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. They actually focus rather on the geometric shape of the hyperbolic pair of pants than its holonomy representation.

Besides the theorem does not give any control on the genus of the surface S. The asymptotic behavior, relative to the genus, of the number of such immersed surfaces in M has been studied in another work by the same authors [KM12a].

In a previous attempt to prove the surface subgroup conjecture, Bowen obtained the following results [Bow09]. Let G be a locally compact topological group with a left-invariant metric d, Λ a lattice in G and ρ a representation in G of the free group π generated by a symmetric (S -1 = S) nite alphabet S. Following the terminology of the author, for any ε > 0, a mapping σ : π → G is an ε-perturbation of ρ if ∀ w ∈ π ∀ s ∈ S d(σ(ws), σ(w)ρ(s)) ≤ ε.

Such a mapping σ is said to be virtually a homomorphism, if π contains a nite-index subgroup π such that ∀ w ∈ π ∀ w ∈ π σ(w w) = σ(w )σ(w) and σ is said to be virtually a homomorphism into Λ if σ(π ) is in addition contained in Λ. vi

Contents Introduction

Exhibiting additional structures on manifolds provides information about them which are all the more remarkable as the manifolds are general. In particular, classication theorems of manifolds of some type, as PoincaréKoebe uniformization theorem of Riemann surfaces or Thurston's geometrization conjecture of manifolds of three dimensions, are far-reaching results in modern mathematics. In the history of those results, what were at rst considered as exceptional and singular examples proved to be rules. One may read the introduction of [START_REF] Otal | Le théorème d'hyperbolisation pour les variétés brées de dimension 3[END_REF] to appreciate the critical role of Riley's example of a hyperbolic structure on the complement of the gure-eight knot. Besides general classication results, specic examples have interests on their own, even though they may not t in a larger picture.

Interesting additional structures are often of geometric nature. Let X be a manifold on which a group G acts by homeomorphisms, transitively and analytically, that is to say, two group elements whose actions coincide on an open subset must be equal. A (G, X)-structure on a manifold M is an atlas of charts with values in the model space X and whose transition mappings are restrictions of elements of G. A (G, X)-structure on a connected manifold M gives rise to a developing map D : M → X, where M is a universal cover of M , and a holonomy representation ρ : π 1 (M ) → G satisfying

D(γ • y) = ρ(γ) • D(y)
for every element γ in π 1 (M ) and every point y in M . The pair (D, ρ) is unique, up to the joint action of G on D by post-composition and on ρ by conjugation. The developing map D of a (G, X)-structure is always a local homeomorphism. Whenever it is a covering map, the structure is called complete. In that case, ρ(π 1 (M )) is a discrete subgroup of G, acting freely and properly discontinuously on X, and M is homeomorphic to the quotient manifold ρ(π 1 (M ))\X, so that one says that M is uniformized by X. Note that, for any representation ρ : π 1 (M ) → G, there is at most one complete (G, X)-structure on M with holonomy ρ. For instance, if X is equipped with a Riemannian metric and that G is the group of isometries of X, then a (G, X)-structure on a manifold M is complete if M , equipped with the metric induced by that of X, is complete, which is automatically true when M is compact. iv Given a representation ρ : π 1 (M ) → G, one may ask whether M carries a (G, X)-structure with holonomy representation ρ. Answering this question provides a dictionary between algebra and geometry. For example, if M is a closed connected orientable surface of genus at least 2, then it is well known that the representations ρ : π 1 (M ) → Isom + (H 2 R ) PSL 2 (R) arising as holonomy representations of complete real hyperbolic structures on M (Isom + (H 2 R ), H 2 R )-structures form two connected components of the representation variety Hom(π 1 (M ), PSL 2 (R)). The quotient of each component by the action of PSL 2 (R) by conjugation is naturally isomorphic to the Teichmüller space of M . Besides, by a theorem of GalloKapovichMarden [START_REF] Gallo | The monodromy groups of Schwarzian equations on closed Riemann surfaces[END_REF], every non-elementary representation in Hom(π 1 (M ), PSL 2 (C)) is the holonomy of a complex projective structure an (Aut(P 1 ), P 1 )structure where Aut(P 1 ) = PSL 2 (C) either unbranched or with a single branched point. Therefore, even though the existence of a representation ρ : π 1 (M ) → G does not imply that M carries a complete (G, X)-structure, such representations still provide relevant information about M .

The present thesis is situated in this general context. Chapter 1 presents a strategy to try to determine the representations of nitely generated free groups into any lattice in real Lie groups. Chapter 2 reviews a construction of a complex hyperbolic surface, that is the quotient of the complex hyperbolic plane H 2 C by a lattice in Isom(H 2 C ), examines its properties carefully and yields innitely many non-conjugate representations into Isom(H 2 C ), of fundamental groups of closed hyperbolic 3-dimensional manifolds, obtained as surface bundles over the circle.

Deforming representations

Thurston's hyperbolization theorem for surface bundles over the circle states that such bundles with pseudo-Anosov monodromy are hyperbolic. The virtual Haken conjecture (see [START_REF]Toute variété de dimension 3 compacte et asphérique est virtuellement de Haken[END_REF]) gave the reciprocal, up to a nite covering though. A key ingredient for the proof of the latter was the surface subgroup conjecture, stating that fundamental groups of closed hyperbolic manifolds contain many quasi-Fuchsian surface subgroups.

Theorem (KahnMarkovi¢ [START_REF]Immersing almost geodesic surfaces in a closed hyperbolic three manifold[END_REF]). Let M be a closed hyperbolic manifold of 3 dimensions, of the form Λ\H 3 R where Λ is a uniform lattice in

Isom + (H 3 R ).
For any C > 1, there exist a hyperbolic closed surface S of the form π\H 2 R , where π is a uniform lattice in Isom + (H 2 R ), and a C-quasiconformal mapping f :

∂ ∞ H 3 R → ∂ ∞ H 3 R such that f • π • f -1 is a subgroup of Λ, after identifying H 2
R with a hyperbolic plane in H 3 R .

Theorem (Bowen). If the lattice Λ is uniform, then for any ε > 0, any representation ρ : π → G admits an ε-perturbation that is virtually a homomorphism into Λ.

Theorem (Bowen). If G is the group Isom + (H n R ) and ρ : π → G is an injective representation onto a convex cocompact subgroup, then for any ε > 0 there exists an ε-perturbation of ρ : π → G that is virtually a homomorphism into Λ.

Both statements lead to the same conclusion. The dierence lies in that the former is true in a very general context with the restriction that the lattice Λ must be uniform, whereas the latter is also true for non-uniform lattices but in a less general context.

Even though only free group representations are considered, these two results and especially the rst one suggest that there could be an approach to the problem of determining the representations into a lattice that would deal with any kind of representations or, at least, with a large class of them. Besides, although the proof of the theorem of KahnMarkovi¢ seems limited in that it relies on the geodesic ow on the frame bundle, this ow is simply the restriction to some one-parameter subgroup of an action of Isom + (H n R ) on the frame bundle, which is nothing but the action of Isom + (H n R ) on the quotient Λ\ Isom + (H n R ) by multiplication on the right.

Furthermore, the following result extends the theorem of KahnMarko-vi¢, though using the same kind of arguments, and reinforces the idea of a general approach.

Theorem (Hamenstädt [Ham15]). Let Λ be a uniform lattice in a simple rank one Lie group of non-compact type, distinct from Isom + (H n R ) for all positive even integers n. Then Λ contains surface subgroups.

In chapter 1, a strategy is proposed in that perspective. Although it is successful only for representations of free groups, it has the advantages of getting rid of technical limitations, of being applicable in a very general context and of adopting a unied treatment. Should the strategy succeed for surface groups, then it would lead to simplications of some arguments for the theorems of Kahn-Markovi¢ and Hamenstädt.

The following propositions are the result of a attempt to simplify and generalize techniques at the heart the above results (see [START_REF] Bowen | Weak forms of the Ehrenpreis conjecture and the surface subgroup conjecture[END_REF] part II], [START_REF]Immersing almost geodesic surfaces in a closed hyperbolic three manifold[END_REF]lemmas 4.5,4.6,4.7], [START_REF] Bergeron | La conjecture des sous-groupes de surfaces[END_REF]proposition 4.7], [START_REF] Hamenstädt | Incompressible surfaces in rank one locally symmetric spaces[END_REF]proposition 4.3]). The authors essentially show, by appealing to mixing properties of geodesic or horocyclic ow, that, for ε > 0 small enough and R > 0 large enough, any real hyperbolic pair of pants with identical length parameters R may be deformed into an immersed (R, ε)-at pair of pants. In other words, the (R, ε)-at pairs of pants are deformations of existing real hyperbolic vii structures on topological pairs of pants. In this spirit, it appears immediately in the statements of the following propositions that representations in the lattice are found as deformations of representations in the Lie group. The following propositions avoid the recourse to mixing properties, only for some time. In the end, the Howe-Moore theorem (see 1.2.9) allows to prove that, for any simple connected real Lie group G with nite center, there are a lot of representations of the free group into G satisfying the conditions of the propositions.

Let π be a group with a nite presentation S|R . A group representation ρ of π in a Lie group G is exactly determined by a family (g s ) s∈S of elements in G satisfying the relations in R. Deforming ρ consists in nding, for each s in S, an element h s in G close to g s , such that the family (h s ) s∈S yet satises the relations in R. Although the product h sm • • • h s 1 , for each relation s m • • • s 1 in R, must be close to the identity element in G, provided that h s is close enough to g s for each s in S, it is dicult to guarantee in general that those products are actually trivial. Now, whenever the elements h s are chosen in a lattice Λ in G, then the products h sm • • • h s 1 would actu- ally be trivial, if they are suciently close to the identity element since Λ is discrete, hence giving rise to a representation of π into Λ associated to the family (h s ) s∈S . This observation is not surprising at all but requires to be able to estimate the distance from h sm • • • h s 1 to g sm • • • g s 1 with respect to the distances from h s to g s . The following propositions provide a quantitative statement.

Let X denote the quotient manifold G/K of a real Lie group G by a maximal compact subgroup K. One may easily construct a Riemannian metric on G which is invariant under the action by multiplication on the left by G and on the right by K. However, neither the metric nor the maximal compact subgroup are canonical. For instance, the maximal compact subgroups of the group Isom(H n R ) are exactly the stabilizers of points in H n R , isomorphic to O(n). Hence, for each point x ∈ H n R , one may construct a metric m x on G satisfying the latter invariance properties.

More generally, there is a whole family (m x ) x∈X of Riemannian metrics on G invariant under the action of G by multiplication on the left and satisfying (R g ) * m x = m gx for all g in G and x in X. In particular, if g belongs to the stabilizer K x of x, (R g ) * m x = m x which means that m x is invariant under the action of K x by multiplication on the right. The distance function corresponding to the metric m x is denoted by d x .

Let Λ be a lattice in G. The injectivity radius at a point τ in Λ\G, with respect to the distance d x induced on Λ\G from G, is dened as

inj x (τ ) = 1 2 inf λ∈Λ-{1} d x (λτ , τ ) viii
where τ ∈ G is any lift of τ .

In the rst place, let π denote the free group S generated by a nite alphabet S.

Proposition (section 1.2.2). For any ε ≤ 1, any representation ρ : π → G and any point x in X, if there exists a point τ in Λ\G satisfying ∀ s ∈ S d x (τ, τ ρ(s)) < ε inj x (τ ) then, given any lift τ of τ to G, there is a unique representation σ : π → Λ close to ρ in the sense that ∀ s ∈ S d x (σ(s)τ , τ ρ(s)) < ε inj x (τ ).

In the second place, for some integer m greater than 1, let π denote the group with presentation c 1 , . . . , c m |c m • • • c 1 = 1 . Proposition (section 1.2.2). For any ε ≤ 3 1/m -1, any representation ρ : π → G and any family of points (x j ) j∈Z/mZ in X such that x j+1 = ρ(c j )x j for all j in Z/mZ, if there exists a point τ in Λ\G satisfying ∀ j ∈ Z/mZ d x j (τ, τ ρ(c j )) < ε inj x j (τ ) then, given any lift τ of τ to G, there is a unique representation σ : π → Λ close to ρ in the sense that ∀ j ∈ Z/mZ d x j (σ(c j )τ , τ ρ(c j )) < ε inj x j (τ ).

Such a statement is also true for the nitely presented groups each of whose generators appears at most once in the relations altogether. Unfortunately all these groups are actually free and no analogue is known for arbitrary nitely presented groups. Nevertheless, since these statements deal with presentations and not groups themselves and that the images of the generators c j by σ still satisfy the relation c m • • • c 1 = 1, this slight progress may let one hope that it is also possible with a larger class of nitely presented groups.

The propositions are true for any lattice in any real Lie group and do not resort to any specic geometric technique like decomposition into pairs of pants or FenchelNielsen parameters. They deal with uniform and non uniform lattices simultaneously on the contrary to the theorems of Bowen. There is no limitation on the representation ρ. Besides there is a signicant dierence with the point of view presented by Bowen, since passing to a nite-index subgroup is not needed anymore.

The following statement is an application of the HoweMoore theorem (see 1.2.9) to the former proposition. ix Theorem (see section 1.2.3). Let G be a simple connected real Lie group with nite center, Λ a lattice in G and π a nitely generated free group. Let S = {s 1 , s 2 . . .} be some free generating set of π, x be a point in X and ε ≤ 1. Any representation ρ : π → G, such that ρ(s 1 ) leaves some large enough compact set K 1 and that ρ(s 2 ) leaves some large enough compact set K 2 depending on ρ(s 1 ) and so on, admits a small deformation conjugate to a representation σ : π → Λ: more precisely, there exist τ in Λ\G and a lift τ in G such that

∀ s ∈ S d x (σ(s)τ , τ ρ(s)) < ε inj x (τ ).

Representations of 3-manifolds

In three dimensions, spherical CauchyRiemann structures are also interesting. Those are the (S on which ρ(π 1 (M )) acts freely and properly discontinuously, so that M is homeomorphic to quotient manifold ρ(π 1 (M ))\Ω. Like the complete (G, X)structures, for any representation ρ :

π 1 (M ) → Isom(H 2 C )
, there is at most one uniformizable spherical CR structure on the manifold M with holonomy ρ. Given a spherical CR structure with holonomy ρ or just a representation ρ, a candidate open subset is the discontinuity domain of ρ(π 1 (M )), that is the largest open subset of S 3 on which ρ(π 1 (M )) acts properly discontinuously. In particular, whenever the discontinuity domain is empty, then the representation ρ cannot be the holonomy representation of a uniformizable spherical CR structure.

Only few examples of 3-dimensional hyperbolic manifolds carrying such structures and not many more representations of fundamental groups into Isom(H 2 C ) are known. For instance, if M is the complement of the gureeight knot, Falbel has shown that there are essentially two representations of π 1 (M ) into Isom(H 2 C ), that the author denotes by ρ 1 and ρ 2 , whose boundary representations π 1 (∂M ) → Isom(H 2 C ) are unipotent [START_REF] Falbel | A spherical CR structure on the complement of the gure eight knot with discrete holonomy[END_REF]. The representation ρ 1 is not the holonomy of a uniformizable structure since the domain of discontinuity of its image is empty. However it is shown that ρ 1 is the holonomy of a branched spherical CR structure on the gure-eight knot. Later, Falbel and Wang have shown that the complement of the gure-eight knot admits a branched spherical CR structure with holonomy ρ 2 [START_REF] Falbel | Branched spherical CR structures on the complement of the gure-eight knot[END_REF] and Deraux and Falbel have shown it admits a uniformizable spherical CR structure with holonomy ρ 2 [START_REF] Deraux | Complex hyperbolic geometry of the gure-eight knot[END_REF].

Chapter 2 introduces a method for constructing innitely many nonconjugate representations of fundamental groups of closed hyperbolic 3x dimensional manifolds into a lattice in Isom(H 2 C ). The domain of discontinuity of those representations happens to be empty, so that they cannot arise as holonomies of uniformizable structures, unlike the example of Deraux-Falbel. Nevertheless, they still may be the holonomies of branched spherical CR structures.

Besides, since these representations take actually their values in a lattice in Isom(H 2 C ), their existence may also be interpreted from the angle of the Kahn-Markovi¢ theorem.

The method relies on the careful examination of the properties of a complex hyperbolic surface, in section 2.1. It focuses on the particular example of Hirzebruch's surface Y 1 , which was originally introduced as an example of a complex hyperbolic surface, that is the quotient of the complex hyperbolic plane H 2 C by a uniform lattice, isomorphic to π 1 (Y 1 ) [Hir83, YY84]. On the one hand, Y 1 is a branched covering space of degree 5 5 of a complex surface, denoted by P 2 , which is the blow-up of the complex projective plane P 2 at 4 points (none three of which lie on the same line). The 6 lines in P 2 passing through each pair among those 4 points form the complete quadrilateral arrangement of lines (see gure 2.1). Besides, the preimage by the blow-up P 2 → P 2 of each of the 4 points is isomorphic to the complex projective line P 1 . The branched covering map Y 1 → P 2 ramies exactly over those 10 = 6 + 4 lines in P 2 , with ramication index 5.

On the other hand, the conics in P 2 passing through those 4 points give rise to a birational map P 2 → P 1 , called the pencil of conics. pencil of conics
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In addition, the Lefschetz bration P 2 → P 1 admits sections P 2 ← P 1 . Furthermore, the union of the singular bers under P 

bration

x x x x q q q q q q q q q q q q q P 1 C section V V q q q q q q q q q q q q q In particular, the branched covering map Y 1 → P 2 induces, by restriction, a branched covering map from each ber under Y 1 → C into a ber of P 2 → P 1 . Hence the properties of Y 1 → C may be read from those of P 2 → P 1 . The generic bers of Y 1 → C are smooth curves of genus 76. There are also 4 × 5 2 singular bers, each of which consists of 10 smooth curves intersecting normally at 5 where there is neither ramication nor singular bers anymore. Section 2.3 is devoted to the careful study of the monodromy of the bration P 2 u → (P 1 ) u (see corollary 2.2.7) and hence that of Y 1 u → C u too. Since the bers under P 2 u → (P 1 ) u are spheres with four punctures, the bration induces a representation of π 1 ((P 1 ) u ) into the mapping class group Mod 0,4 of a sphere, with 4 marked points. The monodromy representation proves to be an isomorphism and those groups are moreover isomorphic to the principal congruence subgroup Γ(2) in PSL 2 (Z) (of index 6). That fact has motivated the choice of the complex hyperbolic surface Y 1 , so that the calculations and proofs are simpler than with more complicated mapping class groups.

The elements in π 1 ((P 1 ) u ) whose images in Mod 0,4 are pseudo-Anosov or reducible mapping classes are precisely determined: the classication correxii sponds to the classication of the elements of PSL 2 (Z) as hyperbolic and parabolic elements (Γ(2) contains no elliptic element).

Finally, let F 0 denote the generic ber of Y 1 → C. For any γ in π 1 (C u ), let M γ denote the 3-dimensional manifold, obtained as the surface bundle over the circle with ber F 0 and where the homeomorphism is the monodromy of the bration Y 1 u → C u along γ (see denition 2.3.7 and section 2.5). There is a natural mapping M γ → Y 1 and which induces a morphism

ρ γ : π 1 (M γ ) → π 1 (Y 1 ). Since π 1 (Y 1 ) is isomorphic to a lattice in Isom(H 2 C
), the morphism ρ γ yields a representation into that lattice and in particular in Isom(H 2 C ). It is remarkable that every mapping class in Mod 0,4 can be realized as the monodromy along a curve in (P 1 ) u , of the bration P 2 u → (P 1 ) u . Since the generic ber of P 2 → P 1 is a sphere with 4 marked points, all the possible surface bundles with the sphere as ber and with monodromy preserving each of the 4 marked points are hence obtain in this way. The same construction of surface bundles for the bration P 2 u → (P 1 ) u , instead of Y 1 u → C u as above, produces representations of the fundamental groups of all those surface bundles. More precisely, the complex hyperbolic structure on Y 1 descends to a branched complex hyperbolic structure on P 2 by the branched covering Y 1 → P 2 . And the bers of the latter surface bundles are seen as orbifolds with isotropy of order 5 at each of the four marked points. For γ in π 1 (C u ), the surface bundle M γ is nothing but a branched covering of the orbifold surface bundle whose monodromy is the image of γ by π 1 (C u ) → π 1 ((P 1 ) u ).

Proposition. For each element f of Mod 0,4 , consider the surface bundle M f with monodromy f and with ber the orbifold with the sphere as underlying space and with isotropy of order 5 at each of the four marked points. There is a representation of the orbifold fundamental group of M f into a lattice in Isom(H 2 C ). Section 2.5 describes the manifold M γ to a small extent, the group π 1 (M γ ) and properties of the representation ρ γ with respect to the element γ in π 1 (C u ).

Proposition. For any γ in π 1 (C u ), the limit set of the image of the representation

ρ γ : π 1 (M γ ) → π 1 (Y 1 ) is all of ∂ ∞ H 2 C . Proposition. For any element γ in π 1 (C u ), if its image in π 1 (C) is not trivial, then 1. the kernel of ρ γ is equal to the kernel of π 1 (F 0 ) → π 1 (Y 1 ), xiii 2. the monodromy of the bration Y 1 u → C u along γ is pseudo-Anosov,
3. the kernel is not of nite type.

Observe that, if the monodromy is pseudo-Anosov, then the surface bundle M γ is a hyperbolic manifold, according to Thurston's hyperbolization theorem for surface bundles over the circle. In that case, the representation

ρ γ : π 1 (M γ ) → π 1 (Y 1
) hence provides a representation of the fundamental group π 1 (M γ ) of the hyperbolic manifold M γ , into a complex hyperbolic lattice.

Finally, the family of representations constructed in this way is the source of innitely many conjugacy classes of representations of hyperbolic manifolds of three dimensions into a complex hyperbolic lattice.

Theorem. For any two γ 1 and γ 2 in π 1 (C u ), if the image in π 1 (C) of γ 1 is not conjugate to that of γ 2 or its inverse, then either the groups π 1 (M γ 1 ) and π 1 (M γ 2 ) are not isomorphic or, if such an isomorphism Φ : π 1 (M γ 1 ) → π 1 (M γ 2 ) exists, then the representations ρ γ 1 and ρ γ 2 • Φ are not conjugate. Furthermore, the method seems reproducible with other complex hyperbolic lattices. Indeed, let Q n be the quotient, in the sense of geometric invariant theory, of (P 1 ) n by the diagonal action of Aut(P 1 ). In other words, Q n is the set of congurations of n marked points in the projective line. Let also Q * n denote the usual quotient, by the diagonal action of Aut(P 1 ), of the subset of (P 1 ) n formed by all the n-tuples of pairwise distinct points. The brations P 2 → P 1 and P 2 u → (P 1 ) u may actually be interpreted as the forgetful mappings

Q 5 → Q 4 and Q * 5 → Q * 4
, respectively, which forget the last point of the conguration (see proposition 2.2.5). In passing, this observation explains morally the particular role of the bration P 2 → P 1 .

It is remarkable that these spaces Q n appear at the heart of the construction by DeligneMostow of complex hyperbolic lattices, as described below. The forgetful mappings Q n → Q p for p < n (which forget, say, the last n -p points of a conguration) provide natural brations for the DeligneMostow lattice quotients as well. Therefore, one might expect that the Deligne-Mostow lattices have the tendency to contain surface bundles, possibly with spherical CR structures.

There exist several constructions of complex hyperbolic lattices. The story has started with Picard at the end of the 19 th century and is still being written nowadays. Old and modern examples and construction methods cohabit. A glance at the survey of Parker [START_REF] Parker | Complex hyperbolic lattices, Discrete groups and geometric structures[END_REF] is sucient to realize how rich this eld is and the number of mathematicians it has attracted. Yet the relations between the variety of approaches are not clearly established. Some relatively recent points of view are worth one's attention [START_REF] Tretko | Complex ball quotients and line arrangements in the projective plane[END_REF] and [START_REF] Curtis | Braid groups and Hodge theory[END_REF]. xiv Originally, the DeligneMostow lattices were discovered by considering hypergeometric functions. Let µ = (µ 1 , . . . , µ n ) be an n-tuple of real numbers in the interval (0, 1) satisfying

n k=1 µ k = 2
and, for any distinct integers a and b of {1, . . . , n}, dene

F ab (z 1 , . . . , z n ) = z b za n k=1 (z -z k ) -µ k dz
where z 1 , . . . , z n are elements in Ĉ and the path of integration lies in Ĉ -{z 1 , . . . , z n }, apart from its end points. The functions F ab are multi-valued functions, well dened if no two of the variables z k coincide. Moreover, they span a vector space of dimension n -2 and there exists a function h in the variables z k such that

F ab (α(z 1 ), . . . , α(z n )) = h(z 1 , . . . , z n )F ab (z 1 , . . . , z n )
for any α ∈ Aut(P 1 ) and for any distinct indices a and b. Therefore, one obtains a multi-valued mapping

F : Q * n -→ P n-3 Z = (z 1 , . . . , z n ) -→ [F a 1 b 1 (Z) : • • • : F a n-2 b n-2 (Z)]
where F a 1 b 1 , . . . , F a n-2 b n-2 are linearily independent. Hence, F induces a monodromy representation from a fundamental group of Q * n onto a subgroup Γ µ of Aut(P n-3 ) = PGL n-2 (C). Furthermore, one may show that the monodromy preserves a Hermitian form of signature (n -3, 1), so that Γ µ is a subgroup of PU(n -3, 1) Isom(H n-3 C ). Finally, if the n-tuple µ satises a integral condition, called ΣINT, then Deligne and Mostow show that the monodromy takes its values in a lattice [START_REF] Parker | Complex hyperbolic lattices, Discrete groups and geometric structures[END_REF]Theorem 3.2].

Note that the monodromy representation into PU(n-3, 1) exists, whether or not its image is a lattice. And the forgetful mappings provide brations. Therefore, even though the present construction focuses on the particular complex hyperbolic surface Y 1 and on the corresponding lattice in Isom(H n-3 C ), the method should generalize to a much larger class of surfaces bundles, so as to obtain representations of their fundamental groups into Isom(H 2 C ) and possibly spherical CR structures.

xv Chapter 1

Deforming representations 1.1 Real and complex hyperbolic spaces A moral of the classication theorems of manifolds of dimensions two or three is that most of those manifolds are (real) hyperbolic.

Construction

Let F be the eld of the real numbers R, respectively the complex numbers C, and consider a vector space V of dimension n+1 over F equipped with a nondegenerate bilinear, respectively sesquilinear, symmetric form φ : V ×V → F of signature (1, n).

1.1.1 Example. The Minkowski spacetime F 1,n is the vector space F 1+n , equipped with the form

φ 1,n (w, z) = -w 0 z 0 + w 1 z 1 + • • • + w n z n .
Although the latter is the standard example from which the hyperbolic space is usually constructed, it is not canonical.

1.1.2 Notations. The group of orthogonal, respectively unitary, transformations of (V, φ) is denoted by O(V, φ), respectively U(V, φ). It consists of the linear automorphisms A of V preserving φ, in other terms, satisfying

∀ v, w ∈ V φ(Av, Aw) = φ(v, w).
In particular, O(1, n), respectively U(1, n), denote the group of orthogonal, respectively unitary, transformations of F 1,n . They all are real Lie groups.

The real hyperbolic space may be dened as follows. The level hypersurface

V -1 = {v ∈ R 1+n | φ 1,n (v, v) = -1}
1 is of a hyperboloid of two sheets, which are contained in the half spaces separated by the hyperplane of equation z 0 = 0. Moreover the scalar multiplication by -1 maps each component to the other. The upper component is the underlying space of what is known as the hyperboloid model of real hyperbolic space H n R . Instead of choosing one of the components, since none is better than the other, it should in fact be dened as the quotient space V -1 /{±1}.

In the complex case, the level hypersurface V -1 is a hyperboloid with one sheet. Furthermore, it is preserved by scalar multiplication by any complex number of modulus 1, so is it in the real case by scalar multiplication by ±1. One may dene complex hyperbolic space as the quotient space V -1 /S 1 , where S 1 denotes the set of complex numbers of modulus 1.

However, the hypersurface V -1 of level -1 is not better than any other hypersurface of some negative level. Instead, real and complex hyperbolic spaces can be dened more canonically in the following way.

Consider the light cone V 0 and the time cone V -dened as

V 0 = {v ∈ V -{0} | φ(v, v) = 0} and V -= {v ∈ V | φ(v, v) < 0}.
These cones are stable by scalar multiplication. Moreover, they are preserved by the group of orthogonal, respectively unitary, transformations. Now consider the projection P : V -{0} → P(V ) onto the projective space P(V ) = (V -{0})/F * . 1.1.3 Denition. The hyperbolic space H n F over F and of dimension n is P(V -).

By denition, H n

F is an open subset of the projective space P n F and is in particular a real, respectively complex, submanifold of dimension n.

1.1.4 Remark. If (V, φ) is chosen as the Minkowski spacetime (F 1,n , φ 1,n ), then P (V -) is actually contained in the ane chart U 0 = {[z 0 : • • • : z n ] ∈ P n F | z 0 = 0} where [z 0 : • • • : z n ]
denotes the homogeneous coordinates in the projective space. The function The next step is to equip H n F with a Riemannian, respectively Hermitian, metric. In the case of real hyperbolic space, viewed as the upper sheet of the level hypersurface V -1 , and in particular as a submanifold of V , the tangent space T v H n R , at a point v, is the kernel ker φ 1,n (v, •) of the linear form w → φ 1,n (v, w), which is simply the orthogonal (Rv) ⊥ of the line Rv. (Indeed, the dierential at v of the mapping v → φ 1,n (v, v), whose hypersurface of level -1 is V -1 , is equal to w → 2φ 1,n (v, w).) Besides, the restriction of the bilinear symmetric form φ 1,n , to the subspace T v H n R of V , is positive denite: indeed, as φ 1,n is of signature (1, n) and as it is negative denite on the line Rv (for φ 1,n (v, v) = -1), Sylvester's law of inertia guarantees that it is positive denite on the orthogonal (Rv) ⊥ . Therefore, the restriction of the pseudo-Riemannian metric of V induces a Riemannian metric on H n R . It remains to adapt the latter construction in the context of the previous deniton hyperbolic space H n F on F. On the one hand, the trivial vector bundle TV -= V -×V over V -contains as a subbundle the bundle over V -whose ber over each point v is the orthogonal (Fv) ⊥ for the bilinear form φ. The pseudo-Riemannian, respectively pseudo-Hermitian, metric φ on the trivial bundle induces a Riemannian, respectively Hermitian, metric on the subbundle, for the same reason as before: since φ is negative denite on the line Fv, for all v ∈ V -, its restriction to (Fv) ⊥ is positive denite. In addition, (Fv) ⊥ and hence the induced metric depend only on the class of v in P(V -). On the other hand, the dierential dP : TV -→ TH n F of the projection P : V -→ P (V -) = H n F induces, on each ber of the subbundle, a surjective mapping d v P : (Fv) ⊥ → T v H n F which is an isomorphism for dimensional reasons. Consequently, pushing forward the Riemannian, respectively Hermitian, metric of the subbundle by the projection P yields a metric on H n F .

U 0 -→ F n [z 0 : • • • : z n ] -→ z 1 z 0 , . . . ,
1.1.7 Denition. The hyperbolic metric on H n F is the Riemannian, respectively Hermitian, metric construted as above. By a slight abuse of notations, it will still be denoted by φ.

Consider a vector subspace V of V . More precisely, if F is C, then V may been viewed not only as a vector space over C, but also as a vector space over R. Hence, for a unied treatment of the dierent cases, consider a subeld F of F and a vector subspace V of V , where V is viewed as a vector space over F . Assume moreover that the restriction of φ to V is a bilinear form φ : V × V → F that is non-degenerate and of signature (1, n ). Then the inclusion of (V , φ ) into (V, φ) induces an isometric embedding of

H n F into H n F .
1.1.8 Examples.

1. The inclusion of (F 1,n , φ 1,n ) into (F 1,n , φ 1,n ), mapping the standard basis of F 1,n to the rst n vectors of F 1,n , induces an isometric embedding of

H n F into H n F .
2. For any two points x and y in H n F , represented by lines Fv and Fw in V , the restriction of φ to the vector subspace V of V spanned by v and w is non-degenerate and of signature (1, 1). Therefore, there exists an isometric embedding of H 1 F into H n F passing through x and y. 3. Let x and y be any two points in H 1 C , represented by lines Cv and Cw in C 1,1 . Up to multiplying v or w by scalars, one may assume that φ 1,1 (v, w) is a real number. Hence, the restriction of φ 1,1 to the real vector subspace spanned by v and w is a real non-degenerate bilinear form of signature (1, 1). Therefore, there exists an isometric embedding of H 1 R into H 1 C passing through x and y. 4. According to the previous two examples, for any two points x and y in H n F , there exists an isometric embedding of H 1 R into H n F passing through x and y.

Note that

H 1 R is isometric to the Euclidean line R through γ : R -→ H 1 R t -→ (cosh t, sinh t)
where H 1 R is identied with the upper sheet of the hypersurface V -1 of level -1 in V = R 1,1 . Indeed, the derivative γ (t) = (sinh(t), -cosh(t)) satises φ 1,1 (γ (t), γ (t)) = 1.

1.1.9 Corollary. The hyperbolic space H n F is geodesically complete.

1.1.2

The group of isometries and the frame bundle 1.1.10 Proposition. The projective orthogonal group

PO(V, φ) = O(V, φ)/{±1},
respectively the projective unitary group

PU(V, φ) = U(V, φ)/S 1 ,
acts faithfully and isometrically on H n F . Proof. The group O(V, φ), respectively U (V, φ), acts on V -equipped with the pseudo-Riemmanian, respectively pseudo-Hermitian, metric φ. For any element A in the group, as A is a linear transformation of V , its dierential

d v A at a point v in V -is A itself. Therefore, for any w ∈ T v V -= V , (A * φ)(w, w) = φ((d v A) -1 w, (d v A) -1 w) = φ(A -1 w, A -1 w) = φ(w, w)
so that the action of the group preserves of metric on V -.

Since the action on V -maps lines to lines, the projection P transports it to an action on P(V -) = H n F . Moreover, since the metric on H n F is the push-forward by P of the restriction of the metric φ to the subbundle and that the latter equation still holds with w ∈ (Fv) ⊥ , it follows that the action of the group on H n F is isometric as well. Furthermore, an element A acts trivially on H n F if, and only if, it preserves all the lines in V -so that, for any v ∈ V -, there exists a number λ v such that Av = λ v v. For any vectors v and w in V -, up to replacing w by -w, one may assume that φ(v, w) < 0 so as to have

φ(v + w, v + w) = φ(v) + φ(w) + 2 φ(v, w) < 0 and v + w ∈ V -. Now, since λ v+w (v + w) = A(v + w) = Av + Aw = λ v v + λ w w it follows that λ v = λ v+w = λ w .
Thus A is a homothety (whose ratio is necessarily of modulus 1). Therefore, the projective orthogonal, respectively unitary, group acts faithfully on H n F . Let (M, •, • ) be a Riemannian, respectively Hermitian, manifold of n dimensions.

1.1.11 Denition. The frame bundle F(M ) over M , or more precisely the bundle of all orthonormal, respectively Hermitian, frames over M is the bundle over M whose ber over any point x of M consists of the orthonormal, respectively Hermitian, bases of the tangent space T x M at the point x.

The frame bundle F(M ) is a ber bundle over M : it is the pull-back of the identity matrix I n by the submersion

(TM ) ⊕n -→ Sym(n, F) v 1 ⊕ • • • ⊕ v n -→ ( v i , v j ) i,j=1..n
where (TM ) ⊕n denotes the n-times direct-sum vector bundle of the tangent bundle TM and Sym(n, F) the space of symmetric real, respectively antisymmetric complex, n-by-n matrices.

1.1.12 Remark. It is of course possible to consider the bundle of all frames (not necessarily orthonormal or Hermitian) but only the bundle of orthonormal, respectively Hermitian, frames is relevant in the present context. For convenience, the adjectives orthonormal or Hermitian will be omitted.

Example. Each element of the frame bundle of H n

F corresponds to the data of a line Fv 0 in V -and to n vectors v 1 , . . . , v n forming an orthonormal, respectively Hermitian, basis of (Fv 0 ) ⊥ . Up to multiplying v 0 by a scalar, one may assume that φ(v 0 , v 0 ) = -1. It is remarquable that the family (v 0 , v 1 , . . . , v n ) is a basis of V such that the unique linear isomorphism V → F 1,n mapping that basis to the standard basis of F 1,n , is an isometry

(V, φ) → (F 1,n , φ 1,n ). Any isometry f of (M, •, • ) acts on F(M ) by f (v 1 ⊕ • • • ⊕ v n ) = (d x f v 1 ) ⊕ • • • ⊕ (d x f v n ) mapping any frame v 1 ⊕ • • • ⊕ v n over a point x of M to a frame over f (x).
In particular, for any orthogonal, respectively unitary, linear transformation

A of V , A(v 1 ⊕ • • • ⊕ v n ) = (Av 1 ) ⊕ • • • ⊕ (Av n ).
1.1.14 Proposition. The group of isometries Isom(H n F ) of the hyperbolic space is isomorphic to the group PO(V, φ), respectively PU(V, φ), and acts freely and transitively on F(H n F ) and hence transitively on H n F . 1.1.15 Remark. One should insists on the fact that, in the case of a Hermitian manifold, an isometry, strictly speaking, is required to preserve the Hermitian metric and not simply the induced Riemannian one. For example, the group of Riemannian isometries of H n C contains, in addition to PU(V, φ), anti-holomorphic isometries. Proof. According to example 1.1.13, any frame of

H n F corresponds to a ba- sis (v 0 , v 1 , . . . , v n ) of V such that the unique linear isomorphism V → F 1,n mapping that basis to the standard basis of F 1,n , is an isometry (V, φ) → (F 1,n , φ 1,n ).
Thus, for any two frames of H n F , corresponding to such bases B and B of V , the unique linear isomorphism mapping B to B is an orthogonal, respectively unitary, transformation. It follows that the projective orthogonal, respectively unitary, group acts transitively on F(H n F ). Let f be an isometry of H n F . Up to composing f by a projective orthogonal, respectively unitary, transformation, one may assume that f preserves a frame over a point x in F(H n F ). Consequently, the dierential d x f of f at x is the identity mapping of the tangent space T x H n F . For any geodesic γ passing through x and directed by a tangent vector v at x, f • γ is the geodesic passing through f (x) = x and directed by d x f (v) = v. Therefore f • γ = γ, so that f is the identity mapping. Finally, any isometry of H n F is a projective orthogonal, respectively unitary, transformation and Isom(H n F ) acts freely on the frame bundle.

Given some frame τ over a point x of H n F , the action de

Isom(H n F ) on F(H n F ) and on H n F induces a bijection Isom(H n F ) -→ F(H n F ) g -→ g • τ
and a surjective mapping

Isom(H n F ) -→ H n F g -→ g • x
which however depend on the choice x and τ . The stabilizer of x, denoted by K x , is isomorphic to the group O(n), respectively U(n), as it consists of the transformations mapping an orthonormal, respectively Hermitian, frame over x to another. In particular, K x is compact. Consequently, the diagram

Isom(H n F ) ∼ G G F(H n F ) Isom(H n F )/K x ∼ G G H n F
where the vertical arrows are the projection mappings and the horizontal ones are induced by the action on Isom(H n F ), is commutative. Note that all these arrows are equivariant for the actions of Isom(H n F ) • on itself by translation on the left,

• on the frame bundle F(H n F ), • on Isom(H n F )/K
x by translation on the left, • on the hyperbolic space H n F by isometry. Assume that the manifold M is connected. In the Riemannian case, if the manifold M is moreover orientable, then the frame bundle consists of two connected components: the frames of M may indeed be classied in positive and negative frames. In the Hermitian case, the frame bundle of M is connected.

In particular, since H n R and H n C are connected, the frame bundle F(H n R ) and the group Isom(H n R ) consist of two connected components, whereas the frame bundle F(H n C ) and the group Isom(H n C ) are connected. The group

Isom(H n R ) is isomorphic to PO(1, n) and the group Isom(H n C ) is isomorphic to PU(1, n). The identity component of Isom(H n R ) is isomorphic to projective special orthogonal group PSO(1, n) and is denoted by Isom + (H n R ) whereas the other component is denoted by Isom -(H n R ).
Whenever the Riemannian, respectively Hermitian, manifold is isometric to a quotient of the form Λ\H n F where Λ is a lattice in Isom(H n F ), then the ber bundle of M is nothing but Λ\F(H n F ). The following commutative diagram draws the complete picture of the spaces at stake and of the mappings between them.

G 6 6 s s s s s s s G G Λ \ G y y s s s s s s F(H n F ) G G F(M ) H n F G G M G / K X X u u u u u u u G G Λ \ G / K e e v v v v v v v v
The group Isom(H n F ) is denoted by G for aesthetic reasons and K denotes the stabilizer K x of a point x in H n F . In the diagram, the diagonal arrows are dieomorphisms; the horizontal ones are covering maps, with automorphism group Λ; the vertical ones are principal K-bundles. Those mappings however depend on the choice of the point x in H n F and of the frame τ over x, as well as on the isometry between M and Λ\H n F or rather on the covering map

H n F → M . 1.1.

Invariant metrics, volume forms and measures

Let G be a real Lie group and K a compact subgroup of G. For instance, G may be Isom(H n F ) and K the stabilizer K x of a point x in H n F . The aim of the present paragraph is to show that G may be equipped with a Riemannian metric (and with the corresponding volume form and measure) satisfying remarkable invariance properties. As a consequence, the action of G on the quotient G/K, by multiplication on the left, proves to be isometric. The action of the group of isometries of the hyperbolic space is merely a particular case.

1.1.16 Proposition. The group G may be equipped with a Riemannian metric, invariant on the left by G and on the right by K. The metric induced by that of G on the subgroup K is invariant on the left and on the right by K.

Proof. Let ψ G

e be some inner product on the tangent space T e G to G at its identity element e. Its push-forward (L g ) * ψ G e by the left translation L g : h → gh by g is an inner product on T g G, denoted by ψ G g . Hence, ψ G is a Riemannian metric on G. And by construction, it is invariant on the left:

(L g ) * ψ G h = (L g ) * (L h ) * ψ G e = (L gh ) * ψ G e = ψ G gh = ψ G Lgh so that (L g ) * ψ G = ψ G . Let dvol ψ G denote the volume form on G associated to ψ G .
The corresponding measure vol ψ G is a Radon measure (locally nite and inner regular).

The metric ψ K induced on the subgroup K is also invariant on the left. And similarly, the measure corresponding to the volume form dvol ψ K is a Radon measure. In particular, its total measure is nite, since K is compact. Hence, one may dene the mean φ G of ψ G , under the action of K by translation on the right, as

φ G g = 1 vol ψ K (K) K (R k ) * ψ G gk dvol ψ K (k)
where R k : h → hk -1 is the translation on the right. And by construction, the metric φ G is invariant (under the action of K) on the right:

vol ψ K (K) (R k ) * φ G g = (R k ) * K (R h ) * ψ G gh dvol ψ K (h) = K (R k ) * (R h ) * ψ G gh dvol ψ K (h) = K (R L k (h) ) * ψ G R k (g)L k (h) dvol ψ K (h) = K (R h ) * ψ G R k (g)h (L k ) * dvol ψ K (h) dvol ψ K (h) = vol ψ K (K) φ G R k (g) so that (R k ) * φ G = φ G .
1.1.17 Proposition. The metric φ G on G induces a metric on G/K, denoted φ G/K , invariant on the left by G.

In other words, the group G acts isometrically on the Riemannian manifold G/K.

Proof. Let π : G → G/K denote the projection mapping, which is a submersion: for any g in G, d g π : T g G → T gK (G/K) est surjective. As π is constant on the submanifold gK of G, the restriction of d g π to T g (gK) is zero. And for dimensional reasons, the restriction

d g π : T g (gK) ⊥ -→ T gK (G/K)
is an isomorphism, where T g (gK) ⊥ denotes the orthogonal of T g (gK) for the inner product φ G g on T g G. Therefore, the push-forward by π of the restriction of φ G to the vector subbundle of TG, whose ber over g is T g (gK) ⊥ , is a metric on G/K. Indeed, it suces to verify that π * φ G g |Tg(gK) ⊥ depends only on the class of g in G/K: now, for any k ∈ K,

π * φ G gk |T gk (gK) ⊥ = π * (R k -1 ) * φ G g |Tg(gK) ⊥ = (π • R k -1 π ) * φ G g |Tg(gK) ⊥
for φ G g is invariant on the right by K.

1.1.18 Example. Recall the identication between G/K x and H n F , so that the Riemannian metric φ G/Kx may be transported to H n F . But the hyperbolic space is already equipped with its original Riemannian metric φ constructed above (if F is C, take the real part of φ). In fact, the original metric φ and the one induced by that of G/K x are proportional.

Indeed, as the transported metric φ G/Kx is invariant under the action (on the left) of G and in particular of K x , considering an orthonormal, respectively Hermitian, frame of the tangent space T x H n F for the original metric φ x , the number φ G/Kx x (v) of any vector v of the frame does not depend on v. Furthermore, for any two vectors v and w of the frame, as there exists an element of

K x mapping v + w on √ 2v, φ G/Kx x (v + w) = 2φ G/Kx x (v) = φ G/Kx x (v) + φ G/Kx x (w)
and thus φ

G/Kx x (v, w) = 0.
Therefore the frame is also orthogonal for φ

G/Kx x
, up to a scalar factor. Consequently, the original metric φ and the transported one φ G/Kx on T x H n F are proportional. And since they are invariant on the left by the action de G, they are proportional on all of H n F , with the same scalar factor.

Up to dividing by that factor, one may assume that the metric on H n F transported from G/K x coincides with the original one.

Subgroups

Let

H n F denote H n F ∪ ∂ ∞ H n F . 1.1.19 Lemma. Let (γ n ) be a sequence in Isom(H n F ). If there exists a point x in H n F such that lim n→∞ γ n x = λ + lim n→∞ γ n -1 x = λ -
where λ + and λ -are on the boundary at innity

∂ ∞ H n F , then lim n→∞ γ n y = λ + for any y ∈ H n F \ {λ -}, lim n→∞ γ n -1 y = λ -for any y ∈ H n F \ {λ + }.
Proof. By symmetry, it suces to prove the rst limit.

Let y and z be two distinct points in H n F \ {λ -} and let x be a point on the geodesic [y, z] joining y and z. Observe that

d(γ n -1 x, [y, z]) = d(x, [γ n y, γ n z]).
The left-hand side converges to +∞ since γ n -1 x converges to λ -and that y and z are distinct from λ -. Assume that some subsequence (γ ϕ(n) y) converges to a limit a distinct from λ + . Since the sequence (γ ϕ(n) x) converges to λ + and that the point γ ϕ(n) x belongs to the geodesic joining γ ϕ(n) y and γ ϕ(n) z, (γ ϕ(n) z) must converge to λ + . Moreover, d(x, (γ n y, γ n z)) converges to d(x, (a, λ + )) which is nite except if a = λ + . Therefore, (γ n y) converges to λ + as soon as y is distinct from λ -.

1.1.20 Denition. The limit set

Λ(Γ) of a subgroup Γ of Isom(H n F ) is the set Γx ∩ ∂ ∞ H n F of accumulation points in ∂ ∞ H n F of the orbit Γx of any point x in H n F .
1.1.21 Proposition. If Γ does not preserve a point in ∂ ∞ H n F and that its limit set is not empty, then Λ(Γ) is the smallest non-empty closed subset of

∂ ∞ H n F that is invariant by Γ.
Proof. The limit set Λ(Γ) is closed and invariant by Γ. Assume that Λ(Γ) is not empty.

Let λ + be a point in Λ(Γ). There exists a sequence (γ n ) in Γ such that λ + is the limit of (γ n x) for some point x in H n F . Up to passing to a subsequence, one may assume that

(γ n -1 x) converges to a point λ -in H n F . If λ -were in H n F , then observing that d(γ n -1 x, λ -) = d(x, γ n λ -)
one would conclude that the sequence (γ n λ -) converges to x, which contradicts the previous lemma. Therefore,

λ -belongs to ∂ ∞ H n F . Let L a closed subset of ∂ ∞ H n
F invariant by Γ. If Γ does not preserve a point at innity, L does not consists of a single point. For any point in L, distinct from λ -, (γ n ) converges to λ + . Therefore, λ + belongs to L so that L contains Λ(Γ). 

Examples. 1. The limit set Λ(Γ) is empty if and only if the orbit

Γx of some point x is contained in a compact subset of H n F . Now, since Isom(H n F ) acts properly on H n F , it implies that Γ is contained in a compact subgroup. Thus, Λ(Γ) is empty if and only if Γ stabilizes some point x in H n F . 2. Let Γ 1 and Γ 2 be subgroups of Isom(H n F ). If Γ 1 is a subgroup of Γ 2 , then Λ(Γ 1 ) ⊂ Λ(Γ 2 ). 3. The limit set of a uniform lattice Γ is all of ∂ ∞ H n F . Indeed,
) such that Γ 1 is a normal subgroup of Γ 2 . If Λ(Γ 1 )
is not empty and that Γ 2 does not preserve any point on the boundary at innity, then Λ(Γ 1 ) = Λ(Γ 2 ).

Proof. Since Γ 1 is a subgroup of Γ 2 , Λ(Γ 1 ) ⊂ Λ(Γ 2 ). In particular, Λ(Γ 2 ) is not empty either and, as Γ 2 does not preserve any point on the boundary at innity, Λ(Γ 2 ) is the smallest non-empty closed open subset invariant by Γ 2 .

Let λ 1 be a point in Λ(Γ 1 ) and (γ n ) a sequence in Γ 1 such that, for some point x in H n F , (γ n x) converges to λ 1 . Then, for any γ in Γ 2 , (γ n γ -1 x) converges to λ 1 as well and (γγ n γ -1 x) converges to γλ 1 . Observe that the elements of the sequence (γγ n γ -1 ) belong to Γ 1 since Γ 1 is a normal subgroup of Γ 2 . Therefore, γλ 1 belongs to Λ(Γ 1 ), so that Λ(Γ 1 ) is invariant by Γ 2 . Finally, Λ(Γ 1 ) is a non-empty closed subset invariant by Γ 2 , which implies that Λ(Γ 2 ) ⊂ Λ(Γ 1 ).

Deformation 1.2.1 Setting

Let π be a group with a nite presentation S|R . A group representation ρ of π in a Lie group G is exactly determined by a family (g s ) s∈S of elements in G satisfying the relations in R. Deforming ρ consists in nding, for each s in S, an element h s in G close to g s , such that the family (h s ) s∈S yet satises the relations in R. Although the product

h sm • • • h s 1 , for each relation s m • • • s 1 in R
, must be close to the identity element in G, provided that h s is close enough to g s for each s in S, it is dicult to guarantee in general that those products are actually trivial. Now, whenever the elements h s are chosen in a lattice Λ in G, then the products h sm • • • h s 1 would actually be trivial, if they are suciently close to the identity element since Λ is discrete, hence giving rise to a representation of π into Λ associated to the family (h s ) s∈S . This observation is not surprising at all but requires to be able to estimate the distance from h sm • • • h s 1 to g sm • • • g s 1 with respect to the distances from h s to g s . The following propositions provide a quantitative statement.

One may easily construct a Riemannian metric on a real Lie group G which is invariant under the action by multiplication on the left by G and on the right by a (maximal) compact subgroup K. However, neither the metric nor the compact subgroup are canonical. For instance, the maximal compact subgroups of the group Isom(H n F ) are exactly the stabilizers of points in H n F . Hence, for each point x ∈ H n F , one may construct a metric m x on G satisfying the latter invariance properties. In general, let X denote the quotient manifold G/K of the Lie group G by a compact subgroup K. The stabilizer of any point x in X of the form gK, under the action of G by multiplication on the left, is the compact subgroup gKg -1 , denoted by K x . Given a point x in X, one may construct a Riemannian metric m x on G invariant by multiplication on the left by G and on the right by K x . For any other point, an analogous metric may be produced simply by pulling back m x by the mapping R g : h → hg. The pulled-back metric (R g ) * m x satises the same properties as the original one with the dierence that it is now invariant by multiplication on the right by the group gK x g -1 (instead of K x ) which is nothing but the stabilizer K gx of the point gx.

In conclusion, G may be equipped with a family (m x ) x∈X of metrics, each of which is invariant by multiplication on the left by G and satises

(R g ) * m x = m gx for all g in G and x in X. In particular, if g belongs to K x , (R g ) * m x = m x .
The distance function corresponding to the metric m x is denoted by d x .

Besides, for every point x, as the action of G on X on the left induces a canonical dieomorphism between X and G/K x and as the metric m x is invariant under the action of K x on the right, m x induces a Riemannian metric on X which does not actually depend on the point x since (R g ) * m x = m gx . On the other hand, as the metric m x is invariant under the action of G by multiplication on the left, the action of G on X is isometric. For example, when G is the group Isom(H n R ), it is not dicult to show that the metric induced on H n R by the latter construction coincides with the hyperbolic metric, up to a scalar factor.

Although the metrics m x are dierent in general, they are equivalent. Moreover, since a Lie group G containing a lattice is unimodular, the metrics m x induce the same volume form on G. Furthermore, when G is the group Isom(H n R ), for any points x and y in H n R , one may show that

e -d(x,y) d x ≤ d y ≤ e d(x,y) d x
where d is the hyperbolic distance function on H n R , by considering for example the geodesic ow (on the unit tangent bundle) in the direction of the unit vector at x directed towards y. This illustrates the fact that the geodesic ow is contracting in some directions and dilating in others. Nevertheless, this inequality is not directly relating to the geodesic ow, but should probably be generalized in the context of real Lie groups.

Finally, the family (d x ) x∈X of distances is interesting because they allow to estimate quantitatively how distorted is a product when the multiplied elements are perturbed.

1.2.1 Proposition. Let g 1 , . . . , g m and h 1 , . . . , h m be elements in G. And let x be a base point. Then

d x (g m • • • g 1 , h m • • • h 1 ) ≤ m i=1 d g i-1 •••g 1 x (g i , h i ).
Note that the distance function that comes into play to compute the distance between g i and h i is the one based at

g i-1 • • • g 1 x and g i-1 • • • g 1 is the sux of g m • • • g 1 after g i .
Proof. The triangle inequality implies that

d x (g m • • • g 1 , h m • • • h 1 ) ≤ m i=1 d x (h m • • • h i+1 g i • • • g 1 , h m • • • h i g i-1 • • • g 1 ).
Now, since the distance functions are invariant by multiplication on the left,

d x (h m • • • h i+1 g i • • • g 1 , h m • • • h i g i-1 • • • g 1 ) = d x (g i • • • g 1 , h i g i-1 • • • g 1 )
and by construction of the family of metrics

d x (g i • • • g 1 , h i g i-1 • • • g 1 ) = (R g i-1 •••g 1 * d x )(g i , h i ) = d g i-1 •••g 1 x (g i , h i )
and the result follows.

1.2.2 Corollary. Let g 1 , . . . , g m and h 1 , . . . , h m be elements in Isom(H n R ).

And let x, x 1 , . . . , x m be base points in H n R . Then

d x (g m • • • g 1 , h m • • • h 1 ) ≤ m i=1 e d(x i ,g i-1 •••g 1 x) d x i (g i , h i )
and particularly when

x = x 1 = • • • = x n , d x (g m • • • g 1 , h m • • • h 1 ) ≤ m i=1 e d(x,g i-1 •••g 1 x) d x (g i , h i )

Lattice and injectivity radius

Let Λ be a lattice in G, that is, a discrete subgroup such that the quotient Λ\G is of nite volume.

Remark. When

G is Isom + (H n R )
and that the quotient Λ\H n R is a manifold, its frame bundle may be identied with Λ\ Isom + (H n R ), so does the frame bundle of H n R with Isom + (H n R ). The geodesic ow on the frame bundle appears as a restriction of the action of Isom + (H n R ) on Λ\ Isom + (H n R ) by multiplication on the right. Nevertheless, Λ\H n R need not be a manifold in order to consider the manifold Λ\ Isom + (H n R ) and the action by multiplication on the right.

In general, each metric m x , since it is invariant by multiplication on the left, induces a metric on the quotient Λ\G and, by a slight abuse of notation, d x will indierently denote the original distance function on G and the induced one on Λ\G.

Denition.

The injectivity radius at a point τ in Λ\G, with respect to the distance d x based at a point x ∈ X, is dened as

inj x (τ ) = 1 2 inf λ∈Λ-{1} d x (λτ , τ )
where τ ∈ G is any lift of τ .

1.2.5 Properties. The function inj x is positive, Lipschitz continuous with constant 1 and with respect to the distance d x and moreover satises

inj x (τ g) = (R g * inj x )(τ ) = inj gx (τ ).
One of its interests lies in that an inequality of the form

d x (λτ , τ ) < 2 inj x (τ )
guarantees that the element λ ∈ Λ in question is trivial.

Proof. On the one hand, the function inj x is positive because Λ is discrete.

On the other hand, for all τ and τ in Λ\G, choosing any lifts τ and τ such that

d x (τ , τ ) = d x (τ , τ ), inj x (τ ) ≤ 1 2 inf λ∈Λ-{1} d x (λτ , λτ )+d x (λτ , τ )+d x (τ , τ ) ≤ inj x (τ )+d x (τ , τ )
so that, by symmetry,

| inj x (τ ) -inj x (τ )| ≤ d x (τ , τ ). Finally, inj x (τ g) = 1 2 inf λ∈Λ-{1} d x (λτ g, τ g) = 1 2 inf λ∈Λ-{1} d gx (λτ , τ ) = inj gx (τ ).
If the lattice Λ is uniform, that is, the quotient Λ\G is compact, then the function inj x has a positive minimum. Moreover, since R g * inj x = inj gx , this minimum does not depend on x and may simply be denoted by inj(Λ). In particular, an inequality of the form d x (λτ , τ ) < 2 inj(Λ) implies that λ is trivial. Therefore, the uniform case seems simpler. In general, the use of the functions inj x ought to be necessary to deal with non uniformity.

1.2.2

Criteria to deform representations into a lattice

Of free groups

Let π denote the free group S generated by a nite alphabet S.

1.2.6 Proposition. For any ε ≤ 1, any representation ρ : π → G and any point x in X, if there exists a point τ in Λ\G satisfying

∀ s ∈ S d x (τ, τ ρ(s)) < ε inj x (τ )
then, given any lift τ of τ to G, there is a unique representation σ : π → Λ close to ρ in the sense that

∀ s ∈ S d x (σ(s)τ , τ ρ(s)) < ε inj x (τ ).
1.2.7 Remarks. 1. When τ is the identity element of G, the last inequality becomes d x (σ(s), ρ(s)) < ε inj x (τ ) which simply means that ρ and σ are close points in Hom(π, G) regarded as G S . When τ is arbitrary, it means that the conjugacy classes of ρ and σ are close points in the topological quotient Hom(π, G)/G.

2. It is not judicious to conne τ to be the identity element, since it would break the symmetry that exists between x, τ and ρ. Indeed, for any x, τ , ρ satisfying the condition of the proposition and for any g in G, the elements gx, τ g -1 , gρg -1 satisfy the condition as well.

3. This fact also answers the question about how the condition of the proposition depends on the point x. Changing the point x comes down to changing τ and ρ as described above. Thus, x may be chosen once and for all, so that the only unknown is τ . In particular, the representation ρ stays in the same conjugacy class.

Proof. For each generator s in S, since

d x (τ, τ ρ(s)) = inf λ∈Λ-{1} d x (λτ , τ ρ(s))
there exists an element λ s in Λ such that

d x (λ s τ , τ ρ(s)) = d x (τ, τ ρ(s)) < ε inj x (τ ).
The element λ s is unique. Indeed, if λ s were another element of Λ satisfying the latter inequality, then

d x (λ -1 s λ s τ , τ ) = d x (λ s τ , λ s τ ) < 2ε inj x (τ ) ≤ inf λ∈Λ-{1} d x (λτ , τ )
would imply that λ -1 s λ s = 1, that is λ s = λ s . Finally the morphism σ : π → Λ, dened on the generators of S by σ(s) = λ s , satises the conclusion of the proposition.

Of a fundamental group of a pair of pants

Let π denote the presented group c 1 , . . . , c m |c m • • • c 2 c 1 = 1 (with m greater than 1) which can be naturally viewed as a fundamental group of a surface dieomorphic to the complement in a sphere of m open discs (whose closures are disjoint). When m is three, such a surface is often called a pair of pants.

Although the group in question may be seen as a free group with m -1 generators, one has to keep in mind that the group comes with a specic presentation.

1.2.8 Proposition. For any ε ≤ 3 1/m -1, any representation ρ : π → G and any family of points (x j ) j∈Z/mZ in X such that x j+1 = ρ(c j )x j for all j in Z/mZ, if there exists a point τ in Λ\G satisfying

∀ j ∈ Z/mZ d x j (τ, τ ρ(c j )) < ε inj x j (τ )
then, given any lift τ of τ to G, there is a unique representation σ : π → Λ close to ρ in the sense that

∀ j ∈ Z/mZ d x j (σ(c j )τ , τ ρ(c j )) < ε inj x j (τ ).
Proof. For each j in Z/mZ, since

d x j (τ, τ ρ(c j )) = inf λ∈Λ d x j (λτ , τ ρ(c j )) there exists λ j in Λ satisfying d x j (λ j τ , τ ρ(c j )) = d x j (τ, τ ρ(c j )) ≤ ε inj x j (τ ). Each element λ j is unique since ε ≤ 3 1/m -1 ≤ √ 3 -1 ≤ 1.
In order to dene the representation σ on the generators as σ(c j ) = λ j , the elements λ j must satisfy the relation

λ m • • • λ 2 λ 1 = 1. It suces to show that d x 1 (λ m • • • λ 1 τ , τ ) < 2 inj x 1 (τ ). Now, for all 1 ≤ p ≤ q ≤ m, d xp (λ q • • • λ p τ , τ ρ(c q • • • c p )) ≤ q j=p d xp (λ q • • • λ j τ ρ(c j-1 • • • c p ), λ q • • • λ j+1 τ ρ(c j • • • c p )) = q j=p d ρ(c j-1 • • • c p )x p x j (λ j τ , τ ρ(c j )) < ε q j=p inj x j (τ ) Now | inj x j+1 (τ ) -inj x j (τ )| = | inj x j (τ ρ(c j )) -inj x j (τ )| ≤ d x j (τ, τ ρ(c j )) im- plies that (1 -ε) inj x j (τ ) < inj x j+1 (τ ) < (1 + ε) inj x j (τ ) and thus d xp (λ q • • • λ p τ , τ ρ(c q • • • c p )) < ε(1 + (1 + ε) + • • • + (1 + ε) (q-p) ) inj xp (τ ) = ((1 + ε) (q-p+1) -1) inj xp (τ ).
In particular, for p = 1 and q = m, since ρ(c m • • • c 1 ) = 1,

d x 1 (λ m • • • λ 1 τ , τ ) < ((1 + ε) m -1) inj xp (τ ).
Finally it suces to have (1 + ε) m -1 ≤ 2 which happens exactly when ε ≤ 3 1/m -1.

Application of mixing

Since one is interested in Lie groups in some generality, a suitable statement about mixing is the following theorem of Roger Howe and Calvin Moore [Ben09, Theorem 3.2].

1.2.9 Theorem. Let G be a semi-simple connected real Lie group with nite center and R : G → U (H) be a unitary representation of G in a Hilbert space H whose inner product is denoted by

• | • . If the subspace H N of N -invariant vectors is {0} for every non-trivial connected normal subgroup N of G, then for all v, w in H, lim g→∞ R(g) v | w = 0.
A fundamental example of such a representation is that of the Hilbert space L 2 (Λ\G) of square-integrable functions on the quotient Λ\G. Indeed, the action of G on this space is dened, for all v ∈ L 2 (Λ\G) and τ ∈ Λ\G, as

(g • v)(τ ) = v(τ g).
The action is unitary because G contains a lattice, so it is unimodular and the Haar measure is invariant on both sides. Since the constant functions are obviously G-invariant, the condition of the theorem is far from being satistied and one should instead consider the hyperplan H orthogonal to the constant functions, often denoted by L 2 0 (Λ\G). Yet there may be nonzero N -invariant vectors if G has non-trivial connected normal subgroups N . This diculty may be easily avoided by assuming that the connected real Lie group G is simple, that is, its Lie algebra is simple. In that case, the condition of theorem 1.2.9 boils down to H G = {0} which is satised since the action of G on Λ\G is transitive so that any vector in H invariant by G must be constant and hence trivial.

1.2.10 Corollary. Let Λ be a lattice in a simple connected real Lie group G with nite center. Then for all v, w in L 2 (Λ\G), the quantity

Λ\G v(τ )w(τ g) dτ converges to 1 vol(Λ\G) Λ\G v Λ\G w
when g goes to innity (leaves every compact set).

In order to invoke the previous statement, a little preparation is needed. First, let π denote the free group S generated by a nite alphabet S.

1.2.11 Lemma. For any ε ∈ (0, 1], any representation ρ : π → G and any point x in X, if there exist a point τ in Λ\G and a family of points (τ s ) s∈S in Λ\G satisfying

∀ s ∈ S d x (τ s , τ ) < ε 2 + ε inj x (τ s ) and d x (τ s , τ ρ(s)) < ε 2 + ε inj x (τ s )
then ρ, x and τ satisfy the condition of proposition 1.2.6.

Proof. For each generator s,

inj x (τ s ) ≤ inj x (τ ) + d x (τ, τ s ) < inj x (τ ) + ε 2 + ε inj x (τ s ) therefore 2 2 + ε inj x (τ s ) < inj x (τ )
and

d x (τ, τ ρ(s)) ≤ d x (τ, τ s ) + d x (τ s , τ ρ(s)) ≤ 2ε 2 + ε inj x (τ s ) ≤ ε inj x (τ ).
Although this lemma seems insignicant and its proof elementary, its interest lies in that τ and τ ρ(s) do not appear anymore as variables of the same function.

As for the presented group c 1 , . . . , c m |c m • • • c 2 c 1 = 1 , a similar statement is true.

1.2.12 Lemma. For any ε ∈ (0, 3 1/m -1], any representation ρ : π → G and any family of points (x j ) j∈Z/mZ in X such that x j+1 = ρ(c j )x j for all j in Z/mZ, if there exist a point τ and a family of points (τ j ) j∈Z/mZ in Λ\G satisfying

d x j (τ j , τ ) ≤ ε 2 + ε inj x j (τ j ) and d x j (τ j , τ ρ(c j )) ≤ ε 2 + ε inj x j (τ j )
for all j in Z/mZ, then ρ, (x j ) j∈Z/mZ and τ satisfy the condition of proposition 1.2.8.

The second lemma is not going to be used but is nevertheless stated in order to persuade that the obstacles preventing from dealing with arbitrary nitely presented groups are perhaps not related to this part of the reasoning. Besides the care taken so far to keep a tight rein on the quanticators is shattered by the non-quantitative statements about mixing. Hence there is no real interest anymore to distinguish between dierent presentations of the free group.

1.2.13 Theorem. Let G be a simple connected real Lie group with nite center, Λ a lattice in G and π a nitely generated free group. Let S = {s 1 , s 2 . . .} be some free generating set of π, x be a point in X and ε ≤ 1. Any representation ρ : π → G, such that ρ(s 1 ) leaves some large enough compact set K 1 and that ρ(s 2 ) leaves some large enough compact set K 2 depending on ρ(s 1 ) and so on, admits a small deformation conjugate to a representation σ : π → Λ: more precisely, there exist τ in Λ\G and a lift

τ in G such that ∀ s ∈ S d x (σ(s)τ , τ ρ(s)) < ε inj x (τ ).
Proof. Let S = {s 1 , s 2 . . .} be a free generating set of π, x be a point in X and ε be in (0, 1]. Denote by k ε : (Λ\G) 2 → R + the function dened as

k ε (τ , τ ) = 1 when d x (τ , τ ) < ε 2 + ε inj x (τ )
and 0 otherwise. Then a representation ρ : π → G satises the condition of lemma 1.2.11 and hence that of proposition 1.2.6, whenever the integral

Λ\G dτ vol(Λ\G) (Λ\G) S s∈S k ε (τ s , τ )k ε (τ s , τ ρ(s)) dτ s
is positive. Since the integrand is bounded between 0 and 1 and that Λ\G is of nite measure, Lebesgue's dominated convergence theorem and corollary 1.2.10 imply that

lim ρ(s 1 )→∞ lim ρ(s 2 )→∞ • • • Λ\G dτ vol(Λ\G) (Λ\G) S s∈S k ε (τ s , τ )k ε (τ s , τ ρ(s)) dτ s = (Λ\G) S Λ\G s∈S k ε (τ s , τ ) dτ vol(Λ\G) s∈S Λ\G k ε (τ s , τ ) dτ vol(Λ\G) dτ s
where the successive limits lim

ρ(s 1 )→∞ , lim ρ(s 2 )→∞
and so on, are taken for every generator s in S, in the order of their indices s 1 , s 2 . . . Since the limit is positive, it means that if ρ(s 1 ) leaves some compact set K 1 and that ρ(s 2 ) leaves some compact set K 2 depending on ρ(s 1 ) and so on, then the point x and the representation ρ satisfy the condition of lemma 1.2.11 and thus there exists a representation σ : π → Λ close to ρ, up to conjugacy, in the sense of proposition 1.2.6.

Chapter 2

Representations of 3-manifolds Some notations, terminology and properties about the complex projective space, blow-ups in local charts and branched covering maps are given in appendices A.1 and A.2.

A complex hyperbolic surface

This section presents a particular construction of smooth complex algebraic surfaces, studied by Hirzebruch [START_REF] Hirzebruch | Arrangements of lines and algebraic surfaces[END_REF]. Namba gave a more developed treatment [Nam87, section 1.4, example 6]. See also [START_REF] Tretko | Complex ball quotients and line arrangements in the projective plane[END_REF] for generalizations. These algebraic varieties are obtained by resolving the singularities of some branched covering spaces of the complex projective plane. Under some conditions (see theorem 2.1.13), the surfaces happen to be quotients of the complex hyperbolic plane H 2 C by a lattice.

Construction of Hirzebruch

Consider an arrangement of a number k (greater than 2) of lines D 1 , . . . , D k in P 2 whose equations are respectively 1 = 0, . . . , k = 0 where 1 , . . . , k are linear forms in the homogeneous coordinates z 1 , z 2 , z 3 . Assume that not all lines of the arrangement pass through one point. And let n be an integer greater than 1.

2.1.1 Example. The complete quadrilateral arrangement in P 2 is formed by the lines connecting each pair among four points in general position, that is to say, no three of them are colinear. There are three double intersection points and four triple ones which are the initial four points. Any such four points are equivalent up to a projective transformation. Indeed, any three of the lines, not having a common triple point, give an ane coordinate system and, in suitable homogeneous coordinates [z 1 : z 2 : z 3 ], the arrangement is given by the equation 2.1.2 Remark. In [START_REF] Yamazaki | On Hirzebruch's examples of surfaces with c 2 1 = 3c 2[END_REF], the authors set z 0 = 0 instead of z 4 = 0. This dierence in the choice of indices, apparently insignicant, will prove helpful later. [START_REF] Hirzebruch | Arrangements of lines and algebraic surfaces[END_REF]). The extension C(P 2 ) 2 1 1/n , . . . , k 1 1/n of the function eld C(P 2 ) determines a normal algebraic surface X and an abelian branched covering map χ : X → P 2 of degree n k-1 , ramied over the arrangement of lines with index n.

z 1 z 2 z 3 (z 2 -z 1 )(z 3 -z 2 )(z 1 -z 3 ) = 0

Proposition (see

The proposition is shown by dening and describing a complex surface X and relating it to X in lemma 2.1.4, then by characterizing the singularities of X in lemmas 2.1.6, 2.1.7 and 2.1.10 and nally by showing in corollary 2.1.8 that X = X. Furthermore, lemma 2.1.7 states that the smooth complex surface Y obtained by resolving the singularities of X is an abelian branched covering space of some blow-up P 2 of the projective plane P 2 . Local charts of Y are given in corollary 2.1.9. Lemma 2.1.11 describes the ramications of the branched covering map Y → P 2 .

See example A.2.1 for the denition of the branched covering map c n .

2.1.4 Lemma ([Nam87, Lemma 1.4.6]). Let X be the ber product with respect to the diagram

X χ G G P k-1 cn P 2 G G P k-1
where :

P 2 → P k-1 maps [z] = [z 1 : z 2 : z 3 ] to [ 1 (z) : • • • : k (z)].
The morphism χ : X → P 2 is an abelian branched covering map of degree n k-1 and which ramies over the arrangement of lines with index n. Moreover, the Galois group Aut(χ ) is naturally isomorphic to Aut(c n ).

The normalization of X is isomorphic to X.

Proof. As a set, the ber product may be dened as

X = {(p, r) ∈ P 2 × P k-1 | (p) = c n (r)}
and the morphisms X → P 2 and X → P k-1 as the restrictions to X of the projections pr 1 : P 2 × P k-1 → P 2 and pr 2 : P 2 × P k-1 → P k-1 , respectively, on the rst and on the second component. In particular, the ber χ -1 (p) of a point p lying on exactly m lines of the arrangement consists of n k-1-m distinct points. Hence χ is a branched covering map of degree n k-1 , ramied over the arrangement of lines with index n. Aut(c n ) acts on P 2 × P k-1 , trivially on the rst component and naturally on the second. Hence this action restricts to an action on X by automorphisms of Aut(χ ). Since the bers under χ and c n are the same and that Aut(c n ) acts transitively on the bers, Aut(c n ) and Aut(χ ) are naturally isomorphic.

Finally, let N → X be the normalization of X . The composition of N → X and X → P 2 is a mapping N → P 2 such that the induced morphism of function elds C(P 2 ) → C(N ) is exactly the extension For every line D of the arrangement, the automorphism α D corresponds to a small loop turning around D counterclockwise.

C(P 2 ) -→ C(P 2 ) 2 1 1/n , . . . , k 1 1/n Therefore N is isomorphic to X.
2.1.6 Lemma. A point q in X is singular if and only if its image χ (q) in P 2 lies on more than two lines of the arrangement. Proof. Let q be a point in X in the ber of a point p in P 2 lying on exactly m lines of the arrangement, say D 1 , . . . , D m . The map c n is dened in homogeneous coordinates as

c n ([u 1 : • • • : u n ]) = [u 1 n : • • • : u k n ].
Choose ane coordinates

(v 1 , . . . , v k-1 ) = u 1 u k , . . . , u k-1 u k
for P k-1 , so that the dening equations of X in the neighborhood of q are

v s n = u s n u k n = s k for s from 1 to k -1.
Choose also ane coordinates (w 1 , w 2 ) for P 2 centered at p. For s between 1 and k -1, s k may be written as α s w 1 + β s w 2 + γ s where α s , β s , γ s are complex numbers. Consider the map dened in these local coordinates by

(w 1 , w 2 , v 1 , . . . , v k-1 ) -→ (v s n -α s w 1 -β s w 2 -γ s ) 1≤s≤k-1
whose Jacobian matrix is the following.

     -α 1 -β 1 nv 1 n-1 -α 2 -β 2 nv 2 n-1 . . . . . . . . . -α k-1 -β k-1 nv k-1 n-1     
When none of the coordinates v 1 , . . . , v k-1 vanishes, which is generically true, the matrix is of rank k -1. Since the lines of the arrangement to which p belongs are exactly D 1 , . . . , D m , the coordinates among v 1 , . . . , v k-1 that vanish at q are exactly v 1 , . . . , v m . Hence the k -1 by k -1 diagonal submatrix, formed by the last k -1 columns, is of rank k -1 -m. And the submatrix formed by the rst m lines of the rst two columns is of rank min(2, m): indeed, it is equal to the rank of the family of the non-zero distinct linear forms (w 1 , w 2 ) → α s w 1 + β s w 2 , for s from 1 to m (the coecients γ s are equal to zero). Therefore the rank of the Jacobian matrix at q is

min(2, m) + k -1 -m = min(k -1, k -1 + 2 -m).
If m ≤ 2, the Jacobian matrix is of rank k-1 everywhere in the neighborhood of q, so that q is a smooth point of X . If m > 2, one may assume, up to changing the local coordinates (w 1 , w 2 ) of P 2 , that the equations in that chart of the lines D 1 and D 2 are respectively

α 1 w 1 + β 1 w 2 = w 1 = 0 and α 2 w 1 + β 2 w 2 = w 2 = 0.
Then w 1 = v 1 n and w 2 = v 2 n and the dening equations of X in the local charts may be written, after eliminating w 1 and w 2 , as

α s v 1 n + β s v 2 n = v s n
for s from 3 to m (in the neighborhood of q, the coordinates w 1 , w 2 , v m+1 , . . . , v k-1 are holomorphic functions in the coordinates v 1 , . . . , v m ). Since those equations are homogeneous, X has a singularity at q.

2.1.7 Lemma ([Nam87, Proposition 1.4.9]). The singularities of X may be resolved by adequate blow-ups, so as to obtain a smooth algebraic surface Y and a morphism ρ : Y → X . Moreover, let τ : P 2 → P 2 denote the blow-up of the projective plane at each of its points where more than two lines of the arrangement meet. There exists a morphism σ : Y → P 2 such that the following diagram is commutative.

Y ρ G G σ X χ P 2 τ G G P 2
σ is a branched covering map of degree n k-1 and ramies over the proper transforms in P 2 of the lines of the arrangement and over the exceptional curves P(T p P 2 ). The ramication indices are equal to n.

Proof. Each singular point q of X is resolved by specic blow-ups, which may be described locally. Assume that q is in the ber of a point p in P 2 lying on a number m (greater than 2) of lines of the arrangement, say D 1 , . . . , D m . As in the proof of the previous lemma, consider the ane coordinate system (v 1 , . . . , v k-1 ) of P k-1 . Blow up the (v 1 , . . . , v m )-space by considering the m coordinate charts, indexed by an integer r between 1 and m, (v 1|r , . . . , v r-1|r , v r , v r+1|r , . . . , v m|r , v m+1 , . . . , v k-1 ) dened by v s|r = v s /v r for s between 1 and m, dierent from r. Up to a permutation of the indices 1, . . . , m, one may assume for simplicity that r = 1.

Then choose an ane coordinate system (w 1 , w 2 ) of P 2 , centered at p and where

1 k = w 1 and 2 k = w 2 .
The linear forms dening the arrangement of lines may be written as s k = α s w 1 + β s w 2 + γ s for s between 1 and k -1 where α s , β s , γ s are complex numbers such that γ s = 0 for s between 1 and m. Blow up the (w 1 , w 2 )-space by considering the coordinate charts (w 1 , w 2|1 ) and (w 1|2 , w 2 ) dened by w 2|1 = w 2 /w 1 and w 1|2 = w 1 /w 2 .

In those local coordinates, the equations dening X become

v 1 n = w 1 v s|1 n = α s + β s w 2|1 for 2 ≤ s ≤ m v s n = α s w 1 + β s w 1 w 2|1 + γ s for m < s < k.
Similarly to the proof of the previous lemma, the Jacobian matrix of an adequate map associated to those equations is the following.

                         -1 0 nv n-1 1 -α 2 -β 2 nv n-1 2|1 . . . . . . . . . -αm -βm nv n-1 m|1 -α m+1 -β m+1 w 2|1 -β m+1 w 1 nv n-1 m+1 . . . . . . . . . -α k-1 -β k-1 w 2|1 -β k-1 w 1 nv n-1 k-1                         
On the one hand, its rank is again generically k -1. On the other hand, the exceptional divisor, that is the curve obtained by resolving the singular point q, is dened in the new coordinates by the equation v 1 = 0. At any point in the exceptional divisor, the coordinates v m+1 , . . . , v k-1 never vanish and no two of the coordinates v 2|1 , . . . , v m|1 may vanish simultaneously. Indeed, according to the equations, it would mean that such a point in the exceptional divisor belongs to the proper transforms of two lines of the arrangement passing through p, which is impossible because of the blow-up. A point on the exceptional divisor may belong at most to one of the proper transforms of the lines D 1 , . . . , D m . In any case for example when it belongs to D 2 the Jacobian matrix is of rank k -1. Consequently, those equations dene locally a smooth surface Y .

Besides, in the coordinate charts where Y has been locally dened and outside of the points where v s|1 = 0 (for some s between 3 and m) or v s = 0 (for some s between m+1 and k-1), the coordinates v 3|1 , . . . , v m|1 , v m+1 , . . . , v k-1 are locally holomorphic functions of the coordinates v 1 , v 2|1 . Therefore, (v 1 , v 2|1 ) is a holomorphic coordinate system on a neighborhood in Y of the point satisfying v 1 = v 2|1 = 0.

Finally, the morphisms χ : X → P 2 , τ : P 2 → P 2 and the projection, denoted by ρ : Y → X , are dened in the coordinate charts by

χ(w 1 , w 2 , v 1 , . . . , v k-1 ) = (w 1 , w 2 ) τ (w 1 , w 2|1 ) = (w 1 , w 2|1 w 1 ) ρ(w 1 , w 2|1 , v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v k ) = (w 1 , w 2|1 w 1 , v 1 , v 2|1 v 1 , . . . , v m|1 v 1 , v m+1 , . . . , v k )
The morphism σ : Y → P 2 dened locally by

σ(w 1 , w 2|1 , v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v k ) = (w 1 , w 2|1 ) is such that χ • ρ = τ • σ.
Away from the exceptional divisor of ρ, the mapping σ behaves exactly like the branched covering map χ . And in the neighborhood of the exceptional divisor, for instance in the

(v 1 , v 2|1 ) coordinate system, σ(v 1 , v 2|1 ) = (w 1 , w 2|1 ) = (v 1 n , v 2|1 n ).
2.1.8 Corollary. The variety X is normal and X = X .

Proof. According to lemma 2.1.7, the singularities of X may be resolved by blow-ups. Hence the singularities are normal and the variety X too.

On the other hand, the normalisation of X is X according to lemma 2.1.4. Therefore, X = X . 

(w 1 , w 2|1 , v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v k-1 ),
by the equations

v 1 n = w 1 v s|1 n = α s + β s w 2|1 for 2 ≤ s ≤ m v s n = α s w 1 + β s w 1 w 2|1 + γ s for m < s < k.
The gluing of the ane varieties is given by the relations between the coordinates.

2.1.10 Lemma. If a point p in P 2 belongs to a number m, greater than 2, of lines of the arrangement, say D 1 , . . . , D m , then each singular point q of X over p is resolved into a smooth curve C and the restriction σ |C : C → P(T p P 2 ) is a branched covering map.

C 1 G G σ |C Y ρ G G σ X χ P(T p P 2 ) 1 G G P 2 τ G G P 2
More precisely, σ |C is of degree n m-1 , ramied over the m points in P(T p P 2 ) corresponding to the directions in T p P 2 tangent to the lines of the arrangement passing through p. The Euler characteristic of

C is e(C) = n m-1 (2 - m) + m • n m-2 .
Proof. Let C denote ρ -1 (q). In the typical coordinate chart

(w 1 , w 2|1 , v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v k-1 )
used in the proof of the previous lemma to resolve the singularities, C is locally dened by the equations

v 1 = 0 w 1 = 0 v s|1 n = α s + β s w 2|1 for 2 ≤ s ≤ m v s n = γ s for m < s < k
and v m+1 , . . . , v k-1 are in fact uniquely determined by the choice of q in the ber of p. The morphism σ |C is dened in this coordinate system as

σ |C (0, w 2|1 , 0, v 2|1 , . . . , v m|1 , v m+1 , . . . , v k-1 ) = (0, w 2|1 ) = (0, v 2|1 n ).
Therefore, σ |C is a branched covering map of degree n m-1 , ramied over m points in P(T p P 2 ) with index n, and the Euler characteristic of C is

e(C) = n m-1 (e(P(T p P 2 )) -m) + m n m-1 n = n m-1 (2 -m) + m • n m-2 .
See remark 2.1.5 for the denition of the automorphisms α D of χ.

2.1.11 Lemma. Every automorphism α of χ extends as an automorphism of σ which coincides with α outside of the exceptional divisor of ρ : Y → X.

For each singular point q in X, lying over a point p in P 2 , Stab Aut(χ) (q) is generated by the automorphisms α D , for the lines D of the arrangement passing through p.

The automorphism of χ corresponding to a small loop turning around

P(T p P 2 ) counterclockwise is D p α D .
Finally, the Galois group Aut(σ |C ) of σ |C : C → P(T p P 2 ) is isomorphic to the quotient of Stab Aut(χ) (q) by the cyclic subgroup generated by

D p α D .
2.1.12 Notation. By a slight abuse of notation, α D or the letter α will indierently denote automophisms of P k-1 , of X, of Y or even of C.

Proof. In order to show that the automorphisms of χ extend as automorphisms of σ, it suces to prove it for the generators α D . Furthermore it suces to prove it locally (see 2.1.9).

Let p be a point in P 2 which belongs to a number m, greater than 2, of lines of the arrangement, say D 1 , . . . , D m , and let q be a singular point in X over p. Consider, without loss of generality, the (w 1 , w 2 , v 1 , . . . , v k-1 ) coordinate system of X and the (w 1 , w 2|1 , v 1 , v 2|1 . . . , v m|1 , v m+1 , . . . , v k-1 ) coordinate system of Y . The point p has coordinates (w 1 , w 2 ) = (0, 0) and q has coordinates of the form (0, . . . , 0, v m+1 , . . . , v k-1 ) where v s is not zero for m < s < k.

In that coordinate system of X,

• if D is not the line at innity D k , α D (w 1 , w 2 , v 1 , . . . , v k-1 ) = (w 1 , w 2 , v 1 , . . . , v s-1 , e 2πi n v s , v s+1 , . . . , v k-1 )
for some s,

• if D is D k , α D (w 1 , w 2 , v 1 , . . . , v k-1 ) = (w 1 , w 2 , e -2πi n v 1 , . . . , e -2πi n v k-1 ).
Therefore, in that coordinate system of Y , 1. if D is the line D 1 dened by the equation w 1 = 0,

α D (w 1 , w 2|1 , v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v k-1 ) = (w 1 , w 2|1 , e 2πi n v 1 , e -2πi n v 2|1 , . . . , e -2πi n v m|1 , v m+1 , . . . , v k-1 ), 2. if D passes through p in P 2 but is not D 1 , α D (w 1 , w 2|1 , v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v k-1 ) = (w 1 , w 2|1 , v 1 , v 2|1 , . . . , v s-1|1 , e 2πi n v s|1 , v s+1|1 , . . . , v m|1 , v m+1 , . . . , v k-1 )
for some s,

3. if D is D k , α D (w 1 , w 2|1 , v 1 , v 2|1 . . . , v m|1 , v m+1 , . . . , v k-1 ) = (w 1 , w 2|1 , e -2πi n v 1 , v 2|1 , . . . , v m|1 , e -2πi n v m+1 , . . . , e -2πi n v k-1 ), 4. if D does not pass through p in P 2 and is not D k , α D (w 1 , w 2|1 , v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v k-1 ) = (w 1 , w 2|1 , v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v s-1 , e 2πi n v s , v s+1 , . . . , v k-1 )
for some s.

In each case, α D extends to the exceptional divisor of ρ : Y → X.

Since q has coordinates of the form (0, . . . , 0, v m+1 , . . . , v k-1 ) where v s is not zero for m < s < k, it appears that Stab Aut(χ) (q) is the subgroup generated by the automorphisms α D 1 , . . . , α Dm .

Consider a loop in P 2

γ : [0, 2π] -→ P 2 t -→ (w 1 (t), w 2|1 (t)) = (εe it , w 2|1 (0))

turning around P(T p P 2 ) and not meeting the proper transforms of the lines D 1 , . . . , D m (ε is arbitrarily small and w 2|1 is constant). Finding a lift γ :

[0, 2π] → Y of γ amounts to nding continuous functions v 1 , v 2|1 , . . . , v m|1 , v m+1 , . . . , v k-1 satifying the equations v 1 (t) n = w 1 (t) v s|1 (t) n = α s + β s w 2|1 (t) for 2 ≤ s ≤ m v s (t) n = α s w 1 (t) + β s w 1 (t)w 2|1 (t) + γ s for m < s < k that is to say v 1 (t) n = εe it v s|1 (t) n = v s|1 (0) n for 2 ≤ s ≤ m v s (t) n = v s (0) n + ε(α s + β s w 2|1 (0))(e it -1) for m < s < k. Thus γ(2π) = (w 1 (0), w 2|1 (0), e 2πi n v 1 (0), v 2|1 (0), . . . , v m|1 (0), v m+1 (0), . . . , v k-1 (0)) = α 1 • α 2 • • • • • α m (γ(0))
Since σ |C is the restriction of the Galois branched covering map σ, the morphism Stab Aut(χ) (q) → Aut(σ |C ) is surjective. The automorphism

D p α D
xes C so it is in the kernel of Stab Aut(χ) (q) → Aut(σ |C ). Finally, since Stab Aut(χ) (q) has n m elements and that Aut(σ |C ) has as many element as the degree of σ |C , that is n m-1 , the morphism Stab Aut(χ) (q) → Aut(σ |C ) is bijective, for cardinality reasons. ). If the Chern classes of a compact complex surface Y of general type satisfy

Theorem

c 1 (Y ) 2 = 3c 2 (Y )
then Y is the quotient of the complex hyperbolic plane H 2 C by a lattice.

In [START_REF] Hirzebruch | Arrangements of lines and algebraic surfaces[END_REF], Hirzebruch nds three cases where, given an arrangement of lines and a exponent n, the corresponding surface Y is of general type and satises c 1 (Y ) 2 = 3c 2 (Y ). Therefore those surfaces admit a complex hyperbolic structure. Hirzebruch denotes them by Y 1 , Y 2 and Y 3 .

Example.

The surface Y 1 corresponds to the complete quadrilateral arrangement and to the exponent n = 5. Hence σ : Y 1 → P 2 is a branched covering map of degree 5 5 which ramies over the six lines of the arrangement and the four exceptional curves, all with index 5.

The present thesis focuses on the surface Y 1 .

2.1.2

Complex hyperbolic lattice T. Yamazaki and M. Yoshida [START_REF] Yamazaki | On Hirzebruch's examples of surfaces with c 2 1 = 3c 2[END_REF] have determined a lattice, that they denote by G 1 , in the group of automorphisms of the complex hyperbolic plane H 2 C such that P 2 appears as the quotient of H 2 C by G 1 and that Hirzebruch's surface Y 1 is the quotient by the commutator subgroup

[G 1 , G 1 ].
More precisely, P 2 has the structure of a complex hyperbolic orbifold and Y 1 that of a complex hyperbolic manifold. Despite the orbifold structure, P 2 is simpler than Y 1 and reects also the complex hyperbolic structure.

Choose a base point a in the complement D of the branch locus of P 2 and a loop ρ(ij) based at a, for i, j ∈ {0, 1, 2, 3} with i < j, turning around D ij . A group presentation of the fundamental group π 1 (D, a) is given by the generators ρ(ij) and the relations

[ρ(ij)ρ(ik)ρ(jk), ρ(ij)] = 1, [ρ(ij)ρ(ik)ρ(jk), ρ(ik)] = 1, [ρ(ij)ρ(ik)ρ(jk), ρ(jk)] = 1
for i < j < k and ρ(01)ρ(02)ρ( 12)ρ(03)ρ( 13)ρ(23) = 1.

Let µ be exp(2πi 3 5 ). The group G 1 is the image of the representation R :

π 1 (D, a) → PGL 3 (C) dened by R(ρ(ij)) = R(ij) where R(12) = I 3 +   -µ(1 -µ) µ(1 -µ) 0 1 -µ -(1 -µ) 0 0 0 0   R(23) = I 3 +   0 0 0 0 -µ(1 -µ) µ(1 -µ) 0 1 -µ -(1 -µ)   R(13) = I 3 +   -µ(1 -µ) 0 µ(1 -µ) (1 -µ)(1 -µ) 0 -(1 -µ)(1 -µ) 1 -µ 0 -(1 -µ)   R(01) = I 3 +   µ 2 -1 0 0 µ(1 -µ) 0 0 µ(1 -µ) 0 0   R(02) = I 3 +   0 -(1 -µ) 0 0 µ 2 -1 0 0 -µ(1 -µ) 0   R(03) = µI 3 + µ   0 0 -(1 -µ) 0 0 -(1 -µ) 0 0 µ 2 -1  
In fact, G 1 is contained in the projective unitary group whose Hermitian form of signature (+, +, -) is given by the Hermitian matrix

A 1 =    -1 µ+µ µ 1 µ -1 µ+µ µ 1 µ -1 µ+µ    .

The pencil of conics, an example of Lefschetz bration

A Lefschetz bration P 2 → P 1 is dened in this section and will allow to derive a similar one Y 1 → C in section 2.4.

A conic in the complex projective plane P 2 is the zero-locus of a quadratic form in the variables z 1 , z 2 , z 3 . The vector space Sym 2 (C 3 * ) of all quadratic forms on C 3 is of dimension 6. Since the one and only way for two quadratic forms to dene the same conic is to be proportional, the set of conics may be naturally identied with the projective space P(Sym 2 (C 3 * )).

The set of conics passing through four points given in P 2 , none three of which lie on the same line, say p 1 = [1 : 0 : 0], p 2 = [0 : 1 : 0], p 3 = [0 : 0 : 1], p 4 = [1 : 1 : 1], corresponds to a line in P(Sym 2 (C 3 * )). For any fth point (distinct from the rst four), there is exactly one conic passing through the ve points. And even when the fth point happens to collide with any point p among the rst four, prescribing in addition any line in the tangent plane T p P 2 , there is again exactly one conic passing through p 1 , . . . , p 4 and tangent to that line. Following the previous considerations, there is a natural mapping f : P 2 → P 1 , where P 2 denotes the projective plane blown up at the four points. Each exceptional curve in P 2 , obtained by blowing up a point p among the four, is naturally identied with P(T p P 2 ). The map f is a bration whose bers are the proper transforms in P 2 of the conics passing through the four points. Moreover, for each point p among the four, f admits sections P 1 → P(T p P 2 ) which maps a conic to its tangent line at p.

P(T

p P 2 ) 1 G G P 2 f P 1
5 5 q q q q q q q q q Among those conics, represented by points in P 1 , exactly three are singular. Each of them is the union of two lines, one passing through two among the four points and the second passing through the two others. Those six lines together form the complete quadrilateral arrangement. The points in P(T p P 2 ) corresponding to the singular conics are the lines of the arrangement passing through p.

In coordinates, the pencil of conics may be dened as

[z 1 : z 2 : z 3 ] → [(z 1 -z 3 )z 2 : z 1 (z 2 -z 3 )].
This is a rational mapping dened everywhere except at the points p 1 = [1 :

0 : 0], p 2 = [0 : 1 : 0], p 3 = [0 : 0 : 1], p 4 = [1 : 1 : 1]
where the polynomials (z 1 -z 3 )z 2 and z 1 (z 2 -z 3 ) vanish simultaneously. Nevertheless, blowing up the projective plane at one of the four points, say p 3 , one ends up with local coordinate charts (w 1 , w 2|1 ) and (w 1|2 , w 2 ) dened as w s = z s /z 3 and w r|s = w r /w s , for r, s ∈ {1, 2}, where the rational mapping extends in the neighborhood of the exceptional curve P(T p 3 P 2 ) as

(w 1 , w 2|1 ) → [(w 1 -1)w 2|1 : w 1 w 2|1 -1] and (w 1|2 , w 2 ) → [w 2 w 1|2 -1 : w 1|2 (w 2 -1)].
Note that the ber over [1 : 0] is the singular conic dened by z 1 (z 2 -z 3 ) = 0, the one over [0 : 1] is dened by (z 1 -z 3 )z 2 = 0 and also the one over [1 : 1] is dened by (z 1 -z 2 )z 3 = 0. Those three are the only singular bers.

The pencil of conics described above is a simple example of Lefschetz pencil or bration.

Denition.

A Lefschetz pencil or Lefschetz bration f is respectively a rational mapping or morphism from a complex surface S to a complex curve C such that, for every point s in S (where f is dened), 1. either f is a submersion at s 2. or the dierential d s f of f at s is zero but the second symmetric differential d 2 s f is a nondegenerate quadratic form.

Remarks.

1. The dierence between a Lefschetz pencil or bration is not worth spending to much time in the present context, where it seems sucient to observe, in the example of the pencil of conics, that P 2 → P 1 is a rational mapping undetermined at the four points, whereas f : P 2 → P 1 is well dened everywhere, after an adequate blow-up of P 2 .

2. If f happens to be a submersion everywhere (and also proper, which is guaranted when S is compact), then Ehresmann's bration theorem yields that f is a dierentiable ber bundle. In general, except over a nite number of points in C, f is a ber bundle whose ber is called the generic ber of the Lefschetz bration.

3. Besides, the shape of the singular bers are prescribed by the condition 2 in the previous denition. Indeed, at a point s of S where f is not submersive, the holomorphic analogue of Morse lemma holds that there exists local charts of S and C, centered at s and f (s) respectively, where f is as simple as (x, y) → xy. Hence, in the neighborhood of s and up to a holomorphic transformation, the ber passing through s is the union of two lines intersecting normally.

4. The singular bers are sometimes required to have only one singular point, but this additional condition is not essential in the present account and is even unsatised in the sequel.

Examples.

1. In the local coordinate chart

(x, y) = z 1 -z 3 z 1 , z 2 z 2 -z 3
centered at the point [1 : 0 : 1], the rational mapping dening the pencil of conics is expressed as f (x, y) = [xy : 1], so f may be easily expressed in the normal form without resorting to the Morse lemma.

2. In passing, many more examples of Lefschetz pencils arise in the way the pencil of conics is dened above with coordinates. Indeed, choose two homogeneous polynomials P and Q of a same nonzero degree d, in the variables z 1 , z 2 , z 3 , with no common factor and consider the rational mapping

[z 1 : z 2 : z 3 ] -→ [P : Q]
undetermined at the points where P and Q vanish simultaneously. The ber over a point [λ : µ] is the curve dened by the equations µP -λQ = 0 of degree d. In particular, the ber over [0 : 1] is P = 0, the ber over [1 : 0] is Q = 0 and those two intersect at isolated point. All of the bers pass through the intersection points of P = 0 and Q = 0. For this reason, the rational map is called the pencil generated by P and Q and the set of points dened by P = Q = 0 is called the base of the pencil. Moreover, Bézout's theorem holds that the total number of intersection points of P = 0 and Q = 0, counted with their multiplicities, is equal to the product of the degrees of P and Q.

Theorem (Picard-Lefschetz formula)

. Let f : S → C be a Lefschetz bration where S and C are compact. In local charts of S and C, centered respectively at a singular point s of a singular ber and at f (s), the monodromy of the generic ber, corresponding to a loop in C \ {p} turning counterclockwise around p, is a right-handed Dehn twist. 

D * 0
∂(D 2 ) = (∂D × D) ∪ (D × ∂D).
The restriction f :

f -1 (D) ∩ ∂(D 2 )
→ D of the bration to this boundary is trivial. Its ber above 0 is

f -1 (0) ∩ ∂(D 2 ) = (∂D × {0}) ∪ ({0} × ∂D)
and one has the following trivialisation.

f -1 (D) ∩ ∂(D 2 ) f 8 8 w w w w w w w w w w w w (z/y, y) (z, (0, y)) (x, z/x) (z, (x, 0)) 1 o o 1 o o D × ((∂D × {0}) ∪ ({0} × ∂D)) pr 1 u u k k k k k k k k k k k k k k k k k o o D The ber over a point z in D * is f -1 (z) ∩ D 2 = {(x, y) ∈ D 2 | xy = z} = {(x, z/x) | |z| ≤ |x| ≤ 1} = {(z/y, y) | |z| ≤ |y| ≤ 1}.
It is biholomorphic to a closed annulus and one of the two coordinates, x or y, is enough to parametrize it. Its boundary has two connected components

{(x, z/x) | |x| = 1} = {(z/y, y) | |z| = |y|} and {(x, z/x) | |x| = |z|} = {(z/y, y) | |y| = 1}.
In order to understand the monodromy of the generic ber when one turns around the origin in the punctured disc, that is to say, around the singular ber, consider the parametrization iH → D * , z → e z , where iH is the open half-plane of all complex numbers of negative real part. Let e z 0 be a base point in D * . It suces to nd a trivialization above iH interpolating the trivialization already given on the boundary.

f -1 (e z 0 ) ∩ (D 2 ) ? R R f -1 (e z ) ∩ (D 2 ) f -1 (e z 0 ) ∩ ∂(D 2 ) c 1 y y (∂D × {0}) ∪ ({0} × ∂D) o o G G f -1 (e z ) ∩ ∂(D 2 ) c 1 y y (x, e z 0 /x) (x, 0) 1 o o 1 G G (x, e z /x) (e z 0 /y, y) (0, y) 1 o o 1 G G (e z /y, x) (x, y) & if |x|=1 I I # if |y|=1 H H (x, e z-z 0 y) (e z-z 0 x, y) A mapping of the form (z, (x, y)) 1 G G (e (z-z 0 )ϕ(x,y) x, e (z-z 0 )ϕ(y,x) y) iH × (f -1 (e z 0 ) ∩ D 2 ) pr 1 G G f -1 (D) ∩ D 2 f iH G G D z 1 G G e z
where ϕ : Finally, the parameter z corresponding to a counterclockwise loop around the origin, based at e z 0 , satises z -z 0 = 2πi. Therefore, the monodromy of the bration along that loop, in D 2 , is given by y) x, e 2πi ϕ(y,x) y)

f -1 (e z 0 ∩ D 2 ) -→ [0,
(x, y) -→ (e 2πi ϕ(x,
which is exactly a right-handed Dehn twist, about the loop t → (x 0 e it , y 0 e -it ) or any homotopically equivalent one.

The previous result allows to understand the behavior of the bration in the neighborhood of each singular ber, but not globally. In order to understand the global picture, there is actually another interpretation of the bration f : P 2 → P 1 . 2.2.5 Proposition. For any integer greater than 3, let Q n denote the quotient of (P 1 ) n by the diagonal action of Aut(P 1 ), in the sense of geometric invariant theory. Then Q 4 is isomorphic to P 1 , Q 5 to P 2 and the diagram below is moreover commutative:

(v 1 , v 2 , v 3 , v 4 , v 5 ) 1 G G det(v 1 ,v 4 ) det(v 1 ,v 5 ) : det(v 2 ,v 4 ) det(v 2 ,v 5 ) : det(v 3 ,v 4 ) det(v 3 ,v 5 ) Q 5 G G P 2 f Q 4 G G P 1 (v 1 , v 2 , v 3 , v 4 ) 1 G G det(v 1 ,v 3 ) det(v 1 ,v 4 ) : det(v 2 ,v 3 ) det(v 2 ,v 4 )
(v 1 , . . . , v 5 denote nonzero vectors in C 2 representing points in P 1 ).

Remarks.

1. The group Aut(P 1 ) of the automorphisms of P 1 is simply the group PGL 2 (C) which is also PSL 2 (C). The group acts transitively on triples of distinct points in P 1 . Hence the space Q n becomes interesting only for n greater than 3.

The mapping

(v 1 , v 2 , v 3 , v 4 ) -→ det(v 1 , v 3 ) det(v 1 , v 4 ) : det(v 2 , v 3 ) det(v 2 , v 4 ) is nothing
but the cross ratio of four points in P 1 , which is invariant by the diagonal action of Aut(P 1 ). Note that the cross ratio is dened provided that none three of the four points are equal.

3. An element (v 1 , . . . , v n ) in (P 1 ) n is stable (respectively semi-stable) under the action of Aut(P 1 ), in the sense of geometric invariant theory, if and only if the largest number of points among v 1 , . . . , v n that coincide is less (respectively not greater) than n/2.

Let Q * n denote the quotient (in the usual sense), by the diagonal action of Aut(P 1 ), of the subset of (P 1 ) n formed by all the n-tuples of distinct points.

For n = 4, Q * 4 is the subset of Q 4 of all stable points and the remainder consists of the classes of 4-tuples (z 1 , z 2 , z 3 , z 4 ) two of whose components coincide [START_REF] Dolgachev | Lectures on invariant theory[END_REF]Example 11.4].

For n = 5, the dierence between Q * 5 and Q 5 is the set of classes of 5-tuples (z 1 , z 2 , z 3 , z 4 , z 5 ) such that z a = z b for some distinct indices a and b. This set is hence the union of 10 lines of equation

z a = z b [Dol03, Example 11.5]. • • • • • • • • • • • • Figure 2.4:
The monodromy of the forgetful mapping Q * 5 → Q * 4 along the grey loop is a right-handed Dehn twist along the dashed loop. is bijective. In particular, a homotopy between two functions f 1 and f 2 in C(X, Y ) is nothing but a continuous path in the topological space C(X, Y ). The latter interpretation of homotopy allows to formulate a rather concise denition of mapping class groups.

The group Homeo(X) of all homeomorphisms of a locally compact and Hausdor topological space X is a topological group, with the topology induced by the compact-open topology of C(X, X).

Denition.

The mapping class group of X is 0-th homotopy group of the topological group Homeo(X) and is denoted by Mod(X).

When the space X admits an additional structure, one is rather interested in the subgroup of homeomorphisms preserving the structure in question. On the one hand, if X is an orientable manifold, the orientationpreserving homeomorphisms of X form a normal subgroup of index 2, de-noted by Homeo + (X), whose 0-th homotopy group is denoted by Mod + (X). Nevertheless, only orientable surface are considered in the present context, so that the sign + will be omitted and Mod(X) will always denote the 0-th homotopy group of Homeo + (X), without any danger. On the other hand, if a particular subset A of X is marked (for example, a nite subset or the boundary of X if X is a manifold with boundary), the (orientationpreserving) homeomorphisms of X stabilizing each marked point in A form a subgroup, denoted by Homeo(X, A), whose 0-th homotopy group is denoted by Mod(X, A).

Notation.

The mapping class group of a closed orientable surface of genus g and with n marked points is denoted by Mod g,n .

A natural approach to understand and describe the mapping class group Mod 0,4 of the sphere with four marked points is to study the mapping class group Mod 1,4 of the torus with four marked points. Indeed, the torus is a double branched covering space of the sphere, with ramication over 4 points. The automorphism group is generated by the hyperelliptic involution: identifying the torus with the quotient R 2 /Z 2 , the hyperelliptic involution is induced by the linear transformation (x, y) → (-x, -y) corresponding to the matrix -I 2 (see gure 2.5). The hyperelliptic involution stabilizes four points of the torus.

Proposition.

Mod 1,1 is naturally isomorphic to SL 2 (Z) so that, for each mapping class, the corresponding matrix induces a transformation of the torus R 2 /Z 2 , which is a representative of that mapping class.

Proof. Let O denote the image in the torus R 2 /Z 2 of the origin (0, 0) in the plane R 2 . Any homeomorphism h : R 2 /Z 2 → R 2 /Z 2 preserving O, induces an automorphism h * of the fundamental group π 1 (R 2 /Z 2 , O) depending only on the homotopy class of h. Since π 1 (R 2 /Z 2 , O) is naturally isomorphic to Z 2 , h * corresponds to an element of GL 2 (Z) and that denes a group morphism Mod 1,1 → GL 2 (Z).

The action on the plane R 2 of any matrix M in GL 2 (Z) induces a homeomorphism h M of the torus preserving O and such that the induced automorphism (h M ) * of the fundamental group π 1 (R 2 /Z 2 , O) corresponds to the initial matrix M . Besides, the homeomorphism h M preserves or reverses the orientation precisely when the determinant of M is respectively equal to +1 or -1. In other terms, h M preserves the orientation if and only if M belongs to SL 2 (Z). Therefore, the morphism Mod 1,1 → SL 2 (Z) is surjective.

Finally, let h be a homeomorphism of the torus R 2 /Z 2 preserving O such that h * = id Z 2 . h may be lifted to a homeomorphism h of the plane R 2 preserving (0, 0) and such that Then a Z2 -equivariant homotopy between h and id R 2 may be dened as

∀ t ∈ R 2 ∀ τ ∈ Z 2 h(t + τ ) = h(t) + h * (τ ) = h(t) + τ.
[0, 1] × R 2 -→ R 2 (s, t) -→ (1 -s) t + s h(t)
and induces a homotopy between h and id R 2 /Z 2 . And since those two are homotopic, they are isotopic (see [FM11, Theorem 1.12]) so that the morphism Mod 1,1 → SL 2 (Z) is injective. Proof. The action of SL 2 (Z) on the torus commutes with the hyperelliptic involution. It induces therefore an action of PSL 2 (Z) on the sphere. Moreover, as the former action preserves the set ( 1 2 Z 2 )/Z 2 , the latter preserves the subset of the sphere consisting of the 4 ramication points. The subgroup of PSL 2 (Z) preserving each of those 4 points is exactly Γ(2). Thus there exists a natural morphism Γ(2) → Mod 0,4 . It follows from [START_REF] Farb | A primer on mapping class groups[END_REF]Proposition 2.7] that this morphism is an isomorphism.

Nielsen-Thurston classication. Any element of Mod g,n admits a representative h which is either 1. periodic, that is to say, some power of h is the identity, 2. reducible, that is to say, h preserves some nite union of disjoint simple closed curves on the surface, 3. pseudo-Anosov, that is to say, there exists a pair of transverse measured foliations (F s , µ s ) and (F u , µ u ) on the surface and a number λ > 1 such that h * (F s , µ s ) = (F s , λ -1 µ s ) and h * (F u , µ u ) = (F u , λµ u ) (see Theorem 13.2 in [START_REF] Farb | A primer on mapping class groups[END_REF] and also section 11.2 for a presentation of those objects).

2.3.6

Examples. When S is a sphere or a torus, the Nielsen-Thurston classication is quite elementary as it boils down to the study of 2-by-2 matrices. The group Mod 1,1 is indeed isomorphic to SL 2 (Z) (see 2.3.3). Let A be a matrix in SL 2 (Z) which is not the identity. Such a matrix is conjugate in SL 2 (R) either to 1. a diagonal matrix whose entries are conjugate complex numbers of modulus 1, in which case | tr(A)| < 2 and A acts on the plane as a nite-order rotation, 2. an upper triangular matrix whose diagonal entries are equal to 1, in which case | tr(A)| = 2 and A acts on the plane as a transvection, hence preserving a line pointwise, 3. a diagonal matrix whose entries are real numbers, inverse of each other, in which case | tr(A)| > 2 and the action of A on the plane has two privileged directions (or foliations), one that is contracted and one that is dilated.

The matrix A is respectively called elliptic, parabolic or hyperbolic. Consequently, the periodic, reducible or pseudo-Anosov nature of a mapping class is simply determined by the trace of the representative matrix.

Quite the same goes for Mod 0,4 (see corollary 2.3.4). Let A be a matrix representing an element of Γ(2). The action of A on the torus induces an action on the sphere, through the branched covering map mentionned above. Similarly, the periodic, reducible or pseudo-Anosov nature of a mapping class is determined by the absolute value of the trace of A. For example, since the absolute value of the trace of any matrix representing a non-trivial element of Γ( 2) is at least 2, Mod 0,4 contains no periodic element.

On the contrary, determining the nature of a mapping class of a surface of higher genus is much more complex.

2.3.7 Denition. A surface bundle over the circle or a mapping torus is a quotient space of the form (S × R)/Z where S is a closed surface and Z acts on S × R by n • (x, t) = (h n (x), t + n) where h : S → S is a homeomorphism. This space is denoted by M h and the projection pr 2 : S × R → R induces a bration M h → R/Z over the circle, with ber S.

2.3.8 Remarks. The previous construction depends, up to homeomorphism, only on the isotopy class of h, that is to say, on the class of h in Mod(S). Moreover, it only depends on the conjugacy class of the class of h in Mod(S). Furthermore, M h and M h -1 are also homeomorphic. If A is a subset of S and h stabilizes each point in A, then M h depends only on the conjugacy class of the class of h in Mod(S, A) and M h contains the subset A × S 1 . Thurston has shown that if S is a closed surface of some genus g ≥ 2 and if h is a homeomorphism of S, then the surface bundle M h admits a hyperbolic structure if and only if h is pseudo-Anosov [START_REF] Thurston | On the geometry and dynamics of dieomorphisms of surfaces[END_REF][START_REF] Otal | Le théorème d'hyperbolisation pour les variétés brées de dimension 3[END_REF][START_REF] Fathi | Travaux de Thurston sur les surfaces[END_REF].

The group Γ(2) has multiple interests in the present context, which are not purely coincidental as shown in the following: it appears as a lattice in the group Isom + (H 2 R ) and it is isomorphic to the mapping class group Mod 0,4 .

2.3.9 Proposition. The 3-punctured sphere (P 1 ) u is homeomorphic to the quotient Γ(2)\H 2 R , which is a hyperbolic surface with

3 cusps. A presentation of Γ(2) is T ∞ , T 0 , T 1 | T ∞ T 0 T 1 = 1 where T ∞ = (T S) 0 T 2 (T S) -0 = 1 2 1 T 1 = (T S) 1 T 2 (T S) -1 = -1 2 -2 3 
T 0 = (T S) 2 T 2 (T S) -2 = 1 -2 1 .
The group PSL 2 (Z) is a lattice in PSL 2 (R) generated by the elements

S = 0 -1 1 0 and T = 1 1 0 1
and a fundamental domain is drawn in gure 2.6. Alternatively, PSL 2 (Z) is generated by S and T S. Those two are very particular elements of PSL 2 (Z), since S is a hyperbolic rotation of angle π and T S is a hyperbolic rotation of angle -2π 3 , whose centers are corners of the fundamental domain drawn in gure 2.6, respectively i and e iπ/3 in the half-plane model.

0 1 ∞ ∞ 0 1
The group PSL 2 (Z/2Z) is isomorphic to the group S 3 of the permutations of 3 elements: it indeed consists of the 6 elements

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
and acts by permutations on the three points ∞, 0, 1 of the projective line over Z/2Z.

Proof of proposition 2.3.9. The orbit of the fundamental domain of PSL 2 (Z)

by the element T S of order 3 is the ideal triangle with vertices ∞, 0, 1. And the element S maps the ideal triangle on an adjacent copy of it. Hence a fundamental domain of the subgroup Γ( 2) is two adjacent copies of the ideal triangle. Therefore the quotient of H Mod 0,4 π 1 ((P 1 ) u )

monodromy o o π 1 (Q * 4 ) Birman (2.2.8) Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y cross ratio (2.2.5) d d
Finally, the monodromy morphism π 1 ((P 1 ) u ) → Mod 0,4 is an isomorphism and it is quite elementary to determine whether the monodromy of a loop is pseudo-Anosov by calculating the trace of the corresponding element of Γ [START_REF]Let Z be a path-connected component of Y , z be a point in Z and W be the path-connected component of X containing χ(z). For any point w in W , there exists a path γ[END_REF]. Such an element may be given 1. either in the form of a matrix, with the advantage of being able to compute its trace easily, 2. or as a product of the generators T ∞ , T 0 , T 1 , which allows to read that element of Γ(2) as a loop in the sphere with three punctures.

However, if an element of Γ( 2) is given in the latter form, rather than as a matrix, there is no direct method for calcutating either its entries or its trace other than computing the product.

Fibration of Hirzebruch's surface

Composing σ : Y 1 → P 2 and f : P 2 → P 1 yields a bration f • σ : Y 1 → P 1 . Let p be one of the four triple intersection points of the arrangement of lines in P 2 , and q be one of the 5 2 points of X over p. Let C be the connected curve in Y 1 obtained by resolving the singular point q in X.

The restriction σ |C : C → P(T p P 2 ) is a branched covering map of degree 5 2 which ramies over the points in P(T p P 2 ) corresponding to the lines of the arrangement passing through p. The exact same goes for f • σ |C : C → P 1 , since f |P(TpP 2 ) : P(T p P 2 ) → P 1 is an isomorphism. And since n = 5 and m = 3, the Euler characteristic of C is

e(C) = 5 3-1 (2 -3) + 3 • 5 3-2 = -10 = 2 -2 × 6
so that C is a smooth curve of genus 6.

C 1 G G σ |C Y 1 σ f •σ Ô Ô Ô Ô P(T p P 2 ) 1 G G P 2 f P 1
5 5 q q q q q q q q q As well as the bration f : P 2 → P 1 admits natural sections

P 1 → P(T p P 2 ) ⊂ P 2 ,
one may want to show that the inclusion C → Y 1 is a section of a bration Y 1 → C.

Proposition.

There exists a bration Y 1 → C with connected bers, such that the inclusion C → Y 1 is a section and that the following diagram is commutative.

Y 1 f •σ ~~~~~~~C G b b f•σ |C 2 2 2 2 d d d d d d d d P 1
In other words, the composition of Y 1 → C and of the branched covering map

f • σ |C : C → P 1 is the Stein factorization of f • σ : Y 1 → P 1 .
The curve C is of genus 6 and the generic bers under Y 1 → C are smooth curves of genus 76. The singular bers under Y 1 → C lie over the points of C over which the branched covering map f • σ |C : C → P 1 is ramied, so that there are 3 × 5 such bers.

The following proof resorts implicitly and repeatedly to proposition A.2.3.

Proof. For any point b in P 1 , f -1 (b) is the proper transform in P 2 of a conic in P 2 . f -1 (b) and P(T p P 2 ) meet at a single point, denoted by b p .

If b is not one of the three points for which f -1 (b) is singular, then f -1 (b) does not intersect (the proper transforms of) the lines of the arrangement but intersects the four exceptional curves P(T p P 2 ). Since they intersect normally, (f

• σ) -1 (b) is smooth and the restriction σ |(f •σ) -1 (b) : (f • σ) -1 (b) → f -1 (b)
is a Galois branched covering map which ramies exactly over the intersection of f -1 (b) with the four exceptional curves. Let Z be a connected component of (f • σ) -1 (b). Consider the branched covering map σ |Z : Z → f -1 (b) and the corresponding unbranched one σ |Z u : Z u → f -1 (b) u . Z u (obtained from Z by removing the branch points) is still connected. Hence, given any base point z ∈ Z u , the Galois group Aut(σ |Z ) is naturally isomorphic to the image subgroup of α z : π 1 (f -1 (b) u , σ(z)) → Aut(σ). Since f -1 (b) u is homeomorphic to a sphere with four punctures, the fundamental group π 1 (f -1 (b) u , σ(z)) is generated by the homotopy classes of four loops around the punctures (three are actually enough). The subgroup Im α z is hence generated (see 2. Besides, Stab Aut(χ) (q) is generated (see 2.1.11) by the automorphisms α D , for the lines D passing through p. It appears, on the one hand, that Stab Aut(χ) (q)∩Aut(σ |Z ) is the cyclic subgroup generated by D p α D which acts trivially on C and, on the other hand, that Stab Aut(χ) (q) Aut(σ |Z ) = Aut(σ). As b p belongs to f -1 (b), Z ∩ σ -1 (b p ) is not empty. Let z be a point in the latter set and let α be an automorphism of σ such that α(z) ∈ C. Since Aut(σ) = Stab Aut(χ) (q) + Aut(σ |Z ), α may actually be chosen in Aut(σ |Z ), so that α(z) ∈ Z ∩ C. And since Stab Aut(χ) (q) ∩ Aut(σ |Z ) acts trivially on C, Z ∩ C contains exactly one point.

If b is one of the three points for which f -1 (b) is singular, f -1 (b) is more precisely the union of (the proper tranforms of) two lines of the arrangement, say D 12 and D 34 , the former passing through triple intersection points denoted by p 1 and p 2 and the latter through p 3 and p 4 . By a slight abuse of notations, the proper transforms, denoted by D 12 and D 34 , intersect at a point p 5 and each of them also intersects two of the exceptional curves, the former at p 1 and p 2 , the latter at p 3 and p 4 . Since the intersections are normal, σ -1 (D 12 ) is smooth and the restriction σ : σ -1 (D 12 ) → D 12 is a Galois branched covering map of degree 5 4 ramied over p 1 , p 2 , p 5 , with index 5. The exact same goes for σ -1 (D 34 ) over p 3 , p 4 , p 5 . Furthermore, if Z 12 is a connected component of σ -1 (D 12 ), then Aut(σ |Z 12 ) is naturally isomorphic to the subgroup of Aut(σ) generated by 2.4.2 Remark. The bration Y 1 → C seems combinatorially complex since the base curve is of genus 6 with 15 ramication points and the generic ber is of genus 76 with 4×5 2 marked points lying over the 4 marked points of the generic ber of the pencil of conics. For instance, writing group presentations of fundamental groups of these spaces or of their corresponding mapping class groups is a laborious task. However, recall that the much simpler manifold P 2 bears an orbifold structure that is the quotient of the complex hyperbolic manifold Y 1 . The bration Y 1 → C itself arises from a bration of P 2 . The base curve is a sphere with 3 punctures and the generic ber is a conic with 4 marked points. The mapping class group of the generic ber is much simpler than the mapping class group of a surface of higher genus, which makes the monodromy potentially simpler.

α D 34 D p 1 α D D p 2 α D and if Z 34 is a connected component of σ -1 (D 34 ), then Aut(σ |Z
In the remainder of the present section, the base curve and the generic and singular bers are studied in more detail.

2.4.3 Notation. In the following, fundamental groups of the spaces at play will be considered quite often. In order to avoid choosing base points each time, one should choose them once and for all. Let y 0 be a base point in Y 1 u which will also serve as a base point of Y 1 . Let c 0 denote the projection of y 0 to C so that c 0 will be the base point of both C and C u . Besides, the ber over c 0 of Y 1 → C will be denoted by F 0 and will be called the base ber. The point y 0 belongs to F 0 and will be its base point. One may deduces base points similarly for P 2 , P 2 u , P(T p P 2 ), P(T p P 2 ) u , P 1 and (P 1 ) u . where S 12 and S 34 are connected components of σ -1 (D 12 ) and σ -1 (D 34 ) respectively and I 12 and I 34 are the subsets of S 12 and S 34 respectively whose points lie over the intersection point of D 12 and D 34 .

S 12 is a compact curve of genus 6 and a Galois branched covering space of D 12 , of degree 5 2 , ramied over three points and I 12 consists of 5 points. The exact same goes for S 34 and I 34 .

Proof. Let D 12 and D 34 denote the two irreducible components of a singular ber of P 2 → P 1 . Then σ -1 (D 12 ) is a Galois branched covering space of D 12 of degree 5 5-1 = 5 4 and ramied over 3 points with ramication index 5 (one is the point where D 12 and D 34 intersect and the other two are points where D 12 intersects two of the four exceptional curves). Hence the Euler characteristic of σ -1 (D 12 ) is

5 4 (2 -3) + 3 × 5 3 = -2 × 5 3 .
Let S 12 be a connected component of σ -1 (D 12 ). The Galois group Aut(σ |S 12 ) is isomorphic to the quotient of the subgroup of Aut(σ) generated by the three elements (two are actually enough) α 34 , α 12 α 13 α 23 , α 12 α 14 α 24 by α 12 . The ber has then 5 2 connected components, so that each of them has Euler characteristic -2 × 5 and genus 1 + 5 = 6. The same goes for the connected components of σ -1 (D 34 ). Let S 34 be one of them and assume that it meets S 12 at a point q. The Galois group Aut(σ |S 34 ) is isomorphic to the quotient of the subgroup of Aut(σ) generated by the elements α 12 , α 34 α 13 α 14 , α 34 α 23 α 24 by α 34 . Since the intersection of the subgroups α 34 , α 12 α 13 α 23 , α 12 α 14 α 24 and α 12 , α 34 α 13 α 14 , α 34 α 23 α 24 is α 12 , α 34 which acts trivially on the point q, S 12 and S 34 meet at exactly one point.

The connected component of σ -1 (D 12 ∪ D 34 ) containing q is the union of the orbit of S 12 under the action of α 34 , α 12 α 13 α 23 , α 12 α 14 α 24 and the orbit of S 34 under the action of α 12 , α 34 α 13 α 14 , α 34 α 23 α 24 . These orbits consists of ve copies of S 12 and S 34 respectively (see gure 2.8).

2.4.8 Remark. Since the generators T ∞ , T 0 , T 1 satisfy the relation

T ∞ T 0 T 1 = 1,
the previous properties may be written only in terms of two of the generators. As a fundamental group of a sphere with three punctures, π 1 (C u ) is indeed isomorphic to the free group with two generators, say T ∞ and T 0 .

Any element of π 1 (C u ), written as a product of T ∞ , T 0 and T 1 , may be interpreted as (the homotopy class of) the lift to C u of a loop in (P 1 ) u obtained by turning around the puncture corresponding the factor T ∞ , T 0 or T 1 , each time one of them appears in the product. Representing a loop in (P 1 ) u rather than in C u is indeed easier since C u is a Riemann surface of genus 6 with 15 punctures.

Proof. The unbranched covering map σ : C u → (P 1 ) u induces a short exact sequence

1 G G π 1 (C u , y) (σ |C u ) * G G π 1 ((P 1 ) u , σ(y)) αy G G Aut(σ |C u ) G G 1
where y denotes the base point of C u . Identify π 1 ((P 1 ) u , σ(y)) with Γ

(2) = T ∞ , T 0 , T 1 | T ∞ T 0 T 1 = 1 (see 2.
3.9). With 2.1.11, the image of T ∞ by α y is the automorphism α D of σ where D is the line of the arrangement corresponding, in the identication of Γ(2)\H 2 R with (P 1 ) u and P(T p P 2 ), to the image of ∞. And similarly for 0 and 1.

Identify Aut(σ |C ) with (Z/5Z) 2 so that the morphism α y : Γ(2) → (Z/5Z) 2 maps T ∞ to (1, 0), T 0 to (0, 1) and T 1 to (-1, -1). Since π 1 (C u , y) is isomorphic to the kernel of α y , it is also isomorphic to the subgroup of Γ(2) formed by the products of T ∞ , T 0 and T 1 (and their inverses) where the numbers of occurrences of T ∞ , T 0 and T 1 respectively (counted with their multiplicity, say, p for T ∞ p ) dier by multiples of 5. According to lemma 2.4.6, π 1 (C u , y) is isomorphic to the subgroup of Γ(2) generated by T ∞ 5 , T 0 5 , T 1 5 and the commutators of powers of T ∞ , T 0 , T 1 .

The Riemann surface C may also be uniformized. Instead of cusps and parabolic isometries as on (P 1 ) u and C u , consider the hyperbolic orbifold structure on P 1 where the three points in P 1 \ (P 1 ) u have conic angle 2π/5. Such a structure may be constructed by considering a (regular) hyperbolic triangle with angle π/5 at each vertex. Thus the quotient of H 2 R by the triangle group T (5, 5, 5) is an orbifold homeomorphic to P 1 : the triangle group T (5, 5, 5) is the subgroup of index 2, formed by the orientation-preserving isometries, of the group generated by the reections with respect to the sides of the hyperbolic triangle with angle π/5 at each vertex. It is generated by the rotations of angle 2π/5 around the vertices of the triangle and any two adjacent translates of the triangle form a fundamental domain. Let 2.4.9 Proposition. The Riemann surface C is homeomorphic to the quotient of H 2 R by the normal subgroup of T (5, 5, 5) of index 5 2 formed by all the possible products of R 1 , R 2 and R 3 (and their inverses) where the numbers of occurrences of R 1 , R 2 and R 3 respectively (counted with their multiplicity, say, p for R 1 p ) dier by multiples of 5. Besides, that group is generated by the commutators of powers of R 1 , R 2 , R 3 .

Proof. Similar to the proof of proposition 2.4.7.

2.4.10 Proposition. The surjective morphism π 1 (C u ) → π 1 (C) induced by the inclusion C u → C is the restriction (to the corresponding subgroups) of the morphism Γ(2) → T (5, 5, 5) mapping T ∞ , T 0 , T 1 to R 3 , R 2 , R 1 respectively. In particular, the kernel is the smallest normal subgroup of Γ(2) generated by T ∞ 5 , T 1 5 , T 0 5 . The kernel contains all the parabolic elements of

π 1 (C u ).
Proof. Following propositions 2.4.7 and 2.4.9, π 1 (C u ) and π 1 (C) are identied to subgroups of Γ(2) and T (5, 5, 5) respectively, in such a way that the

diagram π 1 (C u ) 1 G G Γ(2) (P 1 ) u π 1 (C) 1 G G T (5, 5 , 5) 
is commutative, where T (5, 5, 5) is as the fundamental group of quotient orbifold and that the morphism Γ(2) → T (5, 5, 5) maps the generators T ∞ , T 0 , T 1 to R 3 , R 2 , R 1 respectively. Observe that the kernel of the latter morphism is the smallest normal subgroup of Γ(2) generated by the three elements T ∞ 5 , T 1 5 , T 0 5 . As these elements belong to π 1 (C u ), the kernel of the morphism π 1 (C u ) → π 1 (C) is also the smallest normal subgroup of π 1 (C u ) generated by T ∞ 5 , T 1 5 , T 0 5 .
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Any parabolic element of π 1 (C u ) is conjugate in Γ(2) to a power of T ∞ , T 0 or T 1 , hence to a power of T ∞ 5 , T 0 5 or T 1 5 according to 2.4.7. Therefore, any parabolic element is contained in the kernel.

In section 2.1.2, a set of matrices generating the lattice G 1 is given. Recalling that the morphism π 1 (C) → π 1 (Y 1 ) is injective and identifying π 1 (Y 1 ) with the commutator subgroup [G 1 , G 1 ], the following proposition shows that the image of the morphism π 1 (C) → G 1 is a subgroup stabilizing a complex line in H 2 C .

2.4.11 Proposition. The fundamental group of C is isomorphic to the commutator subgroup of the subgroup of PGL 3 (C) generated by R(ij), R(jk), R(ik) for some distinct indices i, j and k (two of them are actually sucient).

Choosing for example, R(01), R(02) and R( 12), it appears that the group in question preserves the line in C 3 directed by (0, 0, 1), which is positive. Therefore it preserves a complex plane in C 3 with signature (1, 1) and hence a complex line in H 2 C . Proof. According to proposition 2.4.9, the fundamental group of C is isomorphic to the subgroup of the triangle group T (5, 5, 5) generated the commutators of the elements R 1 , R 2 , R 3 . These elements correspond to loops around the three lines of the arrangement passing a given triple point and hence to a triple of the form R(ij), R(jk), R(ik) for some distinct indices i, j and k.

The remainder is straightforward computations.

Representations

Recall the notations 2.4.3 about base points of fundamental groups. For any element γ in π 1 (C u ), let M γ → R/Z be the surface bundle over the circle with ber F 0 and where the homeomorphism is the monodromy of the bration Y 1 u → C u along γ. If a loop R/Z → C u represents γ, then there is a natural mapping M γ → Y 1 such that the diagram

M γ G G Y 1 R/Z G G C
is commutative. For instance, if the loop R/Z → C u happens to be an embedding or an immersion, then the same goes for M γ → Y 1 . The mapping M γ → Y 1 induces a morphism ρ γ : π 1 (M γ ) → π 1 (Y 1 ) and hence a representation into a complex hyperbolic lattice. The manifold M γ , the bration M γ → R/Z and of course the conjugacy class of the representation ρ γ depend only on the conjugacy class of γ in π 1 (C u ). They do not moreover depend on the orientation of γ.

Since π 1 ((P 1 ) u ) → Mod 0,4 is an isomorphism, every mapping class in Mod 0,4 can be realized as the monodromy along a curve in (P 1 ) u , of thebration P 2 u → (P 1 ) u . The generic ber of P 2 → P 1 is a sphere with 4 marked points. Therefore, all the possible surface bundles with the sphere as ber and with monodromy preserving each of the 4 marked points are obtained in this way. The same construction of surface bundles for the bration P 2 u → (P 1 ) u , instead of Y 1 u → C u as above, hence produces representations of the fundamental groups of all those surface bundles. More precisely, the complex hyperbolic structure on Y 1 descends to a branched complex hyperbolic structure on P 2 by the branched covering Y 1 → P 2 . And the bers of the latter surface bundles are seen as orbifolds with isotropy of order 5 at each of the four marked points. For γ in π 1 (C u ), the surface bundle M γ is nothing but a branched covering of the orbifold surface bundle whose monodromy is the image of γ by π 1 (C u ) → π 1 ((P 1 ) u ).

Proposition. For each element f of Mod 0,4 , consider the surface bundle M f with monodromy f and with ber the orbifold with the sphere as underlying space and with isotropy of order 5 at each of the four marked points. There is a representation of the orbifold fundamental group of M f into a lattice in Isom(H 2 C ). The group π 1 (M γ ) is isomorphic to the semi-direct product γ π 1 (F 0 ).

1 G G π 1 (F 0 ) 1 G G π 1 (M γ ) G G G G ργ γ c o o G G 1 π 1 (Y 1 ) G G G G π 1 (C) c o o
2.5.1 Proposition. For any γ in π 1 (C u ), the limit set of the image of the representation ρ γ :

π 1 (M γ ) → π 1 (Y 1 ) is all of ∂ ∞ H 2 C .
The proposition shows that the representation ρ γ is quite chaotic. If the limit set were not all ∂ ∞ H 2 C , then a natural question would have been to understand the quotient by the image of ρ γ , of its domain of discontinuity, which would have given rise to a spherical Cauchy-Riemann structure. However, the domain of discontinuity will always be empty with this kind of construction which relies on a (singular) bration of the complex hyperbolic manifold.

Proof. Since π 1 (Y 1 ) is (isomorphic to) a uniform lattice, its limit set is all of ∂ ∞ H 2 C and π 1 (Y 1 ) does not preserve any point on the boundary. Besides, since the fundamental group of the ber of Y 1 u → C u is a normal subgroup of π 1 (Y 1 u ), its image by the surjective morphism π 1 (Y 1 u ) → π 1 (Y 1 ) is a normal subgroup N of π 1 (Y 1 ).

If the limit set of N were empty, then N would have been contained in a compact subgroup of Isom(H 2 C ). As N is discrete, N would have been nite and π 1 (C) would have been of nite index in π 1 (Y 1 ) which is impossible.

Therefore, the limit set of N is equal to the limit set of π 1 (Y 1 ) (see proposition 1.1.23). Finally, since π 1 (M γ ) contains π 1 (F 0 ), the limit set of the image of π 1 (M γ ) → π 1 (Y 1 ) is all ∂ ∞ H 2 C . Furthermore, if the monodromy of the bration along the loop γ is pseudo-Anosov, then the 3-manifold M γ admits a real hyperbolic structure, according to Thurston's hyperbolization theorem of surface bundles over the circle. In that case, π 1 (M γ ) is isomorphic to a uniform lattice in Isom(H 3 R ) whose limit set is all of ∂ ∞ H 3 R . However, determining that lattice or the manifold M γ is a dicult problem and will not be addressed.

2.5.2 Proposition. For any element γ in π 1 (C u ), if its image in π 1 (C) is not trivial, then 1. the kernel of ρ γ is equal to the kernel of π 1 (F 0 ) → π 1 (Y 1 ), 2. the monodromy of the bration Y 1 u → C u along γ is pseudo-Anosov, 3. the kernel is not of nite type.

Example. Consider the element

T 1 T 0 T ∞ = T 1 T 0 T 1 -1 T 0 -1 = [T 1 , T 0 ] = 5 8 8 13
in Γ(2) which corresponds to a element of π 1 (C u ), according to proposition 2.4.7. The trace of the matrix is 18 so that the monodromy along the corresponding loop is pseudo-Anosov. The corresponding element of Mod 0,4 is the commutator of Dehn twists along intersecting loops.

Proof. As the morphism π 1 (C) → π 1 (Y 1 ) induced by the inclusion of C in Y 1 is injective, the image in π 1 (Y 1 ) of an element in π 1 (C u ) is trivial if and only if its image in π 1 (C) is trivial. Any element of π 1 (M γ ) may be written as a product of the form γ m ω with m in Z and ω in π 1 (F 0 ). The image of such an element by the composition π 1 (M γ ) → π 1 (Y 1 ) → π 1 (C) is the image of γ m . Now, γ m is in ker ρ γ if and only if m = 0, hence ker ρ γ is contained in π 1 (F 0 ).

Since γ is not in the kernel of the morphism π 1 (C u ) → π 1 (C), it is a hyperbolic element of π 1 (C u ), according to 2.4.10, so that the monodromy of the bration along γ is pseudo-Anosov.

The kernel of π 1 (F 0 ) → π 1 (Y 1 ) is a subgroup invariant by the pseudo-Anosov monodromy of γ. According to [Ota96, Lemma 6.2.5], if such a subgroup is of nite type, then it is of nite index. However, since the limit set of the image of π 1 (F 0 ) in π 1 (Y 1 ) is all of ∂ ∞ H 2 C , the image of π 1 (F 0 ) → π 1 (Y 1 ) cannot be nite and its kernel cannot be of nite index. Therefore, the kernel is not of nite type.

2.5.4 Theorem. For any two γ 1 and γ 2 in π 1 (C u ), if the image in π 1 (C) of γ 1 is not conjugate to that of γ 2 or its inverse, then either the groups π 1 (M γ 1 ) and π 1 (M γ 2 ) are not isomorphic or, if such an isomorphism Φ : π 1 (M γ 1 ) → π 1 (M γ 2 ) exists, then the representations ρ γ 1 and ρ γ 2 • Φ are not conjugate.

Proof. Let γ 1 and γ 2 be two elements in π 1 (C u ). Assume that there exists an isomorphism Φ : π 1 (M γ 1 ) → π 1 (M γ 2 ) and that the representations ρ γ 2 • Φ and ρ γ 1 are conjugate. In other terms, there exists an element ϕ 0 ψ 0 in π 1 (Y 1 u ), with ϕ 0 in the fundamental group of the ber and ψ 0 in π 1 (C u ), such that the diagram

π 1 (M γ 1 ) Φ G G ργ 1 π 1 (M γ 2 ) ργ 2 π 1 (Y 1 ) Int ρ(ϕ 0 ψ 0 ) G G π 1 (Y 1 )
is commutative, where Int ρ(ϕ 0 ψ 0 ) is the inner automorphisms of π 1 (Y 1 ) associated to ρ(ϕ 0 ψ 0 ). By replacing γ 1 by ψ 0 γ 1 ψ 0 -1 , one may assume that ψ 0 = 1. Therefore the diagram G G π 1 (Y 1 ) y y t t t t t t t t t π 1 (C) is commutative. In particular, the images of π 1 (M γ 1 ) and π 1 (M γ 2 ) in π 1 (C) are equal. The image is generated indierently by the image of γ 1 or γ 2 and is either trivial or an innite cyclic subgroup. Hence the image γ 1 is equal to that of γ 2 or its inverse. The morphisms α s : P k-1 → P k-1 dened for each index s by A branched covering map χ : Y → X is said to be ramied along a hypersurface f = 0 in X, with ramication index p, if there exists local coordinates (y 1 , . . . , y n ) of Y and (x 1 , . . . , x n ) of X such that x n = f and that the image by χ of the point with coordinates (y 1 , . . . , y n ) is the point with coordinates (x 1 , . . . , x n ) = (y 1 , . . . , y n p ).

π 1 (M γ 1 ) Φ G G ργ 1 π 1 (M γ 2 ) ργ 2 π 1 (Y
The branch locus is the preimage in Y of the union of the hypersurfaces of X where χ is ramied. The ramication locus is the image in X of the branching locus. The unbranched covering associated to χ is the mapping χ u : Y u → X u where Y u denotes the complement in Y of the branch locus and X u the complement in X of the ramication locus. The mapping χ u is a topological covering map.

Any branched covering map χ : Y → X induces a nite eld extension

χ * : C(X) -→ C(Y ) f -→ f • χ
between the eld C(X) of meromorphic functions of X and that of Y . Conversely, given a normal variety X and a nite eld extension i : C(X) → L, there is a branched covering map χ : Y → X (unique up to isomorphism) such that χ * = i. The variety Y is the normalization of X in L.

The following proposition describes the relation between (unbranched) topological covering maps and fundamental groups.

A.2.3 Proposition. Let X be a locally path-connected topological space. χ : Y → X be a topological covering map and let x be a point in X.

1. There is a natural action (on the right) of π 1 (X, x) over χ -1 (x).

2. The image by χ of a path-connected component of Y is a path-connected component of X.

3. If X is path-connected, then the mapping χ -1 (x) → π 0 (Y ), which maps any point y to the path-connected component of Y containing y, induces a bijection χ -1 (x)/π 1 (X, x) → π 0 (Y ).

In other words, the orbit of a point y in χ -1 (x) under the action of π 1 (X, x) is exactly the intersection of χ -1 (x) with the path-connected components of Y containing y.

4. If χ is a Galois covering map, then, for any y in χ -1 (x), there exists a morphism α y : π 1 (X, x) → Aut(χ) such that yg = α y (g)y for any g in π 1 (X, x).

5. If χ is a Galois covering map and X is path-connected, then the restriction χ |Z : Z → X to a path-connected component Z of Y containing a point z is a Galois covering map whose Galois group Aut(χ |Z ) is naturally isomorphic to the subgroup Im α z of Aut(χ).

6. If χ is a Galois covering map and Y is path-connected, then for any y in χ -1 (x),

1 G G π 1 (Y, y) χ * G G π 1 (X, x) αy G G Aut(χ) G G 1
is a short exact sequence.

Proof. 1. For any y in χ -1 (x) and any loop γ : [0, 1] → X based at x, let γ : [0, 1] → Y be the unique lift of γ satisfying γ(0) = y. Since its end point γ(1) depends only on y and on the homotopy class g ∈ π 1 (X, x) of γ, it may be denoted by yg.

The map (y, g) → yg so dened is moreover an action (on the right) of π 1 (X, x) over χ -1 (x). Indeed, for any y in χ -1 (x), if γ and γ are loops in X based at x whose respective homotopy classes are g and g in π 1 (X, x), then

• yg is the end point γ(1) of the unique lift γ of γ satisfying γ(0) = y,

• (yg)g is the end point γ (1) of the unique lift γ of γ satisfying γ (0) = yg,

• y(gg ) is the end point γγ (1) of the unique lift γγ of the concatenation γγ satisfying γγ (0) = y. Now γγ is simply the concatenation γγ , so that their end points y(gg ) and (yg)g are the same.
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 21 Figure 2.1: The complete quadrilateral arrangement.

2.1. 5

 5 Remark. The group Aut(χ) is generated by the k automorphisms denoted by α D , indexed by the lines D of the arrangement, satisfying for any lines D and D of the arrangement where δ is the Kronecker delta. The product D α D is the identity.

Figure 2 . 2 :

 22 Figure 2.2: The pencil of conics. A generic ber in red and one of the 3 singular bers in blue.

Figure 2 . 3 :

 23 Figure 2.3: A right-handed Dehn twist and the monodromy along a loop turning about the 0, of the bration f : f -1 (D) ∩ D 2 → D.

  1] is a continuous function satisfying ϕ(x, y) = 0 if |x| = 1 and |y| = |e z 0 | 1 if |y| = 1 and |x| = |e z 0 | , is a trivialization above iH. One may for instance dene ϕ by ϕ(x, y) = ln |x| ln |xy| .
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 25 Figure 2.5: The hyperelliptic involution in three representations of the torus: (a) as the fundamental domain [0, 1] 2 of the action of Z 2 on R 2 by translations, (b) as a fundamental domain of the action of Z × {0} on the cylinder R 2 /{0} × Z, (c) as the usual embedding of the torus in the space.

Figure 2 . 6 :

 26 Figure 2.6: A fundamental domain of PSL 2 (Z) in the half-plane and disc models of hyperbolic plane. The skeleton of an ideal triangle drawn with dashes.

2 R

 2 by Γ(2) is a sphere with three punctures.This diagram sums up the facts presented above.

  1.11) by (any three among) the four elements D p α D .

5 ( 2 - 4 ) + 5 4 × 4 = - 6 × 5 4

 5244464 34 ) is naturally isomorphic to the subgroup of Aut(σ) generated by α D 12 D p 3 α D D p 4 α D .Therefore, the subgroup of Aut(σ), denoted by H, preserving the connected components of σ -1 (D 12 ∪ D 34 ) is generated by α D 12 , α D 34 and the four elementsD p α D with p ∈ {p 1 , p 2 , p 3 , p 4 }. Let Z be a connected component of σ -1 (D 12 ∪ D 34 ) and let z be a point in Z such that σ(z) = b p . Assuming that p = p 1 , b p is then the point in P(T p P 2 )corresponding to the direction tangent to D 12 . In particular, α D 12 (z) = z since σ(z) = b p . Let α be an automorphism of σ such that α(z) ∈ C. Since Aut(σ) = Stab Aut(χ) (q) + H, α may actually be chosen in H, so that α(z) ∈ Z ∩ C. And since Stab Aut(χ) (q) ∩ H acts trivially on z, Z ∩ C contains exactly one point.In conclusion, each connected component of (f • σ) -1 (b) meets C at exactly one point and one can dene a bration Y 1 → C by mapping any connected component of (f • σ) -1 (b) to the only point in its intersection with C. This bration is nothing but the Stein factorization of f • σ, since the bers of Y 1 → C are exactly the connected components of those off • σ : Y 1 → P 1 .As f • σ |C : C → P 1 is a branched covering map of degree 5 2 , a generic ber (f • σ) -1 (b) has then 5 2 connected components and total Euler characteristic 5 so that each connected component has Euler characteristic -6×5 2 and genus 1 + 3 × 5 2 = 76.
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 27 Figure 2.7: The two irreducible components of a singular conic.

Figure 2 .

 2 Figure 2.8: Two representations of the shape of the 15 singulars bers: one on the left where the irreducible components are symbolically represented as line segments, one on the right where the irreducible components are more realistic whereas their intersection points are marked as thick dots.

Figure 2 .

 2 Figure 2.9: A hyperbolic triangle with angle π/5 at each vertex.

  α s ([u 1 : • • • : u k ]) → [u 1 : • • • : u s-1 : u s e 2πi n : u s+1 : • • • : u k ]are automorphisms of c n . The subgroup of Aut(c n ) generated by the morphisms α s acts transitively over every ber. Therefore, c n is an abelian covering map whose Galois group is generated by the automorphisms α 1 , . . . , α k satisfying α s k = id andα 1 • • • • • α k = id.The Galois group is obviously isomorphic to (Z/nZ) k-1 but not canonically. A.2.2 Notation. The Galois group Aut(c n ) may be identied with the additive group {(e 1 , . . . , e k ) ∈ (Z/nZ) k | k s=1 e s ≡ 0[n]}.

  3 , Isom(H 2 C ))-structures, where S 3 is seen as the boundary at innity ∂ ∞ H 2 C of the complex hyperbolic plane H 2 C . These structures are not part of Thurston's eight geometries. A spherical CR structure on a manifold M is called uniformizable if there exists an open subset Ω of S 3

  2 → P 1 consists of the proper transforms in P 2 of the 6 lines of the complete quadrilateral arrangement in P 2 .Finally, a Lefschetz bration Y 1 → C over a complex curve C of genus 6 is derived as shown in the following commutative diagram (see proposi-

	tion 2.4.1).	
	Y 1 branched covering V V bration x x x x p p p p p p p p p p p p p B C section p p p p p p p p p p p p p
	branched covering	P 2
	xi	

  let x and y be any two points in H n F . Since the quotient Γ\H n F is compact, there exists an element γ in Γ such that d(x, γy) ≤ D, where D denotes the diameter of the quotient Γ\H n F . Therefore, any point of H n F is at a bounded distance from the orbit Γx of some point x and hence any point of ∂ ∞ H n F is arbitrarily close to the orbit Γx. 1.1.23 Proposition. Let Γ 1 and Γ 2 be subgroups of Isom(H n F

  2.1.9 Corollary. The variety Y is obtained by gluing together a family of ane algebraic varieties Z D 1 ,D 2 ,D k , indexed by any three lines D 1 , D 2 , D k of the arrangement such that D k does not pass through the intersection point of D 1 and D 2 .More precisely, if P 2 is endowed with the ane coordinate chart (w 1 , w 2 ) where with γ s = 0 if and only if s is not greater than some integer m, then Z D 1 ,D 2 ,D k is dened in the ane space, with coordinates

	1	= w 1	and	2	= w 2
	k			k	

and, for s between 3 and k -1,

s k = α s w 1 + β s w 2 + γ s

  2.3.4 Corollary. Mod 0,4 is isomorphic to the principal congruence subgroup of level 2 in PSL 2 (Z), that is to say, the kernel of the morphism PSL 2 (Z) → PSL 2 (Z/2Z) induced by the reduction modulo 2. 2.3.5 Notation. Let Γ(2) denote the principal congruence subgroup of level

  1 )

	Int ρ(ϕ 0 ψ 0 )
	7 7 t t t t t t t t t

in PSL 2 (Z), not to be confused with its counterpart in SL 2 (Z).

Remerciements

4. The ten lines of the form z a = z b in Q 5 play symmetric roles, whereas the ten lines in P 2 consists of the six lines of the arrangement and the four exceptional curves, apparently arising in a dierent way. This dierence is related to the fact that the forgetful map Q 5 → Q 4 does not treat equally the ve components of 5-tuples.

Proof. The maps do not depend on the choice of the representatives v 1 , . . . , v 5

and are well dened. Let ([z 1 : 1], [z 2 : 1], [z 3 : 1], [0 : 1], [1 : 0]) be a representative of a point (v 1 , v 2 , v 3 , v 4 , v 5 ) in Q * 5 (the proof is similar if the 5-tuple is not of that form). Then

and

so that the diagram is commutative.

Corollary. The monodromy representation of the bration

) is a right-handed Dehn twist, as drawn in gure 2.4. 2.2.8 Remark. The monodromy representation is a particular case of the point pushing map appearing in the Birman exact sequence (see [START_REF] Farb | A primer on mapping class groups[END_REF] Theorem 4.6]).

Indeed, viewing Q * 4 as a sphere with 3 punctures, the monodromy along (the homotopy class) of a loop γ in Q * 4 is, according to corollary 2.2.7 and gure 2.4, the mapping class obtained by pushing the base point of Q * 4 along γ.

Mapping class groups

This section is devoted to a short presentation of mapping class groups, some examples and related notions, in order to better understand the monodromy of the pencil of conics.

Given two topological spaces X and Y , such that X is locally compact and Hausdor, the compact-open topology on the set C(X, Y ) of continuous functions from X to Y is the unique topology satisfying the following univeral property: for any topological space Z, the mapping

2.4.5 Remarks. The curves S 12 and S 34 are biholomorphic since they are covering spaces of lines of the arrangement which play symmetric roles. The resolution of the 5 2 singularities of the singular bers yields curves of genus 6 × (5 + 5) + (5 -1) 2 = 76 (see gure 2.8), which is indeed equal to the genus of the generic ber.

The following lemma aims at describing the kernel of a morphism from a free group to a nite abelian group. Consider the topological interpretation of a free group as a fundamental group of a wedge sum of circles. More precisely, the image in the torus R m /Z m of the coordinate axes of R m is a wedge sum of m circles, denoted by B m , with a base point b.

is nothing but the abelianization morphism, mapping the generator c 1 to the element (1, 0, . . . , 0) and so on.

Then the kernel of the morphism

Moreover, Bm has the homotopy type of a wedge sum of d(m -1) + 1 circles. If R = kZ m , then d = k m and the kernel of π 1 (B m , b) → (Z/kZ) m is generated by the elements c 1 k , . . . , c m k and the commutators [c i p , c j q ] for 1 ≤ i, j ≤ m and 1 ≤ p, q ≤ k.

Proof. All the assertions are quite straightforward. The Euler characteristic

Since Bm has the homotopy type of a wedge of circles, the number of those circles must be d(m -1) + 1.

2.4.7 Proposition. As a covering space of (P 1 ) u , C u admits a hyperbolic structure. More precisely, C u is homeomorphic to the quotient of H 2 R by the normal subgroup of Γ(2) of index 5 2 formed by all the possible products of T ∞ , T 0 and T 1 (and their inverses) where the numbers of occurrences of T ∞ , T 0 and T 1 respectively (counted with their multiplicity, say, p for T ∞ p ) dier by multiples of 5. Besides, that group is generated by T ∞ 5 , T 0 5 , T 1 5 and the commutators of powers of T ∞ , T 0 , T 1 .

Appendix

A.1 Notations and terminology

Let P k-1 denote the standard complex projective space of dimension k -1, dened as the quotient of C k \ {0} by the action of C * by homotheties and equipped with the homogeneous coordinates

) of rational fractions, denoted by C(P k-1 ).

More generally, for any complex vector space V of nite dimension, let P(V ) denote the projectivization of V . The tautological line bundle over P k-1 is dened as

where each element in P k-1 is considered as a line in C k passing through the origin.

v v l l l l l l l l l l l l l l

of the second projection pr 2 : C k × P k-1 → P k-1 is the tautological line bundle. Indeed, the ber of a point

of the rst projection pr 1 : C k × P k-1 → C k is the blow-up of C k at the origin. Indeed, it is bijective everywhere except over the origin of C k whose ber is P k-1 . Local charts and coordinates of O P k-1 (-1) may be given as follows. If U r denotes the domain of the ane chart in P k-1 dened by v r = 0 and with coordinates v s|r = v s v r for s between 1 and k dierent form r then its inverse image in O P k-1 (-1) under pr 2 : O P k-1 (-1) → P k-1 is the domain of the local chart with coordinates (v 1|r , . . . , v r-1|r , v r , v r+1|r , . . . , v k|r ) corresponding to the point (v, ) in

Finally, the blow-up of a complex manifold M at a point p may be realized by replacing a neighborhood of p, isomorphic to a neighborhood of the origin in C k , by the corresponding neighborhood in O P k-1 (-1). The exceptional divisor of such a blow-up is the preimage in the blow-up of the points which were blown-up. Moreover, if (v 1 , . . . , v k ) are local coordinates for M , centered at p, local coordinates (v 1|r , . . . , v r-1|r , v r , v r+1|r , . . . , v k|r ) for the blow-up of M at p may be dened for every r ∈ {1, . . . , k}, similarly to O P k-1 (-1), as v s|r = v s /v r for s dierent from r.

A.2 Branched covering maps

A branched covering map of nite degree is a nite surjective morphism χ : Y → X of varieties. Y is called a covering space of X. The isomorphisms α : Y → Y such that χ • α = χ are called the automorphisms of χ and form a group denoted by Aut(χ). If Aut(χ) acts transitively on all bers of χ : Y → X, then the covering map is called Galois or regular and Aut(χ) is also referred to as the Galois group of the covering map. When, in addition, the Galois group is abelian, the covering map is called abelian.

A.2.1 Example. The morphism c n

is a branched covering map. The ber c n -1 (p) over any point p = [v 1 :

points, where m is the number of homogeneous coordinates v s of p that are equal to zero. m is the number of hyperplanes, of the following arrangement of hyperplanes, which contain p.

The arrangement in question is formed by the k hyperplanes D s dened by the equations v s = 0, which meet together in a rather simple way: for any distinct indices s 1 , . . . , s m , the intersection

In particular, the ber over any point in the complement of the arrangement of hyperplanes (this complement is an open and dense subset) consists of n k-1 points. In other words, c n is a branched covering of degree n k-1 and which ramies exactly over the previous arrangement of hyperplanes. unbranched covering map. The group π 1 (X, x) is generated by the homotopy classes g s of the loops

Note that the loop γ s consists in a turn around a hyperplane of the arrangement. The lift γs of γ s satisfying γs (0 Mots-clés: représentations de groupes fondamentaux, réseaux de groupes de Lie, géométrie hyperbolique, structures CR sphériques.

Representations of fundamental groups in hyperbolic geometry

Abstract Two construction methods of group representations are presented. The rst one proposes a strategy to try to determine the representations of nitely generated free groups into any lattice in real Lie groups. The second, after reviewing a construction of a complex hyperbolic surface, that is the quotient of the complex hyperbolic plane H 2 C by a lattice in Isom(H 2 C ), and examining its properties carefully, yields innitely many non-conjugate representations into a lattice in Isom(H 2 C ), of fundamental groups of closed hyperbolic 3dimensional manifolds, obtained as surface bundles over the circle.

Keywords: representations of fundamental groups, lattices in Lie groups, hyperbolic geometry, spherical CR structures.