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Abstract

Precipitation and streamflow are the two most important meteorological and hydrological vari-
ables when analyzing river watersheds. They provide fundamental insights for water resources
management, design, or planning, such as urban water supplies, hydropower, forecast of flood
or droughts events, or irrigation systems for agriculture.

In this PhD thesis we approach two different problems. The first one originates from the
study of observed streamflow data. In order to properly characterize the overall behavior of
a watershed, long datasets spanning tens of years are needed. However, the quality of the
measurement dataset decreases the further we go back in time, and blocks of data of different
lengths are missing from the dataset. These missing intervals represent a loss of information
and can cause erroneous summary data interpretation or unreliable scientific analysis.

The method that we propose for approaching the problem of streamflow imputation is
based on dynamic regression models (DRMs), more specifically, a multiple linear regression with
ARIMA residual modeling. Unlike previous studies that address either the inclusion of multiple
explanatory variables or the modeling of the residuals from a simple linear regression, the use
of DRMs allows to take into account both aspects. We apply this method for reconstructing
the data of eight stations situated in the Durance watershed in the south-east of France, each
containing daily streamflow measurements over a period of 107 years. By applying the proposed
method, we manage to reconstruct the data without making use of additional variables, like
other models require. We compare the results of our model with the ones obtained from a
complex approach based on analogs coupled to a hydrological model and a nearest-neighbor
approach, respectively. In the majority of cases, DRMs show an increased performance when
reconstructing missing values blocks of various lengths, in some of the cases ranging up to 20
years.

The second problem that we approach in this PhD thesis addresses the statistical modeling
of precipitation amounts. The research area regarding this topic is currently very active as the
distribution of precipitation is a heavy-tailed one, and at the moment, there is no general method
for modeling the entire range of data with high performance. Recently, in order to propose
a method that models the full-range precipitation amounts, a new class of distribution called
extended generalized Pareto distribution (EGPD) was introduced, specifically with focus on the
EGPD models based on parametric families. These models provide an improved performance
when compared to previously proposed distributions, however, they lack flexibility in modeling
the bulk of the distribution. We want to improve, through, this aspect by proposing in the
second part of the thesis, two new models relying on semiparametric methods.

The first method that we develop is the transformed kernel estimator based on the EGPD
transformation. That is, we propose an estimator obtained by, first, transforming the data
with the EGPD cdf, and then, estimating the density of the transformed data by applying
a nonparametric kernel density estimator. We compare the results of the proposed method
with the ones obtained by applying EGPD on several simulated scenarios, as well as on two
precipitation datasets from south-east of France. The results show that the proposed method
behaves better than parametric EGPD, the MIAE of the density being in all the cases almost
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iv Abstract

twice as small.
A second approach consists of a new model from the general EGPD class, i.e., we consider

a semiparametric EGPD based on Bernstein polynomials, more specifically, we use a sparse
mixture of beta densities. Once again, we compare our results with the ones obtained by
EGPD on both simulated and real datasets. As before, the MIAE of the density is considerably
reduced, this effect being even more obvious as the sample size increases.

Key words: streamflow imputation, dynamic regression models, statistical modeling of pre-
cipitation amounts, extended generalized Pareto distribution, Bernstein polynomials, nonpara-
metric kernel estimator



Résumé

Les précipitations et les débits des cours d’eau constituent les deux variables hydrométéorologiques
les plus importantes pour l’analyse des bassins versants. Ils fournissent des informations fon-
damentales pour la gestion intégrée des ressources en eau, telles que l’approvisionnement en
eau potable, l’hydroélectricité, les prévisions d’inondations ou de sécheresses ou les systèmes
d’irrigation.

Dans cette thèse de doctorat sont abordés deux problèmes distincts. Le premier prend
sa source dans l’étude des débits des cours d’eau. Dans le but de bien caractériser le com-
portement global d’un bassin versant, de longues séries temporelles de débit couvrant plusieurs
dizaines d’années sont nécessaires. Cependant les données manquantes constatées dans les
séries représentent une perte d’information et de fiabilité, et peuvent entraîner une interpréta-
tion erronée des caractéristiques statistiques des données. La méthode que nous proposons pour
aborder le problème de l’imputation des débits se base sur des modèles de régression dynamique
(DRM), plus spécifiquement, une régression linéaire multiple couplée à une modélisation des
résidus de type ARIMA. Contrairement aux études antérieures portant sur l’inclusion de vari-
ables explicatives multiples ou la modélisation des résidus à partir d’une régression linéaire
simple, l’utilisation des DRMs permet de prendre en compte les deux aspects. Nous appliquons
cette méthode pour reconstruire les données journalières de débit à huit stations situées dans le
bassin versant de la Durance (France), sur une période de 107 ans. En appliquant la méthode
proposée, nous parvenons à reconstituer les débits sans utiliser d’autres variables explicatives.
Nous comparons les résultats de notre modèle avec ceux obtenus à partir d’un modèle com-
plexe basé sur les analogues et la modélisation hydrologique et d’une approche basée sur le plus
proche voisin. Dans la majorité des cas, les DRMs montrent une meilleure performance lors
de la reconstitution de périodes de données manquantes de tailles différentes, dans certains cas
pouvant allant jusqu’à 20 ans.

Le deuxième problème que nous considérons dans cette thèse concerne la modélisation statis-
tique des quantités de précipitations. La recherche dans ce domaine est actuellement très active
car la distribution des précipitations exhibe une queue supérieure lourde et, au début de cette
thèse, il n’existait aucune méthode satisfaisante permettant de modéliser toute la gamme des
précipitations. Récemment, une nouvelle classe de distribution paramétrique, appelée distribu-
tion généralisée de Pareto étendue (EGPD), a été développée dans ce but. Cette distribution
exhibe une meilleure performance, mais elle manque de flexibilité pour modéliser la partie cen-
trale de la distribution. Dans le but d’améliorer la flexibilité, nous développons, deux nouveaux
modèles reposant sur des méthodes semiparamétriques.

Le premier estimateur développé transforme d’abord les données avec la distribution cu-
mulative EGPD puis estime la densité des données transformées en appliquant un estimateur
nonparamétrique par noyau. Nous comparons les résultats de la méthode proposée avec ceux
obtenus en appliquant la distribution EGPD paramétrique sur plusieurs simulations, ainsi que
sur deux séries de précipitations au sud-est de la France. Les résultats montrent que la méth-
ode proposée se comporte mieux que l’EGPD, l’erreur absolue moyenne intégrée (MIAE) de la
densité étant dans tous les cas presque deux fois inférieure.
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Le deuxième modèle considère une distribution EGPD semiparamétrique basée sur les
polynômes de Bernstein. Plus précisément, nous utilisons un mélange creuse de densités
béta. De même, nous comparons nos résultats avec ceux obtenus par la distribution EGPD
paramétrique sur des jeux de données simulés et réels. Comme précédemment, le MIAE de la
densité est considérablement réduit, cet effet étant encore plus évident à mesure que la taille
de l’échantillon augmente.

Mots clés: imputation des débits, modèles de régression dynamique, modélisation statistique
des quantités de précipitations, distribution généralisée de Pareto étendue, polynômes de Bern-
stein, estimateur nonparamétrique par noyau
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General introduction

Hydrology is the study of the water cycle, more exactly its movement, distribution, and quality
throughout earth. The water cycle or hydrological cycle ensures that the water is continuously
moved around the earth, through different pathways and physical processes, such as precipita-
tion, evaporation, infiltration, surface runoff, or subsurface flow.

Water is essential for human survival and well-being, ecosystems endurance, but also it is
important for many economical sectors. However, water resources are unevenly distributed in
space and time. Moreover, due to the pressure exerted by humans on the environment, such
as population growth, urbanization, higher living standards, pollution, or deforestation, water
resources demands are increasing every day. At the same time, extreme weather events are
more frequent and catastrophic around the world, having a major impact on water availability
and quality.

As a result, the growing demand for the limited water resources requires a deeper un-
derstanding of the underlying hydrological processes. A rigorous analysis of the hydrological
variables, their risk assessment (e.g., floods, droughts, erosion), or forecasting, all depend on
reliable information about the quality and quantity of water available, but also how this avail-
ability changes in time and space.

The work presented in this PhD thesis addresses practical topics that arise in the process of
statistical modeling and analyzing observed data related to the hydrological processes, such as
streamflow and precipitation. While there are numerous topics that can be approached around
this subject, in the following two sections we highlight the problems that we were faced with
and the methods that we chose to tackle them.

Streamflow
Streamflow is one of the important variables when performing hydrological analysis of a water-
shed. By definition, streamflow refers to the flow of water in streams, rivers, and other water
paths, and is a major element of the water cycle.

Streamflow is a highly variable quantity and it can vary from very small values in periods
of extended drought, to extremely large values during the rainy seasons or when the mountain
snow melts in the spring. This variability can result in episodes such as, long shortages of fresh
water supply or, at the other extreme, flooding, both of them with catastrophic impact on
population, economy, as well as bio-ecosystems.

Therefore, water resources management and planning is a task that needs to be carefully
approached. To be able to do so, one needs access to reliable datasets providing measurements
over long periods of time. Besides water resources management, extreme flood/drought predic-
tion, streamflow forecast and climate variability analysis, all require reliable time series. Since
extreme events are seldom by definition, long and continuous time series spanning tens of years
are necessary, as they allow for a more accurate characterization of the watershed operation.

For example, Figure G.1 shows the volume of water flowing down the Durance river as
measured at one of the stations used in our study, i.e., Durance at Val-des-Près. The data span
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seven years, from 2002 to 2008, and as we can see from the figure, there is a high variability
between observations. The overall pattern, or hydrological cycle, appears to be the same for
every year, i.e., high values in late spring and beginning of summer, and smaller ones in the
winter, which fits the profile of the Durance as its flow is highly influenced by the snow melts.
However, while the yearly pattern analyzed from a bird’s eye view might present similarities,
when analyzed closely we can see that the differences between actual values from different years
cannot be neglected. For example, one can see a large difference between year 2007 and 2008
in Figure G.1.
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Figure G.1: Observed streamflow measurements of the Durance river between 2002 and 2008
at the Durance Val-des-Près station

In streamflow analysis a dataset of seven years is considered rather short and does not
contain sufficient information to characterize the overall behavior of the watershed. This is
especially true for extreme events, such as, severe droughts and floods, that might not even
appear in such a short time span. That is why, it is usually required to work with longer
datasets, usually spanning tens of years. However, as we go further back in time, the reliability
of the measurement dataset decreases. In practice, one should expect the actual dataset to look
more like the one in Figure G.2. Here, data from the same measurement station is presented,
but now going back as far as 1904. We can notice that there are blocks of data of different
lengths (from a few observations to entire years) missing from the dataset. These missing
intervals in the time series represent a loss of information and can cause erroneous summary
data interpretation or unreliable scientific analysis.
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Figure G.2: Observed streamflow measurements with missing intervals of the Durance river
between 1904 and 2010 at the Durance Val-des-Près station
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Missing data blocks of very short length are not a serious impediment for data analysis,
as they can be easily corrected and they do not influence the overall statistical image of the
dataset. However, longer periods of missing data are a serious issue, as analysis performed using
these data may be biased. There are several reasons for missing periods of measurement data.
One of them is when an extreme weather event damages the measuring equipment. In this
case, important data that characterize rare events, and that would be of out most importance
in certain studies, is lost. Other causes for missing data could be due to equipment failure
either at collection or at storage, or they might be human-induced, e.g., incorrect handling of
data by field personnel or as a result of devastating events, such as wars. Reconstructing these
datasets becomes a challenging prerequisite to any hydrological study.

Naive methods for dealing with incomplete datasets could be used. However, they are
rather limited in their application and present several disadvantages. For example, the easiest
approach is to ignore the missing data blocks. This could work for a few missing random
observations, but it will certainly fail for extended missing periods. Other basic methods would
be to replace the missing observation with the mean of previous observations, or to carry the
last observation forward. Once again, these methods might work for time series with relatively
small gaps of missing observations, but in the case of large blocks of missing data, the variance
of the substituted observations will be underestimated.

Giving the importance of dataset reconstruction and the limited performance of naive meth-
ods, many researchers became interested in this topic. Several methods of various complexity,
such as averaging nearest neighbors, regression, autoregressive models, state-space models, or
most recently, artificial intelligence or machine learning are among the methods that have been
previously applied to tackle this problem. However, the majority of these methods depend on
the existence of additional variables such as rainfall or temperature. This represents a major
drawback if measurement of these additional variables do not exist or one does not have access
to them.

One of the main objectives of this thesis is to reconstruct observed streamflow data from
several correlated hydrometric stations situated along the Durance watershed in the south-east
part of France. The dataset contains missing periods of various lengths, and we address the
case when one has available for the analysis only streamflow data. This consideration is not
far from reality, as frequently, we do not have access to long-historical data for other variables,
like for example precipitation.

Our approach is based on dynamic regression models (DRMs), more specifically, a multiple
linear regression with ARIMA (autoregressive integrated moving average) residual modeling.
Unlike previous studies that address either the inclusion of multiple explanatory variables or
the modeling of the residuals from a simple linear regression, the use of DRMs allows to take
into account both aspects, and thus improves the performance of the model without adding
excessive complexity.

Therefore, DRM is the technique that we employ in order to approach the problem of missing
data reconstruction, and as it can be seen in the case studies presented in Part I of the thesis,
the performance of this model is relatively high. We compared the results of our model with the
ones obtained from a complex model based on analogs and a hydrological model (ANATEM),
as well as with the results obtained from a nearest-neighbor approach. In the majority of the
cases, DRMs displayed better estimation error when reconstructing missing values blocks of
various lengths, in some of the cases ranging up to 20 years.

Precipitation

Another important variable in the water cycle is precipitation. Precipitation measurements
are widely used as input in hydrological models. They are often needed in many applications
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regarding water resources management, design, or planning, such as urban water supplies,
hydropower, forecast of flood or droughts events, irrigation systems, agriculture, etc.

One of the active topics of research in hydrology regarding precipitation is to find a proba-
bility distribution that can describe the overall behavior of precipitation at a station. The most
common approach in developing such a stochastic model is to firstly describe the process of
rainfall occurrence and, then, to employ a probability distribution function in order to charac-
terize rainfall amount on wet days. Both steps in this procedure are important in order to get
a valid model, but different statistical tools are used to approach each of them. The process of
rainfall occurrence is a discrete process, meanwhile, rainfall amount is as a continuous process.
In the work presented in this thesis we are focused only on the second step of this process, i.e,
statistical modeling of rainfall amount.

Establishing a probability distribution that provides a good fit for the rainfall amount has
proven to be a challenging task, mainly due to the fact that rainfall amounts are heavily
skewed to the right. Different distributions, such as Weibull, gamma, exponential, or lognormal
have been considered as possible candidates, with gamma and exponential being typically the
preferred choices. Figure G.3 shows the histogram of hourly rainfall measurements from the
Lyon station located in the south-east region of France from 1996 to 2011. It also illustrates how
a gamma distribution fits these data. What can be noticed from the quantile-quantile plot (QQ-
plot) is that, while the lower tail and the first part of the bulk (center part of the distribution)
are properly estimated, the performance of the model decreases significantly towards the upper
tail.
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Figure G.3: Normalized histogram with gamma density fit and QQ-plot of hourly rainfall data
from the summer months (June, July, August) at the Lyon station from 1996 to 2011

As the upper tail of the distribution holds crucial information that characterizes extreme
events, many researchers became interested in studying only the behavior of the largest rain-
fall intensities. The popular framework of Extreme Value Theory (EVT), more exactly the
Generalized Pareto Distribution (GPD) has been quickly adopted in this sense. However, be-
side the considerable reduction in sample size, a major drawback of this approach is the need
of a threshold selection, i.e, the limit that differentiates between large and moderate rainfall
amount. Defining this threshold is a delicate task in the field of EVT, since it has a major
impact on the capability of the model in describing the extreme events.

While characterizing extreme events is essential, also one cannot totally neglect the remain-
ing values. Several applications such as water resource management requires not only a clear
understanding of extreme events, but rather a global assessment of rainfall amount. Extreme
mixture models have been proposed in the literature in this sense, the latest being the extended
generalized Pareto distribution (EGPD) based on parametric families, published by Naveau
et al. (2016). We illustrate the formulation of the cdf and pdf of this model in (G.1).



G.2 Precipitation 5

0 5 10 15

0

0.2

0.4

Observed data

D
en

si
ty

EGPD Gamma

0 5 10 15 20
0

5

10

15

20

Observed quantile

F
it
te
d
q
u
a
n
ti
le

EGPD Gamma

Figure G.4: Normalized histogram with density fit and QQ-plot for both gamma and parametric
EGPD model, based on hourly rainfall data from the summer months (June, July, August) at
the Lyon station from 1996 to 2011

F (x) = G {H⇠(x)} ,
f(x) = g {H⇠(x)} · h⇠(x).

(G.1)

Here, h⇠ and H⇠ represent the pdf and cdf of the GPD, while g and G denote a continuous pdf
and cdf on the unit interval. This model is in compliance with the EVT for both lower and
upper tails, and at the same time, it allows a smooth transition between the two ends through
the G function. Figure G.4 shows the improvement that the parametric EGPD brings when
compared to the gamma distribution in the modeling of the entire distribution.

However, EGPD lacks flexibility in modeling the bulk of the distribution. More specifically,
the parametric families employed until now for the G function (e.g., power function) are too
stringent, i.e., they do not allow for a flexible modeling of the bulk. This weakness of the model
is studied and improved through the two methods proposed in the second part of the thesis,
both of them relying on semiparametric approaches.

The first method that we develop is the transformed nonparametric kernel estimator based
on EGPD transformation. We propose an estimator obtained by, first, transforming the data
with the EGPD cdf from (G.1), and then, estimating the density of the transformed data by
applying a nonparametric kernel density estimator. We compare the results of the proposed
method with the ones obtained by applying the parametric EGPD model on several simulated
scenarios from mixture of distributions that account for different degrees of "bumpiness" in
the bulk, as well as on two precipitation datasets (one from the Durance watershed and one
from Lyon). The results show that the proposed method performs better than the parametric
EGPD, since the mean integrated absolute error (MIAE) of the density is nearly 50% smaller
in all the test cases investigated.

As an alternative approach for introducing more flexibility in the EGPD model for the bulk
of the distribution, we consider the case when G comes from a different family of distribution
than the parametric one, i.e., a semiparametric model based on Bernstein polynomials. More
specifically, relying on the relationship between the beta distribution and Bernstein polynomials,
we use a sparse mixture of beta densities. Once again, we compare our results with the ones
obtained by the parametric EGPD on both simulated and real datasets. As before, the MIAE
of the density is considerably reduced. This effect is more obvious as the sample size increases.
For medium size and large datasets the MIAE of the proposed method was up to five times
smaller than the one of the parametric EGPD.
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Research objectives and outline

In the previous two sections we gave a brief introduction into current research topics related
to hydrology, also investigated in this thesis. Our work is focused on two main axis that also
guided this manuscript to be organized in two distinct parts.

Part 1. Dynamic regression models for the imputation of streamflow data

In Chapter 1 we present the problem background and make a review of the previous research.
We follow up in Chapter 2 with a detailed presentation and exploratory analysis of the mea-
surements dataset used in this thesis, and its particularities. This chapter is essential, as it was
used to define the main research questions and problems. We were faced with large blocks of
missing data, and the only variables that we had access to in order to reconstruct these data
were the streamflow measurements from the different stations of the watershed.

We decided to approach the problem of data imputation by using dynamic regression models
(DRM), for which we present the theoretical backgrounds in Chapter 3. This type of models
have been previously used in other fields, but up until now, to the best of our knowledge,
there was no attempt to apply them in hydrology. This method incorporates the advantages
of multiple linear regression and residual modeling, and as can be seen from the case study
presented in Chapter 4, it provides superior results when compared to other existing methods.

Chapter 5 ends this part of the thesis by summarizing the main conclusions and possible
future work.

The main results obtained in this part were published in:
Tencaliec, P., Favre, A. C., Prieur, C., & Mathevet, T. (2015). Reconstruction of missing

daily streamflow data using dynamic regression models. Water Resources Research, 51(12),
9447-9463.

Part 2. Flexible semiparametric approaches to model the full-range of precipitation
amounts

The second part of this thesis focuses on improvements that can be brought to the parametric
EGPD model in the context of rainfall amounts modeling. We focused on EGPD as it is a
novel and a promising approach for modeling entire rainfall amounts distributions. Although
it provides improved performance when compared to previous models, the parametric EGPD
lacks flexibility in modeling the bulk of the rainfall distribution. This is where we concentrated
our efforts in order to improve the estimates of EGPD.

As in the previous part, we start with setting the background and presenting the state of
the art in Chapter 1.

Chapter 2 presents the first approach that we propose for improving the behavior of the
parametric EGPD, namely a method based on a nonparametric kernel density estimator. The
results presented in this chapter show that the proposed method performs better than the
parametric EGPD, as the MIAE of the density is reduced by half.

As an alternative model, we introduce a semiparametric EGPD model based on Bernstein
polynomials, more specifically, we rely a sparse mixture of beta densities. This method is
presented in Chapter 3, and the comparison with the parametric EGPD shows that the MIAE
of the density is considerably reduced.

Chapter 4 is dedicated to summarizing the main conclusions of this part, as well as for
presenting some future work ideas.

The main results of this part are currently being developed into two articles, intended to be
submitted in the next two months.
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1. Tencaliec, P., Naveau, P., Favre, A.-C., Prieur, C. Kernel density estimation with EGPD
transformation for modeling the full range of rainfall amount, (to be submitted)

2. Tencaliec, P., Naveau, P., Prieur, C., Favre, A.-C. Modeling full range rainfall amount
using sparse semiparametric mixture models, (to be submitted).





Part I

Dynamic regression models for the

imputation of streamflow data





Chapter 1

Introduction

R iver discharge is one of the most important quantities in hydrology. It provides funda-
mental records for water resources management and climate change monitoring, either as

indicator of past hydrological variability or as contributor to future behavior prediction. Even
very short data-gaps in this information can cause extremely different analysis results. There-
fore, reconstructing missing data of incomplete datasets is an important step and it can affect
the performance of the environmental models, engineering and research applications. In Section
1.1 we review some of the most applied approaches for streamflow times series reconstruction.
Then, in Section 1.2 we shift the focus towards our proposed technique for streamflow imputa-
tion, i.e., dynamic regression model, and give a background on some previous applications of
this model.

1.1 Background on streamflow reconstruction
Hydrology is the study of water, more exactly its movement, distribution, and quality through-
out earth. Hydrology is concerned with the water cycle, water resources and environmental
sustainability. The water cycle ensures that the water is continuously cycled around the earth,
through different pathways and physical processes, such as evaporation, condensation, precipi-
tation, infiltration, surface runoff, and subsurface flow.

Water is essential for human survival and well-being, ecosystems endurance, but also it is
important for many economical sectors. However, water resources are unevenly distributed in
space and time and, moreover, due to different factors such as population growth, urbanization,
higher living standards, pollution, deforestation or climate change, water resources are facing
serious threats.

The current growing demand for these limited resources continues to rise as the population
increases and shifts. A solid and sustainable management relies on reliable information about
the quality and quantity of water available, but also how this availability changes in time and
space. Therefore, it is important to have a clear understanding of all the elements of the water
cycle and how they interact.

The main variables that describe the hydrological functioning of water bodies are air temper-
ature, precipitation, soil moisture and streamflow. Numerous research and operational applica-
tions, such as water resources management and planning, extreme flood or drought anticipation,
streamflow forecast and climate variability analysis, require reliable time series. Since extreme
events are seldom by definition, long and continuous time series are necessary, allowing a more
accurate analysis of watershed operation.

There are several causes that can create discontinuities in data series. They might be missing
due to equipment failure either at collection or at storage, as consequence of extreme weather, or

11
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there might be human-induced causes, like wars, incorrect handling of data by field personnel,
etc. These missing intervals in the time series represent a loss of information and can cause
erroneous summary data interpretation or unreliable scientific analysis.

Consequently, in order to obtain reliable and accurate information from the data, these gaps
must be filled. Despite the vast research on this subject, the estimation of missing intervals,
also known in the literature as imputation (Schneider (2001)), infilling (Harvey et al. (2012))
or reconstruction (Kim and Pachepsky (2010)), represents a great challenge in hydrology and
geosciences in general.

Numerous, yet contrasting, reconstruction methods have been proposed for streamflow data,
such as deterministic and stochastic, parametric and nonparametric, linear and nonlinear, etc.
However, we can classify them in two main groups: stochastic models (i.e., models based on
data connected through statistical and mathematical concepts) and hydrological or process-
based model (i.e., models that represent the physical processes from the real world). Our
interest is on the former one, i.e., stochastic models.

Hydrological models are usually of increased complexity and require knowledge on various
processes related to streamflow, such as precipitation, evaporation, or temperature, among
others. They are tuned and constructed locally, i.e., for specific catchment areas, so it is
usually difficult to generalize these models over different sites. Beside this, the fact that they
require other collections of related meteorological variables is another possible drawback.

Considering the complexity of the hydrological models, many researches have become in-
terested in statistical models. There are several methods reported in the literature from this
category. Among these, we remind the works of Hirsch (1979), that discuss multiple infilling
approaches for daily data using data from the nearby station(s), along with their basin char-
acteristics, such as drainage area, river length, basin elevation, etc. They proved that useful
reconstructions can be obtained even with few data at the target station, but by making use of
the watershed information from neighbor stations. The work of Wallis et al. (1991) is similar,
they replace the missing value of a target station with the weighted daily streamflow data from
several neighbor stations. The weights for each neighbor station are computed as the ratio
between the monthly mean flow of the target and neighbor station.

Different approaches based on simple linear regression or regression with residuals modeling
are presented in Raman et al. (1995). Although their models are simple to apply, they require
as well the existence of rainfall data series which is used in the regression model. This can be
a disadvantage if one does not have access to such series. On the same line, Woodhouse et al.
(2006) works with a multiple linear regression model with forward stepwise predictor selection.

Reviews studies by Gyau-Boakye and Schultz (1994) and Harvey et al. (2012) summarize and
compare several methods used for infilling flow data. Gyau-Boakye and Schultz (1994) compare
ten widely known techniques including interpolation, recursive models, autoregressive models,
regression and nonlinear models. Their results show that the model choice is influenced by the
length of the estimation period or by the season, but on average, interpolation and multiple
regression models yield good results. Harvey et al. (2012) propose an extended description of
approaches used in hydrology for missing data imputation or prediction, along with an applied
comparison of simple and multiple regression models. It was proved that one can have a better
accuracy if multiple explanatory variables are included.

More recent studies present procedures for filling missing hydrological data by using state-
space models with Estimation-Maximization (EM) algorithm as in Amisigo and van de Giesen
(2005). The authors make use of both spatial and temporal information and create a dynamic
model. An important disadvantage of their approach is that it is suitable for short and medium
term missing data, i.e., from days up to a month.

Many researches use linear models in order to infill missing data in streamflow time se-
ries. These models are simple to apply and, with enough explanatory variables, they provide
suitable estimates. As mentioned in Elshorbagy et al. (2002), in many applications nonlinear
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models might provide better results. For example, the superiority of artificial neural networks
(ANN) over autoregressive moving average models with explanatory variables was proved in
Hsu et al. (1995) or over linear regression in Elshorbagy et al. (2000), Khalil et al. (2001), Panu
et al. (2000). However, this class of models requires a deeper knowledge in computer sciences.
Moreover, ANN models have no strong theoretical assumptions and the output is difficult to
interpret, being often considered black-box models.

Currently, there is no precise method that is generally applied in streamflow imputation.
The choice of the method depends on several factors, such as, the number and nature of missing
observations, availability of data from correlated neighbor stations or from other meteorological
variables. An imputation method should be used only after a careful analysis of the available
data and of the missing data pattern.

1.2 Streamflow imputation and dynamic regression models
We have seen earlier that previous works addressed the infilling of flow data by using the
multiple linear regression (Gyau-Boakye and Schultz (1994), Harvey et al. (2012), Woodhouse
et al. (2006)) or even simple linear regression with residual modeling (Raman et al. (1995)),
but none approached the problem as a multiple linear regression with residual modeling. While
the streamflow models found in the literature address only one aspect of the prior problem
formulation, i.e., either the inclusion of multiple inputs or the modeling of the residuals from
a regression with only one input, the use of dynamic regression models (DRMs) allow for both
aspects to be taken into account.

Our main objective is to reconstruct streamflow data from several correlated hydrometric
stations that contain missing intervals of various lengths. We address the case when one has
available for the analysis only streamflow data. This consideration is founded as, frequently,
we do not have access to long-historical data for other variables, like for example precipitation.
Consequently, we consider DRMs a promising candidate for solving this problem.

Generally, a DRM is a system where an output A at one time step (i.e., streamflow data at
time t) can be linked to the output A at some past time, or to other variables (i.e., streamflow
data from other correlated stations) from the same period (i.e., time t) or from a past time (i.e.,
t�1, t�2...). Beside this, it also adjusts the correlation from the remainder part (residuals) by
fitting an autoregressive integrated moving average (ARIMA) structure. More details on this
matter are presented in Chapter 3, Section 3.1.

The DRMs have been used before by Tsay (1984) to model the monthly highway traffic
volume in Taiwan, by Greenhouse et al. (1987) to fit biological rhythm data, by Miaou (1990)
to estimate the water demand in some states of the USA, or, more recently, by Bercu and Proïa
(2013) to forecast energy consumption in France or by Nogales et al. (2002), Vagropoulos et al.
(2016) to forecast next-day electricity prices in Spain and USA and PV generation in Greece,
respectively.





Chapter 2

Data presentation and exploratory

analysis

T he reconstruction of missing streamflow data is a complex process which requires careful
attention not only in the modeling step, but also in pre-modeling. Understanding the

origin and behavior of the data might help to construct and comprehend the performance of the
model and derive more pertinent conclusions about the results. In Section 2.1 we present the
streamflow time series that will be reconstructed and also analyze the pattern of the missing
data. Then, in Section 2.2 we carry out an exploratory analysis and particularly look at the
correlation and similarities between the stations used in the study by applying statistical and
hydrological analyses.

2.1 Data presentation

2.1.1 Durance watershed

The application study of this work is done on the Durance watershed. Situated in the south-east
region of France, the Durance river is the second largest tributary of the Rhône, after Saône.
It has a length of more than 300[km] and a catchment area of more than 14 000

⇥

km2

⇤

. It has
the source in the massif of Écrins at an altitude of 4102[m], and it flows into the Rhône river,
near Avignon.

The Durance watershed is divided into three geographical areas: upper, middle and lower
basin. The upper Durance is characterized by a mountainous area with abrupt valleys, while
the middle part has a lower altitude and the valleys are wider, about 60% of its drainage area
is under 1000[m]. The lower Durance is the smallest, with a catchment area of no more than
3600

⇥

km2

⇤

. It is composed mainly of dry lowland, but it still remains mainly in a hilly area.
In Figure 1.2.1 we illustrate the location of the watershed.

There are more than 50 hydrometric stations within the watershed managed either by Élec-
tricité de France (EDF) or by the Regional Department of Environment, Planning and Housing
of Provence-Alpes-Côte-d’Azur region (DREAL PACA). For this study we selected eight sta-
tions situated in the upper and middle regions of the Durance. Our selection is based on the
length of the time series, i.e., all these stations have a data sample longer than 100 years, which
is seldom in hydrology. The exact location of each station is showed in Figure 1.2.2, while their
main characteristics are presented in Table 1.2.1.

The Durance watershed is defined by its many uses, which makes it one of the most important
rivers in southern France. It offers many purposes like hydropower generation, irrigations, water
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Figure 1.2.1: Location and drainage area of the Durance watershed (source: Kuentz (2013))

Figure 1.2.2: Location and drainage area of the eight stations of interest from the Durance
watershed
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Table 1.2.1: Main characteristics of the eight stations of interest from the Durance watershed

Code Station name In service Location Altitude Area
from [m]

⇥

km2⇤

S1 Durance (Val-des-Près) 1917 Upper 1360 203
S2 Durance (Briançon) 1905 Upper 1187 548
S3 Durance (La Clapière) 1903 Upper 787 2170
S4 Ubaye (Barcelonnette) 1903 Upper 1132 549
S5 Verdon (Colmars) 1903 Middle 1230 158
S6 Buech (Chambons) 1905 Middle 662 723
S7 Issole (Saint-André-les-Alpes) 1904 Middle 931 137
S8 Asse (Clue de Chabrières) 1906 Middle 605 375

supply for cities like Marseille and Aix-en-Provence or tourism near the lakes. Furthermore,
due to its mixed climatological environment (from a nival regime in the north-east area to a
mediterranean-pluvial in the south area), along with the geographical and functional complexity,
the analysis of the Durance river is challenging.

2.1.2 Durance data

The observations for the flow data are provided by Électricité de France (EDF) or are taken
from the HYDRO database (http://www.hydro.eaufrance.fr/), depending on the station and
period. We used in this study the daily flow measurements starting from 1904 until 2010, thus
107 years.

The measurement installations are situated on the rivers and most of them provide natural
flow data. In the early period (from 1904 to ⇠1950, depending on the stations), the river stage
measurements were made by daily human observation, then between ⇠1950 to ⇠1980 by using a
limnigraph (device for automatically recording the water level) and lastly, since ⇠1980, by using
an electronic data-logger. These stations were installed at the beginning of the 20th century
in order to help the French administration issue flood alerts (Imbeaux (1892)) and improve the
understanding of the hydroelectric potential of the Durance watershed. An extensive part of
these streamflow time series (i.e., the early decades) had to be restored from different archives
through a documentary research, see Kuentz (2013), Kuentz et al. (2013, 2014) for details.
These studies provide an extended characterization of the hydrometeorological variability of
the Durance watershed during the last century, and also give an historical review about the
measurement procedures at each station.

2.1.2.1 Homogeneity study

In time series analysis, we are concerned with the stability or homogeneity of the stochastic
process over time. There are several factors that can drive a hydrological random variable to
become heterogeneous (not stable over time), such as climate change, relocation of the stations,
or, as seen earlier, changes in the measurement techniques, among others. This difference
in measurements can create heterogeneity and, thus, have an impact on the analysis of the
streamflow data.

A test for homogeneity is equivalent to a test of a statistical distribution, i.e., we want
to detect possible shifts in time of the mean and the variance of the random variable. To
address this aspect we followed the two-step approach presented in Wijngaard et al. (2003) for
testing homogeneity in daily temperature and precipitation series. Same workflow was applied
later by Vezzoli et al. (2012) for daily discharge data, or by Kang and Yusof (2012) for a
hydrometeorological dataset with missing values. The approach consists of:
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Table 1.2.2: Test statistic values for SNH, Buishand, Pettitt, and Von Neumann homogeneity
tests and the overall classification into the three classes: useful, doubtful, suspect, for each of
the eight stations of interest from the Durance watershed. In the squared brackets, we indicate
if the null hypothesis is accepted (A) or rejected (R, in red), meanwhile last row contains the
1% critical values for each test.

Station SNH B P VN Classification
S1 3.99[A] 1.58[A] 349[A] 1.36[R] useful
S2 11.85[A] 1.69[A] 811[A] 1.58[A] useful
S3 4.19[A] 1.24[A] 545[A] 1.67[A] useful
S4 6.47[A] 1.25[A] 589[A] 2.03[A] useful
S5 3.74[A] 1.78[A] 462[A] 1.29[R] useful
S6 2.49[A] 1.03[A] 322[A] 2.03[A] useful
S7 5.50[A] 1.12[A] 385[A] 1.92[A] useful
S8 6.80[A] 1.45[A] 680[A] 1.46[R] useful

critical values 12.32 1.86 841 1.54

1. Applying four homogeneity tests: standard normal homogeneity test (SNH), Buishand
range test (B), Pettitt test (P), and von Neumann ratio test (VN) to evaluate the series.

2. Classifying these tests results into three classes:

• useful (homogeneous data): at most one test rejects the null hypothesis at the 1%
level (i.e., the test statistic is above the critical 1% level value)

• doubtful: two tests reject the null hypothesis at the 1% level

• suspect (inhomogeneous data): three or four tests reject the null hypothesis at the
1% level

As suggested in the works mentioned above, the variable to be tested is the annual maximum
series of daily streamflow data. We take into consideration only the years that have no missing
data. All tests assume under the null hypothesis that the annual values are independent and
identically distributed, i.e., no break in the mean. Under the alternative hypothesis, the first
three tests assume a break in the mean, while the last one assumes that the series is not
randomly distributed, i.e., the observations are correlated. Details about each test can be
found in the references mentioned earlier.

In Table 1.2.2 we present the results of these tests for the eights stations from the Durance
watershed. An "A" label means that the test statistic is not significant at a 1% level and the
null hypothesis of no break in the mean is accepted, while a label "R" means the test statistic
is significant, thus the null hypothesis is rejected. We have three stations (S1, S5 and S8)
that reject the von Neumann ratio test, meaning that these time series might show some time
correlation. However, the overall classification of all the stations is as "useful" at 1% significance
level, thus we can say that the data are homogeneous.

Remark 1.2.1. As shown in Yozgatligil and Yazici (2016), the homogeneity of a time series can
be also studied by means of the stationarity tests such as Augmented Dickey-Fuller (ADF)
or Kwiatkowski-Phillips-Schmidt-Shin (KPSS), not commonly used in homogeneity detection
analysis. Similarly to the von Neumann ratio test used in this study, these tests are not location-
specific tests, i.e., there is no indication of the exact change point, but they test the existence
of trend in a time series.
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2.1.2.2 Overview of the missing data pattern

The missing data for the Durance watershed are mainly due to absence of human reading (early
period), extreme weather events, technical/maintenance issues, or disturbances during the 2nd

World War (Kuentz et al. (2014)). Consequently, these data contain a large number of missing
points, especially at the beginning of the period and around 1940-1960.

Table 1.2.3: Main characteristics of the eight stations of interest from the Durance watershed

Code Station name Missing data
# %

S1 Durance (Val-des-Près) 9217 24%
S2 Durance (Briançon) 4900 13%
S3 Durance (La Clapière) 5903 15%
S4 Ubaye (Barcelonnette) 1207 3%
S5 Verdon (Colmars) 3340 9%
S6 Buech (Chambons) 5473 14%
S7 Issole (Saint-André-les-Alpes) 9711 25%
S8 Asse (Clue de Chabrières) 7067 18%

The percentage of missing data for the eight stations ranges from 3% to 25%, as shown in
Table 1.2.3. In Figure 1.2.3 one can find the pattern of the missing data for each station for
the entire period 1904-2010. We can notice that for some intervals, such as 1948-1951, out of
the total number of 11 688 daily observations for the eight stations, only 4383 observations are
available, i.e., less than 40%.

2.2 Exploratory analysis
To determine the relationships and correlations between the eight stations, an exploratory data
analysis was used to determine possible similarities among variables (stations) and, eventually,
to group them based on their characteristics. This part is important as it offers an initial
selection for the input variables in the regression models. We used both hydrological and
statistical tools, such as hydrological regimes, correlation or clustering analyses.

2.2.1 Hydrological regimes
First, we look at the monthly mean flow (hydrological regime) and observe the behavior of the
station. An illustration of the hydrological regimes for the eight stations is shown in Figure
1.2.4. It can be seen that each station has two periods of high flow: one in the autumn and one
in spring or summer depending on the station.

For the stations from upper Durance (S1-S4), the autumn peak (i.e., October) is due to
strong rainfall events, while the other one, much higher this time, is located at the beginning
of the summer in June and it occurs because of the snowmelt from the mountainous areas.
Meanwhile, the stations from middle Durance (S5-S8) have one peak at the end of autumn,
again due to rainfall accumulations, and the second one around middle/end spring due to an
early snowmelt.

These results are consistent with the climate of the area and the elevation ranges of the
watersheds. The stations from upper Durance are located in a rocky mountain area at altitudes
ranging from more than 4000[m] to around 600[m], where, besides the rainfall events in autumn,
most of the precipitations fall as snow, from the end of fall to the beginning of spring. For this
reason, we will have a snow regime characterized by very high flow at the beginning of the
summer due to snow and glaciers melt and dry winter (low flow). Moreover, the stations from
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2Figure 1.2.3: Missing data pattern from 1904-2010 for the eight stations of interest from the
Durance watershed

middle Durance are located at altitudes lower than 2500[m], with more than 60% of them being
at under 1000[m]. Thus, we will observe, on the one hand that the autumn rain is increasing
and lasting until the first part of the winter, but on the other hand the snowmelt process is
starting earlier, like in May for S5 and in April for S6, S7, S8. This specific behavior is called
rain-snow regime.

Therefore, each regime displays two seasons: autumn-winter (referred so far as cold season),
defined by rain (less in upper Durance, more in middle Durance), and spring-summer (referred
so far as warm season), defined by snowmelt (earlier or later depending on the altitude).

2.2.2 Correlation analysis

The above statements were also validated by statistical analysis, i.e., correlation analysis. The
correlation matrix of the daily flow data is computed using only the complete cases of the
dataset (only days with information available for all the stations, i.e., 49.7% of the data). The
chosen criterion is Spearman’s rank correlation coefficient. It is a nonparametric rank statistic,
which assesses how well an arbitrary monotonic function can describe the relationship between
two variables, without making any assumption about the distribution of these variables. For
more details, the reader is referred to Lehmann and D’Abrera (2006).

The results, illustrated in Table 1.2.4, show that all the coefficients are positive with strong
correlation (>0.8) between the group of stations S1-S4 and the group S6-S8. Station S5 is a
particular case; it has a higher value in relation with S4 and S7, but all its other values are
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Figure 1.2.4: Hydrological regimes (monthly mean flow) for the eight stations of the Durance
watershed (cold season in grey, warm season in orange). Note: the months are ordered from
September to August for a clearer illustration of the two seasons, and it is usually called a
hydrological year.

very close to each other. Assessment of the correlation for each of the two seasons (cold, warm)
individually, show that for the cold season there is a decrease in dependence for both upper and
middle Durance and S5 tends to be more similar to the middle Durance stations, while for the
warm season the groups upper and middle Durance are better split, but station S5 still remains
an "in-between" station.

Table 1.2.4: Spearman’s rank correlation coefficients of the daily streamflow for: i) all seasons
(on the top table), ii) cold season (bottom table, in blue), and iii) warm season (bottom table,
in red)

S2 S3 S4 S5 S6 S7 S8

S1 0.92 0.93 0.87 0.66 0.08 0.28 0.05
S2 0.93 0.87 0.66 0.08 0.29 0.04

S3 0.90 0.68 0.09 0.31 0.04
S4 0.76 0.22 0.46 0.19

S5 0.57 0.73 0.53
S6 0.82 0.85

S7 0.85

S1 S2 S3 S4 S5 S6 S7 S8

S1 0.79 0.83 0.72 0.51 0.11 0.21 0.10
S2 0.96 0.83 0.74 0.56 0.15 0.28 0.13
S3 0.96 0.96 0.82 0.61 0.15 0.30 0.13
S4 0.91 0.91 0.92 0.67 0.26 0.44 0.27
S5 0.63 0.63 0.63 0.74 0.57 0.70 0.57
S6 0.04 0.04 0.03 0.18 0.62 0.80 0.84
S7 0.21 0.21 0.20 0.36 0.72 0.86 0.86
S8 0.02 0.02 0.00 0.15 0.56 0.85 0.87

2.2.3 Clustering analysis
In this part, we consider a clustering technique, called partitioning around medoids (PAM), to
classify the stations based on their spatial/temporal characteristics. The idea of this approach
is to divide the dataset into groups (clusters) so that the distance between them is minimized.



22 Chapter 2. Data presentation and exploratory analysis

More specifically, PAM partitions the dataset of n objects into k clusters, where both the dataset
and the number of clusters k are inputs of the algorithm. Each cluster is represented by a center
called medoid. The algorithm works with a matrix of dissimilarities (distances), and it aims to
minimize the overall distance between the medoids of each cluster and its members. It is very
similar to the well-known k -means technique, but, in contrast to the k -means, PAM chooses
data points as centers of the groups, and not a mean of data points like in the k -means case.
Moreover, PAM is more robust to outliers when compared to k -means, because it minimizes a
sum of pairwise dissimilarities instead of a sum of squared Euclidean distances. The detailed
procedure of the technique can be found in Kaufman and Rousseeuw (1990).

To choose the relevant number of clusters and to determine if a station is well classified, we
will use the silhouette coefficient, introduced by Rousseeuw (1987).

In our particular case, for a station i, the silhouette coefficient is defined as:

si =
��i � di,c(i)

max{di,c(i), ��i} , (1.2.1)

where di,c(i) represents the intracluster distance between medoid c(i) and station i, and ��i

corresponds to the smallest intercluster distance, i.e., distance between station i and all the
other stations except i.

The silhouette coefficient si can range from �1 to 1. That is, when we have:

• si = 1, it means that intracluster distances (di,c(i)) are much smaller than intercluster
ones (��i), so we are in the case of "well-classified".

• si = 0, it means that intracluster and intercluster distances are approximately equal, so
we cannot be sure about the membership of station i.

• si = �1, it is contrary to the first case, we have a much larger intracluster distance
compared to the intercluster one, so the classification is not good.

To compute PAM performance of a cluster with k components (stations), the average sil-
houette index is used: s(k) =

P

n

i=1 s
i

n , where n denotes the total number of stations.
We applied PAM classification on our daily flow data (S1-S8) by using two and three clusters,

respectively. The results are illustrated in Figure 1.2.5.
If we look at the "all seasons" case with two clusters, the data are classified as Group 1 =

{S1, S2, S3, S4} and Group 2 = {S5, S6, S7, S8}. This division is exactly the geographical
split upper-middle Durance. When looking at the silhouette coefficients si of each station, we
notice that S5 has a negative value, but close to zero (i.e., sS5

= �0.1086), meaning that it
may be not well-classified in Group 2. In the case with three clusters, the stations are classified
as follows: Group 1 = {S1, S2, S3, S4}, Group 2 = {S5} and Group 3 = {S6, S7, S8}. In order
to distinguish the best cluster dimension, we look at the average silhouette index, i.e., s(k). In
our case, for PAM with two and three clusters, these indices are s(2) = 0.51 and s(3) = 0.38,
respectively, meaning that by introducing another group, the clusters are less well defined. It
is also interesting to notice that by introducing a third group (i.e., S5), the silhouette index
of Group 1 is decreasing from 0.67 to 0.48, while the one of Group 2 increases from 0.36 to
0.37. So, the inclusion of the third group has a larger influence on Group 1, but almost none
on Group 2. These results are supported also by the hydrological regimes and the correlation
matrix, S5 being an "in-between" station with a special behavior.

The application of PAM on the cold and warm season subsets yields more or less the same
results with the same reasoning.

In conclusion, when trying to classify the eight stations, it is clear that the "hazy" behavior
of station S5 makes the grouping a little bit uncertain, while the remaining stations preserve
the geographical division of upper and middle Durance. These relationships will be used later
in the choice of explanatory variables in our regression models.



2.2. Exploratory analysis 23

0 0.2 0.4 0.6 0.8 1

5
7
6
8

4
1
2
3

1 : 4|0.67

2 : 4|0.36

Silhouette width s
i

Average silhouette width: 0.51

All Seasons

0 0.2 0.4 0.6 0.8 1

5
7
6
8

4
2
1
3

1 : 4|0.48

2 : 4|0.39

Silhouette width s
i

Average silhouette width: 0.44

Cold Season

0 0.2 0.4 0.6 0.8 1

5
8
7
6

4
1
2
3

1 : 4|0.73

2 : 4|0.43

Silhouette width s
i

Average silhouette width: 0.58

Warm Season

0.2 0.4 0.6 0.8 1

7
6
8

5

4
2
1
3

1 : 4|0.48

2 : 1|0.00

3 : 3|0.37

Silhouette width s
i

Average silhouette width: 0.38

0.2 0.4 0.6 0.8 1

7
6
8

5

4
2
1
3

1 : 4|0.29

2 : 1|0.00

3 : 3|0.35

Silhouette width s
i

Average silhouette width: 0.28

0.4 0.6 0.8 1

7
6
8

5

4
1
2
3

1 : 4|0.60

2 : 1|0.00

3 : 3|0.39

Silhouette width s
i

Average silhouette width: 0.45

Figure 1.2.5: Results of the PAM classification with two and three clusters, when all, cold and
warm seasons are considered, for the eight stations from the Durance watershed (top-plots show
the results of PAM with two clusters, while the bottom-plots for PAM with three clusters)





Chapter 3

Statistical modeling with dynamic

regression models

I n general, the statistical modeling process involves several equally important steps, such as
data collection and understanding, model choice and estimation, as well as testing and eval-

uation of these models. In this chapter we give a detailed methodology of what it means to
work with dynamic regression models. It is important to understand the meaning and context
of the applied model, so in Section 3.1 we introduce the theoretical background behind the dy-
namic regression models. Then, in Section 3.2 we give a step-by-step methodology for the model
estimation and validation.

3.1 Theoretical background on dynamic regression models
Dynamic regression models, as referred in Pankratz (1991), or transfer function models according
to Box and Jenkins (1976), are a class of statistical models that describe the relationship
between a response variable and one or more explanatory variables using a dynamic form.
These models can be regarded as extensions of the classical multiple linear regression (MLR) or
the autoregressive moving average models (ARIMA). On the one hand, a MLR model includes
the information from one or more explanatory variables, but it does not allow the incorporation
of the time as a component. On the other hand, an ARIMA model considers the dynamics
of time, but it does not include the relevant knowledge from other variables. Thus, by simply
combining a MLR model with an ARIMA, it leads to the formulation of a richer class of models
called dynamic regression models (DRM).

Remark 1.3.1. In order to avoid any confusion, for the remaining part of this chapter we
use "residual term" or "residuals" to denote the difference between the observations and the
estimates obtained by applying a MLR model, and "error term" or "errors" for the white noise
process in the ARIMA model.

Remark 1.3.2. When examining a time series dynamically, it is more convenient to use some
operators in order to simplify the notation. One of these operators is the backshift operator B,
also known as the lag operator L. Some examples of its usage are given below:

• BiYt = Yt�i

• Yt � Yt�1

� Yt�2

= (1�B �B2)Yt

• Yt + ↵Yt�1

+ ↵2Yt�2

= (1 + ↵B + ↵2B2)Yt

25
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Another useful operator in dynamics modeling is the difference operator r, and some examples
are given in the following:

• r = (1�B) , rYt = (1�B)Yt = Yt � Yt�1

• rD
s = (1�Bs)D , rD

s Yt = (1�Bs)DYt

The general formulation of a DRM with l explanatory variables and an ARIMA(p, d, q)
model for the residuals, can be expressed as:

Yt = �
0

+ ↵
1

(B)Xt,1 + ...+ ↵l(B)Xt,l + Zt (1.3.1a)
�(B)rdZt = ✓(B)et (1.3.1b)

Therefore, a DRM has two components: the regression part given by (1.3.1a), and the
ARIMA part given by (1.3.1b). In the following, we discuss individually the particularities of
each component.

1. Regression part (1.3.1a)
We consider that the response variable Yt is a linear combination of l explanatory variables
(or covariates) Xt,1, ..., Xt,l, and that the residuals of this model are collected in the term
Zt.
In a DRM, the influence or contribution of each explanatory variable Xt,i on the response
Yt has a dynamic structure. More specifically, instead of allowing just a simple coefficient
with each covariate, we rather assign a polynomial ↵i(B). Thus, this dynamic formulation
enables the inclusion of time as a component of the model, i.e., we can relate Yt with its
past values, but also with past values of Xt,i.
Therefore, each polynomial ↵i(B) (called so far transfer functions) has the form:

↵i(B) =
!i(B)

�i(B)
Bb

i (1.3.2)

where both the numerator !i(B) and denominator �i(B) are polynomials as well, denoted
by !i(B) = !i,0 +

Pm
i

j=1

!i,jB
j and �i(B) = 1�Pr

i

j=1

�i,jB
j . While the numerator gives

the time-dynamic formulation for each explanatory variable, the denominator provides the
same behavior for the response variable. Moreover, the exponent bi from (1.3.2) referred
as the delay factor, denotes the time elapsed until one explanatory variable affects the
response.
In conclusion, the regression component of the DRM requires setting three orders: mi

(order of the numerator’s polynomial), ri (order of the denominator’s polynomial) and bi.
These orders are referred in the following as the orders of the transfer function and are
noted as (bi,mi, ri). We provide details about the choice of these orders in Section 3.2.1.

2. ARIMA part (1.3.1b)
Apart from the relationships between observations at both present and past time modeled
by the regression part, we can use ARIMA to model the correlation between the residuals
Zt. According to Makridakis et al. (1998), an ARIMA model gives the linear combination
of the present and past values of both the variable and its errors. More specifically, an
ARIMA modeling of the residual Zt allows the inclusion of both the present and past
values of these residuals, but also a linear combination of the present and past values of
the error term et.
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Similar to the regression part, the ARIMA model consists of two polynomials: �(B)
and ✓(B). On the one hand, the former polynomial, referred as the autoregressive (AR)
component, is denoted by �(B) = 1 � Pp

i=1

�iB
i and shows the linear combination of

the past p values of the residual term Zt. On the other hand, ✓(B), the moving average
(MA) part, is denoted by ✓(B) = 1 �Pq

i=1

✓iB
i and displays the linear combination of

the past q values of the errors et.
ARIMA models require the time series under study to be stationary, see Makridakis et al.
(1998). However, they can also be applied to data that are non-stationary, but in this
case an initial differencing or transformation step must be considered in order to remove
the non-stationarity. The order of the differencing is accounted directly in the model
formulation, and it is denoted by rd, where d represents the differencing order.
Therefore, an ARIMA model also requires the setting of three orders: p (the order of the
AR part), q (the order of the MA part) and d (the differencing order), and usually this
model is denoted as ARIMA(p, d, q).
So far, we have focused on the non-seasonal time series data, and thus, on non-seasonal
ARIMA models. However, ARIMA models can also be adapted for modeling seasonal
data, by simply introducing additional seasonal terms for both the AR and MA compo-
nents. More specifically, a seasonal ARIMA model, denoted as SARIMA(p, d, q)(P,D,Q)s,
has the following form:

�(B)�s(B
s)rdrD

s Zt = ✓(B)✓s(B
s)et (1.3.3)

where (P,D,Q)s represent the orders of the seasonal components, i.e., seasonal autore-
gressive (SAR) with order P , seasonal moving average (SMA) with order Q, the seasonal
differencing D, and the number of time units (e.g., a week, a month, etc.) per season
s. The polynomials associated to the seasonal part, i.e., �s(Bs), ✓s(Bs) are formulated
similar to the non-seasonal one, detailed above.
We provide details about the choice of these orders in Section 3.2.1.

We have presented above a generic formulation of a DRM, but actually several particular
cases of this model are frequently applied in time series modeling, known typically by other
names. To simplify the notation, we consider the case of stationary time series and only one
explanatory variable. This leads (1.3.1a)-(1.3.1b) to the following formulation

Yt = �
0

+
!(B)

�(B)
Xt�b +

✓(B)

�(B)
et (1.3.4)

Considering (1.3.4), we can have different particular cases of the DRM:

1. Linear regression models

Yt = �
0

+ !
0

Xt + et (1.3.5)

where all the orders are null b = m = r = 0 and p = q = 0, so that !(B) = !
0

,
�(B) = �(B) = ✓(B) = 1.

2. Distributed lagged regression models

Yt = �
0

+ !(B)Xt�b + et (1.3.6)

where r = 0 and p = q = 0, so that �(B) = �(B) = ✓(B) = 1.



28 Chapter 3. Statistical modeling with dynamic regression models

3. Regression with ARIMA residuals

Yt = �
0

+ !
0

Xt +
✓(B)

�(B)
et (1.3.7)

where b = m = r = 0, so that !(B) = !
0

, �(B) = 1.

4. ARIMAX models

Yt = �
0

+
!
0

�(B)
Xt +

✓(B)

�(B)
et (1.3.8)

where b = m = 0, so that !(B) = !
0

and �(B) = �(B).

3.2 Dynamic regression model estimation and validation

3.2.1 Model estimation

We have seen in the previous section that a DRM is based on the dependences between the
response and the explanatory variables, but it also contains an ARIMA component that models
the residuals. Therefore, the estimation phase of a DRM comprises a unified process between
these two parts.

An equally important aspect that needs to be addressed before any estimation methodology
is the data preprocessing. More specifically, this step might include missing data detection
and imputation, transformations, stationarity testing, variable selection, etc., and it must be
carefully carried out because an incomplete analysis can lead to inaccurate results. Considering
this, the DRM requires two main preprocessing elements, i.e., the selection of the explanatory
variables for each model, and stationarity testing, among others.

In order to choose the covariates of each model (i.e., hydrometric station in our case),
in Section 2.2 we have discussed and proposed different methods for detecting dependences
between variables in a hydrological framework such as correlation or clustering analysis, as well
as the study of the hydrological regimes.

After that, the stability of the dataset over time, i.e., the behavior of the series’ mean and
variance over time, has been approached as well previously in Section 2.1.2.1, where we have
pointed out some commonly applied methods in hydrology for testing possible shifts in time of
the mean and variance, i.e., standard normal homogeneity test, Buishand range test, Pettitt
test, and von Neumann ratio test. Note that, throughout this study, we are interested in and
assume a second-order stationarity (i.e., first two moments of a series do not change over time),
and not a strict stationary process. Besides the tests mentioned above, we also consider, as
suggested by Makridakis et al. (1998), some classical procedures applied in time series analysis
to assess the stationarity, i.e., the Augmented Dickey-Fuller (ADF) unit root test introduced by
Said and Dickey (1984) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test
proposed by Kwiatkowski et al. (1992). Given a stationarity test decision, simple methods exist
for transforming a non-stationary series into a stationary one. For instance, transformations
such as logarithms can help in stabilizing the variance of a time series, while differencing can
help maintain a constant mean.

After the preprocessing step is completed, the parameters of the DRM must be estimated,
thus, in what follows we focus our attention on this aspect. More specifically, we review each
step from this estimation methodology. The entire procedure is illustrated schematically in
Figure 1.3.1.
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Figure 1.3.1: Schematic representation of the estimation methodology for a dynamic regression
model

A. Model initialization
The first step is to choose a proxy model for both the regression and ARIMA parts. As
suggested by Pankratz (1991), for the regression component it is recommended to consider
in the proxy model only the polynomial !(B) from (1.3.2), i.e., at first to assume that the
response variable is influenced only by the present and past values of its covariates. The
order m of this polynomial is suggested (see Pankratz (1991)) to be not very large (e.g.,
in common practice up to order 6-10). Additionally, for the ARIMA part, it is suggested
to consider a low-order model, such as an AR(1) or AR(2).

B. Estimation procedure
The parameter estimation could be done by using the ordinary least squares (OLS) tech-
nique, if the moving average part of the ARIMA model is not introduced. In case the
MA component is required, the problem becomes impossible to solve with OLS as the
values for the past errors are unobservable. However, maximum likelihood estimation
(MLE) could be applied in this case for the parameter estimation. The likelihood is com-
puted via a state-space representation of the ARIMA process, and the errors and their
variance are found by a Kalman filter. Readers can find a good discussion about this ap-
proach in Ripley (2002), as well as in the R Software documentation regarding the DRMs
application, i.e., package forecast.

C. Check errors
After each model fit, one should check if the residuals are uncorrelated, i.e., if they are a
white noise process (zero mean, finite variance and independent), i.e., WN (0,�2). The
Ljung-Box test (Box and Jenkins (1976), Box and Pierce (1970)), with the null hypothesis
of independence, is applied to test the serial correlation.

D. Model identification
The initial proxy model might not yield a good fit, as for example the response variable
might be influenced also by its past values, so we have to identify a new model. This
procedure requires to find first the order of both the transfer function and ARIMA.



30 Chapter 3. Statistical modeling with dynamic regression models

Table 1.3.1: Theoretical ACF and PACF
Process ACF (⇢k) PACF (�k)
AR(p) decays to zero cuts off after lag p (�

k

= 0, for k > p)

MA(q) cuts off after lag q (⇢

k

= 0, for k > q) decays to zero

Identification of the transfer function

This step implies the identification of the pairs (bi,mi, ri), the orders of the ↵i polynomials
in (1.3.2). To find these orders, the pattern (plot) of the estimated coefficients associ-
ated with the polynomial !i(B) must be examined for each explanatory variable. There
are some identification rules for each order, with reference to the theoretical functions,
reported in Pankratz (1991), as follows:

(a) bi (referred as dead time) represents the time elapsed until the covariate i affects
the response variable. More specifically, it denotes the first non-null position in the
sequence of estimated coefficient of the polynomial !i(B).

(b) The denominator factor �i(B) represents the decay pattern, and the order ri of this
polynomial is given by:

i. ri = 0�no decay in the pattern of the !i coefficients,
ii. ri = 1�exponential decay pattern of the !i coefficients,
iii. ri = 2�complex decay pattern of the !i coefficients, e.g., alternating positive-

negative spikes (ri > 2 is very rare).

(c) The numerator factor !i(B) captures the unpatterned spikes (not part of the decay
pattern) in the !i coefficients’ pattern and the decay start-up value(s). The order of
this polynomial is mi = ui+ ri� 1, where ui represents the unpatterned coefficients.

i. if ri > 0, then ui denotes the number of non-zero coefficients before the decay
starts,

ii. if ri = 0, then all the non-zero parameters are considered unpatterned.

Identification of the ARIMA model

The order identification is done in this case by analyzing the sample autocorrelation
function (ACF) and partial autocorrelation function (PACF) of the estimated coefficients,
a popular approach of Box and Jenkins (1976).

Given a time series Yt and the assumption that Yt is a second order stationary process,
the autocorrelation of lag k is defined as ⇢k = Cov(Y

t

,Y
t�k

)

V ar(Y
t

)

, and thus, the ACF represents
the set of values {⇢

1

, ⇢
2

, ..., ⇢k}k2N. It is used in identifying the order of a MA(q) process,
more exactly, ⇢k becomes not significantly different from 0 after q lags.

Given a time series Yt and the assumption that Yt is a second order stationary process, the
partial autocorrelation of lag k is defined as �k = Cov(Y

t

,Y
t�k

|Y
t�1,...,Yt�k�1)

V ar(Y
t

|Y
t�1,...,Yt�k�1)

, and the PACF
denotes the set of values {�

1

, �
2

, ..., �k}k2N. It is the autocorrelation between Yt and Yt�k

conditional on the set of observation that are between these points, i.e., Yt�1

, ..., Yt�k�1

.
It helps identifying the order of an AR(p) process, such that �k becomes not significantly
different from 0 after p lags.

Thus, we have to compute the sample ACF and PACF and compare them to the theoretical
ones. The theoretical ACF and PACF, illustrated in Box and Jenkins (1976), are given
here in Table 1.3.1.
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The identification for the seasonal part of the process is similar with the non-seasonal one,
but instead of looking at the lags 1, 2, ..., k, we look this time at lags that are multiples
of our seasonality span s, i.e., s, 2s, 3s..., ks.

In Section 4.1.2 we show a step by step identification procedure of both the transfer function
and ARIMA model, for our case study on streamflow data.

3.2.2 Model validation
Once the model is defined using the procedure above, one should test its performance and vali-
date it by using a test dataset, different from the one used in the estimation. The performance
of the model is computed by comparing the observed data from the test set with the values es-
timated by the model. Then, the model is validated by comparing it with several other models
(i.e. simpler models, other category models, benchmark models, etc.).

In order to measure the efficiency we use the Kling-Gupta Efficiency (KGE). This criterion
was introduced by Gupta et al. (2009) and it represents a decomposition of the Nash-Sutcliffe
Efficiency (NSE), introduced by Nash and Sutcliffe (1970). Both measures are often used
in hydrological modeling, but NSE is reported by many authors to overestimate the model
performance during peak flows and underestimate it during low flow conditions.

KGE is defined in terms of three components: the correlation between the observed and esti-
mated series, the global bias of the reconstruction, and the variability. The general formulation
for the KGE is

KGE = 1�
p

(⇢� 1)2 + (↵� 1)2 + (� � 1)2 (1.3.9)

where ⇢ =
Cov(Y obs

t

,Y est

t

)

�
obs

�
est

, ↵ = ŝ
est

ŝ
obs

, � = x̂
est

x̂
obs

(x̂ and ŝ represent the sample mean and standard
deviation of a series and est and obs stand for estimation and observation set).

KGE ranges from �1 to 1, the closer to 1 the more accurate the model is.





Chapter 4

Case study: Durance watershed

I n this chapter we apply the times series reconstruction methodology based on dynamic re-
gression models on streamflow data from the Durance watershed. We consider a group of

eight stations in the watershed, each containing daily measurements for 107 years (from 1904 to
2010). In Section 4.1, we are interested in the model identification and parameter estimation,
and, thus, we review all the theoretical aspects presented previously but this time on our appli-
cation study. Then in Section 4.2, we measure the performance of the estimated models, and
finally compare it with the performance of a benchmark and hydrological model, respectively.

4.1 Model estimation

We apply a commonly used approach in time series analysis for the model estimation and
validation, i.e., we estimate the model on a training set, and then, assess the performance of
the model on a test set, different than the training one. Thus, we consider for the training set
the longest part of our dataset that has no missing values, namely the last years. Therefore,
we use a sequence of 22 years (1980-2001).

4.1.1 Preprocessing steps before modeling

We have seen in the previous chapter that an important step before the model estimation is
given by the data preprocessing. In the following, we address some possible pre-modeling issues
that might need to be clarified in a dynamic regression modeling.

1. Explanatory variable selection

We have seen in Section 2.2 that there is a very strong-correlated group of stations in
the upper Durance, i.e., S1-S4 (referred as Group 1) and one in the middle Durance with
stations S6-S8 (referred as Group 2). Also, we have concluded that this correlation might
change when different subsets are analyzed, subsets that we refer so far all seasons (all
available data), cold season (only the data associated with autumn-winter), warm season
(only the data associated with spring-summer).

As a result, each station (response variable) is considered to have as explanatory variables
in the regression all the other stations from the same groups. Particular attention is given
to station S5, that has an unclear status. In this case, we look at the correlation (see
Table 1.2.4 in Section 2.2.2) and select as explanatory variables only the stations that
have a coefficient larger than 0.7. Consequently, S5 is used as an explanatory variable for
the stations S4 and S7 in the all seasons and warm season cases, while for the cold season,
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Table 1.4.1: Explanatory variables included in the regression part of the DRM (i.e., full models)
for each of the eight stations from the Durance watershed

all data & cold season
warm season

S1 S2,S3,S4 S2,S3,S4
S2 S1,S3,S4 S1,S3,S4
S3 S1,S2,S4 S1,S2,S4
S4 S1,S2,S3,S5 S1,S2,S3
S5 S4,S7 S7
S6 S7,S8 S7,S8
S7 S5,S6,S8 S5,S6,S8
S8 S6,S7 S6,S7

Table 1.4.2: Explanatory variables included in the regression part of the DRM after applying
the VIF multicolinearity test (i.e., reduced models) for each of the eight stations from the
Durance watershed

all data & cold season
warm season

S1 S3 S3
S2 S1,S4 S1,S4
S3 S1,S4 S1,S4
S4 S1,S5 S3
S5 S4,S7 S7
S6 S7,S8 S7,S8
S7 S5,S6,S8 S5,S6,S8
S8 S6,S7 S6,S7

S5 explains only station S7. In return, S5 is modeled only by these stations, i.e., S4 and
S7, for all seasons and warm season, and S7 for cold season.
The relationships deduced from the above consideration provide the setting of the covari-
ates in the regression part of the DRM, which we refer so far full models. An outline of
these models, for each station and type of subset, is given in Table 1.4.1.

2. Multicolinearity
Due to the fact that in our exploratory analysis from Section 2.2 we have encountered
very high correlated stations, we now want to examine if we are in the case of multicolin-
earity (almost perfect linear relationship among explanatory variables). In the presence
of multicolinearity the standard errors of the coefficients tend to be large, thus producing
wider confidence intervals, among others. More insight in the multicolinearity subject is
clearly detailed in Gujarati and Porter (2008).
We assess the strength of the multicolinearity by computing the Variance Inflation Factor
(VIF). This index measures how much the variance of estimated regression coefficients
is increased when compared to having uncorrelated variables; see Kutner et al. (2004)
and Gujarati and Porter (2008) for more details. When multicolinearity is found, the
computed VIFs are larger than 5, as suggested in Eng et al. (2005), Montgomery et al.
(2012). In this case, we remove the variable with the highest VIF (among the one with
V IF > 5) and then reiterate the process until all remaining variables have V IF  5.
In our case study, the results show that there is evidence of multicolinearity between the
group of stations {S1, S2, S3, S4} from the upper Durance. This leads to a reduced-form
model, as presented in Table 1.4.2. This reduced-form model is estimated and validated
later in the study.
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Table 1.4.3: Estimated parameters of the M.NS proxy model, with a transfer function !(B) of
order m = 6 and an AR(1), for station S1

Model parameters

�

0

!

S3

1,0

!

S3

1,1

!

S3

1,2

!

S3

1,3

!

S3

1,4

!

S3

1,5

�

1

-1.5681 0.7502 0.0417 0.0029 -0.0015 -0.0035 0.0053 0.9772

3. Stationarity
The second-order stationarity evaluation, i.e., the stability of the mean and variance
over time, is a very important step, because many modeling approaches start with the
assumption of a stationary series. The case of dynamic regression models is no exception.
Due to the extreme events and possible climate change, the variance of the Durance
streamflow time series is not constant. Therefore, to reduce the effect of the extreme
events, we transform the data, such that instead of modeling the raw time series, we use
the log-transformed one.
Moreover, we apply two unit root tests, i.e., ADF and KPSS tests, to verify the stability
of the series mean. These tests are designed for determining whether differencing is
required. For the Durance watershed, after applying these tests for the data from 1980
to 2001 (training dataset) and looking at their resulted p-value, it seems clear that all
the stations are stationary at a 5% level. More specifically, all the p-values for the KPSS
test (with the null hypothesis H

0

: stationarity) are greater than 0.05 and for the ADF
test (H

0

: not stationary) less than 0.05, suggesting that the Durance streamflow data are
stationary in mean.

4.1.2 Model identification and parameter estimation
Model initialization. We consider for the initial or proxy model, six lags (t, t � 1, ..., t � 5)
for each explanatory variable included in the regression according to the reduced-form model,
and an AR(1) for the residuals. Moreover, as the models differ according to the type of season,
we analyze both cases: i) no-season split, in which case the model is denoted by M.NS, and ii)
2-season split where the model is called M.2S.

Model identification. The errors of the proxy model mentioned above are checked using the
Ljung-Box test and, as they are not a white noise process, a new model is needed.

A. Identification of the transfer function
We analyze the patterns of the estimated regression parameters from the proxy model for
each explanatory variables (we consider six lags at each explanatory variable, as mentioned
earlier). For illustration purposes, we discuss in details just the identification process for
model M.NS of station S1. In Table 1.4.3 we show the estimated parameters of this
proxy model, i.e., the coefficients of the !(B) polynomial. One should recall that the
explanatory variable for S1 is station S3, as shown in Table 1.4.2.
For the identification of the transfer function we focus, thus, on the !S3

i,j coefficients
illustrated in Table !(B) polynomial. Considering the rules presented in Section 3.2.1,
the orders (bS3

,mS3

, rS3

) are identified as follows:

(a) bS3

= 0, because there is no dead time, i.e., we have no initial null coefficients, as
the first coefficient is !S3

1,0 = 0.7502.

(b) rS3

= 0, meaning that there is no decay pattern in the !S3

i,j coefficients’ values.
According to the theoretical transfer function, ri > 0 if an exponential, sinusoidal,
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etc. pattern is encounter. However, in this case, the values of the !S3

i,j coefficients
decrease, but then slightly increase at the last coefficient !

S3

1,5

.

(c) mS3

= 0 or mS3

= 1; since all coefficients are unpatterned (rS3

= 0), and recalling
that mi = ui+ri�1 with ui denoting all the non-zero unpatterned coefficients, leads
to mS3

= uS3

�1. But out of the six !S3

i,j coefficients, we might say that only the first
or the first two are significantly different from zero. Thus, this leads to the setting of
uS3

= 1 or uS3

= 2, and finally to mS3

= 0 or mS3

= 1. As the identification process
might be rather subjective, we consider several possible models and we validate all
of them, letting the performance measure (i.e., KGE) choose the best option.

The general conclusion is that we have no dead time for none of the explanatory variables,
so bi = 0 for all stations, and we have no decay pattern as well, so ri = 0, for i = {1, ..., l}.
Given that ri = 0 (no pattern), it means that all the parameters are unpatterned, so
mi = ui � 1 , where ui denotes non-zero unpatterned coefficients. In our case-study the
behavior of the unpatterned coefficients is found to be as follows: the first coefficient
(lag-0) is highly significant, the second one (lag-1) is close to zero but possibly significant,
while the remaining four coefficients (lag-2,3,4,5) are non significantly different from zero.
Therefore, we consider worth modeling both options: ui = 1/mi = 0 and ui = 2/mi = 1
(0-lag and 1-lag for each explanatory variable) and choose the best one in the validation
section. The notation used for these models is, thus, M.NS.0lag or M.NS.1lag for the
no-season split models, and M.2S.0lag or M.2S.1lag for the 2-season split ones.

B. Identification of SARIMA

To identify the orders of the SARIMA model, we employ, as indicated in the theoretical
part from Section 3.2.1, the sample ACF and PACF plots. We show in Figure 1.4.1 just
the plots for stations S1 and S2, because they have a different behavior, the remaining
stations being similar to these ones.

For station S1, the proxy model AR(1) is not sufficient, and some correlation is still
present in the residuals up to lag-5 in both ACF and PACF plots. This suggest that an
ARIMA model of order up to (5, 0, 5) should be applied for this case study. In the case
of station S2, beside some correlation at the beginning up to lag-5 or -6, we have also
some significant coefficients at lags multiple of 7, indicating a weekly seasonality, thus a
SARIMA model.

As general conclusion in the SARIMA identification step, it was found that stations S2
and S3 have a weak weekly seasonality. Analyzing in more detail these time series, it was
discovered that the periodicity starts in 1966. We found that in December 1965 a dam was
installed upstream of station S2, called Pont-Baldy, and that the water is retained and
released every week, causing the weekly seasonality. Therefore, we proposed for station S2
and S3 a SARIMA(p, d, q)(P,D,Q)

7

, where d = D = 0 (due to stationary data), p, q  5
and P,Q  1, while for the remaining stations we chose an ARIMA(p, d, q), where d = 0,
p  5 and q  5.

As several models have been estimated and we want to choose only one, the selection of the
(S)ARIMA model is made by looking at the Akaike Information Criterion (AIC, Akaike
(1974)) and the Bayesian Information Criterion (BIC, Schwarz (1978)). Consequently,
Table 1.4.4 shows the best models chosen for each station (AIC and BIC yield the same
result).

One last point we want to address regarding the SARIMA model identification is whether
the models from stations S2 and S3 are multiplicative or additive, considering they also
include a seasonal part. For illustration, we consider the SARIMA(1,0,2)(1,0,1)

7

model
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Figure 1.4.1: ACF and PACF plots of the residuals for stations S1 and S2 after using the initial
proxy model AR(1)

Table 1.4.4: The selected models for the (S)ARIMA part of the dynamic regression model for
the eight station of the Durance watershed

Data Best (S)ARIMA model

S1
all data

ARIMA(1,0,4)cold season
warm season

S2
all data

SARIMA(1,0,2)(1,0,1)7cold season
warm season SARIMA(2,0,2)(1,0,1)7

S3
all data SARIMA(3,0,1)(1,0,1)7

cold season
SARIMA(2,0,2)(1,0,1)7warm season

S4-S8
all data

ARIMA(2,0,2)cold season
warm season
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of the cold season from S2. This model has the following mathematical formulation for
the residuals Zt:

Zt =�1Zt�1

+ �s,1Zt�7

� �
1

�s,1Zt�8

+ et � ✓
1

et�1

� ✓
2

et�2

� ✓s,1et�7
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+ ✓
2

✓s,1et�9

, (1.4.1)

which is equivalent to an ARIMA(8,0,9) where the AR lags of order 2,3,4,5,6 (�
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, ...,�
0
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)
and MA lags of order 3,4,5,6 (✓
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6

) are set to zero. The ARIMA(8,0,9) model formu-
lation is displayed in (1.4.2).
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(1.4.2)

As reported in Suhartono (2011), a multiplicative SARIMA assumes that the parame-
ters related to the non-seasonal and seasonal combination (i.e., parameters �
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from
(1.4.2)) are significant and that they are equal to the multiplication between the parame-
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0

8

±1.96 · �̂
8

). We conclude,
thus, that a multiplicative SARIMA is suited for both S2 and S3 stations.

Model checking. We analyze the errors of the selected models from the Identification step,
and verify if they represent a white noise process (zero mean, finite variance and independent).
Results show that all the models present independent errors, i.e., all p-values of the Ljung-Box
test are near 0.9, mean close to zero and finite variance. To continue our illustrative example
considered earlier, in Figure 1.4.2 we display the errors of the final selected model for stations
S1 and S2. It can be seen that the autocorrelation is not present anymore in the residuals, thus
we can consider these models in the next step of the modeling procedure, i.e., the validation
step.

4.2 Model validation and performance evaluation
To validate and study the performance of our models, we used three different test sets each
containing four years of daily flow data, that is: 1918-1921, 1931-1934 and 2002-2005. One
should recall that the parameters were estimated by data from the 1980-2001 time span.

Regression problems become difficult when the explanatory variables are not available for
the same time span as the response variable, and thus many researchers avoid this approach in
the case of missing data imputation. However, we want to show that even in the case of missing
explanatory variables, regression models can have stable estimates if calibrated accordingly.
Therefore, we take into consideration these two situations:

1. The data for the explanatory variables in the regression are all present (complete-covariates
model).

2. The data for the explanatory variables in the regression are partially or totally missing
(missing-covariates model).

The performance of the models is then compared with a simpler, but common method of recon-
structing missing meteorological data (Bárdossy and Pegram (2014), Hirsch (1979), Wallis et al.
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Figure 1.4.2: ACF and PACF plots of the residuals for stations S1 and S2 after using the
selected (S)ARIMA models

(1991)), the nearest-neighbors technique (NN). This method allows the infilling of missing data
for a station by taking information from neighbor stations (transferred directly or weighted).
For this study, we use as neighbors the explanatory variables initially selected for the regression
part of our full model with all data (see Table 1.4.1). The missing values of the target station
are obtained by weighting the neighbor station(s) with the ratio of daily mean flow of the target
station over the daily mean flow of each neighbor.

Beside the NN, we also use also for comparison continuous streamflow time series over the
1904-2010 period, obtained from meteorological data reconstruction (ANATEM method, see
Kuentz (2013), Kuentz et al. (2013))) and rainfall-runoff (RR) modeling. More specifically,
this reconstruction approach is based on a combination of large scale climatological variables
(atmospheric pressure fields) and regional scale measurements (observed precipitation or air
temperature data). Then, the reconstructed climatological time series are transferred in a
rainfall-runoff model, allowing the computation of the streamflow simulations.

To demonstrate the reliability of our estimations, we end this section with the performance
results of the estimated models on simulated data.

4.2.1 Validation of complete-covariates model

The accuracy of the models is investigated through the KGE criteria described in Section 3.2.2.
The results are illustrated in Table 1.4.5.

One important aspect that must be emphasized with respect to the KGE criteria results, is
that they are rather consistent in the model choice over the three test sets. That is, although in
the parameters estimation step we used only 22 years, the models behave the same according
to KGE at the beginning or middle part of the 107 years time span. One exception has to be
noticed at station S2, where for the period 2002-2005 the M.2S.0lag model is selected by KGE,
while for the other two periods, the M.2S.1lag model resulted to be the best, but the two KGE
values are close to each other, i.e., KGE = 0.946 for the M.2S.0lag and KGE = 0.933 for the
M.2S.1lag.
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Table 1.4.5: KGE results for the validation of the test-period 1918-1921, 1931-1934 and 2002-
2005 for the complete-covariates models and the two alternative methods of infilling, NN and
ANATEM-RR

S1 S2 S3 S4 S5 S6 S7 S8
Period 1918-1921

M.NS.0lag 0.778 0.763 0.879 0.627 0.857 0.685 0.845 0.787
M.2S.0lag 0.863 0.873 0.935 0.764 0.835 0.713 0.844 0.794
M.NS.1lag 0.827 0.795 0.886 0.712 0.812 0.744 0.902 0.751
M.2S.1lag 0.866 0.890 0.941 0.811 0.786 0.776 0.893 0.784

NN 0.926 0.904 0.656 0.652 0.702 0.724 0.815 0.522
ANATEM-RR 0.751 0.627 0.871 0.593 0.770 0.730 0.561 0.220

Period 1931-1934

M.NS.0lag 0.839 0.826 0.761 0.664 0.722 0.651 0.749 0.722
M.2S.0lag 0.910 0.914 0.823 0.833 0.635 0.671 0.740 0.741
M.NS.1lag 0.888 0.856 0.767 0.733 0.662 0.705 0.796 0.691
M.2S.1lag 0.912 0.923 0.838 0.871 0.591 0.729 0.777 0.734

NN 0.897 0.769 0.907 0.743 0.543 0.519 0.793 0.410
ANATEM-RR 0.861 0.831 0.707 0.731 0.516 0.773 0.495 0.261

Period 2002-2005

M.NS.0lag 0.718 0.898 0.853 0.769 0.780 0.636 0.809 0.850
M.2S.0lag 0.804 0.946 0.919 0.905 0.724 0.673 0.810 0.890
M.NS.1lag 0.769 0.930 0.858 0.859 0.709 0.694 0.870 0.809
M.2S.1lag 0.812 0.933 0.931 0.936 0.672 0.743 0.867 0.876

NN 0.774 0.694 0.885 0.839 0.587 0.591 0.769 0.805
ANATEM-RR 0.823 0.873 0.880 0.889 0.755 0.829 0.804 0.706
1

Legend:

bold-red = best model out of the four estimated models;

bold-square = cases when NN or ANATEM-RR performs better compared to our

best-case model for each station;

2
Notation:

M.NS.0lag / M.NS.1lag = no-season split model with 0-/1-lag for each explanatory

variable

M.2S.0lag / M.2S.1lag = 2-season split model with 0-/1-lag for each explanatory

variable
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First, the results show that six stations, i.e., all stations from upper Durance (S1-S4) and
two stations from middle Durance (S6, S7), are better fitted by a model that includes 1-lag for
the explanatory variables, while only two stations from middle Durance (S5, S8) work better
with models that have 0-lag terms. The results are coherent when looking at the hydrological
regimes and the characteristics of the stations. These stations (S1-S4, S6, S7) are situated at
a high altitude and have mainly a regime influenced by snowmelt and low temperature, so it is
probable that some delay may appear for the flow. Considering station S5 and S8, the absence
of lags is due to the fact that the watershed has a small drainage area (S5) or is characterized
by a lowland basin (S8).

Second, for some stations (S1-S4, S6, S8) the models with 2-season split are selected, while
for the others (S5, S7) the ones with no-season split. There is no clear hydrological explanation
for this behavior. It is to be noted that we only look at some characteristics, like hydrological
regimes, watershed surface and altitude, however, we can have other influential factors that
may drive these two stations.

In Table 1.4.6, one can find a summary of the selected models for each station, along with
their estimated parameters.

The superiority of our approach is emphasized when comparing the KGE results of the pro-
posed models with the ones from the two approaches mentioned earlier, NN and ANATEM-RR.
The results reveal that, except for some isolated cases (three for NN and three for ANATEM-
RR), our approach performs better. An important aspect that must be highlighted is that with
DRM the efficiency of the models measure with KGE is never lower than 0.72, while NN and
ANATEM-RR, due to lack of robustness, reduce up to a level of 0.41 and 0.22, respectively, as
seen in Table 1.4.5.

An illustration of the reconstructed series (considering the best DRM for each station)
versus the observed one for the period 2002-2005 is shown in Figure 1.4.3, along with the 95%
confidence intervals. One can notice that the reconstructions of stations S1, S4 and S5 do not
reproduce entirely the peak flows, but the recessions are good. Stations S2 and S3 catch very well
the peaks, but the weekly fluctuations (stronger at S2, see zoomed areas (a) and (c) in Figure
1.4.3) decrease in estimation performance for the long term reconstructions (see zoomed sectors
(a) and (b)). Regarding the other stations, S6 and S7 have mainly well-modeled reconstructions,
while station S8 shows some overestimated peaks. These aspects should be further studied and
addressed in a future research. Same conclusion can be drawn for the other two periods.

4.2.2 Validation of missing-covariates model

We discussed in Section 4.2.1, that there are cases when the complete-covariates model from the
previous section cannot be applied as the data for the explanatory variables are missing. The
purpose of this section is to test how the proposed models behave in this case. Therefore, in
order to be able to apply the estimated (complete-covariates) models, we have to "temporary
replace" the missing values of the explanatory variables with some "temporary estimates".
Thus, we use for these "temporary estimates" the weighted values from the correlated-neighbor
stations (i.e., same procedure as in the case of NN estimation, presented at the beginning of
Section 4.2). When all the covariates are missing, so we have no correlated-neighbor stations,
we use the daily mean (mean of the non-missing values for a certain day for that station).

In order to validate this procedure we take the best models selected for the complete-
covariates model study (see Table 1.4.6). Then, for each station at a time, we overlay on
each test set (i.e., 1918-1921, 1931-1934, 2002-2005) the pattern of missing values from two
periods, 1904-1907 (denoted Scenario 1) and 1951-1954 (denoted Scenario 2). The advantage
of this procedure is that we created two scenarios with missing input-variables, but we have
also the observations in order to test the accuracy. For having the best possible output, we
proceed first with the stations with the most complete set of explanatory variables, finishing
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Figure 1.4.3: Daily streamflow estimations versus observations for period 2002-2005 in the case
of a complete-covariate model, for the eight stations in the Durance watershed. We show also
three zoomed areas (a), (b) and (c).

the reconstruction with the station with the least complete model.
As it was seen in Section 4.2.1, the proposed technique of reconstructing streamflow data

yields very good results when all input variables are available (complete-covariates model),
surpassing the performance of more complex models like ANATEM-RR. However, the KGE
criteria results for the missing-covariates models in Table 1.4.7 show that by replacing the
missing values in the input-variables with the weighted values from the correlated neighbors or
with the daily mean, we slightly decrease in performance, but, overall, the KGE is still above
0.5.

To better understand the results, we take one case and examine it in more details, i.e, we
focus on the estimation period 2002-2005, Scenario 2 (i.e., results from the last two rows in
Table 1.4.7). According to our reconstruction procedure for the missing-covariates models, we
start with the stations with the most complete set of explanatory variables, so in this case we
have the order {S4, S2, S3, S1, S5, S7, S6, S8}. We give below a short explanation for each
station:

• for stations S2 and S3 (which have as explanatory variables stations S1 and S4), except the
only one point where S1 is missing, the models are estimated with a complete-covariates
model. This explains why the KGE results are the same in the complete- and missing-
covariates models.

• station S5 (which has as explanatory variables stations S4 and S7) is not affected in
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Table 1.4.7: KGE results for the validation of the test-period 1918-1921, 1931-1934 and 2002-
2005 for the missing-covariates models (results shown only for the best-case complete-covariates
models). The number of missing values for each scenario and each station is indicated in the
lines #NAs.

S1 S2 S3 S4 S5 S6 S7 S8
Period 1918-1921

Scenario 1 0.866 0.890 0.941 0.811 0.857 0.679 0.753 0.674
#NAs 1461 0 0 0 0 731 1311 1461

Scenario 2 0.866 0.890 0.941 0.811 0.726 0.702 0.799 0.688
#NAs 1 731 1461 0 730 1096 1461 517

Period 1931-1934

Scenario 1 0.912 0.923 0.838 0.871 0.722 0.654 0.553 0.542
#NAs 1461 0 0 0 0 731 1311 1461

Scenario 2 0.912 0.923 0.838 0.871 0.688 0.595 0.650 0.570
#NAs 1 731 1461 0 730 1096 1461 517

Period 2002-2005

Scenario 1 0.812 0.933 0.931 0.936 0.780 0.670 0.715 0.673
#NAs 1461 0 0 0 0 731 1311 1461

Scenario 2 0.811 0.933 0.930 0.936 0.780 0.696 0.717 0.788
#NAs 1 731 1461 0 730 1096 1461 517
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Figure 1.4.4: Daily streamflow estimations versus observations for period 2002-2005 in the
case of a missing-covariate model, when Scenario 2 (overlay period 1951-1954) is taken into
consideration

performance by the fact that its second explanatory variable (i.e., S7) was temporary
replaced by the weighted NN.

• stations S6, S7, S8 have explanatory variables that either were reconstructed earlier above,
or that are missing. This explains the decrease in KGE criteria compared to the complete-
covariates model.

In Figure 1.4.4 we illustrate the daily streamflow observations versus estimations for stations
S5 to S8 when considering the model with missing-covariates. For a more clear overview of
the different behavior of the complete- and missing-covariates models, we include also in these
plots the estimates from the complete-covariates model. We do not present the plots for S1 to
S4 because in Scenario 2 they are estimated with the complete-covariates model, so we already
have these outputs in Figure 1.4.3.
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Figure 1.4.5: Boxplots of the estimated parameters on simulated data for station S7, based on
50 replicates. The true values of each parameter are represented by horizontal red lines.

4.2.3 Validation on simulated data
In Section 4.2.1 and Section 4.2.2, we validate our DRMs using a deterministic procedure, thus
providing a unique KGE value for each model and station. However, as the used infilling models
are stochastic by nature, a single run of the model might not provide enough information about
the KGE. Therefore, it is recommended to run the model several times and treat the KGE as
a random variable.

In this case, we simulate daily streamflow data for the eight stations for the period 2002-
2005. For each station, we start by randomly generating nsim (nsim = 50) different white
noise sequences for the error terms (et in (1.3.1b)) and used them, along with the already esti-
mated (S)ARIMA parameters (see Section 4.1), to create nsim residuals series (Zt in (1.3.1b)).
Then, using the explanatory variables (from the observed daily streamflow series, period 2002-
2005) and the previously estimated regression parameters, we performed nsim daily streamflow
simulations (denoted simi, i = 1, ..., nsim).

Afterwards, considering simi, we estimate the parameters of each simulated series following
the same modeling procedure as in the case of observed streamflow. Then, we compute the
fitted values of each series (denoted fiti, i = 1, ..., nsim). The performance of each estimation
is computed with KGE, between fiti and simi data. We discuss and illustrate just the results
for the model M.NS.1lag, the other models having similar interpretations.

In Figure 1.4.5, we display the boxplots of the estimated parameters over the nsim = 50
simulations for station S7 (similar behavior is noticed for the other stations), and we show
also the true value of these parameters. The general conclusion that can be drawn is that
the parameters of the ARIMA model have a higher variability compared to the ones from
the regression model. However, both ARIMA and regression models seem to provide good
parameter estimates over the 50 simulated series.

The validation methodology for the simulated data is similar to the one used in Section 4.2.1
and Section 4.2.2 when we worked with observed daily streamflow data. On the top plot of
Figure 1.4.6, the validation of the complete-covariates model on simulated data shows that we
have a very good performance in the upper Durance (average KGE above 0.99 and variability
smaller than 0.002) and a slightly smaller one in middle Durance (average KGE above 0.96
and variability smaller than 0.003), behavior that, in fact, reinforces the statements from the
validation on observed data. On the bottom plot of Figure 1.4.6, the validation for the missing-
covariates model is illustrated for the two scenarios mentioned in Section 4.2.2. Attention must
be paid when analyzing these plots because the two scales are very different. Once again, it is
shown that we decrease in performance when we replace the missing input variables with the
weighted values of the correlated neighbors, but the average KGE remains, mainly, above 0.5.

Finally, the reconstructed series for the eight stations are illustrated in Figure 1.4.7. The
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Figure 1.4.6: Boxplots of the KGE for the 50 simulations: top-plot illustrates the results for
the complete-covariates model; bottom-plot illustrates the results for the missing-covariates
model for both scenarios (Scenario 1=overlay periods 1904-1907 and Scenario 2=overlay period
1951-1954)

Table 1.4.8: Summary regarding the use of complete-covariates model in the Durance daily
streamflow reconstructions

S1 S2 S3 S4 S5 S6 S7 S8

Total NAs # 9217 4900 5903 1207 3340 5473 9711 7067

Reconstructions

using C-CM

# 9188 2937 5604 378 904 973 758 1345

% 99.69 59.94 94.93 31.32 27.07 17.78 7.81 19.03

reconstructions show once more that in case of an infilling using the complete-covariates model
(all covariates are present) the estimations are very good (see stations S1, S2, S3) and they
slightly decrease in performance when we deal with missing explanatory variables in the model,
see the case of the stations from the middle Durance (S5, S6, S7, S8).

To have a more clear overview, we provide in Table 1.4.8, for each station, a summary
regarding the total number of missing values (NAs) and how many reconstructions (values)
were estimated using the complete-covariates model (that we will denote here C-CM). We can
see that while station S1 was almost 100% reconstructed with a complete-covariates model,
station S7 used for more than 90% of the cases the missing-covariates model.

Remark 1.4.1. The computations were performed with the R Software, using the packages:
stats (general-main computations), iki.dataclim (homogeneity tests), cluster (PAM exploratory
analysis), tseries (stationarity analysis) and forecast (DRM fit and prediction).
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Figure 1.4.7: Daily streamflow reconstructed series of the eight stations of the Durance water-
shed





Chapter 5

Discussions, conclusions and

perspectives

5.1 Discussions and conclusions
Complete records of flow data are very important and critical to a sustainable management of
water resources. During the past decades researchers have developed techniques to reconstruct
these series using a variety of methods such as linear and nonlinear models, parametric and
non-parametric approaches, etc.

In this study we reconstruct daily streamflow data by using dynamic regression models.
This method uses the linear relationship between the correlated stations at different lags and it
adjusts the residuals by fitting a (S)ARIMA model. Unlike previous studies that address either
the inclusion of multiple explanatory variables or the modeling of the residuals from a simple
linear regression, the use of DRMs allows to take into account both aspects, and thus improves
the performance of the model. Moreover, by applying this technique we managed to reconstruct
the data without making use of additional variables, such as precipitation, like other models
require.

We employ this approach for reconstructing data from the Durance watershed, one of the
most important river in southern France. This watershed is characterized by a variety of
hydro-climatic processes and it is defined by its many water-related uses, especially for EDF,
the administrator of the Durance-Verdon hydroelectric facilities. The Durance watershed offers
many purposes like hydropower generation, irrigations, water supply for cities like Marseille
and Aix-en-Provence, streamflow regulation, or tourism near the lakes.

Our case study involves the eight hydrometric stations of the Durance watershed that has
the longest data availability (1904-2010). The conclusion shows that dynamic regression models
outperform two other modeling approaches, nearest neighbor technique and a more complex
meteorological model (ANATEM-RR). When measuring the accuracy of the estimates, it has
been proven that the choice of the model is highly dependent on the station’s characteristic
and hydrological regimes and no generalization can be made for all stations. In other words,
we have that for all the stations from upper Durance, the dynamic regression model with 1-lag
explanatory variables and 2-season performs best, while for the middle Durance, as the stations
have different hydrological regimes, we have selected models with or without past lags included
and with or without seasonal split.

An extended model validation study has showed that, even if there are missing explanatory
variables (partially or completely) in the regression, the selected models can perform well. More
specifically, in this case the missing parts of each explanatory variable are replaced with the
weighted measurements from the correlated neighbor stations or with the daily mean (mean of

49
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the non-missing values for a day for that station) when all explanatory variable are missing.
In conclusion, we introduced in this study a method for reconstructing hydrological data that

is very general, flexible and requires only streamflow data. Moreover, this model can reconstruct
data with missing intervals of various length (from several to thousands of observations) in a
short run-time period. Apart from this, our study has been conducted on a large watershed
characterized by several hydrological regimes and various data quality issues, providing thus a
complex and reliable imputation technique.

5.2 Perspectives
While we managed to attain an accurate reconstruction of the Durance daily streamflow data, a
lot of research and development is still required in this area. One important aspect that requires
improvement is the case when the explanatory variables from the regression are missing. We
have seen in the case study that a temporary replacement of these missing values with the
weighted nearest neighbors observations or with the daily mean, produce less variability in
those parts of the time series. This issue has a great impact in the analysis of extreme events.
Therefore, a more robust method should be used in this case, so that the variability of the time
series is preserved.

Also, a supplementary analysis of this work, could comprise a comparative study of different
streamflow imputation methods. Since we have taken into consideration just two benchmark
models, the DRM’s efficiency in reconstructing streamflow data could be emphasized more
clearly by examining other imputation models reported in the literatures. Moreover, the com-
parison should be based not only on the overall model performance (e.g., KGE measure), but
also on particular aspects such as, the performance of the models in the case of different lengths
of missing interval, or the computational time required for the calibration and the reconstruc-
tion.

In addition to this, based on the results obtained for the Durance watershed, it is interesting
to consider reconstructing the data from other types of watersheds, e.g., from other regions with
new hydrological regimes. Also, the flexibility offered by the dynamic regression models makes
them a valid candidate in applications related to the reconstruction of other variables, such as
precipitation or temperature.

Finally, this reconstruction technique has been applied to a dataset composed of eight hy-
drometric stations. However, for larger datasets, such as tens or even hundreds of stations,
it becomes impractical to individually calibrate each station’s DRM. Therefore, it would be
interesting to define some standard parameterization on subsets of homogenous time series.
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Chapter 1

Introduction

M odeling heavy-tailed distributions is a difficult task and very often the values in the bulk
of the distribution are disregarded in order to better fit the tail. Improvements have been

made in this sense and, recently, a new class of distributions suited for rainfall data called
extended generalized Pareto distribution (EGPD) was introduced by Naveau et al. (2016). This
approach is very appealing as it models the entire range of data and does not require the selection
of a threshold, unlike many extreme mixture models. Our aim in Part II of this manuscript is
to add more flexibility to the EGDP class in order to improve their behavior for the bulk, while
maintaining the EVT behavior of the tails. We start by giving a background on heavy-tailed
distributions and precipitation modeling in Section 1.1 and Section 1.2, respectively. Section
1.3 is dedicated to a brief overview of Extreme Value Theory and to the theoretical aspects
regarding the EGPD class.

1.1 Heavy-tailed distributions

Heavy-tailed distributions have been used to model phenomena in various fields, such as insur-
ance, finance, environmental sciences, computer and communications networks, among others.
Several application examples can be found in Embrechts et al. (1997), Coles (2001) and Castillo
et al. (2005).

The traditional theory is more focused on the body or bulk of a distribution, the tails being
often disregarded. Ignoring these observations can only lead to a biased estimation. Thus,
special methods are required in order to accurately analyze the heavy-tailed distributions. The
study of these distributions is different from a classical distribution analysis, mainly due to
some special characteristics like sparse observations in the tail, or a decay to zero slower than
an exponential.

Generally, two main methods are reported in the literature for modeling extreme tail behav-
ior, i.e., the probability of exceeding a high value: i) block maxima (maximum values selected
from sequences of data), and ii) peak over threshold (values larger than a threshold). The block
maxima are modeled by a generalized extreme value distribution (GEV), while the peak over
threshold by a generalized Pareto distribution (GPD). More details regarding these distributions
are provided in Section 1.3.1.

However, sometimes it is necessary to evaluate the heavy-tailed distributions as a whole, so
we are interested not just in the tails or the bulk of the distribution, but on both. Experience of
modeling shows that models that estimate well the bulk, do not provide a good fit for the tails,
and vice-versa. Moreover, the estimation becomes even more complicated if the distributions
are multimodal.
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Several studies reported in the literature deal with the issue of modeling the entire range
of heavy-tailed data. In the following, we offer a review of the methods by classifying them in
two main groups: mixture models and transformed-retransformed models.

1. Mixture models
This type of models have been intensively studied lately and they are frequently referred to
as extreme value mixtures. The main idea behind these models is to join the distribution
that fits well the bulk (parametric, semiparametric or nonparametric) with the one that
fits well the tail (usually a GPD).
The work presented in Frigessi et al. (2002) suggests a dynamic weighted model by mixing
a Weibull distribution for the bulk with a GPD for the tail. The threshold, i.e., the joint
point of the two distributions, is defined dynamically by means of a weight function. This
model has the advantages of no threshold selection, and offers a smooth transition at the
junction point of the Weibull and the GPD. However, the inference of the model is not
that straightforward and problems may appear especially for the estimation of the GPD
shape parameter.
In Behrens et al. (2004) another mixture model that does not require threshold selection
is introduced. More specifically, the threshold is considered a parameter that has to be
estimated. The bulk of the mixture could be any distribution, such as Weibull, gamma,
normal, etc., and the tail is a GPD. Unfortunately, this model has a discontinuity point
at the threshold. Similar approaches can also be found in Mendes and Lopes (2004), Zhao
et al. (2010).
The problem of density discontinuity was solved later in the work proposed by Carreau and
Bengio (2008). This mixture model, called hybrid Pareto, stitches a normal distribution
with a GPD, while enforcing the continuity of the density and of its first derivative. More
exactly, the threshold is computed implicitly as a function of the mixture parameters.
Nevertheless, the hybrid Pareto model did not perform satisfactory in practice. This
aspect was addressed by an improved version presented in Carreau and Bengio (2009),
where a mixture with hybrid Pareto components was proposed. This new approach is a
conditional density estimator and it can handle all types of distributions: asymmetric,
heavy-tailed or multimodal.
We have pointed earlier that often the distribution under study is multimodal, so a single
distribution, such as normal, gamma, etc, is not enough to model the body of the distri-
bution. Studies like do Nascimento et al. (2011), Lee et al. (2012) take into consideration
a k-component mixture model for the main body of the distribution. Problems might
appear in this case in the inference, as the number of parameters is increasing.
The need to effectively describe a complex-multimodal data structure, but at the same
time avoid the estimation of a high number of parameters, resulted in the appearance of
nonparametric density estimators. Unlike parametric models, nonparametric estimators
do not make any prior assumption about the distribution under study and take into
consideration just the information from the data.
Among the most known nonparametric estimators (e.g., histogram, projection, kernel es-
timator, as pointed in Markovich (2007)), the most popular is kernel because it provides
attractive statistical properties, i.e.,. continuity, or the fact that it is a proper density
function. Kernel density estimator can be viewed as an extreme end or special case of
finite mixture models, in which the n components in the mixture have equal proportion
1/n, where n is the size of the data. Unfortunately, even though this model adds more
flexibility in the estimation, issues might appear at the estimation of heavy-tailed distri-
butions because a unique smoothing parameter is not sufficient to also catch the sparse
observations from the tails.
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There are studies reported in the literature, e.g., Devroye and Györfi (1985), Silverman
(1986), regarding an improved kernel estimator for long tail distributions, namely the
variable bandwidth kernel estimator, i.e., it includes multiple degrees of smoothing. Nev-
ertheless, even though different bandwidths are considered for the body and the tails, the
fact that the kernel function has a bounded support will provide a more biased estimation
in the unbounded tail domain. Another interesting approach is provided by MacDonald
(2011), MacDonald et al. (2011a,b), where the advantages of a parametric tail model and
the flexibility of nonparametric estimators for the body are combined. The proposed mix-
ture model is based on combinations between kernel density estimator and GPD (for one
or both tails). This model is attractive, flexible, and has less parameters, but it has an
increased boundary bias and it is complex from a computational point of view.
More recently, researchers focus on a similar approach to the variable kernel estimator, but
based on sparse linear combinations of density basis functions. The general idea of this
approach is that, in a high dimensional mixture model (high number of components), it is
believed that this representation is sparse, i.e., just few mixture proportions are different
from zero. There are not many studies on this topic, however we want to mention the work
of Bunea et al. (2010), where the authors consider a sparse mixture of normal densities
with pre-set location and scale parameters. Under some identifiability conditions, this
model becomes very flexible and requires only the estimation of the mixture proportions.
However, this study does not contain any information about the behavior of the estimator
in the case of heavy-tailed data. We provide more details about the topic of sparse mixture
models and how the sparsity is recovered in Chapter 3.

2. Transformed-retransformed models
Transformed-retransformed models provide a different way of modeling heavy-tailed dis-
tributions. This approach consists of, firstly, transforming the data via a continuous,
monotone and increasing function and, then, the transformed data are approximated by
a nonparametric estimator. The idea of this methodology is to provide different smooth-
ing for different parts of the distribution, but at the same time to keep a bounded support
for the nonparametric estimator.
Therefore, besides the choice of the nonparametric estimator, a very important point is
the choice of the transformation function. As mentioned in Markovich (2007), there are
two main groups of transformation functions:

(a) fixed transformations
This type of transformations do not require any information about the distribution
under study. A very simple and commonly used transformation function is the
logarithm. Other examples include the use of a trigonometric function, such as the
one displayed in (2.1.1) and used in the work of Markovich (2007), or a parametric
one as shown in (2.1.2) and applied by Markovitch and Krieger (2000), Wand et al.
(1991), Yang and Marron (1999).

T (x) =
2

⇡
arctan(x) (2.1.1)

T (x) =

(

x�sgn(�), � 6= 0

ln(x) � = 0
(2.1.2)

Here � denotes the parameter of the function and sgn(·) represents the sign function,
i.e., it extracts the sign of a real number.
Generally, the heavy tail of the distribution cannot be accurately estimated if no
prior assumption is made about it during the transformation.
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(b) adaptive transformations
A more flexible estimation is given by the adaptive transformations. If any infor-
mation about the behavior of the distribution is known, this knowledge should be
included in the transformation process, and thus, further improve the nonparametric
estimation and the overall performance. There are several studies, with application
in finance, that take a cumulative distribution function (cdf) as an adaptive transfor-
mation, i.e., Buch-Larsen et al. (2005), Buch-Kromann et al. (2007), Bolancé et al.
(2008) or Alemany et al. (2013). These studies mainly consider transformations
based on Champernowne (see Champernowne (1953)) or log-normal distributions.

1.2 Rainfall modeling

The stochastic modeling process of rainfall data has two components: a discrete distribution of
rainfall occurrences (sequence of dry and wet days) and a continuous one of rainfall amounts
(amount of water on each wet day). We are interested for this work just in the statistical
modeling of wet days, that is the nonzero rainfall data.

Since rainfall amounts are heavily skewed to the right, distributions like Weibull (Zucchini
and Adamson (1984)), exponential or mixture of exponentials (Garavaglia et al. (2010), Richard-
son (1981), Wilks (1999), Woolhiser et al. (1979)), lognormal (Apipattanavis et al. (2007)),
gamma (Katz (1977), Stern and Coe (1984), Wilks (1989, 1999)), or a power transformation
to normality (Katz and Parlange (1995)) have been used to model precipitation. According to
Vrac et al. (2007) and Wilks (2011) the most common choice, though, is a gamma distribution.
However, as pointed out by Katz et al. (2002), the tail of a gamma distribution can be too light
for rainfall amounts and underestimation can occur.

To solve this issue and to improve the fit of the right tail, many researchers become interested
only in the largest rainfall amounts and thus, they use the popular framework of Extreme Value
Theory (EVT), more exactly the GPD to model the tail. Numerous promising studies can be
found in this area, for example the work of Katz et al. (2002), Nadarajah (2005), Cooley et al.
(2007). One immediate drawback of this approach is the need of a threshold selection (the
limit of large rainfall) which is still a delicate task in the field of EVT. These models take into
consideration only extreme precipitation and provide no indication of the behavior of the bulk
of the data. Therefore, a different distribution must be found for the remaining observations
(under the threshold) and stitched with the GPD distribution of the tail in order to have a
unified model of the entire range of precipitation amounts.

In the previous section several such extreme mixture models were developed and applied in
many fields involving extreme events. One interesting extreme mixture model reported in the
field of precipitation modeling is the work of Furrer and Katz (2008), where a hybrid model
based on a mixture of gamma and GPD distributions is presented. An important advantage
of this model is that it accounts for the continuity at the jointure point (i.e., threshold) by
adjusting the scale parameter of the GPD.

Also, Vrac and Naveau (2007) applied the dynamic weighted model suggested by Frigessi
et al. (2002), but with a gamma distribution instead of a Weibull. Unlike the previous extreme
mixture models, this model does not require a threshold selection, but instead the threshold
is defined dynamically by means of a weight function. This model is designed to weight more
the gamma distribution for low-intensity values and the GPD for high values. The results show
that the inference is not that straightforward, especially regarding the GPD shape parameter.
Moreover, the number of parameters is high.

A more recent approach has been introduced by Naveau et al. (2016). The aim of this
method is to model the entire precipitation range, without using parametric mixture models
that can increase the number of parameters and also to bypass the threshold selection. The
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proposed solution is to use an extended version of GPD. This approach provides a smooth
transition between the tails and the bulk of the distribution. A more detailed description of
this model is given in Section 1.3.2.

1.3 EGPD in the EVT framework
EGPD is a statistical model in which EVT is applied in both left and right tails, allowing a
smooth transition between the two ends. We start by providing in Section 1.3.1 some key points
regarding EVT and then, in Section 1.3.2, we illustrate the theoretical background behind the
EGPD class.

1.3.1 Extreme value theory
As presented in Coles (2001), two different approaches exist for extreme value analysis:

• block maximum
It involves modeling the maximum values of a sequence, e.g., a year, and it is modeled
with a Generalized Extreme Value (GEV) distribution.

• peaks over threshold
It relies on the modeling of the values above a threshold, and it is modeled by a GPD.

Let X
1

, X
2

, ..., Xn be a sequence of n i.i.d. variables with common marginal distribution
function F . The distribution of maximum values Mn, i.e., Mn = max{X

1

, X
2

, ..., Xn}, is given
by (2.1.3).

P(Mn  z) =P(X
1

 z,X
2

 z, ..., Xn  z)

=P(X
1

 z)...P(Xn  z)

=Fn(z)

(2.1.3)

In practice, the distribution function F is unknown, so (2.1.3) cannot be directly applied to
model Mn, but the Fisher–Tippett–Gnedenko Theorem (Fisher and Tippett (1928), Gnedenko
(1943)), stated below in Theorem 2.1.1, provides an asymptotic result, as n ! 1.

Theorem 2.1.1. Let X
1

, X
2

, ..., Xn be a sequence of n i.i.d. variables with a common marginal
distribution function F , and Mn = max{X

1

, X
2

, ..., Xn}. If there exists a sequence of real
numbers (an, bn) such that an > 0, then

lim
n!1

P
✓

Mn � an
bn

 z

◆

= lim
n!1

Fn(anz + bn) = G(z),

where G is a continuous distribution function, belonging to either the Gumbel, the Fréchet or
the Weibull family.

These three families can be grouped into a single distribution called the generalized extreme
value (GEV) distribution, which has the cumulative distribution function

G(z) = exp

8

<

:

�
 

1 + ⇠
0 z � µ

0

�0

!� 1

⇠

0

+

9

=

;

. (2.1.4)

Here, y
+

= max(0, y), µ
0 2 R is the location parameter, �

0
> 0 the scale parameter and ⇠

0 2 R
the shape parameter.
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As discussed in Coles (2001), a block maxima approach, can be wasteful. As the number
of extreme values is very small by definition, by selecting just the maximum of a block we
restrict even more the information given by the data. It is natural to take as extreme values
the observations Xi that exceed some high threshold u. Considering this, an extreme event can
be characterized by the conditional probability presented in (2.1.5).

P(X > u+ y|X > u) = 1�F (u+y)
1�F (u) , y > 0 (2.1.5)

Going further, it was shown (Coles (2001)) that, for a large u, the distribution of the variable
X�u, conditional on X > u can be approximated by a family of distributions called Generalized
Pareto distributions, recalled in Theorem 2.1.2.

Theorem 2.1.2. Let X
1

, X
2

, ..., Xn be a sequence of n i.i.d. observations of a random variable
X, the excesses X �u of an enough high threshold u can be well approximated by a Generalized
Pareto distribution, defined as:

H⇠(x) =

(

1� �

1 + ⇠ x�u
�

�� 1
⇠

+

, ⇠ 6= 0

1� exp(�x�u
� ), ⇠ = 0,

(2.1.6)

for x > 0 and y
+

= max(0, y). Here � = �
0
+ ⇠(u�µ

0
) and ⇠ = ⇠

0 2 R, are the scale and shape
parameters, respectively, and µ

0
,�

0
and ⇠

0
are given in (2.1.4).

The shape parameter ⇠ describes the GPD tail behavior:

• if ⇠ < 0: bounded upper tail,

• if ⇠ = 0: light-tailed (exponential distribution),

• if ⇠ > 0: heavy-tailed.

1.3.2 Extended generalized Pareto distribution

The excess over a threshold u (large values) of a random variable X can be approximated by a
GPD, that is:

P(X > x|X > u) = 1�H⇠(x) = H̄⇠(x), (2.1.7)

where H⇠ is defined in (2.1.6).
As we are interested in modeling rainfall amounts, it is assumed that non-zero rainfall data

have either an exponential tail (⇠ = 0), or a heavy tail (⇠ > 0); assumption that according to
Katz et al. (2002), appears to be satisfied in practice by most rainfall datasets.

On the other hand, the left side of the distribution, that is the lower tail, can be regarded
as well as an extreme value distribution, but this time by considering the minimum values. So,
instead of looking at the random variable X, we look now at Y = �X. The largest negative
values can be approximated by a GPD with a negative shape parameter, say �1/ for some
 � 0 and scale parameter �. This translates to

P(Y > �x|Y > �u) = 1�H�1/(x) = H̄�1/(x), (2.1.8)

where H̄�1/(x) =
�

1� 1


�x+u

�

�.
As the upper limit of Y is zero, the threshold u has to be chosen so that H̄�1/(0) = 0,

leading to the constraint u = �. By replacing u in (2.1.8) with this constraint, we have

P(Y > �x|Y > �u) = ( x
� )

 = (�)� · x = cx, for any small x � 0. (2.1.9)
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Combining (2.1.7) and (2.1.9), we have the following tails behavior

P(X  x) =

(

H⇠(x), for any large x

cx, for any small x � 0.
(2.1.10)

We can notice from (2.1.10) that the gamma density, defined in (2.1.11) and commonly used
in rainfall modeling, is suitable for the small values, but it does not represent correctly the large
ones, and the contrary happens for GPD.

g(x) =
�↵

�(↵)
x↵�1e��x (2.1.11)

In order to build a full model such as (2.1.10), Naveau et al. (2016) related this problem to the
idea introduced by Papastathopoulos and Tawn (2013) regarding generalized Pareto extensions.
More specifically, this latter work proposed an extension to the GPD by incorporating into the
model an additional parameter that allows the modeling of the bulk of the distribution. The
idea comes from the fact that, any continuous random variable X can be generated by applying
its inverse cdf to some uniform random draws U . That is, a generalized Pareto (GP) random
variable is generated via

X = �H�1

⇠ (U), (2.1.12)

where U is a uniform random variable on the unit interval, and H�1

⇠ is the inverse cdf of GPD.
As shown in Papastathopoulos and Tawn (2013), a simple way of introducing flexibility

into this simulation is to replace the draws U from (2.1.12) with V = G�1(U), where G is a
continuous cdf on the interval [0, 1]. This leads to

X = �H�1

⇠

�

G�1(U)
 

. (2.1.13)

Therefore, (2.1.13) leads to the following formulation of the extended generalized Pareto cdf
and pdf

F (x) = G {H⇠(x)} ,
f(x) = g {H⇠(x)}h⇠(x).

(2.1.14)

Here, h⇠(x) and g(·) denote the densities of GPD and G, respectively.
Naveau et al. (2016) adapted the EGPD class of models from (2.1.14) for the entire range of

rainfall amounts. In fact, this adaptation is defined by finding a suitable G function, such that
the behavior of the tails from (2.1.10) is maintained, that is lim

x!1

¯F (x)
¯H
⇠

(x)
and lim

x!0

F (x)
x

should be
finite and positive. As shown in Naveau et al. (2016), three constraints must be imposed on
the function G:

C1). lim
v!0

¯G(v)
v = c

1

, C2). lim
v!0

G{v!(v)}
G(v) = c

2

, C3). lim
v!0

G(v)
v

= c
3

, (2.1.15)

for some finite and positive numbers c
1

, c
2

, c
3

.

Remark 2.1.1. Constraint C2) is just a supplementary constraint resulted from the computation
lim
v!0

F (v)
v

= lim
v!0

G{v!(v)}
G(v) · lim

v!0

G(v)
v

. This constraint is always constant and non-null (more exactly,

equal to 1) as long as !(v) =
H

⇠

(v)
v , due to the fact that !(v) = 1 + o(v), as v ! 0 (Taylor

expansion).

Naveau et al. (2016) focused on four parametric families for G that comply with the three
constraints from (2.1.15), based on the power function and beta cdf. More specifically, they
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considered:

1) G(u) = u, > 0, (2.1.16a)
2) G(u) = pu1 + (1� p)u2 ,

1

,
2

> 0 and p 2 [0, 1], (2.1.16b)

3) G(u) = 1�Q�

�

(1� u)�
 

, � > 0, (2.1.16c)

4) G(u) =
⇥

1�Q�

�

(1� u)�
 ⇤/2

,, � > 0, (2.1.16d)

where Q� is the cdf of a two-parameter (1/�, 2) beta random variable, i.e., Q� becomes in this
case Q�(u) =

1+�
� u1/�

⇣

1 � u
1+�

⌘

.
A comparison of the four parametric EGPD models showed, in case studies on simulated

samples and rainfall data, that EGPD model based on (2.1.16a) has the best performance.
One drawback of these parametric EGPD models is that they do not offer enough flexibility in
modeling of the bulk of the distribution.

In the next two chapters we introduce two new approaches that add more flexibility for the
estimation of the bulk of the distribution. More specifically, in Chapter 2 we introduce the
transformed kernel density estimator with an EGPD transformation, while in Chapter 3 we
propose a new EGPD model based on a sparse mixture of beta densities.



Chapter 2

EGPD and kernel density

estimation

V arious methods have been proposed in Chapter 1 for estimating the entire distribution, si-
multaneously capturing the bulk and the extreme tails. Some of them use two distributions

to model the data above and below a certain threshold. This threshold is considered in some
studies as a parameter to be estimated, while others bypass this choice by using a smooth tran-
sition function between the bulk and the tail, thus overpassing the uncertainty in the threshold
estimation. In this chapter we are interested in the nonparametric framework, thus we focus on
the retransformed nonparametric kernel estimators with an EGPD transformation. Section 2.1
introduces a brief background on kernel density estimators, then Section 2.2 describes the pro-
posed model. In Section 2.3 and Section 2.4 the performance of the proposed model is illustrated
in case studies on simulated samples and rainfall data.

2.1 Classical univariate kernel density estimator

Early works regarding nonparametric density estimation were published by Rosenblatt (1956)
and Parzen (1962). Since then, the interest in the nonparametric framework has increased
intensively resulting in an extended literature. The reader is referred to Silverman (1986) and
Wand and Jones (1995) for classical books on this subject.

For a sample X
1

, X
2

, ..., Xn of n i.i.d. observations from a random variable X, the univariate
kernel estimator of the unknown density f(x) is defined as

fh(x) =
1

nh

n
X

i=1

K

✓

x�Xi

h

◆

, (2.2.1)

where K(·) is a positive weighting function called kernel function, and h > 0 is the bandwidth
or smoothing parameter. Various kernel functions are proposed in the literature, most common
ones being the uniform, Epanechnikov or gaussian kernel.

While the kernel function is not very important in the estimation process, as stated by
Silverman (1986), the choice of the smoothing parameter h is crucial. If it is too small, the
density is overestimated and the variance of the estimations is increased, while if it is too large,
the density is underestimated and the bias of the estimations is increased. Thus, a trade-off
between the variance and the bias of the estimator must be found.
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In the following, first, we recall the asymptotic bias and variance for a kernel density es-
timator in Section 2.1.1, and then, in Section 2.1.2 we review some common methods for the
estimation of the bandwidth parameter.

2.1.1 Asymptotic theory for kernel density estimator

Assumption 2.2.1. Assumptions about the unknown density f:

(1). Let X be a random variable with unknown density f .

(2). Let f be a bounded and twice continuously differentiable function with bounded derivatives.

Assumption 2.2.2. Assumptions about the kernel function:

(1). K(u) = K(�u),

(2). µ
0

(K) =
R

R K(u)du = 1,

(3). µ
1

(K) =
R

R uK(u)du = 0,

(4). µ
2

(K) =
R

R u2K(u)du 6= 0.

Lemma 2.2.1. Under Assumption 2.2.1.(1) and 2.2.2.(2), it was stated that

(a) Bias {fh(x)} =
R

R K (u) {f(x+ uh)� f(x)} du,

(b) Var {fh(x)} = 1

nh

R

R K2 (u) f(x+ uh)du� 1

n

�R

R K (u) f(x+ uh)du
 

2.

Considering Lemma 2.2.1, in Theorem 2.2.1 we recall the bias, variance and the mean
integrated square error (MISE) for the kernel density estimator, as derived by Silverman (1986).

Theorem 2.2.1 (Silverman (1986)). Suppose that h ! 0 and nh ! 1 as n ! 1. Then,
under Assumption 2.2.1 and 2.2.2,

(a) Bias {fh(x)} = h2

2

f
00
(x)µ

2

(K) + o(h2),

(b) Var {fh(x)} = 1

nhf(x)
R

R K2(u)du+ o( 1

nh ),

(c) MISE {fh(x)} = 1

nh

R

R K2(u)du+ h4

4

µ2

2

(K)
R

R f
00
(x)2dx+ o( 1

nh + h4).

Thus, a small bandwidth h will decrease the second term of the MISE, but it will increase
the first one because it is proportional to (nh)�1. Therefore, as n ! 1, h must change in such
a way that both components in MISE are small.

2.1.2 Smoothing parameter estimation

There are several methods reported in the literature for the estimation of the bandwidth, see
for example Silverman (1986) and Wand and Jones (1995).

One possible approach is to minimize an error function such as MISE, leading to an optimal
bandwidth of the form

hMISE
opt =

⇢ kKk2
2

nµ2

2

(K) kf 00(x)k2
2

�

1
5

, (2.2.2)

where || · ||
2

denotes the l
2

-norm.
The computation of hMISE

opt is not that straightforward as f is an unknown function. However,
some conclusions can be drawn from (2.2.2) with respect to the optimal bandwidth. First, it
can be noticed that h converges to zero as the sample size n increases. Also, considering
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that kf 00
(x)k2

2

measures, in a sense, how quick the density is changing the curvature, then an
accelerated change leads to a smaller bandwidth h.

A natural method, or "quick and simple" as referred in Wand and Jones (1995), is to compute
hMISE
opt with reference to a standard family of densities. For example, if K is a Gaussian kernel

function and the reference distribution is a standard normal density with variance �2, then the
optimal bandwidth from (2.2.2) becomes

hopt =

✓

4�5

3n

◆

1
5

, (2.2.3)

As reported in Silverman (1986), an easy way to compute hopt from (2.2.3) is to replace �
with the sample standard deviation. This estimation approach is also known as "Silverman’s
rule-of-thumb". As pointed out in this reference, while this choice of bandwidth is working well
if the true distribution is really normally distributed, it might lead to over-smoothing if the
true distribution is multimodal.

Other methods for the estimation of h involve least-squares cross-validation initially pro-
posed by Rudemo (1982) and Bowman et al. (1984), maximum likelihood estimator (referred in
the literature as cross-validated likelihood) introduced by Duin (1976) or plug-in approaches.
Even though there are several methods for selecting h, there is no general accepted one that
works well in both theory and practice.

2.1.3 Boundary effects and correction methods

The classical kernel density estimator, originally introduced by Rosenblatt (1956), has the pur-
pose of estimating densities with unbounded support. But rainfall or runoff need a compact
support, such as [0,1). In this case, the bias and variance of the kernel density estimator,
recalled in Theorem 2.2.1, can be expressed as

Bias {fh(x)} =� f(x)

Z 1

0

K(u)du� hf
0
(x)

Z

0

�1
uK(u)du

+
h2

2
f

00
(x)

Z

0

�1
u2K(u)du+ o(h2),

Var {fh(x)} =
1

nh
f(x)

Z

0

�1
K2(u)du+ o

✓

1

nh

◆

.

(2.2.4)

For a symmetric and non-negative kernel function,
R1
0

K(u)du 6= 1 and
R

0

�1 uK(u)du 6= 0,
resulting in a non-consistent estimator at the boundary points, i.e., near zero in this case.

An immediate "naive" modification that can be applied to the kernel density estimator in
order to make it consistent for a support [0,1), is to normalize it with

R1
0

K(u)du. However,
this adjustment does not account for the bias order at the boundary, which it still of order o(h)
rather than o(h2).

A variety of methods have been proposed in the literature for correcting the boundary
bias. Among these, we recall the reflection method introduced by Schuster (1985), which is
a consistent estimator at the boundary, but it still maintains the o(h) bias order unless the
assumption f

0
(x) = 0 holds. The generalized jack-knifing of Jones (1993) overcomes this

problem, but the new estimator no longer integrates to 1. More recent methods, such as the
works introduced by Chen (1999, 2000) or Jones and Henderson (2007), deal with boundary
correction for a compact support [0,1) or [0, 1], respectively, by using gamma-, beta-, or
copula-based kernels functions.
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2.2 Kernel density estimator with EGPD transformation
We have recalled in Section 2.1 the formulation and properties of the kernel density estimator.
As our objective is modeling the full range of rainfall amounts, in this section we address the
problem of kernel density estimation when the distribution under study is heavy tailed. We
have reviewed in Chapter 1 several methods that can be applied for modeling heavy tailed
distributions while preserving the nonparametric framework, but the most promising one ap-
peared to be the transformed-retransformed model with an adaptive transformation. Briefly,
we remind that this approach consists of, first, transforming the data with a continuous cdf, and
then, estimating the density of the transformed data with a nonparametric density estimator.

The transformed-retransformed model has been previously used in some applications in the
field of finance, as we have seen in Chapter 1. However, to the best of our knowledge, it has
never been applied in hydrology for rainfall modeling, until now. The lack of research in this
direction is probably due to the fact that, until recently, there was no suitable distribution for
modeling the full range of rainfall amounts, i.e., the cdf required by the transformation step.
The work of Naveau et al. (2016) has opened new possibilities in this direction, as a new class
of distributions was introduced under the name of Extended Generalized Pareto Distribution
(EGPD). This model is in compliance with the EVT for both lower and upper tails, and at the
same time, it allows a smooth transition between the two ends. However, the estimation of the
bulk of the distribution was limited to a few parametric cases. The novelty of our study is to
adopt a kernel density estimator within the EGPD class in order to add flexibility.

2.2.1 Transformed kernel: definition and properties

Let X
1

, X
2

, ..., Xn be n i.i.d. observations from a random variable X with unknown density
f . Suppose that f cannot be accurately estimated by the classical kernel density estimator
from (2.2.1) due to the scarce observations from the upper tail. One possible solution in this
case is to apply a transformation to the data in order to obtain a new variable Y

1

, Y
2

, ..., Yn

which has a density gt that can be more easily estimated by a kernel density estimator. Then,
by back-transforming the estimate of gt, one would obtain the estimate of f . According to
Wand and Jones (1995), the resulted estimator is referred to as transformation kernel density
estimator or transformed kernel density estimator.

Suppose now that this transformation is Yi = T (Xi), where T is a monotone increasing
and differentiable function on the support of X. Then, by using standard properties of the
statistical distribution theory (see Bertsekas and Tsitsiklis (2008)), i.e., Xi = T�1(Yi) and
F (x) = P(X  x) = P

�

T�1(Y )  x
 

= P {Y  T (x)}, the cdf and pdf of the variable X based
on the transformation T were derived as

F (x) = Gt {T (x)} ,
f(x) = gt {T (x)}T 0

(x).
(2.2.5)

Here, gt and Gt are the unknown pdf and cdf of Y , while T�1 and T
0

represent the inverse
and the derivative of the transformation function T . By replacing gt from (2.2.5) with the
classical kernel density estimator from (2.2.1), it leads to the following explicit formulation of
the transformed kernel density estimator based on the transformation function T , as shown in
Wand and Jones (1995),

fTK,h(x) =
1

nh

n
X

i=1

K

⇢

T (x)� T (Xi)

h

�

T
0
(x), (2.2.6)

where K(·) is a kernel function and h > 0 is the bandwidth parameter.
Considering Lemma 2.2.1, the bias and variance of a transformed kernel estimator can be

easily derived, as shown in Buch-Larsen et al. (2005) and restated here in Theorem 2.2.2.
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Theorem 2.2.2 (Buch-Larsen et al. (2005)). Suppose that h ! 0 and nh ! 1, as n ! 1.
Then, under Assumptions 2.2.1 and 2.2.2 we have,

(a) Bias {fTK,h(x)} = h2

2

µ
2

(K)



n

f(x)

T 0
(x)

o

0
1

T 0
(x)

�

0

+ o(h2),

(b) Var {fTK,h(x)} = 1

nhf(x)T
0
(x)

R

R K2(u)du+ o
�

1

nh

�

.

In the following, we focus on the case where the transformation function T is the cdf FEGPD
of EGPD, previously introduced in (2.1.14). Recall that FEGPD(x) = G {H⇠(x)}, where G
represents a monotone increasing and differentiable function on [0, 1] and H⇠ denotes the cdf
of GPD. It can be noticed that, in fact, EGPD is itself a class of distributions such as the ones
displayed in (2.2.5), where G is the cdf of the transformed variable Z = H⇠(X). Thus, the cdf
and pdf of the variable X based on the EGPD transformation becomes

F (x) = Gt {FEGPD(x)} ,
f(x) = gt {FEGPD(x)} fEGPD(x).

(2.2.7)

Here fEGPD denotes the derivative of FEGPD, i.e., the pdf of the EGPD. If gt is replaced with
the classical kernel density estimator from (2.2.1), the transformed kernel density estimator
based on the transformation function FEGPD is

fTK,h(x) =
1

nh

n
X

i=1

K

⇢

FEGPD(x)� FEGPD(Xi)

h

�

fEGPD(x). (2.2.8)

The use of a cdf as transformation function implies a change in the definition domain of the
gt function from (2.2.7) or the K function from (2.2.8). More specifically, while for a general
transformation T the domain is R, i.e., gt : R ! R, for a transformation FEGPD the domain
becomes [0, 1], i.e., gt : [0, 1] ! R. Thus, a boundary correction must be considered for gt or
K in order to ensure the consistency of the transformed kernel estimator, as already explained
in Section 2.1.3.

2.2.1.1 Boundary corrected kernel function on [0, 1]: definition and properties

For this work, we are interested in a boundary corrected kernel function on the unit interval,
and thus, we focus on the work of Jones and Henderson (2007) that introduced a copula-based
kernel function. This kernel is simply defined as the conditional density of a symmetric copula,
such as a gaussian copula.

Let (U, V ) be a bivariate standard normal random variable with correlation ⇢, then the
conditional gaussian copula density of U conditional on V = v is

cu|v(u; v, ⇢) =
1

p

1� ⇢2
exp

"

�⇢
2

�

��1(u)
 

2 � 2⇢��1(u)��1(v) + ⇢2
�

��1(v)
 

2

2(1� ⇢2)

#

=
1

p

1� ⇢2� {��1(u)}�
(

��1(u)� ⇢��1(v)
p

1� ⇢2

)

,

(2.2.9)

where � and ��1 are the standard normal density function and the inverse of its cdf, respectively.

Assumption 2.2.3.

(1). Let U
1

, U
2

, ..., Un be n i.i.d. observations from a random variable U with support [0, 1]
and unknown density g.
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(2). Let g be a bounded and twice continuously differentiable function with bounded derivatives.

Under Assumption 2.2.3, we restate in (2.2.10) the gaussian copula-based kernel density
estimator of g, as showed by Jones and Henderson (2007).

gGC,h(u) =
1

n

n
X

i=1

cu|U
i

(u;Ui, 1� h2) (2.2.10)

Here h =
p
1� ⇢ is the bandwidth of the kernel function.

Since cu|v(u; v, ⇢) is a proper density function, i.e.,
R

1

0

cu|v(u; v, ⇢)du = 1, the gaussian
copula-based kernel density estimator gGC,h(u) integrates to one as well, and thus, it does not
require normalization as in other boundary corrected kernel cases, such as Jones (1993) or Chen
(1999).

Theorem 2.2.3 provides the bias and variance for the above estimator, as stated in Jones
and Henderson (2007).

Theorem 2.2.3 (Jones and Henderson (2007)). Suppose that h ! 0 and nh ! 1, as n ! 1.
Under Assumption 2.2.3, we have that

1. Bias {gGC,h(u)} = �2h2��1(u)�
�

��1(u)
 

g
0
(u) + h2�2

�

��1(u)
 

g
00
(u) + o(h2),

2. Var {gGC,h(u)} =

(

g(u)
2

p
⇡�{��1

(u)}nh + o
�

1

nh

�

, if u
hm

and 1�u
hm

! 1,
g(u)p

2⌘2nh2m+1 + o
�

1

nh2m+1

�

, if u
hm

or 1�u
hm

! ⌘,

where m, ⌘ > 0.

The asymptotic bias is of order o(h2) for all u, meaning that copula-based kernel estimator
is free of boundary effects. But unfortunately, this bias is achieved with the cost of an increased
boundary variance near the endpoints 0 or 1 (see 2nd term in the variance formulation from
Theorem 2.2.3).

In this work we use the "rule-of-thumb" bandwidth selector proposed by Jones and Hen-
derson (2007) as

hROT
GC = �̂

�

2µ̂2�̂2 + 3(1� �̂2)2
 � 1

5 n� 1
5 , (2.2.11)

where µ̂ and �̂ are the sample mean and variance. We refer also to Section 2.1.2 for some other
general methods applied for computing the smoothing parameter of a kernel function.

2.2.2 Boundary-corrected transformed kernel (BCTK)
2.2.2.1 Model estimation

Our proposed model is the transformed kernel estimator based on EGPD transformation when
the boundary-corrected kernel is the copula-based kernel. Therefore, by replacing gt in (2.2.7)
with the copula-based kernel gGC,h, the pdf and the cdf of our proposed estimator can be
expressed as

fBCTK,h(x) = gGC,h {FEGPD(x)} fEGPD(x),
FBCTK,h(x) = GGC,h {FEGPD(x)} . (2.2.12)

Here, GGC,h is the cdf of the gaussian copula-based kernel density estimator, i.e., GGC,h(u) =
R u

0

gGC,h(v)dv.

The estimation of a transformed kernel model is a procedure including several steps. First,
the parameters of the transformation function have to be estimated, and then, the bandwidth
of the kernel function must be computed. The steps that one should follow to find the approx-
imation fBCTK,h of the unknown density f , are:
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Step1: Estimate the parameters of the EGPD model considering the random variable X =
{X

1

, ..., Xn}.
There are several inference methods that can be used in this case, including the
maximum likelihood estimator and the probability weighted moments, presented in
the work of Naveau et al. (2016).

Step2: Transform X with the EGPD cdf estimated in the previous step and find the trans-
formed data or the pseudo-observations set U = {U

1

, ..., Un}, computed as:

Ui = F̂EGPD(Xi), for i = 1, ..., n.

Thus, this transformation converts the data into pseudo-observations in the interval
[0, 1].

Step3: Apply the boundary-corrected kernel on the transformed data U .

1. Compute the kernel bandwidth hROT
GC defined in (2.2.11).

2. Compute the gaussian copula-based kernel gGC,hROT
GC

(u).

Step4: Compute the estimator of the original data X, as

fBCTK,hROT
GC

(x) = gGC,hROT
GC

n

F̂EGPD(x)
o

f̂EGPD(x).

2.2.2.2 Lower and upper tail equivalence

Naveau et al. (2016) showed that both the lower and upper tails of rainfall amounts distribution
comply with EVT. More exactly, the lower tail (small values) behaves like a power function,
while the upper tail (large values) like a GPD. In this subsection, we check if this behavior
is satisfied by our proposed model. Therefore, we compute the two limits: lim

x!0

FBCTK,h

(x)
xk

and

lim
x!1

¯FBCTK,h

(x)
¯H
⇠

(x)
. In theory, the tails are equivalent if these two limits are finite and positive.

Unfortunately, we prove below that these limiting constraints are null and, thus, they are not
satisfied for FBCTK,h.

Upper tail: lim
x!1

¯F
BCTK,h

(x)
¯H
⇠

(x)
= 0

Proof.

lim
x!1

¯FBCTK,h

(x)
¯H
⇠

(x)
= lim

x!1
1�GGC,h

{FEGPD(x)}
¯H
⇠

(x)
= lim

x!1
1�GGC,h

[G{H
⇠

(x)}]
¯H
⇠

(x)

By replacing v = H̄⇠(x) and applying l’Hopital rule, we have:

lim
v!0

1�GGC,h

{G(1�v)}
v = lim

v!0

gGC,h {G(1� v)} · g(1� v) = 0, because gGC,h(1) = 0.

⌅

Lower tail: lim
x!0

FBCTK,h

(x)
xk

= 0

Proof.

lim
x!0

FBCTK,h

(x)
xk

= lim
x!0

GGC,h

{FEGPD(x)}
FEGPD(x) · FEGPD(x)

xk
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We already know from Naveau et al. (2016) that the second term in the above limit
is finite and positive (see (2.1.15) in Section 1.3.2), so we must focus now on the
first part of the limit.
Thus, by replacing v = FEGPD(x) and applying l’Hopital rule, we have:

lim
v!0

GGC,h

(v)
v = lim

v!0

gGC,h(v) = 0

⌅

In conclusion, the transformed kernel estimator with EGPD transformation does not satisfy
the tail equivalence suggested by Naveau et al. (2016), neither for the lower, nor for the upper
tail, since both limits are null. However, we will see in the case study section that, even without
complying with these conditions, the model FBCTK,h provides accurate and improved estimates,
if the sample size is large enough.

2.3 Case study: simulated data
In this section, simulations from various distributions with different degree of heaviness and
multimodality, as detailed in Section 2.3.1, are used to assess the performance of the proposed
kernel density estimator with EGPD transformation.

2.3.1 Simulated samples
We draw data from three distributions: a mixture of two gamma and GP densities (Mix2GaGPD),
a mixture of three gamma and GP densities (Mix3GaGPD), and a mixture of two Singh-
Maddala densities (Mix2SM). The setting for each corresponding mixture scenario is displayed
in Table 2.2.1.

Table 2.2.1: The expression of the densities and the corresponding true parameters for the three
scenarios used in the simulation study, namely Mix2GaGPD, Mix3GaGPD, and Mix2SM

Scenario Density expression True parameters

Mix2GaGPD f(x) =

(

f

2Ga

(x;↵,�, p), x  u

{1� F

2Ga

(u;↵,�, p)}h
⇠

(

x

�

), x > u

↵ = (1, 4), � = (1, 2)

(p, u, ⇠) = (0.5, q

90

, 0.3)

Mix3GaGPD f(x) =

(

f

3Ga

(x;↵,�, p), x  u

{1� F

3Ga

(u;↵,�, p)}h
⇠

(

x

�

), x > u

↵ = (2, 6, 10), � = (1, 2, 1)

p = (0.5, 0.3, 0.2)

(u, ⇠) = (q

90

, 0.3)

Mix2SM
f(x) =

P

2

i=1

p

i

· f
SM

(x; a

i

, b

i

, c

i

)

a = (2, 3), b = (0.25, 0.6)

c = (4, 1.7), p = (0.4, 0.6)

where:

q

90

denotes the 90%-quantile

f

kGa

(x;↵,�, p) =

P

k

i=1

p

i

· f
Ga

(x;↵

i

,�

i

) and f

Ga

is the pdf of Gamma distribution.

f

SM

(x) = aq

1

b

a

x

a�1

�

1 +

�

x

b

�

a

 �1�q

, x > 0.

The continuity of f(x) at u, i.e., the jointure point of the mixture, is preserved by considering
the scale parameter of GPD being automatically estimated with respect to the other parameters.
More specifically, we consider � = 1�F2Ga

(u;↵,�,p)
f2Ga

(u;↵,�,p) for Mix2GaGPD, and � = 1�F3Ga

(u;↵,�,p)
f3Ga

(u;↵,�,p) for
Mix3GaGPD, respectively.

Figure 2.2.1 displays the three pdfs considered in Table 2.2.1.
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Figure 2.2.1: The shape of the three mixture densities used in the simulation case study, namely
Mix2GaGPD, Mix3GaGPD, and Mix2SM, with the parameters setting summarized in Table
2.2.1

2.3.2 Measures of error

The performance of the fitted models is evaluated with respect to the estimated quantiles and
estimated densities. The error of a given estimated quantile is measured by the following Root
Mean Squared Error (RMSE)

RMSE(qp) =

v

u

u

t

1

n

n
X

i=1

(q̂p,i � qp,i)2, (2.2.13)

where qp and q̂p denotes respectively, the true and estimated quantile of probability p, consid-
ering that qp = F�1(p).

Then, two models, e.g., M1 and M2, are compared by means of the Ratio Root Mean
Squared Error (RRMSE) as

RRMSE(qp) =
RMSEM1(qp)

RMSEM2(qp)
. (2.2.14)

The density approximation error is evaluated by computing the Integrated Absolute Error,
formulated in (2.2.15).

IAE =

Z

+1

�1

�

�

�

f̂(x)� f(x)
�

�

�

dx (2.2.15)

2.3.3 Performance of the estimated models

We focus on the case where the EGPD transformation is the EGPD model from (2.1.16a). Our
choice is based on the fact that this model performed the best in the numerical study from
Naveau et al. (2016), where four models were evaluated (see (2.1.16a)-(2.1.16d)). From now on,
we refer to this EGPD model as EGPD

1

, and the transformed kernel estimator based on this
transformation as TK

1

.
The TK

1

model is fitted according to the procedure presented in Section 2.2.2.1. The
performance of this model is evaluated by analyzing the estimated quantiles and the density
approximation error on the simulated samples, but also by comparing these estimations with
the ones yielded by EGPD

1

. For each simulated mixture, we consider two sample sizes n =
(300, 1000), and each scenario is replicated 1000 times. We estimate 99 quantiles, from 0.01 to
0.99, equally spaced.
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First, we focus on the estimation accuracy of the quantiles. Figure 2.2.2 displays the boxplots
of the RMSEs of the 99 estimated quantiles over the 1000 replicates, for both TK

1

and EGPD
1

,
for each simulation setting. It can be noticed from this figure that while the performance of
EGPD

1

is not greatly influenced by the increase in sample size, TK
1

is achieving an improved
estimation error when the sample size is n = 1000, for all three mixtures. Also, TK

1

yields less
variable and smaller RMSEs of the estimated quantiles compared to EGPD

1

, especially for the
case when the sample size is larger.
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Figure 2.2.2: Boxplots of the RMSEs of the 99 estimated quantiles of both TK
1

and EGPD
1

models, over 1000 replicates from three simulated mixtures with sample sizes n = 300 and n =
1000

These boxplots, though, do no show exactly which and how many quantiles are better
estimated by EGPD

1

. We display, in this sense, in Table 2.2.2 the percentage of times the
ratio between RMSEEGPD1 and RMSETK1 of each quantile is larger than 1, that is, we account
for the times when EGPD

1

has larger quantile estimation error. So, out of the 99 estimated
quantiles, about 90% are better estimated by the TK

1

model, but this percentage increases
as the sample size becomes larger. An extended analysis of the RMSEs and the ratios (not
displayed here), shows that, generally, the quantiles around the mean, for both n = 300 and
n = 1000, are better estimated by EGPD

1

.

Table 2.2.2: Percentage of time the ratio between RMSEEGPD1(qp) and RMSETK1(qp) of each
estimated quantile is larger than 1, over 1000 replicates from three simulated mixture with
sample sizes n = 300 and n = 1000

n=300 n=1000

Mix2GaGPD 88.89% 93.94%

Mix3GaGPD 90.91% 94.95%

Mix2SM 87.88% 92.93%

We have seen in Section 2.2.2.2, that from a theoretical point of view, TK
1

does not have a
GPD tail. Hence, we are interested now in the efficiency of the TK

1

model in estimating the
extreme quantiles, such as 90%-, 95%-, 99%-quantile (q

90

, q
95

, q
99

). The boxplots in Figure
2.2.3 represent the estimated values of the three extreme quantiles over the 1000 replicates,
for each simulation scenario and the two sample sizes, i.e., n = 300 and n = 1000. It can be
noticed that, for all three simulated mixtures, TK

1

has a good assessment of the true quantiles
(see horizontal red line), and the estimates have a smaller variability when the sample size is
larger.
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Figure 2.2.3: Boxplots of the estimated q
90

, q
95

, q
99

quantiles of both TK
1

and EGPD
1

models,
over 1000 replicates from three simulated mixtures with sample size n = 300 and n = 1000 (the
red horizontal line indicates the true value of the quantiles)

To compare the performance of TK
1

with EGPD
1

more deeply, Table 2.2.3 displays the ratio
between RMSEEGPD1 and RMSETK1 for the three quantiles, i.e., q

90

, q
95

, q
99

. Recall that a
ratio larger than 1 implies that TK

1

has a better performance in estimating that quantile than
EGPD

1

. Therefore, the ratios presented in this table show that the EGPD
1

model provides
better estimates only for q

99

when the sample size is small (red color cells), but these estimates
are improving as the sample size increases to n = 1000. This behavior is also observed in Figure
2.2.3, where even though EGPD

1

seems to overestimate the true value of q
99

, TK
1

provides
considerably more variable estimates.

We have seen so far that TK
1

provides a good extreme quantile estimation, but also that
it might be outperformed by EGPD

1

for some other particular quantiles, e.g., q
50

. We are
interested now in the overall efficiency in quantile estimation, i.e., we compute the RMSE of
all quantiles for each replicate out of the 1000 runs. Table 2.2.4 displays the percentage of time
the ratio between the RMSE of EGPD

1

and TK
1

(i.e., RRMSE(simi) =
RMSEEGPD1 (simi

)

RMSETK1 (simi

)

) is
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Table 2.2.3: Ratio between the RMSEs of EGPD
1

and TK
1

for q
0.9, q0.95, q0.99 quantiles, over

1000 replicates from three simulated mixtures with sample sizes n = 300 and n = 1000 (in red
the cases where EGPD

1

performs better than TK
1

)
n=300 n=1000

q
0.9 q

0.95 q
0.99 q

0.9 q
0.95 q

0.99

Mix2GaGPD 1.708 2.238 0.830 2.424 3.716 1.272

Mix3GaGPD 2.000 2.574 0.934 3.040 4.389 1.544

Mix2SM 1.216 1.604 1.078 1.600 2.400 1.580

larger than 1. It can be seen that out of the 1000 runs, TK
1

has a better overall quantile fit
compared to EGPD

1

in more than 90% of the simulated sets, and this percentage increases as
the sample size is larger.

Table 2.2.4: Percentage of time the ratio between RMSEEGPD1(simi) and RMSETK1(simi) is
larger than 1, for i = 1, 2, ..., 1000 replicates from three simulated mixtures with sample sizes
n = 300 and n = 1000

n=300 n=1000

Mix2GaGPD 90.40% 99.60%

Mix3GaGPD 98.40% 100%

Mix2SM 90.80% 99.60%

We focus now on the last point analyzed in this simulation study, i.e., the approximation
error of the density. Table 2.2.5 shows the MIAE, for both TK

1

and EGPD
1

and each simulation
scenario. A smaller MIAE is reported for TK

1

each time, and moreover, TK
1

’s performance in
approximating the density is highly related to the sample size, yielding around a three times
smaller MIAE compared to EGPD

1

when the sample size is n = 1000. This is even more clearly
illustrated in Figure 2.2.4, where we display the fitted densities, for each model and simulated
mixture. While EGPD

1

does not fit accurately the bulk of the distributions, TK
1

is more
flexible in this sense.

Table 2.2.5: MIAE of the TK
1

and EGPD
1

models, over 1000 replicates from three simulated
mixtures with sample sizes n = 300 and n = 1000 (the best approximation error between TK

1

and EGPD
1

, on each sample size case, are indicated in red)
n=300 n=1000

EGPD

1

TK

1

EGPD

1

TK

1

Mix2GaGPD 0.274 0.146 0.269 0.091

Mix3GaGPD 0.357 0.147 0.354 0.092

Mix2SM 0.213 0.149 0.209 0.092

2.4 Case study: rainfall data
We now apply our proposed density estimator on two rainfall datasets. The first dataset
consists of hourly precipitation from 1996 to 2011 recorded at the Lyon station, France. The
second one is composed of daily mean areal precipitation data over the 1948-2010 period for
the Durance watershed, located in south-east France. More specifically, this aggregated time
series is taken from the SPAZM meteorological analysis introduced by Gottardi et al. (2012),
where a geostatistical approach based on weather pattern classification is applied to compute
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Figure 2.2.4: Fitted densities of the TK
1

and EGPD
1

models, over 1000 replicates from three
simulated mixtures with sample sizes n = 300 and n = 1000 (red = the true density, gray =
the density fit of each replicate, blue = the mean of the 1000 fitted densities)

the areal rainfall in the mountains. In the following, in order to simplify the presentation, we
refer to the SPAZM series as “observations” and the location of the measurements as Durance
station, even though they are not direct recordings at a specific point.

A short exploratory analysis of both time series showed that there is a clear seasonal pat-
tern, so we model separately the four seasons: Spring (March-April-May), Summer (June-July-
August), Fall (September-October-November), and Winter (December-January-February).

As there was some short-time temporal dependence between the observations, we only re-
tained each third observation. Also as part of the preprocessing step, considering that our
interest is in modeling just the amounts and not the occurrences, we removed the dry events
(i.e., zero precipitation values). After these steps, the sample sizes of our datasets are:

Lyon: Spring-282, Summer-251, Fall-336, Winter-184.

Durance: Spring-726, Summer-755, Fall-600, Winter-590.

The analysis of rainfall data is based on a comparison between the TK
1

and EGPD
1

models.

2.4.1 Rainfall at the Lyon station
Table 2.2.6 displays the estimated parameters and the associated 95% confidence intervals,
for the TK

1

model, by applying the probability weighted moments (PWMs) approach for the
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EGPD
1

fit, and the rule-of-thumb bandwidth for the kernel function. While the bandwidth
is similar for all four seasons, the EGPD

1

parameters are different. This points out that an
adaptive transformation, i.e., based on a cdf, and not a fixed transformation (e.g., logarithm)
for the TK

1

is a good choice.

Table 2.2.6: Estimated parameters and the associated 95% confidence intervals for the TK
1

model at Lyon station, for each season
ˆ

k �̂

ˆ

⇠

ˆ

h

Spring 1.055

[0.94,1.37]

1.484

[1.14,1.73]

0.035

[0.00,0.18]

0.071

[0.069,0.073]

Summer 0.864

[0.74,1.07]

2.365

[1.85,2.92]

0.128

[0.00,0.28]

0.075

[0.074,0.076]

Fall 0.883

[0.76,1.03]

1.686

[1.30,2.00]

0.193

[0.10,0.31]

0.068

[0.067,0.070]

Winter 1.008

[0.79,1.31]

0.834

[0.55,1.09]

0.312

[0.14,0.49]

0.070

[0.066,0.073]

Figure 2.2.5 displays the histograms of the data with the estimated densities and the
quantile-quantile plots (QQ-plots) with the associated 95% confidence intervals. The QQ-plots
indicate a satisfactory fit, especially for seasons like Spring and Fall. TK

1

yields very close
estimates to EGPD

1

, but it improves considerably the EGPD
1

fit for the middle part of the
distribution in Summer.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Rainfall amount [mm]

D
en

si
ty

Spring

TK
1

EGPD
1

0 5 10 15
0

0.2

0.4

0.6

0.8

Rainfall amount [mm]

Summer

TK
1

EGPD
1

0 5 10 15
0

0.2

0.4

0.6

0.8

Rainfall amount [mm]

Fall

TK
1

EGPD
1

0 5 10
0

0.5

1

1.5

Rainfall amount [mm]

Winter

TK
1

EGPD
1

0 2 4 6 8 10
0

2

4

6

8

10

12

Observed quantile

F
it
te
d
q
u
a
n
ti
le

0 5 10 15
0

5

10

15

20

Observed quantile

0 5 10 15
0

5

10

15

20

Observed quantile

0 5 10
0

5

10

15

Observed quantile

Figure 2.2.5: Histograms with fitted densities and QQ-plots with the associated 95% confidence
intervals for the TK

1

and EGPD
1

models at Lyon Station, for each season

It is important also to notice that an increased variability is present in the TK
1

density esti-
mation for small precipitation values. This effect might be caused by the estimated bandwidth
of the copula-based kernel, which in this case might be too small, or by the discrete nature of
these small value observations generated by the instrumental rounding at 0.1 [mm].

As part of the TK
1

inference, the density approximation on the transformed data is shown in
Figure 2.2.6 for each season and both TK

1

and EGPD
1

models. Recall that for a random vari-
able X, the transformed data for the TK

1

and EGPD
1

models are, respectively, U = FEGPD1(X)
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and V = H⇠(X), where FEGPD1 and H⇠ are the cdf of EGPD
1

and GPD, respectively. Thus, we
display the histograms of the transformed data U and V with the fit of the copula-based kernel
function and the power function (i.e., g(u) = kuk�1) of, respectively, TK

1

and EGPD
1

model.
We can see that EGPD

1

is very close to a straight line (due to the fact that the estimated k
parameters are near 1, thus exact GPD model), while TK

1

captures well the peaks and valleys
of the density, thus adds more flexibility in modeling the middle part of the distribution.
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Figure 2.2.6: Histograms with fitted densities of the transformed data U = FEGPD1(X) and
V = H⇠(X), for, respectively, TK

1

and EGPD
1

models at Lyon station, for each season

We have seen that the estimation of the upper tail is, more or less, the same for both EGPD
1

and TK
1

. Figure 2.2.7, showing a zoom on the small values, illustrates that the same conclusion
can be drawn for the small values, with slightly better TK

1

estimates.
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Figure 2.2.7: Zoom on the small values of the QQ-plots for the TK
1

and EGPD
1

models at
Lyon station, for each season
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2.4.2 Rainfall at the Durance station
In this section we analyze the performance of TK

1

on a daily precipitation dataset from the
Durance station. The estimated parameters are shown in Table 2.2.7, along with the corre-
sponding 95% confidence intervals. The bandwidth estimates are invariant with respect to the
season, like in the previous rainfall case study, but, while for the Lyon dataset the parameter k
was very close to 1, in this case study it is smaller, except for Summer.

Table 2.2.7: Estimated parameters and the associated 95% confidence intervals for the TK
1

model at Durance station, for each season
ˆ

k �̂

ˆ

⇠

ˆ

h

Spring 0.719

[0.64,0.83]

7.690

[6.32,9.66]

0.137

[0.03,0.23]

0.063

[0.062,0.063]

Summer 0.996

[0.87,1.16]

4.368

[3.65,5.26]

0.276

[0.17,0.35]

0.063

[0.062,0.063]

Fall 0.688

[0.60,0.78]

12.242

[9.69,15.50]

0.107

[0.02,0.20]

0.066

[0.065,0.066]

Winter 0.683

[0.63,0.80]

10.418

[8.27,12.04]

0.018

[0.00,0.18]

0.066

[0.066,0.068]
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Figure 2.2.8: Histograms with fitted densities and QQ-plots with the associated 95% confidence
intervals for the TK

1

and EGPD
1

models at Durance station, for each season

The QQ-plots illustrated in Figure 2.2.8 indicate that the right tail is poorly estimated by
EGPD

1

for all seasons, while TK
1

corrects this behavior, especially during Fall.
To visualize the fit of the small values, Figure 2.2.9 shows a zoom on the QQ-plots for the

four seasons. Contrary to the large values, the small ones are underestimated in the case of
EGPD

1

and, thus, TK
1

outperforms EGPD
1

, especially for the Spring, Fall and Winter seasons.
Figure 2.2.10 illustrates the fitted densities on the transform data on the interval [0, 1], for

both TK
1

and EGPD
1

. TK
1

captures considerably better the behavior of these data, thus,
offers more flexibility for the bulk of the rainfall amount distribution.

In summary, TK
1

estimator yields good estimates for both Lyon and Durance rainfall
datasets. The use of a nonparametric family to model the transformed data adds flexibility
compared to the power function choice from the EGPD

1

model.
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Figure 2.2.9: Zoom on the small values of the QQ-plots for the TK
1

and EGPD
1

models at
Durance station, for each season

Remark 2.2.1. The analysis presented in the case studies of this chapter was performed in
the R Software, more specifically we used for the fit of the EGPD

1

model the packages mev,
particularly the egp2 and egp2.fit functions.



78 Chapter 2. EGPD and kernel density estimation

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Transformed rainfall

D
en

si
ty

Spring

TK
1

EGPD
1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Transformed rainfall

Summer

TK
1

EGPD
1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Transformed rainfall

Fall

TK
1

EGPD
1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Transformed rainfall

Winter

TK
1

EGPD
1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Transformed rainfall

D
en

si
ty

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Transformed rainfall

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Transformed rainfall

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Transformed rainfall

Figure 2.2.10: Histograms with fitted densities of the transformed data U = FEGPD1(X) and
V = H⇠(X), for, respectively, TK

1

and EGPD
1

models at Durance station, for each season



Chapter 3

EGPD and sparse mixture models

T his chapter presents a method for improving the fit of EGPD for the bulk of the distribution.
We propose a semiparametric model in which flexibility is achieved by using the Bernstein

polynomials. More specifically, we use a sparse mixture of beta densities. Section 3.1 gives
a short background on Bernstein polynomials and its modeling assumptions. In Section 3.2
we show that the proposed model adds flexibility to the EGPD while preserving both lower and
upper tails behavior. We conclude this section by presenting the estimation procedure for the
parameters. Section 3.3 and Section 3.4 are dedicated to case studies on simulated data and on
two rainfall datasets, respectively.

3.1 Bernstein polynomials and density estimation

Naveau et al. (2016) explained that the key component of the EGPD class is the continuous
function G. This function is, in fact, the link between the two tails and also models the bulk
of the distribution. As mentioned in their work, one single parametric form for G might be to
stringent for the multimodal distributions, thus a more flexible family of models is needed.

Parametric density mixtures are a flexible and powerful tool for approximating smooth
functions. While, when working with the whole R domain, researchers often use a mixture of
gaussian densities, when a bounded interval, like [0, 1] is needed, these gaussian mixtures yield a
rather poor estimation due to the boundary effects at the end points of this interval, as pointed
out by Carreau and Bengio (2008), for example. In this case, mixtures of beta densities, flexible
2-parameter models, can handle these boundary constraints, as shown by Ji et al. (2005).

Parametric mixture models can become problematic when the number of components is
increasing, thus more parameters need to be estimated. For example, a mixture of beta densities
with five components leads to the estimation of 14 parameters. It is well known that a large
number of components increases the flexibility in the estimation, but can lead to over-fitting.
Considering this, nonparametric models, such as the kernel density estimator, polynomials
approximation, projections, can be preferred. They offer the same flexibility as a mixture
model, but with no inconvenience regarding the parameters.

We want to consider in this study an in-between model, that is a semiparametric approach.
In what follows, we explore how and why a polynomial approximation can be used to model G,
thus leading to a new family of EGPD models. We also recall in the following that the class of
Bernstein polynomials for density estimation is in fact a subclass of beta mixtures.

79
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3.1.1 Background on Bernstein polynomials
Bernstein polynomials were introduced by Bernstein (1912) as a proof for Weierstrass Approx-
imation Theorem. The author showed that any continuous function G on the interval [0, 1] can
be approximated by Bernstein polynomials up to some degree of accuracy. For any t 2 [0, 1], a
Bernstein polynomial of degree m is defined by

Pm(t, G) =

m
X

k=0

G

✓

k

m

◆

bk,m(t). (2.3.1)

Here, bk,m is the Bernstein basis defined as

bk,m(t) =

✓

m

k

◆

tk(1� t)m�k. (2.3.2)

These bases have many attractive properties, such as: non-negativity, partition of unity, sym-
metry, etc. For a complete and detailed reference of these properties we refer the reader to
Farouki (2012).

The many remarkable properties of the Bernstein basis can be viewed as compensation
for the slow rate of convergence of Pm(t, G) to G. As stated in Theorem 2.3.1, Bernstein
polynomials Pm(t, G) converges uniformly to G and the convergence rate is m�1.

Theorem 2.3.1 (Bernstein polynomials convergence rate, Voronovskaja (1932)). Given any
continuous and differentiable function G(t) on the interval [0, 1] with bounded second derivative,
then for m ! 1, there exists a polynomial Pm(t, G), such that its approximation error is

|G(t)� Pm(t, G)| = 1

2m

n

(1� 2t)G
0
(t) + t(1� t)G

00
(t)
o

+ o

✓

1

m

◆

.

3.1.2 From Bernstein polynomials to sparse mixture of beta densities
Despite its attractive basis properties, Bernstein polynomial approximation has remained for
many years a theoretical approximation rather than a practical one, mainly due to its slow
convergence rate. It started to gain notoriety after the work of Vitale (1975) was published.
The author proposed an approach for density estimation based on the derivative of the Bernstein
polynomials introduced in (2.3.1). More exactly, he considered that a density function g(t) with
t 2 [0, 1], can be approximated by a Bernstein polynomial as displayed in (2.3.3).

pm�1,(t, g) =
d

dt
Pm(t, G)

=
d

dt
Pm(t, Gn)

=m

m�1

X

k=0

⇢

Gn

✓

k + 1

m

◆

�Gn

✓

k

m

◆�

bk,m�1

(t)

(2.3.3)

Here, the coefficients of each basis are based on the observations. More specifically, they are
set as a function of the empirical cumulative distribution function (ecdf) Gn(t). We recall
that, for an i.i.d. random variable (T

1

, T
2

, ..., Tn) on [0, 1] with a cdf G(t), the ecdf is defined
as Gn(t) = 1

n

Pn
i=1

I{T
i

t}, where I denotes the indicator function. By making use of the
Bernstein basis properties and the ones of the ecdf (i.e., Gn(0) = 0 and Gn(1) = 1), it can be
easily checked that pm�1

(t, g) is a probability density function, that is

i. pm�1

(t, g) � 0, for any t 2 [0, 1],
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ii.
R

1

0

pm�1

(t, g)dt = 1.

From now on, we call this estimator the Bernstein density estimator.
This estimator has been studied by other researchers as well. For example, Babu et al. (2002)

investigate the asymptotic properties of the Bernstein density estimator to approximate the
density and distribution functions. It was shown in this study that, for consistent convergence
results, the degree m of the Bernstein polynomial should be included in the interval 2  m 
n/ log(n), where n is the sample size. Leblanc (2010, 2012a,b) studied the boundary properties
of this estimator for both density and distribution functions. Generalizations of this estimator,
including the Bayesian and multivariate extensions, were presented in Bouezmarni and Rolin
(2007), Ghosal (2001), Kakizawa (2004), Petrone (1999).

Furthermore, as Vitale (1975) shortly mentioned in his work, the Bernstein density es-
timator pm�1

(t, g), can be represented also as a linear combination of beta density bases.
By simply changing the summation from (2.3.3) into k = 1 to m, it leads to pm�1

(t, g) =
m
Pm

k=1

!k,mbk�1,m�1

(t), where mbk�1,m�1

(t) is no more then a beta density basis. We call
this estimator the Bernstein-beta density estimator, defined as

gBB,m(t) =

m
X

k=1

!k,m�k,m�k+1

(t). (2.3.4)

Here !k,m = Gn

�

k
m

��Gn

�

k�1

m

�

and �a,b(t) denotes the beta density function with parameters
a and b defined as

�a,b(t) =

(

�(a+b)
�(a)�(b) t

a�1(1� t)b�1, t 2 [0, 1]

0 otherwise,
(2.3.5)

where �(·) denotes the gamma function.
The estimator gBB,m(t) is a proper probability density, with the cumulative distribution

function defined as

GBB,m(t) =

m
X

k=1

!k,mBk,m�k+1

(t), (2.3.6)

where Ba,b(x) is the beta distribution function with parameters a and b.
More generally, the Bernstein-beta density estimator belongs to the subclass of beta densities

mixture, where both the weights and beta density parameters are pre-set, i.e., considered as
known. Thus, our motivation for choosing the Bernstein-beta density estimator over the mixture
of beta comes especially from the significant decrease in the number of parameters, i.e., the
only parameter left to be estimated is the degree m.

This degree can be seen as a smoothing parameter and it is often compared with a kernel
bandwidth problem, so similar estimation methods can be applied in this case, for example
methods based on minimization of mean integrated squared error (MISE), as shown in Silverman
(1986) or Wand and Jones (1995).

We direct our attention to the weights !k,m and explain why we believe this vector can be
regarded as sparse. Considering the approximation given in (2.3.4), for a large degree m, most
weights, i.e., !k,m = Gn

�

k
m

� � Gn

�

k�1

m

�

, are almost null because there are no data points
within the narrow intervals, and thus the ecdf is close to zero.

So, even though the approximation of the weights with the ecdf is an easy and appealing
approach, having in mind its possible sparse representation for a large degree m, we want to
consider the case when these weights are to be estimated and penalized to zero if they become
too small.

To summarize, in what follows we apply the Bernstein-beta density estimator from (2.3.4),
the weights are to be first estimated and then penalized to zero if they become too small. In
order to maintain the properties of a probability density function, in the estimation step, we
must recall the constraints !k,m � 0, for any k = 1, 2...,m, and

Pm
k=1

!k,m = 1.
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3.1.3 Properties of the Bernstein density estimator

3.1.3.1 Asymptotic results

The asymptotic results of the Bernstein density estimator were first detailed in Vitale (1975),
and later restated by Babu et al. (2002), Leblanc (2010) and Leblanc (2012b).

Assumption 2.3.1.

1. Let U be a random variable with support [0, 1] and unknown density g.

2. Let g be a bounded and twice continuously differentiable function with bounded derivatives
on [0, 1].

In Theorem 2.3.2 we recall the bias, variance and the mean integrated square error (MISE)
of the Bernstein density estimator, as derived by Vitale (1975).

Theorem 2.3.2 (Vitale (1975)). Under Assumption (2.3.1) we have, for t 2 [0, 1] and m ! 1,

a) Bias {gBB,m(t)} = �(t)
m + o

�

1

m

�

b) Var {gBB,m(t)} =

(p
m
n g(t) (t) + o

⇣p
m
n

⌘

, for t 2 (0, 1)

m
n g(t) + o

�

m
n

�

, for t = 0 or t = 1

c) MISE {gBB,m(t)} =
p
mC1

n + C2
m2 + o

⇣p
m
n

⌘

+ o
�

1

m2

�

where �(t) = 1

2

n

(1� 2t)g
0
(t) + t(1� t)g

00
(t)
o

,  (t) = {4⇡t(1� t)}�1/2, C
1

=
R

1

0

g(t) (t)dt,

and C
2

=
R

1

0

�2(t)dt.

It can be seen that, while the estimator has a uniform bias order of o
�

1

m

�

over the whole
unit interval, the variance behaves differently at the boundary points, i.e., it has a greater order
of magnitude, which in this case is o

�

m
n

�

compared to the case of interval (0, 1) where the order
is o

⇣p
m
n

⌘

.
Therefore, the asymptotically optimal choice for m, i.e., given by the minimization of the

MISE, is mopt =
⇣

4C2
C1

⌘

2/5

n2/5, such that

MISE
�

gBB,m
opt

(t)
 

=
5

4

✓

4C4

1

C
2

n4

◆

1/5

+ o

✓

1

n4/5

◆

.

We have mentioned in Section 3.1 that the degree of the Bernstein density estimator is
often compared with the bandwidth of the kernel density estimator, in the way that, a higher
degree (smaller bandwidth) gives more flexibility in smoothing a function. Going further with
this analogy and setting h = 1

m , we can see from Theorem 2.3.2 that the bias of gBB,m(t) is
o (h) as opposed to being o

�

h2

�

when using a kernel estimator (we refer for comparison to the
boundary corrected kernel, see Section 2.2.1.1). On the other hand, looking at the variance in
Theorem 2.3.2, it can be seen that, compared to the kernel estimator which has a asymptotic
variance of o

�

1

nh

�

and o
�

1

nh2

�

for the interior and boundary points, respectively, the variance
of gBB,m(t) is smaller for the entire unit interval. Finally, the optimal bandwidth for gBB,m(t)
is hopt / n�2/5 instead of hopt / n�1/5 in the kernel case.
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3.1.3.2 Model identifiability

As mentioned in MacLachlan and Peel (2000), parameter identifiability is an important property
in the statistical inference of a mixture model. The idea is that different parameters values in
a model must correspond to different distributions. The identifiability condition becomes even
more important when working with a maximum likelihood estimator, as it represents one of
the constrains imposed by a consistent estimator.

We want to establish that our Bernstein-beta density estimator, i.e., the mixture of beta
densities, is identifiable. Thus, we relate our problem to the work of Passow (1977), where there
is a discussion about the identifiability of polynomials with positive coefficients, which is exactly
our case. In fact, it was mentioned shortly in the mentioned study that these polynomials are
generalizations of Bernstein polynomials. The idea behind Passow’s proof is that any polynomial
with positive coefficients has always a polynomial of best approximation and this one is unique.

In Theorem 2.3.3 we recall this statement. Let ⇧m = {pm : pm(t) =
Pm

i=0

ci · bi(t), ci �
0 for i = 1, 2, ...,m} be a set of polynomials with positive coefficients of degree m.

Theorem 2.3.3 (Existence and Uniqueness, Passow (1977)). Let g(t) be a continuous and
positive function on [0, 1]. Then, for any fixed m 2 N, there exist p⇤m(t) 2 ⇧m that minimizes
kg(t)�p⇤m(t)k1 among all pm(t) 2 ⇧m, and it follows that the polynomial of best approximation
p⇤m(t) 2 ⇧m is unique.

The proof of the theorem can be found either in the work of Passow (1977) or references
regarding polynomials approximation, such as Phillips (2003).

In Theorem 2.3.4 we show the exact definition of identifiability in the case of the Bernstein-
beta density estimator.

Theorem 2.3.4. Let ⇧m = {gBB,m : gBB,m(t;!) =
Pm

k=1

!k,m�k,m�k+1

(t),!k,m � 0 for k =
1, 2, ...,m} be a class of Bernstein-beta density estimators with degree m and weights vector !.
Given two families from ⇧m,

i) gBB,m(t;!) =
Pm

k=1

!k,m�k,m�k+1

(t),

ii) gBB,m(t;⇡) =
Pm

k=1

⇡k,m�k,m�k+1

(t),

for any m 2 N, gBB,m(t;!) = gBB,m(t;⇡), if and only if ! = ⇡.

Proof. Suppose that gBB,m(t;!) = gBB,m(t;⇡).
By simple algebra, we obtain

m
X

k=1

(!k,m � ⇡k,m)�k,m�k+1

(t) = 0 ,
m
X

k=1

ck�k,m�k+1

(t) = 0 (a) .

Next, we use the property that any Bernstein basis can be transformed to a power (mono-
mial) basis (see Farouki (2012), Section 5), i.e., �k,m�k+1

(t) = k
Pm

i=k(�1)i�k
�

m
i

��

i
k

�

ti�1.
If we further replace this relationship in (a), then we have

m
X

k=1

ck�k,m�k+1

(t) = 0 ,
m
X

k=1

ckk

m
X

i=k

(�1)i�k

✓

m

i

◆✓

i

k

◆

ti�1 = 0.
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Grouping the terms by monomial leads to

c
1

✓

m

1

◆✓

1

1

◆

+

⇢

�c
1

✓

m

2

◆✓

2

1

◆

+ 2c
2

✓

m

2

◆✓

2

2

◆�

t

+

⇢

c
1

✓

m

3

◆✓

3

1

◆

� 2c
2

✓

m

3

◆✓

3

2

◆

+ 3c
3

✓

m

3

◆✓

3

3

◆�

t2

+...+

(

m
X

i=1

(�1)i�1ici

✓

m

m

◆✓

m

i

◆

)

tm�1 = 0.

Since the power basis is a linearly independent set, we have that
8

>

>

>

<

>

>

>

:

c
1

�

m
1

��

1

1

�

= 0

�c
1

�

m
2

��

2

1

�

+ 2c
2

�

m
2

��

2

2

�

= 0

...
Pm

i=1

(�1)i�1ici
�

m
m

��

m
i

�

= 0.

which implies that c
1

= c
2

= ... = cm = 0. But ck = !k,m � ⇡k,m, so this leads to
!k,m = ⇡k,m, for k = 1, 2, ...,m. ⌅

3.2 EGPD with Bernstein-beta density
We introduced in Section 3.1 the Bernstein-beta density estimator and we have seen its asymp-
totic properties. In this section we are concerned with the inference of the EGPD model based
on the Bernstein-beta density. Thus, we first review the constraints imposed by the EGPD class
and prove that they are satisfied when using a Bernstein-beta estimator. Then, we present the
method used for the estimation of the parameters.

3.2.1 Constraints imposed by the EGPD class
Taking into consideration the Bernstein-beta pdf and cdf introduced in (2.3.4) and (2.3.6),
given an i.i.d. random variable X, we obtain the cdf and pdf of the EGPD model based on
Bernstein-beta density (EGPD-BB), as

F (x) = GBB,m {H⇠(x)} ,
f(x) = gBB,m {H⇠(x)}h⇠(x),

(2.3.7)

where H⇠ and h⇠ denotes the cdf and pdf of the GPD.
According to Naveau et al. (2016), an EGPD class assumes that the lower tail of the dis-

tribution behaves like a power function xs, while the upper tail like a GPD. Thus, we want to
check if lim

x!1

¯F (x)
¯H
⇠

(x)
and lim

x!0

F (x)
xs

hold, i.e., they are finite and positive. In Lemma 2.3.1 we show
the behavior of the two tails in the context of the EGPD-BB model.

Lemma 2.3.1. Given an i.i.d. random variable X, the lower and upper tail behavior of an
EGPD model based on Bernstein-beta density as formulated in (2.3.7), is:

1. lim
x!0

F (x)
xs

= c!s,m, where c is a constant, and s denotes the position of the first non-null
weight in !.

2. lim
x!1

¯F (x)
¯H
⇠

(x)
= m!m,m
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Proof.

1. lim
x!0

F (x)
xs

= c!s,m, where c is a constant, and s denotes the position of the first non-null
weight in !.

Starting from

lim
x!0

F (x)

xs
=lim

x!0

GBB,m {H⇠(x)}
xs

,

and following the same reasoning as Naveau et al. (2016), we get

lim
x!0

GBB,m {H⇠(x)}
xs

=lim
x!0

GBB,m

n

x · H
⇠

(x)
x

o

GBB,m(x)

GBB,m(x)

xs
,

=lim
x!0

GBB,m {x · !(x)}
GBB,m(x)

GBB,m(x)

xs
,

=lim
x!0

GBB,m {x · !(x)}
GBB,m(x)

lim
x!0

GBB,m(x)

xs
.

We must say that, as long as !(x) =
H

⇠

(x)
x , the term G

BB,m

{x·!(x)}
G

BB,m

(x) is always constant
and non-null (i.e., equal to 1) as x ! 0 due to the fact that !(x) = 1 + o(x), as x ! 0
(Taylor expansion).
That leaves the computation of the second term in the limit above, i.e.,

lim
x!0

GBB,m(x)

xs
=lim

x!0

gBB,m(x)

sxs�1

.

Considering that gBB,m(0) = m!
1,m, the above equality holds (i.e., l’Hopital rule can be

applied) only if gBB,m(0) = m!
1,m = 0 or s = 1. Therefore, in order to have a finite and

positive limit, we have to force the initial weight(s) to be zero. The number of necessary
initial null weights is given by the choice of the power s from the denominator.
To be more clear, we take an example.

(a) for s = 1, we must force the condition !
1,m > 0

lim
x!0

G
BB,m

(x)
x = lim

x!0

gBB,m(x) = m!
1,m

(b) for s = 2, we must force the condition !
1,m = 0 and !

2,m > 0

lim
x!0

G
BB,m

(x)
x2 = lim

x!0

g
BB,m

(x)
2x = lim

x!0

g
0
BB,m

(x)

2

= !
2,mm(m� 1)(m� 2)

where g
0

BB,m is the derivative of gBB,m.
(c) from simple induction that can easily be checked, for s = k, we must thus force the

condition !i,m = 0, for i = 1, ..., k � 1, and !k,m > 0.

Consequently, the lower tail behavior is imposed by the model by considering constraints
on the initial weights.

2. lim
x!1

¯F (x)
¯H
⇠

(x)
= m!m,m

Starting from

lim
x!1

F̄ (x)

H̄⇠(x)
= lim

x!1

ḠBB,m {H⇠(x)}
H̄⇠(x)

,
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and then, applying the change of variable H̄⇠(x) = v, we have

lim
x!1

ḠBB,m {H⇠(x)}
H̄⇠(x)

=lim
v!0

ḠBB,m(1� v)

v
.

Next, by applying l’Hopital’s rule gives,

lim
v!0

ḠBB,m(1� v)

v

0
0=lim
v!0

gBB,m(1� v)

=gBB,m(1)

=m!m,m.

Therefore, in order to satisfy the constraint regarding the upper tail behavior, we have to
force the last weight to be non-null, i.e., !m,m > 0.

⌅

Remark 2.3.1. We will see in the case study section that, in practice, the degree of the power
function (i.e., s) is given by the model choice, and it is not necessary to constraint the estimation
approach. More specifically, due to the fact that we consider a sparse mixture model, some of
the initial weights will become null, and will drive the behavior of the lower tail.

3.2.2 Parameter estimation
As we have seen in Section 3.2.1, the parameters of our model are the weights ! of the Bernstein-
beta estimator and the two GPD parameters, � and ⇠. Beside this, we must also set the degree
m of the polynomial (i.e., the number of components in the mixture), which from now on will
be called the hyperparameter.

In Section 3.2.2.1 and Section 3.2.2.2 we discuss the methodology for estimating the pa-
rameters !,�, ⇠ for a fixed m, namely the maximum likelihood estimator. Following that, in
Section 3.2.2.3 we address the subject of how to set the hyperparameter m. The last part of this
section, that is Section 3.2.2.4, is dedicated to a discussion regarding an alternative estimation
method.

3.2.2.1 Maximum likelihood estimator

The parameters of our model are estimated using the classical maximum likelihood estimator.
The likelihood function can be easily obtained from (2.3.4) as

L(✓|x) =
n
Y

i=1

f(xi|✓) =
n
Y

i=1

gBB,m {H⇠(xi)}h⇠(xi), (2.3.8)

where ✓ = [!,�, ⇠] denotes the vector of parameters. The corresponding log-likelihood function
is given in (2.3.9).

logL(✓|x) =
n
X

i=1

log {f(xi|✓)}

=

n
X

i=1

log [gBB,m {H⇠(xi)}] +
n
X

i=1

log {h⇠(xi)}
(2.3.9)

To obtain the estimated parameters ✓̂MLE we have to minimize the negative log-likelihood
(or to maximize the log-likelihood). Moreover, we must also have in mind that some parameters
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must be constrained, either by model formulation (e.g., scale parameter in GPD must be finite
positive, the weights must be positive) or induced in order to satisfy certain conditions (e.g.,
constraints on weights, see Section 3.2.1).

Therefore, our optimization problem becomes

✓̂MLE = argmin
✓

{�logL(✓|x)}

subject to ! 2 �m

!m,m > 0

� > 0

⇠ � 0,

(2.3.10)

where �m = {! 2 Rm : !k,m � 0,
Pm

k=1

!k,m = 1} are called simplex constraints.
We cannot obtain an analytic form solution from (2.3.10) as the model involves many pa-

rameters and it is highly non-linear. Thus, the optimal solution ✓̂MLE is computed numerically
through non-linear optimization algorithms, detailed in Section 3.3.

3.2.2.2 Penalized maximum likelihood estimator

We have seen in Section 3.1.2 that, for a sufficiently high degree m of Bernstein-beta estimator,
the solution of the mixture is sparse, i.e., only a small number of the weights are different
than zero. Therefore, we consider a standard approach for promoting sparsity that is widely
used in literature, namely the l

1

-regularization. Generally speaking, instead of optimizing the
objective function J(x), we now optimize J(x) + �||x||

1

(or J(x), s.t. ||x||
1

 � ), where || · ||
1

is the l
1

-norm or the sum of absolute values. The larger the penalty applied, i.e., � , the
more the estimates are shrunk towards zero. This penalization criterion was first introduced
by Tibshirani (1996) under the name Lasso criterion, and it is often used in linear regression
problems for subset selection.

Returning now to our problem, we want to penalize the small values of the weights and
eventually to set them to zero. Therefore, considering the formulation of the Lasso problem
mentioned above, the penalized form of the Bernstein-beta log-likelihood is

✓̂MLE
l1 = argmin

✓
{�logL(✓|x)}

subject to ||!||
1

 �

! 2 �m

!m,m > 0

� > 0

⇠ � 0.

(2.3.11)

However, standard l
1

-regularization, i.e., ||!||
1

 � or
Pm

k=1

|!k,m|  �, becomes ineffective
in the presence of the already necessary simplex constraints, i.e.,

Pm
k=1

!k,m = 1 and !k,m � 0
(see the constraints in red from (2.3.11)). We can notice that in fact the solution yielded by
using the simplex constraints is part of the l

1

-regularization set, but we cannot be sure that
this solution offers the best possible sparsity pattern.

There are approaches reported in the literature that study the sparse optimization under
simplex constraints. We mention in this sense the work of Pilanci et al. (2012) where the
authors consider a regularization of the objective function under simplex constraint with the
inverse l1-norm, or the work of Li et al. (2016) where a regularization based on negative l

2

-norm
is studied.
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Aside from these approaches, the sparsity under simplex constraints can be also obtained
by using a pragmatic 2-step estimation. One approach could be to, first i) ignore the simplex
constraints and find the optimal solution on Rm, then, ii) project this solution on the simplex.
On the same line, another method is to i) find the optimal solution under the simplex constraints,
and then, ii) further shrink it by using a suitable method. This method is called in the literature
thresholding. In the work of Li et al. (2016) all the above mentioned methods, and others, are
compared, and the general conclusion was that naive approaches like thresholding can provide
rather effective and similar results when compared with more sophisticated methods.

Driven by these results and the fact that it is computationally faster, we will use the thresh-
olding approach in our study. Thus, the optimization problem becomes

Step 1: ✓̂MLE = argmin
✓

{�logL(✓|x)}

subject to ! 2 �m

!m,m > 0

� > 0

⇠ � 0,

(2.3.12a)

Step 2: !̂MLE(⌧) =
�

!̂MLE
i,m · I �!̂MLE

i,m � ⌧
� 

1im�1

(2.3.12b)

where I(·) is the indicator function and ⌧ is the threshold value.

Remark 2.3.2. Attention must be paid to the last weight !m,m that must be kept in the
model, according to the constraints from Section 3.2.1. Thus, we are not including !m,m in the
thresholding step and leave it unchanged, even if its value is very small.

For the selection of the threshold ⌧ from (2.3.12b) we use the approach suggested by Li
et al. (2016), that is:

i. compute the sets ⌦ =
�

!̂MLE(⌧i), ⌧i 2 T
 

,

where T =
�

!̂MLE
i,m , i 2 I

�

!̂MLE
i,m 6= 0

� 

.

ii. pick the best threshold ⌧i 2 T according to a model selection criterion, such as generalized
information criterion (GIC) presented in Kim et al. (2012) and defined by

GIC(⌧i) = �logL
⇢

!̂MLE(⌧i)

�

�

�

�

x, !̂MLE
m,m,, �̂

MLE, ⇠̂MLE
�

+ ��2

✏ (⌧i)M(⌧i) (2.3.13)

Here, � = 2 log(m), M(⌧i) =
Pm

k=1

I
⇣

!̂MLE�⌧
i

k,m 6= 0
⌘

and �2

✏ (⌧i) is the variance of the
error term (i.e., deviation from the true model). As this value is unknown, as suggested
by Kim et al. (2012), we replace �2

✏ (⌧i) with the mean squared error obtained by using
the initial non-thresholded model from (2.3.12a), as a reference.

Given the set of candidate models ⌦, the preferred model is the one with the minimum
GIC value.

Remark 2.3.3. The class of GIC includes many well known selection criteria, such as AIC or
BIC that correspond to � = 2 and � = 2 log(n), respectively.
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After Step 2 from (2.3.12b), the weights will not unit sum, thus, our estimator will not integrate
to one (condition required by a probability density function). Moreover, Step 2 does not take
into consideration the GPD parameters (�, ⇠) and the last weight !m,m, so even though changes
might appear in !, the three parameters are unchanged. Consequently, we need an extra step,
shown in (2.3.14), that deals with these two issues: 1) ensure the unit sum of the weights, and
2) reestimate accordingly the remaining three parameters. Basically, we optimize again our
problem, but this time we take into consideration the sparse log-likehood, i.e., logL(✓J(⌧)|x),
where ✓J(⌧) = [!J(⌧),�, ⇠] and J(⌧) = {j 2 {1, ...,m} : !j 6= 0}.

Step 2a: ✓̂MLE
J(⌧) = argmin

✓
⌧

��logL(✓J(⌧)|x)
 

subject to !J(⌧) 2 �m
J(⌧)

!m,m > 0

� > 0

⇠ � 0,

(2.3.14)

where �m
J(⌧) = {! 2 Rm : !k,m � 0,

P

k2J(⌧) !k,m = 1}.

Remark 2.3.4. In practice, the optimization problem from (2.3.12a) might be very hard to
solve, and solutions that are in fact local minima might be returned. Therefore, to improve
the estimates, we propose to split the problem in two subproblems: 1) fix the GPD parameters
and, thus, reduce the problem just to the optimization of the first sum in (2.3.9), and 2) with
the known sparsity (i.e., non-null weights), optimize the sparse log-likehood (see (2.3.14)) and
find the estimates for all parameters. We will see in the case study below how exactly to choose
the GPD parameters required by the first subproblem.

3.2.2.3 Selection of the optimal degree

We have seen in the first part of this chapter that the degree m is a very important feature of
the model as it gives the smoothness of the estimator. Babu et al. (2002) show that m should
be of order o {n/ log(n)} for consistent convergence results, where n is the data sample size.
Also, it was concluded in the numerical study of the mentioned work that m = n

log(n) works
well. However, their study covered only small sample sizes (up to 125 observations), so when
working with larger samples, the degree m = n

log(n) could be too large for practical purposes.
Another interesting approach for the choice of the optimal degree is given by Guan (2016),

who used a change-point detection method of the profile log-likelihood on a set of candidate
values mi. Their reasoning is based on the fact that the change in log-likelihood is always
positive as m increases. However, this approach is not suitable if a sparse solution is considered,
as the change in log-likelihood will not be necessary positive as m increases.

Having in mind the close relationship with the nonparametric kernel estimator, an immediate
thought will be to use the same approaches for the choice of the hyperparameter m as for the
bandwidth. Thus, one traditional method is the Least Square Cross Validation (LSCV) which
is based on the minimization of the MISE. This method was used before by Bouezmarni and
Rolin (2007), Kakizawa (2004), Leblanc (2010) in Bernstein density estimation problems.

The idea of LSCV is to construct an estimator for the MISE from the data and, after that,
to minimize it over multiple values of m in order to get the optimal degree. So, the LSCV
estimator and its optimal value are given by

LSCV(m) =
R

1

0

g2BB,m(t)dt� 2

n

Pm
i=1

g
(�i)
BB,m(ti),

mLSCV = argmin
m

{LSCV(m)} .
(2.3.15)
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Here, g(�i)
BB,m(t) denotes the Bernstein-beta estimator constructed from all the data except ti.

3.2.2.4 Discussion on parameter estimation

We have seen in this section how to estimate the parameters of our EGPD model by optimizing
a penalized maximum likelihood. We concluded that the numerical algorithm might face diffi-
culties due to the several constraints that had to be imposed, and, thus, we proposed to split
the problem in two subproblems: first optimize the likelihood of the mixture by fixing the GPD
parameters, and then, by using the sparse likelihood, reestimate all the parameters at once.

In this subsection we want to discuss another approach for estimating sparse solutions from
a high dimensional mixture model, that is the first subproblem mentioned above, by means of a
penalized empirical risk loss function. This method was introduced by Bunea et al. (2010) and
we briefly mentioned it in the introduction in Section 1.1. In this work, the authors considered
estimating a density function in R domain by a sparse linear combination of basis functions,
which in this case, are gaussian densities with known means and variances. The sparse solution
is obtained by a l

1

-penalization of the empirical risk (ER), i.e., ER = kfk2
2

� 2

n

Pn
i=1

f(xi).
This estimator can recover with high probability the true weights only under a local coher-

ence regarding the basis functions, defined as

⇢(!) = max
i2M(!)

max
j 6=i

|⇢f (i, j)|, (2.3.16)

where ⇢f (i, j) = <f
i

,f
j

>
kf

i

kkf
j

k , fi are the basis function and M(!) is the number of non-null weights
!. Briefly, it means that for proper weight identification, the dictionary (i.e., the set of basis
functions) must not be over-complete, that is they must be clearly separated.

To anticipate what follows, we want to draw attention to an interesting conclusion of the
simulation study of the mentioned work. It was shown that, even though this condition is
not satisfied, i.e., the dictionary is over-complete and the hit rate (percentage of times the
cardinality of the true weights vector is correctly identified) is zero, the density approximation
error is not changing crucially compared with the case when the condition is satisfied and the
hit rate is 100%.

Driven by the good theoretical properties of this estimator, we consider it for our sparse
estimation. However, this estimator cannot be applied directly to our case as our density
function is on the unit interval and not in the R domain, thus another basis must be used. In
fact, the change of basis is not that straightforward as no density functions on [0, 1] satisfy the
condition required in Bunea et al. (2010). For example, if a beta density with parameters (a, b)
is considered as basis function, then ⇢(!) = 1 as ⇢f (i, j) shows perfect correlation.

Even so, in view of the conclusion mentioned above and adding the fact that we are more
interested in the density approximation error rather than in a perfect hit rate, we pursued
the weights estimation based on l

1

-penalization of the empirical risk, when a beta density is
the basis. Then, we compared this output with the one yielded by the maximum likelihood.
Unfortunately, the approach from Bunea et al. (2010) shows a poor estimation compared to
MLE. We show in Appendix B this comparison for one applied study.

In conclusion, the estimator proposed by Bunea et al. (2010) does not seem that straight-
forward when we move to the unit interval, so in what follows we will not pursue this approach.
An option, though, could be to step away from dictionaries composed of density functions, and
consider orthogonal basis on [0, 1], such as wavelets, orthogonal polynomials, etc. This ap-
proach, however, brings an extra step to the estimation which requires to project the solution
on the positive space such that it integrates to 1 (density requirement).
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3.3 Case study: simulated data

In this section we study the performance of Bernstein-beta EGPD (EGPD-BB) on simulated
data. First, we conduct an analysis when the hyperparameter m is considered known, i.e., it
is set to its true value, and, thus, focus on the assessment of the remaining parameters. Then,
we consider the case when m is unknown and it is set to the optimal value suggested by Babu
et al. (2002), i.e., m = n/ log(n).

3.3.1 Simulation study with the hyperparameter m = m
true

We consider simulations from our model with the following setting:

• mtrue = 50, considered known,

• !true = [!
15

= 0.25,!
25

= 0.2,!
35

= 0.25,!
45

= 0.25,!
50

= 0.05], the remaining 45 ele-
ments of !true vector out of the 50 are zero; this means that we have only M = 5 non-null
weights,

• �true = 2 and ⇠true = 0.15.

The density of a model with the above settings is illustrated in Figure 2.3.1. We consider
simulations of three different sizes, i.e., n = 300, 1000, 2000, and for each of them we generate
50 samples from this multimodal model.
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Figure 2.3.1: Shape of the density used in this simulation study, with m = 50, ! =
[!

15

= 0.25,!
25

= 0.2,!
35

= 0.25,!
45

= 0.25,!
50

= 0.05], � = 2 and ⇠ = 0.15

We pursue the following inference methods for the EGPD-BB model:

1. Optimize the entire problem at once, as presented in Section 3.2.2.2 (E1)

2. Estimate by splitting the initial problem in two subproblems, where GPD parameters are
fixed as follows:

E2fix: to their true values (� = �true and ⇠ = ⇠true),

E2EGPD1 : to their estimated values from the EGPD
1

model, i.e., G(u) = uk, see (2.1.16a)
(� = �̂EGPD1 and ⇠ = ⇠̂EGPD1),

E2grid: take a grid for each pair (�, ⇠) and choose the optimal one by minimizing BIC
(� = �̂grid and ⇠ = ⇠̂grid). We consider a grid of 100 equally spaced points for
each parameter, i.e., �grid = {0.05, 0.1, ..., 5} and ⇠grid = {0.01, 0.02, ..., 1}.
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The notation for these methods means: "E"=Evaluation, "1/2"= entire problem/two sub-
problems optimization, and the subscripts "fix", "EGPD

1

", or "grid" indicate the approach
used for setting the GPD parameters. For clarity, we provide in Appendix A the estimation
methodology for all the approaches used in this study.

The unrealistic situation E2fix from point 2 above, where the GPD parameters are considered
known, was included in order to highlight how the inclusion of the GPD parameters influences
the estimation of the weights.

3.3.1.1 Parameter estimation

In this section we analyze the estimated parameters over the 50 replicates. We are particularly
interested in the ability of EGPD-BB to identify the values of the true mixture weights and
GPD parameters. Figure 2.3.2 and Figure 2.3.3 illustrate the estimated weights of the mixture
and the boxplots of the GPD parameters, respectively, for each estimation approach. Table
2.3.1 summarizes the hit rate of the true mixture cardinality (i.e., the percentage of times the
true number of non-null weights M is equal to the estimated one M̂ , over the 50 replicates).

As presumed in the theoretical section, there are important differences in estimation while
comparing the case when all the parameters are estimated at once (i.e., E1) with the case when
a division in subproblems is considered (i.e., E2).

Table 2.3.1: Percentage of time M̂ = M and the mean of M̂ obtained from 50 replicates, for
the sample sizes n = 300, 1000, 2000 and the estimation approaches E1, E2fix, E2EGPD1 and
E2grid (M - true cardinality (i.e., 5); M̂ - estimated cardinality; M̄ - mean of the estimated
cardinality from 50 replicates)

n=300 n=1000 n=2000

%

¯

M %

¯

M %

¯

M

E2

fix

88% 4.88 96% 4.96 100% 5.00

E2

EGPD1 84% 4.84 88% 4.88 86% 4.86

E2

grid

98% 4.98 100% 5.00 100% 5.00

E1 90% 4.90 94% 4.94 90% 4.90

As illustrated in Figure 2.3.2, the estimation approach E1 reports an overestimation of the
scale parameter �, and a significant instability in the estimation of the shape parameter ⇠,
regardless the sample size. Besides this, even though the hit rate is larger than 90%, as shown
in Table 2.3.1, the positions of the estimated weights are not the true ones, as it can be seen from
the last line of plots in Figure 2.3.3. More specifically, even though the estimated cardinality
is equal to the true one (i.e., 5) in most of the cases out of the 50 replicates, the positions of
the estimated weights do not maintain the true location of the components. In fact, it can be
noticed from the last line of plots in Figure 2.3.3, that the positions of the non-null estimated
weights (in gray) are shifted to the left compared to the true ones (in blue), except the last
weight (!̂m,m) which is estimated each time quite well, due to the constraint considered in the
optimization problem, i.e., !m,m >0.

The split in subproblems is improving both the estimation of the GPD parameters, and the
identification and estimation of the weights. We focus, at first, on the situations when the GPD
parameters are considered unknown, i.e., estimation approaches E2EGPD1 and E2grid. It can be
observed from Table 2.3.1 that E2EGPD1 tends to underestimate the number of non-null weights,
while E2grid has a very good cardinality identification, achieving a 100% hit rate for large sample
size datasets (i.e., n = 1000 and n = 2000). Moreover, the estimation of the weights is improved
compared to the E1 estimation case, especially when E2grid is applied. More specifically, as
illustrated in the second and third lines of plots from Figure 2.3.3, the five clusters formed
by the weights’ estimates are better defined, such that the estimated values of the weights
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are not so scattered, and they are concentrated more closely to the true value of the weights
parameters, especially in the E2grid case. Furthermore, the estimation of the GPD parameters,
as illustrated in Figure 2.3.2, is considerably improved and more stable than the E1 case. While
E2EGPD1 seems to still under- and overestimate the scale and shape parameters, respectively,
E2grid achieves good estimation results. The identification and estimation performance of all
parameters increases as the sample size becomes larger.

We have seen so far that when considering both GPD parameters and mixture weights to
be evaluated at once, the estimations are poor, but they are improved when the optimization
problem is split in two subproblems. It is also interesting to assess how the inclusion of GPD
parameters influences the estimation of the weights. Thus, we analyze the estimation approach
E2fix, where the GPD parameters are considered known. As illustrated in the first line of
plots from Figure 2.3.3, the positions of the estimated weights are very well identified, and the
clusters formed by these estimates are very narrow, meaning that the estimated weights are in
most of the cases on the true position. These results lead to the conclusion that the mixture
weights can be identified and estimated with high accuracy, if the GPD parameters are well
assessed.

E2
E

G

P

D

1

E2
g

r

i

d E1

E2
E

G

P

D

1

E2
g

r

i

d E1

E2
E

G

P

D

1

E2
g

r

i

d E1

1

2

3

4

5

�

n=300 n=1000 n=2000

0

1

2

3

4

5

⇠

E2
E

G

P

D

1

E2
g

r

i

d E1

E2
E

G

P

D

1

E2
g

r

i

d E1

E2
E

G

P

D

1

E2
g

r

i

d E1

0

0.2

0.4

0.6

⇠

Zoom Zoom

Figure 2.3.2: Boxplots of the estimated scale (top) and shape (bottom) GPD parameters for
the 50 replicates, for the sample sizes n = 300, 1000, 2000 and the estimation approaches E1,
E2EGPD1 and E2grid (the red horizontal line indicates the true value of the parameters)
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Figure 2.3.3: Estimated weights for the 50 replicates, for the sample sizes n = 300, 1000, 2000
and the estimation approaches E1, E2fix, E2EGPD1 and E2grid (blue diamond=true value, gray
circle=estimated value, red circle=estimated value that is on the true position)

3.3.1.2 Quantile and density analysis

To further evaluate the performance of EGPD-BB, we analyze the estimated quantiles, with a
particular interest in the extreme ones, and the density approximation error. Since the idea of
using an EGPD-BB model is to add flexibility to the already existent parametric EGPD models
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(see (2.1.16a)-(2.1.16d)), our analysis is based on a comparison with the EGPD
1

model.
For the quantile analysis, we consider estimating 99 quantiles, from 0.01 to 0.99, equally

spaced. In order to measure the estimation accuracy of each model we compute the RMSE,
and for comparing the estimations of two models, we compute the Ratio Root Mean Squared
Error (RRMSE). We have provided more details about these measures in Section 2.3.2.
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Figure 2.3.4: Boxplots of the estimated quantiles’ RMSEs of both EGPD
1

and EGPD-BB (with
estimation approaches E1, E2fix, E2EGPD1 and E2grid and m = mtrue) over 50 replicates, for
the sample sizes n = 300, 2000.

Figure 2.3.4 illustrates the boxplots of the RMSE values of the estimated quantiles from
the 50 replicates (i.e., each boxplot contains 50 RMSEs, one for each replicate), for EGPD

1

and EGPD-BB including each estimation approach (E1, E2fix, E2EGPD1 and E2grid). We show
only the output for n = 300 (in gray) and n = 2000 (in blue), the other sample size (i.e.,
n = 1000) providing an in-between interpretation. A brief examination of these plots shows
that the accuracy of all models improves as the sample size is increased, such that for n = 2000
the RMSEs become smaller and less variable. Moreover, while for a sample size n = 300, the
performance of EGPD

1

and EGPD-BB is more or less similar, for n = 2000 the RMSEs of the
EGPD-BB are smaller than those of EGPD

1

. Thus, EGPD-BB appear to be influenced more
by the increase in the sample size compared with EGPD

1

, but this behavior is not unexpected
in a semiparametric framework.

A more clear overview of the contrast in quantile estimation error between EGPD
1

and
EGPD-BB is provided in Table 2.3.2. Here, we display the percentage of time when the ratio
between the RMSE of EGPD

1

and EGPD-BB (i.e., R(simi) =
RMSEEGPD1 (simi

)

RMSEEGPD-BB(sim
i

)

) is larger
than 1, that is, we account for the times when RMSEEGPD-BB is smaller than RMSEEGPD1 .
Thus, while for a small sample size EGPD

1

achieves smaller RMSEs for approximately half of
the replicates, when the sample size increases, the EGPD-BB chieves a better performance for
almost all replicates.

Table 2.3.2: Percentage of time the ratio between RMSEEGPD1(simi) and RMSEEGPD-BB(simi)
is larger than 1, for i = 1, 2, ..., 50 replicates, for the sample sizes n = 300, 1000, 2000 and EGPD-
BB estimation approaches E1, E2fix, E2EGPD1 and E2grid, for the case m = mtrue

E2
fix

E2
EGPD1 E2

grid

E1

n=300 68% 40% 54% 50%

n=1000 100% 68% 92% 90%

n=2000 100% 90% 98% 96%

We have compared so far the accuracy of EGPD
1

with EGPD-BB with respect to the
quantile estimation. Further on, we analyze the performance of the four estimation approaches
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considered for EGPD-BB, i.e., E1, E2fix, E2EGPD1 and E2grid. As illustrated in Figure 2.3.4,
while for a sample size n = 300 there are no significant differences in RMSEs, for a larger sample
size (i.e., n = 2000), the E2EGPD1 errors become more variable than for the other approaches,
but it still provides a reduced estimation error compared to EGPD

1

. Moreover, the efficiency
in quantile estimation of E1 and E2grid is very close to the one of E2fix (i.e., the case when the
GPD parameters are considered known), meaning that the inclusion of GPD parameters in the
estimation approach does not cause a decrease in quantiles estimation performance. The ratio
RMSE from Table 2.3.2 display the same conclusion.

Until now, we have analyzed the overall performance of the estimated quantiles, but it is
essential to also measure the models’ efficiency with respect to large quantiles, such as 90-, 95-,
99-th quantile (q

90

, q
95

, q
99

), i.e., to assess the performance of the models on the upper tail.
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Figure 2.3.5: Boxplots of the estimated q
0.9, q0.95, q0.99 quantiles of both EGPD

1

and EGPD-BB
(with estimation approaches E1, E2fix, E2EGPD1 and E2grid, and m = mtrue) over 50 replicates,
for the sample sizes n = 300 and 2000 (the red horizontal line indicates the true value of the
quantiles)

Figure 2.3.5 illustrates the boxplots of the estimated values for the three extreme quantiles
from the 50 replicates, for each model and two different sample size datasets, i.e., n = 300 and
n = 2000. Here, it can be observed that the sample size greatly affects the quantile estimation,
more specifically, the estimates associated with a larger sample size (n = 2000) are less variable
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compared to the ones from a small sample size (n = 300). Moreover, there is an overestimation
tendency for q

90

, while on the contrary q
99

is slightly underestimated, when compared to the
true value (red horizontal line), especially at EGPD

1

and EGPD-BB with E2EGPD1 estimation
approach, but the overall assessment is adequate.

Table 2.3.3: Ratio between the RMSEs of EGPD
1

and EGPD-BB (with estimation approaches
E1, E2fix, E2EGPD1 and E2grid, and m = mtrue) for q

0.9, q0.95, q0.99 quantiles over 50 replicates,
for the sample sizes n = 300, 1000, 2000 (in red the cases where EGPD

1

performs better than
EGPD-BB)

E2
fix

E2
EGPD1 E2

grid

E1

q0.90 q0.95 q0.99 q0.90 q0.95 q0.99 q0.90 q0.95 q0.99 q0.90 q0.95 q0.99

n=300 1.540 1.160 1.027 1.460 1.221 0.781 1.490 1.120 0.774 1.598 1.019 0.805

n=1000 2.716 1.688 1.621 1.974 1.921 0.761 2.409 1.723 0.980 2.660 1.541 0.994

n=2000 3.364 2.566 2.096 2.156 2.878 0.811 3.243 2.529 1.207 3.495 2.371 1.126

To compare the performance of EGPD
1

with EGPD-BB more clearly, Table 2.3.3 displays
the ratio between the RMSEEGPD1 and the RMSEEGPD-BB of the estimates (i.e., R(qp) =
RMSEEGPD1 (qp)

RMSEEGPD-BB(q
p

)

) for each of the three extreme quantiles, over the 50 replicates. Recall that
a ratio larger than 1 implies that EGPD-BB has a better performance in estimating that
quantile when compared to EGPD

1

. The ratios presented here show that EGPD
1

provides
better estimates for q

99

when the sample size is small or medium (red colored cells), but these
estimates are outperformed by EGPD-BB when the sample size increases to n = 2000, except
for the case of E2EGPD1 .

One last point that we want to study is the approximation error of the density. We use the
MIAE, see details of this performance indicator in Section 2.3.2, to check which model, EGPD

1

or EGPD-BB, provides a smaller error, and also which EGPD-BB estimation approach yields
a more accurate smoothing.

In Table 2.3.4 we can see that EGPD
1

has a larger MIAE when compared to EGPD-BB,
regardless of the estimation approach. If we focus on the three practical estimation methods,
i.e., E2EGPD1 , E2grid and E1, we see that the best output is given by E2grid (red in the mentioned
table), which in fact in not very far from the "ideal" case E2fix (the case when the GPD
parameters are considered known). The other two methods behave almost the same when
compared to each other, but E1 tends to provide improved estimates, especially when the
sample size increases. We highlight in blue the second best approximation. This is even more
clearly illustrated in Figure 2.3.6, where we display the fitted densities, for both EGPD

1

and
EGPD-BB (with estimation approaches E1, E2fix, E2EGPD1 and E2grid) models. While EGPD

1

does not fit accurately the bulk of the distributions, EGPD-BB is considerably more flexible in
this sense.

Table 2.3.4: MIAE of EGPD
1

and EGPD-BB (with estimation approaches E1, E2fix, E2EGPD1

and E2grid, and m = mtrue) over 50 replicates, for the sample sizes n = 300, 1000, 2000 (in red
the best and in blue the second best approximation error for each sample size)

EGPD1 E2
fix

E2
EGPD1 E2

grid

E1

n=300 0.311 0.128 0.145 0.137 0.146

n=1000 0.305 0.071 0.094 0.080 0.094

n=2000 0.303 0.052 0.079 0.061 0.074
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Figure 2.3.6: Fitted densities of the EGPD-BB (with estimation approaches E1, E2fix, E2EGPD1

and E2grid, and m = mtrue) and the EGPD
1

models, over 50 replicates, for the sample sizes
n = 300, 1000, 2000 (red = the true density, gray = the density fit of each replicate, blue = the
mean of the 50 fitted densities)
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3.3.2 Simulation study with the hyperparameter m = m
opt

The purpose of this study is to assess the performance of the EGPD-BB when the hyperparam-
eter m is set to the optimal value suggested by Babu et al. (2002), i.e., mopt = n

log(n) , where
n is the sample size. We compare our model with EGPD

1

. Due to the similarities in quantile
estimation and density approximation between EGPD-BB when E2grid and E1 are applied,
but also taking into account their computational time, in this section we focus only on the
performance of E2EGPD1 and E1, and not E2grid.

As mentioned in the theoretical part, for large sample size datasets, the optimal value
suggested by Babu et al. (2002) for the hyperparameter m might be too large, and thus, it can
create an over-fitting of the density. For this reason, in this simulation study we analyze the
performance of the models for the case when m = mopt, but also the case when this degree is
m =

mopt
2

. The latter setting serves only as a contrasting example and it does not stand as a
solution for estimating m.

We consider for this simulation study 100 replicates from a mixture of two gamma densities
and a GPD (Mix2GaGPD), with different sample sizes: n = 300, 600, 1000. Recall that a mix-
ture of two gamma densities is defined as f2Ga(x;↵,�, p) = pf

1

(x;↵
1

,�
1

)+ (1� p)f
2

(x;↵
2

,�
2

),
where fi is the pdf of the gamma distribution with shape and scale parameters ↵i and �i,
respectively. To preserve the continuity at the jointure point with GPD, i.e., at u, the scale
parameter � of the GPD is considered as � = 1�F2Ga(u;↵,�,p)

f2Ga(u;↵,�,p)
. We refer to Section 2.3.1 from

the previous chapter for more details about this type of mixtures.
We use the following parameters’ setting for this simulation study:

• Gamma mixture parameter: ↵ = (2, 4), � = (1, 2), p = (0.4, 0.6),

• GPD parameters: (⇠, u) = (0.1, q
90

), where q
90

denotes the 90-th quantile of the two
gamma mixture.

The corresponding optimal degrees for each sample size are: mn=300

opt = 53, mn=600

opt = 94
and mn=1000

opt = 145.

We study the performance of both EGPD-BB and EGPD
1

in approximating the true den-
sity and estimating three extreme quantiles, i.e., q

90

, q
95

, q
99

. Figure 2.3.8 and Figure 2.3.7
illustrate the fitted densities and the boxplots of the estimated quantiles over the 100 repli-
cates, respectively, for each considered case. Table 2.3.5 and Table 2.3.6 display, respectively,
the MIAEs of the density approximations and the ratio between EGPD

1

and EGPD-BB of the
quantiles RMSEs (i.e., RRMSE(qp) =

RMSEEGPD1 (qp)

RMSEEGPD-BB(q
p

)

), for each case.

Table 2.3.5: MIAE of the EGPD
1

and EGPD-BB (with estimation approaches E2EGPD1 and
E1) over 100 replicates, when m = mopt or m =

mopt
2

, for the sample sizes n = 300, 600, 1000
(in red is highlighted the best approximation error between EGPD

1

, E2EGPD and E1, for each
sample size and scenario)

m = m
opt

m = m
opt

/2

EGPD(1)
1 E2

EGPD1 E1 EGPD(1)
1 E2

EGPD1 E1

n=300 0.163 0.162 0.161 0.163 0.164 0.163

n=600 0.159 0.159 0.151 0.159 0.113 0.111

n=1000 0.156 0.222 0.182 0.156 0.106 0.109
1

EGPD

1

does not depend on the choice of m, so the two columns (i.e., 1

st

and 4

th

) that display the results of the EGPD

1

) model are the same; we use

the second EGPD

1

column to better display the results for the case when

m = m

opt

/2
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Table 2.3.6: Ratio between the RMSEs of EGPD
1

and EGPD-BB (with estimation approaches
E1 and E2EGPD1) for q

0.9, q0.95, q0.99 quantiles over 100 replicates, when m = mopt or m =
mopt
2

,
for the sample sizes n = 300, 600, 1000 (in red the cases where EGPD

1

performs better than
EGPD-BB)

m = m
opt

m = m
opt

/2

E2
EGPD1 E1 E2

EGPD1 E1

q0.9 q0.95 q0.99 q0.9 q0.95 q0.99 q0.9 q0.95 q0.99 q0.9 q0.95 q0.99

n=300 1.125 1.558 1.079 1.131 1.532 1.090 1.175 1.422 0.769 0.969 0.783 0.302

n=600 1.298 1.716 0.827 1.144 1.685 0.641 1.301 1.888 1.252 1.315 1.934 1.184

n=1000 0.406 0.354 0.130 1.255 1.942 1.170 1.516 2.176 1.201 1.339 2.348 1.569
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Figure 2.3.7: Boxplots of the estimated q
0.9, q0.95, q0.99 quantiles of both EGPD

1

and EGPD-
BB (with estimation approaches E1 and E2EGPD1) over 100 replicates, when m = mopt or
m =

mopt
2

, for the sample sizes n = 300, 600, 1000 (the red horizontal line indicates the true
value of the quantiles)
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Figure 2.3.8: Fitted densities of the EGPD-BB (with estimation approaches E2EGPD1 and E1)
and the EGPD

1

models, over 100 replicates, when m = mopt or m =
mopt
2

, for the sample sizes
n = 300, 600, 1000 (red = the true density, gray = the density fit of each replicate, blue = the
mean of the 100 fitted densities)



102 Chapter 3. EGPD and sparse mixture models

We focus, first, on the performance of the models when the hyperparameter is set to the
optimal value, i.e., m = mopt. With respect to the sample size, we have that:

1. Small sample size (n = 300 and mopt = 53)

Both EGPD
1

and EGPD-BB have similar MIAE and quantile estimation error (ratio is
close to 1), but the EGPD-BB model, regardless of the estimation approach applied, E1
or E2EGPD1 , tends to perform slightly better. A more clear overview of the efficiency of
each model in approximating the density is illustrated in Figure 2.3.8. Here, it can be
observed that EGPD

1

does not capture well the bulk part of the true density (red curve),
while EGPD-BB yields, in average, an approximation (see blue curve) very similar to the
true one (red curve), even though the estimated curves (in gray) have more variability
than the ones provided by the EGPD

1

model. Figure 2.3.7 displays the estimated q
90

,
q
95

, q
99

quantiles. It can be seen that EGPD
1

overestimates all three quantiles, but
also that, even though, EGPD-BB corrects this aspect and provide improved quantile
estimates, it shows again an increased variability in the estimations when compared to
EGPD

1

. Finally, there is no clear difference between the two estimations approaches of
the EGPD-BB model, i.e., E2EGPD1 and E1.

2. Medium sample size (n = 600 and mopt = 94)

Despite the similarities in the MIAE of EGPD
1

and EGPD-BB, Figure 2.3.8 shows that
the density approximations (in gray) yielded by EGPD-BB are much more noisy, thus we
might have a first sign of over-fitting due to a too large degree m. EGPD

1

is clearly still
overestimating the true quantiles and provides an increased estimation error compared
to EGPD-BB, i.e., the ratios from Table 2.3.6 are larger than 1. There is, though, an
exception at q

99

, where due to a more variable and unstable quantile estimation, see
Figure 2.3.7, EGPD-BB performs worse than EGPD

1

(see red color cells in Table 2.3.6),
even if the latter one still overestimates the true quantile.

3. Large sample size (n = 1000 and mopt = 145)

As the sample size is larger, there is even more evidence that EGPD-BB is over-fitting the
true density, as can be seen from Figure 2.3.8 and the MIAEs from Table 2.3.5. Moreover,
the EGPD-BB fit of the extreme quantiles (q

90

, q
95

, q
99

) appears to be greatly affected
by this over-fitting when the estimation approach E2EGPD1 is applied, yielding poor and
variable quantile estimations as illustrated in Figure 2.3.7. On the contrary, EGPD-BB
with the estimation approach E1 provides an accurate fit of the extreme quantiles and it
appears not to be affected in this sense by this over-fitting.

The above analysis shows that the setting of the hyperparameter m to the optimal value
suggested by Babu et al. (2002) might not be a reliable solution, especially for large sample
sizes where this optimal value might increase considerably, e.g., mopt = 145 for n = 1000. In
the following, we evaluate the approximation error and quantile fit in the case where m is set
to mopt/2. Thus, with respect to the sample size, we have that:

1. Small sample size (n = 300 and mopt/2 = 27)

The density fit and its MIAEs, displayed in Figure 2.3.8 and Table 2.3.5, respectively, do
not appear to be significantly affected by the decrease of the degree m. On the contrary,
a smaller degree, thus a fewer number of components in the mixture, greatly influences
the fit of the extreme quantiles, as can be seen from Figure 2.3.7 and Table 2.3.6, for both
estimations approaches (E2EGPD1 and E1).

2. Medium sample size (n = 600 and mopt/2 = 47)
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Both the density and the quantiles fit are improved compare to the case when m = mopt,
the estimations are less variable and they provide this time a more accurate output than
EGPD

1

model.

3. Large sample size (n = 1000 and mopt/2 = 73)

The difference between the fit of the models with m = mopt and m =
mopt
2

is even more
clear in this case. The density and quantiles fits are greatly improved, such that the
MIAEs are halved, as displayed in Table 2.3.5, and the quantile estimation errors are
significantly decreased, outperforming the EGPD

1

model in all the considered cases.

In conclusion, the setting of the hyperparameter m to the optimal value n/ log(n) appears
to be suitable only for small sample size datasets, and, thus it is recommended that, for medium
and, especially for large samples, to employ a different choice or estimation method to set this
degree. Such method can be, for example, the LSCV methodology briefly described in Section
3.2.2.3. Moreover, the E1 estimation approach is less sensitive to the choice of m for large
sample size datasets, yielding good estimates even for m = mopt.

3.4 Case study: rainfall data

We now apply EGPD-BB on the two rainfall datasets used in the case study from Chapter 2.
As a quick reminder, one dataset contains hourly precipitation from 1996 to 2011 recorded at
the Lyon station, and the other one mean areal daily precipitation from 1948 to 2010 recorded
at the Durance station. The sample sizes of our datasets, after removing the dry events, are:

Lyon: Spring-282, Summer-251, Fall-336, Winter-184

Durance: Spring-726, Summer-755, Fall-600, Winter-590.

3.4.1 Rainfall at the Lyon station

Motivated by our simulation Study 2, the degree of EGPD-BB is set to mopt = n
log(n) , i.e.,

m̂Spring
opt = 50, m̂Summer

opt = 46, m̂Fall
opt = 58 and m̂Winter

opt = 36.
We evaluate the three estimation approaches analyzed in the simulation study for EGPD-

BB, i.e., E1, E2EGPD1 and E2grid, for each season separately, and, then, we compare these
estimates with EGPD

1

. For E2grid, we use a grid of 30 equally spaced points within the
intervals � = [0.5, 4] and ⇠ = [0, 0.5]. We must mention that wider intervals were tested at first,
but the best output was all the time included in a more narrow one. Thus, to fine tune the grid
and reduce the computational time, we considered this limited set of values.

Table 2.3.7 displays for each estimation approach, the estimated GPD parameters (�̂, ⇠̂),
the sparsity degree M̂ (i.e., the number of non-null weights) and the first non-null position
(ŝ) in the estimated weights vector. It can be noticed from the sparsity degree that around
80% of the weights are set to zero. The values of the estimated GPD parameters for the three
approaches are more or less the same, but special attention must be paid to approach E1, where
the 95% confidence intervals tend to be larger than for the other estimation methods. Thus,
E1 might encounter problems in finding the optimal result, fact that was already pointed out
in the simulation study.
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Table 2.3.7: Estimated GPD parameters with the associated 95% confidence intervals, sparsity
degree M̂ and the first non-null position (ŝ) in the estimated weights vector, for the EGPD-BB
model with m = mopt fitted to the hourly Lyon rainfall data (1996-2011) by three estimations
approaches: E1, E2EGPD1 and E2grid, for each season

Spring (m̂
opt

= 50) Summer (m̂
opt

= 45)
ˆM ŝ �̂ ˆ⇠ ˆM ŝ �̂ ˆ⇠

E2
EGPD1 9 8 1.40[1.34,1.55] 0.06[0.00,0.11] 10 5 2.44[2.23,2.61] 0.12[0.01,0.19]

E2
grid

8 8 1.26[0.85,1.55] 0.07[0.01,0.10] 8 6 2.05[2.00,2.46] 0.06[0.05,0.20]

E1 12 7 1.53[1.16.1.90] 0.00[0.00,0.21] 10 5 2.58[1.41,3.70] 0.10[0.00,0.66]

Fall (m̂
opt

= 57) Winter (m̂
opt

= 36)
ˆM ŝ �̂ ˆ⇠ ˆM ŝ �̂ ˆ⇠

E2
EGPD1 12 8 1.54[1.50,1.76] 0.26[0.12,0.28] 6 9 0.77[0.76,0.87] 0.28[0.15,0.41]

E2
grid

11 8 1.58[1.50,1.96] 0.21[0.15,0.30] 7 10 0.65[0.55,0.85] 0.27[0.25,0.40]

E1 13 8 1.50[1.14,2.98] 0.10[0.00,0.30] 9 6 1.64[0.64,2.23] 0.12[0.00,0.36]

Figure 2.3.9 illustrates the histograms with the fitted densities for both EGPD
1

and EGPD-
BB with the three estimation approaches, as well as the QQ-plots. The fitted densities and
quantiles of the two models, regardless of the estimation approach in the EGPD-BB case, are
very close to each other. EGPD-BB has an improved estimation compared to EGPD

1

for the
bulk of the distribution for Spring, Summer and Winter, but it still does not capture completely
all the peaks and valleys from Summer. A visual inspection of the fitted densities and quantiles
brings the conclusion that E2grid is achieving the best estimation. We also corroborate this
conclusion with the classification given by the BIC displayed in Table 2.3.8. The best model
selected by BIC is E2grid (in red), for three out of the four seasons. In Winter, the BIC criteria
of E2EGPD1 and E2grid are very close, and in this case the method with the fewest number of
parameters is favored and selected, i.e., E2EGPD1 .

Table 2.3.8: BIC output of EGPD-BB model for the hourly Lyon rainfall data (1996-2011), for
each of the four seasons and the three estimation approaches: E1, E2EGPD1 and E2grid (in red
is indicated the best estimation approach for each season).

Spring Summer Fall Winter

E2
EGPD1 833.541 970.854 1107.918 408.108

E2
grid

825.998 958.338 1102.086 409.688

E1 850.442 970.708 1112.258 430.454

Figure 2.3.10 illustrates the histograms with the fitted densities on the transformed data
for each season and both EGPD

1

and EGPD-BB. Recall that for a random variable X, the
transformed data for the EGPD model is U = H⇠(X), where H⇠ is the cdf of GPD. Thus, we
display the histograms of the transformed data U together with the fit of the Bernstein-beta
density estimator gBB,m(t) from (2.3.4) for EGPD-BB and the power function (i.e., g(u) =
u�1) of the EGPD

1

model. It can be seen that EGPD
1

is very close to a straight line (due to
the fact that the estimated k parameters are near 1, thus exact GPD model), while EGPD-BB
captures well the peaks and valleys of the distribution, thus adds more flexibility for the bulk
of the distribution. Moreover, E2EGPD1 and E2grid have a very similar fit, while E1 is slightly
different, especially in Winter, fact that can be seen also from the estimated GPD parameters
in Table 2.3.7.
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Figure 2.3.9: Histograms with the fitted densities and QQ-plots with the associated 95% con-
fidence intervals for EGPD

1

and EGPD-BB with m = mopt for hourly Lyon rainfall data
(1996-2011), for each of the four seasons. Three approaches are considered for the estimation
of the EGPD-BB model: E1, E2EGPD1 and E2grid
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Figure 2.3.10: Histograms with the fitted densities for EGPD
1

and EGPD-BB with m = mopt
of the transformed hourly Lyon rainfall data (1996-2011), i.e., U = H⇠(X), for each of the
four seasons. Three approaches are considered for the estimation of the EGPD-BB model: E1,
E2EGPD1 and E2grid.

Until now, the focus was mainly directed towards the performance evaluation of extreme
quantiles from the right tail, but we neglect the small ones from the left tail. Figure 2.3.11 shows
a zoom on the small values of the QQ-plots for both EGPD

1

and EGPD-BB. We illustrate only
the plots for the estimation approach E2EGPD1 , the other two approaches providing the same
output. Consequently, we can see that EGPD-BB has a better fit compared to EGPD

1

for the
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small values, thus, the fact that the lower tail constraint (see Section 3.2.1) was not directly
included in the optimization problem, is not an issue, as the sparse behavior of the EGPD-BB
model is forcing this constraint to be satisfied.
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Figure 2.3.11: Zoom on the small values of the QQ-plots for EGPD
1

and EGPD-BB, with
m = mopt and estimation approach E2EGPD1 , for hourly Lyon rainfall data (1996-2011) for
each of the four seasons

Finally, even though we concluded in the simulation study that for small sample sizes a
setting of m to mopt =

n
log(n) brings good estimates, we also use the LSCV technique, detailed

in Section 3.2.2.3, to find the optimal degree. We compute the LSCV value for each degree from
the set [25, 26, ...,mopt]. The selected hyperparameters mLSCV for each season are, either the
same, or close to the ones given by mopt, i.e., these degrees are m̂Spring

LSCV = 50, m̂Summer
LSCV = 45,

m̂Fall
LSCV = 57 and m̂Winter

LSCV = 34. We do not present the fitted models for these cases as their
performance is almost identical to the one already discussed above.

3.4.2 Rainfall at the Durance station

The performance evaluation for the Durance rainfall data is handled similarly to the Lyon
case study. There is, though, an important difference regarding the sample size. While in the
previous case study we worked with estimations on small sample sizes, in the Durance study
we have a medium sample size case. We have seen in the simulation study that, for medium
sample sizes, by the setting mopt =

n
log(n) might not be appropriate, due to an overestimation

of this degree. However, as there is no precise boundary between a small and a medium sample
size, we assess first the performance of the fitted models when m = mopt. We obtain for each
season the following degrees: m̂Spring

opt = 111, m̂Summer
opt = 114, m̂Fall

opt = 94 and m̂Winter
opt = 93.

Moreover, for the estimation approach E2grid we use 30 equally spaced values from the following
intervals: � = [3, 15] and ⇠ = [0, 0.5]. We apply the same reasoning in setting these bounds as
for the Lyon case study.

Table 2.3.9 displays the estimated values for the GPD parameters (�̂, ⇠̂), the sparsity degree
M̂ and the first non-null position (ŝ) in the estimated weights vector. While E2EGPD1 and E2grid
have similar estimates, one can clearly see a decline in the inference of E1. This estimation
approach shows great instability in estimating the parameters, especially the shape parameter
⇠, fact that can be easily checked by looking at the extremely wide confidence intervals.
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Table 2.3.9: Estimated GPD parameters with the associated 95% confidence intervals, sparsity
degree M̂ and the first non-null position (ŝ) in the estimated weights vector, for the EGPD-BB
model with m = mopt fitted to the daily Durance rainfall data (1948-2010) by three estimations
approaches: E1, E2EGPD1 and E2grid, for each season

Spring (m̂
opt

= 111) Summer (m̂
opt

= 114)
ˆM ŝ �̂ ˆ⇠ ˆM ŝ �̂ ˆ⇠

E2
EGPD1 17 3 7.77[7.40,9.47] 0.09[0.04,0.16] 14 4 4.46[4.19,4.55] 0.30[0.22,0.32]

E2
grid

16 3 8.84[6.00,9.00] 0.18[0.10,0.20] 16 4 5.11[5.01,6.00] 0.24[0.15,0.35]

E1 12 3 8.10[3.59,16.45] 3.49[0.32,13.35] 10 3 6.46[2.34,14.25] 4.50[0.00,14.24]

Fall (m̂
opt

= 94) Winter (m̂
opt

= 93)
ˆM ŝ �̂ ˆ⇠ ˆM ŝ �̂ ˆ⇠

E2
EGPD1 18 2 12.24[11.71,12.92] 0.09[0.05,0.14] 20 2 10.53[9.75,10.74] 0.00[0.00,0.13]

E2
grid

14 2 11.26[9.98,14.00] 0.13[0.05,0.15] 11 3 9.00[9.00,11.84] 0.07[0.01,0.10]

E1 18 5 2.78[4.06,68.40] 0.77[0.00,5.73] 11 3 8.00[2.63,24.54] 1.97[0.00,5.13]

Figure 2.3.12 shows the histograms with the fitted densities and the QQ-plots with the 95%
confidence intervals, for both EGPD

1

and EGPD-BB with the three estimation approaches.
The QQ-plots indicate that the right tail is poorly estimated by EGPD

1

for all seasons, while
EGPD-BB corrects this behavior, especially during Fall. Further on, the three estimation
approaches bring a rather diverse output for all seasons except Spring. E2grid provides the
most accurate fit, capturing very well both the extreme values and the bulk of the distribution.
The estimation approach E2EGPD1 brings similar output, but with slightly smaller precision
when it comes to modeling the extreme values from Summer and Winter. However, a different
and less accurate fit is given by E1, for Fall and Winter. Even though its fit seems more accurate
than the one yielded by EGPD

1

, the confidence intervals are very wide in this case, thus the
uncertainty of the estimations is larger.

The visual inspection of Figure 2.3.12 and the analysis of the estimated parameters from
Table 2.3.9 is not supported by the classification given by BIC, displayed in Table 2.3.10. Except
Fall, the best fit indicated by BIC is the one from E1. This behavior is not yet surprising as
BIC favors the models with less parameters, thus it selects E1 which has a smaller sparsity
degree.

Table 2.3.10: BIC output of EGPD-BB model for the daily Durance rainfall data (1948-2010),
for each of the four seasons and the three estimation approaches: E1, E2EGPD1 and E2grid (in
red is indicated the best estimation approach for each season)

Spring Summer Fall Winter

E2
EGPD1 4309.612 4243.730 4071.095 3715.641

E2
grid

4304.201 4244.859 4048.001 3672.778

E1 4289.813 4214.804 4067.789 3670.028

As part of the EGPD-BB inference, we want to also point our attention to the fit on the
transformed data. Therefore, in Figure 2.3.13 we display the histograms of the transformed
data U (i.e., U = H⇠(X)) together with the fit of the Bernstein-beta density estimator gBB,m

for the EGPD-BB and the power function (i.e., g(u) = u�1) of the EGPD
1

model. The fact
that E1 has different GPD estimated parameters compared to E2EGPD1 and E2grid , is also
illustrated by these plots. A simple visual diagnostic of these plots shows that EGPD-BB adds
considerable flexibility to the fit of the transformed data compared to the power function from
the EGPD

1

model, capturing very well the bulk of the distribution, as well as the tails.
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Figure 2.3.12: Histograms with the fitted densities and QQ-plots with the associated 95%
confidence intervals for EGPD

1

and EGPD-BB with m = mopt for daily Durance rainfall data
(1948-2010), for each of the four seasons. Three approaches are considered for the estimation
of the EGPD-BB model: E1, E2EGPD1 and E2grid
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Figure 2.3.13: Histograms with the fitted densities for EGPD
1

and EGPD-BB with m = mopt
of the transformed daily Durance rainfall data (1948-2010), i.e., U = H⇠(X), for each of the
four seasons. Three approaches are considered for the estimation of the EGPD-BB model: E1,
E2EGPD1 and E2grid.

Concerning the inference of the small values, in Figure 2.3.14 we show the zoom on the
small values of the QQ-plots (all estimation approaches have similar outputs, so we show just
E2EGPD1 ). Even though, both EGPD

1

and EGPD-BB capture well the small values, EGPD-BB
outperforms EGPD

1

, especially for Spring, Fall and Winter.
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Figure 2.3.14: Zoom on the small values of the QQ-plots of EGPD
1

and EGPD-BB, with
m = mopt and estimation approach E2EGPD1 , for daily Durance rainfall data (1948-2010) for
each of the four seasons

In what follows, we check: 1) if our choice of degree is indeed an optimal one, and 2) if
improved estimates can be obtained by changing this degree. For this, we use for each season
the LSCV approach to find the optimal hyperparameter m. We consider just the estimation
approaches E1 and E2EGPD1 , disregarding E2grid, for two reasons: i) we already have a good
fit for E2grid with the degree mopt, and ii) E2grid is already very costly from a computational
point of view, so by doing a cross-validation it becomes even more time consuming. The resulted
LSCV optimal degrees (considering a grid [25, 26, ...,mopt]) are: m̂Spring

LSCV = 97, m̂Summer
LSCV = 106,

m̂Fall
LSCV = 93 and m̂Winter

LSCV = 53. While for Spring, Summer, and Fall there is no significant
difference between mLSCV and mopt, for Winter the degree is almost halved.

Table 2.3.11: Estimated GPD parameters with the associated 95% confidence intervals, sparsity
degree M̂ and the first non-null position (ŝ) in the estimated weights vector, for the EGPD-
BB model with m = mLSCV, fitted to the daily Durance rainfall data (1948-2010) by two
estimations approaches: E1 and E2EGPD1

Spring (m̂
LSCV

= 97) Summer (m̂
LSCV

= 106)
ˆM ŝ �̂ ˆ⇠ ˆM ŝ �̂ ˆ⇠

E2
EGPD1 18 3 7.70[7.48,8.14] 0.13[0.05,0.17] 17 4 4.30[4.16,4.54] 0.28[0.22,0.33]

E1 13 3 8.06[3.52,19.25] 0.90[0.02,9.67] 22 3 6.78[3.30,15.61] 5.08[0.00,7.66]

Fall (m̂
LSCV

= 93) Winter (m̂
LSCV

= 53)
ˆM ŝ �̂ ˆ⇠ ˆM ŝ �̂ ˆ⇠

E2
EGPD1 21 2 12.42[11.93,13.43] 0.09[0.05,0.13] 12 2 10.48[9.92,10.82] 0.03[0.00,0.11]

E1 13 2 19.79[8.65,67.36] 0.40[0.00,7.83] 12 2 11.54[3.49,13.85] 0.00[0.00,1.59]

Table 2.3.11 and Figure 2.3.15 display the estimated parameters and the fit of the models,
respectively, when using the degree mLSCV. Generally, the performance of these new models is
the same or better than the case of mopt for both approaches. We want to point, though, some
particularities for each method compared to the case when m = mopt:

• E1 improves the estimations for Fall and Winter, and the model becomes more stable
having narrower confidence interval. However, we must note that the uncertainty in
estimation is still high.

• E2EGPD1 improves the estimation for Fall, but with the cost of three more parameters,
while in Winter it maintains the same fit, yet by reducing the number of weights to 12
compared to 20 before.
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Figure 2.3.15: Histograms with the fitted densities and QQ-plots with the associated 95%
confidence intervals for EGPD

1

and EGPD-BB with m = mLSCV for daily Durance rainfall data
(1948-2010), for each of the four seasons. Two approaches are considered for the estimation of
the EGPD-BB model: E1 and E2EGPD1

Consequently, for the Durance precipitation with a medium sample size dataset, the setting
of the hyperparameter to m = mopt is, generally, a good option. We have estimation problems
with the approach E1, but as was already stated in the theoretical part, these issues come from
the likelihood optimization and not necessary from the choice of m.

To summarize, the EGPD-BB model yields good estimates for both Lyon and Durance
rainfall datasets, and it outperforms the fit of EGPD

1

by adding more flexibility for the modeling
of the bulk of the distribution.

Remark 2.3.5. The analysis presented in the case studies of this chapter was performed in both
Matlab and R Software. On the one hand, the estimation of the EGPD-BB model was handled
in Matlab by means of the Optimization Toolbox for nonlinear constraint optimization. More
specifically, we used the fmincon function with the interior point algorithm. On the other hand,
the fit of the EGPD

1

model was performed in R Software using the packages mev, particularly
the egp2 and egp2.fit functions.
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Remark 2.3.6. The computational time, on a machine with an Intel Core 2 Duo 2.53 GHz
processor, for an E1 estimation ranges from 15-35 seconds for Lyon case study and from 80-130
seconds for Durance one, depending on the season and, thus, the degree of the polynomial.
There is not notable difference between E1 and E2EGPD1 . However, E2grid is clearly much
time consuming as the optimization problem must be run 30x30 times, but by using parallel
computing we can decrease considerably this duration.





Chapter 4

Discussions, conclusions and

perspectives

4.1 Discussions and conclusions
The work presented in this part of the thesis addresses statistical modeling of the entire-range of
precipitation amounts. Due to the fact that precipitation data are heavily skewed to the right,
establishing a probability distribution that provides a good fit has proven to be a challenging
task. Different distributions, such as exponential, gamma, Weibull or lognormal have been
considered as possible candidates, but without a great success in capturing well both the bulk
and the tails of the distribution.

As the upper tail of the distribution holds crucial information that characterizes extreme
events, many researchers focus only on the behavior of the largest rainfall amounts. The popular
framework of EVT, more exactly the GPD, has been quickly adopted in this sense. However,
besides the considerable reduction in sample size, a major drawback of this approach is the
need of a threshold selection, i.e, the limit between moderate and large rainfall intensities.
Defining this threshold is a delicate work in the field of EVT, since it has a major impact on
the capability of the models in describing the extreme events.

While characterizing extreme events is essential, also one cannot totally neglect the small
and moderate precipitation amounts. Several applications such as water resources management
requires not only a clear understanding of extreme events, but rather a global assessment of the
rainfall data. Various extreme mixture models have been proposed in the literature in this sense,
but in this work we focus on the class of extended generalized Pareto distributions (EGPD)
introduced by Naveau et al. (2016). This class of models is in compliance with the EVT for
both lower and upper tails, and at the same time, it allows a smooth transition between the
two ends without the need of selecting a threshold. More specifically, a proper model from the
EGPD class has the lower tail (small values) behaving like a power function, while the upper
tail (large values) is a GPD. The work that introduced this approach, proposed four possible
models from the EGPD class based on parametric families, all of them complying with the two
constraints on the tails. However, these parametric EGPD models seem to lack flexibility in
modeling the bulk of the distribution.

To address this issue, we have proposed first a new semiparametric model that allows a more
flexible fit for the bulk of the EGPD, namely, a transformed kernel (TK) density estimator based
on an EGPD transformation. This model is obtained by transforming the data with the EGPD
cdf, and then, estimating the density of the transformed data with a nonparametric kernel
density estimator. We have proved that the theoretical constraints describing the behavior of
a rainfall distribution, are not satisfied by this model for neither of the two tails. However, in
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Possible transformations for TK
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Figure 2.4.1: The general EGPD framework and its relationship with the proposed model:
EGPD-BB and TK

practice the performance of the model seems not to be influenced by this aspect.
A second method that has been developed in this work, is in fact a new model from the

general EGPD class, i.e., we have considered a semiparametric EGPD based on Bernstein
polynomials (EGPD-BB), more specifically a sparse mixture of beta densities. This model has
proved to be a proper EGPD model as it complies with both the lower and the upper limiting
constraints imposed by the EGPD class.

Figure 2.4.1 illustrates a diagram of how all these models interact within the general EGPD
class and with the TK models. EGPD represents the general class of GPD extensions of the
form F (x) = G {H⇠(x)}, where H⇠ denotes the cdf of GPD. Depending on the choice of the
G function, this class can generate several particular cases, such as EGPD-BB, EGPDNaveau

1

or even a GPD. More specifically, EGPDNaveau represents a subclass of the EGPD-BB model
proposed in this thesis, i.e., each of the four parametric G functions are particular cases of the
Bernstein density estimator. Moreover, given some specific parameters2, both EGPD-BB and
EGPDNaveau can yield the GP distribution. Furthermore, along with some commonly used
transformations, such as logarithm, trigonometric function, different cdfs, the general EGPD
class (with its subclasses) can also be used as a transformation function for the TK density
estimator.

The performance of both proposed approaches, the transformed kernel (TK) and the
Bernstein-beta EGPD (EGPD-BB) models, has been evaluated in case studies on simulated
data, as well as on rainfall datasets. The general conclusion of these studies is that the pro-
posed models add flexibility to the fit of the bulk of the distributions when compared to the
EGPDNaveau models, without affecting the behavior of the two tails. Moreover, the sample
size of the data was proved to be a very important factor in the performance of both models,
i.e., a larger sample size provided a more accurate estimation. This is not surprising as both

1
the four parametric EGPD models introduced in Naveau et al. (2016), i.e., EGPD

1,2,3,4

2e.g., m = 1 for EGPD-BB, or  = 1 for EGPD

1



4.2. Perspectives 117

models rely on nonparametric smoothing which is data driven.
An interesting remark regarding the TK model is related to the limiting constraints on the

tails. We showed through the case studies on both simulated and rainfall data that, despite the
fact that these limits were not satisfied, the fit of the tails was accurate even for a small sample
size (e.g., 300 observations), improving considerably for a larger one (e.g., 1000 observations).

If we focus now on the EGPD-BB model, first, we have shown in one of the simulation studies
that the weights identifiability is highly influenced by the inclusion of the GPD parameters in
the estimation process. That is, the maximum likelihood estimator (MLE) had troubles when
all parameters were estimated at once, yielding an inaccurate identifiability of the weights and
variable estimations of the GPD parameters. This result motivated us to consider an alternative
estimation method based on subproblems split, which improved the weights identification and
also stabilized the estimations of the GPD parameters.

Another point of concern regarding the EGPD-BB model is the choice of the Bernstein
polynomial degree m, i.e., the number of components in the mixture. This hyperparameter is
often compared with the bandwidth of a kernel density estimator, in the way that, a higher
degree (smaller bandwidth) allows for more flexibility in smoothing a function, but attention
must be paid as a too large degree can produce over-fitting. While the literature on the kernel
bandwidth estimation is rather developed, there are not many studies related to Bernstein
polynomial degree estimation. In this sense, we have mainly relied on the work of Babu et al.
(2002), where it was showed that the optimal degree could be mopt = n/ log n. However, we
have determined in the simulation studies that this choice could lead to over-fitting for a large
sample size, such as n = 1000. Therefore, in the application on rainfall data we also applied an
alternative method for estimating m, i.e., the least squares cross validation (LSCV). While, for
small sample size data, LSCV and Babu’s choice yielded the same setting, for larger samples,
LSCV provided an improved estimation of the degree. However, LSCV is inconvenient to use
in practice as it is computationally intensive.

Overall, we provide two different semiparametric methods that can accurately model the
entire range of precipitation amounts without the need of selecting a threshold. While we man-
aged to approach aspects such as, the optimal selection of the bandwidth or the polynomial
degree, the identifiability analysis in mixture models, or parameter estimation through a pe-
nalized MLE, a lot of research and development is still required in this area. Some of the ideas
that we did not get to approach in this thesis, but we consider they might be of interest, are
described in the next section.

4.2 Perspectives
An important aspect that should be considered as future work, is the selection of the optimal
degree of the Bernstein polynomial. The close connection of this degree with the bandwidth
of the kernel density estimator, can provide ideas for new estimation methods. As approaches
like LSCV are not convenient to use in practice since they are time consuming, simple and fast
methods such as rule-of-thumb or plug-in selectors could be interesting to research.

Also, the inference of the EGPD-BB model is at the moment troublesome. Moreover, the
two alternative estimation approaches that we proposed in this sense, i.e., the split of the
estimation process in two subproblems, are either computationally slow as we estimate over a
grid (i.e., E2grid approach), or rely on the performance of another model such as the parametric
EGPD (i.e.,E2EGPD alternative). Therefore, finding an improved optimization methodology for
the MLE or even a new inference method that can accurately estimate all the parameters at
once would add value to the applicability of the EGPD-BB model.

Another interesting perspective, related in fact to the inference process, is to further pursue
the work introduced by Bunea et al. (2010) regarding sparse mixture models on the real domain
with l

1

-penalization of the empirical risk (ER). We have briefly seen that the adaptation of this
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method to a compact support such as the unit interval, particularly when considering the
Bernstein-beta basis, is not straightforward and does not provide accurate estimates. In this
sense, an option could be to step away from dictionaries composed of density functions, and
consider orthogonal basis on [0, 1], such as wavelets, orthogonal polynomials, etc.

Furthermore, one new study that would be worth pursuing is the TK’s performance when
the transformation cdf is not an EGPD

1

model, but rather the EGPD-BB. As EGPD based
on Bernstein-beta density estimator showed an improved performance compared with the one
based on parametric families (e.g., the power function), the overall performance of TK might
be enhanced. Another possible direction could be to assess the estimation efficiency of TK,
when Bernstein-beta density estimator is considered for modeling the transformed data on the
unit interval instead of the copula-based kernel. This perspective evolved from the fact that
Bernstein-beta has a smaller asymptotic boundary bias and variance compared to the copula
kernel, and thus, it might provide a better fit of the data at the end points of the [0, 1] interval.

In addition to this, as in this work we focus only on the statistical modeling of precipitation
amounts, a future work would be to couple the modeling of precipitation occurrences and
amounts. Since accurate stochastic simulations of precipitation are required for assessment
studies, like sensitivity of floods, erosion or crops models, incorporating EGPD in the stochastic
models could lead to a significant improvement of their accuracy in reproducing extremes.

Finally, as the modeling of the entire-range of precipitation amounts at multiple sites is
scarce in the literature at the moment, it would be interesting to develop a multivariate version
of both TK and EGPD models. On the same line, the development of regional precipitation
models based on EGPD could offer a more robust parameter estimation. More specifically, Evin
et al. (2016) showed that a regional model can considerable improve the estimation of the GPD
shape parameter.



Appendix A - Parameter estimation

EGPD-BB

A.1 Algorithm - Fixed m

Step1: Estimate all parameters under all constraints

✓̂MLE = argmin
✓

{�logL(✓|x)}

subject to ! 2 �m

!m,m > 0

� > 0

⇠ � 0,

where �m = {! 2 Rm : !k,m � 0,
Pm

k=1

!k,m = 1}
Step2: Threshold the estimated weights from Step 1

!̂MLE(⌧) =
�

!̂MLE
i,m · I �!̂MLE

i,m � ⌧
� 

1im�1

where I(·) is the indicator function and ⌧ is the optimal threshold value.
The optimal threshold ⌧ is found as follows:

GIC(⌧i) = �logL
⇢

!̂MLE(⌧i)

�

�

�

�

x, !̂MLE
m,m,, �̂

MLE, ⇠̂MLE
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✏ (⌧i)M(⌧i)

⌧opt = min
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GIC(⌧)

where � = 2 log(m), M(⌧i) =
Pm

k=1

I
⇣

!̂MLE�⌧
i

k,m 6= 0
⌘

and �2

✏ (⌧i) is the variance of the
error term (i.e., deviation from the true model). As this value is unknown, we replace
�2

✏ (⌧i) with the mean squared error obtained by using the initial non-thresholded model
from the previous step, as a reference.

Step3: Readjust parameters using the sparse log-likelihood function logL(✓J(⌧)|x)
✓̂MLE
J(⌧) = argmin

✓
⌧

��logL(✓J(⌧)|x)
 

subject to !J(⌧) 2 �m
J(⌧)

!m,m > 0

� > 0

⇠ � 0,

where �m
J(⌧) = {! 2 Rm : !k,m � 0,

P

k2J(⌧) !k,m = 1}.
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A.2 Algorithm - Fixed m, �, ⇠

Subproblem1: Fix GPD parameters and estimate the weights

Step 1: Estimate the weights !

✓̂MLE = argmin
✓

⇢

�logL
✓

!MLE

�

�

�

�

x,�, ⇠

◆�

subject to ! 2 �m

!m,m > 0

where �m = {! 2 Rm : !k,m � 0,
Pm

k=1

!k,m = 1}
Step 2: Threshold the estimated weights from Step 1

!̂MLE(⌧) =
�

!̂MLE
i,m · I �!̂MLE

i,m � ⌧
� 

1im�1

where I(·) is the indicator function and ⌧ is the optimal threshold value.
The optimal threshold ⌧ is found as follows:

GIC(⌧i) = �logL
⇢

!̂MLE(⌧i)

�

�

�

�

x, !̂MLE
m,m,, �̂

MLE, ⇠̂MLE
�

+ ��2

✏ (⌧i)M(⌧i)

⌧opt = min
⌧

GIC(⌧)

where � = 2 log(m), M(⌧i) =
Pm

k=1

I
⇣

!̂MLE�⌧
i

k,m 6= 0
⌘

and �2

✏ (⌧i) is the variance
of the error term (i.e., deviation from the true model). As this value is unknown,
we replace �2

✏ (⌧i) with the mean squared error obtained by using the initial non-
thresholded model from the previous step, as a reference.

Subproblem2: Knowing the sparsity pattern from Subproblem 1, optimize the sparse log-
likelihood and find the estimates for all parameter.

✓̂MLE
J(⌧) = argmin

✓
⌧

��logL(✓J(⌧)|x)
 

subject to !J(⌧) 2 �m
J(⌧)

!m,m > 0

� > 0

⇠ � 0,

where �m
J(⌧) = {! 2 Rm : !k,m � 0,

P

k2J(⌧) !k,m = 1}.
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A.3 Algorithm - Fixed m and (�, ⇠) from a grid
Subproblem1: Fix GPD parameters and estimate the weights

Step 1: Iterate Subproblem 1 from Algorithm - Fixed m,�, ⇠ for all the pairs (�, ⇠) from the
grid

Step 2: Choose the optimal pair (�, ⇠) by minimizing BIC index

BIC(�, ⇠) = �2logL
✓

!̂MLE(⌧)

�

�

�

�
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◆
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I
⇣
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+ 2.

Subproblem2: Knowing the sparsity pattern from Subproblem 1, optimize the sparse log-
likelihood and find the estimates for all parameter.

✓̂MLE
J(⌧) = argmin

✓
⌧

��logL(✓J(⌧)|x)
 

subject to !J(⌧) 2 �m
J(⌧)

!m,m > 0

� > 0

⇠ � 0,

where �m
J(⌧) = {! 2 Rm : !k,m � 0,
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k2J(⌧) !k,m = 1}.





Appendix B - Additional results for

the EGPD-BB model estimation

Simulation setting:

• mtrue = 50, considered known,

• !true = [!
15

= 0.25,!
25

= 0.2,!
35

= 0.25,!
45

= 0.25,!
50

= 0.05], the remaining 45 ele-
ments of !true vector out of the 50 are zero; this means that we have only M = 5 non-null
weights,

Table B.1: MIAE, hit rate and mean cardinalityM̄ of non-null weights for 50 replicates
MIAE hit rate

¯

M

MLE 0.128 88% 4.88

ERM 0.284 0% 9.10
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Figure B.1: Estimated weights for 50 replicates
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