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Introduction

Exhibiting additional structures on manifolds provides information about
them which are all the more remarkable as the manifolds are general. In par-
ticular, classi�cation theorems of manifolds of some type, as Poincaré�Koebe
uniformization theorem of Riemann surfaces or Thurston's geometrization
conjecture of manifolds of three dimensions, are far-reaching results in mod-
ern mathematics. In the history of those results, what were at �rst considered
as exceptional and singular examples proved to be rules. One may read the
introduction of [Ota96] to appreciate the critical role of Riley's example of
a hyperbolic structure on the complement of the �gure-eight knot. Besides
general classi�cation results, speci�c examples have interests on their own,
even though they may not �t in a larger picture.

Interesting additional structures are often of geometric nature. Let X be
a manifold on which a group G acts by homeomorphisms, transitively and
analytically, that is to say, two group elements whose actions coincide on an
open subset must be equal. A (G,X)-structure on a manifold M is an atlas
of charts with values in the model space X and whose transition mappings
are restrictions of elements of G. A (G,X)-structure on a connected manifold
M gives rise to a developing map D : M̃ → X, where M̃ is a universal cover
of M , and a holonomy representation ρ : π1(M)→ G satisfying

D(γ · y) = ρ(γ) ·D(y)

for every element γ in π1(M) and every point y in M̃ . The pair (D, ρ) is
unique, up to the joint action of G on D by post-composition and on ρ by
conjugation. The developing map D of a (G,X)-structure is always a local
homeomorphism. Whenever it is a covering map, the structure is called
complete. In that case, ρ(π1(M)) is a discrete subgroup of G, acting freely
and properly discontinuously on X, andM is homeomorphic to the quotient
manifold ρ(π1(M))\X, so that one says that M is uniformized by X. Note
that, for any representation ρ : π1(M) → G, there is at most one complete
(G,X)-structure on M with holonomy ρ.
For instance, if X is equipped with a Riemannian metric and that G is
the group of isometries of X, then a (G,X)-structure on a manifold M is
complete if M , equipped with the metric induced by that of X, is complete,
which is automatically true when M is compact.
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Given a representation ρ : π1(M)→ G, one may ask whether M carries
a (G,X)-structure with holonomy representation ρ. Answering this ques-
tion provides a dictionary between algebra and geometry. For example, if
M is a closed connected orientable surface of genus at least 2, then it is well
known that the representations ρ : π1(M)→ Isom+(H2

R) ' PSL2(R) arising
as holonomy representations of complete real hyperbolic structures on M �
(Isom+(H2

R),H2
R)-structures � form two connected components of the rep-

resentation variety Hom(π1(M),PSL2(R)). The quotient of each component
by the action of PSL2(R) by conjugation is naturally isomorphic to the Te-
ichmüller space of M . Besides, by a theorem of Gallo�Kapovich�Marden
[GKM00], every non-elementary representation in Hom(π1(M),PSL2(C))
is the holonomy of a complex projective structure � an (Aut(P1),P1)-
structure where Aut(P1) = PSL2(C) � either unbranched or with a single
branched point. Therefore, even though the existence of a representation
ρ : π1(M)→ G does not imply that M carries a complete (G,X)-structure,
such representations still provide relevant information about M .

The present thesis is situated in this general context. Chapter 1 presents
a strategy to try to determine the representations of �nitely generated free
groups into any lattice in real Lie groups. Chapter 2 reviews a construction
of a complex hyperbolic surface, that is the quotient of the complex hyper-
bolic plane H2

C by a lattice in Isom(H2
C), examines its properties carefully

and yields in�nitely many non-conjugate representations into Isom(H2
C), of

fundamental groups of closed hyperbolic 3-dimensional manifolds, obtained
as surface bundles over the circle.

Deforming representations

Thurston's hyperbolization theorem for surface bundles over the circle states
that such bundles with pseudo-Anosov monodromy are hyperbolic. The
virtual Haken conjecture (see [Ber15]) gave the reciprocal, up to a �nite
covering though. A key ingredient for the proof of the latter was the surface
subgroup conjecture, stating that fundamental groups of closed hyperbolic
manifolds contain many quasi-Fuchsian surface subgroups.

Theorem (Kahn�Markovi¢ [KM12b]). Let M be a closed hyperbolic man-

ifold of 3 dimensions, of the form Λ\H3
R where Λ is a uniform lattice in

Isom+(H3
R). For any C > 1, there exist a hyperbolic closed surface S of

the form π\H2
R, where π is a uniform lattice in Isom+(H2

R), and a C-quasi-
conformal mapping f : ∂∞H3

R → ∂∞H3
R such that f ◦ π ◦ f−1 is a subgroup

of Λ, after identifying H2
R with a hyperbolic plane in H3

R.

This may be interpreted in the following ways.
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• The hyperbolic closed surface S may be deformed into an immersed

surface in M � in the sense of Tan [Tan94] � such that the in-
duced morphism between fundamental groups is injective. The lattice
Λ hence contains a surface subgroup.

• The Fuchsian representation π → Isom+(H2
R) is close to a quasi-

Fuchsian one π → Isom+(H3
R) whose image is contained in Λ.

The proof uses extensively the decomposition of hyperbolic closed sur-
faces into pairs of pants and the associated (complex) Fenchel�Nielsen pa-
rameters. It appeals to mixing properties of the geodesic �ow on the bundle
of all oriented orthonormal frames of M in order to �nd a lot of real hyper-
bolic pairs of pants with large and identical length parameters, immersed
into M almost isometrically, and to show that a �nite number of them may
be glued together, with twist parameters close to 1, so as to form a closed
surface. The construction was inspired by previous partial results of Lewis
Bowen who, be it said in passing, used horocyclic �ow instead of geodesic
�ow [Bow05].

The authors chose these very speci�c Fenchel�Nielsen parameters which
allowed them to show that the obtained immersed surface is quasi-Fuchsian.
Nevertheless the construction thus focuses on a particular kind of geometric
structures on pairs of pants and on surfaces, so-called skew pants [KM12b,
Ham15] or (R, ε)-�at [Ber13]. They actually focus rather on the geometric
shape of the hyperbolic pair of pants than its holonomy representation.

Besides the theorem does not give any control on the genus of the surface
S. The asymptotic behavior, relative to the genus, of the number of such
immersed surfaces in M has been studied in another work by the same
authors [KM12a].

In a previous attempt to prove the surface subgroup conjecture, Bowen
obtained the following results [Bow09]. Let G be a locally compact topo-
logical group with a left-invariant metric d, Λ a lattice in G and ρ a rep-
resentation in G of the free group π generated by a symmetric (S−1 = S)
�nite alphabet S. Following the terminology of the author, for any ε > 0, a
mapping σ : π → G is an ε-perturbation of ρ if

∀w ∈ π ∀ s ∈ S d(σ(ws), σ(w)ρ(s)) ≤ ε.

Such a mapping σ is said to be virtually a homomorphism, if π contains a
�nite-index subgroup π′ such that

∀w′ ∈ π′ ∀w ∈ π σ(w′w) = σ(w′)σ(w)

and σ is said to be virtually a homomorphism into Λ if σ(π′) is in addition
contained in Λ.
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Theorem (Bowen). If the lattice Λ is uniform, then for any ε > 0, any
representation ρ : π → G admits an ε-perturbation that is virtually a homo-

morphism into Λ.

Theorem (Bowen). If G is the group Isom+(Hn
R) and ρ : π → G is an

injective representation onto a convex cocompact subgroup, then for any ε > 0
there exists an ε-perturbation of ρ : π → G that is virtually a homomorphism

into Λ.

Both statements lead to the same conclusion. The di�erence lies in that
the former is true in a very general context with the restriction that the
lattice Λ must be uniform, whereas the latter is also true for non-uniform
lattices but in a less general context.

Even though only free group representations are considered, these two
results and especially the �rst one suggest that there could be an approach
to the problem of determining the representations into a lattice that would
deal with any kind of representations or, at least, with a large class of them.
Besides, although the proof of the theorem of Kahn�Markovi¢ seems limited
in that it relies on the geodesic �ow on the frame bundle, this �ow is simply
the restriction to some one-parameter subgroup of an action of Isom+(Hn

R)
on the frame bundle, which is nothing but the action of Isom+(Hn

R) on the
quotient Λ\ Isom+(Hn

R) by multiplication on the right.

Furthermore, the following result extends the theorem of Kahn�Marko-
vi¢, though using the same kind of arguments, and reinforces the idea of a
general approach.

Theorem (Hamenstädt [Ham15]). Let Λ be a uniform lattice in a simple

rank one Lie group of non-compact type, distinct from Isom+(Hn
R) for all

positive even integers n. Then Λ contains surface subgroups.

In chapter 1, a strategy is proposed in that perspective. Although it
is successful only for representations of free groups, it has the advantages
of getting rid of technical limitations, of being applicable in a very general
context and of adopting a uni�ed treatment. Should the strategy succeed
for surface groups, then it would lead to simpli�cations of some arguments
for the theorems of Kahn-Markovi¢ and Hamenstädt.

The following propositions are the result of a attempt to simplify and
generalize techniques at the heart the above results (see [Bow05, part II],
[KM12b, lemmas 4.5, 4.6, 4.7], [Ber13, proposition 4.7], [Ham15, proposition
4.3]). The authors essentially show, by appealing to mixing properties of
geodesic or horocyclic �ow, that, for ε > 0 small enough and R > 0 large
enough, any real hyperbolic pair of pants with identical length parameters R
may be deformed into an immersed (R, ε)-�at pair of pants. In other words,
the (R, ε)-�at pairs of pants are deformations of existing real hyperbolic
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structures on topological pairs of pants. In this spirit, it appears immediately
in the statements of the following propositions that representations in the
lattice are found as deformations of representations in the Lie group. The
following propositions avoid the recourse to mixing properties, only for some
time. In the end, the Howe-Moore theorem (see 1.2.9) allows to prove that,
for any simple connected real Lie group G with �nite center, there are a lot
of representations of the free group into G satisfying the conditions of the
propositions.

Let π be a group with a �nite presentation 〈S|R〉. A group representa-
tion ρ of π in a Lie group G is exactly determined by a family (gs)s∈S of
elements in G satisfying the relations in R. Deforming ρ consists in �nding,
for each s in S, an element hs in G close to gs, such that the family (hs)s∈S
yet satis�es the relations in R. Although the product hsm · · ·hs1 , for each
relation sm · · · s1 in R, must be close to the identity element in G, provided
that hs is close enough to gs for each s in S, it is di�cult to guarantee in
general that those products are actually trivial. Now, whenever the elements
hs are chosen in a lattice Λ in G, then the products hsm · · ·hs1 would actu-
ally be trivial, if they are su�ciently close to the identity element � since
Λ is discrete, � hence giving rise to a representation of π into Λ associated
to the family (hs)s∈S . This observation is not surprising at all but requires
to be able to estimate the distance from hsm · · ·hs1 to gsm · · · gs1 with re-
spect to the distances from hs to gs. The following propositions provide a
quantitative statement.

Let X denote the quotient manifold G/K of a real Lie group G by a max-
imal compact subgroup K. One may easily construct a Riemannian metric
on G which is invariant under the action by multiplication on the left by G
and on the right by K. However, neither the metric nor the maximal com-
pact subgroup are canonical. For instance, the maximal compact subgroups
of the group Isom(Hn

R) are exactly the stabilizers of points in Hn
R, isomorphic

to O(n). Hence, for each point x ∈ Hn
R, one may construct a metric mx on

G satisfying the latter invariance properties.
More generally, there is a whole family (mx)x∈X of Riemannian met-

rics on G invariant under the action of G by multiplication on the left and
satisfying

(Rg)
∗mx = mgx

for all g in G and x in X. In particular, if g belongs to the stabilizer Kx of
x, (Rg)

∗mx = mx which means that mx is invariant under the action of Kx

by multiplication on the right. The distance function corresponding to the
metric mx is denoted by dx.

Let Λ be a lattice in G. The injectivity radius at a point τ in Λ\G, with
respect to the distance dx induced on Λ\G from G, is de�ned as

injx(τ) =
1

2
inf

λ∈Λ−{1}
dx(λτ̃ , τ̃)
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where τ̃ ∈ G is any lift of τ .
In the �rst place, let π denote the free group 〈S〉 generated by a �nite

alphabet S.

Proposition (section 1.2.2). For any ε ≤ 1, any representation ρ : π → G
and any point x in X, if there exists a point τ in Λ\G satisfying

∀ s ∈ S dx(τ, τρ(s)) < ε injx(τ)

then, given any lift τ̃ of τ to G, there is a unique representation σ : π → Λ
close to ρ in the sense that

∀ s ∈ S dx(σ(s)τ̃ , τ̃ ρ(s)) < ε injx(τ).

In the second place, for some integer m greater than 1, let π denote the
group with presentation 〈c1, . . . , cm|cm · · · c1 = 1〉.

Proposition (section 1.2.2). For any ε ≤ 31/m − 1, any representation

ρ : π → G and any family of points (xj)j∈Z/mZ in X such that xj+1 = ρ(cj)xj
for all j in Z/mZ, if there exists a point τ in Λ\G satisfying

∀ j ∈ Z/mZ dxj (τ, τρ(cj)) < ε injxj (τ)

then, given any lift τ̃ of τ to G, there is a unique representation σ : π → Λ
close to ρ in the sense that

∀ j ∈ Z/mZ dxj (σ(cj)τ̃ , τ̃ ρ(cj)) < ε injxj (τ).

Such a statement is also true for the �nitely presented groups each of
whose generators appears at most once in the relations altogether. Unfor-
tunately all these groups are actually free and no analogue is known for ar-
bitrary �nitely presented groups. Nevertheless, since these statements deal
with presentations � and not groups themselves � and that the images
of the generators cj by σ still satisfy the relation cm · · · c1 = 1, this slight
progress may let one hope that it is also possible with a larger class of �nitely
presented groups.

The propositions are true for any lattice in any real Lie group and do
not resort to any speci�c geometric technique like decomposition into pairs
of pants or Fenchel�Nielsen parameters. They deal with uniform and non
uniform lattices simultaneously on the contrary to the theorems of Bowen.
There is no limitation on the representation ρ. Besides there is a signi�cant
di�erence with the point of view presented by Bowen, since passing to a

�nite-index subgroup is not needed anymore.

The following statement is an application of the Howe�Moore theorem
(see 1.2.9) to the former proposition.
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Theorem (see section 1.2.3). Let G be a simple connected real Lie group

with �nite center, Λ a lattice in G and π a �nitely generated free group. Let

S = {s1, s2 . . .} be some free generating set of π, x be a point in X and

ε ≤ 1. Any representation ρ : π → G, such that ρ(s1) leaves some large

enough compact set K1 and that ρ(s2) leaves some large enough compact set

K2 depending on ρ(s1) and so on, admits a small deformation conjugate to

a representation σ : π → Λ: more precisely, there exist τ in Λ\G and a lift

τ̃ in G such that

∀ s ∈ S dx(σ(s)τ̃ , τ̃ ρ(s)) < ε injx(τ).

Representations of 3-manifolds

In three dimensions, spherical Cauchy�Riemann structures are also interest-
ing. Those are the (S3, Isom(H2

C))-structures, where S3 is seen as the bound-
ary at in�nity ∂∞H2

C of the complex hyperbolic plane H2
C. These structures

are not part of Thurston's eight geometries. A spherical CR structure on
a manifold M is called uniformizable if there exists an open subset Ω of S3

on which ρ(π1(M)) acts freely and properly discontinuously, so that M is
homeomorphic to quotient manifold ρ(π1(M))\Ω. Like the complete (G,X)-
structures, for any representation ρ : π1(M) → Isom(H2

C), there is at most
one uniformizable spherical CR structure on the manifoldM with holonomy
ρ. Given a spherical CR structure with holonomy ρ or just a representation
ρ, a candidate open subset is the discontinuity domain of ρ(π1(M)), that is
the largest open subset of S3 on which ρ(π1(M)) acts properly discontinu-
ously. In particular, whenever the discontinuity domain is empty, then the
representation ρ cannot be the holonomy representation of a uniformizable
spherical CR structure.

Only few examples of 3-dimensional hyperbolic manifolds carrying such
structures and not many more representations of fundamental groups into
Isom(H2

C) are known. For instance, if M is the complement of the �gure-
eight knot, Falbel has shown that there are essentially two representations of
π1(M) into Isom(H2

C), that the author denotes by ρ1 and ρ2, whose boundary
representations π1(∂M) → Isom(H2

C) are unipotent [Fal08]. The represen-
tation ρ1 is not the holonomy of a uniformizable structure since the domain
of discontinuity of its image is empty. However it is shown that ρ1 is the
holonomy of a branched spherical CR structure on the �gure-eight knot.
Later, Falbel and Wang have shown that the complement of the �gure-eight
knot admits a branched spherical CR structure with holonomy ρ2 [FW14]
and Deraux and Falbel have shown it admits a uniformizable spherical CR
structure with holonomy ρ2 [DF15].

Chapter 2 introduces a method for constructing in�nitely many non-
conjugate representations of fundamental groups of closed hyperbolic 3-
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dimensional manifolds into a lattice in Isom(H2
C). The domain of discontinu-

ity of those representations happens to be empty, so that they cannot arise
as holonomies of uniformizable structures, unlike the example of Deraux-
Falbel. Nevertheless, they still may be the holonomies of branched spherical
CR structures.

Besides, since these representations take actually their values in a lattice
in Isom(H2

C), their existence may also be interpreted from the angle of the
Kahn-Markovi¢ theorem.

The method relies on the careful examination of the properties of a com-
plex hyperbolic surface, in section 2.1. It focuses on the particular example
of Hirzebruch's surface Y1, which was originally introduced as an example of
a complex hyperbolic surface, that is the quotient of the complex hyperbolic
plane H2

C by a uniform lattice, isomorphic to π1(Y1) [Hir83, YY84].
On the one hand, Y1 is a branched covering space of degree 55 of a com-

plex surface, denoted by P̂2, which is the blow-up of the complex projective
plane P2 at 4 points (none three of which lie on the same line). The 6 lines
in P2 passing through each pair among those 4 points form the complete

quadrilateral arrangement of lines (see �gure 2.1). Besides, the preimage by

the blow-up P̂2 → P2 of each of the 4 points is isomorphic to the complex
projective line P1. The branched covering map Y1 → P̂2 rami�es exactly
over those 10 = 6 + 4 lines in P̂2, with rami�cation index 5.

On the other hand, the conics in P2 passing through those 4 points give
rise to a birational map P2 → P1, called the pencil of conics. It lifts to a
Lefschetz �bration P̂2 → P1 (see section 2.2).

P̂2
blow-up //

Lefschetz �bration

��2
222222222222 P2

pencil of conics

���������������

P1

In addition, the Lefschetz �bration P̂2 → P1 admits sections P̂2 ←↩ P1.
Furthermore, the union of the singular �bers under P̂2 → P1 consists of
the proper transforms in P̂2 of the 6 lines of the complete quadrilateral
arrangement in P2.

Finally, a Lefschetz �bration Y1 → C over a complex curve C of genus
6 is derived as shown in the following commutative diagram (see proposi-
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tion 2.4.1).

Y1

branched covering

����

�brationxxxxppppppppppppp

C

branched covering

����

* 


section

88ppppppppppppp

P̂2

�brationxxxxqqqqqqqqqqqqq

P1
+ �

section

88qqqqqqqqqqqqq

In particular, the branched covering map Y1 → P̂2 induces, by restriction, a
branched covering map from each �ber under Y1 → C into a �ber of P̂2 → P1.
Hence the properties of Y1 → C may be read from those of P̂2 → P1. The
generic �bers of Y1 → C are smooth curves of genus 76. There are also
4×52 singular �bers, each of which consists of 10 smooth curves intersecting

normally at 52 points in total (see proposition 2.4.4). Denoting by Y1
u → P̂2

u

and Cu → (P1)u the corresponding (unbranched) covering maps, one obtains
the diagram

Y1
u

covering

����

�brationwwwwnnnnnnnnnnnnnn

Cu

covering

����

) 	

section

77nnnnnnnnnnnnnn

P̂2
u

�brationwwwwppppppppppppp

(P1)u
* 


section

77ppppppppppppp

where there is neither rami�cation nor singular �bers anymore.
Section 2.3 is devoted to the careful study of the monodromy of the �bra-

tion P̂2
u
→ (P1)u (see corollary 2.2.7) and hence that of Y1

u → Cu too. Since

the �bers under P̂2
u
→ (P1)u are spheres with four punctures, the �bration

induces a representation of π1((P1)u) into the mapping class group Mod0,4 of
a sphere, with 4 marked points. The monodromy representation proves to be
an isomorphism and those groups are moreover isomorphic to the principal
congruence subgroup Γ(2) in PSL2(Z) (of index 6). That fact has motivated
the choice of the complex hyperbolic surface Y1, so that the calculations
and proofs are simpler than with more complicated mapping class groups.
The elements in π1((P1)u) whose images in Mod0,4 are pseudo-Anosov or
reducible mapping classes are precisely determined: the classi�cation corre-
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sponds to the classi�cation of the elements of PSL2(Z) as hyperbolic and
parabolic elements (Γ(2) contains no elliptic element).

Finally, let F0 denote the generic �ber of Y1 → C. For any γ in π1(Cu), let
Mγ denote the 3-dimensional manifold, obtained as the surface bundle over
the circle with �ber F0 and where the homeomorphism is the monodromy of
the �bration Y1

u → Cu along γ (see de�nition 2.3.7 and section 2.5). There
is a natural mapping Mγ → Y1 and which induces a morphism

ργ : π1(Mγ)→ π1(Y1).

Since π1(Y1) is isomorphic to a lattice in Isom(H2
C), the morphism ργ yields

a representation into that lattice and in particular in Isom(H2
C).

It is remarkable that every mapping class in Mod0,4 can be realized as the

monodromy along a curve in (P1)u, of the �bration P̂2
u
→ (P1)u. Since the

generic �ber of P̂2 → P1 is a sphere with 4 marked points, all the possible
surface bundles with the sphere as �ber and with monodromy preserving
each of the 4 marked points are hence obtain in this way.

The same construction of surface bundles for the �bration P̂2
u
→ (P1)u,

instead of Y1
u → Cu as above, produces representations of the fundamental

groups of all those surface bundles. More precisely, the complex hyperbolic
structure on Y1 descends to a branched complex hyperbolic structure on P̂2

by the branched covering Y1 → P̂2. And the �bers of the latter surface
bundles are seen as orbifolds with isotropy of order 5 at each of the four
marked points. For γ in π1(Cu), the surface bundle Mγ is nothing but a
branched covering of the orbifold surface bundle whose monodromy is the
image of γ by π1(Cu)→ π1((P1)u).

Proposition. For each element f of Mod0,4, consider the surface bundleMf

with monodromy f and with �ber the orbifold with the sphere as underlying

space and with isotropy of order 5 at each of the four marked points. There

is a representation of the orbifold fundamental group of Mf into a lattice in

Isom(H2
C).

Section 2.5 describes the manifold Mγ to a small extent, the group
π1(Mγ) and properties of the representation ργ with respect to the element
γ in π1(Cu).

Proposition. For any γ in π1(Cu), the limit set of the image of the repre-

sentation ργ : π1(Mγ)→ π1(Y1) is all of ∂∞H2
C.

Proposition. For any element γ in π1(Cu), if its image in π1(C) is not

trivial, then

1. the kernel of ργ is equal to the kernel of π1(F0)→ π1(Y1),
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2. the monodromy of the �bration Y1
u → Cu along γ is pseudo-Anosov,

3. the kernel is not of �nite type.

Observe that, if the monodromy is pseudo-Anosov, then the surface bun-
dle Mγ is a hyperbolic manifold, according to Thurston's hyperbolization
theorem for surface bundles over the circle. In that case, the representation
ργ : π1(Mγ) → π1(Y1) hence provides a representation of the fundamental
group π1(Mγ) of the hyperbolic manifold Mγ , into a complex hyperbolic
lattice.

Finally, the family of representations constructed in this way is the source
of in�nitely many conjugacy classes of representations of hyperbolic mani-
folds of three dimensions into a complex hyperbolic lattice.

Theorem. For any two γ1 and γ2 in π1(Cu), if the image in π1(C) of γ1

is not conjugate to that of γ2 or its inverse, then either the groups π1(Mγ1)
and π1(Mγ2) are not isomorphic or, if such an isomorphism Φ : π1(Mγ1)→
π1(Mγ2) exists, then the representations ργ1 and ργ2 ◦ Φ are not conjugate.

Furthermore, the method seems reproducible with other complex hyper-
bolic lattices. Indeed, let Qn be the quotient, in the sense of geometric
invariant theory, of (P1)n by the diagonal action of Aut(P1). In other words,
Qn is the set of con�gurations of n marked points in the projective line.
Let also Q∗n denote the usual quotient, by the diagonal action of Aut(P1),
of the subset of (P1)n formed by all the n-tuples of pairwise distinct points.

The �brations P̂2 → P1 and P̂2
u
→ (P1)u may actually be interpreted as

the forgetful mappings Q5 → Q4 and Q∗5 → Q∗4, respectively, which forget
the last point of the con�guration (see proposition 2.2.5). In passing, this

observation explains morally the particular role of the �bration P̂2 → P1.
It is remarkable that these spaces Qn appear at the heart of the con-

struction by Deligne�Mostow of complex hyperbolic lattices, as described
below. The forgetful mappings Qn → Qp for p < n (which forget, say,
the last n − p points of a con�guration) provide natural �brations for the
Deligne�Mostow lattice quotients as well. Therefore, one might expect that
the Deligne-Mostow lattices have the tendency to contain surface bundles,
possibly with spherical CR structures.

There exist several constructions of complex hyperbolic lattices. The
story has started with Picard at the end of the 19th century and is still being
written nowadays. Old and modern examples and construction methods
cohabit. A glance at the survey of Parker [Par09] is su�cient to realize how
rich this �eld is and the number of mathematicians it has attracted. Yet
the relations between the variety of approaches are not clearly established.
Some relatively recent points of view are worth one's attention [Tre16] and
[McM13].
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Originally, the Deligne�Mostow lattices were discovered by considering
hypergeometric functions. Let µ = (µ1, . . . , µn) be an n-tuple of real numbers
in the interval (0, 1) satisfying

n∑
k=1

µk = 2

and, for any distinct integers a and b of {1, . . . , n}, de�ne

Fab(z1, . . . , zn) =

∫ zb

za

n∏
k=1

(z − zk)−µkdz

where z1, . . . , zn are elements in Ĉ and the path of integration lies in Ĉ −
{z1, . . . , zn}, apart from its end points. The functions Fab are multi-valued
functions, well de�ned if no two of the variables zk coincide. Moreover, they
span a vector space of dimension n− 2 and there exists a function h in the
variables zk such that

Fab(α(z1), . . . , α(zn)) = h(z1, . . . , zn)Fab(z1, . . . , zn)

for any α ∈ Aut(P1) and for any distinct indices a and b. Therefore, one
obtains a multi-valued mapping

F :

{
Q∗n −→ Pn−3

Z = (z1, . . . , zn) 7−→ [Fa1b1(Z) : · · · : Fan−2bn−2(Z)]

where Fa1b1 , . . . , Fan−2bn−2 are linearily independent. Hence, F induces a
monodromy representation from a fundamental group of Q∗n onto a sub-
group Γµ of Aut(Pn−3) = PGLn−2(C). Furthermore, one may show that the
monodromy preserves a Hermitian form of signature (n− 3, 1), so that Γµ is
a subgroup of PU(n− 3, 1) ' Isom(Hn−3

C ). Finally, if the n-tuple µ satis�es
a integral condition, called ΣINT, then Deligne and Mostow show that the
monodromy takes its values in a lattice [Par09, Theorem 3.2].

Note that the monodromy representation into PU(n−3, 1) exists, whether
or not its image is a lattice. And the forgetful mappings provide �bra-
tions. Therefore, even though the present construction focuses on the par-
ticular complex hyperbolic surface Y1 and on the corresponding lattice in
Isom(Hn−3

C ), the method should generalize to a much larger class of surfaces
bundles, so as to obtain representations of their fundamental groups into
Isom(H2

C) and possibly spherical CR structures.
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Chapter 1

Deforming representations

1.1 Real and complex hyperbolic spaces

A moral of the classi�cation theorems of manifolds of dimensions two or
three is that most of those manifolds are (real) hyperbolic.

1.1.1 Construction

Let F be the �eld of the real numbers R, respectively the complex numbers C,
and consider a vector space V of dimension n+1 over F equipped with a non-
degenerate bilinear, respectively sesquilinear, symmetric form φ : V ×V → F
of signature (1, n).

1.1.1 Example. The Minkowski spacetime F1,n is the vector space F1+n,
equipped with the form

φ1,n(w, z) = −w0z0 + w1z1 + · · ·+ wnzn.

Although the latter is the standard example from which the hyperbolic space
is usually constructed, it is not canonical.

1.1.2 Notations. The group of orthogonal, respectively unitary, transfor-
mations of (V, φ) is denoted by O(V, φ), respectively U(V, φ). It consists of
the linear automorphisms A of V preserving φ, in other terms, satisfying

∀ v, w ∈ V φ(Av,Aw) = φ(v, w).

In particular, O(1, n), respectively U(1, n), denote the group of orthogonal,
respectively unitary, transformations of F1,n. They all are real Lie groups.

The real hyperbolic space may be de�ned as follows. The level hypersur-
face

V−1 = {v ∈ R1+n | φ1,n(v, v) = −1}

1



is of a hyperboloid of two sheets, which are contained in the half spaces
separated by the hyperplane of equation z0 = 0. Moreover the scalar multi-
plication by −1 maps each component to the other. The upper component
is the underlying space of what is known as the hyperboloid model of real
hyperbolic space Hn

R. Instead of choosing one of the components, since none
is better than the other, it should in fact be de�ned as the quotient space
V−1/{±1}.

In the complex case, the level hypersurface V−1 is a hyperboloid with one
sheet. Furthermore, it is preserved by scalar multiplication by any complex
number of modulus 1, so is it in the real case by scalar multiplication by
±1. One may de�ne complex hyperbolic space as the quotient space V−1/S1,
where S1 denotes the set of complex numbers of modulus 1.

However, the hypersurface V−1 of level −1 is not better than any other
hypersurface of some negative level. Instead, real and complex hyperbolic
spaces can be de�ned more canonically in the following way.

Consider the light cone V0 and the time cone V− de�ned as

V0 = {v ∈ V −{0} | φ(v, v) = 0} and V− = {v ∈ V | φ(v, v) < 0}.

These cones are stable by scalar multiplication. Moreover, they are pre-
served by the group of orthogonal, respectively unitary, transformations.
Now consider the projection P : V −{0} → P(V ) onto the projective space
P(V ) = (V −{0})/F∗.

1.1.3 De�nition. The hyperbolic space Hn
F over F and of dimension n is

P(V−).

By de�nition, Hn
F is an open subset of the projective space PnF and is in

particular a real, respectively complex, submanifold of dimension n.

1.1.4 Remark. If (V, φ) is chosen as the Minkowski spacetime (F1,n, φ1,n),
then P (V−) is actually contained in the a�ne chart U0 = {[z0 : · · · : zn] ∈
PnF | z0 6= 0} where [z0 : · · · : zn] denotes the homogeneous coordinates in the
projective space. The function

U0 −→ Fn

[z0 : · · · : zn] 7−→
(z1

z0
, . . . ,

zn
z0

)
maps Hn

F to the open unit ball centered at the origin, and gives rise to the
Klein ball model of hyperbolic space.

1.1.5 De�nition. The boundary at in�nity of Hn
F, denoted by ∂∞Hn

F, is the
topological boundary of Hn

F in P(V ). It is simply P(V0).

1.1.6 Remark. In the Klein ball model, it corresponds to the unit sphere
centered at the origin in the a�ne chart U0.
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The next step is to equip Hn
F with a Riemannian, respectively Hermitian,

metric. In the case of real hyperbolic space, viewed as the upper sheet of the
level hypersurface V−1, and in particular as a submanifold of V , the tangent
space TvHn

R, at a point v, is the kernel kerφ1,n(v, ·) of the linear form w 7→
φ1,n(v, w), which is simply the orthogonal (Rv)⊥ of the line Rv. (Indeed,
the di�erential at v of the mapping v 7→ φ1,n(v, v), whose hypersurface of
level −1 is V−1, is equal to w 7→ 2φ1,n(v, w).) Besides, the restriction of
the bilinear symmetric form φ1,n, to the subspace TvHn

R of V , is positive
de�nite: indeed, as φ1,n is of signature (1, n) and as it is negative de�nite on
the line Rv (for φ1,n(v, v) = −1), Sylvester's law of inertia guarantees that
it is positive de�nite on the orthogonal (Rv)⊥. Therefore, the restriction of
the pseudo-Riemannian metric of V induces a Riemannian metric on Hn

R.
It remains to adapt the latter construction in the context of the previous

de�niton hyperbolic space Hn
F on F.

On the one hand, the trivial vector bundle TV− = V−×V over V− contains as
a subbundle the bundle over V− whose �ber over each point v is the orthog-
onal (Fv)⊥ for the bilinear form φ. The pseudo-Riemannian, respectively
pseudo-Hermitian, metric φ on the trivial bundle induces a Riemannian, re-
spectively Hermitian, metric on the subbundle, for the same reason as before:
since φ is negative de�nite on the line Fv, for all v ∈ V−, its restriction to
(Fv)⊥ is positive de�nite. In addition, (Fv)⊥ and hence the induced metric
depend only on the class of v in P(V−).
On the other hand, the di�erential dP : TV− → THn

F of the projection
P : V− → P (V−) = Hn

F induces, on each �ber of the subbundle, a surjective
mapping dvP : (Fv)⊥ → TvHn

F which is an isomorphism for dimensional
reasons. Consequently, pushing forward the Riemannian, respectively Her-
mitian, metric of the subbundle by the projection P yields a metric on Hn

F.

1.1.7 De�nition. The hyperbolic metric on Hn
F is the Riemannian, respec-

tively Hermitian, metric construted as above. By a slight abuse of notations,
it will still be denoted by φ.

Consider a vector subspace V ′ of V . More precisely, if F is C, then V may
been viewed not only as a vector space over C, but also as a vector space over
R. Hence, for a uni�ed treatment of the di�erent cases, consider a sub�eld
F′ of F and a vector subspace V ′ of V , where V is viewed as a vector space
over F′. Assume moreover that the restriction of φ to V ′ is a bilinear form
φ′ : V ′ × V ′ → F′ that is non-degenerate and of signature (1, n′). Then the
inclusion of (V ′, φ′) into (V, φ) induces an isometric embedding of Hn′

F′ into
Hn

F.

1.1.8 Examples.

1. The inclusion of (F′1,n
′
, φ1,n′) into (F1,n, φ1,n), mapping the standard

basis of F′1,n
′
to the �rst n′ vectors of F1,n, induces an isometric em-

bedding of Hn′
F′ into Hn

F.

3



2. For any two points x and y in Hn
F, represented by lines Fv and Fw in

V , the restriction of φ to the vector subspace V ′ of V spanned by v
and w is non-degenerate and of signature (1, 1). Therefore, there exists
an isometric embedding of H1

F into Hn
F passing through x and y.

3. Let x and y be any two points in H1
C, represented by lines Cv and Cw

in C1,1. Up to multiplying v or w by scalars, one may assume that
φ1,1(v, w) is a real number. Hence, the restriction of φ1,1 to the real
vector subspace spanned by v and w is a real non-degenerate bilinear
form of signature (1, 1). Therefore, there exists an isometric embedding
of H1

R into H1
C passing through x and y.

4. According to the previous two examples, for any two points x and y in
Hn

F, there exists an isometric embedding of H1
R into Hn

F passing through
x and y.

5. Note that H1
R is isometric to the Euclidean line R through

γ :

{
R −→ H1

R
t 7−→ (cosh t, sinh t)

where H1
R is identi�ed with the upper sheet of the hypersurface V−1 of

level −1 in V = R1,1. Indeed, the derivative γ′(t) = (sinh(t),− cosh(t))
satis�es φ1,1(γ′(t), γ′(t)) = 1.

1.1.9 Corollary. The hyperbolic space Hn
F is geodesically complete.

1.1.2 The group of isometries and the frame bundle

1.1.10 Proposition. The projective orthogonal group

PO(V, φ) = O(V, φ)/{±1},

respectively the projective unitary group

PU(V, φ) = U(V, φ)/S1,

acts faithfully and isometrically on Hn
F.

Proof. The group O(V, φ), respectively U(V, φ), acts on V− equipped with
the pseudo-Riemmanian, respectively pseudo-Hermitian, metric φ. For any
element A in the group, as A is a linear transformation of V , its di�erential
dvA at a point v in V− is A itself. Therefore, for any w ∈ TvV− = V ,

(A∗φ)(w,w) = φ((dvA)−1w, (dvA)−1w) = φ(A−1w,A−1w) = φ(w,w)

so that the action of the group preserves of metric on V−.
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Since the action on V− maps lines to lines, the projection P transports
it to an action on P(V−) = Hn

F. Moreover, since the metric on Hn
F is the

push-forward by P of the restriction of the metric φ to the subbundle and
that the latter equation still holds with w ∈ (Fv)⊥, it follows that the action
of the group on Hn

F is isometric as well.
Furthermore, an element A acts trivially on Hn

F if, and only if, it preserves
all the lines in V− so that, for any v ∈ V−, there exists a number λv such
that Av = λvv. For any vectors v and w in V−, up to replacing w by −w,
one may assume that <φ(v, w) < 0 so as to have

φ(v + w, v + w) = φ(v) + φ(w) + 2<φ(v, w) < 0

and v + w ∈ V−. Now, since

λv+w(v + w) = A(v + w) = Av +Aw = λvv + λww

it follows that λv = λv+w = λw. Thus A is a homothety (whose ratio is
necessarily of modulus 1). Therefore, the projective orthogonal, respectively
unitary, group acts faithfully on Hn

F.

Let (M, 〈·, ·〉) be a Riemannian, respectively Hermitian, manifold of n
dimensions.

1.1.11 De�nition. The frame bundle F(M) over M , or more precisely
the bundle of all orthonormal, respectively Hermitian, frames over M is the
bundle overM whose �ber over any point x ofM consists of the orthonormal,
respectively Hermitian, bases of the tangent space TxM at the point x.

The frame bundle F(M) is a �ber bundle over M : it is the pull-back of
the identity matrix In by the submersion

(TM)⊕n −→ Sym(n,F)
v1 ⊕ · · · ⊕ vn 7−→ (〈vi, vj〉)i,j=1..n

where (TM)⊕n denotes the n-times direct-sum vector bundle of the tangent
bundle TM and Sym(n,F) the space of symmetric real, respectively anti-
symmetric complex, n-by-n matrices.

1.1.12 Remark. It is of course possible to consider the bundle of all frames
(not necessarily orthonormal or Hermitian) but only the bundle of orthonor-
mal, respectively Hermitian, frames is relevant in the present context. For
convenience, the adjectives orthonormal or Hermitian will be omitted.

1.1.13 Example. Each element of the frame bundle of Hn
F corresponds to

the data of a line Fv0 in V− and to n vectors v1, . . . , vn forming an orthonor-
mal, respectively Hermitian, basis of (Fv0)⊥. Up to multiplying v0 by a
scalar, one may assume that φ(v0, v0) = −1. It is remarquable that the fam-
ily (v0, v1, . . . , vn) is a basis of V such that the unique linear isomorphism
V → F1,n mapping that basis to the standard basis of F1,n, is an isometry
(V, φ)→ (F1,n, φ1,n).
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Any isometry f of (M, 〈·, ·〉) acts on F(M) by

f(v1 ⊕ · · · ⊕ vn) = (dxf v1)⊕ · · · ⊕ (dxf vn)

mapping any frame v1 ⊕ · · · ⊕ vn over a point x of M to a frame over f(x).
In particular, for any orthogonal, respectively unitary, linear transformation
A of V ,

A(v1 ⊕ · · · ⊕ vn) = (Av1)⊕ · · · ⊕ (Avn).

1.1.14 Proposition. The group of isometries Isom(Hn
F) of the hyperbolic

space is isomorphic to the group PO(V, φ), respectively PU(V, φ), and acts

freely and transitively on F(Hn
F) and hence transitively on Hn

F.

1.1.15 Remark. One should insists on the fact that, in the case of a Her-
mitian manifold, an isometry, strictly speaking, is required to preserve the
Hermitian metric and not simply the induced Riemannian one. For example,
the group of Riemannian isometries of Hn

C contains, in addition to PU(V, φ),
anti-holomorphic isometries.

Proof. According to example 1.1.13, any frame of Hn
F corresponds to a ba-

sis (v0, v1, . . . , vn) of V such that the unique linear isomorphism V → F1,n

mapping that basis to the standard basis of F1,n, is an isometry (V, φ) →
(F1,n, φ1,n). Thus, for any two frames of Hn

F, corresponding to such bases
B and B′ of V , the unique linear isomorphism mapping B to B′ is an or-
thogonal, respectively unitary, transformation. It follows that the projective
orthogonal, respectively unitary, group acts transitively on F(Hn

F).
Let f be an isometry of Hn

F. Up to composing f by a projective orthog-
onal, respectively unitary, transformation, one may assume that f preserves
a frame over a point x in F(Hn

F). Consequently, the di�erential dxf of f
at x is the identity mapping of the tangent space TxHn

F. For any geodesic
γ passing through x and directed by a tangent vector v at x, f ◦ γ is the
geodesic passing through f(x) = x and directed by dxf(v) = v. Therefore
f ◦ γ = γ, so that f is the identity mapping. Finally, any isometry of Hn

F is
a projective orthogonal, respectively unitary, transformation and Isom(Hn

F)
acts freely on the frame bundle.

Given some frame τ over a point x of Hn
F, the action de Isom(Hn

F) on
F(Hn

F) and on Hn
F induces a bijection

Isom(Hn
F) −→ F(Hn

F)
g 7−→ g · τ

and a surjective mapping

Isom(Hn
F) −→ Hn

F
g 7−→ g · x

6



which however depend on the choice x and τ . The stabilizer of x, denoted
by Kx, is isomorphic to the group O(n), respectively U(n), as it consists of
the transformations mapping an orthonormal, respectively Hermitian, frame
over x to another. In particular, Kx is compact. Consequently, the diagram

Isom(Hn
F)

∼ //

����

F(Hn
F)

����
Isom(Hn

F)/Kx
∼ // Hn

F

where the vertical arrows are the projection mappings and the horizontal
ones are induced by the action on Isom(Hn

F), is commutative. Note that all
these arrows are equivariant for the actions of Isom(Hn

F)

• on itself by translation on the left,

• on the frame bundle F(Hn
F),

• on Isom(Hn
F)/Kx by translation on the left,

• on the hyperbolic space Hn
F by isometry.

Assume that the manifold M is connected. In the Riemannian case, if
the manifold M is moreover orientable, then the frame bundle consists of
two connected components: the frames of M may indeed be classi�ed in
positive and negative frames. In the Hermitian case, the frame bundle of M
is connected.

In particular, since Hn
R and Hn

C are connected, the frame bundle F(Hn
R)

and the group Isom(Hn
R) consist of two connected components, whereas the

frame bundle F(Hn
C) and the group Isom(Hn

C) are connected. The group
Isom(Hn

R) is isomorphic to PO(1, n) and the group Isom(Hn
C) is isomorphic

to PU(1, n). The identity component of Isom(Hn
R) is isomorphic to projective

special orthogonal group PSO(1, n) and is denoted by Isom+(Hn
R) whereas

the other component is denoted by Isom−(Hn
R).

Whenever the Riemannian, respectively Hermitian, manifold is isometric
to a quotient of the form Λ\Hn

F where Λ is a lattice in Isom(Hn
F), then the

�ber bundle of M is nothing but Λ\F(Hn
F). The following commutative dia-

gram draws the complete picture of the spaces at stake and of the mappings
between them.
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G

$$IIIIIII

��

//
Λ\
G

yyssssss

��

F(Hn
F)

��

// F(M)

��
Hn

F
//M

G/K

::uuuuuuu
//
Λ\
G/K

eeLLLLLLLL

The group Isom(Hn
F) is denoted by G for aesthetic reasons and K denotes

the stabilizer Kx of a point x in Hn
F. In the diagram, the diagonal arrows are

di�eomorphisms; the horizontal ones are covering maps, with automorphism
group Λ; the vertical ones are principal K-bundles. Those mappings however
depend on the choice of the point x in Hn

F and of the frame τ over x, as well
as on the isometry between M and Λ\Hn

F or rather on the covering map
Hn

F →M .

1.1.3 Invariant metrics, volume forms and measures

Let G be a real Lie group and K a compact subgroup of G. For instance, G
may be Isom(Hn

F) and K the stabilizer Kx of a point x in Hn
F.

The aim of the present paragraph is to show that G may be equipped
with a Riemannian metric (and with the corresponding volume form and
measure) satisfying remarkable invariance properties. As a consequence, the
action of G on the quotient G/K, by multiplication on the left, proves to be
isometric. The action of the group of isometries of the hyperbolic space is
merely a particular case.

1.1.16 Proposition. The group G may be equipped with a Riemannian met-

ric, invariant on the left by G and on the right by K. The metric induced by

that of G on the subgroup K is invariant on the left and on the right by K.

Proof. Let ψGe be some inner product on the tangent space TeG to G at
its identity element e. Its push-forward (Lg)∗ψ

G
e by the left translation

Lg : h 7→ gh by g is an inner product on TgG, denoted by ψGg . Hence, ψ
G is

a Riemannian metric on G. And by construction, it is invariant on the left:

(Lg)∗ψ
G
h = (Lg)∗(Lh)∗ψ

G
e = (Lgh)∗ψ

G
e = ψGgh = ψGLgh

so that (Lg)∗ψ
G = ψG. Let dvolψG denote the volume form on G associated

to ψG. The corresponding measure volψG is a Radon measure (locally �nite
and inner regular).
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The metric ψK induced on the subgroup K is also invariant on the left.
And similarly, the measure corresponding to the volume form dvolψK is a
Radon measure. In particular, its total measure is �nite, since K is com-
pact. Hence, one may de�ne the mean φG of ψG, under the action of K by
translation on the right, as

φGg =
1

volψK (K)

∫
K

(Rk)∗ψ
G
gk dvolψK (k)

where Rk : h 7→ hk−1 is the translation on the right. And by construction,
the metric φG is invariant (under the action of K) on the right:

volψK (K) (Rk)∗φ
G
g = (Rk)∗

(∫
K

(Rh)∗ψ
G
gh dvolψK (h)

)
=

∫
K

(Rk)∗(Rh)∗ψ
G
gh dvolψK (h)

=

∫
K

(RLk(h))∗ψ
G
Rk(g)Lk(h) dvolψK (h)

=

∫
K

(Rh)∗ψ
G
Rk(g)h (Lk)∗dvolψK (h)︸ ︷︷ ︸

dvol
ψK

(h)

= volψK (K) φGRk(g)

so that (Rk)∗φ
G = φG.

1.1.17 Proposition. The metric φG on G induces a metric on G/K, de-

noted φG/K , invariant on the left by G.

In other words, the group G acts isometrically on the Riemannian man-
ifold G/K.

Proof. Let π : G → G/K denote the projection mapping, which is a sub-
mersion: for any g in G, dgπ : TgG → TgK(G/K) est surjective. As π is
constant on the submanifold gK of G, the restriction of dgπ to Tg(gK) is
zero. And for dimensional reasons, the restriction

dgπ : Tg(gK)⊥ −→ TgK(G/K)

is an isomorphism, where Tg(gK)⊥ denotes the orthogonal of Tg(gK) for the
inner product φGg on TgG. Therefore, the push-forward by π of the restriction
of φG to the vector subbundle of TG, whose �ber over g is Tg(gK)⊥, is a

metric on G/K. Indeed, it su�ces to verify that π∗
(
φGg |Tg(gK)⊥

)
depends

only on the class of g in G/K: now, for any k ∈ K,

π∗

(
φGgk |Tgk(gK)⊥

)
= π∗(Rk−1)∗

(
φGg |Tg(gK)⊥

)
= (π ◦Rk−1︸ ︷︷ ︸

π

)∗

(
φGg |Tg(gK)⊥

)
for φGg is invariant on the right by K.
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1.1.18 Example. Recall the identi�cation between G/Kx and Hn
F, so that

the Riemannian metric φG/Kx may be transported to Hn
F. But the hyperbolic

space is already equipped with its original Riemannian metric φ constructed
above (if F is C, take the real part of φ). In fact, the original metric φ and
the one induced by that of G/Kx are proportional.

Indeed, as the transported metric φG/Kx is invariant under the action (on
the left) of G and in particular of Kx, considering an orthonormal, respec-
tively Hermitian, frame of the tangent space TxHn

F for the original metric

φx, the number φ
G/Kx
x (v) of any vector v of the frame does not depend on

v. Furthermore, for any two vectors v and w of the frame, as there exists an
element of Kx mapping v + w on

√
2v,

φG/Kxx (v + w) = 2φG/Kxx (v) = φG/Kxx (v) + φG/Kxx (w)

and thus φG/Kxx (v, w) = 0. Therefore the frame is also orthogonal for φG/Kxx ,
up to a scalar factor. Consequently, the original metric φ and the transported
one φG/Kx on TxHn

F are proportional. And since they are invariant on the
left by the action de G, they are proportional on all of Hn

F, with the same
scalar factor.

Up to dividing by that factor, one may assume that the metric on Hn
F

transported from G/Kx coincides with the original one.

1.1.4 Subgroups

Let Hn
F denote Hn

F ∪ ∂∞Hn
F.

1.1.19 Lemma. Let (γn) be a sequence in Isom(Hn
F). If there exists a point

x in Hn
F such that {

lim
n→∞

γnx = λ+

lim
n→∞

γn
−1x = λ−

where λ+ and λ− are on the boundary at in�nity ∂∞Hn
F, then{

lim
n→∞

γny = λ+ for any y ∈ Hn
F \ {λ−},

lim
n→∞

γn
−1y = λ− for any y ∈ Hn

F \ {λ+}.

Proof. By symmetry, it su�ces to prove the �rst limit.
Let y and z be two distinct points in Hn

F \ {λ−} and let x be a point on
the geodesic [y, z] joining y and z. Observe that

d(γn
−1x, [y, z]) = d(x, [γny, γnz]).

The left-hand side converges to +∞ since γn−1x converges to λ− and that
y and z are distinct from λ−. Assume that some subsequence (γϕ(n)y) con-
verges to a limit a distinct from λ+. Since the sequence (γϕ(n)x) converges
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to λ+ and that the point γϕ(n)x belongs to the geodesic joining γϕ(n)y and
γϕ(n)z, (γϕ(n)z) must converge to λ+. Moreover, d(x, (γny, γnz)) converges
to d(x, (a, λ+)) which is �nite except if a = λ+. Therefore, (γny) converges
to λ+ as soon as y is distinct from λ−.

1.1.20 De�nition. The limit set Λ(Γ) of a subgroup Γ of Isom(Hn
F) is the

set Γx∩ ∂∞Hn
F of accumulation points in ∂∞Hn

F of the orbit Γx of any point
x in Hn

F.

1.1.21 Proposition. If Γ does not preserve a point in ∂∞Hn
F and that its

limit set is not empty, then Λ(Γ) is the smallest non-empty closed subset of

∂∞Hn
F that is invariant by Γ.

Proof. The limit set Λ(Γ) is closed and invariant by Γ. Assume that Λ(Γ) is
not empty.

Let λ+ be a point in Λ(Γ). There exists a sequence (γn) in Γ such that λ+

is the limit of (γnx) for some point x in Hn
F. Up to passing to a subsequence,

one may assume that (γn
−1x) converges to a point λ− in Hn

F. If λ
− were in

Hn
F, then observing that

d(γn
−1x, λ−) = d(x, γnλ

−)

one would conclude that the sequence (γnλ
−) converges to x, which contra-

dicts the previous lemma. Therefore, λ− belongs to ∂∞Hn
F.

Let L a closed subset of ∂∞Hn
F invariant by Γ. If Γ does not preserve a

point at in�nity, L does not consists of a single point. For any point ` in L,
distinct from λ−, (γn`) converges to λ+. Therefore, λ+ belongs to L so that
L contains Λ(Γ).

1.1.22 Examples. 1. The limit set Λ(Γ) is empty if and only if the orbit
Γx of some point x is contained in a compact subset of Hn

F. Now, since
Isom(Hn

F) acts properly on Hn
F, it implies that Γ is contained in a

compact subgroup. Thus, Λ(Γ) is empty if and only if Γ stabilizes
some point x in Hn

F.

2. Let Γ1 and Γ2 be subgroups of Isom(Hn
F). If Γ1 is a subgroup of Γ2,

then Λ(Γ1) ⊂ Λ(Γ2).

3. The limit set of a uniform lattice Γ is all of ∂∞Hn
F. Indeed, let x and

y be any two points in Hn
F. Since the quotient Γ\Hn

F is compact, there
exists an element γ in Γ such that d(x, γy) ≤ D, where D denotes
the diameter of the quotient Γ\Hn

F. Therefore, any point of Hn
F is at

a bounded distance from the orbit Γx of some point x and hence any
point of ∂∞Hn

F is arbitrarily close to the orbit Γx.

1.1.23 Proposition. Let Γ1 and Γ2 be subgroups of Isom(Hn
F) such that Γ1

is a normal subgroup of Γ2. If Λ(Γ1) is not empty and that Γ2 does not

preserve any point on the boundary at in�nity, then Λ(Γ1) = Λ(Γ2).
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Proof. Since Γ1 is a subgroup of Γ2, Λ(Γ1) ⊂ Λ(Γ2). In particular, Λ(Γ2) is
not empty either and, as Γ2 does not preserve any point on the boundary at
in�nity, Λ(Γ2) is the smallest non-empty closed open subset invariant by Γ2.

Let λ1 be a point in Λ(Γ1) and (γn) a sequence in Γ1 such that, for
some point x in Hn

F, (γnx) converges to λ1. Then, for any γ in Γ2, (γnγ
−1x)

converges to λ1 as well and (γγnγ
−1x) converges to γλ1. Observe that the

elements of the sequence (γγnγ
−1) belong to Γ1 since Γ1 is a normal subgroup

of Γ2. Therefore, γλ1 belongs to Λ(Γ1), so that Λ(Γ1) is invariant by Γ2.
Finally, Λ(Γ1) is a non-empty closed subset invariant by Γ2, which implies
that Λ(Γ2) ⊂ Λ(Γ1).

1.2 Deformation

1.2.1 Setting

Let π be a group with a �nite presentation 〈S|R〉. A group representation ρ
of π in a Lie group G is exactly determined by a family (gs)s∈S of elements in
G satisfying the relations in R. Deforming ρ consists in �nding, for each s in
S, an element hs inG close to gs, such that the family (hs)s∈S yet satis�es the
relations in R. Although the product hsm · · ·hs1 , for each relation sm · · · s1

in R, must be close to the identity element in G, provided that hs is close
enough to gs for each s in S, it is di�cult to guarantee in general that those
products are actually trivial. Now, whenever the elements hs are chosen in a
lattice Λ in G, then the products hsm · · ·hs1 would actually be trivial, if they
are su�ciently close to the identity element � since Λ is discrete, � hence
giving rise to a representation of π into Λ associated to the family (hs)s∈S .
This observation is not surprising at all but requires to be able to estimate
the distance from hsm · · ·hs1 to gsm · · · gs1 with respect to the distances from
hs to gs. The following propositions provide a quantitative statement.

One may easily construct a Riemannian metric on a real Lie group G
which is invariant under the action by multiplication on the left by G and
on the right by a (maximal) compact subgroup K. However, neither the
metric nor the compact subgroup are canonical. For instance, the maximal
compact subgroups of the group Isom(Hn

F) are exactly the stabilizers of points
in Hn

F. Hence, for each point x ∈ Hn
F, one may construct a metric mx on

G satisfying the latter invariance properties. In general, let X denote the
quotient manifold G/K of the Lie group G by a compact subgroup K. The
stabilizer of any point x in X of the form gK, under the action of G by
multiplication on the left, is the compact subgroup gKg−1, denoted by Kx.
Given a point x in X, one may construct a Riemannian metric mx on G
invariant by multiplication on the left by G and on the right by Kx. For
any other point, an analogous metric may be produced simply by pulling
back mx by the mapping Rg : h 7→ hg. The pulled-back metric (Rg)∗mx
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satis�es the same properties as the original one with the di�erence that it is
now invariant by multiplication on the right by the group gKxg

−1 (instead
of Kx) which is nothing but the stabilizer Kgx of the point gx.

In conclusion, G may be equipped with a family (mx)x∈X of metrics,
each of which is invariant by multiplication on the left by G and satis�es

(Rg)
∗mx = mgx

for all g in G and x in X. In particular, if g belongs to Kx, (Rg)
∗mx = mx.

The distance function corresponding to the metric mx is denoted by dx.
Besides, for every point x, as the action of G on X on the left induces

a canonical di�eomorphism between X and G/Kx and as the metric mx

is invariant under the action of Kx on the right, mx induces a Riemannian
metric on X which does not actually depend on the point x since (Rg)

∗mx =
mgx. On the other hand, as the metric mx is invariant under the action of
G by multiplication on the left, the action of G on X is isometric. For
example, when G is the group Isom(Hn

R), it is not di�cult to show that the
metric induced onHn

R by the latter construction coincides with the hyperbolic
metric, up to a scalar factor.

Although the metrics mx are di�erent in general, they are equivalent.
Moreover, since a Lie group G containing a lattice is unimodular, the metrics
mx induce the same volume form on G. Furthermore, when G is the group
Isom(Hn

R), for any points x and y in Hn
R, one may show that

e−d(x,y)dx ≤ dy ≤ ed(x,y)dx

where d is the hyperbolic distance function onHn
R, by considering for example

the geodesic �ow (on the unit tangent bundle) in the direction of the unit
vector at x directed towards y. This illustrates the fact that the geodesic �ow
is contracting in some directions and dilating in others. Nevertheless, this
inequality is not directly relating to the geodesic �ow, but should probably
be generalized in the context of real Lie groups.

Finally, the family (dx)x∈X of distances is interesting because they allow
to estimate quantitatively how distorted is a product when the multiplied
elements are perturbed.

1.2.1 Proposition. Let g1, . . . , gm and h1, . . . , hm be elements in G. And

let x be a base point. Then

dx(gm · · · g1, hm · · ·h1) ≤
m∑
i=1

dgi−1···g1x(gi, hi).

Note that the distance function that comes into play to compute the
distance between gi and hi is the one based at gi−1 · · · g1x and gi−1 · · · g1 is
the su�x of gm · · · g1 after gi.
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Proof. The triangle inequality implies that

dx(gm · · · g1, hm · · ·h1) ≤
m∑
i=1

dx(hm · · ·hi+1gi · · · g1, hm · · ·higi−1 · · · g1).

Now, since the distance functions are invariant by multiplication on the left,

dx(hm · · ·hi+1gi · · · g1, hm · · ·higi−1 · · · g1) = dx(gi · · · g1, higi−1 · · · g1)

and by construction of the family of metrics

dx(gi · · · g1, higi−1 · · · g1) = (Rgi−1···g1
∗dx)(gi, hi) = dgi−1···g1x(gi, hi)

and the result follows.

1.2.2 Corollary. Let g1, . . . , gm and h1, . . . , hm be elements in Isom(Hn
R).

And let x, x1, . . . , xm be base points in Hn
R. Then

dx(gm · · · g1, hm · · ·h1) ≤
m∑
i=1

ed(xi,gi−1···g1x)dxi(gi, hi)

and particularly when x = x1 = · · · = xn,

dx(gm · · · g1, hm · · ·h1) ≤
m∑
i=1

ed(x,gi−1···g1x)dx(gi, hi)

Lattice and injectivity radius

Let Λ be a lattice in G, that is, a discrete subgroup such that the quotient
Λ\G is of �nite volume.

1.2.3 Remark. When G is Isom+(Hn
R) and that the quotient Λ\Hn

R is a
manifold, its frame bundle may be identi�ed with Λ\ Isom+(Hn

R), so does
the frame bundle of Hn

R with Isom+(Hn
R). The geodesic �ow on the frame

bundle appears as a restriction of the action of Isom+(Hn
R) on Λ\ Isom+(Hn

R)
by multiplication on the right. Nevertheless, Λ\Hn

R need not be a manifold
in order to consider the manifold Λ\ Isom+(Hn

R) and the action by multipli-
cation on the right.

In general, each metric mx, since it is invariant by multiplication on
the left, induces a metric on the quotient Λ\G and, by a slight abuse of
notation, dx will indi�erently denote the original distance function on G and
the induced one on Λ\G.

1.2.4 De�nition. The injectivity radius at a point τ in Λ\G, with respect
to the distance dx based at a point x ∈ X, is de�ned as

injx(τ) =
1

2
inf

λ∈Λ−{1}
dx(λτ̃ , τ̃)

where τ̃ ∈ G is any lift of τ .
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1.2.5 Properties. The function injx is positive, Lipschitz continuous with

constant 1 and with respect to the distance dx and moreover satis�es

injx(τg) = (Rg
∗ injx)(τ) = injgx(τ).

One of its interests lies in that an inequality of the form

dx(λτ̃ , τ̃) < 2 injx(τ)

guarantees that the element λ ∈ Λ in question is trivial.

Proof. On the one hand, the function injx is positive because Λ is discrete.
On the other hand, for all τ and τ ′ in Λ\G, choosing any lifts τ̃ and τ̃ ′ such
that dx(τ̃ ′, τ̃) = dx(τ ′, τ),

injx(τ) ≤ 1

2
inf

λ∈Λ−{1}

(
dx(λτ̃ , λτ̃ ′)+dx(λτ̃ ′, τ̃ ′)+dx(τ̃ ′, τ̃)

)
≤ injx(τ ′)+dx(τ ′, τ)

so that, by symmetry,

| injx(τ ′)− injx(τ)| ≤ dx(τ ′, τ).

Finally, injx(τg) =
1

2
inf

λ∈Λ−{1}
dx(λτ̃g, τ̃g) =

1

2
inf

λ∈Λ−{1}
dgx(λτ̃ , τ̃) = injgx(τ).

If the lattice Λ is uniform, that is, the quotient Λ\G is compact, then
the function injx has a positive minimum. Moreover, since Rg∗ injx = injgx,
this minimum does not depend on x and may simply be denoted by inj(Λ).
In particular, an inequality of the form dx(λτ̃ , τ̃) < 2 inj(Λ) implies that λ
is trivial. Therefore, the uniform case seems simpler. In general, the use of
the functions injx ought to be necessary to deal with non uniformity.

1.2.2 Criteria to deform representations into a lattice

Of free groups

Let π denote the free group 〈S〉 generated by a �nite alphabet S.

1.2.6 Proposition. For any ε ≤ 1, any representation ρ : π → G and any

point x in X, if there exists a point τ in Λ\G satisfying

∀ s ∈ S dx(τ, τρ(s)) < ε injx(τ)

then, given any lift τ̃ of τ to G, there is a unique representation σ : π → Λ
close to ρ in the sense that

∀ s ∈ S dx(σ(s)τ̃ , τ̃ ρ(s)) < ε injx(τ).
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1.2.7 Remarks. 1. When τ̃ is the identity element ofG, the last inequal-
ity becomes dx(σ(s), ρ(s)) < ε injx(τ) which simply means that ρ and
σ are close points in Hom(π,G) regarded as GS . When τ̃ is arbitrary,
it means that the conjugacy classes of ρ and σ are close points in the
topological quotient Hom(π,G)/G.

2. It is not judicious to con�ne τ̃ to be the identity element, since it would
break the symmetry that exists between x, τ and ρ. Indeed, for any
x, τ , ρ satisfying the condition of the proposition and for any g in G,
the elements gx, τg−1, gρg−1 satisfy the condition as well.

3. This fact also answers the question about how the condition of the
proposition depends on the point x. Changing the point x comes down
to changing τ and ρ as described above. Thus, x may be chosen once
and for all, so that the only unknown is τ . In particular, the represen-
tation ρ stays in the same conjugacy class.

Proof. For each generator s in S, since

dx(τ, τρ(s)) = inf
λ∈Λ−{1}

dx(λτ̃ , τ̃ρ(s))

there exists an element λs in Λ such that

dx(λsτ̃ , τ̃ ρ(s)) = dx(τ, τρ(s)) < ε injx(τ).

The element λs is unique. Indeed, if λ′s were another element of Λ satisfying
the latter inequality, then

dx(λ−1
s λ′sτ̃ , τ̃) = dx(λ′sτ̃ , λsτ̃) < 2ε injx(τ) ≤ inf

λ∈Λ−{1}
dx(λτ̃ , τ̃)

would imply that λ−1
s λ′s = 1, that is λs = λ′s. Finally the morphism σ : π →

Λ, de�ned on the generators of S by σ(s) = λs, satis�es the conclusion of
the proposition.

Of a fundamental group of a pair of pants

Let π denote the presented group 〈c1, . . . , cm|cm · · · c2c1 = 1〉 (withm greater
than 1) which can be naturally viewed as a fundamental group of a surface
di�eomorphic to the complement in a sphere of m open discs (whose closures
are disjoint). When m is three, such a surface is often called a pair of pants.
Although the group in question may be seen as a free group with m − 1
generators, one has to keep in mind that the group comes with a speci�c
presentation.
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1.2.8 Proposition. For any ε ≤ 31/m − 1, any representation ρ : π → G
and any family of points (xj)j∈Z/mZ in X such that xj+1 = ρ(cj)xj for all j
in Z/mZ, if there exists a point τ in Λ\G satisfying

∀ j ∈ Z/mZ dxj (τ, τρ(cj)) < ε injxj (τ)

then, given any lift τ̃ of τ to G, there is a unique representation σ : π → Λ
close to ρ in the sense that

∀ j ∈ Z/mZ dxj (σ(cj)τ̃ , τ̃ ρ(cj)) < ε injxj (τ).

Proof. For each j in Z/mZ, since

dxj (τ, τρ(cj)) = inf
λ∈Λ

dxj (λτ̃ , τ̃ρ(cj))

there exists λj in Λ satisfying dxj (λj τ̃ , τ̃ ρ(cj)) = dxj (τ, τρ(cj)) ≤ ε injxj (τ).

Each element λj is unique since ε ≤ 31/m − 1 ≤
√

3− 1 ≤ 1.
In order to de�ne the representation σ on the generators as σ(cj) = λj ,

the elements λj must satisfy the relation λm · · ·λ2λ1 = 1. It su�ces to show
that dx1(λm · · ·λ1τ̃ , τ̃) < 2 injx1(τ). Now, for all 1 ≤ p ≤ q ≤ m,

dxp(λq · · ·λpτ̃ , τ̃ ρ(cq · · · cp))

≤
q∑
j=p

dxp(λq · · ·λj τ̃ ρ(cj−1 · · · cp), λq · · ·λj+1τ̃ ρ(cj · · · cp))

=

q∑
j=p

dρ(cj−1 · · · cp)xp︸ ︷︷ ︸
xj

(λj τ̃ , τ̃ ρ(cj))

< ε

q∑
j=p

injxj (τ)

Now | injxj+1
(τ) − injxj (τ)| = | injxj (τρ(cj)) − injxj (τ)| ≤ dxj (τ, τρ(cj)) im-

plies that (1− ε) injxj (τ) < injxj+1
(τ) < (1 + ε) injxj (τ) and thus

dxp(λq · · ·λpτ̃ , τ̃ ρ(cq · · · cp)) < ε(1 + (1 + ε) + · · ·+ (1 + ε)(q−p)) injxp(τ)

= ((1 + ε)(q−p+1) − 1) injxp(τ).

In particular, for p = 1 and q = m, since ρ(cm · · · c1) = 1,

dx1(λm · · ·λ1τ̃ , τ̃) < ((1 + ε)m − 1) injxp(τ).

Finally it su�ces to have (1 + ε)m − 1 ≤ 2 which happens exactly when
ε ≤ 31/m − 1.
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1.2.3 Application of mixing

Since one is interested in Lie groups in some generality, a suitable statement
about mixing is the following theorem of Roger Howe and Calvin Moore
[Ben09, Theorem 3.2].

1.2.9 Theorem. Let G be a semi-simple connected real Lie group with �nite

center and R : G → U(H) be a unitary representation of G in a Hilbert

space H whose inner product is denoted by 〈· | ·〉. If the subspace HN of

N -invariant vectors is {0} for every non-trivial connected normal subgroup

N of G, then for all v, w in H,

lim
g→∞

〈R(g) v | w〉 = 0.

A fundamental example of such a representation is that of the Hilbert
space L2(Λ\G) of square-integrable functions on the quotient Λ\G. Indeed,
the action of G on this space is de�ned, for all v ∈ L2(Λ\G) and τ ∈ Λ\G,
as

(g · v)(τ) = v(τg).

The action is unitary because G contains a lattice, so it is unimodular and
the Haar measure is invariant on both sides. Since the constant functions
are obviously G-invariant, the condition of the theorem is far from being
satistied and one should instead consider the hyperplan H orthogonal to
the constant functions, often denoted by L2

0(Λ\G). Yet there may be non-
zero N -invariant vectors if G has non-trivial connected normal subgroups N .
This di�culty may be easily avoided by assuming that the connected real
Lie group G is simple, that is, its Lie algebra is simple. In that case, the
condition of theorem 1.2.9 boils down to HG = {0} which is satis�ed since
the action of G on Λ\G is transitive so that any vector in H invariant by G
must be constant and hence trivial.

1.2.10 Corollary. Let Λ be a lattice in a simple connected real Lie group G
with �nite center. Then for all v, w in L2(Λ\G), the quantity∫

Λ\G
v(τ)w(τg) dτ converges to

1

vol(Λ\G)

∫
Λ\G

v

∫
Λ\G

w

when g goes to in�nity (leaves every compact set).

In order to invoke the previous statement, a little preparation is needed.
First, let π denote the free group 〈S〉 generated by a �nite alphabet S.

1.2.11 Lemma. For any ε ∈ (0, 1], any representation ρ : π → G and any

point x in X, if there exist a point τ in Λ\G and a family of points (τs)s∈S
in Λ\G satisfying

∀ s ∈ S dx(τs, τ) <
ε

2 + ε
injx(τs) and dx(τs, τρ(s)) <

ε

2 + ε
injx(τs)

then ρ, x and τ satisfy the condition of proposition 1.2.6.
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Proof. For each generator s,

injx(τs) ≤ injx(τ) + dx(τ, τs) < injx(τ) +
ε

2 + ε
injx(τs)

therefore
2

2 + ε
injx(τs) < injx(τ)

and dx(τ, τρ(s)) ≤ dx(τ, τs) + dx(τs, τρ(s)) ≤ 2ε

2 + ε
injx(τs) ≤ ε injx(τ).

Although this lemma seems insigni�cant and its proof elementary, its
interest lies in that τ and τρ(s) do not appear anymore as variables of the
same function.

As for the presented group 〈c1, . . . , cm|cm · · · c2c1 = 1〉, a similar state-
ment is true.

1.2.12 Lemma. For any ε ∈ (0, 31/m − 1], any representation ρ : π → G
and any family of points (xj)j∈Z/mZ in X such that xj+1 = ρ(cj)xj for all j
in Z/mZ, if there exist a point τ and a family of points (τj)j∈Z/mZ in Λ\G
satisfying

dxj (τj , τ) ≤ ε

2 + ε
injxj (τj) and dxj (τj , τρ(cj)) ≤

ε

2 + ε
injxj (τj)

for all j in Z/mZ, then ρ, (xj)j∈Z/mZ and τ satisfy the condition of propo-

sition 1.2.8.

The second lemma is not going to be used but is nevertheless stated in
order to persuade that the obstacles preventing from dealing with arbitrary
�nitely presented groups are perhaps not related to this part of the reasoning.
Besides the care taken so far to keep a tight rein on the quanti�cators is
shattered by the non-quantitative statements about mixing. Hence there is
no real interest anymore to distinguish between di�erent presentations of the
free group.

1.2.13 Theorem. Let G be a simple connected real Lie group with �nite

center, Λ a lattice in G and π a �nitely generated free group. Let S =
{s1, s2 . . .} be some free generating set of π, x be a point in X and ε ≤ 1.
Any representation ρ : π → G, such that ρ(s1) leaves some large enough

compact set K1 and that ρ(s2) leaves some large enough compact set K2

depending on ρ(s1) and so on, admits a small deformation conjugate to a

representation σ : π → Λ: more precisely, there exist τ in Λ\G and a lift τ̃
in G such that

∀ s ∈ S dx(σ(s)τ̃ , τ̃ ρ(s)) < ε injx(τ).
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Proof. Let S = {s1, s2 . . .} be a free generating set of π, x be a point in X
and ε be in (0, 1]. Denote by kε : (Λ\G)2 → R+ the function de�ned as
kε(τ

′, τ) = 1 when

dx(τ ′, τ) <
ε

2 + ε
injx(τ ′)

and 0 otherwise. Then a representation ρ : π → G satis�es the condition of
lemma 1.2.11 and hence that of proposition 1.2.6, whenever the integral∫

Λ\G

dτ
vol(Λ\G)

∫
(Λ\G)S

∏
s∈S

kε(τs, τ)kε(τs, τρ(s)) dτs

is positive. Since the integrand is bounded between 0 and 1 and that Λ\G is
of �nite measure, Lebesgue's dominated convergence theorem and corollary
1.2.10 imply that

lim
ρ(s1)→∞

lim
ρ(s2)→∞

· · ·
∫

Λ\G

dτ
vol(Λ\G)

∫
(Λ\G)S

∏
s∈S

kε(τs, τ)kε(τs, τρ(s)) dτs

=

∫
(Λ\G)S

([∫
Λ\G

∏
s∈S

kε(τs, τ)
dτ

vol(Λ\G)

]∏
s∈S

[∫
Λ\G

kε(τs, τ)
dτ

vol(Λ\G)

]
dτs

)

where the successive limits lim
ρ(s1)→∞

, lim
ρ(s2)→∞

and so on, are taken for every

generator s in S, in the order of their indices s1, s2. . . Since the limit is
positive, it means that if ρ(s1) leaves some compact set K1 and that ρ(s2)
leaves some compact set K2 depending on ρ(s1) and so on, then the point
x and the representation ρ satisfy the condition of lemma 1.2.11 and thus
there exists a representation σ : π → Λ close to ρ, up to conjugacy, in the
sense of proposition 1.2.6.
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Chapter 2

Representations of 3-manifolds

Some notations, terminology and properties about the complex projective
space, blow-ups in local charts and branched covering maps are given in
appendices A.1 and A.2.

2.1 A complex hyperbolic surface

This section presents a particular construction of smooth complex algebraic
surfaces, studied by Hirzebruch [Hir83]. Namba gave a more developed treat-
ment [Nam87, section 1.4, example 6]. See also [Tre16] for generalizations.
These algebraic varieties are obtained by resolving the singularities of some
branched covering spaces of the complex projective plane. Under some con-
ditions (see theorem 2.1.13), the surfaces happen to be quotients of the
complex hyperbolic plane H2

C by a lattice.

2.1.1 Construction of Hirzebruch

Consider an arrangement of a number k (greater than 2) of lines D1, . . . , Dk

in P2 whose equations are respectively `1 = 0, . . . , `k = 0 where `1, . . . , `k
are linear forms in the homogeneous coordinates z1, z2, z3. Assume that not
all lines of the arrangement pass through one point. And let n be an integer
greater than 1.

2.1.1 Example. The complete quadrilateral arrangement in P2 is formed
by the lines connecting each pair among four points in general position, that
is to say, no three of them are colinear. There are three double intersection
points and four triple ones which are the initial four points.

Any such four points are equivalent up to a projective transformation.
Indeed, any three of the lines, not having a common triple point, give an
a�ne coordinate system and, in suitable homogeneous coordinates [z1 : z2 :
z3], the arrangement is given by the equation

z1z2z3(z2 − z1)(z3 − z2)(z1 − z3) = 0
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Figure 2.1: The complete quadrilateral arrangement.

and the four triple points by [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]. If one
sets z4 = 0, then the arrangement consists of the lines Dab de�ned by the
equation za − zb = 0 where {a, b} is any (unordered) subset of {1, 2, 3, 4}.

2.1.2 Remark. In [YY84], the authors set z0 = 0 instead of z4 = 0. This
di�erence in the choice of indices, apparently insigni�cant, will prove helpful
later.

2.1.3 Proposition (see [Hir83]). The extension C(P2)
((

`2
`1

)1/n
, . . . ,

(
`k
`1

)1/n)
of the function �eld C(P2) determines a normal algebraic surface X and an

abelian branched covering map χ : X → P2 of degree nk−1, rami�ed over the

arrangement of lines with index n.

The proposition is shown by de�ning and describing a complex surfaceX ′

and relating it toX in lemma 2.1.4, then by characterizing the singularities of
X ′ in lemmas 2.1.6, 2.1.7 and 2.1.10 and �nally by showing in corollary 2.1.8
that X ′ = X. Furthermore, lemma 2.1.7 states that the smooth complex
surface Y obtained by resolving the singularities of X is an abelian branched
covering space of some blow-up P̂2 of the projective plane P2. Local charts
of Y are given in corollary 2.1.9. Lemma 2.1.11 describes the rami�cations
of the branched covering map Y → P2.

See example A.2.1 for the de�nition of the branched covering map cn.

2.1.4 Lemma ([Nam87, Lemma 1.4.6]). Let X ′ be the �ber product with
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respect to the diagram

X ′

χ′ ����

// Pk−1

cn����
P2

`
// Pk−1

where ` : P2 → Pk−1 maps [z] = [z1 : z2 : z3] to [`1(z) : · · · : `k(z)].
The morphism χ′ : X ′ → P2 is an abelian branched covering map of

degree nk−1 and which rami�es over the arrangement of lines with index n.
Moreover, the Galois group Aut(χ′) is naturally isomorphic to Aut(cn).

The normalization of X ′ is isomorphic to X.

Proof. As a set, the �ber product may be de�ned as

X ′ = {(p, r) ∈ P2 × Pk−1 | `(p) = cn(r)}

and the morphisms X ′ → P2 and X ′ → Pk−1 as the restrictions to X ′ of the
projections pr1 : P2 × Pk−1 → P2 and pr2 : P2 × Pk−1 → Pk−1, respectively,
on the �rst and on the second component. In particular, the �ber χ′−1(p)
of a point p lying on exactly m lines of the arrangement consists of nk−1−m

distinct points. Hence χ′ is a branched covering map of degree nk−1, rami�ed
over the arrangement of lines with index n.

Aut(cn) acts on P2×Pk−1, trivially on the �rst component and naturally
on the second. Hence this action restricts to an action on X ′ by automor-
phisms of Aut(χ′). Since the �bers under χ′ and cn are the same and that
Aut(cn) acts transitively on the �bers, Aut(cn) and Aut(χ′) are naturally
isomorphic.

Finally, let N → X ′ be the normalization of X ′. The composition of
N → X ′ andX ′ → P2 is a mappingN → P2 such that the induced morphism
of function �elds C(P2)→ C(N) is exactly the extension

C(P2) −→ C(P2)
((`2
`1

)1/n
, . . . ,

(`k
`1

)1/n)
Therefore N is isomorphic to X.

2.1.5 Remark. The group Aut(χ) is generated by the k automorphisms
denoted by αD, indexed by the lines D of the arrangement, satisfying for
any lines D′ and D′′ of the arrangement(

`D′

`D′′

)1/n

◦ αD = e
2πi
n

(δD,D′−δD,D′′ )
(
`D′

`D′′

)1/n

where δ is the Kronecker delta. The product
∏
D

αD is the identity.

For every line D of the arrangement, the automorphism αD corresponds
to a small loop turning around D counterclockwise.
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2.1.6 Lemma. A point q in X ′ is singular if and only if its image χ′(q) in

P2 lies on more than two lines of the arrangement.

Proof. Let q be a point in X ′ in the �ber of a point p in P2 lying on exactly
m lines of the arrangement, say D1, . . . , Dm. The map cn is de�ned in
homogeneous coordinates as

cn([u1 : · · · : un]) = [u1
n : · · · : ukn].

Choose a�ne coordinates

(v1, . . . , vk−1) =

(
u1

uk
, . . . ,

uk−1

uk

)
for Pk−1, so that the de�ning equations of X ′ in the neighborhood of q are

vs
n =

us
n

ukn
=
`s
`k

for s from 1 to k − 1.
Choose also a�ne coordinates (w1, w2) for P2 centered at p. For s be-

tween 1 and k − 1, `s`k may be written as αsw1 + βsw2 + γs where αs, βs, γs
are complex numbers. Consider the map de�ned in these local coordinates
by

(w1, w2, v1, . . . , vk−1) 7−→ (vs
n − αsw1 − βsw2 − γs)1≤s≤k−1

whose Jacobian matrix is the following.
−α1 −β1 nv1

n−1

−α2 −β2 nv2
n−1

...
...

. . .
−αk−1 −βk−1 nvk−1

n−1


When none of the coordinates v1, . . . , vk−1 vanishes, which is generically

true, the matrix is of rank k − 1. Since the lines of the arrangement to
which p belongs are exactly D1, . . . , Dm, the coordinates among v1, . . . , vk−1

that vanish at q are exactly v1, . . . , vm. Hence the k − 1 by k − 1 diagonal
submatrix, formed by the last k − 1 columns, is of rank k − 1 − m. And
the submatrix formed by the �rst m lines of the �rst two columns is of rank
min(2,m): indeed, it is equal to the rank of the family of the non-zero distinct
linear forms (w1, w2) 7→ αsw1 + βsw2, for s from 1 to m (the coe�cients γs
are equal to zero). Therefore the rank of the Jacobian matrix at q is

min(2,m) + k − 1−m = min(k − 1, k − 1 + 2−m).

Ifm ≤ 2, the Jacobian matrix is of rank k−1 everywhere in the neighborhood
of q, so that q is a smooth point of X ′.
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If m > 2, one may assume, up to changing the local coordinates (w1, w2)
of P2, that the equations in that chart of the lines D1 and D2 are respectively

α1w1 + β1w2 = w1 = 0 and α2w1 + β2w2 = w2 = 0.

Then w1 = v1
n and w2 = v2

n and the de�ning equations of X ′ in the local
charts may be written, after eliminating w1 and w2, as

αsv1
n + βsv2

n = vs
n

for s from 3 to m (in the neighborhood of q, the coordinates w1, w2, vm+1,
. . . , vk−1 are holomorphic functions in the coordinates v1, . . . , vm). Since
those equations are homogeneous, X ′ has a singularity at q.

2.1.7 Lemma ([Nam87, Proposition 1.4.9]). The singularities of X ′ may be

resolved by adequate blow-ups, so as to obtain a smooth algebraic surface Y

and a morphism ρ : Y → X ′. Moreover, let τ : P̂2 → P2 denote the blow-up

of the projective plane at each of its points where more than two lines of

the arrangement meet. There exists a morphism σ : Y → P̂2 such that the

following diagram is commutative.

Y
ρ //

σ ����

X ′

χ′����
P̂2

τ
// P2

σ is a branched covering map of degree nk−1 and rami�es over the proper

transforms in P̂2 of the lines of the arrangement and over the exceptional

curves P(TpP2). The rami�cation indices are equal to n.

Proof. Each singular point q of X ′ is resolved by speci�c blow-ups, which
may be described locally. Assume that q is in the �ber of a point p in P2 lying
on a number m (greater than 2) of lines of the arrangement, say D1, . . . , Dm.

As in the proof of the previous lemma, consider the a�ne coordinate
system (v1, . . . , vk−1) of Pk−1. Blow up the (v1, . . . , vm)-space by considering
the m coordinate charts, indexed by an integer r between 1 and m,

(v1|r, . . . , vr−1|r, vr, vr+1|r, . . . , vm|r, vm+1, . . . , vk−1)

de�ned by vs|r = vs/vr for s between 1 and m, di�erent from r. Up to
a permutation of the indices 1, . . . ,m, one may assume for simplicity that
r = 1.

Then choose an a�ne coordinate system (w1, w2) of P2, centered at p
and where

`1
`k

= w1 and
`2
`k

= w2.
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The linear forms de�ning the arrangement of lines may be written as

`s
`k

= αsw1 + βsw2 + γs

for s between 1 and k − 1 where αs, βs, γs are complex numbers such that
γs = 0 for s between 1 and m. Blow up the (w1, w2)-space by considering
the coordinate charts (w1, w2|1) and (w1|2, w2) de�ned by w2|1 = w2/w1 and
w1|2 = w1/w2.

In those local coordinates, the equations de�ning X ′ become

v1
n = w1

vs|1
n = αs + βsw2|1 for 2 ≤ s ≤ m

vs
n = αsw1 + βsw1w2|1 + γs for m < s < k.

Similarly to the proof of the previous lemma, the Jacobian matrix of an
adequate map associated to those equations is the following.



−1 0 nvn−1
1

−α2 −β2 nvn−1
2|1

...
...

...
−αm −βm nvn−1

m|1

−αm+1−βm+1w2|1 −βm+1w1 nvn−1
m+1

...
...

. . .
−αk−1−βk−1w2|1 −βk−1w1 nvn−1

k−1



On the one hand, its rank is again generically k− 1. On the other hand,
the exceptional divisor, that is the curve obtained by resolving the singular
point q, is de�ned in the new coordinates by the equation v1 = 0. At any
point in the exceptional divisor, the coordinates vm+1, . . . , vk−1 never van-
ish and no two of the coordinates v2|1, . . . , vm|1 may vanish simultaneously.
Indeed, according to the equations, it would mean that such a point in the
exceptional divisor belongs to the proper transforms of two lines of the ar-
rangement passing through p, which is impossible because of the blow-up.
A point on the exceptional divisor may belong at most to one of the proper
transforms of the lines D1, . . . , Dm. In any case � for example when it be-
longs to D2 � the Jacobian matrix is of rank k − 1. Consequently, those
equations de�ne locally a smooth surface Y .

Besides, in the coordinate charts where Y has been locally de�ned and
outside of the points where vs|1 = 0 (for some s between 3 and m) or vs = 0
(for some s betweenm+1 and k−1), the coordinates v3|1, . . . , vm|1, vm+1, . . . ,
vk−1 are locally holomorphic functions of the coordinates v1, v2|1. Therefore,
(v1, v2|1) is a holomorphic coordinate system on a neighborhood in Y of the
point satisfying v1 = v2|1 = 0.
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Finally, the morphisms χ′ : X ′ → P2, τ : P̂2 → P2 and the projection,
denoted by ρ : Y → X ′, are de�ned in the coordinate charts by

χ(w1, w2, v1, . . . , vk−1) = (w1, w2)

τ(w1, w2|1) = (w1, w2|1w1)

ρ(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk)

= (w1, w2|1w1, v1, v2|1v1, . . . , vm|1v1, vm+1, . . . , vk)

The morphism σ : Y → P̂2 de�ned locally by

σ(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk) = (w1, w2|1)

is such that χ′ ◦ ρ = τ ◦ σ.
Away from the exceptional divisor of ρ, the mapping σ behaves exactly

like the branched covering map χ′. And in the neighborhood of the excep-
tional divisor, for instance in the (v1, v2|1) coordinate system, σ(v1, v2|1) =
(w1, w2|1) = (v1

n, v2|1
n).

2.1.8 Corollary. The variety X is normal and X = X ′.

Proof. According to lemma 2.1.7, the singularities of X ′ may be resolved
by blow-ups. Hence the singularities are normal and the variety X ′ too.
On the other hand, the normalisation of X ′ is X according to lemma 2.1.4.
Therefore, X = X ′.

2.1.9 Corollary. The variety Y is obtained by gluing together a family of

a�ne algebraic varieties ZD1,D2,Dk , indexed by any three lines D1, D2, Dk of

the arrangement such that Dk does not pass through the intersection point of

D1 and D2.

More precisely, if P2 is endowed with the a�ne coordinate chart (w1, w2)
where

`1
`k

= w1 and
`2
`k

= w2

and, for s between 3 and k − 1,

`s
`k

= αsw1 + βsw2 + γs

with γs = 0 if and only if s is not greater than some integerm, then ZD1,D2,Dk

is de�ned in the a�ne space, with coordinates

(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1),
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by the equations

v1
n = w1

vs|1
n = αs + βsw2|1 for 2 ≤ s ≤ m

vs
n = αsw1 + βsw1w2|1 + γs for m < s < k.

The gluing of the a�ne varieties is given by the relations between the coor-

dinates.

2.1.10 Lemma. If a point p in P2 belongs to a number m, greater than 2,
of lines of the arrangement, say D1, . . . , Dm, then each singular point q of

X over p is resolved into a smooth curve C and the restriction σ|C : C →
P(TpP2) is a branched covering map.

C �
� //

σ|C
����

Y
ρ //

σ ����

X

χ
����

P(TpP2) �
� // P̂2

τ
// P2

More precisely, σ|C is of degree nm−1, rami�ed over the m points in P(TpP2)
corresponding to the directions in TpP2 tangent to the lines of the arrange-

ment passing through p. The Euler characteristic of C is e(C) = nm−1(2 −
m) +m · nm−2.

Proof. Let C denote ρ−1(q). In the typical coordinate chart

(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

used in the proof of the previous lemma to resolve the singularities, C is
locally de�ned by the equations

v1 = 0
w1 = 0
vs|1

n = αs + βsw2|1 for 2 ≤ s ≤ m
vs
n = γs for m < s < k

and vm+1, . . . , vk−1 are in fact uniquely determined by the choice of q in the
�ber of p. The morphism σ|C is de�ned in this coordinate system as

σ|C(0, w2|1, 0, v2|1, . . . , vm|1, vm+1, . . . , vk−1) = (0, w2|1) = (0, v2|1
n).

Therefore, σ|C is a branched covering map of degree nm−1, rami�ed over m
points in P(TpP2) with index n, and the Euler characteristic of C is

e(C) = nm−1(e(P(TpP2))−m) +m
nm−1

n
= nm−1(2−m) +m · nm−2.

See remark 2.1.5 for the de�nition of the automorphisms αD of χ.
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2.1.11 Lemma. Every automorphism α of χ extends as an automorphism

of σ which coincides with α outside of the exceptional divisor of ρ : Y → X.

For each singular point q in X, lying over a point p in P2, StabAut(χ)(q)
is generated by the automorphisms αD, for the lines D of the arrangement

passing through p.
The automorphism of χ corresponding to a small loop turning around

P(TpP2) counterclockwise is ∏
D3p

αD.

Finally, the Galois group Aut(σ|C) of σ|C : C → P(TpP2) is isomorphic

to the quotient of StabAut(χ)(q) by the cyclic subgroup generated by∏
D3p

αD.

2.1.12 Notation. By a slight abuse of notation, αD or the letter α will
indi�erently denote automophisms of Pk−1, of X, of Y or even of C.

Proof. In order to show that the automorphisms of χ extend as automor-
phisms of σ, it su�ces to prove it for the generators αD. Furthermore it
su�ces to prove it locally (see 2.1.9).

Let p be a point in P2 which belongs to a number m, greater than 2,
of lines of the arrangement, say D1, . . . , Dm, and let q be a singular point
in X over p. Consider, without loss of generality, the (w1, w2, v1, . . . , vk−1)
coordinate system of X and the (w1, w2|1, v1, v2|1 . . . , vm|1, vm+1, . . . , vk−1)
coordinate system of Y . The point p has coordinates (w1, w2) = (0, 0) and
q has coordinates of the form (0, . . . , 0, vm+1, . . . , vk−1) where vs is not zero
for m < s < k.

In that coordinate system of X,

• if D is not the line at in�nity Dk,

αD(w1, w2, v1, . . . , vk−1) = (w1, w2, v1, . . . , vs−1, e
2πi
n vs, vs+1, . . . , vk−1)

for some s,

• if D is Dk,

αD(w1, w2, v1, . . . , vk−1) = (w1, w2, e
− 2πi

n v1, . . . , e
− 2πi

n vk−1).

Therefore, in that coordinate system of Y ,

1. if D is the line D1 de�ned by the equation w1 = 0,

αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, e
2πi
n v1, e

− 2πi
n v2|1, . . . , e

− 2πi
n vm|1, vm+1, . . . , vk−1),
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2. if D passes through p in P2 but is not D1,

αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, v1, v2|1, . . . , vs−1|1, e
2πi
n vs|1, vs+1|1, . . . , vm|1, vm+1, . . . , vk−1)

for some s,

3. if D is Dk,

αD(w1, w2|1, v1, v2|1 . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, e
− 2πi

n v1, v2|1, . . . , vm|1, e
− 2πi

n vm+1, . . . , e
− 2πi

n vk−1),

4. if D does not pass through p in P2 and is not Dk,

αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vs−1, e
2πi
n vs, vs+1, . . . , vk−1)

for some s.

In each case, αD extends to the exceptional divisor of ρ : Y → X.
Since q has coordinates of the form (0, . . . , 0, vm+1, . . . , vk−1) where vs

is not zero for m < s < k, it appears that StabAut(χ)(q) is the subgroup
generated by the automorphisms αD1 , . . . , αDm .

Consider a loop in P̂2

γ :

{
[0, 2π] −→ P̂2

t 7−→ (w1(t), w2|1(t)) = (εeit, w2|1(0))

turning around P(TpP2) and not meeting the proper transforms of the lines
D1, . . . , Dm (ε is arbitrarily small and w2|1 is constant). Finding a lift γ̃ :
[0, 2π]→ Y of γ amounts to �nding continuous functions v1, v2|1, . . . , vm|1,
vm+1, . . . , vk−1 satifying the equations

v1(t)n = w1(t)
vs|1(t)n = αs + βsw2|1(t) for 2 ≤ s ≤ m
vs(t)

n = αsw1(t) + βsw1(t)w2|1(t) + γs for m < s < k

that is to say

v1(t)n = εeit

vs|1(t)n = vs|1(0)n for 2 ≤ s ≤ m
vs(t)

n = vs(0)n + ε(αs + βsw2|1(0))(eit − 1) for m < s < k.

Thus

γ̃(2π) = (w1(0), w2|1(0), e
2πi
n v1(0), v2|1(0), . . . , vm|1(0), vm+1(0), . . . , vk−1(0))

= α1 ◦ α2 ◦ · · · ◦ αm(γ̃(0))
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Since σ|C is the restriction of the Galois branched covering map σ, the
morphism StabAut(χ)(q)→ Aut(σ|C) is surjective. The automorphism∏

D3p
αD

�xes C so it is in the kernel of StabAut(χ)(q) → Aut(σ|C). Finally, since
StabAut(χ)(q) has nm elements and that Aut(σ|C) has as many element as
the degree of σ|C , that is n

m−1, the morphism StabAut(χ)(q) → Aut(σ|C) is
bijective, for cardinality reasons.

2.1.13 Theorem (Miyaoka-Yau [Miy83]). If the Chern classes of a compact

complex surface Y of general type satisfy

c1(Y )2 = 3c2(Y )

then Y is the quotient of the complex hyperbolic plane H2
C by a lattice.

In [Hir83], Hirzebruch �nds three cases where, given an arrangement
of lines and a exponent n, the corresponding surface Y is of general type
and satis�es c1(Y )2 = 3c2(Y ). Therefore those surfaces admit a complex
hyperbolic structure. Hirzebruch denotes them by Y1, Y2 and Y3.

2.1.14 Example. The surface Y1 corresponds to the complete quadrilateral
arrangement and to the exponent n = 5. Hence σ : Y1 → P̂2 is a branched
covering map of degree 55 which rami�es over the six lines of the arrangement
and the four exceptional curves, all with index 5.

The present thesis focuses on the surface Y1.

2.1.2 Complex hyperbolic lattice

T. Yamazaki and M. Yoshida [YY84] have determined a lattice, that they
denote byG1, in the group of automorphisms of the complex hyperbolic plane
H2

C such that P̂2 appears as the quotient of H2
C by G1 and that Hirzebruch's

surface Y1 is the quotient by the commutator subgroup [G1, G1].

More precisely, P̂2 has the structure of a complex hyperbolic orbifold and
Y1 that of a complex hyperbolic manifold. Despite the orbifold structure, P̂2

is simpler than Y1 and re�ects also the complex hyperbolic structure.

Choose a base point a in the complement D of the branch locus of P̂2

and a loop ρ(ij) based at a, for i, j ∈ {0, 1, 2, 3} with i < j, turning around
Dij . A group presentation of the fundamental group π1(D, a) is given by the
generators ρ(ij) and the relations

[ρ(ij)ρ(ik)ρ(jk), ρ(ij)] = 1,
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[ρ(ij)ρ(ik)ρ(jk), ρ(ik)] = 1,

[ρ(ij)ρ(ik)ρ(jk), ρ(jk)] = 1

for i < j < k and

ρ(01)ρ(02)ρ(12)ρ(03)ρ(13)ρ(23) = 1.

Let µ be exp(2πi3
5). The group G1 is the image of the representation R :

π1(D, a)→ PGL3(C) de�ned by R(ρ(ij)) = R(ij) where

R(12) = I3 +

−µ(1− µ) µ(1− µ) 0
1− µ −(1− µ) 0

0 0 0


R(23) = I3 +

0 0 0
0 −µ(1− µ) µ(1− µ)
0 1− µ −(1− µ)


R(13) = I3 +

 −µ(1− µ) 0 µ(1− µ)
(1− µ)(1− µ) 0 −(1− µ)(1− µ)

1− µ 0 −(1− µ)


R(01) = I3 +

 µ2 − 1 0 0
µ(1− µ) 0 0
µ(1− µ) 0 0


R(02) = I3 +

0 −(1− µ) 0
0 µ2 − 1 0
0 −µ(1− µ) 0


R(03) = µI3 + µ

0 0 −(1− µ)
0 0 −(1− µ)
0 0 µ2 − 1


In fact, G1 is contained in the projective unitary group whose Hermitian
form of signature (+,+,−) is given by the Hermitian matrix

A1 =


−1
µ+µ µ 1

µ −1
µ+µ µ

1 µ −1
µ+µ

 .

2.2 The pencil of conics, an example of Lefschetz
�bration

A Lefschetz �bration P̂2 → P1 is de�ned in this section and will allow to
derive a similar one Y1 → C in section 2.4.

A conic in the complex projective plane P2 is the zero-locus of a quadratic
form in the variables z1, z2, z3. The vector space Sym2(C3∗) of all quadratic
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Figure 2.2: The pencil of conics. A generic �ber in red and one of the 3
singular �bers in blue.

forms on C3 is of dimension 6. Since the one and only way for two quadratic
forms to de�ne the same conic is to be proportional, the set of conics may
be naturally identi�ed with the projective space P(Sym2(C3∗)).

The set of conics passing through four points given in P2, none three of
which lie on the same line, say p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1],
p4 = [1 : 1 : 1], corresponds to a line in P(Sym2(C3∗)). For any �fth point
(distinct from the �rst four), there is exactly one conic passing through the
�ve points. And even when the �fth point happens to collide with any
point p among the �rst four, prescribing in addition any line in the tangent
plane TpP2, there is again exactly one conic passing through p1, . . . , p4 and
tangent to that line. Following the previous considerations, there is a natural
mapping f : P̂2 → P1, where P̂2 denotes the projective plane blown up at
the four points. Each exceptional curve in P̂2, obtained by blowing up a
point p among the four, is naturally identi�ed with P(TpP2). The map f is

a �bration whose �bers are the proper transforms in P̂2 of the conics passing
through the four points. Moreover, for each point p among the four, f admits
sections P1 → P(TpP2) which maps a conic to its tangent line at p.

P(TpP2) �
� // P̂2

f
����

P1
##

ccGGGGGGGGG
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Among those conics, represented by points in P1, exactly three are singu-
lar. Each of them is the union of two lines, one passing through two among
the four points and the second passing through the two others. Those six
lines together form the complete quadrilateral arrangement. The points in
P(TpP2) corresponding to the singular conics are the lines of the arrangement
passing through p.

In coordinates, the pencil of conics may be de�ned as

[z1 : z2 : z3] 7→ [(z1 − z3)z2 : z1(z2 − z3)].

This is a rational mapping de�ned everywhere except at the points p1 = [1 :
0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1] where the polynomials
(z1 − z3)z2 and z1(z2 − z3) vanish simultaneously. Nevertheless, blowing
up the projective plane at one of the four points, say p3, one ends up with
local coordinate charts (w1, w2|1) and (w1|2, w2) de�ned as ws = zs/z3 and
wr|s = wr/ws, for r, s ∈ {1, 2}, where the rational mapping extends in the
neighborhood of the exceptional curve P(Tp3P2) as

(w1, w2|1) 7→ [(w1 − 1)w2|1 : w1w2|1 − 1]

and
(w1|2, w2) 7→ [w2w1|2 − 1 : w1|2(w2 − 1)].

Note that the �ber over [1 : 0] is the singular conic de�ned by z1(z2−z3) =
0, the one over [0 : 1] is de�ned by (z1 − z3)z2 = 0 and also the one over
[1 : 1] is de�ned by (z1− z2)z3 = 0. Those three are the only singular �bers.

The pencil of conics described above is a simple example of Lefschetz
pencil or �bration.

2.2.1 De�nition. A Lefschetz pencil or Lefschetz �bration f is respectively
a rational mapping or morphism from a complex surface S to a complex
curve C such that, for every point s in S (where f is de�ned),

1. either f is a submersion at s

2. or the di�erential dsf of f at s is zero but the second symmetric dif-
ferential d2

sf is a nondegenerate quadratic form.

2.2.2 Remarks.

1. The di�erence between a Lefschetz pencil or �bration is not worth
spending to much time in the present context, where it seems su�cient
to observe, in the example of the pencil of conics, that P2 → P1 is a
rational mapping undetermined at the four points, whereas f : P̂2 → P1

is well de�ned everywhere, after an adequate blow-up of P2.
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2. If f happens to be a submersion everywhere (and also proper, which
is guaranted when S is compact), then Ehresmann's �bration theorem
yields that f is a di�erentiable �ber bundle. In general, except over a
�nite number of points in C, f is a �ber bundle whose �ber is called
the generic �ber of the Lefschetz �bration.

3. Besides, the shape of the singular �bers are prescribed by the condition
2 in the previous de�nition. Indeed, at a point s of S where f is not
submersive, the holomorphic analogue of Morse lemma holds that there
exists local charts of S and C, centered at s and f(s) respectively, where
f is as simple as (x, y) 7→ xy. Hence, in the neighborhood of s and
up to a holomorphic transformation, the �ber passing through s is the
union of two lines intersecting normally.

4. The singular �bers are sometimes required to have only one singu-
lar point, but this additional condition is not essential in the present
account and is even unsatis�ed in the sequel.

2.2.3 Examples.

1. In the local coordinate chart

(x, y) =

(
z1 − z3

z1
,
z2

z2 − z3

)
centered at the point [1 : 0 : 1], the rational mapping de�ning the
pencil of conics is expressed as f(x, y) = [xy : 1], so f may be easily
expressed in the normal form without resorting to the Morse lemma.

2. In passing, many more examples of Lefschetz pencils arise in the way
the pencil of conics is de�ned above with coordinates. Indeed, choose
two homogeneous polynomials P and Q of a same nonzero degree d,
in the variables z1, z2, z3, with no common factor and consider the
rational mapping

[z1 : z2 : z3] 7−→ [P : Q]

undetermined at the points where P and Q vanish simultaneously.
The �ber over a point [λ : µ] is the curve de�ned by the equations
µP − λQ = 0 of degree d. In particular, the �ber over [0 : 1] is P = 0,
the �ber over [1 : 0] is Q = 0 and those two intersect at isolated point.
All of the �bers pass through the intersection points of P = 0 and
Q = 0. For this reason, the rational map is called the pencil generated
by P and Q and the set of points de�ned by P = Q = 0 is called the
base of the pencil. Moreover, Bézout's theorem holds that the total
number of intersection points of P = 0 and Q = 0, counted with their
multiplicities, is equal to the product of the degrees of P and Q.
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2.2.4 Theorem (Picard-Lefschetz formula). Let f : S → C be a Lefschetz

�bration where S and C are compact. In local charts of S and C, cen-

tered respectively at a singular point s of a singular �ber and at f(s), the
monodromy of the generic �ber, corresponding to a loop in C \ {p} turning
counterclockwise around p, is a right-handed Dehn twist.

D∗0

Figure 2.3: A right-handed Dehn twist and the monodromy along a loop
turning about the 0, of the �bration f : f−1(D) ∩ D2 → D.

Proof. Consider a singular �ber over a critical value c ∈ C and a local chart
of C centered at c. For each singular point s of f−1(c), the holomorphic
analogue of the Morse lemma holds that there exists a local coordinate chart
of S, centered at s, where f is expressed as f(x, y) = xy. Up to homothetic
transformations and restriction of the local charts, one may assume that f
maps the closed bidisc D2

to the closed disc D. After removing each open
bidisc D2 centered at a singular point of the singular �ber, Ehresmann's
�bration theorem applies over the whole open disc D, even 0. Since D is

36



contractible, the latter �bration is trivial. It remains to understand what
happens in each bidisc.

The boundary left after removing each open bidisc is

∂(D2
) = (∂D× D) ∪ (D× ∂D).

The restriction f : f−1(D) ∩ ∂(D2
)→ D of the �bration to this boundary is

trivial. Its �ber above 0 is

f−1(0) ∩ ∂(D2
) = (∂D× {0}) ∪ ({0} × ∂D)

and one has the following trivialisation.

f−1(D) ∩ ∂(D2
)

f
&&MMMMMMMMMMMM

(z/y, y) (z, (0, y))

(x, z/x) (z, (x, 0))
�oo

�oo

D× ((∂D× {0}) ∪ ({0} × ∂D))

pr1
uukkkkkkkkkkkkkkkkk

oo

D

The �ber over a point z in D∗ is

f−1(z) ∩ D2
= {(x, y) ∈ D2 | xy = z} = {(x, z/x) | |z| ≤ |x| ≤ 1}

= {(z/y, y) | |z| ≤ |y| ≤ 1}.

It is biholomorphic to a closed annulus and one of the two coordinates, x or
y, is enough to parametrize it. Its boundary has two connected components

{(x, z/x) | |x| = 1} = {(z/y, y) | |z| = |y|}

and
{(x, z/x) | |x| = |z|} = {(z/y, y) | |y| = 1}.

In order to understand the monodromy of the generic �ber when one
turns around the origin in the punctured disc, that is to say, around the
singular �ber, consider the parametrization iH → D∗, z 7→ ez, where iH is
the open half-plane of all complex numbers of negative real part. Let ez0 be
a base point in D∗. It su�ces to �nd a trivialization above iH interpolating
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the trivialization already given on the boundary.

f−1(ez0) ∩ (D2
)

?

44
f−1(ez) ∩ (D2

)

f−1(ez0) ∩ ∂(D2
)

?�

OO

(∂D× {0}) ∪ ({0} × ∂D)oo // f−1(ez) ∩ ∂(D2
)

?�

OO

(x, ez0/x) (x, 0)�oo � // (x, ez/x)

(ez0/y, y) (0, y)�oo � // (ez/y, x)

(x, y) � if |x|=1 11�

if |y|=1
00

(x, ez−z0y)

(ez−z0x, y)

A mapping of the form

(z, (x, y)) � // (e(z−z0)ϕ(x,y)x, e(z−z0)ϕ(y,x)y)

iH× (f−1(ez0) ∩ D2
)

pr1
��

// f−1(D) ∩ D2

f

��
iH // D

z � // ez

where ϕ : f−1(ez0 ∩ D2
) −→ [0, 1] is a continuous function satisfying

ϕ(x, y) =

{
0 if |x| = 1 and |y| = |ez0 |
1 if |y| = 1 and |x| = |ez0 | ,

is a trivialization above iH. One may for instance de�ne ϕ by

ϕ(x, y) =
ln |x|
ln |xy|

.

Finally, the parameter z corresponding to a counterclockwise loop around
the origin, based at ez0 , satis�es z− z0 = 2πi. Therefore, the monodromy of
the �bration along that loop, in D2

, is given by

(x, y) 7−→ (e2πi ϕ(x,y)x, e2πi ϕ(y,x)y)

which is exactly a right-handed Dehn twist, about the loop t 7→ (x0e
it, y0e

−it)
or any homotopically equivalent one.

The previous result allows to understand the behavior of the �bration
in the neighborhood of each singular �ber, but not globally. In order to
understand the global picture, there is actually another interpretation of the
�bration f : P̂2 → P1.
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2.2.5 Proposition. For any integer greater than 3, let Qn denote the quo-

tient of (P1)n by the diagonal action of Aut(P1), in the sense of geometric

invariant theory. Then Q4 is isomorphic to P1, Q5 to P̂2 and the diagram

below is moreover commutative:

(v1, v2, v3, v4, v5)
_

��

� //
[

det(v1,v4)
det(v1,v5) : det(v2,v4)

det(v2,v5) : det(v3,v4)
det(v3,v5)

]
Q5

//

��

P̂2

f

��
Q4

// P1

(v1, v2, v3, v4) � //
[

det(v1,v3)
det(v1,v4) : det(v2,v3)

det(v2,v4)

]
(v1, . . . , v5 denote nonzero vectors in C2 representing points in P1).

2.2.6 Remarks.

1. The group Aut(P1) of the automorphisms of P1 is simply the group
PGL2(C) which is also PSL2(C). The group acts transitively on triples
of distinct points in P1. Hence the space Qn becomes interesting only
for n greater than 3.

2. The mapping (v1, v2, v3, v4) 7−→
[

det(v1, v3)

det(v1, v4)
:

det(v2, v3)

det(v2, v4)

]
is nothing

but the cross ratio of four points in P1, which is invariant by the diag-
onal action of Aut(P1). Note that the cross ratio is de�ned provided
that none three of the four points are equal.

3. An element (v1, . . . , vn) in (P1)n is stable (respectively semi-stable) un-
der the action of Aut(P1), in the sense of geometric invariant theory, if
and only if the largest number of points among v1, . . . , vn that coincide
is less (respectively not greater) than n/2.

Let Q∗n denote the quotient (in the usual sense), by the diagonal action
of Aut(P1), of the subset of (P1)n formed by all the n-tuples of distinct
points.

For n = 4, Q∗4 is the subset of Q4 of all stable points and the re-
mainder consists of the classes of 4-tuples (z1, z2, z3, z4) two of whose
components coincide [Dol03, Example 11.4].

For n = 5, the di�erence between Q∗5 and Q5 is the set of classes of
5-tuples (z1, z2, z3, z4, z5) such that za = zb for some distinct indices
a and b. This set is hence the union of 10 lines of equation za = zb
[Dol03, Example 11.5].
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4. The ten lines of the form za = zb in Q5 play symmetric roles, whereas
the ten lines in P̂2 consists of the six lines of the arrangement and
the four exceptional curves, apparently arising in a di�erent way. This
di�erence is related to the fact that the forgetful map Q5 → Q4 does
not treat equally the �ve components of 5-tuples.

Proof. The maps do not depend on the choice of the representatives v1, . . . , v5

and are well de�ned. Let ([z1 : 1], [z2 : 1], [z3 : 1], [0 : 1], [1 : 0]) be a repre-
sentative of a point (v1, v2, v3, v4, v5) in Q∗5 (the proof is similar if the 5-tuple
is not of that form). Then[

det(v1, v4)

det(v1, v5)
:

det(v2, v4)

det(v2, v5)
:

det(v3, v4)

det(v3, v5)

]
= [z1 : z2 : z3]

and [
det(v1, v3)

det(v1, v4)
:

det(v2, v3)

det(v2, v4)

]
=

[
z1 − z3

z1
:
z2 − z3

z2

]
= f([z1 : z2 : z3])

so that the diagram is commutative.

2.2.7 Corollary. The monodromy representation of the �bration f : Q∗5 →
Q∗4 is a morphism π1(Q∗4) → Mod0,4 such that the image of each generator

of π1(Q∗4) is a right-handed Dehn twist, as drawn in �gure 2.4.

2.2.8 Remark. The monodromy representation is a particular case of the
point pushing map appearing in the Birman exact sequence (see [FM11, The-
orem 4.6]).

Indeed, viewing Q∗4 as a sphere with 3 punctures, the monodromy along
(the homotopy class) of a loop γ in Q∗4 is, according to corollary 2.2.7 and
�gure 2.4, the mapping class obtained by pushing the base point of Q∗4 along
γ.

2.3 Mapping class groups

This section is devoted to a short presentation of mapping class groups, some
examples and related notions, in order to better understand the monodromy
of the pencil of conics.

Given two topological spaces X and Y , such that X is locally compact
and Hausdor�, the compact-open topology on the set C(X,Y ) of continuous
functions fromX to Y is the unique topology satisfying the following univeral
property: for any topological space Z, the mapping

C(Z ×X,Y ) −→ C(Z, C(X,Y ))
f 7−→ {z 7→ fz : x 7→ f(z, x)}
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Figure 2.4: The monodromy of the forgetful mapping Q∗5 → Q∗4 along the
grey loop is a right-handed Dehn twist along the dashed loop.

is bijective. In particular, a homotopy between two functions f1 and f2 in
C(X,Y ) is nothing but a continuous path in the topological space C(X,Y ).
The latter interpretation of homotopy allows to formulate a rather concise
de�nition of mapping class groups.

The group Homeo(X) of all homeomorphisms of a locally compact and
Hausdor� topological space X is a topological group, with the topology
induced by the compact-open topology of C(X,X).

2.3.1 De�nition. The mapping class group of X is 0-th homotopy group
of the topological group Homeo(X) and is denoted by Mod(X).

When the space X admits an additional structure, one is rather inter-
ested in the subgroup of homeomorphisms preserving the structure in ques-
tion. On the one hand, if X is an orientable manifold, the orientation-
preserving homeomorphisms of X form a normal subgroup of index 2, de-

41



noted by Homeo+(X), whose 0-th homotopy group is denoted by Mod+(X).
Nevertheless, only orientable surface are considered in the present context,
so that the sign + will be omitted and Mod(X) will always denote the
0-th homotopy group of Homeo+(X), without any danger. On the other
hand, if a particular subset A of X is marked (for example, a �nite subset
or the boundary of X if X is a manifold with boundary), the (orientation-
preserving) homeomorphisms of X stabilizing each marked point in A form a
subgroup, denoted by Homeo(X,A), whose 0-th homotopy group is denoted
by Mod(X,A).

2.3.2 Notation. The mapping class group of a closed orientable surface of
genus g and with n marked points is denoted by Modg,n.

A natural approach to understand and describe the mapping class group
Mod0,4 of the sphere with four marked points is to study the mapping class
group Mod1,4 of the torus with four marked points. Indeed, the torus is
a double branched covering space of the sphere, with rami�cation over 4
points. The automorphism group is generated by the hyperelliptic involution:
identifying the torus with the quotient R2/Z2, the hyperelliptic involution
is induced by the linear transformation (x, y) 7→ (−x,−y) corresponding to
the matrix −I2 (see �gure 2.5). The hyperelliptic involution stabilizes four
points of the torus.

2.3.3 Proposition. Mod1,1 is naturally isomorphic to SL2(Z) so that, for

each mapping class, the corresponding matrix induces a transformation of

the torus R2/Z2, which is a representative of that mapping class.

Proof. Let O denote the image in the torus R2/Z2 of the origin (0, 0) in the
plane R2. Any homeomorphism h : R2/Z2 → R2/Z2 preserving O, induces
an automorphism h∗ of the fundamental group π1(R2/Z2, O) depending only
on the homotopy class of h. Since π1(R2/Z2, O) is naturally isomorphic to Z2,
h∗ corresponds to an element of GL2(Z) and that de�nes a group morphism
Mod1,1 → GL2(Z).

The action on the plane R2 of any matrix M in GL2(Z) induces a home-
omorphism hM of the torus preserving O and such that the induced auto-
morphism (hM )∗ of the fundamental group π1(R2/Z2, O) corresponds to the
initial matrix M . Besides, the homeomorphism hM preserves or reverses the
orientation precisely when the determinant of M is respectively equal to +1
or −1. In other terms, hM preserves the orientation if and only ifM belongs
to SL2(Z). Therefore, the morphism Mod1,1 → SL2(Z) is surjective.

Finally, let h be a homeomorphism of the torus R2/Z2 preserving O such
that h∗ = idZ2 . h may be lifted to a homeomorphism h̃ of the plane R2

preserving (0, 0) and such that

∀ t ∈ R2 ∀ τ ∈ Z2 h̃(t+ τ) = h̃(t) + h∗(τ) = h̃(t) + τ.
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(a)

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(b)

(c)

Figure 2.5: The hyperelliptic involution in three representations of the torus:
(a) as the fundamental domain [0, 1]2 of the action of Z2 on R2 by transla-
tions, (b) as a fundamental domain of the action of Z× {0} on the cylinder
R2/{0} × Z, (c) as the usual embedding of the torus in the space.

Then a Z2-equivariant homotopy between h̃ and idR2 may be de�ned as

[0, 1]× R2 −→ R2

(s, t) 7−→ (1− s) t+ s h̃(t)

and induces a homotopy between h and idR2/Z2 . And since those two are ho-
motopic, they are isotopic (see [FM11, Theorem 1.12]) so that the morphism
Mod1,1 → SL2(Z) is injective.

2.3.4 Corollary. Mod0,4 is isomorphic to the principal congruence subgroup

of level 2 in PSL2(Z), that is to say, the kernel of the morphism PSL2(Z)→
PSL2(Z/2Z) induced by the reduction modulo 2.

2.3.5 Notation. Let Γ(2) denote the principal congruence subgroup of level
2 in PSL2(Z), not to be confused with its counterpart in SL2(Z).
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Proof. The action of SL2(Z) on the torus commutes with the hyperelliptic
involution. It induces therefore an action of PSL2(Z) on the sphere. More-
over, as the former action preserves the set (1

2Z
2)/Z2, the latter preserves the

subset of the sphere consisting of the 4 rami�cation points. The subgroup of
PSL2(Z) preserving each of those 4 points is exactly Γ(2). Thus there exists
a natural morphism Γ(2)→ Mod0,4. It follows from [FM11, Proposition 2.7]
that this morphism is an isomorphism.

Nielsen-Thurston classi�cation. Any element of Modg,n admits a rep-
resentative h which is either

1. periodic, that is to say, some power of h is the identity,

2. reducible, that is to say, h preserves some �nite union of disjoint simple
closed curves on the surface,

3. pseudo-Anosov, that is to say, there exists a pair of transverse measured
foliations (Fs, µs) and (Fu, µu) on the surface and a number λ > 1 such
that

h∗(Fs, µs) = (Fs, λ−1µs) and h∗(Fu, µu) = (Fu, λµu)

(see Theorem 13.2 in [FM11] and also section 11.2 for a presentation of those
objects).

2.3.6 Examples. When S is a sphere or a torus, the Nielsen-Thurston
classi�cation is quite elementary as it boils down to the study of 2-by-2
matrices. The group Mod1,1 is indeed isomorphic to SL2(Z) (see 2.3.3). Let
A be a matrix in SL2(Z) which is not the identity. Such a matrix is conjugate
in SL2(R) either to

1. a diagonal matrix whose entries are conjugate complex numbers of
modulus 1, in which case | tr(A)| < 2 and A acts on the plane as a
�nite-order rotation,

2. an upper triangular matrix whose diagonal entries are equal to 1, in
which case | tr(A)| = 2 and A acts on the plane as a transvection, hence
preserving a line pointwise,

3. a diagonal matrix whose entries are real numbers, inverse of each other,
in which case | tr(A)| > 2 and the action of A on the plane has two
privileged directions (or foliations), one that is contracted and one that
is dilated.

The matrix A is respectively called elliptic, parabolic or hyperbolic. Conse-
quently, the periodic, reducible or pseudo-Anosov nature of a mapping class
is simply determined by the trace of the representative matrix.
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Quite the same goes for Mod0,4 (see corollary 2.3.4). Let A be a matrix
representing an element of Γ(2). The action of A on the torus induces an
action on the sphere, through the branched covering map mentionned above.
Similarly, the periodic, reducible or pseudo-Anosov nature of a mapping class
is determined by the absolute value of the trace of A. For example, since the
absolute value of the trace of any matrix representing a non-trivial element
of Γ(2) is at least 2, Mod0,4 contains no periodic element.

On the contrary, determining the nature of a mapping class of a surface
of higher genus is much more complex.

2.3.7 De�nition. A surface bundle over the circle or a mapping torus is a
quotient space of the form (S×R)/Z where S is a closed surface and Z acts
on S×R by n · (x, t) = (hn(x), t+n) where h : S → S is a homeomorphism.
This space is denoted by Mh and the projection pr2 : S × R→ R induces a
�bration Mh → R/Z over the circle, with �ber S.

2.3.8 Remarks. The previous construction depends, up to homeomor-
phism, only on the isotopy class of h, that is to say, on the class of h in
Mod(S). Moreover, it only depends on the conjugacy class of the class of h
in Mod(S). Furthermore, Mh and Mh−1 are also homeomorphic. If A is a
subset of S and h stabilizes each point in A, then Mh depends only on the
conjugacy class of the class of h in Mod(S,A) and Mh contains the subset
A× S1.

Thurston has shown that if S is a closed surface of some genus g ≥ 2 and if
h is a homeomorphism of S, then the surface bundleMh admits a hyperbolic
structure if and only if h is pseudo-Anosov [Thu88, Ota96, FLP91].

The group Γ(2) has multiple interests in the present context, which are
not purely coincidental as shown in the following: it appears as a lattice
in the group Isom+(H2

R) and it is isomorphic to the mapping class group
Mod0,4.

2.3.9 Proposition. The 3-punctured sphere (P1)u is homeomorphic to the

quotient Γ(2)\H2
R, which is a hyperbolic surface with 3 cusps. A presentation

of Γ(2) is 〈T∞, T0, T1 | T∞T0T1 = 1〉 where

T∞ = (TS)0T 2(TS)−0 =

(
1 2

1

)

T1 = (TS)1T 2(TS)−1 =

(
−1 2
−2 3

)
T0 = (TS)2T 2(TS)−2 =

(
1
−2 1

)
.
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The group PSL2(Z) is a lattice in PSL2(R) generated by the elements

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
and a fundamental domain is drawn in �gure 2.6.

0 1

∞ ∞

0 1

Figure 2.6: A fundamental domain of PSL2(Z) in the half-plane and disc
models of hyperbolic plane. The skeleton of an ideal triangle drawn with
dashes.

Alternatively, PSL2(Z) is generated by S and TS. Those two are very
particular elements of PSL2(Z), since S is a hyperbolic rotation of angle π
and TS is a hyperbolic rotation of angle −2π

3 , whose centers are corners of
the fundamental domain drawn in �gure 2.6, respectively i and eiπ/3 in the
half-plane model.

The group PSL2(Z/2Z) is isomorphic to the group S3 of the permuta-
tions of 3 elements: it indeed consists of the 6 elements(

1
1

) (
1

1

) (
1

1 1

) (
1 1

1

) (
1 1
1

) (
1
1 1

)
and acts by permutations on the three points ∞, 0, 1 of the projective line
over Z/2Z.

Proof of proposition 2.3.9. The orbit of the fundamental domain of PSL2(Z)
by the element TS of order 3 is the ideal triangle with vertices ∞, 0, 1. And
the element S maps the ideal triangle on an adjacent copy of it. Hence
a fundamental domain of the subgroup Γ(2) is two adjacent copies of the
ideal triangle. Therefore the quotient of H2

R by Γ(2) is a sphere with three
punctures.
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This diagram sums up the facts presented above.

Γ(2)
AA

isomorphism (2.3.4)

����������������� ^^

uniformization (2.3.9)

��>>>>>>>>>>>>>>>

Mod0,4 π1((P1)u)
monodromyoo

π1(Q∗4)

Birman (2.2.8)

]];;;;;;;;;;;;;;;

cross ratio (2.2.5)

@@����������������

Finally, the monodromy morphism π1((P1)u) → Mod0,4 is an isomor-
phism and it is quite elementary to determine whether the monodromy of a
loop is pseudo-Anosov by calculating the trace of the corresponding element
of Γ(2). Such an element may be given

1. either in the form of a matrix, with the advantage of being able to
compute its trace easily,

2. or as a product of the generators T∞, T0, T1, which allows to read that
element of Γ(2) as a loop in the sphere with three punctures.

However, if an element of Γ(2) is given in the latter form, rather than as a
matrix, there is no direct method for calcutating either its entries or its trace
other than computing the product.

2.4 Fibration of Hirzebruch's surface

Composing σ : Y1 → P̂2 and f : P̂2 → P1 yields a �bration f ◦ σ : Y1 → P1.
Let p be one of the four triple intersection points of the arrangement of lines
in P2, and q be one of the 52 points of X over p. Let C be the connected
curve in Y1 obtained by resolving the singular point q in X.

The restriction σ|C : C → P(TpP2) is a branched covering map of degree
52 which rami�es over the points in P(TpP2) corresponding to the lines of the
arrangement passing through p. The exact same goes for f ◦ σ|C : C → P1,
since f|P(TpP2) : P(TpP2) → P1 is an isomorphism. And since n = 5 and
m = 3, the Euler characteristic of C is

e(C) = 53−1(2− 3) + 3 · 53−2 = −10 = 2− 2× 6
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so that C is a smooth curve of genus 6.

C �
� //

σ|C
����

Y1

σ ����

f◦σ

����

P(TpP2) �
� // P̂2

f
����

P1
##

ccGGGGGGGGG

As well as the �bration f : P̂2 → P1 admits natural sections

P1 → P(TpP2) ⊂ P̂2,

one may want to show that the inclusion C → Y1 is a section of a �bration
Y1 → C.

2.4.1 Proposition. There exists a �bration Y1 → C with connected �bers,

such that the inclusion C → Y1 is a section and that the following diagram

is commutative.

Y1

f◦σ

����

~~~~~~~~~~~

C
/ �

>>~~~~~~~

f◦σ|C     @@@@@@@@

P1

In other words, the composition of Y1 → C and of the branched covering map

f ◦ σ|C : C → P1 is the Stein factorization of f ◦ σ : Y1 → P1.

The curve C is of genus 6 and the generic �bers under Y1 → C are smooth

curves of genus 76. The singular �bers under Y1 → C lie over the points of

C over which the branched covering map f ◦ σ|C : C → P1 is rami�ed, so

that there are 3× 5 such �bers.

The following proof resorts implicitly and repeatedly to proposition A.2.3.

Proof. For any point b in P1, f−1(b) is the proper transform in P̂2 of a conic
in P2. f−1(b) and P(TpP2) meet at a single point, denoted by bp.

If b is not one of the three points for which f−1(b) is singular, then f−1(b)
does not intersect (the proper transforms of) the lines of the arrangement
but intersects the four exceptional curves P(Tp′P2). Since they intersect nor-
mally, (f ◦ σ)−1(b) is smooth and the restriction σ|(f◦σ)−1(b) : (f ◦ σ)−1(b)→
f−1(b) is a Galois branched covering map which rami�es exactly over the
intersection of f−1(b) with the four exceptional curves.
Let Z be a connected component of (f ◦ σ)−1(b). Consider the branched
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covering map σ|Z : Z → f−1(b) and the corresponding unbranched one
σ|Z

u : Zu → f−1(b)u. Zu (obtained from Z by removing the branch
points) is still connected. Hence, given any base point z ∈ Zu, the Ga-
lois group Aut(σ|Z) is naturally isomorphic to the image subgroup of αz :
π1(f−1(b)u, σ(z)) → Aut(σ). Since f−1(b)u is homeomorphic to a sphere
with four punctures, the fundamental group π1(f−1(b)u, σ(z)) is generated
by the homotopy classes of four loops around the punctures (three are ac-
tually enough). The subgroup Imαz is hence generated (see 2.1.11) by (any
three among) the four elements ∏

D3p′
αD.

Besides, StabAut(χ)(q) is generated (see 2.1.11) by the automorphisms αD,
for the lines D passing through p. It appears, on the one hand, that
StabAut(χ)(q)∩Aut(σ|Z) is the cyclic subgroup generated by

∏
D3p αD which

acts trivially on C and, on the other hand, that StabAut(χ)(q) Aut(σ|Z) =
Aut(σ).
As bp belongs to f−1(b), Z ∩ σ−1(bp) is not empty. Let z be a point in the
latter set and let α be an automorphism of σ such that α(z) ∈ C. Since
Aut(σ) = StabAut(χ)(q) + Aut(σ|Z), α may actually be chosen in Aut(σ|Z),
so that α(z) ∈ Z ∩ C. And since StabAut(χ)(q) ∩ Aut(σ|Z) acts trivially on
C, Z ∩ C contains exactly one point.

If b is one of the three points for which f−1(b) is singular, f−1(b) is more
precisely the union of (the proper tranforms of) two lines of the arrangement,
say D12 and D34, the former passing through triple intersection points de-
noted by p1 and p2 and the latter through p3 and p4. By a slight abuse
of notations, the proper transforms, denoted by D12 and D34, intersect at
a point p5 and each of them also intersects two of the exceptional curves,
the former at p1 and p2, the latter at p3 and p4. Since the intersections
are normal, σ−1(D12) is smooth and the restriction σ : σ−1(D12) → D12 is
a Galois branched covering map of degree 54 rami�ed over p1, p2, p5, with
index 5. The exact same goes for σ−1(D34) over p3, p4, p5.
Furthermore, if Z12 is a connected component of σ−1(D12), then Aut(σ|Z12

)
is naturally isomorphic to the subgroup of Aut(σ) generated by

αD34

∏
D3p1

αD
∏
D3p2

αD

and if Z34 is a connected component of σ−1(D34), then Aut(σ|Z34
) is naturally

isomorphic to the subgroup of Aut(σ) generated by

αD12

∏
D3p3

αD
∏
D3p4

αD.
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Therefore, the subgroup of Aut(σ), denoted by H, preserving the connected
components of σ−1(D12 ∪ D34) is generated by αD12 , αD34 and the four
elements ∏

D3p′
αD

with p′ ∈ {p1, p2, p3, p4}.
Let Z be a connected component of σ−1(D12∪D34) and let z be a point in Z
such that σ(z) = bp. Assuming that p = p1, bp is then the point in P(TpP2)
corresponding to the direction tangent to D12. In particular, αD12(z) = z
since σ(z) = bp. Let α be an automorphism of σ such that α(z) ∈ C.
Since Aut(σ) = StabAut(χ)(q) + H, α may actually be chosen in H, so that
α(z) ∈ Z∩C. And since StabAut(χ)(q)∩H acts trivially on z, Z∩C contains
exactly one point.

In conclusion, each connected component of (f ◦ σ)−1(b) meets C at
exactly one point and one can de�ne a �bration Y1 → C by mapping any
connected component of (f ◦ σ)−1(b) to the only point in its intersection
with C. This �bration is nothing but the Stein factorization of f ◦ σ, since
the �bers of Y1 → C are exactly the connected components of those of
f ◦ σ : Y1 → P1.

As f ◦ σ|C : C → P1 is a branched covering map of degree 52, a generic
�ber (f ◦σ)−1(b) has then 52 connected components and total Euler charac-
teristic

55(2− 4) + 54 × 4 = −6× 54

so that each connected component has Euler characteristic −6×52 and genus
1 + 3× 52 = 76.

2.4.2 Remark. The �bration Y1 → C seems combinatorially complex since
the base curve is of genus 6 with 15 rami�cation points and the generic �ber
is of genus 76 with 4×52 marked points lying over the 4 marked points of the
generic �ber of the pencil of conics. For instance, writing group presentations
of fundamental groups of these spaces or of their corresponding mapping class
groups is a laborious task.

However, recall that the much simpler manifold P̂2 bears an orbifold
structure that is the quotient of the complex hyperbolic manifold Y1. The
�bration Y1 → C itself arises from a �bration of P̂2. The base curve is a
sphere with 3 punctures and the generic �ber is a conic with 4 marked points.
The mapping class group of the generic �ber is much simpler than the map-
ping class group of a surface of higher genus, which makes the monodromy
potentially simpler.

In the remainder of the present section, the base curve and the generic
and singular �bers are studied in more detail.
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2.4.3 Notation. In the following, fundamental groups of the spaces at play
will be considered quite often. In order to avoid choosing base points each
time, one should choose them once and for all. Let y0 be a base point in Y1

u

which will also serve as a base point of Y1. Let c0 denote the projection of y0

to C so that c0 will be the base point of both C and Cu. Besides, the �ber
over c0 of Y1 → C will be denoted by F0 and will be called the base �ber.
The point y0 belongs to F0 and will be its base point. One may deduces base

points similarly for P̂2, P̂2
u
, P(TpP2), P(TpP2)u, P1 and (P1)u.

Figure 2.7: The two irreducible components of a singular conic.

2.4.4 Corollary. The 15 singular �bers under Y1 → C are isomorphic to

(S12 × I34) ∪ (I12 × S34)

where S12 and S34 are connected components of σ−1(D12) and σ−1(D34)
respectively and I12 and I34 are the subsets of S12 and S34 respectively whose

points lie over the intersection point of D12 and D34.

S12 is a compact curve of genus 6 and a Galois branched covering space

of D12, of degree 52, rami�ed over three points and I12 consists of 5 points.

The exact same goes for S34 and I34.

Proof. Let D12 and D34 denote the two irreducible components of a singular
�ber of P̂2 → P1. Then σ−1(D12) is a Galois branched covering space of D12

of degree 55−1 = 54 and rami�ed over 3 points with rami�cation index 5
(one is the point where D12 and D34 intersect and the other two are points
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Figure 2.8: Two representations of the shape of the 15 singulars �bers: one
on the left where the irreducible components are symbolically represented as
line segments, one on the right where the irreducible components are more
realistic whereas their intersection points are marked as thick dots.

where D12 intersects two of the four exceptional curves). Hence the Euler
characteristic of σ−1(D12) is

54(2− 3) + 3× 53 = −2× 53.

Let S12 be a connected component of σ−1(D12). The Galois group Aut(σ|S12
)

is isomorphic to the quotient of the subgroup of Aut(σ) generated by the
three elements (two are actually enough)

α34, α12α13α23, α12α14α24

by 〈α12〉. The �ber has then 52 connected components, so that each of them
has Euler characteristic −2 × 5 and genus 1 + 5 = 6. The same goes for
the connected components of σ−1(D34). Let S34 be one of them and assume
that it meets S12 at a point q. The Galois group Aut(σ|S34

) is isomorphic to
the quotient of the subgroup of Aut(σ) generated by the elements

α12, α34α13α14, α34α23α24

by 〈α34〉. Since the intersection of the subgroups

〈α34, α12α13α23, α12α14α24〉 and 〈α12, α34α13α14, α34α23α24〉

is 〈α12, α34〉 which acts trivially on the point q, S12 and S34 meet at exactly
one point.

The connected component of σ−1(D12 ∪ D34) containing q is the union
of the orbit of S12 under the action of 〈α34, α12α13α23, α12α14α24〉 and the
orbit of S34 under the action of 〈α12, α34α13α14, α34α23α24〉. These orbits
consists of �ve copies of S12 and S34 respectively (see �gure 2.8).
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2.4.5 Remarks. The curves S12 and S34 are biholomorphic since they are
covering spaces of lines of the arrangement which play symmetric roles.

The resolution of the 52 singularities of the singular �bers yields curves
of genus 6× (5 + 5) + (5− 1)2 = 76 (see �gure 2.8), which is indeed equal to
the genus of the generic �ber.

The following lemma aims at describing the kernel of a morphism from a
free group to a �nite abelian group. Consider the topological interpretation of
a free group as a fundamental group of a wedge sum of circles. More precisely,
the image in the torus Rm/Zm of the coordinate axes of Rm is a wedge
sum of m circles, denoted by Bm, with a base point b. The fundamental
group π1(Bm, b) is indeed a free group with m generators c1, . . . , cm. The
group morphism π1(Bm, b)→ Zm induced by the inclusion Bm → Rm/Zm is
nothing but the abelianization morphism, mapping the generator c1 to the
element (1, 0, . . . , 0) and so on.

2.4.6 Lemma. If R is a subgroup of Zm of index d then the torus Rm/R
is naturally a covering space of Rm/Zm, of degree d. Let B̂m denote the

covering space of Bm, obtained by pulling back Bm as follows.

(B̂m, b̂)
� � //

����

(Rm/R, 0)

����
(Bm, b)

� � // (Rm/Zm, 0)

Then the kernel of the morphism π1(Bm, b) → Zm/R is isomorphic to the

fundamental group π1(B̂m, b̂). Moreover, B̂m has the homotopy type of a

wedge sum of d(m− 1) + 1 circles.

If R = kZm, then d = km and the kernel of π1(Bm, b) → (Z/kZ)m

is generated by the elements c1
k, . . . , cm

k and the commutators [ci
p, cj

q] for
1 ≤ i, j ≤ m and 1 ≤ p, q ≤ k.

Proof. All the assertions are quite straightforward. The Euler characteristic
of Bm is e(Bm) = 1−m. Thus that of B̂m is e(B̂m) = d e(Bm) = d(1−m).
Since B̂m has the homotopy type of a wedge of circles, the number of those
circles must be d(m− 1) + 1.

2.4.7 Proposition. As a covering space of (P1)u, Cu admits a hyperbolic

structure. More precisely, Cu is homeomorphic to the quotient of H2
R by the

normal subgroup of Γ(2) of index 52 formed by all the possible products of

T∞, T0 and T1 (and their inverses) where the numbers of occurrences of T∞,
T0 and T1 respectively (counted with their multiplicity, say, p for T∞

p) di�er

by multiples of 5. Besides, that group is generated by T∞
5, T0

5, T1
5 and the

commutators of powers of T∞, T0, T1.
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2.4.8 Remark. Since the generators T∞, T0, T1 satisfy the relation

T∞T0T1 = 1,

the previous properties may be written only in terms of two of the generators.
As a fundamental group of a sphere with three punctures, π1(Cu) is indeed
isomorphic to the free group with two generators, say T∞ and T0.

Any element of π1(Cu), written as a product of T∞, T0 and T1, may
be interpreted as (the homotopy class of) the lift to Cu of a loop in (P1)u

obtained by turning around the puncture corresponding the factor T∞, T0

or T1, each time one of them appears in the product. Representing a loop
in (P1)u rather than in Cu is indeed easier since Cu is a Riemann surface of
genus 6 with 15 punctures.

Proof. The unbranched covering map σ : Cu → (P1)u induces a short exact
sequence

1 // π1(Cu, y)
(σ|Cu )∗// π1((P1)u, σ(y))

αy // Aut(σ|Cu) // 1

where y denotes the base point of Cu. Identify π1((P1)u, σ(y)) with Γ(2) =
〈T∞, T0, T1 | T∞T0T1 = 1〉 (see 2.3.9). With 2.1.11, the image of T∞ by αy
is the automorphism αD of σ where D is the line of the arrangement corre-
sponding, in the identi�cation of Γ(2)\H2

R with (P1)u and P(TpP2), to the
image of ∞. And similarly for 0 and 1.

Identify Aut(σ|C) with (Z/5Z)2 so that the morphism αy : Γ(2) →
(Z/5Z)2 maps T∞ to (1, 0), T0 to (0, 1) and T1 to (−1,−1). Since π1(Cu, y)
is isomorphic to the kernel of αy, it is also isomorphic to the subgroup of
Γ(2) formed by the products of T∞, T0 and T1 (and their inverses) where the
numbers of occurrences of T∞, T0 and T1 respectively (counted with their
multiplicity, say, p for T∞p) di�er by multiples of 5.

According to lemma 2.4.6, π1(Cu, y) is isomorphic to the subgroup of
Γ(2) generated by T∞5, T0

5, T1
5 and the commutators of powers of T∞, T0,

T1.

The Riemann surface C may also be uniformized. Instead of cusps and
parabolic isometries as on (P1)u and Cu, consider the hyperbolic orbifold
structure on P1 where the three points in P1 \ (P1)u have conic angle 2π/5.
Such a structure may be constructed by considering a (regular) hyperbolic
triangle with angle π/5 at each vertex. Thus the quotient of H2

R by the tri-
angle group T (5, 5, 5) is an orbifold homeomorphic to P1: the triangle group
T (5, 5, 5) is the subgroup of index 2, formed by the orientation-preserving
isometries, of the group generated by the re�ections with respect to the
sides of the hyperbolic triangle with angle π/5 at each vertex. It is gener-
ated by the rotations of angle 2π/5 around the vertices of the triangle and
any two adjacent translates of the triangle form a fundamental domain. Let

54



Figure 2.9: A hyperbolic triangle with angle π/5 at each vertex.

R1, R2, R3 denote the rotations of angle 2π/5 around the vertices of such a
triangle, indexed such that they satisfy the relation R3R2R1 = 1.

2.4.9 Proposition. The Riemann surface C is homeomorphic to the quo-

tient of H2
R by the normal subgroup of T (5, 5, 5) of index 52 formed by all the

possible products of R1, R2 and R3 (and their inverses) where the numbers

of occurrences of R1, R2 and R3 respectively (counted with their multiplicity,

say, p for R1
p) di�er by multiples of 5. Besides, that group is generated by

the commutators of powers of R1, R2, R3.

Proof. Similar to the proof of proposition 2.4.7.

2.4.10 Proposition. The surjective morphism π1(Cu)→ π1(C) induced by

the inclusion Cu → C is the restriction (to the corresponding subgroups)

of the morphism Γ(2)→ T (5, 5, 5) mapping T∞, T0, T1 to R3, R2, R1 respec-

tively. In particular, the kernel is the smallest normal subgroup of Γ(2)
generated by T∞

5, T1
5, T0

5. The kernel contains all the parabolic elements of

π1(Cu).

Proof. Following propositions 2.4.7 and 2.4.9, π1(Cu) and π1(C) are identi-
�ed to subgroups of Γ(2) and T (5, 5, 5) respectively, in such a way that the
diagram

π1(Cu)

����

� � // Γ(2) ' (P1)u

����
π1(C) �

� // T (5, 5, 5)

is commutative, where T (5, 5, 5) is as the fundamental group of quotient orb-
ifold and that the morphism Γ(2)→ T (5, 5, 5) maps the generators T∞, T0, T1

to R3, R2, R1 respectively. Observe that the kernel of the latter morphism
is the smallest normal subgroup of Γ(2) generated by the three elements
T∞

5, T1
5, T0

5. As these elements belong to π1(Cu), the kernel of the mor-
phism π1(Cu) → π1(C) is also the smallest normal subgroup of π1(Cu)
generated by T∞5, T1

5, T0
5.
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Any parabolic element of π1(Cu) is conjugate in Γ(2) to a power of T∞,
T0 or T1, hence to a power of T∞5, T0

5 or T1
5 according to 2.4.7. Therefore,

any parabolic element is contained in the kernel.

In section 2.1.2, a set of matrices generating the lattice G1 is given.
Recalling that the morphism π1(C) → π1(Y1) is injective and identifying
π1(Y1) with the commutator subgroup [G1, G1], the following proposition
shows that the image of the morphism π1(C)→ G1 is a subgroup stabilizing
a complex line in H2

C.

2.4.11 Proposition. The fundamental group of C is isomorphic to the com-

mutator subgroup of the subgroup of PGL3(C) generated by R(ij), R(jk),
R(ik) for some distinct indices i, j and k (two of them are actually su�-

cient).

Choosing for example, R(01), R(02) and R(12), it appears that the group
in question preserves the line in C3 directed by (0, 0, 1), which is positive.

Therefore it preserves a complex plane in C3 with signature (1, 1) and hence

a complex line in H2
C.

Proof. According to proposition 2.4.9, the fundamental group of C is iso-
morphic to the subgroup of the triangle group T (5, 5, 5) generated the com-
mutators of the elements R1, R2, R3. These elements correspond to loops
around the three lines of the arrangement passing a given triple point and
hence to a triple of the form R(ij), R(jk), R(ik) for some distinct indices i,
j and k.

The remainder is straightforward computations.

2.5 Representations

Recall the notations 2.4.3 about base points of fundamental groups. For
any element γ in π1(Cu), let Mγ → R/Z be the surface bundle over the
circle with �ber F0 and where the homeomorphism is the monodromy of the
�bration Y1

u → Cu along γ. If a loop R/Z→ Cu represents γ, then there is
a natural mapping Mγ → Y1 such that the diagram

Mγ
//

����

Y1

����
R/Z // C

is commutative. For instance, if the loop R/Z → Cu happens to be an
embedding or an immersion, then the same goes for Mγ → Y1.

The mapping Mγ → Y1 induces a morphism ργ : π1(Mγ) → π1(Y1) and
hence a representation into a complex hyperbolic lattice. The manifold Mγ ,
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the �bration Mγ → R/Z and of course the conjugacy class of the represen-
tation ργ depend only on the conjugacy class of γ in π1(Cu). They do not
moreover depend on the orientation of γ.

Since π1((P1)u) → Mod0,4 is an isomorphism, every mapping class in
Mod0,4 can be realized as the monodromy along a curve in (P1)u, of the �-

bration P̂2
u
→ (P1)u. The generic �ber of P̂2 → P1 is a sphere with 4 marked

points. Therefore, all the possible surface bundles with the sphere as �ber
and with monodromy preserving each of the 4 marked points are obtained
in this way.

The same construction of surface bundles for the �bration P̂2
u
→ (P1)u,

instead of Y1
u → Cu as above, hence produces representations of the fun-

damental groups of all those surface bundles. More precisely, the complex
hyperbolic structure on Y1 descends to a branched complex hyperbolic struc-
ture on P̂2 by the branched covering Y1 → P̂2. And the �bers of the latter
surface bundles are seen as orbifolds with isotropy of order 5 at each of the
four marked points. For γ in π1(Cu), the surface bundle Mγ is nothing but
a branched covering of the orbifold surface bundle whose monodromy is the
image of γ by π1(Cu)→ π1((P1)u).

Proposition. For each element f of Mod0,4, consider the surface bundleMf

with monodromy f and with �ber the orbifold with the sphere as underlying

space and with isotropy of order 5 at each of the four marked points. There

is a representation of the orbifold fundamental group of Mf into a lattice in

Isom(H2
C).

The group π1(Mγ) is isomorphic to the semi-direct product 〈γ〉nπ1(F0).

1 // π1(F0) �
� // π1(Mγ) // //

ργ

��

〈γ〉?
_oo //

��

1

π1(Y1) // // π1(C)? _oo

2.5.1 Proposition. For any γ in π1(Cu), the limit set of the image of the

representation ργ : π1(Mγ)→ π1(Y1) is all of ∂∞H2
C.

The proposition shows that the representation ργ is quite chaotic. If the
limit set were not all ∂∞H2

C, then a natural question would have been to
understand the quotient by the image of ργ , of its domain of discontinu-
ity, which would have given rise to a spherical Cauchy-Riemann structure.
However, the domain of discontinuity will always be empty with this kind of
construction which relies on a (singular) �bration of the complex hyperbolic
manifold.

Proof. Since π1(Y1) is (isomorphic to) a uniform lattice, its limit set is all
of ∂∞H2

C and π1(Y1) does not preserve any point on the boundary. Besides,
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since the fundamental group of the �ber of Y1
u → Cu is a normal subgroup of

π1(Y1
u), its image by the surjective morphism π1(Y1

u)→ π1(Y1) is a normal
subgroup N of π1(Y1).

If the limit set of N were empty, then N would have been contained in a
compact subgroup of Isom(H2

C). As N is discrete, N would have been �nite
and π1(C) would have been of �nite index in π1(Y1) which is impossible.

Therefore, the limit set of N is equal to the limit set of π1(Y1) (see
proposition 1.1.23). Finally, since π1(Mγ) contains π1(F0), the limit set of
the image of π1(Mγ)→ π1(Y1) is all ∂∞H2

C.

Furthermore, if the monodromy of the �bration along the loop γ is
pseudo-Anosov, then the 3-manifold Mγ admits a real hyperbolic structure,
according to Thurston's hyperbolization theorem of surface bundles over the
circle. In that case, π1(Mγ) is isomorphic to a uniform lattice in Isom(H3

R)
whose limit set is all of ∂∞H3

R. However, determining that lattice or the
manifold Mγ is a di�cult problem and will not be addressed.

2.5.2 Proposition. For any element γ in π1(Cu), if its image in π1(C) is

not trivial, then

1. the kernel of ργ is equal to the kernel of π1(F0)→ π1(Y1),

2. the monodromy of the �bration Y1
u → Cu along γ is pseudo-Anosov,

3. the kernel is not of �nite type.

2.5.3 Example. Consider the element

T1T0T∞ = T1T0T1
−1T0

−1 = [T1, T0] =

(
5 8
8 13

)
in Γ(2) which corresponds to a element of π1(Cu), according to proposition
2.4.7. The trace of the matrix is 18 so that the monodromy along the cor-
responding loop is pseudo-Anosov. The corresponding element of Mod0,4 is
the commutator of Dehn twists along intersecting loops.

Proof. As the morphism π1(C) → π1(Y1) induced by the inclusion of C in
Y1 is injective, the image in π1(Y1) of an element in π1(Cu) is trivial if and
only if its image in π1(C) is trivial.

Any element of π1(Mγ) may be written as a product of the form γmω with
m in Z and ω in π1(F0). The image of such an element by the composition
π1(Mγ) → π1(Y1) → π1(C) is the image of γm. Now, γm is in ker ργ if and
only if m = 0, hence ker ργ is contained in π1(F0).

Since γ is not in the kernel of the morphism π1(Cu) → π1(C), it is a
hyperbolic element of π1(Cu), according to 2.4.10, so that the monodromy
of the �bration along γ is pseudo-Anosov.
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The kernel of π1(F0) → π1(Y1) is a subgroup invariant by the pseudo-
Anosov monodromy of γ. According to [Ota96, Lemma 6.2.5], if such a
subgroup is of �nite type, then it is of �nite index. However, since the
limit set of the image of π1(F0) in π1(Y1) is all of ∂∞H2

C, the image of
π1(F0) → π1(Y1) cannot be �nite and its kernel cannot be of �nite index.
Therefore, the kernel is not of �nite type.

2.5.4 Theorem. For any two γ1 and γ2 in π1(Cu), if the image in π1(C) of
γ1 is not conjugate to that of γ2 or its inverse, then either the groups π1(Mγ1)
and π1(Mγ2) are not isomorphic or, if such an isomorphism Φ : π1(Mγ1)→
π1(Mγ2) exists, then the representations ργ1 and ργ2 ◦ Φ are not conjugate.

Proof. Let γ1 and γ2 be two elements in π1(Cu). Assume that there exists an
isomorphism Φ : π1(Mγ1) → π1(Mγ2) and that the representations ργ2 ◦ Φ
and ργ1 are conjugate. In other terms, there exists an element ϕ0ψ0 in
π1(Y1

u), with ϕ0 in the fundamental group of the �ber and ψ0 in π1(Cu),
such that the diagram

π1(Mγ1)
Φ //

ργ1
��

π1(Mγ2)

ργ2
��

π1(Y1)
Intρ(ϕ0ψ0)// π1(Y1)

is commutative, where Intρ(ϕ0ψ0) is the inner automorphisms of π1(Y1) as-
sociated to ρ(ϕ0ψ0). By replacing γ1 by ψ0γ1ψ0

−1, one may assume that
ψ0 = 1. Therefore the diagram

π1(Mγ1)
Φ //

ργ1
��

π1(Mγ2)

ργ2
��

π1(Y1)

%%JJJJJJJJJ

Intρ(ϕ0ψ0) // π1(Y1)

yyttttttttt

π1(C)

is commutative. In particular, the images of π1(Mγ1) and π1(Mγ2) in π1(C)
are equal. The image is generated indi�erently by the image of γ1 or γ2 and
is either trivial or an in�nite cyclic subgroup. Hence the image γ1 is equal
to that of γ2 or its inverse.
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Appendix A

Appendix

A.1 Notations and terminology

Let Pk−1 denote the standard complex projective space of dimension k − 1,
de�ned as the quotient of Ck \ {0} by the action of C∗ by homotheties
and equipped with the homogeneous coordinates [v1 : · · · : vk]. The �eld of
meromorphic functions on Pk−1 is the �eld C(v2v1 , . . . ,

vk
v1

) of rational fractions,

denoted by C(Pk−1).
More generally, for any complex vector space V of �nite dimension, let

P(V ) denote the projectivization of V .
The tautological line bundle over Pk−1 is de�ned as

OPk−1(−1) = {(v, `) ∈ Ck × Pk−1 | v ∈ `}

where each element ` in Pk−1 is considered as a line in Ck passing through
the origin.

OPk−1(−1)
pr2

vvllllllllllllll
pr1

((QQQQQQQQQQQQQQ

Pk−1

The restriction to OPk−1(−1)
of the second projection
pr2 : Ck × Pk−1 → Pk−1

is the tautological line bundle.
Indeed, the �ber of a point ` ∈ Pk−1

is the line ` ⊂ Ck.

Ck

The restriction to OPk−1(−1)
of the �rst projection
pr1 : Ck × Pk−1 → Ck

is the blow-up of Ck at the origin.
Indeed, it is bijective everywhere
except over the origin of Ck

whose �ber is Pk−1.

Local charts and coordinates of OPk−1(−1) may be given as follows. If
Ur denotes the domain of the a�ne chart in Pk−1 de�ned by vr 6= 0 and with
coordinates

vs|r =
vs
vr

for s between 1 and k di�erent form r
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then its inverse image in OPk−1(−1) under pr2 : OPk−1(−1)→ Pk−1 is the do-
main of the local chart with coordinates (v1|r, . . . , vr−1|r, vr, vr+1|r, . . . , vk|r)
corresponding to the point (v, `) in OPk−1(−1) with

v = (vrv1|r, . . . , vrvr−1|r, vr, vrvr+1|r, . . . , vrvk|r)

and
` = [v1|r : · · · : vr−1|r : 1 : vr+1|r : · · · : vk|r].

Finally, the blow-up of a complex manifold M at a point p may be re-
alized by replacing a neighborhood of p, isomorphic to a neighborhood of
the origin in Ck, by the corresponding neighborhood in OPk−1(−1). The
exceptional divisor of such a blow-up is the preimage in the blow-up of the
points which were blown-up. Moreover, if (v1, . . . , vk) are local coordinates
for M , centered at p, local coordinates (v1|r, . . . , vr−1|r, vr, vr+1|r, . . . , vk|r)
for the blow-up of M at p may be de�ned for every r ∈ {1, . . . , k}, similarly
to OPk−1(−1), as vs|r = vs/vr for s di�erent from r.

A.2 Branched covering maps

A branched covering map of �nite degree is a �nite surjective morphism
χ : Y → X of varieties. Y is called a covering space of X. The isomorphisms
α : Y → Y such that χ ◦ α = χ are called the automorphisms of χ and
form a group denoted by Aut(χ). If Aut(χ) acts transitively on all �bers of
χ : Y → X, then the covering map is called Galois or regular and Aut(χ) is
also referred to as the Galois group of the covering map. When, in addition,
the Galois group is abelian, the covering map is called abelian.

A.2.1 Example. The morphism cn : Pk−1 → Pk−1 de�ned by

cn([u1 : · · · : uk])→ [u1
n : · · · : ukn]

is a branched covering map. The �ber cn−1(p) over any point p = [v1 :
· · · : vk] consists of nk−1−m distinct points, where m is the number of ho-
mogeneous coordinates vs of p that are equal to zero. m is the number of
hyperplanes, of the following arrangement of hyperplanes, which contain p.

The arrangement in question is formed by the k hyperplanes Ds de�ned
by the equations vs = 0, which meet together in a rather simple way: for
any distinct indices s1, . . . , sm, the intersection Ds1 ∩ · · ·∩Dsm is merely the
projective subspace of codimension m, de�ned by the equations vs1 = · · · =
vsm = 0.

In particular, the �ber over any point in the complement of the arrange-
ment of hyperplanes (this complement is an open and dense subset) consists
of nk−1 points. In other words, cn is a branched covering of degree nk−1 and
which rami�es exactly over the previous arrangement of hyperplanes.

61



The morphisms αs : Pk−1 → Pk−1 de�ned for each index s by

αs([u1 : · · · : uk])→ [u1 : · · · : us−1 : use
2πi
n : us+1 : · · · : uk]

are automorphisms of cn. The subgroup of Aut(cn) generated by the mor-
phisms αs acts transitively over every �ber. Therefore, cn is an abelian cov-
ering map whose Galois group is generated by the automorphisms α1, . . . , αk
satisfying αsk = id and α1 ◦ · · · ◦ αk = id. The Galois group is obviously
isomorphic to (Z/nZ)k−1 but not canonically.

A.2.2 Notation. The Galois group Aut(cn) may be identi�ed with the
additive group

{(e1, . . . , ek) ∈ (Z/nZ)k |
k∑
s=1

es ≡ 0[n]}.

A branched covering map χ : Y → X is said to be rami�ed along a
hypersurface f = 0 in X, with rami�cation index p, if there exists local
coordinates (y1, . . . , yn) of Y and (x1, . . . , xn) of X such that xn = f and
that the image by χ of the point with coordinates (y1, . . . , yn) is the point
with coordinates

(x1, . . . , xn) = (y1, . . . , yn
p).

The branch locus is the preimage in Y of the union of the hypersurfaces
of X where χ is rami�ed. The rami�cation locus is the image in X of the
branching locus. The unbranched covering associated to χ is the mapping
χu : Y u → Xu where Y u denotes the complement in Y of the branch locus
and Xu the complement in X of the rami�cation locus. The mapping χu is
a topological covering map.

Any branched covering map χ : Y → X induces a �nite �eld extension

χ∗ :

{
C(X) −→ C(Y )
f 7−→ f ◦ χ

between the �eld C(X) of meromorphic functions of X and that of Y . Con-
versely, given a normal variety X and a �nite �eld extension i : C(X)→ L,
there is a branched covering map χ : Y → X (unique up to isomorphism)
such that χ∗ = i. The variety Y is the normalization of X in L.

The following proposition describes the relation between (unbranched)
topological covering maps and fundamental groups.

A.2.3 Proposition. Let X be a locally path-connected topological space.

χ : Y → X be a topological covering map and let x be a point in X.

1. There is a natural action (on the right) of π1(X,x) over χ−1(x).
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2. The image by χ of a path-connected component of Y is a path-connected

component of X.

3. If X is path-connected, then the mapping χ−1(x)→ π0(Y ), which maps

any point y to the path-connected component of Y containing y, induces
a bijection χ−1(x)/π1(X,x)→ π0(Y ).

In other words, the orbit of a point y in χ−1(x) under the action of

π1(X,x) is exactly the intersection of χ−1(x) with the path-connected

components of Y containing y.

4. If χ is a Galois covering map, then, for any y in χ−1(x), there exists

a morphism αy : π1(X,x) → Aut(χ) such that yg = αy(g)y for any g
in π1(X,x).

5. If χ is a Galois covering map and X is path-connected, then the restric-

tion χ|Z : Z → X to a path-connected component Z of Y containing

a point z is a Galois covering map whose Galois group Aut(χ|Z) is

naturally isomorphic to the subgroup Imαz of Aut(χ).

6. If χ is a Galois covering map and Y is path-connected, then for any y
in χ−1(x),

1 // π1(Y, y)
χ∗ // π1(X,x)

αy // Aut(χ) // 1

is a short exact sequence.

Proof. 1. For any y in χ−1(x) and any loop γ : [0, 1]→ X based at x, let
γ̃ : [0, 1]→ Y be the unique lift of γ satisfying γ̃(0) = y. Since its end
point γ̃(1) depends only on y and on the homotopy class g ∈ π1(X,x)
of γ, it may be denoted by yg.

The map (y, g) 7→ yg so de�ned is moreover an action (on the right)
of π1(X,x) over χ−1(x). Indeed, for any y in χ−1(x), if γ and γ′ are
loops in X based at x whose respective homotopy classes are g and g′

in π1(X,x), then

• yg is the end point γ̃(1) of the unique lift γ̃ of γ satisfying γ̃(0) =
y,

• (yg)g′ is the end point γ̃′(1) of the unique lift γ̃′ of γ′ satisfying
γ̃′(0) = yg,

• y(gg′) is the end point γ̃γ′(1) of the unique lift γ̃γ′ of the con-
catenation γγ′ satisfying γ̃γ′(0) = y.

Now γ̃γ′ is simply the concatenation γ̃γ̃′, so that their end points y(gg′)
and (yg)g′ are the same.
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2. Let Z be a path-connected component of Y , z be a point in Z and W
be the path-connected component of X containing χ(z). For any point
w in W , there exists a path γ : [0, 1] → W from χ(z) to w. Let γ̃ be
its unique lift satisfying γ̃(0) = z. Thus γ̃ connects z to a point whose
image by χ is w. Finally χ(Z) = W .

3. On the one hand, the mapping χ−1(x)→ π0(Y ) is surjective. Indeed,
for every path-connected component Z of Y , sinceX is path-connected,
χ(Z) = X so that Z contains a point in the �ber of x. On the other,
two points y and y′ in the �ber over x belong to a same path-connected
component of Y if and only if they are in a same orbit under the action
of π1(X,x).

4. Let y be a point in χ−1(x). Since Aut(χ) acts freely and transitively
over χ−1(x), for any g in π1(X,x), there exists a unique automorphism
αy(g) satisfying αy(g)y = yg. That consideration yields a mapping
αy : π1(X,x) → Aut(χ). Moreover, for any g and g′ in π1(X,x), let
γ : [0, 1]→ X be a loop based at x representing g and γ̃ be its unique
lift satisfying γ̃(0) = y and hence γ̃(1) = yg. Then αy(g′) ◦ γ̃ is the
unique lift of γ satisfying αy(g′) ◦ γ̃(0) = αy(g

′)y, so that

(αy(g
′)y)g = αy(g

′) ◦ γ̃(1) = αy(g
′)(yg).

Consequently,

αy(gg
′)y = y(gg′) = (yg)g′ = (αy(g)y)g′ = αy(g)(yg′) = αy(g)αy(g

′)y

so that αy(gg′) = αy(g)αy(g
′).

5. Since Z is path-connected, π1(X,χ(z)) acts transitively over the in-
tersection χ−1(χ(z)) ∩ Z. Hence, for any α in Aut(χ|Z), there exists
g in π1(X,χ(z)) such that α(z) = zg = αz(g)z. Therefore each α
in Aut(χ|Z) coincides over Z with a unique element of Imαz so that
Imαz and Aut(χ|Z) are isomorphic.

6. First, χ∗ is injective because, if the image χ ◦ γ of a loop γ in Y is
homotopically trivial, then γ itself is homotopically trivial.

Since Y is path-connected, Aut(χ) = Imαy so that αy is surjective.

Finally, an element g in π1(X,x) is in the kernel of αy if and only if
y = yg which means exactly that g is in the image χ∗π1(Y, y).

A.2.4 Example. Consider the branched covering map cn : Pk−1 → Pk−1

de�ned in example A.2.1. Let X denote the open subset of Pk−1 where none
of the homogeneous coordinates u1, . . . , uk vanish and let x be the point
[1 : · · · : 1]. X is path-connected and the restriction cn : X → X is a Galois
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unbranched covering map. The group π1(X,x) is generated by the homotopy
classes gs of the loops

γs :

{
[0, 2π] −→ X
t 7−→ [1 : · · · : 1 : eit : 1 : · · · : 1]

for 1 ≤ s ≤ k. Note that the loop γs consists in a turn around a hyperplane
of the arrangement. The lift γ̃s of γs satisfying γ̃s(0) = x is

γ̃s :

{
[0, 2π] −→ X

t 7−→ [1 : · · · : 1 : ei
t
n : 1 : · · · : 1]

so that the morphism αx : π1(X,x) → Aut(cn) satis�es αx(gs) = αs for
1 ≤ s ≤ k. Note that αx(gs) depends only on the hyperplane Ds around
which the loop turns and the numer of turns, but not the choice of the loop.
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Représentations de groupes fondamentaux
en géométrie hyperbolique

Résumé

Deux méthodes de construction de représentations de groupes sont présen-
tées. La première propose une stratégie essayant de déterminer les représen-
tations de groupes libres de type �ni à valeurs dans tout réseau de groupes de
Lie réel. La seconde, après avoir revu une construction d'une surface hyper-
bolique complexe, c'est-à-dire le quotient du plan hyperbolique complexe H2

C
par un réseau de Isom(H2

C), et examiné soigneusement ses propriétés, produit
une in�nité de représentations non-conjuguées, à valeurs dans un réseau de
Isom(H2

C), de groupes fondamentaux de variétés hyperboliques fermées de
dimension 3, obtenues comme des �brés en surfaces sur le cercle.

Mots-clés: représentations de groupes fondamentaux, réseaux de groupes
de Lie, géométrie hyperbolique, structures CR sphériques.

Representations of fundamental groups
in hyperbolic geometry

Abstract

Two construction methods of group representations are presented. The �rst
one proposes a strategy to try to determine the representations of �nitely
generated free groups into any lattice in real Lie groups. The second, after
reviewing a construction of a complex hyperbolic surface, that is the quotient
of the complex hyperbolic plane H2

C by a lattice in Isom(H2
C), and examining

its properties carefully, yields in�nitely many non-conjugate representations
into a lattice in Isom(H2

C), of fundamental groups of closed hyperbolic 3-
dimensional manifolds, obtained as surface bundles over the circle.

Keywords: representations of fundamental groups, lattices in Lie groups,
hyperbolic geometry, spherical CR structures.


