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Jury :

Rapporteurs :
M. Antoine LEJAY, Directeur de recherche, INRIA.
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toute l’équipe du projet INRIA ”Mathrisk” et notamment Agnès Sulem et Antonino
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Introduction

Dans ce document, nous présentons une synthèse de nos travaux de recherche en prob-
abilité théorique et numérique ainsi qu’en statistiques des processus en finance. Nous
avons regroupé ces travaux selon trois thèmes.

La première partie, dédiée à l’analyse des méthodes Multilevel Monte Carlo et de
leurs applications en finance, comporte deux chapitres.

Le premier chapitre est consacré à des études asymptotiques et non-asymptotiques
des méthodes Multilevel Monte Carlo. La première section présente une introduction et
une motivation au problème de calcul d’espérance de fonctions ou de fonctionnelles d’une
diffusion. Dans la deuxième section, nous analysons la méthode de Romberg Statistique
ou two-level Monte Carlo pour des schémas de discrétisation de type Euler. Dans la
troisième section, nous nous intéressons au comportement asymptotique de la loi de la
dérivée de Malliavin de l’erreur de discrétisation et son application à l’analyse asympto-
tique de la méthode de Romberg Statistique pour le problème d’estimation de densités
d’équations différentielles stochastiques. Dans la quatrième section, nous établissons
un théorème central limite pour la méthode Multilevel Monte Carlo. Dans la dernière
section, nous présentons des inégalités de concentrations Gaussiennes établies pour la
méthode Multilevel Monte Carlo grâce à des techniques de calcul de Malliavin.

Le deuxième chapitre traite du couplage des méthodes Multilevel Monte Carlo avec
les techniques de type importance sampling. Après une brève section introductive, nous
nous focalisons dans une deuxième section sur l’étude d’une version adaptative de la
méthode de Romberg Statistique combinée avec des versions tronquées et non-tronquées
d’algorithmes stochastiques permettant de réduire la variance du problème, dans le
cadre de diffusions Browniennes discrétisées. Dans la troisième section, nous étudions
l’extension de ces résultats aux méthodes Multilevel Monte Carlo. La quatrième section
traite de l’utilisation d’algorithmes déterministes de type Newton pour l’approximation
du paramètre optimal de la méthode Multilevel Monte Carlo avec importance sampling.
Dans la dernière section, nous nous intéressons à un nouveau concept d’utilisation de
la méthode de Romberg Statistique et par défaut des méthodes Multilevel Monte Carlo
dans le cadre où la diffusion Brownienne est remplacée par un processus de Lévy de sauts
purs donc sans schéma de discrétisation. Nous présentons une analyse de cette nouvelle
procédure ainsi que de son implémentation avec des techniques de type importance sam-
pling. Des illustrations numériques de l’efficacité des algorithmes présentés dans cette
partie sont fournies à travers des exemples concrets issus de la finance quantitative.
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La deuxième partie est consacrée au problème d’inférence statistique des modèles
appliqués en mathématiques financières. Elle comporte deux autres chapitres, décrits
ci-dessous.

Le troisième chapitre traite du cadre des observations continues. Après une brève
section introductive, nous nous intéressons dans une deuxième section au problème
d’estimation des paramètres de drift dans le processus de Cox-Ingersoll-Ross. La troisième
section est consacrée à l’étude du problème d’estimation paramétrique dans les processus
matriciels de type Wishart. La dernière section développe le problème d’inférence statis-
tique pour des modèles à volatilité stochastique en présence de sauts, notamment pour les
modèles de Heston et de Cox-Ingersoll-Ross. Pour chacune de ces études nous examinons
le comportement en temps long des estimateurs de type maximum de vraisemblance dans
les régimes érgodique et non-érgodique en explicitant à chaque fois les différentes fonc-
tions génératices de moments des fonctionnelles liées aux processus étudiés.

Le quatrième chapitre est consacré au cadre des observations discrètes. Dans une
première section, nous fournissons des conditions suffisantes portant sur la fréquence des
observations du processus de Cox-Ingersoll-Ross pour garantir la validité des théorèmes
limites obtenus dans le Chapitre 3 pour le cadre des observations continues. Dans la
dernière section, nous nous basons sur des techniques de calcul de Malliavin récemment
développées dans le cadre du processus de Cox-Ingersoll-Ross pour démontrer des pro-
priétés asymptotiques locales de type LAN, LAMN et LAQ associées à l’estimation des
paramètres de drift dans ce processus couvrant les régimes érgodique et non-érgodique.

La dernière partie, composée d’un seul et dernier chapitre, étend divers résultats théo-
riques de type théorème limite centrale presque sûre à des martingales quasi-continues à
gauche. Nous développons ces résultats pour des normalisations régulières, explosives et
mixtes. Nous illustrons à travers un exemple jouet l’application de ces résultats théoriques
en pratique.
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Multilevel Monte Carlo
approximations
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Chapter 1

Asymptotic and non-asymptotic
analysis of the Multilevel Monte
Carlo approximation algorithms

1.1 Introduction and motivation

The popularity of the Monte Carlo methods is due to their undisputed convenience in high
dimensional settings and reliability, although they are also known to converge slowly. In
particular in finance, one of the most problematic tasks faced by practitioners nowadays,
is computing in the shortest possible time, risk indicators or similar quantities by Monte
Carlo methods using huge samples of data. Worthy of mentioning is the future legisla-
tion: The Fundamental Review of the trading book (FRTB) which is compulsory for the
efficiency of the calculation of quantities with nested expectations [Bas13]. Therefore,
the need of finding new techniques to accelerate these methods becomes an important
issue. The Multilevel Monte Carlo method, intensively developed during the last decade,
is a new class of approximation methods that fulfill this need and has become a hot topic
in numerical probability.

The content of this chapter follows from the articles [Keb05], [KKH08], [BAK15],
[BAK14] and [JK17].

In this chapter, we assume that the underlying setting (Xt)0≤t≤T is solution to a
stochastic differential equation

dXt = b(Xt)dt+

q∑
j=1

σj(Xt)dW
j
t , X0 = x ∈ Rd, (1.1)

where W = (W 1, . . . ,W q) is a q-dimensional Brownian motion on some given filtered
probability space B = (Ω,F , (Ft)t≥0,P) and (Ft)t≥0 is the standard Brownian filtration.
The functions b : Rd −→ Rd and σj : Rd −→ Rd, 1 ≤ j ≤ q, satisfy usual global Lipschitz
condition (HGL

b,σ ) ensuring strong existence and uniqueness of the solution of (1.1). In
practice, we consider the Euler continuous approximation Xn of the process X, with
time step δ = T/n, given by

dXn
t = b(Xηn(t))dt+

q∑
j=1

σj(Xηn(t))dWt, ηn(t) = [t/δ]δ (1.2)
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and we approximate Eψ(Xt, 0 ≤ t ≤ T ) by Eψ(Xn
t , 0 ≤ t ≤ T ) for a given payoff function

ψ. The weak error is firstly studied by Talay and Tubaro in [TT90] and now it is well
known that if ψ, b and (σj)1≤j≤q are in C 4

P , they are four times differentiable and together
with their derivatives at most polynomially growing, then we have (see Theorem 14.5.1
in Kloeden and Platen in [KP95])

εn := Eψ(Xn
T )− Eψ(XT ) = O(1/n).

The same result was extended in Bally and Talay in [BT96a] for a measurable function
ψ but with a non degeneracy condition of Hörmander type on the diffusion. Also, it is
worth noticing, the recent results of Kohatsu-Higa, Lejay and Yasuda [KHLY17] on the
rate of weak convergence of the Euler scheme for stochastic differential equations with
non-regular drift.

In the context of possibly degenerate diffusions, if besides (HGL
b,σ ) we assume that b

and (σj)1≤j≤q are C 1 and ψ satisfies condition

(Hψ) P(XT /∈ Dψ̇) = 0, where Dψ̇ := {x ∈ Rd | ψ is differentiable at x}

then, we proved in [Keb05] that limn→∞
√
n εn = 0. Conversely, under the same assump-

tions, we show that the rate of convergence can be 1/nα, for any α ∈ (1/2, 1]. So, it is
worth introducing assumption

(Hεn) for α ∈ [1/2, 1] nαεn −→
n→∞

Cψ(T, α), Cψ(T, α) ∈ R.

Furthermore, as originally noticed in [TT90], it is possible to reduce the above er-
ror using a second Euler scheme with time step 2n, since clearly the error E[2ψ(X2n

T )−
ψ(Xn

T )]−Eψ(XT ) is of order 1/n2. This idea is known in the literature as the Richardson-
Romberg extrapolation. Later on, a multi-step version of the Richardson-Romberg ex-
trapolation was introduced by Pagès [Pag07] with a higher order expansion and developed
in the context of path dependent payoffs. Of course, it is also possible to reduce the weak
error using other adequate discretization schemes instead of the Euler approximation (see
e.g. the Ninomyia Victoir scheme proposed in [NV08]).

Also, we recall that under condition (HGL
b,σ ) we have the almost sure convergence of Xn

towards X together with the following property (see e.g. Bouleau and Lépingle [BL94])

(P) ∀p ≥ 1, sup
0≤t≤T

|Xt|, sup
0≤t≤T

|Xn
t | ∈ Lp and E

[
sup

0≤t≤T
|Xt −Xn

t |p
]
≤ Kp(T )

np/2
,

where Kp(T ) is a positive constant depending only on b, σ, T , p and q. This Lp-error
or strong error can also be reduced using other approximation schemes like the Milstein
approximation (see Section 10.3 in [KP95] and also Milstein’s original article [Mil74]).

A standard Monte Carlo method approximates Eψ(XT ) by 1
N

∑N
i=1 ψ(Xn

T,i). To find
the optimal way in choosing the sample size, we prove a central limit theorem letting both
n and N tend to infinity. More precisely, we prove in [Keb05] that under assumptions
(Hψ) and (Hεn) we have

nα
( 1

n2α

n2α∑
i=1

ψ(Xn
T,i)− Eψ(XT )

)
=⇒

√
Var(ψ(XT ))G+ Cψ(T, α), as n→∞, (1.3)
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with G a standard normal. Hence, the optimal time complexity needed to achieve a
precision of order 1/nα, α ∈ [1/2, 1] is

CMC ∝ n2α+1. (1.4)

Here the unit of calculation is one simulation of a random variable.

1.2 A two-level Monte Carlo approximation: the Statistical
Romberg method

The statistical Romberg method (SR) introduced in [Keb05] is actually a two-level Monte
Carlo method which can be presented as a kind of precursor of the popular Multilevel
Monte Carlo introduced by [Gil08]. The SR method which is essentially inspired by the
Richardson-Romberg detailed above, aims at reducing the statistical error in the Monte
Carlo approximation. The main idea behind this approach is to use many sample paths
with a coarse time discretization step and few additional sample paths with a fine time
discretization step. In more details, we consider two Euler schemes with time steps T/n
and T/nβ, β ∈ (0, 1) and approximates Eψ(XT ) by

Vn :=
1

nγ1

nγ1∑
i=1

ψ(X̂nβ

T,i) +
1

nγ2

nγ2∑
i=1

ψ(Xn
T,i)− ψ(Xnβ

T,i),

where γ1, γ2 are positive parameters, X̂nβ

T is a second Euler scheme with time step T/nβ

and such that the Brownian paths used for Xn
T and Xnβ

T has to be independent of the

Brownian paths used to simulate X̂nβ

T . In order to find the optimal parameters of the SR
method namely β, γ1 and γ2, it is possible to study the root mean squared error (RMSE)
of our estimator and then optimize the parameters for a given precision ε > 0 taking
advantage of our knowledge of the convergence rate of the weak and strong errors. In
[Keb05], we choose an other approach based on proving a central limit theorem (CLT) on
our estimator. The advantage of this approach is that it gives a confidence interval for
the SR estimator which is crucial for Monte Carlo methods and also a precise description
of the choice of the optimal parameters as well. This choice of the parameters does not
depend on any constant thereby avoiding any pre-computation step in the algorithm. To
prove such a CLT on the SR method, we need to know the asymptotic behavior of the
distribution of the Euler scheme’s error. This convergence result was proven by [JP98]
as an improvement on the result given by [KP91]:

√
nUn =:

√
n(Xn −X)

stably
=⇒ U, as n→∞, (1.5)

with U a d-dimensional process satisfying

dUt = ḃ(Xt)Utdt+

q∑
j=1

σ̇j(Xt)UtdW
j
t −

√
T

2

q∑
j,`=1

σ̇j(Xt)σ`(Xt)dW̃
`j
t , (1.6)

where W̃ is a q2-dimensional standard Brownian motion, defined on the extension B̃ =
(Ω̃, F̃ , (F̃t)t≥0, P̃ ) of the original space (Ω,F , (Ft)t≥0, P ) independent of W , and ḃ (re-
spectively (σ̇j)1≤j≤q) is the Jacobian matrix of b (respectively (σj)1≤j≤q).
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Under assumptions (Hψ) and (Hεn), we prove that for γ1 = 2α and γ2 = 2α− β, we
have

nα
(
Vn − Eψ(XT )

)
=⇒σ2G̃+ Cψ(T, α), as n→∞, (1.7)

with σ2
2 = Var(ψ(XT ))+Ṽar

(
∇ψ(XT ) ·UT

)
and G̃ a standard normal. Thus, the optimal

time complexity needed to achieve a precision of order 1/nα is reached for β = 1/2 and
is given by

CSR ∝ n2α+1/2. (1.8)

Thus, in view of (1.4), this clearly means that in this case the SR method outperforms
the standard Monte Carlo method.

1.3 The Statistical Romberg method for density estimation

The problem of density estimation is a wide topic in applied probability and statistics. A
commonly spread approach to deal with such problem is to use a kernel density approach.
The aim is to estimate the density of a non-degenerate diffusion process X that satisfies
the Hörmander condition ( see Section 2.3.2 of [Nua95] ) using the Euler scheme Xn

given in (1.2). Under such assumption, the process X starting at point x0, admits a
smooth density pT (x0, x) ( see [KS85] ) and in order to simplify the notation, we denote
pT (x0, x) := p(x). Let us recall that in this framework, [BT96b] proved that

p(x) = pn(x) +
C

n
+ o(1/n),

where pn(x) is a regularized density of the Euler scheme Xn. For the sake of simplicity,
we first introduce the problem for d = 1. Then, we consider an integrable continuous
function φ : R → R such that

∫
φ(x)dx = 1 and define the kernels functions φh,x(y) :=

1
hφ
(y−x

h

)
, h > 0 and x ∈ R. Note that φh,x → δx as h → 0, in a weak sense, according

to the assumptions on the function φ. Thus, the idea is to approximate the density
p(x) = Eδx(XT ) by Eφh,x(Xn

T ), where h = n−α, α > 0 and then, use a Monte Carlo
method to compute this last quantity. At this stage, two main problems arise when
using this approach:

• Weak error: the first point concerns the evaluation problem of the weak error

εn := Eφh,x(Xn
T )− p(x).

In their work [KHP02], Kohatsu-Higa and Pettersson proved that |εn| ≤ C/n if α ≥
1 and no expansion of the error is provided.

• Variance explosion: the second point concerns the problem of the explosion of
the variance of the r.v. φh,x(Xn

T ). To deal with this problem, Kohatsu-Higa and
Pettersson propose the use of the classic Malliavin integration by parts formula

Eφh,x(Xn
T ) = E (ψh,x(Xn

T )Hn) ,

where ψh,x is the primitive function of φh,x and Hn is the weight given by the
Malliavin calculus. Then, they used a localization method in order to reduce the
variance of the method. However, the disadvantage of this approach is that the
computation time of their algorithm is higher than that of classical Monte Carlo
methods with kernel density functions.

16



In [KKH08], we propose an alternative approach using the kernel estimation method
through the use of the SR algorithm as a control method for variance reduction. It turns
out that the kernels, as proposed before, in general do not lead to variance reduction. To
properly implement the SR method, we consider a subclass of kernel functions known as
super kernels of order s, where s > 2(d + 1) . In more details, we consider a bounded
function φ ∈ C∞b (R;R) with bounded derivatives. The function φ is a super kernel with
order s > 2 if ∫

φ(x) dx = 1,

∫
xiφ(x) dx = 0 ∀i = 1, . . . s− 1.

Moreover, we assume that φ satisfies:∫
R
|x|s+1|φ(x)| dx <∞, and

∫
R
|φ′(x)|2 dx <∞,

∫
R
|φ(x)|l dx for l = 1, 2, 3.

To build super kernels on Rd, we take a product of d unidimensional super kernels. So,
for φi : R → R with i = 1, . . . , d, we consider φ(u1, . . . , ud) = φ1(u1) × · · · × φd(ud) and

φh,x(y) = 1
hd
φ
(
y−x
h

)
=
∏d
i=1 φi,h,x(yi). We say that φ is a super kernel of order s if the

functions φi, i = 1, . . . , d are unidimensional super kernels of order s.
To make our asymptotic study on the use of the SR method for kernel density esti-

mation possible, we have to prove an expansion of the weak error εn. However, in this
setting, the Hörmander condition is not enough to guarantee that the Malliavin covari-
ance matrix, associated to the Euler scheme Xn, is invertible (this would be clearly true
under an ellipticity condition). To deal with this problem, we regularize the Euler scheme
using Xn+Zn,θ instead of Xn, where Zn,θ denotes an independent vanishing random vari-

able defined through the relation Zn,θ := W̄T

n
1
2 +θ

θ ≥ 0, where W̄ := (W q+1, . . . ,W q+d) is

a d-dimensional Brownian motion independent of W . We prove the following result.

Theorem 1.3.1. Let h = n−α, α ≥ 1/s. Then, there exists a constant Cs
φ,p(x) > 0

depending on the super kernel φ, the density p(x) and the parameter s such that

E
[
φh,x

(
Xn
T + Zn,θ

)]
− p(x) =

Cs
φ,p(x)

n
+ o

(
1

n

)
. (1.9)

A kernel density Monte Carlo estimator. Once such expansion (1.9) is obtained,
we are able to have a precise description of the optimal parameters needed for the im-
plementation of a standard Monte Carlo approach. To this aim, we first set h = n−α the
window size of the super kernel with order s with α ≥ 1/s and consider the estimator

Sn :=
1

nγ

nγ∑
i=1

φn−α,x(Xn
T,i + Zin,θ), γ > 0,

where (Xn
T,i)1≤i≤N and (Zin,θ)1≤i≤N are independent copies of Xn

T and Zn,θ. If we choose
γ = 2 + αd, then we prove that

n(Sn − p(x))=⇒σG+ Cs
φ,p(x), as n→∞,

with σ2 = φ2 p(x), φ2 =
∫
Rd |φ(u)|2 du and G a standard Gaussian random variable.

Hence, in order to approximate the density p(x) through a kernel density Monte Carlo

17



method with a precision of order 1/n, the optimal asymptotic choice of the parameters
are h = nα and N = n2+αd, with α ≥ 1/s, where s denotes the order of the super kernel
used for the estimation. This leads to the time complexity CMC ∝ n3+αd. Therefore, the
optimal complexity of this algorithm is given by

C?MC ∝ n3+ d
s . (1.10)

Consequently, we conclude that the larger the order s of the super kernel is, the smaller
the complexity is. Besides, it is worth noticing that it is always possible to construct
super kernels of infinite order using inverse Fourier transform.

A kernel density SR estimator. The SR method involves two Euler schemes with
time steps T/n and T/nβ, with β ∈ (0, 1) and approximates p(x) by

Vn :=
1

nγ1

nγ1∑
i=1

φn−α,x(X̂nβ

T,i + Ẑinβ ,θ)

+
1

nγ2

nγ2∑
i=1

φn−α,x(Xn
T,i + Zin,θ)− φn−α,x(Xnβ

T,i + Zinβ ), with γ1, γ2 > 0. (1.11)

To properly analyze the SR method, we need to prove a central limit theorem that
provides a precise description of the parameters choice. In order to prove such a result,
we extend the limit theorem of [JP98] given in (1.5), by proving a new limit theorem
on the asymptotic behavior of the joint distribution of the Euler scheme error and its
Malliavin derivative.

Theorem 1.3.1. Let (H i
t)0≤t≤T be a continuous sequence of R-valued processes (possibly

non-adapted). Then (
√
nUnT ,

√
n
∫ T

0 H i
sD

i
sU

n
T ds)

stably
=⇒ (UT ,

∫ T
0 H i

sD
i
sUT ds), as n → ∞,

where DiUT is the Malliavin derivative of U with respect to W i and solution of

Di
sUt = σ̇i(Xs)Us +

∫ t

s
ḃ(Xv)D

i
sUv dv +

q∑
j=1

∫ t

s
σ̇j(Xv)D

i
sUv dW

j
v +

∫ t

s
Di
sḃ(Xv)Uv dv

+

q∑
j=1

∫ t

s
Di
sσ̇j(Xv)Uv dW

j
v +

√
T

2

q∑
j,`=1

∫ t

s
Di
s(σ̇j(Xv)σ`(Xv))dW̃

`j
v ,

where W̃ is the q × q-dimensional Brownian motion of the limit process of (1.6).

The above limit theorem is the keystone used in proving a central limit theorem on
the SR estimator given in (1.11). In order to characterize the limit variance, we need to
introduce the following decomposition of the first derivatives of the kernel function φ

∂φ

∂xi
:= φ1

i (x)− φ2
i (x), where φ1

i (x) :=
( ∂φ
∂xi

)
+

and φ2
i (x) :=

( ∂φ
∂xi

)
−
.

We also introduce the constant Cjj
′

ii′ =
∫
Rd φ

j
i (x)φj

′

i′ (x)dx, j, j ∈ {1, 2}, i, i ∈ {1, · · · , d}.
We prove in [KKH08] the following central limit theorem.
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Theorem 1.3.2. Let

σ̃2 :=
2∑

j,j′=1

d∑
i,i′=1

(−1)j+j
′
Cjj

′

ii′

{
E
[
δx(XT )U iTU

i′
T

]
+ Tδii′p(x)1θ=0

}
,

where δx(·) stands for the Dirac delta function, δii′ is the Kroeneker delta function and
θ is the parameter of the regularizing terms in (1.11). Assume that γ1 = 2 + αd,γ2 =
(d+ 2)α+ 2− β and 1/s ≤ α ≤ β/(d+ 2) with 0 < β < 2/3. Then,

n(Vn − p(x))=⇒σ̃G+ Cs
φ,p(x), as n→∞,

where G is a standard Gaussian random variable.

Hence, in order to approach the density p(x) with a precision of order 1/n, the
parameters needed to properly implement the SR algorithm are h = n−α, γ1 = 2 + αd ,
γ2 = n(d+ 2)α+ 2−β with β/(d+ 2) > α ≥ 1/s. Therefore, the time complexity needed
for this algorithm is CSR ∝ nβ+αd+2 + n(d+2)α−β+3, where β/(d+ 2) > α ≥ 1/s. Hence,
for β = 1

2 + α, the SR method reaches an optimal time complexity given by

C?SR ∝ n
5
2

+(d+1)α,

which is clearly better than the optimal complexity of the Monte Carlo method given by
(1.10). Therefore, the Romberg control variate method reduces the time complexity by
a factor of order n1/2−α. Furthermore, taking into account that β/(d+ 2) > α ≥ 1/s, we
see that if one uses super kernels of order s > 2(d+1), we obtain a theoretical asymptotic
optimal parameters choice for the method.

1.4 Asymptotic analysis of the MLMC method

Introduced by Giles [Gil08], the Multilevel Monte Carlo method (MLMC) extends the
statistical Romberg (SR) method of Kebaier [Keb05] from a two-level to L-level Monte
Carlo method with L ≥ 2. It uses a quite similar approach as the Heinrich’s multi-
level method for parametric integration [Hei01]. For more references, we refer to the
web page https://people.maths.ox.ac.uk/gilesm/mlmc_community.html dedicated
to the MLMC research community. In more details, for a diffusion process solution to
(1.1), the MLMC method uses information from a sequence of computations with de-
creasing step sizes and approximates the quantity Eψ(XT ) by

Qn =
1

N0

N0∑
k=1

ψ
(
X1
T,k

)
+

L∑
`=1

1

N`

N∑̀
k=1

(
ψ
(
X`,m`

T,k

)
− ψ

(
X`,m`−1

T,k

))
, m ∈ N \ {0, 1},

where the fine discretization step is equal to T/n, thereby L = logn
logm . For ` ∈ {1, . . . , L},

the processes (X`,m`

t,k , X`,m`−1

t,k )0≤t≤T , k ∈ {1, . . . , N`}, are independent copies of the pro-

cess (X`,m`

t , X`,m`−1

t )0≤t≤T whose components denote the Euler discretization schemes

given by (1.2), with time steps m−`T and m−(`−1)T . However, for fixed `, the simulation

of (X`,m`

t )0≤t≤T and (X`,m`−1

t )0≤t≤T has to be based on the same Brownian path like
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it is the case for the SR method. Concerning the first empirical mean, the processes
(X1

t,k)0≤t≤T , k ∈ {1, . . . , N0} are independent copies of (X1
t )0≤t≤T which denotes the

Euler scheme with time step T . Here, it is important to point out that all these L + 1
Monte Carlo estimators have to be based on different independent samples. Due to the
above independence assumption on the paths, the variance of the multilevel estimator is
given by

Var(Qn) := N−1
0 Var

(
ψ
(
X1
T

))
+

L∑
`=1

N−1
` σ2

` , where σ2
` = Var(ψ(X`,m`

T )− ψ(X`,m`−1

T )).

According to property (P) (resp. (Hεn)), the rate of convergence of the strong error (resp.
weak error) of the Euler scheme is β = 1 (resp. α ∈ [1/2, 1]). Then, if the function ψ is
for instance Lipschitz continuous, it is easy to check that Var(Qn) ≤ c

∑L
`=0N

−1
` m−` for

some positive non-explicit constant c. As already mentioned in Section 1.2, it is possible
to study the root mean squared error (RMSE) of the above estimator and then optimize
the parameters for a given precision ε > 0 taking advantage of our knowledge of the
convergence rates of the weak and strong errors. This is precisely the approach adopted
in [Gil08] whereby for a desired RMSE that should be of the same order as the bias, say
of order 1/nα, the optimal choice is given by

N` = 2cn2α

(
log n

logm
+ 1

)
T

m`
for ` ∈ {0, . . . , L} and L =

log n

logm
. (1.12)

Hence, for a precision εn = 1/nα, this optimal choice leads to a time complexity for the
MLMC method proportional to ε−2

n (log εn)2, which is clearly better than the complexities
performed by the SR and MC methods (see (1.8) and (1.4)). Interesting numerical
tests, comparing the performance of the three methods in several specific examples were
processed in Korn, Korn and Kroisandt [KKK10].

Before presenting our main contributions, let us first mention the main advances
around the MLMC methods topic. Recently, Lemaire and Pagès [LP17] introduced a
Multilevel Richardson-Romberg (MLRR) estimator combining the Multistep Richardson-
Romberg method introduced in [Pag07] and the MLMC method. In more details, when
the strong error of the discretization scheme is of order β = 1 and the weak error
Eψ(Xn

T )− Eψ(XT ) can be expanded at any order in n, then the global time complexity
of the MLRR method is proportional to ε−2

n log(1/εn) instead of ε−2
n (log(1/εn))2 with

the standard MLMC method. When the strong error of the discretization scheme is

of order n
−β
2 , β < 1, the gain of MLRR over MLMC becomes even more pronounced.

If other discretization schemes with higher order of strong convergence rate β > 1 (as
the Milstein scheme for instance [KP95]) are used instead of the Euler scheme, then for
the same precision εn, the optimal time complexity of the MLMC method reaches the
coveted minimal order ε−2

n , so that it behaves exactly like an unbiased MC estimator.
However, the practical implementation of these schemes with higher order of strong con-
vergence rate is not always possible. This is the case of the Milstein’s scheme whose
implementation requires the simulation of iterated Itô integrals better known as Lévy ar-
eas for which there is no known efficient method especially in a multidimensional setting
[GL94, RW01, Wik01]. To overcome this difficulty, Giles and Szpruch [GS14] introduced
a new MLMC estimator with the Milstein scheme but with cancelling the Lévy areas.

20



Then an antithetic multilevel correction is embedded in the new estimator to take into
account of the neglected Lévy areas. Thus, under additional regularity assumptions on
the payoff function and the diffusion process coefficients, Giles and Szpruch [GS14] show
that the antithetic multilevel Monte Carlo estimator reaches the optimal time complexity
ε−2
n . Also, Debrabant and Rössler [DRl15] suggest to use a scheme with high order of

weak convergence on the finest grid at the finest level L of the MLMC method. This ap-
proach reduces the constant in the computational complexity by decreasing the number
of discretization levels. Inspired by [DRl15], Al Gerbi, Jourdain and Clément [AGJC16]
improved the MLMC estimator of Giles and Szpruch [GS14] suggesting to combine the
Ninomiya-Victoir scheme, known for having a weak convergence rate of order α = 2, on
the finest grid at the finest level L with Giles-Szpruch antithetic estimator. A full study
with new results comparing the performance of all these methods through advanced and
challenging practical examples can be found in [Gio17].

Most of the above mentioned works used the Gile’s approach based on finding the
optimal parameters that minimize the computational complexity for a given precision.
In [BAK15], we choose an alternative approach proving a central limit theorem on the
MLMC method with an Euler discretization scheme. We get the following result.

Theorem 1.4.1. Assume that b and σ are C 1 functions satisfying the global Lipschitz
condition (HGL

b,σ ). Let the payoff function ψ be a real-valued function satisfying condition
(Hψ) and ∣∣ψ(x)− ψ(y)

∣∣ ≤ C(1 + |x|p + |y|p
)
|x− y| for some C, p > 0. (1.13)

Assume that condition (Hεn) is satisfied for some α ∈ [1/2, 1] and constant Cψ(T, α).
Moreover, let us consider a real sequence (a`)`≥1 of positive weights satisfying condition

(W) lim
n→∞

L∑
`=1

a` =∞ and lim
n→∞

1(∑L
`=1 a`

)p/2 L∑
`=1

a
p/2
` = 0, for p > 2.

For the choice of N`, ` ∈ {0, 1, . . . , L} given by

N` =
n2α(m− 1)

m`a`

L∑
`=1

a`, ` ∈ {0, . . . , L} and L =
log n

logm
, (1.14)

we have nα
(
Qn−E

(
ψ(XT )

))
=⇒ N

(
Cψ(T, α), σ2

)
, as n→∞, with σ2 = Ṽar(∇ψ(XT ).UT )

and N (Cψ(T, α), σ2) denotes a normal distribution and U is the limit process solution to
(1.6).

In order to be able to show this result, we first prove a stable law convergence theorem,
for the Euler scheme error between two consecutive levels m`−1 and m`, of the type
obtained in Jacod and Protter [JP98]. Indeed, we prove the following functional limit
theorem √

mn

(m− 1)
(Xmn −Xn)

stably
=⇒ U, as n→∞. (1.15)

In fact, their result, namely

√
n(Xn −X)

stably
=⇒ U, as n→∞, (1.16)
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is not sufficient to prove our Theorem 1.4.1, since the MLMC method involves the error
process Xmn−Xn rather than Xn−X. However, we can recover (1.16) if we informally
allow m =∞ in (1.15)

This generic form (1.14) for N` allows us a straightforward use of the Toeplitz lemma,
which is a crucial tool used in the proof of our central limit theorem. From a complexity
analysis point of view, we can interpret Theorem 1.4.1 as follows. For a precision of order
1/nα, the computational effort necessary to properly implement the MLMC method is
given by the sequence of sample sizes specified by relation (1.14). The associated time

complexity is given by CMLMC ∝ n2α(m−1)T
a0

∑L
`=1 a` + n2α (m2−1)T

m

∑L
`=1

1
a`

∑L
`=1 a`. The

minimum of the second term of this complexity is reached for the choice of weights a∗` = 1,
` ∈ {1, . . . , L} and the optimal complexity is given by

C?MLMC ∝ n2α(log n)2.

It turns out that for a given precision εn = 1/nα, the complexity is given by CMLMC =
O(ε−2

n (log εn)2). Note that this optimal choice a∗` = 1, ` ∈ {1, . . . , L}, with taking a0 = 1
corresponds to the sample sizes given by

N` =
(m− 1)

m` logm
n2α log n, ` ∈ {0, . . . , L}.

Hence, our optimal choice is consistent with that proposed by Giles [Gil08]. Nevertheless,
unlike the parameters obtained in [Gil08] for the same setting (see relation (1.12)), our
optimal choice of the sample sizes N`, ` ∈ {1, . . . , L} does not depend on any given
constant, since our approach is based on proving a central limit theorem and not on
getting upper bounds for the variance. It is worth noticing that an other advantage of the
CLT approach is to construct a more accurate confidence interval. In fact, for a given root
mean square error RMSE, the radius of the 90%-confidence interval constructed by the
CLT is 1.64× RMSE. However, without this latter result one can only use Chebyshev’s
inequality which yields a radius equal to 3.16×RMSE. Furthermore, we compare the
performance of the numerically optimized MLMC algorithm of Giles available on https:

//people.maths.ox.ac.uk/gilesm/mlmc/ and the MLMC method equipped with our
optimal parameters. Here, we emphasize that our algorithm is easier to implement, since
it does not require any pre-computation step. The Figure 1.1 shows that both methods
are perfectly online.

Then, in [BAK14], we investigate the application of this method to the pricing of
Asian option call

e−rTE (IT −K)+, where IT :=
1

T

∫ T

0
Su du,

under the Black-Scholes model St = S0 exp
(
(r− σ2

2 )t+ σWt

)
, where S0 > 0. We use the

Riemann scheme to approximate the integral in the payoff process InT = 1
n

∑n−1
k=0 Skδ. It

was shown in Lapeyre and Temam [LT01] that this approximation is of second order and
the associated weak error εn is of order n−1. At first, we study the asymptotic behavior
of the error distribution and prove that, as n→∞, we have

mn√
m2 − 1

(Imn − In)
stably
=⇒ ξ, where ξt :=

√
m− 1

m+ 1

St − S0

2
+

1

2
√

3

∫ t

0
σSudBu,
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Figure 1.1: Comparison of both routines.

with B a standard Brownian motion on an extension B̂ of B, which is independent of W .
Taking advantage of this study, we establish thanks to a new choice of the sample sizes
(N`)0≤`≤L a Lindeberg Feller central limit theorem type for the MLMC algorithm:

QIn = f(s0) +

L∑
`=1

1

N`

N∑̀
k=1

(
f(I`,m

`

T,k )− f(I`,m
`−1

T,k )
)
, where f(x) = e−rT (x−K)+.

Actually, we choose

N` =
n2(m2 − 1)

m2`a`

L∑
`=1

a`, ` ∈ {0, · · · , L} and L =
log n

logm
, (1.17)

with positive weights (a`)`≥1 satisfying condition (W) and we prove that for an explicit
constant CIf , we have

n
(
QIn − E (f(IT ))

)
⇒ N

(
CIf , Ṽar

(
f ′(IT )ξT

))
.

We proved a similar result for the trapezoidal scheme. In other words, to achieve a
precision of order 1/n, when pricing Asian option calls, the MLMC method needs the
sample sizes (N`)0≤`≤L given by relation (1.17). Consequently, the computational com-

plexity corresponds to CMLMC ∝ (m+1)2(m−1)
m n2

∑L
`=1

1
m`a`

∑L
`=1 a`. The minimum of this

complexity is reached for the choice of weights a∗` = m−`/2 which yields

N?
` =

m2 − 1

m3`/2(
√
m− 1)

n2

(
1− 1√

n

)
and C

a∗`
MLMC ∝ n

2.

Even if this choice is consistent with the complexity analysis of Theorem 3.1 in [Gil08],
when taking β = 2, we draw attention that it does not satisfy our technical condition (W)
which is essential to check the classical Lyapunov type condition. However, numerical
tests seem to confirm the validity of the central limit theorem for this choice (see Figure
1.4). Nevertheless, we provide a sequence (a`)1≤`≤L satisfying assumption (W) and
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Figure 1.2: Numerical tests for the optimal choice a∗` = m−`/2.

letting the computational complexity quite close to the optimal n2 effort. Indeed, for

ā` = 1/(` log `), we get N̄` =
(m2 − 1)` log `

m2`
n2
∑L

`=1
1

` log ` and C ā`MLMC ∝ n2 log log log n.

It is worth noticing that the above complexity analysis remains valid for any discretization
scheme having a strong convergence rate β = 2.

1.5 Non-asymptotic analysis of the MLMC method

In [JK17], we are interested in deriving non asymptotic error estimations for the MLMC
estimator

Q̂ =
1

N0

N0∑
k=0

f(X1
T,k) +

L∑
`=0

1

N`

N∑̀
k=1

(
f(Xm`

T,k)− f(Xm`−1

T,k )
)
. (1.18)

For ` ∈ {0, · · · , L}, the processes ((Xm`

t,k )0≤t≤T )k denote independent copies of the Euler

discretization scheme with time step m−`T of the Rd-valued solution to the stochastic
differential equation with additive noise

dXt = b(Xt)dt+ dWt, X0 = x0 ∈ Rd, (1.19)

driven by the d-dimensional Brownian motion W = (W 1, . . . ,W d) and with Lipschitz
drift function b : Rd → Rd. When d = 1, this additive noise setting is not restrictive.
Indeed any stochastic differential equation dYt = σ(Yt)dWt + η(Yt)dt with multiplica-
tive noise given by some function σ : R → R∗+ such that 1

σ is locally integrable can

be reduced to (1.19) by the Lamperti transformation: for ϕ(y) =
∫ y
y0

dz
σ(z) , Xt = ϕ(Yt)

solves (1.19) with b(x) =
(
η
σ −

σ′

2

)
(ϕ−1(x)). Let us recall that, since the diffusion coef-

ficient is constant, the Euler scheme coincides with the Milstein scheme and if b belongs
to C 2(Rd,Rd) with bounded derivatives, then the strong error estimation improves to

E
[
sup0≤t≤T |Xt −Xn

t |p
]
≤ Kp(T )

np , with Kp(T ) <∞ (see for instance Milstein [Mil95]).

We prove Gaussian type concentration inequalities for Q̂ − E[f(XT )]. Recently,
Frikha and Menozzi [FM12] derived concentration inequalities for f(Xn

T ) − E[f(Xn
T )]
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which appears in the classical Monte Carlo method. However, estimating the moment
generating function of the differences f(Xmn

T ) − f(Xn
T ) − E[f(Xmn

T ) − f(Xn
T )] which,

for n ∈ {1,m, . . . ,mL−1}, appear in Q̂ − E[f(XT )] is a much more delicate task and
adapting their approach seems to be problematic. Nevertheless, the boundedness of the
Malliavin derivatives DXn

T and DXmn
T in the additive noise setting permits to follow the

approach of Houdré and Privault [HP02] based on the Clark-Ocone formula and this is
one reason why we focus on their approach. Another reason is that for stochastic differ-
ential equations with multiplicative noise, more sophisticated schemes, like the Milstein
scheme in the commutative case or the Giles and Szpruch [GS14] scheme in the general
case, are necessary to improve to two the order one of convergence of the variance of
(f(Xm`

T )− f(Xm`−1

T ))2 and recover the unbiased Monte Carlo complexity.

1.5.1 MLMC parameters optimization revisited

In light of this non-asymptotical analysis, we first refresh the mean square error analysis
carried out by Giles [Gil08] for discretization schemes with strong convergence rate β > 1.
We prove under

Assumption (R1)

The function b ∈ C 2(Rd,Rd) and there exist finite constants [ḃ], a∆b > 0 such that

∀x ∈ Rd, ‖∇b(x)‖ ≤ [ḃ]∞,

∀x ∈ Rd, |∆b(x)| ≤ 2a∆b(1 + |x− x0|), (1.20)

that for some explicit positive constants K1,∞ and K1,m we have

E
[(
Q̂− E[f(XT )]

)2
]
≤ [ḟ ]2∞

(
K1,∞T

2

m2L
+

T

N0
+

L∑
`=1

K1,m(m− 1)T 2

N`m2`−1

)
.

Therefore, to achieve a root mean square error ε > 0, one should choose [ḟ ]∞T
√
K1,∞/m

L <
ε. For such a choice, one should then choose (N`)0≤`≤L such that

L∑
`=1

m+ 1

N`m2`+1
+
C2

N0
≤ m+ 1

K1,mm2(m− 1)

(
ε2

[ḟ ]2∞T
2
− K1,∞

m2L

)
, (1.21)

where C = 1
m

√
m+1

K1,m(m−1) minimizing the computation cost which is equal to N0 +∑L
`=1N`(m+1)m`−1. This constrained minimization problem leads toN0 = N C

C+
∑L
`=1m

−3`/2

and N` = N m−3`/2

C+
∑L
`=1 m

−3`/2
, where the total number N of simulations is chosen in order

to achieve equality in (1.21) :

N =

(
C +

L∑
`=1

m−3`/2

)(
C +

m+ 1

m
× 1−m−L/2√

m− 1

)
K1,mm

2(m− 1)[ḟ ]2∞T
2

(m+ 1)(ε2 − [ḟ ]2∞T
2K1,∞m−2L)

.

Then, the computation cost is given by Cost(m,m−L), where

Cost(m,x) =

(
C +

m+ 1

m
× 1−

√
x√

m− 1

)2
K1,mm

2(m− 1)[ḟ ]2∞T
2

(m+ 1)(ε2 − [ḟ ]2∞T
2K1,∞x2)

.
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After some optimization steps, we end up with optimal Lε, N ε and N ε
` solving this

problem. It turns out that as expected from [Gil08], Cost(m,m−L
ε
) = O(ε−2) as ε→ 0

for fixed m and N ε = O(ε−2). However, the bias term [ḟ ]∞T
√
K1,∞m

−Lε behaves as

O(ε4/3). To the best of our knowledge, such a 4/3 order of convergence of the bias does
not appear in the existing multilevel Monte Carlo methods literature.

1.5.2 Concentration bounds

Let us first introduce the following condition.

Assumption (R2)

The function b ∈ C 3(Rd,Rd) and satisfies assumption (R1). Moreover, there exist finite
constants [b̈]∞, a∇∆b > 0 such that

∀j ∈ {1, . . . , d}, ∀x ∈ Rd,
∥∥∥∥∂∇b∂xj

(x)

∥∥∥∥ ≤ [b̈]∞

∀x ∈ Rd, ‖∇∆b(x)‖ ≤ 2a∇∆b(1 + |x− x0|). (1.22)

Thanks to a clever decomposition of the error difference between the crude Euler scheme
with n steps and the finer one with mn steps, we provide estimates of the moment
generating functions of this squared difference and its Malliavin derivative. These two
results lead us to prove the following concentration inequality on the MLMC algorithm.

Theorem 1.5.1. Let assumption (R2) hold and f ∈ C 1(Rd,R) be a Lipschitz con-
tinuous function with constant [ḟ ]∞ and such that ∇f is also Lipchitz with constant
[ḟ ]lip. Then, there exist explicit positive constants C1 and C2 such that for all 0 ≤ α ≤
2[ḟ ]2∞

(
T

2N0
+
∑L

`=1
C1(m−1)T 2

N`m2`−1

)
C2 min1≤`≤Lm

`N`, the MLMC estimator (1.18) satisfies

P
(
|Q̂− Ef(XT )| ≥ α

)
≤ 2 exp

−
(
α− [ḟ ]∞T

√
K1,∞

mL

)2

2[ḟ ]2∞

(
T
N0

+
∑L

`=1
2C1(m−1)T 2

N`m2`−1

)
 .

Notice that the factor [ḟ ]2∞

(
T
N0

+
∑L

`=1
2C1(m−1)T 2

N`m2`−1

)
in the denominator is closely

related to the non-asymptotic upper-bound [ḟ ]2∞

(
T
N0

+
∑L

`=1
K1,m(m−1)T 2

N`m2`−1

)
of the vari-

ance of Q̂ derived in Section 1.5.1. Following the discussion and notations of this latter
subsection, for ε small enough, we consider Q̂ε the MLMC estimator (1.18) with the opti-

mal parameters Lε, N ε and N ε
` leading to the a bias

[ḟ ]∞T
√
K1,∞

mLε
= O(ε4/3) and optimal

Cost(m,m−L
ε
) = O(ε−2) as ε → 0. We rewrite the above concentration inequality as

follows: there exist explicit positive constants c1, c2 and c3 such that for ε small enough
and 0 ≤ α ≤ c1ε

2/3, we have

P
(
|Q̂ε − Ef(XT )| ≥ α

)
≤ 2 exp

(
−
(
α− c2ε

4/3
)2

c3ε2

)
≤ 2 exp

(
2c1c2

c3

)
exp

(
− α2

c3ε2

)
.
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Then, we provide an alternative choice of the parameters that does not increase
neither the root mean square error ε nor the order in ε of the computational cost of the
MLMC estimator and for which the upper bound on the deviation parameter α is larger

than c1ε
2/3. Namely, for β > 1, we set N ε,β

` = N ε
` ×

m
`−1

2

m
`−1

2 ∧`β
for ` ∈ {1, . . . , Lε} and

Q̂ε,β =
1

N ε
0

Nε
0∑

k=0

f(X1
T,k) +

Lε∑
`=1

1

N ε,β
`

Nε,β∑̀
k=1

(
f(Xm`

T,k)− f(Xm`−1

T,k )
)
.

Since for each `, N ε,β
` ≥ N ε

` , the root mean square error of Q̂ε,β is not greater than the one

of Q̂ε and therefore than ε. Moreover, as ε→ 0, the computational cost of Q̂ε,β is O(ε−2).

Further, for ε small enough min1≤`≤Lεm
`N ε,β

` = Nεm−1/2

(Lε)β(C+
∑Lε

`=1m
−3`/2)

= O(ε−2 lnβ(1/ε)).

Hence, for this new choice we get the following concentration inequality : for β > 1,
there exist explicit positive constants c4, c5 and c6 such that for ε small enough and
0 ≤ α ≤ c4 lnβ(1/ε), we have

P
(
|Q̂ε,β − Ef(XT )| ≥ α

)
≤ 2 exp

(
−
(
α− c5ε

4/3
)2

c6ε2

)
.

1.6 Perspectives

A Multilevel Monte Carlo algorithm for jump diffusions. The aim of this current
project is to study the use of MLMC methods with stochastic differential equations driven
by a Lévy process instead of a Brownian motion. These processes are an excellent tool for
modeling the underlying price in mathematical finance, see for instance Cont and Tankov
[CT04]. When the Lévy process has a Brownian component, the rate of convergence of
the MLMC method was already studied by Dereich and Li [DL16]. Their result does
not cover the case of a stochastic differential equation driven by a pure-jump process.
This topic is a part of the PhD project of Trâm Ngô that we currently co-supervise with
Mohamed Ben Alaya.

Optimized Multilevel Monte Carlo methods for jump diffusion processes.
With Arturo Kohatsu-Higa, we plan to provide an alternative scheme to the antithetic
Multilevel Monte Carlo method introduced by Giles and Szpruch in [GS14]. Our ap-
proach is based on stochastic flow techniques. The advantage of this new approach is
that it can be carried out for jump diffusion processes allowing the MLMC method in
this latter case to behave exactly like an unbiased MC estimator.

Concentration inequalities for MLMC methods for SDEs with multiplica-
tive noise. A natural question is to extend the concentration bounds obtained for the
MLMC in the setting of additive noise SDEs (see Section 1.5) to the multidimensional
multiplicative noise setting. This question is quite challenging since our technical ap-
proach based on the Clark-Ocone formula cannot be used due to the unboundedness of
the Malliavin derivative of the Euler discretization scheme. Also, using the approach
of Frikha and Menozzi [FM12] based on tensorization type arguments seems to be very
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problematic even in the additive noise case. With Benjamin Jourdain, we then hope to
develop new techniques allowing us to study the moment-Laplace generating function of
f(Xmn

T )− f(Xn
T )− E[f(Xmn

T )− f(Xn
T )] in the general multiplicative noise setting.

28



Chapter 2

Coupling Importance Sampling
and Multilevel Monte Carlo

2.1 Introduction

In the implementation of Monte Carlo methods, one of the main concerns of practitioners
is to reduce the associated variance to get more accurate estimations. Among the known
variance reduction techniques we focus on the popular importance sampling method. In
more details, if one has to use a Monte Carlo method to approximate Eψ(XT ), where
(Xt)0≤t≤T is solution to (1.1), as usually the case, a Girsanov transform is applied to
produce a shift parameter θ, so that

Eψ(XT ) = Eg(θ,Xθ
T ,WT ), where g(θ,Xθ

T ,WT ) = ψ(Xθ
T )e−θ·WT− 1

2
|θ|2T . (2.1)

Here, g : Rq × Rd × Rq → R, and (Xθ
t )0≤t≤T is solution to

dXθ
t =

b(Xθ
t ) +

q∑
j=1

θjσj(X
θ
t )

 dt+

q∑
j=1

σj(X
θ
t )dW j

t . (2.2)

Note that the case θ = 0 corresponds to the stochastic differential equation satisfied by
(Xt)0≤t≤T . Then, it seems natural to implement a Monte Carlo procedure using the
optimal θ∗ solution to the problem

θ∗ = arg min
θ∈Rq

Eg2(θ,XT ,WT ),

since the quantity Eg2(θ,XT ,WT ) denotes the main term of the limit variance in the
central limit theorem associated to the Monte Carlo method. But what about the effective
computation of θ∗? Two strategies are possible:

N The first one consists on using stochastic algorithms of Robbins-Monro type to
construct recursively a sequence of random variables (θi)i∈N that approximates ac-
curately θ∗. Nevertheless, making this routine converge requires a quite restrictive
non explosion condition (NEC) (see e.g. [BMP90, Duf96, KY03]), assuming that
E
[
∇θg2(θ,XT ,WT )

]
has a sub-quadratic growth in 1 + |θ|2, which is clearly not

satisfied in our setting. To avoid this restrictive condition, two improved versions
of this routine are proposed in the literature:
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• The first one is based on a truncation procedure introduced by Chen et al.
[CZ86, CLG88] and investigated later by several authors (see, e.g. Andrieu,
Moulines and Priouret in [AMP05] and Lelong in [Lel08]). The use of this tech-
nique in the context of importance sampling is initially proposed by Arouna
in [Aro04] and investigated afterward by Lapeyre and Lelong in [LL11].

• The second alternative is more recent and introduced by Lemaire and Pagès
in [LP10]. Indeed, they introduce an unconstrained procedure by using exten-
sively the regularity of the involved density and they prove the convergence of
this algorithm. In what follows, these two methods will be called respectively
constrained and unconstrained algorithms.

In a different setting, namely that of pure-jump Lévy processes, Kawai [Kaw09] uses
a constrained version of the Robbins-Monro algorithm to approximate the optimal
shift θ reducing the variance of the Monte Carlo method.

N The second strategy is proposed by Jourdain and Lelong [JL09], in a Brownian
diffusion setting and consists on using deterministic optimization techniques for
the empirical Monte Carlo estimator to approximate the optimal shift parameter.

The content of this chapter follows from :

• the results contained in [BAHK15] and [BHK16], in which we extend the use of the
constrained and unconstrained versions of the Robbins-Monro algorithms for the
Multilevel Monte Carlo (MLMC) methods in the setting of Brownian diffusions,

• the results of [BAHK16], in which we introduce a novel concept allowing the use of
MLMC methods in the setting of pure-jump Lévy processes where no discretization
schemes are involved. In this context, we also provide adaptive MLMC algorithms
integrating efficient importance sampling procedure,

• the results of [KL17] that extend the works of [JL09] to the MLMC setting.

2.2 Importance Sampling and Statistical Romberg method:
a stochastic algorithm approach for Brownian diffu-
sions

In [BAHK15], we consider the problem of approximating Eg(θ,Xθ
T ,WT ) introduced in

(2.1) using an adaptive version of the Statistical Romberg (SR) method, which auto-
matically computes the optimal parameter shift reducing the corresponding variance.
Regarding the latter, in view of (1.7) the variance optimizer is defined by

θ∗ = argmin
θ∈Rq

v(θ) with v(θ) := Ẽ
([
ψ(Xθ

T )2 + (∇ψ(Xθ
T ) · U θT )2

]
e−2θ.WT−|θ|2T

)
,(2.3)

where U θ is the weak limit process of the error
√
n(Xn,θ −Xθ) defined on the extension

B̃ of the original probability space B and solution to

dU θt =

ḃ(Xθ
t ) +

q∑
j=1

θj σ̇j(X
θ
t )

U θt dt+

q∑
j=1

σ̇j(X
θ
t )U θt dW

j
t −

1√
2

q∑
j,`=1

σ̇j(X
θ
t )σ`(X

θ
t )dW̃ `j

t .

(2.4)
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As v(θ) is not explicit, we use the Euler scheme to approximate (Xθ, U θ) by (Xn,θ, Un,θ)
and we choose the associated

θ∗n := argmin
θ∈Rq

vn(θ) with vn(θ) := Ẽ
([
ψ(Xn,θ

T )2 + (∇ψ(Xn,θ
T ) · Un,θT )2

]
e−2θ.WT−|θ|2T

)
.

(2.5)
We prove a first result on the convergence of the variance optimizer of the discretized
problem θ∗n toward θ∗.

Theorem 2.2.1. Suppose σ and b are in C 1,1
b

∗ and let the payoff function ψ satisfying
P(ψ(XT ) 6= 0) > 0, P(ψ(Xn

T ) 6= 0) > 0 together with condition (1.13). Then, θ 7→ v(θ)
and θ 7→ vn(θ) are C 2 strictly convex functions and there exist unique θ∗ and θ∗n such
that minθ∈Rq v(θ) = v(θ∗) and minθ∈Rq vn(θ) = vn(θ∗n). Moreover, we have

θ∗n−→θ∗ as n→∞. (2.6)

The above regularity assumptions on the coefficients diffusions are essential to control
the strong convergence rate of the error U θ−Un,θ. Now, following the classical Robbins-
Monro approach, we construct recursively a sequence of random variables (θni )i∈N in Rq
by adding independent innovations as follows

θni+1 = θni − γi+1H(θni , X
n
T,i+1, U

n
T,i+1,WT,i+1), i ≥ 0, θn0 ∈ Rq, (2.7)

where (θ, x, u, w) 7→ H(θ, x, u, w) := (θT − w)
[
ψ(x)2 + (∇ψ(x) · u)2

]
e−θ·w+ 1

2
|θ|2T and

(γi)i≥1 is a decreasing sequence of positive real numbers satisfying
∑∞

i=1 γi = ∞ and∑∞
i=1 γ

2
i <∞. Since the (NEC) condition is clearly not satisfied in this context, we then

use two different versions of the Robbins-Monro procedure.

2.2.1 The constrained stochastic algorithm

To avoid explosion in (2.7), the constrained algorithm as introduced by Chen et al.
[CZ86, CLG88] uses a repeated random truncation each time the algorithm leaves a
slowly growing compact set sequence to wait for stabilization. In [BAHK15], we develop
this routine to approximate the variance optimize θ∗ of the SR method. In more details,
let (Ki)i∈N denote an increasing sequence of compact sets satisfying ∪∞i=0 Ki = Rd and

Ki (
◦
Ki+1, ∀i ∈ N. For θn0 ∈ K0, αn0 = 0, we define the sequence (θni , α

n
i )i∈N recursively

by 
if θni − γi+1H(θni , X

n
T,i+1, U

n
T,i+1,WT,i+1) ∈ Kαni , then

θni+1 = θni − γi+1H(θni , X
n
T,i+1, U

n
T,i+1,WT,i+1), and αni+1 = αni

else θni+1 = θn0 and αni+1 = αni + 1.

(2.8)

Actually, as we can see, if the (i + 1)th iteration of the Robbins-Monro recursion is in
the compact set Kαni , then the algorithm will behave like a regular one. However, if the

(i + 1)th iteration is outside the compact set Kαni , it is started over with a new larger
compact set Kαni +1, for the next shot. Under assumptions of Theorem 2.2.1, we easily
prove that the above randomly truncated recursion satisfies

lim
i,n→∞

θni = lim
i→∞

( lim
n→∞

θni ) = lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s. (2.9)

∗For an integer k ≥ 1 and δ ∈ [0, 1], we denote by C k,δ
b the set of functions g in C k with kth order

partial derivatives globally δ-Hölder and all partial derivatives up to kth order bounded. In case δ = 0
we simply use the usual notation C k

b .
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2.2.2 The unconstrained stochastic algorithm

In practice, it is known that tuning the above random truncation is not always an easy
task. Lemaire and Pagès [LP10] proposed an alternative stochastic algorithm without
resorting to random truncation techniques. In [BAHK15], we follow their approach to de-
velop an unconstrained stochastic algorithm reducing the variance of the SR method. To
do so, we first apply Girsanov’s theorem with a shift parameter −θ to get a new represen-

tation of ∇vn(θ) = Ẽ
[
(2θT −WT )

[
ψ(X

n,(−θ)
T )2 + (∇ψ(X

n,(−θ)
T ) · Un,(−θ)T )2

]
e|θ|

2T
]
. The

aim now is to find the unique zero of the above function. Then, we approximate the
optimal shift parameter θ∗ by the following recursion

θni+1 = θni − γi+1H̃η(θ
n
i , X

n,(−θni )
T,i+1 , U

n,(−θni )
T,i+1 ,WT,i+1), θ0 ∈ Rq, (2.10)

where for a given η > 0,

H̃η(θ,X
n,(−θ)
T , U

n,(−θ)
T ,WT ) = e−η|θ|

2T (2θT−WT )
[
ψ(X

n,(−θ)
T )2 + (∇ψ(X

n,(−θ)
T ) · Un,(−θ)T )2

]
.

The main idea here is that the coefficient e−η|θ|
2T makes the above algorithm satisfy the

(NEC) condition without changing its limit.

On the one hand, under assumptions of Theorem 2.2.1, we prove that the routine
(2.10) satisfies:

(•) For all n ∈ N, θni −→
i→∞

θ∗n P̃-a.s.

(••) The sequence (θi)i≥0, obtained when replacing in routine (2.10) (Xn
T,i, U

n
T,i)i≥1 by

their limit (XT,i, UT,i)i≥1, satisfies θi −→
i→∞

θ∗, P̃-a.s.

Hence, combining (•) with (2.6) yields lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s.

On the other hand, studying the limit of θni as n tends to infinity looks more compli-
cated to achieve, since for a fixed i ≥ 0 the stochastic term θni also appears in the drift part

of the pair (X
n,(−θni )
T,i+1 , U

n,(−θni )
T,i+1 ). To overcome this technical difficulty we strengthen our

assumptions on the triplet (b, σ, ψ) and prove that the processes given by (X
(−θ)
t )t∈[0,T ]

and (U
(−θ)
t )t∈[0,T ] have modifications of C 1 with respect to the parameter θ and their

partial derivatives are Lp-bounded for all p ≥ 1. This allows us to prove the following
technical result.

Theorem 2.2.2. Let b and σ in C 2,δ
b , δ > 0. Assume that ψ is C 2 with polynomial growth

as well as all its partial derivatives until order two and satisfies P(ψ(XT ) 6= 0) > 0 and
P(ψ(Xn

T ) 6= 0) > 0, for all n ≥ 1. Then, ∀i ∈ N and ∀p ≥ 1, there exists C > 0 depending
only on i, p, b, σ and T , such that

∀n ∈ N∗, Ẽ|θni+1 − θi+1|2p ≤
C

np
.

Consequently, ∀i ∈ N θni −→n→∞ θi P̃-a.s.
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Thus, combining this last result with (••) we deduce that the sequence given by the
unconstrained recursion (2.10) satisfies

lim
i,n→∞

θni = lim
i→∞

( lim
n→∞

θni ) = lim
n→∞

( lim
i→∞

θni ) = θ∗, P̃-a.s. (2.11)

So, the same result as for the constrained algorithm (2.9) is satisfied, but under additional
regularity assumptions.

2.2.3 A central limit theorem for the adaptive SR algorithm

The double limit results obtained above are crucial for the study of the asymptotic
normality of the adaptive SR method. For β ∈ (0, 1), γ1 > 1, γ2 > 1 and g(θ, x, y) =

ψ(x)e−θ·y−
1
2
|θ|2T with x ∈ Rd and y ∈ Rq, this latter method is given by

Vn :=
1

nγ1

nγ1∑
i=1

g(θ̂n
β

i , X̂
nβ ,θ̂mi
T,i+1 , ŴT,i+1)

+
1

nγ2

nγ2∑
i=1

(
g(θni , X

n,θni
T,i+1,WT,i+1)− g(θni , X

nβ ,θni
T,i+1 ,WT,i+1)

)
, (2.12)

where (θni )i≥0,n≥1 is any of the double indexed sequences (2.8) or (2.10) satisfying respec-
tively (2.9) or (2.11) with the corresponding regularity assumptions given respectively in
Theorem 2.2.1 or Therem 2.2.2. Moreover, for a payoff function ψ satisfying (Hψ), (Hεn)
with constant Cψ(T, α) ∈ R and α ∈ (1/2, 1] (see Section 1.1), if we choose N1 = n2α,
N2 = n2α−β, then

nα (Vn − Eψ(XT )) =⇒ N
(
Cψ(T, α), σ2

)
, as n→∞,

where σ2 := Ẽ
[(
ψ(XT )2 + [∇ψ(XT ) · UT ]2

)
e−θ

∗·WT− 1
2
|θ∗|2T

]
− [Eψ(XT )]2. The same

computational complexity analysis as in Section 1.2 holds with β? = 1/2. Then, we
provide in Section 5 of [BAHK15] numerical tests in which we show the gain obtained
when using the SR method combined with importance sampling over a classical Monte
Carlo method combined with Importance sampling to price European calls in the Heston
model.

2.3 Importance Sampling and MLMC method: a stochas-
tic algorithm approach for Brownian diffusions

In [BHK16], we focus on extending the results of the previous section to the setting of
MLMC methods. Following the same notations, the variance optimizer in this case is,
according to Theorem 1.4.1, defined by

θ∗ = arg min
θ∈Rq

v(θ) where v(θ) := Ṽar
(
∇ψ(Xθ

T ) · UT
)
. (2.13)
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At this stage, we come up with a new idea by changing the way of approximating θ∗.
More precisely, we suggest to approximate θ∗ by θ∗` := arg min

θ∈Rq
v`(θ), with

v`(θ) :=E

(√ m`

(m− 1)
(ψ(Xm`,θ

T )− ψ(Xm`−1,θ
T ))

)2


=E

(√ m`

(m− 1)
(ψ(Xm`

T )− ψ(Xm`−1

T ))

)2

e−θ·WT+ 1
2
|θ|2T

 , for ` ≥ 1, (2.14)

v0(θ) :=E
[
ψ(Xm0

T )2e−θ·WT+ 1
2
|θ|2T

]
. (2.15)

Unlike (2.5), this new variance associated to the MLMC is only based on the discretization
of the process X and does not involve ∇ψ, so clearly it is more convenient in practice.
Now, let us introduce the following assumption

(Rψ,a) :

{
Conditions (Hψ) and (1.13) are satisfied and P((∇ψ(XT ) · UT ) 6= 0) > 0.
There exists a > 1 such that E

[
|∇ψ(XT )|2a

]
<∞.

Proposition 2.3.1. Let assumption (Rψ,a) holds and the diffusion coefficients σ and b be

in C 1
b . Assume that P((ψ(Xm`

T )−ψ(Xm`−1

T )) 6= 0) > 0 for ` ≥ 1 and P((ψ(Xm0

T ) 6= 0) > 0.
Then, θ 7→ v(θ) and θ 7→ v`(θ) are C 2 strictly convex functions. Then, there exist unique
θ∗ and θ∗` such that minθ∈Rq v(θ) = v(θ∗) and minθ∈Rqv`(θ) = v`(θ

∗
` ). Moreover, we have

θ∗`−→θ∗, as `→∞.

From a technical point of view, the use of the constrained and unconstrained versions
of the Robbins-Monro algorithms (see (2.8) and (2.10)) seems to be problematic in the
study of the asymptotic normality of the MLMC estimator coupled with the importance
sampling technique. To cope with this difficulty, we consider an alternative version of
Robbins-Monro type algorithms, namely the stochastic algorithm with projection on a
fixed compact set (see e.g. Laruelle et al. [LLP13]). In more details, we consider a

compact convex subset K ⊂ Rq, satisfying 0 ∈
◦
K (the interior of K). For a deterministic

θ0 ∈ K, we introduce the sequences (θi)i∈N and (θm
`

i )i∈N, ` ∈ N, defined recursively by{
θi+1 = ΠK [θi − γi+1H(θi, XT,i+1, UT,i+1,WT,i+1)] ,

θm
`

i+1 = ΠK

[
θm

`

i − γi+1H`(θ
m`
i , Xm`

T,i+1, X
m`−1

T,i+1,WT,i+1)
]
, θm

`

0 = θ0,
(2.16)

where ΠK is the Euclidean projection onto the constraint set K, H and H` are given
respectively by the following expressions

H(θ,XT , UT ,WT ) : = (θT −WT ) (∇ψ(XT ) · UT )2 e−θ·WT+ 1
2
|θ|2T

H`(θ,X
m`

T , Xm`−1

T ,WT ) : = (θT −WT )

(√
m`

(m− 1)
(ψ(Xm`

T )− ψ(Xm`−1

T )

)2

× e−θ·WT+ 1
2
|θ|2T , for ` ≥ 1

H0(θ,Xm0

T , Xm−1

T ,WT ) : = (θT −WT )ψ(Xm0

T )2e−θ·WT+ 1
2
|θ|2T .
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Under assumptions of (2.3.1), we prove that lim
n→∞

( lim
i→∞

θni ) = θ∗ P̃- a.s. However, when

reverting the indexes order we get a new type of convergence

θm
`

i
stably
=⇒ θi, as `→∞ and θi

a.s−→ θ∗ as i→∞.

To the best of our knowledge such result does not exist in the literature around stochas-
tic algorithms and it turns out to be crucial for the study of the adaptive MLMC
algorithm. In this respect, this latter approximates our initial quantity of interest

Eψ(XT ) = E
[
ψ(Xθ

T )e−θ·WT− 1
2
|θ|2T

]
by

Qn :=
1

N0

N0∑
i=1

g(θm
0

i−1, X
m0,θm

0

i−1

T,i , ŴT,i)

+
L∑
`=1

1

N`

N∑̀
i=1

(
g(θ`,m

`

i−1 , X
`,m`,θ`,m

`

i−1

T,i ,W `
T,i)− g(θ`,m

`

i−1 , X
`,m`−1,θ`,m

`

i−1

T,i ,W `
T,i)

)
, (2.17)

where for all x ∈ Rd and y ∈ Rq, g(θ, x, y) = ψ(x)e−θ·y−
1
2
|θ|2T , L = logn

logm . As it can be
noticed, here one importance sampling parameter is carried out per each level so that we
reduce the effective variance in each MLMC block. Then, we prove the following result.

Theorem 2.3.1. Let assumptions of Proposition 2.3.1 hold. If moreover assumption
(Hεn) is satisfied with constant Cψ(T, α) ∈ R and α ∈ (1/2, 1], then for the choice of
N`, ` ∈ {0, 1, ..., L} given by (2.19), we have as n→∞,

nα (Qn − Eψ(XT )) =⇒N
(
Cψ(T, α), σ̃2

)
,where σ̃2 = Ẽ

[
[∇ψ(XT ) · UT ]2 e−θ

∗·WT+ 1
2
|θ∗|2T

]
.

Due to its design, it is clear that the adaptive importance sampling Multilevel Monte
Carlo approach (AIS MLMC) is more time consuming than the standard MLMC method.
However, in practice we do not need to reach the optimal variance but just to be close
enough to it. Based on this idea, we enforce the adaptive stochastic algorithm to stop
after I ∈ N iterations. Therefore, the time complexity of the stopped AIS MLMC method

is given by CAIS MLMC = C×I×
∑L

`=0m
`+C ′×

(∑L
`=0N`(m

` +m`−1)
)

with C, C ′ > 0.

For the same specific choice a∗` = 1, the optimal complexity is then given by

CAIS MLMC ∝ n2α(log n)2

(
1 +

I

nα(log n)2

)
.

We implement the AIS MLMC method with both routines the random truncation with
increasing compact sets (Chen’s projection) (2.8) and the stochastic algorithm with pro-
jection on a fixed compact set (2.16). According to our numerical simulations (see Figure
2.1), the performance of the AIS MLMC method seems to be quite similar if it is stopped
after I = 15000 or I = 1000 iterations and for both types of stochastic algorithms.
Hence, it is comforting to notice that our AIS MLMC method approximates efficiently
the optimal parameter θ∗ reducing the total variance after just 1000 iterations. For our
numerical tests, we consider the problem of pricing call European options under the Black
& Scholes model.
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Figure 2.1: CPU time vs. RMSE for an European call option under the B&S model.

2.4 Importance Sampling and MLMC method: a sample
average approach optimization for Brownian diffusions

In [KL17], we use a different approach to approximate the variance optimizer θ∗ (see
(2.13))

θ∗ = arg min
θ∈Rq

v(θ), where v(θ) := Ṽar
(
∇ψ(Xθ

T ) · UT
)
.

Here, we apply a deterministic optimization to sample average estimators instead of
stochastic routines. This idea was introduced in the setting of Monte Carlo methods by
Jourdain and Lelong [JL09]. To do so, we introduce, for λ1, . . . , λL ∈ Rq, the MLMC
estimator

QL(λ0, . . . , λL) =
1

N0

N0∑
k=1

ψ(X̃m0

T,0,k(λ0))E−(W̃0,k, λ0)

+

L∑
`=1

1

N`

N∑̀
k=1

(
ψ(X̃m`

T,`,k(λ`))− ψ(X̃m`−1

T,`,k (λ`))
)
E−(W̃`,k, λ`), (2.18)

with E−(W, θ) := exp
(
−θ ·WT − 1

2 |θ|
2T
)
. For any fixed ` ∈ {1, · · · , L}, the random

variables (W̃`,k)1≤k≤N` are independent and are distributed according to the Brownian
law. We assume that for `, `′ ∈ {1, · · · , L}, with ` 6= `′, the blocks (W̃`,k)1≤k≤N` and
(W̃`′,k)1≤k≤N`′ are independent. To actually minimize the empirical variance of QL, we
consider the sample average approximation of size N ′`, given by

v0,N ′0
(λ0) :=

1

N ′0

N ′0∑
k=1

ψ(Xm0

T,0,k)
2E+(W0,k, λ0),

v`,N ′`(λ`) :=
1

N ′`

N ′∑̀
k=1

m`

(m− 1)

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 E+(W`,k, λ`).
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We prove that v`,N ′` has a unique minimum

λ̂` = arg min
λ∈Rq

v`,N ′`(λ).

and we have the following result.

Theorem 2.4.1. Assume b and σ are C 1
b . Let the payoff function ψ satisfy (Hψ) and

(1.13) such that ∇ψ has polynomial growth. Then, the sequence of random functions
(v`,N ′` : λ ∈ Rq → v`,N ′`(λ))` converges a.s. locally uniformly to the strongly convex
function v : Rq → R given by (2.13). Moreover,

λ̂`−→θ∗ P̃-a.s. as `→∞.

In this setting, the minimization step is performed by applying the Newton–Raphson
algorithm to ∇v`,N ′` . Here, we emphasize once again, that the samples (W`,k)`,k≥1 used

to compute λ̂L are independent of the variables (W̃`,k)`,k needed for the implementation
of the MLMC method. From a practical point of view, the efficiency of the Newton–
Raphson algorithm mainly depends on the convexity of the v`,N ′` functions. However,

for E+(W,λ) := e−λ·WT+ 1
2
|λ|2T , the smallest eigenvalue of the Hessian matrix ∇2v`,N ′` is

essentially given by T
N ′`

∑N ′`
k=1

m`

(m−1)

∣∣ψ(Xm`

T,`,k)−ψ(Xm`−1

T,`,k )
∣∣2E+(W`,k, λ), which can become

extremely small and then conflicts with the will to have the strongest possible convexity in
order to speed up Newton–Raphson’s algorithm. We overcome this difficulty by noticing
that λ̂` is at the same time the root of ∇u`,N ′` with

u`,N ′`(λ) =
|λ|2 T

2
+ log

 1

N ′`

N ′∑̀
k=1

m`

(m− 1)

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 e−λ·WT,`,k

 ,

since it can be easily seen that the Hessian matrix of u`,N ′` is lower bounded by TIq,
which is a good feature for our numerical approximation.

In [KL17], we prove a strong large law of numbers for the MLMC algorithm. Con-
sidering a sequence (a`)`∈N of positive real numbers such that limL→∞

∑L
`=1 a` =∞, we

assume that the sample size N` has the following form

Nρ
`,L =

ρ(L)

m`a`

L∑
k=1

ak, ` ∈ {0, · · · , L} (2.19)

for some increasing function ρ : N→ R. Then,

Theorem 2.4.2. Assume that supL sup`
L2a`

ρ(L)
∑L
k=1 ak

< +∞. Then, under the assump-

tions of Theorem 2.4.1, QL(λ̂0, . . . , λ̂L) −→ E[ψ(XT )] a.s. when L→ +∞.

For the choice a` = 1 for all `, the condition on ρ reduces to supL
L
ρ(L) < +∞. Further,

if we assume the weights a` satisfy assumption (W), given in Theorem 1.4.1, we prove a
central limit theorem.
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Theorem 2.4.3. Under assumptions of Theorem 2.4.2, we consider Nρ
`,L as given in (2.19)

with ρ(L) = m2γL(m− 1)T . If condition (Hεn) is satisfied for some α ∈ [1/2, 1] and con-
stant Cψ(T, α), then

mL(QL(λ̂0, . . . , λ̂L)− E[ψ(XT )]) =⇒ N (Cψ(T, α), v(θ∗)), when L→∞.

The global cost of our algorithm writes as the sum of the cost of the computation of
the (λ̂`)` and of the standard multilevel estimator

CML IS =
L∑
`=0

N ′`(m
` + 3K`) +

L∑
`=0

N`m
`,

where K` is the number of iterations of Newton–Raphson’s algorithm to approximate λ̂`
and the factor 3 corresponds to the fact that building ∇u`,N ′` and ∇2u`,N ′` basically boils
down to three Monte Carlo summations. In practice, K` ≤ 5 as the problem is strongly
convex. Because the same random variables are used at each iteration of the optimi-
sation step, they must be stored, which makes the memory footprint of our algorithm

proportional to N ′`. From a practical point of view, choosing N ′` = N`m
`

m`+15
∧ 500000, the

total cost of our ML IS algorithm is roughly twice the cost of the standard multilevel
estimator (ML). Numerical tests, on pricing basket options in a multidimensional local
volatility model, confirm that the ML IS estimator outperforms the standard MLMC es-
timator. To conclude let us precise that this approach has three main advantages. First,
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Figure 2.2: RMSE vs. CPU time for a basket option in a local volatility model.

the computations within the different levels remain independent. Second, the variance
of each level ` only depends on λ`, which reduces the global minimization problem to
several smaller minimization problems. Third, we actually minimize the real variance of
the estimator and not its asymptotic value.
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2.5 Importance Sampling and Statistical Romberg method
for pure-jump Lévy processes

In [BAHK16], we focus on finding a way to implement the SR method and implicitly
the MLMC method, when only pure-jump Lévy processes (Lt)t≥0 are used to model the
underlying price instead of (Xt)t≥0 the solution of the stochastic differential equation
(1.1). In what follows, we assume that (Lt)t≥0 has a generating triplet (γ, 0, ν) and a
Lévy Kintchine representation

Eeiu.Lt = exp

{
t

(
iγ.u+

∫
Rd

(eiu.x − 1− iu.x1|x|≤1)ν(dx)

)}
, u ∈ Rd,

where γ ∈ Rd and ν is a Lévy measure on Rd \ {0} verifying
∫
Rd\{0}(|x|

2 ∧ 1)ν(dx) <
∞. At a first glance, it seems quite unlikely that such a procedure with pure-jump
Lévy processes would work, since the design of MLMC methods requires the use of a
discretization scheme or at least an inner iterative routine that can be recycled from the
finest level to crudest one. However, it is known in the literature (see e.g. Asmussen and
Rosiński [AR01]) that when the increments of the jump process cannot be simulated, L
can be represented as a sum of a compound Poisson process and an almost sure limit of
compensated compound Poisson process Lt = limε→0 L

ε
t a.s. where for 0 < ε < 1

Lεt = γt+
∑

0<s≤t
∆Ls1|∆Ls|>1 +(

∑
0<s≤t

∆Ls1ε≤|∆Ls|≤1−t
∫
ε≤|x|≤1

xν(dx)), t ≥ 0. (2.20)

The error process Rε := L−Lε is also a Lévy process independent of Lε with character-

istic function Eeiu.Rεt = exp
{
t
∫
|x|≤ε(e

iu.x − 1− iu.x)ν(dx)
}
. This independence feature

of the error process is the keystone on which we build the implementation of MLMC type
methods, for this setting. Consequently, E[Rεt ] = 0 and the variance-covariance matrix
E[Rεt (R

ε
t )
>] = tΣε where Σε =

∫
|x|≤ε xx

>ν(dx). The asymptotic behavior of the distri-

bution of Rε is firstly studied by Asmussen and Rosiński [AR01] in the one dimensional
case and later extended to the multidimensional case by Cohen and Rosiński [CR07]. In
what follows, W = (Wt)t≥0 is a standard Brownian motion in Rd independent of (Lt)t≥0.
If Σε is invertible for every ε ∈ (0, 1], then they prove that

Σ−1/2
ε Rε⇒W, as ε→ 0, (2.21)

if and only if for each k > 0

lim
ε→0

∫
〈Σ−1
ε x,x〉>k

〈Σ−1
ε x, x〉1|x|≤εν(dx) = 0. (2.22)

Strong error. If ν is given in polar coordinates by ν(dr, du) = µ(dr|u)λ(du), r > 0, u ∈
Sd−1, where {µ(·|u) : u ∈ Sd−1} is a measurable family of Lévy measures on (0,∞) and
λ is a finite measure on the unit sphere Sd−1, then

Σε =

∫
Sd−1

∫ ε

0
r2uu>µ(dr|u)λ(du).
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If we define σ2(ε, u) :=
∫ ε

0 r
2µ(dr|u) and σ2(ε) :=

∫
Sd−1 σ

2(ε, u)λ(du), then

E|Lt − Lεt |2 = tTr(Σε) = tσ2(ε). (2.23)

Moreover, if the support of the measure λ is not contained in any proper linear subspace
of Rd, they proved that if

lim
ε→0

σ(ε, u)

ε
=∞, λ− a.e., (2.24)

then Σε is invertible and condition (2.22) holds. Furthermore, following the proof of
Proposition 2.1 given in Dia [Dia13] for a one-dimensional setting, we prove that the
d-dimensional error Lévy process Rε satisfies

E|Rεt |q ≤ Kq,Tσ0(ε)q, where Kq,T > 0 and σ0(ε) = σ(ε) ∨ ε. (SE)

Weak error. Concerning the weak error, under some regularity conditions on function
F , we can obtain an expansion of the weak error as in Proposition 2.2 and Remark 2.3
of [Dia13]. So, it is worth introducing the following assumption: there exist CF ∈ R and
υε ↘ 0 as ε↘ 0 such that

υ−1
ε (EF (LT )− EF (LεT )) −→ CF , as ε↘ 0. (WEυε)

SR method with pure-jump processes. The main idea of this new method is to
consider two cut-off sizes ε and εβ, β ∈ (0, 1) and then approximate EF (LT ) by Qε :=
1
N1

∑N1
i=1 F (L̂ε

β

T,i)+ 1
N2

∑N2
i=1 F (LεT,i)−F (Lε

β

T,i). The samples (LεT,i)1≤i≤N2 and (Lε
β

T,i)1≤i≤N2

have to be independent of (L̂εT,i)1≤i≤N1 . Moreover, for 1 ≤ i ≤ N2, we first simulate Lε
β

T,i

and then recycle it to simulate LεT,i as the sum of Lε
β

T,i and an independent r.v. Lε,ε
β

T,i with
Lévy measure ν|{ε≤|x|≤εβ} which is also simulatable as a compound Poisson process. Then,
we prove two central limit theorems for the standard MC method and for Qε leading us
to the following computational complexity analysis. In more details, the computational
effort of the MC method needed to achieve a precision of order σ(ε) is random with
expectation of order CMC = K(ε)N = K(ε)σ−2(ε). In the same way, the computational
effort of the SR method necessary to achieve a precision of order σ(ε) is random with
expectation of order CSR = K(εβ)N1 + K(ε)N2 =

(
K(εβ) +K(ε)σ2(εβ)

)
σ−2(ε). Thanks

to Karamata’s theorem (see e.g. Bingham, Goldie and Teugels [BGT87]), we were able
to compute the time complexity ratio given by

CSR

CMC
=
L(εβ) + L(−εβ)

L(ε) + L(−εβ)
εY (1−β) +

L(εβ) + L(−εβ)

2− Y
εβ(2−Y ).

If L(ε) is constant in the neighborhood of zero, which is the case for the Carr, Geman,
Madan and Yor (CGMY) model [CGMY02], then we easily get

CSR

CMC
= O

(
εY (1−β) + εβ(2−Y )

)
.

Optimizing the order of this last quantity yields β = Y/2, which leads us to a gain of
a complexity of order εY (Y/2−1) that asymptotically increases as soon as ε becomes small.
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Since the efficiency of the Monte Carlo simulation considerably depends on the small-
ness of the variance in the estimation, we propose a stochastic approximation method to
find the optimal measure change by Esscher transform for Lévy processes for MC and
SR methods when coupled with the importance sampling technique. Kawai [Kaw09] ap-
plied this technique for MC algorithms. His approach is exploitable only when the Lévy
process (Lt)0≤t≤T is simulatable without any approximation. Note also that in his study
there is no results on the rate of convergence of the obtained algorithm. To do so, we
define the family of {Pθ, θ ∈ Θ1} with

Θ1 :=
{
θ ∈ Rd : E[eθ.Lt ] < +∞

}
=
{
θ ∈ Rd :

∫
|x|>1

eθ.xν(dx) <∞
}
, (2.25)

as all the equivalent probability measures with respect to P such that

dPθ
dP
∣∣
Ft =

eθ.Lt

E[eθ.Lt ]
= eθ.Lt−tκ(θ),

where κ denotes the cumulant generating function given by κ(θ) = lnE
[
eθ.L1

]
. If we

introduce the Lévy process {Lθt ; t ≥ 0}, with generating triplet (γθ, 0, νθ) under P, where
γθ = γ+

∫
|x|≤1 x(νθ − ν)(dx) and νθ(dx) = eθ.xν(dx) (see e.g. Cont and Tankov [CT04]),

then the random variable LT under Pθ has the same law as LθT under P and we get

E [F (LT )] = E
[
F (LθT )e−θ.L

θ
T+Tκ(θ)

]
.

Furthermore, we use this representation twice in the SR algorithm with considering θ1

and θ2 in Rd to approximate E[F (LT )] by

1

N1

N1∑
k=1

F (Lε
β ,θ1
T,k )e−θ1.L

εβ,θ1
T,k +Tκ(θ1) +

1

N2

N2∑
k=1

(F (Lε,θ2T,k )− F (Lε
β ,θ2
T,k ))e−θ2.L

ε,θ2
T,k +Tκ(θ2).

Then, we minimize separately the two quantities involved in the limit variance of the
above estimator given by,

vi(θ) := E
[
Fi(LT )e−θLT+Tκ(θ)

]
, i ∈ {1, 2} with F1 ≡ F 2 and F2 ≡ ∇F.Σ∇F. (2.26)

To ensure the existence of vi(θ), we introduce a first set

Θi,2 := Θ1 ∩
{
θ ∈ Rd : E

[
Fi(LT )e−θ.LT

]
< +∞

}
and to make sense for the first and second derivatives of vi(θ) we introduce a second set

Θi,3 := Θi,2 ∩
{
θ ∈ Rd : E

[
|LT |2Fi(LT )e−θ.LT

]
< +∞

}
.

Under assumptions Leb(Θi,3) > 0, the sets Θi,2 and Θi,3 are convex. For ε > 0, the same
result holds for the approximated Lévy process (Lεt )t≥0, by considering the associated
sets Θε

1, Θε
i,2 and Θε

i,3 and functions κε and vi,ε, i ∈ {1, 2}. Introducing, for i ∈ {1, 2},

θ∗i,ε := arg min
θ∈Θεi,3

vi,ε(θ) and θ∗i := arg min
θ∈Θi,3

vi(θ), (2.27)

we focus on the convergence of θ∗i,ε toward θ∗i as ε tends to zero. For this purpose, we

define, for q > 1, the set Θq :=
{
θ ∈ Rd :

∫
|x|>1 |x|

2qe−qθ.xν(dx) < +∞
}
.
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Theorem 2.5.1. Let i ∈ {1, 2}. Suppose that x 7→ Fi(x) is continuous, that is for the
case i = 1 the function F is continuous and for i = 2 the function F is of class C 1.
Moreover, assume P(Fi(LT ) 6= 0) > 0, P(Fi(L

ε
T ) 6= 0) > 0 for all ε > 0 and there

exists a > 1 such that E [F ai (LT )] and supε>0 E [F ai (LεT )] are finite. Then, θ 7→ vi(θ)
and θ 7→ vi,ε(θ) = E

[
Fi(L

ε
T )e−θL

ε
T+Tκε(θ)

]
are C 2 strictly convex functions on Θi,3 and

Θε
i,3 respectively. Moreover, let K be a compact set such that K ⊂ Θ̊q with q > a

a−1 and
assume that the sequence (θ∗i,ε)ε>0 ∈ K. Then,

θ∗i,ε−→θ∗i ∈ K, as ε→ 0.

Now we turn to the stochastic algorithms needed to approximate the above variance
optimizers. Let K be a compact convex subset of Θ1 ⊂ Rd with {0} ∈ K. For fixed
i ∈ {1, 2} and θi,0 ∈ K, we construct recursively the sequences of Rd-valued random
variables (θi,n)n∈N and (θi,ε,n)n∈N defined by the system{

θi,n+1 = ΠK [θi,n − γn+1Hi(θi,n, LT,n+1)]

θi,ε,n+1 = ΠK

[
θi,ε,n − γn+1Hi(θi,ε,n, L

ε
T,n+1)

]
,

(2.28)

where ΠK is the Euclidean projection onto the constraint set K, H1 and H2 are given
by Hi(θ, LT ) = (T∇κ(θ)− LT )Fi(LT ) exp(−θ.LT + Tκ(θ)). We get the following result

Theorem 2.5.2. Suppose assumptions of Theorem 2.5.1 hold. Moreover, let K be a
compact set such that K ⊂ Θ̊2a/(a−1) for some a > 1. For i ∈ {1, 2}

• if the unique θ∗i = arg min
θ∈Θi,3

vi(θ) satisfies θ∗i ∈ K then θi,n
a.s.−→

n→+∞
θ∗i ,

• if the unique θ∗i,ε = arg min
θ∈Θεi,3

vi,ε(θ) satisfies θ∗i,ε ∈ K then θi,ε,n
a.s.−→

n→+∞
θ∗i,ε.

Clearly, according to the above results we have the following convergence result on
our stochastic approximation, namely the constrained algorithm given by routine (2.28)
satisfies

For i ∈ {1, 2}, lim
ε→0
n→∞

θi,ε,n = lim
ε→0

( lim
n→∞

θi,ε,n) = lim
n→∞

(lim
ε→0

θi,ε,n) = θ∗i , P-a.s. (2.29)

This last property is the essential key tool needed to prove the following central limit
theorem on the adaptive version of the SR method (ISSR) that approximates our initial
quantity of interest EF (LT ) by

QISSR
ε :=

1

N1

N1∑
k=1

F (L
εβ ,θε

β

1,k−1

T,k )e−θ
εβ

1,k−1.L
εβ,θε

β

1,k−1
T,k +Tκ

εβ
(θε

β

1,k−1)

+
1

N2

N2∑
k=1

(
F (L

ε,θε2,k−1

T,k )− F (L
εβ ,θε2,k−1

T,k )

)
e−θ

ε
2,k−1.L

ε,θε2,k−1
T,k +Tκε(θε2,k−1). (2.30)

Theorem 2.5.3. Let F : Rd → R be a C 1 function satisfying assumption (WEυε) and

s.t. sup0<ε≤1EF 2a(LεT ) and sup0<ε≤1E
∣∣σ−1(ε)(F (LεT )− F (LT ))

∣∣2a are finite, for a > 1.
Suppose also that the following assumptions are satisfied.
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H1 . Condition (2.22) holds and ∃Σ a definite positive matrix s.t. lim
ε→0

σ−2(ε)Σε = Σ.

H2 . For 0 < β < 1, we have lim
ε→0

σ(ε)σ−1(εβ) = 0 and lim
ε→0

υεσ
−1(εβ) = 0.

Moreover, assume that Leb(Θq) > 0 with q > a/(a − 1) and, for i ∈ {1, 2}, there exists
a double indexed family (θεi,k)k∈N,ε>0 satisfying (2.29) and belonging to some compact

subset Ki ⊂ Θ̊q. If we choose N1 = υ−2
ε and N2 = υ−2

ε σ2(εβ), then

υ−1
ε

(
QISSR
ε − EF (LT )

)
=⇒ N

(
CF , σ

2
)
, as ε→ 0,

where σ2 = TE
[
(F 2(LT ) +∇F (LT ).Σ∇F (LT ))e−θ

∗.LT+Tκ(θ∗)
]
.

We turn to illustrate the efficiency of the ISSR method that reduces at the same
time the variance and the computational effort associated to the effective computation
of option prices when the underlying asset process follows a 2-dimensional exponential
pure jump CGMY model. Let us recall that a one-dimensional CGMY process has a
generating triplet (0, 0, ν) where for C > 0, G > 0,M > 0 and Y < 2

ν(dx) = C
e−Mx

x1+Y
1x>0dx+

Ce−G|x|

|x|1+Y
1x<0dx. (2.31)

We focus on the computation of a price of the form e−rTEF (S1
T , S

2
T ), where F (x, y) =

(x + y − Strike)+ and the couple (S1
t , S

2
t )0≤t≤T denotes the underlying asset process.

Here, we choose (S1
t , S

2
t ) = (S0e

rt+L1
t , S0e

rt+L2
t ), where (L1

t )0≤t≤T and (L2
t )0≤t≤T are two

independent CGMY processes with generating triplets (γ1, 0, ν1) and (γ2, 0, ν2). In this
setting there is no available explicit formula. The superiority of the ISSR method over
the classical MC approach in the setting of Lévy processes is highlighted by Figure 2.3.

Figure 2.3: CPU time versus MSE in the two-dimensional setting.

2.6 Perspectives

In the PhD project of Trâm Ngô, that we co-supervise with Mohamed Ben Alaya, we also
plan to study the antithetic Multilevel Monte Carlo in [GS14] when coupled with stochas-
tic algorithms to approximate the variance optimizer of the corresponding importance
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sampling weight. Proving a central limit theorem on the simple antithetic Multilevel
Monte Carlo is a quite challenging problem on its own. We also hope to apply these
techniques to the simulation of rare events. The analysis and simulations of rare events
are crucial to prevent the worst by analyzing the cascade of events leading to the ex-
tremes. Using a new algorithm based on the combination between the Multilevel Monte
Carlo method and the importance sampling techniques explained above will be of great
interest in this setting, since the payoff function is less regular. It seems that the use of
Malliavin calculus techniques will be of great help.
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Part II

Statistics for financial models:
estimation from continuous and

discrete time observations
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Chapter 3

Statistical properties for
continuously observed financial
models with and without jumps

3.1 Introduction and motivation

During the past decades, inference for diffusion models has become one of the core areas
in statistical sciences. The basic statistical properties are well-summarized in Lipster and
Shiryayev [LS77] and Kutoyants [Kut04] with continuous observations and in Kessler and
Sørensen [KLSr12] with discrete ones. The setting of continuously observed diffusions
is rather theoretical, since the real data are discrete time observations. Nevertheless,
if the process is observed at high frequency with a negligible discretization error then
the statistical properties obtained for the continuously observed model remain valid for
discrete time observations too. Most of the existing results dealing with this topic concern
the case of ergodic diffusions with coefficients satisfying the Lipschitz and linearity growth
conditions. In the literature, only few results can be found for non-ergodic diffusions or
diffusions with non-regular coefficients such as the Cox Ingersoll Ross (CIR), Heston or
Wishart processes. We also point out that only few results are available for parameter
estimation for jump processes with non regular coefficients and in non-ergodic regimes.

To our knowledge, one of the first papers having studied the problem of drift param-
eter estimation in the one-dimensional CIR model is that of Fournié and Talay [FT91].
They have obtained a nice explicit formula of the maximum likelihood estimator (MLE)
of the drift parameters θ := (a, b) and have established its asymptotic normality only in
the ergodic case, that is the subcritical case in terms of continuous branching processes.
Afterward, Overbeck [Ove98] considers the CIR model in the context of a continuous
branching process with immigration rate a > 0 (CBI) and gives more detailed results by
including singular subdomains. By establishing all three properties LAN (local asymp-
totic normality), LAMN (local asymptotic mixed normality) and LAQ (local asymptotic
quadraticity), he obtains consistency and asymptotic normality for the MLE for different
sub-models. Simultaneously, Overbeck and Ryden [OR97] examine the same problem
from the discrete point of view. Note that, in practice, the diffusion parameter σ is
usually assumed to be known and one can estimate it separately using the quadratic
variation of the process X. For the jump-type CIR processes, Mai [Mai12] studied the
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asymptotic normality of the MLE also in the subcritical case. Yet, this latter property of
the MLE is not difficult to obtain in the subcritical case, since it is based on the classical
martingale central limit theorem. Otherwise, for the critical and supercritical cases this
argument is no more valid. The content of this chapter follows from :

• the results contained in [BAK12], [BAK13], in which we prove original limit the-
orems on the drift parameters MLE of the continuously observed CIR process in-
cluding the critical and subcritical cases and provide sufficient conditions so that
these limit theorems can be easily carried out for the discretely observed process.

• the results of [AKR16], in which we extend the above results to the setting of matrix
Wishart processes providing asymptotic behavior and local asymptotic properties
of the associated drift parameters, in the ergodic and several non-ergodic cases.

• the results of [BBKP15] and [BBKP17], in which we study the drift parameters
MLE properties for jump-type Heston and CIR models.

3.2 Maximum likelihood estimation for CIR processes

The Cox-Ingersoll-Ross (CIR) process is widely used in mathematical finance to model
the evolution of short-term interest rates. It is also used in the valuation of interest rate
derivatives. It was introduced by Cox, Ingersoll and Ross [CIR85] as solution to the
stochastic differential equation (SDE)

dXt = (a− bXt)dt+
√

2σ|Xt|dWt, (3.1)

where X0 = x > 0, a > 0, b ∈ R, σ > 0 and (Wt)t≥0 is a standard Brownian motion. This
SDE has a unique non-negative strong solution (Xt)t≥0 (see Ikeda and Watanabe [IW81],
p. 221). In the particular case b = 0 and σ = 2, we recover the square of a a-dimensional
Bessel process starting at x. For extensive studies on Bessel processes we refer to Revuz
and Yor [RY99] and Pitman and Yor [PY81, PY82]. The behavior of the CIR process
X mainly depends on the sign of b. Indeed, in the case b > 0, there exists a unique
stationary distribution, say π, of X and the stationary CIR processes enjoy the ergodic
property that is: for all h ∈ L1(π), 1

t

∫ t
0 h(Xs)ds converges almost surely to

∫
R h(x)π(dx).

In the case a ≥ σ, the CIR process X stays strictly positive; for 0 < a < σ, it hits 0 with
probability p ∈]0, 1[ if b < 0 and almost surely if b ≥ 0, the state 0 is instantaneously
reflecting (see e.g. Göing-Jaeschke and Yor [GJY03] for more details).

Based on Lie symmetry methods, Craddock and Lenox [CL09] give an explicit form
of the fundamental solution (t, x, y) 7→ p(t, x, y) of the PDE ut = σxuxx + aux −
(µx + λx)u, λ > 0, µ > 0. In [BAK12] and [BAK13], we take advantage of this
result to compute explicitly the moment generating-Laplace transform of the quadru-

plet (logXt, Xt,
∫ t

0 Xsds,
∫ t

0
ds
Xs

), since we have that Ex
(
Xη
t e
−ρXt−λ

∫ t
0 Xsds−µ

∫ t
0
ds
Xs

)
=∫∞

0 yηe−ρyp(t, x, y)dy. In more details, we prove
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1. (Case b = 0). For ρ ≥ 0, λ ≥ 0, µ > 0 and η ∈]− k − ν
2 −

1
2 ,+∞[, we have

Ex
(
Xη
t e
−ρXt−λ

∫ t
0 Xsds−µ

∫ t
0
ds
Xs

)
=

Γ(η + k + ν
2 + 1

2)

Γ(ν + 1)
xη exp

(
−
√
σλx

σ
coth(

√
σλt)

)

×

( √
σλx

σ sinh(
√
σλt)

) ν
2

+ 1
2
−k−η (

(
√
σρ/
√
λ) sinh(

√
σλt) + cosh(

√
σλt)

)− ν
2
− 1

2
−k−η

× 1F1

η + k +
ν

2
+

1

2
, ν + 1,

√
σλx

σ sinh(
√
σλt)

(
(
√
σρ/
√
λ) sinh(

√
σλt) + cosh(

√
σλt)

)
 ,

(3.2)

where k =
a

2σ
, ν =

1

σ

√
(a− σ)2 + 4µσ and 1F1 is the confluent hypergeometric

function defined by 1F1(u, v, z) =
∑∞

n=0
un
vn

zn

n! , with u0 = v0 = 1, and for n ≥ 1,

un =
∏n−1
k=0(u+ k) and vn =

∏n−1
k=0(v + k).

2. (Case b 6= 0). For ρ ≥ 0, λ ≥ 0 and µ > 0, we have

Ex
(
e−ρXt−λ

∫ t
0 Xsds−µ

∫ t
0
ds
Xs

)
=

Γ(k + ν
2 + 1

2)

Γ(ν + 1)
exp

(
b

2σ
(at+ x)− Ax

2σ
coth(At/2)

)
×
(

Ax

2σ sinh(At/2)

) ν
2

+ 1
2
−k (2σρ+ b

A
sinh(At/2) + cosh(At/2)

)− ν
2
− 1

2
−k

× 1F1

(
k +

ν

2
+

1

2
, ν + 1,

A2x

2σ sinh(At/2) ((2σρ+ b) sinh(At/2) +A cosh(At/2))

)
,

(3.3)

where k =
a

2σ
, A =

√
b2 + 4σλ and ν =

1

σ

√
(a− σ)2 + 4µσ.

These explicit moment generating-Laplace transforms are crucial for getting a full precise
description of the asymptotic behavior of the quadruplet (logXT , XT ,

∫ T
0 Xsds,

∫ T
0

ds
Xs

)

that naturally appears in the error of the MLE θ̂ := (â, b̂) of the drift CIR parameters
θ = (a, b), which is defined only when a ≥ σ and given by

θ̂T−θ =



âT − a =

(
logXT − log x+ (σ − a)

∫ T
0

ds
Xs

) ∫ T
0 Xsds− T (XT − x− aT )∫ T

0
ds
Xs

∫ T
0 Xsds− T 2

b̂T − b =
T
(

logXT − log x+ bT + σ
∫ T

0
ds
Xs

)
−
(
XT − x+ b

∫ T
0 Xsds

) ∫ T
0

ds
Xs∫ T

0
ds
Xs

∫ T
0 Xsds− T 2

.

Subcritical case (b > 0). In this case, we recover easily the asymptotic normality of
the MLE thanks to the classical central limit theorem for continuous-time martingales.

For a > σ, Lθ
{√

T (θ̂T − θ)
}

=⇒ NR2

(
0, 2σC−1

)
, as T →∞, with C =

(
b

a−σ −1

−1 a
b

)
.
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However, all the following limit theorems cannot be obtained using this same argument
and are derived thanks to (3.2) and (3.3). In the subcritical case, we prove that

For a = σ, Lθ
{

diag(T,
√
T )(θ̂T − θ)

}
=⇒

(
b

τ2
,
√

2bG

)
, as T →∞,

where G is a standard normal random variable independent of τ2 the hitting time asso-
ciated with Brownian motion τ2 = inf{t > 0 : Wt = b√

2σ
}.

Critical case (b = 0). We prove that

For a = σ, Lθ
{

diag(log T, T )(θ̂T − θ)
}

=⇒
(

1

τ1
,
a−R1

I1

)
, as T →∞,

where (Rt) is the CIR process, starting from 0, solution to

dXt = adt+
√

2σXtdWt, (3.4)

It =
∫ t

0 Rsds, and τ1 is the hitting time associated with Brownian motion τ1 = inf{t >
0 : Wt = 1√

2σ
}. The couple (R1, I1) and the random time τ1 are independent.

For a > σ, Lθ
{

diag(
√

log T , T )(θ̂T − θ)
}

=⇒
(√

2σ(a− σ)G,
a−R1

I1

)
, as T →∞,

where (R1, I1) is defined in the previous case, G is a standard normal random variable
independent of (R1, I1).

Supercritical case (b < 0). For a ≥ σ: the MLE estimator θ̂T is not consistent,

since in this specific case the process
(∫ t

0
ds
Xs

)
t≥0

is an increasing process converging to

a finite random variable without any normalization. Nevertheless, if we assume that
the parameter a is known, then the MLE b̂T in this case simplifies to b̂T = (aT + x −
XT )/

∫ T
0 Xsds. In [BAK12], we prove that

Lb
{
e−bT/2(b̂T − b)

}
=⇒ G

R
, as T →∞,

where (G,R) is a couple of random variables characterized with its joint moment generating-
Laplace transform. For λ ∈ R and µ ≥ 0,

E
(
eλG−µR

)
=

(
b

µσ/b+ b

) a
σ

exp

(
x
σλ2/b+ µ

µσ/b+ b

)
.

Therefore, G and R are correlated, G is normal and R has the same distribution as t0R̃t0 ,
t0 = −1/b, where (R̃t)t≥0 is the CIR process, starting from x, solution to (3.1).
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3.3 Maximum likelihood estimation for Wishart processes

The problem of estimating the parameters of the underlying Wishart process may be of
big interest for practical purposes and especially in finance, where the data are partic-
ularly consistent and plentiful. Even though these processes were originally considered
by Bru [Bru87] to model some biological data they are currently widely used in financial
models in order to describe the evolution of the dependence between assets. We point to
Alfonsi [Alf15] for detailed results on the Wishart process and its practical use.

Let d ∈ N∗ denote the dimension, Md be the set of real d-square matrices, S+
d (resp.

S+,∗
d ) be the subset of positive semidefinite (resp. definite) matrices, Sd (resp. Ad) the

subset of symmetric (resp. antisymmetric) matrices. Wishart processes are defined by
the following SDE{

dXt =
[
αa>a+ bXt +Xtb

>] dt+
√
XtdWta+ a>dW>t

√
Xt, t > 0

X0 = x ∈ S+
d ,

(3.5)

where α > d − 1, a ∈ Md, b ∈ Md and (Wt)t>0 denotes a d-square matrix made of
independent Brownian motions. We recall that for x ∈ S+

d ,
√
x is the unique matrix in

S+
d such that

√
x

2
= x. It is shown by Bru [Bru91] and Cuchiero et al. [CFMT11] in a

more general affine setting that the SDE (3.5) has a unique strong solution when α > d+1
and a unique weak solution when α > d − 1. Besides, we have Xt ∈ S+,∗

d for any t > 0

when x ∈ S+,∗
d and α > d + 1. In this part, we will denote by WISd(x, α, b, a) the law

of (Xt, t > 0). In dimension d = 1, Wishart processes are known as CIR processes in the
literature. It is worth recalling that the law of X only depends on a through a>a since we
have WISd(x, α, b, a)=WISd(x, α, b,

√
a>a). Therefore, the parameters to estimate are α,

b, since the diffusion parameter a>a can easily be estimated using the explicit expression
of the quadratic variation of (3.5). Since the process defined by Yt = (a>)−1Xta

−1 follows
the law WISd((a

>)−1xa−1, α, (a>)−1ba>, Id), it is sufficient to focus on the estimation
of θ = (b, α) when a = Id, which we consider now. To do so, let us denote by Pθ the
original probability measure under which X satisfies

dXt =
[
αId + bXt +Xtb

>
]
dt+

√
XtdWt + dW>t

√
Xt, where α ≥ d+ 1 and x ∈ S+,∗

d .

(3.6)
We consider α0 > d + 1 and set θ0 = (α0, 0). We will assume, for the joint estimation
of α and b, that α > d + 1. This restriction is needed to ensure that Xt ∈ S+,∗

d for any
t > 0. Thanks to this assumption, we know by Theorem 4.1 in Mayerhofer [May12] that

dPθ0,T
dPθ,T

= exp

(∫ T

0
Tr[HsdWs]−

1

2

∫ T

0
Tr[HsH

>
s ]ds

)
with Ht =

α0 − α
2

(
√
Xt)
−1 − b

√
Xt

defines a probability measure under which W̃t = Wt −
∫ t

0 H
>
s ds is a d × d-Brownian

motion, where Pθ,T is the restriction of Pθ to the σ-algebra σ(Ws, s ∈ [0, T ]).

Here, we draw attention to an unusual phenomena in statistical inference of stochastic
differential equations that we faced in this study. Actually, unlike the one-dimensional
setting (see Section 3.2), we prove in [AKR16] that the above Radon-Nikodym deriva-
tive might not coincide with the likelihood ratio needed to derive the MLE of θ. In
more details, according to Lipster and Shiryaev [LS01], the likelihood ratio is given by
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Lθ,θ0T = (E[dPθ0,T /dPθ,T |FXT ])−1, where (FXt )t>0 denotes the filtration generated by the
process X. We prove the following result.

Proposition 3.3.1. For X ∈ S+,∗
d , we have

1. The linear application LX : Sd → Sd defined by LX(Y ) = XY + Y X is invertible
and the likelihood of (Xt, t ∈ [0, T ]) is given by

Lθ,θ0T =

(
det[XT ]

det[x]

)α−α0
4

× exp
(
−α− α0

4

(α+ α0

2
− 1− d

) ∫ T

0
Tr[X−1

s ]ds

+
1

2

∫ T

0
Tr
[
L−1
Xt

(
bXt +Xtb

>
)
dXt

]
− αT

2
Tr[b]

− 1

4

∫ T

0
Tr
[
L−1
Xt

(
bXt +Xtb

>
)

(bXt +Xtb
>)
]
dt
)
. (3.7)

2. The Radon-Nikodym derivative
dPθ0,T
dPθ,T ∈ F

X
T if, and only if b ∈ Sd in which case the

above likelihood ratio simplifies to

Lθ,θ0T =

(
det[XT ]

det[x]

)α−α0
4

× exp
(Tr[bXT ]− Tr[bx]

2
− 1

2

∫ T

0
Tr[b2Xs]ds

− α− α0

4

(α+ α0

2
− 1− d

) ∫ T

0
Tr[X−1

s ]ds− αT

2
Tr[b]

)
. (3.8)

For brevity’s sake, we only give the results for b ∈ Sd. For the general case b ∈ Md,
we proved the asymptotic normality of the global MLE of θ = (α, b) when α > d+ 1 and
the asymptotic normality of the MLE of b when the parameter α ≥ d − 1 is supposed
to be known. For these latter results, the rate of convergence is the standard

√
T . To

get explicit formulas for the MLE error, we introduce for X ∈ Sd and a ∈ R the linear
applications

LX : Sd → Sd
Y 7→ Y X +XY

and LX,a : Sd → Sd
Y 7→ Y X +XY − 2aTr[Y ]Id

(3.9)

together with the following shorthand notations

RT :=

∫ T

0
Xsds, QT :=

(∫ T

0
Tr[X−1

s ]ds

)−1

, ZT := log

(
det[XT ]

det[x]

)
. (3.10)

Note that QT and ZT are defined only for α > d + 1, while RT is defined for α > d− 1
and belongs almost surely to S+,∗

d . Then, for Mt :=
∫ t

0

√
XsdWs +

∫ t
0 dW

>
s

√
Xs and

Nt :=
∫ t

0 Tr[(
√
Xs)

−1dWs], we provide an explicit expression for the MLE error given by
√
T (α̂T − α) = 2TQT

NT√
T
− 2TQTTr

[
L−1
RT
T
,TQT

(
MT√
T
− 2TQT Id

NT√
T

)]
√
T (b̂T − b) = L−1

RT
T
,TQT

(
MT√
T
− 2TQT Id

NT√
T

)
.

We also provide an explicit Laplace transform crucial to the study of the asymptotic
behavior of the MLE of θ = (b, α), in both ergodic and non-ergodic cases.
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Theorem 3.3.1. Let α > d−1, x ∈ S+
d , b ∈ Sd and X ∼WISd(x, α, b, Id). Let v, w ∈ Sd

be such that

∃m ∈ Sd,
v

2
−mb− bm− 2m2 ∈ S+

d and
w

2
+m ∈ S+

d . (3.11)

Then, we have for t > 0

E
[

exp
(
− 1

2
Tr
[
wXt + vRt

])]
=

exp
(
− α

2 Tr[b]t
)

det[Vv,w(t)]
α
2

exp
(
− 1

2
Tr
[
(V ′v,w(t)Vv,w(t)−1 + b)x

])
,

with Vv,w(t) =
(∑∞

k=0 t
2k+1 ṽk

(2k+1)!

)
w̃ +

∑∞
k=0 t

2k ṽk

(2k)! , ṽ = v + b2, and w̃ = w − b. If

besides ṽ = v + b2 ∈ S+,∗
d , we have Vv,w(t) = (

√
ṽ)−1 sinh(

√
ṽt)w̃ + cosh(

√
ṽt) and then

V ′v,w(t) = cosh(
√
ṽt)w̃ + sinh(

√
ṽt)
√
ṽ.

This last result extend the recent findings of Gnoatto and Grasselli [GG14] and is
clearly of independent interest.

Subcritical case: (−b ∈ S+,∗
d ).

When −b ∈ S+,∗
d , the Wishart process Xt converges in law as t→ +∞ to the stationary

law X∞ ∼WISd(0, α, 0,
√

2q∞; 1/2) with q∞ =
∫∞

0 e2sbds for any starting point x ∈ S+
d .

Therefore, this is the unique stationary law which is thus extremal and that it is then
ergodic, see e.g. Pagès [Pag01], Annex A. Thus, we have

RT
T

a.s.−→ R∞ := Eθ(X∞), as T → +∞. (3.12)

Besides, when α > d + 1, Q∞ = 1
Eθ(Tr[X−1

∞ ])
is finite and again, the ergodic Birkhoff’s

theorem gives

TQT
a.s.−→ Q∞ =

1

Eθ(Tr[X−1
∞ ])

, as T → +∞. (3.13)

• For the case α > d+ 1, we prove thanks to (3.12), (3.13) and the central limit theorem

for martingales the asymptotic normality of the normalized MLE error
(√

T (b̂T − b, α̂T − α)
)

and characterize the limit distribution given by a centered Gaussian vector (G, H) taking
values in Sd × R.
• However, for the case α = d+1, the rate of convergence of the MLE of α is even better
as stated by the following theorem.

Theorem 3.3.2. Assume −b ∈ S+,∗
d and α = d + 1. Then, under Pθ, the couple(√

T (b̂T − b), T (α̂T − α)
)

converges in law when T → +∞ to
(
G,−2τ−1

−Tr[b]
Tr[b]

)
, where

τa = inf{t ≥ 0, Bt = a} with (Bt)t≥0 a given one-dimensional standard Brownian
motion and G is a Gaussian vector independent of B such that Eθ [exp (Tr[cG])] =

exp
(

Tr[cL−1
R∞

(c)]
)

, c ∈ Sd.
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Critical case: (b = 0).

In this case, we combine together Proposition 3.3.1 and several subtile properties of the
Wishart process to prove the following result.

Theorem 3.3.3. Assume b = 0.

• If α > d+ 1, then, (T (b̂T − b),
√

log(T )(α̂T − α)) converges in law under Pθ, when
T → +∞ to (

L−1
R0

1

(
X0

1 − αId
)
, 2

√
α− (d+ 1)

d
G

)
,

where X0
t = αtId +

∫ t
0

√
X0
sdWs + dW>s

√
X0
s is a Wishart process with the same

parameters but starting from 0, R0
t =

∫ t
0 X

0
sds and G ∼ N (0, 1) is an independent

standard Normal variable.

• If α = d + 1, then, (T (b̂T − b), log(T )(α̂T − α)) converges in law under Pθ, when
T → +∞ to (

L−1
R0

1

(
X0

1 − αId
)
,

4

dτ1

)
,

where X0
t = αtId +

∫ t
0

√
X0
sdWs + dW>s

√
X0
s is a Wishart process with the same

parameters but starting from 0, R0
t =

∫ t
0 X

0
sds and τ1 = inf{t > 0, Bt = 1}, where

B is a standard Brownian motion independent from W .

Supercritical case: a specific choice (b = b0Id, b0 > 0).

Similarly, as for the one-dimensional case, for the supercritical case we treat only the
special case of estimating b while α is supposed to be known. In this case, the MLE of b
is given by b̂T = L−1

RT
(XT − x− αTId).

Obviously, the case b = b0Id is very particular. One would like to consider more
general non-ergodic cases or ideally to be able to state a general convergence result of b̂T
towards b for any b ∈ Sd. Such result seems to be difficult to obtain. The reason why
we can handle the ergodic case and the non-ergodic case b = b0Id with b0 > 0 is that
the convergence of all the matrix terms occurs at the same speed, namely 1/

√
T for the

ergodic case, 1/T for b = 0 and e−b0T when b0 > 0. In the other cases, there is no such a
simple scalar rescaling. Heuristically, there may be different speeds of convergence that
are difficult to disentangle because of the different matrix products. So we prove the
following result.

Theorem 3.3.4. Assume that α > d − 1. Then, as T → +∞, exp(b0T )(b̂T − b) con-

verges in law under Pθ to L−1
X

(√
XG̃ + G̃

√
X
)

where X ∼WISd

(
x

2b0
, α, 0, Id;

1
4b20

)
and

G̃ is an independent d-square matrix whose elements are independent standard Normal
variables.

Though limited to some non-ergodic cases, we however recover and extend results
obtained by [BAK12] and [BAK13] for the one-dimensional CIR process. We also prove
local asymptotic properties (LAN and LAQ) of the derived MLE in the different cases.
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3.4 Statistical inference for jump-type square root models

As pointed out in Section 3.1, there are only few studies examining MLE estimators for
jump diffusions with non-regular coefficients and almost none dealing with this problem
in non-ergodic regimes. We address this question in [BBKP15] and [BBKP17].

3.4.1 Maximum likelihood estimation for stochastic volatility with jumps
model (SVJ)

In [BBKP15], for θ, κ, σ ∈ (0,∞), µ ∈ R and % ∈ (−1, 1), we consider the jump-type
Heston model given by{

dYt = κ(θ − Yt) dt+ σ
√
Yt dWt, Y0 ≥ 0

dSt = µSt dt+ St
√
Yt
(
% dWt +

√
1− %2 dBt

)
+ St− dLt, S0 > 0,

(3.14)

where (Lt)t∈[0,∞) is a purely non-Gaussian Lévy process of not necessarily bounded
variation, independent of (Wt, Bt)t∈[0,∞) with Lévy–Khintchine representation

E(eiuL1) = exp

{
iγu+

∫ ∞
−1

(eiuz − 1− iuz1[−1,1](z))m(dz)

}
, u ∈ R, (3.15)

where γ ∈ R and m is a Lévy measure concentrating on (−1,∞) with m({0}) = 0.
We first prove that there is a (pathwise) unique strong solution (Yt, St)t∈[0,∞) of the SDE
(3.14) such that P(Yt ∈ [0,∞) and St ∈ (0,∞) for all t ∈ [0,∞)) = 1 and

St = S0 exp

{∫ t

0

(
µ− 1

2
Yu

)
du+

∫ t

0

√
Yu (%dWu +

√
1− %2 dBu) + Lt

}
×
∏
u∈[0,t]

(1 + ∆Lu)e−∆Lu , (3.16)

where for u ∈ [0,∞), ∆Lu := Lu − Lu−, and the above (possibly) infinite product is
absolutely convergent. The above model (3.14) is quite popular in finance with the
special choice of the Lévy process L as a compound Poisson process

Nt :=

πt∑
i=1

(eJi − 1), t ∈ [0,∞), (3.17)

where (πt)t∈[0,∞) is a Poisson process with intensity 1, (Ji)i∈N is a sequence of in-
dependent identically distributed random variables having no atom at zero and being
independent of π as well. One can interpret J as the jump size of the log returns of the
asset prices. When the distribution of J is chosen as a normal distribution, the above
process is widely known in quantitative finance as the Bates model [Bat96]. Moreover,
Bakshi et al. [BCC97] used this model for studying (European style) S&P500 options,
e.g., they derived a practically implementable closed-form pricing formula and Broadie
and Kaya [BK06] gave an exact simulation algorithm for this model.

Further, we prove that for all t ∈ [0, T ], Lt and Yt are measurable functions of
(St)t∈[0,T ]. Then, as the continuous martingale part (logS)cont of logS is (logS)cont

t =
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∫ t
0

√
Yu
(
%dWu +

√
1− %2 dBu

)
, t ∈ [0,∞) and since for all T > 0,[

σ2 %σ
%σ 1

]
=

1∫ T
0 Ys ds

[
〈Y 〉T 〈Y, (logS)cont〉T

〈Y, (logS)cont〉T 〈(logS)cont〉T

]
=: Σ̂T ,

we deduce that Σ̂T is a statistic, that is we can assume that parameters σ, ρ are known.

Existence and uniqueness of MLE

Let us denote by ψ := (θ, κ, µ) ∈ (0,∞)2 × R =: Ψ the parameter to be estimated. At
first, we rewrite the Heston model (3.14) in the form[

dYt
dSt

]
= A(Yt, St)H(ψ) dt+ Γ(Yt, St)

[
dWt

dBt

]
+

[
0

St− dLt

]
, t ∈ [0,∞), (3.18)

where the functions A : [0,∞) × (0,∞) → R2×3, Γ : [0,∞) × (0,∞) → R2×2 and
H : R3 → R3 are defined by

A(y, s) :=

[
1 −y 0
0 0 s

]
, Γ(y, s) :=

√
y

[
σ 0

%s
√

1− %2s

]
, H(x1, x2, x3) :=

x1x2

x2

x3


for (y, s) ∈ [0,∞) × (0,∞) and (x1, x2, x3) ∈ R3. Let us introduce the function
Σ : [0,∞)× (0,∞)→ R2×2 given by

Σ(y, s) := Γ(y, s)Γ(y, s)> = y

[
σ2 %σs
%σs s2

]
, (y, s) ∈ [0,∞)× (0,∞)

and the processes

Gt :=

∫ t

0
A(Yu, Su)>Σ(Yu, Su)−1A(Yu, Su) du, t ∈ [0,∞),

and

f t :=

∫ t

0
A(Yu−, Su−)>Σ(Yu−, Su−)−1

[
dYu

dSu − Su− dLu

]
, t ∈ [0,∞),

provided that P(Yt ∈ (0,∞) for all t ∈ [0,∞)) = 1, which holds if θκ ∈
[
σ2

2 ,∞
)
. By

Jacod and Shiryaev [JS03, Theorem III.5.34], we prove that for ψ̃ := (θ̃, κ̃, µ̃) ∈ Ψ with

θκ, θ̃κ̃ ∈
[
σ2

2 ,∞
)
, the probability measures Pψ,T and P

ψ̃,T
are absolutely continuous with

respect to each other, and, under P,

log
dPψ,T
dP
ψ̃,T

(Ỹ , S̃) =
(
H(ψ)−H(ψ̃)

)>
f̃T−

1

2

(
H(ψ)−H(ψ̃)

)>
G̃T

(
H(ψ)+H(ψ̃)

)
, (3.19)

where Ỹ , S̃, G̃ and f̃ are the processes corresponding to the parameter ψ̃.
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Asymptotic behavior of MLE

Taking advantage of the explicit expression of the above likelihood ratio (3.19), we prove
that for all T ∈ (0,∞), there exists a unique MLE ψ̂T = (θ̂T , κ̂T , µ̂T )> of ψ = (θ, κ, µ)>

on the set R3 based on the observations (Yt, St)t∈[0,T ] taking the form

ψ̂T =

θ̂Tκ̂T
µ̂T

 =


(G−1

T fT )1

(G−1
T fT )2

(G−1
T fT )2

(G−1
T fT )3

 , (3.20)

provided thatGT is strictly positive definite and (G−1
T fT )2 6= 0, which hold almost surely.

Moreover, when θκ > σ2/2, we prove strong consistency and asymptotic normality of ψ̂T .
However, when θκ = σ2/2, we only get weak consistency as a consequence of the following
result:

T 1/2(θ̂T − θ)
T 1/2(κ̂T − κ)
T (µ̂T − µ)

 D−→


−σ2
√

1−%2
√

2κ3
Z1√

2(1− %2)κZ1

%σ
κτ +

σ
√

1−%2

κ
√
τ

Z2

 as T →∞, (3.21)

where τ := inf{t ∈ [0,∞) : Wt = 1} with a standard Wiener process (Wt)t∈[0,∞),
and Z1 and Z2 are independent standard normally distributed random variables,
independent from τ .

3.4.2 Maximum likelihood estimation for the jump-type CIR model

In [BBKP17], we consider a jump-type CIR process driven by a standard Wiener process
and a subordinator

dYt = (a− bYt) dt+ σ
√
Yt dWt + dJt, t ∈ [0,∞), Y0 ≥ 0, (3.22)

where a, σ ∈ [0,∞), b ∈ R, (Wt)t∈[0,∞) is a a standard Wiener process and (Jt)t∈[0,∞) is
a subordinator with zero drift and a Lévy measure m concentrating on (0,∞) such that∫ ∞

0
z m(dz) ∈ [0,∞), (3.23)

that is, E(euJt) = exp
{
t
∫∞

0 (euz − 1)m(dz)
}

for any t ∈ [0,∞) and for any complex num-
ber u with <(u) ∈ (−∞, 0]. We suppose that (Wt)t∈[0,∞) and (Jt)t∈[0,∞) are independent.
Note that the subordinator J has sample paths of bounded variation on every compact
time interval almost surely, see, e.g., Sato [Sat13, Theorem 21.9].

Under these assumptions we first prove that there is a (pathwise) unique strong so-
lution of the SDE (3.22) such that P(Yt ∈ [0,∞) for all t ∈ [0,∞)) = 1. If, in addition,
Y0 > 0 or a > 0, then P

(∫ t
0 Ys ds > 0

)
= 1 for all t > 0. Moreover, we prove that

(Yt)t∈[0,∞) is a special continuous state and continuous time branching process with im-

migration (CBI process) having branching mechanism R(u) = σ2

2 u
2−bu and immigration

mechanism F (u) = au+
∫∞

0 (euz − 1)m(dz), for u ∈ C with <(u) ≤ 0.
The jump-type CIR process in (3.22) includes the so-called basic affine jump-diffusion

(BAJD) as a special case, in which the drift takes the form κ(θ−Yt) with some κ ∈ (0,∞)
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and θ ∈ [0,∞), and the Lévy process (Jt)t∈[0,∞) is a compound Poisson process with

exponentially distributed jump sizes, namely, m(dz) = cλe−λz1(0,∞)(z) dz with some
constants c ∈ [0,∞) and λ ∈ (0,∞). For describing the dynamics of default intensity,
the BAJD was introduced by Duffie and Gârleanu [DN01]. Filipović [Fil01] and Keller-
Ressel and Steiner [KRS08] used the BAJD as a short-rate model. We point out that,
the volatility parameter σ can be estimated thanks to

1
1
n

∑bnT c
i=1 Y i−1

n

(bnT c∑
i=1

(
Y i
n
− Y i−1

n

)2 − ∑
u∈[0,T ]

(∆Yu)2

)
P−→ σ2 as n→∞. (3.24)

So, we can suppose σ to be known and focus on the drift parameter estimation of the
jump-type CIR process (3.22) in critical and supercritical cases (b = 0 and b ∈ (−∞, 0),
respectively), which have not been addressed in previous research. We also study the
subcritical case (b ∈ (0,∞)) and we get results extending those of Mai [Mai12, Theorem
4.3.1] in several aspects: we do not suppose the ergodicity of the process Y and we make
explicit the expectation of the unique stationary distribution of Y .

To derive the MLE for the parameter b based on the observations (Yt)t∈[0,T ], we

provide an explicit expression of the Radon–Nikodym derivative. For b, b̃ ∈ R, the prob-
ability measures Pb,T and P

b̃,T
are absolutely continuous with respect to each other and

log

(
dPb,T
dP

b̃,T

(Ỹ )

)
= −b− b̃

σ2
(ỸT − y0 − aT − JT )− b2 − b̃2

2σ2

∫ T

0
Ỹs ds, (3.25)

where Ỹ is the process corresponding to the parameter b̃. This last expression allows us
to get an explicit expression of the MLE of b given by

b̂T = −YT − y0 − aT − JT∫ T
0 Ys ds

, (3.26)

provided that
∫ T

0 Ys ds > 0 which holds almost surely under the above assumptions.
Here, let us point out that using the SDE (3.22), we have ∆Jt = ∆Yt, t ∈ R+ and
then, by the property Jt =

∑
s∈[0,t] ∆Js, which is valid under condition (3.23), we obtain

Jt =
∑

s∈[0,t] ∆Ys, for all t ∈ R+. Consequently, for all t ∈ [0, T ], Jt is a measurable
function of (Yu)u∈[0,T ], so that the right hand side of (3.26) is a statistic as desired.
Besides, in the subcritical case b > 0, we have the existence of a unique stationary
distribution and the exponential ergodicity for the process (Yt)t≥0, see e.g. Pinsky [Pin72].

Theorem 3.4.1. Let a ≥ 0, b > 0, σ > 0, and let m be a Lévy measure on (0,∞)
satisfying (3.23). Let (Yt)t≥0 be the unique strong solution of the SDE (3.22) satisfying
P(Y0 ≥ 0) = 1 and E(Y0) <∞.

(i) Then (Yt)t≥0 converges in law to its unique stationary distribution π given by∫ ∞
0

euyπ(dy) = exp

{∫ 0

u

F (v)

R(v)
dv

}
= exp

{∫ 0

u

av +
∫∞

0 (evz − 1)m(dz)
σ2

2 v
2 − bv

dv

}
, u < 0.

Moreover, π has a finite expectation given by
∫∞

0 y π(dy) =

(
a+
∫∞

0 z m(dz)

)
1
b > 0.
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(ii) If, in addition, a > 0 and the extra moment condition
∫ 1

0 z log
(

1
z

)
m(dz) <∞ holds,

then the process (Yt)t≥0 is exponentially ergodic, namely, there exist constants
β ∈ (0, 1) and C > 0 such that

‖PYt|Y0=y − π‖TV ≤ C(y + 1)βt, t ≥ 0, y ∈≥ 0,

where ‖µ‖TV denotes the total-variation norm of a signed measure µ on (0,∞) de-
fined by ‖µ‖TV := supA∈B(R+) |µ(A)|. Moreover, for all Borel measurable functions

f : R+ → R with
∫∞

0 |f(y)|π(dy) <∞, we have

1

T

∫ T

0
f(Ys) ds

a.s.−→
∫ ∞

0
f(y)π(dy) as T →∞. (3.27)

Here, we draw attention that it might be possible to use (3.27) together with the
central limit theorem for martingales to easily derive the asymptotic normality of the
MLE (3.26) in the subcritical case, but at an extra cost in terms of the additional moment
condition we need on m. To avoid such restrictive condition, we prove the following result.

Theorem 3.4.2. Let a ≥ 0, b ∈ R, σ > 0, and let m be a Lévy measure on (0,∞)
satisfying (3.23). Let (Yt)t≥0 be the unique strong solution of the SDE (3.22) satisfying
P(Y0 = y0) = 1 with some y0 ≥ 0. For all u, v ≤ 0, if we denote γv :=

√
b2 − 2σ2v, then

E
[
exp

{
uYt + v

∫ t

0
Ys ds

}]
= exp

{
ψu,v(t)y0+

∫ t

0

(
aψu,v(s)+

∫ ∞
0

(
ezψu,v(s)−1

)
m(dz)

)
ds

}
for t ≥ 0, where the function ψu,v : R+ → R− takes the form

ψu,v(t) =


uγv cosh( γvt2 )+(−ub+2v) sinh( γvt2 )
γv cosh( γvt2 )+(−σ2u+b) sinh( γvt2 )

if v < 0 or b 6= 0 (i.e., if γv > 0),

u

1−σ2u
2
t

if v = 0 and b = 0 (i.e., if γv = 0).

Our above joint Laplace transform is in accordance with the corresponding one ob-
tained in Keller-Ressel [KR08, Theorem 4.10] in case of a regular affine process and with
the one in Jiao et al. [JMS16, Proposition 4.3] in case of a general CBI process. How-
ever, our contribution here is to provide a new proof for it based on the fact that the
couple

(
Yt,
∫ t

0 Ys ds
)
t∈[0,∞)

still defines a 2-dimensional CBI process which follows also

from Keller-Ressel [KR08, Theorem 4.10]. This observation allows us to write the joint
Laplace transform in an affine form as for the continuous CIR process and make the solu-
tions of the corresponding Riccati-type differential equations explicit. That is, Theorem
3.4.2 allows not only to avoid the above extra moment condition on the Lévy measure
m in the subcritical case but also make the study of the critical and supercritical cases
possible.

Subcritical case (b > 0).

We prove that if a > 0 and the Lévy measure m satisfies (3.23), then

√
T (̂bT − b)

D−→ N
(

0,
σ2b

a+
∫∞

0 z m(dz)

)
= N

(
0,

σ2∫∞
0 y π(dy)

)
as T →∞,

where π denotes the unique stationary distribution of (Yt)t≥0 (see (i) of Theorem 3.4.1).
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Critical case (b = 0).

Let a ≥ 0, (Yt)t≥0 be the unique strong solution of the SDE (3.22) such that P(Y0 =
y0) = 1 with some y0 ≥ 0 and the Lévy measure m satisfying (3.23). Suppose that a > 0
or a = 0, y0 > 0,

∫∞
0 z m(dz) > 0. Then, we prove that

T (̂bT − b) = T b̂T
D−→

a+
∫∞

0 z m(dz)− Y1∫ 1
0 Ys ds

as T →∞,

where (Yt)t≥0 is the unique strong solution of a critical (diffusion type) CIR model

dYt =

(
a+

∫ ∞
0

z m(dz)

)
dt+ σ

√
Yt dWt, t ∈ R+,

with initial condition Y0 = 0 and (Wt)t≥0 is a standard Wiener process.

Supercritical case (b < 0).

Let a ≥ 0, (Yt)t≥0 be the unique strong solution of the SDE (3.22) such that P(Y0 =
y0) = 1 with some y0 ≥ 0 and the Lévy measure m satisfying (3.23). Suppose that a > 0
or a = 0, y0 > 0,

∫∞
0 z m(dz) > 0. Then, we prove that

e−bT/2(̂bT − b)
D−→ σZ

(
−V
b

)−1/2

as T →∞,

where V is a positive random variable having an explicit Laplace transform

E(euV ) =

(
1 +

σ2u

2b

)− 2a
σ2

exp

{
uy0

1 + σ2u
2b

+

∫ ∞
0

(∫ ∞
0

(
exp

{
zueby

1 + σ2u
2b eby

}
− 1

)
m(dz)

)
dy

}
and Z is a standard normally distributed random variable, independent of V .

3.5 Perspectives

Large deviations for Wishart processes. With Aurélien Alfonsi we plan to establish
large deviation principles for the maximum likelihood estimators presented in Section 3.3.
Based on a new strategy introduced by Bercu and Richou [BR15], Du Roy De Chaumaray
[De 14] established large deviation results for the CIR process taking advantage of the
explicit moment generating-Laplace transform established in [BAK13] (see Section 3.2).
We then hope to use a similar strategy taking advantage of the explicit Laplace transform
we established for the Wishart process (see Theorem 3.3.1).

Parameter estimation in rough volatility models In their recent paper Gatheral,
Jaisson and Rosenbaum [GJR14] proved that fractional Brownian motion with short
memory have a better aptitude for reproducing stylized effects of both historical and
implied volatilities. So they adopt the fractional Heston model originally introduced by
Comte, Coutin and Renault [CCR12] with a small Hurst parameter. We aim at studying
the problem of parameter estimation for these challenging models.
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Chapter 4

Statistical properties for a
discretely observed CIR model

During the last forty years or so continuous-time stochastic differential equations have
been widely applied in mathematical finance for describing stock prices, interest rates,
volatility evolution. However, only discrete-time observations are available in practice
which makes the problem of parameter estimation more and more challenging in this
context. We refer the reader to the book of Kessler and Sørensen [KLSr12] for an intensive
survey on this topic. As pointed out in Section 3.1, only few results can be found in
the literature for non-ergodic diffusions or diffusions with non-regular coefficients. The
content of this chapter follows from the articles [BAK13] and [BKK17].

4.1 Parameter estimation in a high frequency setting

In [BAK13], we consider rather a discrete sample (Xtk)0≤k≤n of the CIR diffusion at
deterministic and equidistant instants (tk = k∆n)0≤k≤n. Our aim is to study the problem
of estimating θ = (a, b) from discrete observations, under high frequency conditions,
namely ∆n → 0, and infinite horizon, n∆n → ∞. A common way to do that is to
consider a discretization of the logarithm likelihood (see e.g. [KLSr12]). In our case this
method yields the contrast

1

2σ

n−1∑
k=0

a− bXtk

Xtk

(Xtk+1
−Xtk)− 1

4σ

n−1∑
k=0

∆n
(a− bXtk)2

Xtk

.

Our approach is slightly different since we discretize the continuous time MLE of θ =
(a, b), obtained in Section 3.2, instead of considering the maximum argument of the above
contrast. Doing so, we take advantage of our limit theorems obtained in the continuous
time observations context. The discretized version of the MLE is given by

â∆n
tn =

(
logXtn − log x+ σ

∑n−1
k=0

∆n
Xtk

)∑n−1
k=0 ∆nXtk − tn (Xtn − x)∑n−1

k=0
∆n
Xtk

∑n−1
k=0 ∆nXtk − t2n

b̂∆n
tn =

tn

(
logXtn − log x+ σ

∑n−1
k=0

∆n
Xtk

)
− (Xtn − x)

∑n−1
k=0

∆n
Xtk∑n−1

k=0
∆n
Xtk

∑n−1
k=0 ∆nXtk − t2n

.

(4.1)
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As mentioned in Section 3.2, the relevant study cases are the subcritical and critical
(b = 0) since for the remaining supercritical case the MLE estimator of θ = (a, b) is not
even consistent. In this setting we prove the following results

Subcritical case (b > 0).

Theorem 4.1.1. For all η ∈]− a
σ ,+∞[, we have

Ex(Xη
t )∼

(
σ2

2b

)η Γ( aσ + η)

Γ( aσ )
, as t→ +∞

and for all 0 < t− s < 1 there exist C1 > 0 and C2 > 0 such that:

1. For all q ≥ 1, Ex|Xt −Xs|q ≤ C1(t− s)
q
2 .

2. For all a > 2σ, Ex
∣∣∣ 1
Xt
− 1

Xs

∣∣∣ ≤ C2(t− s)
1
2 .

Moreover, for a > 2σ, if n∆2
n → 0, then we have

Lθ
{√

tn(θ̂∆n
tn − θ)

}
=⇒
n→∞

NR2

(
0, 2σΓ−1

)
, with Γ =

(
b

a−σ −1

−1 a
b

)
.

Critical case (b = 0).

Theorem 4.1.2. For all η ∈]− a
σ ,+∞[, we have

Ex(Xη
t )∼ση

Γ( aσ + η)

Γ( aσ )
tη, as t→ +∞

and for all 0 < t− s < 1 there exist C3 > 0 and C4 > 0 such that:

1. For all q ≥ 2, Ex|Xt −Xs|q ≤ C3(t− s)
q
2 sups≤u≤t Ex(X

q
2
u ).

2. For all 1 ≤ q < 2, Ex|Xt −Xs|q ≤ C4(at+ x)
q
2 (t− s)

q
2 .

3. For all a > 2σ, there exists q ≥ 2 and 2 < p < a
σ , such that

Ex
∣∣∣∣ 1

Xt
− 1

Xs

∣∣∣∣ ≤ C(t− s)
1
2 sup
s≤u≤t

(
Ex(X

q
2
u )
) 1
q ∥∥X−1

t

∥∥
p

∥∥X−1
s

∥∥
p
.

Moreover, for a > 2σ, if n∆2
n → 0 and n∆

3
2
n

log(n∆n) → 0, then we have

Lθ
{

diag(
√

log tn, tn)(θ̂∆n
tn − θ)

}
=⇒

(√
2σ(a− σ)G,

a−R1

I1

)
, as n→∞,

where (Rt)t≥0 is the CIR process, starting from 0, solution to (3.4), It =
∫ t

0 Rsds, and G
is a standard normal random variable independent of (R1, I1).

Here, we draw attention that the condition n2∆n → 0 is consistent with those of
papers in the literature dealing with the same problem for ergodic diffusions with regular
coefficients (see e.g. Yoshida [Yos92] and the references there). However, for b = 0,

the condition max(n2∆n,
n∆

3
2
n

log(n∆n)) → 0 seems to be quite distinctive since it concerns a
non-ergodic case.
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4.2 Local asymptotic properties of CIR process discretely
observed at high frequency

A fundamental concept in asymptotic theory of statistics is the local asymptotic nor-
mality (LAN) property introduced by Le Cam [LC60] and then extended by Jeganathan
[Jeg82] to the local asymptotic mixed normality (LAMN) property. The local asymptotic
quadraticity (LAQ) property was introduced by [LCY90]. Initiated by Gobet [Gob01],
Malliavin calculus techniques have recently been applied in order to analyze the log-
likelihood ratio of the discrete observation of continuous diffusion processes. Concretely,
Gobet [Gob01, Gob02] obtained the LAMN and LAN properties respectively for multi-
dimensional elliptic diffusions and ergodic diffusions on the basis of discrete observations
at high frequency. As far as we know, the validity of the local asymptotic properties
for CIR process on the basis of discrete observations has never been addressed in the
literature. One main difficulty comes from the fact that its diffusion coefficient is the
square root function.

In [BKK17], we focus on deriving the LAN property in the subcritical case, the LAQ
property in the critical case and the LAMN property in the supercritical case. To obtain
these results, we use the Malliavin calculus techniques developed recently for CIR process
by Alòs et al. [AE08] and Altmayer et al. [AN15] together with the Lp-norm estimation
for positive and negative moments of the CIR process obtained in [BAK13] (see theorems

4.1.1 and 4.1.2). We consider a CIR process (Xa,b
t )t≥0 given by

Xa,b
t = x0 +

∫ t

0

(
a− bXa,b

s

)
ds+

∫ t

0

√
2σXa,b

s dBs, (4.2)

where Xa,b
0 = x0 > 0 is a given initial condition and we assume that a > σ > 0.

Here, B = (Bt)t≥0 is a standard Brownian motion. For any t > s, the law of Xa,b
t

conditioned on Xa,b
s = x admits a positive transition density pa,b(t − s, x, y), which is

explicit and differentiable w.r.t. a and b. Then, we consider a discrete observation
sample at deterministic and equidistant times tk = k∆n, k ∈ {0, . . . , n} of the process

Xa,b, which is denoted by Xn,a,b = (Xa,b
t0
, Xa,b

t1
, . . . , Xa,b

tn ), where ∆n ≤ 1 for all n ≥ 1.
We assume that the high-frequency and infinite horizon conditions hold (∆n → 0 and

n∆n → ∞ as n → ∞). We denote by Pa,bn the probability law of the random vector
Xn,a,b. For a reference parameter (a0, b0) ∈ Θ × Σ, we consider a discrete observation

of the process Xa0,b0 given by Xn,a0,b0 = (Xa0,b0
t0

, Xa0,b0
t1

, . . . , Xa0,b0
tn ). The aim here is to

study the asymptotic behavior of the log-likelihood ratio given by log dPan,bnn

dP
a0,b0
n

(
Xn,a0,b0

)
in ergodic and non-ergodic regimes. To do so, we use the Markov property and the mean
value theorem to get

log
dPan,bnn

dPa0,b0
n

(
Xn,a0,b0

)
=

n−1∑
k=0

(an − a0)

∫ 1

0

∂ap
a(`),b0

pa(`),b0

(
∆n, X

a0,b0
tk

, Xa0,b0
tk+1

)
d`

+
n−1∑
k=0

(bn − b0)

∫ 1

0

∂bp
an,b(`)

pan,b(`)

(
∆n, X

a0,b0
tk

, Xa0,b0
tk+1

)
d`,

where a(`) := a0 + `(an − a0) and b(`) := b0 + `(bn − b0). Then, combining the Malli-
avin calculus techniques together with the Lp-norm estimation for positive and negative
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moments of the CIR process (see theorems 4.1.1 and 4.1.2), to prove the following results.

Subcritical case (b > 0).

Theorem 4.2.1. Assume that a/σ > 5 + 3
√

2. Then, the LAN property holds for
the likelihood at (a0, b0) with rate of convergence (

√
n∆n,

√
n∆n) and asymptotic Fisher

information matrix I(a0, b0). That is, for all z = (u, v)> ∈ R2, as n→∞,

log
dPan,bnn

dPa0,b0
n

(
Xn,a0,b0

) L(P̂a0,b0 )−→ z>N (0, I(a0, b0))− 1

2
z>I(a0, b0)z,

where an := a0 + u√
n∆n

, bn := b0 + v√
n∆n

, and N (0, I(a0, b0)) is a centered R2-valued

Gaussian vector with covariance matrix I(a0, b0) := 1
2σ

(
b0

a0−σ −1

−1 a0
b0

)
.

Critical case (b = 0).

Theorem 4.2.2. Assume that a/σ > 5 + 3
√

2 and
n∆

3
2
n

log(n∆n)
→ 0 as n→∞. Then, the

LAQ property holds for the likelihood at (a0, 0) with rates of convergence (
√

log(n∆n), n∆n)
and random matrix I(a0, 0). That is, for all z = (u, v)> ∈ R2, as n→∞,

log
dPan,bnn

dPa0,0
n

(
Xn,a0,0

) L(P̂a0,0)−→ z>U(a0, 0)− 1

2
z>I(a0, 0)z,

where an := a0 + u/
√

log(n∆n), bn := 0 + v/(n∆n), and U(a0, 0) is a R2-valued random

vector given by U(a0, 0) := ( 1√
2σ(a0−σ)

G,
a0−R

a0,0
1

2σ )> with covariance matrix I(a0, 0) :=

1
2σ diag( 1

a0−σ ,
∫ 1

0 R
a0,0
s ds). Here, (Ra0,0

t )t≥0 is the process starting at 0 and solution to
(3.4) and G is an independent standard normal random variable.

Supercritical case (b < 0).

Theorem 4.2.3. Assume that a/σ > 5 + 3
√

2 and n∆2
n → 0 as n → ∞. Then, for all

z = (u, v)> ∈ R2, as n→∞,

log
dPan,bnn

dPa0,b0
n

(
Xn,a0,b0

) L(P̂a0,b0 )−→ z>U(a0, b0)− 1

2
z>I(a0, b0)z,

where an := a0 + u, bn := b0 + v/(e−b0
n∆n

2 ) and U(a0, b0) is a R2-valued random vec-

tor given by U(a0, b0) = ( V2σ ,
1√
2σ

(− 1
b0
Ra0

− 1
b0

)
1
2Z1)> with covariance matrix I(a0, b0) :=

1
2σ diag(

∫ − 1
b0

0 Ra0
s ds,− 1

b0
Ra0

− 1
b0

). Here, V := logRa0

− 1
b0

− log x0− (a0 − σ)
∫ − 1

b0
0 Ra0

s ds, and

Z1 is a standard normal random variable independent of Ra0

− 1
b0

. Here, (Ra0
t )t≥0 is the

process starting at x0 and solution to (3.4).
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We draw attention that in the particular case, when a is known and b is unknown to
be estimated, the LAMN property holds for the likelihood at b0 with rate of convergence

e−b0
n∆n

2 and asymptotic random Fisher information I(b0) := − 1
2σb0

Ra− 1
b0

. That is, for all

v ∈ R, as n→∞,

log
dPa,bnn

dPa,b0n

(
Xn,a,b0

) L(P̂a,b0 )−→ v
√
I(b0)N (0, 1)− v2

2
I(b0),

where N (0, 1) is a centered standard Gaussian random variable which is independent of
I(b0). In this case, condition n∆2

n → 0 as n→∞ is no longer needed.
It is worth noticing that thanks to these local asymptotic properties, we deduce by the

Hájek-Le Cam convolution theorem and the minimax theorem [Jeg82, Proposition 2], the
asymptotical efficiency of the estimator (4.1) derived in [BAK13] which asymptotically
achieves the Cramér-Rao lower bound I(a0, b0)−1 for the estimation variance.

4.3 Perspectives

Local asymptotic properties for discretely observed jump-type CIR processes.
A natural question is wether one can prove local asymptotic properties similar to the
ones of Section 4.2 for a CIR process with jumps. In the presence of jumps, several
cases have been largely investigated, see e.g. Aı̈t-Sahalia and Jacod [ASJ07], Kawai
[Kaw13], Clément, Delattre and Gloter [CDG14], Clément and Gloter [CG15], Kohatsu-
Higa, Nualart and Tran [KHNT14, KHNT17], and Tran [Tra17]. However, all these
results deal with the stochastic differential equations whose coefficients are continuously
differentiable and satisfy a global Lipschitz condition. The case where the coefficient
functions of the model do not satisfy these standard assumptions, for instance the square
root diffusion function in the jump-type CIR model still remains an open problem. This
topic is currently under study with Mohamed Ben Alaya and Khue Tran, where we have
obtained partial results on this question.

Local asymptotic properties of square root type processes under the presence
of microstructure noise. As confirmed by recent empirical studies in finance, it is
well known that the market microstructure contaminates the high-frequency data and
may cause serious damage to the approximation of the volatility. As explained in Zhang,
Mykland and Aı̈t-Sahalia [ZMAS05], in practice the realized volatility estimator as we
give in (3.24) does not converge as the sampling frequency increases. Several approaches
build volatility consistent estimators reducing the effect of this noise are available in
the literature. We mention for example the works of Zhang, Mykland, and Aı̈t-Sahalia
[ZMAS05], Barndorff-Nielsen et al. [BNHLS11] and Podolskij and Vetter [PV09]. There
are also works assuming both microstructure noise and non-synchronous observations
as in Christensen, Kinnebrock, and Podolskij [CKP10] and Christensen, Podolskij, and
Vetter [CPV13]. For this last setting, Ogihara [Ogi14] studied parametric inference for
diffusion processes proving local asymptotic properties under restrictive assumption on
the diffusion coefficient of the model. We aim at proving such local asymptotic properties
for the square root type diffusion. This is a quite challenging question since such results
does not seem to have been proved even for noisy and equidistant observations case.
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Part III

Weighted limit theorems for
quasi-left continuous-time vector

martingales
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Chapter 5

Generalized logarithmic limit
theorems for quasi-left continuous
martingales

5.1 Introduction and motivation

A classical property satisfied by a standard Brownian motion B is the logarithmic strong
law

(LSL) ∀f ∈ L1(G), (log t)−1

∫ t

1
f

(
Bs√
s

)
ds

s

a.s.−→
t→∞

∫
fdG, where G ∼ N (0, 1).

An immediate consequence of the LSL property is the celebrated almost-sure central
limit theorem

(ASCLT), (log t)−1

∫ t

1

ds

s
δBs√

s
=⇒G a.s. when t→∞,

established in a functional form by Brosamler [Bro88].

The content of this chapter follows from the articles [CK08] and [FK12], where we
focus on extending the above properties to the setting of vector quasi-left continuous
martingales with generalized logarithmic weights. We provide a possible application of
these theoretical results in the estimation of drift and variance of processes with stationary
independent increments. In this setting, we consider a d-dimensional quasi-left continuous
martingale M = (Mt, t ≥ 0), locally square integrable, defined on a filtered space of
probability (Ω,F , (F)t≥0,P) and we consider a deterministic d × d non-singular matrix
process V = (Vt)t≥0. For u ∈ Rd, we set

φt(u) := exp

(
−1

2
u>〈M c〉tu+

∫ t

0

∫
Rd

(exp{i〈u, x〉} − 1− i〈u, x〉)νM (ds, dx)

)
,

where νM denotes the compensator of the random measure associated to the jumps of M .
Our results are based on the generalized CLT for martingales stated below (see Touati
[Tou91]).
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Theorem 5.1.1. Under the above notations, we define a probability Q on the space
C(X ,Rd) of continuous functions from X to Rd (where X indicates a vector space of
finite dimension). If the couple (M,V ) satisfies the following assumption

(H) φt((V
>
t )−1u)

a.s.−→
t→∞

φ∞(η, u) 6= 0 a.s.,

where η denotes a r.v., possibly degenerated taking values in X and

φ∞(z, u) =

∫
Rd

exp{i〈u, ξ〉}π(z, dξ), (z, u) ∈ X × Rd,

denotes the Fourier transform of the one-dimensional conditionals laws (π(x, .), x ∈ X )
of Q. Then,

(GCLT), Zt := V −1
t Mt

stably
=⇒ Z∞ := Σ(η), when t→∞,

where (Σ(z), z ∈ X ) is a Q law process independent of the r.v. η.

In what follows, ‖ · ‖ denotes the Frobenius matrix norm.

5.2 Martingale with regular normalization

We say that a given normalization V is regular, if it satisfies (C) = {C1, C2, C3} :

• (C1) t 7−→ Vt is of class C 1,

• (C2) there exists s0 ≥ 0 such that for every t ≥ s ≥ s0 we have VsV
>
s ≤ VtV

>
t (in

the sense of real positive-semidefinite symmetric matrices),

• (C3) there exists a continuous function a = (at) taking values on R+, decreasing to
0, such that At =

∫ t
0 asds −→t→∞∞ and a matrix U1 such that{

a−1
t V −1

t

dVt
dt
− U1 = ∆t,1, with ∆t,1 −→

t→∞
0,

U1 + U>1 = S1, where S1 is a non-singular matrix.

These conditions are simple to verify especially in the case of a scalar normalization.
In [CK08], we prove that under assumptions: (H),

(H1) V −1
t 〈M〉t(V >t )−1 a.s.−→

t→∞
C

and if furthermore condition (C3) is obtained with ‖∆t,1‖ = O(A−βt ), for β > 1, the
generalized almost-sure central limit theorem holds.

(GASCLT) log(det[V 2
t ])−1

∫ t

0
δZs d(log(det[V 2

s ])) =⇒µ∞ a.s., when t→∞,

where µ∞ denotes the law of Z∞. If in addition, the couple (M,V ) satisfies assumptions

(H2) V −1
t [M ]t(V

>
t )−1 a.s.−→

t→∞
C
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and

(H3) C =

∫
xx>dµ∞(x),

then we prove a regular quadratic strong law

(QSL) (log(det[V 2
t ]))−1

∫ t

0
V −1
s MsM

>
s (V >s )−1d(log(det[V 2

s ]))
a.s.−→
t→∞

C

and an associated central limit theorem.

5.3 Martingale with explosive normalization

We say that V is an explosive normalization, if it satisfies the following condition (C′) =
{C1, C2, C′3} where

• (C′3) there exists a matrix U2 such that{
V −1
t

dVt
dt
− U2 = ∆t,2, with ∆t,2 −→

t→∞
0,

U2 + U>2 = S2, where S2 a non-singular matrix.

Note that these conditions are fulfilled in the particular case where Vt is of scalar type
that is: Vt = vtId with vt a scalar function given by vt = c ebt with c, b ∈ R. We prove in
[FK12], the following result.

Theorem 5.3.1. Let M be a d-dimensional quasi-left continuous local martingale with
M0 = 0. let V be an explosive normalization of non-singular matrices satisfying con-
dition (C′) with ‖∆t,2‖ = O(t−β), as t → ∞ with β > 1. If the couple (M,V ) satisfies
assumptions: (H) and (H1) then

(GASCLT ) µt = t−1

∫ t

0
δZs ds=⇒µ∞ a.s., when t→∞,

where µ∞ is the limit law of Z∞. If in addition the couple (M,V ) satisfies assumptions:
(H2) and (H3), then the quadratic strong law holds.

(QSL) t−1

∫ t

0
V −1
s MsM

>
s (V >s )−1ds

a.s.−→
t→∞

C.

Finally, if the couple (M,V ) satisfies assumptions: (H), (H1), (H3),

(H′′2) ∃ p ∈ [1, 2], s.t.

∫ ∞
0

∫
Rd

(1 + s)−p/2‖V −1
s x‖2pνM (ds, dx) <∞ a.s.,

and if furthermore condition (C′3) is obtained with ‖∆t,2‖ = O(t−
3
2 ) as t→∞, then,

(CLT) t−1/2

∫ t

0
{U2D̃s + D̃sU

>
2 }ds=⇒ν∞, when t→∞,

where D̃s := V −1
s (MsM

>
s −〈M〉s)(V >s )−1 and ν∞ is the distribution of a random variable

of the form C 1/2G where G denotes a d-dimensional standard Gaussian vector and C an
explicit independent random matrix.
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We also prove similar results when the normalization is mixed. We say that V =
(Vt, t ≥ 0) ∈ Rd×d is a mixed normalization, if it is of the form V = diag(V1, V2), where
V1 (resp. V2) denotes a deterministic family of non-singular matrices on Rd1×d1(resp.
Rd2×d2) satisfying condition (C) (resp. condition (C′)). In this case, we deal with a d-
dimensional quasi-left continuous local martingale M = (M1,M2) with M0 = 0 where
M1 ∈ Rd1 and M2 ∈ Rd2 and Zt := V −1

t Mt.

5.4 Application example: estimation of the variance of pro-
cesses with stationary independent increments

Let (St)t≥0 be a processes with stationary independent increments with Lévy measure
ν(dt, dx) = dt F (dx) with

∫
R |x|

2pF (dx) < ∞, for some p > 1, where F is a positive
measure on R. Let

m = ES1, σ2 = ES2
1 −m2.

The QSL given in Subsection 5.2 gives a strongly consistent estimator of σ2.

σ̂2
t := (log(1 + t))−1

∫ t

0

(Sr −mr)2

(1 + r)2
dr

a.s.−→
t→∞

σ2.

If in addition, for some ρ > 1/2, there exists C > 0 such that

(1 + t)−1
∑
r≤t

(∆Sr)
2 −

∫
R
|x|2F (dx) ≤ C [log(1 + t)]−ρ a.s.,

then the functional central limit theorem corresponding to the QSL applies and we get√
log(1 + t)(σ̂2 − σ2) =⇒ N (0, 4σ4).

In [CK08], we improve the above speeds of convergence using weighting techniques.

5.5 Perspectives

Mâaouia and Touati [MT05] developed a global approach to build an asymptotic global
confidence region for the covariance matrices of the reproduction distributions involved
in a multitype branching process. Their approach is based on the central limit theorem
corresponding to the QSL-type results proved by Chaâbane, Mâaouia and Touati [CM00],
for the setting of discrete-time vector martingales. More recently, Barczy, Li and Pap
[BLP15] introduced the notion of a multitype continuous-state branching process hav-
ing d-types as a solution of a d-dimensional stochastic differential equation. Later on,
Kyprianou and Palau [KP16] used a different approach for a representation allowing for
up to countable infinity of types. We then aim at taking advantage of the central limit
theorem developed for the setting of continuous time martingales (see Theorem 5.3.1)
to build confidence region for the parameters involved in the multitype continuous-state
branching process.
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[Bru87] M. Bru. Thèse 3ème cycle. Résistence d’Escherichie coli aux antibio-
tiques. Sensibilités des analyses en composantes principales aux perturbations
Browniennes et simulation. PhD thesis, Université Paris Nord, 1987.
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cesses via stochastic approximation. SIAM J. Numer. Anal., 47(1):293–307,
2008/09.

[Kaw13] R. Kawai. Local asymptotic normality property for Ornstein-Uhlenbeck pro-
cesses with jumps under discrete sampling. J. Theoret. Probab., 26(4):932–
967, 2013.

[Keb05] A. Kebaier. Statistical Romberg extrapolation: a new variance reduction
method and applications to option pricing. Ann. Appl. Probab., 15(4):2681–
2705, 2005.

[KHLY17] A. Kohatsu-Higa, A. Lejay, and K. Yasuda. Weak rate of convergence of
the Euler–Maruyama scheme for stochastic differential equations with non-
regular drift. J. Comput. Appl. Math., 326:138–158, 2017.

[KHNT14] A. Kohatsu-Higa, E. Nualart, and N. K. Tran. LAN property for a simple
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