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Titre Enforcement à l'exécution de propriétés temporisées régulières en présence d'évènements incontrôlables Résumé Cette thèse étudie l'enforcement de propriétés temporisées à l'exécution en présence d'évènements incontrôlables. Les travaux se placent dans le cadre plus général de la vérification à l'exécution qui vise à surveiller l'exécution d'un système afin de s'assurer qu'elle respecte certaines propriétés. Ces propriétés peuvent être spécifiées à l'aide de formules logiques, ou au moyen d'autres modèles formels, parfois équivalents, comme des automates. Nous nous intéressons à l'enforcement à l'exécution de propriétés spécifiées par des automates temporisés. Tout comme la vérification à l'exécution, l'enforcement à l'exécution surveille l'exécution d'un système, la différence étant qu'un mécanisme d'enforcement réalise certaines modifications sur l'exécution afin de la contraindre à satisfaire la propriété souhaitée. Nous étudions plus particulèrement l'enforcement à l'exécution lorsque certains évènements de l'exécution sont incontrôlables, c'est-à-dire qu'ils ne peuvent pas être modifiés par un mécanisme d'enforcement. Nous définissons des algorithmes de synthèse de mécanismes d'enforcement décrits de manières fonctionnelle puis opérationnelle, à partir de propriétés temporisées régulières (pouvant être représentées par des automates temporisés). Ainsi, deux mécanismes d'enforcement équivalents sont définis, le premier présentant une approche correcte sans considération d'implémentation, alors que le second utilise une approche basée sur la théorie des jeux permettant de précalculer certains comportements, ce qui permet de meilleures performances. Une implémentation utilisant ce précalcul est également présentée et évaluée. Les résultats sont encourageant quant à la faisabilité de l'enforcement à l'exécution en temps réel, avec des temps supplémentaires suffisamment courts sur de petites propriétés pour permettre une utilisation de tels systèmes.

Utilisation de la théorie des jeux pour l'enforcement l'alphabet de l'automate, sont soit contrôlables, soit incontrôlables. Un même évènement ne peut pas être contrôlable et devenir incontrôlable ou inversement.

La présence d'évènements incontrôlables empêche l'utilisation de la transparence comme fonctionnalité des mécanismes d'enforcement. En effet, la transparence indique habituellement qu'une exécution qui satisfait la propriété n'est pas modifiée par un mécanisme d'enforcement. Toutefois, en présence d'évènements incontrôlables, l'ordre entre évènements contrôlables et incontrôlables peut changer. C'est pourquoi nous changeons la transparence en conformité (compliance), qui indique que les évènements incontrôlables ne peuvent pas être modifiés et que les évènements contrôlables peuvent être retardés. Nous avons choisi de permettre de retarder les évènements contrôlables car cela a semblé le plus naturel.

Utilisation de la théorie des jeux pour l'enforcement

Nous détaillons comment utiliser la théorie des jeux, et plus spécifiquement des jeux de Büchi, afin de construire des mécanismes d'enforcement pour des propriétés temporisées, en présence d'évènements incontrôlables. L'idée est de construire un graphe de jeux, représentant les actions possible du mécanisme d'enforcement et de son adversaire, l'environnement. Puisqu'un mécanisme d'enforcement est seulement autorisé à retarder les évènements contrôlables, sans en changer l'ordre, il doit d'abord les mémoriser avant de pouvoir les ajouter à sa sortie. Les actions du mécanisme d'enforcement sont donc très limitées : il peut soit émettre le premier évènement de sa mémoire, soit ne rien faire. L'autre joueur dans ce jeu est l'environnement, qui peut ajouter des évènements, contrôlables ou incontrôlables, à l'entrée, et qui peut également faire progresser le temps. Résoudre un jeu de Büchi sur un graphe adéquat de ce genre permet de calculer le comportement d'un mécanisme d'enforcement correct, conforme, et optimal.

Implantation

Nous avons développé un outil, appelé GREP, qui fait office de mécanisme d'enforcement. Cet outil utilise l'approche basée sur la théorie des jeux afin de calculer sa sortie. Étant donnée une propriété temporisée (en utilisant une grammaire personnalisée), GREP construit d'abord un graphe symbolique afin d'abstraire le temps de l'automate temporisée, puis il utilise ce graphe symbolique afin de construire un graphe de jeu tel que décrit précédemment. La stratégie de GREP est ensuite dictée par la résolution du jeu : après avoir calculé les noeuds du graphe qui sont gagnants pour le mécanisme d'enforcement, GREP n'a qu'à émettre des évènements ou ne pas les émettre en s'assurant que le noeud courant dans le graphe de jeu est toujours gagnant. Ainsi, GREP est une implantation d'un mécanisme d'enforcement correct, conforme et optimal. 

Introduction

As electronic devices get more and more powerful and miniaturised, they become more present in all kinds of systems. From coffeepots, kettles, washing machines, to more complicated smartphones or game consoles, devices have increasing computational power. As a comparison, a simple pocket calculator nowadays (as of 2017) has more computational power than all the embedded systems of the Apollo 11 spaceflight, the first one to land humans on the Moon. With this increasing computational power, electronic systems can handle more and more tasks, and can now be used for real-time applications. We can for example use a smartphone to guide us using an internal GPS chip, or play games in virtual realities. A failure in the aforementioned scenarios has a limited impact. However, some systems are critical, in the sense that a failure could lead to a human's death or important loss. Planes constitute a good example of critical systems, where a failure in sensors or the piloting system could crash the plane. Some cars also now have self-driving capabilities, thus the autopilot can be considered as a critical system.

These critical systems must be highly reliable, so that humans' deaths are avoided. This is why such pieces of software are well tested, and parts of them are sometimes formally verified. Verification techniques can be categorised according to the moment the verification takes place. Static analysis covers all the techniques that do not require the system to run, such as model checking, abstract interpretation and proof-assisted development. Active testing, often referred to as testing, consists in simulating runs of the system to expose some possible flows. Runtime verification consists in checking that the system acts as expected at runtime, i.e. when it is running in a real scenario. These methods are not exclusive, and combining them should lead to even more reliable systems.

Static Analysis

The aim of static analysis is usually to confirm that the software is indeed an implementation of a formal model that has been proved to be safe with respect to some desired behaviours. The main drawback of such analysis is that it gets very difficult to analyse large pieces of software. For example, some Active Testing static analysis automatically reads the assembler code of a program and computes a graph representing function calls, with possible values for variables. Such analysis can be expensive because there can be numerous configurations depending on the ability to infer the values of some variables from the code itself. It is also possible to prove some pieces of software with proof assistants, but it usually requires human interaction, like formal specifications of functions.

On top of static analysis, one can run the system and observe its behaviour to determine if it corresponds to the expected one. This is called (active) testing.

Active Testing

In active testing, the system under scrutiny is run with different inputs, and its behaviour is analysed to check whether it is valid with the model or not. Due to the (very) large number of possible inputs, it is usually not possible to analyse every possible run of the system, thus testing can only spot invalid behaviours, but can not ensure that the system is a valid implementation of the considered formal model. Such active testing thus improves the reliability of the system, since every valid runs increases the probability that the system is correct with respect to the model. Nevertheless, one can not be sure that a run made in real conditions has been tested nor is valid. For this reason, one can also observe the system as it runs in real conditions to check its correctness. This is called passive testing, or Runtime Verification (RV).

Runtime Verification

Runtime Verification is usually achieved by the use of a verification monitor, that can be internal or external to the system. An internal monitor is a piece of code appearing in the source code of the system that models a verification monitor. An external monitor is a device that only needs to observe the execution flow of the system under scrutiny to output a verdict stating if it violates the property or not.

One of the interests of such monitors is that they do not require a full specification of the system, since they usually watch a specific simple behaviour. For example, when driving a car in fog, if the car detects another car that is too close for the current velocity, it could alert the driver. Such a property does not need the full specification of the car, but only requires knowledge about the velocity and obstacle detection.

To verify at runtime, it is important to have enough computational power to be able to determine in real-time whether the property is violated or not.
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Too little computational power would lead to a big overhead introduced by the verification monitor, that may be unacceptable for real-time applications. In other words, verifying at runtime degrades the performance of the overall system, i.e. the system under scrutiny with the verification monitor. Moreover, with timed properties, the overhead of the verification monitor could itself introduce a violation of the property. Limiting this overhead thus is one of the main considerations when dealing with runtime verification. This can be achieved, for instance, by choosing a "simple" formalism for properties.

Automata (i.e. memoryless transition systems) can decide if a property is satisfied only based on the state reached so far. Thus, a verification monitor verifying a regular property represented by an automaton would only have to follow the path of the execution in the automaton to determine if it is violating the property. Some temporal logics such as LTL are also used to specify properties to be verified at runtime. It is possible for a verification monitor to handle LTL formulae by constructing a Büchi automaton that recognises the same language as the LTL formula and then verify that the execution satisfies the property by following the path in the automaton. Note that Büchi automata, and thus LTL formulae, recognise languages of infinite words, but a verification monitor always considers only finite executions, thus it is not always possible for a verification monitor to output a definitive verdict (see [START_REF] Bauer | Monitoring of real-time properties[END_REF][START_REF] Bauer | The good, the bad, and the ugly, but how ugly is ugly? In Runtime Verification[END_REF]).

Runtime Enforcement

Runtime enforcement is similar to runtime verification in its setting: runtime enforcement can be handled by an external monitor or in the source code of the system. As for verification monitors, enforcement monitors are built for a property that can be specified using different formalisms (automata, temporal logics, etc.). Where verification monitors output verdicts stating if the current execution of the running system under scrutiny satisfies the desired property, enforcement monitors try to enforce the property, i.e. modify the execution of the system to have it satisfy the property.

The difference between an enforcement monitor and a verification monitor is illustrated in Fig. 1. In both Figs. 1a and1b, S is the system generating the sequence of events σ, that is fed to the verification monitor M in Fig. 1a or the enforcement monitor E in Fig. 1b, each one being constructed to verify or enforce the property ϕ. The difference resides in the output: M outputs a verdict V , indicating whether σ satisfies ϕ or not, and E outputs a sequence of events E(σ), that should satisfy the property.

Runtime enforcement has similarities with control theory [START_REF] Ramadge | The control of discrete event systems[END_REF]; [START_REF] Girault | Synthèse en ligne de superviseur compositionnel pour flotte de robots mobiles[END_REF]), where one tries to compute events so that the output is valid with respect to some model. There are two possible differences between runtime enforcement and control theory. The first one is that a controller usually requires the full specification of the system under scrutiny, whereas an enforcement monitor only requires little knowledge about the system. The second one is that the primitives are usually not the same: a controller usually has the ability to add some events to the execution, whereas we consider enforcement monitors as being only able to delay events. Of course, one could consider enforcement monitors that can add events, or controllers delaying events. The two fields have different histories, and may have very few differences, thus the border between them does not seem easy to draw, but the properties verified are not the same. Nevertheless, we do not consider control theory in this thesis, and only address runtime enforcement. Thus, enforcement monitors should satisfy several requirements. First, enforcement mechanisms should be sound, which means that their output (the modified execution) should satisfy the given property. Second, enforcement mechanisms should be transparent, meaning that they should not modify an execution that already satisfies the property. Other requirements are sometimes implicitly required, since they stem from physical constraints, stating that the output of an enforcement mechanism should be increasing. In other words, an enforcement mechanism can not remove anything from its output. Since the output of the enforcement mechanism is an execution, removing anything from its output would mean cancel an event, that could have already been handled by some other system, thus this constraint is necessary. We explicitly require enforcement monitors to satisfy this constraint in this thesis. Knowing this, transparency actually gives a notion of optimality: the output should be the longest prefix of the input that satisfies the property.
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we describe an implementation.

Models for Properties

We build enforcement mechanisms for regular properties, i.e. properties that can be modelled as automata. We also build enforcement mechanisms for regular timed properties, i.e. properties that can be modelled as timed automata (see Alur and Dill [1992]). Timed automata are automata that have a set of clocks, which are variables that increase linearly with time. Transitions can have guards, that allow them to be followed only when some clock constraints are satisfied. Note that an automaton can be represented as a timed automaton with an empty set of clocks (and thus without any guard on transitions). Nevertheless, we describe enforcement mechanisms for automata before describing them for timed automata, because we think it can ease the reading since the constructions are somewhat similar, but the untimed setting yield better intuition.

We sometimes leverage some classes of automata or timed automata:

1. Safety automata are automata representing properties stating that "something bad should never happen", i.e. we start in a good state, and must remain in a good state. As soon as a bad state is reached, the property will not be satisfied. The property stating that "the system is never turned off" is a safety property: as soon as the event "off" occurs, the property is not satisfied and never will be.

2. Co-safety properties are properties for which something good must happen in a finite amount of time, and once it has happen, the property is always satisfied. For example, the property "the user must authenticate" is a co-safety property: once the user is authenticated, the property is satisfied.

3. Response properties are properties stating that some events need to be followed by some other events. For example, the property "any question must be followed by an answer" is a response property. Over finite words, all properties are response properties [START_REF] Falcone | What can you verify and enforce at runtime?[END_REF]; Pinisetty et al. [2014b]).

We chose to consider timed automata for several reasons. Timed automata (i.e. regular timed properties) are more expressive than untimed automata, but remain a reasonable model to use in a real-time system. When considering realtime systems, it is natural to consider constraints with time, and it is simple to model some properties requiring that some events should happen some time before or after some other events with timed automata. Considering timed automata is also more challenging than considering only untimed ones, mainly Uncontrollable Events because some problems become undecidable (since the class of timed automata is not closed under complement).

Uncontrollable Events

We consider runtime enforcement with uncontrollable events. Uncontrollable events are events that an enforcement mechanism can not modify, i.e. they must be output instantaneously when received. When considering untimed regular properties, this only means that upon receiving an uncontrollable event, the first event output by the enforcement mechanism is the uncontrollable event. In the timed setting, the date of the uncontrollable event must also not be changed, and we allow the enforcement mechanism to output some events at the same date before the uncontrollable event only if the decision of outputting these events was taken prior to the reception of the uncontrollable event.

We chose to consider uncontrollable events because they naturally arise in many concrete scenarios. Uncontrollable events can indeed model some physical events that it is impossible to prevent, but that the system under scrutiny should observe to react correctly. For instance, when driving a car, an uncontrollable event could be that there is an obstacle that appeared before us (this could be another car, on which we have absolutely no control). The system should react to this event, but it can not modify it since it is only an observation of the physical world.

We consider that uncontrollable events are a parameter of the properties, i.e. some events of the property are uncontrollable and they always are, the other events are always controllable. Nevertheless, this model allows to change the controllability of some events by duplicating them into two events, one controllable and the other one uncontrollable. Then, changing the controllability of the event only means selecting the good event among the two.

Note that adding uncontrollable events reduces the capabilities of enforcement mechanisms (since uncontrollable events can forbid them to satisfy the property). Moreover, transparency as described previously (i.e. stating that an enforcement mechanism should not modify an execution that already satisfies the property) may not be satisfied by an enforcement mechanism when some events are uncontrollable. Enforcement mechanisms can, indeed, change the order between controllable and uncontrollable events in their output, since they can not modify uncontrollable events.
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Modelling Enforcement Mechanisms

We describe enforcement mechanisms in two different ways. On the one hand, we give a declarative description, representing enforcement mechanisms as functions taking an execution and returning the modified execution, i.e. the output of the enforcement mechanism. On the other hand, we give an operational point of view of enforcement mechanisms, representing them as a transition system made of few rules, that has the same output as the functional description. The requirements expressed previously: soundness, compliance, and physical constraints, are expressed as constraints on the function modelling the enforcement mechanism. When modelling enforcement mechanisms for timed properties, we define soundness as stating that the property should eventually be always satisfied, meaning that it can be not satisfied at some point provided that there is a time in the future from which the property always hold afterwards. We decided to allow the property not to hold to give more power to enforcement mechanisms, that could enforce less properties if the property should always be satisfied by the the outputs of enforcement mechanisms. Note that with our timed regular properties, the accepting condition does not depend on the value of the clocks, meaning that "eventually always ϕ", where ϕ is a timed regular property, is equivalent to "always eventually ϕ". Our definition of soundness is thus equivalent to the one used in Pinisetty et al. [2014b] for instance.

We also define some kind of optimality on enforcement mechanisms, that allows comparing two enforcement mechanisms. An optimal enforcement mechanism outputs the maximal number of events it can, with the lowest dates possible when in the timed setting. However, this notion of optimality is not absolute, because an enforcement mechanism can not predict the events it will receive in the future, thus it only has an incomplete knowledge of its input (a prefix up to the current date), and its decisions can only be based on this incomplete knowledge, meaning that an enforcement mechanism that would guess some future that eventually happens could output more events than an optimal one.

Enforcement Primitives

One could consider that the actions of an enforcement mechanism are restricted to two actions: suppressing an action from the input, and adding an action to the output. Nevertheless, with these two actions, an enforcement mechanism could produce any output for a given input (at least satisfying physical constraints). We chose to restrain these actions to constrain the output to satisfy some constraints when compared to the input. These constraints are expressed by compliance. As already stated, uncontrollable events must not be modified by an enforcement mechanism. We choose to only allow enforce-Enforcing using Games ment mechanisms to delay controllable events, meaning that their order must remain unchanged. It is possible to delay some events indefinitely, but then all the events coming afterwards are also never output. This choice of delaying controllable events naturally leads us to consider enforcement mechanisms that have a buffer, i.e. controllable events that are stored to be possibly emitted in the future.

Note that we could have authorised enforcement mechanisms to suppress events instead of delaying them, but delaying seemed to us more realistic and more challenging. Suppressing events is simpler than delaying them, since it does not require the computation of many words that can possibly be output. Another possibility would be to allow the enforcement mechanism to output any arbitrary controllable event. However, we think that this does not fit with the philosophy of runtime enforcement, since it looks more like a reimplementation of the system rather than just enforcing it without knowledge of the system.

Changing these primitives should not be really difficult, and lead only to minor changes. The presented framework can be seen as an example of construction of enforcement mechanisms delaying controllable events, that could serve as the basis for other enforcement primitives.

Enforcing using Games

Enforcing with uncontrollable events raises several problems, the main one being that the enforcement mechanism does not have a total control on its output. Thus, an enforcement mechanism has to take into account all the possible uncontrollable events that could happen in the future before outputting anything. This can be done using some game theory. The idea is to consider the enforcement mechanism as a player who can only output things it has stored, and consider that the events received are actions of the other player (the environment). Following this scheme, it is possible to construct a graph representing a game for the enforcement mechanism to solve in order to obtain a winning strategy that builds its output. Chapter 4 presents how exactly the graph is constructed, and how it can be used to compute the output of the enforcement mechanism once the winning strategy is known. The interest of the approach using games as in Chapter 4, compared to the approach of Chapter 3 is that solving the game actually allows us to compute some decisions of the enforcement mechanism prior to the execution, i.e. not at runtime. This is used to reduce the time overhead introduced by the enforcement mechanism at runtime in a real implementation.
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Implementation

We present a tool called GREP, that is an implementation of the enforcement mechanisms formally defined in the other chapters. More specifically, it uses the computation method formally described in Section 4.3, to enforce a regular property (with or without time). We evaluate GREP and compare it to TiPEX, which is to our knowledge the only other tool that is capable of enforcing timed properties. Note, however, that TiPEX does not consider uncontrollable events, thus we can only compare GREP with TiPEX on properties without any uncontrollable event. We are not aware of any other tool than GREP that would enforce properties (timed or untimed) with uncontrollable events. Even though the results seem satisfying, it is difficult to know how well GREP performs since there is not any similar tool to compare with.

Detailed Outline of this Thesis

We give here a brief description of the different sections of this thesis.

Chapter 1: State of the Art gives a brief history of runtime enforcement, and some related work.

Chapter 2: Preliminaries and Notation details the notation used in this thesis, defining formally all the mathematical tools that are needed to define our enforcement mechanisms.

Chapter 3: Enforcing Properties with Uncontrollable Events: A First Approach presents how we build an enforcement mechanism for a given property. We first define the requirements on enforcement mechanisms as constraints on functions representing enforcement mechanisms. Then, we define a non-optimal enforcement mechanism as a function, to give the basis of how we represent an enforcement mechanism as a function, and then we define an optimal enforcement function. We finally describe a transition system that builds the same output as the optimal enforcement function.

Chapter 4: Enforcing Properties using a Büchi Game revisits Chapter 3, this time using Büchi games to build an optimal enforcement function. We define enforcement functions with a set-theoretic representation, and all their requirements are adapted. Some notation differs from Chapter 3: delays are used instead of dates in timed words (for the timed setting). We again give a functional and operational (with a transition system) description of an optimal enforcement mechanism, that has the same output as the optimal enforcement mechanism defined in Chapter 3. The main difference resides in the Detailed Outline of this Thesis computation of this output: we use a Büchi game to improve the computation time at runtime for an implementation.

Chapter 5: GREP: Games for Runtime Enforcement of Properties gives a presentation of GREP, the tool implementing the enforcement mechanism formally described in Chapter 4. A performance evaluation of GREP is presented, with comparisons with another implementation of an enforcement monitor called TiPEX.

Section 5.3.2: Conclusion summarises the thesis and gives hints about possible improvements and perspectives.

Associated Articles

This thesis presents results that have been published in journals or conference proceedings.

Chapter 3 is taken from the proceedings of the ICTAC 2015 [START_REF] Renard | Enforcement of (timed) properties with uncontrollable events[END_REF]), that lead to a publication in the MSCS (Mathematical Structures in Computer Science) journal (Renard et al. [2017a]).

Parts of Chapter 4 give results presented at the SPIN 2017 conference (Renard et al. [2017c]).

The tool described in Chapter 5 has been presented in a paper accepted at the ICTSS (International Conference on Testing Software and Systems) 2017 (Renard et al. [2017b]).

Chapter 1

State of the Art

Runtime Verification

The use of electronic systems to replace humans in many tasks increases with the regular increase of computational power. Since computers can react faster than humans, they now tend to be used even in critical systems (such as systems driving planes), where a failure can be lethal to some people. This has motivated the emergence of software analysis, to try to ensure a maximal reliability for critical systems. Static analysis aims at discovering erroneous behaviours by reading the source code (or even assembler code) of a software, trying to detect configurations that are reachable and should not be. Model-checking (McMillan [1993]) and source code proving [START_REF] Leroy | Formal certification of a compiler back-end or: programming a compiler with a proof assistant[END_REF]) are examples of static analysis that can be used to improve the confidence one can have in a piece of software. Every static analysis technique has limitations. For instance, in model-checking, a combinatorial explosion in the number of configurations makes it hard to analyse large pieces of software. Moreover, this kind of analysis can not prevent some electronic errors, for example in a communication between two components. Runtime verification [START_REF] Bauer | The good, the bad, and the ugly, but how ugly is ugly? In Runtime Verification[END_REF][START_REF] Bauer | Runtime verification for ltl and tltl[END_REF]; [START_REF] Falcone | A tutorial on runtime verification[END_REF]), also called passive testing [START_REF] Alcalde | Network protocol system passive testing for fault management: A backward checking approach[END_REF]; [START_REF] Cavalli | New approaches for passive testing using an extended finite state machine specification[END_REF]) on the other hand, aims at verifying system executions when the system runs. Since the verification happens at runtime, it is possible to detect some transmission errors in a communication, for example, which is not using static analysis. Runtime verification also has some downsides. For example, contrary to static analysis, it is not able to cover all possible executions, but only detects bad behaviours that happen during the execution. Runtime verification can also add some computational overhead when the verification monitor runs at the same time as the system under scrutiny, i.e. in online mode. Thus, runtime verification and static analysis are complementary methods that both aim at improving the reliance of systems.

Runtime verification usually consists in constructing a monitor that is attached to a system, outputting verdicts indicating whether the execution of the 1.2. Runtime Enforcement monitor satisfies a given property or not. In [START_REF] Falcone | A tutorial on runtime verification[END_REF], the authors give a general description of runtime verification techniques. They consider that runtime verification requires four steps to be achieved:

1. monitor creation from the given property; 2. instrumentation, that consists in attaching the monitor to the system under scrutiny;

3. execution, where the system and the monitor run;

4. responses, where the monitor outputs a verdict and possibly some feedback to the system, after each event.

The first phase requires a property, that can be described using some logic language for instance. From this property, a monitor is created, that is able to output a verdict stating if an execution of the system satisfies the property. Instrumentation of the monitor can be achieved in two different ways. First, the monitor can be inlined in the source code of the system, which requires to have access to this source code. Second, the monitor can be an external device communicating with the system, i.e. able to observe its executions.

Verification monitors output verdicts according to the validity of the execution of the system with respect to the desired property. Verdicts can be, for example, a boolean value indicating at every moment whether the execution of the system satisfies the property or not. Verdicts can also be taken from sets of more than two values. In [START_REF] Bauer | Monitoring of real-time properties[END_REF], for instance, the authors use a three-valued domain { , ⊥, ?} to indicate that the running system will always satisfy the property ( ), will never satisfy it (⊥) from the current state, or that it could satisfy it or not in the future (?). Later, in [START_REF] Bauer | The good, the bad, and the ugly, but how ugly is ugly? In Runtime Verification[END_REF], they use a four-valued domain { , p , ⊥ p , ⊥} that allows the monitor to distinguish the states from which the property is satisfied but may not be satisfied in the future ( p ) from those from which the property is not satisfied but might be satisfied in the future (⊥ p ). Those domains allow the monitor to be switched off whenever a or ⊥ verdict happens, since they ensure that the monitor is no longer required, because the verdict will not change anymore.

Runtime Enforcement

As runtime verification, runtime enforcement of properties consists in creating a monitor (called an enforcement monitor (EM)), but this time its aim is to modify the execution of a running system to ensure it satisfies a given property.

Enforcing Safety Properties

In 2000, [START_REF] Schneider | Enforceable security policies[END_REF] give a model that can enforce some safety properties. The authors start by defining security policies. A security policy is a set of authorised executions. Then, a property is defined as a security policy for which there exists a predicate that decides if an execution belongs to the policy or not.

Enforcing a security policy consists in restraining the executions of a target system to those which belong to the policy. The authors are interested in enforcement mechanisms that watch the execution of the system step by step, and terminate the execution just before the policy is violated. They give a characterisation of the properties that can be enforced using such monitors. Since the system is halted to prevent a bad behaviour, it is pretty clear that only safety properties (stating that something bad should never happen) can be enforced. Indeed, if the desired property is not a safety property, there exists a valid execution that has an invalid prefix, meaning that the enforcement mechanism would halt the system when reading the invalid prefix, thus not enforcing correctly the property (since the good extension would not be considered as a valid execution). As noted by Viswanathan [START_REF] Viswanathan | Foundations for the run-time analysis of software systems[END_REF]), and Schneider himself, all safety properties are not monitorable, but only the ones for which a Turing Machine can decide if finite prefixes of an execution violate the properties.

Then, the authors show that if the property is modelled using what they call a security automaton, i.e. a safety Büchi automaton, then it is possible to construct an EM that enforces the property. Doing so is pretty straightforward: when the system starts running, a simulation of the security automaton is run in parallel, and every action of the system is fed to the automaton with the adequate event. Whenever the state reached in the automaton with a new action is accepting, then the action is indeed made, but if the state reached is not accepting, then the action is rejected and the system halted.

Security automata as per [START_REF] Schneider | Enforceable security policies[END_REF] are later called truncation automata later in [START_REF] Ligatti | Edit automata: Enforcement mechanisms for run-time security policies[END_REF][START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF].

Later, in [START_REF] Bloem | Shield synthesis: Runtime enforcement for reactive systems[END_REF], Bloem et al. describe shields, that are enforcement monitors for reactive systems. According to the authors, the output of a shield should be correct and provide minimum interference, meaning that it should satisfy the set of given properties, and that it deviates from the input the least possible, respectively. They propose a way to synthesise such monitors to enforce a set of safety properties. Moreover, the shields they propose are k-stabilising, meaning that when the output of the shield deviates from the input, then it will not deviate again before k steps, otherwise it will enter a fail-safe mode, where it only ensures correctness, and not minimum interference anymore. A similar approach has been studied by [START_REF] Wu | Synthesizing runtime enforcer of safety properties under burst error[END_REF], where the authors synthesise enforcement monitors for a set of safety properties, but this time handling burst errors (i.e. when errors usually occur in groups). In both of these papers, safety games are used to synthesise the enforcement monitors.

Enforcing more than Safety Properties

In [START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF], the authors propose to enforce some properties that are not safety properties, by giving their monitors the possibility to insert or suppress events from the execution flow of the system. Thus, their monitors act more like filters, suppressing some events when they would lead to a violation of the desired property, and inserting them back when possible. These monitors thus can be seen as firewalls, that block or accept connections according to some specified policies. They also define two crucial properties about enforcement monitors: soundness and transparency. Soundness states that the output allowed by the monitor always satisfies the property, and transparency requires that an execution of the system that satisfies the property should not be modified by an enforcement monitor. One could note that, for safety properties, Schneider's truncation automata are sound and transparent. Nevertheless, Ligatti et al. show that it is possible to produce sound and transparent enforcement monitors for some properties that are not safety properties. The idea is to store the suffix of an invalid execution that violates the property, until the execution satisfies again the property, in which case the entire stored sequence is output. Such monitors are thus transparent, since the output of the enforcement monitor is indeed the execution of the system if it satisfies the property, and the output of the enforcement monitor always satisfies the property since any invalid sequence is not output entirely. In other words, the output of such monitors is always the longest prefix of the execution that satisfies the execution. Note that if the property is not satisfied by the empty execution, then it might happen that the output of the enforcement monitor does not satisfy the property.

Ligatti et al. also provide the set of properties that can be enforced by such monitors: it is the set of renewal properties, that are the properties such that any infinite word belonging to the property have infinite number of prefixes that also satisfy the property. They show that some renewal properties are not safety properties, nor liveness, but all safety properties are renewal properties, and some liveness are renewal.

In Falcone et al. [2011b], the authors extend the work of [START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF]), considering a different classification of properties, that extends the Safety-Progress classification [START_REF] Manna | A hierarchy of temporal properties[END_REF]; [START_REF] Chang | Characterization of temporal property classes[END_REF]). One advantage of this classification is that each class of properties can be characterised by specific type of finite-state automata. The authors use Streett automata to model properties, adding an accepting condition to also accept some finite words, thus extending the Safety-Progress classification to fi-nite properties. They show that the properties that can be enforced by sound and transparent enforcement monitors are the response properties from the Safety-Progress classification. These properties are exactly the properties that were called infinite renewal properties by [START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF]).

Then, Falcone et al. define an enforcement monitor as a Mealy machine whose output alphabet is a set of operations. For example, the set of operations can be {halt, store, dump, off }, such that halt terminates the execution of the system, off shuts down the enforcement monitor, store stores the event in the monitor's memory, and dump releases the events from the monitor's memory. These four operations can be seen as reactions to the four-valued semantics described in [START_REF] Bauer | The good, the bad, and the ugly, but how ugly is ugly? In Runtime Verification[END_REF]: when the execution is evaluated as , then operation off is output; when it evaluates to ⊥, halt is output; and p and ⊥ p evaluations output dump and store, respectively. The authors also describe how to build an enforcement monitor from a response property given as a Streett automaton.

Others, such as [START_REF] Hamlen | Computability classes for enforcement mechanisms[END_REF] also classified properties to determine which are the ones that can be monitored. In [START_REF] Hamlen | Computability classes for enforcement mechanisms[END_REF], the authors concluded that the set of monitorable properties depends on the capabilities of the monitor. This brought the authors in [START_REF] Fong | Access control by tracking shallow execution history[END_REF] to classify properties depending on the information that is needed to enforce them. For instance, they study special-cases monitors, that have limited power, using shallow history automata, that remember only the set of authorised actions (without ordering). They show that such monitors enforce less that the set of enforceable properties, but that the set of properties it enforces can be useful in some real situations.

In [START_REF] Dolzhenko | Modeling runtime enforcement with mandatory results automata[END_REF], the authors model enforcement mechanisms as Mandatory Results Automata (MRA). A system executing actions on an untrusted application see its actions verified and must wait a verified result from the application before executing another action. The authors state that such enforcement mechanisms can enforce more than safety properties.

In [START_REF] Rinard | Acceptability-oriented computing[END_REF], the author uses enforcement mechanisms to lead software development, specifying several properties for different features that have to be fulfilled by the application. The author describes different kinds of enforcement mechanisms, and determines some possible uses in the context of software development.

Enforcing Safety Properties with Uncontrollable Events

To our knowledge, very little work has been done on the subject of enforcing properties with uncontrollable events. In [START_REF] Basin | Enforceable security policies revisited[END_REF], Basin et al. extend the work of Schneider [START_REF] Schneider | Enforceable security policies[END_REF]) by considering some events as only observable (which corresponds to what we call uncontrollable events). Their enforcement monitors act exactly as the ones of Schneider, halting the system, but they can do so only if the last event was controllable, i.e. it is not possible for the enforcement monitor to halt the system when reading an event that is only observable. The authors determine what are the properties that can be enforced using such monitors. They first define safety properties in a way that takes into account the fact that some events are not controllable. Then, they provide several decidability results, depending on the model used to describe the properties, and describe how to build a monitor when the property is enforceable. In particular, they show that if the property is a finite-state automaton (FSA), and the universe of all possible executions can also be represented by an FSA, then it is possible to decide if the property is enforceable. The authors also note that it is possible to represent some time constraints using observable events, for example by considering events such as ticks of some clock.

Enforcing Timed Properties

Most of the work done so far on the subject of enforcement has been focusing on untimed properties, usually represented by automata. Recent work has extended this work to timed properties.

In [START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF]Pinisetty et al. [ , 2014b]], the authors take interest in the runtime enforcement of timed properties. They propose a way to enforce timed regular properties, i.e. properties that can be represented as timed automata, as per Alur and Dill [1992]. They model enforcement mechanisms as functions taking a timed word and returning another timed word, i.e. modifying an execution, represented as a timed word. They extend the definitions of soundness and transparency to enforcement mechanisms for timed properties, expressing them as requirements on enforcement functions. An enforcement function is sound if any non-empty image by this function satisfies the property or will satisfy it in the future, i.e. at an infinite time. An enforcement function is transparent if it acts as a delayer, i.e. the image of a timed word is a timed word whose actions form a prefix of the actions of the argument, and the delays in the image are greater than the ones of the argument. Then, they provide an enforcement function that is sound and transparent, for a given timed regular property. They also define a transition system that has the same output as the enforcement function.

Instrumentation of Enforcement Monitors

In [START_REF] Martinell | Through modeling to synthesis of security automata[END_REF], the authors model Schneider's and Ligatti's EM [START_REF] Schneider | Enforceable security policies[END_REF]; [START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF]) using Process-Algebra operators, taking a step towards the implementation of such monitors. As for instrumentation of Verification Monitors (see for example [START_REF] Falcone | A tutorial on runtime verification[END_REF]), instrumenting Enforcement Monitors can be inlined in the source code, or as an external device. For inlined monitors, one could use for example JavaMOP [START_REF] Chen | Java-mop: A monitoring oriented programming environment for java[END_REF]), that uses Aspect-Oriented Programming (AOP), i.e.

AspectJ. An example of use of AspectJ to enforce properties can be found in [START_REF] Cuppens | Availability enforcement by obligations and aspects identification[END_REF]. In [START_REF] Bauer | Composing expressive runtime security policies[END_REF], Bauer et al. define a new language called Polymer that aims at simplifying the specification of the properties for runtime enforcement. They allow to specify complex properties as sets of simpler properties, in a language that can be integrated into Java applications.

The only tool to our knowledge that allows the runtime enforcement of timed properties is TiPEX. TiPEX is a tool written in Python, that acts as a sound and transparent enforcement mechanism for timed regular properties, implementing the approach presented in Pinisetty et al. [2015a]. TiPEX uses some libraries from UPPAAL [START_REF] Larsen | Uppaal in a nutshell[END_REF]), in particular to read properties specifications from XML files, and to handle DBMs (Data Bounds Matrices, see [START_REF] Dill | Timing assumptions and verification of finite-state concurrent systems[END_REF]).

Chapter 2

Preliminaries and Notation

In this chapter, we describe the notation used in this document, and give formal definitions of elements we use, such as words, automata, traces, timed words, and timed automata.

Untimed notions

An alphabet is a finite set of symbols. A word over an alphabet Σ is a sequence over Σ. The set of finite words over Σ is denoted Σ * . A language over Σ is any subset L ⊆ Σ * .

The length of a finite word w is noted |w|, and the empty word is noted . The concatenation of two words w and w is noted w . w (or ww when clear from the context). A word w is a prefix of a word w, noted w w, if there exists a word w such that w = w .w . Word w is called the residual of w after reading the prefix w , noted w = w -1 .w. Note that w .w = w .w -1 .w = w. These definitions are extended to languages in the natural way. A language L ⊆ Σ * is extension-closed if for any words w ∈ L and w ∈ Σ * , w . w ∈ L. Given a word w = a 1 ) . a 2 . . . a n and an integer i such that 1 ≤ i ≤ n, we note w(i) the i-th element of w, i.e. w(i) = a i . We also note w

[..i] the prefix of w of size i: w [..i] = a 1 . a 2 . . . a i .
Given a tuple e = (e 1 , e 2 , . . . , e n ) of size n, for an integer i such that 1 ≤ i ≤ n, we note Π i the projection on the i-th coordinate, i.e. Π i (e) = e i . The tuple (e 1 , e 2 , . . . , e n ) is sometimes noted e 1 , e 2 , . . . , e n in order to help reading. It can be used, for example, if a tuple contains a tuple. Given a word w ∈ Σ * and Σ ⊆ Σ, we define the restriction of w to Σ , noted w |Σ , as the word w ∈ Σ * whose letters are the letters of w belonging to Σ in the same order. Formally, |Σ = and for any σ ∈ Σ * , and any a ∈ Σ, (w . a) |Σ = w |Σ . a if a ∈ Σ , or (w . a) |Σ = w |Σ otherwise. We also note = Σ the equality of the restrictions of two words to Σ : for σ and σ in Σ

* , σ = Σ σ if σ |Σ = σ |Σ . We define in the same way Σ : σ Σ σ if σ |Σ σ |Σ . q 0 q 1 0 1 1 0 Figure 2.1 -A simple automaton

Automata

An automaton is a tuple Q, q 0 , Σ, -→, F , where Q is the finite set of states,

q 0 ∈ Q is the initial state, Σ is the alphabet, - → ⊆ Q × Σ × Q is the transition relation and F ⊆ Q is the set of accepting states. Whenever there exists (q, a, q ) ∈ -→, we note it q a - → q . Relation - → is extended to Q × Σ * × Q, such that for q ∈ Q, σ ∈ Σ * , q ∈ Q, and q ∈ Q and a ∈ Σ, q σ.a -→ q if q σ - → q and q a - → q . Moreover, for any q ∈ Q, q - → q always holds. An automaton A = Q, q 0 , Σ, - →, F is deterministic if: ∀q ∈ Q, ∀a ∈ Σ, (q a - → q ∧ q a - → q ) =⇒ q = q . A is complete if: ∀q ∈ Q, ∀a ∈ Σ, ∃q ∈ Q, q a - → q .
A word w is accepted by A if there exists q ∈ F such that q 0 w -→ q. The language (i.e. set of all words) accepted by A is noted L(A). A property is a language over an alphabet Σ. A regular property is a language accepted by an automaton. In the sequel, we assume that a property ϕ is represented by a deterministic and complete automaton A ϕ .

Example 2.1. A simple example of automaton is given in Fig. 2.1. In this example, Q = {q 0 , q 1 }, Σ = {0, 1}, F = {q 0 }, and -→ = {(q 0 , 0, q 0 ), (q 0 , 1, q 1 ), (q 1 , 0, q 0 ), (q 1 , 1, q 1 )}. The accepting states (the ones belonging to F ) are the double-circled states, and the initial state (q 0 ) is represented with an input arrow without any source and an empty label. The language accepted by this automaton is the set of all even numbers, written in binary (the ones ending with a 0 in their binary representation).

Timed Languages

Let R ≥0 be the set of non-negative real numbers, and Σ a finite alphabet of actions. An event is a pair (t, a) ∈ R ≥0 × Σ, where t represents the date at which the action a occurs. We define date((t, a)) = t and act((t, a)) = a the projections of events on dates and actions respectively. A timed word over Σ is a word over R ≥0 × Σ whose real parts are ascending, i.e. σ is a timed word if σ ∈ (R ≥0 × Σ) * and for any i ∈ [1; |σ| -1], date(w(i)) ≤ date(w(i + 1)). The set of timed words over Σ is denoted tw(Σ). For a timed word σ = (t 1 , a 1 ) . (t 2 , a 2 ) . . . (t n , a n ) and an integer i such that 1 ≤ i ≤ n, t i is the time elapsed before action a i occurs. We naturally extend the notions of prefix and residual to timed words.

We denote the total time needed to read a timed word σ by time(σ). Formally, time( ) = 0, and if σ = , time(σ) = date(σ(|σ|)). The observation of σ at time t is the timed word noted obs(σ, t) and defined as:

obs(σ, t) = max ({σ | σ σ ∧ time(σ ) ≤ t}).
It corresponds to the word that would be observed at date t when reading σ, if events were received at the date they are associated with. We also define the remainder of the observation of σ at time t as nobs(σ, t) = (obs(σ, t)) -1 .σ, which corresponds to the events that are to be received after date t when reading σ.

The untimed projection of a timed word σ is noted Π Σ (σ), and defined as:

Π Σ ((t 1 , a 1 ) . (t 2 , a 2 ) . . . (t n , a n )) = a 1 . a 2 . . . a n .
It is the sequence of actions of the timed word with dates ignored. For a timed word σ = (t 1 , a 1 ) . (t 2 , a 2 ) . . . (t n , a n ), and a delay δ ∈ R ≥0 , σ delayed by δ is the word noted σ + t δ and such that δ is added to all dates:

σ + t δ = (t 1 + δ, a 1 ).(t 2 + δ, a 2 ) . . . (t n + δ, a n ).
Similarly, we define σt δ, when t 1 ≥ δ, as

σ -t δ = (t 1 -δ, a 1 ).(t 2 -δ, a 2 ) . . . (t n -δ, a n ).
We also extend the definition of the restriction of σ to Σ ⊆ Σ to timed words, such that |Σ = , and for σ ∈ tw A timed language is any subset of tw(Σ). The notion of extension-closed languages is naturally extended to timed languages, i.e. if L ⊆ tw(Σ) is a timed language, L is extension-closed if L = L . tw(Σ). We also extend the notion of extension-closed languages to sets of elements composed of a timed word and a date: a set S ⊆ tw(Σ) × R ≥0 is time-extension-closed if for any (σ, t) ∈ S, for any w ∈ tw(Σ) such that σ . w ∈ tw(Σ), and for any t ≥ t, (σ . w, t ) ∈ S. In other words, S is time-extension-closed if for every σ ∈ tw(Σ), there exists a date t from which σ and all its extensions are in S, that is, associated with a date greater or equal to t.

Moreover, we define an order on timed words: we say that σ is a delayed prefix of σ, noted σ d σ, whenever Π Σ (σ ) Π Σ (σ) and for any i ∈ [1; |σ | -1], date(σ(i)) ≤ date(σ (i)). Note that the order is not the same in the different constraints: Π Σ (σ ) is a prefix of Π Σ (σ), but dates in σ exceed dates in σ. As for the equality = and the prefix order , we note σ dΣ σ whenever σ |Σ d σ |Σ . We also define a lexical order ≤ lex on timed words with identical untimed projections, such that ≤ lex , and for two words σ and σ such that Π Σ (σ) = Π Σ (σ ), and two events (t, a) and (t , a) such that (t, a) . σ ∈ tw(Σ) and (t , a) . σ ∈ tw(Σ), (t , a) . σ ≤ lex (t, a) . σ if t < t ∨ (t = t ∧ σ ≤ lex σ).

Consider for example the timed word σ = (1, a) . (2, b) . (3, c) . (4, a) over the alphabet Σ = {a, b, c}. Then, Π Σ (σ) = a.b.c.a, obs(σ, 3) = (1, a). (2, b). (3, c), nobs(σ, 3) = (4, a), and if Σ = {b, c}, σ |Σ = (2, b) . (3, c), and for instance (1, a) . (2, b) . (4, c) d σ, and σ ≤ lex (1, a). (3, b). (3, c). (3, a). Moreover, if w = (1, a). (2, b), then w -1 .σ = (3, c).(4, a).

Timed Automata

Let X = {X 1 , X 2 , . . . , X n } be a finite set of clocks, i.e. variables that increase regularly with time. A clock valuation is a function ν from X to R ≥0 . The set of clock valuations for the set of clocks X is noted V(X), i.e. V(X) = {ν | ν : X → R ≥0 }. We consider the following operations on valuations:

• for any valuation ν ∈ V(X), ν +δ is the valuation representing the elapse of δ time units from ν, such that for any X i ∈ X, (ν +δ)(X i ) = ν(X i )+δ;

• for any subset X ⊆ X, ν[X ← 0] is the valuation representing ν with clocks in X reset, such that:

(ν[X ← 0]) : X i → 0 if X i ∈ X ν(X i ) otherwise.
G(X) denotes the set of guards consisting of boolean combinations of constraints of the form X i c with X i ∈ X, c ∈ N, and ∈ {<, ≤, =, ≥, >}. Given g ∈ G(X) and a valuation ν, we write ν |= g when for every constraint X i c in g, ν(X i ) c holds. Definition 2.1 (Timed automaton Alur and Dill [1992]). A timed automaton (TA) is a tuple A = L, l 0 , X, Σ, ∆, G , such that L is a set of locations, l 0 ∈ L is the initial location, X is a set of clocks, Σ is a finite set of events, ∆ ⊆ L × G(X) × Σ × 2 X × L is the transition relation, and G ⊆ L is a set of accepting locations. A transition (l, g, a, X , l ) ∈ ∆ is a transition from l to l , labelled with event a, with guard g, and with the clocks in X to be reset.

The semantics of a timed automaton A is a timed transition system A = Q, q 0 , Γ, →, F G where Q = L×V(X) is the (infinite) set of states, q 0 = (l 0 , ν 0 ) 

l 0 l 1 l 2 click x := 0 click x > 2 x := 0 click x ≤ 2 click x := 0 (a) Timed automaton modelling double- clicks l 0 l 1 l 2 click x := 0 click x > 2 x := 0 click x ≤ 2 x := 0 click x ≤ 2 x := 0 click x > 2 x := 0 (b)
0 = ν[X ← 0], F G = G × V(X)
is the set of accepting states, Γ = R ≥0 ×Σ is the set of transition labels, each one composed of a delay and an action. The transition relation

→ ⊆ Q × Γ × Q is a set of transitions of the form (l, ν) (δ,a) --→ (l , ν ) with ν = (ν + δ)[Y ← 0] whenever there is a transition (l, g, a, Y, l ) ∈ ∆ such that ν + δ |= g, for δ ≥ 0.
A timed automaton A = L, l 0 , X, Σ, ∆, G is deterministic if for any (l, g 1 , a, Y 1 , l 1 ) and (l, g 2 , a, Y 2 , l 2 ) in ∆, g 1 ∧ g 2 is unsatisfiable, meaning that only one transition can be fired at any time. A is complete if for any l ∈ L and any a ∈ Σ, the disjunction of the guards of all the transitions leaving l and labelled by a is valid (i.e., it holds for any clock valuation).

Example 2.2. Examples of timed automata are given in Fig. 2.2. In Fig. 2.2a, L = {l 0 , l 1 , l 2 }, X = {x}, Σ = {click}, ∆ = {(l 0 , , click, {x}, l 1 ), (l 1 , x > 2, click, {x}, l 1 ), (l 1 , x ≤ 2, click, ∅, l 2 ), (l 2 , , click, {x}, l 1 )}, and G = {l 2 }, where evaluates to true for any clock valuation. This automaton models a double click: considering that the click event is a mouse click, the automaton only accepts sequences of clicks that ends with a double-click. The condition for two clicks to be considered as a double-click is that the second one is made less than two time units after the first one. Note that with this modelling, double-clicks can not overlap, i.e. clicking three times in less than two time units will not be considered as ending with a double-click, since only the first two clicks will be considered as a double-click. Allowing overlaps would only require splitting the transition from l 2 to l 1 in two, as described in Fig. 2.2b.

A run ρ from q ∈ Q is a valid sequence of transitions in A starting from q, of the form ρ = q

(δ 1 ,a 1 ) ----→ q 1 (δ 2 ,a 2 )
----→ q 2 . . .

(δn,an)

----→ q n . The set of runs from q 0 is noted Run(A) and Run F G (A) denotes the subset of runs accepted by A, i.e. ending in a state in F G . The trace of the run ρ previously defined is the timed word (t 1 , a 1 ).(t 2 , a 2 ) . . . (t n , a n ), with, for 1 ≤ i ≤ n, t i = i k=1 δ k . Thus, given the trace σ = (t 1 , a 1 ).(t 2 , a 2 ) . . . (t n , a n ) of a run ρ from a state q ∈ Q to q ∈ Q, we can define w = (δ 1 , a 1 ).(δ 2 , a 2 ) . . . (δ n , a n ), with δ 1 = t 1 , and ∀i ∈ [2; n], δ i = t i -t i-1 , and then q w -→ q . To ease the notation, we will only consider traces and note q σ -→ q whenever q w -→ q for the previously defined w. Note that to concatenate two traces σ 1 and σ 2 , it is needed to delay σ 2 to obtain a trace: the concatenation σ of σ 1 and σ 2 is the trace defined as σ = σ 1 .(σ 2 + t time(σ 1 )). In this case, if q

σ 1 -→ q σ 2 -→ q , then q σ - → q .

Timed properties

A regular timed property is a timed language ϕ ⊆ tw(Σ) that is accepted by a timed automaton. For a timed word σ, we say that σ satisfies ϕ, noted σ |= ϕ whenever σ ∈ ϕ. We only consider regular timed properties whose associated automaton is complete and deterministic.

Traces manipulation

Given a deterministic automaton A = Q, q 0 , Σ, -→, F and a word σ ∈ Σ * , for q ∈ Q, we note q after σ = q , where q is such that q σ -→ q , i.e. q is the state reached from q after reading word σ. Since A is deterministic, there exists only one such q . We also note Reach(σ) = q 0 after σ. We extend these definitions to languages: if L is a language, q after L = σ∈L {q after σ} and Reach(L) = q 0 after L. For a state q ∈ Q and an action a ∈ Σ, we note Pred a (q) = {q ∈ Q | q a -→ q} the set of predecessors of q by a. This notation is extended to sets of states: if S ⊆ Q, then Pred a (S) = q∈S Pred a (q).

In the timed setting, if A = L, l 0 , X, Σ, ∆, G is a deterministic TA, and A = Q, q 0 , Γ, -→, F G , we note in the same way as in the untimed setting, with σ ∈ tw(Σ), q after σ = q , with q σ -→ q , and Reach(σ) = q 0 after σ. These operations are also extended to languages as in the untimed setting. We allow the use of the operators after and Reach with an extra parameter, representing an observation time, such that if t ∈ R ≥0 , then q after (σ, t) = q whenever q obs(σ,t) ----→ q , with q = l, ν , and q = l, ν + (t -time(obs(σ, t))) , and Reach(σ, t) = q 0 after (σ, t). The set of predecessors of a state q ∈ Q by an action a ∈ Σ is Pred a (q) = {q ∈ Q | q (0,a) --→ q}, i.e. it is the set of states that are predecessors without delay. This definition is also extended to sets of states as in the untimed setting. Moreover, for q = l, ν ∈ Q, we note up(q) = { l, ν + t ∈ Q | t ∈ R ≥0 }, it is the set of states that will be reached from q as time elapses if no action occurs. This definition is extended to sets of states: for S ⊆ Q, up(S) = q∈S up(q). Example 2.3. Consider the property accepting sequences of clicks ending by a double-click, described in Fig. 2.2a. Let us consider that the set Q of states of the semantics of this TA is Q = L × R ≥0 , with L = {l 0 , l 1 , l 2 }, and where the valuations are replaced by the value of the unique clock x. Then, for instance, Reach((1, click)) = (l 0 , 0) after (1, click) = (l 1 , 0), and (l 1 , 1) after ((1, click), 3) = (l 2 , 4), since x = 2 when the action click occurs, enabling the transition to l 2 , and then 2 time units remain to wait, giving a final value of 4 for x.

Graphs and Büchi games.

This section presents notation and formalisms that are used in Chapters 4 and 5 only.

A graph is a couple V, E such that V is a set of elements called vertices, E ⊆ V × V is a relation defining edges between the vertices. Given a graph G = V, E and a partition of V into two subsets V 0 and V 1 , it is possible to play a two-player game in the arena A = (V 0 , V 1 , E). A play over A is a path in G, i.e. a sequence of vertices such that there exists an edge in G between any two consecutive vertices in the sequence. A strategy for player P 0 is a mapping σ : V * V 0 → V such that for all π ∈ V * , for all v 0 ∈ V 0 , (v 0 , σ(π.v 0 )) ∈ E, i.e. the strategy gives a vertex that can be reached from v 0 . Note that V 0 is thus the set of vertices from which P 0 can play, whereas the other player, P 1 , plays from the vertices in V 1 . Strategies for P 1 are defined in a similar way, replacing

V 0 by V 1 . A play π = v 0 , v 1 , . . . is consistent with the strategy σ if for any v i ∈ V 0 , v i+1 = σ(v 0 . v 1 . • • • . v i )
, meaning that the strategy was followed for any vertex in V 0 . The goal of a game can be, for example, to reach a state in a given subset of V (reachability game), or to ensure that a given subset of V is visited an infinite number of times (Büchi games). Thus, given a subset F G ⊆ V of vertices, the Büchi game (A, F G ) for P 0 consists in finding a winning strategy σ such that all plays π over A consistent with σ visit an infinite number of times the set F G (i.e. if π is consistent with σ, π ∈ (V * F G ) ω ). We refer to the nodes in F G as Büchi nodes.

It is known that it is possible to compute the set W 0 of winning vertices for P 0 (i.e. the set of vertices from where there exists a winning strategy for P 0 ), and the associated winning strategy from all these vertices. From all the other vertices (in V \ W 0 ), there exists a winning strategy for P 1 , i.e. W 1 = V \ W 0 , thus P 0 can not win the game if P 1 plays perfectly from one of these vertices. Moreover, it is possible to find a strategy that is memoryless, meaning that the only the last vertex is needed to compute the next. Formally, a memoryless strategy for P 0 is a strategy σ : V 0 → V . Such strategies are easier to compute, since they do not require to read the entire history before choosing the transition to follow.

Introduction

In this chapter, we model enforcement mechanisms for regular properties and for timed regular properties, when some events are uncontrollable. We first model enforcement mechanisms as functions, and express the expected requirements of enforcement mechanisms as constraints that should be satisfied by these functions. The expected requirements are soundness, compliance, and optimality. We describe a function that is not optimal but simple to define, and then we improve it to make it optimal. Then, we give an operational description of the enforcement mechanism, using a transition system whose output is the same as the one of the optimal function. This is first done in Section 3.1 for regular properties, represented by an automaton, and then in Section 3.2 for timed properties, represented by timed automata. The proofs of all the propositions of this chapter are given in appendix A.1.

The work described in this chapter has been published in [START_REF] Renard | Enforcement of (timed) properties with uncontrollable events[END_REF] and Renard et al. [2017a].

Enforcing Untimed Properties

In this section, ϕ is a regular property defined by an automaton A ϕ = Q, q 0 , Σ, -→, F as defined in Section 2.2. Remember the general scheme of an enforcement mechanism (EM), given in Fig. 1b.

We consider uncontrollable events in the set Σ u ⊆ Σ. These events cannot be modified by an EM, i.e. they cannot be suppressed nor buffered, so they must be output by the EM whenever they are received. Let us note Σ c = Σ\Σ u the set of controllable events, which can be modified by the EM. An EM can decide to buffer them to delay their emission, but it cannot suppress them (nevertheless, it can buffer them endlessly, keeping their order unchanged). Thus, an EM may interleave controllable and uncontrollable events. Since controllable events can be delayed, an EM must store them before outputting them, to keep their order intact. Thus, Fig. 3.1 gives a description of an enforcement monitor E with input σ, output σ s and buffer, i.e. stored controllable events, σ c . In this section, for q ∈ Q, we note uPred(q) = u∈Σu Pred u (q), and we extend this definition to sets of states: for S ⊆ Q, uPred(S) = q∈S uPred(q). The operator uPred returns all the states that are predecessors of its argument by an uncontrollable event. In other words, if q ∈ uPred(q), then there exists an uncontrollable event that leads to q from q . For S ⊆ Q, we also note S = Q \ S.

Enforcement Functions and their Requirements

Enforcement Functions, Soundness and Compliance

In this section, we define enforcement functions and give the expected requirements of such functions. An enforcement function is a description of the input/output behaviour of an EM. Formally, we define enforcement functions as follows: Definition 3.1 (Enforcement Function). An enforcement function is a function from Σ * to Σ * , that is increasing on Σ * with respect to :

∀σ ∈ Σ * , ∀σ ∈ (Σ * ), σ σ =⇒ E(σ) E(σ ).
An enforcement function is a function that modifies an execution, and that cannot remove events it has already output (supposing it is fed with a growing input).

In the sequel, we define the requirements on an EM and express them on enforcement functions. As stated previously, an EM aims at ensuring that executions of a running system satisfy ϕ, thus its enforcement function has to be sound, meaning that its output always satisfies ϕ.

Definition 3.2 (Soundness). An enforcement function

E : Σ * → Σ * is sound with respect to ϕ in an extension-closed set S ⊆ Σ * if ∀σ ∈ S, E(σ) |= ϕ.
Since there are some uncontrollable events that are only observable by the EM, receiving uncontrollable events could lead to the property not being satisfied by the output of the enforcement mechanism. Moreover, some uncontrollable sequences could lead to a state of the property that would be a non-accepting sink state, leading to the enforcement mechanism not being able to satisfy the property any further. Consequently, in Definition 3.2, soundness is not defined for all words in Σ * , but in a subset S, since it might happen that it is impossible to ensure it from the initial state. Thus for an EM to be effective, S needs to be extension-closed to ensure that the property is always satisfied once it has been. If S were not extension-closed, soundness would only mean that the property is sometimes satisfied. In particular, the identity function would be sound in ϕ. In practice, there may be an initial period where the enforcement mechanism does not ensure the property, which is unavoidable, but as soon as a safe state is reached, the property becomes enforceable forever, and the property is guaranteed to hold. This approach appears to be the closest to the usual one without uncontrollable events (Pinisetty et al. [2014a]).

The usual notion of transparency (cf. [START_REF] Schneider | Enforceable security policies[END_REF]; [START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF]) states that the output of an EM is the longest prefix of the input satisfying the property. The name "transparency" stems from the fact that correct executions are left unchanged. Note that transparency also implicitly defines some kind of optimality, since the expected prefix is the longest one. However, because of uncontrollable events, events may be released in a different order from the one they are received. Therefore, transparency can not be ensured, and we define the weaker notion of compliance.

Definition 3.3 (Compliance). E is compliant with respect to Σ u and Σ c , noted compliant(E, Σ u , Σ c ), if ∀σ ∈ Σ * , E(σ) Σc σ ∧ E(σ) = Σu σ ∧ ∀u ∈ Σ u , E(σ).u E(σ.u).
Intuitively, compliance states that the EM does not change the order of the controllable events and emits uncontrollable events simultaneously with their reception, possibly followed by stored controllable events. We chose to consider enforcement mechanisms that can delay controllable events. To our opinion, it corresponds to the most common choice in practice. However, other primitives, such as deletion or reordering of controllable events could be easily considered. Using other enforcement primitives would require only few changes, especially adapting the definitions of compliance and optimality, and the construction of G (see below). When clear from the context, the partition is not mentioned: E is said to be compliant, and we note it compliant(E).

We say that a property ϕ is enforceable whenever there exists a compliant function that is sound with respect to ϕ.

q 0 q 1 q 2 q 3 Auth Auth LockOff Write LockOn Auth LockOn LockOff Write LockOn LockOff Write Σ Figure 3.2 -Property ϕ ex modelling a shared data storage Example 3.1.
We consider a simple untimed shared storage device. After authentication, a user can write a value only if the storage is unlocked. (Un)locking the device is decided by another entity, meaning that it is not controllable by the user. Property ϕ ex (see Fig. 3.2) formalises the above requirement.

Property ϕ ex is not enforceable if the uncontrollable alphabet is {LockOn, LockOff , Auth}1 since reading the word LockOn from q 0 leads to q 3 , which is not an accepting state. However, the existence of such a word does not imply that it is impossible to enforce ϕ ex for some other input words. If word Auth is read, then state q 1 is reached, and from this state, it is possible to enforce ϕ ex by emitting Write events only when in state q 1 . This means that it is possible to have an enforcement function that is sound with respect to ϕ ex in Auth . Σ * (actually in Write * . Auth . Σ * ).

Considering the property ϕ, it is now possible to define a first enforcement function that is sound with respect to ϕ and compliant with respect to Σ u and Σ c .

A First Simple Enforcement Function

This section shows a simple enforcement function that is compliant and sound. Its main intent is to show the way we define enforcement functions, to provide the skeleton of all the enforcement functions that we define in this document. We define enforcement functions by induction on the argument, so that it can easily be constructed incrementally, which is useful when enforcing in online mode (i.e. at runtime).

Enforcing Properties with Uncontrollable Events: A First Approach

We first define a function that, given a state of the automaton and some controllable events corresponding to the events stored so far by the enforcement mechanism, gives the set of prefixes of this controllable sequence that can be emitted by the enforcement mechanism. The goal is to obtain a sound enforcement mechanism, thus, the prefixes that will be in this set should be prefixes that ensure soundness. We define this function in the following way:

Definition 3.4 (G). For q ∈ Q, and w ∈ Σ * c , G(q, w) = {w w | q after w ∈ Q enf }, with Q enf = {q ∈ F | q after Σ *
u ⊆ F }. Now, we can define our enforcement function using this set to ensure soundness. Compliance is ensured in the definition by reacting differently according to the controllability of the events received. store ϕ ( ) = ( , ),

and for σ ∈ Σ * and a ∈ Σ, if (σ s , σ c ) = store ϕ (σ), store ϕ (σ . a) = (σ s . a . σ s , σ c ) if a ∈ Σ u (σ s . σ s , σ c ) if a ∈ Σ c , with : 
σ s = max (G(Reach(σ s . a), σ c ) ∪ { }) σ c = σ -1 s . σ c σ s = max (G(Reach(σ s ), σ c . a) ∪ { }) σ c = σ -1 s . (σ c . a)
Then, we can define an enforcement function using store ϕ as follows: for

σ ∈ Σ * , E ϕ (σ) = Π 1 (store ϕ (σ)).
Function E ϕ as per Definition 3.5 is an enforcement function that is compliant with respect to Σ u and Σ c . In store ϕ , σ s is the word that is output by E ϕ , whereas σ c is the buffer of stored controllable events that is used to ensure that they are output in the right order. Example 3.2 details the evolution of σ s and σ c for a particular input.

Intuitively, E ϕ considers states in Q enf (see Definition 3.4) as safe states: they are the states that are in F and from which any uncontrollable word leads to a state in F . This means that as soon as a state in Q enf is reached, delaying all controllable events endlessly produces an output that satisfies the property. Function E ϕ does not output any controllable event before its output (thus

q 0 q 1 q 2 q 3 u c c u u c u, c Figure 3.3 -A property showing that E ϕ is not optimal Table 3.1 -Evolution of (σ s , σ c ) = store ϕ (σ) with σ c . c . u σ σ s σ c c c c . c c . c c . c . u u . c . c
composed only of the uncontrollable events of the input) has reached a state in Q enf , thus it is possible to compute the set of arguments that have an image under E ϕ that satisfies ϕ, and such that all the extensions of the argument also have their image satisfying ϕ. Formally, this set can be defined as follows:

Definition 3.6 (Pre(ϕ)). Pre(ϕ) = {σ ∈ Σ * | G(Reach(σ |Σu ), σ |Σc ) = ∅} . Σ *
Note that Pre(ϕ) as per Definition 3.6 is extension-closed. This set allows us to get the last requirement on E ϕ : E ϕ is sound with respect to ϕ in Pre(ϕ).

Thus, E ϕ is an enforcement function that is sound with respect to ϕ in Pre(ϕ), and compliant with respect to Σ u and Σ c . Proofs of these propositions are straightforward: Pre(ϕ) is is the set of words whose uncontrollable events lead to a state in Q enf (see Definition 3.4), and by construction, from any state in Q enf , any uncontrollable event leads to a state in Q enf . This means that once Q enf is reached, i.e. when the input is in Pre(ϕ), the enforcement mechanism only has to output words that lead to a state in Q enf , which is exactly what G (Definition 3.4) is used for. Thus, E ϕ is sound in Pre(ϕ). Constructing the output by induction ensures compliance, outputting uncontrollable events immediately and adding controllable events to the buffer of stored controllable events (σ c ) before deciding if it is possible to output a prefix of this buffer.

Example 3.2. Now, consider the property defined in Fig. 3.3. Considering that Σ u = {u}, and Σ c = {c}, for this property, Q enf = {q 0 , q 3 }. The evolution of σ s and σ c as per Definition 3.5 for this property with input c . c . u is given in Table 3.1. This means that E ϕ (c . c) = , but one can notice that it could be possible to have a sound and compliant enforcement function E such that E(c . c) = c, since Reach(c) = q 1 ∈ F , and from q 1 it is possible to wait for an uncontrollable event u to reach q 2 and then emit the second stored c event, such that E(c . c . u) = c . u . c, thus Reach(E(c . c . u)) = q 3 ∈ Q enf . Thus, we define another requirement on enforcement functions, that states that an enforcement function should output as many events as possible (while ensuring soundness and compliance). This requirement is called optimality.

Optimality

We have seen that E ϕ as per Definition 3.5 is not optimal, since E ϕ (c . c) ≺ c. One can also note that an enforcement function E defined such that for any σ ∈ Σ * , E(σ) = is sound in Σ * for the property described in Fig. 3.3, and compliant with respect to Σ u = {u} and Σ c = {c}.

An enforcement mechanism should modify the sequence of actions of the system the least possible, thus we require that an enforcement mechanism should be optimal in the sense that its output sequences should be maximal (with respect to ) while preserving soundness and compliance. In the same way we defined soundness in an extension-closed set, we define optimality as follows:

Definition 3.7 (Optimality). An enforcement function E : Σ * → Σ * that is compliant with respect to Σ u and Σ c , and sound in an extension-closed set S ⊆ Σ * is optimal in S if:

∀E : Σ * → Σ * , ∀σ ∈ S, ∀a ∈ Σ, (compliant(E ) ∧ E (σ) = E(σ) ∧ |E (σ.a)| > |E(σ.a)|) =⇒ (∃σ u ∈ Σ * u , E (σ.a.σ u ) |= ϕ).
Intuitively, optimality states that if there exists a compliant enforcement function that outputs a longer word than an optimal enforcement function, then there must exist a sequence of uncontrollable events that would lead the output of that enforcement function to violate ϕ. This would imply that this enforcement function is not sound in the same set as the optimal one. Thus, an enforcement function that outputs a longer word than an optimal enforcement function can not be sound and compliant. Since it is not always possible to satisfy the property from the beginning, this condition is restrained to an extension-closed subset of Σ * , as is for soundness (Definition 3.2).

In the next section, we define an enforcement function that is sound with respect to the property ϕ, compliant with respect to Σ u and Σ c , and optimal.

An Optimal Enforcement Function

In this section, we redefine functions G, store ϕ , E ϕ , and the set Pre(ϕ) such that E ϕ becomes an enforcement function that is sound with respect to ϕ in Pre(ϕ), compliant with respect to Σ u and Σ c and optimal in Pre(ϕ). The idea is still the same: function G gives all the possible words that can be appended to the current output ensuring soundness. Function store ϕ helps building the enforcement function E ϕ , and Pre(ϕ) is the set of arguments for which E ϕ ensures soundness.

To be compliant, an enforcement mechanism can buffer the controllable events it has received to emit them later (i.e. after having received another event). Thus, the set of states from which an enforcement mechanism can ensure soundness, i.e. ensure it can always compute a prefix of the buffer that leads to an accepting state, whatever uncontrollable events are received, depends on its buffer. Thus, to synthesise a sound and compliant enforcement function, one needs to compute the set of words that can be emitted from a certain state with a given buffer, ensuring that an accepting state is always reachable. Thus, to define G, the set of states from which the enforcement mechanism can wait some events knowing an accepting state will always be reachable should be known. Remark that this set has to be a subset of F since it is possible that no event is to be received. This set of states, which depends on the buffer, will be noted S, and is defined in conjunction with another set of states, I, that is used only to compute S. Thus, for a buffer σ ∈ Σ * c , we define the sets of states I(σ) and S(σ), that represent the states from which the enforcement mechanism can output the first event of σ, and the states in which the enforcement mechanism can wait for another event, respectively. Definition 3.8 (I, S). Given a sequence of controllable events σ ∈ Σ * c , we define the sets of states of ϕ, I(σ) and S(σ) by induction as follows:

I( ) = ∅, S( ) = {q ∈ F | q after Σ * u ⊆ F },
and, for σ ∈ Σ * c and a ∈ Σ c ,

I(a . σ) = Pred a (S(σ) ∪ I(σ)), S(σ . a) = S(σ) ∪ max ⊆ ({Y ⊆ F G | Y ∩ uPred(Y ∪ I(σ . a)) = ∅}).
Intuitively, S(σ) is the set of "winning" states, i.e. if an enforcement mechanism has reached a state in S(σ) with buffer σ, it will always be able to reach F , whatever events are received afterwards, controllable or uncontrollable. Remember that since there is a possibility of not receiving any other event, S(σ) ⊆ F , because the EM could end in any of these states, thus this condition is needed to ensure that the output of the EM satisfies the property.

I(σ) is the set of intermediate states, the states that can be "crossed" while emitting a prefix of the buffer. The states in I(σ) do not need to be in F since no event can be received while the EM is in these states, because it emits all the controllable word it wishes to emit at once. S(σ . a) is defined as the biggest subset of F such that no uncontrollable event leads outside of it or I(σ. a), meaning that whatever uncontrollable event is received from a state in S(σ. a), the state reached will be either in F (since it will be in S(σ . a)) or in I(σ . a). In both cases, this means that the enforcement

q 0 q 1 q 2 q 3 q 4 u c u c c u u c c, u Figure 3
.4 -Example property for which I(c) = {q 3 , q 4 } and S(c) = {q 0 , q 2 , q 4 }.

mechanism can reach an accepting state, whatever uncontrollable events are received. I(a.σ) is defined as the set of all states from which following the transition labelled by a leads either to I(σ) or S(σ), meaning that the EM can emit the first event of its buffer to be able to reach an accepting state, whatever uncontrollable events are received.

Example 3.3. Consider the property represented on Fig. 3.4, with Σ u = {u} and Σ c = {c}. For this property, I( ) = ∅ and S( ) = {q 0 , q 4 }. To calculate this, notice that F = {q 0 , q 2 , q 4 }, and:

• q 0 after Σ * u = {q 0 } ⊆ F , thus q 0 ∈ S( ).
• q 2 after Σ * u = {q 3 } ⊆ F , thus q 2 ∈ S( ).

• q 4 after Σ * u = {q 4 } ⊆ F , thus q 4 ∈ S( ).

Then, I(c) = Pred c ({q 0 , q 4 }) = {q 3 , q 4 }. It follows that F ∪ I(c) = {q 1 }, and uPred({q

1 }) = Pred u ({q 1 }) = {q 1 }. Since F ∩ {q 1 } = ∅, this means that F satisfies F ⊆ F and F ∩ uPred(F ∪ I(c)) = ∅. Thus, S(c) = F = {q 0 , q 2 , q 4 }.
We can calculate in the same way that I(c.c) = {q 1 , q 2 , q 3 , q 4 }, and I(c.c.c) = {q 0 , q 1 , q 2 , q 3 , q 4 }. Since for any σ ∈ Σ * c , S(σ) ⊆ F , if c σ, then S(σ) = F . Thus, to output some controllable events while ensuring that the property will be satisfied, an enforcement mechanism must have stored at least three c actions. With three c actions, an enforcement mechanism can output two of them to reach q 2 , from which it must keep one c action in its buffer, to be able to output it if a u event occurs, leading to q 3 .

In other words, the enforcement mechanism is sound as soon as the state reached by its output is in S(σ) ∪ I(σ) with σ its buffer of stored controllable actions. The enforcement mechanism can output the first event of this buffer if the current state is in I(σ), otherwise it must not output anything, but wait for other events. Now, we can use S to define G, the set of words that can be emitted from a state q ∈ Q by an enforcement mechanism with a buffer σ ∈ Σ * c .

Definition 3.9 (G). For q ∈ Q, σ ∈ Σ * c , G(q, σ) = {w ∈ Σ * c | w σ ∧ q after w ∈ S(w -1 .σ)}.
Intuitively, G(q, σ) is the set of words that can be output by a compliant enforcement mechanism to ensure soundness from state q with buffer σ. When clear from context, the parameters could be omitted: G is the value of the function for the state reached by the output of an enforcement mechanism with its buffer. Now, we use G to define store ϕ and E ϕ , the enforcement function, that is sound, compliant, and optimal.

Definition 3.10 (Functions store ϕ , E ϕ ). 2 Function store ϕ : Σ * → Σ * × Σ * c is defined as: store ϕ ( ) = ( , ),
and, for σ ∈ Σ * and a ∈ Σ, if (σ s , σ c ) = store ϕ (σ), then:

store ϕ (σ . a) = (σ s . a . σ s , σ c ) if a ∈ Σ u (σ s . σ s , σ c ) if a ∈ Σ c ,
where, for q ∈ Q and w ∈ Σ * c , κ ϕ (q, w) = max (G(q, w) ∪ { }), and:

σ s = κ ϕ (Reach(σ s . a), σ c ) σ c = σ s -1 . σ c σ s = κ ϕ (Reach(σ s ), σ c . a) σ c = σ s -1 . (σ c . a).
The enforcement function E ϕ : Σ * → Σ * is then defined, for any σ ∈ Σ * , as:

E ϕ (σ) = Π 1 (store ϕ (σ)).
Figure 3.1 gives a scheme of the behaviour of the enforcement function. Intuitively, σ s is the word that can be released as output, whereas σ c is the buffer containing the events that are already read/received, but cannot be released as output yet because they lead to an unsafe state from which it would be possible to violate the property reading only uncontrollable events. Upon receiving a new event a, the enforcement mechanism distinguishes two cases:

• If a belongs to Σ u , then it is output, as required by compliance. Then, the longest prefix of σ c that satisfies ϕ and leads to a state in S for the associated buffer is also output.

• If a is in Σ c , then it is added to σ c , and the longest prefix of this new buffer that satisfies ϕ and leads to a state in S for the associated buffer is emitted, if it exists.

In both cases, κ ϕ is used to compute the longest word that can be output, that is the longest word in G for the state reached so far with the current buffer of the enforcement mechanism, or if this set is empty. The parameters of κ ϕ are those which are passed to G. They correspond to the state reached so far by the output of the enforcement mechanism, and its current buffer, respectively. As seen in Example 3.1, some properties are not enforceable, but receiving some events may lead to a state from which it is possible to enforce the property. Therefore, it is possible to define a set of words, called Pre(ϕ), such that E ϕ is sound in Pre(ϕ), as stated in Proposition 3.2: Definition 3.11 (Pre). The set of input words Pre(ϕ) ⊆ Σ * is defined as follows:

Pre(ϕ) = {σ ∈ Σ * | G(Reach(σ |Σu ), σ |Σc ) = ∅} . Σ * .
Intuitively, Pre(ϕ) is the set of words in which E ϕ is sound. This set is extension-closed, as required by Definition 3.2. In E ϕ , using S ensures that once G is not empty, then it will never be afterwards, whatever events are received. Thus, Pre(ϕ) is the set of input words such that the output of E ϕ would belong to G. Since E ϕ outputs only uncontrollable events until G becomes non-empty, the definition of Pre(ϕ) considers that the state reached is the one that is reached by emitting only the uncontrollable events of σ, and the corresponding buffer would then be the controllable events of σ.

Note that this definition is similar to Definition 3.6, since all the requirements are actually handled by G, which has been redefined.

Example 3.4. Considering property ϕ ex (Fig. 3.2), with the uncontrollable alphabet Σ u = {Auth, LockOff , LockOn}, Pre(ϕ ex ) = Write * . Auth . Σ * . Indeed, from the initial state q 0 , if an uncontrollable event, say LockOff , is received, then q 3 is reached, which is a non-accepting sink state, and is thus not in S( ). In order to reach a state in S (i.e. q 1 or q 2 ), it is necessary to read Auth. Once Auth is read, q 1 is reached, and from there, all uncontrollable events lead to either q 1 or q 2 . The same holds true from q 2 . Thus, it is possible to stay in the accepting states q 1 and q 2 , by delaying Write events when in q 2 until a LockOff event is received. Consequently, q 1 and q 2 are in S(σ) for all σ ∈ Σ * c , and thus Pre(ϕ ex ) = Write * . Auth . Σ * , since Write events can be buffered while in state q 0 until event Auth is received, leading to q 1 ∈ S(Write * ).

Properties

E ϕ as per Definition 3.10, is an enforcement function that is sound with respect to ϕ in Pre(ϕ), compliant with respect to Σ u and Σ c , and optimal in Pre(ϕ), as stated by the following propositions. All the proofs are given in appendix A.1.1.

Proposition 3.1. E ϕ as per Definition 3.10 is an enforcement function as per Definition 3.1.

Sketch of proof.

We have to show that for all σ and σ in Σ * , E ϕ (σ) E ϕ (σ.σ ). Following the definition of store ϕ , this holds provided that σ ∈ Σ (i.e. σ is a word of size 1). Since is an order, it follows that the proposition holds for all σ ∈ Σ . Proposition 3.2. E ϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 3.2.

Sketch of proof.

We have to show that if σ ∈ Pre(ϕ), then E ϕ (σ) |= ϕ. The proof is made by induction on σ. In the induction step, considering a ∈ Σ, we distinguish three different cases:

• σ . a ∈ Pre(ϕ). Then the proposition holds.

• σ . a ∈ Pre(ϕ), but σ ∈ Pre(ϕ). Then the input reaches Pre(ϕ), and since it is extension-closed, all extensions of σ also are in Pre(ϕ), and we prove that the proposition holds considering the definition of Pre(ϕ).

• σ ∈ Pre(ϕ) (and thus, σ . a ∈ Pre(ϕ) since it is extension-closed). Then, we prove that the proposition holds, based on the definition of store ϕ , and more precisely on the definition of S, that ensures that there always exists a compliant output that satisfies ϕ. Proposition 3.4. E ϕ is optimal in Pre(ϕ), as per Definition 3.7.

Sketch of proof.

The proof is made by induction on the input σ ∈ Σ * . Once σ ∈ Pre(ϕ), we know that E ϕ (σ) |= ϕ since E ϕ is sound in Pre(ϕ). E ϕ is optimal because in store ϕ , κ ϕ provides the longest possible word. If a longer word were output, then either the output would not satisfy ϕ, or it would lead to a state that is not in S for the corresponding buffer, meaning that there would exist an uncontrollable word leading to a non-accepting state that would not be in S for the buffer. Then, the enforcement mechanism would have to output some controllable events from the buffer to reach an accepting state, but since the state is not in S, there would exist again an uncontrollable word leading to a non-accepting state that is not in S for the updated buffer. By iterating, the buffer would become whereas the output of the enforcement mechanism would be leading to a non-accepting state. Therefore, outputting a longer word would mean that the function is not sound. This means that E ϕ is optimal in Pre(ϕ), since it outputs the longest word that allows to be both sound and compliant. (Fig. 3.2). We illustrate in Table 3.2 the enforcement mechanism by showing the evolution of σ s and σ c with input σ = Auth . LockOn . Write . LockOff .

Enforcement Monitors

Enforcement monitors are operational descriptions of EMs. We give a representation of an EM for a property ϕ as an input/output transition system. The input/output behaviour of the enforcement monitor is the same as the one of the enforcement function E ϕ as per Definition 3.10. Enforcement monitors are purposed to ease the implementation of EMs. Definition 3.12 (Enforcement Monitor). An enforcement monitor E for ϕ is a transition system C E , c E 0 , Γ E , → E such that:

• C E = Q × Σ * c is the set of configurations.
• c E 0 = q 0 , is the initial configuration.

• Γ E = Σ * × {dump(.), pass-uncont(.), store-cont(.)} × Σ * is the alphabet, where the first, second, and third members are an input sequence, an enforcement operation, and an output sequence, respectively.

•

→ E ⊆ C E × Γ E × C E is
the transition relation, defined as the smallest relation obtained by applying the following rules in order (where w/ /w stands for (w, , w ) ∈ Γ E ):

-Dump: q, a.σ c / dump(a)/a -------→ E q , σ c , if a ∈ Σ c , G(q, a.σ c ) = ∅ and G(q, a.σ c ) = { }, with q = q after a, -Pass-uncont: q, σ c a/ pass-uncont(a)/a -----------→ E q , σ c , with a ∈ Σ u and q = q after a, -Store-cont: q, σ c a/ store-cont(a)/ ----------→ E q, σ c .a , with a ∈ Σ c .
In E, a configuration c = q, σ represents the current state of the enforcement mechanism. The state q is the one reached so far in A ϕ with the output of the monitor. The word of controllable events σ c represents the buffer of the monitor, i.e. the controllable events of the input that it has not output yet. Rule dump outputs the first event of the buffer if it can ensure soundness afterwards (i.e. if there is a non-empty word in G, that must begin with this event). Rule pass-uncont releases an uncontrollable event as soon as it is received. Rule store-cont simply adds a controllable event at the end of the buffer. Compared to Definition 3.10, the second member of the configuration represents buffer σ c in the definition of store ϕ , whereas σ s is here represented by state q which is the first member of the configuration, such that q = Reach(σ s ).

Proposition 3.5. The output of the enforcement monitor E as per Definition 3.12 for input σ is E ϕ (σ) as per Definition 3.10.

In Proposition 3.5, the output of the enforcement monitor is the concatenation of all the outputs of the word labelling the path followed when reading σ. A more formal definition is given in the proof of this proposition, in appendix A.1.1.

Sketch of proof.

The proof is made by induction on the input σ ∈ Σ * . We consider the rules applied when receiving a new event. If the event is controllable, then rule store-cont() can be applied, possibly followed by rule dump() applied several times. If the event is uncontrollable, then rule pass-uncont() can be applied, again possibly followed by rule dump() applied several times. Since rule dump() applies only when there is a non-empty word in G, then this word must begin with the first event of the buffer, and the rule dump() can be applied again if there was a word in G of size at least 2, meaning that there is another non-empty word in the new set G, and so on. Thus, the output of all the applications of the rule dump() corresponds to the computation of κ ϕ in the definition of store ϕ , and consequently the outputs of E and E ϕ are the same.

Remark 1. Enforcement monitors as per Definition 3.12 are somewhat similar to the configuration description of EMs in Falcone et al. [2011a]. The main difference with the EMs considered in Falcone et al. [2011a] is that the rule to be applied depends on the memory (the buffer), whereas in Falcone et al. [2011a] it only depends on the state and the event received.

Enforcing Timed Properties

We extend the framework presented in Section 3.1 to enforce timed properties. EMs and their properties need to be redefined to fit with timed properties. Enforcement functions need an extra parameter representing the date at which

q 0 q 1 a,b x ≥ 2 x := 0 a,b x < 2 a,b Figure 3.5 -A timed property enforceable only if Σ u = ∅.
the output is observed. Soundness needs to be weakened so that, at any time instant, the property is allowed not to hold, provided that it will hold in the future.

Considering uncontrollable events with timed properties raises several difficulties. First, as in the untimed case, the order of events might be modified. Thus, previous definitions of transparency [START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF], stating that the output of an enforcement function will eventually be a delayed prefix of the input, can not be used in this situation. Moreover, when delaying some events to have the property satisfied in the future, one must consider the fact that some uncontrollable events could occur at any moment (and cannot be delayed). Finally, some properties become not enforceable because of uncontrollable events, meaning that for these properties it is impossible to obtain sound EMs, as shown in Example 3.6.

In this section, ϕ is a timed property defined by a timed automaton A ϕ = L, l 0 , X, Σ, ∆, G with semantics A ϕ = Q, q 0 , Γ, -→, F G . As in the untimed setting, for q ∈ Q, we define uPred(q) = u∈Σu Pred u (q), and for S ⊆ Q, uPred(S) = q∈S uPred(q) and S = Q \ S.

Example 3.6 (Non-Enforceable Property). Consider the property defined by the automaton in Fig. 3.5 with alphabet {a, b}, that requires that there is always at least two time units between two consecutive events.

If all actions are controllable (Σ u = ∅), the property is enforceable because an EM just needs to delay events until clock x exceeds 2. Otherwise, the property is not enforceable. For instance, if Σ u = {a}, word (1, a) cannot be corrected by a compliant enforcement mechanism.

Enforcement Functions and their Properties

In this section, we define enforcement functions and the requirements expected to model enforcement mechanisms, as in Section 3.1, but in a timed setting (i.e. the property now is a TA).

An enforcement function takes a timed word and the current time as input, and outputs a timed word: Definition 3.13 (Enforcement Function). Given an alphabet of actions Σ, an enforcement function is a function E : tw(Σ) × R ≥0 → tw(Σ) that satisfies the following constraints:

1. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , ∀t ≥ t, E(σ, t) E(σ, t ) 2. ∀σ ∈ tw(Σ), ∀(t, a) ∈ R ≥0 × Σ, σ . (t, a) ∈ tw(Σ) =⇒ E(σ, t) E(σ . (t, a), t).
Definition 3.13 models physical constraints: an enforcement function can not remove something it has already output. The first condition requires that, as time elapses, the enforcement function can only add new events to its output. The second condition states that, when receiving a new event in the input, the enforcement function, again, can only add new events to its output. In both cases, the new output must be an extension of what has been output so far.

As in the untimed setting (see Definition 3.2), soundness requires that the property is satisfied by the output of the enforcement function. In this timed setting, soundness states that the output of an enforcement function should eventually always satisfy the property, meaning that the output is allowed to not satisfy the property at some point, provided that it will satisfy it in the future:

Definition 3.14 (Soundness). An enforcement function E is sound with re- spect to ϕ in a time-extension-closed set S ⊆ tw(Σ) × R ≥0 if: ∀(σ, t) ∈ S, ∃t ≥ t, ∀t ≥ t , E(σ, t ) |= ϕ.
An enforcement function is sound in a time-extension-closed set S if for any (σ, t) in S, the output of the enforcement function with input σ from date t satisfies the property in the future. As in the untimed setting, soundness is not defined for all words in tw(Σ), but in a set of words, this time associated with dates. The reason is the same as in the untimed setting: the EM might not be able to ensure soundness from the beginning, because of bad uncontrollable sequences. Moreover, in the definition of soundness, the set S needs to be time-extension-closed to ensure that the property remains satisfied once the EM starts to operate. Remark 2. Soundness could have been defined in the same way as in the untimed setting, i.e. stating that the output of an enforcement function should always satisfy the property. However, weakening soundness into enforcing "eventually always ϕ" rather than ϕ itself allows to enforce more properties, and to let enforcement mechanisms produce longer outputs.

As in the untimed setting (see Definition 3.3), compliance states that uncontrollable events should be emitted instantaneously upon reception, and that controllable events can be delayed, but their order must remain unchanged: Definition 3.15 (Compliance). Given an enforcement function E defined on an alphabet Σ, we say that E is compliant with respect to Σ u and Σ c , noted compliant(E, Σ u , Σ c ), if it satisfies the following constraints:

1. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , E(σ, t) dΣ c σ 2. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , E(σ, t) = Σu obs(σ, t) 3. ∀σ ∈ tw(Σ), ∀(t, u) ∈ R ≥0 × Σ u , σ . (t, u) ∈ tw(Σ) =⇒ E(σ, t) . (t, u) E(σ . (t, u), t).
Compliance is similar to the one in the untimed setting except that the controllable events can be delayed. However, their order must not be modified by the EM, that is, when considering the projections on controllable events, the output should be a delayed prefix of the input, as required by the first constraint of Definition 3.15. Any uncontrollable event is released immediately when received, that is, when considering the projections on uncontrollable events, the output should be equal to the input, as per the second constraint. The third constraint requires that an enforcement mechanism does not emit controllable events before a newly received uncontrollable event. In other words, it preserves causality: the reception of the uncontrollable event can cause the output of some other events by the EM, but only after the uncontrollable event (which can be seen as a notification that the event has already happened).

We say that a property is enforceable whenever there exists a sound and compliant enforcement function for this property.

For a compliant enforcement function E : tw(Σ) × R ≥0 → tw(Σ), and a timed word σ ∈ tw(Σ), we note E(σ) the value of E with input σ at infinite time (i.e. when it has stabilised). More formally, E(σ) = E(σ, t), where t ∈ R ≥0 is such that for all t ≥ t, E(σ, t ) = E(σ, t). Since σ is finite, and E is compliant, the output of E with input word σ is finite, thus such a t exists.

As described in the untimed setting, some enforcement mechanisms can be "better" than others, in the sense that they output more events, and thus modify less the input than others (see Section 3.1.2). Thus, we also define optimality for timed enforcement functions, as follows: Definition 3.16 (Optimality). We say that an enforcement function E : tw(Σ) × R ≥0 → tw(Σ) that is compliant with respect to Σ u and Σ c and sound in a time-extension-closed set S ⊆ tw(Σ) × R ≥0 is optimal in S if:

∀E : tw(Σ) × R ≥0 → tw(Σ), ∀σ ∈ tw(Σ), ∀(t, a) ∈ R ≥0 × Σ, (compliant(E , Σ u , Σ c ) ∧ σ . (t, a) ∈ tw(Σ) ∧ (σ, t) ∈ S∧ E (σ, t) = E(σ, t) ∧ E(σ . (t, a)) ≺ d E (σ . (t, a))) =⇒ ∃σ u ∈ tw(Σ u ), E (σ . (t, a) . σ u ) |= ϕ
Optimality states that outputting a greater word (with respect to d ) than the output of an optimal enforcement function leads to either compliance or soundness not being guaranteed. This holds from the point where the input begins to belong to the set in which the function is optimal, and since it is time-extension-closed, the input will belong to this set afterwards. In Definition 3.16, E is an optimal enforcement function, and E is another compliant enforcement function, that we consider having a greater output (with respect to d ) than E for some input word σ . (t, a). Then, since E is optimal, E is not sound, because there exists a word of uncontrollable events such that the output of E after receiving it eventually violates ϕ.

A Sound, Compliant and Optimal Enforcement Function

In this section, as in the untimed setting (see Section 3.1), we define S, I, G, store ϕ , E ϕ and Pre(ϕ) such that E ϕ is an enforcement function that is sound in Pre(ϕ) with respect to ϕ, compliant with respect to Σ u and Σ c , and optimal in Pre(ϕ).

An EM delaying events should buffer them until it can output them. Being able to enforce ϕ depends on the possibility of computing a timed word with the events of the buffer, even when receiving some uncontrollable events, that leads to an accepting state from the current one. Thus, we define, for every sequence σ of controllable actions, two sets of states of the semantics of A ϕ , S(σ) and I(σ). S(σ) is the largest set such that from any of its states, it is possible to wait before emitting a word that leads to F G , knowing that all along the path, receiving uncontrollable events will not prevent from computing such a word again. I(σ) is the set of states from which it is possible to emit the first event of σ and reach a state from which it is possible to compute a word that leads to F G , again such that receiving uncontrollable events does not prevent from eventually reaching F G . Definition 3.17 (I, S). For σ ∈ tw(Σ), the sets of states of A ϕ , I(σ) and S(σ), are inductively defined over sequences of controllable events as follows:

I( ) = ∅ S( ) = {q ∈ F G | q after tw(Σ u ) ⊆ F G } and, for σ ∈ Σ * c and a ∈ Σ c , I(a . σ) = Pred a (I(σ) ∪ S(σ)), S(σ . a) = S(σ) ∪ max ⊆ ({X ∪ Y ⊆ Q | Y ⊆ F G ∧ Y = up(Y )∧ (∀x ∈ X, ∃i ∈ I(σ . a), ∃δ ∈ R ≥0 , x after ( , δ) = i∧ ∀t < δ, x after ( , t) ∈ X)∧ (X ∪ Y ) ∩ uPred(X ∪ Y ∪ I(σ . a)) = ∅})
Intuitively, in Definition 3.17, S(σ) is the set of states of the semantics of ϕ that our EM will be allowed to reach with a buffer σ. It corresponds to the states from which the EM will be able to reach F G , meaning that its output will satisfy the property, even if some uncontrollable events are received. From any state in S(σ), the EM can compute a word of controllable events (taken from its buffer σ) leading to F G , and if some uncontrollable events are received, it will also be able to compute a new word to reach F G , with events taken from its (possibly modified due to previous emissions of events) buffer. The set I(σ) is the set of states that the output of the enforcement mechanism will be authorised to "traverse", meaning that the enforcement mechanism can emit the first event of its buffer σ immediately from these states, but not wait in them (contrary to the states in S(σ), from which the EM could choose to wait before emitting a new event).

These sets are defined by induction on σ, which represents the buffer of the EM. If the EM has its buffer empty (σ = ), then the set of states from which it can emit a controllable event is empty, since it can only emit events from its buffer: I( ) = ∅. Nevertheless, some states in F G can be such that all uncontrollable words lead to a state in F G , meaning that from these states, the property will be satisfied even if some uncontrollable events are received.

Consequently, S( ) = {q ∈ F G | q after tw(Σ u ) ⊆ F G }.
If a new controllable event a is received, it is added to the buffer, and then the EM can decide to emit the first event of its buffer to reach a state that is in S or I for its new buffer, this explains the definition of I(a . σ). Adding a new event to the buffer gives more possibilities to the EM (since it could act as if it had not received this event), thus S(σ) ⊆ S(σ . a). Moreover, S(σ . a) is made of the union of two sets, X and Y . X is the set of states from which the EM can decide to wait before emitting the first event of its buffer, thus waiting from a state of X has to lead to a state in I(σ . a). Y is the set of states that are in F G and from which the EM can decide to wait for a new uncontrollable event before doing anything. Since Y ⊆ F G , if no uncontrollable event is to be received, the property is satisfied, and otherwise, the EM can decide what to emit to reach F G . In order to ensure that receiving uncontrollable events do not prevent from being able to reach F G with events from the buffer, X and Y are such that every uncontrollable event received from a state in X or Y leads to a state in X, Y , or I(σ . a). This is the purpose of the condition (X ∪Y )∩uPred(X ∪ Y ∪ I(σ . a)) = ∅. On top of this, it is necessary to ensure that all the states reached while waiting from X or Y are in X or Y , otherwise there could be a state reached by the EM for which there is an uncontrollable event leading to a state from which it is impossible to reach F G with events of the buffer, meaning that the enforcement would not be sound. This is ensured by the conditions x after ( , t) ∈ X, and Y = up(Y ). To have the best EM possible, these sets are as large as possible.

Note that if X 1 and X 2 satisfy the conditions required for X, then

X 1 ∪ X 2 l 0 l 1 l 2 l 3 l 4 u c x := 0 u c x ≥ 2 c x < 2 c u x := 0 u x := 0 c x < 2, x := 0 c x ≥ 2 c, u Figure 3.6 -Example property such that I(c) = { l 3 , x | x ≥ 2} ∪ ({l 4 } × R ≥0 ) and S(c) = {l 0 , l 2 , l 4 } × R ≥0 .
also satisfies them. Thus, the bigger set satisfying these properties exists. The same holds for Y .

Example 3.7. Consider the property described in Fig. 3.6, with Σ u = {u} and Σ c = {c}. This property is similar to Fig. 3.4 but with some clock constraints added. For this property, we will represent valuations as the image in R ≥0 of the only clock. Then, I( ) = ∅ and S( ) = {l 0 , l 4 } × R ≥0 . To calculate this, note that F G = {l 0 , l 2 , l 4 } × R ≥0 , and:

• {l 0 } × R ≥0 after tw(Σ u ) = {l 0 } × R ≥0 ⊆ F G , thus {l 0 } × R ≥0 ⊆ S( ). • {l 2 } × R ≥0 after tw(Σ u ) = l 3 , 0 ∈ F G , thus {l 2 } × R ≥0 after tw(Σ u ) ∩ S( ) = ∅. • {l 4 } × R ≥0 after tw(Σ u ) = {l 4 } × R ≥0 ⊆ F G , thus {l 4 } × R ≥0 ⊆ S( ).
It follows that

I(c) = Pred c (S( )) = { l 3 , x | x ≥ 2} ∪ ({l 4 } × R ≥0
). Now, note that for any q = l 3 , x such that x < 2, q after ( , 2 -x) = l 3 , 2 ∈ I(c), and for any t < 2 -x, q after ( , t)

∈ { l 3 , x | x < 2}. Thus, if X = I(c) ∪ { l 3 , x | x < 2} = {l 3 , l 4 } × R ≥0 ,
then for any q ∈ X, there exists i ∈ I(c) and δ ∈ R ≥0 such that q after ( , δ) = i and for any t < δ, q after ( , t) ∈ X.

If q ∈ I(c), then i = q and δ = 0. Moreover, if Y = {l 0 , l 2 , l 4 } × R ≥0 , then Y ⊆ F G and up(Y ) = Y . Since X ∪ Y = {l 0 , l 2 , l 3 , l 4 } × R ≥0 , X ∪ Y ∪ I(c) = {l 1 } × R ≥0 , and uPred({l 1 } × R ≥0 ) = Pred u ({l 1 } × R ≥0 ) = {l 1 } × R ≥0 . Thus, X ∪ Y ∩ uPred(X ∪ Y ∪ I(c)) = ∅. This means that {l 0 , l 2 , l 3 , l 4 } × R ≥0 ⊆ S(c).
Since for any q ∈ {l 1 } × R ≥0 , q ∈ F G and there does not exists i ∈ I(c) such that q after ( , δ) = i for some δ ∈ R ≥0 , S(c) can not be bigger than

{l 0 , l 2 , l 3 , l 4 } × R ≥0 . Thus, S(c) = {l 0 , l 2 , l 3 , l 4 } × R ≥0 .
We can calculate in the same way that

I(c.c) = ({l 2 , l 3 , l 4 }×R ≥0 )∪{ l 1 , x | x < 2}, S(c . c) = ({l 0 , l 2 , l 3 , l 4 } × R ≥0 ) ∪ { l 1 , x | x < 2}, I(c . c . c) = ({l 0 , l 2 , l 3 , l 4 } × R ≥0 ) ∪ { l 1 , x | x < 2}, and S(c . c . c) = ({l 0 , l 2 , l 3 , l 4 } × R ≥0 ) ∪ ({ l 1 , x | x < 2}).
To be sound, an enforcement mechanism must output the events of its buffer only if the state reached by its output so far is in I(σ), with σ its buffer.

If the state reached by its output is in S(σ), the enforcement mechanism must wait before outputting something, or wait indefinitely. Thus, to be sound, an enforcement mechanism must have at least three c actions in its buffer to output the first one, and it must output two of them with less than 2 time units between them. Then, when in location l 2 , it must keep at least one c action in its buffer to be able to reach location l 4 in case an uncontrollable event would occur, leading to location l 3 .

Function G : Q × Σ * c → 2 tw(Σ)
gives, for a state q ∈ Q and a sequence of controllable events σ ∈ Σ * c , the set of timed words made with the actions of σ that can be output from q in a safe way (i.e. all the states reached while emitting the word are in the set S corresponding to what remains from σ):

Definition 3.18 (G). For q ∈ Q and w ∈ Σ * c , G(q, σ) = {w ∈ tw(Σ) | Π Σ (w) σ ∧ q after w ∈ F G ∧ ∀t ∈ R ≥0 , q after (w, t) ∈ S(Π Σ (obs(w, t)) -1 . σ)}.
It is now possible to use G to define an enforcement function for ϕ, denoted as E ϕ :

Definition 3.19 (Functions store ϕ , E ϕ ). Let store ϕ : tw(Σ) × R ≥0 → tw(Σ) × tw(Σ c ) × Σ *
c be the function inductively defined by: ∀t ∈ R ≥0 , store ϕ ( , t) = ( , , )

and, for σ ∈ tw(Σ), (t , a) ∈ R ≥0 × Σ such that σ.(t , a) ∈ tw(Σ), and t ≥ t , if

(σ s , σ b , σ c ) = store ϕ (σ, t ), then store ϕ (σ . (t , a), t) = (σ s . (t , a) . obs(σ b , t), σ b , σ c ) if a ∈ Σ u (σ s . obs(σ b , t), σ b , σ c ) if a ∈ Σ c with: for q ∈ Q and w ∈ Σ * c , κ ϕ (q, w) = min ≤ lex (max (G(q, w) ∪ { })), buf c = Π Σ (nobs(σ b , t )) . σ c , t 1 = min({t ∈ R ≥0 | t ≥ t ∧ G(Reach(σ s . (t , a), t ), buf c ) = ∅} ∪ {+∞}), σ b = κ ϕ (Reach(σ s . (t , a), min({t, t 1 })), buf c ) + t min({t, t 1 }), σ c = Π Σ (σ b ) -1 . buf c , t 2 = min({t ∈ R ≥0 | t ≥ t ∧ G(Reach(σ s , t ), buf c . a) = ∅} ∪ {+∞}), σ b = κ ϕ (Reach(σ s , min({t, t 2 })), buf c . a) + t min({t, t 2 }), σ c = Π Σ (σ b ) -1 . (buf c . a).
For σ ∈ tw(Σ), and t ∈ R ≥0 , we define E ϕ (σ, t) = (Π 1 (store ϕ (obs(σ, t), t))). Function store ϕ takes a timed word σ and a date t as input, and outputs three words: σ s , σ b , and σ c . The timed word σ s is the output of the enforcement function at time t. The timed word σ b is composed of controllable events. It is the word that is to be output after the date of the last event of the input, if no other event is received, such that σ s . σ b = E ϕ (σ), i.e. the output of the enforcement function at an infinite time. The untimed word σ c is composed of the remaining controllable actions of the buffer. It can be used to compute a new output if other events are received.

q 0 q 1 q 2 u x < 2 c, u x ≥ 2 c, u c, u
As time elapses after the last event of the input, σ s is modified to output the events of σ b when the dates are reached. Since letting time elapse can disable some transitions, it is possible to reach a "safe" state without emitting any event, and thus σ b can also change as time elapses. However, σ b changes as time elapses at most once, changing from to a word in G. This change of σ b when letting time elapse can only happen once, since G will not be empty anymore once it has become non-empty. t 1 and t 2 are used for this purpose, they both represent the time at which G becomes non-empty, if a ∈ Σ u or a ∈ Σ c respectively. Words are thus calculated from this point whenever G has become non-empty, to ensure that what has already been output is not modified. If G is still empty, then min({t, t 1 }) (or min({t, t 2 }), depending on whether a ∈ Σ c or a ∈ Σ u ) equals to t, meaning that σ b = . Most of the time, t 1 , or t 2 is equal to t , it is not the case only when G was still empty at time t , but if G was not empty at date t , then t 1 (or t 2 ) is equal to t .

To visualise this, consider the property described in Fig. 3.7. Considering that Σ u = {u} and Σ c = {c}, this property is not enforceable since word (1, u) leads to q 2 , that is a non-accepting sink state, and this word can not be corrected. Nevertheless, if clock x reaches at least two time units, then the property becomes enforceable (actually, the identity function is then a sound enforcement function).

The word of controllable actions σ c contains the actions of the input that have not been output and do not belong to σ b . It is used to compute the new value of σ b when possible. When receiving a new event in the input, it is appended to σ s if it is an uncontrollable event, or the action is appended to the buffer if it is a controllable one. Then, σ b is computed again, from the new state reached if it was an uncontrollable event, or with the new buffer if it was controllable. Note that t 1 and t 2 may not exist, since they are minima of an interval that can be open, depending on the strictness of the considered guard. In this case, one should consider the infimum instead of the minimum, and add an infinitesimal delay, such that the required transition is taken.

As mentioned previously, an EM may not be sound from the beginning of an execution, but some uncontrollable events (or letting time elapse, see Fig. 3.7) may lead to a state from which it becomes possible to be sound. Whenever σ b is in G, then it will always be, meaning that the output of E ϕ will eventually reach a state in F G , i.e. it will eventually satisfy ϕ. Thus, E ϕ eventually satisfies ϕ as soon as the state reached so far is in S(σ b ) or I(σ b ). This leads to the definition of Pre(ϕ, t), which is the set of timed words for which E ϕ ensures soundness at time t.

For σ ∈ tw(Σ), if (σ s , σ b , σ c ) = store ϕ (σ, t), then σ is in Pre(ϕ, t) if and only if the set G(Reach(σ s , t), Π Σ (nobs(σ b , t)).σ c ) is not empty. Then, Pre(ϕ, t) is used to define Pre(ϕ), which is the set in which E ϕ is sound: Definition 3.20 (Pre(ϕ)). For σ ∈ tw(Σ) and t ∈ R ≥0 , Pre(ϕ, t) = {σ ∈ tw(Σ) | ∃σ σ, ∃t ≤ t, G(Reach(obs(σ , t ) |Σu , t ), Π Σ (obs(σ , t ) |Σc )) = ∅} Pre(ϕ) = {(σ, t) | σ ∈ Pre(ϕ, t)}
In Definition 3.20, the definition of Pre(ϕ, t) considers words that have a prefix that satisfies the required condition, for a time that is at most t, meaning that Pre(ϕ, t) is extension-closed. Thus, Pre(ϕ) is time-extension-closed, as required by Definition 3.14.

Since the output of our enforcement function consists only of the uncontrollable events from the input while it cannot ensure soundness, if G(Reach(obs(σ, t) |Σu , t), Π Σ (obs(σ, t) |Σc )) is not empty, this means that there exists a word that is "safe" to emit, thus the enforcement function is sound for input σ at date t. Thus, Pre(ϕ, t) is the set of inputs for which E ϕ is sound after date t, and then E ϕ is sound for any input in Pre(ϕ) after its associated date.

Proposition 3.6. E ϕ as defined in Definition 3.19 is an enforcement function, as per Definition 3.13. Sketch of proof. We have to show that for all σ ∈ tw(Σ), for all t ∈ R ≥0 and t ≥ t, E ϕ (σ, t) E ϕ (σ, t ), and for all (t, a) such that σ . Proposition 3.7. E ϕ is sound with respect to ϕ in Pre(ϕ) as per Definition 3.14.

(t, a) ∈ tw(Σ), E ϕ (σ, t) E ϕ (σ . (t,

Sketch of proof.

As in the untimed setting, the proof is made by induction on the input σ ∈ tw(Σ). Similarly to the untimed setting, considering σ ∈ tw(Σ), t ∈ R ≥0 , and (t , a) such that σ . (t , a) ∈ tw(Σ), there are three possibilities:

• (σ . (t , a), t) ∈ Pre(ϕ). Then, the proposition holds.

• (σ . (t , a), t) ∈ Pre(ϕ), but (σ, t ) ∈ Pre(ϕ). Then, this is when the input reaches Pre(ϕ). Considering the definition of Pre(ϕ), we then prove that it is possible to emit a word with the controllable events seen so far, leading to an accepting state in S.

• (σ, t ) ∈ Pre(ϕ) (and thus (σ . (t , a), t) too). Then, we prove again that there exists a controllable word made with the events which have not been output yet leading to an accepting state that is in S, but this time considering the definitions of S and I.

Proposition 3.8. E ϕ is compliant, as per Definition 3.15.

Sketch of proof.

As in the untimed setting, the proof is made by induction on the input σ, considering the different cases where the new event is controllable or uncontrollable. The only difference with the untimed setting is that one should consider dates on top of actions.

Proposition 3.9. E ϕ is optimal in Pre(ϕ), as per Definition 3.16.

Sketch of proof.

This proof is made by induction on the input σ. Whenever σ ∈ Pre(ϕ), since E ϕ is sound in Pre(ϕ), then E ϕ (σ) is the maximal word (with respect to d ) that satisfies ϕ and is safe to output. It is maximal because in the definition of store ϕ , κ ϕ returns the longest word with lower delays (for lexicographic order), which corresponds to the maximum with respect to d . Thus, outputting a greater word (with respect to d ) would lead to G being empty, meaning that the EM would not be sound. Thus, E ϕ is optimal in Pre(ϕ), since it outputs the maximal word with respect to d that allows to be sound and compliant.

Enforcement Monitors

As in the untimed setting, we define an operational description of an EM whose output is exactly the output of E ϕ , as defined in Definition 3.19.

Definition 3.21. An enforcement monitor E for ϕ is a transition system C E , c E 0 , Γ E , → E such that:

• C E = tw(Σ) × Σ * c × Q × R ≥0 × { , ⊥} is the set of configurations.
• c E 0 = , , q 0 , 0, ⊥ ∈ C E is the initial configuration.

• Γ E = ((R ≥0 ×Σ)∪{ })×Op ×((R ≥0 ×Σ)∪{ }) is the alphabet, composed of an optional input, an operation and an optional output.

The set of operations is {compute(.), dump(.), pass-uncont(.), store-cont(.), delay(.)}. Whenever (σ, , σ ) ∈ Γ E , it will be noted σ/ /σ .

• → E is the transition relation defined as the smallest relation obtained by applying the following rules given by their priority order:

-Compute: , σ c , q, t, ⊥ / compute()/ --------→ E σ b , σ c , q, t, , if G(q, σ c ) = ∅, with σ b = κ ϕ (q, σ c ) + t t, and σ c = Π Σ (σ b ) -1 . σ c , -Dump: (t b , a) . σ b , σ c , q, t b , / dump((t b ,a))/(t b ,a) ------------→ E σ b , σ c , q , t b , , with q = q after (0, a), -Pass-uncont: σ b , σ c , q, t, b (t,a)/ pass-uncont((t,a))/(t,a) ----------------→ E , Π Σ (σ b ).σ c , q , t, ⊥ , with q = q after (0, a), -Store-cont: σ b , σ c , q, t, b (t,c)/ store-cont((t,c))/ -------------→ E , Π Σ (σ b ).σ c .c, q, t, ⊥ , -Delay: σ b , σ c , (l, v), t, b / delay(δ)/ -------→ E σ b , σ c , (l, v + δ), t + δ, b .
In a configuration σ b , σ c , q, t, b , σ b is the word to be output as time elapses; σ c is the sequence of controllable actions from the input that are not used in σ b and have not been output yet; q is the state of the semantics reached after reading what has already been output; t is the current time instant, i.e. the time elapsed since the beginning of the run; and b indicates whether σ b and σ c should be computed (due to the reception of a new event for example).

The timed word σ b corresponds to nobs(σ b , t) from the definition of store ϕ , whereas σ c is the same as in the definition of store ϕ . The state q represents σ s from the definition of store ϕ , such that q = Reach(σ s , t). Thus, the following proposition holds: Proposition 3.10. The output of E as per Definition 3.21 for input σ is E ϕ (σ) as per Definition 3.19.

As in the untimed setting, in Proposition 3.10, the output of the enforcement monitor is the concatenation of the outputs of the word labelling the path followed by the enforcement monitor when reading σ. A formal definition is given in the proof of this proposition, in appendix A.1.2.

Sketch of proof. The proof is done by induction on the input σ ∈ tw(Σ).

When receiving a new event, rule store-cont() can be applied if it is controllable, or rule pass-uncont() if it is uncontrollable. Doing so, the last member of the configuration is set to ⊥, meaning that the word to be emitted can be computed. If the input is in Pre(ϕ), then rule compute() can be applied, and then the second member of the configuration will have the same value as the second member of store ϕ , and the same goes for the third members. Then, rule delay() can be applied, to reach the date of the first event in the second member of the current configuration, and then rule dump() can be applied to output it. This process can be repeated until the desired date is reached. Thus, when date t is reached, what has been emitted since the last rule store-cont() or pass-uncont() is obs(σ b , t), where σ b was computed by rule compute() as second member. Considering the definition of store ϕ , it follows that the output of E with input σ at date t is E ϕ (σ, t).

Example 3.8. Consider Fig. 3.8, representing property ϕ t , modelling the use of some shared writable device. Property ϕ t is similar to property ϕ ex (see Fig. 3.2), except that when in state l 1 , one must wait two time units before emitting a Write event. The status of a lock is given through the uncontrollable events LockOn and LockOff indicating that the lock has been locked by someone else, and that it has been unlocked, respectively. The uncontrollable event Auth is sent by the device to authorise writings. Once the Auth event is received, the system is able to send the controllable event Write after having waited some time for synchronisation. Each time the lock is taken and released, it must also wait before issuing a new Write order. The sets of events are: Σ c = {Write} and Σ u = {Auth, LockOff , LockOn}. (8, LockOff ) as input: let (σ s , σ b , σ c ) = store ϕ (obs(σ, t), t). Then the values taken by σ s , σ b and σ c over time are given in Table 3.3. To calculate them, notice that for all valuation ν : {x} → R ≥0 , (l 1 , ν) ∈ S( ), and (l 2 , ν) ∈ S( ), since all uncontrollable words from l 1 and l 2 lead to l 1 or l 2 , which are both accepting states.

We can also follow the execution of an enforcement monitor enforcing property ϕ t (see Fig. 3.8), watching the evolution of the configurations as semantic rules are applied. In a configuration, the input is on the right, the output on the left, and the middle is the current configuration of the enforcement monitor. The variable t defines the global time of the execution. Figure 3.9 shows the execution of the enforcement monitor with input (1, Auth) . (2, LockOn) . (4, Write) . (5, LockOff ) . (6, LockOn) . (7, Write) . (8, LockOff ). In Fig. 3.9, valuations are represented as integers, giving the value of the unique clock x of the property, LockOff is abbreviated as off , LockOn as on, and Write as w. First column depicts the dates of events, then red text is the current output (σ s ) of the EM, blue text shows the evolution of σ b and green text depicts the remaining input word at this date. We can observe, as stated by Proposition 3.10, that the final output is the same as the one of the enforcement function: (1, Auth) . (2, on) . (5, off ) . (6, on) . (8, off ) . (10, w) . (10, w). Remark 3. An EM as per Definition 3.21 outputs longer timed words than the approach in [START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF] and Pinisetty et al. [2014a] when applied only with controllable events thanks to optimality considerations. Consider the property described in Fig. 3 (1, Auth).(2, on)/ , (4, w), (l 2 , 4), 5, /(5, off ).(6, on).(7, w).(8, off ) ↓ pass-uncont((5, off )) t =

(1, Auth). (2, on).(5, off )/ , (7, w), (l 1 , 0), 5, ⊥ /(6, on).(7, w).(8, off ) ↓ compute() t =

(1, Auth). (2, on).(5, off )/ (7, w), , (l 1 , 0), 5, /(6, on).(7, w).(8, off ) ↓ delay(1) t =

(1, Auth). (2, on).(5, off )/ (7, w), , (l 1 , 1), 6, /(6, on).(7, w).(8, off ) ↓ pass-uncont((6, on)) t =

(1, Auth). (2, on).(5, off ).(6, on)/ , (7, w), (l 2 , 1), 6, ⊥ /(7, w).(8, off ) ↓ compute() t =

(1, Auth). (2, on).(5, off ).(6, on)/ , (7, w), (l 2 , 1), 6, /(7, w).(8, off ) ↓ delay(1) t =

(1, Auth). (2, on).(5, off ).(6, on)/ , (7, w), (l 2 , 2), 7, /(7, w).(8, off ) ↓ store-cont((7, w)) t =

(1, Auth). (2, on).(5, off ).(6, on)/ , (7, w).(7, w), (l 2 , 2), 7, ⊥ /(8, off ) ↓ compute() t =

(1, Auth). (2, on).(5, off ).(6, on)/ , (7, w).(7, w), (l 2 , 2), 7, /(8, off ) ↓ delay(1) t =

(1, Auth). (2, on).(5, off ).(6, on)/ , (7, w).(7, w), (l 2 , 3), 8, /(8, off ) ↓ pass-uncont((8, off )) t =

(1, Auth).( 2 

Conclusion

In this chapter, we have defined sound, compliant and optimal enforcement mechanisms, modelled by functions and transition systems, for untimed and timed regular properties. In the next chapter, we revisit the definitions we have presented, replacing S and I by the use of a Büchi game. This aims at improving the performance of an implementation, by precomputing some decisions made by the enforcement mechanism. Enforcing Properties using a Büchi Game

l 0 l 2 l 3 l 1 Write 2 ≤ x < 4 Write x ≥ 4 Write x < 2 Σ Σ Σ \ {Write} Write Σ \ {Write}

Introduction

In this chapter, we revisit Chapter 3, using a Büchi game to ensure soundness, instead of S and I (see Definitions 3.8 and 3.17). Büchi games are well-suited for our purpose, since they correspond to games in which one tries to always be able to reach some nodes called Büchi nodes. An enforcement mechanism tries to always be able to reach an accepting state of the automaton representing the property, even if some uncontrollable events are received, thus this seems similar to solving a Büchi game. Using games allows us to precompute some of the decisions of the enforcement mechanism, thus improving the time overhead of an implementation.

We describe in Section 4.1 some notation changes, such as the use of delays instead of dates, then we define formally enforcement mechanisms in a similar way as in Chapter 3, but this time using a Büchi game to ensure soundness. As in Chapter 3, such enforcement mechanisms are defined for both untimed (Section 4.2) and timed regular properties (Section 4.3).

The work described in this chapter has been published in Renard et al. [2017c].

Notation Changes

In this chapter, some notation changes. The notation changes are essentially made in the timed setting, and are mostly due to the use of delays instead of dates in the definition of timed words. The use of delays seems more appropriate in this section because the use of games make delays appear naturally. This section lists all the modifications that are made to the notation.

Timed Words

Timed words are represented with delays instead of dates as in Chapter 3. Using delays has some advantages over dates. Considering delays, a timed word σ over an alphabet of actions Σ is a word over R ≥0 × Σ, i.e. σ ∈ (R ≥0 × Σ) * . Unlike with dates, no consideration on the time has to be taken into account (remember that with dates, it is required that dates are increasing). The use of delays also seems more appropriate because we build enforcement functions by induction, taking only the current state into account, thus all the timings are calculated relatively to the current time, not to the origin. We note tw(Σ) = (R ≥0 × Σ) * the set of timed words over Σ. Note that the definition of an event is still the same: an event is an element (δ, a) ∈ R ≥0 × Σ, but δ now represents a delay and not a date. Thus, for (δ, a) ∈ R ≥0 × Σ, we define delay((δ, a)) = δ. Since dates and delays are equivalent for a single event, the definitions of functions date and delay are also equivalent. The use of delays instead of dates impacts other definitions as well. The following notions are equivalent to the ones in Chapter 2, only their formal definitions are adapted to the use of delays. Thereby, for a timed word σ = (δ 1 , a 1 ) . (δ 2 , a 2 ) . . . (δ n , a n ), we define:

• time(σ) = n i=1 δ i , for σ = , and time( ) = 0;

• for δ ∈ R ≥0 , σ + t δ = (δ 1 + δ, a 1 ) . (δ 2 , a 2 ) . . . (δ n , a n ); • if δ 1 ≥ δ, σ -t δ = (δ 1 -δ, a 1 ) . (δ 2 , a 2 ) . . . (δ n , a n ).
Note that some other definitions do not need to be adapted, since they only depend on an operator that has already been redefined. For instance, for σ ∈ tw(Σ) and t ∈ R ≥0 , obs(σ, t) is still defined as in Chapter 2, i.e. obs(σ, t) = min ({σ | σ σ ∧ time(σ ) ≤ t}), since it only depends on the operator time(σ) that has already been modified to fit with the use of delays.

The restriction of a word to an alphabet must also be redefined. If σ ∈ tw(Σ) and Σ ⊆ Σ, then σ |Σ is the word composed of the events of σ whose actions belong to Σ, but with dates kept unchanged, not delays. Thus, one must compute the new delays to keep the dates unchanged when restricting a word to an alphabet. Formally, let us consider Σ ⊆ Σ. Then, we define the restriction of a timed word in tw(Σ) to an alphabet by induction as follows: 
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Note that to concatenate two restrictions, it is also needed to adjust the delay at the beginning of the second word: for σ ∈ tw(Σ) and σ ∈ tw(Σ),

(σ . σ ) |Σ = σ |Σ . (σ |Σ + t (time(σ) -time(σ |Σ ))).
The notion of delayed prefix also needs to be adapted. As the restriction to an alphabet, this notion is defined with dates and not delays, thus for two timed words σ and σ in tw(Σ), σ d σ whenever Π Σ (σ) Π Σ (σ ) and for

any i ∈ [1; |σ|], time(σ [..i] ) ≥ time(σ [..i]
). Again, note that the orders are not the same: σ is smaller than σ , but its dates are greater than those of σ .

For instance, if σ = (1, a) . 

Timed Automata

In this chapter, we use an alternative definition for the semantics of a timed automaton. The definition of a timed automaton is still the same as in Chapter 2. Let us consider a timed automaton A = L, l 0 , X, Σ, ∆, G . We define the semantics of A as the timed transition system A = Q, q 0 , Γ, -→, F G , where Q, q 0 , and F G are defined in the same way as in Definition 2.1 (i.e.

Q = L × V(X), q 0 = (l 0 , ν[X ← 0]), and F G = G × V(X)
). Unlike Definition 2.1, we define here Γ as Γ = R ≥0 ∪ Σ, meaning that there are two types of transitions that define -→⊆ Q × Γ × Q:

• Delay transitions:

for δ ∈ R ≥0 , (l, ν) δ - → (l, ν + δ),
• Action transitions: for a ∈ Σ, (l, ν)

a - → (l , ν ), with ν = ν[Y ← 0] whenever there is a transition (l, g, a, Y, l ) ∈ ∆ such that ν |= g.
The difference with Definition 2.1 is that the transition relation is made of delay transitions that correspond to letting time elapse, and action delays that correspond to the read of an action, whereas in Definition 2.1, a transition was made of a delay followed by an action.

We need to also redefine runs to fit with this new definition. Considering A as defined previously, and its semantics Q, q 0 , Γ, -→, F G , a run ρ from q ∈ Q is a valid sequence of transitions starting from q, i.e. ρ = q

δ 1 -→ q 1 a 1 -→ q 2 δ 2 -→ q 3 . . . an -→ q 2n δ n+1
--→ q 2n+1 , where δ i ∈ R ≥0 and a i ∈ Σ, for any i. We can consider runs that alternate between delay and action transitions, since two consecutive delay transitions can be merged into one whose value is the sum of the delays of the original transitions, and two consecutive actions can be separated by a null delay transition (i.e. a delay transition whose delay is 0). We can also consider only runs that begin and end by a delay transition, adding some null delay transitions if necessary.

The trace of the run ρ previously defined is the timed word σ = (δ 1 , a 1 ) . (δ 2 , a 2 ) . . . (δ n , a n ). Note that δ n+1 does not appear in the trace, meaning that all runs with different values for δ n+1 share the same trace as ρ. We allow ourselves to denote by q (δ,a)

--→ q if q δ -→ q a -→ q , and thus ρ can be denoted q σ -→ q 2n δ n+1 --→ q 2n+1 . Note that with this definition of -→, the definition of after with two parameters becomes more straightforward: q after (σ, t) = q , where q obs(σ,t)

----→ q t-time(obs(σ,t))

---------→ q . Moreover, it is now possible to write, for q ∈ Q, q ∈ Q, a ∈ Σ and δ ∈ R ≥0 , q = q after a if q a -→ q , and q = q after δ if q δ -→ q .

Enforcement Functions

In this chapter, we use a set representation for enforcement functions. This representation is equivalent to the functional representation used in Chapter 3, such that the set representation of function f :

x → f (x) is the set {(x, f (x)) | x ∈ domain(f )}
, where domain(f ) represents the domain of function f .

Enforcing Untimed Properties

This section is similar to Section 3.1: its purpose is to define enforcement mechanisms that are sound, compliant and optimal. The main difference between this section and Section 3.1 is the use of Büchi games to compute the set of "safe" states. The interest is a very practical one: using Büchi games allows us to compute "safe" states before the execution. This precomputation allows us to reduce the overhead introduced by the enforcement mechanism at runtime. Note that the interest of this approach might be limited in the untimed setting, but it can greatly improve the performance at runtime in the timed setting (see Section 4.3).

In this section, ϕ is a regular property defined by a complete and deterministic automaton A ϕ = Q, q 0 , Σ, -→, F . As in Chapter 3, we give definitions of enforcement functions, soundness, compliance, and optimality. These definitions are equivalent to the corresponding definitions in Section 3.1, but use a set approach to functions.

Again, we consider uncontrollable events in the set Σ u ⊆ Σ, and controllable events in Σ c = Σ \ Σ u . This notion of uncontrollable and controllable events must not be confused with the notion of controllable events from game theory. Even though we use some games to compute safe states, we use "uncontrollable events" only to denote events in Σ u and "controllable events" to denote events in Σ c . The primitives we chose to use for our enforcement mechanisms are the same as in Chapter 3, i.e. an EM can only delay controllable events, but not suppress them. Uncontrollable events are immediately emitted upon reception.

Thus, an EM may interleave controllable and uncontrollable events.

Enforcement Functions and their Requirements

We consider an alphabet of actions Σ. We consider functions as sets: a function from a set A to a set B is a set f ⊆ A × B such that for any element a in A, there is a unique b in B such that (a, b) ∈ f . We note F(A, B) the set of all functions from A to B.

An enforcement function is a description of the input/output behaviour of an EM. It is a function from Σ * to Σ * , increasing on Σ * (with respect to ):

Definition 4.1 (Enforcement function). A function f ∈ F(Σ * , Σ * ) is an en- forcement function (over Σ) if: ∀i 1 ∈ Σ * , ∀i 2 ∈ Σ * , (i 1 i 2 ∧ (i 1 , o 1 ) ∈ f ∧ (i 2 , o 2 ) ∈ f ) =⇒ o 1 o 2 .
We note F enf (Σ) the set of all enforcement functions over the alphabet Σ. When clear from the context, the parameter shall be omitted, i.e. F enf is used to designate the set of enforcement functions over Σ.

An enforcement function is a function that modifies an execution, and that cannot remove events it has already output.

As in Section 3.1.1, we provide definitions of soundness, compliance and optimality, that are the requirements expected from EMs, and express them as constraints on enforcement functions. An enforcement function should be sound, meaning that its output should satisfy the property:

Definition 4.2 (Soundness). An enforcement function E ∈ F enf is sound with respect to ϕ in an extension-closed set S ⊆ Σ * if: ∀i ∈ S, (i, o) ∈ f =⇒ o |= ϕ.
We note F snd (ϕ, S) (or F snd (S) when clear from the context) the set of all enforcement functions that are sound with respect to ϕ in S.

As for Definition 3.2, the property should be satisfied by the output of the enforcement function only in a subset of Σ * , due to the potential impossibility to correct the input word into a valid one from the beginning. For example, considering property ϕ ex (see Fig. 3.2), word LockOff can not be corrected into a valid one (since it is uncontrollable, receiving it leads to q 3 , which is not accepting). The set S is required to be extension-closed to ensure that the property is always satisfied once the enforcement mechanism is effective.

Remember that compliance defines how the EM can modify the input execution. We only allow to delay controllable events (they can be delayed indefinitely), uncontrollable events must be output immediately upon reception. EMs can output several stored controllable events at the same time (keeping the order unchanged), i.e. without receiving any event, controllable or uncontrollable. Nevertheless, they can not output such events before an uncontrollable event after having received it.

Definition 4.3 (Compliance). E ∈ F enf is compliant with respect to Σ u and Σ c , noted compliant(E, Σ u , Σ c ), if: ∀i ∈ Σ * , (i, o) ∈ E =⇒ (o Σc i ∧ o = Σu i ∧ ∀u ∈ Σ u , ((i . u, o ) ∈ E =⇒ o . u o )).
We note F cpl (Σ u , Σ c ) the set of all enforcement functions (over Σ = Σ u ∪ Σ c ) that are compliant with respect to Σ u and Σ c . When clear from the context, we can denote it by F cpl , and compliant(E, Σ u , Σ c ) is simply noted compliant(E).

Intuitively, compliance states that the EM does not change the order of the controllable events and emits uncontrollable events simultaneously with their reception, possibly followed by stored controllable events.

Moreover, an enforcement function should output the maximum number of events it possibly can. Thus, we define the optimality of sound and compliant enforcement functions as follows:

Definition 4.4 (Optimality). A sound and compliant enforcement function

E ∈ F snd (S) ∩ F cpl (Σ u , Σ c ) is optimal in S if: ∀E ∈ F snd (S) ∩ F cpl (Σ u , Σ c ), ∀i ∈ S, ∀a ∈ Σ, ((i, o) ∈ E ∩ E ∧ (i . a, o ) ∈ E ∧ (i . a, p ) ∈ E ) =⇒ p o .
Intuitively, optimality states that outputting a longer word than an optimal enforcement function breaks soundness or compliance. Since it is not always possible to satisfy the property from the beginning, this condition is restricted to an extension-closed subset of Σ * , as in the definition of soundness (see Definition 4.2). An example has been given in Chapter 3, see Example 3.1.

Now that we have defined the input/output behaviour of enforcement mechanisms as enforcement functions, and expressed the requirements we expect of enforcement mechanisms, we can define an enforcement mechanism as an enforcement function that is sound, compliant, and optimal.

Synthesising Enforcement Functions

As in Section 3.1.3, in this section we redefine G, store ϕ , E ϕ and Pre(ϕ) to fit with the set representation of functions. Functions S and I are replaced by the use of a Büchi game to compute "safe" states. G is adapted to use the Büchi game instead of S and I, but the definitions of store ϕ , E ϕ and Pre(ϕ), that deeply depend on G, are quite similar to the ones in Section 3.1.3.

Function G, as in Section 3.1.3, gives the set of controllable sequences that can be output by a sound and compliant enforcement function for a given state and buffer. To define it, in this chapter, we solve a Büchi game over a graph representing the possible actions of an enforcement monitor. Solving a Büchi game is made by computing a set of nodes of the graph from which there exists a winning strategy for the chosen player. Then, from any of these winning nodes, this player can always come back to a Büchi node, whatever the strategy of the adversary is. Here, we construct a graph such that the enforcement mechanism is a player (the other player being the environment that feeds the events of the input to the EM), and we compute its winning nodes, with the Büchi nodes representing a valid execution. The nodes of the graph are composed of a state in Q and the stored controllable events of the enforcement mechanism. There exists two of each of these vertices: one that belongs to player P 0 , and one that belongs to player P 1 . Player P 0 represents the enforcement mechanism, and P 1 the environment. Definition 4.5 (Game graph). The game graph G is defined as G = V, E , where

• V = Q × Σ * c × {0, 1},
• E = 5 i=1 E i , with:

-E 1 = {( q, w, 0 , q, w, 1 )

∈ V × V }, -E 2 = {( q, c.w, 0 , q after c, w, 0 ) ∈ V × V | c ∈ Σ c }, -E 3 = {( q, w, 1 , q after u, w, 0 ) ∈ V × V | u ∈ Σ u }, -E 4 = {( q, w, 1 , q, w.c, 0 ) ∈ V × V | c ∈ Σ c }, -E 5 = {( q, w, 1 , q, w, 0 ) ∈ V × V },
A vertex q, w, l ∈ V represents the state of the enforcement mechanism: q ∈ Q is the state of A ϕ that has been reached so far by the output of the enforcement mechanism, w ∈ Σ * c is the word made of the stored controllable events of the enforcement mechanism, and l ∈ {0, 1} indicates that the vertex belongs to the player P l . The definition of E is split into five sets, each one containing a different kind of transitions. The enforcement mechanism can only take two decisions: doing nothing, i.e. letting the environment play (set E 1 ), or emitting the first stored controllable event (set E 2 ), in which case it continues to play (since the destinations of the edges in E 2 belong to P 0 ). The sets E 3 and E 4 represent the reception of an uncontrollable and a controllable event, respectively. Receiving an event lets the enforcement mechanism (P 0 ) play. Since games are infinite, and we only consider finite executions, the environment can also decide to let the enforcement mechanism play without any new event (set E 5 ). This allows us to consider finite executions that produce an infinite path in the game by looping on an edge in E 1 and then one in E 5 . It is also possible to consider that this corresponds to receiving an empty event ( ), and that player P 1 (the environment) feeds an infinite input, which is the finite one with infinitely many empty events appended.

Unfortunately, this graph has an infinite number of nodes, it is thus not possible to compute the set of winning vertices for a Büchi game over it. To overcome this, the graph is reduced to a graph with a finite number of vertices. To do this, first note that the number of vertices is infinite because the set Σ * c is not bounded. Thus, Σ * c must be abstracted to a finite set. Since the goal is to reach a state in F , the stored controllable events are used to reach some states in Q. Since Q is finite, having more controllable events than |Q| means that (following the Pumping lemma) there is a loop, i.e. some state in Q is reached twice when emitting all the controllable events. This means that all the states that are reachable from a given state can be reached by a word of size at most |Q|. Thus, the number of controllable events to consider can be reduced to at most |Q|, since all words of size less than |Q| allow to reach all the reachable states from a state. More precisely, we can reduce Σ * c to the set of words that allow to reach a new state (i.e. a state that is not reached by one of its prefixes) from at least one state in Q. Let us call this set Σ n c , and define it as follows:

Definition 4.6 (Σ n c ). Σ n c = {w ∈ Σ * c | ∃q ∈ Q, ∃c ∈ Σ c , ∀w
w, q after w . c = q after w }

As explained previously, since Q is finite, Σ n c is finite as well. Now, let us redefine G to an abstraction of the game graph:

Definition 4.7 (Abstracted game graph). G = V , E , where V = Q × Σ n c × {0, 1}
, and E is the same set as E, but considering vertices in V instead of V .

G is the restriction of the previous graph to a finite number of vertices. Let us now consider W 0 ⊆ V the set of vertices that are winning for P 0 in the Büchi game over G, with the set of Büchi nodes F × Σ n c × {0, 1}. Example 4.1. The graph in Fig. 4.1 is computed from property ϕ ex (see Fig. 3.2), with Write abbreviated w in the second member of the nodes. The Büchi nodes are double circled, and the winning nodes for player P 0 (the EM), i.e. nodes in W 0 , are in blue and rounded rectangles.

Each edge has a different colour and a different head depending on the set it belongs to:

• blue edges, with empty triangular head ( ) belong to E 1 ,

• green edges, with filled triangular head ( ) belong to E 2 , • orange edges, with empty diamond head ( ) belong to E 4 ,

• red edges with filled diamond head ( ) belong to E 3 ∪ E 5 .

Each edge is represented only once, even if there are multiple edges in the set (for example, because multiple uncontrollable events lead to the same state from one state). The squared vertex is the initial vertex, and "-" stands for " " (empty buffer). Since the initial vertex is black (not rounded), this means that it is impossible to ensure that the property will be satisfied from the beginning. The only way to reach a winning state is to follow a red edge from a vertex in {q 0 } × { , w, w.w} × {1}, that corresponds to receiving the uncontrollable event Auth (since it leads to a state in {q 2 } × { , w, w.w} × {0}).

Then, Write events can only be emitted when in state q 1 . This behaviour is the one expected, since in ϕ ex , the only way to reach a state in F from q 0 is to follow a path labelled by Auth, and then q 1 is reached, from which it is possible to emit Write events, but if some uncontrollable events are received that lead to q 2 , one must wait an event LockOff to go back to q 1 and be able to emit another Write event.

Now, we can use W 0 to define G, the set of words that can be emitted from a state q ∈ Q by an enforcement mechanism with a buffer σ ∈ Σ * c . Definition 4.8 (G). For a state q ∈ Q and a word of controllable events σ ∈ Σ * c , we define the set G(q, σ) as follows:

G(q, σ) = {w ∈ Σ * c | w σ ∧ q after w ∈ F ∧ q after w, max ({w w -1 . σ | w ∈ Σ n c }), 1 ∈ W 0 }.
Intuitively, G is the set of words that can be output by a compliant enforcement mechanism to ensure soundness. Now, we use G to define the functional behaviour of the enforcement mechanism.

Definition 4.9

(Functions store ϕ , E ϕ ). Function store ϕ ∈ Σ * × (Σ * × Σ * c
) is defined by induction on its first member as follows:

( , , ) ∈ store ϕ , and, for σ ∈ Σ * and a ∈ Σ, if (σ, σ s , σ c ∈ store ϕ , then,

(σ . a, σ s . a . σ s , σ c ) ∈ store ϕ if a ∈ Σ u (σ . a, σ s . σ s , σ c ) ∈ store ϕ if a ∈ Σ c ,
where, for q ∈ Q and w ∈ Σ * c ,

κ ϕ (q, w) = max (G(q, w) ∪ { }),
and

σ s = κ ϕ (Reach(σ s . a), σ c ) σ c = σ s -1 . σ c σ s = κ ϕ (Reach(σ s ), σ c . a) σ c = σ s -1 . (σ c . a).
The enforcement function E ϕ ∈ F enf is then defined as:

E ϕ = {(σ, σ ) | ∃w ∈ Σ * c , (σ, σ , w ) ∈ store ϕ }.
Intuitively, σ s is the word that can be released as output, whereas σ c is the buffer containing the events that are already read/received, but cannot be released as output yet because they lead to an unsafe state from which it would be possible to violate the property reading only uncontrollable events (i.e. they lead to a vertex in W 1 = V \ W 0 ). Upon receiving a new event a, the enforcement mechanism distinguishes two cases:

• If a belongs to Σ u , then it is output, as required by compliance. Then, the longest prefix of σ c that satisfies ϕ and leads to a vertex in W 0 is also output.

• If a is in Σ c , then it is added to σ c , and the longest prefix of this new buffer that satisfies ϕ and leads to a vertex in W 0 is emitted, if it exists.

In both cases, κ ϕ is used to compute the longest word that can be output, that is the longest word in G for the state reached so far and the current buffer of the enforcement mechanism, or if this set is empty. The parameters of κ ϕ are those which are passed to G, they correspond to the state reached so far by the output of the enforcement mechanism, and its current buffer, respectively. Remember that some properties are not enforceable (see Example 3.1), but receiving some events may lead to a state from which it is possible to enforce. Therefore, it is possible to define the set of words Pre(ϕ), such that E ϕ is sound in Pre(ϕ), as stated in Proposition 4.2: Definition 4.10 (Pre). The set of input words Pre(ϕ) ⊆ Σ * is defined as follows:

Pre(ϕ) = {σ ∈ Σ * | G(Reach(σ |Σu ), σ |Σc ) = ∅}.Σ * c
Again, the definition of Pre(ϕ) in Definition 4.10 is the same as in Definition 3.11, since it only depends on G, whose definition has been changed, but is equivalent to the one in Section 3.1. In E ϕ , using W 0 ensures that once the set G is not empty, then it will never be afterwards, whatever events are received. Thus, Pre(ϕ) is the set of input words such that the output of E ϕ belongs to G. Since E ϕ outputs only uncontrollable events until G becomes non-empty, the definition of Pre(ϕ) considers that the state reached is the one that is reached by emitting only the uncontrollable events of σ, and the corresponding buffer would then be the controllable events of σ. Thus, Pre(ϕ) is the set in which E ϕ is sound.

Example 4.2. Considering property ϕ ex as shown in Fig. 3.2, with the uncontrollable alphabet Σ u = {Auth, LockOff , LockOn}, Pre(ϕ ex ) = Write * . Auth . Σ * . Indeed, from the initial state q 0 , if an uncontrollable event, say LockOff , is received, then q 3 is reached, which is a non-accepting sink state, and thus any vertex in {q 3 } × Σ n c × {0, 1} will not be in W 0 . In order to reach a vertex in W 0 (i.e. a vertex in {q 1 , q 2 } × Σ n c × {0, 1}), it is necessary to read Auth. Once Auth is read, q 1 is reached, and from there, all uncontrollable events lead to either q 1 or q 2 . The same holds true from q 2 . Thus, it is possible to stay in the accepting states q 1 and q 2 , by delaying Write events when in q 2 until a LockOff event is received. Consequently, {q 1 , q 2 } × Σ n c × {0, 1} ⊆ W 0 , and thus Pre(ϕ ex ) = Write * . Auth . Σ * , since Write events can be buffered while in state q 0 until event Auth is received, leading to a vertex in {q 1 } × (Write * ∩ Σ n c ) × {0, 1} ⊆ W 0 . Function store ϕ as per Definition 4.9 is equivalent to store ϕ as per Definition 3.10, thus the evolution of σ s and σ c , such that (σ, σ s , σ c ) ∈ store ϕex (σ) for σ = Auth . LockOn . Write . LockOff and all its prefixes can be found in Table 3.2.

E ϕ (as per Definition 4.9) is an enforcement function that is sound with respect to ϕ in Pre(ϕ), compliant with respect to Σ u and Σ c , and optimal in Pre(ϕ).

Proposition 4.1. E ϕ as per Definition 4.9 is an enforcement function as per Definition 4.1.

Sketch of proof.

We have to show that for all σ and σ in Σ * , (σ,

σ o ) ∈ E ϕ ∧(σ . σ , σ o ) ∈ E ϕ =⇒ σ o σ o .
Following the definition of store ϕ , this holds provided that σ ∈ Σ (i.e. σ is a word of size 1). Since is an order, it follows that the proposition holds for all σ ∈ Σ .

Proposition 4.2. E ϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 4.2.

Sketch of proof. We have to show that if

σ ∈ Pre(ϕ), then (σ, σ o ) ∈ E ϕ =⇒ σ o |= ϕ.
The proof is made by induction on σ. In the induction step, considering a ∈ Σ, we distinguish three cases:

1. σ . a ∈ Pre(ϕ). Then the proposition holds.

2. σ . a ∈ Pre(ϕ), but σ ∈ Pre(ϕ). Then the input reaches Pre(ϕ), and since it is extension-closed, all extensions of σ also are in Pre(ϕ), and we prove that the proposition holds considering the definition of Pre(ϕ).

3. σ ∈ Pre(ϕ) (and thus, σ . a ∈ Pre(ϕ) since it is extension-closed). Then, we prove that the proposition holds, based on the definition of store ϕ , and more precisely on the definition of G, that uses W 0 to ensure that there always exists a compliant output that satisfies ϕ. For any given input σ ∈ Pre(ϕ), E ϕ (σ) is the longest possible word that ensures soundness and compliance, that is controllable events are blocked only when necessary. Thus, E ϕ is also optimal in Pre(ϕ):

Proposition 4.4. E ϕ is optimal in Pre(ϕ), as per Definition 4.4.

Sketch of proof. The proof is made by induction on the input

σ ∈ Σ * . Once σ ∈ Pre(ϕ), we know that (σ, σ o ) ∈ E ϕ =⇒ σ o |= ϕ since E ϕ is sound in Pre(ϕ
). E ϕ is optimal because, in store ϕ , κ ϕ provides the longest possible word. If a longer word were output, then either the output would not satisfy ϕ, or it would lead to a vertex that is not in W 0 , meaning that there would exist an uncontrollable word leading to a non-accepting state and to a vertex that would not be in W 0 . Then, the enforcement mechanism would have to output some controllable events from the buffer to reach an accepting state, but since the vertex is not in W 0 , there would exist again an uncontrollable word leading to a non-accepting state and a vertex not in W 0 . By iterating, the buffer would become whereas the output of the enforcement mechanism would be leading to a non-accepting state. Therefore, outputting a longer word would mean that the function is not sound. This means that E ϕ is optimal in Pre(ϕ), since it outputs the longest word that allows us to be both sound and compliant.

Enforcement Monitors

We can describe enforcement monitors as in Section 3.1.4, representing an enforcement monitor as a transition system. Since the enforcement monitor described in Definition 3.12 does not depend on I and S (see Definition 3.8), but only on G, the definition of a monitor using a Büchi game is the same as Definition 3.12. In other words, the use of a Büchi game is transparent to the operational monitor, because it is hidden in the use of G.

This leads us to the following proposition:

Proposition 4.5. The output o of the enforcement monitor E as per Definition 3.12 for input σ is the output of E ϕ as per Definition 4.9 with input σ, i.e. (σ, o) ∈ E ϕ .

In Proposition 4.5, the output of the enforcement monitor is the concatenation of all the outputs of the word labelling the path followed when reading σ. A more formal definition is given in the proof of this proposition, in appendix A.2.1.

Sketch of proof.

The proof is made by induction on the input σ ∈ Σ * . We just consider the rules that can be applied when receiving a new event. If the event is controllable, then rule store-cont() can be applied, possibly followed by rule dump() applied once or more times. If the event is uncontrollable, then rule pass-uncont() can be applied, again possibly followed by rule dump() applied once or more times. Since rule dump() applies only when there is a non-empty word in G, then this word must begin with the first event of the buffer, and rule dump() can be applied again if there was a word in G of size at least 2, meaning that there is another non-empty word in the new set G. This can be applied n times, where n is the length of the longest word in G at the beginning. Thus, the output of all the applications of rule dump() corresponds to the computation of κ ϕ in the definition of store ϕ , and consequently the outputs of E and E ϕ are the same.

Remark 4. For a configuration c = q, w of the enforcement monitor, we can consider the node of the game graph (q, w , 0), with w the longest prefix of w such that (q, w ) is a node of the game graph. Then, if σ ∈ Pre(ϕ), and c is the configuration reached by the enforcement monitor with input σ, then (q, w , 0) is a winning node.

Enforcing Timed Properties

In this section, we extend the framework presented in Section 4.2 to enforce timed properties. As in Section 3.2, enforcement mechanisms and their properties need to be redefined to fit with timed properties. Enforcement functions take an observation time, and soundness is defined to enforce "eventually always ϕ" instead of the property ϕ itself. This gives more flexibility to enforcement mechanisms, allowing them to less modify the input while ensuring that the property will hold in the future.

Remember that, unlike in Section 3.2, delays are used instead of dates in timed words, all across this section. All notation changes of this section are listed in Section 4.1.

In this section, ϕ is a timed property defined by a timed automaton A ϕ = L, l 0 , X, Σ, ∆, G with semantics A ϕ = Q, q 0 , Γ, -→, F G .

Enforcement Functions and their Properties

We adapt the definitions of enforcement functions, soundness, compliance, and optimality to fit with timed properties. The definitions in this section are equivalent to the ones in Section 3.2.1, but use a set representation of functions, and delays instead of dates.

An enforcement function takes a timed word and the current time as input, and outputs a timed word: Definition 4.11 (Enforcement Function). Given an alphabet of actions Σ, an enforcement function (over Σ) is a function E ∈ F(tw(Σ) × R ≥0 , tw(Σ)) that satisfies the following constraints:

1. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , ∀t ≥ t, (σ, t), o 1 ∈ E ∧ (σ, t ), o 2 ∈ E =⇒ o 1 o 2 2. ∀σ ∈ tw(Σ), ∀δ ∈ R ≥0 , ∀a ∈ Σ, ( (σ, time(σ . (δ, a))), o 3 ∈ E ∧ (σ . (δ, a), time(σ . (δ, a))), o 4 ∈ E) =⇒ o 3 o 4
As in Section 4.2, we note F enf (Σ) (or F enf when clear from the context) the set of all enforcement functions over Σ. Be aware that F enf in Section 4.2 is different from F enf as per Definition 4.11, since the current section is about timed enforcement functions.

The requirements in Definition 4.11 model physical constraints: an enforcement function can only add events to its output as the input grows. The first constraint (o 1 o 2 ) corresponds to letting time elapse, whereas the second one (o 3 o 4 ) corresponds to reading a new event. They both require the new output to be an extension of the previous one.

Soundness states that the output of an enforcement function should eventually always satisfy the desired property: Definition 4.12 (Soundness). An enforcement function E ∈ F enf is sound with respect to ϕ in a time-extension-closed set S ⊆ tw(Σ) × R ≥0 if:

∀(σ, t) ∈ S, ∃t ≥ t, ∀t ≥ t , ((σ, t ), o) ∈ E =⇒ o |= ϕ.
We note F snd (ϕ, S) the set of all enforcement functions that are sound with respect to ϕ in S.

This definition is equivalent to Definition 3.14, thus an enforcement function is sound with respect to ϕ in S if for any (σ, t) ∈ S, the output of the enforcement function with input σ from date t eventually always satisfies S. Again, S restrains tw(Σ) because for some properties, some words can not be corrected to satisfy the property.

As usual, compliance states that an enforcement mechanism can only delay controllable events: Definition 4.13 (Compliance). An enforcement function E ∈ F enf is compliant with respect to Σ u and Σ c , noted compliant(E, Σ u , Σ c ) (or compliant(E) when clear from the context), if it satisfies the following constraints:

1. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , (σ, t), o 1 ∈ E =⇒ o 1 dΣ c obs(σ, t) 2. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , (σ, t), o 2 ∈ E =⇒ o 2 = Σu obs(σ, t) 3. ∀σ ∈ tw(Σ), ∀(δ, u) ∈ R ≥0 × Σ u , (σ, time(σ . (δ, u))), o 3 ∈ E ∧ (σ . (δ, u), time(σ . (δ, u))), o 4 ∈ E =⇒ o 3 . (time(σ . (δ, u)) -time(o 3 ), u) o 4 .
We note F cpl (Σ u , Σ c ) (or F cpl when clear from the context) the set of all enforcement functions that are compliant with respect to Σ u and Σ c .

The definition of compliance as per Definition 4.13 is equivalent to the one as per Definition 3.15. The three constraints are equivalent, they are only adapted in Definition 4.13 to fit with the use of the set representation of enforcement functions and delays instead of dates. The first constraint requires that an EM can only delay controllable events, without changing their order; the second constraint requires that uncontrollable events are not modified; and the third constraint requires that the enforcement mechanism does not react to the reception of an uncontrollable event before outputting it.

For a compliant enforcement function E ∈ F enf and a timed word σ ∈ tw(Σ), we say that ((σ, ∞), o) ∈ E if o is the output of E with input σ at infinite time (i.e. when it has stabilised). More formally, ((σ, ∞), o) ∈ E ⇐⇒ ∃t ∈ R ≥0 , ∀t ≥ t, ((σ, t ), o) ∈ E. Since σ is finite, and E is compliant, the output of E with input word σ is finite, thus such an output o exists.

As in Section 3.2.1, we define a notion of optimality in a set:

Definition 4.14 (Optimality). A sound and compliant enforcement function

E ∈ F snd (ϕ, S) ∩ F cpl (Σ u , Σ c ) is optimal in S if: ∀E ∈ F cpl (Σ u , Σ c ), ∀σ ∈ tw(Σ), ∀(δ, a) ∈ R ≥0 × Σ, (σ, time(σ . (δ, a))) ∈ S ∧ (σ, time(σ . (δ, a))), o ∈ E ∩ E ∧ (σ . (δ, a), ∞), o 1 ∈ E ∧ (σ . (δ, a), ∞), o 1 ∈ E ∧ o 1 ≺ d o 1 =⇒ (∃σ u ∈ tw(Σ u ), (σ . (δ, a) . σ u , ∞), o u ∈ E ∧ o u |= ϕ).
Optimality, as per Definition 4.14, is equivalent to optimality as per Definition 3.16. Intuitively, a sound and compliant enforcement function is optimal if at any moment, it outputs the longest possible word, with lower delays, ensuring soundness and compliance. In Definition 4.14, we suppose that a compliant enforcement function outputs a greater word (with respect to d ) than an optimal one, and then conclude that it is not sound (since the other function is optimal). Now that all the requirements on enforcement functions have been redefined, we can redefine the enforcement function E ϕ so that its output is the same as the one as per Definition 3.19. The difference with Section 3.2.2 is that we use a Büchi game to compute the safe states.

Synthesising Timed Enforcement Functions

In this section, we redefine G, store ϕ , E ϕ and Pre such that E ϕ is an enforcement function that is sound with respect to ϕ in Pre(ϕ), compliant with respect to Σ u and Σ c , and optimal in Pre(ϕ). Thus, the output of E ϕ is expected to be the same as in Section 3.2.2. The difference with Section 3.2.2 is that we define G using a Büchi game. Remember that function G gives, for a state and a sequence of stored controllable events, the set of timed words that can be output by a sound and compliant enforcement mechanism. To compute such words, we construct a graph on which we play a Büchi game.

The graph is defined in a very similar way to the one used in the untimed setting (Section 4.2.2). The nodes of the graph should be taken in the set

Q × Σ * c × {0, 1}
. Considering all such nodes, the graph would have an infinite number of nodes, first because the number of stored controllable events is not bounded, but also because the semantics of a timed automaton has itself an infinite number of states (i.e. Q is also infinite). We can use the same set Σ n c as in the untimed setting (see Definition 4.6), adapted to the timed setting, to restrict the number of stored controllable events to be considered. Intuitively, since the validity of a sequence only depends on the location that is reached after reading it, Σ n c is composed of all the controllable actions that can allow the enforcement mechanism to reach a new location. Then, we define Σ n c as follows:

Definition 4.15 (Σ n c ).

Σ n c = {w ∈ Σ * c | ∃q ∈ Q, ∃c ∈ Σ c , ∀σ ∈ tw(Σ), ∀σ ∈ tw(Σ), Π Σ (σ) = w . c ∧ Π Σ (σ ) w ∧ (l , ν ) = q after σ ∧ (l , ν ) = q after σ =⇒ l = l }
Since in Definition 4.15, Σ n c is defined as the set of controllable sequences of actions that can be used to form a word that allows to reach a new location, the length of a word in Σ n c can not be greater than the number of locations in the timed automaton. Thus, Σ n c is finite since L is finite. As mentioned previously, the graph that we would naturally want to use is infinite because of two infinite components: Q, and Σ * c . We can reduce the number of nodes by restricting Σ * c to the finite set Σ n c . Now, we also need to reduce Q to a finite set, i.e. we need to consider an abstraction of time. In other words, we need to use a symbolic abstraction of the semantics of A ϕ .

A Symbolic Graph

Several abstractions for timed automata exist to reduce their semantics to a finite representation. The simplest, that satisfies all the requirements we need, is the region graph (see Alur and Dill [1992]) of the timed automaton. Unfortunately, this region graph is often very large, thus some more efficient abstractions have been studied. A very common abstraction is the zone graph used to compute reachability in a timed automaton [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF]). A zone is a convex set of clock valuations, usually represented by clock constraints of the form x n, where x is a clock, ∈ {<, ≤, =, ≥, >}, and n is a (rational) number, or more generally by x -y n, where y is another clock. This graph is usually small compared to the region graph. Nevertheless, this graph only preserves information about the existence of a state (i.e. a transition in the graph represents the existence of a location and a valuation in the source node to a location and a valuation in the destination node). This is not sufficient for our needs, i.e. to play a Büchi game.

The graph described in Alur et al. [1992] fits our needs and seems to be a good choice. However, we give a list of constraints that are sufficient for a graph to fit our needs. Any symbolic graph satisfying these constraints could be used to generate the game graph, on which we can play a Büchi game. We say that such graphs are compatible with Büchi games.

Definition 4.16 (Compatible graph). A symbolic graph G

s = V s , E s , with E s ⊆ V s × (Σ ∪ {t}) × V s is compatible (with Büchi games) if it satisfies the following constraints: 1. V s is a finite set such that ∀v ∈ V s , ∃l ∈ L, v ⊆ l × 2 V(X) , 2. ∀q ∈ Q, ∃!v ∈ V s , q ∈ v, 3. E s = E a s ∪ E δ s , 4. ∀v ∈ V s , ∀a ∈ Σ, ∃!v ∈ V s , (∀q ∈ v, ∀q ∈ Q, q a - → q =⇒ q ∈ v ), and E a s = {(v, a, v ) ∈ V s × Σ × V s | ∃(q, q ) ∈ v × v , q a - → q }, 5. ∀(v, v ) ∈ V 2 s , ∀(q, q ) ∈ v × v , ∀δ ∈ R ≥0 , q δ - → q =⇒ (∀q ∈ v, ∃δ ∈ R ≥0 , ∃q ∈ v , q δ - → q ), 6. ∀v ∈ V s , up(v) = v =⇒ ∃!v ∈ V s , v = v ∧ ∀(q, q ) ∈ v × v , ∃δ ∈ R ≥0 , q = q after δ ∧ ∀δ ≤ δ, q after δ ∈ v ∪ v , and E δ s = {(v, t, v ) ∈ V s × {t} × V s | v = v ∧ ∀(q, q ) ∈ v × v , ∃δ ∈ R ≥0 , q = q after δ ∧ ∀δ ≤ δ, q after δ ∈ v ∪ v }.
Constraint [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF] imposes that all the states of the semantics that are in a node of the symbolic graph share the same location. This allows us to easily define accepting nodes (as nodes whose locations are accepting). Constraint (2) allows us to match each state of the semantics with a unique node in the symbolic graph.

Constraint (3) splits the set of edges between edges corresponding to actions and edges corresponding to delays. Each of these sets has its own constraints, described in ( 4) and (6).

Constraint (4) propagates the reachability and determinism of the timed automaton to the symbolic graph for actions, and defines the set E a s of edges corresponding to actions. The edges in E a s are labelled with the corresponding action from Σ.

Constraint (5) states that if a state of the semantics leads to another with a delay, and they are not in the same node, then all states in the first node can reach a state in the second node with a delay.

Constraint (6) requires that each node of the graph has at most one direct time successor, with which it is linked by an edge in the set E δ s of edges corresponding to delays. The edges in E δ s are labelled with the special action t, which is supposed not to belong to Σ.

The graph defined in Alur et al. [1992] is a graph that is compatible with Büchi games, as per Definition 4.16. This graph is the one that has been used as symbolic graph in the implementation (see Chapter 5).

A compatible graph is like the so-called zone graph used to compute reachability, but with more constraining properties. Constraints ( 5) and ( 6) can be seen as a kind of time determinism. In the usual zone graph used to compute reachability (see, for example, [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF]), an edge (v, v ) between two nodes v and v indicates that for every state of the semantics q in v , there exists a state q in v such that q -→ q . In G s , constraints (5) and ( 6) are more constraining, since an edge (v, v ) ∈ E δ s between two nodes v and v indicates that for all q in v and for all q in v , q δ -→ q for some δ ∈ R ≥0 . Note that for edges in E a s , the constraints are the same as in the usual zone graph (the existence of a state).

Example 4.3. Consider property ϕ t (Fig. 3.8). Its corresponding symbolic compatible graph as per Alur et al. [1992] is given in Fig. 4.2. In the graph of Fig. 4.2, the nodes are labelled with a location and a zone, represented as a set of clock constraints. Edges can represent an event transition or the elapse of time. Red edges with filled diamond heads ( ) represent transitions with uncontrollable events, whereas orange edges with empty diamond heads ( ) represent transitions with controllable events. Purple edges with "vee" heads ( ) represent the elapse of time. Thus, in Fig. 4.2, orange edges correspond to transitions labelled by Write, since it is the only controllable event. Red edges can represent transitions of any other event, LockOn, LockOff , or Auth. Edges are not duplicated, meaning that two events with the same controllability that label the same transition will appear as a unique edge in the graph. For example, from node (l0, ), events LockOff and LockOn lead to (l3, ), but only one red edge is drawn.

From this symbolic graph, we define another graph, as in Section 4.2.2, on which we play a Büchi game. This graph is called game graph.

The Game Graph

Now that we have seen how to reduce Σ * c to the finite set Σ n c , and how to abstract the semantics of the timed automaton with a finite compatible graph, we can construct the graph on which we play a Büchi game. Let us consider G s = (V s , E s ), a symbolic graph compatible with Büchi games. We can now use Σ n c and G s to define G, the finite graph on which to play the Büchi game:

Definition 4.17 (G). G = V, E , where:

• V = V s × Σ n c × {0, 1}, • E = 6 i=1 E i , with -E 1 = {( v, w, 0 , v, w, 1 ) ∈ V 2 }, -E 2 = {( v, c.w, 0 , v after c, w, 0 ) ∈ V 2 | c ∈ Σ c }, -E 3 = {( v, w, 1 , v after u, w, 0 ) ∈ V 2 | u ∈ Σ u }, -E 4 = {( v, w, 1 , v, w.c, 0 ) ∈ V 2 | c ∈ Σ c ∧ w.c ∈ Σ n c }, -E 5 = {( v, w, 1 , v , w, 0 ) ∈ V 2 | (v, t, v ) ∈ E δ s }, -E 6 = {( v, w, 1 , v, w, 0 ) ∈ V 2 | up(v) = v},
As per Definition 4.17, a node in the game graph G is composed of a node of the symbolic graph G s , a buffer, and a player it belongs to. It is quite similar to the game graph as per Definition 4.5, except that the state of the untimed automaton is replaced by a node of the symbolic graph. The two players are, again, the enforcement monitor P 0 , whose associated number is 0, and the environment P 1 , whose associated number is 1. The set of edges is partitioned into six sets, each representing a different type of action. The four first sets, E 1 , E 2 , E 3 , and E 4 are similar to the ones in the untimed setting: E 1 contains the edges corresponding to P 0 letting P 1 play; edges in E 2 represent P 0 emitting the first event of its buffer; E 3 and E 4 contain edges corresponding to receiving an uncontrollable or controllable event, respectively, which are actions of P 1 . Edges in E 5 represent time elapse: it changes the node of the symbolic graph to its time successor if it has one. E 6 contains edges that allow us to consider finite inputs. Since plays are infinite, such edges are needed to allow the environment to receive nothing (it can be seen as adding an empty event to the input). Since time elapses when no event is received, these edges exist only from nodes that have no time successor, i.e. nodes that are stable by elapse of time.

On this graph, we play a Büchi game with the set of Büchi nodes being defined as:

B = { (l, Z), w, 0 ∈ V | l ∈ G}
We can now consider W 0 the set of winning nodes of this game for player P 0 .

Example 4.4. Consider again property ϕ t (Fig. 3.8) whose symbolic graph was represented in Fig. 4.2. The game graph associated with ϕ t is given in Fig. 4.3. In this graph, the initial node is the square node, the Büchi nodes are the double-circled nodes, and the winning nodes (the nodes in W 0 ) are the rounded rectangular ones. The two first members represent a node of G s (see Fig. 4.2), and the third member is a prefix of the buffer of the enforcement mechanism, where w stands for the Write event, which is the only controllable event. As in the untimed setting, edges are represented differently according to the set they belong to:

• blue edges, with empty triangular heads ( ) belong to E 1 (the enforcement mechanism does not emit),

• green edges, with filled triangular heads ( ) belong to E 2 (the enforcement mechanism emits the first event of its buffer),

• orange edges, with empty diamond heads ( ) belong to E 4 (a controllable event is received), • red edges, with filled diamond heads ( ) belong to E 3 (an uncontrollable event is received) or E 6 (no more event is to be received).

• purple edges, with "vee" heads ( ) belong to E 5 (elapse of time).

For example, consider the node labelled (l 1 , {x < 2}, -, 1) in Fig. 4.3 (this node has a purple output edge). This node belongs to P 1 , meaning that this is the environment playing. Four edges leave this node. The purple edge (in E 5 ) leads to the node (l 1 , {x ≥ 2}, -, 0), since if x < 2, letting enough time elapse (i.e.

2 -x time units) leads to the guard x ≥ 2 being satisfied. Letting time elapse does not change the buffer nor the location, hence the destination node. Two red edges leave node (l 1 , {x < 2}, -, 1): one leads to node (l 1 , {x < 2}, -, 0), that corresponds to receiving the uncontrollable events Auth or LockOff ; the other one leads to (l 2 , , -, 0), that corresponds to receiving the uncontrollable event LockOn (since (l 1 , x) after LockOn = (l 2 , x)). The last edge leaving node (l 1 , {x < 2}, -, 0) is the orange one, that corresponds to the reception of a controllable event, here Write is the only one, thus leading to node (l 1 , {x < 2}, w, 0), i.e. only the buffer changed and it is the turn of P 0 to play.

From this game graph, knowing the winning set W 0 for P 0 allows us to compute the "safe" states of an enforcement mechanism.

The Enforcement Function

Now, we redefine G, store ϕ , E ϕ , and Pre.

We can use W 0 to define, for q ∈ Q and w ∈ Σ * c , G(q, w), the set of words that can be output by an enforcement mechanism from state q with buffer w, ensuring compliance and soundness: Definition 4.18 (G). For q ∈ Q, and w ∈ Σ * c ,

G(q, w) = {σ ∈ tw(Σ) | Π Σ (σ) w ∧ q after σ ∈ F G ∧ ∀t ∈ R ≥0 , ∀v ∈ V s , (q after (σ, t) ∈ v) =⇒ v, maxbuffer(Π Σ (obs(σ, t)) -1 . w), 1 ∈ W 0 }, with: maxbuffer(w) = max ({w w | w ∈ Σ n c }).
It is now possible to redefine E ϕ , using this new definition of G:

Definition 4.19 (store ϕ , E ϕ ). Let store ϕ ∈ F(tw(Σ), tw(Σ) × Σ * c ) be the function defined inductively by: ( , , ) ∈ store ϕ , and for σ ∈ tw(Σ), (δ, a) ∈ R ≥0 ×Σ, if t = time(σ.(δ, a)), (σ s0 , σ c ) = store ϕ (σ), and σ s = obs(σ s0 , t), then

(σ . (δ, a), σ s . (t -time(σ s ), a) . σ s , σ c ) ∈ store ϕ if a ∈ Σ u (σ . (δ, a), σ s . σ s , σ c ) ∈ store ϕ if a ∈ Σ c
where, for q ∈ Q, and w ∈ Σ * c ,

T(q, w) = {t ∈ R ≥0 | ∀t < t , G(q after ( , t ), w) = ∅}, κ ϕ (q, w) = min lex (max ({ } ∪ t ∈T(q,w) {w + t t | w ∈ G(q after ( , t ), w)})) buf c = Π Σ (nobs(σ s0 , t)) . σ c , and 
σ s = κ ϕ (Reach(σ s . (t -time(σ s ), a)), buf c ) σ c = Π Σ (σ s ) -1 . buf c , σ s = κ ϕ (Reach(σ s , t), buf c . a) + t (t -time(σ s )) σ c = Π Σ (σ s ) -1 . (buf c . a).
We then define the enforcement function E ϕ as follows:

E ϕ = {( σ, t , obs(σ s0 , t)) ∈ (tw(Σ) × R ≥0 ) × tw(Σ) | ∃σ c ∈ Σ * c , (obs(σ, t), σ s0 , σ c ) ∈ store ϕ }
Function store ϕ takes a timed word σ as input, and outputs two words: σ s0 and σ c . Timed word σ s0 is the output of the enforcement mechanism at infinite time. The controllable word of actions σ c is the word composed of the remaining stored controllable actions of the enforcement mechanism (its buffer) at infinite time. In the definition of G(q, w), the last condition requires that all nodes of G that are reached by a word in G(q, w) from q belong to W 0 . This is a strong condition, that is required to ensure that it is always possible to compute a word leading to an accepting state. Nevertheless, if the source node is not in W 0 , it is possible that letting time elapse leads to a node in W 0 , because it disabled some transition in the timed automaton. This explains why we defined the set T(q, w), that allows us to consider words as potential outputs of the enforcement mechanism if it becomes sound (i.e. can ensure that the property will be satisfied) before the emission of the first event of this word, even if it is not at the time when the last event was received. Intuitively, T(q, w) contains all the delays t such that an enforcement mechanism must wait at least t time units to be able to be sound. In other words, the enforcement mechanism can not ensure that the property will eventually always be satisfied from state q with buffer w, and it can not ensure it either by waiting less than t time units, for every t in T(q, w). Then, κ ϕ (q, w) is the word that is to be output by the enforcement mechanism from state q with buffer w provided that the input does not change. It is the maximal word (with respect to d ) Table 4.1 -Table showing the values of (obs(σ, t), σ s , σ c ) ∈ store ϕt , with σ = ( [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]Auth) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]LockOn) . [START_REF]Reach(σ s0 , time(σ . (δ, a))) after (0, a) after σ ∈ F G , because it belongs to v e ⊆ F G (v e is such that π = π 0 . ( v e , w e , 0 . v e , w e , 1 ) ω )[END_REF]Write) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]LockOff ) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]LockOn) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]Write) .

(1, LockOff )) for different values of time t.

t σ s σ c 1 (1, Auth) 2 (1, Auth) . (1, LockOn) 4 (1, Auth) . (1, LockOn) Write 5 (1, Auth) . (1, LockOn) . (3, LockOff ) . (2, Write) 6 (1, Auth) . (1, LockOn) . (3, LockOff ) . (1, LockOn) Write 7 (1, Auth) . (1, LockOn) . (3, LockOff ) . (1, LockOn) Write . Write 8 (1, Auth) . (1, LockOn) . (3, LockOff ) . (1, LockOn) .
(2, LockOff ) . (2, Write) . (0, Write) that belongs to G(q, w). If G(q, w) is empty, then κ ϕ (q, w) is the maximal word that belongs to G(q after ( , t), w), where t is the minimal time for which G(q after ( , t), w) is not empty. If G(q after ( , t), w) is empty for every t ∈ R ≥0 , then κ ϕ (q, w) = , meaning that the enforcement mechanism does not output anything. Thus, when the enforcement function is not sound, it outputs nothing but uncontrollable events. 4.1. To understand the behaviour of store ϕ , note that in the associated game graph, shown in Fig. 4.3, l 1 , Z, w, p ∈ W 0 and l 2 , Z, w, p ∈ W 0 , for any l 1 , Z, w, p ∈ V and l 2 , Z, w, p ∈ V .

As mentioned previously, an enforcement mechanism may not be sound from the beginning of an execution, but some uncontrollable events may lead to a state from which it becomes possible to be sound. In the definition of store ϕ and E ϕ , E ϕ is sound whenever T(q, w) is empty, with q the state reached by the output of E ϕ at date t and w its buffer at this date. If T(q, w) is empty, then the last value of σ s (or σ s depending on the controllability of the last input action) is in G(q, w), meaning that the node in G reached by the enforcement mechanism is in W 0 , therefore it is always possible to compute a word that leads to a state in F G . Since E ϕ as per Definition 4.19 is equivalent to E ϕ as per Definition 3.19, the definition of Pre(ϕ) does not change, since it only depends on G: Definition 4.20. Pre(ϕ)

Pre(ϕ) = {(σ, t) | σ ∈ Pre(ϕ, t)},
where, for σ ∈ tw(Σ) and t ∈ R ≥0 :

Pre(ϕ, t) = {σ ∈ tw(Σ) | ∃t ≤ t, G(Reach(σ |Σu , t ), Π Σ (obs(σ, t ) |Σc )) = ∅} . tw(Σ)
Note that Pre(ϕ) is time-extension-closed, meaning that once E ϕ is sound, its output will always eventually satisfy ϕ in the future.

Considering that the output of our enforcement function was only the uncontrollable events so far, if G(Reach(σ |Σu , t), Π Σ (obs(σ, t) |Σc )) is not empty, this means that the enforcement function becomes sound with input σ from time t, since there is a word that is safe to emit. Thus, Pre(ϕ, t) is the set of inputs for which E ϕ is sound after date t, and then E ϕ is sound for any input in Pre(ϕ) after its associated date.

Proposition 4.6. E ϕ as per Definition 4.19 is an enforcement function, as per Definition 4.11.

Sketch of proof.

We have to show that for all σ ∈ tw(Σ), for all t ∈ R ≥0 and t Proposition 4.7. E ϕ is sound with respect to ϕ in Pre(ϕ) as per Definition 4.12.

≥ t, if ((σ, t), o 1 ) ∈ E ϕ and ((σ, t ), o 2 ) ∈ E ϕ , then o 1 o 2 ,

Sketch of proof.

As in the untimed setting, the proof is made by induction on the input σ ∈ tw(Σ). Similarly to the untimed setting, considering σ ∈ tw(Σ), t ∈ R ≥0 , and (δ, a) ∈ R ≥0 × Σ, there are three possibilities: Case 1: (σ . (δ, a), t) ∈ Pre(ϕ). Then, the proposition holds.

Case 2: (σ . (δ, a), t) ∈ Pre(ϕ), but (σ, time(σ . (δ, a))) ∈ Pre(ϕ). Then, this is when the input reaches Pre(ϕ). Considering the definition of Pre(ϕ), we then prove that it is possible to emit a word with the controllable events seen so far, leading to a node of G that is in W 0 .

Case 3: (σ, t ) ∈ Pre(ϕ) (and thus (σ . (δ, a), t) too). Then, we prove again that there exists a controllable word made with the stored actions that leads to a node in W 0 , but this time using the fact that the previous node was in W 0 (and since W 0 is the set of winning nodes in the Büchi game for P 0 , there always is a reachable successor node that is in W 0 ).

Proposition 4.8. E ϕ is compliant, as per Definition 4.13.

Sketch of proof.

As in the untimed setting, the proof is made by induction on the input σ, considering the different cases where the new event is controllable or uncontrollable. The only difference with the untimed setting is that one should consider dates (from delays) on top of actions.

Proposition 4.9. E ϕ is optimal in Pre(ϕ) as per Definition 4.14.

Sketch of proof.

This proof is made by induction on the input σ. Whenever σ ∈ Pre(ϕ), since E ϕ is sound in Pre(ϕ), then E ϕ (σ) is the maximal word (with respect to d ) that satisfies ϕ and is safe to output. It is maximal because in the definition of store ϕ , κ ϕ returns the longest word with lower delays (for lexicographic order), which corresponds to the maximum with respect to d . Thus, outputting a grater word (with respect to d ) would lead to G being empty, meaning that the enforcement mechanism would not be sound. Thus, E ϕ is optimal in Pre(ϕ), since it outputs the maximal word with respect to d that allows to be sound and compliant.

Enforcement Monitors

As in the untimed setting, we define an operational description of an enforcement mechanism whose output is exactly the output of E ϕ , as per Definition 4.19.

Definition 4.21. An enforcement monitor E for ϕ is a transition system C E , c E 0 , Γ E , → E such that:

• C E = tw(Σ) × Σ * c × Q × R ≥0 is the set of configurations.
• c E 0 = , , q 0 , 0 ∈ C E is the initial configuration.

•

Γ E = ((R ≥0 × Σ) ∪ { }) × Op × ((R ≥0 × Σ) ∪ { })
is the alphabet, composed of an optional input, an operation and an optional output.

The set of operations is {dump(.), pass-uncont(.), store-cont(.), delay(.)}. Whenever (σ, , σ ) ∈ Γ E , it will be noted σ/ /σ .

• → E is the transition relation defined as the smallest relation obtained by applying the following rules given by their priority order:

-Dump: (δ, a) . σ b , σ c , q, δ / dump((δ,a))/(δ,a)

-----------→ E σ b , σ c , q , 0 , with q = q after a, -Pass-uncont: σ b , σ c , q, δ u/ pass-uncont(u)/(δ,u) -------------→ E σ b , σ c , q , 0 , with q = q after u, σ b = κ ϕ (q , Π Σ (σ b ) . σ c ), and

σ c = Π Σ (σ b ) -1 . (Π Σ (σ b ) . σ c ), -Store-cont: σ b , σ c , q, δ c/ store-cont(c)/ ---------→ E σ b , σ c , q, δ , with σ b = κ ϕ (q, Π Σ (σ b ) . σ c . c) + t δ and σ c = Π Σ (σ b ) -1 . (Π Σ (σ b ) . σ c . c), -Delay: σ b , σ c , (l, v), δ / delay(δ )/ -------→ E σ b , σ c , (l, v + δ ), δ + δ .
In a configuration σ b , σ c , q, δ , σ b is the word to be output as time elapses; σ c is the sequence of controllable actions from the input that are not used in σ b ; q is the state of the semantics reached after reading what has already been output; δ is the time elapsed since the emission of the last event, it is used to output events with correct delays with respect to the previous output.

Compared to the enforcement monitor defined in Section 3.2.3, the time from the beginning is replaced by a delay since the last event output. Rule compute has disappeared, because it is not needed here. The reason is that the set G is not exactly the same in Section 3.2 and Section 4.3: in Section 3.2, it contains only words that can be emitted from the given state if this state is accepting, whereas in Section 4.3, it also contains words that can be emitted from the state reached when the first event is to be emitted. The result is the same because G was virtually computed for each possible valuation as time elapses in Section 3.2, which was exactly the purpose of rule compute.

At any time instant t, if (σ s , σ c ) = store ϕ (σ), and the configuration reached by the enforcement monitor with input σ at date t is σ b , σ d , q, δ , then σ b = nobs(σ s , t), σ d = σ c , q = Reach(σ s , t), and δ = t -time(obs(σ s , t)).

Example 4.6. An example of execution of an enforcement monitor as per Definition 4.21 enforcing property ϕ t (see Fig. 3.8) is given in Fig. 4.4. Remember that in a configuration, the input is on the right, the output on the left, and the middle is the current configuration of the enforcement monitor. Variable t defines the global time of the execution. The input used for the monitor in Fig. 4.4 is the same as in Table 4.1: (1, Auth) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]LockOn) . [START_REF]Reach(σ s0 , time(σ . (δ, a))) after (0, a) after σ ∈ F G , because it belongs to v e ⊆ F G (v e is such that π = π 0 . ( v e , w e , 0 . v e , w e , 1 ) ω )[END_REF]Write) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]LockOff ) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]LockOn) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]Write) . [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]LockOff ). As in Example 3.8,in Fig. 4.4, valuations are represented as integers, giving the value of the only clock x of the property, LockOff is abbreviated as off , LockOn as on, and Write as w. First column depicts the dates of events, red text is the current output (σ s ) of the enforcement monitor, blue text shows the evolution of the first member of the configuration (σ b ) of the monitor and green text depicts the remaining input word at this date. The final output is the same as the one of the enforcement function E ϕ as per Definition 4.19: [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF]Auth) . (1, on) . (2, off ) . (1, on) . (2, off ) . (2, w) . (0, w). Note that this output is also the same as in Section 3.2, replacing dates with delays (since the input is also the same, replacing dates with delays).

Proposition 4.10. The output o of E as per Definition 4.21 for input σ at date t is such that ((σ, t), o) ∈ E ϕ .

As in the untimed setting, in Proposition 4.10, the output of the enforcement monitor is the concatenation of the outputs of the word labelling the path followed by the enforcement monitor when reading σ. A formal definition is given in the proof of this proposition, in appendix A.2.2.

Sketch of proof.

The proof is done by induction on σ. When receiving a new event, rule store-cont() can be applied if it is controllable, or rule pass-uncont() if it is uncontrollable. Doing so, the two first members of the configuration are recomputed, and they correspond exactly to the values of σ s (or σ s ) and σ c (or σ c ) in the definition of store ϕ . Then, rule delay() can be applied, to reach the date of the first event in the second member of the current configuration, and then rule dump() can be applied to output it. This process can be repeated until the desired date is reached. Thus, when date t is reached, what has been emitted since the last rule store-cont() or pass-uncont() is obs(σ b , t), where σ b is the value of σ s (or σ s ) as previously mentioned. Considering the definition of store ϕ , it follows that the output of E with input σ at date t is the exact same output as the one of E ϕ .

Remark 5. As in the untimed setting (Section 4.2.3), for a configuration of the enforcement monitor c = σ b , σ c , q, δ , we can associate a node of the game graph (Π 1 (q), Z, w, 0), such that Π 2 (q) ∈ Z, and w is the longest prefix of the buffer of the enforcement monitor, i.e. Π Σ (σ b ) . σ c , such that (Π 1 (q), Z, w, 0) is a node of the game graph. Then, if (σ, t) ∈ Pre(ϕ), and c is the configuration reached by the enforcement monitor with input σ at date t, then (Π 1 (q), Z, w, 0) is a winning node for player P 0 . t = / , , (l 0 , 0), 0 /(1, Auth). (1, on). (2, w). (1, off ). (1, on). (1, w).( 1, off ) ↓ delay(1) t = / , , (l 0 , 1), 1 /(0, Auth). (1, on). (2, w). (1, off ). (1, on). (1, w).( 1, off ) ↓ pass-uncont(Auth) t =

(1, Auth)/ , , (l 1 , 0), 0 /(1, on). (2, w). (1, off ). (1, on). (1, w).( 1, off ) ↓ delay(1) t =

(1, Auth)/ , , (l 1 , 1), 1 /(0, on). (2, w). (1, off ). (1, on). (1, w).( 1, off ) ↓ pass-uncont(on) t =

(1, Auth).( 1, on)/ , , (l 2 , 1), 0 /(2, w). (1, off ). (1, on). (1, w).( 1, off ) ↓ delay(2) t =

(1, Auth).( 1, on)/ , , (l 2 , 3), 2 /(0, w). (1, off ). (1, on). (1, w).( 1, off ) ↓ store-cont(w) t =

(1, Auth).( 1, on)/ , w, (l 2 , 3), 2 /(1, off ). (1, on). (1, w).( 1, off ) ↓ delay(1) t =

(1, Auth).( 1, on)/ , w, (l 2 , 4), 3 /(0, off ). (1, on). (1, w).( 1, off ) ↓ pass-uncont(off ) t =

(1, Auth). (1, on).(3, off )/ (2, w), , (l 1 , 0), 0 /(1, on). (1, w).( 1, off ) ↓ delay(1) t =

(1, Auth). (1, on).(3, off )/ (2, w), , (l 1 , 1), 1 /(0, on). (1, w).( 1, off ) ↓ pass-uncont(on) t =

(1, Auth). (1, on). (3, off ).(1, on)/ , w, (l 2 , 1), 0 /(1, w).(1, off ) ↓ delay(1) t =

(1, Auth). (1, on). (3, off ).(1, on)/ , w, (l 2 , 2), 1 /(0, w).(1, off ) ↓ store-cont(w) t =

(1, Auth). (1, on). (3, off ).(1, on)/ , w.w, (l 2 , 2), 1 /(1, off ) ↓ delay(1) t =

(1, Auth). (1, on). (3, off ).(1, on)/ , w.w, (l 2 , 3), 2 /(0, off ) ↓ pass-uncont(off ) t =

(1, Auth). (1, on). (3, off ). (1, on).(2, off )/ (2, w).(0, w), , (l 1 , 0), 0 / ↓ delay(2) t = 10 (1, Auth). (1, on). (3, off ). (1, on).(2, off )/ (2, w).(0, w), , (l 1 , 2), 2 / ↓ dump((2, w)) t = 10 (1, Auth). (1, on). (3, off ). (1, on). (2, off ).(2, w)/ (0, w), , (l 1 , 2), 0 / ↓ dump((0, w)) t = 10 (1, Auth). (1, on). (3, off ). (1, on). (2, off ). (2, w).(0, w)/ , , (l 1 , 2), 0 / 

Conclusion

In this chapter, we have presented enforcement mechanisms that are sound, compliant, and optimal, and that use a Büchi game to ensure soundness. The outputs of the enforcement mechanisms in this chapter are the same as the outputs of enforcement mechanisms defined in Chapter 3. Nevertheless, the computation methods in these chapters are different, and the mechanisms presented in this chapter have better computation times in practice, and yield better performance. Moreover, we believe that algorithms are simpler using the method presented in this chapter rather than using the one in Chapter 3. A tool called GREP has been designed that constructs the game graph as described in Section 4.3.2, and uses it to modify its input so that it is a sound, compliant and optimal enforcement mechanism. This tool is described in the next chapter.

Chapter 5 GREP: Games for Runtime Enforcement of Properties

Introduction

In this chapter, we present GREP, the tool developed using the approach described in Section 4.3 to enforce timed properties. GREP is a sound, compliant and optimal enforcement mechanism.

We give a description of GREP in Section 5.1, detailing the different modules it is made of and the way it is used in Section 5.2, before presenting some performance evaluations, comparing GREP to TiPEX, another tool enforcing timed properties in Section 5.3.

The work described in this chapter has been published in Renard et al. [2017b].

Description of the approach

The strategy of GREP is the one described in Section 4.3. Given a timed regular property ϕ, and a partition of its alphabet into a set of controllable events Σ c and a set of uncontrollable events Σ u , GREP first builds a symbolic graph that is compatible with Büchi games, as per Definition 4.16. The graph used is the one described in Alur et al. [1992]. Then, GREP builds a game graph as per Definition 4.17, using Σ c as the set of controllable events and Σ u as the set of uncontrollable events. Once the game graph is constructed, GREP computes the set W 0 of winning nodes for player P 0 (the enforcement mechanism).

Then, GREP can follow a real execution on the game graph, by watching the node that has been reached so far by its output, and the nodes that can be reached by emitting stored controllable actions (i.e. following the corresponding edges in the game graph). Whenever a winning node is reached by P 0 , the strategy is to emit as many events as possible, remaining in a winning node all the time. Since the game played is a Büchi game, it is always possible for P 0 to stay in a winning node whenever one is reached. Whenever a winning node is reached, the output of the EM is then guaranteed to satisfy the property.

General Functioning of GREP

GREP is a tool of about 6,000 lines of code1 developed using the C language, available at https://github.com/matthieurenard/GREP. GREP is essentially composed of two modules (cf Fig. 5.1): the Symbolic Computing Module (SCM) and the Enforcement Monitor Module (EMM). It loads a TA file describing the desired property, and reads the inputs directly from stdin. The output of the EM is sent to stdout. This approach allows one to use GREP with off-the-shelf applications.

Symbolic Computing Module (SCM)

The Symbolic Computing Module is composed of three main components: a TA loader, the zone graph generator, and the game graph generator.

TA Loader

The TA loader is the component that parses a file containing the description of a timed automaton and loads it into a C structure. The file of the automaton is a textual description following a grammar designed for this purpose. An example file, that loads property ϕ t (see Fig. 3.8), is provided in Listing 5.1.

The file is parsed using a custom grammar, implemented using lex and yacc.

done by the use of function delay(t), where t is the number of time units that have elapsed since the last call to delay, or the creation of the enforcement mechanism for the first call. Time units only need to be consistent with the ones used in the property. Function eventRcvd(e) is used to inform the EMM that an event e has been read from the input. In this case, the EMM acts differently depending on the controllability of the event. Function emit() is used to output the first action of the buffer. Uncontrollable events are output by function eventRcvd(), as required by compliance.

Note that these functions allow to use the EMM in both online (real-time) and offline (with a trace as input) settings. All these functions, except function getStrat(), return the number of time units required to reach the time successor of the current node (∞ if there is no time successor). It is the number of time units given to function delay() if no event is received before and the strategy is not to emit.

Thus, the general algorithm to use the EMM in the offline setting is given in Algorithm 1. Basically, the EMM follows a path in the game graph. Thus, it considers the current node as the node reached by its output, and explores the strategy tree from this node. The EMM also stores the controllable actions that have not been output yet, and uses them to compute the possible output. Since the output should be the longest possible, with minimal possible delays, computing the strategy requires to explore the tree of all possible strategies. This is done by exploring the game graph, simulating the emission of the controllable actions of the buffer at all possible time instants. In each node belonging to P 0 , if the successor by emitting, i.e. green with empty triangular head arrow ( ) in the game graph, is winning, then it is explored, and if the time successor is also winning, it is explored as well, since waiting before emitting could allow the EMM to output more events. Each node is then associated with a score, corresponding to the number of actions that have been emitted to reach the node. Then, the EMM stores the node that has the biggest score, and the strategy to follow to reach it. If two nodes have the same score, then the first common ancestor is computed, and the one node that can be reached by emitting from this ancestor (the other node can be reached from this ancestor by waiting) is kept as the node to reach. This corresponds to computing the lexicographical order. This process is repeated for each node with the same score, with the previous stored node, such that in the end the stored node is the minimal node (for the lexicographic order) of all the nodes with the highest score.

Note that computing an output such that all actions are emitted whenever it is possible to emit them does not require to explore the strategy tree. Depending on the property, the two outputs could be the same, i.e. if the property is such that letting time elapse never enables a transition that eventually allows the EMM to output more events. Then the EMM can work faster by using an optimisation that does not compute any tree, but outputs actions whenever possible, i.e. when the successor node by emitting is winning, if it is specified to do so.

To visualise the difference between the two computations, consider the property described in Fig. 3.10. For this property, considering for instance that the input word is (0, Write) . (1, Write), the output of GREP when exploring the execution tree would be (using delays): (4, Write) . (4, Write), whereas using the other algorithm, that emits events as soon as possible, the output would be (2, Write). The first one outputs more events, but the second one outputs its first event before the first one.

Running GREP

GREP is shipped with two executables: one to use the enforcement mechanism in offline mode, and the other in the online mode. Both of them take their input on the standard input. In the offline mode, the input is composed of events in the form (t, a), where t is a date and a is an action, controllable or uncontrollable. In the online mode, only the action is given, the date is computed from the real time through a call to gettimeofday(). Note that these executables may build only on UNIX-like systems because of some system calls such as gettimeofday() and clock_gettime(). Excepting this, the tool is not system-dependent. The output (events with their dates) is printed on the standard output. Several options may be used:

• One of the two options -a <automatonFile> or -g <graphFile> must be passed to specify the property. The file <automatonFile> should be in the same format as the file shown in Listing 5.1. The file <graphFile> should be a file saved by this executable (see option -s), loading this kind of file should be faster than loading an automaton file since it contains the graph, which does not need to be computed again.

• -s <graphFile> saves the game graph in <graphFile>, to be loaded in another execution (see option -g).

• -z <zoneGraphFile> draws the zone graph using graphviz and store it (as PDF) in <zoneGraphFile>.

• -d <gameGraphFile> draws the game graph using graphviz and store it (as PDF) in <gameGraphFile>.

• -t <timeFile> logs times between the reception of two events in the file <timeFile>. This option is used to benchmark the program.

• -l <logFile> prints all the logs in <logFile>.

• -f (fast) use the optimised version, where actions are output whenever they can be instead of outputting the longest word possible with minimal dates.

If options -s, -z, -d, or -t are not given, then the corresponding action will just not happen. For example, without -z, the zone graph will not be saved. If none of the options among -a and -g is given, the program will print an error and abort. If both are given, then the automaton file is used. If option -l is not given, then the standard error is used as log file, which is not recommended (we recommend always using the option -l). If the option -f is not given, then the enforcement mechanism will output as many events as possible, with the lowest possible dates; enabling the option will make it output actions as soon as possible (i.e. if the node of the game graph reached by outputting is winning). Using option -f is usually faster, but the outputs might differ depending on the property.

For instance, the command: game_enf_offline -a phit.tmtn -l log -d gameGraph.pdf < input will enforce the property described in the file phit.tmtn, logging in the file log, reading its events from the file input. It will also draw the game graph in the file gameGraph.pdf.

The enforcement mechanism logs the mode in which it runs (default or fast) at the beginning, and when it stops, it logs the input, its output, the controllable actions that have not been output (what remains in its buffer), and a verdict that is WIN if its output satisfies the property, or LOSS otherwise (remember that some properties are not enforceable, see Example 3.1).

E n f o r c e r i n i t i a l i z e d i n d e f a u l t mode . S h u t t i n g down t h e e n f o r c e r . . . Summary o f t h e e x e c u t i o n : Input : ( 0 , Write ) ( 1 , Auth ) ( 2 , Write ) [START_REF]For any t ∈ R ≥0 , if v ∈ V s is such that Reach(σ s0 , time(σ . (δ, a))) after (0, a) after ([END_REF]LockOn ) ( 4 , Write ) ( 5 , LockOff ) ( 6 , LockOn ) ( 7 , LockOff ) Output : ( 1 , Auth ) ( 2 , Write ) ( 2 , Write ) [START_REF]For any t ∈ R ≥0 , if v ∈ V s is such that Reach(σ s0 , time(σ . (δ, a))) after (0, a) after ([END_REF]LockOn ) ( 5 , LockOff ) ( 6 , LockOn ) ( 7 , LockOff ) ( 9 , Write ) Remaining e v e n t s i n t h e b u f f e r : VERDICT: WIN E n f o r c e r shutdown .

Listing 5.2 -Log file produced by GREP For example, considering that phit.tmtn is the file given in Listing 5.1, the previous command with the input file containing the sequence: (0, Write) . 

Performance Evaluation

Comparison with TiPEX

The performance of GREP has been evaluated on three properties that come along with TiPEX, the tool to which we compare. TiPEX (see Pinisetty et al. [2015b]) is, to our knowledge, the only other tool that acts as an enforcement mechanism for timed regular properties. These properties are described in Fig. 5.2. The safety property states that there should always be 5 time units between two r actions. The co-safety property states that the first r action should be followed by a g action, with a delay of at least 6 time units. The response property states that every grant (g) action should be followed by a release (r) action within 15 to 20 time units, without any grant action occurring between them.

For each of these properties, GREP has been run 100 times on every input among 100 inputs of 1000 events randomly generated. The time between the reception of two events has been saved for all of these executions. The (b) GREP fast -safety 0 200 400 600 800 1000 6.4 6.5 6.6 6.7 6.8 6.9 7.0 (c) TiPEX -safety Figure 5.3 -Comparison of timings of GREP and TiPEX on the safety property. "GREP fast" means that option -f is used. The x axis corresponds to the events of the input (from 1 to 1000), and the y axis corresponds to the logarithm of the timings (in nanoseconds) between the reads of the events. same times have been computed for TiPEX2 , reducing the number of inputs and iterations to have the benchmarks run in a reasonable amount of time. Figures 5. 3 and 5.4 give a graphical visualisation of the performance of GREP and TiPEX.

Figures 5. 3 and 5.4 are obtained as follows: each input is iterated several times (100 for GREP, less for TiPEX 3 ), and the computation times (in nanoseconds) of the tool between the reads of two consecutive events of the input are stored. Then, the median time is computed for each of these times between all the iterations. We then plot the logarithm (in base 10) of these times against the reads of the events. We use a logarithmic scale because many values are low, and they would be merged in a line when using a linear scale. The results for GREP with option -f are given only for the safety property because they are similar to the results without the option for the two other properties. We can see that GREP is faster than TiPEX by several orders of magnitude. GREP outputs many events in less than 10 µs (4 on the scale of the graphs), whereas TiPEX takes at least 1 ms (6 on the scale of the graph) to output them. For the safety property, we can see that for some inputs, GREP takes an increasing amount of time to compute the strategy. This is due to the exploration of the strategy tree, which grows with the number of stored controllable actions. Using the optimised setting (-f) allows GREP to compute its output faster, as shown in Fig. 5.3b. The last vertical line has also many high values, because it represents the time to emit all the remaining actions after the last event from the input was read. For the co-safety and response properties, the time GREP takes between two events is less variable than for the safety property, mainly because the strategy of GREP is simpler: it consists in either emitting everything for the co-safety property (once state s 3 is reached) or emitting nothing for the response property, if the first stored controllable is an r while in state s 1 . TiPEX, on the other hand, takes a linearly-increasing amount of time to emit some events.

If GREP performs better than TiPEX on these properties, another improvement of GREP over TiPEX is that it can handle uncontrollable events. Using uncontrollable events can lower the performance of GREP, as is shown in Section 5.3.2.

Performance Evaluation with Uncontrollable Events

In this section, we show the limits of GREP when using uncontrollable events, with a property that is designed to be hard to be enforced by GREP, at least in its default mode.

Consider property ϕ u described in Fig. 5.5, with u an uncontrollable event and c a controllable one. This property has two locations, s 1 and s 2 that are symmetrical: both of them require that a certain delay (15 time units for s 1 and 10 time units for s 2 ) has elapsed since the last event to emit a c event. As in Section 5.3.1, GREP has been tested for this property, using 100 random inputs of 1000 events. The results are presented in Fig. 5.6. As in Section 5.3.1, the x-axis of the plots represents the events of the inputs, from 1 to 1000, and the y-axis is the logarithm of the timings, in nanoseconds, between the reads of two consecutive events. The timings have been plotted with (Fig. 5.6b) and without (Fig. 5.6a) option -f.

Considering Fig. 5.6a, one can note that there seems to be four different behaviours: for some inputs, the timings between events is constant, and can be low, i.e. of about one microsecond, or a little bit higher, i.e. of about 10 microseconds; for some other inputs the timings are increasing, up to about 10 microseconds, or up to about 10 milliseconds for the last events. This difference between runs can be explained by the randomness of the events of the inputs. This benchmark has been made to show the limitation of GREP, Runtime Enforcement of (Timed) Properties with Uncontrollable Events 103
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thus the delays between events have been taken randomly between 0 and 3, meaning that events are received faster than it is possible to output controllable events (remember that c events must have a delay greater than 10 time units). Thus, depending on the proportion of uncontrollable events, that are emitted immediately, the buffer of stored controllable events grows as events are read. Property ϕ u has been specifically designed to increase the number of stored controllable events. Thus, in the worst case, the computation time of GREP increases with the size of its buffer. For some properties such as ϕ u , receiving events with small delays (compared to guards) increases the size of the buffer, meaning that the computational overhead introduced by GREP could become too high for a use in online mode.

However, considering Fig. 5.6b, we can see that GREP performs better with option -f. Note that for ϕ u , the outputs are the same with or without option -f. In the worst case, where GREP used 10 milliseconds without option -f, it only requires about 100 microseconds with option -f. In both cases, the timings increase with the size of the buffer, but option -f reduces the growth of the timings, and may allow using GREP in online mode where it is not possible without option -f. This difference between the use of option -f and not using it can be explained by the fact that with option -f, GREP does not explore all the possible executions to output the longest word possible, but only decides if it is possible to emit a limited number of events.

Conclusion

In this chapter, we have presented GREP, a tool implementing an enforcement mechanism using the technique described in Chapter 4. Thus, GREP takes a timed automaton as input, and an execution, that is given on its standard input. GREP writes on its standard output the modified execution, that should satisfy the property. When it has read all the input, GREP outputs all the remaining possible events and then stops, outputting a summary of its run, including a verdict stating if the property is satisfied by its output. GREP can run in offline mode, reading delays with the events on its standard input, or in online mode, computing delays with the real time. Finally, GREP can run in its default mode, in which case its output is the same as the output of the enforcement mechanism described in Chapter 4, or in a "fast" mode, in which case it outputs events as soon as possible, reducing its computational time.

Conclusion

We give a summary of this thesis, as well as some potential future work and improvements.

This thesis falls in the domain of Runtime Verification, that aims at deciding whether a system's execution satisfies a desired property, at runtime. More than outputting a verdict indicating if the property is satisfied, runtime enforcement aims at modifying the execution of the running system to constrain it to satisfy the property. We have considered properties that were timed regular properties, i.e. represented by timed automata (Alur and Dill [1992]). The main contribution of this thesis is to consider some events as being uncontrollable, meaning that they are only observable by an enforcement mechanism, but can not be modified. We have formally described enforcement mechanisms in this context, with two different methods to compute the modifications made to the execution of the system, and implemented a tool using one of these two methods.

Summary

Chapter 3: Enforcing Properties with Uncontrollable Events: A First Approach first defines enforcement mechanisms with a functional point of view. An enforcement mechanism is represented by a function taking an execution (seen as a word over the alphabet of all possible events) and returning another execution. The argument given to the function corresponds to the input and the image corresponds to the output of the enforcement mechanism for that input. Requirements of enforcement mechanisms, such as soundness, compliance, and optimality, are given as constraints on such enforcement functions. Then, given a regular property, a sound, compliant, and optimal enforcement function is built for this property. To finish, a transition system is described, that builds the same output as the enforcement function previously defined. This scheme is then repeated to build an enforcement function and a transition system for a timed regular property.

Chapter 4: Enforcing Properties using a Büchi Game follows the same scheme as Chapter 3, but using a set-theoretic approach of functions.

It redefines the requirements expected of enforcement mechanisms using this formalism, and describes an enforcement function that is sound, compliant and optimal. This function is actually similar to the one that is defined in Chapter 3, but the computation method of the output has changed. The output is computed using a Büchi game over a graph representing the enforcement mechanism and its possibilities. Compared to Chapter 3, this allows the enforcement mechanism to precompute some of its decisions prior to its execution, thus trading some time complexity with space complexity at runtime. For a real-time use of enforcement mechanisms, time complexity seems to be the major concern, thus such trade-offs are worth doing. An equivalent transition system is also described, as in Chapter 3. Again, this is done for regular properties, and in a second section, for timed regular properties.

Chapter 5: GREP: Games for Runtime Enforcement of Properties describes the implementation we made of the enforcement mechanism defined in Chapter 4, i.e. building a graph over which we solve a Büchi game. This implementation, called GREP, takes a timed automaton as input, using a custom grammar. It reads the input execution on its standard input, and outputs an execution that has been corrected to satisfy the property if possible on its standard output. GREP can work both in online and in offline mode (i.e. calculating delays between events based on the real time, or taking delays as inputs with actions). Two output modes are available: the default one is to emit as many events as possible, lowering delays next, the other one is to emit an event as soon as possible. The latter may output less events, but its output is faster to compute. Depending on the property, both output modes can be equivalent.

GREP has been compared to TiPEX, another tool implementing an enforcement mechanism, on properties provided by TiPEX. These properties do not have uncontrollable events, since TiPEX does not handle them. Overall, GREP performs better than TiPEX, and can handle the use of uncontrollable events. The computation overhead introduced by GREP seems adequate for a real-time use.

Future Work

Using such enforcement mechanisms in real-time applications. We have presented a formal construction of enforcement mechanisms for timed regular properties, and a tool acting as a proof of concept. Nevertheless, all the performance tests were made in offline mode, i.e. with dates given in the input with actions. In online mode, one should consider the computation overhead added by the tool itself in order to compute correct dates, because it could want to emit an event but by the time its computation ends, the real date could become invalid. Working with enforcement mechanisms thus is challenging, since it requires some adaptations depending on the hardware used.

Instrumenting such enforcement mechanisms. As mentioned in the previous paragraph, instrumentation for real-time scenarios is not straightforward. Thus, it would be interesting to evaluate the limitations of the instrumentation of our enforcement mechanisms. Knowing the limitations of the instrumentation could also allow us to automate the instrumentation process. The instrumentation process would need to evaluate the performance of the enforcement mechanism to determine an upper bound of the overhead it introduces. This upper bound would then need to be taken into account by the enforcement mechanism itself to avoid violating the property due to the overhead in computational time it introduced.

Improve GREP. We have presented GREP, and some performance evaluation. We have seen that using GREP in online mode can be difficult if the number of stored controllable events is increasing, because the computational overhead increases simultaneously. Using option -f, i.e. changing the computation of the output can help reducing this overhead, but it can change the output for some properties. One way to improve GREP would thus be to detect automatically when it is possible to use option -f without changing the output, so that GREP can decide to use the better alternative. Another way to improve GREP could be to compute other outputs, with other enforcement primitives for example.

Enforcing other properties. We have been interested in this thesis only in the enforcement of timed regular properties, i.e. properties that can be represented by timed automata as described in Alur and Dill [1992]. One could build enforcement mechanisms for properties with different formalisms. For instance, in [START_REF] Bauer | Runtime verification for ltl and tltl[END_REF], the authors build verification monitors for TLTL properties, using event-clocks automata (see [START_REF] Alur | Event-clock automata: a determinizable class of timed automata[END_REF]). Thus, it should be possible to combine their verification monitors and the technique we presented to enforce these properties.

Enforcement on more complex systems. We have only considered simple systems, that produce a sequence of events given as the input of the enforcement mechanisms. One could be interested in enforcing properties on more complex systems, such as multi-threaded ones. Enforcing in a multithreading context raises multiple problems: should enforcement mechanisms be themselves multi-threaded? If they are not, how can we not lose the interest of having a multi-threaded system, since enforcement mechanisms would act as serialisers? What kind of property would be enforceable in this context? In particular, would such mechanisms be able to detect and prevent data races and deadlocks? Some questions also naturally arise when dealing with enforcement on distributed systems. Would an enforcement mechanism for such systems be centralised, or distributed? What are the properties that can be enforced for such systems? Distributed systems usually communicate using some network, such as the internet, thus some latency must appear. Messages from different parts of the system may occur in any order, so enforcement mechanisms for distributed systems may consider enforcing each communication independently. Some work on the monitoring of decentralised systems has recently been done, for both decentralised and centralised specifications, for example in [START_REF] Bauer | Decentralised ltl monitoring[END_REF]; El-Hokayem and Falcone [2017a,b]. The decentralised enforcement of policies has also been studied in [START_REF] Hallé | Decentralized enforcement of artifact lifecycles[END_REF], where the authors build some kind of blockchain to ensure that the history of some file satisfies a given property.

Using techniques from control theory in runtime enforcement. As stated in the Introduction of this thesis (see the Runtime Enforcement section), runtime enforcement and control theory are close fields. It would be interesting to draw a precise boundary between these fields, because it would help understand better their differences, but also their resemblance. It would then be possible to deduce some techniques of control theory that could be used in runtime enforcement, and vice versa. 

Lemma A.2. ∀σ ∈ Σ * c , ∀q ∈ Q, ∀u ∈ Σ u , (q ∈ S(σ)) =⇒ (q after u ∈ S(σ) ∪ I(σ)).
Proof. For σ ∈ Σ * c , let P(σ) be the predicate "∀q ∈ Q, ∀u ∈ Σ u , (q ∈ S(σ)) =⇒ (q after u ∈ S(σ) ∪ I(σ))". Let us show by induction that P(σ) holds for any σ ∈ Σ * c .

Induction basis: let us consider u ∈ Σ u and q ∈ S( ). Then, since u ∈ Σ u , u ∈ Σ * u , and following the definition of S( ), q after u ∈ S( ). Thus, q after u ∈ S( ) ∪ I( ).

Induction step: let us suppose that for σ ∈ Σ * c , P(σ) holds. Let us then consider u ∈ Σ u , a ∈ Σ c , and q ∈ S(σ . a).

Then, either q ∈ S(σ) or q ∈ max ⊆ ({Y ⊆ F G | Y ∩ uPred(Y ∪ I(σ . a)) = ∅}). If q ∈ S(σ), then by induction hypothesis, P(σ) holds, meaning that q after u ∈ S(σ) ∪ I(σ). By induction on σ, it follows that P(σ) holds for any σ ∈ Σ * c . Thus, for all σ ∈ Σ * c , for all u ∈ Σ u , for all q ∈ Q, (q ∈ S(σ)) =⇒ (q after u ∈ S(σ) ∪ I(σ)).

Lemma A.3. ∀σ ∈ Σ * c , ∀q ∈ S(σ) ∪ I(σ), G(q, σ) = ∅.
Proof. For σ ∈ Σ * c , let P(σ) be the predicate "∀q ∈ S(σ) ∪ I(σ), G(q, σ) = ∅". Let us show by induction that P(σ) holds for any σ ∈ Σ * c .

A. Proofs

Induction basis: let us consider q ∈ S( ) ∪ I( ). Then, since I( ) = ∅, q ∈ S( ). Following the definition of S( ), this means that is such that and q after = q ∈ S( ) = S( -1 . ). Following Definition 3.9, this means that ∈ G(q, ), and thus G(q, ) = ∅, and thus that P( ) holds.

Induction step: let us suppose that for n ∈ N, for all σ ∈ Σ * c such that |σ| ≤ n, P(σ) holds. Let us then consider σ ∈ Σ * c such that |σ| = n, a ∈ Σ c and q ∈ S(σ . a) ∪ I(σ . a). Then, we consider two cases:

• q ∈ S(σ . a), then is such that σ . a and q after ∈ S(σ . a) = S( -1 . (σ . a)), thus ∈ G(q, σ . a).

• q ∈ I(σ.a), then let (h, σ 0 ) ∈ Σ c ×Σ * c be such that h.σ 0 = σ.a (they must exist since |σ . a| > 0). Then, I(σ . a) = I(h . σ 0 ) = Pred h (S(σ 0 ) ∪ I(σ 0 )), meaning that q ∈ Pred h (S(σ 0 ) ∪ I(σ 0 )). By induction hypothesis, since |σ 0 | = |σ| = n, P(σ 0 ) holds, meaning that G(q after h, σ 0 ) = ∅. Let us consider w ∈ G(q after h, σ 0 ). Then, w is such that w σ 0 and (q after h) after w ∈ S(w -1 . σ 0 ). Thus, h . w h . σ 0 and q after (h . w) = (q after h) after w ∈ S(w -1 . σ 0 ) = S((h . w) -1 . (h . σ 0 )). Thus, h . w ∈ G(q, h . σ 0 ) = G(q, σ . a).

In both cases, G(q, σ . a) = ∅, meaning that P(σ . a) holds.

By induction on the size of σ ∈ Σ * c , it follows that P(σ) holds for any σ ∈ Σ * c , meaning that for all σ ∈ Σ * c , for all q ∈ S(σ) ∪ I(σ), G(q, σ) = ∅. Let us consider q ∈ Q such that P(σ, q) holds. Then, we define

Y = {q after σ u | σ u ∈ Σ * u ∧ ∀σ u σ u , σ u = =⇒ q after σ u ∈ S(σ) ∪ I(σ)}.
Since P(σ, q) holds, Y ⊆ F . Moreover, if y ∈ Y and u ∈ Σ u , then:

either y after u ∈ S(σ) ∪ I(σ), and then y after u ∈ (Y ∪ S(σ)) ∪ I(σ), or y after u ∈ S(σ) ∪ I(σ). Then, if σ u ∈ Σ * u is such that y = q after σ u (σ u exists since y ∈ Y ), then y after u = (q after σ u ) after u = q after (σ u . u) ∈ S(σ

) ∪ I(σ). Since σ u . u ∈ Σ * u , y after u ∈ Y ⊆ (Y ∪ S(σ)) ∪ I(σ).
Thus, y after u ∈ (Y ∪ S(σ)) ∪ I(σ), and since following lemma A.2, S(σ) ∩ uPred(S(σ

) ∪ I(σ)) = ∅, this means that (Y ∪ S(σ)) ∩ uPred((Y ∪ S(σ)) ∪ I(σ)) = ∅. It follows that (Y ∪ S(σ)) ⊆ max ⊆ ({Z ⊆ F | Z ∩ uPred(Z ∪ I(σ)) = ∅}) ⊆ S(σ). Since q ∈ Y ⊆ S(σ), this means that q ∈ S(σ).
Thus, for σ ∈ Σ * c and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). This means that the contrapositive also holds, thus q ∈ S(σ) =⇒ ¬ P(σ, q), meaning that q ∈ S(σ) =⇒ (∃σ u ∈ Σ * u , q after σ u ∈ F ∧ ∀σ u σ u , q after σ u = =⇒ q after σ u ∈ S(σ) ∪ I(σ)). Following the definition of G, this means that either σ s1 σ c , but since E is compliant, this is not possible, or that Reach(σ s . a) after σ s1 ∈ S(σ -1 s1 . σ c ). Let us consider q = Reach(σ s . a . σ s1 ) and σ c1 = σ -1 s1 . σ c . Then, q ∈ S(σ c1 ). Following lemma A.5, this means that there exists σ u ∈ Σ * u such that q after σ u ∈ F and for all σ u σ u , σ u = =⇒ q after σ u ∈ S(σ c1 ) ∪ I(σ c1 ). Then, we consider two cases: definition of output to words in Σ * : for σ ∈ Σ * , output(σ) = output(Rules(σ)). We also note the empty word of Σ * , and E the empty word of Γ E * .

For σ ∈ Σ * , let P(σ) be the predicate: "E ϕ (σ) = output(σ) ∧ (((σ s , σ c ) = store ϕ (σ) ∧ Reach E (Rules(σ)) = q, σ E c ) =⇒ (q = Reach(σ s ) ∧ σ c = σ E c ))". Let us prove by induction that for all σ ∈ Σ * , P(σ) holds.

Induction basis: E ϕ ( ) = = output( ). Moreover, store ϕ ( ) = ( , ), and Reach E ( E ) = c E 0 . Therefore, as c E 0 = q 0 , , P( ) holds, because Reach( ) = q 0 .

Induction step: Let us suppose now that for some σ ∈ Σ * , P(σ) holds.

Let us consider (σ s , σ c ) = store ϕ (σ), q = Reach(σ s ), a ∈ Σ, and (σ t , σ d ) = store ϕ (σ . a). Let us prove that P(σ . a) holds. Since P(σ) holds, Reach E (Rules(σ)) = q, σ c and σ s = output(σ). We consider two cases:

• a ∈ Σ u . Then, considering σ s = (σ s . a) -1 . σ t , σ t = σ s . a . σ s . Since a ∈ Σ u , rule pass-uncont can be applied: let us consider q = q after a.

Then, q, σ c a/ pass-uncont(a)/a -----------→ E q , σ c .

If σ s = , G(q , σ c ) = ∅ or G(q , σ c ) = { }, meaning that no other rule can be applied, and thus P(σ . a) holds.

Otherwise, σ s = , and thus σ s ∈ G(q , σ c ), meaning that G(q , σ c ) = ∅ and G(q , σ c ) = { }, thus rule dump(σ c (1)) can be applied. Since σ s σ c , σ s (1) = σ c (1), thus if q 1 = q after σ c (1), q 1 = q after σ s (1). If σ s (1) -1 . σ s = , then σ s (1) -1 . σ s ∈ G(q 1 , σ c (1) -1 . σ c ), meaning that rule dump can be applied again. Rule dump can actually be applied |σ s | times, since for all w σ s , if w = σ s , then w -1 . σ s = and w -1 . σ s ∈ G(q after w, w -1 .σ c ). Thus, after rule dump has been applied |σ s | times, the configuration reached is q after σ s , σ -1 s . σ c . Moreover, the output produced by all the rules dump is σ s . Since no rule can be applied after the |σ s | applications of the rule dump, output(σ . a) = output(σ) . a . σ s = σ t , and Reach E (Rules(σ . a)) = q after σ s , σ -1 s . σ c = q after a after σ s , σ d = Reach(σ s ) after a after σ s , σ d = Reach(σ s . a . σ s ),

σ d = Reach(σ t ), σ d .
Thus, if a ∈ Σ u , P(σ . a) holds.

• a ∈ Σ c . Then, considering σ s = σ -1 s . σ t , σ t = σ s . σ s . Since a ∈ Σ c , it is possible to apply the store-cont rule, and q, σ c a/ store-cont(a)/ ----------→ E q, σ c .a . Then, as in the case where a ∈ Σ u , rule dump can be applied |σ s | times, meaning that the configuration reached is q after (σ c . a) [START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF] . This means that P(σ) =⇒ P(σ. a). Thus, by induction on σ, for all σ ∈ Σ * , P(σ) holds. In particular, for all σ ∈ Σ * , E ϕ (σ) = output(σ).

A.1.2 Proofs for the Timed Setting (Section 3.2)

In all this section, notation from Section 3.2 is used, meaning that ϕ is represented by a TA A ϕ = L, l 0 , X, Σ, ∆, G whose semantics is A ϕ = Q, q 0 , Γ, -→, F G . Timed word use dates and not delays.

Proposition 3.6. E ϕ as defined in Definition 3.19 is an enforcement function, as per Definition 3.13.

Proof. We have to show the two following propositions:

1. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , ∀t ≥ t, E ϕ (σ, t) E ϕ (σ, t ) 2. ∀σ ∈ tw(Σ), ∀(t, a) ∈ R ≥0 × Σ, σ . (t, a) ∈ tw(Σ) =⇒ E ϕ (σ, t) E ϕ (σ . (t, a), t).
We first show that item 1 holds. For σ ∈ tw(Σ), let P(σ) be the predicate: "∀t ∈ R ≥0 , ∀t ≥ t, E ϕ (σ, t) E ϕ (σ, t )". Let us show by induction that for all σ ∈ tw(Σ), P(σ) holds.

Induction basis: if σ = , then let us consider t ∈ R ≥0 , and t ≥ t. Then, E ϕ ( , t) = = E ϕ ( , t ). Thus, P( ) holds.

Induction step: let us suppose that, for σ ∈ tw(Σ), P(σ) holds. Let us consider (t , a) such that σ . (t , a) ∈ tw(Σ), t ∈ R ≥0 , and t ≥ t.

• If t ≥ t , then let us consider (σ s , σ b , σ c ) = store ϕ (σ, t ), (σ t1 , σ d1 , σ e1 ) = store ϕ (σ . (t , a), t), and (σ t2 , σ d2 , σ e2 ) = store ϕ (σ . (t , a), t ). Then, E ϕ (σ .

(t , a), t) = σ t1 and E ϕ (σ . (t , a), t ) = σ t2 .

-If a ∈ Σ u , then considering t 1 as defined in Definition 3.19,

t 1 = min({t 0 ∈ R ≥0 | t 0 ≥ t ∧ G(Reach(σ s . (t , a), t 0 ), Π Σ (nobs(σ b , t )) . σ c ) = ∅}).
Then, 

σ d1 = min lex (max (G(Reach(σ s . (t , a), min({t, t 1 })), Π Σ (nobs(σ b , t )) . σ c ) ∪ { })) + t min({t, t 1 }) σ d2 = min lex (max (G(Reach(σ s . (t , a), min({t , t 1 })), Π Σ (nobs(σ b , t )) . σ c ) ∪ { })) + t min({t , t 1 }). A.
∪ { })) + t min({t, t 2 }) σ d2 = min lex (max (G(Reach(σ s , min({t , t 2 })), Π Σ (nobs(σ b , t )) . σ c . a) ∪ { })) + t min({t , t 2 }).
Case 1: t ≥ t 2 . Since t ≥ t, t ≥ t 2 , meaning that min({t, t2}) = min({t , t 2 }) = t 2 , and thus σ d1 = σ d2 . It follows that σ t1 = σ s . obs(σ d1 , t) σ s . obs(σ d1 , t ) = σ s . obs(σ d2 , t ) = σ t2 . Case 2: t < t 2 . Then, G(Reach(σ s , min({t, t 2 })), Π Σ (nobs(σ b , t )).σ c .a) = ∅, meaning that σ d1 = . Thus, σ t1 = σ s σ s . obs(σ d2 , t ) = σ t2 . 

A. Proofs

Induction step: let us suppose that for n ∈ N, for all σ ∈ Σ * c , |σ| ≤ n =⇒ P(σ). Let us consider σ ∈ Σ * c such that |σ| = n, a ∈ Σ c , and q ∈ S(σ.a)∪I(σ.a). Then, we distinguish two cases, whether q ∈ S(σ . a) or q ∈ I(σ . a):

• If q ∈ I(σ . a), let us consider (h, σ 0 ) ∈ Σ c × Σ * c such that σ . a = h . σ 0 . Then, q ∈ I(h . σ 0 ) = Pred h (S(σ 0 ) ∪ I(σ 0 )), and since |σ 0 | = |σ| = n ≤ n, by induction hypothesis, G(q after (0, h), σ 0 ) = ∅. Let us consider w ∈ G(q after (0, h), σ 0 ). Then, (0, h) . w satisfies Π Σ ((0, h) . w) h . σ 0 , q after ((0, h) . w) = q after (0, h) after w ∈ F G , and for any t ∈ R ≥0 , q after ((0, h) . w, t) = q after (0, h) after (w, t) ∈ S(Π Σ (w) -1 . σ 0 ) = S(Π Σ ((0, h) . w) -1 . (h . σ 0 )). Thus, (0, h) . w ∈ G(q, h . σ 0 ) = G(q, σ . a). Thus, G(q, σ . a) = ∅.

• If q ∈ S(σ . a), then there are again two cases:

if q ∈ S(σ), then by induction hypothesis, G(q, σ) = ∅. Since G(q, σ) ⊆ G(q, σ . a), it follows that G(q, σ . a) = ∅.

-Otherwise, q ∈ X ∪ Y , where X and Y are defined in the definition of S(σ . a) (Definition 3.17). * If q ∈ X, then there exists i ∈ I(σ . a) and δ ∈ R ≥0 such that q after ( , δ) = i, and for all t ≤ δ, q after ( , t) ∈ X ⊆ S(σ . a).

Since i ∈ I(σ.a), we showed previously that G(i, σ.a) = . Let us consider w ∈ G(i, σ.a). Then, w + t δ satisfies Π Σ (w + t δ) σ.a, q after (w + t δ) = i after w ∈ F G , and for all t ∈ R ≥0 , if t < δ, then q after (w + t δ, t) = q after ( , t) ∈ X ⊆ S(σ . a), otherwise, q after (w + t δ, t) = i after (w, t -δ) ∈ S(σ. a). Thus, w + t δ ∈ G(q, σ . a). Thus, G(q, σ . a) = ∅. * Otherwise, q ∈ Y , and then satisfies Π Σ ( ) σ . a, q after ∈ F G , and for all t ∈ R ≥0 , q after ( , t) ∈ up(q) ⊆ up(Y ) = Y ⊆ S(σ . a). Thus, ∈ G(q, σ . a). Thus, G(q, σ . a) = ∅.

Thus, for all q ∈ S(σ . a) ∪ I(σ . a), G(q, σ . a) = ∅, meaning that P(σ . a) holds.

Thus, P(σ) =⇒ P(σ . a).

By induction on σ, P(σ) holds for every σ ∈ Σ * c , meaning that for all σ ∈ Σ * c , for all q ∈ S(σ) ∪ I(σ), G(q, σ) = ∅. Proposition 3.7. E ϕ is sound with respect to ϕ in Pre(ϕ) as per Definition 3.14. G(Reach(σ s , t ), Π Σ (nobs(σ b , t )) . σ c . a) = ∅. -Otherwise, a ∈ Σ c . Since

A. Proofs

w b ∈ G(Reach(σ s , t ), Π Σ (nobs(σ b , t )).σ c ), w b satisfies Π Σ (w b ) Π Σ (nobs(σ b , t )) . σ c Π Σ (nobs(σ b , t )) . σ c . a, Reach(σ s , t ) after w b ∈ F G , and for all t ∈ R ≥0 , Reach(σ s , t ) after (w b , t ) ∈ S(Π Σ (obs(w b , t )) -1 . (Π Σ (nobs(σ b , t )) . σ c )). Since Π Σ (w b ) Π Σ (nobs(σ b , t )) . σ c Π Σ (nobs(σ b , t )) . σ c . a, it follows that, for any t ∈ R ≥0 , Π Σ (obs(w b , t )) -1 . (Π Σ (nobs(σ b , t )) . σ c . a) = (Π Σ (obs(w b , t )) -1 . (Π Σ (nobs(σ b , t )) . σ c )) . a. Thus, S(Π Σ (obs(w b , t )) -1 . (Π Σ (nobs(σ b , t )) . σ c )) ⊆ S(Π Σ (obs(w b , t )) -1 .
(Π Σ (nobs(σ b , t )) . σ c . a)). Thus for all t ∈ R ≥0 , Reach(σ s , t ) after (w b , t ) ∈ S(Π Σ (obs(w b , t )) -1 . (Π Σ (nobs(σ b , t )) . σ c . a)). This means that w b ∈ G(Reach(σ s , t ), Π Σ (nobs(σ b , t )) . σ c . a). It follows that G(Reach(σ s , t ), Π Σ (nobs(σ b , t )) . σ c . a) = ∅, and thus, using the same reasoning as in the case where a ∈ Σ u , t 2 = t , and σ d is such that Reach(σ s , t ) after σ d ∈ F G , meaning that E ϕ (σ . (t , a)) |= ϕ, and nobs(σ d , t)t t ∈ G(Reach(σ t , t), Π Σ (nobs(σ d , t)) . σ e ). Thus, P(σ . (t , a), t) holds.

Thus, in all cases, for all t ≥ t , P(σ) =⇒ P(σ . (t , a), t). This means that P(σ) =⇒ ∀t ≥ t , P(σ . (t , a), t). Thus, for all t ≥ time(σ), for all a ∈ Σ, P(σ) =⇒ P(σ . (t , a)).

Thus, by induction on σ, for all σ ∈ tw(Σ), P(σ) holds. In particular, for all (σ, t) ∈ Pre(ϕ), E ϕ (σ) |= ϕ. This means that E ϕ is sound in Pre(ϕ).

Proposition 3.8. E ϕ is compliant, as per Definition 3.15.

Proof. We have to prove the three following properties:

1. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , E ϕ (σ, t) dΣ c σ 2. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , E ϕ (σ, t) = Σu obs(σ, t) 3. ∀σ ∈ tw(Σ), ∀(t, u) ∈ R ≥0 × Σ u , σ . (t, u) ∈ tw(Σ) =⇒ E ϕ (σ, t) . (t, u) E ϕ (σ . (t, u), t).
We start by proving items 1 and 2.

For σ ∈ tw(Σ), let P(σ) be the predicate: "∀t ≥ time(σ), (σ s , σ b , σ

c ) = store ϕ (σ, t) =⇒ σ s|Σu = σ |Σu ∧ Π Σ (σ s|Σc . nobs(σ b , t)) . σ c = Π Σ (σ |Σc ) ∧ σ s|Σc d σ |Σc ".
Let us prove by induction that for all σ ∈ tw(Σ), P(σ) holds.

Induction basis: for σ = . store ϕ ( ) = ( , , ), and |Σc = |Σu = Π Σ ( ) = . Thus, P( ) trivially holds. 

(i)) ≥ date(σ |Σc (i)). Since Π Σ (σ t|Σc . σ d ) . σ e = Π Σ (σ |Σc ), Π Σ (σ t|Σc ) Π Σ (σ |Σc ). Thus σ t|Σc d σ |Σc = (σ . (t , a)) |Σc .
This means that if a ∈ Σ u , P(σ . (t , a)) holds. A. Proofs such that q after ( , t) ∈ S( ) ∪ I( ). Since I( ) = ∅ and S( ) ⊆ F G , if the second condition holds, then q after ( , t) ∈ F G , meaning that q ∈ F G . Thus, q ∈ F G .

• If a ∈ Σ c , then, by construction, σ d satisfies Π Σ (σ d ) Π Σ (σ b ) . σ c .
Moreover, since P( , q) holds, for any σ u ∈ tw(Σ u ), q after σ u ∈ F G or there exists t ∈ R ≥0 such that q after (σ u , t) ∈ S( ) ∪ I( ) ⊆ F G , meaning that q after σ u ∈ F G , or there exists σ u σ u such that q after σ u ∈ S( ) ∪ I( ). If the last condition holds, since I( ) = ∅, then q after σ u ∈ S( ). Then, following the definition of S( ), since σ u -1 . σ u ∈ tw(Σ u ), it follows that q after σ u after σ u -1 . σ u = q after σ u ∈ F G . Thus, for all σ u ∈ tw(Σ u ), q after σ u ∈ F G , meaning that q ∈ S( ).

• If σ = , there exists (σ , a) ∈ Σ * c ×Σ c such that σ = σ .a. Let us consider q ∈ Q such that P(σ, q) holds. Then, for all σ u ∈ tw(Σ u ), q after σ u ∈ F G , or there exists t > 0 such that q after (σ u , t) ∈ S(σ) ∪ I(σ), or there exists σ u σ u such that σ u = and q after σ u ∈ S(σ) ∪ I(σ). Let X s and Y s be such that S(σ) = S(σ . a) = S(σ ) ∪ X s ∪ Y s , with:

-∀x ∈ X s , ∃i ∈ I(σ . a), ∃δ ∈ R ≥0 , x after ( , δ) = i ∧ ∀t ≤ δ, x after ( , t) ∈ X s , -Y s ⊆ F G ∧ up(Y s ) = Y s , and 
-(X s ∪ Y s ) ∩ uPred(X s ∪ Y s ∪ I(σ . a)) = ∅.
X s and Y s correspond to the sets X and Y in the definition of S(σ . a), respectively. Let us consider X 0 = {q after (σ u , t)

| σ u ∈ tw(Σ u ) ∧ t ∈ R ≥0 ∧ ∀t ∈ ]0; t] , q after (σ u , t ) ∈ S(σ) ∪ I(σ) ∧ ∀σ u σ u , σ u = =⇒ q after σ u ∈ S(σ) ∪ I(σ)}, and Y 0 = {y ∈ X 0 | up(y) ⊆ X 0 ∪ Y s }.
Then, Y 0 ⊆ X 0 , and up(Y 0 ) = Y 0 . Moreover, if y ∈ Y 0 , then up(y) ⊆ X 0 ∪ Y s , and more precisely, up(y) ⊆ Y 0 ∪ Y s , since all the states in up(y) are also in Y 0 if y ∈ Y 0 . Since up(Y s ) = Y s , either up(y) ⊆ Y 0 or there exists t ∈ R ≥0 such that for all t < t, y after ( , t ) ∈ X 0 and up(y after ( , t)) ⊆ Y s . Since P(σ, q) holds, and

Y s ⊆ F G , in both cases, y ∈ F G , meaning that Y 0 ⊆ F G . Let us now consider Y = Y s ∪ Y 0 , X = X s ∪ (X 0 \ Y 0 ), and x ∈ X. Let us suppose that x ∈ X s , meaning that x ∈ X 0 \ Y 0 .
Following the definition of X 0 and Y 0 , this means that there exists δ > 0 and i ∈ S(σ) ∪ I(σ) such that x after ( , δ) = i, and they can be chosen such that for all t < δ, x after ( , t) ∈ X 0 . Suppose now that i ∈ S(σ), and more precisely that i ∈ Y s . Then, up(i) ⊆ Y s and up(i) ∩ uPred(X s ∪ Y s ∪ I(σ)) = ∅, and since for all t < δ, x after ( , t) ∈ X 0 , it follows that up(x) ⊆ X 0 ∪ Y s , meaning that x ∈ Y 0 , which is absurd. Thus, i ∈ Y s . This means that either i ∈ I(σ), or i ∈ X s . Thus, there exists δ ∈ R ≥0 such that i after ( , δ ) ∈ I(σ) and for all t < δ , i after ( , t) ∈ X s ⊆ X (if i ∈ I(σ), then δ = 0). Then, x after ( , δ + δ ) = i, and for all t < δ + δ , x after ( , t) ∈ X. Moreover, A. Proofs (t , a).(σ u + t (t +t ))) |= ϕ, or there exists σ u σ u , w d3 = such that Π Σ (w d3 ) Π Σ (buf c2 ) and Reach(E (σ . (t , a) . (σ u + t (t + t )))) = q 2 after σ u after w d3 . Since σ u σ u , q 2 after (σ u , date(w d3 (1))) ∈ S(buf c2 ) ∪ I(buf c2 ). Considering the definition of I, q 2 after σ u after w d3 (1) ∈ S(Π Σ (w d3 (1)) -1 . buf c2 ) ∪ I(Π Σ (w d3 (1)) -1 . buf c2 ), because otherwise q 2 after σ u ∈ Pred w d3 (1) (S(Π Σ (w d3 (1)) -1 . buf c2 ) ∪ I(Π Σ (w d3 (1)) -1 . buf c2 )) = I(buf c2 ), which does not hold. It follows that, by iterating the previous reasoning on the first events of w d3 that share the same date, q 2 after σ u after (w d3 , date(w d3 (1))) ∈ S(Π Σ (obs(w d3 , date(w d3 (1)))) -1 . buf c2 )∪ I(Π Σ (obs(w d3 , date(w d3 (1)))) -1 . buf c2 ).

Thus, using again lemma A.10, we can find a word in tw(Σ u ) such that the output of E will never be in S nor I, and end up outside of F G . Whatever controllable events E will output, its output will never reach S nor I, and since E can only output a limited number of controllable events (no more than |buf c |), at some point it will not be able to output controllable events anymore, and then there will be an uncontrollable word leading its output outside of F G . Concatenating all the uncontrollable words obtained from lemma A.10, there would be σ ug ∈ tw(Σ u ) such that E (σ . (t , a) . σ ug ) |= ϕ.

Thus, if a ∈ Σ u , there exists σ u ∈ tw(Σ u ) such that E (σ. (t , a) . σ u ) |= ϕ.

• If a ∈ Σ c , then since (σ, t ) ∈ Pre(ϕ), following the proof of soundness (appendix A.1.2), σ dt t ∈ G(Reach(σ s , t ), Π Σ (nobs(σ b , t )).σ c .a). Then, we can do the same proof as in the case where a ∈ Σ u , but considering that q = Reach(σ s ) and buf c = Π Σ (nobs(σ b , t )) . σ c . a.

Thus, if a ∈ Σ c , there also exists σ u ∈ tw(Σ u ) such that E (σ.(t , a).σ u ) |= ϕ.

This means that whenever

E (σ) = E ϕ (σ), and E ϕ (σ.(t , a)) ≺ d E (σ.(t , a)), then there exists σ u ∈ Σ u such that E (σ . (t , a) . σ u ) |= ϕ.
Thus, E ϕ is optimal.

Proposition 3.10. The output of E as per Definition 3.21 for input σ is E ϕ (σ) as per Definition 3.19.

Proof. In this proof, we use some notation from Definition 3.21:

• C E = tw(Σ) × Σ * c × Q × R ≥0 × { , ⊥} is the set of configurations,
• c E 0 = , , q 0 , 0, ⊥ ∈ C E is the initial configuration,

• Γ E = ((R ≥0 ×Σ)∪{ })×Op ×((R ≥0 ×Σ)∪{ }) is the alphabet, composed of an optional input, an operation and an optional output,

• The set of operations, to be applied in the given order, is: {compute , dump , pass-uncont , store-cont , delay }.

Let us also introduce some specific notation. For a sequence of rules w ∈ Γ E * , we note input(w) = Π 1 (w( 1)) . Π 1 (w( 2)) . . . Π 1 (w(|w|)) the concatenation of all inputs from w. In the same way, we define output(w) = Π 3 (w( 1)) . Π 3 (w( 2)) . . . Π 3 (w(|w|)) the concatenation of all outputs from w. Since all configurations are not reachable from c E 0 , for a word w ∈ Γ E * , we will say that Reach

E (w) = c if c E 0 w -→ E c, or Reach E (w) = ⊥ if such a c does not exist.
Let us also define function Rules which, given a timed word and a date, returns the longest sequence of rules that can be applied with the given word as input at the given date:

Rules :        tw(Σ) × R ≥0 → Γ E (σ, t) → max ({w ∈ Γ E | input(w) = σ ∧ Reach(w) = ⊥∧ Π 4 (Reach(w)) = t})
Since time is not discrete, the rule delay can be applied an infinite number of times by slicing time. Thus, we consider that the rule delay is always applied a minimum number of times, i.e. when two rules delay are consecutive, they are merged into one rule delay, whose parameter is the sum of the parameters of the two rules. The runs obtained are equivalent, but it allows to consider the maximum (for prefix order) of the set used in the definition of Rules. We then extend output to timed words with a date: for σ ∈ tw(Σ), and a date t, output(σ, t) = output(Rules(σ, t)). In the same way, we extend Reach E to timed words with a date, such that Reach E (σ, t) = Reach E (Rules(σ, t)).

We have to prove that for any σ ∈ tw(Σ) and t ∈ R ≥0 , output(σ, t) = E ϕ (σ, t).

For σ ∈ tw(Σ) and t ∈ R ≥0 , let P(σ, t) be the predicate:

"E ϕ (σ, t) = output(σ, t) ∧ (((σ s , σ b , σ c ) = store ϕ (obs(σ, t), t) ∧ σ E b , σ E c , q E , t, b = Reach E (σ, t)) =⇒ σ E b = nobs(σ b , t) ∧ σ E c = σ c ∧ q E = Reach(σ s , t) ∧ (b = =⇒ G(q E , σ E c ) = ∅))"
. Let P(σ) be the predicate "∀t ∈ R ≥0 , P(σ, t) holds". Let us then prove that for all σ ∈ tw(Σ), P(σ) holds.

Induction basis : For σ = , let us consider t ∈ R ≥0 . Then, store ϕ ( , t) = ( , , ), and Reach( , t) = l 0 , v 0 + t . On the other hand, the only rules that can be applied are delay, and possibly compute, since there is not any input, nor any element to dump. Thus, Rules( , t) = / delay(t)/ , or there exists t ≥ t such that Rules( , t) = / delay(t )/ . / compute()/ . / delay(t -t )/ . Let us consider c = Reach(Rules( , t)). Then, c = , , l 0 , v 0 + t , t, b . If

• Otherwise, a ∈ Σ c . Then, rule store-cont can be applied. Let us consider c = c after ((t , a)/ store-cont(a)/ ). Then Thus, by induction on σ, for all σ ∈ tw(Σ), P(σ) holds. In particular, for all σ ∈ tw(Σ), and for all t ∈ R ≥0 , output(σ, t) = E ϕ (σ, t), meaning that the output of the enforcement monitor E with input σ at time t is exactly the output of function E ϕ with the same input and the same date.

, c = , Π Σ (σ E b ) . σ E c . a, q E , t , ⊥ . Let us consider t E 2 = min({t ∈ R ≥0 | t ≥ t ∧ G(q E after ( , t -t ), Π Σ (σ E b ) . σ E c . a) = ∅}). Since G(q E after ( , t -t ), Π Σ (σ E b ) . σ E c . a) = G(Reach(σ s , t ), Π Σ (nobs(σ b , t )) . σ c . a),
E d = κ ϕ (q after ( , t 2 -t ), Π Σ (σ E b ). σ E c . a) + t t 2 = κ ϕ (Reach(σ s , t 2 ), Π Σ (σ b ) . σ c . a) + t t 2 = σ d . Then, σ E e = σ e . Then,
E e = Π Σ (σ E b ) . σ E c . a = Π Σ (nobs(σ b , t )) .

A.2 Proofs of Chapter 4

A.2.1 Proofs for the untimed setting (Section 4.2)

In all this section, we will use the notations from Section 4.2, meaning that ϕ is a property whose associated automaton is A ϕ = Q, q 0 , Σ, -→, F , and the game graph G = V, E is the one as per Definition 4.5. In some proofs, we also use notations from Definition 4.9.

Proposition 4.1. E ϕ as per Definition 4.9 is an enforcement function as per Definition 4.1.

Proof. We have to prove that for σ ∈ Σ * and σ

∈ Σ * , if (σ, o) ∈ E ϕ , (σ , o ) ∈ E ϕ and σ σ , then o o . Let us consider σ ∈ Σ * , σ ∈ Σ * , (σ, o) ∈ E ϕ and (σ . σ , o ) ∈ E ϕ . If σ = , then o = o o .

A. Proofs

Induction basis: if ∈ Pre(ϕ), then following the definition of Pre(ϕ) (Definition 4.10), G(Reach( ), ) = ∅. Thus ∈ G(Reach( ), ) (since is the only word satisfying ). This means that Reach( ) after = Reach( ) ∈ F , and thus that |= ϕ.

Moreover, since ∈ G(Reach( ), ), Reach( ) after , max({w

-1 . | w ∈ Σ n c }), 1 = Reach( ), , 1 ∈ W 0 .
Considering that ( , , ) ∈ store ϕ , this means that P( ) holds.

Induction step: Suppose now that, for σ ∈ Σ * , P(σ) holds. Let us consider a ∈ Σ, (σ, σ s , σ c ) ∈ store ϕ , and (σ . a, σ t , σ d ) ∈ store ϕ .

Let us prove that P(σ . a) holds.

We consider three different cases: Then, by induction hypothesis, P(σ) holds, meaning that σ s |= ϕ and Reach(σ s ), max ({w

• (σ . 
σ c | w ∈ Σ n c }), 1 ∈ W 0 . Let us note σ m c = max ({w σ c | w ∈ Σ n c })
. Again, we consider two cases: Now, let us prove that item 3 holds. Let us consider σ ∈ Σ * , u ∈ Σ u , (σ, σ s , σ c ) ∈ store ϕ , and (σ . u, σ t , σ d ) ∈ store ϕ , then σ t = σ s . u . σ s , where σ s is defined in Definition 4.9. Thus σ s . u σ t , meaning that if (σ, o) ∈ E ϕ and (σ . u, o ) ∈ E ϕ , then o = σ s , and o = σ t , and thus o . u o . Thus item 3 holds.

-If a ∈ Σ u , then, since Reach(σ s ), σ m c , 1 ∈ W 0 , following lemma A.11, since ( Reach(σ s ), σ m c , 1 , Reach(σ s ) after a, σ m c , 0 ) ∈ E 3 ⊆ E, Reach(σ s )
Thus, E ϕ is compliant with respect to Σ u and Σ c .

Proposition 4.4. E ϕ is optimal in Pre(ϕ), as per Definition 4.4.

Proof. Let E be an enforcement function such that compliant(E, Σ u , Σ c ) holds, and let us consider σ

∈ Pre(ϕ), a ∈ Σ such that (σ, o) ∈ E ∩ E ϕ , (σ . a, o ) ∈ E ϕ and (σ . a, p ) ∈ E.
Then, we have to prove that p o . Let us consider (σ, σ s , σ c ) ∈ store ϕ . Let us suppose that o ≺ p . We then show that there exists σ u ∈ Σ * u such that if (σ . a . σ u , p u ) ∈ E, then p u |= ϕ, meaning that E is not sound, and thus that if E is sound then o ≺ p does not hold. We distinguish two cases: Otherwise, Reach(σ s . a) after σ s1 , σ -1 s1 . σ c , 1 ∈ W 0 . Then, Reach(σ s . a . σ s1 ), σ -1 s1 . σ c , 1 ∈ W 1 , meaning that P 1 has a winning strategy. Since receiving controllable events only helps P 0 to win, this means that there exists an uncontrollable event u ∈ Σ u such that Reach(σ s . a . σ s1 ) after u, σ -1 s1 . σ c , 0 ∈ W 1 . Then, since W 1 is the set of winning nodes for P 1 , if (σ . a . u, p ) ∈ E, then Reach(p ), p -1 |Σc . (σ . a . u) |Σc , 1 ∈ W 1 . Then again, there exists an uncontrollable event u such that the output of E after receiving it reaches a node in W 1 again. In the end, it is possible to reach a node that is not a Büchi node (i.e. in F × Σ n c × {0, 1}), and that is in W 1 . Thus, there exists

• if a ∈ Σ u ,
σ u ∈ Σ * u such that if (σ . a . σ u , p u ) ∈ E ϕ , then Reach(p u ) ∈ F , meaning that p u |= ϕ.
• Otherwise, a ∈ Σ c , and then the proof is the same as in the case where a ∈ Σ u , by replacing occurrences of "σ s . a" by "σ s ", and occurrences of "σ c " by "σ c . a".

In both cases, there exists σ u such that if (σ . a . u, p u ) ∈ E, then p u |= ϕ. Since σ . a . u ∈ Pre(ϕ), it follows that E is not sound in Pre(ϕ).

Thus, if E is sound in Pre(ϕ), it follows that p o . This means that E ϕ is optimal in Pre(ϕ).

Proposition 4.5. The output o of the enforcement monitor E as per Definition 3.12 for input σ is the output of E ϕ as per Definition 4.9 with input σ, i.e. (σ, o) ∈ E ϕ .

Proof. Let us introduce some notation for this proof: for a word w ∈ Γ E * , we note input(w) = Π 1 (w( 1)) . Π 1 (w( 2)) . . . Π 1 (w(|w|)), the word obtained by concatenating the first members (the inputs) of w. In a similar way, we note output(w) = Π 3 (w(1)) . Π 3 (w(2)) . . . Π 3 (w(|w|)), the word obtained by concatenating all the third members (outputs) of w. Since all configurations are not reachable from c E 0 , for w ∈ Γ E * , we note Reach E (w) = c whenever c E 0 w -→ E c, and Reach E (w) = ⊥ if such a c does not exist. We also define the Rules function as follows:

Rules : Σ * → Γ E * σ → max ({w ∈ Γ E * | input(w) = σ ∧ Reach(w) = ⊥}) A. Proofs
For a word σ ∈ Σ * , Rules(σ) is the trace of the longest valid run in E, i.e. the sequence of all the rules that can be applied with input σ. We then extend the definition of output to words in Σ * : for σ ∈ Σ * , output(σ) = output(Rules(σ)).

In the same way, we note Reach E (σ) = Reach E (Rules(σ)).

We have to show that, for any σ ∈ Σ * , output(σ) = o, where (σ, o) ∈ E ϕ . For σ ∈ Σ * , let P(σ) be the predicate: "

((σ, σ s , σ c ) ∈ store ϕ ∧ Reach E (σ) = q, σ E c ) =⇒ (q = Reach(σ s ) ∧ σ c = σ E c ∧ σ s = output(σ))".
Let us prove by induction that for all σ ∈ Σ * , P(σ) holds.

Induction basis: ( , ) ∈ E ϕ , and output( ) = . Moreover, ( , , ) ∈ store ϕ , and Reach E ( ) = c E 0 . Therefore, as c E 0 = q 0 , , P( ) holds, because Reach( ) = q 0 . Induction step: Let us suppose now that for some σ ∈ Σ * , P(σ) holds. Let us consider (σ, σ s , σ c ) ∈ store ϕ , q = Reach(σ s ), a ∈ Σ, and (σ . a, σ t , σ d ) ∈ store ϕ . Let us prove that P(σ . a) holds.

Since P(σ) holds, Reach E (σ) = q, σ c and σ s = output(σ). We consider two cases:

• if a ∈ Σ u , then, considering σ s = (σ s . a) -1 . σ t , σ t = σ s . a . σ s . Since
a ∈ Σ u , rule pass-uncont can be applied: let us consider q = q after a.

Then, q, σ c a/ pass-uncont(a)/a -----------→ E q , σ c .

Then, if σ s = , G(q , σ c ) = ∅ or G(q , σ c ) = { }, meaning that no other rule can be applied, and thus P(σ . a) holds.

Otherwise, σ s = , and thus σ s ∈ G(q , σ c ), meaning that G(q , σ c ) = ∅ and G(q , σ c ) = { }, thus rule dump(σ c (1)) can be applied. Since σ s σ c , σ s (1) = σ c (1), thus if q 1 = q after σ c (1), q 1 = q after σ s (1). If σ s (1) -1 . σ s = , then σ s (1) -1 . σ s ∈ G(q 1 , σ c (1) -1 . σ c ), meaning that rule dump can be applied again. Rule dump can actually be applied |σ s | times, since for all w σ s , if w = σ s , then w -1 . σ s = and w -1 . σ s ∈ G(q after w, w -1 .σ c ). Thus, after rule dump has been applied |σ s | times, the configuration reached is q after σ s , σ -1 s . σ c . Moreover, the output produced by all the rules dump is σ s . Since no rule can be applied after the |σ s | applications of the rule dump, output(σ . a) = output(σ) . a . σ s = σ t , and Reach E (σ . a) = q after σ s , σ -1 s . σ c = q after a after σ s , σ d = Reach(σ s ) after a after σ s , σ d = Reach(σ s .a.σ s ), σ d = Reach(σ t ), σ d . Thus, if a ∈ Σ u , P(σ . a) holds.

• Otherwise, a ∈ Σ c , then, considering σ s = σ -1 s . σ t , σ t = σ s . σ s . Since a ∈ Σ c , it is possible to apply the store-cont rule, and q, σ c after a/ store-cont(a)/ = q, σ c . a . Then as in the case where a ∈ Σ u , rule dump can be applied |σ s | times, meaning that the configuration reached is then q after (σ c . a)( 1 Proof. We have to prove the two following properties: Thus, by induction on σ, P(σ) holds for any σ ∈ tw(Σ). Thus E ϕ is an enforcement function.

1. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , ∀t ≥ t, (σ, t), o 1 ∈ E ϕ ∧ (σ, t ), o 2 ∈ E ϕ =⇒ o 1 o 2 2 
Lemma A.14. ∀σ ∈ tw(Σ), ∀t ≥ time(σ), (σ ∈ Pre(ϕ, t) ∧ (σ, σ s0 , σ c ) ∈ store ϕ ) =⇒ (obs(σ s0 , t) = σ |Σu ∧ Π Σ (nobs(σ s0 , t)) . σ c = Π Σ (σ |Σc )).

Proof. For σ ∈ tw(Σ) and t ≥ time(σ), let P(σ, t) be the predicate "(σ ∈ Pre(ϕ, t) ∧ (σ, σ s0 , σ c ) ∈ store ϕ ) =⇒ (obs(σ s0 , t) = σ |Σu ∧ Π Σ (nobs(σ s0 , t)) . σ c = Π Σ (σ |Σc ))", and P(σ) be the predicate "∀t ≥ time(σ), P(σ, t)". Let us then prove by induction on σ that P(σ) holds for any σ ∈ tw(Σ).

Induction basis: for σ = , let us consider t ∈ R ≥0 . Then, ( , , ) ∈ store ϕ . Since obs( , t) = |Σu , and Π Σ (nobs( |Σc , t)) . = Π Σ ( |Σc ), it follows that P( , t) holds, and thus P( ) holds. Thus P(σ . (δ, a), t) holds.

In both cases, P(σ . (δ, a), t) holds. Thus, it holds for any t ≥ time(σ . (δ, a)), meaning that P(σ . (δ, a)) holds. This means that for any σ ∈ tw(Σ) and (δ, a) ∈ R ≥0 × Σ, P(σ) =⇒ P(σ . (δ, a)).

A. Proofs

Thus, we have shown by induction on σ that P(σ) holds for any σ ∈ tw(Σ).

Lemma A.15. ∀q ∈ Q, ∀w ∈ Σ * c , ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , σ ∈ G(q, w) =⇒ nobs(σ, t)t (t -time(obs(σ, t))) ∈ G(q after (σ, t), Π Σ (obs(σ, t)) -1 . w).

Proof. Let us consider q, w and σ such that σ ∈ G(q, w), and t ∈ R ≥0 . Following the definition of G (Definition 4.18), this means that the three following properties hold:

1. Π Σ (σ) w, 2. q after σ ∈ F G , 3. ∀t ∈ R ≥0 , ∀v ∈ V s , q after (σ, t) ∈ v =⇒ v, maxbuffer(Π Σ (obs(σ, t)) -1 . w), 1 ∈ W 0 . Now, considering σ = nobs(σ, t)t (t -time(obs(σ, t))), σ satisfies the following properties:

1. Π Σ (σ ) = Π Σ (nobs(σ, t)t (t -time(obs(σ, t))))

= Π Σ (nobs(σ, t)), thus, Π Σ (obs(σ, t)) . Π Σ (σ ) = Π Σ (obs(σ, t)) . Π Σ (nobs(σ, t))

= Π Σ (σ). Since Π Σ (σ) w, this means that: Π Σ (σ ) Π Σ (obs(σ, t)) -1 . w.

2. (q after (σ, t)) after σ = (q after (σ, t)) after (nobs(σ, t)t (t -time(obs(σ, t)))) = q after σ. Thus, (q after (σ, t)) after σ ∈ F G .

3. For t ∈ R ≥0 , (q after (σ, t)) after (σ , t ) = (q after (σ, t)) after (nobs(σ, t)t (t -time(obs(σ, t))), t ) = q after (σ, t + t ). Since t + t ∈ R ≥0 , then if v ∈ V s is such that (q after (σ, t)) after (σ , t ) ∈ v, then v, maxbuffer(Π Σ (obs(σ, t + t )) -1 . w), 1 ∈ W 0 . Moreover, since t ≥ time(obs(σ, t)), Π Σ (obs(σ, t+t )) -1 .w = Π Σ (obs(σ , t )) -1 . (Π Σ (obs(σ, t)) -1 . w). Thus, v, maxbuffer(Π Σ (obs(σ , t )) -1 . (Π Σ (obs(σ, t)) -1 . w)), 1 ∈ W 0 . This means that σ = nobs(σ, t)t (t -time(obs(σ, t))) ∈ G(q after (σ, t), Π Σ (obs(σ, t)) -1 . w). Now, nobs(σ t0 , t) = obs(σ t0 , t) -1 . σ t0 = obs(σ s . σ s , t) -1 . σ t0 Since time(σ s ) ≤ t, it follows that nobs(σ t0 , t) = (σ s . obs(σ s , t -time(σ s ))) -1 . (σ s . σ s )

= obs(σ s , t -time(σ s )) -1 . (σ -1 s . (σ s . σ s )) = obs(σ s , t -time(σ s )) -1 . σ s = nobs(σ s , t -time(σ s ))

We know that σ st t ∈ G(Reach(σ s , t ), buf c . a) and that t ≥ t meaning that t -t ≥ 0. (Π Σ (σ s . σ s ) . σ d ) = Π Σ (obs(σ s , t -time(σ s ))) -1 .

(Π Σ (σ s ) -1 . (Π Σ (σ s ) . Π Σ (σ s ) . σ d )) = Π Σ (obs(σ s , t -time(σ s ))) -1 . (Π Σ (σ s ) . σ d ) = Π Σ (obs(σ s , t -time(σ s ))) -1 .

(Π Σ (σ s ) . (Π Σ (σ s ) -1 . (buf c . a))) = Π Σ (obs(σ s , t -time(σ s ))) -1 . (buf c . a) it follows that Π Σ (obs(σ st t , t-t )) -1 .(buf c .a) = Π Σ (nobs(σ t0 , t)). σ d , and thus (A.3) (Π Σ (σ s . (t -time(σ s ), a)) . Π Σ (σ s ) . σ d )) = Π Σ (obs(σ s , t -t )) -1 . (Π Σ (σ s ) . σ d ) = Π Σ (obs(σ s , t -t )) -1 . (Π Σ (σ s ) . (Π Σ (σ s ) -1 . buf c )) = Π Σ (obs(σ s , t -t )) -1 . buf c On the other hand, if delay(σ s (1)) ≤ t -time(σ s ), then nobs(σ st t , t -t ) = nobs(σ s , t -time(σ s )) = nobs(σ t0 , t), and since time(obs(σ t0 , t)) = time(obs(σ s . σ s , t))

= time(σ s . (obs(σ s , t -time(σ s )), t)) = time(σ s ) + time(obs(σ s , t -time(σ s ))) it follows that nobs(σ st t , t -t )t (t -t -time(obs(σ st t , t -t )))

= nobs(σ s , t -time(σ s ))t (t -t -time(obs(σ s , t -t + t )t t )) = nobs(σ t0 , t)t (t -t -(time(obs(σ s , t -time(σ s ))) -t )) = nobs(σ t0 , t)t (t -t + t -(time(obs(σ t0 , t)) -time(σ s ))) = nobs(σ t0 , t)t (t -time(σ s ) + time(σ s ) -time(obs(σ t0 , t))) = nobs(σ t0 , t)t (t -time(obs(σ t0 , t)))

Thus, in both cases, nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) ∈ G(Reach(σ s0 , t ) after (σ st t , t -t ), Π Σ (obs(σ st t , t -t )) -1 . (buf c . a))

Since

Reach(σ s0 , t ) after (σ st t , t -t ) = Reach(σ s ) after ( , t -time(σ s )) after (σ st t , t -t ) = Reach(σ s ) after ((σ st t ) + t t , t -t + t ) = Reach(σ s ) after (σ s , t -time(σ s )) = Reach(σ s . σ s , t) = Reach(σ t0 , t) and Π Σ (nobs(σ t0 , t)) . σ d = Π Σ (obs(σ t0 , t) -1 . σ t0 ) . σ d = (Π Σ (σ s ) . Π Σ (obs(σ s , t -time(σ s )))) -1 .

(Π Σ (σ s ) . Π Σ (σ s ) . σ d ) = Π Σ (obs(σ s , t -time(σ s ))) -1 .

(Π Σ (σ s ) -1 . (Π Σ (σ s ) . Π Σ (σ s ) . σ d )) = Π Σ (obs(σ s , t -time(σ s ))) -1 .

(Π Σ (σ s ) . Π Σ (σ s In both cases, P(σ) =⇒ P(σ . (δ, a)).

Thus, we have shown by induction that for all σ ∈ tw(Σ), P(σ) holds. Consequently, for any σ ∈ tw(Σ), if (σ, σ s0 , σ c ) ∈ store ϕ , then σ s0 dΣ c σ and σ s0 = Σu σ. Thus, for any t ∈ R ≥0 , if (σ, t), o ∈ E ϕ , then o = obs(σ s0 , t) dΣ c obs(σ, t), and o = obs(σ s0 , t) = Σu obs(σ, t).

Thus, items 1 and 2 hold. We have then shown that E ϕ is compliant with respect to Σ u and Σ c .

Proposition 4.9. E ϕ is optimal in Pre(ϕ) as per Definition 4.14. . Π Σ (σ) |Σc ), 1 ∈ W 0 . If this does not hold, then there exists t ∈ R ≥0 and v ∈ V s such that Reach(σ s . σ E s , t) ∈ v and v, maxbuffer(Π Σ (σ . obs(σ E s , t)) -1 . Π Σ (σ) |Σc ), 1 ∈ W 0 . Then, there exists a winning strategy for player 1 from this node. This means that we can construct a word by following the winning strategy of player 1, like it is done in the proof of Proposition 4.7: depending on the edge followed in the game graph, player 1 can add an uncontrollable event to the input word (the delays are given by the edges corresponding to letting time elapse) that allows to stay in a node not belonging to W 0 . This can be done until the strategy of player 0 goes back to the previous node, making a loop if it has no time successor. This must ultimately happen since adding controllable events to the input only gives player 0 more possibilities, A. Proofs thus player 1 can choose only edges corresponding to adding uncontrollable events or letting time elapse. By privileging the elapse of time, it can ensure that the word will be finite. Thus, player 1 can build a word σ u ∈ tw(Σ u ) such that if (σ . (δ, a) . σ u , ∞), o u ∈ E, then o u |= ϕ.

In any possible case, there exists σ u ∈ tw(Σ u ) such that if (σ . (δ, a) . σ u , ∞), o u ∈ E, then o u |= ϕ (in the second case, σ u = ).

• Otherwise, a ∈ Σ c , and we can prove as in the previous case that there exists σ u ∈ tw(Σ u ) such that if (σ . This means that E ϕ is optimal in Pre(ϕ).

Proposition 4.10. The output o of E as per Definition 4.21 for input σ at date t is such that ((σ, t), o) ∈ E ϕ .

Proof. In this proof, we use some notation from Section 4.3.3:

• C E = tw(Σ) × Σ * c × Q × R ≥0
is the set of configurations.

• c E 0 = , , q 0 , 0 ∈ C E is the initial configuration.

• Γ E = ((R ≥0 × Σ) ∪ { }) × Op × ((R ≥0 × Σ) ∪ { }) is the alphabet, composed of an optional input, an operation and an optional output.

The set of operations is {dump(.), pass-uncont(.), store-cont(.), delay(.)}.

For a sequence of rules w ∈ (Γ E ) * , we note the concatenation of all the inputs of w, input(w) = Π 1 (w( 1)) . Π 1 (w(2)) . . . Π 1 (w(|w|)) , and output(w) = Π 3 (w(1)) . Π 3 (w(2)) . . . Π 3 (w(|w|)) the concatenation of all the outputs of w. Since all configurations are not reachable from c E 0 , for w ∈ (Γ E ) * , we note Reach E (w) = c if c E 0 w -→ E c for some configuration c ∈ C E , or Reach E (w) = ⊥ if such a configuration does not exist. For a word σ ∈ tw(Σ), and a date t ∈ R ≥0 , we note Rules(σ, t) = max ({w ∈ (Γ E ) * | input(w) = obs(σ, t) ∧ Reach E (w) = ⊥ ∧ Π 4 (Reach E (w)) = t -time(output(w))}). We also note Reach E (σ, t) = Reach E (Rules(σ, t)). Rules(σ, t) represent the sequence that the EM applies with input word σ until date t. Since rule delay() can be applied an infinite number of times by slicing time, we only consider words in (Γ E ) * that are minimal in the number of rules delay(), i.e. the word obtained by merging two consecutive rules delay() into one with the sum of delays of the two rules, until stabilisation. This allows to define Rules(σ, t) correctly, without "cheating" by slicing time to increase the length of the word. Note that the words obtained by merging or adding delay() rules this way reach exactly the same configurations in the end. We will also allow ourselves to extend the use of output to timed words, such that output(σ, t) = output(Rules(σ, t)).

We have to show that for any σ ∈ tw(Σ), and t ∈ R ≥0 , if (σ, t), o ∈ E ϕ , then o = output(σ, t). Now, for σ ∈ tw(Σ) and t ∈ R ≥0 , let P(σ, t) be the predicate "(σ, σ s0 , σ c ) ∈ store ϕ =⇒ (output(σ, t) = obs(σ s0 , t) ∧ Reach E (σ, t) = nobs(σ s0 , t), σ c , Reach(σ s0 , t), t -time(obs(σ s0 , t)) )", and P(σ) be the predicate "∀t ∈ R ≥0 , P(σ, t)". Let us then show by induction that P(σ) holds for any σ ∈ tw(Σ).

Induction basis: if σ = , then let us consider t ∈ R ≥0 . Then, ( , , ) ∈ store ϕ . On the other hand, the only rule that can be applied is delay(t), thus Reach E ( , t) = , , q 0 after ( , t), t .

Thus, output( , t) = obs( , t), and Reach E ( , t) = nobs( , t), , Reach( , t), t -time( , t) . Thus, P( , t) holds. Thus, for any t ∈ R ≥0 , P( , t) holds, meaning that P( ) holds. If t < time(σ . (δ, a)), then Reach E (σ . (δ, a), t) = Reach E (σ, t), and obs(σ t0 , t) = obs(σ s0 , t), meaning that P(σ . (δ, a), t) holds.

Then, let us consider that t ≥ time(σ . (δ, a)).

• If a ∈ Σ u , then rule pass-uncont(a) can be applied, meaning that c after (a/ pass-uncont(a)/a) = σ b , σ c , q, 0 , with q = Reach(σ s0 , time(σ . We have then shown by induction that P(σ) holds for any σ ∈ tw(Σ). In particular, this means that for any σ ∈ tw(Σ), if (σ, σ s0 , σ c ) ∈ store ϕ , then for any t ∈ R ≥0 , obs(σ s0 , t) = output(σ, t). Thus, if (σ, t), o ∈ E ϕ , then o = obs(σ s0 , t) = output(σ, t).
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  General scheme of a verification monitor, outputting a boolean verdict V (σ) indicating if σ satisfies ϕ. General scheme of an enforcement monitor, outputting a modified sequence of events E(σ) satisfying ϕ.
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 1 Figure 1 -General schemes showing the difference between a verification monitor M and an enforcement monitor E.

  (Σ) and (t, a) such that σ . (t, a) ∈ tw(Σ), (σ.(t, a)) |Σ = σ |Σ .(t, a) if a ∈ Σ , and (σ.(t, a)) |Σ = σ |Σ otherwise. The notations = Σ and Σ are then naturally extended to timed words.

Figure 3 . 1 -

 31 Figure 3.1 -Enforcement monitor E with input σ, output σ c and buffer σ c

  Definition 3.5 (Simple Enforcement Function). Let us define function store ϕ : Σ * → Σ * × Σ * c by induction as follows:
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 333 E ϕ is compliant, as per Definition 3.Sketch of proof. The proof is made by induction on the input σ ∈ Σ * . Considering σ ∈ Σ * and a ∈ Σ, the proof is straightforward by considering the different values of store ϕ (σ.a), (σ.a) |Σu , and (σ.a) |Σc when a ∈ Σ c and a ∈ Σ u .
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 3 Figure 3.7 -Property that becomes enforceable as time elapses

Figure 3

 3 Figure 3.8 -Property ϕ t

  Figure 3.9 -Execution of an enforcement monitor with input (1, Auth) . (2, LockOn) . (4, Write) . (5, LockOff ) . (6, LockOn) . (7, Write) . (8, LockOff )
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 3 Figure 3.10 -Example of Property without uncontrollable events

  σ ∈ tw(Σ) and (δ, a) ∈ R ≥0 × Σ, (σ . (δ, a)) |Σ = σ |Σ . (time(σ . (δ, a)) -time(σ |Σ ), a) if a ∈ Σ σ |Σ otherwise.
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 1 b) . (2, a), then σ |{a} = (1, a) . (3, a), and (1, a) . (2, b) . (1, a) d σ.
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 41 Figure 4.1 -Graph of the game associated to ϕ ex
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 3 E ϕ is compliant, as per Definition 4.3. Sketch of proof. The proof is made by induction on the input σ ∈ Σ * . Considering σ ∈ Σ * and a ∈ Σ, the proof is straightforward by considering the different values of (σ . a, σ o ) ∈ store ϕ , (σ . a) |Σu , and (σ . a) |Σc , when a ∈ Σ c and a ∈ Σ u .
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 42 Figure 4.2 -A symbolic compatible graph of ϕ t as per Alur et al. [1992].
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 43 Figure 4.3 -Game graph associated with property ϕ t
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 5 As in Example 3.8, we can follow the output of function store ϕ over time with word σ = (1, Auth) . (1, LockOn) . (2, Write) . (1, LockOff ) . (1, LockOn) . (1, Write) . (1, LockOff ) as input: let t ∈ R ≥0 be the observation time, and (obs(σ, t), σ s , σ c ) ∈ store ϕ . Then the values taken by σ s and σ c for different times t are given in Table

  and that for all (δ, a) ∈ R ≥0 × Σ, if ((σ, time(σ . (δ, a))), o 3 ) ∈ E ϕ and ((σ . (δ, a), time(σ . (δ, a))), o 4 ) ∈ E ϕ , then o 3 o 4 . To prove this, we first show by induction that o 1 o 2 . Considering (δ, a) ∈ R ≥0 × Σ, we distinguish different cases according to the values of time(σ . (δ, a)) compared to t and t : Case 1: time(σ . (δ, a)) ≤ t. Then, obs(σ . (δ, a), t) = obs(σ . (δ, a), t ) = σ . (δ, a). Thus, if (σ . (δ, a), σ s0 , σ c0 ) ∈ store ϕ , then ((σ . (δ, a), t), obs(σ s0 , t)) ∈ E ϕ and ((σ . (δ, a), t ), obs(σ s0 , t )) ∈ E ϕ . Since t ≤ t , obs(σ s0 , t) obs(σ s0 , t ), which is what we want to prove. Case 2: time(σ . (δ, a)) ≥ t . Then, obs(σ . (δ, a), t) = obs(σ, t) and obs(σ . (δ, a), t ) = obs(σ, t ). Since in the definition of E ϕ , only the observation of the input at the given date is used, it follows, by induction hypothesis, that the proposition holds. Case 3: t < time(σ . (δ, a)) < t . Then, obs(σ . (δ, a), t) = obs(σ, t), and obs(σ . (δ, a), t ) = σ . (δ, a). If (obs(σ, t), σ s0 , σ c0 ) ∈ store ϕ , and (σ . (δ, a), σ s1 , σ c1 ) ∈ store ϕ , then following the definition of store ϕ , obs(σ s0 , time(σ . (δ, a))) σ s1 , meaning that obs(σ s0 , t) σ s1 , which is what we have to prove. Thus, o 1 o 2 . Then, what remains to show is that o 3 o 4 . Following the definition of store ϕ , it is clear that if (σ, σ s0 , σ c0 ) ∈ store ϕ and (σ . (δ, a), σ s1 , σ c1 ) ∈ store ϕ , then σ s0 σ s1 , and thus o 3 o 4 .
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 44 Figure 4.4 -Execution of an enforcement monitor with input (1, Auth) . (1, LockOn) . (2, Write) . (1, LockOff ) . (1, LockOn) . (1, Write) . (1, LockOff )
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 51 Figure 5.1 -General architecture of GREP

input: 1 :

 1 The game graph G, the input sequence of events, through function read () output: The output of the enforcer mechanism, through function emit() init(G); del ← ∞; while The input sequence has not been read entirely do (δ, a) ← read(); while del ≤ δ do δ ← δ -del; del ← delay(del); while getStrat() = EMIT do emit(); end end delay(δ); del ← eventRcvd(a); end while del < ∞ or getStrat() = EMIT do while getStrat() = EMIT do emit(); end if del < ∞ then del ← delay(del); end end Algorithm Main algorithm to enforce a property in offline mode Matthieu Renard

( 1 ,

 1 Auth) . (2, Write) . (3, LockOn) . (4, Write) . (5, LockOff) (6, LockOn) . (7, LockOff), produces the output: (1, Auth) . (2, Write) . (2, Write) . (3, LockOn) . (5, LockOff) . (6, LockOn) (7, LockOff) . (9, Write). The produced log file is given in Listing 5.2.
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 52 Figure 5.2 -Properties used to benchmark GREP

  Figure 5.5 -Property ϕ u .
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 56 Figure 5.6 -Timings of GREP for property ϕ u with and without option -f.

  Induction basis: if a ∈ Σ c , then since I( ) = ∅, I( ) ⊆ I(a). Thus, P( ) holds.Inductionstep: let us suppose that for n ∈ N, for all σ ∈ Σ * c such that |σ| ≤ n, P(σ) holds. Let us then consider σ ∈ Σ * c such that |σ| = n + 1, and a ∈ Σ c . Let (h, σ 0 ) ∈ Σ c × Σ * c be such that σ = h . σ 0 (they must exist since |σ| > 0). Then, |σ 0 | = n, and by induction hypothesis, P(σ 0 ) holds, meaning that I(σ 0 ) ⊆ I(σ 0 .a). Moreover, following the definition of S(σ 0 .a), S(σ 0 ) ⊆ S(σ 0 .a). It follows that S(σ 0 ) ∪ I(σ 0 ) ⊆ S(σ 0 . a) ∪ I(σ 0 . a), and thus I(σ) = I(h . σ 0 ) = Pred h (S(σ 0 ) ∪ I(σ 0 )) ⊆ Pred h (S(σ 0 . a) ∪ I(σ 0 . a)) = I(h . σ 0 . a) = I(σ . a). This means that P(σ . a) holds. Thus, by induction on the size of σ ∈ Σ * c , for all σ ∈ Σ * c , P(σ) holds. This means that for all σ ∈ Σ * c , for all a ∈ Σ c , I(σ) ⊆ I(σ . a).

  Following lemma A.1, I(σ) ⊆ I(σ . a), and since S(σ) ⊆ S(σ . a), it follows that S(σ) ∪ I(σ) ⊆ S(σ . a) ∪ I(σ . a). Thus, q after u ∈ S(σ.a)∪I(σ.a). Otherwise, q ∈ max ⊆ ({Y ⊆ F G | Y ∩uPred(Y ∪ I(σ . a)) = ∅}), and thus q after u ∈ S(σ . a) ∪ I(σ . a). Thus, P(σ . a) holds.

1 s.

 1 Lemma A.4. ∀σ ∈ Σ * , (σ ∈ Pre(ϕ) ∧ (σ s , σ c ) = store ϕ (σ)) =⇒ (σ s = σ |Σu ∧ σ c = σ |Σc ).Proof. For σ ∈ Σ * , let P(σ) be the predicate "(σ ∈ Pre(ϕ) ∧ (σ s , σ c ) = store ϕ (σ)) =⇒ (σ s = σ |Σu ∧ σ c = σ |Σc )". Let us show by induction that P(σ) holds for any σ ∈ Σ * .Induction basis: store ϕ ( ) = ( , ), and since |Σu = |Σc = , P( ) holds.Induction step: let us suppose that for σ ∈ Σ * , P(σ) holds. Let us then consider a ∈ Σ, (σ s , σ b ) = store ϕ (σ), and (σ t , σ d ) = store ϕ (σ . a).Then, if σ . a ∈ Pre(ϕ), P(σ . a) holds.Let us now consider that σ . a ∈ Pre(ϕ). Then, since Pre(ϕ) is extensionclosed, σ ∈ Pre(ϕ), and thus, by induction hypothesis, σ s = σ |Σu and σ c = σ |Σc . We consider two cases:• a ∈ Σ u , then σ t = σ s . a .σ s , with σ s ∈ G(Reach(σ s . a), σ c ) ∪ { }. Since σ . a ∈ Pre(ϕ), G(Reach((σ . a) |Σu ), (σ . a) |Σc ) = ∅. Moreover, since a ∈ Σ u , (σ . a) |Σu = σ |Σu . a = σ s . a and (σ . a) |Σc = σ |Σc = σ c , thus G(Reach(σ s . a), σ c ) = ∅. It follows that σ s ∈ { }, meaning that σ t = σ s . a = σ |Σu . a = (σ. a) |Σu , and σ d = σ -1 s . σ c = σ c = σ |Σc = (σ. a) |Σc . • a ∈ Σ c , then σ t = σ s .σ s , with σ s ∈ G(σ s , σ c .a)∪{ }. Since σ.a ∈ Pre(ϕ), G(Reach((σ .a) |Σu ), (σ . a) |Σc ) = ∅. Moreover, since a ∈ Σ c , (σ . a) |Σu = σ |Σu = σ s and (σ . a) |Σc = σ |Σc . a = σ c . a. Thus, G(Reach(σ s ), σ c . a) = ∅, meaning that σ s = . Thus, σ t = σ s = σ |Σu = (σ . a) |Σu and σ d = σ -(σ c . a) = σ c . a = σ |Σc . a = (σ . a) |Σc .In both cases, P(σ . a) holds.By induction onσ ∈ Σ * , for all σ ∈ Σ * , if σ ∈ Pre(ϕ) and (σ s , σ c ) = store ϕ (σ), then σ s = σ |Σu and σ c = σ |Σc .Proposition 3.2. E ϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 3.2.Proof. We have to show that for any σ ∈ Pre(ϕ), E ϕ (σ) |= ϕ. Let P(σ) be the predicate:"(σ ∈ Pre(ϕ)∧(σ s , σ c ) = store ϕ (σ)) =⇒ (E ϕ (σ) |= ϕ∧Reach(σ s ) ∈ S(σ c ))".Let us prove by induction that for any σ ∈ Σ * , P(σ) holds.Induction basis: If ∈ Pre(ϕ), then following the definition of Pre(ϕ), G(Reach( ), ) = ∅. Thus ∈ G(Reach( ), ) (since is the only word satisfying). This means that Reach( ) after = Reach( ) ∈ S( ). Considering that store ϕ ( ) = ( , ), it follows that E ϕ ( ) = , and thus, since S( ) ⊆ F G , E ϕ ( ) |= ϕ. Thus P( ) holds. Induction step: Suppose now that, for σ ∈ Σ * , P(σ) holds. Let us consider a ∈ Σ, (σ s , σ c ) = store ϕ (σ), and (σ t , σ d ) = store ϕ (σ . a). Let us prove that P(σ . a) holds. We consider three different cases: • (σ . a) ∈ Pre(ϕ). Then P(σ . a) holds. • (σ . a) ∈ Pre(ϕ) ∧ σ ∈ Pre(ϕ). Then, since Pre(ϕ) is extension-closed, it follows that σ . a ∈ {w ∈ Σ * | G(Reach(w |Σu ), w |Σc ) = ∅}, meaning that G(Reach((σ . a) |Σu ), (σ . a) |Σc ) = ∅. Moreover, since σ ∈ Pre(ϕ), following lemma A.4, σ s = σ |Σu and σ c = σ |Σc . Now, we consider two cases: -If a ∈ Σ u , then (σ . a) |Σu = σ |Σu . a = σ s . a, and (σ . a) |Σc = σ |Σc = σ c . Thus, G(Reach(σ s . a), σ c ) = ∅, meaning that σ s = (σ s . a) -1 . σ t ∈ G(Reach(σ s . a), σ c ). Thus, following the definition of G, Reach(σ s . a) after σ s = Reach(σ s . a . σ s ) = Reach(σ t ) ∈ S(σ s -1 . σ c ) = S(σ d ). Moreover, since S(σ d ) ⊆ F G , E ϕ (σ . a) = σ t |= ϕ. This means that P(σ . a) holds. A. Proofs -If a ∈ Σ c , then (σ . a) |Σu = σ |Σu = σ s , and (σ . a) |Σc = σ |Σc . a = σ c . a. Thus, G(Reach(σ s ), σ c . a) = ∅, meaning that σ s = σ -1 s . σ t ∈ G(Reach(σ s ), σ c . a). As in the case where a ∈ Σ u , it follows that Reach(σ t ) ∈ S(σ d ) and thus E ϕ (σ . a) |= ϕ. This means that P(σ . a) holds. Thus, if σ . a ∈ Pre(ϕ) but σ ∈ Pre(ϕ), P(σ . a) holds. • σ ∈ Pre(ϕ) (and then (σ . a) ∈ Pre(ϕ) since Pre(ϕ) is extension-closed).Then, by induction hypothesis, P(σ) holds, meaning that Reach(σ s ) ∈ S(σ b ) and E ϕ (σ) |= ϕ. Again, we consider two cases:-If a ∈ Σ u , then, since Reach(σ s ) ∈ S(σ c ), following lemma A.2, Reach(σ s ) after a = Reach(σ s . a) ∈ S(σ c ) ∪ I(σ c ). Then, following lemma A.3, G(Reach(σ s . a), σ b ) = ∅. Thus, σ s = (σ s . a) -1 . σ t ∈ G(Reach(σ s . a), σ c ). It follows that Reach(σ s . a . σ s ) = Reach(σ t ) ∈ S(σ -1 s . σ c ) = S(σ d ),and thus, since S(σ d ) ⊆ F G , E ϕ (σ . a) = σ t |= ϕ. Henceforth, P(σ . a) holds. -If a ∈ Σ c , then, since Reach(σ s ) ∈ S(σ c ) and S(σ c ) ⊆ S(σ c . a), Reach(σ s ) ∈ S(σ c .a). Following lemma A.3, G(Reach(σ s ), σ c .a) = ∅. Thus, σ s = σ -1 s . σ t ∈ G(Reach(σ s ), σ c . a). As in the case where a ∈ Σ u , this leads to σ t ∈ S(σ d ) and E ϕ (σ . a) |= ϕ. Henceforth, P(σ . a) holds. Thus, if σ ∈ Pre(ϕ), P(σ . a) holds. In all cases, P(σ . a) holds. Thus, P(σ) =⇒ P(σ . a). By induction on σ, ∀σ ∈ Σ* , (σ ∈ Pre(ϕ) ∧ (σ s , σ b ) = store ϕ (σ)) =⇒ (E ϕ (σ) |= ϕ ∧ Reach(σ s ) ∈ S(σ b )).In particular, for all σ ∈ Σ * , (σ ∈ Pre(ϕ)) =⇒ (E ϕ (σ) |= ϕ). This means that E ϕ is sound with respect to ϕ in Pre(ϕ). Proposition 3.3. E ϕ is compliant, as per Definition 3.3. Proof. For σ ∈ Σ * , let P(σ) be the predicate: "((σ s , σ c ) = store ϕ (σ)) =⇒ (σ s|Σc . σ c = σ |Σc ∧ σ s|Σu = σ |Σu )". Let us prove that for all σ ∈ Σ * , P(σ) holds. Induction basis : store ϕ ( ) = ( , ), and |Σc = |Σc . , and |Σu = |Σu . Thus P( ) holds. Induction step : Let us suppose that for σ ∈ Σ * , P(σ) holds. Let us consider (σ s , σ c ) = store ϕ (σ), a ∈ Σ, and (σ t , σ d ) = store ϕ (σ . a). Let us prove that P(σ . a) holds. We distinguish two cases: A. Proofs • If σ = , there exists σ ∈ Σ * c and a ∈ Σ such that σ = σ .a, meaning that S(σ) is such that S(σ) = S(σ ) ∪ max ⊆ ({Z ⊆ F | Z ∩ uPred(Z ∪ I(σ)) = ∅}).

Proposition 3 .

 3 4. E ϕ is optimal in Pre(ϕ), as per Definition 3.7.Proof. Let E be an enforcement function such that compliant(E, Σ c , Σ u ), and let us consider σ ∈ Pre(ϕ) and a ∈ Σ such thatE(σ) = E ϕ (σ) and |E(σ . a)| > | E ϕ (σ.a)|.We have to prove that there exists σ u ∈ Σ * u such that E(σ.a.σ u ) |= ϕ. Let us consider (σ s , σ c ) = store ϕ (σ). We consider two cases:• a ∈ Σ u . Then, since E is compliant, and E(σ) = E ϕ (σ) = σ s ,there exists σ s1 σ c such that E(σ . a) = E(σ) . a . σ s1 = σ s . a . σ s1 . Moreover, there exists σ s σ c such that E ϕ (σ . a) = E ϕ (σ) . a . σ s = σ s . a . σ s . Since |E(σ . a)| > | E ϕ (σ . a)|, |σ s1 | > |σ s |. Considering that σ s = max (G(Reach(σ s .a), σ c )∪{ }), it follows that σ s1 ∈ G(Reach(σ s .a), σ c ).

1 s.

 1 (σ c . a)(2) . • • • . (σ c . a)(|σ s |), (σ c . a)(|σ s | + 1) . (σ c . a)(|σ s | + 2) . • • • . (σ c . a)(|σ c . a|) . Since σ s σ c . a, (σ c . a)(1) . (σ c . a)(2) . • • • . (σ c . a)(|σ s |) = σ s , Runtime Enforcement of (Timed) Properties with Uncontrollable Events 117 A.1. Proofs of Chapter 3 thus Reach(Rules(σ . a)) = q after σ s , σ -(σ c . a) = Reach(σ t ), σ d . Moreover, output(σ . a) = output(σ) . σ s = σ s . σ s = σ t = E ϕ (σ . a).Thus, if a ∈ Σ c , P(σ . a) holds.Thus, in all cases, P(σ . a) holds.

  and σ c = Π Σ (σ |Σc ). Then, since σ . (t , a) ∈ Pre(ϕ, t), following the definition of Pre(ϕ, t) (Definition 3.20), this means that for all t ≤ t, G(Reach(obs(σ . (t , a), t ) |Σu , t ), Π Σ (obs(σ . (t , a), t ) |Σc )) = ∅. In particular, G(Reach((σ .(t , a)) |Σu , t), Π Σ ((σ . (t , a)) |Σc )) = ∅ (since t ≥ t , obs(σ . (t , a), t) = σ . (t , a)).Then, there are two cases:• If a ∈ Σ u , then, since (σ . (t , a)) |Σu = σ |Σu . (t , a) = σ s . (t , a), and Π Σ ((σ.(t , a)) |Σc ) = Π Σ (σ |Σc ) = Π Σ (nobs(σ b , t )).σ c , we have G(Reach(σ s . (t , a), t), Π Σ (σ b , t ) . σ c ) = ∅.This means that t < t 1 , where t 1 is defined in Definition 3.19, and thusσ d = . Since σ t = σ s . (t , a) . obs(σ d , t), σ t = σ s . (t , a) = (σ . (t , a)) |Σu , and σ e = σ c = σ |Σc = (σ . (t , a)) |Σc . Thus, P(σ . (t , a)) holds if a ∈ Σ u . • If a ∈ Σ c , then, (σ . (t , a)) |Σu = σ |Σu = σ s , and Π Σ ((σ . (t , a)) |Σc ) = Π Σ (σ |Σc ) . a = Π Σ (nobs(σ b , t )) . σ c . a. Thus, G(Reach(σ s , t), Π Σ (nobs(σ b , t )) . σ c . a) = ∅.This means that t < t 2 , where t 2 is defined in Definition 3.19, and thus σ d = . Since σ t = σ s . obs(σ d , t), σ t = σ s = σ |Σu = (σ . (t , a)) |Σu , andσ e = Π Σ (nobs(σ b , t )) . σ c . a = Π Σ (σ |Σc ) . a = Π Σ ((σ . (t , a)) |Σc ). Thus, P(σ . (t , a)) holds if a ∈ Σ c .Thus, P(σ) =⇒ P(σ . (t , a)).By induction on σ, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ), for all t ∈ R ≥0 , if (σ s , σ b , σ c ) = store ϕ (σ, t) and (σ, t) ∈ Pre(ϕ), then σ s = σ |Σu , σ b = , and σ c = Π Σ (σ |Σc ). Lemma A.7. ∀σ ∈ Σ * c , ∀a ∈ Σ c , I(σ) ⊆ I(σ . a). Proof. For σ ∈ Σ * c , let P(σ) be the predicate "∀a ∈ Σ c , I(σ) ⊆ I(σ . a)". Let us show by induction that P(σ) holds for all σ ∈ Σ * c . Induction basis: let us consider a ∈ Σ c . Then, I( ) = ∅ ⊆ I(a). Induction step: suppose now that for σ ∈ Σ * c , and for any σ ∈ Σ * c , if |σ | ≤ |σ|, then P(σ ) holds. Let us then consider a ∈ Σ c , a ∈ Σ c , and (h, σ 0 ) ∈ Σ c × Σ * c such that h . σ 0 = σ . a (h and σ 0 exist because σ . a = ). Then, I(σ . a . a ) = I(h . σ 0 . a ) = Pred h (S(σ 0 . a ) ∪ I(σ 0 . a )), and I(σ . a) = I(h . σ 0 ) = Pred h (S(σ 0 ) ∪ I(σ 0 )). Following the definition of S (Definition 3.17), S(σ 0 ) ⊆ S(σ 0 . a ). Moreover, by induction hypothesis, since |σ 0 | ≤ |σ|, P(σ 0 ) holds, meaning that I(σ 0 ) ⊆ I(σ 0 .a ). Thus, S(σ 0 )∪I(σ 0 ) ⊆ S(σ 0 .a )∪I(σ 0 .a ). It follows that I(σ . a) = Pred h (S(σ 0 ) ∪ I(σ 0 )) ⊆ Pred h (S(σ 0 . a ) ∪ I(σ 0 . a )) = I(σ . a . a ). Thus, for all a ∈ Σ c , I(σ . a) ⊆ I(σ . a . a ), meaning that P(σ . a) holds. Thus, (∀σ , |σ | ≤ |σ| =⇒ P(σ )) =⇒ P(σ . a).

•-

  If σ.(t , a) ∈ Pre(ϕ, t)∧σ ∈ Pre(ϕ, t ), then since σ ∈ Pre(ϕ, t ), following lemma A.6, σ s = σ |Σu , σ b = , and σ c = Π Σ (σ |Σc ). Since σ . (t , a) ∈ Pre(ϕ, t), and σ ∈ Pre(ϕ, t ), following Definition 3.20, there exists t ∈ R ≥0 such that t ≤ t ≤ t, and G(Reach(obs(σ . (t , a), t ) |Σu , t ), Π Σ (obs(σ . (t , a), t ) |Σc )) = ∅. Since t ≥ t = time(σ . (t , a)), obs(σ . (t , a), t ) = σ . (t , a). Thus: G(Reach((σ . (t , a)) |Σu , t ), Π Σ ((σ . (t , a)) |Σc )) = ∅. (A.1) If a ∈ Σ u , then considering that (σ . (t , a)) |Σu = σ |Σu . (t , a) = σ s . (t , a), σ b = , and σ c = Π Σ (σ |Σc ), (A.1) becomes: G(Reach(σ s . (t , a), t ), Π Σ (nobs(σ b , t )) . σ c ) = ∅.

-

  Otherwise, a ∈ Σ c . Then, (σ . (t , a)) |Σu = σ |Σu = σ s , σ b = , and σ c = Π Σ ((σ . (t , a)) |Σc ) = Π Σ (σ |Σc ) . a. This means that (A.1) becomes:

  σ c . a = σ e , and output(σ . (t , a), t) = output(σ, t ) = σ s = E ϕ (σ . (t , a), t). Thus, P(σ . (t , a), t) holds.Thus, P(σ) =⇒ P(σ . (t, a)).

1 s.

 1 a) ∈ Pre(ϕ). Then P(σ . a) holds. • (σ . a) ∈ Pre(ϕ) ∧ σ ∈ Pre(ϕ). Then, since Pre(ϕ) is extension-closed, it follows that σ . a ∈ {w ∈ Σ * | G(Reach(w |Σu ), w |Σc ) = ∅}, meaning that G(Reach((σ . a) |Σu ), (σ . a) |Σc ) = ∅. Moreover, since σ ∈ Pre(ϕ), following lemma A.13, σ s = σ |Σu and σ c = σ |Σc . Now, we consider two cases: -If a ∈ Σ u , then (σ.a) |Σu = σ |Σu .a = σ s .a, and (σ.a) |Σc = σ |Σc = σ c , thus G(Reach((σ. a) |Σu ), (σ. a) |Σc ) = G(Reach(σ s . a), σ c ) = ∅, meaning that σ s = (σ s . a) -1 . σ t ∈ G(Reach(σ s . a), σ c ) (according to Definition 4.9). Thus, following the definition of G (Definition 4.8), Reach(σ s . a) after σ s = Reach(σ s . a . σ s ) = Reach(σ t ) ∈ F , and Reach(σ s . a) after σ s , max ({w σ -(σ c ) | w ∈ Σ n c }), 1 = Reach(σ t ), max ({w σ d | w ∈ Σ n c }), 1 ∈ W 0 . Since Reach(σ t ) ∈ F , σ t |= ϕ. This means that P(σ . a) holds. -If a ∈ Σ c , then (σ . a) |Σu = σ |Σu = σ s , and (σ . a) |Σc = σ |Σc . a = σ c . a. Thus, G(Reach(σ s ), σ c . a) = ∅, meaning that σ s = σ -1 s . σ t ∈ G(Reach(σ s ), σ c . a). As in the case where a ∈ Σ u , it follows that Reach(σ t ), max ({w σ d | w ∈ Σ n c }), 1 ∈ W 0 and thus σ t |= ϕ. This means that P(σ . a) holds. Thus, if σ . a ∈ Pre(ϕ) but σ ∈ Pre(ϕ), P(σ . a) holds. • σ ∈ Pre(ϕ) (and then (σ . a) ∈ Pre(ϕ) since Pre(ϕ) is extension-closed).

  after a, σ m c , 0 = Reach(σ s . a), σ m c , 0 ∈ W 0 . Following A. Proofs Induction step : Let us suppose that for σ ∈ Σ * , P(σ) holds. Let us consider (σ, σ s , σ c ) ∈ store ϕ , a ∈ Σ, and (σ . a, σ t , σ d ) ∈ store ϕ . Let us prove that P(σ . a) holds. • If a ∈ Σ u , then, σ t = σ s . a . σ s , where σ s is defined in Definition 4.9, and σ t . σ d = σ s . a . σ c . Therefore, σ t|Σc . σ d = (σ t . σ d ) |Σc , since σ d ∈ Σ * c . Thus, σ t|Σc . σ d = σ s|Σc . σ c . Since P(σ) holds, σ t|Σc . σ d = σ |Σc = (σ . a) |Σc . Moreover, since σ s ∈ Σ * c , σ t|Σu = σ s|Σu . a. Since P(σ) holds, this means that σ t|Σu = σ |Σu . a = (σ . a) |Σu . Thus P(σ . a) holds. • Otherwise, a ∈ Σ c , and then σ t = σ s . σ s , where σ s is defined in Definition 4.9, and σ t . σ d = σ s . σ c . a. Therefore, σ t|Σc . σ d = (σ t . σ d ) |Σc = (σ s . σ c . a) |Σc = σ s|Σc . σ c . a. Since P(σ) holds, this means that σ t|Σc . σ d = σ |Σc . a = (σ . a) |Σc . Moreover, since σ s ∈ Σ * c , σ t|Σu = σ s|Σu . Since P(σ) holds, this means that σ t|Σu = σ |Σu = (σ . a) |Σu . Thus P(σ . a) holds. In both cases, P(σ . a) holds. Thus, for any σ ∈ Σ * , and a ∈ Σ, P(σ) =⇒ P(σ . a). Thus, by induction on σ, for all σ ∈ Σ * , P(σ) holds, meaning that (σ, σ s , σ c ) ∈ store ϕ =⇒ (σ s|Σc . σ c = σ |Σc ∧ σ s|Σu = σ |Σu ). If (σ, o) ∈ E ϕ , then o = σ s , meaning that o |Σc = σ s|Σc σ s|Σc . σ c = σ |Σc , and o |Σu = σ s|Σu = σ |Σu . Thus, items 1 and 2 hold.

  then, since E is compliant, and (σ, o) ∈ E ∩ E ϕ , there exists σ s1 σ c such that p = o . a . σ s1 = σ s . a . σ s1 . Moreover, there exists σ s σ c such that o = o . a . σ s = σ s . a . σ s . Since o ≺ p , σ s ≺ σ s1 . Considering that σ s = max (G(Reach(σ s . a), σ c ) ∪ { }), it follows that σ s1 ∈ G(Reach(σ s . a), σ c ). Following the definition of G (Definition 4.8), this means that either σ s1 σ c ; Reach(σ s . a) after σ s1 ∈ F ; or that Reach(σ s . a) after σ s1 , σ -1 s1 . σ c , 1 ∈ W 0 . Since E is compliant, σ s1 σ c , thus at least one of the two last conditions holds. If Reach(σ s . a) after σ s1 = Reach(σ s . a . σ s1 ) = Reach(p ) ∈ F , then p |= ϕ.

  ) . (σ c . a)(2) • • • (σ c . a)(|σ s |), (σ c . a)(|σ s | + 1) . (σ c . a)(|σ s | + 2) • • • (σ c . a)(|σ c . a|) . Since σ s σ c . a, (σ c . a)(1) . (σ c . a)(2) • • • (σ c . a)(|σ s |) = σ s , thus Reach(Rules(σ . a)) = q after σ s , σ -1 s . (σ c . a) = Reach(σ t ), σ d . Moreover, output(σ . a) = output(σ) . σ s = σ s . σ s = σ t . Thus, if a ∈ Σ c , P(σ . a) holds. This means that P(σ) =⇒ P(σ . a).Thus, by induction on σ, for all σ ∈ Σ * , P(σ) holds. In particular, for allσ ∈ Σ * , if (σ, σ s , σ c ) ∈ store ϕ and (σ, o) ∈ E ϕ , then o = σ s = output(σ).A.2.2 Proofs for the timed setting (Section 4.3) Proposition 4.6. E ϕ as per Definition 4.19 is an enforcement function, as per Definition 4.11.

  . ∀σ ∈ tw(Σ), ∀δ ∈ R ≥0 , ∀a ∈ Σ,( (σ, time(σ . (δ, a))), o 3 ∈ E ϕ ∧ (σ . (δ, a), time(σ . (δ, a))), o 4 ∈ E ϕ ) =⇒ o 3 o 4 For σ ∈ tw(Σ), let P(σ) be the predicate "∀t ∈ R ≥0 , ∀t ≥ t, ∀(δ, a) ∈ R ≥0 × Σ, ( (σ, t), o 1 ∈ E ϕ ∧ (σ, t ), o 2 ∈ E ϕ ∧ (σ, time(σ . (δ, a))), o 3 ∈ E ϕ ∧ (σ . (δ, a), time(σ . (δ, a))), o 4 ∈ E ϕ ) =⇒ (o 1 o 2 ∧ o 3 o 4 )".Let us show by induction that P(σ) holds for any σ ∈ tw(Σ):

2 .

 2 t < time(σ . (δ, a)) ≤ t . Then, obs(σ . (δ, a), t) = obs(σ, t), meaning that (see previous case) o 1 = o 1 . Let us consider (σ, time(σ . (δ, a))), o 1a ∈ E ϕ and (σ . (δ, a), time(σ . (δ, a))), o 1b ∈ E ϕ . Following the induction hypothesis, since P(σ) holds, o 1 o 1a o 1b . Thus, we have to show that o 1b o 2 . Since time(σ . (δ, a)) ≤ t , obs(σ . (δ, a), time(σ . (δ, a))) = σ.(δ, a) = obs(σ.(δ, a), t ), thus if (σ.(δ, a), σ s2 , σ c ) ∈ store ϕ , then o 1b = obs(σ s2 , time(σ . (δ, a))), and o 2 = obs(σ s2 , t ). Since time(σ . (δ, a)) ≤ t , this means that o 1b o 2 . Thus o 1 o 2 .

3 .

 3 time(σ . (δ, a)) ≤ t ≤ t . Then, obs(σ . (δ, a), t) = obs(σ . (δ, a), t ) = σ . (δ, a). Thus, if (σ . (δ, a), σ s0 , σ c ) ∈ store ϕ , then o 1 = obs(σ s0 , t) and o 2 = obs(σ s0 , t ). Since t ≤ t , this means that o 1 o 2 . Thus, in all cases, the first required condition holds (i.e. o 1 o 2 ). Let us now consider (δ , a ) ∈ R ≥0 ×Σ, (σ.(δ, a), time(σ.(δ, a).(δ , a ))), o 3 ∈ E ϕ , and (σ.(δ, a).(δ , a ), time(σ.(δ, a).(δ , a ))), o 4 ∈ E ϕ . We have to show that o 3 o 4 . Since obs(σ . (δ, a), time(σ . (δ, a) . (δ , a ))) = σ . (δ, a) and obs(σ . (δ, a) . (δ , a ), time(σ . (δ, a) . (δ , a ))) = σ . (δ, a) . (δ , a ), if (σ . (δ, a), σ s3 , σ c ) ∈ store ϕ and (σ . (δ, a) . (δ , a ), σ s4 , σ c ) ∈ store ϕ , then o 3 = obs(σ s3 , time(σ . (δ, a) . (δ , a ))) and o 4 = obs(σ s4 , time(σ . (δ, a) . (δ , a ))). Following the definition of store ϕ (Definition 4.19), it is clear that o 3 σ s4 . Thus, since time(o 3 ) ≤ time(σ . (δ, a) . (δ , a )), o 3 o 4 . This means that P(σ . (δ, a)) holds. Thus, for any σ ∈ tw(Σ) and (δ, a) ∈ R ≥0 × Σ, P(σ) =⇒ P(σ . (δ, a)).

  Induction step: let us suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (δ, a) ∈ R ≥0 × Σ, (σ, σ s0 , σ c ) ∈ store ϕ , (σ . (δ, a), σ t0 , σ d ) ∈ store ϕ , and σ s = obs(σ s0 , time(σ . (δ, a))). Let us also consider t ≥ time(σ . (δ, a)). If σ . (δ, a) ∈ Pre(ϕ, t), then P(σ . (δ, a), t) trivially holds. Let us consider that σ . (δ, a) ∈ Pre(ϕ, t). • If a ∈ Σ u , then σ t0 = σ s . (time(σ . (δ, a)) -time(σ s ), a) . σ s for some σ s ∈ tw(Σ). Since σ . (δ, a) ∈ Pre(ϕ, t), this means that for any t ≤ t, G(Reach((σ . (δ, a)) |Σu , t ), Π Σ (obs(σ . (δ, a), t )) |Σc ) = ∅. This means that for any t ≤ t -time(σ . (δ, a)), t ∈ T(Reach((σ . (δ, a)) |Σu ), Π Σ (σ . (δ, a)) |Σc ). Now, by induction hypothesis, since σ ∈ Pre(ϕ, time(σ.(δ, a))) (otherwise σ . (δ, a) would be in Pre(ϕ, t)), σ |Σu = σ s , and Π Σ (nobs(σ s0 , time(σ . (δ, a)))) |Σc . σ c = Π Σ (σ) |Σc . Thus, for any t ≤ t -time(σ . (δ, a)), t ∈ T(Reach(σ s . (time(σ . (δ, a)) -time(σ s ), a)), Π Σ (nobs(σ s0 , time(σ . (δ, a)))) . σ c ). Thus, obs(σ s , t -time(σ . (δ, a))) = . It follows that obs(σ t0 , t) = σ s .(time(σ.(δ, a))-time(σ s ), a).obs(σ s , t-time(σ.(δ, a))) = σ s .(time(σ.(δ, a))-time(σ s ), a) = (σ.(δ, a)) |Σu and Π Σ (nobs(σ t0 , t)).σ d = σ s .σ d = Π Σ (nobs(σ s0 , time(σ.(δ, a)))).σ c = Π Σ (σ) |Σc = Π Σ ((σ.(δ, a)) |Σc ). Thus P(σ . (δ, a), t) holds. • Otherwise, a ∈ Σ c , and there exists σ s such that σ t0 = σ s . σ s . Since σ . (δ, a) ∈ Pre(ϕ, t), for any t ≤ t, G(Reach((σ . (δ, a)) |Σu , t ), Π Σ (obs(σ . (δ, a), t )) |Σc ) = ∅. Thus, for any t ≤ t -time((σ . (δ, a)) |Σu ), t ∈ T(Reach((σ.(δ, a)) |Σu ), Π Σ ((σ.(δ, a)) |Σc )). Now, by induction hypothesis, considering that (σ . (δ, a)) |Σu = σ |Σu and (σ . (δ, a)) |Σc = σ |Σc . (time(σ . (δ, a)) -time(σ |Σc ), a), and since σ ∈ Pre(ϕ, time(σ . (δ, a))), for any t ≤ t -time(σ . (δ, a)), t ∈ T(Reach(σ s , time(σ . (δ, a))), Π Σ (nobs(σ s0 , time(σ . (δ, a)))) . σ c . a). Thus, obs(σ st (time(σ . (δ, a)) -time(σ s )), t -time(σ . (δ, a))) = . Thus, obs(σ s , t-time(σ.(δ, a))+time(σ.(δ, a))-time(σ s ))t (t -time(σ . (δ, a))) = , meaning that obs(σ s , t -time(σ s )) = . Thus, obs(σ t0 , t) = σ s .obs(σ s , t-time(σ s )) = σ s = σ |Σu , and Π Σ (nobs(σ t0 , t)) . σ d = Π Σ (nobs(σ s0 , time(σ . (δ, a)))) . σ c . a = Π Σ (σ |Σc ) . a = Π Σ ((σ . (δ, a)) |Σc ).

  -1 . (buf c . a) = Π Σ (obs(σ s , t -time(σ s ))t t ) -1 . (buf c . a) = Π Σ (obs(σ s , t -time(σ s ))) -1 . (buf c . a) Moreover, since Π Σ (nobs(σ t0 , t)) . σ d = Π Σ (obs(σ t0 , t) -1 . σ t0 ) . σ d = (Π Σ (obs(σ t0 , t)) -1 . Π Σ (σ t0 )) . σ d = Π Σ (obs(σ s . σ s , t)) -1 . (Π Σ (σ t0 ) . σ d ) = Π Σ (σ s . obs(σ s , t -time(σ s ))) -1 . (Π Σ (σ t0 ) . σ d ) = (Π Σ (σ s ). Π Σ (obs(σ s , t -time(σ s )))) -1 .

  (t -time(σ s ), a))) = Reach(σ t0 , t -t + time(σ . (δ, a))) = Reach(σ t0 , t) and Π Σ ( nobs(σ t0 , t)) . σ d = Π Σ (obs(σ t0 , t) -1 . σ t0 ) . σ d = (Π Σ (obs(σ t0 , t)) -1 . Π Σ (σ t0 )) . σ d = Π Σ (obs(σ s . (t -time(σ s ), a) . σ s , t)) -1 . (Π Σ (σ s . (t -time(σ s ), a) . σ s ) . σ d ) = (Π Σ (σ s . (t -time(σ s ), a)) . Π Σ (obs(σ s , t -t ))) -1 . (Π Σ (σ s . (t -time(σ s ), a)) . Π Σ (σ s ) . σ d ) = Π Σ (obs(σ s , t -t )) -1 . (Π Σ (σ s . (t -time(σ s ), a)) -1 .

) - 1 .

 1 (buf c . a)) = Π Σ (obs(σ s , t -time(σ s ))) -1 . (buf c . a) considering that Finally, by induction hypothesis, σ s0 = Σu σ, thus, since σ t0|Σu = (σ s . (time(σ . (δ, a)) -time(σ s ), a)) |Σu = σ s|Σu . ((time(σ . (δ, a)) -time(σ s ), a)+ t (time(σ s ) -time(σ s|Σu ))) = σ s|Σu . (time(σ . (δ, a)) -time(σ s )+ time(σ s ) -time(σ s|Σu ), a) = σ s|Σu . (time(σ . (δ, a)) -time(σ s|Σu ), a) = σ |Σu . ((δ, a) + t (time(σ) -time(σ |Σu ))) = (σ . (δ, a)) |Σu Thus, P(σ . (δ, a)) holds.• Otherwise, a ∈ Σ c , and then, there exists σ s ∈ tw(Σ) such that σ t0 = σ s . σ s and Π Σ (σ s ) . σ d = Π Σ (nobs(σ s0 , time(σ . (δ, a)))) . σ c . a.Thus, Π Σ (σ t0 ) |Σc . σ d = Π Σ (σ s ) |Σc . Π Σ (σ s ) . σ d = Π Σ (σ s ) |Σc . Π Σ (nobs(σ s0 , time(σ . (δ, a)))) . σ c . a = Π Σ (σ s0 ) |Σc . σ c . a = Π Σ (σ) |Σc . a = Π Σ (σ . (δ,a)) |Σc As in the case where a ∈ Σ u , for any i ∈ [1; |σ s|Σc |], time(σ t0|Σc[..i] ) ≤ time(σ |Σc[..i] ). Moreover, by construction, delay(σ s (1)) ≥ time(σ.(δ, a))time(σ s ), thus for i ∈ [|σ s|Σc | + 1; time(σ t0|Σc )], if i = i -|σ s|Σc |, then time(σ t0|Σc[..i] ) = time(σ s ) + time(σ s[..i ] ) ≥ time(σ s ) + time(σ . (δ, a))time(σ s ) = time(σ . (δ, a)). Since time(σ . (δ, a)) ≤ time((σ . (δ, a)) |Σc[..i] ), and Π Σ (σ t0 ) |Σc Π Σ (σ . (δ, a)) |Σc , this means that σ t0 dΣ c σ . (δ, a). Finally, σ t0|Σu = σ s|Σu = σ |Σu = (σ . (δ, a)) |Σu . Thus P(σ . (δ, a)) holds.

Now, let us prove item 3 .

 3 Let us consider σ ∈ tw(Σ), (σ, σ s0 , σ c ) ∈ store ϕ , (δ, u) ∈ R ≥0 × Σ u , (σ . (δ, u), σ t0 , σ d ) ∈ store ϕ , and σ s = obs(σ s0 , time(σ . (δ, u))). Then, (σ, time(σ . (δ, u))), σ s ∈ E ϕ , and following the definition of store ϕ (Definition 4.19), σ s . (time(σ . (δ, u)) -time(σ s ), u) σ t0 . Thus, if (σ . (δ, u), time(σ . (δ, u))), o 4 ∈ E ϕ , then o 4 = obs(σ t0 , time(σ . (δ, u))). Since time(σ s . (time(σ . (δ, u)) -time(σ s ), u)) = time(σ . (δ, u)), it follows that σ s . (time(σ . (δ, u)) -time(σ s ), u) o 4 .

Proof.•

  Let us consider σ ∈ tw(Σ), (δ, a) ∈ R ≥0 × Σ such that (σ, time(σ . (δ, a))) ∈ Pre(ϕ), E an enforcement function that is compliant with respect to Σ u and Σ c , (σ, time(σ . (δ, a))), o ∈ E ∩ E ϕ , (σ . (δ, a), σ t0 , σ d ) ∈ store ϕ , and(σ . (δ, a), ∞), o 1 ∈ E. Let us suppose that σ s0 ≺ d o 1 .We then have to prove that there existsσ u ∈ tw(Σ u ) such that if (σ . (δ, a) . σ u , ∞), o u ∈ E, then o u |= ϕ.Let us consider σ s = obs(o, time(σ . (δ, a))). Then, since E ϕ and E are compliant, there exists σ s ∈ tw(Σ) such that σ t0 = o . σ s and σE s ∈ tw(Σ) such that o 1 = σ s . σ E s . Now, since E ϕ (σ . (δ, a)) ≺ d E(σ . (δ, a)), this means that σ s ≺ d σ E s . If a ∈ Σ u , since(σ, time(σ . (δ, a))) ∈ Pre(ϕ), we know that (see proof of Proposition 4.7) σ s ∈ G(Reach(σ s ), Π Σ (σ s ) -1 |Σc . Π Σ (σ) |Σc

  (δ, a) . σ u , ∞), o u ∈ E ϕ , then o u |= ϕ. All that is needed is to adapt the parameters of G:σ s ∈ G(Reach(σ s , time(σ . (δ, a))), Π Σ (σ s ) -1 |Σc . Π Σ (σ . (δ, a)) |Σc ), but the arguments are the same.Thus, if E is compliant, and σ ∈ tw(Σ) and (δ,a) ∈ R ≥0 × Σ are such that (σ, time(σ . (δ, a))) ∈ Pre(ϕ), (σ, time(σ . (δ, a))), o ∈ E ∩ E ϕ , (σ . (δ, a), ∞), o 1 ∈ E ϕ , (σ . (δ, a), ∞), o 1 ∈ E, and o 1 ≺ d o 1 , then there exists σ u ∈ tw(Σ u ) such that if (σ . (δ, a) . σ u ), o u ∈ E, then o u |= ϕ.

  Induction step: let us suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (δ, a) ∈ R ≥0 × Σ, t ∈ R ≥0 , (σ, σ s0 , σ c ) ∈ store ϕ , (σ . (δ, a), σ t0 , σ d ) ∈ store ϕ , σ s = obs(σ s0 , time(σ . (δ, a))), and c = Reach E (σ, time(σ . (δ, a))). Then, by induction hypothesis, c = nobs(σ s0 , time(σ . (δ, a))), σ c , Reach(σ s0 , time(σ . (δ, a))), time(σ . (δ, a)) -time(σ s ) .

  (δ, a))) after (0, a) = Reach(σ s . (time(σ . (δ, a)) -time(σ s ), a)), σ b = κ ϕ (q, Π Σ (nobs(σ s0 , time(σ.(δ, a)))).σ c ), andσ c = Π Σ (σ b ) -1 .(Π Σ (σ b ).σ c ). Thus, σ b is such that σ t0 = σ s . σ b , thus c after (a/ pass-uncont(a)/a) = σ -1 s . σ t0 , σ d , Reach(σ s . (time(σ . (δ, a)) -time(σ s , a))), 0 . Then, rules delay() and dump() can be applied, until date t is reached, leading to the configuration nobs(σ t0 , t), σ d , Reach(σ t0 , t), t -time(obs(σ t0 , t)) .Moreover, considering the transitions taken,A. Proofs output(σ . (δ, a), t) = output(σ, time(σ . (δ, a))) . (time(σ . (δ, a))time(σ s ), a) . obs(σ b , t -time(σ . (δ, a))) = σ s . (time(σ . (δ, a)) -time(σ s ), a). obs(σ b , t -time(σ . (δ, a))) = obs(σ t0 , t) Thus, P(σ . (δ, a), t) holds. • Otherwise, a ∈ Σ c , and then rule store-cont(a) can be applied from configuration c, leading to c after (a/ store-cont(a)/ ) = σ b , σ c , Reach(σ s0 , time(σ . (δ, a))), t -time(σ s ) , with σ b = κ ϕ (Reach(σ s0 , time(σ . (δ, a))), Π Σ (nobs(σ s0 , time(σ. (δ, a)))) . σ c . a) + t (t -time(σ s )) and σ c = Π Σ (σ b ) -1 . (Π Σ (nobs(σ s0 , time(σ . (δ, a))))) . σ c . a. Thus, σ b is such that σ t0 = σ s . σ b , and σ c = σ d . Then, rules delay() and dump() can be applied until date t is reached, leading to Reach E (σ . (δ, a), t) = nobs(σ t0 , t), σ d , Reach(σ t0 , t), t -time(obs(σ t0 , t)) . Moreover, considering the transitions taken, output(σ . (δ, a), t) = output(σ, time(σ . (δ, a))) . obs(σ b , t -time(σ s )) = σ s . obs(σ b , t -time(σ s )) = obs(σ s . σ b , t) = obs(σ t0 , t) Thus, P(σ . (δ, a), t) holds. Thus, in both cases, P(σ . (δ, a), t) holds. This means that for any t ∈ R ≥0 , P(σ . (δ, a), t) holds. Thus P(σ) =⇒ P(σ . (δ, a)).

Table 3 .

 3 2 -Example of the evolution of (σ s , σ c ) = store ϕex (σ), with input Auth . LockOn . Write . LockOff LockOn . Write Auth . LockOn Write Auth . LockOn . Write . LockOff Auth . LockOn . LockOff . Write Example 3.5. Consider property ϕ ex

	σ	σ s	σ c
	Auth	Auth	
	Auth . LockOn	Auth . LockOn	
	Auth .		

  a), t). To prove this, we first show by induction that E ϕ (σ, t) E ϕ (σ, t ). Considering (t , a) such that σ . (t , a) ∈ tw(Σ), we distinguish different cases according to the values of t compared to t and t :• t ≤ t. Then, in the definition of store ϕ , t 1 (or t 2 , if a is controllable) has the same value in store Then the proposition holds because in the definition of E ϕ , only the observation of the input word at the given time is considered, meaning that E ϕ (σ . (t , a), t) = E ϕ (σ, t) and E ϕ (σ . (t , a), t ) = E ϕ (σ, t ). By induction hypothesis, the proposition thus holds.• t < t < t . Then, E ϕ (σ . (t , a), t) = E ϕ (σ,t), and E ϕ (σ . (t , a), t ) = Π 1 (store ϕ (σ.(t , a), t )), meaning that, looking at the definition of store ϕ , E ϕ (σ . (t , a), t) E ϕ (σ . (t , a), t ).

	Thus, E

ϕ (σ, t) and store ϕ (σ . (t , a), t ). Then, comparing t to t 1 , either E ϕ (σ . (t , a), t) = if t < t 1 , and then E ϕ (σ . (t , a), t) E ϕ (σ . (t , a), t ), or t ≥ t 1 , and then there exists σ s and σ b such that E ϕ (σ . (t , a), t) = σ s . obs(σ b , t) and E ϕ (σ . (t , a), t ) = σ s . obs(σ b , t ), meaning that E ϕ (σ . (t , a), t) E ϕ (σ . (t , a), t ).

• t ≥ t . ϕ (σ, t) E ϕ (σ, t ). Then, what remains to show is that if σ . (t, a) ∈ tw(Σ), then E ϕ (σ, t) E ϕ (σ . (t, a), t).

Following the definition of store ϕ , it is clear that Π 1 (store ϕ (σ, t))

Π 1 (store ϕ (σ . (t, a), t)), and thus E ϕ (σ, t) E ϕ (σ . (t, a), t).

  .10 over a set of controllable actions Σ, such that Write ∈ Σ. With timed word[START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF] Write) .(1.5, Write) as input to the EM,

	t =	/ , , (l 0 , 0), 0, ⊥ /(1, Auth).(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
		↓ delay(1)
	t =	/ , , (l 0 , 1), 1, ⊥ /(1, Auth).(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
		↓ pass-uncont((1, Auth))
	t =	(1, Auth)/ , , (l 1 , 0), 1, ⊥ /(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
		↓ compute()
	t =	(1, Auth)/ , , (l 1 , 0), 1, /(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
		↓ delay(1)
	t =	(1, Auth)/ , , (l 1 , 1), 2, /(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
		↓ pass-uncont((2, on))
	t =	(1, Auth).(2, on)/ , , (l 2 , 1), 2, ⊥ /(4, w).(5, off ).(6, on).(7, w).(8, off )
		↓ compute()
	t =	(1, Auth).(2, on)/ , , (l 2 , 1), 2, /(4, w).(5, off ).(6, on).(7, w).(8, off )
		↓ delay(2)
	t =	

[START_REF]Π Σ (σ ) maxbuffer(buf c ), because there is no edge (π(i), π(i+ 1)) belonging to E 3 or E 4 , and Π 2 (π(1)) = maxbuffer[END_REF] Auth)

.(2, on)/ , , (l 2 , 3), 4, /(4, w).(

5

, off ).(6, on).(7, w).(8, off ) ↓ store-cont((4, w)) t = (1, Auth).(2, on)/ , (4, w), (l 2 , 3), 4, ⊥ /(5, off ).(6, on).(7, w).(8, off ) ↓ compute() t = (1, Auth).(2, on)/ , (4, w), (l 2 , 3), 4, /(5, off ).(6, on).(7, w).(8, off ) ↓ delay(1) t =

Table 3 .

 3 3 -Values of (σ s , σ b , σ c ) = store ϕt ((1, Auth) . (2, LockOn) . (4, Write) .(5, LockOff ) . (6, LockOn) . (7, Write) . (8, LockOff )) over time.

	t	σ s	σ b	σ c
	1 (1, Auth)			
	2 (1, Auth) . (2, LockOn)		
	4 (1, Auth) . (2, LockOn)		Write
	5 (1, Auth) . (2, LockOn) . (5, LockOff ) (7, Write)	
	6 (1, Auth).(2, LockOn).(5, LockOff ).		Write
	(6, LockOn)			
	7 (1, Auth).(2, LockOn).(5, LockOff ).		Write . Write
	(6, LockOn)			
	8 (1, Auth).(2, LockOn).(5, LockOff ).	(10, Write).	
	(6, LockOn) . (8, LockOff )	(10, Write)	
	10 (1, Auth).(2, LockOn).(5, LockOff ).		

(6, LockOn) 

. (8, LockOff ) . (10, Write) . (10, Write) the output obtained with our approach at date t = 4 is (4, Write) . (4, Write) whereas the output obtained in

[START_REF] Pinisetty | Runtime enforcement of timed properties[END_REF] 

would be (2, Write).

Proofs

  Case 1: t ≥ t 1 . Since t ≥ t, then t ≥ t 1 , thus min({t , t 1 }) = min({t, t 1 }) = t 1 , thus σ d1 = σ d2 . It follows that:σ t1 = σ s . (t , a) . obs(σ d1 , t) σ s . (t , a) . obs(σ d1 , t ) = σ s . (t , a) . obs(σ d2 , t ) = σ t2 . Case 2: t < t 1 . Then, min({t, t 1 }) = t. Since t < t 1 , by definition of t 1 ,this means that G(Reach(σ s . (t , a), t), Π Σ (nobs(σ b , t )) . σ c ) = ∅, and thus σ d1 = . Sinceσ d1 = , σ t1 = σ s . (t , a) σ s . (t , a) . obs(σ d2 , t ) = σ t2 . Thus, if t ≥ t ≥ t and a ∈ Σ u , P(σ) =⇒ E ϕ (σ . (t , a), t) E ϕ (σ . (t , a), t ).-Otherwise, a ∈ Σ c , and then considering t 2 as defined in Definition 3.19,t 2 = min({t 0 ∈ R ≥0 | t 0 ≥ t ∧G(Reach(σ s , t 0 ), Π Σ (nobs(σ b , t )).σ c .a) = ∅}).Then, Reach(σ s , min({t, t 2 })), Π Σ (nobs(σ b , t )) . σ c . a)

	σ d1 = min lex (max (G(

  Thus, if t ≥ t ≥ t and a ∈ Σ c , P(σ) =⇒ E ϕ (σ . (t , a), t) E ϕ (σ . (t , a), t ). , if t ≥ t ≥ t , for all a ∈ Σ, P(σ) =⇒ E ϕ (σ . (t , a), t) E ϕ (σ . (t , a), t ). Since P(σ) holds, then E ϕ (σ . (t , a), t) = E ϕ (σ, t) E ϕ (σ, t ) = E ϕ (σ . (t , a), t ).

	Therefore• If t < t , then t < t , obs(σ.(t , a), t) = obs(σ, t), and obs(σ.(t , a), t ) =
	obs(σ, t ). Thus,
	E ϕ (σ . (t , a), t) = store ϕ (obs(σ . (t , a), t), t)
	= store ϕ (obs(σ, t), t)
	= E ϕ (σ, t),
	and
	E ϕ (σ . (t , a), t ) = store ϕ (obs(σ . (t , a), t ), t )
	= store ϕ (obs(σ, t ), t )
	= E ϕ (σ, t ).

  Thus, t 1 ≤ t ≤ t, meaning that σ dt t 1 ∈ G(Reach(σ s . (t , a), t 1 ), Π Σ (σ b ) . σ c ). Thus, considering the definition of G (Definition 3.18), it follows that nobs(σ d , t)t t ∈ G(Reach(σ s . (t , a) . obs(σ d , t), t), Π Σ (obs(σ d , t)) -1 . (Π Σ (nobs(σ b , t )) . σ c )). Moreover, Π Σ (nobs(σ b , t )) . σ c = σ |Σc , thus Π Σ (obs(σ d , t)) -1 . (Π Σ (nobs(σ b , t )) . σ c ) = Π Σ (nobs(σ d , t)). σ e , meaning that nobs(σ d , t)t t ∈ G(Reach(σ t , t), Π Σ (nobs(σ d , t)) . σ e ).

	Thus, P(σ . (t , a), t) holds.

  Thus, t 2 ≤ t ≤ t, therefore σ dt t 2 ∈ G(Reach(σ s , t 2 ), Π Σ (nobs(σ b , t )).σ c .a). It follows that nobs(σ d , t)t t ∈ G(Reach(σ s .obs(σ d , t), t),Π Σ (obs(σ d , t)) -1 . (Π Σ (nobs(σ b , t )) . σ c . a)). Moreover, Π Σ (nobs(σ b , t )) . σ c . a = Π Σ ((σ . (t , a)) |Σc ) = Π Σ (σ d ) . σ e . Thus, Π Σ (obs(σ d , t)) -1 . (Π Σ (nobs(σ b , t )) . σ c . a) = Π Σ (nobs(σ d , t)) . σ e . Thus, nobs(σ d , t)t t ∈ G(Reach(σ t , t), Π Σ (nobs(σ d , t)). σ e ). Pre(ϕ, t) and σ ∈ Pre(ϕ, t ), then, let us consider w b = nobs(σ b , t )t t . By induction hypothesis, since σ ∈ Pre(ϕ, t ), we know that E ϕ (σ) |= ϕ, andw b ∈ G(Reach(σ s , t ), Π Σ (nobs(σ b , t )) . σ c ). -If a ∈ Σ u , then, since w b ∈ G(Reach(σ s , t ), Π Σ (nobs(σ b , t )) . σ c ), Reach(σ s , t ) after (w b , 0) = Reach(σ s , t ) ∈ S(Π Σ (nobs(σ b , t )) . σ c ).Thus, following lemma A.8, since a ∈ Σ u , Reach(σ s , t ) after (0, a) = Reach(σ s . (t , a)) ∈ S(Π Σ (nobs(σ b , t )) . σ c ) ∪ I(Π Σ (nobs(σ b , t )) . σ c ). Then, following lemma A.9, this means that G(Reach(σ s .(t , a)), Π Σ (nobs(σ b , t)) . σ c ) = ∅.It follows that t 1 = t , thus min({t,t 1 }) = t 1 = t , and σ dt t ∈ G(Reach(σ s . (t , a), t ), Π Σ (nobs(σ b , t )) . σ c ). This implies that Reach(σ s . (t , a) . σ d ) = Reach(E ϕ (σ . (t , a))) ∈ F G ,meaning that E ϕ (σ . (t , a)) |= ϕ. Moreover, following the definition of G (Definition 3.18), nobs(σ d , t)t t ∈ G(Reach(σ s . (t , a) . obs(σ d , t), t), Π Σ (obs(σ d , t)) -1 . (Π Σ (nobs(σ b , t )) . σ c )). Thus, since σ t = σ s . (t , a) . obs(σ d , t), and Π Σ (σ d ) . σ e = Π Σ (nobs(σ b , t )) . σ c , it follows that nobs(σ d , t)t t ∈ G(Reach(σ t , t), Π Σ (nobs(σ d , t)) . σ e ). This means that P(σ . (t , a), t) holds.

	This means that P(σ . (t , a), t) holds.
	Thus, if σ . (t , a) ∈ Pre(ϕ, t) and σ ∈ Pre(ϕ, t ), P(σ, t) =⇒ P(σ .
	(t , a), t).
	• If σ . (t , a) ∈

  Then, by induction hypothesis, σ s|Σu = σ |Σu , Π Σ (σ s|Σc .σ b ).σ c = Π Σ (σ |Σc ), and σ s|Σc d σ |Σc .

Induction step: suppose now that for some σ ∈ tw(Σ), P(σ) holds. Let us consider (t , a) such that σ . (t , a) ∈ tw(Σ), t ≥ t = time(σ . (t , a)), (σ s , σ b , σ c ) = store ϕ (σ, t ), and (σ t , σ d , σ e ) = store ϕ (σ . (t , a), t).

• If a ∈ Σ u , then, by construction, σ d satisfies Π Σ (σ d ) Π Σ (nobs(σ b , t )).σ c and σ d = =⇒ date(σ d (1)) ≥ t . -Projection on Σ u : Since a ∈ Σ u , σ t|Σu = (σ s . (t , a) .

obs(σ d , t)) |Σu . Since σ d ∈ tw(Σ c ), σ t|Σu = σ s|Σu .(t , a) = σ |Σu .(t , a) = (σ.(t , a)) |Σu . -Projection on Σ c : Π Σ (σ t|Σc . nobs(σ d , t)) . σ e = Π Σ ((σ s . (t , a) . obs(σ d , t)) |Σc . nobs(σ d , t)) . σ e = Π Σ (σ s|Σc . σ d ) . σ e = Π Σ (σ s|Σc ) . Π Σ (σ d ) . σ e . By construction, Π Σ (σ d ) . σ e = Π Σ (nobs(σ b , t )) . σ c . Thus, Π Σ (σ t|Σc .σ d ).σ e = Π Σ (σ s|Σc ).Π Σ (nobs(σ b , t )).σ c = Π Σ (σ s|Σc . nobs(σ b , t )) . σ c = Π Σ (σ |Σc ) = Π Σ ((σ . (t , a)) |Σc

). Moreover, σ t ∈ tw(Σ), and since σ t = σ s . (t , a) . obs(σ d , t), it follows that for all i ∈ [1; | obs(σ d , t)|], date(σ d (i)) ≥ t . Since σ s|Σc d σ |Σc , for all i ∈ [1; |σ s|Σc |], date(σ s|Σc (i)) ≥ date(σ |Σc (i)). Thus, for all i ∈ [1; |σ t|Σc |], date(σ t|Σc

  a, andσ d = =⇒ date(σ d (1)) ≥ t . -Projection on Σ u : σ t|Σu = (σ s . obs(σ d , t)) |Σu . Since σ d ∈ tw(Σ c ), σ t|Σu = σ s|Σu = σ |Σu = (σ . (t , a)) |Σu .-Projection on Σ c : Π Σ (σ t|Σc . nobs(σ d , t)) . σ e = Π Σ ((σ s . obs(σ d , t)) |Σc .

nobs(σ d , t)) . σ e = Π Σ (σ s|Σc . σ d ) . σ e = Π Σ (σ s|Σc ) . Π Σ (σ d ) . σ e . By construction, it is ensured that Π Σ (σ d ) . σ e = Π Σ (nobs(σ b , t )) . σ c . a.

  it follows that t E 2 = t 2 as defined in Definition 3.19. If t ≥ t E 2 = t 2 , then rule delay(t 2 -t ) can be applied, followed by rule compute. Then, c after (( / delay(t 2 -t )/ ) . ( / compute()/ )) = σ E d , σ E e , q after ( , t 2 -t ), t 2 , , where σ

  an alternation of rules delay and dump can be applied until date t is reached. This leads to Reach(Rules(σ . (t , a), t)) = nobs(σ E d , t), σ E e , q after (obs(σ E d , t), t), t, = nobs(σ d , t), σ e , Reach(σ t , t), t, . Moreover, output(Rules(σ.(t , a), t)) = output(σ, t ).obs(σ d , t) = σ s . obs(σ d , t) = E ϕ (σ . (t , a), t). , if t ≥ t 2 , P(σ . (t , a), t) holds. Otherwise, t < t 2 , meaning that σ E

	Thus

d = = σ d ,

and σ

  Induction basis: for σ = , let us consider t ∈ R ≥0 and t ≥ t. Then, ( , t), ∈ E ϕ , and( , t ), ∈ E ϕ . Moreover, for (δ, a) ∈ R ≥0 × Σ, ( , δ), ∈ E ϕ , thus if ((δ, a), δ), o 4 ∈ E ϕ , then o 4 .Thus, P( ) holds.Induction step: suppose that P(σ) holds for some σ ∈ tw(Σ). Then, let us consider(δ, a) ∈ R ≥0 × Σ, t ∈ R ≥0 ,and t ≥ t. We first prove that the first condition holds. Let us consider (σ, t), o 1 ∈ E ϕ , (σ, t ), o 2 ∈ E ϕ , (σ . (δ, a), t), o 1 ∈ E ϕ , and (σ . (δ, a), t ), o 2 ∈ E ϕ . We have to prove that o 1 o 2 . Three cases are possible: Let us consider (obs(σ, t), σ s1 , σ c ) ∈ store ϕ and A. Proofs (obs(σ, t ), σ s2 , σ c ) ∈ store ϕ . Then, considering the definition of E ϕ (Definition 4.19), o 1 = obs(σ s1 , t) = o 1 , and o 2 = obs(σ s2 , t ) = o 2 (since obs(σ, t) = obs(σ . (δ, a), t) and obs(σ, t ) = obs(σ . (δ, a), t )). Following the induction hypothesis, P(σ) holds, meaning that o 1 o 2 . This means that o 1 o 2 .

1. t ≤ t < time(σ . (δ, a)). Then obs(σ . (δ, a), t ) = obs(σ, t ), and obs(σ .

(δ, a), t) = obs(σ, t).

  Thus, following lemma A.15: nobs(σ st t , t -t )t (t -t -time(obs(σ st t , t -t ))) ∈ G(Reach(σ s , t ) after (σ st t , t -t ), Π Σ (obs(σ st t , t -t )) -1 . (buf c . a)) t t and obs(σ st t , t -t ) = and obs(σ t0 , t) = σ s . Thus, nobs(σ st t , t -t )t (t -t -time(obs(σ st t , t -t ))) = (nobs(σ s , t -time(σ s ))t t ) --time(obs(σ st t , t -t ))) = nobs(σ s , t -time(σ s ))t (t -t -time(obs(σ s , t -time(σ s ))t t )) = nobs(σ t0 , t)t (t -t -(time(obs(σ s , t -time(σ s ))) -t )) = nobs(σ t0 , t)t (t -t + t -(time(obs(σ t0 , t)) -time(σ s ))) = nobs(σ t0 , t)t (t -time(σ s ) -time(obs(σ t0 , t)) + time(σ s )) = nobs(σ t0 , t)t (t -time(obs(σ t0 , t)))Thus, in both cases, this means that A. Proofs nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) ∈ G(Reach(σ s , t ) after (σ st t , t -t ), Π Σ (obs(σ st t , t -t )) -1 . (buf c . a)) Now, since t ≥ time(σ s ), Reach(σ s , t ) after (σ st t , t -t ) = Reach(σ s ) after ( , t -time(σ s )) after (σ st t , t -t ) = Reach(σ s ) after ( , t ) after (σ st t , t -t ) = Reach(σ s ) after ((σ st t ) + t t , t -t + t ) = Reach(σ s ) after (σ s , t -time(σ s )) = Reach(σ s . σ s , t) and Π Σ (obs(σ st t , t -t ))

	If

delay(σ s (1)) > t -time(σ s ) (i.e. delay((σ st t )(

1

)) > t -t ), then:

nobs(σ st t , t -t ) = nobs(σ s , t -t + t )t t = nobs(σ s , t -time(σ s )) t (t -t ) = nobs(σ s , t -time(σ s ))t (t -t + t ) = nobs(σ t0 , t)t (t -time(σ s )) = nobs(σ t0 , t)t (t -time(obs(σ t0 , t)))

Otherwise, delay(σ s (1)) ≤ t -time(σ s ), and then nobs(σ st t , tt ) = nobs(σ s , t -time(σ s )), thus: nobs(σ st t , t -t )t (t -t

  becomes:nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) ∈ G(Reach(σ t0 , t), Π Σ (nobs(σ t0 , t)) . σ d ) (σ s , t -t )t (t -t -time(obs(σ s , t -t ))) ∈ G(Reach(σ s . (t -time(σ s ), a)) after (σ s , t -t ), Π Σ (obs(σ s , t -t )) -1 . buf c ) Since t ≥ t = time(σ . (δ, a)), nobs(σ t0 , t) = nobs(σ s . (t -time(σ s ), a) . σ s , t) = nobs(σ s , t -time(σ s . (t -time(σ s ), a))) = nobs(σ s , t -time(σ . (δ, a))) = nobs(σ s , t -t ) and obs(σ t0 , t) = σ s . (t -time(σ s ), a) . (obs(σ s , t -t )).Thus, time(obs(σ t0 , t)) = time(σ s .(t -time(σ s ), a))+time(obs(σ s , t-t )) = t + time(obs(σ s , t -t )). means that: nobs(σ s , t -t )t (t -t -time(obs(σ s , t -t ))) = nobs(σ t0 , t)t (t -t -(time(obs(σ t0 , t) -t ))) = nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) Thus, nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) ∈ G(Reach(σ

	This
	Thus, in both cases,

nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) ∈ G(Reach(σ t0 , t), Π Σ (nobs(σ t0 , t)) . σ d ). nobss . (t -time(σ s ), a)) after (σ s , t -t ), Π Σ (obs(σ s , t -t )) -1 . buf c )

Since Reach(σ s . (t -time(σ s ), a)) after (σ s , t -t ) = Reach(σ s . (t -time(σ s , a)) . σ s , t -t + time(σ s .

  ). Now, since σ s ≺ d σ E s , and since σ s is the maximal wordfor d that is in G, this means that σ E s ∈ G(Reach(σ s ), Π Σ (σ s ) -1 |Σc . Π Σ (σ) |Σc ). This means that one of the following does not hold :1. Π Σ (σ E s ) Π Σ (σ s ) -1 |Σc . Π Σ (σ)|Σc , but if this did not hold, then E would not be compliant.2. Reach(σs ) after σ E s ∈ F G . If this does not hold, then Reach(σ s . σ E s ) ∈ F G , meaning that o 1 |= ϕ. 3. ∀t ∈ R ≥0 , ∀v ∈ V s , Reach(σ s . σ E s , t) ∈ v =⇒ v, maxbuffer(Π Σ (σ s . obs(σ E s , t)) -1

Runtime Enforcement of (Timed) Properties with Uncontrollable Events

This is why we define the weaker notion of compliance, that requires that uncontrollable events are not modified by an enforcement mechanism, and that the order of controllable events is not changed.

Matthieu Renard 

Uncontrollable events are emphasised in italics.

E ϕ and store ϕ depend on Σ u and Σ c , but we did not write it in order to lighten the notations.

calculated with cloc (https://github.com/AlDanial/cloc)

We patched TiPEX to retrieve the times as we do in our tool, only modifying it to get times properly, and did not change the behaviour inside the part that is being measured.

For some properties, running TiPEX was too long to run it as many times as GREP.

Matthieu Renard

4. Enforcing Properties using a Büchi Game (q0, -, 0) (q0, -, 1) (q0, w, 0) (q1, -, 0) (q3, -, 0) (q0, w, 1) (q0, ww, 0) (q1, w, 0) (q3, w, 0) (q0, ww, 1) (q1, ww, 0) (q3, ww, 0) (q1, -, 1) (q2, -, 0) (q1, w, 1) (q2, w, 0) (q1, ww, 1) (q2, ww, 0) (q2, -, 1) (q2, w, 1) (q2, ww, 1) (q3, -, 1) (q3, w, 1) (q3, ww, 1) (l0, T, -, 0) (l0, T, -, 1) (l0, T, w, 0) (l3, T, -, 0) (l1, {x < 2}, -, 0) (l0, T, w, 1) (l0, T, ww, 0) (l3, T, w, 0) (l1, {x < 2}, w, 0) (l0, T, ww, 1) (l3, T, ww, 0) (l1, {x < 2}, ww, 0) (l2, T, -, 0) (l2, T, -, 1) (l2, T, w, 0) (l2, T, w, 1) (l2, T, ww, 0) (l2, T, ww, 1) (l3, T, -, 1) (l3, T, w, 1) (l3, T, ww, 1) (l1, {x >= 2}, -, 0) (l1, {x >= 2}, -, 1) (l1, {x >= 2}, w, 0) (l1, {x >= 2}, w, 1) (l1, {x >= 2}, ww, 0) (l1, {x >= 2}, ww, 1) (l1, {x < 2}, -, 1) (l1, {x < 2}, w, 1) (l1, {x < 2}, ww, 1)

Functions

In all this paper, we use functions to describe the input/output behaviour of enforcement mechanisms. We then use input and output to refer to "argument" and "image" of such functions, respectively. l 0 ->{a }{ x }{} l 1 ; l 0 ->{w}{}{} l 3 ; l 0 ->{n }{}{} l 3 ; l 0 ->{ f }{}{} l 3 ; l 1 ->{n }{}{} l 2 ; l 1 ->{w}{}{ x >= 2} l 1 ; l 1 ->{ f }{ x }{} l 1 ; l 1 ->{a }{}{} l 1 ; l 1 ->{w}{}{ x < 2} l 3 ; l 2 ->{a }{}{} l 2 ; l 2 ->{n }{}{} l 2 ; l 2 ->{ f }{ x }{} l 1 ; l 2 ->{w}{}{} l 3 ; l 3 ->{w}{}{} l 3 ; l 3 ->{a }{}{} l 3 ; l 3 ->{n }{}{} l 3 ; l 3 ->{ f }{}{} l 3 ; } } Listing 5.1 -Automaton file for ϕ t

The automaton must also be deterministic and complete (see Alur and Dill [1992]). If the automaton is not deterministic, the behaviour is undefined. Once the timed automaton is loaded, a symbolic graph is computed by the Zone Graph Generator to abstract its infinite semantics into a finite graph that is compatible with Büchi games, as per Definition 4.16. The graph that is built is actually the one described in Alur et al. [1992].

Zone Graph Generator

From the timed automaton, a symbolic graph is constructed using zones. This zone graph must be compatible with Büchi games, as per Definition 4.16. An algorithm to compute a symbolic graph compatible with Büchi games is given in Alur et al. [1992]. This algorithm has been implemented to compute the symbolic graph in this module.

In GREP, zones are represented by Difference Bound Matrices (DBMs), using the UPPAAL DBM library (UDBM, see UDBM [2011]), and its C API. The algorithm requires some functionality that is not provided by this C API (some of them exist in some higher-level wrappers), such as complementing zones into a list of zones. This functionality was added to our own wrapper of UDBM. No other third-party library was needed to compute the symbolic graph. This symbolic graph is used to build the final game graph, that will be used by the enforcement monitor.

Game Graph Generator

Using the symbolic graph, the Game Graph Generator builds a graph over which to play a Büchi game whose strategy is the one to be followed by the enforcement monitor. The graph is constructed as described in Definition 4.17. Once the graph is constructed, the Büchi game is solved for player P 0 (the enforcement monitor), with the set of Büchi nodes being the set of nodes whose location is accepting. The winning nodes are then the nodes from which the enforcement monitor ensures that its output will satisfy the property.

Following a path of winning nodes in the graph gives a strategy to follow such that the final output satisfies the property. This is how the EM uses the graph to actually enforce the property.

Enforcement Monitor Module (EMM)

The EMM uses the SCM to compute the output for a given input. It has five main public functions: init(G), getStrat(), delay(t), eventRcvd(e), and emit(). Function init(G) initialises the EMM following the strategy from graph G. Function getStrat() gives the strategy to follow, i.e. whether the first action of the buffer should be output or not. Since time is abstracted by the zone graph for the SCM, it needs to be notified that some time has passed, which is .4 -Timings of GREP and TiPEX on the response and co-safety properties. The x axis corresponds to the events of the input (from 1 to 1000), and the y axis corresponds to the logarithm of the timings (in nanoseconds) between the reads of the events. In all this section, we will use the notations from Section 3.1, meaning that ϕ is a property whose associated automaton is A ϕ = Q, q 0 , Σ, -→, F . In some proofs, we also use notations from Definition 3.10. Proof. We have to show that for σ and σ in Σ * , if σ σ , then E ϕ (σ) E ϕ (σ ).

To do this, we just have to show that for all a ∈ Σ, E ϕ (σ) E ϕ (σ . a). Indeed, if this holds for any σ ∈ Σ * and any a ∈ Σ, then if σ σ , for any i ∈

Let us consider σ ∈ Σ * c , a ∈ Σ, (σ s , σ c ) = store ϕ (σ), and (σ t , σ d ) = store ϕ (σ. a). Then:

where σ s is defined in Definition 3.10, meaning that σ s σ t .

• Otherwise, a ∈ Σ c , and then σ t = σ s . σ s , where σ s is defined in Definition 3.10, thus again, σ s σ t .

In both cases,

Proof. For σ ∈ Σ * c , let P(σ) be the predicate "∀a ∈ Σ c , I(σ) ⊆ I(σ . a)". Let us show by induction that P(σ) holds for every σ ∈ Σ * c .

• If a ∈ Σ u , then σ t = σ s . a . σ s , where σ s is defined in Definition 3.10, and In both cases, P(σ . a) holds. Thus, for all σ ∈ Σ * , for all a ∈ Σ, P(σ) =⇒ P(σ . a).

By induction on σ, for any

, and (σ t , σ d ) = store ϕ (σ . u), then σ t = σ s . u . σ s , where σ s is defined in Definition 3.10. Thus σ s . u σ t , and since σ s = E ϕ (σ), and σ t = E ϕ (σ . u), it follows that E ϕ (σ) . u E ϕ (σ . u).

Thus, for any

Proof. For σ ∈ Σ * c and q ∈ Q, let P(σ, q) be the predicate: "∀σ u ∈ Σ * u , q after σ u ∈ F ∨ ∃σ u σ u , (σ u = ∧ q after σ u ∈ S(σ) ∪ I(σ))". Let us show the contrapositive of the lemma, that is that for all σ ∈ Σ * c and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). We consider two cases:

• If σ = , let us consider q ∈ Q such that P( , q) holds. Then, since ∈ Σ * u and there does not exist a word w satisfying w ∧ w = , it follows that q = q after ∈ F . Let us consider σ u ∈ Σ * u . Then, since P( , q) holds, either q after σ u ∈ F , or there exists σ u σ u such that σ u = and q after σ u ∈ S( ) ∪ I( ). In this last case, since I( ) = ∅, q after σ u ∈ S( ). Following the definition of S( ), since σ -1 u . σ u ∈ Σ * u , (q after σ u ) after (σ -1 u . σ u ) = q after σ u ∈ F . Thus, in all cases, q after σ u ∈ F . Thus, for all σ u ∈ Σ * u , q after σ u ∈ F , meaning that q ∈ S( ).

-If E(σ.a.σ u ) = σ s .a.σ s1 .σ u , then Reach(E(σ.a.σ u )) ∈ F , meaning that E(σ . a . σ u ) |= ϕ.

-Otherwise, since E is compliant, there exists σ s2 σ c1 and σ u1 σ u such that σ s2 = , σ u1 = , and E(σ . a . σ u1 ) = σ s . a . σ s1 . σ u1 . σ s2 . Let us consider q = q after σ u1 . σ s2 and σ c2 = σ -1 s2 . σ c1 . Then, since σ u1 σ u and σ u1 = , q after σ u1 ∈ S(σ c1 ) ∪ I(σ c1 ). Thus, q = q after σ u1 . σ s2 ∈ S(σ c2 ) ∪ I(σ c2 ), because otherwise, q after σ u1 = Pred σ s2 (q ) ∈ Pred σ s2 (S(σ c2 )∪I(σ c2 )) ⊆ I(σ c1 ), which is absurd. Then, we can again use lemma A.5 to find a word σ u2 ∈ Σ * u such that q after σ u2 ∈ F and for any σ u σ u2 , q after σ u ∈ S(σ c2 ) ∪ I(σ c2 ). Since σ s2 = , |σ c2 | < |σ c1 |, thus the operation can be repeated a finite number of times (at most until all the controllable events of σ appear in the output of E). Thus, there exists n ∈ N, there exists (σ u1 , σ u2 , . . . , σ un ), and (σ s1 , σ s2 , . . . , σ sn ),

Thus, in call cases, there exists σ u ∈ Σ * u such that E(σ . a . σ u ) |= ϕ.

• a ∈ Σ c . The proof is the same as in the case where a ∈ Σ u , by replacing occurrences of "σ s . a" by "σ s ", and occurrences of "σ b " by "σ b . a".

Thus, if E is an enforcement function such that there exists σ ∈ Pre(ϕ), and a ∈ Σ such that compliant(E, Σ u , Σ c ), E(σ) = E ϕ (σ), and |E(σ . a)| > | E ϕ (σ . a)|, then there exists σ u ∈ Σ * u such that E(σ . a . σ u ) |= ϕ. This means that E ϕ is optimal in Pre(ϕ).

Proposition 3.5. The output of the enforcement monitor E as per Definition 3.12 for input σ is E ϕ (σ) as per Definition 3.10.

Proof. Let us introduce some notation for this proof: for a word w ∈ Γ E * , we note input(w) = Π 1 (w(1)) . Π 1 (w(2)) . . . Π 1 (w(|w|)), the word obtained by concatenating the first members (the inputs) of w. In a similar way, we note output(w) = Π 3 (w(1)) . Π 3 (w(2)) . . . Π 3 (w(|w|)), the word obtained by concatenating all the third members (outputs) of w. Since all configurations are not reachable from c E 0 , for w ∈ Γ E * , we note Reach E (w) = c whenever c E 0 w -→ E c, and Reach E (w) = ⊥ if such a c does not exist. We also define the Rules function as follows:

For a word σ ∈ Σ * , Rules(σ) is the trace of the longest valid run in E, i.e. the sequence of all the rules that can be applied with input σ. We then extend the Then, σ t = σ s . (t , a) . obs(σ e , t ) if a ∈ Σ u , and σ t = σ s . obs(σ e , t ) if a ∈ Σ c . In both cases, σ s σ t . This means that E ϕ (σ, t ) E ϕ (σ . (t , a), t ).

Consequently, in all cases, if t ≤ t , then P(σ) =⇒ E ϕ (σ . (t , a), t) E ϕ (σ . (t , a), t ). This means that P(σ) =⇒ P(σ . (t , a)).

Thus, by induction on σ, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ), for all t ∈ R ≥0 , for all t ≥ t, E ϕ (σ, t) E ϕ (σ, t ). Now, let us prove item 2. Let us consider σ ∈ tw(Σ), and (t, a) such that σ.(t, a) ∈ tw(Σ). Then, if (σ s , σ b , σ c ) = store ϕ (σ, t), and (σ t , σ d , σ e ) = store ϕ (σ. (t, a), t), then either σ t = σ s . (t, a) . σ s , or σ t = σ s . σ s , whether a is controllable or uncontrollable respectively, where σ s and σ s are defined in Definition 3.19. In both cases, σ s σ t . Thus, E ϕ (σ, t) = Π 1 (store ϕ (obs(σ, t), t)) = σ s σ t = Π 1 (store ϕ (obs(σ . (t, a), t))) = E ϕ (σ . (t, a), t). This holds because, since σ . (t, a) ∈ tw(Σ), time(σ) ≤ t, thus obs(σ, t) = σ. Thus, for all σ ∈ tw(Σ), for all t ∈ R ≥0 and t ≥ t, E ϕ (σ, t) E ϕ (σ, t ) and E ϕ (σ, t) E ϕ (σ . (t, a), t). This means that E ϕ is an enforcement function.

Let us prove by induction that for all σ ∈ tw(Σ), P(σ) holds.

Induction basis: for σ = , let us consider t ∈ R ≥0 . Then, store ϕ ( , t) = ( , , ). Considering that ∈ tw(Σ u ), and = Π Σ ( |Σc ), P( ) trivially holds (whether ∈ P(ϕ, t) or not).

Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t , a) such that σ. (t , a) ∈ tw(Σ), and t ≥ t . Let us also consider (σ s , σ b , σ c ) = store ϕ (σ, t ) and (σ t , σ d , σ e ) = store ϕ (σ . (t , a), t).

Then, if σ . (t , a) ∈ Pre(ϕ, t), P(σ . (t , a)) trivially holds. Thus, let us suppose that σ . (t , a) ∈ Pre(ϕ, t). Since σ σ . (t , a) and t ≥ t , it follows that σ ∈ Pre(ϕ, t ). By induction hypothesis, this means that σ s = σ |Σu , σ b = , By induction on the size of σ, P(σ) holds for every σ ∈ Σ * c , meaning that for all σ ∈ Σ * c , for all a ∈ Σ c , I(σ

Proof. For σ ∈ Σ * c , let P(σ) be the predicate "∀q ∈ Q, (q ∈ S(σ)) =⇒ (∀u ∈ Σ u , q after (0, u) ∈ S(σ) ∪ I(σ))". Let us show by induction on σ that P(σ) holds for every σ ∈ Σ * c .

Induction basis: let us consider q ∈ S( ). Then, for any u ∈ Σ u , since (0, u) ∈ tw(Σ u ), considering the definition of S( ), q after (0, u) ∈ S( ). Thus, q ∈ S( ) ∪ I( ). Thus, P( ) holds.

Induction step: let us suppose that for σ ∈ Σ * c , P(σ) holds. Let us consider a ∈ Σ c and q ∈ S(σ . a). Then, considering the definition of S(σ . a), two cases are possible:

• If q ∈ S(σ), then, by induction hypothesis, for all u ∈ Σ u , q after (0, u) ∈ S(σ) ∪ I(σ). S(σ) ⊆ S(σ . a), and following lemma A.7, I(σ) ⊆ I(σ . a), thus, q after (0, u) ∈ S(σ . a) ∪ I(σ . a).

• Otherwise, q ∈ S(σ . a) \ S(σ), and then, considering the definition of S (Definition 3.17 In both cases, for all u ∈ Σ u , q after (0, u) ∈ S(σ . a) ∪ I(σ . a), meaning that P(σ . a) holds.

Thus, for all a ∈ Σ c , P(σ) =⇒ P(σ . a).

Thus, by induction on σ, for all σ ∈ Σ * c , P(σ) holds, meaning that for all σ ∈ Σ * c , for all q ∈ S(σ), for all u ∈ Σ u , q after (0, u) ∈ S(σ

Let us then prove by induction on σ that P(σ) holds for every σ ∈ Σ * c .

Induction basis: let us consider q ∈ S( ) ∪ I( ). Since I( ) = ∅, this means that q ∈ S( ).

Following the definition of S( ) (see Definition 3.17), since ∈ tw(Σ u ), this means that satisfies Π Σ ( ), q after = q ∈ F G (since S( ) ⊆ F G ), and for any t ∈ R ≥0 , q after ( , t) ∈ S( ). Thus, considering the definition of G (Definition 3.18), this means that ∈ G(q, ), thus G(q, ) = ∅.

Thus P( ) holds.

Proof. Notation from Definition 3.19 is to be used in this proof: for q ∈ Q and w ∈ Σ * c ,

We have to prove that for any σ ∈ tw(Σ), for any

For σ ∈ tw(Σ), and t ≥ time(σ), let P(σ, t) be the predicate "

Let also P(σ) be the predicate: "∀t ≥ time(σ), P(σ, t)". Let us show by induction that for all σ ∈ tw(Σ), P(σ) holds.

Induction basis: for σ = , let us consider t ∈ R ≥0 . We consider two cases:

• if ∈ Pre(ϕ, t), then P( ) trivially holds.

• Otherwise, ∈ Pre(ϕ, t), and then, following Definition 3.20, there exists t ≤ t such that G(Reach(obs( , t ) |Σu , t ), ) = ∅, meaning that G(Reach( , t ), ) = ∅. Thus, following the definition of G(Reach( , t ), ), (Definition 3.18), ∈ G(Reach( , t ), ), and Reach( )

Thus, in both cases, P( , t) holds, meaning that P( ) holds.

Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t , a) such that σ . (t , a) ∈ tw(Σ), and t ≥ t = time(σ . (t , a)). Let us also consider (σ s , σ b , σ c ) = store ϕ (σ, t ) and (σ t , σ d , σ e ) = store ϕ (σ . (t , a), t).

Then, we distinguish three cases:

Moreover, considering t 2 as defined in Definition 3.19, t 2 ≥ t , and t ≥ t , thus min({t, t 2 }) ≥ t , which means that since there exists

Thus if a ∈ Σ c , P(σ . (t, a)) holds.

Thus for any a ∈ Σ and t ≥ time(σ), P(σ) =⇒ P(σ . (t, a)).

Thus, by induction on σ, for all σ ∈ tw(Σ), P(σ) holds, meaning that for all

Now what remains to be proved is item 3.

Let us consider σ ∈ tw(Σ), and (t, u) ∈ R ≥0 ×Σ u such that σ.(t, u) ∈ tw(Σ). Then, considering the definition of store ϕ (Definition 3.19), E ϕ (σ . (t, u), t) = E ϕ (σ, t) . (t, u) . obs(σ s , t), where σ s is defined in Definition 3.19. This means that E ϕ (σ, t) . (t, u) E ϕ (σ . (t, u)).

Thus, items 1 to 3 hold. Thus E ϕ is compliant with respect to Σ u and Σ c .

Let us show the contrapositive of the proposition, that is that for all σ ∈ Σ * c , for all q ∈ Q, (P(σ, q)) =⇒ (q ∈ S(σ)).

• If σ = , let us consider q ∈ Q such that P( , q) holds. Then, since ∈ tw(Σ u ), q after = q ∈ F G , or there exists t > 0 such that q after ( , t) ∈ S( ) ∪ I( ), or there exists σ u such that σ u = and q after σ u ∈ S( ) ∪ I( ). Since σ u , σ u = , meaning that this last condition does not hold for σ u = . Thus, q ∈ F G or there exists t

and since X 0 ⊆ X ∪ Y , X 0 ⊆ S(σ). Since q = q after ( , 0), with ∈ tw(Σ u ) and t ∈ R ≥0 , q ∈ X 0 , and thus q ∈ S(σ). Thus, if σ = and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ).

Thus, for all σ ∈ Σ * c , for all q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). Thus, the contrapositive also holds, meaning that for all σ ∈ Σ * c , for all q ∈ Q, q ∈ S(σ

Proposition 3.9. E ϕ is optimal in Pre(ϕ), as per Definition 3.16.

Proof. Let us consider E : tw(Σ) × R ≥0 → tw(Σ), that is compliant with respect to Σ c and Σ u . Let us also consider σ ∈ tw(Σ), and (t , a) such that σ . (t , a) ∈ tw(Σ). Suppose now that (σ, t ) ∈ Pre(ϕ), E (σ, t ) = E ϕ (σ, t ), and that E ϕ (σ . (t , a)) ≺ d E (σ . (t , a)).

We then have to show that there exists

Let us consider (σ s , σ b , σ c ) = store ϕ (σ, t ), and (σ t , σ d , σ e ) = store ϕ (σ . (t , a), t), where t is such that σ t = E ϕ (σ . (t , a)) (i.e. t is sufficiently big). Then, considering proof of soundness (appendix A.1.2), since (σ, t ) ∈ Pre(ϕ), nobs(σ b , t )t t ∈ G(Reach(σ s , t ), Π Σ (nobs(σ b , t )) . σ c ).

• If a ∈ Σ u , this means that σ dt t ∈ G(Reach(σ s .(t , a)), Π Σ (nobs(σ b , t )).

σ c ). Let us consider q = Reach(σ s . (t , a)), and buf c = Π Σ (nobs(σ b , t )) . σ c . Then, σ dt t = min lex (max (G(q, buf c ))). E is compliant with respect to Σ u and Σ c , thus, since E ϕ (σ, t ) = E (σ, t ), there exists

Then, following the definitions of G and S, there are several cases:

-Or there exists t ∈ R ≥0 such that q after (w d2 , t ) ∈ S(Π Σ (obs(w d2 , t )) -1 . buf c ). Let us then note buf c2 = Π Σ (obs(w d2 ), t ) -1 . buf c , and q 2 = q after (w d2 , t ). Then, following lemma A.10, there exists σ u ∈ tw(Σ u ) such that q 2 after σ u ∈ F G , for all t 0 > 0, q 2 after (σ u , t 0 ) ∈ S(buf c2 ) ∪ I(buf c2 ), and for all σ u σ u , σ u = =⇒ q 2 after σ u ∈ S(buf c2 ) ∪ I(buf c2 ). Then, considering that E is compliant, either E (σ.(t , a).(σ u + t (t + t ))) = σ s .(t , a).obs(w d2 + t t , t ).(σ u + t (t +t )), meaning that E (σ.

A. Proofs

rule compute appears in Rules( , t), then b = , meaning that G(q 0 after ( , t ), ) = ∅, and thus that G(q 0 after ( , t), ) = ∅ since t ≥ t . Otherwise b = ⊥. All the other values remain unchanged between the two cases. In both cases, output(Rules( , t)) = = E ϕ ( , t). Thus, P( ) holds.

Induction step : Let us suppose now that for some σ ∈ tw(Σ), P(σ) holds. Let us consider (t , a) ∈ R ≥0 × Σ such that σ . (t , a) ∈ tw(Σ). Let us then prove that P(σ . (t , a)) holds.

Let

, and (σ t , σ d , σ e ) = store ϕ (obs(σ . (t , a), t), t).

If t < t , then obs(σ . (t , a), t) = obs(σ, t), and P(σ . (t , a), t) trivially holds, since P(σ) holds.

Thus, in the following, we consider that t ≥ t , so that store ϕ (obs(σ . (t , a), t), t) = store ϕ (σ . (t , a), t):

, where t 1 is defined in Definition 3.19. Thus, c after (( / delay(t Otherwise, t < t 1 , and then rule dump cannot be applied, since Π 5 (c ) = ⊥, and rule compute also cannot be applied. Thus, the only rule that can be applied is delay, so that Reach(Rules(σ . (t , a), t)) = , Π Σ (σ E b ) . σ E c , q after ( , t -t ), t , ⊥ . Since t < t 1 , this means that σ d = , and σ e = Π Σ (σ b ).σ c . Thus, output(Rules(σ.(t , a), t)) = output(Rules(σ, t )).

(t , a) = σ s . (t , a) = σ t , and σ E d = σ d , and σ E e = σ e . This means that P(σ . (t , a), t) holds when t < t 1 .

Thus, if a ∈ Σ u , then P(σ . (t , a), t) holds for all t ≥ t .

A. Proofs

Otherwise, let us consider (σ, σ s , σ c ) ∈ store ϕ , a = σ (1), (σ . a, σ t , σ d ) ∈ store ϕ , and (σ . a, o a ) ∈ E ϕ . Then,

• if a ∈ Σ u , σ t = σ s . a . σ s , where σ s is defined in Definition 4.9, meaning that σ s σ t .

• If a ∈ Σ c , then σ t = σ s . σ s , where σ s is defined in Definition 4.9, thus again, σ s σ t .

In both cases, o = σ s σ t = o a . Since the order is transitive, we can iterate through all the events of σ , thus o o a . . . o . Thus E ϕ is an enforcement function.

Proof. W 0 is the winning set of the Büchi game for P 0 .

Proof. Let us consider q ∈ Q and σ ∈ Σ n c such that q, σ, 0 ∈ W 0 . Then, since q, σ, 0 is a node that belongs to P 0 that is winning (since it is in W 0 ), this means that there is a winning strategy for P 0 in the Büchi game. Thus, there is a path in G that allows P 0 to reach a Büchi node, that is a node in F × Σ n c × {0, 1}, whatever the strategy of P 1 is. The strategy of P 0 is to follow nodes that are only in W 0 until it finally reaches a Büchi node. The construction of W 0 ensures that this is possible. Now, the only edges that leave a node belonging to P 0 are the ones corresponding to the action of emitting the first of the stored controllable events, or not emitting it and let P 1 play. Thus, if q, σ, 0 ∈ W 0 , this means that there is a path in the graph that leads to a node in F × Σ n c × {0} such that all the nodes along the path belong to P 0 and are in W 0 . This holds because there is a path in W 0 to such a node, and if a node of the path belongs to P 1 , then the strategy of P 1 could be to go back to the previous node belonging to P 0 , and thus there could be an infinite loop in these two nodes, meaning that they are in F × Σ n c × {0, 1} or that from the previous node belonging to P 0 , emitting the first stored controllable event is a winning strategy. Thus, there exists w σ such that q after w ∈ F and q after w, w -1 . σ, 0 ∈ W 0 . Now, since Σ n c is finite, it is possible to choose w such that q after w, w -1 . σ, 1 ∈ W 0 , because otherwise, the only possible strategy would be to emit from every node, but it is not possible from nodes whose second member is , and then the only possible strategy would lead to a node not in W 0 , meaning that the original node would not be in W 0 , which is absurd. Thus, G(q, σ) = ∅.

Proof. For σ ∈ Σ * , let P(σ) be the predicate "(σ ∈ Pre(ϕ) ∧ (σ, σ s , σ c ) ∈ store ϕ ) =⇒ (σ s = σ |Σu ∧ σ c = σ |Σc )". Let us show by induction that P(σ) holds for any σ ∈ Σ * .

Induction basis: ( , , ) ∈ store ϕ , and since |Σu = |Σc = , P( ) holds.

Induction step: let us suppose that for σ ∈ Σ * , P(σ) holds. Let us then consider a ∈ Σ, (σ, σ s , σ b ) ∈ store ϕ , and (σ . a, σ t , σ d ) = store ϕ (σ . a).

Then, if σ . a ∈ Pre(ϕ), P(σ . a) holds.

Let us now consider that σ . a ∈ Pre(ϕ). Then, since Pre(ϕ) is extensionclosed, σ ∈ Pre(ϕ), and thus, by induction hypothesis, σ s = σ |Σu and σ c = σ |Σc . We consider two cases: In both cases, P(σ . a) holds. Thus, P(σ) =⇒ P(σ . a).

By induction on

Proposition 4.2. E ϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 4.2.

Proof. We have to prove that for σ ∈ Pre(ϕ), if (σ, o) ∈ E ϕ , then o |= ϕ.

Let P(σ) be the predicate:

Let us prove by induction that for any σ ∈ Σ * , P(σ) holds. .11 and A.12, this 

As in the previous case, this means that σ t |= ϕ and Reach(σ t ), max ({w

Thus, if σ ∈ Pre(ϕ), P(σ . a) holds.

In all cases, P(σ . a) holds, meaning that P(σ) =⇒ P(σ . a).

Thus, by induction on σ, for any

This means that E ϕ is sound with respect to ϕ in Pre(ϕ).

Proposition 4.3. E ϕ is compliant, as per Definition 4.3.

Proof. We have to show that for any σ ∈ Σ * , if (σ, o) ∈ E ϕ , then the following properties hold:

We start by proving that items 1 and 2 hold. For σ ∈ Σ * , let P(σ) be the predicate: "((σ, σ s , σ c ) ∈ store ϕ ) =⇒ (σ s|Σc . σ c = σ |Σc ∧ σ s|Σu = σ |Σu )". Let us prove that for all σ ∈ Σ * , P(σ) holds.

Induction basis : ( , , ) ∈ store ϕ , and |Σc = |Σc . , and |Σu = |Σu . Thus P( ) holds.

Proposition 4.7. E ϕ is sound with respect to ϕ in Pre(ϕ) as per Definition 4.12.

Proof. Notation from Definition 4.19 is to be used in this proof: for σ ∈ tw(Σ), if (σ, σ s0 , σ c ) ∈ store ϕ , (δ, a) ∈ R ≥0 × Σ, t = time(σ . (δ, a)), and σ s = obs(σ s0 , t), then, for q ∈ Q, and w ∈ Σ * c ,

We have to prove that for any (σ, t) ∈ Pre(ϕ), there exists t ≥ t such that for any

For σ ∈ tw(Σ), and t ≥ time(σ), let P(σ, t) be the predicate "((σ, t) ∈ Pre(ϕ) ∧ (σ, σ s , σ c ) ∈ store ϕ ) =⇒ (σ s |= ϕ ∧ nobs(σ s , t)t (t -time(obs(σ s , t))) ∈ G(Reach(σ s , t), Π Σ (nobs(σ s , t)) . σ c ))". Let also P(σ) be the predicate: "∀t ≥ time(σ), P(σ, t)". Let us show by induction that for any σ ∈ tw(Σ), P(σ) holds.

Induction basis: for σ = , let us consider t ∈ R ≥0 .

• If ∈ Pre(ϕ, t), then, P( ) trivially holds.

• Otherwise, ∈ Pre(ϕ, t). Then, following the definition of Pre( , t) (Definition 4.20), there exists t ≤ t such that G(Reach( |Σu , t ), ) = ∅, meaning that G(Reach( , t ), ) = ∅. Thus, following the definition of G(Reach( , t ), ) (Definition 4.18), ∈ G(Reach( , t ), ), and Reach( ) ∈ F G , thus |= ϕ. Since ( , , ) ∈ store ϕ and |= ϕ, P( , t) holds.

Thus, in both cases, P( , t) holds, meaning that P( ) holds.

Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (δ, a) ∈ R ≥0 ×Σ, t ≥ time(σ.(δ, a)), (σ, σ s0 , σ c ) ∈ store ϕ , σ s = obs(σ s0 , time(σ.

(δ, a))), (σ . (δ, a), σ t0 , σ d ) ∈ store ϕ , and σ t = obs(σ t0 , t). We have to prove that

• If σ . (δ, a) ∈ Pre(ϕ, t), then P(σ . (δ, a), t) trivially holds. Then, t is the minimum number such that G(Reach(σ s . (δ , a), t ), buf c ) = ∅. Therefore, t ∈ T(Reach(σ s . (δ , a)), buf c ).

Thus, there exists w ∈ G(Reach(σ s . (δ , a)) after ( , t ), buf c ) such that σ s = w + t t . Thus, σ st t ∈ G(Reach(σ s . (δ , a), t ), buf c ). Now, note that:

We know that σ st t ∈ G(Reach(σ s .(δ , a), t ), buf c ), thus following lemma A.15, since t ≥ t , t -t ≥ 0, and

Now, note that for any σ ∈ tw(Σ), t ∈ R ≥0 and t ∈ R ≥0 , nobs(σt t, t ) = nobs(σ, t + t )t t if delay(σ( 1)) > t + t nobs(σ, t + t ) otherwise The reason is that the operatort affects only the first delay of the word, thus if this delay is in obs(σt t, t ), i.e. delay(σ( 1)) ≥ t + t , the remaining events are not changed by thet operator. Thus, if delay(σ s (1) 

. buf c Thus, Π Σ (nobs(σ t0 , t)) . σ d = Π Σ (obs(σ st t , t -t )) -1 . buf c . Considering all this, (A.3) becomes: Since this holds for any t ∈ R ≥0 , in particular, if t = time(σ t0 ), this means that ∈ G(Reach(σ t0 ), σ d ), meaning that Reach(σ t0 ) after = Reach(σ t0 ) ∈ F G . This means that σ t0 |= ϕ. (δ, a)))) . σ c ) = ∅, following the definition of G (Definition 4.18), it means that there exists σ ∈ tw(Σ c ) such that the three following properties hold:

In particular, for item 3, with t = 0, we get v, maxbuffer(buf c ), 1 ∈ W 0 , with Reach(σ s0 , time(σ . (δ, a))) ∈ v. Thus, following the edge ( v, maxbuffer(buf c ), 1 , v after a, maxbuffer(buf c ), 0 ) ∈ E 3 , since W 0 is the winning region for player 0, it follows that v after a, maxbuffer(buf c ), 0 ∈ W 0 . Thus, there exists a winning strategy for player 0 from node v, maxbuffer(buf c ), 0 , meaning that there exists a play π such that the set of nodes visited infinitely often by π, noted inf(π), is such that inf(π) ∩ F G × Σ n c × {0, 1} = ∅, and π(1) = v, maxbuffer(buf c ), 0 . Moreover, we can choose π such that no edge from E 3 or E 4 (corresponding to receiving uncontrollable or controllable events, respectively) is taken when playing π. This is possible since W 0 is the winning region for player 0, thus it is winning for all the strategies of player 1, and the edges of E 3 and E 4 leave a node belonging to player 1. Now, since the only cycles in the graph without the edges of E 3 and E 4 are cycles of the form v, w, 0 v, w, 1 v, w, 0 , with ( v, w, 0 , v, w, 1 ) ∈ E1 and ( v, w, 1 , v, w, 0 ) ∈ E6, it follows that π ends with such a cycle repeated indefinitely, i.e. π = π 0 . ( v e , w e , 0 . v e , w e , 1 ) ω for some finite π 0 . Thus, inf(π) = { v e , w e , 0 , v e , w e , 1 }, meaning that v e ⊆ F G .

A. Proofs

This allows us to associate a word σ to π. To build it, we first build a sequence in Q × R ≥0 × tw(Σ c ) by induction as follows:

(q 0 , δ 0 , w 0 ) = (Reach(σ s , time(σ . (δ, a))) after (0, a), 0, ) and, for i ∈ N,

Now since π = π 0 . ( v e , w e , 0 . v e , w e , 1 ) ω , there exists n ∈ N such that for any n ≥ n, (π(n ), π(n + 1)) ∈ E 1 ∪ E 6 , meaning that (q n , δ n , w n ) = (q n , δ n , w n ). Thus, the sequence stabilises. Let us consider σ = w n , where w n is the third component of the previous sequence when it is stabilised. Then, σ satisfies:

A. Proofs it follows that: nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) ∈ G(Reach(σ t0 , t), Π Σ (nobs(σ t0 , t)) . σ d )

-Otherwise, a ∈ Σ c , and then, since G(Reach(σ s0 , time(σ . (δ, a))), Π Σ (nobs(σ s0 , time(σ . (δ, a)))) . σ c ) = ∅, there exists σ ∈ tw(Σ) that satisfies the three following constraints:

Thus, item 1 can be written as Π Σ (σ ) buf c . a, and from item 3 we can deduce that for any

(buf c . a)), 1 ∈ W 0 . This last property holds because adding a controllable event to the buffer only gives more possibilities to the enforcement mechanism (in the game graph, if v, w, p is winning, then v, w . c, p is also winning). This means that σ ∈ G(Reach(σ In particular, this means that Reach(σ t0 , t) after nobs(σ t0 , t)t (ttime(obs(σ t0 , t))) ∈ F G . Since Reach(σ t0 , t) after nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) = Reach(obs(σ t0 , t)) after ( , t -time(obs(σ t0 , t))) after nobs(σ t0 , t)t (t -time(obs(σ t0 , t))) = Reach(obs(σ t0 , t)) after (nobs(σ t0 , t)t (t -time(obs(σ t0 , t)))) + t (t -time(obs(σ t0 , t))) = Reach(obs(σ t0 , t)) after nobs(σ t0 , t) = Reach(obs(σ t0 , t) . nobs(σ t0 , t)) = Reach(σ t0 ) this means that Reach(σ t0 ) ∈ F G , meaning that σ t0 |= ϕ.

Thus, if σ ∈ Pre(ϕ, time(σ . (δ, a))), P(σ) =⇒ P(σ . (δ, a), t).

Thus, in all cases, for any t ∈ R ≥0 , P(σ) =⇒ P(σ . (δ, a), t). This means that P(σ) =⇒ P(σ . (δ, a)).

We then have shown by induction that P(σ) holds for any σ ∈ tw(Σ). In particular, we have shown that for any (σ, t) ∈ Pre(ϕ), (σ, σ s , σ c ) ∈ store ϕ =⇒ σ s |= ϕ. Thus there exists t that we can consider such that t ≥ t, that is such that for any t ≥ t , (σ, t ), σ s ∈ E ϕ .

Thus, E ϕ is sound in Pre(ϕ).

Proposition 4.8. E ϕ is compliant, as per Definition 4.13.

Proof. We have to prove that the three following properties hold:

1. ∀σ ∈ tw(Σ), ∀t ∈ R ≥0 , (σ, t), o 1 ∈ E ϕ =⇒ o 1 dΣ c obs(σ, t) We start by proving items 1 and 2.

For σ ∈ tw(Σ), let P(σ) be the predicate "(σ, σ s0 , σ c ) ∈ store ϕ =⇒ (σ s0 dΣ c σ ∧ σ s0 = Σu σ ∧ Π Σ (σ s0 ) |Σc . σ c = Π Σ (σ) |Σc )". Let us prove by induction that P(σ) holds for any σ ∈ tw(Σ).

Induction basis: for σ = , ( , , ) ∈ store ϕ , and since dΣ c , = Σu , and Π Σ ( ) |Σc . = Π Σ ( ) |Σc , it follows that P( ) holds.