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S Y N T H È S E

La récente émergence des smartphones et des systèmes de tracking 3D a
permis le développement d’un certains nombre de nouveaux paradigmes
d’interaction. Parmis ces nouveaux paradigmes d’interaction, l’interaction
tactile et l’interaction tangible ont reçu une attention toute particulière. De
nombreuses techniques ont ainsi été développées pour permettre la manip-
ulation de données 3D. Ce développement bénéficie, en particulier, aux do-
maines scientifiques tels que la visualisation qui s’appuie sur la manipula-
tion de données 3D. Des études comparatives ont démontré les avantages
de chacun d’entre eux pour des tâches spécifiques liées à la visualisation.
Pourtant, les interfaces utilisateur graphiques classiques ainsi que la souris
et les claviers prédominent toujours dans la plupart des environnements in-
teractifs: ils sont toujours utiles pour des tâches spécifiques et facilement
accessibles par rapport aux nouveaux paradigmes d’interaction et aux dis-
positifs innovants.

Contrairement à l’approche habituelle qui consiste à créer ou étudier une
nouvelle technique ou un nouveau dispositif d’interaction, les travaux présen-
tés dans cette thèse ouvrent la voie à un continuum d’interaction: la possi-
bilité de passer d’un paradigme d’interaction à l’autre et de combiner deux
ou plusieurs paradigmes d’interaction pour en tirer profit. La création de ce
continuum repose sur plusieurs étapes.

Tout d’abord, en se basant sur l’observation que la souris et le clavier,
l’interaction tactile et l’interaction tangible sont maintenant des normes ou
se rapprochent d’être des paradigmes d’interaction standard pour les cas
d’utilisation occasionnelle ou spécifique, cette thèse étudie et compare leurs
avantages et limites inhérents aux manipulations 3D.

Sur la base de ce travail, nous créons ensuite un paradigme d’interaction
hybride tactile et tangible. Basé sur les besoins de la visualisation scientifique
pour la mécanique des fluides, nous mettons en oeuvre des techniques spé-
cifiques d’interaction exploratrice 3D avec le paradigme hybride et les éval-
uons avec des experts du domaine. La mise en oeuvre prototypique de ce
paradigme hybride repose sur une tablette tactile capable de se géolocaliser.
Sur la base des retours d’expérience des experts du domaine, une telle com-
binaison est plus flexible que l’état de l’art et permet des manipulations 3D
précises.

Avec le potentiel de ce paradigme hybride, nous abordons ensuite la tâche
complexe de la sélection des sous-ensembles 3D —une étape initiale ma-
jeure pour la compréhension des données. Alors que la sélection de sous-
ensembles 3D est généralement effectuée avec une entrée 2D initiale éten-
due ultérieurement par l’ordinateur, notre combinaison tactile/tangible per-
met aux utilisateurs d’avoir une technique de sélection entièrement manuelle
avec la même tablette: un lasso 2D peut être dessiné avec une entrée tactile
qui peut ensuite être étendue en 3D lors du déplacement de la tablette. Non
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seulement cette combinaison comble-t-elle un vide dans la taxonomie des
techniques de sélection de sous-ensembles 3D, mais elle est également plus
précise que les solutions partiellement automatisées, quoique plus lentes.

Enfin, en nous appuyant sur l’observation selon laquelle une interaction
tangible avec un dispositif localement couplé pourrait nécessiter des ajuste-
ments de facteur de gain, nous proposons d’utiliser un aspect spécifique de
l’interaction tactile, la détection de pression, pour contrôler les facteurs de
gain des manipulations tangibles.

Les travaux présentés dans cette thèse démontrent donc le potentiel d’un
continuum d’interaction pour la visualisation en proposant des paradigmes
d’interaction hybrides dans une configuration facile à maintenir, facile à in-
tégrer et abordable. Il fournit les premières étapes nécessaires pour un con-
tinuum d’interaction qui, espérons-le, inspirera la création de plus de tech-
niques d’interaction hybrides pour l’interaction de données 3D.
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1
I N T R O D U C T I O N

The eye...
The window of the soul,

Is the principal mean
By which the central sense

Can most completely and
Abundantly appreciate

The infinite works of nature.

Leonardo da Vinci

1.1 toward an interaction continuum for 3d data visualiza-
tion

Being able to picture specific concepts has historically helped with discover-
ies and hypothesis formulation as well as communication of findings. The
use of visual representation is particularly effective because vision is human
beings’ dominant sense. Early examples can be found in early human his-
tory, pre-computer depictions and computer generated visualizations. For
instance, the English photographer Eadweard Muybridge used an array of
12 cameras to photograph a galloping horse in order to understand whether
all four feet of a horse went off the ground at the same time (see Figure 1).
Earlier, Da Vincy used sketching in order to communicate on Vitruvius’s
theories about perfect human proportions in his work the The Canon of Pro-
portions, a drawing also known as The Vitruvian Man.

Figure 1: The horse in motion by Eadweard Muybridge, 1878 (Public Domain)
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2 introduction

Figure 2: John Snow’s map of the cholera outbreak in the streets of London, 1878

(Public Domain)

Other famous examples of illustrations can be found, for instance, in John
Snow’s map of the cholera outbreak (see Figure 2), Gantt charts for project
management, or network maps. The scientific field behind this use of illus-
tration to assist scientific thinking is called visualization. It thus led to the
creation of an independent scientific branch specialized in the making of
visual data representations. Visualization is an interdisciplinary branch of
science that creates depictions of specific phenomena or data. Its purpose is
to illustrate graphically phenomena, abstract or scientific datasets in order
to help experts of different fields understand and gather qualitative and/or
quantitative insights from the data/phenomena they are studying.

The invention of computer graphics during the twentieth century led to
new advances in visualization, which can now refer to a wide variety of
different visualization domains. Indeed, the visualization field now gathers
techniques and knowledge from flow visualization, medical visualization,
graph visualization, text visualization, network visualization...

While the generic end goal of each visualization subfield is always to
gather insights on data, different data type call for different problems and
thus to different problem-solving needs. For instance, with a map (which is
two dimensional), viewers are either looking for a specific point or trying to
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figure out a path between two of them while with a network/graph, viewers
can be interested in specific relationships between nodes, the shortest-path
between two nodes, the minimum spanning tree of the network... Ben Shnei-
derman (1996) thus distinguishes between seven types of data:

1. One-dimensional (1D) data: that is linear data types. This includes
code, textual documents, list of things or names.

2. Two-dimensional (2D) data: that is planar or map data. This includes
geographic maps, or layouts.

3. Three-dimensional (3D) data: that is real-world object or simulation of
the real-world object or phenomena. It is usually, but not necessarily,
data that has inherent spatial attribute. This includes for instance the
human body, the simulation of flows under an aircraft or molecules.

4. Temporal data: that is time lines which are extremely useful for histor-
ical timeline or medical records.

5. Multi-dimensional data: that is items with n attributes that can become
points in a n-dimensional space. This can include phenomena simula-
tion, statistical databases, demographics... The representation can be
done either in 2D or 3D, depending on the data. Obviously, if the data
has inherent spatial attributes, the representation should be in 3D.

6. Tree data: that is collection of items which all (except one, the root)
have a link to a parent. This include hierarchical data or operating
system’s arborescence.

7. Network data: that is a collection of item which structure (relationship
between its items) cannot be correctly represented with the simple tree
structure as the number of link to parents or children node is unlimited.
This includes network topology maps or social network relationship
maps.

In this thesis, we focus in particular on three-dimensional data or at least
on data that is rendered with a volumetric/spatial representation. This in-
cludes plain 3D data as well as higher-dimensional data that is better visu-
alized in 3D. The former is, for instance, object rendering or product simu-
lation or virtual environments which aim at representing a specific spatial
project. The latter is oriented towards datasets that have many dimensions
but an inherent spatial attribute or that can be represented with a volumet-
ric representation. Numerous examples can be found in medical data, fluid
dynamic simulations, molecular models, or physics simulations. They all
posses inherent spatial information as well other attributes (density, temper-
ature, acceleration, molecule type,...) that can be visually represented with
different colors for instance (or other visual variables). While all these exam-
ple are data from applied and concrete, tangible experiments or measures,
abstract data could also be considered to include three-dimensional network-
s/graphs.
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While it is often said that a picture is worth a thousand words, it re-
mains that a still image cannot possibly be the solution to all problems.
Consequently, visualization is often used, today, to talk about interactive
visualization and often encompasses data representations and interaction
techniques. One can then distinguish between infographics (static content,
often represented on papers), and visualization (dynamic or animated data
depictions). Even though great advances in data representations have been
achieved with Bertin (1983) or Tufte (1990)’ work, to name a few, interaction
remains essential in order to give users the possibility to look for different
insights, or solve specific problems that are inherent with the visualized
datasets. For instance, three-dimensional datasets, the focus of this thesis
work, are severed by occlusion problems (Shneiderman, 1996). The possi-
bilities to interact with the visualized datasets have been multiplied by the
advent of dynamic displays. Hence, in the early 90, researchers in visual-
ization have started focusing on providing interactive visualization systems.
The early Dynamic HomeFinder (Figure 3) is a good example proposed by
Williamson and Shneiderman (1992). With this application, Williamson and
Shneiderman supported through interaction the Visual Information Seeking
Mantra “Overview first, zoom and filter, then details on demand”. How-
ever, as pointed out by Ben Shneiderman first (Shneiderman, 1996), interac-
tive visualization systems must go further than that and provide relate (to
highlight relationships), history (to support undo, replay...) and extract (to
support exporting to a file).

Figure 3: The Dynamic HomeFinger (Williamson and Shneiderman, 1992).

The three dimensionality of the datasets we focus on is a specific and
important notion for human beings. We are indeed used to interact with a



1.1 toward an interaction continuum for 3d data visualization 5

3D spatial world with all the possible problems that are linked to it (oc-
clusion, selection, navigation...). Human beings possess a natural ability,
in most cases, to grasp and manipulate physical and, in particular, three-
dimentional objects (Ishii, 2008a). The loss of physicality of most visualiza-
tion systems, however, makes these problems more complicated and con-
fusing within a digital world. At the beginning, computer interaction was
conducted through keyboard queries and later evolved to include a mouse.
Most system, and thus, most visualization systems hence first used such
mouse and keyboard interaction patterns to provide interactions. Surpris-
ingly, this is still the case. Most of the visualization systems or 3D manipu-
lations applications are desktop software supporting mostly mouse and key-
board (e. g.Katia, Blender, Paraview, ...). Yet the nature of these datasets and
their representation clearly stimulates a support for more natural interac-
tion paradigms to better leverage the sense-making power of visualizations.
Nonetheless, interaction had still not garnered much attention fifteen years
after Williamson and Shneiderman (1992)’s work. As a consequence, (Cook
and Thomas, 2005) and later Yi et al. (2007) specifically placed their focus on
that topic and called for more research on that topic. With their work, Yi et al.
introduced an often debated user-intent-based categorization of interaction
and drew attention to the importance and inherent complexity of interaction.
This effort was then continued by Keefe and Isenberg (Keefe, 2010; Keefe and
Isenberg, 2013) for the topic of scientific visualization arguing for the use of
more natural interaction paradigms for this specific topic. As a consequence,
a fair number of research work has been conducted to better understand the
possible benefits of old and new interaction paradigms for visualization e. g.
(Issartel et al., 2014a; Fu et al., 2010; Jackson et al., 2013; Malmberg et al.,
2006; Mandalika et al., 2017; Sollich et al., 2016; Song et al., 2011; Sultanum
et al., 2011; Ynnerman et al., 2016; Yu et al., 2012; Zhou et al., 2008).

Many different interaction paradigms and techniques have been consid-
ered to help visualization practitioners, but a few of them, including the
traditional mouse-based interfaces, have raised a particular attention. The
inherent benefits of mouse-based interfaces are probably best demonstrated
by their omnipresence in most scientific domains (e. g.medical (Mandalika
et al., 2017), flow (Besançon et al., 2017),...). Mouse and keyboard interface
are omnipresent, and most of the 3D softwares available propose graphical
user interfaces adapted for mouse interaction (e. g.Paraview, Katia, Blender,
Cura, ...). But other interaction paradigms have also been investigated.

For instance, tactile interaction has been investigated a lot (Buxton, 2007)
and has been popularized by the rise of mobile devices in the last decade. It
can provide an improved performance for certain tasks (Kin et al., 2009)
while being compatible to mouse-based input for others (Forlines et al.,
2007; Sears and Shneiderman, 1991), it supports collaboration awareness
(Hornecker et al., 2008), provides somesthetic feedback (Robles-De-La-Torre,
2006), and seems suitability for physically large displays (Tan et al., 2006). It
also appears that it is a good communication channel when one is presenting
visualizations to others (Sundén et al., 2014). As a consequence, several re-
search work focusing on visualization have explored the possibility offered
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by tactile interaction. 3D data exploration has been widely covered, (Cohé
et al., 2011; Fu et al., 2010; Reisman et al., 2009; Yu et al., 2010) and other vi-
sualization fundamental tasks such as 3D picking/3D subset selections have
also been successfully investigated (Yu et al., 2012; Yu et al., 2016).

Tangible interaction have also been frequently studied. In general, tangible
interaction has been shown to be more engaging (Tuddenham et al., 2010)
than other forms of input and to provide rich feedback (Zuckerman and
Gal-Oz, 2013). As a consequence their use for insight gathering on scientific
data has been investigated too. Hinckley et al. (1994b) used them for medical
datasets as early as the 1994. De Guzman et al. (2003) made use of them to
help children navigate through a human body dataset in order to facilitate
learning. Tangible interaction has also been used for molecular visualization
(Schkolne et al., 2004) or fluid dynamic visualization (Issartel et al., 2014b).

Other forms of input have also been used—yet marginally. A complete
review would be out of the scope of this thesis, but a few of them seem
to be frequently mentioned (cubic mice or wands which are often used in
immersive VR systems). VR systems have indeed been investigated a lot,
but are rarely used in real-world scenarios. VR systems are often defined
as “A synthetic, spatial (usually 3D) world seen from a first-person point
of view”(Bowman et al., 2005). Roussou and Drettakis (2005) explain the is-
sues with the deployment of such systems continue to “resolve around the
familiar practical difficulties: setting up special and costly hardware within
facilities that are not easily transportable, requiring special teams of devel-
opers and maintenance staff [...]”. The high cost of these environments has
been mentioned a lot in the literature (Margolis et al., 2011; Grimes, 2013)
and is indeed probably hindering the deployment of such systems. As such,
even though they can offer natural and interesting input and output environ-
ments, often investigated in research work (see Chapter 2), we decide not to
include immersive VR systems in our work. We believe that Desktop VR
systems, such as the Passprop (Hinckley et al., 1994b), or other form of tan-
gible inputs used in a simpler environments (Jackson et al., 2013) are more
likely to be used in real-world scenarios and thus more likely to be used for
visualization tasks and purposes.

The cubic mouse (Fröhlich and Plate, 2000) is a good example of a specific
device that has been built in order to provide the six degrees of freedom
needed by 3D manipulations. However, it is seldom present in working en-
vironments and is not even considered a baseline for manipulation tasks in
research papers anymore which would rather use tactile or tangible interac-
tion (Antle et al., 2009; Lucchi et al., 2010; Jansen et al., 2012; Terrenghi et al.,
2007).

Wands (or other 3D tracked devices) are often used in VR environments.
Similar to hand-tracking systems, their use rely on precise 3D tracking that is
made through the use of complex and expensive camera setups that are, for
the reasons stated above for CAVEs and other immersive VR environments,
not likely to spread to working environments.

Despite the large number of investigated techniques and paradigms, it
remains that mouse and keyboard interaction re still predominantly used
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in most interaction scenarios, including those that deal with 3D data visu-
alization and exploration. This is particularly surprising in case of three-
dimensional datasets visualization, for which the paradigms and devices
studied above provide interesting input and/or output strategies. It seems
that researchers keep on incrementing the number of interaction devices
or techniques that are most of time not adopted by domain experts who
keep on relying on their readily available devices (mouse and keyboard and
perhaps touch interfaces on mobile devices). It thus seems essential to be
able to link new interaction paradigms, devices and techniques with already
adopted ones. The work presented in this thesis aims at making a first step
in this direction in order to pave the way towards an interaction continuum
for the visualization of three dimensional datasets.

A continuum is usually defined as “A continuous sequence in which adja-
cent elements are not perceptibly different from each other, but the extremes
are quite distinct” (Dictionnary, 2017). Such a continuum for interaction
would thus aim at tearing down the barriers between interaction paradigms
in order to allow researchers to seamlessly use them sequentially or in parallel.
Several words are important in the previous sentence and can lead to spe-
cific requirements for the building of such an interaction continuum. These
requirements will be heavily discussed in the thesis as they all represent
different means and requirements that are needed to obtain a continuum of
interaction. We will now discuss and define them.

First of all, the term “seamless” which can be understood in different
ways.

A first interpretation is the possibility to easily switch from on interacting
device to another, providing similar or different interaction paradigms. This
is perhaps the first idea that comes to mind when thinking of a continuum
of interaction, and it thus leads to our first requirements.

R1: Possibility to connect and sync several devices together.

A second interpretation is the possibility to easily switch from one inter-
action paradigm to the other that frames our second requirement:

R2: Possibility to use several interaction paradigms to solve a specific
problem.

The use of “seamless” (i. e. without any particular interruption) can also
be understood as a way to exclude all environments requiring specific main-
tenance or calibration. It thus excludes overly-complicated setups (such as
immersive VR environments) and overly specific devices that almost never
never made it past the research prototype phase (e. g. cubic mouse, globe
mouse...). In this case, our third and final requirement is:

R3: Providing both first and second requirements in easy-to-maintain,
easy-to-integrate , and affordable devices and setups.
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By fullfilling these three requirements, domain experts relying on visual-
ization will be able to (R1) transition and transfer findings from classical
devices (i. e. workstations) to more specific devices (and vice-versa) and (R2)
use specific interaction paradigms for what they do best. The third require-
ment (R3)ensures that the work is not one new research prototype that is
not likely to make it past the research phase and that can without effort be
integrated into the worklow and work environment of domain experts.

The words “sequentially” and “parallel” also refer to the possibilities that
could be offered by such an interaction continuum and allow us to envision
two different scenarios. One could imagine for a sequential use that a single
researcher is able to use a specific interaction paradigm or device first to
achieve the initial steps of a task and then switch to an other one. The parallel
use on the other can refer to either co-located collaborative work or to the
possibility of a single person to make use, with a single device, of several
interaction paradigms.

With those requirements in mind, the creation of an interaction continuum
includes several research axes.

The first research axis is to have more hybrid working environment, i. e.,
working environments that include and help connecting several traditional
workstation on the one hand, and working environments that can help tran-
sitioning and including traditional devices into immersive environments. Re-
search work conducted on this first aspect is covered in Section 2.1.1 whereas
the second one is covered in Section 2.1.2. This work is particularly impor-
tant because eventually, visualization practitioners often come back to tradi-
tional workstation to perform more in-depth analysis with scripts or specific
softwares (see Chapter 4). Consequently, this first research axis is useful to
help visualization practitioners transition from one device or environment
to the other without losing findings or interesting views. Yet, these works do
not explain why or how the several interaction paradigms offered by hybrid
environments can be combined.

A second research axis consists of the creation of hybrid interaction paradigms:
combining two (or more) interaction paradigms together to achieve specific
tasks. Several hybrid interaction paradigms have been investigated in the
literature and are reviewed in Section 2.2.

A third research axis is the support of such hybrid paradigm for visual-
ization tasks. While the work conducted on both hybrid environments and
hybrid interaction paradigms is tremendous, only sparsely is visualization
mentioned in these works. This thesis hence aims at bridging this gap by
covering how it is possible to leverage hybrid interaction techniques to help
visualization practitioners. Furthermore, most of the work conducted on
hybrid interaction paradigm include complicated and/or expensive setups
(violating R3). We thus try to leverage the potential of hybrid interaction
paradigms–thus fulfilling R2)–with only of-the-shelves devices that can eas-
ily be included in the daily workflow of researchers–hence fulfilling R3.
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1.2 thesis statement and overview.

This thesis thus focuses on readily and of-the-shelves technologies (that have
proven to be useful in the context of three-dimensional dataset visualization)
and how they can be combined to better support traditional tasks involved
with three-dimensional dataset visualizations. focusing on this research axis,
the work presented in this thesis thus paves the way towards an interaction
continuum for visualization.

To pursue this goal, an initial review of the state of the art in interaction
continuity is first conducted in Chapter 2. This chapter provides an overview
of the efforts that have been conducted so far in order to create this idea of
interaction continuum. With this overview, past research in both efforts to
create working environments comprising of several input and output de-
vices and prototype combining several interaction paradigms are reviewed
and explained to better put the work presented in this thesis into context.
All three interaction medium were found to be equally precise, though tan-
gible interaction was faster than tactile interaction which was in turn faster
than mouse interaction. Qualitative feedback highlighted the lack of feeling
of precision for tangible manipulation as well as the overall preference for
this interaction paradigm.

For several interaction paradigms to be combined using of-the-shelves de-
vices and strategies, their inherent advantages and limitations within such
a setup for 3D manipulations should be clearly understood. Chapter 3 thus
provides an initial investigation of mouse-based, tactile-based and tangible-
based for 3D manipulations with commercially-and-public available and af-
fordable screens and tablets. All three interaction paradigms were found to
be equally precise but with different completion time (tangible interaction
being the fastest). Fatigue and workload measure as well as qualitative feed-
back are also heavily discussed. In this chapter, we also describe and easy
and affordable setup that can include these three interaction paradigms.

Based on these findings, Chapter 4 proposes a first hybrid interaction
paradigm combining tactile and tangible inputs on a single position-aware
and tactile-enabled tablet in order to help the exploration of fluid dynamic
data by domain experts. A first description of the design space for such a
hybrid interaction paradigm is given. Then, based on the needs of domain
experts that were observed during a field study, a prototype implementing
a hybrid tactile/tangible interaction is described and validated with an ex-
periment with 7 domain experts.

After the focus placed on 3D picking and 3D data manipulations, Chap-
ter 5 focuses on an other crucial task in visualization: 3D spatial selection.
Usually, 3D selection techniques rely on an initial 2D input by the user that
is then extended into 3D by the computer. Using the hybrid tactile/tangi-
ble interaction, it is possible to offer a fully manual selection technique. The
taxonomy of 3D selection technique if first refined before the hybrid tac-
tile/tangible 3D selection technique and its implementation are detailed. A
final evaluation with a partially-automated approach concludes that a fully
manual approach benefits the accuracy of the selection but impacts the com-
pletion time. The qualitative feedback highlights the respective qualities and
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possible applications of each technique and further validate the usefulness
of hybrid interaction paradigms.

Building on the findings from Chapter 3 and Chapter 4 that tangible in-
teraction does not provide the same feeling of precision than the other two
(mouse and touch), in Chapter 6, a new hybrid tactile/tangible interaction is
created to improve the precision that can be acquired with tangible manip-
ulations of a tablet. Tactile input represents more than coordinates informa-
tion and can also inform on pressure levels. This input is then used to control
the gain factor of 3D tangible manipulations on a tablet. Possible mappings
and prototypes are described and evaluated through two studies, highlight-
ing the large preference for pressure-based control of the gain factor and its
better performances.

In a final chapter (Chapter 7) we reflect on the work presented in this thesis
and our ultimate goal of paving the way for a continuum of interaction for
3D data visualization. We also reflect on the possible follow-up work that
would further extend and develop this concept.

Since all the results and their discussions presented in this thesis rely on–
still rarely used–estimation techniques, Appendix A aims at explaining why
such techniques were used and how to interpret them. It quickly summa-
rizes the issues with p-values and NHST and presents the advantages of es-
timation techniques and how to interpret results presented with confidence
intervals.



2
B A C K G R O U N D

This chapter provides an overview of the current state of interaction con-
tinuity. While very few research works have focused on the continuity of
interaction for visualization, this thesis is not the first piece of work focus-
ing on an interaction continuum. However, such a continuum of interaction
covers several different research aspects that are analysed in this chapter.

On the one hand, having an interaction continuum implies being able
to transition between similar or different devices in order to visualize and
interact in different environments. As a consequence, many research papers
have investigated the possibility to bring different interactive environments
and devices closer. On the other hand, providing an interaction continuum
implies being able to transition from one interaction paradigm to an other,
that is, being able to combine two, or more, interaction paradigms on a single
device or within a specific environment.

These two aspects are being discussed in the two sections of this chapters.

2.1 toward hybrid working environments

Before sensor-enriched smartphones and tablets invaded our lives, most
computing environments were dedicated to a single interaction paradigm
(usually for a single user). With the increasing need for co-located collabora-
tive work in several domains, whole branches of research have thus focused
on the creation of systems dedicated to collaboration and thus on the pos-
sible merges of homogeneous or heterogeneous computing environments.
In order to analyze and synthesize this effort, the work presented here will
be divided into two subparts. A first section focuses on the effort to bridge
the gap between devices by providing middlewares that can link and help
communication between several devices. A second section focuses on the
research conducted to add more traditional devices into immersive environ-
ments.

2.1.1 Connecting Devices

Many early systems focusing on new ways to use devices together were
based on manual configuration or calibration. For instance, Myers (2001)’s
system necessitated a manual entry of network addresses while the systems
developed by both Streitz et al. (1999) and Johanson et al. (2002) required
manual entry of the geometry of displays.

However, other more automated approaches were also developed early
on. Holmquist et al. (2001) developed Smart-Its Friends . This technique can
create a connection between two devices when they are held together and
shaken. Such a system is still used for some text communication between
smartphones today, in order to add friends directly on one’s contact list
in the application. No other feature was supported by this system. Hinckley
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(2003) developed the bumping technique that consisted in sensing when and
how two devices were bumped together in order to create a shared display
that spans several devices . An apparently simpler concept was developed
by Rekimoto et al. (2003) with SyncTap which allowed users to simultane-
ously press Sync buttons on two separate devices in order to connect them.
However, any action on the connection between the devices itself required
multiple additional steps (such as indicating the edge of the screen that had
to be linked to the additional device).

With multiple possibilities to synchronize devices together, researchers
then started to focus on proper interaction techniques that could be used
across the span of several displays or devices. Inspired by this initial work on
device synchronization, Hinckley et al. (2004) developed a set of pen-based
gestures that facilitate the combination of, and interaction with multiple,
wirelessly linked mobile devices. As stitching displays together is usually
the cause of interaction issues, Nacenta et al. (2006) created the Perspective
Cursor technique. They base their technique on a more natural way for hu-
man beings to compose display space which is perspective. With the Perspec-
tive Cursor, the mapping of the cursor to the display space appears natural
from where the user is located. The user study they conducted proved to be
faster than a traditional beam-based technique with stitched displays. This
effort was then extended to interaction between mobile hand-held devices
and large displays. Dachselt and Buchholz (2009) investigated an intuitive
basic set of tilt gestures. They introduce this set for a stepwise or continu-
ous interaction with both mobile applications and distant user interfaces by
utilizing the hand-held device as a remote control. With this work Dachselt
and Buchholz demonstrate that a natural flow of interaction can be obtained
in such environments.

Based on these ideas, multiple middleware application for multi-surface
applications were then developed. Gjerlufsen et al. (2011) present, in 2011,
both Substance, a data-oriented framework that decouples functionality from
data, and Shared Substance. Shared Substance is a middleware providing
sharing abstractions, necessary for the multi-device interaction. Focusing on
the information transfer between personal and shared devices Marquardt
et al. (2012) inspire their work from proxemic interactions. In their setup,
the distance between devices is used to measure the engagement with other
devices. With fine-grained measures of proximity, users get aware of devices
surrounding them and progressive reveal of content and interaction help
transferring information. With HuddleLamp, Rädle et al. (2014) proposed a
device that track all the displays and surfaces layed out on a table. Huddle-
Lap is a desk lamp with an integrated RGB-D camera that precisely tracks
the movements and positions of mobile displays and hands on a table. With
this hardware, around-the-table collaboration without an interactive tabletop
is promoted. Devices can ba added or removed at any time, and the detection
of hand movement provided by the lamp facilitates cross-device interaction.
An other sensing technique was presented by Goel et al. (2014). Their Sur-
faceLink is a system where users can make gestures to control association
and information transfer among several devices placed on a shared surface.
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Based on the finding that users usually have a hard time understanding
multi-display environments, Houben et al. (2014) presented ActivitySpace.
ActivitySpace enables users to integrate and work across the devices in the
shared space by making use of the space between each devices. Their study
not only allowed them to state that ActivitySpace could help users to man-
age devices and their resources but it also highlighted a certain number of
usage patterns. In 2015, Simeone et al. (2015) decided to focus on the fac-
tors influencing cross-device interaction. They conducted two user studies.
The first aimed at gathering insights on how people currently perform cross
device operations and how they would ideally like to perform them. The sec-
ond specifically targeted the factors that influence multi-device interaction
with focus groups. Building on the finding that cross device communication
and specifically interaction between different devices is primordial yet still
nowadays difficult, Paay et al. (2017) investigated possible strategies for mov-
ing objects from one device or display to another. They did so by conducting
a study involving a mobile device and a large display, with the mobile de-
vice being the interaction proxy. They concluded that an important factor of
performance of a technique is the ability for users to stabilize the pointer on
the large display while interacting.

Figure 4: An example of the Munin architecture allowing several input channels
and paradigms and several output displays (Badam et al., 2015).

For the particular field of visualization, it is now clear that visualization no
longer solely relies on mouse and keyboard interaction but rather uses an ex-
panded device spectrum including tablets, tabletops (Isenberg and Carpen-
dale, 2007) and wall-sized displays (Isenberg et al., 2011). While collabora-
tive visualization can show parallels with CSCW research, it is clear that
visualization is less document-oriented and more data-driven in its sense-
making process. Collaborative visualization as such poses specific problems
for such collaborative environments. Hence, some researchers have focused
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on creating ubiquitous analytics environments. A more visualization applied
application was thus presented by Seyed et al. (2013) with SkyHunter. Sky-
Hunter is an application specifically built for oil and gas exploration that in-
volves several displays (tabletop and tablet) and combine several interaction
paradigms in order to answer the specific needs of this kind of exploration. A
more high-level discussion on multi-surface environments is also proposed
by the authors. Closely related to visualization, Kammerer et al. (2015) fo-
cused on collaborative process modeling with touch-enabled devices. They
present a set of multi-touch gestures designed to help this complicated task
on multiple devices and present the results of a controlled experiment, stat-
ing that multi-touch application have a high potential for process modeling.
Noteworthy, a less applied work has been conducted by Badam et al. (2015).
They proposed Munin, designed to help building environments comprising
of several homogeneous or heterogeneous input and output surfaces. The au-
thors present the case study of a Munin environment for multidimensional
visualization (see Figure 4).

In summary, many research work has focused on the creation of a middle-
ware that can connect and ease the communication between several homo-
geneous or heterogeneous devices. While this is an important aspect of the
seamless transition that should be offered by an interaction continuum (R1),
only a small amount of them focused on visualization. Furthermore, none of
these really explained what were the benefits offered by each device, when
they should be used or for what specific tasks. The benefits offered by the
several interaction paradigms and their combination (R2) are also rarely ex-
plored. In this thesis however, the focused is placed on the advantages that
are provided by combining different interaction strategies.

2.1.2 Hybrid Virtual Environments

Early-on in the literature, many advantages had been found for the use of
immersive three-dimensional displays. Such virtual reality environments can
give users a better understanding of the virtual space and can improve per-
formance for specific tasks. For example, an early study by Pausch et al.
(1993), demonstrated that, for a generic search task, completion time was
lower on a Head-Mounted-Display (HMD) when compared to a stationary
display. Yet, such immersive environments have several limitations that re-
searchers have mostly addressed by creating Hybrid Virtual Environments. A
Hybrid Virtual Environment (HVE) is a system in which the same virtual
world is rendered in multiple and heterogeneous display contexts.

One of the first HVE system was developed by Stoakley et al. (1995) who
noticed, in 1995, that most implementations of virtual environments only
give users a single point of view, thus prohibiting them from having a larger
context and putting most of the virtual world out of their reach. To compen-
sate for this limitation, they explored a interface called World in Miniature
which consists in having users hold in their hands a three dimensional and
virtual miniature copy of the life-size virtual environment. By doing so, they
thus give users an other point of view from which they can observe the vir-
tual world and that they can change by simply manipulating the hand-size
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Figure 5: The World In Miniature technique: Figure 5a a user manipulating the WIM
using the physical clipboard and the ball prop, and Figure 5b the WIM as
viewed against the background of the life-size virtual environment.

physical prop (see Figure 5). Later, in 1999, Schmalstieg and Schaufler (1999)
introduced SEAM: a 3D user-interface metaphor to connect virtual worlds
that manages scalability in distributed virtual environments. Kiyokawa et al.
(2000) worked on a possible transition between fully immersive and individ-
ual virtual environment on a HMD and a possibly collaborative augmented
reality view for the prototyping of 3D objects. This was made possible thanks
to the optical see-through head-mounted displays.

Brown and Hua (2006) proposed, with SCAPE, to use a see-through work-
bench in the middle of a room with projection walls . The walls form a CAVE
environment that provides the immervise interaction and the workbench is
used to show a world in miniature view of the exact same virtual environ-
ment but allows navigation with lenses. Bornik et al. (2006) built a specific
setup combining a tablet PC and a stereo wall for liver visualization. They
dealt with the specific 2D and 3D interaction mean by creating a specific
device that was tracked in 3D and that allowed them to interact on the tablet
PC.

Models and guidelines for multiple interaction context work have also
been conducted. On the one hand, Grasset et al. (2006) started to investigate
the effect of transitioning between multiple environments on the mixed real-
ity continuum. They formulated an initial concept that they later improved
by reporting on an evaluation study (Grasset et al., 2008). On the other hand,
Wang Baldonado et al. (2000) proposed, based on their experience, design
guidelines for the use multiple views in information visualization. High-
lights of their design guidelines include the need to synchronize interaction
tasks between immersive environments and other views so as to reduce the
cognitive overload often induced by the context switching.

In 2012, Carvalho et al. (2012) reflected on the fact that a complex task
is usually divided into subtasks requiring different demands. Consequently,
conducting them in a single homogeneous environment could be seen as
a challenge for users who would rather have multiple interactive environ-
ments. With their work, they focused on transactions between environments
in HVEs and highlighted the importance of the interaction continuity. They
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proposed HybridDesk, a system featuring a traditional desktop station inte-
grated in the space of a CAVE. In contrast to (Grasset et al., 2008)’s work,
(Carvalho et al., 2012) propose to use several interaction paradigm in order
to avoid disorientation and confusion for users.

In a very recent work, Wang and Lindeman (2015) proposed a new inter-
action technique for HVEs that consists in impersonating a virtual object to
perform and enhance some 3D interaction tasks.

The tremendous work put into HVEs is clearly a good step towards an in-
teraction continuum in the sense that work focusing on HVEs usually try to
include traditional displays or devices within complex, yet useful, environ-
ments. As such, HVEs allow for an easier transition between tasks that are
usually conducted on traditional workstations and devices and other tasks
that can be better conducted in immersive setups. While immersive inter-
active environments are certainly helpful, it remains that they involve high
maintenance, calibration or financial costs (violating (R3). Furthermore, in
most of these work, little thought is actually given to the capabilities offered
by the possible combinations of the input strategies (R2). This aspect is the
focus, on the contrary, the focus of this thesis work, with particular thoughts
given to the advantages that can be obtained by creating hybrid interaction
paradigms for 3D data visualization.

2.2 combining interaction paradigms

A large body of work has also focused on the realization of an interaction
continuum via the combination of several interaction paradigms. Interest-
ingly, most of these efforts have been done with tactile interaction. This
abundance can probably be explained by the dominant position tactile in-
teraction has in people’s lives as well as the rich sensory capacities and the
dexterity offered by human fingers (Robles-De-La-Torre, 2006).

The first “touch” screen is often said to be Sutherland (1964)’s Sketch-
pad which, as early as the 1960s made use of a pen-like device to interact
on a screen. Work on touch screens quickly followed with different sensing
strategies: some relied on capacitive sensing (Johnson, 1965; Johnson, 1967),
optical tracking (Ebeling et al., 1973), or resistive sensing (Colwell Jr William
C, 1975). The first multi-touch screen followed in 1976 and is likely to be
the keyboard with variable graphics proposed by the MIT (Kaplow and
Molnar, 1976). Since then, multiple sensing systems and configuration (ta-
ble, tablet) have been explored. With the explosion of mobile touch-enabled
smartphones, horizontal projection surfaces integrated into a tabletop soon
also became touch-enabled. Short, after, tabletops became possible desktop
surrogates.

The benefits of tactile interaction over other forms of interaction have
been deeply studied for a whole variety of tasks and parameters. Studies
have compared mouse and tactile interaction for speed (Forlines et al., 2007;
Glesser et al., 2013; Sears and Shneiderman, 1991), error rate (Forlines et al.,
2007; Sears and Shneiderman, 1991), minimum target size (Albinsson and
Zhai, 2003), etc. In a very similar way, studies have compared tactile with tan-
gible interaction for tasks as various as puzzle solving (Terrenghi et al., 2007;
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Wang, 2010), layout-creation (Lucchi et al., 2010), photo-sorting (Terrenghi
et al., 2007), selecting/pointing (Raynal et al., 2010), and tracking (Jansen
et al., 2012). To summarize, tactile interaction appears to be a good compro-
mise between fast and precise input. More importantly though, tactile inter-
action is often considered as direct: the fingers interacts, most of the time,
directly on the displayed data (albeit on a 2D projection of the data). This
directness of tactile interaction has been studied in previous work (Knoedel
and Hachet, 2011; Levesque et al., 2011; Meyer et al., 1994; Poupyrev and
Maruyama, 2003; Schmidt et al., 2009; Sears and Shneiderman, 1991; Sime-
one and Gellerseny, 2015). It gives users a feeling of directly manipulation
the data they are visualization which can make it more engaging and en-
courage further manipulations.

Despite these interesting advantages, tactile interaction is often limited
and limiting. It is limited because it is often but a discrete interaction mech-
anism while human being’s interaction mechanisms are continuous (Freitag
et al., 2012). It is limiting in the sense that many complex tasks (in particular
for 3D manipulations) require more than three degrees of freedom. Provid-
ing them usually requires to use multiple fingers, thus leading to occlusion
issues.

Tactile interaction is still, however, omnipresent: on mobile devices, touch-
enabled laptop (such as Microsoft’s Surface products), and on wall-size dis-
plays as well as other collaborative settings. This strong presence of tac-
tile interaction makes it an interesting paradigm to combine with others.
A lot of research projects have tried to augment tactile interaction, either
to cirvumvent its inherent weaknesses or to further take advantage of the
richness offered by humans’ fingers and hand. This section addresses these
efforts by first analyzing how tactile interaction has been combined with tan-
gible interaction and then reviewing how it has been combined with mid-air
gestures.

It is possible to distinguish two main type of devices offering tactile in-
teraction. On the one hand, tabletop (or similar horizontal tactile-enabled
displays) which are fixed and usually facilitate the viewing of large data
with a possibility to carry co-located cooperative work. With such large dis-
play, it is possible to use physical object as tangible user interfaces or to
include additional sensing system to broaden the range of possible gesture
on and above the tabletop. On the other hand, mobile devices all offer today
a multi-touch interface. They also come with many different built-in sensors
(accelerometers, cameras, ...) that make them gesture-sensing ready and spa-
tially aware. Both tabletop environments and mobile devices are discussed
in the two subsections below.

2.2.1 Combining Tactile and Tangible Interaction

First prototypes and platforms of tangible interaction came into view as
early as 1976 with Perlman and Tech. (1976)’s Slot Machine (see Figure 6) to
help children discover programming languages. Later, both Aish (1979) and
Frazer Frazer et al. (1980) tried to simplify the use of computer-aided design
systems with physical systems. They adopted physical blocks to create as-
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semblies, and used computers to recognize the topology that would lead to
digital 3D models. These would ultimately lead to the generation of plans
and drawings.

Figure 6: Perlman’s Slot Machine (Perlman and Tech., 1976).

A decade later, Fitzmaurice (1996) introduced the concept of graspable
user interfaces . It was the first interaction paradigm that used physical
objects to synchronously manipulate digital counterpats. In his work, the
grapsables were associated with specific functions and allowed users to in-
teract with both hand simultaneously.

The concept of graspable user interfaces was then then cornered into tan-
gible user interfaces by Ishii and Ullmer (1997). Tangible User Interfaces can
be seen as an evolution of graspable user interfaces since they do not only
provide input but also rely on tangible representation of digital information.

Tangible User Interfaces (TUI) and especially the class of TUIs called Gras-
pable User Interfaces aim at taking advantage of people’s natural skills
for manipulating their physical environment (Fitzmaurice, 1996; Ishii and
Ullmer, 1997; Ishii, 2008a). Tangible input inherently offers 6 integrated DOF
per prop. Several studies have tried to investigate the possible benefits of
TUIs when compared to other interaction paradigms for different tasks. How-
ever, the focus of these studies will be out of the scope of this background
section. A better overview of these studies will be given in Chapter 3. It re-
mains that tangible interaction have been proven to be useful for 3D rotations
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(Chen et al., 1988; Hinckley et al., 1997), good for collaboration (Marshall et
al., 2009; Olson et al., 2011) and entertaining (Xie et al., 2008).

Figure 7: The particle tracing allows to explore vector datasets by visualizing the
trajectory of particles in vector fields. The origin of the particles is deter-
mined by the stylus (Issartel et al., 2014a).

While recent research on Tangible User Interfaces consider tangible props
as both physical representation and means of interaction, several works have
focused more on the input aspect. Restricting ourselves to interaction de-
signed for visualization, Hinckley et al. (1994b)’s props for neurosurgeons
Issartel et al.’s tangible interfaces (Figure 7) for fluid dynamic visualizations
(Issartel et al., 2014a; Issartel et al., 2014b), or Jackson et al. (2013) prototype
which focused on fiber structures are examples of TUIs that are specifically
used for their input properties. In this case, the tangible props are considered
more like handles.

Other researchers have sought to include them in several environments in
order to benefit from their natural advantages. Most of the literature thus
focused on their use in tabletop environments or on the inherent manipula-
tions offered by mobile devices. These two different interactive environment
are reviewed separately in the following subsections.

2.2.1.1 Tabletop environments

A very large body of work has focused on the possible addition that could be
made to tabletop environments. Tabletops natively offer tactile input sensing.
Tactile interaction is often considered limited for some aspects of the work
conducted on tabletop. As a consequence, several researchers proposed to
add tangible props in tabletop settings.

The pioneer project that combined physical object on a digital surface
probably goes back to 1993 with the DigitalDesk (Wellner, 1993): it consisted
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Figure 8: The Digital Desk (Wellner, 1993).

in augmenting a digital surface by adding paper-based interaction. With this
idea, Wellner, in his PhD dissertation, suggested that the visionary approach
following Xerox PARC’s desktop metaphor in the 1970’s to make paperless
desktop was too simple. He instead suggested to keep the paper but to make
it more powerful with computers. The project relied on a simple desk that
was augmented by a projector–to project digital information onto the desk
or the papers–and a camera to read papers and facilitate pointing gestures
with fingers (see Figure 8). Though the physical objects that interact on the
Digital Desk were only 2D papers, they still represented some kind of early
tangibles. Similarly, the prototype supported pointing gesture which can be
assimilated to tactile interaction. Thus, this visionary work on tabletop sys-
tems already offered a hybrid tactile/tangible interaction paradigm.

With their work on Tangible User Interfaces, Ishii and Ullmer (1997) pushed
further Wellner’s DigitalDesk by proposing the metaDesk which makes use
of physical objects onto a LCD screen. With URP, Underkoffler and Ishii
(1999) applied this concept of adding tangibles onto a digital surface for the
specific application of urban planning.

A large body of work have then focused on the simple addition of tangi-
bles onto tabletop/flat surface.

Wilson’s work on depth sensing cameras included into a tabletop system
(Wilson, 2007), suggest that users are eager to interact with in-air gestures in
such contexts, even though Wilson’s initial purpose was to study the use of
tangible objects in a tabletop environment.
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Figure 9: The reacTable (Jordà et al., 2007), from Daniel Williams Creative Com-
mons.

A major step towards an interaction continuum between tactile and tan-
gible interaction on a tabletop was probably Jordà et al. (2007)’s work with
the reacTable (see Figure 9). The reacTable makes use of computer vision in
order to detect tangibles on the tabletop. The reacTable thus allowed the cre-
ation of live music with tangible tokens placed and combined onto the table-
top and tactile interaction in order to modify the values of parameters. This
work was of particular importance for hybrid interaction paragidms in table-
top development for it was one of the first to propose and defend the use of
computer vision for tangible manipulation. Indeed, before the reacTable (or
the earlier PlayAnywhere (Wilson, 2005a)), the use of computer vision was
discouraged in tabletop environments as it was slow, instable, and would
cause occlusion. Therefore, tangibles had to be enhanced with RFID tags
(Patten et al., 2001) or ultrasound tracking systems (Mazalek, 2005) for in-
stance. The ReacTable clearly showed that the tracking of fiducial markers
was robust, fast, and occlusion-free, and thus allowed more researchers to
easily include them in their tabletop environments.

Olwal and Feiner (2009) took the concept of bridging the gap between tac-
tile and tangible manipulation even further. They used the spatially aware
and tactile-enable devices onto a tabletop to allow for high-precision interac-
tion on large display. The tactile interaction was possible on both the mobile
device and the tabletop and the motions of the mobile device were used as
a way to interact in a tangible manner. They also conducted a user study
to determine if such a combination was useful the specific task of precise
selection. Their study revealed no performance difference with a tactile-only
baseline, but user preference seemed to be higher for the hybrid interaction
approach.



22 background

Spindler and Dachselt (2009) proposed to use a tracked sheet of paper as
a way to navigate 3D spaces on a tabletop. They used the sheet of paper
as a magic lens. With this magic lens, users were able to navigate through
time-data, volumetric data, and zoomable or layered data. The study they
conducted mainly informed them on better design options for their magic
lenses. Baudisch et al. (2010) presented a building block system with each
block containing a marker and a glass fiber bundle that allowed users to
put blocks on top of each other. The tangible blocks they presented have the
advantage that they are not powered and maintenance-free, thus allowing
the easy use of large numbers. Baudisch et al. present in this work three
demo applications including a construction kit.

Very recently, Al-Megren and Ruddle (2016) presented a tabletop TUI
that combines tangible objects with a multi-touch interaction for the specific
needs of data visualization tasks. They first highlighted the requirement for
a data visualization interface and then presented the interface they built ac-
cordingly. They also conducted a study in order to compare multi-touch and
tangible input on the tabletop in their data visualization context and found
that due to more effective strategy that users picked, they were able to find
patterns faster with the tangibles. Plimmer et al. (2016) recent work showed
that a hybrid tactile and tangible interaction could provide benefits for 3D
object manipulation on tabletops. They also found out that, contrary to most
other studies, users tended to prefer tactile interaction due to its familiarity
but that the tangibles were still favored for some specific tasks.

Figure 10: A user manipulation the CAT (Hachet et al., 2004).
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Noteworthy, an interesting vision of the tabletop has also been developed
by Hachet et al. (2004) with the CAT. The CAT can be seen as a circular table-
top with the particularity that it can be oriented in space on three nested
rotation axes (see Figure 10). The angular sensors enable the recovery of
the orientation of the tabletop and a potentiometer facilitates the sensing of
the forces applied on the tabletop in any 3D direction. Hachet et al. also
argue that most interaction tasks are usually better performed by 2D inter-
action, with annotating as an example, and thus provide tactile interaction
(with a pen) on the tabletop. Their device is meant to be used in virtual
environments. This work is particularly interesting as it tried to remove the
limitations of traditional tabletops in order to provide integrated tangible in-
teraction with the tabletop itself. Though, to the best of my knowledge, this
idea has not been pushed further on tabletop systems, it has widely been
used on mobile devices.

This idea to use the tactile-enabled device’s motions to provide tangible
interaction has been explored a lot with mobile devices which are the focus
of the next section.

2.2.1.2 Mobile devices

Mobile devices are omnipresent in our lives now. With their relatively small
size, using them as a surface onto which tangible objects could be placed
seems unreasonable. However, their embedded sensors often allow to sense
their own motions (at the very least rotations) thus making them possible
tangible user interfaces.

Even though nowadays, most, if not all, mobile devices offer tactile inter-
action, this was not initially the case. Therefore, in the early nineties, before
the definition of tangible user interfaces was even made, Fitzmaurice (1993)
proposed to use a spatially-aware palmtop computer combined with touch
sensitve LCD strips in the environment . He imagined the used of combined
interaction in several scenarios such as a computer-augmented library or of-
fice. Even though the two interaction paradigms were not combined onto
the same device, the scenari still relied on tangible manipulations of a mo-
bile device that were augmented or refined by tactile interactions. One could
conjecture that, if at that time smartphones had existed, George Fitzmaurice
would have probably replaced the touch-sensitive LCD strips with a simple
GUI on the smarpthone.

Later, in 2002, Tsang et al. (2002) decided to combine a spatially-aware
display, allowing tangible manipulations, and a tactile-enabled screen. Their
prototype, the Boom Chameleon was a novel input/output device, capable
of sensing the tangible manipulations of the device, the tactile and the vocal
interaction. The display acted as a physical window into the 3D virtual en-
vironment (with a direct one-to-one mapping). The addition of tactile and
vocal input was made to facilitate note-taking tasks onto 3D objects. Their
study showed that such a combination of inputs was used even simultane-
ously and was easy to learn.

This idea to use a spatially-tracked and tactile enabled device has also
vastly been investigated in immersive environments (such as CAVEs). First
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Figure 11: The Virtual Notepad: Figure 11a the pysical setup of the Virtual Notepad
comprises a spatially-tracked tablet and a pen (Poupyrev et al., 1998a),
and Figure 11b users can annotate and draw on selected images on the
notepad.

of all, in 1995, Angus and Sowizral (1995) first thought of using a mobile de-
vice in a VR environment in order to take advantage of already developed
softwares for desktop stations. In their setup they simply migrate applica-
tions developed for the flat screen on a personal digital assistant that they
built which is used as an extension of the hand in 3D but also as a touch
input device (with pen-based interaction in fact). Three years later, based on
this idea, for note-taking in virtual environments, Poupyrev et al. (1998a) pro-
posed to use a spatially-tracked graphics tablet with tactile input (through
pen interaction, as seen in Figure 11) . As for Schmalstieg et al. (1999), they
used transparent props and a pen that were tracked to augment the inter-
action space of a virtual table. These were furthered explored by Darken
and Durost (2005). They evaluated the possibility of combining 2D inter-
action (with pen sensing on a tablet) and 3D interaction (with the tracked
pen) in a cave environment for several tasks (selection, reading, position-
ing, writing text). They concluded that an appropriate combination of 2D
and 3D interaction techniques was preferred over exclusive use of either 2D
or 3D interaction techniques. Indeed, for tasks such as reading and writing
participants clearly favored 2D input while tasks such as selection and 3D
positioning obviously call for 3D interaction techniques. Later, Miguel et al.
(2007) used a tracked PDA to facilitate interaction in CAVEs: users moved
the PDA in 3D to get a suitable “captured” view and then selected a 3D ob-
ject with a tactile input. Similarly, Yee (2003)’s peephole displays combined
position-aware displays with pen input and applied them to three different
applications scenarios. Marzo et al. (2014) studied the possibility to combine
a spatially aware mobile device and multi-touch interaction in a mobile aug-
mented reality (MAR) context. They compared tangible manipulation of the
device only on the one hand, and tactile interaction only on the other hand,
to a hybrid tactile and tangible interaction technique. Their study suggest
that overall hybrid interaction leads to better performances. Tangible inter-
action was judged to be the most intuitive interaction technique while tactile
interaction lead to more accurate results. Wang and Lindeman (2014) investi-
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gated the use of hybrid visualization environment with a wand for tangible
manipulation and a multi-touch screen. Recently, Sollich et al. (2016) pro-
posed to explore time-dependent scientific datasets using a similar configu-
ration to López et al. (2016)’s approach . They use a spatially-aware mobile
device in addition to a large-touch sensitive display. They conducted a study
with developmental biologists in order to test their prototype who confirmed
the potential of such a system for their specific needs. This work thus clearly
showed the potential of hybrid interaction paradigms for visualization pur-
poses.

While using spatially-aware (or rather spatially-tracked) devices has been
extensively studied, this option could be seen as limited since the visual
tracking of a device in the 3D space often requires heavy computation,
tremendous maintenance efforts and high financial investments. However,
with the wide adoption of mobile devices in people’s everyday lives, new
sensors have started to be included by default in smartphones and tablets.
These sensors can, very often, provide information that help precisely record-
ing the way the devices are rotated and help partially computing their own
motions. This lead to researchers trying to use these built-in sensors instead
of tracking mobile devices. Several projects have exploited these possibilities.
For instance, Hassan et al. (2009)’s Chucking technique relied on the natu-
ral gesture that human beings tend to do when throwing or passing objects.
Chucking was designed as a document sharing technique that made use of
both the tactile input and the motions of a mobile device. The direction of the
motion was used for placing the document on a distant (larger) screen after
an initial touch interaction had selected the document that had to be shared.
Similarly, Rahman et al. (2009) focused on the embedded sensors of a mo-
bile devices and more specifically on rotation sensors. They also contributed
to the combination of device motion with tactile in their study demonstrat-
ing that a wide range of wrist deflection angles could be obtained. They
thus showed the potential of a simple tilt-based interaction combined to the
normal use of a tactile-enabled device. Later, Hinckley and Song (2011) com-
pleted that approach. While they investigated the potential of augmenting
the inherent tactile interaction of mobile device with its motions they also en-
visioned the possibility to augment motion-sensing with tactile interaction.
By doing motion-enhanced tactile interaction they enable more expressive
tactile interaction.

A similar idea was detailed in López et al. (2016)’s work in which they
investigated the use of tactile input on a mobile device for 3D manipula-
tions and visualization. A stereoscopic view of the data was obtained from
the large vertical display while the mobile device presented a monoscopic
view (see Figure 12). They augmented the tactile interaction by using the
integrated sensor of the tablet in order to allow for tangible rotations of
the visualized data. With the study they conducted with domain experts in
fluid mechanics and structural biology, they show that this setup and hybrid
interaction paradigm supports interactive data exploration.
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Figure 12: Tablet-based navigation of stereoscopically displayed 3D data (López et
al., 2016).

2.2.1.3 Summary

It thus seems that the combination of both tactile and tangible interaction
is promising in tabletop environments (Section 2.2.1.1) or on mobile devices
(Section 2.2.1.2). Even if tabletops are more and more widespread, above-
table tangible interaction requires specific and expensive sensing systems
(violating R3), so that mobile solutions seems to be the most promising sys-
tems for such a hybrid interaction paradigm. Yet, their possible contributions
to visualization purposes have been rarely explored. The work presented in
this thesis on the hand focuses on these possible contributions.

2.2.2 Mid-air gestures, augmenting the interaction space

In addition to hybrid tactile/tangible interaction systems, past work has also
focused on the combination of mid-air gestures with tactile input.

Mid-air gestures have very early on been studied for 3D manipulations
tasks (Kiyokawa et al., 1997; Hilliges et al., 2009; Song et al., 2012; Wang et al.,
2011). In a way, like tangible interaction, mid-air gestures mimic the physical
actions we make in the real world (Frees et al., 2007) and is thus interesting
for 3D manipulation tasks. For instance, a large number of research papers
have focused on mid-air gestures to increase their accuracy (Frees et al., 2007;
Osawa, 2008).

Gestures in mid-air (or in-air gestures) are often seen as a way to enrich
the tactile interaction that can happen in several environments. The early
work by Buxton (1995) who created a model of background and foreground
interaction is probably the motivation for the development of many gesture-
recognition systems in several environments. Buxton distinguishes between
foreground interaction which is captured with traditional graphical user in-
terfaces and background interaction which happens out of reach of the user
interface. In his work, he mentions that such background interaction could
be useful in system with passively sensed gestures for instance and advocate
for the potentials of such systems.
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Gestures are usually tracked with optical systems (cameras, depth-sensing
cameras, stereo cameras...) but can also be tracked thanks to the use of wired-
gloves. When the detection system is not worn by the user (which is the case
for the gloves for instance), these systems offer the advantages that users do
not need to rely on external and/or intrusive devices.

Similar to Section 2.2.1, the combination of mid-air gestures with tactile
interaction is reviewed in the two following subsections. The first focuses
on tabletop environments while the second reviews in-air gestures around
mobile devices.

2.2.2.1 Tabletop

Most of the early in-air gesture recognition has solely focused on the on-
surface interaction that hand gestures can provide.

Even before Buxton’s work on background/foreground interaction, pio-
neer work in the domain of combining gestural and tactile interaction prob-
ably has to be attributed to Krueger (1990)’s VideoPlace . It is one of the
early examples of multi-hand and multi-finger interaction that also recog-
nizes gestured through 2D video silhouettes. In 2002, Rekimoto (2002) used
a capacitive screen to recognize several hand gestures on a tabletop. With
this system, capacitive-augmented object could even be recognized on the
tabletop. He designed interesting interacton gestures such as a shape-based
object manipulation which allowed users to make use of both hands or even
of entire arms to manipulate digital objects.

Later, Wu and Balakrishnan (2003) integrated this idea into a proper table-
top environment to support more expressive input from users . Their system
is based on DViT (which was not initially designed for tabletop interaction)
which is a computer vision technique to sense touches and hovering interac-
tions. However, their interaction design did not include any-mid air interac-
tion design. They only mention this sensing to determine finger orientation if
one wanted to use a specific rotation metaphor. Still, they supported a good
variety of hand gestures and also investigated for issues in shared spaces
such as awareness and privacy. Building on these previous works, other re-
searchers thus later tried to push the gestural interaction even further by rec-
ognizing mid-air gestures. In their work, Benko and Ishak (2005) proposed
to use hybrid interaction mechanisms in a hybrid augmented reality envi-
ronment (following the work on HVE explained in Section 2.1.2) combining
a tactile-enabled projection surface with head-worn display. They proposed
to merge 2D interaction on the flat surface on the one hand and 3D gestures
with the 3D AR visualization on the other hand.

With TouchLight, Wilson (2005b) proposed to make use of two infrared
cameras in order to track interaction on and in front of a transparent projec-
tion surface, thus allowing the use of tactile interaction and mid-air gestures
(Figure 13). With this work, he also pushed further the pioneer idea from
Wellner (1993) to make the desktop a combination between virtual and phys-
ical places by also enabling tangible interaction on the transparent surface
(with paper documents for instance). The potential of such interaction was
reinforced by Wilson (2007)’s work on depth sensing cameras included into
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tabletop systems. His work suggested that users were eager to interact with
mid-air gestures in tabletop contexts. Understanding the potential of adding
a third dimension to tabletop interaction, Grossman and Wigdor (2007) sur-
veyed past work in this domain and classified them within their taxonomy.
Hilliges et al. (2009) also proposed to use computer vision techniques in
order to track hands above the tabletop. They thus tried to augment tactile
interaction on a tabletop with above mid-air gestures in order to alleviate the
inherent planar (2D) interaction on tabletops for 3D manipulation purposes.

The potential of extending the tabletop to third dimension has then been
extended for a variety of tasks. Banerjee et al. (2011)proposed with Pointable
to use in-air bi-manual perspective based interaction in order to facilitate re-
mote target selection (with the dominant hand) and manipulation (with the
non-dominant hand). Yet, Marquardt et al. (2011) state that tabletop environ-
ments usually ignore the continuous interaction space between the two dis-
crete interaction paradigms that are multi-touch and mid-air gestures. With
their work, they further explored the design space of hybrid interaction map-
pings combining tactile and in-air gestures and implement examples of the
continuum. Freitag et al. (2012) also further investigate a more theoretical
approach of this combination. They proposed to use feed-forward (as op-
posed to feedback which happens during or after the interaction) on tactile
enabled mobile devices to make the tactile interaction a more continuous
one. To enable this feed-forward, they make tactile-enabled devices aware
of the user’s presence and thus augment the tactile interaction space to 3D
gesture sensing.

A similar amount of effort to augment tactile interaction with mid-air ges-
tures has been placed on mobile devices, which are the focus of the next
section.

2.2.2.2 Mobiles

The possibility to passively sense background interaction can also be done
with small additions to mobile devices. A first attempt at doing so was con-
ducted by Harrison et al. (1998). They added pressure sensors on a mobile
device in order to detect which hand was holding it. Still, Hinckley et al.
(2000) were among the firsts to advocate for hybrid interaction approaches
on mobile devices. They investigated the potential of adding sensing capa-
bilities to portable devices. With their work they suggested that simple and

Figure 13: The TouchLight system
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Figure 14: Sidesight, (Butler et al., 2008)

cheap sensor addition could be used and play an important role in mobile in-
teraction and concluded that hybrid approaches “may prove to be the most
practical approach”.

In 2007, Baumgärtner et al. (2007) proposed to use a different approach to
combine mid-air interaction mechanisms with a pen-interaction on a tablet
PC for document searches. The tablet is used in addition to a stereoscopic
display and the hand gesture are not detected by the tablet device but rather
with a tracking device that is put onto the hand of the users. A quick evalu-
ation of their system showed encouraging results in the acceptance of such
a hybrid environment and interaction.

Small mobile devices particularly suffer from the occlusion issue. This is
all the more true when they are used for tasks requiring more than two
degrees of freedom and thus more than one finger on the screen. Conse-
quently, Butler et al. (2008) proposed to create a so-called multitouch input
on portable devices by adding infrared proximity sensors on the sides of
mobile devices. This way, additional interaction can be performed on the
side of the portable devices without occluding the screen (Figure 14). With
this technology, finger gestures can be performed on the side of the mobile
device as a primary input technique to replace or be combined with tactile
interaction.

Further exploring the possibility to integrate gesture sensing into mobile
sensing, Kratz and Rohs (2009) first explored the design space of around-
device interaction on wearable and mobile devices. They then present Hov-
erFlow a prototype tracking hand gestures above a device’s screen. Their
prototype is based on infrared proximity sensors and allowed users to select
colors from a flowing palette. With their system they claimed to conceptu-
ally demonstrate how extending a mobile device’s interaction area beyond
its physical boundaries can enhance mobile interaction in general.

Later, Kratz et al. (2012) worked on rotation of 3D objects and proposed to
augment the number of degrees of freedom of the classical tactile interaction
with mid-air gestures in proximity of the mobile device. They conducted a
study comparing two possible hardware implementation of their idea to a
virtual trackball. Their study showed that their idea led to a lower tast com-
pletion time when compared to the virtual trackball technique with tactile
only input thus proving again the potential of extending the interaction area
to the whole volume surrounding the mobile device.

Chen et al. (2014) proposed to interweave touch events with in-air ges-
tures in order to augment the tactile modality. They based their work on the
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observation that most supported air gestures are fundamentally compart-
mentalized from touch interaction. They thus provided a first prototype of
what could be blend into single and fluid interaction mechanisms combin-
ing both interaction modalities. With their observational study, they devised
a possible taxonomy of in-air gesture combined with tactile interaction and
provided an implementation of some possible hybrid interactions (Figure 15).
In their prototype, air gestures were not only made before or after touches,
but also in between them. This work clearly paved the way towards a fluid
interaction continuum between air gesture and tactile interaction.

Also seeing the potential of providing a greater input expressiveness for
mobile devices, Withana et al. (2015) proposed zSense, a shallow depth ges-
ture recognition system. They aimed at enhancing the interaction on small
wearable systems including smartwatches. While their work clearly focuses
on the recognition system itself, which proved to be efficient in several con-
figurations, zSense could easily be used to make hybrid mid-air and tactile
interactions easier on small tactile-eanabled wearables.

In 2016, Hinckley et al. (2016) proposed to use pre-touch sensing for mo-
bile interaction, i. e., sensing mid-air gestures above the phone to augment
tactile interaction. With this work, they proposed to use the gestures in an
anticipatory fashion, a retroactive fashion or even a hybrid touch and hover
gesture. While their focus is clearly on everyday interaction with mobile de-
vices, their ideas could potentially be adapted to more complex interaction
tasks.

2.2.2.3 Summary

Similar to hybrid tactile/tangible interaction (Section 2.2.1), hybrid tactile
and mid-air gesture interaction has been studied a lot and can be useful
in both tabletop environments (Section 2.2.2.1) and on mobile devices (Sec-
tion 2.2.2.2). However, contrary to tangible interaction which can be obtained
with readily available mobile devices, mid-air-gesture sensing requires on
both tabletops and mobile devices specific sensing equipment that is thus
not very likely to be adopted into visualization practitioners’ workflow (vi-
olating R3). In this thesis, however, we focus on readily available and easy
to maintain and install devices and setups that can offer hybrid interaction
strategies and their possible benefits to 3D data visualization.

Figure 15: Air+Touch possible hybrid interactions, (Chen et al., 2014).
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2.3 discussion

The review of literature provided in this chapter is by no means exhaus-
tive. Other work combining other interaction paradigms have also been
studied with for instance hybrid mid-air and tangible interaction combi-
nation (Starner et al., 2003). However, this chapter provides the necessary
background to illustrate the point that a lot of research effort has been
made to connect devices together (R1), and to investigate hybrid interaction
paradigms (R2). Still, most of the systems combining two (or more) inter-
action paradigm narrowly focus on hardware feasibilities and do not focus
on the possibilities that these systems could offer, in particular for visualiza-
tion, which is the research axis that we want to investigate with this thesis
work. Furthermore, this review of the related work highlighted that most
systems combining interaction strategies usually rely on specific and expen-
sive setups (violating R3). This is the case for all but spatially-aware mobile
devices that can offer native tactile and tangible inputs. As a consequence,
most of the work presented in this thesis makes use of this hybrid interac-
tion paradigm to help domain experts with specific visualization tasks. We
pay particular attention to the fact that the developed interaction techniques
can be easily integrated within the workflow of domain experts. Some recent
research work has also placed the focus on bringing easy to integrate hybrid
interaction to specific scientific domains. For instance Mandalika et al. (2017)
designed a hybrid interface with hybrid interaction mappings to facilitate
radiological diagnosis which comprises a regular 2D display and a zSpace
display to facilitate both usual mouse and keyboard and zSpace stylus inter-
action. This work is in line with our initiative to use devices or setups that
can easily be included into domain experts’ worklow and working environ-
ments.

Overall, this thesis thus focuses on hybrid interaction paradigms (R2) and
their benefits for 3D visualization and manipulations. Specific attention is
given to providing affordable, easy-to-maintain, and easy-to-integrate proto-
type (R3). To achieve these goals, an intial understanding of the inherent ben-
efits and limitations of commonly used interaction paradigms is conducted
in Chapter 3.





3
U S A B I L I T Y C O M PA R I S O N O F M O U S E , TA C T I L E , A N D
TA N G I B L E I N T E R A C T I O N

This chapter studies and compares three main interaction paradigms: mouse
interaction, tactile interaction and tangible interaction. The first one, mouse
interaction, is a common interaction paradigm with computers and is used
a lot for desktop visualization purposes. The second one is used to an in-
creasing degree in our everyday lives with the avent of smartphones and is
also more and more used for visualization purposes in specific context like
tabletop environments, wall-size displays, or tablet devices. Finally, tangible
interaction has also been used more recently for scientific visualization in
augmented reality or virtual reality environments. Our goal in this chap-
ter is to identify the inherent benefits of these three interaction techniques
for generic 3D manipulations. Such 3D manipulations are the quintessence
of all manipulations required in 3D tasks and in particular in visualization
tasks involving volumetric datasets. We thus evaluate the usability (Nielsen,
1993) of the three interaction paradigms. This includes the efficiency (task
completion time), the learnability, the effectiveness (performance), and the
satisfaction (subjective preferences). However, we go beyong this usability
evaluation by adding fatigue and workload measurement.

The findings presented in this chapter thus serve as grounding work for
the rest of the work presented in the thesis.

Main portions of this chapter were previously published at ACM CHI
2017 (Besançon et al., 2017). Thus, any use of “we” in this chapter refers to
myself, Paul Issartel, Mehdi Ammi, and Tobias Isenberg.
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3.1 introduction

Many application domains rely on effective, efficient, and intuitive means
of interacting with 3D data (Keefe, 2010; Munzner et al., 2006). Traditionally,
this interaction has often relied on mouse and keyboard inputs. Recent devel-
opments of interaction technology, however, have led to new input modal-
ities becoming available, in particular tactile input (Isenberg, 2016; Shnei-
derman, 1991a; Wigdor and Wixon, 2011)1 and tangible interaction (Ishii,
2008b; Shaer and Hornecker, 2010).2 Several researchers have thus started to
explore their use for interaction with 3D data. Nevertheless, the three input
modalities—mouse, touch, and tangibles—are not identical in characteristics
such as their capabilities or usability: their advantages and disadvantages
depend on the the interaction goal and the given application domain. For
example, while one may use a tangible input device intuitively in a game,
scientific visualization applications may require a level of accuracy that one
could expect to better be provided by touch-based or in particular mouse-
based input.

Tangibles are often regarded as the best way to interact with 3D data. We
question this assumption here with our study that measured several usabil-
ity factors: participants’ accuracy (i. e., rotational difference and Euclidean
distance), their perceived fatigue levels, and their perceived workload. We
also took into account participants’ preferences and their general feedback
for each technique. The study consisted of 15 abstract 3D docking tasks—
bringing an abstract virtual object to a given target orientation and position—
for each of the three modalities. Our study confirmed that mouse, tactile, and
tangible input are all valid means to control 3D manipulations. Much to our
surprise, however, we found that all three input modalities allow users to
achieve the same level of accuracy. Differences only arose with respect to
task completion times and preferences. Qualitative observations of the par-
ticipants during the study provided additional insights on what users tend
to do when facing a docking task with these three input techniques which
we discuss in detail below.

In summary, we contribute (1) an in-depth analysis of people’s under-
standing and use of mouse-based, tactile, and tangible input for 3D interac-
tion, (2) a study design that compares the three modalities, and (3) in-depth
qualitative observations and people’s preferences in the context of 3D data
analysis environments. We thus shed light on the advantages and disadvan-
tages of the techniques and serves as a basis for their further development
and evaluation, in particular for 3D visualization.

3.2 related work

Much of past work has focused on the comparison of interaction techniques
or devices—many academic studies compare novel technique(s) or device(s)
to established ones. For instance, many studies were conducted to compare
the advantages and limitations of mouse interaction compared to touch in-
teractions for tasks as various as selection, pointing, exploration etc. (e. g.,

1 I. e., interfaces based on finger or pen input on display surfaces.
2 I. e., interfaces that follow Ullmer and Ishii (2000)’s four characteristics.
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(Forlines et al., 2007; Kin et al., 2009; Sasangohar et al., 2009)). Our review of
the literature, however, revealed a lack of studies that would analyze these
modalities for 3D manipulation tasks—only few researchers actually con-
ducted such analyses (Chen et al., 1988; Hinckley et al., 1997; Tuddenham
et al., 2010; Yu et al., 2010).

Among them, Chen et al. (1988) and later Hinckley et al. (1997) compared
input techniques for 3D manipulation. Both studies, however, narrowly fo-
cused on rotation and did not take into account other parameters such as
Euclidean distance to the target or usability. Tuddenham et al. (2010) com-
pared mouse, tactile, and tangible interaction for a matching task on a table-
top, thus constraining the interaction to two dimensions. They measured
the task completion time, the ease of use, and people’s preference. Yu et
al. (2010), finally, compared mouse and touch interaction to validate their
FI3D widget for 7DOF data navigation. In contrast, we aim to get a holistic
and general view of how the three input methods affect the interaction in
3D environments, ultimately to understand how we can better support the
analysis of complex 3D datasets.

Moreover, most comparative studies focus on comparing either mouse and
tactile interaction or tangible and tactile (and many concentrate on 2D tasks).
The literature indeed contains many comparisons of touch and mouse input
for a whole variety of tasks and a whole variety of parameters: speed (For-
lines et al., 2007; Glesser et al., 2013; Sears and Shneiderman, 1991), error rate
(Forlines et al., 2007; Sears and Shneiderman, 1991), minimum target size (Al-
binsson and Zhai, 2003), etc. Similarly, much research has compared tactile
with tangible interaction for tasks as various as puzzle solving (Terrenghi
et al., 2007; Wang, 2010), layout-creation (Lucchi et al., 2010), photo-sorting
(Terrenghi et al., 2007), selecting/pointing (Raynal et al., 2010), and tracking
(Jansen et al., 2012). Most of the work comparing tangible to other interfaces
builds on the assumption that physical interfaces are necessarily better be-
cause they mimic the real world. However, this assumption was rightfully
questioned by Terrenghi et al. (2007). A 2DOF input device (e. g., a mouse)
may, in fact, perform well in a 3D manipulation task due to its inherent ac-
curacy or people’s familiarity with it. To better understand advantages and
challenges of the three input modalities we thus compare them with each
other in a single study.

Esteves and Oakley (2011) also emphasize the fact that most studies com-
paring tangible interaction to other interaction paradigms are hard to gen-
eralize due to the highly simplistic tasks assigned to participants. Studies
can thus only support very general claims on tangible interaction and its
possible benefits. The lack of generalizability of such studies may also be
explained by the overly focused participant groups in such studies. Very
young participants often seem to be chosen to evaluate tangible interaction:
school-aged children, for instance, were asked to evaluate the entertainment
of Tangible User Interfaces (TUIs) (Xie et al., 2008), to solve puzzles (Antle
et al., 2009), or asked to collaborate to understand which paradigm can be
used to reduce conflicts in collaboration tasks (Marshall et al., 2009; Olson
et al., 2011). Similarly, Lucchi et al. (2010) asked college students to recreate
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layouts using tactile and tangible interfaces. The learning effects of tangible
interaction was also tested on non-adult participants in a study conducted
by Price et al. (2003). We try to avoid this lack of generalizability by having
a variety of participants and by using a task that is highly generalizable to
3D manipulation—3D docking. Such tasks have often been used in the litera-
ture to evaluate new 6DOF devices (Froehlich et al., 2006; Zhai and Milgram,
1998), new interaction techniques (Hancock et al., 2007), and for paradigm
comparison studies (Tuddenham et al., 2010) (for the latter, the docking was
only conducted in two dimensions). We argue that using a low-level 3D
docking task is the key to be able to generalize results from comparative
studies.

Related to our work are also remote 3D manipulations through tactile in-
put that benefit from the increasing availability of large displays and the
pervasive nature of mobile, tactile-enabled devices. For instance, Liang et
al. (2013) investigated the use of two back-to-back mobile devices—to facil-
itate tactile input above and under the mobile device—with a combination
of tactile gestures and sensors to support rotation, translation, stretching,
slicing,. . . They also conducted an experiment to examine the use of dedi-
cated regions on the mobile device to control objects or the 3D environment.
Similarly, Du et al. (2011) investigated the use of a smartphone to navigate
within a virtual environment on screen, while Katzakis et al. (2013) exam-
ined the combination of mobile sensors and tactile input for 3D translation
and rotation through a docking task. Coffey et al. (2012), however, used ‘in-
direct’ tactile manipulation to navigate and examine a volumetric dataset
to overcome the inherent issues of tactile interaction with stereoscopic ren-
dering (Valkov et al., 2010). We are interested, in contrast, in a more ‘direct’
interaction3 which also displays the 3D information (e. g., (Besançon et al.,
2017))—we do not focus on remote manipulation using separate displays.

Our study mainly builds on the work by Hinckley et al. (1997) and Tudden-
ham et al. (2010). Hinckley et al. (1997) conducted comparative 3D docking
studies focused on rotation with four different techniques including a 3D
ball (our equivalent is a tangible interface) and a mouse. We go beyond their
approach in that we consider a full 6 DOF manipulation and evaluate more
than time and accuracy. We go beyond Tuddenham et al. (2010)’s approach in
that we, while also comparing mouse, tactile input, and tangible interfaces,
use 3D manipulation tasks—including for the tangible input device.
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(a) Screenshot of the task. (b) Person interacting in the tangible condi-
tion.

(c) Tracking using cameras.

Figure 16: Study setup. Participants were asked to move and orient the shaded ob-
ject such that it matches the target.

3.3 experiment

As we aim to understand the use of mouse, tactile input, and tangibles for
the manipulation of 3D scenes or datasets, our study investigates a task rep-
resentative of 3D manipulation, in a realistic scenario, using a wide range
of participants. Beyond time and error metrics, we observed people’s ac-
tions, learnt about their realistic preferences, and their subjective ratings of
the techniques. We aimed to understand four of Nielsen’s five factors of us-
ability (Nielsen, 1993): effectiveness, efficiency, subjective satisfaction, error
tolerance, and ease of learning. Error tolerance, was not within the scope of
our study. The effectiveness is reflected by an accuracy score (in both angu-
lar and Euclidean distance), the efficiency by means of the time to complete
the task, the subjective satisfaction by looking at participants’ answers to
our questions, and the ease of learning by looking at the evolution of task
completion times.

3 The terms ‘direct’ and ‘indirect’ interaction have to be used carefully. While mouse input is
arguably indirect, tangible and tactile input have both direct and indirect properties. Tactile
input, in our case, occurs directly on the displayed data (albeit on a projection of the 3D
shape) and is thus typically considered to be a direct interaction (Knoedel and Hachet, 2011;
Levesque et al., 2011; Meyer et al., 1994; Poupyrev and Maruyama, 2003; Schmidt et al.,
2009; Sears and Shneiderman, 1991; Simeone and Gellerseny, 2015). Tangible input directly
manipulates a 3D shape (tangible) where the virtual shape is thought to be, but our visuals
are projected onto the separate display. We thus argue that tactile and tangible interaction
are more direct than mouse interaction.
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3.3.1 Task.

The docking task we employ comprises translation in 3 DOF, re-orientation
in 3 DOF, and precise final positioning of 3D shapes—actions representative
of interactive 3D data exploration. A docking task4 consists of bringing a vir-
tual object to a target position and orientation. The docking target is shown
on the screen as a wire-frame version of the object, without the users having
any control over the target’s position or orientation. We argue that high-level
or low-level 3D manipulations can be decomposed into or simply are in the
end, even just mentally, docking tasks. For instance, cutting plane manipu-
lations to understand the internal structure of the data is in fact positioning
and orientating the plane into 3D.

In practice, we used the Utah teapot as the 3D object to manipulate. It is a
generic shape most people understand and does not present any orientation
ambiguity. Other objects could have been used (Hinckley et al. (1997) and
Chen et al. (1988) used a house with difference colors on each side, Zhai
and Milgram (1998) used a tetrahedra with colored edges). Our pilot stud-
ies confirmed that there was no ambiguity in the orientation of the teapot.
We randomly generated and validated the target positions beforehand (to
ensure that all targets are reachable by all input modalities), yielding a pool
of 15 valid target positions (see example in Figure 16a). Our pilot studies
confirmed that the use of perspective and relative size were enough to allow
depth perception on a void background. Per input modality, we asked our
participants to carry out 15 repetitions. For each of them we randomly se-
lected the positions from the remaining positions in the pool. We used the
same pool of positions for all modalities. We counter-balanced the order of
input modalities each participant saw to reduce the bias from learning ef-
fects. Our within-participants design thus comprised of 3 input modalities ×
1 task × 15 trials = 45 trials in total for each participant.

Each trial was started and validated on a key press by the participant
(similar to Chen et al. (1988) or Hinckley et al. (1997)). We considered using
a pedal for validation (e. g., (Hinckley et al., 1997)) but our pilots showed its
triggering precision to be inferior to a key press. We asked participants to
balance accuracy and speed, and intentionally did not reveal their achieved
accuracy after each trial (as done by others (Chen et al., 1988; Hinckley et al.,
1997)) to avoid a bias toward accuracy (Hinckley et al., 1997). In addition,
to avoid participant response bias (Dell et al., 2012), we explicitly told them
before the experiments that none of the techniques was developed by us.

3.3.2 Apparatus.

For all three input modalities we used the same touch-enabled 21” LCD
screen with a resolution of 1920 × 1080 pixels and a 60 Hz refresh-rate. Par-
ticipants were seated in front of the screen which was slightly tilted (approx.
15°) to provide a comfortable tactile input setting (see Figure 16). We de-
cided against using a stereoscopic display as this causes a parallax issue
(Goodman and Teicher, 1988; Valkov et al., 2011a), as well as ‘touch-through’

4 Other examples of docking task studies: (Chen et al., 1988; Froehlich et al., 2006; Glesser et al.,
2013; Hancock et al., 2007; Hinckley et al., 1997; Vuibert et al., 2015; Zhai and Milgram, 1998).
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issues(Chan et al., 2010)—users touch through the 3D objects to reach the
touch-enabled screen. The mouse condition used a classical computer mouse:
a Logitech m100 at 1000 dpi with a 125 Hz polling rate. The tangible con-
dition was based on an optically tracked hand-held cardboard-based cuboc-
tahedron (see Figure 16b), each edge measuring 65 mm. The lack of embed-
ded electronic parts make the tangible prop weigh only 26g. Markers on
each face facilitated its 3D tracking with 6 DOF. Each marker was as big as
the cuboctahedron face it was placed on to ensure an optimal tracking. The
optical tracking system comprised two Project Tango tablets.5 Since camera
refresh rates depends on lighting conditions (the darker the room, the lower
the refresh rate), we set up a room with only artificial lighting.6 The lighting
was then improved by using two 220W lightbulbs—each one producing 3300

lumen—reflected by photography umbrellas to avoid a direct over-lighting
of the tangible prop which would hinder the optical tracking. Ultimately,
our setup yielded camera framerates of 30 fps at a resolution of 800 × 600.
We adjusted the tablet positions according to a previous pilot study. In the
final setup, the two cameras were located as shown in Figure 16c: one above
to see both the screen and the tangible probe from above, and one on the
participants’ left side (at approx. head level) so that the space in front of
the screen was visible. Together, they allowed us to avoid dead angles: par-
ticipants could comfortably hold the cuboctahedron without blocking the
camera’s view. Programmatically, the optical tracking was realized thanks to
a combination of the Vuforia7 and ARToolKit8 frameworks and stabilized by
using the 1 euro filter (Casiez et al., 2012).9 The tactile input, finally, was cap-
tured using capacitive touch sensing built into the screen. This touch sensor
provided up to 10 points—captured via TUIO (Kaltenbrunner et al., 2005).10

The overall setup (distance to screen, camera placement) also allowed users
to rest their arms/wrists (mouse+keyboard condition) as well as to rest their
arms, elbows, and shoulders (tactile/tangible conditions) on the table.

3.3.3 Interaction Mappings.

As much as possible, we chose established mappings for the evaluated input
modalities as follows.

5 See https://www.google.com/atap/project-tango/ .
6 In practice, the setting of refresh rates for cameras is not fully reliable on Android systems—

even with our precautions. Nevertheless, our setup reduced the refresh rate variability as
much as possible.

7 See https://www.vuforia.com/ .
8 See https://www.hitl.washington.edu/artoolkit/ .
9 See http://www.lifl.fr/ casiez/1euro/ .

10 See http://www.tuio.org/ .

https://www.google.com/atap/project-tango/
https://www.vuforia.com/
https://www.hitl.washington.edu/artoolkit/
http://www.lifl.fr/~casiez/1euro/
http://www.tuio.org/
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Figure 17: Tactile mappings for mobile 3D interaction.

3.3.3.1 Mouse+Keyboard mapping

Inspired by the mappings used by Blender,11 Autodesk MDT,12 or Catia and
software tools based on VTK such as Paraview,13 we used the following
mappings:

• right button: translation along the x-/y-axes,

• left button: Virtual Trackball rotation for the x-/y-axes,

• keyboard modifier + right button: z-axis translation,

• keyboard modifier + left button: rotation around the z-axis (leftward
mouse motion = clockwise rotation), and

• the use of the scroll wheel was disabled since zooming needed to be
inaccessible for the docking task.

While several rotation techniques have been implemented ( see the surveys
by Chen et al. (1988) and Bade et al. (2005)), Bell (1988)’s Virtual Trackball
(VT) and Shoemake (1992)’s Arcball seem to be the ones most frequently
used in available softwares. Yet, they are often seen as frustrating by users
because they violate a number of principles for intuitive interaction (Bade et
al., 2005). Based on our pilot studies we decided to use an improved version
of Bell’s VT; one that respects the third principle mentioned by Bade et al.
(2005) and provides a transitive 3D rotation.

3.3.3.2 Tactile Input Mapping

In contrast to mouse+keyboard and tangible input, no single established
standard or quasi-standard for touch-based interaction with 3D data exists.
Based on our survey of 36 commercial and academic mobile applications
on Android and iOS (see Figure 17), we found that most interaction map-
pings do not provide the 6 DOF we need. From those which do, most used
the mapping that relies on either one or two fingers, with the latter pro-
viding rotation round the z-axis, uniform scaling, and translation along the
x-/y-axes using pinching (RST—Rotation, Scale, Translation). Some systems
provide a RST technique with a system-controlled moding: once the user’s
intention is captured by the system the control mode is locked. However, we
decided not to use system-control moding because this could hinder the way

11 See https://www.blender.org/ .
12 See http://www.autodesk.fr/products/autocad-mechanical/overview.
13 See http://www.vtk.org/ and http://www.paraview.org/ .

https://www.blender.org/
http://www.autodesk.fr/products/autocad-mechanical/overview
http://www.vtk.org/
http://www.paraview.org/
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users understand the interaction mapping. While studies have shown that it
is possible to outperform the classical RST technique by separating the de-
grees of freedom (Martinet et al., 2010), we believe that the intuitiveness of
the pinching mapping can be of advantage in our case, so we decided to use
the following mappings:

• 1 finger motion: virtual trackball rotation for the x-/y-axes,

• 2 fingers—RST:
– translation: translation along the x-/y-axes,

– rotation: rotation around the z-axis, and

– pinching: z-axis translation (cf. Hancock et al. (2009a)).

3.3.3.3 Tangible Input Mapping

Tangible input is not yet widely established outside academic research so
we could not draw from established mappings in software tools. We thus
decided to use the intuitive isomorphic position control: a one-to-one map-
ping that moves and rotates the virtual object similar to the motions of the
tangible object in real life. While such an interaction could be classified as a
minimal TUI, it fulfills the four characteristics of TUIs as defined by Ullmer
and Ishii (2000)—similar to other comparable tangible input devices in the
literature (Hinckley et al., 1994b; Song et al., 2011)—and is thus well suited
for our study.

(d) Input Range. The input range of each modality was adjusted so that
translations would not exceed the cameras’ Field of View (FoV) in the tangi-
ble condition. In other words, it was possible to achieve all 3D docking tasks
without clutching for translations. Rotations, however, were not constrained
by the cameras’ FoV and ranged from 19° to 228°. Clutching could be used
for each modality by releasing the finger-pressure on mouse button, remov-
ing fingers from the tactile screen, or briefly using a second-hand grasp with
the tangible object.

3.3.4 Participants.

36 unpaid participants (10 females) took part in our comparative study. Their
ages ranged from 19 to 52 years (mean = 30.2, SD = 8.7; median = 26). Three
were left-handed, the remaining 33 right-handed. With respect to their exper-
tise with 3D manipulation on a computer, 12 participants ranked themselves
as skilled due to frequent use of video-games or 3D softwares, while 24 par-
ticipants stated they had no significant prior experience. Furthermore, 22 of
the participants had a university degree, while 14 had a high school degree.
They all had either normal or corrected-to-normal vision.

3.3.5 Procedure.

Participants were guided through the study by means of a study controller
software that presented the different task blocks in turn. Before starting the
trials of a new input modality, participants were introduced to the interaction
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technique. They were intentionally given minimal instruction on using each
device, they were only informed that they could

• use the mouse’s left and right buttons and the keyboard’s shift key in
the mouse+keyboard condition,

• use multiple fingers on the tactile screen in front of them for the tactile
condition, and

• use the tangible object for the tangible condition.

Further, the space in which the tangible object could be used was pointed out
because participants had to keep within the field of vision of the cameras. An
evaluator was present to answer potential questions during the experiment
as well as take notes about the usage of each of the three input modalities.

Throughout the study, we asked participants to fill in several question-
naires. A first questionnaire captured their demographics and their level
of fatigue before the experiment. After each condition, participants filled a
questionnaire to assess their workload and fatigue level. For the former we
used NASA’s Task Load Index,14 the latter was based on Shaw (1998)’s ap-
proach . A final questionnaire assessed the subjective ratings for the different
techniques. We go beyond the usual Likert-scale or ranking approach sug-
gested by Nielsen (1993) undergone in most studies: to confirm this last self-
assessment, we informed participants that they would have to do a final set
of 15 docking tasks, for which they could pick their favorite technique. Only
after they had voiced their choice, we informed them that, in fact, the study
was over and that the last question was only used to understand their true
preferences. We used this procedure to better understand their preferences
and to avoid a bias toward the technological advantages of tangible input.
Because the experiment already took approx. more than an hour, we conjec-
tured that, if asked to perform an additional set of trials, participants would
have a strong incentive to pick the solution they really preferred to use. We
finally asked whether, if given the free choice, they would have carried the
additional batch of 15 tasks—to better understand people’s eagerness to in-
teract with the chosen technique. Indeed, in his book, Nielsen (1993) explains
that “data showing voluntary usage is really the ultimate subjective satisfac-
tion rating,” which is what we assessed by this last question. Variables. In
our comparative study we thus analyze one independent variable—the inter-
action modality—and five dependent variables—completion time, accuracy,
fatigue, workload, and preferences. We took two different types of accuracy
into account: the Euclidean distance to the target in 3D space as well as the
rotational difference (in degrees) to the target.

3.3.6 Hypotheses.

Based on our previous experience with the three input modalities, we hy-
pothesized that:
h1 The time spent on trials would be shorter in the tangible condition than

in the tactile condition due to the inherent and fully integrated (Jacob

14 See http://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf

http://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf
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et al., 1994) structure. Tactile-based interaction would also be faster than
mouse-based input due to its higher directness and partially integrated
structure.

h2 The accuracy for both the rotation and the Euclidean distance to the
target would be better for the mouse than the tactile condition due to
the better support of the hand when using a mouse. The accuracy of the
tactile input, in turn, would be better than the tangible condition due to
the lack of support for the hand when using tangibles.

h3 The workload for the tangible condition would be low overall due to
its intuitive mapping and fast interaction times—yet the need to have
to hold the object and fine-position it would have a negative impact.
The higher mental demand necessary to understand the mapping of
tactile and mouse interaction balanced by the reduced physical demand
of these techniques would produce a slightly higher workload than for
the tangible.

h4 The resulting fatigue would be highest for tangible input due to having
to hold the physical object, lower for tactile input due to the added rest
on the surface, and minimal for mouse input due to the arm resting on
the table.

h5 People prefer both tangible and tactile inputs over mouse input: tactile
for its “intuitive” mappings and reasonable accuracy, tangible because
it benefits from the similarity to real-world interaction (but lacks a bit
of accuracy). Mouse-based input is not preferred because it forces the
separation of input DOF, while the others provide means of controlling
several DOF in an integrated fashion.

3.4 results

We collected a total of 1620 docking trials from 36 participants, i. e., 540

trials for each input modality. To compare the three conditions, we measured
the task completion times as well as an accuracy score for each condition
and each participant based on their results in each of the trials for a given
condition.

We analyse the collected results using estimation techniques. A complete
justification and explantion of how the results are analysed and presented is
given in Appendix A.

3.4.1 Task Completion Time

We analyze log-transformed time measurements to correct for positive skew-
ness and present our results anti-logged, as it is standard in such cases
(Sauro and Lewis, 2010). Consequently, we arrive at geometric means which
dampen the effect of potential extreme trial completion times which could
otherwise have biased an arithmetic mean.

We present the completion time results in Figure 18a. It shows that it took
participants 61 s to complete the task in the mouse condition, 47 s in the
touch condition, and 26 s in the tangible condition. While the confidence in-
tervals reveal a difference in favor of the tangible condition over the mouse
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Figure 18: Task completion times: (a) absolute values in seconds and (b) pairwise
comparison ratios (left-side technique divided by right one, 1 means sim-
ilar performances). Error bars: 95% confidence intervals.

and touch conditions, they do not allow us to say anything more with con-
fidence. We thus computed a pairwise comparison between the different
conditions, see Figure 18b. The differences in these pairwise comparisons
were also anti-logged and thus present ratios between each of the geomet-
ric means. These ratios all being clearly 6= 1 allows us to interpret the time
differences of completing the task. Figure 18b shows that there is strong evi-
dence for the tangible condition to clearly outperform the mouse condition:
it is more than twice as fast as the mouse condition. The difference between
the tangible condition and the touch condition is also quite strong: the tan-
gible condition is almost twice as fast as the touch condition. The difference
between mouse and touch is not as strong; yet, the touch condition can still
be considered faster than the mouse condition.

We also checked for learning effects by dividing the 15 trials of each con-
dition into three subsets of 5. We thus analysed the completion times for
the three thirds of trials in Figure 19. As shown in Figure 19a, the comple-
tion time in the mouse condition drops from 75 seconds in the first set of
5 trials to approximately 55 seconds in the second and third subsets of tri-
als. In the tactile condition, we can observe a strong evidence of a reduction
of the completion time between the first subset of trials and second subset
and less evidence for a decrease from the second to the last subset. In the
tangible condition, however, we did not find any evidence of a difference in
completion time

3.4.2 Accuracy

An inspection of Q-Q plots on the Euclidean and angular distance showed
that the data did not follow a normal distribution but instead approximately
followed a log-normal distribution. Thus, we also log-transformed both mea-
surements for the analysis and we present the results anti-logged.
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Figure 19: Task completion times in seconds: (a) mouse condition, (b) tactile condi-
tion, and and (c) tangible condition. Error bars: 95% CIs.

3.4.2.1 Euclidean Distances

We report the Euclidean distance to the target in Figure 20a. It is computed
as the distance between the target’s 3D center to the movable teapot’s 3D
center. Figure 20a shows that all three techniques lead to similar accuracies,
with means of 5 mm for the mouse condition and the tangible condition, and
6 mm for tactile input. Pairwise comparison between the conditions (Fig-
ure 20b) suggest that the tangible and the mouse input may have a slight
advantage over tactile interaction, while both mouse and tangible inputs are
very similar in accuracy to each other for our chosen task.

Tangible
Tactile
Mouse

0.0 2.5 5.0 7.5
Completion time (in seconds)(a)

Tactile/Tangible
Mouse/Tangible

Mouse/Tactile

0.6 0.8 1.0 1.2 1.4
Completion time (in seconds)

(b)

Figure 20: Euclidean distances: (a) absolute values in space units and (b) pairwise
comparison ratios. Error bars: 95% CIs.
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Figure 21: Rotational distances: (a) absolute values in ° and (b) pairwise comparison
ratios. Error bars: 95% CIs.
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Figure 22: Total workload in overall NASA TLX units (∈∈∈ [0, 100]). Error bars are
95% CIs for the total workloads.

3.4.2.2 Angular Distances

Figure 21a reports the rotational distance to the target. The results are 3.4° for
mouse input and 3.7° for both tactile and tangible input. Figure 21b shows
the pairwise comparison between the conditions. Similar to the Euclidean
distance, these comparisons indicate that all techniques are similar. There is
weak evidence that the mouse may yield slightly more rotationally-precise
results than tactile or tangible. However we did not find evidence for a per-
formance difference between tactile and tangible for the rotation.

Our analysis of both types of accuracy did not yield evidence for a large
difference in accuracy between the different input modalities. This result did
not change if we—to account for learning effects—only analyzed the latter
2/3 or even the last 1/3 of the trials of each participant in the different
conditions.

3.4.3 Workload

When collecting workload measurements using NASA’s TLX we noticed
that the pilot-study participants were often confused by its second part—
weighing each of the different sub-aspects (i. e., mental, physical, and tem-
poral demand, performance evaluation, effort, and frustration) for a given
task. To avoid the seemingly random choices which would lead to inconclu-
sive or even incorrect results we decided not to consider this second part of
the TLX. We were thus left with what is called a Raw TLX (RTLX). According
to Hart (2006)’s survey, the RTLX may be equally well suited as the regular
TLX. We thus compute the workload for each task as the average of the RTLX
ratings by participants.

The results of this analysis are shown in Figure 22. Here, we show the
total workload for each condition as well as the specific sub-aspects rated by
participants. The non-overlapping confidence intervals between the tactile
and the tangible condition show that there the tangible condition requires
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Figure 23: Workload sub-aspects of Figure 22’s data in individual TLX units (∈∈∈ [0,
100]): (a) mental, (b) physical, and (c) temporal demand, (d) performance
(0 is best), (e) effort, and (f) frustration. Error bars: 95% CIs.

a lower workload than the tactile condition, yet for differences between the
tangible and the mouse condition and even more so between the mouse and
the tactile condition there is much less evidence.

The individual sub-aspects of the workload differs somewhat between the
different conditions, but we did not observe many striking differences be-
tween the three input modalities. Figure 23 shows a detailed analysis of the
differences of the sub-aspects. We can observe that there are only clear differ-
ences in the rating of mental demand between the mouse and tangible condi-
tion (Figure 23a), for the physical demand between the mouse and the other
two (Figure 23b), as well as for the temporal demand between tactile and
tangible condition (Figure 23c). The other comparisons between conditions
for the sub-aspects only show gradual differences (also evident in the respec-
tive lengths of the colored patches in Figure 22). Yet, we can observe a slight
advantage of mouse over tactile for performance evaluation (Figure 23d), a
small advantage of tangible over the other two for effort (Figure 23e), as well
as a lower frustration in the tangible condition (Figure 23f). The difference
in temporal demand between mouse and tangible (Figure 23c) matches the
differences observed in overall interaction times between them (Figure 18).
In contrast, there was no difference between the mouse and tactile condition
even though we observed a clear difference in the completion time between
them.

3.4.4 Fatigue

We present the analysis of the fatigue measurement in Figure 24. Interest-
ingly, none of the conditions exhibits a particularly high level of fatigue
with the means all being lower than 4 on the scale of 0 to 10. While the
mean of our measurements is highest for the tactile condition, based on the
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Figure 24: Total fatigue on a scale from 0 to 10. Error bars are 95% CIs for the total
fatigue ratings.
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Figure 25: Participant preferences: (a) self-reported preferred technique, (b) tech-
nique chosen for the additional (but hypothetical) set of 15 trials, and
(c) technique chosen by those participants who would have voluntarily
stayed to complete the additional set of 15 trials.

confidence intervals there is no evidence that there would be an important
difference between any of the conditions.

3.4.5 Preferences

In addition to the measured values we asked for participants’ preferences.
As described above, we asked for both a normal preference rating and the
technique they would choose if faced with another set of 15 trials, as well as
if they would want to actually stay for these additional 15 trials. Figure 25

reports these self-ratings.
Interestingly, the tangible condition was chosen most often for the stated

preference (24 ×). Among those, however, 5 participants hesitated between
touch and tangible, all ultimately picking the tangible as their favorite. The
remaining 12 participants stated that they preferred tactile over mouse (tac-
tile: 8 ×; mouse: 4 ×). When faced with an additional set of trials, a majority
still preferred the tangible condition (22 ×). The tactile vs. mouse preference,
however, changed with the mouse now being rated higher than the tactile
(tactile: 5 ×; mouse: 9 ×). Of the 16 participants who freely decided to do the
tasks again ((c) in Figure 25), 11 preferred the tangible condition, 4 favored
the mouse, and 1 picked tactile.

3.4.6 The Impact of Experience

Based on the demographics of the participants as well as their experience in
3D manipulation we also analyzed the difference between experienced and
non-experienced participants. Figure 26 shows the Euclidean and rotational
distances as well as the completion times for each condition, for different
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Figure 26: Impact of experience on (a) Euclidean distance (in mm), (b) rotational
distance (in °), and (c) completion time (in ms). Error bars: 95% CIs.

levels of experience. The confidence intervals seem to always suggest a more
accurate task completion of experienced participants for each input modality.
For tactile input we can even observe strong evidence for this difference,
both for Euclidean and angular distances. For task completion times there
is strong evidence of a better performance of experienced user only for the
mouse condition.

3.5 discussion

With our ultimate goal of better understanding the different input modalities
that are available for spatial manipulation in the context of the exploration
of 3D scientific data, we now discuss those aspects of our results that are
most surprising and/or most relevant for our target application domain.

3.5.1 Efficiency

In line with our hypothesis H1, we found that the tangible interaction was
faster than the tactile input which, in turn, was faster than mouse con-
trol. The reason for this difference in completion times is likely the inher-
ent and straightforward integration of DOF control in the tangible condi-
tion, whereas the tactile and mouse condition need to switch interaction
modes—with all the negative implications arising from user- or even system-
controlled interaction modes (e. g., (Buxton, 1986; Sellen et al., 1992)). While
tactile input still facilitates some degree of direct manipulation and DOF in-
tegration (4 DOF in the RST mode), the mouse only controls 2 DOF at any
given time and is also the most indirect input device.

We conjecture that, despite the established benefits of the RST mapping,
participants encountered difficulties with it that may have impacted their
performance, in particular the completion time. We also hypothesize that
the tangible condition’s fast completion time may be a reason for its high
accuracy: an approximate docking is achieved much faster than in the other
conditions, giving participants time to fine-tune their docking.

3.5.2 Learnability

According to Nielsen (1993), learnability is one of the most important factors
of usability. We noticed during the experiment that not a single user decided
to give up on reaching the level of accuracy he/she wanted to achieve in
a given trial with a given technique. In other words, they were all able to
complete the tasks successfully. Looking at Figure 19 we can clearly see that
learning happens in the mouse and tactile conditions. In the mouse condi-
tion, a third of trials (i. e., 5 trials) were enough to achieve significantly better
results and master the mouse interaction. In the tactile condition, after a first
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subset of trials, the completion time required for a trial was also visibly de-
creased. From the evolution of the completion time in the tactile condition,
we could however wonder if results would have gotten any better if partic-
ipants were given an additional set of trials. In the tangible condition, we
cannot find any evidence of a learning in Figure 19. Even when comparing
the completion time of the first trial to the others, we could not detect signs
of an improvement. These results thus support previous statements concern-
ing the affordances of TUIs: they do not require learning as people are used
to performing physical manipulation in the real world.

3.5.3 Effectiveness

The effectiveness was measured in form of an accuracy score of each modal-
ity. We initially thought that the different input modalities provided different
degrees of accuracy. A mouse has a high-dpi sensor and a well-rested grasp
configuration, while tactile relies on the finger as a rather blunt instrument
with less support. The tangible condition, finally, needs optical tracking with
the arm operating in empty space. Yet, surprisingly, our data does not pro-
vide evidence for any of the three techniques being more efficient (not pro-
viding evidence for H2). These results are even more surprising since they
contradict as well the results obtained in the 2D docking task studied by
Tuddenham et al. (2010) who found that the tangible condition exhibits an
easier and more accurate manipulation than the tactile condition. Similarly,
they contradict results by Vuibert et al. (2015) who found that a constrained
desktop device—such as the PHANTOM—leads to a better accuracy than
unconstrained interaction. The results extend previous finding from Hinck-
ley et al. (1997) who found no difference of rotational accuracy between a
tangible-like interface (3D ball and 3D tracker) and the mouse condition.
However, many participants still reported that they perceived that they had
precise control over their actions in the mouse (22 ×) and tactile conditions
(8 ×). In the tangible condition, however, they felt that they had uncontrol-
lable and involuntary hand movements and 20 of them reported the lack of
accuracy they experienced. We believe that this perceived level of accuracy
should not be disregarded in a decision of which interaction device to use
or to offer for tasks that require a high accuracy. A possible explanation is
that, overall, tangible and tactile interaction are less accurate than mouse
and keyboard interaction but all inputs allow users to achieve a similar final
accuracy. We believe that this perceived level of accuracy should not be disre-
garded in a decision of which interaction device to use or to offer for tasks
that require a high accuracy. A possible explanation is that, overall, tangible
and tactile interaction are less accurate than mouse and keyboard interaction
but all inputs allow users to achieve a similar final accuracy.

3.5.4 Workload

With our data we cannot confirm hypothesis H3, but the overall measure-
ments show—for our task and participant group—the same tendency as ar-
gued in H3: The perceived workload for the tangible interaction is lower than
for the tactile condition as well as slightly lower than for the mouse condi-
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tion. We believe, however, that the tactile input (as well as mouse input) can
be improved. We saw that many participants kept their arms in the air while
interacting in the tactile condition which contributed to the workload. This
issue could be improved upon using a better (tactile-only) setup and a better
interaction mapping. For the latter we noticed that many participants had
problems with the sensitivity of the z-translation—caused by them starting
the interaction with their fingers very close together as they are used to in-
teract that way on smart phones and tablets. Tactile interaction—even or in
particular if it uses the same interaction mappings—may require people to
re-learn some of their familiar interaction techniques as they transition from
small to larger screens.

Similarly, we also observed some frustration with tangible input. Some
participants who felt at ease with tangible input tried to manipulate it fast
with one or two hands. Our optical tracking system, however, was only good
enough for slow to medium movements but could not follow relatively fast
manipulations, leading to participant frustration. Similarly, participants oc-
casionally occluded both cameras of our tracking system, leading them to
report frustration due to the interruped tracking—maybe even focusing on
such issues when rating the frustration and not concentrating on other inter-
action issues.

3.5.5 Fatigue

Based on fatigue measurements we cannot confirm our hypothesis H4. The
study setup was created such that—to facilitate a fair comparison—there
was both enough space for mouse-based and tangible input as well as an
equivalent view on the screen for all conditions. This arrangement, however
had an implication on the self-assessed fatigue values. Indeed, many partic-
ipants did not rest their elbows in the tactile condition, potentially resulting
in shoulder and arm fatigue that would probably not have been perceived
on a setup created specifically for tactile interaction. Such a setup would
have also reduced the physical demand of the workload for tactile interac-
tion. This arrangement would only reduce the arm and shoulder fatigue but
would not impact the finger fatigue that we observe in Figure 24. Neverthe-
less, the fatigue ratings for all techniques are quite similar, so that at least the
fatigue measurement seems to have little impact on the choice of interaction
modality. Because our tangible prop was comparatively light (26 g) it proba-
bly had no influence on the overall fatigue of the users, and we thus cannot
generalize these results to other types of props relying on self-tracking which
are heavier.

We would also like to emphasize that tangible interaction lacks the possi-
bility to easily maintain the virtual object in a given position and orientation
as people release it. This was reported by four participants when asked what
they liked about each condition. We can thus conjecture that an extended use
of the tangible could drastically impact fatigue if it is impossible to release
the tangible object without causing exit errors.
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3.5.6 Subjective Preferences

Our data shows an overwhelming preference for tangible input, thus con-
tradicting our hypothesis H5. We believe, however, that this result should
be taken with a grain of salt. Our participants’ preference for tangible in-
teraction is likely biased by them being used to mouse-based and tactile
interfaces, while tangible input is new to most of them. Indeed, some of the
participants who selected tangible input as their favorite explained that they
would use this technique for the forced and free choice (i. e., (b) and (c) in
Figure 25) because they do not have the opportunity to “play” with such
technology at home, while they have easy access to tactile screens and mice.
The novelty effect thus clearly made a difference at least for 5 out of the 11

participants who picked the tangible option for the last preference choice
(i. e., (c) in Figure 25). We also believe the use of the word “play” by the
participants is noteworthy. While usually subjective satisfaction measures
focus on aspects such as simplicity, safety, completeness, and irritation/frus-
tration, TUIs introduce the concept of fun. This may further bias subjective
preference studies. We can thus conclude that, thanks to its entertaining di-
mension and the novelty effect, the tangible interaction is the preferred mean
of interaction. While the novelty effect may fade, the entertaining property
of tangible interaction will probably remain, making tangibles perfectly suit-
able, for instance, for children—as studied, e. g., by Horn et al. (2012).

3.5.7 Experience

The faster completion times in the mouse condition for experts is not sur-
prising: most of tools available for 3D manipulation use the classical mouse
and keyboard interface and these results were predictable. It is interesting
to notice, however, that experience had less influence in the mouse condi-
tion over the accuracy achieved by the two groups of participants. Similarly,
since tangible interaction is still largely a focus of research activities as of to-
day, experience had likely not a big influence on the results we obtained. All
participants were equally prepared for this type of interaction due to their
general experience manipulating objects directly in 3D space. We have no
clear explanation, however, for our observation of a small improvement in
accuracy for experienced participants for tactile input. While some of them
may have tried one of the few 3D exploration or modification applications
on mobile environments, the lack of a standard way of interacting with 3D
data in mobile apps (Figure 17) leads us to believe that is probably not the
reason for the observed difference.

3.5.8 Realistic Application Scenarios

While our study scenario and tasks were chosen to be representative of
generic 3D interaction as needed for visual data exploration, for realistic sce-
narios we likely face different requirements. We envision, for example, that
longer interaction periods will be needed with different types of tasks and
more complex interaction techniques. The longer interaction periods will
have an effect on fatigue and workload, in particular for tangible and tactile
input. Realistic tasks, moreover, require more than 6 DOF interaction: uni-
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form or non-uniform scaling are needed as well as interactions constrained
to specific DOF should at least be included. In addition, many other inter-
action modalities are needed for practical applications such as cutting plane
interaction, parameter specification, view or data selection, etc. (e. g., (Cof-
fey et al., 2012; Keefe and Isenberg, 2013; Yu et al., 2010)). All these are likely
to favor mouse-based and tactile input, as tangible interaction will likely be
more difficult to use for generic interaction—unless multiple tangible input
devices are used. Tangible input, however, may have some benefits for spe-
cialized input (e. g., (Jackson et al., 2013; Sultanum et al., 2011)), while tactile
input may be better for integrated approaches (e. g., (Coffey et al., 2012; Klein
et al., 2012; Sultanum et al., 2011)). A final aspect to consider for realistic ap-
plication scenarios is that, unlike the participant population we tested, we
would be faced with experts in 3D interaction as they carry out such tasks
on an everyday basis. Even though the learning effects we saw did not af-
fect the results of our study overall, we may see other preference ratings
among domain experts after longer periods of use than the ones voiced by
our participants.

3.5.9 Summary of Limitations

The discussion so far has, in fact, mentioned many of the limitations of this
work already, so we only provide a brief summary here. We strove to conduct
a study that would avoid the numerous pitfalls of such a comparison study
by having a population of users that was more representative than in other
HCI studies, facilitating a fair comparison of each technique, and limiting
the impact of biases. Yet, our study was limited by the need for a setup that
would accommodate all three input modalities, while in practice dedicated
setups better suited to a given modality would lead to better individual re-
sults. Moreover, practical applications will require more complex interaction
scenarios, for which mouse and tactile-based input are likely better suited
than tangible interaction. In addition, the chosen participant population for a
quantitative experiment such as ours is different for the ultimate target audi-
ence, and the novelty factor of tangible interaction also introduced a bias—in
particular for the self-reported preferences. Another influence of the chosen
participants is that we faced learning effects, that would disappear if the
techniques would be used in practice for a longer time. Finally, the chosen
mapping for, in particular, tactile interaction may be successful in one type
of application, but other applications and combinations with additional in-
terface elements may require other mappings that may better be suited for
visual exploration of 3D data. We believe that this mapping question should
be the focus of future research.

3.6 conclusion

We have compared mouse, tactile and tangible interaction in the context of
3D manipulation with a 3D docking task. We have provided a study design
that limited the biases involved in this kind of study—participant response
bias (Dell et al., 2012), or learning effect. We set reliable and comparable
methods in a setup that was not in the advantage of any of the techniques.
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advantages disadvantages

mouse • availability, familiarity
• perceived accuracy
• DOF separation
• low physical fatigue
• moding for complex tasks

• difficult mapping
• slowest interaction
• moding required

tactile • availability, familiarity
• perceived precision
• increased directness
• faster than mouse
• easier mapping
• multiple mapping options

• unclear suitability of given mappings
• slower than tangible
• physical fatigue, exit error

tangible • fastest interaction
• intuitive mapping
• impression of control
• novelty factor

• complex tasks unsupported
• relies on 3D tracking
• physical fatigue, exit error
• separate object needed
• rigid interaction mapping
• always on, extra moding needed to

stop interacting

Table 1: Advantages/limitations of each input modality.

We also imagined a technique to better assess the subjective preference of
participants by tricking them in thinking that they had an additional set of
trials to perform.

Despite the limitations mentioned, our study has provided valuable in-
sights on the potential of the three input modalities—mouse, tactile, and
tangible—for the use in 3D interaction in general and, specifically, for the vi-
sual exploration of 3D data. In particular, we found that they are all equally
well suited for precise 3D positioning tasks—contrary to what is generally
assumed about tactile and tangible as input modalities. Our analysis of task
completion time showed that tangible interaction was fastest, tactile slower,
and mouse slowest. However, we did observe learning effects that may play
out for longer-term usage, even though our data still showed the same ad-
vantage for tangible interaction if only the last third of trials was examined.
Moreover, we discussed several additional considerations that need to be
taken into account when designing practical interaction scenarios that put
the observed advantages of tangible interaction into perspective. Researchers
can now build on our findings by knowing that there is not a single input
modality that would be a clear favorite for controlling 3D data during visual
exploration, but that all three have their respective advantages and disad-
vantages that which be considered and which are summarized in Table 1.

Our findings also facilitates further studies that can now focus on other
aspects of the different input modalities. In particular, the interaction map-
ping for tactile input will remain a focus of future research. In addition, the
issue of the exit error will have to be addressed for both tactile and tangi-
ble inputs. The presence or the lack of spatial multiplexing of DOF control



3.6 conclusion 55

for tactile (which some participants did not use despite this being possible)
is another aspect that should be investigated. A closer investigation of peo-
ple’s use of dominant and non-dominant hands during interaction for both
the tangible and the tactile conditions also would be an interesting path to
follow.

Ultimately, however, the work conducted and the study results has helped
us to continue our examination of how to best create an interaction contin-
uum that allows one to fluidly switch between different interaction scenarios
and interaction environments—picking the best one for a given task or situa-
tion. For such an interaction continuum, the definition of the best interaction
technique could rely on several of the factors studied here that we take into
account for the design of several hybrid interaction paradigms explored in
the remainding of this thesis.

Finally, in this chapter, we have also implemented a robust and cheap
setup that can support three different interaction modalities (mouse, tactile,
and tangible interaction), hence making transitions from one to the other
easy and affordable. This is particularly important because the interaction
continuum that we envision cannot be achieved with overly complex or ex-
pensive setups (R3).





4
H Y B R I D TA C T I L E / TA N G I B L E F O R S C I E N T I F I C
V I S U A L I Z AT I O N

(a) Isosurface view. (b) Isosurface view. (c) Volumetric view.

Figure 27: Tangible and tactile interaction for 3D visualization: (a) tangible manip-
ulation of a cutting plane in the visualization; (c) seed placement for
particle tracing; and (b) tactile manipulation of a cutting plane in the
visualization.

Based on the results presented in Chapter 3, we present the design and
evaluation of an interface that combines tactile and tangible paradigms for
3D visualization. On the one hand, we have seen in Section 3.5.3 that tac-
tile interaction and tangible interaction are equally well suited for precise
manipulations, although tangible interaction was much faster as seen in Sec-
tion 3.5.1. On the other hand, tactile (and mouse) interaction was perceived
as more accurate by participants. We thus conjectured that combining these
two interaction paradigm to create a hybrid interaction paradigm on a single
device could be of use for experts researchers in other research fields. This
chapter thus reflects on the possibility to combine these two complementary
interaction techniques.

We conducted an initial field study with follow-up interviews in order to
assess the needs of experts in fluid dynamic research and then to present a
conceptual framework of the use of these different interaction modalities for
visualization both separately and combined—focusing on free exploration
as well as precise control. We present our prototypical implementation of a
subset of these combined mappings for fluid dynamics data visualization.
It relies on a portable, position-aware device which offers both tactile input
and tangible sensing. We finally evaluate, the combination of tactile and
tangible input with domain experts, by reporting on quantitative data and
qualitative feedback.

Main portions of this chapter were previously published at IEEE VIS 2016

(Besançon et al., 2017). Consequently, any use of “we” in this chapter refers
to myself, Paul Issartel, Mehdi Ammi, and Tobias Isenberg.
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4.1 introduction

Interactive data exploration has long been an essential aspect of the visual-
ization of 3D datasets. Traditionally, researchers have been investigating both
dedicated interactive visualization platforms such as immersive VR settings
(Cutler et al., 1997; Dam et al., 2000; Krüger and Fröhlich, 1994) and tradi-
tional workstations. While the former rely on dedicated 3D input devices
such as wands, gloves, or 3D tracking, the latter make use of either desktop-
based 3D input devices such as 3D mice or the traditional mouse+keyboard
setup. Both of these interaction settings (VR and workstation) have a long
tradition and continue to be important. Yet people have increasingly easy
access to novel display and computation environments such as tablet com-
puters and large displays. In addition to traditional ones, these offer new
interaction paradigms such as tactile and tangible input.

Research has shown that these tactile and tangible input paradigms have
many benefits for effective and efficient interaction, in particular for 3D data
exploration (e. g., (Fu et al., 2010; Hinckley et al., 1994b; Issartel et al., 2014b;
Yu et al., 2010)). Yet, they are quite different from each other: tactile input
benefits from its directness and a resulting perception of control and pre-
cision of interaction (Watson et al., 2013; Yu et al., 2010), while tangible in-
put offers an integrated, multi-sensory, and intuitive 6 DOF control due to
its similarity to day-to-day interaction with real objects (Ishii and Ullmer,
1997; Fitzmaurice, 1996; López et al., 2016). The development of portable
position-aware devices offers opportunities to use a tablet for tangible input
in addition to the usual tactile input. Indeed, a device capable of tracking its
own position in 3D space and interacting with a digital environment fulfils
the four requirements for tangible interfaces as defined by Ullmer and Ishii
(2000), while at the same time providing a display with tactile sensing.

One of the main benefits of both input paradigms is that the input sensing
and the data display can be integrated into a single device—Google’s Tango
tablet even supports both input modalities. This sensor integration not only
allows the devices to be used for data exploration by themselves, but also
allows them be integrated into traditional data exploration environments
such as immersive settings (e. g., (Cutler et al., 1997; Klein et al., 2012; Dam
et al., 2000)). These devices allow us to take a large step toward an interaction
continuum (Isenberg, 2014) in which different input and output modalities
can be used for data exploration, depending on the setting and user needs.

Yet, it is still unclear how this transition between the different input modal-
ities could and should be realized in practice, in particular due to the differ-
ent characteristics of tactile and tangible inputs. While several mappings for
the two paradigms have been explored in the past (Olwal and Feiner, 2009;
Sultanum et al., 2011), their respective benefits and challenges with respect
to 3D data exploration remain uncertain. We thus investigate their integra-
tion in one device and the resulting possibilities and potential interaction
mappings for common 3D data exploration tasks. Based on the analysis of
a field-study and on follow-up interviews of five fluid dynamic researchers,
we focus on a subset of the potential interaction mappings to provide interac-
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tion for common fluid-dynamic analysis tasks based on the Google’s Tango
tablet as the interaction device.

Our contributions of this paper are thus threefold. First, we contribute
an understanding of how the two interaction paradigms can be combined
to benefit from their inherent characteristics in the context of 3D data ex-
ploration by discussing the design space for possible interaction mappings.
Second, based on this understanding we propose a design of hybrid map-
pings to achieve common 3D visualization tasks. In particular, we focus on
mappings that make tactile and tangible inputs complementary as well as
investigate the resulting interaction accuracy and constrained control. Third,
we evaluate a subset of these hybrid mappings and compare them to touch-
only or tangible-only approaches in a qualitative evaluation with fluid dy-
namic experts. Our results inform the creation of hybrid and complementary
mappings between tactile and tangible input and paves the way towards a
more complete interaction continuum for scientific visualization.

4.2 related work

Within the field of 3D interaction (Bowman et al., 2005; Hand, 1997; Jankowski
and Hachet, 2013), our work relates to tactile, tangible, and mixed input tech-
niques to explore 3D scenes. We review relevant work next with a focus on
interactive 3D visualization.

4.2.1 Tactile Input and Its Use for 3D Data Exploration

Tactile input for interactive systems has been investigated for a long time
(Buxton, 2007) and has been popularized by the rise of mobile devices in
the last decade. It has multiple advantages over other forms of input includ-
ing an improved performance for certain tasks (Kin et al., 2009) while being
compatible to mouse-based input for others (Forlines et al., 2007; Sears and
Shneiderman, 1991), its support of interaction collaboration awareness (Hor-
necker et al., 2008), its somesthetic feedback (Robles-De-La-Torre, 2006), its
suitability for physically large displays (Tan et al., 2006), and its use as a com-
munication channel when one is presenting visualizations to others (Sundén
et al., 2014).

The use of tactile input to control 3D scenes such as visualizations, how-
ever, requires a mapping from the 2D input surface to the 3D data space
(Isenberg, 2011; Isenberg, 2016). Several basic interaction techniques have
been proposed, including those for the exploration of 3D visualizations. For
example, Coffey et al. (2012) designed a set of tactile interaction mappings
for virtual reality (VR) contexts, combining a large stereoscopic screen with a
touch-enabled tabletop display using a world-in-miniature metaphor. Their
widget-based interaction techniques let users navigate the 3D visualization
(rotation, translation, scaling), position slicing planes, place annotations, se-
lect data subsets, and plan camera paths. Klein et al. (2012) presented a
similar design study, but this time for monoscopic-only projections of fluid
dynamics data. They also provide navigation and cutting plane interaction
techniques, using only a single surface. In addition, they investigate particle
seeding in 3D vector fields and the support of collaboration. A third example
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of a design study for the exploration of scientific data is (Lundström et al.,
2011)’s virtual surgery table, also intended for collaborative setups. It sup-
ports 6 DOF navigation as well as additional exploration techniques such as
the exploration of slices from medical imaging datasets.

In addition to these systems and design studies, a number of additional
tactile interacttion techniques have been proposed. For example, Cohé et al.
(2011)’s tBox , Reisman et al. (2009)’s 3D-RST , and Yu et al. (2010)’s FI3D
provide dataset navigation facilities, Fu et al. (2010)’s powers-of-10 ladder
provides scale navigation at different levels, and Yu et al. (2012) and Yu et al.
(2016) suggest context-aware spatial selection techniques.

Although these tactile interaction techniques offer the benefits described
above, tactile input also has some issues compared to traditional input de-
vices that have been confirmed by study presented in the previous chapter.
In particular, finger fatigue (Besançon et al., 2017), fat finger, and a higher
sensitivity to noise in the input data (Besançon et al., 2017; Tuddenham et al.,
2010) are issues that one has to account for when selecting or designing a
tactile interaction technique. It is also worth noticing that, although pinching
is used and perceived as a natural gesture for zooming, the gesture cannot at
the same time provide z-translations (Hancock et al., 2009b; Hancock et al.,
2010). In our work, we thus base the implementation on some of these meth-
ods, but also learn from the insights reported by their respective authors and
propose slightly adjusted designs.

4.2.2 Tangible Input and Its Use for 3D Data Exploration

Tangible User Interfaces (TUI) and especially the class of TUIs called Gras-
pable User Interfaces aim at taking advantage of people’s natural skills
for manipulating their physical environment (Fitzmaurice, 1996; Ishii and
Ullmer, 1997; Ishii, 2008a). While many TUIs use tangible props as both
physical representation and means of interaction, several TUIs focus more
on the input aspect (Hinckley et al., 1994b; Issartel et al., 2014a; Issartel et
al., 2016b; Issartel et al., 2014b; Jackson et al., 2013; Song et al., 2011) by
considering the tangible props as handles. Tangible input inherently offers 6

integrated DOF per prop. In our case, we are thus restricted to a single set
of 6 DOF as we work with a single device.

The benefits of Tangible interaction have already been explained in the
previous chapter. To summarize, tangible interaction has been shown to be
more engaging(Tuddenham et al., 2010) than other forms of input and to
provide rich feedback (Zuckerman and Gal-Oz, 2013). There is also evidence
that it requires very little mental effort to use(Besançon et al., 2017). It has
been reported to be preferred by users when compared with other inter-
action means (Besançon et al., 2017; Zuckerman and Gal-Oz, 2013), even
though it is still unclear whether this reported preference was obtained be-
cause of a novelty effect (Besançon et al., 2017). Tangible interaction can be
a source of fatigue and exit-errors (Besançon et al., 2017) and users have re-
ported feeling that it was less reliable than mouse or touch inputs (Besançon
et al., 2017; Zuckerman and Gal-Oz, 2013). Furthermore, 3D data space navi-
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gation requires zooming which is something that a tangible handle does not
naturally provide.

Two general approaches have been proposed for tangible interaction in a
visualization context: either a tangible object serves as an input device while
the result of interaction is displayed on an external screen, or the result is
displayed on the tangible object itself. In the first category, Hinckley et al.
(1994b) use a rectangular acrylic surface as a slicing tool for neuro-surgical
datasets and display the sliced dataset on an classical external display. They
combine this approach with a head prop to manipulate the dataset as well as
clutching through a foot pedal (for the head-prop) and a button directly lo-
cated on the plane (for the cutting plane). Similarly, De Guzman et al. (2003)
use a fork as a metaphor for the slicing plane to help children navigate
through a 3D virtual model of the human body. The fork can be attached to
a mechanical arm (thus providing a form of clutching) or can be freely ma-
nipulated by hand. They represent the dataset by either a 2D or 3D physical
body model but its orientation in physical space is not linked to that of the
virtual dataset. In contrast, Qi and Martens (2005) provide a generic shape
(a cube) to represent their dataset and propose cutting plane with either a
tracked pen (that defines the plane’s normal) or a tracked square frame sim-
ilar to De Guzman et al. (2003)’s solution. Like Guzman et al., Mulder and
Van Liere (2002)’s approach relies on a fixed tracking system and a fixed
display setup and maps the orientation of a tracked pen to that of a virtual
slicing plane, while Schkolne et al. (2004) use tracked props to position ele-
ments in 3D space for molecular visualization. A more lightweight tracking
approach is used by Jackson et al. (2013) whose tangible interface consists of
a printed 2D barcode that can be rolled into a pen-like object whose location
and orientation can be easily captured using a camera—to be used, for exam-
ple, for fibertract exploration. While Issartel et al. (2014b)’s data exploration
system also relies on simple fiducial tracking to control the cutting plane
with a tangible pen, they integrate this approach in a portable and afford-
able augmented reality setup that uses a tablet computer to view the dataset
and track the interaction props. As an alternative to pen-based control, they
also investigate the use of a cutting plane that is sightly offset from the tablet
toward the data. The last two approaches have the benefit that a dedicated
3D tracking system is no longer necessary and thus avoid the calibration
and maintenance issues that otherwise affect such setups. We use a similar
approach in form of a spatially-aware tablet computer which can track its
location and orientation in space.

The second approach for tangible interaction with 3D visualizations is to
display (at least a part of) the data on the tangible device itself. For example,
Spindler and Dachselt (2009) track the location of a small tangible surface
(the PaperLens) over a tabletop display and project visual information on
this surface as it is used to slice through the data. Song et al. (2011) use a
tablet computer instead as a tangible cutting plane and show the resulting
data slice both on the tablet and on a large vertical display. On the other
hand, Bertelsen et al. (2012) use a full monitor mounted on a mechanical
arm both for tracking and support, and show the respective data slice on
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the display depending on its location and orientation. In a way, all of these
are variations of an earlier approach by Konieczny et al. (2005) that also
allowed users to bend the tangible cutting plane and show the appropriate
intersection with the data.

While we believe that all these techniques are indeed useful, they fail to
provide other means of input in addition to the tangible 6 DOF control with-
out the use of additional devices. We thus base our design on displaying a
view on the tangible, but go beyond tangible interaction by using a position-
aware table to also provide tactile input possibilities.

4.2.3 Combinations of Tactile and Tangible Interaction

The work reviewed here has been previously reviewed in Section 2.2.1. Yet,
in order to give a better explanation of what our hybrid interaction system is
based on, we still present here a short sum-up of relevant work in this area.

From the respective challenges and benefits of both input modalities and
results from a previous study (Besançon et al., 2017), it appears that the
touch and tangible modalities are complementary paradigms and can be
combined. Past work that combines tactile and tangible input in a single
system is largely found in tangible additions to tabletop displays where
props are tracked using fiducial markers. Good examples of this approach
are Jordà et al. (2007)’s prototype for live music performance as well as Al-
Megren and Ruddle’s Al-Megren and Ruddle (2016) setup for abstract data
analysis. An example of such a combination for spatial 3D visualization is
Sultanum et al. (2011)’s table-based system for exploring geologic reservoir
data. They use tangible props for detailed data read-out and parameterizing
a focus+context view, while tactile input is used for regular data navigation
as well as for dedicated exploration techniques such as dataset splitting and
layer peeling. However, most existing applications (mainly based on TUIO
(Kaltenbrunner et al., 2005)), do not take full advantage of the physicality
of tangible interaction as the tangible props remain on the tabletop—only
their 2D position and orientation are used. We investigate, in contrast, the
combination of tactile with full 6 DOF tangible input.

A previous step in this direction was Olwal and Feiner (2009)’s use of a
spatially-aware small display device on a large tabletop surface. The small
device was tracked in 2D and could thus show a section of the data displayed
on the tabletop, but at much higher resolution. Tactile input was possible
both on the tabletop display and the small device to explore the data. Taking
this concept into 3D space, López et al. (2016) investigated the use of tac-
tile input on a mobile device for 3D visualization, with both a stereoscopic
view of the data and the mobile device’s monoscopic view. In their study,
they included a tangible interaction mode in which the tablet’s orientation
controlled the data view, yet restricted to 3D orientations. We extend such
interaction to use the tangible device’s full physicality, including full 6 DOF
interaction.

Our approach also builds on earlier work by Watsen et al. (1999) question-
ing whether 2D or 3D interaction is best to integrate tactile PDA interaction
in CAVE environments. Similarly, as early as 1993, Fitzmaurice (1993) and
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later Rekimoto and Nagao (1995) proposed to use position-aware PDAs as a
magic lens to interact with the physical world. Schmalstieg et al. (1999) used
transparent props and a pen that were tracked to augment the interaction
space of a virtual table. Later, Miguel et al. (2007) used a tracked PDA to
facilitate interaction in CAVEs: users moved the PDA in 3D to get a suitable
“captured” view and then selected a 3D object with a tactile input. Similarly,
Yee (2003)’s peephole displays combined position-aware displays with pen
input and applied them to three different applications scenarios. We mainly
based our approach on the last three but, instead of using pen interaction we
explore tactile interaction in the context of 3D manipulations—as previously
done by Tsang et al. (2002). Recently, Bergé et al. (2014) compared tactile and
tangible interaction with a smartphone to explore 3D public displays.

4.3 tactile and tangible data exploration

To better understand a potential integration of touch and tangible inputs we
start by discussing the interaction tasks needed for spatial 3D data visual-
ization, then analyze the resulting design space for the two input modalities,
and finally motivate our prototypical implementation.

4.3.1 Interaction Tasks in Spatial 3D Data Visualization

Interaction tasks for the exploration of data visualizations have been ana-
lyzed in detail in the past (e. g., (Shneiderman, 1996; Yi et al., 2007; Brehmer
and Munzner, 2013; Ren et al., 2013)). Shneiderman (1996), for instance, de-
scribes abstract tasks such as getting an overview, zooming, filtering, finding
and selecting details or data subsets, discovering relationships, and interact-
ing with the data exploration history. While others (Brehmer and Munzner,
2013; Ren et al., 2013) discuss the multiple levels of granularity in tasks
concepts for visualization, Yi et al. (2007) provide a synthesis of abstract
tasks based on a literature analysis. They include exploration, selection, re-
configuration, encoding, abstraction/elaboration, filtering, and discovery of
relationships as well as an “other” category.

Applied to visual representations of 3D spatial data (rather than abstract
data), the first four of these abstract tasks can be loosely mapped to 3D nav-
igation (translation, rotation, zoom), data selection, and parameterization
of the visualization mapping. Aspects of reconfiguration and encoding that
change the spatial mapping of visual representation are rare due to the spa-
tial data’s inherent mapping to 3D space. Abstraction/elaboration, filtering,
and relationship discovery also exist as well as “other” interaction tasks. For
example, the use of a cutting plane, a drilling probe, or isosurface render-
ing could be seen as a form of data abstraction, while seed point placement
adds a visual encoding of vector field’s dynamic aspects. Overall, we thus
need the following fundamental interaction techniques in most visualization
systems of 3D spatial data (Keefe and Isenberg, 2013):

• 3D data space/view navigation: 3 DOF translation, 3 DOF rotation, 1 DOF
uniform zooming; potentially with the possibility of constraining the
interaction to specific DOF and/or align them to specific data dimen-
sions,
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• visualization styles/types adjustment and parameterization: selection
of volumetric, iso-surface, or vector-based representations and their
parameters,

• positioning/manipulating data exploration objects such as cutting planes
(3 DOF) or probes such as drilling cores (2 DOF),

• 3D picking or selection of data subsets for further analysis,
• specifying/manipulating 3D points and other primitives for particle

seeding, picking, or path planning,
• generating data read-outs or measurements, and
• temporal navigation.

Beyond these fundamental tasks, a smaller or larger set of other techniques
may be needed depending on the data and application domain. However,
the described set can be seen as a common set that is needed in most appli-
cations including our fluid dynamics application domain.

Several mappings for such data exploration tasks have been proposed for
both input modalities (see Section 4.2). We can now analyze how the differ-
ent tasks can be mapped to the two modalities, thus creating a design space
for tactile and tangible control of 3D spatial visualizations.

4.3.2 The Design Space for Tactile and Tangible Control

Table 2 shows the design space and gives examples for specific types of
control based on the related work. For navigation tasks we assume that the
tangible interaction device is able to display a visualization of the data on
its own touch-enabled screen, such a tablet computer, in order to investi-
gate combinations of both input paradigms. However, we also include cases
where dedicated tangible props are used for additional interactions as these
could be combined with the tablet device. For tactile input we specifically
point out the minimum number of hands necessary for a particular tech-
nique. For example, even though Coffey et al. (2012)’s Slice WIM widgets
were demonstrated in their video in a bimanual fashion, the widget could
also be used with several fingers of the same hand and we thus classify it as
unimanual interaction. In contrast, while Yu et al. (2010)’s FI3D can be used
in a unimanual fashion, their constrained interaction modes necessarily re-
quire bimanual input due to the widget’s design.

As Table 2 shows, tangible interaction based on physically moving a mo-
bile device in 3D space facilitates a direct mapping of up to 6 input DOF to
the respective output DOF. Scaling would need to be supported separately,
but mode switches facilitate the control of data space navigation, cutting
plane manipulation, seed point placement, spatial selection, and data read-
out. Tactile interaction, in contrast, uses a variety of mappings and widgets
that are either controlled uni-manually or bimanually. This essential distinc-
tion affects our hybrid interaction design because the need to hold the device
during interaction severely restricts potential input from the non-dominant
(carrying) hand (Wagner et al., 2012).

In all manipulation interactions, precision can be controlled by setting
specific control-display gains either explicitly (e. g., through physical or vir-
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Table 2: Design space for tangible and tactile control of 3D visualizations. For the
uni- and bimanual usage we specify the lowest mode that a technique can
be used in, not how it was demonstrated in publication videos.

task DOF tangible tactile

3D data space
navigation

7 6 input DOF mapped directly to
6 output DOF; absolute or
relative motion, rate control
(Issartel et al., 2016b) (uniform
scale cannot be provided by
tangible interaction)

widget-based mapping:
unimanual (Coffey et al., 2012;
Cohé et al., 2011; Yu et al., 2010;
Fu et al., 2010) or bimanual (Fu
et al., 2010; Yu et al., 2010);
purely posture-based mapping
(Reisman et al., 2009) (uni- or
bimanual)

cutting plane
manipulation

3 same as 3D data space
navigation

same as 3D data space
navigation + posture/ widget
combinations (Klein et al., 2012)

integrated data
space + cutting
plane
manipulation

7+3 same as 3D data space
navigation; through either
explicit mode switches on the
tangible device or mul- tiplexed
TUI interaction with more than
one device

same as 3D data space or
cutting plane navigation, using
widget- or posture-based mode
selection (e. g., (Coffey et al.,
2012; Klein et al., 2012))

style setting /
parameterization

n/a dedicated tangibles (e. g.,
(Moore et al., 1999; Ullmer et al.,
2008; Oh and Woo, 2004))

typically via separate widgets
(e. g., (Klein et al., 2012;
Sultanum et al., 2011); typically
uni-manually)

picking /
seed point
placement

3 same as 3D data space
navigation (direct 3 DOF
pointing) + physical or virtual
button to activate

tactile 3D positioning such as
balloon positioning (Benko and
Feiner, 2007) (e. g., (Coffey et al.,
2012)) or 2 DOF pointing by
casting a ray on a cutting plane
(Klein et al., 2012) (both
uni-manually)

spatial selection n/a “tangible brush” with
button-based moding and
additional size controls

context-aware selection
techniques based on 2D
projected view (e. g., (Yu et al.,
2012; Yu et al., 2016),
bi-manually)

data read-out 3 same as 3D data space
navigation (direct 3 DOF
pointing) + physical or virtual
button to activate

2 DOF pointing based on 2D
projection, ray-casting on a
cutting plane, or view-aware
picking (Wiebel et al., 2012)
(uni-manually)

temporal
navigation

1 tangible sliders (Jansen et al.,
2012; Ullmer et al., 2003)

slider-based widget
(uni-manually)
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tual widgets) or implicitly (e. g., velocity of the tangible device/finger or
distance to the starting point). In addition, precise interaction is supported
when specific interaction constraints are observed. Such constraints can also
be specified though the use of specific widgets (physical (Jansen et al., 2012)
or virtual (Cohé et al., 2011; Yu et al., 2010; Fu et al., 2010)), or, in the tangible
case, by using the device’s own orientation (e. g., constraining the manipu-
lation along the nearest data axis) or its position (e. g., translating along the
axis with the longest distance from the starting point of the interaction).

After having discussed the individual mappings, we can now discuss how
a combination of tactile and tangible input can be achieved. We concentrate
on the spatial direct manipulation tasks because tasks such as style setting
and temporal navigation, on a tablet-based interface, are most flexibly real-
ized using a tactile widget. Table 3 summarizes some of the possible com-
binations. In contrast to the interactions in Table 2, we place here particular
emphasis on ensuring that combinations do not conflict with each other. Ta-
ble 3 shows that hybrid techniques exclusive to 3D data space navigation or
cutting plane manipulation are possible, but do not make much sense. How-
ever, with situations requiring the two tasks it becomes meaningful to assign
the two input modalities to one of the two mapping alternatives.

Additional challenges arise when an additional 3D point needs to be
specified—either for picking/seed point placement or for data read-out—
because both input modalities are already mapped to either view or cutting
plane manipulation. If this point is specified using the tactile input, position-
ing a cutting plane is necessary in order to perform a ray-casting so that the
finger’s position can be interpolated to a 3D position. In this case, the po-
sitioning of the cutting plane and dataset are assigned to touch or tangible
input. In the alternative case of tangible specification, the cutting plane is
not necessary to provide a 3D location, so the tactile input can control the
data view.

Similar difficulties arise when considering spatial selection, as this interac-
tion also has to be mapped either to the tangible or to the tactile modality.
Here, no additional cutting plane is necessary. In the first of these cases, the
tactile modality can thus be used to specify the data view while the tangible
is used as a “tangible brush.” Physical or virtual buttons can be used to acti-
vate the brush mode and control its size. In the latter case, the view on the
data can be adjusted with the tangible input, while the tactile input is used
to specify context-aware selections.

4.3.3 Field Study and Prototypical Implementation

This design space can now inform the creation of actual hybrid interaction
mappings for a specific domain. In this paper we focus on supporting data
exploration for fluid dynamics researchers. In order to better understand
their needs, and following Shneiderman (2010)’s recommodentations, we car-
ried out a field study with five experts (3 males; 2 females; ages 22–44; mean
of 13.6 years of professional experience). For this purpose we visited them
in their lab and individually observed their normal working procedures as
they analyzed new datasets. Each observation session was video-recorded
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Table 3: Design space for hybrid tactile and tangible interaction.

task hybrid tangible + tactile control

3D data space
navigation

tangible and tactile input mapped separately to location and orientation;
mapping of subsets (e. g., only x-/y-rotation to tactile) also possible

cutting planes either tangible or tactile control, not both simultaneously

integr. data space
+ cutting plane

tangible and tactile input mapped separately to data space navigation
and cutting plane manipulation

picking /
seed point
placement

as with integrated data space + cutting plane interaction, specifying the
3D point can be done with either tangible or tactile input: use of ei-
ther an explicit user-controlled mode switch for tangible input or of
the intersection of the finger’s position with the cutting plane’s position
(ray-casting) for tactile input

spatial selection e. g., tangible input to set data view and tactile input for context-aware
selection; or tactile input to set the view and tangible input for selection
using a “tangible brush” metaphor

data read-out same as picking/seed point placement

for further analysis and was followed up with a semi-structured interview
in which we asked about the steps involved in dataset analysis and the in-
teraction features that participants thought were lacking in current software.
One result from this field study was the realization that an essential part
of understanding new datasets relies on being able to manipulate cutting
views of the data. Fluid dynamics researchers do not perform much transla-
tions on the data itself, but frequently rotate it in order to get better views
and then use several cutting planes to get an understanding of its internal
structure. When analyzing new datasets, experts first want to obtain a gen-
eral understanding of the dataset—particularly through cutting planes—and
then focus on understanding how the flows evolve spatially and temporally.
The latter can be evaluated thanks to particle seeding.1

Based on this analysis, we decided to place our focus on several tasks in
3D space as the most fundamental building blocks for 3D data exploration.
In line with the described design space, we decided to support the follow-
ing tasks: 3D data space navigation, cutting plane manipulation, and seed
point placement. Our work particularly focused on three points: (a) support-
ing these tasks in a way that the interaction mappings do not conflict with
each other, (b) providing not only hybrid but also both purely tactile and
purely tangible mappings so that they can be compared to each other, and
(c) adding support for control-display gain control and DOF constraints in
our mappings to provide a fine-grained control of manipulation.

Based on Table 2, we used a simple 1:1 mapping for the tangible-only case
in which translations and rotations are captured by the Tango tablet and
directly mapped to respective manipulations of the dataset. Zooming was

1 We contrast the traditional interaction software currently used by experts in the discussion
section of this paper.
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not possible in the tangible-only setting. For the tactile-only case we used a
simple posture-based mapping that assigns motions of one finger to arcball
rotations (e. g., (Fu et al., 2010; Klein et al., 2012)), motions of two fingers to
2D rotations, scaling, and translations (2D-RST, e. g., (Yu et al., 2010)). These
mappings were chosen in part because unimanual input is easily supported
and because they relate to common 2D tactile interaction mappings. Since
many people are also used to translating items only using two fingers placed
and kept next to each other, our 2D-RST mapping only becomes active if the
distance between two simultaneous touches grows beyond a threshold (i. e.,
300 pixels, equivalent to 29 mm). Due to the scaling gesture, translation along
the z-axis was not possible with this mapping but could be achieved through
combinations of x-/y-translations and arcball rotations.

For hybrid mappings we implemented four combinations. In the first two,
we explore how a combination of tangible and tactile input can be used for
either view navigation or cutting plane manipulation alone (Figure 27a, (c)).
For this study, instead of mapping dataset orientation to one modality and
location to another, as suggested in the first row of Table 3, we mapped both
both location and orientation to a single modality. In the first mapping both
modalities controlled the data volume, and in the second mapping both con-
trolled the cutting plane. This way a temporal multiplexing made it possible
to switch between the two input modalities for a given interaction, allowing
us to investigate which mappings would be preferred by participants. In the
other two combinations we explored the mappings mentioned in row 3 of
Table 3: either tactile input mapped to view manipulation and tangible input
mapped to the cutting plane manipulation, or the other way around.

We also wanted to investigate at least one mapping that requires the spec-
ification of a 3D point. We thus decided to explore 3D seed point place-
ment (Figure 27b, row 4 in Table 3). From the different alternatives we im-
plemented tactile input for specifying a seeding point because the act of
touching is a good metaphor for the placement of objects. Consequently, we
realized the two alternative mappings for integrated view specification and
cutting plane arrangement with tactile and tangible input—using the consid-
erations discussed in Section 4.3.2—and based the seeding on the specified
cutting plane.

To facilitate the necessary mode switching, we implemented the interface
shown in Figure 28. Menus on the top allow users to load datasets and
change general settings. The buttons on the lower right constrain the inter-
action to a particular coordinate axis of the dataset. The slider on the right
manipulates the control display gain factor associated with both tactile and
tangible input to provide experts with an explicit control over the accuracy
of their interactions. The buttons on the lower left control the mapping, al-
lowing people to enable or disable the two input modalities and to map them
to data or cutting plane manipulation. These are system-controlled states as
user-controlled moding is already used for seeding and to activate tangible
input through clutching. Tangible clutching is achieved by pressing and re-
leasing the red button on the upper left (i. e., located beneath the left thumb
of the user when holding a tablet ‘normally’). Similarly, seeding point place-
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Figure 28: Our interface controlling the tactile input and the mode switching for the
tangible control.

ment is achieved by placing the finger on the screen when the seed button
is pressed.

4.4 observational study with expert users

To better understand the combined touch-tangible interaction and the use
of the different possible mappings in practice, we conducted a second ob-
servational study with domain experts, this time with our actual prototype
implementation. We were interested in their general opinion about such a
hybrid interaction style, their understanding of the mappings, the way they
transition between different modalities, how well the chosen mappings sup-
port their data exploration goals, and how they made use of those interaction
capabilities in practice. We used an observational strategy like several visu-
alization researchers before us (e. g., (Klein et al., 2012; López et al., 2016;
Lundström et al., 2011; Sultanum et al., 2011; Fu et al., 2010)). We specifically
decided against a classical usability study for several reasons. First, interac-
tion mappings such as the ones we study are highly complex and are not eas-
ily studied by means of completion times and error metrics. Second, our pool
of experts confirmed they do not consider data exploration and understand-
ing as a task to be completed as fast as possible—in fact, a slower technique
may be equally good or better when trying to understand unknown data.
Moreover, as emphasized by Carpendale (2008) and Greenberg and Buxton
(2008), classical quantitative studies can prevent the desired insights from
users on the suitability of the different interaction techniques, e. g., by mut-
ing creative ideas or meaningful critique. Based on Lam et al.’s (Lam et al.,
2012; Isenberg et al., 2013) categorization of evaluation strategies, we thus
conduced a combination of a User Experience and VDAR evaluation: We
asked our experts about how our techniques support their data exploration
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needs to understand how they can be improved and/or integrated in their
work practice. Both of these evaluations have previously been conducted
by means of observations and questionnaires/interviews (e. g., (Dwyer and
Gallagher, 2004; Grammel et al., 2010; Song et al., 2004)).

4.4.1 Participants

We recruited 7 researchers (all male; ages 23–61 years, mean: 35.7, median:
32, and SD: 13.1) from a fluid dynamics lab whose work focuses on volumet-
ric flow data. Our unpaid volunteers had 1–38 years (mean: 12.9, median: 9,
and SD: 12.9) of post-Master’s professional experience. All participants were
used to interacting with 3D datasets in the course of their work using typ-
ical mouse+keyboard interaction. All were familiar with tactile interaction
on their smartphones, and two had previously participated in tactile interac-
tion experiments for 3D visualization. Only one reported to be familiar with
the term tangible interaction and had been using such techniques before in
experiments for classical 3D manipulations and 3D scientific visualization.

4.4.2 Apparatus

Our setup included the 7 inch Google Tango tablet2 (370 g, 1920 × 1200 pixel
resolution) and a 55 inch (139.7 cm diagonal) vertical screen with a 3840 × 2160

pixel resolution. Users were asked to stand in front of the large display
throughout the experiment. The external screen showed larger views of the
data as well as additional visualization elements in order to address the
occlusion issue of tactile interaction (Hancock and Booth, 2004; Shneider-
man, 1991b). As dataset, we used a domain-specific Finite Time Lyapunov
Exponent (FTLE) scalar field (Figure 29) with its associated vector field. Our
implementation uses the VTK library3 to load and process the datasets. The
dataset was rendered using OpenGL ES 2.0 on the tablet and OpenGL 3.0
on the vertical display. Communication between the devices used the UDP
protocol and we sent absolute transformation matrices to ensure that packet
loss would not be critical for the display/tablet synchronization. Elaborate
computations and visualizations were restricted to the vertical display. For
instance, the input information for particle tracing/seeding was captured
by the tablet but processed and rendered by the vertical display’s computer,
and the external display also showed a 2D view of the slicing plane to ease
the understanding of the sliced data. Our prototype is modular: the vertical
display is handled by a PC running Ubuntu, while the tablet code can be
adjusted to be fully functional with any position-aware device. Others can
thus build on our work to create other hybrid interaction mappings with
other devices.

4.4.3 Study Design and Tasks

We started by telling participants the purpose of the study, the setup, and
the handling of the tablet. The study was divided into a training stage, two

2 https://www.google.com/atap/project-tango/
3 http://www.vtk.org/

https://www.google.com/atap/project-tango/
http://www.vtk.org/
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(a) Isosurface view. (b) Volumetric view.

Figure 29: Two views of the FTLE dataset used in the study.

main tasks, and a final session consisting of a questionnaire and an interview.
Overall, each study session took between 18 and 50 minutes, not counting
the questionnaire and interview parts.

Training. Using a simple 3D shape as a training dataset, we introduced the
participants to all interaction techniques and gave details on the user inter-
face in the form of a tutorial. Participants were also encouraged at this point
to ask questions to the experimenter. This training session is not taken into
account in our analysis of the results. Because we wanted to understand the
entire interaction spectrum between tactile-only and tangible-only input, we
encouraged the participants to explore all possible mapping combinations
and ensured that this happened at least during the training stage.

First Task: Exploration. Once the participants declared that they were
ready for the actual study, we switched to the FTLE dataset. We asked them
to navigate the data and to try to understand it—as they would normally
do in their work—by using any interaction technique provided by our inter-
face. While interacting with the data, the participants were encouraged to
ask questions and especially to think-aloud: explain what they liked, what
they disliked, what they did not understand, or when they felt that unex-
pected things happened. We took notes about the oral insights given by
participants. These notes were completed after each session based on video
recordings and log data.

Second Task: Particle Tracing. After a thorough exploration of the data
using the different mappings, the experimenter enabled the interaction mode
for particle tracing4 and explained how it could be performed. Participants
were then asked to use it to gain additional insights on the datasets. Similar
to the previous section, they were encouraged to explore all the different
interaction mappings and to use the think-aloud protocol to allow us to

4 Particle tracing/seeding is a technique to explore vector fields datasets by generating a num-
ber of particles at a given 3D location. Each of them then follows the vector fields for this
starting point.
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capture their reasoning and preferences. In both the 3D navigation and the
particle-based exploration parts, participants were free to explore the dataset
until they had gathered enough knowledge.

Questionnaires. In the final part of each session we asked participants to
fill out a questionnaire that asked about the effectiveness, usability, and in-
tuitiveness of each interaction mapping. Participants were asked to provide
their opinions using 5-point Likert scales. In addition, we asked about their
overall preference for any of the different interaction mappings and the ra-
tionale for their choice. Finally, we conducted a semi-structured interview to
discuss their experience in order to understand the pros and cons of each
technique, why and how they would like to use them, and possible improve-
ments. We based the interview on Lam et al. (2012)’s main questions for
User Experience (UE) evaluation. An experimenter took notes which were
augmented from the captured video of the session.

4.5 quantitative results

Next we report the quantitative data we captured during the study. Due to
variations in the overall study duration we report time ratios as suggested by
Dragicevic (Dragicevic, 2012). Even though our participant pool was small,
it was composed of domain experts and observational studies of interactive
systems with experts can yield important insights (e. g., (Lundström et al.,
2011)). Nevertheless, we report our results using estimation techniques (see
Appendix A).

4.5.1 Relative Interaction Times

Figure 30 shows the fraction of time the participants spent using tangible,
tactile, and hybrid input mappings. There is strong evidence that, after the
training, participants predominantly used the hybrid mapping (86% of the
time on average). In addition to this overall usage, we also examined the dis-
tribution of tactile and tangible inputs in the hybrid interaction mappings
(Figure 31). The results show that our participants, on average, spent approx.
74% of their time interaction with the tangible and only 26% with the tactile
input. We hypothesize that the flexible manipulations of tangible interaction
is the reason why it is mostly used, which was confirmed by our interviews.
Finally, we were interested in the use of the four different hybrid mappings
described in Section 4.3.3 for view and/or cutting plane manipulation. Fig-
ure 32 reports the relative times spent in each of the four mappings. The
ratios of time spent with each combination of data and plane manipulation
(Figure 32) do not provide evidence for a dominant mapping. It appears,
however, that mapping tactile input to the cutting plane and tangible input
to the dataset was not used much by participants. We conjecture that this
result was caused by the tablet being—due to its shape—an easier metaphor
for the cutting plane than the data volume, leading participants to more di-
rectly associate it with the cutting plane rather than with the dataset when
selecting the mappings. This was confirmed by participants.
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Tactile
Tangible

Hybrid
Idle

0.00 0.25 0.50 0.75 1.00

Figure 30: Ratio of time spent interacting in the different conditions. Error bars are
95% confidence intervals.
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Figure 31: Ratio of time spent using the tactile and tangible conditions while using
the hybrid interaction. Error bars: 95% CIs.

4.5.2 User Preferences and Assessments

We asked experts to rate the tactile-only, tangible-only, and hybrid interac-
tion modes using 5-point Likert scales according to several usability criteria.
In addition, we asked them to rank the three different techniques by pref-
erence. The results, collected using a questionnaire, are shown in Table 4.
Overall, our participants agreed that they were able to accomplish what they
wanted, quickly achieve their goals, and that the three techniques were in-
tuitive enough. It appears, however, that they needed some mental effort to
use the techniques, an effect that could be attributed to the mappings being
new to them.

4.6 qualitative observations and discussion

Our main goal is to understand the role of hybrid interaction in the context
of 3D visualization. We thus not only need to evaluate the tested interaction
techniques by themselves but also have to discuss how they compare to and
can be integrated with the usual PC/workstation-based environment that ex-
perts typically use. Most rely on tools such as Paraview5 or MATLAB.6 Based
on our initial field study as well as the present qualitative observations and,
in particular, the comments of the participants from the think-aloud proto-
col we can make this comparison. We discuss the two general approaches in
this section, together with the general comments from our participants on

5 http://www.paraview.org/
6 http://www.mathworks.com/products/matlab/

data Touch+Tangible
plane Touch+Tangible
data Touch plane Tangible

data Tangible plane Touch
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Figure 32: Distribution of time spent interacting with the different plane/data asso-
ciations while using the hybrid interaction. Error bars: 95% CIs.

http://www.paraview.org/
http://www.mathworks.com/products/matlab/
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Table 4: Results from Likert-based ratings for different statements, with values rang-
ing from 1 (completely disagree) to 5 (completely agree). Ranking is ex-
pressed from 1 to 3, 1 standing for the preferred technique

statement factor mean median SD

I could do what I wanted.

tangible 3.57 4.00 0.79

tactile 3.57 4.00 0.98

hybrid 4.14 4.00 0.90

I could achieve my goals quickly.

tangible 3.57 3.00 0.79

tactile 3.86 4.00 1.07

hybrid 4.14 4.00 0.90

It could be used without much information.

tangible 3.57 4.00 0.79

tactile 4.00 4.00 0.81

hybrid 4.00 4.00 0.58

It required a lot of mental effort to use.

tangible 3.14 3.00 0.69

tactile 2.71 2.00 1.11

hybrid 3.57 3.00 1.13

overall ranking (1 to 3, 1=best)
tangible 2.57 3.00 0.53

tactile 2.28 2.00 0.76

hybrid 1.14 1.00 0.38

the interaction mappings and their reasoning for using particular interaction
styles.

4.6.1 Preferences

Overall, the hybrid interaction was preferred by most participants as seen
in Table 4—only one participant did not name it as his first choice but as
his second. Participants reported that our approach “was way faster and
way more natural. It was more engaging, making people want to try more
things, in particular when using the seeding,”. They reported that the tangi-
ble interaction “adds more options once you get used to it and also allows
for axis-constrained interaction.It is more natural and provides more DOFs
than a mouse,”and finally reported that our approach “is easier to use. Less
powerful for now in the different options that it gives than the traditional Par-
aview interface, but it is only an implementation problem and could easily
be solved. If it were, it would be used for teaching or sharing knowledge. It
is more enjoyable to use, even though the mouse seems to provide more pre-
cision.” One participant said that the system, “is a reproduction of what [he]
can do with a PC but with better interactions.” This statement was mirrored
by P6 who stated that he “could achieve complex rotations or translation
difficult to perform with a mouse.” Another participant (P2) stated that the
prototype could be used as an “extra visualization tool” in the sense that he
could carry most of the primary analysis with it, before switching to a PC/-
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workstation for a more in-depth analysis that requires scripts, scatterplots,
and mathematical functions that are better created with and manipulated on
a PC/workstation.

4.6.2 Mappings

Overall, the two ‘redundant’ mappings (that associate both input modalities
to the same interaction target) and the the tangible to plane/tactile to data
mapping were used similarly often. Which of the three mappings was most
frequently used still varied quite a lot between participants, and it appears
that the choice between them is guided by personal preference—we could
not identify particular reasons for a given usage pattern. When asked to
explain why they used one over the other, participants said that it would
correspond to their way of thinking. This leads, however, to the surprising
observation that, contrary to what we expected, participants actually used
‘redundant’ mappings a lot. They all reported that the tactile modality was a
way for them to adjust and fine-tune the final view/cutting-plane following
large-grained changes with the tangible modality.

We believe, however, that a single study with one class of domain ex-
perts is not sufficient to fully understand the potential of these mappings. It
would thus be useful to conduct a study with users from other backgrounds
to better evaluate how tactile and tangible inputs can be combined when ma-
nipulating a single space or object. From our observations, it is also difficult
to conclude whether a participant preferred to have a static cutting plane
and a moving dataset, or the opposite. We conjecture that this is a matter of
each person’s mental model, which may be related to the type of datasets
they usually manipulate.

4.6.3 Accuracy and constrained interaction

Both tangible and tactile input are inherently susceptible to noise and impre-
cise input, which is partially exacerbated by the integrated control of several
DOF at the same time. We thus specifically considered how to support con-
strained input and control-display gain in order to improve manipulation
accuracy.

Axis-Constrained Interaction. The possibility to constrain interaction to
a given axis was much appreciated by participants, in particular for map-
pings that relied on tangible input. Participants reported that the tangible
condition was a good way to freely explore the dataset, but that being able
to constrain the input allowed them to achieve interactions they usually per-
form in PC/workstation-based environments. Indeed, in our field study we
observed that, when using Paraview, experts often place a cutting plane per-
pendicular to one axis and translate it along this axis through the entire
dataset. The use of axis-based input constraints can thus be considered as an
important element of both tangible and tactile input mappings, confirming
suggestions from previous work (Klein et al., 2012; Lundström et al., 2011).
Moreover, P5 and P6 suggested to add buttons for placing data or planes at
precise configurations without any manipulation to provide a better way to
compare views with Paraview.
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Accuracy. Even though participants could change the gain factor associ-
ated with the tangible and touch interaction, we noticed that this was rarely
used. Indeed, P1, P2, P4, and P6 adjusted the gain factor twice, while Partic-
ipants 3, 5 and 7 only used this feature once. P2, P3, and P4 reported, how-
ever, that they used the tactile modality to adjust orientations or positions
obtained with the tangible modality. P2, P3, P4 and P6 especially mentioned
the lack of accuracy they felt in the tangible condition, even though they did
not use the widget we provided to control the interaction’s gain factor. This
contrasts recent work which found a similar level of accuracy between tan-
gible and tactile control for 3D manipulations (Besançon et al., 2017). From
our interviews it also appears that having an explicit widget for setting the
control-display gain was not appropriate, confirming the hypothesis stated
by Issartel et al. (2016b). One participant stated that he knew the widget
could be used but did not think about using it and rather used the tactile
modality to adjust the positioning. Perhaps we should thus focus on pro-
viding more implicit ways of controlling the gain factor while interacting.
One participant suggested a rate-control approach—which is inappropriate
for isotonic devices not providing a self-centering mechanism (Zhai, 1998).

4.6.4 Particle Seeding

The ability to seed particles in the data volume to explore its vector com-
ponent was also appreciated by the experts. Six participants mentioned this
feature first among the aspects they particularly appreciated. Participants
compared particle seeding to the PC/workstation-based exploration tools,
where they place particle sources by editing a script that is then executed.
To be able to adjust the particle source they need to edit the script and re-
run it. In contrast to this rather crude form of data exploration, our approach
allowed them to interactively adjust the placement based on the location and
orientation of the tablet (when using tangible control) or the cutting plane
(for tactile input). All experts reported that this technique was “engaging,”
“easy to use,” and that it could be “easily and greatly” improved with a few
additional visual features such as depth cues or colors to represent tempa-
ture, speed, etc.

4.6.5 Use of a Separate Vertical Display

Five experts reported that the large display was not necessary in a non-
collaborative setup. They reported that the screen of the tablet was large
enough. Indeed, we observed that these participants actually spent most of
their time looking at the tablet. This is surprising since previous observa-
tions of a tablet-based interaction with a large vertical screen (López et al.,
2016) (albeit using a stereoscopic view) showed a preference of participants
to focus on the vertical display. One of them explained that he looked at the
tablet because that was “were the interaction was happening.” Even in the
supposedly eye-free tangible condition these three participants kept looking
at the tablet. Participants 4–6, however, used the external display a lot, saying
that they would always have access to an external display at their workplace
anyway. Still, they did not think that the display had to be this large and
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that a typical 24" display would be enough. Yet, all of them mentioned that a
large display was necessary for demonstration/presentation or collaborative
analysis and that, with a larger screen, the tablet could be used alone as an
on-the-go device to integrate in their working procedures.

4.6.6 Integration into the Workflow

We wanted to ensure that our interaction technique would be useful in im-
proving the workflow and we asked participants whether they would use
it in their everyday work. P6 reported that with a longer learning phase “it
would be a nice tool and that [he] was interested and willing to use it when-
ever [he] needs to roughly analyze 3D data.” P5 stated that he “would use it
if it were improved with some extensions” (which we mention below). Over-
all, only P1 did not consider the tool as being fit for his practical work yet.
Other participants welcomed the opportunity and imagined using it for pre-
sentations, collaboration, or teaching purposes. When asked whether they
could integrate it with their classical interactions, five participants stated
they would gladly use it if it synchronizes with their desktop station. Four
participants also mentioned they would be interested in combinations of our
hybrid technique with a mouse-based approach which worked well with
classical software (to be used for further analysis). This way they could avoid
a “going-back-and-forth” behavior and actually directly use our prototype
for highlighting and selecting data—as it is “easier and more complete”—to
further study it with mouse and scripts. We believe that these remarks high-
light even further the need for an interaction continuum between new and
classical interaction paradigms.

4.6.7 Suggested Extensions

Like many other qualitative studies, our experiment led to several sugges-
tions for improvement. We discuss the most important ones:

• provide separate “frozen” views on the large display: participants wanted
to be able to save frozen views on the large display and be able to
interact with them at a later point (possibly using tactile interaction on
the large display;

• include the possibility to navigate in time: datasets in scientific fields are
often time-dependent and participants reported that in the seeding in-
teraction they would like to see the influence of time on the particle
propagation—a classical slider implementation can easy be added, but
other possibilities such as tangible sliders (Jansen et al., 2012) may also
be interesting in a hybrid interaction context

• add widgets to obtain specific, well-defined views and cutting plane positions:
experts reported that they would like to have widgets to set data and
cutting plane to specific positions as it is offered by their traditional
PC-based software—a feature that they frequently use; and

• consider interaction mappings for heterogeneous data: while our dataset
was relatively box-shaped with 100 × 80 × 54 samples, extremely thin
and long dataset may require adjusted interactions that better fit their
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overall shape; based on our study we could envision to address this
issue by mapping large-scale motions to the tangible interaction while
small-scale motions would be mapped to the tactile interaction.

4.6.8 Limitations

While our design space exploration and observational study have demon-
strated that hybrid tactile/tangible interaction can support 3D data explo-
ration tasks, our work still has some limitations that we want to summarize
here. As previously mentioned, our field-study and observational study only
focused on one class of domain experts—fluid dynamic namely. Even though
fluid dynamic visualization is a scientific field in which experts are often con-
fronted with the manipulation of multiple DOFs, there are other domains to
consider that could give complementary/different insights on our hybrid
interaction design space exploration. Similarly, during both studies, experts
were faced with a rather homogeneous dataset thus avoiding issues that
could be encountered with extremely heterogeneous datasets. Our observa-
tional study also does not explain why certain mappings worked or were
preferred, in particular due to the small number of participants. Similarly,
our study does not explain how tactile and tangible input—when assigned
to a single target—can be efficiently combined. Further studies with more
participants are needed to sketch different possibilities.

4.7 conclusion

In this chapter we explored the design space for the combination of tactile
and tangible inputs (R2) to control 3D spatial visualizations. We proposed
several mappings and studied a particular subset of these mappings to un-
derstand how the combination of touch and tangible inputs could benefit
fluid dynamics experts in their 3D visualization tasks.

The conducted observational study showed that experts appreciated our
prototype and that they found it better suited for primary 3D visualization
tasks than a traditional mouse-and-keyboard setup. We saw surprising ef-
fects such as the participants using interaction mappings we initially did
not think would be very useful. Participants especially appreciated that a
complex seed point placement task could easily be achieved by combining
a tangible manipulation of the cutting plane and a ray-casting with the tac-
tile input, thus demonstrating the potential of hybrid tactile-tangible interac-
tions. The flexible seed point placement enabled them to use an exploratory
data analysis style of vector fields. Participants also appreciated having the
ability to constrain input to specific DOF.

This work consequently represent a first step towards combining these
two complementary input techniques (R2) and providing an alternative data
exploration platform for scientific visualization. Most importantly, however,
we demonstrated that with current hardware it is possible to realize hybrid
tactile/tangible interaction techniques that support fundamental 3D data ex-
ploration tasks and that no longer rely on external 3D tracking (R3). With-
out the need for constant maintenance, calibration, and support that such
hybrid interaction would normally require, it is thus now possible to make
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the proposed interactive data exploration techniques available to researchers
in various domains.

Even though we focused on fluid dynamic experts, some of our findings
are generalizable. First, hybrid interaction is easily understood, is largely
preferred by participants, and is the most frequently used interaction mode.
Second, it appears that the tablet, due to its shape, is a good metaphor for cut-
ting plane manipulations, which affects the interaction mapping preference.
Third, the combination with a large display does not seem to be necessary—-
regular displays (or none) can be enough. Finally, explicit accuracy adjust-
ments are not useful for tactile/tangible interaction, other accuracy controls
are needed. Moreover, while in our work we chose an observational ap-
proach that led to these insights, specific application domains may warrant
quantitative studies, focusing on a task or domain that requires certain lev-
els of accuracy or has time constraints. For example, doctors in a ER need to
analyze medical scans quickly, surgeons need to understand medical images
very precisely to plan or adjust a surgery. For such application domains we
may thus need to reconsider the interaction design.

If we focus back on our interaction continuum goal, i. e.being able to tran-
sition between several interaction modalities, we clearly saw in this chapter
that the continuum is useful and needed for two different aspects. On the
one hand, being able to combine two interaction paradigms is a first accom-
plishment towards our goal: we clearly saw that participants were able to
transition between tactile and tangible manipulations and to even use them
alternatively. On the other hand, experts in fluid dynamics clearly stated that
such a hybrid paradigm was more useful for exploration tasks but that the
work they usually carry on should be continued on a traditional workstation
with a mouse and keyboard. This further emphasizes the fact that an interac-
tion continuum is needed. The hybrid paradigm was more useful for quick
explorative findings that should then be further examined with a mouse and
keyboard interaction.

Naturally, several question remain open. For example, even though ex-
perts reported a lack of accuracy—particularly in the tangible condition sur-
prisingly few of them actually used our display-control gain factor widget
to adjust the sensibility of the interaction. This aspect is further investigated
in Chapter 6. One could also wonder if our prototype would also yield inter-
esting results in a virtual reality or augmented reality environment. Finally,
we only focused on a subset of 3D visualization tasks based on the needs
of fluid dynamic experts. The results obtained with this subset are however
promising and pave the way for the study of other 3D visualization tasks
within the same expertise area or other scientific fields. We propose to study
a more generic 3D visualization task in the next chapter.
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Figure 33: Tangible Brush technique: (a) creation of selection shape with tactile in-
put; (c) extrusion of the shape with tangible manipulations; and (b) selec-
tion result visualization.

This chapter aims at continuing the exploration of the possibilities offered
by the hybrid tactile/tangible paradigm. While we focused in Chapter 4 on a
subset of needs from the specific expert community of fluid dynamic, in this
chapter we try to exploit the hybrid paradigm further. We thus do not place
the focus on a specific community but rather on a generic 3D visualization
task highlighted in Section 4.3.2: 3D spatial selection.

3D spatial selections of data are primary and fundamental tasks in almost
all visualization systems: they are performed prior to other interactions in
exploratory data analysis. While 2D selection is efficient for datasets with
explicit shapes and structures, it is less efficient for data without such prop-
erties. This chapter addresses this specific issue with a technique called Tan-
gible Brush, a 6-DOF tangible interface combined with tactile input. We use
tactile input to create a 2D lasso which is then extended into a 3D selec-
tion volume with the tangible movements of the spatially-aware device. We
present, in this chapter, the description of the technique as well as its quan-
titative and qualitative comparison to a state-of-the-art structure-dependent
selection technique.

Main portions of this chapter are based on currently unpublished work
conducted by myself, Mickael Sereno, Mehdi Ammi, Lingyun Yu, and Tobias
Isenberg. Some portions are also based on published extended abstracts by
the same authors (Sereno et al., 2016; Sereno et al., 2017). Any use of “we”
in this chapter consequently refers to the aforementioned authors.

5.1 introduction

Many visualization systems rely on exploratory data visualization and analy-
sis (Tukey, 1977) that allows domain experts to explore previously unknown
datasets and analyze their characteristics. An essential aspect of such ex-
ploratory analysis is the selection of specific regions of interest (Wills, 1996)
for further examination to then reveal their interesting patterns, properties,
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or internal structures. 2D selections are usually achieved with techniques
such as picking, brushing, or lasso-based selection and can be easily carried
out with a mouse/pen or on a tactile screen (both modalities provide the
needed two degrees of freedom, DOF).

Three-dimensional datasets, however, often require the specification of 3D
volumes for selecting the intended data subset; a task that is not easily sup-
ported by the mouse or tactile input paradigms for general volumes. Existing
techniques have thus focused on creating constrained selections with these
input paradigms (i. e., raycasting (Argelaguet and Andujar, 2009; Olwal and
Feiner, 2003; Forsberg et al., 1996; Grossman and Balakrishnan, 2006; Looser
et al., 2007), automated 3D projection of 2D lassos (Igarashi et al., 1999; Yu
et al., 2012; Yu et al., 2016), and data-dependent picking (Wiebel et al., 2012)).
These techniques either rely on contextual data analysis or pre-defined se-
lection volumes and do not offer users the possibility to freely create their
selection volume. While these technique have proven to be useful in many
different context, they can be limited when the need arises to select regions
that do not exhibit any particular and defining structural or contextual fea-
tures.

The recent development of mobile, spatially-aware devices, however, al-
lows us to consider tangible manipulations as a possible way to go be-
yond the limit of 2 DOF input. Hence, by combining 2D tactile input with
3D mobile manipulation, we facilitate the creation free-form and context-
independent selection (Figure 33). We make use of Project Tango tablet1

that provides self-3D-tracking features and a tactile screen. Our technique
thus relies on a hybrid interaction paradigm similar to the one described
in the previous chapter (Chapter 4): tactile input is used to specify a 2D
drawn shape and 3D tablet manipulation facilitate the extension of this 2D
shape into 3D by “brushing” the 3D space with the 2D shape. This approach
complements existing automatic, interactive, and context-aware 3D selection
techniques with explicit adjustments of the selection volume in a tangibly
spatial manner.

Our corresponding contributions are threefold. First, we classify 3D se-
lection techniques based on input and final shape control, and derive the
need and design space for context-free 3D selection techniques. Second, we
propose a hybrid tactile/tangible interaction for 3D spatial selection using
a spatially-aware device and a synchronized large display that allows users
to have a full control of the 3D selection volume they create. Third, we com-
pare our technique to a-state-of-the-art and structure-dependent technique.
We report both quantitative and qualitative findings of this comparison and
discuss them in context.

5.2 related work

Within the field of 3D interaction (Bowman et al., 2005; Hand, 1997; Jankowski
and Hachet, 2013), our work relates to 3D selection techniques and to mixed/hy-
brid input paradigms used in 3D exploratory data analysis. We review rele-
vant work in this section, focusing mainly on interactive 3D visualization.

1 https://www.google.com/atap/project-tango/

https://www.google.com/atap/project-tango/


5.2 related work 83

5.2.1 3D Object Selection in VR environments

Many approaches for 3D object selection in virtual environments rely on
3D ray-casting (or virtual pointers; see survey by Argelaguet and Andujar
(2013)). Raycasting techniques are often implemented as a ray originating
from the user’s hand, with the ray direction being derived from the hand’s
orientation. Naturally, the first object that is intersected by the ray is selected.
This kind of selection suffers, however, from three major limitations. First,
there can be a mismatch between the visibility of the object from the user’s
vantage point compared to along the selection ray, such that a different ob-
ject than the one expected is selected. This issue is called eye-hand visibility
mismatch by Argelaguet et al. (2008) who developed raycasting from the eye
to address this problem, while other techniques such as the selection based
only on eye movements (Cournia et al., 2003; Tanriverdi and Jacob, 2000) cir-
cumvent it entirely. Second, the desired objects can be (partially) obscured
by third-party objects, thus making the selection difficult with pure first-hit
raycasting. Techniques such as the flexible pointer (Olwal and Feiner, 2003),
3D bubble cursor (Vanacken et al., 2007), or the depth ray (Grossman and Bal-
akrishnan, 2006; Vanacken et al., 2007), however, are able to address this
second limitation. The third limitation is that raycasting techniques are often
too imprecise for the selection of objects that tend to be small and situated
far away from the user. Some approaches have thus focused on solving this
precision issue such as, e. g., De Haan et al. (2005)’s IntenSelect that uses a
scoring system to assist difficult selections and König et al. (2009)’s adaptive
pointing technique that improves the precision of absolute pointing devices.

To avoid the precision issue, other initial work on 3D spatial selection
relied on simple volumetric selection shapes that are easy to manipulate
such as cones (Liang and Green, 1994; Steed and Parker, 2004). In this case,
objects get selected if they are, at least partially, contained within the ma-
nipulated selection volume. Based on this basic metaphor, more advanced
cone-based techniques have been developed such the shadow cone technique
(Steed and Parker, 2004), aperture (Forsberg et al., 1996), and enhanced cone
selection (Steed, 2006). One of the limitations of cone-based selection is, how-
ever, that several items can be contained within the cone itself, thus making
the selection process difficult if a single item is to be selected. To circumvent
this issue, Schmidt et al. (2006) investigated a probabilistic approach, while
Olwal et al. (2003) proposed to rely on statistical geometry with different
shape primitives to better capture the item intended by the user. Other ap-
proaches propose to rely on the manipulation of other primitives such as
spheres (Vanacken et al., 2007; Wingrave et al., 2006) or boxes (Zhai et al.,
1994). As an alternative, Mine et al. (1997) used hand-held widgets that are
3D objects that appear in the user’s virtual hand, while Poupyrev et al. (1996)
use the Go-Go technique that interactively grows the user’s virtual hand to
reach and manipulate distant objects.

All these approaches have been extensively used in VR environments and
are useful for selecting a pre-defined shape or object in the environment.
Most of them can easily be adapted for AR environments (Looser et al., 2007)
with varying performances (Kaiser et al., 2003; Olwal et al., 2003). However,
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some selection tasks require specific yet arbitrary 3D selection volumes as
described next.

5.2.2 3D Selection for Exploratory Data Analysis

Exploratory data analysis (Tukey, 1977) is one such case where users may
want to focus on specific regions of interest (ROI) that are not necessarily pre-
defined or separate shapes or structures. The data is often unsegmented and
thus requires the user to first perform the segmentation of the volume which
is often complicated and time-consuming. For such datasets, researchers pro-
posed to manipulate specific 3D shapes (Akers et al., 2004; Sherbondy et al.,
2005) (such as a box) in the 3D space to specify the ROI but that can also
include undesired objects since target region is usually not cuboidal (Lucas
et al., 2005; Yu et al., 2012).

For this kind of dataset, some approaches rely on specific hardware or se-
tups. For instance, Harders et al. (2002) used a 3D mouse with force feedback
to facilitate the segmentation of linear structures in the human body. Simi-
larly, Malmberg et al. (2006) used a haptic device and stereoscopic rendering
to allow users to draw 3D curves based on the 2D live-wire method. This
approach was later improved with Spotlight (Top et al., 2010) which added
visual guidance to improve the quality of the segmentation. A similar setup
and approach was also taken by Nyström et al. (2009). Finally, Jackson et al.
(2013) used a similar approach to select linear features—a rolled paper as
tangible input to facilitate selection of thin fiber structures. Our technique
also allows users to provide 3D tangible input but we combine it with an ini-
tial tactile input. Other approaches such as Wiebel et al. (2012)’s are based on
the data itself, the transfer function, and the way the volumetric rendering
is perceived by the user to facilitate the picking of a given region. However,
such 3D picking techniques thus heavily rely on the ability to make sense
of the data computationally which hence limits the application of these tech-
niques to some specific goals. For the selection of specific primitives beyond
points, specific techniques exist. For example for the selection of linear struc-
tures in neuroimaging, selections can be performed by manipulating boxes
or ellipsoid-shaped regions (Akers et al., 2004; Sherbondy et al., 2005). Ak-
ers (2006) proposed to combine a trackball and a pen to help neuroscientists
mark 3D pathways in neural datasets.

For unsegmented data, image segmentation can be used to infer the in-
tended 3D subsets within the data (Chen et al., 2006; Owada et al., 2005;
Yuan et al., 2005). Owada et al. (2005) designed Volume Catcher which avoids
the initial phase of manually segmenting the volume. Users trace the con-
tour of the target region with a 2D free-form stroke, and a segmentation al-
gorithm run by the system returns a corresponding ROI. In other words, 2D
user input is algorithmically extrapolated into 3D. This approach was later
improved by Yuan et al. (2005) to alleviate the user’s commitment when
sketching. Chen et al. (2006) also base their approach on this concept, al-
lowing users to draw closed strokes to include free-from drawing. Context-
aware and, more specifically, structure-aware techniques rely on a similar
concept. These techniques have been shown to be efficient for 2D datasets
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(Dehmeshki and Stuerzlinger, 2008; Dehmeshki and Stuerzlinger, 2009) us-
ing the perceptual grouping of objects. The third dimension of most spa-
tial datasets, however, increases the complexity of the problem, essentially
because most input paradigms have limited degrees of freedom (Yu et al.,
2016). Dehmeshki and Stuerzlinger (2008) and Dehmeshki and Stuerzlinger
(2009)’s approach was then extended by Yu et al. (2012) with CloudLasso and
TeddySelection which allowed users to create a 3D selection based on 2D lasso
input. This 2D shape was then extended into 3D based on the density of par-
ticles within that lasso. CloudLasso was then extended by Shan et al. (2014)
by analyzing the different clusters created by CloudLasso and only selec-
tion the on with the largest 2D projection. Later, Yu et al. (2016) proposed
three new interactive context-aware selection techniques so similarly select
a single connected component, two of which were based on the shape of the
drawn lasso. We also use a drawn lasso with our approach but, instead of
algorithmically transforming the 2D shape into a selection volume, we allow
the user to specify the 3D selection volume directly by means of tangible
input.

5.2.3 Combination of Tactile and Tangible Interaction

The benefits and limitations of both tactile and tangible input paradigms,
highlighted in previous studies (Besançon et al., 2017; Konieczny et al., 2005;
Zuckerman and Gal-Oz, 2013) (see Chapter 3 for a complete of these stud-
ies and their conclusions), suggest that these modalities are complementary
paradigms that can be combined. We thus built on these conclusions and
based our approach on each paradigm’s benefits.

Previous systems that combine tactile and tangible input paradigms are
largely found in tangible additions to tabletop displays (Al-Megren and Rud-
dle, 2016; Jordà et al., 2007). In particular for 3D visualization, Sultanum et al.
(2011) created a table-based system for exploring geologic reservoir data. In
their setup, the props are used to facilitate detailed data read-out and to pa-
rameterize a focus+context view, while tactile input is used for regular data
navigation and dedicated specific exploration techniques such splitting and
layer peeling. More linked to our spatially-aware-device approach, Olwal
and Feiner (2009) used a spatially-aware small display on a large tabletop
surface. The spatially-aware device was tracked in 2D and could show a sec-
tion of the data displayed on the tabletop at a higher resolution. Tactile input
can be used on both the tabletop and the spatially-aware device. With our
technique, we built on this idea to use a spatially-aware display which also
provides tactile input. However, these tabletop-based systems do not take
full advantage of the physicality their tangible props since they remain on
the tabletop. Only their 2D positions and orientation are used, thus losing
the rich 3D manipulations offered by physical devices.

In contrast, we investigate the use of tactile interaction and full 6 DOF tan-
gible input. In this context, López et al. (2016)’s analysis is important who
took Olwal and Feiner (2009)’s concept into 3D space and investigated the
use of tactile input on a mobile device for 3D visualization. They combined
the mobile device’s monoscopic view and a stereoscopic view of the data and
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included a tangible interaction mode in which the tablet’s orientation was
used to control the data view. While constrained to tangible 3D rotations
only, this approach fully takes advantage of the physicality of the tablet
as a tangible interface. Besançon et al. (2017) extended this approach and
proposed and evaluated a system that combines tactile and tangible inter-
action with a spatially-aware tablet for 3D visualization. They implemented
interaction techniques that take advantages of both input modalities to im-
prove fluid dynamic researchers’ workflow. We base our technique on their
approach to also take advantage of both interaction modalities for 3D selec-
tion. We use the tactile input for the creation of a 2D lasso, while tangible
manipulation extends this 2D shape into 3D.

5.3 classification of 3d selection techniques

A number of previous surveys have covered different taxonomies to classify
3D selection techniques. All of them, however, narrowly focus on either the
selection of dedicated 3D objects or the selection of 3D volumes (or regions
of interest). While the techniques used for each of these two purposes might
be different, the abstract task is still 3D selection. Also, the degree to which
the final selection can be precisely influenced or controlled by the user is
rarely discussed in existing taxonomies. In our work, in contrast, we are in-
terested precisely in this aspect of control that the user has over how the final
selection is made. Consequently, we expand existing taxonomies to include
both 3D object and 3D volume selection as well as the level of control over
the final selection given to the user. We thus first provide a brief overview of
the past taxonomies in Section 5.3.1, before we describe our extended set of
classification criteria in the remainder of this section that then allows us to
compare our work with that of the state of the art.

5.3.1 Past Taxonomies of 3D Selection Techniques

As one of the first to survey 3D selection techniques, Poupyrev and Ichikawa
(1999) proposed a two-level classification that focused on 3D object selection.
They mainly distinguished techniques based on whether the manipulation
was exocentric or egocentric. For each of these two classes, they classified tech-
niques based on the metaphor that each technique used. This latter classifi-
cation is useful because different metaphors are needed in different envi-
ronments or for different selection targets (raycasting is efficient for object
selection but not suited for, e. g., unsegmented data). Also, it was shown (Is-
sartel et al., 2016c) that exocentric and egocentric manipulations can result
in a different performance depending on the visualized scene (for tangible
manipulation with a spatially-aware display). Moreover, this classification
between egocentric and exocentric techniques can also be used to evaluate
whether a technique works for AR environments (Looser et al., 2007). This
taxonomy is important: it distinguishes techniques based on the metaphor
they employ first and also on user’s input which we believe to be essential.

Later, Bowman et al. (2001) considered feedback, confirmation mechanism,
and object indication as criteria to classify the 3D selection techniques they
analyzed. While these criteria are certainly important, Bowman et al.’s tax-
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onomy fails at showing the inherent mechanism of the selection. Moreover,
it introduces some redundancy because the choice of feedback is coupled
to the object indication. More recently, Argelaguet and Andujar (2013) pro-
vided a comprehensive survey and thorough classification of 3D selection
techniques for virtual environments, basing their classification on the selec-
tion tool, the degrees of freedom, DOF of the selection tool manipulation, the
employed disambiguation mechanism, the control-display ratio, and the relation-
ship between motor and visual space. Their classification centered around the
technique and its characteristics and focused on 3D selection techniques for
virtual environments that allow users to select dedicated objects. In our clas-
sification, however, we also include selection techniques that facilitate the
specification of 3D selection volumes/regions of interest that thus are also
applicable to volumetric data or particle datasets. Such forms of selection
are important, in particular, in exploratory data analysis selection techniques
such as those we mentioned in Section 5.2.

Surveys that focus on selecting regions of interest—to the best of our
knowledge—usually cover the topic of image/volume segmentation. For in-
stance, as early as 1981, Fu and Mui (1981) proposed to distinguish between
characteristic feature thresholding, edge detection, and region extraction.
Later, Haralick and Shapiro (1985) proposed to differentiate between mea-
surement space, space-guided spatial clustering, single-linkage region grow-
ing schemes, hybrid-linkage region growing schemes, etc. More recently,
Khan (2013) provided a taxonomy that distinguished between edge-based,
PDE-based, threshold-based, region-based, etc. approaches. However, many
segmentation techniques are automatic and do not rely on user input and,
hence, differ from the 3D spatial selection scenario on which we concentrate.

5.3.2 An Extended Taxonomy Focusing on User Control

In our classification that we describe next we try to focus more on the
amount of control the user has to define the final selection. While Arge-
laguet and Andujar (2013) started to put emphasis on input strategies with
their taxonomy and, in particular, included the DOF of the selection tool
(see Table 5), we go beyond this approach as we include criteria that define
whether the user or an algorithm is in control of the different steps involved
in the selection mechanism. By doing so, we provide a way to easily dis-
tinguish between a technique that gives little to no control to the user and
another which is essentially built on the user input. Hence, it would be easier
to determine whether a technique can easily adapt to new kinds of datasets
or regions/objects of interest or not. We thus extend Argelaguet and Andu-
jar (2013)’s classification by subdividing their selection control DOF criterion
and adding others as shown in Table 5. We also removed two further cri-
teria because they had no relation with the user’s input and control of the
technique but rather deal with possible mismatch between visual and motor
space (motor/visual space relationship) or how multiple selections were dis-
ambiguated. Next we describe the criteria that we use in our classification.



88 applying hybrid interaction to 3d subset selection

Table 5: Adjusted taxonomy based on Argelaguet and Andujar (2013)’s classifica-
tion of 3D selection techniques.

criterion description ∈
(Argelaguet
and Andujar,

2013)

∈ (Poupyrev
and

Ichikawa,
1999)

selection metaphor/tool ray, cone, cube, brush, 2D
lasso, . . .

3 3

selection control DOF refined in selection tool control
below

3 7

disambiguation mechanism does not concern control or
user input

3 7

motor/visual space relation does not concern control or
user input

3 7

target selection type dedicated objects vs. spatial
selection regions/regions of
interest

7 7

selection shape creation parameter-based, semi-
automatic, or fully user-
controlled

7 7

selection shape adjustments not possible, automatic, man-
ual

7 7

selection tool control input DOF, control DOF, and
CD ratio

• 7

5.3.2.1 Selection Metaphor

Poupyrev and Ichikawa (1999) were the first to use this criterion in their
taxonomy. It was latter re-used by Argelaguet and Andujar (2013) (selection
tool). It is defined as the tool used to define the desired selection. For in-
stance, a ray-casting metaphor computes the intersection with scene objects
to highlight (possibly combined with different feedback) the currently se-
lected object (Argelaguet and Andujar, 2013). Similarly, the intersection of
the box with a volumetric dataset can be computed to obtain a selection
of the data (e. g., (Benko and Feiner, 2007; Cabral et al., 2014)). The used
metaphor is an important criterion: it affects the control (e. g., w.r.t. DOF) of
users over the interaction. It also limits, in most cases, the shape the final
selection.

5.3.2.2 Target Selection Type

Previous taxonomies only investigated either dedicated object selection or
ROI-based selection (Section 5.3.1). We want to cover both types with our
taxonomy, thus add this criterion as a primary classification criterion. Specif-
ically, we distinguish between single-object selection, multiple-object selec-
tion, and ROI-based selection.
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5.3.2.3 Selection Shape Creation

ROI-based selections need some form of specification of the selection re-
gion. Simple approaches specify this region based on the adjustment of pre-
defined geometric shapes (e. g., (Benko and Feiner, 2007; Akers et al., 2004;
Sherbondy et al., 2005; Zhai et al., 1994)). These techniques quickly provide
selections, but with limited control over the result. Hybrid approaches rely
flexible user input (e. g., 2D drawings with respect to a projection of the 3D
data) and the data/view context (e. g., lasso-based (Chen et al., 2006; Owada
et al., 2005; Yu et al., 2012; Yu et al., 2016; Yuan et al., 2005)). These tech-
niques provide more control over the result but also require more input to
specify the selection. Finally, the highest level of control would be facilitated
by approaches that rely purely on (3D) user input, without any system as-
sistance that would control parts of the selection process. To the best of our
knowledge, no existing technique relies solely on user input so far to de-
fine the selection volume—the tangible selection technique we introduce in
this paper falls into this category. Even the 3D Lasso technique employed by
Zhou et al. (2008) does not really create a 3D selection volume but rather
computes which tracts of interests are within the 3D-drawn lasso. Similarly,
the 3D live-wire technique (Malmberg et al., 2006) does not allow the user to
draw the full selection volume but rather creates the volume that connects
the two 2D shapes created by the user.

5.3.2.4 Selection Shape Adjustments

Once the selection has been specified, users may still want to adjust it. As
part of the core selection approach, there is either no post-creation control at
all, or automatic system-based control, or user-based control. For example,
for ray-casting or cone-casting techniques there is generally no control over
the ray itself once the selection has been made. Some techniques such as
the flexible pointer (Olwal and Feiner, 2003), however, employ user-controlled
ray-bending to assist with the disambiguation of targets.Similarly, Aperture
(Forsberg et al., 1996) uses a cone-casting selection whose size can be manu-
ally adjusted (by adjusting the apex angle).

We can also make this distinctions for other techniques. For instance, the
Silk Cursor (Zhai et al., 1994) uses a pre-defined shape whose size cannot be
adjusted. The Bubble cursor (Vanacken et al., 2007) relies on a sphere selection
tool that can dynamically be extended to reach objects close to its center. This
extension, however, is made automatically and does not involve user input.
Aperture (Forsberg et al., 1996), in contrast, allows users to dynamically con-
trol the size of the selection cone. Similarly, context-aware techniques (Yu et
al., 2012; Yu et al., 2016) allow users to adjust an initially system-derived se-
lection threshold—for instance to control the particle density of the selection
region.

5.3.2.5 Selection Tool Control

In their taxonomy, Argelaguet and Andujar (2013) consider tool control as
the way the “user is able to control” the defined selection shape. They distin-
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guish two aspects: the selection tool DOF and the control-display ratio. We
add an additional factor: the input device DOF (that Argelaguet and Andujar
briefly mention, after their classification, as a factor affecting performance)
that is essential to understand correspondances between the physical input
and the virtual selection operators.

Selection tool DOF: To alleviate the lack of control given to the user on
the volume selection creation, most techniques provide the users with mech-
anisms to adjust the selection volume’s origin and orientation. Techniques
lacking such controls which do not allow the users to create their own se-
lection volume would have a negative impact on the variety of possible se-
lections. Similarly, techniques that provide control over the origin of the se-
lection tool only (Zhai et al., 1994) are necessarily more limiting than tech-
niques also providing orientation control (Argelaguet et al., 2008; Forsberg
et al., 1996).

Input Device DOF: While the number of available DOF for the control
of selection tool is important, it is similarly important to consider the DOF
provided by the used input device. Having a mismatch between these two
variables could lead to a bad performance. On the one hand, having more
input DOF than necessary could be confusing for users as they do not see
the changes provided by the additional unused DOF (Wingrave et al., 2005).
On the other hand, having less DOF than necessary is also a problem as
users can report being confused by integrated manipulations (Besançon et
al., 2017) or the interaction requires excessive mode switching.

Control-display (CD) ratio: The CD ratio determines the conversion of
translations and rotations of the input devices into manipulations in the vir-
tual world. It is usually isomorphic (i. e., a one-to-one mapping) but can
also take other static values. Because 3D selection is based on 3D input, a
down-scaling CD ratio could lead to many user manipulations and, hence,
to user fatigue. Similarly, having an up-scaling CD ratio could lead to im-
precise selections of small targets (Kopper et al., 2011). Dynamic CD ratios
can address both problems. While Argelaguet and Andujar (2013) based
their classification on (König et al., 2009)’s distinction between CD manual
switching, target oriented CD, and velocity-oriented CD, we argue here that
a velocity-oriented technique still provides a manual control of the CD ratio
to the user. We thus gather manual switching and velocity-oriented tech-
niques under the manual control of the CD ratio. A further distinction can
be made by distinguishing between explicit manual control (setting a value
with a slider or mouse buttons or using specific gestures to switch (Vogel
and Balakrishnan, 2005)) and implicit manual control (e. g., velocity-based
(König et al., 2009) or pressure-based (Besançon et al., 2017)).

5.4 tangible selection brush

Our technique is inspired by Lucas (2005) and Lucas et al. (2005)’s Tablet
Freehand Lasso which allows users to draw a lasso on a 2D projection of the
data, and then to extend this lasso shape as a generalized cone into the
3D data space. Our algorithm, however, relies on both tactile and tangible
inputs, it thus creates a hybrid tactile/tangible paradigm that has already
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been useful for 3D data exploration (Besançon et al., 2017). Specifically, we
ask users to draw a 2D brush on the tangible device that they can then
extended into 3D by physically moving the device. In contrast to existing
techniques for 3D selection, we thus give users full interactive control of the
final selection volume, without algorithmic extrapolation. Next, we describe
the our approach and our setup in detail.

5.4.1 Overall Interaction Design

Similar to the mentioned previous approaches, we start by asking users to
draw a closed shape on the mobile device with respect to the displayed 2D
projection of the data. We handle non-closed strokes in two different ways.
We first compute the Euclidean distance between the start and the end point.
If this distance is smaller than 0.2 (units on the device screen whose length
is 2) then we connect the start and end points with a straight line. Otherwise,
since we advocate for free-form drawing, we remove the drawn path so that
users can start anew.

In contrast to sketch-based modeling techniques (e. g., (Igarashi et al.,
1999)) or context-aware selection (Yu et al., 2012; Yu et al., 2016), we then
facilitate the 3D extension of the 2D shape in an entirely user-controlled
fashion. In this second step, we link the drawn 2D brush to the physical
location of the tablet. Users can thus move the brush through the volumet-
ric dataset by physically manipulating the tablet in 3D space. During the
user-controlled selection phase, the algorithm thus records all the positions
and orientations of the brush at each sample point. Then, we compute a 3D
selection volume from the recorded brush positions and apply it to the data.

We generally allow users to use the full 6 DOF of their tangible manipula-
tions (3 DOF for translation, 3 DOF for rotation) of the tablet to extend the
2D shape. Such a fully-integrated manipulation, however, may be difficult
to achieve for some users and it is possible that other users may want to
consider manipulations only along a single axis. We thus also offer a way
for users to constrain their (virtual) movements when moving the brush to
along the tablet’s normal.

5.4.2 Selection Computation

To facilitate an efficient computation, we apply a regular grid to the 2D
space of the tablet’s surface with an adjustable resolution (200 × 200 in our
implementation). We then use the drawn lasso shape to mark cells as in-
side or outside the selection brush using Boolean values. For each sampled
position/orientation of the tablet during the selection interaction, we then
derive the position of the Boolean grid within the data space and connect
two consecutive grid arrangements. We then use the resulting 3D grid slice
to carry out the actual selection operation: either we select/deselect 3D par-
ticles directly or we manipulate a 3D regular selection datastructure (i. e., a
discretized 3D selection volume).

While most 3D selection techniques rely on simple selection shapes that
can lead to imprecise 3D selections, some existing techniques make use of
progressive refinement strategies to improve the precision of the final 3D
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Figure 34: The tablet being used together with the synchronized split-screen view
that is shown on a separate, large display.

volume (e. g., (Bacim et al., 2013; Elmqvist et al., 2008; Kopper et al., 2011;
Yu et al., 2012; Yu et al., 2016)). We use a similar approach based on Boolean
operations, either adding to (Boolean OR), intersecting with (Boolean AND),
or subtracting from the previous selection. We can then use the resulting
selection volume to process both volumetric data and large particle clouds.
Moreover, we carry out the processing dynamically (updating the selection
with each new sample) to allow users to receive immediate feedback from
their interactions.

5.4.3 Setup and User Interface

Our setup uses two displays (Figure 34): (a) a spatially-aware mobile device
with tactile input and (b) a stationary large display. Users of the system per-
form all interactions on the mobile device, including the drawing of the 2D
selection brushes and the tangible movement of the selection brush through
the 3D data space. The stationary device, in contrast, shows a high-resolution
view of the dataset as a frame of reference for the interaction. Both devices
display 2D projections of the 3D data—the larger stationary display from
a static vantage point and the mobile device based on its 3D location and
orientation. The more expensive computations beyond input processing and
rendering (e. g., the 3D selection volume creation and its application to the
dataset), finally, are carried out on the PC that also drives the stationary
display.

The tablet interface (Figure 35) allows users to control the selection inter-
action in detail. Menus on the top allow users to load datasets and change
general view settings. The toggle button on the right controls whether se-
lection extrusion uses all 6 DOF of the tangible interaction or whether it is
constraint to the tablet’s normal. The slider on the right reflects the current
CD factor which obtain from pressure sensors on the back of the device,
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Figure 35: The tablet’s interface which controls the selection operations.

similar to Besançon et al. (2017)’s recent design. In addition to isomorphic
mappings, users can thus also be either more precise in their interactions
or can cover larger space ranges using a single motion, with the slider al-
ways providing the visual feedback recommended for pressure-based input
(Cechanowicz et al., 2007; Herot and Weinzapfel, 1978; Wilson et al., 2010).
Users can switch between view manipulation and selection mode using the
toggle button on the bottom left. The remaining toggle buttons on the left
control the used Boolean operation (addition by default). In addition to these
system-controlled states, the user-controlled red button located on the left
starts or stops the tangible manipulations of either the view or the selection
extrusion during the interaction. The tangible manipulation with the tablet
is interpreted in such a way that, during normal handling of the tablet, the
data retains its location with respect to the tablet and thus appears to be at-
tached to it. Only during active manipulation (red button pressed), the tablet
is relocated with respect to the dataset.

The projection of the data in the center of the tablet provides both visual
feedback and the canvas for the drawing of the 2D selection brush. We specif-
ically use an orthographic projection of the data to allow users to relate the
drawn 2D shape to the visible features of the data. While this projection lacks
perspective depth clues, data features do not shrink or grow with respect to
the drawn brush due to perspective forshortening during the selection extru-
sion when the tangible is moved through the dataset. This physical motion
is also reflected in the data view (while either the data manipulation or the
selection is actively engaged by the user) because the tablet is interpreted as
a cutting plane, thus adding perceptual depth cues through the interaction.

Moreover, the separate stationary display shows two synchronised views
of the data (see Figure 34), both using perspective projection. In this split-
screen arrangement, the left view represents the data as it is shown on the
tablet—the display thus acts as a physical representation of the tablet posi-
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tion with respect to the projected data. On the right, we show a view rotated
by 45° around the vertical y-axis from this view on the left. This right view
also shows a representation of the tablet (which thus remains at the same
screen-space location all the time) and the 2D selection brush within the
data space. This tablet-specific plane is also interpreted as a cutting plane
such that the data between tablet and viewer is removed. This combined
arrangement thus gives the viewers a good impression of the location of
the data with respect to the tablet, allowing them to control their selection
actions in detail.

5.4.4 Implementation and Performance

We realized our system in a modular way: the tablet runs a native Android
app and the PC a separate Linux-based software. Both tools use VTK as their
basis (VTK 6.0 on tablet and VTK 6.3 on PC), rendering the visualizations
using OpenGL (OpenGL ES 2.0 for the tablet and OpenGL 3.0 on the PC).
For that purpose we use shaders based on GLSL 1.0 on the tablet and GLSL
1.3 on Linux. The tablet communicates with the PC over UDP (via Wifi). It
sends status updates that allow the PC application to adjust its view and
compute the selection. The communication lag was largely negligible in all
our experiments.

We compute the actual selection on the PC. Depending on the type of
data we used, we employed different ways to show the selection. For particle
datasets we highlight the particles in a different color (a lighter shade of their
initial color). For other datasets (e. g., volumetric data or geometric shapes),
we show a semi-transparent selection volume. While we did not implement
it, we also envision to directly adjust the transfer function of volumetric
datasets to highlight the selected voxels.

The resulting rendering performance for both the tablet and the desktop
applications is in the order of 60 fps, independent from the size and char-
acteristics of the datasets with which we have experimented. Only for large
selections (brushes that take approx. 3/4 of the actual tablet size), the pro-
cessing of the selection computation by the desktop application led to the
view on the stationary display to somewhat lag behind during extrusion.
We believe that a multi-threaded implementation of the desktop application
would address this issue.

5.4.5 Classification

Let us now revisit the taxonomy we described in Section 5.3 with respect to
our Tangible Brush selection. As a selection metaphor/tool we obviously use a
combination of brush-based selection and 2D lasso. Our target selection type
is based on ROIs because we extrude the 2D brush into 3D space. With only
a few modification, however, we could also easily apply the Tangible Brush
to dedicated object selection (i. e., the objects touched during the extrusion
interaction). In contrast to existing techniques that always rely on some form
of automated computation of the final selection volume for their selection
shape creation, our Tangible Brush solely relies on user input to define the
selection volume. Since users already have full control over the created final
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selection volume with Tangible Brush, the technique does not implement
any possible post-interaction selection shape adjustments that are required for
most techniques that rely on an automated process. We could, however, add
such an adjustment later-on as suggested by the participants of our study
(see Section 5.6). Nevertheless, we do not need to provide any technique
to adjust the selection volume’s origin and orientation that most technique
provide because our technique is already flexible in its selection volume
creation.

To provide selection tool control, our technique relies on two separate steps
to create the final selection volume. The first step only requires 2 DOF to
draw the lasso which are provided by regular single-finger tactile input. The
second step, i. e., the extrusion, can either rely solely on movements along the
tablet’s normal (1 DOF) or on the full 6 DOF provided by the spatially-aware
device; and users can freely switch between these two modes. Finally, we
provide a CD ratio manual control based on 1 DOF pressure input. In other
words, with our Tangible Brush we provide a fully manual and structure-
independent selection tool that has not yet, to the best of our knowledge,
been explored. We thus believe that our tool could easily be used in a variety
of application scenarios and with virtually any kind of 3D dataset, without
relying on internal structure arrangements to produce a good selection.

5.5 controlled study

A valid question to ask, however, is how such a manually-controlled tech-
nique performs when compared against the existing structure-dependent
selection techniques. We thus present a controlled experiment to compare
with an existing and state-of-the-art structure-dependent selection technique
to quantitatively and qualitatively assess and understand the differences.

5.5.1 Structure-Dependent Selection Technique

Among the related work covered in Section 5.2, a number of techniques drew
our attention based on related interaction aspects. More specifically, all tech-
niques that are based on a drawn 2D lasso were potential candidates for a
comparison (i. e., (Chen et al., 2006; Malmberg et al., 2006; Owada et al., 2005;
Shan et al., 2014; Yu et al., 2012; Yu et al., 2016)). Ultimately we chose the
SpaceCast approach from the recently published CAST selection techniques
(Yu et al., 2016). Our reasons for this choice was that it is a semi-automatic
structure-dependent technique, that all CAST techniques select only single
connected components, that SpaceCast specifically constrains the selection
to the drawn lasso shape (similar to our technique), and that SpaceCast had
already been compared to the other CAST selection techniques, to selection
based on generalized cylinders/cones (Lucas, 2005; Lucas et al., 2005), and
to the CloudLasso technique (Yu et al., 2012).

5.5.2 Hypotheses

Based on our general experience with spatial selection and our pilot studies,
we formulated the following hypotheses:
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Figure 36: The 4 datasets used in our study. Particles of interest are in red and
unwanted particles in blue

h1 Since SpaceCast was explicitly designed with density-based selection in
particle datasets in mind, its accuracy will be better than that of Tangible
Brush for datasets where the target can be identified based on density.
However, if the target cannot be identified based on particle density,
Tangible Brush will provide a better accuracy.

h2 Since SpaceCast is partially automated and only requires a 2D lasso as
an input, it will be generally faster to use than our Tangible Brush that
also needs the tangible motion of the tablet in space.

h3 Technique preference will depend on the dataset characteristics: for sim-
ple shapes that can easily be identified based on particle density partic-
ipants will prefer SpaceCast, for other datasets where this identification
of selection target based on particle density is not possible participants
will prefer Tangible Brush.

5.5.3 Apparatus

Our setup included the 7 inch Google Tango tablet (“Yellowstone,” 370 g,
7.8 cm diagonal, 1920 × 1200 pixel resolution, 323 ppi) and a 55 inch (139.7 cm
diagonal, 3840 × 2160 pixel resolution, 79 ppi) static vertical screen mounted
at approx. shoulder height. This display was equipped with a PQLabs over-
lay, capable of recognizing up to 32 simultaneous touch input points. We
used the vertical screen as the primary input and output screen for the
structure-dependent SpaceCast selection technique and as the secondary
synchronized screen for Tangible Brush. For the Tangible Brush technique,
input was captured by the tablet but elaborate computations were restricted
to the vertical display (to save battery power and to increase the perfor-
mance).

5.5.4 Datasets

We used the four particle datasets illustrated in Figure 36. We designed
each dataset to have different features that would be either problematic for
structure-dependent selection or for Tangible Brush. Particles to be selected
are shown in red, noise or unwanted particles are blue.

d1 Simple shapes (Figure 36a): two simple shapes, a cylinder and a cube,
both having a higher density than the noise around them.
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d2 Shell and ring (Figure 36b): a ring, a sphere, and half-ball surrounded
by a semi-spherical shell of interfering particles (both having the same
density).

d3 Pipe (Figure 36c): a target cylinder at the bottom, immediately followed
by a hollow target cylinder shell in the middle that surrounds an un-
wanted cylinder, again followed by an other solid target cylinder at the
top; all had the same density.

d4 Simulation (Figure 36d): a simulation of two colliding galaxies with vary-
ing densities, the selection target was one of the galaxies.

We hypothesized that both D1 and D2 would be easy for SpaceCast. We
did not expect D1 to be difficult for Tangible Brush, but D2 to be more diffi-
cult for it because the non-target shell is very close to the ball, thus requiring
a high precision. D3 was designed to be difficult for SpaceCast because the
selection target could not be identified by the particle density, requiring sev-
eral Boolean operations. D4 was supposed to be a difficult dataset for both
techniques.

5.5.5 Participants

We recruited 16 unpaid participants (5 female; ages 21–53, mean = 25.8, med
= 24.5, SD = 7.4). 11 of them had at least a university degree (bachelor or
equivalent), while the remaining five had at most an A-level equivalent. Nine
of them were experienced with 3D manipulation through extensive use of
video games. All of them had extensive experience with tactile interaction,
in particular through the daily use of their smartphones. Three participants
had previously been exposed to tangible interaction through their job, one
of them on a daily basis. Other had no or very little exposition to it. Three
participants were left-handed. All participant had normal or corrected-to-
normal vision.

5.5.6 Procedure

We started the experiment by gathering the participants’ demographics and
explaining the purpose of the study/setup. Generally, the experiment con-
sisted of having each participant perform selections using both techniques
on the described datasets. We first introduced each technique and then pro-
vided a training phase on four simple 3D shapes to let participants get ac-
customed to the selection techniques. Then, we asked participants to achieve
selection on the four other datasets. We repeated each task three times and,
each time, from a different starting angle. Before each task, participants
could freely explore the dataset to understand its structure and the targets.
After participants had fully understood the selection tasks, we asked them
to complete the selection as fast and accurately as possible. We did not stress
any factor more than the other (thus mirroring Yu et al. (2016)’s study de-
sign). We also pointed out to them in advance that a perfect selection was
generally impossible to avoid overly long interaction times.

Overall, we thus had a within-subjects study design with 2 selection tech-
niques × 4 datasets × 3 repetitions = 24 trials per participant. We counter-
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Figure 37: Task completion time in seconds (a) and direct comparisons by dataset
and overall (b). Error bars are 95% confidence intervals (CIs).

balanced the sequence of the selection techniques to avoid order effects. We
also counter-balanced the order of the datasets using a Williams design Latin
square (Williams, 1949) to balance the number of times a condition precedes
and follows another. After each selection technique, we asked participants
to fill in a questionnaire to assess the workload (using NASA’s Task Load
Index)2 and the fatigue. At the end of the experiment, we asked the partic-
ipants, for each dataset, what technique they preferred using and why. We
also told them to think aloud throughout the study so that the experimenter
could take notes about their different observations and comments. The entire
experiment took approx. 75 min on average per participant.

5.6 quantitative results

We gathered a total of 384 trials (24 tirals per participant × 16 participants)
for quantitative analysis. We analyze this data using estimation techniques
(seeAppendix A).

5.6.1 Completion Time

We analyzed log-transformed time measurements to correct for positive skew-
ness and present our results anti-logged, as it is standard in such cases
(Sauro and Lewis, 2010). We show the completion times in Figure 37 where
one can clearly see (Figure 37a) that the confidence intervals are not overlap-
ping, thus providing strong evidence that SpaceCast is about twice as fast as
Tangible Brush on average. There is also strong evidence of SpaceCast being
faster for all datasets as displayed in Figure 37b, with the difference being
strongest for the second dataset for which it is more than 2.5 times as fast.
The effect is smaller, however, for D3.

5.6.2 Accuracy

Similar to Yu et al.’s work (Yu et al., 2012; Yu et al., 2016), we computed two
accuracy scores, F1 and MCC. Both are based on three factors: the number

2 https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf

https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf
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Figure 38: MCC (a) and F1 (b) accuracy per technique. Error bars: 95% CIs.

of true positives (rightfully selected particles, TP), false positives (incorrectly
selected particles, FP), and false negatives (number of particles that should
have been selected but were not, FN). F1 is computed as F1 = 2 · (P · R)/(P+
R) with P = TP/(TP+FP) being precision and R = TP/(TP+FN) being recall.
MCC is computed by also considering the number true negatives (particles
correctly omitted, TN) as

MCC =
TP · TN− FP · FN√

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
.

We present the results of these two scores in Figure 38. For F1, 1 indicates
a perfect performance and 0 the worst possible performance, while MCC re-
sults range from −1 (worst performance) to 1 (perfect performance). We see
that both selection technique obtained good MCC (0.95 for Tangible Brush
and 0.92 for SpaceCast) and F1 (0.91 for Tangible Brush and 0.86 for Space-
Cast) scores. Both scores (Figure 38a and (b), resp.) show strong evidence
for Tangible Brush being more accurate. Both figures, however, also show
that there is only a small effect for the accuracy difference between the two
techniques.

5.6.3 Workload

We gathered workload measurement with a Raw-TLX (which has been demon-
strated to be equally well suited as a regular TLX (Hart, 2006)) and which
we present in Figure 39. Our data shows no evidence of a difference between
SpaceCast and Tangible Brush for physical demand (Figure 39b), estimated
performance (Figure 39e), or frustration (Figure 39f). There is clear evidence,
however, for the mental demand being higher for Tangible Brush than it was
for SpaceCast (Figure 39a) and weak evidence for effort also being higher
for Tangible Brush (Figure 39d). As a consequence, we can see in Figure 39g
evidence for the overall workload being higher for Tangible Brush than it is
for SpaceCast.

5.6.4 Fatigue

We present the overall fatigue measurements and their sub-aspects in Fig-
ure 40. The finger fatigue shown in Figure 40a seems to be higher for Space-
Cast but the overlapping confidence intervals suggest that there is no clear
evidence that it is higher than Tangible Brush overall. The overlapping confi-
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Figure 39: Workload measurement in NASA TLX units (∈∈∈ [0, 100]) with respect to
(a) mental demand, (b) physical demand, (c) temporal demand, (d) effort,
(e) performance, (f) frustration, and (g) total; for all lower is better. Error
bars: 95% CIs.

dence intervals for hand fatigue (Figure 40b), arm fatigue (Figure 40c), shoul-
der fatigue (Figure 40d), and the total fatigue (Figure 40e) suggest that it is
not possible to find evidence of a difference between the two techniques
based on our experiment.

5.6.5 Preferences and Qualitative Results

At the end of each study we asked participants to report on their preferred
technique per dataset. We report these preferences in Figure 41. Our results
show a slight preference for SpaceCast (7 ×) over Tangible Brush (5 ×)for
the first dataset (D1). For the second dataset (D2) which we had designed
to be easier for SpaceCast, SpaceCast was largely preferred by participants
(10 ×) over Tangible Brush (3 ×). For the third dataset (D3) which we had
designed to be easier for Tangible Brush, the preferences expectedly show a
strong advantage for Tangible Brush (11 ×) over SpaceCast (2 ×). Finally, the
preferences for the last dataset (D4, the galaxy simulation) exhibit a slight
preference for Tangible Brush (8 ×) over SpaceCast (6 ×).

Participants also voiced a number of interesting comments during the
study. Many of them (11 ×) stated that they wish they could draw the lasso
on the tablet in a more precise way. Among these participants, five suggested
to use a stylus, five suggested to allow zooming for drawing only, and one
suggested both options. Six participants voiced the opinion that SpaceCast
was “way easier for simple shapes” or shapes with a homogeneous den-
sity. However, five others reported that they did not understand why or how
SpaceCast derived the final selection volume for shapes along a varying den-
sity (with D4 mainly). One even reported that he considered the technique
to be plainly “a pain” for the fourth dataset. Finally, two participants sug-
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Figure 40: Fatigue measurements on a scale from 0 to 10 for (a) fingers, (b) hands,
(c) arms, (d) shoulders, and (e) total. Error bars: 95% CIs.
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Figure 41: Technique preferences per dataset.

gested to combine SpaceCast and Tangible Brush as it would allow them
“to use SpaceCast for simple shapes or continuous densities,” and then to
“adjust the selection for more complicated cases with Tangible Brush.”

5.6.6 Discussion

5.7 discussion

Based on these results, we now discuss our most relevant and interesting
findings. Our ultimate goal is to see whether a structure-independent selec-
tion technique can be efficient and to understand the benefits and limitations
when comparing it to a structure-dependent technique.

5.7.1 Completion Time

Based on our results, we can clearly state that our hypothesis H2 is verified.
SpaceCast is indeed faster than Tangible Brush for all datasets we tested. Of
course, our participants were generally less familiar with tangible interac-
tion than they are with tactile input, probably causing at least a part of the
increased interaction times. Users are likely to get faster with the Tangible
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Brush as they would get more used to tangible interaction, in the same the
way they are now used to tactile interaction—but, of course, we cannot say
this for sure. Furthermore, we noticed during our observations of all partici-
pants that most of them wasted time redrawing the lasso shape several times
for Tangible Brush because they were not satisfied with their first few tries,
mirroring qualitative feedback we reported earlier (unfortunately we could
not quantitative this behavior with our data). We thus hypothesize that with
a zooming capabilities for the lasso drawing or by providing stylus-based
input the completion time with Tangible Brush could have been shorter. It
is also worth to note that none of the participants reported that any of the
techniques would take too long to use or that it became frustrating to a level
that prevented them from using the technique.

5.7.2 Accuracy

Surprisingly, our hypothesis H1 is partially disproved: Participants obtained
better accuracy scores with the Tangible Brush than with SpaceCast, overall
and for each dataset. Yet, while there is clear evidence for the better perfor-
mance of Tangible Brush, the effect—while noticeable—is still rather small.
Both techniques exhibit an excellent performance overall, leading us to as-
sume that both techniques are well suited for spatial selection.

5.7.3 Workload

The results we obtained for the workload evaluation are surprising as we
expected Tangible Brush not to require much mental demand. Our results,
however, show that it requires more mental effort than SpaceCast. This ob-
servation could be explained by the fact that tangible interaction is not, in
contrast to tactile interaction, a widely released or adopted technology as
we noted before. This lack of “expertise” on tangible interaction may also
be the cause for the temporal demand being higher in the Tangible Brush
case. Moreover, the mismatch between input and output space for the Tangi-
ble Brush may also contribute to a high mental demand: While the Tangible
Brush is moved through 3D space during the selection extrusion, the par-
ticipants could only observe the effects on either projected 2D view of the
dataset. Our observations that some participants struggled when attempting
even with simple dataset rotations with the tangible tablet also support this
interpretation. Finally, the need to decide on a specific brush size and shape
before the extrusion operation may have been difficult for some participants
as the brush does not adapt during extrusion but the selection target’s cross-
sections frequently do.

5.7.4 Fatigue

The fatigue results were, overall, similar for both techniques. While it can be
surprising that SpaceCast is also causing arm or shoulder pain, this fact is
due to the position that our setup enforced as nine participants remarked:
standing in front of the screen and having to lift up the arms to interact
with the screen. Even though the fatigue results we present here are high,
no participants reported that the fatigue was unbearable or had to take a
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break during the experiment (even though they were allowed to do so). This
suggest that both techniques can be used interchangeably without worrying
about fatigue.

5.7.5 Preferences and Suggested Improvements

Generally, our hypothesis H3 is confirmed. Participants tend to prefer Space-
Cast for datasets in which the selection target can be easily obtained based
on simple shapes or particle density (D1 and D2). For more complicated
datasets, their preference leans towards Tangible Brush strongly (D3) or
slightly (D4). Three participants reported that it was “nice to be able to
control the selection based on spatial input” and that it was “helpful par-
ticularly for the galaxy dataset [D4] and the cylinder dataset [D3].” We also
note that no participant reported a single technique to be their favorite for
all datasets, mirroring and reinforcing the suggestion by two participants
to ultimately combine SpaceCast and Tangible Brush. While Tangible Brush
is already a hybrid interaction technique, a combination of a partially auto-
mated approach with a fully manual approach would allow users to choose
the technique to engage depending on the dataset and the selection target.

Our participants also suggested a number of possible improvements when
thinking out loud throughout the tasks. With our current method, users can
extrude any 2D shape by moving the tablet in any direction. One partici-
pant suggested, for instance, that only forward movements should be con-
sidered and that backward moves could be used to cancel what had previ-
ously been selected. He actually said that, for him, going backward was a
way to unselect as if doing “Ctrl+Z.” This is an interesting idea that would
enable undo operations in a tangible way and that could be explored with
our system or in other tangible systems. In addition, when a new dataset
is loaded, we currently compute a dataset-dependent scale factor on the
tablet to show the whole dataset as large as possible without touching the
borders of the screen. In some cases this negatively affects one’s ability to
select small sections of the dataset. Five participants suggested zooming op-
erations (for drawing purposes) to address this issue. This zoom could be
combined with the use of a stylus to even further improve accuracy when
drawing by avoiding the fat-finger issue. The suggestion to combine CAST
selection with Tangible Brush (made by two participants) is also very in-
teresting. In this case, not only would the resulting technique be a hybrid
tactile/tangible interaction paradigm, but also a hybrid selection technique
combining both semi-automated extrusion of the selection shape and a fully
manual control of the extrusion. We envision such a solution to be useful
for complex datasets and selections that cannot solely be based on one in-
put or the other. We also believe that such a combination would allow us to
combine the benefits of both approaches: a shorter task completion time and
a high accuracy. Multiple combination scenarios can be envision. First, sim-
ple shapes or data-dependent selection could easily be achieved by a CAST
technique, while Tangible Brush would be used to handle more complex
and data-independent selections. We also envision that the data-dependent
strategy could only be used to assist the drawing of the lasso correctly and
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that the extrusion is still achieved manually. Such a combination would also
reduce the need for a better and more accurate drawing of the lasso. This hy-
brid selection technique does not necessarily have to merge Tangible Brush
and CAST: we believe that any combination of a structure-independent and
structure-dependent techniques would be interesting.

5.7.6 Limitations

Despite our careful experimental design, some limitations should be men-
tioned. First, the tablet screen was a lot smaller than the screen on which we
recorded SpaceCast’s interaction, leading to precision issues for the drawing
of the lasso when using Tangible Brush as highlighted by our participants
and observations. We believe that a larger screen would have led to better
results especially for the task completion time since we observed that partic-
ipants had to redraw their lasso several times before being satisfied. While a
larger tablet could solve this issue, it would also be heavier and more diffi-
cult to handle. So the temporary zoom suggested by some participants may
be a better solution.

We also did not recruit any expert used to selecting ROIs in our study—
experts may have used different strategies for both interaction techniques
which could have led to different study results. Indeed, our participants
sometimes failed to see possible Boolean strategies that would have helped
them which most experts would probably have used.

Participant preferences could also have been biased by the novelty effect
of tangible interaction (Besançon et al., 2017). However, to try and avoid
this kind of bias we were careful to ask for participants’ preferences per
dataset, thus trying to get them to focus on the possible benefits of each
technique rather than their possible entertaining values. We also asked them
to justify their preferences and did not find any justification to be based
on possible enjoyment or novelty of tangible interaction. We thus believe
that the novelty effect of tangible interaction had only little influence on the
preference results we presented.

Finally, the mentioned mismatch between output and input space could be
an important issue for Tangible Brush. For SpaceCast and similar techniques,
in contrast, users see a 2D projection of the data and provide matching 2D
input—even if the data arguably lives in 3D. To avoid the space mismatch for
Tangible Brush one could envision an augmented reality setup (e. g., using
Microsoft’s HoloLens3 or a stereoscopic data projection on the large display:
the sterescopic data view would provide an ideal context for the tangible
operations, thus linking output and tangible input spaces. While the 2D lasso
that provides the brush would probably still require the tablet’s display to
show a 2D projection (to avoid parallax issues (Bruder and Steinicke, 2013;
Colley et al., 2015; Valkov et al., 2010; Valkov et al., 2011b)), we would like to
explore such setups in the future to further examine the potential of tangible
interaction for the control of visualization environments.

3 https://www.microsoft.com/microsoft-hololens/

https://www.microsoft.com/microsoft-hololens/
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5.8 conclusion

In this chapter, we have further explored the design space of spatial selection
for 3D datasets, adding a structure-independent and fully manual selection
to the spectrum. Our taxonomy of previous work showed that new classifi-
cation criteria were needed that describe the input and shape control offered
to users by several techniques. Filling a hole that existed in the scope of se-
lection techniques, our Tangible Brush, in contrast to past approaches, gives
full control to the user performing a selection. Our controlled study and ob-
servations clearly showed the potential of such a technique for 3D selection,
highlighting its excellent accuracy even in complicated cases.

Our specific technical contribution, the Tangible Brush, can directly be
applied to various types of data because it is structure-independent. While
in our experiment we used particle-based data, for example, from astron-
omy, it is easily possible to apply our approach to volumetric data (e. g.,
from medicine) and explicit shapes (e. g., molecular models from structural
biology). It would even be possible to extend it to the selection of linear
structures (e. g., DTI fibertracts or trajectories in a FTLE dataset) by using
the direction of motion during selection.

In addition to supplementing the spectrum of 3D spatial selection tech-
niques, we have also, with this work, filled a hole in the spectrum of possi-
ble hybrid tactile/tangible interactions for 3D visualzation (R2). Our work
in Chapter 4 focused on several 3D visualization tasks for the specific needs
of fluid dynamic researchers. In this chapter however we only focused on
one task useful in several scientific fields. We have thus further extended the
possibility that our interaction continuum offers with this focus on 3D spa-
tial selection of data and highlighted its potential yet again. Our technique,
moreover, relies again on an affordable and commercially available device
(R3).

Furthermore, our study also highlighted the need for more hybridation
at an other level. While we distinguished with the taxonomy presented
here manual and assisted selections, our study revealed that a hybrid ap-
proach combining several selection techniques/strategies to better suit at
minimum the dataset, the selection targets, and the interaction environment.
Ultimately, it seems ideal that an application should provide several different
selection approaches from the entire spectrum that cover different aspects of
our taxonomy. Table 6 illustrates a selection of such possible techniques with
their classification, and designers can choose the ones best suited for a par-
ticular domain or application.

While our specific setup with a 2D projection on a separate screen facil-
itated effective selection as we demonstrated in the study, it also showed
limitations as we have outlined above. Exploring our hybrid interaction
paradigm in other environments could not only probably solve the input-
to-output-mismatch, but would also further expend the idea of an interac-
tion continuum that spreads on even more environments. We thus believe
that augmented reality environment have a great potential and should be ex-
plored further in order to push the boundaries of our interaction continuum
theory.
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C O M B I N I N G TA N G I B L E I N T E R A C T I O N W I T H P R E S S U R E
I N P U T

Most of the work presented so far focused on a possible implementation of
an interaction continuum through the combination of complementary input
paradigms ( as seen in Chapter 4 and Chapter 5): namely tactile interaction
and tangible interaction. The previous chapters clearly showed the potential
of such a hybrid interaction paradigm for 3D visualization tasks. However,
tactile interaction was limited to its simplest and most naive implementation
so far, as only the finger’s position on the screen has been considered.

However, tactile interaction, is actually much more than just a position of
fingers in the 3D space, or even 2D space when we consider that it happens
on a screen. Other information are being transmitted through the use of
tactile interaction. One of these, pressure, is definitely useful for interaction
with buttons, doors, etc.

In this chapter we thus analyze the possibilities of pressure input when
combined to tangible interaction. Chapter 3 clearly highlighted the lack of
feeling a of precision obtained with tangible manipulations while Chapter 4

clearly showed that study participants did not like using a tactile sliders to
adjust the accuracy of their tangible manipulations. In this chapter, we thus
describe a way to combine tactile interaction (through pressure) and tangible
interaction to alleviate this issue.

Main portions of this chapther were previously published at CHI (Be-
sançon et al., 2017). Thus, any mention of “we” in the following chapter
refers to myself, Mehdi Ammi, and Tobias Isenberg.

6.1 introduction

We present the design and the evaluation of a prototype that adds pressure-
based input sensing to the back of a mobile device. Pressure or isometric
force is a continuous form of input that is increasingly used in HCI systems.
The recent release of devices equipped with 3D-touch1 may well encourage
an even higher number of manufacturers to provide to equip their systems
with this input channel—so our research enables future developers to design
pressure-based control effectively.

We use pressure as an input channel to provide users with a manual con-
trol of the gain factor associated with the tangible manipulations of 3D con-
tent shown on the device. Gain factors (also called control-display gain, CD
gain; (Blanch et al., 2004; MacKenzie and Riddersma, 1994; Worden et al.,
1997)) play an important role in interaction. Hinckley et al. (1994a) even state
that one of the major hurdles with 3D interaction is to be able to “provide an
interface which effectively integrates rapid, imprecise [...] object placements
with slower but more precise object placement, while providing feedback

1 https://developer.apple.com/ios/3d-touch/
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that makes it all comprehensible.” Past work has focused on techniques to
set the CD gain for mouse or tactile interaction (e. g., (Benko et al., 2006;
Casiez et al., 2008; MacKenzie and Riddersma, 1994; Worden et al., 1997)),
but some work for direct 3D input (Issartel et al., 2016b; Keijser et al., 2007)
and interaction in VR (Frees and Kessler, 2005) exists as well. In the special
case of tangible manipulations, different gain factor for the same interaction
mapping can make a manipulation extremely exhausting and frustrating
(e. g., when the gain factor is low and the user has to make many different
arm/hand/shoulder movements) or really frustrating (e. g., when the gain
factor is high and the manipulation not precise enough).

Previous work in the context of 3D manipulations (Besançon et al., 2017)
has shown that tactile manipulation of a slider widget during tangible ma-
nipulation was not appropriate: even though users could precisely set the
gain factor, they did not want to stop their current interaction to reset the
gain factor. With our pressure-based control we present a new approach to
control the gain factor independently from the other input modalities.

Our contributions are thus threefold. First, we present the design of a back-
of-device pressure-sensing system controlling the gain factor associated with
tangible manipulation of a mobile device. Second, we study the pressure-
based control of gain factors to learn which interaction mapping is preferred
by participants and used most efficiently by them. Finally, we compare this
pressure-based form of gain control with established mappings including
velocity-based, slider-based, and rate control. Our evaluation comprises per-
formance workload and fatigue measures as well as subjective preferences.
Our results show that pressure-based control was not only clearly preferred
but also that pressure-based gain control allows people to be more precise
in the same amount of time compared to established input modalities.

6.2 related work

Work related to our own comes from one of three major fields: interaction
with the back of (mobile) devices, the use of pressure as an input modality,
and the use of pressure to augment other input techniques. We discuss these
aspects next.

6.2.1 Back-of-Device Interaction

Several research projects have investigated interaction on the back of the de-
vice as a way to eliminate on-screen occlusion. For instance, systems like
BehindTouch (Hiraoka et al., 2003) and BlindSight (Li et al., 2008) use a 12-key
pad on the back of a mobile device. In particular for small devices, occlusion
is one of the biggest usability issues. In the context of very small screens,
Baudisch and Chu (2009) as well as Wigdor et al. (2007) thus propose to com-
bine back-of-device interaction with a see-through effect to improve pointing.
Liang et al. (2013) also propose to use a secondary mobile device attached
to the the back of the first one to facilitate tactile input above and under the
mobile device and thus support task such as rotation, translation, stretching
or slicing. Similarly, Shen et al. (2009) propose a set of gestures for 3D in-
teraction with back-to-back devices. In addition, back-of-device interaction
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has been used on larger devices. For instance, Wigdor et al. (2006) propose
to use a two-sided interactive touch table to add a new dimension of input
for co-located collaborative work. Finally, back-of-device interaction has also
been used combined with other types of input; e. g., with stylus input on
a PDA (Sugimoto and Hiroki, 2006) or to detect bending using a position
sensor on the back of the Gummi device (Schwesig et al., 2004). We build
on the general approach of back-of-device input to provide easily accessible
pressure control when interacting while holding a tablet.

6.2.2 Pressure as an Input Modality

Pressure input is a continuous input data (Buxton et al., 1985; Cechanowicz
et al., 2007; Ramos et al., 2004; Stewart et al., 2010) that has been shown in
the literature to be usable as a primary modality for a variety of tasks. Early
work conducted by Buxton et al. (1985) includes an example of a drawing
application. Buxton et al. map continuous pressure data to a continuous
scale that varies the width of the painting brush, allowing users to control
both width and path with a single finger. Brewster and Hughes (2009), for
instance, use pressure to control text entry. They map the pressure input to
two discrete states: a light pressure will be mapped to lowercase letters while
a strong pressure will be mapped to uppercase letters. Similarly, McLach-
lan and Brewster (2015) and Wilson et al. (2010) use pressure-based menu
selection on mobile devices. Ren et al. (2007) use pressure values of pen-
based interfaces to control the continuous size of a circular cursor (or its
contexts) to assist users for selection tasks. Other non-touch-enabled devices
also make use of pressure as a primary input. For instance, Issartel et al.
(2016a) use pressure input to realize a grasping metaphor on a tangible vol-
ume. In their case, pressure controls a state representing whether the user
is trying to grasp—for pressure larger than a given threshold—or release a
virtual object. In our work we map the pressure input to a continuous range
of gain-factor values.

Pressure input can be captured by means of force-sensing resistors (FSRs)
(McLachlan and Brewster, 2015) or can be indirectly captured on touch
screens. One of the techniques used for this purpose builds on the fact that
a higher pressure on a point leads to a wider point of contact between the
finger and the surface (Buxton, 2007) and was implemented by Forlines et al.
(2005) or Benko et al. (2006). Arif and Stuerzlinger (2013), for instance, use
it to create a technique to bypass incorrect word predictions of text entries
on a tactile device. While this indirect sensing of pressure on touch-screen
is promising, in our work we only consider sensor-captured pressure. In-
deed, even though our prototype has a touch screen, we take advantage of
back-of-device pressure sensing which is easier to achieve with simple FSRs.

A vast majority of studies conducted on pressure in the HCI community
have focused on determining how many distinct levels of pressure can be
applied by users. Early work conducted by Herot and Weinzapfel (1978) al-
ready suggested that accuracy with pressure input methods is achievable
with a continuous and real-time visual feedback. With the presence of a
visual feedback, pressure-based interaction has been proven to be highly



110 combining tangible interaction with pressure input

accurate. For instance, Cechanowicz et al. (2007) proved that users could dif-
ferentiate between 64 modes on a dual-pressure augmented mouse, while
Wilson et al. (2010) showed that users could distinguish accurately up to
10 levels of pressure with adequate feedback on a mobile device. The value
obtained in the former is high enough for us to consider it as a virtual con-
tinuous scale. The value obtained in the latter can still be seen as close to
continuous for our purposes. Indeed, participants in our study had to use
pressure input to vary the gain factor from 0.3 to 3 (i. e., by a factor of 10).

6.2.3 Pressure as Augmentation

Pressure can be a direct and primary way to interact on mobile devices and
thus can replace touch interaction. We are investigating, however, the use of
isometric force as a supplementary, auxiliary input that could augment or
complete other input technique. Touch and pressure input have been com-
bined in the past, for example, by Arif et al. (2014) to increase the security
of conventional digit-lock of recent smartphones. McLachlan et al. (2014) in-
vestigated this characteristic of the pressure input in the context of bimanual
interactions on mobile devices. They could not find evidence that would
suggest that the pressure input had effects on the accuracy of the dominant-
hand performing touch inputs. Similarly, McLachlan and Brewster (2015),
demonstrated that the ability to perform simultaneous pressure inputs and
touch gestures depended on the complexity of the gesture. Tangible 3D ma-
nipulations are regarded as natural since they are based on skills people
have developed through their everyday interactions (Ishii and Ullmer, 1997).
We thus hypothesize that these results may be generalizable to tangible 3D
manipulations of a mobile devices and that thus the pressure input facili-
tates an additional and independent form of control to be used to adjust
the gain factor in 3D interactions. Ramos and Balakrishnan (2005) proposed
such a combination of pressure and touch input. The first modality is used to
provide a fluid integrated manipulation of the scale while the touch input is
used to provide parameter manipulation within the pressure-obtained scale.
Similarly, Ramos et al. (2004) combined position (obtained via touch input)
and continuous pressure input (obtained from a stylus) to provide Pressure
Widgets on mobile devices. Our design builds on their ideas but we use pres-
sure to adjust the gain factor, while 3D navigations are still carried through
physical manipulation of the tablet.

6.3 prototype

To test this interaction concept we used an existing mobile device as a locally-
coupled2 tangible 3D exploration tool and fitted it with pressure sensors (see
Figure 42). We used a Google Tango tablet3 as it provides both a tactile screen
and a position-aware mechanism that facilitates tangible manipulations. We
then augmented the tablet with back-of-device pressure FSR sensors that are
located right under users’ fingers on the back of the tablet. The FSR sensors

2 A locally-coupled device is both display and input device (Issartel et al., 2016b; Rahman et al.,
2009).

3 https://get.google.com/tango/

https://get.google.com/tango/
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(a)

(b)

(c)

Figure 42: Interaction prototype: (a) prototype in use, (b) electronics installation on
the back with taped pressure sensors, and (c) mock-up of the arrange-
ment of the pressure sensors (hidden by the tape in (b)).
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(a) (b)

(c) (d)

Figure 43: Illustration of the clutching mechanism: (a) fingers are not on the pres-
sure sensors, thus movements sensed by the tablet are not propagated to
the virtual object; (b) the force applied to the pressure sensors is mapped
to the slider such that movements are now propagated to the virtual ob-
ject; (c) if the pressure is low the slider value and the gain factor value
are low such that the virtual object is translated only by a little; (d) if the
pressure is high the slider value and the gain factor value are high such
that the virtual object is translated more than in (c).

are often used in pressure-sensing prototype (McLachlan et al., 2014) and
we coupled them to a RFDuino board, each one of them with a 3.3kΩ re-
sistance. The sensitivity of the FSRs depends on the value of the resistance
and a pilot study with six participants allowed us to determine that 3.3kΩ
was ideal in our case. To keep the prototype fully portable, the RFDuino
board is powered by a cable that connects it to the micro-USB port of the
tablet. The pressure values are computed by the RFDuino board and sent
over Bluetooth Low Energy (BLE) to the tablet. Clutching is achieved by
putting/removing the fingers from the pressure sensors Figure 43. While we
first wanted to realize the clutching through touches on the screen, another
pilot study showed us that it was easier for people to clutch with the pres-
sure sensors. Because previous work (Cechanowicz et al., 2007; Stewart et
al., 2010; Wilson et al., 2010; Wilson, 2013) has shown that pressure input is
made more precise with the help of visual feedback, a cursor (aka slider) was
added to the GUI on the tablet to reflect the gain-factor value obtained with
pressure input. This kind of visual feedback has been used before in various
studies and setups such as the ones used by McLachlan et al. (McLachlan
et al., 2014; McLachlan and Brewster, 2015).

6.4 experiment 1 : choice of force mapping

We conducted a first study to compare two possible pressure-based gain fac-
tor adjustment techniques. The first technique (P1) maps the pressure of the
sensors directly to the gain factor: a high pressure results in a higher gain
factor, i. e., to larger/stronger motions. The metaphor for this mapping is
that the stronger pressure forces are equivalent to stronger and larger mo-
tions, and that lower pressure thus yields a more precise control. The second
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technique (P2) does exactly the opposite: a high pressure results in a lower
gain factor, i. e., to more precise motions. The metaphor of this second tech-
nique is that with stronger pressure the interacting person holds on more
tightly to be able to better control a precise manipulation. Our goal with
this experiment was to determine whether one of these two technique yield
better results and/or is preferred by users and thus to to determine which
mapping we should use in our follow-up experiment.

6.4.1 Participants

For this first study we recruited 12 unpaid participants (2 female; ages 21–
39, mean = 26.75, med = 26, SD = 5.01). Six of them had at least university
degree, while the remaining six had at most an A-level equivalent. Five of
of the participants were used to 3D manipulation through the extensive use
of video games or 3D software. All participants were right handed and had
normal or corrected-to-normal vision.

6.4.2 Procedure and Task

We first presented participants with the tablet device and told them they
would have to perform translation and rotations in a 3D virtual world. We
presented them the application and showed how the clutching was achieved.
An initial docking target was already present during this training phase of
the experiment. We asked participant to try and use the tablet so as to match
the target docking. The purpose of the training was twofold. First, as high-
lighted by Issartel et al. (2016c), we wanted to assert whether the participant
preferred allocentric or egocentric mapping.4 Because our docking task was
similar to the first environment used by Issartel et al. (2016c) which showed
a 70% preference for the egocentric mapping, we set the initial mapping to
egocentric. However, this initial training could be used to set it to allocen-
tric if participant felt that they could not use the mapping correctly. Four
participants did so and set their mapping to allocentric. Second, the gain
factor was set by the experimenter for the initial training once to both a high
value (i. e., 3) and to a low value (i. e., 0.3)—to let our participant understand
the need for a manual control of the gain factor. Achieving a precise posi-
tioning was almost impossible with the high gain factor because it was too
sensitive, while it took more than a minute for participant to do it with a low
gain factor. Each participant thus experienced both extreme gain factors, in a
counter-balanced order. During training, participants had an unlimited time
to get used to the manipulation of the tablet and the purpose of the docking
task.

Once they expressed to be familiar with the interaction techniques and
task type, the experimenter launched the actual experiment. Participant were

4 These two notions are frequently discussed in the literature (Burgess et al., 2004; Klatzky,
1998; Poupyrev et al., 1998b). In general, the egocentric term seems to be associated with the
idea of the viewing perspective, and the allocentric term with the idea of a fixed, external
reference point. In other words, when the manipulated object is being moved in the same
direction as the tablet, the mapping is allocentric. When the manipulated object moves in the
opposite direction of the tablet, the mappings is egocentric.
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asked to complete 20 docking tasks for each technique (i. e., a total of 40

docking tasks), for each of which they had a maximum of 30 seconds. The
order of technique was counter-balanced to avoid learning biases. The pool
of possible docking targets had been manually created ahead of time to en-
sure that participants had to frequently manually change the gain factor. For
each trial, the target was randomly picked from this pool and then removed
from the pool. At the end of the experiment, each participant’s preference
was asked by the experimenter and a semi-structured interview was con-
ducted to determine whether participant could use the technique properly.

6.4.3 Hypotheses

We hypothesized, based on previous work (McLachlan et al., 2014; McLach-
lan and Brewster, 2015), that (H1) the use of pressure as an input modality
to control the interaction gain factor would not endanger the use of tangible
control of 3D manipulations using the mobile device. We also hypothesized
that (H2) it would be more natural for users to use P2 than it is to use P1 and
that P2 would thus outperform P1—due to our own observations that peo-
ple playing video games often put a lot of effort in being precise and, as they
perform these precise interactions, tend to squeeze their game controller.

6.5 results of experiment 1

We collected a total of 480 docking trials from our 12 participants, i. e., 240

per technique, analysed using estimation techniques (Appendix A). In ad-
dition, we recorded the answers of the participants in the semi-structured
interview and analyzed our participants’ subjective preferences and a com-
parison of their subjectively rated intuitiveness. First, to analyze our hypoth-
esis H1, we specifically asked our participants during the semi-structured in-
terviews about whether the additional pressure-input was harmful to their
3D manipulations. None of them reported so. We thus fond no evidence
that would refute H1, making the pressure-based gain factor manipulation
a viable option for tangible 3D interaction.

To assess the docking precision and thus to analyze H2, we then compared
the Euclidean distance of and the angular difference between the manipu-
lated object and the docking target. We first discuss the Euclidean and the
angular distance to the target, for both technique. The Euclidean distance is
computed as the distance between the centers of the two objects. The angular
difference da is computed as

da = 2 · arccos(qdω) ; qd = q−1
o · qt (1)

with qo being the quaternion of the manipulated object, qt being the quater-
nion of the target, thus qd being the difference quaternion, and qω being the
ω component of anω+xi+yj+ zk quaternion with i2 = j2 = k2 = ijk = −1.
We then aggregated and averaged both the angular and the Euclidean dis-
tances per participant. The distribution is not normal, so we estimated pop-
ulation means using 95% bootstraped confidence intervals (CIs). Figure 44

clearly shows that there is no evidence of a better performance of P2 over P1

for both the Euclidean distance and the angular distance to the target.
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Figure 44: Euclidean and angular distance to the target for both P1 and P2. Error
bars are 95% bootstrapped confidence intervals.
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Figure 45: Likert scale score of intuitiveness for each technique. Error bars: 95%
bootstrapped CIs.

Even though we found no evidence of a performance difference between
the two techniques, there were differences in preference. Figure 45 shows ag-
gregated ratings of the intuitiveness of each technique on a five-point Likert
scale, and 11 out of our 12 participants reported that their favorite technique
was P1 which maps a strong pressure input to a high gain factor. They all
explained during the semi-structured interview that it felt more logical to
have such a mapping. The remaining participant had no overall preference
but stated that P1 also seemed more logical. Furthermore, four participants
reported that P1 was less tiring than P2 and another six stated that P1 was
easier to use. Finally, three participants reported a higher exit error issue—
often found in tactile interaction (Tuddenham et al., 2010)—with P2. Indeed,
when leaving a state of high pressure to release the fingers and clutch, the
gain factors gets from a very low value to a high value and any involun-
tary movement of the tablet at that time is thus followed by a relatively big
movement of the manipulated object in the virtual world. For all the above
reasons, we thus refuted hypothesis H2 and decided to use P1 as the primary
mapping for the following experiment.

6.6 experiment 2 : usability of gain factor control

Our second study used the same prototype and task as Experiment 1. How-
ever, we asked participants to perform the docking task with one of four
different techniques to compare our pressure-based technique to three estab-
lished mappings: slider-based control, velocity-based control, and rate con-
trol. The first one used a touch-based slider on the dominant hand’s side of
the screen that allows users to manipulate the gain factor. Arguably, sliders
are the most commonly used ways to provide values within a specific range
in regular interfaces and, in contrast to keyboard input, are effective on mo-
bile devices. We told each participant that they could change the placement
of the slider to the left or right side regardless of their dominant hand. The
second technique used the velocity of the tablet’s movements (rotations and
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translations) to derive the gain factor—similar to mouse-based gain factor
control (Casiez et al., 2008; Foley et al., 1984; Frees and Kessler, 2005). The
third technique used a rate-control approach: the further the tablet was trans-
lated/rotated away from its initial position, the higher was the gain factor for
translation/rotations. However, because rate-control has been proven to be
inappropriate for devices without a self-centering mechanism (Zhai, 1998),
we compensated by adding a centering mechanism based on clutching. Still,
rate-control is frequently used for 3D games with remote controls or joy-
sticks so we deemed it an appropriate candidate for a comparison with the
added centering mechanism. For the sake of fairness, the value of the gain
factor was represented on the (potentially inactive slider in all cases. We also
note that the gain factor ranges were identical for all conditions. We used the
pilot studies to find appropriate (linear) mappings from the available input
value ranges of these three techniques to the range of gain factors.

6.6.1 Participants

For this study, we recruited 24 new unpaid participants (9 female; ages 20–
53, mean = 31.6, med = 26.5, SD = 11.1). Twelve of them had at least a
university degree (bachelor or equivalent), while the remaining half had at
most an A-level equivalent. Half of them were experienced with 3D manip-
ulation through extensive use of video games (9×) or 3D modeling software
(3×). Two participants were left-handed and all participants had normal or
corrected-to-normal vision.

6.6.2 Procedure and Task

This experiment was largely based on the precudure of Experiment 1, using
the same docking task. Participants were first greeted and introduced to the
tablet device, before being told that they would perform translations and
rotations with it. We explained the clutching mechanism and made them
perform the docking with the high and low gain factors to allow them to
understand the necessity of a manual gain factor control. We asked partici-
pants to complete 20 docking tasks with each of the mentioned 4 different
techniques (total of 80 docking tasks). For each docking task we allowed par-
ticipants up to 20 seconds, a time span that is based on the average time of
19.2 seconds it took participants to complete the task in Experiment 1. The
second experiment thus lasted a bit more than 26 minutes overall.

Similar to Experiment 1, the second study also used an egocentric map-
ping but participants could change it during this training phase. Eleven par-
ticipants stated that this mapping was not completely natural for them and
switched to an allocentric mapping. In between each technique, participants
were asked to fill in a questionnaire to assess their workload and their fa-
tigue. For the former, we used NASA’s Task Load Index (TLX).5 For the lat-
ter, we created our own questionnaire based on Shaw (1998)’s approach . To
avoid seemingly random choices made in the second part of the TLX (which
were often seen as confusing by participants in our pilot studies) that would

5 http://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf

http://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf


6.7 results of experiment 2 117

lead to inconclusive or even incorrect results, we removed the second part
of the TLX questionnaire. We thus performed a RAW TLX (RTLX) which,
according to Hart (2006)’s survey, is equally well suited as a regular TLX.
Finally, at the end of the experiment—and following Nielsen (1993)’s rec-
ommendation for the evaluation of subjective preferences—we asked partic-
ipants to rank each technique based on their preferences and we conducted
semi-structured interviews.

To avoid participant response bias (Dell et al., 2012), we told our partic-
pants that all the techniques were state-of-the-art techniques, that none of
them was invented by us, and that we simply wanted to evaluate how they
performed with each of them. Our participant number of 24 ensured that
each sequence of conditions was tested exactly once in a counter-balanced
fashion).

6.6.3 Hypotheses

Based on pilot studies and previous work results, we formulated a number
of hypotheses:
h3 Even with the clutching mechanism to reset the interaction center, partic-

ipants’ performances using rate control will be poor and it will not be
preferred by our participants. The reason is that, even with an added
clutching for re-centering (Zhai, 1998), on locally-coupled devices the
interaction will not be natural due to the conflict of the rate control
for the gain factor with the tangible position-based control of the 3D
manipulation and it will thus not be understood correctly by most par-
ticipants.

h4 Pressure-based control will have a higher performance (accuracy) than
the three other techniques because it facilitates gain factor manipula-
tion using a separate input channel that does not disrupt the tangible
manipulation.

h5 Pressure-based control, however, will cause a higher fatigue in partici-
pants’ fingers due to the additional force that is necessary compared to
the other interaction techniques.

h6 Speed-based control will be the cause of a high overall fatigue and phys-
ical demand, even though the mental demand would be low compared
to other techniques—we noticed that participants in our pilot studies
tended to resort to overly fast movements to ensure that the gain factor
will be high, causing sore arms and shoulders.

6.7 results of experiment 2

We now discuss the measured performance values in form of the Euclidean
and the angular distance to the target. We also present participants’ subjec-
tive preferences as well as their self-assessed fatigue, and workload. Similar
to Experiment 1 we report our results using simple effect sizes and estima-
tion techniques (see Appendix A).
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Figure 46: Euclidean distance to the target: (a) absolute values and (b) pair-wise
differences. Error bars: 95% bootstrapped CIs.
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Figure 47: Angular distance to the target: (a) absolute values and (b) pair-wise dif-
ferences. Error bars: 95% bootstrapped CIs.

6.7.1 Euclidean and Angular Distances

We collected a total of 1920 trials from our 24 partcipants, 480 per technique.
We averaged our distance observations per participant and computed popu-
lation means using 95% bootstrapped confidence intervals.

The Euclidean distances to the target for all four techniques is shown in
Figure 46a. These results show strong evidence for a better performance of
pressure-based, speed-based, and slider-based control compared to rate con-
trol. There is also weak evidence for a better performance of pressure-control
over the slider-based and speed-based methods. To assess this difference in
detail, we looked at the difference between pressure-control and the three
other condition as shown in Figure 46b. The fact that none of the confidence
intervals for these differences overlaps with zero supports our finding of
pressure-based control of the gain factor being more accurate than the other
techniques: it leads to 3.6 smaller Euclidean distances than rate-control, 1.4
smaller than speed-based control, and 1.3 smaller than slider-based control.

The angular distances to the target for all four techniques are shown in Fig-
ure 47a. Again, there is a strong evidence that rate control is outperformed by
all three other techniques. While there is no evidence for a difference in per-
formance between speed-based and slider-based control or pressure-based
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Figure 48: Workload measurement in NASA TLX units (∈∈∈ [0, 100]) with respect to
(a) physical demand, (b) mental demand, (c) temporal demand, (d) per-
formance (lower is better), (e) effort, and (f) frustration. Error bars: 95%
bootstrapped CIs.
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Figure 49: Total workload per factor. Error bars: 95% bootstrapped CIs.

and slider-based control, there is slight evidence that pressure-based control
may also perform better than speed-based control for rotational distances.
Similar to the analysis of the Euclidean distance, we computed the pair-wise
differences between pressure-based control and the other techniques and
show them in Figure 47b. These values confirm that pressure-based control
of the gain factor allowed participants to obtain a better angular accuracy
than rate-control and speed-based controls The confidence interval of the
difference between slider-based and pressured-based control, however, over-
laps 0 so that we claim a difference between these two modalities.

6.7.2 Workload

The individual results of the TLX questionnaire are shown in Figure 48. Fig-
ure 48a suggest that strong evidence exists of speed-based control being
physically more demanding than slider-based control, but we cannot make
any further conclusion with respect to the other techniques. Figure 48b, how-
ever, shows strong evidence of rate control being approximately 1.5 times
more mentally demanding that the other three techniques. Figure 48c ex-
hibits strong evidence of rate control being temporally more demanding
than pressure-based, speed-based, and slider-based control. We conjecture
that this observation results from participants being more stressed with a
technique that they did not master, thus suggesting that rate control does
not give them the level of control they wanted. This hypothesis is further
reinforced by the confidence intervals shown in Figure 48d which provide
strong evidence for rate control giving a much higher (at least twice and
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Figure 50: Fatigue measurement on a scale from 0 to 10 for (a) fingers, (b) hands, (c)
arms, and (d) shoulders. Error bars: 95% bootstrapped CIs.

almost three times as much when compared to pressure-based control) per-
ceived performance than the other three conditions. Figure 48d also provides
strong evidence of a better perceived performance for pressure-based control
than for the slider-based or speed-based conditions. While there is no evi-
dence for an difference in effort between rate control, speed-based, or slider-
based control, Figure 48e provides strong evidences of pressure-based con-
trol being less effort-demanding than the three other techniques. Similarly,
Figure 48f has strong evidence that pressure-based control is less frustrating
by a factor of two than rate control, and strong evidence for speed-based
and slider-based control to be less frustrating than rate control.

The overall TLX workload is shown in Figure 49. There is strong evidence
for a higher workload of the use of rate-control compared to the other tech-
niques. While we cannot find evidence for differences in workload between
speed-based and slider-based control, there is evidence that pressure-based
control is overall less demanding than all the other techniques.

6.7.3 Fatigue

Figure 50 presents the results of the fatigue questionnaire that each partici-
pant filled in after each condition. We used a 11-point Likert scale (0 mean-
ing no fatigue at all and 10 meaning extreme fatigue) for fingers, hands,
arms, and shoulders. Figure 50a suggest that there is strong evidence of the
pressure-based control being slightly more tiring (between 1.3 and 1.5 times)
for the fingers than the other three techniques. It appears, however, that the
overall finger fatigue caused by a pressure-based control is still not too high.
We also can see in Figure 50b that all techniques result in a similar hand
fatigue. Figure 50c and Figure 50d provide strong evidence of speed-based
control causing more arm and shoulder fatigue than pressure-based and
slider-based control. However, there is no evidence of a fatigue difference
between rate control and the other three conditions for arms and shoulder.
The total fatigue measurements are shown in Figure 51. Figure 51a treats all
four fatigue aspects equally and derives the total fatigue measurements as
a sum of the individual factors. From these sums we cannot find evidence
for a difference in the overall fatigue measure between the different tech-
nique. However, the different fatigue aspects may be more or less important
to people, so we also asked our participants about the importance of the
individual fatigue aspects and derived a weighted aggregated fatigue rat-
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Figure 51: Aggregated fatigue measurements: (a) non-weighted and (b) weighted,
both from 0 to 10. Error bars: 95% bootstrapped CIs.

ing in Figure 51b. The mean weighted aggregated fatigue rating is lowest
for pressure-based control, with weak evidence of it being different from
speed-based control.

6.7.4 Preference and Qualitative Feedback

After the experiment, we asked participants to rank the technique from their
preferred (1) to their least preferred (4) method for which we present the
results in Table 7. The pressure modality was most preferred 15× and the
slider-based control, the speed-based control, and the rate-control were most
preferred by 3 participants each. These results show a strong preference for
the pressure-based control of the gain-factor. Similarly, we found that most
participants did not like the rate control technique. It is more difficult, how-
ever, to state a definite difference between speed-based and and slider-based
control. To better analyze this result, we determined the number of times
each technique was picked as the favorite with simultaneous confidence in-
tervals (that are applied on a multinomial distribution) and show the result
in Figure 52. The non-overlapping confidence interval of pressure-based con-
trol with all three other techniques allows us to infer that pressure-based
control is likely to be the preferred technique by a vast majority of the pop-
ulation.

Participants also voiced interesting comments during the study. Two par-
ticipants stated that the pressure-based control gave them a better feeling of
precision and of being in control, thus “eliminating all the temporal pressure
of the experiment.” Two other participants also reported that, although the
“speed-based control [was] interesting,” it was difficult to evaluate and find
the correct speed needed to achieve what they wanted. Three participants
who picked the slider as their favorite technique stated at the end of the ex-
periment that it was “easy to use” and that it gave “the more precise control
of the gain factor.”

6.8 conclusion

With our design and evaluation of a pressure-based interactive control of
the gain factor for 3D navigation we identified an appropriate channel for
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technique median mean SD #1
st #2

nd #3
rd #4

th

pressure 1.0 1.5 0.8 15 7 1 1

rate 4.0 3.4 1.0 3 0 3 18

speed 3.0 2.6 0.8 3 8 12 1

slider 2.5 2.4 0.9 3 9 8 4

Table 7: Participants’ preferences between their most favorite (1) and least favorite
(4) technique to control the gain factor.
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Figure 52: Percentage of times of each technique to be named the number one fa-
vorite. Error bars: 95% bootstrapped CIs.

such manipulations–one that is independent from the otherwise dominant
channels such as tactile and tangible input. Our first experiment guided our
interaction design and the specific pressure mapping we used, while the
second experiment provided clear evidence for the advantages of the new
design over other types of input.

One of the most important insights we derive from our experiments is
that the use of pressure input allowed our participants, in particular, to fo-
cus on their 3D manipulation task without the need to constantly reflect the
interaction mapping (as it was the case for speed-based and rate control)
and without the need to constantly change their interaction focus to be able
to interact with a separate widget on the display (like it was necessary for
slider-based control). We argue that our participants were thus more effec-
tive in their interaction (better performance), without pressure-based control
causing any additional cost on workload or fatigue.

In the work presented here, we used a specific back-of-device design to
enable pressure-based interaction. While we believe that this setup has ad-
vantages with respect to the ergonomics of the interaction with the tablet
and the use of screen real estate, the general use of pressure as an input
channel for gain factor control does not require the use of such a back-of-
device design. Input could thus also be provided on the front of the de-
vice—and there are already commercially available devices that offer such
display-based pressure sensing. Moreover, due to the specific character of
the gain factor control that only requires the input of differences—and not
of precise, absolute input values—it is also possible to use existing pseudo-
pressure sensing (Arif and Stuerzlinger, 2013; Arif et al., 2014) which could
be explored in the future.

This chapter thus provides guidelines to implement gain factor control
for 3D manipulations and other forms of interaction, for a variety of mobile
devices. As such, the work presented in this chapter can give more precise
control of tangible manipulations of mobile devices with the use of an other
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input paradigm that can be sensed with no (pseudo pressure) or almost no
specific hardware (R3) and is thus readily available. The results presented in
this chapter may also be generalizable to the control of other scalar values
where only relative changes are important and constant visual feedback is
provided.





7
C O N C L U S I O N

The work presented in this thesis takes the first steps towards an interac-
tion continuum for the visualization of three-dimensional datasets. Such a
continuum of interaction can be achieved if the three different requirements
exposed in Chapter 1 are met. These requirements were:

R1: It needs to be possible to connect and sync several devices to-
gether.

R2: It needs to be possible to use several interaction paradigms to
solve a specific problem.

R3: Both the first and second requirements should be met in an
easy-to-maintain, easy-to-integrate, and affordable devices and
setups.

In our background section (see Chapter 2) we explained how the first two
requirements have been extensively studied in the literature. Many research
papers have focused on device communication (R1) and synchronization and
have succeeded in increasing the overall synchronization between multiple
devices in several different environments. Concerning the second require-
ment (R2), while it is true that many possible hybrid interaction paradigms
have been studied, most of the research done either narrowly focused on
hardware and sensing systems or did not try to focus on 3D tasks and visu-
alizations. In most cases, research prototypes relied on expensive or compli-
cated setups that cannot be easily integrated into resarchers’ workflow, hence
violating R3. In this thesis however, we have focused on cheap and easy to
use spatially-aware mobile devices. They provide tactile and tangible sens-
ing, which can be combined to suit the needs of visualization practitioners
(R3).

A first step towards our interaction continuum goal has been to focus on
these two interaction paradigms as well as the most common and famous
one so far: mouse and keyboard interaction. The aims of Chapter 3 was to
better understand the inherent benefits and limitations of each interaction
modality for 3D interaction in order to be able to use them for what they
do best afterwards. The work presented in this chapter highlighted many
different usability parameters and qualitative feedback from a pool of 36

participants. All three interaction paradigms were found to be equally pre-
cise, though tangible interaction was faster than tactile interaction, which
was in turn faster than mouse interaction. Qualitative feedback highlighted
the lack of feeling of precision for tangible manipulation as well as the over-
all preference for this interaction paradigm. Noteworthy, we also proposed
and detailed the implementation of a setup that fits the three interaction
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paradigms. This setup can easily be integrated with classical workstations
and affordable devices (R3).

Based on these findings, we gathered that both tactile and tangible inter-
action could be used in order to manipulate 3D data for exploratory analy-
sis of scientific datasets. We thus proposed in Chapter 4 to combine them
on a spatially-aware device and explore the design space for such a hy-
brid interaction paradigm for 3D visualization tasks. We then designed a
first prototype that implemented several of the possibilities highlighted by
our design space exploration, and that could fit the studied need of fluid
dynamic experts. We then evaluated this prototype with 7 domain experts
in an exploratory task. Practitioners highlighted and praised the flexibility
offered by our prototype when compared to their classical mouse and key-
board interface, which would still be needed for more in-depth analysis. The
modularity of our interface which could easily be integrated in a traditional
workplace, made five of our participants want to integrate it into their work-
flow, thus demonstrating that focusing on both (R2) and (R3) can lead to
practical solutions that are useful and easy to integrate and adopt. As such,
the prototype has a good potential to pave the way towards a continuum for
interaction in visualization tasks.

In Chapter 5, we then focused on an other essential 3D data visualization
task: 3D spatial selection. Such a selection is usually achieved by techniques
that rely on a combination of initial 2D-user inputs which are then extended
into 3D by algorithms. However, with our hybrid tactile/tangible prototype
presented in Chapter 4, we envisionned that a full control could be given to
the user. As such, our interaction technique, Tangible Brush, is the only one
that does not rely on additional automated computation to derive 3D vol-
ume selections. An initial 2D input is made by the user on the tactile screen
and the motions of the tablets are then used to extend the selection shape
into a selection volume. An evaluation against a partially-automated solu-
tion approach highlighted that our fully manual hybrid technique positively
impact the selection’s accuracy but also results in a higher completion time.
The qualitative feedback further highlights the potential of hybrid interac-
tion mappings for visualization tasks.

Building on the findings from Chapter 3 and Chapter 4 that tangible in-
teraction does not provide the same feeling of precision that can be offered
by others (mouse or tactile interaction for instance), in Chapter 6, we pro-
pose a new hybrid tactile/tangible interaction to improve the precision that
can be acquired with tangible manipulations of a tablet. In this chapter, we
further explored tactile input before combining it with tangible interaction.
We wanted to consider the additional information that human fingers can
provide. While positioning information (x and y) is used in most cases, we
focused on pressure information in this chapter. We use the pressure input
to control the gain factor of 3D tangible manipulations on a tablet. Possible
mappings and prototypes are described and evaluated through two studies.
In a first study we wanted to compare to possible pressure mappings to gain
factor values. Taking the best of these two mappings, we then compared our
hybrid technique with three common techniques to control gain factor: a
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regular tactile slider, the speed of the tangible motions of the tablets, and
a rate-control mode. This second study highlighted the large preference for
pressure-based control of the gain factor and its better performances over
the other three possibilities we tested.

Through these four chapters, we have thus focused on easy to integrate
and maintain as well as affordable solutions (R3) that provide hybrid inter-
action paradigms (R2) for applications linked to visualization tasks. We thus
believe that our investigated solutions can pave the way towards more inves-
tigations of solutions that would help design and implement the interaction
continuum that has been mentioned throughout this thesis.

Nonetheless, a lot of work remains to be done. Several remaining research
questions and possible solutions are thus detailed below.

First of all, this thesis has so far focused mostly on tactile and tangible
interaction because of the numerous advantages they exhibit (see Section 2.2
for more details). Yet, mouse and keyboard interaction is still predominant in
most workplaces and essential to visualization practitioners (see Chapter 4)
and cannot easily be combined with our spatially-aware device. In order
to be able to integrate the three of them and thus promote the transfer of
insights from one platform to the other, one should probably build on the
tremendous work that has been done so far to provide middlewares that
connect devices (see Section 2.1.1 for instance) and thus work again on the
first requirement for an interaction continuum (R1).

Second, while the hybrid 3D selection techniques we have described in
Chapter 5 is generic and can be applied in many different scientific fields, the
hybrid interaction techniques we have developed for fluid dynamics (Chap-
ter 4) have not been explored in other domains. It would be interesting to
see how this work could help practitioners in other domains but also to try
and adapt the hybrid interaction technique to better suits the needs of other
domains.

Third, throughout the three years of this thesis work, VR headset have
garnered a lot of attention and are now affordable products that could also
be easily integrated with classical workstations without high-maintenance
or setup costs. The work conducted in this thesis mostly focus on classical
2D rendering on regular displays but made use of the three-dimensionality
of the data nonetheless through the use of tangible interaction. It thus ap-
pears that with VR headsets, the possibilities and capabilities of tangible
interaction would only increase. One could then wonder how our hybrid in-
teraction techniques should evolve for such cases. Indeed, with these afford-
able headsets the mismatch between input and output spaces (mentioned in
Chapter 5) could be solved and the hybrid interaction techniques we have
designed could perhaps be more efficient. In such contexts, one could ex-
plore stereo visualization combined with tangible (i.e., pseudo-stereo input)
and tactile (i.e., mono input). As a consequence, the mapping between the
different spaces for both input and output should be investigated.

Finally, while we have mentioned collaborative work (in particular in Chap-
ter 4), we have not investigated how our work on hybrid interaction paradigm
could affect co-located collaborative work on 3D data visualization. Indeed,
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in the setup we have presented in both Chapter 4 and Chapter 5, the ad-
ditional large screen could be used to provide tactile input as well. Such
a configuration is currently not supported by our hybrid setup. Particular
attention could thus be placed on how to correctly sync both devices and
handle concurrent manipulations (R1). This aspect is specifically important
for domain experts because the sense-making process of 3D datasets can also
be done collaboratively. This further highlights the fact that, while we have
focused on two of the requirements presented in this thesis (namely R2 and
R3), all of them play a role in the building of an interaction continuum for
visualization.

We thus believe that the work presented in this thesis, thanks to its focus
on hybrid interaction paradigms for 3D visualizations (R2) and its use of
affordable and readily available devices (R1) is a first step towards the cre-
ation of an interaction continuum for 3D data visualizations. By combining
the effort we presented in this work to the already accomplished work on the
synchronization of several devices (R1) and the studies on hybrid interaction
paradigms (R2) we believe that this continuum of interaction can, in general,
be achieved. For the specific case of 3D visualization however, it seems that
other efforts still need to be done.

In particular, what matters with visualization is to be able to gather, share
and transfer insights on the presented data. The scenario which we envi-
sioned throughout this thesis included all three possibilities. We focused in
this work on the possibilities that an interaction continuum can leverage for
gathering data, which is a first step. We have also partially tackled the sharing
as, with our prototypical setup, experts can easily interact with the tablet
and change the view on the large display for teaching or sharing purposes.

Still, a focus should be placed on the concept of sharing and transferring.
On the one hand, sharing could be done with colleagues or students but also
with the world. For this purpose, we believe that a specific focus should also
be placed on syncing datasets and their gathered insight in an approach
very similar to a git/svn one. With such an approach, transitions between
several setups and collaborations would be improved: scientist would not
have to share notes or save on a usb stick to transfer knowledge or specific
views, but could simply use a branch/merge approach with an online tool
to update their work. In a way, one could see this work as going even fur-
ther with the linking and syncing of devices (R1). By enabling such an easy
sharing process, it would be easy for researchers to simply put their find-
ings online in an accessible-to-the-public-way if needed. On the other hand,
while transferring could be achieved with the kind of technology we have just
described, we believe that, to really leverage the possibilities of all devices
and interaction paradigms, domain researchers should also be able to trans-
fer their insights/views/captured data to the software they generally rely
on for further in-depth analysis with scripts or GUIs such as Matlab or Par-
aview (see Chapter 4). To achieve this, focus should be placed on adapting
existing softwares to this possibility to share and transfer data and insights
offered by, for instance, the branch/merge approach we have just described.
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In summary, we have demonstrated that a continuum of interaction had in-
teresting benefits for 3D data visualization. However, we have but scratched
the surface of all the possible hybrid interaction techniques and much work
remains to be done in order to create a proper interaction continuum as we
have defined in Chapter 1. Our focus on hybrid paradigms (R2) and afford-
able systems (R3) combined with the already large amount of work on de-
vice synchronization (R1) are necessary initial steps towards the creation of
an interaction continuum. But for this continuum to be even more efficient
for 3D data visualization, much work remains to be done (as highlighted
before). We hope that this thesis work will inspire the creation of more hy-
brid interaction techniques for 3D data visualization and also emphasize the
needs for approaches that enhance the sharing and transferring of insights
gained from 3D data visualization.





Part I

A P P E N D I X





A
O N S TAT I S T I C A L A N A LY S I S A N D I N T E R P R E TAT I O N

All the statistical analysis conducted in the papers in which I was a co-author
are presented with Confidence Intervals and propose nuanced interpretation.
The goal of this appendix is to explain our motivations for such a method
as well as how to use it in papers. By doing so, we hope that readers will be
able to make the most of the graphics presented in this work.

The following work is mostly based on work previously published at
Alt.IHM in French. A more in-depth example on how to conduct data analy-
sis and interpretation with real study data is provided in the paper and can
also be found at http://www.aviz.fr/ci/. In the following lines, the use of
we refers to the authors of the paper, Lonni Besançon and Pierre Dragicevic.

This appendix first exposes our motivations and the main reasons why
this thesis and its attached publications made use of estimation techniques.
Then, it provides highlights the central role of interpretation in science. Fi-
nally, we focus on how to read, interpret figures using confidence intervals.

a.1 motivations

a.1.1 Limitations of the Traditional NHST

In addition to the wrong interpretations it often causes, binary significance
testing tends to generate a false impression of confidence in scientific pub-
lications. Still, NHST (Null Hypothesis Significance Testing) has been con-
sidered as a central tool of most scientific communications. However, it has
come under heavy criticism in different scientific domains. NHST limits have
been highlighted by statisticians (Baker, 2016; Cumming, 2014), but also re-
cently by researchers of the HCI community as well (Dragicevic et al., 2014;
Dragicevic, 2016; Kay et al., 2016a; Kay et al., 2016b).

NHST is a statistical tool used to return a binary answer thus remov-
ing part of the data and possibly leading to wrong interpretations (Drag-
icevic, 2016). Results are categorized into being statistically significant or
not whether the value of p is lower or greater than a given threshold (usu-
ally 0.05). This vision of statistical results, falsely comforting is simplistic: it
removes all the nuances that may exist in the collected data. Indeed, the ev-
idence strength in the data is by nature continuous. With NHST, a value p1
= 0.052 will be considered as a not statistically significant while a value p2
= 0.048 will be statistically significant. Similarly, let us suppose we collected
two additional p-values: p3 = 0.3 (not statistically significant) and p4 = 0.005

(significant). It does not seem logical to treat p1 and p3 similarly on the one
hand and p2 and p4 on the other hand since p1 and p2 are by far the most
similar results.

Blindly applying a threshold to statistical significance also raises other
problems and paradoxes such as the p-hacking and the different publica-
tion biases (Amrhein et al., 2017; Dragicevic, 2016). Some researchers who
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still wanted to keep using p-values suggested to forget about the threshold
(Amrhein et al., 2017; Lew, 2013) thus considering p-values as a continuous
measure.

a.1.2 p-Value Limitations

Even if one was to considered p-values as a continuous measure, the in-
formation brought by p-values themselves is fairly limited. Indeed, p only
focuses on the nul hypothesis (e. g.the absence of effect or difference) and its
converse (e. g.there is an effect or a difference). By doing so, p only allows us
to determine the certainty with which we can conclude that there is an effect
or a difference. The direction of the effect and its magnitude are however
not given by p. Trying to counter that by only reporting on the sample mean
(without interval) also leads to wrong interpretations: a significant p-value
does not infer the accuracy of the sample mean (Dragicevic, 2016).

a.1.3 The Benefits of Confidence Intervals

Using confidence intervals (CIs) allows on the other hand not only to com-
municate about statistical significance but also allows readers to infer what
effect magnitude are likely or not. To begin with, a graphical analysis of
confidence intervals can be simplified to the reasoning done with p-value in-
terpretation: the further a confidence interval is from 0, the more the results
are statistically significant (Krzywinski and Altman, 2013). Furthermore, this
graphical representation also indicates the effect size. In particular, confi-
dence intervals provide an approximate maximum threshold to the effect
size. Therefore, even a result considered as not significant with p way above
the threshold can be interpreted: if the confidence interval is small, we can
conclude that the effect is negligible. Last but not least, confidence intervals
are more easily read and understood than p-values numbers and they do
not convey a false impression of accuracy and certainty (Dragicevic, 2016).

However, even though confidence intervals are represented in a binary
fashion (a value is withing the interval or not) using estimation means that
they should not be interpreted in a binary way. Interpreting that results are
significant (or not) based on the fact that the confidence interval contains (or
not) the value 0 is basically coming back to a disguised NHST interpretation.

a.1.4 The Central Role of Interpretation

The subjective nature of interpretations when using estimation technique is
very much critiqued and a central barrier to its use. However, this subjectiv-
ity is inevitable and HCI researchers are, probably more than others, able to
understand that statistical analysis should put more emphasis on the human
perception.

Indeed, HCI focuses on human beings, their perceptions, their capabilities
and their needs. HCI research strives to assist, to augment human beings
but never to replace them. Still, to analyse the results of an experiment con-
ducted by a human being with other human beings, HCI researchers rely on
algorithms and statistical tools to find a binary response. This striking op-
position is still seen in most of published work in the best HCI conferences.



A.2 interpreting confidence intervals 135

Without questioning these publications and their findings, it would be more
interesting to integrate human interpretation in the loop of result analysis.

There are several definition of statistics. One of them given by the Merriam-
Webster is "a branch of mathematics dealing with the collection, analysis, in-
terpretation, and presentation of masses of numerical data."(Merriam-Webster,
2017). The word interpretation itself, comes from old french interpretacion
which is now in modern French interpretation (Dictionary, 2017). According
to the very famous French dictionnary Larousse, one possible definition of
interpretation is the act that consists in giving a personal meaning within
a range of possible meanings (Larousse, 2017). It would then seem that, by
definition, statistical analysis should rely on personal, and hence subjective,
interpretation of results. This subjective interpretation can occur at three dif-
ferent levels:

1 The author’s own personal interpretation of their results in their com-
munication (paper or presentation).

2 The reviewer’s level when evaluating a submission.

3 The reader’s level, in order to help him/her decide whether results
should be used in the work conducted or instead discussed.

Each of these "users" has its own experience, expertise domains, goals... A
human-based interpretation would then allow each and every one to evalu-
ate the importance, the strength and the impact of results within a specific
context.

Human-based interpretation also highlights the inherent uncertainty of
experimental results and their statistical analysis (Dragicevic, 2017; Giner-
Sorolla, 2012). Highlighting statistical uncertainty also encourages replica-
tion, crucially important activity in science. Yet, in spite of its importance,
replication studies are still very hard to publish. A potential explanation
is that the current presentation of statistical results demonstrate a feeling of
confidence, certainty about the viability of the results. A group of researchers
then trying to replicate a study will only confirm or disprove known re-
sults and their communication will very likely be rejected for that reason.
Conversely, an approach based on estimation could emphasize the inherent
iterative nature of user experiments.

a.2 interpreting confidence intervals

We first need to explain what confidence intervals are. There are several exact
definitions of confidence intervals and several approximate definitions that
are still useful (Cumming, 2014; Dragicevic, 2016). A N% confidence interval
is an interval capturing the true value (the sample mean) N% of time when
replicating the same experiment. That means that a 95% confidence interval
capture all the values of the sample mean that would be obtained for 95

experiment out of 100.
A more intuitive interpretation of confidence interval, the Bayesian inter-

pretation, offers an reasonable approximation which is useful in most cases:
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Figure 53: CIs and p-values equivalence for independant samples (Krzywinski and
Altman, 2013).

a confidence interval indicates the range of possible values for the sample
mean (Cumming, 2014; Dragicevic, 2016; Schmidt et al., 1997). In order to
keep on discouraging the binary interpretation, it should be mentioned that
values outside of the confidence interval are still possible and that values
close to the current estimation point (sample mean) are more likely than
values on the ending of the interval.

Oftentimes, it is necessary to interpret the gap or the overlap between two
confidence intervals (e. g.the sample mean of technique A and technique B).
Cumming (2014) gives a simple rule: for two independent variables (between
subject), if the overlapping between two confidence intervals is less than a
third of the average length of the two intervals, then the difference is signifi-
cant with p = 0.05. The danger of such an approach is to get back to binary
thinking. Krzywinski and Altman (2013) thus proposed a figure Figure 53

to interpret confidence interval overlapping as different values of p (once
again, these only holds for between-subject experiments).

The 0.05 threshold is useful given its importance in the history of statistics.
However, the overlapping must be interpreted in a nuanced fashion instead
of strict thresholds. The gap or the overlapping between confidence intervals
allows to continuously quantify the certainty with which we can state that a
difference exist between the two means. The closer they get (and the more
they overlap) the weaker the evidence. A huge overlapping should lead to
the conclusion that there was no evidence (but absolutely not to the conclu-
sion that the means are the same). We can thus with confidence intervals
show that some results may be more certain than others and more generally
embrace the uncertainty of our results.

While confidence intervals on sample means can already be quite informa-
tive as we have explained before, it is often recommended to go further and
report on confidence intervals on effect size. An effect size allows researchers
to quantify the answer to their research questions with a unique value that
does not require to compare sample means (Cumming, 2014). For instance if
the goal of the study were to compare two techniques, the effect size allows
to quantify the performance difference between these two techniques. The
interpretation must then focus on the effect size and its confidence interval
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Figure 54: CIs overlap with the nul hypothesis and it p-value equivalent.

Figure 54, in addition to sample means (especially if the study is within
subject).

An effect size can be simple or standardized. The later is rarely needed and
even discouraged (Baguley, 2009), so that it is often enough to compute and
report simple effect size. A simple effect size can be a difference or a ratio
between two means with their associated confidence intervals. A difference
is ideally and usually presented on a plot with a 0 origin, while a ratio would
ideally be presented with a 1 origin. In both cases, the confidence interval
will facilitate the visual interpretation of the effect direction as well as the
range of possible magnitudes.
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Titre : Un continuum d’intéraction pour la visualisation de données 3D 

Mots clés : Manipulations 3D, Interaction, Visualisation, Interaction Tactile, Interaction Tangible 

Résumé : Un nombre croissant de paradigmes 
d'interaction et de dispositifs ont été 
développés et étudiés pour les manipulations 
3D. Ce développement bénéficie, en particulier, 
aux domaines scientifiques tels que la 
visualisation qui s'appuie sur la manipulation 
de données 3D. De nombreuses études ont 
démontré les avantages de chacun d'entre eux 
pour des tâches spécifiques liées à la 
visualisation. Pourtant, les interfaces 
graphiques classiques ainsi que la souris et les 
claviers prédominent toujours dans la plupart 
des environnements interactifs: de tels 
environnements sont toujours utiles pour des 
tâches spécifiques et parce qu'ils sont 
facilement disponibles et accessibles par 
rapport aux nouveaux paradigmes d'interaction 
et aux dispositifs innovants.  
 
Contrairement à l'approche habituelle qui 
consiste à créér ou étudier un nouveau 
paradigme, une nouvelle technique ou un 
nouveau dispositif d'interaction, les travaux 
présentés dans cette thèse ouvrent la voie à un 
continuum d'interaction: la possibilité de passer 
d'un paradigme d'interaction à l'autre et de 
combiner deux ou plusieurs paradigmes 
d'interaction pour en tirer profit. Pour atteindre 
cet objectif, nous prenons plusieurs mesures. 
 
Tout d'abord, en se basant sur l'observation que 
la souris et le clavier, l'interaction tactile et 
l'interaction tangible sont maintenant des 
normes ou se rapprochent d'être des 
paradigmes d'interaction standard pour les cas 
d'utilisation occasionnelle ou spécifique, cette 
thèse étudie et compare leurs avantages et 
limites inhérents aux manipulations 3D.  
 
Sur la base de ce travail, nous créons ensuite un 
paradigme d'interaction hybride tactile et 
tangible. Basé sur les besoins de la 
visualisation scientifique pour la mécanique  
configuration facile à maintenir, facile à 
intégrer et abordable. Il fournit les premières 

des fluides, nous mettons en œuvre des 
techniques spécifiques d'interaction 
exploratrice 3D avec le paradigme hybride et 
les évaluons avec des experts du domaine. La 
mise en œuvre prototypique de ce paradigme 
hybride est une tablette tactile capable de 
quantifier ses propres mouvements (rotations et 
translations). Sur la base des retours 
d'expérience des experts du domaine, une telle 
combinaison est plus flexible que l'état de l'art 
et permet des manipulations 3D précises.  
 
Avec le potentiel de ce paradigme hybride, 
nous abordons ensuite la tâche complexe de la 
sélection des sous-ensembles 3D ---une étape 
initiale majeure pour la compréhension des 
données. Alors que la sélection de sous-
ensembles 3D est généralement effectuée avec 
une entrée 2D initiale étendue ultérieurement 
par la machine, notre combinaison 
d'interactions tactiles et tangibles permet aux 
utilisateurs d'avoir une technique de sélection 
entièrement manuelle avec la même tablette : 
un lasso 2D peut être dessiné avec une entrée 
tactile qui peut ensuite être étendue en 3D lors 
du déplacement de la tablette. Non seulement 
cette combinaison comble un vide dans la 
taxonomie des techniques de sélection de sous-
ensembles 3D, mais qui plus est, elle est plus 
précise que les solutions partiellement 
automatisées, quoique plus lentes.  
 
Enfin, en nous appuyant sur l'observation selon 
laquelle une interaction tangible avec un 
dispositif localement couplé pourrait nécessiter 
des ajustements de facteur de gain, nous 
proposons d'utiliser un aspect spécifique de 
l'interaction tactile, la détection de pression, 
pour contrôler les facteurs de gain des 
manipulations tangibles. 
 
Les travaux présentés dans cette thèse 
démontrent donc le potentiel d'un continuum 
d'interaction pour la visualisation en proposant 
des paradigmes d'interaction hybrides dans une  
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étapes nécessaires pour un continuum 
d'interaction qui, espérons-le, inspirera la 
création de plus de techniques d'interaction 
hybrides pour l'interaction de données 3D. 
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Title : An interaction continuum for 3D dataset visualization 

Keywords : 3D Manipulations, Interaction, Visualization, Tactile Interaction, Tangible Interaction 

Abstract : An increasing number of interaction 
paradigms and devices are being developed and 
studied for 3D manipulations. 
This development benefits, in particular, 
scientific domains such as visualization which 
rely on manipulation of 3D data. 
Numerous studies have proven the benefits of 
each one of them for specific tasks involved in 
visualization. Yet, classical graphical user 
interfaces as well as mouse and keyboards still 
prevail in most interactive settings: such 
environments are still useful for specific tasks 
and because they are readily available and 
accessible when compared to innovative 
interaction paradigms and devices. 
 
In contrast to the usual approach to create or 
study a new interaction paradigm, technique, or 
device, the work presented in this thesis paves 
the way towards an interaction continuum: the 
possibility to transition between and combine 
two or more interaction paradigms to benefit 
from their inherent advantages. To achieve this 
goal we take several steps. 
 
First, building on the observation that mouse 
and keyboard, tactile interaction and tangible 
interaction are now standards or are getting 
close to being standard interaction paradigms 
for casual or specific use cases, this thesis 
studies and compares their inherent advantages 
and limitations for 3D manipulations.  
 
Based on this work, we then create a hybrid 
tactile/tangible interaction paradigm. Based on 
the needs of scientific visualization for fluid 
dynamics, we implement specific 3D 
explorative interaction techniques with the 
hybrid paradigm and evaluate them with 
domain experts. The prototypical 
implementation of this hybrid paradigm is a 
tactile-enabled and spatially-aware tablet. 
Based on the feedback from domain experts, 
such a combination is more flexible than the 
state of the art and still facilitates precise 3D 
manipulations. 

With the potential of this hybrid paradigm, we 
then tackle the complex task of 3D subsets 
selection---a major initial step for data 
understanding. While 3D subset selection is 
usually conducted with an initial 2D input later 
extended by the machine, our  combination of 
tactile and tangible interaction allows users to 
have a fully manual selection technique with 
the same spatially-aware tablet: a 2D lasso can 
be drawn with tactile input which can then be 
extended into 3D when moving the tablet. Not 
only does this combination fill in an empty 
space in the taxonomy of 3D subset selection 
techniques, but we also found it to be more 
precise than partially-automated solutions---
albeit being slower. 
 
Finally, building on the observation that 
tangible interaction with a locally-coupled 
device might need gain factor adjustments, we 
propose to use a specific aspect of tactile 
interaction, pressure-sensing, to control the 
gain factors of tangible manipulations. 
 
The work presented in this thesis thus 
demonstrates the potential of an interaction 
continuum for visualization by proposing 
hybrid interaction paradigms in an easy-to-
maintain, easy-to-integrate, and affordable 
setup. It provides the necessary initial steps for 
an interaction continuum that will hopefully 
inspire the creation of more hybrid interaction 
techniques for 3D data interaction. 
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