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Florence Bertails-Descoubes
Chargée de recherche, Inria Rhône Alpes, Co-Directrice de thèse
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General Introduction

Many objects around us, either natural or man-made, are slender deformable objects. Curve-
like objects such as industrial cables, helicopter blades, plant stems and hair can be modelled
as thin elastic rods. While surface-like objects such as paper, boat sails, leaves and cloth can
be modelled as thin elastic plates and shells. The numerical study of the mechanical response
of such structures is of the utmost importance in many applications of mechanical and civil
engineering, bio-mechanics, computer graphics and other fields. In this dissertation we address
several problems related to the numerical simulation of slender elastic structures subject to
contact and friction constraints.

This thesis is organized in three parts and each part can be read independently. We have,
however, in numerous occasions throughout this manuscript, underlined the similarities between
the problems considered in each part.

Throughout this thesis we shall treat rods, plates and shells as finite dimensional multibody
systems. When performing extensive numerical simulations of the dynamics of multibody sys-
tems subject to Coulomb’s friction, it is common to encounter configurations where the Coulomb
friction solver fails to compute the contact forces. While these failures may sometimes be due
to implementation errors or to numerical ill-conditioning, it is also often the case that they are
due to Painlevé paradoxes. Quite simply, in some configurations there may exist no contact
force which can prevent the system from violating its contact constraints. This happens even
for very simple mechanical systems, like that of a rigid rod sliding against a frictional plane,
as Paul Painlevé first showed. In Part I of this manuscript we analyze the contact problem
(whose unknowns are the accelerations and the contact forces) and we derive computable upper
bounds on the friction coefficients at each contact, such that this problem is well-posed and
Painlevé paradoxes are avoided. The obtained results apply not only to flexible systems, but to
any general multibody system.

To approximate a rod or a shell as a multibody system, a spatial discretization procedure
needs to be carried out. In Parts II and III we deal with the problem of how to carry out such
spatial discretizations.

Thin rod-like structures which may easily bend and twist but hardly stretch and shear
can be modelled as Kirchhoff rods. In the second part of this manuscript we consider the
problem of computing the stable static equilibria of Kirchhoff rods subject to different boundary
conditions and to frictionless contact constraints. We formulate the problem as an Optimal
Control Problem, where the strains of the rod are interpreted as control variables and the
position and orientation of the rod are interpreted as state variables. This leads us to a new
understanding of the finite element discretization of Kirchhoff rods developed in [3] and to the
proposal of new spatial discretization schemes for Kirchhoff rods. The proposed schemes are
either of the strain-based type, where the main degrees of freedom are the strains of the rod, or
of the mixed type, where the main degrees of freedom are both the strains and the generalized
displacements.

Similarly to the case of Kirchhoff rods, thin surface-like structures such as paper can hardly
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stretch or shear at all. One of the advantages of the strain based approach is that the no
extension and no shear constraints of the Kirchhoff rod are handled intrinsically, without the
need of stiff repulsion forces, or of further algebraic constraints on the degrees of freedom. In
Part III of this manuscript we propose an extension of this approach to model the dynamics of
inextensible and unshearable shells. We restrict our study to the case of a shell patch with a
developable mid-surface. We use as primary degrees of freedom the components of the second
fundamental form of the shell’s mid-surface. This also leads to an intrinsic handling of the no
shear and no extension constraints of the shell. To the best of our knowledge the strain based
simulation of developable shells is a problem that had not been treated before. Our contributions
represent a small step in this direction and we hope that it spurs further developments in the
strain based approach to the numerical mechanics of shells.

The contents of Part I of the manuscript were communicated in [4] and [5]. The contents
of Part II will be presented in the 8th Eccomas thematic conference on multibody dynamics in
Prague, 2017. While those of Part III were communicated in [6].

6



Part I

Lagrangian Mechanics of systems
subject to sliding Coulomb’s friction
in bilateral and unilateral constraints
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Chapter 1

Introduction

Abstract This Part deals with the existence and uniqueness of the acceleration and contact
forces for Lagrangian systems subject to bilateral and/or unilateral constraints with or without
sliding Coulomb’s friction. Sliding friction is known to yield singularities in the system, such
as Painlevé’s paradox. Our work aims at providing sufficient conditions on the parameters of
the system so that singularities are avoided (i.e., the contact problem is at least solvable). To
this end, the frictional problem is treated as a perturbation of the frictionless case. We provide
explicit criteria, in the form of calculable upper bounds on the friction coefficients, under which
the frictional contact problem is guaranteed to remain well-posed. The results exposed in this
part correspond to the contents of our publication [5].

Introduction. Lagrangian systems subject to (frictional) bilateral and unilateral constraints
are considered. Such systems, mathematically described in Equation (1.1) below, feature a
very rich dynamics, because they are nonlinear, nonsmooth, and set-valued. A large number of
studies have been led on their well-posedness. Their goal is to formulate conditions under which
(1.1) possesses a solution, that is, a trajectory (q(·), q̇(·)) belonging to a certain functional space
(with absolutely continuous positions and right-continuous velocities of local bounded varia-
tions), and satisfying (1.1) for all t > 0. Well-posedness also consists in determining whether
a solution is unique for given initial data (q(0), q̇(0)), whether solutions depend continuously
on initial data or not, whether they converge to some equilibrium state (stability and control
analysis [7]), etc.

Besides such analysis, one may in turn be interested in properties of least mathematical rele-
vance, but of high interest for mechanical engineers. Typically, are the contact forces calculable
during persistent motion phases ? Are they calculable in a unique way ? If some solvability
results can be obtained in the absence of friction, what happens when Coulomb friction is added
at some contacts ? More generally, how does the system evolve during persistent contact phases
in the presence of friction, e.g., does the dynamics exhibit some singular states ? In multi-
body systems dynamics, these questions are to be examined by studying the so-called contact
problem, which assumes the mechanical state (q(t), q̇(t)) to be known at a given time t, and
considers the acceleration q̈(t) and the contact forces at time t as unknowns. It thus results in
a merely algebraic system, for which well-posedness remains a difficult question. Studying the
contact problem is of high interest in multibody systems where one often wants to calculate the
contact forces at a certain given time. Another motivation comes from event-driven numerical
integration methods, where one has to solve the contact problem at a given time where possibly
the state of the system may switch to another mode [8].

In this part our goal is to study conditions under which the contact problem is solvable.
We first focus on frictionless systems, then on systems with sliding friction (single-valued law).
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Indeed sliding friction is known to yield hard singularities like the Painlevé paradoxes [9, 10, 11,
12], while it has been shown in the seminal paper [13] that sticking modes can always, under
some mild assumption, be continued in another contact mode (including detachment from the
constraints).

For frictionless systems subject to bilateral constraints, the necessary and sufficient con-
ditions for the existence and uniqueness of the acceleration in the presence of a singular mass
matrix and redundant constraints are given in [14, 15]. The computation of constraint reactions
in the redundant case is addressed via augmented Lagrangian methods in [16, 17, 18, 19], by a
constraint elimination method combined with solvability analysis techniques in [20, 21, 22] and
by a pseudo-inverse method in [23]. In the case of bilateral constraints with sliding Coulomb’s
friction, Matrosov and Finogenko derive an implicit criterion in [24, 25], which guarantees the
uniqueness of the acceleration for small enough friction coefficients, however no explicit upper
bounds are given. In [11] such an upper bound may be found but concerns only systems with
a single contact point. In Chapter 3.1 we derive such an upper bound for the case of multiple
contact points. For systems subject only to unilateral constraints and sliding Coulomb’s friction
an existence result based on small enough friction coefficients and complementarity theory is
given in [26] and an explicit upper bound is established in [13]. The contact problem with mixed
(bilateral and unilateral) constraints has received surprinsingly less attention, its analysis in the
frictionless case with redundant constraints and a singular mass matrix is given in [27]. In the
frictional sliding case it is established in [28] that it becomes a mixed linear complementarity
problem but no explicit condition for its solvability is given. In Chapter 3.3 we derive an upper
bound on the friction coefficients guaranteeing the solvability of the sliding friction problem
with mixed constraints.

Dynamics of Lagrangian systems subject to bilateral, unilateral
and frictional constraints

In a Lagrangian formalism such systems may be written generically as follows,
M(q)q̈ + F (q, q̇, t) = ∇hn,b(q)λn,b +∇hn,u(q)λn,u +Ht,b(q)λt,b +Ht,u(q)λt,u (1.1a)

Sliding friction (Coulomb) : λt,i = −µi|λn,i|
vt,i

‖vt,i‖
, vt,i 6= 0, 1 6 i 6 m (1.1b)

Complementarity conditions : 0 6 hn,u(q) ⊥ λn,u > 0 (1.1c)

Bilateral (holonomic) constraints : hn,b(q) = 0, (1.1d)

where q ∈ Rn is the vector collecting the generalized coordinates qi, 1 6 i 6 n, assumed to
be independent when all the constraints are removed, q̇ is the vector of generalized velocities,
M(q) = M(q)T is the inertia matrix, always assumed to be at least positive semi-definite (it
may be assumed non-singular in some cases), F (q, q̇, t) collects internal forces (including forces
deriving from a potential, plus Coriolis and centrifugal forces), as well as external actions on
the system such as disturbances or control.

We consider m = mu + mb constraints consisting of mu unilateral (inequality) constraints
hn,u(q) ∈ Rmu and mb bilateral (equality) constraints hn,b(q) ∈ Rmb . The matrix ∇hn,u(q)
(respectively ∇hn,b(q)) collects on each column the gradient for each unilateral constraint (for
each bilateral constraint, respectively). The vectors of Lagrange multipliers λn,u ∈ Rmu and
λn,b ∈ Rmb are associated with the unilateral and bilateral constraints, respectively. From a
mechanical point of view, λn,u and λn,b correspond to the normal components of the contact
forces in the unilateral and bilateral cases, and are obtained from the local contact kinematics
[29, Chapter 10] [8, Chapter 3]. The unilateral constraints and their associated Lagrange mul-
tipliers are related through the complementarity condition (1.1c), which is to be understood

9



componentwise (per contact). It models the fact that for each contact i, the normal contact
force should not act at a unilateral contact point if the contact is open (i.e., hn,u,i(q) > 0 implies
λn,u,i = 0), and that λn,u,i > 0 if and only if hn,u,i(q) = 0. The matrices Ht,b(q) and Ht,u(q)
map local tangential velocities to generalized velocities (see Section 3 for more details).

The coefficients of friction at each contact point i are µi > 0. We consider in this study
frictional contacts in a sliding mode only (non-zero relative tangential velocities). The contact
problem consists in determining the acceleration and the contact forces given (q, q̇) at a given
time instant. This means that by a proper choice of the local contact kinematics frames one
has

vt,i

‖vt,i‖ = sgn(vt,i), both for 2-dimensional and 3-dimensional friction. Also note that we do

not consider systems subject to impacts in the formulation (1.1).
This part is organized as follows. In Chapter 2 we review in detail the frictionless case,

where results for the bilaterally and unilaterally constrained cases are recalled. In Chapter 3,
it is shown how the problem gets all the more complex as Coulomb’s friction is considered and
as mixed constraints (both bilateral and unilateral) are added. Some useful results are recalled
in the Appendix A.

Further notations

Mathematical notations Rn is the set of n-vectors with real entries, Rn+ is the set of n-
vectors with non-negative entries. Let a1, a2, ..., an be some given reals, then [a] = diag(ai) is
the n × n diagonal matrix with entries ai. Let A ∈ Rn×n be a real square matrix, its induced
norm is ||A||2 = maxx∈Rn,||x||2=1 ||Ax||2, where ||x||2 is the Euclidean norm on the vector space
Rn. This induced matrix norm is sometimes denoted as ||A||2,2. One has ||A||2 = σmax(A) =√
λmax(AAT ) [30, Proposition 9.4.7], where σmax is the maximum singular value of A, and

λmin(·) and λmax(·) are its smallest and largest eigenvalues, respectively [30, Proposition 9.4.7].
Moreover, if A is invertible, σmin(A) = 1

σmax(A−1)
, where σmin(A) is the smallest singular value

of A [30, fact 6.3.21]. A positive definite (resp. semi definite) matrix is denoted A � 0 (resp.
A � 0), it may be non-symmetric. Let f : Rn 7→ Rp be a differentiable function. Its Euclidean
gradient is ∇f(x) = (∇f1(x) ∇f2(x) . . . ∇fp(x)) ∈ Rn×p, and its Jacobian ∂f

∂x (x) = ∇f(x)T .
The cardinality of a countable set I is denoted as card(I). Let S ⊆ Rn be a set, its orthogonal

complement is defined as S⊥
∆
= {x ∈ Rn|xT y = 0 for all y ∈ S} and is a subspace. Its boundary

is denoted as bd(S). One has Ker(A) = Im(AT )⊥ for any matrix A.

Mechanical notations Since contacts may be frictionless, or in contrast may involve Coulomb
friction, the following conventions shall be adopted:

• Bilateral contacts: 1 6 i 6 mb, i.e., i ∈ Ib.

– Frictional bilateral contacts (sliding): 1 6 i 6 mµ
b , i.e., i ∈ Iµb .

– Frictionless bilateral contacts: mµ
b + 1 6 i 6 mb, i.e., i ∈ I0

b .

• Unilateral contacts: mb + 1 6 i 6 m, i.e., i ∈ Iu.

– Frictional unilateral contacts (sliding): mb + 1 6 i 6 mµ
u, i.e., i ∈ Iµu .

– Frictionless unilateral contacts: mµ
u + 1 6 i 6 m, i.e., i ∈ I0

u.

10



We may therefore rewrite the first line in (1.1) as

M(q)q̈ + F (q, q̇, t) =
∑

i∈I0
b
∇h0

n,b,i(q)λ
0
n,b,i +

∑
i∈I0

u
∇h0

n,u,i(q)λ
0
n,u,i

+
∑

i∈Iµb
∇hn,b,i(q)λn,b,i +

∑
i∈Iµb

Ht,b,i(q)λt,b,i

+
∑

i∈Iµu ∇hn,u,i(q)λn,u,i +
∑

i∈Iµu Ht,u,i(q)λt,u,i

(1.2)

Mechanical systems

Throughout this part, examples will help illustrate the concepts. The different mechanical
systems that will be considered are depicted in Figure 1.1.
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Figure 1.1: Mechanical systems with constraints.
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Chapter 2

Solvability of the contact problem
for frictionless systems

This chapter deals with the solvability of the contact problem for mechanical systems without
friction. Three cases are considered. The case of bilaterally constrained systems of index 1 is
treated in Section 2.1. The case of unilaterally constrained systems is treated in Section 2.2.
The case of systems subject to both bilateral and unilateral constrains is treated in Section 2.3.
In all cases we study the problem of existence and uniqueness of the contact forces and the
acceleration at a given time, for a given position and velocity. In the frictionless case difficulties
arise mainly when the mass matrix is singular or when the constraints are redundant. We give a
thorough exposition of the known results on this topic which were initially scattered throughout
the literature. Understanding the structure of these problems is crucial for the study of sliding
friction case which is carried out in Chapter 3. As we will later see, friction adds a perturbation
responsible for the loss of structure which may lead to the unsolvability of the contact problem,
even in the case of a non-singular mass matrix and non-redundant constraints.

2.1 Bilaterally constrained systems

Let us assume that all constraints are bilateral and frictionless. The Lagrangian system (1.1)
boils down to a differential-algebraic equation (DAE) of index 3 [31, 32],{

M(q)q̈ + F (q, q̇, t) = ∇hn,b(q)λn,b

hn,b(q) = 0.
(2.1)

Reducing the index to 1 consists in differentiating twice the constraint hn,b(q) = 0 to obtain
ḧn,b = ∇hn,b(q)

T q̈ + d
dt(∇hn,b(q)

T )q̇ = 0, while keeping consistent initial conditions in position
and velocity. This new equality combined with the dynamics yields the following linear system,(

M(q) −∇hn,b(q)
∇hn,b(q)

T 0

)
︸ ︷︷ ︸

∆
=Mb(q)

(
q̈
λn,b

)
=

( −F (q, q̇, t)

− d
dt(∇hn,b(q)

T )q̇

)
. (2.2)

Remark Time-varying constraints hn,b(q, t) = 0 may be considered in the analysis. Then

d

dt
hn,b(q, t) = ∇hn,b(q, t)

T q̇(t) +
∂hn,b

∂t
(q, t)

and

d2

dt2
hn,b(q, t) = ∇hn,b(q, t)

T q̈(t) +
d

dt
(∇hn,b(q, t)

T )q̇(t) +
∂

∂q

∂hn,b

∂t
(q, t)q̇(t) +

∂2hn,b

∂t2
(q, t).
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If needed it is thus sufficient to add the missing terms to step from the time-invariant to the
time-varying case.

Recall that M(q) is assumed to be symmetric positive semi-definite (with possibly rank(M(q)) <
n). The matrix in the left-hand side of (2.1), denoted as Mb(q) and often called the DAE matrix,
is ubiquitous not only in the analysis and numerics of Lagrangian systems with holonomic
constraints [31, 32, 33, 15, 34, 14, 35], but also in convex quadratic minimization. In the latter
context, the Mb(q) matrix is referred to as the KKT matrix and system (2.2) corresponds to
the KKT system of the following quadratic minimization problem [36, §10.1.1],

q̈(t) = argminx
(

1
2x

TM(q)x+ F (q, q̇, t)Tx
)

subject to ∇hn,b(q)
Tx+ d

dt(∇hn,b(q)
T )q̇ = 0,

(2.3)

which can be, in the case when M(q) is non-singular, interpreted mechanically as the Gauss
principle of least constraints applied to a Lagrangian system subject to bilateral holonomic
constraints [23].

The DAE or KKT matrix Mb(q) is a positive semi-definite matrix. The fact that Mb(q) has
a skew-symmetric part in (2.2) is not intrinsic to the problem. Indeed it stems from an arbitrary
choice in the way the bilateral constraints are introduced in the dynamics (1.1), and thus of the
choice of the sign of the multiplier. By changing the sign of the multiplier, the problem may
be analyzed equivalently without the minus sign in −∇hn,b(q), thus setting Mb(q) symmetric
(meanwhile causing the loss of positiveness for Mb(q)). This is actually the convention adopted
in most of the DAE literature. The next proposition gathers solvability results for the system
(2.2) from Optimization [36, §10.1.1] and Mechanics [14].

Proposition 2.1.1 (Well-posedness of the bilateral frictionless contact problem). Let all mb

constraints be bilateral and frictionless. Let the position and velocity (q, q̇) be given at a time in-
stant t. Consider the KKT system in (2.2) with unknowns the acceleration q̈ and the multipliers
λn,b ∈ Rmb.

• (i) Let mb < n and ∇hn,b(q) have full (column) rank mb. Then Mb(q) is non-singular
(or equivalently, given any arbitrary right-hand side vector of (2.2), there exists a unique
solution (q̈, λn,b) to (2.2)) if and only if

Ker(M(q)) ∩Ker(∇hn,b(q)
T ) = {0}. (2.4)

Moreover, if M(q) � 0, then the multiplier λn,b can be computed in closed form by solving
the linear equation

Anb(q)λn,b + wb(q, q̇, t) = 0, (2.5)

where the symmetric positive definite matrix

Anb(q) := ∇hn,b(q)
TM(q)−1∇hn,b(q) (2.6)

is the Schur complement1 of M(q) in the DAE matrix Mb(q), and where

wb(q, q̇, t) := −∇hn,b(q)
TM(q)−1F (q, q̇, t) +

d

dt
(∇hn,b(q)

T )q̇.

1The Schur complement of the invertible matrix A11 in the matrix A =

(
A11A12

A21A22

)
, is the matrix A22 −

A21 A
−1
11 A12. The Schur complement of the invertible matrix A22 in A, is the matrix A11 −A12 A

−1
22 A21.
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• (ii) Let ∇hn,b(q) have arbitrary rank and satisfy the compatibility of constraints, i.e.,
− d
dt(∇hn,b(q)

T )q̇ ∈ Im(∇hn,b(q)
T ). Then, given (q, q̇) and an arbitrary force vector F (q, q̇, t),

– A solution (q̈, λn,b) of (2.2) exists, and

– The acceleration q̈ and the generalized contact force ∇hn,b(q)λn,b are unique,

if and only if condition (2.4) holds.

Proof Let us denote for brevity x := q̈, λ := λn,b, M := M(q), F := F (q, q̇, t), J :=
∇hn,b(q)

T and b := − d
dt(∇hn,b(q)

T )q̇. Since the mass matrix M is symmetric positive semi-
definite the quadratic function f(x) := 1

2x
TMx+ F Tx is convex. The constraint set

Kb := {x ∈ Rn : Jx = b} (2.7)

is affine and hence convex. The convex quadratic program (2.3) reads{
min
x∈Rn

1
2x

TMx+ F Tx

s. t. Jx = b.
(2.8)

The KKT system (2.2) reads simply[
M −JT
J 0

] [
x
λ

]
=

[
−F
b

]
. (2.9)

In both items (i) and (ii) the compatibility of constraints b ∈ Im(J) holds. In (i) because J is full
rank and in (ii) by hypothesis. The compatibility of constraints is precisely Slater’s constraint
qualification for the affine constraints Jx = b. Under these conditions (convex problem and
qualified constraints) the KKT theorem [36, §5.5.3] states that x is a solution of the (QP) (2.8)
if and only if there exists λ ∈ Rmb such that (x, λ) is a solution of the KKT system (2.9).

The solution x of the (QP) (2.8) exists and is unique if and only if Ker(M) ∩Ker(J) = {0}
(that is if 2.4 holds).

To see this let us introduce a full rank matrix N whose columns span Ker(J) and a fea-
sible point x0 such that Jx0 = b. Then the constraint set can be parametrized as C ={
x0 +Nz : z ∈ Rd

}
, where d = dimKer(J). Then the (QP) (2.8) is equivalent to the un-

constrained (QP) with objective function

g(z) := f(x0 +Nz) =
1

2
zTNTMNz + (Mx0 + F )TNz + f(x0).

• Let us prove by contraposition that if the solution x of the (QP) (2.8) exists and is unique
then Ker(M) ∩ Ker(J) = {0}. If there exists v ∈ Ker(M) ∩ Ker(J) such that v 6= 0
then along that direction the (QP) (2.8) is unbounded by below. There exists a non zero
z ∈ Rd such that v = Nz and the objective function reduces to an affine function in z:
g(z) = (Mx0 + F )TNz + f(x0). Since F is arbitrary NT (Mx0 + F ) is non zero and the
objective is unbounded.

• Conversely, let us assume that Ker(M) ∩ Ker(J) = {0}. Then the hessian NTMN of
g, which is already symmetric positive semi-definite, is positive definite since if there is
z ∈ Rd such that zTNTMNz = 0 then Nz is in Ker(M) and in Ker(J) and hence is zero.
Then the objective function g is strictly convex and continuous over Rd and hence has a
unique global minimum.
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If the solution x of (2.9) exists and is unique then multipliers λ exist such that (x, λ) is a
solution of (2.9). The uniqueness of generalized contact force JTλ in item (ii) follows from the
uniqueness of the acceleration x. If we assume that JT is full column rank as in item (i) then
the multiplier vector λ is also unique. If furthermore the mass matrix M is invertible then the
linear equation for the multipliers (2.5) follows simply by inverting the mass matrix in the KKT
system. �

Remark The proof of the above proposition originally proposed in our article [5] relies on the
material in Appendix B, where the solvability of the KKT system (2.2), and of other related
systems, is treated from a linear algebra perspective.

Item (ii) obviously relies on weaker assumptions than item (i), since ∇hn,b(q) is not required to
have full column rank mb, but rather satisfies the compatibility of constraints, as in [14]. In par-
ticular, we consider in (ii) cases where mb > n, i.e., where Mb(q) is necessarily a singular matrix,
and where some constraints are redundant. Note that provided M(q) � 0, the Schur comple-
ment satisfies Anb(q) = Anb(q)

T � 0. Furthermore, we have Ker(Anb(q)) = Ker(∇hnb(q)). In
particular, Anb(q) is non-singular if and only if ∇hn,b(q) has full column rank mb ≤ n. Singular
mass matrices and redundant constraints are common features of multibody dynamical systems
subject to bilateral constraints, due to rotation parametrization [37], or redundant generalized
coordinates [15, 38].

In the following example we compute explicitly the contact forces and the acceleration for
a bilaterally constrained rigid rod. We will see in the next chapter that when sliding friction
is added to the rod, the equation for the contact force is no longer linear but rather piecewise
linear. It may then fail to have a unique solution or a any solution at all depending on the
magnitude of the friction: this is known as a Painlevé-like paradox.

Example: 2D bilaterally constrained rigid rod. Let us study the sliding rigid rod de-
picted in Figure 1.1(a), which can be seen as a rigid pendulum with a frictionless sliding base.
The only forces applied here are gravity (oriented downwards) and the net (normal) contact
force λn,b (taken positive by convention when oriented upwards). Let m > 0 be the mass of the
rod and l > 0 its total length. Let us choose q = (x, y, θ)T , where x and y are the coordinates
of the center of mass of the rod, and θ ∈ [0, π] is the angle between the horizontal line and the
main axis of the rod. The dynamic equations read

mẍ = 0
mÿ = −mg + λn,b
m l2

12 θ̈ = − l
2 cos θ λn,b

hn,b(q) = y − l
2 sin θ = 0,

(2.10)

where the last equality expresses the prismatic constraint applied onto the bottom tip of the rod.
Note that the multiplier λn,b ∈ R may take positive (upward net force) or negative (downward
net force) values. Formulating (2.10) as the canonical system (2.2), one obtains M(q) = M =

diag(m,m, ml
2

12 ), ∇hn,b(q) = (0, 1,− l
2 cos θ)T , F (q̇, q, t) = (0,mg, 0)T . Observe that both M and

∇hn,b(q) have full rank, hence this case study falls into the first (the most classical) category (i)
examined in Proposition 2.1.1. M being full rank, the Schur complement of the DAE matrix
is well-defined and can be computed as the scalar number Anb(q) = ∇hn,b(q)

TM−1∇hn,b(q) =
1+3 cos2 θ

m . The reduced equation for λn,b then boils down to a linear scalar equation

Anb(q)λn,b + wb(q, q̇) = 0,
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where wb(q, q̇) = d
dt

(
∇hn,b(q)

T
)
q̇ − g = l

2 θ̇
2 sin θ− g. As expected, Anb(q) is non-singular and

thus the solution for λn,b exists and is unique. Similarly, from the dynamic equation (2.10) there
exists a unique solution for the generalized acceleration q̈ of the system. Finally we get

λn,b = m

(
l
2 θ̇

2 sin θ + g

1 + 3 cos2 θ

)
q̈ =

(
0,−g +

l
2 θ̇

2 sin θ + g

1 + 3 cos2 θ
,−6

l
cos θ

(
l
2 θ̇

2 sin θ + g

1 + 3 cos2 θ

))T
.

2.2 Unilaterally constrained systems

Now we assume that all contacts are unilateral and frictionless. The Lagrangian system (1.1)
boils down to the complementarity system{

M(q)q̈ + F (q, q̇, t) = ∇hn,u(q)λn,u

0 6 λn,u ⊥ hn,u(q) > 0.
(2.11)

Construction of the contact MLCP. In the following we carry out a procedure analogous
to index reduction to construct the so-called contact MLCP, which we subsequently analyze.

Proposition 2.2.1. Let h(·) and λ(·) be two scalar functions of time, and let 0 6 h(t) ⊥ λ(t) >
0 for all t. Assume that h(·) is absolutely continuous, that ḣ(·) is absolutely continuous in a
right neighbourhood of t, and that ḧ(·) and λ(·) are right-continuous at time t. (i) Let h(t) = 0,
then 0 6 ḣ(t) ⊥ λ(t) > 0. (ii) Let h(t) = 0 and ḣ(t) = 0, then 0 6 ḧ(t) ⊥ λ(t) > 0.

Proof: (i) For any t
′
> t one has h(t

′
) − h(t) =

∫ t′
t ḣ(s)ds. Hence h(t′) =

∫ t′
t ḣ(s)ds since

h(t) = 0.

• First we prove that ḣ(t) > 0. Suppose that ḣ(t) < 0. Since ḣ(·) is right-continuous, there
exists ε > 0 such that ḣ(s) < 0 for all s ∈ [t, t + ε). Thus for any t

′ ∈ [t, t + ε) one has
h(t
′
) < 0 which is impossible. Hence ḣ(t) > 0.

• Secondly, we prove that if ḣ(t) > 0 then λ(t) = 0. Let us assume that ḣ(t) > 0. Then
there exists ε > 0 such that for all t

′ ∈ (t, t + ε), we have ḣ(t
′
) > 0. Consequently for all

t
′ ∈ (t, t+ ε), h(t

′
) > 0 and λ(t′) = 0. Then by right continuity of λ(·), we conclude that

λ(t) = 0.

• Finally, if λ(t) > 0 then ḣ(t) = 0. Indeed, if λ(t) > 0 and h(t) = 0 then assuming that
ḣ(t) > 0 leads to a contradiction: we would have that for all t

′ ∈ (t, t + ε) h(t
′
) > 0 and

λ(t
′
) = 0, hence the contradiction λ(t) = 0. Since ḣ(t) is non negative but not strictly

positive we conclude that ḣ(t) = 0.

Part (ii) is proved in a similar way. �
Assume that q(·) and hn,u(·) are continuous, while q̇(·), q̈(·) and λn,u(·) are right-continuous.

In fact since we disregard impacts we may even assume that q̇(·) is continuous. Replacing h(t)
with hn,u,i(q(t)) and λ(t) with λn,u,i(t) allows one to assert that hn,u,i(q(t)) = 0 implies that

0 6 ∇hn,u,i(q(t))
T q̇(t) ⊥ λn,u,i(t) > 0,

while hn,u,i(q(t)) = 0 and ∇hn,u,i(q(t))
T q̇(t) = 0 implies

0 6 ∇hn,u,i(q(t))
T q̈(t) +

d

dt
(∇hn,u,i(q)

T )q̇ ⊥ λn,u,i(t) > 0.
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In view of this, the acceleration q̈ and the multipliers λn,u are solutions of the mixed LCP
(MLCP) 

M(q)q̈ + F (q, q̇, t) = ∇hn,u(q)λn,u

0 6 λn,u ⊥ ∇hn,u(q)T q̈ + d
dt(∇hn,u(q)T )q̇ > 0,

(2.12)

where ∇hn,u(q) now collects only the gradients of the active constraints at q. The MLCP (2.12)
is the counterpart of (2.2) for unilateral constraints.

Analysis of the contact MLCP. Let us assume that the constraint set

Ku := {x ∈ Rn : ∇hn,u(q)Tx+
d

dt
(∇hn,u(q)T )q̇ > 0} (2.13)

is non empty. Then Slater’s constraint qualification for linear inequalities holds. Hence, by the
KKT theorem and the convexity of the function

f(x) :=
1

2
xTM(q)x+ F (q, q̇, t)Tx

it holds that q̈ is a solution of the (QP){
min
x∈Rn

1
2x

TM(q)x+ F (q, q̇, t)Tx

s. t. ∇hn,u(q)Tx+ d
dt(∇hn,u(q)T )q̇ > 0

(2.14)

if and only if there exists λn,u such that (q̈, λn,u) is a solution of the MLCP (2.12). Claiming
that the acceleration solves the QP (2.14) is a form of Gauss’ principle of mechanics extended
to frictionless unilateral constraints.

In the case of a positive definite mass matrix the existence and uniqueness of the acceleration
which solves the QP (2.14) and hence the MLCP (2.12) follows naturally without any further
assumption on ∇hn,u(q) nor on F (q, q̇, t). This fact was known to Moreau [39, 40]. The case of
a singular mass matrix is more complicated and less well studied. In [27] a sufficient criterion
to guarantee the solvability of the MLCP (2.12) is derived. It is analogous to the condition in
(2.4) for bilateral systems. We collect these results in the following proposition.

Proposition 2.2.2 (Well-posedness of the frictionless unilateral contact problem). Let the
position and velocity (q, q̇) be given at a time instant t. Let all mu constraints be unilateral,
frictionless and active at q. Let us assume that the constraint set Ku is non empty. Consider
the MLCP in (2.12) with unknowns the acceleration q̈ and the multipliers λn,u ∈ Rmu.

• (i) If M(q) is positive definite then there exists a unique acceleration q̈ and there exists
λn,u which solve the frictionless unilateral MLCP (2.12). The generalized contact force
∇hn,u(q)λn,u is unique. The multipliers λn,u are furthermore unique if and only if ∇hn,u(q)
is of full column rank mu.

• (ii) If the mass matrix is only positive semi definite (M(q) � 0) and if the gap functions
hn,u,i(q), 1 6 i 6 mu satisfy the Mangasarian-Fromovitz constraint qualification then the
following statement holds.

The MLCP in (2.12) is solvable if

TΦu(q) ∩Ker(M(q)) = {0},

where Φu := {q ∈ Rn|hn,u(q) > 0} and TΦu(q) := {v ∈ Rn|∇hn,u(q)T v > 0}.
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Proof. Under the conditions in the proposition the equivalence of the MLCP (2.12) and the QP
(2.14) holds. To prove item (i) it suffices to show that the QP (2.14) has a unique solution.
This is indeed the case. The objective function f is continuous and also 0-coercive (infinite
at infinity) when M(q) � 0. Furthermore the constraint set Ku of the QP is closed and non
empty. This guarantees the existence of a solution q̈ of the QP. Uniqueness of q̈ holds since
the constraint set K is convex and since f is strictly convex when M(q) � 0. The existence
of the acceleration q̈ solving the QP then implies the existence of a multiplier λn,u such that
(q̈, λn,u) solves the MLCP (2.12). The uniqueness of the generalized contact force ∇hn,u(q)λn,u

then follows from the uniqueness of the acceleration since ∇hn,u(q)λn,u = M(q)q̈ + F (q, q̇, t).
Furthermore λn,u is unique if and only if ∇hn,u(q) is injective or, equivalently, of full column
rank.

Item (ii) is proved in [27].

Remark In practice, to numerically compute the acceleration and the contact forces one can
use an MLCP solver to solve (2.12) (see for example [41]). However to better exploit the
structure of the problem it is preferable to use a QP solver to solve (2.14). Active set and
interior point QP solvers would compute not only the acceleration but also the multipliers. Open
source implementations of QP solvers are also more widely available. In the case where the mass
matrix is positive definite a third option is available since the contact forces can be computed by
solving a Linear Complementarity Problem (LCP) and the accelerations determined explicitly
from the contact forces.

Construction of the contact LCP In the case that M(q) � 0, the MLCP (2.12) is easily
transformed by elimination of q̈ to construct the frictionless contact LCP. The acceleration q̈ is
explicitly determined by the contact forces by setting

q̈ = M(q)−1(∇hn,u(q)λn,u − F (q, q̇, t)).

By inserting the latter expression for q̈ in the second line of the MLCP (2.12) we obtain the
LCP

0 6 λn,u ⊥ Anu(q)λn,u + wu(q, q̇, t) > 0, (2.15)

where
Anu(q) := ∇hn,u(q)TM(q)−1∇hn,u(q)

is the Delassus matrix, and

wu(q, q̇, t) := −∇hn,u(q)TM(q)−1F (q, q̇, t) +
d

dt
(∇hn,u(q)T )q̇.

The well-posedness of the frictionless unilateral contact problem can then also be studied by
analyzing the LCP (2.15) and relying on results of Linear Complementarity theory [1]. This
path is taken in [42], [43]. Most notably there exists a unique contact force λn,u solving the LCP
for any vector wu(q, q̇, t) if and only if An,u(q) is a P-matrix. Since An,u(q) is automatically
symmetric positive semi-definite, it is a P-matrix if and only if it is non singular, which holds
if and only if the constraints are linearly independent.

Remark The LCP in (2.15) is solvable if and only if the acceleration constraint set Ku is non
empty. If Ku is non empty then the existence of λn,u holds by Proposition 2.2.2 item (i). If the
LCP(2.15) has a solution λn,u then M(q)−1(∇hn,u(q)λn,u − F (q, q̇, t)) is in Ku and hence Ku is
non empty.
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Remark It is certainly not the case that any LCP(A,w) with a symmetric positive semi-definite
matrix A is solvable for any given vector w. The necessary and sufficient conditions for such
an LCP to be solvable are that for any λ > 0 in Ker(A), wTλ > 0. Applying this result from
complementarity theory for A = An,u(q) and w = wu(q, q̇, t) we arrive to the result stated in [5]
(Proposition 3(iv)) and in [43] that the LCP in (2.15) is solvable if and only if the implication
λn,u ≥ 0,∇hn,u(q)λn,u = 0 ⇒ λTn,u

d
dt(∇hn,u(q)T )q̇ > 0 holds. However, we know by the remark

above the latter condition is always verified. This was not clear in [5] nor in [43]. The LCP
(2.15) is not just any LCP, it is the KKT system associated to the dual problem of the QP
(2.14). Since the QP (2.14) has an optimal solution if Ku is non empty and M(q) � 0, the dual
function

g(λ) := −1

2
λTAn,u(q)−1λ− wu(q, q̇, t)Tλ− 1

2
F (q, q̇, t)TM(q)−1F (q, q̇, t)

is upper bounded for λ > 0.

In the study of the sliding friction case we will no longer be able to rely on results of
convex optimization. We will see that friction adds a perturbation to the Delassus matrix
which destroys the convexity of the problem. We will have to rely on complementarity theory
results to analyze when it is that the perturbed Delassus operator remains a P-matrix.

In the following example we derive the contact LCP for a unilaterally constrained rigid rod
sliding without friction against a plane and deduce the existence and uniqueness of the contact
force. In the next chapter we will consider this same example with sliding Coulomb’s friction
and see that when the friction is too high the existence and uniqueness of the contact force no
longer holds: this is known as the Painlevé paradox.

Example: Unilaterally constrained rigid rod Consider the system in Figure 1.1(b) with
a unilateral constraint. The rod is allowed to slide on the horizontal plane but it may also
take off (note that θ is assumed to belong to [0, π] so that the whole rod should remain in
the upper half space). This example corresponds to the classical example of Painlevé, albeit
without friction. The dynamics of the system reads

mẍ = 0
mÿ = −mg + λn,u

Iθ̈ = − l
2 cos θλn,u

0 ≤ hnu(θ) = y − l
2 sin(θ) ⊥ λn,u ≥ 0

where the complementarity expresses the unilateral constraint applied onto the bottom tip of
the rod. In contrast with the bilateral case, the multiplier λn,u ∈ R+ can take positive values
only, meaning that the contact force should always be oriented upwards. Derivations of M , F ,
and ∇hn,u(q) are identical to the example in Section 2.1 (replacing ∇hn,b(q) with ∇hn,u(q)),
and the LCP in λn,u reads

0 ≤ An,u(q)λn,u + wu(q, q̇)⊥λn,u ≥ 0

with An,u(q) = 1+3 cos2 θ
m and wu(q, q̇) = l

2 θ̇
2 sin θ − g. Since An,u(q) � 0, the solution for λn,u

(and thus for q̈) exists and is unique. This is in accordance with Proposition 2.2.2(i), which
applies here since ∇hn,u(q) has full column rank.

2.3 Unilaterally/bilaterally constrained systems

We now consider the case when both bilateral and unilateral constraints are involved. Strangely
enough, it is only recently that the analysis of this case has received attention [44, 27], though
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it may represent the most common case in practice [45]. Let us write the bilateral constraints
on the acceleration level. The MLCP in (2.12) is augmented as follows:

(a) M(q)q̈ + F (q, q̇, t) = ∇hn,b(q)λn,b +∇hn,u(q)λn,u

(b) ∇hn,b(q)
T q̈ + d

dt(∇hn,b(q)
T )q̇ = 0

(c) 0 6 λn,u ⊥ ∇hn,u(q)T q̈ + d
dt(∇hn,u(q)T )q̇ > 0.

(2.16)

The acceleration is constrained to be both in the affine space

Kb =

{
x ∈ Rn : ∇hn,b(q)

Tx+
d

dt
(∇hn,b(q)

T )q̇ = 0

}
and in the convex polyhedral set

Ku =

{
x ∈ Rn : ∇hn,u(q)Tx+

d

dt
(∇hn,u(q)T )q̇ > 0

}
.

Again under the assumption that the constraint set for the acceleration Kb ∩Ku is non empty
Slater’s linear constraint qualification holds. We can then deduce by the KKT theorem for
convex optimization problems that the acceleration q̈ is a solution of the QP

min
x∈Rn

1
2x

TM(q)x+ F (q, q̇, t)Tx

s. t. ∇hn,b(q)
Tx+ d

dt(∇hn,b(q)
T )q̇ = 0

∇hn,u(q)Tx+ d
dt(∇hn,u(q)T )q̇ > 0

(2.17)

if and only if there exists multipliers (λn,b, λn,u) such that (q̈, λn,b, λn,u) is a solution of the
MLCP (2.16). The claim that the acceleration of the mechanical system is a solution of the QP
(2.17) constitutes a form of Gauss’ principle of mechanics for systems subject to both unilateral
and bilateral frictionless constraints.

The next proposition summarizes well-posedness results for the unilateral/bilateral friction-
less contact problem.

Proposition 2.3.1 (Well-posedness of the frictionless contact problem with bilateral and uni-
lateral constraints). Let the position and velocity (q, q̇) be given at a time instant t. Let there be
mu unilateral, frictionless and active constraints at q, as well as mb bilateral constraints. Let
us assume that the constraint set Kb ∩ Ku is non empty. Consider the MLCP in (2.12) with
unknowns the acceleration q̈ and the multipliers (λn,b, λn,u) ∈ Rmb+mu.

• (i) If M(q) is positive definite then there exists a unique acceleration q̈ and there exists
(λn,b, λn,u) which solve the MLCP (2.16). The generalized contact force ∇hn,b(q)λn,b +
∇hn,u(q)λn,u is unique. The multipliers (λn,b, λn,u) are furthermore unique if and only if
(∇hn,b(q),∇hn,u(q)) is of full column rank mb +mu.

• (ii) If the mass matrix is only positive semi definite (M(q) � 0) and if the functions hn,b(q)
and hn,u(q) satisfy the Mangasarian-Fromovitz constraint qualification then the following
statement holds.

The MLCP in (2.16) is solvable if

Ker(∇hn,b(q)) ∩ TΦu(q) ∩Ker(M(q)) = {0}.

The proof of item (i) is identical to that of Proposition 2.2.2, while item (ii) is proved in
[27].
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Contact LCP with a bilateral distortion. For the study of the contact problem with
sliding friction in both bilateral and unilateral constraints we will no longer be able to rely on
convex optimization arguments. We will have to study how the LCP for the contact forces is
modified by the addition of friction. In the following we construct the LCP obeyed by λn,u. Let
us assume that Kb ∩Ku is non empty, that M(q) � 0 and that ∇hn,b(q) has full column rank.
The acceleration can be expressed as a function of the contact forces via equation (2.16)(a) as

q̈ = M(q)−1 (∇hn,b(q)λn,b +∇hn,u(q)λn,u − F (q, q̇, t)) .

Inserting the latter expression into equation (2.16)(a,b) we find that the contact forces are
solutions of the MLCP

An,b(q)λn,b +Anbnu(q)λn,u + wb(q, q̇, t) = 0

0 6 Anbnu(q)Tλn,b +An,u(q)λn,u + wu(q, q̇, t) ⊥ λn,u > 0,

where the matrix
Anbnu(q) := ∇hn,b(q)

TM(q)−1∇hn,u(q)

is responsible for the coupling of bilateral and unilateral contact forces. Since ∇hn,b(q) is of full
rank An,b(q) is invertible and λn,b can be expressed explicitly as a function of λn,u as

λn,b = −An,b(q)
−1(Anbnu(q)λn,u + wb(q, q̇, t)).

Finally the LCP obeyed by the unilateral contact forces λn,u reads

0 6 Ac(q)λn,u + wc(q, q̇, t) ⊥ λn,u > 0, (2.18)

where
Ac(q) := An,u(q)−Anbnu(q)TAn,b(q)

−1Anbnu(q)

is the Delassus matrix with distortion and the vector wc reads

wc(q, q̇, t) := −Anbnu(q)TAn,b(q)
−1wb(q, q̇, t) + wu(q, q̇, t).

Remark The matrix Ac(q) is by construction symmetric positive semi-definite. It is the Schur
complement of An,b(q) in the matrix

S := (∇hn,b(q) ∇hn,u(q))TM(q)−1(∇hn,b(q) ∇hn,u(q)) =

[
An,b(q) Anbnu(q)

Anbnu(q)T An,u(q)

]
.

Since the matrix S is positive semi definite and An,b(q) � 0 the Schur complement of An,b(q) in
S is also positive semi-definite [36, A.5.5].

Given the hypotheses made in this paragraph the LCP (2.18) is solvable. Its solution is also
unique if furthermore (∇hn,b(q),∇hn,u(q)) is of full column rank (or equivalently if Ac(q) � 0).
In the next chapter we will study how the addition of sliding friction adds a perturbation
which destroys the symmetry of the matrix Ac(q). We will expose a limit on the magnitude of
the friction which guarantees that the perturbed matrix remains a P-matrix such as to avoid
Painlevé-type paradoxes.

In the next example we consider a rigid rod subject to both a bilateral and a unilateral
constraint. For this system, in some configurations the contact forces are non unique.
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Example: The rod with one bilateral and one unilateral constraint Consider the
system in Figure 1.1(c), where the upper tip of the rod is unilaterally constrained and the lower
tip is bilaterally constrained. The external forces are horizontal pulling forces fb, fu at each
tip. One obtains the matrices involved in the dynamics: M = diag(m,m, ml

2

12 ), ∇hn,b(q) =

(0, 1,− l
2 cos(θ))T , ∇hn,u(q) = (0,−1,− l

2 cos(θ))T ], F = (−fb − fu, 0,− l
2 (fb − fu) sin(θ))T ,

wc(q, q̇, t) = − 3 sin (θ) cos(θ)
m(3 cos2 (θ)+1)

(
2(fb − fu) + lm cos(θ)θ̇2

)
, and Ac(q) = 12 cos2 (θ)

m(3 cos2 (θ)+1)
. The LCP

in (2.18) then becomes :

0 ≤ λn,u⊥
12 cos2 (θ)

m (3 cos2 (θ) + 1)
λn,u −

3 sin (θ) cos(θ)

m (3 cos2 (θ) + 1)

(
2(fb − fu) + lm cos(θ)θ̇2

)
≥ 0.

It has a unique solution for all θ 6= π
2 . If θ = π

2 then (∇hn,b(q),∇hn,u(q)) is not of full rank
and the LCP becomes 0 6 λn,u ⊥ 0 > 0 so any non negative λn,u is a solution.

Conclusion

In this chapter we analyzed the frictionless contact problems for mechanical systems subject
to bilateral and unilateral constraints. We have summarized well-posedness results for these
problems in propositions 2.1.1, 2.2.2 and 2.3.1. In the frictionless case, non existence or non
uniqueness issues occur only when the mass matrix is singular or when the constraints aren’t
linearly independent.

When the mass matrix is non singular, the mere existence of a kinematically admissible
acceleration (Kb ∩ Ku 6= ∅) guarantees the existence of the acceleration (an essential prereq-
uisite to time step the mechanical system forward in time), as well as its uniqueness. When
furthermore the constraints are linearly independent the contact forces are also unique.

In the following chapter we will study how the problems to compute the contact forces get
all the more complicated as Coulomb’s friction is considered.
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Chapter 3

Lagrangian Mechanics of systems
subject to unilateral and bilateral
constraints with sliding Coulomb’s
friction

We now turn our attention to systems that are subject to sliding Coulomb’s friction.

Overview. This chapter is organized in three sections, similarly to chapter 2. We analyze
respectively in each section systems for which the constraints are only bilateral, only unilateral
and finally both unilateral and bilateral. We will see that even in the case of a non singular mass
matrix and of linearly independent constraints, the contact problem may be ill-posed. Our goal
is to define bounds on the friction coefficients such that this does not occur. The bounds we
derive in the bilateral and in the mixed case were previously unknown in the literature, while
the bound in the unilateral case may be found in [13].

Figure 3.1: Sliding Coulomb friction can be expressed compactly in 2D as λt,i = −µi|λn,i| ξi
where ξi ∈ {−1; 1} is the (monovalued) sign of vt,i. In 3D, the same law holds when expressed
in the local frame (ni, ti), where ti is a tangent vector oriented along the sliding line (with
arbitrary direction).

The Lagrange dynamics with sliding friction We shall assume in the sequel that all
frictional contact points lie in the sliding mode of Coulomb friction. In 2D and 3D, this allows
one to build for each contact point a local kinematical frame (ni, ti), where ni is the normal
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at contact and ti is oriented along the sliding line (see Figure 3.1 for an illustration). Using
suitable local kinematics frames (see for instance [8, §3.3]), one can define the (scalar) tangential
velocity vt,i 6= 0 and formulate the sliding Coulomb’s friction as

λt,i = −µi|λn,i| ξi where ξi ∈ {−1; 1} is univoquely given by the sign of vt,i.

Let vt,b be the vector that gathers local tangential velocities for the bilaterally constrained
contact points, and vt,u its unilateral counterpart. Then the operators Ht,b(q) and Ht,u(q) define
a mapping between local and generalized tangential velocities, written as vt,b = Ht,b(q)

T q̇ and
vt,u = Ht,u(q)T q̇. Let Ft,b denote the generalized force resulting from the contribution of the
frictional (tangential) forces acting on the system. From the principle of virtual works it follows
that vTt,bλt,b = q̇THt,b(q)λt,b = q̇TFt,b. Hence Ft,b = Ht,b(q)λt,b, and similarly for the unilateral
constraints. Then, using (1.1a) and (1.1b), one obtains the force balance equation for systems
with sliding friction

M(q)q̈+F (q, q̇, t) = ∇hn,b(q)λn,b+∇hn,u(q)λn,u−Ht,b(q)[µbξb] |λn,b|−Ht,u(q)[µuξu] λn,u. (3.1)

The matrix [µbξb] (respectively [µuξu]) denotes the diagonal matrix with entries µb,iξb,i for i in
1, . . . ,mb (respectively µu,iξu,i for i in 1, . . . ,mu). The vector |λn,b| := (|λn,b,1| |λn,b,2|...|λn,b,mb |)T ∈
Rmb+ collects the absolute values of the normal components of the bilateral contact forces. Note
that unilateral normal forces λn,u do not need to be expressed in terms of absolute value since
they should always remain positive due to the complementarity constraint (1.1c). Equation (3.1)
serves as a starting point to analyze (1.1) with sliding Coulomb’s friction.

Remark It is noteworthy however that Coulomb’s law cannot be written as an associated law
1 [46, §4]. This means that the right-hand side of (3.1) together with the complementarity
conditions, cannot be written compactly as the normal cone to some convex set. De Saxcé’s
bipotential function [47] allows one to recover an associated form at the local kinematics level,
however at the price of using a modified tangential velocity [8, §3.9.2].

3.1 Bilaterally constrained systems

In this section we analyze the case where all mb constraints are bilateral. We assume that the
mass matrix of the system is positive definite (M(q) � 0) and that all constraints are linearly
independent. Recall that under these conditions the frictionless contact problem is well posed
and that the contact force λn,b is the unique solution of the linear equation

An,b(q)λn,b + wb(q, q̇, t) = 0.

We will see in Section 3.1.1 how the equation for the contact forces becomes a piecewise linear
equation rather than a linear one when all constraints are subject to sliding Coulomb’s friction.
We will then proceed to derive bounds on the bilateral friction coefficients which guarantee
the existence and uniqueness of the contact force and hence of the acceleration. In Section
3.1.2 the result is extended to systems where some constraints may be frictional and others
frictionless. We illustrate our results on the so called Painlevé-Klein example and on two other
related mechanical systems.

1A contact law is associated if it can be expressed as an inclusion in the subdifferential of a convex, proper
function, i.e. it admits a convex pseudo-potential.
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3.1.1 All frictional bilateral constraints

Suppose that all mb constraints are bilateral and that all contacts are sliding: ξb,i := sgn(vt,b,i) ∈
{−1, 1}. Using (3.1) the extension of the KKT system in (2.2) is:

(
M(q) −∇hn,b(q) +Ht,b(q)[µbξb] [sgn(λn,b)]
∇hn,b(q)

T 0

)
︸ ︷︷ ︸

∆
=Mbµξ(q)

(
q̈
λn,b

)
=

( −F (q, q̇, t)

− d
dt(∇hn,b(q)

T )q̇

)

(3.2)
and we may denote the matrix in the left-hand side of (3.2) as Mbµξ(q). Comparing with
(2.2) one sees that friction modifies the system’s matrix, not its right-hand side. However the
matrix Mbµξ(q) depends non linearly on λn,b and hence equation (3.2) is not a linear equation in
(q̈, λn,b) as it was in the frictionless case. Hence relying on results of linear algebra is not possible.
Bilateral friction introduces a non-linearity or rather a piecewise linearity in the variable λn,b.

A direct way of analyzing the existence and uniqueness of solutions (q̈, λn,b) of (3.2) is to
form the analog of (2.5),

Anb(q)λn,b −Atb(q)[µbξb] |λn,b|+ wb(q, q̇, t) = 0, (3.3)

where the absolute value is meant componentwise and Atb(q)
∆
= ∇hn,b(q)

TM(q)−1Ht,b(q) is a
Delassus-like matrix coupling normal and tangential frictional effects. By inspecting each of the
2mb possible signs of λn,b one obtains 2mb linear systems. One may solve each such system and
obtain a candidate solution λn,b. If the signs of the newly computed λn,b coincide with those
of the assumption, a solution has indeed been found, otherwise it is rejected. If no solution or
several solutions are found, the system is said to be wedged or jammed. Such an exhaustive
procedure would yield necessary and sufficient conditions on the parameter values for a unique
solution of problem (3.3) to exist (see [11] in the case of a single contact). However, in practice,
it becomes intractable for systems with more than a few contact points.

In the rest of this section we present two alternative ways to derive sufficient conditions for
equation (3.2) to have a unique solution. Problem (3.3) can be treated as a perturbation of the
frictionless problem (2.5) and the non-linearity introduced by bilateral friction can be treated
via a fixed point argument or via complementarity theory.

Proposition 3.1.1. Let (q, q̇) be given at a time instant t. Let Anb(q) be positive definite (or
equivalently ∇hn,b(q) of full rank). Suppose that all contacts are sliding (vt,b,i 6= 0) and that the
friction coefficients µi satisfy

max
16i6m

µi < µbmax(q), (3.4)

where we define the bound µbmax(q) as

µbmax(q) :=
σmin(Anb(q))

σmax(Atb(q))
. (3.5)

Then the bilateral sliding friction problem (3.2) has a unique solution (q̈, λn,b).

Proof: Under the rank assumption made in the proposition, system (3.2) is equivalent to
q̈ = M(q)−1∇hn,b(q)λn,b −M(q)−1Ht,b(q)[µbξb] |λn,b| −M(q)−1F (q, q̇, t)

Anb(q)λn,b −Atb(q)[µbξb] |λn,b|+ wb(q, q̇, t) = 0
(3.6)
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unique solution

Figure 3.2: Illustration of the fixed point argument in the scalar case.

Since Anb(q) can be inverted, λn,b is a solution of (3.2) if and only if

λn,b = A−1
nb Atb[µbξb] |λn,b| −A−1

nb wb.

Let T (x) := A−1
nb Atb[µξ] |x| − A−1

nb wb, we will show that the mapping T (·) is contracting under
(3.4). Indeed one has:

‖T (x)− T (y)‖2 =
∥∥A−1

nb Atb[µbξb](|x| − |y|)
∥∥

2
≤
∥∥A−1

nb Atb[µbξb]
∥∥

2
‖|x| − |y|‖2

≤
∥∥A−1

nb Atb[µbξb]
∥∥

2
‖x− y‖2

(3.7)

for any x, y ∈ Rmb . By the property of induced matrix norms [30, Proposition 9.4.3], and the fact
that ||[a]||2 = maxi |ai|, we have max16i6m µi <

1
||A−1

nb ||2||Atb||2
which implies

∥∥A−1
nb Atb[µξ]

∥∥
2
< 1.

Hence T (·) is contracting. Using the Banach fixed point theorem one concludes that a unique
solution λn,b to (3.6) exists. Existence and uniqueness of the acceleration in (3.6) follows from
that of λn,b. �

In Figure 3.2 we illustrate the fixed point argument of the proof in the scalar case. In the
scalar case the operator T is simply of the form T (λn,b) = a|λn,b|+ b for some given scalars a, b.
The graph of the operator T describes the boundary of a cone, which is oriented upwards or
downwards depending on the sign of a. The equation for the bilateral contact forces admits a
unique solution if the graph of T intersects the line y = λn,b only once. This clearly happens
for any value of b if |a| < 1.

The upper bound for the friction coefficients in Proposition 3.1.1 is necessary and sufficient
in the case of a single contact. In the general case (several contact points) it is only sufficient.
Depending on the mechanical system under consideration the friction bound may or may not
be conservative. Note however, that the actual critical friction bound over which Painlevé-like
paradoxes occur may, in fact, be arbitrarily small [12].

The following result is similar to Proposition 3.1.1. It has a stronger requirement on the
friction bounds, but the proof uses complementarity theory rather than a fixed point argument
and the decomposition introduced is key in decoupling frictional and frictionless parts in the
mixed unilateral/bilateral case studied in Section 3.3.

Proposition 3.1.2. Let (q, q̇) be given at a time instant t. Let Anb(q) be positive definite (or
equivalently ∇hn,b(q) of full rank). Suppose that all contacts are sliding (vt,b,i 6= 0) and that the
friction coefficients µi satisfy

max
16i6m

µi <
1

3
µbmax(q)
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where µbmax(q) is defined in (3.5). Then the bilateral sliding friction problem (3.2) has a unique
solution (q̈, λn,b).

Proof: The proof consists of three steps: reformulating (3.3) as a horizontal LCP (hLCP2),
casting the hLCP matrix as a perturbation of a positive definite matrix and applying Corollary

A.4.2.1 in Appendix A.4. Following [28] let us introduce λ+ ∆
=
|λn,b|+λn,b

2 and λ−
∆
=
|λn,b|−λn,b

2 .
Solving (3.3) boils down to find λ+ and λ− such that

(Anb(q)−Atb(q)[µbξb])λ+ − (Anb(q) +Atb(q)[µbξb])λ
− + wb(q, q̇, t) = 0

0 ≤ λ+⊥λ− ≥ 0
(3.8)

As pointed out in [28], a solution to the hLCP (3.8) exists and is unique if and only if Anb −
Atb[µbξb] is invertible and (Anb −Atb[µbξb])−1(Anb +Atb[µbξb]) is a P-matrix. The upperbound
on the friction coefficient assures

||A−1
nb Atb[µbξb]||2 ≤ ||A−1

nb Atb||2||[µb]||2 ≤
1

3
< 1,

securing that I −A−1
nb Atb[µbξb] is non-singular and that its inverse can be written using Taylor

series expansion. The hLCP matrix, whose positive definiteness we want to enforce, can be
rewritten as

(Anb −Atb[µbξb])−1(Anb +Atb[µbξb]) = (I −A−1
nb Atb[µbξb])

−1A−1
nb Anb(I +A−1

nb Atb[µbξb])

= (
+∞∑
k=0

(A−1
nb Atb[µbξb])

k)(I +A−1
nb Atb[µbξb])

= I + 2
+∞∑
k=1

(A−1
nb Atb[µbξb])

k

︸ ︷︷ ︸
∆
=Kµ(q,q̇)

From Corollary A.4.2.1 in Appendix A.4, it follows that if ||Kµ(q, q̇)||2 < 1 then I+Kµ(q, q̇) � 03.
The upperbound 1

3µ
b
max(q) is chosen specifically so that this condition holds: ‖Kµ(q, q̇)‖ ≤

2
∑+∞

k=1

∥∥A−1
nb Atb

∥∥k ‖[µb]‖k < 2
∑+∞

k=1

∥∥A−1
nb Atb

∥∥k 1

3k‖A−1
nb Atb‖k

< 1. �

Example: A bilaterally constrained system with two frictional contacts. We consider
now the so-called Painlevé-Klein system depicted in Figure 1.1(d), where a rod is subjected to
two bilateral frictional constraints with friction coefficients µ1, µ2. Proposition 3.1.1 can be
used to study this system. It has been long known [10] that the contact LCP of this system
has a unique solution for the multipliers, if and only if |µ1 − µ2| < 2

tan θ ; this necessary and
sufficient condition can be thought of as defining a region in the (µ1, µ2) parameter plane and
it is depicted in dashes in Figure 3.3. In contrast, the merely sufficient condition of Proposition
3.1.1 defines a smaller region in the friction parameter plane (the dotted square in Figure 3.3).

The Proposition states that if max(µ1, µ2) < σmin(Anb(θ))
σmax(Atb(θ))

, then the multiplier vector exists and
is unique. Explicitly computing the singular values for a rod of length 1m and mass 1kg yields

max(µ1, µ2) < µbmax(θ)
∆
=

2

3
√
− cos (4θ) + 1

√
− (3 cos2 (θ) + 1) |3 cos2 (θ)− 1|+ 9 cos4 (θ) + 1,

2A horizontal LCP is just an MLCP with the particular structure of (3.8), see [8, Definition 12.23].
3A positive definite matrix is also a P-matrix
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(a) Conservativeness of µmaxb (θ)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

θ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

µ
b m
a
x
(θ

)

Maximum friction as a function of θ

(b) µmaxb (θ) for the Painlevé-Klein system

Figure 3.3: Friction bounds for the Painlevé-Klein system with two frictional guides.

and it can be checked numerically that µbmax(θ) < 2
tan θ for all θ ∈ ]0;π/2[. In Figure 3.3(b)

µmaxb (θ) is plotted as a function of θ. If the system is at a certain state θ and the friction at each
guide is less than the value µmaxb (θ) on the curve, then the contact force exists and is unique.

Flexible Painlevé-Klein system In this example we consider two rods of same mass and
length coupled by a linear spring, constrained to be aligned and subject to the same two bilateral,
frictional constraints as in the previous example, see Figure 1.1(e). The additional degree of
freedom is d (the distance between the two rods), and q = (x, y, d, θ)T . To see how this change in
the kinematics affects the friction bound of Proposition 3.1.1, µbmax(q) is numerically computed
for different configurations, see Figure 3.4. The matrices which are needed to compute the
friction bound are:

M(q) =


m 0 m

2 cos (θ) −m
2 (d+ l) sin (θ)

0 m m
2 sin (θ) m

2 (d+ l) cos (θ)
m
2 cos (θ) m

2 sin (θ) m
2 0

−m
2 (d+ l) sin (θ) m

2 (d+ l) cos (θ) 0 m
96

(
48d2 + 72dl + 32l2

)
,

∇hn,,b(q) =


0 0
1 1
0 sin(θ)
0 (l + d) cos(θ)

 and Ht,b(q) =


1 1
0 0
0 cos(θ)
0 −(l + d) sin(θ)

 .
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Figure 3.4: (a) d = −1.2l, l, 1.2l, (b) θ = π/3
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Figure 3.4 illustrates the fact that a change in θ or d influence the friction bound’s con-
servativeness. One can also study the system in reduced coordinates and obtain a closed form
expression for the necessary and sufficient conditions of existence and uniqueness of λn,1. The

multiplier λn,1 exists and is unique if and only if µ1 <
4−3 cos2 θ
3 sin θ cos θ . Therefore, just as in the classic

Painlevé example, no singularities occur when the friction coefficient is under 4/3 [9].

Articulated Painlevé-Klein system We consider an articulated Painlevé-Klein mechanism
where both ends are subject to bilateral constraints with Coulomb friction. The rigid rod is
replaced by two rods of same size and mass, linked together by a rotational joint, as in Figure
1.1(f). The friction bound of Proposition 3.1.1 is computed to understand how the coupling of
the constraints plays a role on the criterion’s conservativeness. Here q = (x1, y1, x2, y2, θ1, θ2)T .
The matrices which are needed to compute the friction coefficient upper bound are

M(q) =


m 0 −3l

8 m sin (θ1) − lm
8 sin (θ2)

0 m 3l
8 m cos (θ1) lm

8 cos (θ2)

−3l
8 m sin (θ1) 3l

8 m cos (θ1) l2m
6

l2m
16 cos (θ1 − θ2)

− lm
8 sin (θ2) lm

8 cos (θ2) l2m
16 cos (θ1 − θ2) l2m
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 ,

∇hn,b(q) =


0 0
1 1

0 l
2 cos θ1

0 l
2 cos θ2

 and Ht,b(q) =


1 1
0 0

0 − l
2 sin θ1

0 − l
2 sin θ2

 . We numerically computed
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Figure 3.5: Evolution of µmaxb (q) for (a) q = (0, 0, θ, θ), (b) q = (0, 0, θ1, θ2 = arcsin(2D/l−sin θ1)

µbmax(q) for a variety of cases. Figure 3.5(a) depicts how µbmax(q) changes for a set of con-
figurations corresponding to the case where the rod is perfectly straight, keeping every other
parameter fixed. We observe that as the system approaches a vertical configuration the normal
couplings become stronger and the admissible set of friction values decreases. Figure 3.5(b)
depicts how µbmax(q) changes for initial configurations corresponding to a bent rod. In contrast
with the classical Painlevé-Klein system, the relative orientation of the rods with respect to the
guides may evolve during the motion. This is also the case of the unilateral sliding rod system,
and it may create additional dynamical features [9].
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3.1.2 Mixed frictional/frictionless contacts

Let us now assume that all mb constraints are bilateral and that m0
b of them are frictionless

while mµ
b of them are subject to sliding friction. We rewrite (3.1) in its index 1 form:
M(q)q̈ + F (q, q̇, t) = ∇h0

n,b(q)λ
0
n,b +∇hµn,b(q)λ

µ
n,b +Hµ

t,b(q)[µb][ξb][sgn(λµn,b)] λ
µ
n,b

∇h0
n,b(q)

T q̈ + d
dt(∇h0

n,b(q)
T )q̇ = 0, ∇hµn,b(q)T q̈ + d

dt(∇h
µ
n,b(q)

T )q̇ = 0

(3.9)

In a matrix form one gets the extension of (3.2): M(q) −∇h0
n,b(q) −∇h

µ
n,b(q) +Hµ

t,b(q)[µb][ξb][sgn(λµn,b)]

∇h0
n,b(q)

T 0 0

∇hµn,b(q)T 0 0

 q̈
λ0

n,b

λµn,b

 =

 −F (q, q̇, t)

− d
dt(∇h0

n,b(q)
T )q̇

− d
dt(∇h

µ
n,b(q)

T )q̇


(3.10)

Similarly to the all frictional case, assuming M(q) � 0 and that the non-frictional constraints
are independent, one obtains a reduced system where the only unknown is λµn,b. Under these
assumptions, system (3.9) is equivalent to (the argument q is dropped):

q̈ = −M−1F (q, q̇, t) +M−1∇h0
n,bλ

0
n,b +M−1∇hµn,bλ

µ
n,b −M−1Hµ

t,b[µbξb]
∣∣∣λµn,b∣∣∣

λ0
n,b = −(A00

nb)
−1A0µ

nbλ
µ
nb + (A00

nb)
−1A0µ

tb [µbξb]
∣∣∣λµn,b∣∣∣+ (A00

nb)
−1((∇h0

n,b)
TM−1F − d

dt((∇h0
n,b)

T )q̇)

(
Aµµnb − (A0µ

nb)
T (A00

nb)
−1A0µ

nb

)
λµn,b −

(
Aµµtb − (A0µ

nb)
T (A00

nb)
−1A0µ

tb

)
[µbξb]

∣∣∣λµn,b∣∣∣+ w̃b = 0,

(3.11)
where A00

nb(q) = ∇h0
n,b(q)

TM(q)−1∇h0
n,b(q) is the matrix of normal/normal frictionless couplings,

A0µ
nb(q) = ∇h0

n,b(q)
TM(q)−1∇hµn,b(q) is the matrix of normal frictionless/normal frictional cou-

plings, A0µ
tb (q) = ∇h0

n,b(q)
TM(q)−1Hµ

t,b(q) is the matrix of normal frictionless/tangential fric-

tional couplings, Aµµtb (q) = ∇hµn,b(q)TM(q)−1Hµ
t,b(q) is the matrix of normal frictional/tangential

frictional couplings, and finally w̃b(q, q̇, t)
∆
= A0µ

nb(A
00
nb)
−1((∇h0

n,b)
TM−1F − d

dt((∇h0
n,b)

T )q̇) −
(∇hµn,b)TM−1F − d

dt((∇h
µ
n,b)

T )q̇) is the vector collecting all remaining terms in the last equa-
tion. Hence the problem is reduced to studying essentially the same equation as (3.3) in the all
frictional case (which was itself the extension of (2.5)):

Ãnb(q)λ
µ
n,b − Ãtb(q)[µbξb]

∣∣∣λµn,b∣∣∣+ w̃b(q, q̇, t) = 0, (3.12)

where Ãnb
∆
= Aµµnb − (A0µ

nb)
T (A00

nb)
−1A0µ

nb and Ãtb
∆
= Aµµtb − (A0µ

nb)
T (A00

nb)
−1A0µ

tb . It is important to

observe that Ãnb(q) is nothing but the Schur complement of Aµµnb (q) in the matrix(
∇h0

n,b ∇hµn,b
)T

M−1
(
∇h0

n,b ∇hµn,b
)
.

So Ãnb(q) � 0 and A00
nb(q) � 0 if and only if

(
∇h0

n,b ∇h
µ
n,b

)T
M−1

(
∇h0

n,b ∇h
µ
n,b

)
� 0. Hence, if(

∇h0
n,b(q) ∇h

µ
n,b(q)

)
is full rank then Ãnb(q) is invertible. We deduce the following result.

Proposition 3.1.3. Let (q, q̇) be given at a time instant t. Assume that the matrix(
∇h0

n,b(q) ∇hµn,b(q)
)T

M(q)−1
(
∇h0

n,b(q) ∇hµn,b(q)
)

(3.13)
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is positive definite. Suppose that all frictional contacts are sliding (vt,b,i 6= 0) and that the
friction coefficients µi satisfy

max
16i6mµb

µi <
σmin(Ãnb(q))

σmax(Ãtb(q))
.

Then the solution (q̈, λ0
n,b, λ

µ
n,b) of system (3.9) exists and is unique.

The proof is almost the same as that of Proposition 3.1.1: existence and uniqueness are
obtained by a fixed point argument, and the bound on the matrix norm guarantees that a
piecewise affine operator is contracting. The assumption (3.13) is there to ensure that Ãnb(q)
is invertible.

Example: The Painlevé-Klein system with one frictional guide and one frictionless
guide. Let us we study the classical example of Painlevé-Klein within our framework of fric-
tional/frictionless bilateral constraints. The system consists of a rigid rod with two prismatic
joints as in Figure 3.6. The lower guide is rough (it is acted on by Coulomb friction), the upper
guide is frcitionless. The external forces are horizontal pulling forces F1 and F2. The dynamics
(3.9) is given by:

D

F1

θ

l

F2

Figure 3.6: The Painlevé-Klein system



mẍ+ F1 + F2 = −µ1ξb
∣∣λµnb∣∣

mÿ = λµn,b + λ0
n,b

ml2

12 θ̈ + l
2 sin θ(F1 − F2) = l

2 cos θ(λ0
n,b − λ

µ
n,b)− l

2 sin θµ1ξb

∣∣∣λµn,b∣∣∣
hµn,b(θ) = y − l

2 sin(θ)

h0
n,b(θ) = y + l

2 sin(θ)−D.

The matrices involved in the analysis of the system are: M = diag(m,m, ml
2

12 ), ∇hµn,b(θ) =

(0, 1,− l
2 cos(θ))T ,∇h0

n,b(θ) = (0, 1, l2 cos(θ))T , Ht,b(θ) = (1, 0, l2 sin(θ))T , Ãn,b(θ) = 12 cos2 (θ)
m(3 cos2 (θ)+1)

,

Ãtb(θ) =
[

6 sin (2θ)
m(3 cos (2θ)+5)

]
. Equation (3.12) boils down to a scalar equation of the form Ãnb(θ)λ

µ
n,b−

Ãtb(θ)µ1ξb

∣∣∣λµn,b∣∣∣ + w̃b(q, q̇, t) = 0. From Proposition 3.1.3 it follows that if µ1 < 2
tan θ then

(ẍ, ÿ, θ̈, λµn,b, λ
0
n,b) exists and is unique. The condition turns out to be not only sufficient but

also necessary.
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3.2 Unilaterally constrained systems

Let us now turn to the case where all constraints are unilateral and subject to sliding friction.
The unilateral sliding friction problem then consists in finding the accelerations and contact
forces (q̈, λn,u) solutions of the MLCP:{

M(q)q̈ + F (q, q̇, t) = (∇hn,u(q)−Ht,u(q)[µu] [ξu])λn,u

0 6 ∇hn,u(q)T q̈ + d
dt(∇hn,u(q)T )q̇ ⊥ λn,u > 0.

(3.14)

If M(q) � 0 then the problem is reduced to an LCP. Let us introduce the matrix:

Au,µ,ξ(q) := ∇hn,u(q)TM(q)−1(∇hn,u(q)−Ht,u(q)[µu] [ξu]) (3.15)

= Anu(q)−Atu(q)[µuξu], (3.16)

where Atu(q) := ∇hn,u(q)TM(q)−1Ht,u(q), Anu as defined in (2.15) and ξu,i = sgn(vt,u,i), vt,u,i 6=
0 for 1 6 i 6 mu. Then the frictional contact LCP, which extends (2.15), is given by:

0 6 λn,u ⊥ Au,µ,ξ(q)λn,u + wu(q, q̇, t) > 0 (3.17)

with wu(q, q̇, t) as defined in (2.15).

Proposition 3.2.1. Let (q, q̇) be given at some time instant t, that all mu constraints are
unilateral, active at t, and in the sliding mode of Coulomb’s friction. Let Anu(q) be positive
definite and suppose that:

max
16i6mu

µi < µumax(q) :=
σmin(Anu(q))

σmax(Atu(q))
. (3.18)

Then the matrix Au,µ,ξ(q) is positive definite (hence a P-matrix), and the contact LCP (3.17)
always has a unique solution λn,u for any given wu(q, q̇, t).

Proof. Let the hypotheses in the proposition hold. Let x ∈ Rmu be non zero. We have that
xT (Atu(q)[µuξu])x 6 ||[µuξu]|| ||Atu(q)|| ||x||2, and thus

xT (Atu(q)[µuξu])x 6 max
16i6mu

µi σmax(Atu(q)) ||x||2.

Combining the latter inequality with xTAnu(q)x > σmin(Anu(q))||x||2 we get that

xTAu,µ,ξ(q)x >

(
σmin(Anu(q))− max

16i6mu
µi σmax(Atu(q))

)
||x||2.

Clearly, the bound on the friction coefficients in (3.18) guarantees that for all non zero x ∈ Rmu
the quadratic product xTAu,µ,ξ(q)x is strictly positive, so that Au,µ,ξ(q) is positive definite
(albeit non symmetric). Hence the matrix Au,µ,ξ(q) is a P-matrix and the contact LCP (3.17)
has a unique solution λn,u for any given wu(q, q̇, t).

Remark The fact that (3.18) guarantees that Au,µ,ξ(q) � 0, may also be proved using Corollary
A.4.2.1 in Appendix A.4, which was our original approach. The above proof is due to [13], we
include it as it makes the bound on the friction coefficients appear more naturally.

The friction bound in (3.18) provides a sufficient condition for Au,µ,ξ(q) to be a P-matrix. The
bound is easy to compute even for a system with a very large number of contacts. Indeed the
largest and smallest singular values of a matrix may be computed efficiently using the Lanczos
algorithm. This is in contrast with trying to determine if the matrix Au,µ,ξ(q) is a P-matrix
by determining the sign of its 2mu − 1 principal minors [48], which would be computationally
prohibitive for a large number of contacts.

Next we examine the classical example usually used to illustrate the Painlevé paradox.
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The Classical Example of Painlevé We now add Coulomb’s friction to the mechanical
system in Figure 1.1(b) and point out how the equations of motion are affected. The system
under consideration is the classical example of Painlevé of a rigid rod sliding against a frictional
plane. Its dynamics is given by:

mẍ = −µξλnu
mÿ = −mg + λn
ml2

12 θ̈ = − l
2 cos θλn − l/2 sin θµξλnu

0 ≤ hnu(θ) = y − l
2 sin(θ)⊥λnu ≥ 0

The additional matrices due to friction are Htu(θ) = (1, 0, l2 sin(θ))T , Atu(θ) = −3 sin θ cos θ
m , and

Au,µ,ξ(θ) = 1+3 cos2(θ)
m + 3 sin(θ) cos(θ)

m µξ. Hence the LCP in (3.17) reads:

0 ≤
(1 + 3 cos2(θ)

m
+

3 sin(θ) cos(θ)

m
µξ
)
λnu +

l

2
θ̇2 sin θ − g⊥λnu ≥ 0. (3.19)

The necessary and sufficient condition for a solution to exist (for any value of l
2 θ̇

2 sin θ− g)
is that the scalar Au,µ,ξ(θ) be positive. If we consider values of θ in ]0, π2 [ then one sees that for
rightward sliding (ξ = 1) Au,µ,ξ(θ) is always positive, regardless of the magnitude of friction.
Whereas for leftward sliding (ξ = −1), Au,µ,ξ(θ) becomes negative for high values of friction.
Indeed solving for µ in the scalar inequality Au,µ,ξ(θ) < 0 one finds the critical friction value
beyond which paradoxes occur, and it coincides with that of Proposition 3.2.1, namely

µmaxu (θ) =
1 + 3 cos2 θ

3 sin θ cos θ
.

A graphical interpretation of these singular LCP situations is given on Figure 3.7(a), while the
critical friction bound for the Painlevé system is plotted in Figure 3.7(b). It is seen that the
frictional singularities occur only when the friction coefficient is larger than 4

3 . While some have
argued that it is unrealistic to have such a large value of friction, it has been shown in [12]
that the bound above which frictional singularities occur may in fact be arbitrarily low. The
structure of the bound in (3.18) is in agreement with this as we can see that depending on the
constraints and the mass matrix it may be made arbitrarily small.

3.3 Unilaterally/bilaterally constrained systems

In this section we consider mechanical systems with both bilateral and unilateral constraints
subject to sliding friction. Recall that in the frictionless case, if the mass matrix is invertible and
the constraints linearly independent then the contact problem is well-posed and the unilateral
contact force is the unique solution of the LCP (2.18). The matrix of the LCP (2.18), Ac(q)
is symmetric positive definite under these conditions. We will see how the LCP matrix gets
perturbed when friction is added and we will derive a bound on the friction coefficients so that
the perturbed matrix remains a P-matrix.

All contacts with friction

Let us consider first the case where all contacts are frictional, i.e., I0
b = I0

u = ∅. Let us consider
(1.1) in its index 1 form, i.e., with the acceleration constraints ∇hn,b(q)

T q̈+ d
dt(∇hn,b(q)

T )q̇ = 0
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Figure 3.7: Critical friction and singular situations in the classic example of Painlevé

and 0 6 hn,u(q) ⊥ ∇hn,u(q)T q̈ + d
dt(∇hn,u(q)T )q̇ > 0. The dynamics in (1.1) becomes :

M(q)q̈ = ∇hnb(q)λn,b −Ht,b(q)[µbξb] |λn,b|+∇hnu(q)λn,u −Ht,u(q)[µuξu]λn,u − F (q, q̇, t)

∇hn,b(q)
T q̈ + d

dt(∇hn,b(q)
T )q̇ = 0

0 6 λn,u ⊥ ∇hnu(q)T q̈ + d
dt(∇hn,u(q)T )q̇ > 0.

(3.20)
By inverting the mass matrix, q̈ can be expressed as a function of the multipliers. Introducing

λ+ = |λnb|+λnb
2 and λ− =

|λn,b|−λn,b

2 as in Proposition 3.1.2 casts the piecewise linearity induced
by the absolute value into a complementarity formalism. The problem is thus transformed to
determining whether for arbitrary parameter values and arbitrary vectors w1, w2 the following
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MLCP has a unique solution (λ+(q, q̇), λ−(q, q̇), λn,u(q, q̇))4:
(Anb −Atb[µbξb])λ+ − (Anb +Atb[µbξb])λ

− + (Anbnu −Anbtu[µuξu])λn,u + w1 = 0

0 6 (Anunb −Anutb[µbξb])λ+ − (Anunb +Anutb[µbξb])λ
− + (Anu −Atu[µuξu])λn,u + w2 ⊥ λn,u > 0

0 6 λ+ ⊥ λ− > 0,
(3.21)

where:

w1(q, q̇, t)
∆
= −∇hn,b(q)

TM(q)−1F (q, q̇, t) +
d

dt
(∇hn,b(q)

T )q̇

w2(q, q̇, t)
∆
= −∇hn,u(q)TM(q)−1F (q, q̇, t) +

d

dt
(∇hn,u(q)T )q̇

possess the same structure as wu(q, q̇, t) in (2.2). Assume that the conditions of Proposition
3.1.2 hold. Then Anb(q) − Atb(q)[µbξb] � 0 and the problem is to determine the existence
and uniqueness of a solution (λ−(q, q̇), λn,u(q, q̇)) (for arbitrary q, q̇) of the following LCP (the
argument q is dropped):

0 6

(
λ−

λn,u

)
⊥
(

A−1Ā −A−1B
CA−1Ā− C̄ D − CA−1B

)
︸ ︷︷ ︸

∆
=Mµ

ub(q)

(
λ−

λn,u

)
+

(
z1

z2

)
> 0, (3.22)

where A
∆
= Anb − Atb[µbξb], Ā

∆
= Anb + Atb[µbξb], B

∆
= Anbnu − Anbtu[µuξu], C

∆
= Anunb −

Anutb[µbξb], C̄
∆
= Anunb +Anutb[µbξb], D

∆
= Anu −Atu[µuξu], z1

∆
= −A−1w1 and z2

∆
= w2 + Cz1.

Remark When all the contacts are frictionless, the LCP in (3.22) has the form:

0 6

(
λ−

λn,u

)
⊥
(
I −A−1

nb Anbnu
0 Anu −ATnbnuA−1

nb Anbnu

)
︸ ︷︷ ︸

∆
=M0

ub(q)

(
λ−

λn,u

)
+

(
z1

z2

)
> 0, (3.23)

The second line is an LCP involving λnu alone and is the same as the LCP in (2.18). Thus
its solution λnu exists and is unique provided that all the constraints are independent. Under
this assumption it follows that λ− also exists and is unique for any (z1, z2): hence the matrix
M0
ub(q) of the LCP (3.23) is a P-matrix.

One has the following decomposition for the matrix in (3.22) into frictionless and frictional
parts: Mµ

ub(q) = M0
ub(q) +Pµ(q, q̇) where the frictional part ‖Pµ(q, q̇)‖ tends to zero as the fric-

tion coefficient µi goes to zero for each contact. Once again the matrix from the frictional LCP
is obtained as a perturbation of the frictionless one (3.23). Here sufficiently small friction coeffi-
cients will guarantee that Mµ

ub is a P-matrix. Let us provide some details on the matrix Pµ(q, q̇).
We know from section 3.1 that A−1Ā = I + 2Kµ(q, q̇) with Kµ(q, q̇) =

∑∞
i=1(A−1

nb Atb[µbξb])
i.

4Recall that Anunb(q)
∆
= ∇hn,u(q)TM(q)−1∇hn,b(q), Anutb(q)

∆
= ∇hn,u(q)TM(q)−1Ht,b(q), Anbnu(q) =

Anunb(q)
T , Anbtu(q)

∆
= ∇hn,b(q)

TM(q)−1Ht,u(q).
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Using the same decomposition for the other blocks of Mµ
ub(q), one obtains

A−1Ā = I + 2Kµ(q, q̇) (3.24)

−A−1B = −A−1
nb Anbnu + (I +Kµ(q, q̇))A−1

nb Anbtu[µuξu]−Kµ(q, q̇)A−1
nb Anbnu (3.25)

CA−1Ā− C̄ = 0− 2Anutb[µbξb] + CKµ(q, q̇) (3.26)

D − CA−1B = Anu −ATnbnuA−1
nb Anbnu −Atu[µuξu] +Anutb[µbξb]A

−1
nb Anbnu

+ C((I +Kµ(q, q̇))A−1
nb Anbtu[µuξu]−Kµ(q, q̇)A−1

nb Anbnu) (3.27)

By Theorem A.4.1 in Appendix A.4, if

‖Pµ(q, q̇)‖2 < 1/β2(M0
ub(q))

then Mµ
ub(q) is a P-matrix. One can therefore derive an implicit maximum value of all friction

coefficients below which existence and uniqueness of a solution to problem (3.20) is guaranteed.

Proposition 3.3.1. Let (q, q̇), F (q, q̇, t) be given and vt,i 6= 0 for all i. Assume that M(q) � 0
and Anb(q) � 0. Suppose that all the constraints are independent, that the bilateral friction
coefficients satisfy max16i6mb µ

b
i < µbmax(q), and that ‖Pµ(q, q̇)‖2 < 1

β2(M0
ub(q))

. Then Mµ
ub(q) is

a P-matrix, there exists a unique solution (q̈, λnb, λnu) to the LCP in (3.22) for any z1, z2, and
thus to the mixed sliding friction problem (3.20).

One sees once again that there is no obvious quadratic problem that could be associated
with the LCP in (3.22), because Mµ

ub(q) is guaranteed to be neither symmetric nor � 0.

Example: A falling ladder. The above Proposition 3.3.1 defines implicitly a friction bound
µmaxub (q) below which frictional singularities are avoided. We compute it numerically for the
example of a falling ladder in frictional bilateral contact with the wall and frictional unilateral
contact with the ground as in Figure 3.8(a). The ladder is modeled as a rigid rod of length 2 m
and of mass 1 kg. Figure 3.8(b) depicts the evolution of the friction bound as the rod slides from
a vertical position to a horizontal one. It is seen for example that at the configuration θ = π

4 the
friction bound is around 0.65. In Figure 3.8(c) we show, for the configuration θ = π

4 , the range
of values (µb, µu) of the bilateral and unilateral friction coefficients for which the matrix Mµ

ub(q)
is a P-matrix. The black region of allowable friction coefficients is thus larger than the safety
region defined by the proposition (the [0, 0.65]2 square). The criterion is thus conservative, as
expected.

(a) Rod with a Mixed frictional
constraints.
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Figure 3.8: Critical friction bound for the falling ladder example.

It is important to mention that the numerical computation of the bound µmaxub (q) for a
mixed system is not as straightforward as its purely unilateral or purely bilateral counterparts.
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The quantity β2(M0
ub(q)) is by definition the result of an optimization problem (see Theorem

D.A.4.1 in the Appendix), for the sliding ladder example we solve it using a sequential least
squares solver available in the SciPy library [49]. The matrix Pµ is obtained as the difference
Mµ
ub−M0

ub. Finally the bound µmaxub (q) is computed by numerically solving for µ, with a secant
method, the scalar algebraic equation ||Pµ(q, q̇)||2 = 1/β2(M0

ub(q)).

Frictionless bilateral contacts

When the bilateral constraints are frictionless (µb,i = 0 for all 0 ≤ i ≤ mb), one can easily
express λnb as a function of λnu and equation (3.20) becomes

0 ≤ λnu⊥(D − CA−1B)λnu + z2 ≥ 0,

with z2 in (3.22), D −CA−1B = Anu −ATnbnuA−1
nb Anbnu + (ATnbnuA

−1
nb Anbtu −Atu)[µuξu], which

is the sum of the matrix Ac(q) in (2.18), plus a frictional perturbation term. We know that
Ac(q) � 0 when all constraints are independent. The matrix D−CA−1B is simpler than Mµ

ub(q)
in (3.22) since it is the perturbation of a symmetric positive definite matrix, rather than that
of a P-matrix. One can use the results of Section 3.2.

Proposition 3.3.2. Let (q, q̇), F (q, q̇, t) be given and vt,i 6= 0 for all i. Suppose that all
constraints are independent, that the bilateral constraints are frictionless (µb,i = 0 for all i),
and that

max
16i6mu

µu,i <
σmin(Anu(q)−Anbnu(q)TAnb(q)

−1Anbnu(q))

σmax(Atu(q)−Anbnu(q)TAnb(q)−1Anbtu(q))
. (3.28)

Then there exists a unique solution (q̈, λnu, λnb) to the problem (3.20).

It is noteworthy that (3.28) is the direct extension of (3.18), taking into account the distortion
due to the presence of frictionless bilateral constraints. However, there is no clear relationship
between µumax(q) in (3.18), and the upperbound in (3.28).

3.4 Conclusion

The main purpose of this part was to present in a progressive way the so-called contact problem
(whose unknowns are the contact forces and the accelerations), in the frictionless and sliding
Coulomb’s friction cases. In both settings Lagrangian systems with bilateral, unilateral and
mixed bilateral/unilateral constraints are analysed. Various points of view (linear complemen-
tarity problems, minimization problems, KKT conditions) are considered. The frictional case is
treated as a perturbation of the frictionless one, and explicit criteria on the friction coefficients
upper bound guaranteeing the contact problem’s well-posedness, are given.

Recapitulation We now give a global view on the structures of the different contact problems
we have been considering thus far. What we first wish to underline is that (for a non-singular
mass matrix and full rank constraint Jacobian) the frictionless problems are well posed. The
bilateral one as a linear system in (2.5)

Anb(q)λn,b + wb(q, q̇, t) = 0,

the unilateral one as an LCP in (2.15)

0 ≤ Anu(q)λn,u + wu(q, q̇, t)⊥λn,u ≥ 0,
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and the mixed one as the unilateral LCP with a bilateral distortion in (2.18)

0 ≤ Ac(q)λn,u + wc(q, q̇)⊥λn,u ≥ 0.

In the case of a full rank Jacobian and an invertible mass matrix all three matrices Anb(q),
Anu(q), and Ac(q) are symmetric positive-definite. One can solve uniquely for contact forces
and deduce a unique acceleration. Then in the case of small friction this well posedness is
preserved. The all sliding bilateral friction problem becomes the LCP

0 ≤ (I + 2Kµ(q, q̇))λ− + wbf (q, q̇, t)⊥λ− ≥ 0,

for some wbf (q, q̇, t), where ‖Kµ(q, q̇, t)‖ tends to zero as the friction µ goes to zero. For small
enough friction the positivity of the identity matrix is preserved and the LCP is well posed.
The unilateral all sliding friction problem becomes (3.17)

0 ≤ Au,µ,ξ(q)λn,u + wu(q, q̇, t)⊥λn,u ≥ 0.

For small friction µu the well posedness of the contact problem is kept. As for the mixed all
sliding friction problem one has an LCP of the form (3.22)

0 ≤ (M0
ub(q) + Pµ(q, q̇))λ+ w(q, q̇, t)⊥λ ≥ 0,

where ‖Pµ(q, q̇)‖ tends to zero as the friction µ goes to zero. The matrix M0
ub(q) is a P-matrix

whose terms appear in the frictionless problems and the P-matrix property is also preserved
when adding the small frictional perturbation term Pµ(q, q̇).

We have derived bounds on the friction coefficients which guarantee the well posedness of
the frictional sliding contact problem. In the purely bilateral and purely unilateral problems the
friction bounds are explicit and straightforward to compute. They require only the computation
of some singular values of the system matrices. In contrast some more intricate numerical proce-
dure is required to compute the bound in Proposition 3.3.1 for the mixed (unilateral/bilateral)
case.

Use of the friction bounds. The derived critical friction bounds may be used for the explicit
investigation of Painlevé like singularities in simple mechanical systems as those considered in
the examples throughout this chapter. They may serve as well in the investigation of the
dynamics of these systems as carried out in [9] and [12]. In mechanism design the friction
bounds could be used as a certificate that the contact forces can be uniquely determined. They
could perhaps be useful in the design of mechanical systems which explicitly avoid inconsistent
configurations. Furthermore they may be used in diagnosing issues in the event-driven numerical
simulation of larger multibody systems. In an event-driven method, if an event is detected for
some configuration (q, q̇) of the mechanical system at time t the event is to be handled by
computing the contact force and the acceleration of the system so as to advance the simulation
in time. If the handling of the event fails then one can compute the friction bound for the given
configuration and test whether the actual friction coefficients are above or below the bound. If
the actual friction coefficients are below the bound then one can be sure that the failing of the
numerical procedure is not due to the appearance of a friction induced singularity. If the actual
friction is above the bound then in general one cannot conclude, as the bound yields only a
sufficient condition for the existence and uniqueness of the contact force.
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Handling frictional singularities in numerical simulations. As the Painlevé example
and all the other examples considered in this part show, frictional singularities occur even in
the simplest of systems and are by no means exceptional. In the presence of these singularities,
event-driven methods fail to evolve the system in time, as any value of the acceleration and
the contact forces will inevitably lead to the violation of the constraints. What one should do
in such a scenario is to use a time-stepping scheme [50], rather than an event driven scheme.
Although this is obvious to many experts in the field, event driven schemes are widespread in
industry and further collaboration between academia and industry is required on this topic. An
example of such a collaboration (between our team and Ansys) is the thesis of Haddouni [51],
where a mixed event-driven/time-stepping integration scheme was proposed. The justification
of why time stepping methods would work better in such inconsistent configurations is rooted
in the work of Moreau [50], Stewart [52] and Genot and Brogliato [9]. In [50] it was empirically
shown that time-stepping schemes are successful in the simulation of Painlevé paradoxes, which
are referred to as frictional paroxysms by Moreau. In [52] Stewart shows that, for the Painlevé
example, although the forces may not be computed in inconsistent configurations, an impulsive
solution to the equations of motion does exist. In [9] a detailed dynamical study of the Painlevé
system near a singular point was carried out and it was shown that while the contact force may
blow up and be unbounded, its integral (the impulse) remains bounded. Since in time-stepping
schemes the unknowns are the impulses rather than the forces it is normal that time stepping
schemes are better at simulating mechanical systems which in continuous time are subject to
frictional paroxysms. Let us note however that the use of a time stepping scheme doesn’t solve
all solvability issues as it shown in the examples of [53] and [54].

Outlook. Perhaps some similar bounds can be derived on the friction coefficients which guar-
antee the existence and uniqueness of the velocities and the contact impulses in the time-stepping
discretization of a mechanical system. It would be highly desirable to apply the methods de-
veloped in this part to the analysis of the discrete time frictional contact problem.
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Part II

The statics of elastic rods from an
Optimal Control point of view
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Chapter 4

Introduction

Overview. This part of the thesis deals with the statics of thin elastic rods. In Chapter 5 we
present the continuous problem of rod statics. In Chapter 6 we address the problem of comput-
ing stable static equilibria of Kirchhoff rods under different boundary conditions and possibly
subject to contact constraints. Our proposed approach relies on formulating the continuous
problem as an Optimal Control Problem (OCP) on the Lie group SE(3) and discretizing it us-
ing direct methods of numerical optimal control. We will see that the Optimal Control point of
view provides a very useful theoretical and numerical framework to conceive, analyze and imple-
ment strain based and mixed finite element discretizations of rod statics under constraints. The
applications considered include the packing of an elastic ring and the formation of plectonemes.

Motivation. Slender elastic filament-like structures are ubiquitous in nature and in man made
objects. Examples in nature, at our human scale, include tree branches, plant stems, hair and
fur: the numerical simulation of the visually rich dynamics of these objects is of high interest in
computer animation [3, 55]. At a smaller scale, the flagella of swimming micro-organisms [56]
and even DNA molecules [57] are examples of slender structures studied in biomechanics. While
examples in man made objects, of obvious interest in mechanical engineering, include industrial
cables [58], marine cables [59], columns and helicopter blades [60] just to name a few. It is of the
utmost importance in many applications to be able to predict the mechanical behaviour of such
structures. This includes predicting their equilibrium configuration given some external loads,
boundary conditions and constraints; predicting whether the equilibria are stable or unstable.
Whether the structure will buckle or not; what dynamical evolution will the structure undergo,
what internal forces will the structure experience, and so on.

Rod models. Slender elastic filament-like structures have in common that they are three
dimensional elastic bodies where one dimension (the length) is much larger than the other two
dimensions (the cross sections). They can be idealized and compactly described by mechanical
models for rods (or beams). There is a wealth of rod models available, each relevant or valid
under certain assumptions. Rod models are distinguished on the basis of at least two factors.
The first is the degrees of freedom which the model allows, that is the kinematics. For example,
does the model account for stretching, shearing, bending or twisting? And does it account
for large displacements and finite rotations? The second, is on the underlying physics of the
phenomenon it tries to capture, that is whether it captures, for instance, elasticity, plasticity,
viscosity etc. The applications we consider involve the deformation of very thin rods under
moderate loads and undergoing large deflections and rotations. Therefore we base our work in
the setting of geometrically exact rod theory and make use of the Kirchhoff and Cosserat theories
which we present in Chapter 5. Both theories account for small strains, large displacements
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and finite rotations. The kinematics of a Kirchhoff rod allows only elastic bending and twisting
while that of a Cosserat rod additionally allows for stretching and shearing.

Numerical discretization of rod models. To predict the mechanical behaviour of a rod-
like structure, it suffices to solve the equilibrium equations of the rod. This is however no
easy task. The equations have in general no closed form solution and analytical methods
are of reduced applicability. One must then rely on a numerical solution of the equilibrium
equations. The dynamic equilibrium equation of a Kirchhoff or of a Cosserat rod is a non linear
hyperbolic partial differential equation (PDE) with one spatial and one temporal dimension.
While some authors propose to discretize in both space and time simultaneously [61], such an
approach is not convenient for our purposes, or more generally for purposes of flexible multibody
dynamics. In the simulations of hair dynamics performed in our team [3, 62, 55] a single rod
models a hair strand and is just part of a larger multibody system. To handle contact and
friction interactions between rods, or to handle the coupling of rods with rigid bodies it is more
convenient to discretize the rods spatially first. This way the whole set of rods and other bodies
are described as a single Lagrangian mechanical system evolving in time, as that encountered
in Part I of this thesis. The procedure of first discretizing in space and then in time is often
referred to as a method of lines. For the computation of the static equilibrium of a rod only a
spatial discretization needs to be carried out. In both the static and dynamic equilibrium cases
the spatial discretization of the rod is key and it is precisely the issue which we address.

Our contributions. We propose methods for the computation of the stable static equilib-
ria of Kirchhoff rods under constraints. The methods are fast and robust. They can handle
boundary conditions, equality constraints and inequality constraints efficiently. They yield good
qualitative results even at very coarse discretization levels, a property which is much cherished in
computer graphics applications but also in fast prototyping design. Although we only deal with
the problem of statics in this Part II of the manuscript, the spatial discretizations used in our
methods can also be applied in a method of lines discretization of the dynamics. The applicabil-
ity of the method for Cosserat rods is straightforward and is discussed. Our proposed methods,
in the smooth case, can be seen as a family of integrators [63] previously unexplored for the
statics of Kirchhoff rods. This fact alone motivates their development and investigation. The
proposed methods rely on an alternative (Optimal Control) formulation of the Kirchhoff kinetic
analogy and on a discretization of the kinematics using Runge-Kutta-Munthe-Kaas methods.
We will see that our proposed methods fall into the category of strain based and mixed methods
which generalize the construction of the Super-Helix element for Kirchhoff rods proposed in [3].
Our implementation methodology is very simple and we hope that this feature will lead to a
wider use of strain based methods in applications.
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Chapter 5

An Optimal Control Interpretation
of Rod Statics

Overview. We present the Optimal Control formulation for the statics of Kirchhoff and
Cosserat rods. To the best of our knowledge, the Optimal Control interpretation of the statics
of Cosserat rods hasn’t been exposed before. Although our simulations involve only Kirchhoff
rods, we also present the Cosserat rod model as it is closely related and much of the literature
on the numerics of Cosserat rods is relevant to our work. We also wish to highlight the appli-
cability of our methods for Cosserat rods. In Section 5.1 we treat the case of planar rods, while
in Section 5.2 we treat the case of spatial rods.

On the Optimal Control interpretation. We will see that it is possible to interpret the
problem of rod statics as an Optimal Control Problem where the strains of the rod are inter-
preted as control variables and the position and orientation of the cross sections are interpreted
as state variables. The Optimal Control formulation of the statics of rods is essentially a mixed
variational formulation where the strains, the displacements and the orientation of the rod are
taken as a priori independent variables coupled by kinematic constraints. A mixed variational
formulation was already present in the work of Hodges [64] and in the work of Borri and Botasso
[65] for Cosserat rods, although the latter uses stresses rather than the strains as independent
variables. Recently Lang et al. [66] also used a mixed kinematic description for the dynamics
of planar Kirchhoff rods. However the Optimal Control interpretation of Kirchhoff rod statics
is not widespread. The only place where we have seen it explicitly stated is in the book of
Jurdjevic ’Geometric Control Theory’ [67], where it appears as an application of the theory of
Optimal Control on Lie groups developed in the book.

In our opinion the Optimal Control formulation has the advantage of being the most explicit
formulation, all variables and constraints are included. In this sense it constitutes an interesting
alternative form of the Kirchhoff kinetic analogy. Kirchhoff figured out that the problem of
finding static equilibria of inextensible and unshearable rods was remarkably similar to that of
the dynamics of a heavy top. This analogy is very useful, as one can then draw conclusions on
the theory and numerics of rods based on the enormous literature on the classical mechanics
of the heavy top. However, as pointed out by Kehrbaum and Maddocks in [68], many authors
are quick to overlook, or to be discrete about, the quirks in the Kirchhoff kinetic analogy. The
most notable difference is that rod statics is a Boundary Value problem (BVP) instead of an
Initial Value Problem (IVP). There is no counterpart to the position of the rod centerline in the
dynamics of the top. Furthermore the role of gravity, a known parameter in the top dynamics,
is played by the internal force (an unknown) in the Kirchhoff rod.

Secondly, from a numerical and from an implementation point of view, the optimal control
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interpretation is quite fruitful. It provides a very clear language to classify different discretiza-
tion approaches, and suggests ways to combine Automatic differentiation (AD) tools, advanced
numerical integrators for ODE’s/DAE’s and Non-Linear Program (NLP) solvers to assemble
and solve the discretized OCPs. Nowadays, non-linear programming solvers are readily avail-
able, they get better by the day as the mathematical optimization community is very active;
and some solvers have decades of heuristics and robustness built in to them. Environments like
Casadi[69], intended for optimal control, bring all these different components together (AD,
ODE/DAE solvers, NLP solvers), making it extremely easy to implement different formulations
and discretizations of OCPs. An interesting feature of the direct methods, as we will see, is that
even at a very coarse level of discretization the qualitative behavior of the solutions remains
accurate. We will also see how direct methods of optimal control allow for a natural and efficient
handling of frictionless inequality constraints.

On the Lie group formalism. Another feature of our formulation is that we employ a
Lie group formalism. Specifically we take the configuration space of a rod to be the special
Euclidean group SE(d), where d = 2 for planar rods and d = 3 for spatial rods. We will
see that a rod can be described by a point r(s) ∈ Rd which tracks the position of the rod’s
centerline, and by an orthonormal frame R(s) ∈ SO(d) which tracks the orientation of the rod’s
cross sections. Our previous point of view was that the configuration space of a Kirchhoff rod
was Rd×SO(d) and that the no stretch and no shear conditions were to be treated as separate
constraints. After our reading of [70], the special Euclidean structure of the kinematics of
Kirchhoff rods became apparent and we adopted it in our formulation. It may at first seem to
the reader that using such a Lie group formalism is unnecessary, since after all the treatments
of rods by Euler, Kirchhoff and the Cosserats did not require it. However we find it convenient
to use the Lie group formalism since this language allows for a more unified treatment of
planar and spatial Cosserat and Kirchhoff rods. Furthermore taking the special Euclidean
Lie group structure into account leads to a natural formulation of strain measures and to the
avoidance of ’locking problems’ which are typical in classical finite element formulations [71].
Formulating rod kinematics in the special Euclidean groups is not yet standard practice in
computational elasticity, although important exceptions include [70, 72, 73, 58]. In some papers
it is used implicitly, more focus is given to the interpolation of rotations, interpolating positions
being seen as a secondary problem. Locking problems then typically arise (in the Cosserat
case) when positions are interpolated independently of the rotations or when strain measures
aren’t ’objective’ (invariant with respect to rigid body motions). For example in [74] ’geodesic
finite elements’ for Cosserat rods are developed, however the authors use SO(3) × R3 as the
configuration space leading to an incorrect interpolation of the position variables and to shear
locking. The discretizations we propose avoid this problem if applied to Cosserat rods.

We include in Appendix C.1 background material on the Lie groups SO(3) and SE(3) for
the convenience of the reader.

5.1 The continuum description of planar rods

5.1.1 Planar Kirchhoff rods

Definition. We call rod a three dimensional elastic body with two dimensions (the cross
section) much smaller than the third (the length). A planar Kirchhoff rod, illustrated in Figure
5.1, has a centerline restricted to move in the plane and is characterized by small strains (linear
elasticity), large displacements and finite rotations (geometrical non linearities). It is assumed
to be perfectly inextensible, and undergoes only pure bending deformations in the plane.
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Some History. The problem of finding the static equilibria of such an elastic structure was
first formally formulated by James Bernoulli in 1691 who also published the first solution in
1694. The first full mathematical treatment using the calculus of variations was done by Euler
who classified and illustrated the different solutions, which are to date referred to as Euler’s
elastic curves or Elastica. The reader interested in the beautiful history of the Elastica can
consult for example [75].

Kinematics. The centerline of a planar Kirchhoff rod of length L is parametrized by a curve
r mapping the arclength parameter s ∈ [0, L] to R2. The orientation of the cross sections is
given by a material frame varying along the curve r and represented here as a rotation matrix
R(s) ∈ SO(2). The curvature of the centerline is given by scalar valued function which we
denote κ.

Figure 5.1: Centerline, material frame and curvature of a planar Kirchhoff rod.

The kinematics of the material frame reads R′ = Rκ̂, where κ̂ is the skew symmetric matrix

κ̂ =

[
0 −κ
κ 0

]
and prime(’) denotes derivation with respect to the arclength s. The Euler-

Bernoulli constraint reads r′ = Re1, where e1 = (1, 0)T ; it encodes the incompressibility and no
shear conditions, and couples the frame to the centerline. The frame is said to be adapted to
the centerline. Because of this coupling we can’t consider the frame R and the centerline r as
independent variables. We thus take the configuration space of the planar Kirchhoff rod to be
the Special Euclidean group SE(2) so that (R, r) : [0, L]→ SE(2). The SE(2) structure of the
problem becomes apparent by rewriting the frame kinematics and Euler-Bernoulli constraint as
the SE(2) reconstruction equation,

d

ds

[
R(s) r(s)

0 1

]
=

[
R(s) r(s)

0 1

] [
κ̂ e1

0 0

]
. (5.1)

We will denote the orthonormal column vectors of the matrix R as d1 and d2, these are
nothing but the tangent and normal vectors to the centerline. In terms of mechanics the strains
of the beam can be defined as follows. The stretching strain is ε1 := r′ · d1, it is unit because of
the incompressibility condition : ε1 = d1 · d1 = 1. The shearing strain is defined as ε2 := r′ · d2

and it is zero because of the no shear condition. The bending strain is just the curvature κ of
the centerline.

Energy of a planar Kirchhoff rod The elastic bending energy density of a planar Kirchhoff
rod is

Ub(s) =
EI

2
(κ(s)− κ̄(s))2,
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where E is Young’s modulus, I is the inertia of the cross section and κ̄ is the natural curvature
of the rod. One can also take into account the potential energy due to gravity. Denoting by ρ
the mass density of the rod, S the area of the cross section and g the gravitational constant,
the expression of the gravitational potential energy density Ug of the rod is

Ug(s) = ρSgr2(s).

Optimal control formulation. Finding the stable static equilibria of a planar Kirchhoff rod
subject to boundary conditions and frictionless contact constraints under gravitational forces
can then be formulated as an Optimal Control Problem (OCP) where the states are (R, r) and
the controls κ, which reads

min
R,r,κ

∫ L
0 L(R(s), r(s), κ(s))ds

s. t. R′ = Rκ̂
r′ = Re1

gI(R, r, κ) 6 0
gbd(R(0), r(0), R(L), r(L)) = 0,

(5.2)

where the ’Lagrange cost’ is the sum of bending and gravitational potential energy densities L =
Ub + Ug, gI models inequality constraints and gbd encodes the boundary conditions. Boundary
conditions may be for example fixed-fixed, fixed-free, periodic or even something more exotic.
Note that the representation of SO(2) we’re using is that of the set of 2 by 2 matrices R
such that RTR = I and det(R) = 1. These two equality constraints are implicit in the frame
reconstruction equation of (5.2). Provided that the initial frame R(0) is indeed in SO(2) and
that R′(s) = R(s)κ̂(s) then it holds that R(s) is in SO(2) for all s ∈ [0, L].

Alternative formulations

Several equivalent formulations of the statics of planar Kirchhoff rods can be derived, depending
on the choice of the different possible representations of the configuration space SE(2) and on
the handling of the Euler-Bernoulli constraint. The different formulations can be classified
according to which subset of the configuration variables (R, r, κ) is used and on how R is
represented. Formulations using (R, r) are called absolute. Those using only κ are called
intrinsic or strain based. Those using all (R, r, κ) are called mixed. In [76] the author discretizes
the strain based formulation by introducing a piecewise linear continuous strain field. The
optimal control formulation proposed above is of the mixed kind and will lead in the discrete
settings to both mixed and strain based numerical schemes in Chapter 6.

It is noteworthy that in [66] all three formulations are considered for the dynamic simulation
of planar Kirchhoff rods with an extensional degree of freedom. Therein the rotations R are
represented using unit complex numbers, indeed one has the isomorphism SO(2) ≈ S1 ≈ {z ∈
C : ||z|| = 1}. It is shown in [66] that strain based and mixed coordinates allow for larger time
steps than absolute coordinates but that for a large number of elements the dense structure of
the mass matrix in the strain formulation is prohibitive. In Chapter 6 a similar conclusion is
reached for the statics of Kirchhoff rods, where the Hessian of the gravitational potential energy
is dense for strain based discretizations.

Angle formulation. Nowadays the most common formulation of the Elastica [77, 78] is
what we will call the ’angle formulation’. It was unknown to Euler and first discovered by
Kirchhoff. It consists in representing SO(2) as the unit circle S1, which can be parametrized by
an angle θ. The angle θ(s) is the angle between the constant e1 direction and the tangent vector
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r′(s). Note that this parametrization doesn’t introduce singularities contrary to the situation

for SO(3) and Euler angles. The material frame is then R(s) =

[
cos θ(s) − sin θ(s)
sin θ(s) cos θ(s)

]
. The

curvature is κ(s) = θ′(s). The expressions for the centerline are r1(s) =
∫ s

0 cos θ(u)du and
r2(s) =

∫ s
0 sin θ(u)du. The problem of finding stable static equilibria of a planar Kirchhoff rod

without gravity, without contact constraints and given boundary conditions r(0) = 0, θ(0) = θ0

and r(L) = (xL, yL), θ(L) = θL then reads

min
θ

∫ L
0

EI
2 θ
′(s)2ds

s. t.
∫ L

0 cos θ(s)ds = xL∫ L
0 sin θ(s)ds = yL
θ(0) = θ0, θ(L) = θL.

(5.3)

The problem in (5.3) is a problem of the Calculus of Variations with isoperimetric constraints
[79], the mathematical theory of which was already available at the time of Kirchhoff whereas
Optimal Control was not. The Euler-Lagrange equations of (5.3) are of the same form as those
for the pendulum, this remark being known as the planar Kirchhoff kinetic analogy. We will
use the angle formulation (5.3) in Chapter 6 mainly to obtain reference solutions.

Position Formulation. It is possible also to use only the position of the centerline r as an
unknown and imposing ||r′(s)||2 = 1. The resulting problem is again a problem of the Calculus
of Variations with isoperimetric like constraints. For a full account of this approach, including
the quadrature of resulting the Euler-Lagrange equations in terms of Jacobi elliptic functions,
the interested reader can consult [80]. The Euler-Lagrange equations for this formulation result
in a 4th order non linear BVP for r which is hard to tackle numerically because of its stiffness.

5.1.2 Planar Cosserat rods

Kinematics Planar Cosserat rods [81, 82, 83] are like planar Kirchhoff rods which are allowed
to stretch and shear. The planar Cosserat rod is still described as a framed curve in SE(2),
having a centerline r and a material frame R. However, the tangent vector r′ needs not be
unit (thus accounting for stretch), nor aligned with the director d1 (thus accounting for shear).
The extra degrees of freedom are then the stretching strain v1 := r′ · d1 and the shearing strain
v2 := r′ · d2.

Figure 5.2: Centerline and material frame of a planar Cosserat rod. The tangent vector r′(s)
isn’t unit (accounting for stretch). The cross sections don’t remain orthogonal to the centerline
(accounting for shear).
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Note however that, although the Euler-Bernoulli constraint has been relaxed, the frame and
the centerline of a planar Cosserat rod are still coupled. The kinematics of the frame and the
centerline follow the SE(2) reconstruction equation

d

ds

[
R(s) r(s)

0 1

]
=

[
R(s) r(s)

0 1

] [
κ̂ v
0 0

]
. (5.4)

Energy. The planar Cosserat rod model has the same energy as the planar Kirchhoff rod, with
the addition of an extra term in the elastic energy which accounts for extension and shearing
Ues. Denoting S the area of the cross section, k the Timoshenko shear correction factor and µ
the shear modulus, the extension and shearing term in the elastic energy reads

Ues =
1

2
(v − e1)TC(v − e1),

where C = diag(ES, µkS).

Optimal Control formulation. The problem of finding stable static equilibria of planar
Cosserat rods can then be formulated as the Optimal Control Problem

min
R,r,κ,v

∫ L
0 L(R(s), r(s), κ(s), v(s))ds

s. t. R′ = Rκ̂
r′ = Rv
gI(R, r, κ, v) 6 0
gbd(R(0), r(0), R(L), r(L)) = 0,

(5.5)

where now L = Ub + Ues + Ug, the states are (R, r) and the controls are (κ, v).

5.2 The continuum description of spatial rods

5.2.1 Spatial Kirchhoff rods

Kinematics. The centerline of a spatial Kirchhoff rod [84, 85, 78, 86] of length L is parametrized
by a curve r mapping the arclength parameter s ∈ [0, L] to R3. The orientation of the cross
sections is given by a material frame varying along the curve r and represented here as a rotation
matrix R(s) ∈ SO(3). Much like in the planar case we will formulate the problem of finding
the stable static equilibria of rods as an optimal control problem where the states are the frame
and the centerline (R(s), r(s)) ∈ SE(3). A spatial Kirchhoff rod, as depicted in Figure 5.3, can
bend in two directions and can furthermore twist around its centerline. We collect the bending
strains κ1, κ2, and the twisting strain τ in a vector κ := (κ1, κ2, τ)T which will be interpreted
as the control input in our OCP.

The kinematics of the material frame reads R′ = Rκ̂, where κ̂ is the skew symmetric matrix

κ̂ =

 0 −τ κ2

τ 0 −κ1

−κ2 κ1 0

. The Euler-Bernoulli constraint in the spatial case reads r′ = Re3,

where e3 = (0, 0, 1)T ; it encodes the incompressibility and no shear conditions, and couples
the frame to the centerline (the frame is said to be adapted to the centerline). Again, the
SE(3) structure of the problem becomes apparent by rewriting the frame kinematics and Euler-
Bernoulli constraint as the SE(3) reconstruction equation,
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Figure 5.3: Centerline, material frame and curvatures of a Kirchhoff rod.

d

ds

[
R(s) r(s)

0 1

]
=

[
R(s) r(s)

0 1

] [
κ̂ e3

0 0

]
. (5.6)

We will denote the orthonormal column vectors of the material frame R as (d1, d2, d3), the
vector tangent to the centerline is d3, the other two span the cross section.

Energy of a spatial Kirchhoff rod The elastic bending and twisting energy density of a
spatial Kirchhoff rod is

Ubt =
EI1

2
(κ1 − κ̄1)2 +

EI2

2
(κ2 − κ̄2)2 +

µJ

2
(τ − τ̄)2,

where E is Young’s modulus, µ is the shear modulus, I1 and I2 are the cross section inertias
and κ̄ := (κ̄1, κ̄2, τ̄)T are the natural curvatures and twist of the rod. One can also take into
account the potential energy due to gravity. Denoting by ρ the mass density of the rod, S the
area of the cross section and g the gravitational constant, the expression of the gravitational
potential energy density Ug of the rod is

Ug = ρSgr3.

Optimal control formulation. Finding the stable static equilibria of a spatial Kirchhoff rod
subject to boundary conditions and frictionless contact constraints under gravity can then be
formulated as an Optimal control problem (OCP) where the states are (R, r) and the controls
κ, it reads

min
R,r,κ

∫ L
0 L(R(s), r(s), κ(s))ds

s. t. R′ = Rκ̂
r′ = Re3

gI(R, r, κ) 6 0
gbd(R(0), r(0), R(L), r(L)) = 0,

(5.7)

where the ’Lagrange cost’ is the sum of bending, twisting and gravitational potential energy
densities L = Ubt+Ug, gI models inequality constraints and gbd encodes the boundary conditions.

Alternative formulations and their discrete counterparts.

The Frenet, Material and Bishop frames. A curve alone cannot represent by itself a
physical rod as it would be unable to account for the twisting of the rod. Rods are therefore
represented mathematically as framed curves, that is curves carrying a director frame. The
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angular velocity of the frame along the centerline then accounts for bending and twisting strains.
The traditional way of framing curves is to make use of the Frenet frame from the classical
differential geometry of curves (see for instance Chapter 1 of [87]). However the Frenet frame
requires the curve to have non vanishing second derivatives to be defined and can therefore not
account for a rod with a perfectly straight centerline and a twisted configuration. Fortunately,
there is more than one way to frame a curve [88]. The Natural (or Bishop) frame, denoted
RB = (U, V, T ) is defined as an adapted frame to the curve r, that is r′ = T which is twistless
(its kinematics read R′B = RBû with u = (u1, u2, 0)T ). Introducing the angle between the
Bishop and material frames leads to the curve angle representation [89].

Figure 5.4: The Bishop and material frames coincide in the tangent vector d3 = T = r′ but
differ by an angle θ(s) which varies along the rod.

Absolute. In [89] the curve-angle representation is introduced to treat the Kirchhoff rod
problem from a Lagrangian point of view. It consists in representing the rod using the centerline
curve r(s), the angle θ(s) between the Bishop and the material frame as well as the initial
director vector d1(0) of the material frame. Twist is then measured as τ(s) = θ′(s). In [90] a
discrete version of the curve angle formulation for the dynamics of Kirchhoff rods is derived.
A similar staggered grid approach is employed in [86] but with rotations represented as unit
quaternions. However, both methods require imposing quadratic constraints on the position
variables to enforce the inextensibility of the Kirchhoff rod.

In [91] the statics of Kirchhoff rods is discretized leveraging the Kirchhoff kinetic analogy
and the principles of discrete time Lagrangian mechanics on Lie groups. Continuing on the
same path as [91], Moser-Veselov integrators are developed in [92] for the statics of Kirchhoff
rods. These method however don’t account for the gravitational potential energy of the rod as
then the classical Kirchhoff kinetic analogy breaks down.

Strain based. In [3, 55] the strain based formulation is discretized using respectively piecewise
constant and piecewise linear shape functions leading to helical and clothoidal elements for
Kirchhoff rods. These methods preserve the inextensibility and no shear constraints intrinsically.
Our proposed discretizations in Chapter 6 can be seen as a generalization of these strain based
methods. In the Cosserat case strain based discretizations are considered in [60, 93, 94, 95].

5.2.2 Spatial Cosserat rods

Kinematics Spatial Cosserat rods [96, 82, 83, 86] are like spatial Kirchhoff rods which are
allowed to stretch and shear. A Cosserat rod is described as a framed curve in SE(3), having
a centerline r and a material frame R. However, the tangent vector r′ needs not be unit (thus
accounting for stretch), nor aligned with the director d1 (thus accounting for shear). The extra
degrees of freedom are then the stretching strain v3 := r′ · d3 and the two shearing strains
v1 := r′ · d1 and v2 := r′ · d3.
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Figure 5.5: Centerline and material frame of a spatial Cosserat rod. The tangent vector r′(s)
isn’t unit (accounting for stretch). The cross sections don’t remain orthogonal to the centerline
(accounting for shear).

Note however that, although the Euler-Bernoulli constraint has been relaxed, the frame and
the centerline of a spatial Cosserat rod are still coupled. The kinematics of the frame and the
centerline follow the SE(3) reconstruction equation

d

ds

[
R(s) r(s)

0 1

]
=

[
R(s) r(s)

0 1

] [
κ̂ v
0 0

]
. (5.8)

Energy. The spatial Cosserat rod model has the same energy as the spatial Kirchhoff rod, with
the addition of an extra term in the elastic energy which accounts for extension and shearing
Ues. Denoting S the area of the cross section, k1, k2 the Timoshenko shear correction factors
and µ the shear modulus, the extension and shearing term in the elastic energy reads

Ues =
1

2
(v − e3)TC(v − e3),

where C = diag(µk1S, µk2S,ES).

Optimal Control formulation. The problem of finding stable static equilibria of spatial
Cosserat rods can then be formulated as for Kirchhoff rods:

min
R,r,κ,v

∫ L
0 L(R(s), r(s), κ(s), v(s))ds

s. t. R′ = Rκ̂
r′ = Rv
gI(R, r, κ, v) 6 0
gbd(R(0), r(0), R(L), r(L)) = 0,

(5.9)

where now L = Ub + Ues + Ug and where the controls are κ and v.

Objectivity of Strain measures. As alluded to in the introduction of this chapter, in the
SE(d) formalism the definition of strain measures is very natural and enjoys the very important
property that they are invariant with respect to superimposed euclidean transformations. The
importance of this property for rods was identified in [97] and coined ’Objectivity of strain
measures’. Obviously the stored internal elastic energy of the rod should not depend on where
the rod is in space or on how it is oriented, but only on the relative position and orientation of
the cross sections. However when designing finite elements for beams in the classical settings,
strains need to be expressed in terms of the nodal positions and orientations and it is easy for
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the resulting expression to violate objectivity. A configuration of a rod, in both the Cosserat
and Kirchhoff models, is given by a frame and a centerline (R(s), r(s)) ∈ SE(d). The strains
associated to that configuration are the se(d) elements (κ(s), v(s)) such that

d

ds

[
R(s) r(s)

0 1

]
=

[
R(s) r(s)

0 1

] [
κ̂ v
0 0

]
.

If we superimpose an euclidean transformation (A, b) ∈ SE(d) to the configuration (R(s), r(s)),
the resulting configuration of the rod is given by (AR(s), Ar(s)+b). The strains of the resulting
configuration are seen to remain unchanged as the following simple computation shows:

d

ds

[
AR Ar + b
0 1

]
=

[
ARκ̂ ARv

0 0

]
=

[
AR Ar + b
0 1

] [
κ̂ v
0 0

]
.

5.3 The Kirchhoff Kinetic analogy

Now that we have seen how the problems of rod statics can be formulated as optimal control
problems we take a more detailed look at the classical Kirchhoff kinetic analogy and at what
its optimal control formulation suggests.

The classical Kirchhoff kinetic analogy. As pointed out by Kehrbaum and Maddocks
in [68], many authors are quick to overlook or be discrete about the quirks in the Kirchhoff
kinetic analogy. We therefore present in the following table a summary of the similarities and
differences between Kirchhoff rod statics and heavy top dynamics. The most notable difference
is that rod statics is a BVP instead of an IVP, there is no counterpart to the position of the
rod centerline in the dynamics of the top and finally the role of gravity (a known parameter) in
the the top dynamics is played by the internal force (an unknown) in the Kirchhoff rod.

Kirchhoff Rod statics Heavy Top dynamics

arclength s time t
Material frame (d1, d2, d3) Frame aligned with axes of inertia (d1, d2, d3)

Bending and twisting strains κ := (κ1, κ2, τ) Body angular velocities ω := (ω1, ω2, ω3)
Bending and twisting stiffnesses EI1, EI2, µJ Principal moments of inertia I1, I2, I3

Elastic Energy 1
2(EI1κ

2
1 + EI2κ

2
2 + µJτ2) Kinetic energy 1

2(I1ω
2
1 + I2ω

2
2 + I3ω

2
3)

Bending and twisting Moments m = Kκ Angular momenta Π = Iω

Internal Force F (unknwown) Gravity Force Fg := −mge3 (known)
Total Energy density 1

2κ
TKκ+ F Td3 Lagrangian 1

2ω
T Iω + lF Tg d3

Centerline r(s) None
Constraint r′ = d3 None

Initial Bending and twisting κs=0 (unknown) Initial Angular velocity ωt=0 (known)
Boundary conditions at s = L None

Where l is the distance from the fixed point of the top to its center of mass.

A Kirchhoff Kinetic analogy from the control viewpoint. The Optimal Control formu-
lation of Kirchhoff rod statics provides an alternative, and more explicit, form of the Kirchhoff
kinetic analogy. What it suggests is that the statics of a Kirchhoff rod is equivalent to the
non-holonomic mechanics of a rigid body in d-dimensional space, where d = 2 for planar rods
and d = 3 for spatial rods. The configuration space of the analogous rigid body is SE(d), its
angular velocity is analogous the the bending strains κ of the rod. The analogous rigid body
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can assume any angular velocity, reflecting the fact that for a Kirchhoff rod the bending (and
twisting) strains are unconstrained. However it is subject to the non-holonomic constraint that
the velocity v of its center of mass expressed in the body frame is always constant, v = e3 in
the spatial case and v = e1 in the planar case. Thus reflecting the fact that for a Kirchhoff rod
the stretching and shearing strains are imposed. The analogous rigid body is thus like a rocket
whose back thrusters constrain it to move at constant unit speed in the direction of one of its
axes of inertia, while it is impossible for it to instantaneously move orthogonally to that axis.

5.4 Conclusion

We have seen that the problem of computing the stable static equilibria of a Kirchhoff or of
a Cosserat rod can be formulated as an Optimal Control problem on SE(d), where d = 2 for
planar rods and d = 3 for spatial rods. We have seen that the optimal control formulation is
simply a mixed variational formulation where the strains are interpreted as ’controls’ and the
position and orientation as ’states’. We have discussed its connection with other more standard
formulations of rod statics and exposed the alternative form of the Kirchhoff kinetic analogy
which it suggests. In the next chapter we propose to discretize our Optimal Control formulation
by using direct methods of numerical optimal control. We will see how discretizing the strain
field and using Runge-Kutta-Munthe-Kaas methods to discretize the kinematics leads to the
formulation of strain based and mixed finite elements for rod statics.
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Chapter 6

A Hamilton-Pontryagin Approach
for the statics of Kirchhoff rods

Overview. We saw in Chapter 5 that it is possible to formulate the problem of finding stable
static equilibria of Kirchhoff rods as an optimal control problem which, we recall, reads

min
R,r,κ

∫ L
0 L(R(s), r(s), κ(s))ds

s. t. R′ = Rκ̂
r′ = Re3

gI(R, r, κ) 6 0
gbd(R(0), r(0), R(L), r(L)) = 0,

(6.1)

where the position and frame fields (R, r) : [0, L] → SE(3) are interpreted as ’states’ and the
bending and twisting strain fields κ : [0, L]→ R3 are interpreted as ’controls’.

From the point of view of numerical optimal control there are two major categories of ways to
find local solutions of the problem (6.1), namely indirect methods and direct methods. Although
there are also methods to find global minima of optimal control problems, in this thesis we are
only concerned with local methods. Global methods are typically prohibitively expensive for
problems having more than a few states due to the ’curse of dimensionality’. Furthermore we’re
more interested in applications like finding local minima and tracking them as some parameters
of the system evolve, hence there is no real need for global methods. That being said, we will see
that the direct methods we propose do tend to find local optima of rather low energy levels, in
contrast to the indirect methods. For the reader unfamiliar with the distinction between direct
and indirect methods, we now summarize it shortly before delving into their precise application
to problem (6.1).

The indirect approach can be summarized as ’first optimize then discretize’. First one
writes the (infinite dimensional) first order optimality conditions of the OCP (6.1). The result
is a boundary value problem (BVP). Then using a suitable numerical integrator one discretizes
the BVP, which results in a (finite dimensional) set of non linear algebraic equations. One
then solves these algebraic equations using a Newton type method. Actually when inequality
constraints are present the result is a set of non linear generalized equations (or inclusions) and
one would then have to employ a non smooth Newton type method.

The direct approach can be summarized as ’first discretize then optimize’. First one dis-
cretizes the states and controls, a suitable numerical integration scheme is employed to discretize
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the constraints of problem (6.1) which then becomes a (finite dimensional) non linear program-
ming problem (NLP). One then solves (optimizes) the NLP using standard NLP software like
Ipopt [98], which implements an interior point method1.

When the two commute. Instead of using a minimization routine to solve the NLP of
the direct approach, we can write the first order optimality conditions of the NLP, resulting
in a set of non linear algebraic equations (or inclusions). The question is then whether these
equations are the same as those obtained via the indirect approach. The answer is that it is
not always the case. We refer the reader interested in these questions to the very good review
article of Sanz-Serna [99], where in particular it is explained that the answer is positive in the
following very common scenario. In the absence of inequality constraints the BVP of the indirect
approach is governed by a smooth Hamiltonian dynamical system. If the ODE constraints in
the direct approach are discretized using a Runge-Kutta scheme, then the resulting optimality
conditions describe a symplectic partitioned Runge-Kutta method to solve Hamiltonian BVP
of the indirect approach.

Remark. In our opinion the issue of whether or not to use direct or indirect methods is
a moot point. One rather needs to understand the advantages and disadvantages of each
method and use them accordingly, or even use both if the problem requires it. For example
a typical disadvantage of indirect methods is their sensitivity to the initial guess. One can
in such cases use the solution of a direct method with a coarse discretization to initialize the
indirect method. Also, it is easier to obtain local minima (so stable static equilibria) with direct
methods since there is often a line search procedure in the NLP solver which guarantees that
the local solution found is not a maximum or a saddle point, whereas with indirect methods
one is not guaranteed to find a local minimum but rather any kind of inflexion point of the
objective. Another reason why we are interested in developing direct methods is that they yield
finite dimensional expressions of the energy and kinematics which can then be reused in the
context of dynamics. A very common procedure to simulate the dynamics of beams is to use
the so called ’method of lines’, where one first discretizes in space and let the spatial degrees of
freedom depend on time. The result is a reduction of beam dynamics to a problem of multibody
dynamics. But we defer further discussion of dynamics to a future chapter. For now let us leave
it a motivational point to study the spatial discretizations of energy and kinematics suggested
by the direct approach.

We will see in the remainder of this chapter how the Optimal Control point of view provides
a very useful theoretical and numerical framework to conceive, analyse and implement strain
based and mixed finite element discretizations of rod statics under constraints.

6.1 Indirect Methods

This section deals with indirect methods for planar and spatial Kirchhoff rods in the absence
of inequality constraints. We show how to recover the classical Kirchhoff balance equations
from the optimal control formulation and show how to solve them numerically using shooting
techniques. Some of the numerical solutions obtained will be later used as a reference when
evaluating the direct methods.

1Sequential quadratic programming (SQP) methods can also be used although freely available implementations
are scarce.

56



6.1.1 Derivation of the Kirchhoff Equations for rod statics

We consider a Kirchhoff rod in the absence of external forces and contact constraints. In
the following we show how to recover the Kirchhoff equations of rod statics from the optimal
control formulation in left reduced form (meaning in the material frame) and right reduced
form (meaning in the spatial frame). We will then point out how the equations change when
the rod’s weight and natural curvature are taken into account, as well as the difference and
similarities with the analogous derivation for Cosserat rods.

Proposition 6.1.1. Let H be the SE(3) frame collecting the material frame R and the centreline

position r as H =

[
R r
0 1

]
. Let ξ be the se(3) element collecting the bending-twisting strains κ

and the stretching-shearing strains v as ξ =

[
κ̂ v
0 0

]
. Then the following points hold.

• (i) Constrained SE(3) formulation. The problem of finding stable static equilibria of
spatial Kirchhoff rods under fixed-fixed boundary conditions and in the absence of contact
constraints and external forces can be reformulated as

min
H,κ,v

∫ L
0 l(ξ(s))ds

subject to H(s)−1H ′(s) = ξ(s)
v(s) = e3

H(0) = H0, H(L) = HL,

(6.2)

where the reduced Lagrangian l is defined as l(ξ) := 1
2κ

TKκ and the boundary conditions
as H0 = (R0, r0) and HL = (RL, rL).

• (ii) Left reduced Pontryagin optimality conditions. The necessary conditions for
optimality of (6.2) in left trivialized and left reduced form read: there exists a frame field
H : [0, L] → SE(3), a strain field ξ = (κ, v) : [0, L] → se(3), a stress field µ = (m, f) :
[0, L] → se(3)∗ 2 and a multiplier field λ : [0, L] → R3 such that the following equations
hold 

v = e3

r′ = Rv Euler− Bernoulli
R′ = Rκ̂ frame reconstruction
m′ = −κ×m− v × f momentum balance
f ′ = −κ× f force balance
m = Kκ Legendre transform
f = λ.

(6.3)

• (iii) The Kirchhoff equations follow from left reduced optimality conditions
(6.3). The momentum M := Rm and the force F := Rf expressed in the fixed reference
frame, that is in spatial coordinates, verify the Kirchhoff equations

F ′ = 0
M ′ = F × d3.

(6.4)

Proof. Item (i) just expresses the constraints of the problem (6.1) in the absence of external
forces and contact constraints in a different manner. The Euler-Bernoulli constraint combined

2While the strains ξ = (κ, v) are elements of se(3), the stresses µ = (m, f) are elements of the dual se(3)∗.
The element m represents the moment and f the force on the rod, both expressed in the frame H.

57



with the frame reconstruction equation on SO(3) can be seen as a reconstruction equation on
SE(3) with bending-twisting strains κ̂ and imposed stretching-shearing strains v = e3. Leading

to the constraint reformulation as d
ds

[
R r
0 1

]
=

[
R r
0 1

] [
κ̂ v
0 0

]
and v = e3. The reason to

express the reconstruction constraint as H−1H ′ = ξ instead of H ′ = Hξ is that the former
equality takes place in the Lie algebra se(3), instead of in the tangent space to SE(3) at H
(THSE(3)), and thus requires only 6 multipliers to be enforced instead of 12.

Item (ii) is then a minor adaptation of the derivation of Euler-Poincaré and Lie-Poisson
equations of SE(3) [100]. If (H,κ, v)? is an optimal point of problem (6.2) then there exist
multipliers (m, f, λ)? such that the functional

J(H,κ, v,m, f, λ) :=

∫ L

0
l(κ) + 〈(m, f), H−1H ′ − ξ〉+ 〈λ, v − e3〉ds

is stationary at (H,κ, v,m, f, λ)?. We now compute the first variation of this functional. All
quantities are varied independently and variations of H are such that δH(0) = δH(L) = 0
(because of the boundary conditions). Variations with respect to the multipliers λ yield back
the constraint v = e3. Variations with respect to µ yield back the constraint H−1H ′ = ξ.
Variations with respect to H yield the momentum and force balance equations, we shall take
a closer look at them. Variations δH are such that there exists an se(3) field η which vanishes
at the endpoints and such that δH = Hη. The following computation uses the property that
δ(H−1) = −H−1δHH−1, it uses the definitions of the left reduced variations δH = Hη and of
the kinematics H ′ = Hξ. It also uses the definition of the adjoint action adξη = [ξ, η] = ξη− ηξ
and of its dual (see Appendix C.1).〈

δJ

δH
, δH

〉
=

∫ L

0

〈
µ,−H−1δHH−1H ′ +H−1(δH)′

〉
ds

=

∫ L

0

〈
µ,−ηξ +H−1(H ′η +Hη′)

〉
ds

=

∫ L

0

〈
µ,−ηξ +H−1(Hξη +Hη′)

〉
ds

=

∫ L

0

〈
µ,−ηξ + ξη + η′

〉
ds

=

∫ L

0

〈
µ, adξη + η′

〉
ds

=

∫ L

0

〈
ad∗ξµ, η

〉
+
〈
µ, η′

〉
ds

=

∫ L

0

〈
−µ′ + ad∗ξµ, η

〉
ds+ [〈µ, η〉]L0 .

Thus, for the functional J to be stationary it is necessary that the following ODE holds: µ′ =
ad∗ξµ. Expressing the latter in terms of the moments m and the forces f and using the definition
of the coadjoint action we can establish the following balance equations

m′ = −κ×m− v × f
f ′ = −κ× f.

It remains to take variations of the functional J with respect to the strain field ξ. Doing so and
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decomposing again in angular (δκ) and linear (δv) parts we find that

〈δJ
δξ
, δξ〉 =

∫ L

0
〈 ∂l
∂ξ
, δξ〉 − 〈µ, δξ〉+ 〈(0, λ), δξ〉ds

=

∫ L

0

〈
∂l

∂κ
−m, δκ

〉
+

〈
∂l

∂v
− f + λ, δv

〉
ds.

The latter expression must vanish for all variations δκ and δv. Thus we find that f = λ (since
l is independent of v)3, so that the force λ maintaining the imposed longitudinal strains v = e3

is the same as the multiplier f maintaining the centreline reconstruction constraint. We also
find that

m =
∂l

∂κ
= Kκ,

which in terms of mechanics is the Legendre transform, allowing to go from ’angular velocities’
κ to ’angular momenta’ m. In terms of Optimal Control this last equation allows to express
the ’controls’ κ in terms of the ’adjoint states’ m. In terms of elasticity these are constitutive
equations for the elastic material.

Item (iii) of the proof then easily follows from item (ii). Item (ii) expresses the optimality
conditions in the material frame. To recover the optimality conditions in a fixed reference frame
one establishes an ODE for the spatial momentum M = Rm and for the spatial force F = Rf .
This is easily done using the equilibrium equations of item (ii)

M ′ = R′m+Rm′ = R(κ×m) +R(−κ×m− e3 × f) = −Re3 ×Rf = −d3 × F,

so that the momentum balance reads M ′+ d3×F = 0. It remains to establish the spatial force
balance, we do it similarly as

F ′ = R′f +Rf ′ = R(κ× f) +R(−κ× f) = 0.

We thus recover the well known fact that the internal force on a Kirchhoff rod, expressed in the
reference frame, is constant.

Remark. In the case where the Lagrangian accounts for the elastic energy of a pre-bent and
pre-twisted Kirchhoff rod under the influence of gravity, the reduced Lagrangian still depends
on H and can be defined as l(H, ξ) = L(H,Hξ) = 1

2(κ− κ̄)TK(κ− κ̄) + ρSgeT3 r. In that case
there is an extra term in the variation with respect to H so that〈

δJ

δH
, δH

〉
=

∫ L

0

〈
−µ′ + ad∗ξµ+HT ∂l

∂H
, η

〉
ds+ [〈µ, η〉]L0 .

This leads to a force balance equation which reads f ′ = −κ× f + ρSgRT e3 in the body frame
and F ′ = ρSge3 in the spatial frame as expected [78]. Also, the constitutive equation becomes
m = K(κ− κ̄) instead of m = Kκ.

On boundary conditions. Note that in the case of fixed-fixed boundary conditions one
knows the initial state H(0) but the initial stress resultants µ(0) (’costates’ in optimal control
terminology) are uknown. Hence we are dealing indeed with a boundary value problem and
not with an initial value problem. One is given the final state H(L) and the objective is to

3In the case of Cosserat rods l depends quadratically on v and one recovers a constitutive law for the stretching-
shearing strains and stresses f = ∂l

∂v
.
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find the initial costate µ(0) such that after forward integration of the Kirchhoff equations (6.3)
the target final state is reached. The problem of fixed-free boundary conditions is similar. One
can conclude from the boundary term [〈µ, η〉]L0 in the derivation of Kirchhoff’s equations that if
η(L) is free then µ(L) must vanish. We are then left with a two point boundary value problem
where the initial state is known as well as the final costate µ(L) = 0.

6.1.2 Kirchhoff Indirect single shooting experiments

The indirect single shooting approach to solve the OCP (6.2) consists in first obtaining the
necessary conditions for optimality in (6.3), which is a boundary value problem (BVP), and
then discretizing that BVP numerically. First we shall write the BVP in dimensionless form,
then we explain how to discretize it numerically.

Dimensionless Kirchhoff equations. One can rewrite the Kirchhoff equations (6.3) in the
material frame as 

r′ = d3

R′ = Rκ̂
m′ = Kκ× κ+ f × e3

f ′ = f × κ.
Let us consider a rod with a symmetric cross section, then the cross section inertias are equal:
I := I1 = I2. Introducing the dimensionless quantities s̄ := s/L, κ̄i(s̄) := Lκi(s̄L), r̄(s̄) :=

r(s̄L)/L, R̄(s̄) := R(s̄L), γ := µJ
EI and f̄(s̄) := L2

EI f(s̄L) one can write the Kirchhoff equations
in dimensionless form. Omitting the bars to avoid cluttering, they read

r′ = d3

R′ = Rκ̂
κ′1 = (1− γ)κ2τ + f2

κ′2 = (γ − 1)κ1τ − f1

τ ′ = 0
f ′ = f × κ,

(6.5)

together with the boundary conditions. The well-known fact that an equilibrium position of a
symmetric rod has a constant material twist τ is seen immediately in equations (6.5).

Indirect Single shooting discretization. The initial state (R(0), r(0)) = (R0, r0) is fixed,
as well as the final state (R(1), r(1)) = (R1, r1). In indirect single shooting the unknown is the
initial co-state µ0 = (κ0, f0). One wishes to find the initial co-state which yields the correct
final state. Solve numerically the ODE (6.5) with initial conditions (R0, r0) and µ0 up to the
final arclength s = 1 and denote the output final state (Rµ0 , rµ0). The non linear system of
equations to solve for µ0 is then

rµ0 = r1, Rµ0 = R1.

These are however 12 equations for 6 unknowns, the problem is over-constrained. To avoid
this difficulty it is necessary to impose the equality of the rotation matrices as 3 equations
rather than 9, after all SO(3) is a three dimensional manifold and this should be possible. The
apparent conundrum is resolved by noticing that if the initial frame R0 is in SO(3) then solving
the forward kinematics with sufficient accuracy guarantees that the final frame Rµ0 is also in
SO(3). Hence, intuitively, out of the 9 degrees of freedom in the 3 by 3 rotation matrix Rµ0 , 6
are blocked since Rµ0 is orthonormal and satisfies RTµ0

Rµ0 = I3×3. Only 3 degrees of freedom

of Rµ0 remain to be imposed. It is sufficient to impose that diag(RT1 Rµ0 − I3×3) = 0 so that
column i of Rµ0 is aligned with column i of R1 and of the same norm.
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Comments: The problem has six equations and six unknowns, it is a very small problem,
however evaluating (Rµ0 , rµ0) is expensive and the result tends to be very sensitive to the initial
conditions µ0. Also note that Newton’s method will require the derivatives of (Rµ0 , rµ0) with
respect to µ0, in our implementation we use Casadi [69] to obtain these derivatives via automatic
differentiation.

Numerical Experiment: We solved the single shooting problem with boundary conditions
r0 = 0, R0 = I3×3 and R1 = I3×3, r1 = (0, 0, 0.8). As a numerical integrator we used a Runge-
Kutta order 4 scheme with a fixed step size of 10−3. The non linear algebraic equations were
solved using Ipopt, which in this case performs a version of the stabilized Newton Raphson
algorithm. A sample of 100 initial guesses of the form µ0

0 = (0, κ0
2, 0, f

0
1 , 0, f

0
3 ) was generated,

where (κ0
2, f

0
1 , f

0
3 ) were taken randomly in [−2, 2]. For 72% of the problems attempted the solver

converged. The solutions obtained are planar stable or unstable equilibria, some of them are
depicted in Figure 6.1. We performed another test, where we generated 100 samples for the
whole initial costate µ0 in [−2, 2], only 12 percent of the problems were solved. Clearly the
indirect single shooting problem is quite difficult to solve numerically, even with a very robust
non linear solver like Ipopt. One classical remedy is to use indirect multiple shooting where
several single shooting problems are solved on subintervals of [0, 1], thus trading off a larger
problem size for a better structure (reduced non linearities). Other remedies include using a
better initial guess for the shooting algorithm, which could come from using the result of a
direct method, or from a better knowledge of the solutions. For example the choice of initial
guesses of the form µ0

0 = (0, κ0
2, 0, f

0
1 , 0, f

0
3 ) exploits the fact that we know that there are planar

solutions and that the strains of a planar configuration must have that form.

6.1.3 Indirect methods for Euler’s Elastica with fixed-fixed boundary condi-
tions.

We consider in the following the scenario of a planar Kirchhoff rod with both ends clamped,
without gravity and without any contact constraints. We first reproduce the construction
of analytical solutions in the small compression regime and compare them to the numerical
solutions obtained by indirect single shooting. These solutions will be also used later to evaluate
the accuracy of the proposed direct methods.

Buckling of a fixed-fixed Euler elastica, small compression regime. Here we follow
the construction by Audoly and Pomeau [78, Section 8.5.3]. The centerline r(s) of the planar
elastica has two components r(s) = (x(s), y(s))T . The tangent to the centerline t(s) = r′(s)
makes an angle θ(s) with the horizontal axis so that the tangent is parametrized as t(s) =
(cos θ(s), sin θ(s)). Let the rod have length 2L and the arclength vary in the interval [−L,L].
We are looking for solutions with even symmetry in position r(−s) = r(s) and odd symmetry

in orientation θ(−s) = −θ(s). The objective function reads J = EI
2

∫ L
−L θ

′(s)2ds. The boundary
conditions in orientation are θ(−L) = θ(L) = 0. The boundary conditions in position are
x(L) − x(−L) = 2L − δ and y(L) − y(−L) = 0, so that the end-to-end distance of the rod is
the total length 2L minus a compression factor δ ∈ [0, 2L] and the relative height between both
ends vanishes. The equation r′ = (x, y)′ = (cos θ, sin θ) allows us to get rid of the two variables
x, y (which only appear in the boundary conditions) by expressing the boundary conditions in

isoperimetric form:
∫ L
−L cos θ(s)ds = 2L − δ and

∫ L
−L sin θ(s)ds = 0. The second constraint

always holds for an odd function θ (since the sine function is odd and the integration interval
is centered around 0) and one may take the corresponding Lagrange multiplier to be 0. Let F
denote the Lagrange multiplier enforcing the x-constraint. The equations of equilibrium for the
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(a) (b)

(c) (d)

Figure 6.1: (a) 3d view of a wave-like solution and its material frame. (b) Planar wave-like
solution. (c) Planar wave-like solution. (d) Planar orbit-like solution.
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rod read 
EIθ′′(s) + F sin θ(s) = 0∫ L

−L cos θ(s)ds = 2L− δ
θ(L) = θ(−L) = 0.

Now let us rescale this equation by introducing s̄ = s/L, θ̄(s̄) = θ(s/L), F̄ = FL2

EI and ε =
√

δ
2L .

The rescaled equilibrium equations read (omitting the bars)
θ′′(s) + F sin θ(s) = 0

1
2

∫ 1
−1 cos θ(s)ds = 1− ε2

θ(1) = θ(−1) = 0.

(6.6)

Now one proceeds to construct an approximate analytical solution of (6.6) by using perturbation
theory with the rescaled compression ε as a perturbatuive parameter. Introduce the Ansatz

θε(s) = εθ[1](s) + ε3θ[3](s) +O(ε5)

and
Fε = F[0] + ε2F[2] +O(ε4),

then plug it into (6.6). Regrouping in powers of ε we find that

ε
(
θ′′[1] + F[0]θ[1]

)
+ ε3

(
θ′′[3] + F[0]θ[3] + F[2]θ[1] −

F[0]

6
θ3

[1]

)
+O(ε5) = 0

holds for the ODE part. Whereas the equation

ε2
(

1

4

∫ 1

−1
θ[1](s)

2ds− 1

)
+ ε4

(
1

2

∫ 1

−1

θ[1](s)
4

4!
− θ[1](s)θ[3](s)ds

)
+O(ε6) = 0

holds for the constraint part, the boundary conditions being θ[i](−1) = θ[i](1) = 0. The order 1
problem reads 

θ′′[1](s) + F[0]θ[1](s) = 0
1
4

∫ 1
−1 θ[1](s)

2ds = 1

θ[1](1) = θ[1](−1) = 0

(6.7)

and is a linear second order homogeneous ODE, the two boundary conditions fix the integration
constants and the integral constraint fixes F[0]. The first upward buckling solution of (6.7) is
simply

θ[1](s) = −2 sin(πs)

F[0] = π2

x(s) = (1− ε2)(s+ 1) + ε2

2π sin 2πs
y(s) = 2ε

π (1 + cosπs)
κ(s) = −2επ cos(πs),

(6.8)

where we remind that, all quantities are unscaled (the bars have been omitted). Knowing θ[1]

and F[0] we can proceed to formulate the order 3 problem, which is again linear but is non
homogeneous. It reads 

θ′′[3] + F[0]θ[3] = −F[2]θ[1] +
F[0]

6 θ3
[1]∫ 1

−1 θ[1](s)θ[3](s)ds =
∫ 1
−1

θ[1](s)
4

24 ds

θ[3](1) = θ[3](−1) = 0

(6.9)

and its solution is given by

θ[3](s) = − 1
24(7 + 2 cos(2πs)) sin 2πs

F[2] = π2

4 .
(6.10)
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From small to large compression: Numerical solutions. The perturbative solutions for
the clamped elastica in Equations (6.8) and (6.10) are valid in the small compression regime.
For higher values of the compression rate, the analytical expressions obtained are not that
accurate, but still pretty good: at least they verify the boundary conditions. We can hence
use these expressions to obtain initial guesses for (κ(−1), Fx, Fy) and use them as input in a
shooting scheme. This is a good way to use the indirect approach. One of the weaknesses of the
indirect approach is the extreme sensitivity to the initial guess (as will be illustrated shortly in
Figures 6.6). Using the solution of a linearized version of the problem as input to the indirect
shooting problem helps tremendously.

Indirect single shooting for the clamped Elastica with arbitrary compression. The
(rescaled) problem to solve is to find (κ(−1), Fx, Fy) which solve the BVP

ẋ = cos θ
ẏ = sin θ

θ̇ = κ
κ̇ = −Fx sin θ + Fy cos θ
0 = x(−1) = y(−1) = θ(−1)

x(1) = 2− 2ε2

0 = y(1) = θ(1).

(6.11)

To solve the BVP (6.11) we setup a residual function which takes as input (κ, Fx, Fy)guess, solves
the forward problem using Scipy’s odeint 4 and outputs (x1, y1, θ1)computed−(x1, y1, θ1)target. We
then solve the system of three equations and three unknowns using a Newton method (Scipy’s
fsolve). The Jacobian of the residual is computed through finite differences internally by fsolve.
In Figure 6.2 we plot for several values of ε the position of the rod centerline and the values of
θ and κ. The lower row of Figure 6.2 corresponds to the order 1 solutions in Equation (6.8),
the upper row corresponds to the results obtained using the shooting algorithm and taking as
initial guess the values of κ, Fx, Fy suggested by the order 1 solutions (6.8). The corresponding
approximate analytical solutions including the next terms (6.10) in the series expansion are
depicted in Figure 6.3. When using the approximate analytical solution (6.8) as an initial
guess we find that the shooting method converges in around 20ms on a PC with an Intel core
i7 2.6GHz processor and that furthermore it yields the upward buckling solution with lowest
energy. In Figure 6.4 we plot the difference between the computed solution and the order 1 and
3 approximations. Clearly for small values of ε the difference is very small, and even for a large
compression of 80% the relative difference is in a neighbourhood the 10% mark.

Shooting without a good initial guess. In Figure 6.5 we plot computed solutions for the
fixed-fixed elastica problem for different values of the compression rate, where the initial guesses
for κ(−1) and Fx were taken randomly. This makes clear the sensitivity of the shooting proce-
dure with respect to the initial guess. Furthermore it is observed that the resulting solutions
are of much higher energy than those obtained in Figure 6.2 where a first order guess was used.
The computation time of the shooting algorithm is also affected, using random initial guesses
it might not converge at all or take significantly longer (1s instead of 20 ms) than when initial-
izing smartly, hardly a surprise. Clearly the problem has many local solutions and the Newton
scheme, when successful, converges to the closest one from the initial guess. To have a better
understanding of the set of possible solutions we decided to plot the residual function for a fixed

4Scipy’s odeint interfaces lsoda from odepack, it is a variable step size method which can switch between
Adams and BDF.
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Figure 6.2: Sequence of order 1 approximations from equation (6.8) for different values of ε
taken as input(lower row) and output of the shooting algorithm (upper row). These simulations
are of a rod with the characteristics of a hair strand: length 10cm, radius 50µm and Young’s
modulus 10MPa.

value of the compression and for varying initial conditions. In Figure 6.6 we take Fy = 0 and
we vary Fx and κ(−1), for each one of these initial conditions we solve the forward problem and
measure the distance to the target. Blue regions then correspond to initial conditions which take
us close to the target, red regions take us far from the target. Deep blue sets of valleys in stripe
like patterns appear for increasing values of the internal force Fx, in each one of these valleys
is a solution. The further to the right, the more inflection points (or waves) the centerline has.
For negative values of κ the rod buckles down, for positive ones it buckles up. The approximate
analytical expression makes us land near the first valley, from left to right, in the upper part.
The Figure 6.6 then shows that shooting without a good initial guess can easily yield almost
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Figure 6.3: Sequence of approximations from equation (6.10) for different values of ε. Same
parameter values as for Figure 6.2

anything, there is no good control over where the shooting algorithm will converge to, or if it
will converge at all.

6.2 Discrete Kinematics

In this section we take a closer look at the kinematics of rods and their discretization. We
present the Runge-Kutta-Munthe-Kaas methods that will be used in the implementation of
direct methods later on.
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Figure 6.4: Difference between the shooting computed solutions and the order 1 and 3 approx-
imations as a function of the compression ε2. The blue curves correspond to the first order
solution and green to the third order solution
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Figure 6.5: Computed solutions for the clamped-clamped elastica problem for different values
of the compression rate. Initial guesses for κ(−1) and Fx were taken randomly.

6.2.1 On the choice of the integrator to discretize the Kinematics.

In theory, to discretize the Kinematic constraints of problem (6.1) one could use any numerical
method for ODEs (for example any RK method, or even any multistep method, implicit or
explicit). However such methods, which are extensively employed in numerical optimal control
[101] don’t preserve the orthogonality of the frame R. To employ them one would have to use
one of the three following options.

The first option is to use them as such and to take an extremely fine discretization step so
that the drift of R from SO(3) remains acceptably small. It is also possible to use Baumgarte
stabilization to damp the drift from the constraint manifold [32]. Yet for our purposes, such an
approach discards the possibility of having qualitatively correct yet coarse and computationally
cheap discretizations. It would also add an un-physical parameter to the system.

The second approach would be to use a projection method, so enforcing for instanceRTR = I
as a further constraint using Lagrange multipliers. Similarly if we use unit quaternions q instead
of rotation matrices then we would have to impose ||q|| = 1 as a constraint. The resulting
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Figure 6.6: Map of the shooting residuals for ε = 0.8 taking Fy = 0 and varying κ(−1) and Fx.
The reader is invited to consult the PDF version of this document if the print quality isn’t good
enough.

optimal control problem formulation would be one with differential algebraic equations (DAE) as
constraints. In such a case what is typically done in the Optimal Control community is to employ
Radau Collocation methods which are a subfamily of implicit RK methods well suited for the
discretization of DAEs [32]. It is perhaps the right time to mention that there are optimal control
software packages like BOCOP [102] which implement the aforementioned direct methods for
OCP’s with DAE constraints. The reason why we don’t use these methods is because we’re
interested in developing strain based methods for rod statics and strains actually offer a natural
parametrization of our configuration manifold. So using a parametrization method seems more
fitting in our context.

The third option is to discretize the kinematics using numerical methods based on a local
parametrization. The approach we use falls into this category. Because SO(3) is a 3 dimensional
manifold it is possible to parametrize it using only 3 variables, although not globally [103]
without introducing singularities. A typical parametrization is given by Euler angles, which,
however, have the disadvantage of being subject to gimbal lock. The parametrization variables
we employ, as mentioned above, are the strains of the rod. The parametrization maps we use are
the exponential map and the Cayley map. We will describe shortly these maps in more detail
and explain how to discretize the kinematics of Kirchhoff rods using Runge-Kutta- Munthe-
Kaas (RKMK) methods [104]. RKMK methods have the advantage that they preserve the Lie
group structure of the problem by construction.

Using implicit integrators for the rotation reconstruction R′ = Rκ̂ is unnecessary.
The reason is that the reconstruction equation is not stiff. Writing explicitly the ODE in terms
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of the column vectors di we find that

d′1 = +τd2 − κ2d3

d′2 = −τd1 + κ1d3

d′3 = κ2d1 − κ1d2.

The Jacobian of the right-hand side reads

03×3 τI −κ2I
−τI 03×3 κ1I
κ2I −κ1I 03×3,

 and has zero and purely imagi-

nary eigenvalues (0,+i||κ||,−i||κ||) each with multiplicity 3. There are no destabilizing eigenval-
ues with large negatives real parts, the equation is non stiff and one can use explicit integrators
instead of implicit ones.

6.2.2 Runge-Kutta-Munthe-Kaas methods

In the following we shall present the construction of Runge-Kutta-Munthe-Kaas methods. After
some preliminary definitions and results we expose the change of variables at the heart of RKMK
methods and then proceed to give the explicit expressions for some explicit RKMK integrators.

Description

As explained in [105] Munthe-Kaas methods are nothing but numerical integrators for ODE’s
on manifolds (specifically Lie groups) which are based on a parametrization. In our case the
configuration manifold on which the reconstruction ODE takes place is the Lie group SE(3).
The key is to introduce a map between the Lie algebra se(3), which is a linear space, and the
Lie group SE(3), which is a non linear space. In the original construction by Munthe-Kaas
[104] the map considered was the exponential map, which can be defined on any Lie group.

Take for instance SO(3). Any rotation matrix R ∈ SO(3) can be expressed as the exponen-
tial of some skew symmetric matrix κ̂ ∈ so(3):

∀R ∈ SO(3)∃κ̂ ∈ so(3) : R = exp(κ̂).

The exponential is the usual matrix exponential exp(A) =
∑∞

i=0
Ai

i! . In general one would
truncate the sum, although for SO(3) it is not necessary, as thanks to Rodrigues’ formula it has
a closed form expression. For any vector κ ∈ R3 the exponential of the skew symmetric matrix
κ̂ ∈ so(3) reads

expSO(3) κ̂ =

{
I + sin ||κ||

||κ|| κ̂+ 1−cos ||κ||
||κ||2 κ̂2 if κ 6= 0

I if κ = 0.
(6.12)

Similarly, for the special euclidean group SE(3), the exponential expSE(3) maps any element
(κ̂, v) of the Lie algebra se(3) to an element of the Lie group SE(3). The exponential on SE(3)
also has a closed form expression, given by

expSE(3)

[
κ̂ v
0 0

]
=

[
expSO(3) κ̂ B(κ)v

0 1

]
,

where B(κ) =

{
I + 1−cos ||κ||

||κ||2 κ̂+ ||κ||−sin ||κ||
||κ||3 κ̂2 if κ 6= 0

I otherwise.

(6.13)

For quadratic Lie groups the Cayley map can also be employed (see [105] section IV.8.3).
For SO(3) the Cayley map cay : so(3)→ SO(3) reads

cay(κ̂) = I +
4

4 + ||κ||2 (κ̂+
κ̂2

2
). (6.14)
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For the special Euclidean group the Cayley map caySE(3) : se(3)→ SE(3) reads

caySE(3)(κ̂, v) =

[
caySO(3)(κ̂) dcayκ̂v

0 1

]
, (6.15)

where

dcayκ̂ =
2

4 + ||κ||2 (2I + κ̂).

Having defined the exponential and Cayley maps for SE(3) we can proceed to the construc-
tion of RKMK methods for the Kirchhoff reconstruction equation. Let us denote ξ(s) ∈ se(3) the

strain field, which for the Kirchhoff reconstruction equation is of the form ξ(s) :=

[
κ̂(s) e3

0 0

]
.

Let H(s) ∈ SE(3) gather the frame and position of the rod in homogeneous coordinates.
The frame reconstruction problem is then to solve the following ODE for given initial data
H0 ∈ SE(3) and a given strain field:{

H ′(s) = H(s)ξ(s)
H(0) = H0.

(6.16)

We introduce as in [63] a map τ : se(3) → SE(3) which parametrizes the special Euclidean
group, which is analytic and verifies τ(−θ)τ(θ) = I for all θ ∈ se(3). In practice we will use
either the exponential map τ = expSE(3), or the Cayley map τ = caySE(3). Let us denote
Dτθ : Tθse(3) → Tτ(θ)SE(3) the usual derivative of τ at θ. Since se(3) is a linear space one
has the identification Tθse(3) ≈ se(3). Let us introduce the right trivialized tangent map
dτθ : se(3)→ se(3) which is defined as the only linear map such that Dτθ(δ) = dτθ(δ) · τ(θ) for
all δ ∈ se(3). The inverse of dτ will be frequently used. We will denote it dτ−1

θ := (dτθ)
−1.

Lemma 6.2.1. For all θ ∈ se(3) and all δ ∈ se(3) the identity

dτθ(δ) = Adτ(θ) (dτ−θ(δ)) = τ(θ)dτ−θ(δ)τ(θ)−1 (6.17)

holds.

Proof. Let δ and θ be arbitrary elements of se(3). Consider a curve θ(s) such that θ(0) = 0
and θ′(0) = δ. One has τ(−θ(s)) = τ(θ(s))−1 for all s. Differentiating with respect to time and
evaluating as s = 0 one has Dτ−θ(−δ) = −τ(θ)−1dτθ(δ)τ(θ)τ(θ)−1. Simplifying the expression
at the right-hand side and applying the definition of the right trivialized tangent map, one
obtains dτ−θ(−δ)τ(−θ) = −τ(θ)−1dτθ(δ). Hence τ(θ)dτ−θ(δ)τ(θ)−1 = dτθ(δ) and the identity
dτθ(δ) = Adτ(θ) (dτ−θ(δ)) holds.

Lemma 6.2.2. For all θ ∈ se(3) and all δ ∈ se(3) the identity

dτ−1
θ (δ) = (dτ−θ)

−1
(
Adτ(−θ) (δ)

)
(6.18)

holds.

Proof. Let δ and θ be arbitrary elements of se(3). Depart from the identity dτθη = δ where
we denote η := dτ−1

θ (δ). Left multiply the previous equality by τ(θ)−1 and right multiply by
τ(θ), then τ(θ)−1dτθητ(θ) = τ(θ)−1δτ(θ), hence Adτ(−θ) (dτθη) = Adτ(−θ) (δ). Using Lemma
6.2.1 on the left-hand side of the last equality one obtains dτ−θ(η) = Adτ(−θ) (δ). Input the

definition of η to obtain dτ−θ(dτ
−1
θ (δ)) = Adτ(−θ) (δ). Thus we can conclude that dτ−1

θ (δ) =
(dτ−θ)

−1
(
Adτ(−θ) (δ)

)
as announced in the lemma.
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Munthe-Kaas methods are based on a change of variables. Instead of solving for H(s) which
lies on the nonlinear manifold SE(3), one introduces an unknown θ(s) ∈ se(3) which lies in a
linear space.

Proposition 6.2.1. By introducing the ansatz H(s) = H0τ(θ(s)), the reconstruction equation
(6.16) becomes 

θ′ = dτ−1
−θ ξ

θ(0) = 0se(3)

H(s) = H0τ(θ(s)).

(6.19)

Proof. • First, let us assume that H satisfies (6.16) and introduce θ such that H(s) =
H0τ(θ(s)). Then one has H ′ = Hξ = H0τ(θ)ξ and on the other hand H ′ = H0Dτθ(θ

′) =
H0dτθ(θ

′)τ(θ). Equating both expressions for H ′ one obtains ξ = τ(θ)−1dτθ(θ
′)τ(θ). By

application of Lemma 6.2.1 the expression for ξ simplifies to ξ = dτ−θ(θ
′) and one can

conclude that θ′ = dτ−1
−θ ξ holds as announced. And if H(0) = H0 then τ(θ(0)) = I so

that the initial condition for θ is indeed θ(0) = 0se(3).

• Conversely, let us assume that θ′ = dτ−1
−θ ξ and that θ(0) = 0se(3). Then the function

H(s) := H0τ(θ(s)) verifies the initial condition H(0) = H0 as well as the ODE H ′ = Hξ.
Indeed, by differentiation H ′ = H0dτθ(θ

′)τ(θ). Inputting the expression for θ′ one has
H ′ = H0dτθ(dτ

−1
−θ ξ)τ(θ). Applying Lemma 6.2.2 one hasH ′ = H0dτθ(dτ

−1
θ Adτ(θ) (ξ))τ(θ),

which simplifies to H ′ = H0τ(θ)ξ once the definition of Ad is applied. Hence H ′ = Hξ.

Hence to solve the reconstruction equation (6.16) a RKMK integrator proceeds as follows.
First use any Runge-Kutta method to solve the differential equation (6.19) which takes place
in the linear space se(3). Then map the solution back to the group using the map τ .

We remind the reader the definition of a Runge-Kutta integrator.

Definition 6.2.1 (Runge-Kutta integrator [105]). To solve an ode y′ = f(t, y), an s stage
Runge-Kutta method with real coefficients aij , bi (i, j ranging from 1 to s) and ci =

∑s
j=1 aij

is given by
ki = f(t0 + cih, y0 + h

∑s
j=1 aijkj), i = 1 . . . s

y1 = y0 + h
∑s

i=1 biki.
(6.20)

The ki are called ’slopes’, and the y0,i defined as y0,i := y0 +h
∑s

j=1 aijkj are called the ’internal
stages’. The coefficients defining an RK method are often summarized in a ’Butcher tableau’
of the form

ci aij
bj

We can now proceed to give the expressions for several RKMK one step maps.

RKMK1 Using the coefficients of the explicit Euler method, which is an explicit one-stage
RK method, we can construct the RKMK1 integrator. The Butcher tableau of the explicit
Euler method reads

0 0

1
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and this yields the RKMK1 integrator, more commonly known as the ’Lie-Euler method’ [105].
The Lie-Euler update formula reads[

Ri+1 ri+1

0 1

]
=

[
Ri ri
0 1

]
expSE(3)

(
h

[
κ̂i e3

0 0

])
. (6.21)

One can also use the Cayley map, leading to a variation of the Lie-Euler method which reads[
Ri+1 ri+1

0 1

]
=

[
Ri ri
0 1

]
caySE(3)

(
h

[
κ̂i e3

0 0

])
. (6.22)

RKMK2 One can use the coefficients of an explicit trapezoidal rule to obtain a 2 stage RKMK
method which reads

0 0 0
1 1 0

1/2 1/2

K1 = ξ(ti)
K2 = dτ−1(−hξ(ti), ξ(ti + h))[

Ri+1 ri+1

0 1

]
=

[
Ri ri
0 1

]
τ
(
h
2K1 + h

2K2

)
,

(6.23)

where ξ is the strain field ξ = (κ, e3).

RKMK4 One can use the coefficients of a classical explicit RK4 to obtain a 4 stage RKMK
method which reads

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

K1 = ξ(ti)

K2 = dτ−1(−h
2 ξ(ti), ξ(ti + h

2 ))

K3 = dτ−1(−h
2 ξ(ti + h

2 ), ξ(ti + h
2 ))

K4 = dτ−1(−hξ(ti + h
2 ), ξ(ti + h))[

Ri+1 ri+1

0 1

]
=

[
Ri ri
0 1

]
τ
(
h
6K1 + 2h

6 K2 + 2h
6 K3 + h

6K4

)
,

(6.24)

where ξ is the strain field ξ = (κ, e3).

Evaluation

We will now illustrate the accuracy and computational effort of the different Runge-Kutta
Munthe-Kaas methods explicited above. We shall do this by solving the 3D Kirchhoff recon-
struction equation with a prescribed strain field of the form κ1(s) = k0cn(k0

2ps, p), κ2 = τ = 0,
where k0 and p are parameters and cn is the Jacobi elliptic cosine. Such a strain field is not
arbitrary, it is the form of the solution of the planar wave-like Elastica as explained in [80].
We take as parameters L = 100, k0 = 1., p = 0.8. In Figure 6.7 we plot the centerline of
the reference solution and compare it with the numerical solutions computed by the different
RKMK methods for 3 different stepsizes. In Figure 6.8 we plot the error of each numerical
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solution as well as the computational load against the number of discretization intervals used.
We can see that the one-stage RKMK methods are of order 1 and that for a small enough step
size there is virtually no difference between the exponential and the Cayley versions of RKMK1.
The RKMK2 method with the Cayley map is seen to be of order 2. There doesn’t seem to be
much of an advantage in using RKMK4 instead of RKMK2 for this particular example as the
error plot shows. As for the computational load, there isn’t much of a difference between any of
the methods in particular for a low number of elements. These remarks motivate in particular
the use of RKMK1 and RKMK2 for the discretization of the reconstruction equations in the
Kirchhoff statics OCP.
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Figure 6.7: Comparison of the different methods to solve the kinematics in terms of centerline
position for different step sizes. Reference solution in solid blue. RKMK1 with exp (red dashes)
and Cayley (green crosses) maps. RKMK2 (turquoise dashes) and RKMK4 (violet dots) with
Cayley map.
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Figure 6.8: (a) Accuracy of the different methods to solve the kinematics. (b) Computatuonal
effort of the different methods to solve the kinematics.
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6.3 Direct Methods and the derivation of Strain based and
mixed discretizations

6.3.1 Direct Single Shooting

In numerical optimal control, ’direct single shooting’ is a discretization strategy which consists
in projecting the control field onto a finite dimensional subspace and expressing the states
as functions of the controls using a numerical integrator. The discretized OCP then has as
unknowns only the discrete controls.

In our context this will lead to strain based methods for the statics of Kirchhoff rods. In di-
rect single shooting, we choose a set of basis functions ϕi : [0, L]→ R3 so that our approximation
of the strain field κ reads κ(s) =

∑n
i=0 κiϕi(s). The basis functions are typical finite element

functions associated with a grid (s0, . . . , sN ) subdividing the segment [0, L]. In practice we will
use piecewise constant step functions (0 order discontinuous Galerkin) or continuous piecewise
affine hat functions (1st order continuous Galerkin) on a regular grid. The unknowns of the
discrete problem will then be the discretized strains. We discretize the reconstruction equations
(6.16) using an s-stage RKMK method with coefficients aij , bj , cj . The objective function of the
Kirchhoff OCP (6.1) is discretized using the same weights than for the RKMK method.

Direct single shooting with piecewise constant strains.

The most common thing to do in direct single shooting for optimal control is to restrict the
controls to the space of piecewise constant functions. For that purpose, let us introduce a
regular grid (s0, . . . , sN ) on [0, L] so that si = ih where the step size h is h = L

N for some
integer N . The basis functions are then unit on a subinterval and zero elsewhere, which we
denote ϕi(s) = χ[si,si+1[(s). Furthermore let us introduce the finitely many degrees of freedom

q = (u0, . . . , uN−1) ∈ R3N , where each ui is a vector in R3 collecting the curvatures and twist of
the rod in the interval [si, si+1[. The ODE constraints of the OCP (6.1) are discretized using an
RKMK1 method (6.21) (6.22). Let us denote Ψh the one step map to solve the reconstruction
ODE r′ = Re3, R

′ = Rκ̂ for a given function κ and given initial conditions. The initial state
H0 := (R0, r0) is given, the state H(si+1) = (R(si+1), r(si+1)) is approximated by Hi+1 as

Hi+1 = Ψh(Hi, ui) = Hiτ(h(ûi, e3)).

The final state H(L) = (R(L), r(L)) is thus approximated by a function HN (H0, q) of the initial
state and of all the strains q, it is defined by sequentially applying the integrator as

HN = Ψh(HN−1, uN−1) = Ψh(Ψh(HN−2, uN−2), uN−1) = . . . = HN (H0, q).

The resulting finite dimensional optimization problem is the following

min
q∈R3N

1
2(q − q̄)TK(q − q̄) + U(q)

s. t. gI(Ri(q), ri(q)) 6 0
gbd(R0, r0, RN (q), rN (q)) = 0,

(6.25)

where U(q) =
∑N−1

i=0 hUg(ri(q)) is the discrete gravitational potential energy, K := hdiag(EI1, EI2, µJ...)
is the stiffness matrix and q̄ := (ū0, . . . , ūN−1)T collects the natural curvatures and twists of the
rod (also discretized as piecewise constants).

Let us comment further on the structure of this problem. There are many more variables
than in indirect single shooting and fewer variables than in direct multiple shooting as we will
see. The kinematics ODE constraints have disappeared, instead the centerline and the material
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frame are given explicit (closed form) expressions of the strains q. The internal elastic energy
remains a quadratic function of the degrees of freedom, whereas the gravitational potential
energy is no longer a simple linear function but a complicated nonlinear one. If fixed-fixed
boundary conditions are considered then the boundary constraint function depends on all the
strains. This leads to small but dense linear algebra problems at the Newton iterations level
when solving problem (6.25) even in the absence of gravity.

Mechanical Interpretation. The single shooting approach with piecewise constant strains
and a Lie-Euler integrator coincides with the Super-Helix [3] strain based finite element approach
for the statics of Kirchhoff rods.

Remark. For the case of piecewise constant strains, on each subinterval [si, si+1] the
constraint ODE is autonomous and linear in the states. It reads H ′ = Hξ with ξ constant. Its
exact solution on each subinterval is given by Hi+1 = Hi exp(hξ), which is exactly the Lie-Euler
method on SE(3) (6.21). Hence for the case of piecewise constant strains no other method is
more appropriate than the Lie-Euler method since it coincides with the exact solution on each
subinterval and is cheap to compute thanks to the Rodrigues formula.

Numerical example. In Figure 6.9 we plot the obtained numerical solutions for the stable
static equilibrium of a Kirchhoff rod in the absence of gravity, without natural curvature and
with fixed-fixed boundary conditions. We assumed a symmetric cross section and rescaled the
problem as in 6.5 so that the total length is 1 and the relevant parameters are the boundary
conditions and the twisting to bending stiffness ratio γ := µJ

EI . The top row shows a solution
for 20 elements, the bottom row a solution for 100 elements. Even though the initial guess
was the same for both (all curvatures equal to 1) we obtain different solutions, this is not a
surprise as the solutions aren’t unique. The computed numerical solutions have very low energy
even though the initialization was quite arbitrary, a phenomenon which we also observe when
initializing randomly. This is in sharp contrast with the indirect methods of the previous section
where the algorithm was much more sensitive to the initial guess and tended to yield high energy
solutions when initialized randomly. As expected the internal twist of the rod is constant in the
absence of gravity. We can also see that the discrete model shows a good behavior even for a
coarse discretization.

Experimental and cross validation. In this experiment we simulated a fixed-free static
equilibrium of a rod under gravity using single shooting with piecewise constant strains and
exp-RKMK1 with 50 elements. The rod parameters were length 20cm, radius 2.23mm, Young’s
modulus E = 1MPa, Poisson’s ratio ν = 0.5, natural Frenet curvature κF = 66.67m−1, natu-
ral Frenet torsion τF = −24.79m−1 and density ρ = 1200kg m−3. These silicone rubber rods
are fabricated by Victor Romero, a post doc at our team at the time of writing of this thesis.
Using computer vision techniques he is also able to recover the centerline position of the rod at
equilibrium. In Figures 6.10 and 6.11 we compare the computed solution with the experimental
observation. We also include in Figure 6.10 a numerical solution computed using the implemen-
tation of super helix dynamics described in [3]. To obtain a static equilibrium using a dynamics
code we include a lot of damping and we wait for the generalized velocities to approximately
vanish. We can see that our proposed method, the super helix method [3] and the experimental
observation are in good agreement. With respect to computation time, using the dynamics
approach takes of course a lot longer (2 minutes in this case) than our statics approach (80
ms), not a fair comparison but it does justify the need to have a code tailored for Kirchhoff rod
statics.
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(a) (b)

(c) (d)

Figure 6.9: Solving a fixed-fixed statics problem with a piecewise constant strain based method
and RKMK1. No natural curvature and no gravity, γ = µJ

EI 0.7, end to end distance 20 percent
of rod length. (a) Strains, 20 elements. (b) Rod position, 20 elements. (c) Strains, 100 elements.
(d) Rod position, 100 elements

Direct single shooting with Piecewise linear strains.

Let us again consider a regular grid (s0, . . . , sN ) on [0, L] with step size h = L/N . Let us
discretize the strain field by introducing for every node i ∈ [0, . . . , N ] the strains ui ∈ R3 at
that node and letting the strain field be piecewise linear. For all s in [si, si+1] we have κ(s) :=
s−si
h ui+1 + si+1−s

h ui. We collect all the nodal strains in a vector q := (u0, . . . , uN ) ∈ R3(N+1).
Let the natural strain field κ̄ be discretized in the same fashion and denote ūi the natural strains
at node i. We denote by ∆ui the difference between actual and natural curvature at node i. To
discretize the kinematics we employ a RKMK2 method with the Cayley map defined in equation
(6.23). We use the weights in the Butcher tableau of (6.23) to discretize the objective, that is
we employ trapezoidal quadrature, so that the discrete total elastic and gravitational energy
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Figure 6.10: Comparison of the centerline positions at equilibrium. In red dots (exp) is the
experimental curve. In solid blue (ss) is our single shooting with piecewise constant strains and
exp-rkmk1. In green dashes is the equilibrium obtained using the super helix (SH) implemen-
tation by the authors of [3].

Figure 6.11: 3D view of centerline positions at equilibrium. In red is the experimental curve. In
colors is our computed solution with single shooting, piecewise constant strains and exp-rkmk1.
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reads

Utot =
N−1∑
i=0

h

4
∆uTi K∆ui +

h

4
∆uTi+1K∆ui+1 + hρgS

zi(q) + zi+1(q)

2
.

As in direct single shooting with piecewise constant strains, the height zi of the rod at
node i is a nonlinear function of the strains q so that the gravitational potential energy is non
linear. The internal elastic energy is again quadratic. The total number of degrees of freedom
is 3(N + 1) so just 3 more degrees of freedom than in the piecewise constant strain version.
However the discrete strain field is now continuous. A closer look at the relative performance
and precision of these methods will be done shortly.

Numerical application. We solve a fixed-fixed boundary value problem in the absence of
gravity with the method of single shooting with piecewise linear strains and plot the results in
Figure 6.12. We again use a rod with a symmetric cross section and solve the rescaled problem
with a twisting to bending stiffness ratio of γ = 0.7 and an end to end compression of 50%. We
again initialize the strains to be all equal to 1 and solve the problem for 20 elements and 100
elements. Both obtained numerical solutions were in this instance the same. We again observe
good behavior even for a coarse discretization. The material twist is constant as expected.
The obtained numerical solution is actually the global minimum although we used an arbitrary
initial guess.

6.3.2 Direct Multiple Shooting

The second branch of direct methods is ’direct multiple shooting’ where both the strains κ and
the states (R, r) are discretized, leading to a mixed formulation. The NLP in the mixed formu-
lation is of higher dimensionality but with more sparsity and simpler non linearities. Using Lie
group methods to discretize the kinematics allows us to avoid formulating supplementary or-
thogonality constraints for the frame Ri at each node si. The direct multiple shooting approach
may be seen as a ’lifting’ of the direct single shooting approach. The idea is to trade a small
but highly nonlinear problem for one that is larger but less nonlinear, so trading off small size
for better structure.

The implementation of multiple shooting that we will describe employs piecewise constant
strains. The variables in direct multiple shooting are not only the discrete strains q ∈ R3N

but also the states at each discretization node X := (H0, . . . ,HN ), where Hi = (Ri, ri). The
total number of variables is thus 12(N + 1) + 3N , so that the problem is indeed larger than
in single shooting. The discretization of the objective is the same as in single shooting, except
that now the gravitational potential energy keeps its linear structure since the centerline nodal
positions are part of the degrees of freedom. The position, frame and strains are coupled via
the introduction of constraints which are nothing but the discretized kinematics.

Direct Multiple Shooting NLP. The discretized Kirchhoff statics OCP for fixed-fixed
boundary conditions in the absence of inequality constraints reads

min
H0,u0...HN−1,uN−1,HN

∑N−1
i=0

h
2u

T
i Kui + hρgSeT3 ri

subject to H0 = (RI , rI)
Hi+1 = Ψh(Hi, ui) i = 0 . . . N − 1
HN = (RL, rL),

(6.26)
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(a) (b)

(c)

Figure 6.12: Solving a fixed-fixed statics problem with a piecewise linear strain based method
and RKMK2. γ = 0.7, end to end distance = 0.5(a) 20 elements strains (b) 100 elements strains
(c) 100 elements rod position.

where (RI , rI) and (RL, rL) are the given boundary conditions. The map Ψh is the same as in
direct single shooting with piecewise constant strains, that is one step of a RKMK1 integrator
as defined in equations (6.22) and (6.21). Notice that there are many more constraints than in
single shooting, however each one depends only on a few of the variables : Hi, Hi+1, ui. This
sort of local dependence leads to sparse linear algebra problems at the level of the Newton
iterations (see Figure 6.13). The block banded structure of the Hessian makes it much more
economical to evaluate than for single shooting as the number of non zeros grows linearly with
the number of elements instead of quadratically.
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Figure 6.13: Direct Multiple Shooting Hessian sparsity pattern

Mechanical interpretation. The direct multiple shooting approach with piecewise constant
controls and a Lie-Euler integrator also yields a piecewise helical rod geometry as for super
helices. However it is not a purely strain based model but a mixed one, the variables are
strains, positions and frames. Such mixed discretizations have already been considered in [65]
for Cosserat rods and in [66] for planar Kirchhoff rods.

Numerical application. In Figure 6.14 we present the numerical solution obtained for the
stable static equilibrium of a symmetric rod under periodic boundary conditions and in the
absence of gravity. The obtained solution as seen in Figure 6.14 (d) has a circular centerline with
a constant non zero twist. The twist is constant along the centerline as expected. The internal
forces are plotted in Figure 6.14(b), they are computed as the Lagrange multipliers enforcing
the discretized position constraints. The computed internal forces are seen to be constant, as
they should be since according to the Kirchhoff balance equations (6.4) the internal force F
satisfies F ′ = 0 in the absence of gravity. In Figure 6.15 we solve the same problem but with
gravity. The solution is no longer of a circular nature but gets deformed to a carabiner-looking
curve. The computed internal forces F1, F2 are constant and F3 is linear, in agreement with the
Kirchhoff balance equations under gravity which read F ′ = ρSge3.

Invariants. For a Kirchhoff rod in the absence of gravity the following quantities are con-
served: the momentum mT f , which is the analogue for the projection of angular momentum
onto the axis of gravity for the heavy top, the Hamiltonian 1

2κ
TKκ+fT e3, which is the analogue

of the total energy of the heavy top. For a symmetric rod the quantity mT e3 is also constant,
meaning that the twist τ is constant: it is the analogue of the rotation speed of a symmetric
top around its axis of symmetry. In Figure 6.16 we plot the evolution of the momentum and
of the Hamiltonian along arclength for different values of the number of elements. The typical
behaviour of symplectic integrators is observed, where the computed value of the Hamiltonian
oscillates less and less around the true constant value as the step size becomes smaller and
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(a) (b)

(c) (d)

Figure 6.14: Static equilibrium configuration of a rod under periodic boundary conditions with-
out gravity, γ = 0.7. 50 elements.(a) Strains. (b) Internal force. (c) Position of the centerline.
(d) 3d view of the rod’s equilibrium.

smaller. Symplecticity is one the reasons why even for a coarse discretization the qualitative
behaviour of the discrete model is correct. The twist τ is found to be constant as in the example
of Figure 6.14.
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(a) (b)

(c) (d)

Figure 6.15: Static equilibrium configuration of a rod under periodic boundary conditions with

strong gravity γ = 0.7, β := ρSgL3

EI = 150. 50 elements.(a) Strains. (b) Internal force. (c)
Position of the centerline. (d) 3d view of the rod’s equilibrium.

Figure 6.16: Computed Hamiltonian and momentum evolution of the rod along arclength for an
increasing number of elements. The problem instance solved was a rescaled fixed-fixed problem
with γ = 0.7, no gravity, an end-to-end distance of 0.8 and an end-to-end rotation of π/2.
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6.3.3 Numerical evaluation

To give an idea of the accuracy and relative performance of the direct methods presented in
the previous sections we solve with all methods the same problem: a fixed-fixed statics problem
for a symmetric rod without gravity. We fix the end-to-end distance to 90% of the total length
and use the same boundary conditions for the material frame at both ends of the rod. The
obtained numerical solutions are all planar and can be compared to the solution of the Elastica
via indirect methods exposed in Section 1 of this chapter. In Figure 6.17 we plot the relative
error as a function of number of elements used. The methods tested are the following: direct
single shooting with piecewise constant strains with both the Cayley (ss-cay1) and exponential
(ss-exp1) maps, direct single shooting with piecewise affine strains with a Cayley RKMK2
integrator (ss-cay2) and finally direct multiple shooting with piecewise constant strains and
both the Cayley (ms-cay1) and exponential (ms-exp1) maps.

For almost all problems solved the error is beneath 1 percent, something that goes unnoticed
by the bear eye. However the direct single shooting methods seemed to be yielding the unex-
pected results seen in Figures 6.17(a,b), where their error, although it remains small, doesn’t
decrease with the number of elements. The observed behavior appears to be influenced by two
things: the use of the Hessian approximation instead of a full Hessian and the use of reduced
boundary conditions instead of natural boundary conditions. We call natural boundary condi-
tions the 12 conditions RN = Rtarget, rN = rtarget, in contrast to reduced boundary conditions
where for the rotation part we only impose the three conditions diag(RTNR

target − I) = 0. The
intuition behind this is, that natural boundary conditions are redundant since the orthonor-
mality of the frame is already guaranteed by construction since we use an RKMK method: this
blocks already 6 degrees of freedom among the 9 of RN . The boundary condition for the frame
should be imposed via three constraints. Imposing 9 constraints is redundant. A fact which,
however, seems to affect in practice only the direct single shooting implementation and not the
direct multiple shooting.

In Figure 6.17(c) we can see that for the piecewise constant strain discretization the single
shooting and the multiple shooting versions are equally precise, as expected, since they are
theoretically equivalent. The Cayley versions ss-cay1 and ms-cay1 are less precise than the
exponential map versions ss-exp1 and ms-exp1, although they seem to be of the same order.
The single shooting solver with piecewise linear strains is more precise than ss-cay1 although
surprisingly less precise than ss-exp1, at least in this problem instance.

85



0 200 400 600 800 1000
Number of elements N

10-6

10-5

10-4

10-3

10-2

10-1

100

101

R
e
la

ti
v
e
 E

rr
o
r 

(p
e
rc

e
n
t)

ss-cay1
ms-cay1
ss-cay2
ss-exp1
ms-exp1

(a)

0 200 400 600 800 1000
Number of elements N

10-6

10-5

10-4

10-3

10-2

10-1

100

101

R
e
la

ti
v
e
 E

rr
o
r 

(p
e
rc

e
n
t)

ss-cay1
ms-cay1
ss-cay2
ss-exp1
ms-exp1

(b)

0 50 100 150 200
Number of elements N

10-5

10-4

10-3

10-2

10-1

100

101

R
e
la

ti
v
e
 E

rr
o
r 

(p
e
rc

e
n
t)

ss-cay1
ms-cay1
ss-cay2
ss-exp1
ms-exp1

(c)

Figure 6.17: Convergence plots using (a) Natural boundary conditions and BFGS(b) Reduced
boundary conditions and BFGS (c) Reduced boundary conditions and full hessian.
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6.4 Quasi static experiments

In this section we present various numerical experiments of quasistatics of Kirchhoff rods carried
out using our proposed direct methods.

6.4.1 Instability when varying κ̄1.

In this experiment we reproduce numerically the dynamic instability that occurs to the statics
equilibrium of a rod under gravity as its natural curvature is varied. We compute the static
equilibrium configurations of a rod using direct single shooting with piecewise constant strains
for a circularly symmetric rod of length 30 cm, Poisson’s ratio 0.5, Young’s modulus 1.3 MPa,
density 1200 kg/m3 and radius 1.5 mm. We vary natural curvature κ̄1 and let κ̄2 = τ̄ = 0. The
initial guess for the first problem is random. Then each computed equilibrium configuration
is used as the initial guess for the next problem where the natural curvatures have changed.
In Figure 6.18 we visualize the different stages of this process. At first (a), when κ̄1 = 0,
the solution is planar and straight except at a boundary layer near the clamping end. As
κ̄1 augments (b), the rod begins to bend near the free end as well, releasing bending energy
but accumulating gravitational energy, the solution is still planar. In (c) an instability occurs
and the solution loses its planar symmetry, the vertical loop that was forming becomes too
heavy and it becomes cheaper for the rod to use some twist, switching the loop to a horizontal
configuration and thus releasing gravitational energy. In (d) the process continues and the rod
assumes the configuration of a coiled spring under gravity.

In Figure 6.19 we plot the ’load displacement’ diagram of the process by monitoring the
evolution of the total twist 1

2π

∫ L
0 τ(s)ds as a function of the natural curvature κ̄1. The transition

through the critical value of the load parameter κ̄1 appears to be non smooth at our level of
sampling, it occurs extremely fast.

(a) (b) (c) (d)

Figure 6.18: Static equilibrium configurations of a rod for varying natural curvature κ̄1, the
rod is circularly symmetric and has length 30 cm, poissons ratio 0.5, Youngs modulus 1.3 MPa,
density = 1200 kg/m3 and radius = 1.5 mm. (a) κ̄1 = 0m−1. (b) κ̄1 = 50m−1 (c) κ̄1 = 60m−1

(d) κ̄1 = 90m−1

6.4.2 Circle Packing

In this numerical experiment we would like to find the stable static equilibria of an elastic ring
packed inside a smaller ring. For this we consider the optimal control formulation of planar
Kirchhoff statics and discretize it using direct multiple shooting with piecewise constant strains.
The continuous problem reads
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Figure 6.19: Evolution of total twist of the equilibrium configuration as a function of the natural
curvature of the rod.

min
R,r,κ

EI

2

∫ L

0
κ(s)2ds

s. t. R′ = R

(
0 −κ
κ 0

)
r′ = Re1

r(0) = r(L)

R(0) = R(L)

R(0)TR(0) = I2×2

||r||2 6 c,

where c > 0 is the radius of the packing circle. The boundary conditions are periodic and since
we don’t impose explicitly the initial frame R(0) it is necessary to impose that it be orthonormal.
The kinematics will ensure that the rest of the frames are also orthonormal provided that the
first one is. We plot in Figure 6.20 two obtained numerical solutions starting from random
initial guesses. They are deformed versions of two classical solutions of the unconstrained
periodic elastica: the circle and the figure eight. The curious reader may obtain experimentally
the curve in Figure 6.20(a) by packing a sheet of paper with two ends glued together (so that it
is cylindrical) inside a smaller cylinder (maybe a coffee mug?): the profile of the packed sheet of
paper is a solution of our packed ring problem. For more on the topic of confined developpable
sheets and its relation to the Elastica the reader may consult [106].

One advantage of multiple shooting here is that since we use the states Ri, ri and strains κi
as variables in the NLP, the inequality constraints ||ri||2 < c remain convex quadratic. Those
inequality constraints would have been non convex for a direct single shooting (strain-based)
discretization.

Also note that in this mixed formulation where the strains are also variables we can also
impose the topology of the solution by imposing a further linear constraint. Indeed, discretzing
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the curve index theorem ∫ L

0
κ(s)ds = 2πIndex

leads to the linear constraint in κ

h
N−1∑
i=0

κi = 2πIndex.

The simulation used 100 elements, the total simulation time was 1.3s on a 2.6GHz Intel Core
i7 processor parting from a random initial configuration using Ipopt. Our proposed method is
quite robust to the choice of the initial configuration, as shown in Figure 6.21 where we display
the iterations performed by Ipopt.
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Figure 6.20: Static equilibria of planar Kirchhoff rods with periodic boundary conditions and
contact constraints. (a) Index 1 solution. (b) Index 0 solution.

6.4.3 Plectoneme Formation

Encouraged by the ease with which we solved statics problems for planar Kirchhoff rods subject
to inequality constraints in the previous section, we set out to use our 3D statics solvers to
simulate numerically the formation of plectonemes. Plectonemes are the self coiling formations
which appear very frequently in long slender rods. In Figure 6.22 we show a numerical simulation
of plectoneme formation. The experiment we perform is to keep fixed the end to end distance
of the rod with both tangents aligned and iteratively rotate one the material frames at the end
around its tangent, thus twisting the rod. In Figure 6.23 we plot the evolution of total twist as
a function of the clamping angle. Twist accumulates and after about 3 full turns an instability
occurs and the twist drops instantly. The configurations before and after this event are plotted
in Figure 6.22 (a) and (b). We can see that the twist is released and the first contact is formed.
Then as the clamping angle grows, twist accumulates further and after another instability it
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.21: Ipopt Iterations. (a) Initial guess: random. (b) Iteration 20. (c) Iteration 30. (d)
Iteration 60. (e) Iteration 90. (f) Iteration 100. (g) Optimal configuration : Iteration 200.
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drops and a second contact is formed (Figures 6.22 (c) and (d)). In Figures 6.22 (e) and (f) the
rod displays 3 and 4 loops respectively and the number of self contact points is larger.

The constraints involved in plectoneme formation are inequality constraints that forbid self
collision. They exhibit two difficulties. The first difficulty is that they are non local. In the
discrete setting this translates into the fact that if there are N elements then there are O(N2)
inequality constraints since we need to take into account the possible collision of one element
with all others. The second difficulty is that the constraints are non convex. We require that
the distance between any two points on different elements be larger than the diameter of the
rod so that ||r(s)− r(t)||2 > (2radius)2 for all s ∈ [si, si+1] and t ∈ [sj , sj+1] and i 6= j, where r
denotes the centerline position.

In our first attempt at simulating plectoneme formation we used direct multiple shooting
with Ipopt. After each problem solved, the solution was used as an input for the next problem
where the clamping angle was augmented. What we observed was that no contact was formed
at the moment of the instability (Figures 6.22 (a) to (b)). Instead, during the internal iterations
of Ipopt, interpenetration of the rod occurred and the solver found another local minumum of
the problem without contact and with less twist. Thus no plectonemes were formed.

To perform the simulation shown in Figure 6.22 our approach was the following. We use a
direct single shooting discretization with piecewise constant strains, the degrees of freedom are
the strains on each element collected in the vector q ∈ R3N . The spatially discretized energy of
the system is U(q) := 1

2q
TKq, with K diagonal and positive definite as shown in Section 6.3.1.

The fixed-fixed boundary conditions are modelled as the equality constraints gE,θ(q) = 0, they
depend on the clamping angle θ. The non penetration constraints are modelled as the inequality
constraints gI(q) > 0. Assume we are given a solution qθ−∆θ of the problem with clamping angle
θ−∆θ. We find the next solution qθ by forward solving the first order complementarity system

q̇ +∇U(q) = ∇gE,θ(q)λ+∇gI(q)µ
gE,θ(q) = 0

0 ≤ gI(q) ⊥ µ ≥ 0
(6.27)

with q0 := qθ−∆θ as an initial condition until ||q̇|| < ε. If ||q̇|| < ε for ε small enough then
a solution of the first order optimality conditions of the problem minimizing U(q) subject to
gE,θ(q) = 0 and gI(q) > 0 has been found.

To numerically solve the complementarity system (6.27), at each time step tk compute active
set at qk and solve for v, λ, µ, qk+1 the Mixed Linear Complementarity Problem (MLCP)

v =
qk+1−qk

∆t
v +∇U(qk) = ∇gE,θ(qk)λ+∇gI(qk)µ
∇gE,θ(qk)v = −γgE,θ(qk)

0 ≤ ∇gI(qk)v ⊥ µ ≥ 0,

(6.28)

where γ > 0 is a relaxation parameter. In practice we reformulate (6.28) as a Quadratic Program
(QP) and solve it using qpOASES [107].
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Visualization of plectoneme formation without gravity.
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Figure 6.23: Total twist as a function of clamping angle during plectoneme formation without
gravity.
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Conclusion

Recapitulation. We have seen in this part how the problems of computing the stable static
equilibria of Kirchhoff and Cosserat rods can be formulated as Optimal Control Problems.
The strains of the rod are interpreted as control variables and the frame and position as state
variables. This interpretation has lead us to the exploration of numerical methods which hadn’t
been considered before in the context of rod statics. We propose to discretize the rod statics
OCPs using direct single shooting and direct multiple shooting methods. Both methods rely on
a discretization of the strain field, our implementations covered the case of piecewise-constant
and piecewise-linear strain fields. The orientation and position of the rod are recovered from the
strains by numerically solving the rod kinematics with a Runge-Kutta-Munthe-Kaas method
on SE(3). The discretized OCPs take the form of Non-linear programs (NLPs).

Our proposed methods are easy to implement. The objective function and constraints of
the NLPs are easy to assemble using Casadi [69], a computer algebra system designed for
Optimal Control. Casadi can compute the Jacobians and Hessians of the objective function
and constraints thanks to automatic differentiation and can furthermore automatically detect
the sparsity patterns in these matrices, making the implementation extremely easy. If needed,
C code can be generated and compiled for the evaluation of all the terms involved in the NLP.

The direct single shooting discretizations lead to purely strain based methods, where the
no extension and no shear constraints of the Kirchhoff rod are handled intrinsically. In the
case of a piecewise constant strain field, our discretization coincides with that of [3]. Hence our
construction generalizes the super-helix element of [3].

The direct multiple shooting discretizations lead to mixed methods, where the discrete
strains, as well as the nodal frames and positions are degrees of freedom in the problem. It
may at first seem unnecessary to introduce so many degrees of freedom, but while the problem
size increases the non linearities are reduced. Furthermore, the Hessian matrix which needs
to be inverted by the NLP solver is sparse and block banded in the direct multiple shooting
formulation, whereas it is dense in the single shooting formulation. These mixed methods are
advantageous when the number of elements is high. In problems where the contact of the rod
with an external object or with itself needs to be taken into account, a mixed discretization
yields simpler-to-handle constraints.

Limitations. If the forces acting on the rod are non conservative then the Optimal Control
formulation is no longer possible as the balance equations would not have a variational structure.
Our same spatial discretization procedures could nevertheless be used to tackle the weak form
of the balance equations. We would however obtain equilibrium configurations which are not
necessarily stable.

Future work. Some interesting theoretical questions could be pursued. For instance, in
the presence of inequality constraints, the balance equations describe a non-smooth boundary
value problem. Is there any known time stepping scheme for the solution of the non-smooth
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BVP which would yield the same algebraic system of equations as the first order optimality
conditions of our discretized OCPs? In other words, when do indirect methods commute with
direct methods if inequality constraints are involved?

From a numerical point of view, a comparison between our strain based and mixed methods
against absolute coordinate methods remains to be done. As well the application of our methods
to some benchmark problems.

The application of the optimal control framework to compute the statics of developable
ribbons [108] is part of ongoing work.
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Part III

Strain based dynamics of
developable shells
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Chapter 7

Introduction

From Kirchhoff rods to developable shells. In the previous part we saw how to model
and simulate inextensible and unshearable thin elastic rods. In particular we explored a class
of strain based methods for the simulation of Kirchhoff rods. The no shear and no extension
constraints of the rod can be handled intrinsically, by construction, using the strains of the
rod as the main unknowns in the simulation instead of the positions and orientations of the
cross sections. In the strain based approach we avoid the use of excessively stiff elastic forces to
handle the inextensibility and no shear constraints. In this part our goal is to extend the strain
based approach so as to simulate the dynamics of shells with an inextensible and unshearable
mid-surface.

Definition of a Shell. A shell, as depicted in Figure 7, is a thin elastic solid with two
dimensions of comparable magnitude (length and width), both much larger than the third
(height or thickness). Given appropriate kinematic and physical assumptions, the behaviour of
the shell may be entirely described by the behaviour of its mid surface. The mid surface of a
shell can take on a non planar rest configuration. If the mid surface of the shell is planar in its
rest configuration it is called a plate.

Mid Surface

h

L

W

Figure 7.1: A shell and its mid surface.

Motivation. Many surface-like objects around us such as paper, leaves or boat sails, may
easily bend but hardly stretch or shear. One is thus faced with the need for numerical models
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able to handle these constraints properly not only in the case of rods but also in the case of
shells.

Developable shells. Contrary to the case of rods, for shells in general it is very difficult to
undergo pure bending deformations. The obstruction to pure bending deformations is related to
the geometry of the mid surface. For instance closed convex surfaces are rigid, it is impossible
to deform them in a smooth fashion without stretching or shearing 1. Hence shells with a
closed convex mid surface cannot undergo pure bending deformations. The implication for us
is that we have to restrict our study to a class of shells for which pure bending deformations
are possible. In the present part we thus restrict ourselves to the modeling of thin elastic shells
with a developable mid-surface. A developable surface is one which always remain isometric to
a planar configuration. We shall from now on refer to shells with a developable mid-surface as
developable shells.

Contributions. Our goal is to design a strain based discrete model for simulating the motion
of developable shells. The approach we follow is directly inspired by the super-helix model
for thin elastic rods [3]. In this model, each rod element is characterized by uniform material
curvatures and twist (i.e., uniform bending and twisting strains); a multibody rod dynamical
system is then derived with curvatures and twist as degrees of freedom, leading to a perfectly
inextensible dynamical rod model. Similarly, we build here an inextensible and unshearable shell
patch by taking as degrees of freedom the curvatures (or bending strains) of its mid-surface,
expressed in the local frame; equations of motion are then directly solved for the curvatures.
Compared to the 1D (rod) case however, significant difficulties arise in the 2D (plate/shell) case,
where compatibility conditions are to be treated carefully.

In the construction proposed in Section 9.2 the curvatures of the shell are taken to be
spatially constant (the direct analog of the helical element in [3]). This leads to a shell patch
that takes on circularly cylindrical configurations. The compatibility conditions are enforced
as quadratic holonomic constraints. It is remarkable that in this case the expression for the
position of the mid surface is an explicit function of the curvatures. This work was done in
collaboration with Romain Casati who had already proposed the kinematic construction of the
cylindrical patch in his PhD thesis [109]. The reinterpretation of his kinematic construction
within the SE(3) formalism already employed in Part II is due to us as well as the formulation
of the dynamics of the shell patch.

In Section 9.3 we propose an analysis of the compatibility equations for developable surfaces.
It leads to the derivation of spatially affine shape functions for the curvatures which automat-
ically satisfy the compatibility equations. The position of the mid surface is in this case no
longer explicit but can be numerically obtained using a Runge-Kutta-Munthe-Kaas method to
solve the surface reconstruction equations. The resulting shell patch takes on configurations
which are also included in cylinders but of a clothoidal rather than a circular base.

To the best of our knowledge the strain based simulation of developable shells is a problem
that had not been treated before. Our contributions represent a small step in this direction
and we hope that it spurs further developments in the strain based approach to the numerical
mechanics of shells.

Overview. In the following we shall first, in Chapter 8, present the strain based approach for
Koiter shells (which can also stretch and shear) and review the literature on the subject. Then

1This fact is the nightmare of cartographers as it explains that it is impossible to make a perfect map of the
earth, one without distortion of lengths, angles or areas.
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in Chapter 9 we introduce a method for simulating the pure bending dynamics of a perfectly
inextensible and unshearable patch of a developable thin elastic shell.
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Chapter 8

The Strain based approach to the
mechanics of shells

In this chapter we present the strain based approach for shells. We begin by giving some
important definitions and concepts related to the geometry of surfaces, for which we rely heavily
on the references [87] and [110]. We present Koiter’s shell energy, which depends on the first and
second fundamental forms of the mid-surface of the shell. We state the fundamental theorem
of surface theory which is at the heart of the strain based approach for shells. Since we will
deal in particular with shells or plates with a developable mid surface, we shall include some
background on developable surfaces in this chapter. We will also quickly review the literature
on the strain based approach for shells.

8.1 The first and second fundamental forms

Parametrized surfaces. A parametrized surface is a differentiable map r from an open
domain D of R2 into R3. A point of coordinates (s1, s2) 1 in the domain D gets mapped by r to
a point r(s1, s2) in R3, as depicted in Figure 8.1. Let us denote S the set r(D) which is called
the trace of r. It is frequent to refer to the map r as the parametrization and the trace S as
the surface.

Figure 8.1: A regular parametrized surface.

We will denote d1 and d2 the tangent vectors defined as di := ∂ir, where we have used

1We will be using classical tensor notation so si denotes the ’i-th component of s’ and not ’s to the power i’.
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the shorthand notation ∂i := ∂
∂si

2. If the tangent vectors are linearly independent for all
(s1, s2) ∈ D then the parametrized surface r is said to be regular or an immersion. When the
surface is regular at a point s := (s1, s2) ∈ D then the tangent vectors span a plane called the
tangent plane to the surface S at the point r(s), which is denoted Tr(s)S. When the surface is

regular we can also define the normal vector N(s1, s2) := d1×d2
||d1×d2||(s

1, s2). We can collect the

three columns (d1, d2, N) in a 3 by 3 invertible matrix F := (d1, d2, d3) ∈ GL3(R) called the
moving frame induced by the parametrization. In general the frame F is not orthogonal. The
parametrization stretches and shears the domain D in a smooth fashion to convert it into the
surface S. These changes in lengths and angles (or stretching and shearing) is what the first
fundamental form of the surface is meant to capture.

Definition 8.1.1. First Fundamental Form. The first fundamental form a of a regular parametrized
surface r : D ⊂ R2 → R3 is a 2 by 2 symmetric positive definite matrix field defined on D as

aij := ∂ir · ∂jr (8.1)

for (i, j) in {1, 2}. The first fundamental form is also called the ’metric’ of the surface.

The diagonal components aii measure the amount of stretching along the si coordinate line.
The off diagonal components a12 = a21 = dT1 d2 measure the amount of shearing. We will see
later on that the ’membrane’ part of Koiter’s shell energy depends on the first fundamental
form. The ’flexural’ or ’bending’ part will depend on the second fundamental form, which we
now define.

Definition 8.1.2. Second fundamental form. The second fundamental form b of a regular
parametrized surface r : D ⊂ R2 → R3 is a 2 by 2 symmetric matrix field defined on D as

bij := −∂ir · ∂jN (8.2)

for (i, j) in {1, 2}.

As one would expect, the curvature information of a surface is contained in the derivatives
of the normal field. If the surface is flat the normal field is constant and the curvature is zero.
The more the surface bends along one direction, the faster the normal field changes along that
direction and the larger the magnitude of the curvature. The second fundamental form captures
that information. The components bij are also called ’bending strains’ in mechanics.

Remark We see in the definition of the second fundamental form the projection of the deriva-
tives of the normal onto the tangent plane. There is no loss of information through that
projection since the derivative of the normal field along any direction is tangent to the surface.
Indeed, the normal field is of unit norm so we have that ∂i(N ·N) = 0 and hence ∂iN ·N = 0,
that is ∂iN is tangent to the surface.

Remark We can also express bij as ∂ijr ·N . Since the normal N is always orthogonal to the
tangent vector ∂ir, we have that ∂j(∂ir ·N) = 0 hence ∂ijr ·N = −∂ir · ∂jN = bij .

2What we really mean is di(s
1, s2) := ∂r

∂si
(s1, s2) for i ∈ {1, 2}, but as this is notationally heavy we will often

use the shorthand notation for partial derivatives.
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Mixed components of the second fundamental form. As we have seen, the derivatives of
the normal map ∂iN are tangent to the surface. Thus ∂iN can be decomposed in the local basis
(d1, d2) as a linear combination ∂iN = −b ki dk. We are using the Einstein summation convention,
where if an upper and lower index is repeated then summation is implied, so b ki dk = b 1

i d1+b 2
i d2.

The relationship between bij and b ki is easy to work out: on the one hand ∂iN · dj = −bij by
definition of the second fundamental form and on the other hand ∂iN ·dj = −b ki dk ·dj = −b ki akj .
Hence b ki akj = bij . Denoting aij the components of the inverse of the metric aij , we can rewrite
the former equality as

b ki = bija
jk.

In general to raise the indices of a tensor we multiply by the inverse of the metric as vi = aijvj .
To lower indices of a tensor we multiply by the metric as vi = aijv

j .
The matrix with components b ki is called the second fundamental form in mixed components

or the Shape Operator. In matrix form, if we denote S the matrix of the shape operator then
S = ba−1. The shape operator is a self-adjoint linear map with respect to the metric a.

Definition 8.1.3. Principal, Mean and Gaussian curvatures.
We call principal curvatures of the surface the eigenvalues of the shape operator S and

denote them κmin and κmax.
The Gaussian curvature, denoted KG, is the geometric mean of the principal curvatures:

KG := κminκmax = det(b ji ) =
det(bij)

det(aij)
.

The mean curvature KM is the arithmetic mean of the principal curvatures:

KM :=
κmin + κmax

2
=

tr(b ji )

2
.

We now give the definition of a surface isometry.

Definition 8.1.4. Isometry. A surface isometry is an application between surfaces that pre-
serves lengths and angles, that is, which doesn’t change the metric. If Φ : (S̄, ā)→ (S, a) is an
application between a surface S̄ with metric ā and a surface S with a metric a then Φ is an
isometry if and only if for all points p in S̄ and for all vectors X,Y in the tangent plane TpS̄

aΦ(p)(DΦ(p)X,DΦ(p)Y ) = āp(X,Y ),

where we have denoted DΦ(p) the differential of Φ at p.

Our definition is more accurately that of a local isometry. A global isometry is a local
isometry that is also a diffeomorphism, in particular a global isometry preserves the topology of
the surface. In that sense the plane and the cylinder are only locally isometric and not globally
isometric. In the future if we write isometric we implicitly mean locally isometric.

Developable Surfaces. In the next chapter we will focus our attention to shells with a
developable mid surface, we are now in a position to give a definition of developability. A
surface is said to be developable if its Gaussian curvature is identically zero (KG = 0 for all
points on the surface). Clearly KG = 0 holds if and only if at least one of the principal
curvatures vanishes. If both principal curvatures vanish then the surface is planar. If only one
principal curvature vanishes then the surface is parabolic, it is straight in the direction of the
zero principal curvature and curved in the orthogonal direction. The sign of mean curvature
determines whether the surface is curved upwards, that is in the same direction as the normal,
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(a) (b)

Figure 8.2: (a) Generalized cylinder and cone. (b) Tangent developable of a helix, image from
Wikipedia en.wikipedia.org/wiki/Tangent_developable

or downward, opposite to the normal. Developable surfaces are ruled, the curves along which the
principal curvature vanishes (called rulings) are straight lines, they entirely cover the surface and
the normal to the surface is constant along those lines. Developable surfaces are comprised of
patches of planes, generalized cylinders (not necessarily with a circular base), generalized cones
and ’tangent developables’ (see Figure 8.2). Tangent developables are surfaces constructed by
taking a curve and extruding it along its tangent field. The term ’developable’ comes from the
fact that they can be developed onto a flat configuration without any stretching or shearing:
they are locally isometric to the plane.

8.2 The fundamental theorem of surface theory

We have seen that given a regular parametrized surface we can deduce its first and second
fundamental forms. In terms of the mechanics of shells this means that we can deduce stretching,
shearing and bending strains from the displacements. In order to have a strain based approach
to the mechanics of shells, where the displacements are deduced from the strains we must address
the following question: can one recover the surface given its first and second fundamental forms?
The answer to this question is positive, provided that certain compatibility conditions are met.
The latter statement constitutes what is known in differential geometry as the fundamental
theorem of surface theory.

Reconstructing a surface given its fundamental forms. It is clear that if the tangent
vectors di are given on the domain D then the parametrized surface r could be recovered by
integration of the equations

∂ir = di (8.3)
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on D. The situation is very similar to the Kirchhoff kinematics of Chapter 5 but now there
are 2 spatial variables (s1, s2) instead of just the arclength of the rod, which means that we are
dealing with PDE’s instead of ODE’s, and also the directors are not (yet) assumed orthonormal.
As we know from Chapter 5, to recover the directors from the curvatures we need to look at
the kinematics of the directors. By decomposing the derivatives ∂idj and ∂iN in the basis
(d1, d2, N) we obtain the frame reconstruction equations{

∂idj = Γkijdk + bijN

∂iN = −b ki dk.
(8.4)

The coefficients Γkij are called the Christoffel symbols. The Christoffel symbols are defined as

Γijk := ∂ijr · ∂kr and Γkij := aklΓijl.
Now, behold the following miracle: the Christoffel symbols Γijk can be shown to depend

only on the metric aij and not on the parametrization. Indeed, by the formula of Koszul we
have that

Γijk =
1

2
(∂iajk + ∂jaik − ∂kaij) . (8.5)

The conclusion is that, if the fundamental forms a and b are given, then the frame recon-
struction equation (8.4) is a linear first order PDE for the frame (d1, d2, N) with coefficients
depending on a and b. To reconstruct the surface from its fundamental forms in practice, we
first integrate (8.4) to obtain the directors d1, d2 and then we integrate (8.3) to recover the
parametrized surface r.

Integrability conditions. The tensor fields a and b cannot be arbitrary. First, a has to be
symmetric positive definite and b has to be symmetric. Second, a and b necessarily satisfy the
Gauss-Codazzi-Mainardi-Peterson equations (GCMP)

{
Rpikj = bijb

p
k − bikb

p
j (8.6a)

∂kbij − ∂jbik = Γlikblj − Γlijblk (8.6b)

where Rpikj := ∂kΓ
p
ji − ∂jΓ

p
ik + ΓpklΓ

l
ji − ΓpjlΓ

l
ki is the Riemann curvature tensor.

Remark The GCMP equations (also known as compatibility conditions) were first derived
as necessary conditions verified by the fundamental forms. They result from requiring the
commutation of cross derivatives ∂ijkr = ∂ikjr and using the reconstruction equations (8.3)
and (8.4). The tangential projection ∂ijkr · dp = ∂ikjr · dp results in the Gauss equation (8.6a).
The normal projection ∂ijkr ·N = ∂ikjr ·N results in the Codazzi-Mainardi-Peterson equations
(8.6b). It was proven independently by Peterson [111] and Bonnet that the GCMP equations are
also the sufficient conditions for the symmetric positive definite matrix field aij and symmetric
matrix field bij to determine the surface locally.

The symmetries of a and b imply that there are only 3 independent equations in (8.6), which
are 

R1212 = b11b22 − (b12)2

∂2b11 − ∂1b12 = Γ1
12b11 + (Γ2

12 − Γ1
11)b12 − Γ2

11b22

∂2b12 − ∂1b22 = Γ1
22b11 + (Γ2

22 − Γ1
12)b12 − Γ2

12b22.
(8.7)

Remark The celebrated Theorema Egregium of Gauss follows from the first equation in (8.7).
The Riemann curvature tensor depends only on the metric and det(bij) = KGdet(aij). Hence
Gaussian curvature also depends only on the metric: KG = R1212

det(aij)
. In particular, Gaussian
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curvature is invariant with respect to surface isometries. This is of interest to us since it
means that the Gaussian curvature of a shell’s mid surface will be preserved by pure bending
deformations.

The following theorem collects Theorem 2.8-1 and Theorem 2.9-2 of [110]. We denote S2

the set of real symmetric 2 by 2 matrices and S++
2 the set of real symmetric positive definite 2

by 2 matrices.

Theorem 8.2.1. Fundamental Theorem of the theory of surfaces. Let D be a connected and
simply connected open subset of R2. Let a ∈ C2(D;S++

2 ) be a symmetric positive definite matrix
field on D and b ∈ C2(D;S2) be a symmetric matrix field on D. If a and b satisfy the Gauss-
Codazzi-Mainardi-Peterson equations (8.7) then there exists a C3 immersion r : D → R3 having
a and b as fundamental forms, that is aij = ∂ir · ∂jr and bij = ∂ijr · ∂1r×∂2r

||∂1r×∂2r|| . Furthermore the
immersion r is unique up to a rigid body motion.

The compatibility conditions (8.7) of the surface are just integrability conditions for the
linear first order PDE’s (8.4). In practice to integrate the frame reconstruction PDE (8.4) we
first integrate in one direction (say s1) for a given initial datum and then integrate in the other
direction. The compatibility conditions (8.7) guarantee that it is indifferent to integrate in
direction s1 first and then in direction s2 or vice versa (provided that the domain is simply
connected). In the textbook of Palais [112] a very clear proof of Theorem (8.2.1) is given by
invoking Frobenius’ theorem on the integrability of first order linear PDEs.

The regularity conditions in Theorem 8.2.1 can be significantly relaxed, although that goes
beyond the scope of this thesis. The reader may consult [110] and references therein. Another
important property proved in [110] is that the immersion is a continuous function of its fun-
damental forms, that is if we vary continuously the fundamental forms then the reconstructed
surface varies continuously as well.

Remark The reconstructed surface is guaranteed to be an immersion but not an embedding,
in particular the reconstructed surface can self-intersect. If self-penetration of the surface is to
be avoided, it has to be enforced by additional constraints.

Remark For a developable surface with an identity first fundamental form, the Christoffel
symbols vanish and the compatibility equations take the relatively simple form

b11b22 − (b12)2 = 0
∂2b11 − ∂1b12 = 0
∂2b12 − ∂1b22 = 0.

(8.8)

8.3 Koiter Shells

In this section we present Koiter’s shell energy which is valid for small strains but large dis-
placements and large rotations. The reduction of the full three dimensional elastic energy of
the shell to an energy depending only on the mid surface is based on two hypothesis:

• The Kirchhoff-Love kinematic hypothesis which states that material segments initially
orthogonal to the mid surface remain orthogonal to the mid surface and their length
remains unchanged throughout the deformation.

• The no transverse shear hypothesis which states that shearing in the direction orthogonal
to the mid-surface can be neglected.
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Similar versions of Koiter’s shell theory can be obtained by relaxing these assumptions, see
for instance [82, Chapter 17]. If the material segments are restrained to remain straight but
neither orthogonal to the mid-surface nor of constant length, one obtains the so-called one
director theory of Cosserat shells. If the material segments remain straight, of constant length
but not normal to the mid-surface, then one obtains the so-called special theory of Cosserat
shells.

Let āij and b̄ij be respectively the first and second fundamental forms of the mid surface of
the shell in its natural configuration. The elasticity tensor āijkl is defined as

āijkl =
2Eν

1− ν2
āij ākl +

E

1 + ν

(
āikājl + āilājk

)
,

where E and ν are Young’s modulus and Poisson’s ratio of the elastic material. Let aij and bij
denote the first and second fundamental forms of the shell’s mid-surface in the actual (deformed)
configuration. The stored elastic energy density wK of a Koiter shell of thickness h reads

wK =
h

4
āijkl(aij − āij)(akl − ākl) +

h3

48
āijkl(bij − b̄ij)(bkl − b̄kl). (8.9)

Remark The internal elastic energy (8.9) of a Koiter shell is a quadratic function of the first
and second fundamental forms. The internal elastic energy is the sum of two terms, a membrane
part and a bending part. The membrane part h

4 ā
ijkl(aij − āij)(akl − ākl) is seen to penalize the

in plane deformations of the mid surface, it penalizes in plane shearing and stretching. The
bending part h3

48 ā
ijkl(bij − b̄ij)(bkl − b̄kl) penalizes the out of plane or bending deformations of

the mid surface. It is important to note that the membrane term is linear in the thickness
parameter h while the bending term is cubic in the thickness. The thinner the shell the harder
it is to stretch and shear and the easier it is to bend. In the limit of zero thickness the shell
undergoes pure bending deformations, provided it can do so.

Remark Pure bending deformations are those that leave the first fundamental form of the
shell’s mid surface unchanged. In geometric terms pure bending deformations are surface isome-
tries. The question of whether it is possible to deform a surface isometrically is a non trivial
one in general. For an interesting discussion on surface isometries and their relevance to shell
theories the reader can consult [78, Chapter 11]. To find pure bending deformation of a surface
one would need to find a family of second fundamental forms bt depending continuously on a
parameter t which comply with the compatibility conditions (8.7) for a fixed metric a. For a
fixed metric the compatibility conditions (8.7) are a set of linear first order PDEs (the Codazzi-
Mainardi-Peterson equations) but coupled with a non linear quadratic constraint (the Gauss
equation). Even the linearization of (8.7) is non trivial since it can be recast into a second
order linear PDE of mixed type, which is parabolic where the Gaussian curvature vanishes,
hyperbolic where the Gaussian curvature is negative and elliptic where the Gaussian curvature
is positive [78]. One class of surfaces for which pure bending deformations exist, is the class of
developable surfaces. This is one of the reasons why we restrict our attention to the pure bend-
ing deformations of shells with a developable mid surface. The other reason is that developable
surfaces often arise in applications.

8.4 Strain based methods for shells

Just as for the rod theories of Chapter 5, it is possible to tackle the problem of shells using
strain variables instead of position and orientation variables as primary unknowns. The appeal
of the strain based method for shells is the same as for rods, the internal elastic energy (8.9) is
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quadratic in the strains just as for Kirchhoff or Cosserat rods. The strain based method for rods
is relatively well understood and has been tried on numerically for several rod models, using
different basis functions and different reconstruction procedures. For shells the literature on
strain based methods is much more scarce. The strain based formulation, also called intrinsic
formulation, dates back to the forties and was originally proposed by Chien [113]. Since then the
theory has been refined in [114], [115], [116]. In [117] an intrinsic formulation for the dynamics
of composite plates was proposed which does not involve the first and second fundamental form
directly but rather instantaneous displacement and rotation vectors as in a Cosserat description.
In these references focus is put on theoretical aspects and the subject of numerically solving
the obtained intrinsic balance equations is not dealt with. Furthermore it is unclear how to
handle forces or moments that involve the position or orientation of the plate/shell structure.
The proposed solution strategy in [116] is to first solve the equations for the strains and in a
post processing step to recover the displacement and rotation fields. However this decoupling
is rarely possible in scenarios of interest. We are unaware of any numerical method in the
literature employing only strains as primary unknowns for the simulation of shells.

It should also be noted that the term ’intrinsic formulation’ is often used to refer to a
formulation for which the balance equations involve only strains/stresses and don’t involve the
position and orientation variables explicitly. In this sense the formulations of Simo and Fox [118]
are intrinsic, although their main unknowns are the position and a director, not the strains.
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Chapter 9

Strain based dynamics of
developable shells

In this chapter we first present the kinematics of developable shells in the same SE(3) formalism
used in Part II and developed in [119]. Background material on SE(3) is provided in Appendix
C.1. We then proceed to the kinematic and dynamic construction of a shell patch with a spatially
constant second fundamental form. In Section 9.3 we propose an analysis of the compatibility
equations for developable surfaces and derive spatially affine shape functions for the curvatures
which automatically satisfy the compatibility equations. A shell patch with a spatially affine
second fundamental form is constructed. We present the main implementation features and
some simulation results.

9.1 Strain based kinematics of developable shells

Let us consider a thin elastic shell with a developable mid-surface. We normally parametrize
the mid-surface by a function r(s1, s2) ∈ R3 of two spatial parameters (s1, s2) living on a planar
domain D ⊂ R2. Our goal here is to explain how the surface parametrization can be obtained
as a function of the bending strains of the shell.

Enforcing developablity. As we are interested in simulating the pure bending dynamics
of developable shells, we need to enforce the developability of the mid-surface throughout its
deformation. The way in which we choose to do this is to require the first fundamental form of
the surface to be always equal to the identity matrix. This implies that r is a local isometry
between the planar configuration D (with metric ā = I) and the actual mid-surface. The
tangent vectors d1 := ∂1r and d2 := ∂2r are then orthonormal throughout the motion of the
surface. The moving frame R(s1, s2) := (d1, d2, N), defined by the two tangent vectors and the
normal N := d1 × d2, is thus constrained to remain a rotation matrix R(s1, s2) ∈ SO(3).

Surface and frame reconstruction. This puts us in a situation very similar to the one
encountered for Kirchhoff rods. If the frame field R is known on the domain then the position
reconstruction equation reads

∂r

∂si
(s) = R(s)ei ∀s ∈ D, (9.1)

where i ∈ {1, 2}, e1 = (1, 0, 0)T and e2 = (0, 1, 0)T . This is a 2D version of the Euler-Bernoulli
constraint of Kirchhoff rods. In mechanical terms, the in-plane strains are prescribed. Among
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the strains only the out of plane or ”bending strains” remain unknown, geometrically they
correspond to the entries of the second fundamental form of r and they appear naturally when
one takes the derivatives of the frame with respect to (s1, s2). Since R(s) belongs to SO(3)
there exist two fields Ω1(s) ∈ R3 and Ω2(s) ∈ R3 such that

∂R

∂si
(s) = R(s)Ω̂i(s) ∀s ∈ D, (9.2)

where (we recall) the hat operator takes 3D vectors into skew symmetric matrices, that is

ˆ: x =

x1

x2

x3

 ∈ R3 → x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ∈ so(3).

The entries of Ωi are precisely the bending strains and the entries of the second fundamental
form. Although these seem to be 6 parameters, only 3 of them are independent as we will
shortly see. Again, as in the case of Kirchhoff rods, the SE(3) structure of the kinematics
becomes apparent by collecting the frame R and the position r into the matrix

H(s) :=

[
R(s) r(s)

0 1

]
∈ SE(3).

We can restate the position reconstruction equation (9.1) and the frame reconstruction equation
(9.2) as the SE(3) reconstruction equation

∂H

∂si
(s) = H(s)f̃i(s), (9.3)

where f̃i is the matrix f̃i :=

[
Ω̂i(s) ei

0 0

]
∈ se(3).

Compatibility conditions. The bending strain fields Ωi can’t be arbitrary, they satisfy com-
patibility conditions which are nothing else than the requirement that second cross derivatives
should commute,

∂1∂2H = ∂2∂1H ⇔ ∂1(Hf̃2) = ∂2(Hf̃1)

⇔ Hf̃1f̃2 +H∂1f̃2 = Hf̃2f̃1 +H∂2f̃1

⇔ H∂2f̃1 −H∂1f̃2 = Hf̃1f̃2 −Hf̃2f̃1

⇔ ∂2f̃1 − ∂1f̃2 = f̃1f̃2 − f̃2f̃1.

In terms of the Ωi these conditions read[
∂2Ω̂1 − ∂1Ω̂2 0

0 0

]
=

[
Ω̂1Ω̂2 − Ω̂2Ω̂1 Ω̂1e2 − Ω̂2e1

0 0

]
,

which we can rewrite using cross products as{
Ω1 × e2 = Ω2 × e1

∂2Ω1 − ∂1Ω2 = Ω1 × Ω2.
(9.4)

One has thus two sets of conditions, the first reads Ω1 × e2 = Ω2 × e1, yielding three equations
which reduce the number of unknown bending strains from six down to three. Explicitly they
tell us that Ω3

1 = Ω3
2 = 0 and that Ω2

2 = −Ω1
1, so that one has

Ω1 =

Ω1
1

Ω2
1

0

 and Ω2 =

 Ω1
2

Ω2
2 = −Ω1

1

0

 .
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The fact that Ω3
1 = Ω3

2 = 0 means that there is no drilling degree of freedom for developable
shells. The three remaining bending strains are precisely the three components of the second
fundamental form. The relationship between the instantaneous rotation vectors and the second
fundamental form can be easily seen. The second fundamental form has components defined by
bij = −∂iN · ∂jr. Plugging in the kinematics ∂jr = Rej and ∂iN = RΩ̂ie3 one concludes that

b11 = −Ω2
1

b12 = Ω1
1

b22 = Ω1
2.

Hence the instantaneous rotation vectors can be expressed in terms of the entries of the second
fundamental form as follows,

Ω1 =

 b12

−b11

0

 and Ω2 =

 b22

−b12

0

 . (9.5)

The second set of equations in the compatibility equations (9.4) is ∂2Ω1 − ∂1Ω2 = Ω1 ×Ω2.
In terms of the second fundamental form, the latter equations read

(GCMP )


∂2b12 − ∂1b22 = 0
∂2b11 − ∂1b12 = 0
b11b22 − (b12)2 = 0,

(9.6)

thus they are precisely the Gauss-Codazzi-Mainardi-Peterson equations for a surface with a
metric tensor equal to the identity (encountered already in Equation (8.8)). Hence it follows by
the Fundamental theorem of surface theory that the reconstruction equations (9.3) have a unique
solution given an initial datum H0 ∈ SE(3) if the domain D is connected and simply connected,
if the bending strain vectors Ωi are defined as in Equation (9.5) and if their components satisfy
the GCMP equations (9.6).

9.2 Dynamics of a developable shell patch with spatially con-
stant curvatures

We wish to simulate the pure bending dynamics of a developable shell patch. We proceed just
like in the construction of the super-helix element for the dynamics of Kirchhoff rods. Instead
of formulating the problem as a non linear PDE involving functions of time and of the two
spatial variables s1, s2, we use a method of lines. By using a method of lines, the problem of
the pure bending dynamics of a developable shell patch can be reduced to one of multibody
dynamics. We shall consider the entries of the second fundamental form to be spatially constant
but time varying and take them to be the degrees of freedom of the shell patch. We collect
the curvatures (or bending strains) in a vector q := [b11, b22, b12]T ∈ R3. These will be our
generalized coordinates in the Lagrangian dynamics of the shell patch. However, these degrees
of freedom aren’t independent since they have to obey the GCMP equations (9.6): this is a
major discrepancy with the rod case, where no such conditions arise. The kinetic and potential
energies of the shell are to be expressed as functions of q and q̇.

9.2.1 Kinematics of a developable shell patch with spatially constant curva-
tures

Let us consider that the Ωi are constant in space and given on the whole domain D and that they
verify the compatibility conditions. Furthermore let us consider that D is star-shaped, centered
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at the origin, so that any point s in the domain can be reached by a straight line segment
emanating from the origin. The segment can be parametrized as the curve c(t) = (ts1, ts2) and
one can consider the value of H along this segment, let us call it Hc(t) := H(c(t)). Then one
can write a simple differential equation for Hc:

dHc

dt
(t) = ∂1H(c(t))s1 + ∂2H(c(t))s2

= Hc(t)f̃1(c(t))s1 +Hc(t)f̃2(c(t))s2

= Hc(t)Ã(s),

where Ã(s) = f̃1(c(t))s1+f̃2(c(t))s2 = f̃1s
1+f̃2s

2. Note that since f̃i is constant on D then Ã(s)
is independent of the parameter t. The ODE H ′c = HcÃ(s) is an autonomous linear differential
equation for Hc, its solution is given by

Hc(t) = Hc(0) exp(tÃ(s)).

Evaluating at t = 1 we recover the solution to (9.3) with initial condition H(0) = H0 ∈ SE(3),
which reads

H(s1, s2) = H0 exp(s1f̃1 + s2f̃2). (9.7)

As we have seen, the exponential of a matrix in se(3) has a closed form expression which comes
from Rodrigues’ formula. Hence the expression (9.7) for the surface and the frame is explicit.

Explicit expression of the position Let us collect the curvatures in a vector q := [b11, b22, b12]T .
These will be our generalized coordinates in the Lagrangian dynamics of the shell patch.

The position of a material particle with coordinates (s1, s2) in the planar configuration is
given by

r(q, s1, s2) = r0 +R0(I +
1− cos(θ)

θ2
Ω̂ +

θ − sin(θ)

θ3
Ω̂2)(s1e1 + s2e2), (9.8)

where

Ω =

 s1q2 + s2q1

−s1q0 − s2q2

0

 ,
and θ = ||Ω||2. The reconstructed surface takes on the shape of a cylindrical patch as seen in
Figure 9.1. Evidently if all entries of the second fundamental form are constant, then the mean
curvature of the mid-surface is also constant and the lines of curvature are the straight rulings
and circular arcs of constant curvature.

Remark Choosing spatially constant Ωi not only has the advantage of leading to an explicit
reconstruction for the frame and position, it also simplifies the GCMP equations. The second
fundamental form of the mid surface is then constant on D so the Codazzi-Mainardi-Peterson
equations are automatically satisfied, that is

∂2b12 − ∂1b22 = 0
∂2b11 − ∂1b12 = 0.

Only the Gauss equation
b11b22 − (b12)2 = 0

remains to be enforced. It will be considered as a holonomic constraint

q0q1 − (q2)2 = 0

on the generalized coordinates q.
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Figure 9.1: Geometry of our shell patch for q0 = q1 = q2 = 1.

Remark The se(3) elements f̃i containing the in-plane stretching/shearing strains and the
bending strains are also spatially constant. In terms of the f̃i the compatibility equations read

∂2f̃1 − ∂1f̃2 = f̃1f̃2 − f̃2f̃1

which simplifies to
[f̃1, f̃2] = 0

for spatially constant f̃i. Meaning that the matrices f̃1 and f̃2 commute. Under this condition
we have that the exponential of the sum is the product of the exponentials and thus exp(s1f̃1 +
s2f̃2) = exp(s1f̃1) exp(s2f̃2) = exp(s2f̃2) exp(s1f̃1). If the compatibility conditions did not hold
then our solution for the frame and surface H(s) = H0 exp(s1f̃1 + s2f̃2) (obtained by radial
integration) would have been different to that obtained by integrating first with respect to s1

and then with respect to s2 or vice versa.

Manual simplification of the position expression using the eigen-basis of the second

fundamental form In the case of formula (9.7) one has Ω = s1Ω1+s2Ω2 =

 s1b12 + s2b22

−s1b11 − s2b12

0


and v = s1e1 + s2e2. Using the Gauss equation (b11b22 = b212) one finds that the expression for
θ is given by

θ = ||Ω||2 =
√

(b11 + b22)sT bs.

This expression can be further simplified by introducing an eigen decomposition of the matrix
of the second fundamental form b. Indeed, b is symmetric and has a zero eigen-value, if the
other eigenvalue is non zero then the two eigen-directions are orthogonal and one can introduce

a matrix P such that b = P T
[
0 0
0 b11 + b22

]
P . The expression for θ then reads θ = |(b11 +

b22)(Ps)2|, the problem is that the matrix P changes depending on which entries of b are zero.

Property (Expression for θ). Let θ = ||s1Ω1 + s2Ω2|| where Ωi are the instantaneous rotation
vectors defined in (9.2). Then the expression for θ is given by

• If b11 = 0 and b22 = 0 then b = 0 and θ = 0.

• If b11 6= 0 then P = 1√
b211+b212

[
−b12 b11

b11 b12

]
and

θ = |(b11 + b22)
b11s

1 + b12s
2√

b211 + b212

| (9.9)
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• If b22 6= 0 then P = 1√
b222+b212

[
−b22 b12

b12 b22

]
and

θ = |(b11 + b22)
b12s

1 + b22s
2√

b222 + b212

| (9.10)

Furthermore, since in the expressions for exp(Ω̂) and B the function θ appears only as an

argument in the even functions sin(θ)
θ , 1−cos(θ)

θ2 and θ−sin(θ)
θ3 , one can omit the absolute values in

the expression of θ. Finally, with all this information at hand, one can arrive at the following
closed form expression for the position of the surface as a function of its curvatures.

Property (Expression for r). • If b11 = 0 and b22 = 0 then b = 0 and

r = r0 +R0

s1

s2

0

 (9.11)

• If b11 6= 0:

r = r0 +R0

s1

s2

0

+
1− cos θ

b11 + b22

0
0
1

+
θ − sin θ

(b11 + b22)2

√
b211 + b212

 −1
−b12/b11

0

 (9.12)

• If b22 6= 0:

r = r0 +R0

s1

s2

0

+
1− cos θ

b11 + b22

0
0
1

+
θ − sin θ

(b11 + b22)2

√
b222 + b212

−b12/b22

−1
0

 (9.13)

As a test, one can verify that for b =

[
1 0
0 0

]
the expression (9.12) coincides with the explicit

solution of (9.3), that is r(s) =

 sin s1

s2

1− cos s1

, which is a cylinder of radius 1 with circular base

in the xz plane.

9.2.2 Dynamics of the developable shell patch with spatially constant cur-
vatures

Kinetic energy of the shell patch A material particle which is located at coordinates
(s1, s2) in the planar configuration will have coordinates r(q, s1, s2) in space. The velocity of
such a particle can thus be computed as

ṙ =
∂r

∂q
(q, s1, s2)q̇.

The kinetic energy due to each particle in the shell can be expressed as 1
2dmṙ

2, where the
elementary mass dm is deduced from the volumic mass density ρ, the thickness h and the
elementary surface area ds1ds2 as dm = ρhds1ds2.

The total kinetic energy of the shell is obtained by summing the kinetic energies of each
elementary particle, and is given by
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T (q, q̇) =

∫∫
D

1

2
ρhq̇T

∂r

∂q
(q, s1, s2)T

∂r

∂q
(q, s1, s2)q̇ds1ds2.

Since the velocity q̇ and the density ρ do not depend on the coordinates (s1, s2), they can be
taken out of the integral and the kinetic energy thus reads

T (q, q̇) =
1

2
q̇TM(q)q̇,

where the mass matrix M(q) is defined as

M(q) = ρh

∫∫
D

∂r

∂q
(q, s1, s2)T

∂r

∂q
(q, s1, s2)ds1ds2.

Gravitational potential energy Each material particle contributes ρghr3(q, s1, s2)ds1ds2

to the potential energy due to weight. The total gravitational potential energy thus reads

Ug(q) = ρgh

∫∫
D
r3(q, s1, s2)ds1ds2.

Elastic potential energy The elastic energy is entirely due to bending, the first fundamental
form of the mid surface remains constant throughout its evolution. Hence the membrane part
in Koiter’s shell energy (8.9) vanishes. The total bending energy of the shell can be simplified
to the form

Ub(q) =
1

2
(q − q̄)TK(q − q̄),

where q̄ := (b̄11, b̄22, b̄12)T is the vector of curvatures of the shell at rest (the so-called natural

curvatures), and K the stiffness matrix defined as K = area(D) Eh3

12(1−ν2)

1 ν 0
ν 1 0
0 0 2(1− ν)

.

Remark When the natural curvatures vanish, the bending energy Ub(q) is just proportional
to the mean curvature squared, that is, Willmore’s energy functional. As we can see in that
case Ub is proportional to (b211 + b222 + 2νb11b22 + 2(1 − ν)b212). Using the Gauss equation the
latter expression becomes simply (b11 + b22)2, which is proportional to the square of the mean
curvature of the mid-surface.

Equations of motion. To compute the pure bending dynamics of our shell patch, we build
a constrained Lagrangian mechanical system with generalized coordinates q and Lagrangian of
the form

L(q, q̇) =
1

2
q̇TM(q)q̇ − Ug(q)− Ub(q),

subject to the holonomic constraint

g(q) := q0q1 − q2
2 = 0.

The equations of motion reduced to index 1 read

M(q)q̈ = F (q, q̇) +GT (q)λ

G(q)q̈ = −Ġq̇, (9.14)

where the Lagrange multiplier λ is just one dimensional here, and G(q) is the jacobian matrix
of the constraints G(q) := ∂g

∂q (q). The vector F (q, q̇) is defined as

F (q, q̇) = ∇qT (q, q̇)− Ṁ q̇ −∇qU(q).
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9.2.3 Numerical solution of the equations of motion

Since the system is small and we are not interested in its long term dynamics we choose to solve
numerically the DAE (9.14) by reducing it to an ODE. We explicitly compute the Lagrange
multiplier as

λ(q, q̇) = −G(q)M−1(q)F (q, q̇)− Ġq̇
G(q)M−1(q)GT (q)

,

and plug it back into the force balance equation. This procedure leaves us with the ODE

q̇ = v
v̇ = M−1(q)

(
F (q, v) +GT (q)λ(q, v)

)
,

(9.15)

which we then solve simply with an RK4 scheme. A problem of drift from the constraints
arises, though, when using this scheme. Indeed we enforce the constraints in the acceleration
level and all information about the constraints in the position and velocity level is lost. Although
the formulations are analytically equivalent, numerically one witnesses how small errors in the
acceleration level constraints lead to large ones in the position level constraints. To remedy
this problem we add a stabilization term in the equations of motion which does not change the
physical dynamics of the system and helps keep the curvatures on the constraint set. This is
known as Baumgarte stabilization. In figure 9.2 we plot the evolution of the curvatures and
the constraint violations. With the stabilization off one sees a quadratic growth of the position
level constraint violation, in about 2 seconds it goes from 0 to 10−2. With the stabilization
on, one sees that although the constraint is not kept exactly at 0, the error is controlled and it
oscillates around the value 4 · 10−5.

Performance: The numerical simulation of the shell dynamics runs in real time. Using a
time step of dt = 0.001, 33 steps are taken to produce one frame of an animation, which is
done in under 5ms. The computational cost of 10,000 time steps is of about 1s on a 2.6 GHz
processor. Frames of an animation are depicted in Figure 9.3.

9.2.4 Implementation

Symbolic Computation using Sympy To solve numerically the equations of motion one
needs a code that evaluates all terms in the dynamics (9.14). We have a closed form expression
for the position as a function of the curvatures q and of the curvilinear coordinates s = (s1, s2):
r = r(q, s). Since this expression is relatively complex we, at first, used Sympy and PyDy

[120] to generate symbolic expressions for M(q), ∂M(q)
∂qi

and Fg(q). Then from the symbolic

expressions C code is generated using the codegen module of the PyDy package (around 8000
lines of C code are generated). By using Cython one can then call the compiled C code directly
from Python which makes tasks such as implementing different numerical schemes, testing and
plotting much easier. Generating the symbolic expressions in Sympy wasn’t trivial, the main
difficulty was getting Sympy to compute double integrals of complex expressions. We noted
that all the expressions which we needed to integrate were of polynomial form in four variables,∑

p1,p2,p3,p4

fp(q)(s
1)p1(s2)p2sp3

3 s
p4
4 ,

where (s3, s4) stand for (sin(a1(q)s1 + a2(q)s2), cos(a1(q)s1 + a2(q)s2)). Hence to compute the
double integral of some expression it is first parsed into this polynomial form and then the total
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(a) Constraint violation without stabilization.
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(b) Constraint violation with stabilization.
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(c) Curvature evolution with stabilization.

Figure 9.2: Numerical solution of the pure bending dynamics of teh constant curvature shell
patch.

(a) Rest shape (b) Initial shape (c) (d)

Figure 9.3: (b-d) Dynamical oscillations of our inextensible shell patch clamped at bottom
right corner and subject to gravity, with rest shape (a) and initial shape (b).

integral is computed as a sum of coefficients times integrals of base functions

∑
p1,p2,p3,p4

fp(q)

∫ L

0

∫ W

0
(s1)p1(s2)p2 sinp3(a1(q)s1 + a2(q)s2) cosp4(a1(q)s1 + a2(q)s2)ds2ds1,
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which are manageable by Sympy.
Ultimately, there were too many drawbacks using Sympy. It required the manually simplified

expressions for the position in Equations (9.12) and (9.13), otherwise the resulting integrations
appeared to be too complex to be handled by this computer algebra system. Sub cases have to
be taken into account, depending on whether a1(q) or a2(q) are non zero. It takes about 5 or 6
hours (per sub case) to generate the code for the dynamics matrices using this Sympy method
on a PC with a 2.6 GHz processor and 16 GB of RAM.

Non Integrability on a circular domain. One of the reasons we at first computed the mass
matrix and its derivatives symbolically is that this was possible for the super-helix element. For
a rectangular shell is also possible yet cumbersome as we saw. For a shell with a circular domain
the symbolic integrations required to compute the mass matrix can no longer be resolved. If the
domain D is a circle of radius 1 centred at 0, then there is no closed form expression for the mass

matrix. If we parametrize the domain as
{

(s1, s2) : s1 ∈ [−1, 1], s2 ∈ [−
√

1− (s1)2,
√

1− (s1)2]
}

,

then one of the integrals involved in the computation is∫ 1

−1

∫ √1−(s1)2

−
√

1−(s1)2

(s1)4 cos2(a1s
1a2s

2)ds2ds1,

which according to Maple has no closed form expression. The obstacle is that there is no closed
form expression for ∫ 1

−1
cos(

√
1− x2)dx.

The symbolic approach features this unexpected limitation, independently of the computer
algebra system which we choose to use.

Computing the Mass matrix and derivatives with Gauss Legendre quadrature and
automatic differentiation. Because of the flexibility it provides we opted for numerical
quadrature to compute the double integrals in the equations of motion. Given a function
f(q, s1, s2) we approximate the integral

∫∫
D f(q, s1, s2)ds1ds2 using a Gauss Legendre method

of order n as∫ L

0

∫ W

0
f(q, s1, s2)ds2ds1 =

LW

4

n∑
i=1

n∑
j=1

wiwjf(q,
L

2
xi +

L

2
,
W

2
xj +

W

2
),

where wi are the weights and xi the nodes (defined in the interval -1, 1). In practice we use
a Gauss-Legendre method of order 5. The relative difference in mass matrices computed using
this method and the symbolic method is of the order 10−8 for reasonable values of q. This
number can be taken to 10−16 by using a method of order 10. Once we have an algorithm
to evaluate the mass matrix we can obtain a code for the derivatives of the mass matrix by
using automatic differentiation. In practice we do this using Casadi [69]. An advantage of using
numerical quadrature to compute the mass matrix is that we don’t really need a closed form
expression for the function f , but only a numerical method which allows to evaluate f at the
required quadrature nodes. Hence one could do without the constant curvature assumption and
try other shape functions for the curvatures. Using this remark we built an inextensible shell
patch model with linear curvatures, the shell equivalent of a super space clothoid element [55].
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9.2.5 Difficulties

Singularity at q = 0. When the shell is in a flat configuration, namely q = 0, then the
gradient of the constraints vanishes. The constraint set {q ∈ R3 : q0q1−q2

2 = 0} is a cone centred
at the origin and is therefore not a manifold in any neighbourhood of the origin. The Delassus
operator G(q)M−1(q)GT (q) becomes singular. This singularity is absent in the clothoidal shell
patch which we propose in the next section.

Assembling shell patches. The difficulties in assembling shell patches comes from the fact
that with curvature based coordinates one has no control over the location of the rulings. Say
we want to stitch two shell patches along the coordinate line s1 = L, so that we have C1

continuity. Then along this line both patches share the same position and frame. It follows that
the curvatures q1, q2 of the first patch are identical to the curvatures q̃1, q̃2 of the second patch.
Two situations can arise. If it happens that q̃1 6= 0 then by the Gauss equation of the second

patch q̃0 = q̃2
2

q̃1
and so all three degrees of freedom of the second patch are removed. On the

other hand, if q̃1 = 0, then q̃2 = 0 and q̃0 is left as a free variable. In this latter configuration
the two patches meet at a straight line, a ruling of both patches, parallel to the vector e2. We
could thus describe only shell structures with a cylindrical symmetry.

9.3 Extension of the model

To go beyond the spatially constant curvature shape functions we have two options. The first
is to use any arbitrary basis functions and enforce the compatibility conditions as constraints.
The second is to find shape functions which automatically satisfy the compatibility conditions.
In this section we explore the latter approach. First we expose how to construct solutions to
the GCMP equations. In particular we will expose a set of linear shape functions which satisfy
the GCMP equations and then we use them to build the dynamics of a developable shell patch
with spatially linear curvatures.

9.3.1 Explicit solutions to the compatibility conditions

Let us denote X and Y the column vectors of the second fundamental form: X := (b11, b12)T

and Y := (b12, b22)T . Then the curl of X reads

curlX = ∂1b12 − ∂2b11

and the curl of Y reads
curlY = ∂1b22 − ∂2b12.

Hence the GCMP equations (8.8) for a developable shell may be written equivalently as
curlX = 0
curlY = 0
X × Y = 0

. (9.16)

Since the domain D is simply connected, a vector field on D is of vanishing curl if and only if
it derives from a potential (i.e., it is a gradient field). Hence the conditions (9.16) hold if and
only if there exist two scalar functions Φ,Ψ defined on the simply connected domain D such
that 

X = ∇Φ
Y = ∇Ψ

∇Φ×∇Ψ = 0
. (9.17)
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The last equation says that ∇Φ and ∇Ψ are collinear so that there is no need for 2 potentials
but rather one potential and a collinearity factor. Hence we can restate (9.17) as

∃Φ/ X = ∇Φ
∃Ψ/ Y = ∇Ψ
∃α, β/ ∇Ψ = α∇Φ or ∇Φ = β∇Ψ

. (9.18)

Then necessarily one has either the following (expressing everything in terms of Φ, α) or its
counterpart (expressed in Ψ, β) 

X = ∇Φ
Y = α∇Φ
∂2Φ = ∂1Ψ = α∂1Φ

.

More explicitly we can write 
∂1Φ = b11

∂2Φ = b12

b12 = αb11

b22 = αb12

.

It follows that the potential Φ obeys a transport equation

∂2Φ− α∂1Φ = 0. (9.19)

Writing the condition that the curl of Y vanishes and taking into account that Y = α∇X we
can deduce that

(∂2α− α∂1α)∂1Φ = 0. (9.20)

Indeed we have

curlY = 0⇐⇒∂2(α∂1Φ)− ∂1(α∂2Φ) = 0

∂2α∂1Φ + α∂21Φ− ∂1α∂2Φ− α∂12Φ = 0

∂2α∂1Φ− (∂1α)(α∂1Φ) = 0.

The regions where ∂1Φ = 0, in which case b = 0, are planar regions. Outside of planar regions
α must satisfy then the inviscid Burgers’ equation

∂2α− α∂1α = 0. (9.21)

Once α is known, Φ is obtained as a solution of a linear transport equation ∂2Φ−α∂1Φ = 0,
and all of the coefficients of the second fundamental form are thus determined. It is known that
all the solutions of the inviscid Burger’s equation can be represented as

α(s1, s2) = F (s1 + α(s1, s2)s2)

for any arbitrary function F : R −→ R. And the solutions of the linear transport equation are
obtained as

Φ(s1, s2) = G(s1 + α(s1, s2)s2)

for any arbitrary function G : R −→ R.
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The case of constant α. Let us now turn our attention to the case where α is constant. The
inviscid Burgers’ equation (9.21) is then automatically satisfied. The second fundamental form
is then given by

b = G′(s1 + αs2)

[
1 α
α α2

]
.

One can see that such a tensor field b is clearly symmetric and satisfies det(b) = 0. Furthermore
one can check that b satisfies the other two Codazzi-Mainardi-Peterson equations since

∂1b12 − ∂2b11 = αG′′ − αG′′ = 0

and
∂1b22 − ∂2b12 = α2G′′ − α2G′′ = 0.

If we take G′ to be an affine function, such that G′(x) = βx+ γ for arbitrary real numbers
β, γ then the resulting second fundamental form is affine in s1 and s2, its coefficients read

b11(s1, s2) = βs1 + αβs2 + γ
b22(s1, s2) = α2βs1 + α3βs2 + α2γ
b12(s1, s2) = αβs1 + α2βs2 + αγ,

.

Remark It is easy to see that the resulting geometry has a cylindrical symmetry. The eigen-
vector of b associated to the zero eigen value is (α,−1). Since α is constant the latter implies that
the rulings (lines of zero curvature) are all parallel and hence that the surface has a cylindrical
symmetry. The other lines of curvature, orthogonal to the rulings, are planar curves with affine
curvature, they are clothoids. Hence we will speak of a ’clothoidal shell patch’.

In the following section we consider the Lagrangian dynamics of a shell patch with such a
second fundamental form by letting the coefficients α, β, γ vary in time and be the generalized
coordinates of the system.

9.3.2 Dynamics of a clothoidal shell patch

Consider the following shape functions for the second fundamental form:

b11(s1, s2) = βs1 + αβs2 + γ
b22(s1, s2) = α2βs1 + α3βs2 + α2γ
b12(s1, s2) = αβs1 + α2βs2 + αγ,

where α, β, γ are any real numbers. Then the GCMP equations are automatically satisfied.
We are now going to take these three numbers to be the generalized coordinates of the shell
patch, q := [α, β, γ]T . There are two main differences with the constant curvature case, the
first is that there is no closed form expression for the position of the surface patch as a function
of the generalized coordinates. Instead, we have a numerical algorithm which given any q
and any point (s1, s2) will compute the position r(q, s1, s2). We use an explicit Runge-Kutta-
Munthe-Kaas method of order 2 (see equation (6.23)) to solve the reconstruction equations
(9.3) numerically. To compute the derivatives ∂r

∂q , automatic differentiation is used. For the

computation of the mass matrix we need the values of ∂r
∂q at the quadrature nodes. The second

difference with the constant curvature case is that the resulting dynamics is not a DAE but
just an ODE since our particular choice of spatially linear shape functions satisfies all 3 of
the compatibility equations at once. Geometrically the surface is a patch of a cylinder with
a clothoidal base, as seen in Figure 9.4 (a). In Figure 9.4 (b) we plot the oscillations of the
generalized coordinates (α, β, γ) throughout the simulation. The shell is clamped at the origin
with the frame R0 = I.
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Figure 9.4: (a) Profile view of the shell patch (b) Dynamic oscillations of q

9.4 Conclusion

Recapitulation In this Part III of our thesis we have given an exposition of the strain ap-
proach for shells. We have extended the construction of the strain based elements [3, 55] for
inextensible and unshearable rods to the case of developable shells. Our approach to simulat-
ing the pure bending dynamics of developable shells consists in employing a method of lines
discretization. The action functional of the shell is first discretized in space so as to obtain a
classical Lagrangian mechanical system. The spatial discretization is achieved by introducing
the components of the second fundamental form of the mid surface (its bending strains) as the
degrees of freedom of the system. This results in motions of the developable shell which intrin-
sically keep its mid surface from stretching or shearing, without having to rely on extremely
stiff membrane forces.

It was unclear in the literature how to handle situations where one cannot separate the
dynamic evolution of the strains from that of the displacements. In our approach this problem
is dealt with by having a numerical algorithm which given the strains q can compute the
position and orientation of the mid surface (R, r)(q, s1, s2) at any point (s1, s2) in the domain.
The algorithm solves the surface reconstruction equations (9.3) by employing a Runge-Kutta-
Munthe-Kaas (RKMK) method. In our spatially constant curvature patch an RKMK method
of order 1, the Lie-Euler method, yields the exact expression for the frame and position: just
as in the case of the super-helix element for Kirchhoff rods. While for the spatially linear shell
patch an RKMK method of order 2 yields a numerical approximation of the surface position
and orientation.

Though limited to cylindrical configurations, our inextensible shell patches already feature
some rich motions and could serve as interactive models for simulating small flexible surfaces
such as leaves or feathers in computer graphics applications.

Limitations. Two main obstacles prevent us from employing our methods for a general strain
based finite element analysis of developable shell structures. The first is the fact that patching
strain based shell elements together is not as straightforward as in the case of rods. Developable
surface patches should be patched together along a common ruling. Since in our formulation we
have no control on the placement of the rulings, a smooth enough junction of our surface patches
is in practice impossible to achieve. Only in cases with particular symmetries is it possible. The
second limitation is the need to solve the Gauss-Codazzi-Mainardi-Peterson equations. Even if
these compatibility equations are satisfied on each patch they aren’t necessarily satisfied across
the patches.
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Prospective Work. In our opinion, the most straight forward way to extend our methods
in order to tackle more challenging scenarios would be to develop a spectral method. That
is, instead of trying to have many surface patches with a low number of degrees of freedom
each, we could keep just one patch with a high number of degrees of freedom. It would also
be interesting to include the angular and linear velocities of the mid-surface in time within the
formulation. This would lead to an intrinsic formulation in both space and time. As noted in
[117], one can then avoid having to impose the spatial compatibility equations, at the cost of
imposing two easier space-time compatibility equations.
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Perspectives

In this thesis we have tackled some of the challenges posed by the numerical simulation of
slender elastic structures in contact. The problems considered in each of the three parts of this
manuscript, stem from multiple motivations and lead to conclusions and perspectives already
resumed in the introduction and conclusions of each part. Our goal in this final section is not
to repeat ourselves but to give some final perspectives on the topics considered. A driving
motivation of ours during this thesis was the desire to better understand and to improve the
numerical methods developed in our team for the simulation of thin elastic rods in contact
[3, 62, 55].

One frequently encountered problem in these simulations, in the presence of frictional con-
tact, is that the Coulomb friction solver may fail to compute the contact forces. Our investi-
gations in Part I of this manuscript give more insights as to why Painlevé type singularities
might arise, where the contact forces cease to exist. We learned that friction introduces a per-
turbation to the problem defining the contact forces. If this perturbation is large enough, then
the properties which make the frictionless contact problem well-posed, such as the positivity
of the Delassus operator, may then be lost. From a numerical standpoint, a strategy to detect
and to resolve such singular situations, so as to continue the simulation, is still needed. One
option may be to adaptively add or remove degrees of freedom in the system, reflecting how
the physical system may deform in situations where hard constraints and compressive contact
forces are involved. Another option, proposed by Alart [121], is to modify the Coulomb friction
law for large normal contact forces and to consider a Coulomb-Orowan law. This last approach
is backed by experimental evidence, at least in the context of granular media.

The methods developed in [3, 55], for the simulation of Kirchhoff rods, were initially intended
for computer graphics applications. Their place with respect to other methods in the computer
graphics literature for the simulation of Kirchhoff rods was already well understood. In the
second part of this manuscript we show that in the context of flexible multibody dynamics,
these methods can be classified as strain based methods. We like to think that our study of
Kirchhoff rods has brought closer together the two fields of computer graphics and multibody
dynamics, at least in the intersection that is the numerical simulation of rods.

The common theme in the second and third parts of this manuscript, is the investigation of
strain based discretizations of slender, inextensible and unshearable elastic structures. Part II
deals with the case of rods, while Part III deals with the case of shells. One of the difficulties
in dealing with a slender structure, is that even if its deformations are of small strains, so that
linear elasticity can be considered, the resulting displacements are large and the geometry of
the problem is non linear. This results in a non linear relationship between the strains and the
generalized displacements of the structure. If we use the strains as primary degrees of freedom,
then the elastic potential energy is very simple, it is convex quadratic. However, all terms in the
energy or the forces, involving the position and the orientation of the structure, become more
involved non linear expressions of the degrees of freedom. Hence, using strain based methods is
convenient when the principal source of difficulty in the problem is due to the intrinsic elastic
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forces, and not to extrinsic (position and orientation dependent) forces.
While the strain based approach for rods has been quite successful, the strain based approach

for shells remains little explored. We believe however, that the strain based approach for
plates and shells could prove effective in highly intrinsic problems such as those considered
in soft matter physics [122]. For the non-Euclidean plates considered in [122], the second
fundamental form of the plate in its reference configuration is null, while its first fundamental
form is hyperbolic. The reference configuration of non-Euclidean plates is thus incompatible and
cannot be an equilibrium configuration. It would be a good idea to pursue strain based methods
in such a problem, where the main source of difficulty comes from the surface compatibility
equations and not from extrinsic effects.
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Appendix A

Convex Analysis and
Complementarity theory

A.1 Some convex analysis and complementarity theory tools

Subdifferential. Let f : Rn → R∪ {+∞} be a convex proper function. Its subdifferential at
x ∈ Rn, denoted as ∂f(x) is the set of its subgradients:

∂f(x) :=
{
g ∈ Rn : f(x) + gT (y − x) 6 f(y) ∀y ∈ Rn

}
.

Indicator function. Let K be a set, its indicator function is ΨK(x) = 0 if x ∈ K and = +∞
if x 6∈ K.

Normal and tangent cones. If K ⊂ Rn is non-empty closed and convex, its normal cone
at x is

NK(x) = {z ∈ Rn|zT (y − x) 6 0 for all y ∈ K} = ∂ΨK(x).

If K = Rn then NK(x) = {0} for all x.
The tangent cone to K at x is defined as the set

TK(x) := {z ∈ Rn|zT y 6 0 for all y ∈ NK(x)}.

If K = {x ∈ Rn|f(x) > 0} for m continuously differentiable functions fi : Rn 7→ R
which satisfy the Mangasarian-Fromovitz constraint qualification [123], then TK(x) = {v ∈
Rn|vT∇fi(x) > 0, for all i ∈ {1, ...,m} such that fi(x) = 0}.

Linear Complementarity Problem (LCP) A linear complementarity problem LCP(q,M)
with unknown x ∈ Rn is: x > 0, Mx+ q > 0, xT (Mx+ q) = 0. More compactly

0 6 x ⊥Mx+ q > 0.

An LCP is said solvable if it has at least one solution.
A matrix M is a P-matrix if and only if the LCP has a unique solution for any q [1].

Mixed Linear Complementarity Problem (MLCP) A mixed linear complementarity
problem (MLCP) is a problem of the form: find vectors x, y such that M11x + M12y + q1 = 0
and 0 6 x ⊥M21x+M22y + q2 > 0 for given matrices Mij and vectors qi.
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Dual set. Let C be a (non-necessarily convex) set of Rn, then its dual set is C∗ = {x ∈
Rn|xT z > 0 for all z ∈ C}, which is always a closed convex cone.

Projection. Let M ∈ Rn×n be a symmetric positive definite matrix defining the inner product
xTM x. With this metric, the orthogonal projection of a vector x ∈ Rn on a convex set K ⊂ Rn
is denoted as projM [K;x] = argminz∈K

1
2(z − x)TM(z − x).

The following equivalences are useful. Let x ∈ Rn, q ∈ Rn, M ∈ Rn×n, K is a closed convex
cone.

Mx+ q ∈ −NK(x) ⇔ K 3 x ⊥Mx+ q ∈ K∗

⇔ (if M = MT � 0) x = argminz∈K
1
2z
TMz + qT z

⇔ (if M = MT � 0) x = projM [K;−M−1q]

(A.1)

A.2 Theorem 3.1.7 in [1] (excerpts)

Theorem A.2.1. Let M ∈ Rn×n be positive semi definite, and let q ∈ Rn be arbitrary. The
following statements hold:

• (a) If z1 and z2 are two solutions of the LCP(M, q) then (z1)T (q+Mz2) = (z2)T (q+Mz1).

• (b) If M is symmetric (as well as positive semi definite) then Mz1 = Mz2 for any two
solutions z1 and z2 of the LCP(M, q).

A.3 Theorem 3.8.6 in [1]

Theorem A.3.1. Let M ∈ Rn×n be copositive and let q ∈ Rn be given. If the implication
[0 6 v ⊥Mv > 0]⇒ [vT q > 0] is valid, then the LCP(M, q) is solvable.

Let QM denote the solution set of the homogeneous LCP(M, 0). This theorem can be
restated equivalently as: If M is copositive and q ∈ Q∗M then LCP(M, q) is solvable.

A.4 Theorems 2.8 and 2.11 in [2]

Chen and Xiang [2] stated very useful criteria that guarantee that a positive definite or a P-
matrix remains positive definite or P when it is subject to a small enough perturbation. We
give here just an excerpt of the results in [2], and a corollary of it.

Theorem A.4.1. If M is a P-matrix then all matrices A such that β2(M) ‖M −A‖2 < 1 are
P-matrices, where β2(M) := maxd∈[0,1]n

∥∥(I −D +DM)−1D
∥∥

2
, and D = diag(d). When M is

symmetric positive definite, β2(M) =
∥∥M−1

∥∥
2
.

Theorem A.4.2. Let M ∈ Rn×n be a positive definite matrix. Then every matrix A ∈
{A |

∣∣∣∣∣∣∣∣(M+MT

2

)−1
∣∣∣∣∣∣∣∣

2

||M −A||2 < 1} is positive definite.

The next corollary is proved in [124, Corollary 2].

Corollary A.4.2.1. Let A = B + C, where A, B and C are n × n real matrices, and B � 0,
not necessarily symmetric. If ||C||2 < 1

‖
(
B+BT

2

)−1
‖2

then A � 0.
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Appendix B

KKT system: solvability and
solution uniqueness

The KKT problem in (2.2) is ubiquitous in the study of mechanical systems with bilateral
holonomic constraints. In this section it is analysed from various points of view, and proves to
possess some subtleties depending on which assumptions are made on the data. Let us consider
the next three problems, where M = MT ∈ Rn×n and M � 0, F ∈ Rn×m, N ∈ Rn×m, x ∈ Rn,
y ∈ Rm, z ∈ Rn, a ∈ Rn, b ∈ Rm:(

M I
F T 0

)
︸ ︷︷ ︸
∆
=Ã∈R(n+m)×2n

(
x
z

)
=

(
a
b

)
(B.1)

and (
M −F
F T 0

)
︸ ︷︷ ︸

∆
=Ā∈R(n+m)×(n+m)

(
x
y

)
=

(
a
b

)
(B.2)

and (
M N
F T 0

)
︸ ︷︷ ︸

∆
=Â∈R(n+m)×(n+m)

(
x
y

)
=

(
a
b

)
(B.3)

The three systems (B.1), (B.2) and (B.3) correspond to various ways to consider the system
in (2.2), where x is for q̈, z is for −∇hn,b(q)λn,b and y is for λn,b.

• (i) Let us consider first (B.1) without any assumption on the form of z. From [30, Fact

2.10.22] one has Im(Ã) = Im

(
M
F T

)
+ Im

(
I
0

)
. Thus a necessary and sufficient con-

dition for (B.1) to possess a solution (x, z) for any a and b, equivalently rank(Ã) = n+m
(which also follows from [30, Proposition 6.1.7 (iii)]), is that F T has full rank m, i.e., F be
full column rank (this implies that n > m). Uniqueness of (x, z) for any a and b holds if
and only if n = m and rank(Ã) = 2n (this may be proved from [30, Theorem 2.6.3 ii)]), in

which case F is square and has full rank n. In this case the solution is equal to Ã†
(
a
b

)
,

where Ã† is the Moore-Penrose generalized inverse of Ã [30, Proposition 6.1.7 (viii)]. One
sees that M plays no role in this system.
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• (ii) Let us still consider (B.1) assuming that z = −Fy for some y, i.e., z ∈ Im(F ). One
has (x, z) ∈ Ker(Ã) ⇔ Mx = −z and x ∈ Ker(F T ). Using z ∈ Im(F ) and x ∈ Ker(F T )
and [30, Theorem 2.4.3] it follows that x ⊥ z. We also have z ∈ Im(M). Using that
Im⊥(M) = Ker(M), we deduce that x ∈ Ker(M) because M is symmetric positive semi
definite1. Thus x ∈ Ker(M) ∩ Ker(F T ) and consequently z = −Mx = 0. Thus we have
shown that [(x, z) ∈ Ker(Ã) and z ∈ Im(F )] ⇒ [z = 0 and x ∈ Ker(M) ∩ Ker(F T )], and
the reverse implication holds also. Let S = {(x, z) ∈ R2n|z ∈ Im(F )}. Then Ker(Ã)∩S =
{(x, z) ∈ R2n|z = 0 and x ∈ Ker(M) ∩ Ker(F T )}. One infers that Ker(M) ∩ Ker(F T ) =
{0} ⇒ Ker(Ã)∩ S = {0}. From (i) existence of solutions for system (B.1) holds for any a
and b if and only if rank(Ã) = n+m⇔ rank(F ) = m, hence dim(Ker(Ã)) = 2n−n−m =
n − m. From the fact that 0 6 dim(Ker(Ã) ∩ S) 6 min(n − m,n + m) = n − m [30,
Fact 2.9.14], one infers that Ker(M) ∩ Ker(F T ) = {0} ⇒ dim(Ker(Ã) ∩ S) = 0, thus
n = m. In this case it follows from (i) that the system has a unique solution for any
a and b. Conversely the existence of solutions for arbitrary a and b and n = m imply
uniqueneness, as well as Ker(M) ∩Ker(F T ) = {0} since F is square full rank n.

Let us now pass to the system (B.2). Remark that if Ā in (B.2) is invertible then F necessarily
has full rank m. This follows from the fact that (x, y) ∈ Ker(Ā) implies x ∈ Ker(M)∩Ker(F T )
and y ∈ Ker(F ), using similar arguments as in (ii). In particular if there are more constraints
than degrees of freedom (i.e., m > n) then Ā is not invertible, and likewise if rank(F )= r < m.

• (iii) Consider now the system (B.2). Let rank(F ) = m (so m ≤ n) and M be positive
semi definite. Then existence and uniqueness of both x and y for arbitrary a and b
(equivalently, non-singularity of Ā) holds if and only if Ker(M) ∩ Ker(F T ) = {0} (proof
by direct application of [36, p.523], or using the above expression of Ker(Ā)).

The rank condition on F appears to be in fact necessary and sufficient as alluded to few
lines above:

• (iii’) The system (B.2) has a unique solution (x, y) for arbitrary a and b if and only if

rank(F ) = m and Ker(M) ∩Ker(F T ) = {0}. This solution is equal to Ā−1

(
a
b

)
.

The proof of (iii’) follows from [30, Theorem 2.6.3, Proposition 6.1.7], noting that Ā is square.
It is sometimes wrongly stated that Ā is non-singular if and only if M and F are both full rank
matrices [33], which is only a sufficient condition. In fact one has from [30, Fact 6.4.20]:

rank(Ā) = rank(M) + 2rank(F )− dim[Im(M)∩ Im(F )]− dim[Im

(
M
F T

)
∩ Im

(
F
0

)
] (B.4)

The formula in (B.4) shows that one may dispense with positive definiteness conditions on
M , and that the non-singularity of Ā results from an interplay between the matrices ranges.

Consider for instance M =

(
1 0
0 −1

)
and F = (1 0)T , which yields rank(Ā) = 3. In Contact

Mechanics we wish to allow for situations where the constraints are redundant, so (rank(F ) =
r < min(m,n)) but which are nevertheless compatible (i.e. b ∈ Im(F T )), for otherwise the
problem has no solution. Thus the most relevant problem is that of determining x and y such
that (B.2) holds for arbitrary a with the additional assumption that b ∈ Im(F T ). This problem
is thus different from problems tackled in (ii) and (iii’), and corresponds to the problem tackled
in [14, 125, 15].

1The conclusion does not hold without the positive definiteness condition.
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• (iv) The necessary and sufficient condition for the existence of x and y with uniqueness of x
and Fy such that (B.2) holds for arbitrary a is that b ∈ Im(F T ) and Ker(M)∩Ker(F T ) =
{0}.
Proof:
⇐
Existence of x and y: By contraposition, if not (∀a, ∃x and y such that (B.2) holds) then
there exists an a ∈ Rn such that for all x, y, F Tx 6= b (so b 6∈ Im(F T )) or Mx − Fy 6= a
(so Im([M F ]) 6= Rn, i.e., Ker(M) ∩Ker(F T ) 6= {0}.
Uniqueness of x and Fy: Suppose b ∈ Im(F T ) and Ker(M) ∩Ker(F T ) = {0}.
If (x1, y1) and (x2, y2) are two solutions of (B.2) then F T (x1−x2) = 0 and M(x1−x2) =
F (y1 − y2). Hence (x1 − x2) ∈ Ker(F T ) and M(x1 − x2) ∈ Im(F ) = Ker(F T )⊥. Hence
(x1 − x2)TM(x1 − x2) = 0 and since M is symmetric positive semi definite this means
(x1 − x2) ∈ Ker(M). By hypothesis Ker(M) ∩ Ker(F T ) = {0} so one concludes that
x1 − x2 = 0, that is, x is unique. It follows that Fy1 = Fy2 so Fy is unique as well.
⇒
Suppose that for arbitrary a, there exists x and y such that (B.2) holds with uniqueness
of x and Fy. Then in particular b ∈ Im(F T ). Let x ∈ Ker(M) ∩Ker(F T ) and let (x?, y)
be the unique solution of (B.2). Then (x? + x, y) is also a solution of (B.2). Hence x = 0,
so that Ker(M) ∩Ker(F T ) = 0. �

In [14, p.319] the condition b ∈ Im(F T ) is stated as: acceleration constraints are compatible.
In conclusion, four types of systems are considered: system (B.2) with unknowns x and y in
(iii), system (B.1) with unknowns x and z in (i), system (B.1) with unknowns x and z and the
constraints that z ∈ Im(F ) in (ii), system (B.2) with unknowns x and y with uniqueness of x
and Fy and arbitrary a in (iv). To complete the picture let us note that Ker(M) ∩Ker(F T ) =
{0} ⇔ (Im(M) + Im(F )) = Rn ⇔ Im[(M F )] = Rn using [30, Fact 2.9.10], and we recover
directly an alternative way to formulate the condition involving the kernels, sometimes used in
the literature [15] [125, Equation (9)].

Problems like in (B.2) and (B.1) occur in frictionless systems. The next step is to consider
systems of the form (B.3) for some matrix N . Such problems arise in the presence of Coulomb’s
friction, see (3.2). Using [30, Fact 6.4.20] one gets an extension of (B.4):

rank(Â) = rank(M)+rank(F T )+rank(N)−dim[Im(M)∩Im(F )]−dim[Im

(
M
F T

)
∩Im

(
N
0

)
]

(B.5)
System (B.3) has a unique solution (x, y) for any a and b if and only if rank(Â) = n+m. One
has:

Im

(
M
F T

)
∩Im

(
N
0

)
= {z ∈ Rn+m|∃ y1 ∈ Ker(F T ),∃ y2 ∈ Rm, such that z =

(
My1

0

)
=

(
Ny2

0

)
}

(B.6)
and Im(M) ∩ Im(F ) = {z ∈ Rn|∃ y1 ∈ Rn, ∃ y2 ∈ Rm, such that z = My1 = Fy2}. It is
clear from (B.5) that the system’s well-posedness depends on the interplay between M , F and
N . Even if all three matrices have full rank, one may have rank(Â) < n + m. Suppose that
rank(M) = n, and rank(F TM−1N) = m (implying that m 6 n). Then Im(M)∩Im(F ) = Im(F )

and Im

(
M
F T

)
∩ Im

(
N
0

)
= {0} (since F T y1 = 0 = F TM−1Ny2). Therefore from (B.5) one

has rank(Â) = n+m.
Finally we may rewrite (B.3) as (B.1) posing z = Ny. Then (i) applies, but (ii) usually does

not expect if Im(N) ⊆ Im(F ). Then given z, there exists a unique y if and only if N has full
column rank m (⇒ m 6 n). Let N = −F + P for some matrix P .
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(v) Assume that F has full column rank m (equivalently F TF ∈ Rm×m is positive definite).
Let us investigate conditions that guarantee that N has full rank m (equivalently NTN ∈ Rm×m
is positive definite). One has NTN = F TF − F TP − P TF + P TP . A direct application of
Corollary A.4.2.1, with matrices A,B,C chosen as A = NTN , B = F TF and C = −F TP −
P TF +P TP , shows that a sufficient condition for NTN to be positive definite is that ||−F TP −
P TF + P TP ||2 < 1

||(FTF )−1||2 , or equivalently σmax(−F TP − P TF + P TP ) < σmin(F TF ).

Let M = 0, then using (B.5) it follows that rank(Â) = 2m, hence rank(Â) = n + m if and
only if n = m. This shows that depending on the interplay between the ranges of the matrices
in (B.5), the system in (B.3) may be solvable with uniqueness for any a and b, for low-rank
matrices M .

(vi) Let us assume that rank(M) = n and study conditions such that the rank of F TM−1N =
−F TM−1F+F TM−1P is m. Then as shown after (B.6), Â has rank n+m and the system (B.3)
has a unique solution for any a and b. Using Corollary A.4.2.1 with matrices A,B,C chosen as
A = −F TM−1N , B = F TM−1F and C = −F TM−1P , one concludes that rank(F TM−1N) =
m holds if rank(F ) = m and σmax(−F TM−1P ) < σmin(F TM−1F ).

It is noteworthy that the study of problem (B.3) may also be quite useful in the context
of numerical analysis of differential algebraic equations (DAEs). Half-explicit methods involve
such problems (for instance N may be the jacobian of the constraints estimated at step i + 1
while F is the jacobian estimated at step i) [31, §7.1] [32, §VII.6], see also [126, 127, 128, 129]
for various forms of numerical KKT systems.
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Appendix C

Lie Groups

C.1 Differential Geometry of SO(3) and SE(3)

In this Appendix we give some basic definitions and concepts concerning the Lie groups SO(3)
and SE(3). The source of this material is the textbook [100].

Definition of SO(3): The special orthogonal group SO(3) is the set of rotations of 3D
Euclidean space. It can be defined as the subset of 3 by 3 matrices

SO(3) =
{
R ∈ R3×3 : RTR = I and det(R) = 1

}
.

The set SO(3) is a Lie group: it is a group, it is a smooth manifold and the operations of
product and inversion are smooth.

The set so(3) is defined as the tangent space of SO(3) at the identity, TISO(3), which
happens to be the set of skew symmetric 3 by 3 matrices: so(3) =

{
A ∈ R3×3 : AT = −A

}
.

The hat map realizes an isomorphism between so(3) and R3 by mapping vectors u =

(u1, u2, u3)T to skew symmetric matrices as û =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

. The hat map has an

important relationship with the cross product: for any vector v in R3 one has ûv = u× v.

The Lie algebra structure of so(3). The set so(3) is naturally a vector space, what makes
it a ’Lie algebra’ is that it is stable by the ’Lie bracket’ operation: for any two skew symmetric
matrices A and B of so(3), the bracket [A,B], defined as [A,B] := AB − BA, is also a skew
symmetric matrix, [A,B] ∈ so(3). The hat map is a Lie algebra homomorphism, it allows us to
identify so(3) with R3 as (so(3), [, ]) ∼= (R3,×).

Left and Right representations. Any rotation velocity Ṙ ∈ TRSO(3) can be seen as the
left or right translation of an element of so(3). That is, there exist vectors κ and Ω in R3

such that Ṙ = Rκ̂ = Ω̂R. For this reason the elements of so(3) are often called ’instantaneous
rotations’. The corresponding vector κ is an instantaneous rotation vector in ’left reduced’
or ’body’ coordinates, while the corresponding vector Ω represents the same instantaneous
rotation but in ’right reduced’ or ’spatial’ coordinates. The spatial angular velocity Ω and the
body angular velocity κ are related by Ω = Rκ.
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Rodrigues Formula. Let κ be a vector in R3. The exponential of the skew symmetric matrix
κ̂ ∈ so(3) is the rotation matrix of axis κ/||κ|| and of angle ||κ||, it has a closed form expression
given by the Rodrigues formula

exp κ̂ =

{
I + sin ||κ||

||κ|| κ̂+ 1−cos ||κ||
||κ||2 κ̂2 if κ 6= 0

I if κ = 0.
(C.1)

Definition of SE(3). The Special Euclidean Group SE(3) is the set of rigid, orientation
preserving, motions of Euclidean 3 dimensional space. It can be defined as the subset of 4

by 4 matrices SE(3) =

{
H ∈ R4×4 : H =

[
R r
0 1

]
where R ∈ SO(3) and r ∈ R3

}
. Elements of

SE(3) will often be denoted H, alluding to the homogeneous matrix representation, or (R, r)
alluding to the rotation and translation parts of the rigid motion.

The set SE(3) is a Lie group. It is a smooth manifold, it is a group and has smooth product
and inverse operations. Note that the inverse of (R, r) is given by (RT ,−RT r).

The Lie algebra se(3) is the tangent space of SE(3) at the identity, TISE(3), it is set of
matrices

se(3) =

{
ξ ∈ R4×4 : ξ =

[
κ̂ v
0 0

]
where κ ∈ R3 and v ∈ R3

}
.

Elements of se(3) will often be denoted ξ, referring to the 4 by 4 matrix representation, or (κ̂, v)
alluding to the instantaneous rotation and translation parts. The Lie bracket of two elements
ξ and η of se(3) is given by [ξ, η] = ξη − ηξ.

The tilde map realizes an isomorphism between R6 and se(3). For a vector X = (κ, v) ∈ R6

we denote X̃ the se(3) element X̃ =

[
κ̂ v
0 0

]
.

The adjoint action of the Lie algebra se(3) on itself ad : se(3) × se(3) → se(3) is just
the Lie bracket adξη = [ξ, η] = ξη − ηξ. Expanding in terms of rotation and translation parts
ξ = (κ̂, v) and η = (ω̂, u), it reads

ad(κ̂,v)(ω̂, u) = [(κ̂, v), (ω̂, u)] = ([κ̂, ω̂]so(3), κ̂u− ω̂v). (C.2)

The Lie algebra se(3) can be identified with R6. In that case the bracket of R6 is given by

ad(κ,v)(ω, u) = (κ× ω, κ× u− ω × v).

The Lie coalgebra se(3)∗ is defined as the dual vector space of se(3). In terms of mechanics
the dual quantities of linear velocities v are forces f and the dual quantities of angular velocities
κ are torques m. The duality is then just interpreted as the total work 〈(m, f), (κ, v)〉. Elements
of se(3)∗ will often be denoted µ = (m, f).

The coadjoint action of se(3) on se(3)∗ is defined as the map ad∗ : se(3)× se(3)∗ → se(3)∗

such that
ad∗(κ̂,v)(m̂, f) = ((−κ×m− v × f)∧,−κ× f). (C.3)

The linear map ad∗ξ is the dual of adξ.

132



The Exponential map of any element (κ̂, v) in se(3) is the rigid motion of rotation exp κ̂
and translation Bv given by

exp

[
κ̂ v
0 0

]
=

[
exp κ̂ Bv

0 1

]
,

where B =

{
I + 1−cos ||κ||

||κ||2 κ̂+ ||κ||−sin ||κ||
||κ||3 κ̂2 if κ 6= 0

I otherwise.
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helices for predicting the dynamics of natural hair,” in ACM Transactions on Graphics
(Proceedings of the SIGGRAPH conference), August 2006.

[4] A. Blumentals, B. Brogliato, and F. Bertails-Descoubes, “The Contact Problem in La-
grangian Systems subject to Bilateral and Unilateral constraints with sliding Coulomb’s
Friction,” in ECCOMAS Thematic Conference on Multibody Dynamics, (Barcelone,
Spain), June 2015.

[5] A. Blumentals, B. Brogliato, and F. Bertails-Descoubes, “The contact problem in la-
grangian systems subject to bilateral and unilateral constraints, with or without sliding
coulomb’s friction: a tutorial,” Multibody System Dynamics, vol. 38, no. 1, pp. 43–76,
2016.

[6] A. Blumentals, F. Bertails-Descoubes, and R. Casati, “Dynamics of a developable shell
with uniform curvatures,” in The 4th Joint International Conference on Multibody System
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Abstract. This dissertation focuses on the numerical modelling of thin elastic structures in contact. Many objects
around us, either natural or man-made, are slender deformable objects. Curve-like objects such as industrial cables,
helicopter blades, plant stems and hair can be modelled as thin elastic rods. While surface-like objects such as paper, boat
sails, leaves and clothes can be modelled as thin elastic shells. The numerical study of the mechanical response of such
structures is important in many applications of engineering, bio-mechanics, computer graphics and other fields. In this
dissertation we treat rods and shells as finite dimensional multibody systems.

When a multibody system is subject to frictional contact constraints, a problem often arises. In some configurations
there may exist no contact force which can prevent the system from violating its contact constraints. This is known
as the Painlevé paradox. In the first part of this manuscript we analyze the contact problem (whose unknowns are the
accelerations and the contact forces) and we derive computable upper bounds on the friction coefficients at each contact,
such that if verified, the contact problem is well-posed and Painlevé paradoxes are avoided.

Some rod-like structures may easily bend and twist but hardly stretch and shear, such structures can be modelled as
Kirchhoff rods. In the second part of this manuscript we consider the problem of computing the stable static equilibria
of Kirchhoff rods subject to different boundary conditions and frictionless contact constraints. We formulate the problem
as an Optimal Control Problem, where the strains of the rod are interpreted as control variables and the position and
orientation of the rod are interpreted as state variables. Employing direct methods of numerical Optimal Control then
leads us to the proposal of new spatial discretization schemes for Kirchhoff rods. The proposed schemes are either of the
strain-based type, where the main degrees of freedom are the strains of the rod, or of the mixed type, where the main
degrees of freedom are both the strains and the generalized displacements.

Very much like for Kirchhoff rods, thin surface-like structures such as paper can hardly stretch or shear at all. One
of the advantages of the strain based approach is that the no extension and no shear constraints of the Kirchhoff rod are
handled intrinsically, without the need of stiff repulsion forces, or of further algebraic constraints on the degrees of freedom.
In the third part of this dissertation we propose an extension of this approach to model the dynamics of inextensible and
unshearable shells. We restrict our study to the case of a shell patch with a developable mid-surface. We use as primary
degrees of freedom the components of the second fundamental form of the shell’s mid-surface. This also leads to an intrinsic
handling of the no shear and no extension constraints of the shell.

Résumé. Cette thèse porte sur la modélisation numérique des structures élastiques minces en contact. De nombreux
objets autour de nous, naturels ou artificiels, sont des objets minces et déformables. Les objets filiformes tels que les câbles
industriels, les pales d’hélicoptères, les tiges des plantes et les cheveux peuvent être modélisés comme des tiges élastiques
minces. Alors que les objets surfaciques tels que le papier, les voiles de bateaux, les feuilles et les vêtements peuvent être
modélisés comme des coques élastiques minces. L’étude numérique de la réponse mécanique de ces structures est de la plus
grande importance dans de nombreuses applications de l’ingénierie, de la biomécanique, de l’infographie et de bien d’autres
domaines. Dans cette thèse, nous traitons les tiges et les coques comme des systèmes multi-corps en dimension finie.

Lorsqu’un système multi-corps est soumis à des contraintes de contact frottant, un problème se pose souvent. Dans
certaines configurations, il est à craindre qu’il n’existe aucune force de contact et aucune accelération qui puisse empêcher
le système de violer ses contraintes. Ce phénomène est connu sous le nom de Paradoxe de Painlevé. Dans la première
partie de ce manuscrit, nous analysons le problème de contact (dont les inconnues sont les accélérations et les forces de
contact) et nous obtenons des bornes supérieures calculables sur les coefficients de frottement à chaque contact, de sorte
que si elles sont vérifiées, le problème de contact est bien posé et les paradoxes de Painlevé sont évités.

Certaines structures filiformes peuvent facilement se courber et se tordre, alors qu’elles peuvent difficilement s’étirer
ou cisailler. De telles structures peuvent être modélisées comme des tiges de Kirchhoff. Dans la deuxième partie de ce
manuscrit, nous considérons le problème du calcul des équilibres statiques stables des tiges de Kirchhoff soumises à des
conditions de bord différentes et à des contraintes de contact sans frottement. Nous formulons le problème comme un
problème de Commande Optimale, où les courbures de la tige sont interprétées comme des commandes et la position et
l’orientation de la tige sont interprétées comme des variables d’état. L’utilisation de méthodes directes pour la Commande
Optimale numérique nous conduit alors à la proposition de nouveaux schémas de discrétisation spatiale pour les tiges de
Kirchhoff. Les schémas proposés sont soit du type intrinsèque, où les principaux degrés de liberté sont les courbures de la
tige, soit du type mixte, où les principaux degrés de liberté sont à la fois les courbures et les déplacements généralisés.

Similairement aux tiges de Kirchhoff, certaines structures surfaciques telles que le papier peuvent difficilement s’allonger
ou cisailler. L’un des avantages de l’approche intrinsèque pour les tiges de Kirchhoff est que les contraintes de non élongation
et de non cisaillement de la tige sont traitées intrinsèquement, sans faire appel à des forces de répulsion trop raides ou
à d’autres contraintes algébriques sur les degrés de liberté. Dans la troisième partie de cette thèse, nous proposons une
extension de cette approche pour modéliser la dynamique des coques inextensibles et sans cisaillement. Nous limitons notre
étude au cas d’un élément de coque avec une surface moyenne développable. Nous utilisons comme degrés de liberté les
composantes de la seconde forme fondamentale de la surface moyenne de la coque. Cela conduit également à une gestion
intrinsèque des contraintes de non extension et de non cisaillement de la coque.
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