
HAL Id: tel-01684685
https://theses.hal.science/tel-01684685v1

Submitted on 15 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep neural networks for source separation and
noise-robust speech recognition

Aditya Arie Nugraha

To cite this version:
Aditya Arie Nugraha. Deep neural networks for source separation and noise-robust speech recognition.
Signal and Image Processing. Université de Lorraine, 2017. English. �NNT : 2017LORR0212�. �tel-
01684685�

https://theses.hal.science/tel-01684685v1
https://hal.archives-ouvertes.fr

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Réseaux de neurones profonds
pour la séparation des sources et

la reconnaissance robuste de la parole

(Deep neural networks for source separation

and noise-robust speech recognition)

THÈSE

présentée et soutenue publiquement le 5 décembre 2017

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Aditya Arie Nugraha

Composition du jury

Rapporteurs : Christian Jutten Professeur,
Université Grenoble Alpes, France

Björn Schuller Reader in Machine Learning,
Imperial College London, Royaume-Uni

Examinateurs : Stefan Uhlich Principal Engineer,
Sony Stuttgart Technology Center, Allemagne

Marie-Odile Berger Directeur de recherche,
Inria Nancy – Grand Est, France

Directeurs de thèse : Emmanuel Vincent Directeur de recherche,
Inria Nancy – Grand Est, France

Antoine Liutkus Chargé de recherche,
Inria Sophia Antipolis – Méditerranée, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

.

Résumé

Dans cette thèse, nous traitons le problème de la séparation de sources audio
multicanale par réseaux de neurones profonds (deep neural networks, DNNs).
Notre approche se base sur le cadre classique de séparation par algorithme
espérance-maximisation (EM) basé sur un modèle gaussien multicanal, dans
lequel les sources sont caractérisées par leurs spectres de puissance à court
terme et leurs matrices de covariance spatiales. Nous explorons et optimisons
l’usage des DNNs pour estimer ces paramètres spectraux et spatiaux. À partir
des paramètres estimés, nous calculons un filtre deWiener multicanal variant
dans le temps pour séparer chaque source. Nous étudions en détail l’impact
de plusieurs choix de conception pour les DNNs spectraux et spatiaux. Nous
considérons plusieurs fonctions de coût, représentations temps-fréquence,
architectures, et tailles d’ensembles d’apprentissage. Ces fonctions de coût
incluent en particulier une nouvelle fonction liée à la tâche pour les DNNs
spectraux: le rapport signal-à-distorsion. Nous présentons aussi une formule
d’estimation pondérée des paramètres spatiaux, qui généralise la formulation
EM exacte. Sur une tâche de séparation de voix chantée, nos systèmes sont
remarquablement proches de la méthode de l’état de l’art actuel et améliorent
le rapport source-interférence de 2 dB. Sur une tâche de rehaussement de la
parole, nos systèmes surpassent la formation de voies GEV-BAN de l’état de
l’art de 14%, 7% et 1% relatifs en terme d’amélioration du taux d’erreur sur
les mots sur des données à 6, 4 et 2 canaux respectivement.

Mots-clés: séparation de sources audio multicanale, modèle gaussien multi-
canal, réseaux de neurones profonds

iii

Abstract

This thesis addresses the problem of multichannel audio source separation
by exploiting deep neural networks (DNNs). We build upon the classical
expectation-maximization (EM) based source separation framework employ-
ing amultichannel Gaussianmodel, in which the sources are characterized by
their power spectral densities and their source spatial covariancematrices. We
explore and optimize the use ofDNNs for estimating these spectral and spatial
parameters. Employing the estimated source parameters, we then derive a
time-varying multichannel Wiener filter for the separation of each source.
We extensively study the impact of various design choices for the spectral
and spatial DNNs. We consider different cost functions, time-frequency
representations, architectures, and training data sizes. Those cost functions
notably include a newly proposed task-oriented signal-to-distortion ratio cost
function for spectral DNNs. Furthermore, we present a weighted spatial
parameter estimation formula, which generalizes the corresponding exact
EM formulation. On a singing-voice separation task, our systems perform
remarkably close to the current state-of-the-artmethod and provide up to 2 dB
improvement of the source-to-interference ratio. On a speech enhancement
task, our systems outperform the state-of-the-art GEV-BAN beamformer
by 14%, 7%, and 1% relative word error rate improvement on 6-channel,
4-channel, and 2-channel data, respectively.

Keywords: multichannel audio source separation, multichannel Gaussian
model, deep neural networks

v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my
supervisors, Emmanuel Vincent and Antoine Liutkus, for all the time and
energy they have provided. Their thoughts, ideas, and suggestions are highly
valuable for this research. I greatly appreciate their guidance, encouragement,
and patience throughout the research process.

I would also like to thank all the members of MULTISPEECH research
team for providing a friendly, supportive, and stimulating research environ-
ment. Special thanks go to Imran Sheikh and Sunit Sivasankaran for countless
fruitful discussions and numerous technical assistance.

I would like to acknowledge both direct and indirect support from various
funding agencies. This study was partly supported by the French National
Research Agency (ANR) as parts of the DYCI2 project (ANR-14-CE24-0002-01)
and the KAMoulox project (ANR-15-CE38-0003-01). Experiments presented
in this thesis were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER,
and several Universities as well as other organizations (see https://www.
grid5000.fr).

Finally, I would like to express my gratitude to my family. I dedicate
this thesis to my parents who always allow and support me to pursue my
ambitions. I could not thank my wife enough for her love, patience, and
understanding. I also appreciate my daughter for always cheering me up.

vii

https://www.grid5000.fr
https://www.grid5000.fr

Contents

Résumé iii

Abstract v

Acknowledgements vii

Contents ix

List of Tables xiii

List of Figures xv

List of Abbreviations xvii

Résumé étendu 1
A Introduction . 1
B Notations et contexte . 2
C Estimation des paramètres spectraux avec des DNNs 4
D Sur l’amélioration des modèles spectraux profonds 7
E Estimation des paramètres spatiaux avec des DNNs 9
F Conclusion et perspectives . 12

1 Introduction 13
1.1 Motivation . 13

1.1.1 Audio source separation 13
1.1.2 Speech and music separations 14
1.1.3 Single-channel and multichannel separation 15
1.1.4 Deep neural networks (DNNs) 16

1.2 Objectives and scope . 17
1.3 Contributions and organization of the thesis 18

2 Background 21
2.1 Audio source separation . 21

2.1.1 Sources and mixture . 21
2.1.2 Source separation . 23

ix

2.2 Automatic speech recognition (ASR) 25
2.3 Time-frequency representation 29
2.4 State-of-the-art single-channel audio source separation 31

2.4.1 Time-frequency masking 31
2.4.2 Non-negative matrix factorization (NMF) 33
2.4.3 DNN based single-channel audio source separation . . 34

2.4.3.1 Basics of DNNs 35
2.4.3.2 DNN based separation techniques 39

2.5 State-of-the-art multichannel audio source separation 41
2.5.1 Beamforming . 42
2.5.2 Expectation-maximization (EM) based multichannel

audio source separation framework 45
2.5.2.1 Multichannel Gaussian model 46
2.5.2.2 General iterative EM framework 47

2.5.3 DNN based multichannel audio source separation
techniques . 50
2.5.3.1 Utilizingmultichannel features for estimating

a single-channel mask 50
2.5.3.2 Estimating intermediate variables for deriv-

ing a multichannel filter 51
2.5.3.3 Directly estimating a multichannel filter . . . 53
2.5.3.4 Summary . 54

2.6 Positioning of our study . 55

3 Estimation of spectral parameters with DNNs 57
3.1 Research questions . 57
3.2 Iterative framework with spectral DNNs 59
3.3 Experimental settings . 62

3.3.1 Task and dataset . 62
3.3.2 An overview of the speech enhancement system 65
3.3.3 DNN spectral models 67

3.3.3.1 Architecture 67
3.3.3.2 Inputs and outputs 67
3.3.3.3 Training criterion 70
3.3.3.4 Training algorithm 71
3.3.3.5 Training data 71

3.4 Source spectra estimation . 72
3.5 Impact of spatial parameter updates 73

x

3.6 Impact of spectral parameter updates 75
3.7 Comparison to NMF based iterative EM algorithm 77

3.7.1 Source separation performance 78
3.7.2 Speech recognition performance 78

3.8 Impact of environment mismatches 81
3.9 Summary . 82

4 On improving DNN spectral models 85
4.1 Research questions . 85
4.2 Cost functions for spectral DNN 88

4.2.1 General-purpose cost functions 88
4.2.2 Task-oriented cost functions 89

4.3 Impact of the cost function . 90
4.3.1 Experimental settings 90
4.3.2 Source separation performance 92
4.3.3 Speech recognition performance 95

4.4 Impact of time-frequency representations, DNN architectures,
and DNN training data . 98
4.4.1 Experimental settings 99

4.4.1.1 Time-frequency representations 99
4.4.1.2 DNN architectures and inputs 99
4.4.1.3 DNN training criterion, algorithm, and data . 100
4.4.1.4 Multichannel filtering 101

4.4.2 Discussions . 102
4.5 Impact of a multichannel task-oriented cost function 104

4.5.1 Experimental settings 105
4.5.1.1 Task and dataset 105
4.5.1.2 An overview of the singing-voice separation

system . 105
4.5.1.3 DNN spectral models 106

4.5.2 Discussions . 109
4.5.2.1 Task-oriented cost function 110
4.5.2.2 Comparison with the state of the art 114
4.5.2.3 Data augmentation 116

4.6 Summary . 119

5 Estimation of spatial parameters with DNNs 121
5.1 Research questions . 121

xi

5.2 Weighted spatial parameter updates 122
5.3 Iterative framework with spectral and spatial DNN 124
5.4 Experimental settings . 129

5.4.1 Task and dataset . 129
5.4.2 An overview of the speech enhancement system 129
5.4.3 DNN spectral models 130

5.4.3.1 Architecture, inputs, and outputs 130
5.4.3.2 Training criterion, algorithm, and data 131

5.4.4 DNN spatial models . 131
5.4.4.1 Architecture, input, and outputs 131
5.4.4.2 Training algorithm and data 133

5.4.5 Design choices for the DNN spatial models 134
5.4.5.1 Cost functions 134
5.4.5.2 Architectures and input variants 135

5.5 Estimation of the oracle source spatial covariance matrices . . 136
5.6 Spatial parameter estimation with DNN 138
5.7 Impact of different spatial DNN architectures 140
5.8 Impact of different spatial DNN cost functions 143
5.9 Comparison with GEV-BAN beamforming 145
5.10 Summary . 148

6 Conclusions and perspectives 151
6.1 Conclusions . 151
6.2 Perspectives . 154

Bibliography 159

xii

List of Tables

C.1 Performance de reconnaissance vocale en termes de WER (%)
utilisant différentes méthodes de rehaussement. 6

D.2 Performance en reconnaissance de la parole en terme de WER
(%) en utilisant différentes fonctions de coût 8

D.3 Performance de la séparation de sources pour la tâche MUS
de SiSEC 2016. 9

E.4 Comparaison des performance de reconnaissance en terme de
WER (%) pour différents nombres de canaux par rapport à la
formation de voies GEV-BAN. 11

3.1 Source separation performance metrics (in dB) of the multi-
channel NMF and the multichannel DNN based systems. . . . 78

3.2 Speech recognition performance in terms of WER (%) using
different enhancement methods. 80

4.1 Speech recognition performance in terms of WER (%) using
the different cost functions. 97

4.2 Speech recognition performance in terms of WER (%) of the
proposed system using the IS divergence. 98

4.3 Comparison of the different deep neural networks used in
Section 4.4. 100

4.4 Speech recognition performance in terms ofWER (%) using the
different time-frequency representations, the different DNN
architectures, and the different training datasets. 103

4.5 Comparison of the different RNNs used in Section 4.5. 108
4.6 Comparison of the different DNN training data settings used

in Section 4.5. 110
4.7 Source separation performance comparison to the oracle set-

ting and the state-of-the-art for the MUS task of SiSEC 2016. . 115

5.1 Speech recognition performance in terms of WER (%) using
the different spatial parameter estimations. 123

5.2 Comparison of the different spatial DNNs used in the different
speech enhancement tasks in Chapter 5. 133

xiii

5.3 Speech recognition performance in terms of WER (%) using
the different oracle settings for the 6-channel task. 137

5.4 Speech recognition performance in terms of WER (%) using
different settings on Algorithm 3 for the 6-channel task. 139

5.5 Speech recognition performance in terms of WER (%) using
the different spatial DNN architectures for the 6-channel task. 141

5.6 Speech recognition performance in terms of WER (%) using
DNNs trained with the different cost functions for the 6-
channel task. 144

5.7 Speech recognition performance in terms of WER (%) for the
different tasks compared to the GEV-BAN beamformer. 146

xiv

List of Figures

C.1 Système DNN proposé pour le rehaussement multicanal de la
parole. 5

2.1 Illustration of a studio music production. 23
2.2 Block diagram of ASR. 26
2.3 McCulloch-Pitts neuron model. 36
2.4 Typical usages of DNNs for single-channel audio source

separation. 40

3.1 Example power spectrograms of channel 5 of two different
noisy speech recordings for each environment type. 63

3.2 Example power spectrograms of channel 5 of the estimated
speech ground truth for some recordings in Figure 3.1. 64

3.3 ProposedDNNbasedmultichannel speech enhancement system. 66
3.4 Illustration of the inputs and outputs of the DNN for spectro-

gram initialization. 68
3.5 Illustration of the inputs and outputs of the DNNs for spectro-

gram fitting. 69
3.6 Example magnitude spectrograms of DNNspec

0 training targets
and outputs. 73

3.7 Source separation performance for various numbers of spatial
updates. 74

3.8 Source separation performance for each update of the EM
iterations with different numbers of DNNs. 76

3.9 Example power spectrograms of channel 5 of the resulting
multichannel enhanced speech. 79

3.10 Example power spectrograms of the resulting single-channel
enhanced speech. 81

4.1 Single-channel source separation performance for the DNNs
trained with different cost functions. 93

4.2 Source separation performance for various numbers of spatial
updates with the DNNs trained with different cost functions. 94

xv

4.3 Example power spectrograms of the resulting single-channel
enhanced speech after the spatial updates of the first EM
iteration. 96

4.4 Source separation performance for the multichannel separated
vocals and accompaniment at different processing steps. . . . 111

4.5 Example left channels of the reference vocals and the separated
vocals after spectrogram fitting using different DNNs. 112

4.6 SDR for the multichannel separated vocals and accompani-
ment after spectrogram fitting using different deep neural
network trained on the different training data settings with
different data amounts. 117

4.7 SDR for the multichannel separated vocals and accompani-
ment after spectrogram fitting using different DNNs trained
on the different training data settings with a comparable data
amount. 118

5.1 Spectral and spatial DNN architectures used in Chapter 5. . . 132
5.2 Example power spectrograms of the resulting single-channel

enhanced speech for all three different tasks by the GEV-BAN
beamformer and the proposed method with the iterative EM
spatial updates. 148

xvi

List of Abbreviations

ASR automatic speech recognition

BAN blind analytic normalization

CHiME CHiME Speech Separation and Recognition Challenge

DNN deep neural network

EM expectation-maximization

ERB equivalent rectangular bandwidth

FNN feedforward neural network

GEV generalized eigenvalue

IS Itakura-Saito

ISR source-image-to-spatial-distortion ratio

KL Kullback-Leibler

LSTM long short-term memory

MSE mean squared error

NMF non-negative matrix factorization

PSD power spectral density

RNN recurrent neural network

SAR signal-to-artifacts ratio

SDR signal-to-distortion ratio

SIR signal-to-interference ratio

SiSEC Signal Separation Evaluation Campaign

sMBR state-level minimum Bayes’ risk

STFT short-time Fourier transform

WER word error rate

xvii

Résumé étendu

A Introduction

La séparation de sources audio vise à récupérer le signal d’une ou plusieurs
sources audio sous-jacentes à un signal de mélange observé [Makino et al.,
2007; Vincent et al., 2017a]. Il s’agit d’un problème important dans la
communauté du traitement du signal audio et qui attire une attention
considérable de la part de nombreux chercheurs [Ewert et al., 2014; Vincent
et al., 2014]. Le signal de mélange est soit un signal monocanal, par
exemple un enregistrement de parole acquis avec un seul microphone ou un
enregistrement de musique mono, soit un signal multicanal, par exemple
un enregistrement de parole acquis avec deux microphones ou plus ou
un enregistrement de musique stéréo. Le signal multicanal comporte des
informations spatiales qui sont précieuses pour la séparation. Des études
ont montré que ces informations peuvent être exploitées dans la séparation
multicanale pour obtenir de meilleurs résultats qu’en monocanal.

Par ailleurs, les réseaux neuronaux profonds (Deep Neural Networks,
DNNs), y compris les réseaux neuronaux récurrents (Recurrent Neural
Networks, RNNs), peuvent modéliser des fonctions complexes et bien exécuter
diverses tâches [Deng, 2014; Goodfellow et al., 2016], y compris dans le do-
maine du traitement du signal audio [Yu&Deng, 2011] et de la reconnaissance
automatique de la parole (Automatic Speech Recognition, ASR) [Yu & Deng,
2015].

L’objectif principal de cette thèse est d’explorer et d’optimiser l’utilisation
des DNNs pour la séparation de sources audio dans le contexte multicanal.
Dans ce contexte, des filtres multicanaux invariants au cours du temps sont
connus pour offrir une faible distorsion de la parole. Pourtant, ils peuvent
ne pas convenir à des mélanges de nombreuses sources, dont on ne peut pas
présumer la stationnarité, comme dans une chanson présentant du chant et
divers instruments de musique. Dans notre étude, les DNNs sont utilisés
pour estimer les paramètres spectraux et spatiaux de chaque source afin
de dériver un filtre multicanal variant au cours du temps. Notre étude vise à
obtenir les sources cibles séparées en multicanal, ce qui contraste avec les
approches par formation de voies sus-citées qui visent à obtenir un signal de
parole monocanal. Nous pouvons appliquer les systèmes proposés à d’autres

1

tâches que le seul rehaussement de la parole, par exemple la séparation voix-
accompagnement ou la séparation des différents instruments d’un signal
musical.

B Notations et contexte

Dans cette thèse et comme cela est souvent fait dans la littérature, nous
restreignons le problème de la séparation de sources audio à celui de
récupérer les images spatiales de chaque source à partir du mélange. Chaque
image spatiale est définie comme la contribution d’une source à chaque
canal du mélange observé [Vincent et al., 2006]. Le mélange est supposé
en être la somme. Soient I , J , F et N le nombre de canaux, de sources, de
bande fréquentielles et de trames temporelles, respectivement. Dans une
représentation temps-fréquence comme la transformée de Fourier à court
terme (Short Term Fourier Transform, STFT), on peut l’exprimer comme suit:

x(f, n) =
J∑

j=1

cj(f, n), (1)

où x(f, n) ∈ CI×1 et cj(f, n) ∈ CI×1 représentent respectivement les
coefficients de STFT du mélange observé et des images spatiales des sources.
La séparation vise à récupérer cj(f, n) à partir de x(f, n).

Notre étude a pour point de départ le cadre probabiliste gaussien
multicanal, faisant intervenir un algorithme d’estimation itératif: l’algorithme
d’Espérance-Maximisation (EM) [Duong et al., 2010a]. Dans ce modèle,
cj(f, n) sont supposés être indépendants et distribués selon une distribution
gaussienne complexe isotrope centrée de matrice de covariance Rcj(f, n)

variant dans le temps:

cj(f, n) ∼ Nc
(
0, Rcj(f, n) = vj(f, n)Rj(f)

)
, (2)

où vj(f, n) ∈ R+ désigne la densité spectrale de puissance (Power Spectral Density,
PSD) de la source j pour la fréquence f et la trame n tandis que Rj(f) est
la matrice de covariance spatiale de la source, constante au cours du temps.
Tandis que vj(f, n) encode le contenu spectral de cette source, Rj(f) contient
les corrélations des différents canaux, rendant compte de sa disposition
spatiale dans le champ multicanal. En supposant que les sources ne sont
pas corrélées, le mélange suit également une distribution gaussienne centrée,

2

avec comme matrice de covariance Rx(f, n):

x(f, n) ∼ Nc
(
0, Rx(f, n) =

J∑

j=1

Rcj(f, n)

)
. (3)

Les matrices de covariance Rcj(f, n), Rx(f, n), et Rj(f) sont des matrices
complexes hermitiennes définies positives.

Étant données les PSDs (les paramètres spectraux) et les matrices de
covariance spatiale (les paramètres spatiaux) de toutes les sources, leurs
images spatiales peuvent être estimées au sens de l’erreur quadratique
moyenne minimale (minimum MSE) en utilisant le filtrage de Wiener
multicanal [Duong et al., 2010a] donné par

ĉj(f, n) = Wj(f, n)x(f, n) = Rcj(f, n)Rx(f, n)
−1x(f, n), (4)

où Wj(f, n) ∈ CI×I est le filtre de Wiener multicanal variable dans le temps. Les
formes d’ondes correspondantes sont ensuite récupérées à partir de ĉj(f, n)
par STFT inverse.

L’algorithme EM suivant, introduit par Ozerov et al. [2012], est une
extension de Duong et al. [2010a] qui vise à résoudre le problème de
l’estimation des paramètres spectraux et spatiaux de toutes les sources au
sens du maximum de vraisemblance. Sa première étape est d’initialiser tous
les paramètres. Il s’agit en particulier d’initialiser les PSDs des sources. Les
paramètres spatiaux (matrices de covariance spatiales), quant à eux, peuvent
par exemple être initialisés par des matrices identités.

Étant donnés ces paramètres spectraux et spatiaux, dans l’étape E, les
estimations des sources images ĉj(f, n) sont obtenues par filtrage de Wiener
multicanal (4) et leurs moments bruts a posteriori du second ordre R̂cj(f, n)

sont donnés par

R̂cj(f, n) = ĉj(f, n)ĉj(f, n)
∗ + (I−Wj(f, n))Rcj(f, n). (5)

Lors de l’étape M, les paramètres spatiaux sont mis à jour par

Rj(f) =
1

N

N∑

n=1

1

vj(f, n)
R̂cj(f, n). (6)

3

Pour ce qui est des paramètres spectraux, ils sont d’abord mis à jour de
manière non contrainte en formant zj(f, n), défini par

zj(f, n) =
1

I
tr
(
Rj(f)

−1R̂cj(f, n)
)
, (7)

où tr(·) est la trace d’une matrice. Les paramètres spectraux vj(f, n) sont
ensuite mis à jour à partir de zj(f, n) dans une étape d’ajustement de spectro-
gramme où les vj sont entendus comme la meilleur approximation des zj qui
obéisse à un type de modèle choisi. Par exemple, les vj peuvent être obtenus
par factorisation matricielle positive des zj (Nonnegative Matrix Factorization,
NMF) [Ozerov et al., 2012], ou n’en retenir que certaines régularités locales
(par exemple, par Kernel Additive Modelling) [Liutkus et al., 2014; Duong et al.,
2011].

Dans cette thèse, nous proposons deux formalismes de séparation de
sources audio multicanaux basés sur les DNNs. Le premier, dont il est
question dans la partie C, utilise les DNNs uniquement pour modéliser les
paramètres spectraux des sources (leurs densités spectrales de puissance).
Dans le deuxième, examiné dans la partie E, nous utilisons les DNNs
comme modèles spectraux mais aussi spatiaux. Une étude expérimentale
approfondie a été menée pour évaluer ces deux méthodes. La performance
de la séparation est mesurée par BSSEval [Vincent et al., 2007], qui fournit
un ensemble de métriques exprimées en décibels (dB): le rapport signal-à-
distorsion (SDR), le rapport source image à distorsion spatiale (ISR), le rapport
source-à-interférence (SIR) et le rapport source-à-artefacts (SAR). Pour les
expériences en ASR, la performance de reconnaissance est mesurée par le
taux d’erreur sur les mots (Word Error Rate, WER), exprimé en pourcents de
mots mal reconnus.

C Estimation des paramètres spectraux avec des
DNNs

Le premier modèle proposé dans notre étude utilise des DNNs pour estimer
et mettre à jour les paramètres spectraux seulement. Les mises à jour spatiales
sont obtenues par application directe de laméthodologie itérative EM [Ozerov
et al., 2012] décrite plus haut. En pratique, les DNNs spectraux manipulent
les spectres d’amplitude des sources, définis comme la racine carrée des
densités spectrales de puissance.

4

Figure C.1: Système DNN proposé pour le rehaussement multicanal de la
parole.

Tout système qui implémente cette architecture se décompose en trois
étapes principales: le prétraitement, l’initialisation et le filtrage multicanal,
avec une étape optionnelle de post-traitement. L’étape de pré-traitement aligne
le mélange observé et extrait les caractéristiques pertinentes à utiliser comme
entrées pour les DNNs. L’alignement est nécessaire pour satisfaire le modèle
de (2) qui suppose que les sources ne bougent pas dans le temps. L’étape
d’initialisation définit ensuite les paramètres spectraux et spatiaux initiaux.
L’étape de filtrage multicanal effectue les mises à jour (MÀJ) itératives des
paramètres. Enfin, l’étape optionnelle de post-traitement traite les images
spatiales multicanales estimées pour l’application cible. Par exemple, l’image
spatiale multicanale de parole obtenue est moyennée sur plusieurs canaux
pour obtenir un signal monocanal utilisable pour la reconnaissance de la
parole.

Nous avons appliqué cette architecture à une tâche de rehaussement de la
parole. Il s’agit de la séparation des deux sources (J = 2) que sont la parole
et le bruit, à partir d’un mélange de 6 canaux (I = 6). L’ensemble de données
CHiME du défi CHiME-3/4 [Barker et al., 2015; Vincent et al., 2017b] a été
utilisé dans les expériences. La figure C.1 représente le système proposé.

En utilisant ce système, nous avons évalué l’impact des différents choix
de conception sur la performance. Ces choix incluent notamment le nombre

5

Table C.1: Performance de reconnaissance vocale en termes de WER (%) en
utilisant différentes méthodes de rehaussement de la parole. L’évaluation a
été faite sur le jeu de signaux réels de la base. Les chiffres en gras indiquent
les meilleures performances pour chaque jeu de données. Les intervalles
de confiance à 95% pour les deux meilleurs WER sont ± 0,26% pour le jeu
de développement et ± 0,40% pour le jeu de test. Un WER plus faible est
préférable.

Méthode de rehaussement itér. EM type de MÀJ Dév. Test

Observé (bruité) - - 9.65 19.28
BeamformIt - - 6.36 13.67
NMF [Ozerov et al., 2012] 50 - 6.10 13.41
Modèle DNN proposé: KL 3 spatial 4.88 10.14

de mises à jour des paramètres spatiaux après l’initialisation des paramètres
spectraux et l’utilisation de DNN multiples pour estimer les paramètres
spectraux pour différentes itérations. Les expériences ont montré que le
fait de mettre à jour plusieurs fois les paramètres spatiaux avant une mise à
jour spectrale permet d’obtenir de meilleures performances que l’alternance
simple suggérée par le cadre EM classique. Les expériences ont également
montré que différents DNNs peuvent être utilisés pour la mise à jour des
paramètres spectraux de différentes itérations afin d’améliorer la performance
globale.

Le Tableau C.1 montre les performances de reconnaissance vocale de
différentes méthodes de rehaussement. Nous avons utilisé le système
d’ASR fourni par les organisateurs de CHiME-3 [Barker et al., 2015], dans
lequel le modèle acoustique DNN+sMBR a été entraîné sur des données
augmentées multi-conditions [Hori et al., 2015]. BeamformIt est la méthode
de rehaussement de base dans CHiME-3 et le système NMF multicanal basé
sur NMF [Ozerov et al., 2012] constituait l’état de l’art avant l’émergence
de l’apprentissage profond. Pour les systèmes NMF et DNN, les signaux
monocanaux des entrées ASR sont obtenus en calculant la moyenne des
canaux des images spatiales séparées de la parole. Notre système utilise
un DNN pour l’initialisation des spectrogrammes et deux autres pour
leur ajustement au cours d’itérations successives. Tous les DNN suivent
une architecture MultiLayer Perceptron (MLP) et sont appris au sens de la
divergence de Kullback-Leibler (KL) minimale [Lee & Seung, 2000]. Notre
système diminue le WER sur le jeu de test réel de 26% par rapport à
BeamformIt et de 24 % par rapport au système NMF. De plus, notre système

6

basé sur les DNNs a largement dépassé le système basé sur la NMF en terme
de métriques de séparation des sources. Il a augmenté par exemple le SDR
moyen de 5,5 dB par rapport au système par NMF.

D Sur l’amélioration des modèles spectraux pro-
fonds

Nous avons ensuite exploré des moyens d’améliorer les DNNs spectraux.
Nous avons examiné différentes fonctions de coût, différentes représentations
temps-fréquence, différentes architectures de DNN et différentes tailles de
données pour l’apprentissage des DNNs.

Le Tableau D.2 montre les performances de la reconnaissance vocale à
l’aide de DNNs appris avec différentes fonctions de coût pour l’initialisation
du spectrogramme et suivis des mises à jour spatiales. Le système d’ASR
est le même que dans le Tableau C.1. Outre la divergence KL utilisée
précédemment, nous avons examiné la divergence d’Itakura Saito (IS) [Itakura
& Saito, 1968], motivée par des considérations probabilistes, la fonction de
coût de Cauchy [Liutkus et al., 2015a] et l’erreur quadratique moyenne (MSE).
Le meilleur WER est obtenu par la divergence IS. Il est intéressant de noter
que la divergence KL donne de moins bons scores ici, bien qu’elle ait atteint
le meilleur SDR. Cependant, cette différence est modérée et compte tenu de
toutes les évaluations, nous concluons que la divergence KL est le choix le
plus raisonnable parce qu’elle fournit la meilleure performance en séparation
des sources et qu’elle fonctionne bien en terme de reconnaissance vocale. En
outre, la divergence IS fournit les meilleures performances de reconnaissance
vocale, mais sa performance en séparation est bien inférieure aux autres.

Les expériences ont montré que les représentations temps-fréquence
basées sur l’échelle de fréquence Equivalent Rectangular Bandwidth (ERB),
à motivation perceptuelle, sont favorables. Ces représentations de faible
dimensionnalité nous permettent d’utiliser des DNNs plus petits et ainsi de
réduire la durée de l’apprentissage. Les expériences ont ensuite montré
qu’une architecture de RNN bidirectionnelle à mémoire à court et long
terme (bidirectional long short-term memory, BLSTM) gère mieux le contexte
que l’approche de concaténation de trames que nous avions utilisée de
prime abord. Les expériences ont également montré que l’ajout des données
simulées dans le jeu d’apprentissage n’améliorait pas la performance par
rapport aux données réelles seules.

7

Table D.2: Performance de reconnaissance vocale en terme de WER (%) en
utilisant différentes fonctions de coût pour l’apprentissage. L’évaluation
a été faite sur le jeu de données réelles. Les chiffres en gras indiquent les
meilleures performances pour chaque jeu de données. Les intervalles de
confiance à 95% pour les deux meilleurs WER sont ± 0,26% pour l’ensemble
de développement et ± 0,42% pour l’ensemble de test. Un WER plus faible
est préférable.

Méthode de rehaussement EM iter. type de MÀJ Dév. Test

Modèle DNN proposé: Cauchy 1 spatial 4.96 11.13
Modèle DNN proposé: IS 1 spatial 4.88 10.83

Modèle DNN proposé: KL 1 spatial 5.37 11.46
Modèle DNN proposé: MSE 1 spatial 5.80 13.01

Nous avons également appliqué le système proposé à une tâche de
séparation chant-accompagnement. Dans cette tâche, nous traitons de la
séparation des deux sources (J = 2) que sont le chant et l’accompagnement
d’un morceau de musique stéréo (I = 2). Nous avons utilisé l’ensemble de
données DSD100 de la tâche MUS de SiSEC 2016 [Liutkus et al., 2017] et
avons proposé deux systèmes utilisant le même DNN pour la mise à jour
des paramètres spectraux mais appris avec des fonctions de coût différentes:
le premier DNN a été appris avec MSE et l’autre avec une fonction de coût
discriminante que nous avons développée, qui vise à optimiser directement
le SDR des sources séparées et qui tient compte du filtrage multicanal et de
l’inversion de la STFT.

Le Tableau D.3 compare les performances que nous obtenons à celles du
système proposé dans Uhlich et al. [2017] sur l’ensemble de données DSD100.
Sur le jeu de développement, nos systèmes sont nettement meilleurs que ceux
d’Uhlich pour toutes les métriques et toutes les sources. Malheureusement,
cette performance supérieure n’est pas reflétée dans les performances sur le
jeu de test. Nos systèmes présentent des artefacts qui nuisent à la distorsion
globale. Cependant, nos systèmes sont nettement plus efficaces pour enlever
l’accompagnement de la voix, ce qui peut être favorable pour une tâche
de séparation du chant. En termes de SIR sur les voix, nos systèmes
fournissent jusqu’à une augmentation absolue de 2 dB par rapport au système
d’Uhlich. Dans l’ensemble, nous pouvons dire que ces systèmes, développés
indépendamment, définissent l’état de l’art dans le domaine aujourd’hui.

De plus, nous avons tenté de créer un jeu de données d’apprentissage
plus grand par génération automatique pour résoudre le problème de sur-

8

Table D.3: Comparaison des performances de séparation de source avec l’état
de l’art pour la tâche MUS de SiSEC 2016. Le tableau montre les valeurs
médianes et leurs intervalles de confiance à 95%. Les intervalles varient entre
± 0,2 dB et ± 0,5 dB. Les chiffres en gras indiquent la meilleure performance
pour chaque triplet d’une métrique, d’une source et d’un jeu de données. Les
chiffres en italique montrent une performance qui n’est pas statistiquement
différente de la meilleure performance. Pour toutes les métriques, une valeur
plus élevée est préférable.

Méthode
Voix Accompagnement

SDR ISR SIR SAR SDR ISR SIR SAR

Ensemble de dev

Uhlich et al. [2017] 6.9 11.2 12.0 9.0 12.7 21.0 17.0 16.1
Proposé: MSE 9.1 15.2 18.4 10.0 14.9 25.6 20.8 16.7

Proposé: SDR 8.9 14.8 18.4 9.9 14.7 25.1 20.6 16.6

Ensemble de test

Uhlich et al. [2017] 5.4 10.4 9.2 8.3 11.0 17.6 15.1 14.7

Proposé: MSE 4.7 10.0 11.1 6.1 10.3 18.5 14.8 13.2
Proposé: SDR 4.7 9.9 11.2 6.1 10.4 18.9 14.9 13.3

apprentissage de nos systèmes, mis en évidence par l’écart de performance
entre les jeux de développement et les jeux de test. Cependant, il n’a fourni
que des améliorations absolues de 0,3 dB sur le chant et l’accompagnement.

E Estimationdes paramètres spatiaux avec desDNNs
Undernier volet de notre travail vise à dépasser le cadre EMpour lamise à jour
des paramètres spatiaux. Tout d’abord, nous proposons une généralisation
pondérée de la mise à jour des paramètres spatiaux:

Rj(f) =

(
N∑

n=1

ωj(f, n)

)−1 N∑

n=1

ωj(f, n)

vj(f, n)
R̂cj(f, n), (8)

où ωj(f, n) indique le poids de la source j pour le point temps-fréquence
(f, n). Lorsque ωj(f, n) est le même pour tous points temps-fréquence (f, n),
par exemple, ωj(f, n) = 1, (8) revient à la formulation exacte d’EM dans (6).
Lorsque ωj(f, n) = vj(f, n), (8) revient à la méthode utilisée dans Liutkus
et al. [2015b].

9

Les expériences ont démontré que l’utilisation de ωj(f, n) = vj(f, n)

apporte une amélioration statistiquement significative en termes de WER
dans tous les cas par rapport au ωj = 1 utilisé dans (6). L’amélioration relative
varie de 12 à 15%.

Outre cette contribution mineure, la seconde architecture que nous
proposons repose sur l’utilisation desDNNs pour l’estimation des paramètres
spectraux et spatiaux avec d’éventuelles mises à jour spatiales supplémen-
taires par EM pondéré ci-dessus. Dans la pratique, les DNNs spatiaux
estiment des matrices triangulaires inférieures, qui sont la décomposition de
Cholesky des matrices de covariance spatiale des sources.

Nous avons expérimenté différentes fonctions de coût dans ce contexte,
différentes architectures et différents paramètres d’entrée pour ces DNNs
spatiaux. Nous avons également proposé une nouvelle fonction de coût,
qui combine MSE et la distance cosinus (CD), et qui est supérieure à l’une
et l’autre utilisées seules. Nous avons également expérimenté différentes
architectures et différents paramètres d’entrée pour les DNN spatiaux, mais
nous n’avons pas trouvé une architecture ou un paramètre d’entrée qui
apporte une amélioration statistiquement significative par rapport aux autres:
dans tous les cas, le système proposé offre des performance très satisfaisantes
à un coût assez faible en terme de calculs une fois l’apprentissage effectué.
Nous avons également montré que des mises à jour spatiales itératives sont
toujours utiles et complémentaires pour améliorer les performances.

Enfin, le Tableau E.4 montre les performances de reconnaissance vocale
pour différents nombres de canaux par rapport à la formation de voie à
valeurs propres généralisée (GEV) invariante dans le temps incluant un post-
traitement de normalisation aveugle (BAN) tel que décrit dans Heymann
et al. [2017]. Cette méthode définit l’état de l’art sur les données CHiME.
Pour chaque tâche, nos systèmes emploient deux DNNs spectraux et deux
DNNs spatiaux. Tous les DNNs suivent une architecture RNN basée sur
BLSTM. Sur le jeu de test, la performance des systèmes que nous proposons
— sans itération spatiale EM supplémentaire — est statistiquement similaire à
celle de GEV-BAN avec 6 canaux ou 4 canaux, mais significativement moins
bonne avec 2 canaux. Les performances de nos systèmes avec les mises à
jour itératives supplémentaires par EM sont toujours meilleures que celles de
GEV-BAN pour tous les nombres de canaux. La différence n’est cependant
statistiquement significative que pour 6 canaux. Grâce à ces systèmes, nous
pouvons obtenir des diminutions relatives de 14%, 7% et 1% du WER par
rapport à GEV-BAN sur les tâches à 6, 4 et 2 canaux respectivement.

10

Table E.4: Comparaison des performance de reconnaissance en terme de
WER (%) pour différents nombres de canaux par rapport à la formation de
voie GEV-BAN. L’évaluation a été faite sur le jeu de données réelles. Les
chiffres en gras indiquent la meilleure performance pour chaque paire de
nombres de canaux et de jeu de données. Avec 6 canaux, les intervalles de
confiance à 95% pour les deux meilleurs WER sont ± 0,25 % pour le jeu de
développement et± 0,34% pour le jeu de test. Avec 4 canaux, ce sont± 0.26%
et ± 0.37%. Avec 2 canaux, ce sont ± 0.30% et ± 0.46%. Un WER plus faible
est préférable.

Système de rehaussement
Dév. Test

ID Description

6 canaux

(1) Initialisation spectrale avec DNNspec
0 7.17 14.03

(2) (1) + formation voie GEV-BAN 5.37 8.15

(3)
(1) + Initialisation spatiale avec DNNspat

0

+ MÀJ spectrale avec DNNspec
1

+ MÀJ spatiale avec DNNspat
1,1

4.81 8.33

(4) (3) + MÀJ spatiale jusqu’à convergence 4.59 6.97

4 canaux

(5) Initialisation spectrale avec DNNspec
0 7.30 13.91

(6) (5) + formation voie GEV-BAN 5.51 9.15

(7)
(5) + Initialisation spatiale avec DNNspat

0

+ MÀJ spectrale avec DNNspec
1

+ MÀJ spatiale avec DNNspat
1,1

5.07 9.12

(8) (7) + MÀJ spatiale jusqu’à convergence 4.87 8.47

2 canaux

(9) Initialisation spectrale avec DNNspec
0 8.55 17.39

(10) (9) + formation voie GEV-BAN 6.94 13.62

(11)
(9) + Initialisation spatiale avec DNNspat

0

+ MÀJ spectrale avec DNNspec
1

+MÀJ spatiale avec DNNspat
1,1

7.19 14.78

(12) (11) + MÀJ spatiale jusqu’à convergence 6.63 13.48

11

F Conclusion et perspectives
Nous avons proposé deux systèmes de séparation multicanale de sources
audio basés sur les DNNs et qui exploitent le modèle gaussien multicanal
de l’état de l’art en modélisation probabiliste audio. Selon ce modèle, les
sources sont caractérisées par leurs paramètres spectraux, c’est-à-dire leurs
densités spectrales de puissance, et leurs paramètres spatiaux, c’est-à-dire
leurs matrices de covariance spatiale, qui encodent les corrélations entre tous
les canaux pour chaque fréquence. Dans le premier système, les paramètres
spectraux sont modélisés par des DNNs et les paramètres spatiaux sont
estimés itérativement comme dans le cadre probabiliste classique. Dans le
second système, les paramètres spectraux et spatiaux sont tous modélisés
par des DNNs, avec une utilisation optionnelle finale de l’algorithme EM
issu de la modélisation probabiliste. Malgré quelques différences dans les
détails, nous pouvons dire que ce deuxième système englobe le premier. Pour
conclure, nous pouvons affirmer que la principale contribution de cette étude
est un cadre unifié pour la séparation de sources audio multicanale basé à la
fois sur l’utilisation de DNNs et d’un modèle probabiliste gaussien.

Nous avons étudié en profondeur l’impact des divers choix de concep-
tion des systèmes proposés. Pour l’aspect itératif, nous avons envisagé
de multiples estimations des paramètres spatiaux pour chaque estima-
tion de paramètres spectraux, ainsi que l’utilisation de DNNs différents
pour différentes itérations. Pour les DNNs spectraux, nous avons con-
sidéré différentes fonctions de coût, différentes représentations temps-
fréquence, différentes architectures de DNNs et différentes tailles de données
d’apprentissage. Pour les DNNs spatiaux, nous avons considéré différentes
fonctions de coût, différentes architectures et différents paramètres d’entrée.
De plus, nous avons présenté une formule d’estimation pondérée des
paramètres spatiaux, qui est une généralisation de celle du cadre EM, et
dont on a montré qu’elle améliorait les performances.

En se basant sur l’étude présentée dans cette thèse, plusieurs orientations
futures pourraient être envisagées. Les orientations à court et moyen terme
comprennent l’apprentissage intégrée des DNNs spectraux et spatiaux,
l’évaluation sur d’autres jeux de données et/ou tâches, la séparation de
sources mobiles et la séparation en temps réel. Les orientations à moyen
et long terme comprennent le rehaussement de la parole intégrant la
déréverbération et l’annulation d’écho, la séparation de sources multiples
d’un même type et la séparation avec des réseaux de microphones distribués.

12

CHAPTER 1

Introduction

In this chapter, we describe the motivation of our study by giving an
overviewof audio source separation and its increasing importance formodern
real-world applications. We then define our objectives and present the
organization of this thesis.

1.1 Motivation

1.1.1 Audio source separation

It is common for most people to have a good conversation with friends at the
terrace of a coffee shop while overhearing the background ambient music
played by the shop, the conversation in the other table nearby, the babbling
sound from a crowd passing on the sidewalk, and the motor sound from
the vehicles on the street. In this situation, a human listener may be able
to focus on the music or even further, its guitar riffs. This capability of
focusing and listening to a particular sound while overhearing many other
interfering sounds seems effortless for people with normal hearing and good
concentration, but it is not the case for others, especially elderly people.

This task is also a very challenging one for machines and translates into
the audio source separation problem. Still considering the above scenario at the
terrace of a coffee shop, let us imagine that someone is recording a video of
a presenter talking about the shop. The audio track of this video captures
not only the presenter’s speech but also the other sounds mentioned above,
which might be unwanted in the final version of the video. Given this audio
track, an audio source separation method may be used during the video
editing process to distinguish the presenter’s speech from the other unwanted
sounds, to preserve all sounds but the motor sound from the street, or for
other purposes. Thus, in general, audio source separation aims to recover one

13

or more underlying audio source signals from an observed audio mixture
signal [Makino et al., 2007; Naik & Wang, 2014; Vincent et al., 2017a].

1.1.2 Speech and music separations

Audio source separation is a core problem in the audio signal processing
community attracting a substantial attention from many researchers in the
last decades [Ewert et al., 2014; Rivet et al., 2014; Vincent et al., 2014]. Most
of the existing related research focuses on either speech separation or music
separation, although it does not mean that the developed methods are always
only applicable to one of these two areas.

Speech separation aims to recover a speech signal from a mixture contain-
ing multiple background noise sources with possibly interfering speech. The
primary applications include speech enhancement [Loizou, 2007] and automatic
speech recognition (ASR) [Rabiner & Juang, 1993]. Both applications demand a
speech signal with as few unwanted sounds (also called noise or interference) as
possible, but there is a subtle difference between them. Speech separation for
enhancement targets a human as the user. In this case, the separated speech
may contain more interference but should have less distortion to provide
speech that sounds natural and fewer artifacts, which are other unwanted
sounds induced by the separation process, to provide a good listening comfort
[Doclo et al., 2015]. Both distortion and artifacts are caused by imperfect
separation processes. Speech enhancement is employed in hearing aids,
mobile phones, teleconference systems, etc. On the other hand, speech
separation for ASR targets a machine as the ‘listener’, in which the reductions
of interference, distortion, and artifact may have different importance than
for a human. Additionally, the term ‘speech enhancement’ is also commonly
used for this ASR-oriented speech separation [Deng & O’Shaughnessy, 2003,
chap. 13]. We use this convention in this thesis, especially when we are
not discussing an application unique to human perceptual listening or ASR.
Furthermore, the terms ‘speech enhancement’ and ‘speech separation’ are
used interchangeably. Notable commercial products include VoCon® Speech
Signal Enhancement (SSE) by Nuance1 and BeClear Speech Enhancement by
Philips2.

While speech is the sole target in almost all cases of speech separation,
the targets of music separation vary from one application to another. Music

1See http://www.nuance.com/mobile/speech-recognition-solutions/vocon-sse
2See http://www.ip.philips.com/licensing/program/114

14

http://www.nuance.com/mobile/speech-recognition-solutions/vocon-sse
http://www.ip.philips.com/licensing/program/114

separation may aim to recover a singing voice from a mixture containing
music accompaniment, e.g., a pop song. Besides the singing voice, it
may aim to recover the musical instrument stems, e.g., piano, guitars, and
drums, from the same mixture. Given the separated sources, the derived
applications includemusic editing (e.g., remixing the instruments, up-mixing
the recording to 3D sound formats) and music information retrieval (e.g.,
transcribing the melody of a particular instrument). There exist commercial
products employing source separation in this context, including ADX TRAX
by Audionamix3, UNMIX::DRUMS by Zynaptiq4, Melodyne by Celemony5,
and R-MIX by Roland6.

An overview of research on both speech and music separation will be
presented in the next chapter. It is worth mentioning that there is also a
limited body of research focusing on other sounds beyond speech and music,
e.g., movie soundtracks [Liutkus & Leveau, 2010], bird songs [Potamitis,
2008], and marine mammal vocalizations [Gur & Niezrecki, 2009].

1.1.3 Single-channel and multichannel separation

The observed audio mixture is in the form of either a single-channel signal,
e.g., a speech recording acquired with a single microphone or a mono
music recording (which was common in the past), or a multichannel signal,
e.g., a speech recording acquired with two (or more) microphones or a
stereo music recording. If we consider the case of speech recording in real-
world environments, recording using a single microphone and performing
single-channel separation on the acquired signal is practical. However,
technological advances and the competitive market provide an increasing
number of affordable portable recording types of equipment with multiple
microphones. Thus, it is getting easier than before to obtain multichannel
speech recordings. These recordings capture additional information which
is valuable for separation. As an analogy, humans can predict the direction
from which sounds come based on the amplitude and phase differences
between the signals captured by the left and right ears. These inter-channel
differences are correlated with the position of the sound sources relative to
the ears (for humans) or the microphones (for machines). These differences
can be exploited in multichannel separation to provide better results than

3See https://audionamix.com/technology/adx-trax
4See http://www.zynaptiq.com/unmixdrums
5See http://www.celemony.com/en/melodyne
6See https://www.roland.com/us/products/r-mix

15

https://audionamix.com/technology/adx-trax
http://www.zynaptiq.com/unmixdrums
http://www.celemony.com/en/melodyne
https://www.roland.com/us/products/r-mix

single-channel separation [Brandstein & Ward, 2001; Benesty et al., 2008;
Kumatani et al., 2012; Doclo et al., 2015; Gannot et al., 2017]. If we consider
the application of separation to music recordings, multichannel separation
is also preferable since most professionally-produced recordings available
nowadays are in stereo (two-channel) format. Finally, if we consider the
application to the soundtracks of music concerts or films, we will deal with
3D sound formats, which feature six or eight channels.

1.1.4 Deep neural networks (DNNs)

Studies in the last decade have shown that deep neural networks (DNNs), in-
cluding recurrent neural networks (RNNs), can model complex functions and
perform well on various tasks [Deng, 2014; LeCun et al., 2015; Schmidhuber,
2015; Juang, 2016; Goodfellow et al., 2016], including audio signal processing
[Yu & Deng, 2011; Wang, 2017] and ASR [Hinton et al., 2012; Yu & Deng,
2015]. At the beginning of 2015 when our study was started, DNNs had
also been applied to single-channel speech separation and music separation,
especially singing voice separation [Weninger et al., 2014; Huang et al., 2015].
There were also studies about exploiting the available multichannel data,
but they were limited to extracting representations, also known as features,
from this data to estimate a single-channel separation filter [Jiang et al.,
2014; Araki et al., 2015]. As a result, these studies do not fully exploit the
benefits of multichannel data as achieved by multichannel filtering. Since
then, there have been more studies on using DNNs for both single-channel
and multichannel separation, although the single-channel case is still more
popular. For the multichannel case, there have been studies on employing
DNNs for doing beamforming [Kumatani et al., 2012]. The DNNs are used
either (1) for implicitly estimating a time-invariant beamformer in the context of
robust ASR joint training framework [Xiao et al., 2016; Sainath et al., 2017] or
(2) for estimating a single-channel filter, known as amask, for each channel and
use the estimated filters to derive a time-invariant beamformer [Heymann et al.,
2016; Erdogan et al., 2016; Wang et al., 2017]. Both approaches have shown
to perform well for speech enhancement. However, time-invariant filtering
might not be suitable for mixtures with many sources, whose mixing and
stationarity cannot be assumed, such as a song with its vocals and different
musical instruments. In our study, the DNNs are used to estimate the spectral
and spatial parameters of each source and use the estimated parameters
to derive a time-varying multichannel filter. Further discussions about these

16

studies and the positioning of our study with respect to these study are
presented in the next chapter.

1.2 Objectives and scope

The main objective of our study is to explore and optimize the use of
DNNs for multichannel audio source separation using time-varying mul-
tichannel filtering. In order to do so, we want to use the state-of-the-art
multichannel source separation framework as the basis. Consequently, we
need to investigate howDNNs shouldwork in this probabilisticmodeling
framework. The investigation includes what parameters of the probabilistic
model the DNNs should estimate and how the DNNs should learn to
estimate these parameters. We also need to check whether the modeling
by DNNs complies with the probabilistic point-of-view. We consider
both speech and music separation. For speech separation, we consider
a speech enhancement task for ASR. For music separation, we consider
both singing voice and musical instrument separation. Therefore, we need
to assess the system performance in terms of source separation metrics
and also speech recognition metric, when it is applicable. In order to
increase the reproducibility of the experiments, we want to evaluate the
performance on publicly available datasets. We use the datasets from the
CHiME Speech Separation and Recognition Challenges (CHiMEs)7 for the
speech enhancement task and the Signal Separation Evaluation Campaigns
(SiSECs)8 for the music separation task. Using these datasets allows us to be
active in our research community activities, especially when the datasets
are used in the context of the challenges (by following the rules). In this case,
comparison to other methods can be done easily and, most importantly, fairly.

What we want to recover is not exactly the sounds emitted by each
source, but its contribution to the mixture signal, known as source spatial
image. For speech recordings in real-world environments, the spatial image
is the speech signal recorded at the microphones after propagating from
the speaker’s mouth to the microphones in the absence of noise. Estimating
the sound produced at the speaker’s mouth from this spatial image is yet
another research topic called dereverberation, which is beyond the scope of our
study. Besides, we assume that the source types are known. For speech

7See http://spandh.dcs.shef.ac.uk/chime_challenge/
8See https://sisec.inria.fr/

17

http://spandh.dcs.shef.ac.uk/chime_challenge/
https://sisec.inria.fr/

separation, we consider the simplest case, i.e., the mixture is composed
of ‘speech’ and ‘noise’. The ‘noise’ source in our model typically consists
of several physical sound sources. For music separation, the mixture is
composed of ‘vocals’, ‘bass’, ‘drums’, and ‘others’. Similarly, we group all
instruments which compose a drum set as ‘drums’ disregarding the fact
that these instruments (snare drum, bass drum, cymbals, etc.) are separate
physical sound sources. Other instruments which are not included in ‘bass’
and ‘drums’ are grouped and labeled as ‘others’. Finally, we do not consider
the problem of multi-speaker speech separation, which aims to separate the
speech of one speaker from that of other speakers.

1.3 Contributions and organization of the thesis

Our contributions are discussed and organized in the following chapters as
follows.

Chapter 2 presents the mathematical formulation of audio source sepa-
ration and introduces the notations used in this thesis. It is followed by
an overview of state-of-the-art separation methods, including the classical
expectation-maximization (EM) based multichannel source separation frame-
work [Duong et al., 2010a] that uses a multichannel Gaussian model, in which
each source is characterized by its spectral and spatial parameters. This
framework will be the basis for the two DNN based frameworks presented
in Chapters 3 and 5. This chapter also presents the basics of ASR and DNNs,
especially those which are relevant to our study. Additionally, this chapter
briefly discusses the performance metrics which include source separation
and speech recognition metrics.

Chapter 3 describes the first DNN based multichannel audio source sepa-
ration framework we proposed in our study. In this framework, the spectral
parameters, i.e., the source power spectral densities (PSDs), are modeled
by DNNs and the spatial parameters, i.e., the source spatial covariance
matrices, are estimated iteratively as in the classical EM based framework
presented in Chapter 2. A time-varying multichannel Wiener filter is then
derived for each source using these source spectral and spatial parameters.
To the best of our knowledge, this was the first DNN based multichannel

18

audio source separation framework ever published9. Extensive experiments
on a multichannel speech enhancement problem have been done to assess
different design choices and their impact on the performance. In this chapter,
we consider several design choices that are related to the iterative aspect
of the framework. The design choices notably include multiple spatial
parameter updates after spectral parameter initialization and the use of
multiple DNNs for estimating the spectral parameters at different iterations.
Experiments show that doing multiple spatial parameter updates before
a spectral parameter update provides better performance than alternating
one spatial parameter update and one spectral parameter update, as in the
classical EM framework. Experiments also show that different DNNs can
be used for the spectral parameter update of different iterations to improve
the overall performance. Finally, we show that the proposed DNN based
framework outperforms multichannel non-negative matrix factorization
(NMF) [Ozerov et al., 2012], which achieved state-of-the-art performance for
the considered CHiME-3 dataset [Barker et al., 2015] before the emergence of
deep learning, in terms of source separation and speech recognition metrics.

Chapter 4 explores ways to improve the spectral DNNs used in the
framework presented in Chapter 3. In addition to the speech enhance-
ment problem, in this chapter, we also consider a multichannel vocals-
accompaniment separation problem in music. We mainly study the impact
of various general-purpose and task-oriented cost functions. This notably
includes the probabilistically-motivated Itakura-Saito (IS) divergence and a
newly proposed task-oriented signal-to-distortion ratio (SDR) cost function.
Experiments show that the Kullback-Leibler (KL) divergence is the most
reasonable choice because it provides the best source separation performance
and works well in terms of speech recognition performance. Meanwhile,
the IS divergence provides the best speech recognition performance, but its
source separation performance falls behind the others. Unfortunately, the task-
oriented SDR cost function only improves the average vocals-accompaniment
separation performance to some extent compared to the simple mean squared
error (MSE). To our knowledge, this is one of the first uses of task-oriented
discriminative training in a multichannel scenario. We then briefly study
the use of perceptually-motivated equivalent rectangular bandwidth (ERB)

9See: Nugraha, A. A., Liutkus, A., & Vincent, E. (2015, June). Multichannel audio source
separation with deep neural networks. Research Report RR-8740, INRIA. https://hal.inria.
fr/hal-01163369v1.

19

https://hal.inria.fr/hal-01163369v1
https://hal.inria.fr/hal-01163369v1

time-frequency representations and the impact of DNN architectures, in
which we consider a bidirectional long short-term memory (LSTM) based
RNN architecture, in addition to the multilayer perceptron architecture we
used in the beginning. We also consider data augmentation approaches
to increase the DNN training data. Finally, it is worth mentioning that
our vocals-accompaniment separation systems perform remarkably close
in terms of overall distortion to the DNN based system of Uhlich et al.
[2017], which achieves state-of-the-art performance in the context of the
professionally-produced music recordings task of SiSEC 2016 [Liutkus et al.,
2017]. Our systems even significantly better in terms of signal-to-interference
ratio achieved.

Chapter 5 presents a weighted spatial parameter estimation formula and
describes the second DNN based multichannel audio source separation
framework, which is an extension of the first framework discussed in Chapter
3. In this framework, both the spectral and the spatial parameters are
initialized and updated by DNNs with a possible addition of the iterative
EM spatial parameter updates. We show that DNNs can provide a good
estimation of the spatial parameters, i.e., the source spatial covariance
matrices, by exploiting the Cholesky decomposition of theHermitian positive-
definitive covariance matrices. For these spatial DNNs, we experimented
with different cost functions and different architectures. We also show that the
iterative EM spatial parameter updates are still useful to improve the source
spatial covariance matrices. Finally, this chapter presents a performance
comparison between our proposed systems and the generalized eigenvalue
(GEV) beamformerwith blind analytic normalization (BAN) ofHeymann et al.
[2017], which achieves state-of-the-art performance for the CHiME-4 dataset
[Vincent et al., 2017b]. Considering the real test set only, the performance
of our proposed systems is always better than the GEV-BAN beamformer
for all 6-channel, 4-channel, and 2-channel tasks, although the performance
differences are not always statistically significant.

Chapter 6 concludes this thesis by summarizing the achievements accom-
plished in our study and presenting some future directions.

20

CHAPTER 2

Background

In this chapter, we formulate the problem of audio source separation
mathematically and introduce the notations used in our study. This is
followed by brief discussions on automatic speech recognition, deep neural
networks, and the datasets used in the experiments. An overview of state-of-
the-art audio source separation methods is then presented. Additionally, the
considered performance measures, namely source separation metrics and a
speech recognition metric, are described in the corresponding discussions.

2.1 Audio source separation

2.1.1 Sources and mixture

From a physical point of view, sound sources are typically divided into two
types: point sources, whose sound comes from a single point in a space, and
diffuse sources, whose sound comes from a region of space and can be regarded
as a collection of point sources [Vincent et al., 2017a, chap. 1]. Point sources
include a human speaker, a piano string, a water drop, etc. A singer is seen
by the microphones as a point source when he/she is singing alone. But,
when he/she is singing in a choir, he/she becomes part of a diffuse source.
Similarly, a water drop in a kitchen sink is seen as a point source. But, water
drops as parts of rain create a diffuse source.

From a perceptual point of view, we may define sound sources as they
are perceived by human listeners. This has been studied in the subfield
of psychoacoustics. It is called auditory scene analysis. It is a process that
segregates the sounds reaching human ears into mental representations
called auditory streams via segmentation and groupingmechanisms [Bregman,
1990]. The segmentation mechanism decomposes the sounds into time and
frequency localized components and the grouping mechanism combines
these components such that they are perceptually organized. It allows

21

humans to listen to a piece of music as a whole, to the drums within that
music, or to the distinctive cymbal sounds from the drums.

As mentioned earlier in Section 1.2, in our study, audio source separation
aims to recover the source spatial images from the mixture, which is assumed
to be composed of two or more spatial images. Each source spatial image is
defined as the contribution of one source to the observed mixture [Vincent
et al., 2006]. It is closely related to the concept of auditory stream from
auditory scene analysis. This concept also justifies the grouping of some
sources, e.g., group all instruments which compose a drum set as ‘drums’
disregarding the fact that these instruments (snare drum, bass drum, cymbals,
etc.) are separate physical sound sources. This is equivalent to grouping
multiple point sources into a diffuse source.

The way sources are transformed into source images, which then compose
a recording, may vary. Broadly speaking, we may categorize recordings
into naturally-mixed and artificially-mixed recordings. For naturally-mixed
recordings, this transformation results from the propagation of sound through
air from the source to themicrophones. The propagation is affected by various
factors, including the source-microphone distance, the location of recording
(indoor or outdoor), the size of the room, and the sound absorption in the
room [Kuttruff, 2014]. For artificially-mixed recordings, the transformation
strongly depends on what the sound engineer wants to achieve since there
exist various audio mixing techniques and they are highly adjustable [Senior,
2011]. Naturally-mixed recordings can be used as sources in artificially-mixed
ones.

Figure 2.1 illustrates a studio music production where the vocals, the gui-
tar, the violin, and the drums are separately recorded and thenmixed together
to compose a song. The inputs of the mixing process are either naturally-
mixed or artificially-mixed recordings, and the output is an artificially-mixed
recording. The resulting stereo song consists of the sum of the stereo spatial
images of the vocals, the guitar, the violin, and the drums. These stereo spatial
images are not necessarily the original recordings. The sound engineers are
able to modify and mix the original sources by panning (distributing few
channels into more channels) or down-mixing (combining several channels
into fewer channels). Therefore, the number of channels of the spatial images
and the mixture may be chosen freely. By contrast, in the cases of speech
recording in a real-world environment or live music recording, the number
of channels of the spatial images and the mixture corresponds to the number
of microphones, as for the drums in Figure 2.1. In these cases, each channel

22

arie arie arie

Editing (equalization, compression, reverb, panning, etc.) by an audio engineer

+
AUDIO MIXING

guitar vocals drums violin

song

arie arie

A
rt

s
b

y
Ir

yn
a

 N
o

vy
ts

ky
 @

 1
2

3
R

F.
co

m
Figure 2.1: Illustration of a studio music production.

of a source spatial image is the signal captured by each microphone after
propagating from the corresponding source.

It also worth mentioning that, in our study, a mixture is defined as a
linear combination of the source images, as shown by Figure 2.1. In a music
production, non-linear post-processing can be applied on the generated
mixture. Conveniently, this kind of mixture can be viewed as a linear
combination of source images, on which non-linear processing has been
applied [Sturmel et al., 2012].

2.1.2 Source separation

Let us now formalize these concepts and introduce the notations we use in
the following discussions. Let I and J denote the number of channels and

23

sources, respectively, with their indexes i ∈ {1, 2, . . . , I} and j ∈ {1, 2, . . . , J}
to indicate specific channel i and source j. Additionally, we may use j ∈
{S,N} to indicate speech or noise, respectively. The observed I-channel
mixture, denoted by x(t) ∈ RI×1, is composed of two or more source spatial
images, denoted by cj(t) ∈ RI×1:

x(t) =
J∑

j=1

cj(t). (2.1)

The mixture and source spatial images are time-domain digital signals
indexed by t ∈ {0, 1, . . . , T−1}, where T is the length of the signal. Multichan-
nel audio source separation aims to recover the multichannel source spatial
images cj(t) = [c1j(t), c2j(t), . . . , cIj(t)]

> from the observed multichannel
mixture signal x(t) = [x1(t), x2(t), . . . , xI(t)]

>, where ·> denotes matrix or
vector transposition. This definition applies to both point and diffuse sources
in both naturally-mixed and artificially-mixed recordings.

The performance of audio source separation can be evaluated using subjec-
tive or objective assessment [Emiya et al., 2011; Cano et al., 2016]. Subjective
assessment can be done via listening tests by following a methodology called
MUSHRA [ITU, 2015] or one of its variants [Emiya et al., 2011; Cartwright
et al., 2016]. Objective assessment is done by computing performance metrics,
such as BSS Eval [Vincent et al., 2006], which is a set of quadratic error based
metrics, or PEASS [Emiya et al., 2011], which is a set of perceptual model
based metrics.

In our study, we use the metrics given by the variant of BSS Eval for source
spatial images [Vincent et al., 2007]. This variant decomposes each channel
of an estimated source image ĉj(t) = [ĉ1j(t), ĉ2j(t), . . . , ĉIj(t)]

> as

ĉij(t) = cij(t) + e
spat
ij (t) + einterfij (t) + eartifij (t), (2.2)

where cij(t) ∈ R is channel i of the true source image, while espatij (t) ∈ R,
einterfij (t) ∈ R, and eartifij (t) ∈ R are different error components representing
the spatial distortion, the interference, and the artifacts, respectively, for the
corresponding channel of the estimated source image ĉij(t) ∈ R.

Based on this decomposition, four different metrics, i.e., the signal-to-
distortion ratio (SDR), the source-image-to-spatial-distortion ratio (ISR), the
signal-to-interference ratio (SIR), and the signal-to-artifacts ratio (SAR), are

24

computed as follows:

SDRj = 10 log10

∑I
i=1

∑T
t=1 cij(t)

2

∑I
i=1

∑T
t=1 (ĉij(t)− cij(t))

2
, (2.3)

ISRj = 10 log10

∑I
i=1

∑T
t=1 cij(t)

2

∑I
i=1

∑T
t=1 e

spat
ij (t)2

, (2.4)

SIRj = 10 log10

∑I
i=1

∑T
t=1

(
cij(t) + e

spat
ij (t)

)2

∑I
i=1

∑T
t=1 e

interf
ij (t)2

, (2.5)

SARj = 10 log10

∑I
i=1

∑T
t=1

(
cij(t) + e

spat
ij (t) + einterfij (t)

)2

∑I
i=1

∑T
t=1 e

artif
ij (t)2

. (2.6)

These four metrics are expressed in decibels (dB) and higher metric values
indicate better performance. As indicated by (2.3), the SDR can be regarded
as an overall metric.

This study considers the applications of audio source separation for music
separation and speech enhancement. Speech enhancement is important to
provide an automatic speech recognition (ASR) system some robustness, e.g.,
to noise or reverberation. As its name suggests, speech enhancement aims
to enhance the target speech and attenuate the non-speech sounds. This can
be viewed as a source separation problem where a noisy speech need to be
separated into the target speech and the other sounds. The latter may then be
discarded. The following section presents a brief description of ASR system
and the evaluation metric we use in our study.

2.2 Automatic speech recognition (ASR)

Figure 2.2 shows the block diagram of a typical ASR system with optional
enhancement blocks [Rabiner & Juang, 1993; Rabiner & Schafer, 2007; Gales
& Young, 2008; Virtanen et al., 2012]. The basic flow involves the extraction
of feature vectors from the input speech signal (in the feature extraction step)
and the search for the most likely word sequence given these features (in the
decoding step). The decoding step can be expressed as

ŵ = argmax
w

P (w|v) , (2.7)

25

Speech Feature
extraction Features Decoding Words

Signal
enhancement

Enhanced
speech

Feature
enhancement

Enhanced
feature

LexiconAcoustic
Model

Language
Model

Model
enhancement

Figure 2.2: Block diagram of ASR. The solid arrows show the basic ASR flow,
while the dashed arrows show an additional flow for robust ASR.

where ŵ and w are the estimated and the hypothesized word sequences; v
is the sequence of feature vectors; and P (w|v) is the probability of a word
sequence w given the sequence of feature vectors v. Following Bayes’ rule,
this formula leads to

ŵ = argmax
w

P (v|w)P (w) , (2.8)

where the likelihood P (v|w) is computed from an acoustic model and the
prior P (w) is computed from a languagemodel. The languagemodel models
word sequences and the acoustic model typically models small speech sound
units called phonemes. In order to link the acoustic model and the language
model, a lexicon, also known as a pronunciation dictionary, is used. The
lexicon contains a list of words and the variations of pronunciation, expressed
in phonemes, of these words.

There exist various advanced techniques, including enhancement tech-
niques, for different components of a robust ASR system [Virtanen et al., 2012;
Li et al., 2014].

Signal related techniques works in the time or time-frequency domain of
the single-channel ormultichannel observed noisy speech [Benesty et al.,
2005]. In general, these techniques are known as speech enhancement
techniques, although theymay involve noise reduction, dereverberation,
or echo cancellation. The techniques include spectral subtraction [Boll,
1979], Wiener filtering [Lim & Oppenheim, 1979], non-negative matrix
factorization (NMF) [Lee & Seung, 1999, 2000], and beamforming with

26

post-filtering [Brandstein & Ward, 2001; Benesty et al., 2008]. Some of
these methods are further discussed later in this chapter.

Feature related techniques include robust features, feature normalization,
and feature enhancement. The most commonly used basic features
are mel-frequency cepstral coefficients [Davis & Mermelstein, 1980]
and perceptual linear predictive coefficients [Hermansky, 1990]. In
order to compensate the noise, normalization techniques can be applied.
These techniques may include cepstral mean normalization [Atal, 1974],
cepstral mean and variance normalization [Viikki & Laurila, 1997],
linear discriminant analysis [Izenman, 2008], maximum likelihood
linear transform [Gopinath, 1998], and feature-space maximum like-
lihood linear regression [Gales, 1998]. Features can also be improved
by enhancement techniques, including SPLICE [Deng et al., 2001],
ALGONQUIN [Frey et al., 2001], and various neural network based
methods [Ishii et al., 2013; Wöllmer et al., 2013; Nugraha et al., 2014;
Himawan et al., 2015; Fujimoto & Nakatani, 2016]. Finally, there exist
various robust features, including some which are motivated by human
auditory properties [Stern & Morgan, 2012].

Model related techniques include advanced models, model training tech-
niques, and model adaptation techniques. The state-of-the-art for
acoustic modeling is the so-called DNN-HMM, in which deep neural
network (DNN), as opposed to the more classical Gaussian mixture
model, provides the posterior probabilities of the hidden Markov
model states [Gales & Young, 2008; Hinton et al., 2012; Yu & Deng,
2015]. Both GMM-HMM and DNN-HMMmodels may be trained on
either noisy or enhanced data from several different environments
(known as multi-condition training) [Lippmann et al., 1987]. For further
improvement, training can be performed by employing discriminative
criteria, such as maximum mutual information and minimum Bayes’
risk [Bahl et al., 1986; Goel & Byrne, 2000; Veselý et al., 2013]. Model
adaptation techniquesmay then be utilized to compensate the difference
between training and test conditions. These techniques include speaker
adaptive training for GMM-HMMmodel [Povey et al., 2008] or DNN-
HMM model [Miao et al., 2015] and other DNN adaptation techniques
[Swietojanski et al., 2016; Samarakoon & Sim, 2016; Karanasou et al.,
2017]. Besides, there exist other techniques based on uncertainty
concept [Droppo et al., 2002; Liao & Gales, 2005] and missing data

27

concept [Raj & Stern, 2005; Barker, 2012]. The state-of-the-art for
language modeling is the so-called RNN-LM, in which recurrent neural
network (RNN) is used as opposed to the more classical n-grammodels
[Rosenfeld, 2000; Mikolov et al., 2010]. For the n-gram models, various
smoothing techniques have been studied [Chen & Goodman, 1996],
including Kneser-Ney smoothing [Kneser & Ney, 1995].

Beyond the techniques above, there also exist system combination methods,
such as recognizer output voting error reduction [Fiscus, 1997] and segmental
conditional random field [Zweig & Nguyen, 2010].

In our study, ASR is solely used for the evaluation of the proposed audio
source separation frameworks on a speech enhancement task. We employ
the baseline system of the 4th CHiME Speech Separation and Recognition
Challenge [Vincent et al., 2017b] which implements various state-of-the-art
techniques. Concerning the features, the extraction of mel-frequency cepstral
coefficients is followed by dimensionality reduction using linear discriminant
analysis on concatenated frames, decorrelation using maximum likelihood
linear transform, and speaker normalization using feature-space maximum
likelihood linear regression. Both Gaussian mixture model and DNN based
acoustic models are used. The Gaussian mixture model based acoustic model
employs speaker adaptive training and the DNN based acoustic model is
trained with the cross entropy criterion followed by state-level minimum
Bayes’ risk (sMBR) criterion [Yu & Deng, 2015, chap. 8]. The language model
is a 3-gram model with 5-gram Kneser-Ney smoothing and rescoring of
the lattice, which contains the word sequence hypotheses, using RNN-LM.
For further details about this baseline system, see Hori et al. [2015]. The
optimization of this system is beyond the scope of our study.

We use the word error rate (WER) as the speech recognition metric. The
WER is based on the Levenshtein distance [Levenshtein, 1966], which counts
the minimum number of operations (i.e., word insertions, deletions, and
substitutions) required to convert the reference sentence into the transcribed
one. The WER is computed as

WER =
Ni +Nd +Ns

Nw

× 100%, (2.9)

where Ni, Nd, and Ns denote the number of word insertions, deletions,
and substitutions, respectively, while Nw is the total number of words in
the reference sentence. An insertion occurs when ASR introduces a new

28

word which does not exist in the reference sentence, a deletion occurs when
ASR completely fails to recognize a word, and a substitution occurs when
ASR mistakenly recognizes a word as another. Lower WER indicates better
performance.

As mentioned in the discussion of signal related techniques, we present
some source separation techniques, including the ones for speech enhance-
ment, later in this chapter. Before that, let us discuss sound representation in
the time-frequency domain, on which most of these techniques work.

2.3 Time-frequency representation

Audio source separation methods typically operate in the time-frequency
domain, in which the temporal and spectral characteristics of sound can be
jointly represented. Sounds tend to be sparsely distributed in this domain.

The most commonly used time-frequency representation is the short-time
Fourier transform (STFT) [Allen, 1977; Smith, 2011; Virtanen et al., 2017]. Other
representations include the Mel scale [Stevens et al., 1937] and the equivalent
rectangular bandwidth (ERB) scale [Glasberg &Moore, 1990] representations.
These two representations use different perceptually-motivated nonlinear
frequency scales. In this section, we only describe the STFT representation.

STFT analysis refers the computation of the time-frequency representation
from the time-domain waveform. It is done by creating overlapping frames
along the waveform and applying the discrete Fourier transform on each frame.
Given channel i of the time domain mixture xi(t), the signal of frame index
n ∈ {0, 1, . . . , N − 1} expressed as

xi(t, n) = xi(t+ nH)ha(t), t ∈ {0, 1, . . . , T − 1}, (2.10)

where N is the number of frames, H the hop size between adjacent frames,
T the frame length, and ha(t) the analysis window, such as a Hamming or
Hanning function.

The application of the discrete Fourier transform on each frame results in
the time-frequency representation

xi(f, n) =

Tf−1∑

t=0

xi(t, n)e
−2πtf/F ′

, f ∈ {0, 1, . . . , F = dF ′/2e, . . . , F ′ − 1},

(2.11)

29

where f is the discrete frequency bin index and F ′ is the number of frequency
bins corresponding to the number of discrete Fourier transform points, which
is typically F ′ = Tf . Since we commonly works on real signals, the spectrum
for each frame is Hermitian. Therefore, the so-called negative frequency
bins f ∈ {dF ′/2e+ 1, . . . , F ′ − 1}may be ignored in the computation, since
these bins can be constructed from the so-called positive frequency bins
f ∈ {0, 1, . . . , F = dF ′/2e}.

STFT synthesis refers to the transformation from the time-frequency
representation to the time-domain waveform. It is done by applying the
inverse discrete Fourier transform on each frame and performingweighted overlap-
add to obtain the time-domain waveform. The application of the inverse
discrete Fourier transform on channel i and source j of the estimated spatial
images ĉij(f, n) results in

ĉij(t, n) =
1

F ′

F ′−1∑

f=0

ĉij(f, n)e
2πtf/F ′

, t ∈ {0, 1, . . . , Tf − 1}. (2.12)

The time-domain signal is then obtained as

ĉij(t) =

∑∞
n=−∞ ĉij(t− nHf , n)hs(t− nHf)∑∞
n=−∞ ha(t− nHf)hs(t− nHf)

, (2.13)

where hs(t) is a synthesis window. This window is important to minimize
artifacts at the frame boundaries. If the analysis and the synthesis windows
are chosen subject to

∑∞
n=−∞ ha(t−nHf)hs(t−nHf) = 1,∀t ∈ {0, 1, . . . , T−1},

(2.13) leads to the weighted overlap-add of Crochiere [1980]. If the analysis
and the synthesis windows are set to be the same window, (2.13) leads to the
weighted overlap-add of Griffin & Lim [1984]. In our study, we follow the
latter by employing a Hamming window as the analysis and the synthesis
windows.

The time domain formulation of the mixture as the sum of the source
spatial images in (2.1) can be expressed in the time-frequency domain as

x(f, n) =
J∑

j=1

cj(f, n), (2.14)

where x(f, n) ∈ CI×1 and cj(f, n) ∈ CI×1 denote the time-frequency
representations computed from x(t) and cj(t), respectively, for frequency
bin f ∈ {0, 1, . . . , F} and time frame n ∈ {0, 1, . . . , N − 1}. Thus, audio

30

source separation aims to recover the multichannel source spatial images
cj(f, n) = [c1j(f, n), c2j(f, n), . . . , cIj(f, n)]

> from the observed multichannel
mixture signal x(f, n) = [x1(f, n), x2(f, n), . . . , xI(f, n)]

>.
The following two sections present some state-of-the-art techniques for

single-channel audio source separation, i.e., estimating cj(f, n) from x(f, n),
and for multichannel audio source separation, i.e., estimating cj(f, n) from
x(f, n).

2.4 State-of-the-art single-channel audio source sep-
aration

This section presents essential single-channel audio source separation meth-
ods, including time-frequency masking, NMF, and various DNN based
approaches. Since we consider the single-channel case, i.e., I = 1, to be
concise, the index i is not shown in the notations.

There are notable methods beyond the ones particularly discussed here,
such as factorial hidden Markov model. It relies on a statistical model of
the sources [Roweis, 2003; Ozerov et al., 2009]. Each source is modeled by a
GMM-HMM trained on the corresponding source data. The models are then
used for estimating a time-frequency mask (see Section 2.4.1).

2.4.1 Time-frequency masking

Time-frequency masking, as its name suggests, estimates the spatial images
by filtering the time-frequency representation of the mixture using a mask.
This can be expressed as

ĉj(f, n) = m̂j(f, n)x(f, n), (2.15)

where m̂j(f, n) is the mask for frequency bin f and time frame n of source j.
Typically, the mask is a real-valued scalar m̂j(f, n) ∈ R [Ephraim & Malah,
1984], but a complex-valued mask m̂j(f, n) ∈ C has been studied recently
[Williamson et al., 2016]. For the real-valued case, themask can be categorized
as a binary mask, m̂j(f, n) ∈ {0, 1}, or a soft mask (also known as ratio mask),
m̂j(f, n) ∈ [0, 1].

The best possible binary or soft mask is called the ideal binary mask or the
ideal ratio mask, respectively. Let us consider a speech enhancement scenario
with a target speech source cS(f, n) and a noise source cN(f, n). The speech

31

ideal ratio maskmrat
S (f, n) and ideal binary maskmbin

S (f, n) can be computed
as

mrat
S (f, n) =

‖cS(f, n)‖
‖x(f, n)‖ (2.16)

mbin
S (f, n) =

1 ifmrat

S (f, n) > threshold
0 otherwise

(2.17)

where ‖·‖ is the Euclidean norm. The ideal ratio mask in (2.16) may be
regarded as a single-channel Wiener filter, akin to the multichannel Wiener
filter in (2.46) whose probabilistic interpretation is presented in Section 2.5.2.1.

Typically, the noise ideal ratio mask or ideal binary mask is simply
computed asm{rat,bin}

N (f, n) = 1 − m{rat,bin}
S (f, n). However, it is not necessarily

so, e.g., by computing the noise mask mbin
N similarly to (2.17), but with

a threshold that is not reciprocal to that for the speech mask mbin
S . In

general, different formulations can be used for different sources, subject
to 0 ≤ mj(f, n) ≤ 1 [Gerkmann & Vincent, 2017].

Time-frequency masking is an integral part of computational auditory
scene analysis. It is an adaptation of auditory scene analysis studies on
human audition (see Section 2.1) to machine audition. Its goal is to achieve
human audition performance in extracting auditory streams from single-
or two-channel recordings [Wang & Brown, 2006, chap. 1]. Therefore, it is
not limited to single-channel audio source separation. Following auditory
scene analysis, segmentation and grouping mechanisms are adopted in
computational auditory scene analysis [Brown &Wang, 2005; Weninger et al.,
2017]. The segmentation mechanism covers time-frequency analysis using
a perceptually-motivated representation, such as a gammatone filterbank,
and feature extraction, which is done on the resulting time-frequency
representation. Various features, such as fundamental frequency, harmonicity,
and continuity, have been studied [Brown & Cooke, 1994; Wang & Brown,
1999]. Based on these features, the grouping mechanism then associates
particular segments of the time-frequency representation to a specific sound
source. Since this association map can be seen as a binary mask, the ideal
binary mask was suggested to be the objective of computational auditory
scene analysis [Wang, 2005, 2008].

It is worth mentioning that studies have shown that the ratio mask
provides better perceptual quality than the binary mask [Jensen & Hendriks,
2012; Madhu et al., 2013; Koning et al., 2015]. This finding has also influenced

32

researchers on computational auditory scene analysis to consider the ideal
ratio mask as their objective [Hummersone et al., 2014].

Broadly speaking, time-frequency masking is the core of many source
separation techniques. The mask may be estimated differently in different
techniques. The DNN based approaches typically rely on DNNs to provide a
mask directly or source spectra, which can be used to compute a mask. These
approaches are further discussed in the later subsection. In the following
subsection, we describe a technique called NMF. This technique relies on
source spectral structures and estimates a mask via spectra decomposition.

2.4.2 Non-negative matrix factorization (NMF)

Let us consider a matrix V ∈ RF×N
+ consisting of a non-negative time-

frequency representation v(f, n) ∈ R+, such as the magnitude |x(f, n)| or the
power |x(f, n)|2.

Non-negative matrix factorization (NMF) [Lee & Seung, 1999] approximates
this non-negative matrix V as

V̂ = BA, (2.18)

where B ∈ RF×K
+ is a non-negative matrix consisting of basis spectra bk ∈

RF×1
+ representing spectral structures, A ∈ RK×N

+ is a non-negative matrix
consisting of time-varying activations ak ∈ R1×N

+ , and K < min(F,N) is
the number of components indexed by k ∈ {1, 2, . . . , K}. Assuming that V
consists of J sources, the K components can be grouped into subsets Kj ,
corresponding to each source:

V̂ =
K∑

k=1

bkak =
J∑

j=1

∑

k∈Kj

bkak. (2.19)

A time-frequency mask for source j can then be computed as

M̂j =

∑
k∈Kj

bkak
∑K

k=1 bkak
, (2.20)

where the division operation is done element-wise and M̂j ∈ [0, 1]F×N

consisting of m̂j(f, n). The estimation of source j can then be computed
as in (2.15). For details on the theoretical aspects of source separation by

33

NMF, the interested reader may refer to Févotte & Idier [2011]; Smaragdis
et al. [2014]; Şimşekli et al. [2015].

In the so-called unsupervised NMF, the basis spectra and activations are
estimated from the observed mixture directly without prior knowledge
about the sources [Smaragdis & Brown, 2003]. Its counterpart, supervised
NMF, estimates the basis spectra from isolated signals of the sources, via
dictionary learning, and uses these basis spectra to predict the activations given
the mixture [Smaragdis, 2007]. In another approach called semi-supervised
NMF, some basis spectra are learned beforehand as in supervised NMF and
additional basis spectra are estimated from themixture [Mysore & Smaragdis,
2011].

Various algorithms for estimating the parameters of NMF have been
proposed [Badeau & Virtanen, 2017]. The most popular one is based on the
multiplicative update rules [Lee & Seung, 2000], in which the basis spectra and
the activations are estimated in an iterative manner. Following [Févotte &
Idier, 2011], the multiplicative update rules for the β-divergence, which is a
family of cost functions parametrized by β ∈ R, are expressed as

B ← B ◦
(
V ◦ (BA)β−2

)
A>

(BA)β−1A>
(2.21)

A← A ◦ B
> (V ◦ (BA)β−2

)

B>(BA)β−1
(2.22)

where the division and exponentiation are done element-wise, while ◦
denotes element-wise multiplication. Various cost functions have been
investigated, including the Euclidean distance (β = 2) [Lee & Seung, 1999],
the Kullback-Leibler (KL) divergence (β = 1) [Lee & Seung, 2000], and the
Itakura-Saito (IS) divergence (β = 0) [Févotte et al., 2009].

2.4.3 DNN based single-channel audio source separation

In this subsection, we present the basics of DNNs and review some single-
channel source separation techniques employing DNNs. Most of the
techniques use DNNs in the context of time-frequency masking (Section
2.4.1) by estimating a mask directly or estimating source spectra, from which
amask can be derived. A few others use DNNs in the context of NMF (Section
2.4.2).

34

2.4.3.1 Basics of DNNs

An artificial neuron is a computational model inspired by the biological
neuron. Artificial neurons can be interconnected to form an artificial neural
network. Hereafter, both the terms neuron and neural network refer to the
artificial ones. There are three aspects in designing a neural network: the
neuron, the architecture, and the learning [Rojas, 1996, chap. 1].

The neuron aspect describes how the inputs are processed. It typically
follows the McCulloch-Pitts model [McCulloch & Pitts, 1943] as shown
by Figure 2.3. Mathematically, it can be expressed as

h = σ

(∑

n

wnxn + b

)
, (2.23)

which says that the output h is obtained by applying a non-linear
activation function σ to the affine transformation of the inputs xn, n ∈
{1, 2, 3} given the neuron parameters, that are the weights wn, n ∈
{1, 2, 3} and possibly the bias b. The bias may be used to provide an
activation threshold such that when the weighted sum of inputs is less
than the bias, the neuron is not activated.

In the past, the sigmoid, sigm(z) = (1 + e−z)−1, and the hyperbolic
tangent, tanh(z) = (1−e−2z)(1+e−2z)−1, were the prominent non-linear
activation functions σ. Recently, various non-linear functions have been
studied, such as the hard sigmoid [Gulcehre et al., 2016], which is a piece-
wise linear approximation of the sigmoid in order to achieve a faster
computation and implemented as hsig(z) = max(0,min(1, sz + 0.5)),
where s is a slope parameter; the rectifier [Nair & Hinton, 2010],
rect(z) = max(0, z); and the softplus [Dugas et al., 2000], sofp(z) =

ln(1 + ez), which can be seen as a smooth approximation of the rectifier.
Neurons with rectifier function are also known as rectified linear units.
Additionally, there also exist other types of neurons which do not
have any parameters, such as the ones for computing the mean of the
inputs (known as average pooling operation), the ones for taking the
maximum value among the inputs (known as max pooling), and the
ones for multiplying the inputs, as in sum-product networks [Poon &
Domingos, 2011].

35

∑
σ h

x1

x2

x3

1

w
1

w2

w3

b

Figure 2.3: McCulloch-Pitts neuron model. The white nodes in the left-hand
side are the inputs. The gray nodes represent some operations applied on the
inputs. Typically, these nodes are depicted as a single node, called neuron.
The white node in the right-hand side is the output, also known as the neuron
activation.

The architecture aspect defines how the neurons are interconnected. The
neurons are typically organized into layers ordered from the input side
to the output side.

A feedforward neural network (FNN) passes the data through unidirec-
tional interlayer connections from the input layer, the hidden layers, to
the output layer. Most importantly, these connections do not form
a cycle. A multilayer perceptron [Rosenblatt, 1958] is an FNN with
fully-connected layers, that are layers whose neurons are connected
to all neurons in the previous layer. In contrast, a convolutional neural
network [Lecun et al., 1998], which resembles a neocognitron [Fukushima,
1980], uses locally-connected layers, where the neurons of a layer
are connected to a subset of the neurons in the previous layer. This
subset of neurons typically represents an area in an N-dimensional
space. An autoencoder [Bourlard & Kamp, 1988] can be seen as a special
case of multilayer perceptron which tries to reconstruct the inputs.
The denoising autoencoder [Vincent et al., 2008] is an extension of the
autoencoder concept which aims to estimate the clean version of the
noisy inputs. Thus, its output layer has the same dimension as its input
layer.

A recurrent neural network (RNN) [Elman, 1990] passes the data from
the input layer to the output layer through the hidden neurons, whose
activations are influenced bypast and current inputs. Since this property
allowsRNN to capture a context, RNN is known to be good formodeling

36

a sequence. Instead of hidden neurons, advanced RNNs consider
hidden cells, in which multiple neurons (known as gates) are utilized,
such as long short-term memory (LSTM) [Hochreiter & Schmidhuber,
1997] and gated recurrent unit [Chung et al., 2014]. Employing these two
cell types, studies have been done to explore variations of architectures
[Jozefowicz et al., 2015; Greff et al., 2017]. A bidirectional RNN [Schuster
& Paliwal, 1997] is an architecture where a hidden layer consists of a pair
of sub-layers. One sub-layer reads the sequence in forward direction
and the other sub-layer reads the sequence in backward direction. The
outputs of these two sub-layers are combined, e.g., by summing or
concatenating, and then fed to the next layer.

Other notable architectures include the Boltzmann machine [Ackley et al.,
1985], which is a 2-layer network with bidirectional interlayer and
intralayer connections, and the restricted Boltzmann machine [Smolensky,
1986], where only the interlayer connections are considered. Several
restricted Boltzmann machines can be stacked to form a deep belief
network [Bengio et al., 2006]. The success of this approach triggered
the trend of deep neural network research in the last decade.

A deep neural network (DNN) is typically defined as an FNN with more
than one hidden layer [Hinton et al., 2012; Wang, 2017]. Besides,
[Schmidhuber, 2015, sec. 3] proposes a concept of causal connection
chain and a concept of problem depth, which is the number of con-
nection sets with modifiable weights in the chain, then determines
whether an architecture is deep or not based on the problem depth. If
we apply this concept to the definition of DNNmentioned earlier, DNN
has at least a problem depth of three, because the data passes through
modifiable hidden weight sets of two different hidden layers and the
output layer. RNN has a long causal connection chain because a set
of outputs at a time instance is not only influenced by a set of inputs
at the same time instance, but also other time instances in the past.
This results in a high problem depth because the data flows though
connections whose weights are modifiable. Consequently, both DNNs
and RNNs require deep learning.

The learning aspect mainly specifies how the parameters of the neurons,
that are weights and biases, are optimized.

Backpropagation [Rumelhart et al., 1986; Werbos, 1988] is the most
popular optimization method used in this context. It is a gradient

37

descent based algorithm, in which the data is first passed from the
input side through the network to compute the error in the output
side (forward pass). This error is then passed back to the input side
while computing the gradients, which are the partial derivatives of the
error function with respect to the parameters (backward pass). Finally,
the gradients are used to update the parameters following a particular
rule (parameter update). The weight update rules include the ones
with fixed learning rate, such as the standard update and its variant
with momentum [Rumelhart et al., 1986] or Nesterov’s accelerated
gradient [Nesterov, 1983]; and the ones with adaptive learning rates,
such as AdaGrad [Duchi et al., 2011], AdaDelta [Zeiler, 2012] or
Adam [Kingma & Ba, 2014]. The application of backpropagation for
RNNs is known as backpropagation through time [Werbos, 1990]. Other
gradient descent based algorithms used for training the networks
include Newton, Gauss-Newton, and Levenberg-Marquardt algorithms
[Wilamowski & Yu, 2010; Yu & Wilamowski, 2011]. Beside gradient
descent based algorithms, evolutionary algorithms, such as genetic
algorithm [Montana & Davis, 1989], can also be used.

This learning aspect also specifies how the parameters are initialized
and how the learning is regularized. Parameter initialization schemes
have been studied and shown to improve the learning, such as weight
initialization for neurons with sigmoid and hyperbolic tangent activa-
tion functions [Glorot & Bengio, 2010], weight initialization for rectified
linear units [He et al., 2015], and bias initialization for the forget gate of
LSTM [Jozefowicz et al., 2015]. Regularization is a way to avoid overfitting
and improve the generalization of the models. Various techniques have
been studied, including early stopping mechanism based on validation
errors [Prechelt, 2012], L1 or L2 weight regularization [Bengio, 2012],
DropOut [Srivastava et al., 2014], DropConnect [Wan et al., 2013], and
gradient clipping or normalization [Pascanu et al., 2013].

In our study, the designs of neural networks may be different from one
experiment to another. In general, the architectures we used follow either
the topologies of multilayer perceptron or bidirectional RNN with LSTM
units. The networks are trained using the backpropagation algorithm with
Nesterov’s accelerated gradient or AdaDelta weight update rules. Some
regularization techniques are employed, such as early stopping, L2 weight
regularization, dropout, and gradient normalization. The networks are

38

implemented using Theano1 [Bergstra et al., 2010; Theano Dev Team, 2016]
and Keras2 [Chollet et al., 2015] libraries in Python. Backpropagation is
done utilizing the automatic gradient computation provided by Theano. The
details for each experiment are presented in the corresponding discussion.

The following Section 2.4.3.2 presents DNN usages for single-channel
source separation. The usages for multichannel source separation are
presented in Section 2.5.3.

2.4.3.2 DNN based separation techniques

Figure 2.4 illustrates of typical DNN usages for single-channel audio source
separation, in the case of a mixture of two sources, such as speech and
noise. The mixture time-frequency representation is pre-processed to extract
relevant features. Given these features as inputs, a DNN is utilized either
for estimating the source spectra whose ratio yields a time-frequency mask
as in (2.16) [Huang et al., 2014a,b; Tu et al., 2014; Araki et al., 2015; Huang
et al., 2015; Uhlich et al., 2015; Grais et al., 2017; Osako et al., 2017] or for
directly estimating the time-frequencymask [Narayanan&Wang, 2013;Wang
&Wang, 2013; Jiang et al., 2014; Weninger et al., 2014; Narayanan &Wang,
2015; Wang & Wang, 2015; Grais et al., 2016; Williamson et al., 2016; Zhang &
Wang, 2016; Delfarah &Wang, 2017]. The estimated target time-frequency
representation is then obtained as the product of the mixture time-frequency
representation and the estimated time-frequency mask as in (2.15).

There also exist DNN based approaches which are motivated by the
success of NMF in decomposing the time-frequency structure. DNNs have
been used to estimate the source activations [Kang et al., 2015; Williamson
et al., 2015; Li et al., 2016]. On the contrary, Tseng et al. [2015] use the
activations estimated by NMF as the DNN inputs for estimating a time-
frequency mask. Further, Le Roux et al. [2015] propose a DNN architecture
representing the iterations ofmultiplicative updates (see (2.22)) for estimating
the target source. Each hidden layer corresponds to a single update of
activations and the output layer does the time-frequency masking. The
network weights act as the basis spectra and these weights are not tied
across layers, which is equivalent to using different basis spectra for different
iterations. The study also propose a learning algorithm to ensure that the
weights are non-negative.

1See http://deeplearning.net/software/theano.
2See https://github.com/fchollet/keras.

39

http://deeplearning.net/software/theano
https://github.com/fchollet/keras

Mixture STFT

Pre-processing

DNN

Usage 1: Source spectra Usage 2: TF mask

×

Target STFT

Figure 2.4: Typical usages of DNNs for single-channel audio source sep-
aration: estimating the source spectra and estimating the time-frequency
mask.

Various DNN architectures and training criteria have been investigated
and compared in Weninger et al. [2014]; Erdogan et al. [2015]; Weninger
et al. [2015]. These studies experiment with different DNNs, LSTM based
RNNs, and bidirectional LSTM based RNNs to provide a real-valued ratio
mask estimate m̂rat

S (f, n). The networks are trained by minimizing the mask
estimation error:

DMA =
∑

f,n

(
mrat

S (f, n)− m̂rat
S (f, n)

)2
, (2.24)

by minimizing the error of spectra computed using the estimated mask:

DSA =
∑

f,n

(
m̂rat

S (f, n) |x(f, n)| − |s(f, n)|
)2
, (2.25)

where s(f, n) is the target speech spectra, or by minimizing the error of signal
in the complex-valued time-frequency domain computed using the estimated
mask:

DPSA =
∑

f,n

∣∣m̂rat
S (f, n)x(f, n)− s(f, n)

∣∣2 . (2.26)

In summary, these study shows that the performance of RNNs is better than
that of DNNs and the performance of bidirectional LSTM based RNNs is
better than that of LSTM based RNNs. They also show thatDPSA outperforms

40

the other two cost functions. This indicates that taking phase information
into account in the DNN training is beneficial although the estimated mask is
real-valued and thus, it does not affect the phase. In addition, Wang & Wang
[2015] compute the error on the time-domain:

DIDFT =
1

TN

∑

t,n

(
IDFT

(
m̂rat

S (f, n)x(f, n)
)
− s(t, n)

)2
, (2.27)

where IDFT(·) include the reconstruction of the negative frequency bins
before the inverse discrete Fourier transform is applied (see Section 2.3).
Essentially, this DIDFT is equivalent to DPSA. The study shows that DIDFT

outperforms a cost function similar to DMA.
Most studies focus either on speech separation, such as Narayanan &

Wang [2013]; Tu et al. [2014]; Weninger et al. [2014]; Erdogan et al. [2015];
Weninger et al. [2015]; Wang & Wang [2015]; Williamson et al. [2016]; Zhang
& Wang [2016]; Delfarah & Wang [2017], or on music separation, such as
Huang et al. [2014b]; Uhlich et al. [2015]; Grais et al. [2016, 2017]; Osako et al.
[2017]. Only few studies investigate both applications, such as Huang et al.
[2015].

It is worth mentioning that many of the study directions mentioned above
had not yet been considered in the beginning of 2015 when our study was
started. This is also indicated by the publication years of the cited studies.

2.5 State-of-the-art multichannel audio source sep-
aration

Following the discussion of single-channel audio source separation in the
previous section, this section presents essential multichannel audio source
separation methods. It covers beamforming, the classical expectation-
maximization (EM) based multichannel source separation framework, and
various DNN based approaches. The EM based separation framework is the
basis for the DNN based frameworks proposed later in our study.

There are also notable methods beyond the ones particularly discussed
here, such as independent component analysis and its variants. Independent
component analysis relies on the assumption that the source signals are
statistically independent and non-Gaussian [Comon, 1994; Hyvärinen & Oja,
2000]. It is formulated for a linear mixture and since audio mixtures are

41

typically convolutive, it is applied frequency-wise in the time-frequency
domain [Smaragdis, 1998; Parra & Spence, 2000]. It achieves blind source
separation, i.e., the source signals and the mixing matrix, which defines
the contribution of each source signal to each channel of the mixture, are
estimated from the observed signal solely. Because of this, it has two inherent
challenges, namely permutation indeterminacy, due to the unknown order
of the sources, and scaling indeterminacy, due to the unknown scale of the
mixing or the source signals. Independent vector analysis aims to solve the
permutation indeterminacy by jointly processing all frequency bins and
exploiting the dependencies across frequencies so that the order of the sources
across frequencies is the same [Kim et al., 2007; Lee et al., 2007]. While
independent component analysis is formulated for the determined mixture
case, i.e., the number of channels is equal to the number of sources I = J ,
sparse component analysisworks for the under-determined case, i.e., the number
of channels is lower than the number of sources I < J , by exploiting the
sparsity of the time-frequency representations [Jourjine et al., 2000; Bofill &
Zibulevsky, 2001].

2.5.1 Beamforming

Microphone array processing focuses on exploiting the spatio-temporal
information captured by different microphones in an array relying on the
fact that different sounds coming from different sources, that are separated
in space, travel on different paths and durations. It is typically seen as an
extension of general sensor array processing for antenna, radar, and sonar.
However, general sensor array processing methods cannot directly be applied
to microphone arrays. This is because the characteristics of the sounds of
interests, e.g., speech, and the environments, which determine the sound
propagation paths, must be taken care of [Brandstein & Ward, 2001; Benesty
et al., 2008].

Beamforming is the most popular microphone array processing approach.
It is commonly used for speech enhancement in ASR with a multichannel
input. It refers to any method that combines multichannel signals so that
the resulting single-channel signal has desirable properties, such as reduced
noise or less distorted speech [Markovich-Golan et al., 2017].

The most basic beamforming method is the delay-and-sum beamformer
[Veen & Buckley, 1988; Kumatani et al., 2012]. This beamformer can be
achieved in two steps: synchronization and weight-and-sum [Benesty et al.,

42

2008, chap. 3]. For a stationary source and microphones that are separated
in a space, different microphones capture the same sound coming from the
source with different delays. The synchronization step is done by shifting
the signal in each channel based on these delays so that all channels are
aligned. Theoretically, the delays can be computed given the relative location
of the source with respect to the microphones. In practice, the delays are
estimated from the observed multichannel signal by time difference of arrival
estimation methods, such as the generalized cross correlation method with
phase transform weighting [Knapp & Carter, 1976]. This synchronization
allows constructive superposition of the signals coming from the desired
direction, i.e., the direction of the target source, and may cause destructive
superposition of the signals coming from the other directions resulting
in noise attenuation. The weight-and-sum step then performs weighted
superposition on the aligned channels. For the delay-and-sum beamformer,
all channels have the same importance. Thus, it is equivalent to a simple
average over the aligned channels. Given the multichannel observed mixture
x(f, n) = [x1(f, n), x2(f, n), . . . , xI(f, n)]

>, delay-and-sum beamforming can
be expressed as

ŝ(f, n) =
I∑

i=1

wDSxi(f, n)e
−2πfτi , (2.28)

where ŝ(f, n) is the beamformer output, wDS = 1
I
the equal weight for all

aligned channels, xi(f, n) the channel i of the beamformer input, and τi the
delay for channel i in the time domain used for the synchronization. In matrix
form, the same formulation can be expressed as

ŝ(f, n) = wDS(f)
∗x(f, n), (2.29)

wDS(f) = wDSd(f) =
1

I
d(f), (2.30)

d(f) =
[
e−2πfτ1 , e−2πfτ2 , . . . , e−2πfτI

]>
, (2.31)

where ·∗ denotes the Hermitian transposition, wDS(f) is the delay-and-sum
beamformer for frequency bin f , and d(f) the so-called steering vector for
frequency bin f . The steering vector relies on the time difference of arrival
estimation for the target source. The beamformer output correspond to a
single-channel version of the multichannel target source spatial image.

43

A variant of delay-and-sum beamformer which is more robust is called
weighted delay-and-sum beamformer, also known as filter-and-sum beam-
former or BeamformIt [Anguera et al., 2007]. Instead of employing a time-
invariant equal weight for all aligned channels as in the delay-and-sum
beamformer wDS, the weighted delay-and-sum beamformer employs time-
varying channel weights wWDS(n). It can be expressed as

ŝ(f, n) = wWDS(f, n)
∗x(f, n), (2.32)

wWDS(f, n) = wWDS(n)d(f, n), (2.33)

d(f, n) =
[
e−2πfτ1(n), e−2πfτ2(n), . . . , e−2πfτI(n)

]>
, (2.34)

where wWDS(f, n) and d(f, n) are the weighted delay-and-sum beamformer
and the steering vector, respectively, for frequency bin f and time frame n,
while τi(n) is the delay for channel i and time frame n in the time domain.

Different beamformers can also be derived based on different desired out-
put properties. This leads to beamformer variants, including the minimum
variance distortionless response beamformer and the generalized eigenvalue
(GEV) beamformer [Warsitz & Haeb-Umbach, 2007; Kumatani et al., 2012;
Heymann et al., 2016].

Considering speech as the target source, the minimum variance distor-
tionless response beamformer aims to minimize the residual noise, subject to
a distortionless constraint in the direction of the target:

wMVDR(f) = argmin
w(f)

w(f)∗RcN(f)w(f),

s.t. w(f)d(f) = 1, (2.35)

which leads to

wMVDR(f) =
d(f)∗RcN(f)

−1

d(f)∗RcN(f)
−1d(f)

, (2.36)

where RcN(f) is the time-invariant noise covariance matrix. The estimation
of this matrix typically relies on voice activity detection, which predicts noise-
only segments in the mixture x(f, n) [Cornelis et al., 2011; Serizel et al., 2014].
Let subsetNN consists of noise-only time frames, the noise covariance matrix
can be estimated as

RcN(f) =
1

|NN|
∑

n∈NN

x(f, n)x(f, n)∗. (2.37)

44

Also considering speech as the target source, the GEV beamformer aims
to maximize the signal-to-noise ratio as

wGEV(f) = argmax
w(f)

w(f)∗RcS(f)w(f)

w(f)∗RcN(f)w(f)
, (2.38)

which leads to

wGEV(f) = P
(
RcN(f)

−1RcS(f)
)
, (2.39)

where P(·) computes the principal component and RcS(f) is the time-
invariant speech covariance matrix. The estimation of this matrix typically
also relies on voice activity detection to predict noisy speech segments. With
these, the noisy speech covariance matrix can be computed similarly to
(2.37). Assuming that the speech and the noise are uncorrelated, the speech
covariance matrixRcS(f) can be obtained by subtracting the noise covariance
matrix RcN(f) from the noisy speech covariance matrix.

Post-filtering can then be applied to the beamformer output in order to
improve it. The post-filter that is typically used for the GEV beamformer
is the blind analytic normalization (BAN) [Warsitz & Haeb-Umbach, 2007;
Heymann et al., 2016]:

gBAN(f) =

√
1
I
wGEV(f)∗RcN(f)RcN(f)wGEV(f)

wGEV(f)∗RcN(f)wGEV(f)
, (2.40)

which results in

wGEV-BAN(f) = gBAN(f)wGEV(f). (2.41)

This post-filter aims to minimize the distortion in the direction of the target
source. Thus, ideally, the GEV beamformer with BAN is equivalent to the
minimum variance distortionless response beamformer.

2.5.2 Expectation-maximization (EM) based multichannel au-
dio source separation framework

In this subsection, we present the classical EM iterative framework employing
the multichannel Gaussian model [Duong et al., 2010a]. This framework is
the basis for our proposed frameworks presented in the following chapters.

45

While beamforming we previously discussed aims to obtain a single-channel
target source, here we aim to obtainmultichannel target source spatial images.

2.5.2.1 Multichannel Gaussian model

The coefficients of cj(f, n) are assumed to be independent for different j, f ,
and n. These coefficients are modeled as a multivariate complex-valued zero-
mean isotropic Gaussian distribution with time-varying covariance matrix
Rcj(f, n):

Rcj(f, n) = vj(f, n)Rj(f), (2.42)

cj(f, n) ∼ Nc
(
0,Rcj(f, n)

)
, (2.43)

where vj(f, n) ∈ R+ denotes the time-varying power spectral density (PSD)
of source j for frequency bin f and time frame n, and Rj(f) is the time-
invariant spatial covariance matrix of source j for frequency bin f [Duong et al.,
2010a; Vincent et al., 2011]. This I × I covariance matrix represents spatial
information by encoding the spatial position and the spatial width of the
corresponding source through the inter-channel correlations. Assuming that
the sources are uncorrelated, the mixture follows a multivariate complex-
valued zero-mean Gaussian distribution with covariance matrix Rx(f, n):

Rx(f, n) =
J∑

j=1

Rcj(f, n) =
J∑

j=1

vj(f, n)Rj(f), (2.44)

x(f, n) ∼ Nc (0,Rx(f, n)) . (2.45)

The covariance matricesRcj(f, n),Rx(f, n), andRj(f) are complex-valued
Hermitian positive-definite matrices.

Given the PSDs vj(f, n) and the spatial covariance matricesRj(f) of all
sources, the source spatial images can be estimated in the minimum mean
squared error sense using multichannel Wiener filtering [Duong et al., 2010a]
as

ĉj(f, n) = Wj(f, n)x(f, n), (2.46)

46

where the time-varying multichannel Wiener filter Wj(f, n) ∈ CI×I is given by

Wj(f, n) = Rcj(f, n)Rx(f, n)
−1. (2.47)

Finally, the time-domain source estimates ĉj(t) are recovered from ĉj(f, n) by
inverse STFT.

Following this formulation, source separation translates into the problem
of estimating the PSDs vj(f, n) and the spatial covariance matricesRj(f) of
all sources. The EM algorithm by Duong et al. [2010a] aims to solve this
problem in maximum likelihood sense. There exist alternative algorithm
based on minimization-maximization [Sawada et al., 2013].

2.5.2.2 General iterative EM framework

Algorithm 1 summarizes the general iterative EM framework for estimating
the PSDs vj(f, n) and the spatial covariance matrices Rj(f) of all sources
proposed by Duong et al. [2010a] and extended by Ozerov et al. [2012]. In
particular, Duong et al. [2010a] re-estimate the spectral parameters without
constrained. This means their algorithm does not have spectrogram fitting
step and thus, vj(f, n) = zj(f, n). For the following discussions, the term
‘spectral parameters’ refers to the PSDs and they are used interchangeably.
Further, they are also used interchangeably with ‘spectrograms’, which
loosely mean PSD estimates [Liutkus & Badeau, 2015]. Likewise, the term
‘spatial parameters’ refers to the spatial covariance matrices. The sources in
the mixture x(f, n) are assumed to be stationary to satisfy the model in (2.43).

In the beginning, the estimated source PSDs vj(f, n) are initialized in the
spectrogram initialization step. This can be done, for instance by computing
the mixture spectrogram and then dividing it by the number of sources,
which implies that each source contributes equally to the mixture. The
spatial covariance matrices Rj(f) are also initialized, for instance as identity
matrices I ∈ CI×I , which implies that the channels are uncorrelated and the
energy of each source is evenly distributed in each channel. Since the EM
algorithm does not guarantee finding the global optimum, the initialization
of the parameters vj(f, n) and Rj(f) has a strong influence on the final
performance. It should be mentioned that the example initializations above
are poor ones since the parameters should be differently initialized for
different sources. Various initialization schemes have been used and studied
[Duong et al., 2010a; Araki & Nakatani, 2011; Togami, 2011; Ozerov et al.,
2012]. In general, the spectral parameters are initialized by clustering or NMF

47

Algorithm 1 General iterative EM framework [Duong et al., 2010a; Ozerov
et al., 2012]
Inputs:

STFT of mixture x(f, n)
Number of sources J
Number of EM iterations L
Spectral models Mspec

0 , Mspec
1 , . . . , Mspec

J

1: for each source j of J do
2: Initialize the spectrogram: vj(f, n)← spectrogram initialization
3: Initialize the spatial covariance matrix: Rj(f)← identity matrix I
4: end for

5: for each EM iteration l of L do
6: Compute the mixture covariance matrix:

Rx(f, n) =
J∑

j=1

vj(f, n)Rj(f) (2.44)

7: for each source j of J do
8: Compute the Wiener filter gain:

Wj(f, n) = vj(f, n)Rj(f)Rx(f, n)
−1 (2.47)

9: Compute the spatial image:
ĉj(f, n) = Wj(f, n)x(f, n) (2.46)

10: Compute the posterior second-order raw moments of the spatial
image:
R̂cj(f, n) = ĉj(f, n)ĉj(f, n)

∗

+(I−Wj(f, n)) vj(f, n)Rj(f) (2.48)
11: Update the spatial covariance matrix:

Rj(f) =
1

N

N∑

n=1

vj(f, n)
−1R̂cj(f, n) (2.49)

12: Compute the unconstrained PSD:
zj(f, n) =

1

I
tr
(
R−1j (f)R̂cj(f, n)

)
(2.50)

13: Update the spectrogram:
vj(f, n)← spectrogram fitting by Mspec

j (zj(f, n))

14: end for
15: end for

(continued on the next page)

in the time-frequency domain and the spatial parameters are initialized by
source localization via time difference of arrival estimation.

48

Algorithm 1 General iterative EM framework [Duong et al., 2010a; Ozerov
et al., 2012] (continued)
16: for each source j of J do
17: Compute the final spatial image:

ĉj(f, n) =
vj(f, n)Rj(f)∑J

j′=1 vj′(f, n)Rj′(f)
x(f, n) (2.46)

18: end for

Outputs:
All spatial source images [ĉ1(f, n), . . . , ĉJ(f, n)]

The following iterations can be divided into E-step and M-step. In the
E-step, given the estimated parameters vj(f, n) and Rj(f) of each source,
the source image estimates ĉj(f, n) are obtained by multichannel Wiener
filtering (2.46) and the posterior second-order raw moments of the spatial
source images R̂cj(f, n) are computed as

R̂cj(f, n) = ĉj(f, n)ĉj(f, n)
∗ + (I−Wj(f, n))Rcj(f, n). (2.48)

In the M-step, the spatial covariance matrices Rj(f) are updated as

Rj(f) =
1

N

N∑

n=1

1

vj(f, n)
R̂cj(f, n). (2.49)

The source PSDs vj(f, n) are first estimated without constraints as

zj(f, n) =
1

I
tr
(
Rj(f)

−1R̂cj(f, n)
)
, (2.50)

where tr(·) denotes the trace of a matrix. Then, they are updated according to
given spectral models by fitting vj(f, n) from zj(f, n) in the spectrogram fitting
step. The spectrogram fitting and possibly the spectrogram initialization rely
on the spectral models, which are denoted byME

0 , ME
1 , . . . , ME

J in Algorithm 1.
These models may include NMF [Ozerov et al., 2012], Kernel Additive
Modelling [Liutkus et al., 2014, 2015b], and continuity models [Duong et al.,
2011].

49

2.5.3 DNN based multichannel audio source separation tech-
niques

After discussing classical approaches, let us now discuss recently studied
DNN based approaches. There exist a few DNN based approaches exploiting
multichannel data. These approaches can be divided into three categories as
follows:

1. approaches employing DNN input features derived from multichannel
data for estimating single-channel masks, either directly or via intermedi-
ate variables [Jiang et al., 2014; Araki et al., 2015],

2. approaches employing DNNs for estimating intermediate variables, such
as masks or spectra, which then are used to derive multichannel filters
[Erdogan et al., 2016; Heymann et al., 2017; Uhlich et al., 2017; Wang et al.,
2017],

3. approaches employing DNNs for directly estimating a multichannel filter
[Xiao et al., 2016; Sainath et al., 2017].

It should be noted that this categorization did not exist when our study
started. We provide it in retrospect in order to position our study with
respect to concurrent studies. It is also worth mentioning that most of the
above studies were published after our initial publication. The rest of this
subsection provides some details about these studies.

2.5.3.1 Utilizing multichannel features for estimating a single-channel mask

Jiang et al. [2014] consider speech segregation in a binaural (two-channel)
setting, where frequency-dependent DNNs are used to predict a single-
channel binary mask for each channel of a gammatone filterbank. The study
explores the use of binaural features with or without monaural features as
the inputs of the DNNs. The binaural features are the normalized cross-
correlation function or the inter-channel time difference, which is the delay
that maximizes the cross-correlation function, combined with the inter-
channel level difference. The monaural features are gammatone frequency
cepstral coefficients. The proposed system is evaluated on simulated data
sets in which a target speaker is always positioned at a fixed azimuth,
i.e., 0◦, and one, two, or four interference sources producing babble noise
positioned at various azimuths. The experimental results show that the

50

system performs well for unseen interfering source positions and various
noisy and/or reverberant environments in terms of mask estimation and
output signal-to-noise ratio.

Araki et al. [2015] consider speech enhancement in a multichannel setting,
where a denoising autoencoder is used to predict a clean log mel frequency
coefficients for each time frame. The ratio between the clean coefficients and
the corresponding noisy ones in the linear domain forms a single-channel
ratio mask for the enhancement. The study explores the use of multichannel
features and their combination with the monaural features, i.e., the noisy log
mel frequency coefficients, as the inputs of a DNN. The multichannel features
include inter-channel level differences, inter-channel phase differences, and
pre-estimated speech or noise computed using masks estimated by a spatial
clustering approach [Nakatani et al., 2013]. Overall, the experimental results
show that the pre-estimated speech combined with the monaural features
outperforms the other combinations in terms of source separation and speech
recognition metrics.

2.5.3.2 Estimating intermediate variables for deriving a multichannel filter

Erdogan et al. [2016] andHeymann et al. [2017] consider speech enhancement
by time-invariant minimum variance distortionless response beamforming and time-
invariant GEV beamforming, respectively. Both studies use DNN variants
for estimating soft masks where the same DNN is used for each channel
separately. Erdogan et al. [2016] uses LSTM based RNNs, while Heymann
et al. [2017] uses multilayer perceptrons, convolutional neural networks, and
bidirectional LSTM based RNNs. In both studies, the masks are then used to
derive the beamformerweights by computing the speech and noise covariance
matrices. In Erdogan et al. [2016], the estimated speech mask of channel i,
miS(f, n) ∈ R, is used to estimate channel i of the noise spatial image as

ĉiN(f, n) = (1− m̂iS(f, n))xi(f, n). (2.51)

The multichannel noise spatial image is then constructed as ĉN(f, n) =

[ĉ1N(f, n), ĉ2N(f, n), . . . , ĉIN(f, n)]
> and used for computing the noise covari-

ance matrix as

RcN(f) =
1

N

N∑

n=1

ĉN(f, n)ĉN(f, n)
∗. (2.52)

51

In order to increase the robustness, Erdogan et al. [2016] also experiment with
combining the masks by max pooling across channels to produce a single
mask and then apply it on all channels. InHeymann et al. [2017], the estimated
channel-wise speechmasks m̂iS(f, n) ∈ [0, 1] are combined bymedian pooling
to produce a single speech mask m̂S(f, n). The same operation is also applied
on the estimated channel-wise noise masks to produce a single noise mask
m̂N(f, n). Both speech and noise masks are then applied as

RcS(f) =
N∑

n=1

m̂S(f, n)x(f, n)x(f, n)
∗, (2.53)

RcN(f) =
N∑

n=1

m̂N(f, n)x(f, n)x(f, n)
∗. (2.54)

In order to improve the outputs, both studies consider post-filtering on the
beamformer outputs. Erdogan et al. [2016] use the same mask obtained
by max pooling and Heymann et al. [2017] apply BAN [Warsitz & Haeb-
Umbach, 2007]. Both studies show that the proposed approach performs well
in terms of source separation and speech recognition metrics. Although a
precursor study [Heymann et al., 2016] indicates that the GEV computation is
numerically more stable than the minimum variance distortionless response
one and thus it is preferable, Erdogan et al. [2016] point out that their
minimum variance distortionless response formulation is different from that
of Heymann et al. [2016]. In a more recent study, Wang et al. [2017] show that
beamforming by rank-1 multichannel Wiener filter, subject to a constant
residual noise power constraint over time and frequency, outperforms
minimum variance distortionless response and GEV beamformers. In this
study, the source covariance matrices are computed using masks estimated
by a bidirectional LSTM based RNN following Heymann et al. [2017].

Uhlich et al. [2017] considers musical instrument separation, in which
an FNN and a bidirectional LSTM based RNN are employed in a system
combination fashion to estimate the source magnitude spectra |ĉj(f, n)|.
These spectra are then used to estimate the source spatial images as:

ĉj(f, n) = |ĉj(f, n)| � exp (∠x(f, n)) , (2.55)

where � denotes the Hadamard product, exp(·) exponentiation, and ∠· the
phase. ThemultichannelWiener filter as in (2.46) is then applied as post-filter,

52

where the source PSDs and the spatial covariance matrices are computed as:

vj(f, n) =
1

2
|ĉj(f, n)|2 , (2.56)

Rj(f) =

∑N
n=1 ĉj(f, n)ĉj(f, n)

∗
∑N

n=1 vj(f, n)
. (2.57)

2.5.3.3 Directly estimating a multichannel filter

Xiao et al. [2016] consider joint training of DNN based multichannel speech
enhancement and DNN based acoustic modeling for robust ASR, in which
the DNN parameters of these two components are jointly optimized. The
enhancement DNN is used to predict the optimal beamformer weights
given the spatial features computed by generalized cross correlation method
with phase transform weighting on the multichannel signals. Average
pooling across time frames is then applied on these weights to obtain time-
invariant beamformer weights. The study shows that the proposed approach
outperforms traditional delay-and-sum beamformer.

Sainath et al. [2017] also consider joint training of DNN based multichan-
nel speech enhancement and DNN based acoustic modeling for robust ASR.
The enhancement is done by convolutional layers (as in convolutional neural
network) consisting of filters with particular length which are applied to
the multichannel inputs, followed by summing the outputs of convolutional
layers across the channels and max pooling across the time frames. This
sequence of operations is equivalent to a time-invariant beamformer. The study
introduces unfactored and factored DNN models. While the unfactored
model uses a single convolutional layer, the factored model uses two layers
for the enhancement. By setting the lengths of filters in these two layers
in a particular way, the first and second layers are constrained to perform
time-varying spatial and spectral filtering, respectively. Since the outputs of
spectral filtering are still fed to max pooling across the time frames, it also
results in time-invariant beamformer. The study introduces the use of raw
time-domain waveform and complex-valued time-frequency domain spectra
as the inputs of DNNs. It shows that the factored model outperforms the
unfactored one in terms of WER. The factored model also performs similarly
well for both types of inputs, although processing in the time-frequency
domain is preferable because it has a lower computational cost. In addition,
the study also experiments with LSTM based RNN for the spatial filtering.

53

2.5.3.4 Summary

In summary, Jiang et al. [2014] and Araki et al. [2015] show that although
the separation is done in single-channel manner, the use of features derived
from multichannel data provides better separation performance than that of
monaural features in terms of both source separation and speech recognition
metrics. However, because of this single-channel filtering, the results
are suboptimal compared to the other discussed approaches employing
multichannel filtering.

Erdogan et al. [2016], Heymann et al. [2017], and Wang et al. [2017] show
that DNNs work well for estimating the parameters of time-invariant mini-
mum variance distortionless response beamforming and GEV beamforming,
respectively. Both approaches combine channel masks into a single mask and
employ a post-filteringmethod, which are helpful to improve the beamformer
outputs. Xiao et al. [2016] and Sainath et al. [2017] show that DNNs may act
as a time-invariant beamformer whose parameters are represented by the
DNN parameters (weights and possibly biases).

Because these two approaches jointly train speech enhancement and
acoustic model, We may expect that the approaches that jointly train speech
enhancement and acoustic model can achieve very good speech recognition
performance outperforming the other approaches. However, when a variant
of Heymann et al. [2017] and a variant of Xiao et al. [2016] are evaluated on the
same task in the context of the 4th CHiME Speech Separation and Recognition
Challenge3, the variant of Heymann et al. [2017] outperforms the variant of
Xiao et al. [2016]. This may be caused by the fact that spatial filtering needs
a sufficient context. Basically, the networks of Xiao et al. [2016] or Sainath
et al. [2017] predict a time-varying beamformer based on the short context
whose length depends on the filter size of convolutional neural network or
the weights of LSTM based RNN. Although this time-varying beamformer is
then pooled to obtain a time-invariant beamformer, this is much less robust
compared to the approaches by Erdogan et al. [2016]; Heymann et al. [2017];
Wang et al. [2017] where a time-invariant beamformer is computed once
based on the source covariance matrices computed from the whole utterance.

3See http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/results.html.

54

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/results.html

2.6 Positioning of our study
Finally, let us position our study with respect to the other studies dis-
cussed above. Referring to the classification presented in Section 2.5.3, the
frameworks we propose in our study fall into the second category, namely
approaches employing DNNs for estimating intermediate variables, which
are used to derive multichannel filters. In our frameworks, the DNNs are
used for initializing and updating the spectral and spatial parameters of a
multichannel Gaussian model as part of an EM like iterative framework to
compute a time-varying multichannel Wiener filter. These iterative frameworks
can be regarded as extensions of the one presented in Section 2.5.2.2.

The second framework we propose in Chapter 5, in which different
DNNs model spectral and spatial parameters, is conceptually similar to
the factored model of Sainath et al. [2017], in which different layers perform
time-varying spatial and spectral filtering. The obvious difference between
these two approaches is that our framework results in a time-varying
multichannel Wiener filter, whereas the latter approach results in a time-
invariant beamformer. Another important difference is that our approach
is motivated by a signal model, while the approach of Sainath et al. [2017]
is not. While most studies discussed in Section 2.5.3 specifically focus on
speech enhancement for robust ASR, our frameworks are intended for general-
purpose source separation. Besides, our main objective is to obtain the
multichannel separated target sources, which is essentially different from the
other studies which aim to obtain the single-channel speech. This allows us
to apply our frameworks to other tasks beyond speech separation, such as
singing voice separation and music instrument separation.

55

CHAPTER 3

Estimation of spectral parameters
with deep neural networks

This chapter presents the first deep neural network (DNN) based multichan-
nel audio source separation framework we propose in our study. The spectral
parameters are modeled by DNNs and the spatial parameters are estimated
in an iterative fashion as in the classical expectation-maximization (EM)
based framework presented in Algorithm 1. We address several research
questions related to the use of DNNs in this framework and the benefit of
multiple iterations. These questions are reflected in the design choices made
in the experiments. These choices notably include multiple spatial parameter
updates after spectral parameter initialization and the use of multiple DNNs
for estimating the spectral parameters at different iterations.

3.1 Research questions
In this chapter, we address the following research questions.

1. Can DNNs be used to model the spectral parameters within a multi-
channel Gaussian model based separation framework? As discussed in
Section 2.5.2.2, the spectral parameters of themultichannelGaussianmodel
are the source power spectral densities (PSDs), which can be represented
by the source spectrograms. Various studies have shown that DNNs
work well for estimating source spectra in the context of single-channel
audio source separation (see Section 2.4.3). We want to confirm that the
source spectrograms estimated by DNNs are suitable for source separation
within a multichannel Gaussian model based separation framework. This
confirmation is the starting point of our study.

2. Are traditional EM iterations still optimal? In a traditional EM iteration,
the E step and the M step are done alternately. In our case, the E step

57

corresponds to source separation and theM step corresponds to parameter
updates, in which each parameter is re-estimated once. Following this,
Algorithm 1 employs a single spatial parameter update and a single
spectral parameter update in the M step. We expect that the initial
spectrograms provided by the DNNs should be close to the targets already.
On the contrary, the initial spatial covariance matrices, which are the
identity matrices, are far from the targets. Therefore, we hypothesize that
the spatial parameter update has to be done multiple times first before the
spectral parameter update.

3. Does performance increase with multiple iterations? We speculate that
the improvement provided by the multiple spatial parameter updates
is bounded by the fixed spectrograms. Therefore, we hypothesize that
the spectrograms may be updated, in this case using DNNs, to achieve
higher performance. The DNNs for the spectrogram initialization and
the spectrogram updates are trained on the same training targets derived
from the ground truth. The difference between these two types of DNNs
lies in the inputs. Broadly speaking, the DNN for initialization takes the
mixture spectrogram and the other DNNs take the intermediate source
spectrograms computed in the precedingM step. We do not knowwhether
these intermediate source spectrograms provide better information to the
DNNs than the mixture spectrogram does for estimating better source
spectrograms. Thus, it is not obvious whether the updated spectrograms
can provide a performance improvement. It is also not obvious whether
these spectrograms allow the following spatial parameter updates to
improve the performance.

4. Does performance increase with a single DNN used for multiple spec-
trogram updates? This is a follow-up question to the one above. Ideally,
the spectrogram update of different EM iterations should be done by
different DNNs. This will be costly in terms of training time when the
number of EM iterations is set to be high so that there aremanyDNNs to be
trained. Although the testing time would not be affected, it would be more
practical if a single DNN trained on the intermediate source spectrograms
of an EM iteration worked for multiple spectrogram updates. This might
not work because there is most likely an input mismatch problem due to
the varying intermediate source spectrograms over iterations. However,
this remains to be investigated because DNNs are often able to cope with
variations of the inputs.

58

These research questions are investigated by employing the framework
described in the following section.

3.2 Iterative framework with spectral DNNs

In general, the proposed framework described in Algorithm 2 modifies the
framework in Algorithm 1 so that the source spectral parameters vj(f, n) are
estimated byDNNs [Nugraha et al., 2016a]. We alsomodify how the iterations
are done to allow us to address our research questions. For each EM iteration,
we allow multiple spatial parameter updates in the M step. The number of
EM iterations is denoted by Lwith l as the iteration index and the number
spatial parameter updates is denoted by K with k as the iteration index. The
number of spatial parameter updates K is relevant to the research question
2. IfK = 1, the algorithm follows the M step of the traditional EM iteration.
The number of EM iterations L is relevant to the research questions 3 and
4. Further discussion about pre-processing, initialization, and multichannel
filtering steps is presented in Section 3.3.2.

The framework is designed to use a single DNN or multiple DNNs for
modeling the source spectra. In the single DNN case, the DNN is used for
spectrogram initialization (without any following spectrogram fitting). In
the multiple DNN case, one DNN is used for spectrogram initialization and
one or more DNNs are used for spectrogram fitting. Ideally, different DNNs
are trained for spectrogram fitting at different iterations. Thus, the maximum
number of DNNs for spectrogram fitting equals the number of iterations L.

Let DNNspec
0 andDNNspec

l be theDNNs used for spectrogram initialization
and spectrogram fitting, respectively. DNNspec

0 estimates the source spectra
from the observed mixture and DNNspec

l aims to improve the source spectra
estimated at iteration l. DNNspec

0 and DNNspec
l estimate the spectra of all

sources simultaneously. This is similar to the DNNs used in the context
of single-channel source separation by Tu et al. [2014]; Huang et al. [2014a,
2015]. Additionally, DNNspec

l might be regarded as similar to the DNNs used
in the context of single-channel speech enhancement by Liu et al. [2014];
Xu et al. [2014], where DNNs are used to estimate clean spectra from the
corresponding noisy spectra. However, DNNspec

l is indeed different from
the DNNs in these studies because DNNspec

l handles ‘noises’ due to a prior
separation step.

59

Algorithm 2 Iterative framework with spectral DNNs
Inputs:

STFT of mixture x(f, n)
Number of sources J
Number of spatial updates K and number of EM iterations L
DNN spectral models DNNspec

0 , DNNspec
1 , . . . , DNNspec

L

Pre-processing step:
1: Align the observed mixture: x(f, n)← align(x(f, n))
2: Extract features for the DNN inputs:

√
zx(f, n)← feat(x(f, n))

Initialization step:
3: Initialize all source spectrograms:

[v1(f, n), . . . , vJ(f, n)]← DNNspec
0

(√
zx(f, n)

)2

4: for each source j of J do
5: Initialize the spatial covariance matrix: Rj(f)← identity matrix I
6: end for

Multichannel filtering step:
7: for each EM iteration l of L do
8: for each spatial update k of K do
9: Compute the mixture covariance matrix:

Rx(f, n) =
J∑

j=1

vj(f, n)Rj(f) (2.44)

10: for each source j of J do
11: Compute the Wiener filter gain:

Wj(f, n) = vj(f, n)Rj(f)Rx(f, n)
−1 (2.47)

12: Compute the spatial image:
ĉj(f, n) = Wj(f, n)x(f, n) (2.46)

13: Compute the posterior second-order raw moments of the
spatial image:
R̂cj(f, n) = ĉj(f, n)ĉj(f, n)

∗

+(I−Wj(f, n)) vj(f, n)Rj(f) (2.48)
14: Update the spatial covariance matrix:

Rj(f) =
1

N

N∑

n=1

vj(f, n)
−1R̂cj(f, n) (2.49)

15: end for
16: end for

(continued on the next page)

60

Algorithm 2 Iterative framework with spectral DNNs (continued)
17: for each source j of J do
18: Compute the unconstrained source spectrogram:

zj(f, n) =
1

I
tr
(
R−1j (f)R̂cj(f, n)

)
(2.50)

19: end for
20: Update all source spectrograms:

[v1(f, n), . . . , vJ(f, n)]←DNNspec
l

([√
z1(f, n), . . . ,

√
zJ(f, n)

])2

21: end for
22: for each source j of J do
23: Compute the final spatial image:

ĉj(f, n) =
vj(f, n)Rj(f)∑J

j′=1 vj′(f, n)Rj′(f)
x(f, n) (2.46)

24: end for

Outputs:
All spatial source images [ĉ1(f, n), . . . , ĉJ(f, n)]

In this chapter, we consider features in the magnitude short-time Fourier
transform (STFT) domain as the inputs and outputs of DNNs. The inputs of
DNNspec

0 and DNNspec
l are denoted by

√
zx(f, n) and

√
zj(f, n), respectively.

The outputs of both types of DNNs are denoted by
√
vj(f, n) and the training

targets are denoted by
√
ṽj(f, n). DNNspec

0 takes the magnitude spectrum√
zx(f, n) and yields the initial magnitude spectra

√
vj(f, n) for all sources

simultaneously. Then, DNNspec
l takes the estimated magnitude spectra√

zj(f, n) of all sources and yields the improvedmagnitude spectra
√
vj(f, n)

for all sources simultaneously. The use of the square-root of vj(f, n) and
zj(f, n) to represent the magnitude spectra comes from the fact that these
two parameters are PSDs. The source PSDs are simply the squared DNN
outputs.

The following section describes an implementation of this framework for
a speech enhancement task, on which the research questions in this chapter
are investigated. Another implementation for a music separation task is
presented in the following chapter.

61

3.3 Experimental settings

3.3.1 Task and dataset

In order to address the research questions, we consider the application
of the framework in Algorithm 2 to a multichannel speech enhancement
problem. The dataset we used is that of the 3rd CHiME Speech Separation
and Recognition Challenge, also known as the ‘CHiME-3 challenge’ [Barker
et al., 2015]. The same dataset was also used in the follow-up ‘CHiME-4
challenge’ [Vincent et al., 2017b]. To be concise, let us simply call this dataset
as the ‘CHiME dataset’ hereafter. Both CHiME-3 and CHiME-4 consider the
use of an automatic speech recognition (ASR) system in real-world noisy
environments on a multi-microphone tablet device. The dataset provides real
and simulated 6-channel microphone array data in 4 varied environmental
noise settings (bus, cafe, pedestrian area, and street junction) divided into
training, development, and test sets. The training set consists of 1,600 real
and 7,138 simulated utterances (tr05_real and tr05_simu), the development
set consists of 1,640 real and 1,640 simulated utterances (dt05_real and
dt05_simu), while the test set consists of 1,320 real and 1,320 simulated
utterances (et05_real and et05_simu). The utterances are taken from the 5k
vocabulary subset of the Wall Street Journal corpus [Garofalo et al., 2007].
All data are sampled at 16 kHz.

Figure 3.1 shows example spectrograms of channel 5 of two different
noisy speech recordings for each environment type. Each pair of recordings
are recorded in real-world environments on different days and in different
places. Consequently, the noise in a recording may be significantly different
from that in another recording although both recordings are from the same
environment type. For example, Figure 3.1d shows a recording in a relatively
quite cafe in which some glassware sounds can be heard and Figure 3.1c
shows a recording in a much noisier cafe where babble noise caused by other
people talking in the background is dominant. In general, we consider that
the noise is non-stationary. For some cases, the noise tends to be stationary as
in Figure 3.1b, in which the noise is dominated by the low-frequency constant
humming sound from the bus engine. However, there might be other non-
stationary noises inside the bus, such as a distinctive child shouting shown
by Figure 3.1a.

In this task, we deal with the separation of two sources (J = 2), namely
speech and noise, from a 6-channel mixture (I = 6). The source separation

62

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 22HC0110 BUS.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(a) Environment: bus

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

M04 22GC010H BUS.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(b) Environment: bus

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 420C0201 CAF.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(c) Environment: cafe

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

M04 22GC010Y CAF.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(d) Environment: cafe

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F01 22HC0102 PED.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(e) Environment: pedestrian area

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

M03 22GC010E PED.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(f) Environment: pedestrian area

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 423C0208 STR.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(g) Environment: street junction

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

M03 050C010J STR.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(h) Environment: street junction

Figure 3.1: Example power spectrograms of channel 5 of two different noisy
speech recordings for each environment type. The recordings are taken from
the dt05_real set.

63

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 22HC0110 BUS.S.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(a) Est. ground truth for Figure 3.1a

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 420C0201 CAF.S.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(b) Est. ground truth for Figure 3.1c

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F01 22HC0102 PED.S.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(c) Est. ground truth for Figure 3.1e

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 423C0208 STR.S.CH5

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(d) Est. ground truth for Figure 3.1g

Figure 3.2: Example power spectrograms of channel 5 of the estimated speech
ground truth for some recordings in Figure 3.1.

performance is evaluated using BSS Eval (see Section 2.1) on the multichannel
separated speech and the speech recognition performance is evaluated using
the word error rate (WER) (see Section 2.2) on the single-channel version of
this multichannel separated speech. Instead of using the original BSS Eval
written in Matlab, we use a re-implementation of it in Python which is more
convenient for our experiment pipelines.

The multichannel ground truth speech and noise signals for the simulated
set are available in theCHiMEdataset, while those for the real set are extracted
using the baseline simulation tool provided by the challenge organizers
[Barker et al., 2015]. The extraction for the real set is possible because of the
availability of close-talking microphone recordings. It is done based on the
estimation of the impulse responses between the close-talking microphone
and the microphones on the tablet device. The extraction results are good
enough for DNN training (see Figure 3.2). However, they are not reliable
enough to be used in any source separation performance evaluation. As an
illustration, the child shout in Figure 3.1a is still present in the estimated
ground truth in Figure 3.2a. Therefore, the source separation performance
evaluation is only done on the simulated set. On the other hand, the speech

64

recognition performance evaluation relies on the ground truth transcriptions
and does not rely on the above ground truth signals. Since these transcriptions
are reliable and the speech recognition performance for real recordings is
more interesting indeed, we mainly discuss the performance on the real set.
However, it should be mentioned that the performance on the simulated set
may affect that on the real set because some ASR hyperparameters, e.g., the
language model weight, are chosen based on the overall performance on the
development set including the real and simulated sets [Hori et al., 2015].

The following subsection presents an implementation of the proposed
source separation framework for a speech enhancement task.

3.3.2 An overview of the speech enhancement system

Any system implementing the framework follows three main steps, i.e., pre-
processing, initialization, and multichannel filtering, with an optional post-
processing step. Although these steps are common for all systems, the
implementation details of the steps may be different from a system used
in a set of experiments to another system used in another set of experiments.
The following explanation provides a brief general description of each step
and the details specific to the speech enhancement system depicted in Figure
3.3 used in all experiments presented in this chapter.

The pre-processing step aligns the observed mixture and extracts relevant
features to be used as DNN inputs from, e.g., the complex-valued
STFT coefficients of the multichannel mixture signal or another time-
frequency representation. The alignment is required to satisfy the
model in (2.43) that assumes that the sources do not move over
time, which translates into the use of time-invariant spatial covariance
matrices.

In this chapter, the STFT coefficients are extracted using a Hamming
window of length 1024 and hopsize 512 resulting F = 513 frequency
bins. The time differences of arrivals between the speaker’s mouth
and each of the microphones are first measured using the provided
baseline speaker localization tool [Barker et al., 2015], which relies on a
nonlinear variant of the steered response power with phase transform
method [Loesch & Yang, 2010; Blandin et al., 2012]. All channels are
then aligned with each other by shifting the phase of the input noisy
signal x(f, n) in all time-frequency bins (f, n) by the opposite of the

65

Figure 3.3: Proposed DNN based multichannel speech enhancement system.

measured time difference of arrival. Afterwards, we obtain a single-
channel signal by averaging the realigned channels together. This
combination of time alignment and channel averaging is equivalent
to delay-and-sum beamforming (see Section 2.5.1). We describe in the
following subsection how the resulting single-channel mixture, denoted
by x̃(f, n), is used to compute the DNN inputs

√
zx(f, n).

The initialization step sets the initial spectral and spatial parameters.

In this chapter, the source spectrograms are initialized using DNNspec
0 .

Besides, the source spatial covariance matrices are initialized as identity
matrices I ∈ CI×I .

The multichannel filtering step iteratively performs the spectral and spatial
parameter updates as defined by the framework.

In this chapter, the iterative parameter updates follow Algorithm 2, in
which DNNspec

l is employed for spectrogram fitting at iteration l. In
order to avoid numerical instabilities due to the use of single precision
computing for DNNs, the spectrograms vj(f, n) are floored to 10−5 in
the parameter update iterations.

66

The (optional) post-processing step applies some procedure on the esti-
mated multichannel source spatial images required for the target
application.

In this chapter, the estimated multichannel speech spatial image is
averaged across channels to obtain a single-channel signal for the ASR
evaluation. This is equivalent to delay-and-sum beamforming since
the mixture x(f, n) has been realigned in the pre-processing step and
thus, the separated multichannel spatial images are also aligned. This
provided better ASR performance than the use of one of the channels.

3.3.3 DNN spectral models

This subsection presents the architecture, the inputs and outputs, the training
criterion, the training algorithm, and the training data of the DNN spectral
models DNNspec

0 andDNNspec
l . Recall that DNNspec

0 is used in the initialization
step and DNNspec

l is used in the multichannel filtering step presented in the
previous subsection.

3.3.3.1 Architecture

The DNNs used in this chapter follow an multilayer perceptron architecture
(see Section 2.4.3.1). In general, the number of hidden layers and the number
of units in each input or hidden layer may vary, but the number of units in
the output layer equals the dimension of spectra multiplied by the number
of sources. DNNspec

0 and DNNspec
l have an input layer, three hidden layers,

and an output layer [Jaureguiberry et al., 2016]. Both types of DNNs have
hidden and output layers sizes of F × J = 1026. DNNspec

0 has an input layer
size of F = 513 and DNNspec

l of F × J = 1026. The activation functions of
the hidden and output layers are rectified linear units [Nair & Hinton, 2010;
Glorot et al., 2011].

3.3.3.2 Inputs and outputs

In order to provide temporal context, the input frames are concatenated
into supervectors consisting of a center frame, left context frames, and right
context frames. In choosing the context frames, we use every second frame
relative to the center frame in order to reduce the redundancies caused by the
windowing of STFT. Although this causes some information loss, this enables
the supervectors to represent a longer context [Nugraha et al., 2014; Uhlich

67

Figure 3.4: Illustration of the inputs and outputs of the DNN for spectrogram
initialization. PCA denotes dimensionality reduction by principal component
analysis. Inputs: magnitude spectrum of the mixture (left). Outputs:
magnitude spectra of the sources (right). In this chapter, J = 2.

et al., 2015]. In addition, we do not use the magnitude spectra of the context
frames directly, but the difference of magnitude between the context frames
and the center frame. These differences act as complementary features similar
to delta features. Following Weninger et al. [2014], let

√
zx(f, n) = |x̃(f, n)|

be the input frames of DNNspec
0 . The supervector can be expressed as

Z0(f, n) =

|x̃(f, n− 2c)| − |x̃(f, n)|
...

|x̃(f, n− 2)| − |x̃(f, n)|
|x̃(f, n)|

|x̃(f, n+ 2)| − |x̃(f, n)|
...

|x̃(f, n+ 2c)| − |x̃(f, n)|

(3.1)

where c is the one-sided context length in frames. In the following exper-
iments, we considered c = 2, so that the supervectors for the input of the
DNNs were composed by 5 time frames (2 left context, 1 center, and 2 right
context frames). The supervector for DNNspec

l , Zl(f, n), is constructed in a
similar way where a stack of

√
zj(f, n) is used as input instead of |x̃(f, n)|.

The dimension of the supervectors is reduced by principal component
analysis to the dimension of the DNN input. Dimensionality reduction by
principal component analysis significantly minimizes the computational cost
of DNN trainingwith a negligible effect on the performance of DNNprovided

68

Figure 3.5: Illustration of the inputs and outputs of the DNNs for spectrogram
fitting. PCA denotes dimensionality reduction by principal component
analysis. Inputs: stack of magnitude spectra of all sources (left). Outputs:
magnitude spectra of the sources (right). In this chapter, J = 2.

enough components are kept [Jaureguiberry et al., 2016]. Standardization
(zero mean, unit variance) is done dimension-wise before and after principal
component analysis. The standardization factors and the principal compo-
nent analysis transformation matrix are computed on the whole training
data and then kept for pre-processing of any input, i.e., the training, the
validation, and the test data. Thus, strictly speaking, the inputs of DNNs
are not the supervectors of magnitude spectra Z0(f, n) and Zl(f, n), but their
transformation into reduced dimension vectors.

In this chapter, the supervector construction is done on each utterance
without any padding. Let the utterance time frame n ∈ {0, 1, . . . , N − 1} and
the one-sided context length c = 2, the construction starts at n = 2c = 4 and
ends at n = N − 1 − 2c = N − 5. By doing so, an utterance with length of
N frames result in supervectors with length of N − 4c frames. Using these
supervectors as the DNN inputs, consequently, the DNN outputs have fewer
frames than the input utterance. In order to obtain the same number of frames
at testing time, we simply mirror the beginning and the end of DNN outputs,
which means we may introduce energy that are not supposed to be in the
spectrogram. This caused a minor flaw in the final spectrogram estimates.
We show example spectrograms later in Section 3.4. Better edge handling
method includes applying zero padding before the supervector construction,
so that the number of supervectors is the same as the number of frames of
the input utterance.

69

Figures 3.4 and 3.5 illustrates the inputs and outputs of the DNNs for
spectrogram initialization and spectrogram fitting, respectively. F denotes
the dimension of the spectra, C = 2c+1 the context length, and J the number
of sources. In this chapter, F = 513, C = 5, and J = 2.

3.3.3.3 Training criterion

TheDNNs are trained using the generalized Kullback-Leibler (KL) divergence
[Lee & Seung, 2000] with an `2 weight regularization term as the cost function:

C = DKL +D`2 . (3.2)

The generalized KL divergence DKL is implemented with a regularization
parameter δcf = 10−3 as

DKL =
1

JFN

∑

j,f,n

((√
ṽj(f, n) + δcf

)
log

√
ṽj(f, n) + δcf√
vj(f, n) + δcf

−
√
ṽj(f, n) +

√
vj(f, n)

)
. (3.3)

The use of a regularization parameter δcf in the logarithm computation
is a common practice to avoid numerical instabilities [Lefèvre et al., 2011;
Sprechmann et al., 2015]. The `2 weight regularization term D`2 is expressed
as

D`2 =
λ`2
2

∑
w2

DNN, (3.4)

where wDNN are the DNN weights and the regularization parameter is fixed
to λ`2 = 10−5. This parameter was empirically determined so that the sum
of the squared weights changes steadily along with epochs, and both the
training cost and the validation error improve in a similar manner, especially
in the beginning of training. This `2 weight regularization is commonly used
for preventing overfitting [Bengio, 2012]. No regularization is applied to the
biases.

It is worth mentioning that the use of the generalized KL divergence here
is motivated by our study on various cost functions presented in Chapter
4. The study shows that this KL divergence is a favorable choice because
it outperforms the other four considered cost functions in terms of source
separation metrics. We assess the impact of this choice in Chapter 4.

70

3.3.3.4 Training algorithm

Following He et al. [2015], the DNN weights are initialized randomly from a
zero-mean Gaussian distribution with standard deviation of

√
2/nl, where

nl is the number of inputs to the neurons in layer l and, in this case, equals
the size of the previous layer. The biases are initialized to zero.

The DNNs are trained by greedy layer-wise supervised training [Bengio
et al., 2006]where the hidden layers are added incrementally. In the beginning,
a network with one hidden layer is trained after random weight initialization.
The output layer of this trained network is then substituted by a new hidden
layer and a new output layer to form a new network with one more layer. The
parameters of the existing hidden layer are kept. Thus, we can view this as a
pre-training method for the training of a new deeper network. After random
initialization for the parameters of the new layers, the new network is entirely
trained. This procedure is done iteratively until the target number of hidden
layers has been reached.

Training is done by backpropagation with a minibatch size of 100 and
the AdaDelta parameter update algorithm whose hyperparameters are set
to ρ = 0.95 and ε = 10−6, following Zeiler [2012]. The validation error
is computed every epoch and the training is stopped after 10 consecutive
epochs failed to obtain better validation error. The latest model which yields
the best validation error is kept. Besides, the maximum number of training
epochs is set to 100.

The experiments were started when high-level and user-friendly neural
network libraries, such as Keras [Chollet et al., 2015] and Lasagne [Dieleman
et al., 2015], were not released yet or still in their very early stage of
development. Therefore, the DNNs and the related techniques for all
experiments presented in this chapter were implemented using Theano
[Bergstra et al., 2010; Theano Dev Team, 2016].

3.3.3.5 Training data

The DNNs used for the source separation evaluation were trained on both
the real and simulated training sets (tr05_real and tr05_simu) with the real
and simulated development sets (dt05_real and dt05_simu) as validation
data. Conversely, we trained the DNNs used for the speech recognition
evaluation on the real training set only (tr05_real) and validated them on
the real development set only (dt05_real). These DNNs were also used for
the performance comparison to the non-negative matrix factorization (NMF)

71

based iterative EM framework. Experience shows that using only the real sets
provides better WER for the real test set, which is the main point of interest,
than using both the real and simulated sets. See Sivasankaran et al. [2015]
and Section 4.4 for the perfomance comparison between these two different
training settings.

In order to obtain the DNN training targets, we apply the same delay-and-
sum beamforming as used for the pre-processing step (see Section 3.3.2) to
the multichannel target source spatial images. The resulting single-channel
source signals are denoted by c̃j(f, n) and they are related to theDNN training
targets by

√
ṽj(f, n) = |c̃j(f, n)|. Recall that the ground truth signals for the

real set are not perfect, thus the training targets for the real set are not as
clean as they should be. This is illustrated in Figure 3.6. This figure shows the
same utterance as the one shown in Figures 3.1c and 3.2b. It should be noted
that Figure 3.2b shows the spectrogram of channel 5 of the estimated speech
ground truth, while Figure 3.6a shows that of delay-and-sum beamforming
output applied on the 6-channel estimated speech ground truth. Thus, it is
understandable that the spectrogram shown in Figure 3.6a is better than that
in Figure 3.2b.

3.4 Source spectra estimation

Figure 3.6 shows example magnitude spectrograms of the estimated ground
truth and the DNNspec

0 outputs for an utterance taken from the dt05_real
set.

In general, the DNN is able to provide good estimation of the source
spectra. Classically, and similarly to any other spectral modeling technique,
the estimates are a smoothed version of the ground truth. However, the
speech harmonics are well preserved.

Using the same figure, we also want to show a minor flaw due to the edge
handling method we discussed in Section 3.3.3.2. The flaw, i.e., the mirrored
spectra, can be observed in the first 0.3 s of Figure 3.6c. We can only observe
the one in the beginning here because we do not show the whole utterance.
We did not investigate the impact of this flaw on the performance, but we
believe that this does not have a detrimental effect because for each utterance
the flaw only occurs in the first and the last 2c = 4 frames. As comparison,
the average utterance length of the tr05_real and the dt05_real sets are 205
and 189 frames, respectively.

72

0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 420C0201 CAF.20

−24

−20

−16

−12

−8

−4

0

4

8

d
B

(a) Target speech spectra

0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 420C0201 CAF.20

−24

−20

−16

−12

−8

−4

0

4

8

d
B

(b) Target noise spectra

0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 420C0201 CAF.20

−24

−20

−16

−12

−8

−4

0

4

8

d
B

(c) Estimated speech spectra

0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

F04 420C0201 CAF.20

−24

−20

−16

−12

−8

−4

0

4

8

d
B

(d) Estimated noise spectra

Figure 3.6: Example magnitude spectrograms of DNNspec
0 training targets

and outputs. These are for the same utterance as the one shown in Figures
3.1c and 3.2b.

In the following section, the source spectra estimated by DNNspec
0 are used

to estimate the source spatial covariance matrices.

3.5 Impact of spatial parameter updates

Figure 3.7 shows the performance comparison for different numbers of spatial
updates. In this case, the spectral parameters vj(f, n) are initialized by
DNNspec

0 and kept fixed during the iterative spatial parameter updates. In
other words, the iteration only updates the spatial covariance matricesRj(f).
This is done by setting L = 1 and varying the number of spatial updates
K, while ignoring the computation of zj(f, n) and the spectral parameters
update (lines 17-20) in Algorithm 2. The performance metrics were computed
on the resulting 6-channel estimated speech signals. The x-axis of each chart
corresponds to the spatial update k. Thus, k = 0 is equivalent to single-
channel source separation for each channel.

In general, the performance increases along with spatial updates. The
decrease of source-image-to-spatial-distortion ratio (ISR) in the beginning

73

0 2 4 6 8 10 12 14 16 18 20

Rj updates

11

12

13

14

15

S
D
R
(d
B
)

KL

(a) Signal-to-distortion ratio (SDR)

0 2 4 6 8 10 12 14 16 18 20

Rj updates

18

19

20

21

22

23

24

IS
R
(d
B
)

KL

(b) Source-image-to-spatial-distortion
ratio (ISR)

0 2 4 6 8 10 12 14 16 18 20

Rj updates

13

14

15

16

17

18

19

S
IR

(d
B
)

KL

(c) Signal-to-interference ratio (SIR)

0 2 4 6 8 10 12 14 16 18 20

Rj updates

14

15

16

17

18

S
A
R
(d
B
)

KL

(d) Signal-to-artifacts ratio (SAR)

Figure 3.7: Source separation performance for various numbers of spatial
updates. The PSDs vj(f, n) are estimated by DNNspec

0 and kept fixed during
the iterative updates of the spatial covariance matricesRj(f). The evaluation
was done on the simulated test set (et05_simu). The figures show the mean
value and the 95% confidence interval of each metric. Higher is better.

74

of spatial updates might be caused by the poor initialization of Rj(f) = I.
However, it should be noted that the absolute value is still very good anyway.

By observing the confidence intervals, we can see that at some point signal-
to-interference ratio (SIR) need more spatial updates to obtain a statistically
significant improvement, compared to the other metrics. This implies that
at some point it is getting harder to reduce the noise, compare to reduce
the artifacts, the spatial error, or the overall distortion. This also indicates
that the spatial updates are not improving all the metrics in the same degree.
Therefore, beside the computational constraints, the setting of K should be
determined based on whether it allows us to reach a target performance, e.g.,
signal-to-distortion ratio (SDR) is more than 14 dB.

Although all metrics keep improving when k reaches 20, we may expect
that these saturate not long after k = 20. The following section investigates
whether the spectral parameters can be improved so thatwe can obtain further
performance improvement by spatial updates.

3.6 Impact of spectral parameter updates

Figure 3.8 shows the performance comparison for different numbers of
iterations after fixing the number of spatial updates to K = 20. The x-axis
shows the index of EM iteration l, the update type (spatial or spectral), and
the DNN index. Thus, l = 0 is equivalent to single-channel source separation,
while l = 1with spatial updates is equivalent to the final performance shown
in Figure 3.7.

We trained two additional DNNs for spectrogram fitting, i.e., DNNspec
1

and DNNspec
2 for l = 1 and l = 2, respectively. This allowed us to try different

settings for the iterative procedure:

“1 DNN” uses only DNNspec
0 for spectrogram initialization. The PSDs are

kept fixed during three times, corresponding to the number of EM
iterations, of spatial updates. Thus, this is equivalent to spatial updates
with K = 60 after spectrogram initialization. Recall that DNNspec

0

cannot be used for spectrogram fitting because its architecture only
accommodates a spectrogram, i.e., the mixture spectrogram, as the
input. Also, it should not be used for spectrogram fitting because
it is trained for different purpose, i.e., for separating the mixture
spectrogram into the source spectrograms.

75

EM iter: 0 1 1 2 2 3
update: - spat spec spat spec spat
DNN: 0 - 1 - 1/2 -

10

11

12

13

14

15

16

17
S
D
R
(d
B
)

1 DNN

2 DNNs

3 DNNs

(a) Signal-to-distortion ratio (SDR)

EM iter: 0 1 1 2 2 3
update: - spat spec spat spec spat
DNN: 0 - 1 - 1/2 -

19

20

21

22

23

24

25

26

IS
R
(d
B
)

1 DNN

2 DNNs

3 DNNs

(b) Source-image-to-spatial-distortion
ratio (ISR)

EM iter: 0 1 1 2 2 3
update: - spat spec spat spec spat
DNN: 0 - 1 - 1/2 -

13

14

15

16

17

18

19

20

21

S
IR

(d
B
)

1 DNN

2 DNNs

3 DNNs

(c) Signal-to-interference ratio (SIR)

EM iter: 0 1 1 2 2 3
update: - spat spec spat spec spat
DNN: 0 - 1 - 1/2 -

14

15

16

17

18

19

20

S
A
R
(d
B
)

1 DNN

2 DNNs

3 DNNs

(d) Signal-to-artifacts ratio (SAR)

Figure 3.8: Source separation performance for each update of the EM
iterations with different numbers of DNNs. The number of spatial updates
in an EM iteration is fixed to K = 20. In “1 DNN”, there is no spectrogram
fitting. Its final performance is equivalent to spatial updateswithK = 60 after
spectrogram initialization. In “2 DNNs”, DNNspec

1 is used for spectrogram
fitting of both l = 1 and l = 2. In “3 DNNs”, DNNspec

1 and DNNspec
2 are

used for spectrogram fitting of l = 1 and l = 2, respectively. The evaluation
was done on the simulated test set (et05_simu). The figures show the mean
values. The 95% confidence intervals are similar to those in Figure 3.7. Higher
is better.

76

“2 DNNs” uses DNNspec
0 for spectrogram initialization and DNNspec

1 for
spectrogram fitting within spectral updates of l = 1 and l = 2.

“3 DNNs” uses DNNspec
0 for spectrogram initialization, DNNspec

1 for spec-
trogram fitting within spectral updates of l = 1, and DNNspec

2 for
spectrogram fitting within spectral updates of l = 2.

Figure 3.8 shows that the use of a specific DNN for a given iteration (here,
DNNspec

1 for l = 1 and DNNspec
2 for l = 2) is beneficial. When a specific DNN

is used, the spectral update provides a small improvement, which allows the
following spatial update to yield significant improvement. This behavior can
be observed by comparing the performance of the spectral updates of EM
iteration l and the spatial updates of the following iteration l+1. Additionally,
we can observe it by comparing the overall behavior of the “3 DNNs” curve to
the “1DNN” curve, inwhich no spectrogramfitting is done. It also shows that
the use of the same DNN for several iterations (here, DNNspec

1 for l = 1 and
l = 2) is suboptimal. We can observe this by comparing the performance of “3
DNNs” to that of “2 DNNs” curve for l = 2 and l = 3. This is understandable
because there is a mismatch between the input and the training data of the
DNN.

In general, the iterative spectral and spatial updates improve the en-
hancement performance. This is clearly indicated by comparing the metrics,
especially SIR, of “1 DNN”, in which only spatial updates are done, and
“3 DNNs”, in which spectral and spatial updates are done. However, the
performance saturates after a few EM iterations.

3.7 Comparison to NMF based iterative EM algo-
rithm

In this section, we compare the performance of our system to that of
multichannel NMF based iterative EM algorithm of Ozerov et al. [2012].
We use the implementation in the Flexible Audio Source Separation Toolbox1

and follow the settings used by Salaün et al. [2014] which provided state-of-
the-art performance for this dataset before the emergence of deep learning.
The speech spectral and spatial models for this system are trained on the
real training set (tr05_real), while the noise spectral and spatial models are
initialized for each mixture using 5 seconds of background noise context

1See http://bass-db.gforge.inria.fr/fasst.

77

http://bass-db.gforge.inria.fr/fasst

Table 3.1: Source separation performance metrics (in dB) of the multichannel
NMF based and the multichannel DNN based systems. The evaluation was
done on the simulated test set (et05_simu). The table shows the mean value
of each metric. Higher is better.

Enhancement method SDR ISR SIR SAR

NMF based [Ozerov et al., 2012] 7.72 10.77 13.29 12.29

Proposed DNN based: KL (3 DNNs) 13.25 24.25 15.58 18.23

based on the available annotation. This setting is favourable to the NMF
based system and, because of this setting, the comparison is not completely
fair since our DNN based system does not exploit this contextual information.
As described earlier, the DNNs used in this evaluation were also trained on
the real training set only. The separation results from this evaluation are then
used for the following speech recognition evaluation.

3.7.1 Source separation performance

Table 3.1 compares the performance of the multichannel NMF based system
after 50 EM iterations and the performance of our DNNbased system after the
spatial update of the EM iteration l = 3. Our DNN based system outperforms
the NMF based one for all metrics. This confirms that DNNs are able to
model spectral parameters much better than NMF does.

Figure 3.9 shows example spectrograms of the outputs of the NMF based
system and our DNN based system. In general, both NMF and DNN based
systems are able to enhance speech and attenuate noise. We can observe that
the speech harmonics are much more attenuated in the NMF based system
compared to the DNN based one. This is also perceptible in the informal
listening test we did.

3.7.2 Speech recognition performance

Table 3.2 shows the speech recognition results in terms of WER. The
evaluation uses the ASR system defined in the Kaldi recipe distributed by
the CHiME-3 challenge organizers2 [Barker et al., 2015; Hori et al., 2015]. See
Section 2.2 for the summary of the ASR system and see Hori et al. [2015] for
the details.

2See https://github.com/kaldi-asr/kaldi/tree/master/egs/chime3.

78

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(a) Noisy

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(b) NMF based

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(c) Proposed DNN based (after spectro-
gram initialization)

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(d) Proposed DNN based (after the spa-
tial updates of the third EM iteration)

Figure 3.9: Example power spectrograms of channel 5 of (a) the noisy speech;
(b) the output of the NMF based algorithm; (c) the output of the proposed
DNN based algorithm after spectrogram initialization; and (d) the output
of the proposed DNN based algorithm after the spatial updates of the third
EM iteration. The utterance (M05_440C0211_CAF) is taken from the real test
set (et05_real).

The evaluation results include the baseline performance (unprocessed
noisy speech), BeamformIt, delay-and-sumbeamforming, and theNMFbased
system we described above. The baseline performance was measured using
only channel 5 of the observed 6-channel mixture. This channel is considered
as the most useful channel because the corresponding microphone faces the
user and is located at the bottom-center of the tablet device. BeamformIt
and delay-and-sum beamforming were performed on the 6-channel mixture.
BeamformIt is the baseline enhancement method in the CHiME-3. For both
the NMF based and DNN based systems, we consider single-channel signals
obtained by averaging over the channels of separated speech spatial images.

For the DNN based single-channel enhancement (see EM iteration l = 0),
the WER on the real test set decreased by 21% relative w.r.t. the observed
WER. This single-channel enhancement takes the output of delay-and-sum
beamforming on the 6-channel mixture. However, this single-channel

79

Table 3.2: Speech recognition performance in terms of WER (%) using
different enhancement methods. The ASR system uses the DNN+sMBR back-
end trained on multi-condition enhanced data followed by 5-gram Kneser-
Ney smoothing and RNN-LM rescoring. The evaluation was done on the real
sets. Boldface numbers show the best performance for each dataset. The 95%
confidence intervals for the two best WERs are ± 0.26% for the development
set and ± 0.40% for the test set. Lower is better.

Enhancement method EM iter. Update type Dev Test

Observed - - 9.65 19.28

BeamformIt - - 6.36 13.67

Delay-and-sum beamforming - - 6.35 13.70

NMF based [Ozerov et al., 2012] 50 - 6.10 13.41

Proposed DNN based: KL (3 DNNs)

0 - 6.64 15.18

1
spatial 5.37 11.46

spectral 5.19 11.46

2
spatial 4.87 10.79

spectral 4.99 11.12

3 spatial 4.88 10.14

enhancement did not provide better performance compared to delay-and-sum
beamforming alone. It indicates that proper exploitation of multichannel
information is crucial. DNN based multichannel enhancement after the
spatial updates of the third EM iteration then decreases the WER on the real
test set by 33% relative w.r.t. the corresponding single-channel enhancement,
26% relative w.r.t. BeamformIt or delay-and-sum beamforming, and 24%
relative w.r.t. the NMF based system.

Figure 3.10 shows example spectrograms of the outputs of the delay-and-
sum beamformer, the NMF based system above, and our DNN based system.
It compares the resulting single-channel enhanced speech signals used as
ASR inputs. Figures 3.10c and 3.10d correspond to the DNN based system
outputs at the zeroth EM iteration and at the third EM iteration after the
spatial updates, respectively, in Table 3.2. The over-attenuation by the NMF
based system seen in Figure 3.9b can also be observed Figure 3.10b. Both
NMF and DNN based systems attenuate the noise better than delay-and-
sum beamforming. The spectrogram improvement provided by the spatial

80

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(a) Delay-and-sum beamforming

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(b) NMF based

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(c) Proposed DNN based (after spectro-
gram initialization)

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

d
B

(d) Proposed DNN based (after the spa-
tial updates of the third EM iteration)

Figure 3.10: Example power spectrograms of the resulting single-channel
enhanced speech by (a) Delay-and-sum beamforming on the 6-channel noisy
speech; (b) averaging over channels of the 6-channel output of the NMF
based algorithm; (c) averaging over channels of the 6-channel output of the
proposed DNN based algorithm after spectrogram initialization; and (d)
averaging over channels of the 6-channel output of the proposed DNN based
algorithm after the spatial updates of the third EM iteration. The utterance
(M05_440C0211_CAF) is taken from the real test set (et05_real).

updates for the proposed DNN based system is barely noticeable, yet it
improves the WER.

3.8 Impact of environment mismatches

In addition to the above studies, we also studied the impact of training the
speech enhancement system on certain noise environments of the CHiME
dataset and testing it on the other environments. We considered three
different training data settings as follows.

Single-environment setting includes four training data sets. Each set
contains the training data of one environment.

81

Many-environment setting includes four training data sets. Each set con-
tains the training data of three environments.

All-environment setting includes three training data sets. All sets contain
the training data of all four environments. These sets differ in the
total training data size. The first set amounts to one quarter of all
training data and thus, the size is comparable to the sets in the single-
environment setting. The second set amounts to three quarters of all
training data and thus, the size is comparable to the sets in the many-
environment setting. The utterances in both the first and the second
sets are randomly selected and the number of utterances from different
environments is the same. The third set contains all training data.

The experiments showed that for the same amount of data, the all-environment
setting outperforms both the single-environment and the many-environment
settings. In particular, it outperforms matched training, i.e., training and
testing on the same environment. Surprisingly perhaps, mismatched training,
i.e., training and testing on different environments, performs only marginally
worse which indicates that the DNN generalizes rather well to other environ-
ments. The generalization improves asmore environments are being included
in the training set. The performance also increases along the training data
size. See Vincent et al. [2017b] for further details.

3.9 Summary
This chapter presents a DNN based multichannel audio source separation
framework where the spectral parameters are modeled by DNNs and the
spatial parameters are estimated in an iterative fashion as in the classical
EM based framework. We show that DNNs are able to provide good
estimation of the spectral parameters, in this case the source magnitude
spectrograms. Employing these spectral parameters, the spatial parameters
can be well estimated using iterative spatial updates. The spatial updates
provide evidence that multichannel separation yields significantly better
performance than single-channel separation in terms of source separation
and speech recognition metrics. We show that when the spatial parameters
are initialized as identity matrices, multiple spatial updates should be done
after spectrogram initialization. We generalize this into multiple spatial
updates for each spectral update. We then show that the spectral updates by
DNNs yield better source spectrograms which allow the following spatial

82

updates to provide further performance improvement. We also show that
the use of a specific DNN for spectral updates at a given iteration should
be preferred, because a single DNN used for spectral updates at different
iterations is suboptimal. Finally, we show that an implementation of the
proposed DNN based framework significantly outperformed a multichannel
NMF based system [Ozerov et al., 2012] in terms of source separation metrics.
The DNN based system also provides a relative 24% decrease of the WER
w.r.t. the NMF based system.

83

CHAPTER 4

On improving deep neural network
spectral models

In the previous chapter, we showed deep neural networks (DNNs) work well
for estimating the spectral parameters of a multichannel Gaussian model
based separation framework. This chapter presents our exploration on
improving these spectral DNNs. We mainly study the impact of various
general-purpose and task-oriented cost functions. This notably includes
the probabilistically-motivated Itakura-Saito (IS) divergence, the Kullback-
Leibler (KL) divergence used in the previous chapter, and the task-oriented
signal-to-distortion ratio (SDR) cost function. We then briefly study the use
of perceptually-motivated equivalent rectangular bandwidth (ERB) time-
frequency representations and the impact of DNN architectures, in which
we consider a bidirectional long short-term memory (LSTM) based recurrent
neural network (RNN) architecture. Finally, we consider data augmentation
approaches to increase the DNN training data. This chapter presents the
application to a speech enhancement problem as in the previous chapter and
additionally, an application to a vocals-accompaniment separation problem
in music.

4.1 Research questions

In this chapter, we address the following research questions.

1. Can we represent our DNN based approach in a rigorous expectation-
maximization (EM) framework? Recall that the framework we proposed
in Algorithm 2) follows the general iterative EM algorithm in Algorithm 1.
InDuong et al. [2010a], this general algorithmdoesmaximum likelihood es-
timation in which the M step finds new parameters, i.e., the unconstrained
source power spectral densities (PSDs) zj(f, n) and the source spatial

85

covariance matrices Rj(f), that maximize the probability of the source
spatial images estimated in the preceding E step given these parameters
p (ĉj(f, n)|zj(f, n),Rj(f)). The spectrogram fitting method introduced by
Ozerov et al. [2012] takes zj(f, n) to obtain vj(f, n) by employing spectral
models trained on some dataset. This fitting may not lead to a likelihood
maximization if the models do not optimize the right criterion. In our case,
our framework may not always maximize the likelihood in its parameter
updates because of the DNNs used in spectrogram initialization and
fitting. Févotte et al. [2009] showed that the IS divergence is equivalent
to maximum likelihood estimation up to constant terms. This means
that by using the IS divergence as the cost function for DNN training,
every spectrogram initialization or spectrogram fitting in our framework
performs maximum likelihood estimation. Consequently, the whole
framework achieves maximum likelihood estimation as in a rigorous
EM algorithm. However, it is worth mentioning that the use of the IS
divergence for DNN training is uncommon. In this chapter, we investigate
the impact of the DNN training cost function on the performance of our
framework. We consider not only the above probabilistically-motivated
IS divergence, but also other popular alternatives, i.e., the KL divergence,
the Cauchy cost function, the phase-sensitive cost function, and the mean
squared error (MSE). The details of these cost functions are given in Section
4.2.

2. Is a perceptually-motivated time-frequency representation favorable
for the proposed framework? By taking the characteristics of human
cochlea as a model, perceptually-motivated time-frequency representa-
tions have higher resolution at low frequencies and lower resolution at
high frequencies compared to the short-time Fourier transform (STFT)
representation. Additionally, perceptually-motivated representations
typically have a lower dimensionality than the STFT representation. Time-
frequency representations based on the perceptually-motivated ERB scale
[Glasberg & Moore, 1990] have been successfully used in audio source
separation [Roman et al., 2003; Vincent, 2006; Duong et al., 2010b; Ozerov
et al., 2012]. In the context of modeling spectral representations by
DNNs , the use of features with a low dimensionality allows us to use
DNNs with fewer parameters and consequently, reduce the computational
cost, especially the training time. In this respect, perceptually-motivated
time-frequency representations are obviously more favorable than the

86

STFT representation. We now want to check whether the choice of time-
frequency representation affects the system performance.

3. Can RNN provide a better performance than feedforward neural net-
work (FNN) in our multichannel Gaussian model based separation
framework? In this framework, spectral DNNs are use to predict a
sequence of source spectra. As mentioned in Section 2.4.3.1, RNN is
known to be good for modeling a sequence and many studies have proven
it. RNN indeed provides a better performance than FNN in the context of
single-channel source separation [Weninger et al., 2014; Uhlich et al., 2017].
We investigate whether this also applies for our multichannel Gaussian
model based separation framework.

4. Does task-oriented discriminative training improve the system perfor-
mance? Recall that for audio source separation, DNNs are typically used
to estimate amask or source spectra. The DNNs can be trained tominimize
some cost function computed on the estimated mask or source spectra.
As discussed in Section 2.4.3.2, studies in single-channel audio source
separation have explored the use of more advanced cost functions for
the training of DNNs estimating a mask. These include minimizing the
error on the source magnitude or power spectra, the complex-valued time-
frequency representations, and the time-domain signals computed using
the estimated mask [Erdogan et al., 2015; Weninger et al., 2015; Wang &
Wang, 2015]. The previously mentioned phase-sensitive cost function is
an example of task-oriented cost function in the context of single-channel
audio source separation. The use of task-oriented cost functions basically
aims to reduce the mismatch between the DNN training objective and
how the system performance is evaluated. In the case of source separation
evaluation, maximizing the SDR of the estimated time-domain source
signals is a natural choice. In our study, we employ an SDR-oriented cost
function in the context of multichannel audio source separation.

5. Is data augmentation effective to avoid overfitting? As we will observe,
we face an overfitting problem in the application of the proposed frame-
work to a vocals-accompaniment separation task. This problem is typically
addressed by regularizing the DNN training algorithm or increasing the
variety of training data. For this task, the development set of the dataset
we use consists of fifty songs with various music genres resulting in only
two hours of data. This data amount is relatively low for DNN training. It

87

is significantly lower than the 15 hours of data from the CHiME dataset
used in our speech enhancement task. We study the use of training data
augmentation to address this overfitting problem.

These research questions are investigated by employing the speech
enhancement system proposed in the previous chapter and a singing-voice,
or vocals-accompaniment, separation system presented later in this chapter.

4.2 Cost functions for spectral DNNs

In this section, we present several general-purpose and task-oriented cost
functions considered in this chapter.

4.2.1 General-purpose cost functions

The following cost functions measure the discrepancies between the target√
ṽj(f, n) and the estimate

√
vj(f, n).

The Itakura-Saito (IS) divergence [Itakura & Saito, 1968] is expressed as

DIS =
1

JFN

∑

j,f,n

(
ṽj(f, n)

vj(f, n)
− log

ṽj(f, n)

vj(f, n)
− 1

)
. (4.1)

This metric is known to yield signals with good perceptual quality.
Therefore, it has become a popular metric in the audio processing
community, including for audio source separation based on non-
negative matrix factorization (NMF) [Bertin et al., 2009; Févotte et al.,
2009; Lefèvre et al., 2011].

From the theoretical point of view of our frameworks, this metric is
attractive because it results in maximum likelihood estimation of the
spectra [Févotte et al., 2009]. Thus, when DNNs are trained using the
IS divergence, the whole Algorithm 2 achieves maximum likelihood
estimation.

88

The generalized Kullback-Leibler (KL) divergence [Lee & Seung, 2000] is
expressed as

DKL =
1

JFN

∑

j,f,n

(√
ṽj(f, n) log

√
ṽj(f, n)√
vj(f, n)

−
√
ṽj(f, n) +

√
vj(f, n)

)
,

(4.2)

which reduces to the KL divergence [Kullback & Leibler, 1951] when∑
j,f,n

√
ṽj(f, n) =

∑
j,f,n

√
vj(f, n) = 1. The generalized KL divergence

is also a popular choice for NMF-based audio source separation [Févotte
et al., 2009; Févotte & Ozerov, 2010] and has shown to be effective for
DNN training [Huang et al., 2014b]. To be concise, hereafter, let us
simply call this generalized KL divergence as the KL divergence.

The Cauchy cost function [Liutkus et al., 2015a] is expressed as

DCau =
1

JFN

∑

j,f,n

(
3

2
log (ṽj(f, n) + vj(f, n))− log

√
vj(f, n)

)
. (4.3)

This metric has been proposed recently for NMF-based-based audio
source separation and advocated as performing better than the IS
divergence in some cases.

The mean squared error (MSE) is expressed as

DMSE =
1

2JFN

∑

j,f,n

(√
ṽj(f, n)−

√
vj(f, n)

)2

. (4.4)

This metric is the most widely used cost function for various optimiza-
tion processes, including the training of DNNs for regression tasks.

4.2.2 Task-oriented cost functions

The phase-sensitive cost function [Erdogan et al., 2015; Weninger et al.,
2015] minimizes the error of single-channel source signals in the
complex-valued STFT domain. This metric is defined as

DPS =
1

2JFN

∑

j,f,n

|mj(f, n)x̃(f, n)− c̃j(f, n)|2, (4.5)

89

where mj(f, n) = vj(f, n)
(∑

j′ vj′(f, n)
)−1
∈ R+ is the single-channel

Wiener filter, while x̃(f, n) and c̃j(f, n) are the single-channel versions
of the multichannel mixture x(f, n) and the multichannel ground truth
source spatial images cj(f, n), respectively. These single-channel signals
can be obtained, e.g., by delay-and-sum beamforming.

The signal-to-distortion ratio (SDR) cost function we proposed in this
study aims to maximize the SDR of the multichannel source images
by minimizing the distortion in the time domain. This can be done by
minimizing the denominator of the power ratio in (2.3). The SDR cost
function used in this section is defined as

DSDR =
1

J

∑

j

log10

(∑

i,t

(ĉij(t)− cij(t))2
)

(4.6)

where ĉij(t) are the source spatial images computed by multichannel
Wiener filtering in (2.46) given the source spatial covariance matrices
Rj(f) and the mixture x(f, n). This cost function includes the inverse
discrete Fourier transform and the weighted overlap-addmethod. Com-
pared to (2.27) [Wang & Wang, 2015], which is equivalent to the above
phase-sensitive cost function, we consider multichannel separation
instead of single-channel separation and account for weighted overlap-
add, which is known to handle artifacts at the frame edges (see Section
2.3). Thus, the SDR cost function involves a computation of the real-
valued time-domain signal from the real-valued magnitude spectra in
the time-frequency domain, via the complex-valued STFT coefficients
in the time-frequency domain.

4.3 Impact of the cost function
In this section, we study the impact of the different cost functions presented
above, except the task-oriented SDR cost function, which is addressed in
Section 4.5. For doing so, we consider the same speech enhancement task as
in Chapter 3.

4.3.1 Experimental settings

The experiments in this section follow the experimental settings and use the
speech enhancement system presented in Section 3.3.2. The only difference

90

is in the training criterion. For this section, let us generalize the cost function
formula from Section 3.3.3.3 into

C = D +D`2 . (4.7)

All experiments in Chapter 3 use DKL in (3.3), which is a regularized version
of the KL divergence in (4.2), as D.

In this section, we experiment with different cost functions presented in
Section 4.2.1 as D. In order to avoid numerical instabilities as mentioned in
Section 3.3.3.3, we consider a regularized version of the IS divergence as

DIS =
1

JFN

∑

j,f,n

(
ṽj(f, n) + δcf
vj(f, n) + δcf

− log
ṽj(f, n) + δcf
vj(f, n) + δcf

− 1

)
(4.8)

and a regularized version of the Cauchy cost function as

DCau =
1

JFN

∑

j,f,n

(
3

2
log (ṽj(f, n) + vj(f, n) + δcf)− log

(√
vj(f, n) + δcf

))
,

(4.9)

where the regularization parameter is fixed to δcf = 10−3. Additionally, a
geometric analysis on the phase-sensitive cost function (4.5) leads to

DPS =
1

2JFN

∑

j,f,n

(mj(f, n) |x̃(f, n)| − |c̃j(f, n)| cos (∠x̃(f, n)− ∠c̃j(f, n)))
2 ,

(4.10)

where ∠· denotes the angle of the complex-valued STFT coefficients. Em-
ploying (4.10), the computation of the phase-sensitive cost function does not
involve complex number.

In addition, it is worth mentioning that the use of flooring function, such
as in rectified linear unit, for the DNN outputs seems to be important for
the DNN training with the IS divergence, the KL divergence, the Cauchy
cost function, and the phase-sensitive cost function. We found in additional
experiments (not shown here) that training failed when a linear activation
function was used for the output layer with these cost functions.

The following subsections present the source separation and the speech
recognition performance comparison for spectral DNNs trainedwith different

91

cost functions, i.e., the IS divergence, the KL divergence, the Cauchy cost
function, the phase-sensitive cost function, and the MSE.

4.3.2 Source separation performance

We first evaluate the impact of the cost function by using the PSDs vj(f, n)
estimated by DNNspec

0 and keeping the spatial covariance matrices Rj(f) as
the identity matrix. This is achieved by setting L = 0 in Algorithm 2. This is
equivalent to single-channel source separation for each channel.

Figure 4.1 shows the performance comparison for the resulting 6-channel
estimated speech signal on the simulated test set (et05_simu). In general, the
KL divergence, the phase-sensitive cost function, and the MSE have good
and comparable performance among all cost functions considered here. The
IS divergence almost always has the worst performance and the Cauchy
cost function achieves the best signal-to-interference ratio (SIR), but suffers
from a poor signal-to-artifacts ratio (SAR). From this experimental study,
we conclude that the IS divergence and the Cauchy cost function should be
avoided for single-channel source separation with a DNN spectral model.

We then investigate the impact of spatial parameter updates for these
different cost functions as we did in Section 3.5 for the KL divergence.
Figure 4.2 shows the performance comparison for different numbers of spatial
updates for different cost functions. For a complete comparison, it also
includes the KL divergence that was already presented in Figure 3.7. Recall
that for this evaluation the spectral parameters vj(f, n) are initialized by
DNNspec

0 and kept fixed during the iterative spatial parameter updates. Also,
recall that k = 0 is equivalent to single-channel source separation for each
channel whose results are shown in Figure 4.1.

Themost noticeable fact is that the performance of the phase-sensitive cost
function is good for most metrics in the first few updates, but then it saturates
quickly. By contrast, the performance of the other cost functions increases
along with the spatial updates for most metrics. This indicates that although
the phase-sensitive cost function performs well for single-channel source
separation, it may not be suitable for multichannel source separation. In a
more general respect, not all cost functions are appropriate for the training of
spectral DNNs for multichannel source separation.

The figure also shows that different cost functions have a different
improvement rate along the spatial updates. We may expect that different
cost functions saturate at different k. Interestingly, although the IS divergence

92

Cau IS KL MSE PS

Cost functions

8

9

10

11

S
D
R
(d
B
)

(a) Signal-to-distortion ratio (SDR)

Cau IS KL MSE PS

Cost functions

14

15

16

17

18

19

20

21

IS
R
(d
B
)

(b) Source-image-to-spatial-distortion
ratio (ISR)

Cau IS KL MSE PS

Cost functions

10

11

12

13

14

15

16

S
IR

(d
B
)

(c) Signal-to-interference ratio (SIR)

Cau IS KL MSE PS

Cost functions

12

13

14

15

S
A
R
(d
B
)

(d) Signal-to-artifacts ratio (SAR)

Figure 4.1: Single-channel source separation performance for the DNNs
trained with different cost functions. The PSDs vj(f, n) are estimated by
DNNspec

0 and the spatial covariance matrices Rj(f) are the identity matrix.
The evaluation was done on the simulated test set (et05_simu). The figures
show the mean value and the 95% confidence interval of each metric. The
mean SDR, ISR, SIR, and SAR with the 95% confidence intervals measured
on the observed 6-channel mixture signal are 3.8 ± 0.1 dB, 18.7 ± 0.1 dB, 4.0
± 0.1 dB, and 69.8 ± 0.5 dB, respectively. Higher is better.

93

0 2 4 6 8 10 12 14 16 18 20

Rj updates

8

9

10

11

12

13

14

15

S
D
R
(d
B
)

Cau

IS

KL

MSE

PS

(a) Signal-to-distortion ratio (SDR)

0 2 4 6 8 10 12 14 16 18 20

Rj updates

14

15

16

17

18

19

20

21

22

23

24

IS
R
(d
B
)

Cau

IS

KL

MSE

PS

(b) Source-image-to-spatial-distortion
ratio (ISR)

0 2 4 6 8 10 12 14 16 18 20

Rj updates

10

11

12

13

14

15

16

17

18

19

20

S
IR

(d
B
)

Cau

IS

KL

MSE

PS

(c) Signal-to-interference ratio (SIR)

0 2 4 6 8 10 12 14 16 18 20

Rj updates

12

13

14

15

16

17

18

19

S
A
R
(d
B
)

Cau

IS

KL

MSE

PS

(d) Signal-to-artifacts ratio (SAR)

Figure 4.2: Source separation performance for various numbers of spatial
updates with the DNNs trained with different cost functions. The PSDs
vj(f, n) are estimated by DNNspec

0 and kept fixed during the iterative updates
of the spatial covariance matrices Rj(f). The evaluation was done on the
simulated test set (et05_simu). The figures show the mean values. The 95%
confidence intervals are similar to those in Figure 4.1. Higher is better.

94

is almost always outperformed by the other cost functions, its improvement
rate for each metric is generally the highest compared to the others and it
has not saturated yet after 20 spatial updates. It is probable that it would
outperform the other cost functions after many more spatial updates. After
20 spatial updates, we can observe that some cost functions are better than the
others for some metrics. This suggests that the cost function selection should
depend on the task, e.g., fewer artifacts are preferable to low interference,
and on the computational constraints, e.g., only few updates can be done.
Nonetheless, the KL divergence is the most reasonable choice for general-
purpose training because it improves all of the metrics well on average. In
addition, although the use of IS divergence is theoretically-motivated, there
are better alternatives.

The following subsection uses the separation results from the experiments
in this subsection to evaluate the speech recognition performance. In this
evaluation, we exclude the phase-sensitive cost function because as shown
above, its overall distortion, represented by SDR, is significantly lower than
the others after 20 spatial updates.

4.3.3 Speech recognition performance

The speech recognition evaluation is done on the resulting single-channel
enhanced speech. Recall that this speech recognition evaluation uses DNNs
trained and validated on the real sets, while the above source separation
evaluation uses DNNs trained and validated on the real and the simulated
sets. This is described in Section 3.3.3.5.

Figure 4.3 shows example spectrograms for different cost functions. This
figure is comparable to Figure 3.10. Figure 3.10c illustrates the use of KL
divergence after spectrogram initialization, Figure 4.3c after the spatial
updates of the first EM iteration, and Figure 3.10d after the spatial updates of
the third EM iteration. The difference between these spectrograms is hardly
visible and it also happens for the other cost functions. Therefore, we present
only the spectrograms after the spatial updates of the first EM iteration in
Figure 4.3.

In general, the difference between the spectrograms for the frequencies
below 4 kHz is barely noticeable. The frequencies above 4 kHz indeed look the
same for the Cauchy cost function, the IS divergence, and the KL divergence.
By contrast, the frequencies above 4 kHz of the MSE have noticeably less
noise. Although we aim for noise attenuation in general, here, the noise

95

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(a) Cauchy cost function

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(b) IS divergence

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(c) KL divergence

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(d) MSE

Figure 4.3: Example power spectrograms of the resulting single-channel
enhanced speech after the spatial updates of the first EM iteration. The
utterance (M05_440C0211_CAF) is taken from the real test set (et05_real).

is attenuated differently across the frequency bands. This tends to induce
unpleasant artifacts.

Table 4.1 shows the performance comparison in terms of word error rate
(WER). It shows the WERs after spectrogram initialization, corresponding to
single-channel enhancement, and after the spatial updates with K = 20 of
the first EM iteration of each system. The above spectrograms correspond to
the latter.

After spectrogram initialization, the best WER on the test set is 14.85%
with a 95% confidence interval of ± 0.48%. Almost all cost functions have
statistically comparable performance.

After the spatial updates of the first EM iteration, the best WER on the
test set reaches 10.83% ± 0.42%. This performance is achieved by the IS
divergence and the difference to the performance of the Cauchy cost function
is statistically insignificant. Interestingly, the performance of the IS divergence
is better than that of the KL divergence, which achieves the best SDR in
the above source separation evaluation. Also, surprisingly, the MSE that
outperforms the other cost functions for single-channel enhancement does

96

Table 4.1: Speech recognition performance in terms of WER (%) using the
different cost functions. The ASR system uses the DNN+sMBR back-end
trained on multi-condition enhanced data followed by 5-gram Kneser-Ney
smoothing and RNN-LM rescoring. The evaluation was done on the real
sets. Boldface numbers show the best performance for each dataset. The 95%
confidence intervals for the two best WERs are ± 0.26% for the development
set and ± 0.42% for the test set. Lower is better.

Enhancement method EM iter. Update type Dev Test

Proposed DNN based: Cauchy (1 DNN)
0 - 6.86 15.61

1 spatial 4.96 11.13

Proposed DNN based: IS (1 DNN)
0 - 6.47 15.21

1 spatial 4.88 10.83

Proposed DNN based: KL (1 DNN)
0 - 6.64 15.18

1 spatial 5.37 11.46

Proposed DNN based: MSE (1 DNN)
0 - 6.74 14.85

1 spatial 5.80 13.01

not performwell after the spatial updates. However, it should be emphasized
that the spatial updates themselves improve the WER. This low performance
of the MSE may be due to the artifacts shown in Figure 4.3d as we discussed
above. Additionally, Figure 4.2d shows that the IS divergence achieves the
best SAR after the spatial updates. These findings suggest that the WER
positively correlates with the SAR more than the other metrics.

Finally, Table 4.2 presents the performance of our proposed DNN based
multichannel speech enhancement system, in which the multiple spectral
DNNs are trainedwith the IS divergence. This table is comparable to Table 3.2.
By comparing the bestWERs and the corresponding confidence intervals from
these two tables, we can observe that both KL and IS divergences perform
similarly on the development set, but the IS divergence performs significantly
better than the KL divergence on the test set.

Let us now conclude this section. The KL divergence, the MSE, or the
phase-sensitive cost function are reasonable choices for DNN training in the
context of single-channel source separation. By contrast, in the context of
multichannel source separation, the Cauchy cost function, the KL divergence,
or the IS divergence may be used. The IS divergence is a plausible choice
because it achieves the best speech recognition performance. However, its

97

Table 4.2: Speech recognition performance in terms of WER (%) of the pro-
posed system using the IS divergence. The ASR system uses the DNN+sMBR
back-end trained on multi-condition enhanced data followed by 5-gram
Kneser-Ney smoothing and RNN-LM rescoring. The evaluation was done on
the real sets. Boldface numbers show the best performance for each dataset.
The 95% confidence intervals for the two best WERs are ± 0.25% for the
development set and ± 0.39% for the test set. Lower is better.

Enhancement method EM iter. Update type Dev Test

Proposed DNN based: IS (3 DNNs)

0 - 6.47 15.21

1
spatial 4.88 10.83

spectral 5.03 10.79

2
spatial 4.77 9.72

spectral 4.76 9.47

3 spatial 4.68 9.32

source separation performance is unappealing because it falls behind the
others in most spatial update indexes and most metrics although it exhibits
a good improvement rate along with the spatial updates. Thus, the KL
divergence remains the most reasonable choice because it performs well in
both source separation and speech recognition evaluations.

4.4 Impact of time-frequency representations, DNN
architectures, and DNN training data

In this section, we still consider the same multichannel speech enhancement
task, but now we briefly study the impact of different DNN architectures and
training data. Regarding the training data, we employ the available simulated
data from the same CHiME dataset as an additional data. This can be seen as
a data augmentation. In addition, we also briefly study the impact of different
time-frequency representations.

For the experiments in this section, we use some simplified experimental
settings that are detailed in the following subsection. Here, we use a single
spectral DNN, i.e., DNNspec

0 , only and focus on the speech recognition
evaluation.

98

4.4.1 Experimental settings

In general, the experimental settings in this section are similar to those de-
scribed in Section 3.3.2. The following description details the few differences.

4.4.1.1 Time-frequency representations

We consider two time-frequency representations, i.e., STFT coefficients and
perceptually-motivated quadratic ERB coefficients. The STFT coefficients are
extracted as in Chapter 3 using a Hamming window of length 1024 and a
hopsize of 512 samples, resulting F = 513 frequency bins. The quadratic
ERB coefficients are computed using a time-domain filterbank [Duong et al.,
2010b], resulting in F = 128 frequency bins.

4.4.1.2 DNN architectures and inputs

We use two FNNs and two RNNs as DNNspec
0 for the experiments in Section

4.4. The FNNs follow an multilayer perceptron architecture, while the RNNs
follow a bidirectional LSTM architecture. The FNNs consist of an input layer,
four hidden layers, and an output layer. The RNNs consist of an input layer,
two bidirectional LSTM hidden layers, and an output layer. For these FNNs
and RNNs, the sizes of the input layer and the output layer are F and F × J ,
respectively, where J = 2. For the FNNs, the sizes of the hidden layers are
F × J . For the RNNs, the sizes of the bidirectional LSTM hidden layers are
set such that the total number of parameters is comparable to that of the
FNNs. This is done to achieve a fair comparison of the different architectures.
Rectified linear units are employed in all layers of FNNs and the output layer
of RNNs. Each LSTM layer employs the hyperbolic tangent as the activation
of the cell and the hard sigmoid as the activation of the gates [Hochreiter &
Schmidhuber, 1997]. Table 4.3 summarizes the sizes of the different DNNs
used for the experiments in this section.

The quadratic ERB coefficients represent locally-observed covariance
matrices. Their extraction from the re-aligned mixture signal x(t) results in
R̃x(f, n), that is akin to x(f, n)x(f, n)∗ where x(f, n) are the STFT coefficients
extracted from x(t). To be consistent with each other, the input frames of

99

Table 4.3: Comparison of the different DNNs used in Section 4.4. A
bidirectional LSTM hidden layer consists of a forward LSTM layer and a
backward LSTM layer. The left numbers in the bidirectional LSTM hidden
layer sizes correspond to these two layers and the right numbers correspond
to the size of each LSTM layer.

TF representation STFT QERB

Architecture FNN RNN FNN RNN

Input layer size 513 513 128 128

Hidden layer number 4 2 4 2

Hidden layer size 1026 2 × 352 256 2 × 88

Output layer size 1026 1026 256 256

Total parameters 4,742,172 4,786,114 296,192 300,160

DNNspec
0 are computed as

√
zx(f, n) =

√
1
I
tr
(
R̃x(f, n)

)
for the QERB coefficients

√
1
I
tr (x(f, n)x(f, n)∗) for the STFT coefficients

(4.11)

which corresponds to the square-root of the power spectrum averaged across
channels. For the FNNs, these input frames are used to construct 5-frame
supervectors as in Section 3.3.3.2. However, here, the supervectors are
constructed after applying zero padding beforehand and without delta
features. For the RNNs, only standardization is applied to these input frames.
As in Chapter 3, the standardization factors for the FNNs and the RNNs, also
the principal component analysis transformation matrix for the FNNs, are
computed on the whole training set.

4.4.1.3 DNN training criterion, algorithm, and data

The DNNs are trained using the KL divergence in (3.3) with δcf = 10−5. The
`2 weight regularization in (3.4) with λ`2 = 10−6 is used for the FNNs.

The rectified linear units are initialized according to He et al. [2015]. The
LSTM cells are initialized according to Glorot & Bengio [2010] and the gates
are initialized according to Saxe et al. [2013]. The biases of the LSTM cells’
forget gates are initialized to 1 as proposed by Jozefowicz et al. [2015]. The
biases of the output layers are also initialized to 1. Different fromwhat we did

100

in Chapter 3, we do not train the DNNs in this section with greedy layer-wise
supervised training. We simply use the above random weight initialization
schemes for the whole network. Training is done by backpropagation with
the AdaDelta parameter update algorithm, whose hyperparameters are set to
ρ = 0.95 and ε = 10−6 [Zeiler, 2012]. The parameter update is done for each
minibatch. For the FNNs, a minibatch consists of 128 random frames. For the
RNNs, a minibatch consists of 8 random full utterances. Based on the longest
utterance in the minibatch, zero padding is applied on the other utterances.
To minimize the zero padding, we perform so-called bucketing to group the
utterances based on their length. Each minibatch consists of utterances from
the same bucket. Dropout [Srivastava et al., 2014] with rate 0.2 is applied on
all FNNs and RNNs. For the FNNs, it is applied in between adjacent hidden
layers, also in between the last hidden layer and the output layer. For the
RNNs, it is applied on the output of LSTM layers before the summing of
forward and backward layer activations. Gradient normalization [Pascanu
et al., 2013] with threshold 1.0 is employed in the training of all FNNs and
RNNs. The same early stopping as in Chapter 3 is used, but the maximum
number of training epochs is set to 1000, which is never reached in practice.
The actual numbers of epochs varies between 83 and 310.

The DNN training targets
√
ṽj(f, n) are computed similarly to (4.11) from

the re-aligned source spatial image signals cj(t). In this section, we consider
the use of two different supersets for DNN training:

SS-R consists of the real training set (tr05_real) and the real development
set (dt05_real),

SS-F consists of SS-Rwith the addition of the simulated training set (tr05_simu)
and the simulated development set (dt05_simu).

The training sets in these supersets are used for the DNN training data, while
the development sets are used for the validation data.

The DNNs and the related techniques for all experiments presented in this
and the following sectionswere implemented using Keras [Chollet et al., 2015]
with Theano [Bergstra et al., 2010; Theano Dev Team, 2016] as its back-end.

4.4.1.4 Multichannel filtering

When the quadratic ERB coefficients are used, instead of (2.48), the posterior
second-order raw moments of the spatial source images are computed as

101

[Duong et al., 2010b]

R̂cj(f, n) = Wj(f, n)R̃x(f, n)Wj(f, n)
∗ + (I−Wj(f, n))Rcj(f, n). (4.12)

Thus, the estimation of the spatial images ĉj(f, n) is not required for parameter
updates. In the end of multichannel filtering, the inverse quadratic ERB
transformation involves the estimation of the windowed time-domain spatial
images ĉj(f, t) by Wiener filtering given the final filters Wj(f, n) and the
filterbank inversion to recover the time-domain spatial images ĉj(t).

4.4.2 Discussions

Table 4.4 summarizes the speech recognition evaluation. The evaluation uses
the automatic speech recognition (ASR) system defined in the Kaldi recipe
distributed by the CHiME-4 challenge organizers1 [Vincent et al., 2017b]. In
principle, this system is similar to the one we used earlier from the CHiME-3
challenge. The main difference is that the acoustic model of this new system
is trained on multi-condition noisy data, instead of multi-condition enhanced
data as in the previous system. This new system performs well and allows
rapid evaluation of different enhancement methods. See Section 2.2 for the
summary of the ASR system and see Hori et al. [2015] for the details.

Let us compare the performance of different time-frequency representa-
tions given the same DNN architecture and the same DNN training data. For
the FNNs (see rows 1, 2, 5, 6), the quadratic ERB representation outperforms
the STFT especially for single-channel separation, although the performance
of SS-R on the test set is statistically similar. For multichannel separation,
the quadratic ERB representation also outperforms the STFT, although the
performance of SS-R on both the development and the test set is statistically
similar. For the RNNs (see rows 3, 4, 7, 8), the STFT generally outperforms the
quadratic ERB representation for single-channel separation and vice-versa
for multichannel separation. However, the performance on the development
set for single-channel separation is statistically similar. In short, the quadratic
ERB representation provides better speech recognition performance than the
STFT representation. Considering that the quadratic ERB allows us to use
smaller DNNs, this time-frequency representation appears to be a favorable
choice for a speech enhancement task, or other similar tasks, such as a singing-
voice separation task.

1See https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4.

102

Table 4.4: Speech recognition performance in terms of WER (%) using the
different time-frequency representations, the different DNN architectures,
and the different training datasets. The ASR system uses the DNN+sMBR
back-end trained on multi-condition noisy data followed by 5-gram Kneser-
Ney smoothing and RNN-LM rescoring. The evaluation was done on the real
sets. Boldface numbers show the best performance for each dataset. The 95%
confidence intervals for the two best WERs are ± 0.26% for the development
set and ± 0.38% for the test set. Lower is better.

TF rep. Arch. EM iter. Update
type

SS-R SS-F Row
no.Dev Test Dev Test

STFT

FNN
0 - 8.10 15.32 9.68 20.41 1

1 spatial 5.45 9.13 6.29 13.17 2

RNN
0 - 7.07 13.70 7.73 15.91 3

1 spatial 6.50 9.68 5.68 10.16 4

QERB

FNN
0 - 7.38 15.08 8.39 18.16 5

1 spatial 5.21 9.21 5.69 11.00 6

RNN
0 - 7.21 14.29 7.74 15.12 7

1 spatial 5.57 9.30 5.39 9.02 8

Let us now compare the performance of different DNN architectures
given the same time-frequency representation and the same DNN training
data. For both the STFT (see rows 1-4) and the quadratic ERB representation
(see rows 5-8), the RNNs significantly outperforms the FNNs for single-
channel separation. This is in line with the findings in other studies, such as
Weninger et al. [2015] and Uhlich et al. [2017]. Interestingly, for multichannel
separation, the FNNs significantly outperform the RNNs when SS-R is used,
but otherwise when SS-F is used. In short, the RNNs may be preferable
than the FNNs because the RNNs dominate the FNNs for single-channel
separation and the RNNs are reasonably good compared to the FNNs for
multichannel separation, especially when the training involves more data.

Finally, let us compare the performance of different DNN training
datasets given the same time-frequency representation and the same DNN
architecture by observing pairs of rows 1-2, 3-4, 5-6, and 7-8. In general, the
use of SS-F results in worse speech recognition performance than that of SS-R.
This is in line with our initial study [Sivasankaran et al., 2015]. This may
indicate that there are mismatches between the simulated data and the real

103

data, especially in the real test set. If so, we may argue that the quadratic
ERB representation and the RNNs handle the mismatches better than the
STFT and the FNNs, respectively. The quadratic ERB representation may
be good here because it represents speech signals better than the STFT. The
RNNs may be good here because they indeed handle context better that
the FNNs, or our context handling for the FNNs is suboptimal. Roughly
speaking, SS-F is dominated by simulated training data because there are
7,138 simulated utterances and 1,600 real utterances. The standardization and
the dimensionality reduction steps for the FNN inputs rely on the statistics
computed on this biased training data. Due to the mismatches, the real data
is not standardized and reduced properly. It is one possible reason why the
speech recognition performance of SS-F is worse than that of SS-R in this
case. Another possible reason is related to the ground truth used during
the training. Compared to the ground truth of the simulated data, that of
the real data is noisier because of the imperfect estimation as discussed in
Section 3.3.1. In Vincent et al. [2017b], we show that the performance gap
between SS-R and SS-F is reduced when the ground truth of the simulated
data is estimated as that of the real data. The enhancement system used by
Vincent et al. [2017b] employ the STFT and FNNs similar to what we use here,
but the ASR system uses the Gaussian mixture model back-end trained on
multi-condition enhanced data.

4.5 Impact of amultichannel task-oriented cost func-
tion

In this section, we discuss another application of our proposed framework,
i.e., a singing-voice separation system. This system is used for separating
the singing voice, or the vocals, and the accompaniment from a mixture.
Compared to the previous speech enhancement system, this separation
system considers the same number of sources, i.e., J = 2, but fewer channels,
i.e., I = 2. Using this system, we study the impact of the task-oriented SDR
cost function and the impact of data augmentation. The previous experiments
using a speech enhancement task to evaluate the performance on one of
the sources only, i.e., speech. The experiments in this section evaluate the
performance on both sources, i.e., vocals and accompaniment.

104

4.5.1 Experimental settings

4.5.1.1 Task and dataset

In general, we consider the problem of music separation in the context of
the professionally-produced music recordings task, also known as the MUS
task, of SiSEC 2016 [Liutkus et al., 2017]. The official dataset used in this task
is called Demixing Secrets Dataset. This is derived from the accompanying
materials of [Senior, 2011]2. This dataset consists of 100 full-track songs of
diverse music genres by various artists with their corresponding sources
grouped into ‘vocals’, ‘bass’, ‘drums’, and ‘other’. All mixtures and sources
are stereo signals sampled at 44.1 kHz. The dataset is divided evenly into a
development set and an evaluation set. Each set contains 50 songs. Recall that
the development set of the CHiME dataset is used as the validation data only.
By contrast, for the experiments in this section, we divide the development
set of the Demixing Secrets Dataset into training data and validation data.
This division is detailed in Section 4.5.1.3.

In this section, we focus on the problem of vocals-accompaniment
separation. For doing so, we sum the ‘bass’, ‘drums’, and ‘other’ signals
to obtain the ‘accompaniment’ signal. In short, we deal with the separation
of two sources (J = 2), namely vocals and accompaniment, from a stereo
mixture (I = 2). Following the official evaluation, the source separation
performance is evaluated using BSS Eval (see Section 2.1) on the multichannel
separated vocals and accompaniment. The separated sources are divided
into segments whose length and shift are 30 s and 15 s, respectively. BSS Eval
is computed on each segment. The first, the second, and the third quartiles,
are then computed on the evaluation results of all segments.

The following subsection presents an implementation of the proposed
source separation framework for this vocals-accompaniment separation task.

4.5.1.2 An overview of the singing-voice separation system

The explanation below provides the details of pre-processing, initialization,
and multichannel filtering steps specific to the system used in all experiments
presented in this section. There is no post-processing step applied in this
system. See Section 3.3.2 for the general description of each step.

The pre-processing step extracts the STFT coefficients using a Hamming
window of length 2048 and hopsize 1024 resulting in F = 1025

2See http://www.cambridge-mt.com/MixingSecrets.htm.

105

http://www.cambridge-mt.com/MixingSecrets.htm

frequency bins. For this music separation task, the sources are assumed
to not move over time. Thus, no re-alignment needs to be applied before
the feature extraction.

The initialization step sets the initial source spectrogram using DNNspec
0 .

This DNN is trained with a general-purpose cost function, i.e., the MSE.
Besides, the source spatial covariance matrices are initialized as identity
matrices I ∈ CI×I .

The multichannel filtering step generally follows Algorithm 2. However,
instead of using (2.49), the spatial parameter update is computed using
the so-called weighted spatial parameter update in (5.1), with the
number of spatial updates fixed to K = 4. We assess the impact of
this weighted spatial parameter update in Chapter 5. The number of
EM iterations is set to L = 1. For spectrogram fitting, we train two
additional spectral DNNs, i.e., DNNspec-MSE

1 and DNNspec-SDR
1 . The first

DNN is trained with a general-purpose cost function, i.e., the MSE. The
second DNN is trained with a task-oriented cost function, i.e., the SDR-
oriented cost function in (4.6). The MSE, instead of the KL divergence,
is used here because these experiments were done concurrently with
our investigation on the impact of the cost function. We did not have a
chance to perform the same experiments with the KL divergence. In
order to avoid numerical instabilities due to the use of single precision
computing for DNNs, the spectrograms vj(f, n) are floored to 10−5 in
the parameter update iterations.

4.5.1.3 DNN spectral models

Similarly to Section 3.3.3, this subsection presents the inputs and outputs,
the architecture, the training criteria, the training algorithm, and the training
data of the DNN spectral models mentioned above.

Inputs and outputs

We consider two settings for the inputs and outputs of the DNNs. In the first
setting, the inputs of DNNspec

0

√
zx(f, n) are computed as in (4.11) for the

STFT coefficient case. The training targets of all of these DNNs
√
ṽj(f, n) are

computed similarly to
√
zx(f, n). The inputs of DNNspec-MSE

1 and DNNspec-SDR
1

are a stack of
√
zj(f, n), which corresponds to the outputs of DNNspec

0 . See
Figures 3.4 and 3.4 for better illustrations. In the second setting, a filterbank

106

based on the ERB scale [Vincent, 2006] is applied on the power spectra zx(f, n),
ṽj(f, n), and zj(f, n) from the first setting to reduce the dimensionality from
F = 1025 to F = 256. This is done mainly to reduce the training time of the
DNNs since smaller DNNs may be utilized (see the comparison of parameter
numbers in Table 4.5). It is also worth noting that this is only applied on
the DNN inputs and outputs. Dimensionality reduction is performed by
applying the filterbank matrix on the STFT to obtain the low-dimensionality
ERB representation used as the DNN inputs. Dimensionality expansion is
then performed by applying the transposition of the filterbank matrix on the
DNN outputs to obtain the spectra in the STFT domain. This expansion is
required because the multichannel model parameters and the multichannel
filtering still use the full STFT coefficients with F = 1025. It should be
mentioned that this reduction-expansion process is only equivalent to the
power spectra in the STFT domain up to a constant factor. However, this
factor does not affect the resulting Wiener filter.

Architectures

All DNNs used in this section follow a bidirectional LSTM based RNN
architecture as in the previous Section 4.4.1.2. These RNNs consist of an input
layer, two bidirectional LSTM hidden layers, and an output layer. The size
of the input layer of DNNspec

0 is F and those of DNNspec-MSE
1 and DNNspec-SDR

1

are F × J . The size of the output layers of all DNNs are F × J . The sizes of
the bidirectional LSTM hidden layers for the STFT coefficients and the ERB
coefficients are 1024 and 256, respectively. The activation functions are the
same as in Section 4.4.1.2. Table 4.5 summarizes the sizes of the different
RNNs used for the experiments in this section.

Training criteria

As mentioned in Section 4.5.1.2, DNNspec
0 and DNNspec-MSE

1 are trained with
the MSE as the cost function, while DNNspec-SDR

1 are trained with the SDR cost
function. The SDR cost function could also be used in the training of DNN
for spectrogram initialization. In this case, without any prior knowledge
regarding the source location, we could set the source spatial covariance
matrices as identity matrices, which would result in single-channel source
separation. The SDR cost function has a higher computational complexity
than theMSE due to the inclusion of STFT synthesis (see related discussion in
Section 2.3). This high complexity leads to a long DNN training time. Since

107

Table 4.5: Comparison of the different RNNs used in Section 4.5. A
bidirectional LSTM hidden layer consists of a forward LSTM layer and a
backward LSTM layer. The left numbers in the bidirectional LSTM hidden
layer sizes correspond to these two layers and the right numbers correspond
to the size of each LSTM layer.

TF representation STFT ERB

DNN type DNNspec
0 DNNspec-M/S

1 DNNspec
0 DNNspec-M/S

1

Input layer size 1025 2050 256 512

Hidden layer number 2 2 2 2

Hidden layer size 2 × 1024 2 × 1024 2 × 256 2 × 256

Output layer size 2050 2050 512 512

Total parameters 35,680,258 44,077,058 2,232,832 2,757,120

our study emphasizes multichannel source separation anyway, we decided
to use the SDR cost function in the training of DNN for spectrogram fitting
only. In doing so, we use the source spatial covariance matrices estimated
by the spatial parameter updates of the first EM iteration given the source
spectra estimated by DNNspec

0 .

Training algorithm

The parameter initialization mainly follows Section 4.4.1.3. DNNspec
0 and

DNNspec-MSE
1 are initialized randomly. The resulting DNNspec-MSE

1 is then used
for initializing DNNspec-SDR

1 . The parameter update algorithm, the dropout,
and the gradient normalization are the same as in Section 4.4.1.3. The RNNs
are unrolled for 128 time steps. The parameter update is done for each
minibatch consisting of 8 random 128-frame segments. For the training of
DNNspec

0 and DNNspec-MSE
1 , patience in early stopping is set to 10. For the

training of DNNspec-SDR
1 , it is set to 5. The maximum number of training

epochs is set to 100 for all cases.

Training data

In general, the DNNs are trained and validated on the available development
set. Each song is divided into overlapped segments. The segment length and
shift are 2560 frames (corresponding to 59.47 s in the time domain) and 1024
frames (23.78 s), respectively. Each segment is divided into 768 left context

108

frames, 1024 core frames, and 768 right context frames. The DNN training
only uses the core frames. Each segment is regarded as a standalone song
in the training time and time-invariant source spatial covariance matrices,
which are needed for the following DNN training, are estimated for each
segment. The left and right context frames are useful to make this estimation
more reliable.

We discard segments whose corresponding vocals or accompaniment is
completely silent. We then compute the vocals-to-accompaniment ratio for
each segment and compute the quartiles, i.e., the first quartileQ1 and the third
quartileQ3. We then further discard segments whose ratio is considered as an
outlier, i.e., ratio < 2Q1−Q3 and 2Q3−Q1 < ratio. This processing results in
392 development segments. These development segments are then randomly
divided into training segments and validation segments with a ratio of 5:1.
This results in the so-called ‘base’ setting consisting of 326 training segments
and 66 validation segments. It is worth mentioning that this segmentation
is required because we want to consider data augmentation, in which the
augmented data is derived from the base setting. We also define a couple of
smaller base settings, i.e., ‘1

2
base’ and ‘1

5
base’, in which the training and the

validation segments are subsets of those of the ‘base’ setting. Recall that the
‘base’ setting consists of segments from the 50 development songs. The ‘1

2
base’

and the ‘1
5
base’ settings consist of segments from 25 and 10 randomly selected

development songs, respectively. We then derive several other settings in
which the training and the validation segments consist of those of the base
or the smaller base setting augmented by mixtures of randomly selected
segments of different sources from the base or the smaller base setting. The
amount of data augmentation is indicated by ‘v’. For example, in the ‘base+2v’
setting, each vocals segment results in three mixture segments by mixing
the vocals segment with its corresponding original accompaniment segment
and two other randomly selected accompaniment segments from the same
song or from different songs. The randomly selected segments are different
from each other. It is worth mentioning that, because of this random mixing,
the augmented data generally does not have a good musicality. Table 4.6
summarizes these different training data settings.

4.5.2 Discussions

The evaluation results in this section are presented in boxplots [McGill et al.,
1978]. For each pair of boxes, the light blue and the light green ones show

109

Table 4.6: Comparison of the different DNN training data settings used in
Section 4.5. The total development data shows the approximate total length
without the overlapped parts, i.e., only the core frames.

Setting Training
(in segments)

Validation
(in segments)

Total dev. data
(in hours)

1
2base+1v 326 66 2.6
1
5base+4v 360 75 2.9

base 326 66 2.6
base+1v 652 132 5.2
base+2v 978 198 7.8
base+4v 1630 330 12.9
base+8v 2934 594 23.3

the performance on the development set and the evaluation set, respectively.
The bottom and the top of each box indicate Q1 and Q3, respectively. The red
line in the middle of a box indicates the median Q2, while the notch width
shows the 95% confidence interval around the median. The median value
is also written on the top of each box. The symbol × shows the mean value.
The whisker reaches 1.5 times the interquartile range, i.e., Q3 −Q1, beyond
Q1 and Q3.

4.5.2.1 Task-oriented cost function

Figure 4.4 shows the BSS Eval results for the multichannel separated sources
at different processing steps, where the STFT representation is used for the
DNNs. It consists of eight boxplots arranged in two columns and four rows.
The left and right columns show the performance on the vocals and the
accompaniment, respectively. From top to bottom, the rows show the SDR,
the source-image-to-spatial-distortion ratio (ISR), the SIR, and the SAR. Each
boxplot consists of four pairs of boxes. From left to right, these boxes represent
the performance after spectrogram initialization using DNNspec

0 , after the
iterative spatial updates, after spectrogram fitting using DNNspec-MSE

1 , and
after spectogram fitting using DNNspec-SDR

1 . It should be noted that both
spectrogram fitting operations are applied after the iterative spatial updates.

For the discussion, let us mainly observe the median values and their
confidence intervals. The iterative spatial updates provide minor improve-
ments on both separated sources for all metrics. Both spectrogram fittings
generally also provide minor improvements. If we compare the resulting
performance to the performance after spectrogram initialization, there are

110

spec. init. spat. upd. spec. fit.
(MSE)

spec. fit.
(SDR)

−5

0

5

10

15

20

8.7

4.6

8.9

4.7

9.1

4.7

8.9

4.7

metric: SDR — target: voc

spec. init. spat. upd. spec. fit.
(MSE)

spec. fit.
(SDR)

0

10

20

30

14.6

9.9

14.7

9.9

15.2

10.0

14.8

9.9

metric: ISR — target: voc

spec. init. spat. upd. spec. fit.
(MSE)

spec. fit.
(SDR)

0

10

20

30

17.3

10.2

17.9

10.6

18.4

11.1

18.3

11.2

metric: SIR — target: voc

spec. init. spat. upd. spec. fit.
(MSE)

spec. fit.
(SDR)

−5

0

5

10

15

20

9.5

6.0

9.9

6.3

10.0

6.1

9.8

6.1

metric: SAR — target: voc

spec. init. spat. upd. spec. fit.
(MSE)

spec. fit.
(SDR)

0

5

10

15

20

25

14.5

10.2

14.7

10.3

14.9

10.3

14.7

10.4

metric: SDR — target: acc

spec. init. spat. upd. spec. fit.
(MSE)

spec. fit.
(SDR)

0

10

20

30

40

24.5

18.0

25.0

18.2

25.6

18.5

25.1

18.9

metric: ISR — target: acc

spec. init. spat. upd. spec. fit.
(MSE)

spec. fit.
(SDR)

0

10

20

30

20.2

14.4

20.5

14.5

20.8

14.8

20.6

14.9

metric: SIR — target: acc

spec. init. spat. upd. spec. fit.
(MSE)

spec. fit.
(SDR)

5

10

15

20

25

30

16.4

13.3

16.7

13.5

16.7

13.2

16.6

13.3

metric: SAR — target: acc

Figure 4.4: Source separation performance for the multichannel separated
vocals (left) and accompaniment (right) at different processing steps (pre-
sented by the x-axis): the performance after spectrogram initialization using
DNNspec

0 , after the iterative spatial updates, and after spectogram fitting using
either DNNspec-MSE

1 or DNNspec-SDR
1 . The DNNs operate on the STFT and are

trained on the base data setting. The y-axis is in dB. Higher is better.

111

(a) Reference

(b) Spectrogram fitting using DNNspec-MSE
1

(c) Spectrogram fitting using DNNspec-SDR
1

Figure 4.5: Example left channels of the reference vocals, the separated vocals
after spectrogram fitting using DNNspec-MSE

1 , and the separated vocals after
spectrogram fitting using DNNspec-SDR

1 . Both segments are taken from two
different songs in the evaluation set.

112

some cases where the improvement is statistically significant. However,
they occur on the development set. The exceptional cases for the evaluation
set are the statistically significant improvements of the SIR on the vocals
after spectrogram fitting using either DNNspec-MSE

1 or DNNspec-SDR
1 . The

performance difference either spectrogram fittings is generally insignificant,
although the DNN trained with the SDR cost function shows a slightly lower
median performance. Interestingly, if we observe the mean values instead
of the medians, this DNN provides noticeable improvements of the SDR,
ISR, and SAR on the accompaniment of both development and evaluation
sets. This indicates that the DNN trained with the SDR cost function indeed
improves the separation of a few songs better than the other DNN trained
with the MSE.

Figure 4.5 shows the separated vocals of two different segments from two
different evaluation songs and their corresponding references. Spectrogram
fitting using DNNspec-SDR

1 seems to remove the low energy residual distortion
compared to spectrogram fitting using DNNspec-MSE

1 . This is noticeable, e.g.,
between 91-92 s in the left segment and between 237-238 s in the right
segment. Except for these time intervals, the waveforms seem to be almost the
same. The residual interference between 230-235 s in the right segment after
spectrogram fitting using DNNspec-MSE

1 does not seem to be reduced when
DNNspec-SDR

1 is used. This might be due to the use of DNNspec-MSE
1 parameters

as the initial parameters for the training of DNNspec-SDR
1 and this training does

not change the parameters significantly.

In addition, we compare the computation time of parameter estimation
at different processing steps (see Figure 4.4) by running a single-threaded
process for each song on Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz. The mea-
sured computation time excludes the STFT analysis, the final multichannel
Wiener filtering, and the STFT synthesis. The average song length on the
whole dataset is 4.2 min. The average elapsed time after spectral initialization,
spatial update, spectral update with DNNspec-MSE

1 , and spectral update with
DNNspec-SDR

1 are 11.8 min, 13.3 min, 31.7 min, and 31.4 min, respectively.
Roughly, the average computation time for spectral initialization, spatial
update, and spectral update are 11.8 min, 1.5 min, and 18.3 min, respectively.
This high computational cost is because the DNNs used here have a huge
number of parameters. In order to address this, in Section 4.5.2.3, we consider
another time-frequency representation, i.e., the ERB representation, with a
lower dimensionality that allows us to use DNNs with a smaller number of

113

parameters. Before that, let us compare the performance of our systems to
that of the state-of-the-art system.

4.5.2.2 Comparison with the state of the art

Table 4.7 compares the performance we achieve to that of the ideal binary
mask, which is regarded as the oracle setting in the MUS task of SiSEC
2016 [Liutkus et al., 2017], and the system of Uhlich et al. [2017], which
achieved state-of-the-art performance on this dataset. The ideal binary mask
is computed for the left and right channels independently. Uhlich’s system is
also discussed in Section 2.5.3. In the summary of the SiSEC 2016 by Liutkus
et al. [2017], this system is denoted as the ‘UHL3’ system.

The table shows that our methods perform remarkably well for the
development set. Our methods are significantly better than Uhlich’s method
for all metrics and all sources. They even provide a statistically significant
improvement compared to the ideal binary mask for the ISR and the SIR on
the vocals and for the SIR on the accompaniment. Unfortunately, this superior
performance on the development set is not reflected on the evaluation set.
Our methods are outperformed by Uhlich’s method, especially for the SDR
and the SAR on all sources. The performance difference of these three
methods for the ISR on the vocals and the SIR on the accompaniment is
statistically insignificant. On the contrary, both of our methods provide a
statistically significant improvement for the SIR on the vocals and the ISR on
the accompaniment compared to Uhlich’s method.

From the above comparison, we conclude that our methods work well
but achieve a different interference versus artifacts trade-off than Uhlich’s.
Specifically, our methods generate more artifacts, but they are more effective
in reducing interference, which is arguably more difficult. In the case a higher
SAR is desirable, smoothing methods can be applied to increase it at the cost
of reducing the SIR [Vincent, 2010]. However, there exist no such method for
increasing the SIR if it is low in the first place. Additionally, our methods
and Uhlich’s method have a comparable performance in handling spatial
error on the vocals, which are mixed to the center in most cases. However,
our methods statistically outperform Uhlich’s method in handling spatial
error on the accompaniment, which is possibly panned to the left or right
channels. Note that all of these methods, including Uhlich’s, employ the
weighted spatial parameter updates introduced in Nugraha et al. [2016b] and
presented in Chapter 5.

114

Table 4.7: Source separation performance comparison to the oracle setting (the
ideal binary mask; IBM) and the state-of-the-art for the MUS task of SiSEC
2016. The table shows the median values. The 95% confidence intervals vary
between± 0.2 dB and± 0.5 dB. Boldface numbers show the best performance
for each triplet of a metric, a source, and a dataset disregarding the oracle
performance (IBM). By taking the confidence intervals into account, italic
numbers show performance that is not statistically different from the best
performance. Higher is better.

Method
Vocals Accompaniment

SDR ISR SIR SAR SDR ISR SIR SAR

Development set

IBM 9.9 13.8 17.5 11.7 15.7 25.4 19.5 18.7

Uhlich et al.
[2017] 6.9 11.2 12.0 9.0 12.7 21.0 17.0 16.1

spec. fit.
(MSE) 9.1 15.2 18.4 10.0 14.9 25.6 20.8 16.7

spec. fit.
(SDR) 8.9 14.8 18.4 9.9 14.7 25.1 20.6 16.6

Evaluation set

IBM 9.5 13.4 16.6 11.2 15.2 24.2 18.8 18.2

Uhlich et al.
[2017] 5.4 10.4 9.2 8.3 11.0 17.6 15.1 14.7

spec. fit.
(MSE) 4.7 10.0 11.1 6.1 10.3 18.5 14.8 13.2

spec. fit.
(SDR) 4.7 9.9 11.2 6.1 10.4 18.9 14.9 13.3

The most noticeable issue is that there is a big gap between our perfor-
mance on the development set and that on the evaluation set. This may
indicate that we have an overfitting problem in our DNN training. This may
be due to the regularization for the DNN training, which includes dropout,
gradient normalization, and early stopping, being sub-optimal. Instead of
optimizing these regularization techniques, we decided to investigate data
augmentation in order to increase the training data variety, which may result
in better regularization and better performance on the evaluation set.

115

4.5.2.3 Data augmentation

Figure 4.6 shows the SDR evaluated on the multichannel separated sources
after spectrogram fitting using different DNNs trained on different training
data settings with different data amounts (see Table 4.6). In this case, the ERB
representation is used for the DNNs.

The first thing we need to observe is the performance of the ERB represen-
tation compared to that of the STFT representation on the base data setting.
For spectrogram fitting using DNNspec-MSE

1 , the STFT provides a significantly
better performance than the ERB representation on the development set.
However, the performance of both representations on the evaluation set
is similar. This shows that the ERB representation is favorable for our
experiments because we do not lose performance on the evaluation set, which
is our point of interest, and we can minimize the DNN training and testing
time due to the smaller number of DNN parameters (see Table 4.5).

As in Section 4.5.2.1, we also compare the computation time of parameter
estimation at different processing steps (see Figure 4.4) by running a single-
threaded process for each song on Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz.
The measured computation time excludes the quadratic ERB extraction and
the inverse quadratic ERB transformation, including the final multichannel
Wiener filtering. Recall that the average song length on the whole dataset is
4.2 min. The average elapsed time after spectral initialization, spatial update,
spectral update with DNNspec-MSE

1 , and spectral update with DNNspec-SDR
1 are

0.5 min, 2.3 min, 3.4 min, and 3.4 min, respectively. Roughly, the average
computation time for spectral initialization, spatial update, and spectral
update are 0.5 min, 1.8 min, and 1.1 min, respectively. It means the DNN
for initialization and the DNNs for update in this section provide 23.6× and
16.6× speedup, respectively, over those in Section 4.5.2.1.

Surprisingly, the different training data settingswith significantly different
data amounts do not have any significant impact on the performance. This
also means that the increase of training data variety due to the mixing of
random segments does not effectively reduce the performance gap occurring
between the development and the evaluation sets. The maximum absolute
improvements for the evaluation set are only 0.3 dB both on the vocals and the
accompaniment. Conveniently, this is in line with a study published recently
by Uhlich et al. [2017]. Compared to our data augmentation approach, this
study considers a more elaborated approach, i.e., random channel swapping,
random amplitude scaling, random segmentation, and randommixing. Since

116

base base+1v base+2v base+4v base+8v
−5

0

5

10

15

20

8.4

4.7

8.5

4.9

8.2

5.0

8.2

4.9

8.2

4.8

metric: SDR — target: voc

base base+1v base+2v base+4v base+8v
0

5

10

15

20

25

14.1

10.3

14.2

10.5

14.0

10.4

13.9

10.5

14.0

10.4

metric: SDR — target: acc

(a) Spectrogram fitting using DNNspec-MSE
1

base base+1v base+2v base+4v base+8v
−5

0

5

10

15

20

8.8

4.7

8.8

4.9

8.5

5.0

8.5

4.9

8.6

4.9

metric: SDR — target: voc

base base+1v base+2v base+4v base+8v
0

5

10

15

20

25

14.6

10.2

14.5

10.5

14.3

10.4

14.3

10.5

14.3

10.5

metric: SDR — target: acc

(b) Spectrogram fitting using DNNspec-SDR
1

Figure 4.6: SDR for the multichannel separated vocals (left) and accompa-
niment (right) after spectrogram fitting using different DNNs trained on
different training data settings (presented by the x-axis). The sizes of the
training data settings are increasing from left to right. The DNNs operate on
the ERB representation. The y-axis is in dB. Higher is better.

these randomizations are done on-the-fly in the creation of minibatches
during the DNN training, we cannot compare the total DNN training data
amount. With that approach, the study achieves 0.2 dB absolute improvement
for both vocals and accompaniment on the evaluation set.

The above results motivate us to further investigate the impact of the DNN
training data size. Figure 4.7 shows the SDR evaluated on the multichannel
separated sources after spectrogram fitting using different DNNs trained on
different training data settings (see Table 4.6).

All three data settings, i.e., the ‘1
5
base+4v’, the ‘1

2
base+1v’, and the ‘base’

settings, have a comparable total training data amount. The figure shows
that although the data amounts are similar, the SDRs are clearly different.
This indicates that the performance is not affected by the total training data

117

1
5base+4v

1
2base+1v

base
−5

0

5

10

15

20

4.4
4.0

6.1

4.3

8.4

4.7

metric: SDR — target: voc

1
5base+4v

1
2base+1v

base
0

5

10

15

20

25

10.4
9.5

11.6

9.9

14.1

10.3

metric: SDR — target: acc

(a) Spectogram fitting using DNNspec-MSE
1

1
5base+4v

1
2base+1v

base
−5

0

5

10

15

20

4.4
3.9

6.2

4.3

8.8

4.7

metric: SDR — target: voc

1
5base+4v

1
2base+1v

base
0

5

10

15

20

25

10.4
9.4

11.8

9.9

14.6

10.2

metric: SDR — target: acc

(b) Spectogram fitting using DNNspec-SDR
1

Figure 4.7: SDR for the multichannel separated vocals (left) and accompa-
niment (right) after spectrogram fitting using different DNNs trained on
different training data settings (presented by the x-axis). All training data
settings have a similar training data size. The DNNs operate on the ERB
representation. The y-axis is in dB. Higher is better.

amount. It is more likely affected by the initial song variety in the ‘1
5
base’, the

‘1
2
base’, or the ‘base’ setting. We can observe that the performance increases

along with the number of songs from which the DNN training segments are
derived. We also can observe that the gap between the performance of the
development set and that of the evaluation set widens along with the number
of songs. This leads to the conclusion that, in this case, the source separation
performance is bounded by the dataset and deriving additional training data
from this dataset is not effective to improve the performance.

118

4.6 Summary

This chapter presents our studies on the impact of different design choices on
system performance. These design choices include different cost functions,
different time-frequency representations, different DNN architectures, and
different DNN training data sizes. These design choices are employed in a
speech enhancement system, as in Chapter 3, and a vocals-accompaniment
separation system.

Among the general-purpose cost functionswe consider, the KL divergence
is the most reasonable choice because it provides the best source separation
performance andworks well in terms of speech recognition performance. The
probabilistically-motivated IS divergence provides the best speech recognition
performance, but its source separation performance falls behind the others.
Unfortunately, the newly proposed task-oriented SDR cost function fails
to improve the median vocals-accompaniment separation performance
compared to the simple MSE, but it does improve the average SDR to some
extent.

We show that time-frequency representations based on the perceptually-
motivated ERB scale are favorable. These low-dimensional representations al-
low us to use smaller DNNs and reduce theDNN training time. The quadratic
ERB representation derived using a time-domain filterbank provides a speech
recognition performance improvement compared to the previously used
STFT representation. Another ERB representation derived using a frequency-
domain filterbank provides a similar source separation performance to that
of STFT representation.

We also show that RNNs indeed handle the context better than the
frame concatenation based approach we used for FNNs (see Chapter 3).
For multichannel separation, the performance gap provided by RNNs and
FNNs is negligible when the training involves a relatively small amount of
data. Interestingly, the performance of FNNs falls behind that of RNNs when
more training data is used.

Finally, data augmentation is not trivial and it is an active separate research
topic indeed [Žmolíková et al., 2016; Sivasankaran et al., 2017; Zhang et al.,
2017].

Additionally, our vocals-accompaniment separation systems performs
remarkably close to the state-of-the-art performance in the context of the
professionally-produced music recordings task of SiSEC 2016. Our systems
exhibit artifacts which is detrimental to the overall distortion. However,

119

our systems are significantly better in removing the accompaniment from
the vocals, which may be favorable for a singing-voice separation task.
It is also worth mentioning that in a precursor study [Nugraha et al.,
2016b], we proposed vocals-instrument separation systems that extract four
sources, namely vocals, bass, drums, and other. See Liutkus et al. [2017] for
the performance comparison between our systems and the other systems
submitted to the MUS task of SiSEC 2016.

120

CHAPTER 5

Estimation of spatial parameters
with deep neural networks

In the two previous chapters, we presented our study on the estimation of
the spectral parameters with deep neural networks (DNNs). By contrast,
this chapter deals with the estimation of the spatial parameters. We
introduce our second DNN based multichannel audio source separation
framework. In this framework, both the spectral and the spatial parameters
are initialized and updated by DNNs with possibly additional iterative
expectation-maximization (EM) spatial parameter updates. Furthermore,
we present a weighted spatial parameter estimation formula, which is a
generalization of the exact EM formulation in (2.49).

5.1 Research questions
In this chapter, we address the following research questions.

1. Is the exact EM spatial parameter update optimal? The framework we
proposed in Algorithm 2) uses the exact EM spatial parameter update
in (2.49) following the general iterative EM algorithm in Algorithm 1.
Another formulation of spatial parameter estimation was used by Liutkus
et al. [2015b] and shown to be effective. In Section 5.2, we present a
general formula for weighted spatial parameter updates and detail how
different choices of the weights may lead to the exact EM spatial parameter
estimation or to the estimation used by Liutkus et al. [2015b]. We then
study the impact of this weighted spatial parameter update on the system
performance.

2. CanDNNs be used tomodel the spatial parameters within amultichan-
nel Gaussian model based separation framework? We have shown in
the two previous chapters that DNNs satisfactorily estimate the spectral

121

parameters of the multichannel Gaussian model, i.e., the time-varying
source power spectral densities (PSDs). We nowwant to explore the use of
DNNs for estimating the spatial parameters, i.e., the time-invariant source
spatial covariance matrices. To the best of our knowledge, this is a novel
use of DNNs. In our study, we propose a suitable representation of these
matrices and consider various design choices for the DNN training cost
function and the DNN architecture.

3. Can EM parameter updates be completely replaced by DNNs? This is a
follow-up question to the above. If DNNs also satisfactorily estimate
the spatial parameters of the multichannel Gaussian model, we may
expect that all parameter updates can be done with spectral and spatial
DNNs only. We investigate whether additional updates following the EM
formulation are still required.

These research questions are investigated by applying the newly proposed
framework to the same speech enhancement problem considered in the two
previous chapters.

5.2 Weighted spatial parameter updates
Intuitively, we should ignore possibly noisy source spatial information,
if any, when a source is inactive or silent. This can be seen in (2.49) as
vj(f, n)

−1R̂cj(f, n) becomes inaccurate when vj(f, n) tends towards 0.
We propose the following general formula for weighted spatial parameter

estimation:

Rj(f) =

(
N∑

n=1

ωj(f, n)

)−1 N∑

n=1

ωj(f, n)

vj(f, n)
R̂cj(f, n), (5.1)

where ωj(f, n) denotes the weight of source j for frequency bin f and frame
n. This formula is a generalization of the spatial parameter estimation in
(2.49) and that of Liutkus et al. [2015b].

When ωj(f, n) is set to be equal for all time-frequency bins (f, n), e.g.,
ωj(f, n) = 1, (5.1) reduces to the exact EM formulation in (2.49). When
ωj(f, n) = vj(f, n), (5.1) reduces to [Liutkus et al., 2015b]

Rj(f) =

(
N∑

n=1

vj(f, n)

)−1 N∑

n=1

R̂cj(f, n). (5.2)

122

Table 5.1: Speech recognition performance in terms of word error rate (WER)
(%) using the different spatial parameter updates. The automatic speech
recognition (ASR) system uses the DNN+sMBR back-end trained on multi-
condition noisy data followed by 5-gram Kneser-Ney smoothing and RNN-
LM rescoring. The evaluation was done on the real sets. Boldface numbers
show the best performance for each dataset. The 95% confidence intervals
for the two best WERs are ± 0.25% for the development set and ± 0.36% for
the test set. Lower is better.

TF
rep. Arch. EM

iter.
Update
type

Spatial
update

SS-R SS-F Row
no.Dev Test Dev Test

STFT

FNN
1 spatial exact 5.45 9.13 6.29 13.17 1

1 spatial weighted 4.71 7.77 5.58 11.34 2

RNN
1 spatial exact 6.50 9.68 5.68 10.16 3

1 spatial weighted 4.89 8.27 4.73 8.75 4

QERB

FNN
1 spatial exact 5.21 9.21 5.69 11.00 5

1 spatial weighted 4.73 8.06 5.13 9.44 6

RNN
1 spatial exact 5.57 9.30 5.39 9.02 7

1 spatial weighted 4.93 8.14 4.78 7.86 8

Experience shows that this weighting trick mitigates inaccurate estimates in
certain time-frequency bins and increases the importance of those bins for
which vj(f, n) is high.

In the following discussion, we refer the spatial parameter update in (2.49)
as the exact spatial parameter update and that in (5.1) as the weighted spatial
parameter update. We do not address the optimization of the weights ωj(f, n)
in this study. We stick to ωj(f, n) = vj(f, n) as in (5.2).

We evaluate the impact of the weighted spatial parameter update on the
speech recognition performance. Except for the spatial parameter update, all
experimental settings used here are the same as in Section 4.4.

Table 5.1 compares the performance of the exact and the weighted spatial
parameter updates. It basically extends the experimental results shown in
Table 4.4. The performance of the exact update, which is shown in the odd
rows of Table 5.1, is taken from Table 4.4. Recall from Section 4.4.1.3 that SS-R
considers only the real data set for the DNN training, while SS-F considers
both the real and the simulated data sets.

123

Table 5.1 demonstrates that the weighted spatial parameter update pro-
vides a significant performance improvement in all cases. The improvement
ranges from 1.15% to 1.82% absolute, or from 12% to 15% relative, w.r.t. the
exact spatial update on the test set. On average, the weighted spatial update
provides 14% relative improvement w.r.t. the exact spatial update on the test
set.

In addition, see Nugraha et al. [2016b] for the impact of weighted spatial
parameter updates on the performance of vocals-instruments separation.

In the following section, we present a new framework in which spatial
DNNs are used to perform the whole spatial parameter update rather than to
estimate theweights ωj(f, n). Yet, wewill see that the DNN training implicitly
encompasses the weight learning.

5.3 Iterative framework with spectral and spatial
DNNs

The framework described in Algorithm 3 extends our framework in
Algorithm 2 by employing DNNs for initializing and updating both spectral
and spatial parameters. The computation of the source posteriors within
this algorithm relies on Algorithm 4. Algorithm 3 also includes additional
iterative weighted EM spatial parameter updates (see Section 5.2) with a
convergence criterion described in Section 5.5. Similarly to Algorithm 2,
Algorithm 3 also follows pre-processing, initialization, and multichannel
filtering steps whose general descriptions are presented in Section 3.3.2.

Recall that k and l denote the spatial update iteration and the EM
iteration, respectively. In Algorithm 2, we use one spectral DNN for
spectrogram initialization, DNNspec

0 , and possibly one or more spectral DNNs
for spectrogram fitting, DNNspec

l . In addition to those DNNs, in Algorithm 3,
we use one spatial DNN for initializing the spatial parameters, DNNspat

0 ,
and possibly one or more spatial DNNs for updating the spatial parameters,
DNNspat

l,k .
Spectral DNNs are used to estimate the source magnitude spectra√
ṽj(f, n) given the mixture magnitude spectrum

√
zx(f, n) (for DNNspec

0) or
a stack of source magnitude spectra estimated in the preceding iteration (for
DNNspec

l). The spectral parameters are then easily computed by squaring
these source magnitude spectra.

124

Algorithm 3 Iterative framework with spectral and spatial DNNs.
Inputs:

Time-domain mixture x(t)
Number of sources J
Number of spatial updates K and number of EM iterations L
DNN spectral models DNNspec

0 , DNNspec
1 , . . . , DNNspec

L

DNN spatial models DNNspat
0 , DNNspat

1,1 , . . . , DNNspat
L,K

Pre-processing step:
1: Align the observed mixture: x(t)← align(x(t))
2: Extract QERB representation: R̃x(f, n)← QERBT(x(t))
3: Compute features for the DNN inputs:

√
zx(f, n) =

√
1

I
tr
(
R̃x(f, n)

)
(4.11)

LR̃x
(f, n)← Cholesky

(
1

zx(f, n)
R̃x(f, n)

)

Initialization step:
4: Initialize all source spectrograms:

[v1(f, n), . . . , vJ(f, n)]← DNNspec
0

(√
zx(f, n)

)2
∀f∈[1,F],∀n∈[1,N]

5: Estimate the Cholesky decomposition of all source spatial covariance
matrices:
[LR1(f), . . . ,LRJ

(f)]←
DNNspat

0

(
LR̃x

(f, n),
√
zx(f, n),

[√
v1(f, n), . . . ,

√
vJ(f, n)

])
∀n∈[1,N]

6: for each source j of J do
7: Initialize the spatial covariance matrix: Rj(f) = LRj

(f)LRj
(f)∗

8: end for
(continued on the next page)

Recall from our discussion about the multichannel Gaussian model in
Section 2.5.2.1 that the covariance matrices R̃x(f, n), R̂cj(f, n), and Rj(f)

are complex-valued Hermitian positive-definite matrices. In this newly
proposed framework, we exploit the fact that the Cholesky decomposition of
a Hermitian positive-definite matrix yields a unique lower triangular matrix
with real and positive diagonal entries, e.g., R̃x(f, n) = LR̃x

(f, n)LR̃x
(f, n)∗.

Instead of the time-invariant source spatial covariance matrices Rj(f),
spatial DNNs are used to estimate their Cholesky decompositions LRj

(f)

as unconstrained lower triangular complex-valued matrices. The essential
benefit of estimating the Cholesky decomposition is that, although the
DNN outputs LRj

(f) are unconstrained, the reconstructed source spatial

125

Algorithm 3 Iterative frameworkwith spectral and spatial DNNs (continued).
Multichannel filtering step:
9: for each EM iteration l of L do

10: Compute the source posteriors: . (see Algorithm 4)[
R̂c1(f, n), . . . , R̂cj(f, n)

]
←

post
(
R̃x(f, n), [v1(f, n), . . . , vJ(f, n)] , [R1(f), . . . ,RJ(f)]

)

11: for each source j of J do
12: Compute the unconstrained source spectrogram:

zj(f, n) =
1

I
tr
(
R−1j (f)R̂cj(f, n)

)
(2.50)

13: end for
14: Update all source spectrograms:

[v1(f, n), . . . , vJ(f, n)]←
DNNspec

l

([√
z1(f, n), . . . ,

√
zJ(f, n)

])2
∀f∈[1,F],∀n∈[1,N]

15: for each spatial update k of K do
16: Compute the source posteriors: . (see Algorithm 4)[

R̂c1(f, n), . . . , R̂cj(f, n)
]
←

post
(
R̃x(f, n), [v1(f, n), . . . , vJ(f, n)] , [R1(f), . . . ,RJ(f)]

)

17: for each source j of J do
18: Compute features for the DNN inputs:

√
zj(f, n) =

√
1

I
tr
(
R̂cj(f, n)

)

LR̂cj
(f, n)← Cholesky

(
1

zj(f, n)
R̂cj(f, n)

)

19: end for
20: Re-estimate the Cholesky decomposition of all source spatial

covariance matrices:
[LR1(f), . . . ,LRJ

(f)]←

DNNspat
l,k

LR̂c1
(f, n) . . . LR̂cJ

(f, n)√
z1(f, n) . . .

√
zJ(f, n)√

v1(f, n) . . .
√
vJ(f, n)

∀n∈[1,N]

21: for each source j of J do
22: Update the spatial covariance matrix:

Rj(f) = LRj
(f)LRj

(f)∗

23: end for
24: end for
25: end for

(continued on the next page)

126

Algorithm 3 Iterative frameworkwith spectral and spatial DNNs (continued).
26: while not converged do . optional EM spatial updates (see Section 5.5)
27: Compute the source posteriors: . (see Algorithm 4)[

R̂c1(f, n), . . . , R̂cj(f, n)
]
←

post
(
R̃x(f, n), [v1(f, n), . . . , vJ(f, n)] , [R1(f), . . . ,RJ(f)]

)

28: for each source j of J do
29: Update the spatial covariance matrix:

Rj(f) =

(
N∑

n=1

vj(f, n)

)−1 N∑

n=1

R̂cj(f, n) (5.2)

30: end for
31: end while

32: for each source j of J do
33: Compute the final spatial image:

ĉj(t) = IQERBT
(

vj(f, n)Rj(f)∑J
j′=1 vj′(f, n)Rj′(f)

, x(t)

)

34: end for

Outputs:
All spatial source images [ĉ1(t), . . . , ĉJ(t)]

Algorithm 4 Source posterior computation
Inputs:

QERB representation of mixture R̃x(f, n)
Source spectrograms [v1(f, n), . . . , vJ(f, n)]
Source spatial covariance matrices [R1(f), . . . ,RJ(f)]

1: Compute the mixture covariance matrix:

Rx(f, n) =
J∑

j=1

vj(f, n)Rj(f) (2.44)

2: for each source j of J do
3: Compute the Wiener filter gain:

Wj(f, n) = vj(f, n)Rj(f)Rx(f, n)
−1 (2.47)

4: Compute the posterior second-order raw moments of the spatial
image:
R̂cj(f, n) = Wj(f, n)R̃x(f, n)Wj(f, n)

∗

+ (I−Wj(f, n)) vj(f, n)Rj(f) (4.12)
5: end for

Outputs:
Source posteriors

[
R̂c1(f, n), . . . , R̂cj(f, n)

]

127

covariance matricesRj(f) = LRj
(f)LRj

(f)∗ are always positive-semidefinite.
By contrast, imposing a positive semidefiniteness constraint on the DNN
outputs when using spatial DNNs to directly estimate the source spatial
covariance matrices Rj(f)would be more difficult.

Inspired by the spatial parameter update in (2.49) or (5.1), we generally
want to provide spatial DNNs with source spectrograms vj(f, n) and source
covariance matrices R̂cj(f, n) or the mixture covariance matrix R̃x. For
DNNspat

0 , we provide the source magnitude spectra estimated by DNNspec
0√

vj(f, n), the Cholesky decomposition of the normalized mixture covariance
matrix LR̃x

(f, n), and the square-root of the corresponding normalization
factor (which is the mixture magnitude spectrum)

√
zx(f, n). For DNNspat

l,k ,
we provide the source magnitude spectra estimated in the preceding iteration√
vj(f, n), the Cholesky decomposition of the normalized source covariance

matrices LR̂cj
(f, n), and the square-root of the corresponding normalization

factor
√
zj(f, n). The normalization of themixture or source covariancematri-

ces is required to avoid numerical issues during the Cholesky decomposition.
The normalization factor is also provided so that the scale of the covariance
matrix can be exploited by the spatial DNNs.

The spectral and the spatial DNNs used in the experiments presented
in this chapter are trained separately by minimizing different cost functions
specific to the DNN purpose. This makes it possible to observe whether
each spectral or spatial DNN provides a performance improvement. The
spectral and the spatial DNNs could then be jointly fine-tuned. This fine-
tuning would resemble the deep unfolding approach [Le Roux et al., 2015;
Wisdom et al., 2016] and the whole system consisting of multiple DNNs
would resemble end-to-end systems, e.g., the systems of Xiao et al. [2016]
and Sainath et al. [2017]. We consider this joint training as one of possible
future directions.

In Algorithm 3, we employ the quadratic equivalent rectangular band-
width (ERB) representation [Duong et al., 2010b]. QERBT denotes the
quadratic ERB extraction and IQERBT denotes the inverse quadratic ERB
transformation, including the Wiener filtering and the filterbank inversion to
recover the time-domain spatial images ĉj(t). See the related discussion in
Section 4.4.1.

128

5.4 Experimental settings

This section presents the settings for all experiments described in the
following sections.

5.4.1 Task and dataset

We consider the application of the framework in Algorithm 3 to several
multichannel speech enhancement problems using the same CHiME dataset
as the one described in Section 3.3.1. We deal with the separation of two
sources (J = 2), namely speech and noise, from a 6-channel mixture (I = 6),
a 4-channel mixture (I = 4), and a 2-channel mixture (I = 2). As shown by
Vincent et al. [2017b], the fewer microphones are used, the more challenging
it is to enhance the speech. In contrast to the evaluation in Chapter 3, here,
we focus on the speech recognition performance measured by the WER.

For the experiments on 2-channel mixtures, we follow the guidelines
of the 2-channel task of the CHiME-4 challenge. For each utterance in the
development and the test sets of the CHiME dataset, the organizers randomly
selected one pair of microphones from the five front-facing microphones.
In doing so, they tried to avoid selecting failed microphones based on the
cross-correlation coefficients. For the experiments on 4-channel mixtures,
we performed a similar channel selection, i.e., randomly selected one 4-
tuple of microphones from the five front-facing microphones and took the
cross-correlation coefficients into consideration for each utterance in the
development and the test sets. In addition, we considered all possible
combinations of microphones in the real training set. Thus, for each training
utterance, we obtained five different 4-channel signals for the 4-channel task
and ten different 2-channel signals for the 2-channel task.

The following subsection presents the implementation details of the
proposed source separation framework.

5.4.2 An overview of the speech enhancement system

The description below provides the details of pre-processing, initialization,
multichannel filtering, and post-processing steps specific to the system used
in all experiments presented in this section. See Section 3.3.2 for the general
description of each step. Following this overview, the details of spectral and
spatial DNNs are presented.

129

The pre-processing step aligns the observedmixture as described in Section
3.3.2 and then extracts the quadratic ERB coefficients using a time-
domain filterbank as Duong et al. [2010b], resulting in F = 128

frequency bins.

The initialization step sets the initial source spectrograms using DNNspec
0

and the initial source covariance matrices using DNNspat
0 .

The multichannel filtering step iteratively performs the spectral and spatial
parameter updates as defined by Algorithm 3. Our experiments
consider one additional spectral DNN, i.e., DNNspec

1 , and one additional
spatial DNN, i.e., DNNspat

1,1 . In order to avoid numerical instabilities due
to the use of single precision computing for DNNs, the spectrograms
vj(f, n) are floored to 10−5.

The post-processing step averages the estimated multichannel speech spa-
tial image across channels to obtain a single-channel signal for the ASR
evaluation as in Section 3.3.2.

5.4.3 DNN spectral models

Wenowpresent the architecture, the inputs and outputs, the training criterion,
the training algorithm, and the training data of the DNN spectral models
DNNspec

0 and DNNspec
1 .

5.4.3.1 Architecture, inputs, and outputs

Both DNNspec
0 and DNNspec

1 follow a bidirectional long short-term memory
(LSTM) architecture as in Section 4.4.1.2. Similarly to the DNN sizes in that
section, both DNNs consist of an input layer, two bidirectional LSTM hidden
layers, and an output layer. DNNspec

0 has an input layer size of F = 128 and
DNNspec

1 of F × J = 256. The size of each bidirectional LSTM hidden layer in
both DNNs is 2× F = 256. The sizes of the output layers are F × J = 256.

The inputs of DNNspec
0 are computed as

√
zx(f, n) =

√
tr
(
R̃x(f, n)

)
/I as

in (4.11). The inputs of DNNspec
1 are a stack of

√
zj(f, n). As in Section 4.4.1.2,

the DNN inputs are standardized frequency bin-wise and the standardization
factors are computed on the whole training set. The spectral DNN outputs
correspond to the square-roots of the source spectrograms vj(f, n). Figure
5.1a depicts the architecture of the spectral DNNs we used in this section.

130

5.4.3.2 Training criterion, algorithm, and data

Both spectral DNNs are trained using the Kullback-Leibler (KL) divergence
in (3.3) with δcf = 10−5. The DNN training algorithm mainly follows
the description in Section 4.4.1.3, although there are a few differences. A
minibatch consists of 16, instead of 8, randomly selected full utterances.
Although this does not ensure a performance improvement, this reduces the
time spent by one training epoch. Dropout with rate 0.2 is now applied on the
bidirectional LSTM layer inputs [Zaremba et al., 2015] and the fully-connected
output layer input.

As also described in Section 4.4.1.3, the spectral DNN training targets√
ṽj(f, n) are computed similarly to (4.11) from the re-aligned source spatial

image signals cj(t). In this section, we use the real training set (tr05_real)
and the real development set (dt05_real). Our previous experiments have
shown that using the real sets only is sufficient to achieve a good performance.
This setting corresponds to SS-R in Section 4.4.1.3.

5.4.4 DNN spatial models

We now present the architecture, the inputs and outputs, the training
algorithm, and the training data of the DNN spectral models DNNspat

0 and
DNNspat

1,1 . Similarly to our spectral DNNs, these spatial DNNs also estimate
the Cholesky decompositions of all source spatial covariance matrices simul-
taneously. However, spatial DNNs work frequency bin-wise. This means that
the DNNs perform the estimation for one frequency bin at a time. Motivated
by the spatial parameter estimation (5.1) that is frequency-independent, both
spatial DNNs are also designed to be frequency-independent. This means
that the sameDNNs are applied to each frequency bin. It is worthmentioning
that the estimation for all frequency bins can be done in parallel so that this
approach does not have any impact on the testing time. By contrast, this
approach significantly increases the training data by putting all the frequency
bins together.

5.4.4.1 Architecture, input, and outputs

Both DNNspat
0 and DNNspat

1,1 also follow a bidirectional LSTM architecture
consisting of an input layer, two bidirectional LSTM hidden layers, and an
output layer. DNNspat

0 has an input layer size of I2 + J + 1 and DNNspat
1,1 of

(I2 + 2)J . The size of each bidirectional LSTM hidden layer in all DNNs is

131

input sequence∗
∗N : sequence length

forward LSTM

backward LSTM

sum

BLSTM
∀n∈[1, N]

forward LSTM

backward LSTM

sum

BLSTM
∀n∈[1, N]

fully-connected
∀n∈[1, N]

output:
√

vj(f, n)

∀n∈[1, N]

(a) All-frequency spectral DNN

input sequence∗
∗N : sequence length

forward LSTM

backward LSTM

sum

BLSTM
∀n∈[1, N]

forward LSTM

backward LSTM

sum

BLSTM
∀n∈[1, N]

fully-connected
∀n∈[1, N]

(weighted) average over time
∀n∈[1, N]

output: LRj
(f)

(b) Single-frequency spatial DNN

Figure 5.1: Spectral and spatial DNN architectures used in in Chapter 5. For
the input sequences of spectral DNNs, see lines 4 and 14 of Algorithm 3 and
Section 5.4.3.1. For the input sequences of spatial DNNs, see lines 5 and 20 of
Algorithm 3 and Section 5.4.4.1. The white boxes represent the visible data
and the gray boxes represent the hidden layers or the hidden processes.

2× 2I2. The sizes of the output layers are 2I2. Table 5.2 summarizes the sizes
of the different recurrent neural networks (RNNs) used for the experiments
in this section.

Section 5.3 and Algorithm 3 have provided some details on how the DNN
inputs are computed. The inputs of DNNspat

0 are supervectors constructed
from the Cholesky decomposition of the normalized mixture covariance
matrix, the square-root of the corresponding normalization factor, and the
estimated source magnitude spectra. The Cholesky decomposition of a
Hermitian positive-definite matrix results in a unique complex-valued lower
triangular matrix with positive real-valued diagonal entries. For constructing
the supervectors, we decompose the complex-valued entries into their real
and imaginary parts, then concatenate them with the real-valued diagonal
entries, the square-root of the normalization factor, and the estimated source
magnitude spectra. A similar approach is applied to the inputs of DNNspat

1,1 .
The DNN inputs are standardized entry-wise and the standardization factors

132

Table 5.2: Comparison of the different spatial DNNs used in the different
speech enhancement tasks in Chapter 5. A bidirectional LSTM hidden layer
consists of a forward LSTM layer and a backward LSTM layer. The left
numbers in the bidirectional LSTM hidden layer sizes correspond to these
two layers and the right numbers correspond to the size of each LSTM layer.

Formula
Task

6-channel 4-channel 2-channel

DNNspat
0 input layer size I2 + J + 1 39 19 7

DNNspat
1,1 input layer size (I2 + 2)J 76 53 12

Hidden layer number 2 2 2 2

Hidden layer size 2 × I2J 2 × 72 2 × 32 2 × 8

Output layer size I2J 72 32 8

are computed on thewhole training set. The spatial DNNoutputs correspond
to the Cholesky decompositions LRj

(f) of the time-invariant source spatial
covariance matrices. In order to obtain these time-invariant matrices, the final
layer of spatial DNNs computes the average over all time frames on the inputs,
which are akin to the Cholesky decompositions LRj

(f, n) of the time-varying
source spatial covariance matrices. This averaging layer is used during the
DNN training and thus, the DNN training targets are time-invariant. In our
experiments, we consider two different averaging layers as described later
in Section 5.4.5.2. Figure 5.1b depicts the general architecture of the spatial
DNNs we used in this section.

5.4.4.2 Training algorithm and data

The DNN training algorithmmainly follows the description in Section 4.4.1.3,
although there are a few differences. A minibatch consists of 128 randomly
selected frequency bins from 16 randomly selected full utterances. Dropout
with rate 0.2 is applied as in Section 5.4.3.2.

Let R̃′j(f) denote the unnormalized source spatial covariance matrix
ground truth. How this ground truth is computed is explored in Section 5.5.
In order to avoid numerical issues during the DNN training due to extreme
(very small or very big) values, we normalize the source spatial covariance
matrices before we compute the Cholesky decomposition of each matrix. The

133

normalization is expressed as

R̃j(f) =

√
I

1
J

∑
j

∥∥∥R̃′j(f)
∥∥∥
F

R̃′j(f), (5.3)

where
√
I corresponds to the Frobenius norm of the identity matrix. By

normalizing all source spatial covariance matrices with the same factor, the
resulting Wiener filter is preserved. The Cholesky decomposition is then
computed for each source spatial covariance matrix resulting in a lower
triangular matrix. In order to obtain the DNN training targets, the diagonal
and strictly lower triangular entries of this matrix are then concatenated as
in the supervector construction for DNN inputs described in Section 5.4.4.1.

Similarly to spectral DNNs, spatial DNNs are trained on the real training
set (tr05_real) and validated on the real development set (dt05_real). The
simulated data in the CHiME dataset is barely reverberated and thus, the
speech covariance matrices are close to rank-1 matrices. On the other hand,
the real sets, which are our main point of interest in the evaluation, are more
reverberated and thus, the speech covariance matrices are full-rank. Because
of this mismatch, the simulated sets are avoided in the spatial DNN training.

All DNNs and the related techniques for all experiments presented in
this section were implemented using Keras [Chollet et al., 2015] with Theano
[Bergstra et al., 2010; Theano Dev Team, 2016] as its back-end.

5.4.5 Design choices for the DNN spatial models

We now describe the design choices for spatial DNNs we study in the
experiments. We consider several choices for the DNN training cost function
and the DNN architectures.

5.4.5.1 Cost functions

Let R̃j(f) = LR̃j
(f)LR̃j

(f)∗ be the normalized source spatial covariance
matrix ground truth from (5.3), where LR̃j

(f) is its Cholesky decomposition
from which the DNN training target is constructed. Also, let Rj(f) =

LRj
(f)LRj

(f)∗ be the estimated source spatial covariance matrix constructed
from the DNN outputs LRj

(f).
For training the spatial DNNs, we consider three cost functions measuring

the difference between R̃j(f) andRj(f), as opposed to the difference between

134

LR̃j
(f) and LRj

(f). Thus, these cost functions can be regarded as task-
oriented cost functions.

The mean squared error (MSE) is expressed as

DRJ =
1

F

∑

f

∥∥∥R̃j(f)−Rj(f)
∥∥∥
2

F
, (5.4)

where ‖·‖F denotes the Frobenius norm.

The cosine distance [Herdin et al., 2005] is expressed as

DCD = 1− 1

F

∑

f

tr
(
R̃j(f)Rj(f)

∗
)

∥∥∥R̃j(f)
∥∥∥
F

∥∥∥Rj(f)
∥∥∥
F

. (5.5)

We also propose a combined cost function which fuses the two above cost
functions as

DRC = DRJ + κDCD, (5.6)

where the fusion parameter is set to κ = 10. In order to decide the value of
this parameter, we observed the validation errors after the first epoch when
the MSE and the cosine distance are used alone for the training of DNNspat

0 on
the 6-channel task. The parameter κ is then simply determined so that the two
validation errors have a roughly similar scale, which implies that both cost
functions have a similar importance. We did not perform any optimization
of this parameter κ.

5.4.5.2 Architectures and input variants

We consider architectures using one of two different averaging layers, i.e., a
simple averaging layer or a weighted averaging layer. The latter is motivated
by the weighted spatial parameter update in (5.2). Let LRj

(f, n) denote the
inputs of the averaging layer. The architecture with a simple averaging layer
(‘SAvg’) computes the outputs as

LRj
(f) =

1

N

N∑

n=1

LRj
(f, n). (5.7)

135

On the other hand, the architecture with a weighted averaging layer (‘WAvg’)
computes the outputs as

LRj
(f) =

∑N
n=1

√
vj(f, n)LRj

(f, n)
∑N

n=1

√
vj(f, n)

. (5.8)

Since these two averaging layers are parameterless, the total number of DNN
parameters for both architectures ‘SAvg’ and ‘WAvg’ is the same.

Additionally, we consider two different input settings for DNNspat
1,1 , namely,

a default setting and an extended setting. The default setting shown in
Table 5.2 consists of LR̃cj

(f, n),
√
zj(f, n), and

√
vj(f, n) of all sources.

The extended setting, denoted as ‘+Rx’, includes LR̃x
(f, n) and

√
zx(f, n)

in addition to the default setting. We use this extended setting in the
experiments on the 6-channel task. In this case, the size of the DNNspat

1,1

input layer is (I2 + 2)J + (I2 + 1) = 113, instead of 76 as shown in Table 5.2.

5.5 Estimation of the oracle source spatial covari-
ance matrices

In this section, we investigate how to compute the source spatial covariance
matrices used for the spatial DNN training. Let R̃cj(f, n) denote the source
covariance matrix computed from the re-aligned target source spatial image
signal cj(t). We assume that the true source spectrograms can be computed
as

vtruej (f, n) =
1

I
tr
(
R̃cj(f, n)

)
. (5.9)

This vtruej (f, n) is what we use as the training target of spectral DNNs indeed.
Following the exact parameter estimation in (2.49), we may then assume that
the true source spatial covariance matrices can be computed as

Rtrue
j (f) =

1

N

N∑

n=1

(
1

vtruej (f, n)
R̃cj(f, n)

)
. (5.10)

Alternatively, given the true source spectrograms vtruej (f, n) and the
mixture covariance matrix R̃x(f, n), we also can perform iterative EM spatial
parameter updates which have shown to improve the performance well. In
doing so, we initialize the source spatial covariance matrices as identity

136

Table 5.3: Speech recognition performance in terms of WER (%) using the
different oracle settings for the 6-channel task. The ASR system uses the
DNN+sMBR back-end trained on multi-condition enhanced data followed by
5-gram Kneser-Ney smoothing and RNN-LM rescoring. The evaluation was
done on the real sets. Boldface numbers show the best performance for each
dataset. The 95% confidence intervals for the two best WERs are ± 0.23% for
the development set and ± 0.32% for the test set. Lower is better.

ID Description Dev Test

(1) vj(f, n)← vtruej (f, n), Rj(f)← Rtrue
j (f) 4.63 8.59

(2) vj(f, n)← vtruej (f, n), Rj(f)← Rconv
j (f) 3.87 6.21

matrices and iteratively apply the weighted EM spatial parameter update in
(5.2) until convergence. Instead of a fixed number of updates K, we consider
the convergence criterion:

1− 1

JF

∑

j,f

tr
(
Rk
j (f)

(
Rk−1
j (f)

)∗)

∥∥Rk
j (f)

∥∥
F

∥∥Rk−1
j (f)

∥∥
F

< 10−6. (5.11)

The update is stopped as soon as this criterion is achieved. LetRconv
j (f) denote

the resulting source spatial covariance matrices.
Table 5.3 compares the oracle speech recognition performance obtained

using vtruej (f, n) and either Rtrue
j (f) or Rconv

j (f) for the 6-channel task. It
shows that Rconv

j (f) provides statistically significant improvement compared
to Rtrue

j (f). We attribute this to the fact that the source spatial image signals
in the real sets are not accurate especially from a spatial point of view, more
than a spectral point of view (see discussion in Section 3.3.1).

Based on the results shown in Table 5.3, we use Rconv
j (f) as the spatial

covariance matrix ground truth for the following experiments. To be specific,
it is used as the unnormalized spatial covariance matrix ground truth R̃′j(f)

discussed in Section 5.4.4.2.
The following subsections present our study on the impact of spatial

parameter estimation with DNNs, the impact of different spatial DNN archi-
tectures, the impact of different cost functions for the spatial DNN training,
and the comparison to the generalized eigenvalue (GEV) beamformer with
the blind analytic normalization (BAN) post-filter (see Section 2.5.1), which
achieved state-of-the-art performance on the CHiME dataset [Heymann et al.,
2017].

137

5.6 Spatial parameter estimation with DNNs

Table 5.4 shows the speech recognition performance using different frame-
work settings for the 6-channel task. In systems (1) and (2), we initialize
the source spectrograms using DNNspec

0 . While in (1), the source spatial
covariance matrices are set to be identity matrices, they are initialized using
DNNspat

0 in (2). Following these spectral and spatial parameter initializations
using DNNs, we update the source spectrograms using DNNspec

1 in (3) and
then, update the source spatial covariancematrices usingDNNspat

1,1 in (4). Both
spatial DNNs are based on the weighted architecture ‘WAvg’ and trained
with the combined cost function. We assess the choice of the architecture in
Section 5.7 and the choice of the cost function in Section 5.8. We also consider
additional iterativeweighted EM spatial parameter updates until convergence
in systems (5), (6), (7), and (8). The convergence criterion is the same as in
(5.11). For the following discussions, let us focus on the performance on the
real set.

The systems (1) and (5) are similar to those presented in the two previous
chapters. Method (1) is equivalent to single-channel source separation.
Method (5) is akin to the iterative EM spatial parameter updates in Sections
3.5 and 4.3. The difference is that in (5), the number of spatial updates varies
from one utterance to another. In this case, the average numbers of spatial
updates on the development and the test sets are 44.8 and 40.8, respectively.
These are more than double those used in Sections 3.5 and 4.3.

The spatial parameter initialization with DNN in (2) is shown to be
effective. It achieves a WER of 8.45% on the test set which is worse than
what (5) achieves, i.e., 8.07%. Based on the confidence intervals, this
difference might appear as not statistically significant. However, a paired
difference test by Matched Pairs Sentence-Segment Word Error1 [Gillick &
Cox, 1989] indicates that (5) is significantly better than (2) with p < 0.001.
This paired test is more reliable than simple confidence intervals since
it accounts for correlations between the outputs of different systems. In
terms of computational cost, (2) is more favorable than (5) since to achieve a
similar level of performance, (5) needs many iterations of spatial updates as
mentioned above.

The spectral parameter update with DNNspec
1 in (3) slightly improves the

performance on the test set. However, the following spatial parameter update

1We used the implementation in the NIST Scoring Toolkit (SCTK). See http://www1.
icsi.berkeley.edu/Speech/docs/sctk-1.2/sctk.htm.

138

http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sctk.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sctk.htm

Table 5.4: Speech recognition performance in terms of WER (%) using
different settings on Algorithm 3 for the 6-channel task. The spatial DNNs are
based on the weighted architecture ‘WAvg’ and trained with the combined
cost function on Rconv

j (f). The ASR system uses the DNN+sMBR back-
end trained on multi-condition noisy data followed by 5-gram Kneser-Ney
smoothing and RNN-LM rescoring. The evaluation was done on the real
sets. Boldface numbers show the best performance for each dataset. The 95%
confidence intervals for the two best WERs are ± 0.25% for the development
set and ± 0.34% for the test set. Lower is better.

Enhancement system
Dev Test

ID Description

(1) spectral initialization with DNNspec
0 7.17 14.03

(2) (1) + spatial initialization with DNNspat
0 4.64 8.45

(3) (2) + spectral update with DNNspec
1 4.68 8.11

(4) (3) + spatial update with DNNspat
1,1 4.81 8.33

(5) (1) + weighted EM spatial updates until convergence 4.79 8.07

(6) (2) + weighted EM spatial updates until convergence 4.67 7.50

(7) (3) + weighted EM spatial updates until convergence 4.56 6.96

(8) (4) + weighted EM spatial updates until convergence 4.58 6.97

with DNNspat
1,1 in (4) does not provide any performance improvement. Taking

the confidence intervals into account, the performance differences between
(2), (3), and (4) are not significant. According to the paired difference test, the
difference between (2) and (3) is significantly different with p < 0.001.

The application of the iterative weighted EM spatial parameter updates on
top of (2), (3), and (4) improves the performance as shown in (6), (7), and (8).
Based on the confidence intervals, (6)–(8) are statistically better than (2)–(5),
but the performance differences between (6), (7), and (8) are not significant.
According to the paired difference test, (7) and (8) significantly differ from
(6) with p < 0.001 and p = 0.002, respectively. Systems (7) and (8) achieve
virtually the same performance. The average numbers of spatial updates in
(8) on the development and the test sets are 50.3 and 49.1, respectively.

In addition, we compare the computation time of parameter estimation
for several systems by running a single-threaded process for each utterance
on Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz. The measured computation
time excludes the quadratic ERB extraction and the inverse quadratic ERB

139

transformation (see Section 5.3). The average utterance length on the
development and the test sets are 6.0 and 5.9 s, respectively. The average
computation time on the development set are 2.2 s for (2), 6.3 s for (4), and
42.1 s for (8). The average computation time on the test set are 2.1 s for (2),
6.2 s for (4), and 40.4 s for (8).

Overall, the best performance is achieved by (7) with a WER of 6.96%.
This is a relative 50% improvement w.r.t. (1) and a relative 14% improvement
w.r.t. (5).

In summary, the proposed spatial DNN is effective to initialize the source
spatial covariance matrices. By employing spectral and spatial parameter
initializations by DNNs, we achieve a similar performance to that of spectral
parameter initialization by DNN followed by many iterations of spatial
parameter updates. The following spectral and spatial parameter updates
by DNNs do not significantly affect the performance. However, when the
iterative weighted EM spatial parameter updates are applied afterwards, we
can achieve a statistically significant performance improvement. Thus, both
spectral and spatial parameter updates by DNNs are beneficial eventually.

5.7 Impact of different spatial DNN architectures

Table 5.5 shows the speech recognition performance using the different
spatial DNN architectures described in Section 5.4.4.1 for the 6-channel task.
Methods (1), (4), and (8) in Table 5.4 are shown again as systems (1), (2),
and (6) in Table 5.5 to ease the observation. The systems mentioned in the
following discussion refer to the ones in Table 5.5.

Let us first observe systems (2), (3), (4), and (5)whose parameters are only
estimated by DNNs, without the iterative weighted EM spatial parameter
updates. The spatial DNNs in systems (2) and (4) follow the weighted
averaging architecture ‘WAvg’, whereas those in (3) and (5) follow the simple
averaging architecture ‘SAvg’. While DNNspat

1,1 in (2) uses the default input
setting, that in (4) uses the extended setting ‘+Rx’. Likewise, DNNspat

1,1 in (3)
uses the default input setting and that in (5) uses the extended setting ‘+Rx’.
Among these four systems, the best WER on the test set is 7.99%. Taking the
confidence intervals into account, the performance differences between these
four systems might appear as not statistically significant. Yet, according to
the paired difference test, (4) is significantly better than (2) (p = 0.013), (3)
(p < 0.001), and (5) (p = 0.002).

140

Table 5.5: Speech recognition performance in terms of WER (%) using the
different spatial DNN architectures for the 6-channel task. The spatial DNNs
are trainedwith the combined cost function onRconv

j (f). The ASR system uses
the DNN+sMBR back-end trained on multi-condition noisy data followed by
5-gram Kneser-Ney smoothing and RNN-LM rescoring. The evaluation was
done on the real sets. Boldface numbers show the best performance for each
dataset. The 95% confidence intervals for the two best WERs are ± 0.25% for
the development set and ± 0.34% for the test set. Lower is better.

Enhancement system

Dev Test
ID Description DNNspat

arch.

(1) spectral initialization with DNNspec
0 - 7.17 14.03

(2)
(1) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

WAvg 4.81 8.33

(3)
(1) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

SAvg 4.67 8.54

(4)
(1) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

WAvg
+Rx 4.63 7.99

(5)
(1) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

SAvg
+Rx 4.63 8.41

(6) (2) + weighted EM spatial updates until conver-
gence WAvg 4.58 6.97

(7) (3) + weighted EM spatial updates until conver-
gence SAvg 4.47 7.18

(8) (4) + weighted EM spatial updates until conver-
gence

WAvg
+Rx 4.60 7.26

(9) (5) + weighted EM spatial updates until conver-
gence

SAvg
+Rx 4.67 7.62

141

Let us now observe systems (6), (7), (8), and (9) with the iterative
weighted EM spatial parameter updates. Among these four systems, the
best WER on the test set is 6.97%. Based on the confidence intervals, the
performance differences between these four systems might again appear
as not statistically significant. Additionally, (6)–(8) provide a statistically
significant improvement compared to (2)–(5). According to the paired
difference test, there is no performance difference between (6) and (7), but (6)
is significantly better than (8) (p = 0.036) and (9) (p < 0.001).

Let us compare the simple averaging architecture (‘SAvg’ and ‘SAvg+Rx’)
with the weighted averaging architecture (‘WAvg’ and ‘WAvg+Rx’) by
observing the differences between (2) and (3), between (4) and (5), between
(6) and (7), also between (8) and (9). In general, as already indicated
in the discussions above, the weighted averaging architecture provides a
slightly better performance than the simple averaging architecture. The
performance differences are not statistically significant according to the
confidence intervals. However, according to the paired difference test, (4) is
significantly better than (5) (p = 0.002) and (8) is significantly better than (9)
(p = 0.007). This indicates that explicit weighting is useful, but not crucial
in this case. The parameters of the simple averaging architecture might
adjust during the DNN training so as to provide a similar effect as explicit
weighting. In other words, the DNNs may implicitly learn the weighting
from the training data.

Let us now compare the two different input settings for DNNspat
1,1 by

observing the differences between (2) and (4), between (3) and (5), between
(6) and (8), also between (7) and (9). The extended input setting provides a
slightly better performance than the default input setting when the iterative
EM spatial parameter updates are not applied. The performance differences
are not statistically significant according to the confidence intervals, but
according to the paired difference test, (4) is significantly better than (2)
(p = 0.013). Surprisingly, the iterative EM spatial parameter updates perform
worse when the extended input setting is used. The performance differences
are again not statistically significant according to the confidence intervals,
but according to the paired difference test, (6) is significantly better than (8)
(p = 0.036) and (7) is significantly better than (9) (p < 0.001).

In summary, the statistical test based on the confidence intervals shows
that the different spatial DNN architectures we considered here do not have
a significant impact on the system performance. The paired difference test
indicates that the weighted averaging architecture is better than the simple

142

averaging architecture. It also suggests that the default input setting is better
than the extended input setting when the iterative weighted EM spatial
updates are applied and vice versa when these EM spatial updates are not
applied. Disregarding the statistical test, the best performance is achieved by
system (6)which employs spatial DNNs following the weighted averaging
architecture ‘WAvg’ and using the default input setting for DNNspat

1,1 .

5.8 Impact of different spatial DNN cost functions

Table 5.6 shows the speech recognition performance using DNNs trained
with the cost functions described in Section 5.4.5.1 for the 6-channel task.
Methods (1), (4), and (8) in Table 5.4 are shown again as systems (1), (2),
and (5) in Table 5.6 to ease the observation. The systems mentioned in the
following discussion refer to the ones in Table 5.6.

Let us first observe systems (2), (3), and (4) whose parameters are only
estimated by DNNs. The spatial DNNs in these systems are trained with
the combined cost function, the MSE, and the cosine distance, respectively.
Based on the confidence intervals, the performance of the cosine distance
on the test set is not statistically different from that of the combined cost
function. Also, the performance of the MSE is not statistically different from
that of the cosine distance, but significantly worse than the performance
of the combined cost function. According to the paired difference test, (3)
is significantly worse than both (2) (p < 0.001) and (4) (p = 0.003). Let us
consider two vectors as simpler analogies of the two matrices we consider in
our cost computation. The cosine distance deals with the angle between two
vectors. Thus, minimizing the cosine distance means finding the direction
of the target vector. The cosine distance is scale-invariant and therefore, it
does not care about the magnitude difference. On the other hand, the MSE
deals with the difference of each vector component. Ideally, minimizing the
MSEmeans finding the magnitude and the direction of the target vector. This
also applies to our source spatial covariance matrices. Based on the results
of these three systems, we observe that the combination of the MSE and the
cosine distance performs better than the MSE or the cosine distance alone for
finding the azimuth (direction) and the distance (magnitude) of the target
source w.r.t. the microphones.

As in Section 5.6 and 5.7, based on the confidence intervals, the iterative
EM spatial parameter updates in systems (5)–(7) provide a statistically

143

Table 5.6: Speech recognition performance in terms of WER (%) using
DNNs trained with the different cost functions for the 6-channel task. The
spatial DNNs are based on the weighted architecture ‘WAvg’ and trained
on Rconv

j (f). The ASR system uses the DNN+sMBR back-end trained on
multi-condition noisy data followed by 5-gram Kneser-Ney smoothing and
RNN-LM rescoring. The evaluation was done on the real sets. Boldface
numbers show the best performance for each dataset. The 95% confidence
intervals for the two best WERs are ± 0.25% for the development set and ±
0.34% for the test set. Lower is better.

Enhancement system

Dev Test
ID Description DNNspat

cost

(1) spectral initialization with DNNspec
0 - 7.17 14.03

(2)
(1) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

DRC 4.81 8.33

(3)
(1) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

DRJ 4.75 9.23

(4)
(1) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

DCD 4.70 8.65

(5) (2) + weighted EM spatial updates until conver-
gence DRC 4.58 6.97

(6) (3) + weighted EM spatial updates until conver-
gence DRJ 4.57 7.59

(7) (4) + weighted EM spatial updates until conver-
gence DCD 4.46 7.45

significant performance improvement on the test set compared to (2)–(4).
Also, the performance differences between (5), (6), and (7) are not statis-
tically significant. However, according to the paired difference test, (5) is
significantly better than both (6) (p < 0.001) and (7) (p < 0.001).

In summary, the combined cost function which integrates the MSE and
the cosine distance provides the best performance compared to the MSE or
the cosine distance alone. We do not investigate the impact of the factor κ in

144

the combined cost function (see (5.6)). The performance may be improved
further when κ is tuned.

5.9 Comparison with GEV-BAN beamforming

In this subsection, we compare our approach with the GEV beamformer with
the BAN post-filter of Heymann et al. [2017], which achieved state-of-the-art
performance on the CHiME dataset. Recall from Section 2.5.1 that the speech
covariancematrixRcS(f) and the noise covariancematrixRcN(f) are required
to derive the GEV beamformer. Then, recall from Section 2.5.3 that Heymann
et al. [2017] compute these source covariance matrices using the speech mask
m̂S(f, n) and the noise mask m̂S(f, n) estimated by DNNs. The DNNs are
trained on binary masks, computed as the thresholded ratio between the
speech and the noise magnitude spectra, as targets. Nonetheless, the DNNs
estimate ratio masks instead of binary masks.

Here, we employ the source magnitude spectra estimated by DNNspec
0 to

derive the speech mask as

m̂S(f, n) =

√
vS(f, n)√

vS(f, n) +
√
vN(f, n)

, (5.12)

and the noise mask as m̂N(f, n) = 1 − m̂S(f, n). The resulting masks are
arguably akin to the ratio masks estimated by DNNs by Heymann et al.
[2017]. The speech and the noise masks are then used to compute the speech
and the noise covariance matrices as in (2.53) and (2.54). Employing these
source covariance matrices, the GEV beamformer is computed as (2.39) and
the BAN post-filter in (2.40) is applied afterwards. Let us simply call this
beamformer as the GEV-BAN beamformer.

Our implementation of the GEV-BAN beamformer differs from the one
of Heymann et al. [2017] in two respects. First, instead of directly estimating
the source masks by DNNs, we derive the source masks from the source
magnitude spectra estimated by a DNN. Second, our speech and noise masks
sum to 1, while this constraint was not applied by Heymann et al. [2017].

Table 5.7 shows the speech recognition performance for the different tasks
compared to the GEV-BAN beamformer. Methods (1), (4), and (8) in Table 5.4
are shown again as systems (1), (3), and (4) in Table 5.7 to ease the observation.
The systems mentioned in the following discussion refer to the ones in Table
5.7.

145

Table 5.7: Speech recognition performance in terms of WER (%) for the
different tasks compared to the GEV-BAN beamformer. The spatial DNNs
are based on theweighted architecture ‘WAvg’ and trainedwith the combined
cost function on Rconv

j (f). The ASR system uses the DNN+sMBR back-
end trained on multi-condition noisy data followed by 5-gram Kneser-Ney
smoothing and RNN-LM rescoring. The evaluation was done on the real sets.
Boldface numbers show the best performance for each pair of a task and a
dataset. For the 6-channel task, the 95% confidence intervals for the two best
WERs are ± 0.25% for the development set and ± 0.34% for the test set. For
the 4-channel task, those are ± 0.26% and ± 0.37%. For the 2-channel task,
those are ± 0.30% and ± 0.46%. Lower is better.

Enhancement system
Dev Test

ID Description

6-channel task

(1) spectral initialization with DNNspec
0 7.17 14.03

(2) (1) + GEV-BAN beamformer 5.37 8.15

(3)
(1) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

4.81 8.33

(4) (3) + weighted EM spatial updates until convergence 4.58 6.97

4-channel task

(5) spectral initialization with DNNspec
0 7.30 13.91

(6) (5) + GEV-BAN beamformer 5.51 9.15

(7)
(5) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

5.07 9.12

(8) (7) + weighted EM spatial updates until convergence 4.87 8.47

2-channel task

(9) spectral initialization with DNNspec
0 8.55 17.39

(10) (9) + GEV-BAN beamformer 6.94 13.62

(11)
(9) + spatial initialization with DNNspat

0

+ spectral update with DNNspec
1

+ spatial update with DNNspat
1,1

7.19 14.78

(12) (11) + weighted EM spatial updates until convergence 6.63 13.48

146

Systems (1)–(4) address the 6-channel task, (5)–(8) the 4-channel task, and
(9)–(12) the 2-channel task. Systems (1), (5), and (9) correspond to single-
channel speech enhancement. Systems (2), (6), and (10) employ the time-
invariant GEV-BAN beamformer as described above. Systems (3), (4), (7),
(8), (11), and (12) are our proposed systems. The source parameters for the
time-varying multichannel Wiener filtering in systems (3), (7), and (11) are
estimated by DNNs only. In addition to these parameter estimations by
DNNs, the spatial parameters in systems (4), (8), and (12) are re-estimated
by the iterative EM spatial updates.

As we have observed several times, the single-channel speech enhance-
ment systems (1), (5), and (9) are significantly outperformed by multichannel
speech enhancement. This can be observed in all three different tasks.

Let us first compare the performance of the GEV-BAN beamformer to that
of our systems without the iterative EM spatial updates. Generally speaking,
both approaches perform similarly for all tasks. The performance differences
are mostly statistically insignificant, except on the development set for the
6-channel task, in which our system is significantly better, and on the test set
for the 2-channel task, in which the GEV-BAN beamformer is significantly
better.

Let us then compare the performance of the GEV-BAN beamformer to that
of our systems with the iterative EM spatial updates. For the 6-channel task,
our system significantly outperforms the GEV-BAN beamformer on both
the development and the test sets. For the 4-channel task, our system also
outperforms the GEV-BAN beamformer on the development set. According
to the paired difference test, it is also significantly better (p = 0.001) on the
test set. Finally, on the 2-channel task, our system performs better than the
GEV-BAN beamformer on both the development and the test sets, but the
performance differences are not statistically significant.

Figure 5.2 shows example spectrograms of the outputs of the GEV-BAN
beamformer and our proposed system with the iterative EM spatial updates
for each of the three different tasks. The utterance is the same as the one in
Figures 3.10 and 4.3. Our system noticeably attenuates noise better than the
GEV-BAN beamformer, especially for the 2-channel task. Additionally, in the
particular example shown in Figure 5.2e, the GEV-BAN beamformer results
in an unusually high energy at around 0.5 s for almost all frequencies, due to
some discontinuity in the time-domain signal.

147

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(a) 6-channel: GEV-BAN

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(b) 6-channel: proposed

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(c) 4-channel: GEV-BAN

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(d) 4-channel: proposed

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(e) 2-channel: GEV-BAN

0.0 0.5 1.0 1.5 2.0 2.5

time (s)

0

1

2

3

4

5

6

7

8

fr
eq

u
en

cy
(k
H
z)

−120

−112

−104

−96

−88

−80

−72

−64

−56

−48

−40

d
B

(f) 2-channel: proposed

Figure 5.2: Example power spectrograms of the resulting single-channel
enhanced speech for all three different tasks by the GEV-BAN beamformer
and the proposed method with the iterative EM spatial updates. The
utterance (M05_440C0211_CAF) is taken from the real test set (et05_real).

5.10 Summary

This chapter presents aweighted spatial parameter estimation formula, which
is shown to outperform the exact EM formula, and aDNNbasedmultichannel
audio source separation framework. This framework employs DNNs for
estimating both spectral and spatial parameters with possibly additional
iterative EM spatial parameter updates. We show that DNNs are able to
provide a good estimation of the spatial parameters, i.e., the source spatial

148

covariance matrices. This is done by exploiting the Cholesky decomposition
of the input and output covariance matrices. We show that a spatial DNN is
effective for initializing the spatial parameters. We also consider an additional
DNN for updating the spatial parameters. For these spatial DNNs, we
experimented with different cost functions and found that the combination of
the MSE and the cosine distance outperforms the MSE or the cosine distance
alone. We also experimented with different architectures for spatial DNNs
and found that the architecture with a weighted averaging layer is better
than that with a simple averaging layer. In addition, the iterative EM spatial
parameter updates are still useful to improve the source spatial covariance
matrices and ultimately, the system performance.

This chapter also presents a performance comparison between our
proposed systems and the GEV-BAN beamformer of Heymann et al. [2017],
which achieved state-of-the-art performance for the task and the dataset we
consider. On the test set, the performance of our proposed system without
additional iterative EM spatial parameter is statistically similar to that of
the GEV-BAN beamformer on the 6-channel and the 4-channel tasks, but
significantly worse on the 2-channel task. The performance of our proposed
system with the iterative EM spatial parameter updates is always better than
that of the GEV-BAN beamformer on all three tasks and the performance
differences are statistically significant on the 6-channel and the 4-channel
tasks. Using these systems, we can provide relative 14%, 7%, and 1%
decreases of the WERs w.r.t. the GEV-BAN beamformer on the 6-channel,
the 4-channel, and the 2-channel tasks, respectively.

149

CHAPTER 6

Conclusions and perspectives

In this chapter, we summarize our study and discuss the potential extensions.

6.1 Conclusions

This thesis presented our study in addressing the problem of multichannel
audio source separation by exploiting deep neural networks (DNNs). In
doing so, we used the classical expectation-maximization (EM) based mul-
tichannel source separation framework [Duong et al., 2010a] as the basis.
This framework employs a multichannel Gaussian model, in which the
sources are characterized by their spectral parameters, i.e., the source power
spectral densities (PSDs), and their spatial parameters, i.e., the source spatial
covariance matrices. To put it simply, our study explores and optimizes the
use of DNNs for modeling these source PSDs and source spatial covariance
matrices. Employing these source spectral and spatial parameters, we derive
a time-varying multichannel Wiener filter for the separation of each source.
To the best of our knowledge, this is the first DNN based multichannel audio
source separation framework ever published and the only one to date that
employs a time-varying filter in the context of speech enhancement.

In Chapter 3, we described the first DNN based multichannel audio
source separation framework we proposed in our study. In this framework,
the spectral parameters are modeled by DNNs and the spatial parameters
are estimated iteratively as in the classical EM based framework. We then
assessed the impact of different design choices on the performance. These
design choices notably include multiple spatial parameter updates after
spectral parameter initialization and the use of multiple DNNs for estimating
the spectral parameters at different iterations. Experiments showed that
doing multiple spatial parameter updates before a spectral parameter update
provides better performance than alternating one spatial and one spectral
parameter updates, as in the classical EM framework. Experiments also

151

showed that different DNNs could be used for the spectral parameter update
of different iterations to improve the overall performance. Finally, we showed
that the proposed DNN based framework outperforms the multichannel non-
negative matrix factorization (NMF) based framework of Ozerov et al. [2012],
which achieved state-of-the-art performance for the considered CHiME
dataset [Barker et al., 2015; Vincent et al., 2017b] before the emergence of
deep learning. In terms of signal-to-distortion ratio (SDR), the DNN based
system provides an absolute 5.5 dB increase w.r.t. the NMF based system. In
terms of word error rate (WER), the DNN based system provides a relative
24% decrease.

In Chapter 4, we presented the impact of different spectral DNN design
choices on system performance. These design choices include different cost
functions, different time-frequency representations, different DNN archi-
tectures, and different DNN training data sizes. The Kullback-Leibler (KL)
divergence has shown to be the most reasonable choice because it performs
well in terms of both source separation and speech recognition metrics.
The probabilistically-motivated Itakura-Saito (IS) divergence performs well
in terms of speech recognition, but falls behind the other considered cost
functions in terms of source separation. Unfortunately, the newly proposed
task-oriented SDR cost function fails to significantly improve the source
separation performance compared to the simple mean squared error (MSE).
Nonetheless, it should be mentioned that this is one of the first uses of task-
oriented discriminative training in a multichannel scenario. We showed
that time-frequency representations based on the perceptually-motivated
equivalent rectangular bandwidth (ERB) scale are favorable. We also
showed that bidirectional long short-term memory (LSTM) based recurrent
neural networks (RNNs) perform better than feedforward neural networks
(FNNs), especially when training involves a large amount of data. We
then showed that data augmentation fails to overcome overfitting issues in
vocals-accompaniment separation. Nevertheless, our vocals-accompaniment
separation systems perform remarkably close to the DNN based system
of Uhlich et al. [2017], which achieved state-of-the-art performance on the
professionally-produced music recordings task of SiSEC 2016 [Liutkus et al.,
2017]. Our systems exhibit artifacts which are detrimental to the overall
distortion, but they are significantly better in removing the accompaniment
from the vocals, whichmay be favorable for a singing-voice estimation task. In
terms of signal-to-interference ratio (SIR) on the vocals, our systems provide
up to 2 dB increase w.r.t. Uhlich’s system.

152

In Chapter 5, we presented a weighted spatial parameter estimation
formula, which is a generalization of the exact EM formula, and described
the second DNN based multichannel audio source separation framework
we proposed in our study. In this framework, both the spectral and the
spatial parameters are initialized and updated by DNNs with possibly
additional iterative EM spatial parameter updates. We showed that DNNs
could provide a good estimation of the spatial parameters, i.e., the source
spatial covariance matrices, by exploiting the Cholesky decomposition of
the Hermitian positive-definitive covariance matrices. We experimented
with different cost functions, different architectures, and different input
settings for these spatial DNNs. We showed that the newly proposed cost
function combining the MSE and the cosine distance performs well. We
also showed that additional iterative EM spatial parameter updates are still
useful to improve the source spatial covariance matrices. Finally, this chapter
presents a performance comparison between our proposed systems and
generalized eigenvalue (GEV) beamformer with blind analytic normalization
(BAN) beamforming of Heymann et al. [2017], which achieved state-of-the-art
performance on the CHiME dataset [Barker et al., 2015; Vincent et al., 2017b].
On the real test set, our system provides relative 14%, 7%, and 1% decreases of
the WERs w.r.t. the GEV-BAN beamformer for the 6-channel, the 4-channel,
and the 2-channel tasks, respectively. This difference is statistically significant
for the 6-channel and the 4-channel tasks.

To sum up, we have proposed two DNN based multichannel audio source
separation frameworks in this thesis. The classical iterative framework based
on the multichannel Gaussian model is used as the basis of the two proposed
frameworks. The first proposed framework exploits DNNs for modeling the
spectral parameters of themultichannel Gaussianmodel, i.e., the source PSDs.
We then extend this first framework by also exploitingDNNs formodeling the
spatial parameters of the model, i.e., the source spatial covariance matrices,
resulting in the second proposed framework. Despite some differences in the
details, in general, the second framework accommodates the first framework.
Thus, we may claim that the main contribution of this thesis is a unified
framework for DNN based multichannel audio source separation based on
the multichannel Gaussian model.

Parts of this thesis have been published in the following journal articles
and conference papers.

• Journal articles

153

– Nugraha, A. A., Liutkus, A., & Vincent, E. (2016). Multichannel
audio source separation with deep neural networks. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 24(9), 1652–
1664.

– Vincent, E., Watanabe, S., Nugraha, A. A., Barker, J., & Marxer,
R. (2016). An analysis of environment, microphone and data
simulation mismatches in robust speech recognition. Computer
Speech & Language, 46, 535-557.

• Conference papers

– Nugraha, A. A., Liutkus, A., & Vincent, E. (2016). Multichannel
music separation with deep neural networks. In Proceedings of
European Signal Processing Conference (EUSIPCO) (pp. 1748–1752).
Budapest, Hungary.

– Sivasankaran, S., Nugraha, A. A., Vincent, E., Morales-Cordovilla,
J. A., Dalmia, S., Illina, I., & Liutkus, A. (2015). Robust ASR using
neural network based speech enhancement and feature simulation.
In Proceedings of IEEEWorkshop on Automatic Speech Recognition and
Understanding (ASRU) (pp. 482–489). Scottsdale, USA.

6.2 Perspectives

Building upon the study presented in this thesis, the following directions
might be considered in the future.

Integrated training of spectral and spatial DNNs

For the experiments presented in Chapter 5, we trained spectral and spatial
DNNs separately by minimizing different cost functions. We could then fine-
tune both spectral and spatial DNNs in an integrated manner. The objective
of fine-tuning could be minimizing the error of the multichannel Wiener filter
or even further, maximizing the SDR as in the multichannel task-oriented cost
function proposed in Section 4.2.2. This integrated training would resemble
the deep unfolding approach [Le Roux et al., 2015; Wisdom et al., 2016].

154

Different datasets and/or tasks

It would be interesting to evaluate the frameworks presented in this thesis
on other datasets than the CHiME dataset and the Demixing Secrets Dataset.
Moreover, from our data augmentation experiments in Section 4.5.2.3, we
concluded that the source separation performance is bounded by the dataset
and deriving additional training data from this dataset is not effective to
improve the performance. It would be valuable if we can verify this statement
by doing the same experiments on a bigger dataset.

It would also be interesting ifwe can evaluate the proposed frameworks for
some tasks other than speech enhancement for automatic speech recognition
(ASR), vocals-accompaniment separation, and vocals-instruments separation,
such as sound scene identification [Richard et al., 2017] and automatic melody
transcription [Benetos et al., 2013]. Considering other tasks also opens the
opportunity to explore and assess novel task-oriented cost functions for DNN
training.

Separation of moving audio sources

Recall that thewhole study presented in this thesis considers themultichannel
Gaussian model in (2.5.2.1). In this model, each source is characterized by
a time-varying PSD and time-invariant spatial covariance matrices, which
implies that each source does not move during a given recording (but it
can be at different positions in different recordings). When we consider the
separation of moving audio sources, time-varying spatial covariance matrices
have to be considered. Several studies, such as Duong et al. [2011] and
Kounades-Bastian et al. [2016], have proposed iterative EM algorithms to
estimate these time-varying spatial parameters. We could build upon these
studies to explore the use of DNNs in the context of multichannel audio
source separation for moving sources. From our experiments in Section
5.6, we may claim that we can substitute the iterative EM spatial parameter
updates by a single DNNspat

0 to obtain a similar performance. It would be
important to investigate whether this also applies when the estimated spatial
parameters are time-varying. If so, the DNN based systems would be more
appealing than the iterative algorithm based system, e.g., in the development
of commercial products where reducing the testing time is essential.

One of the important questions is how to determine the DNN training
targets. To be reliable, the spatial parameters should be estimated from
several input frames. The time-invariant spatial parameters in Section 5.5 are

155

estimated from the whole utterance. For the time-varying spatial parameters,
we might want to consider a sliding window or a growing window, that
starts from the beginning to the current frame. When the latter is used, some
weighting mechanism might be considered, e.g., to give more importance to
the recent frames.

Real-time multichannel audio source separation

Following the above discussion about commercial product development,
online processing [Togami, 2011; Simon & Vincent, 2012] is also an essential
matter. For this purpose, time-varying spatial parameters should be used,
even when the sources are not moving. Thus, we have to overcome the
same above challenge in determining the DNN training targets. Additionally,
we have to use part of unidirectional networks instead of the bidirectional
networks as in this thesis.

Robust speech enhancement integrating noise reduction, dereverberation,
and echo cancellation

Smart voice-controlled speakers, such as Amazon Echo1, Apple Homepod2,
and Google Home3, are getting popular recently. Since these devices might
be placed in any room or environment, they should include a speech
enhancement system that is robust to various environmental noises and
room reverberations. As the name implies, these devices are equipped with
one or more microphones and loudspeakers. The microphones will surely
capture the sound emitted by the loudspeakers. Thus, these devices should
also include a good echo canceler. Following this demand, research towards
integrating noise reduction, dereverberation, and echo cancellation should
be done. Studies toward this direction include Togami & Kawaguchi [2014]
and Doire et al. [2017].

Separation of multiple audio sources with the same type

Throughout this study, we addressed the problem of separating audio
sources with different types, i.e., speech and noise in a speech enhancement
task; singing-voice and music accompaniment in a vocals-accompaniment
separation task. A more challenging problem is the separation of audio

1See https://www.amazon.com/oc/echo.
2See https://www.apple.com/homepod.
3See https://madeby.google.com/home.

156

https://www.amazon.com/oc/echo
https://www.apple.com/homepod
https://madeby.google.com/home

sources with the same type, e.g., separating multiple overlapping speakers.
Themain challenge comes from the fact that the spectral properties of different
sources with the same type, e.g., human speech, are similar. This challenge
might be alleviated by exploiting spatial properties since different sources
might be spatially separated. This suggests that multichannel features would
be useful for spectral DNNs and thus, they are should also be explored.
Studies toward this direction include Heittola et al. [2013] and Hershey et al.
[2016].

Audio source separation with distributed microphone arrays

Another challenging problemwould bemultichannel audio source separation
with distributed microphone arrays. The main challenge is to combine the
information from different arrays, since the synchronization between arrays
could not be ensured and information exchange between arrays would be
limited. Studies toward this direction include Markovich-Golan et al. [2015]
and Tavakoli et al. [2016].

157

Bibliography

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann machines. Cognitive Science, 9(1), 147–169.

Allen, J. (1977). Short term spectral analysis, synthesis, and modification by discrete
Fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing,
25(3), 235–238.

Anguera, X., Wooters, C., & Hernando, J. (2007). Acoustic beamforming for
speaker diarization of meetings. IEEE Transactions on Audio, Speech, and Language
Processing, 15(7), 2011–2022.

Araki, S., Hayashi, T., Delcroix, M., Fujimoto, M., Takeda, K., & Nakatani, T.
(2015). Exploring multi-channel features for denoising-autoencoder-based speech
enhancement. In Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (pp. 116–120). Brisbane, Australia.

Araki, S. & Nakatani, T. (2011). Hybrid approach for multichannel source separation
combining time-frequency mask with multi-channel wiener filter. In Proceedings of
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(pp. 225–228). Prague, Czech Republic.

Atal, B. S. (1974). Effectiveness of linear prediction characteristics of the speech wave
for automatic speaker identification and verification. The Journal of the Acoustical
Society of America, 55(6), 1304–1312.

Badeau, R. & Virtanen, T. (2017). Nonnegative matrix factorization. In E. Vincent,
T. Virtanen, & S. Gannot (Eds.), Audio Source Separation and Speech Enhancement
chapter 8. Wiley.

Bahl, L., Brown, P., de Souza, P., & Mercer, R. (1986). Maximum mutual information
estimation of hidden markov model parameters for speech recognition. In Pro-
ceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 11 (pp. 49–52). Tokyo, Japan.

Barker, J. (2012). Missing-data techniques: Recognition with incomplete spectro-
grams. In T. Virtanen, R. Singh, & B. Raj (Eds.), Techniques for Noise Robustness in
Automatic Speech Recognition chapter 14. Wiley.

Barker, J., Marxer, R., Vincent, E., & Watanabe, S. (2015). The third ‘CHiME’ speech
separation and recognition challenge: Dataset, task and baselines. In Proceedings
of IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) (pp.
504–511). Scottsdale, USA.

159

Benesty, J., Chen, J., & Huang, Y. (2008). Microphone Array Signal Processing. Springer.

Benesty, J., Makino, S., & Chen, J. (2005). Speech Enhancement. Springer.

Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., & Klapuri, A. (2013). Automatic
music transcription: challenges and future directions. Journal of Intelligent
Information Systems, 41(3), 407–434.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep
architectures. In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural Networks:
Tricks of the Trade, volume 7700 of Lecture Notes in Computer Science chapter 19, (pp.
437–478). Springer.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). Greedy layer-wise
training of deep networks. In Proceedings of the Conference on Neural Information
Processing Systems (NIPS) (pp. 153–160). Vancouver, Canada.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian,
J., Warde-Farley, D., & Bengio, Y. (2010). Theano: a CPU and GPUmath expression
compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy)
Austin, USA. Oral presentation.

Bertin, N., Févotte, C., & Badeau, R. (2009). A tempering approach for Itakura-
Saito non-negative matrix factorization. with application to music transcription.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (pp. 1545–1548). Taipei, Taiwan.

Blandin, C., Ozerov, A., & Vincent, E. (2012). Multi-source TDOA estimation in
reverberant audio using angular spectra and clustering. Signal Processing, 92(8),
1950–1960.

Bofill, P. & Zibulevsky, M. (2001). Underdetermined blind source separation using
sparse representations. Signal Processing, 81(11), 2353–2362.

Boll, S. (1979). Suppression of acoustic noise in speech using spectral subtraction.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(2), 113–120.

Bourlard, H. & Kamp, Y. (1988). Auto-association by multilayer perceptrons and
singular value decomposition. Biological Cybernetics, 59(4), 291–294.

Brandstein, M. & Ward, D., Eds. (2001). Microphone Arrays: Signal Processing
Techniques and Applications. Springer.

Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound.
MIT Press.

Brown, G. J. & Cooke, M. (1994). Computational auditory scene analysis. Computer
Speech & Language, 8(4), 297–336.

Brown, G. J. & Wang, D. (2005). Separation of speech by computational auditory
scene analysis. In Speech Enhancement chapter 16, (pp. 371–402). Springer.

160

Cano, E., FitzGerald, D., & Brandenburg, K. (2016). Evaluation of quality of sound
source separation algorithms: Human perception vs quantitative metrics. In
Proceedings of European Signal Processing Conference (EUSIPCO) (pp. 1758–1762).
Budapest, Hungary.

Cartwright, M., Pardo, B., Mysore, G. J., & Hoffman, M. (2016). Fast and easy
crowdsourced perceptual audio evaluation. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 619–623).
Shanghai, China.

Chen, S. F. & Goodman, J. (1996). An empirical study of smoothing techniques
for language modeling. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (pp. 310–318). Santa Cruz, USA.

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.

Chung, J., Gülçehre, Ç., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv e-prints. Presented in
NIPS 2014 Deep Learning and Representation Learning Workshop.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing,
36(3), 287–314.

Cornelis, B., Moonen, M., &Wouters, J. (2011). Performance analysis of multichannel
wiener filter-based noise reduction in hearing aids under second order statistics
estimation errors. IEEE Transactions on Audio, Speech, and Language Processing,
19(5), 1368–1381.

Crochiere, R. (1980). A weighted overlap-add method of short-time Fourier
analysis/synthesis. IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(1), 99–102.

Davis, S. & Mermelstein, P. (1980). Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357–366.

Delfarah, M. & Wang, D. (2017). Features for masking-based monaural speech
separation in reverberant conditions. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 25(5), 1085–1094.

Deng, L. (2014). Deep learning: Methods and applications. Foundations and Trends®
in Signal Processing, 7(3-4), 197–387.

Deng, L., Acero, A., Jiang, L., Droppo, J., & Huang, X. (2001). High-performance
robust speech recognition using stereo training data. In Proceedings of IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 1
(pp. 301–304). Salt Lake City, USA.

161

https://github.com/fchollet/keras

Deng, L. & O’Shaughnessy, D. (2003). Speech Processing: A Dynamic and Optimization-
Oriented Approach. CRC Press.

Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby, S. K., Nouri, D., et al. (2015).
Lasagne: First release. http://dx.doi.org/10.5281/zenodo.27878.

Doclo, S., Kellermann, W., Makino, S., & Nordholm, S. E. (2015). Multichannel signal
enhancement algorithms for assisted listening devices: Exploiting spatial diversity
using multiple microphones. IEEE Signal Processing Magazine, 32(2), 18–30.

Doire, C. S. J., Brookes, M., Naylor, P. A., Hicks, C. M., Betts, D., Dmour, M. A., &
Jensen, S. H. (2017). Single-channel online enhancement of speech corrupted by
reverberation and noise. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 25(3), 572–587.

Droppo, J., Acero, A., & Deng, L. (2002). Uncertainty decoding with SPLICE for
noise robust speech recognition. In Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), volume 1 (pp. I–57–I–60).
Orlando, USA.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12,
2121–2159.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., & Garcia, R. (2000). Incorporating
second-order functional knowledge for better option pricing. In Proceedings of the
Conference on Neural Information Processing Systems (NIPS) (pp. 472–478). Denver,
USA.

Duong, N. Q. K., Tachibana, H., Vincent, E., Ono, N., Gribonval, R., & Sagayama,
S. (2011). Multichannel harmonic and percussive component separation by joint
modeling of spatial and spectral continuity. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 205–208).
Prague, Czech Republic.

Duong, N. Q. K., Vincent, E., & Gribonval, R. (2010a). Under-determined reverberant
audio source separation using a full-rank spatial covariance model. IEEE
Transactions on Audio, Speech, and Language Processing, 18(7), 1830–1840.

Duong, N. Q. K., Vincent, E., & Gribonval, R. (2010b). Under-determined reverberant
audio source separation using local observed covariance and auditory-motivated
time-frequency representation. In Proceedings of the International Conference on
Latent Variable Analysis and Signal Separation (pp. 73–80). Saint-Malo, France.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.

162

http://dx.doi.org/10.5281/zenodo.27878

Emiya, V., Vincent, E., Harlander, N., & Hohmann, V. (2011). Subjective and objective
quality assessment of audio source separation. IEEE Transactions on Audio, Speech,
and Language Processing, 19(7), 2046–2057.

Ephraim, Y. &Malah, D. (1984). Speech enhancement using aminimum-mean square
error short-time spectral amplitude estimator. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 32(6), 1109–1121.

Erdogan, H., Hershey, J. R., Watanabe, S., & Le Roux, J. (2015). Phase-sensitive and
recognition-boosted speech separation using deep recurrent neural networks.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (pp. 708–712). Brisbane, Australia.

Erdogan, H., Hershey, J. R., Watanabe, S., Mandel, M. I., & Roux, J. L. (2016).
Improved MVDR beamforming using single-channel mask prediction networks.
In Proceedings of INTERSPEECH (pp. 1981–1985). San Francisco, USA.

Ewert, S., Pardo, B., Mueller, M., & Plumbley, M. D. (2014). Score-informed source
separation for musical audio recordings: An overview. IEEE Signal Processing
Magazine, 31(3), 116–124.

Févotte, C., Bertin, N., & Durrieu, J.-L. (2009). Nonnegative matrix factorization
with the Itakura-Saito divergence: With application to music analysis. Neural
Computation, 21(3), 793–830.

Févotte, C. & Idier, J. (2011). Algorithms for nonnegative matrix factorization with
the β-divergence. Neural Computation, 23(9), 2421–2456.

Févotte, C. & Ozerov, A. (2010). Notes on nonnegative tensor factorization of the
spectrogram for audio source separation: statistical insights and towards self-
clustering of the spatial cues. In Proceedings of International Symposium on Computer
Music Modeling and Retrieval (pp. 102–115). Málaga, Spain.

Fiscus, J. G. (1997). A post-processing system to yield reduced word error rates:
Recognizer Output Voting Error Reduction (ROVER). In Proceedings of IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU) (pp. 347–354).
Santa Barbara, USA.

Frey, B. J., Kristjansson, T. T., Deng, L., & Acero, A. (2001). Algonquin - learning
dynamic noise models from noisy speech for robust speech recognition. In
Proceedings of the Conference on Neural Information Processing Systems (NIPS) (pp.
1165–1171). Vancouver, Canada.

Fujimoto, M. & Nakatani, T. (2016). Multi-pass feature enhancement based on
generative-discriminative hybrid approach for noise robust speech recognition.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (pp. 5750–5754). Shanghai, China.

163

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36(4), 193–202.

Gales, M. & Young, S. (2008). The application of hidden markov models in speech
recognition. Foundations and Trends® in Signal Processing, 1(3), 195–304.

Gales, M. J. F. (1998). Maximum likelihood linear transformations for hmm-based
speech recognition. Computer Speech & Language, 12(2), 75–98.

Gannot, S., Vincent, E., Markovich-Golan, S., & Ozerov, A. (2017). A consolidated
perspective on multimicrophone speech enhancement and source separation.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(4), 692–730.

Garofalo, J., Graff, D., Paul, D., &Pallett, D. (2007). CSR-I (WSJ0) Complete LDC93S6A.
DVD. Philadelphia: Linguistic Data Consortium.

Gerkmann, T. & Vincent, E. (2017). Spectral masking and filtering. In E. Vincent,
T. Virtanen, & S. Gannot (Eds.), Audio Source Separation and Speech Enhancement
chapter 5. Wiley.

Gillick, L. & Cox, S. J. (1989). Some statistical issues in the comparison of speech
recognition algorithms. In Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), volume 1 (pp. 532–535). Glasgow, UK.

Glasberg, B. R. & Moore, B. C. J. (1990). Derivation of auditory filter shapes from
notched-noise data. Hearing Research, 47(1), 103–138.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of International Conference on Artificial
Intelligence and Statistics (AISTATS) (pp. 249–256). Sardinia, Italy.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier networks. In Pro-
ceedings of International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 15 (pp. 315–323). Fort Lauderdale, FL, USA.

Goel, V. & Byrne, W. J. (2000). Minimum bayes-risk automatic speech recognition.
Computer Speech & Language, 14(2), 115–135.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Gopinath, R. A. (1998). Maximum likelihood modeling with gaussian distributions
for classification. InProceedings of IEEE International Conference onAcoustics, Speech,
and Signal Processing (ICASSP), volume 2 (pp. 661–664). Seattle, USA.

Grais, E. M., Roma, G., Simpson, A. J., & Plumbley, M. D. (2016). Combining mask
estimates for single channel audio source separation using deep neural networks.
In Proceedings of INTERSPEECH San Francisco, USA.

164

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Grais, E. M., Roma, G., Simpson, A. J. R., & Plumbley, M. D. (2017). Two-stage
single-channel audio source separation using deep neural networks. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 25(9), 1469–1479.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017).
LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning
Systems, PP(99), 1–11.

Griffin, D. & Lim, J. (1984). Signal estimation from modified short-time Fourier
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2), 236–
243.

Gulcehre, C.,Moczulski, M., Denil, M., &Bengio, Y. (2016). Noisy activation functions.
In Proceedings of the International Conference on Machine Learning (ICML) (pp. 3059–
3068). New York, USA.

Gur, M. B. & Niezrecki, C. (2009). A source separation approach to enhancing marine
mammal vocalizations. The Journal of the Acoustical Society of America, 126(6), 3062–
3070.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. arXiv e-prints. http://
arxiv.org/abs/1502.01852.

Heittola, T., Mesaros, A., Virtanen, T., & Gabbouj, M. (2013). Supervised model
training for overlapping sound events based on unsupervised source separation.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (pp. 8677–8681). Vancouver, Canada.

Herdin, M., Czink, N., Ozcelik, H., & Bonek, E. (2005). Correlation matrix
distance, a meaningful measure for evaluation of non-stationary MIMO channels.
In Proceedings of IEEE Vehicular Technology Conference, volume 1 (pp. 136–140).
Stockholm, Sweden.

Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. The
Journal of the Acoustical Society of America, 87(4), 1738–1752.

Hershey, J., Chen, Z., Le Roux, J., & Watanabe, S. (2016). Deep clustering:
Discriminative embeddings for segmentation and separation. In Proceedings of
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(pp. 31–35). Shanghai, China.

Heymann, J., Drude, L., & Haeb-Umbach, R. (2016). Neural network based spectral
mask estimation for acoustic beamforming. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 196–200).
Shanghai, China.

165

http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852

Heymann, J., Drude, L., & Haeb-Umbach, R. (2017). A generic neural acoustic
beamforming architecture for robust multi-channel speech processing. Computer
Speech & Language, 46, 374–385.

Himawan, I., Motlicek, P., Imseng, D., Potard, B., Kim, N., & Lee, J. (2015). Learning
feature mapping using deep neural network bottleneck features for distant large
vocabulary speech recognition. In Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 4540–4544). Brisbane,
Australia.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T., & Kingsbury, B. (2012). Deep neural networks for
acousticmodeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6), 82–97.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780.

Hori, T., Chen, Z., Erdogan, H., Hershey, J. R., Roux, J. L., Mitra, V., & Watanabe, S.
(2015). The MERL/SRI system for the 3rd CHiME challenge using beamforming,
robust feature extraction, and advanced speech recognition. In Proceedings of IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU) (pp. 475–481).
Scottsdale, USA.

Huang, P.-S., Kim,M., Hasegawa-Johnson,M., & Smaragdis, P. (2014a). Deep learning
for monaural speech separation. In Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (pp. 1562–1566). Florence, Italy.

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., & Smaragdis, P. (2014b). Singing-
voice separation from monaural recordings using deep recurrent neural networks.
In Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR) (pp. 477–482). Taipei, Taiwan.

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., & Smaragdis, P. (2015). Joint
optimization of masks and deep recurrent neural networks for monaural source
separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
23(12), 2136–2147.

Hummersone, C., Stokes, T., & Brookes, T. (2014). On the ideal ratio mask as the goal
of computational auditory scene analysis. In G. R. Naik & W. Wang (Eds.), Blind
Source Separation: Advances in Theory, Algorithms and Applications (pp. 349–368).
Springer.

Hyvärinen, A. & Oja, E. (2000). Independent component analysis: algorithms and
applications. Neural Networks, 13(4), 411–430.

166

Ishii, T., Komiyama, H., Shinozaki, T., Horiuchi, Y., & Kuroiwa, S. (2013). Rever-
berant speech recognition based on denoising autoencoder. In Proceedings of
INTERSPEECH (pp. 3512–3516). Lyon, France.

Itakura, F. & Saito, S. (1968). Analysis synthesis telephony based on the maximum
likelihood method. In Proceedings of International Congress on Acoustics (pp. C–17 –
C–20). Tokyo, Japan.

ITU (2015). Recommendation ITU-R BS.1534-3: Method for the subjective assessment
of intermediate quality level of audio systems.

Izenman, A. J. (2008). Linear discriminant analysis. InModern Multivariate Statistical
Techniques: Regression, Classification, andManifold Learning chapter 8, (pp. 237–280).
Springer.

Jaureguiberry, X., Vincent, E., & Richard, G. (2016). Fusion methods for speech
enhancement and audio source separation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 24(7), 1266–1279.

Jensen, J. & Hendriks, R. C. (2012). Spectral magnitude minimum mean-square
error estimation using binary and continuous gain functions. IEEE Transactions
on Audio, Speech, and Language Processing, 20(1), 92–102.

Jiang, Y., Wang, D., Liu, R., & Feng, Z. (2014). Binaural classification for reverberant
speech segregation using deep neural networks. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 22(12), 2112–2121.

Jourjine, A., Rickard, S., & Yilmaz, O. (2000). Blind separation of disjoint orthogonal
signals: demixing N sources from 2 mixtures. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 5 (pp. 2985–
2988). Istanbul, Turkey.

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration
of recurrent network architectures. In Proceedings of International Conference on
Machine Learning (ICML) (pp. 2342–2350). Lille, France.

Juang, B. H. (2016). Deep neural networks – a developmental perspective. APSIPA
Transactions on Signal and Information Processing, 5.

Kang, T. G., Kwon, K., Shin, J. W., & Kim, N. S. (2015). NMF-based target source
separation using deep neural network. IEEE Signal Processing Letters, 22(2), 229–
233.

Karanasou, P., Wu, C., Gales, M., & Woodland, P. C. (2017). I-vectors and structured
neural networks for rapid adaptation of acoustic models. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 25(4), 818–828.

167

Kim, T., Attias, H. T., Lee, S. Y., & Lee, T. W. (2007). Blind source separation exploiting
higher-order frequency dependencies. IEEE Transactions on Audio, Speech, and
Language Processing, 15(1), 70–79.

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
e-prints. http://arxiv.org/abs/1412.6980.

Knapp, C. & Carter, G. (1976). The generalized correlation method for estimation
of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(4),
320–327.

Kneser, R. & Ney, H. (1995). Improved backing-off for M-gram language modeling.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 1 (pp. 181–184). Detroit, USA.

Koning, R., Madhu, N., & Wouters, J. (2015). Ideal time-frequency masking
algorithms lead to different speech intelligibility and quality in normal-hearing
and cochlear implant listeners. IEEE Transactions on Biomedical Engineering, 62(1),
331–341.

Kounades-Bastian, D., Girin, L., Alameda-Pineda, X., Gannot, S., & Horaud, R. (2016).
A variational EM algorithm for the separation of time-varying convolutive audio
mixtures. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(8),
1408–1423.

Kullback, S. & Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1), 79–86.

Kumatani, K., McDonough, J., & Raj, B. (2012). Microphone array processing for
distant speech recognition: From close-talking microphones to far-field sensors.
IEEE Signal Processing Magazine, 29(6), 127–140.

Kuttruff, H. (2014). Room Acoustics. CRC Press, 5th edition.

Le Roux, J., Hershey, J. R., & Weninger, F. (2015). Deep NMF for speech separation.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (pp. 66–70). Brisbane, Australia.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Lecun, Y., Bottou, L., Bengio, Y., &Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lee, D. D. & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755), 788–791.

Lee, D. D. & Seung, H. S. (2000). Algorithms for non-negative matrix factorization. In
Proceedings of the Conference on Neural Information Processing Systems (pp. 556–562).
Denver, USA.

168

http://arxiv.org/abs/1412.6980

Lee, I., Kim, T., & Lee, T.-W. (2007). Fast fixed-point independent vector analysis
algorithms for convolutive blind source separation. Signal Processing, 87(8), 1859–
1871.

Lefèvre, A., Bach, F., & Févotte, C. (2011). Online algorithms for nonnegative matrix
factorization with the Itakura-Saito divergence. In Proceedings of IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA) (pp. 313–316).
New Paltz, NY, USA.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(8).

Li, H., Nie, S., Zhang, X., & Zhang, H. (2016). Jointly optimizing activation
coefficients of convolutive NMF using DNN for speech separation. In Proceedings
of INTERSPEECH (pp. 550–554). San Francisco, USA.

Li, J., Deng, L., Gong, Y., & Haeb-Umbach, R. (2014). An overview of noise-
robust automatic speech recognition. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 22(4), 745–777.

Liao, H. & Gales, M. J. F. (2005). Joint uncertainty decoding for noise robust speech
recognition. In Proceedings of INTERSPEECH (pp. 3129–3132). Lisbon, Portugal.

Lim, J. S. & Oppenheim, A. V. (1979). Enhancement and bandwidth compression of
noisy speech. Proceedings of the IEEE, 67(12), 1586–1604.

Lippmann, R., Martin, E., & Paul, D. (1987). Multi-style training for robust
isolated-word speech recognition. In Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), volume 12 (pp. 705–708). Dallas,
USA.

Liu, D., Smaragdis, P., & Kim, M. (2014). Experiments on deep learning for speech
denoising. In Proceedings of INTERSPEECH (pp. 2685–2688). Singapore.

Liutkus, A. & Badeau, R. (2015). Generalized wiener filtering with fractional power
spectrograms. In Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (pp. 266–270). Brisbane, Australia.

Liutkus, A., Fitzgerald, D., & Badeau, R. (2015a). Cauchy nonnegative matrix
factorization. In Proceedings of IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA) (pp. 1–5). New Paltz, USA.

Liutkus, A., Fitzgerald, D., & Rafii, Z. (2015b). Scalable audio separation with
light kernel additive modelling. In Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (pp. 76–80). Brisbane, Australia.

Liutkus, A., Fitzgerald, D., Rafii, Z., Pardo, B., & Daudet, L. (2014). Kernel additive
models for source separation. IEEE Transactions on Signal Processing, 62(16), 4298–
4310.

169

Liutkus, A. & Leveau, P. (2010). Separation of music+effects sound track from several
international versions of the same movie. In Proceedings of Audio Engineering
Society (AES) Convention (pp. 1–15). San Francisco, USA.

Liutkus, A., Stöter, F.-R., Rafii, Z., Kitamura, D., Rivet, B., Ito, N., Ono, N., & Fontecave,
J. (2017). The 2016 signal separation evaluation campaign. In Proceedings of the
International Conference on Latent Variable Analysis and Signal Separation (pp. 323–
332). Grenoble, France.

Loesch, B. & Yang, B. (2010). Adaptive segmentation and separation of determined
convolutive mixtures under dynamic conditions. In Proceedings of the International
Conference on Latent Variable Analysis and Signal Separation (pp. 41–48). Saint-Malo,
France.

Loizou, P. C. (2007). Speech Enhancement: Theory and Practice. CRC Press.

Madhu, N., Spriet, A., Jansen, S., Koning, R., & Wouters, J. (2013). The potential
for speech intelligibility improvement using the ideal binary mask and the ideal
wiener filter in single channel noise reduction systems: Application to auditory
prostheses. IEEE Transactions on Audio, Speech, and Language Processing, 21(1), 63–
72.

Makino, S., Sawada, H., & Lee, T.-W., Eds. (2007). Blind Speech Separation. Springer.

Markovich-Golan, S., Bertrand, A., Moonen, M., & Gannot, S. (2015). Optimal
distributed minimum-variance beamforming approaches for speech enhancement
in wireless acoustic sensor networks. Signal Processing, 107, 4–20.

Markovich-Golan, S., Kellermann, W., & Gannot, S. (2017). Spatial filtering. In
E. Vincent, T. Virtanen, & S. Gannot (Eds.), Audio Source Separation and Speech
Enhancement chapter 10. Wiley.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of box plots. The American
Statistician, 32(1), 12–16.

Miao, Y., Zhang, H., & Metze, F. (2015). Speaker adaptive training of deep neural
network acoustic models using i-vectors. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 23(11), 1938–1949.

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010). Recurrent
neural network based language model. In Proceedings of INTERSPEECH (pp. 1045–
1048). Makuhari, Japan.

Montana, D. J. &Davis, L. (1989). Training feedforward neural networks using genetic
algorithms. In Proceedings of International Joint Conferences on Artificial Intelligence
(IJCAI), volume 89 (pp. 762–767). Detroit, USA.

170

Mysore, G. J. & Smaragdis, P. (2011). A non-negative approach to semi-supervised
separation of speech from noise with the use of temporal dynamics. In Proceedings
of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(pp. 17–20). Prague, Czech Republic.

Naik, G. R. & Wang, W., Eds. (2014). Blind Source Separation: Advances in Theory,
Algorithms and Applications. Springer.

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the International Conference onMachine Learning (ICML)
(pp. 807–814). Haifa, Israel.

Nakatani, T., Araki, S., Yoshioka, T., Delcroix, M., & Fujimoto, M. (2013). Dominance
based integration of spatial and spectral features for speech enhancement. IEEE
Transactions on Audio, Speech, and Language Processing, 21(12), 2516–2531.

Narayanan, A. & Wang, D. (2013). Ideal ratio mask estimation using deep neural
networks for robust speech recognition. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 7092–7096).
Vancouver, Canada.

Narayanan, A. & Wang, D. (2015). Improving robustness of deep neural network
acoustic models via speech separation and joint adaptive training. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 23(1), 92–101.

Nesterov, Y. (1983). A method of solving a convex programming problem with
convergence rate O (1/k2). Soviet Mathematics Doklady, 27(2), 372–376.

Nugraha, A. A., Liutkus, A., & Vincent, E. (2016a). Multichannel audio source
separation with deep neural networks. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 24(9), 1652–1664.

Nugraha, A. A., Liutkus, A., & Vincent, E. (2016b). Multichannel music separation
with deep neural networks. In Proceedings of European Signal Processing Conference
(EUSIPCO) (pp. 1748–1752). Budapest, Hungary.

Nugraha, A. A., Yamamoto, K., & Nakagawa, S. (2014). Single-channel derever-
beration by feature mapping using cascade neural networks for robust distant
speaker identification and speech recognition. EURASIP Journal on Audio, Speech,
and Music Processing, 2014(13), 1–31.

Osako, K., Mitsufuji, Y., Singh, R., & Raj, B. (2017). Supervised monaural source
separation based on autoencoders. In Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 11–15). NewOrleans, USA.

Ozerov, A., Févotte, C., & Charbit, M. (2009). Factorial scaled hidden markov model
for polyphonic audio representation and source separation. In Proceedings of IEEE

171

Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (pp.
121–124). New Paltz, USA.

Ozerov, A., Vincent, E., & Bimbot, F. (2012). A general flexible framework for the
handling of prior information in audio source separation. IEEE Transactions on
Audio, Speech, and Language Processing, 20(4), 1118–1133.

Parra, L. & Spence, C. (2000). Convolutive blind separation of non-stationary sources.
IEEE Transactions on Speech and Audio Processing, 8(3), 320–327.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In Proceedings of the International Conference on Machine Learning
(ICML) (pp. 1310–1318). Atlanta, USA.

Poon, H. & Domingos, P. (2011). Sum-product networks: A new deep architecture. In
Proceedings of IEEE International Conference on Computer Vision (ICCV) Workshops
(pp. 689–690). Barcelona, Spain.

Potamitis, I. (2008). One-channel separation and recognition of mixtures of environ-
mental sounds: The case of bird-song classification in composite soundscenes. In
G. A. Tsihrintzis, M. Virvou, R. J. Howlett, & L. C. Jain (Eds.), New Directions in
Intelligent Interactive Multimedia (pp. 595–604). Springer.

Povey, D., Kuo, H.-K. J., & Soltau, H. (2008). Fast speaker adaptive training for speech
recognition. In Proceedings of INTERSPEECH (pp. 1245–1248). Brisbane, Australia.

Prechelt, L. (2012). Early stopping – but when? In G. Montavon, G. B. Orr, & K.-R.
Müller (Eds.),Neural Networks: Tricks of the Trade (pp. 53–67). Springer, 2nd edition.

Rabiner, L. & Juang, B.-H. (1993). Fundamentals of Speech Recognition. Prentice-Hall.

Rabiner, L. R. & Schafer, R. W. (2007). Introduction to digital speech processing.
Foundations and Trends® in Signal Processing, 1(1–2), 1–194.

Raj, B. & Stern, R. M. (2005). Missing-feature approaches in speech recognition. IEEE
Signal Processing Magazine, 22(5), 101–116.

Richard, G., Virtanen, T., Bello, J. P., Ono, N., & Glotin, H. (2017). Introduction to
the special section on sound scene and event analysis. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 25(6), 1169–1171.

Rivet, B., Wang, W., Naqvi, S. M., & Chambers, J. A. (2014). Audiovisual speech
source separation: An overview of key methodologies. IEEE Signal Processing
Magazine, 31(3), 125–134.

Rojas, R. (1996). Neural Networks: A Systematic Introduction. Springer.

Roman, N., Wang, D., & Brown, G. J. (2003). Speech segregation based on sound
localization. The Journal of the Acoustical Society of America, 114(4), 2236–2252.

172

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65, 386–408.

Rosenfeld, R. (2000). Two decades of statistical language modeling: where do we go
from here? Proceedings of the IEEE, 88(8), 1270–1278.

Roweis, S. T. (2003). Factorial models and refiltering for speech separation and
denoising. In Proceedings of EUROSPEECH (pp. 1009–1012). Geneva, Switzerland.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533–536.

Sainath, T. N., Weiss, R. J., Wilson, K. W., Li, B., Narayanan, A., Variani, E., Bacchiani,
M., Shafran, I., Senior, A., Chin, K., Misra, A., & Kim, C. (2017). Multichannel
signal processing with deep neural networks for automatic speech recognition.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(5), 965–979.

Salaün, Y., Vincent, E., Bertin, N., Souviraà-Labastie, N., Jaureguiberry, X., Tran, D. T.,
& Bimbot, F. (2014). The Flexible Audio Source Separation Toolbox Version 2.0.
Show & Tell of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). https://hal.inria.fr/hal-00957412.

Samarakoon, L. & Sim, K. C. (2016). Factorized hidden layer adaptation for deep
neural network based acoustic modeling. IEEE/ACMTransactions on Audio, Speech,
and Language Processing, 24(12), 2241–2250.

Sawada, H., Kameoka, H., Araki, S., & Ueda, N. (2013). Multichannel extensions of
non-negative matrix factorization with complex-valued data. IEEE Transactions
on Audio, Speech, and Language Processing, 21(5), 971–982.

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv e-prints. http://
arxiv.org/abs/1312.6120.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117.

Schuster, M. & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11), 2673–2681.

Senior, M. (2011). Mixing secrets for the small studio. Focal Press.

Serizel, R., Moonen, M., Dijk, B. V., & Wouters, J. (2014). Low-rank approximation
based multichannel wiener filter algorithms for noise reduction with application
in cochlear implants. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 22(4), 785–799.

Simon, L. S. & Vincent, E. (2012). A general framework for online audio source
separation. In Proceedings of the International Conference on Latent Variable Analysis
and Signal Separation (pp. 397–404). Tel-Aviv, Israel.

173

https://hal.inria.fr/hal-00957412
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120

Şimşekli, U., Liutkus, A., & Cemgil, A. T. (2015). Alpha-stable matrix factorization.
IEEE Signal Processing Letters, 22(12), 2289–2293.

Sivasankaran, S., Nugraha, A. A., Vincent, E., Morales-Cordovilla, J. A., Dalmia, S.,
Illina, I., & Liutkus, A. (2015). Robust ASR using neural network based speech
enhancement and feature simulation. In Proceedings of IEEEWorkshop on Automatic
Speech Recognition and Understanding (ASRU) (pp. 482–489). Scottsdale, USA.

Sivasankaran, S., Vincent, E., & Illina, I. (2017). Discriminative importance weighting
of augmented training data for acoustic model training. In Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp.
4885–4889). New Orleans, USA.

Smaragdis, P. (1998). Blind separation of convolvedmixtures in the frequency domain.
Neurocomputing, 22(1), 21–34.

Smaragdis, P. (2007). Convolutive speech bases and their application to supervised
speech separation. IEEE Transactions on Audio, Speech, and Language Processing,
15(1), 1–12.

Smaragdis, P. & Brown, J. C. (2003). Non-negative matrix factorization for polyphonic
music transcription. In Proceedings of IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA) (pp. 177–180). New Paltz, USA.

Smaragdis, P., Fevotte, C., Mysore, G. J., Mohammadiha, N., & Hoffman, M. (2014).
Static and dynamic source separation using nonnegative factorizations: A unified
view. IEEE Signal Processing Magazine, 31(3), 66–75.

Smith, J. O. (2011). Spectral Audio Signal Processing. W3K Publishing.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of
harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, volume 1 (pp. 194–281).
MIT Press.

Sprechmann, P., Bronstein, A. M., & Sapiro, G. (2015). Supervised non-negative
matrix factorization for audio source separation. In R. Balan, M. Begué, J. J.
Benedetto, W. Czaja, & K. A. Okoudjou (Eds.), Excursions in Harmonic Analysis,
Volume 4, Applied and Numerical Harmonic Analysis (pp. 407–420). Springer.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15, 1929–1958.

Stern, R. M. & Morgan, N. (2012). Features based on auditory physiology and
perception. In T. Virtanen, R. Singh, & B. Raj (Eds.), Techniques for Noise Robustness
in Automatic Speech Recognition chapter 8. Wiley.

174

Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of
the psychological magnitude pitch. The Journal of the Acoustical Society of America,
8(3), 185–190.

Sturmel, N., Liutkus, A., Pinel, J., Girin, L., Marchand, S., Richard, G., Badeau, R., &
Daudet, L. (2012). Linear mixing models for active listening of music productions
in realistic studio conditions. In Proceedings of Audio Engineering Society (AES)
Convention (pp. 1–10). Budapest, Hungary.

Swietojanski, P., Li, J., & Renals, S. (2016). Learning hidden unit contributions for
unsupervised acoustic model adaptation. IEEE/ACMTransactions on Audio, Speech,
and Language Processing, 24(8), 1450–1463.

Tavakoli, V., Jensen, J., Christensen, M., & Benesty, J. (2016). A framework for speech
enhancement with ad hoc microphone arrays. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 24(6), 1038–1051.

Theano Dev Team (2016). Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints. http://arxiv.org/abs/1605.02688.

Togami, M. (2011). Online speech source separation based on maximum likelihood
of local gaussian modeling. In Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (pp. 213–216). Prague, Czech
Republic.

Togami, M. & Kawaguchi, Y. (2014). Simultaneous optimization of acoustic
echo reduction, speech dereverberation, and noise reduction against mutual
interference. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
22(11), 1612–1623.

Tseng, H. W., Hong, M., & Luo, Z. Q. (2015). Combining sparse NMF with deep
neural network: A new classification-based approach for speech enhancement.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (pp. 2145–2149). Brisbane, Australia.

Tu, Y., Du, J., Xu, Y., Dai, L., & Lee, C.-H. (2014). Speech separation based on
improved deep neural networks with dual outputs of speech features for both
target and interfering speakers. In Proceedings of the International Symposium on
Chinese Spoken Language Processing (ISCSLP) (pp. 250–254). Singapore.

Uhlich, S., Giron, F., & Mitsufuji, Y. (2015). Deep neural network based instrument
extraction from music. In Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) (pp. 2135–2139). Brisbane, Australia.

Uhlich, S., Porcu, M., Giron, F., Enenkl, M., Kemp, T., Takahashi, N., & Mitsufuji, Y.
(2017). Improvingmusic source separation based on deep neural networks through
data augmentation and network blending. In Proceedings of IEEE International

175

http://arxiv.org/abs/1605.02688

Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 261–265). New
Orleans, USA.

Veen, B. D. V. & Buckley, K. M. (1988). Beamforming: a versatile approach to spatial
filtering. IEEE ASSP Magazine, 5(2), 4–24.

Veselý, K., Ghoshal, A., Burget, L., & Povey, D. (2013). Sequence-discriminative
training of deep neural networks. In Proceedings of INTERSPEECH (pp. 2345–
2349). Lyon, France.

Viikki, O. & Laurila, K. (1997). Noise robust HMM-based speech recognition using
segmental cepstral feature vector normalization. In Proceedings of the Tutorial
and Research Workshop on Robust Speech Recognisiton for Unknown Communication
Channels (pp. 107–110). Pont-à-Mousson, France.

Vincent, E. (2006). Musical source separation using time-frequency source priors.
IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 91–98.

Vincent, E. (2010). An experimental evaluation ofWiener filter smoothing techniques
applied to under-determined audio source separation. In Proceedings of the
International Conference on Latent Variable Analysis and Signal Separation (pp. 157–
164). Saint-Malo, France.

Vincent, E., Bertin, N., Gribonval, R., & Bimbot, F. (2014). From blind to guided audio
source separation: How models and side information can improve the separation
of sound. IEEE Signal Processing Magazine, 31(3), 107–115.

Vincent, E., Gribonval, R., & Févotte, C. (2006). Performance measurement in
blind audio source separation. IEEE Transactions on Audio, Speech, and Language
Processing, 14(4), 1462–1469.

Vincent, E., Jafari, M. G., Abdallah, S. A., Plumbley, M. D., & Davies, M. E. (2011).
Probabilistic modeling paradigms for audio source separation. In W. Wang (Ed.),
Machine Audition: Principles, Algorithms and Systems chapter 7, (pp. 162–185). IGI
Global.

Vincent, E., Sawada, H., Bofill, P., Makino, S., & Rosca, J. P. (2007). First stereo
audio source separation evaluation campaign: Data, algorithms and results. In
Proceedings of the International Conference on Independent Component Analysis and
Signal Separation (pp. 552–559). London, UK.

Vincent, E., Virtanen, T., & Gannot, S., Eds. (2017a). Audio Source Separation and
Speech Enhancement. Wiley.

Vincent, E., Watanabe, S., Nugraha, A. A., Barker, J., &Marxer, R. (2017b). An analysis
of environment, microphone and data simulation mismatches in robust speech
recognition. Computer Speech & Language, 46, 535–557.

176

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
International Conference on Machine Learning (ICML) (pp. 1096–1103). Helsinki,
Finland.

Virtanen, T., Singh, R., & Raj, B., Eds. (2012). Techniques for Noise Robustness in
Automatic Speech Recognition. Wiley.

Virtanen, T., Vincent, E., & Gannot, S. (2017). Time-frequency processing – spectral
properties. In E. Vincent, T. Virtanen, & S. Gannot (Eds.), Audio Source Separation
and Speech Enhancement chapter 2. Wiley.

Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., & Fergus, R. (2013). Regularization of
neural networks using dropconnect. In Proceedings of the International Conference
on Machine Learning (ICML) (pp. 1058–1066). Atlanta, USA.

Wang, D. (2005). On ideal binary mask as the computational goal of auditory scene
analysis. In P. Divenyi (Ed.), Speech Separation by Humans and Machines (pp. 181–
197). Springer.

Wang, D. (2008). Time-frequency masking for speech separation and its potential for
hearing aid design. Trends in Amplification, 12(4), 332–353.

Wang, D. (2017). Deep learning reinvents the hearing aid. IEEE Spectrum, 54(3),
32–37.

Wang, D. & Brown, G. J., Eds. (2006). Computational Auditory Scene Analysis:
Principles, Algorithms, and Applications. Wiley.

Wang, D. L. & Brown, G. J. (1999). Separation of speech from interfering sounds based
on oscillatory correlation. IEEE Transactions on Neural Networks, 10(3), 684–697.

Wang, Y. & Wang, D. (2013). Towards scaling up classification-based speech
separation. IEEETransactions onAudio, Speech, and Language Processing, 21(7), 1381–
1390.

Wang, Y. & Wang, D. (2015). A deep neural network for time-domain signal
reconstruction. In Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (pp. 4390–4394). Brisbane, Australia.

Wang, Z., Vincent, E., Serizel, R., & Yan, Y. (2017). Rank-1 constrained multichannel
Wiener filter for speech recognition in noisy environments. arXiv e-prints. http:
//arxiv.org/abs/1707.00201.

Warsitz, E. & Haeb-Umbach, R. (2007). Blind acoustic beamforming based on
generalized eigenvalue decomposition. IEEE Transactions on Audio, Speech, and
Language Processing, 15(5), 1529–1539.

177

http://arxiv.org/abs/1707.00201
http://arxiv.org/abs/1707.00201

Weninger, F., Du, J., Marchi, E., & Gao, T. (2017). Single-channel classification and
clustering approaches. In E. Vincent, T. Virtanen, & S. Gannot (Eds.), Audio Source
Separation and Speech Enhancement chapter 7. Wiley.

Weninger, F., Erdogan, H., Watanabe, S., Vincent, E., Le Roux, J., Hershey, J. R., &
Schuller, B. (2015). Speech enhancementwith LSTM recurrent neural networks and
its application to noise-robust ASR. In Proceedings of the International Conference on
Latent Variable Analysis and Signal Separation (pp. 91–99). Liberec, Czech Republic.

Weninger, F., Le Roux, J., Hershey, J. R., & Schuller, B. (2014). Discriminatively trained
recurrent neural networks for single-channel speech separation. In Proceedings
of IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 577–
581). Atlanta, USA.

Werbos, P. J. (1988). Backpropagation: past and future. In Proceedings of IEEE
International Conference on Neural Networks (ICNN) (pp. 343–353 vol.1). San Diego,
USA.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10), 1550–1560.

Wilamowski, B. M. & Yu, H. (2010). Neural network learning without backpropaga-
tion. IEEE Transactions on Neural Networks, 21(11), 1793–1803.

Williamson, D. S., Wang, Y., &Wang, D. (2015). Estimating nonnegativematrixmodel
activations with deep neural networks to increase perceptual speech quality. The
Journal of the Acoustical Society of America, 138(3), 1399–1407.

Williamson, D. S., Wang, Y., & Wang, D. (2016). Complex ratio masking for
monaural speech separation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 24(3), 483–492.

Wisdom, S., Hershey, J. R., Le Roux, J., & Watanabe, S. (2016). Deep unfolding for
multichannel source separation. In Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (pp. 121–125). Shanghai, China.

Wöllmer, M., Zhang, Z., Weninger, F., Schuller, B., & Rigoll, G. (2013). Feature
enhancement by bidirectional LSTM networks for conversational speech recogni-
tion in highly non-stationary noise. In Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 6822–6826). Vancouver,
Canada.

Xiao, X., Watanabe, S., Erdogan, H., Lu, L., Hershey, J., Seltzer, M. L., Chen, G., Zhang,
Y., Mandel, M., & Yu, D. (2016). Deep beamforming networks for multi-channel
speech recognition. In Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) (pp. 5745–5749). Shanghai, China.

178

Xu, Y., Du, J., Dai, L.-R., & Lee, C.-H. (2014). An experimental study on speech
enhancement based on deep neural networks. IEEE Signal Processing Letters, 21(1),
65–68.

Yu, D. &Deng, L. (2011). Deep learning and its applications to signal and information
processing. IEEE Signal Processing Magazine, 28(1), 145–154.

Yu, D. & Deng, L. (2015). Automatic Speech Recognition: A Deep Learning Approach.
Springer.

Yu, H. & Wilamowski, B. M. (2011). Levenberg-Marquardt training. In B. M.
Wilamowski & J. D. Irwin (Eds.), Intelligent Systems chapter 12. CRC Press.

Zaremba, W., Sutskever, I., & Vinyals, O. (2015). Recurrent neural network
regularization. arXiv e-prints. http://arxiv.org/abs/1409.2329.

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv e-prints.
http://arxiv.org/abs/1212.5701.

Zhang, X. L. & Wang, D. (2016). A deep ensemble learning method for monaural
speech separation. IEEE Transactions on Audio, Speech, and Language Processing,
24(5), 967–977.

Zhang, Z., Cummins, N., & Schuller, B. (2017). Advanced data exploitation in speech
analysis: An overview. IEEE Signal Processing Magazine, 34(4), 107–129.

Žmolíková, K., Karafiát, M., Veselý, K., Delcroix, M., Watanabe, S., Burget, L., &
Černocký, J. (2016). Data selection by sequence summarizing neural network in
mismatch condition training. In Proceedings of INTERSPEECH (pp. 2354–2358).
San Francisco, USA.

Zweig, G. & Nguyen, P. (2010). SCARF: A segmental conditional random field
toolkit for speech recognition. In Proceedings of INTERSPEECH (pp. 2858–2861).
Makuhari, Japan.

179

http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1212.5701

Résumé: Dans cette thèse, nous traitons le problème de la séparation de sources
audio multicanale par réseaux de neurones profonds (deep neural networks, DNNs).
Notre approche se base sur le cadre classique de séparation par algorithme espérance-
maximisation (EM) basé sur un modèle gaussien multicanal, dans lequel les sources
sont caractérisées par leurs spectres de puissance à court terme et leurs matrices de
covariance spatiales. Nous explorons et optimisons l’usage des DNNs pour estimer
ces paramètres spectraux et spatiaux. À partir des paramètres estimés, nous calculons
un filtre de Wiener multicanal variant dans le temps pour séparer chaque source.
Nous étudions en détail l’impact de plusieurs choix de conception pour les DNNs
spectraux et spatiaux. Nous considérons plusieurs fonctions de coût, représentations
temps-fréquence, architectures, et tailles d’ensembles d’apprentissage. Ces fonctions
de coût incluent en particulier une nouvelle fonction liée à la tâche pour les DNNs
spectraux: le rapport signal-à-distorsion. Nous présentons aussi une formule
d’estimation pondérée des paramètres spatiaux, qui généralise la formulation
EM exacte. Sur une tâche de séparation de voix chantée, nos systèmes sont
remarquablement proches de la méthode de l’état de l’art actuel et améliorent le
rapport source-interférence de 2 dB. Sur une tâche de rehaussement de la parole, nos
systèmes surpassent la formation de voies GEV-BAN de l’état de l’art de 14%, 7% et
1% relatifs en terme d’amélioration du taux d’erreur sur les mots sur des données à
6, 4 et 2 canaux respectivement.
Mot-clés: séparation de sources audio multicanale, modèle gaussien multicanal,
réseaux de neurones profonds

Abstract: This thesis addresses the problem of multichannel audio source separation
by exploiting deep neural networks (DNNs). We build upon the classical expectation-
maximization (EM) based source separation framework employing a multichannel
Gaussian model, in which the sources are characterized by their power spectral
densities and their source spatial covariance matrices. We explore and optimize
the use of DNNs for estimating these spectral and spatial parameters. Employing
the estimated source parameters, we then derive a time-varying multichannel
Wiener filter for the separation of each source. We extensively study the impact of
various design choices for the spectral and spatial DNNs. We consider different
cost functions, time-frequency representations, architectures, and training data
sizes. Those cost functions notably include a newly proposed task-oriented signal-
to-distortion ratio cost function for spectral DNNs. Furthermore, we present a
weighted spatial parameter estimation formula, which generalizes the corresponding
exact EM formulation. On a singing-voice separation task, our systems perform
remarkably close to the current state-of-the-art method and provide up to 2 dB
improvement of the source-to-interference ratio. On a speech enhancement task, our
systems outperforms the state-of-the-art GEV-BAN beamformer by 14%, 7%, and 1%
relative word error rate improvement on 6-channel, 4-channel, and 2-channel data,
respectively.
Keywords: multichannel audio source separation, multichannel Gaussian model,
deep neural networks

	Résumé
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Résumé étendu
	Introduction
	Notations et contexte
	Estimation des paramètres spectraux avec des DNNs
	Sur l'amélioration des modèles spectraux profonds
	Estimation des paramètres spatiaux avec des DNNs
	Conclusion et perspectives

	Introduction
	Motivation
	Audio source separation
	Speech and music separations
	Single-channel and multichannel separation
	Deep neural networks (DNNs)

	Objectives and scope
	Contributions and organization of the thesis

	Background
	Audio source separation
	Sources and mixture
	Source separation

	Automatic speech recognition (ASR)
	Time-frequency representation
	State-of-the-art single-channel audio source separation
	Time-frequency masking
	Non-negative matrix factorization (NMF)
	DNN based single-channel audio source separation
	Basics of DNNs
	DNN based separation techniques

	State-of-the-art multichannel audio source separation
	Beamforming
	Expectation-maximization (EM) based multichannel audio source separation framework
	Multichannel Gaussian model
	General iterative EM framework

	DNN based multichannel audio source separation techniques
	Utilizing multichannel features for estimating a single-channel mask
	Estimating intermediate variables for deriving a multichannel filter
	Directly estimating a multichannel filter
	Summary

	Positioning of our study

	Estimation of spectral parameters with DNNs
	Research questions
	Iterative framework with spectral DNNs
	Experimental settings
	Task and dataset
	An overview of the speech enhancement system
	DNN spectral models
	Architecture
	Inputs and outputs
	Training criterion
	Training algorithm
	Training data

	Source spectra estimation
	Impact of spatial parameter updates
	Impact of spectral parameter updates
	Comparison to NMF based iterative EM algorithm
	Source separation performance
	Speech recognition performance

	Impact of environment mismatches
	Summary

	On improving DNN spectral models
	Research questions
	Cost functions for spectral DNN
	General-purpose cost functions
	Task-oriented cost functions

	Impact of the cost function
	Experimental settings
	Source separation performance
	Speech recognition performance

	Impact of time-frequency representations, DNN architectures, and DNN training data
	Experimental settings
	Time-frequency representations
	DNN architectures and inputs
	DNN training criterion, algorithm, and data
	Multichannel filtering

	Discussions

	Impact of a multichannel task-oriented cost function
	Experimental settings
	Task and dataset
	An overview of the singing-voice separation system
	DNN spectral models

	Discussions
	Task-oriented cost function
	Comparison with the state of the art
	Data augmentation

	Summary

	Estimation of spatial parameters with DNNs
	Research questions
	Weighted spatial parameter updates
	Iterative framework with spectral and spatial DNN
	Experimental settings
	Task and dataset
	An overview of the speech enhancement system
	DNN spectral models
	Architecture, inputs, and outputs
	Training criterion, algorithm, and data

	DNN spatial models
	Architecture, input, and outputs
	Training algorithm and data

	Design choices for the DNN spatial models
	Cost functions
	Architectures and input variants

	Estimation of the oracle source spatial covariance matrices
	Spatial parameter estimation with DNN
	Impact of different spatial DNN architectures
	Impact of different spatial DNN cost functions
	Comparison with GEV-BAN beamforming
	Summary

	Conclusions and perspectives
	Conclusions
	Perspectives

	Bibliography

