
HAL Id: tel-01684691
https://theses.hal.science/tel-01684691

Submitted on 15 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling of certifiable mixed-criticality systems
Dario Socci

To cite this version:
Dario Socci. Scheduling of certifiable mixed-criticality systems. Logic in Computer Science [cs.LO].
Université Grenoble Alpes, 2016. English. �NNT : 2016GREAM025�. �tel-01684691�

https://theses.hal.science/tel-01684691
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Dario Socci

Thèse dirigée par Saddek Bensalem
et codirigée par Petro Poplavko

préparée au sein du laboratoire VERIMAG
et de l’ École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Scheduling of Certifiable
Mixed-Criticality Systems

Thèse soutenue publiquement le 9 March 2016,
devant le jury composé de :

Prof. Florence Maraninchi
Verimag, Président
Prof. Sanjoy Baruah
The University of North Carolina, Rapporteur
Prof. Alan Burns
University of York, Rapporteur
Dr. Luca Santinelli
ONERA, Examinateur
Dr. Madeleine Faugère
Thales Research & Technology, Examinateur

Acknowledgements

After four years of work in Verimag my PhD thesis is finally ready, and there are a lot of
people that I have to thank for making this possible.

Above all of them there are my supervisors, professor Saddek Bensalem and doctor Petro
Poplavko. Saddek put his trust on me, first by hiring me after a short Skype interview and
later by giving me the freedom to develop my own ideas. He is an excellent director, being
capable of motivating and directing my work without letting me feel under pressure. Then
I would like to thank Petro for being always available when I needed help for my research,
and his suggestions were always brilliant. Most of the results of this thesis would not have
been achieved without the long time spent discussing together problems and new ideas. And
also thanks to Marius, Jacques and all other members of the team.

Then I would like to thank all people from Verimag. The relaxed atmosphere you can
breathe here, the skill and knowledge of professors and researchers and the kindness of the
administrative staff makes it by far the best laboratory I know where to work on a research
project in ideal condition. Working here as been both a pleasure and a privilege. A special
thank goes to my friend and colleague Stefano for the hundreds of relaxing coffee breaks,
after-work beers and philosophical conversations.

Also I would like to thank my family for the support they always gave me. In particular
I would like to thank my mother, for being always helpful despite the distance and for the
hundreds of culinary suggestions. Also a special thank goes to my father for the wine (which
is quite an important matter).

Obtaining the PhD degree is a period of transition in life, one experience is over and
new ones are coming. I don’t know what waits for me in the future, but of one fact I am
sure: whatever will happen next, I will face it with my girlfriend Irina beside me. For this
reason, the most special thank goes to her: thanks for making the last year a very special
one, meeting you was the most fortunate event.

i

ii

Abstract

Modern real-time systems tend to be mixed-critical, in the sense that they integrate on the
same computational platform applications at different levels of criticality (e.g., safety critical
and mission critical). Integration gives the advantages of reduced cost, weight and power
consumption, which can be crucial for modern applications like Unmanned Aerial Vehicles
(UAVs). On the other hand, this leads to major complications in system design. Moreover,
such systems are subject to certification, and different criticality levels needs to be certified
at different level of assurance.

Among other aspects, the real-time scheduling of certifiable mixed critical systems has
been recognized to be a challenging problem. Traditional techniques require complete isola-
tion between criticality levels or global certification to the highest level of assurance, which
leads to resource waste, thus loosing the advantage of integration. This led to a novel wave of
research in the real-time community, and many solutions were proposed. Among those, one
of the most popular methods used to schedule such systems is Audsley approach. However
this method has some limitations, which we discuss in this thesis. These limitations are more
pronounced in the case of multiprocessor scheduling. In this case priority-based scheduling
looses some important properties. For this reason scheduling algorithms for multiprocessor
mixed-critical systems are not as numerous in literature as the single processor ones, and
usually are built on restrictive assumptions. This is particularly problematic since industrial
real-time systems strive to migrate from single-core to multi-core and many-core platforms.

Therefore we motivate and study a different approach that can overcome these problems.
For this reason we assume a fixed set of jobs as workload model. This model can represent
a hyperperiod of synchronous periodic tasks or servers. These removes some fundamen-
tal difficulties of non-synchronous systems (at risk to increase costs in some cases), thus
leaving us more space to focus on limitations of Audsley approach and on overcoming the
schedulability complications brought about by multiprocessor systems. Fixed job sets per-
mit us to manipulate their priorities by using the novel concept of priority graph (P-DAG),
which defines minimal relation between priorities in a schedule. Based on this formalism
we propose two priority based algorithms. The first algorithm, Mixed Criticality Earliest
Deadline First (MCEDF), is a single processor algorithm that dominates state-of-the-art
Audsley approach based algorithm Own Criticality Based Priority (OCBP). The second one
is a multiprocessor algorithm, Mixed Criticality Priority Improvement (MCPI), that, given
a global fixed-priority assignment for jobs, can modify it in order to iteratively improve its
schedulability for mixed-criticality setting. Our experiments show an increase of schedulable
instances up to a maximum of 30% if compared to classical solutions for this category of
scheduling problems.

A restriction of practical usability of many mixed-critical and multiprocessor scheduling
algorithms is assumption that jobs are independent. In reality they often have precedence

iii

iv

constraints. In the thesis we show the mixed-critical variant of the problem formulation
and extend the system load metrics to the case of precedence-constraint task graphs. We
also show that our proposed methodology and scheduling algorithm MCPI can be extended
to the case of dependent jobs without major modification and showing similar performance
with respect to the independent jobs case.

Another topic we treated in this thesis is time-triggered scheduling. This class of sched-
ulers is important because they considerably reduce the uncertainty of job execution intervals
thus simplifying the safety-critical system certification (where simplicity is a decisive factor).
They also simplify any auxiliary timing-based analyses that may be required to validate
important extra-functional properties in embedded systems, such as interference on shared
buses and caches, peak power dissipation, electromagnetic interference etc..

The trivial method of obtaining a time-triggered schedule is simulation of the worst-
case scenario in event-triggered algorithm. However, when applied directly, this method
is not efficient for mixed-critical systems, as instead of one worst-case scenario they have
multiple corner-case scenarios. For this reason, it was proposed in the literature to treat all
scenarios into just a few tables, one per criticality mode. We call this scheduling approach
Single Time Table per Mode (STTM) and propose a contribution in this context. In fact we
introduce a method that transforms practically any scheduling algorithm into an STTM one,
which is again based on a simulation, but it is adapted to ensure safe switching between the
scenarios. It works optimally on single core and shows good experimental results for multi-
cores. In addition we show that applying it to list scheduling leads to support of task graph
(precedence) dependencies, for which our method also shows good experimental results.

Finally we studied the problem of the practical realization of mixed critical systems.
This is a challenging task due to a semantic gap between real-time scheduling policies and
the various models of computation proposed for programming timing-critical concurrent
systems. To overcome this difficulty, we represented both the models of computation and
the scheduling policies by timed automata. We believe that using the same formal language
for the model of computation and the scheduling techniques is an important step to close the
gap between them. Our effort in this direction is a design flow that we propose for multicore
mixed critical systems. In this design flow, as the model of computation we propose a network
of deterministic multi-periodic synchronous processes. Our approach is demonstrated using
a publicly available toolset, an industrial application use case and a multi-core platform. An
ongoing work is integration of the proposed design flow with time-triggered variant of list
scheduling.

Rèsumè

Les systèmes temps-réels modernes ont tendance à obtenir la criticité mixte, dans le sens où
ils intègrent sur une même plateforme de calcul plusieurs applications avec différents niveaux
de criticités. D’un côté, cette intégration permet de réduire le coût, le poids et la consom-
mation d’énergie. Ces exigences sont importantes pour des systèmes modernes comme par
exemple les drones (UAV). De l’autre, elle conduit à des complications majeures lors de leur
conception. Ces systèmes doivent être certifiés en prenant en compte ces différents niveaux de
criticités. L’ordonnancement temps réel des systèmes avec différents niveaux de criticités est
connu comme étant lun des plus grand défi dans le domaine. Les techniques traditionnelles
nécessitent une isolation complète entre les niveaux de criticité ou bien une certification glob-
ale au plus haut niveau. Une telle solution conduit à un gaspillage des ressources, et à la perte
de lavantage de cette intégration. Ce problème a suscité une nouvelle vague de recherche dans
la communauté du temps réel, et de nombreuses solutions ont été proposées. Parmi elles,
l’une des méthodes la plus utilisée pour ordonnancer de tels systèmes est celle d’Audsley.
Malheureusement, elle a un certain nombre de limitations, dont nous parlerons dans cette
thèse. Ces limitations sont encore beaucoup plus accentuées dans le cas de l’ordonnancement
multiprocesseur. Dans ce cas précis, l’ordonnancement basé sur la priorité perd des propriétés
importantes. Cest la raison pour laquelle, les algorithmes d’ordonnancement avec différents
niveaux de criticités pour des architectures multiprocesseurs ne sont que très peu étudiés
et ceux quon trouve dans la littérature sont généralement construits sur des hypothèses re-
strictives. Cela est particulièrement problématique car les systèmes industriels temps réel
cherchent à migrer vers plates-formes multi-cœurs. Dans ce travail nous proposons une ap-
proche différente pour résoudre ces problèmes.

v

vi

Contents

Acknowledgements i

Abstract iii

Rèsumè v

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 2

1.2.1 Scheduling . 2

1.2.2 Multi-core . 5

1.3 State of the Art . 6

1.3.1 Scheduling . 7

1.3.2 Formal Languages . 8

1.3.3 Managing Accesses to Shared Resources 8

1.4 Contributions . 9

2 Scheduling Model 11

2.1 Independent Jobs . 11

2.1.1 Problem Definition . 12

2.1.2 Correctness and Predictability . 13

2.1.3 Fixed Priority and Fixed Priority per Mode 14

2.1.4 Characterization of Problem Instance 15

2.2 Precedence Constraints . 17

2.2.1 Problem Definition . 17

2.2.2 Extending Fixed Priority to Precedence Constrains 18

2.2.3 Characterization of Problem Instances 21

3 Priority Based Algorithms 23

3.1 Related Work . 23

3.1.1 Audsley approach and its limitations 23

3.1.2 Multiprocessor Scheduling . 25

3.1.3 Precedence-constrained Scheduling . 26

3.1.4 Mixed-critical Scheduling . 26

3.2 Priority DAG . 28

3.2.1 Motivation . 28

3.2.2 P-DAG Definition and Properties . 31

vii

viii CONTENTS

3.2.3 Forest-shaped P-DAG generation . 34

3.2.4 P-DAGs and Single-Processor Busy Intervals 35

3.2.5 P-DAGs and Potential Interference on Multiprocessor 37

3.3 Independent Jobs Single Processor Scheduling – MCEDF 38

3.3.1 Mixed Critical Earliest Deadline First 38

3.3.2 Support Priority Table . 42

3.3.3 Dominance over OCBP . 43

3.3.4 MCEDF and Splitting . 44

3.4 Multi Processor Scheduling – MCPI . 45

3.4.1 Preliminaries . 45

3.4.2 MCPI Algorithm Specification . 47

3.4.3 Support Algorithm . 54

3.4.4 Predictable Online Policy for MCPI 55

3.5 Common properties of MCEDF and MCPI 55

3.6 Implementation and Experiments . 59

3.6.1 MCEDF . 59

3.6.2 MCPI . 61

3.7 Chapter Summary . 66

3.7.1 Future Work . 66

4 Time Triggered Policy 69

4.1 introduction . 69

4.2 Transformation Algorithm . 71

4.2.1 Generating the LO table . 71

4.2.2 Generating the HI* table . 73

4.2.3 Transformation Rules . 73

4.3 Testing Correctness for Single-processor Policies 75

4.3.1 Proof of Direct Correctness . 77

4.3.2 Proof of Reverse Correctness . 79

4.3.3 Extending the Proofs to Task Graphs 82

4.4 Experiments with Multiprocessors . 84

4.4.1 Extending the Scope for Transforming the Policies 84

4.4.2 Experimental Results . 84

4.5 Chapter Summary . 86

5 Application Programming and Implementation 89

5.1 Design Flow . 90

5.2 Real-Time BIP . 91

5.2.1 Introduction to BIP . 91

5.2.2 BIP Extension for Modeling the Tasks 93

5.3 Fixed Priority Process Networks . 95

5.3.1 Model of Computation . 95

5.3.2 Task Graph Derivation . 96

5.3.3 Specification in DOL-Critical Language 99

5.4 Compiling the MoC and the Policy into BIP 99

5.4.1 Compiling the processes . 100

5.4.2 Compiling Channels . 101

CONTENTS ix

5.4.3 Compiling the Scheduling Policy . 102
5.4.4 Periodic Server for Sporadic Processes 104
5.4.5 Compiling the Event Generators . 104

5.5 Implementation and Experiments . 109
5.5.1 Run-Time Environment . 109
5.5.2 Case Study: FMS Application . 110
5.5.3 Case Study: Design Flow Results . 112

5.6 Chapter Summary . 113

6 Conclusions 115
6.1 Thesis summary . 115
6.2 Future work . 117

List of figures 119

List of tables 121

Contributions 123

Bibliography 125

A List Scheduling 133

B Transformed Fixed Priority Simulation 139

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

Safety-critical embedded systems are facing issues related to stringent non-functional require-
ments as cost, size, weight, heat and power consumption. This caused two leading trends in
the design of such systems.

First, modern systems tend to be “mixed-critical”, in the sense that they integrate com-
ponents that must guarantee correctness under different levels of assurance. For example
avionic standard DO-178B defines five levels of criticality, called Design Assurance Levels
(DALs), from DAL-A to DAL-E. The classification is based on the potential effect that a
failure of a component may have. For example a failure of a DAL-A component may have
catastrophic effects (loss of human lives), while a failure of a DAL-E component has no ef-
fect at all on safety. Several other standards are used in industry, like for example, the IEC
61508, DO-254 and ISO 26262 standards. Traditional safety-critical systems tend to isolate
the levels of criticality, to avoid that a failure of a least critical component may propagate
to a high critical one. By letting components at different levels of criticality execute on the
same platform, mixed criticality systems introduce several design challenges. Barhorst et
al. give a thorough discussion of the mixed-criticality problem in [BBB+09], they identify
the main challenges of the problem and identify mixed-critical systems as a distinct and new
area of research. One of the main discussed topics on mixed-criticality systems is scheduling,
since it was shown that classical techniques are not applicable in this case. The latter topic
generated a new wave of research in the scientific community, that produced hundreds of
paper in less than a decade [BD13].

The other leading trend in safety-critical system design is the migration from single-
to multi- and many-core platforms. High performance single-core processors suffer of the
well known problems of power consumption and overheating. In addition, advanced single-
core machines, the so-called superscalar processors, are designed to optimize the average
performance, not the worst case. They, in fact, have problematic architectural features,
like pipelining flush, that can increase the worst-case execution time and complicate its
computation. Thus they cannot be used in time-critical applications. Multi-cores, on the
other hand, may increase performances by increasing the number of cores, thus keeping the
cores unit simple and heating and power consumption under acceptable levels. However
there are several challenges to be solved in multi-core platforms, related to the usage of
shared resources between cores. The problem is still subject of research, and it is suggested
([Eur11, Fed15]) to not use processors with more than two cores in avionic systems.

1

2 CHAPTER 1. INTRODUCTION

Level Effect FR

A Catastrophic 10−9/h

B Hazardous 10−7/h

C Major 10−5/h

D Minor 10−3/h

E No Effect n/a

Table 1.1: Design Assurance Levels in DO178b

Multi-core mixed-criticality systems are a promising evolution of safety-critical systems.
However there are a lot of unsolved issues and there is a strong need to provide theory, tools
and techniques for the design of such systems. This thesis is an effort to dig a way towards
solid design techniques for mixed-critical multi-core systems that can yield efficient resource
usage and guarantee timing constraints to be met. Our main focus is on scheduling, since
this is probably the most challenging problem in mixed-critical system design, but we also
propose a model of computation and a design flow for mixed-critical systems design. This
chapter gives an overview of the problems of mixed-criticality multi-core systems, and it
is organized as follows. Section 1.2 explains the challenges of multi-core mixed-criticality
systems design. Then an overview of the state of the art is given in Section 1.3. Finally
Section 1.4 closes the chapter by summarizing the thesis’ contributions.

1.2 Challenges

Avionic standard DO-178B defines five levels of criticality, called Design Assurance Levels
(DALs). Each DAL is labeled with a letter, as shown in Table 1.1. The classification is
based on the effect that a failure of a component may have, as shown in the second column
of Table 1.1. Also each criticality levels has to satisfy several objectives, defined by the
standard. Among those, there is the need to bound a maximum Failure Rate (FR). This is
measured in maximum number of failures per hour, and it is reported on the third column
of Table 1.1.

1.2.1 Scheduling

Scheduling is one of the most challenging problems in the context of mixed critical systems.
One of the first works on MCS scheduling was done by Vestal [Ves07]. In his seminal paper
a formalization of the problem was introduced. This formalization is used in most of the
works proposed in literature and it is known as the “Vestal Model”. The majority of the
papers proposed in literature adopt the Vestal model or some variations and/or extensions,
with few exception. A formal definition of this model is presented in Chapter 2.

Each criticality level needs to guarantee the correctness at different level of assurance.
This means that, in Vestal model, that for each criticality level in the system we compute
a Worst Case Execution Time (WCET) estimation that is safe according to the respective
level of assurance. Worst Case Execution Times (WCETs) are hard to compute. The number
of possible execution paths of a computer program grows exponentially with the complexity
of the code. Analyzing all the possible executions of a piece of code is computationally
unfeasible even for relatively simple programs. The analysis becomes even more complex
on modern architecture, since the use of two or three level caches and complex pipelining

1.2. CHALLENGES 3

0 T1 T2 T3

Reasonable WCET estimation

Real WCET

Pessimistic WCET estimation

Figure 1.1: WCET and its estimations

requires that phenomena like cache miss and pipeline flush needs to be taken into account. In
addition, when migrating to multi- and many-cores one has to consider also job interference
due to access to shared resources.

This issue has been analyzed for decades by the scientific community, and a deep disser-
tation on this topic is beyond the scope of this thesis. It is, however, necessary to be aware
of the fact that there are two big categories of approaches to the WCET computation. The
first one considers computing the WCET by extensive measurements or by analyzing only
paths of the code that are more likely to be executed (probabilistic worst-case execution
time analysis) or a combination of both. What this approaches have in common is that they
are usually very restrictive or not safe, in the sense that the WCET computed using those
techniques is not necessarily an over-estimation of the real WCET. The second group of tech-
niques considers reducing the problem size by using pessimistic simplifications. This allows
to compute safe estimation of the WCET, but it usually happens that such estimations are
too pessimistic,i.e., the estimated value is much bigger than the real one. This, of course,
causes the system to be over-sized, with a consequential waste of computational resources.

This problem is depicted in Figure 1.1. Here we have an hypothetical probability density
function of the termination time of an imaginary piece of code. It is clear from the picture that
the real worst case execution time, is T2. Using a non-safe WCET computation technique, we
can end up by computing a WCET of T1. If we design our system based on this estimation,
we may observe a timing failure from time to time. A hypothetical safe tool would compute
the value T3, which is safe, but far from the real value. Designing a system based on such
values will ensure that there will be no timing failures, but the system will be over-sized.

Vestal proposed to solve this issue by labeling each task with 5 different worst case
execution time estimations, one for each criticality level. The idea is that each estimation
is safe with a confidence level that corresponds to the maximum failure rate allowed by the
standard for that particular criticality level (see Table 1.1). This allows at the same time, a
good resource utilization and the safety of the highly critical levels.

However, Baruah [Bar09] showed that the problem of scheduling mixed criticality systems
is highly intractable, in the sense that it is NP-hard in the strong sense to determine whether
it is possible to successfully schedule a given system specified in the Vestal model upon a
fully preemptive uniprocessor platform. To give an intuitive idea of why this problem is hard
to solve, we give a problem instance example.

4 CHAPTER 1. INTRODUCTION

(a) EDF (b) Criticality Monotonic (c) Correct priorities

Figure 1.2: Different scheduling solutions for the instance of Example 1.2.1

Example 1.2.1. Consider the problem of scheduling three jobs, that we will indicate as job
1, job 2 and job 3. Consider two criticality levels. Under normal circumstances (the non-
critical scenario) , all jobs have to execute for 1 time unit, and their respective deadlines are
at time 1, 3 and 4. In the case there is a fault in the system (critical scenario), only job 3
has to meet its deadline, but it will execute for 3 time units in this case.

If we apply the well-known Earliest Deadline First (EDF) scheduling, all jobs will meet
their timing constraints, as shown in the upper chart of Figure 1.2(a). However, in that case,
job 3 will miss its deadline if it has to execute for three time units.

In the case where we apply a criticality monotonic strategy, i.e., we give higher priority
to the critical task, job 3 will meet its deadline in the critical scenario, but job 1 will miss
its deadline in the non critical one, as shown in Figure 1.2(b).

A solution that satisfies all timing requirements schedules the jobs in the following order:
1, 3, 2. As shown in Figure 1.2(c), this allows all jobs to meet their deadline in the non-
critical scenario, and job 3 to meet its deadline in the critical one.

From the above example it is easy to see that meeting the constraints of the mixed critical
scheduling in the non-critical scenario and in the critical one individually are solvable using
classical techniques. However, meeting at the same time constraints from the critical and
non-critical scenario is not trivial.

Scheduling mixed-critical system on multiprocessor platforms adds further complexity
to the problem. One of the most successful techniques in mixed-critical scheduling is the
so-called Audsley approach [Aud93], which proved to be very effective on single processors.
This approach selects the priority of jobs by starting from the lowest priority one. It is
based on the assumption that the termination time of a job does not depend on the relative
priority of higher priority jobs. Thus, the termination time of the least priority job can be
computed exactly before making any other priority assignment. However the base assumption
of Audsley approach does not hold on multiprocessor platforms, as shown in the following:

Example 1.2.2. Consider a set of four jobs, labeled with the firsts four integer numbers.
Among those, job 1, job 3 and job 4 execute for 1 time unit, while job 2 executes for 2 time
units. Scheduling them with the priority order 1−2−3−4 will cause job 4 to terminate after
3 time units, as shown in the Gantt chart on the left of Figure 1.3. Changing the priority
order 1 − 3 − 2 − 4 will cause job 4 to terminate after 2 time units, as shown in the Gantt
chart on the right of Figure 1.3. Thus the termination time of the job with the lowest priority
(job 4) depends on the relative priority of job 2 and 3.

In Section 3.1.1 we give a more formal definition of Audsley approach and we discuss its
limitations.

1.2. CHALLENGES 5

1 4

2

3 1 2

3 4

Figure 1.3: The Gantt Chart of Example 1.2.2

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1975 1980 1985 1990 1995 2000 2005 2010 2015

Tr
a
n
si

st
o
r

co
u
n
t

Year

Intel 8008

Motorola 68k

Intel 8086

ARM 1

 Intel 486
 Pentium

Pentium 4

Core 2 Duo

Core i7 (6 cores)

Multicores

Superscalar

Many-
cores

Figure 1.4: Moore’s Law

1.2.2 Multi-core

In 1965 Gordon Moore [Moo65] formulated the well-know empiric law on the size of integrated
circuits, known as Moore’s Law. This empirical law states that the number of transistors that
can fit inside a chip doubles every 18 months. Moore’s law correctly estimated the evolution
of integrated circuits as shown in Figure 1.4.

Dennard et al. [DRBL74] described the evolution of digital circuits using the so-called
Dennard Scaling. The power consumed by an integrated circuit is given by:

P = NfCV 2 + V Il (1.1)

where N is the number of transistors in the chip, f is the clock frequency, C is the effective
capacitance, V the voltage and Il is the leak current. At the time Dennard et al. wrote
their law, the leak current was small compared to the other quantity in the equation, so
the latter term could be neglected. According to Moore Law, each 18 months the area of
transistors reduces of a factor 2, i.e., the linear dimension of transistor l reduces of a factor√

2. The quantities in equation (1.1) depend on the linear dimension l according to the
following relations:

N ∝ l2 C ∝ 1/l V ∝ 1/l (1.2)

It follows from (1.1) and (1.2) that each time l is reduced by a scaling factor of
√

2, it is
possible to double the number of transistor and increment the frequency of the circuit by a
factor

√
2 while keeping the power consumption and the area of the chip constants.

6 CHAPTER 1. INTRODUCTION

Dennard scaling described accurately the evolution of processors for more than four
decades, in which processors with higher frequency and more complex architecture were
produced at each technological step. This law, however, no longer holds on modern systems.
The main problem is that the second term on the right hand side of equation (1.1) is no longer
neglectable, due to the high level of miniaturization. This causes higher power consumption
with consequential overheating. Another problems is that, together with the number of
components, the complexity of the processors’ architecture grew to the point that it increased
the cost of design and caused some processors to be affected by hardware bugs [Col97]. The
latter issue is particularly problematic for timing-critical systems. Firstly, because complex
architectures make the worst case execution time analysis time harder, and secondly, because
a possible hardware bug may cause a system failure.

Multi-core architecture were proposed to solve the above-discussed problems. Putting
more cores into a single chip, in fact, allows to:

1. Improving the computational power by exploiting the parallelism and not by increas-
ing the clock frequency, thus preventing the power consumption to grow and limiting
overheating.

2. Using multiple simpler cores, instead of a single complex one, which, in turn, allows to
to avoid design errors.

Migration to multi-cores, and subsequently to many-cores, is the only way we can im-
plement computationally complex systems. This process is, however, not easy. Concur-
rent access to shared resources complicates the analysis of the system and introduces non-
determinism. This is particularly problematic for timing critical architectures, since modern
platforms are designed for average performances, not for worst case. For instance, one of
the most problematic issue to solve is the presence in such architectures of two- or even
three-level caches, that at the same time decrease the worst case execution time and make
its computation harder, making such architectures hardly predictable. The solution would be
to use timing predictable architectures, with simple pipelines and scratchpads memories in-
stead of caches. Even if such architecture are studied in academy [Sch09], using them in real
system is not nowadays possible. The reason is that microelectronic industry is characterized
by high fixed costs and low variable costs, making the price of a chip strongly dependent on
the number of units sold. Therefore if such a timing-predictable chip were produced, its cost
would be much higher than the one of its general purpose competitor, due to its relatively
narrow applicability, thus making the latter a preferable choice for economical reasons.

To guarantee predictability and determinism is the big challenge of multi- and many-core
time-critical system design.

1.3 State of the Art

In this section we will give a quick overview of the state of the art. This dissertation is not
meant to be complete or detailed, our objective is to give an idea of the directions that are
followed by the scientific community in the field of mixed-critical systems. The works of
particular relevance with respect to this thesis are discussed at a higher level of detail in the
related work section of the proper chapter.

1.3. STATE OF THE ART 7

1.3.1 Scheduling

One of the first paper on mixed critical scheduling was written by Vestal [Ves07]. In this
work Vestal model was introduced, thus pointing the way to the following research. Even
if the approach proposed by Vestal is the most used, different models exists, as explained
in [GB13].

Baruah and Vestal give schedulability analysis in [BV08]. In this work Vestal model is
generalized for sporadic tasks. This paper also shows that Earliest Deadline First (EDF)
is not optimal,e.g., it does not dominate fixed priority policy when criticality levels are
introduced, and that there are feasible systems that cannot be scheduled by EDF.

Job Scheduling

The simplest model for scheduling is the job model. This model only considers a finite set
of tasks instances (jobs). The main drawback of this approach is that to be applied to
periodic tasks systems one has to impose synchronous tasks and to consider all the jobs
present in a hyperperiod, i.e., the least common multiplier of all the periods, which can grow
exponentially. On the other hand, this model is simpler, thus allowing easier analysis and
better performances.

One of the main results for this model is an algorithm called Own Criticality-Based Pri-
orities (OCBP) [BLS10], proposed by Baruah et al. in 2010. In [LB10b] they also introduce
load based schedulability analysis for OCBP in two criticality systems. This analysis is based
into two distinct load values, LO and HI, one per criticality. This metric has been widely
used and modified by other works. In [LB10a] Li and Baruah extends OCBP to sporadic
systems, by computing priorities at run-time. The latter work has been improved by Gu et
al. [GGDY13], by reducing the complexity of the run-time scheduler from quadratic to
linear.

Baruah and Guo [BZ13] consider the problem of scheduling finite sets of jobs upon
unreliable processors. They propose a modified version of Vestal model where the processor
can run at two different speeds: normal and degraded. When the processor switches to
degraded speed, only high-critical jobs are obliged to terminate before the deadline.

Task Model

Task model is more versatile than the previously discussed job model. One of the most
popular techniques used in task scheduling is Response Time Analysis (RTA). Baruah et
al. [BBD11] propose an algorithm that maximizes the priority of high critical tasks in an
optimal way. A RTA is provided to ensure schedulability. Several extensions and improve-
ment [ZGZ13, BD+14, Fle13, HGL14] have been done starting from the above-discussed
paper of Baruah et al. [BBD11].

Baruah and Chattopadhyay [BC13] propose an RTA based algorithm using an alternative
model where high critical tasks execute with shortest period, instead of longest execution
time, in case of a mode-switch.

An alternative approach to RTA is slack scheduling. This kind of scheduling is based on
the idea to let the low-critical tasks run in the slack generated by high-critical one. See for
example the work of De Niz and Phan [dNP14].

8 CHAPTER 1. INTRODUCTION

Multiprocessor Scheduling

One of the first work is made by Mollison et al. [MEA+10]. This work is mainly based on
temporal isolation techniques, which provide good isolation between criticality levels, but
worse performances if compared to solutions that allows jobs at different criticality to run
at the same time. Herman et al. [HKM+12] extend this approach to take OS overhead in
account. Li and Baruah [LB12] proposed a global multiprocessor algorithm, fpEDF, with
a complete theoretical analysis. However in a later work [BCLS14] they also propose a
partitioned scheduling, and they show that this second solution gives better performances.
Other partitioned solutions can be found in [LDNRM10, LDNRM10, KAZ11, GRP14].

Baruah [Bar13], propose a multiprocessor list scheduling algorithm for synchronous re-
active systems. This papers introduces the problems of job dependencies, however, it is
restricted to jobs that all have the same arrival time and deadline.

Time Triggered

Time-triggered scheduling, being static, allows simpler analysis, and thus is popular in time-
critical applications. Baruah and Fohler [BF11] extend the time-triggered scheduling policy,
to mixed-critical systems by considering one scheduling table per criticality mode. In the
work of Baruah [Bar13] the STTM scheduling was extended from single to multiple proces-
sors, in the context of synchronous reactive systems.

Theis et al. [TFB13] build such tables via search tree, but their approach does not allow
high utilization. Jan et al. [JZLP14] propose a linear programming based solution.

Probabilistic Scheduling

An interesting area of research is the one of probabilistic scheduling. In this theory WCET are
modeled as probability density functions (pWCET). Work on this directions were proposed
by Alahmad et al. [AGSCG11] and Guo et al. [GSY15].

1.3.2 Formal Languages

Only a few work on formal languages have proposed for mixed critical systems. The main
problems of formal languages is the state-space explosion problem, which is particularly
problematic for mixed-critical systems, since they allow different modes of executions.

Amey et al. [ACW05] proposed static code analysis techniques to guarantee isolation in
mixed criticality software written in SPARK [Bar03], a safety-critical dialect of Ada language.

Lindgren et al. in [LEL+14] discuss an approach based on static semantic analysis per-
formed directly on the system specification in the experimental language RTFM-lang. This
allows at compile time to discriminate in between critical and non-critical functions, and
assign these appropriate access rights.

1.3.3 Managing Accesses to Shared Resources

Sharing resources within criticality levels is one of the key issues of mixed-critical sys-
tems. Burns [Bur13] extends to mixed-criticality system the classical priority ceiling proto-
col [SRL90] by adding criticality-specific blocking terms into the response time-analysis. This
allows lower criticality tasks to transfer budgets of the resource usage to higher criticality
ones.

1.4. CONTRIBUTIONS 9

Zhao et al. [ZGZ13] extend the Stack Resource Protocol (SRP) to Mixed-Criticality
Systems and provide schedulability analysis.

Brandenburg [Bra14] proposes MC-IPC protocol, that enables temporal and logical iso-
lation among tasks of different criticality.

1.4 Contributions

In this thesis we mainly address the problem of scheduling finite job sets in a dual criticality
systems. Considering only two levels of criticality is a simplification often used in literature,
to limit the complexity of the problem. Such systems are, however, of practical interest, since
there are standards in domain like Unmanned Air Vehicles (UAVs) that define two levels
of applications: safety critical and mission critical. Considering a finite set of job is also a
simplification of the problem w.r.t. the more general task model. Job model allows potentially
better processor utilization and simplifies the analysis of the system from a theoretical point
of view. Its main drawback is that one has to consider an entire hyperperiod, i.e., the
least common multiplier of all the jobs’ periods, to check the schedulability of such systems.
This can make the analysis computationally complex. However, we are interested in static
scheduling, in order to simplify the schedulability analysis. In static scheduling the problem
of analyzing the whole hyperperiod is unavoidable. Also in a real-life system, one would
expect the periods to have big common divisors, that would prevent the hyperperiod to grow
too much.

In Chapter 2 we present the scheduling model and and characterization of problem in-
stances. The model used is the so-called Vestal model [Ves07] and we extend it to take
into account data dependencies between jobs. We also extend the well-known load char-
acterization in one that is more suitable to data dependencies and to better account for
multiprocessors, the latter variant of load extension is referred to as Stress.

Our contributions in priority based scheduling are presented in Chapter 3. Here we
discuss the limitations of Audsley approach. To overcome those limitations we propose a
theoretical tool, the Priority Direct Acyclic Graphs (P-DAGs) that models how the jobs
interact with each other. Based on that, we propose two scheduling algorithms. The first
is Mixed Criticality Earliest Deadline First (MCEDF), a priority based algorithm for single
processor. We formally prove that MCEDF dominates the state of the art algorithm OCBP
despite the latter being an optimal fixed-priority algorithm. The second algorithm is Mixed
Criticality Priority Improvement (MCPI). This algorithm can be applied to multiprocessor
instances with dependency constraints. To the best of our knowledge no other algorithm
to solve this kind of problem has been proposed in literature, if not under quite restrictive
constraints. We show equivalence and some optimality properties of both algorithms and
conclude the chapter by showing experiment that confirms the good performances of MCEDF
and MCPI.

In Chapter 4 we address the problem of static scheduling. We propose an algorithm
that can generate static scheduling tables from a non-static scheduling policy (for example
a priority based one). Our algorithm is optimal for single processor case, in the sense that
we successfully find a feasible scheduling table if and only if the original policy generates
a feasible schedule as well. Hence we show that a static schedule can be used to check
correctness of non-static policies, which can potentially be done at less computational costs.
Experiments provided at the end of the chapter show satisfying results for the multiprocessor
case.

10 CHAPTER 1. INTRODUCTION

Finally in Chapter 5 we propose a formal method based design flow for mixed critical sys-
tems. It is based on a novel Model of Computation (MoC), Fixed Priority Process Network
(FPPN), that shows good potential to prove suitable for describing both reactive-control and
data-flow applications and has the advantage of generating deterministic executions. This
model has relation to synchronous languages, and the latter have been studied in the related
work as potential candidates to represent tasks communicating via buffers deterministically.
In our flow both the MoC and the scheduling policy are described in the timed-automata
based language BIP (Behaviour Interaction Priorities). The BIP code is generated automat-
ically from high level description of MoC and policy.. The effectiveness of the approach is
shown using a real-life example from avionic industry, a Flight Management System.

Chapter 2

Scheduling Model

In this thesis we will take into consideration a model of scheduling that is known as Vestal
Model [Ves07]. We consider dual-criticality systems, having two levels of criticality, the high
level, denoted as ‘HI’, and the low (normal) level, denoted as ‘LO’. Every highly critical job
gets a pair of WCET values: the LO WCET and the HI WCET. The former one is for normal
safety assurance, used to assess the sharing of processor with the LO jobs, and the other one, a
higher value, is used to ensure certification. Dual-criticality systems are of practical interest,
since certain safety-critical application domains can be classified as such. For instance in the
unmanned aerials vehicle (UAV’s) domain, functionalities are divided into mission-critical
functionalities and flight-critical functionalities, and only the latter undergo certification
[BLS10]. One important remark is that both HI and LO jobs are hard real-time, so both
must complete their executions before the deadlines. But only HI jobs undergo certification.
This means that the designer is confident that the jobs will never exceed their LO WCET.
However, it is required to prove to the certification authorities that the HI jobs will meet the
deadlines even under the unlikely event that some jobs would execute at their HI WCET,
calculated by very pessimistic certification tools. This necessity thus comes from certification
needs (i.e., legal constraints) and not from engineering considerations. For this reason, upon
the hypothetical event in which some jobs violate their LO WCET, the scheduling policy
tolerates that the LO jobs may miss their deadlines or even drops them altogether, in order to
certify the HI jobs while requiring as little as possible processor resources. This approach for
mixed-critical RT systems is called certification-cognizant [BBD+12b, BF11]. Note that other
approaches exist such as asymmetric isolation, which instead of specifying different WCETs,
ensures that the highly critical jobs get a higher protection from missing the deadline when
a job violates its normal WCET [NLR09], but they are beyond the scope of this thesis.

2.1 Independent Jobs

The use of computing systems in life-critical applications such as avionics or automotive usu-
ally requires very high reliability and responsiveness. Most tasks in these applications have
timing constraints, i.e., deadlines, to be satisfied. Generally, real-time tasks are categorized
as periodic and aperiodic. A single instance of a task execution is called job. Periodic tasks
are activated repeatedly in a fixed time interval, called period. Such tasks are usually used
to poll sensors and for control-loop subroutines. The activation of aperiodic tasks can occur
at any time and it is usually triggered by special conditions or operator command. Since,
by default, the number of jobs that can be generated by aperiodic tasks is unbounded, it

11

12 CHAPTER 2. SCHEDULING MODEL

is impossible to guarantee the schedulability of such tasks. For this reason such tasks are
usually refined to the sporadic task model. Similarly to periodic ones, sporadic tasks can be
triggered at any time, but once a job is triggered a fixed length minimum inter-arrival time
must pass before a new execution of the task may be triggered. A more general definition
of sporadic tasks defines a maximum number of jobs activation in any time interval of given
length.

However in this thesis we will mainly focus on finite set of jobs. This is motivated by
the fact that first, Mixed Critical Scheduling is a new problem in research, and thus even
under this simplifying assumption there there is fertile ground for new research. Moreover,
in the following chapters we will target time triggered scheduling, which is by its nature
easily modeled with a finite set of jobs. Finally a set of periodic tasks can be easily modeled
as a finite set of jobs, considering only the jobs appearing in one hyperperiod, i.e., the least
common multiple of the tasks’ period. This can, with limitations, be extended to sporadic
tasks, as shown in Chapter 5.

2.1.1 Problem Definition

In this section we introduce a formalization of the Vestal model for Mixed-Critical System
(MCS) for the dual-criticality case. In Vestal model, a job Jj is characterized by a 5-tuple
Jj = (j, Aj , Dj , χj , Cj), where:

• j ∈ N+ is a unique index
• Aj ∈ Q is the arrival time, Aj ≥ 0
• Dj ∈ Q is the deadline, Dj ≥ Aj
• χj ∈ {LO,HI} is the job’s criticality level
• Cj ∈ Q2

+ is a vector (Cj(LO), Cj(HI)) where Cj(χ) is the WCET at criticality level χ.

The index j is technically necessary to distinguish between the jobs with the same pa-
rameters. We assume that [BBD+12b]:

Cj(LO) ≤ Cj(HI)

The latter makes sense, since Cj(HI) is a more pessimistic estimation of the WCET than
Cj(LO). We also assume that the LO jobs are forced to complete after Cj(LO) time units
of execution, so:

(χj = LO)⇒ Cj(LO) = Cj(HI)

The interval [Aj , Dj] is the time window of job Jj .
An instance of the scheduling problem is a set of jobs J. A scenario of an instance

J is a vector of execution times of all jobs: (c1, c2, . . . , cK). If at least one cj exceeds
Cj(HI), the scenario is called erroneous. The criticality of scenario (c1, c2, . . . , cK) is LO if
cj ≤ Cj(LO), ∀j ∈ [1,K], is HI otherwise. A scenario is basic if:

∀j = 1, . . . ,K cj = Cj(LO) ∨ cj = Cj(HI)

A schedule S of a given scenario is the mapping:

S : T 7→ Jε × Jε × . . .× Jε = Jmε

where T is the physical time and Jε = J ∪ {ε}, where ε denotes no job and m the number
of processors available. Every job should start at time Aj or later and run for no more than

2.1. INDEPENDENT JOBS 13

cj time units. A schedule is preemptive if a job run can be interrupted and resumed later.
A job may be assigned to only one processor at time t, but migration from one processor to
another may be possible.

A job J is said to be ready at time t iff:

1. it is already arrived at time t

2. it is not yet completed at time t

The online state of a run-time scheduler at every time instance consists of the set of
completed jobs, the set of ready jobs, the progress of ready jobs, i.e., for how much each of
them has executed so far, and the current criticality mode, χmode, initialized as χmode = LO
and switched to ‘HI’ as soon as a HI job exceeds Cj(LO). A schedule is feasible if the
following conditions are met:

Condition 1. If all jobs run at most for their LO WCET, then both critical (HI) and
non-critical (LO) jobs must complete before their deadline.

Condition 2. If at least one job runs for more then its LO WCET, than all critical (HI) jobs
must complete before their deadline, whereas non-critical (LO) jobs may be even dropped.

An instance J is clairvoyantly schedulable if for each non-erroneous scenario, when it is
known in advance (hence clairvoyantly), one can specify a feasible schedule. This property is
of purely theoretical interest, as in reality the execution time of every job Jj is only discovered
when Jj signals its termination. Hence, whether the LO job time termination is required is
not known as long as no HI job has shown an execution time exceeding its Cj(LO).

Based on the online state, a scheduling policy deterministically decides which ready jobs
are scheduled at every time instant on m processors. A scheduling policy is correct for the
instance J if for each non-erroneous scenario it generates a feasible schedule. A mode-switched
scheduling policy uses χmode in the scheduling decisions, e.g., to drop the LO jobs, otherwise
it is mode-ignorant. A policy is said to be work-conserving if it never idles the processor if
there is pending workload.

An instance J is MC-schedulable if there exists a correct scheduling policy for it.

2.1.2 Correctness and Predictability

To verify the correctness of a scheduling policy one usually tests it for the maximal possible
execution times, which in our case corresponds to HI WCET. However, to justify this test
a scheduling policy must be predictable, which means that reducing execution time of any
job ‘A’ (while keeping all other execution times the same) may not delay the termination
of any other job ’B’. In other words, predictability means that the termination times have
monotonic dependency on execution times.

For mixed-critical scheduling the predictability requirement is too restrictive, as it does
not take into account that increase of an execution time of a HI job to a level that exceeds
its LO WCET may lead to a mode switch and hence to dropping the LO jobs, which, in turn
may lead to an earlier termination of another HI job, and hence non-monotonic dependency
of termination times. Therefore, a weaker property is adopted in this case, which we call
predictable per mode. This property poses almost the same requirement of non-increasing
termination time of a job ‘B’, but now it is not required anymore to hold under arbitrary
execution time reduction of a job ‘A’. Now it is required only if the reduction does not lead

14 CHAPTER 2. SCHEDULING MODEL

to a change of the mode in which job ‘B’ terminates, for example when the reduction keeps
the execution time higher than LO WCET.

The generalization of predictable policies to predictable-per-mode ones raises the problem
of how to test the correctness of such policies, as we cannot anymore rely on the traditional
method and just test the scheduling using one worst-case scenario. It turns out that in this
case it suffices to test the scheduling policies for H + 1 basic scenarios, where H is the total
count of HI jobs in the problem instance.

Consider a LO basic scenario schedule SLO and select an arbitrary HI job Jh. Let us mod-
ify this schedule by assuming that at time th when job Jh reaches its LO WCET (Ch(LO))
it does not signal its termination, thus provoking a mode switch. Then, by Condition 2, we
should ensure that Jh and all the other HI jobs that did not terminate strictly before time
th will meet their deadlines even when continuing to execute until their maximal execution
time – the HI WCET. Note that in multiprocessor scheduling multiple jobs may also termi-
nate exactly at time th in SLO, and they are conservatively assumed to also continue their
execution after time th in the modified schedule. The behavior described above is formalized
to a basic scenario where all HI jobs that execute after time th have HI WCET.

Definition 2.1.1 (Job-specific Basic Scenario). For a given problem instance, LO basic-
scenario schedule SLO and HI job Jh, the basic scenario defined above is called ‘specific’ for
job Jh and is denoted HI-Jh, whereas its schedule is denoted SHI-Jh.

Note that SHI-Jh coincides with SLO up to the time when job Jh switches, and after the
switching time it starts using HI execution times for the jobs that did not terminate before
the switch.

Theorem 2.1.2 (Correctness Verification by Job-specific Scenarios). To ensure correctness
of policy that is predictable per mode it is enough to test it for the LO scenario and the
scenarios HI-Jh of all HI jobs Jh.

This theorem can be derived from the properties of the correctness verification algorithm
presented in [BBD+12b].

2.1.3 Fixed Priority and Fixed Priority per Mode

A fixed-priority scheduling policy is a mode-ignorant policy that can be defined by a priority
table PT , which is a K-sized vector specifying all jobs (or, optionally, their indexes) in a
certain order. The position of a job in PT is its priority, the earlier a job is to occur in
PT the higher the priority it has. Among all ready jobs, the fixed-priority scheduling policy
always schedules the m highest-priority jobs in PT . Fixed priority is a work-conserving
policy. A priority table PT defines a total ordering relationship between the jobs. If job J1
has higher priority than job J2 in table PT , we write J1 �PT J2 or simply J1 � J2, if it is
clear from the context to which priority table we are referring to.

We introduce fixed priority per mode (FPM), a natural extension of Fixed-priority for
MCS. FPM is mode-switched policy with two tables: PTLO and PTHI. The former includes
all jobs. The latter only HI jobs. As long as the current criticality mode χmode is LO, this
policy performs the fixed priority scheduling according to PTLO. After a switch to the HI
mode, this policy drops all pending LO jobs and applies priority table PTHI.

The following [HL94] states a very useful property, for which we formulate a corollary:

Lemma 2.1.3. Fixed-priority policy (without precedences), is predictable.

2.1. INDEPENDENT JOBS 15

Corollary 2.1.4. FPM is predictable per-mode.

If a scheduling policy cannot be defined by a static priority table, it is called dynamic.
Dynamics policy are, in general, more powerful then fixed priorities, but they are generally
more complex and they usually require heavier run-time computation. Also they are not
necessarily predictable. Fixed-priority scheduling are very popular thanks to the fact that
they are predictable and easier to implement. Also, they are natively supported by many
operating systems and libraries for programming real-time systems.

2.1.4 Characterization of Problem Instance

The characterization of a scheduling algorithm means defining certain metrics that estimate
the schedulability of problem instances under different scheduling algorithms. These estima-
tions are not always necessary to evaluate whether an algorithm can schedule an instance, as
for a finite-job problem it can be more efficient to run the algorithm itself together with its
built-in verification of the correctness of the solution. In this context, the characterization
metrics are only used as convenient indicators of algorithm performance, but not necessarily
for a schedulability test.

To characterize the performance of scheduling algorithms one uses the utilization and the
related demand-capacity ratio metrics, i.e., the maximal ratio between demand and capacity
of the system. For a job set J = {Ji} and an assignment of execution times ci the appropriate
metric is load [Liu00]:

`oad(J, c) = max
0≤t1<t2

∑
Ji∈J: t1≤Ai∧Di≤t2

ci

t2 − t1

For a multiprocessor system there does not exist a necessary and sufficient schedulability
bound on load, whereas it exists for uniprocessor systems:

`oad ≤ 1

For m-processor system the corresponding bound is only necessary, but not sufficient [BF05]:

`oad ≤ m

Baruah et al. [LB10b] defined the load metrics for mixed-critical scheduling problems
and applied them to analyze fixed-priority algorithms. The authors define the in LO and in
HI mode as shown below:

LoadLO(T) = max
0≤t1<t2

∑
Ji: t1≤Ai∧Di≤t2

Ci(LO)

t2 − t1

LoadHI(T) = max
0≤t1<t2

∑
Ji: χi=HI ∧ t1≤Ai∧Di≤t2

Ci(HI)

t2 − t1
An instance can only be schedulable if the processor is not overloaded. Hence, a necessary

condition for MC schedulability is [LB10b]:

LoadLO(T) ≤ m ∧ LoadHI(T) ≤ m (2.1)

16 CHAPTER 2. SCHEDULING MODEL

This is also a sufficient condition for clairvoyant scheduling on single processor, but not for
practically realizable policies [LB10b].

The characterization above proved useful for the fixed-priority policy. However, we would
like to stress that a shortcoming of LoadLO and LoadHI is that they ignore a phenomenon
which we call the WCET uncertainty. This phenomenon makes a practically realizable
policy inferior to a clairvoyant scheduler. The latter ‘knows for certain’ whether and when
a mode switch will occur at runtime, whereas an ordinary policy is ‘uncertain’ about this.
By definition, this knowledge can be exploited online only by mode-switched policies. The
job WCET uncertainty can be measured as ∆Cj = Cj(HI)− Cj(LO) (strictly positive only
for the HI jobs). In [PK11] it is proposed to consider a new set of job deadlines for the
LO scenario: D′j = Dj − ∆Cj . It was noticed in [PK11] that in the LO scenario the jobs
should meet deadlines D′j , otherwise deadlines Dj are missed in a HI scenario. A new metric,
LoadMIX is thus defined as the one equal to LoadLO after substituting D′j into Dj [PK11]:

LoadMIX(J) = max
0≤t1<t2

∑
Ji:t1≤Ai∧D′i≤t2

Ci(LO)

t2 − t1

By the reasoning above, the necessary condition (2.1) can be refined to the following:

Lemma 2.1.5 (Necessary condition for schedulability). Mixed-critical problem instance T
is schedulable only if

LoadMIX(T) ≤ m ∧ LoadHI(T) ≤ m (2.2)

for all jobs it must hold:
Ai + Ci(LO) ≤ D′i

in addition HI jobs must respect the following condition:

Ai + Ci(HI) ≤ Di

LoadMIX is a better indicator of schedulability than LoadLO. This is shown in Sec-
tion 3.3.4, where we introduce splitting, a transformation that modifies an instance into
another with equal LoadLO, but lower LoadMIX. The instance thus generated is more likely
to be schedulable by FPM policies.

The Load metric is very powerful to profile single processor problems. On multiprocessor,
however, its effectiveness reduces. This is due to the fact that in multiprocessor it is not
always possible to use all the available resources for the available workload, due to the fact
that we may not parallelize a single job’s execution. For example, if we consider an instance
composed of only one job J1 such that C1 = D1 − A1, then we will have Load = 1. If
we decrease the speed of the processor by a factor ε it will not be possible to schedule this
instance, not even increasing the number of processors. This shows the weakness of Load
metric, since if we have, for example, 4 processors, the Load metric will tell us that we have
only a little bit more then 1/4 of our resources busy. To compensate this issue, we introduce
the Stress metric:

stressLO(J) = max
0≤t1<t2

m

min{|J′|,m}
·

∑
Ji∈J′

Ci(LO)

t2 − t1

2.2. PRECEDENCE CONSTRAINTS 17

where J′ = {Ji | t1 ≤ Ai ∧Di ≤ t2}

stressHI(J) = max
0≤t1<t2

m

min{|J′|,m}
·

∑
Ji∈J′

Ci(HI)

t2 − t1

where J′ = {Ji | χi = HI ∧ t1 ≤ Ai ∧Di ≤ t2}

stressMIX(J) = max
0≤t1<t2

m

min{|J′|,m}
·

∑
Ji∈J′

Ci(LO)

t2 − t1

where J′ = {Ji | t1 ≤ Ai ∧D′i ≤ t2}.

The m/|min{|J′|,m}| scale factor is used to consider the fact that if there are j < m
ready jobs then only j processors can be used to schedule them. In the example given
above, in fact, we will have that m/|J′| = 4, thus giving stress > 4, coherently with the
non-schedulability of the instance.

In the context of Lemma 2.1.5, one can rewrite the necessary conditions (2.1) and (2.2)
using stress, but this would not make the lemma stronger due to other conditions formulated
there. Nevertheless in general, we have stress ≥ `oad , therefore we use it as a more ‘realistic’
metric of ‘complexity’ of the scheduling problem, as for the problem instances of growing
complexity it approaches the critical bound m faster than the load.

2.2 Precedence Constraints

2.2.1 Problem Definition

In this section we will extend the Vestal model for the case of precedence constrained jobs.
A task graph T of the MC-scheduling problem is a pair (J,→) of a set J of K jobs with

indexes 1 . . .K and a functional precedence relation:

→⊂ J× J

We use the notation Ja 9 Jb to indicate that there is no precedence relation Ja → Jb. The
precedence relation is well defined iff:

Ja →∗ Jb ⇒ Jb 9 Ja

where →∗ is the transitive closure of →. The above condition imposes absence of cycles in
the precedence relation.

The criticality of a precedence constraint Ja → Jb is HI if χ(a) = χ(b) = HI. It is LO
otherwise. For each precedence constraint Ja → Jb, job Jb may not run until Ja completes.
Thus when scheduling a task graph a job is not ready until all its predecessors have signalled
their termination.

The reader may have noticed that we implied the possibility of having precedence relation
from LO jobs to HI jobs. This may be unusual and may be considered a bad practice.

18 CHAPTER 2. SCHEDULING MODEL

L

s1 s2 s3 s4

Figure 2.1: The graph of an airplane localization system illustrating LO→HI dependencies.

Nevertheless we allow this, because it is necessary in some practical situation, like the one
of the of Figure 2.1. There we have a task graph of the localization system of an airplane,
composed of four sensors (jobs s1-s4) and the job L, that computes the position. Data coming
from sensor s4 is necessary and sufficient to compute the plane position with a safe precision,
thus only s4 and L are marked as HI critical. On the other hand, data from s1, s2 and s3
may improve the precision of the computed position, thus granting the possibility of saving
fuel by a better computation of the plane’s route. So we do want job L to wait for all the
sensors during normal execution, but when the systems switch to HI mode we only wait for
data coming from s4.

In MCS, a schedule, to be feasible, needs to satisfy two additional conditions:

Condition 3. When the system is in LO mode, all precedence constraints must be respected.

Condition 4. When the system is in HI mode, HI precedence constraints must be respected
whereas LO precedence constraints may be ignored.

2.2.2 Extending Fixed Priority to Precedence Constrains

We will now show how to generalize the fixed-priority and FPM policy for precedence con-
strained instances. In the previous section we redefined the concept of ready job, by adding
the condition that all the predecessors must have completed. The use of fixed-priority in
combination with the adopted precedence aware definition of ready job is called in liter-
ature List Scheduling. For a detailed implementation of list scheduling, see Appendix A.
The generalization of fixed priority is then straightforward, but it is important to stress the
following:

Lemma 2.2.1. List Scheduling is not predictable on multiprocessor.

This is shown in the following:

Example 2.2.2. Consider a task-graph T = (J,→) where J is defined by the following table

Job A D χ C(LO) C(HI)

1 0 3 LO 2 2
2 0 4 LO 2 2
3 0 4 LO 2 2
4 0 3 LO 2 2

on which the followings precedence constraints are defined: J1 → J2 and J1 → J3. Consider
also the following priority table:

PT = J1 � J2 � J3 � J4

2.2. PRECEDENCE CONSTRAINTS 19

1 2

4 3

1 2

34 4

Figure 2.2: The Gantt Chart of Example 2.2.2.

Then it is easy to see that the schedule generated by PT for the basic scenario on a system
with 2 processors is the one shown in the Gantt chart on the left of Figure 2.2. In at time
0 only J1 and J4 are ready (J2 and J3 are waiting J1 to terminate). At time 2, J1 and J4
terminates and J2 and J3 become ready. They will execute for 2 time units and then they
will terminate.

Now consider the scenario where c1 = 1. This is shown in the right of Figure 2.2. In
this case J1 will terminate at time 1, thus making J2 and J3 ready before the termination
of J4. This will cause the preemption of J4, that will be allowed to execute only when J2
and J3 terminate (time 3). This will cause J4 to terminate at time 4, 2 times unit after its
termination in the basic scenario. Notice that in this case J4 also misses its deadline.

Predictability is required to reason in terms of basic scenarios. Thus, when using list
scheduling offline, some modifications to online scheduling policy that ensure schedulability
must be applied. In Chapter 4 we show how to do this by using Time-Triggered paradigm.

Usually a priority table PT is required to be precedence compliant, i.e., the following
property must hold:

J → J ′ ⇒ J �PT J ′ (2.3)

The above requirement is reasonable, since we may not schedule a job before its predecessors
complete. It is indeed possible to schedule using non precedence compliant tables, since the
online policy will just ignore high-priority jobs until all their low-priority predecessors will
signals their termination, but as will be clear in the next chapters, precedence compliance
can be useful in some cases.

In Figure 2.3 an algorithm that can transform a priority table to a precedence compliant
one is shown. This algorithm preserves J1 ≺ J2 unless J1 →∗ J2. The transformation is done
as follows. We repeatedly scan the priority table, from the highest to the least priority. For
each job J that has higher priority than some of its predecessors in T, we raise the priority
of those predecessors moving them immediately before J , keeping their relative order.

Example 2.2.3. Consider the task graph T and the priority table shown in Figure 2.4. At
the first iteration we will have Jcurr = PT [1] = J1. Since this job has no predecessors, no
change in PT will be done inside the while loop, and thus we will increment i. At the second
iteration we will have Jcurr = PT [2] = J2. At the first iteration of the while loop we will
have that J1 = Jcurr. J1 has no predecessors, so we will do no actions for it. At the following
iteration Jcurr = J2. Since J3 → J2, we will swap the position of J2 and J3. J2 has no other
predecessors, so we will not further modify PT . Since we did a modification of the table,
we will not update i, thus at the third iteration we will have Jcurr = PT [2] = J3. At this
iteration we will move back J5 and J6, as shown in Figure 2.4. Then until the end of the
algorithm the table will not further modify table PT . It is trivial to check that the resulting
table is indeed precedence compliant.

20 CHAPTER 2. SCHEDULING MODEL

Algorithm: DependencyComplianceTransform
Input: task graph T
Input: priority table PT
Output: priority table PT

1: i = 1
2: while i ≤ K do
3: Jcurr ← PT [i]
4: for j = i+ 1 to K do
5: moved← false
6: Jp ← PT [j]
7: if Jp → Jcurr then
8: MoveToFront(Jp, Jcurr, PT)
9: moved = true

10: end if
11: end for
12: if moved = false then
13: i← i+ 1
14: end if
15: end while

Figure 2.3: The DependencyComplianceTransform algorithm

1 2 3 4 5 6

5
3

6

2

1 3 2 4 5 6 31 2 45 6

1

4

T:

PT:

Figure 2.4: The initial PT transformation

2.2. PRECEDENCE CONSTRAINTS 21

2.2.3 Characterization of Problem Instances

In this work we will show how to adapt the metrics introduced in Section 2.1.4 when we deal
with precedence constrained jobs.

First, we give some preliminaries. From the problem instance T(J,→) it is convenient
to derive the following graphs:

HI-criticality graph THI(JHI,→HI), where the JHI is the subset of J that contains only HI
jobs with HI WCET, and →HI is the subset of → that contains only the precedences
of HI criticality level.

LO-criticality graph TLO(JLO,→), where the jobs in JLO are obtained from the original
set of jobs J by considering LO WCET.

MIX-criticality graph TMIX(JMIX,→), where the jobs in JMIX are obtained from the orig-
inal set of jobs J by considering LO WCET and modifying job deadlines such that:
D′i = Di − (Ci(HI)− Ci(LO)).

We define ASAP arrival times and ALAP deadlines, known in the task graph the-
ory [KA99], but so far mainly used to derive priority tables rather than to compute the
load1.

For a task graph with execution times c, ASAP arrival time A∗ is the earliest time when
a job can possibly start:

A∗j = max
i

(Aj , A
∗
i + ci | Ji are predecessors of Jj)

Dually, ALAP deadline D∗ is the latest time when a job is allowed to complete:

D∗j = min
i

(Dj , D
∗
i − ci | Ji are successors of Jj)

By analogy to static timing analysis in digital circuits, ASAP and ALAP values are
obtained by propagation of the arrival and deadline times through the graph, i.e., by longest-
path algorithm that solves the equations above by visiting the nodes in topological or reverse
topological order.

It is trivial that substituting ASAP arrival time and ALAP deadline to the job param-
eters does not change the schedulability of the task graph, so the necessary conditions in
Lemma 2.1.5 remain valid, whereas the lemma becomes, in general, stronger. It should be
noted that, by definition, to compute LoadMIX one should do the ASAP/ALAP calculation
in MIX-criticality graph TMIX using C(LO), whereas for LoadHI it should be done in graph
THI using C(HI). These two graphs have different precedence constraints, and, by defini-
tion, we use the execution times c of two different modes for them: C(LO) for MIX-graph
and C(HI) for HI-graph. Therefore ASAP arrival and ALAP deadlines for the same job
are mode-dependent, and one should use these mode-dependent values also for the second
part of Lemma 2.1.5, where we check the properties of individual jobs. ALAP and ASAP
modified arrivals and deadlines give a better information on the amount of work present in
the system.

An example of ASAP and ALAP times is given in Figure 2.5. Figure 2.5(a) shows the
topology of the task graph. For this graph consider that all jobs have A = 0, D = 10,

1In literature the word ALAP is usually used for latest arrival

22 CHAPTER 2. SCHEDULING MODEL

J1

J2

J3 J4 J5

(a) The task graph T

J1

J2

J3 J4 J5

[0,7]

[0,7]

[1,8] [2,9] [3,10]

(b) ASAP and ALAP times for TLO

J1

J2

J3 J4 J5

[0,6]

[0,6]

[1,7] [2,8] [3,9]

(c) ASAP and ALAP times for TMIX

J1

J2

J3 J4 J5

[0,8]

[2,10] [0,10]

(d) ASAP and ALAP times for THI

Figure 2.5: Example of the various task graphs

C(LO) = 1. For the HI jobs (colored in red in the figures) we have C(HI) = 2 (and thus,
D′ = D− (C(HI)−C(LO)) = 9). Figure 2.5(b) shows ASAP and ALAP times for graph T.
The numbers shown in the parenthesis give for each node, respectively, ASAP arrival time
and ALAP deadline. In the same way, Figures 2.5(c) and 2.5(d) show, respectively, ASAP
and ALAP times for TMIX and THI.

It has to be noticed that, ASAP and ALAP time are mode dependent, since they directly
depend on mode-specific precedence constraints and execution times, as shown in the previous
example.

In the sequel, unless mentioned otherwise, we assume in the algorithms and analysis that
the load and stress values are computed using ASAP and ALAP values, using the respective
mode.

Chapter 3

Priority Based Algorithms

In this chapter we will present some algorithms to compute priorities to schedule mixed
criticality systems using fixed priority or fixed priority per mode paradigm. We will start
in Section 3.2 by introducing the Priority-DAG. This is a theoretical tool that is useful to
understand how jobs interact with each other, and on which all the algorithm presented in
this chapter are based on. In Section 3.3 we will present MCEDF, a single processor algorithm
for scheduling MCS. Later in Section 3.4, we will show MCPI, a multiprocessor algorithm
that can be considered, in some extent, a generalization of MCEDF. Finally Section 3.6 will
conclude this chapter by showing experimental evaluation of the scheduling algorithms.

3.1 Related Work

Although our scope is finite set of jobs, most of the literature concerns with instances that
have an infinite set of jobs, generated by periodic or sporadic tasks. Periodic tasks are said to
be synchronous if the offsets between the first arrival of different tasks are statically known.
The deadlines can be implicit (i.e., equal to the period), constrained (i.e., less or equal to
the period) or arbitrary (i.e., larger than period).

Our work can be applied for scheduling the hyperperiod of periodic synchronous non-
pipelined(i.e., implicit or constrained-deadline) tasks with precedence constraints. However,
we still consider general real-time policies, even if not originally designed for such systems,
as they can be reused as starting point for our priority-based algorithms. We are particularly
interested in the policies tailored for multiprocessor systems, assuming global fixed priority
for jobs.

3.1.1 Audsley approach and its limitations

Most of the mixed-critical scheduling work present in literature use the so-called Audsley
approach [Aud93]. The pseudocode of a generic implementation Audsley priority assignment
technique is shown in Figure 3.1. At each step of the external loop the algorithm selects a
Job to be put in the last position of priority table PT . The job is selected in the internal
loop. For each job it computes the termination time in case the job is selected for the least
priority, in case such a termination time is less then its deadline the job is selected and
added in table PT . Then we remove the job from the current set of jobs J′ and we run a
new iteration. If no job can be selected the algorithm fails in finding a solution.

Audsley approach is based on the following assumptions:

23

24 CHAPTER 3. PRIORITY BASED ALGORITHMS

Algorithm: AudsleyPriorityAssignment
Input: job set J
Output: priority table PT

1: J′ ← J
2: PT ← ∅
3: while J′ 6= ∅ do
4: i← 1
5: JobFound = false
6: while i ≤ J′.size() ∨ ¬JobFound do
7: TT ← GetTerminationT ime(J′, i)
8: if TT ≤ J′[i].D then
9: JobFound← true

10: PT ← J[i] _ PT
11: J′ ← J′ \ {J[i]}
12: end if
13: end while
14: if ¬JobFound then
15: return (FAIL)
16: end if
17: end while

Figure 3.1: The Audsley algorithm

1. The termination time of any job does not depend on the jobs of lower priority

2. The termination time of any job does not depend on the relative priority of higher-
priority jobs

If both assumptions are true, then Audsley approach is optimal. Unfortunately this is
not always true in mixed-critical scheduling. Assumption 1 usually holds for preemptive
scheduling, while cannot be guaranteed in the case of list scheduling of non-preemptive
systems. Assumption 2 holds for single criticality scheduling on single processor. In [BLS10]
it is shown that using the fixed priority policy this assumption holds on single processor, thus
the proposed Audsley approach based algorithm OCBP is optimal. However, as previously
discussed, the FP policy is too restrictive for MCS problems, where FPM is preferred. In
the latter case, the assumption does not hold, since the order of execution may determine
if a LO job is executed or not in case of a switch. Also Assumption 2 does not hold in
multiprocessor systems.

Audsley approach can be used also in the case that one or both the assumptions do
not hold. In that case the function AudsleyPriorityAssignment may not compute the exact
termination time, and a safe worst case estimation must be made instead. In this case,
however, the estimation is usually too pessimistic and/or computationally intractable. In
the rest of this subsection we study how to safely estimate the termination time in the case of
multiprocessor platforms. An example of such an estimation is present in the work of [Pat12],
where a schedulability analysis is given for sporadic tasks set. Using a similar technique we
derive a formula to estimate the termination time in the case of finite job sets and use it to
implement the GetTerminationT ime function of Figure 3.1.

Consider two jobs Jk and Ji such that Jk � Ji. The time interval in which Ji may

3.1. RELATED WORK 25

preempt Jk is given by:

ιi,k = [Ak, TTk(χ)] ∩ [Ai, Di]

where TTk(χ) is a pessimistic estimation of the termination time of Jk in a scenario of
criticality χ. Then the interference of Ji on Jk, i.e., the cumulative length of the intervals
in which Ji is executing and Jk is ready but not executing, is at most:

Ii,k(χ) = min{|ιi,k|, Ci(χ)}

thus TTk(χ) can be estimated by the following

TTk(χ) = Ak + Ck(χ) +

⌊∑
i 6=k Ii,k(χ)

m

⌋
(3.1)

We realized the algorithm of Figure 3.1 implementing GetTerminationT ime function
using the fixed point of Equation (3.1) to estimate the termination time and we performed
some experiments. We randomly generated 181 450 instances of 30 jobs, at different values
of StressLO and StressHI, similarly to Section 3.6.2. The values of Stress ranged uniformly
from 0 to 2. We tried to schedule each instance first using FPM policy with EDF priority
and then the above described implementation of Audsley approach based on Equation (3.1).
Only 4.3% (7804) could be scheduled using Audsley approach, while 56.6% (102690) could
be scheduled by EDF.

The weakness of this approach is shown in the following:

Example 3.1.1. Consider the following instance J:

Job A D χ C(LO) C(HI)

1 0 8 LO 3 3
2 0 8 LO 5 5
3 2 10 LO 5 5

It is easy to check that the followings are fixed points for equation (3.1) in the case m = 2:

TT1(LO) = 9, TT2(LO) = 9, TT3(LO) = 11

hence no job can be selected for the lowest priority. Notice that this instance has a low load
for a 2 processor instance, in fact LoadLO(J) = 1.3. Also notice that any priority assignment
will lead to a correct schedule.

3.1.2 Multiprocessor Scheduling

Whereas for uniprocessor scheduling a fixed-job-priority algorithm (EDF) is optimal, for
multiprocessor case, dynamic job priorities are essential for optimality[DB11]. Moreover,
the EDF heuristic can be very inefficient for multiprocessors. In seminal work of Dhall and
Liu [DL78] it was shown that the best, i.e., maximal, at which we can be sure to have a
schedulable job set for EDF on multiprocessors is no better than for EDF on uniprocessor.
For arbitrarily small ε > 0 one can find a feasible job instance with load 1 + ε that is not
schedulable by EDF. For this, let us consider m small-deadline jobs with utilization ε/m
each and one job with utilization 1 and a large deadline. If the last job, which has a large
utilization, was given the highest priority then the schedule would be feasible.

26 CHAPTER 3. PRIORITY BASED ALGORITHMS

In [Bar04] it was shown that in general implicit-deadline periodic task sets under global
fixed priority for jobs have the following best guaranteed utilization: (m + 1)/2. Roughly
speaking, the fixed priority scheduling can be guaranteed to find a multiprocessor schedule if
the system is loaded by no more than one half, and even this is only possible if job priorities
are well calculated, e.g., the plain EDF cannot provide this guarantee, as explained earlier.
Therefore, EDF modifications have been proposed to provide this guarantee. The main idea
of several such algorithms is so-called ‘separation’ of jobs, i.e., separating those that have
low and high contribution to load. One of such algorithms is fpEDF, formulated for periodic
tasks [Bar04], and later on generalized to sporadic tasks under name EDF-DS, where DS
stands for density separation (see [DB11] for references). In our notation, this algorithm
computes job density as δi = Ci/(Di − Ai) and it differs from EDF by always giving the
jobs with δi > th the highest priority, for a certain threshold th. Ties are broken arbitrarily.
For the other jobs, the priority is the default EDF. Obviously, this strategy resolves the
Dhall-effect counterexample mentioned earlier. However this approach does not give any
schedulability assurance in the case of finite sets of jobs. Experiments shows that one can
even loose in schedulability using a threshold th = 1/2. For finite job sets, experiments
suggest to use a higher threshold to improve schedulability.

3.1.3 Precedence-constrained Scheduling

The list scheduling (see Appendix A) can be seen as generalization of fixed-priority scheduling
by handling precedence constraints using synchronization between dependent jobs, i.e., in-
cluding wait for predecessor termination into the condition of job ‘ready’ status. Synchroniza-
tion is essential for multiprocessors, whereas for single processor systems it may be sufficient
to require precedence compliance of the priority [F+10, Bar12]. For job priorities, it is gen-
erally recognized that the definition of EDF heuristics should be adjusted by using ALAP
deadlines D∗ instead of the nominal deadlines for priority assignment. For example, the list
scheduling literature knows so-called ‘ALAP’ and b-level heuristics [KA99]. Single-processor
scheduling uses this approach for priority assignment with adjusted deadlines [F+10]. Some-
times the ALAP-adjusted EDF is a part of an optimal strategy, see [KA99] for further
references.

3.1.4 Mixed-critical Scheduling

Single Processor MC scheduling

One of the most notable result in MCS scheduling is OCBP algorithm, which is Fixed
Priority based. MCPI and MCEDF use the flexibility of fixed-priority per mode policies to
be dominant over fixed priority algorithms. To the best of our knowledge, in the previous
work no FPM algorithm [GESY11, BBD+12a, EY12] has been proven to be theoretically
dominant over OCBP. The priority assignment of [GESY11] applies OCBP to compute PTLO,
thus having equivalent schedulability. [BBD+12a] proposes an efficient online algorithm
with the optimal scaling factor and [EY12] presents a highly efficient priority computation
method that dominates OCBP and several other algorithms empirically. Note, however,
that [BBD+12a, EY12] are not directly applicable to the problem studied in this paper as
they are designed for a periodic job model with unknown arrival times.

The FPM policy provides better results than fixed priority, but in general dynamic-
priority policies are necessary for optimality.

3.1. RELATED WORK 27

OCBP

OCBP is based on Audsley algorithm presented in Section 3.1.1. It selects the least-priority
job Ji using the following criterion: when having the least priority in the working set, job
Ji still meets its deadline in the scenario cj = Cj(χi), ∀j, i.e., the basic scenario with the
WCET at the criticality level χi, which is ‘own’ for Ji. This can be checked by simulating1

the scheduling with any priorities for the other jobs in the working set provided that they
are higher than Ji. The correctness of this check is due to the following lemma [BBD+12b]:

Lemma 3.1.2. The execution time available for a job Ji in a fixed priority scheduling algo-
rithm depends on the arrival and execution times of jobs Jj with a priority higher than Ji,
but not on their relative priority assignment.

This is given by the fact that it the lowest priority jobs terminates at the end of its busy
interval, and this can be computed using the (3.8). Thus at each step we can compute the
exact worst case response time for the job to which we assign the lowest deadline, and this
is where the optimality of OCBP comes from. Note that Lemma 3.1.2 confirms Assumption
2 of Audsley algorithm. Note also that this assumption holds because OCBP does not drop
LO jobs even if a HI job exceeds its LO WCET.

The following example shows how OCBP works:

Example 3.1.3. Let J be described by the following table:

Job A D χ C(LO) C(HI)

1 3 4 LO 1 1
2 3 5 HI 1 1
3 0 6 HI 1 4

At the first step OCBP tries to find a job to assign the least priority. We check job
J1 first. We simulate the execution of J assuming that J1 has the least priority, under the
hypothesis that every job executes for its C(LO) execution time (since χ1 = LO). At time 0,
only J3 is ready, so it executes for 1 time unit. Then the CPU is idle for 2 time units, until
at time 3 J1 and J2 arrive. J2 has higher priority, so it executes for 1 time unit, terminating
its execution at time 4. We can now schedule J1, but it already missed its deadline. So now
we check whether job J2 can have the least priority instead. Since χ2 = HI, J3 now has a
WCET of 4. At time 0, J3 is scheduled, switching to HI mode at time 1. At the mode switch
the fixed priority policy, assumed by OCBP, keeps the same priority table and does not drop
any LO jobs. After the switch, J3 executes for 2 time units more until at time 3 J1 and J2
arrive. Since J2 has the least priority, at time 3 only J1 and J3 compete for the CPU. J3 and
J1 will then execute for a total of 2 time units, terminating at time 5. In this case J2 will
miss its deadline. We then check J3 for the least priority. At time 0, J3 will be scheduled
and it will execute until time 3. Then we have to execute J1 and J2 for 2 time units. At time
5 we can schedule J3 again, which will execute for another time unit, terminating at time 6,
thus meeting its deadline.

At the second step we repeat a similar procedure for the working set J′, J′ = J \ J3. If J1
has less priority than J2, the first possibility for it to start would be at its deadline time 4, so
J1 cannot have the least priority. But J2 can be delayed by 1 time unit due to J1. J1 meets
its deadline when it has the highest priority. Thus, we obtain the following priority table for
J: PT = (J1, J2, J3).

1[BLS10] uses a more efficient procedure - makespan (see Section 3.2.4)

28 CHAPTER 3. PRIORITY BASED ALGORITHMS

Multiprocessor MC Scheduling

Some of the first works made on multiprocessor MC scheduling are based on temporal iso-
lation techniques (Mollisonet al. [MEA+10], Herman et al. [HKM+12]). This approach
provides good isolation between criticality levels, but it gives worse performances com-
pared to solutions that allows jobs at different criticality to run at the same time. Li and
Baruah [LB12] proposed a global multiprocessor algorithm, fpEDF, with a complete theoret-
ical analysis. This approach, however does not provide good utilization for high number of
processors, and it was shown [BCLS14] that partitioned solutions are preferable when using
the task model.

There are only a few works on precedence-constrained mixed-criticality scheduling. For
single processor. In [Bar13], multiprocessor list scheduling algorithm was proposed. However,
it is restricted to jobs that all have the same arrival and deadline times. Finally, [YKRB14]
consider pipelined scheduling for task graphs. However, they implicitly assume that the
deadlines are large enough, such that they can be ignored during the problem solving, as
only period (throughput) constraints were considered and not deadline (latency) ones.

3.2 Priority DAG

In this section we will introduce the idea of Priority DAG (P-DAG). Informally it is a graph
that defines a partial order on the jobs showing sufficient priority constraints needed to
obtain a certain schedule. This structure makes it easier to reason on priorities than a
priority table, since the latter is a total order and thus contains also unnecessary priority
constraints. We will imply for the rest of this section that we are using preemptive list
scheduling and that the jobs execute by default in the basic LO scenario. Recall that a
priority table PT defines a total order on the set of jobs J. A priority table PT defines one
and only one schedule S when applying list scheduling on m processors, we indicate it with
the following notation: PT �m S.

3.2.1 Motivation

Before defining the concept of P-DAG, we will show in this section the reason why such
a structure is needed. Figure 3.2 shows the pseudocode of an algorithm that computes
priorities for mixed critical scheduling problem. The idea is to start with a good mixed
criticality-unaware priority order (in this case EDF), and then to improve the priorities by
raising the priorities of HI-critical jobs. All the priority based algorithm proposed in this
work are based on this template. In terms of schedulability, this procedure is constrained by
meeting the LO scenario deadlines, postponing the HI scenario checks until the final check.

A simple implementation of the HI job priority improvement is shown in Figure 3.3. This
procedure increases the priorities of the HI jobs w.r.t. the LO jobs, while the relative priorities
between the jobs of the same criticality level, LO or HI, remain deadline-monotonic. This is
done in a manner similar to a bubble-sort in the PT array. We visit the HI jobs in decreasing
priority order, and try to raise each HI job (‘raising a bubble’) by repeatedly swapping
priority with the adjacent priority LO job. Subroutine CanSwap(i, i − 1, . . .) simulates the
fixed priority schedule PT with entries i and i−1 swapped and returns whether all deadlines
are met. Subroutine Swap performs the actual swapping.

This procedure is illustrated in the following examples:

3.2. PRIORITY DAG 29

Algorithm: MC -ALGO
Input: job instance J
Output: priority table PT

1: PT ← JobsOrderedByEDF (J);
2: if LOscenarioFailure(PT,J) then
3: return (FAILURE-NON-SCHEDULABLE-INSTANCE)
4: end if
5: PT ← ImproveHIJobs(PT,J)
6: if anyHIscenarioFailure(PT,J) then
7: return (FAILURE-MCEDF-SCHEDULABILITY)
8: end if

Figure 3.2: The algorithm for computing priorities

Algorithm: MonotonicImproveHIJobs
In/out: priority vector PT (deadline monotonic)
Input: job instance J

1: i← 2
2: while i ≤ K do
3: Swapped ← False
4: if i ≥ 2 ∧ χPT [i] = HI ∧ χPT [i−1] = LO then
5: if CanSwap(i, i− 1, PT,J) then
6: PT ← Swap(i, i− 1, PT);
7: Swapped ← True
8: end if
9: end if

10: if Swapped then
11: i← i− 1
12: else
13: i← i+ 1
14: end if
15: end while

Figure 3.3: Improvement procedure, keeping the deadline-monotonic order between same-
criticality jobs

30 CHAPTER 3. PRIORITY BASED ALGORITHMS

HI

LO

 0 1 2 3 4 5 6

time

J1 J3 J2

J1 J2

Figure 3.4: The Gantt chart of Example 3.2.1

Example 3.2.1. Let T be the instance defined by the following table:

Job A D χ C(LO) C(HI)

1 0 5 HI 2 4

2 3 6 HI 1 2

3 0 4 LO 2 2

The algorithm of Figure 3.2 will first give EDF priorities to the jobs, thus generating the
following priority table:

PT = (J3, J1, J2)

Then the algorithm of Figure 3.3 will be called to improve this priority table. First, it will
check condition of line 4 on J1 and J3. Since the condition holds, it will check if the swap
between them is possible by checking if, after being moved to the second PT position, J3 will
still met its deadline in the LO scenario. In this case J1 will execute for 2 time units, thus
terminating at time 2, and then J3 will execute for other 2 time units, thus terminating at
4. Since there is no deadline miss, we will accept the swap, thus obtaining:

PT = (J1, J3, J2)

Since there are no other possible swap, the algorithm terminates. Figure 3.4 shows that using
this priority order all deadlines are met in all the possible scenarios of the instance.

However, this procedure may easily fail, as show in the next example:

Example 3.2.2. Let T be the instance defined by the following table:

Job A D χ C(LO) C(HI)

1 0 3 LO 2 2

2 0 6 HI 1 4

3 3 4 LO 1 1

4 3 5 HI 1 1

The algorithm of Figure 3.2 will first give EDF priorities to the jobs, thus generating the
following priority table:

PT = (J1, J3, J4, J2) (3.2)

The only possible swap here is between jobs J4 and J3, but it will lead to a deadline miss
of job J3. The algorithm will then leave the priority table unchanged, not having improved
any HI-job priority. Thus the algorithm will fail, since, as the reader may check, the priority

3.2. PRIORITY DAG 31

HI

LO

 0 1 2 3 4 5

time

J2 J1 J3 J4

J2 J4 J2

Figure 3.5: The Gantt chart of Example 3.2.2

Figure 3.6: The blocking of the deadline-monotonic improvement

table of (3.2) will lead to a non-feasible schedule in scenario HI − J2. In this case, a correct
priority table is the following:

PT = (J3, J4, J2, J1)

as shown in Figure 3.5.

The problem of the previous example, as sketched in Figure 3.6 is the fact that a LO
job PTi−1 cannot be moved behind the HI job PTi in the priority table still does not always
exclude the possibility that a tighter-deadline LO job PTi−1−n can be moved behind a
looser-deadline HI job PTi+m, whose completion time would thereby improve, which can be
crucial for the HI-scenario schedulability. In the linear-array swapping procedure, the job
pair (PTi−1, PTi) would block this possibility.

To avoid this kind of problems we introduce the concept of Priority DAG (P-DAG), that
is intuitively a structure that represent how job really interfere with each other and allows
us to “swap” job priorities in a DAG structure instead of linear chain structure.

3.2.2 P-DAG Definition and Properties

Consider a task graph T = (J,→), a number of processors m and the graph G = (J,B),
where B is a partial order relation defined on J. Though by default in this thesis we assume
preemptive scheduling, in this section we also speculate on non-preemptive variant of priority-
based scheduling algorithms.

Definition 3.2.3 (P-DAG). We call PT(G) the set of all priority tables that can be obtained
by a topological sort of G(J,B). In other words J1 B J2 ⇒ J1 �PT J2 for all PT ∈ PT(G).
We also say that edges ‘B’ define relative priority constraints between jobs. G is a P-DAG
on m processors for schedule S iff:

∀PT, PT ∈ PT(G)⇒ PT �m S (3.3)

32 CHAPTER 3. PRIORITY BASED ALGORITHMS

We indicate the schedule generated by a P-DAG G as S(G). Two P-DAGs giving the
same schedule are called equivalent. Formally:

Definition 3.2.4 (equivalent P-DAGs). Two P-DAGs G and G′ are equivalent on m pro-
cessors iff:

S(G) = S(G′)

Lemma 3.2.5. A necessary condition for the non equivalence between two P-DAG G(J,B)
and G′(J,B′) is that

∃J1, J2 | J1 B J2 ∧ J2 B′ J1 (3.4)

The above comes from the consideration that, to obtain a different schedule, at a certain
time t the scheduler must make a different choice in the two cases. This may only happen if
the (3.4) is true.

Also, the following is trivial:

Lemma 3.2.6. If adding an edge to a P-DAG G does not introduce a cycle, the resulting
graph G′ is still a P-DAG and it is equivalent to G. Also PT(G′) ⊆ PT(G).

Definition 3.2.7 (Canonical P-DAG). A Canonical P-DAG for a schedule S is a P-DAG
G:

∀PT, PT ∈ PT(G)⇔ PT �m S (3.5)

Definition 3.2.8 (Blocking Relation ‘`’ between Jobs). Given two jobs J1 and J2 and
priority table PT , we say that a higher-priority job J1 blocks a lower-priority job J2 (J1 `PT
J2) if there is a point in time t where the list scheduler has to select a job to execute on one
of m processors from a list of ready jobs where both J1 and J2 are present and it selects J1
whereas J2 is not selected.

It’s trivial that:

J1 `S J2 ⇒ J1 �PT J2 (3.6)

Note that the above definition depends on when the scheduler is allowed to take decisions.
In a preemptive scheduler, decisions can be taken at any time, while in a non-preemptive one
decisions are limited to time instant where at least one processor is idle. This can generate
different blocking relation in the two cases, as shown in the following:

Example 3.2.9. Consider the instance of Example 3.2.1 and the following priority order:

PT = (J1, J3, J2)

The schedule generated in the LO scenario is the one shown in Figure 3.4 both in preemptive
and non-preemptive case. However, in the preemptive case we will have the relation J3 ` J2,
since when J2 arrives (at time 3) the schedule may decide to preempt J3 and schedule J2,
but does not so, because J3 � J2. In the non preemptive case, when J2 arrives the scheduler
may not take any decisions until J3 terminates at time 4. At this time J2 is the only ready
job, thus J3 0 J2.

Lemma 3.2.10. Given a task graph T = (J,→), a table PT and a number of processors m.
Consider the blocking relation `S , where S is such that PT �m S. Then G = (J,`S) is a
canonical P-DAG for S.

3.2. PRIORITY DAG 33

(a) Schedule (b) P-DAG

Figure 3.7: The figures of Example 3.2.11.

Proof. We need to prove that (3.5) holds. Let us first prove that G is actually a P-DAG
(i.e., (3.3) holds). This trivially comes from the observation that during the execution of
the schedule S, we only need to compare job priorities when a job blocks another. So the
relative priority constraints defined by relation `S are sufficient to generate S.

To prove that the priority constraints defined by `S are also necessary, let us suppose
by contradiction that there exist a table PT ′ such that PT ′ �m S and PT ′ /∈ PT(G). The
latter means that ∃ J1, J2 so that J1 `S J2 and J1 �PT ′ J2. By the first statement and by
(3.6), we have J1 �PT ′ J2 that contradicts the second statement.

Example 3.2.11. Let us consider the task graph of Fig 2.1, where J is defined as follows:

Job A D χ C(LO) C(HI)

s1 0 3 LO 1 1
s2 0 3 LO 1 1
s3 0 3 LO 1 1
s4 0 4 HI 1 3
L 0 6 HI 1 3

consider the priority table PT = {s1 � s2 � s3 � s4 � L}. On two processors PT produces
the schedule S shown in Fig. 3.7(a). From the figure is easy to derive the blocking relation
`S . We have: s1 ` s3, s2 ` s3, s1 ` s4, s2 ` s4. Notice that L is never blocked, because, due
to precedence constraints, it is never ready until time 2, when all its predecessors complete.
From the blocking relation `S , we can derive the canonical P-DAG G = (J,`S), shown in
Fig. 3.7(b).

The following trivially follows from Lemmas 3.2.10 and 3.2.6:

Lemma 3.2.12. Consider a task graph T = (J,→) and a graph G = (J,B). Let B∗ be the
transitive closure of B and S be a schedule generated by a priority table PT ∈ PT(G). Then
G is a P-DAG iff:

J ′ `S J ′′ ⇒ J ′ B∗ J ′′, ∀J ′, J ′′ ∈ J (3.7)

Definition 3.2.13 (Redundant edges). An edge J1 B J2 of a P-DAG G is called redundant
iff there exists another path in G from J1 to J2.

Definition 3.2.14 (Ineffective edges). An edge J1 B J2 of a P-DAG G is called ineffective
iff J1 and J2 belong to two different connected components of `S(G).

34 CHAPTER 3. PRIORITY BASED ALGORITHMS

Algorithm: Forest PDAG
Input: task graph T(J,→)
Input: priority table PT
Output: P-DAG G(J′,B)

1: G = (∅, ∅)
2: while PT 6= ∅ do
3: JCurr ← PopHighestPriority(PT)
4: PT ′ ← TopologicalSort(G) _ JCurr

5: G.J′ ← G.J′ ∪ {JCurr}
6: T′ ←MaximalSubgraph(T, G.J′)
7: SimulateListSchedule(LO,T′, PT ′)
8: for all trees ST ∈ G do
9: if ∃ J ′ ∈ ST : J ′ ` JCurr then

10: G. B← G. B ∪{(root(J ′), JCurr)}
11: end if
12: end for
13: end while
14: return G

Figure 3.8: The forest P-DAG generation algorithm

It is trivial that removing redundant and ineffective edges from a P-DAG G will not have
any effect on S(G)2.

3.2.3 Forest-shaped P-DAG generation

A P-DAG can, in general, be any kind of DAG. We are interested in generating P-DAGs
that are shaped like forests (i.e., a collection of unconnected trees) directed towards the
roots. Please note that in this thesis by “tree” we mean a directed tree, in the sense of a
connected DAG such that all edges are directed towards a single edge, called root. Also note
that some authors uses a different terminology by defining a directed tree simply as a DAG
whose underlying undirected graph is a tree, and use the term “arborescence” to indicate
the DAG that we defined as “tree”. The reason why we want such a structure will be clear
in the following sections, where we use the properties of forest to prove some properties of
our algorithm.

We propose in this section an algorithm that generates a forest-shaped P-DAG. We will
first explain the algorithm and then prove its correctness. The algorithm is shown in Fig. 3.8,
it takes a task graph and a precedence compliant priority table as input and proceeds as
follows. The highest priority job JCurr is removed from the table PT and added to the
graph G. Then we simulate a run of the jobs included so far in G and their precedences,
using as priority table a topological sort of G (with JCurr at the least position). During this
simulation we keep note of the jobs that block JCurr and add an edge to JCurr from the root
of all the subtrees of G that include a job that blocks JCurr.

Example 3.2.15. Consider the task graph and the priority table of Example 3.2.11. We
will apply Forest PDAG algorithm to them. In the first step the algorithm picks up s1, the

2Removing redundant edges, will not affect PT(G) as well, which is a stronger statement.

3.2. PRIORITY DAG 35

Figure 3.9: Forest P-DAG

highest priority jobs from PT , and will add it to the graph. In the second iteration, we pick
up s2, since it is not blocked by any job, we continue without adding any arc. Then we pick
up s3, that is blocked by both s1 and s2, so we add the arcs (s1, s3) and (s2, s3). At the next
iteration we pick up job s4, that is also blocked by both s1 and s2, so we add an arc from the
root of the tree that contains the blocking jobs (i.e., s3) to s4. In the final iteration we pick
up job L, that is not blocked by any job, thus we add it to the graph without inserting any
arcs from it. The resulting graph is shown in Fig. 3.9.

Theorem 3.2.16. Let G be the graph generated by the Forest PDAG algorithm. Then G is
a P-DAG and a forest.

Proof. We will prove both statements by induction, by showing that at the n-th step, the
statement is true for the partial graph Gn obtained at the end of n-th iteration of the loop and
whose nodes are thus the first n elements at the original PT provided to the algorithm. We
denote by PTn the table composed of the firsts n elements of that table and show at each step
that Gn is a P-DAG for the schedule obtained from priority table PTn, i.e., PTn � S(Gn).

Basic step. The basic step is trivial. We have a priority table PT1 = {J1} with one
element and a graph G1 = ({J1}, ∅). A graph of one element is a forest and the only possible
topological sort of G1 gives PT1.

Inductive step. We know by inductive hypothesis that Gn−1 is a P-DAG and PTn−1 �
S(Gn−1). Also Gn−1 is a forest. We only add edges to Jn from the root of unrelated subtrees,
this operation may only generate another tree, thus Gn is a forest.

Gn is a P-DAG, by construction, since the loop from line 8 to 11 (see Fig. 3.8) ensures
property (3.7) of Lemma 3.2.12. Also, since Jn has no successors in G, during a topological
sort of Gn we can give Jn the n-th position in the priority table, same position it has in
PTn. For the other jobs, the partial graph that we have to explore is exactly Gn−1, so we
can generate PTn−1 from it. Since by construction up to the (n − 1)-th element PTn and
PTn−1 are equal, we can generate PTn by topological sort of Gn. Thus PTn � S(Gn).

3.2.4 P-DAGs and Single-Processor Busy Intervals

P-DAGs assume a special meaning in single processor system, since they are strictly related
to the concept of busy interval.

Definition 3.2.17 (Busy Interval). Consider work-conserving policy and an instance J. A
busy interval is an open time interval (τ1, τ2) in S that is a maximal time interval where the
set of ready jobs is never empty (assuming, for convenience, that the interval where a job is
ready is also open).

36 CHAPTER 3. PRIORITY BASED ALGORITHMS

Note that the set of busy interval does not depend on the selected work-conserving policy,
but only on J. Also, the interval is half-open because the jobs arriving at time t count ready
only for the time instances strictly later than t. It is obvious that neither the start time τ1
nor the length of a busy interval τ2 − τ1 depend on the exact priority assignment. In fact
this is so because the former is given by:

τ1 = min
Ji∈JBI

{Ai}

and for the latter we have:

τ2 − τ1 =
∑

Ji∈JBI

ci (3.8)

where JBI ⊆ J is the set of the jobs running in the busy interval.

By abuse of terminology, we apply the term ‘busy interval’ also to JBI , and denote it
BI. In general, a job set J can be partitioned into multiple busy intervals, because some
jobs in J may arrive at or later than the end of a busy interval of some other jobs in J. In
single processor system the following holds:

Lemma 3.2.18 (Single processor P-DAG and BI). Let G = (J,B) be a P-DAG without any
ineffective edge. Then jobs belonging to the same connected component of G belongs to the
same busy interval BI of J as well. Formally:

J1(B ∪ B−1)∗J2 ⇒ J1, J2 ∈ JBI

Proof. It is trivial that jobs belonging to the same connected components of `S(G) belong to
the same busy interval as well, since jobs from different busy intervals may not block each
other. For the hypothesis of the absence of ineffective edges we have that J1(B ∪ B−1)∗J2
implies that J1 and J2 belong to the same connected components of `S(G) (see Defini-
tion 3.2.14).

To compute the busy intervals one can use the makespan procedure [BLS10], which, for a
given mode χ, works as follows: Let Jχ denote the jobs in J with criticality level χ or higher:
Jχ = {Ji ∈ J | χi ≥ χ}. Also let J1, J2, . . . , Jnχ denote all the jobs in Jχ ordered by non-
decreasing arrival times. Consider the sequence f1, f2, . . . , fi of numbers defined according
to the following recurrence:

f1 = A1 + C1(χ)

fi = max(fi−1, Ai) + Ci(χ) i > 1 (3.9)

Then the latest termination time (makespan) of a preemptive work-conserving schedule at
criticality χ is given by Fχ = fnχ. To take note of all the busy interval, we have to consider
that whenever in equation (3.9) we have that fi−1 < Ai the previous busy interval ends at
time fi−1 and the new one starts at time Ai.

The following holds [BLS10]:

Lemma 3.2.19. Makespan computation has linear complexity when applied to jobs pre-sorted
by arrival times.

3.2. PRIORITY DAG 37

3.2.5 P-DAGs and Potential Interference on Multiprocessor

In this section we extend the concept of busy intervals for the multiprocessor case, introducing
the potential interference relation.

Definition 3.2.20 (Potential Interference Relation). Given task graph T(J,→), number of

processors m and a subset J′ ⊆ J, we say that an equivalence relation
J′∼ on set J′ is a

‘potential interference’ relation if it has the following property:

∀J1, J2 ∈ J′ : (J1 = J2 ∨ ∃PT : J1 `PT J2) ⇒ J1
J′∼ J2

whereby we consider LO-mode m-processor list schedules with priority table PT applied to
maximal task subgraph with nodes J′.

We can extend Lemma 3.2.18 for the multiprocessor case:

Lemma 3.2.21 (P-DAGs and Potential Interference). Let G = (J,B) be a P-DAG without
any ineffective edge. Then jobs belonging to the same connected component of G belongs to

the same equivalence class of potential interference relation
J∼ as well. Formally:

J1(B ∪ B−1)∗J2 ⇒ J1
J∼ J2

The proof is similar to the one of lemma 3.2.18.
In general, there exist multiple potential interference relations, as joining two equivalence

classes would lead to a new potential interference relation. Therefore, the (unique) maximal
such relation is the total equivalence. The (unique) minimal potential interference relation
can be obtained by union of blocking relations under all possible PT ’s, followed by transitive
and reflexive closure, however it is a costly computation due to exponential number of PT ’s.
Instead of computing this minimum, we over-approximate it by exploiting the following
theorem (given without proof).

Theorem 3.2.22 (Single-Processor Interference). In list scheduling a potential interference
relation for a single processor is also a potential interference relation for m processors.

The intuitive meaning of this theorem is that when only one processor is available the
‘competition’ between the jobs for a processor is strictly larger than when m > 1 processors
are available.

Calculating the minimal potential interference on a single processor can be done in linear
time using the makespan procedure, as explained in Section 3.2.4.

The following lemma is easy to prove:

Lemma 3.2.23 (Least priority in a busy interval). Given a job set J′ and any of its busy
interval BI of instance J′ with time interval (τ1, τ2). In fixed-priority scheduling for job set
J′, the least-priority job running in this BI terminates at time τ2 and is blocked by at least
one other job in BI (if there are any).

The following theorem can be easily derived from the above lemma:

Theorem 3.2.24 (Minimal Potential Interference in Busy Intervals). Given a job set J′

without precedences, then the set of busy intervals BI are the equivalence classes of the

corresponding minimal potential interference relation
J′∼ on single processor.

38 CHAPTER 3. PRIORITY BASED ALGORITHMS

Algorithm: MCEDF
Input: job instance J
Output: priority table PT

1: if LOscenarioFailure(J) then
2: return (FAIL-NON-SCHEDULABLE)
3: end if
4: G← MCEDF PDAG(J, ∅, ∅)
5: PT ← TopologicalSort(G)
6: if anyHIscenarioFailure(PT,J) then
7: return (FAIL-NON-SCHEDULABLE-BY-MCEDF)
8: end if

Figure 3.10: The MCEDF algorithm for computing priorities

Corollary 3.2.25 (Potential interference with precedences). Given a task graph T and a
subset of jobs J′. Let T′ be the maximal subgraph of T with nodes J′. The busy intervals
BI of task T′ correspond to equivalence classes of some (not necessarily minimal) potential

interference relation
J′∼ on single processor.

We cannot claim minimality in the second case above because currently we are not sure
about it.

3.3 Independent Jobs Single Processor Scheduling – MCEDF

3.3.1 Mixed Critical Earliest Deadline First

Our proposed Mixed-Critical Earliest Deadline First (MCEDF) algorithm uses FPM policy,
thus when χmode = HI, the scheduling problem is a standard non MC problem, for which
EDF is optimal in single processor case. The problem is then reduced to compute PTLO,
which we will call just PT for the rest of this chapter. The algorithm is formulated here for
independent jobs, but it can be easily extended to support task graphs.

The algorithm to compute PT is shown in Figure 3.10. Initially, we compute the schedu-
lability of LO scenario in subroutine LOscenarioFailure, by running EDF. By optimality of
EDF for single criticality level, if a job misses the deadline, then the instance is not schedu-
lable. Thus the algorithm establishes that MC schedulability Condition 1 (see Section 2.1.1)
is satisfiable, and this remains invariant of the algorithm which ensures that the final pri-
ority table PT computed by the algorithm also satisfies this condition. While satisfying
Condition 1, the algorithm applies a best-effort heuristic to ensure Condition 2, i.e., that
the deadlines of all HI jobs are met in any basic HI scenario, by trying to ensure that the
priorities of the HI jobs are as high as possible, under the constraint that all jobs meet their
deadlines in the LO scenario (i.e., Condition 1 is still satisfied).

To compute the final priority table, MCEDF first calls subroutine MCEDF PDAG , which
generates a P-DAG with HI job priorities improved w.r.t. the original EDF table. Subroutine
TopologicalSort employs the well-known topological sort algorithm to generate the priority
table PT . Finally, the subroutine anyHIscenarioFailure evaluates whether Condition 2 is
met. In this case the algorithm succeeds. The check is done by a simulation over the set of
job specific HI scenarios HI-Jn in line with Theorem 2.1.2. In Chapter 4 we show a more

3.3. INDEPENDENT JOBS SINGLE PROCESSOR SCHEDULING – MCEDF 39

Algorithm: MCEDF PDAG
Input: job instance J′

Input: node Jparent

In/out: P-DAG G

1: BI← PartitionIntoBIs(J′);
2: for all BI ∈ BI do
3: J least ← SelectLeastPriorityJob(BI)
4: G.J′ ← G.J′ ∪ {J least}
5: if Jparent 6= ∅ then
6: G. B ← G. B ∪ {(J least, Jparent)}
7: end if
8: J′′ ← BI \ {J least}
9: MCEDF PDAG(J′′, J least, G)

10: end for

Figure 3.11: The MCEDF algorithm for computing P-DAG

efficient implementation of the schedulability check that does not use exhaustive simulation.
The core of the algorithm, i.e., generating the P-DAG G, performs the schedulability

checks only in the basic LO scenario. In the remainder of this subsection we explain this
procedure. Hereby, by default, we assume that all jobs execute using the C(LO) execution
times.

The subroutine MCEDF PDAG is defined in Figure 3.11. The algorithm is based on
the concept of busy interval, as defined in Section 3.2.4. The P-DAG construction algorithm
splits some subinstance J′, J′ ⊆ J into BI’s and selects the least priority job in each BI (see
Figure 3.11, line 3). Observe that in a busy interval (τ1, τ2), the selected job will terminate
at time τ2, which can be computed by equality (3.8). Let J low

LO and J low
HI be the latest deadline

3 job among the LO and the HI jobs of BI respectively. Subroutine SelectLeastPriorityJob
selects the least priority job according to the following rule.

• if ∃Jj ∈ BI : χj = LO ∧ J low
LO .D ≥ τ2

• then J least ← J low
LO

• else J least ← J low
HI

This rule prefers to assign the least priority to J low
LO if BI has LO jobs and if the latest-

deadline one would not miss its deadline. Otherwise the algorithm has no other choice but
to select a HI job. Thus, the algorithm greedily avoids assigning a HI job the least priority,
and does so only if otherwise it would break Condition 1. Let us now show that in a feasible
problem instance this rule makes a choice that is feasible for the LO scenario. In uniprocessor
scheduling the choice of the least-priority job affects the schedulability of that job only. Thus,
we only need to ensure that this job meets the deadline. The job selected by the described
rule can only miss its deadline if the latest-deadline job among all jobs in BI would also miss
its deadline, which is only possible in an unfeasible instance.

The P-DAG G has multiple subtrees that correspond to the BI’s of the complete problem
instance J. Subroutine PartitionIntoBIs in Figure 3.11 splits the currently examined instance
into BI’s. Then the subroutine MCEDF PDAG examines every busy interval BI to select

3for equal-deadline jobs we break the ties by selecting the job with minimal Cj(HI)−Cj(LO). This choice
is explained in Section 3.3.2.

40 CHAPTER 3. PRIORITY BASED ALGORITHMS

Figure 3.12: The Gantt charts for Example 3.3.1 with PT = (2, 4, 3, 5, 1)

the least-priority job in that interval. Afterwards the algorithm continues recursively with
sub-instances J′′ = BI \ {J least}. Removing a job from a BI reveals further fragmentation
into busy intervals, which become direct children of J least in the P-DAG. In those new BI’s
the same algorithm is used to find the least-priority job and to construct the subtree further
from the roots to the leafs.

Example 3.3.1. Let the instance J be defined by:

Job A D χ C(LO) C(HI)

1 0 30 HI 10 12
2 2 10 HI 2 8
3 1 8 LO 2 2
4 8 17 HI 2 7
5 7 11 LO 2 2

MCEDF computes the following solution PTMC = (2, 4, 3, 5, 1). Let us demonstrate
MCEDF computations step-by-step. MCEDF starts by checking whether the instance is
schedulable in the ‘LO’ scenario by a simulation with PTEDF = (3, 2, 5, 4, 1). Instead, Fig-
ure 3.12 row ‘LO’ shows a simulation for the PTMC ; no deadline is missed there, and hence
the same should hold for PTEDF as well.

Then MCEDF generates the P-DAG, see Figure 3.13. Instance J has one busy interval
BI. We can see this by the LO-scenario simulation in Figure 3.12, where job J1 remains
ready in interval (0, 18), which implies that the processor is continuously busy until all jobs
finish. Thus BI = J corresponds to a single tree in the P-DAG, for which we should select
the overall least-priority job as the root. For the considered BI, J low

LO = J5 and J low
HI = J1.

Since D5 = 11 < 18, we cannot select J5, so we select J1 as J least for the P-DAG root. Now
we split the subinstance J \ {J1} into BI’s, obtaining BI ′ = {J3, J2}, running in (1, 5) and
BI ′′ = {J5, J4}, running in (7, 11), selecting, respectively, J3 (since D3 ≥ 5) and J5 (since
D5 ≥ 11). The remaining subinstances have only one job, so the final P-DAG generation
steps are trivial (see Figure 3.13). Priority table PTMC satisfies the partial order of the
resulting P-DAG. Finally the algorithm runs the simulations for the HI scenarios, which
deviate from the basic LO scenario by switching to the HI mode at some HI job Jj, as
illustrated in rows ‘HI-Jj’ in Figure 3.12. Because, as the reader can verify, the deadlines
are met, the algorithm succeeds.

Lemma 3.3.2. The graph G generated by MCEDF PDAG is a P-DAG and a forest.

3.3. INDEPENDENT JOBS SINGLE PROCESSOR SCHEDULING – MCEDF 41

1

53

42 BI2 = (8,10)
PTEDF = (4)

BI1 = (2,4)
PTEDF = (2)

BI'' = (7,11)
PTEDF = (5,4)

BI' = (1,5)
PTEDF = (3,2)

BI = (0,18)
PTEDF = (3,2,5,4,1)

Figure 3.13: The P-DAG for Example 3.3.1; each node is annotated by the selected job
index.

Proof. To prove that G is a P-DAG, consider two jobs J1, J2 such that J1 ` J2. This implies
that ∃BI : J1, J2 ∈ BI. By construction, this implies that J1 and J2 have a closest common
ancestor Ja in G. It may not be that Ja = J2, because then we will have that J2 . J1, which
contradicts J1 ` J2. Suppose that Ja 6= J1 ∧ Ja 6= J2. Then let ST a be the subtree of G
rooted in Ja and Ja = ST a \ {Ja}. Since Ja is the closest ancestor of J1 and J2, they will

not have any ancestor in Ja, thus J1
Ja� J2, which also contradicts J1 ` J2. Thus it may only

be that Ja = J1, we thus we have J1 ` J2 ⇒ J1 → J2 and hence the theorem is true by
Lemma 3.2.12.

Lemma 3.3.3 (MCEDF Complexity). MCEDF has an implementation with complexity
O(k2) where k = |J|.

Proof. First of all, let us agree that we represent each subinstance J′ by a list that is initially
presorted (in time O(k log k)) by arrival times. Note that when slitting subinstances into
busy intervals to obtain new subinstances they can stay sorted by arrival times without
any additional sorting as they are obtained by simple decomposition of pre-sorted list into
more lists. In LOscenarioFailure we perform one fixed-priority schedule simulation. By
Lemma A.2 in Appendix A, taking into account m = 1 and E = 0, the total cost of one
simulation is O(k log k).

Graph G, being a collection of trees, has k nodes and at most k−1 edges. The complexity
of TopologicalSort for such graphs is O(k) [CSRL01].

We now analyze the complexity of MCEDF PDAG . The most time-costly procedure at
each node is the partitioning of current subinstance J′i = ST i − {Ji} into busy intervals.
Because the subinstance is previously sorted by the arrival times, this can be done in a time
linear in |J′i| by the linear complexity makespan procedure (see Lemma 3.2.19). Next to
splitting into BI’s, the other basic procedure at each P-DAG node is the selection of the
least-priority job Ji in J′i, which is also linear in |J′i| as a selection of the maximal-deadline
elements in the list.

Now observe that all J′i together at each tree level contain at most k jobs, with exactly
k jobs at the root level and removing some of them when going from the roots to the leafs.
So, the tree generation cost is O(k2) per level. Because there are at most k tree levels, the
total P-DAG generation complexity is O(k2).

Finally anyHIscenarioFailure can be done in O(k log k) time, as shown in Chapter 4.

42 CHAPTER 3. PRIORITY BASED ALGORITHMS

HI-J2

HI-J1

LO

 0 1 2 3 4 5 6 7 8

S
ce

n
a
ri

o
s

time

J1 J3 J2

J1 J2

J1 J3 J2

(a) PT = J1 � J3 � J2

HI-J1

HI-J2

LO

 0 1 2 3 4 5 6 7 8

S
ce

n
a
ri

o
s

time

J2 J3 J1

J2 J1

J2 J3 J1

(b) PT ′ = J2 � J3 � J1

Figure 3.14: The Gantt charts of Example 3.3.4

3.3.2 Support Priority Table

As the candidate for least priority job, J lowLO and J lowHI , the MCEDF assigns the latest-deadline
job at the given criticality level. MCEDF, however, does not prescribe anything specific to
break the tie in case multiple jobs have the same deadline. Certain properties of MCEDF do
not depend on how ties are broken. However, for better schedulability and for certain other
properties we have to specify this. In this case MCEDF we assumes that the user provides
so-called “support” priority table, denoted SPT. This table must be EDF-compliant, that is:

J1.D < J2.D ⇒ J1 � J2

J lowLO and J lowHI are now unambiguously identified by MCEDF as least-priority jobs according
to SPT. To disambiguate equal-deadline jobs in SPT, the user may chose his preferable
heuristic criteria. In our MCEDF implementation we use the following heuristic. In case
of equal-deadline jobs we break the ties by selecting for less priority the job with minimal
uncertainty ∆Cj = Cj(HI) − Cj(LO). Intuitively the reason why we do so stands in the
observation that jobs with high uncertainty are ’more critical’, since the quantity of additional
computation they add in the case of a switch is higher. We will show the advantage of this
choice with the following:

Example 3.3.4. Consider the instance J defined by the following table:

Job A D χ C(LO) C(HI)

1 0 7 HI 2 4
2 0 7 HI 2 3
3 0 3 LO 1 1

In case we break ties using the minimal uncertainty, MCEDF will generate the following
priority table:

PT = J1 � J3 � J2

Using this priority the jobs will meet the deadline in all scenarios, as shown in Figure 3.14(a).
In case we would select the job with the highest uncertainty, MCEDF will generate the fol-
lowing priority table:

PT ′ = J2 � J3 � J1

This table is not schedulable, since J1 misses the deadline in scenario HI-J1, as show in
Figure 3.14(b).

3.3. INDEPENDENT JOBS SINGLE PROCESSOR SCHEDULING – MCEDF 43

3.3.3 Dominance over OCBP

In this subsection we provide a theoretical evidence that MCEDF dominates OCBP. Ex-
ample 3.3.1 gives an MCEDF-schedulable instance which is not OCBP-schedulable. The
latter can be shown as follows. Suppose one can select the least OCBP-priority job in this
instance. It cannot be a LO job, because, as shown earlier (see Figure 3.3.1), instance J
consists of a single BI that finishes at time 18, when any LO job would miss its deadline.
If we could select a HI job, then OCBP would evaluate its completion time by effectively
extending the aforementioned LO-scenario BI into a longer HI-scenario BI where all HI jobs
take Cj(HI) − Cj(LO) extra time. Summing up these differences, this adds 13 time units
to completion time 18. But the completion time 31 is beyond the latest HI job deadline,
D1 = 30.

Thus, the dominance is given by the following:

Theorem 3.3.5. If an instance is OCBP schedulable, then it is schedulable by the MCEDF
algorithm as well.

Proof. Recall that, by P-DAG definition, the preference for one particular topological order of
the P-DAG does not impact the MCEDF schedulability. Similarly, when OCBP has multiple
choices for the selection of the least priority job then preferring a particular choice does not
matter for the OCBP schedulability [BLS10]. So, we will show that if one follows certain
rules in making a choice in the MCEDF and OCBP, then both algorithms will construct the
same priority table PT for any OCBP-schedulable instance J.

Let us first examine in detail how MCEDF constructs PT . At any step of the topological
sort, there is a ‘ready set’ (RS), i.e., the set of busy intervals {BIRS

i } of the P-DAG nodes vi
that are not yet selected but whose parent node has already been selected. Implicitly, there
is a sub-instance J′ of which BIRS

i are the busy intervals. MCEDF can choose to pick any
BI to provide its J least as the least-priority job in sub-instance J′. What we have to show
is that if J′ is OCBP-schedulable then at least one BI will provide a job J least that can be
selected for the least OCBP priority as well.

• Case 1: There is a BIRS
i whose J least is a LO job.

In this case, OCBP can select the J least of any such busy interval. This is because
when evaluating whether a LO job can be assigned the least priority OCBP simulates
the basic LO scenario, effectively doing the same check as MCEDF.

• Case 2: The J least in every busy interval is a HI job
In this case, the MCEDF rule to select the J least in a BI implies that the end time of
every BIRS

i is later than the deadline of any LO job contained in it. Consequently, no
LO job can be selected by OCBP, because in an OCBP simulation a least-priority LO
job will complete at a time equal to the end time of its BIRS

i , thus missing its deadline.

Therefore, because instance J′ is OCBP-schedulable, OCBP should be able to select a
HI job. Let us denote this job J ′ and let J ′least be the HI job selected by MCEDF for
the busy interval BIRS

i where J ′ is located. Because MCEDF selects the latest-deadline

HI job, we have: J ′least.D ≥ J ′.D.

The HI jobs are evaluated by OCBP using the HI scenario where no LO jobs are
dropped and the jobs have Cj(HI) execution times. Because these execution times are
larger or equal than the execution times in the basic LO scenario and no LO jobs are

44 CHAPTER 3. PRIORITY BASED ALGORITHMS

dropped we conclude that J ′ and J ′least must be located in the same busy interval not
only in the same scenario, but also in the HI scenario. The fact that J ′ can be selected
by OCBP means that if it completes at the end of this HI busy interval then it still
meets its deadline. But because the deadline of J ′least is not less than that of J ′, it is
eligible to let J ′least complete at the end of that HI busy interval as well, and hence it
can also be selected by OCBP.

Thus, for an OCBP-schedulable instance, both algorithms can construct the same PT .
MCEDF uses this priority table before the mode switch, thus having exactly the same be-
havior as OCBP under these conditions. After the mode switch OCBP meets the HI job
deadlines without dropping the LO jobs, and MCEDF will surely be able to do the same
because it drops the LO jobs and employs EDF, an optimal strategy.

To the best of our knowledge, so far MCEDF is the only FPM scheduler that exploits
the freedom to drop the LO jobs (or to reduce their priority) to perform, in theory, strictly
better than OCBP, the optimal fixed-priority scheduler.

3.3.4 MCEDF and Splitting

In this section we will introduce splitting, a theoretical transformation4 of a job instance into
a new instance where a HI job is equally divided into a certain number (called split factor)
of equal smaller jobs, whose total execution times Cj(LO) and Cj(HI) add up to that of
the original job. Obviously, the splitting does not impact LoadLO and LoadHI, but it reduces
the uncertainty and LoadMIX. Therefore, for mode-switched policies, such as MCEDF, the
splitting can translate an unschedulable instance into a schedulable one. An infinitely large
splitting of all HI jobs can bring the optimality of a mode-switched policy infinitely closer
to that of the clairvoyant scheduling. For some instances, a finite splitting is enough to
equate the clairvoyant scheduling. Mode-ignorant policies, such as OCBP, cannot take any
advantage of splitting by construction. These observations are confirmed in our experiments
in Section 4.4.2.

The following example demonstrates the effect of splitting. It has LoadMIX = 1.166 . . .:

Job A D χ C(LO) C(HI)

1 0 6 LO 5 5

2 0 12 HI 2 12

This instance is not schedulable because the necessary condition (2.2) is broken and due to
uncertainty of the execution time. If J1 executes first then J2 starts at time 5. In the LO
scenario there would be no problem, but J2 misses its deadline should it ‘decide’ to execute
in the HI scenario, for 12 time units. Otherwise, if J2 starts first then even in the HI scenario
it meets its deadline (whereby the LO job J1 can be dropped), but there is a problem in
the LO scenario, as J2 would delay J1 by two time units, leading to a missed deadline.
The clairvoyant scheduler would know the scenario in advance and make the proper choice
accordingly.

It is easy to check that after splitting J2 into two jobs, the instance becomes MCEDF-
schedulable.

4we ignore the overhead incurred by such a transformation.

3.4. MULTI PROCESSOR SCHEDULING – MCPI 45

Job A D χ C(LO) C(HI)

1 0 6 LO 5 5

21 0 12 HI 1 6

22 0 12 HI 1 6

The scheduler can execute J22 until completion, effectively getting from it the online knowl-
edge of the execution scenario that was missing in the previous case. If job J22 has executed
in the LO scenario, J1 can follow, starting at time 1, and then J21 can run from time 6
even until time 12 in the HI scenario. If job J22 has executed in the HI scenario, J1 will be
skipped, and J22 together with J21 meet the deadline. Compared to the instance before the
split, LoadMIX reduces from 1.166 . . . to 1, whereas LoadLO = 0.833 . . . and LoadHI = 1 stay
constant, not showing any advantage of the split instance w.r.t. the original one.

Note that the splitting, even being a theoretical transformation, may have some practical
significance. This depends on the WCET tools, in particular, by what extent the sum of
WCETs may change by the splitting of code into blocks. Note that despite the fact that the
arrival times of all subjobs are equal, they are not restricted to be data-independent of one
another. This is due to the fixed-priority per job scheduling policy, which has the property
that the jobs with equal arrival times never preempt each other but instead execute in a
sequential priority-driven order and the sequential blocks of the job code can be assigned to
the subjobs in the same order.

3.4 Multi Processor Scheduling – MCPI

We define here the Mixed Criticality Priority Improvement (MCPI) algorithm. It is basi-
cally an algorithm to compute job priorities under list scheduling offline, while online for
predictable response time we use precedence-unaware global fixed priority with adapted ar-
rival times to account for precedences.

We first discuss the offline computation of priorities and then we describe the online
policy.

3.4.1 Preliminaries

As previously discussed, our aim is to overcome the limitation of Audsley approach in mul-
tiprocessor systems, by assigning priorities starting from the highest. This allows us to
compute the exact job termination times. The drawback of this approach is that, unlike
Audsley approach (see Section 3.1.1), just picking up a job that meets the deadline is not
enough for optimality, as, unlike e.g., OCBP, the choice made out of different alternatives
has effect on the final outcome. Thus we lose the property of Audsley approach that ensures
optimality of the priority table just by selecting a schedulable job at each step.

Experiments (see Section 3.6) show that if ideal Audsley approach could find tight upper-
bounds on termination times it would constitute a serious competitor to MCPI on multiple
processors. Nevertheless, we also show in Section 3.5 that on single processor MCPI is
equivalent to MCEDF, thus dominating Audsley algorithm (OCBP) in this case.

Figure 3.15 shows an overview of MCPI. The algorithm takes as input the task graph T,
the number of processors m and a priority table SPT. The latter may be generated by any
known multiprocessor algorithm. We call this algorithm support algorithm and the input
priority table Support Priority Table, by analogy to MCEDF.

46 CHAPTER 3. PRIORITY BASED ALGORITHMS

T, m

SPT

Support
Algorithm

MCPI

P-DAG PT

Modifications

Topological
Sort

Figure 3.15: Proposed algortirhm MCPI. T stands for task graph and SPT for support
priority table.

Our “priority improvement” algorithm MCPI tries to improve the priority table generated
by the support algorithm so that the response times of HI jobs can be improved and thus
the mixed-critical schedulability criteria can be met for a larger set of problem instances.
Similarly to MCEDF, the algorithm is based on the concept of Priority Direct Acyclic Graph,
(P-DAG), but unlike MCEDF, we construct the P-DAG by adding at each step a job with
the highest priority (according to SPT) and not the least one. Each time we add a HI
(i.e., safety-critical) job, we apply a modification to the priority order given by table PT, to
increase the schedulability of safety-critical scenarios. The modification is done in a ‘bubble-
sort ’ way, i.e., we fist put the job at the least priority position and then try raise its priority
by swapping it with the job at the previous position. We only swap a HI job with a LO job
(never with another HI job) and we accept the swap only if LO job and the other jobs with
less priority do not start missing their deadlines. Note that we do not do a usual ‘bubble-sort’
on a total (linear) order (the priority table), as such a näıve approach may encounter some
artificial hazards, as shown in Section 3.2.1. Instead, we move the HI jobs along a partial
(tree-like) order defined by the P-DAG. When all jobs have been added to the P-DAG (with
an improvement attempt for each HI job), a priority table PTLO is obtained by topological
sort of the P-DAG.

The algorithm improves the support priority table only for the LO-mode table, whereas
it keeps the HI mode support table intact. Therefore, the main goal of the algorithm to
compute and validate the PTLO, which we will simply denote as PT in the sequel. To
construct the PT , MCPI takes the priority table generated by the support algorithm and
tries to improve the HI scenarios schedulability by ‘bubble-sorting’ strategy mentioned above
which increases the priorities of HI jobs as much as possible without undermining the LO-
mode schedulability. When the table the ready, the algorithm also tests the schedulability
in HI-mode scenarios.

MCPI uses potential interference relation to determine the set of LO jobs that may
interfere with a HI job. The algorithm tries to improve the priority of a HI job over such LO
jobs.

We use Theorem 3.2.22 to compute the potential interference relation, i.e., MCPI assumes

that J1
J′∼ J2 only if in the makespan simulation of job set J′ the two jobs belong to the same

busy interval (see Section 3.2.5).

First we describe the MCPI algorithm itself, then we describe our support algorithm for
it and we finish Section 3.4 by describing the online scheduling policy.

3.4. MULTI PROCESSOR SCHEDULING – MCPI 47

Algorithm: MCPI
Input: task graph T
Input: priority table SPT
Output: priority table PT

1: SPT ← DependencyComplianceTransform(SPT ,T)
2: CheckLOscenarioSchedulability(T,SPT)
3: G← MCPI PDAG(T, SPT, ∅)
4: PT ← TopologicalSort(G)
5: if anyScenarioFailure(PT,T) then
6: return (FAIL)
7: end if

Figure 3.16: The MCPI algorithm

3.4.2 MCPI Algorithm Specification

The pseudocode of MCPI is given in Figure 3.16. The algorithm takes as inputs the support
priority table SPT and the task graph T. We require SPT to satisfy precedence compliance
property (2.3), and ensure that it is preserved in the improved priority tables as well. Among
other, this is needed to ensure that the jobs are handled by the algorithm in topological
order: from task-graph sources to task-graph sinks. To ensure the compliance to the task
graph, the algorithm calls the DependencyComplianceTransform algorithm, introduced in
Section 2.2.2, which produces a new SPT table by sorting the jobs such that, firstly, the
requirement above is satisfied if there is a directed path between the jobs, and, secondly, the
original SPT ordering is preserved otherwise.

We then check LO scenario schedulability, by running the list scheduler with priorities
SPT in the LO mode. If the schedulability holds, it will be kept as an invariant during the
execution, otherwise the algorithm terminates with a failure (not shown in the pseudocode).
Subroutine MCPI PDAG generates a (directed-forest shaped) P-DAG, based on the support
priority table SPT and bubble-sort-like priority improvements for the HI jobs. Then, simi-
larly to MCEDF, we obtain a priority table from G by using the well-known TopologicalSort
procedure (see e.g., [CSRL01]), which traverses the trees in G from the leafs to the roots
while adding the visited nodes to PT . Finally, the subroutine anyScenarioFailure checks the
schedulability in any possible switch to the HI mode. The check is done by a simulation over
the set of all scenarios HI-Jh, in line with Theorem 2.1.2.

In Figure 3.17 subroutine MCPI PDAG is shown. This subroutine is very similar to the
algorithm of Figure 3.8. It takes as inputs the task graph T, the support priority table SPT ,
and the graph G generated so far (that will be empty at the beginning). In every iteration,
the algorithm handles Jcurr, the highest-priority job of table SPT which is not yet in G and
eventually adds that job to G. The algorithm terminates when all jobs have been added to
G.

First, the current job is added to a priority table to a position inferior to all jobs handled
in the previous iterations, using priority-table concatenation operator ‘a’. List-schedule
simulation is carried out to discover which of the previous jobs would block the current job
when that job has the least priority. We say that the blocking relation ` is thus calculated.
We also estimate the potential interference relation, for which we currently use the makespan
algorithm to derive the single-processor busy intervals as explained earlier, though better

48 CHAPTER 3. PRIORITY BASED ALGORITHMS

Algorithm: MCPI PDAG
Input: task graph T(J,→)
Input: priority table SPT
In/out: forest P-DAG G(J′,B)

1: while G.J′ 6= T.J do
2: Jcurr ← SelectHighestPriorityJob(T.J \G.J′, SPT)
3: J′′ ← G.J′ ∪ {Jcurr}
4: PT ′′ ← (TopologicalSort(G) a Jcurr)
5: T′′ ←MaximalSubgraph(T,J′′)
6: ` ← SimulateListSchedule(LO, T′′, PT ′′)

7:
J′′∼ ← EstimateInterference(LO, T′′)

8: G.J′ ← J′′

9: for all trees ST ∈ G do
10: if χ(Jcurr) = LO then
11: if ∃ J ′ ∈ ST : J ′ ` J curr ∨ J ′ → Jcurr then
12: ConnectAsRoot(ST, Jcurr)
13: end if
14: else
15: if ∃ J ′ ∈ ST : J ′

J′∼ J curr ∨ J ′ → Jcurr then
16: ConnectAsRoot(ST, Jcurr)
17: end if
18: end if
19: end for
20: if χ(Jcurr) = HI then PullUp(Jcurr, G,T, SPT)
21: end while

Figure 3.17: The algorithm for computing priority tree in MCPI

3.4. MULTI PROCESSOR SCHEDULING – MCPI 49

Algorithm: PullUp
Input: job J
In/out: forest P-DAG G
Input: task graph T(J,→)
Input: priority table SPT

1: DONE = ∅
2: while LOpredecessors(J,G) 6= DONE do
3: J ′ ← SelectLeastPriorityJob((LOpredecessors(J,G) \ DONE), SPT)
4: DONE ← DONE ∪ {J ′}
5: if CanSwap(J, J ′, G) then
6: TreeSwap(J, J ′, G)
7: DONE ← DONE ∩ LOpredecessors(J,G)
8: end if
9: end while

Figure 3.18: The pull-up subroutine

approximations of potential interference are to be investigated in future work to take into
account the number of available processors.

After that:

if the current job criticality is LO we add an arc to Jcurr from all the roots of the trees
ST present in G where ∃ J ′ : J ′ ` Jcurr. This makes Jcurr the new root of ST . This is
needed to ensure that the priorities derived from G are compliant to Equation (3.6). In
addition we do the same for the subtrees containing task-graph predecessors of Jcurr,
to ensure precedence compliance, as defined by Equation (2.3).

if the current job criticality is HI we do similar actions as in the case of LO job, but
instead of using the blocking relation we use the potential interference relation. The
reason for this difference is that for HI jobs the final priority of Jcurr is not known
apriori as for such jobs ‘bubble-sort’ priority improvements are applied.

Relation ` is evaluated by simulation. In this simulation we assume that the selected job has
the lowest priority and the other priorities are determined by P-DAG G. Recall that notation
PT a J means concatenation of job J in the lowest-priority (i.e., the last) position in the

priority table PT . Relation
J′∼ is evaluated using the single-processor busy interval obtained

from makespan algorithm (see Theorem 3.2.22), whereas other more accurate estimation
procedures are possible.

The reason why instead of blocking we use a larger relation in the case of HI jobs is
to ensure safety of further modifications of G. These modifications are done by subroutine
PullUp. This subroutine is the core of the algorithm. It modifies the P-DAG generated so
far, trying to improve the HI schedulability of the initial priority order. Notice that if this
subroutine were not called, the algorithm would just generate a P-DAG of the initial priority
table SPT .

Procedure PullUp is described in pseudocode in Figure 3.18. The idea behind this
subroutine is to try to improve the schedulability of HI scenarios by raising the priorities of
HI jobs, “swapping” their position in the graph with LO jobs while keeping the LO scenario
schedulability an invariant.

50 CHAPTER 3. PRIORITY BASED ALGORITHMS

Algorithm: CanSwap
Input: HI job J
Input: LO job J ′

Input: forest P-DAG G
Input: task graph T(J,→)
Input: priority table SPT

1: if J ′ →∗ J then
2: return False
3: end if
4: TreeSwap(J, J ′, G)
5: PT ← (TopologicalSort(G) a (SPT |≺ J))
6: allDeadlinesMet ← SimulateListSchedule(LO, T, PT)
7: return allDeadlinesMet

Figure 3.19: The subroutine for checking the feasibility of a priority swap

Procedure LOpredecessors(J,G) returns for node J the set of its direct P-DAG prede-
cessors5 of LO criticality: {Js | Js B J, χs = LO}. At each step in Figure 3.18 we pick the
least priority P-DAG predecessor from the working set LOpredecessors(J,G) \ DONE,
where DONE is a set that keeps track of the jobs we already tried to swap. Then subrou-
tine CanSwap checks if J and J ′ can swap priorities. If so, we apply the actual swapping
transformation to graph G, otherwise the job J ′ will remain P-DAG predecessor of J and
we will not try to swap J with that job again. The subroutine proceeds until we have tried
to swap for all LO P-DAG predecessors of job J .

As shown in Figure 3.19, subroutine CanSwap uses a private copy of graphG to perform a
tentative swap modification and then evaluates its impact on the whole original job instance.
To do so, it constructs a complete priority table by concatenating the one obtained from
graph G with the trailer of SPT table that contains jobs that were not yet handled. Note
that the latter jobs are identified as all those that have less SPT -priority than the current
HI job J , therefore we denote the ‘trailer’ part of SPT as (SPT |≺ J). Note that thus we
check the whole job set of the problem instance and not only the jobs whose priorities have
been changed. This is required on a multi-processor because, unlike in single-processor case,
changing the priorities of a pair of jobs may impact the schedulability of not only these jobs
but of all jobs that have less priority. We accept the swapping only if it does not lead to
a deadline miss for any job. This way, we maintain the schedulability in LO mode as an
invariant of the algorithm. Note that CanSwap immediately rejects to swap J and J ′ if
J ′ →∗ J , to maintain the precedence compliance of priorities.

Subroutine TreeSwap(JHI, JLO, G) performs the ‘swap’ transformation on graph G, de-
fined as follows:

Definition 3.4.1 (Swap). Let G(J′,B) be a forest P-DAG, let JLO B JHI and let J′′ represent
the subset of jobs whose priorities can be possibly higher than or equal to JHI after the swap
is performed:

J′′ = {JHI} ∪ {J ′ | J ′ B∗ JHI} \ {JLO}

Subroutine TreeSwap(JHI, JLO, G) performs the following ‘swap’ transformation on graph
G:

5they are also tree-children of node J , as in a P-DAG forest the edges are directed from children to parents

3.4. MULTI PROCESSOR SCHEDULING – MCPI 51

J'

J

P1' P2'

J'

J

P1'

P2'P1

P1

P2 P2

S S

Figure 3.20: The effect of a Swap.

1. JLO B JHI is transformed into JHI B JLO

2. ∀ tree ST such that: root(ST) B JHI ∨ root(ST) B JLO

(a) if ∃J ′ ∈ ST : J ′
J′′∼ JHI ∨ J ′ → JHI

then in the new G: root(ST) B JHI

(b) else in the new G: root(ST) B JLO

3. if ∃Js : JHI B Js then JHI B Js is transformed into JLO B Js

The swap is illustrated in Figure 3.20 for JHI = J and JLO = J ′. In the original P-DAG
the red triangle marked with S represents the P-DAG successors of J , while the triangles
marked with P1, P2 and P ′1, P

′
2 are, respectively the P-DAG predecessors of J and J ′. More

specifically, we assume in the figure for P1 and P ′1 are subtrees where the condition ‘contains
a job that either potentially interferes with J or its task-graph predecessor is true, while it
is false for P2 and P ′2.

When the swap is done, the PullUp subroutine updates the set DONE and reiterates.

Example 3.4.2. Consider again the instance and the priority table of Example 3.2.15. Let
us apply MCPI on them. The table PT is already precedence compliant, so Dependency-
ComplianceTransform will not modify it. Then we check LO schedulability, by simulation.
The result of the simulation of the LO scenario is the Gantt chart of Figure 3.7(a), where it
is easy to check that no job misses its deadline.

Then we apply subroutine MCPI PDAG. The graph G obtained in the first few iterations
before the first PullUp is illustrated in the left side of Figure 3.21. In the first iteration we
add s1 to G. It is not blocked by any other job, so we proceed with the second iteration. s2
is added to G, again we do not have any blocking. Next we add job s3, and we have the
following blocking relations: s1 ` s3 and s2 ` s3. Thus we add the following edges to G:
s1 B s3 and s2 B s3. Then we add s4. Since it is a HI job and s4, we add the edge s3 B s4,

since s3 is the root of the only tree of G and we have s3
J′∼ s4.

Since s4 is a HI job, we run PullUp on it. First we swap it with s3, after checking that
after this operation the jobs will still meet their deadlines. Then we swap it also with s1
and s2. The result of PullUp subroutine is shown in Figure 3.21. Finally we add job L to
the graph and the edge s3 B L. Since s3→ L, we may not swap further, thus obtaining the
following P-DAG:

52 CHAPTER 3. PRIORITY BASED ALGORITHMS

Figure 3.21: The effect of subroutine PullUp on job s4.

Figure 3.22: The schedule obtained by MCPI in Example 3.4.2.

From topological sort we obtain the priority table PT = {s4 � s1 � s2 � s3 � L}. The
priority table thus obtained leads to the schedule of Figure 3.22. The reader may easily verify
that using the initial priority assignment, whose LO-mode table is shown in Figure 3.7(a),
will fail if instead of following the LO scenario job s4 will continue execution until C(HI) = 3
time units (which, in fact, happens in scenario HI-s4). At the same time, using the table
generated by MCPI , which results in the LO-mode behavior shown in Figure 3.22, s4, having
the highest priority, starts earlier and would meet its deadline even in this scenario.

Below we give two theoretical results for MCPI.

Lemma 3.4.3. The Graph produced by MCPI PDAG procedure is a forest P-DAG.

Proof. MCPI PDAG proceeds similarly to Forest PDAG, whose correctness was already
shown by Theorem 3.2.16. There are only two differences:

1. more edges are added at each step
2. the swap modification is performed

Since, by Lemma 3.2.6, with extra edges added, G still remains a P-DAG, we observe, by
Theorem 3.2.16, that MCPI PDAG ensures that G is a P-DAG at least until the first swap.

To complete the proof we have to show that after a swap operation G remains to be a
P-DAG. Let us consider pulling up job Js and let TreeSwap(Js, Jpk , G) be the k-th swap.
Notice that Js is a HI job, and before the swap root of some tree T . By construction, all
trees that are not connected to Js contains only job that are not in potential interference
relation with it, so their execution will not be influenced by any change in T . Thus, without
loss of generality, we can assume that G is composed of only one tree (i.e., G = T).

After the first swap, G is still a tree, such that Jp1 is the new root After multiple swaps,
the situation will be as illustrated in Figure 3.23. On the left side of the figure we have a

3.4. MULTI PROCESSOR SCHEDULING – MCPI 53

J1

J3

J2

J
J1

J2

J3

J

s

s
p

p p

p

p

p

Figure 3.23: The effect of multiple Swaps, k = 3.

tree with HI job Js as root. After swapping Js with Jp1 ,Jp2 and Jp3 (in this order), we obtain
the tree on the right side. We can distinguish three areas in the tree: a tree composed of a
chain of LO jobs in the lower part (inside the yellow box), connected to a subtree that has
Js as root (green box) and some subtrees connected to the LO jobs in the chain that are not
in potential interference relation with Js (red box).

Let us assume by contradiction that after the k-th swap – TreeSwap(Js, Jpk , G) – the
resulting graph G′ = (J′,B) is no longer a P-DAG. By Lemma 3.2.12 and the contradicting
hypothesis, we have that G′ can generate a table PT ′ that leads to a schedule S such that:

∃J ′, J ′′ : J ′ `S J ′′ ∧ J ′ 7∗ J ′′

For TreeSwap(Js, Jpk , G) all the possible J ′ ` J ′′ relations that were not present before the
swap are such that either J ′′ = Jpk or Jpk →

∗ J ′′. This is because, by lowering Jpk priority
(i.e., shifting forward its execution), it might enter in the execution window of another job
and get blocked by it. The same holds for its successors in T.

For J ′′ = Jpk , we can then rewrite our contradicting hypothesis as follows:

∃J ′ : J ′ `S Jpk ∧ J ′ 7∗ Jpk

After the swap, Jpk is the root of a subtree ST . So ∀J ∈ ST, J .∗ Jpk . All jobs J ′ that are
not in ST are either the chain below Jpk (yellow box) or in the side subtrees branched into
them, present in the red box. For the jobs J ′ in these subtrees we have we can show that:
J ′ 0S Jpk . This is so because by properties of swap they are not in potential interference
relation with Js and hence they also are not in potential interference relation with Jpk , as
Js is swapped only with jobs in the same potential interference equivalence class. For jobs
J ′ = Jp1 , J

p
2 , . . . J

p
k−1 in the yellow box we have that they have lower priority than Jpk and

hence: J ′ 0S Jpk .

Let us now consider jobs J ′′ such that Jpk →
∗ J ′′. An invariant of our algorithm is

precedence compliance, i.e., Jpk →
∗ J ′′ ⇒ Jpk .

∗ J ′′. This means that all such J ′′ are among
Jp1 , J

p
2 , . . . J

p
k−1 in the chain below Jpk . The same reasoning as in the previous case holds.

54 CHAPTER 3. PRIORITY BASED ALGORITHMS

Theorem 3.4.4. Let k be the number of jobs in ‘J’, E the number of precedence edges in
‘→’ and m the number of processors. The computational complexity of MCPI is

O(Ek2 + k3(log k +m)) (3.10)

Proof. One of the main contributions to the computational complexity of the algorithm is
given by the high number of list schedule simulations. The complexity of one simulation is,
by Lemma A.2:

O(E + k(log k +m)) (3.11)

Let us now analyze the algorithm of Figure 2.4 line by line. Routine DependencyCompli-
anceTransform has a complexity of O(k2). This is because we run through the linked list
of all jobs, and for each of them we move all the predecessors that have a lower prior-
ity in front of the current job, and the maximum number of predecessors for each job
is O(k). CheckLOscenarioSchedulability does one simulation, thus it has a complexity of
(3.11). MCPI PDAG gives the highest contribution, and its complexity will be discussed
later. TopologicalSort has complexity O(k) [CSRL01]. Finally, anyScenarioFailure does O(k)
simulations, and thus its complexity is O(k(E + k(log k +m))).

Let us now analyze routine MCPI PDAG . This is a recursive subroutine that is called
exactly k times. This subroutine, after some O(1) operations, performs a simulation, which
gives a total contribution of (3.11). Then for each subtree a ConnectAsRoot operation is
performed. One such operation has a linear complexity in jobs, because we have to find the
root of a subtree. There are O(k) subtrees, thus this operation yields a total contribution of
O(k3). Finally we have to analyze the complexity of PullUp (Figure 3.18). In this subroutine
there is a while loop that is executed once for each LO predecessor of the current job, thus
a O(k) number of times inside PullUp and O(k2) number of times per one one execution of
MCPI . All the operations performed in the subroutine are O(1) except for CanSwap, which
performs a simulation and thus it has complexity (3.11). Thus the CanSwap subroutine
gives the main total contribution to the complexity of the algorithm, executing in total
O(k2) simulations of complexity (3.11), which gives the result given in (3.10).

Notice that for large practical problem instances it can be expected that m � k, and
also m is usually considered as a constant given by the platform. Also, even if in general
E = O(k2), having a quadratic number of precedence edges is unrealistic in parallel programs,
as this situation is likely to seriously restrict the possibility of parallel execution. If we
consider only the cases where the number of job inputs and outputs is bounded by a constant
then the number of precedence edges would grow linearly with the number of jobs. Under
the assumptions mentioned here, the complexity can be assumed as follows:

O(k3 log k)

3.4.3 Support Algorithm

By default we assume that the support algorithm is EDF with modified deadlines and density
threshold (EDF-DS). First we compute graphs TMIX and THI (see Section 2.2.3), and we will
use them to compute, respectively, PTLO and PTHI as explained below. In table PTχ the
priorities are assigned in the EDF way (considering ALAP deadline) if the job density δj(χ)
is smaller than the (experimentally determined) threshold thr = 0.85 and if δ(χ) > thr then

3.5. COMMON PROPERTIES OF MCEDF AND MCPI 55

the jobs get the highest priority unconditionally. Here the job density is execution time -
relative deadline ratio of the job: δj(χ) = C(χ)/(D∗j (χ) − Aj). Giving the highest priority
to high-density jobs is a necessary technique to overcome the so-called Dhall effect that
adversely impacts the EDF-based tables on multiple processors [DB11].

To indicate explicitly that we are using a support algorithm ALG, we use the notation
MCEDF(ALG). Thus we will use notation MCPI(EDF-DS) to indicate the use of MCPI
with the above described support algorithm, while we will use MCPI(EDF) if we use the
unmodified (global) EDF policy.

3.4.4 Predictable Online Policy for MCPI

The online policy should be predictable per scenario, as discussed in Section 2.1.2. Recall
that list scheduling is, in general, non-predictable. Therefore, online we execute a predictable
policy that behaves the same way as list scheduling in basic scenarios. Recall that offline we
check schedulability by simulating all basic scenarios. For each of them we record all jobs
start times in a table and provide the table to the online policy. Online, we keep track of the
current basic scenario, assuming LO when in LO mode and HI-Jh when job Jh causes a switch
to HI mode. Online we assume that jobs arrive not at their nominal arrival times, but at
their offline-computed schedule start times specified in the table of the current scenario. The
modified arrival times ensure that precedences are satisfied. Therefore, while preserving the
precedence constraints, instead of list scheduling our online policy uses the default classical
global fixed priority scheduling, which is known to be predictable.

An alternative online scheduling policy is a time-triggered one where there are two tables
(for LO and HI modes). How to construct such a policy is described in Chapter 4.

3.5 Common properties of MCEDF and MCPI

In this section we give some theoretical properties of MCEDF and MCPI for independent
jobs on single processor. The main results are the optimality of MCEDF and MCPI over
all scheduling algorithm where HI jobs are in relative EDF order. Also MCEDF and MCPI
are equivalent. Note that because all these algorithms use LO-mode schedules to construct
the priority tables, under the ‘scheduling’ we always mean the LO-mode scheduling unless
mentioned otherwise.

In this section we assume that both algorithms use the same EDF-compliant support
priority table SPT and that the jobs are independent.

The following lemma establishes for MCPI a property that is true for MCEDF by con-
struction.

Lemma 3.5.1. In MCPI, as in MCEDF, each tree of the P-DAG contains jobs from one
and only one busy interval.

Proof. (sketch) For MCPI, we argue that this property is true by demonstrating that at
each basic step of the algorithm: the initial connection of a new job to the P-DAG and the
swapping. When a LO-job is connected to a P-DAG, the criterion is to connect it to the trees
that block the given job when it has the least priority. Since they block the given job then
they must be in the same busy interval. When a HI job is initially connected, the property
holds by construction, as on single processor MCPI should always use splitting into busy

intervals to evaluate
J′∼.

56 CHAPTER 3. PRIORITY BASED ALGORITHMS

Now consider the swapping. After the swapping, the current HI job forms one same busy
interval with the subtrees connected to it by the same argument as the ones we used for the
initial connection. The LO job which was swapped forms one busy interval with the current
HI job tree and other trees that are plugged to it by observation that this was already the case
before the swap and the busy intervals do not change when priority assignment changes.

Lemma 3.5.2 (Per-criticality EDF Compliance of P-DAG). In the P-DAG G of
MCPI(EDF) or MCEDF, consider any P-DAG path between two jobs of the same criti-
cality: Ji B∗ Jj. This path can only join Ji and Jj in the direction that is compliant with
their relative priority in SPT . Mathematically:

∀i, j . χi = χj ∧ Ji B
∗ Jj ⇒ Ji �SPT Jj (3.12)

Proof. (sketch) For MCEDF the Property (3.12) holds by construction, as it requires that Jj
be the root of a subtree that contains Ji and MCEDF PDAG assigns the least SPT -priority
job of a given criticality as the root of the subtree.

For MCPI, as P-DAG construction evolves, the property can only be potentially broken
by the swap operations. However, for criticality level HI it is not broken because we never
swap two HI jobs. For criticality LO it can be only invalidated if a call to CanSwap returns
‘false’ and then a subsequent call returns ‘true’ in the same PullUp subroutine call. This
is so because the LO jobs are evaluated for swapping in an order compliant with reverse
SPT and the stem of swapped jobs forms a chain in the same order as the swapping is done.
The job for which CanSwap would return ‘false’ would stay as P-DAG predecessor of the
current HI job and the job with ‘true’ would become successor, thus forming a pair of LO jobs
connected inconsistently with SPT . However, this cannot happen if SPT is EDF-compliant,
as the first ‘false’ result from CanSwap will be necessarily followed by other ‘false’ results.
To show this, recall that by Lemma 3.5.1 the HI job forms one busy interval (τ1, τ2) with
its subtree. When CanSwap evaluates different LO jobs for the least priority it evaluates
for the possibility that the swapped job can terminate at time τ2 while meeting its deadline.
The jobs are evaluated in reverse EDF order, so the jobs with the larger deadline will be
evaluated first. Therefore, if a job misses its deadline at time τ2 then the other jobs will fail
as well.

By the above lemma, for MCEDF and MCPI(EDF), it is always possible to find a topo-
logical sort of graph G such that the resulting priority table satisfies the following property:

Definition 3.5.3 (HI-criticality EDF Compliance of Priority Table). Given an EDF-
compliant SPT priority table, any LO-mode priority table PT is said to be HI-criticality
EDF-compliant according to table SPT if the HI jobs appear in PT in the same order as in
SPT , that is:

∀i, j . χi = χj = HI ∧ Ji �PT Jj ⇒ Ji �SPT Jj ∧ Di ≤ Dj

Consider a problem instance J where h jobs are HI-critical. We can partition an EDF-
compliant priority table generated by MCEDF/MCPI(EDF) into the following sequence of
job sets:

PT : JLO
1 �PT {JHI

1 } �PT JLO
2 �PT {JHI

2 } �PT . . . JLO
h �PT {JHI

h } �PT JLO
h+1 (3.13a)

HI jobs : JHI
1 �SPT JHI

2 �SPT . . . JHI
h−1 �SPT JHI

h (3.13b)

3.5. COMMON PROPERTIES OF MCEDF AND MCPI 57

where subscript l and h denote LO and HI jobs and relation ‘�’ between two job sets means
that any job in the first set has a higher priority than any job in the second set.

Let us denote by B∗LO a relation between two jobs that are joined in the P-DAG by a
path that may have only LO jobs as intermediate nodes. The following is trivial:

Lemma 3.5.4. There always exists a priority table PT obtained from a topological sort
of P-DAG G of MCEDF or MCPI(EDF) that has the structure shown in Formulas (3.13)
where, in addition, the LO job sets JLO

i are defined as the sets of LO jobs related to JHI
i by

B∗LO:

for i = 1..h . JLO
i = {Jj | χj = LO ∧ Jj B

∗LO JHI
i } (3.14a)

JLO
h+1 = {Jj | χj = LO ∧ 6 ∃i : Jj B

∗LO JHI
i } (3.14b)

Definition 3.5.5 (A Least LO-Priority Table). Given a P-DAG G that is per-criticality
compliant to support priority table SPT . A priority table obtained from graph G that can be
partitioned as shown in Formulas (3.13) and (3.14) is called a least LO-priority table.

The reason to give a priority table this name is that such a table puts each LO job at
the highest-i (and hence also the least-priority) set JLO

i . The following lemma states that
one cannot give any LO job even less priority w.r.t. a HI job.

Lemma 3.5.6. Let J be a problem instance where MCEDF or MCPI(EDF) generates a
P-DAG based on an EDF-compliant SPT , let JLO

i characterize its least LO-priority table.
Let PT ′ be some HI-criticality SPT -compliant priority table where some LO jobs in some
job sets JLO

i ‘violate the least LO priority constraint’ in the sense that they have less priority
than the corresponding HI job JHI

i . Then at least one of such jobs will miss its deadline.

Proof. Let i′ be the smallest-index i of the job sets JLO
i that contain LO jobs that in table

PT ′ ’violate’ the least priority constraint. Let Jj be the least-priority violating job from the
respective set JLO

i′ . Let us show that it will miss its deadline. The part of the priority table
PT ′ that contains jobs of priority higher or equal to Jj can be represented by (dropping the
curly braces for singleton sets):

PT ′ |�j : J′1 � JHI
1 � . . . � J′i′−1 � JHI

i′−1 � J′i′ � JHI
i′ � J′′i′ � Jj

For some LO-jobs sets J′1,J
′
2, . . . ,J

′
i′ and (possibly mixed) job set J′′i′ . Observing that in

single processor scheduling the relative priority order of higher-priority jobs does not matter
for the least priority job, let us reorder the priority of the last HI job and obtain table PT ′′

that results in equal termination time for job Jj :

PT ′′ : J′1 � JHI
1 � . . . � J′i′−1 � JHI

i′−1 � J′i′ � J′′i′ � JHI
i′ � Jj

From the definition of violating jobs and from the assumption that the sets JLO
m for m ≤ i′−1

contain no violating jobs (i′ being the lowest ‘violating’ index) we have:

for 1 ≤ m ≤ i′ − 1 :

m⋃
i=1

JLO
i ⊆

m⋃
i=1

J′i

Also because, by our assumptions, Jj is the least priority violating job in set i′ we have that
J′′i′ contains all other violating jobs from JLO

i′ , and hence:

i′⋃
i=1

JLO
i ⊆

(
i′⋃
i=1

J′i ∪ J′′i′ ∪ {Jj}

)

58 CHAPTER 3. PRIORITY BASED ALGORITHMS

By the job-set inclusion relation above, the following priority table PT ′′′ when compared to
PT ′′ has at most the same but possibly less jobs of higher-priority than Jj :

PT ′′′ : JLO
1 � JHI

1 � . . . � JLO
i′−1 � JHI

i′−1 �
(
JLO
i′ \ Jj

)
� JHI

i′ � Jj

By properties of MCEDF resp. MCPI(EDF) we have that job JHI
i′ forms one busy interval

BI with the higher subtrees connected to it and by observation that Jj B∗LO JHI
i′ we have

that Jj also belongs to the same busy interval BI. Now observe that the reason why MCEDF
resp. MCPI(EDF) assigned JHI

i′ the least priority in the given BI is because the highest-
deadline LO job belonging to the same interval would miss the deadline. Jj , by construction,
cannot have a higher deadline, so it should also miss its deadline as the least-priority job in
BI. Therefore it will also miss its deadline in PT ′′′, and hence also in PT ′′ and PT ′.

We can now prove the following:

Theorem 3.5.7. For a given EDF-compliant SPT , MCEDF and MCPI(EDF) are optimal
among the FPM algorithms that are HI-criticality EDF-compliant according to SPT .

Proof. (sketch) Consider an instance J that is MC-Schedulable, The MCEDF and
MCPI(EDF) algorithms will never fail in LO mode . This is so because, firstly, both al-
gorithms are based on iterative improvement of an EDF table, which is optimal in the LO
mode. Secondly, at every improvement step the LO-schedulability of the problem instance
is preserved as an invariant. This leads to two important conclusions:

1. The only possible schedulability failure that MCEDF or MCPI(EDF) can have is when
a HI job that misses its deadline in a HI scenario.

2. For MC-schedulable instance, even if we see the worst case presented in Point 1, both
algorithms manage to construct a LO-schedulable P-DAG that satisfies all lemma’s
and properties presented in this section.

Consider an instance J with h HI jobs. Suppose by contradiction to the theorem state-
ment that MCEDF (resp. MCPI(EDF)) fail to produce a feasible schedule due to a failure
in a HI scenario, whereas the optimal EDF-compliant algorithm can. By lemma’s above, we
can present the (failing) solution of both algorithms as shown in Formulas (3.13) and (3.14).

By our assumptions the optimal priority table PT ′ is also HI-criticality EDF-compliant
according to SPT and hence it can also be presented in a similar form:

PT ′ : J′1 � {JHI
1 } � J′2 � {JHI

2 } � . . . J′h � {JHI
h } � J′h+1

By Lemma 3.5.6 we should have:

for 1 ≤ m ≤ h :

m⋃
i=1

JLO
i ⊆

m⋃
i=1

J′i

where JLO
m are the least LO-priority job sets of MCEDF resp. MCPI(EDF).

This means that, compared to MCEDF or MCPI(EDF), for every HI job JHI
m the optimal

algorithm puts at least the same but possibly a larger set of jobs as higher-priority w.r.t. to
JHI
m . On a single processor this can only reduce the progress made by each HI jobs up to

any given point in time in the LO mode. Therefore, after a mode switch, all the HI jobs in
the optimal algorithm will have at least the same or possibly more workload to terminate
than in MCEDF or MCPI(EDF). Therefore, if the latter would fail in some HI scenario all
the more so the former would also fail in the same scenario, therefore the optimal algorithm
would fail and thus we have a contradiction.

3.6. IMPLEMENTATION AND EXPERIMENTS 59

The next theorem follows as a corollary of Theorem 3.5.7:

Theorem 3.5.8. When using the same EDF-compatible SPT table MCEDF and
MCPI(EDF) are equivalent.

Note that, despite equivalence, MCEDF has a lower computational complexity than
MCPI, which has O(k3 log k) (where k is the number of jobs). Intuitively, this is so because
MCEDF is ‘specialized’ for the single-processor scheduling problems, which is inherently
‘simpler’ than the multiprocessor ones, handled by MCPI.

It can be easily shown that OCBP can also be restricted to be HI-criticality EDF-
compliant, thus Theorem 3.3.5 can be seen as a corollary of Theorem 3.5.7.

3.6 Implementation and Experiments

We evaluated the schedulability performance of MCEDF and MCPI in experiments with
randomly generated job instances. The instance size was restricted due to the computation
delays of job generation algorithm and our intention to evaluate a large number of points.
with integer timing parameters, simulating CPU clock cycle count of some imaginary ma-
chine. Every job instance was generated for a target LO and HI load or stress pair.

The method to generate a job instance was as follows. First we randomly generated a
tentative instance, not paying attention to the target loads. This was done by repeatedly
generating a new sporadic task, i.e. sequence of jobs arriving one after another at random
arrival intervals. For every job, both the job deadline and the arrival interval were uniformly
distributed in a range 5K-25K (kilocycles), and the job’s criticality level was set to HI
(i.e., χ = HI) with a probability 50%. Every sporadic task produced just enough jobs
to fill a random interval from 0 to a bound in range 15K-100K. The WCET Cj(LO) of
each job was uniformly distributed between 0 and the relative deadline, each HI job had a
Cj(HI) obtained by scaling the value Cj(LO) by a random factor [1..1000]. For MCEDF
new sporadic tasks were invoked until all tasks together have produced more than 20 jobs,
and then jobs were randomly removed until only 20 remained. For MCPI, instead of 20, we
produced 30, 60 or 120 jobs in a similar way for processor counts m = 2, 4, 8. To finalize
the job instance generation, the algorithm calculated the loads of the tentative instance and
scaled the execution times to obtain the target load in the final instance.

When scaling the loads, we took care that when Cj(HI) would have to be scaled below
Cj(LO), it is instead set to Cj(LO). This could result in imprecise final LoadHI. As a result,
there was a load scaling problem, as the scaling sometimes failed to approximate the target
load with the specified precision. In this case we cancelled the generated instance and made
another attempt to generate it until multiple attempts produced no satisfactory load scaling
result within a timeout. Due to this, and due to high complexity of load calculations the job
generation process itself took a considerable time in the experiments.

3.6.1 MCEDF

We ran multiple job generation experiments, ranging each target of LoadLO and LoadHI from
0.0025 to 1 with step 0.0025. Per each target, ten experiments were run, generating the
points lying near the target with tolerance 1%. We only selected the ‘overloaded’ targets
i.e., those lying at or above the parabola Load2LO(T) + LoadHI(T) = 1, yielding instances
where OCBP could potentially fail. By looking at the loads below 1 we compare both OCBP

60 CHAPTER 3. PRIORITY BASED ALGORITHMS

all generated points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Density of Generated Jobs

non-ocbp points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) non OCBP-schedulable 14%
non-mcedf points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) non MCEDF-schedulable 2.1%

non-split points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) non MCEDF-schedulable after split 1.25%

Figure 3.24: The contour graphs of random instances; the horizontal axis is LoadLO, the
vertical is LoadHI.

3.6. IMPLEMENTATION AND EXPERIMENTS 61

and MCEDF to the clairvoyant scheduler, which can schedule all such points and which gives
an upper bound on the best scheduling performance. Fig 3.24(a) gives the contour graph of
the density of the generated points in grayscale. The grid follows the parabolic lines of equal
Load2LO(T) + LoadHI(T). The total number of trials was 537460.

Around 14% (75203) of points showed failure for OCBP. In those 14%, roughly 2.1%
(11316) were not schedulable by MCEDF as well, whereas 11.9% (63887) were schedulable
by MCEDF. Thus, MCEDF proved to reduce the set of non-schedulable instances by a factor
6-7. The density distributions in Figure 3.24 suggest that MCEDF is less sensitive to high
loads.

For the 2.1% (11316) non-MCEDF schedulable jobs we ran additional experiments. We
considered splitting (see Section 3.3.4), a theoretical transformation6 of a job instance into
a new instance where a HI job is equally divided into a certain number (called split factor)
of equal smaller jobs, whose total execution times Cj(LO) and Cj(HI) add up to that
of the original job. Splitting reduces the uncertainty and LoadMIX. Therefore, for mode-
switched policies, such as MCEDF, the splitting can translate an unschedulable instance
into a schedulable one. An infinitely large splitting of all HI jobs can bring the optimality
of a mode-switched policy infinitely closer to that of the clairvoyant scheduling. For some
instances, a finite splitting is enough to equate the clairvoyant scheduling. Mode-ignorant
policies, such as OCBP, cannot take any advantage of splitting by construction.

We split all HI jobs by factors 2, 3, and 4. This kept the load the same but reduced the
WCET uncertainty. After splitting the instances remained to be non-OCBP schedulable (as
OCBP cannot take advantage of less uncertainty) but the number of non-MCEDF schedula-
ble instances has reduced, coming to 1.25% (6735). So if we can accept this load-preserving
transformation, we go from 14% non-schedulability of OCBP to the 1.25% non-schedulability
of MCEDF. Note that 0.85% (4581) were gained due to the splitting, whereby in the most of
cases, 0.55% (2961), split factor 2 was sufficient. So assuming that in practice we can split
the HI jobs into a few sub-jobs such that both WCET values scale, then we can in many
cases obtain a schedulable instance. That the fragmentation of jobs would preserve the same
total WCET is likely to be an overly optimistic assumption for the WCET tools, but still
doing this is worth a try.

We also performed some experiments to evaluate the computation times of both algo-
rithms, implemented using the same software library. Every point was obtained as the aver-
age computation time for 20 different randomly generated instances with LoadLO = LoadHI =
0.8. The results are shown in Figure 3.25. They confirm our expectation of almost one order
of magnitude of difference, as we estimate the best direct implementation of OCBP to be
O(K3) and the best MCEDF to be O(K2) for k jobs, according to Lemma 3.3.3.

3.6.2 MCPI

We evaluated the schedulability performance of MCPI comparing it with those the per-
formance of its support algorithm. We restricted our experiments to “hard” task graphs,
i.e., those satisfying the following formula:

StressLO(T) + StressHI(T) ≥ σs (3.15)

The reason of this choice is that task graphs under that line are relatively easy to schedule.
We ran multiple job generation experiments, ranging the target of StressLO and StressHI in

6we ignore the overhead incurred by such a transformation.

62 CHAPTER 3. PRIORITY BASED ALGORITHMS

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600

ti
m

e
 (

s)

Number of Jobs

MCEDF
OCBP

Figure 3.25: The measured computation times of OCBP and MCEDF

m jobs arcs step δ σs instances

2 30 20 0.005 0.01 3.2 128800

4 60 40 0.02 0.05 6 50500

8 120 80 0.05 0.125 12 31575

m EDF EDF-DS MCPI(EDF) MCPI(EDF-DS) diff(%) diff-DS(%)

2 20924 21023 27375 27467 30.83% 30.65 %

4 6839 6887 8263 8310 20.82% 20.66 %

8 3065 3082 3521 3538 14.88% 14.80%

Table 3.1: Experimental results for MCPI.

the area defined by (3.15) with a fixed step s. Per each target, ten experiments were run,
generating the points lying near the target with a certain tolerance δ. All points satisfied
StressMIX ≤ m. The result of the experiments are shown in Table 3.1. We ran experiments
for 2, 4 and 8 processors. For each generated task graph, we checked the schedulability of
EDF, EDF-DS, MCPI(EDF), MCPI(EDF-DS). For EDF-DS we used a threshold of 0.8. All
algorithms were applied using the FPM scheduling policy, the ALAP and ASAP arrivals and
deadlines, based upon modified deadline DMIX in the LO mode, as described in Section 3.4.3.
From the result we can see that MCPI gives a big improvement in schedulability compared
to the support algorithm, reaching a maximum of 30.83%.

Fig. 3.26 and Fig. 3.27 give the contour graph of the density of the generated points
in grayscale, where black is the maximum value and white is 0. The horizontal axis is
StressLO, the vertical is StressHI. Figures from Fig. 3.26(a) to Fig. 3.26(d) refer to the exper-
iments made for 2 processors. In particular Fig. 3.26(a) shows the density of the generated
task graphs, Fig. 3.26(b) shows the percentage of instances schedulable by EDF-DS among
the generated ones. Likewise Fig. 3.26(c) shows the percentage of task graphs schedulable
by MCPI (EDF-DS) and Fig. 3.26(d) shows the percentage of task graphs schedulable by
MCPI (EDF-DS) and not schedulable by EDF-DS. As expected the schedulability decreases
while the distance from the axis origin increase. Fig. 3.26(d) is particularly interesting,
because it shows how MCPI increases the schedulability over the support algorithm when
the load increases. Notice that approximately around point (1.7, 1.7) the density is higher,
suggesting that around this point MCPI is more effective.

Figures from Fig. 3.27(a) to Fig. 3.27(d) show respectively the same information of figures
from Fig. 3.26(a) to Fig. 3.26(d), but referred to experiments on 4 processors. From those
graph we have confirmation of the conclusions made above. Also in Fig. 3.27(d) we have an

3.6. IMPLEMENTATION AND EXPERIMENTS 63

all generated points

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(a) Density of Generated Jobs

edf

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(b) Schedulable by EDF-DS[0.8]
mcpi

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(c) Schedulable by MCPI

mcpi but not edf

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(d) Schedulable by MCPI and not by EDF-
DS[0.8]

Figure 3.26: The contour graphs of random task graphs for 2 processors. The horizontal axis
is StressLO, the vertical is StressHI.

64 CHAPTER 3. PRIORITY BASED ALGORITHMS

all generated points

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

(a) Density of Generated Jobs

edf

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

(b) Schedulable by EDF-DS[0.8]
mcpi

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

(c) Schedulable by MCPI

mcpi but not edf

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

(d) Schedulable by MCPI and not by EDF-
DS[0.8]

Figure 3.27: The contour graphs of random task graphs for 4 processors. The horizontal axis
is StressLO, the vertical is StressHI.

3.6. IMPLEMENTATION AND EXPERIMENTS 65

 0

 200

 400

 600

 800

 1000

MCPI AUDP_FP AUDP_FPM AUD_REC

Figure 3.28: Comparison of MCPI with Audsley approach

area where MCPI is particularly effective, approximately around point (3.3, 3.1).

Comparison with Audsley approach on multiple processors

One of the main motivations for this work was to overcome the limitations of Audsley ap-
proach, as discussed in Section 3.1.1. In this section we show through experiments that we
successfully reached our goal, by comparing MCPI with Audsley approach.

First we compared with two ’ideal’ implementations of Audsley approach, AUD FP
and AUD FPM. In both of them we implemented an exact version of function
GetTerminationT ime of Figure 3.1. To achieve this, to test if we can assign the least
priority to a job J , we compute its worst case termination time by simulating all possible
combinations of relative priority of jobs with higher priority. In AUD FP we assumed to use
a fixed priority scheduling, i.e., we do not consider the possibility of dropping LO jobs. Thus
when computing the worst case termination time we simulate a scenario where all jobs Ji run
for Ci(HI). Note that this algorithm is equivalent to OCBP on single processors. Conversely
in AUD FPM we assumed to use a fixed priority per mode scheduling, i.e., we drop LO jobs
when a mode switch happens. In this case when computing the worst case termination time
we simulate all basic scenarios for all possible combination of job priorities. Note that both
algorithms have an exponential complexity and easily become computationally intractable.

Finally we also compared the results using a computationally implementation of Audsley
approach, AUD RC, which is based on the recursive formula given in Section 3.1.1.

We tested the algorithms on 1000 randomly generated instances of 8 jobs on 2 proces-
sors. The instances had a target StressLO = StressHI = 1.8. MCPI Solved 487 instances,
AUD FP 480, AUD FPM 493 and AUD RC only 71. The experimental results are shown in
Figure 3.28. Even if the experiments were not extensive, due to the computational complexity
of AUD FP and AUD FPM, we can state that MCPI behaves “as good as” a ’perfect’ im-
plementation of Audsley approach, which is computationally intractable, and outperforms
a reasonably complex implementation. This proves the superiority of our P-DAG based
’bubble-sorting based’ approach.

66 CHAPTER 3. PRIORITY BASED ALGORITHMS

3.7 Chapter Summary

In this chapter we studied the problem of fixed priority scheduling of dual criticality systems.
Our dissertation is focused on the finite set of job model, instead of the more general task
model. We motivate this by the observation that reasoning on tasks is more complex, and
thus the finite job set model, when applicable, potentially allows for better processor utiliza-
tion. A major drawback of this approach is that it has to consider the hyperperiod, which
can grow exponentially. However we think that this is passable for two main reasons. First,
for sake of a easily manageable system analysis, we are interested in static scheduling (which
is the topic of next chapter), and in this kind of scheduling considering a whole hyperpe-
riod is not avoidable. Second, tasks in real-life systems are designed to avoid hyperperiod
explosion.

We started the chapter by introducing one of the most common approaches to schedule
mixed critical systems. This approach has, however, some limitations, which where discussed
in Section 3.1.1. To overcome these limitations we introduced the Fixed Priority per Mode
(FPM) scheduling policy, as an alternative to the usual Fixed Priority (FP). To properly
model how jobs interact with each other, we introduced in Section 3.2 the Priority-DAGs
(P-DAGs) and the potential interference relation. These formal tools are the foundation of
our proposed scheduling algorithms.

In Section 3.3, we present the Mixed Critical EDF (MCEDF), an FPM algorithm for
single processor, that was first presented in [3] (see Contributions Bibliography, page 123).
This algorithm was compared with the Own Criticality Based Priority (OCBP) algorithm,
which is the optimal FP algorithm. We formally proved the dominance of MCEDF over
OCBP (and hence, over all FP algorithms) from which MCEDF inherits the optimal load
characterization. Also MCEDF, unlike Audsley approach based algorithms, can exploit job
splitting to improve schedulability.

The Mixed Criticality Priority Improvement (MCPI) algorithm was then discussed in
Section 3.4. It is an FPM scheduling algorithm that supports multiprocessors and job de-
pendencies. To the best of our knowledge, in literature there are no other multiprocessor
algorithms that support dependencies, if not under very restrictive assumptions. This algo-
rithm was first presented in [5].

In Section 3.5 we show some common properties of MCEDF and MCPI. We formally
proved that, when applied on single processor with no dependencies, they both are optimal
among the FPM policies that keep the priorities HI-critical job in relative EDF order. From
the above property, we also deduce their equivalence. Those results are presented in this
thesis for the first time.

We conclude the chapter with experimental results (Section 3.6) where we show noticeable
improvement over OCBP with randomly generated instances and satisfying performances for
MCPI. We conclude the experiment section by showing and empirical comparison between
MCPI and Audsley approach, from where we can deduce that our approach is comparable
to Audsley approach in “ideal” cases (i.e., assuming an exact worst case termination time
estimation) and by far outperforming a more computationally reasonable version of Audsley
approach. The comparison with Audsley approach is also an unpublished result.

3.7.1 Future Work

As future work we are planning to extend MCEDF to precedence constraints and to prove,
if possible, equivalence with MCPI even in this extended case. MCPI currently uses a weak

3.7. CHAPTER SUMMARY 67

method to estimate the potential interference relation. Finding a more precise technique
should increase its performance. Also, an alternative way of handling Dhall effect beyond
density separation would be desirable.

Finally we would like to extend both algorithms to non-preemptive case and to multiple
level of criticality. The latter is important for most standards, like DO-178B, but addressing
it is not trivial.

68 CHAPTER 3. PRIORITY BASED ALGORITHMS

Chapter 4

Time Triggered Policy

In this chapter we will discuss the problem of Time-Triggered (TT) scheduling policy for
mixed critical systems. In contrast to priority-based algorithms discussed in the previous
chapters, the Time Triggered ones statically fix for all jobs their start times and the time
intervals where they may execute. This class of schedulers is important because they consid-
erably reduce the uncertainty of job execution intervals thus simplifying the safety-critical
system certification (where simplicity is a decisive factor). They also simplify any auxiliary
timing-based analysis that may be required to validate important extra-functional prop-
erties in embedded systems, such as interference on shared buses and caches, peak power
dissipation, electromagnetic interference etc..

4.1 introduction

In [BF11, Bar12] S. Baruah et al. proposed the idea of transformation of non-TT based
solutions into TT-ones, demonstrating this idea on OCBP for a single processor. To avoid
the highly inefficient static reservation of resources, they proposed mode switching between
a different TT tables, one per criticality mode. We call this scheduling approach Single
Time Table per Mode (STTM). In [Bar13] the STTM scheduling was extended from single
to multiple processors, though being restricted to the systems where all jobs have the same
deadline. Formally, an ordinary (i.e., non mixed-criticality aware) Time Triggered (TT)
policy defines a static, pre-computed table that determines at every instant of time which
job must be scheduled at each processor provided that it did not terminate yet and assuming
that the job may require up to its WCET time units.

For MCS [BF11] introduced the Single-Time Table per Mode (STTM) policy, which
defines one table per criticality mode. In a dual-critical system we call LO and HI* the
tables for the LO and HI mode, respectively. The corresponding static schedules are denoted
as SLO and SHI∗. The two STTM tables are correct iff:

1. They schedule all jobs after their arrival and before their deadline, allocating each job
Cj(LO) time units in LO table and each HI job Cj(HI) time units in HI* table.

2. If at any time we switch from LO to HI*, then all not-yet-terminated HI jobs will
have enough time to continue their execution so as to reach Cj(HI) time units.

Producing such tables is not trivial, since, in general, as many tables as there are HI jobs are
potentially needed to cover all the corner cases of a MC scheduling, the job-specific scenarios

69

70 CHAPTER 4. TIME TRIGGERED POLICY

Figure 4.1: Basic scenarios and TT tables

(see Theorem 2.1.2). We recall these scenarios in the following:

Example 4.1.1. Let us consider the following instance on single processor as an example:

Job A D χ C(LO) C(HI)

1 0 12 HI 3 5
2 6 11 HI 2 4
3 7 8 LO 1 1
4 1 4 HI 1 2

and assume the following FPM priority assignment (which can be computed using MCPI):

PTLO = J3 � J2 � J4 � J1
PTHI = J2 � J4 � J1

The schedules in the job-specific basic scenarios for this instance are shown in Figure 4.1.
The first row represents the LO scenario, that can be used as LO table for a STTM policy.

The next three rows, represents the three HI basic scenarios. The reader may easily check
that none of them may be used as a HI* table. For example, if we use the scenario HI-J4,
and there is a switch from LO to HI* table at time 9, job J2 will not have enough time to
complete (it will have one other time unit reserved, but it needs 2).

The last row shows a correct table HI*. That table is obtained by the ’transformation’
algorithm proposed in this chapter. Note that the correct table differs from all the job-specific
scenarios, and presents unique behavior, as it runs job J1 in time interval (7, 8).

This chapter focuses on STTM algorithms. Our contribution is a novel algorithm that
transforms practically any scheduling algorithm into an STTM one. This way one can, for
example, profit from the state-of-the art FPM algorithms, such as MCPI, which, in general,
perform significantly better than OCBP and have no restrictive assumptions on the deadlines
and the number of processors.

An important theoretical result for our algorithm is that it always succeeds in converting
FPM to STTM on single processor, which proves that STTM algorithms dominate FPM. The
following gives a relation between the sets of schedulable instances for dual-critical problems:
Single Core

FP (MCEDF (FPM (STTM = OPT

4.2. TRANSFORMATION ALGORITHM 71

Policy

DES

J
HI*

LO

Transformation Algorithm

Transformed
DES

Figure 4.2: An overview of ’T ’ transformation algorithm

where FP represents optimal fixed priority, STTM represents optimal STTM algorithm,
OPT represents optimal policy without restrictions and the set inclusion represents dom-
inance relation between different policies. The last equality is a contribution of this work
(Corollary 4.3.6).

For multiprocessor platforms our knowledge on schedulability is more modest, as this is
new area of research:
Multi Core

FP,MCPI (FPM ; FPM,STTM ⊆ OPT

The experiments show, nevertheless, that the set of schedulable instances in our algorithm
is almost equal to MCPI, as it manages to convert MCPI results into an STTM table, so we
manage to leverage the most part of MCPI performance for the time-triggered scheduling.

4.2 Transformation Algorithm

Our algorithm, denoted T (ALG) transforms an arbitrary ’basic’ scheduling policy ALG to
STTM policy by augmenting it with additional rules. In practice, we use an FPM policy, in
particular, MCPI, as the basis policy. The algorithm can be applied indifferently on single-
and multiprocessor scheduling. Figure 4.2 shows an overview of the algorithm. The policy
ALG and the instance J are taken as input. Table LO is simply obtained by simulating
ALG for the LO basic scenario and using the generated schedule SLO as a TT table. We
then generate HI* by simulating ALG in the HI mode (i.e., initializing χmode = HI), in
what we call “transformed simulation”. In this simulation we execute HI jobs with C(HI)
times assuming that a HI job can be disabled at any time if some enabling rules, defined in
Section 4.2.3, are false. These rules are based on the LO table and their purpose to ensure
that any switch from table LO to the HI mode in table HI* will be correct.

4.2.1 Generating the LO table

Scheduling decision can, in principle, be taken at any time, but it was shown in [BLS10]
that without loss of generality, we can restrict to take decisions only when one of such events
happen:

1. a new job arrives

2. a job terminates its execution

72 CHAPTER 4. TIME TRIGGERED POLICY

Algorithm: SimulateEventDrivenPolicy
Input: jobset J
Output: Schedule S

1: St← PolicyInit()
2: t← 0
3: E ← GetArrivalEvents(J)
4: while there are events in E do
5: Js ← PolicyDecision(St)
6: (S, St, t)← SimulateUntilNextEvent(Js, St, E, t)
7: E ← UpdateTerminationEvent(Js, St, E, t)
8: end while

Figure 4.3: Event-driven scheduling policy simulation

3. a job switches

The last event type is needed only in MCS scheduling. Since in this section we are only
interested in simulating the LO scenario, we will only consider arrival and termination.
We call this kind of scheduling policy event-driven. The behaviour of such policy may be
reproduced using Discrete-Event Simulation (DES), where the events are the above listed
ones. The status of the system St at time t consists of two parts: St = (Pr,Mem). Pr
– ’progress of ready jobs’ – is defined as, initially empty, set of pairs of the kind (Jj , Tj),
where Jj is a job that has already arrived (Aj ≤ t) but has not terminated yet, and Tj is the
cumulative execution time of job Jj at time t. Formally Pr ⊂ J × Q. Mem – ’Memory’ –
is some status information specific for given policy. To be able to apply our transformation
algorithm we restrict the policy to keep Mem orthogonal to Pr, i.e., if one modifies Pr
without modifying Mem the policy should still be able to make meaningful decisions.

DES is based on three main steps:

1. Calculate future events

2. Simulate until next event

3. Update system state

The three steps are executed cyclically, until Step 1 returns no event. Pseudocode of Fig-
ure 4.3 shows how to implement such a simulator. First of all, the status St, the current
time t and the event list E are initialized. The latter is initialized by a function that re-
turns all the “Job arrival” events. Then the algorithms enters into the main loop. Here
the PolicyDecisions function selects the set Js of jobs to be scheduled. For example global
EDF on m processor would put in Js the m ready jobs with smallest deadline, while an
FPM policy would pick the firsts m jobs on the priority table of criticality χ, where χ is
the current criticality mode. Next, we perform the simulation until the next event appears,
updating the specification of the schedule S, the status St and the current time t. Finally
the termination event int list E are updated.

In Appendix A, the pseudocode of an implementation of such simulator is given for the
list scheduling algorithm.

4.2. TRANSFORMATION ALGORITHM 73

Algorithm: SimulateTransformedPolicy
Input: jobset J
Input: Gantt chart LO
Output: Schedule S

1: St← PolicyInit()
2: t← 0
3: E ← GetArrivalEvents(J)
4: while there are events do
5: St′ ← FilterDisabledJobs(J, St, t,LO)
6: Js ← PolicyDecision(St′)
7: (S, St, t)← SimulateUntilNextEvent(E,Js, t)
8: E ← UpdateTerminationEvent(E,J, St, t)
9: E ← UpdateRulesEvent(E,Js, St, t,LO)

10: end while

Figure 4.4: transformed simulation

4.2.2 Generating the HI* table

To generate the HI* table, a simple simulation is not enough. In fact, we need to guarantee
that if at any time we switch from LO to HI*, then all not-yet-terminated HI jobs will have
enough time to continue their execution so as to reach Cj(HI) time units. To obtain this, we
modify the simulation as follows:

• LO table is given as input
• we can disable some job, based on some rules on LO
• all jobs Jj run for a time Cj(HI)

The reason to disable jobs is explained in the next subsection. To disable a job Jj it is
sufficient to hide the pair (Jj , Tj) from St.Pr, so that the scheduling policy will not regard
it as a ready job. Note that we here exploit the imposed property that the policy permits
to modify Pr without modifying policy-specific Mem.

The pseudocode of Figure 4.4 shows how the transformed simulation works. With respect
to the algorithm of Figure 4.3, we added two lines. Line 5 hides some of the pairs (Ji, Ti)
from St, and saves the modified status in temporary variable St′. The rules to choose the
jobs to be disabled are explained in the next section. Line 9 updates the list of events E by
computing the events that change the rules of the rules to disable the jobs.

A detailed pseudocode of an implementation of an transformed scheduler for generating
table HI* for the list scheduling policy is given in Appendix B.

4.2.3 Transformation Rules

In this section we will discuss the rules for disabling jobs in the transformed simulation.
Before that, let us give some supplementary definitions. Let TLOj (t) (resp. THI∗j (t)) be the
cumulative execution progress of job Jj by time t in table LO (resp. HI*). We call a HI job
that has executed for more than its C(LO) a switched job. It is non-switched otherwise. We
say that a job switches at time t when TLOj (t) reaches Cj(LO). A job Jj is enabled at time

74 CHAPTER 4. TIME TRIGGERED POLICY

t if it is ready and at least one of the following rules is true:

TLOj (t) = Cj(LO) (4.1a)

THI∗j (t) < TLOj (t) (4.1b)

THI∗j (t) = TLOj (t) ∧ ∃p . SLOp (t) = Jj (4.1c)

Informally, rule (4.1a) permanently enables all switched jobs, while rule (4.1b) and (4.1c)
assure that a job will not run in HI* for more time than in LO before the switch. Rule (4.1c)
enables the execution of a job Jj when it runs on some processor p : SLOp (t) = Jj . Note

that we assume that at start of each new interval of job execution SLOp (t) = ε, i.e., that the

job is not yet running but that it starts running immediately after. In other words, SLOp (t)
is not left-continuous when it changes values. Also we assume that it is not right-continuous,
i.e., the job stops just before the end of the interval of execution. This is to ensure the
intervals where jobs are enabled are open. The goal is to have a convenient way to define
busy intervals in table HI*, which are, by our convention, also assumed to be open.

Consider the instance and the scheduling defined in Example 4.1.1. We will now show
how the enabling Rules can generate the table HI* of Figure 4.1. At time 0, only J1 has
arrived, and it is enabled by Rule (4.1c). At time 1, J4 arrives, it has higher priority then
J1 and it is enabled by Rule (4.1c), so it is chosen by the algorithm to be executed. At time
2 for job J4 Rule (4.1c) will be false, but Rule (4.1a) will become true, so we will continue
execute it until time 3. At time 3 J4 will terminate, so J1 will be enabled by Rule (4.1b)
until time 5 and by Rule (4.1a) from 5 on. So J1 will continue its execution till time 6, when
J2 arrives. J2 is enabled by Rule (4.1c), and it has higher priority than J1, so it will be
executed until time 7. At this instant Rule (4.1c) becomes false for J2. So J2 get disabled
and we execute J1. At time 8 J1 terminates and J2 is enabled by Rule (4.1c). At time 9
Rule (4.1c) gets false for J2, while Rule (4.1a) becomes true. So J2 continues its execution
until time 11, when it terminates.

It is easy to verify the correctness of TT scheduling that uses LO and HI* as tables.
In fact in table LO all the jobs meet the deadline. When there is a switch, at time t, from
LO to HI*, all HI job Jj must have from time t a quantity of time reserved for them in
HI* equal to Cj(HI)− TLOj (t). In our example, if there is a switch in the LO table at time
2, caused by job J4, then J1, J4 and J2 will have enough remaining time reserved in HI*
(respectively 4 = C1(HI) − TLO1 (2) = 5 − 1, 1 = C4(HI) − 1 and 4 = C2(HI) − 0), and will
terminate before their deadlines. In this case we will drop job J3, since we do not care about
LO jobs when in HI mode. Similarly, in the case of a switch at time 4, caused by J1, then J1
and J2 will have respectively 3 = C1(HI)− 2 and 4 = C2(HI)− 0. Note that in this case J1
will have one time unit more then it actually needs. Finally, if there will be a switch at time
9, caused by job J2, this job will have 2 other time units, terminating at time 11, meeting
its deadline.

We have the following result, which shows that the first requirement of STTM correctness
is always satisfied by our transformation rules.

Lemma 4.2.1. If at any time we switch from LO to HI*, then all the non-terminated jobs
will have enough time reserved in HI* to terminate their work.

Before presenting the proof, first, let us comment that, according to our rules to construct
HI*, no HI jobs get disabled forever because eventually Rule (4.1a) becomes true, since
all LO jobs eventually terminate. Thus, all HI jobs get a total time C(HI) reserved in

4.3. TESTING CORRECTNESS FOR SINGLE-PROCESSOR POLICIES 75

HI*. Consequently, if a job switches at time t, then all HI jobs are guaranteed to get
C(HI)− THI∗j (t) , but need to get at least C(HI)− TLOj (t).

Therefore the lemma can be equivalently stated as follows:
no non-switched HI job makes more progress in HI* than in LO.
Formally:

∀t , TLOj (t) < Cj(LO)⇒ TLOj (t) ≥ THI∗j (t)

Proof of Lemma 4.2.1. At time t = 0 the lemma thesis is obviously true, and with progress
of time it can be invalidated only during the time when a job is scheduled in HI*. However,
as long as TLOj (t) < Cj(LO) job Jj can only be scheduled when either (4.1b) or (4.1c) is

true, but they both imply that we have TLOj (t) ≥ THI∗j (t).

Also, for single processor, the transformation algorithm is optimal, which has important
implications, not only for time triggered, but also for other policy.

4.3 Testing Correctness for Single-processor Policies

In this section we always assume single-processor problem instances.
It is known that EDF is an optimal scheduling policy for ordinary (non-mixed critical)

single-processor problems. Given this, and observing that scheduling after the mode switch is
an ordinary scheduling problem, we identify the following important class of single-processor
policies.

Definition 4.3.1 (‘Reasonable’ Single-processor Policies). A single-processor dual-critical
scheduling policy is called ‘reasonable’ if after the mode switch it applies EDF for the HI jobs
and either drops the LO jobs altogether or gives them less priority than that of any HI job.

Note that the reasonable policy definition needs to be generalized in the case of task-
graph dependencies by explicitly saying that EDF table should use ALAP deadlines. We
will provide detailed generalized definition later on in this chapter.

Theorem 4.3.2 (Transformation Correctness). For a given task graph on single-processor
if the basis policy ALG is correct and reasonable then the policy T (ALG) is also correct.

The above theorem is proved in Subsection 4.3.1 for job instances without dependencies
and extended to task graphs in Section 4.3.3. We also have a proof for the reverse result:

Theorem 4.3.3 (Reverse Correctness). For a given task graph on single-processor, under
the assumption that the basis policy ALG is reasonable, we have that if the policy T (ALG)
is correct then policy ALG is correct as well.

The proof is given in Subsection 4.3.2 for job instances without dependencies and ex-
tended to task graphs in Section 4.3.3. The two theorems above can be expressed, using the
notation introduced at the beginning of this chapter, as follows:

T (ALG) = ALG

where ALG is reasonable, single-processor basis policy.

Corollary 4.3.4 (Testing Correctness based on two Tables). For single-processor problem
instances and reasonable policy ALG a necessary and sufficient correctness test is testing
that both scheduling tables, LO and HI*, obtained from T (ALG) meet their deadlines.

76 CHAPTER 4. TIME TRIGGERED POLICY

Testing over only two tables implies substantial computational improvement over the
correctness test proposed in Theorem 2.1.2, which tests the scheduling policy over H + 1
‘tables’, where H is the number of HI jobs in the problem instance.

Corollary 4.3.5 (FPM Correctness Testing Complexity). On single processor testing cor-
rectness of FPM policies can be done with the same algorithmic complexity as testing one
basic scenario.

This result follows from the fact that adding the transformation rules to the simulation
does not increase the complexity, i.e., generating table HI* has the same complexity as
simulating one basic scenario. This result follows from Lemma B.2 in Appendix B where
we analyze the complexity of transformed fixed-priority simulation for generating table HI*.
Note that this result permits to complete the proof of O(k2) complexity for MCEDF.

Also, since we do not make any assumption on how the basis policy behaves in the LO
mode and because EDF is optimal for single processor single criticality problems the following
is trivial:

Corollary 4.3.6 (Of Theorem 4.3.2). In single processor, if an instance J is MC schedulable,
then it can be scheduled by an STTM policy. Using the notation introduced at the beginning
of this chapter:

STTM = OPT

Proof. To prove this result, consider an optimal policy and modify it such that it uses EDF
in the HI mode, which preserves its optimality. Applying the transformation on the resulting
policy gives an STTM policy, which is correct by Theorem 4.3.2.

Unfortunately these correctness results do not extend to multiple processors. A reason
for that is that they rely on optimality of EDF. Nevertheless, from our experiments – see
Section 4.4.2 – we observe that the ‘direct’ correctness result holds almost always for FPM
policies. Only for very high-load problem instances there are rare cases that FPM meets the
deadlines whereas the transformation algorithm does not. Below we give an example of a
successful transformation for two processors:

Example 4.3.7. Consider the following instance:

Job A D χ C(LO) C(HI)

1 2 9 HI 2 5
2 0 10 LO 6 6
3 0 16 HI 4 12
4 4 17 LO 7 7
5 0 18 HI 6 12
6 8 19 LO 6 6
7 12 20 HI 1 5

and the following FPM priority assignment:

PTLO = J1 � J3 � J5 � J7 � J2 � J5 � J6
PTHI = J1 � J3 � J5 � J7

Fig. 4.5 presents the tables LO and HI* obtained from T (FPM) for this instance on
two processors, using similar reasoning as in the previous example.

4.3. TESTING CORRECTNESS FOR SINGLE-PROCESSOR POLICIES 77

1

0

 0 2 4 6 8 10 12 14 16 18

P
ro

ce
ss

o
rs

time

table LO

J3 J2 J6 J7 J6

J5 J1 J5 J4

1

0

 0 2 4 6 8 10 12 14 16 18

P
ro

ce
ss

o
rs

time

Table HI*

J3 J7

J5 J1 J5

Figure 4.5: TT tables for Example 4.3.7

4.3.1 Proof of Direct Correctness

Theorem 4.3.2 (Transformation Correctness). For a given task graph on single-processor
if the basis policy ALG is correct and reasonable then the policy T (ALG) is also correct.

We will prove the theorem for job instances without precedences, the results are extended

to task graphs in Section 4.3.3. Let TT
HI∗(LO|HI-J ′)
J be the termination time of J in HI*

obtained from T (Alg) (respectively, LO, HI-J’ obtained from Alg).

Theorem 4.3.8. Let J least be the least priority HI job in the priority table applied in the
HI mode. (Note that in the reasonable policy this is always a latest-deadline HI job). Then

∃J ′ : TTHI∗J least ≤ TT
HI-J ′
J least

Let us first give some definitions and support lemmas.
Recall the concept of of busy interval (Definition 3.2.17). In between busy intervals, there

are closed, sometimes single-point, idle intervals. For HI*, we would like to distinguish an
idle interval as a hole if inside this interval there are HI jobs that have arrived and not yet
terminated, and are disabled because neither of the rules (4.1a), (4.1b), (4.1c) is true. The
idle intervals that are not holes, are called empty intervals, i.e., those where the job queue
is empty.

For instance in Figure 4.1 in HI* there are two busy intervals: (0,8) and (8,11), thus
we have a hole of size 0 at time 8. This hole appears under the following circumstances.
Immediately before time 8 J1 is enabled by Rule (4.1a) while J2 is disabled. Then at time 8
J1 gets disabled (because it terminates) while immediately after that time J2 is enabled by
Rule (4.1c) to continue its execution after that time.

The following proposition is well-known for fixed-priority policies, but needs to be re-
established because we added the rules that can disable jobs.

Lemma 4.3.9. If J least is the least priority (i.e., the latest-deadline) HI job, then it termi-
nates at the end of some busy interval BIHI∗.

Proof. Let us assume by contradiction that J least terminates inside a busy interval at time
t. This means that at time t there is another enabled job (by definition of busy interval). If
that is so, then J least, having the least priority, should not be running at time t.

78 CHAPTER 4. TIME TRIGGERED POLICY

Lemma 4.3.10. Let BIHI∗ = (a, b) be a busy interval in HI*. At time a, the set of non-
terminated HI jobs is the same in tables LO and HI*, and for all of them holds that at time
a the cumulative execution progress in LO is the same as in HI*.

Proof. Consider time a. The lemma thesis is obvious for any job that did not arrive yet, so
in the sequel we consider only those jobs that have arrived.

If a job J is non-terminated in LO then it is non-terminated in HI* as well by
Lemma 4.2.1. In addition, by the same lemma we have:

THI∗J (a) ≤ TLOJ (a) (4.2)

On the other hand, if job J is non-terminated in HI* then the fact that it is not enabled
at time a (by lemma condition) implies that Rule (4.1a) is false and hence the job is non-
terminated in LO as well. Combined with the earlier observations, we conclude that the sets
of non-terminated jobs at time a in these two tables are equal. In addition, also Rule (4.1b)
is false, which means:

THI∗J (a) ≥ TLOJ (a) (4.3)

Combining (4.2) and (4.3) we have the equality of the cumulative progress.

Corollary 4.3.11. Let BIHI∗ = (a, b) be a busy interval in which some job switches. Let
Js be the first such job, and let ts be the time at which the switch occurs.

Then during the interval (a, ts) tables HI*, HI-Js and LO are identical

Proof. Notice that HI-Js and LO are equal by construction in (0, ts) and hence in (a, ts) as
well. Let us compare LO and HI*. At time a the set of non terminated jobs in these two
tables are equal. In interval (a, ts) no job switched yet, therefore all the jobs that run in HI*
should satisfy Rule (4.1c), which is due to the fact that the other two rules require a switch
to have occurred. As long as Rule (4.1c) holds, the HI* table replicates the LO table, and
because it fills time interval (a, ts) continuously, as ts ∈ BIHI∗, we have proved our thesis.

Proof of Theorem 4.3.8. Let BIHI∗ = (a, b) be the busy interval in which J least terminates.
By Lemma 4.3.9, TTHI∗

J least
= b. By Lemma 4.3.10, job J least is not yet switched at start of

this interval, and since this job terminates at the end of BIHI∗, we know also that it switches
inside this interval as well, so Corollary 4.3.11 applies for this interval.

Let us assume that BIHI∗ = (a, b) is followed by an empty interval, i.e., an idle interval
which appears due to termination of all HI jobs that have arrived so far. Because in this
case all the jobs that are ready in interval BIHI∗ have terminated by time b, we have:

b = a+
∑

j∈BIHI∗

(
Cj(HI)− THI∗j (a)

)
Let Js be the first job to switch in BIHI∗, at time ts. By Lemma 4.3.10 and Corollary 4.3.11,
we have that the same jobs, with the same remaining execution time as in HI* will run from
time a in HI-Js before the switch and, by construction after the switch the same set of jobs
as in HI* may arrive and become ready, and in HI-Js, under EDF policy, the ready jobs
will occupy the processor until all of them have terminated – which is the same behavior as
for HI* in this case. Therefore BIHI∗ = BIHI-Js and J least, being the least-priority job,
will terminate at time b in both tables.

4.3. TESTING CORRECTNESS FOR SINGLE-PROCESSOR POLICIES 79

Let us now examine the other case, in which BIHI∗ = (a, b), the busy interval where
J least terminates, is followed by a hole, i.e., the idle interval which appears because at time b
the rules for table HI* have disabled all ready jobs. Also in this case J least by our hypothesis
and Lemma 4.3.9 will terminate at time b, but in this case by construction not all jobs of
BIHI∗ terminate by time b:

b < a+
∑

j∈BIHI∗

(
Cj(HI)− THI∗j (a)

)
(4.4)

Let Js be the first job to switch in BIHI∗, at time ts. Again by Lemma 4.3.10 and Corol-
lary 4.3.11 we observe the same initial state and subsequent behavior in tables HI* and
HI-Js of all non-terminated HI jobs during the time interval (a, ts]. So we conclude that all
jobs of BIHI∗ run in HI-Js after time a continuously, and at time a their total remaining
work is equal to: ∑

j∈BIHI∗

(
Cj(HI)− THI∗j (a)

)
In line with equation (4.4), in order to complete this workload, table HI-Js has to continue
execution after time b. New jobs may arrive before the termination of the busy interval
BIHI-Js . This busy interval executes all these jobs, J least being the last one to terminate.
So we have:

BIHI∗ ⊆ BIHI-Js

and
TTHI-Js

J least
≥ a+

∑
j∈BIHI∗

(
Cj(HI)− THI∗j (a)

)
(4.5)

Combining (4.4) and (4.5), and observing that TTHI∗
J least

= b, we have that also in this case
in HI-Js the least-priority job terminates no earlier than in HI*. This completes the proof
of Theorem 4.3.8.

Proof of Theorem 4.3.2. From Lemma 4.2.1 we know that in any possible scenario all the
HI jobs will have enough processor resource to terminate. The termination time of J least is
guaranteed to meet the deadline due to the hypothesis that it meets deadline in the policy
Alg and Theorem 4.3.8. Now let us prove that also the HI jobs with higher priority in the
EDF table PTHI meet their deadlines. Let J least be the next least priority HI job after
J least in the EDF table. Let J be the currently examined problem instance and let J be the
instance obtained from J by reducing the criticality of J least to LO. It is easy to show that
the HI-mode table HI∗ obtained for this new instance coincides with HI* except that the
intervals where J least is running are idled. So, J least will terminate in HI* at the same time
as in HI∗, where by Theorem 4.3.8 applied to instance J it will terminate no later than the
latest termination under policy Alg. Obviously, also the latest termination of the policy Alg
for job J least is the same for both J and J. Because by our hypothesis this policy is correct
we conclude that J least meets its deadline. Iterating this reasoning recursively, we argue that
all HI jobs meet their deadline in HI*, and thus we have our thesis.

4.3.2 Proof of Reverse Correctness

In this section we prove the reverse correctness of transformation according to Theorem 4.3.3,
i.e., that for a reasonable basis policyALG we have that T (ALG) can succeed only if the basis

80 CHAPTER 4. TIME TRIGGERED POLICY

policy ALG succeeds. Similarly to the previous section, we first give some supplementary
definitions and lemmas (in addition to those presented so far), and then we use them to
establish a proof of the main theorem in the end of the section. As for the previous case,
we will prove the theorem for job instances without precedences, the results are extended to
task graphs in Section 4.3.3.

The total remaining workload when policy ALG executes basic scenario sc at time t is
defined as:

WLsc(t) =
∑
j∈J

(
Cj(χ

sc
j)− T scj (t)

)
where χscj is the criticality behavior shown by Jj in scenario sc. Similarly the total remaining
HI-job workload is given as:

WLsc
HI

(t) =
∑

j∈J:χj=HI

(
Cj(χ

sc
j)− T scj (t)

)
For table HI* we have:

WLHI∗(t) = WLHI∗
HI

(t) =
∑

j∈J:χj=HI

(
Cj(HI)− THI∗j (t)

)
Lemma 4.3.12. Given a reasonable basis policy, we have that:

∀sc, t WLHI∗(t) ≥WLsc
HI

(t)

Proof. Before the mode switch, for any HI job j that did not terminate by time t in sc, we
have that Cj(χ

sc
j) ≤ Cj(HI) by construction and T scj (t) ≥ THI∗j (t) by Lemma 4.2.1. On the

other hand, for a HI job that has already terminated we have that Cj(χ
sc
j)− T scj (t) = 0. By

the above remarks we have Cj(HI)− THI∗j (t) ≥ Cj(χscj)− T scj (t) for all HI jobs j.

After the switch in sc, a reasonable policy will always execute a HI job when it can do
so (i.e., because the EDF policy is work-conserving and and LO jobs have been dropped).
Next to this, observe that some jobs that are ready in sc may be at the same time disabled
in HI*. Thus, after the switch WLHI∗(t) decreases at most as fast as WLsc

HI
(t).

Recall that a reasonable policy after the mode switch becomes priority-based and sched-
ules HI jobs using the EDF priority table of HI jobs. Therefore, in this table we can identify
the least priority job Jleast.

Theorem 4.3.13 (Worst Case Scenario). Let us consider a reasonable basis policy. Then,
for the least priority job Jleast we have:

∀sc′, TTHI-Jsleast ≥ TT
sc′
least

where Js is the first job to switch in the busy interval of HI* where Jleast terminates and sc′

is either the LO basic scenario or any job-specific HI scenario.

In other words, HI-Js is the worst-case scenario for Jleast.

Proof. In this proof we will use three observations:

1. after the switch we have WLsc
HI

= WLsc.

4.3. TESTING CORRECTNESS FOR SINGLE-PROCESSOR POLICIES 81

2. consider two HI-job specific scenarios sc and sc′ and some time instant t at or after the
switching time of both scenarios; if at time t Jleast did not yet terminate in neither of the
two scenarios and WLsc(t) ≥WLsc

′
(t), then TT scleast ≥ TT sc

′
least; (this is so because after

the switch a reasonable policy applies EDF, and for a fixed-priority policy the remaining
workload has a monotonic impact on the termination time of the least priority job).

3. In the theorem statement we can ignore the case where sc′ is the LO scenario with-
out loss of generality. This is because there always exists a HI scenario where J least

terminates at the same time or later, for example HI-J least.

Let ts be the time when Js switches in HI*. We know by Corollary 4.3.11 that
WLHI∗(ts) = WLHI-Js

HI
(ts). Then, by Lemma 4.3.12:

∀sc′ WLHI-Js
HI

(ts) ≥WLsc
′
(ts) (4.6)

i.e., no scenario has more workload at time ts than the scenario HI-Js.
In the rest of the proof we assume that ts′ is the switch time of another HI-job specific

basic scenario sc′ = HI-Js′ and we compare that scenario to sc = HI-Js.
For the scenarios where ts′ ≤ ts the statement of the theorem is proved by the above

stated Observation 2 and (4.6), as we have established the workload inequality for a time ts
that is at or later than the switch in the both scenarios.

Let us prove the theorem statement for the other case, ts′ > ts. Let tleast = TTLOleast,
i.e., the time at which Jleast terminates in the LO scenario. Note that we can ignore the case
tleast < ts′ , as in this case TT sc

′
least = TTLOleast and Observation 3 applies. So, we can assume

ts′ ≤ tleast. Due to this assumption, we also have: ts′ ≤ TTHI∗least and ts′ ≤ TTHI-Jsleast . Adding
to this that ts < ts′ we see that ts′ falls inside the busy interval where Jleast terminates in
the end, both for HI* and HI-Js. By construction, ts belongs to the same busy interval
BIHI∗ that ends at TTHI∗least, thus WLHI∗ will constantly decrease in this interval. At time
ts′ , we will have WLHI∗(ts′) = WLHI∗(ts)− | (ts, ts′) |. By a similar reasoning on the busy
interval BIHI-Js , we have WLHI-Js(ts′) = WLHI-Js(ts)− | (ts, ts′) |.

Thus, using equality WLHI∗(ts) = WLHI-Js
HI

(ts), which we established earlier, we have:

WLHI-Js(ts′) = WLHI-Js(ts)− | (ts, ts′) |
= WLHI∗(ts)− | (ts, ts′) |
= WLHI∗(ts′)

Therefore, for time ts′ we can repeat the same reasoning as we did for time ts, which concludes
the proof.

Theorem 4.3.3. For a given task graph on single-processor, under the assumption that the
basis policy ALG is reasonable, we have that if the policy T (ALG) is correct then policy ALG
is correct as well.

Proof. Our thesis can be rewritten as:

(∀j TTHI∗j ≤ Dj) ⇒ (∀sc,∀i TT sci ≤ Di)

We prove the theorem for Ji = Jleast and then extend this argument from Jleast to other
jobs Ji by induction, in the same way as we did in the proof of Theorem 4.3.2 in the end of
previous section.

82 CHAPTER 4. TIME TRIGGERED POLICY

Suppose by contradiction that Jleast misses its deadline in ALG while all jobs meet their
deadlines in T (ALG). We have:

TTHI∗least ≤ Dleast < TTHI-Jsleast (4.7)

where HI-Js is the worst case scenario for Jleast according to Theorem 4.3.13. We distinguish
two cases:

1. Jleast terminates before an “empty interval”.

By the reasoning of the proof of Theorem 4.3.8, we have:

TTHI∗least = TTHI-Jsleast

which contradicts (4.7).

2. Jleast terminates before a “hole”. Considering BIHI∗ = (a, b), as in the proof of
Theorem 4.3.8, and observing that, by Lemma 4.3.10, THI-Jsj (a) = THI∗j (a) we have
that:

TTHI-Jsleast = a+
∑

j∈BIHI-Js

(
Cj(HI)− THI∗j (a)

)
(4.8)

Let Je be the last job to terminate in HI*. For this job, by construction:

TTHI∗e ≥ a+
∑
j∈J

(
Cj(HI)− THI∗j (a)

)
(4.9)

The right side of Equation (4.9) is no less than the right side of Equation (4.8). There-
fore, TTHI∗e ≥ TTHI-Js . Also, in EDF: Dleast ≥ De. From these observations and
(4.7), we have:

TTHI∗e ≥ TTHI-Jsleast > Dleast ≥ De

thus Je will miss its deadline in HI*, which contradicts the theorem assumptions.

4.3.3 Extending the Proofs to Task Graphs

In this section we will show that the theoretical results so far obtained for single-processor
case without dependencies extends to the case of task graph as well.

Definition 4.3.14 (Modeling job set). Given a task graph T(J,→), its modeling job set Ĵ
is the set of jobs whose arrival times and deadline are calculated as ASAP arrivals A∗j and
ALAP deadlines D∗j .

The above definition can be applied to LO-criticality, MIX-criticality and HI-criticality
graph (Section 2.2.3). In this case we will talk of LO (resp. MIX,HI) modeling job set ĴLO

(resp. ĴMIX, ĴHI).

In this subsection we will assume reasonable policies, according to the following definition:

Definition 4.3.15 (Reasonable policy for task graphs). A reasonable policy for task graph
uses in HI table EDF priorities according to ALAP deadlines D∗.

4.3. TESTING CORRECTNESS FOR SINGLE-PROCESSOR POLICIES 83

Observation 4.3.16. In a modeling job set, the following holds:

∀i, j Ji → Jj ⇒ A∗i ≤ A∗j (4.10)

Observation 4.3.17. Meeting the ALAP deadlines in all three modeling instances (assuming
LO mode for JMIX) is necessary and sufficient for for policy correctness, and PTEDF for
ALAP deadlines is precedence compliant.

The following holds for single processor:

Lemma 4.3.18. Consider a task graph T = (T,→). The LO basic scenario schedule SLS
obtained by applying list scheduling on T using a priority compliant table PTLO is equal
to the schedule SFP obtained by applying fixed priority scheduling on ĴLO (ĴMIX) without
dependencies using the same table PTLO.

Proof. The difference between the simulation for constructing SLS and SFP is that in the
former case some jobs may be postponed due to dependency constraints on their predecessors.
Thus the results are not equal if and only if at a certain time instant a job J has arrived,
but is postponed in SLS while it is the highest priority non terminated job in SFP . Let us
assume by contradiction that such a time instant exists. By Equation (4.10) if J has arrived,
so are all of its predecessors and some of them are non-terminated, otherwise J would not
be postponed. Since, by hypothesis, PTLO is priority compliant, all the predecessors have
higher priority. This contradicts the hypothesis that J is the highest priority non terminated
ready job.

Dually, we also prove the following:

Lemma 4.3.19. Consider a task graph T = (T,→). The schedule SLS obtained by ap-
plying transformed list scheduling on THI using a priority compliant table PTHI is equal to
the schedule SFP obtained by applying transformed fixed priority scheduling on ĴHI without
dependencies using the same table PTHI.

Proof. Unlike Lemma 4.3.18, in SFP we do not always execute the highest-priority non-
terminated ready job J ′, since J ′ may be disabled by the transformation rules. We have to
prove that this does not break a precedence relation J ′ →HI J , i.e., in SFP , J must not run
when J ′ is disabled. Formally:

J ′ →HI J ⇒ ∀t ≤ TTSFPJ ′ , TSFPJ (t) = 0 (4.11)

Notice that J ′ →HI J ⇒ J ′ → J , which should be respected in the LO table, so:

J ′ →HI J ⇒ ∀t ≤ TTLO
J ′ , TLO

J = 0 (4.12)

Consider a time instant t′ ≤ TTLO
J . By (4.12) we have that J is not started yet in LO, thus

none of the enabling rules is true for it and hence J is disabled. On the other hand, at time
instant t′′ > TTLO

J , J ′ is always enabled until its termination by Rule 4.1a. Thus we cannot
have a situation where non-terminated J ′ is disabled and J is enabled at the same time. The
lemma may now be proved with a similar reasoning as in the proof of Lemma 4.3.18.

Lemma 4.3.18, Lemma 4.3.19 and previous observations show that task graphs can be
modeled by the precedence-free modeling job instance, thus we trivially have the following:

Observation 4.3.20. Theorems 4.3.2 and 4.3.3 extend to task graphs.

84 CHAPTER 4. TIME TRIGGERED POLICY

4.4 Experiments with Multiprocessors

4.4.1 Extending the Scope for Transforming the Policies

In the previous section we formulated correctness theorems of the transformation algorithm
for the case with the following assumptions: (1) only a single processor is available; (2)
EDF scheduling policy is applied in the HI mode. Nevertheless, our algorithm is applicable
in practice also when the above restrictions are alleviated, though one has to check the
correctness of the result even when the basis policy is correct.

In this section we experiment with an approach that goes beyond the above restric-
tions and works in practice, even if not supported by theory. Thus, we abandon the usual
mindset of previous works on mixed-critical translation of event-triggered to time-triggered
table [BF11, Bar12, Bar13], which study only the cases where correctness of transformation
can be proved. Instead, we test the correctness after the translation.

Thus we now consider multiple processors and non-EDF policy in HI mode as basis policy.
Instead we use MCPI with EDF-DS support algorithm which we showed efficient for multiple
processors in Chapter 3.

Our experiments in next subsection show that even for hard scheduling problem instances
the proposed approach results in a correct transformation in a grand majority of problem
instances.

The HI* table correctness consists of two main requirements:
(a) no job should ever make more progress in HI* than in the LO table;
(b) deadlines should be met by the HI jobs.

Requirement (a) is satisfied by Lemma 4.2.1, which also applies for multiprocessor case.
Requirement (b) can be easily verified after the construction of the HI* table, which we do
in our experiments.

Recall that MCPI implementation is based on list scheduling. Therefore, for transforming
the MCPI to STTM we had to implement the transformed list scheduling. The implemen-
tation is described in detail and analyzed for algorithmic complexity in Appendix B. In the
next subsection we apply it in experiments.

4.4.2 Experimental Results

To estimate the probability of getting a correct solution from a transformed policy in the the
multiprocessor case, we performed measurements for randomly generated problem instances
using an implementation of MCPI and T (MCPI).

The random job generation algorithm was the same as in Section 3.6. The instances
were scaled to obtain a target ‘Stress’ parameter. In our experiments the stress in the two
modes was set to be equal to a target value StressLO = StressHI = S. For each instance,
we first applied the MCPI algorithm. If it did not produce a correct solution we canceled
and restarted the experiment. In the case of a correct solution from MCPI we applied
the transformation algorithm to the result and checked if the experiment was a ‘success’,
i.e., whether a feasible STTM HI* table was obtained. We performed the experiments
to test the effectiveness of the algorithm under different assumptions. In Table 4.4.2 the
parameters used for each experiment are reported. It is shows for each number of processors
m the maximum allowed error δ on the Stress value and for each experiment the number of
jobs and the number of precedence arcs. For each point, 1000 MCPI-schedulable instance
were generated, in order to get a representative sample.

4.4. EXPERIMENTS WITH MULTIPROCESSORS 85

Experiment 1 Experiment 2

m δ jobs arcs jobs arcs

1 0.005 not simulated not simulated
2 0.01 30 0 30 20
4 0.02 60 0 60 40
8 0.05 120 0 120 80

Table 4.1: Experiments’ parameters

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
cc

e
ss

 r
a
ti

o

Normalized Stress

m = 1
m = 2
m = 4
m = 8

Figure 4.6: Experiment 1 - Without dependencies

86 CHAPTER 4. TIME TRIGGERED POLICY

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
cc

e
ss

 r
a
ti

o

Normalized Stress

m = 1
m = 2
m = 4
m = 8

Figure 4.7: Experiment 2 - With dependencies

Experiment 1 shows the performance of the algorithm with no dependencies. Fig. 4.6
shows a plot of the success rate at different values of the normalized stress parameter S/m
for 2, 4 and 8 processor problems. Also the theoretical success rate of 1 for single processor
case is shown (confirmed by the experiments). We were not able to measure the success rate
for S/m closely approaching to 1 due to the difficulty of finding high-stress problem instances
that would be schedulable by MCPI.

The experiments show that the success rate is quite high, though it decreases with the
stress and the processor count.

Fig. 4.7 shows the results of experiment 2, where we added task graph dependencies.
From the graph we can see that there is no substantial difference in the case of task graph.

The curves are limited on the x axis because finding feasible schedule for randomly
generated instances is computationally intractable for values of stress close to 1.

4.5 Chapter Summary

In this chapter we discussed the problem of transformation from a dynamic online policy to
static policy. Static policies are useful in time-critical systems, since, in general, they make
analyses easier, by reducing the number of states that the system may reach. This, together
with the observation that the mixed critical literature contains few works on static policies,
but many on priority based solutions, motivated the studies presented in this chapter.

For single processor case, we proved that the proposed policy transformation algorithm
is optimal, in the sense that it will always find a correct static schedule in case the original
policy is correct as well. We also proved that this relation holds in the reverse direction
as well, i.e., if the generated static policy is correct, so is the original one. This has both
theoretical and practical implications. From the theoretical point of view, we showed that
the Single Time Table per Mode (STTM) policy is optimal for single processor case, i.e., if

4.5. CHAPTER SUMMARY 87

there exists a correct scheduling policy then there exists a correct STTM policy. From the
practical point of view, it means that our translation algorithm may also be used to test
the correctness of a non static policy. This procedure has a lower computational complexity
then simulating all job-specific basic scenarios. Preliminary single processor results where
presented in [4] (see Contributions Bibliography, page 123). The reverse correctness and its
theoretical and practical applications are new, unpublished results.

For the multiprocessor case, we lose the optimality. However we were able to show that
the algorithm has a very low failure rate even for instances with high utilization. This results
are also present in [6].

As future work we plan to extend the proposed algorithm to multiple level of criticality.

88 CHAPTER 4. TIME TRIGGERED POLICY

Chapter 5

Application Programming and
Implementation

An important challenge in the design of mixed-critical system is lack of consolidation in
programming. Embedded software design has in common with hardware design that it has
to satisfy not only functional, but also extra-functional requirements, first of all, timing.
However, unlike hardware languages, the software languages have an important deficiency:
they were conceived without any concern on timing in mind [Lee05]. Real-time programming
is a very heterogeneous area of research, as it employs many different models of computation
(MoCs), such as synchronous languages, timed Petri nets, various extensions of synchronous
dataflow (SDF), etc. Expressing the software design in a given MoC is difficult, but, worse
still, even when this is done, the real-time scheduling and timing analysis still remains chal-
lenging, due to a gap between the MoCs and the real-time scheduling policies [FKRvH06].
The policies themselves are sometime very heterogeneous, and ’exotic’, especially those pro-
posed for multiple processors and for mixed criticality e.g., in Chapter 3 and 4 of this thesis.

Therefore the user should be given freedom to configure his preferred model of compu-
tation and scheduling policy on top of a metamodel that can express all the spectrum of
choices and their combinations. So there is a need in a common ‘backbone’ language expres-
sive enough to redefine and reuse different components of middleware. Partly, this idea was
implemented in the SystemC project, offering a common way to express scheduling policies,
MoCs and functional code [LMPC04]. However, this language lacks a formal semantics,
and it mainly offers facilities for simulation only, but not for fully-automated deployment of
software.

Therefore, as an alternative, we propose to use combined procedural and automata lan-
guages. We also propose to ‘compile’ high-level descriptions of custom models of computation
and scheduling policies into the automata language to have a unified ‘backbone’ model from
which one can do code generation and timing analysis in a unified way. To demonstrate the
concept, we offer public prototype tools [PBS+] for multicore timing-critical system design
based on the timed-automata language BIP [ACS10] extended for the support of tasks.

This chapter describes the design flow for programming and implementing mixed crit-
ical systems in this language. Section 5.1 gives an overview of the proposed design flow,
Section 5.2 gives an introduction into BIP. In Section 5.3 we present our proposed MoC for
real-time systems. In Section 5.4 we show how to translate an instance of MoC and schedul-
ing policy into BIP. The BIP programming language can run on top of our BIP run-time
environment for multicore systems used for simulation and deployment. In Section 5.5 we

89

90 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

Model of Computation &

Functional Code
Multi-core

Platform Parameters

Hardware (BIP)

BIP Compiler

Schedulability

Validation

Compile

Model of Computation

WCET Analysis

Binary executable

Multiprocessor

Scheduling

System Model (BIP)

system level

software level

hardware

level

Translate Hardware

Architecture
Compile

Scheduling Policy

Software (BIP)

Multi-thread BIP RTE

Figure 5.1: Design flow (highlighting the steps covered in this chapter)

describe implementation of an industrial use case on Kalray MPPA® multi-core platform
and some experimental results. Finally, Section 5.6 concludes the chapter.

5.1 Design Flow

In this section we present our proposed design flow. It is based on a combined procedural and
automata-based language, referred to as backbone language. Examples of such languages are
IF, SDL-RT, BIP and TIMES [AFM+02]. A backbone language can be used for modeling,
validation and simulation, but our main point is to use it as a programming language.
Because in many cases, an automata-based language may be too low-level for direct use in
application programming, we can compile higher-level models into the backbone language
automatically. In the ideal case, this is ensured by letting the user create a set of grammar
rules for automatic translation of the high-level model patterns into the automata. The user
would provide a set of automata templates that implement the primitives of the preferred
MoC and scheduling policy. Hence the backbone language would serve as a meta-model and
meta-policy used to program the desired timing-critical systems middleware. The specified
set of rules and templates would allow to compile the MoC and the scheduling policies into
a network of timed automata that can be analyzed and deployed on a platform.

This idea is partly implemented in our design flow, see Fig. 5.1. The design flow accepts
a high-level specification of application tasks (the MoC and the functional code) at the
input and compiles it into the backbone language, for which we use BIP [ACS10]. Also the
flow takes from the offline scheduling tool the specification of the online scheduling policy
and the selected scheduling parameters (such as priorities) of the tasks. The scheduler is
also compiled into backbone language and ‘plugged’ into the common BIP software model.
This model is deployed on the platform on top of the BIP run-time environment (RTE) for
multi-cores. The software model can also be combined with the hardware model to represent
the complete software-hardware system and to perform timing analysis for validation of

5.2. REAL-TIME BIP 91

schedulability properties, but the validation part of the design flow is beyond the scope of
the prototype toolset [PBS+] and this chapter.

Currently we support only one MoC – Fixed Priority Process Networks (FPPN – see
Section 5.3), which combines the abilities to model both the reactive-control and signal-
processing applications. As for the scheduling policies, we support a time-triggered with
synchronization (TTS) policy [GSHT13]. In future we consider to provide means to the user
to specify templates for his preferred MoC and policy. We also consider to add support for
other relevant MoCs, such as synchronous languages, as in the Prelude [CBF+11] framework,
and SDF, such as in CompSoC [HGBH09].

5.2 Real-Time BIP

A backbone language defines the concurrency and timing semantics of all system software
components. After compilation from MoC and policy into a backbone language, one obtains
an executable model that can be simulated for functional validation. This model is also
used as reference for system analysis and code generation. In our design flow the backbone
language is BIP.

Under ‘BIP’ we refer to the so-called ‘RT-BIP’ dialect [ACS10], which is designed to
express networks of connected timed automata components (Section 5.2.1). In [GPS+], we
extend BIP from timed to task automata, by allowing self-timed automata transitions. This
extension allows expressing control decisions based on runtime monitoring of task response
times in timed automata, similarly to task automata [FKP07] in TIMES tool [AFM+02]

This feature is important for runtime resource management mechanisms, such as those
employed for mixed criticality. For example, recall that our mixed criticality scheduling
policy makes online decisions based on the monitoring executions times of jobs. A particular
feature of BIP is the ability to specify a network of components, so that multiple tasks can be
executed in different components concurrently. This makes it particularly suitable for multi-
core platforms. Our extensions to the original RT-BIP dialect are presented in Section 5.2.2.
They are necessary to realize the models of MC systems presented in this chapter.

5.2.1 Introduction to BIP

To familiarize the readers with BIP notation, Figure 5.2 shows a BIP example, representing
two tasks, A and B. These can be scheduled on one of the two available threads running on two
different cores. The model consists of four components, namely, ‘PeriodicA’, ‘DelayableB’,
‘Thread1’ and ‘Thread2’. All the components are defined by an automaton and a set of ports
(shown in white rectangles), used for connecting to other components via connectors (shown
as green lines that join the bullets).

A BIP component has multiple locations, denoted in Figure 5.2 as ‘S0’, ‘S1’. The execu-
tion run of a component consists of going from location to location by taking a transition,
denoted by an arc. For example ‘(Skip)’ is a transition from location ‘S1’ to location ‘S0’ in
component ‘DelayableB’. Each component has an initial transition, which brings it to initial
location at system start. Initial transition is shown as an arc without origin pointing to
the initial location, such as location ‘S0’ in ‘DelayableB’. A transition may have an enabling
condition and may trigger some action. In our figures, we show the conditions in blue color
and square brackets, e.g., component ‘DelayableB’ has condition ‘[DOUT 6= 0]’ for transition
‘StartB’. The actions are shown in red color.

92 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

S0

StartA(DOUT)

StartA(DOUT)

reset x
DOUT := DATA_IO(A)

when [x = TA]

PeriodicA(TA)

S0

StartB(DOUT)

StartB(DOUT)
reset y
DOUT := DATA_IO(B)

when [y ≥ TB]

DelayableB(TB)

S1

(Skip)
[DOUT = 0]

[DOUT ≠ 0]

 Start(DIN)

S0

S1

Start(DIN)

Thread1

(Task)

 Start(DIN)

S0

S1

Thread2

(Task)
Compute(DIN)

Start(DIN)

(Poll)

Compute(DIN)

Figure 5.2: BIP model example

The transition labels such as ‘StartB’ signify a port of the component, in which case the
transition participates in interactions through this port, which means that it is synchronized
with transitions in other components whose ports are connected, e.g., ‘StartB’ may interact
with ‘Start’ in ‘Thread1’ or ‘Thread2’. Note that a port may participate in one interaction
at a time. In our example, each port is linked to two connectors, so if both of them have
an enabled interaction, a non-deterministic choice has to be made between them. There are
also internal transitions, not associated to ports, executed by a component independently.
We put their labels in parentheses, e.g., ‘(Skip)’ and ‘(Poll)’.

In BIP, every component is seen as an object in an object-oriented programming sense.
Every component encapsulates some data and some subroutines to manipulate the data. The
actions of transitions can call subroutines written in an imperative language (C/C++). In
the figures, the actions are depicted as blocks of pseudo-code in red color, e.g., in component
‘DelayableB’, transition ‘(Poll)’ executes action ‘DOUT := DATA IO(B)’, where a subroutine
is called and its return value is assigned to variable ‘DOUT’. The actions have access only
to the local variables of the component itself, but the components may exchange data from
‘OUT’ to ‘IN’ variables at interactions via ports. For example, port ‘Start(DIN)’ receives the
new value of DIN from the DOUT of either ‘StartA’ or ‘StartB’, depending on the component
with which it interacts. Note that the data exchange between ports precedes the transitions,
e.g., port ‘StartA(DOUT)’ sends the value of DOUT before it is modified by the respective
transition.

As for the data variables, in this work we consider four main types: integer, Boolean,
reference, and queue. A reference is a pointer to a user-type object that is allocated at
component initialization. Our models for critical systems do not dynamically allocate data
after system initialization. A queue is a circular buffer of statically-known size. Unless
explicitly done otherwise in the initial transition or in natural-language annotations, in the
presented figures we assume that the initial transition implicitly sets the data variables to
zero in the case of integers, ‘False’ for Booleans etc. Besides data variables, the components
can have compile-time parameters, such as period TA and minimal execution interval TB in
Figure 5.2.

5.2. REAL-TIME BIP 93

The condition to execute a transition in fact consists of two parts: a data condition
and a timing constraint, indicated by the keyword ‘when’. The timing constraint defines an
interval of time when a transition may be enabled. By default it is ‘always’, i.e., the whole
time axis.

To define the timing constraints a component uses private clock variables. The clocks
are real-valued variables that are initialized to zero and whose values are continuously and
synchronously increasing with the passage of physical time. In our models, we use letters
x, y and t for the clocks, e.g., the model in Figure 5.2 uses two clocks. The usage of clocks is
restricted to two possible scenarios. Firstly, a clock can be reset to zero inside a transition
action (e.g., ‘reset x’ in ‘PeriodicA’). Secondly, it can be used in the timing constraint of a
transition, see, (e.g., ‘when x = TA’ in ‘PeriodicA’).

In our models we assume that all transitions are marked as ‘urgent ’ in BIP. The pres-
ence of ‘urgency’ attribute means that the transition should start as soon as (and no later
than) this transition and all those that participate in the same interaction (if any) get en-
abled. For example, consider timing constraint ‘when [y ≥ TB]’ in Figure 5.2. Due to this
constraint, if component ‘DelayableB’ is in location ‘S0’, then it should execute transition
‘(Poll)’ immediately when it sees that clock y has reached a value at least equal to TB. Note
that the ‘urgency’ property is usually not directly available in timed automata languages,
but it is very useful for modeling compute-intensive real-time systems, where typically the
system must make progress immediately when several conditions become true. For example,
in list scheduling policy a job should become ready immediately when all its predecessors
have terminated and its arrival time has elapsed.

In our BIP programs for time-critical systems we often use queues. This well-known
data structure can be easily implemented using a circular buffer. We define the following
operations on the queue:

• NewTail() Gives a reference to the cell where the next data will be written (new ’tail’
of the queue)

• Push() push the last allocated cell into the tail
• Pop() extract the head of the queue

Notice that the cell are allocated statically. The NewTail() function does not dynamically
allocate new memory.

5.2.2 BIP Extension for Modeling the Tasks

By default, BIP assumed that all data-processing actions cost zero time (at least, concep-
tually). However, real-time tasks may occupy the processing cores at significant utilization
levels, and to properly model them one should allow executing their data-processing oper-
ations in non-zero time. Therefore, in the extended version of BIP, we distinguish between
the ‘starting’ and the ‘finishing’ times of a transition, and we refer to the time duration in
between as transition response time. Further, new ‘self-timed ’ attribute is introduced for
the transitions and we assume that all transitions are conceptually instantaneous (i.e., have
zero response time) unless they have this attribute. A transition marked as self-timed has a
response time equal to the time required to finish the corresponding action on a finite-speed
physical resource. This can take any time duration, not known at the moment when the
transition starts.

We use internal self-timed transitions to represent task processing steps and self-timed
interactions via ports to represent inter-task communication. In our figures, we denote self-

94 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

x

D D

D

D

D D

D

x

D DD

D x

Figure 5.3: Modeling tasks in BIP

timed transitions by thick arrows, e.g., ‘(Task)’ transitions in Figure 5.2. Note that by
putting a self-timed transition in between two instantaneous transitions, one can measure its
response time by resetting a clock before and checking the clock value after the self-timed
transition. Measuring the response time is necessary to program mixed-criticality scheduling
policies.

Though the self-timed transitions represent a new concept added into BIP language to
model tasks, at the semantics level the behavior can be interpreted into the default BIP
language, i.e., timed automata with instantaneous transitions. Nevertheless, at the imple-
mentation level, the BIP framework needed certain extensions to handle these transitions
correctly. Figure 5.3 shows a self-timed transition τ of a task automaton in the extended
BIP and its interpretation in timed automata of the ‘default’ BIP. In the timed automaton
model, transition τ is represented by two instantaneous transitions, one modeling the start
and other one the finish. In between these transitions, there is a location ‘busyτ ’, which
models the state where the system is busy waiting until the platform executes transition
τ . Note that the data variables are explicitly set into ‘unknown’ state, because during the
execution they can potentially take arbitrary values. Note also that if the transition interacts
with other components via a port, then in the expanded automaton the port is inherited by
the start transition, which indicates that the interacting components synchronize with each
other at the start of their transitions.

An additional clock xτ measures the elapsed time since the start and the execution of
transition τ . The execution finishes when the response time of transition τ , denoted ϕ(τ),
has been reached. Model-wise, it is important to observe that the ‘Finishτ ’ transition and
time ϕ(τ) are controlled not by the system itself, but rather by an external party, i.e., the
environment. Indeed, the software cannot directly influence the time it takes to execute
a given, arbitrarily complex piece of the task’s code. This is determined by the target
platform, which actually acts here as environment. For simulation or modeling purposes,
one can make an abstraction of the the environment by letting ϕ(τ) take non-deterministic
values. However, when implementing the BIP program on a real platform, the BIP system
may not ‘decide’ by itself, non-deterministically, how long delay ϕ(τ) should be. Instead
it should let the environment ‘decide’ this. Therefore, it should start the execution of the
transition on the platform and wait until the platform eventually signals its completion. This
observation makes the difference between executing the BIP model on the left and on the
right of Figure 5.3.

5.3. FIXED PRIORITY PROCESS NETWORKS 95

5.3 Fixed Priority Process Networks

5.3.1 Model of Computation

In our framework, we currently work with a functionally-deterministic MoC intended to
support both the reactive control and the signal-processing applications, the so-called Fixed
Priority Process Networks (FPPN) [PSPBB15], which is closely related to synchronous lan-
guages. An instance of FPPN is composed of three main entities: Processes, Data Channels
and Event Generators. The determinism is ensured by Functional Priority relation between
the processes.

A Process, or task (in the terminology of real-time systems), represents a software subrou-
tine that operates with internal variables and input/output channels connected to it through
ports. One call to this subroutine models a job execution. Contrarily to [PSPBB15], here we
assume a version of FPPN extended for mixed-criticality, where each process has a criticality-
level attribute ’χp’ and its job subroutine has ’mode’ argument, which indicates whether the
job should execute in normal or degraded mode. The latter replaces the usual Vestal’s model
dropping of LO jobs, in FPPN the LO jobs are not entirely dropped, but may execute in
degraded mode instead. We borrow this feature from the DOL critical MoC, discussed later
in this section.

The functional code of the application is defined in processes, whereas the necessary
middleware elements of FPPN are channels, event generators, and priorities.

Data Channels ensure non-blocking read and write operations for communication. There
are inter-process and external (environment) channels. In this paper we consider only the
inter-process channels. We define two channel types: FIFO and blackboard. Other types can
be introduced by extension of the library of BIP components. The FIFO has a semantics of
a queue. The blackboard remembers the last written value that can be read multiple times.
Reading from an empty FIFO or a non-initialized blackboard resets an indicator of data
validity.

An event generator e is defined by the set of possible sequences of time stamps τk that
it can produce. We define two types of event generators: periodic and sporadic. Every event
generator is associated with a unique process and determines whether the given process is
periodic or sporadic one. Every process p has a deadline dp. Interval [τk, τk +dp) determines
the time interval when the k-th process job can be executed. At τk the job gets ‘activated’ and
then it remains active until it is scheduled. After being scheduled, the job should terminate
before the deadline. Periodic processes are activated at period Tp, for sporadic processes Tp
denotes the minimal inter-arrival time. We define the job queue length as qp = ddp/Tpe, this
quantity is the maximum number of jobs of process p that can be active simultaneously.

An FPPN network can be described by two directed graphs. The first graph is the default
process network graph (P,C), whose nodes are processes P and the edges are channels C.
This graph can be cyclic and defines the communicating pairs of processes and the direction of
dataflow: from writer to reader. The second graph is the functional priority DAG: (P, FP).
No cyclic paths are allowed in this graph. The edges define functional priority relation
between the processes. It is not a partial-order relation, as it is not necessarily transitive.
We require that any two communicating processes have a priority relation: if (p1, p2) ∈ C
then (p1, p2) ∈ FP or (p2, p1) ∈ FP , i.e., a functional priority should either follow the
direction of the data flow or the opposite direction. In sequel we use notation p1 → p2 to
denote (p1, p2) ∈ FP and say informally that p1 has ’higher’ functional priority than p2.

Fig. 5.4 below gives an example of a process network. This process network represents

96 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

relative writer / reader process priorityFIFO
sporadic process

Input Channel 1

FilterB
CoefB
700 OutputB

relative writer / reader process priorityFIFO

FilterB
200ms

700ms OutputB
100ms

Output Channel 1
Inter‐arrival interval

periodic process

Output Channel 1

Output Channel 2

InputA
200ms

FilterA
100ms

OutputA
200ms

blackboard

NormA
200ms

Input Channel 2

Figure 5.4: Example of Process Network

an imaginary signal processing application with input sample period 200ms, reconfigurable
filter coefficients and a feedback loop. The filter coefficients are reconfigured by a sporadic
event (a command from the environment) that activates the sporadic process CoefB.

We see several periodic processes, annotated by their periods, and a sporadic process,
annotated by minimal inter-arrival time. We also see inter-process channels – the blackboards
and a FIFO, annotated by an arc of the functional priority relation FP . Also the environment
input/output channels are shown.

The semantics FPPNs is described in [PSPBB15]. The main idea is that every pair
of processes that share a channel are executed in well-defined relative order determined
by (i) their activation times and (ii) functional priorities. This order of process execution
instances (jobs) is compatible to the total order derived from zero-execution-time simulation
of fixed-priority scheduling, hence the name of the MoC. Because the ordering is imposed
only between communicating jobs, it is a partial order, allowing for parallelism. For a certain
class of FPPN this order can be expressed in static task graph.

5.3.2 Task Graph Derivation

FPPN is a model of computation designed to formalize the behavior of real-time tasks
with deterministic communication, including those uniprocessor systems that exploit the
FP schedule priority to ensure determinism. For them there exists a family of relevant
scheduling techniques, such as [F+10, Bar12]. The latter supports mixed criticality. Such
techniques can be seen as ready-to-use uniprocessor scheduling methods applicable to FPPN
and related models, such as synchronous languages [Bar12].

As a formal language, FPPN should show the same deterministic behavior no matter
which platform it is implemented on. A functionally correct implementation of a formal
language would ensure deterministic execution on multiple processors, but ensuring also
timeliness would remain to be challenging and a subject of schedulability analysis. This
problem gets even harder when sporadic tasks are involved. Therefore, to demonstrate
scheduling for FPPNs, we consider a practically relevant subclass of FPPNs where the use

5.3. FIXED PRIORITY PROCESS NETWORKS 97

of sporadic tasks is restricted.
From the subclass of FPPNs considered here one can statically derive a task graph which

then serves as input to an offline scheduling algorithm. The algorithm generates a static
schedule, where we model sporadic processes by periodic ones with strictly higher demand of
resources. To make it possible, we put a restriction that each sporadic process p be connected
by a channel to exactly one ‘user’ process u(p), which must be periodic and which must have
at most the same period1: Tu(p) ≤ Tp. This restriction is practically relevant, because a
sporadic process often plays an utility role, ‘configuring’ some application parameters of a
periodic process.

task subgraph :
real job p[k] invoked

job p’[k]

a b

sporadic p:

user u : user job

timecurrent user period

job arrival:

deadlines:
real dp

server dp'

p’ : the server for p:

b

user job

handled by:

Figure 5.5: Handling a Sporadic Process.

The run-time sporadic jobs invoked inside the user period are modeled by ‘periodic server’
jobs that arrive at the boundaries of the user period intervals. As indicated in the task
subgraph, the server jobs at time b must have precedence over the user job that also arrives
at time b. This is so because for causality reasons the server jobs can only handle the real
jobs that have been invoked in the past, i.e., inside (a, b), whereas FPPN semantics requires
that the earlier invoked jobs have precedence over the later ones. For convenience, we say
that the server jobs for process p are generated by an imaginary periodic ‘server process’
p′. To ensure the precedence of the server jobs we set: p′ → u(p). Note that this does not
mean that sporadic processes must always have priority over their users (i.e., p → u(p) is
not required), the higher priority is only required for their ‘servers’, which are imaginary
processes introduced to define the static task graph for offline scheduling.

The deadlines of the server jobs are corrected to compensate for worst-case one-period
postponement of job arrival due to waiting until the job is handled by the server2: dp′ =
dp−Tu(p). Thus, we effectively assume arrival at time b but count the deadline from time a,
in order to be conservative.

Definition 5.3.1 (Task Graph). A task graph is a directed acyclic graph (DAG)
T G(J , E) whose nodes are jobs: J = {Ji}. A job is characterized by a 6-tuple Ji =

1one could relax the restrictions on the number of user processes and their periods at the cost of somewhat
more complex task graph construction

2here we implicitly require that dp > Tu(p) but if it is not the case we can use server jobs with a period T ′

being a fraction of Tu(p) instead, so that the server deadlines become positive

98 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

(pi, ki, Ai, Di, χi, Ci), where: pi is the process to which the job belongs, ki is the invoca-
tion count of job, Ai ∈ Q≥0 is the arrival time, Di ∈ Q+ is the required time (absolute
deadline), χi is the criticality level, Ci : {LO,HI} 7→ Q+ are LO and HI WCET. A job
can be denoted p[k], i.e., k-th job of process p. The edges E are called precedence edges and
represent constraints on job execution order.

Note that this definition of T G resembles the definition of task graph T in Chapter 2
except that jobs are now identified by pi and ki instead of index j.

The task graph for PN is derived as follows:

1. Obtain an imaginary process network PN ′ where each sporadic process p is replaced
by periodic ‘server’ process p′ with period: Tp′ = Tu(p), and priority relation: FP ′ :
p′ → u(p).

2. Simulate the job invocation order in PN ′ for one hyperperiod, i.e., time interval [0,H),
where H is the least common multiple3 of Tp in PN ′. The simulation results in a se-
quence of jobs J = (pi[ki]). Sequence J defines a total order <J . It should respect
FPPN semantics,i.e., it should simulate fixed-priority zero-delay execution of jobs ac-
cording to priority relation FP ′.

3. Construct graph T G(J , E) where the nodes J are the elements of sequence J and the
edges are defined for a pair of jobs Ja = pa[ka] and Jb = pb[kb] as follows:

• (Ja, Jb) ∈ E ⇔ Ja<JJb ∧ (pa ./pb ∨ pa=pb),
where:

• pa ./pb ⇔ (pa, pb)∈ FP ′ ∨ (pb, pa)∈ FP ′.

and the job parameters for job Ji = p[k] defined by:

• χi = χp
• Ai = Tp · (k − 1) and Di = Ai + dp if p is periodic
• Ai = Tp′ · (k − 1) and Di = Ai + dp − Tp′ if p is sporadic

4. To support cyclic non-pipelined scheduling policy, truncate all the required times Di

to the hyperperiod: Di := min(H,Di).

5. Remove redundant edges by transitive reduction.

Fig. 5.6 shows an example assuming Ci = 25ms and ignoring mixed criticality for sim-
plicity.

In this example, H = 200. Every process is represented by H/Tp vertices. We assumed
implicit process deadlines. Since CoefB is represented by its server process, its interval 700
is replaced by the period of its user (FilterB), 200. Also its deadline 700 was first reduced to
500 (subtracting the user period) and then truncated to hyperperiod. InputA has priority
over FilterA and NormA, and hence it is joined to both of them. However, in the latter case
the edge is redundant due to a path from InputA to NormA.

3Tp ∈ Q+, so the lcm is computed for rational numbers

5.4. COMPILING THE MOC AND THE POLICY INTO BIP 99

FilterB[1]
(0,200,25)

OutputB[1]
(0,100,25)

InputA[1]
(0,200,25)

FilterA[1]
(0,100,25)

OutputA[1]
(0,200,25)

CoefB[1]
(0,200,25)

FilterA[2]
(100,200,25)

NormA[1]
(0,200,25)

OutputB[2]
(100,200,25)

p i [k i]

(A i , D i , C i)

Figure 5.6: Task Graph for the Process Network in Fig. 5.4

5.3.3 Specification in DOL-Critical Language

We specify FPPN applications using DOL-Critical language. DOL-Critical is a specification
language, a MoC and a tool suite for specifying and scheduling mixed critical multi-core
applications. [GSHT] DOL-Critical is not our contribution, but we reuse it for specification
of FPPN. DOL-Critical is very much related to FPPN, so that they can be both specified in
the same language. However, a comparative analysis between the two MoCs are beyond the
scope of this thesis.

To specify a mixed-criticality application in DOL-Critical, we distinguish between two
layers: a functional layer which consists of processes and data channels, and a control layer
which consists of process event generators and process functional priority. The specifica-
tion of each process contains source code and its execution times, while the process event
generators (one per process) specify the processes’ activation patterns and deadlines. For
the specification, DOL-Critical uses two distinct languages: C/C++ to program the pro-
cess functionality, and XML for the process attributes (period, deadline, criticality), for the
process connections through data channels and for functional priority.

An example of a DOL-Critical process can be found in Figure 5.7. A process has an inter-
nal state data structure, an initialisation subroutine, and a subroutine defining one execution
of a job. In the DOL-Critical application programming interface (API), these are denoted
<Process> state, <Process> init(), and <Process> fire(), respectively. Furthermore, the
API supports two main functions for the communication between processes: DOLC read()

and DOLC write() (see Figure 5.7 for an example). These functions enable reading/writing
from/to a data channel and have different semantics depending on the type of the target
data channel. A detailed presentation of the API as well as XML templates for the specifi-
cation of mixed-criticality applications in DOL-Critical can be downloaded from the site of
DOL-Critical tool suite [GSHT].

5.4 Compiling the MoC and the Policy into BIP

The time-critical software consists of functional code and middleware, the latter providing
elements for communication, synchronization that belong to the given MoC and real-time
scheduling policy. Compiling means translating the functional code and middleware specifi-
cation into components of BIP language and connecting them with each other. The compo-

100 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

01 struct Square s ta t e {
02 int index ;
03 int l ength ;
04 } ;
05 struct DOLCData {
06 bool va l i d ;
07 float value ;
08 } ;
09
10 void Squa r e i n i t (Square s ta t e ∗ST) {
11 ST−>index =0;
12 ST−>l ength = 200 ;
13 }
14
15 void Squa r e f i r e (Square s ta t e ∗ST, i n t mode) {
16 DOLCData x , y ;
17
18 if (mode == DEGRADED) {
19 return ;
20 }
21
22 if (ST−>index < ST−>l ength) {
23 DOLC read (”pIN” , &x , s i z e o f (f l o a t)) ;
24 if (x . va l i d) {
25 y . value = x . value ∗ x . value ;
26 y . va l i d = true ;
27 DOLC write (”pOUT” , &y , s i z e o f (f l o a t)) ;
28 }
29 }
30 ST−>index = ST−>index + 1 ;
31 }

Figure 5.7: C source code for process Square Example

nents express the correct timing behavior by timing constraints and transitions. A situation
where for a component automaton no transitions are possible anymore in future is called local
deadlock and is detected as a runtime error. The BIP components generated at compilation
are constructed in such a way that a deadlock indicates that either the hardware resources
cannot handle the workload on time or that the workload does not conform to specification.
For example, in Figure 5.2, component “PeriodicA” is ready to execute an interaction at
port “StartA” only when x = TA. If at this moment of time both “CPU”components are
busy executing the previously started “(Task)” transitions, then component “PeriodicA”
will deadlock as the clock x will continue counting the time, never come back to TA. To
avoid a deadlock in “PeriodicA”, at least one of the “CPU” components should be ready
for interaction at periodic instances in time: TA, 2TA, 3TA, Similar conditions hold for
certain BIP components generated at compilation.

5.4.1 Compiling the processes

The BIP model of a process is automatically extracted from its source code. For example,
the code of the square process in Figure 5.7 is compiled into the BIP automaton shown
in Figure 5.8(a). The local state variables of a DOL-Critical process become internal data
variables of the BIP component. The initial transition implements the ‘〈process〉 init()’ sub-
routine. The rest of the process component implements the source code of the process’s job,
i.e., the ‘〈process〉 fire()’ subroutine (DOL-Critical API). We enwrap the job execution be-
tween process start and process finish interactions (‘Start/Finish 〈process〉’). They are used
both to enable the job executions upon their activation by the corresponding DOL-Critical
controller and to delay them until the scheduled time by TTS containers (e.g., Figure 5.9).

When translating the ‘〈process〉 fire()’ subroutine to a BIP model, the source code is
parsed, searching for primitives that are relevant for the interactions between the process and
the other components of the system. The relevant primitives are calls to ‘DOLC read()’ and

5.4. COMPILING THE MOC AND THE POLICY INTO BIP 101

����

��������	
��

���������

��	
����	�

������������	�������

������������

��������������

���������

��������	
��

���������

�������������	�������

������������

��������������	���

��������������

��������������	���

�������
������� �!����" ���#�����$�� ����$��%
����������#���&�������	�'�������'����������
���������(�������
����#������!� ����%�& �)

���#�*'���

�������������������

���������

�������������

�	
��������
�	�������

�	
�������	
�� !

�"���≠ #$%�&#$#�

�"��� #$%�&#$#�

��	
��� �	�

(a) ‘Square’ process example compiled to BIP

����

�������	
��������

��������

��������	
����

���������

�������	
�������� ��������	
����

�����������������

��������	
�

���������

����������
��

��������������� �����
����������!��� ������������"��

��#������������������� �������
������$�������� ��%

(b) Blackboard

init

Read_Req(ROUT,VOUT)

Read_Ack

Write_Req(WOUT)

Write_Ack

Read_Req(ROUT,VOUT) Write_Req(WOUT)

Write_AckRead_Ack

F.Init()
VOUT := false
WOUT := F.NewTail()

F.Push()
VOUT := true
WOUT := F.NewTail()
ROUT := F.Head()

FIFO(S,f)

S = byte size of elements
f = length of queue
F(S,f) = queue
ROUT, WOUT = reference to read
 and write variable
VOUT = validity flag

if (VOUT) {
 F.Pop()
 VOUT := ¬F.Empty()
 ROUT := F.Head()
}

(c) FIFO

Figure 5.8: Compiling Processes and Data Channels to BIP

‘DOLC write()’ for reading/writing from/to the data channels. We see that the behavior of
the resulting automaton is consistent with the behavior of the original source code, whereby
the interaction primitives are replaced by patterns with interactions via BIP ports. As
shown in Figure 5.8(a), the pattern for ‘DOLC read()’ and ‘DOLC write()’ consists of three
transitions: (i) request (‘Req’), (ii) data-copying, and (iii) acknowledgment (‘Ack’).

Let us consider reading data for example. First, we have an interaction ‘Read 〈port〉 Req’,
which is an interaction requesting access to the channel via the DOL-Critical port ‘port’. In
the corresponding interaction, the process receives from the data channel a reference ‘RIN’ to
the memory area from where it can read and a validity flag ‘VIN’. The next transition copies
the data from the provided reference to the local variable to effectuate the data reading, and
the third transition acknowledges the success of the read operation. Writing is performed in
a similar way.

5.4.2 Compiling Channels

According to the process-to-channel connection topology specified in the XML files, BIP
connectors are inserted between ‘Read/Write 〈port〉 Req/Ack’ at the process and the ‘Read-
/Write Req/Ack’ ports at the data channel components.

Recall the DOL-Critical data channels introduced in Section 5.3.1. A basic notion of the
supported data channels is the validity flag. The meaning of this flag is availability of data,
given the non-blocking nature of read and write operations in DOL-Critical. A blackboard
channel represents a shared variable and a FIFO is a queue buffer.

Figure 5.8(b) shows the model for a blackboard. At the initial transition, we (implicitly)

102 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

allocate a user-type variable of given byte size. Read (Write) operations are separated
into request and acknowledge transitions, coherently to the process model of Figure 5.8(a).
During the request the blackboard communicates to the process the memory address, from
(to) which it should read (write). In case of a read, the validity flag is communicated as well.

The BIP model of a FIFO is shown in Figure 5.8(c). It is similar to blackboard, but
instead of allocating a scalar user-type variable, the component initially creates a queue,
i.e., a circular buffer, of user-type elements with a given capacity (‘length’). Read (write)
operations on a FIFO give the address of the tail (head) of the queue.

5.4.3 Compiling the Scheduling Policy

Our BIP run-time environment (RTE) currently does not support the interruption of running
transitions. Therefore, in our current middleware for time-critical systems we do not yet
support preemption. It should be noted that many multi-core platforms choose to not
support preemption, instead providing a large number of cores to ensure sufficient degree of
multi-threading concurrency without preemption.

We demonstrate programming the mixed critical scheduling policies in timed automata
extended with tasks by considering a policy that combines static-order execution and time-
triggering [GSHT13]. For a given task graph T G as defined in Section 5.3.2 TTS defines
a cyclically repeating non-preemptive schedule with cycle time equal to the hyperperiod
H. The cycle is split into a certain number of frames, which also have fixed, but possibly
different time-lengths Lf , where f = 1, 2, . . . is the frame index. All the nodes of T G –jobs
Ji – are distributed between frames. The frame for a job should be selected such that it fits
inside the job scheduling window [Ai, Di] and this window is effectively reduced to the frame
boundaries. The schedule partitions the processes between the cores, i.e., all jobs p[ki] of
the same process ‘p’ are mapped to the same core µp, there is no process migration.

In dual-criticality system case (which is currently assumed by our compiler), every frame
is partitioned into two subframes of flexible time-lengths, where jobs are executed on each
core in static order. In the first subframe only HI-criticality jobs are executed, in the second
one only LO jobs. At the end of the first subframe all cores synchronize on a barrier. Let
the relative time w.r.t. begin of the frame be t. If t > Bf then the LO jobs in the second
subframe execute in degraded mode. If t ≤ Bf then they execute in normal mode. Bf is
estimate of the first subframe total response time when the jobs execute for their Ci(LO)
execution time. Task dependencies are handled as follows. If (Ja, Jb) ∈ ε then either Jb
should be in a later (sub)frame then Ja or it should be mapped to the same core, later in
the sequential order. See [GSHT13] for further details.

Consider the example in Figure 5.9. The figure shows a partial TTS schedule for an
application with processes denoted ‘A’, ‘B’, ‘C’, etc. In our models, we use notation ‘f [k]’
to denote the k-th sub-frame and ‘L〈f〉’ (i.e., L1, L2, . . .) to denote the frame duration
Lf . We use ‘Bar〈f〉’ to denote Bf . Depending on whether the actual runtime length of the
first sub-frame respects this barrier or not, the processes in the second sub-frame will run in
normal or degraded mode. This is the main mixed-criticality runtime mechanism we aim to
reflect in the generated BIP components.

To the right of the Gantt chart in Figure 5.9, we show a (slightly simplified) general
structure of the ‘Frame〈f〉’ component, taking ‘Frame1’ as example. This component controls
the mode ‘MOUT’ of execution of the two sub-frames contained in the frame. Initially the
mode is set to ‘normal’. When frame f is about to start, interaction ‘BeginF〈f〉’ (‘begin

5.4. COMPILING THE MOC AND THE POLICY INTO BIP 103

���������	
�
�	����

��������	�
����

����������� ������������ ������� �������

������	�

�

�

�

�

�

�

� �

��������	
�
�

�����	

������	
���

							�����	�

����	

����	�

�

�����

�������
���������

��������	�
�������

�����
�������	����� �

���������!�" ������	�

�����	��� �����

������	�

�����	���#������

���������$!"���

���������!�"

��������	%
�������

������	%

������	%

��������	%
�������

������������

���������	
���	����

��������	%
����

����������� ������������� ��������

������	%

							������	��
�

Figure 5.9: TTS Scheduling Frames in BIP

frame f ’) gets enabled. At this point we reset clock t so that it measures the elapsed time
in frame f . Then, we signal the begin of sub-frame f [1] via interaction ‘BeginSF〈f〉[1]’. At
the moment when the sub-frame finishes, the interaction ‘EndSF〈f〉[1]’ gets enabled, and we
check the elapsed time t. We keep the normal mode if t does not exceed barrier ‘Bar〈f〉’,
otherwise the mode is set to degraded. After executing the second sub-frame, the frame
finishes, which is signalled via ‘EndF〈f〉’.

Examining this component, we conclude that it is free from local deadlock provided that
the schedule is correct and the processes scheduled in the frame finish their execution by
time ‘L〈f〉’. Otherwise the component will be blocked forever at the origin of transition
‘EndF〈f〉’.

The two components given at the bottom of Figure 5.9 are Containers, which are in charge
of triggering jobs’ execution according to the given TTS schedule. The container components
are specific per sub-frame f [k] and core. They trigger jobs according to the corresponding
sequential schedule. In the figure, the left component implements the sequential schedule
assigned to Frame 1, Sub-frame [1] on Core 1, which executes first a job of process ‘C’ and
then of process ‘D’. Therefore, in this component we see a chain of transitions that start and
finish these jobs. By convention, we use the notation ‘Start 〈process name〉’ for the job start
interaction, and a similar notation for the job finish interaction. For synchronization with
the frame component, the sequence of calls to the jobs is enwrapped in ‘BeginSF/EndSF’
interactions. At ‘BeginSF’, the frame component transmits the value of variable ‘mode’,
which is passed through to the process components via the ‘Start’ interactions.

In Figure 5.10 we show how frames and containers are connected to each other. There
is a ‘Cycle’ component, which just executes a cyclic ‘Begin/End’ sequence. The ‘begin’ of a
cycle triggers the execution of all frames in the cycle in the order of their index f , whereby we
join the ‘end’ of frame f to the ‘begin’ of frame f + 1. In the given example we assumed two
frames per cycle. For every sub-frame the ‘begin’ and ‘end’ connectors join together all the
containers for the specific sub-frame on Core 1, Core 2, Therefore, the employed ‘barrier’
mechanism to synchronize the cores at frame and sub-frame boundaries is a multi-party BIP
interaction.

104 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

������ ���	�
���

�����
����

��������	�
����� ��������	�
�����������	�
 ������	�

�����
����

��������	�
����� ��������	�
�����������	�
 ������	�

����

����������

��������
�������������

��������

����������������

�����������

����

����������

��������
�������������

��������

�����������

����

����������

��������

�����������

����

����������

��������

�����������

����������������

����������������

��������������

����������������

Figure 5.10: Composing Cycle, Frames and Containers

5.4.4 Periodic Server for Sporadic Processes

In Figure 5.11 the periodic server is shown, which is a supplementary adaptor for connecting
sporadic processes to cyclic schedulers. This component manages a queue of active jobs.
When a job is activated, it is inserted in the queue, and it is removed when it is scheduled.
For simplicity we assume that it is scheduled once per minimal inter-arrival in the presented
model. The queue may contain “false” jobs. This is used for reconciling cyclic schedulers and
sporadic tasks. We explained before that in TTS container we execute jobs in a sequential
way. If a frame contains a sporadic job, and this job does not activate, we will have a
deadlock in the TTS container. Thus, to avoid this problem, whenever a sporadic process
is not activated, we introduce in the queue a “false job” with zero execution time. The
bottom sub-component of the periodic server in Fig. 5.11 distinguishes between “active”
and “false” jobs. In the case of an active job, it signals the job start to the scheduler TTS
container, then to the process, then it waits for the job termination and finally signals it to
the container. In case of a false job, the execution of the process job is skipped. A more
detailed explanation of the employed method of handling sporadic jobs by a periodic server
can be found in [PSPBB15].

Fig. 5.12 shows how scheduler containers and a sporadic processes are connected. The
Event Generator generates the activation signal and sends it to the Periodic Server, which
triggers the Process in the order defined by the frames. For a periodic process, the periodic
server is not necessary and the process can be connected directly to its containers and
generator.

5.4.5 Compiling the Event Generators

We describe here the Event Generator component, individual for each process. The main
purpose of this component is to enable the start of jobs after their activation. It also manages
the “false” activation for sporadic jobs. The idea of the latter is that for sporadic process
p at small intervals δ = Tp/K for some integer K the environment is polled for the need to
activate the sporadic process by calling some platform-dependent subroutine protocol() that
returns a Boolean value indicating activation (‘true’) or false activation (‘false’). The point
is that to ensure functional determinism in FPPN MoC, at each moment of time when a

5.4. COMPILING THE MOC AND THE POLICY INTO BIP 105

Activate

FalseActivate

PeriodicServer (,) : periodic scheduling of a sporadic process

	– minimal inter-arrival interval ; – job queue size / ;

Q[] – queue of (active/false) indicators

– sporadic activation observed for current period

– indicates whether the head job in Q is active or false

S-Start()

Activate

when []

enqueue(True);

:=True;

set := Activate

when []

reset

enqueue(True);

:=False;
FalseActivate

when [] FalseActivate

when []

reset

if [not] enqueue(False);

:=False;

S-Start ()

[not Q.Empty()]

dequeue();

method enqueue	(is_active)

Q.NewTail():= is_active;
Q.Push();

:= Q.Head;

method dequeue	()
Q.Pop();

:= Q.Head;

S-Start ()

P-Start
[]

P-End

(Skip)

[not]
S-End

S-Start() S-End

S-Start

S-End

P-Start

P-End

P-Start

P-End

To
 C

yclic S
ch

ed
u

ler
To

 E
ven

t G
en

erato
r

To

S
p

o
rad

ic P
ro

cess

Figure 5.11: Periodic server for sporadic processes

106 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

StartC

Container
	
[1]Core

PeriodicServer

S‐Start

P‐Start

ProcessC

StartC

EventGenerator

StartC

Activate

FalseActivate

StartC

Container
	
[1]Core

Figure 5.12: Connection between a Sporadic Process and its Scheduler

sporadic process may potentially get activated it should be always explicitly signaled whether
it is activated or not. For periodic processes δ = T and protocol() always returns ‘true’. For
a sporadic process we may have for example δ = Tp/10 and protocol() returns true at most
once per 10 calls.

The event generator is shown in Figure 5.13. It contains a few subcomponents. The
Source triggers periodically or sporadically (depending on its protocol) the activation signal.
The Sink checks whether any job misses its deadline. For this it uses a “Latency - Burst
Shaper” component, which can be seen as a delay line of delay dp and capacity up to qp
events, where deadline dp and queue size qp are process parameters. At activation, the burst
shaper starts a new timer (a clock), and when the deadline time has elapsed it enables the
output. As shown in Figure 5.14, the sink checks whether at the end of its deadline interval,
when “Meet” and “Miss” are enabled, the oldest pending job is not running anymore, in
which case “Meet” is executed. The component goes into local deadlock state if deadline is
missed (and this leads to runtime error).

The “Throughput – Burst Shaper” – ensures that the source cannot activate the jobs
more than once per time Tp. This subcomponent can be omitted for periodic processes.

The implementation of Source is shown in Figure 5.15. This component polls the “pro-
tocol()” at periodic intervals δ, as explained earlier. Depending on protocol() it executes
“Activate” or “FalseActivate”, which is needed for periodic server.

Figure 5.16 shows how a Burst Shaper is implemented. Its main purpose is to limit the
amount of burst to at most σ events per time P where σ and P are given during the definition
of the component. This component also signals when an event that arrived P time units
ago has elapsed (terminated). The main idea of implementation is to use a queue of clock
variables implemented as circular buffer.

5.4. COMPILING THE MOC AND THE POLICY INTO BIP 107

Start Activate

Source Sink

Activate FalseActivate Meet Miss End

Latency: BurstShaper (d, q)

Activate

Throughput : BurstShaper (T, 1)

Activate Terminate

Terminate

Figure 5.13: Event Generator

Activate

Meet

Miss

Error
Miss
[jr ≥ jp]

Sink(q)
jr ∈[0..q] – running job count

jp ∈[0..q] – pending job count

Activate
jr := jr + 1
jp := jp + 1

Meet
[jr < jp]
jp := jp - 1

End

End
jr := jr - 1

Figure 5.14: Sink

108 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

Start

Activate

FalseActivate

Start

False Activate

when [x=δ]
reset x
active := protocol()

Source(q,δ,protocol())
q – job queue size d/T
j ∈[0..q] – counter of active jobs
δ – activation poll period
protocol() - activation poll subroutine
active – last poll result

active := protocol()

[j > 0]
j := j - 1

Wait

when [x = 0]
and [¬ active]

Activate
when [x = 0]
and [active]
j := j +1

Start

j := j - 1
[j > 0]

Figure 5.15: Source

Activate

S0
Activate

[r <]
reset x [j]
j := (j + 1) mod
r := r + 1

BurstShaper (P,): at most events per time P

 - burst size; P – time delay; r – circular buffer filling;
j – write position, i – read position; x [] – clock array : size

Terminate
when [x [i] ≥ P]
and [r > 0]

i := (i + 1) mod
r := r - 1

Terminate

Figure 5.16: Burst Shaper

5.5. IMPLEMENTATION AND EXPERIMENTS 109

BlackB

FIFO

core 0: BIP-RTE + instantaneous components

Cycle FrameProcess Source/Sink

FIFO BlackBoard

core 1..15: process-to-core mapping
p2 p4

p1 p3 p5 p6

schedule
components

application
components

core 1:
core 2:

TTS Cycle
Frame f1 Frame f1 Frame f3 Frame f3

p5 p6

FIFO FIFO

p1 p2 p3 p4

FIFO

`stolen’ by other cores:

Figure 5.17: Distributing BIP Components between Cores

5.5 Implementation and Experiments

5.5.1 Run-Time Environment

As illustrated in Fig. 5.17, after compiling the application and TTS schedule into BIP, the
BIP design can be partitioned into the schedule components and the application components.
The components are joined by BIP connectors, through which they can perform interactions
with each other. The application components include the components dedicated to DOL-
Critical processes, denoted p1, p2, . . . , and data channels, denoted BB, FF, depending on the
type: blackboard and FIFO. The schedule components include one component that models
the schedule cycle and a set of components that model frames. The schedule components
are connected to the application components to coordinate their execution according to the
schedule. The schedule also provides the process-to-core mapping, which is used to generate
component-to-thread mapping, as illustrated in the bottom part of the figure.

Deployment

We implemented our framework on the Kalray MPPA manycore architecture, inside a single
shared-memory compute cluster. The cluster provides 16 processor cores, each one running
one POSIX thread. The BIP executable is coordinated by an adapted version of multi-thread
BIP RTE engine originally described in in [TCBS13] and available at [PBS+]. The main
improvements made compared to the original version are support of self-timed transitions,
arbitrary component-to-thread mapping, mapping of components to RTE engine thread, and
the “stealing” the self-timed interactions from RTE engine to execute them faster. The latter
two features permit to significantly reduce the RTE engine overhead.

In our framework we can use up to 16 cores, whereby Core 0 is reserved for BIP RTE

110 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

SensorInput
100ms : Z

GPSConfig
≤ 1 per 100ms

HighFreqBCP
100ms : ZZ

LowFreqBCP
100ms x 25 : ZZ

MagnDeclin
100ms x 8 : ZZ

Filter
50ms

Z1
100ms

Z2
100ms

writer/reader functional priority
blackboardFIFO

Zk ‐ copy task
for one‐cycle delay

skipping modulo 25
(for multi‐rate)

Performance
100ms x 5 : ZZ

Sporadic process

periodic process

Figure 5.18: Flight Management System FPPN model

engine. The engine schedules every interaction according to the semantics of BIP. Therefore
the components have to notify the engine about their interactions and wait until there are
scheduled. Note that self-timed transitions can be executed by components themselves,
without involving the engine. Also the self-timed interactions are “stolen” executed without
the engine. For example, ‘reads and writes’ to the channels are self-timed and hence are
stolen.

On Core 0, next to BIP RTE, we map all “instantaneous” components, i.e. all compo-
nents except processes, which execute only “lightweight” instantaneous transitions. Cores 1-
15 are allocated for the process-to-core mapping computed by the offline scheduler tool in
DOL-Critical. Unlike instantaneous components, these components may execute self-timed
transitions.

5.5.2 Case Study: FMS Application

To demonstrate the applicability of the complete design flow, we employ an industrial rep-
resentative implementation of a flight management system (FMS) [DFG+14].

The FMS is a safety-critical embedded avionics system, responsible for aircraft local-
ization, flightplan computation for the auto-pilot, detection of the nearest airport, etc. In
this experiment we look into a sub-system of the FMS. Figure 5.18 shows the corresponding
DOL-Critical application, which is responsible for calculating the best computed position
(BCP) and predicting the performance (e.g., fuel usage) of the airplane, based on period-
ically collected sensor data and sporadic configuration commands from the pilot, e.g., for
configuring the Global Positioning System (GPS).

Specifically, after being pre-processed by process ‘SensorInput’, the input data are pro-
cessed by process ‘HighFreqBCP’. Then, they arrive at process ‘LowFreqBCP’, which post-
processes the data at low frequency, and makes them available to other sub-systems of the
FMS. ‘LowFreqBCP’ also provides the results to a feedback loop that takes into account the
magnetic declination for computing the airplane position.

All depicted processes are periodic except for the sporadic process ‘GPSConfig’, which can
execute at most once in any 100-ms interval. All periodic processes of the FMS are specified
with period 100 ms. However, some of them contain in their C code a wrapper to skip the
processing at all but every n-th job, to represent processes with original period n · 100 ms.
This is done for two reasons: (i) to reduce the effective hyperperiod H, (ii) to comply
with the DOL-Critical offline scheduler requirement for equal period among processes with
dependencies. Note that keeping the original H (in the FMS case, equal to 40 seconds) would
result in generating hundreds of frames and container components for the TTS scheduler in
BIP, which would lead to unfeasible memory requirements for the implementation on a single

5.5. IMPLEMENTATION AND EXPERIMENTS 111

Process Criticality Level
Period LO HI RTE Access
[ms] WCET [ms] WCET [ms] Count

Filter LO 50 32 2 3

SensorInput HI 100 1 26 3

GPSConfig HI 100 1 21 4

HighFreqBCP HI 100 1 11 3

LowFreqBCP HI 100 1 11 3

MagnDeclin HI 100 1 11 3

Performance HI 100 1 11 3

Z1 HI 100 1 26 3

Z2 HI 100 1 26 3

Cycle Begin HI 100 0 0 10

Frame Begin HI 50 0 0 4

Subframe Bar LO 50 0 0 2

Table 5.1: FMS process execution profiles

MPPA®-256 cluster.

The given process structure originally allowed only limited parallelism due to the
functional-priority branching from ‘LowFreqBCP’ to ‘MagnDeclin’ and ‘Performance’. To
introduce pipelining parallelism, we inserted two new processes, denoted as Z1 and Z2. These
copy input data to the output, thus ensuring double-buffering, which is required for pipelin-
ing. Because each inserted Zk process leads to an additional data-propagation delay of one
period, this delay is subtracted from the deadlines of the processes that follow in the process
chain, which, therefore, should be sufficiently large.

All processes of the FMS sub-system are used to calculate critical information, i.e., the
current position of the airplane. Therefore we assign criticality level HI to them. The
execution profiles of the processes are shown in Table 5.1. The processes are protected
from exceptional execution times overruns (due to potential faults and fault correction) by
defining a significantly more pessimistic execution profile at level HI than at level LO. Not
having WCET tools for the MPPA®-256 platform at our disposal, we derive LO worst-case
execution times based on extensive measurements. For the HI estimates, we augment the
LO bounds by a margin of 10 up to 25 ms, which also makes them at least 10x larger. We
introduce a possibility to simulate fault injection, by programming an optional prolongation
of the process execution by up to the HI execution time through an additional dummy loop
in the C code.

Table 5.1 includes also the bounds on RTE engine accesses for each process. This is
because the scheduling policy and other control interactions are handled by centralized RTE
engine, which is thus a shared resource, and DOL critical tools can take shared resource
access counts in TTS-policy response-time analysis. For the periodic processes, we observe
that their execution causes always exactly three interactions: Start, Finish and deadline check
(the latter is done in fact in the generator). Sporadic processes cause one extra interaction,
which is related to the periodic server. Note that when counting BIP interactions, we neglect
self-timed interactions, as they do not lead to RTE engine accesses.

Table 5.1 includes also three virtual processes, whose purpose is to account for RTE ac-
cessed that cannot be attributed to regular processes. such as RTE accesses from scheduling
components. Note that the virtual processes account not only for the TTS components such
as cycle, frames, and containers, but also for other components that cause BIP interactions
at the boundaries of the cycle, frame, and sub-frame, respectively. For example, at the
beginning of each cycle all eight periodic processes get activated by their generator, which

112 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

Core 0

GPSCnf

SensorIn

LoFrBCP

50 ms0

HiFrBCP

filter

Perform

MagnDec

filter

100 ms

time

Core 1

Core 2

Core 3

Z1

Z2

Frame f1 Frame f2

Sub-frame 1 Sub-frame 2 Sub-frame 1 Sub-frame 2

Figure 5.19: Optimized Static TTS Schedule for the FMS sub-system

explains the high access count of the virtual process ‘Cycle Begin’.

Through extensive measurements on the MPPA®-256 platform (again, due to non-
availability of suitable WCET tools), we derived a (pessimistic) upper bound on the BIP
RTE-engine delay per access, which amounts to Tacc = 0.42 ms. It is used by DOL-Critical
tools to quantify the shared resource overhead.

Finally, since the considered sub-system of FMS includes only processes of criticality level
HI, to obtain a dual-critical application we added an artificial periodic process called ‘Filter’,
with period 50 ms. It models some digital signal processing functionality, considered as a less
critical LO process. Since ‘Filter’ is low-criticality, we model two execution modes: normal
and degraded. Specifically, ‘Filter’ executes a loop resembling a digital filter, the number
of loop iterations being significantly lower in degraded mode, to represent the possibility of
providing a reduced level of quality for a smaller number of digital filter coefficients.

5.5.3 Case Study: Design Flow Results

For the FMS sub-system, the maximal degree of parallelism is four (three pipeline stages
and one branching). Therefore, we choose to allocate a subset of five MPPA®-256 cores:
four for task execution and one for the BIP RTE engine. For the mapping and scheduling
optimization, we provide the DOL-Critical specifications of the FMS sub-system and the
5-core subset of the MPPA®-256 cluster to the DOL-Critical scheduling tools (see [GPS+]
for details).

In the resulting schedule, the TTS scheduling cycle has a period of 100 ms (equal to the
hyper-period of the tasks) and it is divided into two frames, each with a fixed length of 50
ms. TTs schedule is illustrated in Figure 5.19.

The optimized TTS schedule for the FMS sub-system, along with the application specifi-
cation, are compiled into BIP automata, as described in Section 5.4. Functional correctness
is validated through simulation, and code is automatically synthesized for the deployment on
the MPPA®-256 platform (subset of 5 cores within a cluster). Figure 5.20 presents Gantt
charts of the FMS execution traces on the MPPA®-256 for three alternative scenarios. Each
chart depicts six consecutive TTS scheduling cycles.

‘LO’ and ‘HI’ scenarios represent corner-cases for timing analysis, where all tasks acti-
vated simultaneously (which happens on the hyper-period boundaries) and according to their
maximal execution times at the given level. The ‘ordinary’ scenario represents a possible ex-
ecution of the system, where periodic tasks skip some periods due to pipelining and original

5.6. CHAPTER SUMMARY 113

multi-rate periods, and the sporadic task is activated by some arbitrarily chosen (encoded
in DOL-Critical) protocol. In this scenario, we simulated some fault injections in tasks ‘Z1’,
‘Z2’, ‘HighFreqBCP’, and ‘SensorIn’ in the fifth scheduling cycle (between 400 and 500 ms).
Note that the tasks take considerably longer to execute in this cycle, with their execution
time being close to their HI profile in Table 5.1. This triggers a HI execution scenario, which
results in providing degraded service to the lower-criticality ‘Filter’ task in both frames of
this cycle. In degraded mode, ‘Filter’ runs for approximately 2 ms instead of the usual 32
ms.

The experiments in [GPS+] also present the results of response time analysis in different
scenarios, taking into account the shared RTE-engine resources. The results show good tool
accuracy and necessity of taking runtime overhead into account.

In summary, the deployment of the FMS sub-system on the MPPA®-256 illustrates and
validates various novel attractive features of our design flow for the implementation of mixed-
criticality systems on commercial multi-core architectures. Based on this first evidence, we
are convinced that the presented design flow can provide a viable foundation for the rigorous
design of mixed-criticality systems, with potential to be applied to complex industrial-scale
settings.

5.6 Chapter Summary

In this chapter we have presented a design flow for deployment of mixed critical applica-
tions on multicores. It is based on compiling the application and policy model into timed
automata extended with tasks. Such an approach can potentially address the challenge of
the lack of consolidation in real-time systems programming and scheduling, which is particu-
larly pronounced in the case of multi-core scheduling and scheduling with runtime resource-
management mechanisms, such as Vestal’s approach for mixed criticality. Instead of trying
to design an operating system with native support of a wide spectra of various models of
computation and run-time policies and instead of low-level programming of middleware, we
propose to compile high-level models into task automata and use them for both deployment
and validation. We have demonstrated this concepts in a concrete design flow example,
where special emphasis was put on mixed criticality with Vestal approach, through using
different policies than the ones proposed in this thesis.

The concept of timed-automata middleware was first published in Contribution [7] (see
Contribution section), whereas in [1] we extended it to mixed criticality. The synchronous
language related MoC for real-time multiprocessor system called FPPN was first described
in [2].

As future works we are planning to extend the design flow in order to test it with different
MoCs and scheduling policies. In particular we are interested in implementing the scheduling
policies described in Chapter 3 and 4, which would allow a better processor utilization. This
would require our task automata language and its RTE environment to be extended with
explicit support of task preemption and dropping. Also we are interested into test the design
flow into other multicore computational platforms and implementing other case studies.

114 CHAPTER 5. APPLICATION PROGRAMMING AND IMPLEMENTATION

Core3

Core2

Core1

Core0

BIP-RTE

 0 100000 200000 300000 400000 500000 600000

P
ro

c
e
s
s
o
rs

time (s)

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

Core3

Core2

Core1

Core0

BIP-RTE

 0 100000 200000 300000 400000 500000 600000

P
ro

c
e
s
s
o
rs

time (s)

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

G
P
S
-C

o
n

g

Z
1

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

P
e
rf

o
rm

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

Core3

Core2

Core1

Core0

BIP-RTE

 0 100000 200000 300000 400000 500000 600000

P
ro

c
e
s
s
o
rs

time (s)

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

F
il
te

r

Z
2

F
il
te

r

G
P
S
-C

o
n

g

Z
1

Z
1

Z
1

G
P
S
-C

o
n

g

Z
1

Z
1

G
P
S
-C

o
n

g

Z
1

S
e
n
s
o
rI

n

S
e
n
s
o
rI

n

P
e
rf

o
rm

S
e
n
s
o
rI

n

S
e
n
s
o
rI

n

S
e
n
s
o
rI

n

H
iF

re
q
B

C
P

L
o
F
re

q
B

C
P

M
g
n
D

e
c

H
iF

re
q
B

C
P

H
iF

re
q
B

C
P

H
iF

re
q
B

C
P

Figure 5.20: FMS Test Case: ‘LO-scenario’,‘HI-scenario’, and ‘Ordinary’ Traces on MPPA®

Chapter 6

Conclusions

6.1 Thesis summary

Mixed Criticality Systems are a novel and challenging research area in the context of real-time
systems. We discussed motivations and challenges of this new research topic in Chapter 1,
together with a quick overview of the state of the art. Also we discussed the migration of
embedded systems from single to multicore platforms, explaining both technical and eco-
nomical reasons behind this technological shift. The next generation embedded systems will
be multicore and mixed critical, and their design presents a lot of challenges. The work done
in the context of this thesis is an effort towards solid design of such systems.

Our main focus was on scheduling, that is the most relevant area of research in MCS. We
claim this for two main reasons. First, as shown by Baruah [Bar09], the problem is highly
intractable and that traditional techniques may not be successfully applied [BV08], thus
there is the need of novel scheduling techniques. Second, in some applications using more
computational power by using more powerful processors or by increasing the clock frequency,
in order to schedule more workload, is not possible in some modern applications like UAVs,
that have very strict requirements in terms of area, size weight and power consumption.
Another research topic taken into consideration was to construct a design flow to produce
easily analyzable mixed critical-systems.

To simplify the problem we considered finite set of jobs with two criticality levels. We
preferred the job set model instead of the more popular task model because in synchronous
systems it enables potentially better processor utilization and it simplifies the analysis of
the system from a theoretical point of view, especially in the case of multi-cores and data
dependencies between the tasks. Its main drawbacks, such as being forced to consider an
entire hyperperiod, were considered acceptable for two main reasons:

1. Since we are interested in simplicity, we addressed the problem of Time-Triggered
scheduling, since this scheduling strategy allows an easier extension to auxiliary anal-
yses of inferences on other media than cores (such as buses) by limiting the number of
possible combinations of jobs running concurrently. In time triggered scheduling one
is forced to consider the whole hyperperiod.

2. The hardware and software components of a real-time embedded system hardly have
periods that can be divided by big prime numbers, in order to avoid the hyperperiod
to grow.

115

116 CHAPTER 6. CONCLUSIONS

The scheduling model adopted in the context of the thesis is formally described in Chap-
ter 2. Our formalization is compliant to Vestal model [Ves07]. We introduced a new priority-
based scheduling classification, Fixed Priority per Mode (FPM), that uses a different priority
table for each criticality mode, in opposition to the classical fixed-priority scheme. We also
introduced the load metric, and extended it to be more suitable to model the workload of
multiprocessor systems. Then we extended the model and load metric to systems with job
dependencies. In our model also dependencies from low critical to high critical jobs are al-
lowed. Even if this approach is not popular in literature for obvious reasons, it is sometimes
needed by industrial applications. To better model such problems we introduced the con-
cepts of ASAP arrival times, ALAP deadlines and high-criticality and mixed-criticality task
graph.

In Chapter 3 we gave contributions to the priority-based scheduling of MCSs. We started
by describing the limitations of one of the most used techniques: “Audsley approach”, to
motivate the study of a new formal way of describing the interaction between jobs, the
Priority Direct Acyclic Graphs (P-DAGs). We then proposed two scheduling algorithms
based on the P-DAG. The first is Mixed Criticality Earliest Deadline First (EDF), a priority
based algorithm for single processor. We formally proved that MCEDF dominates the state
of the art Audsley approach based algorithm Own Criticality Based Priority (OCBP) while
having a lower computational complexity. The second algorithm is called Mixed Criticality
Priority Improvement (MCPI). This algorithm can be applied to multiprocessor instances
with dependency constraints. To the best of our knowledge no algorithm to solve this kind
of problem has been proposed in literature, if not under specific constraints. We formally
proved that MCEDF and MCPI are equivalent when applied to single processor instances
with no job dependencies. An interesting theoretical result is that both MCEDF and MCPI
are optimal among all algorithms that put HI-critical jobs in EDF order. We concluded the
chapter by showing an experimental evaluation of the two algorithms. MCEDF is compared
with OCBP, and reduces, in random job experiments, the non schedulable instances by a
factor of 7. MCPI is compared with classical (i.e., non mixed critical) techniques, which
apply only a simple naive heuristic to bias critical tasks to higher priority, since we are
not aware of comparable algorithm. The number of schedulable instances is improved up
to 30%. Finally we compare MCPI with Audsley approach based solution. MCPI gives
comparable results to “perfect” Audsley approach implementation, i.e., implementations
that use perfect estimation of jobs termination time. However this implementation are
applicable only to small instances, having exponential computational complexity. We also
showed that MCPI outperforms an implementation of Audsley approach with reasonable
computational complexity.

In Chapter 4 we addressed the problem of static scheduling. As said before, this is
motivated by the fact that static policies allow for better interference analysis. The idea is
to generate a schedule that consists of two time triggered tables, one per criticality level.
We call this approach Single Time Table per Mode (STTM). This problem is not trivial,
since, in general, a number of tables that grows linearly with the number of HI-critical
jobs is needed [BLS10]. Our proposed algorithm can generate STTM tables starting from
a non-static scheduling policy (for example a priority based one). We formally proved that
our algorithm is optimal for single processor case, in the sense that we successfully find a
feasible scheduling table if the original policy generates a feasible schedule as well. The
latter also implies an interesting theoretical result: STTM scheduling strategy is optimal for
single processor. At the end of the chapter we provided experimental results that for the

6.2. FUTURE WORK 117

multiprocessor case the algorithm fails only under very high workload.
Finally in Chapter 5 we propose a design flow for mixed critical systems. It is based

on a novel Model of Computation (MoC), Fixed Priority Process Network (FPPN), that
allows to describe both reactive-control and data stream processing applications and has
the advantage of generating deterministic executions. The proposed methodology can be,
however, extended to other MoCs. In our flow both the MoC and the scheduling policy are
described in the timed-automata based language BIP (Behaviour Interaction Priorities). We
generate the BIP code automatically from high level description in DOL-Critical language.
The effectiveness of the approach is shown using a real-life example from avionic industry, a
Flight Management System on a real hardware platform – MPPA® of Kalray.

6.2 Future work

Regarding the scheduling policies presented in Chapter 3, we plan to complete the work done
so far by extending MCEDF to precedence constraints and to prove, if possible, equivalence
with MCPI even in this extended case. For MCPI we would like to find a more precise
technique to estimate the potential interference relation. The single processor simulation
proposed in this thesis is far from being minimal, and we are confident that a more accurate
estimation should further increase the performances of MCPI. Also, an alternative way of
handling Dhall effect beyond density based separation fixed priority would be desirable, since
this technique is not very effective for the finite set of job models.

We would also like to extend the results of Chapter 3 and 4 to non-preemptive case and
to multiple levels of criticality.

For the design flow presented in Chapter 5 we are interested in implementing our own
scheduling policies, instead of third-party ones, such as those described in Chapter 3 and 4
to test them on real case-studies. Also we are planning to extend the design flow in order to
test it with different MoCs, and using it on other multicore computational platforms. Finally
we are planning to implement other case-studies.

118 CHAPTER 6. CONCLUSIONS

List of Figures

1.1 WCET and its estimations . 3

1.2 Different scheduling solutions for the instance of Example 1.2.1 4

1.3 The Gantt Chart of Example 1.2.2 . 5

1.4 Moore’s Law . 5

2.1 The graph of an airplane localization system illustrating LO→HI dependencies. 18

2.2 The Gantt Chart of Example 2.2.2. 19

2.3 The DependencyComplianceTransform algorithm 20

2.4 The initial PT transformation . 20

2.5 Example of the various task graphs . 22

3.1 The Audsley algorithm . 24

3.2 The algorithm for computing priorities . 29

3.3 Improvement procedure, keeping the deadline-monotonic order between same-
criticality jobs . 29

3.4 The Gantt chart of Example 3.2.1 . 30

3.5 The Gantt chart of Example 3.2.2 . 31

3.6 The blocking of the deadline-monotonic improvement 31

3.7 The figures of Example 3.2.11. 33

3.8 The forest P-DAG generation algorithm . 34

3.9 Forest P-DAG . 35

3.10 The MCEDF algorithm for computing priorities 38

3.11 The MCEDF algorithm for computing P-DAG 39

3.12 The Gantt charts for Example 3.3.1 with PT = (2, 4, 3, 5, 1) 40

3.13 The P-DAG for Example 3.3.1; each node is annotated by the selected job
index. 41

3.14 The Gantt charts of Example 3.3.4 . 42

3.15 Proposed algortirhm MCPI. T stands for task graph and SPT for support
priority table. 46

3.16 The MCPI algorithm . 47

3.17 The algorithm for computing priority tree in MCPI 48

3.18 The pull-up subroutine . 49

3.19 The subroutine for checking the feasibility of a priority swap 50

3.20 The effect of a Swap. 51

3.21 The effect of subroutine PullUp on job s4. 52

3.22 The schedule obtained by MCPI in Example 3.4.2. 52

3.23 The effect of multiple Swaps, k = 3. 53

119

120 LIST OF FIGURES

3.24 The contour graphs of random instances; the horizontal axis is LoadLO, the
vertical is LoadHI. 60

3.25 The measured computation times of OCBP and MCEDF 62
3.26 The contour graphs of random task graphs for 2 processors. The horizontal

axis is StressLO, the vertical is StressHI. 63
3.27 The contour graphs of random task graphs for 4 processors. The horizontal

axis is StressLO, the vertical is StressHI. 64
3.28 Comparison of MCPI with Audsley approach 65

4.1 Basic scenarios and TT tables . 70
4.2 An overview of ’T ’ transformation algorithm 71
4.3 Event-driven scheduling policy simulation . 72
4.4 transformed simulation . 73
4.5 TT tables for Example 4.3.7 . 77
4.6 Experiment 1 - Without dependencies . 85
4.7 Experiment 2 - With dependencies . 86

5.1 Design flow (highlighting the steps covered in this chapter) 90
5.2 BIP model example . 92
5.3 Modeling tasks in BIP . 94
5.4 Example of Process Network . 96
5.5 Handling a Sporadic Process. 97
5.6 Task Graph for the Process Network in Fig. 5.4 99
5.7 C source code for process Square Example . 100
5.8 Compiling Processes and Data Channels to BIP 101
5.9 TTS Scheduling Frames in BIP . 103
5.10 Composing Cycle, Frames and Containers . 104
5.11 Periodic server for sporadic processes . 105
5.12 Connection between a Sporadic Process and its Scheduler 106
5.13 Event Generator . 107
5.14 Sink . 107
5.15 Source . 108
5.16 Burst Shaper . 108
5.17 Distributing BIP Components between Cores 109
5.18 Flight Management System FPPN model . 110
5.19 Optimized Static TTS Schedule for the FMS sub-system 112
5.20 FMS Test Case: ‘LO-scenario’,‘HI-scenario’, and ‘Ordinary’ Traces on MPPA®114

A.1 The List Scheduling Algorithm, ‘LS-SC’ . 134
A.2 Primitive Schedule Operations . 135

B.1 The Transformed List Scheduling for Generating HI* Table, ‘T (LS-SC)’ . . . 140

List of Tables

1.1 Design Assurance Levels in DO178b . 2

3.1 Experimental results for MCPI. 62

4.1 Experiments’ parameters . 85

5.1 FMS process execution profiles . 111

121

122 LIST OF TABLES

Contributions

[1] Georgia Giannopoulou, Peter Poplavko, Dario Socci, Pengcheng Huang, Nikolay
Stoimenov, Paraskevas Bourgos, Lothar Thiele, Marius Bozga, Saddek Bensalem, Syl-
vain Girbal, Madeleine Faugere, Romain Soulat, and Benôıt Dupont de Dinechin. Dol-
bip-critical: A tool chain for the design and correct-by-construction implementation of
mixed-criticality multi-core systems. Submitted to Design Automation for Embedded
Systems.

[2] Peter Poplavko, Dario Socci, Paraskevas Bourgos, Saddek Bensalem, and Marius Bozga.
Models for deterministic execution of real-time multiprocessor applications. In Proceed-
ings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, pages
1665–1670. EDA Consortium, 2015.

[3] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Mixed critical earliest
deadline first. In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on,
pages 93–102. IEEE, 2013.

[4] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Time-triggered
mixed-critical scheduler. Proc. WMC, RTSS, pages 67–72, 2013.

[5] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Multiprocessor
scheduling of precedence-constrained mixed-critical jobs. Technical report, 2015.

[6] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Time-triggered
mixed-critical scheduler on single-and multi-processor platforms. 2015.

[7] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. A timed-automata
based middleware for time-critical multicore applications. In ISORCW 2015, 2015.

[8] Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga, et al. Modeling mixed-
critical systems in real-time bip. In 1st workshop on Real-Time Mixed Criticality Systems,
2013.

123

124 CONTRIBUTIONS

Bibliography

[ACS10] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based imple-
mentation of real-time applications. In Proceedings of the tenth ACM interna-
tional conference on Embedded software, EMSOFT ’10. ACM, 2010.

[ACW05] Peter Amey, Rod Chapman, and Neil White. Smart certification of mixed
criticality systems. In Reliable Software Technology–Ada-Europe 2005, pages
144–155. Springer, 2005.

[AFM+02] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang
Yi. Times a tool for modelling and implementation of embedded systems.
In Proc. Tools and Algorithms for the Construction and Analysis of Systems,
pages 460–464. Springer, 2002.

[AGSCG11] Bader Alahmad, Sathish Gopalakrishnan, Luca Santinelli, and Liliana Cucu-
Grosjean. Probabilities for mixed-criticality problems: Bridging the uncertainty
gap. RTSS 2011 Organization Committee, page 1, 2011.

[Aud93] N.C. Audsley. Flexible Scheduling in Hard-Real-Time Systems. PhD thesis,
Dept. of Computer Science, Univ. of York, 1993.

[Bar03] John Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[Bar04] Sanjoy K. Baruah. Optimal utilization bounds for the fixed-priority scheduling
of periodic task systems on identical multiprocessors. IEEE Trans. Comput.,
53(6):781–784, June 2004.

[Bar09] Sanjoy Baruah. Mixed criticality schedulability analysis is highly intractable,
2009.

[Bar12] Sanjoy Baruah. Semantics-preserving implementation of multirate mixed-
criticality synchronous programs. In RTNS’12, pages 11–19. ACM, 2012.

[Bar13] Sanjoy K Baruah. Implementing mixed criticality synchronous reactive systems
upon multiprocessor platforms. The University of North Carolina at Chapel
Hill, Tech. Rep, 2013.

[BBB+09] James Barhorst, Todd Belote, Pam Binns, Jon Hoffman, James Paunicka,
Prakash Sarathy, John Scoredos, Peter Stanfill, Douglas Stuart, and Russell
Urzi. A research agenda for mixed-criticality systems. Cyber-Physical Systems
Week, 2009.

125

126 BIBLIOGRAPHY

[BBD11] S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed
criticality systems. In Real-Time Systems Symposium (RTSS), 2011 IEEE
32nd, pages 34–43, Nov 2011.

[BBD+12a] S Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der
Ster, and L. Stougie. The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems. In Euromicro Conf. on Real-
Time Systems, ECRTS’12, pages 145–154. IEEE, 2012.

[BBD+12b] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Nicole Megow, and Leen Stougie. Scheduling real-time
mixed-criticality jobs. IEEE Trans. Comput., 61(8):1140 –1152, aug. 2012.

[BC13] Sanjoy Baruah and Bipasa Chattopadhyay. Response-time analysis of mixed
criticality systems with pessimistic frequency specification. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2013 IEEE 19th
International Conference on, pages 237–246. IEEE, 2013.

[BCLS14] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. Mixed-
criticality scheduling on multiprocessors. Real-Time Systems, 50(1):142–177,
2014.

[BD13] Alan Burns and Robert Davis. Mixed criticality systems-a review. Department
of Computer Science, University of York, Tech. Rep, 2013.

[BD+14] A Burns, Robert Davis, et al. Adaptive mixed criticality scheduling with de-
ferred preemption. In Real-Time Systems Symposium (RTSS), 2014 IEEE,
pages 21–30. IEEE, 2014.

[BF05] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of sporadic
task systems. In Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE
International, pages 9 pp.–329, Dec 2005.

[BF11] S. Baruah and G. Fohler. Certification-cognizant time-triggered scheduling
of mixed-criticality systems. In Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd, pages 3–12, 2011.

[BLS10] Sanjoy K. Baruah, Haohan Li, and Leen Stougie. Towards the design of cer-
tifiable mixed-criticality systems. In Real-Time and Embedded Technology and
Applications Symposium, RTAS’10, pages 13–22. IEEE, 2010.

[Bra14] B.B. Brandenburg. A synchronous ipc protocol for predictable access to
shared resources in mixed-criticality systems. In Real-Time Systems Sympo-
sium (RTSS), 2014 IEEE, pages 196–206, Dec 2014.

[Bur13] A. Burns. The application of the original priority ceiling protocol to mixed
criticality systems. In L. George and G. Lipari, editors, ReTiMiCS, RTCSA,
pages 7–11, 2013.

[BV08] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with multiple
criticality specifications. In Real-Time Systems, 2008. ECRTS ’08. Euromicro
Conference on, pages 147–155, July 2008.

BIBLIOGRAPHY 127

[BZ13] Sanjoy Baruah and Guo Zhishan. Mixed criticality scheduling upon unreliable
processors, 2013.

[CBF+11] Mikel Cordovilla, Frédéric Boniol, Julien Forget, Eric Noulard, and Claire
Pagetti. Developing critical embedded systems on multicore architectures: the
prelude-schedmcore toolset. In 19th International Conference on Real-Time
and Network Systems, 2011.

[Col97] Robert Collins. Inside the pentium II math bug - Dan-0411 rocks the industry.
Dr.Dobb’s Journal, 22(8):52, August 1997.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[DB11] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Comput. Surv., 43(4), October 2011.

[DFG+14] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire
Pagetti, and Wolfgang Puffitsch. Predictable flight management system imple-
mentation on a multicore processor. In ERTSS’14, 2014.

[DL78] Sudarshan K. Dhall and C. L. Liu. On a real-time scheduling problem. Oper-
ations Research, 26(1):127–140, 1978.

[dNP14] D. de Niz and L.T.X. Phan. Partitioned scheduling of multi-modal mixed-
criticality real-time systems on multiprocessor platforms. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2014 IEEE 20th,
pages 111–122, April 2014.

[DRBL74] Robert H Dennard, VL Rideout, E Bassous, and AR Leblanc. Design of ion-
implanted mosfet’s with very small physical dimensions. Solid-State Circuits,
IEEE Journal of, 9(5):256–268, 1974.

[Eur11] European Aviation Safety Agency. Easa cm-swceh-001 development as-
surance of airborne electronic hardware. August 2011. http://easa.

europa.eu/system/files/dfu/certification-memoranda-import-EASA%

20CM-SWCEH-001%20Issue%2001%20Rev%2001%20Development%

20Assurance%20of%20Airborne%20Electronic%20Hardware.pdf.

[EY12] Pontus Ekberg and Wang Yi. Bounding and shaping the demand of
mixed-criticality sporadic tasks. In Euromicro Conf. on Real-Time Systems,
ECRTS’12, pages 145–154. IEEE, 2012.

[F+10] Julien Forget et al. Scheduling dependent periodic tasks without synchroniza-
tion mechanisms. In RTAS’10, pages 301–310, 2010.

[Fed15] Federal Certification Authorities Software Team (CAST). Cast-32, multicore
processors. May 2015. https://www.faa.gov/aircraft/air_cert/design_

approvals/air_software/cast/cast_papers/media/cast-32.pdf.

[FKP07] Elena Fersman, Pavel Krcl, Paul Pettersson, and Wang Yi 0001. Task
automata: Schedulability, decidability and undecidability. Inf. Comput.,
205(8):1149–1172, 2007.

128 BIBLIOGRAPHY

[FKRvH06] Hauke Fuhrmann, Jens Koch, Jörn Rennhack, and Reinhard von Hanxleden.
Model-based system design of time-triggered architectures—an avionics case
study. In 25th Digital Avionics Systems Conference (DASC’06), Portland, OR,
USA, October 2006.

[Fle13] Thomas Fleming. Extending mixed criticality scheduling. PhD thesis, University
of York, 2013.

[GB13] Patrick Graydon and Iain Bate. Safety assurance driven problem formulation
for mixed-criticality scheduling. In :, pages 19–24, 2013.

[GESY11] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems. In Real-Time
Systems Symposium, RTSS’11, pages 13–23. IEEE, 2011.

[GGDY13] Chuancai Gu, Nan Guan, Qingxu Deng, and Wang Yi. Improving ocbp-based
scheduling for mixed-criticality sporadic task systems. In Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2013 IEEE 19th Inter-
national Conference on, pages 247–256, Aug 2013.

[GPS+] Georgia Giannopoulou, Peter Poplavko, Dario Socci, Pengcheng Huang, Niko-
lay Stoimenov, Paraskevas Bourgos, Lothar Thiele, Marius Bozga, Saddek Ben-
salem, Sylvain Girbal, Madeleine Faugere, Romain Soulat, and Benôıt Dupont
de Dinechin. Dol-bip-critical: A tool chain for the design and correct-by-
construction implementation of mixed-criticality multi-core systems. Submitted
to Design Automation for Embedded Systems.

[GRP14] Romain GRATIA, Thomas ROBERT, and Laurent PAUTET. Adaptation of
run to mixed-criticality systems. JRWRTC 2014, page 25, 2014.

[GSHT] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele.
DOL-C: Distributed operation layer for mixed-criticality applications,
http://www.tik.ee.ethz.ch/ certainty/dolc.html.

[GSHT13] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar
Thiele. Scheduling of mixed-criticality applications on resource-sharing mul-
ticore systems. In Embedded Software (EMSOFT), 2013 Proceedings of the
International Conference on, pages 1–15. IEEE, 2013.

[GSY15] Zhishan Guo, Luca Santinelli, and Kecheng Yang. Edf schedulability analysis
on mixed-criticality systems with permitted failure probability. In Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2015 IEEE
21st International Conference on, pages 187–196. IEEE, 2015.

[HGBH09] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. Compsoc:
A template for composable and predictable multi-processor system on chips.
ACM Transactions on Design Automation of Electronic Systems (TODAES),
14(1):2, 2009.

[HGL14] Huang-Ming Huang, Christopher Gill, and Chenyang Lu. Implementation and
evaluation of mixed-criticality scheduling approaches for sporadic tasks. ACM
Transactions on Embedded Computing Systems (TECS), 13(4s):126, 2014.

BIBLIOGRAPHY 129

[HKM+12] Jonathan L Herman, Christopher J Kenna, Malcolm S Mollison, James H An-
derson, and Daniel M Johnson. Rtos support for multicore mixed-criticality
systems. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2012 IEEE 18th, pages 197–208. IEEE, 2012.

[HL94] Rhan Ha and J. W S Liu. Validating timing constraints in multiprocessor
and distributed real-time systems. In Proc. Int. Conf. Distributed Computing
Systems, pages 162–171, Jun 1994.

[JZLP14] Mathieu Jan, Lilia Zaourar, Vincent Legout, and Laurent Pautet. Handling
criticality mode change in time-triggered systems through linear programming.
In Ada User Journal, Proc of Workshop on Mixed Criticality for Industrial
Systems (WMCIS2014), volume 35, pages 138–143, 2014.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471,
dec 1999.

[KAZ11] Owen R Kelly, Hakan Aydin, and Baoxian Zhao. On partitioned scheduling
of fixed-priority mixed-criticality task sets. In Trust, Security and Privacy in
Computing and Communications (TrustCom), 2011 IEEE 10th International
Conference on, pages 1051–1059. IEEE, 2011.

[LB10a] Haohan Li and S. Baruah. An algorithm for scheduling certifiable mixed-
criticality sporadic task systems. In Real-Time Systems Symposium (RTSS),
2010 IEEE 31st, pages 183–192, Nov 2010.

[LB10b] Haohan Li and Sanjoy Baruah. Load-based schedulability analysis of certifiable
mixed-criticality systems. In Intern. Conf. on Embedded Software, EMSOFT
’10, pages 99–108. ACM, 2010.

[LB12] Haohan Li and Sanjoy K. Baruah. Outstanding paper award: Global mixed-
criticality scheduling on multiprocessors. In 24th Euromicro Conference on
Real-Time Systems, ECRTS 2012, 2012.

[LDNRM10] Karthik Lakshmanan, Dionisio De Niz, Ragunathan Rajkumar, and Gines
Moreno. Resource allocation in distributed mixed-criticality cyber-physical
systems. In Distributed Computing Systems (ICDCS), 2010 IEEE 30th In-
ternational Conference on, pages 169–178. IEEE, 2010.

[Lee05] Edward A Lee. Absolutely positively on time: what would it take?[embedded
computing systems]. Computer, 38(7):85–87, 2005.

[LEL+14] Per Lindgren, Johan Eriksson, Marcus Lindner, David J Pereira, and
Lúıs Miguel Pinho. Rtfm-lang static semantics for systems with mixed crit-
icality. Ada User Journal, 2014.

[Liu00] J. W. S. Liu. Real-Time Systems. Prentice-Hall, Inc., 2000.

[LMPC04] R. Le Moigne, O. Pasquier, and J-P. Calvez. A generic rtos model for real-
time systems simulation with systemc. In Proceedings of the Conference on

130 BIBLIOGRAPHY

Design, Automation and Test in Europe - Volume 3, DATE ’04, pages 30082–,
Washington, DC, USA, 2004. IEEE Computer Society.

[MEA+10] Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson, Sanjoy K.
Baruah, and John A. Scoredos. Mixed-criticality real-time scheduling for mul-
ticore systems. In Int. Conf. Computer and Information Technology, CIT ’10,
pages 1864–1871. IEEE, 2010.

[Moo65] Gordon Moore. Cramming more components onto integrated circuits. Elec-
tronics Magazine, 38(8), april 1965.

[NLR09] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On the
scheduling of mixed-criticality real-time task sets. In Real-Time Systems Sym-
posium, RTSS’09, pages 291–300. IEEE, 2009.

[Pat12] Risat Mahmud Pathan. Schedulability analysis of mixed-criticality systems
on multiprocessors. In Real-Time Systems (ECRTS), 2012 24th Euromicro
Conference on, pages 309–320. IEEE, 2012.

[PBS+] Peter Poplavko, Paraskevas Bourgos, Dario Socci, Saddek Bensalem, and
Marius Bozga. Multicore code generation for time-critical applications,
http://www-verimag.imag.fr/multicore-time-critical-code,470.html.

[PK11] Taeju Park and Soontae Kim. Dynamic scheduling algorithm and its schedu-
lability analysis for certifiable dual-criticality systems. In Intern. Conf. on
Embedded software, EMSOFT ’11, pages 253–262. ACM, 2011.

[PSPBB15] Peter Poplavko, Dario Socci, Saddek Paraskevas Bourgos, and Marius Bozga
Bensalem. Models for deterministic execution of real-time multiprocessor ap-
plications. In DATE’15, 2015.

[Sch09] Martin Schoeberl. Time-predictable computer architecture. EURASIP Journal
on Embedded Systems, 2009:2, 2009.

[SRL90] Lui Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: an
approach to real-time synchronization. Computers, IEEE Transactions on,
39(9):1175–1185, Sep 1990.

[TCBS13] A. Triki, J. Combaz, S. Bensalem, and J. Sifakis. Model-based implementation
of parallel real-time systems. In FASE’13. Springer, 2013.

[TFB13] Jens Theis, Gerhard Fohler, and Sanjoy Baruah. Schedule table generation
for time-triggered mixed criticality systems. Proc. WMC, RTSS, pages 79–84,
2013.

[Ves07] Steve Vestal. Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance. In Real-Time Systems Symposium,
RTSS’07, pages 239–243. IEEE, 2007.

[YKRB14] Eugene Yip, Matthew Kuo, Partha S Roop, and David Broman. Relaxing the
Synchronous Approach for Mixed-Criticality Systems. In 12th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), April 2014.

BIBLIOGRAPHY 131

[ZGZ13] Qingling Zhao, Zonghua Gu, and Haibo Zeng. Integration of resource synchro-
nization and preemption-thresholds into edf-based mixed-criticality scheduling
algorithm. In Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2013 IEEE 19th International Conference on, pages 227–236, Aug
2013.

132 BIBLIOGRAPHY

Appendix A

List Scheduling

For a given task graph T, a number of processors m, and a priority table PT the list
scheduling consists of simulating the fixed-priority (FP) policy at a single mode of criticality
χ′, being either LO or HI1, while taking into account that a job can become ready only after
the termination of its predecessors that should be respected at a given level of criticality.
The pseudo-code of the classical list scheduling algorithm adapted for this purpose is given
in Figure A.1. For the set jobs we specify an array of arrival times A[∗], deadlines D[∗],
and WCET times C[∗][LO..HI]. We use the ‘[∗]’ to explicitly denote an array dimension of
some range that can be deduced from the context. In the particular case considered now,
the range is the set of jobs, whereas in the second dimension of the array C specifies the
WCET criticality level.

The output of the algorithm is a schedule S, which is defined by two arrays: S.start and
S.end. Position S.start[J] (resp. S.end[J]) specifies for job J the list of start (end) times of
all timing intervals in which job J executes. The algorithm keeps track of job progress prgs,
an array that for each job specifies for how long it has executed so far. Set Jarr specifies
the jobs that have arrived so far. Two arrays, processor status pstat and job status jstat,
specify for each processor a job that runs there and vice versa, for each job the processor
where the job runs. Note that for efficiency, also for the priority table PT , which for each
priority specifies the corresponding job, we need a reverse array, that for each job specifies
its priority, we denote this array PT−1.

The pseudo-code in Figure A.2 gives the two basic operations that the algorithm uses to
start and finish an interval of job execution, manipulating the schedule, the job status, and
the processor status. The SchedStop operation contains a check to avoid empty schedule
intervals.

The algorithm keeps two priority-queue data structures: QP , QE . A priority
queue [CSRL01] is a collection that remembers the elements with their ‘keys’ and sup-
ports such operations as providing the highest-key element (called the ‘front ’ of the queue),
eliminating the front element (‘pop’), and adding a new element with a key (‘push’). We
use queue QP to keep the ready not (yet) running jobs at the order of decreasing priority,
highest-priority job being at the front of the queue. Priority queue QE is used to keep the
simulated schedule events at their time-stamp order, the earliest event being at the front.
An event is identified by pair [J, LBL] where LBL is a label indicating the event type, such
as ‘arrival’ (LBL-ARR), ‘getting ready’ (LBL-READY), and ‘termination’ (LBL-TERM).

1The algorithm can also be adapted for simulating the FPM policy, in a given mode switching scenario.

133

134 APPENDIX A. LIST SCHEDULING

Algorithm: SimulateListSchedule
Input: Boolean preemAllowed integer m define k = size(J)
Input: criticality χ′ task graph T(J(A[∗], D[∗], χ[∗], C[∗][LO..HI]),→LO..HI) priority table PT
Output: schedule S
Local: array [1..k] of time-type prgs set of jobs Jarr set of jobs JEFF dependencies →EFF

Local: array [1..m] of processor status pstat array [1..k] of job status jstat
Local: priority queue QE , QP array [1..k] of integer termPredecessors

1: JEFF ← { J ∈ J | χ[J] ≥ χ′ }
2: →EFF← {→χ′′ | χ′′ ≥ χ′ }
3: PQueuePushSet(QE , [JEFF, ‘LBL-ARR’], A[∗])
4: lastT ime← 0
5: while QE 6= ∅ do
6: ([J,LBL], time) ← PQueuePop(QE)
7: UpdateProgress(lastT ime, time, prgs, pstat)

8: switch LBL do
9: case ‘LBL-TERM’

10: SchedStop(J, time, S, jstat, pstat)
11: for J ′ ∈ Successors(J,→EFF) do
12: termPredecessors[J ′]← termPredecessors[J ′] + 1
13: if termPredecessors[J ′] = PredecessorCount(J ′,→EFF) ∧ J ′ ∈ Jarr then
14: PQueuePush(QE , [J ′, ‘LBL-READY’], time)
15: end if
16: end for
17: case ‘LBL-ARR’
18: SetAdd(Jarr, J)
19: if termPredecessors[J] = PredecessorCount(J,→EFF) then
20: PQueuePush(QP , J, PT

−1[J])
21: end if
22: case ‘LBL-READY’
23: PQueuePush(QP , J, PT

−1[J])

24: if QP 6= ∅ then
25: J ← PQueueFront(QP).value
26: if AllProcessorsBusy(pstat) then
27: J ′ ← LeastPrioPreemptableJob(PT, pstat, preemAllowed, prgs)
28: if J ′ 6= ∅ ∧ J �PT J ′ then
29: proc′ ← jobstat[J ′].proc
30: SchedStop(J ′, time, S, jstat, pstat)
31: PQueuePush(QP , J

′, PT−1[J ′])
32: SchedRun(J, time, proc′, S, jstat, pstat)
33: PQueuePop(QP)
34: end if
35: else
36: proc← GetAvailableProcessor(pstat)
37: SchedRun(J, time, proc, S, jstat, pstat)
38: PQueuePop(QP)
39: end if
40: end if

41: (J, terminationT ime)← EarliestTerminatingJob(pstat, prgs, C[∗][χ′])
42: if J 6= ∅ ∧ (terminationT ime ≤ PQueueFront(QE).key ∨QE = ∅) then
43: PQueuePush(QE , [J, ‘LBL-TERM’], terminationT ime)
44: end if
45: lastT ime← time
46: end while

Figure A.1: The List Scheduling Algorithm, ‘LS-SC’

135

Algorithm: SchedRun
Input: job-id J
Input: time-type time
Input: processor-id p
In/out: schedule S
In/out: array [1..k] of job status jstat
In/out: array [1..m] of processor status pstat

1: ListAppend(S.start[J], time)
2: pstat[p].job← J
3: jstat[J].proc← p

Algorithm: SchedStop
Input: job-id J
Input: time-type time
In/out: schedule S
In/out: array [1..k] of job status jstat
In/out: array [1..m] of processor status pstat

1: if time = ListTail(S.start[J]) then ListEraseTail(S.start[J])
2: else ListAppend(S.end[J], time)
3: p← jstat[J].proc
4: pstat[p].job← ∅
5: jstat[J].proc← ∅

Figure A.2: Primitive Schedule Operations

136 APPENDIX A. LIST SCHEDULING

Further, the algorithm keeps an array that for job J gives the count termPredecessors[J]
of predecessors of job J that have terminated. Finally, the algorithm keeps some simple
variables, not explicitly listed in the header, such as the time-stamps of current and last
event.

When the algorithm starts, we first filter the set of jobs and dependencies from those
that have criticality level smaller than χ′, as they do not need to be taken into account
in the mode χ′. In dual-critical scheduling this means filtering away the LO jobs and LO
dependencies if the requested mode has criticality HI. Then we add the arrival events into
priority queue QE for the remaining ‘effective’ set of jobs.

The main loop runs until the event queue is empty. The earliest event [J, LBL] is first
popped from the queue together with its time-stamp. The progress prgs of all running jobs
(i.e., all non-empty entries pstat[1..m].job) is incremented by the delay since the last event
(lastT ime− time). Then the algorithm handles different types of events (see the switch-case
operators).

Observation A.1 (Ordering of List-schedule Events). We implicitly assume that events
with same time-stamp and different type are popped with the preference to the event types
that are first mentioned in the switch case of the algorithm, in particular that events labeled
as ‘LBL-TERM’ are always popped first if there are any for the current time stamp. This is
needed to prevent that a job may terminate and get preempted at the same time.

When a job terminates the processor is freed by SchedStop operation and for all succes-
sors the counters termPredecessors are incremented. If the current job is the last predecessor
to terminate for some successors and the successors have already arrived then their ‘getting
ready’ events are enqueued for processing. Note that we do not put the ready successors
directly into the ready-job queue QP , because the basic convention of our list-schedule
implementation is that per iteration of the main while loop at most one job may change
its ‘readiness’ status either from ready to non-ready or vice versa. Therefore, making the
successors ready is postponed to the future iterations.

When a job arrives it is registered in the set of arrived jobs. If by that time all the
predecessors have terminated then the job is directly enqueued into the ready-job queue QP ,
without unnecessary passing through the event queue with an LBL-READY event, as we are
allowed to change the status of a single job. Note that another important invariant of our
algorithm is that a ready job is either waiting in the ready-job queue QP or is registered as
a ‘running’ job through the jstat and pstat data structures. A ready job can move between
the ‘waiting’ and ‘running’ states a few times if the preemption is allowed. Finally, upon
its termination the job goes from ‘running’ to ‘terminated’ state, which is ensured in the
pseudo-code by a SchedStop operation that is not followed by a push to QP .

After processing the events the algorithm picks the highest-priority job from the job-
ready queue QP and tries to schedule it on a processor. Note that due to the fact that at
most one job changes its status per iteration we know that also at most one highest-priority
job needs to be scheduled. If all processors are busy then adding a job into the schedule is
possible only if at least one running job is ‘preemptable’. If preemption is allowed then all
jobs are preemptable. Otherwise only those jobs are considered ‘preemptable’ that have not
really run yet, i.e., those having zero progress. In the latter case no preemption is done in the
usual sense, but instead the algorithm ‘changes its mind’ and undoes its scheduling decision
in favor of a higher-priority job. In any case, if there are preemptable jobs we assign the
least-priority one to J ′. If the top-priority job J has a higher priority then it replaces job J ′

137

on its processor. This operation ensures that when all processors are busy then the m jobs
that are running are either the highest-priority ready jobs or non-preemptable jobs that have
started before the higher-priority waiting jobs got ready. In the case when job J replaces
job J ′ the latter goes back to the waiting queue (PQueuePush), whereas its processor is
taken by the highest-priority job J , which is popped from the waiting queue. In another
case, when there is an available processor there is no need to check job priorities and the
highest-priority job occupies an available idle processor.

Finally, the algorithm checks all running jobs to find the one that would be the earliest to
terminate if not preempted. If there are no events in the event queue before the termination
time of that job then the termination event is enqueued in the event queue, as no job can
possibly preempt the given job before its termination.

Lemma A.2 (Complexity of List Scheduling). With k the number of jobs, E the number of
dependencies and m the number of processors, the complexity of the offline list scheduling is:

O(k(log k +m) + E)

Proof. The initial forming of the arrival-event priority queue of size k costs O(k log k) time2.
There are O(k) number of events, and hence O(k) main-loop iterations of the list sched-
uler. Except for visiting the successors of the job, in every iteration we have either O(1)
operations (e.g., a schedule operation), or O(log k) operations (priority queue and set op-
erations), or operations with complexity O(m), whose scope is the set of currently run-
ning jobs, in particular: UpdateProgress, AllProcessorsBusy, LeastPrioPreemptableJob,
GetAvailableProcessor, and EarliestTerminatingJob. Finally, the total number of all
termPredecessors-update operations during the whole run of the algorithm is O(E). This
reasoning yields the result stated in the lemma.

2This can be also seen as the time necessary for an efficient sorting of the jobs by their arrival time

138 APPENDIX A. LIST SCHEDULING

Appendix B

Transformed Fixed Priority
Simulation

Recall that the goal of transformation is to generate the HI* table based on the LO table. If
the basis algorithm is FPM-based list scheduling (see Appendix A) then one could consider to
generate the two tables running the list scheduler twice: the first time in the LO mode with
PTLO priorities to obtain LO and then in the HI mode with PTHI priorities to obtain HI*.
However, as explained earlier, in general such a näıve approach does not ensure that that it
will be always safe to switch from LO to HI*, in the sense that all running safety-critical jobs
will always have enough processor-time reservation to execute up to their Cj(HI) execution
times.

Therefore, to ensure safety, in the HI mode we transform the basis policy – the list sched-
uler in the case considered here – according to the three rules formulated in Section 4.2.3.
These three rules take the LO table as input and temporarily disable the jobs whose execu-
tion progress in the HI* risks to exceed the one in the LO table. The disabling is effective
until the time when the jobs (re-)appear in the LO table. Executing the transformed pol-
icy with a task graph annotated by HI-WCET job execution times and containing HI job
dependencies would yield a safe policy. In the end, one also has to check the satisfaction of
deadlines, as in the presence of non-preemption and/or multiple processors the correctness
of transformation is not guaranteed by construction even for a correct basis policy.

In this section we apply the transformation to the variant of the list scheduling algorithm
introduced in the previous section. One of the peculiarities of the transformed algorithm is
that at a given level of criticality it needs to know the schedule generated for the previous
level of criticality. In dual-criticality problems the algorithm takes as input the schedule SLO,
representing the LO table and the task graph that represents the jobs and dependencies in
the HI mode, i.e., the HI criticality graph, modified with ASAP and ALAP time, as defined
in Section 2.2.3

The pseudo-code of the transformed list scheduling algorithm is given in Fig. B.1.

As mentioned before, to construct SHI, representing the HI* table, the algorithm needs
the SLO table at the input, which can, for example be obtained from the list scheduling in the
LO mode or from any other valid algorithm. It is assumed that SLO is correct, in particular
that the jobs execute with LO-WCET execution times on m processors.

Though the schedule SLO is constructed for all jobs and must respect all dependencies,
the transformed algorithm ‘cares’ only about the HI jobs and dependencies. However, to
ensure safety and to implement the Rules (4.1a, 4.1b, 4.1c) the algorithm keeps track of

139

140 APPENDIX B. TRANSFORMED FIXED PRIORITY SIMULATION

Algorithm: SimulateTranformedListSchedule
Input: Boolean preemAllowed integer m define k = size(J)
Input: task graph T(J(A[∗], D[∗], χ[∗], C[∗][LO..HI]),→LO..HI) priority table PTHI schedule SLO

Output: schedule SHI

Local: array [1..k][LO..HI] of time-type prgs
Local: set of jobs Jarr set of jobs JHI dependencies →HI

Local: set of jobs Jdis schedule ScopyLO

Local: array [1..m][LO..HI] of processor status pstat
Local: array [1..k][LO..HI] of job status jstat
Local: priority queue QE , QP array [1..k] of integer termPredecessors

1: JHI ← { J ∈ J | χ[J] = HI }
2: →HI← {→χ′′ | χ′′ = HI }
3: PQueuePushSet(QE , [JHI, ‘LBL-ARR’], A[∗])
4: PQueuePushScheduleEvents(QE , SLO, JHI, ‘LBL-LO-RUN’, ‘LBL-LO-STOP’)
5: lastT ime← 0
6: while QE 6= ∅ do
7: ([J,LBL], time)← PQueuePop(QE)
8: UpdateProgress(lastT ime, time, prgs[∗][LO], pstat[∗][LO])
9: UpdateProgress(lastT ime, time, prgs[∗][HI], pstat[∗][HI])

10: switch LBL do
11: case ‘LBL-LO-LAG’
12: SchedStop(J, time, SHI, jstat[∗][HI], pstat[∗][HI])
13: SetAdd(Jdis, J)

14: case ‘LBL-LO-STOP’
15: SchedStop(J, time, ScopyLO , jstat[∗][LO], pstat[∗][LO])
16: if prgs[J][LO] = C[J][LO] then
17: SetAdd(JLO-term, J)
18: end if
19: case ‘LBL-LO-RUN’
20: proc← GetAvailableProcessor(pstat[∗][LO])
21: SchedRun(J, time, proc, ScopyLO , jstat[∗][LO], pstat[∗][LO])
22: if J ∈ Jdis then
23: SetRemove(Jdis, J)
24: PQueuePush(QP , J, PT

−1
HI [J])

25: end if
26: HandleListSchedEvents(J, LBL, time, QE , QP , PTHI,J

arr,→HI, termPredecessors)

27: ScheduleHighestPriorirityJob(SHI, QP , preemAllowed, pstat[∗][HI], jstat[∗][HI], prgs[∗][HI])

28: define lag(J) = (prgs[J][LO]− prgs[J][HI])
29: (minLag, J) = min(lag(J) |J ∈ Running(pstat[∗][HI]) \ JLO-term ∧ jstat[J][LO].proc = ∅)
30: if J 6= ∅ ∧ (time+minLag ≤ PQueueFront(QE).key ∨ QE = ∅) then
31: PQueuePush(QE , [J, ‘LBL-LO-LAG’], time+minLag)
32: end if

33: EnqueueTermination(QE , prgs[∗][HI], pstat[∗][HI], C[∗][HI])
34: lastT ime← time
35: end while

Figure B.1: The Transformed List Scheduling for Generating HI* Table, ‘T (LS-SC)’

141

the progress of jobs not only in the HI mode, but also in the LO table. Therefore the job
progress array ‘prgs’ is now two-dimensional, adding another dimension to take the LO mode
into account. To facilitate the calculation of progress in the LO mode the algorithm also
constructs on-the-fly a new copy of schedule SLO and adds a second dimension also to the
arrays of job and processor status: jstat and pstat. The algorithm also keeps track of the
jobs terminated in the LO mode – variable JLO-term – and the set of disabled jobs – Jdis. For
the rest, the transformed list scheduler has the same set of variables as the non-transformed
one.

Similarly to the list scheduler, the algorithm starts by filtering the jobs and dependencies
by their level of criticality and then pushes the arrival-time events of the filtered job set into
the event queue. However, in addition, it takes the execution intervals of the HI jobs in the
SLO table and pushes their begin and end bounds as events labeled as ‘LBL-LO-RUN’ and
‘LBL-LO-STOP’, respectively.

The main loop of the algorithm extends that of the list scheduler by also following the
progress in a non-principal mode – LO – and handling certain events of that mode. The
HI-mode events are handled by the regular list-scheduler event-label switch-case, after the
LO events. For brevity, the regular event handling is represented by a call to subroutine
‘HandleListSchedEvents’. The presented switch-case operators handle the LO events.

First of all, ‘LBL-LO-LAG’ events are handled. The latter are added on-the-fly at the
time-stamps where a HI-mode running job which is not running in the LO mode is going
to reach the same progress as in the LO mode, whereupon it should be disabled due to
invalidating Rule (4.1b). The so-called ‘lag’ time, defined as difference between the LO
and the HI progress indicates the time interval during which the HI job may continue to run
without running in the LO table while still not exceeding the LO-mode progress (see the lag
calculation rule after the switch-case).

The ‘LBL-LO-RUN’ and ‘LBL-LO-STOP’ events indicate the execution intervals of jobs
in the LO table. They are used to update the LO-mode job and processor status as well as
to enable the HI jobs at least during the time intervals when they are running in the LO
table.

When a LO-mode-running (and, hence, enabled) job stops in the LO mode, which is indi-
cated by event ‘LBL-LO-STOP’, and when the reason for the stop is that the job terminates
in the LO mode (see the if-statement in the corresponding switch case) this means that for
the HI mode it gets enabled permanently, according to Rule (4.1a). To register this change,
the job is added into ‘LO-mode terminated set’, which eliminates the possibility of disabling
the given job later on.

When a disabled job starts a new interval of execution in the LO mode, indicated by a
‘LBL-LO-RUN’ event, then it should be enabled (see the if-statement in the ‘LBL-LO-RUN’
case). The point is that a job can only get disabled when its HI-mode progress reaches exactly
the level of its LO-mode progress, so the progress in the two modes is equal. Therefore, when
the job starts running in the LO mode again then Rules (4.1a) and (4.1c) ensure that the
job is enabled at least as long as it is running in the LO mode.

The jobs which have not yet terminated and are idle in the LO mode should eventually
get disabled for running in the HI mode. Therefore, after the switch-cases for the event
processing, the algorithm checks the lag time of such jobs and picks the one with the smallest
lag. If this job will continue running it will be the first to ‘exhaust’ its execution-time safety
reserve. If this happens before any other event in the event queue the algorithm ‘knows for
sure’ that no earlier change in the schedule will prevent this from happening and enqueues a

142 APPENDIX B. TRANSFORMED FIXED PRIORITY SIMULATION

‘LBL-LO-LAG’ event. Note that jobs running on other processors may also ‘run out of their
lag’ at exactly the same time, but then they will be detected in the future iterations of the
algorithm one-by-one. Note also that by construction a job may be disabled in the middle
of execution only if preemption is allowed. Thus, the algorithm does not interrupt a running
job if preemption is not allowed.

Finally, the algorithm executes the regular list-schedule check for the earliest terminating,
see the last ‘if’ statement of the regular list-schedule pseudo-code. For brevity, in Fig. B.1
it is represented as a call to EnqueueTermination subroutine. Note that the termination
events are planned after the lag events to prevent the situation where a disabled job would
be wrongly considered terminated.

Observation B.1 (Ordering of the LO Events). We assume a similar restriction for the
handling the LO events as for the regular list scheduling. The simultaneous events at the
front of the queue should be popped in a particular order which coincides with the order of
cases in the switch operator. In particular, events ‘LBL-LO-LAG’ should be popped first, to
prevent that the job would be disabled immediately after being by a ‘LBL-LO-RUN’ event.
Also ‘LBL-LO-STOP’ should precede ‘LBL-LO-RUN’ to ensure that the latter will always
find an available processor to reconstruct the copy of the LO table. For the given time-stamp
LO-events should be given preference to the regular events, to prevent that a job may get
disabled and preempted at the same time.

The evolution of a ready job in the transformed list scheduling is more complex than in
the case of regular list scheduling. When a job gets ready it is pushed in the waiting queue
QP and then its is eventually scheduled on a processor. Then it may be, either immediately
or later on, stopped from execution and put either into disabled set Jdis if it is disabled or to
the waiting-job queue QP if it is preempted. Upon being enabled a job goes into the waiting
queue QP .

Lemma B.2 (Complexity of Transformed List Scheduling). If the LO-mode schedule at the
input of the algorithm was generated by a LO-mode list scheduling (or, equivalently, a fixed-
priority policy) then the transformed list scheduling has the same algorithmic complexity as
the non-transformed one, as was defined in Lemma A.2:

O(k(log k +m) + E)

Proof. The ‘start’ and ‘stop’ LO-mode events have count O(k) as they result from LO jobs
getting ready, preempted, and terminated, whereas the number of preemptions in fixed-
priority scheduling is O(k). For the same reason, the number of the ‘lag’ events is also
O(k), so the number of main-loop iterations remains to be O(k). The new operations added
by transformations are also either O(log k) operations (priority-queue and set operations
with Jdis and JLO-term) or O(m) operations, such as finding the minimum-lag running job.
Finally, the total number of all termPredecessors-update operations during the whole run
of the algorithm is O(E) like in the previous case.

