(c) and 6.6(d) show MAP changes using Jelinek-Mercer and Dirichlet smoothing methods, respectively, for our third variant: expansion terms from both incoming and outgoing links (IO), and for the two target corpora: CHIC2012 and CHIC2013.

Finally, semantic query expansion using Wikipedia structure is statistically better than query likelihood and relevance language models. We have a slight difference in MAP between the three variants for selecting expansion terms: incoming links (I), outgoing links (O), or both (IO). Dirichlet smoothing gives better performance in MAP than Jelinek-Mercer smoothing over all our experiments. Table 6.5 shows the best settings for our query expansion approach. 

Summary

In this chapter, we explore the use of a collaborative knowledge resource structure for query expansion. We propose to use Wikipedia as a collaborative knowledge resource, where we propose three variants for selecting expansion terms based on Wikipedia structure: using Incoming Links (I), using Outgoing Links (O), and using both Incoming and Outgoing Links (IO). These variants are completely based on Wikipedia structure. We evaluate these variants on two cultural heritage corpora: CHIC2012 and CHIC2013. Our experimental results show that our three vari- ants carry out a significant improvement on retrieval performance over language models (LM) and relevance language models (PRF). The improvement is essentially related to the number of expansion terms for each variant. We only use for now, article titles in our query expansion approach. A future investigation is to compare between using article titles, article abstracts, and article full-texts. Besides, the popularity of a sense in a target collection is different to its popularity in a collaborative knowledge resource. Therefore, it will be interesting to consider a target collection to better select senses that contribute in the expansion approach instead of considering all senses from a collaborative knowledge resource.

Chapter 7

Exploring Distributed Neural Embeddings for Semantic Query Expansion

Introduction

We present, in this chapter, our third contribution (Contribution 3), where we propose a semantic query expansion approach based on distributed neural embeddings.

User queries are usually too short to describe user information needs accurately. Important terms can be missing from a user query, leading to a poor coverage of relevant documents. To solve this problem, automatic query expansion leverages on several knowledge resources and employs different methods for finding expansion terms [START_REF] Carpineto | A survey of automatic query expansion in information retrieval[END_REF]. Selecting expansion terms is challenging and requires a framework capable of adding interesting terms to a user query.

Different approaches have been proposed for selecting expansion terms. Pseudo-relevance feedback (PRF), assumes that top-ranked documents returned for an initial query are relevant, and uses a sub set of terms extracted from those documents for expansion. PRF has been proven to be effective in improving retrieval performance [START_REF] Lavrenko | Relevance based language models[END_REF].

Corpus-specific approaches analyze the content of the whole document collection, and then generate a correlation score between each pair of terms by co-occurrence [START_REF] Peat | The limitations of term co-occurrence data for query expansion in document retrieval systems[END_REF], by mutual information [START_REF] Hu | Improving retrieval performance by global analysis[END_REF], etc. Mutual information (MI) is an effective measure to assess how much two terms are related, by analyzing the entire collection in order to extract the association between terms. Query expansion using mutual information, collects terms that have high mutual information scores with query terms, and uses them to expand the query.

Other approaches like semantic vectors and neural probabilistic language models, propose a rich term representation in order to capture the similarity between terms. In these approaches, a term is represented by a vector in a high dimensional semantic space, and use a cosine or a distance between term vectors in order to measure term similarity [START_REF] Bengio | Neural Probabilistic Language Models[END_REF][START_REF] Serizawa | A study on query expansion based on topic distributions of retrieved documents[END_REF][START_REF] Widdows | The semantic vectors package: New algorithms and public tools for distributional semantics[END_REF].

Recently, several efficient Natural Language Processing methods, based on neural networks, are proposed to learn high quality vector representations, called Distributed Neural Embeddings, from large amounts of unstructured textual data with billions of words [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF]. Distributed neural embeddings capture a large number of term relationships, and have been proved their effectiveness in Natural Language Processing tasks, involving the use of term similarity and term analogy. Despite, the promising results, there has been a little analysis on using distributed neural embeddings in information retrieval.

In this chapter, we explore how distributed neural embeddings can be incorporated into a retrieval process via a query expansion scenario. We empirically determine the benefits of distributed neural embeddings on retrieval effectiveness. We experimentally compare the semantic query expansion based on distributed neural embeddings with two state of the art expansion approaches: pseudo-relevance feedback and mutual information.

Automatic query expansion is composed of three steps: expansion terms acquisition, expansion terms selection and ranking, and finally query formulation and re-weighting. In the semantic query expansion based on distributed neural embeddings, the source of expansion terms is defined over a huge amount of textual data. Therefore, we first present how we learn distributed neural embeddings from a huge amount of textual data. Then, based on distributed neural embeddings, we concretely define the criteria for selecting and ranking expansion terms. After that, we explain how expansion terms are integrated into the original query to form the expanded query, and how we evaluate the expanded query [START_REF] Almasri | A comparison of deep learning based query expansion with pseudo-relevance feedback and mutual information[END_REF].

The rest of the chapter is organized as follows: section 7.2 details the three steps of our semantic query expansion approach. Our experiments and the empirical results are presented in section 7.3. Finally, section 7.4, concludes the chapter.

Semantic Query Expansion Based on Distributed Neural Embeddings

We propose to investigate distributed neural embeddings in query expansion. In this section, we first present how the distributed neural embeddings are learned. Then, we describe the criteria for selecting and ranking expansion terms. After that, we explain how expansion terms are integrated into the original query to form the expanded query.

Expansion Terms Acquisition

In this step, learning takes place from a large amount of unstructured textual data, distributed neural embeddings are learned using neural networks. The resulting distributed neural embeddings carry relationships between terms [Mikolov et al., 2013a,b]. In this chapter, we are concerned with one word terms. Therefore, each word w is represented by a real-valued vector v w , of a predefined number of dimensions m, 600 dimensions for example.

v w =< dim 1w , dim 2w , ..., dim mw > (7.1)
where dim 1w , dim 2w , and dim mw , are the real-valued dimensions that form the distributed neural embedding or the vector representation of the word w.

Distributed neural embeddings could be used to obtain a vector representation for a more complex component, such as: a sentence, a query, or a paragraph. For example, a query vector could be obtained by aggregating distributed neural embeddings for each word within this query. Several aggregation functions could be used like sum, average, or maximum.

In the context of an Information Retrieval System, a query is normally represented by a bag of words.

q = [w 1 , w 2 , ..., w |q| ] (7.2)

Each word is embedded by a vector of a predefined number of dimensions. Several possibilities could be used for obtaining the query vector v q by aggregating distributed neural embeddings of its words. For instance:

• Summing distributed neural embeddings of words.

v q =< w∈q dim 1w , w∈q dim 2w , ..., w∈q dim mw > (7.3)
where dim iw is the i-th component of the word vector v w .

• Averaging distributed neural embeddings of words.

v q =< 1 |q| w∈q dim 1w , 1 |q| w∈q dim 2w , ..., 1 |q| w∈q dim mw > (7.4)
where dim iw is the i-th component of the word vector v w , and |q| is the length of the query q. • Using Max function for each vector component. where dim iw is the i-th component of the word vector v w .

In our semantic query expansion approach, all words within the text data, which is used for the learning step, form the source of expansion terms.

Expansion Terms Selection and Ranking

After the learning phase, each word w is represented by a vector v w . The resulting vectors carry relationships between words. Therefore, we calculate the similarity between two words w 1 and w 2 using the normalized cosine between their two vectors: v w 1 and v w 2 .

SIM (w 1 , w 2 ) = cos(v w 1 , v w 2 ) (7.7)
where cos(v w 1 , v w 2 ) ∈ [0, 1] is the normalized cosine between the two word vectors v w 1 and v w 2 .

cos(v w 1 , v w 2 ) = cos(v w 1 , v w 2 ) + 1 2 (7.8)
Based on the normalized cosine similarity between distributed neural embeddings, we now define the function top k (v w ), that returns the k-most similar words to a word w:

top k : IR m → 2 V (7.9)
where V is the vocabulary that contains all words.

The same function is used to obtain the k-most similar words to a query q, where we use the normalized cosine similarity between the query vector v q and other word vectors in the vocabulary V .

Query Formulation and Re-weighting

We propose two variants for expanding a given user query q:

• First, expansion words are related to one query word, denoted (VEXP-One). In this variant, expansion words are selected with respect to their relation with an individual query word using the normalized cosine similarity (Equation 7.7). • Second, expansion words are related to the whole query, denoted (VEXP-Whole). In this second variant, expansion words are selected with respect to their relation with the whole query. To this end, we first build the query vector v q . Then, we select expansion words to q, based on the cosine similarity between the whole query vector v q and word vectors (Equation 7.7).

The following two sections detail these two variants, and how we formulate the expanded query within each variant.

Expansion Terms Related to One Query Word

Let q be a user query represented by a bag of words, q = [w 1 , w 2 , ..., w |q| ]. Each word in the query has a frequency #(w, q). In order to expand a query q, we follow these steps:

• For each w ∈ q, collect the k-most similar words to w, using the function top k (v w ) (Equation 7.9). The expanded query q is defined as follows:

q = q w ∈top k (vw) w (7.10)
• The frequency of each w ∈ q is still the same in the expanded query q .

#(w, q ) = #(w, q) (7.11)

• The frequency of each expansion word w ∈ top k (v w ), in the expanded query q , is given as follows:

#(w , q ) = α × #(w, q ) × cos(v w , v w ) (7.12)
where α ∈ [0, 1] is a tuning parameter that determines the importance of expansion words.

In the rest of chapter, our first variant of the expansion approach, based on distributed neural embeddings, is denoted by VEXP-One.

Expansion Terms Related to the Whole Query

Let q be a user query represented by a bag of words, q = [w 1 , w 2 , ..., w |q| ]. Each word w in the query q is represented by a vector v w . We obtain the query vector v q , by aggregating distributed neural embeddings of its words. In order to expand a query q, we use the following steps:

• For a query q, we collect the k-most similar words to a query q, using the function top k (v q ) (Equation 7.9). The expanded query q is defined as follows:

q = q w ∈top k (vq) w (7.13)
• The frequency of each w ∈ q is still the same in the expanded query q .

#(w, q ) = #(w, q) (7.14)

• The frequency of each expansion term w ∈ top k (v q ), in the expanded query q , is given as follows:

#(w , q ) = α × cos(v q , v w ) (7.15) 
where α ∈ [0, 1] is a tuning parameter that determines the importance of expansion words.

In the rest of chapter, the second variant of our expansion approach, based on distributed neural embeddings, is denoted, according to the aggregation function which is used to obtain a query vector by: VEXP-Sum, VEXP-Avg, VEXP-Max, VEXP-Min.

Experiments

We have two goals in our experiments. The first goal is to analyze the effect of the number of expansion terms k on the retrieval performance using distributed neural embeddings: VEXP-One, VEXP-Sum, VEXP-Avg, VEXP-Max, VEXP-Min. The second goal is to compare between our proposed expansion approach using distributed neural embeddings with two existing expansion approaches: pseudo-relevance feedback based on relevance model (PRF) [START_REF] Lavrenko | Relevance based language models[END_REF], and mutual information (MI) [START_REF] Hu | Improving retrieval performance by global analysis[END_REF]], which both have been proven to be effective in improving retrieval performance. To achieve the comparison, we use language models with no expansion as a baseline (NEXP) [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF].

Test and Learning Corpora

Six medical corpora from CLEF1 are used. These corpora are used for learning distributed neural embeddings of words, and for evaluating our expansion approach based on distributed neural embeddings.

• Image2009, Image2010, Image2011, and Image2012, which contain short documents and queries. • Case2011 and Case2012 which contain long documents and queries.

Table 7.1 shows some statistics about these corpora, avdl and avql are average length of documents and queries, respectively. These medical corpora provide a huge amount of medical text that we need in the learning phase.

Document and Query Representation

Words are classically extracted from text after removing stop words and stemming. In our experiments, we eliminate stop words and stem the remaining words using Porter algorithm [START_REF] Porter | Readings in information retrieval[END_REF], to finally get the list of words that represents a document or a query. As a result, documents and queries are represented by means of words.

Learning Data and Tools

We use word2vec to generate distributed neural embeddings [Mikolov et al., 2013a,b]. The word2vec tool takes a text corpus as an input and produces word vectors as an output. It first constructs a vocabulary from the training text and then learns the distributed neural embeddings of words. We build our training corpus using three CLEF corpora: Image2009, Case2011, Case2012. Our training corpora consist of about 400 millions words. The vocabulary size for this training corpora is about 350,000 different words. We use the recommended setting for this training tool like the word vector dimension and the learning context window size.

Term Relations

As we have presented previously, word relations are defined based on distributed neural embeddings. After learning phase, each word is represented by a real-valued vector. The similarity between two words is calculated using the normalized cosine similarity (Equation 7.7).

Metrics

We use the Mean Average Precision (MAP), in order to compare the retrieval performance of our expansion approach and other state-of-the-art methods, which is both recall and precision metric.

The statistical significance tests are used to verify if a system A is statistically better than another system B, and that it is not the pure coincidence that makes A better than B. As statistical significance test, we use Fisher's Randomization test at the p < 0.05 [START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF].

Baselines and Comparison Methods

Documents are retrieved using Indri search engine [START_REF] Strohman | Indri: A language model-based search engine for complex queries[END_REF]. The baseline and comparison methods for our experiments are the following:

• Language model with no expansion (NEXP), as a baseline. We use Dirichlet and Jelinek-Mercer smoothing from language models [START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF]]. • Relevance language models (PRF) [START_REF] Lavrenko | Relevance based language models[END_REF]]. Relevance language model is a pseudo-relevance feedback method based on language models. We use relevance language model using Dirichlet and Jelinek-Mercer. • Query expansion using mutual information (MI) [START_REF] Hu | Improving retrieval performance by global analysis[END_REF]. We also evaluate mutual information query expansion using Dirichlet and Jelinek-Mercer.

Number of Expansion Terms Analysis

We first analyze the effect of the number of expansion terms k on the retrieval performance of our semantic expansion approach variants: VEXP-One, VEXP-Sum, VEXP-Avg, VEXP-Max, VEXP-Min.

For VEXP-One, each query word is expanded with k ∈ {1, 2, 3, ..., 10} words. Stop words are not considered in the expansion. The optimal k value, for the number of expansion words, varies depending on the test corpora. All tested k values are given in Table 7.2. The best performance is presented in bold. However, for VEXP-Sum, VEXP-Avg, VEXP-Max, VEXP-Min: each query is expanded with k ∈ {1, 2, 3, ..., 15} words. The optimal k value, for the number of expansion words, varies depending on the test corpora. All tested k values are given in Table 7.3. The best performance is presented in bold. The optimization of the free parameter α (Equation 7.12) and (Equation 7.15), for controlling expansion terms importance, is achieved using 5-fold cross-validation with Mean Average Precision (MAP) as a target metric. We vary α values between [0.1, 1] with 0.1 as an interval. The best values of the tuning parameter α that indicate the importance of expansion terms vary between [0.2, 0.4].

Similarly, we analyzed the best number of expansion terms for PRF and MI:

• For PRF, we have tested several configurations for the number of expansion terms k ∈ {5, 10, ..., 50} and the number of feedback documents #f bdocs ∈ {5, 10, , ..., 50}. • For MI, we have also tested several configurations for the number of expansion terms k ∈ {1, 2, ..., 25}.

Table 7.4 gives the best configurations for VEXP-One, VEXP-Sum, VEXP-Avg, VEXP-Max, VEXP-Min, PRF, and MI.

Performance Comparison

In this section, we compare our expansion approach variants: VEXP-One, VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min, with PRF, and MI, using language models with no expansion as a baseline (NEXP). We use two tests for statistical significance: † indicates a statistical significant improvement over NEXP, and * indicates a statistical significant improvement over PRF. Results are summarized in Table 7.5. Concerning our first variant where expansion words are related to one query word VEXP-One, we first observe that VEXP-One is nearly always statistically better than NEXP for the five test corpora, which is not the case of PRF and MI. VEXP-One shows a statistically significant improvement over PRF in five cases.

Our second variant where expansion words are related to the whole query: VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min. Actually, there is no difference between VEXP-Sum and VEXP-Avg, as we use cosine similarity1 . Moreover, we observe that there is no big difference between the four aggregation functions that are used to obtain the query vector: Sum, Average, Min, and Max. VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min are statistically better than language model with no expansion NEXP in several cases, which is not the case for PRF and MI. However, VEXP-One is better than VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min.

We also observe that aggregating distributed neural embeddings of query words for obtaining the query vector, seems to work better for corpora that contain short queries rather than long queries. When queries are long, the aggregation seems to be less effective on the retrieval performance. Table 7.5: Performance comparison using MAP on test corpora. † indicates statistically significant improvement over NEXP. * indicates statistically significant improvement over PRF, p < 0.05. Distributed neural embeddings are promising knowledge resource for query expansion because they are learned from hundreds of millions of words, in contrast to PRF which is obtained from top retrieved document, and MI which is calculated on the collection itself. Distributed neural embeddings are not only useful for corpora that were used in the training phase, but also for other corpora which contain similar documents. In our case, all corpora deal with medical cases.

There are two architectures of neural networks for obtaining distributed neural embeddings of words: skip-gram and bag-of-words [Mikolov et al., 2013a,b]. We only present the results obtained using the skip-gram architecture in our experiments. We have also evaluated the bagof-words architecture, but there was no big difference in retrieval performance between the two architectures.

Summary

We explore, in this chapter, the use of Distributed Neural Embeddings for query expansion. We have proposed two query expansion variants based on distributed neural embeddings: expansion words are related to one query word (VEXP-One), and expansion words are related to the whole query (VEXP-Whole). We have analyzed the effect of our two query expansion variants on the retrieval performance. Our first variant VEXP-One performs better than our second variant VEXP-Whole. We also showed that distributed neural embeddings are promising knowledge resource for query expansion by comparing them with two effective methods for query expansion: pseudo-relevance feedback and mutual information.

Our experiments on five CLEF corpora showed that query expansion using distributed neural embeddings gives statistically significant improvements over baseline language models with no expansion and pseudo-relevance feedback (PRF). In addition, it is better than the expansion using mutual information (MI).

Distributed neural embeddings are not only useful for corpora that were used in the learning phase, but also for other corpora which contain similar documents. In our experiments, our test and learning corpora deal with medical text.

Chapter 8

Term Mismatch Probability Estimation and Reduction

Introduction

In this chapter, we present our fourth contribution (Contribution 4), where we retake the term mismatch probability definition (Equation 1.3). We first present how we apply the term mismatch probability definition for our first three contributions. We then show how we use standard retrieval corpora with queries and relevance judgments to estimate term mismatch probability. Term mismatch probability estimation, using relevance judgments, allows us to quantitatively study how term mismatch probability varies over test corpora and how term mismatch probability is reduced using our three contributions. Finally, and as the term mismatch probability is related to the system recall, we present how the system recall is improved when the term mismatch probability is reduced using our contributions.

The quantitative analysis, in this chapter, is designed to answer the following questions regarding the term mismatch probability.

• Q1. How much the term mismatch probability varies across different query terms? • Q2. Are there any difference between the term mismatch probability distributions for long and short queries? • Q3. Are there any difference between the two types of indexing terms: words and concepts? • Q4. Is using concepts sufficient for solving term mismatch problem? • Q5. How much the term mismatch probability is reduced using: We apply the term mismatch probability definition to our contributions: the query and knowledge dependent document representation, query expansion based on a collaborative knowledge resource, and query expansion based on distributed neural embeddings.

Term Mismatch Probability Using Query and Knowledge Dependent Document Representation

In Contribution 1, we modify the document representation by considering mismatched query terms. We expand the document d, if a mismatched query term shows at least a link to one document term, to obtain the modified document d q .

Term mismatch probability is estimated as the proportion of relevant documents which do not contain the term t. The document d is involved during the estimation of term mismatch probability. As a result, when the document is evolved from d to d q , term mismatch probability is estimated using the modified document d q . As a result, term mismatch probability is rewritten as follows, t ∈ q:

P dq (t|R) = |MisRel dq (t, q)| |Rel(q)| (8.1)
where MisRel dq (t, q) is defined as follows:

MisRel dq (t, q) = {d ∈ Rel(q) : t / ∈ d q } (8.2)

Term Mismatch Probability Using Query Expansion Based on a Collaborative Knowledge Resource

In Contribution 2, we estimate term mismatch probability for each query term. Therefore, when a query q is expanded to obtain q , the term mismatch probability must be modified in order to consider expansion terms. More precisely, if a document contains an expansion term for a mismatched query term, the document will not be considered as a mismatched document and it will be retrieved by a classical retrieval model. The term mismatch probability is rewritten as follows:

P q (t|R) = |MisRel (t, q )| |Rel(q)| (8.3)
where MisRel (t, q ) is defined as follows:

MisRel (t, q ) = {d ∈ Rel(q) : t / ∈ d ∧ t / ∈ d} (8.4)
where t is an expansion term for the query term t. In Contribution 3, each term t is represented by a vector v t . Term mismatch probability is estimated as the proportion of relevant documents which do not contain the term t. As a result, when a query q is expanded to obtain q , we adapt the term mismatch probability to consider expansion terms (Equation 8.3) and (Equation 8.4). Actually, we have two variants for obtaining expansion terms:

• Expansion terms are related to one query term (VEXP-One). In this case, t ∈ q ∧ t ∈ top k (v t ), top k (v t ) is the function that returns the top similar terms for a term t (Equation 7.9). • Expansion terms are related to the whole query (VEXP-Whole). In this case, t ∈ q ∧ t ∈ top k (v q ), top k (v q ) is the function that returns the top similar terms for the query q, with respect to the query vector v q (Equation 7.9).

Term Mismatch Probability Estimation Using Relevance Judgment

Each test collection contains a set of queries with their relevance judgment. In general, it is very expensive to achieve the relevance assessment for all documents, within a document collection, for a given query. As a result, pooling techniques are used to build modern test corpora [START_REF] Jones | Report on the Need for and Provision of an Ideal Information Retrieval Test Collection[END_REF]. A pool is constructed by putting together top retrieval results1 from a set of several different retrieval systems. Humans judge every document in the pool instead of the whole document collection. Documents outside the pool are automatically considered to be irrelevant. We estimate the term mismatch probability by considering judged documents for each query. Term mismatch probability estimation allows us to measure and show how much the studied corpora suffer from term mismatch problem.

Term mismatch, for a term t, is defined as the probability that t does not appear in a document d, given that this document is relevant. The mismatch probability is denoted P (t|R). By considering judged documents for each query, the mismatch probability is estimated as follows:

P (t|R) ≈ |MisRel jud (t, q)| |Rel jud (q)| (8.5)
where Rel jud (q) is the set of judged relevant documents for a query q, which is different from the set of all relevant documents Rel(q). The estimated term mismatch probability depends on the pooling technique which is used for obtaining judged relevant documents. In other words, we obtain two different mismatch probability estimations using two different pooling techniques. Therefore, the quality of the estimated term mismatch probability is related to the pooling technique. In general, pooling works well if the retrieval approaches which are used for pooling are diversified. 

Evaluation Methodology

In this section, we first present the corpora on which we evaluate and compare the state of the art approaches and our contributions. We then detail the evaluation protocol that we follow. We last talk about the metrics we use to compare the state of the art approaches and our contributions.

Evaluation Corpora

Seven standard ad-hoc retrieval corpora are used to study term mismatch probability: five medical corpora correspond ImageCLEF campaign, and two English cultural heritage corpora correspond CLEF cultural heritage campaign. ImageCLEF, part of CLEF1 (Cross-Language Evaluation Forum), is an evaluation campaign for multilingual information retrieval.

• ImageCLEF corpora.

-Three ad-hoc image-based corpora. Image2010, Image2011, and Image2012, which contain short documents and queries. Each document contains a medical image and its caption. -Two ad-hoc case-based corpora. Case2011 and Case2012, which contain long documents and queries. Each document represents a medical case or a medical article.

• Cultural heritage corpora from CLEF. CHIC2012 and CHIC2013. These two corpora are based on the same corpus, and differs in their query sets.

Concerning the five ImageCLEF corpora, we use two types of indexing terms: words and concepts. Of course we use words, as a usually-used type of indexing terms, to represent the content of documents and queries. However, although the proved effectiveness of using words as indexing terms, we propose to use concepts, which are supposed to be more informative than words.

Evaluation Protocol

In Contribution 1, we modify the document representation by considering mismatched query terms. We expand the document d if a mismatched query term shows at least a link to one document term to obtain the modified document d q . Actually, we need to define relationships between indexing terms that represent documents and queries, in order to build the modified document d q . Therefore, we propose to represent documents and queries by means of concepts instead of words. Representing documents and queries by means of concepts, allows us to link between a query concept and a related document concept, in case of mismatch. In general, concepts and their relationships are defined in a knowledge resource. We use UMLS as a knowledge resource in the medical domain. As a result, we evaluate our first contribution on ImageCLEF corpora which contain medical text: Image2010, Image2011, Image2012, Case2011, and Case2012.

In Contribution 2, we propose to use a collaborative resource as a source of expansion terms. We use Wikipedia as a collaborative resource. Research has found that around 74% of Wikipedia pages correspond named entities [START_REF] Nothman | Transforming wikipedia into named entity training data[END_REF]. Therefore, we evaluate this contribution on cultural heritage corpora, where their queries are about named entities. In the cultural heritage corpora, 90% of queries correspond a Wikipedia article.

In Contribution 3, we propose to use distributed neural embeddings for query expansion. Actually, we need a huge amount of homogeneous textual data in order to learn high quality distributed neural embeddings that capture word relationships. ImageCLEF corpora provide a huge amount of medical text that we need in the learning phase. Therefore, we use Image2011, Image2012, Case2011, and Case2012 to learn distributed neural embeddings. Then, we evaluate our third contribution on these corpora. Furthermore, we evaluate the third contribution on Image2010 collection which is not used in the learning phase, and which contains a medical text, in order to show the usability of learned embeddings on similar corpora.

Table 8.1, illustrates some statistics about our test corpora, indexing terms which are used to represent documents and queries within these corpora, and the corpora which are used to evaluate our contributions. 

Comparison Metrics

We compare between the state of the art approaches and our three contributions for reducing term mismatch on two dimensions:

• Through the estimated term mismatch probability. To this end, we first compare, for each query term, the estimated term mismatch probability using the state of the art approaches and our contributions. We also compare the average, the median, and the first quartile of the estimated term mismatch probability. • Through the effect on the system recall. An approach that focuses on reducing term mismatch, is an approach that leads to improve the recall of an information retrieval system. Although recall is the objective for such approaches, the score should be able to distinguish between systems that retrieve relevant documents at the beginning of the recall list than those that retrieve them after [START_REF] Magdy | Pres: A score metric for evaluating recall-oriented information retrieval applications[END_REF]. Mean Reciprocal Rank (MRR), is the metric that favors results whose relevant documents are highly ranked [START_REF] Craswell | Mean Reciprocal Rank, 1703-1703[END_REF]. MRR is the metric that we use to show the recall improvement. The reciprocal rank of a query response is the multiplicative inverse of the rank of the first correct answer. The mean reciprocal rank is the average of the reciprocal ranks for a sample of queries Q.

M RR = 1 |Q| |Q| i=1 1 rank i (8.6)
where rank i refers to the rank position of the first relevant document for the i-th query.

|Q| is the number queries in the query sample Q.

As statistical significance test, we use Fisher's Randomization test [START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF].

Initial Term Mismatch Probability

We study, in this section, how the estimated term mismatch probability using relevance judgment, varies over several test corpora, and over the two types of indexing terms: words and concepts. Figure 8.1, shows term mismatch probability variation using words and concepts, over Im-age2010. Average mismatch probability is illustrated, for each word or concept over all queries. The average is calculated over all queries in which a word or a concept appears. Actually, term mismatch probability distribution shows similar trends, using words and concepts, where we see two similar curves for both types of indexing terms. An approach for solving term mismatch problem aims to increase the number of terms in the low probability intervals, and to reduce the number of terms in the high probability intervals. vides the basic annotation functionality, and maps medical text to UMLS concepts. MetaMap output contains two sets of concepts for a given piece of text: candidate concepts which are all possible concepts that represent a piece of text, and mapping concepts which are the most appropriate concepts that represent a piece of text according to the MetaMap scoring function, see Appendix B. Mapping concepts is a subset of candidate concepts.

In our experiments, we maintain all candidate concepts and not only the mapping ones. Actually, if we consider mapping concepts to represent documents and queries, the system recall is remarkably decreased, and as a result, the system performance is decreased [START_REF] Sanderson | Word sense disambiguation and information retrieval[END_REF]. The main reason behind this degradation is that the MetaMap scoring function is imperfect. The system performance, using candidate concepts, is better than using mapping concepts. However, using candidate concepts adds some noise on document and query representations. As a result, documents and queries in the concept space are much longer than in the word space. Table 8.1, shows average document and query length by means of words and concepts. Noisy concepts, in the candidate concepts, may increase the average term mismatch probability when we move from word space into concept space. Figure 8.3, shows an example in which average term mismatch probability is increased. We see in this example that the term mismatch probability is decreased for the two concepts: c 2 and c 5 , where these two concepts are the most appropriate concepts that correspond t 1 and t 2 . However, the average mismatch probability, using concepts, is increased because of the noisy concepts: c 1 , c 3 , c 4 , and c 6 . Noisy concepts have a major negative effect on term mismatch probability and system performance for short documents and queries corpora, which is not the case for long documents and queries corpora.

Examples of the Term Mismatch Dependency on the Query

Term mismatch is query dependent, we can see, as a result, two different probabilities for the same word or the same concept in two different queries.

• Example using words as indexing term: the word "Fracture", has two different mismatch probabilities in the two queries number (7) and number (14), of the Image2010 collection.

"Fracture" has (0.25) as a mismatch probability in the query number (7), and has (0.04) as a mismatch probability in the query number (14). • Example using concepts as indexing term: the concept "C0019079", has two different mismatch probabilities in the two queries number (2) and number (4), of the Case2012 collection. "C0019079" has (0.1) as a mismatch probability in the query number (2), and has (0.75) as a mismatch probability in the query number (4). • Examples for comparing mismatch probability between words and concepts: we are only interested, in these examples, in one word concepts in order to compare between the two mismatch probability using words and concepts. In the query number (9) of the Image2010 collection, the word "Papilledema" corresponds the concept "C0030353" in UMLS. The mismatch probability for both "Papilledema" and "C0030353" is the same (0.08). Similarly, in the query number (2) of the Case2012 collection, the word "Hemoptysis" corresponds the concept "C0019079" in UMLS. The mismatch probability for both "Hemoptysis" and "C0019079" is also the same (0.58).

We move to a different example where the mismatch probability is reduced using concepts, in the query number (12) of the Case2012 collection, the word "Hematuria" corresponds the concept "C0018965" in UMLS. The mismatch probability for the word "Hematuria" is (0.78), however the mismatch probability for the concept "C0018965" is reduced to (0.54).

We clearly remark that mismatch problem is present even when we represent queries and documents by means of concepts. The concrete examples from our test corpora illustrate that using concepts may do not change the mismatch probability, which quantitatively confirms that the synonymy is not the only cause of term mismatch problem.

Conclusions

The above analysis, in this section, allows us to answer the following questions:

• Q1. How much the term mismatch probability varies across different query terms?

The estimated term mismatch probability is almost uniformly distributed, where the number of words and concepts in each probability interval, over our test corpora, is almost equivalent.

• Q2. Are there any difference between the term mismatch probability distributions for long and short queries?

Both short and long queries suffer from term mismatch, and show similar trends in their mismatch probability distribution, and there is no obvious difference between the two distributions of the estimated term mismatch probability for long and short queries. • Q3. Are there any difference between the two types of indexing terms: words and concepts?

There is no obvious difference between the mismatch probability distribution using the types of indexing terms: words and concepts. However, the average, the median, the first quartile of the estimated term mismatch probability, using concepts, are increased or stay almost the same for short queries and they are decreased for long queries.

• Q4. Is using concepts sufficient for solving term mismatch problem?

Concepts are not sufficient for solving term mismatch problem, where term mismatch probability is reduced in some cases, but it is still the same in some other cases, which quantitatively confirms that the synonymy is not the only cause of term mismatch problem.

Term Mismatch Probability Evaluation through our Contributions

We present, in this section, how the estimated term mismatch probability is reduced by applying our three contributions. Figure 8.4 shows a comparison between initial and reduced term mismatch probability using the modified document. The horizontal axis represents term mismatch probability, where the vertical axis represents the percentage of query terms that have a mismatch portability inferior or equal to a given mismatch probability. The line, with × +, corresponds the optimal case where all query terms have a zero mismatch probability. In general, we do not remark a huge difference between initial and reduced term mismatch probability. The main reason is that we only consider hierarchical relationships between concepts in order to build the modified document. The modified document helps to build a mismatch aware document, and as a result, a mismatch aware retrieval model. As the term mismatch is reduced, the recall of the retrieval system is increased. In addition, more other term relationships, in addition to hierarchical relationships, are considered, more our retrieval model is mismatch aware.

Documents and queries are represented by means of UMLS concepts. Concepts are not sufficient to overcome mismatch problem. For instance, the query number (4) in the collection Image2011, the word "Emphysema" corresponds the concept "C0034067" in UMLS. The mismatch probability for both "Emphysema" and "C0034067" is the same (0.125). However, the mismatch probability of the concept "C0034067", using our modified document is reduced to (0.065). Similarly, the query number (2) in the collection Case2012, the word "Hemoptysis" corresponds the concept "C0019079" in UMLS. The mismatch probability for both "Hemoptysis" and "C0019079" is the same (0.58). However, the mismatch probability of the concept "C0019079", using our modified document is reduced to (0.25).

Last example, the query number (12) in the collection Case2012, the the word "Hematuria" corresponds the concept "C0018965" in UMLS. The mismatch probability for the word "Hematuria" is (0.78), the mismatch probability for the concept "C0018965" is reduced to (0.54). However, the mismatch probability of the concept "C0018965", using our modified document is even reduced to (0.3). Figure 8.5, shows a comparison using the number of concepts in each probability interval between initial and reduced mismatch probability over ImagCLEF corpora. We remark how the number of concepts in the high mismatch probability intervals is reduced and we also remark how the number of concepts in the low mismatch probability intervals is increased. The modified document pushes the concepts to have lower mismatch probability.

Table 8.3, shows a comparison in average, in median, and in quartile of the term mismatch probability between original d and modified d q documents. We see a consistent reduction in the average, the median, and the quartile of term mismatch probability over the ImageCLEF corpora. Moreover, term mismatch probability is significantly reduced using the modified document, with p < 0.01. Contribution 2. We propose to use Wikipedia as a collaborative resource for expanding queries in the cultural heritage domain. We explore, in this section, how term mismatch probability is reduced by considering expansion terms. Figure 8.6, shows a comparison between initial and reduced term mismatch probability using expanded queries. In this contribution, we remark a huge difference between initial and reduced term mismatch probability, where about 65% of query terms have a zero mismatch probability.

Figure 8.7, shows a comparison using the number of words in each probability interval between initial and reduced mismatch probability over both CHIC2012 and CHIC2013. We remark how the number of words in the high mismatch probability intervals is reduced and we also remark how the number of words in the low mismatch probability intervals is increased. Considering expansion terms pushes the words to have lower mismatch probability. In this case, we see that our second contribution is very effective in reducing term mismatch probability, Table 8.4, shows a comparison in average, in median, and in quartile of the term mismatch probability between original and expanded queries. We only put, in the table, the best performance among our variants. We see a consistent reduction in the average term mismatch probability over the two test corpora. In addition, we remark that the median of the term mismatch probability is neutralized which means that 50%, at least, of the query words have a zero mismatch probability using the expanded queries, which is clearly remarked. Moreover, term mismatch probability is significantly reduced using expanded queries, with also p < 0.01.

Term Mismatch Probability Evaluation Using Query Expansion Based on Neural Distributed Embeddings

Contribution 3. We propose a query expansion approach based on distributed neural embeddings. We explore, in this section, how term mismatch probability is reduced by considering expansion terms. Figure 8.8, shows a comparison between initial and reduced term mismatch probability using expanded queries. The horizontal axis represents term mismatch probability, where the vertical axis represents the percentage of query terms that have a mismatch portability inferior or equal to a given mismatch probability. In this contribution, we remark an obvious difference between initial and reduced term mismatch probability. Figure 8.9, shows a comparison using the number of words in each probability interval between initial and reduced mismatch probability over ImagCLEF corpora. We remark how the number of words in the high mismatch probability intervals is reduced and we also remark how the number of words in the low mismatch probability intervals is increased. Using the expanded queries pushes the words to have lower mismatch probability. Figure 8.9: Comparison using the number of words in each probability interval between initial and reduced mismatch probability over ImagCLEF corpora. Table 8.5, shows a comparison in average, in median, and in quartile of the term mismatch probability between original and expanded queries. We only put, in the table, the variant that gives the best performance. We see a consistent reduction in average, in median, and in quartile of the term mismatch probability over the test corpora. Moreover, term mismatch probability is significantly reduced using expanded queries.

In nutshell, expanded queries help to build a mismatch aware retrieval model. As the term mismatch probability is reduced, the system recall is improved. However, query expansion performance is strongly related to the quality of expansion terms. The quality of expansion terms can be measured using term mismatch probability, i.e. we should use terms that have a low mismatch probability in order to expand a user query. An expansion term with low mismatch probability will improve the ability of the retrieval system to retrieve relevant documents. However, an expansion with high mismatch probability will mismatch relevant documents, and as a result, will degrade the system performance. Therefore, a term mismatch predication method can guide a query expansion method. First, by selecting expansion terms with low mismatch probability. Then, by dealing differently with query terms according to their mismatch probability. A term that has a zero mismatch probability does need, for instance, to be expanded by similar terms.

Conclusions

We answer, in this section, the following questions:

• Q5. How much the term mismatch probability is reduced using:

-a. Contribution 1. The query and knowledge dependent document representation? Term mismatch probability is reduced up to 20% in average, up to 25% in median, and up to 45% in quartile, using the modified document when we consider hierarchical relationships between concepts in order to build the query and knowledge dependent document representation. -b. Contribution 2. Query expansion based on a collaborative knowledge resource?

Query expansion based on Wikipedia as a collaborative knowledge resource reduces term mismatch probability up to 74% in average, and 50%, at least, of the query words have a zero mismatch probability after considering expanded terms. -c. Contribution 3. Query expansion based on distributed neural embeddings?

Query expansion based on distributed neural embeddings reduces term mismatch probability up to 55% in average, up to 79% in median, and up to 100% in quartile.

We conclude that query expansion based on Wikipedia as a collaborative knowledge resource is the most effective approach among our three contributions for reducing term mismatch probability.

is that the query and knowledge dependent document representation only exploits hierarchical relationships between terms in order to build the modified document.

Summary

In this chapter, we presented how we adapt the term mismatch probability definition for our contributions (Contributions 1 & 2 & 3). We then used standard retrieval corpora with queries and relevance judgments in order to estimate term mismatch probability. The estimated term mismatch probability allowed us to provide a quantitative analysis of term mismatch. Our quantitative analysis is provided on seven CLEF corpora: five ImageCLEF corpora and two cultural heritage corpora. ImageCLEF corpora are indexed using two types of indexing terms: words and UMLS concepts. Cultural heritage corpora are only indexed using words.

Exploratory data analysis show that the average query term, in both short and long queries will mismatch (not appear in) 30-70% of the relevant documents for the query. Many query terms suffer from the mismatch problem, and mismatch is quite prevalent. Furthermore, the term mismatch probability varies widely from 0 to 1 across different terms.

Concerning words as indexing terms, our analysis shows that term mismatch probability is almost uniformly distributed, where the number of words in each probability interval, over our test corpora, is almost equivalent.

Moving to concepts, we obtain, by using concepts for representing documents and queries, similar curves to the curves which are obtained using words. More precisely, term mismatch probability, for all query concepts, is also uniformly distributed, and term mismatch is presented in both short and long queries. However, the average, the median, and the quartile of the estimated term mismatch probability, using concepts, are increased or stay almost the same for short queries and they are decreased for long queries. Our analysis using some examples show that mismatch probability, using concepts, is reduced in some cases but still the same in other cases, which quantitatively confirms that the synonymy is not the only cause of term mismatch problem.

Comparing term mismatch probability using concepts with those using words, shows that using words gives lower mismatch portability for short queries corpora and higher mismatch portability for long queries corpora. As a result, the system performance using words is better than using concepts for short queries corpora. However, the system performance using concepts is better than using words for long queries. Therefore, annotation tools, like MetaMap, work better for long queries comparing with short queries.

Term relations play an important role for reducing term mismatch probability, and as a result, improving system recall. In our first contribution, the modified document representation considers hierarchical relations between concepts for reducing term mismatch probability. As a result, term mismatch probability reduction, in this case, is less than our second and third contributions, where we use more exhaustive relations. Our second contribution, using a collaborative knowledge resource for extracting term relations, provides a very effective resource for reducing mismatch probability, and as a result, improving system recall. Our third contribution, using distributed neural embeddings, also provides an automatic and effective approach for extracting term relations.

Our contributions reveal that we must be careful when exploiting semantic relations to re-duce term mismatch probability. Considering related terms is important for reducing term mismatch probability. However, related terms should be carefully weighted for maintaining and improving the system recall.

In Contribution 1, our modified document representation considers hierarchical relationships between concepts in order to modify the document. Modified document representation contributes to reduce term mismatch probability. However, even term mismatch probability is significantly reduced, the effect on the system recall, measured by MRR, is not consistently remarkable. Therefore, we need to consider other relationships to build the modified document that consistently improves the system recall.

In Contribution 2, query expansion approach using collaborative knowledge resource neutralized the term mismatch probability median, which means that 50% of query terms, at least, have a zero mismatch probability by considering expansion terms. Therefore, the structure of Wikipedia as a collaborative knowledge resource, provides a high quality expansion that significantly improves the system recall, measured by MRR.

In Contribution 3, query expansion approach using distributed neural embeddings significantly reduces term mismatch probability, and significantly improves, in many cases, the system recall, measured by MRR. Query expansion approach using distributed neural embeddings reduces mismatch probability better than the modified document representation using hierarchical relationships, as distributed neural embeddings provides a better term coverage relationships than only using hierarchical relationships.

Part IV CONCLUSION and PERSPECTIVES

Chapter 9

Conclusions and Perspectives

We conclude the dissertation by summarizing the contributions. We then provide perspectives beyond this work. Finally, we recall the publications on which this work is based.

Conclusions

This thesis addresses a limitation of the standard retrieval models, the term mismatch problem, which happens when query terms fail to appear in relevant documents. The term mismatch problem is a long standing problem in information retrieval. However, it was not well understood how often term mismatch happens in retrieval, how important it is for retrieval, or how it affects retrieval performance. This thesis answers the above questions, and proposes principled solutions to address this limitation.

This research is enabled by the formal definition of term mismatch. In this thesis, term mismatch is formally defined for a query term, as the probability that a term does not appear in a document given that the document is relevant (Equation 1.3). Term mismatch definition is document and query dependent. Based on this fact, we figured out the two possibilities for reducing term mismatch probability, and we proposed three approaches for reducing term mismatch probability. Then, we provided a quantitative analysis of term mismatch probability that shows how the proposed approaches reduce term mismatch probability with maintaining the system performance. An essential component for achieving term mismatch probability reduction is the knowledge resource which defines terms and their relationships. A variety of knowledge resources and their relationships are exploited, in our proposals, in order to produce effective document and query modifications.

We first started by proposing a document modification approach according to a user query. The main idea of our document modification is to deal with mismatched query terms. A mismatched query term is a term that does not appear in a given document. When the modification is achieved, we use the modified document, instead of the original document, in a standard retrieval model in order to obtain a mismatch aware retrieval model.

We then proposed a semantic query expansion approach based on a collaborative knowledge resource. We focused on the collaborative resource structure to obtain interesting expansion terms that contribute to reduce term mismatch probability, and as a result, improve the effectiveness of search.

Distributed neural networks are recently proposed to learn term vector representations, called distributed neural embeddings. Distributed neural embeddings capture relationships between terms, and they obtained impressive results comparing with state of the art approaches in term similarity tasks. We proposed to use distributed neural embeddings as a knowledge resource that defines term relationships. Then, we evaluate the effectiveness of this knowledge resource in a query expansion scenario.

Last, a quantitative analysis of term mismatch probability is provided to show the effectiveness of the proposed approaches on reducing term mismatch probability and improving the system recall.

Contribution 1. Query and Knowledge Dependent Document Representation

We propose, in this contribution, to modify a document representation according to a user query and a knowledge resource. A knowledge resource contains terms and their relationships. The main idea of the modified document representation is to deal with mismatched query terms.

A mismatched query term could be implicitly mentioned in the document, if there is at least a document term related to it. In this case, we expand the document representation by the mismatched query term. When the document is expanded, the term mismatch probability is reduced. Then, the modified document is used within language models instead of the original document, and we obtain mismatch aware language models that consider the formal definition of term mismatch. We have presented three variants for calculating the pseud frequency of a mismatched query term:

• Considering the frequency of the most related document term (MDM-MAX).

• Considering the sum of frequencies of all related document terms (MDM-SUM).

• Considering the average of frequencies of all related document terms (MDM-AVG).

Theoretically, our proposed mismatch aware language models are able to reduce term mismatch probability, and as a result, reduce the effect of term mismatch problem on the retrieval performance. However, it is indispensable to support the theoretical solution by experimental evidence. Therefore, we also presented, the results of the proposed approach using two smoothing methods of language models: Dirichlet and Jelinek-Mercer. Experiments are conducted on five medical corpora of ImageCLEF which is a part of CLEF campaign 1 . We use two types of corpora:

• Image-based: Image2010, Image2011, and Image2012, which contain short documents and queries. • Case-based: Case2011 and Case2012, which contain long documents and queries.

For these experiments, documents and queries are represented by means of UMLS concepts. We consider hierarchical relationships between ULMS concepts, for obtaining the modified document representation. We use the MAP metric for comparing the retrieval performance of our approach with the performance of language models [START_REF] Ponte | A language modeling approach to information retrieval[END_REF]], and statistical translation models [START_REF] Berger | Information retrieval as statistical translation[END_REF][START_REF] Karimzadehgan | Estimation of statistical translation models based on mutual information for ad hoc information retrieval[END_REF][START_REF] Zhai | Statistical Language Models for Information Retrieval[END_REF]. To check if our approach statistically better than the state of the art models, we use Fisher's Randomization test at the 0.05 level [START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF].

Our experimental results, considering most related document term (MDM-MAX), indicate that our mismatch aware models are statistically better than ordinary language models, and in most cases better than statistical translation models in retrieval performance. The improvement is independent of the length of documents and queries within the tested corpora, but it is related to the rate of general terms and their distribution inside queries. However, statistical translation models, is better in almost all cases than considering all related document terms either by summing (MDM-SUM), or by averaging frequencies (MDM-AVG). In addition, MDM-SUM and MDM-AVG seem to be equivalent in all cases with only some marginal differences between them.

Contribution 2. Query Expansion Based on a Collaborative Knowledge Resource Structure

We propose, in this contribution, to modify a user query in order to reduce term mismatch probability. More precisely, we propose a semantic query expansion approach based on a collaborative knowledge resource structure for selecting expansion terms. The proposed method exploits Wikipedia structure as a collaborative knowledge resource for extracting expansion terms.

We represent Wikipedia as a graph of articles. Each article has two types of links: incoming and outgoing links. In the first step, we choose to use Wikipedia article titles as the source of expansion terms. Then, we define the criteria for selecting and ranking expansion terms on the Wikipedia graph. The similarity of two titles is defined on their corresponding Wikipedia articles. Two articles tends to be similar if they share incoming and outgoing links (Equation 6.11). We define the k-most similar terms to a given term based on this similarity.

A user query is expanded, using our expansion approach, as follows: we first identify the list of terms1 within a user query. Then, the k-most similar terms to each query term, based on Wikipedia graph, are used to expand the query. Last, expansion terms are re-weighted in the expanded query according to their similarity to their related query term.

We have evaluated the proposed query expansion approach using two smoothing methods of language models: Dirichlet and Jelinek-Mercer. Experiments are conducted on two CLEF English corpora for cultural heritage: CHIC2012 and CHIC2013, which are part of CLEF campaign2 . For these experiments, documents and queries are represented by means of words. We use the MAP metric for comparing the retrieval performance of our model with the performance of some high performance baseline models: language models (LM) [START_REF] Ponte | A language modeling approach to information retrieval[END_REF][START_REF] Zhai | A study of smoothing methods for language models applied to information retrieval[END_REF], and relevance language models (PRF) [START_REF] Lavrenko | Relevance based language models[END_REF]. To check if our model statistically better than the state of the art models, we use Fisher's Randomization test at the 0.05 level [START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF].

We have proposed three variants for selecting expansion terms according to the Wikipedia graph: using incoming links I, using outgoing links O, or using both incoming and outgoing links IO. We have observed a consistent performance improvement achieved which confirms our belief that using Wikipedia structure for query expansion improves the retrieval performance. Second, the improvement is correlated with the variant which is used for selecting expansion terms and the number of expansion terms, where we distinct between two cases:

• Expansion using only Incoming Links (I) or Outgoing Links (O): we observe that these two variants behave similarly with the change of the number of expansion terms. We see a slight difference in performance between them. In addition, the best MAP improvement, using different number of expansion terms, is achieved at 10 terms. After 10 terms, MAP improvement starts to decrease systematically due to the increasing of the noise generated by using a bigger number of expansion terms. • Expansion using both Incoming Links and Outgoing Links (IO): we observe that the best MAP is obtained using 20 expansion terms (10 from I and 10 from O). In this case, MAP improvement starts to decrease when we use more than 20 expansion terms.

Contribution 3. Query Expansion Based on Distributed Neural Embeddings

Distributed neural embeddings are learned, using neural networks, from large amounts of unstructured textual data. Distributed neural embeddings capture a large number of term relationships, and have been shown to produce a high effectiveness in Natural Language Processing tasks involving term similarity and term analogy. Despite, these promising results, there has been a little analysis on using distributed neural embeddings for information retrieval. Therefore, we have proposed a query expansion approach, based on distributed neural embeddings, in order to reduce term mismatch probability.

In our semantic query expansion based on distributed neural embeddings, expansion terms source is defined over a huge amount of textual data. Therefore, we first learn distributed neural embeddings from a huge amount of textual data. Then, based on distributed neural embeddings, we concretely define the criteria for selecting and ranking expansion terms. After that, we integrate expansion terms into the original query to form the expanded query, and we evaluate the expanded query.

We have evaluated the proposed query expansion approach using two smoothing methods of language models: Dirichlet and Jelinek-Mercer. Experiments are conducted on five medical corpora of ImageCLEF which is a part of CLEF campaign1 . We use two types of corpora:

• Image2009, Image2010, Image2011, and Image2012, which contain short documents and queries. • Case2011 and Case2012 which contain long documents and queries.

For these experiments, documents and queries are represented by means of words. We consider distributed neural embeddings for defining relationships between words. We use the MAP metric for comparing the retrieval performance of our model with the performance of some high performance baseline models: language models with no expansion (NEXP) [START_REF] Ponte | A language modeling approach to information retrieval[END_REF]], relevance language models (PRF) [START_REF] Lavrenko | Relevance based language models[END_REF], and query expansion based on mutual information (MI) [START_REF] Hu | Improving retrieval performance by global analysis[END_REF]. To check if our model statistically better than the state of the art models, we use Fisher's Randomization test at the 0.05 level [START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF].

We proposed two variants for selecting expansion terms: expansion words are related to one query word (VEXP-One), and expansion words are related to the whole query (VEXP-Whole). In the second variant, we have used four aggregation function in order to obtain a query vector from its word vectors: VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min. We have analyzed the effect of our two query expansion variants on the retrieval performance. We also showed that distributed neural embeddings are promising knowledge resource for query expansion by comparing them with two effective methods for query expansion: pseudo-relevance feedback and mutual information.

Concerning our first variant where expansion words are related to one query word (VEXP-One), we first observed that VEXP-One is always statistically better than NEXP for the five test corpora, which is not the case of PRF and MI. VEXP-One shows a statistically significant improvement over PRF.

Our second variant where expansion words are related to the whole query: VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min. Actually, there is no difference between VEXP-Sum and VEXP-Avg, as we use cosine similarity 1 . Moreover, we observe that there is no big difference between the four aggregation functions that are used to obtain the query vector: Sum, Average, Max, and Min. VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min are statistically better than NEXP in several cases, which is not the case for PRF and MI. However, VEXP-One is better than VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min.

We also observed that aggregating distributed neural embeddings of query words for obtaining the query vector, seems to work better for corpora that contain short queries rather than long queries. When queries are long the aggregating seems to be less effective on the retrieval performance.

Contribution 4. Term Mismatch Probability Estimation and Reduction

In this contribution, we presented how we apply the term mismatch probability definition for our contributions (Contributions 1 & 2 & 3). We then used standard retrieval corpora with queries and relevance judgments in order to estimate term mismatch probability. The estimated term mismatch probability allowed us to provide a quantitative analysis of term mismatch. Our quantitative analysis is provided on seven CLEF corpora: five ImageCLEF corpora and two cultural heritage corpora. ImageCLEF corpora are indexed using two types of indexing terms: words and UMLS concepts. Cultural heritage corpora are only indexed using words. Exploratory data analysis show that the average query term, in both short or long queries will mismatch (not appear in) 30-70% of the relevant documents for the query. Many query terms suffer from the mismatch problem, and mismatch is quite prevalent. Furthermore, the term mismatch probability varies widely from 0 to 1 across different terms.

Concerning words as indexing terms, our analysis shows that term mismatch probability is uniformly distributed, between 0 and 1, in all corpora, and term mismatch is presented in both short and long queries.

Moving to concepts, we obtain, by using concepts for representing documents and queries, similar curves to the curves which are obtained using words. More precisely, term mismatch probability, for all query concepts, is also uniformly distributed in all corpora, and term mismatch is presented in both short and long queries. Our analysis using some examples show that mismatch probability, using concepts, is reduced in some cases but still the same in other cases. Therefore, using concepts is not sufficient to overcome term mismatch problem.

Comparing term mismatch probability using concepts with those using words, Table 8.2, shows that using words gives lower mismatch portability for short queries corpora and higher mismatch portability for long queries corpora. As a result, the system performance using words is better than using concepts for short queries corpora. However, the system performance using concepts is better than using words for long queries. Therefore, annotation tools, like MetaMap, work better for long queries comparing with short queries.

Term relations play an important role for reducing term mismatch probability, and as a result, improving system recall. In our first contribution, the modified document representation considers hierarchical relations for reducing term mismatch probability. As a result, term mismatch probability reduction, in this case, is less than our second and third contributions, where we use a more exhaustive relations.

Our second contribution, using a collaborative knowledge resource for extracting term relations, provides a very effective resource for reducing mismatch probability, and as a result, improving system recall. Our third contribution, using distributed neural embeddings, also provides an automatic and effective approach for extracting term relations.

Our contributions reveal that we must be careful when we exploit semantic relations to reduce term mismatch probability. Considering related terms is important for reducing term mismatch probability. However, related terms should be carefully weighted for maintaining and improving the system recall.

First, our modified document representation considers hierarchical relationships between concepts in order to modify the document representation. The modified document representation contributes to reduce term mismatch probability. However, even term mismatch probability is significantly reduced, the effect on the system recall, measured by MRR, is not consistently remarkable. Therefore, we need to consider other relationships to build the modified document that consistently improve the system recall.

Second, query expansion approach using collaborative knowledge resource neutralized the term mismatch probability median, which means that 50% of query terms, at least, have a zero mismatch probability by considering expansion terms. Therefore, the structure of Wikipedia as a collaborative knowledge resource, provides a high quality expansion that significantly improves the system recall, measured by MRR.

Third, query expansion approach, using distributed neural embeddings, significantly reduces term mismatch probability, and significantly improves, in many cases, the system recall, measured by MRR. Query expansion approach, using distributed neural embeddings, reduces mismatch probability better than modified document using hierarchical relationships, as distributed neural embeddings provides a better term coverage relationships than only using hierarchical relationships. 9.2. Perspectives 133 9.2 Perspectives Understanding term mismatch and its role in retrieval modeling provide a tool for future interventions to solve term mismatch problem, and to improve search scenarios. Future research can apply the new understandings and ideas that would not have been possible before.

Term Mismatch Probability Predication

This dissertation research leads us to the necessity to develop an accurate prediction of the term mismatch probability which can lead to even larger gain in retrieval performance. To achieve an accurate prediction, it is key to accurately model a comprehensive set of factors that could cause mismatch. Further data analysis, based on the framework designed in this work, can identify a complete set of causes of mismatch, as well as how much each of them contributes to term mismatch overall.

Future research can also build upon this research by, for example, analyzing each query term and mismatched relevant document pair, or performing failure analysis to provide effective prediction features.

Current retrieval models typically use simple collection statistics to asses the importance of a query term, to score, and to rank retrieved documents. More precisely, standard retrieval models are based on the term frequency tf , and the inverse document frequency idf . However, using simple collection statistics, retrieval models cannot accurately asses term importance. For instance, idf gives more importance to rare terms, i.e. documents which contain rare query terms are normally retrieved at the top of the result list. However, if a rare term has a high mismatch probability, which means that this term is not very useful for discriminating relevant documents, i.e. it should not be very important for retrieving documents. Therefore, an accurate term mismatch prediction can be integrated into retrieval models to asses the importance of a query term, as a result, an important improvement could be obtained on retrieval performance.

An accurate term mismatch prediction could be also integrated into a query expansion approach. In one hand, for detecting query terms that suffer more from mismatch problem in order to consider them more in a query expansion process. On the other hand, for selecting good expansion terms that could improve the effectiveness of retrieval systems. Actually, expansion terms with high term mismatch probability are not effective to discriminate relevant documents.

Term Mismatch Diagnosis and Interventions

The dissertation research studies the mismatch problem at the term level and shows the interventions that can reduce the mismatch probability of query terms. Further research can identify specific types of mismatch problems or even can identify different types of problems.

Different causes of mismatch specify different types of mismatch problems. The dissertation research studies how a mismatch probability is reduced by considering related terms, defined in a knowledge resource, using a document or a query modification approach. Future research may focus on identifying different types of mismatch problem. The more detailed diagnosis allows different interventions to be designed and applied to solve these different types of mismatch cases, further improving mismatch prediction and retrieval accuracy.

The dissertation focuses on the term mismatch problem, but a query can suffer from a number of different problems e.g. emphasis, mismatch, or complexity problems. Being able to diagnose different kinds of problems at the different levels of the retrieval process can guide the application of a wide variety of retrieval techniques that aim to solve these different problems, potentially leading to more effective uses of the current or future retrieval techniques. The diagnostic interventions allow different retrieval techniques to be applied selectively on a session-by-session, query-by-query or term-by-term basis, according to the needs of the sessions, queries or terms, instead of uniformly in all cases.

Term Ambiguity

Term ambiguity is another feature of natural languages which also causes a problem for a standard information retrieval models. An ambiguous term has more than one meaning in the language to which it belongs. As a result, an ambiguous query term can appear in irrelevant documents with a different meaning of its intended meaning in a user query. Term ambiguity can be also formally defined for a term t as the proportion of irrelevant documents that contain t, as follows:

P (t|R) =
|{d ∈ Rel(q) : t ∈ d}| |Rel(q)| (9.1)

where Rel(q) represents the set of irrelevant documents for a query q.

Term ambiguity causes to rank irrelevant documents in the top retrieved documents, which decreases the retrieval precision. A similar analysis, to what we have presented on term mismatch probability, could be carried out on term ambiguity probability, and the effect of term ambiguity on retrieval performance could be also figured out. Furthermore, an effective estimation of term ambiguity probability could be also integrated into term weighting in an information retrieval model to improve its effectiveness.

Retrieval and Distributed Neural Embeddings

Even though modern retrieval systems typically use a multitude of features to rank documents, the backbone for search ranking is usually the standard tf.idf retrieval models. The main shortcoming in standard tf.idf models that they are still primarily based on the exact matching of query terms, which causes a mismatch problem. Therefore, the identification of relevant documents should be based on semantic matching rather than exact matching.

Distributed Neural Embeddings have recently proven to be effective for term similarity task [Mikolov et al., 2013a,b;[START_REF] Pennington | Glove: Global vectors for word representation[END_REF]. Distributed neural embeddings represent terms as vectors of a fixed number of dimensions, instead of the atomic representation in standard tf.idf models. Term vectors capture relationships between terms, or term semantics. Therefore, it will be interesting to go from term level to document and query levels with maintaining the semantics captured by embeddings. In other words, effective document and query representations using embeddings could capture the semantic content of queries and documents. As a result, mismatch problem could be mitigated, as we avoid the exact matching between document and query terms. However, preliminary research, using embeddings for representing documents and queries, are currently ineffective, to obtain the performance of classical information retrieval models [Desprès et al., 2016].

In Appendix A, we propose an approach that aggregates term embeddings for obtaining document and query embeddings and we evaluate the effectiveness of document and query embeddings within an information retrieval system, where the results are far from effective retrieval models. On the one hand, future research can explore more effective ways to obtain document and query embeddings. On the other hand, future research should also provide how mismatch problem will be transformed, when embeddings are used to represent documents and queries.

Space Model to match between a document and a query vectors. However, instead of document vectors extracted form term-document matrix which are of the vocabulary length, we have more compact vectors of several hundreds of dimensions.

The rest of chapter is organized as follows: section A.2, details our revisited Vector Space Model. Section A.3, studies the effectiveness of the aggregated document and query vectors within the revisited Vector Space Model by comparing it with the two variants of classical Vector Space Model. Finally, section A.4, concludes the chapter.

A.2 Revisited Vector Space Model Using Distributed Neural Embeddings

In this section, we detail how the Vector Space Model is built based on distributed neural embeddings. First, we present how distributed neural embeddings of terms are learned using neural networks. Then, we illustrate the several possibilities for obtaining document and query vectors using distributed neural embeddings of their terms. Last, we talk about the matching mechanism that is used to rank documents with respect to a given user query. The major difference between the revisited Vector Space Model and VSM is the way with which we construct document and query vectors.

A.2.1 Learning Word Embeddings

In this step, learning takes place from a large amount of unstructured textual data, distributed neural embeddings are learned using neural networks. The resulting vectors carry relationships between terms, such as a city and the country it belongs to, e.g. France is to Paris what Germany is to Berlin [Mikolov et al., 2013a,b]. In this appendix, we are also concerned with one word terms. Therefore, each word w is represented by a vector of a predefined dimension m.

v w =< dim 1w , dim 2w , ..., dim mw > (A.1) A real-valued vector of a predefined dimension m, 600 dimensions for example.

A.2.2 Document and Query Vectors

In Vector Space Model, each document and query are represented by a bag of terms [START_REF] Crestani | Exploiting the similarity of non-matching terms at retrieval time[END_REF]. For instance, a document d is represented as: d = [w 1 , w 2 , ..., w |d| ]. After the learning phase, each word w is represented by a vector a real-valued vector of m dimensions. A query or a document vector could be obtained by aggregating their word vectors. Several aggregation functions are used for obtaining document and query vectors, such as: sum, average, or maximum. Therefore, document and query vectors are defined according to the aggregation function which is used to obtain them, as follows.

• Summing distributed neural embeddings of words. 

v

A.2.3 Matching

In Vector Space Models, the similarity is determined by using associative coefficients based on the inner product of the document and query vectors. The inner product is usually normalized. The most popular similarity measure is the cosine coefficient, which measures the angle between the document and query vectors. Other measures are also used such as: Jaccard and Dice coefficients [Salton, 1988].

After the aggregation step, each document and query are represented as a vector of m dimension as follows:

v d =< dim 1d , dim 2d , ..., dim md > v q =< dim 1q , dim 2q , ..., dim mq > (A.6)

We use the cosine similarity to calculate the Retrieval Status Value (RSV) between d and q, as follows:

RSV (d, q) = cos(v d , v q ) = d.q |d|.|q| = We clearly see that there is no difference, in the matching, between revisited VSM and the classical one. However, the main difference is how the document and query vectors are constructed. In the classical model the document and query vectors have the vocabulary length. However, in the revisited model the document and query vectors have several hundreds of dimensions.

A.3 Experiments

In our model, each word is represented by a real-valued vector. We aggregate these vectors in order to obtain document and query vectors. The goal of our experiments is to evaluate the effectiveness of aggregated document and query vectors within an information retrieval system, and to identify the aggregation strategy that gives the best retrieval performance.

This section is organized as follows: section A.3.1, is dedicated to describe the corpora, which we apply our model to, and their statistics. Section A.3.2, presents data and tools that are used to learn distributed neural embeddings. Section A.3.3, presents how documents and queries are represented by aggregating word vectors. Section A.3.4, reviews the metrics that we use to compare our model with state-of-the-art models. In section A.3.5, we present the baseline models that are used for comparison purposes. Section A.3.6, presents the retrieval performance using the our revisited Vector Space Model, and compare it with two state-of-the-art models: VSM using term frequency weighting tf and VSM using tf.idf weighting.

A.3.1 Test and Learning Corpora

Six medical corpora from CLEF 1 are used. These corpora are used for learning distributed neural embeddings, and for evaluating the revisited Vector Space Model based on distributed neural embeddings.

• Image2009, Image2010, Image2011, and Image2012 which contain short documents and queries. • Case2011 and Case2012 which contain long documents and queries.

Table A.1 shows some statistics about these corpora, avdl and avql are average length of documents and queries, respectively. These medical collections provide a huge amount of medical text that we need in the learning phase. RVSM-Sum gives better MAP than VSM-TF for the three collections: Image2010, Im-age2011, and Image2012. However, RVSM-Sum gives better MAP than VSM-TFIDF for only Image2010, and for the other collections VSM-TFIDF is better than RVSM-Sum.

Concerning the efficiency of the classical and revisited VSM. In the classical VSM, only documents which contain at least one query word are examined for obtaining a query result. However, in the revisited VSM, all documents should be evaluated and examined for obtaining a query result. 3, summarizes the P @10 of the three variants of the revisited Vector Space Model: RVSM-Sum, RVSM-Max, and RVSM-Min. RVSM-Sum gives better P@10 than VSM-TF and VSM-TFIDF for the three collections: Image2010, Image2011, and Case2011. However, VSM-TFIDF gives better P @10 than RVSM-Sum for Case2012. 

A.4 Summary

We revisit in this appendix the Vector Space Model in Information Retrieval. The main difference between the revisited Vector Space Model and the classical Vector Space Model is the way with which document and query vectors are built. The revisited VSM is based on distributed neural embeddings. Document and query vectors are obtained by aggregating distributed neural embeddings of the words that mentioned within. Our experimental results show that summing distributed neural embeddings (RVSM-Sum), for obtaining document and query vectors, gives promising MAP and P@10 for short documents and queries. However, aggregating distributed neural embeddings for long documents and queries seems to be not quite effective for retrieval performance.

The way with which document and query vectors are built, affects the evaluation of the retrieval model. In the classical VSM, only documents which contain at least one query word are examined for obtaining a query result. However, in the revisited VSM, all documents should be evaluated or examined for obtaining a query result.

B.2. MetaMap

B.2 MetaMap

MetaMap is a tool that annotates and maps a piece of text into UMLS concepts. The whole process of MetaMap with all technical details is detailed by Aronson [START_REF] Aronson | Metamap: Mapping text to the umls meta-thesaurus[END_REF]. According to MetaMap, a text is a set of utterances.

• First step, in the annotation process, is to parse each utterance into a set of noun phrases using SPECIALIST tagger and the MedPost/SKR part of speech tagger. • Second step is generating noun phrase variants. A variant is a meaningful sequence of one or more words of the noun phrase, with all synonymous, abbreviations, acronyms, spelling, derivational, and inflectional variants. Each variant has its variant distance score that measures to which limit it varies from its original noun phrase. • Third step is to extract the Meta-thesaurus candidate terminological concepts for each noun phrase, where each terminological concept containing one of the variants of a noun phrase is a candidate terminological concept for that noun phrase. • Fourth step is to evaluate the strength of mapping between a noun phrase and a candidate terminological concept. Then, candidates are ordered according to this evaluation function. MetaMap evaluation function depends on the following four components:

-Centrality. Its value is 1 if the head of noun phrase is involved in the mapping process, otherwise it is 0. -Variation distance. It is the distance between the variant that involved in mapping and its original noun phrase. Variation distance V is calculated according to the following formula:

V = 4 D + 4 (B.1)
where D is the sum of distance values of each step achieved to obtain a variant from its original noun phrase. The distance values according to each step are: spelling = 1, inflectional = 1, synonym or acronym/abbreviation = 2, derivational = 3. -Coverage. It is calculated depending on the amount of intersection, how many words between a variant and its candidate terminological concept. -Cohesiveness. It is calculated depending on the maximum sequence of continuous words participated in mapping, i.e. the maximum sequence of continuous words shared between a variant and its candidate terminological concept.

All previous components have a value between 0 (the weakest match) and 1 (the strongest match). The overall evaluation value is a weighted average of the values of the previous components, and it is normalized to a value between 0 (no match at all) and 1000 (identical match). • Fifth step is to reduce the size of the candidate set. For each subset of candidates that corresponds to the same part of original noun phrase, the best candidate according to the evaluation function is chosen to represent this part.

MetaMap has two major drawbacks that influence MetaMap's effectiveness [START_REF] Hliaoutakis | The amtex approach in the medical document indexing and retrieval application[END_REF][START_REF] Trieschnigg | Proof of concept: concept-based biomedical information retrieval[END_REF]. First, candidate terminological concepts selection is based on the simple words, which poses an over-generation problem. For example, given the noun "Ocular Complications", the MetaMap combines three concepts "Ocular", "Complications", and "Complications Specific to Antepartum Postpartum Gold", because they share at least one word in common. The second disadvantage is the high cost in terms of processing time, because MetaMap uses a set of sophisticated linguistic methods as parsing, generating alternatives, looking across Meta-thesaurus and computing some statistical measures.

B.3 MaxMatcher

MaxMatcher is an annotation tool based on searching in a dictionary of terms which are associated to terminological concepts [START_REF] Zhou | PRICAI 2006: Trends in Artificial Intelligence: 9th Pacific Rim International Conference on Artificial Intelligence[END_REF]. The search for a term in a dictionary could be done in two ways: exact or approximated match. MaxMatcher uses MeSH, UMLS as knowledge resources to identify terminological concepts. MeSH does not contain ambiguous terms i.e. terms that corresponds several terminological concepts. Therefore, MaxMatcher use an exact search if MeSH is used.

Given a text, MaxMatcher cuts this text into terms, and then finds the longest term that corresponds to an entry in the dictionary. For approximated search, the term can be shorter than an entry of a terminological concept. For example, the word "gyrB" can correspond the terminological concept "gyrB Protein". However, if a terminological concept consists of two sub-concepts, MaxMatcher returns two candidate sub-concepts rather than returning the most specific terminological concept. For example, the term "Ablation of Liver Tumor" corresponds the terminological concept C2004650. However, MaxMatcher returns following two terminological concepts: "Ablation" (C0547070, T169) of "Liver Tumor" (C0023903, T191).

B.4 Wikipedia-Miner

Wikipedia Miner1 is a toolkit to perform different functionality on Wikipedia, including search, annotating text using Wikipedia articles, explore a specific Wikipedia article (its categories, incoming links, outgoing links, etc.). Wikipedia Miner can help in different tasks. 
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 1 Figure 1.1: Information Retrieval System schema.

  For instance, standard Boolean model does not define any ranking mechanism [Baeza-Yates & Ribeiro-Neto, 1999]. 1.1. Term Mismatch Problem 5 1.
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 14 Figure 1.4: Our contributions on an Information Retrieval System schema.
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 2 Figure 2.1, shows an example of UMLS meta-thesaurus content.
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 22 Figure 2.2: The internal structure of UMLS.
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 2 Figure 2.2, shows the UMLS internal structure.
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 2 Figure 2.3, shows an example of WordNet sub-hierarchy that corresponds to the synset <Art>. WordNet has been widely used for the task of word sense disambiguation [Baziz et al., 2005; Navigli, 2009; Voorhees, 1993], and for query expansion in information retrieval [Gonzalo et al., 1998; Zhang et al., 2009].The widespread use, of WordNet in information retrieval, is due to the fact that WordNet lexical database almost totally covers the English language, which is appropriate to some types of data collections that are used in information retrieval like newspapers and magazines.
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 24 Figure 2.4: Entity Visualization in YAGO (Entity: Leonardo da Vinci).
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 24 Figure 2.4, shows the <Leonardo da Vinci> entity in YAGO: each entity may be associated

Figure 2

 2 Figure 2.5, shows the steps of semantic indexing.Semantic indexing first annotate the text. When the annotation is done, the indexing process must continue by selecting and sometimes weighting the terminological concepts that corresponds each annotated term, and then by representing documents and queries. The system is then able to achieve the meaning-based matching between a query and a document.Actually, concerning the annotation step there are many examples of annotation tools that annotate a text and maps it to terminological concepts, in a knowledge resource: PubMed ATM 1 , MetaMap[START_REF] Aronson | Metamap: Mapping text to the umls meta-thesaurus[END_REF], MaxMatcher[START_REF] Zhou | PRICAI 2006: Trends in Artificial Intelligence: 9th Pacific Rim International Conference on Artificial Intelligence[END_REF]], Wikipedia-Miner 2 . MetaMap[START_REF] Aronson | Metamap: Mapping text to the umls meta-thesaurus[END_REF], for example, maps medical text to UMLS concepts.Concerning knowledge resources that are used for semantic indexing, we distinguish between two types of knowledge resources:
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 25 Figure 2.5: Steps of semantic indexing.
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  ; Cronen-Townsend et al., 2004; He & Ounis, 2007; Manning et al., 2008].
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 3 Figure 3.1: Automatic query expansion schema.

  al., 2005; Cui et al., 2003; Hu et al., 2006]. Hu et al.

  ; Witten & Frank, 2005]. Collaborative filtering and recommender systems also use item (product, article, post, etc.) vectors to represent customers, consumers, clients, or users [Breese et al., 1998; Linden et al., 2003; Resnick et al., 1994]. These item vectors are used to identify the similarity between users.

Figures 4 .

 4 1 shows examples of document and term vectors 1 , where we have a collection of four documents and a vocabulary of three terms. Therefore, each document vector consists of three dimensions. Each dimension corresponds a term in the vocabulary, and shows how much the term occurs in the document. However, each term vector consists of four dimensions. Each dimension corresponds a document in the collection, and show how much the term occurs in the corresponding document. We use in these examples term frequency weighting (tf ).
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 4 Figure 4.1: Examples of term vectors using term frequency weighting (tf ).

Figure 4 .

 4 Figure 4.1, represents also the term-document matrix. Term-document matrix is a twodimensional matrix whose rows are the terms and columns are the documents.A crucial issue in document and term vectors is that, each term is represented as an independent dimension 2 . Therefore, several mathematical techniques are proposed to group similar dimensions to obtain more meaningful dimensions. For instance, Latent Semantic Indexing (LSI), applies Singular Value Decomposition (SVD) on document vectors, and then produce more compact document vectors, where similar terms are grouped together into the same dimension[START_REF] Deerwester | Indexing by latent semantic analysis[END_REF]]. However, Latent Semantic Analysis (LSA), applies Singular Value Decomposition on term vectors[START_REF] Landauer | Latent semantic analysis: Theory, method and application[END_REF]. LSI and LSA assume that the produced vectors better capture the semantic content of documents and terms.

  ], personalized search [Harvey et al., 2013], document clustering [Jiali Yun & Yu, 2011], recommendation systems [Krestel et al., 2009], etc.

  g. France is to Paris what Germany is to Berlin [Mikolov et al., 2013a]. Mikolov et al. [Mikolov et al., 2013a,b], have recently proposed two efficient neural architectures: continuous bag-of-words (CBOW) and Skip-gram models, where the quality of these two models is measured in a term similarity task. CBOW and Skip-gram are proved their efficiency and effectiveness comparing to the previously best performing techniques based on different types of neural networks [Mikolov et al., 2013a,b]. We detail continuous bag-of-words and skip-gram models in the following two sections.4.2.3.1 Continuous Bag-of-Words ModelIn continuous bag of words model (CBOW), the idea is given a context represented by multiple terms, the model aims to maximize the objective function that predicts the central term[Mikolov et al., 2013a].
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 4 Figure 4.2: Continuous bag-of-words structure.
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 4 2, shows CBOW structure. The two matrices W |V |×d and W d×|V | , are combined to obtain term vectors 1 . each line in W |V |×d corresponds a term in a vocabulary, and each column 1 Averaged for instance.

  al., 2013a,b]. More precisely, the input of the neural network is a |V |-dimension vector that corresponds the central term, and the output is multiple |V |-dimension vectors that correspond the context of the central term. Skip-gram produces better quality term vectors, but it requires more computation.
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 4 Figure 4.3: Skip-Gram structure.
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 44 Figure 4.4, shows the structure of the model which is used for learning paragraph or document vectors.We see that, the document vector is considered as an input of the neural network, in addition to term vectors. Every paragraph is mapped to a vector in a document matrix, similar to the term matrices which are learned using CBOW or Skip-Gram architectures (W |V |×d and W d×|V | ). In this new network, the paragraph vector and term vectors are averaged to predict the next term in the context.
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 51 Figure 5.1: Building the query and knowledge dependent document representation d q .
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 5 Figures 5.2 and 5.3, show query and document examples of Image2010 corpus, respectively. What we exactly index, in queries, is their English parts <EN DESCRIPTION>. Whereas, we index, in documents, captions and titles.
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 5 Figure 5.3: A document example of Image2010 collection.
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 54 Figure 5.4: MetaMap's output of the text "Pericardial Effusional".
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  [ALMasri et al., 2013; Almasri et al., 2014a; Tan et al., 2013].
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 63 Figure 6.3: Example of two Wikipedia articles with the same title "Last Supper". Each article corresponds a sense of the term "Last Supper" in Wikipedia. Each article is connected with two set of articles: incoming links I and outgoing links O. Each ellipse between two linked articles corresponds the semantic similarity between these two articles.
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 64 Figure6.4, shows an example of the term "Last Supper", where it is mentioned in two different Wikipedia articles with two different meanings. First meaning, "Last Supper" is the painting of "Leonardo da Vinci". Second meaning, "Last Supper" is the final meal according to Christian belief.

  (a) "Last Supper" term where it is mentioned as the painting of "Leonardo da Vinci".(b) "Last Supper" term where it is mentioned as the final meal according to Christian belief.
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 64 Figure 6.4: An example of the term "Last Supper", where it is mentioned in two different Wikipedia articles with two different senses.

Figure 6 . 5 :

 65 Figure 6.5: First part of the abstract (Last supper painting article).
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 6 Figure 6.6: MAP as a function of number of expansion terms k using Jelinek-Mercer and Dirichlet retrieval models for the two corpora: CHIC2012 and CHIC2013 and the expansion terms from both incoming links and outgoing links IO.
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  (a) Word mismatch probability variation over Im-age2010. (b) Concept mismatch probability variation over Im-age2010.
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 81 Figure 8.1: Variation of the initial mismatch probability.
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 8 Figure8.2, show the number of words and concepts in each probability interval. Probability interval length is 0.1. We see that the distribution of the estimated term mismatch probability is almost uniform 1 , where there is no big difference in the number of terms in each probability interval.An approach for solving term mismatch problem aims to increase the number of terms in the low probability intervals, and to reduce the number of terms in the high probability intervals.

Figure 8 . 3 :

 83 Figure 8.3: Example for Comparing between term mismatch probability using words and concepts.

  8.6.1 Term Mismatch Probability Evaluation Using Query and Knowledge Dependent Document RepresentationContribution 1. Term mismatch probability is reduced when we use the modified document instead of the original document (Equation 8.1). We propose three variants for calculating the frequency of a mismatched query term: MDM-MAX, MDM-AVG, and MDM-ALL. Actually, all the variants have the same effect on reducing term mismatch probability. However, the pseudo frequency of the mismatched query term has a major influence on maintaining the system performance.
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 4 Figure 8.4: Comparing between initial and reduced term mismatch probability using Contribution 1, over ImageCLEF corpora.
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 85 Figure 8.5: Comparison using the number of concepts in each probability interval between initial and reduced mismatch probability over ImagCLEF corpora.
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 86 Figure 8.6: Comparison between initial and reduced mismatch probability using Contribution 2, over cultural heritage corpora.

  Figure 8.7: Comparison using the number of words in each probability interval between initial and reduced mismatch probability over both CHIC2012 and CHIC2013.

  Figure 8.8: Comparing between initial and reduced mismatch probability using Contribution 3, over ImagCLEF corpora.
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  Figure C.2: Word mismatch probability variation over Image2011.
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 3 Figure C.3: Word mismatch probability variation over Image2012.
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 4 Figure C.4: Word mismatch probability variation over Case2011.
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 5 Figure C.5: Word mismatch probability variation over Case2012.
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 6 Figure C.6: Word mismatch probability variation over CHIC2012.
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 7 Figure C.7: Word mismatch probability variation over CHIC2013.
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 8 Figure C.8: Concept mismatch probability variation over Image2010.
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 9 Figure C.9: Concept mismatch probability variation over Image2011.
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 10 Figure C.10: Concept mismatch probability variation over Image2012.
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 11 Figure C.11: Concept mismatch probability variation over Case2011.
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 12 Figure C.12: Concept mismatch probability variation over Case2012.
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 14 Figure C.14: Mismatch probability and modified mismatch probability over Image2011.
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 15 Figure C.15: Mismatch probability and modified mismatch probability over Image2012.
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 16 Figure C.16: Mismatch probability and modified mismatch probability over Case2011.
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 18 Figure C.18: Modified mismatch probability over CHIC2012.
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 20 Figure C.20: Comparing between mismatch probability and modified mismatch probability using words over Image2010.
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 21 Figure C.21: Comparing between mismatch probability and modified mismatch probability using words over Image2011.
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 22 Figure C.22: Comparing between mismatch probability and modified mismatch probability using words over Image2012.
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 23 Figure C.23: Comparing between mismatch probability and modified mismatch probability using words over Case2011.

  

  al., 2006; Serizawa & Kobayashi, 2013; Widdows & Cohen, 2010]. Recently, several efficient Natural Language Processing methods, based also on neural networks, are proposed to learn high quality distributed neural embeddings from a large amount of unstructured text data with billions of words [Mikolov et al., 2013a,b]. These distributed neural embeddings capture a large number of term relationships, using vectors of several hundreds of dimensions.

Table 5 .

 5 1: Corpora statistics. avdl and avql are the average length of documents and queries. (#d) number of documents and (#q) number of queries.

	Corpus	#d	#q	avdl	avql	avdl	avql
				in words in words in concepts in concepts
	Image2010 77,495 16	62.12	3.81	157.27	12.0
	Image2011 230,088 30	44.83	4.0	101.92	12.73
	Image2012 306,530 22	47.16	3.55	104.26	9.41
	Case2011	55,634 10 2594.5	19.7	5752.38	57.5
	Case2012	74,654 26 2570.72	24.35	5971.21	63.73

Table 5 .

 5 2: Corpora statistics. avdl and avql are average length of documents and queries. Number of general concepts inside the queries.

	Corpus	Number of Concepts Number of General Number of Concepts
		within Queries	Concepts within	with a Reduced
		within Queries	Queries	Mismatch Probability
	Image2010	186	109	30
	Image2011	374	198	90
	Image2012	204	132	35
	Case2011	516	219	112
	Case2012	1472	519	184

Table 5 .

 5 3: MAP of modified Dirichlet and modified Jelinek-Mercer smoothing. The gain is the improvement obtained by our approach over ordinary language models. † indicates a statistically significant improvement over ordinary language models using Fisher's Randomization test with p < 0.05.

				Dirichlet				Jelinek-Mercer
		Image Image Image Case	Case Image Image Image Case	Case
		2010	2011	2012	2011 2012	2010	2011	2012	2011 2012
	LM	0.257 0.144 0.104 0.110 0.179 0.249 0.164 0.107 0.148 0.187
	TM	0.287 0.155 † 0.119 0.121 † 0.146 0.301 0.176 0.110 0.159 † 0.187
	MDM-MAX 0.305 0.156 † 0.118 0.119 † 0.186 0.302 0.176 † 0.119 † 0.159 † 0.196
	MDM-SUM 0.274 0.152 0.115 0.111 0.145 0.295 0.180 † 0.114 0.150 0.196
	MDM-AVG 0.274 0.152 0.115 0.110 0.144 0.295 0.180 † 0.114 0.151 0.197

Table 5 .

 5 4: Index sizes for both classical and modified document.

	Corpus	Number of Items in Number of Items in
	Corpus	the Classical Index	Modified Index
	Image2010	8,126,146	31,225,611
	Image2011	15,352,928	53,739,776
	Image2012	20,859,733	72,340,685
	Case2011	69,920,290	139,865,687
	Case2012	95,826,194	189,768,704

Table 6 .

 6 2: Baselines using Jelinek-Mercer (JM) and Dirichlet (DIR) models, with language model (LM) and relevance language model (PRF). Then, testing phase to CHIC2012 use the optimal parameters tuned from CHIC2013, and vice versa. In order to find the best parameters setting, we sweep over the number of expansion terms k ∈ {5, 10, 15, 20, 25, 30}, the tuning parameter α ∈ {0.1, ..., 1.0} used in (Equation

		CHIC2012	CHIC2013
		MAP		MAP
	Method	JM	DIR	JM	DIR
	LM	0.3708 0.3768 0.3552 0.3627
	PRF	0.3688 0.3724 0.3549 0.3621
	second set, contains topics from CHIC2013.			

Table 6 .

 6 3: Semantic query expansion (SQE) results using incoming links I, outgoing links O, or Both IO, using Jelinek-Mercer. † indicates significant improvement over LM and PRF using paired t-test with p < 0.05. The percentage is for the difference between our expansion results and LM as it is the best baseline. Bold values shows best MAP between different values of number of expansion terms k.

	JM Links n	CHIC2012 MAP Gain MAP CHIC2013 Gain
	LM	-	0 0.3708	-	0.3552	-
	PRF	0	-	0.3688	-	0.3549	-
			5 0.4231 +14% 0.4100 +15%
			10 0.4262 † +15% 0.4199 † +18%
		I	15 0.4177 +13% 0.4073 +15% 20 0.4175 +13% 0.3983 +12%
			25 0.4089 +10% 0.3926 +11%
			30 0.4037	+9% 0.3878	+9%
			5 0.4307 † +16% 0.4099 +15%
			10 0.4317 † +16% 0.4213 † +19%
	SQE	O	15 0.4225 +14% 0.4068 +15% 20 0.4207 +13% 0.4003 +13%
			25 0.4135 +12% 0.3957 +11%
			30 0.4094 +10% 0.3893 +10%
			5 0.4210 +14% 0.4099	+8%
			10 0.4307 † +16% 0.4127 +16%
		I+O	15 0.4311 † +16% 0.4158 +17% 20 0.4355 † +17% 0.4185 † +18%
			25 0.4235 +14% 0.4123 +16%
			30 0.4162 +12% 0.4073 +15%

Table 6 .

 6 4: Semantic query expansion (SQE) results using incoming links I, outgoing links O, or Both IO, using Dirichlet. † indicates significant improvement over LM and PRF using paired t-test with p < 0.05. The percentage is for the difference between our expansion results and PRF as it is the best baseline. Bold values shows best MAP between different values of number of expansion terms k.

	6.6. Summary

Table 7 .

 7 1: Training and testing collections.

	Corpus	#d	#q	avdl	avql
	Image2009 74,901 25	62.16	3.36
	Image2010 77,495 16	62.12	3.81
	Image2011 230,088 30	44.83	4.0
	Image2012 306,530 22	47.16	3.55
	Case2011	55,634 10 2594.5	19.7
	Case2012	74,654 26 2570.72 24.35

Table 7 .

 7 2: VEXP-One performance using MAP on test corpora. k is the number of expansion words for each query word.

				Jelinek-Mercer					Dirichlet		
	k Image2010 Image2011 Image2012 Case2011 Case2012 Image2010 Image2011 Image2012 Case2011 Case2012
	1	0.3286	0.2258	0.1997	0.1373	0.1552	0.3397	0.2173	0.1947	0.1288	0.1626
	2	0.3298	0.2325	0.1988	0.1431	0.1530	0.3361	0.2204	0.1890	0.1345	0.1628
	3	0.3395	0.2330	0.1996	0.1440	0.1517	0.3411	0.2192	0.1902	0.1366	0.1658
	4	0.3399	0.2338	0.2002	0.1413	0.1491	0.3561	0.2175	0.1909	0.1384	0.1610
	5	0.3323	0.2340	0.1909	0.1634	0.1455	0.3519	0.2187	0.1787	0.1410	0.1607
	6	0.3402	0.2324	0.1909	0.1432	0.1423	0.3603	0.2163	0.1798	0.1451	0.1504
	7	0.3397	0.2333	0.1881	0.1446	0.1371	0.3599	0.2184	0.1778	0.1431	0.1498
	8	0.3397	0.2353	0.1895	0.1414	0.1342	0.3584	0.2200	0.1813	0.1416	0.1482
	9	0.3365	0.2230	0.2004	0.1387	0.1321	0.3544	0.2221	0.1953	0.1379	0.1474
	10	0.3362	0.2233	0.2036	0.1343	0.1273	0.3510	0.2215	0.1990	0.1357	0.1462

Table 7 .

 7 3: VEXP-Sum, VEXP-Avg, VEXP-Max, and VEXP-Min performance using MAP on test corpora. k is the number of expansion words for each query.

				Jelinek-Mercer				Dirichlet
	k Aggregation Image Image Image	Case	Case	Image Image Image	Case	Case
			2010	2011	2012	2011	2012	2010	2011	2012	2011	2012
		Sum	0.3364 0.2287 0.1977 0.1321 0.1689 0.3445 0.2182 0.1758 0.1168 0.1722
	5	Avg Max	0.3364 0.2287 0.1977 0.1321 0.1689 0.3445 0.2182 0.1758 0.1168 0.1722 0.3337 0.2271 0.1920 0.1259 0.1685 0.3501 0.2114 0.1750 0.1191 0.1767
		Min	0.3329 0.2276 0.1959 0.1275 0.1649 0.3429 0.2155 0.1799 0.1201 0.1728
		Sum	0.3330 0.2152 0.1944 0.1328 0.1615 0.3553 0.2159 0.1820 0.1174 0.1670
	10	Avg Max	0.3330 0.2152 0.1944 0.1328 0.1615 0.3553 0.2159 0.1820 0.1174 0.1670 0.3327 0.2270 0.1840 0.1262 0.1696 0.3497 0.2161 0.1795 0.1154 0.1766
		Min	0.3344 0.2275 0.1939 0.1279 0.1643 0.3580 0.2148 0.1879 0.1212 0.1701
		Sum	0.3327 0.2170 0.1925 0.1363 0.1596 0.3524 0.2141 0.1841 0.1293 0.1663
	15	Avg Max	0.3327 0.2170 0.1925 0.1363 0.1596 0.3524 0.2141 0.1841 0.1293 0.1663 0.3317 0.2172 0.1998 0.1269 0.1709 0.3486 0.2202 0.1778 0.1191 0.1783
		Min	0.3339 0.2190 0.1928 0.1263 0.1638 0.3463 0.2150 0.1864 0.1198 0.1665
		Sum	0.3299 0.2198 0.1922 0.1361 0.1584 0.3404 0.2166 0.1855 0.1249 0.1648
	20	Avg Max	0.3299 0.2198 0.1922 0.1361 0.1584 0.3404 0.2166 0.1855 0.1249 0.1648 0.3322 0.2183 0.1903 0.1267 0.1710 0.3369 0.2201 0.1803 0.1184 0.1771
		Min	0.3347 0.2178 0.1930 0.1262 0.1629 0.3345 0.2151 0.1841 0.1202 0.1632
		Sum	0.3272 0.2218 0.1942 0.1357 0.1577 0.3334 0.2198 0.1875 0.1246 0.1626
	25	Avg Max	0.3272 0.2218 0.1942 0.1357 0.1577 0.3334 0.2198 0.1875 0.1246 0.1626 0.3319 0.2175 0.1899 0.1278 0.1710 0.3345 0.2187 0.1919 0.1196 0.1776
		Min	0.3349 0.2184 0.1941 0.1244 0.1616 0.3329 0.2143 0.1861 0.1116 0.1649

Table 7 .

 7 4: Best configurations for VEXP, PRF, and MI.

				Jelinek-Mercer					Dirichlet		
			Image Image Image Case Case Image Image Image Case Case
			2010 2011 2012 2011 2012 2010 2011 2012 2011 2012
	PRF	k #fbdocs	15 10	10 10	20 20	10 10	15 20	15 10	10 10	10 10	10 10	15 15
	MI	k	10	8	6	10	7	10	7	6	10	6
	VEXP-One	k	6	4	10	4	1	5	9	10	5	3
	VEXP-Sum	k	5	5	5	15	5	10	25	25	15	5
	VEXP-Avg	k	5	5	5	15	5	10	25	25	15	5
	VEXP-Max	k	5	5	15	25	20	5	15	25	25	15
	VEXP-Min	k	25	5	5	10	5	10	5	10	10	5

Table 8 .

 8 1: Contributions, statistics, and indexing terms over test corpora.

	Corpus	#d	#q	avdl	avql	avdl	avql	Indexed	Indexed
				in words in words in concepts in concepts	by concepts	by words
								Contribution 1 Contribution 3
	Image2010	77,495	16	62.12	3.81	157.27	12.0		
	Image2011	230,088 30	44.83	4.0	101.92	12.73		
	Image2012	306,530 22	47.16	3.55	104.26	9.41		
	Case2011	55,634	10 2594.5	19.7	5732.38	57.5		
	Case2012	74,654	26 2570.72	24.35	5971.21	63.73		
								Contribution 2
	CHIC2012 1,107,176 25	54.1	1.96	-	-	-	
	CHIC2013 1,107,176 25	54.1	2.0	-	-	-	
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  8.6.2. Term Mismatch Probability Evaluation Using Query Expansion Based on a Collaborative Knowledge Resource 116 Table 8.3: Comparing in average, in median, and in quartile between initial and reduced mismatch probability, using concepts, over ImageCLEF corpora.

	Corpus	Mismatch Probability Average Gain Median Gain First Quartile Gain
	Image2010	Initial Contribution 1	0.54 0.46	-15%	0.53 0.5	-6%	0.18 0.13	-28%
	Image2011	Initial Contribution 1	0.67 0.56	-16%	0.75 0.56	-25%	0.44 0.25	-43%
	Image2012	Initial Contribution 1	0.63 0.57	-10%	0.69 0.57	-17%	0.48 0.28	-42%
	Case2011	Initial Contribution 1	0.54 0.46	-15%	0.56 0.45	-20%	0.31 0.17	-45%
	Case2012	Initial Contribution 1	0.46 0.37	-20%	0.4 0.3	-25%	0.2 0.12	-40%
	8.6.2 Term Mismatch Probability Evaluation Using Query Expansion Based
	on a Collaborative Knowledge Resource			

Table 8 .

 8 4: Comparing in average, in median, and in quartile between initial and reduced mismatch probability, using words, of original and expanded queries over CHIC2012 and CHIC2013.

	Corpus	Mismatch Probability Average Gain Median Gain First Quartile Gain
	CHIC2012	Initial Contribution 2	0.39 0.1	-74%	0.3 0	-100%	0.05 0	-100%
	CHIC2013	Initial Contribution 2	0.33 0.09	-73%	0.2 0	-100%	0.04 0	-100%

Table 8 .

 8 5: Comparing in average, in median, and in quartile between initial and reduced mismatch probability, using words, of original and expanded queries over ImageCLEF corpora.

	Corpus	Mismatch Probability Average Gain Median Gain First Quartile Gain
	Image2010	Initial Contribution 3	0.33 0.23	-30%	0.19 0.04	-79%	0.01 0	-100%
	Image2011	Initial Contribution 3	0.62 0.49	-21%	0.62 0.45	-27%	0.4 0.2	-50%
	Image2012	Initial Contribution 3	0.64 0.38	-41%	0.71 0.29	-59%	0.48 0.09	-80%
	Case2011	Initial Contribution 3	0.65 0.29	-55%	0.72 0.27	-63%	0.39 0.06	-85%
	Case2012	Initial Contribution 3	0.54 0.37	-31%	0.57 0.32	-44%	0.22 0.04	-82%

  9.1.2. Contribution 2. Query Expansion Based on a Collaborative Knowledge Resource Structure 129

  where dim iw is the i-th component of the word vector v w .• Averaging distributed neural embeddings of words. where dim iw is the i-th component of the word vector v w .• Using Max function for each word vector component.

								dim mw >	
							w∈d			(A.2)
	v q =<	dim 1w ,	dim 2w , ...,	dim mw >	
			w∈q	w∈q	w∈q			
	v d =< v q =<	1 |d| 1 |q|	w∈d w∈q	dim 1w , dim 1w ,	1 |d| 1 |q|	w∈d w∈q	dim 2w , ..., dim 2w , ...,	1 |d| |q| 1	w∈d w∈q	dim mw > dim mw >	(A.3)

d =< w∈d dim 1w , w∈d dim 2w , ...,

Table A .

 A 2: MAP of revisited VSM comparing with classical VSM.

		Image2010 Image2011 Image2012 Case2011 Case2012
	VSM-TF	0.0675	0.0871	0.0463	0.0671	0.0719
	VSM-TFIDF	0.1075	0.1055	0.0619	0.0761	0.0768
	RVSM-Sum	0.1201	0.0898	0.0548	0.0667	0.0220
	RVSM-Max	0.0373	0.0213	0.0162	0.0166	0.0071
	RVSM-Min	0.0308	0.0212	0.0117	0.0154	0.0058

Table A .

 A 

Table A .

 A 3: P@10 of revisited VSM comparing with classical VSM.

		Image2010 Image2011 Image2012 Case2011 Case2012
	VSM-TF	0.1562	0.1833	0.1273	0.1000	0.0923
	VSM-TFIDF	0.1938	0.2133	0.1500	0.1100	0.1077
	RVSM-Sum	0.2750	0.2600	0.1273	0.1400	0.0385
	RVSM-Max	0.0875	0.0667	0.0727	0.0300	0.0115
	RVSM-Min	0.0938	0.0767	0.0818	0.0300	0.0077

Table C .

 C 1: Comparing in average, in median, and in quartile between initial and reduced mismatch probability, using concepts, over ImageCLEF corpora.CorpusMismatch Probability Average Gain Median Gain First Quartile Gain

	Image2010	Initial Contribution 1	0.54 0.46	-15%	0.53 0.5	-6%	0.18 0.13	-28%
	Image2011	Initial Contribution 1	0.67 0.56	-16%	0.75 0.56	-25%	0.44 0.25	-43%
	Image2012	Initial Contribution 1	0.63 0.57	-10%	0.69 0.57	-17%	0.48 0.28	-42%
	Case2011	Initial Contribution 1	0.54 0.46	-15%	0.56 0.45	-20%	0.31 0.17	-45%
	Case2012	Initial Contribution 1	0.46 0.37	-20%	0.4 0.3	-25%	0.2 0.12	-40%

C.4 Reduced Term Mismatch Using Query Expansion Based on a Collaborative Knowledge Resource

Table C .

 C 2: Comparing in average, in median, and in quartile between initial and reduced mismatch probability, using words, of original and expanded queries over CHIC2012 and CHIC2013.

	Corpus	Mismatch Probability Average Gain Median Gain First Quartile Gain
	CHIC2012	Initial Contribution 2	0.39 0.1	-74%	0.3 0	-100%	0.05 0	-100%
	CHIC2013	Initial Contribution 2	0.33 0.09	-73%	0.2 0	-100%	0.04 0	-100%

C.5 Reduced Term Mismatch Using Query Expansion Based on Distributed Neural Embeddings

The bag or the multiset is a generalization of the set[Syropoulos, 

2001].

Hepatomegaly is the condition of having an enlarged liver.

In a graded relevance, we define several relevance sets, where each set corresponds a non-zero relevance grade.

In a graded relevance, we calculate a probability for each relevance set using the same equation, and the term mismatch probability is a combination of these probability, where the importance of each probability in the combination is directly proportional with its grade of relevance.

http://www.imageclef.org/

A context is a document, a sentence, a paragraph, or a window of a fixed length of words.

https://www.nlm.nih.gov/mesh/

https://www.nlm.nih.gov/research/umls/

www.dmoz.org

http://wiki.dbpedia.org/

www.natcorp.ox.ac.uk

xmlns.com/foaf/spec/

sioc-project.org/ontology

http://en.wikipedia.org

http://wordnet.princeton.edu/wordnet/

http://www.geonames.org/

A triplet consists of a named entity (subject), a relationship (predicate) and another named entity (object) connected to the subject.

http://www.ncbi.nlm.nih.gov/pubmed

http://wikipedia-miner.cms.waikato.ac.nz/

http://www.imageclef.org/3.1. Automatic Query Expansion Approaches

Global context, which is the whole document collection, is used in the corpus specific approaches3.2. Automatic Query Expansion Steps

A context could be a document, a sentence, a paragraph, or a window of a fixed number of terms.

A context could be: a sentence, a window, a paragraph, or a document

A term refers to a word or sequence of words, mainly noun phrases.

Row vectors correspond to terms, and column vectors correspond to documents.

Dimension are orthogonal between each others.

Effecting computation on high dimensional matrices.

http://www.wjh.harvard.edu/ inquirer/

www.clef-campaign.org

www.ncbi.nlm.nih.gov/pubmed

Unified Medical Language System (http://www.nlm.nih.gov/research/umls/).

It could be instead the number of documents that contain, at least, one query term if we use the inverted index.

term mismatch probability. However, we see a significant difference in performance between the three variants, which leads us to say that weighting mismatched query terms has a crucial effect on the performance of mismatch aware retrieval models.

A term consists of one or more words.

The painter who paints last supper.

The church where last supper painting is situated.6.2.2. Term Polysemy

Wikipedia is a collaborative knowledge resource, where each node corresponds a Wikipedia article.

Cultural heritage corpora from CLEF campaign.

We have the same documents in both CHIC2012 and CHIC2013.

Wikipedia-Miner is a toolkit for tapping the rich semantics encoded within Wikipedia, https://sourceforge.net/projects/wikipedia-miner/.

Indri is an open source search engine[START_REF] Strohman | Indri: A language model-based search engine for complex queries[END_REF].

www.clef-initiative.eu

The difference between the averaged and summed query vectors is just the length. However, the angle between the two vectors is zero.

TREC (Text REtrieval Conference) uses top 100 documents.

www.clef-campaign.org

The continuous uniform distribution is a family of symmetric probability distributions such that for each member of the family, all intervals of the same length on the distribution's support are equally probable[Casella & Berger, 

2001].

A term is a Wikipedia title.

www.clef-campaign.org

www.clef-campaign.org 9.1.4. Contribution 4. Term Mismatch Probability Estimation and Reduction

http://wikipedia-miner.cms.waikato.ac.nz/ B.5. Summary

A.3.2 Learning Data and Tools

We use word2vec to generate distributed neural embeddings of words [Mikolov et al., 2013a,b]. The word2vec tool takes a text corpus as input and produces the word vectors as output. It first constructs a vocabulary from the training text data and then learns the vector representation of words. We build our training corpus using three different CLEF medical collection: Image2009, Case2011, Case2012. Our training corpus consists of about 400 millions words. The vocabulary size for this training corpus is about 350,000 different words. We used the recommended setting for this training tool like the word vector dimension and the learning context window size.

Table 8.2, shows the average, the median, and the first quartile of the estimated mismatch probability using words and concepts over our test corpora. We remark that the average, the median, and the first quartile of term mismatch probability are collection dependent, i.e. there is no clear difference between short and long queries corpora. Both short and long queries suffer from term mismatch, and show similar trends in their mismatch probability distribution. However, the average, the median, and the first quartile of the estimated term mismatch probability, using concepts, are increased or stay almost the same for short queries and they are decreased for long queries.

Table 8.2: The average, the median, and the first quartile of the initial mismatch probability using words and concepts over test corpora.

Corpus

Indexed We use MetaMap [START_REF] Aronson | Metamap: Mapping text to the umls meta-thesaurus[END_REF] in order to represent documents and queries by means of UMLS concepts. MetaMap proposes some concepts for a certain piece of text. MetaMap pro-

System Recall Improvement

We compare, using MRR, between the state of the art approaches and our three contributions in order to show the improvement in system recall.

Recall Improvement Using Query and Knowledge Dependent Document Representation

In Contribution 1, we compare between the baseline approach and our best variant for calculating the frequency of a mismatched query term in the modified document representation.

The baseline is language model with no expansion using two smoothing methods: Dirichlet (DIR) and Jelinek-Mercer (JM) [START_REF] Ponte | A language modeling approach to information retrieval[END_REF]]. MRR is used to achieve the comparison. Results are summarized in Table 8.6. † indicates a statistically significant improvement over ordinary language models using Fisher's Randomization test with p < 0.05. 8.6, shows that our modified document is statistically better, in some cases, than ordinary language models for both smoothing methods. In other words, our model improves the ability of the system to retrieve relevant documents at the beginning of the results list, and as a result, improves the recall of the system at a given level. Actually, the number of cases where we have a significant improvement is limited, because we only consider hierarchical 8.7, shows that our best variant is always statistically better, using MRR, than ordinary language models for both smoothing methods. In other words, our best variant improves the ability of the system to retrieve relevant documents at the beginning of the results list, and as a result, improves the recall of the system at a given level.

Recall Improvement Using Query Expansion Based on Neural Distributed Embeddings

In Contribution 3, we compare between the baseline model and our best variant for selecting expansion terms. The baseline is language model with no expansion using two smoothing methods: Dirichlet (DIR) and Jelinek-Mercer (JM) [START_REF] Ponte | A language modeling approach to information retrieval[END_REF]]. MRR is used to achieve the comparison. Results are summarized in Table 8.8. We only consider the best performance over the two smoothing methods. † indicates a statistically significant improvement over ordinary language models using Fisher's Randomization test with p < 0.05. Table 8.8, shows that our best variant is statistically better, in many cases, than ordinary language models for both smoothing methods. In other words, our best variant improves the ability of the system to retrieve relevant documents at the beginning of the results list, and as a result. 

Conclusions

We answer, in this section, the following questions:

• Q6. How much the system recall is improved using -a. Contribution 1. The query and knowledge dependent document representation? System recall, measured by MRR, is improved up to 8%, using the modified document when we consider hierarchical relationships between concepts in order to build the query and knowledge dependent document representation. -b. Contribution 2. Query expansion based on a collaborative knowledge resource?

Query expansion based on Wikipedia as a collaborative knowledge resource improves system recall, measured by MRR, up to 25%, and the improvement is always statistically better. -c. Contribution 3. Query expansion based on distributed neural embeddings?

Query expansion based on distributed neural embeddings improves system recall up to 53%.

Query expansion based on Wikipedia as a collaborative knowledge resource and query expansion based on distributed neural embeddings are more effective, in improving the system recall, than the query and knowledge dependent document representation. The main reason Integrating semantic term relations into information retrieval systems based on language models. In Information Retrieval Technology -10th Vector Space Model (VSM) has been proposed for the SMART information retrieval system, by Gerard Salton [START_REF] Salton | The SMART Retrieval System-Experiments in Automatic Document Processing[END_REF]. Vector Space Model (VSM) is a mathematical based model that represents documents and queries as vectors of a fixed number of dimensions. Each dimension corresponds to a separate term in the vocabulary. When a term occurs in the document, its value in the vector is non-zero. Documents and queries, in VSM, are represented as a linear combination of terms, which are mentioned within. VSM assumes that terms, or dimensions, are pairwise orthogonal. In other words, terms are considered to be independent, which is clearly unrealistic. For example, Diabetes, Insulin, and Computer are equally distant despite the fact that semantically, Diabetes should be closer to Insulin than Computer. Using VSM, documents are ranked according to their distance to the query vector. Distributed neural embeddings proposes to a more rich representation of terms, where each term is represented as a real-valued vector of several hundreds of dimensions. The resulting vectors carry relationships between terms. These vector representations, called Distributed Neural Embeddings, have been proved their effectiveness in term similarity task [Mikolov et al., 2013a]. Moreover, Mikolov et al. [Mikolov et al., 2013a], have showed that the combination of distributed neural embeddings is meaningful. For instance, the terms Paris, France, Italy, are represented by three vectors: v P aris , v F rance , and v Italy , respectively. Therefore, the following combination between these three vectors: v P aris -v F rance + v Italy , gives a vector which is very close to the vector that represents Rome. Motivated by this example, and by considering bag of terms representation for documents and queries, we aim to study the possible combinations of term vectors in order to obtain documents and queries vectors. Then, we aim to evaluate the effectiveness of aggregated documents and queries vectors in an information retrieval process.

As we have seen in Chapter 7, we obtain a query vector by aggregating its term vectors. Therefore, by aggregating term vectors within documents and queries, each document and query are also represented by a real-valued vector. As a result, we can easily apply Vector 

A.3.3 Document and Query Representation

Each document and query are represented by a real-valued vector. These vectors are aggregated using several aggregating functions from distributed neural embeddings of words. We use the following functions in our experiments: Sum, Min, and Max. For instance, using the Sum function, a document vectors is constructed by summing all word vectors which are mentioned within. As we use the cosine to measure the similarity between document and query vectors, we obtain the same results using sum and average functions. Therefore, we only put the results of the sum function.

A.3.4 Metrics

We use the Mean Average Precision (MAP) and Precision at 10 (P @10), in order to compare the retrieval performance of our model and other state-of-the-art methods.

A.3.5 Baselines and Comparison Methods

We compare the performance of the revisited Vector Space Model and its variants with the following models:

• Vector Space Model with term frequency weighting schema (VSM-TF) [START_REF] Salton | A vector space model for automatic indexing[END_REF]]. • Vector Space Model with term frequency and inverse term frequency weighting schema (VSM-TTIDF) [START_REF] Salton | A vector space model for automatic indexing[END_REF].

A.3.6 Performance Comparison

In this section, we compare the results of the revisited Vector Space Model variants with two version of classical Vector Space Model [START_REF] Salton | A vector space model for automatic indexing[END_REF]. Table A.2, summarizes the MAP of the three variants of the revisited Vector Space Model: RVSM-Sum, RVSM-Max, and RVSM-Min. Summing word embeddings for obtaining document and query vectors (RVSM-Sum) is better than RVSM-Max and RVSM-Min. Aggregating distributed neural embeddings of words for short texts (queries and documents) gives better MAP than aggregating long texts. More precisely, aggregating distributed neural embeddings for long texts gives very poor vector quality for retrieval performance.

Annotation Tools for Semantic Indexing

In this appendix, we present four examples of annotation tools that annotate a text and map it to terminological concepts (WordNet synsets or UMLS concepts), in a knowledge resource, PubMed ATM 1 , MetaMap [START_REF] Aronson | Metamap: Mapping text to the umls meta-thesaurus[END_REF], MaxMatcher [START_REF] Zhou | PRICAI 2006: Trends in Artificial Intelligence: 9th Pacific Rim International Conference on Artificial Intelligence[END_REF]], Wikipedia-Miner 2 .

B.1 PubMed-ATM

PubMed-ATM is an implemented service in the PubMed portal that associates a piece of text to terms or terminological concepts in several involved tables and indexes:

• Terms table that indicates MeSH concepts and additional information as qualifiers, publication types, substances, etc.

Given a query, PubMed tries to locate the longest word groups that are stored in the terms table. Second, identified terms are grouped by boolean expressions to reformulate a boolean query. If no term is found in the tables, the words are combined by an and operator to search documents. For example the query "hay fever" is translated into the following boolean query: "Hay Fever" [MeSH Terms] OR "Hay Fever" [Text Word].

The strategy of PubMed-ATM to extract MeSH concepts, is to use an exact search approach for the database terms. It is able to easily find the synonymous terms as well as variants of a given term. However, the following issues could be observed when extracting concepts using PubMed-ATM:

• PubMed-ATM tests several combinations of possible words to formulate a new boolean query that ultimately makes the query more complicated and more difficult to interpret by the user. • As PubMed-ATM use exact match. Therefore, when a query contains a term such as "Parkinson", PubMed ATM can not identify any terminological concept even if in a biomedical context, "Parkinson Disease" corresponds to a MeSH concept.

a piece of text that refers to four Wikipedia articles: "Silent Film", "Film", "Recorded Sound", and "Dialogue".

B.5 Summary

We presented four examples of annotation tools for semantic indexing. The goal of this presentation is to give an idea about how these tools actually look like, and how they are built. Furthermore, we tried to show that annotation tools are not perfect because they use some approximation techniques for text annotation.

Appendix C Detailed Figures and Tables of Estimated Term Mismatch Probability

In this appendix, we put an exhaustive list of figures of the estimated term mismatch probability using the original definition and the modified definitions of our three contributions (Contribution 1 & 2 & 3). 

C.1 Variation of Term Mismatch Using Words