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Titre Algorithmes de prise de décision stratégique pour robots autonomes

Résumé A�n d'être autonomes, les robots doivent êtres capables de pren-
dre des décisions en fonction des informations qu'ils perçoivent de leur envi-
ronnement. Cette thèse modélise les problèmes de prise de décision robotique
comme des processus de décision markoviens avec un espace d'état et un espace
d'action tous deux continus. Ce choix de modélisation permet de représenter
les incertitudes sur le résultat des actions appliquées par le robot.

Les nouveaux algorithmes d'apprentissage présentés dans cette thèse se fo-
calisent sur l'obtention de stratégies applicables dans un domaine embarqué.
Ils sont appliqués à deux problèmes concrets issus de la RoboCup, une com-
pétition robotique internationale annuelle. Dans ces problèmes, des robots
humanoïdes doivent décider de la puissance et de la direction de tirs a�n de
maximiser les chances de marquer et contrôler la commande d'une primitive
motrice pour préparer un tir.

Mots-clés Processus de décision markovien, robotique autonome, appren-
tissage

Abstract The autonomy of robots heavily relies on their ability to make de-
cisions based on the information provided by their sensors. In this dissertation,
decision-making in robotics is modeled as continuous state and action markov
decision process. This choice allows modeling of uncertainty on the results of
the actions chosen by the robots.

The new learning algorithms proposed in this thesis focus on producing
policies which can be used online at a low computational cost. They are ap-
plied to real-world problems in the RoboCup context, an international robotic
competition held annually. In those problems, humanoid robots have to choose
either the direction and power of kicks in order to maximize the probability of
scoring a goal or the parameters of a walk engine to move towards a kickable
position.

Keywords Markov decision process, Autonomous robotics, Machine learn-
ing

Laboratoire d'accueil LaBRI, Bâtiment A30, 351, Cours de la Libération
33405 Talence CEDEX, France
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Résumé de la thèse en français

Alors qu'en mai 1997, Deep Blue était le premier ordinateur à vaincre le cham-
pion du monde en titre aux échecs, signant ainsi une victoire majeure de
l'intelligence arti�cielle sur celles des humains, la RoboCup naissait. Cette
compétition internationale de robotique a�chait l'objectif ambitieux de pro-
duire une équipe de robots humanoïdes capables de remporter un match de
football contre l'équipe humaine championne du monde. Environnement par-
tiellement observable, espaces continus et coopération, les di�cultés théoriques
présentes dans cette compétition ont forcés les participants à passer d'une ré-
solution de problèmes symboliques à une résolution de problèmes concrets où
les résultats des actions ne correspondent parfois pas aux attentes. Cette com-
pétition a grandi au cours des 20 dernières années et elle rassemble à présent
plus de 3000 participants à chaque année.

Au cours de ma thèse, j'ai participé à trois reprises à la RoboCup au sein de
l'équipe Rhoban dans la catégorie �robots humanoïdes de petite taille�. Cette
thèse étudie plusieurs problèmes présents dans le football robotique humanoïde
et présente des algorithmes permettant d'y apporter des solutions.

A�n d'être autonomes, les robots doivent être capables de percevoir leur
environnement en analysant les informations reçues par leurs capteurs. Dans le
cas des robots footballeurs de la RoboCup, ils ne perçoivent leur environnement
qu'à travers une caméra, une centrale inertielle et des capteurs angulaires leur
permettant de mesurer la position angulaire de leurs joints.

Les robots sont aussi limités par leurs capacités d'interactions avec leur en-
vironnement. La marche robotique bipède est elle-même un sujet de recherche
à part entière. Réaliser un tir puissant est aussi une tâche complexe puisqu'elle
nécessite de conserver l'équilibre tout en e�ectuant un mouvement hautement
dynamique.

Alors que les robots industriels e�ectuent des tâches répétitives, les robots
autonomes ont des objectifs et cherchent à les accomplir. Pour ce faire, ils
décident d'appliquer les actions appropriées à la représentation qu'ils se font
de leur environnement. Cette prise de décision est l'axe de recherche de cette
thèse.

Puisqu'ils se déplacent et agissent dans le monde réel, les robots ne peuvent
pas se permettre de négliger le fait que le résultat de leurs action n'est pas
déterministe en fonction de leur perception. Ils doivent donc être capable de
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prendre des décisions dans des environnements stochastiques, établissant des
stratégies leur permettant d'atteindre leurs objectifs malgré la di�culté de
prédire le résultat de leurs actions.

Pour re�éter à la fois les aspects stochastique et continus des problèmes
robotiques, cette thèse modélise les problèmes comme des processus de décision
Markoviens à espaces d'état et d'action continus, abrégés PDM-EAC.

La prise de décision en robotique est sujette à des contraintes spéci�ques.
En plus de devoir prendre en compte les aspects stochastiques et continus des
problèmes, elle doit s'exécuter en temps réel sur des processeurs parfois peu
puissants. E�ectivement, les contraintes en termes de poids, de volume et de
consommation énergétique qui s'appliquent en robotique sont moins pronon-
cées pour d'autres champs d'application.

Cette thèse propose trois algorithmes permettant d'optimiser des straté-
gies pour des PDM-EAC. Elle étudie aussi en profondeur deux sous-problèmes
auxquels notre équipe a fait face lors des di�érentes édition de la RoboCup:
l'approche de la balle et le choix du tir.

Dans le problème de l'approche de la balle, un robot doit choisir quels ordres
envoyer à sa primitive motrice pour atteindre une position convenable pour ef-
fectuer son prochain tir au plus vite. En plus de minimiser le temps nécessaire
à atteindre la balle, le robot doit s'assurer d'éviter d'entrer en collision avec
la balle. Cette tâche est particulièrement di�cile car il est di�cile de prévoir
les déplacements exacts en fonction des ordres envoyés. Le bruit est partic-
ulièrement important car les robots se déplacent sur de la pelouse arti�cielle et
glissent légèrement sur le sol, rendant ainsi le positionnement précis di�cile.
Dans le cadre de la compétition, cette tâche est critique, car les robots mettent
souvent plus de temps à e�ectuer les 50 derniers centimètres nécessaires à leur
placement qu'à parcourir les 3 mètres précédant cette phase délicate.

Lors des matchs de football humanoïdes, les robots doivent coopérer pour
choisir quel robot va tirer, dans quel direction et avec quel type de tir. Nous
appelons ce problème le choix du tir. S'il semble évident qu'il vaut mieux tirer
en direction des cages adverses, il n'est pas simple de choisir s'il vaut mieux
passer la balle à un partenaire, tirer directement dans le but où simplement
recentrer la balle.

Le problème du tir revêt un aspect particulier, parmi les choix qui s'o�rent
au robot, il y a plusieurs actions distinctes, chacun d'entre elle ayant des
paramètres continus. Pour modéliser cet aspect du problème, cette thèse in-
troduit la notion d'espace d'action hétérogène et présente un nouvel algorithme
permettant de trouver des stratégies e�caces pour des problèmes avec espace
d'action hétérogène.

Les espaces d'états et d'actions étant continus, ils sont in�nis. A�n de
pouvoir représenter certaines de leurs propriétés, cette thèse se base sur des
approximateurs de fonction et plus particulièrement sur les arbres de régres-
sions et les forêts de régressions.
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Les arbres de régressions représentent une fonction à l'aide d'un arbre où
chaque noeud sépare l'espace d'entrée à l'aide d'un prédicat. Dans cette thèse,
nous nous restreignons aux prédicats se présentant sous la forme d'une inégalité
sur une seule dimension. Les feuilles d'un arbre de régression contiennent
des modèles permettant d'attribuer une prédiction à chaque élément d'entrée.
Seuls les modèles linéaires et constants sont considérés ici.

Les forêts de régressions sont des ensembles d'arbres de régression. Elles
permettent d'agréger les prédictions faites par di�érents arbres pour améliorer
sa qualité.

Le premier algorithme proposé par cette thèse est �tted policy forests,
abrégé FPF. Cet algorithme permet d'apprendre une stratégie représentée
par une forêt de régression à partir d'échantillons récolté lors d'interactions
avec le système. Les résultats obtenus par FPF sur des problèmes classiques
d'apprentissage par renforcement sont satisfaisants par rapport à l'état de l'art
et l'utilisation des stratégies en temps réel est éprouvée sur ces mêmes prob-
lèmes.

Malgré les performances satisfaisantes de FPF sur les problèmes classiques,
il semble di�cile de l'appliquer à des cas robotiques car il demande un nombre
d'échantillons trop important pour atteindre des performances satisfaisantes.
Cette constatation nous a mené à changer de paradigme et à ne pas chercher à
apprendre une stratégie directement sur le robots, mais plutôt à modéliser
le problème comme une boîte noire avec des paramètres. Un nombre re-
streint d'échantillons sont ensuite acquis dans le monde réel pour calibre les
paramètres de la boite noire et ainsi permettre d'avoir un modèle réaliste qui
puisse être utilisé pour entraîner des stratégies sans nécessiter d'interaction
avec le robot.

L'accès à un modèle boite noire du problème nous a permis de développer
un second algorithme nommé random forests policy iteration, abrégé RFPI.
Cet algorithme pro�te du modèle en boite noire pour optimiser des straté-
gies représentées par des forêts de régression. Il est appliqué au problème de
l'approche de la balle avec succès produisant des stratégies plus performantes
que celles qui nous ont permis de gagner lors de la RoboCup 2016. Ces résul-
tats étant obtenus par validation expérimentale, à la fois en simulation et dans
le monde réel.

Bien qu'il ait produit des stratégies e�caces sur le problème de l'approche
de la balle, RFPI ne permet pas de résoudre le problème du choix du tir car
notre implémentation de cet algorithme ne permet pas de traiter les espaces
d'actions hétérogènes.

A�n de pouvoir apprendre des stratégies e�caces pour le problème du
choix du tir, nous proposons un troisième algorithme nommé Policy Mutation
Learner et abrégé PML. Il représente à tout moment la stratégie comme un
arbre de régression et e�ectue des mutations des feuilles ayant un impact lo-
cal sur la stratégie, mais un impact global sur les performances. Grâce à ce
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mécanisme de mutation, PML s'assure que les modi�cations de la stratégies
sont refusées si elles nuisent aux performances. Ce point précis fait de PML un
algorithme particulièrement adapté à l'amélioration de stratégie experte déjà
existantes.

Les résultats expérimentaux de PML au problème du choix du tir en sim-
ulation ont montré que PML était capable aussi bien d'améliorer signi�ca-
tivement les performances de stratégies existantes que d'en créer sans recevoir
d'informations initiales.

En comparant le temps moyen nécessaire pour marquer un but entre le
problème du choix du tir à deux joueurs et son équivalent à un joueur. Nous
avons montré que jouer en équipe à un intérêt malgré le bruit et l'absence de
détection des adversaires, un fait qui n'était pas évident au vu de l'importance
du bruit sur le tir et donc de la di�culté d'estimer la position de la balle après
le tir.

Une analyse plus poussée des gains apportés par le jeu d'équipe a mis en
exergue les imperfections de PML. Bien que cet algorithme améliore de manière
signi�cative les stratégies, il ne parvient pas toujours à sélectionner le bon
joueur pour tirer quand il y a plusieurs candidats. L'identi�cation de cette
faiblesse permet d'envisager plusieurs modi�cations susceptibles d'améliorer
considérablement les résultats obtenus dans le futur.
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Introduction

This chapter describes the main components involved in the decision-making
process of autonomous robots while targeting a general audience. It discuss
the need of approaching real robotic problems to identify the speci�cities of
decision-making in robotics, present various aspects of the RoboCup competi-
tion and then brie�y outlines the contributions of this thesis.

RoboCup

In May 1997, IBM Deep Blue defeated the world champion in chess. While this
is a major milestone for arti�cial intelligence, chess is an adversarial discrete
game with perfect information. Therefore, the program who won did not have
to deal with uncertainties, continuous spaces or team-play. This year, the
�rst o�cial RoboCup was held. This competition had three soccer leagues,
one in simulation and two with wheeled robots of di�erent sizes. The long-
term goal of the RoboCup initiative is to have a team of fully autonomous
humanoid robot winning a soccer game against the winner of the most recent
soccer World Cup. This challenge involves complex perception and actuation
in robotic, but also decision-making and cooperation between robots.

Twenty years after the creation of the RoboCup, the competition has grown
and gathers around 3000 researchers every year with more than 10 di�erent
leagues, including other challenges than soccer such as performing rescue tasks
or helping in daily-life situations.

RoboCup helps to identify key challenges of autonomous robotics, it allows
to evaluate the performance of robots on complex situations and promote col-
laboration between researchers from di�erent backgrounds. It also provide a
large �eld to test the applicability of theories and models to real-world prob-
lems.

During this thesis, I participated to the RoboCup in the KidSize Humanoid
League three times with the Rhoban Football Club. An example of game
situation is shown in Fig. 1 We ranked 3rd in 2015 and 1st in 2016 and 2017.
In the KidSize Humanoid League, two teams of four humanoid robots play
soccer against each other. There are many restrictions on the design of the
robots. We cite here a few important limitations:

1



0.0. RoboCup

Figure 1 � A KidSize Humanoid League soccer game at RoboCup 2017

• The height of the robot is between 40 and 90 centimeters.

• Active sensors based on light and electromagnetic waves are forbidden.

• The maximum number of camera is 2.

• The �eld of view of the robot is limited at 180 degrees.

We present here the three most important challenges we identi�ed in Kid-
Size league. First, the locomotion on arti�cial grass: the robots must be able
to walk on a 3 centimeters height grass which can be assimilated to soft ground,
moreover, it has to be capable of falling and standing up without damaging
himself. Second, real-time perception: the robots have to localize themselves
and detect the ball using a camera mounted on the head of the robot, this is
particularly di�cult because the computational power is limited and the head
is shaking while the robot is walking. Finally, decision making in stochastic
environments: due to the perception noise and the arti�cial turf, it is di�cult
to predict the result of the robot actions. Therefore, the robot must learn how
to act given uncertainty.

The humanoid robot we used for our experiments and the RoboCup is
named Sigmaban, see Figure 2. It has 20 degrees of freedom controlled in
position at a frequency of approximately 100 Hz. Acquisition of information
is mainly performed through online computer vision, using 640x480 images,
additional information are provided by angular sensor in each joint, an inertial
measurement unit in the hip and pressure sensors in the feet. Due to the low
amount of computational power available on board and the fact that the head
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of the robot is shaking during image acquisition, the quality of the localization
of the robot inside the �eld and its estimation of the ball position presents an
important noise.

Figure 2 � The Sigmaban robot

Decision making for autonomous robots

Autonomous robots have to adapt their decisions to their environments. They
use their sensors and an internal memory to analyze and update their repre-
sentation of both, the state of the world and their inner state. In order to
estimate the speed of an object, robots will usually accumulate data from a
distance sensor. By observing the evolution of the distance, robots will be able
to estimate the speed of the object. Perception of the environment by robots
is a complex problem which will not be treated in this thesis. However, it is
important to keep in mind that the decisions made by robots are based on par-
tial and noisy information. Readers interested on the perception problem can
refer to [McCallum 1996], a very insightful thesis on the problem of selective
perception and hidden states.

Decision-making is the process of choosing the action a robot should per-
form given its inner representation of the world state. This process can simply
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be applying an existing policy, i.e a function mapping every possible world
state to an action, but it can also involve simulations in order to predict the
results of possible actions in the current situation. In both cases, the aim of
the decision process is to maximize the reward received by the robot.

There are three important aspect to consider for decision-making in robotics.
First, autonomous robots have to embed their computational power, due to
constraints on weight, volume and energy consumption, therefore decision mak-
ing should be computationally e�cient. Second, decision-making has to be
quick in order to avoid delay, e.g. an autonomous car has to react quickly to
avoid collision. Finally, it is important to keep in mind that models used in
robotics might be approximation of the real world. There is generally a sig-
ni�cant gap between estimations provided by the physical model (theory) and
the consequences of its actions in the real-world (practice). This discrepancy
is particularly high on for low-cost robots of the kind we are interested in.
Therefore, acting optimally according to a model and acting optimally in the
real world are two di�erent things.

This thesis aims at providing solutions on two aspects of decision-making
in robotics. How to model a decision-making problem and how to train
lightweight policies which can be used online.

From theory to practice

Developing complex and e�cient behaviors on robots generally requires the use
of simulators in order to assess the performances without risking any damage
on the robot. Simulation allows:

1. Optimizing control functions by experimenting various policies, eventu-
ally in parallel.

2. Monitoring values which cannot be measured accurately on robots.

Simulations are based on physical equations and speci�cations of the robots.
There might be a signi�cant gap between reality and the simulator. Some of
the physical aspects such as chocs are di�cult to model accurately, especially
for low-cost robots built with low-cost hardware. The real robot may slightly
di�ers from the model due to mechanical imperfections and incomplete mod-
eling (e.g. the weight of the electrical wires is rarely included in the model
of robots and every servomotor has a di�erent transfer function). While it is
possible to reduce the gap between model and reality it often has a signi�cant
cost, because it requires more accurate manufacturing.

Perception of the environment by the robots is subject to noise. All the
digital sensors present a quanti�cation noise due to the resolution of the sen-
sors. Sensors also provide information at a given frequency, therefore, it is
not possible to have access to the robot status at any time. As a consequence,
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sensors do not provide exact measurements of a physical parameter, but rather
a probability distribution over its possible values.

Robots cannot capture entirely and accurately neither their internal state
or the environment status. They might lack information about the friction
coe�cient of the �oor, the exact position of an encoder or have a rough accurate
of their position in their environment. Therefore, applying the same action
in the same measured state can lead to di�erent results depending on non-
measured variables.

Since decision making in partially observable environments is particularly
di�cult, we choose to consider robotic problems as fully observable but with
stochastic transitions. While this type of abstraction does not re�ect reality,
it allows the use of e�cient algorithms and still leads to satisfying results.

While increasing the accuracy of the robot hardware makes decision-making
easier and leads to improvements on the ability to perform most of the tasks, it
also increases the cost of the robot. In order to reach satisfying performances at
a low-cost, it is necessary to take into account the noise in the decision-making
process. Moreover, modeling the noise of the robot and using learning to solve
the problem also provides guidelines for hardware changes by automatically
detecting which aspects of the noise have the highest impact on performance.

Additionally to all the di�culties mentioned previously, online decision
making for autonomous robots needs to consider speci�c constraints regarding
computational power. Autonomous robots need to embed their computational
power with three major limitations: volume, weight and power consumption.
Moreover, since robots act in real world, their decision-making has to be real-
time. Therefore, decision making in autonomous robotics often require to focus
on providing acceptable strategies at a low computational cost.

Applications of learning to robotics

Reinforcement learning has been used successfully in robotics for the last two
decades. While section present key concepts of reinforcement learning and
their relationship with robotics, this section presents a few successful applica-
tions with some context.

Autonomous radio-controlled helicopter �ight was achieved in [Ng and al.
2004]. The authors started by �tting a model using locally weighted linear
regression [Atkeson and al. 1997] and then used their model to train a policy
based on the reinforcement learning algorithm PEGASUS [Ng and Jordan
2000]. While the state space has 12 dimensions and the action space 4, they
still managed to produce a policy which strongly outperforms specially trained
human pilots with respect to stability. Moreover, they were also able to use
their model to perform maneuvers from challenging RC competitions.

Hitting a baseball with an anthropomorphic arm was performed in [Pe-
ters and Schaal 2006]. The main di�culty of this task relies on its strong
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dependency to the model dynamics which are particularly sensitive to small
modeling errors. In order to achieve this performance, the authors started by
teaching a simple stroke with supervised learning. However, the robot was not
able to reproduce the presented stroke. Therefore, they used a policy gradient
algorithm to bridge the gap between the demonstration and an appropriated
move. After 200 to 300 rollouts, the robotic arm was able to hit the ball
properly.

Several researchers have managed to perform the ball-in-a-cup task using
robotic arms [Kober and al. 2009; Nemec and al. 2010]. In [Nemec and al.
2010], the authors experimented two di�erent methods to achieve this task.
One based on dynamical movement primitives [Ijspeert and al. 2013] which
uses human demonstration, and the other one based on reinforcement learning
without prior knowledge of the system. The second one start by using around
300 simulations to perform an o�ine training and then continues learning on
the real robot, ending up with an appropriate policy for the real world after
40 to 90 additional rollouts.

Learning how to balance an unstable pole on a free angular joint by driving
a cart on a linear track after only a few rollouts was achieved in [Deisenroth
and Rasmussen 2011]. The model of the system was learned on the real robot,
using Gaussian processes [Rasmussen 2006]. Learning an accurate model from
a few samples was a key to the success of this method.

For further reading, a thorough review of the applications of reinforcement
learning in robotics is presented in [Kober and Peters 2012].

All the applications mentioned here are based on learning policies for dy-
namic and continuous problems with a high-quality hardware. This thesis
aims at providing learning algorithms for problems whose underlying dynamic
involves impacts. Moreover, we focus on applying learning for high-level tasks
with low-cost hardware, thus increasing the amount of noise faced.

Problems for humanoid soccer-playing robots

Algorithms presented in this thesis have been experimented on humanoid
robots in the framework of the RoboCup, see . In this thesis, we focus on
solving two problems, the ball approach and the kicker robot problems.

The global problem of playing soccer is to control the position of each
joint of the four robots at 100 Hz according to the inputs of all the sensors,
while targeting to score goals. This would lead to an action space with 80
continuous dimensions and even more state dimensions. Since learning how
to walk is already a complex task for humanoid robots, solving this problem
is intractable. Therefore we rely on expert algorithms for locomotion and
perception. The decision-making problem we consider is: which orders should
the robots send to the walk engine and how should they kick to score a goal
as quickly as possible against a static goalie. Since this problem is still quite
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complex, we used a decomposition of the problem in two di�erent tasks. First,
what orders should a robot send to the walk engine to prepare a kick in a given
direction. Second, which kick should a robot perform to score as quickly as
possible.

In the ball approach problem, a robot tries to reach a suitable position to
perform a kick. It uses an expert holonomic walk engine. The aim of the robot
is to reach the suitable position as quickly as possible, while avoiding collisions
with the ball. Since the robot is walking on arti�cial turf and the control of the
motors is not accurate, every step of the robot include some noise on its next
position and orientation. We establish an appropriate model for this problem
in section 1.2.6. In chapter 3, we train policies beating expert strategies by
using reinforcement learning algorithms.

In the kicker robot problem, see 1.3, Robots are playing on a �eld with a
single static goalie as opponent. This problem has many parameters among
which we �nd the number of players. A central agent has to choose which
robot will kick and how it will perform the kick by choosing some parameters,
e.g. direction of the kick. The aim is to �nd the quickest policies to score goals
reliably. The robot might fail to score a goal if it shoots outside of the �eld or if
the ball collides with the goalie. This problem also allows to assess the gain of
playing as a team versus playing individually. Chapter 4 presents experimental
results for this problem along with considerations about the parametrization
of the problem. It shows how it might be more e�cient to optimize policies on
approximated models and presents the advantages of playing in cooperation
with other robots of the team.

Reinforcement learning

In reinforcement learning problems, the goal is to learn a policy which max-
imizes the expected reward (or minimizes the expected cost). The learning
algorithm has only access to a reward function and a method to gather sam-
ples, either by interacting with the system or by sampling a stochastic function.
There is no human supervision during the learning process.

The main challenges of learning

Since the dawn of reinforcement learning, it has been applied on a wide vari-
ety of problems. A question that arise is: �What makes a problem di�cult to
solve for reinforcement learning?�. In this part, we will discuss several recur-
ring issues in this �eld and their impact on the approaches used to solve the
problems.

Exploitation vs exploration
While interacting with a system, agents gather data on the problem
they are trying to solve. At anytime, they can exploit this knowledge
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to build a policy which allows them to maximize the expected reward
considering their current belief. However, if an agent always tries to
act optimally in its space, it can end up repeating similar actions
and therefore its knowledge of the problem stays limited. On the
other side, if an agent explore continuously, it will never exploit the
data acquired. We refer to this problem as the �exploitation versus
exploration trade-o��. A well known problem where the agent has
to handle the trade-o� between exploitation and exploration is the
multi-armed bandit, see [Gittins and al. 1979].

Smart exploration
Exploring using random actions has proved to be su�cient for some
problems but very ine�ective on other situations, particularly when
the state space is large or when some states can be reached only after
applying a speci�c sequence of actions. Some theoretical problems
such as the combinatory lock problem have been presented to high-
light the necessity of using smart exploration. In the combinatory
lock problem, there is n states (1, . . . , n) and the agent start in
state 1. In every state he can either choose action a which leads to
state k + 1 from any state k or action b which always lead to state
1. In order to reach state n, the agent has to apply n consecutive
actions a, if it uses random exploration, the probability of reaching
state n after each sequence of n actions is 1

2n
. Therefore, even with a

simple system with only 50 states and two deterministic actions, ran-
dom exploration might already require around 1015 actions to reach
the target state. The discrete case of the combinatory lock problem
appears in [Koenig and Simmons 1996] and the continuous case ap-
pears in [Li and al. 2009]. In this type of problem, exploration should
provide an incentive for applying actions which are likely to lead to
states which have been less frequently visited. If we use this type
of incentive on the combinatory lock problem, action a will quickly
become preferable to b in every visited state, because action b leads
to states which have been visited frequently.

Local and global maxima
Consider a function f : X 7→ R with X ∈ Rn, x ∈ X is considered
as a local maximum of f if and only if there is an ε ∈ R+ such as
∀x′ ∈ X, ‖x′−x‖ < ε⇒ f(x′) ≤ f(x). These notions can be extended
to policies by considering that a policy is locally optimal if in every
state, the action to be applied is a local maxima with respect to
the current policy. While optimizing functions or policies one of the
major risks is to end up stuck in a local maxima. This issue generally
arises when using gradient-based methods or when the mean value
in the neighborhood of the global maxima is lower than the value

8 Ludovic Hofer



Introduction

around a local maximum. A simple theoretical example might be the
following, the agent ride a bicycle and he needs to cross a river. There
are two bridges, one very narrow but nearby and another very wide
but further. While exploring di�erent trajectories, the agent will
likely fail several times at crossing the narrow bridge and succeed
quickly at crossing the wide bridge. Therefore, even if the optimal
policy passes through the narrow bridge, learning algorithms might
get stuck on a policy passing through the wide bridge.

Curse of dimensionality
The curse of dimensionality often arises while learning policies, opti-
mizing functions or building policies. The problem is that when solv-
ing a problem with n dimensions, the number of required interactions
with the system grows exponentially with n. This problem might con-
cern the number of samples required for discretization or regression,
it might also concern the number of calls required to �nd the global
maxima while optimizing a function with a multi-dimensional out-
put. Therefore, some schemes which are e�ective in low-dimensional
problems might be computationally intractable when scaling up to
problems with a higher number of dimensions

Over�tting vs under�tting
While building a model from observations, it is usual to have di�erent
types of models such as linear models, quadratic models or Gaussian
mixtures. Those models have generally a set of parameters and the
learning process tries to reduce the error between the model and the
observations. Obviously, more expressive models will allow to reduce
the error between the model and the observations. But when there
is noise involved, either on the observation or even on the process
observed, even if the model matches perfectly the observations used
to build it, it is possible that the di�erence between new observations
and their prediction according to the model might be large. The
problem of having a much lower error on the training observations
than during validation is called over�tting. It is very likely to arise
when the number of samples gathered is low with respect to the num-
ber of parameters of the model or when the model is more complex
than reality.

Online and o�ine learning

While they share a common goal, online and o�ine learning have di�erent
constraints and advantages and cannot be compared directly. In this part we
the notion of blackbox function is introduced and then four di�erent types of
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reinforcement learning are presented: online, o�ine, batch mode and semi-
online.

While sampling a CSA-MDP on a robot, it is not possible to choose the
initial state. Moreover, acquiring real-world samples is very time consuming.
Therefore, it is often convenient to build a blackbox model of the transition
function. In this thesis we consider that blackbox models can involve stochastic
elements, therefore, they can produce various outputs for the same input.

We denote B : I 7→ ∆(O) a blackbox B with input space I and output
space O, where ∆(O) denotes the set of probabilities densities on O. We write
the process of sampling the blackbox o = sample(B(i)), with i ∈ I and o ∈ O.
For the speci�c case of MDPs, we have I = S × A and O = S × R× {a,`}.

Online learning focuses on experimenting in real situation. It requires the
possibility of adding new information at a low computational cost, otherwise
the learning system would not be able to treat the observations quickly enough.
It presents the advantage of adapting directly to the robot and therefore it can
adapt to speci�cities of the robot which would not be taken into account in
expert models of the system.

O�ine learning is based on an existing transition model and uses symbolic
representation or blackbox simulation to compute e�cient policies. It bene�ts
from more computational resources than online learning since it has no real-
time constraint. However, requesting the best action from computed policies
should be possible in real-time.

Batch mode learning is entirely based on samples collected through inter-
action with the real system. It happens in two phases, �rst all the samples
are gathered, then they are used to train a policy. It is possible to use batch
mode algorithms online, by updating the policy regularly. However, batch
mode learning focus on exploitation, therefore it has no mechanism to ensure
exploration.

Semi-online learning is based on the notion of rollout. During a rollout, the
agent will act according to the current policy. Once the rollout is �nished, the
agent uses the samples gathered during the rollout to improve current policy.
Thus, the update does not require to be real-time and it can even be performed
on external hardware.

Episodic learning

In some problems, the initial state of the system is known and the target is
always the same. A speci�c aspect of those problem is the fact that it is
not required to explore the whole state space in order to provide an e�cient
solution. Therefore, the most e�cient approaches for episodic learning are
generally based on exploring only a subspace of the entire state space. Classical
episodic learning problems are Car on the hill, see 1.1.2 and Inverted pendulum
stabilization, see 1.1.3.
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Markov decision processes

Markov decision processes, MDP for short, is a framework that allows mod-
eling of problems including non-deterministic environments. Originally, MDP
were designed to express problems with a �nite number of states and actions.
However, most real-life problem are continuous, therefore other models have
been proposed which use continuous states and actions, CSA-MDP for short.
Unless explicitly stated otherwise, problems mentioned in this thesis will be
CSA-MDP.

De�nitions

An hyperrectangle H ⊂ Rn is a space de�ned by minimal and maximal bound-
aries along each dimension. Hk,1 denote the minimum possible value for H
along dimension k. Hk,2 denote the maximum possible value for H along di-
mension k.

H =

H1,1 H1,2
...

...
Hn,1 Hn,2

 = [H1,1H1,2]× · · · × [Hn,1Hn,2] (1)

We denote the volume of an hyperrectangle |H| and it is de�ned by equa-
tion 2.

|H| =
n∏
k=1

Hk,2 −Hk,1 (2)

The center of an hyperrectangle H is noted center(H).

Before taking any decision, the agent can observe its current state s ∈ S,
where S is the state space. All the state spaces considered in this thesis are
hyperrectangles.

The agent has to choose both the action it will take, among a �nite number
of choices, and the parameters of the chosen action inside an hyperrectangle.
We denote action spaces A = (Ha1 , . . . ,Hak), whereHai is the parameter space
for the action with action identi�er i. Parameters spaces for di�erent actions
can have a di�erent number of dimensions.

At each step, the agent will receive a reward which depends on its state and
the chosen action. The stochastic aspect of the reward received for applying
action a in state s due to hidden parts of the transition process is discussed in
section .

At each step, the agent receives a terminal status. The status ` indicates
that the agent can keep taking decisions, while the status a indicates that the
agent cannot take any further decisions, either because it has reached a target
or because it has encountered a critical failure.

Decision-making algorithms for autonomous robots 11



0.0. Markov decision processes

We denote the transition function δ and we note δ(s′, r, t|s, a) the density
probability measure of reaching state s′ ∈ S with reward r ∈ R and terminal
status t ∈ {a,`}

At the beginning of each task the agent is in a state sampled according to
distribution I = ∆ (S)

We de�ne a CSA-MDP by a �ve-tuple 〈S,A, δ, I, γ〉, where:

• S is the state space.

• A is the action space.

• δ the transition function.

• I the initial state distribution

• γ ∈]0, 1] is the discount rate. It is generally used to decrease the impact
of long-term reward.

Consider MDP = 〈S,A, δ, I, γ〉 a CSA-MDP: the sampling of an initial state
s according to I is denoted s = sampleInitialState(MDP). The sampling
of the result of a transition process from state s with action a according to δ is
denoted (s′, r, status) = sampleResult(MDP, s, a), with s′ ∈ S, r ∈ R and
status ∈ {a,`}.

Consider MDP a CSA-MDP, we denote stateSpace(MDP) its state space.
We denote nbActionSpaces(MDP) the number of distinct action identi�ers
possible, i.e. the number of hyperrectangles in the action space. We denote
the hyperrectangle de�ning the space of parameters allowed for action with
action identi�er i ∈ N: actionSpace(MDP, i). The discount rate of MDP is
denoted discount(MDP).

Policy: A deterministic policy π : S 7→ A de�nes which action a ∈ A will be
taken for any state s ∈ S. Thereafter, if it is not stated otherwise, by �policy�,
we implicitly refer to deterministic policy.

Value function: A value function V π : S 7→ R de�nes the value for each
state s ∈ S according to the policy π. This value function is the �xed point of
Equation (3), denoted V π(s).

V π(s) =

∫
s′∈S

∫
r∈R

δ (s′, r,a |s, π(s)) r+δ (s′, r,` |s, π(s)) (r+γV π(s′)) ds′ dr (3)
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Q-Value: A Q-value Qπ : S × A 7→ R de�nes the expected reward when
starting by applying action a ∈ A in state s ∈ S and then applying policy π.
The value is the �xed point of Equation (4), denoted Qπ(s, a).

Qπ(s, a) =

∫
s′∈S

∫
r∈R

δ (s′, r,a |s, a) r + δ (s′, r,` |s, a) (r + γQπ(s′, π(s′)) ds′ dr

(4)

Optimality: A policy π is considered as optimal if and only if it follows
Equation (5). Optimal policies are denoted π∗.

∀s ∈ S,∀a ∈ A, V π∗(s) ≥ Qπ∗(s, a) (5)

The value of a state is de�ned by V (s) = sup
π
V π(s), the best possible

expected reward.

Solving MDPs

In this part, historical approaches used for solving �nite-state MDPs and their
applicability to continuous domain are discussed.

Value iteration

Value iteration algorithms are based on an iterative approach of the problem
and try to estimate the value of each state using Equation (6).

Vk+1(s) = max
a∈A

∑
s′∈S

∫
r∈R

δ (s′, r,a |s, a) r + δ (s′, r,` |s, a) (r + γVk(s
′)) dr (6)

The value function Vk+1 is obtained by a single update step using a greedy
policy with respect to Vk. It has been proved that by iterating the process,
the estimation of the value function converges to the true value function if
γ < 1. In this case, the greedy policy with respect to the estimation of the
value function is an optimal policy. An in-depth discussion on bounds of for
greedy policy with respect to value function in discrete MDPs is presented
in [Williams and Baird 1994].

The approach is suited for problems with a �nite number of states and
actions. On continuous problems, it is impossible to iterate on all the states
and actions. However, it is still possible to discretize a continuous problem
in order to get a �nite number of states and actions and then to solve the
approximation of the original problem, see section . Another scheme is to use
function approximators to store the values in the continuous space.
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Policy iteration

Policy iteration algorithms also allow to obtain optimal policies for MDP, and
are also based on choosing greedy action with respect to an estimated value
function. The main di�erence is that instead of storing the last value function
and updating it with a single step, they store the last policy and compute
either its exact value or its approximated value after a large set of steps. The
update step is based on Equation (7).

πk+1(s) = arg max
a∈A

∑
s′∈S

∫
r∈R

δ (s′, r, 1|s, a) r+δ (s′, r, 0|s, a) (r+γV πk(s′)) dr (7)

Policy iteration algorithms require signi�cantly less iterations than value
iterations algorithms. However, their iterations require more computational
power since they require to estimate the true value function of the current
policy. An in depth-study of the performance bounds for value iteration and
policy iteration is presented in [Scherrer 2013]. In this article, the author
develop the theoretical study of the λ policy iteration algorithm, proposed as
an unifying algorithm for both value and policy iteration. A thorough review
of λ policy iteration and its implementations is presented in [Bertsekas 2013].

The initial form of policy iteration is not directly adaptable for continuous
state and action spaces, because Equation (7) requires to �nd the optimal
action for each state. While it is possible to approximate by experimenting all
the couples in discrete spaces, enumerating them is not possible in continuous
spaces.

Policy Iteration has inspired approaches such as policy gradient in which
the shape of the policy is chosen using expert knowledge and its parameters
are tuned during the learning process, see section .

Q-Value iteration

Q-learning algorithms are based on the Q-value. One of the main advantage
of this approach is the fact that it does not require explicitly to build a tran-
sition model for the MDP. While building a model might lead to high sample
e�ciency, see [Deisenroth and Rasmussen 2011], it is not mandatory.

Successor, reward and terminal status

Often, the literature uses a deterministic reward function separated from the
sampling of the next state, it also tend to consider that terminal status is
directly a function of the state. While this formalism is suited to most of the
problems, it leads to issues for some problems, speci�cally when the transition
between state and actions is the result of a simulation with multiple steps.
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Therefore, in this thesis we consider that the reward and the terminal status
are sampled simultaneously with the successor.

In order to highlight the potential issues of separating reward, terminal
status and successor, we refer to the kicker robot problem, see 1.3. In this
problem a robot has to move on a soccer �eld in order to get closer to the
ball and then shoot the ball. The goal of the agent is to reduce the average
time required to score a goal. The state space is de�ned by the position and
the orientation of the player and by the position of the ball. The action space
includes choosing which kick the player can use as well as the direction of the
kick. In order to be able to kick, the robot has to get close to the ball. This task
is performed by simulating a ball approach, see section 1.2. Since the reward
received at every step depend on the time required to reach the kick position,
knowing the initial state, the action and the successor state does not provide
enough information to have access to the reward. In this problem, there is
several way to end up with a terminal status: the ball might be kicked outside
of the �eld or there might be a simulated collision between the robot and the
opponent goalie inside the penalty area. In the second case, the �nal position
of the robot and the ball do not provide enough information to conclude if the
state is terminal or not. Of course it would be possible to increase the state
space to include a speci�c terminal state, but it is much simpler to have the
transition function sample simultaneously the successor, the reward and the
terminal status.

Heterogeneous action spaces

Usually, CSA-MDP uses a single type of action with continuous parameters.
Those parameters might be the direction of the action, its intensity or any
other continuous variables. However, in real-life situations robots might have
to choose between semantically di�erent actions which have entirely di�erent
parameters. Hybrid-MDP with both continuous and discrete variables are used
in [Meuleau and al. 2009]. Although they allow to express both discrete and
continuous aspects for states, they do not allow easily to model problems with
several di�erent types of actions. It is with this interest in mind that we chose
to express the action space as a set of spaces. The kicker robot problem, see 1.3,
highlights this advantage. With our framework, it is easy to specify di�erent
types of kick controller. While some actions might take only the direction as
a parameter, other might require to specify the power as well.

Consider A = {H1, . . . ,Hn} an action space, it is an heterogeneous action
space if and only if ∃(i, j) ∈ {1, . . . , n}2, i 6= j ∧Hi 6= Hj
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Learning in continuous spaces

Classical MDP approaches such as exact value iteration cannot be applied
directly to CSA-MDP because there is an in�nity of states. In this section
we discuss the advantages and limits of di�erent approaches used to compute
policies for CSA-MDP.

Discretization

Approaches based on discretization convert CSA-MDP in MDP by gathering
subspaces into a single state. This requires to partition the state and action
spaces into a discrete, �nite set of cells, it approximates the dynamics. This
kind of process is often used to convert continuous problems into discrete
problem.

Straightforward discretization has proven to be quite e�ective on low-
dimensional problems, yielding satisfying results in [Benbrahim and al. 1992].
For higher dimension problems such as the ball-in-a-cup task in [Nemec and al.
2010], hand-crafted discretization require �ner tuning but can still solve suc-
cessfully the problem. Expert non uniform discretization of the state space
has been proposed and discussed in [Santamaria and al. 1997].

While discretization tend to provide solutions quickly, it is ine�cient in
high-dimensional problems due to the curse of dimensionality.

Policy gradient

Policy gradient algorithms uses parametrized policies and models to solve CSA-
MDP. They rely on optimization of the parameters through gradient descent.
The gradient of the value function with respect to the parameters of the policy
can be obtained through either sampling or analytic equations.

This approach has already been used successfully in robotics. Policy gradi-
ent algorithms have been able to learn control policies to hit a baseball with an
anthropomorphic arm [Peters and Schaal 2006]. They can display an impres-
sive sample e�ciency [Deisenroth and Rasmussen 2011], making them suitable
for robotic applications.

The constraints on access to a symbolic and derivable model of the tran-
sition and reward functions are di�cult to satisfy in humanoid robotics due
to the presence of collisions with the ground. Moreover, due to the large dis-
crepancy between the model and the real-world experiments on our low-cost
robots, using the analytic model for evaluating the robot dynamics is not real-
istic. Therefore, policy gradient algorithms are not suited for applications on
low-cost robots which have a bad signal to noise ratio.
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Local planning

Local planning algorithms do not solve a complete MDP but uses online in-
formation of the current state to strongly reduce the space which require ex-
ploration. They often uses a limited horizon in planning and therefore yield
excellent performance on short-horizon tasks but they come at the price of a
high online cost since the computations have to be performed online in order
to have access to the current state. This point make it often impractical to
use local planning in robotics, because the computational power is limited and
decisions have to be taken in real-time.

In [Weinstein and Littman 2013], local planning algorithms are used to
provide outstanding control of two-dimensional biped humanoids with seven
degrees of freedom. However, each decision required 10'000 trajectories for a
total of 130 seconds per time step on an Intel Core i7-3930k, a much more pow-
erful CPU than those currently embedded on robots. Moreover, the amount
of noise simulated is still much lower than the control and sensing noise on
a real robot. Although those results are encouraging, they require major im-
provements in hardware to be applied.

AlphaGo is the �rst program able to win Go games against the best human
players, see [Silver and al. 2016]. It is worth noting that in order to reach such
a performance, the authors used local planning under the form of Monte Carlo
Tree Search as well as o�ine learning under the form of deep neural networks.

Exact methods

A few years ago, Symbolic Dynamic Programming has been proposed to �nd
exact solutions to CSA-MDP [Sanner and al. 2012]. This algorithm, based on
eXtended Algebraic Decision Diagrams requires a symbolic model of both the
transition function and the reward function. It also relies on several assump-
tions concerning the shape of these functions and is suited for a very short
horizon. This result is not applicable for the presented applications because of
the transition models and the horizon which should be considered.

Contributions

The main contributions of this thesis are:

• three new algorithms for solving CSA-MDPs,

• an in-depth experimental study of several robotic problems, leading to
new insights on how to model MDPs in robotics,

• a generic MDP solver, released as a C++ project
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The three algorithms we propose are respectively called Fitted Policy Forest
(FPF), Random Forests Policy Iteration (RFPI) and Policy Mutation Learner
(PML). These three algorithms are designed to be able to cope with real robotic
problems, therefore they can address a large number of dimensions, and pro-
duce policies which can be used at a low computational time.

Fitted Policy Forest This algorithm relies on classical techniques to per-
form an estimation of the Q-value and then uses this information to
extract a lightweight policy. The policy is represented compactly as a re-
gression forest, thus it can be used to perform real-time decision-making.
FPF can be used either in batch mode or in semi-online learning. This
algorithm is presented and compared to state of the art algorithms in
Section 2.2. This work was published in [Hofer and Gimbert 2016].

Random Forests Policy Iteration This algorithm performs a variant of
policy iteration. The current policy is stored as a regression forest. Each
improvement step consists in 1) approximate the value function using the
current policy, 2) update the policy using the new value function. RFPI
requires a blackbox model of a CSA-MDP. The algorithm is presented
in 2.3 and is used to solve the ball approach problem in chapter 3. This
work was published in [Hofer and Rouxel 2017].

Policy Mutation Learner This variant of policy iteration performs local
modi�cations of a policy while ensuring that those local modi�cations do
not impact negatively the global performance. This is the only algorithm
presented here which can handle multiple heterogeneous action spaces.
It is presented in 2.4 and its experimental results on the kicker robot
problem are presented in chapter 4. This work is unpublished.

We focus on two robotic problems faced by the Rhoban Football Club
during RoboCup games.

Ball approach In chapter 3, the ball approach problem is studied thoroughly.
First, a predictive motion model is presented and data acquired from
real-world experiments is used to tune up parameters. Second, policies
are trained using the RFPI algorithm. Both simulation and real world
experiments show that the policies produced by RFPI outperform those
used to win the RoboCup in 2016.

Kicker robot In chapter 4, an in-depth analysis of the kicker robot problem
is provided. Through experiments, we show how cooperation between
robots can be used to reduce the average time required to score a goal.

We did implement all three algorithms and the environment needed to per-
form experiments, including Gazebo bindings, as a collection of open-source
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C++ modules compatible with ROS (Robotic Operating System). These mod-
ules are structured in order to limit the number of dependencies and to ensure
genericity. All the solvers and optimizers allow choosing the number of threads
used in order to bene�t from parallelism. The total number of lines written is
around 34'000. More details on the source code are provided in Section 2.6.

Organization of the thesis

In this introduction we provide the basic notions used throughout the thesis. In
chapter 1, we present the experimental problems we focused on. In chapter 2,
we present our three algorithms and their performances. In chapter 3, we
present the experimental results obtained with RFPI on the ball approach
problem. In chapter 4, we present the experimental results obtained with
PML on the kicker robot problem.
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Chapter 1

Targeted problems

In this chapter, we present several problems used for experimentation in this
thesis1.

Section 1.1 introduces classical problems used for benchmark in continuous
reinforcement learning. Section 1.2 presents the ball approach problem along
with the training of a predictive motion model for our humanoid robot. Finally,
section 1.3 introduces the kicker robot problem and discusses the incentives
for robot cooperation in the RoboCup context.

1.1 Benchmark problems

In this section, we present problems widely used as benchmark for reinforce-
ment algorithms. Those problems are used to benchmark the Fitted Policy
Forests algorithm in section 2.2.

1.1.1 Double integrator

The double integrator, see Fig. 1.1, is a linear dynamics system where the
aim of the controller is to reduce negative quadratic costs. The continuous
state space consist of the position p ∈ [−1, 1] and the velocity v ∈ [−1, 1] of a
car. The goal is to bring the car to an equilibrium state at (p, v) = (0, 0) by
controlling the acceleration α ∈ [−1, 1] of the car. There are two constraints:
|p| ≤ 1 and |v| ≤ 1. In case any of the constraint is violated, a penalty of 50
is received and the experiment ends. In all other case, the cost of a state is
p2 + a2. The control step used is 500[ms] and the integration step is 50[ms],
the discount factor was set to γ = 0.98.
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Figure 1.1 � The double integrator problem, from [Santamaria and al. 1997]

Figure 1.2 � The �car on the hill� problem, from [Ernst and al. 2005]

1.1.2 Car on the hill

In this problem an underactuated car must reach the top of a hill. space is
composed of the position p ∈ [−1, 1] and the speed s ∈ [−3, 3] of the car while
the action space is the acceleration of the car u ∈ [−4, 4]. The hill has a curved
shape given by Eq. (1.1). If the car violate one of the two constraints: p ≥ −1
and |s| ≤ 3, it receives a negative reward of −1, if it reaches a state where
p > 1 without breaking any constraint, it receive a reward of 1, in all other
states, the reward is set to 0. The car need to move away from its target �rst
in order to get momentum.

Hill(p) =

{
p2 + p if p < 0

p√
1+5p2

if p ≥ 0
(1.1)

1An open-source implementation in C++ of all the problem described here is available at:
https://github.com/rhoban/csa_mdp_experiments.

22 Ludovic Hofer

https://github.com/rhoban/csa_mdp_experiments
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1.1.3 Inverted pendulum stabilization

Figure 1.3 � The inverted pendulum stabilization problem, from [Bernstein
and Shimkin 2010]

In this problem, the goal is to control the angular position of a pendulum
linked to a cart through a free angular joint by applying a linear force f on
the ground using the cart wheels, see Figure 1.3.

We use the description of the problem given in [Pazis and Lagoudakis 2009].
The state space is composed of the angular position of the pendulum θ and
the angular speed of the pendulum θ̇, the action space is [−50, 50] Newtons, an
uniform noise in [−10, 10] Newtons is added. The goal is to keep the pendulum
perpendicular to the ground and the reward is formulated as following:

R(θ, θ̇, f) = −

(
(2θ/π)2 +

(
θ̇
)2

+

(
f

50

)2
)

except if |θ| > π
2
, in this case the reward is −1000 and the state is considered

as terminal. We set the discount rate γ to 0.95. The transitions of the system
follow the nonlinear dynamics of the system described in [Wang and al. 1996]:

θ̈ =
gsin(θ)− αml

(
θ̇
)2

sin(2θ)
2
− αcos(θ)u

4l
3
− αmlcos2(θ)

where g is the constant of gravity 9.8[m/s2], m = 2.0[kg] is the mass of the
pendulum, M = 8.0[kg] is the mass of the cart, l = 0.5[m] is the length
of the pendulum, α = 1

m+M
and u is the �nal (noisy) action applied. We

used a control step of 100[ms] and an integration step of 1[ms] (using Euler
Method). The reward used in this description of the problem ensure that
policies leading to a smoothness of motion and using low forces to balance the
inverted pendulum are rated higher than others.
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1.2. Ball approach

Figure 1.4 � An example of real-world ball approach

1.1.4 Inverted pendulum swing-up

In this problem, an angular joint with a pendulum is controlled directly and
the aim is to stabilize it upward. The pendulum starts pointing downward
and the torque of the angular joint is too low to lift it directly, therefore it is
required to inject energy in the system by balancing the pendulum.

The main parameters are the following: the mass of the pendulum is 5[kg],
the length of the pendulum is 1[m], the damping coe�cient is 0.1[Nms/rad],
the friction coe�cient is 0.1[Nm], the maximal torque is τmax = 15[Nm], the
maximal angular speed is θ̇max = 10[rad/s] and the control frequency is 10[Hz].
The reward function used is the following

r = −

(∥∥∥∥ θπ
∥∥∥∥+

(
τ

τmax

)2
)

(1.2)

Where θ is the angular position of the pendulum (0 denote an upward position),

and τ represent the torque applied on the axis. If
∥∥∥θ̇∥∥∥ > θ̇max, a penalty of 50

is applied and the episode is terminated.
While the system only involves two state dimensions and one action dimen-

sion, it presents two main di�culties: �rst, random exploration is unlikely to
produce samples where θ ≈ 0 and θ̇ ≈ 0 which is the target, second, it requires
the use of the whole spectrum of actions, large actions in order to inject energy
in the system and �ne action in order to stabilize the system.

1.2 Ball approach

During robotic soccer games, several skills such as recovering from falls or
kicking the ball are required, but most of the time is spent in the approach
phase, see Figure 1.4. During the approach, the robot has an estimate of both
the ball position and its own position on the �eld. It is then able to choose a
desired aim for its next kick. The main problem is to control the orders sent
to the walk engine in order to reach the desired position as fast as possible.

The walk predictive model and the observations gathered by the robots
are stochastic. Due to the lack of predictability of the robot's motions, it
is impossible to use standard methods for planning in continuous domains.
Moreover, since the decisions have to be taken online and updated after every
step, the choice of the orders should not require heavy computations.
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1.2.1 Walk engine

The walk engine2 used by the Sigmaban robot and presented in [Rouxel and al.
2016] is omni-directional and controls the target position of the 12 leg joints.
It has been mainly developed by Grégoire Passault and Quentin Rouxel. The
walk is externally driven by three values: the forward and lateral length of
the next step and its angular rotation. These walk orders are issues at each
complete walk cycle (two steps).

The engine is based on a set of parametrized polynomial splines in Cartesian
space of the foot trajectories with respect to the robot's trunk. A stabilization
procedure detects strong perturbations by looking for unexpected weight mea-
sures from the foot pressure sensors. In case of perturbations, the walk timing
is altered in order to keep the robot balanced.

1.2.2 Almost non holonomic approach

While some humanoid robots are able to move very quickly laterally, other
robots are mainly capable of moving forward, backward and rotate. For these
robots, policies that rely on lateral motion are particularly slow. In order to
test the �exibility of the policies, we designed two version of the problem:
Holonomic Approach, HA for short and Almost Non Holonomic Approach,
ANHA for short. In ANHA, we divided the limits for the lateral speed and
acceleration by 5, since those robots are not e�cient at moving laterally, we
also divided by two the lateral noise with respect to HA.

1.2.3 State and action spaces

Sudden variations of the parameters provided to the walk engine can result in
instability and fall of the robot. Therefore, we decided to control the accelera-
tion of the robot and not the walk orders directly. The name, limits and units
of the state space can be found at Table 1.1 and those of the action space at
Table 1.2. We do not consider the ball speed in the state space for two reasons.
First, it is very hard to get an appropriate estimate of the ball speed because
the camera is moving with the robot and the position observations are already
very noisy. Second, the ball is static most of the time, because robots spend a
large proportion of their time trying to reach the ball.

Even with the restrictive bounds on speed, see Table 1.1, and acceleration,
see Table 1.2. Some combinations of large speed and acceleration of walk
orders can still make the robot unstable. These events trigger the stabilization
procedure which manages to recover from the perturbations at the expense of
high noise in the robot's displacement and extra-time allowed to the current
step.

2Implementation is available at https://github.com/Rhoban/IKWalk
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Table 1.1 � State space of the ball approach problem

HA ANHA
Name Units min max min max
Ball distance m 0 1 0 1
Ball direction rad −π π −π π
Kick direction rad −π π −π π
Forward speed m

step
-0.02 0.04 -0.02 0.04

Lateral speed m
step

-0.02 0.02 -0.004 0.004

Angular speed rad
step

-0.2 0.2 -0.2 0.2

Table 1.2 � Action space of the ball approach problem

HA ANHA
Name Units min max min max
Forward acceleration m

step2
-0.02 0.02 -0.02 0.02

Lateral acceleration m
step2

-0.01 0.01 -0.002 0.002

Angular acceleration rad
step2

-0.15 0.15 -0.15 0.15

1.2.4 Speci�c areas

At every step, the robot is given a reward which depends on the area it is
located in:

Kick: The distance to the ball along the X-axis has to be between
0.15 m and 0.3 m. The absolute position of the ball along the
Y -axis has to be lower than 0.06 m. The absolute angle between
the robot direction and the kick target has to be lower than
10 degrees. Inside this area, the robot receives a reward of 0.

Collision: The position of the ball along the X-axis has to be between
-0.20 m and 0.15 m. The absolute position of the ball along
Y -axis has to be lower than 0.25 m. Inside this area, the robot
receives a reward of -3.

Failure: The distance to the ball has to be higher than 1 m. In this case,
we consider that the robot has failed the experiment, the state
is terminal and the reward is -100.

Normal: For every state that does not belong to any of the previous cases.
Inside this area, the robot receives a reward of -1 (i.e. unit cost).

This binary separation between the di�erent areas rises a speci�c concern
about continuity of the reward. While several learners use assumptions on the
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Lipschitz constant of reward and transition functions in order to speed-up the
process or to provide guarantees regarding execution time, in this problem,
the reward function is not even continuous. Moreover, the reward is constant
inside each area, thus leading to large plateau with discontinuities.

A crucial aspect to account for when evaluating the di�culty of a prob-
lem is the general shape of transition and reward functions. Discontinuities,
large plateau and multiple local maxima are as important regarding the com-
plexity of a problem as the number of dimensions. Multi-Resolution Explo-
ration [Nouri and Littman 2009] provide performance guarantees with respect
to the Lipschitz constants of the reward and the transition function. Bayesian
optimization in [Brochu and al. 2010] assume that the function to optimize is
Lipschitz-continuous even if knowledge of the value of the Lipschitz constant
is not required.

The last challenging element for this problem is the fact that the Kick area
is placed near to the Collision area. In order to optimize its policy, the solver
needs to navigate nearby the Collision zone which has a strong penalty. This
may lead to locally optimal policies consisting of staying away from both, the
Kick and the Collision areas.

1.2.5 Initial state distribution

For the ball approach problem, the initial distance to the ball is sampled from
an uniform distribution between 0.4 m and 0.95 m. The initial direction of
the ball and the kick direction are sampled from an uniform distribution in
[−π, π]. The initial velocity of the robot is always 0 (for both, Cartesian and
angular velocities).

1.2.6 Calibration of the predictive motion model

One of the major disadvantages of using low-cost robots is their important
mechanical and control inaccuracies. A large discrepancy can be observed
between the orders provided and actual physical displacement of the robot.
Despite this error, the deterministic part of the robot real behavior can still be
captured and used to improve the control properties. An approach to capture
the deterministic part of the error is presented here. The calibration of the
predictive motion model is part of the work presented in [Hofer and Rouxel
2017].

First, we present the interests of training a model based on real data.
Then we present the predictive motion model we use. Finally, we describe the
experimental setup and results used to train the predictive motion model.
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Training a surrogate model

Surrogate models are an approximation of another model where low compu-
tational complexity is obtained at the cost of accuracy. They are widely used
when optimizing an expensive blackbox function. In our case, a surrogate
model named predictive motion model is built from data because optimizing
the policy online would require to gather a large number of real world samples,
accepting the necessity of constant human supervision and the risk of damag-
ing the robot. On the other hand, the discrepancy between the orders provided
to the walk engine and the real motion is too large to be simply ignored.

A major interest of using surrogate models for real world experiments is
the fact that the initial state of the robot cannot be chosen freely in the real
world. Therefore, surrogate models are more convenient than reality because
they allow choosing the initial state and the action without requiring any setup.

In our case, the surrogate model is trained using data acquired on the real
robot. In order to avoid over�tting, we base our evaluation of the models on
cross-validation. This method of validation separates the data in two sets: the
training set and the validation set. The optimization of the blackbox function
is performed on the training set while the evaluation of the performance uses
only the validation set. An extensive study on the interests and bene�ts of
cross-validation is presented in [Kohavi 1995].

Predictive motion model

Calibration of online odometry and predictive motion model have been pre-
viously studied in [Rouxel and al. 2016]. The odometry evaluates during the
robot's motion its own relative displacement by analyzing the sensors readings.
On the contrary, the predictive motion model tries to predict the future robot
self displacements given a sequence of orders sent to the walk engine.

While the work presented in [Rouxel and al. 2016] used a motion capture
setup to learn a non linear, non parametric regression model, only simple
linear models are considered in this thesis. Since they have a much smaller
number of parameters, they require less samples for training and therefore do
not require to deploy a motion capture setup at the RoboCup competitions.
The method proposed in this section require only a measuring tape and is
much more convenient to use outside of the laboratory.

The linear model we use is based on Equation (1.3). The parameters of the
model are the a0,0...a2,3 coe�cients.

∆xcorrected
∆ycorrected
∆θcorrected

 =

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3




1
∆x
∆y
∆θ

 (1.3)

The surrogate model of the walk engine include an amount of noise on
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position and orientation at each step, this re�ects the stochastic aspect of the
walk. We considered noise drawn uniformly from the hyperrectangle HstepNoise

with:

HstepNoise =

−0.02 0.02
−0.02 0.02
− 5π

180
5π
180


In

Algorithm 1 Multiple steps predictive model

1: function getFinalPosition(A,orders,applyNoise)
2: . Parameters description:

A The matrix of coe�cients of the model

orders The list of orders to apply

noise A boolean value indicating if prediction includes noise

3: (x, y, θ) = (0, 0, 0)
4: for all (∆x,∆y,∆θ) ∈ orders do

5:
[
∆x ∆y ∆θ

]T
= A

[
1 ∆x ∆y ∆θ

]T
. see Eq 1.3

6: if noise then
7:

[
∆x ∆y ∆θ

]T
+ = sample (U (HstepNoise))

8: end if
9: x = x+ cos(θ)∆x− sin(θ)∆y
10: y = y + sin(θ)∆x+ cos(θ)∆y
11: θ = x+ ∆θ
12: end for
13: return

[
x y θ

]T
14: end function

We consider three di�erent types of model based on Equation 1.3:

Proportional Three coe�cients are available a0,1, a1,2, a2,3

Linear Six coe�cients are available a0,0, a1,0, a2,0, a0,1, a1,2, a2,3

Full All the 12 coe�cients of A are available

Data acquisition

To generate learning data, the following procedure is used to generate a se-
quence:

• Minimum and maximum bounds are set according with the problem on
both raw walk orders (velocity) and delta walk orders (acceleration).

• The robot is placed at a known starting position and orientation.
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• During 15 seconds, random orders are sent at each step to the walk
engine. The orders are drawn from a random walk (Brownian motion)
where accelerations are uniformly distributed inside allowed ranges. All
the orders sent to the walk engine are stored as part of the data.

• Final position is manually measured with respect to starting position.
Since �nal orientation is di�cult to measure accurately, it is only recorded
for 12 possible orientations (more or less 30 degrees).

Consider a sequence seq, the orders sent to the walk engine are stored from
the �rst applied to the last and are noted orders(seq). The measurement of
the �nal position is noted observation(seq).

This process was repeated 25 times to gather enough data to approximate
the predictive model. We consider the data stored as a list of sequences.

Measurements of the �nal position and orientation are subject to an im-
portant noise since the are performed manually. Moreover, each measurement
takes between 15 and 30 seconds. By sending random orders during 15 seconds
rather than measuring the position after every step, we divide the impact of
measurement noise and increase the ratio of data time over measurement time.

Training procedure

Optimization of the parameters of predictive model is performed using the
CMA-ES algorithm which is described in Appendix A.1. The cost function to
optimize is deterministic and described in Algorithm 2. Optimization of cost
functions is discussed further in section 2.4.1.

Algorithm 2 The cost function for predictive model training

1: function getTrainingReward(A,S)
2: . Parameters description:

A The matrix of coe�cients of the model

S The set of training sequences

3: totalError = 0
4: for all seq ∈ S do
5: predicted = getFinalPosition(A, orders(seq),False)
6: measured = observation(seq)
7: totalError+ = squaredError(predicted,measured)
8: end for
9: return

√
totalError
|S|

10: end function
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Optimization results

The �gure 1.5 displays the results of the motion prediction models calibration
process. It shows the prediction error on the cross-validation set with con�-
dence bound as a function of the number of sequences used for training. The
proportional model strongly outperforms the simple linear model with a small
training set, and stands similar performances for the largest training set. The
main reason for this fact is that the walk engine had been tuned to result in a
steady walk when no orders are provided. Therefore, the simple linear model
has more parameters to tune while the gain in expressiveness is not really use-
ful. On the other hand, the full linear model outperforms other models once
the number of sequences available is above 15. The advantage of using a full
linear model is due to the fact that order along a dimension have e�ects on
the other dimensions, see �gure 1.7.

Figure 1.5 � Performance of motion predictive models on cross-validation set

While cross-validation is a satisfying test against the risk of over�tting, it
is still possible that several set of parameters provide acceptable results for the
model. Ensuring that the learning process produces similar sets of parameters
for various training sets helps ensuring the reliability of the learned model.
Figure 1.6 and �gure 1.7 present evolution of the con�dence intervals for the
parameters depending on the number of sequences used as part of the training
set.

1.3 Kicker robot

In the kicker robot problem, one or several players of the same team try to
score a goal as quickly as possible against a static goalie. This problem occurs
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Figure 1.6 � Convergence of parameters for the simple linear model

frequently at RoboCup. The control of the walk engine is ensured by prede�ned
policies and the decision which has to be taken by the robots consist of choosing
three properties regarding the kick: the robot performing the kick, the type
of the kick and the direction of the kick. In such situations, the robots may
cooperate, typically a defender may pass to the attacker in order to score a
goal as quickly as possible. An example of cooperation between two robots is
given in Figure 1.8.

Historically, the �rst strategies used by the team in such situations were
su�ering several drawbacks. The strategy did consist in a rudimentary hand-
made geometrical approach: the closest player kicked toward the center of the
goal with the maximal power. There are three drawbacks with such a strategy.
First, when the ball is near the goal line, the wished direction of the kick is
almost parallel to the goal line. Second, geometrical approaches do not handle
the noise on the kick direction, therefore, some kicks might have a very low
probability of scoring because the acceptable tolerance on direction is low.
Finally, including the possibility of performing a pass in this kind of strategies
is di�cult.

The reward function of the kicker robot problem is based on the time re-
quired to score a goal. Penalties applies if the ball collides against the opponent
goalie or get out of the �eld. The reward function is discussed in details in
section 1.3.3.

In the description of the kicker robot problem, we discuss three important
parameters the problem. First, there can be one or two players, this a�ects
both state space and action space. Second, the set of available actions can
vary depending on robots low-level abilities. Third, di�erent methods can be
used to simulate the motion of the robots. Those three aspects are introduced
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Figure 1.7 � Convergence of parameters for the full linear model

Figure 1.8 � Real-world cooperation

and discussed in this section.

1.3.1 State space

A state of the kicker robot problem is de�ned by the position of the ball and
the position and orientation of the robots. Therefore, if there is only 1 robot,
the dimension of the state space is 5 and if there are two robots the dimension
of the state space is 8. The limits of the state space are de�ned by the size
of the �eld. In this thesis, we consider 8 meters long and 6 meters wide �eld.
The ball cannot exit those bounds: as soon as the ball crosses the boundaries,
the game is over (i.e. the transition has a terminal status. The orientation of
the robots is bounded in [−π, π].

The initial state of the kicker robot problem is set according to the following
process. First, the position of the ball is sampled randomly on the �eld, with a
uniform distribution. Then, the initial state of each robot is sampled randomly
inside the �eld. If a robot is further than 4 meters of the ball, then the sampling
of its initial state is repeated until a position close enough is sampled.
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1.3.2 Kick actions

Kick motions

Performing a kick with a humanoid robot requires the ability to balance on one
foot while moving the other leg dynamically. Since we use low-cost motors,
the amount of noise in action and perception is too important to simply apply
the equations from the rigid body dynamics. Therefore we mainly rely on
hand-tuning of splines to achieve stable and robust kick motions. In order to
avoid spending too much time on hand-tuning tasks, we decided to have only
three di�erent kick motions.

Powerful kick The robot shoots at around 3 meters in front of him, an
example is shown in Fig. 1.9.

Small kick The robot shoots at around 1.5 meters in front of him. The
motion is similar to the powerful kick, but slower.

Lateral kick The robot pushes the ball on the side using the inner part of
the foot. The average distance traveled by the ball is around
2 meters. An example of lateral kick is shown in Fig. 1.10.

Figure 1.9 � A powerful kick

Figure 1.10 � A lateral kick
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Kick decision models

Aside from choosing the type of kick, the robots have to choose the direction of
the kick. While the simplest version would be to represent the desired direction
as an angle in [−π, π], this leads to complex models for expressing the simple
strategy of kicking always to the center of the goal. Therefore we decided to
have two di�erent kick decision models.

Classic The continuous parameter is the direction of the kick θ in
the �eld referential, with θ ∈ [−π, π]

Finisher This kick uses a symbolic target on the �eld to compute the
desired direction. The continuous parameter is the desired
value for the y coordinate of the ball ywished when crossing
the goal line, with ywished ∈ [−goalWidth

2
, goalWidth

2
].

Actions

We present here the list of available actions. The �rst word identi�es the kick
decision model and the second one identi�es the kick motion.

1. Finisher powerful

2. Classic small

3. Classic powerful

4. Finisher lateral

5. Classic lateral

We distinguish two types of problems: �rst, classic problem, where only
actions 1 to 3 are allowed, second, lateral problem, where all the actions are
allowed. For 2 robots problem, the set of actions is duplicated, since both
robots can perform the same kicks.

Through this proposition, expressing the simple strategy of aiming towards
the center of the goal and kicking with the maximal power can now be expressed
using a simple constant model in which the action is always Finisher Powerful
with a constant parameter 0.

1.3.3 Transition function

The transition process is divided in several phases, presented brie�y here and
discussed with more details after.

Decision-making algorithms for autonomous robots 35



1.3. Kicker robot

1. The ball is moved randomly using a noise sampled from a uniform dis-

tribution: U
([
−0.1 0.1
−0.1 0.1

])
. This noise represents the perception noise,

it has a major impact when the ball is nearby the opponent goal.

2. The kicker moves towards the ball. For problems with two robots, the
other robot moves towards a virtual target de�ned by the expected kick.

3. The kick is performed by the kicker. For problems with two robots, the
other robots has a time budget of 10 seconds to move during the other
robots perform the kick.

Virtual targets for non-kicking robots

When there are two robots playing in cooperation, a virtual target is provided
to the robot which is not performing the kick. There are two potential targets
available based on the expected trajectory for the kick, or even three if lateral
kicks are available. Examples of the allowed targets are provided in Fig. 1.11.

(a) Lateral kick forbidden (b) Lateral kick authorized

Figure 1.11 � Virtual targets for non-kicker robots

Consider θkick ∈
[
−π π

]
the direction of the kick in the �eld referential.

We de�ne the set of target orientation Θ by:

Θ =

{{
θkick − π

2
, θkick + π

2

}
if lateral kicks are forbidden{

θkick − π
2
, θkick + π

2
, θkick + π

}
if lateral kicks are authorized

Given a set of target orientations Θ and (x, y) ∈ R2 the ball expected
position after the kick, we de�ne the set of allowed targets T as follows:

T = {(x+ cos(−θ), y + sin(−θ), θ) | θ ∈ Θ}

When moving, the non-kicking robot always selects the closest target among
allowed targets.
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Robots motions

The most accurate way at our disposal to simulate the motion of the robots is
to use the motion predictive model presented in Section 1.2.6. However, since
the robot can walk around 100 steps between two kicks, this type of simulation
is computationally expensive with respect to simple approximations such as
computing the distance and dividing it by a rough estimation of the speed.

There is a di�erence between the robot performing the kick and the other
robot. The robot performing the kick is used to determine the time needed
to perform the approach. The motion of the other robot is based on a time
budget, de�ned either by the time required for the kicking robot to reach its
target (approach phase) or by the time required to perform a kick (kick phase).

In order to experiment the trade-o� between prediction accuracy and com-
putational complexity, we propose 2 di�erent types of approaches:

Simul Simulation of the real process, each step is taken successively, the
approach is simulated and noise is added at each step. The position
of the kicking robot is tested after each step to see if it can perform the
requested kick. The number of steps performed by the non-kicking
robot is based on its time budget.

Speed Simplest way of estimating the time required to reach the kick posi-
tion. The distance is computed and divided by a rough estimation
of the Cartesian speed, 10[cm/s] and the angular speed π/4[rad/s].
When a robot is kicking, the speeds are used to compute the time
requested to reach the position. If a robot is not kicking, it starts
by moving using Cartesian motion, if it reaches the target position
within the time budget, it starts rotating.

Reward and terminal states

The kicker robot problem uses time to score a goal as a basis for its cost
function. Therefore, all rewards are negative. During the approach phases
time spent for approach is sampled based on the motion model. Each kicking
action costs an additional 10 seconds, representing the time required for both
stabilization and motion.

If the ball leaves the �eld or touches the goalie, the status of the transition
is terminal. Moreover, a reward of −50 is added if the ball touches the goalie
and a reward of −500 is added if the ball leaves the �eld outside of the goal.

Applying kicks

We distinguish the noise on the kick direction in two di�erent components:
�rst, the real orientation of the robot when kicking the ball which is not exactly
the desired orientation, second, the direction of the ball in the robot referential.
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The real direction of the kick is sampled according to Eq. (1.4), with the
following parameters:

θwished The direction the robot aims to kick in the �eld referential.

θreal The real direction taken by the ball after the shoot in the �eld
referential.

napproach The noise involved in approach and localization combined, the cho-
sen value is 5 degrees.

σkickDir The standard deviation of the kick direction with respect to the
mean direction. A standard deviation of 10 degrees is used for small
and powerful kick while lateral kick has 15 degrees of standard
deviation. Those values were approximated roughly during real
world experiments at the RoboCup 2017.

θreal = θwished + U
([
−napproach napproach

])
+N (0, σkickDir) (1.4)

Once the direction of the kick has been computed, it is still necessary to
compute the distance traveled by the ball. Through our experiments, we mea-
sured that the noise on the distance traveled was higher for powerful shoots.
Therefore, we implemented the computation of the traveled distance with the
following equation: dreal = N (1, σkickPower)dkick with:

dreal The �nal distance traveled by the ball

dkick The nominal distance for the chosen kick

σkickPower The standard deviation on the factor multiplying the nominal dis-
tance of the kick. For powerful and lateral kicks, the value was 0.2,
while for small kicks it was 0.1.

1.3.4 On cooperation between robots

While cooperation between players has always been a central issue in human
soccer, its presence at the RoboCup competition strongly depends on the
leagues. In simulation leagues as well as wheeled robots leagues, team-play
is essential to be able to score a goal. On the other side, for humanoid leagues,
the problem is quite di�erent. In adult size, there is only one robot per team,
mainly because of the price and amount of engineering involved in building a
humanoid-size robot. In standard platform league, where all robots are Nao,
the best teams have been able to display cooperation behavior in order to avoid
opponents. However, in kid-size and teen-size, very few teams have been able
to perform passes between robots.
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Among the most important barrier to the development of team-play in the
KidSize league, the most obvious one is the high impact of noise on the �nal
position of the ball. With the recent introduction of arti�cial turf for the �eld
in 2015, predicting the outcome of kick has become more di�cult. Due to
the inclination of the blade of the grass, the average distance traveled by the
ball strongly depends on the direction of the kick. During the RoboCup 2017,
we have observed variations from 1.5 meters to 3 meters depending on the
direction of the kick. Under those circumstances, we were unable to perform
passes before taking into account a basic model of the grass in our predictions.

As discussed in chapter 3, preparing a kick by accurate positioning is a
di�cult task for humanoid robots and takes a signi�cant amount of time. Thus,
the primary objective is to minimize the average number of kicks required by
the robots and the distance walked by the robots is often secondary. We expect
that improving the quality of the control in the last few steps can reduce the
cost of approaching the ball and therefore make it more interesting to use
several passes to score a goal faster. Currently, it is often more interesting for
a robot to kick the ball toward the opposite goal and to follow it after than to
try passing the ball to a teammate.

One of the main incentive for team-play in soccer is to reduce the risk of
opponents catching the ball. However, detecting other robots is particularly
di�cult in the KidSize league due to heterogeneous nature of robots. In the
SPL league, all the robots are Nao with di�erent colors of jersey, therefore
teams can train classi�ers to detect robots using their own robot. Since de-
veloping a robust self-localization system is already di�cult, there is generally
not much computational power left for opponent detection. Since we do not
have access to the opponent position, we did not include eventual opponents
in the state space, except for the goalie.

Despite all of these problems, we show in chapter 4 that even with an
important noise on the kick results and a lack of information on the opponent
position, cooperation between robots is still interesting.
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Chapter 2

Computing e�cient policies

In this chapter, we present the algorithms proposed during this thesis. Sec-
tion 2.1 introduces the notions of regression trees and regression forests along
with operations on those elements. Section 2.2 presents the �tted policy forests
algorithm and results it obtained on classical benchmark problems. Section 2.3
presents the random forest policy iteration algorithm. Section 2.4 starts by pre-
senting the concept of blackbox optimization and then introduces the policy
mutation learner algorithm. Finally, section 2.6 presents the open-source con-
tributions produced during this thesis.

2.1 Tree-based regression

While it is possible to store an exact model of discrete MDPs with a �nite
number of states, working in continuous domains requires either to manipu-
late symbolic functions or to approximate functions representing the Q-value,
the value, the transition function or the policies. For that, we use function
approximators.

In this section, we start by de�ning function approximators, then we intro-
duce regression trees and regression forests and present the ExtraTrees al-
gorithm, allowing to grow a regression forest from samples. Finally we present
some algorithms performing basic operations on regression trees: projection,
averaging and pruning.

2.1.1 Function approximators

A function approximator1 allows to predict the output value y ∈ Y corre-
sponding to an input value x ∈ X, with X ∈ Rn and Y ∈ Rn. We note f̃ the
function approximator for function f : X 7→ Y .

1An open-source C++ implementation of all the function approximators used in this
thesis is available at https://github.com/rhoban/rosban_fa
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Function approximators are typically used in learning for regression. In this
case, we use a set of observed data to train a model, thus allowing prediction of
the output for other inputs. Note that if the output is discrete, this problem is
known as classi�cation. Regression might be used as a basis for decision mak-
ing in arti�cial intelligence, but it can also be used to build 'understandable'
models of complex systems in order to identify the most important dimensions
of the input and their impact on the measured output.

Another use of function approximators is to save computation time by
building a simpli�ed model of the function which can easily be computed, typ-
ically in constant time. One of the most common examples for this use case
is the sinus tables which can be pre-computed in order to save time during
execution. The speed-up achieved through use of function approximators is
even more obvious when we need to predict the average of a stochastic func-
tion. This can generally be achieved by Monte-Carlo methods involving a
large number of rollouts. The cost of using a large number of simulations
might often be prohibitive in real-time situations. Therefore, computing func-
tion approximators o�ine and using them online might signi�cantly reduce the
time consumption. However, using function approximators might lead to an
unacceptable loss of precision, especially when dealing high-dimensional spaces
or when the density of samples is low with respect to the variation of output
in the area.

While most of the function approximators allows to map a multi-dimensional
input to an mono-dimensional output, it is trivial to use them to predict multi-
dimensional outputs. Let f : X 7→ Y be the function to approximate and
k = dimR(Y ), then we can build a predictor f̃ : X 7→ Y based only on k
mono-dimensional output approximators f̃1, . . . , f̃k. Simply using an approxi-

mator for each output dimension is enough: f̃(x) =
(
f̃1(x), . . . , f̃k(x)

)
. More

details about multi-output regression can be found in [Borchani and al. 2015],
where various schemes are proposed to handle dependent output dimensions.

In this thesis we rely on four types of function approximators. First, basic
models such as the constant and linear models. Second, some more elaborate
data structure known as regression trees and regression forests.

2.1.2 Basic models

A constant model is a function approximator with constant output. It is noted
C (y) with y ∈ Y the output of the model.

A linear model is a function approximator with an output varying linearly
depending on the input value. A linear model from space X ∈ Rn to Y ∈ Rn

is noted L (A,B), with A a dimR(Y ) × dimR(X) matrix and B a vector of
length dimR(Y ). Consider a linear model l = L (A,B), the prediction for an
input x ∈ X is de�ned by l(x) = Ax+B.
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2.1.3 Regression trees

A regression tree is a tree whose every inner node has degree two and is asso-
ciated with a split and every leaf is associated with a basic function approxi-
mator, typically a linear model.

An example of a regression tree is shown in Figure 2.1. Formally, an uni-
variate split or, simply, a split is a couple (d, v) with d ∈ N the dimension of
the split and v ∈ R the value of the split.

x0 ≤ 30

x1 ≤ 10

3x1 − x02x1

x1 ≤ 5

x0 ≤ 8

1.5x0

2x0 + x1

Figure 2.1 � A simple regression tree with linear approximators in leaves

Remark that there are more general notions of regression trees, for ex-
ample the function approximators in the leaf may be polynomial functions
and the splits can use more general inequalities for example linear splits such
as x0 + 3x1 ≤ 4. However in this thesis we focus on the simple and robust
model of regression tress with univariate splits and constant or linear function
approximators.

One of the main advantages of univariate splits is that they separate an
hyperrectangle in two hyperrectangles. Therefore, it is particularly easy to
sample elements inside the leaves of a regression tree if we limit input spaces
to hyperrectangles and splits to univariate splits. In the sequel, given an
hyperrectangle H, a split dimension d and a value v, we denote:

lowerSpace(H, d, v) = {x ∈ H | xd ≤ v}
upperSpace(H, d, v) = {x ∈ H | xd > v} .

From now on, we will refer to splits by univariate splits, unless explicitly
stated otherwise.

We denote a regression tree by t = T
(
d, v, f̃1, f̃2

)
where d is the dimension

of the split, v its value and both f̃1 and f̃2 are either regression trees or constant
or linear models. Of course we require a regression tree to be �nite.

Consider a regression tree t = T
(
d, v, f̃1, f̃2

)
. The value of t for an input
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x ∈ Rn is denoted t(x) and given by:

t(x) =

{
f̃1(x), if xd < v

f̃2(x), otherwise
(2.1)

The dimension of the split is d and is noted splitDim(t). The value of the
split is v and is noted splitVal(t). The lower child of t is f̃1 and is noted
LC(t). The upper child of t is f̃2 is noted UC(t). The domain of t is the
hyperrectangle H(t) de�ned by

H(t) =


Rn if t has no ancestor,

lowerSpace(H(t′), d, v) if t = LC(t′)

upperSpace(H(t′), d, v) if t = UC(t′) .

We denote isLeaf the function checking whether a node of a regression
tree is a leaf. These notions are illustrated by Algorithm 3, which computes
the number of leaves of a regression tree.

Algorithm 3 Counting the leaves of a regression tree

1: function nbLeaves(t) . t: a regression tree
2: n← 0
3: for all f̃ ∈ {LC(t),UC(t)} do
4: if isLeaf(f̃) then
5: n← n+ 1
6: else
7: n← n+ nbLeaves(f̃)
8: end if
9: end for
10: return n
11: end function

History

Originally, regression trees have been widely developed and used in experi-
mental science as a statistical tool allowing to highlight statistical evidences
of the e�ect of variables on the output. They present the huge advantage of
being easily understandable by humans since the most impacting variables are
positioned near the top of the tree, see [Breiman and al. 1984]. A side-e�ect of
this origin is the fact that most of the algorithms tend to be too conservative,
thus ending up with poor prediction performance with respects to methods
which uses cross-validation to avoid over-�tting.

44 Ludovic Hofer



2. Computing e�cient policies

Growing regression trees

While the internal content of the algorithms allowing to build regression trees
can change, they tend to share a common structure, typical of tree search.
First, they start at the root node, then they optimize the choice of the split
for the current node and repeat the process for all children of the current node
until a stopping criteria is reached. Finally, they might use a pruning scheme
to reduce the size of the tree and the risk of over�tting. A major issue with
this general scheme is the fact that only immediate gain of splits is considered.
Therefore, there is no planning and selection of the best combination of splits
to �t the data available due to the computational complexity, see [Loh 2011].

2.1.4 Regression forests

Regression forests are based on the idea of building multiple regression trees
and aggregating their prediction to provide a more reliable prediction. A
regression forest f = F(t1, . . . , tn), is a set of regression trees which can be
used as a function approximator by averaging, using equation 2.2.

F(x) =

n∑
i=1

ti(x)

n
(2.2)

Consider a regression forest f = F(t1, . . . , tn), the number of trees in f is
denoted nbTrees(f). The i-th tree of f is denoted getTree(f, i).

The approach of producing multiple predictors from a single data set and
using them to get an aggregated predictor has �rst been proposed in [Breiman
1996]. He proposes to build k replicates of the data set, drawn at random with
replacement from the initial data set. Each of this k di�erent data sets is then
used to train a di�erent predictor.

When predicting, the method used for aggregating is di�erent depending
on the output form. For classi�cation problems, a plurality vote is taken
and for regression problems, the average is chosen. This procedure is called
bootstrap aggregating, or bagging for short. Improvement on the prediction
using bagging is particularly signi�cant for algorithms where small changes
in the data set might result on large changes in prediction. Therefore, it is
particularly suited for regression trees, because small changes in the data set
might in�uence the dimension used for splits. Once a split has changed, the
structure of the new subtrees might be very di�erent of the structure of the
old subtrees, thus leading to large changes in prediction.

There are two di�erent approaches to use regression forest: bagging can
be used to produce di�erent data sets or the process used for growing trees
might be stochastic. This second approach is explored in [Geurts and al. 2006]
where extremely randomized trees are presented, ExtraTrees for short. The
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ExtraTrees approach strongly reduces the computational time used to ensure
that best splits are chosen, it includes randomness in both the choice of the split
dimension and the value used to split the current space. While this method
strongly reduces the computation time required to grow the tree, it cannot be
applied to any predictor builder, oppositely to the bagging procedure.

When using a �xed number of processors, the training time and the pre-
diction time grow linearly with respect to the number of predictors trained.
However, this is not a major issue since experimental results exhibit small im-
provements in prediction when the number of trees grows above 50, see [Geurts
and al. 2006].

The e�ect of using multiple trees is shown in Figure 2.2. In this �gure,
25 inputs are sampled at uniform random in [−π, π], and y = sin(x). Three
di�erent regression forests are built using respectively 1, 10 and 100 regression
trees. The observations used to train the models are displayed as black circles,
the prediction according to the regression forests are shown with di�erent types
of lines and the real function from which observations are drawn is shown as a
thick transparent line. The prediction is much smoother when using multiple
trees and the di�erence with the sampled function tends to be lower.

Figure 2.2 � An example of prediction for regression forests with linear models
in leaves

An in-depth survey on classi�cation and regression forests is presented
in [Loh 2011].

2.1.5 ExtraTrees

The ExtraTrees algorithm has been proposed in [Geurts and al. 2006], it grows
a regression forest from samples. In this section, we start by de�ning notions re-
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quired to understand this algorithm and introducing modi�cations we brought
to the original algorithm. Finally, we present the ExtraTrees algorithm
used in this thesis.

We denote a training set T S = {(x1, y1), . . . , (xn, yn)} with xk ∈ Rn and
yk ∈ R.

The function splitTrainingSet separates a training set T S using an
univariate split (d, v). It is described in Algorithm 4.

Algorithm 4 Separating a training set

1: function splitTrainingSet(T S,d,v)
2: . Parameters description:

T S The training set to be split

d The input dimension of the split

v The value of the split

3: T SL ← {}
4: T SU ← {}
5: for all (x, y) ∈ T S do
6: if xd ≤ v then
7: T SL.insert((x, y))
8: else
9: T SU .insert((x, y))
10: end if
11: end for
12: return (T SL, T SU) . A partition of T S according to split (d, v)
13: end function

Consider a training set T S, we denote outputMean(T S) the average
of the outputs of the training set, see Eq. (2.3), and outputVar(T S) the
variance of the outputs of the training set, see Eq. (2.4).

outputMean(T S) =

∑
(x,y)∈T S

y

|T S|
(2.3)

outputVar(T S) =

∑
(x,y)∈T S

(y − outputMean(T S))2

|T S|
(2.4)

While the original ExtraTrees algorithm uses piecewise constant approxi-
mation, PWC for short, we allow both piecewise constant and piecewise lin-
ear approximations, PWL for short. Consider T S a training set and type ∈
{PWC,PWL}, we obtain the approximator through the use of the fitModel
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function:

fitModel(T S, type) =

{
C (outputMean(T S)) if type = PWC

L (A,B) if type = PWL

where A and B are obtained through least square regression for the PWL case.

In order to favor trees which strongly reduces the variance, ExtraTrees
computes the score of a split according to Algorithm 5, which is denoted
evalSplitScore. Lower scores are considered as better.

The core of the ExtraTrees algorithm is based on its procedure for
growing trees. We denote this procedure growExtraTree and describe it
in Algorithm 6. It consists of repeatedly separating the training set in two by
the best random split chosen among the k available, with k a parameter of the
algorithm.

In the original version of ExtraTrees, nmin represents the required number
of samples to split a given node. Since we allow the use of linear models in
leaves, it is not su�cient. A strong guarantee on the number of samples in
a single node is required. Therefore, we brought the following modi�cation.
When sampling the split position along a dimension d, we restrict the possible
set for split values in [smin, smax], where smin, resp. smax is the nmin-th smallest,
resp. highest, value of the inputs of the training set along the dimension d.
Finally, if smin < smax, we choose the split dimension at uniform random in
[smin, smax[, otherwise we forbid the split.

Due to the terminal conditions of the original version of ExtraTrees, large
trees were grown for parts where the output is almost constant, while a single
leaf would already lead to similar performances. While growing large trees does
not impact the quality of the approximation, it impacts the number of nodes
and therefore the access time, two crucial aspects for real-time applications.
In order to reduce the size of the trees, we introduce an additional parameter:
vmin. It is used for an additional terminal condition: if the variance of outputs
in a training set is smaller or equal to vmin, then the algorithm stops dividing
the set.

Since growExtraTree is a stochastic algorithm, it allows to grow several
trees and then average them for a more accurate prediction. The ExtraTrees
algorithm, see Algorithm 7, grows m trees independently, where m is a param-
eter of the algorithm. An in-depth study of the impact of this parameter is
presented in [Geurts and al. 2006]. It suggests that the gain of using more
than 50 trees inside the forest is very low.

Since adjusting the parameters of a regression algorithm is a time-consuming
task, we propose the following scheme for the parameters: k is equal to the
input space dimension, nmin grows logarithmically with respect to the size of
the training set and vmin is 0 since it is di�cult to anticipate the relevant scale
for variance.
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Algorithm 5 The evaluation of splits for ExtraTrees

1: function evalSplitScore(T S,d,v,type)
2: . Parameters description:

T S The set of samples

d The input dimension of the split

v The value of the split

type The type of approximation used

3: (T SL, T SU)← splitTrainingSet(T S, d, v)
4: f̃L ← fitModel(T SL, type)
5: f̃U ← fitModel(T SU , type)
6: eL ←

∑
(x,y)∈T SL(y − f̃L(x))2

7: eU ←
∑

(x,y)∈T SU (y − f̃U(x))2

8: return eL + eU . The score of split (d, v)
9: end function

While the algorithm presented here allows to build a function approximator
from Rn to R, note that it is possible to approximate a function with a multi-
dimensional output space by considering that all the output dimensions are
independent and growing a regression forest for each output dimension.

2.1.6 Projection of a function approximator

Consider a function approximator f̃ with input space I × J and output space
O. Typically f̃ may be a policy, I the state space and J the action space.

Then for every i ∈ I, f can be projected as P
(
f̃ , i
)

: J → O de�ned by:

P
(
f̃ , i
)

(j) = f̃(i, j) .

In case the approximator is represented by a regression tree, its projection
is a smaller regression tree, computable in linear time as follows.

Consider a constant model f̃ = C (o) with o ∈ O, since its value is already
constant, projecting does not a�ect the prediction, therefore P (C (o), i) = C (o)

Consider a linear model l = L (A,B), with input space I × J and output
space O. We can rewrite A =

[
Ai Aj

]
with Ai the �rst dimR(I) columns of A

and Aj the last dimR(J) columns of A. Then P (L (A,B), i) = L (Aj, B + Aii).

Consider a regression tree t = T
(
d, v, f̃1, f̃2

)
with input space I × J and

output space Rn. Projection of the tree t on i ∈ I is performed according to
algorithm 8, and is denoted projectTree(t, i).

thus producing a regression tree of size smaller than T
(
d, v, f̃1, f̃2

)
.
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Algorithm 6 The growExtraTree algorithm

1: function growExtraTree(T S,type,k,nmin,vmin)
2: . Parameters description:

T S The set of samples

type The type of leaves to be used

k The number of dimensions to try

nmin The minimal number of samples per node

vmin The minimal variance inside a node to allow split

3: if |T S| < 2nmin ∨ outputVar(T S) < vmin then
4: return fitModel(T S, type)
5: end if
6: dimCandidates ← sample k distinct elements in {1, . . . , dimR(H)}
7: bestSplit ← NULL
8: bestScore ←∞
9: for all d ∈ dimCandidates do
10: smin ← the nmin smallest value of X along dimension d
11: smax ← the nmin highest value of X along dimension d
12: if smin ≥ smax then
13: continue
14: end if
15: v ← sample(U ([smin, smax]))
16: score ← evalSplitScore(T S, d, v, type)
17: if score < bestScore then
18: bestSplit ← (d, v)
19: bestScore ← score
20: end if
21: end for
22: if bestSplit = NULL then . Might happen if smin = smax for all d
23: return fitModel(X, Y, type)
24: end if
25: (d, v)← bestSplit
26: (T SL, T SU)← splitTrainingSet(T S, d, v)
27: tL ← growExtraTree(T SL, type, nmin, vmin)
28: tU ← growExtraTree(T SU , type, nmin, vmin)
29: return T (d, v, tL, tU) . A regression tree based on T S
30: end function

Consider a regression forest f = F(t1, . . . , tn) with input space I × J and
output space Rn. Projection of the forest f on i ∈ I is performed as following:

P (F(t1, . . . , tn), i) = F (P (t1, i), . . . ,P (tn, i))
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Algorithm 7 The ExtraTrees algorithm

1: function ExtraTrees(T S,type,k,nmin,vmin,m)
2: . Parameters description:

T S The set of samples

type The type of leaves to be used

k The number of dimensions to try

nmin The minimal number of samples per node

vmin The minimal variance inside a node to allow split

m The number of trees
3: trees← {}
4: for all i ∈ {1, . . . ,m} do
5: trees.insert(growExtraTree(T S, type, nmin, vmin)
6: end for
7: return F(trees) . A regression forest based on T S
8: end function

Algorithm 8 The projectTree algorithm

1: function projectTree(t,i)
2: . Parameters description:

t The regression tree to project

i The value on which the tree is projected

3: if isLeaf(t) then
4: return P (t, i) . t is a constant or linear approximator
5: end if
6: d← splitDim(t)
7: v ← splitVal(t)
8: D ← dimR(i)
9: if d > D then
10: tL ← projectTree(LC(t), i)
11: tU ← projectTree(UC(t), i)
12: return T (d−D, v, tL, tU)
13: else if id ≤ v then
14: return projectTree(LC(t), i)
15: else
16: return projectTree(UC(t), i)
17: end if
18: end function
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2.1.7 Weighted average of function approximators

Consider two function approximators f̃1,f̃2 with the same input space X ∈ Rn

and the same output space. Consider two weights w1 ∈ R+ and w2 ∈ R+. We

denote f̃ ′ = wAvg
(
f̃1, f̃2, w1, w2

)
the weighted average of f̃1 and f̃2 by w1 and

w2. It follows equation (2.5).

∀x ∈ X, f̃ ′(x) =
f̃1(x)w1 + f̃2(x)w2

w1 + w2

(2.5)

Computing a symbolic expression for weighted average of constant and lin-
ear model is trivial. We present the weighted average of two constant models in
equation (2.6), the weighted average of two linear models in equation (2.7) and
the weighted average of one constant and one linear model in equation (2.8).

wAvg (C (o1), C (o2), w1, w2) = C
(
o1w1 + o2w2

w1 + w2

)
(2.6)

wAvg (L (A1, B1),L (A2, B2), w1, w2) = L
(
A1w1 + A2w2

w1 + w2

,
B1w1 +B2w2

w1 + w2

)
(2.7)

wAvg (L (A,B), C (o), w1, w2) = L
(
Aw1,

Bw1 + ow2

w1 + w2

)
(2.8)

Computing the weighted average of two trees t1 and t2 is more complex.
A simple scheme for computing t′ = wAvg (t1, t2, w1, w2) would be to root
a replicate of t2 at each leaf of t1 and to average the �nal approximators.
However this would lead to an overgrown tree containing unreachable nodes.
As example, a split with the predicate x1 ≤ 3 could perfectly appear on the
lower child of another node whose predicate is x1 ≤ 2.

We designed an algorithm called weightedAverage for computing the
weighted average of two functions approximators represented by regression
trees. This is Algorithm 9. The algorithm walks simultaneously both trees
from the roots to the leaves, and performs on-the-�y optimizations. This
algorithm runs in linear time in the worst case and in logarithmic time on
well-balanced trees. It tends to preserve the original aspect of the regression
tree with top-most nodes carrying the most important splits (i.e. splits that
strongly reduce the variance of their inner sets of samples). A graphical ex-
ample of input and output of the algorithm is shown in Figure 2.3.

2.1.8 Pruning trees

Pruning is a procedure which aims at reducing the size of a regression tree while
minimizing the loss of precision of the corresponding function approximator.
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Figure 2.3 � An example of tree merge

We de�ne the notion of loss received by replacing an approximator f̃ by an
approximator f̃ ′ on space X as:

Loss(f̃ , f̃ ′, X) =

∫
x∈H

‖f̃ ′(x)− f̃(x)‖dx (2.9)

We designed an algorithm called pruneTree, which takes as input a pa-
rameter n and a regression tree t and prunes the tree t to produce a regression
tree with at most n leaves. This is Algorithm 10.

The algorithm pruneTree considers only preleaves as candidates for prun-
ing. A preleaf is an inner node of the tree (i.e. not a leaf) whose both left and
right sons are leaves. Remark that since all inner nodes of a regression trees
have exactly two sons, then every regression tree has at least one preleaf. The
function getPreLeaves retrieves all the preleaves from a tree:

getPreLeaves(t) =

{(t′ node of t | ¬isLeaf(t′) ∧ isLeaf(UC(t′)) ∧ isLeaf(LC(t′))} .

Algorithm pruneTree, see Algorithm 11, prunes a preleaf by comput-
ing the average of its lower and upper sons, weighted by the volume of the
corresponding hyperrectangles. Thus the algorithm relies on a constant time
primitive wAvg (LC,UC, wL, wU) computing this weighted average, when LC
and UC are constant or linear models.
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Algorithm 9 Computing the weighted average of two regression trees

1: function weightedAverage(t1, t2, w1, w2)
2: . Parameters description:

t1,t2 The regression trees

w1,w2 The weights

3: if isLeaf(t1) then
4: if isLeaf(t2) then
5: t′ ← wAvg (t1, t2, w1, w2)
6: else
7: t′ ← weightedAverage(t2, t1, w2, w1)
8: end if
9: else . t1 is not a leaf
10: vm ← min along dim d from H(t1)
11: vM ← max along dim d from H(t1)
12: d← splitDim(t1)
13: v ← splitVal(t1)
14: if vM ≤ v then . Upper child is useless
15: t′ ← weightedAverage(t2, LC(t1), w2, w1)
16: else if vm < v then . Lower child is useless
17: t′ ← weightedAverage(t2, UC(t1), w2, w1)
18: else
19: tL ← weightedAverage(t2, LC(t1), w2, w1)
20: tU ← weightedAverage(t2, UC(t1), w2, w1)
21: t′ ← T (d, v, t′L, t

′
U)

22: end if
23: end if
24: return t′

25: end function

The algorithm maintains a list of potential candidates for pruning, ordered
by loss, in order to get quick access to the candidate which brings the lowest
loss. For that it relies on the function getPruningCandidates de�ned
as Algorithm 10. getPruningCandidates performs a greedy selection of
candidates for pruning, starting with those with the lowest loss. This algorithm
ensures a reasonable computation time, even though it may not produce an
optimal pruning.

While most pruning procedures in the literature aim at reducing the risk
of over�tting with respect to a given learning and testing sets, pruneTree
is independent of these sets. Our algorithm focuses on time-e�ciency and
limiting the size of the output tree, with no guarantee against over�tting.
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Algorithm 10 Gathering candidates for tree pruning

1: function getPruningCandidates(t)
2: . Parameters description:

t The tree in which pruning candidates should be
searched for

3: candidates← () . Ordered set of tuples (t, l, f̃), with t a regression tree,
l ∈ R the loss, and f̃ a function approximator. The
set is ordered by loss.

4: for all t′ ∈ getPreLeaves(t) do
5: wL ← |H(LC(t′))|
6: wU ← |H(UC(t′))|
7: f̃ ′ ← wAvg (LC(t),UC(t), wL, wU)
8: l← Loss(t′, f ′,H(t′)) . see Eq. (2.9)
9: add (t′, l, f̃ ′) to candidates
10: end for
11: return candidates
12: end function

Algorithm 11 The tree pruning algorithm

1: function pruneTree(t,nmax)
2: . Parameters description:

t The tree which need to be pruned

nmax The maximal number of leaves allowed

3: nbLeaves← nbLeaves(t)
4: candidates← getPruningCandidates(t) . Ordered, see Alg. 10
5: while nbLeaves > nmax do
6: (t′, l, f̃ ′)← pop(candidates) . Pop lowest loss candidate
7: t′ ← f̃ ′ . Replace the preleaf by the approximation model
8: if t′ has an ancestor then
9: newCandidates← getPruningCandidates(ancestor(t′))
10: candidates← candidates ∪ newCandidates
11: end if
12: nbLeaves← nbLeaves− 1
13: end while
14: return t . The pruned tree
15: end function

2.1.9 From a forest back to a tree

Any regression forest can be converted back to a regression tree by using
successive merges with the function weightedAverage, see Algorithm 9.
However the problem is that the number of leaves in the resulting tree can
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be exponential in the size of the forest: it may grow up to the product of the
number of leaves of all trees of the forest.

In order to reduce the size of the tree produced, we accept a loss of pre-
cision and use the pruneTree function (see Algorithm 11) to reduce the
size of the tree produced. By iterating the processes of pruning and merging,
mergeForestWithPruning allows to extract a single tree from a forest.
This procedure is described in Algorithm 12.

The procedure mergeForestWithPruning ensures that when merging
two trees, each tree has at most n leaves, with n a parameter of the procedure.
Thus, at any time during the procedure, the maximal number of leaves in
a tree is n2. Therefore, the complexity of the procedure is in O(n2m), with
m = nbTrees(f).

Algorithm 12 Merging a forest in a single tree

1: function mergeForestWithPruning(f ,n)
2: . Parameters description:

f The forest which will be merged

n The number of leaves allowed for the �nal tree
3: t← pruneTree(getTree(f, 1), n)
4: for all i ∈ {2, . . . ,nbTrees(f)} do
5: t′ ← pruneTree(getTree(f, i), n)
6: t← weightedAverage(t, t′, i− 1, 1)
7: t← pruneTree(t, n)
8: end for
9: return t
10: end function

2.2 Fitted Policy Forest

When there is no black-box model available for a learning problem, it is not
possible to solve it o�ine. Thus, it is mandatory to obtain samples by inter-
acting with the system.

We present here the Fitted Policy Forest algorithm, which can perform
batch-mode learning or semi-online learning. This algorithm is mainly based
on the use of regression forests to approximate both, the Q-value and the
policy. While it can handle continuous action spaces, it cannot deal with
heterogeneous action spaces.

We start by describing the algorithm for batch-mode learning, then we
show how we can use a simple exploration scheme to transform it into a semi-
online learning algorithm. Experimental results on classical learning problems
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are presented for both batch mode learning and semi-online learning. Finally,
we discuss the applicability of FPF to our targeted problems.

2.2.1 Batch-mode algorithm

The batch learning algorithm FPF, is mainly based on the Fitted Q Iteration
algorithm, see [Ernst and al. 2005]. FittedQ Iteration, FQI for short, is entirely
based on the access to a batch of data D = {(s1, a1, s′1, r1), . . . , (sn, an, s′n, rn)},
with sk ∈ S the initial state of sample k, ak ∈ A the action of sample k,
s′k ∈ S the state measured after applying ak from state sk and rk ∈ R the
reward received when reaching state s′k. These data are used iteratively by
a regression algorithm to produce an approximation of the Q-value function
according to Algorithm 13.

Algorithm 13 Fitted Q Iteration algorithm

1: function fittedQIteration(D,N)
2: . Parameters description:

D The set of samples used for batch learning

N The number of iterations of the algorithm

3: Q̃0 ← C (0)
4: i← 0
5: while i < N do
6: i← i+ 1

7: X ←
{[

sk
ak

]
| k ∈ {1, . . . , |D|}

}
8: Y ←

{
rk + γmax

a∈A
˜Qn−1(s

′
k, a) | k ∈ {1, . . . , |D|}

}
9: Q̃n ← ExtraTrees(T S(X, Y ),PWC) . default con�guration
10: end while
11: return Q̃n

12: end function

At line 9 of Algorithm 13, ExtraTrees is used to approximate theQ-value
function. We suggest to use constant approximators in leaves, because both
experimental results and literature suggest that using linear approximators
might lead to a divergent Q-value estimation, see [Ernst and al. 2005]. Note
that it is perfectly possible to use any other regression methods.

While this procedure yields very satisfying results when the action space
is discrete, the computational complexity of the max part at line 8 of Al-
gorithm 13 is a problem when using regression forests. Therefore, in [Ernst
and al. 2005], action spaces are always discretized to compute this equation,
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thus leading to an inappropriate action set when optimal control requires a
�ne discretization or when the action space is multi-dimensional.

In order to estimate the best action a from state s using the approximation
˜Qn−1, we use Algorithm 14, named actionFromQValue. First of all, since

we know s, we can use projection on function approximators to reduce the size
of the forest Qn−1. Then, we can simply merge all the trees of the forest f into
a single tree t, at the cost of precision. Once a tree is obtained, we can iterate
on all its leaves to �nd out the maximum, since �nding the maximum of a linear
model inside an hyperrectangle is trivial. Note that if the leaf l containing the
maximal value of the tree is a constant approximator, we consider that arg max
returns center(H(l)). While this procedure gives only an approximation of
the best action based on the Q-value it is already more accurate and scalable
than using a simple discretization.

Algorithm 14 Choosing an action from a Q-value approximation

1: function actionFromQValue(Q̃,s,n,A)
2: . Parameters description:

Q̃ A regression forest representing the Q-value

s The current state

nmax

The number of leaves allowed for the �nal tree

A The action space, an hyperrectangle

3: Q′ ← P
(
Q̃, s

)
. Q′ is a regression forest from A to R

4: t← mergeForestWithPruning(Q′, nmax)
5: return arg max

a∈A
t(a) . Tree-search of highest value

6: end function

Once the estimation of the Q-value Q̃ is obtained, FQI proposes to derive
the policy based on Eq. 2.10.

π̃∗(s) = arg max
a∈A

Q̃(s, a) (2.10)

We propose to use actionFromQValue to estimate the best action, see
Algorithm 14. However, since this method require a projection of the forest
and then a merge with pruning, it is computationally expensive. Since online
cost of accessing the policy is crucial in robotics, we developed a new method
named �tted policy forests, FPF for short.

Once the Q-value is approximated by a forest, FPF samples states s ∈ S
randomly, �nd an estimate of the best action a ∈ A and then use the collected
couples (s, a) to grow a forest which will represent a policy. We propose two
di�erent versions of FPF. First, FPF:PWC in which the models in the leaves
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are constant and second FPF:PWL in which the models in the leaves are linear.
The FPF algorithm is introduced in Algorithm 15 and a �owchart representing
the di�erences between FQI and FPF is shown in Fig. 2.4.

Algorithm 15 The �tted policy forests algorithm

1: function FPF(D,n,N ,M , S,A,type)
2: . Parameters description:

D The set of samples used for batch learning

n The number of leaves authorized for merging procedures

N The number of iterations of the FQI algorithm

M The number of states used to approximate the policy

S The state space of the MDP

A The action space of the MDP

type The type of approximator to use

3: Q̃← fittedQIterationAlgorithm(D, N)
4: T S ← {}
5: while |T S| < M do
6: s← sample S uniformly
7: a← actionFromQValue(Q̃, s, n, A)
8: add (s, a) to T S
9: end while
10: return ExtraTrees(T S, type) . The policy computed by FPF
11: end function

Since FQI requires to project trees and merge forests, it is computation-
ally too expensive to be used in online situations. On the other hand, both
FPF methods only require to �nd the appropriate leaf of each tree. Its com-
putational complexity grows linearly with respect to the number of trees and
logarithmically with respect to the number of leaves per tree, thus making it
entirely suited for online use in robotics application.

2.2.2 Batch-mode experiments

We used three benchmark problems classical in reinforcement learning to eval-
uate the performances of the FPF algorithms. While all the methods share
the same parameters for computing the Q-value forest, we tuned speci�cally
parameters concerning the approximation of the policy using the Q-value for-
est. We compared our results with those presented in [Pazis and Lagoudakis
2009], however we do not have access to their numerical data, and rely only on
the graphical representation of these data. Thus, the graphical lines shown for
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S = {(s0, a0, r0, s′0), . . .}

T S = {(x0, y0), . . .}

build T S, see Alg. 13

Q̂h

ExtraTrees(T S,PWC)

h < H

build T S, see Alg. 13

Q̂

h = H
FQI

π(s) = arg max
a∈A

Q̂(s, a)

T Sπ = {(s0, a0), . . .}

build T Sπ, see Alg. 15

FPF:PWC

ExtraTrees(T Sπ,PWC)

FPF:PWL

ExtraTrees(T Sπ,PWL)

Figure 2.4 � A �owchart of the di�erent methods

BAS are approximate and drawn thicker than the other to highlight the noise
in measurement. We present the result separately for the three benchmarks
while discussing results speci�c to a problem as well as global results.

On all the problems, performances of FPF:PWL are better or at least
equivalent to those achieved by BAS in [Pazis and Lagoudakis 2009].

This is remarkable, because BAS uses a set of basic functions speci�cally
chosen for each problem, while our method is generic for all the problems.
The computation cost of retrieving actions once the policy has been calculated
appears as negligible and therefore con�rms that our approach is well-suited
for high-frequency control in real-time.

Inverted pendulum stabilization

The inverted pendulum stabilization problem consists of balancing a pendulum
of unknown length and mass by applying a force on the cart it is attached to.
An uniform noise is added at every time step and the cost function includes:
the position of the pendulum, the angular velocity of the pendulum and the
force applied on the cart. Therefore, policies resulting with smoother motions
perform better than bang-bang policies. A complete description of the problem
is provided in Section 1.1.3.

The training sets were obtained by simulating episodes using a random
policy, and the maximal number of steps for an episode was set to 3000. The
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performances of the policies were evaluated by testing them on episodes of
a maximal length of 3000 and then computing the cumulative reward. In
order to provide an accurate estimate of the performance of the algorithms,
we computed 50 di�erent policies for each point displayed in Figure 2.5 and
average their cumulative reward (vertical bars denote 95% con�dence interval).
The parameters used to produce the policies are shown in Table 2.1.

FPF clearly outperforms FQI on this problem and PWL approximations
outperform PWC approximations. Results for BAS [Pazis and Lagoudakis
2009] rank systematically lower than both FPF methods. The huge di�erence
of learning speed between FQI and FPF suggests that using regression forests
to learn the policy from the Q-value can lead to drastic improvements. On
such a problem where the optimal policy requires a �ne choice of action, it is
not surprising that using linear models to represent the policy provides higher
results than constant models.

The best value for nmin, the minimal number of samples per leaf, is pretty
high (17 for PWC and 125 for PWL). Our understanding of this phenom-
ena is that the Q-value tree tends to slightly over�t the data, additionally, it
uses PWC approximation. Therefore, using it directly leads to an important
quanti�cation noise. Using a large value for nmin might be seen as applying a
smoothing, which is, according to [Ernst and al. 2005], considered as necessary
for regression trees sampling a stochastic function. The need for a large num-
ber of samples is increased for FPF:PWL, because providing a reliable linear
interpolation of a noisy application requires far more samples than a constant
interpolation.

Figure 2.5 � Performance on the Inverted Pendulum Stabilization problem
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Table 2.1 � Parameters used for Inverted Pendulum Stabilization

Parameter FQI FPF:PWC FPF:PWL
Nb Samples NA 10'000 10'000
Max Leaves 50 50 50
k NA 2 2
nmin NA 17 125
M NA 25 25
Vmin NA 10−4 10−4

Double integrator

In order to provide a meaningful comparison, we stick to the description of the
problem given in [Pazis and Lagoudakis 2009] where the control step has been
increased from the original version presented in [Santamaria and al. 1997]. The
double integrator is an episodic problem in a single dimension, the agent has to
reach a given position while minimizing a cost function based on the distance
to the target and the acceleration used. A complete de�nition of the problem
can be found in Section 1.1.1.

The training sets were obtained by simulating episodes using a random
policy, and the maximal number of steps for an episode was set to 200. The
performances of the policies were evaluated by testing them on episodes of
a maximal length of 200 and then computing the cumulative reward. In or-
der to provide an accurate estimate of the performance of the algorithms, we
computed 100 di�erent policies for each point displayed in Figure 2.6 and av-
erage their results. The parameters used for learning the policy are shown in
Table 2.2.

On this problem, although none of the proposed methods reach BAS per-
formance when there are more than 300 learning episodes, FPF:PWL learns
quicker than BAS with a small number of episodes. It is important to note
that while our basic function approximator is constant, the implementation of
BAS used in [Pazis and Lagoudakis 2009] relies on expert parametrization of
the set of policies, more precisely on the fact that the optimal policy is known
to be a linear-quadratic regulator [Santamaria and al. 1997].

Car on the hill

While there has been several de�nitions of the Car on the Hill problem, we
will stick to the version proposed in [Ernst and al. 2005] which was also used
as a benchmark in [Pazis and Lagoudakis 2009]. In this episodic problem an
underactuated car must reach the top of a hill. A detailed description of the
problem can be found in Section 1.1.2.

As stated in [Pazis and Lagoudakis 2009], this problem is one of the worst
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Figure 2.6 � Performance on the Double Integrator problem

Table 2.2 � Parameters used for Double Integrator

Parameter FQI FPF:PWC FPF:PWL
Nb Samples NA 10'000 10'000
Max Leaves 40 40 40
k NA 2 2
nmin NA 100 1500
M NA 25 25
Vmin NA 10−4 10−4

cases for reinforcement learning with continuous action space. The reason is
that the solution to this problem is a bang-bang strategy, i.e. a nearly optimal
strategy exists which uses only two discrete actions: maximum acceleration and
no acceleration. Thus the solver requires to learn a binary strategy composed
of actions which have not been sampled frequently. It has been shown in [Ernst
and al. 2005] that introducing more actions usually reduces the performances
of the computed policies. Therefore, we do not hope to reach performances
comparable to those achieved with a binary choice. This benchmark focuses
on evaluating the performance of our algorithms, in one of the worst cases
scenario.

While the samples of the two previous algorithms are based on episodes gen-
erated at a �xed initial state, the samples used for the Car on the hill problem
are generated by sampling uniformly the state and action spaces. This proce-
dure is the same which has been used in [Ernst and al. 2005] and [Pazis and
Lagoudakis 2009], because it is highly improbable that a random policy could
manage to get any positive reward in this problem. Evaluation is performed
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by observing the repartition of the number of steps required to reach the top
of the hill from the initial state.

Both our implementations of FPF and FQI strongly outperform BAS on
the Car on the Hill problem. The histogram of the number of steps required
for each method is represented on Figure 2.7. For each method, 200 di�erent
strategies were computed and tested. There is no signi�cant di�erence in the
number of steps required to reach the top of the hill between the di�erent
methods. For each method, at least 95% of the computed policies led to a
number of step in the interval [20, 25]. Thus we can consider that an FPF or
FQI controller takes 20 to 25 steps on average while it is mentioned in [Pazis
and Lagoudakis 2009] that the controller synthesized by BAS requires 20 to
45 steps on average. Over the six hundred experiments gathered across three
di�erent methods, the maximal number of steps measured was 33.

FPF performs better than FQI on the problem Car on the Hill: although
the number of steps required is not reduced by the FPF approach, the online
cost is still reduced by around two orders of magnitude.

Computational cost

As mentioned previously, a quick access to the optimal action for a given
state is crucial for real-time applications. We present the average time spent
to retrieve actions for di�erent methods in Figure 2.8 and the average time
spent for learning the policies in 2.9. Experiments were run using an AMD
Opteron(TM) Processor 6276 running at 2.3 GHz with 16 GB of RAM run-
ning on Debian 4.2.6. While the computer running the experiments had 64
processors, each experiment used only a single core.

We can see that using FPF reduces the average time by more than 2 or-
ders of magnitude. Moreover, FPF:PWL presents a lower online cost than
FPF:PWC, this is perfectly logical since representing a model using linear ap-
proximation instead of constant approximations requires far less nodes. While
the results are only displayed for the �Double Integrator�, similar results were
observed for the two other problems.

It is important to note that the cost displayed in Figure 2.8 represents an
entire episode simulation, thus it contains 200 action access and simulation
steps. Therefore, it is safe to assume that the average time needed to retrieve
an action with FPF:PWC or FPF:PWL is inferior to 50µs. Even if the CPU
used is two orders of magnitude slower than the one used in the experiment,
it is still possible to include an action access at 200Hz.

The additional o�ine cost of computing the polices required by FPF is
lower than the cost of computing the Q-value using FQI when the number
of training episode grows, as presented in Figure 2.9. Therefore, when it is
possible to use FQI, it should also be possible to use FPF without signi�cantly
increasing the o�ine cost.
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Figure 2.7 � Performance on the Car on the Hill problem

2.2.3 Semi-online algorithm

Since FPF is a batch algorithm, it can be used in semi-online learning mode
simply by learning a new policy after every rollout with all the samples ac-
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Figure 2.8 � Evaluation time by episode for the Double Integrator

Figure 2.9 � Learning time by episode for the Double Integrator

quired. However, this procedure ignores the exploitation vs exploration trade-
o� by performing pure exploitation.

This section presents Multi-Resolution Exploration, MRE for short [Nouri
and Littman 2009]. After introducing MRE, it presents several modi�cations
we experimentally found to improve the performances of MRE when combined
with FPF.
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Original de�nition

MRE [Nouri and Littman 2009] proposes a generic algorithm allowing to bal-
ance the exploration and the exploitation of the samples. The main idea is
to build a function κ : S × A 7→ [0, 1] which estimates the knowledge amount
gathered on a couple (s, a) ∈ S × A. During the execution of the algorithm,
when action a is taken in state s, a point p = (s1, . . . , sdimS, a1, . . . , adimA)
is inserted in a kd-tree, called knownness-tree. Then, the knownness value
according to a knownness-tree τ at any point p can be computed by using
Eq. (2.11).

κ(p) = min

1,
|P |
ν

1⌊
k
√
nk/ν

⌋
‖H‖∞

 (2.11)

where ν is the maximal number of points per leaf, k = dim(S × A), n is
the number of points inside the whole tree, P = points(leaf(τ, p, )) and H =
space(leaf(τ, p, )).

Thus the knownness value depends on three parameters: the size of the
cell, the number of points inside the cell and the number of points inside the
whole tree. Therefore, if the ratio between the number of points contained in
a cell and its size does not evolve, its knownness value will decrease.

The insertion of points inside the kd-tree follows this rule: if adding the
point to its corresponding leaf l0 would lead to a number of points greater
than ν, then the leaf is split into two leaves l1 and l2 of the same size, and the
dimension is chosen using a round-robin. The points initially stored in l0 are
attributed to l1 and l2 depending on their value.

MRE uses the knownness function to alter the update of the Q-value func-
tion. Consider Rmax the maximal reward that can be awarded in a single step,
it replaces line 8 of Algorithm 13 by:

Y =

{
κ(s, a)

(
rk + γmax

a∈A
˜Qn−1(s

′
k, a)

)
+ (1− κ(s, a))

Rmax

1− γ
| k ∈ {1, . . . , |D|}

}
This change can be seen as adding a transition to a �ctive state contain-

ing only self-loop and leading to a maximal reward at every step. This new
transition occurs with probability 1− κ(s, a).

Computation of the knownness value

The de�nition of the knownness given by Equation (2.11) leads to the un-
natural fact that adding a point in the middle of other points can decrease
the knownness of these points. Consider a leaf l0 with a knownness k0, then
adding a point can result in creating two new leaves l1 and l2 with respective
knowledge of k1 and k2 with k0 > k1 and k0 > k2.
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We decide to base our knowledge on the ratio between the density of
points inside the leaf and the density of points. Thus replacing Eq. (2.11)
by Eq. (2.12):

κ(p) = min

(
1,

|points(leaf(τ,p))|
|leaf(τ,p)|

n
|S×A|

)
(2.12)

where n is the total number of points inside the tree. This de�nition leads to
the fact that at anytime, there is at least one leaf with a knownness equal to
1. It is also easy to see that there is at least one leaf with a knownness strictly
lower than 1, except if all the cells have the same density.

From knownness tree to knownness forest

In order to increase the smoothness of the knownness function, we decided to
aggregate several kd-trees to grow a forest, following the core idea of Extra-
Trees [Geurts and al. 2006]. However, in order to grow di�erent kd-trees from
the same input, the splitting process needs to be stochastic. Therefore, we
implemented another splitting scheme based on ExtraTrees.

The new splitting process is as follows: for every dimension, we choose at
uniform random a split between the �rst sample and the last sample. Thus,
we ensure that every leaf contains at least one point. Then we use an heuristic
to choose the best split.

Once a knownness forest is grown, it is easy to compute the knownness
value by averaging the result of all the trees.

Modi�cation of the Q-value update

The Q-value update rule proposed by MRE improves the search speed, however
it has a major drawback. Since it only alters the training set used to grow the
regression forest, it can only use the knownness information on state action
combination which have been tried. Even if a couple (s, a) has a knownness
value close to 0, it might have no in�uence at all on the approximation of the
Q-value.

In order to solve this issue, we decided to avoid the modi�cation of the
training set creation. In place of modifying those samples, we update the
regression forest by applying a post-processing on every of every tree in the
regression forest representing the policy. This post-processing is presented in
Eq. (2.13). In this equation, l is the original leaf, l′ the modi�ed leaf and
c = center(H(l)) is the center of the leaf space.

l′ = wAvg (l, C (Rmax), κ(c), (1− κ(c)) (2.13)

Since we consider only constant and linear models in leaves, the weighted
average of models in Eq. (2.13) can easily be computed, see section 2.1.7.
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2.2.4 Semi-online experiments

We evaluated the performance of the combination of MRE and FPF on two
di�erent problems. First, we present the experimental results on the Inverted
Pendulum Stabilization problem and compare them with the results obtained
with random exploration. Second, we exhibit the results on the Inverted Pen-
dulum Swing-Up problem. Since semi-online learning on robots can be expen-
sive in time and resources, we did not allow for an early phase of parameter
tuning and we used simple rules to set parameters for both problems. In both
problems, the policy is updated at the end of each episode, in order to ensure
that the system is controlled in real-time. In this section, we denote by rollout
an execution of the MRE algorithm on the problem.

Inverted pendulum stabilization

This problem is exactly the same as de�ned in Section 2.2.2, but it is used in a
context of semi-online reinforcement learning. After each rollout, the policy is
updated using all the gathered samples. The results presented in this section
represent 10 rollouts of 100 episodes. Each rollout was used to generate 10
di�erent policies, every policy was evaluated by 50 episodes of 3000 steps.
Thus, the results concerns a total of 5000 evaluations episodes.

The repartition of reward is presented in Figure 2.10. The reward obtained
by the best and worst policy are shown as thin vertical lines, while the average
reward is represented by a thick vertical line. Thus, it is easy to see that
there is a huge gap between the best and the worst policy. Over this 5000
episodes, the average reward per run was −171, with a minimum of −1207
and a maximum of −128. In the batch mode settings, after the same number
of episodes, FPF-PWL obtained an average reward of −172, with a minimal
reward of −234 and a maximal reward of −139. While the average reward did
not signi�cantly improve, the dispersion of reward has largely increased and
in some cases, thus leading to better but also worst policy. While this might
be perceived as a weakness, generating several policies from the computed Q-
value is computationally cheap. Then, a few episodes might be used to select
the best policy. From the density of reward presented in Figure 2.10, it is
obvious that by removing the worst 10% of the policies, the average reward
would greatly improve.

Another point to keep in mind is the fact that the parameters of FPF have
not been optimized for the problem in the MRE setup, while they have been
hand-tuned in the Batch setup. Therefore, reaching a comparable performance
without any parameter tuning is already an improvement.
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Figure 2.10 � Reward repartition for semi-online learning on Inverted Pendu-
lum Stabilization

Inverted pendulum swing-up

The problem is to control a motor which applies a torque on a pendulum. The
goal is to stabilize the pendulum in upward position while it starts pointing
down. The main di�culty of this problem is the torque limitation of the
motor. It is necessary to start by accumulating energy in the system in order
to be able to reach the upward position. The agent can observe the position
and the speed of the angular joint and his action is de�ned by choosing the
torque applied by the motor. More details on this problem are provided in
Section 1.1.4.

For this problem, instead of using a mathematical model, we decided to
use the simulator Gazebo2 and to control it using ROS3. Since these two tools
are widely accepted in the robotic community, we believe that exhibiting rein-
forcement learning experiments based on them can contribute to the democ-
ratization of reinforcement learning methods in robotics.

The result presented in this section represent 5 rollouts of 100 episodes.
Each rollout was used to generate 10 di�erent policies, every policy was eval-
uated by 10 episodes of 100 steps. Thus, there is a total of 500 evaluation
episodes.

We present the repartition of the reward in Figure 2.11. The average reward
is represented by a thick vertical line and the best and worst policies rewards
are shown by thin vertical lines. Again, we can notice a large di�erence between

2http://gazebosim.org
3http://www.ros.org
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the best and the worst policy. We exhibit the trajectory of the best and worst
evaluation episode in Figure 2.12. While the worst episode has a cumulated
reward of −101, the worst policy has an average reward of −51. According
to the repartition of the reward, we can expect that very few policies lead to
such unsatisfying results, thus ensuring the reliability of the learning process if
multiple policies are generated from the gathered samples and a few episodes
are used to discard the worst policy.

Figure 2.11 � Reward repartition for online learning on Inverted Pendulum
Swing-Up

Figure 2.12 � Best and worst episode for Inverted Pendulum Swing-Up

2.2.5 Discussion

Our results show that using FPF does not only allow to drastically reduce the
online computational cost, it also tend to outperforms FQI and BAS, espe-
cially when the transition function is stochastic as in the Inverted Pendulum
Stabilization problem.
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Although using piece-wise linear function to represent the Q-value may lead
to divergence as mentioned in [Ernst and al. 2005], this was not the case for any
of the three presented problems. In two of the three presented benchmarks,
FPF:PWL yields signi�cantly better results than FPF:PWC and on the last
problem, results were similar between the two methods. The possibility of
using PWL approximations for the representation of the policy holds in the fact
that the approximation process is performed only once. Another advantage
is the fact that on two of the problems, the policy function is continuous.
However, even when the optimal policy is bang-bang (Car on the hill), using
PWL approximation for the policy does not decrease the general performance.

Our experiments on the combination of MRE and FPF showed that we
can obtain satisfying results without a parameter-tuning phase. Results also
show the strong variability of the generated policies, thus leading to a natural
strategy of generating multiple policies and selecting the best in a validation
phase.

Although several problems can be solved using model-free learning, there
is a major limitations to its use in robotics. It does not make an e�cient
use of the samples gathered on the robots while acquiring these samples is
generally time-consuming. In high dimensional problems, sample e�ciency is
even more crucial. Moreover, when tackling robotics problems, it is common to
use simulators because experimenting directly on the robot is more expensive,
slower and often dangerous. Therefore, if there is no available model of the
problem, it is generally very helpful to start by building an approximation of
the problem.

Separating the learning of the model and the learning of the policy has
two major advantages: �rst, it allows evaluating both separately thus making
debugging much easier, second, since models in robotics can be used for dif-
ferent problems, it is useful to dissociate them from the task we are trying to
accomplish.

2.3 Random Forest Policy Iteration

Regression Forests Policy Iteration, or RFPI for short, is inspired by the dis-
crete version of policy iteration. Both the value function and the policies are
represented as regression forests. This is a blackbox learning algorithm: it
relies on sampling the behavior of the controlled system from various initial
states, chosen by the algorithm. Our implementation is limited to CSA-MDPs
with homogeneous action spaces.

RFPI uses visited states as a basis to train the value functions and the
policies. The list of visited states may be empty at the beginning or it might
start with states provided by an external source to guide the learning.

RFPI iterates the following three steps:
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1. Performing rollouts to discover new states according to Algorithm 16.

2. Updating the estimation of the value function

3. Updating the policy

Algorithm 16 Performing a rollout from an initial state

1: function performRolloutFromState(MDP,s,π, H)
2: . Parameters description:

MDP The model of the CSA-MDP

s The initial state

π The policy

H The maximal horizon for the rollout
3: states← {}
4: n← 0
5: status←`
6: cumulatedReward← 0
7: factor← 1
8: while n < H ∧ status 6=a do
9: visitedStates.insert(s)
10: (s, r, status)← sampleResult(MDP, s, π(s))
11: cumulatedReward← cumulatedReward + r ∗ factor
12: factor← factor ∗ discount(MDP)
13: end while
14: return (visitedStates, cumulatedReward)
15: end function

Initially, the value is considered to be 0 for every state and the initial
policy samples actions from a uniform distribution among the whole action
space. The algorithm is based on a time budget: steps 1. 2. and 3. are
repeated until the time allowed is elapsed. At step 1., a �xed number of
rollouts are performed using the function performRolloutFromState, see
Algorithm 16. Step 2. evaluates the expected reward by averaging the rewards
returned by the rollouts. The estimation of the value function is updated using
the function ExtraTrees, see Algorithm 17. We use piece-wise constant
models to approximate the value function, because experiments and literature
suggest that using linear-approximators for a discretization of the problem
might lead to a divergence toward in�nity, see [Ernst and al. 2005]. Step
3. updates the policy using Algorithm 18. The complete version of RFPI is
described in Algorithm 19.

In order to update the value and the policy, it is required to gather a
large number of samples using the blackbox model of the MDP, see Algo-
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Algorithm 17 The RFPI update value function

1: function RFPIValue(MDP, π, states, n,H)
2: . Parameters description:

MDP The model of the CSA-MDP

π The policy which should be used

states A list of states used as initial states for the rollouts

n The number of rollouts to use

H The maximal horizon for the rollout
3: values ← {}
4: for all s ∈ states do
5: rollout ← 0
6: stateReward ← 0
7: while rollout < n do
8: (unused, r)← performRolloutFromState(MDP, s, π,H)
9: stateReward = r + stateReward;
10: rollout+ = 1
11: end while
12: values.insert( stateReward

n
)

13: end for
14: return ExtraTrees(states, values,PWC) . Ṽ
15: end function

rithm 17 and Algorithm 18. Updating the value function can require up to
|visitedStates|vrolloutsH depending on the presence of terminal states during the
rollouts and updating the policy requires |visitedStates|arolloutsnactions. There-
fore, it is apparent that an e�cient simulation of the MDP process is crucial
regarding the performances of RFPI.

Considering that the tree produced is balanced, the complexity of function
ExtraTrees is O(n log(n)), with n the number of samples, see Section 2.1.5.
During the execution of the RFPI algorithm, updates of both the value and
the policy are performed after a growing number of rollouts: i.e. they are
update after 1, 3, 6, . . . , k(k+1)

2
rollouts. This ensures that the number of up-

dates performed is in O(
√
N). Therefore, after N rollouts, the complexity is

O(NH
√
N log(NH)).

Chapter 3 presents the experimental results obtained with RFPI on the ball
approach problem in both simulation as well as real-world experiments. The
experimental results on the ball approach problem are satisfying: RFPI could
synthesize a policy which performs much better than both expert policy and
policies obtained by other optimization methods. Since our implementation of
RFPI does not handle heterogeneous action spaces, we could not apply it to
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Algorithm 18 The RFPI update policy function

1: function RFPIPolicy(MDP, Ṽ , states, nactions,nrollouts)
2: . Parameters description:

MDP The model of the CSA-MDP

Ṽ A value approximator used to estimate the value function

states A list of states used as initial states for the rollouts

nactions The number of actions to use

nrollouts The number of rollouts to use

3: bestActions ← {}
4: for all s ∈ states do
5: bestScore ← −∞
6: bestAction ← NULL
7: candidate ← 0
8: while candidate < nactions do
9: action ← sample(actionSpace(MDP))
10: score ← 0
11: rollout ← 0
12: while rollout < nrollouts do
13: (s′, r, status) = sampleResult(MDP,s, action)
14: score← score + r
15: if status =` then . If status is not terminal, use s′ value
16: score← score + discount(MDP)Ṽ (s′)
17: end if
18: rollout← rollout + 1
19: end while
20: if score > bestScore then
21: bestScore ← score
22: bestAction ← action
23: end if
24: candidate ← candidate + 1
25: end while
26: bestActions.insert(bestAction)
27: end for
28: return ExtraTrees(states, bestActions,PWL) . The new policy
29: end function
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Algorithm 19 Random Forest Policy Iteration

1: function RFPI(MDP, π, seedStates,vrollouts, nactions,arollouts,H)
2: . Parameters description:

MDP The model of the CSA-MDP

seedStates An expert set of states used to guide RFPI

vrollouts The number of rollouts to use in value update

nactions The number of actions to test in policy update

arollouts The number of rollouts to use in update policy

H The maximal horizon for the rollouts
3: π ← U (HA) . Initial policy is random
4: Ṽ ← C ([0])
5: visitedStates ← seedStates
6: policyId ← 1
7: runId ← 0
8: while timeRemaining() do
9: s← sampleInitialState(MDP)
10: (newStates, r)← performRolloutFromState(MDP,s,π,H)
11: visitedStates.insert(newStates)
12: runId← runId + 1
13: if runId = policyId then
14: Ṽ ← RFPIValue(MDP, π, visitedStates, vrollouts, H)
15: π ← RFPIPolicy(MDP, Ṽ , visitedStates, nactions, arollouts)
16: runId ← 0
17: policyId++
18: end if
19: end while
20: return π
21: end function

the kicker robot problem.

2.4 Policy Mutation Learner

This section introduces Policy Mutation Learner, PML for short. This algo-
rithm tracks a policy represented by a regression tree with linear models in
the leaf, see Figure 2.1 for an example. It optimizes the policy by performing
local mutations and ensuring that they have a positive impact on the global
reward.

One of the main motivations behind the development of PML is the ne-
cessity of speci�c algorithms able to handle e�ciently CSA-MDP with het-
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erogeneous action spaces. By incorporating the possibility to change the type
of action used inside the mutation mechanism, PML can handle models with
heterogeneous action spaces.

Experimental results obtained using PML are provided in chapter 4. They
show that PML can successfully be used for both improving expert strategy
and �nding e�cient strategies from scratch.

2.4.1 Blackbox optimization

In this section, di�erent methods of blackbox optimization are presented. All
of them maximize the expected reward of a blackbox function B : I 7→ ∆ (R),
i.e. they evaluate supi∈I E[B]. Of course these optimizers can also be used to
minimize the expected cost.

There are various types of optimization problems and optimizers, this sec-
tion presents distinctions between them based on several criteria.

Stochastic and deterministic blackboxes

While in this thesis, the focus is on stochastic blackboxes in which two strictly
equivalent inputs can result in di�erent outputs, some blackbox are determin-
istic.

Given two samples (i0, o0) and (i1, o1) obtained from a blackbox B, if the
blackbox is deterministic, we can directly assume that i0 is better than i1 if and
only if o0 > o1. On the other hand if the blackbox is stochastic, more samples
are required in order to provide statistical evidence that one of the input has
a higher average output. Moreover, while sampling nearby inputs allow to
retrieve a local gradient for deterministic problem, a much larger number of
samples is required to provide a rough approximation of the local gradient in
stochastic problems.

For stochastic problems, sampling multiple times the same input and av-
eraging the outputs allows to have a better approximation of the reward for
the given input. However, using this scheme can quickly increase the number
of calls to the blackbox function.

Cheap and costly blackbox functions

A key aspect of blackbox optimization is the cost of sampling the blackbox.
While this cost might not always be represented as a numerical value, it is
commonly accepted to separate blackbox in two di�erent categories: cheap
and costly. Cheap blackbox can be called several thousands or even millions
of time while costly function are usually called at most a few hundred times.

Since this thesis focuses on o�ine learning, we generally consider cheap
blackbox functions based on models trained on data acquired on the robot.
However, if optimization of the function had to be performed online, then the
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blackbox function would be considered as costly because learning on the robot
includes risk of damaging the robot and requires human supervision.

Limited memory

Optimizers with a limited memory are generally based on using a simple state
including information about the current candidate, this candidate might simply
be the input of the function or it might also take a more complex form such as
a distribution with a covariance matrix. At each step, the optimizer samples
the blackbox function to update its candidate using the new samples acquired.

A major advantage of this approach is the fact that, since the memory is
limited, the time required to choose the next inputs to sample remains rea-
sonable. However, since they do not use all the samples gathered during the
process, they tend to have a lower sample e�ciency than methods who mem-
orize all the samples used since the beginning of the optimization. Optimizers
with limited memory will typically be used to optimize cheap blackbox func-
tions.

Local and global optimizers

We separate the methods in two di�erent categories: local and global optimiza-
tion. While local optimization focuses on �nding e�ciently a local maximum,
global optimization aims at providing global maximum over the whole domain
of the function.

While limiting the search to a local scope often allows to provide satisfying
results much faster than global search, it has two major drawbacks. First,
local search is particularly sensitive to initialization of the search, therefore
it generally requires human expertise. Second, when multiple local maxima
exist for the blackbox function, then local optimizers are likely to converge to
sub-optimal inputs.

2.4.2 Main principles

The concept behind PML is to seek to optimize internal parameters of a policy
in a similar way to policy gradients algorithms. However it does not require
either a symbolic expression of the transition function nor the parametrized
policy. Due to the focus on local parameters and the access to the blackbox
function, PML can restrict acquisition of samples to states where modi�cations
of the policy are susceptible to improve the average reward. Since PML requires
access to a cheap blackbox function, it is not mandatory to approximate the
value functions when updating the policy, the value guaranteed by the policy
at a given state can simply be estimated by sampling trajectories of the system
given by the blackbox function.
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In order to keep track of the evolution of the tree, PML keeps track of the
number of mutations performed. We note mID ∈ N the number of mutations
performed at anytime.

2.4.3 Memory

As mentioned previously, PML does not store approximation of the Q-value
function or the value function. It stores only the states visited during the last
evaluation of the policy, the regression tree representing the current policy and
additional information about its leaves.

We denote visitedStates(l) the states in H(l), among states visited dur-
ing the last policy evaluation.

We denote lastMutation(l) the value of mID at the last mutation of leaf
l.

We denote actionId(l) the identi�er of the action applied by leaf l, since
we used heterogeneous actions, it is mandatory to store this additional infor-
mation.

2.4.4 Mutations candidates

In the PML algorithm, all the leaves of the current policy are considered as
candidates for mutation. However their chances of being selected for a muta-
tion depend on multiple parameters.

Let us consider a tree t, a node l ∈ nodes(t) and α ∈ [1,∞[. We de�ne
weight(l) by:

weight(l, α) = (1 + |visitedStates(l)|)α
mID−lastMutation(l)

nbLeaves(t)

The probability of a leaf l to be selected at mutation mID is given by
Eq. (2.14).

p(l) =
weight(l, α)∑

l′∈nodes(t)
weight(l′, α)

(2.14)

The parameter α controls the trade-o� between time elapsed since last mu-
tation and the number of visit a leaf received on its probability to be selected.
If α = 1, then the chances for a state of being selected will be proportional
to the number of times it has been visited during the last evaluation of the
policy. On the other hand, large values of α will lead PML to always update
the leaf which has spent the most time without training.

The heuristic PML uses for scoring is based on two observations. First,
improving the policy in a frequently visited part of the space is likely to bring
signi�cant improvement on the global performances. Second, if mutations
always occurs on the same subtree because it is visited more often, there is a
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risk of converging to a locally optimal policy, because further improvements
would require to mutate leaves from another subtree.

2.4.5 Optimization spaces

Among the key parameters of optimization problems, choosing an appropriate
optimization space is crucial for performances. In PML, the aim is to optimize
the parameters of constant and linear models used in leaves. We present here
the spaces used for constant and linear matrices.

The limits used for constant coe�cients are the same as the limit of the pa-
rameters, thus ensuring that the spaces for constant coe�cients only contains
meaningful values. It is denoted constantBounds(MDP, i) with MDP the
model of the CSA-MDP and i the id of the action concerned:

constantBounds(MDP, actionId) = actionSpace(MDP, actionId)

The bounds of acceptable values for a coe�cient of a matrix A representing
the linear coe�cients of a model is de�ned by Ai,j ∈ [−mi,j,mi,j] with:

mi,j =
length(actionSpace(MDP, actionId), i)

length(stateSpace(MDP), j)

where length(H, i) is the length of the hyperrectangle H over dimension i.
We denote the space of acceptable matrix for linear coe�cients for action

i by linearBounds(MDP, i). It contains all the matrices of the appropriate
size with values in the range speci�ed above.

2.4.6 Mutation types

The �rst step of a mutation is to choose the type of mutation that will be
performed. There are two di�erent types of mutations: re�ne mutations and
split mutations. The type of the mutation is chosen randomly according to
the parameters psplit ∈ [0, 1] that de�nes the probability of performing a split
mutation.

Both mutations rely on the evaluateFA functions to optimize internal
parameters. This function allows to evaluate the expected value of the total
reward received for the initial states provided. It is described in Algorithm 20.

All the mutation are submitted to a validation process named validateFA
ensuring that modi�cations to the current approximator improve the perfor-
mances both locally and globally. This procedure is described in Algorithm 21.

Re�ne mutations

The goal of a re�ne mutation is to try to �nd a more suitable local model for
the space concerned by the leaf. A re�ne mutation follows algorithm 22.

80 Ludovic Hofer



2. Computing e�cient policies

Algorithm 20 Evaluation of new function approximators in PML

1: function evaluateFA(MDP,π, l,l′,Sinitials,H)
2: . Parameters description:

MDP The blackbox model of the MDP

π The policy before modi�cation

l The function approximator to replace

l′ The function approximator replacing l

Sinitials The set of initial states used for training, based on
visited states during last evaluation

H The horizon until which evaluation is performed

3: lbackup ← l
4: l← l′

5: r ← 0
6: for all s ∈ Sinitials do
7: (unused, r′)← performRolloutFromState(MDP, s, π,H)
8: r ← r + r′

9: end for
10: l← lbackup . Restore old approximator
11: return r
12: end function

Finding the best argument (A,B) at line 8 of Algorithm 22 is a task per-
formed by a blackbox optimizer.

Split mutation

The aim of split mutations is to prepare an appropriate structure for further
mutations of function approximators, therefore, it is not required that they
bring an immediate improvement to the expected reward for the policy. How-
ever, performing appropriate splits is still important because split mutations
shape the main structure of the policy and allow discontinuities.

The procedure we use to perform split mutations is described at Algo-
rithm 23. For each dimension of the state space, the algorithm tries to �nd
the most appropriate split using a blackbox optimizer to �nd the best param-
eters at line 9.

While re�ne mutations which do not lead to both local and global im-
provements are simply refused, the mechanism for split mutations is di�erent.
If the validation test is passed, the new function approximator is accepted.
Otherwise, the split is conserved, but the two children are replaced with the
original model. This ensures that even if the split mutation does not result in
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Algorithm 21 Validation of new function approximators in PML

1: function validateFA(MDP,π, l,l′,H,vrollouts)
2: . Parameters description:

MDP The blackbox model of the MDP

π The policy before modi�cation

l The leaf to replace

l′ The function approximator replacing l

H The horizon until which evaluation is performed

vrollouts The number of rollouts used to estimate global re-
ward

3: Sinit ← visitedStates(l)
4: Sglob ← {}
5: while |Sglob| < vrollouts do
6: Sglob ← Sglob ∪ sampleInitialState(MDP))
7: end while
8: rloc ← evaluateFA(MDP, π, l, l, Sinit, H)
9: r′loc ← evaluateFA(MDP, π, l, l′, Sinit, H)
10: rglob ← evaluateFA(MDP, π, l, l, Sglob, H)
11: r′glob ← evaluateFA(MDP, π, l, l′, Sglob, H)
12: return r′loc > rloc ∧ r′glob > rglob
13: end function

improvement, it will still increases the number of leaves, thus allowing further
re�nement to develop more complex policies.

2.4.7 Core of the algorithm

The complete de�nition of PML is presented in Algorithm 24. At every step of
the algorithm, the states stored in memory are updated in order to re�ect the
current policy. A leaf is chosen randomly according to Eq. (2.14). The type
of mutation to be used is chosen randomly according to the parameter psplit.
Finally, the algorithm proceed to the mutation.

2.4.8 Parameters and initial knowledge

The parameters of PML are the following:

allowedTime The available time for improving the policy.

H The horizon at which the problem is solved.
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Algorithm 22 The re�ne mutation for PML

1: function refineMutation(MDP,π,l,H,vrollouts)
2: . Parameters description:

MDP The blackbox model of the MDP

π The policy before mutation

l The leaf on which mutation should be performed

H The horizon until which evaluation is performed

vrollouts The number of rollouts used to estimate global re-
ward

3: Sinit ← visitedStates(l)
4: actionId ← randomSample({1, . . . ,nbActionSpaces(MDP)})
5: spaceA ← linearBounds(MDP, actionId)
6: spaceB ← constantBounds(MDP, actionId)
7: c← center(H(l))
8: (A,B)← arg max

A∈spaceA
B∈spaceB

evaluateFA(MDP, π, l,L (A,B + Ac), SinitH)

9: l′ ← L (A,B + Ac)
10: if validateFA(MDP, π, l, l′, H, vrollouts) then
11: l← l′

12: actionId(l)← actionId
13: end if
14: end function

nbEvaluationRollouts The number of rollouts used for validation in order to
have an accurate estimation of the average reward.

trainingEvaluations The maximal number of runs used for evaluating the
average reward when solving inner blackbox optimiza-
tion problems during a mutation.

psplit The probability of performing a split mutation at each
step. It should always be lower than 1

|A| , in order to
ensure that enough di�erent actions are tested between
split mutations.

evaluationsRatio This parameter allows to control the ratio between the
number of runs simulated for solving blackbox opti-
mizer and for validation.

α The age basis used to compute the weights of the dif-
ferent candidates for mutation.
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Algorithm 23 The split mutation for PML

1: function splitMutation(MDP,π,l,H,vrollouts)
2: . Parameters description:

MDP The blackbox model of the MDP

π The policy before mutation

l The leaf on which mutation should be performed

H The horizon until which evaluation is performed

vrollouts The number of rollouts used to estimate global reward

3: rmax ← −∞
4: tbest ← NULL

5: S ← stateSpace(MDP)
6: for d ∈ {0, . . . , |S|} do
7: spaceC ← constantBounds(MDP, actionId)
8: spacev ← dim(H(l), d) . Select limits for dim d
9: t← arg max

c1∈spaceC
c2∈spaceC
v∈spacev

evaluateFA(MDP, π, l, T (d, v, c1, c2), Sinit, H)

10: r ← evaluateFA(MDP, π, l, t, Sinit, H)
11: if r > rmax then
12: rmax ← r
13: tbest ← t
14: end if
15: end for
16: if validateFA(MDP, π, l, tbest, H, vrollouts) then
17: l← tbest
18: else
19: d← splitDim(t)
20: v ← splitVal(t)
21: l← T (d, v, l, l)
22: end if
23: end function

Additionally to parameters, it is possible to provide initial knowledge to
PML by specifying an initial policy under the form of a tree of local models.
While this is not mandatory, even a simple approximate guess can improve the
performance of PML by ensuring that the initial structure is adapted. This
aspect is discussed in detail in section 4.2.2. Thus, PML can also be used for
improving expert policies.
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Algorithm 24 Policy Mutation Learner algorithm

1: function PML(MDP,π,H,vrollouts,psplit)
2: . Parameters description:

MDP The blackbox model of the MDP

π A regression tree representing the policy

H The horizon until which evaluation is performed

vrollouts The number of rollouts used to estimate global re-
ward

psplit The probability of performing a split at each mu-
tation

3: π ← getInitialPolicy()
4: mID ← 0
5: while isTimeRemaining() do
6: Svisited ← {}
7: while |Svisited| < vrollouts do
8: Svisited ← Svisited ∪ sampleInitialState(MDP)
9: end while
10: use Svisited to update visitedStates(l) for all leaves of π
11: l← a leaf chosen randomly according to Eq. (2.14)
12: if sample(U

([
0 1

])
) < psplit then

13: splitMutation(MDP, π, l, H, vrollouts)
14: else
15: refineMutation(MDP, π, l, H, vrollouts)
16: end if
17: mID ← mID + 1
18: end while
19: end function

2.4.9 Discussion

Among the main weaknesses of PML, we identi�ed that using only orthogonal
splits require very deep trees to model policies where the action depend on an
inequality with several dimensions involved. Modi�cations of the algorithm al-
lowing to model other form of splits could bring a substantial improvement by
reducing the number of leaves requiring re�nement. Moreover, expert informa-
tion can also contain information about symmetries in the policies. This kind
of expert information could easily be provided if the policies were described as
eXtended Algebraic Decision Diagrams, XADD for short, see [Sanner and al.
2012]. Moving from regression trees to XADD would allow to represent policies
in a more compact way and avoid the necessity of training and storing similar
models in di�erent leaves.
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While Chapter 4 presents satisfying results based on PML, this algorithm
does not use information from previous mutations to guide the optimization
of parameters. Developing a mechanism allowing to acquire global knowledge
through mutation could strongly help to avoid performing similar operations
during di�erent mutations.

Finally, one of the most important problem of the proposed version of PML
is the fact that it only perform mutations on leaves and can only expand the
tree. By adding a mechanism to remove node from the trees, it could be
possible to reuse policies produced by PML as seeds for other executions of
PML. This would enable procedures where the main structure of the tree is
acquired by training a tree on a cheap approximation of the problem, then
the policy would be re�ned using a more expensive but more accurate model.
The interest of this scheme is highlighted by the experiments presented in
section 4.2.1. Moreover, this would allow to simply adapt old strategies when
changing parameters of a problem, thus resulting in a higher �exibility.

2.5 Online planning

While learning policies o�ine allows taking decision at a low computational
cost, online planning can lead to e�cient solutions because it does not need
exploring the entire state space. In order to reduce the computational burden
of online planning, we decided to optimize only the next action, relying on the
policy learned o�ine for following steps.

Since we suppose access to a rollback policy π, we can easily average the
Q-value of a couple state-action over multiple samples. We denote this process
of performing online evaluation onlineEval. It is described in Algorithm 25.

Based on our evaluation of the Q-value, we can easily express one step
online-planning as a blackbox optimization problem. The algorithm we pro-
pose is named onlinePlanning and is presented in Algorithm 26. If the
optimization fails to �nd an action yielding a higher expected reward than
π(s) with π the rollback policy and s the current state, then the online plan-
ning return π(s). This mechanism ensures that the online planning may only
improve the expected reward with respect to π, given that the number of
rollouts for validation is large enough.

2.6 Open-source contributions

This section presents the open-source contributions of this thesis. The contri-
bution includes an implementation in C++ of all the algorithms developed in
this thesis and other algorithms which are beyond the scope of this thesis.

The main architecture of the contributions is presented in the graph pre-
sented in Fig. 2.13. Every node is a separate ROS package, rectangular nodes
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Algorithm 25 Online evaluation of the Q-value

1: function onlineEval(MDP,s,a,π,H,n)
2: . Parameters description:

MDP The blackbox model of the MDP

s The initial state

a The �rst action to take

π A regression tree representing the policy

H The horizon until which evaluation is performed

n The number of rollouts used for evaluation
3: rtot ← 0
4: i← 1
5: while i ≤ n do
6: (s′, r, status)← sampleResult(MDP, s, a)
7: rtot ← rtot + r
8: if status 6=a then
9: (. . . , r)← performRolloutFromState(MDP, s′, π,H − 1)
10: rtot ← rtot + r
11: end if
12: end while
13: return rtot

n

14: end function

with thick borders were developed as a part of this thesis, and elliptic nodes
with thin borders are dependencies to external libraries. Arrows between nodes
denotes dependencies, dashed arrows denotes optional dependencies. Note that
rosban_control has additional dependencies not listed in the graph to improve
readability. However, this has a reduced impact since it is an optional depen-
dency for interface with Gazebo4.

If we ignore interface with Gazebo, the only required packages from ROS
are catkin and cmake_modules. Those two packages are lightweight and inde-
pendent from ROS. Therefore it is not necessary to installation ROS to use
the csa_mdp_experiments package.

Note that we use Eigen5 for all applications of linear algebra, it is a widely
spread library which is also used by ROS.

The open-source packages have been developed with a speci�c focus on
genericity. We used the concept of factory and used it along with the TinyXML6

library to be able to load the con�guration of problems, solvers and policies

4See http://gazebosim.org/
5See http://eigen.tuxfamily.org/
6See https://sourceforge.net/projects/tinyxml/
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Algorithm 26 A simple online planning algorithm

1: function onlinePlanning(MDP,π,s,H,neval,nvalid)
2: . Parameters description:

MDP The blackbox model of the MDP

π A regression tree representing the policy

s The current state

H The horizon until which evaluation is performed

neval The number of rollouts used for evaluation

nvalid The number of rollouts used for validation

3: abest ← π(s)
4: rbest ← onlineEval(MDP, s, abest, π,H, nvalid)
5: for actionId ∈ {1, . . . ,nbActionSpaces(MDP) do
6: A← actionSpace(MDP, actionId)
7: a← arg max

a∈A
onlineEval(MDP, s, a, π,H, neval)

8: r ← onlineEval(MDP, s, a, π,H, nvalid)
9: if r > rbest then
10: rbest ← r
11: abest ← a
12: end if
13: end for
14: return abest
15: end function

directly from �les. Since the xml representation is not suited for large trees,
some objects can be written directly in binary �les, e.g. regression forests.

We provide here an alphabetically ordered list of all the packages developed
during this thesis7. The number of lines of each package is shown in Table 2.3.

csa_mdp_experiments
This package contains the implementation of all the problems pre-
sented through this thesis. It also contains the source code of expert
policies, and programs to launch learning experiments based on the
content of con�guration �les.

rosban_bbo
This package de�nes the interfaces for blackbox optimizers and im-
plement the three optimizers described in Appendix A: Simulated
Annealing, Cross Entropy and CMA-ES. Note that CMA-ES imple-

7All packages can be found at https://www.github.com/rhoban/<pkgname>.
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mentation relies on the external dependency libcmaes8.

rosban_control
This package provides an easy communication with the e�ectors of a
robot simulated in Gazebo and linked to ROS.

rosban_csa_mdp
This package contains the core of the modeling of CSA-MDP. It de-
�nes the interface of problems and policies. It also includes all the
learning algorithms used in this thesis as well as an implementation
of kd-trees, necessary for MRE.

rosban_fa
This package contains function approximators and function approx-
imators trainers, i.e regression algorithms. By de�ning a common
interface for all regression problems, it allows changing the type of
regression or the type of approximator used in algorithms simply by
modifying a con�guration �le. Note that this package can also use
Gaussian processes as function approximators.

rosban_gp
This package implements Gaussian processes based on [Rasmussen
2006]. While Gaussian processes are not discussed in this thesis, this
package can be used for function approximators and could be used in
rosban_bbo for performing Bayesian optimization.

rosban_random
This simple package contains useful functions to sample elements from
various types of distribution.

rosban_regression_forests
This package implements regression trees and regression forests. It
also implements ExtraTrees and all the algorithms manipulating
regression trees described in this thesis, e.g. projection or pruning.
If rosban_viewer is present, then a viewer based on SFML9 is used
to help visualizing function approximators.

rosban_utils
This package contains various useful tools about serialization and
a template de�nition of the factory concept. It also contains tools
making the parallelization of stochastic functions much easier.

8see https://github.com/beniz/libcmaes
9See https://www.sfml-dev.org/
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rosban_viewer
This package acts as a wrapper for SFML and include a Viewer class
which already contains basic element such as moving a camera inside
a 3-dimensional space.

Table 2.3 � Number of lines per package

Package name lines
csa_mdp_experiments 9222
rosban_bbo 1038
rosban_control 121
rosban_csa_mdp 7814
rosban_fa 4446
rosban_geometry 1468
rosban_gp 3141
rosban_random 686
rosban_regression_forests 4040
rosban_utils 1822
rosban_viewer 457
Total 34255

csa_mdp_experiments rosban_control

...rosban_csa_mdp

rosban_fa

rosban_regression_forests rosban_viewer

SFML

rosban_gprosban_bbo

libcmaes

Eigen

rosban_randomrosban_utils

TinyXML

cmake_modules

catkin

Figure 2.13 � The structure of open-source contributions
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Chapter 3

Controlling a humanoid walk
engine

During the RoboCup competition, humanoid robots have to be able to control
their walk engine in order to reach a position from which they are able to kick
the ball towards a desired direction. This problem is complex due to several as-
pects: the motion of the robot cannot be accurately predicted, observations of
the ball position are noisy, the control of the walk engine needs to be smoothed
in order to avoid destabilizing the robot and �nally, the robot needs to avoid
collision with the ball while still minimizing the time required to reach the
desired position. From our experience at previous RoboCup, approaching the
ball quickly is a key element for victory since it often allows performing the
kick before opponent robots reach the ball, thus blocking the path.

In this chapter, experimental results on the ball approach problem are pre-
sented and discussed, see section 1.2 for a detailed description of the problem.
Those results were published in [Hofer and Rouxel 2017] and were obtained
with the collaboration of Quentin Rouxel. While learning a predictive mo-
tion model was discussed in 1.2.6, this chapter focuses on computing e�cient
approach strategies for a given predictive motion model.

Experimental results show that optimization based on RFPI strongly out-
performs heuristics we used to win the RoboCup 2016. RFPI also outperforms
other optimization methods in both simulation and real-world setups

3.1 Problem setup

Three di�erent policies were experimented in both simulation as well as real
world. The simulator used for training and evaluation purposes uses the full
linear predictive motion model based on the experimental results presented in
section 1.2.6.

Winner2016: The policy used by the Rhoban team to win RoboCup 2016
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competition. A simple description is provided in Algorithm 27.

CMA-ES: This policy has the same structure as Winner2016, but all the pa-
rameters have been optimized based on millions of simulations of the mo-
tion predictive model using the black-box optimization algorithm CMA-
ES.

RFPI: This policy is represented as a regression forest. It is the result of
a few hours of o�ine training on the problem. It has no information
about the problem but a black-box access to the transition and the re-
ward functions. In order to make sure that the samples were gathered
inside the kick area, policies were trained using a seed of 25 trajectories
generated by Winner2016.

3.2 Theoretical performances

All the trained policies were evaluated on both problems, HA and ANHA. The
evaluation is performed by measuring the average costs on 10'000 rollouts for
each modality. The maximal number of steps in a run was set to 50. The
simulation results are presented in Table 3.1. All the source code used for
simulation experiments is open-source and developed as a set of ROS packages
freely available1.

Table 3.1 � Average costs for the di�erent policies in simulation

Winner2016 CMA-ES RFPI
HA 31.84 14.90 11.88
ANHA 44.12 36.18 15.97

First of all, note that on the HA, CMA-ES strongly outperforms Win-
ner2016. This highlights the interest of building a predictive model and using
it to optimize the parameters of a policy. By using millions of simulations and
advanced optimization methods, CMA-ES is able to divide by more than two
the average time to reach the ball position. Our algorithm goes even further
and reduces the required time by an additional 20 percent while it has no
prior information about the shape of the policy, except a set of visited states
by Winner2016.

As we expected, Winner2016 does not perform well at all on ANHA. It
has a cost of 44.12 in average, while the maximal cost when avoiding collisions
with the ball is 50. Automated tuning based on CMA-ES reduces the average

1Source code (C++) available at: https://bitbucket.org/account/user/rhoban/

projects/ROS
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Algorithm 27 Overview of the expert navigation algorithm
1: state = Far
2: while not in kick range do
3: ball = getRelativeBallPosition()
4: orientation = getRelativeTargetOrientation()
5: if state == Far then
6: Make forward step to go to the ball
7: Make turn step to align with the ball
8: if ball.distance is close enough then
9: state = Rotate
10: end if
11: else if state == Rotate then
12: Make forward step to stay at �xed ball distance
13: Make lateral step to turn around the ball
14: Make turn step to stay aligned with the ball
15: if ball.angle and orientation are aligned then
16: state = Near
17: end if
18: else if state == Near then
19: Make small forward step to reach kick distance
20: Make lateral step to keep the ball centered ahead
21: Make turn step to keep the ball aligned
22: if |ball.y| lateral position is too far then
23: state = Rotate
24: end if
25: end if
26: if ball.distance is too far then
27: state = Far
28: end if
29: end while

cost by around 20 percent. RFPI exhibits a strong �exibility, since it divides
by more than two the expected value with respect to the CMA-ES policy.
Moreover, RFPI achieves similar performances on ANHA as CMA-ES policy
on HA, while the task is much harder.

3.3 Real-world performances

3.3.1 Experimental Conditions

During this experiment, the robot is placed on arti�cial grass. An o�cial white
ball is used as navigation target and the target orientation is set toward the
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goal posts. A speci�c vision pipeline has been implemented to detect and track
the ball at 25 Hz. The Cartesian position of the ball with respect to the robot
location is obtained by using the model of both the camera and the robot's
kinematic. Finally, the position of the ball is �ltered through a low pass �lter.
An example of the experimental setup used is shown in Figure 3.1.

Figure 3.1 � The experimental conditions for the ball approach problem

The recognition and the discrimination between the white ball and the
white and round goal posts is a di�cult task often leading to false positives. To
ease the experiment, the localization module used during robotic competitions
has been disabled. The initial kick target orientation is provided manually and
is then tracked by integration of the inertial measurement unit.

3.3.2 Experimental Method

Winner2016, CMA-ES policies and RFPI policies are all tested in real soccer
conditions for both HA and ANHA. For each test, a total of 12 approaches are
run, totaling 72 di�erent approaches. The Cartesian product of the following
initial states is performed:

• The ball is put either at 1 m or 0.5 m.

• The ball is put either in front of the robot, on its left, on its right.

• The initial kick target is either 0◦or 180◦.

For each run, the time required for the robot to stabilize inside the kicking
area is recorded.

94 Ludovic Hofer



3. Controlling a humanoid walk engine

3.3.3 Results

Average time for all the trajectories depending on the problem type and the
policy used are shown in Table 3.2. Even if the quantity of data collected is too
small to have an accurate evaluation of the di�erence of performances among
policies, the general trend is similar to the one obtained in simulation. The
method tuned by CMA-ES outperforms Winner2016 and RFPI outperforms
both.

Table 3.2 � Average time in seconds before kicking the ball

Winner2016 CMA-ES RFPI
HA 19.98 13.72 11.45
ANHA 48.14 25.69 18.81

A representation of several trajectories perceived by the robot is given
at Fig. 3.2. All these trajectories are directly extracted from the internal
representation of the robot2. Here, the arrows represent the robot pose at
each walk cycle. They all depict the same initial situation, solved for both HA
and ANHA, with each of the proposed policies. It can be seen that although
the robot started at a distance of 1.0 m of the ball, it initially believes that the
distance is around 1.3 m. This type of error is the result of an accumulation of
errors in the measurements of the joints, combined to some of the parts bending
due to the frequent falls of the robot. The adaptability of the proposed method
with respect to the robot constraints can easily be seen by comparing the two
trajectories observed for the RFPI policy.

3.4 Discussion

In this chapter, we presented how to train a predictive motion model for a
humanoid robot and how cross-validation can help to choose the appropriate
type of model. We further presented results showing a major improvement
with respect to the policy used at RoboCup 2016. Results were presented in
both simulation and real world experiments.

Further development of the presented method can focus on improving the
process of training the predictive model. While the current process is easy
to use, it still requires major human supervision to launch experiments and
measure the displacement of the robots. Moreover, the noise model was chosen
manually while it could be extracted from the measurements using a Bayesian
method such as marginal likelihood maximization, see [Roy and Thrun 1999].
By modeling the measurement noise properly, we could simply have the robot

2A video showing these trajectories on Sigmaban robot is available at: https://youtu.
be/PNA-rpNKfsY
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wandering on the �eld, measuring its displacement autonomously based on
visual information and then learning its motion model without any human
intervention.

While the approach problem we considered has only the position of the ball
and the velocity of the robot in the state space, it would be interesting to add
the velocity of the ball in order to perform kicking motion from a rolling ball.
Achieving such a performance would require a real-time vision system able to
track the position of the ball with enough accuracy to estimate its speed. It
would also be necessary to learn a model of the evolution of the ball speed
according to the arti�cial turf. During the RoboCup 2017, we noticed that
depending on the side to which our robots were kicking, the distance traveled
by the ball could double due to the inclination of the blades of the grass. The
interest of this feature has also been increased since we recently developed the
possibility to perform passes between robots.
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Figure 3.2 � Examples of real world trajectories with di�erent policies
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Chapter 4

Kick decisions for cooperation
between robots

This chapter presents experimental results obtained on the kicker robot prob-
lem, see 1.3. Since the modeling of the problem involves several di�erent
actions with di�erent parameter spaces, all the o�ine policies are obtained
using PML, see 2.4.

High-level decision modules have to be designed in order to be able to in-
corporate modi�cations of the model easily because during the development of
robots, the performance of both perception and actuation may improve. Using
a learning procedure �exible with respect to the modi�cation of the model also
allows assessing the impact of new features on the global performances of the
robot. For example, we show that adding to the robot the ability to perform
lateral kicks has few impact in the context of the kicker robot problem.

While this chapter focuses on PML, it also present results based on online-
planning, see Section 2.5. An experimental comparison of the approaches on
the kicker robot problem is presented in Section 4.2.3.

4.1 Problem setup

We present here speci�c con�gurations of the o�ine solvers and online planners
used for the experiments in this chapter.

4.1.1 O�ine solvers

For the experiments presented in this chapter, we used PML as the o�ine
learning algorithm. It was not possible to compare its performances with
RFPI because the problem involves several distinct actions with their own
parameters spaces.

We decided to use a composite optimizer to optimize blackbox functions
during mutations. This composite optimizer divides the available budget
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between three optimizers: simulated annealing, CMA-ES and cross-entropy.
Once the budget is consumed, every optimizer proposes its best candidate, all
the candidates are evaluated and only the best one is chosen.

We decided to use this type of composite optimizer because it provided the
best results during early experimentation phases. Our understanding of this
fact is rather simple, since PML requires solving of various di�erent problems,
there is a strong bene�t of using di�erent methods. While CE and CMA-ES
are able to converge quickly toward a local maximum, SA performs a global
search and often provides satisfying solution when CE and CMA-ES are stuck.

Initial seed

Since PML allows providing a seed to guide the search, we experimented the
performances of the algorithm with or without providing an expert strategy as
a seed. While it is pretty simple, the expert strategy provides a rudimentary
policy allowing to center the ball and avoid the goalie.

In the expert policy, the choice of the action is based only on the ball
position. This policy is symmetrical and separates the �eld in 6 di�erent zones
with 4 di�erent types:

Defense The ball is simply kicked towards the center of the opponent goal
with a powerful kick.

Preparation In this zone, the robot cannot ensure to score in a single kick,
therefore it performs a small kick, hoping that it will be able to score a
goal at the next kick.

Aisle Center the ball slightly behind. There are two aisle, left and right.

Finish Try to kick between the goalie and the the closest post. Depending
on the ball position, the robot will try to kick to the left or the right of
the goalie.

A visual description of the policy is shown in �gure 4.1, the types of areas
are represented by di�erent shades of gray. Two examples of planned kicks for
each zone are represented by black arrows. The policy can be represented as a
tree with 6 leaves and where every leaf contains a single action. Using an expert
kick decision model such as Finisher was crucial to design a simple expert
policy able to avoid the goalkeeper. Because specifying only the direction of
the kick in the �eld referential would have required a much �ner discretization
of the space to achieve similar results.

4.1.2 Online planner

All the online planning experiments run in this chapter uses onlinePlanning,
see Algorithm 26. Due to the limited number of samples available during online
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Figure 4.1 � The expert policy used for the kick controller problem

planning, we decided to use the simulated annealing optimizer, see section A.3.
We used a simple linear pro�le for temperature. And the four �nal parameters
of the online planner were:

Temperature Parameter of the simulated annealing algorithm used
to establish the trade-o� between exploration and ex-
ploitation. It was set to 20 for all the experiments.

EvalRollouts The number of rollouts used for estimating the average
reward corresponding to an action during the optimiza-
tion phase.

MaxEvals The number of parameters values allowed to test during
the optimization phase. This number is divided among
di�erent actions.

ValidationRollouts The number of rollouts used to compute the average
reward of each of the �nal candidates during the evalu-
ation phase. If this number is too low, there is a signif-
icant risk of performing worse than the initial policy.

In order to balance the execution time between optimization and validation,
we ensured that the number of rollouts involved in validation represents 50
percents of the total number of rollouts, optimization included.

Decision-making algorithms for autonomous robots 101



4.2. Results

4.2 Results

In this section we present various experimental results we obtained in sim-
ulation on the kicker robot problem. While this problem speci�es a reward
function with negative rewards, we present the results as cost, in order to
present positive values.

4.2.1 Using surrogate models for inner simulations

Table 4.1 � Average cost received after training for various surrogate models

Training problem nb robots Training cost Validation cost Mutations

Simul
1 110.43 110.43 1496.4
2 109.84 109.84 715.7

Speed
1 106.15 103.86 4626.6
2 94.04 102.88 4090.8

In order to evaluate the impact of using di�erent surrogate models for the
displacement of the robots, we trained policies with two types of approach
cost, as described in section 1.3.3. For every type of training, we used 50 dif-
ferent training each one using one hour of computation using 20 threads. All
the policies training have been seeded using the initial seed described in 4.1.1.
The only di�erence in the con�guration of PML is a reduction of the number of
samples allowed for optimization in the Simul case, due to the important dif-
ference of execution time. Despite this modi�cation, the number of iterations
performed for Simul is still signi�cantly lower than the number of iterations
performed for Speed.

Evaluation was performed using 1000 rollouts per policy, therefore the re-
sults presented in table 4.1 uses 50'000 runs to average the scores. All the
policies have been evaluated using both, the problem used for their training
and the Simul problem which is closer from real-world conditions.

The �rst glance at table 4.1 shows that Speed strongly outperforms Simul.
It highlights the fact that, when using surrogate models to train o�ine policies,
it is crucial to take into account the trade-o� between computational cost and
accuracy.

While one and two robots problems yield similar performances during train-
ing for Simul, there is a signi�cant reduction of the average cost when using
two robots and the Speed approximation. According to our understanding,
this is the result of two di�erent factors: �rst, Speed training has access to
more iterations because simulation of the blackbox is less expensive, second,
approach cost is lower with Speed because there is no noise involved in robots
displacement. On the other hand, policies for the two robots problems were
supposed to yield better results for all problems when compared with the single
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Figure 4.2 � Evolution of scores during training for various surrogate models

robot problems. The main reason behind the lack of di�erence is that solving
the problem with two robots is signi�cantly harder. During re�ning mutation,
PML has to optimize functions with more parameters and it has also access
to more actions. Moreover, since only orthogonal splits are considered in the
current version of PML, a large number of splits are required to produce a
policy in which the closest player to the ball will perform the kick.

While 1PSpeed tend to slightly overestimate the approach cost, 2PSpeed
underestimates it signi�cantly. In this case, we can see that the rough ap-
proximation of the approach cost has a major impact on the prediction of the
cost.

The evolution of scores obtained during the training is presented in Fig-
ure 4.2. We note that the major part of the improvement is obtained during
the �rst 500 seconds for all the models. However, after 1 hour, the average
reward is still slowly improving.

An example of rollout with one of the policies trained by PML is shown
in �gure 4.3. At step 0, the robots are positioned randomly on the �eld, at a
distance up to 4 meters of the ball. Although p2 is closer to the ball than p1,
p1 takes the lead and approach the ball to perform a kick while p2 is moving
toward the expected position of the ball. At step 1, both players have reached
their targets, p1 has kicked the ball and we can see that the shoot was more
powerful than expected. The chosen kicker is p2 who is much closer to the
new position of the ball than p1. He performs the kick and successfully avoid
the goalkeeper, scoring a goal before p1 reaches its target position.
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Figure 4.3 � Execution of a robot kicker problem after training with 2 robots

Table 4.2 � Impact of initial seed on the average cost after training

Problem nb robots Seed Training without seed Training with seed

Simul
1 132.75 113.21 110.43
2 132.87 116.26 109.84

Speed
1 126.66 106.09 106.15
2 126.67 98.03 94.04

4.2.2 Importance of initial policy

In order to measure the impact of using an expert seed on the training results,
we present in table 4.2 the di�erence of expected cost after one hour of training
depending on the use or not of an initial seed, see 4.1.1. In order to provide
meaningful comparison, we also present the average cost received by the policy
used as a seed for training.

All the policies were evaluated on the training problem, using 50 di�erent
training for each modality to produce policies and performing 1000 di�erent
rollouts per policy. The average performance of the seed policy on each prob-
lem was approximated using 50'000 rollouts. Due to the high dispersion of
rewards received, even with 50'000 samples, there is still a small di�erence in
the estimated cost for the expert policy between 1PSimul and 2PSimul. We
can also observe that the average cost for the expert policy is signi�cantly lower
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Figure 4.4 � Evolution of scores during training without initial seed

on Speed than on Simul. This indicates that the Speed problem underestimates
the time needed for approach.

The general trend for ranking is as following: training with the expert seed
provide better results than training without seed which was already better
than the expert seed. There is a single exception for the 1PSpeed problem,
training without seed led to a slightly better reward than training with seed,
but given the amount of data collected and the performance di�erence, the
di�erence is not signi�cant. From the entries presented in table 4.2, we can
observe that the impact of the seed was particularly strong for 2PSimul. This
fact was expected since drawing samples from the Simul blackbox is more
expensive, thus making the number of samples acquired during training lower.

The evolution of policy scores during the training process without initial
seed is presented in �gure 4.4. While the general trend is similar to the evo-
lution of scores with an initial seed, see �gure 4.2, the evolution tend to be
slower, particularly during the the early phase. After one hour of training the
average reward is still growing slowly indicating that additional time would
still improve the average reward.

4.2.3 Combining o�ine learning and online planning

While we proposed only methods based on o�ine learning for the resolution of
the ball approach problem in chapter 3, we experimented both type of methods
for the kicker robot problem. There is two important di�erences between the
two problems. First, the frequency at which actions need to be updated is
much lower in the kicker robot problem. Second, the horizon of the problem is
much shorter since the robots are generally able to score a goal in four steps,
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Table 4.3 � Con�gurations of online planners for experiments

Problem nb robots EvalRollouts MaxEvals ValidationRollouts

Simul
1 20 30 200
2 12 20 40

Speed
1 100 300 10000
2 100 180 3000

Table 4.4 � Average cost received during o�ine and online evaluations

Problem nb robots O�ine Online O�ine+Online

Simul
1 110.43 108.28 103.49
2 109.84 104.31 97.40

Speed
1 106.15 103.98 100.50
2 94.04 94.08 90.78

even in the worst cases, while for ball approach, the robot can perform up to
100 steps before reaching a target position.

The online planner used in this experiment was described in section 2.5. In
order to ensure that it could be used in embedded situations we tuned up the
number of rollouts and evaluations to ensure that the average time spent for a
rollout using the planner is approximately 1 second. This constraint led us to
use the parameters shown in table 4.3. Due to the di�erence of time required
for simulations, online planning performed using the Simul problem has access
to a small number of rollouts.

In order to evaluate the contributions of the o�ine training and the online
planning, we present the results of three di�erent methods in table 4.4.

O�ine O�ine training is used with a budget of 1 hour on 20
threads. The results are directly imported from valida-
tion on Simul problem from section 4.2.1.

Online Online planning is used with the expert policy described
in 4.1.1 as a rollback policy.

O�ine+Online O�ine training is used to produce a policy which is
used as a rollback policy by the online planner.

Performances were evaluated using 50 di�erent o�ine training and eval-
uating each policy with 1000 rollouts on the Simul problem, note that the
problem used for online planning can be di�erent from the problem used for
evaluation. Purely online policies based on the expert policy were evaluated
using 20'000 rollouts.

According to the results shown in table 4.4, using online planning on this
problem tend to strongly outperform o�ine training on two player problems,
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except for Speed. According to our understanding, this is because the o�ine
training manages to distribute the role of kicking to the appropriate robot more
easily with the Speed problem since it has access to more simulations. The
combination of both methods produces signi�cantly better results than each
method taken individually. We can note that even for the Simul problem where
the number of rollouts allowed is particularly low, results are still improved by
online planning.

The best performance reached by o�ine training (94.04) is similar to the
best performance reached by online planning(94.08). This result is particularly
satisfying given the fact that a rollout using the policy trained o�ine costs less
than 1[ms], 1000 times less than the budget allowed for rollouts based on online
planning.

4.2.4 Evaluation of improvement through lateral kick

Since adjusting the �nal position of the ball require a signi�cant amount of
time, being able to kick the ball laterally seems a major advantage because
it increases the options available to the kicker. We experimented the impact
of introducing lateral kicks as available options and the empirical results are
presented in table 4.5. Those results were obtained by training and planning
on the Simul and Speed problems, while evaluation was always performed on
Simul problem.

Table 4.5 � Impact of lateral kicks on average cost

Problem nb robots
O�ine O�ine+Online

classic lateral kicks classic lateral kicks

Simul
1 110.43 109.17 103.49 102.44
2 109.84 107.38 97.40 102.60

Speed
1 106.15 104.64 100.50 100.97
2 94.04 102.96 90.78 91.24

Contrary to primary belief, adding lateral kicks do not signi�cantly reduces
the cost of scoring a goal, it even increases it in some cases. Our understanding
of this fact is rather simple. Lateral kicks travel a shorter distance than pow-
erful kicks and they present a more important noise on direction. Therefore,
their use is limited to speci�c situations where the gain on approach is higher
than the penalty of risking to have to perform one additional kick. While their
use is limited to speci�c situations, they still consume a signi�cant amount of
the budget allocated for both online planning and o�ine training.

These results indicates that given the current speci�cations of the problem,
developing and tuning up a lateral kick might not be worth, since this feature
does not provide a clear bene�t for scoring goals faster. Further investigation
on this matter should include tests with modi�cations on the description of
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the lateral kick to check if improvements on repeatability or power could have
a positive impact. Moreover, while lateral kick is not useful for reducing the
time needed to score a goal, it might still be useful for avoiding opponents.

4.2.5 Cooperation

In order to highlight the di�erences between performances with 1 and 2 robot,
we took out the best policies for 1 and 2 robots on the Speed problem. To avoid
giving a major advantage to the 2 robots problem, we started with one of the
robot positioned at 50 centimeters from the ball in both problem. For the
two robots problem, we tested 1'000 di�erent states, dividing each dimension
into 10 cells. The average reward for each state was computed using 10'000
rollouts.

Consider an average cost for 1 robot problem c1 ∈ R and an average cost
of c2 ∈ R for the 2 robot problem. We de�ne the relative gain of playing
in cooperation by: c1−c2

c1
. Note that a negative relative gain implies that the

cooperation led to an increase of the cost.
We show the di�erence of performances for three di�erent initial positions

of the ball and the �rst robot in Fig. 4.5. The initial position of the ball is
represented by a black circle, the state of the �rst robot is represented by a
black arrow and the relative gain is represented using a color scale.

(a) b = (0, 0), p1 = (−0.5, 0, 0) (b) b = (−3, 0), p1 = (−3.5, 0, 0)

(c) b = (3.25, 2), p1 = (3.25, 2.5,−π/2) (d) b = (1.8,−2.5), p1 = (1.3,−2.5, 0)

Figure 4.5 � Representation of the gain for cooperation
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In some situations, playing cooperatively according to the trained policies
can reduce the cost by up to 60 %, while in others, it increases the cost by 60
%. Since there always exists 2 robots policy equivalent to the 1 robot policy,
this proves that after 1 hour of computation, the 2 robots policy is suboptimal.
This problem is mainly due to the di�culty of representing the natural choice
of kicking with the closest robot with univariate splits based on the problem
dimensions. We noticed two major discontinuities of gain due to univariate
splits. First, based on p2 orientation in Fig. 4.5a. Second, based on p2 lateral
position in Fig. 4.5b.

Despite the issue of univariate split, we saw in Table 4.1 that the 2 robots
policy yield a better average reward than the 1 robot policy. This highlights
that by supporting other types of splits, PML could provide a strong incentive
for cooperation between robots.

4.3 Discussion

In this chapter, the kicker robot problem was presented along with the issues
involved in team-play for robots. Experimental results led to various obser-
vations which can be used for this speci�c problem but also adapted to other
problems.

Our experiments showed how using approximations of a problem can help
to �nd more satisfying policies in a given amount of time by speeding up
the simulation process. By presenting performances of PML during training
with and without expert information provided as a seed, we showed how it
is possible to include external knowledge about the problem although it is
not mandatory to obtain satisfying results. We compared results obtained by
online planners and o�ine training and showed how we can use a simple scheme
to combine both strengths. Finally, a brief study of the impact of lateral kick
was introduced, showing how model-based learning can be used to evaluate
the impact of features in simulation, thus helping to guide the development of
the robots.

While the modeling of the problem includes several key aspects of the real-
world problem, only real-world experiments can con�rm the applicability of
our method to humanoid robot soccer.

Empirical results showed that online planning can strongly improve the
performance of the decision making while using a moderate amount of com-
putational power. By optimizing only the next step while relying on policies
computed o�ine for the following steps, the burden on the online planner is
reduced while still receiving a major improvement for problems with a lim-
ited horizon such as the kicker robot. The scheme proposed in this chapter
could easily be improved by gathering data during o�ine training and then
using them to guide the online sampling, allowing a smarter exploration for the
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planner. Furthermore, using a smarter exploration could allow to use open-
loop planning for a few steps which could represent an advantage on some
problems.

By combining online planning and o�ine training, we hope to be able
to tackle even more complex problems. Among the objectives we follow, we
imagine to optimize policies o�ine on simpli�cation of the problem and to
re�ne them online using additional information. Among the targeted problems,
policies could be trained for cooperation between robots and then used online
by adding information about the position of the opponents.
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In this thesis, three new algorithms for autonomous decision making of robots
are presented: �tted policy forests (FPF), random forests policy iteration
(RFPI) and policy mutation learner (PML). They focus on learning policies
which can be used in real-time in order to provide to robots an e�cient decision-
making, thus ensuring their applicability in real-time applications. This thesis
analyses in-depth two decision-making problems appearing in the RoboCup
competition. Controlling the walk engine to approach the ball and deciding
which robot has to kick the ball and how.

The �rst algorithm we designed was �tted policy forests. While it provides
satisfying results on benchmark problems, its low sample e�ciency makes it
impractical for robotic applications where acquiring samples has a high cost,
for example when it requires human supervision or involves risk of damaging
the hardware.

In order to be able to tackle complex robotic problems, we changed the
learning paradigm, by modeling the problems as blackbox functions with low
computational cost. In order to reduce the discrepancy between the model and
the real world, we decided to optimize coe�cients of the blackbox function to
match observations acquired from the real world. One of the advantages of this
method is that a small number of samples can already reduce the discrepancy
between the model and the real world.

The second algorithm we introduce is random forests policy iteration. It
was experimented on the ball approach problem. Our experimental results show
that it outperforms both the expert policy we used to win RoboCup 2016 and
a version of this algorithm with coe�cients optimized by CMA-ES. This is
very satisfying. However, this solver is based on homogeneous action spaces
and is therefore unsuited for problems with heterogeneous action spaces such
as the kicker robot problem.

The last algorithm we propose is policy mutation learner (PML). Policies
are represented as regression trees. Once computed o�ine, these policies can
be used online to perform decision-making in real-time at a low computational
cost. This algorithm performs successive local mutations of the regression tree
representing the policy, seeking for mutations improving the current policy.
PML can be seeded by an expert policy, and improve it further. PML is able to
solve problems with heterogeneous action spaces, in particular the kicker robot
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problem. While PML already provides satisfying results on the kicker robot
problem, we point out multiple modi�cations which can lead to performance
improvements in section 2.4.9.

Finally, we experimented the use of simple online planning using an o�ine
policy as rollback. This scheme proved to be e�ective on the kicker robot
problem, and can be used for decision-making problems with a large time step.

While the results obtained on the ball approach problem with RFPI are
satisfying in both simulation and real-world experiments, there are still im-
portant improvements which need to be included. During RoboCup 2017, our
team started to perform passes, thanks to improvement in localization accu-
racy and robustness. This revealed that taking into account an estimation of
the ball speed in the state space would lead to a substantial improvement of
the performances of the robot.

Experiments on the kicker robot problem showed that PML can be used for
both improving expert policies or developing policies from scratch. While the
results were satisfying, the policies produced can still be strongly improved,
especially regarding the choice of the robot performing the kick as discussed
in section 4.2.5. Real-world experimentation would also be needed to ensure
that the training in simulation has a positive impact in real-world situations.
Although our learning experiments on the ball approach problem strongly out-
performed those obtained by expert policies, our procedure was not mature
enough to be used during RoboCup 2017 but we plan to use it for RoboCup
2018.

Applications of our decision-making algorithms are based on modeling the
problem with a blackbox based on real-world samples and then optimize poli-
cies based on the blackbox which is an approximation of the real-world. Among
the consequences, bene�ts of using the policy tend to be greater in simulation
than in real-world. According to the theory, the policy produced by RFPI was
supposed to take 2.7 times less steps than the one used in RoboCup 2016. In
practice it was 1.7 times faster. While it is still an improvement, it appears
that reducing the discrepancy between the blackbox model and the reality
could strongly help to improve the performances of the trained policies in the
real world. One of the problems we identi�ed in our calibration of the predic-
tive motion model is the fact that the noise applied at every step is based on
a rough expert estimation and not on real data. By using approaches based
on likelihood maximization [Roy and Thrun 1999] to calibrate the model, we
might be able to improve our results.

Learning accurate blackbox models is as important as �nding e�cient poli-
cies in robotics. In order to make the best decisions, robots need to have a
model of the results of their actions. While this model might be provided by hu-
mans and based on data acquired in the real world, it is often a time-consuming
task. In order to face this issue, we think that we should aim towards robots
autonomously learning the results of their actions rather than relying on exter-
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nal measurements. At RoboCup, this would allow teams to simply place their
robots on the �eld and let them optimize their models autonomously. From
a more general point of view, autonomously learning approximated blackbox
models corresponding to situations they face would allow robots to constantly
improve and adapt to new problems.
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Appendix A

Blackbox optimizers

This chapter presents four methods used to optimize blackbox function. A
brief explanation of each algorithm is provided along with a description of the
process of tuning parameters and additional references for further reading.

A.1 CMA-ES

Covariance matrix adaptation evolution strategy, CMA-ES for short, is a black-
box optimizer proposed in [Hansen and Ostermeier 2001]. This algorithm uses
a limited memory by tracking and updating the mean and the covariance ma-
trix of a multivariate normal distribution. It is essentially a local optimizer
which is strongly in�uenced by the initial guess and the initial step size.

At each step, a new generation of inputs are samples from the multivari-
ate distribution, the mean of the distribution is updated by using a weighted
average of the best inputs, where the input with higher rewards have higher
weights. The evolution of the covariance matrix depends on the weighted dif-
ference of best inputs toward their weighted average. Note that evolution of
the covariance matrix uses a changing rate to ensure some continuity in the
dispersion.

CMA-ES possesses many parameters such as the size of the population at
every step, the number of samples to consider for the weighted mean and the
initial guess. However, several heuristics have been developed to choose them
automatically depending on the input space, thus allowing to obtain satisfying
results when using the algorithm out-of-the-box, even on high-dimensional
spaces.

For the scope of this thesis, we use libcmaes1 a C++ implementation of
CMA-ES developed by Emmanuel Benazera. CMA-ES was designed to op-
timize deterministic blackbox functions but libcmaes implements a simple
scheme to deal with stochastic blackbox functions: it simply multiplies the

1https://github.com/beniz/libcmaes
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number of samples drawn at each step by 5. However, our experiments high-
lighted that the number 5 might be highly insu�cient for optimizing functions
with a large amount of noise with respect to local variations of the mean re-
ward. Uncertainty handling for CMA-ES, UH-CMA-ES for short, is presented
in [Heidrich-Meisner and Igel 2009], this method control the signal to noise
ratio and automatically adapts the number of evaluations to the blackbox
function at each generation.

A.2 Cross entropy

The cross entropy algorithm, CE for short, is a limited memory blackbox
optimizer introduced in [Rubinstein 1999]. It keeps in memory the parameters
of a distribution over the input space. And update the candidate by moving
toward areas of the space with the highest rewards. It performs a local search
which is strongly in�uenced by the initial distribution provided.

At every step, it samples n inputs from the current distribution and evalu-
ates their values using the blackbox. The k more promising inputs are selected
and used to �t a new distribution which is used as a basis for the next step. The
end of the algorithm is obtained either when the parameters of the distribution
have converged or after a number of steps de�ned by the user.

The four parameters of the algorithms are: the number of inputs sampled
at each generation, the number of inputs conserved for estimating the new
distribution, the number of generations of the process and �nally the shape
of the distribution which is usually a multivariate normal distribution. Those
parameters are critical for the performance of the CE algorithm. Note that
Fully automated cross entropy, FACE for short, is a variation of CE in which
the size of the population changes dynamically during execution. This algo-
rithm was proposed in [De Boer and al. 2005] with an intention of identifying
problems where CE would not be able to provide a reliable solution.

A.3 Simulated annealing

The simulated annealing algorithm, SA for short, is a limited memory global
optimizer inspired by thermodynamic principles since it only stores one input
and the index of the current iteration. It has been used to optimize very
large problem such the traveling salesman problem with several thousands
of cities in [Kirkpatrick and al. 1983], therefore it is not limited to optimizing
blackboxes with continuous input. While simulated annealing perform a search
in the global state space, it is not sample e�cient and is therefore more suited
for cheap blackbox functions.

At every step of the algorithm, a neighbor is sampled by applying modi�-
cations to the current candidate. The value of the new candidate is computed
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and then, the new input is always selected if its value is higher than the value of
the current candidate. There is still a probability of accepting less performing
state which depends on the current temperature of the optimizer and the loss
resulting of accepting the new input. Typically, the Boltzmann distribution

is used and acceptance probability p(r, r′, T ) = e−
r−r′
T , with r the reward of

the current candidate, r′ the reward of the new input and T the current tem-
perature of the process. The temperature generally decreases with time, thus
strongly reducing the probability of accepting new candidates which would
decrease the reward. There are di�erent cooling schemes for the temperature,
some using plateau, others chaining multiple phases of warming and cooling.

The two parameters of the simulated annealing optimizer are the number
of samples allowed and the temperature evolution. High temperature is asso-
ciated with global search since it allows to take local steps which are reducing
the reward, but which might have neighbors yielding higher rewards. This im-
pact can also be increased by using temperature to in�uence the neighborhood
function. For continuous problems, the standard deviation of the distribution
from which neighbors are sampled might be proportional to the temperature.

Originally designed to solve deterministic problems, SA requires to sample
several times stochastic blackbox function for each input in order to yield
satisfying results. If the blackbox function is sampled only once, then the
algorithm tend to converge to an input which might have a low average reward,
but chances to produce a high reward.

In this thesis, we only consider stochastic blackbox for continuous problems,
see ??. We use a simple linear pro�le for temperature, see Eq. (A.1), with k
the current iteration, n the number of iterations allowed and T0 the initial
temperature.

T (k, n) = T0
n− k
n

(A.1)

Since this thesis focuses on continuous problems with a bounded input
space, we decided to use a simple scheme for the exploration: at each step we
sample the next element according to Eq. (A.2). With ik+1 the new input to
sample at iteration k + 1, ck the candidate in memory after iteration k, A(I)i
the amplitude of space I along dimension i and d the number of dimensions of
the input space.

ik+1 = ck + U

−A(I)1 A(I)1
. . . . . .

−A(I)d A(I)d

 T (k, n)

T0
(A.2)
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A.4 Bayesian optimization

Bayesian optimization is a state-of-the-art method for global optimization. Its
main principle is to use the samples acquired by interacting with the black-
box function to establish a predictive model for the function based on Gaussian
processes. Since Gaussian processes provide con�dence bounds for di�erent in-
puts, it is then possible to use an acquisition function which is based on both:
the estimated mean and the uncertainty. While several acquisition functions
have been proposed, an interesting approach has been proposed in [Ho�man
and al. 2011]: it consists of using portfolio containing several acquisition func-
tions and sample from them using a bandit-based approach.

While Bayesian optimization methods provides unprecedented sample e�-
ciency, they come with high cost for the acquisition function and are therefore
suited for optimizing expensive blackboxes. For cheap blackbox functions in
high-dimensional spaces, it is generally more computationally e�cient to ac-
quire more samples, even if the choice of the samples is clearly sub-optimal.
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