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Titre Enforcement à l’exécution de propriétés temporisées régulières en pré-
sence d’évènements incontrôlables

Résumé Cette thèse étudie l’enforcement de propriétés temporisées à l’exé-
cution en présence d’évènements incontrôlables. Les travaux se placent dans le
cadre plus général de la vérification à l’exécution qui vise à surveiller l’exécution
d’un système afin de s’assurer qu’elle respecte certaines propriétés. Ces proprié-
tés peuvent être spécifiées à l’aide de formules logiques, ou au moyen d’autres
modèles formels, parfois équivalents, comme des automates. Nous nous inté-
ressons à l’enforcement à l’exécution de propriétés spécifiées par des auto-
mates temporisés. Tout comme la vérification à l’exécution, l’enforcement à
l’exécution surveille l’exécution d’un système, la différence étant qu’un méca-
nisme d’enforcement réalise certaines modifications sur l’exécution afin de la
contraindre à satisfaire la propriété souhaitée. Nous étudions plus particulè-
rement l’enforcement à l’exécution lorsque certains évènements de l’exécution
sont incontrôlables, c’est-à-dire qu’ils ne peuvent pas être modifiés par un mé-
canisme d’enforcement. Nous définissons des algorithmes de synthèse de mé-
canismes d’enforcement décrits de manières fonctionnelle puis opérationnelle,
à partir de propriétés temporisées régulières (pouvant être représentées par
des automates temporisés). Ainsi, deux mécanismes d’enforcement équivalents
sont définis, le premier présentant une approche correcte sans considération
d’implémentation, alors que le second utilise une approche basée sur la théorie
des jeux permettant de précalculer certains comportements, ce qui permet de
meilleures performances. Une implémentation utilisant ce précalcul est égale-
ment présentée et évaluée. Les résultats sont encourageant quant à la faisabilité
de l’enforcement à l’exécution en temps réel, avec des temps supplémentaires
suffisamment courts sur de petites propriétés pour permettre une utilisation
de tels systèmes.

Mots-clés Méthodes formelles, Vérification à l’exécution, Enforcement à
l’exécution, Automates, Automates temporisés, Jeux

Title Runtime Enforcement of Timed Properties with Uncontrollable Events

Abstract This thesis studies the runtime enforcement of timed properties
when some events are uncontrollable. This work falls in the domain of runtime
verification, which includes all the techniques and tools based on or related to
the monitoring of system executions with respect to requirement properties.
These properties can be specified using different models such as logic formulae
or automata. We consider timed regular properties, that can be represented
by timed automata. As for runtime verification, a runtime enforcement mech-
anism watches the executions of a system, but instead of just outputting a
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verdict, it modifies the execution so that it satisfies the property. We are
interested in runtime enforcement with uncontrollable events. An uncontrol-
lable event is an event that an enforcement mechanism can not modify. We
describe the synthesis of enforcement mechanisms, in both a functional and an
operational way, that enforce some desired timed regular property. We define
two equivalent enforcement mechanisms, the first one being simple, without
considering complexity aspects, whereas the second one has a better time com-
plexity thanks to the use of game theory; the latter being better suited for im-
plementation. We also detail a tool that implements the second enforcement
mechanism, as well as some performance considerations. The overhead intro-
duced by the use of our tool seems low enough to be used in some real-time
application scenarios.

Keywords Formal Methods, Runtime Verification, Runtime Enforcement,
Automata, Timed Automata, Games

Laboratoire d’accueil LaBRI, 351 cours de la Libération, Talence 33400,
France

iv Matthieu Renard



Résumé de la thèse

Ce résumé est en grande partie tiré de l’introduction en anglais de cette thèse.

Cette thèse s’intéresse à l’enforcement de propriétés à l’exécution. L’enfor-
cement se situe dans le cadre plus général de la vérification, et plus particuliè-
rement, de la vérification à l’exécution.

Techniques de vérification

La vérification de programmes consiste à améliorer la fiabilité des systèmes
informatiques à l’aide de méthodes formelles. Il s’agit principalement de vérifier
qu’une propriété, modélisée à l’aide de formules logiques ou d’automates par
exemple, est vérifiée par les exécutions d’un système.

On peut distinguer plusieurs types de vérifications : l’analyse statique, le
test actif, et la vérification à l’exécution.

L’analyse statique

L’analyse statique regroupe les techniques permettant d’analyser un programme
sans l’exécuter. L’analyse statique peut se baser, par exemple, sur la lecture
du code source ou du code assembleur du programme.

Parmi les techniques d’analyse statique, se trouvent par exemple l’inter-
prétation abstraite, la conformité de modèles (model-checking) ou encore l’uti-
lisation d’assistants automatiques de preuve lors du développement du pro-
gramme. L’analyse statique connait différentes limites : le model-checking,
par exemple, peut devenir très coûteux (voire impossible) pour de gros pro-
grammes, car il peut s’y produire une explosion combinatoire dans le nombre
de configurations considérées.

Le test actif

Le test actif consiste à exécuter un programme sur différentes entrées, en véri-
fiant à chaque fois si celui-ci est conforme à la propriété souhaitée. Tout comme
le model-checking, le test actif peut devenir difficile pour de gros programmes,
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Vérification à l’exécution

dont le nombre d’entrées possible peut devenir très grand. Cependant, même
dans ce cas, le test actif reste possible en ne testant pas toutes les entrées, mais
seulement un nombre choisi d’entrées, qui peuvent être choisies aléatoirement.
Même non-exhaustif, le test actif permet d’améliorer la fiabilité du système :
il peut mettre en évidence une faille dans le système, mais ne peut pas (à
moins d’être exhaustif) assurer la conformité du système vis à vis de la pro-
priété souhaitée. Néanmoins, augmenter le nombre d’entrées testées augmente
la confiance que l’on peut avoir dans la fiabilité du système.

Vérification à l’exécution

La vérification à l’exécution, aussi appelée test passif, est la dernière forme
de vérification que nous mentionnerons, et celle dont nous traiterons dans
cette thèse. Tout comme le test actif, la vérification à l’exécution exécute le
programme, mais cette fois dans les conditions réelles d’utilisation. Le but de la
vérification à l’exécution est de vérifier qu’une exécution réelle satisfait bien la
propriété visée, soit en mode non-connecté (offline), c’est-à-dire en utilisant un
historique d’une exécution, ou en mode connecté (online), au moment même
où l’exécution a lieu. Ainsi, la vérification à l’exécution a pour vocation d’être
utilisée en temps-réel, afin de prévenir de dysfonctionnements au moment où
ils surviennent.

Enforcement à l’exécution
Cette thèse étudie plus particulièrement l’enforcement à l’exécution, qui fait
partie de la vérification à l’exécution. L’enforcement à l’exécution consiste,
comme la vérification à l’exécution, à s’assurer que l’exécution d’un système
satisfait une propriété souhaitée. La principale différence entre l’enforcement et
la vérification simple réside dans le fait que l’enforcement modifie l’exécution
du système afin qu’elle satisfasse la propriété, plutôt que de prévenir d’une
violation de la propriété.

Mécanisme d’enforcement

Un mécanisme d’enforcement est un mécanisme transformant l’exécution d’un
système afin qu’elle satisfasse une propriété donnée. Plusieurs fonctionnalités
sont donc attendues d’un tel mécanisme. La première fonctionnalité, la cor-
rection (soundness), consiste justement à garantir que la sortie du mécanisme
d’enforcement satisfait la propriété. Une seconde contrainte, la transparence
(transparency), lie l’entrée et la sortie du mécanisme, indiquant ainsi quelles
sont les modifications autorisées sur l’exécution. La transparence peut, par
exemple, uniquement autoriser à arrêter (tronquer) l’exécution, ou encore à
imposer que l’ordre des évènements ne soit pas changé, tout en autorisant de
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ne pas tous les mettre en sortie. Une troisième fonctionnalité qui peut être
attendue d’un mécanisme d’enforcement est l’optimalité, qui impose au mé-
canisme d’enforcement de modifier le moins possible l’exécution du système.
L’optimalité est parfois implicitement exprimée dans la transparence, qui peut
indiquer que l’exécution ne doit pas être modifiée si elle satisfait la propriété.
Une dernière fonctionnalité, qui n’est parfois qu’implicitement définie, est né-
cessaire à un mécanisme d’enforcement. Il s’agit des contraintes physiques,
indiquant que le mécanisme d’enforcement ne peut pas retirer de sa sortie des
évènements qui se sont déjà produits. Si cela semble évident en considérant un
mécanisme réel, une modélisation formelle serait tout à fait capable de rectifier
un évènement passé.

Contributions de la thèse

Cette thèse s’intéresse à l’enforcement de propriétés temporisées régulières en
présence d’évènements incontrôlables.

Formalisme des propriétés

Nous nous intéressons uniquement à l’enforcement de propriétés temporisées
régulières, c’est-à-dire de propriétés pouvant être représentées par des auto-
mates temporisés, comme décrits dans Alur and Dill [1992]. Ces automates
temporisés sont des automates classiques auxquels vient s’ajouter un ensemble
d’horloges. Les horloges sont simplement des variables dont la valeur évolue
de manière linéaire avec l’écoulement du temps. Ces horloges peuvent être
utilisées pour former des gardes sur les transitions, qui ne peuvent alors être
activées que si ces contraintes sont satisfaites. Une garde peut par exemple de-
mander qu’une certaine horloge ait une valeur inférieure à un certain nombre.
Les horloges peuvent également être remises à zéro.

Dans plusieurs chapitres, nous détaillons d’abord des mécanismes d’enfor-
cement pour des propriétés régulières, c’est-à-dire des propriétés représentables
par des automates classiques. Il est à noter que les propriétés régulières peuvent
être représentées par des automates temporisés sans horloge. Toutefois, le but
d’une telle présentation est principalement d’aider à la lecture, l’enforcement
de propriétés régulières étant très similaire à l’enforcement de propriétés tem-
porisées, le formalisme en est cependant généralement plus simple.

Évènements incontrôlables

Nous considérons certains évènements comme étant incontrôlables, autrement
dit non modifiables par un mécanisme d’enforcement. Nous choisissons, sans
perte de généralité, de considérer que les évènements, c’est-à-dire les lettres de
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Utilisation de la théorie des jeux pour l’enforcement

l’alphabet de l’automate, sont soit contrôlables, soit incontrôlables. Un même
évènement ne peut pas être contrôlable et devenir incontrôlable ou inversement.

La présence d’évènements incontrôlables empêche l’utilisation de la trans-
parence comme fonctionnalité des mécanismes d’enforcement. En effet, la trans-
parence indique habituellement qu’une exécution qui satisfait la propriété n’est
pas modifiée par un mécanisme d’enforcement. Toutefois, en présence d’évène-
ments incontrôlables, l’ordre entre évènements contrôlables et incontrôlables
peut changer. C’est pourquoi nous changeons la transparence en conformité
(compliance), qui indique que les évènements incontrôlables ne peuvent pas
être modifiés et que les évènements contrôlables peuvent être retardés. Nous
avons choisi de permettre de retarder les évènements contrôlables car cela a
semblé le plus naturel.

Utilisation de la théorie des jeux pour l’enforcement

Nous détaillons comment utiliser la théorie des jeux, et plus spécifiquement
des jeux de Büchi, afin de construire des mécanismes d’enforcement pour des
propriétés temporisées, en présence d’évènements incontrôlables. L’idée est de
construire un graphe de jeux, représentant les actions possible du mécanisme
d’enforcement et de son adversaire, l’environnement. Puisqu’un mécanisme
d’enforcement est seulement autorisé à retarder les évènements contrôlables,
sans en changer l’ordre, il doit d’abord les mémoriser avant de pouvoir les
ajouter à sa sortie. Les actions du mécanisme d’enforcement sont donc très
limitées : il peut soit émettre le premier évènement de sa mémoire, soit ne
rien faire. L’autre joueur dans ce jeu est l’environnement, qui peut ajouter des
évènements, contrôlables ou incontrôlables, à l’entrée, et qui peut également
faire progresser le temps. Résoudre un jeu de Büchi sur un graphe adéquat de
ce genre permet de calculer le comportement d’un mécanisme d’enforcement
correct, conforme, et optimal.

Implantation

Nous avons développé un outil, appelé GREP, qui fait office de mécanisme
d’enforcement. Cet outil utilise l’approche basée sur la théorie des jeux afin
de calculer sa sortie. Étant donnée une propriété temporisée (en utilisant une
grammaire personnalisée), GREP construit d’abord un graphe symbolique afin
d’abstraire le temps de l’automate temporisée, puis il utilise ce graphe sym-
bolique afin de construire un graphe de jeu tel que décrit précédemment. La
stratégie de GREP est ensuite dictée par la résolution du jeu : après avoir cal-
culé les nœuds du graphe qui sont gagnants pour le mécanisme d’enforcement,
GREP n’a qu’à émettre des évènements ou ne pas les émettre en s’assurant que
le nœud courant dans le graphe de jeu est toujours gagnant. Ainsi, GREP est
une implantation d’un mécanisme d’enforcement correct, conforme et optimal.
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Plan succinct
Le Chapitre 1 donne un historique des techniques de vérification à l’exécution
et de l’enforcement à l’exécution, afin de situer la thèse dans son contexte. Les
notations utilisées au long de cette thèse sont détaillées dans le Chapitre 2.

Dans les Chapitres 3 et 4, des mécanismes d’enforcement sont décrits de
manière formelle, ainsi que les fonctionnalités attendues de ces mécanismes.
Les mécanismes d’enforcement sont décrits de manière déclarative, d’un point
de vue fonctionnel, puis de manière opérationnelle, à l’aide d’un système de
transitions. Dans ces deux chapitres, les descriptions sont d’abord effectuées
pour une propriété régulière, puis dans un second temps pour des propriétés
temporisées.

Le Chapitre 5 décrit l’outil GREP, et donne une analyse de ses perfor-
mances.
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Introduction

As electronic devices get more and more powerful and miniaturised, they be-
come more present in all kinds of systems. From coffeepots, kettles, washing
machines, to more complicated smartphones or game consoles, devices have
increasing computational power. As a comparison, a simple pocket calculator
nowadays (as of 2017) has more computational power than all the embedded
systems of the Apollo 11 spaceflight, the first one to land humans on the Moon.
With this increasing computational power, electronic systems can handle more
and more tasks, and can now be used for real-time applications. We can for
example use a smartphone to guide us using an internal GPS chip, or play
games in virtual realities. A failure in the aforementioned scenarios has a lim-
ited impact. However, some systems are critical, in the sense that a failure
could lead to a human’s death or important loss. Planes constitute a good
example of critical systems, where a failure in sensors or the piloting system
could crash the plane. Some cars also now have self-driving capabilities, thus
the autopilot can be considered as a critical system.

These critical systems must be highly reliable, so that humans’ deaths are
avoided. This is why such pieces of software are well tested, and parts of them
are sometimes formally verified. Verification techniques can be categorised
according to the moment the verification takes place. Static analysis covers all
the techniques that do not require the system to run, such as model checking,
abstract interpretation and proof-assisted development. Active testing, often
referred to as testing, consists in simulating runs of the system to expose
some possible flows. Runtime verification consists in checking that the system
acts as expected at runtime, i.e. when it is running in a real scenario. These
methods are not exclusive, and combining them should lead to even more
reliable systems.

Static Analysis

The aim of static analysis is usually to confirm that the software is indeed an
implementation of a formal model that has been proved to be safe with re-
spect to some desired behaviours. The main drawback of such analysis is that
it gets very difficult to analyse large pieces of software. For example, some
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static analysis automatically reads the assembler code of a program and com-
putes a graph representing function calls, with possible values for variables.
Such analysis can be expensive because there can be numerous configurations
depending on the ability to infer the values of some variables from the code
itself. It is also possible to prove some pieces of software with proof assis-
tants, but it usually requires human interaction, like formal specifications of
functions.

On top of static analysis, one can run the system and observe its behaviour
to determine if it corresponds to the expected one. This is called (active)
testing.

Active Testing
In active testing, the system under scrutiny is run with different inputs, and
its behaviour is analysed to check whether it is valid with the model or not.
Due to the (very) large number of possible inputs, it is usually not possible
to analyse every possible run of the system, thus testing can only spot invalid
behaviours, but can not ensure that the system is a valid implementation of
the considered formal model. Such active testing thus improves the reliability
of the system, since every valid runs increases the probability that the system
is correct with respect to the model.

Nevertheless, one can not be sure that a run made in real conditions has
been tested nor is valid. For this reason, one can also observe the system as it
runs in real conditions to check its correctness. This is called passive testing,
or Runtime Verification (RV).

Runtime Verification
Runtime Verification is usually achieved by the use of a verification monitor,
that can be internal or external to the system. An internal monitor is a piece
of code appearing in the source code of the system that models a verification
monitor. An external monitor is a device that only needs to observe the
execution flow of the system under scrutiny to output a verdict stating if
it violates the property or not.

One of the interests of such monitors is that they do not require a full spec-
ification of the system, since they usually watch a specific simple behaviour.
For example, when driving a car in fog, if the car detects another car that is
too close for the current velocity, it could alert the driver. Such a property
does not need the full specification of the car, but only requires knowledge
about the velocity and obstacle detection.

To verify at runtime, it is important to have enough computational power
to be able to determine in real-time whether the property is violated or not.
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Too little computational power would lead to a big overhead introduced by
the verification monitor, that may be unacceptable for real-time applications.
In other words, verifying at runtime degrades the performance of the overall
system, i.e. the system under scrutiny with the verification monitor. Moreover,
with timed properties, the overhead of the verification monitor could itself
introduce a violation of the property. Limiting this overhead thus is one of
the main considerations when dealing with runtime verification. This can be
achieved, for instance, by choosing a “simple” formalism for properties.

Automata (i.e. memoryless transition systems) can decide if a property is
satisfied only based on the state reached so far. Thus, a verification monitor
verifying a regular property represented by an automaton would only have
to follow the path of the execution in the automaton to determine if it is
violating the property. Some temporal logics such as LTL are also used to
specify properties to be verified at runtime. It is possible for a verification
monitor to handle LTL formulae by constructing a Büchi automaton that
recognises the same language as the LTL formula and then verify that the
execution satisfies the property by following the path in the automaton. Note
that Büchi automata, and thus LTL formulae, recognise languages of infinite
words, but a verification monitor always considers only finite executions, thus
it is not always possible for a verification monitor to output a definitive verdict
(see Bauer et al. [2006, 2007]).

Runtime Enforcement

Runtime enforcement is similar to runtime verification in its setting: runtime
enforcement can be handled by an external monitor or in the source code of
the system. As for verification monitors, enforcement monitors are built for a
property that can be specified using different formalisms (automata, temporal
logics, etc.). Where verification monitors output verdicts stating if the current
execution of the running system under scrutiny satisfies the desired property,
enforcement monitors try to enforce the property, i.e. modify the execution of
the system to have it satisfy the property.

The difference between an enforcement monitor and a verification monitor
is illustrated in Fig. 1. In both Figs. 1a and 1b, S is the system generating
the sequence of events σ, that is fed to the verification monitor M in Fig. 1a
or the enforcement monitor E in Fig. 1b, each one being constructed to verify
or enforce the property ϕ. The difference resides in the output: M outputs a
verdict V , indicating whether σ satisfies ϕ or not, and E outputs a sequence
of events E(σ), that should satisfy the property.

Runtime enforcement has similarities with control theory (Ramadge and
Wonham [1989]; Girault et al. [2013]), where one tries to compute events so
that the output is valid with respect to some model. There are two possible
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S M

ϕ

σ V (σ)

(a) General scheme of a verification
monitor, outputting a boolean verdict
V (σ) indicating if σ satisfies ϕ.

S E

ϕ

σ E(σ)

(b) General scheme of an enforcement
monitor, outputting a modified se-
quence of events E(σ) satisfying ϕ.

Figure 1 – General schemes showing the difference between a verification mon-
itor M and an enforcement monitor E.

differences between runtime enforcement and control theory. The first one is
that a controller usually requires the full specification of the system under
scrutiny, whereas an enforcement monitor only requires little knowledge about
the system. The second one is that the primitives are usually not the same: a
controller usually has the ability to add some events to the execution, whereas
we consider enforcement monitors as being only able to delay events. Of course,
one could consider enforcement monitors that can add events, or controllers
delaying events. The two fields have different histories, and may have very few
differences, thus the border between them does not seem easy to draw, but the
properties verified are not the same. Nevertheless, we do not consider control
theory in this thesis, and only address runtime enforcement.

Thus, enforcement monitors should satisfy several requirements. First, en-
forcement mechanisms should be sound, which means that their output (the
modified execution) should satisfy the given property. Second, enforcement
mechanisms should be transparent, meaning that they should not modify an
execution that already satisfies the property. Other requirements are some-
times implicitly required, since they stem from physical constraints, stating
that the output of an enforcement mechanism should be increasing. In other
words, an enforcement mechanism can not remove anything from its output.
Since the output of the enforcement mechanism is an execution, removing
anything from its output would mean cancel an event, that could have already
been handled by some other system, thus this constraint is necessary. We ex-
plicitly require enforcement monitors to satisfy this constraint in this thesis.
Knowing this, transparency actually gives a notion of optimality : the output
should be the longest prefix of the input that satisfies the property.

Contributions of this Thesis
In this thesis, we build enforcement mechanisms when some events of the
executions are uncontrollable, i.e. can not be modified by the enforcement
mechanism. We first describe formally such enforcement mechanisms and then
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we describe an implementation.

Models for Properties

We build enforcement mechanisms for regular properties, i.e. properties that
can be modelled as automata. We also build enforcement mechanisms for reg-
ular timed properties, i.e. properties that can be modelled as timed automata
(see Alur and Dill [1992]). Timed automata are automata that have a set of
clocks, which are variables that increase linearly with time. Transitions can
have guards, that allow them to be followed only when some clock constraints
are satisfied. Note that an automaton can be represented as a timed automa-
ton with an empty set of clocks (and thus without any guard on transitions).
Nevertheless, we describe enforcement mechanisms for automata before de-
scribing them for timed automata, because we think it can ease the reading
since the constructions are somewhat similar, but the untimed setting yield
better intuition.

We sometimes leverage some classes of automata or timed automata:

1. Safety automata are automata representing properties stating that “some-
thing bad should never happen”, i.e. we start in a good state, and must
remain in a good state. As soon as a bad state is reached, the prop-
erty will not be satisfied. The property stating that “the system is never
turned off” is a safety property: as soon as the event “off” occurs, the
property is not satisfied and never will be.

2. Co-safety properties are properties for which something good must hap-
pen in a finite amount of time, and once it has happen, the property is
always satisfied. For example, the property “the user must authenticate”
is a co-safety property: once the user is authenticated, the property is
satisfied.

3. Response properties are properties stating that some events need to be
followed by some other events. For example, the property “any question
must be followed by an answer” is a response property. Over finite words,
all properties are response properties (Falcone et al. [2012]; Pinisetty
et al. [2014b]).

We chose to consider timed automata for several reasons. Timed automata
(i.e. regular timed properties) are more expressive than untimed automata, but
remain a reasonable model to use in a real-time system. When considering real-
time systems, it is natural to consider constraints with time, and it is simple
to model some properties requiring that some events should happen some time
before or after some other events with timed automata. Considering timed
automata is also more challenging than considering only untimed ones, mainly
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because some problems become undecidable (since the class of timed automata
is not closed under complement).

Uncontrollable Events

We consider runtime enforcement with uncontrollable events. Uncontrollable
events are events that an enforcement mechanism can not modify, i.e. they
must be output instantaneously when received. When considering untimed
regular properties, this only means that upon receiving an uncontrollable event,
the first event output by the enforcement mechanism is the uncontrollable
event. In the timed setting, the date of the uncontrollable event must also not
be changed, and we allow the enforcement mechanism to output some events at
the same date before the uncontrollable event only if the decision of outputting
these events was taken prior to the reception of the uncontrollable event.

We chose to consider uncontrollable events because they naturally arise
in many concrete scenarios. Uncontrollable events can indeed model some
physical events that it is impossible to prevent, but that the system under
scrutiny should observe to react correctly. For instance, when driving a car,
an uncontrollable event could be that there is an obstacle that appeared before
us (this could be another car, on which we have absolutely no control). The
system should react to this event, but it can not modify it since it is only an
observation of the physical world.

We consider that uncontrollable events are a parameter of the properties,
i.e. some events of the property are uncontrollable and they always are, the
other events are always controllable. Nevertheless, this model allows to change
the controllability of some events by duplicating them into two events, one con-
trollable and the other one uncontrollable. Then, changing the controllability
of the event only means selecting the good event among the two.

Note that adding uncontrollable events reduces the capabilities of enforce-
ment mechanisms (since uncontrollable events can forbid them to satisfy the
property). Moreover, transparency as described previously (i.e. stating that
an enforcement mechanism should not modify an execution that already sat-
isfies the property) may not be satisfied by an enforcement mechanism when
some events are uncontrollable. Enforcement mechanisms can, indeed, change
the order between controllable and uncontrollable events in their output, since
they can not modify uncontrollable events.

This is why we define the weaker notion of compliance, that requires that
uncontrollable events are not modified by an enforcement mechanism, and that
the order of controllable events is not changed.
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Modelling Enforcement Mechanisms

We describe enforcement mechanisms in two different ways. On the one hand,
we give a declarative description, representing enforcement mechanisms as
functions taking an execution and returning the modified execution, i.e. the
output of the enforcement mechanism. On the other hand, we give an opera-
tional point of view of enforcement mechanisms, representing them as a tran-
sition system made of few rules, that has the same output as the functional
description. The requirements expressed previously: soundness, compliance,
and physical constraints, are expressed as constraints on the function mod-
elling the enforcement mechanism. When modelling enforcement mechanisms
for timed properties, we define soundness as stating that the property should
eventually be always satisfied, meaning that it can be not satisfied at some
point provided that there is a time in the future from which the property al-
ways hold afterwards. We decided to allow the property not to hold to give
more power to enforcement mechanisms, that could enforce less properties if
the property should always be satisfied by the the outputs of enforcement mech-
anisms. Note that with our timed regular properties, the accepting condition
does not depend on the value of the clocks, meaning that “eventually always
ϕ”, where ϕ is a timed regular property, is equivalent to “always eventually
ϕ”. Our definition of soundness is thus equivalent to the one used in Pinisetty
et al. [2014b] for instance.

We also define some kind of optimality on enforcement mechanisms, that al-
lows comparing two enforcement mechanisms. An optimal enforcement mech-
anism outputs the maximal number of events it can, with the lowest dates
possible when in the timed setting. However, this notion of optimality is not
absolute, because an enforcement mechanism can not predict the events it will
receive in the future, thus it only has an incomplete knowledge of its input
(a prefix up to the current date), and its decisions can only be based on this
incomplete knowledge, meaning that an enforcement mechanism that would
guess some future that eventually happens could output more events than an
optimal one.

Enforcement Primitives

One could consider that the actions of an enforcement mechanism are restricted
to two actions: suppressing an action from the input, and adding an action
to the output. Nevertheless, with these two actions, an enforcement mecha-
nism could produce any output for a given input (at least satisfying physical
constraints). We chose to restrain these actions to constrain the output to
satisfy some constraints when compared to the input. These constraints are
expressed by compliance. As already stated, uncontrollable events must not
be modified by an enforcement mechanism. We choose to only allow enforce-
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ment mechanisms to delay controllable events, meaning that their order must
remain unchanged. It is possible to delay some events indefinitely, but then all
the events coming afterwards are also never output. This choice of delaying
controllable events naturally leads us to consider enforcement mechanisms that
have a buffer, i.e. controllable events that are stored to be possibly emitted in
the future.

Note that we could have authorised enforcement mechanisms to suppress
events instead of delaying them, but delaying seemed to us more realistic and
more challenging. Suppressing events is simpler than delaying them, since it
does not require the computation of many words that can possibly be output.
Another possibility would be to allow the enforcement mechanism to output
any arbitrary controllable event. However, we think that this does not fit with
the philosophy of runtime enforcement, since it looks more like a reimplemen-
tation of the system rather than just enforcing it without knowledge of the
system.

Changing these primitives should not be really difficult, and lead only to
minor changes. The presented framework can be seen as an example of con-
struction of enforcement mechanisms delaying controllable events, that could
serve as the basis for other enforcement primitives.

Enforcing using Games

Enforcing with uncontrollable events raises several problems, the main one
being that the enforcement mechanism does not have a total control on its
output. Thus, an enforcement mechanism has to take into account all the pos-
sible uncontrollable events that could happen in the future before outputting
anything. This can be done using some game theory. The idea is to consider
the enforcement mechanism as a player who can only output things it has
stored, and consider that the events received are actions of the other player
(the environment). Following this scheme, it is possible to construct a graph
representing a game for the enforcement mechanism to solve in order to obtain
a winning strategy that builds its output. Chapter 4 presents how exactly the
graph is constructed, and how it can be used to compute the output of the
enforcement mechanism once the winning strategy is known. The interest of
the approach using games as in Chapter 4, compared to the approach of Chap-
ter 3 is that solving the game actually allows us to compute some decisions of
the enforcement mechanism prior to the execution, i.e. not at runtime. This
is used to reduce the time overhead introduced by the enforcement mechanism
at runtime in a real implementation.
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Implementation

We present a tool called GREP, that is an implementation of the enforcement
mechanisms formally defined in the other chapters. More specifically, it uses
the computation method formally described in Section 4.3, to enforce a regular
property (with or without time). We evaluate GREP and compare it to TiPEX,
which is to our knowledge the only other tool that is capable of enforcing
timed properties. Note, however, that TiPEX does not consider uncontrollable
events, thus we can only compare GREP with TiPEX on properties without
any uncontrollable event. We are not aware of any other tool than GREP
that would enforce properties (timed or untimed) with uncontrollable events.
Even though the results seem satisfying, it is difficult to know how well GREP
performs since there is not any similar tool to compare with.

Detailed Outline of this Thesis

We give here a brief description of the different sections of this thesis.

Chapter 1: State of the Art gives a brief history of runtime enforcement,
and some related work.

Chapter 2: Preliminaries and Notation details the notation used in this
thesis, defining formally all the mathematical tools that are needed to define
our enforcement mechanisms.

Chapter 3: Enforcing Properties with Uncontrollable Events: A
First Approach presents how we build an enforcement mechanism for a
given property. We first define the requirements on enforcement mechanisms
as constraints on functions representing enforcement mechanisms. Then, we
define a non-optimal enforcement mechanism as a function, to give the basis of
how we represent an enforcement mechanism as a function, and then we define
an optimal enforcement function. We finally describe a transition system that
builds the same output as the optimal enforcement function.

Chapter 4: Enforcing Properties using a Büchi Game revisits Chap-
ter 3, this time using Büchi games to build an optimal enforcement function.
We define enforcement functions with a set-theoretic representation, and all
their requirements are adapted. Some notation differs from Chapter 3: delays
are used instead of dates in timed words (for the timed setting). We again
give a functional and operational (with a transition system) description of an
optimal enforcement mechanism, that has the same output as the optimal en-
forcement mechanism defined in Chapter 3. The main difference resides in the
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computation of this output: we use a Büchi game to improve the computation
time at runtime for an implementation.

Chapter 5: GREP: Games for Runtime Enforcement of Properties
gives a presentation of GREP, the tool implementing the enforcement mecha-
nism formally described in Chapter 4. A performance evaluation of GREP is
presented, with comparisons with another implementation of an enforcement
monitor called TiPEX.

Section 5.3.2: Conclusion summarises the thesis and gives hints about
possible improvements and perspectives.
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Chapter 1

State of the Art

1.1 Runtime Verification

The use of electronic systems to replace humans in many tasks increases with
the regular increase of computational power. Since computers can react faster
than humans, they now tend to be used even in critical systems (such as
systems driving planes), where a failure can be lethal to some people. This
has motivated the emergence of software analysis, to try to ensure a maximal
reliability for critical systems. Static analysis aims at discovering erroneous
behaviours by reading the source code (or even assembler code) of a soft-
ware, trying to detect configurations that are reachable and should not be.
Model-checking (McMillan [1993]) and source code proving (Leroy [2006]) are
examples of static analysis that can be used to improve the confidence one can
have in a piece of software. Every static analysis technique has limitations.
For instance, in model-checking, a combinatorial explosion in the number of
configurations makes it hard to analyse large pieces of software. Moreover,
this kind of analysis can not prevent some electronic errors, for example in a
communication between two components. Runtime verification (Bauer et al.
[2007, 2011]; Falcone et al. [2013]), also called passive testing (Alcalde et al.
[2004]; Cavalli et al. [2003]) on the other hand, aims at verifying system ex-
ecutions when the system runs. Since the verification happens at runtime,
it is possible to detect some transmission errors in a communication, for ex-
ample, which is not using static analysis. Runtime verification also has some
downsides. For example, contrary to static analysis, it is not able to cover
all possible executions, but only detects bad behaviours that happen during
the execution. Runtime verification can also add some computational over-
head when the verification monitor runs at the same time as the system under
scrutiny, i.e. in online mode. Thus, runtime verification and static analysis are
complementary methods that both aim at improving the reliance of systems.

Runtime verification usually consists in constructing a monitor that is at-
tached to a system, outputting verdicts indicating whether the execution of the
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monitor satisfies a given property or not. In Falcone et al. [2013], the authors
give a general description of runtime verification techniques. They consider
that runtime verification requires four steps to be achieved:

1. monitor creation from the given property;

2. instrumentation, that consists in attaching the monitor to the system
under scrutiny;

3. execution, where the system and the monitor run;

4. responses, where the monitor outputs a verdict and possibly some feed-
back to the system, after each event.

The first phase requires a property, that can be described using some logic
language for instance. From this property, a monitor is created, that is able
to output a verdict stating if an execution of the system satisfies the property.
Instrumentation of the monitor can be achieved in two different ways. First,
the monitor can be inlined in the source code of the system, which requires to
have access to this source code. Second, the monitor can be an external device
communicating with the system, i.e. able to observe its executions.

Verification monitors output verdicts according to the validity of the exe-
cution of the system with respect to the desired property. Verdicts can be, for
example, a boolean value indicating at every moment whether the execution of
the system satisfies the property or not. Verdicts can also be taken from sets
of more than two values. In Bauer et al. [2006], for instance, the authors use a
three-valued domain {>,⊥, ?} to indicate that the running system will always
satisfy the property (>), will never satisfy it (⊥) from the current state, or that
it could satisfy it or not in the future (?). Later, in Bauer et al. [2007], they
use a four-valued domain {>,>p,⊥p,⊥} that allows the monitor to distinguish
the states from which the property is satisfied but may not be satisfied in the
future (>p) from those from which the property is not satisfied but might be
satisfied in the future (⊥p). Those domains allow the monitor to be switched
off whenever a > or ⊥ verdict happens, since they ensure that the monitor is
no longer required, because the verdict will not change anymore.

1.2 Runtime Enforcement

As runtime verification, runtime enforcement of properties consists in creating
a monitor (called an enforcement monitor (EM)), but this time its aim is to
modify the execution of a running system to ensure it satisfies a given property.
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1.2.1 Enforcing Safety Properties

In 2000, Schneider et al. in Schneider [2000] give a model that can enforce
some safety properties. The authors start by defining security policies. A
security policy is a set of authorised executions. Then, a property is defined as
a security policy for which there exists a predicate that decides if an execution
belongs to the policy or not.

Enforcing a security policy consists in restraining the executions of a tar-
get system to those which belong to the policy. The authors are interested in
enforcement mechanisms that watch the execution of the system step by step,
and terminate the execution just before the policy is violated. They give a
characterisation of the properties that can be enforced using such monitors.
Since the system is halted to prevent a bad behaviour, it is pretty clear that
only safety properties (stating that something bad should never happen) can
be enforced. Indeed, if the desired property is not a safety property, there ex-
ists a valid execution that has an invalid prefix, meaning that the enforcement
mechanism would halt the system when reading the invalid prefix, thus not
enforcing correctly the property (since the good extension would not be con-
sidered as a valid execution). As noted by Viswanathan (Viswanathan [2000]),
and Schneider himself, all safety properties are not monitorable, but only the
ones for which a Turing Machine can decide if finite prefixes of an execution
violate the properties.

Then, the authors show that if the property is modelled using what they
call a security automaton, i.e. a safety Büchi automaton, then it is possible to
construct an EM that enforces the property. Doing so is pretty straightforward:
when the system starts running, a simulation of the security automaton is run
in parallel, and every action of the system is fed to the automaton with the
adequate event. Whenever the state reached in the automaton with a new
action is accepting, then the action is indeed made, but if the state reached is
not accepting, then the action is rejected and the system halted.

Security automata as per Schneider [2000] are later called truncation au-
tomata later in Ligatti et al. [2005, 2009].

Later, in Bloem et al. [2015], Bloem et al. describe shields, that are en-
forcement monitors for reactive systems. According to the authors, the output
of a shield should be correct and provide minimum interference, meaning that
it should satisfy the set of given properties, and that it deviates from the input
the least possible, respectively. They propose a way to synthesise such moni-
tors to enforce a set of safety properties. Moreover, the shields they propose
are k-stabilising, meaning that when the output of the shield deviates from the
input, then it will not deviate again before k steps, otherwise it will enter a
fail-safe mode, where it only ensures correctness, and not minimum interfer-
ence anymore. A similar approach has been studied by Wu et al. in Wu et al.
[2016], where the authors synthesise enforcement monitors for a set of safety
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properties, but this time handling burst errors (i.e. when errors usually occur
in groups). In both of these papers, safety games are used to synthesise the
enforcement monitors.

1.2.2 Enforcing more than Safety Properties

In Ligatti et al. [2009], the authors propose to enforce some properties that
are not safety properties, by giving their monitors the possibility to insert or
suppress events from the execution flow of the system. Thus, their monitors
act more like filters, suppressing some events when they would lead to a vio-
lation of the desired property, and inserting them back when possible. These
monitors thus can be seen as firewalls, that block or accept connections accord-
ing to some specified policies. They also define two crucial properties about
enforcement monitors: soundness and transparency. Soundness states that
the output allowed by the monitor always satisfies the property, and trans-
parency requires that an execution of the system that satisfies the property
should not be modified by an enforcement monitor. One could note that, for
safety properties, Schneider’s truncation automata are sound and transpar-
ent. Nevertheless, Ligatti et al. show that it is possible to produce sound
and transparent enforcement monitors for some properties that are not safety
properties. The idea is to store the suffix of an invalid execution that violates
the property, until the execution satisfies again the property, in which case the
entire stored sequence is output. Such monitors are thus transparent, since
the output of the enforcement monitor is indeed the execution of the system
if it satisfies the property, and the output of the enforcement monitor always
satisfies the property since any invalid sequence is not output entirely. In other
words, the output of such monitors is always the longest prefix of the execution
that satisfies the execution. Note that if the property is not satisfied by the
empty execution, then it might happen that the output of the enforcement
monitor does not satisfy the property.

Ligatti et al. also provide the set of properties that can be enforced by such
monitors: it is the set of renewal properties, that are the properties such that
any infinite word belonging to the property have infinite number of prefixes
that also satisfy the property. They show that some renewal properties are not
safety properties, nor liveness, but all safety properties are renewal properties,
and some liveness are renewal.

In Falcone et al. [2011b], the authors extend the work of Ligatti (Lig-
atti et al. [2009]), considering a different classification of properties, that ex-
tends the Safety-Progress classification (Manna and Pnueli [1990]; Chang et al.
[1992]). One advantage of this classification is that each class of properties can
be characterised by specific type of finite-state automata. The authors use
Streett automata to model properties, adding an accepting condition to also
accept some finite words, thus extending the Safety-Progress classification to fi-
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nite properties. They show that the properties that can be enforced by sound
and transparent enforcement monitors are the response properties from the
Safety-Progress classification. These properties are exactly the properties that
were called infinite renewal properties by Ligatti et al. (Ligatti et al. [2009]).

Then, Falcone et al. define an enforcement monitor as a Mealy machine
whose output alphabet is a set of operations. For example, the set of operations
can be {halt , store, dump, off }, such that halt terminates the execution of the
system, off shuts down the enforcement monitor, store stores the event in the
monitor’s memory, and dump releases the events from the monitor’s memory.
These four operations can be seen as reactions to the four-valued semantics
described in Bauer et al. [2007]: when the execution is evaluated as >, then
operation off is output; when it evaluates to ⊥, halt is output; and >p and ⊥p
evaluations output dump and store, respectively. The authors also describe
how to build an enforcement monitor from a response property given as a
Streett automaton.

Others, such as Hamlen et al. [2006] also classified properties to determine
which are the ones that can be monitored. In Hamlen et al. [2006], the authors
concluded that the set of monitorable properties depends on the capabilities of
the monitor. This brought the authors in Fong [2004] to classify properties de-
pending on the information that is needed to enforce them. For instance, they
study special-cases monitors, that have limited power, using shallow history
automata, that remember only the set of authorised actions (without order-
ing). They show that such monitors enforce less that the set of enforceable
properties, but that the set of properties it enforces can be useful in some real
situations.

In Dolzhenko et al. [2015], the authors model enforcement mechanisms
as Mandatory Results Automata (MRA). A system executing actions on an
untrusted application see its actions verified and must wait a verified result
from the application before executing another action. The authors state that
such enforcement mechanisms can enforce more than safety properties.

In Rinard [2003], the author uses enforcement mechanisms to lead software
development, specifying several properties for different features that have to be
fulfilled by the application. The author describes different kinds of enforcement
mechanisms, and determines some possible uses in the context of software
development.

1.2.3 Enforcing Safety Properties with Uncontrollable
Events

To our knowledge, very little work has been done on the subject of enforcing
properties with uncontrollable events.

In Basin et al. [2013], Basin et al. extend the work of Schneider (Schneider
[2000]) by considering some events as only observable (which corresponds to
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what we call uncontrollable events). Their enforcement monitors act exactly
as the ones of Schneider, halting the system, but they can do so only if the
last event was controllable, i.e. it is not possible for the enforcement monitor
to halt the system when reading an event that is only observable. The authors
determine what are the properties that can be enforced using such monitors.
They first define safety properties in a way that takes into account the fact
that some events are not controllable. Then, they provide several decidability
results, depending on the model used to describe the properties, and describe
how to build a monitor when the property is enforceable. In particular, they
show that if the property is a finite-state automaton (FSA), and the universe of
all possible executions can also be represented by an FSA, then it is possible to
decide if the property is enforceable. The authors also note that it is possible
to represent some time constraints using observable events, for example by
considering events such as ticks of some clock.

1.2.4 Enforcing Timed Properties

Most of the work done so far on the subject of enforcement has been focusing
on untimed properties, usually represented by automata. Recent work has
extended this work to timed properties.

In Pinisetty et al. [2013, 2014b], the authors take interest in the runtime
enforcement of timed properties. They propose a way to enforce timed regu-
lar properties, i.e. properties that can be represented as timed automata, as
per Alur and Dill [1992]. They model enforcement mechanisms as functions
taking a timed word and returning another timed word, i.e. modifying an exe-
cution, represented as a timed word. They extend the definitions of soundness
and transparency to enforcement mechanisms for timed properties, expressing
them as requirements on enforcement functions. An enforcement function is
sound if any non-empty image by this function satisfies the property or will
satisfy it in the future, i.e. at an infinite time. An enforcement function is
transparent if it acts as a delayer, i.e. the image of a timed word is a timed
word whose actions form a prefix of the actions of the argument, and the delays
in the image are greater than the ones of the argument. Then, they provide an
enforcement function that is sound and transparent, for a given timed regular
property. They also define a transition system that has the same output as
the enforcement function.

1.2.5 Instrumentation of Enforcement Monitors

In Martinell and Matteucci [2007], the authors model Schneider’s and Ligatti’s
EM (Schneider [2000]; Ligatti et al. [2009]) using Process-Algebra operators,
taking a step towards the implementation of such monitors. As for instru-
mentation of Verification Monitors (see for example Falcone et al. [2013]),
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instrumenting Enforcement Monitors can be inlined in the source code, or as
an external device. For inlined monitors, one could use for example JavaMOP
(Chen and Rosu [2005]), that uses Aspect-Oriented Programming (AOP), i.e.
AspectJ. An example of use of AspectJ to enforce properties can be found
in Cuppens et al. [2006]. In Bauer et al. [2009], Bauer et al. define a new
language called Polymer that aims at simplifying the specification of the prop-
erties for runtime enforcement. They allow to specify complex properties as
sets of simpler properties, in a language that can be integrated into Java ap-
plications.

The only tool to our knowledge that allows the runtime enforcement of
timed properties is TiPEX. TiPEX is a tool written in Python, that acts as
a sound and transparent enforcement mechanism for timed regular proper-
ties, implementing the approach presented in Pinisetty et al. [2015a]. TiPEX
uses some libraries from UPPAAL (Larsen et al. [1997]), in particular to read
properties specifications from XML files, and to handle DBMs (Data Bounds
Matrices, see Dill [1989]).
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Chapter 2

Preliminaries and Notation

In this chapter, we describe the notation used in this document, and give
formal definitions of elements we use, such as words, automata, traces, timed
words, and timed automata.

2.1 Untimed notions

An alphabet is a finite set of symbols. A word over an alphabet Σ is a sequence
over Σ. The set of finite words over Σ is denoted Σ∗. A language over Σ is
any subset L ⊆ Σ∗.

The length of a finite word w is noted |w|, and the empty word is noted ε.
The concatenation of two words w and w′ is noted w . w′ (or ww′ when clear
from the context). A word w′ is a prefix of a word w, noted w′ 4 w, if there
exists a word w′′ such that w = w′ .w′′. Word w′′ is called the residual of w after
reading the prefix w′, noted w′′ = w′−1 .w. Note that w′ .w′′ = w′ .w′−1 .w = w.
These definitions are extended to languages in the natural way. A language
L ⊆ Σ∗ is extension-closed if for any words w ∈ L and w′ ∈ Σ∗, w . w′ ∈ L.
Given a word w = a1) . a2 . . . an and an integer i such that 1 ≤ i ≤ n, we note
w(i) the i-th element of w, i.e. w(i) = ai. We also note w[..i] the prefix of w of
size i: w[..i] = a1 . a2 . . . ai.

Given a tuple e = (e1, e2, . . . , en) of size n, for an integer i such that
1 ≤ i ≤ n, we note Πi the projection on the i-th coordinate, i.e. Πi(e) = ei.
The tuple (e1, e2, . . . , en) is sometimes noted 〈e1, e2, . . . , en〉 in order to help
reading. It can be used, for example, if a tuple contains a tuple. Given a word
w ∈ Σ∗ and Σ′ ⊆ Σ, we define the restriction of w to Σ′, noted w|Σ′ , as the
word w′ ∈ Σ′∗ whose letters are the letters of w belonging to Σ′ in the same
order. Formally, ε|Σ′ = ε and for any σ ∈ Σ∗, and any a ∈ Σ, (w.a)|Σ′ = w|Σ′ .a
if a ∈ Σ′, or (w . a)|Σ′ = w|Σ′ otherwise. We also note =Σ′ the equality of the
restrictions of two words to Σ′: for σ and σ′ in Σ∗, σ =Σ′ σ′ if σ|Σ′ = σ′|Σ′ . We
define in the same way 4Σ′ : σ 4Σ′ σ′ if σ|Σ′ 4 σ′|Σ′ .
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q0 q1

0

1

1

0

Figure 2.1 – A simple automaton

2.2 Automata
An automaton is a tuple 〈Q, q0,Σ,−→, F 〉, where Q is the finite set of states,
q0 ∈ Q is the initial state, Σ is the alphabet, −→ ⊆ Q×Σ×Q is the transition
relation and F ⊆ Q is the set of accepting states. Whenever there exists
(q, a, q′) ∈ −→, we note it q a−→ q′. Relation −→ is extended to Q×Σ∗ ×Q, such
that for q ∈ Q, σ ∈ Σ∗, q′ ∈ Q, and q′′ ∈ Q and a ∈ Σ, q σ.a−→ q′′ if q σ−→ q′ and
q′

a−→ q′′. Moreover, for any q ∈ Q, q ε−→ q always holds.
An automaton A = 〈Q, q0,Σ,−→, F 〉 is deterministic if:

∀q ∈ Q,∀a ∈ Σ, (q
a−→ q′ ∧ q a−→ q′′) =⇒ q′ = q′′.

A is complete if:
∀q ∈ Q, ∀a ∈ Σ, ∃q′ ∈ Q, q a−→ q′.

A word w is accepted by A if there exists q ∈ F such that q0
w−→ q. The

language (i.e. set of all words) accepted by A is noted L(A). A property is a
language over an alphabet Σ. A regular property is a language accepted by
an automaton. In the sequel, we assume that a property ϕ is represented by a
deterministic and complete automaton Aϕ.

Example 2.1. A simple example of automaton is given in Fig. 2.1. In this
example, Q = {q0, q1}, Σ = {0, 1}, F = {q0}, and −→ = {(q0, 0, q0), (q0, 1, q1),
(q1, 0, q0), (q1, 1, q1)}. The accepting states (the ones belonging to F ) are the
double-circled states, and the initial state (q0) is represented with an input
arrow without any source and an empty label. The language accepted by this
automaton is the set of all even numbers, written in binary (the ones ending
with a 0 in their binary representation).

2.3 Timed Languages
Let R≥0 be the set of non-negative real numbers, and Σ a finite alphabet of
actions. An event is a pair (t, a) ∈ R≥0 × Σ, where t represents the date at
which the action a occurs. We define date((t, a)) = t and act((t, a)) = a the
projections of events on dates and actions respectively. A timed word over Σ
is a word over R≥0 × Σ whose real parts are ascending, i.e. σ is a timed word
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if σ ∈ (R≥0 × Σ)∗ and for any i ∈ [1; |σ| − 1], date(w(i)) ≤ date(w(i + 1)).
The set of timed words over Σ is denoted tw(Σ). For a timed word σ =
(t1, a1) . (t2, a2) . . . (tn, an) and an integer i such that 1 ≤ i ≤ n, ti is the time
elapsed before action ai occurs. We naturally extend the notions of prefix and
residual to timed words.

We denote the total time needed to read a timed word σ by time(σ). For-
mally, time(ε) = 0, and if σ 6= ε, time(σ) = date(σ(|σ|)). The observation of σ
at time t is the timed word noted obs(σ, t) and defined as:

obs(σ, t) = max
4

({σ′ | σ′ 4 σ ∧ time(σ′) ≤ t}).

It corresponds to the word that would be observed at date t when reading σ,
if events were received at the date they are associated with. We also define
the remainder of the observation of σ at time t as

nobs(σ, t) = (obs(σ, t))−1.σ,

which corresponds to the events that are to be received after date t when
reading σ.

The untimed projection of a timed word σ is noted ΠΣ(σ), and defined as:

ΠΣ((t1, a1) . (t2, a2) . . . (tn, an)) = a1 . a2 . . . an.

It is the sequence of actions of the timed word with dates ignored. For a timed
word σ = (t1, a1) . (t2, a2) . . . (tn, an), and a delay δ ∈ R≥0, σ delayed by δ is
the word noted σ +t δ and such that δ is added to all dates:

σ +t δ = (t1 + δ, a1).(t2 + δ, a2) . . . (tn + δ, an).

Similarly, we define σ −t δ, when t1 ≥ δ, as

σ −t δ = (t1 − δ, a1).(t2 − δ, a2) . . . (tn − δ, an).

We also extend the definition of the restriction of σ to Σ′ ⊆ Σ to timed words,
such that ε|Σ′ = ε, and for σ ∈ tw(Σ) and (t, a) such that σ . (t, a) ∈ tw(Σ),
(σ.(t, a))|Σ′ = σ|Σ′ .(t, a) if a ∈ Σ′, and (σ.(t, a))|Σ′ = σ|Σ′ otherwise. The
notations =Σ′ and 4Σ′ are then naturally extended to timed words.

A timed language is any subset of tw(Σ). The notion of extension-closed
languages is naturally extended to timed languages, i.e. if L ⊆ tw(Σ) is a timed
language, L is extension-closed if L = L . tw(Σ). We also extend the notion of
extension-closed languages to sets of elements composed of a timed word and
a date: a set S ⊆ tw(Σ) × R≥0 is time-extension-closed if for any (σ, t) ∈ S,
for any w ∈ tw(Σ) such that σ . w ∈ tw(Σ), and for any t′ ≥ t, (σ . w, t′) ∈ S.
In other words, S is time-extension-closed if for every σ ∈ tw(Σ), there exists
a date t from which σ and all its extensions are in S, that is, associated with
a date greater or equal to t.
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Moreover, we define an order on timed words: we say that σ′ is a delayed
prefix of σ, noted σ′ 4d σ, whenever ΠΣ(σ′) 4 ΠΣ(σ) and for any i ∈ [1; |σ′| −
1], date(σ(i)) ≤ date(σ′(i)). Note that the order is not the same in the different
constraints: ΠΣ(σ′) is a prefix of ΠΣ(σ), but dates in σ′ exceed dates in σ.
As for the equality = and the prefix order 4, we note σ′ 4dΣ′ σ whenever
σ′|Σ′ 4d σ|Σ′ . We also define a lexical order ≤lex on timed words with identical
untimed projections, such that ε ≤lex ε, and for two words σ and σ′ such that
ΠΣ(σ) = ΠΣ(σ′), and two events (t, a) and (t′, a) such that (t, a) . σ ∈ tw(Σ)
and (t′, a) . σ′ ∈ tw(Σ), (t′, a) . σ′ ≤lex (t, a) . σ if t′ < t ∨ (t = t′ ∧ σ′ ≤lex σ).

Consider for example the timed word σ = (1, a) . (2, b) . (3, c) . (4, a) over the
alphabet Σ = {a, b, c}. Then, ΠΣ(σ) = a.b.c.a, obs(σ, 3) = (1, a).(2, b).(3, c),
nobs(σ, 3) = (4, a), and if Σ′ = {b, c}, σ|Σ′ = (2, b) . (3, c), and for instance
(1, a) . (2, b) . (4, c) 4d σ, and σ ≤lex (1, a).(3, b).(3, c).(3, a). Moreover, if
w = (1, a).(2, b), then w−1.σ = (3, c).(4, a).

2.4 Timed Automata
Let X = {X1, X2, . . . , Xn} be a finite set of clocks, i.e. variables that increase
regularly with time. A clock valuation is a function ν from X to R≥0. The set
of clock valuations for the set of clocks X is noted V(X), i.e. V(X) = {ν | ν :
X → R≥0}. We consider the following operations on valuations:

• for any valuation ν ∈ V(X), ν+δ is the valuation representing the elapse
of δ time units from ν, such that for any Xi ∈ X, (ν+δ)(Xi) = ν(Xi)+δ;

• for any subset X ′ ⊆ X, ν[X ′ ← 0] is the valuation representing ν with
clocks in X ′ reset, such that:

(ν[X ′ ← 0]) : Xi 7→

{
0 if Xi ∈ X ′

ν(Xi) otherwise.

G(X) denotes the set of guards consisting of boolean combinations of con-
straints of the form Xi ./ c with Xi ∈ X, c ∈ N, and ./∈ {<,≤,=,≥, >}.
Given g ∈ G(X) and a valuation ν, we write ν |= g when for every constraint
Xi ./ c in g, ν(Xi) ./ c holds.

Definition 2.1 (Timed automaton Alur and Dill [1992]). A timed automaton
(TA) is a tuple A = 〈L, l0, X, Σ, ∆, G〉, such that L is a set of locations,
l0 ∈ L is the initial location, X is a set of clocks, Σ is a finite set of events,
∆ ⊆ L× G(X)× Σ× 2X × L is the transition relation, and G ⊆ L is a set of
accepting locations. A transition (l, g, a,X ′, l′) ∈ ∆ is a transition from l to l′,
labelled with event a, with guard g, and with the clocks in X ′ to be reset.

The semantics of a timed automaton A is a timed transition system JAK =
〈Q, q0,Γ,→, FG〉 where Q = L×V(X) is the (infinite) set of states, q0 = (l0, ν0)
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l0 l1 l2
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(a) Timed automaton modelling double-
clicks
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(b) Timed automaton modelling double-
clicks with overlaps

Figure 2.2 – Timed automata modelling double-clicks, without and with over-
laps

is the initial state, with ν0 = ν[X ← 0], FG = G×V(X) is the set of accepting
states, Γ = R≥0×Σ is the set of transition labels, each one composed of a delay
and an action. The transition relation → ⊆ Q× Γ×Q is a set of transitions
of the form (l, ν)

(δ,a)−−→ (l′, ν ′) with ν ′ = (ν + δ)[Y ← 0] whenever there is a
transition (l, g, a, Y, l′) ∈ ∆ such that ν + δ |= g, for δ ≥ 0.

A timed automaton A = 〈L, l0, X,Σ,∆, G〉 is deterministic if for any
(l, g1, a, Y1, l

′
1) and (l, g2, a, Y2, l

′
2) in ∆, g1 ∧ g2 is unsatisfiable, meaning that

only one transition can be fired at any time. A is complete if for any l ∈ L
and any a ∈ Σ, the disjunction of the guards of all the transitions leaving l
and labelled by a is valid (i.e., it holds for any clock valuation).

Example 2.2. Examples of timed automata are given in Fig. 2.2. In Fig. 2.2a,
L = {l0, l1, l2}, X = {x}, Σ = {click}, ∆ = {(l0,>, click, {x}, l1), (l1, x >
2, click, {x}, l1), (l1, x ≤ 2, click, ∅, l2), (l2,>, click, {x}, l1)}, and G = {l2},
where > evaluates to true for any clock valuation. This automaton models a
double click: considering that the click event is a mouse click, the automaton
only accepts sequences of clicks that ends with a double-click. The condition
for two clicks to be considered as a double-click is that the second one is made
less than two time units after the first one. Note that with this modelling,
double-clicks can not overlap, i.e. clicking three times in less than two time
units will not be considered as ending with a double-click, since only the first
two clicks will be considered as a double-click. Allowing overlaps would only
require splitting the transition from l2 to l1 in two, as described in Fig. 2.2b.

A run ρ from q ∈ Q is a valid sequence of transitions in JAK starting from

q, of the form ρ = q
(δ1,a1)−−−−→ q1

(δ2,a2)−−−−→ q2 . . .
(δn,an)−−−−→ qn. The set of runs from

q0 is noted Run(A) and RunFG
(A) denotes the subset of runs accepted by A,

i.e. ending in a state in FG. The trace of the run ρ previously defined is the
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timed word (t1, a1).(t2, a2) . . . (tn, an), with, for 1 ≤ i ≤ n, ti =
∑i

k=1 δk. Thus,
given the trace σ = (t1, a1).(t2, a2) . . . (tn, an) of a run ρ from a state q ∈ Q
to q′ ∈ Q, we can define w = (δ1, a1).(δ2, a2) . . . (δn, an), with δ1 = t1, and
∀i ∈ [2;n], δi = ti − ti−1, and then q w−→ q′. To ease the notation, we will only
consider traces and note q σ−→ q′ whenever q w−→ q′ for the previously defined
w. Note that to concatenate two traces σ1 and σ2, it is needed to delay σ2

to obtain a trace: the concatenation σ of σ1 and σ2 is the trace defined as
σ = σ1.(σ2 +t time(σ1)). In this case, if q σ1−→ q′

σ2−→ q′′, then q σ−→ q′′.

2.5 Timed properties

A regular timed property is a timed language ϕ ⊆ tw(Σ) that is accepted by a
timed automaton. For a timed word σ, we say that σ satisfies ϕ, noted σ |= ϕ
whenever σ ∈ ϕ. We only consider regular timed properties whose associated
automaton is complete and deterministic.

2.6 Traces manipulation

Given a deterministic automaton A = 〈Q, q0,Σ,−→, F 〉 and a word σ ∈ Σ∗,
for q ∈ Q, we note q after σ = q′, where q′ is such that q σ−→ q′, i.e. q′ is
the state reached from q after reading word σ. Since A is deterministic, there
exists only one such q′. We also note Reach(σ) = q0 after σ. We extend these
definitions to languages: if L is a language, q after L =

⋃
σ∈L{q after σ} and

Reach(L) = q0 after L. For a state q ∈ Q and an action a ∈ Σ, we note
Preda(q) = {q′ ∈ Q | q′ a−→ q} the set of predecessors of q by a. This notation
is extended to sets of states: if S ⊆ Q, then Preda(S) =

⋃
q∈S Preda(q).

In the timed setting, if A = 〈L, l0, X,Σ,∆, G〉 is a deterministic TA, and
JAK = 〈Q, q0,Γ,−→, FG〉, we note in the same way as in the untimed setting,
with σ ∈ tw(Σ), q after σ = q′, with q

σ−→ q′, and Reach(σ) = q0 after σ.
These operations are also extended to languages as in the untimed setting.
We allow the use of the operators after and Reach with an extra parameter,
representing an observation time, such that if t ∈ R≥0, then q after (σ, t) = q′

whenever q
obs(σ,t)−−−−→ q′′, with q′′ = 〈l, ν〉, and q′ = 〈l, ν + (t− time(obs(σ, t)))〉,

and Reach(σ, t) = q0 after (σ, t). The set of predecessors of a state q ∈ Q by

an action a ∈ Σ is Preda(q) = {q′ ∈ Q | q′ (0,a)−−→ q}, i.e. it is the set of states
that are predecessors without delay. This definition is also extended to sets
of states as in the untimed setting. Moreover, for q = 〈l, ν〉 ∈ Q, we note
up(q) = {〈l, ν + t〉 ∈ Q | t ∈ R≥0}, it is the set of states that will be reached
from q as time elapses if no action occurs. This definition is extended to sets
of states: for S ⊆ Q, up(S) =

⋃
q∈S up(q).
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Example 2.3. Consider the property accepting sequences of clicks ending
by a double-click, described in Fig. 2.2a. Let us consider that the set Q of
states of the semantics of this TA is Q = L × R≥0, with L = {l0, l1, l2},
and where the valuations are replaced by the value of the unique clock x.
Then, for instance, Reach((1, click)) = (l0, 0) after (1, click) = (l1, 0), and
(l1, 1) after ((1, click), 3) = (l2, 4), since x = 2 when the action click occurs,
enabling the transition to l2, and then 2 time units remain to wait, giving a
final value of 4 for x.

2.7 Graphs and Büchi games.

This section presents notation and formalisms that are used in Chapters 4
and 5 only.

A graph is a couple 〈V,E〉 such that V is a set of elements called vertices,
E ⊆ V × V is a relation defining edges between the vertices. Given a graph
G = 〈V,E〉 and a partition of V into two subsets V0 and V1, it is possible to
play a two-player game in the arena A = (V0, V1, E). A play over A is a path in
G, i.e. a sequence of vertices such that there exists an edge in G between any
two consecutive vertices in the sequence. A strategy for player P0 is a mapping
σ : V ∗V0 → V such that for all π ∈ V ∗, for all v0 ∈ V0, (v0, σ(π.v0)) ∈ E,
i.e. the strategy gives a vertex that can be reached from v0. Note that V0 is
thus the set of vertices from which P0 can play, whereas the other player, P1,
plays from the vertices in V1. Strategies for P1 are defined in a similar way,
replacing V0 by V1. A play π = v0, v1, . . . is consistent with the strategy σ
if for any vi ∈ V0, vi+1 = σ(v0 . v1 . · · · . vi), meaning that the strategy was
followed for any vertex in V0. The goal of a game can be, for example, to
reach a state in a given subset of V (reachability game), or to ensure that a
given subset of V is visited an infinite number of times (Büchi games). Thus,
given a subset FG ⊆ V of vertices, the Büchi game (A,FG) for P0 consists
in finding a winning strategy σ such that all plays π over A consistent with
σ visit an infinite number of times the set FG (i.e. if π is consistent with σ,
π ∈ (V ∗FG)ω). We refer to the nodes in FG as Büchi nodes.

It is known that it is possible to compute the set W0 of winning vertices
for P0 (i.e. the set of vertices from where there exists a winning strategy
for P0), and the associated winning strategy from all these vertices. From
all the other vertices (in V \W0), there exists a winning strategy for P1, i.e.
W1 = V \W0, thus P0 can not win the game if P1 plays perfectly from one of
these vertices. Moreover, it is possible to find a strategy that is memoryless,
meaning that the only the last vertex is needed to compute the next. Formally,
a memoryless strategy for P0 is a strategy σ : V0 → V . Such strategies are
easier to compute, since they do not require to read the entire history before
choosing the transition to follow.
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2.8 Functions
In all this paper, we use functions to describe the input/output behaviour of
enforcement mechanisms. We then use input and output to refer to “argument”
and “image” of such functions, respectively.
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Chapter 3

Enforcing Properties with
Uncontrollable Events: A First
Approach

Introduction

In this chapter, we model enforcement mechanisms for regular properties and
for timed regular properties, when some events are uncontrollable. We first
model enforcement mechanisms as functions, and express the expected require-
ments of enforcement mechanisms as constraints that should be satisfied by
these functions. The expected requirements are soundness, compliance, and
optimality. We describe a function that is not optimal but simple to define,
and then we improve it to make it optimal. Then, we give an operational
description of the enforcement mechanism, using a transition system whose
output is the same as the one of the optimal function. This is first done in
Section 3.1 for regular properties, represented by an automaton, and then in
Section 3.2 for timed properties, represented by timed automata. The proofs
of all the propositions of this chapter are given in appendix A.1.

The work described in this chapter has been published in Renard et al.
[2015] and Renard et al. [2017a].

3.1 Enforcing Untimed Properties

In this section, ϕ is a regular property defined by an automaton Aϕ = 〈Q,
q0, Σ, −→, F 〉 as defined in Section 2.2. Remember the general scheme of an
enforcement mechanism (EM), given in Fig. 1b.

We consider uncontrollable events in the set Σu ⊆ Σ. These events cannot
be modified by an EM, i.e. they cannot be suppressed nor buffered, so they
must be output by the EM whenever they are received. Let us note Σc = Σ\Σu
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σ E
σc

σs

Figure 3.1 – Enforcement monitor E with input σ, output σc and buffer σc

the set of controllable events, which can be modified by the EM. An EM can
decide to buffer them to delay their emission, but it cannot suppress them (nev-
ertheless, it can buffer them endlessly, keeping their order unchanged). Thus,
an EM may interleave controllable and uncontrollable events. Since control-
lable events can be delayed, an EM must store them before outputting them,
to keep their order intact. Thus, Fig. 3.1 gives a description of an enforcement
monitor E with input σ, output σs and buffer, i.e. stored controllable events,
σc.

In this section, for q ∈ Q, we note uPred(q) =
⋃
u∈Σu

Predu(q), and we
extend this definition to sets of states: for S ⊆ Q, uPred(S) =

⋃
q∈S uPred(q).

The operator uPred returns all the states that are predecessors of its argument
by an uncontrollable event. In other words, if q′ ∈ uPred(q), then there exists
an uncontrollable event that leads to q from q′. For S ⊆ Q, we also note
S = Q \ S.

3.1.1 Enforcement Functions and their Requirements

Enforcement Functions, Soundness and Compliance

In this section, we define enforcement functions and give the expected re-
quirements of such functions. An enforcement function is a description of the
input/output behaviour of an EM. Formally, we define enforcement functions
as follows:

Definition 3.1 (Enforcement Function). An enforcement function is a func-
tion from Σ∗ to Σ∗, that is increasing on Σ∗ with respect to 4:

∀σ ∈ Σ∗,∀σ′ ∈ (Σ∗), σ 4 σ′ =⇒ E(σ) 4 E(σ′).

An enforcement function is a function that modifies an execution, and that
cannot remove events it has already output (supposing it is fed with a growing
input).

In the sequel, we define the requirements on an EM and express them on
enforcement functions. As stated previously, an EM aims at ensuring that
executions of a running system satisfy ϕ, thus its enforcement function has to
be sound, meaning that its output always satisfies ϕ.

Definition 3.2 (Soundness). An enforcement function E : Σ∗ → Σ∗ is sound
with respect to ϕ in an extension-closed set S ⊆ Σ∗ if ∀σ ∈ S,E(σ) |= ϕ.
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Since there are some uncontrollable events that are only observable by
the EM, receiving uncontrollable events could lead to the property not being
satisfied by the output of the enforcement mechanism. Moreover, some un-
controllable sequences could lead to a state of the property that would be a
non-accepting sink state, leading to the enforcement mechanism not being able
to satisfy the property any further. Consequently, in Definition 3.2, soundness
is not defined for all words in Σ∗, but in a subset S, since it might happen
that it is impossible to ensure it from the initial state. Thus for an EM to be
effective, S needs to be extension-closed to ensure that the property is always
satisfied once it has been. If S were not extension-closed, soundness would
only mean that the property is sometimes satisfied. In particular, the identity
function would be sound in ϕ. In practice, there may be an initial period where
the enforcement mechanism does not ensure the property, which is unavoid-
able, but as soon as a safe state is reached, the property becomes enforceable
forever, and the property is guaranteed to hold. This approach appears to
be the closest to the usual one without uncontrollable events (Pinisetty et al.
[2014a]).

The usual notion of transparency (cf. Schneider [2000]; Ligatti et al. [2009])
states that the output of an EM is the longest prefix of the input satisfying the
property. The name “transparency” stems from the fact that correct executions
are left unchanged. Note that transparency also implicitly defines some kind
of optimality, since the expected prefix is the longest one. However, because of
uncontrollable events, events may be released in a different order from the one
they are received. Therefore, transparency can not be ensured, and we define
the weaker notion of compliance.

Definition 3.3 (Compliance). E is compliant with respect to Σu and Σc, noted
compliant(E,Σu,Σc), if

∀σ ∈ Σ∗, E(σ) 4Σc σ ∧ E(σ) =Σu σ ∧ ∀u ∈ Σu, E(σ).u 4 E(σ.u).

Intuitively, compliance states that the EM does not change the order of the
controllable events and emits uncontrollable events simultaneously with their
reception, possibly followed by stored controllable events. We chose to consider
enforcement mechanisms that can delay controllable events. To our opinion, it
corresponds to the most common choice in practice. However, other primitives,
such as deletion or reordering of controllable events could be easily considered.
Using other enforcement primitives would require only few changes, especially
adapting the definitions of compliance and optimality, and the construction of
G (see below). When clear from the context, the partition is not mentioned:
E is said to be compliant, and we note it compliant(E).

We say that a property ϕ is enforceable whenever there exists a compliant
function that is sound with respect to ϕ.
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q0 q1 q2

q3

Auth

Auth
LockOff
Write

LockOn

Auth
LockOn

LockOff
Write
LockOn
LockOff

Write

Σ

Figure 3.2 – Property ϕex modelling a shared data storage

Example 3.1. We consider a simple untimed shared storage device. Af-
ter authentication, a user can write a value only if the storage is unlocked.
(Un)locking the device is decided by another entity, meaning that it is not
controllable by the user. Property ϕex (see Fig. 3.2) formalises the above re-
quirement.

Property ϕex is not enforceable if the uncontrollable alphabet is {LockOn,
LockOff , Auth}1 since reading the word LockOn from q0 leads to q3, which is
not an accepting state. However, the existence of such a word does not imply
that it is impossible to enforce ϕex for some other input words. If word Auth is
read, then state q1 is reached, and from this state, it is possible to enforce ϕex

by emitting Write events only when in state q1. This means that it is possible
to have an enforcement function that is sound with respect to ϕex in Auth .Σ∗
(actually in Write∗ . Auth . Σ∗).

Considering the property ϕ, it is now possible to define a first enforcement
function that is sound with respect to ϕ and compliant with respect to Σu and
Σc.

3.1.2 A First Simple Enforcement Function

This section shows a simple enforcement function that is compliant and sound.
Its main intent is to show the way we define enforcement functions, to provide
the skeleton of all the enforcement functions that we define in this document.
We define enforcement functions by induction on the argument, so that it can
easily be constructed incrementally, which is useful when enforcing in online
mode (i.e. at runtime).

1Uncontrollable events are emphasised in italics.
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We first define a function that, given a state of the automaton and some
controllable events corresponding to the events stored so far by the enforcement
mechanism, gives the set of prefixes of this controllable sequence that can
be emitted by the enforcement mechanism. The goal is to obtain a sound
enforcement mechanism, thus, the prefixes that will be in this set should be
prefixes that ensure soundness. We define this function in the following way:

Definition 3.4 (G). For q ∈ Q, and w ∈ Σ∗c, G(q, w) = {w′ 4 w | q after w′ ∈
Qenf}, with Qenf = {q′ ∈ F | q after Σ∗u ⊆ F}.

Now, we can define our enforcement function using this set to ensure sound-
ness. Compliance is ensured in the definition by reacting differently according
to the controllability of the events received.

Definition 3.5 (Simple Enforcement Function). Let us define function storeϕ :
Σ∗ → Σ∗ × Σ∗c by induction as follows:

storeϕ(ε) = (ε, ε),

and for σ ∈ Σ∗ and a ∈ Σ, if (σs, σc) = storeϕ(σ),

storeϕ(σ . a) =

{
(σs . a . σ

′
s, σ
′
c) if a ∈ Σu

(σs . σ
′′
s , σ

′′
c ) if a ∈ Σc,

with:

σ′s = max4(G(Reach(σs . a), σc) ∪ {ε})

σ′c = σ′−1
s . σc

σ′′s = max4(G(Reach(σs), σc . a) ∪ {ε})

σ′′c = σ′′−1
s . (σc . a)

Then, we can define an enforcement function using storeϕ as follows: for
σ ∈ Σ∗, Eϕ(σ) = Π1(storeϕ(σ)).

Function Eϕ as per Definition 3.5 is an enforcement function that is com-
pliant with respect to Σu and Σc. In storeϕ, σs is the word that is output by
Eϕ, whereas σc is the buffer of stored controllable events that is used to ensure
that they are output in the right order. Example 3.2 details the evolution of
σs and σc for a particular input.

Intuitively, Eϕ considers states in Qenf (see Definition 3.4) as safe states:
they are the states that are in F and from which any uncontrollable word leads
to a state in F . This means that as soon as a state in Qenf is reached, delaying
all controllable events endlessly produces an output that satisfies the property.
Function Eϕ does not output any controllable event before its output (thus
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Figure 3.3 – A property showing that Eϕ is not optimal

Table 3.1 – Evolution of (σs, σc) = storeϕ(σ) with σ 4 c . c . u

σ σs σc
ε ε ε
c ε c
c . c ε c . c
c . c . u u . c . c ε

composed only of the uncontrollable events of the input) has reached a state
in Qenf , thus it is possible to compute the set of arguments that have an image
under Eϕ that satisfies ϕ, and such that all the extensions of the argument
also have their image satisfying ϕ. Formally, this set can be defined as follows:

Definition 3.6 (Pre(ϕ)). Pre(ϕ) = {σ ∈ Σ∗ | G(Reach(σ|Σu), σ|Σc) 6= ∅} . Σ∗

Note that Pre(ϕ) as per Definition 3.6 is extension-closed. This set allows
us to get the last requirement on Eϕ: Eϕ is sound with respect to ϕ in Pre(ϕ).

Thus, Eϕ is an enforcement function that is sound with respect to ϕ in
Pre(ϕ), and compliant with respect to Σu and Σc. Proofs of these propositions
are straightforward: Pre(ϕ) is is the set of words whose uncontrollable events
lead to a state in Qenf (see Definition 3.4), and by construction, from any state
in Qenf , any uncontrollable event leads to a state in Qenf . This means that once
Qenf is reached, i.e. when the input is in Pre(ϕ), the enforcement mechanism
only has to output words that lead to a state in Qenf , which is exactly what
G (Definition 3.4) is used for. Thus, Eϕ is sound in Pre(ϕ). Constructing
the output by induction ensures compliance, outputting uncontrollable events
immediately and adding controllable events to the buffer of stored controllable
events (σc) before deciding if it is possible to output a prefix of this buffer.

Example 3.2. Now, consider the property defined in Fig. 3.3. Considering
that Σu = {u}, and Σc = {c}, for this property, Qenf = {q0, q3}. The evolution
of σs and σc as per Definition 3.5 for this property with input c . c . u is given
in Table 3.1. This means that Eϕ(c . c) = ε, but one can notice that it could
be possible to have a sound and compliant enforcement function E such that
E(c . c) = c, since Reach(c) = q1 ∈ F , and from q1 it is possible to wait for
an uncontrollable event u to reach q2 and then emit the second stored c event,
such that E(c . c . u) = c . u . c, thus Reach(E(c . c . u)) = q3 ∈ Qenf .
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Thus, we define another requirement on enforcement functions, that states
that an enforcement function should output as many events as possible (while
ensuring soundness and compliance). This requirement is called optimality.

Optimality

We have seen that Eϕ as per Definition 3.5 is not optimal, since Eϕ(c . c) ≺ c.
One can also note that an enforcement function E defined such that for any
σ ∈ Σ∗, E(σ) = ε is sound in Σ∗ for the property described in Fig. 3.3, and
compliant with respect to Σu = {u} and Σc = {c}.

An enforcement mechanism should modify the sequence of actions of the
system the least possible, thus we require that an enforcement mechanism
should be optimal in the sense that its output sequences should be maximal
(with respect to 4) while preserving soundness and compliance. In the same
way we defined soundness in an extension-closed set, we define optimality as
follows:

Definition 3.7 (Optimality). An enforcement function E : Σ∗ → Σ∗ that is
compliant with respect to Σu and Σc, and sound in an extension-closed set
S ⊆ Σ∗ is optimal in S if:

∀E ′ : Σ∗ → Σ∗,∀σ ∈ S,∀a ∈ Σ,
(compliant(E ′) ∧ E ′(σ) = E(σ) ∧ |E ′(σ.a)| > |E(σ.a)|) =⇒

(∃σu ∈ Σ∗u, E
′(σ.a.σu) 6|= ϕ).

Intuitively, optimality states that if there exists a compliant enforcement
function that outputs a longer word than an optimal enforcement function,
then there must exist a sequence of uncontrollable events that would lead the
output of that enforcement function to violate ϕ. This would imply that this
enforcement function is not sound in the same set as the optimal one. Thus, an
enforcement function that outputs a longer word than an optimal enforcement
function can not be sound and compliant. Since it is not always possible
to satisfy the property from the beginning, this condition is restrained to an
extension-closed subset of Σ∗, as is for soundness (Definition 3.2).

In the next section, we define an enforcement function that is sound with
respect to the property ϕ, compliant with respect to Σu and Σc, and optimal.

3.1.3 An Optimal Enforcement Function

In this section, we redefine functions G, storeϕ, Eϕ, and the set Pre(ϕ) such
that Eϕ becomes an enforcement function that is sound with respect to ϕ in
Pre(ϕ), compliant with respect to Σu and Σc and optimal in Pre(ϕ). The idea
is still the same: function G gives all the possible words that can be appended
to the current output ensuring soundness. Function storeϕ helps building the
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enforcement function Eϕ, and Pre(ϕ) is the set of arguments for which Eϕ

ensures soundness.
To be compliant, an enforcement mechanism can buffer the controllable

events it has received to emit them later (i.e. after having received another
event). Thus, the set of states from which an enforcement mechanism can
ensure soundness, i.e. ensure it can always compute a prefix of the buffer
that leads to an accepting state, whatever uncontrollable events are received,
depends on its buffer. Thus, to synthesise a sound and compliant enforcement
function, one needs to compute the set of words that can be emitted from a
certain state with a given buffer, ensuring that an accepting state is always
reachable. Thus, to define G, the set of states from which the enforcement
mechanism can wait some events knowing an accepting state will always be
reachable should be known. Remark that this set has to be a subset of F since
it is possible that no event is to be received. This set of states, which depends
on the buffer, will be noted S, and is defined in conjunction with another set
of states, I, that is used only to compute S. Thus, for a buffer σ ∈ Σ∗c, we
define the sets of states I(σ) and S(σ), that represent the states from which
the enforcement mechanism can output the first event of σ, and the states in
which the enforcement mechanism can wait for another event, respectively.

Definition 3.8 (I, S). Given a sequence of controllable events σ ∈ Σ∗c, we
define the sets of states of ϕ, I(σ) and S(σ) by induction as follows:

I(ε) = ∅, S(ε) = {q ∈ F | q after Σ∗u ⊆ F},

and, for σ ∈ Σ∗c and a ∈ Σc,

I(a . σ) = Preda(S(σ) ∪ I(σ)),

S(σ . a) = S(σ) ∪max⊆({Y ⊆ FG | Y ∩ uPred(Y ∪ I(σ . a)) = ∅}).

Intuitively, S(σ) is the set of “winning” states, i.e. if an enforcement mech-
anism has reached a state in S(σ) with buffer σ, it will always be able to
reach F , whatever events are received afterwards, controllable or uncontrol-
lable. Remember that since there is a possibility of not receiving any other
event, S(σ) ⊆ F , because the EM could end in any of these states, thus this
condition is needed to ensure that the output of the EM satisfies the property.

I(σ) is the set of intermediate states, the states that can be “crossed” while
emitting a prefix of the buffer. The states in I(σ) do not need to be in F since
no event can be received while the EM is in these states, because it emits all
the controllable word it wishes to emit at once.

S(σ . a) is defined as the biggest subset of F such that no uncontrollable
event leads outside of it or I(σ.a), meaning that whatever uncontrollable event
is received from a state in S(σ.a), the state reached will be either in F (since it
will be in S(σ.a)) or in I(σ.a). In both cases, this means that the enforcement
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Figure 3.4 – Example property for which I(c) = {q3, q4} and S(c) = {q0, q2, q4}.

mechanism can reach an accepting state, whatever uncontrollable events are
received.

I(a.σ) is defined as the set of all states from which following the transition
labelled by a leads either to I(σ) or S(σ), meaning that the EM can emit
the first event of its buffer to be able to reach an accepting state, whatever
uncontrollable events are received.

Example 3.3. Consider the property represented on Fig. 3.4, with Σu = {u}
and Σc = {c}. For this property, I(ε) = ∅ and S(ε) = {q0, q4}. To calculate
this, notice that F = {q0, q2, q4}, and:

• q0 after Σ∗u = {q0} ⊆ F , thus q0 ∈ S(ε).

• q2 after Σ∗u = {q3} 6⊆ F , thus q2 6∈ S(ε).

• q4 after Σ∗u = {q4} ⊆ F , thus q4 ∈ S(ε).

Then, I(c) = Predc({q0, q4}) = {q3, q4}. It follows that F ∪ I(c) = {q1}, and
uPred({q1}) = Predu({q1}) = {q1}. Since F ∩ {q1} = ∅, this means that F
satisfies F ⊆ F and F ∩ uPred(F ∪ I(c)) = ∅. Thus, S(c) = F = {q0, q2, q4}.

We can calculate in the same way that I(c.c) = {q1, q2, q3, q4}, and I(c.c.c) =
{q0, q1, q2, q3, q4}. Since for any σ ∈ Σ∗c, S(σ) ⊆ F , if c 4 σ, then S(σ) = F .

Thus, to output some controllable events while ensuring that the property
will be satisfied, an enforcement mechanism must have stored at least three c
actions. With three c actions, an enforcement mechanism can output two of
them to reach q2, from which it must keep one c action in its buffer, to be able
to output it if a u event occurs, leading to q3.

In other words, the enforcement mechanism is sound as soon as the state
reached by its output is in S(σ) ∪ I(σ) with σ its buffer of stored controllable
actions. The enforcement mechanism can output the first event of this buffer
if the current state is in I(σ), otherwise it must not output anything, but wait
for other events.

Now, we can use S to define G, the set of words that can be emitted from
a state q ∈ Q by an enforcement mechanism with a buffer σ ∈ Σ∗c.

Definition 3.9 (G). For q ∈ Q, σ ∈ Σ∗c, G(q, σ) = {w ∈ Σ∗c | w 4 σ ∧ q after
w ∈ S(w−1.σ)}.
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Intuitively, G(q, σ) is the set of words that can be output by a compliant
enforcement mechanism to ensure soundness from state q with buffer σ. When
clear from context, the parameters could be omitted: G is the value of the
function for the state reached by the output of an enforcement mechanism
with its buffer.

Now, we use G to define storeϕ and Eϕ, the enforcement function, that is
sound, compliant, and optimal.

Definition 3.10 (Functions storeϕ, Eϕ). 2 Function storeϕ : Σ∗ → Σ∗ × Σ∗c is
defined as:

storeϕ(ε) = (ε, ε),

and, for σ ∈ Σ∗ and a ∈ Σ, if (σs, σc) = storeϕ(σ), then:

storeϕ(σ . a) =

{
(σs . a . σ

′
s, σ
′
c) if a ∈ Σu

(σs . σ
′′
s , σ

′′
c ) if a ∈ Σc,

where, for q ∈ Q and w ∈ Σ∗c,

κϕ(q, w) = max
4

(G(q, w) ∪ {ε}),

and:

σ′s = κϕ(Reach(σs . a), σc) σ′c = σ′s
−1
. σc

σ′′s = κϕ(Reach(σs), σc . a) σ′′c = σ′′s
−1
. (σc . a).

The enforcement function Eϕ : Σ∗ → Σ∗ is then defined, for any σ ∈ Σ∗, as:

Eϕ(σ) = Π1(storeϕ(σ)).

Figure 3.1 gives a scheme of the behaviour of the enforcement function.
Intuitively, σs is the word that can be released as output, whereas σc is the
buffer containing the events that are already read/received, but cannot be
released as output yet because they lead to an unsafe state from which it
would be possible to violate the property reading only uncontrollable events.
Upon receiving a new event a, the enforcement mechanism distinguishes two
cases:

• If a belongs to Σu, then it is output, as required by compliance. Then,
the longest prefix of σc that satisfies ϕ and leads to a state in S for the
associated buffer is also output.

• If a is in Σc, then it is added to σc, and the longest prefix of this new
buffer that satisfies ϕ and leads to a state in S for the associated buffer
is emitted, if it exists.

2Eϕ and storeϕ depend on Σu and Σc, but we did not write it in order to lighten the
notations.
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In both cases, κϕ is used to compute the longest word that can be output, that
is the longest word in G for the state reached so far with the current buffer of
the enforcement mechanism, or ε if this set is empty. The parameters of κϕ are
those which are passed to G. They correspond to the state reached so far by
the output of the enforcement mechanism, and its current buffer, respectively.

As seen in Example 3.1, some properties are not enforceable, but receiving
some events may lead to a state from which it is possible to enforce the prop-
erty. Therefore, it is possible to define a set of words, called Pre(ϕ), such that
Eϕ is sound in Pre(ϕ), as stated in Proposition 3.2:

Definition 3.11 (Pre). The set of input words Pre(ϕ) ⊆ Σ∗ is defined as
follows:

Pre(ϕ) = {σ ∈ Σ∗ | G(Reach(σ|Σu), σ|Σc) 6= ∅} . Σ∗.

Intuitively, Pre(ϕ) is the set of words in which Eϕ is sound. This set is
extension-closed, as required by Definition 3.2. In Eϕ, using S ensures that
once G is not empty, then it will never be afterwards, whatever events are
received. Thus, Pre(ϕ) is the set of input words such that the output of
Eϕ would belong to G. Since Eϕ outputs only uncontrollable events until G
becomes non-empty, the definition of Pre(ϕ) considers that the state reached
is the one that is reached by emitting only the uncontrollable events of σ, and
the corresponding buffer would then be the controllable events of σ.

Note that this definition is similar to Definition 3.6, since all the require-
ments are actually handled by G, which has been redefined.

Example 3.4. Considering property ϕex (Fig. 3.2), with the uncontrollable al-
phabet Σu = {Auth, LockOff ,LockOn}, Pre(ϕex) = Write∗ .Auth .Σ∗. Indeed,
from the initial state q0, if an uncontrollable event, say LockOff , is received,
then q3 is reached, which is a non-accepting sink state, and is thus not in S(ε).
In order to reach a state in S (i.e. q1 or q2), it is necessary to read Auth. Once
Auth is read, q1 is reached, and from there, all uncontrollable events lead to
either q1 or q2. The same holds true from q2. Thus, it is possible to stay in
the accepting states q1 and q2, by delaying Write events when in q2 until a
LockOff event is received. Consequently, q1 and q2 are in S(σ) for all σ ∈ Σ∗c,
and thus Pre(ϕex) = Write∗ . Auth . Σ∗, since Write events can be buffered
while in state q0 until event Auth is received, leading to q1 ∈ S(Write∗).

Properties

Eϕ as per Definition 3.10, is an enforcement function that is sound with respect
to ϕ in Pre(ϕ), compliant with respect to Σu and Σc, and optimal in Pre(ϕ), as
stated by the following propositions. All the proofs are given in appendix A.1.1.

Proposition 3.1. Eϕ as per Definition 3.10 is an enforcement function as per
Definition 3.1.
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Sketch of proof. We have to show that for all σ and σ′ in Σ∗, Eϕ(σ) 4
Eϕ(σ.σ′). Following the definition of storeϕ, this holds provided that σ′ ∈ Σ
(i.e. σ′ is a word of size 1). Since 4 is an order, it follows that the proposition
holds for all σ′ ∈ Σ′.

Proposition 3.2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Defini-
tion 3.2.

Sketch of proof. We have to show that if σ ∈ Pre(ϕ), then Eϕ(σ) |= ϕ. The
proof is made by induction on σ. In the induction step, considering a ∈ Σ, we
distinguish three different cases:

• σ . a 6∈ Pre(ϕ). Then the proposition holds.

• σ . a ∈ Pre(ϕ), but σ 6∈ Pre(ϕ). Then the input reaches Pre(ϕ), and
since it is extension-closed, all extensions of σ also are in Pre(ϕ), and we
prove that the proposition holds considering the definition of Pre(ϕ).

• σ ∈ Pre(ϕ) (and thus, σ . a ∈ Pre(ϕ) since it is extension-closed). Then,
we prove that the proposition holds, based on the definition of storeϕ,
and more precisely on the definition of S, that ensures that there always
exists a compliant output that satisfies ϕ.

Proposition 3.3. Eϕ is compliant, as per Definition 3.3.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗.
Considering σ ∈ Σ∗ and a ∈ Σ, the proof is straightforward by considering the
different values of storeϕ(σ.a), (σ.a)|Σu , and (σ.a)|Σc when a ∈ Σc and a ∈ Σu.

Proposition 3.4. Eϕ is optimal in Pre(ϕ), as per Definition 3.7.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. Once
σ ∈ Pre(ϕ), we know that Eϕ(σ) |= ϕ since Eϕ is sound in Pre(ϕ). Eϕ is
optimal because in storeϕ, κϕ provides the longest possible word. If a longer
word were output, then either the output would not satisfy ϕ, or it would
lead to a state that is not in S for the corresponding buffer, meaning that
there would exist an uncontrollable word leading to a non-accepting state that
would not be in S for the buffer. Then, the enforcement mechanism would
have to output some controllable events from the buffer to reach an accepting
state, but since the state is not in S, there would exist again an uncontrollable
word leading to a non-accepting state that is not in S for the updated buffer.
By iterating, the buffer would become ε whereas the output of the enforcement
mechanism would be leading to a non-accepting state. Therefore, outputting
a longer word would mean that the function is not sound. This means that Eϕ

is optimal in Pre(ϕ), since it outputs the longest word that allows to be both
sound and compliant.
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Table 3.2 – Example of the evolution of (σs, σc) = storeϕex(σ), with input
Auth . LockOn . Write . LockOff

σ σs σc
ε ε ε
Auth Auth ε
Auth . LockOn Auth . LockOn ε
Auth . LockOn . Write Auth . LockOn Write
Auth . LockOn . Write . LockOff Auth . LockOn . LockOff . Write ε

Example 3.5. Consider property ϕex (Fig. 3.2). We illustrate in Table 3.2
the enforcement mechanism by showing the evolution of σs and σc with input
σ = Auth . LockOn . Write . LockOff .

3.1.4 Enforcement Monitors

Enforcement monitors are operational descriptions of EMs. We give a rep-
resentation of an EM for a property ϕ as an input/output transition system.
The input/output behaviour of the enforcement monitor is the same as the one
of the enforcement function Eϕ as per Definition 3.10. Enforcement monitors
are purposed to ease the implementation of EMs.

Definition 3.12 (Enforcement Monitor). An enforcement monitor E for ϕ is
a transition system 〈CE , cE0 ,ΓE , ↪→E〉 such that:

• CE = Q× Σ∗c is the set of configurations.

• cE0 = 〈q0, ε〉 is the initial configuration.

• ΓE = Σ∗ × {dump(.), pass-uncont(.), store-cont(.)} × Σ∗ is the alphabet,
where the first, second, and third members are an input sequence, an
enforcement operation, and an output sequence, respectively.

• ↪→E ⊆ CE × ΓE × CE is the transition relation, defined as the smallest
relation obtained by applying the following rules in order (where w/ ./
/w′ stands for (w, ./, w′) ∈ ΓE):

– Dump: 〈q, a.σc〉 ↪
ε/dump(a)/a−−−−−−−→E 〈q′, σc〉, if a ∈ Σc, G(q, a.σc) 6= ∅ and

G(q, a.σc) 6= {ε}, with q′ = q after a,

– Pass-uncont: 〈q, σc〉 ↪
a/pass-uncont(a)/a−−−−−−−−−−−→E 〈q′, σc〉, with a ∈ Σu and

q′ = q after a,

– Store-cont: 〈q, σc〉 ↪
a/ store-cont(a)/ε−−−−−−−−−−→E 〈q, σc.a〉, with a ∈ Σc.
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In E , a configuration c = 〈q, σ〉 represents the current state of the enforce-
ment mechanism. The state q is the one reached so far in Aϕ with the output
of the monitor. The word of controllable events σc represents the buffer of the
monitor, i.e. the controllable events of the input that it has not output yet.
Rule dump outputs the first event of the buffer if it can ensure soundness
afterwards (i.e. if there is a non-empty word in G, that must begin with this
event). Rule pass-uncont releases an uncontrollable event as soon as it is
received. Rule store-cont simply adds a controllable event at the end of the
buffer. Compared to Definition 3.10, the second member of the configuration
represents buffer σc in the definition of storeϕ, whereas σs is here represented by
state q which is the first member of the configuration, such that q = Reach(σs).

Proposition 3.5. The output of the enforcement monitor E as per Defini-
tion 3.12 for input σ is Eϕ(σ) as per Definition 3.10.

In Proposition 3.5, the output of the enforcement monitor is the concate-
nation of all the outputs of the word labelling the path followed when reading
σ. A more formal definition is given in the proof of this proposition, in ap-
pendix A.1.1.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. We
consider the rules applied when receiving a new event. If the event is control-
lable, then rule store-cont() can be applied, possibly followed by rule dump()
applied several times. If the event is uncontrollable, then rule pass-uncont()
can be applied, again possibly followed by rule dump() applied several times.
Since rule dump() applies only when there is a non-empty word in G, then this
word must begin with the first event of the buffer, and the rule dump() can be
applied again if there was a word in G of size at least 2, meaning that there
is another non-empty word in the new set G, and so on. Thus, the output of
all the applications of the rule dump() corresponds to the computation of κϕ
in the definition of storeϕ, and consequently the outputs of E and Eϕ are the
same.

Remark 1. Enforcement monitors as per Definition 3.12 are somewhat similar
to the configuration description of EMs in Falcone et al. [2011a]. The main
difference with the EMs considered in Falcone et al. [2011a] is that the rule
to be applied depends on the memory (the buffer), whereas in Falcone et al.
[2011a] it only depends on the state and the event received.

3.2 Enforcing Timed Properties
We extend the framework presented in Section 3.1 to enforce timed properties.
EMs and their properties need to be redefined to fit with timed properties.
Enforcement functions need an extra parameter representing the date at which
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q0 q1

a,b
x ≥ 2
x := 0

a,b
x < 2

a,b

Figure 3.5 – A timed property enforceable only if Σu = ∅.

the output is observed. Soundness needs to be weakened so that, at any time
instant, the property is allowed not to hold, provided that it will hold in the
future.

Considering uncontrollable events with timed properties raises several dif-
ficulties. First, as in the untimed case, the order of events might be modified.
Thus, previous definitions of transparency Pinisetty et al. [2012], stating that
the output of an enforcement function will eventually be a delayed prefix of
the input, can not be used in this situation. Moreover, when delaying some
events to have the property satisfied in the future, one must consider the fact
that some uncontrollable events could occur at any moment (and cannot be
delayed). Finally, some properties become not enforceable because of uncon-
trollable events, meaning that for these properties it is impossible to obtain
sound EMs, as shown in Example 3.6.

In this section, ϕ is a timed property defined by a timed automaton Aϕ =
〈L, l0, X, Σ,∆, G〉 with semantics JAϕK = 〈Q, q0,Γ,−→, FG〉. As in the untimed
setting, for q ∈ Q, we define uPred(q) =

⋃
u∈Σu

Predu(q), and for S ⊆ Q,
uPred(S) =

⋃
q∈S uPred(q) and S = Q \ S.

Example 3.6 (Non-Enforceable Property). Consider the property defined by
the automaton in Fig. 3.5 with alphabet {a, b}, that requires that there is
always at least two time units between two consecutive events.

If all actions are controllable (Σu = ∅), the property is enforceable because
an EM just needs to delay events until clock x exceeds 2. Otherwise, the
property is not enforceable. For instance, if Σu = {a}, word (1, a) cannot be
corrected by a compliant enforcement mechanism.

3.2.1 Enforcement Functions and their Properties

In this section, we define enforcement functions and the requirements expected
to model enforcement mechanisms, as in Section 3.1, but in a timed setting
(i.e. the property now is a TA).

An enforcement function takes a timed word and the current time as input,
and outputs a timed word:
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Definition 3.13 (Enforcement Function). Given an alphabet of actions Σ, an
enforcement function is a function E : tw(Σ)×R≥0 → tw(Σ) that satisfies the
following constraints:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0,∀t′ ≥ t, E(σ, t) 4 E(σ, t′)

2. ∀σ ∈ tw(Σ),∀(t, a) ∈ R≥0 × Σ,
σ . (t, a) ∈ tw(Σ) =⇒ E(σ, t) 4 E(σ . (t, a), t).

Definition 3.13 models physical constraints: an enforcement function can
not remove something it has already output. The first condition requires that,
as time elapses, the enforcement function can only add new events to its output.
The second condition states that, when receiving a new event in the input, the
enforcement function, again, can only add new events to its output. In both
cases, the new output must be an extension of what has been output so far.

As in the untimed setting (see Definition 3.2), soundness requires that the
property is satisfied by the output of the enforcement function. In this timed
setting, soundness states that the output of an enforcement function should
eventually always satisfy the property, meaning that the output is allowed to
not satisfy the property at some point, provided that it will satisfy it in the
future:

Definition 3.14 (Soundness). An enforcement function E is sound with re-
spect to ϕ in a time-extension-closed set S ⊆ tw(Σ)× R≥0 if:

∀(σ, t) ∈ S,∃t′ ≥ t,∀t′′ ≥ t′, E(σ, t′′) |= ϕ.

An enforcement function is sound in a time-extension-closed set S if for any
(σ, t) in S, the output of the enforcement function with input σ from date t
satisfies the property in the future. As in the untimed setting, soundness is not
defined for all words in tw(Σ), but in a set of words, this time associated with
dates. The reason is the same as in the untimed setting: the EM might not
be able to ensure soundness from the beginning, because of bad uncontrollable
sequences. Moreover, in the definition of soundness, the set S needs to be
time-extension-closed to ensure that the property remains satisfied once the
EM starts to operate.

Remark 2. Soundness could have been defined in the same way as in the
untimed setting, i.e. stating that the output of an enforcement function should
always satisfy the property. However, weakening soundness into enforcing
“eventually always ϕ” rather than ϕ itself allows to enforce more properties,
and to let enforcement mechanisms produce longer outputs.

As in the untimed setting (see Definition 3.3), compliance states that un-
controllable events should be emitted instantaneously upon reception, and that
controllable events can be delayed, but their order must remain unchanged:
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Definition 3.15 (Compliance). Given an enforcement function E defined on
an alphabet Σ, we say that E is compliant with respect to Σu and Σc, noted
compliant(E,Σu,Σc), if it satisfies the following constraints:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0, E(σ, t) 4dΣc
σ

2. ∀σ ∈ tw(Σ),∀t ∈ R≥0, E(σ, t) =Σu obs(σ, t)

3. ∀σ ∈ tw(Σ),∀(t, u) ∈ R≥0 × Σu, σ . (t, u) ∈ tw(Σ) =⇒ E(σ, t) . (t, u) 4
E(σ . (t, u), t).

Compliance is similar to the one in the untimed setting except that the
controllable events can be delayed. However, their order must not be mod-
ified by the EM, that is, when considering the projections on controllable
events, the output should be a delayed prefix of the input, as required by
the first constraint of Definition 3.15. Any uncontrollable event is released
immediately when received, that is, when considering the projections on un-
controllable events, the output should be equal to the input, as per the second
constraint. The third constraint requires that an enforcement mechanism does
not emit controllable events before a newly received uncontrollable event. In
other words, it preserves causality: the reception of the uncontrollable event
can cause the output of some other events by the EM, but only after the
uncontrollable event (which can be seen as a notification that the event has
already happened).

We say that a property is enforceable whenever there exists a sound and
compliant enforcement function for this property.

For a compliant enforcement function E : tw(Σ) × R≥0 → tw(Σ), and a
timed word σ ∈ tw(Σ), we note E(σ) the value of E with input σ at infinite
time (i.e. when it has stabilised). More formally, E(σ) = E(σ, t), where t ∈
R≥0 is such that for all t′ ≥ t, E(σ, t′) = E(σ, t). Since σ is finite, and E is
compliant, the output of E with input word σ is finite, thus such a t exists.

As described in the untimed setting, some enforcement mechanisms can
be “better” than others, in the sense that they output more events, and thus
modify less the input than others (see Section 3.1.2). Thus, we also define
optimality for timed enforcement functions, as follows:

Definition 3.16 (Optimality). We say that an enforcement function E :
tw(Σ)×R≥0 → tw(Σ) that is compliant with respect to Σu and Σc and sound
in a time-extension-closed set S ⊆ tw(Σ)× R≥0 is optimal in S if:

∀E ′ : tw(Σ)× R≥0 → tw(Σ),∀σ ∈ tw(Σ),∀(t, a) ∈ R≥0 × Σ,

(compliant(E ′,Σu,Σc) ∧ σ . (t, a) ∈ tw(Σ) ∧ (σ, t) ∈ S∧
E ′(σ, t) = E(σ, t) ∧ E(σ . (t, a)) ≺d E

′(σ . (t, a)))

=⇒ ∃σu ∈ tw(Σu), E ′(σ . (t, a) . σu) 6|= ϕ
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Optimality states that outputting a greater word (with respect to 4d) than
the output of an optimal enforcement function leads to either compliance or
soundness not being guaranteed. This holds from the point where the input
begins to belong to the set in which the function is optimal, and since it is
time-extension-closed, the input will belong to this set afterwards. In Defini-
tion 3.16, E is an optimal enforcement function, and E ′ is another compliant
enforcement function, that we consider having a greater output (with respect
to 4d) than E for some input word σ . (t, a). Then, since E is optimal, E ′ is
not sound, because there exists a word of uncontrollable events such that the
output of E ′ after receiving it eventually violates ϕ.

3.2.2 A Sound, Compliant and Optimal Enforcement Func-
tion

In this section, as in the untimed setting (see Section 3.1), we define S, I, G,
storeϕ, Eϕ and Pre(ϕ) such that Eϕ is an enforcement function that is sound
in Pre(ϕ) with respect to ϕ, compliant with respect to Σu and Σc, and optimal
in Pre(ϕ).

An EM delaying events should buffer them until it can output them. Being
able to enforce ϕ depends on the possibility of computing a timed word with
the events of the buffer, even when receiving some uncontrollable events, that
leads to an accepting state from the current one. Thus, we define, for every
sequence σ of controllable actions, two sets of states of the semantics of Aϕ,
S(σ) and I(σ). S(σ) is the largest set such that from any of its states, it is
possible to wait before emitting a word that leads to FG, knowing that all along
the path, receiving uncontrollable events will not prevent from computing such
a word again. I(σ) is the set of states from which it is possible to emit the first
event of σ and reach a state from which it is possible to compute a word that
leads to FG, again such that receiving uncontrollable events does not prevent
from eventually reaching FG.

Definition 3.17 (I, S). For σ ∈ tw(Σ), the sets of states of JAϕK, I(σ) and
S(σ), are inductively defined over sequences of controllable events as follows:

I(ε) = ∅ S(ε) = {q ∈ FG | q after tw(Σu) ⊆ FG}

and, for σ ∈ Σ∗c and a ∈ Σc,

I(a . σ) = Preda(I(σ) ∪ S(σ)),

S(σ . a) = S(σ) ∪max⊆({X ∪ Y ⊆ Q | Y ⊆ FG ∧ Y = up(Y )∧
(∀x ∈ X, ∃i ∈ I(σ . a),∃δ ∈ R≥0, x after (ε, δ) = i∧
∀t < δ, x after (ε, t) ∈ X)∧

(X ∪ Y ) ∩ uPred(X ∪ Y ∪ I(σ . a)) = ∅})
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Intuitively, in Definition 3.17, S(σ) is the set of states of the semantics of
ϕ that our EM will be allowed to reach with a buffer σ. It corresponds to the
states from which the EM will be able to reach FG, meaning that its output will
satisfy the property, even if some uncontrollable events are received. From any
state in S(σ), the EM can compute a word of controllable events (taken from
its buffer σ) leading to FG, and if some uncontrollable events are received, it
will also be able to compute a new word to reach FG, with events taken from
its (possibly modified due to previous emissions of events) buffer. The set
I(σ) is the set of states that the output of the enforcement mechanism will be
authorised to “traverse”, meaning that the enforcement mechanism can emit
the first event of its buffer σ immediately from these states, but not wait in
them (contrary to the states in S(σ), from which the EM could choose to wait
before emitting a new event).

These sets are defined by induction on σ, which represents the buffer of
the EM. If the EM has its buffer empty (σ = ε), then the set of states from
which it can emit a controllable event is empty, since it can only emit events
from its buffer: I(ε) = ∅. Nevertheless, some states in FG can be such that
all uncontrollable words lead to a state in FG, meaning that from these states,
the property will be satisfied even if some uncontrollable events are received.
Consequently, S(ε) = {q ∈ FG | q after tw(Σu) ⊆ FG}.

If a new controllable event a is received, it is added to the buffer, and then
the EM can decide to emit the first event of its buffer to reach a state that is
in S or I for its new buffer, this explains the definition of I(a . σ). Adding a
new event to the buffer gives more possibilities to the EM (since it could act
as if it had not received this event), thus S(σ) ⊆ S(σ . a). Moreover, S(σ . a) is
made of the union of two sets, X and Y . X is the set of states from which the
EM can decide to wait before emitting the first event of its buffer, thus waiting
from a state of X has to lead to a state in I(σ . a). Y is the set of states that
are in FG and from which the EM can decide to wait for a new uncontrollable
event before doing anything. Since Y ⊆ FG, if no uncontrollable event is to
be received, the property is satisfied, and otherwise, the EM can decide what
to emit to reach FG. In order to ensure that receiving uncontrollable events
do not prevent from being able to reach FG with events from the buffer, X
and Y are such that every uncontrollable event received from a state in X or
Y leads to a state in X, Y , or I(σ . a). This is the purpose of the condition
(X∪Y )∩uPred(X ∪ Y ∪ I(σ . a)) = ∅. On top of this, it is necessary to ensure
that all the states reached while waiting from X or Y are in X or Y , otherwise
there could be a state reached by the EM for which there is an uncontrollable
event leading to a state from which it is impossible to reach FG with events of
the buffer, meaning that the enforcement would not be sound. This is ensured
by the conditions x after (ε, t) ∈ X, and Y = up(Y ). To have the best EM
possible, these sets are as large as possible.

Note that if X1 and X2 satisfy the conditions required for X, then X1∪X2
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Figure 3.6 – Example property such that I(c) = {〈l3, x〉 | x ≥ 2}∪ ({l4}×R≥0)
and S(c) = {l0, l2, l4} × R≥0.

also satisfies them. Thus, the bigger set satisfying these properties exists. The
same holds for Y .

Example 3.7. Consider the property described in Fig. 3.6, with Σu = {u} and
Σc = {c}. This property is similar to Fig. 3.4 but with some clock constraints
added. For this property, we will represent valuations as the image in R≥0 of
the only clock. Then, I(ε) = ∅ and S(ε) = {l0, l4} × R≥0. To calculate this,
note that FG = {l0, l2, l4} × R≥0, and:

• {l0} × R≥0 after tw(Σu) = {l0} × R≥0 ⊆ FG, thus {l0} × R≥0 ⊆ S(ε).

• {l2} × R≥0 after tw(Σu) = 〈l3, 0〉 6∈ FG, thus {l2} × R≥0 after tw(Σu) ∩
S(ε) = ∅.

• {l4} × R≥0 after tw(Σu) = {l4} × R≥0 ⊆ FG, thus {l4} × R≥0 ⊆ S(ε).

It follows that I(c) = Predc(S(ε)) = {〈l3, x〉 | x ≥ 2} ∪ ({l4} × R≥0). Now,
note that for any q = 〈l3, x〉 such that x < 2, q after (ε, 2− x) = 〈l3, 2〉 ∈ I(c),
and for any t < 2 − x, q after (ε, t) ∈ {〈l3, x〉 | x < 2}. Thus, if X =
I(c)∪{〈l3, x〉 | x < 2} = {l3, l4}×R≥0, then for any q ∈ X, there exists i ∈ I(c)
and δ ∈ R≥0 such that q after (ε, δ) = i and for any t < δ, q after (ε, t) ∈ X.
If q ∈ I(c), then i = q and δ = 0. Moreover, if Y = {l0, l2, l4} × R≥0, then
Y ⊆ FG and up(Y ) = Y . Since X ∪ Y = {l0, l2, l3, l4} × R≥0, X ∪ Y ∪ I(c) =
{l1} × R≥0, and uPred({l1} × R≥0) = Predu({l1} × R≥0) = {l1} × R≥0. Thus,
X ∪Y ∩uPred(X ∪ Y ∪ I(c)) = ∅. This means that {l0, l2, l3, l4}×R≥0 ⊆ S(c).
Since for any q ∈ {l1} × R≥0, q 6∈ FG and there does not exists i ∈ I(c)
such that q after (ε, δ) = i for some δ ∈ R≥0, S(c) can not be bigger than
{l0, l2, l3, l4} × R≥0. Thus, S(c) = {l0, l2, l3, l4} × R≥0.

We can calculate in the same way that I(c.c) = ({l2, l3, l4}×R≥0)∪{〈l1, x〉 |
x < 2}, S(c . c) = ({l0, l2, l3, l4} × R≥0) ∪ {〈l1, x〉 | x < 2}, I(c . c . c) =
({l0, l2, l3, l4}×R≥0)∪{〈l1, x〉 | x < 2}, and S(c . c . c) = ({l0, l2, l3, l4}×R≥0)∪
({〈l1, x〉 | x < 2}).

To be sound, an enforcement mechanism must output the events of its
buffer only if the state reached by its output so far is in I(σ), with σ its buffer.
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If the state reached by its output is in S(σ), the enforcement mechanism must
wait before outputting something, or wait indefinitely. Thus, to be sound,
an enforcement mechanism must have at least three c actions in its buffer to
output the first one, and it must output two of them with less than 2 time
units between them. Then, when in location l2, it must keep at least one c
action in its buffer to be able to reach location l4 in case an uncontrollable
event would occur, leading to location l3.

Function G : Q × Σ∗c → 2tw(Σ) gives, for a state q ∈ Q and a sequence of
controllable events σ ∈ Σ∗c, the set of timed words made with the actions of
σ that can be output from q in a safe way (i.e. all the states reached while
emitting the word are in the set S corresponding to what remains from σ):

Definition 3.18 (G). For q ∈ Q and w ∈ Σ∗c,

G(q, σ) = {w ∈ tw(Σ) | ΠΣ(w) 4 σ ∧ q after w ∈ FG∧
∀t ∈ R≥0, q after (w, t) ∈ S(ΠΣ(obs(w, t))−1 . σ)}.

It is now possible to use G to define an enforcement function for ϕ, denoted
as Eϕ:

Definition 3.19 (Functions storeϕ, Eϕ). Let storeϕ : tw(Σ)×R≥0 → tw(Σ)×
tw(Σc)× Σ∗c be the function inductively defined by:

∀t ∈ R≥0, storeϕ(ε, t) = (ε, ε, ε)

and, for σ ∈ tw(Σ), (t′, a) ∈ R≥0 × Σ such that σ.(t′, a) ∈ tw(Σ), and t ≥ t′, if
(σs, σb, σc) = storeϕ(σ, t′), then

storeϕ(σ . (t′, a), t) =

{
(σs . (t

′, a) . obs(σ′b, t), σ
′
b, σ
′
c) if a ∈ Σu

(σs . obs(σ′′b , t), σ
′′
b , σ

′′
c ) if a ∈ Σc

with: for q ∈ Q and w ∈ Σ∗c,

κϕ(q, w) = min
≤lex

(max
4

(G(q, w) ∪ {ε})),

bufc = ΠΣ(nobs(σb, t
′)) . σc,

t1 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧

G(Reach(σs . (t
′, a), t′′), bufc) 6= ∅} ∪ {+∞}),

σ′b = κϕ(Reach(σs . (t
′, a),min({t, t1})), bufc) +t min({t, t1}),

σ′c = ΠΣ(σ′b)
−1 . bufc,

t2 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧

G(Reach(σs, t
′′), bufc . a) 6= ∅} ∪ {+∞}),

σ′′b = κϕ(Reach(σs,min({t, t2})), bufc . a) +t min({t, t2}),
σ′′c = ΠΣ(σ′′b )−1 . (bufc . a).

For σ ∈ tw(Σ), and t ∈ R≥0, we define Eϕ(σ, t) = (Π1(storeϕ(obs(σ, t), t))).
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Figure 3.7 – Property that becomes enforceable as time elapses

Function storeϕ takes a timed word σ and a date t as input, and outputs
three words: σs, σb, and σc. The timed word σs is the output of the enforcement
function at time t. The timed word σb is composed of controllable events. It
is the word that is to be output after the date of the last event of the input,
if no other event is received, such that σs . σb = Eϕ(σ), i.e. the output of the
enforcement function at an infinite time. The untimed word σc is composed of
the remaining controllable actions of the buffer. It can be used to compute a
new output if other events are received.

As time elapses after the last event of the input, σs is modified to output
the events of σb when the dates are reached. Since letting time elapse can
disable some transitions, it is possible to reach a “safe” state without emitting
any event, and thus σb can also change as time elapses. However, σb changes
as time elapses at most once, changing from ε to a word in G. This change of
σb when letting time elapse can only happen once, since G will not be empty
anymore once it has become non-empty. t1 and t2 are used for this purpose,
they both represent the time at which G becomes non-empty, if a ∈ Σu or
a ∈ Σc respectively. Words are thus calculated from this point whenever G
has become non-empty, to ensure that what has already been output is not
modified. If G is still empty, then min({t, t1}) (or min({t, t2}), depending on
whether a ∈ Σc or a ∈ Σu) equals to t, meaning that σb = ε. Most of the time,
t1, or t2 is equal to t′, it is not the case only when G was still empty at time
t′, but if G was not empty at date t′, then t1 (or t2) is equal to t′.

To visualise this, consider the property described in Fig. 3.7. Considering
that Σu = {u} and Σc = {c}, this property is not enforceable since word
(1, u) leads to q2, that is a non-accepting sink state, and this word can not be
corrected. Nevertheless, if clock x reaches at least two time units, then the
property becomes enforceable (actually, the identity function is then a sound
enforcement function).

The word of controllable actions σc contains the actions of the input that
have not been output and do not belong to σb. It is used to compute the
new value of σb when possible. When receiving a new event in the input, it
is appended to σs if it is an uncontrollable event, or the action is appended
to the buffer if it is a controllable one. Then, σb is computed again, from the
new state reached if it was an uncontrollable event, or with the new buffer if
it was controllable. Note that t1 and t2 may not exist, since they are minima
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of an interval that can be open, depending on the strictness of the considered
guard. In this case, one should consider the infimum instead of the minimum,
and add an infinitesimal delay, such that the required transition is taken.

As mentioned previously, an EM may not be sound from the beginning
of an execution, but some uncontrollable events (or letting time elapse, see
Fig. 3.7) may lead to a state from which it becomes possible to be sound.
Whenever σb is in G, then it will always be, meaning that the output of Eϕ

will eventually reach a state in FG, i.e. it will eventually satisfy ϕ. Thus, Eϕ

eventually satisfies ϕ as soon as the state reached so far is in S(σb) or I(σb). This
leads to the definition of Pre(ϕ, t), which is the set of timed words for which
Eϕ ensures soundness at time t. For σ ∈ tw(Σ), if (σs, σb, σc) = storeϕ(σ, t),
then σ is in Pre(ϕ, t) if and only if the set G(Reach(σs, t),ΠΣ(nobs(σb, t)).σc) is
not empty. Then, Pre(ϕ, t) is used to define Pre(ϕ), which is the set in which
Eϕ is sound:

Definition 3.20 (Pre(ϕ)). For σ ∈ tw(Σ) and t ∈ R≥0,

Pre(ϕ, t) =
{σ ∈ tw(Σ) | ∃σ′ 4 σ,∃t′ ≤ t,

G(Reach(obs(σ′, t′)|Σu , t
′),ΠΣ(obs(σ′, t′)|Σc)) 6= ∅}

Pre(ϕ) = {(σ, t) | σ ∈ Pre(ϕ, t)}

In Definition 3.20, the definition of Pre(ϕ, t) considers words that have a
prefix that satisfies the required condition, for a time that is at most t, meaning
that Pre(ϕ, t) is extension-closed. Thus, Pre(ϕ) is time-extension-closed, as
required by Definition 3.14.

Since the output of our enforcement function consists only of the uncontrol-
lable events from the input while it cannot ensure soundness, if
G(Reach(obs(σ, t)|Σu , t),ΠΣ(obs(σ, t)|Σc)) is not empty, this means that there
exists a word that is “safe” to emit, thus the enforcement function is sound for
input σ at date t. Thus, Pre(ϕ, t) is the set of inputs for which Eϕ is sound
after date t, and then Eϕ is sound for any input in Pre(ϕ) after its associated
date.

Proposition 3.6. Eϕ as defined in Definition 3.19 is an enforcement function,
as per Definition 3.13.

Sketch of proof. We have to show that for all σ ∈ tw(Σ), for all t ∈ R≥0

and t′ ≥ t, Eϕ(σ, t) 4 Eϕ(σ, t′), and for all (t, a) such that σ . (t, a) ∈ tw(Σ),
Eϕ(σ, t) 4 Eϕ(σ . (t, a), t). To prove this, we first show by induction that
Eϕ(σ, t) 4 Eϕ(σ, t′). Considering (t′′, a) such that σ . (t′′, a) ∈ tw(Σ), we
distinguish different cases according to the values of t′′ compared to t and t′:

• t′′ ≤ t. Then, in the definition of storeϕ, t1 (or t2, if a is controllable) has
the same value in storeϕ(σ, t) and storeϕ(σ . (t′′, a), t′). Then, comparing
t to t1, either Eϕ(σ . (t′′, a), t) = ε if t < t1, and then Eϕ(σ . (t′′, a), t) 4
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Eϕ(σ . (t′′, a), t′), or t ≥ t1, and then there exists σs and σb such that
Eϕ(σ . (t′′, a), t) = σs . obs(σb, t) and Eϕ(σ . (t′′, a), t′) = σs . obs(σb, t

′),
meaning that Eϕ(σ . (t′′, a), t) 4 Eϕ(σ . (t′′, a), t′).

• t′′ ≥ t′. Then the proposition holds because in the definition of Eϕ,
only the observation of the input word at the given time is considered,
meaning that Eϕ(σ . (t′′, a), t) = Eϕ(σ, t) and Eϕ(σ . (t′′, a), t′) = Eϕ(σ, t′).
By induction hypothesis, the proposition thus holds.

• t < t′′ < t′. Then, Eϕ(σ . (t′′, a), t) = Eϕ(σ, t), and Eϕ(σ . (t′′, a), t′) =
Π1(storeϕ(σ.(t′′, a), t′)), meaning that, looking at the definition of storeϕ,
Eϕ(σ . (t′′, a), t) 4 Eϕ(σ . (t′′, a), t′).

Thus, Eϕ(σ, t) 4 Eϕ(σ, t′). Then, what remains to show is that if σ . (t, a) ∈
tw(Σ), then Eϕ(σ, t) 4 Eϕ(σ . (t, a), t). Following the definition of storeϕ, it
is clear that Π1(storeϕ(σ, t)) 4 Π1(storeϕ(σ . (t, a), t)), and thus Eϕ(σ, t) 4
Eϕ(σ . (t, a), t).

Proposition 3.7. Eϕ is sound with respect to ϕ in Pre(ϕ) as per Defini-
tion 3.14.

Sketch of proof. As in the untimed setting, the proof is made by induction on
the input σ ∈ tw(Σ). Similarly to the untimed setting, considering σ ∈ tw(Σ),
t ∈ R≥0, and (t′, a) such that σ . (t′, a) ∈ tw(Σ), there are three possibilities:

• (σ . (t′, a), t) 6∈ Pre(ϕ). Then, the proposition holds.

• (σ . (t′, a), t) ∈ Pre(ϕ), but (σ, t′) 6∈ Pre(ϕ). Then, this is when the input
reaches Pre(ϕ). Considering the definition of Pre(ϕ), we then prove that
it is possible to emit a word with the controllable events seen so far,
leading to an accepting state in S.

• (σ, t′) ∈ Pre(ϕ) (and thus (σ . (t′, a), t) too). Then, we prove again that
there exists a controllable word made with the events which have not
been output yet leading to an accepting state that is in S, but this time
considering the definitions of S and I.

Proposition 3.8. Eϕ is compliant, as per Definition 3.15.

Sketch of proof. As in the untimed setting, the proof is made by induction on
the input σ, considering the different cases where the new event is controllable
or uncontrollable. The only difference with the untimed setting is that one
should consider dates on top of actions.

Proposition 3.9. Eϕ is optimal in Pre(ϕ), as per Definition 3.16.
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Sketch of proof. This proof is made by induction on the input σ. Whenever
σ ∈ Pre(ϕ), since Eϕ is sound in Pre(ϕ), then Eϕ(σ) is the maximal word (with
respect to 4d) that satisfies ϕ and is safe to output. It is maximal because
in the definition of storeϕ, κϕ returns the longest word with lower delays (for
lexicographic order), which corresponds to the maximum with respect to 4d.
Thus, outputting a greater word (with respect to 4d) would lead to G being
empty, meaning that the EM would not be sound. Thus, Eϕ is optimal in
Pre(ϕ), since it outputs the maximal word with respect to 4d that allows to
be sound and compliant.

3.2.3 Enforcement Monitors

As in the untimed setting, we define an operational description of an EM whose
output is exactly the output of Eϕ, as defined in Definition 3.19.

Definition 3.21. An enforcement monitor E for ϕ is a transition system
〈CE , cE0 ,ΓE , ↪→E〉 such that:

• CE = tw(Σ)× Σ∗c ×Q× R≥0 × {>,⊥} is the set of configurations.

• cE0 = 〈ε, ε, q0, 0,⊥〉 ∈ CE is the initial configuration.

• ΓE = ((R≥0×Σ)∪{ε})×Op×((R≥0×Σ)∪{ε}) is the alphabet, composed
of an optional input, an operation and an optional output.
The set of operations is {compute(.), dump(.), pass-uncont(.), store-cont(.),
delay(.)}.
Whenever (σ, ./, σ′) ∈ ΓE , it will be noted σ/ ./ /σ′.

• ↪→E is the transition relation defined as the smallest relation obtained by
applying the following rules given by their priority order:

– Compute: 〈ε, σc, q, t,⊥〉 ↪
ε/ compute()/ε−−−−−−−−→E 〈σ′b, σ′c, q, t,>〉, if G(q, σc) 6=

∅, with σ′b = κϕ(q, σc) +t t, and σ′c = ΠΣ(σ′b)
−1 . σc,

– Dump: 〈(tb, a) . σb, σc, q, tb,>〉 ↪
ε/dump((tb,a))/(tb,a)−−−−−−−−−−−−→E 〈σb, σc, q′, tb,>〉,

with q′ = q after (0, a),

– Pass-uncont:
〈σb, σc, q, t, b〉 ↪

(t,a)/ pass-uncont((t,a))/(t,a)−−−−−−−−−−−−−−−−→E 〈ε,ΠΣ(σb).σc, q
′, t,⊥〉, with

q′ = q after (0, a),

– Store-cont:
〈σb, σc, q, t, b〉 ↪

(t,c)/ store-cont((t,c))/ε−−−−−−−−−−−−−→E 〈ε,ΠΣ(σb).σc.c, q, t,⊥〉,

– Delay: 〈σb, σc, (l, v), t, b〉 ↪ε/delay(δ)/ε−−−−−−−→E 〈σb, σc, (l, v + δ), t+ δ, b〉.
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In a configuration 〈σb, σc, q, t, b〉, σb is the word to be output as time elapses;
σc is the sequence of controllable actions from the input that are not used in
σb and have not been output yet; q is the state of the semantics reached after
reading what has already been output; t is the current time instant, i.e. the
time elapsed since the beginning of the run; and b indicates whether σb and σc
should be computed (due to the reception of a new event for example).

The timed word σb corresponds to nobs(σb, t) from the definition of storeϕ,
whereas σc is the same as in the definition of storeϕ. The state q represents σs
from the definition of storeϕ, such that q = Reach(σs, t). Thus, the following
proposition holds:

Proposition 3.10. The output of E as per Definition 3.21 for input σ is Eϕ(σ)
as per Definition 3.19.

As in the untimed setting, in Proposition 3.10, the output of the enforce-
ment monitor is the concatenation of the outputs of the word labelling the path
followed by the enforcement monitor when reading σ. A formal definition is
given in the proof of this proposition, in appendix A.1.2.

Sketch of proof. The proof is done by induction on the input σ ∈ tw(Σ).
When receiving a new event, rule store-cont() can be applied if it is controllable,
or rule pass-uncont() if it is uncontrollable. Doing so, the last member of
the configuration is set to ⊥, meaning that the word to be emitted can be
computed. If the input is in Pre(ϕ), then rule compute() can be applied, and
then the second member of the configuration will have the same value as the
second member of storeϕ, and the same goes for the third members. Then,
rule delay() can be applied, to reach the date of the first event in the second
member of the current configuration, and then rule dump() can be applied to
output it. This process can be repeated until the desired date is reached. Thus,
when date t is reached, what has been emitted since the last rule store-cont() or
pass-uncont() is obs(σb, t), where σb was computed by rule compute() as second
member. Considering the definition of storeϕ, it follows that the output of E
with input σ at date t is Eϕ(σ, t).

Example 3.8. Consider Fig. 3.8, representing property ϕt, modelling the use
of some shared writable device. Property ϕt is similar to property ϕex (see
Fig. 3.2), except that when in state l1, one must wait two time units before
emitting a Write event. The status of a lock is given through the uncontrol-
lable events LockOn and LockOff indicating that the lock has been locked by
someone else, and that it has been unlocked, respectively. The uncontrollable
event Auth is sent by the device to authorise writings. Once the Auth event is
received, the system is able to send the controllable event Write after having
waited some time for synchronisation. Each time the lock is taken and re-
leased, it must also wait before issuing a new Write order. The sets of events
are: Σc = {Write} and Σu = {Auth, LockOff , LockOn}.
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l0 l1

l3

l2

Auth
x := 0

Auth,
LockOff x := 0,
Write x ≥ 2

LockOn

Auth
LockOn

LockOff
x := 0Write

LockOn
LockOff

Write
x < 2 Write

Σ

Figure 3.8 – Property ϕt

Now, let us follow the output of the storeϕ function over time with the word
σ = (1,Auth) . (2,LockOn) . (4, Write) . (5,LockOff ) . (6,LockOn) . (7, Write) .
(8,LockOff ) as input: let (σs, σb, σc) = storeϕ(obs(σ, t), t). Then the values
taken by σs, σb and σc over time are given in Table 3.3. To calculate them,
notice that for all valuation ν : {x} → R≥0, (l1, ν) ∈ S(ε), and (l2, ν) ∈ S(ε),
since all uncontrollable words from l1 and l2 lead to l1 or l2, which are both
accepting states.

We can also follow the execution of an enforcement monitor enforcing prop-
erty ϕt (see Fig. 3.8), watching the evolution of the configurations as semantic
rules are applied. In a configuration, the input is on the right, the output on
the left, and the middle is the current configuration of the enforcement moni-
tor. The variable t defines the global time of the execution. Figure 3.9 shows
the execution of the enforcement monitor with input (1,Auth) . (2,LockOn) .
(4, Write) . (5,LockOff ) . (6,LockOn) . (7, Write) . (8,LockOff ). In Fig. 3.9,
valuations are represented as integers, giving the value of the unique clock x
of the property, LockOff is abbreviated as off , LockOn as on, and Write as w.
First column depicts the dates of events, then red text is the current output
(σs) of the EM, blue text shows the evolution of σb and green text depicts
the remaining input word at this date. We can observe, as stated by Propo-
sition 3.10, that the final output is the same as the one of the enforcement
function: (1,Auth) . (2, on) . (5, off ) . (6, on) . (8, off ) . (10, w) . (10, w).

Remark 3. An EM as per Definition 3.21 outputs longer timed words than the
approach in Pinisetty et al. [2012] and Pinisetty et al. [2014a] when applied
only with controllable events thanks to optimality considerations. Consider
the property described in Fig. 3.10 over a set of controllable actions Σ, such
that Write ∈ Σ. With timed word (1, Write) .(1.5, Write) as input to the EM,
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t = 0 ε/〈ε, ε, (l0, 0), 0,⊥〉/(1,Auth).(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
↓ delay(1)

t = 1 ε/〈ε, ε, (l0, 1), 1,⊥〉/(1,Auth).(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
↓ pass-uncont((1,Auth))

t = 1 (1,Auth)/〈ε, ε, (l1, 0), 1,⊥〉/(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
↓ compute()

t = 1 (1,Auth)/〈ε, ε, (l1, 0), 1,>〉/(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
↓ delay(1)

t = 2 (1,Auth)/〈ε, ε, (l1, 1), 2,>〉/(2, on).(4, w).(5, off ).(6, on).(7, w).(8, off )
↓ pass-uncont((2, on))

t = 2 (1,Auth).(2, on)/〈ε, ε, (l2, 1), 2,⊥〉/(4, w).(5, off ).(6, on).(7, w).(8, off )
↓ compute()

t = 2 (1,Auth).(2, on)/〈ε, ε, (l2, 1), 2,>〉/(4, w).(5, off ).(6, on).(7, w).(8, off )
↓ delay(2)

t = 4 (1,Auth).(2, on)/〈ε, ε, (l2, 3), 4,>〉/(4, w).(5, off ).(6, on).(7, w).(8, off )
↓ store-cont((4, w))

t = 4 (1,Auth).(2, on)/〈ε, (4, w), (l2, 3), 4,⊥〉/(5, off ).(6, on).(7, w).(8, off )
↓ compute()

t = 4 (1,Auth).(2, on)/〈ε, (4, w), (l2, 3), 4,>〉/(5, off ).(6, on).(7, w).(8, off )
↓ delay(1)

t = 5 (1,Auth).(2, on)/〈ε, (4, w), (l2, 4), 5,>〉/(5, off ).(6, on).(7, w).(8, off )
↓ pass-uncont((5, off ))

t = 5 (1,Auth).(2, on).(5, off )/〈ε, (7, w), (l1, 0), 5,⊥〉/(6, on).(7, w).(8, off )
↓ compute()

t = 5 (1,Auth).(2, on).(5, off )/〈(7, w), ε, (l1, 0), 5,>〉/(6, on).(7, w).(8, off )
↓ delay(1)

t = 6 (1,Auth).(2, on).(5, off )/〈(7, w), ε, (l1, 1), 6,>〉/(6, on).(7, w).(8, off )
↓ pass-uncont((6, on))

t = 6 (1,Auth).(2, on).(5, off ).(6, on)/〈ε, (7, w), (l2, 1), 6,⊥〉/(7, w).(8, off )
↓ compute()

t = 6 (1,Auth).(2, on).(5, off ).(6, on)/〈ε, (7, w), (l2, 1), 6,>〉/(7, w).(8, off )
↓ delay(1)

t = 7 (1,Auth).(2, on).(5, off ).(6, on)/〈ε, (7, w), (l2, 2), 7,>〉/(7, w).(8, off )
↓ store-cont((7, w))

t = 7 (1,Auth).(2, on).(5, off ).(6, on)/〈ε, (7, w).(7, w), (l2, 2), 7,⊥〉/(8, off )
↓ compute()

t = 7 (1,Auth).(2, on).(5, off ).(6, on)/〈ε, (7, w).(7, w), (l2, 2), 7,>〉/(8, off )
↓ delay(1)

t = 8 (1,Auth).(2, on).(5, off ).(6, on)/〈ε, (7, w).(7, w), (l2, 3), 8,>〉/(8, off )
↓ pass-uncont((8, off ))

t = 8 (1,Auth).(2, on).(5, off ).(6, on).(8, off )/〈ε, (10, w).(10, w), (l1, 0), 8,⊥〉/ε
↓ compute()

t = 8 (1,Auth).(2, on).(5, off ).(6, on).(8, off )/〈(10, w).(10, w), ε, (l1, 0), 8,>〉/ε
↓ delay(2)

t = 10 (1,Auth).(2, on).(5, off ).(6, on).(8, off )/〈(10, w).(10, w), ε, (l1, 2), 10,>〉/ε
↓ dump((10, w))

t = 10 (1,Auth).(2, on).(5, off ).(6, on).(8, off ).(10, w)/〈(10, w), ε, (l1, 2), 10,>〉/ε
↓ dump((10, w))

t = 10 (1,Auth).(2, on).(5, off ).(6, on).(8, off ).(10, w).(10, w)/〈ε, ε, (l1, 2), 10,>〉/ε

Figure 3.9 – Execution of an enforcement monitor with input (1,Auth) .
(2,LockOn) . (4, Write) . (5,LockOff ) . (6,LockOn) . (7, Write) . (8,LockOff )
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Table 3.3 – Values of (σs, σb, σc) = storeϕt((1,Auth) . (2,LockOn) . (4, Write) .
(5,LockOff ) . (6,LockOn) . (7, Write) . (8,LockOff )) over time.

t σs σb σc
1 (1,Auth) ε ε
2 (1,Auth) . (2,LockOn) ε ε
4 (1,Auth) . (2,LockOn) ε Write
5 (1,Auth) . (2,LockOn) . (5,LockOff ) (7, Write) ε
6 (1,Auth).(2,LockOn).(5,LockOff ).

(6,LockOn)
ε Write

7 (1,Auth).(2,LockOn).(5,LockOff ).
(6,LockOn)

ε Write . Write

8 (1,Auth).(2,LockOn).(5,LockOff ).
(6,LockOn) . (8,LockOff )

(10, Write).
(10, Write)

ε

10 (1,Auth).(2,LockOn).(5,LockOff ).
(6,LockOn) . (8,LockOff ) .
(10, Write) . (10, Write)

ε ε

the output obtained with our approach at date t = 4 is (4, Write) . (4, Write)
whereas the output obtained in Pinisetty et al. [2012] would be (2, Write).

Conclusion
In this chapter, we have defined sound, compliant and optimal enforcement
mechanisms, modelled by functions and transition systems, for untimed and
timed regular properties. In the next chapter, we revisit the definitions we
have presented, replacing S and I by the use of a Büchi game. This aims
at improving the performance of an implementation, by precomputing some
decisions made by the enforcement mechanism.

l0l2

l3

l1

Write
2 ≤ x < 4

Write
x ≥ 4

Write
x < 2

Σ

Σ

Σ \ {Write}

Write

Σ \ {Write}

Figure 3.10 – Example of Property without uncontrollable events
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Chapter 4

Enforcing Properties using a Büchi
Game

Introduction

In this chapter, we revisit Chapter 3, using a Büchi game to ensure soundness,
instead of S and I (see Definitions 3.8 and 3.17). Büchi games are well-suited
for our purpose, since they correspond to games in which one tries to always be
able to reach some nodes called Büchi nodes. An enforcement mechanism tries
to always be able to reach an accepting state of the automaton representing
the property, even if some uncontrollable events are received, thus this seems
similar to solving a Büchi game. Using games allows us to precompute some of
the decisions of the enforcement mechanism, thus improving the time overhead
of an implementation.

We describe in Section 4.1 some notation changes, such as the use of delays
instead of dates, then we define formally enforcement mechanisms in a similar
way as in Chapter 3, but this time using a Büchi game to ensure soundness.
As in Chapter 3, such enforcement mechanisms are defined for both untimed
(Section 4.2) and timed regular properties (Section 4.3).

The work described in this chapter has been published in Renard et al.
[2017c].

4.1 Notation Changes

In this chapter, some notation changes. The notation changes are essentially
made in the timed setting, and are mostly due to the use of delays instead of
dates in the definition of timed words. The use of delays seems more appro-
priate in this section because the use of games make delays appear naturally.
This section lists all the modifications that are made to the notation.
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4.1.1 Timed Words

Timed words are represented with delays instead of dates as in Chapter 3.
Using delays has some advantages over dates. Considering delays, a timed word
σ over an alphabet of actions Σ is a word over R≥0 × Σ, i.e. σ ∈ (R≥0 × Σ)∗.
Unlike with dates, no consideration on the time has to be taken into account
(remember that with dates, it is required that dates are increasing). The use of
delays also seems more appropriate because we build enforcement functions by
induction, taking only the current state into account, thus all the timings are
calculated relatively to the current time, not to the origin. We note tw(Σ) =
(R≥0 × Σ)∗ the set of timed words over Σ. Note that the definition of an
event is still the same: an event is an element (δ, a) ∈ R≥0 × Σ, but δ now
represents a delay and not a date. Thus, for (δ, a) ∈ R≥0 × Σ, we define
delay((δ, a)) = δ. Since dates and delays are equivalent for a single event, the
definitions of functions date and delay are also equivalent. The use of delays
instead of dates impacts other definitions as well. The following notions are
equivalent to the ones in Chapter 2, only their formal definitions are adapted
to the use of delays. Thereby, for a timed word σ = (δ1, a1) .(δ2, a2) . . . (δn, an),
we define:

• time(σ) =
∑n

i=1 δi, for σ 6= ε, and time(ε) = 0;

• for δ ∈ R≥0, σ +t δ = (δ1 + δ, a1) . (δ2, a2) . . . (δn, an);

• if δ1 ≥ δ, σ −t δ = (δ1 − δ, a1) . (δ2, a2) . . . (δn, an).

Note that some other definitions do not need to be adapted, since they
only depend on an operator that has already been redefined. For instance,
for σ ∈ tw(Σ) and t ∈ R≥0, obs(σ, t) is still defined as in Chapter 2, i.e.
obs(σ, t) = min4({σ′ | σ′ 4 σ ∧ time(σ′) ≤ t}), since it only depends on the
operator time(σ) that has already been modified to fit with the use of delays.

The restriction of a word to an alphabet must also be redefined. If σ ∈
tw(Σ) and Σ′ ⊆ Σ, then σ|Σ′ is the word composed of the events of σ whose
actions belong to Σ, but with dates kept unchanged, not delays. Thus, one
must compute the new delays to keep the dates unchanged when restricting a
word to an alphabet. Formally, let us consider Σ′ ⊆ Σ. Then, we define the
restriction of a timed word in tw(Σ) to an alphabet by induction as follows:

ε|Σ′ = ε

and, for σ ∈ tw(Σ) and (δ, a) ∈ R≥0 × Σ,

(σ . (δ, a))|Σ′ =

{
σ|Σ′ . (time(σ . (δ, a))− time(σ|Σ′), a) if a ∈ Σ′

σ|Σ′ otherwise.
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Note that to concatenate two restrictions, it is also needed to adjust the delay
at the beginning of the second word: for σ ∈ tw(Σ) and σ′ ∈ tw(Σ),

(σ . σ′)|Σ′ = σ|Σ′ . (σ′|Σ′ +t (time(σ)− time(σ|Σ′))).

The notion of delayed prefix also needs to be adapted. As the restriction
to an alphabet, this notion is defined with dates and not delays, thus for two
timed words σ and σ′ in tw(Σ), σ 4d σ

′ whenever ΠΣ(σ) 4 ΠΣ(σ′) and for
any i ∈ [1; |σ|], time(σ[..i]) ≥ time(σ′[..i]). Again, note that the orders are not
the same: σ is smaller than σ′, but its dates are greater than those of σ′.

For instance, if σ = (1, a) . (1, b) . (2, a), then σ|{a} = (1, a) . (3, a), and
(1, a) . (2, b) . (1, a) 4d σ.

4.1.2 Timed Automata

In this chapter, we use an alternative definition for the semantics of a timed
automaton. The definition of a timed automaton is still the same as in Chap-
ter 2. Let us consider a timed automaton A = 〈L, l0, X,Σ,∆, G〉. We define
the semantics of A as the timed transition system JAK = 〈Q, q0,Γ,−→, FG〉,
where Q, q0, and FG are defined in the same way as in Definition 2.1 (i.e.
Q = L × V(X), q0 = (l0, ν[X ← 0]), and FG = G × V(X)). Unlike Defini-
tion 2.1, we define here Γ as Γ = R≥0 ∪ Σ, meaning that there are two types
of transitions that define −→⊆ Q× Γ×Q:

• Delay transitions: for δ ∈ R≥0, (l, ν)
δ−→ (l, ν + δ),

• Action transitions: for a ∈ Σ, (l, ν)
a−→ (l′, ν ′), with ν ′ = ν[Y ← 0]

whenever there is a transition (l, g, a, Y, l′) ∈ ∆ such that ν |= g.

The difference with Definition 2.1 is that the transition relation is made of
delay transitions that correspond to letting time elapse, and action delays that
correspond to the read of an action, whereas in Definition 2.1, a transition was
made of a delay followed by an action.

We need to also redefine runs to fit with this new definition. Considering A
as defined previously, and its semantics 〈Q, q0,Γ,−→, FG〉, a run ρ from q ∈ Q
is a valid sequence of transitions starting from q, i.e. ρ = q

δ1−→ q1
a1−→ q2

δ2−→
q3 . . .

an−→ q2n
δn+1−−→ q2n+1, where δi ∈ R≥0 and ai ∈ Σ, for any i. We can consider

runs that alternate between delay and action transitions, since two consecutive
delay transitions can be merged into one whose value is the sum of the delays
of the original transitions, and two consecutive actions can be separated by a
null delay transition (i.e. a delay transition whose delay is 0). We can also
consider only runs that begin and end by a delay transition, adding some null
delay transitions if necessary.
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The trace of the run ρ previously defined is the timed word σ = (δ1, a1) .
(δ2, a2) . . . (δn, an). Note that δn+1 does not appear in the trace, meaning that
all runs with different values for δn+1 share the same trace as ρ. We allow
ourselves to denote by q

(δ,a)−−→ q′ if q δ−→ q′′
a−→ q′, and thus ρ can be denoted

q
σ−→ q2n

δn+1−−→ q2n+1.
Note that with this definition of −→, the definition of after with two pa-

rameters becomes more straightforward: q after (σ, t) = q′, where q
obs(σ,t)−−−−→

q′′
t−time(obs(σ,t))−−−−−−−−−→ q′. Moreover, it is now possible to write, for q ∈ Q, q′ ∈ Q,

a ∈ Σ and δ ∈ R≥0, q′ = q after a if q a−→ q′, and q′ = q after δ if q δ−→ q′.

4.1.3 Enforcement Functions

In this chapter, we use a set representation for enforcement functions. This
representation is equivalent to the functional representation used in Chapter 3,
such that the set representation of function f : x 7→ f(x) is the set {(x, f(x)) |
x ∈ domain(f)}, where domain(f) represents the domain of function f .

4.2 Enforcing Untimed Properties

This section is similar to Section 3.1: its purpose is to define enforcement
mechanisms that are sound, compliant and optimal. The main difference be-
tween this section and Section 3.1 is the use of Büchi games to compute the
set of “safe” states. The interest is a very practical one: using Büchi games
allows us to compute “safe” states before the execution. This precomputation
allows us to reduce the overhead introduced by the enforcement mechanism
at runtime. Note that the interest of this approach might be limited in the
untimed setting, but it can greatly improve the performance at runtime in the
timed setting (see Section 4.3).

In this section, ϕ is a regular property defined by a complete and determin-
istic automaton Aϕ = 〈Q, q0,Σ,−→, F 〉. As in Chapter 3, we give definitions
of enforcement functions, soundness, compliance, and optimality. These defi-
nitions are equivalent to the corresponding definitions in Section 3.1, but use
a set approach to functions.

Again, we consider uncontrollable events in the set Σu ⊆ Σ, and controllable
events in Σc = Σ \ Σu. This notion of uncontrollable and controllable events
must not be confused with the notion of controllable events from game theory.
Even though we use some games to compute safe states, we use “uncontrollable
events” only to denote events in Σu and “controllable events” to denote events
in Σc. The primitives we chose to use for our enforcement mechanisms are the
same as in Chapter 3, i.e. an EM can only delay controllable events, but not
suppress them. Uncontrollable events are immediately emitted upon reception.
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Thus, an EM may interleave controllable and uncontrollable events.

4.2.1 Enforcement Functions and their Requirements

We consider an alphabet of actions Σ. We consider functions as sets: a function
from a set A to a set B is a set f ⊆ A× B such that for any element a in A,
there is a unique b in B such that (a, b) ∈ f . We note F(A,B) the set of all
functions from A to B.

An enforcement function is a description of the input/output behaviour of
an EM. It is a function from Σ∗ to Σ∗, increasing on Σ∗ (with respect to 4):

Definition 4.1 (Enforcement function). A function f ∈ F(Σ∗,Σ∗) is an en-
forcement function (over Σ) if:

∀i1 ∈ Σ∗,∀i2 ∈ Σ∗, (i1 4 i2 ∧ (i1, o1) ∈ f ∧ (i2, o2) ∈ f) =⇒ o1 4 o2.

We note Fenf(Σ) the set of all enforcement functions over the alphabet Σ.
When clear from the context, the parameter shall be omitted, i.e. Fenf is used
to designate the set of enforcement functions over Σ.

An enforcement function is a function that modifies an execution, and that
cannot remove events it has already output.

As in Section 3.1.1, we provide definitions of soundness, compliance and
optimality, that are the requirements expected from EMs, and express them
as constraints on enforcement functions. An enforcement function should be
sound, meaning that its output should satisfy the property:

Definition 4.2 (Soundness). An enforcement function E ∈ Fenf is sound with
respect to ϕ in an extension-closed set S ⊆ Σ∗ if:

∀i ∈ S, (i, o) ∈ f =⇒ o |= ϕ.

We note Fsnd(ϕ, S) (or Fsnd(S) when clear from the context) the set of all
enforcement functions that are sound with respect to ϕ in S.

As for Definition 3.2, the property should be satisfied by the output of the
enforcement function only in a subset of Σ∗, due to the potential impossibility
to correct the input word into a valid one from the beginning. For example,
considering property ϕex (see Fig. 3.2), word LockOff can not be corrected into
a valid one (since it is uncontrollable, receiving it leads to q3, which is not
accepting). The set S is required to be extension-closed to ensure that the
property is always satisfied once the enforcement mechanism is effective.

Remember that compliance defines how the EM can modify the input ex-
ecution. We only allow to delay controllable events (they can be delayed
indefinitely), uncontrollable events must be output immediately upon recep-
tion. EMs can output several stored controllable events at the same time
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(keeping the order unchanged), i.e. without receiving any event, controllable
or uncontrollable. Nevertheless, they can not output such events before an
uncontrollable event after having received it.

Definition 4.3 (Compliance). E ∈ Fenf is compliant with respect to Σu and
Σc, noted compliant(E,Σu,Σc), if:

∀i ∈ Σ∗, (i, o) ∈ E =⇒
(o 4Σc i ∧ o =Σu i ∧ ∀u ∈ Σu, ((i . u, o

′) ∈ E =⇒ o . u 4 o′)).

We note Fcpl(Σu,Σc) the set of all enforcement functions (over Σ = Σu ∪ Σc)
that are compliant with respect to Σu and Σc. When clear from the context, we
can denote it by Fcpl , and compliant(E,Σu,Σc) is simply noted compliant(E).

Intuitively, compliance states that the EM does not change the order of the
controllable events and emits uncontrollable events simultaneously with their
reception, possibly followed by stored controllable events.

Moreover, an enforcement function should output the maximum number of
events it possibly can. Thus, we define the optimality of sound and compliant
enforcement functions as follows:

Definition 4.4 (Optimality). A sound and compliant enforcement function
E ∈ Fsnd(S) ∩ Fcpl(Σu,Σc) is optimal in S if:

∀E ′ ∈ Fsnd(S) ∩ Fcpl(Σu,Σc),∀i ∈ S,∀a ∈ Σ,

((i, o) ∈ E ∩ E ′ ∧ (i . a, o′) ∈ E ∧ (i . a, p′) ∈ E ′) =⇒ p′ 4 o′.

Intuitively, optimality states that outputting a longer word than an optimal
enforcement function breaks soundness or compliance. Since it is not always
possible to satisfy the property from the beginning, this condition is restricted
to an extension-closed subset of Σ∗, as in the definition of soundness (see
Definition 4.2). An example has been given in Chapter 3, see Example 3.1.

Now that we have defined the input/output behaviour of enforcement mech-
anisms as enforcement functions, and expressed the requirements we expect of
enforcement mechanisms, we can define an enforcement mechanism as an en-
forcement function that is sound, compliant, and optimal.

4.2.2 Synthesising Enforcement Functions

As in Section 3.1.3, in this section we redefine G, storeϕ, Eϕ and Pre(ϕ) to fit
with the set representation of functions. Functions S and I are replaced by the
use of a Büchi game to compute “safe” states. G is adapted to use the Büchi
game instead of S and I, but the definitions of storeϕ, Eϕ and Pre(ϕ), that
deeply depend on G, are quite similar to the ones in Section 3.1.3.
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Function G, as in Section 3.1.3, gives the set of controllable sequences that
can be output by a sound and compliant enforcement function for a given
state and buffer. To define it, in this chapter, we solve a Büchi game over a
graph representing the possible actions of an enforcement monitor. Solving
a Büchi game is made by computing a set of nodes of the graph from which
there exists a winning strategy for the chosen player. Then, from any of these
winning nodes, this player can always come back to a Büchi node, whatever
the strategy of the adversary is. Here, we construct a graph such that the
enforcement mechanism is a player (the other player being the environment
that feeds the events of the input to the EM), and we compute its winning
nodes, with the Büchi nodes representing a valid execution. The nodes of the
graph are composed of a state in Q and the stored controllable events of the
enforcement mechanism. There exists two of each of these vertices: one that
belongs to player P0, and one that belongs to player P1. Player P0 represents
the enforcement mechanism, and P1 the environment.

Definition 4.5 (Game graph). The game graph G is defined as G = 〈V,E〉,
where

• V = Q× Σ∗c × {0, 1},

• E =
⋃5
i=1Ei, with:

– E1 = {(〈q, w, 0〉, 〈q, w, 1〉) ∈ V × V },
– E2 = {(〈q, c.w, 0〉, 〈q after c, w, 0〉) ∈ V × V | c ∈ Σc},
– E3 = {(〈q, w, 1〉, 〈q after u,w, 0〉) ∈ V × V | u ∈ Σu},
– E4 = {(〈q, w, 1〉, 〈q, w.c, 0〉) ∈ V × V | c ∈ Σc},
– E5 = {(〈q, w, 1〉, 〈q, w, 0〉) ∈ V × V },

A vertex 〈q, w, l〉 ∈ V represents the state of the enforcement mechanism:
q ∈ Q is the state of Aϕ that has been reached so far by the output of the
enforcement mechanism, w ∈ Σ∗c is the word made of the stored controllable
events of the enforcement mechanism, and l ∈ {0, 1} indicates that the vertex
belongs to the player Pl. The definition of E is split into five sets, each one
containing a different kind of transitions. The enforcement mechanism can
only take two decisions: doing nothing, i.e. letting the environment play (set
E1), or emitting the first stored controllable event (set E2), in which case it
continues to play (since the destinations of the edges in E2 belong to P0). The
sets E3 and E4 represent the reception of an uncontrollable and a controllable
event, respectively. Receiving an event lets the enforcement mechanism (P0)
play. Since games are infinite, and we only consider finite executions, the
environment can also decide to let the enforcement mechanism play without
any new event (set E5). This allows us to consider finite executions that
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produce an infinite path in the game by looping on an edge in E1 and then
one in E5. It is also possible to consider that this corresponds to receiving an
empty event (ε), and that player P1 (the environment) feeds an infinite input,
which is the finite one with infinitely many empty events appended.

Unfortunately, this graph has an infinite number of nodes, it is thus not
possible to compute the set of winning vertices for a Büchi game over it. To
overcome this, the graph is reduced to a graph with a finite number of vertices.
To do this, first note that the number of vertices is infinite because the set Σ∗c
is not bounded. Thus, Σ∗c must be abstracted to a finite set. Since the goal
is to reach a state in F , the stored controllable events are used to reach some
states in Q. Since Q is finite, having more controllable events than |Q| means
that (following the Pumping lemma) there is a loop, i.e. some state in Q is
reached twice when emitting all the controllable events. This means that all
the states that are reachable from a given state can be reached by a word of
size at most |Q|. Thus, the number of controllable events to consider can be
reduced to at most |Q|, since all words of size less than |Q| allow to reach all
the reachable states from a state. More precisely, we can reduce Σ∗c to the set
of words that allow to reach a new state (i.e. a state that is not reached by
one of its prefixes) from at least one state in Q. Let us call this set Σn

c , and
define it as follows:

Definition 4.6 (Σn
c ).

Σn
c = {w ∈ Σ∗c | ∃q ∈ Q, ∃c ∈ Σc,∀w′ 4 w, q after w . c 6= q after w′}

As explained previously, since Q is finite, Σn
c is finite as well. Now, let us

redefine G to an abstraction of the game graph:

Definition 4.7 (Abstracted game graph). G = 〈V ′, E ′〉, where V ′ = Q×Σn
c ×

{0, 1}, and E ′ is the same set as E, but considering vertices in V ′ instead of
V .

G is the restriction of the previous graph to a finite number of vertices.
Let us now consider W0 ⊆ V the set of vertices that are winning for P0 in the
Büchi game over G, with the set of Büchi nodes F × Σn

c × {0, 1}.

Example 4.1. The graph in Fig. 4.1 is computed from property ϕex (see
Fig. 3.2), with Write abbreviated w in the second member of the nodes. The
Büchi nodes are double circled, and the winning nodes for player P0 (the EM),
i.e. nodes in W0, are in blue and rounded rectangles.

Each edge has a different colour and a different head depending on the set
it belongs to:

• blue edges, with empty triangular head ( ) belong to E1,

• green edges, with filled triangular head ( ) belong to E2,
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(q0, -, 0)

(q0, -, 1)

(q0, w, 0)

(q1, -, 0)

(q3, -, 0)

(q0, w, 1)

(q0, ww, 0)

(q1, w, 0)

(q3, w, 0)

(q0, ww, 1)

(q1, ww, 0)

(q3, ww, 0)

(q1, -, 1)

(q2, -, 0)

(q1, w, 1)

(q2, w, 0)

(q1, ww, 1)

(q2, ww, 0)

(q2, -, 1)

(q2, w, 1)

(q2, ww, 1)

(q3, -, 1)

(q3, w, 1)

(q3, ww, 1)

Figure 4.1 – Graph of the game associated to ϕex
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• orange edges, with empty diamond head ( ) belong to E4,

• red edges with filled diamond head ( ) belong to E3 ∪ E5.

Each edge is represented only once, even if there are multiple edges in the set
(for example, because multiple uncontrollable events lead to the same state
from one state). The squared vertex is the initial vertex, and “−” stands for
“ε” (empty buffer). Since the initial vertex is black (not rounded), this means
that it is impossible to ensure that the property will be satisfied from the
beginning. The only way to reach a winning state is to follow a red edge
from a vertex in {q0} × {ε, w, w.w} × {1}, that corresponds to receiving the
uncontrollable event Auth (since it leads to a state in {q2}×{ε, w, w.w}×{0}).
Then, Write events can only be emitted when in state q1. This behaviour is
the one expected, since in ϕex, the only way to reach a state in F from q0 is
to follow a path labelled by Auth, and then q1 is reached, from which it is
possible to emit Write events, but if some uncontrollable events are received
that lead to q2, one must wait an event LockOff to go back to q1 and be able
to emit another Write event.

Now, we can use W0 to define G, the set of words that can be emitted from
a state q ∈ Q by an enforcement mechanism with a buffer σ ∈ Σ∗c.

Definition 4.8 (G). For a state q ∈ Q and a word of controllable events
σ ∈ Σ∗c, we define the set G(q, σ) as follows:

G(q, σ) = {w ∈ Σ∗c | w 4 σ ∧ q after w ∈ F∧
〈q after w,max

4
({w′ 4 w−1 . σ | w′ ∈ Σn

c }), 1〉 ∈ W0}.

Intuitively, G is the set of words that can be output by a compliant en-
forcement mechanism to ensure soundness.

Now, we use G to define the functional behaviour of the enforcement mech-
anism.

Definition 4.9 (Functions storeϕ, Eϕ). Function storeϕ ∈ Σ∗ × (Σ∗ × Σ∗c) is
defined by induction on its first member as follows:

(ε, 〈ε, ε〉) ∈ storeϕ,

and, for σ ∈ Σ∗ and a ∈ Σ, if (σ, 〈σs, σc〉 ∈ storeϕ, then,{
(σ . a, 〈σs . a . σ′s, σ′c〉) ∈ storeϕ if a ∈ Σu

(σ . a, 〈σs . σ′′s , σ′′c 〉) ∈ storeϕ if a ∈ Σc,

where, for q ∈ Q and w ∈ Σ∗c,

κϕ(q, w) = max
4

(G(q, w) ∪ {ε}),
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and

σ′s = κϕ(Reach(σs . a), σc) σ′c = σ′s
−1
. σc

σ′′s = κϕ(Reach(σs), σc . a) σ′′c = σ′′s
−1
. (σc . a).

The enforcement function Eϕ ∈ Fenf is then defined as:

Eϕ = {(σ, σ′) | ∃w ∈ Σ∗c, (σ, 〈σ′, w〉) ∈ storeϕ}.

Intuitively, σs is the word that can be released as output, whereas σc is
the buffer containing the events that are already read/received, but cannot
be released as output yet because they lead to an unsafe state from which it
would be possible to violate the property reading only uncontrollable events
(i.e. they lead to a vertex in W1 = V \W0). Upon receiving a new event a,
the enforcement mechanism distinguishes two cases:

• If a belongs to Σu, then it is output, as required by compliance. Then,
the longest prefix of σc that satisfies ϕ and leads to a vertex inW0 is also
output.

• If a is in Σc, then it is added to σc, and the longest prefix of this new
buffer that satisfies ϕ and leads to a vertex in W0 is emitted, if it exists.

In both cases, κϕ is used to compute the longest word that can be output, that
is the longest word in G for the state reached so far and the current buffer of
the enforcement mechanism, or ε if this set is empty. The parameters of κϕ are
those which are passed to G, they correspond to the state reached so far by
the output of the enforcement mechanism, and its current buffer, respectively.

Remember that some properties are not enforceable (see Example 3.1), but
receiving some events may lead to a state from which it is possible to enforce.
Therefore, it is possible to define the set of words Pre(ϕ), such that Eϕ is sound
in Pre(ϕ), as stated in Proposition 4.2:

Definition 4.10 (Pre). The set of input words Pre(ϕ) ⊆ Σ∗ is defined as
follows:

Pre(ϕ) = {σ ∈ Σ∗ | G(Reach(σ|Σu), σ|Σc) 6= ∅}.Σ∗c
Again, the definition of Pre(ϕ) in Definition 4.10 is the same as in Defini-

tion 3.11, since it only depends on G, whose definition has been changed, but is
equivalent to the one in Section 3.1. In Eϕ, using W0 ensures that once the set
G is not empty, then it will never be afterwards, whatever events are received.
Thus, Pre(ϕ) is the set of input words such that the output of Eϕ belongs to G.
Since Eϕ outputs only uncontrollable events until G becomes non-empty, the
definition of Pre(ϕ) considers that the state reached is the one that is reached
by emitting only the uncontrollable events of σ, and the corresponding buffer
would then be the controllable events of σ. Thus, Pre(ϕ) is the set in which
Eϕ is sound.
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Example 4.2. Considering property ϕex as shown in Fig. 3.2, with the un-
controllable alphabet Σu = {Auth,LockOff ,LockOn}, Pre(ϕex) = Write∗ .
Auth . Σ∗. Indeed, from the initial state q0, if an uncontrollable event, say
LockOff , is received, then q3 is reached, which is a non-accepting sink state,
and thus any vertex in {q3} × Σn

c × {0, 1} will not be in W0. In order to
reach a vertex in W0 (i.e. a vertex in {q1, q2} × Σn

c × {0, 1}), it is neces-
sary to read Auth. Once Auth is read, q1 is reached, and from there, all
uncontrollable events lead to either q1 or q2. The same holds true from q2.
Thus, it is possible to stay in the accepting states q1 and q2, by delaying
Write events when in q2 until a LockOff event is received. Consequently,
{q1, q2} × Σn

c × {0, 1} ⊆ W0, and thus Pre(ϕex) = Write∗ . Auth . Σ∗, since
Write events can be buffered while in state q0 until event Auth is received,
leading to a vertex in {q1} × (Write∗ ∩ Σn

c )× {0, 1} ⊆ W0.
Function storeϕ as per Definition 4.9 is equivalent to storeϕ as per Defini-

tion 3.10, thus the evolution of σs and σc, such that (σ, 〈σs, σc〉) ∈ storeϕex(σ)
for σ = Auth . LockOn . Write . LockOff and all its prefixes can be found in
Table 3.2.

Eϕ (as per Definition 4.9) is an enforcement function that is sound with
respect to ϕ in Pre(ϕ), compliant with respect to Σu and Σc, and optimal in
Pre(ϕ).

Proposition 4.1. Eϕ as per Definition 4.9 is an enforcement function as per
Definition 4.1.

Sketch of proof. We have to show that for all σ and σ′ in Σ∗, (σ, σo) ∈
Eϕ ∧(σ . σ′, σ′o) ∈ Eϕ =⇒ σo 4 σ′o. Following the definition of storeϕ, this
holds provided that σ′ ∈ Σ (i.e. σ′ is a word of size 1). Since 4 is an order, it
follows that the proposition holds for all σ′ ∈ Σ′.

Proposition 4.2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Defini-
tion 4.2.

Sketch of proof. We have to show that if σ ∈ Pre(ϕ), then (σ, σo) ∈ Eϕ =⇒
σo |= ϕ. The proof is made by induction on σ. In the induction step, consid-
ering a ∈ Σ, we distinguish three cases:

1. σ . a 6∈ Pre(ϕ). Then the proposition holds.

2. σ . a ∈ Pre(ϕ), but σ 6∈ Pre(ϕ). Then the input reaches Pre(ϕ), and
since it is extension-closed, all extensions of σ also are in Pre(ϕ), and we
prove that the proposition holds considering the definition of Pre(ϕ).

3. σ ∈ Pre(ϕ) (and thus, σ . a ∈ Pre(ϕ) since it is extension-closed). Then,
we prove that the proposition holds, based on the definition of storeϕ,
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and more precisely on the definition of G, that uses W0 to ensure that
there always exists a compliant output that satisfies ϕ.

Proposition 4.3. Eϕ is compliant, as per Definition 4.3.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗.
Considering σ ∈ Σ∗ and a ∈ Σ, the proof is straightforward by considering the
different values of (σ . a, σo) ∈ storeϕ, (σ . a)|Σu , and (σ . a)|Σc , when a ∈ Σc and
a ∈ Σu.

For any given input σ ∈ Pre(ϕ), Eϕ(σ) is the longest possible word that
ensures soundness and compliance, that is controllable events are blocked only
when necessary. Thus, Eϕ is also optimal in Pre(ϕ):

Proposition 4.4. Eϕ is optimal in Pre(ϕ), as per Definition 4.4.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗.
Once σ ∈ Pre(ϕ), we know that (σ, σo) ∈ Eϕ =⇒ σo |= ϕ since Eϕ is sound
in Pre(ϕ). Eϕ is optimal because, in storeϕ, κϕ provides the longest possible
word. If a longer word were output, then either the output would not satisfy
ϕ, or it would lead to a vertex that is not in W0, meaning that there would
exist an uncontrollable word leading to a non-accepting state and to a vertex
that would not be in W0. Then, the enforcement mechanism would have to
output some controllable events from the buffer to reach an accepting state,
but since the vertex is not in W0, there would exist again an uncontrollable
word leading to a non-accepting state and a vertex not in W0. By iterating,
the buffer would become ε whereas the output of the enforcement mechanism
would be leading to a non-accepting state. Therefore, outputting a longer word
would mean that the function is not sound. This means that Eϕ is optimal in
Pre(ϕ), since it outputs the longest word that allows us to be both sound and
compliant.

4.2.3 Enforcement Monitors

We can describe enforcement monitors as in Section 3.1.4, representing an
enforcement monitor as a transition system. Since the enforcement monitor
described in Definition 3.12 does not depend on I and S (see Definition 3.8),
but only on G, the definition of a monitor using a Büchi game is the same as
Definition 3.12. In other words, the use of a Büchi game is transparent to the
operational monitor, because it is hidden in the use of G.

This leads us to the following proposition:
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Proposition 4.5. The output o of the enforcement monitor E as per Defini-
tion 3.12 for input σ is the output of Eϕ as per Definition 4.9 with input σ,
i.e. (σ, o) ∈ Eϕ.

In Proposition 4.5, the output of the enforcement monitor is the concate-
nation of all the outputs of the word labelling the path followed when reading
σ. A more formal definition is given in the proof of this proposition, in ap-
pendix A.2.1.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. We
just consider the rules that can be applied when receiving a new event. If the
event is controllable, then rule store-cont() can be applied, possibly followed by
rule dump() applied once or more times. If the event is uncontrollable, then
rule pass-uncont() can be applied, again possibly followed by rule dump()
applied once or more times. Since rule dump() applies only when there is
a non-empty word in G, then this word must begin with the first event of
the buffer, and rule dump() can be applied again if there was a word in G
of size at least 2, meaning that there is another non-empty word in the new
set G. This can be applied n times, where n is the length of the longest
word in G at the beginning. Thus, the output of all the applications of rule
dump() corresponds to the computation of κϕ in the definition of storeϕ, and
consequently the outputs of E and Eϕ are the same.

Remark 4. For a configuration c = 〈q, w〉 of the enforcement monitor, we can
consider the node of the game graph (q, w′, 0), with w′ the longest prefix of w
such that (q, w′) is a node of the game graph. Then, if σ ∈ Pre(ϕ), and c is the
configuration reached by the enforcement monitor with input σ, then (q, w′, 0)
is a winning node.

4.3 Enforcing Timed Properties

In this section, we extend the framework presented in Section 4.2 to enforce
timed properties. As in Section 3.2, enforcement mechanisms and their prop-
erties need to be redefined to fit with timed properties. Enforcement functions
take an observation time, and soundness is defined to enforce “eventually al-
ways ϕ” instead of the property ϕ itself. This gives more flexibility to enforce-
ment mechanisms, allowing them to less modify the input while ensuring that
the property will hold in the future.

Remember that, unlike in Section 3.2, delays are used instead of dates in
timed words, all across this section. All notation changes of this section are
listed in Section 4.1.

In this section, ϕ is a timed property defined by a timed automaton Aϕ =
〈L, l0, X,Σ,∆, G〉 with semantics JAϕK = 〈Q, q0,Γ,−→, FG〉.
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4.3.1 Enforcement Functions and their Properties

We adapt the definitions of enforcement functions, soundness, compliance, and
optimality to fit with timed properties. The definitions in this section are
equivalent to the ones in Section 3.2.1, but use a set representation of functions,
and delays instead of dates.

An enforcement function takes a timed word and the current time as input,
and outputs a timed word:

Definition 4.11 (Enforcement Function). Given an alphabet of actions Σ, an
enforcement function (over Σ) is a function E ∈ F(tw(Σ)× R≥0, tw(Σ)) that
satisfies the following constraints:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0,∀t′ ≥ t,
〈(σ, t), o1〉 ∈ E ∧ 〈(σ, t′), o2〉 ∈ E =⇒ o1 4 o2

2. ∀σ ∈ tw(Σ),∀δ ∈ R≥0,∀a ∈ Σ,
(〈(σ, time(σ . (δ, a))), o3〉 ∈ E ∧ 〈(σ . (δ, a), time(σ . (δ, a))), o4〉 ∈ E)

=⇒ o3 4 o4

As in Section 4.2, we note Fenf(Σ) (or Fenf when clear from the context) the
set of all enforcement functions over Σ. Be aware that Fenf in Section 4.2 is
different from Fenf as per Definition 4.11, since the current section is about
timed enforcement functions.

The requirements in Definition 4.11 model physical constraints: an enforce-
ment function can only add events to its output as the input grows. The first
constraint (o1 4 o2) corresponds to letting time elapse, whereas the second
one (o3 4 o4) corresponds to reading a new event. They both require the new
output to be an extension of the previous one.

Soundness states that the output of an enforcement function should even-
tually always satisfy the desired property:

Definition 4.12 (Soundness). An enforcement function E ∈ Fenf is sound
with respect to ϕ in a time-extension-closed set S ⊆ tw(Σ)× R≥0 if:

∀(σ, t) ∈ S,∃t′ ≥ t,∀t′′ ≥ t′, ((σ, t′′), o) ∈ E =⇒ o |= ϕ.

We note Fsnd(ϕ, S) the set of all enforcement functions that are sound with
respect to ϕ in S.

This definition is equivalent to Definition 3.14, thus an enforcement func-
tion is sound with respect to ϕ in S if for any (σ, t) ∈ S, the output of the
enforcement function with input σ from date t eventually always satisfies S.
Again, S restrains tw(Σ) because for some properties, some words can not be
corrected to satisfy the property.

As usual, compliance states that an enforcement mechanism can only delay
controllable events:
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Definition 4.13 (Compliance). An enforcement function E ∈ Fenf is compli-
ant with respect to Σu and Σc, noted compliant(E,Σu,Σc) (or compliant(E)
when clear from the context), if it satisfies the following constraints:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0, 〈(σ, t), o1〉 ∈ E =⇒ o1 4dΣc
obs(σ, t)

2. ∀σ ∈ tw(Σ),∀t ∈ R≥0, 〈(σ, t), o2〉 ∈ E =⇒ o2 =Σu obs(σ, t)

3. ∀σ ∈ tw(Σ),∀(δ, u) ∈ R≥0 × Σu,
〈(σ, time(σ . (δ, u))), o3〉 ∈ E ∧ 〈(σ . (δ, u), time(σ . (δ, u))), o4〉 ∈ E

=⇒ o3 . (time(σ . (δ, u))− time(o3), u) 4 o4.

We note Fcpl(Σu,Σc) (or Fcpl when clear from the context) the set of all en-
forcement functions that are compliant with respect to Σu and Σc.

The definition of compliance as per Definition 4.13 is equivalent to the
one as per Definition 3.15. The three constraints are equivalent, they are
only adapted in Definition 4.13 to fit with the use of the set representation of
enforcement functions and delays instead of dates. The first constraint requires
that an EM can only delay controllable events, without changing their order;
the second constraint requires that uncontrollable events are not modified; and
the third constraint requires that the enforcement mechanism does not react
to the reception of an uncontrollable event before outputting it.

For a compliant enforcement function E ∈ Fenf and a timed word σ ∈
tw(Σ), we say that ((σ,∞), o) ∈ E if o is the output of E with input σ at
infinite time (i.e. when it has stabilised). More formally, ((σ,∞), o) ∈ E ⇐⇒
∃t ∈ R≥0,∀t′ ≥ t, ((σ, t′), o) ∈ E. Since σ is finite, and E is compliant, the
output of E with input word σ is finite, thus such an output o exists.

As in Section 3.2.1, we define a notion of optimality in a set:

Definition 4.14 (Optimality). A sound and compliant enforcement function
E ∈ Fsnd(ϕ, S) ∩ Fcpl(Σu,Σc) is optimal in S if:

∀E ′ ∈ Fcpl(Σu,Σc), ∀σ ∈ tw(Σ),∀(δ, a) ∈ R≥0 × Σ,

(σ, time(σ . (δ, a))) ∈ S ∧ 〈(σ, time(σ . (δ, a))), o〉 ∈ E ∩ E ′∧
〈(σ . (δ, a),∞), o1〉 ∈ E ∧ 〈(σ . (δ, a),∞), o′1〉 ∈ E ′ ∧ o1 ≺d o

′
1

=⇒ (∃σu ∈ tw(Σu), 〈(σ . (δ, a) . σu,∞), ou〉 ∈ E ′ ∧ ou 6|= ϕ).

Optimality, as per Definition 4.14, is equivalent to optimality as per Defini-
tion 3.16. Intuitively, a sound and compliant enforcement function is optimal
if at any moment, it outputs the longest possible word, with lower delays,
ensuring soundness and compliance. In Definition 4.14, we suppose that a
compliant enforcement function outputs a greater word (with respect to 4d)
than an optimal one, and then conclude that it is not sound (since the other
function is optimal).
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Now that all the requirements on enforcement functions have been rede-
fined, we can redefine the enforcement function Eϕ so that its output is the
same as the one as per Definition 3.19. The difference with Section 3.2.2 is
that we use a Büchi game to compute the safe states.

4.3.2 Synthesising Timed Enforcement Functions

In this section, we redefine G, storeϕ, Eϕ and Pre such that Eϕ is an enforce-
ment function that is sound with respect to ϕ in Pre(ϕ), compliant with respect
to Σu and Σc, and optimal in Pre(ϕ). Thus, the output of Eϕ is expected to
be the same as in Section 3.2.2. The difference with Section 3.2.2 is that we
define G using a Büchi game. Remember that function G gives, for a state and
a sequence of stored controllable events, the set of timed words that can be
output by a sound and compliant enforcement mechanism. To compute such
words, we construct a graph on which we play a Büchi game.

The graph is defined in a very similar way to the one used in the untimed
setting (Section 4.2.2). The nodes of the graph should be taken in the set
Q×Σ∗c × {0, 1}. Considering all such nodes, the graph would have an infinite
number of nodes, first because the number of stored controllable events is not
bounded, but also because the semantics of a timed automaton has itself an
infinite number of states (i.e. Q is also infinite). We can use the same set Σn

c

as in the untimed setting (see Definition 4.6), adapted to the timed setting, to
restrict the number of stored controllable events to be considered. Intuitively,
since the validity of a sequence only depends on the location that is reached
after reading it, Σn

c is composed of all the controllable actions that can allow
the enforcement mechanism to reach a new location. Then, we define Σn

c as
follows:

Definition 4.15 (Σn
c ).

Σn
c = {w ∈ Σ∗c | ∃q ∈ Q,∃c ∈ Σc,∀σ ∈ tw(Σ),∀σ′ ∈ tw(Σ),

ΠΣ(σ) = w . c ∧ ΠΣ(σ′) 4 w ∧ (l′, ν ′) = q after σ ∧ (l′′, ν ′′) = q after σ′

=⇒ l′ 6= l′′}

Since in Definition 4.15, Σn
c is defined as the set of controllable sequences

of actions that can be used to form a word that allows to reach a new location,
the length of a word in Σn

c can not be greater than the number of locations in
the timed automaton. Thus, Σn

c is finite since L is finite.
As mentioned previously, the graph that we would naturally want to use

is infinite because of two infinite components: Q, and Σ∗c. We can reduce the
number of nodes by restricting Σ∗c to the finite set Σn

c . Now, we also need to
reduce Q to a finite set, i.e. we need to consider an abstraction of time. In
other words, we need to use a symbolic abstraction of the semantics of Aϕ.
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A Symbolic Graph

Several abstractions for timed automata exist to reduce their semantics to
a finite representation. The simplest, that satisfies all the requirements we
need, is the region graph (see Alur and Dill [1992]) of the timed automaton.
Unfortunately, this region graph is often very large, thus some more efficient
abstractions have been studied. A very common abstraction is the zone graph
used to compute reachability in a timed automaton (Bengtsson and Yi [2004]).
A zone is a convex set of clock valuations, usually represented by clock con-
straints of the form x ./ n, where x is a clock, ./ ∈ {<,≤,=,≥, >}, and n is
a (rational) number, or more generally by x− y ./ n, where y is another clock.
This graph is usually small compared to the region graph. Nevertheless, this
graph only preserves information about the existence of a state (i.e. a transi-
tion in the graph represents the existence of a location and a valuation in the
source node to a location and a valuation in the destination node). This is not
sufficient for our needs, i.e. to play a Büchi game.

The graph described in Alur et al. [1992] fits our needs and seems to be
a good choice. However, we give a list of constraints that are sufficient for a
graph to fit our needs. Any symbolic graph satisfying these constraints could
be used to generate the game graph, on which we can play a Büchi game. We
say that such graphs are compatible with Büchi games.

Definition 4.16 (Compatible graph). A symbolic graph Gs = 〈Vs, Es〉, with
Es ⊆ Vs × (Σ ∪ {t}) × Vs is compatible (with Büchi games) if it satisfies the
following constraints:

1. Vs is a finite set such that ∀v ∈ Vs,∃l ∈ L, v ⊆ l × 2V(X),

2. ∀q ∈ Q,∃!v ∈ Vs, q ∈ v,

3. Es = Ea
s ∪ Eδ

s ,

4. ∀v ∈ Vs,∀a ∈ Σ,∃!v′ ∈ Vs, (∀q ∈ v,∀q′ ∈ Q, q
a−→ q′ =⇒ q′ ∈ v′),

and Ea
s = {(v, a, v′) ∈ Vs × Σ× Vs | ∃(q, q′) ∈ v × v′, q

a−→ q′},

5. ∀(v, v′) ∈ V 2
s ,∀(q, q′) ∈ v × v′,∀δ ∈ R≥0, q

δ−→ q′ =⇒ (∀q ∈ v,∃δ′ ∈
R≥0, ∃q′ ∈ v′, q

δ−→ q′),

6. ∀v ∈ Vs, up(v) 6= v =⇒ ∃!v′ ∈ Vs, v 6= v′ ∧ ∀(q, q′) ∈ v × v′, ∃δ ∈
R≥0, q

′ = q after δ ∧ ∀δ′ ≤ δ, q after δ′ ∈ v ∪ v′,
and Eδ

s = {(v, t, v′) ∈ Vs × {t} × Vs | v 6= v′ ∧ ∀(q, q′) ∈ v × v′, ∃δ ∈
R≥0, q

′ = q after δ ∧ ∀δ′ ≤ δ, q after δ′ ∈ v ∪ v′}.

Constraint (1) imposes that all the states of the semantics that are in a
node of the symbolic graph share the same location. This allows us to easily
define accepting nodes (as nodes whose locations are accepting).
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Constraint (2) allows us to match each state of the semantics with a unique
node in the symbolic graph.

Constraint (3) splits the set of edges between edges corresponding to actions
and edges corresponding to delays. Each of these sets has its own constraints,
described in (4) and (6).

Constraint (4) propagates the reachability and determinism of the timed
automaton to the symbolic graph for actions, and defines the set Ea

s of edges
corresponding to actions. The edges in Ea

s are labelled with the corresponding
action from Σ.

Constraint (5) states that if a state of the semantics leads to another with
a delay, and they are not in the same node, then all states in the first node
can reach a state in the second node with a delay.

Constraint (6) requires that each node of the graph has at most one direct
time successor, with which it is linked by an edge in the set Eδ

s of edges
corresponding to delays. The edges in Eδ

s are labelled with the special action
t, which is supposed not to belong to Σ.

The graph defined in Alur et al. [1992] is a graph that is compatible with
Büchi games, as per Definition 4.16. This graph is the one that has been used
as symbolic graph in the implementation (see Chapter 5).

A compatible graph is like the so-called zone graph used to compute reach-
ability, but with more constraining properties. Constraints (5) and (6) can be
seen as a kind of time determinism. In the usual zone graph used to compute
reachability (see, for example, Bengtsson and Yi [2004]), an edge (v, v′) be-
tween two nodes v and v′ indicates that for every state of the semantics q′ in
v′, there exists a state q in v such that q −→ q′. In Gs, constraints (5) and (6)
are more constraining, since an edge (v, v′) ∈ Eδ

s between two nodes v and v′

indicates that for all q in v and for all q′ in v′, q δ−→ q′ for some δ ∈ R≥0. Note
that for edges in Ea

s , the constraints are the same as in the usual zone graph
(the existence of a state).

Example 4.3. Consider property ϕt (Fig. 3.8). Its corresponding symbolic
compatible graph as per Alur et al. [1992] is given in Fig. 4.2. In the graph of
Fig. 4.2, the nodes are labelled with a location and a zone, represented as a
set of clock constraints. Edges can represent an event transition or the elapse
of time. Red edges with filled diamond heads ( ) represent transitions
with uncontrollable events, whereas orange edges with empty diamond heads
( ) represent transitions with controllable events. Purple edges with
“vee” heads ( ) represent the elapse of time.

Thus, in Fig. 4.2, orange edges correspond to transitions labelled by Write,
since it is the only controllable event. Red edges can represent transitions of
any other event, LockOn, LockOff , or Auth. Edges are not duplicated, meaning
that two events with the same controllability that label the same transition
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l0, T

l3, T

l1, {x < 2}

l2, T

l1, {x >= 2}

Figure 4.2 – A symbolic compatible graph of ϕt as per Alur et al. [1992].

will appear as a unique edge in the graph. For example, from node (l0,>),
events LockOff and LockOn lead to (l3,>), but only one red edge is drawn.

From this symbolic graph, we define another graph, as in Section 4.2.2, on
which we play a Büchi game. This graph is called game graph.

The Game Graph

Now that we have seen how to reduce Σ∗c to the finite set Σn
c , and how to

abstract the semantics of the timed automaton with a finite compatible graph,
we can construct the graph on which we play a Büchi game. Let us consider
Gs = (Vs, Es), a symbolic graph compatible with Büchi games. We can now
use Σn

c and Gs to define G, the finite graph on which to play the Büchi game:

Definition 4.17 (G). G = 〈V,E〉, where:

• V = Vs × Σn
c × {0, 1},

• E =
⋃6
i=1Ei, with

– E1 = {(〈v, w, 0〉, 〈v, w, 1〉) ∈ V 2},
– E2 = {(〈v, c.w, 0〉, 〈v after c, w, 0〉) ∈ V 2 | c ∈ Σc},
– E3 = {(〈v, w, 1〉, 〈v after u,w, 0〉) ∈ V 2 | u ∈ Σu},
– E4 = {(〈v, w, 1〉, 〈v, w.c, 0〉) ∈ V 2 | c ∈ Σc ∧ w.c ∈ Σn

c },
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– E5 = {(〈v, w, 1〉, 〈v′, w, 0〉) ∈ V 2 | (v, t, v′) ∈ Eδ
s },

– E6 = {(〈v, w, 1〉, 〈v, w, 0〉) ∈ V 2 | up(v) = v},

As per Definition 4.17, a node in the game graph G is composed of a node
of the symbolic graph Gs, a buffer, and a player it belongs to. It is quite
similar to the game graph as per Definition 4.5, except that the state of the
untimed automaton is replaced by a node of the symbolic graph. The two
players are, again, the enforcement monitor P0, whose associated number is 0,
and the environment P1, whose associated number is 1. The set of edges is
partitioned into six sets, each representing a different type of action. The four
first sets, E1, E2, E3, and E4 are similar to the ones in the untimed setting: E1

contains the edges corresponding to P0 letting P1 play; edges in E2 represent P0

emitting the first event of its buffer; E3 and E4 contain edges corresponding
to receiving an uncontrollable or controllable event, respectively, which are
actions of P1. Edges in E5 represent time elapse: it changes the node of the
symbolic graph to its time successor if it has one. E6 contains edges that allow
us to consider finite inputs. Since plays are infinite, such edges are needed to
allow the environment to receive nothing (it can be seen as adding an empty
event to the input). Since time elapses when no event is received, these edges
exist only from nodes that have no time successor, i.e. nodes that are stable
by elapse of time.

On this graph, we play a Büchi game with the set of Büchi nodes being
defined as:

B = {〈(l, Z), w, 0〉 ∈ V | l ∈ G}
We can now consider W0 the set of winning nodes of this game for player

P0.

Example 4.4. Consider again property ϕt (Fig. 3.8) whose symbolic graph
was represented in Fig. 4.2. The game graph associated with ϕt is given in
Fig. 4.3. In this graph, the initial node is the square node, the Büchi nodes
are the double-circled nodes, and the winning nodes (the nodes in W0) are the
rounded rectangular ones. The two first members represent a node of Gs (see
Fig. 4.2), and the third member is a prefix of the buffer of the enforcement
mechanism, where w stands for the Write event, which is the only controllable
event. As in the untimed setting, edges are represented differently according
to the set they belong to:

• blue edges, with empty triangular heads ( ) belong to E1 (the
enforcement mechanism does not emit),

• green edges, with filled triangular heads ( ) belong to E2 (the en-
forcement mechanism emits the first event of its buffer),

• orange edges, with empty diamond heads ( ) belong to E4 (a con-
trollable event is received),
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(l0, T, -, 0)

(l0, T, -, 1)

(l0, T, w, 0)

(l3, T, -, 0)

(l1, {x < 2}, -, 0)

(l0, T, w, 1)

(l0, T, ww, 0)

(l3, T, w, 0)

(l1, {x < 2}, w, 0)

(l0, T, ww, 1)

(l3, T, ww, 0)

(l1, {x < 2}, ww, 0)

(l2, T, -, 0)

(l2, T, -, 1)

(l2, T, w, 0)

(l2, T, w, 1)

(l2, T, ww, 0)

(l2, T, ww, 1)

(l3, T, -, 1)

(l3, T, w, 1)

(l3, T, ww, 1)

(l1, {x >= 2}, -, 0)

(l1, {x >= 2}, -, 1)

(l1, {x >= 2}, w, 0)

(l1, {x >= 2}, w, 1)

(l1, {x >= 2}, ww, 0)

(l1, {x >= 2}, ww, 1)

(l1, {x < 2}, -, 1)

(l1, {x < 2}, w, 1)

(l1, {x < 2}, ww, 1)

Figure 4.3 – Game graph associated with property ϕt
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• red edges, with filled diamond heads ( ) belong to E3 (an uncon-
trollable event is received) or E6 (no more event is to be received).

• purple edges, with “vee” heads ( ) belong to E5 (elapse of time).

For example, consider the node labelled (l1, {x < 2},−, 1) in Fig. 4.3 (this node
has a purple output edge). This node belongs to P1, meaning that this is the
environment playing. Four edges leave this node. The purple edge (in E5) leads
to the node (l1, {x ≥ 2},−, 0), since if x < 2, letting enough time elapse (i.e.
2− x time units) leads to the guard x ≥ 2 being satisfied. Letting time elapse
does not change the buffer nor the location, hence the destination node. Two
red edges leave node (l1, {x < 2},−, 1): one leads to node (l1, {x < 2},−, 0),
that corresponds to receiving the uncontrollable events Auth or LockOff ; the
other one leads to (l2,>,−, 0), that corresponds to receiving the uncontrollable
event LockOn (since (l1, x) after LockOn = (l2, x)). The last edge leaving node
(l1, {x < 2},−, 0) is the orange one, that corresponds to the reception of a
controllable event, here Write is the only one, thus leading to node (l1, {x <
2}, w, 0), i.e. only the buffer changed and it is the turn of P0 to play.

From this game graph, knowing the winning set W0 for P0 allows us to
compute the “safe” states of an enforcement mechanism.

The Enforcement Function

Now, we redefine G, storeϕ, Eϕ, and Pre.
We can use W0 to define, for q ∈ Q and w ∈ Σ∗c, G(q, w), the set of words

that can be output by an enforcement mechanism from state q with buffer w,
ensuring compliance and soundness:

Definition 4.18 (G). For q ∈ Q, and w ∈ Σ∗c,

G(q, w) = {σ ∈ tw(Σ) | ΠΣ(σ) 4 w ∧ q after σ ∈ FG∧
∀t ∈ R≥0,∀v ∈ Vs, (q after (σ, t) ∈ v)

=⇒ 〈v,maxbuffer(ΠΣ(obs(σ, t))−1 . w), 1〉 ∈ W0},

with:
maxbuffer(w) = max

4
({w′ 4 w | w′ ∈ Σn

c }).

It is now possible to redefine Eϕ, using this new definition of G:

Definition 4.19 (storeϕ, Eϕ). Let storeϕ ∈ F(tw(Σ), tw(Σ) × Σ∗c) be the
function defined inductively by:

(ε, 〈ε, ε〉) ∈ storeϕ,
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and for σ ∈ tw(Σ), (δ, a) ∈ R≥0×Σ, if t = time(σ.(δ, a)), (σs0, σc) = storeϕ(σ),
and σs = obs(σs0, t), then{

(σ . (δ, a), 〈σs . (t− time(σs), a) . σ′s, σ
′
c〉) ∈ storeϕ if a ∈ Σu

(σ . (δ, a), 〈σs . σ′′s , σ′′c 〉) ∈ storeϕ if a ∈ Σc

where, for q ∈ Q, and w ∈ Σ∗c,

T(q, w) = {t′ ∈ R≥0 | ∀t′′ < t′,G(q after (ε, t′′), w) = ∅},

κϕ(q, w) = min
lex

(max
4

({ε} ∪
⋃

t′∈T(q,w)

{w′ +t t
′ | w′ ∈ G(q after (ε, t′), w)}))

bufc = ΠΣ(nobs(σs0, t)) . σc,

and

σ′s = κϕ(Reach(σs . (t− time(σs), a)), bufc) σ′c = ΠΣ(σ′s)
−1 . bufc,

σ′′s = κϕ(Reach(σs, t), bufc . a) +t (t− time(σs)) σ′′c = ΠΣ(σ′′s )−1 . (bufc . a).

We then define the enforcement function Eϕ as follows:

Eϕ = {(〈σ, t〉, obs(σs0, t)) ∈ (tw(Σ)× R≥0)× tw(Σ) | ∃σc ∈ Σ∗c,

(obs(σ, t), 〈σs0, σc〉) ∈ storeϕ}

Function storeϕ takes a timed word σ as input, and outputs two words:
σs0 and σc. Timed word σs0 is the output of the enforcement mechanism at
infinite time. The controllable word of actions σc is the word composed of
the remaining stored controllable actions of the enforcement mechanism (its
buffer) at infinite time. In the definition of G(q, w), the last condition requires
that all nodes of G that are reached by a word in G(q, w) from q belong to W0.
This is a strong condition, that is required to ensure that it is always possible
to compute a word leading to an accepting state. Nevertheless, if the source
node is not in W0, it is possible that letting time elapse leads to a node in W0,
because it disabled some transition in the timed automaton. This explains
why we defined the set T(q, w), that allows us to consider words as potential
outputs of the enforcement mechanism if it becomes sound (i.e. can ensure
that the property will be satisfied) before the emission of the first event of this
word, even if it is not at the time when the last event was received. Intuitively,
T(q, w) contains all the delays t such that an enforcement mechanism must wait
at least t time units to be able to be sound. In other words, the enforcement
mechanism can not ensure that the property will eventually always be satisfied
from state q with buffer w, and it can not ensure it either by waiting less than
t time units, for every t in T(q, w). Then, κϕ(q, w) is the word that is to be
output by the enforcement mechanism from state q with buffer w provided
that the input does not change. It is the maximal word (with respect to 4d)
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Table 4.1 – Table showing the values of (obs(σ, t), 〈σs, σc〉) ∈ storeϕt , with
σ = ((1,Auth) . (1,LockOn) . (2, Write) . (1,LockOff ) . (1,LockOn) . (1, Write) .
(1,LockOff )) for different values of time t.

t σs σc
1 (1,Auth) ε
2 (1,Auth) . (1,LockOn) ε
4 (1,Auth) . (1,LockOn) Write
5 (1,Auth) . (1,LockOn) . (3,LockOff ) . (2, Write) ε
6 (1,Auth) . (1,LockOn) . (3,LockOff ) . (1,LockOn) Write
7 (1,Auth) . (1,LockOn) . (3,LockOff ) . (1,LockOn) Write . Write
8 (1,Auth) . (1,LockOn) . (3,LockOff ) . (1,LockOn) .

(2,LockOff ) . (2, Write) . (0, Write)
ε

that belongs to G(q, w). If G(q, w) is empty, then κϕ(q, w) is the maximal
word that belongs to G(q after (ε, t), w), where t is the minimal time for which
G(q after (ε, t), w) is not empty. If G(q after (ε, t), w) is empty for every
t ∈ R≥0, then κϕ(q, w) = ε, meaning that the enforcement mechanism does
not output anything. Thus, when the enforcement function is not sound, it
outputs nothing but uncontrollable events.

Example 4.5. As in Example 3.8, we can follow the output of function storeϕ
over time with word σ = (1,Auth) . (1,LockOn) . (2, Write) . (1,LockOff ) .
(1,LockOn) . (1, Write) . (1,LockOff ) as input: let t ∈ R≥0 be the observation
time, and (obs(σ, t), 〈σs, σc〉) ∈ storeϕ. Then the values taken by σs and σc for
different times t are given in Table 4.1. To understand the behaviour of storeϕ,
note that in the associated game graph, shown in Fig. 4.3, 〈l1, Z, w, p〉 ∈ W0

and 〈l2, Z, w, p〉 ∈ W0, for any 〈l1, Z, w, p〉 ∈ V and 〈l2, Z, w, p〉 ∈ V .

As mentioned previously, an enforcement mechanism may not be sound
from the beginning of an execution, but some uncontrollable events may lead
to a state from which it becomes possible to be sound. In the definition
of storeϕ and Eϕ, Eϕ is sound whenever T(q, w) is empty, with q the state
reached by the output of Eϕ at date t and w its buffer at this date. If T(q, w)
is empty, then the last value of σ′s (or σ′′s depending on the controllability of
the last input action) is in G(q, w), meaning that the node in G reached by the
enforcement mechanism is in W0, therefore it is always possible to compute a
word that leads to a state in FG. Since Eϕ as per Definition 4.19 is equivalent
to Eϕ as per Definition 3.19, the definition of Pre(ϕ) does not change, since it
only depends on G:

Definition 4.20. Pre(ϕ)

Pre(ϕ) = {(σ, t) | σ ∈ Pre(ϕ, t)},
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where, for σ ∈ tw(Σ) and t ∈ R≥0:

Pre(ϕ, t) = {σ ∈ tw(Σ) | ∃t′ ≤ t,

G(Reach(σ|Σu , t
′),ΠΣ(obs(σ, t′)|Σc)) 6= ∅} . tw(Σ)

Note that Pre(ϕ) is time-extension-closed, meaning that once Eϕ is sound,
its output will always eventually satisfy ϕ in the future.

Considering that the output of our enforcement function was only the un-
controllable events so far, if G(Reach(σ|Σu , t),ΠΣ(obs(σ, t)|Σc)) is not empty,
this means that the enforcement function becomes sound with input σ from
time t, since there is a word that is safe to emit. Thus, Pre(ϕ, t) is the set of
inputs for which Eϕ is sound after date t, and then Eϕ is sound for any input
in Pre(ϕ) after its associated date.

Proposition 4.6. Eϕ as per Definition 4.19 is an enforcement function, as
per Definition 4.11.

Sketch of proof. We have to show that for all σ ∈ tw(Σ), for all t ∈ R≥0

and t′ ≥ t, if ((σ, t), o1) ∈ Eϕ and ((σ, t′), o2) ∈ Eϕ, then o1 4 o2, and that for
all (δ, a) ∈ R≥0 × Σ, if ((σ, time(σ . (δ, a))), o3) ∈ Eϕ and ((σ . (δ, a), time(σ .
(δ, a))), o4) ∈ Eϕ, then o3 4 o4. To prove this, we first show by induction that
o1 4 o2. Considering (δ, a) ∈ R≥0×Σ, we distinguish different cases according
to the values of time(σ . (δ, a)) compared to t and t′:

Case 1: time(σ . (δ, a)) ≤ t. Then, obs(σ . (δ, a), t) = obs(σ . (δ, a), t′) = σ . (δ, a).
Thus, if (σ . (δ, a), 〈σs0, σc0〉) ∈ storeϕ, then ((σ . (δ, a), t), obs(σs0, t)) ∈
Eϕ and ((σ . (δ, a), t′), obs(σs0, t

′)) ∈ Eϕ. Since t ≤ t′, obs(σs0, t) 4
obs(σs0, t

′), which is what we want to prove.

Case 2: time(σ . (δ, a)) ≥ t′. Then, obs(σ . (δ, a), t) = obs(σ, t) and obs(σ .
(δ, a), t′) = obs(σ, t′). Since in the definition of Eϕ, only the observation
of the input at the given date is used, it follows, by induction hypothesis,
that the proposition holds.

Case 3: t < time(σ . (δ, a)) < t′. Then, obs(σ . (δ, a), t) = obs(σ, t), and obs(σ .
(δ, a), t′) = σ . (δ, a). If (obs(σ, t), 〈σs0, σc0〉) ∈ storeϕ, and (σ . (δ, a),
〈σs1, σc1〉) ∈ storeϕ, then following the definition of storeϕ, obs(σs0,
time(σ . (δ, a))) 4 σs1, meaning that obs(σs0, t) 4 σs1, which is what
we have to prove.

Thus, o1 4 o2. Then, what remains to show is that o3 4 o4. Follow-
ing the definition of storeϕ, it is clear that if (σ, 〈σs0, σc0〉) ∈ storeϕ and
(σ . (δ, a), 〈σs1, σc1〉) ∈ storeϕ, then σs0 4 σs1, and thus o3 4 o4.

Proposition 4.7. Eϕ is sound with respect to ϕ in Pre(ϕ) as per Defini-
tion 4.12.
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Sketch of proof. As in the untimed setting, the proof is made by induction on
the input σ ∈ tw(Σ). Similarly to the untimed setting, considering σ ∈ tw(Σ),
t ∈ R≥0, and (δ, a) ∈ R≥0 × Σ, there are three possibilities:

Case 1: (σ . (δ, a), t) 6∈ Pre(ϕ). Then, the proposition holds.

Case 2: (σ . (δ, a), t) ∈ Pre(ϕ), but (σ, time(σ . (δ, a))) 6∈ Pre(ϕ). Then, this is
when the input reaches Pre(ϕ). Considering the definition of Pre(ϕ), we
then prove that it is possible to emit a word with the controllable events
seen so far, leading to a node of G that is in W0.

Case 3: (σ, t′) ∈ Pre(ϕ) (and thus (σ . (δ, a), t) too). Then, we prove again that
there exists a controllable word made with the stored actions that leads
to a node in W0, but this time using the fact that the previous node was
in W0 (and since W0 is the set of winning nodes in the Büchi game for
P0, there always is a reachable successor node that is in W0).

Proposition 4.8. Eϕ is compliant, as per Definition 4.13.

Sketch of proof. As in the untimed setting, the proof is made by induction on
the input σ, considering the different cases where the new event is controllable
or uncontrollable. The only difference with the untimed setting is that one
should consider dates (from delays) on top of actions.

Proposition 4.9. Eϕ is optimal in Pre(ϕ) as per Definition 4.14.

Sketch of proof. This proof is made by induction on the input σ. Whenever
σ ∈ Pre(ϕ), since Eϕ is sound in Pre(ϕ), then Eϕ(σ) is the maximal word (with
respect to 4d) that satisfies ϕ and is safe to output. It is maximal because
in the definition of storeϕ, κϕ returns the longest word with lower delays (for
lexicographic order), which corresponds to the maximum with respect to 4d.
Thus, outputting a grater word (with respect to 4d) would lead to G being
empty, meaning that the enforcement mechanism would not be sound. Thus,
Eϕ is optimal in Pre(ϕ), since it outputs the maximal word with respect to 4d

that allows to be sound and compliant.

4.3.3 Enforcement Monitors

As in the untimed setting, we define an operational description of an enforce-
ment mechanism whose output is exactly the output of Eϕ, as per Defini-
tion 4.19.

Definition 4.21. An enforcement monitor E for ϕ is a transition system
〈CE , cE0 ,ΓE , ↪→E〉 such that:
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• CE = tw(Σ)× Σ∗c ×Q× R≥0 is the set of configurations.

• cE0 = 〈ε, ε, q0, 0〉 ∈ CE is the initial configuration.

• ΓE = ((R≥0×Σ)∪{ε})×Op× ((R≥0×Σ)∪{ε}) is the alphabet, composed
of an optional input, an operation and an optional output.
The set of operations is {dump(.), pass-uncont(.), store-cont(.), delay(.)}.
Whenever (σ, ./, σ′) ∈ ΓE , it will be noted σ/ ./ /σ′.

• ↪→E is the transition relation defined as the smallest relation obtained by
applying the following rules given by their priority order:

– Dump: 〈(δ, a) . σb, σc, q, δ〉 ↪
ε/dump((δ,a))/(δ,a)−−−−−−−−−−−→E 〈σb, σc, q′, 0〉, with q′ =

q after a,

– Pass-uncont: 〈σb, σc, q, δ〉 ↪
u/pass-uncont(u)/(δ,u)−−−−−−−−−−−−−→E 〈σ′b, σ′c, q′, 0〉, with q′ =

q after u, σ′b = κϕ(q′,ΠΣ(σb) . σc), and σ′c = ΠΣ(σ′b)
−1 . (ΠΣ(σb) . σc),

– Store-cont: 〈σb, σc, q, δ〉 ↪
c/ store-cont(c)/ε−−−−−−−−−→E 〈σ′b, σ′c, q, δ〉, with σ′b = κϕ(q,

ΠΣ(σb) . σc . c) +t δ and σ′c = ΠΣ(σ′b)
−1 . (ΠΣ(σb) . σc . c),

– Delay: 〈σb, σc, (l, v), δ〉 ↪ε/delay(δ′)/ε−−−−−−−→E 〈σb, σc, (l, v + δ′), δ + δ′〉.

In a configuration 〈σb, σc, q, δ〉, σb is the word to be output as time elapses;
σc is the sequence of controllable actions from the input that are not used in
σb; q is the state of the semantics reached after reading what has already been
output; δ is the time elapsed since the emission of the last event, it is used to
output events with correct delays with respect to the previous output.

Compared to the enforcement monitor defined in Section 3.2.3, the time
from the beginning is replaced by a delay since the last event output. Rule
compute has disappeared, because it is not needed here. The reason is that
the set G is not exactly the same in Section 3.2 and Section 4.3: in Section 3.2,
it contains only words that can be emitted from the given state if this state is
accepting, whereas in Section 4.3, it also contains words that can be emitted
from the state reached when the first event is to be emitted. The result is the
same because G was virtually computed for each possible valuation as time
elapses in Section 3.2, which was exactly the purpose of rule compute.

At any time instant t, if (σs, σc) = storeϕ(σ), and the configuration reached
by the enforcement monitor with input σ at date t is 〈σb, σd, q, δ〉, then σb =
nobs(σs, t), σd = σc, q = Reach(σs, t), and δ = t− time(obs(σs, t)).

Example 4.6. An example of execution of an enforcement monitor as per
Definition 4.21 enforcing property ϕt (see Fig. 3.8) is given in Fig. 4.4. Re-
member that in a configuration, the input is on the right, the output on the
left, and the middle is the current configuration of the enforcement moni-
tor. Variable t defines the global time of the execution. The input used for
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the monitor in Fig. 4.4 is the same as in Table 4.1: (1,Auth) . (1,LockOn) .
(2, Write) . (1,LockOff ) . (1,LockOn) . (1, Write) . (1,LockOff ). As in Exam-
ple 3.8, in Fig. 4.4, valuations are represented as integers, giving the value
of the only clock x of the property, LockOff is abbreviated as off , LockOn
as on, and Write as w. First column depicts the dates of events, red text
is the current output (σs) of the enforcement monitor, blue text shows the
evolution of the first member of the configuration (σb) of the monitor and
green text depicts the remaining input word at this date. The final output
is the same as the one of the enforcement function Eϕ as per Definition 4.19:
(1,Auth) . (1, on) . (2, off ) . (1, on) . (2, off ) . (2, w) . (0, w). Note that this output
is also the same as in Section 3.2, replacing dates with delays (since the input
is also the same, replacing dates with delays).

Proposition 4.10. The output o of E as per Definition 4.21 for input σ at
date t is such that ((σ, t), o) ∈ Eϕ.

As in the untimed setting, in Proposition 4.10, the output of the enforce-
ment monitor is the concatenation of the outputs of the word labelling the path
followed by the enforcement monitor when reading σ. A formal definition is
given in the proof of this proposition, in appendix A.2.2.

Sketch of proof. The proof is done by induction on σ. When receiving a new
event, rule store-cont() can be applied if it is controllable, or rule pass-uncont()
if it is uncontrollable. Doing so, the two first members of the configuration are
recomputed, and they correspond exactly to the values of σ′s (or σ′′s ) and σ′c (or
σ′′c ) in the definition of storeϕ. Then, rule delay() can be applied, to reach the
date of the first event in the second member of the current configuration, and
then rule dump() can be applied to output it. This process can be repeated
until the desired date is reached. Thus, when date t is reached, what has been
emitted since the last rule store-cont() or pass-uncont() is obs(σb, t), where σb
is the value of σ′s (or σ′′s ) as previously mentioned. Considering the definition
of storeϕ, it follows that the output of E with input σ at date t is the exact
same output as the one of Eϕ.

Remark 5. As in the untimed setting (Section 4.2.3), for a configuration of
the enforcement monitor c = 〈σb, σc, q, δ〉, we can associate a node of the game
graph (Π1(q), Z, w, 0), such that Π2(q) ∈ Z, and w is the longest prefix of the
buffer of the enforcement monitor, i.e. ΠΣ(σb) . σc, such that (Π1(q), Z, w, 0) is
a node of the game graph. Then, if (σ, t) ∈ Pre(ϕ), and c is the configuration
reached by the enforcement monitor with input σ at date t, then (Π1(q), Z, w, 0)
is a winning node for player P0.
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t = 0 ε/〈ε, ε, (l0, 0), 0〉/(1,Auth).(1, on).(2, w).(1, off ).(1, on).(1, w).(1, off )
↓ delay(1)

t = 1 ε/〈ε, ε, (l0, 1), 1〉/(0,Auth).(1, on).(2, w).(1, off ).(1, on).(1, w).(1, off )
↓ pass-uncont(Auth)

t = 1 (1,Auth)/〈ε, ε, (l1, 0), 0〉/(1, on).(2, w).(1, off ).(1, on).(1, w).(1, off )
↓ delay(1)

t = 2 (1,Auth)/〈ε, ε, (l1, 1), 1〉/(0, on).(2, w).(1, off ).(1, on).(1, w).(1, off )
↓ pass-uncont(on)

t = 2 (1,Auth).(1, on)/〈ε, ε, (l2, 1), 0〉/(2, w).(1, off ).(1, on).(1, w).(1, off )
↓ delay(2)

t = 4 (1,Auth).(1, on)/〈ε, ε, (l2, 3), 2〉/(0, w).(1, off ).(1, on).(1, w).(1, off )
↓ store-cont(w)

t = 4 (1,Auth).(1, on)/〈ε, w, (l2, 3), 2〉/(1, off ).(1, on).(1, w).(1, off )
↓ delay(1)

t = 5 (1,Auth).(1, on)/〈ε, w, (l2, 4), 3〉/(0, off ).(1, on).(1, w).(1, off )
↓ pass-uncont(off )

t = 5 (1,Auth).(1, on).(3, off )/〈(2, w), ε, (l1, 0), 0〉/(1, on).(1, w).(1, off )
↓ delay(1)

t = 6 (1,Auth).(1, on).(3, off )/〈(2, w), ε, (l1, 1), 1〉/(0, on).(1, w).(1, off )
↓ pass-uncont(on)

t = 6 (1,Auth).(1, on).(3, off ).(1, on)/〈ε, w, (l2, 1), 0〉/(1, w).(1, off )
↓ delay(1)

t = 7 (1,Auth).(1, on).(3, off ).(1, on)/〈ε, w, (l2, 2), 1〉/(0, w).(1, off )
↓ store-cont(w)

t = 7 (1,Auth).(1, on).(3, off ).(1, on)/〈ε, w.w, (l2, 2), 1〉/(1, off )
↓ delay(1)

t = 8 (1,Auth).(1, on).(3, off ).(1, on)/〈ε, w.w, (l2, 3), 2〉/(0, off )
↓ pass-uncont(off )

t = 8 (1,Auth).(1, on).(3, off ).(1, on).(2, off )/〈(2, w).(0, w), ε, (l1, 0), 0〉/ε
↓ delay(2)

t = 10 (1,Auth).(1, on).(3, off ).(1, on).(2, off )/〈(2, w).(0, w), ε, (l1, 2), 2〉/ε
↓ dump((2, w))

t = 10 (1,Auth).(1, on).(3, off ).(1, on).(2, off ).(2, w)/〈(0, w), ε, (l1, 2), 0〉/ε
↓ dump((0, w))

t = 10 (1,Auth).(1, on).(3, off ).(1, on).(2, off ).(2, w).(0, w)/〈ε, ε, (l1, 2), 0〉/ε

Figure 4.4 – Execution of an enforcement monitor with input (1,Auth) .
(1,LockOn) . (2, Write) . (1,LockOff ) . (1,LockOn) . (1, Write) . (1,LockOff )
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Conclusion
In this chapter, we have presented enforcement mechanisms that are sound,
compliant, and optimal, and that use a Büchi game to ensure soundness. The
outputs of the enforcement mechanisms in this chapter are the same as the
outputs of enforcement mechanisms defined in Chapter 3. Nevertheless, the
computation methods in these chapters are different, and the mechanisms pre-
sented in this chapter have better computation times in practice, and yield
better performance. Moreover, we believe that algorithms are simpler using
the method presented in this chapter rather than using the one in Chapter 3.
A tool called GREP has been designed that constructs the game graph as de-
scribed in Section 4.3.2, and uses it to modify its input so that it is a sound,
compliant and optimal enforcement mechanism. This tool is described in the
next chapter.
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Chapter 5

GREP: Games for Runtime
Enforcement of Properties

Introduction

In this chapter, we present GREP, the tool developed using the approach de-
scribed in Section 4.3 to enforce timed properties. GREP is a sound, compliant
and optimal enforcement mechanism.

We give a description of GREP in Section 5.1, detailing the different mod-
ules it is made of and the way it is used in Section 5.2, before presenting some
performance evaluations, comparing GREP to TiPEX, another tool enforcing
timed properties in Section 5.3.

The work described in this chapter has been published in Renard et al.
[2017b].

5.1 Description of the approach

The strategy of GREP is the one described in Section 4.3. Given a timed
regular property ϕ, and a partition of its alphabet into a set of controllable
events Σc and a set of uncontrollable events Σu, GREP first builds a symbolic
graph that is compatible with Büchi games, as per Definition 4.16. The graph
used is the one described in Alur et al. [1992]. Then, GREP builds a game
graph as per Definition 4.17, using Σc as the set of controllable events and
Σu as the set of uncontrollable events. Once the game graph is constructed,
GREP computes the set W0 of winning nodes for player P0 (the enforcement
mechanism).

Then, GREP can follow a real execution on the game graph, by watching
the node that has been reached so far by its output, and the nodes that can be
reached by emitting stored controllable actions (i.e. following the correspond-
ing edges in the game graph). Whenever a winning node is reached by P0, the

91



5.2. General Functioning of GREP

TA Loader Zone Graph
Generator

Game Graph
Generator SCM

Property
ϕt as TA

Graph Display (Graphviz) PDF file

Enforcement
Monitor (EM)
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Input events on stdin E(σ) on stdout

Log file

Game graph file

Figure 5.1 – General architecture of GREP

strategy is to emit as many events as possible, remaining in a winning node all
the time. Since the game played is a Büchi game, it is always possible for P0

to stay in a winning node whenever one is reached. Whenever a winning node
is reached, the output of the EM is then guaranteed to satisfy the property.

5.2 General Functioning of GREP

GREP is a tool of about 6,000 lines of code1 developed using the C language,
available at https://github.com/matthieurenard/GREP. GREP is essen-
tially composed of two modules (cf Fig. 5.1): the Symbolic Computing Mod-
ule (SCM) and the Enforcement Monitor Module (EMM). It loads a TA file
describing the desired property, and reads the inputs directly from stdin. The
output of the EM is sent to stdout. This approach allows one to use GREP
with off-the-shelf applications.

5.2.1 Symbolic Computing Module (SCM)

The Symbolic Computing Module is composed of three main components: a
TA loader, the zone graph generator, and the game graph generator.

TA Loader

The TA loader is the component that parses a file containing the description of
a timed automaton and loads it into a C structure. The file of the automaton
is a textual description following a grammar designed for this purpose. An
example file, that loads property ϕt (see Fig. 3.8), is provided in Listing 5.1.
The file is parsed using a custom grammar, implemented using lex and yacc.

1calculated with cloc (https://github.com/AlDanial/cloc)
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automaton
{

// Write
cont {w}
// Auth , LockOn , LockOff
uncont {a , n , f }

nodes
{

l 0 [ i n i t i a l ] ;
l 1 [ accepting ] ;
l 2 [ accepting ] ;
l 3 ;

}

clocks {x}

edges
{

l 0 −>{a}{x}{} l 1 ;
l 0 −>{w}{}{} l 3 ;
l 0 −>{n}{}{} l 3 ;
l 0 −>{f }{}{} l 3 ;
l 1 −>{n}{}{} l 2 ;
l 1 −>{w}{}{x >= 2} l 1 ;
l 1 −>{f }{x}{} l 1 ;
l 1 −>{a}{}{} l 1 ;
l 1 −>{w}{}{x < 2} l 3 ;
l 2 −>{a}{}{} l 2 ;
l 2 −>{n}{}{} l 2 ;
l 2 −>{f }{x}{} l 1 ;
l 2 −>{w}{}{} l 3 ;
l 3 −>{w}{}{} l 3 ;
l 3 −>{a}{}{} l 3 ;
l 3 −>{n}{}{} l 3 ;
l 3 −>{f }{}{} l 3 ;

}
}

Listing 5.1 – Automaton file for ϕt
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The automaton must also be deterministic and complete (see Alur and Dill
[1992]). If the automaton is not deterministic, the behaviour is undefined.
Once the timed automaton is loaded, a symbolic graph is computed by the
Zone Graph Generator to abstract its infinite semantics into a finite graph
that is compatible with Büchi games, as per Definition 4.16. The graph that
is built is actually the one described in Alur et al. [1992].

Zone Graph Generator

From the timed automaton, a symbolic graph is constructed using zones. This
zone graph must be compatible with Büchi games, as per Definition 4.16. An
algorithm to compute a symbolic graph compatible with Büchi games is given
in Alur et al. [1992]. This algorithm has been implemented to compute the
symbolic graph in this module.

In GREP, zones are represented by Difference Bound Matrices (DBMs),
using the UPPAAL DBM library (UDBM, see UDBM [2011]), and its C API.
The algorithm requires some functionality that is not provided by this C API
(some of them exist in some higher-level wrappers), such as complementing
zones into a list of zones. This functionality was added to our own wrapper
of UDBM. No other third-party library was needed to compute the symbolic
graph. This symbolic graph is used to build the final game graph, that will be
used by the enforcement monitor.

Game Graph Generator

Using the symbolic graph, the Game Graph Generator builds a graph over
which to play a Büchi game whose strategy is the one to be followed by the
enforcement monitor. The graph is constructed as described in Definition 4.17.
Once the graph is constructed, the Büchi game is solved for player P0 (the
enforcement monitor), with the set of Büchi nodes being the set of nodes whose
location is accepting. The winning nodes are then the nodes from which the
enforcement monitor ensures that its output will satisfy the property.

Following a path of winning nodes in the graph gives a strategy to follow
such that the final output satisfies the property. This is how the EM uses the
graph to actually enforce the property.

5.2.2 Enforcement Monitor Module (EMM)

The EMM uses the SCM to compute the output for a given input. It has five
main public functions: init(G), getStrat(), delay(t), eventRcvd(e), and emit().
Function init(G) initialises the EMM following the strategy from graph G.
Function getStrat() gives the strategy to follow, i.e. whether the first action
of the buffer should be output or not. Since time is abstracted by the zone
graph for the SCM, it needs to be notified that some time has passed, which is
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done by the use of function delay(t), where t is the number of time units that
have elapsed since the last call to delay, or the creation of the enforcement
mechanism for the first call. Time units only need to be consistent with the
ones used in the property. Function eventRcvd(e) is used to inform the EMM
that an event e has been read from the input. In this case, the EMM acts
differently depending on the controllability of the event. Function emit() is
used to output the first action of the buffer. Uncontrollable events are output
by function eventRcvd(), as required by compliance.

Note that these functions allow to use the EMM in both online (real-time)
and offline (with a trace as input) settings. All these functions, except function
getStrat(), return the number of time units required to reach the time successor
of the current node (∞ if there is no time successor). It is the number of time
units given to function delay() if no event is received before and the strategy
is not to emit.

Thus, the general algorithm to use the EMM in the offline setting is given
in Algorithm 1. Basically, the EMM follows a path in the game graph. Thus,
it considers the current node as the node reached by its output, and explores
the strategy tree from this node. The EMM also stores the controllable actions
that have not been output yet, and uses them to compute the possible output.
Since the output should be the longest possible, with minimal possible delays,
computing the strategy requires to explore the tree of all possible strategies.
This is done by exploring the game graph, simulating the emission of the
controllable actions of the buffer at all possible time instants. In each node
belonging to P0, if the successor by emitting, i.e. green with empty triangular
head arrow ( ) in the game graph, is winning, then it is explored, and if
the time successor is also winning, it is explored as well, since waiting before
emitting could allow the EMM to output more events. Each node is then
associated with a score, corresponding to the number of actions that have
been emitted to reach the node. Then, the EMM stores the node that has the
biggest score, and the strategy to follow to reach it. If two nodes have the same
score, then the first common ancestor is computed, and the one node that can
be reached by emitting from this ancestor (the other node can be reached from
this ancestor by waiting) is kept as the node to reach. This corresponds to
computing the lexicographical order. This process is repeated for each node
with the same score, with the previous stored node, such that in the end the
stored node is the minimal node (for the lexicographic order) of all the nodes
with the highest score.

Note that computing an output such that all actions are emitted when-
ever it is possible to emit them does not require to explore the strategy tree.
Depending on the property, the two outputs could be the same, i.e. if the prop-
erty is such that letting time elapse never enables a transition that eventually
allows the EMM to output more events. Then the EMM can work faster by
using an optimisation that does not compute any tree, but outputs actions
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input : The game graph G, the input sequence of events, through
function read ()

output: The output of the enforcer mechanism, through function emit()

1 init(G);
2 del←∞;
3 while The input sequence has not been read entirely do
4 (δ, a)← read();
5 while del ≤ δ do
6 δ ← δ − del;
7 del← delay(del);
8 while getStrat() = EMIT do
9 emit();

10 end
11 end
12 delay(δ);
13 del← eventRcvd(a);
14 end
15 while del <∞ or getStrat() = EMIT do
16 while getStrat() = EMIT do
17 emit();
18 end
19 if del <∞ then
20 del← delay(del);
21 end
22 end
Algorithm 1: Main algorithm to enforce a property in offline mode
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whenever possible, i.e. when the successor node by emitting is winning, if it is
specified to do so.

To visualise the difference between the two computations, consider the
property described in Fig. 3.10. For this property, considering for instance that
the input word is (0, Write) . (1, Write), the output of GREP when exploring
the execution tree would be (using delays): (4, Write) . (4, Write), whereas
using the other algorithm, that emits events as soon as possible, the output
would be (2, Write). The first one outputs more events, but the second one
outputs its first event before the first one.

5.2.3 Running GREP

GREP is shipped with two executables: one to use the enforcement mechanism
in offline mode, and the other in the online mode. Both of them take their
input on the standard input. In the offline mode, the input is composed of
events in the form (t, a), where t is a date and a is an action, controllable
or uncontrollable. In the online mode, only the action is given, the date is
computed from the real time through a call to gettimeofday(). Note that
these executables may build only on UNIX-like systems because of some system
calls such as gettimeofday() and clock_gettime(). Excepting this, the tool
is not system-dependent. The output (events with their dates) is printed on
the standard output. Several options may be used:

• One of the two options -a <automatonFile> or -g <graphFile> must
be passed to specify the property. The file <automatonFile> should be
in the same format as the file shown in Listing 5.1. The file <graphFile>
should be a file saved by this executable (see option -s), loading this kind
of file should be faster than loading an automaton file since it contains
the graph, which does not need to be computed again.

• -s <graphFile> saves the game graph in <graphFile>, to be loaded in
another execution (see option -g).

• -z <zoneGraphFile> draws the zone graph using graphviz and store it
(as PDF) in <zoneGraphFile>.

• -d <gameGraphFile> draws the game graph using graphviz and store it
(as PDF) in <gameGraphFile>.

• -t <timeFile> logs times between the reception of two events in the file
<timeFile>. This option is used to benchmark the program.

• -l <logFile> prints all the logs in <logFile>.
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• -f (fast) use the optimised version, where actions are output whenever
they can be instead of outputting the longest word possible with minimal
dates.

If options -s, -z, -d, or -t are not given, then the corresponding action
will just not happen. For example, without -z, the zone graph will not be
saved. If none of the options among -a and -g is given, the program will
print an error and abort. If both are given, then the automaton file is used.
If option -l is not given, then the standard error is used as log file, which is
not recommended (we recommend always using the option -l). If the option
-f is not given, then the enforcement mechanism will output as many events
as possible, with the lowest possible dates; enabling the option will make it
output actions as soon as possible (i.e. if the node of the game graph reached
by outputting is winning). Using option -f is usually faster, but the outputs
might differ depending on the property.

For instance, the command:
game_enf_offline -a phit.tmtn -l log -d gameGraph.pdf < input
will enforce the property described in the file phit.tmtn, logging in the file
log, reading its events from the file input. It will also draw the game graph
in the file gameGraph.pdf.

The enforcement mechanism logs the mode in which it runs (default or
fast) at the beginning, and when it stops, it logs the input, its output, the
controllable actions that have not been output (what remains in its buffer),
and a verdict that is WIN if its output satisfies the property, or LOSS otherwise
(remember that some properties are not enforceable, see Example 3.1).

Enforcer i n i t i a l i z e d in d e f au l t mode .
Shutt ing down the en f o r c e r . . .
Summary o f the execut ion :
Input : (0 , Write ) (1 , Auth) (2 , Write ) (3 , LockOn)

(4 , Write ) (5 , LockOff ) (6 , LockOn) (7 , LockOff )
Output : (1 , Auth) (2 , Write ) (2 , Write ) (3 , LockOn)

(5 , LockOff ) (6 , LockOn) (7 , LockOff ) (9 , Write )
Remaining events in the bu f f e r :
VERDICT: WIN
Enforcer shutdown .

Listing 5.2 – Log file produced by GREP

For example, considering that phit.tmtn is the file given in Listing 5.1,
the previous command with the input file containing the sequence:
(0, Write) . (1,Auth) . (2, Write) . (3,LockOn) . (4, Write) . (5,LockOff)
(6,LockOn) . (7,LockOff), produces the output:
(1,Auth) . (2, Write) . (2, Write) . (3,LockOn) . (5,LockOff) . (6,LockOn)
(7,LockOff) . (9, Write). The produced log file is given in Listing 5.2.
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Figure 5.2 – Properties used to benchmark GREP

5.3 Performance Evaluation

5.3.1 Comparison with TiPEX

The performance of GREP has been evaluated on three properties that come
along with TiPEX, the tool to which we compare. TiPEX (see Pinisetty et al.
[2015b]) is, to our knowledge, the only other tool that acts as an enforcement
mechanism for timed regular properties. These properties are described in
Fig. 5.2. The safety property states that there should always be 5 time units
between two r actions. The co-safety property states that the first r action
should be followed by a g action, with a delay of at least 6 time units. The
response property states that every grant (g) action should be followed by a
release (r) action within 15 to 20 time units, without any grant action occurring
between them.

For each of these properties, GREP has been run 100 times on every in-
put among 100 inputs of 1000 events randomly generated. The time between
the reception of two events has been saved for all of these executions. The
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Figure 5.3 – Comparison of timings of GREP and TiPEX on the safety prop-
erty. “GREP fast” means that option -f is used. The x axis corresponds to
the events of the input (from 1 to 1000), and the y axis corresponds to the
logarithm of the timings (in nanoseconds) between the reads of the events.

same times have been computed for TiPEX2, reducing the number of inputs
and iterations to have the benchmarks run in a reasonable amount of time.
Figures 5.3 and 5.4 give a graphical visualisation of the performance of GREP
and TiPEX.

Figures 5.3 and 5.4 are obtained as follows: each input is iterated sev-
eral times (100 for GREP, less for TiPEX3), and the computation times (in
nanoseconds) of the tool between the reads of two consecutive events of the
input are stored. Then, the median time is computed for each of these times
between all the iterations. We then plot the logarithm (in base 10) of these
times against the reads of the events. We use a logarithmic scale because many
values are low, and they would be merged in a line when using a linear scale.
The results for GREP with option -f are given only for the safety property
because they are similar to the results without the option for the two other
properties. We can see that GREP is faster than TiPEX by several orders of

2We patched TiPEX to retrieve the times as we do in our tool, only modifying it to get
times properly, and did not change the behaviour inside the part that is being measured.

3For some properties, running TiPEX was too long to run it as many times as GREP.
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Figure 5.4 – Timings of GREP and TiPEX on the response and co-safety
properties. The x axis corresponds to the events of the input (from 1 to 1000),
and the y axis corresponds to the logarithm of the timings (in nanoseconds)
between the reads of the events.
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magnitude. GREP outputs many events in less than 10µs (4 on the scale of
the graphs), whereas TiPEX takes at least 1ms (6 on the scale of the graph)
to output them. For the safety property, we can see that for some inputs,
GREP takes an increasing amount of time to compute the strategy. This is
due to the exploration of the strategy tree, which grows with the number of
stored controllable actions. Using the optimised setting (-f) allows GREP to
compute its output faster, as shown in Fig. 5.3b. The last vertical line has
also many high values, because it represents the time to emit all the remaining
actions after the last event from the input was read. For the co-safety and
response properties, the time GREP takes between two events is less variable
than for the safety property, mainly because the strategy of GREP is simpler:
it consists in either emitting everything for the co-safety property (once state
s3 is reached) or emitting nothing for the response property, if the first stored
controllable is an r while in state s1. TiPEX, on the other hand, takes a
linearly-increasing amount of time to emit some events.

If GREP performs better than TiPEX on these properties, another improve-
ment of GREP over TiPEX is that it can handle uncontrollable events. Using
uncontrollable events can lower the performance of GREP, as is shown in Sec-
tion 5.3.2.

5.3.2 Performance Evaluation with Uncontrollable Events

In this section, we show the limits of GREP when using uncontrollable events,
with a property that is designed to be hard to be enforced by GREP, at least
in its default mode.

Consider property ϕu described in Fig. 5.5, with u an uncontrollable event
and c a controllable one. This property has two locations, s1 and s2 that are
symmetrical: both of them require that a certain delay (15 time units for s1

and 10 time units for s2) has elapsed since the last event to emit a c event. As
in Section 5.3.1, GREP has been tested for this property, using 100 random
inputs of 1000 events. The results are presented in Fig. 5.6. As in Section 5.3.1,
the x-axis of the plots represents the events of the inputs, from 1 to 1000, and
the y-axis is the logarithm of the timings, in nanoseconds, between the reads
of two consecutive events. The timings have been plotted with (Fig. 5.6b) and
without (Fig. 5.6a) option -f.

Considering Fig. 5.6a, one can note that there seems to be four different
behaviours: for some inputs, the timings between events is constant, and can
be low, i.e. of about one microsecond, or a little bit higher, i.e. of about 10
microseconds; for some other inputs the timings are increasing, up to about
10 microseconds, or up to about 10 milliseconds for the last events. This
difference between runs can be explained by the randomness of the events of
the inputs. This benchmark has been made to show the limitation of GREP,
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Figure 5.5 – Property ϕu.
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thus the delays between events have been taken randomly between 0 and 3,
meaning that events are received faster than it is possible to output controllable
events (remember that c events must have a delay greater than 10 time units).
Thus, depending on the proportion of uncontrollable events, that are emitted
immediately, the buffer of stored controllable events grows as events are read.
Property ϕu has been specifically designed to increase the number of stored
controllable events.

Thus, in the worst case, the computation time of GREP increases with the
size of its buffer. For some properties such as ϕu, receiving events with small
delays (compared to guards) increases the size of the buffer, meaning that the
computational overhead introduced by GREP could become too high for a use
in online mode.

However, considering Fig. 5.6b, we can see that GREP performs better
with option -f. Note that for ϕu, the outputs are the same with or without
option -f. In the worst case, where GREP used 10 milliseconds without option
-f, it only requires about 100 microseconds with option -f. In both cases, the
timings increase with the size of the buffer, but option -f reduces the growth
of the timings, and may allow using GREP in online mode where it is not
possible without option -f.

This difference between the use of option -f and not using it can be ex-
plained by the fact that with option -f, GREP does not explore all the possible
executions to output the longest word possible, but only decides if it is possible
to emit a limited number of events.

Conclusion
In this chapter, we have presented GREP, a tool implementing an enforcement
mechanism using the technique described in Chapter 4. Thus, GREP takes
a timed automaton as input, and an execution, that is given on its standard
input. GREP writes on its standard output the modified execution, that should
satisfy the property. When it has read all the input, GREP outputs all the
remaining possible events and then stops, outputting a summary of its run,
including a verdict stating if the property is satisfied by its output. GREP can
run in offline mode, reading delays with the events on its standard input, or
in online mode, computing delays with the real time. Finally, GREP can run
in its default mode, in which case its output is the same as the output of the
enforcement mechanism described in Chapter 4, or in a “fast” mode, in which
case it outputs events as soon as possible, reducing its computational time.
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We give a summary of this thesis, as well as some potential future work and
improvements.

This thesis falls in the domain of Runtime Verification, that aims at decid-
ing whether a system’s execution satisfies a desired property, at runtime. More
than outputting a verdict indicating if the property is satisfied, runtime en-
forcement aims at modifying the execution of the running system to constrain
it to satisfy the property. We have considered properties that were timed regu-
lar properties, i.e. represented by timed automata (Alur and Dill [1992]). The
main contribution of this thesis is to consider some events as being uncontrol-
lable, meaning that they are only observable by an enforcement mechanism,
but can not be modified. We have formally described enforcement mechanisms
in this context, with two different methods to compute the modifications made
to the execution of the system, and implemented a tool using one of these two
methods.

Summary

Chapter 3: Enforcing Properties with Uncontrollable Events: A
First Approach first defines enforcement mechanisms with a functional
point of view. An enforcement mechanism is represented by a function taking
an execution (seen as a word over the alphabet of all possible events) and re-
turning another execution. The argument given to the function corresponds to
the input and the image corresponds to the output of the enforcement mecha-
nism for that input. Requirements of enforcement mechanisms, such as sound-
ness, compliance, and optimality, are given as constraints on such enforcement
functions. Then, given a regular property, a sound, compliant, and optimal
enforcement function is built for this property. To finish, a transition system is
described, that builds the same output as the enforcement function previously
defined. This scheme is then repeated to build an enforcement function and a
transition system for a timed regular property.

Chapter 4: Enforcing Properties using a Büchi Game follows the
same scheme as Chapter 3, but using a set-theoretic approach of functions.
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It redefines the requirements expected of enforcement mechanisms using this
formalism, and describes an enforcement function that is sound, compliant
and optimal. This function is actually similar to the one that is defined in
Chapter 3, but the computation method of the output has changed. The
output is computed using a Büchi game over a graph representing the enforce-
ment mechanism and its possibilities. Compared to Chapter 3, this allows the
enforcement mechanism to precompute some of its decisions prior to its exe-
cution, thus trading some time complexity with space complexity at runtime.
For a real-time use of enforcement mechanisms, time complexity seems to be
the major concern, thus such trade-offs are worth doing. An equivalent tran-
sition system is also described, as in Chapter 3. Again, this is done for regular
properties, and in a second section, for timed regular properties.

Chapter 5: GREP: Games for Runtime Enforcement of Properties
describes the implementation we made of the enforcement mechanism defined
in Chapter 4, i.e. building a graph over which we solve a Büchi game. This
implementation, called GREP, takes a timed automaton as input, using a
custom grammar. It reads the input execution on its standard input, and
outputs an execution that has been corrected to satisfy the property if possible
on its standard output. GREP can work both in online and in offline mode
(i.e. calculating delays between events based on the real time, or taking delays
as inputs with actions). Two output modes are available: the default one is
to emit as many events as possible, lowering delays next, the other one is to
emit an event as soon as possible. The latter may output less events, but its
output is faster to compute. Depending on the property, both output modes
can be equivalent.

GREP has been compared to TiPEX, another tool implementing an en-
forcement mechanism, on properties provided by TiPEX. These properties do
not have uncontrollable events, since TiPEX does not handle them. Overall,
GREP performs better than TiPEX, and can handle the use of uncontrollable
events. The computation overhead introduced by GREP seems adequate for
a real-time use.

Future Work

Using such enforcement mechanisms in real-time applications. We
have presented a formal construction of enforcement mechanisms for timed
regular properties, and a tool acting as a proof of concept. Nevertheless, all
the performance tests were made in offline mode, i.e. with dates given in the
input with actions. In online mode, one should consider the computation
overhead added by the tool itself in order to compute correct dates, because
it could want to emit an event but by the time its computation ends, the
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real date could become invalid. Working with enforcement mechanisms thus
is challenging, since it requires some adaptations depending on the hardware
used.

Instrumenting such enforcement mechanisms. As mentioned in the
previous paragraph, instrumentation for real-time scenarios is not straight-
forward. Thus, it would be interesting to evaluate the limitations of the in-
strumentation of our enforcement mechanisms. Knowing the limitations of the
instrumentation could also allow us to automate the instrumentation process.
The instrumentation process would need to evaluate the performance of the
enforcement mechanism to determine an upper bound of the overhead it in-
troduces. This upper bound would then need to be taken into account by
the enforcement mechanism itself to avoid violating the property due to the
overhead in computational time it introduced.

Improve GREP. We have presented GREP, and some performance evalu-
ation. We have seen that using GREP in online mode can be difficult if the
number of stored controllable events is increasing, because the computational
overhead increases simultaneously. Using option -f, i.e. changing the compu-
tation of the output can help reducing this overhead, but it can change the
output for some properties. One way to improve GREP would thus be to de-
tect automatically when it is possible to use option -f without changing the
output, so that GREP can decide to use the better alternative. Another way
to improve GREP could be to compute other outputs, with other enforcement
primitives for example.

Enforcing other properties. We have been interested in this thesis only
in the enforcement of timed regular properties, i.e. properties that can be
represented by timed automata as described in Alur and Dill [1992]. One
could build enforcement mechanisms for properties with different formalisms.
For instance, in Bauer et al. [2011], the authors build verification monitors for
TLTL properties, using event-clocks automata (see Alur et al. [1999]). Thus,
it should be possible to combine their verification monitors and the technique
we presented to enforce these properties.

Enforcement on more complex systems. We have only considered sim-
ple systems, that produce a sequence of events given as the input of the en-
forcement mechanisms. One could be interested in enforcing properties on
more complex systems, such as multi-threaded ones. Enforcing in a multi-
threading context raises multiple problems: should enforcement mechanisms
be themselves multi-threaded? If they are not, how can we not lose the interest
of having a multi-threaded system, since enforcement mechanisms would act
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as serialisers? What kind of property would be enforceable in this context? In
particular, would such mechanisms be able to detect and prevent data races
and deadlocks?

Some questions also naturally arise when dealing with enforcement on dis-
tributed systems. Would an enforcement mechanism for such systems be cen-
tralised, or distributed? What are the properties that can be enforced for such
systems? Distributed systems usually communicate using some network, such
as the internet, thus some latency must appear. Messages from different parts
of the system may occur in any order, so enforcement mechanisms for dis-
tributed systems may consider enforcing each communication independently.
Some work on the monitoring of decentralised systems has recently been done,
for both decentralised and centralised specifications, for example in Bauer and
Falcone [2012]; El-Hokayem and Falcone [2017a,b]. The decentralised enforce-
ment of policies has also been studied in Hallé et al. [2016], where the authors
build some kind of blockchain to ensure that the history of some file satisfies
a given property.

Using techniques from control theory in runtime enforcement. As
stated in the Introduction of this thesis (see the Runtime Enforcement sec-
tion), runtime enforcement and control theory are close fields. It would be
interesting to draw a precise boundary between these fields, because it would
help understand better their differences, but also their resemblance. It would
then be possible to deduce some techniques of control theory that could be
used in runtime enforcement, and vice versa.
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Appendix A

Proofs

A.1 Proofs of Chapter 3

A.1.1 Proofs for the Untimed Setting (Section 3.1)

In all this section, we will use the notations from Section 3.1, meaning that ϕ
is a property whose associated automaton is Aϕ = 〈Q, q0,Σ,−→, F 〉. In some
proofs, we also use notations from Definition 3.10.

Proposition 3.1. Eϕ as per Definition 3.10 is an enforcement function as per
Definition 3.1.

Proof. We have to show that for σ and σ′ in Σ∗, if σ 4 σ′, then Eϕ(σ) 4 Eϕ(σ′).
To do this, we just have to show that for all a ∈ Σ, Eϕ(σ) 4 Eϕ(σ . a).

Indeed, if this holds for any σ ∈ Σ∗ and any a ∈ Σ, then if σ 4 σ′, for any i ∈
[|σ|; |σ′| − 1], Eϕ(σ′[..i]) 4 Eϕ(σ′[..(i+1)]). Thus, by transitivity Eϕ(σ) 4 Eϕ(σ′).

Let us consider σ ∈ Σ∗c, a ∈ Σ, (σs, σc) = storeϕ(σ), and (σt, σd) = storeϕ(σ.
a). Then:

• if a ∈ Σu, σt = σs . a . σ
′
s, where σ′s is defined in Definition 3.10, meaning

that σs 4 σt.

• Otherwise, a ∈ Σc, and then σt = σs . σ
′′
s , where σ′′s is defined in Defini-

tion 3.10, thus again, σs 4 σt.

In both cases, Eϕ(σ) = σs 4 σt = Eϕ(σ . a), meaning that Eϕ(σ) 4 Eϕ(σ′) if
σ 4 σ′. Thus Eϕ is an enforcement function.

Lemma A.1. ∀σ ∈ Σ∗c,∀a ∈ Σc, I(σ) ⊆ I(σ . a).

Proof. For σ ∈ Σ∗c, let P(σ) be the predicate “∀a ∈ Σc, I(σ) ⊆ I(σ . a)”. Let us
show by induction that P(σ) holds for every σ ∈ Σ∗c.
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Induction basis: if a ∈ Σc, then since I(ε) = ∅, I(ε) ⊆ I(a). Thus, P(ε)
holds.

Induction step: let us suppose that for n ∈ N, for all σ ∈ Σ∗c such that
|σ| ≤ n, P(σ) holds. Let us then consider σ ∈ Σ∗c such that |σ| = n + 1, and
a ∈ Σc. Let (h, σ0) ∈ Σc × Σ∗c be such that σ = h . σ0 (they must exist since
|σ| > 0).

Then, |σ0| = n, and by induction hypothesis, P(σ0) holds, meaning that
I(σ0) ⊆ I(σ0 .a). Moreover, following the definition of S(σ0 .a), S(σ0) ⊆ S(σ0 .a).
It follows that S(σ0) ∪ I(σ0) ⊆ S(σ0 . a) ∪ I(σ0 . a), and thus I(σ) = I(h . σ0) =
Predh(S(σ0)∪ I(σ0)) ⊆ Predh(S(σ0 . a)∪ I(σ0 . a)) = I(h . σ0 . a) = I(σ . a). This
means that P(σ . a) holds.

Thus, by induction on the size of σ ∈ Σ∗c, for all σ ∈ Σ∗c, P(σ) holds. This
means that for all σ ∈ Σ∗c, for all a ∈ Σc, I(σ) ⊆ I(σ . a).

Lemma A.2. ∀σ ∈ Σ∗c,∀q ∈ Q,∀u ∈ Σu, (q ∈ S(σ)) =⇒ (q after u ∈
S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c, let P(σ) be the predicate “∀q ∈ Q,∀u ∈ Σu, (q ∈ S(σ)) =⇒
(q after u ∈ S(σ) ∪ I(σ))”. Let us show by induction that P(σ) holds for any
σ ∈ Σ∗c.

Induction basis: let us consider u ∈ Σu and q ∈ S(ε). Then, since u ∈ Σu,
u ∈ Σ∗u, and following the definition of S(ε), q after u ∈ S(ε). Thus, q after u ∈
S(ε) ∪ I(ε).

Induction step: let us suppose that for σ ∈ Σ∗c, P(σ) holds. Let us then
consider u ∈ Σu, a ∈ Σc, and q ∈ S(σ . a).

Then, either q ∈ S(σ) or q ∈ max⊆({Y ⊆ FG | Y ∩ uPred(Y ∪ I(σ . a)) =
∅}). If q ∈ S(σ), then by induction hypothesis, P(σ) holds, meaning that
q after u ∈ S(σ) ∪ I(σ). Following lemma A.1, I(σ) ⊆ I(σ . a), and since
S(σ) ⊆ S(σ.a), it follows that S(σ)∪ I(σ) ⊆ S(σ.a)∪ I(σ.a). Thus, q after u ∈
S(σ.a)∪I(σ.a). Otherwise, q ∈ max⊆({Y ⊆ FG | Y ∩uPred(Y ∪ I(σ . a)) = ∅}),
and thus q after u ∈ S(σ . a) ∪ I(σ . a). Thus, P(σ . a) holds.

By induction on σ, it follows that P(σ) holds for any σ ∈ Σ∗c. Thus, for
all σ ∈ Σ∗c, for all u ∈ Σu, for all q ∈ Q, (q ∈ S(σ)) =⇒ (q after u ∈
S(σ) ∪ I(σ)).

Lemma A.3. ∀σ ∈ Σ∗c, ∀q ∈ S(σ) ∪ I(σ),G(q, σ) 6= ∅.

Proof. For σ ∈ Σ∗c, let P(σ) be the predicate “∀q ∈ S(σ) ∪ I(σ),G(q, σ) 6= ∅”.
Let us show by induction that P(σ) holds for any σ ∈ Σ∗c.
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Induction basis: let us consider q ∈ S(ε) ∪ I(ε). Then, since I(ε) = ∅,
q ∈ S(ε). Following the definition of S(ε), this means that ε is such that ε 4 ε
and q after ε = q ∈ S(ε) = S(ε−1 . ε). Following Definition 3.9, this means that
ε ∈ G(q, ε), and thus G(q, ε) 6= ∅, and thus that P(ε) holds.

Induction step: let us suppose that for n ∈ N, for all σ ∈ Σ∗c such that
|σ| ≤ n, P(σ) holds. Let us then consider σ ∈ Σ∗c such that |σ| = n, a ∈ Σc

and q ∈ S(σ . a) ∪ I(σ . a). Then, we consider two cases:

• q ∈ S(σ . a), then ε is such that ε 4 σ . a and q after ε ∈ S(σ . a) =
S(ε−1 . (σ . a)), thus ε ∈ G(q, σ . a).

• q ∈ I(σ.a), then let (h, σ0) ∈ Σc×Σ∗c be such that h.σ0 = σ.a (they must
exist since |σ . a| > 0). Then, I(σ . a) = I(h . σ0) = Predh(S(σ0) ∪ I(σ0)),
meaning that q ∈ Predh(S(σ0) ∪ I(σ0)). By induction hypothesis, since
|σ0| = |σ| = n, P(σ0) holds, meaning that G(q after h, σ0) 6= ∅. Let
us consider w ∈ G(q after h, σ0). Then, w is such that w 4 σ0 and
(q after h) after w ∈ S(w−1 . σ0). Thus, h . w 4 h . σ0 and q after
(h . w) = (q after h) after w ∈ S(w−1 . σ0) = S((h . w)−1 . (h . σ0)). Thus,
h . w ∈ G(q, h . σ0) = G(q, σ . a).

In both cases, G(q, σ . a) 6= ∅, meaning that P(σ . a) holds.

By induction on the size of σ ∈ Σ∗c, it follows that P(σ) holds for any σ ∈ Σ∗c,
meaning that for all σ ∈ Σ∗c, for all q ∈ S(σ) ∪ I(σ), G(q, σ) 6= ∅.

Lemma A.4. ∀σ ∈ Σ∗, (σ 6∈ Pre(ϕ) ∧ (σs, σc) = storeϕ(σ)) =⇒ (σs =
σ|Σu ∧ σc = σ|Σc).

Proof. For σ ∈ Σ∗, let P(σ) be the predicate “(σ 6∈ Pre(ϕ) ∧ (σs, σc) =
storeϕ(σ)) =⇒ (σs = σ|Σu ∧ σc = σ|Σc)”. Let us show by induction that
P(σ) holds for any σ ∈ Σ∗.

Induction basis: storeϕ(ε) = (ε, ε), and since ε|Σu = ε|Σc = ε, P(ε) holds.

Induction step: let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us then
consider a ∈ Σ, (σs, σb) = storeϕ(σ), and (σt, σd) = storeϕ(σ . a).

Then, if σ . a ∈ Pre(ϕ), P(σ . a) holds.
Let us now consider that σ . a 6∈ Pre(ϕ). Then, since Pre(ϕ) is extension-

closed, σ 6∈ Pre(ϕ), and thus, by induction hypothesis, σs = σ|Σu and σc = σ|Σc .
We consider two cases:

• a ∈ Σu, then σt = σs . a . σ
′
s, with σ′s ∈ G(Reach(σs . a), σc) ∪ {ε}.

Since σ . a 6∈ Pre(ϕ), G(Reach((σ . a)|Σu), (σ . a)|Σc) = ∅. Moreover,
since a ∈ Σu, (σ . a)|Σu = σ|Σu . a = σs . a and (σ . a)|Σc = σ|Σc = σc,
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thus G(Reach(σs . a), σc) = ∅. It follows that σ′s ∈ {ε}, meaning that
σt = σs .a = σ|Σu .a = (σ.a)|Σu , and σd = σ′−1

s .σc = σc = σ|Σc = (σ.a)|Σc .

• a ∈ Σc, then σt = σs .σ
′′
s , with σ′′s ∈ G(σs, σc .a)∪{ε}. Since σ.a 6∈ Pre(ϕ),

G(Reach((σ .a)|Σu), (σ . a)|Σc) = ∅. Moreover, since a ∈ Σc, (σ . a)|Σu =
σ|Σu = σs and (σ . a)|Σc = σ|Σc . a = σc . a. Thus, G(Reach(σs), σc . a) = ∅,
meaning that σ′′s = ε. Thus, σt = σs = σ|Σu = (σ . a)|Σu and σd =
σ′′−1
s . (σc . a) = σc . a = σ|Σc . a = (σ . a)|Σc .

In both cases, P(σ . a) holds.

By induction on σ ∈ Σ∗, for all σ ∈ Σ∗, if σ 6∈ Pre(ϕ) and (σs, σc) =
storeϕ(σ), then σs = σ|Σu and σc = σ|Σc .

Proposition 3.2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Defini-
tion 3.2.

Proof. We have to show that for any σ ∈ Pre(ϕ), Eϕ(σ) |= ϕ. Let P(σ) be the
predicate: “(σ ∈ Pre(ϕ)∧(σs, σc) = storeϕ(σ)) =⇒ (Eϕ(σ) |= ϕ∧Reach(σs) ∈
S(σc))”. Let us prove by induction that for any σ ∈ Σ∗, P(σ) holds.

Induction basis: If ε ∈ Pre(ϕ), then following the definition of Pre(ϕ),
G(Reach(ε), ε) 6= ∅. Thus ε ∈ G(Reach(ε), ε) (since ε is the only word satisfying
ε 4 ε). This means that Reach(ε) after ε = Reach(ε) ∈ S(ε). Considering
that storeϕ(ε) = (ε, ε), it follows that Eϕ(ε) = ε, and thus, since S(ε) ⊆ FG,
Eϕ(ε) |= ϕ. Thus P(ε) holds.

Induction step: Suppose now that, for σ ∈ Σ∗, P(σ) holds. Let us consider
a ∈ Σ, (σs, σc) = storeϕ(σ), and (σt, σd) = storeϕ(σ . a). Let us prove that
P(σ . a) holds. We consider three different cases:

• (σ . a) 6∈ Pre(ϕ). Then P(σ . a) holds.

• (σ . a) ∈ Pre(ϕ) ∧ σ 6∈ Pre(ϕ). Then, since Pre(ϕ) is extension-closed, it
follows that σ . a ∈ {w ∈ Σ∗ | G(Reach(w|Σu), w|Σc) 6= ∅}, meaning that
G(Reach((σ . a)|Σu), (σ . a)|Σc) 6= ∅. Moreover, since σ 6∈ Pre(ϕ), following
lemma A.4, σs = σ|Σu and σc = σ|Σc . Now, we consider two cases:

– If a ∈ Σu, then (σ.a)|Σu = σ|Σu . a = σs . a, and (σ.a)|Σc = σ|Σc = σc.
Thus, G(Reach(σs . a), σc) 6= ∅, meaning that σ′s = (σs . a)−1 . σt ∈
G(Reach(σs . a), σc). Thus, following the definition of G, Reach(σs .
a) after σ′s = Reach(σs . a . σ

′
s) = Reach(σt) ∈ S(σ′s

−1 . σc) = S(σd).
Moreover, since S(σd) ⊆ FG, Eϕ(σ . a) = σt |= ϕ. This means that
P(σ . a) holds.
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– If a ∈ Σc, then (σ . a)|Σu = σ|Σu = σs, and (σ . a)|Σc = σ|Σc . a =
σc . a. Thus, G(Reach(σs), σc . a) 6= ∅, meaning that σ′′s = σ−1

s . σt ∈
G(Reach(σs), σc . a). As in the case where a ∈ Σu, it follows that
Reach(σt) ∈ S(σd) and thus Eϕ(σ . a) |= ϕ. This means that P(σ . a)
holds.

Thus, if σ . a ∈ Pre(ϕ) but σ 6∈ Pre(ϕ), P(σ . a) holds.

• σ ∈ Pre(ϕ) (and then (σ . a) ∈ Pre(ϕ) since Pre(ϕ) is extension-closed).
Then, by induction hypothesis, P(σ) holds, meaning that Reach(σs) ∈
S(σb) and Eϕ(σ) |= ϕ. Again, we consider two cases:

– If a ∈ Σu, then, since Reach(σs) ∈ S(σc), following lemma A.2,
Reach(σs) after a = Reach(σs . a) ∈ S(σc) ∪ I(σc). Then, following
lemma A.3, G(Reach(σs . a), σb) 6= ∅. Thus, σ′s = (σs . a)−1 . σt ∈
G(Reach(σs . a), σc). It follows that Reach(σs . a . σ

′
s) = Reach(σt) ∈

S(σ′−1
s .σc) = S(σd), and thus, since S(σd) ⊆ FG, Eϕ(σ.a) = σt |= ϕ.

Henceforth, P(σ . a) holds.

– If a ∈ Σc, then, since Reach(σs) ∈ S(σc) and S(σc) ⊆ S(σc . a),
Reach(σs) ∈ S(σc.a). Following lemma A.3, G(Reach(σs), σc.a) 6= ∅.
Thus, σ′′s = σ−1

s . σt ∈ G(Reach(σs), σc . a). As in the case where
a ∈ Σu, this leads to σt ∈ S(σd) and Eϕ(σ . a) |= ϕ. Henceforth,
P(σ . a) holds.

Thus, if σ ∈ Pre(ϕ), P(σ . a) holds.

In all cases, P(σ . a) holds.

Thus, P(σ) =⇒ P(σ . a). By induction on σ, ∀σ ∈ Σ∗, (σ ∈ Pre(ϕ) ∧
(σs, σb) = storeϕ(σ)) =⇒ (Eϕ(σ) |= ϕ ∧ Reach(σs) ∈ S(σb)). In particular,
for all σ ∈ Σ∗, (σ ∈ Pre(ϕ)) =⇒ (Eϕ(σ) |= ϕ). This means that Eϕ is sound
with respect to ϕ in Pre(ϕ).

Proposition 3.3. Eϕ is compliant, as per Definition 3.3.

Proof. For σ ∈ Σ∗, let P(σ) be the predicate: “((σs, σc) = storeϕ(σ)) =⇒
(σs|Σc . σc = σ|Σc ∧ σs|Σu = σ|Σu)”. Let us prove that for all σ ∈ Σ∗, P(σ) holds.

Induction basis : storeϕ(ε) = (ε, ε), and ε|Σc = ε|Σc .ε, and ε|Σu = ε|Σu . Thus
P(ε) holds.

Induction step : Let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us
consider (σs, σc) = storeϕ(σ), a ∈ Σ, and (σt, σd) = storeϕ(σ . a). Let us prove
that P(σ . a) holds. We distinguish two cases:
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• If a ∈ Σu, then σt = σs . a . σ
′
s, where σ′s is defined in Definition 3.10, and

σt . σd = σs . a . σc. Therefore, σt|Σc . σd = (σt . σd)|Σc , since σd ∈ Σ∗c. Thus,
σt|Σc . σd = σs|Σc . σc. Since P(σ) holds, σt|Σc . σd = σ|Σc = (σ . a)|Σc .
Moreover, since σ′s ∈ Σ∗c, σt|Σu = σs|Σu . a. Since P(σ) holds, this means
that σt|Σu = σ|Σu . a = (σ . a)|Σu .
Thus P(σ . a) holds.

• Otherwise, a ∈ Σc, and then σt = σs . σ
′′
s , where σ′′s is defined in Defini-

tion 3.10, and σt . σd = σs . σc . a. Therefore, σt|Σc . σd = (σt . σd)|Σc =
(σs . σc . a)|Σc = σs|Σc . σc . a. Since P(σ) holds, this means that σt|Σc . σd =
σΣc . a = (σ . a)|Σc .
Moreover, since σ′′s ∈ Σ∗c, σt|Σu = σs|Σu . Since P(σ) holds, this means
that σt|Σu = σ|Σu = (σ . a)|Σu .
Thus P(σ . a) holds.

In both cases, P(σ . a) holds. Thus, for all σ ∈ Σ∗, for all a ∈ Σ, P(σ) =⇒
P(σ . a).

By induction on σ, for any σ ∈ Σ∗, if ((σs, σc) = storeϕ(σ)), then (σs|Σc .σc =
σ|Σc and σs|Σu = σ|Σu).

Moreover, if σ ∈ Σ∗, u ∈ Σu, (σs, σc) = storeϕ(σ), and (σt, σd) = storeϕ(σ .
u), then σt = σs . u . σ

′
s, where σ′s is defined in Definition 3.10. Thus σs . u 4 σt,

and since σs = Eϕ(σ), and σt = Eϕ(σ . u), it follows that Eϕ(σ) . u 4 Eϕ(σ . u).
Thus, for any σ ∈ Σ∗, Eϕ(σ)|Σc 4 σ|Σc , Eϕ(σ)|Σu = σ|Σu , and ∀u ∈ Σu,Eϕ(σ) .
u 4 Eϕ(σ . u), meaning that Eϕ is compliant.

Lemma A.5. ∀σ ∈ Σ∗c, ∀q ∈ Q, (q 6∈ S(σ)) =⇒ (∃σu ∈ Σ∗u, q after σu 6∈
F ∧ ∀σ′u 4 σu, σ

′
u 6= ε =⇒ q after σ′u 6∈ S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c and q ∈ Q, let P(σ, q) be the predicate: “∀σu ∈ Σ∗u, q after
σu ∈ F ∨ ∃σ′u 4 σu, (σ

′
u 6= ε ∧ q after σ′u ∈ S(σ) ∪ I(σ))”. Let us show

the contrapositive of the lemma, that is that for all σ ∈ Σ∗c and q ∈ Q,
P(σ, q) =⇒ q ∈ S(σ). We consider two cases:

• If σ = ε, let us consider q ∈ Q such that P(ε, q) holds. Then, since
ε ∈ Σ∗u and there does not exist a word w satisfying w 4 ε ∧ w 6= ε, it
follows that q = q after ε ∈ F . Let us consider σu ∈ Σ∗u. Then, since
P(ε, q) holds, either q after σu ∈ F , or there exists σ′u 4 σu such that
σ′u 6= ε and q after σ′u ∈ S(ε) ∪ I(ε). In this last case, since I(ε) = ∅,
q after σ′u ∈ S(ε). Following the definition of S(ε), since σ′−1

u . σu ∈ Σ∗u,
(q after σ′u) after (σ′−1

u . σu) = q after σu ∈ F . Thus, in all cases,
q after σu ∈ F . Thus, for all σu ∈ Σ∗u, q after σu ∈ F , meaning that
q ∈ S(ε).
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• If σ 6= ε, there exists σ′ ∈ Σ∗c and a ∈ Σ such that σ = σ′ .a, meaning that
S(σ) is such that S(σ) = S(σ′) ∪max⊆({Z ⊆ F | Z ∩ uPred(Z ∪ I(σ)) =
∅}). Let us consider q ∈ Q such that P(σ, q) holds. Then, we define

Y = {q after σu | σu ∈ Σ∗u∧
∀σ′u 4 σu, σ

′
u 6= ε =⇒ q after σ′u 6∈ S(σ) ∪ I(σ)}.

Since P(σ, q) holds, Y ⊆ F . Moreover, if y ∈ Y and u ∈ Σu, then:

– either y after u ∈ S(σ)∪I(σ), and then y after u ∈ (Y ∪S(σ))∪I(σ),

– or y after u 6∈ S(σ)∪ I(σ). Then, if σu ∈ Σ∗u is such that y = q after
σu (σu exists since y ∈ Y ), then y after u = (q after σu) after u =
q after (σu . u) 6∈ S(σ) ∪ I(σ). Since σu . u ∈ Σ∗u, y after u ∈ Y ⊆
(Y ∪ S(σ)) ∪ I(σ).

Thus, y after u ∈ (Y ∪ S(σ)) ∪ I(σ), and since following lemma A.2,
S(σ) ∩ uPred(S(σ) ∪ I(σ)) = ∅, this means that (Y ∪ S(σ)) ∩
uPred((Y ∪ S(σ)) ∪ I(σ)) = ∅. It follows that (Y ∪ S(σ)) ⊆ max⊆({Z ⊆
F | Z ∩ uPred(Z ∪ I(σ)) = ∅}) ⊆ S(σ). Since q ∈ Y ⊆ S(σ), this means
that q ∈ S(σ).

Thus, for σ ∈ Σ∗c and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). This means that
the contrapositive also holds, thus q 6∈ S(σ) =⇒ ¬P(σ, q), meaning that
q 6∈ S(σ) =⇒ (∃σu ∈ Σ∗u, q after σu 6∈ F ∧ ∀σ′u 4 σu, q after σ′u 6= ε =⇒
q after σ′u 6∈ S(σ) ∪ I(σ)).

Proposition 3.4. Eϕ is optimal in Pre(ϕ), as per Definition 3.7.

Proof. Let E be an enforcement function such that compliant(E,Σc,Σu), and
let us consider σ ∈ Pre(ϕ) and a ∈ Σ such that E(σ) = Eϕ(σ) and |E(σ . a)| >
|Eϕ(σ.a)|. We have to prove that there exists σu ∈ Σ∗u such that E(σ.a.σu) 6|= ϕ.
Let us consider (σs, σc) = storeϕ(σ). We consider two cases:

• a ∈ Σu. Then, since E is compliant, and E(σ) = Eϕ(σ) = σs, there
exists σs1 4 σc such that E(σ . a) = E(σ) . a . σs1 = σs . a . σs1. Moreover,
there exists σ′s 4 σc such that Eϕ(σ . a) = Eϕ(σ) . a . σ′s = σs . a .
σ′s. Since |E(σ . a)| > |Eϕ(σ . a)|, |σs1| > |σ′s|. Considering that σ′s =
max4(G(Reach(σs .a), σc)∪{ε}), it follows that σs1 6∈ G(Reach(σs .a), σc).
Following the definition of G, this means that either σs1 64 σc, but since
E ′ is compliant, this is not possible, or that Reach(σs . a) after σs1 6∈
S(σ−1

s1 . σc). Let us consider q = Reach(σs . a . σs1) and σc1 = σ−1
s1 . σc.

Then, q 6∈ S(σc1). Following lemma A.5, this means that there exists
σu ∈ Σ∗u such that q after σu 6∈ F and for all σ′u 4 σu, σ′u 6= ε =⇒
q after σ′u 6∈ S(σc1) ∪ I(σc1). Then, we consider two cases:
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– If E(σ.a.σu) = σs .a.σs1 .σu, then Reach(E(σ.a.σu)) 6∈ F , meaning
that E(σ . a . σu) 6|= ϕ.

– Otherwise, since E is compliant, there exists σs2 4 σc1 and σu1 4 σu
such that σs2 6= ε, σu1 6= ε, and E(σ . a . σu1) = σs . a . σs1 . σu1 .
σs2. Let us consider q′ = q after σu1 . σs2 and σc2 = σ−1

s2 . σc1.
Then, since σu1 4 σu and σu1 6= ε, q after σu1 6∈ S(σc1) ∪ I(σc1).
Thus, q′ = q after σu1 . σs2 6∈ S(σc2) ∪ I(σc2), because otherwise,
q after σu1 = Predσs2(q′) ∈ Predσs2(S(σc2)∪I(σc2)) ⊆ I(σc1), which is
absurd. Then, we can again use lemma A.5 to find a word σu2 ∈ Σ∗u
such that q′ after σu2 6∈ F and for any σ′u 4 σu2, q′ after σ′u 6∈
S(σc2) ∪ I(σc2). Since σs2 6= ε, |σc2| < |σc1|, thus the operation
can be repeated a finite number of times (at most until all the
controllable events of σ appear in the output of E). Thus, there
exists n ∈ N, there exists (σu1, σu2, . . . , σun), and (σs1, σs2, . . . , σsn),
such that E(σ.a.σu1.σu2.· · ·.σun) = σs.a.σs1.σu1.σs2.σu2.· · ·.σsn.σun,
and Reach(σs . a . σs1 . σu1 . σs2 . σu2 . · · · . σsn . σun) 6∈ F . This means
that, if σu = σu1 . σu2 . · · · . σun, then σu ∈ Σ∗u and E(σ . a . σu) 6|= ϕ.

Thus, in call cases, there exists σu ∈ Σ∗u such that E(σ . a . σu) 6|= ϕ.

• a ∈ Σc. The proof is the same as in the case where a ∈ Σu, by replacing
occurrences of “σs . a” by “σs”, and occurrences of “σb” by “σb . a”.

Thus, if E is an enforcement function such that there exists σ ∈ Pre(ϕ),
and a ∈ Σ such that compliant(E,Σu,Σc), E(σ) = Eϕ(σ), and |E(σ . a)| >
|Eϕ(σ . a)|, then there exists σu ∈ Σ∗u such that E(σ . a . σu) 6|= ϕ. This means
that Eϕ is optimal in Pre(ϕ).

Proposition 3.5. The output of the enforcement monitor E as per Defini-
tion 3.12 for input σ is Eϕ(σ) as per Definition 3.10.

Proof. Let us introduce some notation for this proof: for a word w ∈ ΓE∗,
we note input(w) = Π1(w(1)) . Π1(w(2)) . . .Π1(w(|w|)), the word obtained
by concatenating the first members (the inputs) of w. In a similar way, we
note output(w) = Π3(w(1)) . Π3(w(2)) . . .Π3(w(|w|)), the word obtained by
concatenating all the third members (outputs) of w. Since all configurations
are not reachable from cE0 , for w ∈ ΓE∗, we note ReachE(w) = c whenever
cE0 ↪

w−→E c, and ReachE(w) = ⊥ if such a c does not exist. We also define the
Rules function as follows:

Rules :

{
Σ∗ → ΓE∗

σ 7→ max4({w ∈ ΓE∗ | input(w) = σ ∧ ReachE(w) 6= ⊥})

For a word σ ∈ Σ∗, Rules(σ) is the trace of the longest valid run in E , i.e. the
sequence of all the rules that can be applied with input σ. We then extend the
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definition of output to words in Σ∗: for σ ∈ Σ∗, output(σ) = output(Rules(σ)).
We also note ε the empty word of Σ∗, and εE the empty word of ΓE∗.

For σ ∈ Σ∗, let P(σ) be the predicate: “Eϕ(σ) = output(σ) ∧ (((σs, σc) =
storeϕ(σ) ∧ ReachE(Rules(σ)) = 〈q, σEc 〉) =⇒ (q = Reach(σs) ∧ σc = σEc ))”.

Let us prove by induction that for all σ ∈ Σ∗, P(σ) holds.

Induction basis: Eϕ(ε) = ε = output(ε). Moreover, storeϕ(ε) = (ε, ε), and
ReachE(εE) = cE0 . Therefore, as cE0 = 〈q0, ε〉, P(ε) holds, because Reach(ε) = q0.

Induction step: Let us suppose now that for some σ ∈ Σ∗, P(σ) holds.
Let us consider (σs, σc) = storeϕ(σ), q = Reach(σs), a ∈ Σ, and (σt, σd) =
storeϕ(σ . a). Let us prove that P(σ . a) holds.

Since P(σ) holds, ReachE(Rules(σ)) = 〈q, σc〉 and σs = output(σ). We
consider two cases:

• a ∈ Σu. Then, considering σ′s = (σs . a)−1 . σt, σt = σs . a . σ
′
s. Since

a ∈ Σu, rule pass-uncont can be applied: let us consider q′ = q after a.
Then, 〈q, σc〉 ↪

a/pass-uncont(a)/a−−−−−−−−−−−→E 〈q′, σc〉.
If σ′s = ε, G(q′, σc) = ∅ or G(q′, σc) = {ε}, meaning that no other rule
can be applied, and thus P(σ . a) holds.

Otherwise, σ′s 6= ε, and thus σ′s ∈ G(q′, σc), meaning that G(q′, σc) 6= ∅
and G(q′, σc) 6= {ε}, thus rule dump(σc(1)) can be applied. Since σ′s 4
σc, σ′s(1) = σc(1), thus if q1 = q′ after σc(1), q1 = q′ after σ′s(1). If
σ′s(1)−1 . σ′s 6= ε, then σ′s(1)−1 . σ′s ∈ G(q1, σc(1)−1 . σc), meaning that
rule dump can be applied again. Rule dump can actually be applied |σ′s|
times, since for all w 4 σ′s, if w 6= σ′s, then w−1 . σ′s 6= ε and w−1 . σ′s ∈
G(q′ after w,w−1 .σc). Thus, after rule dump has been applied |σ′s| times,
the configuration reached is 〈q′ after σ′s, σ

′−1
s . σc〉. Moreover, the output

produced by all the rules dump is σ′s. Since no rule can be applied after
the |σ′s| applications of the rule dump, output(σ.a) = output(σ) . a .σ′s =
σt, and ReachE(Rules(σ . a)) = 〈q′ after σ′s, σ

′−1
s . σc〉 = 〈q after a after

σ′s, σd〉 = 〈Reach(σs) after a after σ′s, σd〉 = 〈Reach(σs . a . σ
′
s), σd〉 =

〈Reach(σt), σd〉.
Thus, if a ∈ Σu, P(σ . a) holds.

• a ∈ Σc. Then, considering σ′′s = σ−1
s . σt, σt = σs . σ

′′
s . Since a ∈ Σc, it is

possible to apply the store-cont rule, and 〈q, σc〉 ↪
a/ store-cont(a)/ε−−−−−−−−−−→E 〈q, σc.a〉.

Then, as in the case where a ∈ Σu, rule dump can be applied |σ′′s | times,
meaning that the configuration reached is 〈q after (σc . a)(1) . (σc . a)(2) .
· · · . (σc . a)(|σ′′s |), (σc . a)(|σ′′s | + 1) . (σc . a)(|σ′′s | + 2) . · · · . (σc . a)(|σc .
a|)〉. Since σ′′s 4 σc . a, (σc . a)(1) . (σc . a)(2) . · · · . (σc . a)(|σ′′s |) = σ′′s ,
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thus Reach(Rules(σ . a)) = 〈q after σ′′s , σ
′′−1
s . (σc . a)〉 = 〈Reach(σt), σd〉.

Moreover, output(σ . a) = output(σ) . σ′′s = σs . σ
′′
s = σt = Eϕ(σ . a).

Thus, if a ∈ Σc, P(σ . a) holds.

Thus, in all cases, P(σ . a) holds.

This means that P(σ) =⇒ P(σ.a). Thus, by induction on σ, for all σ ∈ Σ∗,
P(σ) holds. In particular, for all σ ∈ Σ∗, Eϕ(σ) = output(σ).

A.1.2 Proofs for the Timed Setting (Section 3.2)

In all this section, notation from Section 3.2 is used, meaning that ϕ is
represented by a TA Aϕ = 〈L, l0, X,Σ,∆, G〉 whose semantics is JAϕK =
〈Q, q0,Γ,−→, FG〉. Timed word use dates and not delays.

Proposition 3.6. Eϕ as defined in Definition 3.19 is an enforcement function,
as per Definition 3.13.

Proof. We have to show the two following propositions:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0,∀t′ ≥ t,Eϕ(σ, t) 4 Eϕ(σ, t′)

2. ∀σ ∈ tw(Σ),∀(t, a) ∈ R≥0 × Σ, σ . (t, a) ∈ tw(Σ) =⇒ Eϕ(σ, t) 4
Eϕ(σ . (t, a), t).

We first show that item 1 holds.
For σ ∈ tw(Σ), let P(σ) be the predicate: “∀t ∈ R≥0,∀t′ ≥ t,Eϕ(σ, t) 4

Eϕ(σ, t′)”. Let us show by induction that for all σ ∈ tw(Σ), P(σ) holds.

Induction basis: if σ = ε, then let us consider t ∈ R≥0, and t′ ≥ t. Then,
Eϕ(ε, t) = ε 4 ε = Eϕ(ε, t′). Thus, P(ε) holds.

Induction step: let us suppose that, for σ ∈ tw(Σ), P(σ) holds. Let us
consider (t′′, a) such that σ . (t′′, a) ∈ tw(Σ), t ∈ R≥0, and t′ ≥ t.

• If t ≥ t′′, then let us consider (σs, σb, σc) = storeϕ(σ, t′′), (σt1, σd1, σe1) =
storeϕ(σ. (t′′, a), t), and (σt2, σd2, σe2) = storeϕ(σ. (t′′, a), t′). Then, Eϕ(σ.
(t′′, a), t) = σt1 and Eϕ(σ . (t′′, a), t′) = σt2.

– If a ∈ Σu, then considering t1 as defined in Definition 3.19, t1 = min({t0 ∈
R≥0 | t0 ≥ t′′ ∧G(Reach(σs . (t′′, a), t0),ΠΣ(nobs(σb, t

′′)) . σc) 6= ∅}).
Then,

σd1 = min
lex

(max
4

(G(Reach(σs . (t
′′, a),min({t, t1})),ΠΣ(nobs(σb, t

′′)) . σc)

∪ {ε})) +t min({t, t1})
σd2 = min

lex
(max

4
(G(Reach(σs . (t

′′, a),min({t′, t1})),ΠΣ(nobs(σb, t
′′)) . σc)

∪ {ε})) +t min({t′, t1}).
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Case 1: t ≥ t1. Since t′ ≥ t, then t′ ≥ t1, thus min({t′, t1}) = min({t, t1}) =
t1, thus σd1 = σd2. It follows that:
σt1 = σs . (t′′, a) . obs(σd1, t) 4 σs . (t′′, a) . obs(σd1, t

′) = σs . (t′′, a) .
obs(σd2, t

′) = σt2.
Case 2: t < t1. Then, min({t, t1}) = t. Since t < t1, by definition of t1,

this means that G(Reach(σs. (t′′, a), t),ΠΣ(nobs(σb, t
′′)) . σc) = ∅,

and thus σd1 = ε. Since σd1 = ε, σt1 = σs . (t′′, a) 4 σs . (t′′, a) .
obs(σd2, t

′) = σt2.

Thus, if t′ ≥ t ≥ t′′ and a ∈ Σu, P(σ) =⇒ Eϕ(σ . (t′′, a), t) 4 Eϕ(σ .
(t′′, a), t′).

– Otherwise, a ∈ Σc, and then considering t2 as defined in Definition 3.19,
t2 = min({t0 ∈ R≥0 | t0 ≥ t′′∧G(Reach(σs, t0),ΠΣ(nobs(σb, t

′′)) .σc .a) 6=
∅}). Then,

σd1 = min
lex

(max
4

(G(Reach(σs,min({t, t2})),ΠΣ(nobs(σb, t
′′)) . σc . a)

∪ {ε})) +t min({t, t2})
σd2 = min

lex
(max

4
(G(Reach(σs,min({t′, t2})),ΠΣ(nobs(σb, t

′′)) . σc . a)

∪ {ε})) +t min({t′, t2}).

Case 1: t ≥ t2. Since t′ ≥ t, t′ ≥ t2, meaning that min({t, t2}) = min({t′,
t2}) = t2, and thus σd1 = σd2. It follows that σt1 = σs . obs(σd1, t) 4
σs . obs(σd1, t

′) = σs . obs(σd2, t
′) = σt2.

Case 2: t < t2. Then, G(Reach(σs,min({t, t2})),ΠΣ(nobs(σb, t
′′)).σc .a) = ∅,

meaning that σd1 = ε. Thus, σt1 = σs 4 σs . obs(σd2, t
′) = σt2.

Thus, if t′ ≥ t ≥ t′′ and a ∈ Σc, P(σ) =⇒ Eϕ(σ . (t′′, a), t) 4 Eϕ(σ .
(t′′, a), t′).

Therefore, if t′ ≥ t ≥ t′′, for all a ∈ Σ, P(σ) =⇒ Eϕ(σ . (t′′, a), t) 4
Eϕ(σ . (t′′, a), t′).

• If t′ < t′′, then t < t′′, obs(σ.(t′′, a), t) = obs(σ, t), and obs(σ.(t′′, a), t′) =
obs(σ, t′). Thus,
Eϕ(σ . (t′′, a), t) = storeϕ(obs(σ . (t′′, a), t), t)

= storeϕ(obs(σ, t), t)

= Eϕ(σ, t),
and
Eϕ(σ . (t′′, a), t′) = storeϕ(obs(σ . (t′′, a), t′), t′)

= storeϕ(obs(σ, t′), t′)

= Eϕ(σ, t′).
Since P(σ) holds, then Eϕ(σ . (t′′, a), t) = Eϕ(σ, t) 4 Eϕ(σ, t′) = Eϕ(σ .
(t′′, a), t′).
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• If t < t′′ ≤ t′, then obs(σ . (t′′, a), t) = obs(σ, t). Since P(σ) holds, then
Eϕ(σ, t) 4 Eϕ(σ, t′′). Let (σs, σb, σc) = storeϕ(σ, t′′) and (σt, σd, σe) =
storeϕ(σ . (t′′, a), t′).

Then, σt = σs . (t
′′, a) . obs(σe, t

′) if a ∈ Σu, and σt = σs . obs(σe, t
′) if a ∈

Σc. In both cases, σs 4 σt. This means that Eϕ(σ, t′′) 4 Eϕ(σ. (t′′, a), t′).
Thus, Eϕ(σ . (t′′, a), t) = Eϕ(σ, t) 4 Eϕ(σ, t′′) 4 Eϕ(σ . (t′′, a), t′).

Thus, if t < t′′ ≤ t′, then P(σ) =⇒ Eϕ(σ . (t′′, a), t) 4 Eϕ(σ . (t′′, a), t′).

Consequently, in all cases, if t ≤ t′, then P(σ) =⇒ Eϕ(σ . (t′′, a), t) 4 Eϕ(σ .
(t′′, a), t′). This means that P(σ) =⇒ P(σ . (t′′, a)).

Thus, by induction on σ, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all
σ ∈ tw(Σ), for all t ∈ R≥0, for all t′ ≥ t, Eϕ(σ, t) 4 Eϕ(σ, t′).

Now, let us prove item 2. Let us consider σ ∈ tw(Σ), and (t, a) such that
σ.(t, a) ∈ tw(Σ). Then, if (σs, σb, σc) = storeϕ(σ, t), and (σt, σd, σe) = storeϕ(σ.
(t, a), t), then either σt = σs . (t, a) . σ′s, or σt = σs . σ

′′
s , whether a is controllable

or uncontrollable respectively, where σ′s and σ′′s are defined in Definition 3.19.
In both cases, σs 4 σt. Thus, Eϕ(σ, t) = Π1(storeϕ(obs(σ, t), t)) = σs 4
σt = Π1(storeϕ(obs(σ . (t, a), t))) = Eϕ(σ . (t, a), t). This holds because, since
σ . (t, a) ∈ tw(Σ), time(σ) ≤ t, thus obs(σ, t) = σ. Thus, for all σ ∈ tw(Σ), for
all t ∈ R≥0 and t′ ≥ t, Eϕ(σ, t) 4 Eϕ(σ, t′) and Eϕ(σ, t) 4 Eϕ(σ . (t, a), t).

This means that Eϕ is an enforcement function.

Lemma A.6. ∀t ∈ R≥0,∀σ ∈ tw(Σ),
(σ 6∈ Pre(ϕ, t) ∧ (σs, σb, σc) = storeϕ(σ, t))

=⇒ (σs = σ|Σu ∧ σb = ε ∧ σc = ΠΣ(σ|Σc)).

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate “∀t ≥ time(σ), (σ 6∈ Pre(ϕ, t)∧
(σs, σb, σc) = storeϕ(σ, t)) =⇒ (σs = σ|Σu ∧ σb = ε ∧ σc = ΠΣ(σ|Σc))”. Let us
prove by induction that for all σ ∈ tw(Σ), P(σ) holds.

Induction basis: for σ = ε, let us consider t ∈ R≥0. Then, storeϕ(ε, t) =
(ε, ε, ε). Considering that ε ∈ tw(Σu), and ε = ΠΣ(ε|Σc), P(ε) trivially holds
(whether ε ∈ P(ϕ, t) or not).

Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider
(t′, a) such that σ.(t′, a) ∈ tw(Σ), and t ≥ t′. Let us also consider (σs, σb, σc) =
storeϕ(σ, t′) and (σt, σd, σe) = storeϕ(σ . (t′, a), t).

Then, if σ . (t′, a) ∈ Pre(ϕ, t), P(σ . (t′, a)) trivially holds. Thus, let us
suppose that σ . (t′, a) 6∈ Pre(ϕ, t). Since σ 4 σ . (t′, a) and t ≥ t′, it follows
that σ 6∈ Pre(ϕ, t′). By induction hypothesis, this means that σs = σ|Σu , σb = ε,
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and σc = ΠΣ(σ|Σc). Then, since σ . (t′, a) 6∈ Pre(ϕ, t), following the definition
of Pre(ϕ, t) (Definition 3.20), this means that for all t′′ ≤ t, G(Reach(obs(σ .
(t′, a), t′′)|Σu , t

′′),ΠΣ(obs(σ . (t′, a), t′′)|Σc)) = ∅. In particular, G(Reach((σ .
(t′, a))|Σu , t),ΠΣ((σ . (t′, a))|Σc)) = ∅ (since t ≥ t′, obs(σ . (t′, a), t) = σ . (t′, a)).
Then, there are two cases:

• If a ∈ Σu, then, since (σ . (t′, a))|Σu = σ|Σu . (t′, a) = σs . (t′, a), and
ΠΣ((σ.(t′, a))|Σc) = ΠΣ(σ|Σc) = ΠΣ(nobs(σb, t

′)).σc, we have G(Reach(σs .
(t′, a), t),ΠΣ(σb, t

′) . σc) = ∅. This means that t < t1, where t1 is defined
in Definition 3.19, and thus σd = ε. Since σt = σs . (t′, a) . obs(σd, t),
σt = σs . (t

′, a) = (σ . (t′, a))|Σu , and σe = σc = σ|Σc = (σ . (t′, a))|Σc . Thus,
P(σ . (t′, a)) holds if a ∈ Σu.

• If a ∈ Σc, then, (σ . (t′, a))|Σu = σ|Σu = σs, and ΠΣ((σ . (t′, a))|Σc) =
ΠΣ(σ|Σc) . a = ΠΣ(nobs(σb, t

′)) . σc . a. Thus, G(Reach(σs, t), ΠΣ(nobs(σb,
t′)) . σc . a) = ∅. This means that t < t2, where t2 is defined in Def-
inition 3.19, and thus σd = ε. Since σt = σs . obs(σd, t), σt = σs =
σ|Σu = (σ . (t′, a))|Σu , and σe = ΠΣ(nobs(σb, t

′)) . σc . a = ΠΣ(σ|Σc) . a =
ΠΣ((σ . (t′, a))|Σc). Thus, P(σ . (t′, a)) holds if a ∈ Σc.

Thus, P(σ) =⇒ P(σ . (t′, a)).

By induction on σ, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ),
for all t ∈ R≥0, if (σs, σb, σc) = storeϕ(σ, t) and (σ, t) 6∈ Pre(ϕ), then σs = σ|Σu ,
σb = ε, and σc = ΠΣ(σ|Σc).

Lemma A.7. ∀σ ∈ Σ∗c,∀a ∈ Σc, I(σ) ⊆ I(σ . a).

Proof. For σ ∈ Σ∗c, let P(σ) be the predicate “∀a ∈ Σc, I(σ) ⊆ I(σ . a)”. Let us
show by induction that P(σ) holds for all σ ∈ Σ∗c.

Induction basis: let us consider a ∈ Σc. Then, I(ε) = ∅ ⊆ I(a).

Induction step: suppose now that for σ ∈ Σ∗c, and for any σ′ ∈ Σ∗c, if
|σ′| ≤ |σ|, then P(σ′) holds. Let us then consider a ∈ Σc, a′ ∈ Σc, and
(h, σ0) ∈ Σc × Σ∗c such that h . σ0 = σ . a (h and σ0 exist because σ . a 6= ε).

Then, I(σ . a . a′) = I(h . σ0 . a
′) = Predh(S(σ0 . a

′)∪ I(σ0 . a
′)), and I(σ . a) =

I(h .σ0) = Predh(S(σ0)∪ I(σ0)). Following the definition of S (Definition 3.17),
S(σ0) ⊆ S(σ0 . a

′). Moreover, by induction hypothesis, since |σ0| ≤ |σ|, P(σ0)
holds, meaning that I(σ0) ⊆ I(σ0 .a

′). Thus, S(σ0)∪I(σ0) ⊆ S(σ0 .a
′)∪I(σ0 .a

′).
It follows that I(σ . a) = Predh(S(σ0) ∪ I(σ0)) ⊆ Predh(S(σ0 . a

′) ∪ I(σ0 . a
′)) =

I(σ . a . a′). Thus, for all a′ ∈ Σc, I(σ . a) ⊆ I(σ . a . a′), meaning that P(σ . a)
holds.

Thus, (∀σ′, |σ′| ≤ |σ| =⇒ P(σ′)) =⇒ P(σ . a).
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By induction on the size of σ, P(σ) holds for every σ ∈ Σ∗c, meaning that
for all σ ∈ Σ∗c, for all a ∈ Σc, I(σ) ⊆ I(σ . a).

Lemma A.8. ∀q ∈ Q,∀σ ∈ Σ∗c, (q ∈ S(σ)) =⇒ (∀u ∈ Σu, q after (0, u) ∈
S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c, let P(σ) be the predicate “∀q ∈ Q, (q ∈ S(σ)) =⇒ (∀u ∈
Σu, q after (0, u) ∈ S(σ) ∪ I(σ))”. Let us show by induction on σ that P(σ)
holds for every σ ∈ Σ∗c.

Induction basis: let us consider q ∈ S(ε). Then, for any u ∈ Σu, since
(0, u) ∈ tw(Σu), considering the definition of S(ε), q after (0, u) ∈ S(ε). Thus,
q ∈ S(ε) ∪ I(ε). Thus, P(ε) holds.

Induction step: let us suppose that for σ ∈ Σ∗c, P(σ) holds. Let us consider
a ∈ Σc and q ∈ S(σ . a). Then, considering the definition of S(σ . a), two cases
are possible:

• If q ∈ S(σ), then, by induction hypothesis, for all u ∈ Σu, q after (0, u) ∈
S(σ) ∪ I(σ). S(σ) ⊆ S(σ . a), and following lemma A.7, I(σ) ⊆ I(σ . a),
thus, q after (0, u) ∈ S(σ . a) ∪ I(σ . a).

• Otherwise, q ∈ S(σ . a) \ S(σ), and then, considering the definition of S
(Definition 3.17), (S(σ.a)\S(σ))∩uPred((S(σ . a) \ S(σ)) ∪ I(σ . a)) = ∅.
Thus, if u ∈ Σu, q after (0, u) ∈ (S(σ.a)\S(σ))∪I(σ.a) ⊆ S(σ.a)∪I(σ.a).

In both cases, for all u ∈ Σu, q after (0, u) ∈ S(σ. a)∪ I(σ. a), meaning that
P(σ . a) holds.

Thus, for all a ∈ Σc, P(σ) =⇒ P(σ . a).

Thus, by induction on σ, for all σ ∈ Σ∗c, P(σ) holds, meaning that for all
σ ∈ Σ∗c, for all q ∈ S(σ), for all u ∈ Σu, q after (0, u) ∈ S(σ) ∪ I(σ).

Lemma A.9. ∀σ ∈ Σ∗c, ∀q ∈ Q, (q ∈ S(σ) ∪ I(σ)) =⇒ (G(q, σ) 6= ∅).

Proof. For σ ∈ Σ∗c, let P(σ) be the predicate “∀q ∈ Q, (q ∈ S(σ) ∪ I(σ)) =⇒
(G(q, σ) 6= ∅)”. Let us then prove by induction on σ that P(σ) holds for every
σ ∈ Σ∗c.

Induction basis: let us consider q ∈ S(ε) ∪ I(ε). Since I(ε) = ∅, this means
that q ∈ S(ε).

Following the definition of S(ε) (see Definition 3.17), since ε ∈ tw(Σu), this
means that ε satisfies ε 4 ΠΣ(ε), q after ε = q ∈ FG (since S(ε) ⊆ FG), and
for any t ∈ R≥0, q after (ε, t) ∈ S(ε). Thus, considering the definition of G
(Definition 3.18), this means that ε ∈ G(q, ε), thus G(q, ε) 6= ∅.

Thus P(ε) holds.
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Induction step: let us suppose that for n ∈ N, for all σ ∈ Σ∗c, |σ| ≤ n =⇒
P(σ). Let us consider σ ∈ Σ∗c such that |σ| = n, a ∈ Σc, and q ∈ S(σ.a)∪I(σ.a).

Then, we distinguish two cases, whether q ∈ S(σ . a) or q ∈ I(σ . a):

• If q ∈ I(σ . a), let us consider (h, σ0) ∈ Σc × Σ∗c such that σ . a = h . σ0.
Then, q ∈ I(h . σ0) = Predh(S(σ0) ∪ I(σ0)), and since |σ0| = |σ| = n ≤
n, by induction hypothesis, G(q after (0, h), σ0) 6= ∅. Let us consider
w ∈ G(q after (0, h), σ0). Then, (0, h) . w satisfies ΠΣ((0, h) . w) 4 h . σ0,
q after ((0, h) . w) = q after (0, h) after w ∈ FG, and for any t ∈ R≥0,
q after ((0, h) . w, t) = q after (0, h) after (w, t) ∈ S(ΠΣ(w)−1 . σ0) =
S(ΠΣ((0, h) . w)−1 . (h . σ0)). Thus, (0, h) . w ∈ G(q, h . σ0) = G(q, σ . a).
Thus, G(q, σ . a) 6= ∅.

• If q ∈ S(σ . a), then there are again two cases:

– if q ∈ S(σ), then by induction hypothesis, G(q, σ) 6= ∅. Since
G(q, σ) ⊆ G(q, σ . a), it follows that G(q, σ . a) 6= ∅.

– Otherwise, q ∈ X ∪ Y , where X and Y are defined in the definition
of S(σ . a) (Definition 3.17).

∗ If q ∈ X, then there exists i ∈ I(σ . a) and δ ∈ R≥0 such that
q after (ε, δ) = i, and for all t ≤ δ, q after (ε, t) ∈ X ⊆ S(σ . a).
Since i ∈ I(σ.a), we showed previously that G(i, σ.a) 6= ε. Let us
consider w ∈ G(i, σ.a). Then, w+tδ satisfies ΠΣ(w+tδ) 4 σ.a,
q after (w +t δ) = i after w ∈ FG, and for all t ∈ R≥0, if
t < δ, then q after (w +t δ, t) = q after (ε, t) ∈ X ⊆ S(σ . a),
otherwise, q after (w+t δ, t) = i after (w, t−δ) ∈ S(σ.a). Thus,
w +t δ ∈ G(q, σ . a). Thus, G(q, σ . a) 6= ∅.
∗ Otherwise, q ∈ Y , and then ε satisfies ΠΣ(ε) 4 σ . a, q after ε ∈
FG, and for all t ∈ R≥0, q after (ε, t) ∈ up(q) ⊆ up(Y ) = Y ⊆
S(σ . a). Thus, ε ∈ G(q, σ . a). Thus, G(q, σ . a) 6= ∅.

Thus, for all q ∈ S(σ . a) ∪ I(σ . a), G(q, σ . a) 6= ∅, meaning that P(σ . a)
holds.

Thus, P(σ) =⇒ P(σ . a).

By induction on σ, P(σ) holds for every σ ∈ Σ∗c, meaning that for all σ ∈ Σ∗c,
for all q ∈ S(σ) ∪ I(σ), G(q, σ) 6= ∅.

Proposition 3.7. Eϕ is sound with respect to ϕ in Pre(ϕ) as per Defini-
tion 3.14.
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Proof. Notation from Definition 3.19 is to be used in this proof: for q ∈ Q
and w ∈ Σ∗c,

κϕ(q, w) = min
≤lex

(max
4

(G(q, w) ∪ {ε})),

bufc = ΠΣ(nobs(σb, t
′)) . σc,

t1 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧

G(Reach(σs . (t
′, a), t′′), bufc) 6= ∅} ∪ {+∞}),

σ′b = κϕ(Reach(σs . (t
′, a),min({t, t1})), bufc) +t min({t, t1}),

σ′c = ΠΣ(σ′b)
−1 . bufc,

t2 =
min({t′′ ∈ R≥0 | t′′ ≥ t′∧

G(Reach(σs, t
′′), bufc . a) 6= ∅} ∪ {+∞}),

σ′′b = κϕ(Reach(σs,min({t, t2})), bufc . a) +t min({t, t2}),
σ′′c = ΠΣ(σ′′b )−1 . (bufc . a).

We have to prove that for any σ ∈ tw(Σ), for any t ∈ R≥0, (σ, t) ∈
Pre(ϕ) =⇒ Eϕ(σ, t) |= ϕ.

For σ ∈ tw(Σ), and t ≥ time(σ), let P(σ, t) be the predicate “(σ ∈
Pre(ϕ, t) ∧ (σs, σb, σc) = storeϕ(σ, t)) =⇒ (Eϕ(σ) |= ϕ ∧ nobs(σb, t) −t t ∈
G(Reach(σs, t),ΠΣ(nobs(σb, t)) . σc)). Let also P(σ) be the predicate: “∀t ≥
time(σ),P(σ, t)”. Let us show by induction that for all σ ∈ tw(Σ), P(σ) holds.

Induction basis: for σ = ε, let us consider t ∈ R≥0. We consider two cases:

• if ε 6∈ Pre(ϕ, t), then P(ε) trivially holds.

• Otherwise, ε ∈ Pre(ϕ, t), and then, following Definition 3.20, there ex-
ists t′ ≤ t such that G(Reach(obs(ε, t′)|Σu , t

′), ε) 6= ∅, meaning that
G(Reach(ε, t′), ε) 6= ∅. Thus, following the definition of G(Reach(ε, t′), ε),
(Definition 3.18), ε ∈ G(Reach(ε, t′), ε), and Reach(ε) ∈ FG. Since
Eϕ(ε) = ε, and Reach(ε) ∈ FG, Eϕ(ε) |= ϕ. Thus, because storeϕ(ε) =
(ε, ε, ε), P(ε, t) holds.

Thus, in both cases, P(ε, t) holds, meaning that P(ε) holds.

Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider
(t′, a) such that σ . (t′, a) ∈ tw(Σ), and t ≥ t′ = time(σ . (t′, a)). Let us also
consider (σs, σb, σc) = storeϕ(σ, t′) and (σt, σd, σe) = storeϕ(σ . (t′, a), t).

Then, we distinguish three cases:

• If σ . (t′, a) 6∈ Pre(ϕ, t), then, P(σ . (t′, a), t) trivially holds.
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• If σ.(t′, a) ∈ Pre(ϕ, t)∧σ 6∈ Pre(ϕ, t′), then since σ 6∈ Pre(ϕ, t′), following
lemma A.6, σs = σ|Σu , σb = ε, and σc = ΠΣ(σ|Σc).

Since σ . (t′, a) ∈ Pre(ϕ, t), and σ 6∈ Pre(ϕ, t′), following Definition 3.20,
there exists t′′ ∈ R≥0 such that t′ ≤ t′′ ≤ t, and G(Reach(obs(σ .
(t′, a), t′′)|Σu , t

′′),ΠΣ(obs(σ . (t′, a), t′′)|Σc)) 6= ∅. Since t′′ ≥ t′ = time(σ .
(t′, a)), obs(σ . (t′, a), t′′) = σ . (t′, a). Thus:

G(Reach((σ . (t′, a))|Σu , t
′′),ΠΣ((σ . (t′, a))|Σc)) 6= ∅. (A.1)

– If a ∈ Σu, then considering that (σ . (t′, a))|Σu = σ|Σu . (t′, a) =
σs . (t

′, a), σb = ε, and σc = ΠΣ(σ|Σc), (A.1) becomes:

G(Reach(σs . (t
′, a), t′′),ΠΣ(nobs(σb, t

′)) . σc) 6= ∅.

Thus, t1 ≤ t′′ ≤ t, meaning that σd −t t1 ∈ G(Reach(σs . (t′, a), t1),
ΠΣ(σb) . σc). Thus, considering the definition of G (Definition 3.18),
it follows that nobs(σd, t) −t t ∈ G(Reach(σs . (t′, a) . obs(σd, t), t),
ΠΣ(obs(σd, t))

−1 . (ΠΣ(nobs(σb, t
′)) . σc)).

Moreover, ΠΣ(nobs(σb, t
′)) . σc = σ|Σc , thus ΠΣ(obs(σd, t))

−1 .
(ΠΣ(nobs(σb, t

′)) . σc) = ΠΣ(nobs(σd, t)) . σe, meaning that
nobs(σd, t)−t t ∈ G(Reach(σt, t), ΠΣ(nobs(σd, t)) . σe).
Thus, P(σ . (t′, a), t) holds.

– Otherwise, a ∈ Σc. Then, (σ . (t′, a))|Σu = σ|Σu = σs, σb = ε,
and σc = ΠΣ((σ . (t′, a))|Σc) = ΠΣ(σ|Σc) . a. This means that (A.1)
becomes:

G(Reach(σs, t
′′),ΠΣ(nobs(σb, t

′)) . σc . a) 6= ∅.

Thus, t2 ≤ t′′ ≤ t, therefore σd−t t2 ∈ G(Reach(σs, t2), ΠΣ(nobs(σb,
t′)).σc.a). It follows that nobs(σd, t)−tt ∈ G(Reach(σs.obs(σd, t), t),
ΠΣ(obs(σd, t))

−1 . (ΠΣ(nobs(σb, t
′)) . σc . a)).

Moreover, ΠΣ(nobs(σb, t
′)) . σc . a = ΠΣ((σ . (t′, a))|Σc) = ΠΣ(σd) . σe.

Thus, ΠΣ(obs(σd, t))
−1 . (ΠΣ(nobs(σb, t

′)) . σc . a) = ΠΣ(nobs(σd, t)) .
σe. Thus, nobs(σd, t) −t t ∈ G(Reach(σt, t),ΠΣ(nobs(σd, t)) . σe).
This means that P(σ . (t′, a), t) holds.

Thus, if σ . (t′, a) ∈ Pre(ϕ, t) and σ 6∈ Pre(ϕ, t′), P(σ, t) =⇒ P(σ .
(t′, a), t).

• If σ . (t′, a) ∈ Pre(ϕ, t) and σ ∈ Pre(ϕ, t′), then, let us consider wb =
nobs(σb, t

′)−t t
′. By induction hypothesis, since σ ∈ Pre(ϕ, t′), we know

that Eϕ(σ) |= ϕ, and wb ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)) . σc).
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– If a ∈ Σu, then, since wb ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)) . σc),
Reach(σs, t

′) after (wb, 0) = Reach(σs, t
′) ∈ S(ΠΣ(nobs(σb, t

′)) . σc).
Thus, following lemma A.8, since a ∈ Σu, Reach(σs, t

′) after (0, a) =
Reach(σs . (t′, a)) ∈ S(ΠΣ(nobs(σb, t

′)) . σc) ∪ I(ΠΣ(nobs(σb, t
′)) .

σc). Then, following lemma A.9, this means that G(Reach(σs .
(t′, a)),ΠΣ(nobs(σb, t)) . σc) 6= ∅.
It follows that t1 = t′, thus min({t, t1}) = t1 = t′, and σd −t

t′ ∈ G(Reach(σs . (t′, a), t′),ΠΣ(nobs(σb, t
′)) . σc). This implies that

Reach(σs . (t′, a) . σd) = Reach(Eϕ(σ . (t′, a))) ∈ FG, meaning that
Eϕ(σ . (t′, a)) |= ϕ. Moreover, following the definition of G (Def-
inition 3.18), nobs(σd, t) −t t ∈ G(Reach(σs . (t′, a) . obs(σd, t), t),
ΠΣ(obs(σd, t))

−1 . (ΠΣ(nobs(σb, t
′)) . σc)). Thus, since σt = σs .

(t′, a) . obs(σd, t), and ΠΣ(σd) . σe = ΠΣ(nobs(σb, t
′)) . σc, it follows

that nobs(σd, t) −t t ∈ G(Reach(σt, t),ΠΣ(nobs(σd, t)) . σe). This
means that P(σ . (t′, a), t) holds.

– Otherwise, a ∈ Σc. Since wb ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)).σc),
wb satisfies ΠΣ(wb) 4 ΠΣ(nobs(σb, t

′)) . σc 4 ΠΣ(nobs(σb, t
′)) . σc . a,

Reach(σs, t
′) after wb ∈ FG, and for all t′′ ∈ R≥0, Reach(σs, t

′) after
(wb, t

′′) ∈ S(ΠΣ(obs(wb, t
′′))−1 . (ΠΣ(nobs(σb, t

′)) . σc)).
Since ΠΣ(wb) 4 ΠΣ(nobs(σb, t

′)) . σc 4 ΠΣ(nobs(σb, t
′)) . σc . a, it

follows that, for any t′′ ∈ R≥0, ΠΣ(obs(wb, t
′′))−1 . (ΠΣ(nobs(σb, t

′)) .
σc . a) = (ΠΣ(obs(wb, t

′′))−1 . (ΠΣ(nobs(σb, t
′)) . σc)) . a. Thus,

S(ΠΣ(obs(wb, t
′′))−1 . (ΠΣ(nobs(σb, t

′)) . σc)) ⊆ S(ΠΣ(obs(wb, t
′′))−1 .

(ΠΣ(nobs(σb, t
′)) . σc . a)). Thus for all t′′ ∈ R≥0, Reach(σs, t

′) after
(wb, t

′′) ∈ S(ΠΣ(obs(wb, t
′′))−1 . (ΠΣ(nobs(σb, t

′)) . σc . a)).
This means that wb ∈ G(Reach(σs, t

′),ΠΣ(nobs(σb, t
′)) . σc . a). It

follows that G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)) . σc . a) 6= ∅, and thus,
using the same reasoning as in the case where a ∈ Σu, t2 = t′, and
σd is such that Reach(σs, t

′) after σd ∈ FG, meaning that Eϕ(σ .
(t′, a)) |= ϕ, and nobs(σd, t)−t t ∈ G(Reach(σt, t), ΠΣ(nobs(σd, t)) .
σe). Thus, P(σ . (t′, a), t) holds.

Thus, in all cases, for all t ≥ t′,P(σ) =⇒ P(σ . (t′, a), t). This means that
P(σ) =⇒ ∀t ≥ t′,P(σ . (t′, a), t). Thus, for all t′ ≥ time(σ), for all a ∈ Σ,
P(σ) =⇒ P(σ . (t′, a)).

Thus, by induction on σ, for all σ ∈ tw(Σ), P(σ) holds. In particular, for
all (σ, t) ∈ Pre(ϕ),Eϕ(σ) |= ϕ. This means that Eϕ is sound in Pre(ϕ).

Proposition 3.8. Eϕ is compliant, as per Definition 3.15.

Proof. We have to prove the three following properties:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0,Eϕ(σ, t) 4dΣc
σ
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2. ∀σ ∈ tw(Σ),∀t ∈ R≥0,Eϕ(σ, t) =Σu obs(σ, t)

3. ∀σ ∈ tw(Σ),∀(t, u) ∈ R≥0 × Σu, σ . (t, u) ∈ tw(Σ) =⇒ Eϕ(σ, t) . (t, u) 4
Eϕ(σ . (t, u), t).

We start by proving items 1 and 2.
For σ ∈ tw(Σ), let P(σ) be the predicate: “∀t ≥ time(σ), (σs, σb, σc) =

storeϕ(σ, t) =⇒ σs|Σu = σ|Σu ∧ΠΣ(σs|Σc .nobs(σb, t)) . σc = ΠΣ(σ|Σc)∧σs|Σc 4d

σ|Σc”. Let us prove by induction that for all σ ∈ tw(Σ),P(σ) holds.

Induction basis: for σ = ε. storeϕ(ε) = (ε, ε, ε), and ε|Σc = ε|Σu = ΠΣ(ε) =
ε. Thus, P(ε) trivially holds.

Induction step: suppose now that for some σ ∈ tw(Σ),P(σ) holds. Let
us consider (t′, a) such that σ . (t′, a) ∈ tw(Σ), t ≥ t′ = time(σ . (t′, a)),
(σs, σb, σc) = storeϕ(σ, t′), and (σt, σd, σe) = storeϕ(σ . (t′, a), t). Then, by in-
duction hypothesis, σs|Σu = σ|Σu , ΠΣ(σs|Σc .σb).σc = ΠΣ(σ|Σc), and σs|Σc 4d σ|Σc .

• If a ∈ Σu, then, by construction, σd satisfies ΠΣ(σd) 4 ΠΣ(nobs(σb, t
′)).σc

and σd 6= ε =⇒ date(σd(1)) ≥ t′.

– Projection on Σu: Since a ∈ Σu, σt|Σu = (σs . (t′, a) . obs(σd, t))|Σu .
Since σd ∈ tw(Σc), σt|Σu = σs|Σu .(t

′, a) = σ|Σu .(t
′, a) = (σ.(t′, a))|Σu .

– Projection on Σc: ΠΣ(σt|Σc . nobs(σd, t)) . σe = ΠΣ((σs . (t′, a) .
obs(σd, t))|Σc . nobs(σd, t)) . σe = ΠΣ(σs|Σc . σd) . σe = ΠΣ(σs|Σc) .
ΠΣ(σd) . σe. By construction, ΠΣ(σd) . σe = ΠΣ(nobs(σb, t

′)) . σc.
Thus, ΠΣ(σt|Σc .σd) .σe = ΠΣ(σs|Σc) .ΠΣ(nobs(σb, t

′)) .σc = ΠΣ(σs|Σc .
nobs(σb, t

′)) . σc = ΠΣ(σ|Σc) = ΠΣ((σ . (t′, a))|Σc). Moreover, σt ∈
tw(Σ), and since σt = σs . (t′, a) . obs(σd, t), it follows that for all
i ∈ [1; | obs(σd, t)|], date(σd(i)) ≥ t′. Since σs|Σc 4d σ|Σc , for all i ∈
[1; |σs|Σc |], date(σs|Σc(i)) ≥ date(σ|Σc(i)). Thus, for all i ∈ [1; |σt|Σc|],
date(σt|Σc(i)) ≥ date(σ|Σc(i)). Since ΠΣ(σt|Σc . σd) . σe = ΠΣ(σ|Σc),
ΠΣ(σt|Σc) 4 ΠΣ(σ|Σc). Thus σt|Σc 4d σ|Σc = (σ . (t′, a))|Σc .

This means that if a ∈ Σu, P(σ . (t′, a)) holds.

• If a ∈ Σc, then, by construction, σd satisfies ΠΣ(σd) 4 ΠΣ(σb) . σc . a, and
σd 6= ε =⇒ date(σd(1)) ≥ t′.

– Projection on Σu: σt|Σu = (σs . obs(σd, t))|Σu . Since σd ∈ tw(Σc),
σt|Σu = σs|Σu = σ|Σu = (σ . (t′, a))|Σu .

– Projection on Σc: ΠΣ(σt|Σc .nobs(σd, t)) .σe = ΠΣ((σs .obs(σd, t))|Σc .
nobs(σd, t)) . σe = ΠΣ(σs|Σc . σd) . σe = ΠΣ(σs|Σc) . ΠΣ(σd) . σe. By
construction, it is ensured that ΠΣ(σd) . σe = ΠΣ(nobs(σb, t

′)) . σc . a.
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It follows that ΠΣ(σt|Σc .σd).σe = ΠΣ(σs|Σc).ΠΣ(nobs(σb, t
′)).σc .a =

ΠΣ(σs|Σc . nobs(σb, t
′)) . σc . a = ΠΣ(σ|Σc) . a = ΠΣ((σ . (t′, a))|Σc).

Moreover, considering t2 as defined in Definition 3.19, t2 ≥ t′, and
t ≥ t′, thus min({t, t2}) ≥ t′, which means that since there exists
wd ∈ tw(Σ) such that σd = wd +t min({t, t2}), if σd 6= ε, then
date(σd(1)) ≥ t′. Thus, for all i ∈ [1; |σd|], date(σd(i)) ≥ t′ =
time(σ . (t′, a)). This still holds if σd = ε, because then [1; |σd|] =
∅. Since σs|Σc 4d σ|Σc , for all i ∈ [1; |σs|Σc|], date(σs|Σc(i)) ≥
date(σ|Σc(i)). Thus, for all i ∈ [1; |σt|Σc |], date(σt|Σc(i)) ≥ date((σ .
(t′, a))|Σc(i)). Since ΠΣ(σt|Σc . nobs(σd, t)) . σe = ΠΣ((σ. (t′, a))|Σc),
ΠΣ(σt|Σc) 4 ΠΣ((σ . (t′, a))|Σc). Thus σt|Σc 4d (σ . (t′, a))|Σc .

Thus if a ∈ Σc, P(σ . (t, a)) holds.

Thus for any a ∈ Σ and t ≥ time(σ), P(σ) =⇒ P(σ . (t, a)).

Thus, by induction on σ, for all σ ∈ tw(Σ), P(σ) holds, meaning that for
all t ≥ time(σ), (σs, σb, σc) = storeϕ(σ, t) =⇒ σs|Σu = σ|Σu ∧ ΠΣ(σs|Σc .
nobs(σb, t)) . σc = ΠΣ(σ|Σc) ∧ σs|Σc 4d σΣc . Since Eϕ(σ) = σs, this means that
Eϕ(σ) 4dΣc

σ and Eϕ(σ)|Σu = σ|Σu .

Now what remains to be proved is item 3.
Let us consider σ ∈ tw(Σ), and (t, u) ∈ R≥0×Σu such that σ.(t, u) ∈ tw(Σ).

Then, considering the definition of storeϕ (Definition 3.19), Eϕ(σ . (t, u), t) =
Eϕ(σ, t) . (t, u) . obs(σ′s, t), where σ′s is defined in Definition 3.19. This means
that Eϕ(σ, t) . (t, u) 4 Eϕ(σ . (t, u)).

Thus, items 1 to 3 hold. Thus Eϕ is compliant with respect to Σu and
Σc.

Lemma A.10. ∀σ ∈ Σ∗c,∀q ∈ Q, (q 6∈ S(σ)) =⇒ (∃σu ∈ tw(Σu), (q after
σu 6∈ FG) ∧ (∀t > 0, q after (σu, t) 6∈ S(σ) ∪ I(σ)) ∧ (∀σ′u 4 σu, σ

′
u 6= ε =⇒

q after σ′u 6∈ S(σ) ∪ I(σ)))

Proof. For σ ∈ Σ∗c and q ∈ Q, let P(σ, q) be the predicate “∀σu ∈ tw(Σu),
(q after σu ∈ FG) ∨ (∃t > 0, q after (σu, t) ∈ S(σ) ∪ I(σ)) ∨ (∃σ′u 4 σu, σ

′
u 6=

ε∧q after σ′u ∈ S(σ)∪I(σ))”. Let us show the contrapositive of the proposition,
that is that for all σ ∈ Σ∗c, for all q ∈ Q, (P(σ, q)) =⇒ (q ∈ S(σ)).

• If σ = ε, let us consider q ∈ Q such that P(ε, q) holds. Then, since
ε ∈ tw(Σu), q after ε = q ∈ FG, or there exists t > 0 such that
q after (ε, t) ∈ S(ε) ∪ I(ε), or there exists σ′u 4 ε such that σ′u 6= ε
and q after σ′u ∈ S(ε) ∪ I(ε). Since σ′u 4 ε, σ′u = ε, meaning that this last
condition does not hold for σu = ε. Thus, q ∈ FG or there exists t ∈ R≥0
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such that q after (ε, t) ∈ S(ε) ∪ I(ε). Since I(ε) = ∅ and S(ε) ⊆ FG, if the
second condition holds, then q after (ε, t) ∈ FG, meaning that q ∈ FG.
Thus, q ∈ FG.
Moreover, since P(ε, q) holds, for any σu ∈ tw(Σu), q after σu ∈ FG or
there exists t ∈ R≥0 such that q after (σu, t) ∈ S(ε)∪ I(ε) ⊆ FG, meaning
that q after σu ∈ FG, or there exists σ′u 4 σu such that q after σ′u ∈
S(ε) ∪ I(ε). If the last condition holds, since I(ε) = ∅, then q after σ′u ∈
S(ε). Then, following the definition of S(ε), since σ′u

−1 . σu ∈ tw(Σu), it
follows that q after σ′u after σ′u

−1 . σu = q after σu ∈ FG. Thus, for all
σu ∈ tw(Σu), q after σu ∈ FG, meaning that q ∈ S(ε).

• If σ 6= ε, there exists (σ′, a) ∈ Σ∗c×Σc such that σ = σ′ .a. Let us consider
q ∈ Q such that P(σ, q) holds. Then, for all σu ∈ tw(Σu), q after σu ∈ FG,
or there exists t > 0 such that q after (σu, t) ∈ S(σ)∪ I(σ), or there exists
σ′u 4 σu such that σ′u 6= ε and q after σ′u ∈ S(σ)∪ I(σ). Let Xs and Ys be
such that S(σ) = S(σ′ . a) = S(σ′) ∪Xs ∪ Ys, with:

– ∀x ∈ Xs,∃i ∈ I(σ′ . a),∃δ ∈ R≥0, x after (ε, δ) = i ∧ ∀t ≤ δ, x after
(ε, t) ∈ Xs,

– Ys ⊆ FG ∧ up(Ys) = Ys, and

– (Xs ∪ Ys) ∩ uPred(Xs ∪ Ys ∪ I(σ′ . a)) = ∅.

Xs and Ys correspond to the sets X and Y in the definition of S(σ′ . a),
respectively. Let us consider X0 = {q after (σu, t) | σu ∈ tw(Σu) ∧ t ∈
R≥0 ∧ ∀t′ ∈ ]0; t] , q after (σu, t

′) 6∈ S(σ) ∪ I(σ) ∧ ∀σ′u 4 σu, σ
′
u 6= ε =⇒

q after σ′u 6∈ S(σ) ∪ I(σ)}, and Y0 = {y ∈ X0 | up(y) ⊆ X0 ∪ Ys}.
Then, Y0 ⊆ X0, and up(Y0) = Y0. Moreover, if y ∈ Y0, then up(y) ⊆
X0 ∪ Ys, and more precisely, up(y) ⊆ Y0 ∪ Ys, since all the states in
up(y) are also in Y0 if y ∈ Y0. Since up(Ys) = Ys, either up(y) ⊆ Y0

or there exists t ∈ R≥0 such that for all t′ < t, y after (ε, t′) ∈ X0 and
up(y after (ε, t)) ⊆ Ys. Since P(σ, q) holds, and Ys ⊆ FG, in both cases,
y ∈ FG, meaning that Y0 ⊆ FG. Let us now consider Y = Ys ∪ Y0,
X = Xs ∪ (X0 \ Y0), and x ∈ X. Let us suppose that x 6∈ Xs, meaning
that x ∈ X0 \ Y0. Following the definition of X0 and Y0, this means
that there exists δ > 0 and i ∈ S(σ) ∪ I(σ) such that x after (ε, δ) = i,
and they can be chosen such that for all t < δ, x after (ε, t) ∈ X0.
Suppose now that i ∈ S(σ), and more precisely that i ∈ Ys. Then,
up(i) ⊆ Ys and up(i) ∩ uPred(Xs ∪ Ys ∪ I(σ)) = ∅, and since for all
t < δ, x after (ε, t) ∈ X0, it follows that up(x) ⊆ X0 ∪ Ys, meaning that
x ∈ Y0, which is absurd. Thus, i 6∈ Ys. This means that either i ∈ I(σ),
or i ∈ Xs. Thus, there exists δ′ ∈ R≥0 such that i after (ε, δ′) ∈ I(σ) and
for all t < δ′, i after (ε, t) ∈ Xs ⊆ X (if i ∈ I(σ), then δ′ = 0). Then,
x after (ε, δ + δ′) = i, and for all t < δ + δ′, x after (ε, t) ∈ X. Moreover,
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(X ∪ Y ) ∩ uPred(X ∪ Y ∪ I(σ)) = ∅ since Y = Ys ∪ Y0 ⊆ S(σ) ∪ X0,
X ⊆ Xs ∪X0, and X ∪ Y = X0 ∪ S(σ). This means that X ∪ Y ⊆ S(σ),
and since X0 ⊆ X ∪ Y , X0 ⊆ S(σ). Since q = q after (ε, 0), with
ε ∈ tw(Σu) and t ∈ R≥0, q ∈ X0, and thus q ∈ S(σ). Thus, if σ 6= ε and
q ∈ Q, P(σ, q) =⇒ q ∈ S(σ).

Thus, for all σ ∈ Σ∗c, for all q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). Thus, the
contrapositive also holds, meaning that for all σ ∈ Σ∗c, for all q ∈ Q, q 6∈
S(σ) =⇒ ¬P(σ, q), that is q 6∈ S(σ) =⇒ (∃σu ∈ tw(Σu), q after σu 6∈
FG ∧ ∀t > 0, q after (σu, t) 6∈ S(σ) ∪ I(σ) ∧ ∀σ′u 4 σu, σ

′
u 6= ε =⇒ q after σ′u 6∈

S(σ) ∪ I(σ)).

Proposition 3.9. Eϕ is optimal in Pre(ϕ), as per Definition 3.16.

Proof. Let us consider E ′ : tw(Σ) × R≥0 → tw(Σ), that is compliant with
respect to Σc and Σu. Let us also consider σ ∈ tw(Σ), and (t′, a) such that
σ . (t′, a) ∈ tw(Σ). Suppose now that (σ, t′) ∈ Pre(ϕ), E ′(σ, t′) = Eϕ(σ, t′), and
that Eϕ(σ . (t′, a)) ≺d E

′(σ . (t′, a)).
We then have to show that there exists σu ∈ tw(Σu) such that E ′(σ. (t′, a) .

σu) 6|= ϕ.
Let us consider (σs, σb, σc) = storeϕ(σ, t′), and (σt, σd, σe) = storeϕ(σ .

(t′, a), t), where t is such that σt = Eϕ(σ . (t′, a)) (i.e. t is sufficiently big).
Then, considering proof of soundness (appendix A.1.2), since (σ, t′) ∈ Pre(ϕ),
nobs(σb, t

′)−t t
′ ∈ G(Reach(σs, t

′),ΠΣ(nobs(σb, t
′)) . σc).

• If a ∈ Σu, this means that σd−t t
′ ∈ G(Reach(σs .(t

′, a)),ΠΣ(nobs(σb, t
′)).

σc). Let us consider q = Reach(σs . (t
′, a)), and bufc = ΠΣ(nobs(σb, t

′)) .
σc. Then, σd −t t

′ = minlex(max4(G(q, bufc))). E ′ is compliant with
respect to Σu and Σc, thus, since Eϕ(σ, t′) = E ′(σ, t′), there exists σd2 ∈
tw(Σ) such that E ′(σ . (t′, a)) = σs . (t′, a) . σd2. Since Eϕ(σ . (t′, a)) ≺d

E ′(σ . (t′, a)), then σd ≺d σd2, thus σd −t t
′ ≺d σd2 −t t

′ = wd2, meaning
that wd2 6∈ G(q, bufc). Then, following the definitions of G and S, there
are several cases:

– ΠΣ(wd2) 64 bufc. Since E ′ is compliant, and E ′(σ) = Eϕ(σ), this is
not possible.

– q after wd2 6∈ FG, meaning that E ′(σ . (t′, a)) 6|= ϕ.
– Or there exists t′′ ∈ R≥0 such that q after (wd2, t

′′) 6∈ S(ΠΣ(obs(wd2,
t′′))−1 . bufc). Let us then note bufc2 = ΠΣ(obs(wd2), t′′)−1 . bufc,
and q2 = q after (wd2, t

′′). Then, following lemma A.10, there exists
σu ∈ tw(Σu) such that q2 after σu 6∈ FG, for all t0 > 0, q2 after
(σu, t0) 6∈ S(bufc2) ∪ I(bufc2), and for all σ′u 4 σu, σ′u 6= ε =⇒
q2 after σ′u 6∈ S(bufc2) ∪ I(bufc2).
Then, considering that E ′ is compliant, either E ′(σ.(t′, a).(σu+t(t

′+
t′′))) = σs.(t

′, a).obs(wd2+tt
′, t′′).(σu+t(t

′+t′′)), meaning that E ′(σ.
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(t′, a).(σu+t(t
′+t′′))) 6|= ϕ, or there exists σ′u 4 σu, wd3 6= ε such that

ΠΣ(wd3) 4 ΠΣ(bufc2) and Reach(E ′(σ . (t′, a) . (σ′u +t (t′ + t′′)))) =
q2 after σ′u after wd3. Since σ′u 4 σu, q2 after (σ′u, date(wd3(1))) 6∈
S(bufc2)∪ I(bufc2). Considering the definition of I, q2 after σ′u after
wd3(1) 6∈ S(ΠΣ(wd3(1))−1 . bufc2) ∪ I(ΠΣ(wd3(1))−1 . bufc2), be-
cause otherwise q2 after σ′u ∈ Predwd3(1)(S(ΠΣ(wd3(1))−1 . bufc2) ∪
I(ΠΣ(wd3(1))−1 . bufc2)) = I(bufc2), which does not hold. It follows
that, by iterating the previous reasoning on the first events of wd3

that share the same date,

q2 after σ′u after (wd3, date(wd3(1))) 6∈
S(ΠΣ(obs(wd3, date(wd3(1))))−1 . bufc2)∪
I(ΠΣ(obs(wd3, date(wd3(1))))−1 . bufc2).

Thus, using again lemma A.10, we can find a word in tw(Σu) such
that the output of E ′ will never be in S nor I, and end up outside
of FG. Whatever controllable events E ′ will output, its output will
never reach S nor I, and since E ′ can only output a limited number
of controllable events (no more than |bufc|), at some point it will not
be able to output controllable events anymore, and then there will
be an uncontrollable word leading its output outside of FG. Con-
catenating all the uncontrollable words obtained from lemma A.10,
there would be σug ∈ tw(Σu) such that E ′(σ . (t′, a) . σug) 6|= ϕ.

Thus, if a ∈ Σu, there exists σu ∈ tw(Σu) such that E ′(σ.(t′, a) .σu) 6|= ϕ.

• If a ∈ Σc, then since (σ, t′) ∈ Pre(ϕ), following the proof of soundness
(appendix A.1.2), σd−tt

′ ∈ G(Reach(σs, t
′), ΠΣ(nobs(σb, t

′)).σc.a). Then,
we can do the same proof as in the case where a ∈ Σu, but considering
that q = Reach(σs) and bufc = ΠΣ(nobs(σb, t

′)) . σc . a.

Thus, if a ∈ Σc, there also exists σu ∈ tw(Σu) such that E ′(σ.(t′, a).σu) 6|=
ϕ.

This means that whenever E ′(σ) = Eϕ(σ), and Eϕ(σ.(t′, a)) ≺d E
′(σ.(t′, a)),

then there exists σu ∈ Σu such that E ′(σ . (t′, a) . σu) 6|= ϕ.
Thus, Eϕ is optimal.

Proposition 3.10. The output of E as per Definition 3.21 for input σ is Eϕ(σ)
as per Definition 3.19.

Proof. In this proof, we use some notation from Definition 3.21:

• CE = tw(Σ)× Σ∗c ×Q× R≥0 × {>,⊥} is the set of configurations,

• cE0 = 〈ε, ε, q0, 0,⊥〉 ∈ CE is the initial configuration,
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• ΓE = ((R≥0×Σ)∪{ε})×Op×((R≥0×Σ)∪{ε}) is the alphabet, composed
of an optional input, an operation and an optional output,

• The set of operations, to be applied in the given order, is:
{compute , dump , pass-uncont , store-cont , delay }.

Let us also introduce some specific notation. For a sequence of rules w ∈
ΓE∗, we note input(w) = Π1(w(1)) .Π1(w(2)) . . .Π1(w(|w|)) the concatenation
of all inputs from w. In the same way, we define output(w) = Π3(w(1)) .
Π3(w(2)) . . .Π3(w(|w|)) the concatenation of all outputs from w. Since all
configurations are not reachable from cE0 , for a word w ∈ ΓE∗, we will say that
ReachE(w) = c if cE0 ↪

w−→E c, or ReachE(w) = ⊥ if such a c does not exist. Let
us also define function Rules which, given a timed word and a date, returns
the longest sequence of rules that can be applied with the given word as input
at the given date:

Rules :


tw(Σ)× R≥0 → ΓE

(σ, t) 7→
max
4

({w ∈ ΓE | input(w) = σ ∧ Reach(w) 6= ⊥∧

Π4(Reach(w)) = t})

Since time is not discrete, the rule delay can be applied an infinite number of
times by slicing time. Thus, we consider that the rule delay is always applied
a minimum number of times, i.e. when two rules delay are consecutive, they
are merged into one rule delay, whose parameter is the sum of the parameters
of the two rules. The runs obtained are equivalent, but it allows to consider
the maximum (for prefix order) of the set used in the definition of Rules. We
then extend output to timed words with a date: for σ ∈ tw(Σ), and a date
t, output(σ, t) = output(Rules(σ, t)). In the same way, we extend ReachE to
timed words with a date, such that ReachE(σ, t) = ReachE(Rules(σ, t)).

We have to prove that for any σ ∈ tw(Σ) and t ∈ R≥0, output(σ, t) =
Eϕ(σ, t).

For σ ∈ tw(Σ) and t ∈ R≥0, let P(σ, t) be the predicate: “Eϕ(σ, t) =
output(σ, t) ∧ (((σs, σb, σc) = storeϕ(obs(σ, t), t) ∧ 〈σEb , σEc , qE , t, b〉 = ReachE(σ,
t)) =⇒ σEb = nobs(σb, t) ∧ σEc = σc ∧ qE = Reach(σs, t) ∧ (b = > =⇒
G(qE , σEc ) 6= ∅))”. Let P(σ) be the predicate “∀t ∈ R≥0,P(σ, t) holds”. Let us
then prove that for all σ ∈ tw(Σ),P(σ) holds.

Induction basis : For σ = ε, let us consider t ∈ R≥0. Then, storeϕ(ε, t) =
(ε, ε, ε), and Reach(ε, t) = 〈l0, v0 + t〉. On the other hand, the only rules that
can be applied are delay, and possibly compute, since there is not any input,
nor any element to dump. Thus, Rules(ε, t) = ε/ delay(t)/ε, or there exists
t′ ≥ t such that Rules(ε, t) = ε/ delay(t′)/ε . ε/ compute()/ε . ε/ delay(t− t′)/ε.
Let us consider c = Reach(Rules(ε, t)). Then, c = 〈ε, ε, 〈l0, v0 + t〉, t, b〉. If
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rule compute appears in Rules(ε, t), then b = >, meaning that G(q0 after
(ε, t′), ε) 6= ∅, and thus that G(q0 after (ε, t), ε) 6= ∅ since t ≥ t′. Otherwise
b = ⊥. All the other values remain unchanged between the two cases. In both
cases, output(Rules(ε, t)) = ε = Eϕ(ε, t). Thus, P(ε) holds.

Induction step : Let us suppose now that for some σ ∈ tw(Σ), P(σ) holds.
Let us consider (t′, a) ∈ R≥0 × Σ such that σ . (t′, a) ∈ tw(Σ). Let us then
prove that P(σ . (t′, a)) holds.

Let us consider t ∈ R≥0, c = 〈σEb , σEc , qE , t′, b〉 = Reach(Rules(σ, t′)), (σs,
σb, σc) = storeϕ(σ, t′), and (σt, σd, σe) = storeϕ(obs(σ . (t′, a), t), t).

If t < t′, then obs(σ . (t′, a), t) = obs(σ, t), and P(σ . (t′, a), t) trivially holds,
since P(σ) holds.

Thus, in the following, we consider that t ≥ t′, so that storeϕ(obs(σ .
(t′, a), t), t) = storeϕ(σ . (t′, a), t):

• If a ∈ Σu, rule pass-uncont can be applied. Let us consider c′ = c after
((t′, a)/ pass-uncont((t′, a))/(t′, a)). Then, c′ = 〈ε,ΠΣ(σEb ) . σEc , q

′, t′,⊥〉,
with q′ = qE after (0, a).

Then, if t ≥ tE1 , where tE1 = min({t′′ | t′′ ≥ t′ ∧ G(q′ after (ε, t′′ −
t′),ΠΣ(σEb ) . σEc ) 6= ∅}), then rule delay(tE1 − t′) can be applied, fol-
lowed by rule compute. Since qE = Reach(σs, t

′), σEb = nobs(σb, t
′), and

σEc = σc (by induction hypothesis), then G(q′ after (ε, t′′ − t′),ΠΣ(σEb ) .
σEc ) = G(Reach(σs . (t′, a), t′′),ΠΣ(nobs(σb, t

′)) . σc), thus tE1 = t1, where
t1 is defined in Definition 3.19. Thus, c′ after ((ε/ delay(tE1 − t′)/ε) .
(ε/ compute /ε)) = 〈σEd , σEe , q′ after (ε, t1−t′), t1,>〉, with σEd = κϕ(q′ after
(ε, t1− t′),ΠΣ(σEb ) .σEc )+t t1 = κϕ(Reach(σs .(t

′, a), t1),ΠΣ(σb) .σc)+t t1 =
σd, and thus σEe = σe. Then, rules delay and dump can be applied
until date t is reached. In the end, ReachE(σ . (t′, a), t) = c′ after
w, where w is composed of an alternation of rules delay and dump,
thus ReachE(σ . (t′, a), t) = 〈nobs(σEd , t), σ

E
e , q

′ after (obs(σEd , t) −t t
′, t −

t′), t,>〉 = 〈nobs(σd, t), σe,Reach(σt, t), t,>〉. Then, output(σ.(t′, a), t) =
output(σ, t′) . (t′, a) . obs(σEd , t) = σs . (t

′, a) . obs(σd, t) = σt.

Thus, if t ≥ t1, P(σ . (t′, a), t) holds.

Otherwise, t < t1, and then rule dump cannot be applied, since Π5(c′) =
⊥, and rule compute also cannot be applied. Thus, the only rule that
can be applied is delay, so that Reach(Rules(σ . (t′, a), t)) = 〈ε,ΠΣ(σEb ) .
σEc , q

′ after (ε, t − t′), t′,⊥〉. Since t < t1, this means that σd = ε, and
σe = ΠΣ(σb) .σc. Thus, output(Rules(σ.(t′, a), t)) = output(Rules(σ, t′)) .
(t′, a) = σs . (t′, a) = σt, and σEd = σd, and σEe = σe. This means that
P(σ . (t′, a), t) holds when t < t1.

Thus, if a ∈ Σu, then P(σ . (t′, a), t) holds for all t ≥ t′.
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• Otherwise, a ∈ Σc. Then, rule store-cont can be applied. Let us con-
sider c′ = c after ((t′, a)/ store-cont(a)/ε). Then, c′ = 〈ε,ΠΣ(σEb ) . σEc .
a, qE , t′,⊥〉. Let us consider tE2 = min({t′′ ∈ R≥0 | t′′ ≥ t′ ∧ G(qE after
(ε, t′′ − t′),ΠΣ(σEb ) . σEc . a) 6= ∅}). Since G(qE after (ε, t′′ − t′),ΠΣ(σEb ) .
σEc . a) = G(Reach(σs, t

′′),ΠΣ(nobs(σb, t
′)) . σc . a), it follows that tE2 = t2

as defined in Definition 3.19.

If t ≥ tE2 = t2, then rule delay(t2 − t′) can be applied, followed by
rule compute. Then, c′ after ((ε/ delay(t2 − t′)/ε) . (ε/ compute()/ε)) =
〈σEd , σEe , q after (ε, t2−t′), t2,>〉, where σEd = κϕ(q after (ε, t2−t′),ΠΣ(σEb ).
σEc . a) +t t2 = κϕ(Reach(σs, t2),ΠΣ(σb) . σc . a) +t t2 = σd. Then,
σEe = σe. Then, an alternation of rules delay and dump can be ap-
plied until date t is reached. This leads to Reach(Rules(σ . (t′, a), t)) =
〈nobs(σEd , t), σ

E
e , q after (obs(σEd , t), t), t,>〉 = 〈nobs(σd, t), σe, Reach(σt,

t), t,>〉. Moreover, output(Rules(σ.(t′, a), t)) = output(σ, t′).obs(σd, t) =
σs . obs(σd, t) = Eϕ(σ . (t′, a), t).

Thus, if t ≥ t2, P(σ . (t′, a), t) holds.

Otherwise, t < t2, meaning that σEd = ε = σd, and σEe = ΠΣ(σEb ) . σEc . a =
ΠΣ(nobs(σb, t

′)) . σc . a = σe, and output(σ . (t′, a), t) = output(σ, t′) =
σs = Eϕ(σ . (t′, a), t). Thus, P(σ . (t′, a), t) holds.

Thus, P(σ) =⇒ P(σ . (t, a)).

Thus, by induction on σ, for all σ ∈ tw(Σ),P(σ) holds. In particular, for
all σ ∈ tw(Σ), and for all t ∈ R≥0, output(σ, t) = Eϕ(σ, t), meaning that the
output of the enforcement monitor E with input σ at time t is exactly the
output of function Eϕ with the same input and the same date.

A.2 Proofs of Chapter 4

A.2.1 Proofs for the untimed setting (Section 4.2)

In all this section, we will use the notations from Section 4.2, meaning that ϕ
is a property whose associated automaton is Aϕ = 〈Q, q0,Σ,−→, F 〉, and the
game graph G = 〈V,E〉 is the one as per Definition 4.5. In some proofs, we
also use notations from Definition 4.9.

Proposition 4.1. Eϕ as per Definition 4.9 is an enforcement function as per
Definition 4.1.

Proof. We have to prove that for σ ∈ Σ∗ and σ′ ∈ Σ∗, if (σ, o) ∈ Eϕ, (σ′, o′) ∈
Eϕ and σ 4 σ′, then o 4 o′. Let us consider σ ∈ Σ∗, σ′ ∈ Σ∗, (σ, o) ∈ Eϕ and
(σ . σ′, o′) ∈ Eϕ.

If σ′ = ε, then o = o 4 o′.
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Otherwise, let us consider (σ, 〈σs, σc〉) ∈ storeϕ, a = σ′(1), (σ . a, 〈σt, σd〉) ∈
storeϕ, and (σ . a, oa) ∈ Eϕ. Then,

• if a ∈ Σu, σt = σs . a . σ
′
s, where σ′s is defined in Definition 4.9, meaning

that σs 4 σt.

• If a ∈ Σc, then σt = σs . σ
′′
s , where σ′′s is defined in Definition 4.9, thus

again, σs 4 σt.

In both cases, o = σs 4 σt = oa. Since the order 4 is transitive, we can iterate
through all the events of σ′, thus o 4 oa 4 . . . 4 o′.

Thus Eϕ is an enforcement function.

Lemma A.11. ∀q ∈ Q,∀w ∈ Σn
c , (〈q, w, 1〉 ∈ W0 ∧ (〈q, w, 1〉, 〈q′, w′, l〉) ∈

E) =⇒ 〈q′, w′, l〉 ∈ W0.

Proof. W0 is the winning set of the Büchi game for P0.

Lemma A.12. ∀q ∈ Q, ∀σ ∈ Σn
c , 〈q, σ, 0〉 ∈ W0 =⇒ G(q, σ) 6= ∅.

Proof. Let us consider q ∈ Q and σ ∈ Σn
c such that 〈q, σ, 0〉 ∈ W0. Then,

since 〈q, σ, 0〉 is a node that belongs to P0 that is winning (since it is in W0),
this means that there is a winning strategy for P0 in the Büchi game. Thus,
there is a path in G that allows P0 to reach a Büchi node, that is a node
in F × Σn

c × {0, 1}, whatever the strategy of P1 is. The strategy of P0 is to
follow nodes that are only in W0 until it finally reaches a Büchi node. The
construction ofW0 ensures that this is possible. Now, the only edges that leave
a node belonging to P0 are the ones corresponding to the action of emitting
the first of the stored controllable events, or not emitting it and let P1 play.
Thus, if 〈q, σ, 0〉 ∈ W0, this means that there is a path in the graph that leads
to a node in F × Σn

c × {0} such that all the nodes along the path belong to
P0 and are in W0. This holds because there is a path in W0 to such a node,
and if a node of the path belongs to P1, then the strategy of P1 could be to go
back to the previous node belonging to P0, and thus there could be an infinite
loop in these two nodes, meaning that they are in F ×Σn

c ×{0, 1} or that from
the previous node belonging to P0, emitting the first stored controllable event
is a winning strategy. Thus, there exists w 4 σ such that q after w ∈ F and
〈q after w,w−1 . σ, 0〉 ∈ W0. Now, since Σn

c is finite, it is possible to choose
w such that 〈q after w,w−1 . σ, 1〉 ∈ W0, because otherwise, the only possible
strategy would be to emit from every node, but it is not possible from nodes
whose second member is ε, and then the only possible strategy would lead to
a node not in W0, meaning that the original node would not be in W0, which
is absurd. Thus, G(q, σ) 6= ∅.

Lemma A.13. ∀σ ∈ Σ∗, (σ 6∈ Pre(ϕ) ∧ (σ, 〈σs, σc〉) ∈ storeϕ) =⇒ (σs =
σ|Σu ∧ σc = σ|Σc).
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Proof. For σ ∈ Σ∗, let P(σ) be the predicate “(σ 6∈ Pre(ϕ) ∧ (σ, 〈σs, σc〉) ∈
storeϕ) =⇒ (σs = σ|Σu ∧ σc = σ|Σc)”. Let us show by induction that P(σ)
holds for any σ ∈ Σ∗.

Induction basis: (ε, 〈ε, ε〉) ∈ storeϕ, and since ε|Σu = ε|Σc = ε, P(ε) holds.

Induction step: let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us then
consider a ∈ Σ, (σ, 〈σs, σb〉) ∈ storeϕ, and (σ . a, 〈σt, σd〉) = storeϕ(σ . a).

Then, if σ . a ∈ Pre(ϕ), P(σ . a) holds.
Let us now consider that σ . a 6∈ Pre(ϕ). Then, since Pre(ϕ) is extension-

closed, σ 6∈ Pre(ϕ), and thus, by induction hypothesis, σs = σ|Σu and σc = σ|Σc .
We consider two cases:

• if a ∈ Σu, then σt = σs . a . σ
′
s, with σ′s ∈ G(Reach(σs . a), σc) ∪ {ε} (ac-

cording to Definition 4.9). Since σ.a 6∈ Pre(ϕ), following Definition 4.10,
G(Reach((σ . a)|Σu), (σ . a)|Σc) = ∅. Moreover, since a ∈ Σu, (σ . a)|Σu =
σ|Σu . a = σs . a and (σ . a)|Σc = σ|Σc = σc, thus G(Reach(σs . a), σc) = ∅.
It follows that σ′s ∈ {ε}, meaning that σt = σs . a = σ|Σu . a = (σ . a)|Σu ,
and σd = σ′−1

s . σc = σc = σ|Σc = (σ . a)|Σc .

• Otherwise, a ∈ Σc, and then, according to Definition 4.9, σt = σs . σ
′′
s ,

with σ′′s ∈ G(σs, σc .a)∪{ε}. Since σ.a 6∈ Pre(ϕ), following Definition 4.9,
G(Reach((σ . a)|Σu), (σ . a)|Σc) = ∅. Moreover, since a ∈ Σc, (σ . a)|Σu =
σ|Σu = σs and (σ . a)|Σc = σ|Σc . a = σc . a. Thus, G(Reach(σs), σc . a) = ∅,
meaning that σ′′s = ε. Thus, σt = σs = σ|Σu = (σ . a)|Σu and σd =
σ′′−1
s . (σc . a) = σc . a = σ|Σc . a = (σ . a)|Σc .

In both cases, P(σ . a) holds.
Thus, P(σ) =⇒ P(σ . a).

By induction on σ ∈ Σ∗, for all σ ∈ Σ∗, if σ 6∈ Pre(ϕ) and (σ, 〈σs, σc〉) ∈
storeϕ, then σs = σ|Σu and σc = σ|Σc .

Proposition 4.2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Defini-
tion 4.2.

Proof. We have to prove that for σ ∈ Pre(ϕ), if (σ, o) ∈ Eϕ, then o |= ϕ.
Let P(σ) be the predicate: “(σ ∈ Pre(ϕ) ∧ (σ, 〈σs, σc〉) ∈ storeϕ) =⇒

(σs |= ϕ ∧ 〈Reach(σs),max4({w 4 σc | w ∈ Σn
c }), 1〉 ∈ W0)”. Let us prove by

induction that for any σ ∈ Σ∗, P(σ) holds.
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Induction basis: if ε ∈ Pre(ϕ), then following the definition of Pre(ϕ) (Def-
inition 4.10), G(Reach(ε), ε) 6= ∅. Thus ε ∈ G(Reach(ε), ε) (since ε is the only
word satisfying ε 4 ε). This means that Reach(ε) after ε = Reach(ε) ∈ F , and
thus that ε |= ϕ.

Moreover, since ε ∈ G(Reach(ε), ε), 〈Reach(ε) after ε,max({w 4 ε−1 . ε |
w ∈ Σn

c }), 1〉 = 〈Reach(ε), ε, 1〉 ∈ W0.
Considering that (ε, 〈ε, ε〉) ∈ storeϕ, this means that P(ε) holds.

Induction step: Suppose now that, for σ ∈ Σ∗, P(σ) holds. Let us consider
a ∈ Σ, (σ, 〈σs, σc〉) ∈ storeϕ, and (σ . a, 〈σt, σd〉) ∈ storeϕ.

Let us prove that P(σ . a) holds.
We consider three different cases:

• (σ . a) 6∈ Pre(ϕ). Then P(σ . a) holds.

• (σ . a) ∈ Pre(ϕ) ∧ σ 6∈ Pre(ϕ). Then, since Pre(ϕ) is extension-closed, it
follows that σ . a ∈ {w ∈ Σ∗ | G(Reach(w|Σu), w|Σc) 6= ∅}, meaning that
G(Reach((σ . a)|Σu), (σ . a)|Σc) 6= ∅. Moreover, since σ 6∈ Pre(ϕ), following
lemma A.13, σs = σ|Σu and σc = σ|Σc . Now, we consider two cases:

– If a ∈ Σu, then (σ.a)|Σu = σ|Σu .a = σs.a, and (σ.a)|Σc = σ|Σc = σc, thus
G(Reach((σ.a)|Σu), (σ.a)|Σc) = G(Reach(σs . a), σc) 6= ∅, meaning that
σ′s = (σs . a)−1 . σt ∈ G(Reach(σs . a), σc) (according to Definition 4.9).
Thus, following the definition of G (Definition 4.8), Reach(σs . a) after
σ′s = Reach(σs . a . σ

′
s) = Reach(σt) ∈ F , and 〈Reach(σs . a) after σ′s,

max4({w 4 σ′−1
s . (σc) | w ∈ Σn

c }), 1〉 = 〈Reach(σt),max4({w 4 σd |
w ∈ Σn

c }), 1〉 ∈ W0. Since Reach(σt) ∈ F , σt |= ϕ.
This means that P(σ . a) holds.

– If a ∈ Σc, then (σ . a)|Σu = σ|Σu = σs, and (σ . a)|Σc = σ|Σc . a =
σc . a. Thus, G(Reach(σs), σc . a) 6= ∅, meaning that σ′′s = σ−1

s . σt ∈
G(Reach(σs), σc . a). As in the case where a ∈ Σu, it follows that
〈Reach(σt),max4({w 4 σd | w ∈ Σn

c }), 1〉 ∈ W0 and thus σt |= ϕ.
This means that P(σ . a) holds.

Thus, if σ . a ∈ Pre(ϕ) but σ 6∈ Pre(ϕ), P(σ . a) holds.

• σ ∈ Pre(ϕ) (and then (σ . a) ∈ Pre(ϕ) since Pre(ϕ) is extension-closed).
Then, by induction hypothesis, P(σ) holds, meaning that σs |= ϕ and
〈Reach(σs),max4({w 4 σc | w ∈ Σn

c }), 1〉 ∈ W0. Let us note σmc =
max4({w 4 σc | w ∈ Σn

c }). Again, we consider two cases:

– If a ∈ Σu, then, since 〈Reach(σs), σ
m
c , 1〉 ∈ W0, following lemma A.11,

since (〈Reach(σs), σ
m
c , 1〉, 〈Reach(σs) after a, σmc , 0〉) ∈ E3 ⊆ E,

〈Reach(σs) after a, σmc , 0〉 = 〈Reach(σs . a), σmc , 0〉 ∈ W0. Following
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lemma A.12, this means that G(Reach(σs . a), σc) 6= ∅, thus σ′s =
(σs .a)−1 .σt ∈ G(Reach(σs .a), σc). It follows that Reach(σs .a.σ

′
s) =

Reach(σt) ∈ F , and that 〈Reach(σs . a),max4({w 4 σ′−1
s . σc | w ∈

Σn
c }), 1〉 = 〈Reach(σt),max4({w 4 σd | w ∈ Σn

c }), 1〉 ∈ W0. Thus,
σt |= ϕ and 〈Reach(σt),max4({w 4 σd | w ∈ Σn

c }), 1〉 ∈ W0.
Thus P(σ . a) holds.

– If a ∈ Σc, then, since 〈Reach(σs), σ
m
c , 1〉 ∈ W0 and (〈Reach(σs), σ

m
c ,

1〉, 〈Reach(σs),max4({w 4 σc . a | w ∈ Σn
c )}, 0〉) ∈ E4 ∪ E5 ⊆ E,

following lemmas A.11 and A.12, this means that G(Reach(σs), σc .
a) 6= ∅. Thus, σ′′s = σ−1

s . σt ∈ G(Reach(σs), σc . a). As in the
previous case, this means that σt |= ϕ and 〈Reach(σt),max4({w 4
σd | w ∈ Σn

c }), 1〉 ∈ W0.
Thus P(σ . a) holds.

Thus, if σ ∈ Pre(ϕ), P(σ . a) holds.

In all cases, P(σ . a) holds, meaning that P(σ) =⇒ P(σ . a).

Thus, by induction on σ, for any σ ∈ Pre(ϕ), if (σ, 〈σs, σb〉) ∈ storeϕ, then
σs |= ϕ and 〈Reach(σs), σc, 1〉 ∈ W0. In particular, for all σ ∈ Pre(ϕ), (σ, o) ∈
Eϕ =⇒ o = σs |= ϕ).

This means that Eϕ is sound with respect to ϕ in Pre(ϕ).

Proposition 4.3. Eϕ is compliant, as per Definition 4.3.

Proof. We have to show that for any σ ∈ Σ∗, if (σ, o) ∈ Eϕ, then the following
properties hold:

1. o 4Σc σ

2. o =Σu σ

3. ∀u ∈ Σu, (σ . u, o
′) ∈ Eϕ =⇒ o . u 4 o′.

We start by proving that items 1 and 2 hold. For σ ∈ Σ∗, let P(σ) be the
predicate: “((σ, 〈σs, σc〉) ∈ storeϕ) =⇒ (σs|Σc . σc = σ|Σc ∧ σs|Σu = σ|Σu)”. Let
us prove that for all σ ∈ Σ∗, P(σ) holds.

Induction basis : (ε, 〈ε, ε〉) ∈ storeϕ, and ε|Σc = ε|Σc . ε, and ε|Σu = ε|Σu .
Thus P(ε) holds.
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Induction step : Let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us
consider (σ, 〈σs, σc〉) ∈ storeϕ, a ∈ Σ, and (σ . a, 〈σt, σd〉) ∈ storeϕ. Let us
prove that P(σ . a) holds.

• If a ∈ Σu, then, σt = σs . a . σ
′
s, where σ′s is defined in Definition 4.9, and

σt . σd = σs . a . σc. Therefore, σt|Σc . σd = (σt . σd)|Σc , since σd ∈ Σ∗c. Thus,
σt|Σc . σd = σs|Σc . σc. Since P(σ) holds, σt|Σc . σd = σ|Σc = (σ . a)|Σc .
Moreover, since σ′s ∈ Σ∗c, σt|Σu = σs|Σu . a. Since P(σ) holds, this means
that σt|Σu = σ|Σu . a = (σ . a)|Σu .
Thus P(σ . a) holds.

• Otherwise, a ∈ Σc, and then σt = σs . σ
′′
s , where σ′′s is defined in Defi-

nition 4.9, and σt . σd = σs . σc . a. Therefore, σt|Σc . σd = (σt . σd)|Σc =
(σs . σc . a)|Σc = σs|Σc . σc . a. Since P(σ) holds, this means that σt|Σc . σd =
σ|Σc . a = (σ . a)|Σc .
Moreover, since σ′′s ∈ Σ∗c, σt|Σu = σs|Σu . Since P(σ) holds, this means
that σt|Σu = σ|Σu = (σ . a)|Σu .
Thus P(σ . a) holds.

In both cases, P(σ . a) holds.
Thus, for any σ ∈ Σ∗, and a ∈ Σ, P(σ) =⇒ P(σ . a).

Thus, by induction on σ, for all σ ∈ Σ∗, P(σ) holds, meaning that (σ, 〈σs, σc〉) ∈
storeϕ =⇒ (σs|Σc . σc = σ|Σc ∧σs|Σu = σ|Σu). If (σ, o) ∈ Eϕ, then o = σs, mean-
ing that o|Σc = σs|Σc 4 σs|Σc . σc = σ|Σc , and o|Σu = σs|Σu = σ|Σu . Thus, items 1
and 2 hold.

Now, let us prove that item 3 holds. Let us consider σ ∈ Σ∗, u ∈ Σu,
(σ, 〈σs, σc〉) ∈ storeϕ, and (σ . u, 〈σt, σd〉) ∈ storeϕ, then σt = σs . u . σ

′
s, where

σ′s is defined in Definition 4.9. Thus σs . u 4 σt, meaning that if (σ, o) ∈ Eϕ

and (σ . u, o′) ∈ Eϕ, then o = σs, and o′ = σt, and thus o . u 4 o′. Thus item 3
holds.

Thus, Eϕ is compliant with respect to Σu and Σc.

Proposition 4.4. Eϕ is optimal in Pre(ϕ), as per Definition 4.4.

Proof. Let E be an enforcement function such that compliant(E,Σu,Σc) holds,
and let us consider σ ∈ Pre(ϕ), a ∈ Σ such that (σ, o) ∈ E∩Eϕ, (σ.a, o′) ∈ Eϕ

and (σ . a, p′) ∈ E.
Then, we have to prove that p′ 4 o′.
Let us consider (σ, 〈σs, σc〉) ∈ storeϕ. Let us suppose that o′ ≺ p′. We then

show that there exists σu ∈ Σ∗u such that if (σ . a . σu, pu) ∈ E, then pu 6|= ϕ,
meaning that E is not sound, and thus that if E is sound then o′ ≺ p′ does
not hold. We distinguish two cases:
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• if a ∈ Σu, then, since E is compliant, and (σ, o) ∈ E ∩ Eϕ, there exists
σs1 4 σc such that p′ = o . a . σs1 = σs . a . σs1. Moreover, there exists
σ′s 4 σc such that o′ = o . a . σ′s = σs . a . σ

′
s. Since o′ ≺ p′, σ′s ≺ σs1.

Considering that σ′s = max4(G(Reach(σs . a), σc) ∪ {ε}), it follows that
σs1 6∈ G(Reach(σs . a), σc). Following the definition of G (Definition 4.8),
this means that either σs1 64 σc; Reach(σs . a) after σs1 6∈ F ; or that
〈Reach(σs .a) after σs1, σ

−1
s1 .σc, 1〉 6∈ W0. Since E ′ is compliant, σs1 4 σc,

thus at least one of the two last conditions holds.
If Reach(σs . a) after σs1 = Reach(σs . a . σs1) = Reach(p′) 6∈ F , then
p′ 6|= ϕ.
Otherwise, 〈Reach(σs . a) after σs1, σ

−1
s1 . σc, 1〉 6∈ W0. Then, 〈Reach(σs .

a . σs1), σ−1
s1 . σc, 1〉 ∈ W1, meaning that P1 has a winning strategy. Since

receiving controllable events only helps P0 to win, this means that there
exists an uncontrollable event u ∈ Σu such that 〈Reach(σs . a . σs1) after
u, σ−1

s1 . σc, 0〉 ∈ W1. Then, since W1 is the set of winning nodes for P1,
if (σ . a . u, p′′) ∈ E, then 〈Reach(p′′), p′′−1

|Σc
. (σ . a . u)|Σc , 1〉 ∈ W1. Then

again, there exists an uncontrollable event u′ such that the output of E
after receiving it reaches a node in W1 again. In the end, it is possible
to reach a node that is not a Büchi node (i.e. in F × Σn

c × {0, 1}), and
that is in W1. Thus, there exists σu ∈ Σ∗u such that if (σ . a . σu, pu) ∈ Eϕ,
then Reach(pu) 6∈ F , meaning that pu 6|= ϕ.

• Otherwise, a ∈ Σc, and then the proof is the same as in the case where
a ∈ Σu, by replacing occurrences of “σs . a” by “σs”, and occurrences of
“σc” by “σc . a”.

In both cases, there exists σu such that if (σ . a . u, pu) ∈ E, then pu 6|= ϕ.
Since σ . a . u ∈ Pre(ϕ), it follows that E is not sound in Pre(ϕ).

Thus, if E is sound in Pre(ϕ), it follows that p′ 4 o′.
This means that Eϕ is optimal in Pre(ϕ).

Proposition 4.5. The output o of the enforcement monitor E as per Defini-
tion 3.12 for input σ is the output of Eϕ as per Definition 4.9 with input σ,
i.e. (σ, o) ∈ Eϕ.

Proof. Let us introduce some notation for this proof: for a word w ∈ ΓE∗,
we note input(w) = Π1(w(1)) . Π1(w(2)) . . .Π1(w(|w|)), the word obtained
by concatenating the first members (the inputs) of w. In a similar way, we
note output(w) = Π3(w(1)) . Π3(w(2)) . . . Π3(w(|w|)), the word obtained by
concatenating all the third members (outputs) of w. Since all configurations
are not reachable from cE0 , for w ∈ ΓE∗, we note ReachE(w) = c whenever
cE0 ↪

w−→E c, and ReachE(w) = ⊥ if such a c does not exist. We also define the
Rules function as follows:

Rules :

{
Σ∗ → ΓE∗

σ 7→ max4({w ∈ ΓE∗ | input(w) = σ ∧ Reach(w) 6= ⊥})
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For a word σ ∈ Σ∗, Rules(σ) is the trace of the longest valid run in E , i.e. the
sequence of all the rules that can be applied with input σ. We then extend the
definition of output to words in Σ∗: for σ ∈ Σ∗, output(σ) = output(Rules(σ)).
In the same way, we note ReachE(σ) = ReachE(Rules(σ)).

We have to show that, for any σ ∈ Σ∗, output(σ) = o, where (σ, o) ∈ Eϕ.
For σ ∈ Σ∗, let P(σ) be the predicate: “((σ, 〈σs, σc〉) ∈ storeϕ ∧ReachE(σ) =

〈q, σEc 〉) =⇒ (q = Reach(σs) ∧ σc = σEc ∧ σs = output(σ))”.
Let us prove by induction that for all σ ∈ Σ∗, P(σ) holds.

Induction basis: (ε, ε) ∈ Eϕ, and output(ε) = ε. Moreover, (ε, 〈ε, ε〉) ∈
storeϕ, and ReachE(ε) = cE0 . Therefore, as cE0 = 〈q0, ε〉, P(ε) holds, because
Reach(ε) = q0.

Induction step: Let us suppose now that for some σ ∈ Σ∗, P(σ) holds. Let
us consider (σ, 〈σs, σc〉) ∈ storeϕ, q = Reach(σs), a ∈ Σ, and (σ . a, 〈σt, σd〉) ∈
storeϕ. Let us prove that P(σ . a) holds.

Since P(σ) holds, ReachE(σ) = 〈q, σc〉 and σs = output(σ). We consider
two cases:

• if a ∈ Σu, then, considering σ′s = (σs . a)−1 . σt, σt = σs . a . σ
′
s. Since

a ∈ Σu, rule pass-uncont can be applied: let us consider q′ = q after a.
Then, 〈q, σc〉 ↪

a/pass-uncont(a)/a−−−−−−−−−−−→E 〈q′, σc〉.
Then, if σ′s = ε, G(q′, σc) = ∅ or G(q′, σc) = {ε}, meaning that no other
rule can be applied, and thus P(σ . a) holds.

Otherwise, σ′s 6= ε, and thus σ′s ∈ G(q′, σc), meaning that G(q′, σc) 6= ∅
and G(q′, σc) 6= {ε}, thus rule dump(σc(1)) can be applied. Since σ′s 4
σc, σ′s(1) = σc(1), thus if q1 = q′ after σc(1), q1 = q′ after σ′s(1). If
σ′s(1)−1 . σ′s 6= ε, then σ′s(1)−1 . σ′s ∈ G(q1, σc(1)−1 . σc), meaning that
rule dump can be applied again. Rule dump can actually be applied |σ′s|
times, since for all w 4 σ′s, if w 6= σ′s, then w−1 . σ′s 6= ε and w−1 . σ′s ∈
G(q′ after w,w−1 .σc). Thus, after rule dump has been applied |σ′s| times,
the configuration reached is 〈q′ after σ′s, σ

′−1
s . σc〉. Moreover, the output

produced by all the rules dump is σ′s. Since no rule can be applied after
the |σ′s| applications of the rule dump, output(σ.a) = output(σ) . a .σ′s =
σt, and ReachE(σ . a) = 〈q′ after σ′s, σ

′−1
s . σc〉 = 〈q after a after σ′s, σd〉 =

〈Reach(σs) after a after σ′s, σd〉 = 〈Reach(σs.a.σ
′
s), σd〉 = 〈Reach(σt), σd〉.

Thus, if a ∈ Σu, P(σ . a) holds.

• Otherwise, a ∈ Σc, then, considering σ′′s = σ−1
s . σt, σt = σs . σ

′′
s . Since

a ∈ Σc, it is possible to apply the store-cont rule, and 〈q, σc〉 after
a/ store-cont(a)/ε = 〈q, σc . a〉. Then as in the case where a ∈ Σu,
rule dump can be applied |σ′′s | times, meaning that the configuration
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reached is then 〈q after (σc . a)(1) . (σc . a)(2) · · · (σc . a)(|σ′′s |), (σc .
a)(|σ′′s | + 1) . (σc . a)(|σ′′s | + 2) · · · (σc . a)(|σc . a|)〉. Since σ′′s 4 σc . a,
(σc . a)(1) . (σc . a)(2) · · · (σc . a)(|σ′′s |) = σ′′s , thus Reach(Rules(σ . a)) =
〈q after σ′′s , σ

′′−1
s . (σc . a)〉 = 〈Reach(σt), σd〉. Moreover, output(σ . a) =

output(σ) . σ′′s = σs . σ
′′
s = σt.

Thus, if a ∈ Σc, P(σ . a) holds.

This means that P(σ) =⇒ P(σ . a).

Thus, by induction on σ, for all σ ∈ Σ∗, P(σ) holds. In particular, for all
σ ∈ Σ∗, if (σ, 〈σs, σc〉) ∈ storeϕ and (σ, o) ∈ Eϕ, then o = σs = output(σ).

A.2.2 Proofs for the timed setting (Section 4.3)

Proposition 4.6. Eϕ as per Definition 4.19 is an enforcement function, as
per Definition 4.11.

Proof. We have to prove the two following properties:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0,∀t′ ≥ t,
〈(σ, t), o1〉 ∈ Eϕ ∧〈(σ, t′), o2〉 ∈ Eϕ =⇒ o1 4 o2

2. ∀σ ∈ tw(Σ),∀δ ∈ R≥0,∀a ∈ Σ,
(〈(σ, time(σ . (δ, a))), o3〉 ∈ Eϕ ∧〈(σ . (δ, a), time(σ . (δ, a))), o4〉 ∈ Eϕ)

=⇒ o3 4 o4

For σ ∈ tw(Σ), let P(σ) be the predicate “∀t ∈ R≥0,∀t′ ≥ t,∀(δ, a) ∈ R≥0 ×
Σ, (〈(σ, t), o1〉 ∈ Eϕ ∧〈(σ, t′), o2〉 ∈ Eϕ ∧〈(σ, time(σ . (δ, a))), o3〉 ∈ Eϕ ∧〈(σ .
(δ, a), time(σ . (δ, a))), o4〉 ∈ Eϕ) =⇒ (o1 4 o2 ∧ o3 4 o4)”.

Let us show by induction that P(σ) holds for any σ ∈ tw(Σ):

Induction basis: for σ = ε, let us consider t ∈ R≥0 and t′ ≥ t. Then,
〈(ε, t), ε〉 ∈ Eϕ, and 〈(ε, t′), ε〉 ∈ Eϕ. Moreover, for (δ, a) ∈ R≥0×Σ, 〈(ε, δ), ε〉 ∈
Eϕ, thus if 〈((δ, a), δ), o4〉 ∈ Eϕ, then ε 4 o4. Thus, P(ε) holds.

Induction step: suppose that P(σ) holds for some σ ∈ tw(Σ). Then, let
us consider (δ, a) ∈ R≥0 × Σ, t ∈ R≥0, and t′ ≥ t. We first prove that
the first condition holds. Let us consider 〈(σ, t), o1〉 ∈ Eϕ, 〈(σ, t′), o2〉 ∈ Eϕ,
〈(σ . (δ, a), t), o′1〉 ∈ Eϕ, and 〈(σ . (δ, a), t′), o′2〉 ∈ Eϕ. We have to prove that
o′1 4 o′2.

Three cases are possible:

1. t ≤ t′ < time(σ . (δ, a)). Then obs(σ . (δ, a), t′) = obs(σ, t′), and obs(σ .
(δ, a), t) = obs(σ, t). Let us consider (obs(σ, t), 〈σs1, σc〉) ∈ storeϕ and
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(obs(σ, t′), 〈σs2, σ′c〉) ∈ storeϕ. Then, considering the definition of Eϕ

(Definition 4.19), o1 = obs(σs1, t) = o′1, and o2 = obs(σs2, t
′) = o′2 (since

obs(σ, t) = obs(σ . (δ, a), t) and obs(σ, t′) = obs(σ . (δ, a), t′)). Following
the induction hypothesis, P(σ) holds, meaning that o1 4 o2. This means
that o′1 4 o′2.

2. t < time(σ . (δ, a)) ≤ t′. Then, obs(σ . (δ, a), t) = obs(σ, t), meaning that
(see previous case) o′1 = o1. Let us consider 〈(σ, time(σ . (δ, a))), o1a〉 ∈
Eϕ and 〈(σ . (δ, a), time(σ . (δ, a))), o1b〉 ∈ Eϕ. Following the induction
hypothesis, since P(σ) holds, o1 4 o1a 4 o1b. Thus, we have to show
that o1b 4 o2. Since time(σ . (δ, a)) ≤ t′, obs(σ . (δ, a), time(σ . (δ, a))) =
σ.(δ, a) = obs(σ.(δ, a), t′), thus if (σ.(δ, a), 〈σs2, σc〉) ∈ storeϕ, then o1b =
obs(σs2, time(σ . (δ, a))), and o′2 = obs(σs2, t

′). Since time(σ . (δ, a)) ≤ t′,
this means that o1b 4 o′2.

Thus o′1 4 o′2.

3. time(σ . (δ, a)) ≤ t ≤ t′. Then, obs(σ . (δ, a), t) = obs(σ . (δ, a), t′) =
σ . (δ, a). Thus, if (σ . (δ, a), 〈σs0, σc〉) ∈ storeϕ, then o′1 = obs(σs0, t) and
o′2 = obs(σs0, t

′). Since t ≤ t′, this means that o′1 4 o′2.

Thus, in all cases, the first required condition holds (i.e. o′1 4 o′2).
Let us now consider (δ′, a′) ∈ R≥0×Σ, 〈(σ.(δ, a), time(σ.(δ, a).(δ′, a′))), o′3〉 ∈

Eϕ, and 〈(σ.(δ, a).(δ′, a′), time(σ.(δ, a).(δ′, a′))), o′4〉 ∈ Eϕ. We have to show that
o′3 4 o′4. Since obs(σ. (δ, a), time(σ. (δ, a) . (δ′, a′))) = σ. (δ, a) and obs(σ. (δ, a) .
(δ′, a′), time(σ. (δ, a) . (δ′, a′))) = σ. (δ, a) . (δ′, a′), if (σ. (δ, a), 〈σs3, σc〉) ∈ storeϕ
and (σ . (δ, a) . (δ′, a′), 〈σs4, σ′c〉) ∈ storeϕ, then o′3 = obs(σs3, time(σ . (δ, a) .
(δ′, a′))) and o′4 = obs(σs4, time(σ . (δ, a) . (δ′, a′))). Following the definition
of storeϕ (Definition 4.19), it is clear that o′3 4 σs4. Thus, since time(o′3) ≤
time(σ . (δ, a) . (δ′, a′)), o′3 4 o′4.

This means that P(σ . (δ, a)) holds.
Thus, for any σ ∈ tw(Σ) and (δ, a) ∈ R≥0 × Σ, P(σ) =⇒ P(σ . (δ, a)).

Thus, by induction on σ, P(σ) holds for any σ ∈ tw(Σ). Thus Eϕ is an
enforcement function.

Lemma A.14. ∀σ ∈ tw(Σ),∀t ≥ time(σ), (σ 6∈ Pre(ϕ, t) ∧ (σ, 〈σs0, σc〉) ∈
storeϕ) =⇒ (obs(σs0, t) = σ|Σu ∧ ΠΣ(nobs(σs0, t)) . σc = ΠΣ(σ|Σc)).

Proof. For σ ∈ tw(Σ) and t ≥ time(σ), let P(σ, t) be the predicate “(σ 6∈
Pre(ϕ, t) ∧ (σ, 〈σs0, σc〉) ∈ storeϕ) =⇒ (obs(σs0, t) = σ|Σu ∧ ΠΣ(nobs(σs0, t)) .
σc = ΠΣ(σ|Σc))”, and P(σ) be the predicate “∀t ≥ time(σ),P(σ, t)”. Let us
then prove by induction on σ that P(σ) holds for any σ ∈ tw(Σ).
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Induction basis: for σ = ε, let us consider t ∈ R≥0. Then, (ε, 〈ε, ε〉) ∈
storeϕ. Since obs(ε, t) = ε|Σu , and ΠΣ(nobs(ε|Σc , t)) . ε = ΠΣ(ε|Σc), it follows
that P(ε, t) holds, and thus P(ε) holds.

Induction step: let us suppose that for σ ∈ tw(Σ), P(σ) holds. Let us
consider (δ, a) ∈ R≥0 × Σ, (σ, 〈σs0, σc〉) ∈ storeϕ, (σ . (δ, a), 〈σt0, σd〉) ∈ storeϕ,
and σs = obs(σs0, time(σ . (δ, a))). Let us also consider t ≥ time(σ . (δ, a)).

If σ . (δ, a) ∈ Pre(ϕ, t), then P(σ . (δ, a), t) trivially holds.
Let us consider that σ . (δ, a) 6∈ Pre(ϕ, t).

• If a ∈ Σu, then σt0 = σs . (time(σ . (δ, a)) − time(σs), a) . σ′s for some
σ′s ∈ tw(Σ). Since σ . (δ, a) 6∈ Pre(ϕ, t), this means that for any t′ ≤
t, G(Reach((σ . (δ, a))|Σu , t

′),ΠΣ(obs(σ . (δ, a), t′))|Σc) = ∅. This means
that for any t′ ≤ t − time(σ . (δ, a)), t′ 6∈ T(Reach((σ . (δ, a))|Σu),ΠΣ(σ .
(δ, a))|Σc). Now, by induction hypothesis, since σ 6∈ Pre(ϕ, time(σ.(δ, a)))
(otherwise σ . (δ, a) would be in Pre(ϕ, t)), σ|Σu = σs, and ΠΣ(nobs(σs0,
time(σ . (δ, a))))|Σc . σc = ΠΣ(σ)|Σc . Thus, for any t′ ≤ t− time(σ . (δ, a)),
t′ 6∈ T(Reach(σs . (time(σ . (δ, a)) − time(σs), a)), ΠΣ(nobs(σs0, time(σ .
(δ, a)))) . σc). Thus, obs(σ′s, t − time(σ . (δ, a))) = ε. It follows that
obs(σt0, t) = σs .(time(σ.(δ, a))−time(σs), a).obs(σ′s, t−time(σ.(δ, a))) =
σs .(time(σ.(δ, a))−time(σs), a) = (σ.(δ, a))|Σu and ΠΣ(nobs(σt0, t)).σd =
σ′s .σd = ΠΣ(nobs(σs0, time(σ.(δ, a)))).σc = ΠΣ(σ)|Σc = ΠΣ((σ.(δ, a))|Σc).
Thus P(σ . (δ, a), t) holds.

• Otherwise, a ∈ Σc, and there exists σ′′s such that σt0 = σs . σ
′′
s . Since

σ . (δ, a) 6∈ Pre(ϕ, t), for any t′ ≤ t, G(Reach((σ . (δ, a))|Σu , t
′),ΠΣ(obs(σ .

(δ, a), t′))|Σc) = ∅. Thus, for any t′ ≤ t − time((σ . (δ, a))|Σu), t′ 6∈
T(Reach((σ.(δ, a))|Σu),ΠΣ((σ.(δ, a))|Σc)). Now, by induction hypothesis,
considering that (σ . (δ, a))|Σu = σ|Σu and (σ . (δ, a))|Σc = σ|Σc . (time(σ .
(δ, a))− time(σ|Σc), a), and since σ 6∈ Pre(ϕ, time(σ . (δ, a))), for any t′ ≤
t− time(σ. (δ, a)), t′ 6∈ T(Reach(σs, time(σ. (δ, a))),ΠΣ(nobs(σs0, time(σ.
(δ, a)))) . σc . a). Thus, obs(σ′′s −t (time(σ . (δ, a))− time(σs)), t− time(σ .
(δ, a))) = ε. Thus, obs(σ′′s , t−time(σ.(δ, a))+time(σ.(δ, a))−time(σs))−t

(t− time(σ . (δ, a))) = ε, meaning that obs(σ′′s , t− time(σs)) = ε.

Thus, obs(σt0, t) = σs.obs(σ′′s , t−time(σs)) = σs = σ|Σu , and ΠΣ(nobs(σt0,
t)) . σd = ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc . a = ΠΣ(σ|Σc) . a = ΠΣ((σ .
(δ, a))|Σc).

Thus P(σ . (δ, a), t) holds.

In both cases, P(σ . (δ, a), t) holds. Thus, it holds for any t ≥ time(σ . (δ, a)),
meaning that P(σ . (δ, a)) holds.

This means that for any σ ∈ tw(Σ) and (δ, a) ∈ R≥0 × Σ, P(σ) =⇒
P(σ . (δ, a)).
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Thus, we have shown by induction on σ that P(σ) holds for any σ ∈ tw(Σ).

Lemma A.15. ∀q ∈ Q, ∀w ∈ Σ∗c,∀σ ∈ tw(Σ),∀t ∈ R≥0, σ ∈ G(q, w) =⇒
nobs(σ, t)−t (t− time(obs(σ, t))) ∈ G(q after (σ, t),ΠΣ(obs(σ, t))−1 . w).

Proof. Let us consider q, w and σ such that σ ∈ G(q, w), and t ∈ R≥0. Follow-
ing the definition of G (Definition 4.18), this means that the three following
properties hold:

1. ΠΣ(σ) 4 w,

2. q after σ ∈ FG,

3. ∀t ∈ R≥0,∀v ∈ Vs,
q after (σ, t) ∈ v =⇒ 〈v,maxbuffer(ΠΣ(obs(σ, t))−1 . w), 1〉 ∈ W0.

Now, considering σ′ = nobs(σ, t) −t (t − time(obs(σ, t))), σ′ satisfies the
following properties:

1. ΠΣ(σ′) = ΠΣ(nobs(σ, t)−t (t− time(obs(σ, t))))

= ΠΣ(nobs(σ, t)),
thus,
ΠΣ(obs(σ, t)) . ΠΣ(σ′) = ΠΣ(obs(σ, t)) . ΠΣ(nobs(σ, t))

= ΠΣ(σ).
Since ΠΣ(σ) 4 w, this means that:
ΠΣ(σ′) 4 ΠΣ(obs(σ, t))−1 . w.

2. (q after (σ, t)) after σ′ = (q after (σ, t)) after (nobs(σ, t)−t

(t− time(obs(σ, t))))

= q after σ.
Thus, (q after (σ, t)) after σ′ ∈ FG.

3. For t′ ∈ R≥0,
(q after (σ, t)) after (σ′, t′) = (q after (σ, t)) after (nobs(σ, t)−t

(t− time(obs(σ, t))), t′)

= q after (σ, t+ t′).
Since t + t′ ∈ R≥0, then if v ∈ Vs is such that (q after (σ, t)) after
(σ′, t′) ∈ v, then 〈v,maxbuffer(ΠΣ(obs(σ, t + t′))−1 . w), 1〉 ∈ W0. More-
over, since t ≥ time(obs(σ, t)), ΠΣ(obs(σ, t+t′))−1 .w = ΠΣ(obs(σ′, t′))−1 .
(ΠΣ(obs(σ, t))−1 . w). Thus, 〈v,maxbuffer(ΠΣ(obs(σ′, t′))−1 . (ΠΣ(obs(σ,
t))−1 . w)), 1〉 ∈ W0.

This means that σ′ = nobs(σ, t) −t (t − time(obs(σ, t))) ∈ G(q after (σ, t),
ΠΣ(obs(σ, t))−1 . w).

Runtime Enforcement of (Timed) Properties with Uncontrollable Events 145



A.2. Proofs of Chapter 4

Proposition 4.7. Eϕ is sound with respect to ϕ in Pre(ϕ) as per Defini-
tion 4.12.

Proof. Notation from Definition 4.19 is to be used in this proof: for σ ∈
tw(Σ), if (σ, 〈σs0, σc〉) ∈ storeϕ, (δ, a) ∈ R≥0 × Σ, t = time(σ . (δ, a)), and
σs = obs(σs0, t), then, for q ∈ Q, and w ∈ Σ∗c,

T(q, w) = {t′ ∈ R≥0 | ∀t′′ < t′,G(q after (ε, t′′), w) = ∅},

κϕ(q, w) = min
lex

(max
4

({ε} ∪
⋃

t′∈T(q,w)

{w′ +t t
′ | w′ ∈ G(q after (ε, t′), w)}))

bufc = ΠΣ(nobs(σs0, t)) . σc,

and

σ′s = κϕ(Reach(σs . (t− time(σs), a)), bufc) σ′c = ΠΣ(σ′s)
−1 . bufc,

σ′′s = κϕ(Reach(σs, t), bufc . a) +t (t− time(σs)) σ′′c = ΠΣ(σ′′s )−1 . (bufc . a).

We have to prove that for any (σ, t) ∈ Pre(ϕ), there exists t′ ≥ t such that
for any t′′ ≥ t′, if 〈(σ, t′′), o〉 ∈ Eϕ, then o |= ϕ.

For σ ∈ tw(Σ), and t ≥ time(σ), let P(σ, t) be the predicate “((σ, t) ∈
Pre(ϕ)∧ (σ, 〈σs, σc〉) ∈ storeϕ) =⇒ (σs |= ϕ∧ nobs(σs, t)−t (t− time(obs(σs,
t))) ∈ G(Reach(σs, t), ΠΣ(nobs(σs, t)) . σc))”. Let also P(σ) be the predicate:
“∀t ≥ time(σ),P(σ, t)”. Let us show by induction that for any σ ∈ tw(Σ), P(σ)
holds.

Induction basis: for σ = ε, let us consider t ∈ R≥0.

• If ε 6∈ Pre(ϕ, t), then, P(ε) trivially holds.

• Otherwise, ε ∈ Pre(ϕ, t). Then, following the definition of Pre(ε, t) (Def-
inition 4.20), there exists t′ ≤ t such that G(Reach(ε|Σu , t

′), ε) 6= ∅,
meaning that G(Reach(ε, t′), ε) 6= ∅. Thus, following the definition of
G(Reach(ε, t′), ε) (Definition 4.18), ε ∈ G(Reach(ε, t′), ε), and Reach(ε) ∈
FG, thus ε |= ϕ. Since (ε, 〈ε, ε〉) ∈ storeϕ and ε |= ϕ, P(ε, t) holds.

Thus, in both cases, P(ε, t) holds, meaning that P(ε) holds.

Induction step: suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider
(δ, a) ∈ R≥0×Σ, t ≥ time(σ.(δ, a)), (σ, 〈σs0, σc〉) ∈ storeϕ, σs = obs(σs0, time(σ.
(δ, a))), (σ . (δ, a), 〈σt0, σd〉) ∈ storeϕ, and σt = obs(σt0, t). We have to prove
that (σ . (δ, a), t) ∈ Pre(ϕ) =⇒ σt |= ϕ∧ nobs(σt, t)−t (t− time(obs(σt, t))) ∈
G(Reach(σt, t),ΠΣ(nobs(σt, t)) . σd).

• If σ . (δ, a) 6∈ Pre(ϕ, t), then P(σ . (δ, a), t) trivially holds.
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• If σ . (δ, a) ∈ Pre(ϕ, t) ∧ σ 6∈ Pre(ϕ, time(σ . (δ, a))), then, since σ 6∈
Pre(ϕ, time(σ.(δ, a))), following lemma A.14, since obs(σ, time(σ.(δ, a))) =
σ, obs(σs0, time(σ . (δ, a))) = σs = obs(σ|Σu , time(σ . (δ, a))) = σ|Σu and
ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc = ΠΣ(σ|Σc). Since σ . (δ, a) ∈ Pre(ϕ, t),
and σ 6∈ Pre(ϕ, time(σ . (δ, a))), following the definition of Pre(ϕ, t)
and Pre(ϕ, time(σ . (δ, a))) (Definition 4.20), there exists t′ ∈ R≥0 such
that time(σ . (δ, a)) ≤ t′ ≤ t, and G(Reach((σ . (δ, a))|Σu , t

′),ΠΣ(obs(σ .
(δ, a), t′)|Σc)) 6= ∅. Let us consider the minimum such t′. Since t′ ≥
time(σ . (δ, a)), then obs(σ . (δ, a), t′) = σ . (δ, a). This means that:

G(Reach((σ . (δ, a))|Σu , t
′),ΠΣ((σ . (δ, a))|Σc)) 6= ∅. (A.2)

– If a ∈ Σu, then considering that (σ . (δ, a))|Σu = σ|Σu . (time(σ .
(δ, a)) − time(σ|Σu), a) = σs . (time(σ . (δ, a)) − time(σs), a), and
ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc = ΠΣ(σ|Σc) = ΠΣ((σ . (δ, a))|Σc),
(A.2) becomes:

G(Reach(σs . ( time(σ . (δ, a))− time(σs), a), t′),

ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc) 6= ∅.

Let us consider δ′ = time(σ . (δ, a)) − time(σs), such that time(σ .
(δ, a)) = time(σs . (δ

′, a)), and t′′ = t′ − time(σ . (δ, a)).
Then, t′ is the minimum number such that G(Reach(σs . (δ′, a),
t′), bufc) 6= ∅. Therefore, t′′ ∈ T(Reach(σs . (δ

′, a)), bufc).
Thus, there exists w′ ∈ G(Reach(σs . (δ

′, a)) after (ε, t′′), bufc) such
that σ′s = w′ +t t

′′. Thus, σ′s −t t
′′ ∈ G(Reach(σs . (δ

′, a), t′), bufc).
Now, note that:
nobs(σt0, t) = obs(σt0, t)

−1 . σt0

= obs(σs . (δ
′, a) . σ′s, t)

−1 . σt0
Since t ≥ time(σ . (δ, a)) = time(σs . (δ

′, a)),
nobs(σt0, t) = (σs . (δ

′, a) . obs(σ′s, t− time(σs . (δ
′, a))))−1 . σt0

= obs(σ′s, t− time(σ . (δ, a)))−1.

((σs . (δ
′, a))−1 . (σs . (δ

′, a) . σ′s))

= obs(σ′s, t− time(σ . (δ, a)))−1 . σ′s
= nobs(σ′s, t− time(σ . (δ, a)))

We know that σ′s−tt
′′ ∈ G(Reach(σs .(δ

′, a), t′), bufc), thus following
lemma A.15, since t ≥ t′, t− t′ ≥ 0, and

nobs(σ′s −t t
′′, t− t′)−t (t− t′ − time(obs(σ′s −t t

′′, t− t′))) ∈
G(Reach(σs . (δ

′, a), t′) after (σ′s −t t
′′, t− t′),

ΠΣ(obs(σ′s −t t
′′, t− t′))−1 . bufc)

(A.3)
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Now, note that for any σ ∈ tw(Σ), t ∈ R≥0 and t′ ∈ R≥0,

nobs(σ −t t, t
′) =

{
nobs(σ, t+ t′)−t t

′ if delay(σ(1)) > t+ t′

nobs(σ, t+ t′) otherwise
The reason is that the operator −t affects only the first delay of the
word, thus if this delay is in obs(σ−t t, t

′), i.e. delay(σ(1)) ≥ t+ t′,
the remaining events are not changed by the −t operator.
Thus, if delay(σ′s(1)) > t − t′ + t′′ = t − t′ + t′ − time(σ . (δ, a)) =
t− time(σ . (δ, a)), then
nobs(σ′s −t t

′′, t− t′) = nobs(σ′s, t− t′ + t′′)−t t
′′

= nobs(σ′s, t− time(σ . (δ, a)))−t t
′′

Moreover, since delay(σ′s(1)) > t− time(σ . (δ, a)), obs(σ′s −t t
′′, t−

t′) = ε, and obs(σt0, t) = σs . (δ, a), thus:
nobs(σ′s−tt

′′, t− t′)−t (t− t′ − time(obs(σ′s −t t
′′, t− t′)))

= (nobs(σ′s, t− time(σ . (δ, a)))−t t
′′)−t (t− t′)

= nobs(σt0, t)−t (t− t′ + t′′)

= nobs(σt0, t)−t (t− time(σ . (δ, a)))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

On the other hand, if delay(σ′s(1)) ≤ t− time(σ . (δ, a)), then
nobs(σ′s −t t

′′, t− t′) = nobs(σ′s, t− time(σ . (δ, a)))
Moreover, since delay(σ′s(1)) ≤ t− time(σ . (δ, a)), obs(σ′s −t t

′′, t−
t′) = obs(σ′s, t− time(σ . (δ, a)))−t t

′′, thus
nobs(σ′s−tt

′′, t− t′)−t (t− t′ − time(obs(σ′s −t t
′′, t− t′)))

= nobs(σ′s, t− time(σ . (δ, a)))

−t (t− t′ − time(obs(σ′s, t− time(σ . (δ, a)))−t t
′′))

= nobs(σt0, t)

−t (t− t′ + t′′ − time(obs(σ′s, t− time(σ . (δ, a)))))

= nobs(σt0, t)−t (t− time(σ . (δ, a))−
time(obs(σ′s, t− time(σ . (δ, a)))))

= nobs(σt0, t)−t (t− time(σ . (δ, a)−
(time(obs(σt0, t))− time(σ . (δ, a)))))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Thus, in both cases, (A.3) becomes:

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
G(Reach(σs . (δ

′, a), t′) after (σ′s −t t
′′, t− t′),

ΠΣ(obs(σ′s −t t
′′, t− t′))−1 . bufc)

Now, since t′ ≥ time(σ . (δ, a)),
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Reach(σs.(δ
′, a), t′) after (σ′s −t t

′′, t− t′)
= Reach(σs . (δ

′, a)) after

(ε, t′ − time(σs . (δ
′, a))) after (σ′s −t t

′′, t− t′)
= Reach(σs . (δ

′, a)) after

((σ′s −t t
′′) +t t

′′, t− t′ + t′′)

= Reach(σs . (δ
′, a)) after (σ′s, t− time(σ . (δ, a)))

= Reach(σs . (δ
′, a) . σ′s, t)

= Reach(σt0, t)
and
ΠΣ(nobs(σt0, t)) . σd

= ΠΣ(nobs(σ′s, t− time(σ . (δ, a)))) . (ΠΣ(σ′s)
−1 . bufc)

= ΠΣ(obs(σ′s, t− time(σ . (δ, a)))−1 . σ′s).

(ΠΣ(σ′s)
−1 . bufc)

= ΠΣ(obs(σ′s, t− time(σ . (δ, a))))−1 . ΠΣ(σ′s).

(ΠΣ(σ′s)
−1 . bufc)

= ΠΣ(obs(σ′s, t− time(σ . (δ, a))))−1 . bufc

On the other hand,
ΠΣ(obs(σ′s −t t

′′, t− t′))−1 . bufc

= ΠΣ(obs(σ′s, t− time(σ . (δ, a)))−t t
′′)−1 . bufc

= ΠΣ(obs(σ′s, t− time(σ . (δ, a))))−1 . bufc

Thus, ΠΣ(nobs(σt0, t)) . σd = ΠΣ(obs(σ′s −t t
′′, t− t′))−1 . bufc.

Considering all this, (A.3) becomes:

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
G(Reach(σt0, t),ΠΣ(nobs(σt0, t)) . σd)

– Otherwise, a ∈ Σc. Then, (σ . (δ, a))|Σu = σ|Σu = σs, and ΠΣ((σ .
(δ, a))|Σc) = ΠΣ(σ|Σc) . a = ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc . a.
Thus, (A.2) becomes:

G(Reach(σs, t
′),ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc . a) 6= ∅

Since t′ is the minimum date that satisfies this equation, t′−time(σ.
(δ, a)) ∈ T(Reach(σs, time(σ . (δ, a))), bufc . a).
Thus, there exists w′ ∈ G(Reach(σs, time(σ . (δ, a))) after (ε, t′ −
time(σ. (δ, a))), bufc . a) such that σ′′s = (w′+t t

′− time(σ. (δ, a)))+t

(time(σ.(δ, a))−time(σs)). Thus, σ′′s−t (t′−time(σ.(δ, a))+time(σ.
(δ, a)) − time(σs)) = σ′′s −t (t′ − time(σs)) ∈ G(Reach(σs, t

′), bufc .
a). Let us consider t′′ = t′ − time(σs), such that σ′′s −t t

′′ ∈
G(Reach(σs, t

′), bufc . a).
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Now,
nobs(σt0, t) = obs(σt0, t)

−1 . σt0

= obs(σs . σ
′′
s , t)

−1 . σt0
Since time(σs) ≤ t, it follows that
nobs(σt0, t) = (σs . obs(σ′′s , t− time(σs)))

−1 . (σs . σ
′′
s )

= obs(σ′′s , t− time(σs))
−1 . (σ−1

s . (σs . σ
′′
s ))

= obs(σ′′s , t− time(σs))
−1 . σ′′s

= nobs(σ′′s , t− time(σs))

We know that σ′′s −t t
′′ ∈ G(Reach(σs, t

′), bufc . a) and that t ≥ t′

meaning that t− t′ ≥ 0. Thus, following lemma A.15:

nobs(σ′′s −t t
′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t

′′, t− t′))) ∈
G(Reach(σs, t

′) after (σ′′s −t t
′′, t− t′),

ΠΣ(obs(σ′′s −t t
′′, t− t′))−1 . (bufc . a))

If delay(σ′′s (1)) > t − time(σs) (i.e. delay((σ′′s −t t
′′)(1)) > t − t′),

then:
nobs(σ′′s −t t

′′, t− t′) = nobs(σ′′s , t− t′ + t′′)−t t
′′

= nobs(σ′′s , t− time(σs))−t t
′′

and obs(σ′′s −t t
′′, t− t′) = ε and obs(σt0, t) = σs. Thus,

nobs(σ′′s −t t
′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t

′′, t− t′)))
= (nobs(σ′′s , t− time(σs))−t t

′′)−t (t− t′)
= nobs(σ′′s , t− time(σs))−t (t− t′ + t′′)

= nobs(σt0, t)−t (t− time(σs))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Otherwise, delay(σ′′s (1)) ≤ t− time(σs), and then nobs(σ′′s −t t
′′, t−

t′) = nobs(σ′′s , t− time(σs)), thus:
nobs(σ′′s −t t

′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t
′′, t− t′)))

= nobs(σ′′s , t− time(σs))−t

(t− t′ − time(obs(σ′′s , t− time(σs))−t t
′′))

= nobs(σt0, t)−t

(t− t′ − (time(obs(σ′′s , t− time(σs)))− t′′))
= nobs(σt0, t)−t

(t− t′ + t′′ − (time(obs(σt0, t))− time(σs)))

= nobs(σt0, t)−t

(t− time(σs)− time(obs(σt0, t)) + time(σs))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Thus, in both cases, this means that
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nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
G(Reach(σs, t

′) after (σ′′s −t t
′′, t− t′),

ΠΣ(obs(σ′′s −t t
′′, t− t′))−1 . (bufc . a))

Now, since t′ ≥ time(σs),
Reach(σs, t

′) after (σ′′s −t t
′′, t− t′)

= Reach(σs) after (ε, t′ − time(σs)) after

(σ′′s −t t
′′, t− t′)

= Reach(σs) after (ε, t′′) after (σ′′s −t t
′′, t− t′)

= Reach(σs) after ((σ′′s −t t
′′) +t t

′′, t− t′ + t′′)

= Reach(σs) after (σ′′s , t− time(σs))

= Reach(σs . σ
′′
s , t)

and
ΠΣ(obs(σ′′s −t t

′′, t− t′))−1 . (bufc . a)

= ΠΣ(obs(σ′′s , t− time(σs))−t t
′′)−1 . (bufc . a)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 . (bufc . a)

Moreover, since
ΠΣ(nobs(σt0, t)) . σd

= ΠΣ(obs(σt0, t)
−1 . σt0) . σd

= (ΠΣ(obs(σt0, t))
−1 . ΠΣ(σt0)) . σd

= ΠΣ(obs(σs . σ
′′
s , t))

−1 . (ΠΣ(σt0) . σd)

= ΠΣ(σs . obs(σ′′s , t− time(σs)))
−1 . (ΠΣ(σt0) . σd)

= (ΠΣ(σs) . ΠΣ(obs(σ′′s , t− time(σs))))
−1.

(ΠΣ(σs . σ
′′
s ) . σd)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1.

(ΠΣ(σs)
−1 . (ΠΣ(σs) . ΠΣ(σ′′s ) . σd))

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 . (ΠΣ(σ′′s ) . σd)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1.

(ΠΣ(σ′′s ) . (ΠΣ(σ′′s )−1 . (bufc . a)))

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 . (bufc . a)

it follows that ΠΣ(obs(σ′′s−tt
′′, t−t′))−1.(bufc.a) = ΠΣ(nobs(σt0, t)).

σd, and thus (A.3) becomes:

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
G(Reach(σt0, t),ΠΣ(nobs(σt0, t)) . σd)

Thus, in both cases,

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
G(Reach(σt0, t),ΠΣ(nobs(σt0, t)) . σd).
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Since this holds for any t ∈ R≥0, in particular, if t = time(σt0), this
means that ε ∈ G(Reach(σt0), σd), meaning that Reach(σt0) after ε =
Reach(σt0) ∈ FG. This means that σt0 |= ϕ.

Thus, if σ . (δ, a) ∈ Pre(ϕ, t) ∧ σ 6∈ Pre(ϕ, time(σ . (δ, a))), P(σ) =⇒
P(σ . (δ, a), t).

• Otherwise, σ . (δ, a) ∈ Pre(ϕ, t) and σ ∈ Pre(ϕ, time(σ . (δ, a))). Then, by
induction hypothesis:
nobs(σs0, time(σ . (δ, a)))−t

(time(σ . (δ, a))− time(obs(σs0, time(σ . (δ, a))))) ∈
G(Reach(σs0, time(σ . (δ, a))),ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc)

– If a ∈ Σu, since G(Reach(σs0, time(σ . (δ, a))),ΠΣ(nobs(σs0, time(σ .
(δ, a)))) . σc) 6= ∅, following the definition of G (Definition 4.18), it
means that there exists σ′ ∈ tw(Σc) such that the three following
properties hold:

1. ΠΣ(σ′) 4 ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc,
2. Reach(σs0, time(σ . (δ, a))) after σ′ ∈ F × R≥0,
3. for any t′ ∈ R≥0, if v ∈ Vs is such that Reach(σs0, time(σ .

(δ, a))) ∈ v, then 〈v,maxbuffer(ΠΣ(obs(σ′, t′))−1 . bufc), 1〉 ∈
W0.

In particular, for item 3, with t′ = 0, we get 〈v,maxbuffer(bufc), 1〉 ∈
W0, with Reach(σs0, time(σ . (δ, a))) ∈ v. Thus, following the edge
(〈v,maxbuffer(bufc), 1〉, 〈v after a,maxbuffer(bufc), 0〉) ∈ E3, since
W0 is the winning region for player 0, it follows that 〈v after a,
maxbuffer(bufc), 0〉 ∈ W0.
Thus, there exists a winning strategy for player 0 from node 〈v,
maxbuffer(bufc), 0〉, meaning that there exists a play π such that
the set of nodes visited infinitely often by π, noted inf(π), is such
that inf(π)∩FG×Σn

c ×{0, 1} 6= ∅, and π(1) = 〈v, maxbuffer(bufc),
0〉. Moreover, we can choose π such that no edge from E3 or E4

(corresponding to receiving uncontrollable or controllable events,
respectively) is taken when playing π. This is possible since W0 is
the winning region for player 0, thus it is winning for all the strate-
gies of player 1, and the edges of E3 and E4 leave a node belonging
to player 1. Now, since the only cycles in the graph without the
edges of E3 and E4 are cycles of the form 〈v, w, 0〉〈v, w, 1〉〈v, w, 0〉,
with (〈v, w, 0〉, 〈v, w, 1〉) ∈ E1 and (〈v, w, 1〉, 〈v, w, 0〉) ∈ E6, it
follows that π ends with such a cycle repeated indefinitely, i.e.
π = π0 . (〈ve, we, 0〉 . 〈ve, we, 1〉)ω for some finite π0. Thus, inf(π) =
{〈ve, we, 0〉, 〈ve, we, 1〉}, meaning that ve ⊆ FG.
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This allows us to associate a word σ′ to π. To build it, we first build
a sequence in Q× R≥0 × tw(Σc) by induction as follows:

(q0, δ0, w0) = (Reach(σs, time(σ . (δ, a))) after (0, a), 0, ε)

and, for i ∈ N,

(qi+1, δi+1, wi+1) =

(qi, δi, wi) if (π(i), π(i+ 1)) ∈ E1 ∪ E6

(qi after (δi, c), 0,
wi . (δi, c))

if (π(i), π(i+ 1)) ∈ E2, with π(i) =
〈v, c . w, 0〉 for some (c, w) ∈ Σc × Σ∗c

(qi, δi + δ, wi)
if (π(i), π(i+ 1)) ∈ E5, with δ =

min({δ′ ∈ R≥0 | qi after (ε, δi + δ′) ∈
Π1(π(i+ 1))})

Now since π = π0 . (〈ve, we, 0〉 . 〈ve, we, 1〉)ω, there exists n ∈ N such
that for any n′ ≥ n, (π(n′), π(n′ + 1)) ∈ E1 ∪ E6, meaning that
(qn′ , δn′ , wn′) = (qn, δn, wn). Thus, the sequence stabilises. Let us
consider σ′ = wn, where wn is the third component of the previous
sequence when it is stabilised. Then, σ′ satisfies:

1. ΠΣ(σ′) 4 maxbuffer(bufc), because there is no edge (π(i), π(i+
1)) belonging to E3 or E4, and Π2(π(1)) = maxbuffer(bufc).

2. Reach(σs0, time(σ . (δ, a))) after (0, a) after σ′ ∈ FG, because
it belongs to ve ⊆ FG (ve is such that π = π0 . (〈ve, we, 0〉 .
ve, we, 1〉)ω).

3. For any t′ ∈ R≥0, if v ∈ Vs is such that Reach(σs0, time(σ .
(δ, a))) after (0, a) after (σ′, t′) ∈ v, then 〈v, ΠΣ(nobs(σ′, t′))−1 .
bufc, 1〉 ∈ W0, because π is winning for player 0. By con-
struction of σ′, and because of the different constraints re-
quired on Gs, this implies that all states v ∈ Vs such that
Reach(σs0, time(σ . (δ, a))) after (0, a) after (σ′, t′) ∈ v are in
W0, for any t′ ∈ R≥0. We know by construction of σ′ that this
holds for some t′, when an edge belonging to E5 can be followed.
The constraint item (6) required on Vs (see Definition 4.16) en-
sures that this is thus true for all t′.

Thus, σ′ ∈ G(Reach(σs0, time(σ . (δ, a))) after (0, a), bufc), so
G(Reach(σs . (time(σ . (δ, a)) − time(σs), a)), bufc) 6= ∅. Thus, 0 ∈
T(Reach(σs . (time(σ . (δ, a)) − time(σs), a)), bufc), meaning that
σ′s ∈ G(Reach(σs . (time(σ . (δ, a)) − time(σs), a)), bufc). Let us
consider t′ = time(σ . (δ, a)).
Now, following lemma A.15, since t ≥ t′, t− t′ ≥ 0, then:
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nobs(σ′s, t− t′)−t (t− t′ − time(obs(σ′s, t− t′))) ∈
G(Reach(σs . (t

′ − time(σs), a)) after (σ′s, t− t′),
ΠΣ(obs(σ′s, t− t′))−1 . bufc)

Since t ≥ t′ = time(σ . (δ, a)),
nobs(σt0, t) = nobs(σs . (t

′ − time(σs), a) . σ′s, t)

= nobs(σ′s, t− time(σs . (t
′ − time(σs), a)))

= nobs(σ′s, t− time(σ . (δ, a)))

= nobs(σ′s, t− t′)
and obs(σt0, t) = σs . (t′ − time(σs), a) . (obs(σ′s, t − t′)). Thus,
time(obs(σt0, t)) = time(σs.(t

′−time(σs), a))+time(obs(σ′s, t−t′)) =
t′ + time(obs(σ′s, t− t′)).
This means that:
nobs(σ′s, t− t′)−t (t− t′ − time(obs(σ′s, t− t′)))

= nobs(σt0, t)−t (t− t′ − (time(obs(σt0, t)− t′)))
= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Thus,
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

G(Reach(σs . (t
′ − time(σs), a)) after (σ′s, t− t′),

ΠΣ(obs(σ′s, t− t′))−1 . bufc)

Since
Reach(σs . (t

′ − time(σs), a)) after (σ′s, t− t′)
= Reach(σs . (t

′ − time(σs, a)) . σ′s, t− t′+
time(σs . (t

′ − time(σs), a)))

= Reach(σt0, t− t′ + time(σ . (δ, a)))

= Reach(σt0, t)
and
ΠΣ( nobs(σt0, t)) . σd

= ΠΣ(obs(σt0, t)
−1 . σt0) . σd

= (ΠΣ(obs(σt0, t))
−1 . ΠΣ(σt0)) . σd

= ΠΣ(obs(σs . (t
′ − time(σs), a) . σ′s, t))

−1.

(ΠΣ(σs . (t
′ − time(σs), a) . σ′s) . σd)

= (ΠΣ(σs . (t
′ − time(σs), a)) . ΠΣ(obs(σ′s, t− t′)))−1.

(ΠΣ(σs . (t
′ − time(σs), a)) . ΠΣ(σ′s) . σd)

= ΠΣ(obs(σ′s, t− t′))−1 . (ΠΣ(σs . (t
′ − time(σs), a))−1.

(ΠΣ(σs . (t
′ − time(σs), a)) . ΠΣ(σ′s) . σd))

= ΠΣ(obs(σ′s, t− t′))−1 . (ΠΣ(σ′s) . σd)

= ΠΣ(obs(σ′s, t− t′))−1 . (ΠΣ(σ′s) . (ΠΣ(σ′s)
−1 . bufc))

= ΠΣ(obs(σ′s, t− t′))−1 . bufc
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it follows that:
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

G(Reach(σt0, t),ΠΣ(nobs(σt0, t)) . σd)

– Otherwise, a ∈ Σc, and then, since G(Reach(σs0, time(σ . (δ, a))),
ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc) 6= ∅, there exists σ′ ∈ tw(Σ) that
satisfies the three following constraints:

1. ΠΣ(σ′) 4 ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc,
2. Reach(σs0, time(σ . (δ, a))) after σ′ ∈ F × R≥0,
3. for any t′ ∈ R≥0, if v ∈ Vs is such that Reach(σs0, time(σ .

(δ, a))) ∈ v, then 〈v,maxbuffer(ΠΣ(obs(σ′, t′))−1 . bufc), 1〉 ∈
W0.

Thus, item 1 can be written as ΠΣ(σ′) 4 bufc . a, and from item 3
we can deduce that for any t′ ∈ R≥0, if v ∈ Vs is such that
Reach(σs0, time(σ.(δ, a))) ∈ v, then 〈v,maxbuffer(ΠΣ(obs(σ′, t′))−1 .
(bufc . a)), 1〉 ∈ W0. This last property holds because adding a
controllable event to the buffer only gives more possibilities to the
enforcement mechanism (in the game graph, if 〈v, w, p〉 is win-
ning, then 〈v, w . c, p〉 is also winning). This means that σ′ ∈
G(Reach(σs0, time(σ.(δ, a))), bufc.a), and thus, G(Reach(σs0, time(σ.
(δ, a))), bufc . a) 6= ∅.
Thus, 0 ∈ T(Reach(σs0, time(σ.(δ, a))), bufc .a), meaning that σ′′s−t

(time(σ. (δ, a))− time(σs)) ∈ G(Reach(σs0, time(σ. (δ, a))), bufc . a).
Let us consider t′ = time(σ . (δ, a)), and t′′ = t′ − time(σs).
Then, following lemma A.15,
nobs(σ′′s −t t

′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t
′′, t− t′))) ∈

G(Reach(σs0, t
′) after (σ′′s −t t

′′, t− t′),
ΠΣ(nobs(σ′′s −t t

′′, t− t′))−1 . (bufc . a))

Now, if delay(σ′′s (1)) > t−time(σs) (i.e. delay((σ′′s−tt
′′)(1)) > t−t′),

then
nobs(σ′′s −t t

′′, t− t′) = nobs(σ′′s , t− t′ + t′′)−t t
′′

= nobs(σ′′s , t− time(σs))−t t
′′

Since nobs(σt0, t) = nobs(σ′′s , t−time(σs)), it follows that nobs(σ′′s−t

t′′, t− t′) = nobs(σt0, t)−t t
′′.

Moreover, obs(σ′′s −t t
′′, t− t′) = ε since delay(σ′′s (1)) > t− time(σs),

thus, considering that obs(σt0, t) = σs,
nobs(σ′′s −t t

′′, t− t′)−t (t− t′ − time(obs(σ′′s , t− t′)))
= nobs(σt0, t)−t (t− t′ + t′′)

= nobs(σt0, t)−t (t− time(σs))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))
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On the other hand, if delay(σ′′s (1)) ≤ t− time(σs), then nobs(σ′′s −t

t′′, t− t′) = nobs(σ′′s , t− time(σs)) = nobs(σt0, t), and since
time(obs(σt0, t)) = time(obs(σs . σ

′′
s , t))

= time(σs . (obs(σ′′s , t− time(σs)), t))

= time(σs) + time(obs(σ′′s , t− time(σs)))
it follows that
nobs(σ′′s −t t

′′, t− t′)−t (t− t′ − time(obs(σ′′s −t t
′′, t− t′)))

= nobs(σ′′s , t− time(σs))−t

(t− t′ − time(obs(σ′′s , t− t′ + t′′)−t t
′′))

= nobs(σt0, t)−t (t− t′ − (time(obs(σ′′s , t− time(σs)))− t′′))
= nobs(σt0, t)−t (t− t′ + t′′ − (time(obs(σt0, t))− time(σs)))

= nobs(σt0, t)−t (t− time(σs) + time(σs)− time(obs(σt0, t)))

= nobs(σt0, t)−t (t− time(obs(σt0, t)))

Thus, in both cases,
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

G(Reach(σs0, t
′) after (σ′′s −t t

′′, t− t′),
ΠΣ(obs(σ′′s −t t

′′, t− t′))−1 . (bufc . a))

Since
Reach(σs0, t

′) after (σ′′s −t t
′′, t− t′)

= Reach(σs) after (ε, t′ − time(σs)) after

(σ′′s −t t
′′, t− t′)

= Reach(σs) after ((σ′′s −t t
′′) +t t

′′, t− t′ + t′′)

= Reach(σs) after (σ′′s , t− time(σs))

= Reach(σs . σ
′′
s , t)

= Reach(σt0, t)
and
ΠΣ(nobs(σt0, t)) . σd

= ΠΣ(obs(σt0, t)
−1 . σt0) . σd

= (ΠΣ(σs) . ΠΣ(obs(σ′′s , t− time(σs))))
−1.

(ΠΣ(σs) . ΠΣ(σ′′s ) . σd)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1.

(ΠΣ(σs)
−1 . (ΠΣ(σs) . ΠΣ(σ′′s ) . σd))

= ΠΣ(obs(σ′′s , t− time(σs)))
−1.

(ΠΣ(σ′′s ) . ΠΣ(σ′′s )−1 . (bufc . a))

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 . (bufc . a)

considering that
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ΠΣ(obs(σ′′s −t t
′′, t− t′))−1 . (bufc . a)

= ΠΣ(obs(σ′′s , t− t′ + t′′)−t t
′′)−1 . (bufc . a)

= ΠΣ(obs(σ′′s , t− time(σs)))
−1 . (bufc . a)

we finally obtain
nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈

G(Reach(σt0, t),ΠΣ(nobs(σt0, t)) . σd)

Thus, in both cases,

nobs(σt0, t)−t (t− time(obs(σt0, t))) ∈
G(Reach(σt0, t),ΠΣ(nobs(σt0, t)) . σd).

In particular, this means that Reach(σt0, t) after nobs(σt0, t) −t (t −
time(obs(σt0, t))) ∈ FG. Since
Reach(σt0, t) after nobs(σt0, t)−t (t− time(obs(σt0, t)))

= Reach(obs(σt0, t)) after (ε, t− time(obs(σt0, t))) after

nobs(σt0, t)−t (t− time(obs(σt0, t)))

= Reach(obs(σt0, t)) after (nobs(σt0, t)−t

(t− time(obs(σt0, t)))) +t (t− time(obs(σt0, t)))

= Reach(obs(σt0, t)) after nobs(σt0, t)

= Reach(obs(σt0, t) . nobs(σt0, t))

= Reach(σt0)
this means that Reach(σt0) ∈ FG, meaning that σt0 |= ϕ.

Thus, if σ ∈ Pre(ϕ, time(σ . (δ, a))), P(σ) =⇒ P(σ . (δ, a), t).

Thus, in all cases, for any t ∈ R≥0, P(σ) =⇒ P(σ . (δ, a), t). This means
that P(σ) =⇒ P(σ . (δ, a)).

We then have shown by induction that P(σ) holds for any σ ∈ tw(Σ). In par-
ticular, we have shown that for any (σ, t) ∈ Pre(ϕ), (σ, 〈σs, σc〉) ∈ storeϕ =⇒
σs |= ϕ. Thus there exists t′ that we can consider such that t′ ≥ t, that is such
that for any t′′ ≥ t′, 〈(σ, t′′), σs〉 ∈ Eϕ.

Thus, Eϕ is sound in Pre(ϕ).

Proposition 4.8. Eϕ is compliant, as per Definition 4.13.

Proof. We have to prove that the three following properties hold:

1. ∀σ ∈ tw(Σ),∀t ∈ R≥0, 〈(σ, t), o1〉 ∈ Eϕ =⇒ o1 4dΣc
obs(σ, t)

2. ∀σ ∈ tw(Σ),∀t ∈ R≥0, 〈(σ, t), o2〉 ∈ Eϕ =⇒ o2 =Σu obs(σ, t)

Runtime Enforcement of (Timed) Properties with Uncontrollable Events 157



A.2. Proofs of Chapter 4

3. ∀σ ∈ tw(Σ),∀(δ, u) ∈ R≥0 × Σu,
〈(σ, time(σ . (δ, u))), o3〉 ∈ Eϕ ∧〈(σ . (δ, u), time(σ . (δ, u))), o4〉 ∈ Eϕ

=⇒ o3 . (time(σ . (δ, u))− time(o3), u) 4 o4.

We start by proving items 1 and 2.
For σ ∈ tw(Σ), let P(σ) be the predicate “(σ, 〈σs0, σc〉) ∈ storeϕ =⇒

(σs0 4dΣc
σ ∧ σs0 =Σu σ ∧ ΠΣ(σs0)|Σc . σc = ΠΣ(σ)|Σc)”. Let us prove by

induction that P(σ) holds for any σ ∈ tw(Σ).

Induction basis: for σ = ε, (ε, 〈ε, ε〉) ∈ storeϕ, and since ε 4dΣc
ε, ε =Σu ε,

and ΠΣ(ε)|Σc . ε = ΠΣ(ε)|Σc , it follows that P(ε) holds.

Induction step: Suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider
(δ, a) ∈ R≥0 × Σ, (σ, 〈σs0, σc〉) ∈ storeϕ, (σ . (δ, a), 〈σt0, σd〉) ∈ storeϕ, and
σs = obs(σs0, time(σ . (δ, a))).

• If a ∈ Σu, then there exists σ′s such that σt0 = σs . (time(σ . (δ, a)) −
time(σs), a) . σ′s, and ΠΣ(σ′s) . σd = ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc.
Thus, since a ∈ Σu

ΠΣ(σt0)|Σc . σd

= ΠΣ(σs . (time(σ . (δ, a))− time(σs), a) . σ′s)|Σc . σd

= ΠΣ(σs)|Σc . ΠΣ(σ′s)|Σc . σd
Now, following the induction hypothesis, σs0 =Σu σ, and since nobs(σ,
time(σ . (δ, a))) = ε, it follows that nobs(σs0, time(σ . (δ, a))) ∈ tw(Σc),
and thus σ′s ∈ tw(Σc) too. Also following the induction hypothesis, we
know that ΠΣ(σs0)|Σc . σc = ΠΣ(σ)|Σc . It follows that
ΠΣ(σt0)|Σc . σd = ΠΣ(σs)|Σc . ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc

= ΠΣ(obs(σs0, time(σ . (δ, a))).

nobs(σs0, time(σ . (δ, a))))|Σc . σc

= ΠΣ(σs0)|Σc . σc

= ΠΣ(σ)|Σc

= ΠΣ(σ . (δ, a))|Σc

Moreover, following the induction hypothesis, σs0 4dΣc
σ, thus in par-

ticular, σs 4dΣc
σ, meaning that if i ∈ [1; |σs|], then time(σs|Σc[..i]) ≤

time(σ|Σc[..i]), and since i ≤ |σ|Σc |, that means that time(σs|Σc[..i]) ≤
time((σ . (δ, a))|Σc[..i]). Since time(σs . (time(σ . (δ, a)) − time(σs), a)) =
time(σ.(δ, a)), it follows that for any i ∈ [|σs|+1; |σt0|Σc |], time(σt0|Σc[..i]) ≥
time(σ . (δ, a)) (remember that the restriction to an alphabet conserves
dates, not delays). Thus, for any i ∈ [1; |σt0|Σc |], time(σt0|Σc[..i]) ≥
time((σ . (δ, a))|Σc[..i]). Since we have already shown that ΠΣ(σt0)|Σc .
σd = ΠΣ(σ)|Σc , we know that ΠΣ(σt0)|Σc 4 ΠΣ(σ)|Σc . This means that
σt0 4dΣc

σ . (δ, a).
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Finally, by induction hypothesis, σs0 =Σu σ, thus, since
σt0|Σu = (σs . (time(σ . (δ, a))− time(σs), a))|Σu

= σs|Σu . ((time(σ . (δ, a))− time(σs), a)+t

(time(σs)− time(σs|Σu)))

= σs|Σu . (time(σ . (δ, a))− time(σs)+

time(σs)− time(σs|Σu), a)

= σs|Σu . (time(σ . (δ, a))− time(σs|Σu), a)

= σ|Σu . ((δ, a) +t (time(σ)− time(σ|Σu)))

= (σ . (δ, a))|Σu

Thus, P(σ . (δ, a)) holds.

• Otherwise, a ∈ Σc, and then, there exists σ′′s ∈ tw(Σ) such that σt0 =
σs . σ

′′
s and ΠΣ(σ′′s ) . σd = ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc . a.

Thus,
ΠΣ(σt0)|Σc . σd = ΠΣ(σs)|Σc . ΠΣ(σ′′s ) . σd

= ΠΣ(σs)|Σc . ΠΣ(nobs(σs0, time(σ . (δ, a)))) . σc . a

= ΠΣ(σs0)|Σc . σc . a

= ΠΣ(σ)|Σc . a

= ΠΣ(σ . (δ, a))|Σc

As in the case where a ∈ Σu, for any i ∈ [1; |σs|Σc |], time(σt0|Σc[..i]) ≤
time(σ|Σc[..i]). Moreover, by construction, delay(σ′′s (1)) ≥ time(σ.(δ, a))−
time(σs), thus for i ∈ [|σs|Σc | + 1; time(σt0|Σc)], if i′ = i − |σs|Σc |, then
time(σt0|Σc[..i]) = time(σs) + time(σ′′s[..i′]) ≥ time(σs) + time(σ . (δ, a)) −
time(σs) = time(σ . (δ, a)). Since time(σ . (δ, a)) ≤ time((σ . (δ, a))|Σc[..i]),
and ΠΣ(σt0)|Σc 4 ΠΣ(σ . (δ, a))|Σc , this means that σt0 4dΣc

σ . (δ, a).

Finally, σt0|Σu = σs|Σu = σ|Σu = (σ . (δ, a))|Σu .

Thus P(σ . (δ, a)) holds.

In both cases, P(σ) =⇒ P(σ . (δ, a)).

Thus, we have shown by induction that for all σ ∈ tw(Σ), P(σ) holds.
Consequently, for any σ ∈ tw(Σ), if (σ, 〈σs0, σc〉) ∈ storeϕ, then σs0 4dΣc

σ and
σs0 =Σu σ. Thus, for any t ∈ R≥0, if 〈(σ, t), o〉 ∈ Eϕ, then o = obs(σs0, t) 4dΣc

obs(σ, t), and o = obs(σs0, t) =Σu obs(σ, t).
Thus, items 1 and 2 hold.

Now, let us prove item 3. Let us consider σ ∈ tw(Σ), (σ, 〈σs0, σc〉) ∈ storeϕ,
(δ, u) ∈ R≥0 × Σu, (σ . (δ, u), 〈σt0, σd〉) ∈ storeϕ, and σs = obs(σs0, time(σ .
(δ, u))). Then, 〈(σ, time(σ . (δ, u))), σs〉 ∈ Eϕ, and following the definition
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of storeϕ (Definition 4.19), σs . (time(σ . (δ, u)) − time(σs), u) 4 σt0. Thus,
if 〈(σ . (δ, u), time(σ . (δ, u))), o4〉 ∈ Eϕ, then o4 = obs(σt0, time(σ . (δ, u))).
Since time(σs . (time(σ . (δ, u))− time(σs), u)) = time(σ . (δ, u)), it follows that
σs . (time(σ . (δ, u))− time(σs), u) 4 o4.

We have then shown that Eϕ is compliant with respect to Σu and Σc.

Proposition 4.9. Eϕ is optimal in Pre(ϕ) as per Definition 4.14.

Proof. Let us consider σ ∈ tw(Σ), (δ, a) ∈ R≥0 × Σ such that (σ, time(σ .
(δ, a))) ∈ Pre(ϕ), E an enforcement function that is compliant with respect to
Σu and Σc, 〈(σ, time(σ . (δ, a))), o〉 ∈ E ∩ Eϕ, (σ . (δ, a), 〈σt0, σd〉) ∈ storeϕ, and
〈(σ . (δ, a),∞), o′1〉 ∈ E. Let us suppose that σs0 ≺d o

′
1. We then have to prove

that there exists σu ∈ tw(Σu) such that if 〈(σ . (δ, a) . σu,∞), ou〉 ∈ E, then
ou 6|= ϕ.

Let us consider σs = obs(o, time(σ . (δ, a))). Then, since Eϕ and E are
compliant, there exists σ′s ∈ tw(Σ) such that σt0 = o . σ′s and σEs ∈ tw(Σ) such
that o′1 = σs . σ

E
s . Now, since Eϕ(σ . (δ, a)) ≺d E(σ . (δ, a)), this means that

σ′s ≺d σ
E
s .

• If a ∈ Σu, since (σ, time(σ . (δ, a))) ∈ Pre(ϕ), we know that (see proof
of Proposition 4.7) σ′s ∈ G(Reach(σs),ΠΣ(σs)

−1
|Σc

. ΠΣ(σ)|Σc). Now, since
σ′s ≺d σEs , and since σ′s is the maximal word for 4d that is in G, this
means that σEs 6∈ G(Reach(σs),ΠΣ(σs)

−1
|Σc

. ΠΣ(σ)|Σc). This means that
one of the following does not hold :

1. ΠΣ(σEs ) 4 ΠΣ(σs)
−1
|Σc

. ΠΣ(σ)|Σc , but if this did not hold, then E
would not be compliant.

2. Reach(σs) after σEs 6∈ FG. If this does not hold, then Reach(σs .
σEs ) 6∈ FG, meaning that o′1 6|= ϕ.

3. ∀t ∈ R≥0,∀v ∈ Vs,Reach(σs . σ
E
s , t) ∈ v =⇒ 〈v,maxbuffer(ΠΣ(σs .

obs(σEs , t))
−1 . ΠΣ(σ)|Σc), 1〉 ∈ W0. If this does not hold, then there

exists t ∈ R≥0 and v ∈ Vs such that Reach(σs . σ
E
s , t) ∈ v and

〈v,maxbuffer(ΠΣ(σ . obs(σEs , t))
−1 .ΠΣ(σ)|Σc), 1〉 6∈ W0. Then, there

exists a winning strategy for player 1 from this node. This means
that we can construct a word by following the winning strategy of
player 1, like it is done in the proof of Proposition 4.7: depending
on the edge followed in the game graph, player 1 can add an un-
controllable event to the input word (the delays are given by the
edges corresponding to letting time elapse) that allows to stay in
a node not belonging to W0. This can be done until the strategy
of player 0 goes back to the previous node, making a loop if it has
no time successor. This must ultimately happen since adding con-
trollable events to the input only gives player 0 more possibilities,
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thus player 1 can choose only edges corresponding to adding uncon-
trollable events or letting time elapse. By privileging the elapse of
time, it can ensure that the word will be finite. Thus, player 1 can
build a word σu ∈ tw(Σu) such that if 〈(σ . (δ, a) . σu,∞), ou〉 ∈ E,
then ou 6|= ϕ.

In any possible case, there exists σu ∈ tw(Σu) such that if 〈(σ . (δ, a) .
σu,∞), ou〉 ∈ E, then ou 6|= ϕ (in the second case, σu = ε).

• Otherwise, a ∈ Σc, and we can prove as in the previous case that
there exists σu ∈ tw(Σu) such that if 〈(σ . (δ, a) . σu,∞), ou〉 ∈ Eϕ,
then ou 6|= ϕ. All that is needed is to adapt the parameters of G:
σ′s ∈ G(Reach(σs, time(σ . (δ, a))),ΠΣ(σs)

−1
|Σc

. ΠΣ(σ . (δ, a))|Σc), but the
arguments are the same.

Thus, if E is compliant, and σ ∈ tw(Σ) and (δ, a) ∈ R≥0 × Σ are such
that (σ, time(σ . (δ, a))) ∈ Pre(ϕ), 〈(σ, time(σ . (δ, a))), o〉 ∈ E ∩ Eϕ, 〈(σ .
(δ, a),∞), o1〉 ∈ Eϕ, 〈(σ . (δ, a),∞), o′1〉 ∈ E, and o1 ≺d o

′
1, then there exists

σu ∈ tw(Σu) such that if 〈(σ . (δ, a) . σu), ou〉 ∈ E, then ou 6|= ϕ.
This means that Eϕ is optimal in Pre(ϕ).

Proposition 4.10. The output o of E as per Definition 4.21 for input σ at
date t is such that ((σ, t), o) ∈ Eϕ.

Proof. In this proof, we use some notation from Section 4.3.3:

• CE = tw(Σ)× Σ∗c ×Q× R≥0 is the set of configurations.

• cE0 = 〈ε, ε, q0, 0〉 ∈ CE is the initial configuration.

• ΓE = ((R≥0×Σ)∪{ε})×Op × ((R≥0×Σ)∪{ε}) is the alphabet, composed
of an optional input, an operation and an optional output.
The set of operations is {dump(.), pass-uncont(.), store-cont(.), delay(.)}.

For a sequence of rules w ∈ (ΓE)∗, we note the concatenation of all the
inputs of w, input(w) = Π1(w(1)) .Π1(w(2)) . . .Π1(w(|w|)) , and output(w) =
Π3(w(1)) . Π3(w(2)) . . .Π3(w(|w|)) the concatenation of all the outputs of w.
Since all configurations are not reachable from cE0 , for w ∈ (ΓE)∗, we note
ReachE(w) = c if cE0 ↪

w−→E c for some configuration c ∈ CE , or ReachE(w) = ⊥
if such a configuration does not exist. For a word σ ∈ tw(Σ), and a date
t ∈ R≥0, we note Rules(σ, t) = max4({w ∈ (ΓE)∗ | input(w) = obs(σ, t) ∧
ReachE(w) 6= ⊥ ∧ Π4(ReachE(w)) = t − time(output(w))}). We also note
ReachE(σ, t) = ReachE(Rules(σ, t)). Rules(σ, t) represent the sequence that
the EM applies with input word σ until date t. Since rule delay() can be
applied an infinite number of times by slicing time, we only consider words in
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(ΓE)∗ that are minimal in the number of rules delay(), i.e. the word obtained
by merging two consecutive rules delay() into one with the sum of delays of
the two rules, until stabilisation. This allows to define Rules(σ, t) correctly,
without “cheating” by slicing time to increase the length of the word. Note that
the words obtained by merging or adding delay() rules this way reach exactly
the same configurations in the end. We will also allow ourselves to extend the
use of output to timed words, such that output(σ, t) = output(Rules(σ, t)).

We have to show that for any σ ∈ tw(Σ), and t ∈ R≥0, if 〈(σ, t), o〉 ∈ Eϕ,
then o = output(σ, t).

Now, for σ ∈ tw(Σ) and t ∈ R≥0, let P(σ, t) be the predicate “(σ, 〈σs0, σc〉) ∈
storeϕ =⇒ (output(σ, t) = obs(σs0, t) ∧ ReachE(σ, t) = 〈nobs(σs0, t), σc,
Reach(σs0, t), t − time(obs(σs0, t))〉)”, and P(σ) be the predicate “∀t ∈ R≥0,
P(σ, t)”. Let us then show by induction that P(σ) holds for any σ ∈ tw(Σ).

Induction basis: if σ = ε, then let us consider t ∈ R≥0. Then, (ε, 〈ε, ε〉) ∈
storeϕ. On the other hand, the only rule that can be applied is delay(t), thus
ReachE(ε, t) = 〈ε, ε, q0 after (ε, t), t〉.

Thus, output(ε, t) = obs(ε, t), and ReachE(ε, t) = 〈nobs(ε, t), ε, Reach(ε, t),
t − time(ε, t)〉. Thus, P(ε, t) holds. Thus, for any t ∈ R≥0, P(ε, t) holds,
meaning that P(ε) holds.

Induction step: let us suppose that for σ ∈ tw(Σ), P(σ) holds. Let us
consider (δ, a) ∈ R≥0×Σ, t ∈ R≥0, (σ, 〈σs0, σc〉) ∈ storeϕ, (σ. (δ, a), 〈σt0, σd〉) ∈
storeϕ, σs = obs(σs0, time(σ. (δ, a))), and c = ReachE(σ, time(σ. (δ, a))). Then,
by induction hypothesis, c = 〈nobs(σs0, time(σ . (δ, a))), σc,Reach(σs0, time(σ .
(δ, a))), time(σ . (δ, a))− time(σs)〉.

If t < time(σ . (δ, a)), then ReachE(σ . (δ, a), t) = ReachE(σ, t), and
obs(σt0, t) = obs(σs0, t), meaning that P(σ . (δ, a), t) holds.

Then, let us consider that t ≥ time(σ . (δ, a)).

• If a ∈ Σu, then rule pass-uncont(a) can be applied, meaning that c after
(a/ pass-uncont(a)/a) = 〈σ′b, σ′c, q, 0〉, with q = Reach(σs0, time(σ .
(δ, a))) after (0, a) = Reach(σs . (time(σ . (δ, a)) − time(σs), a)), σ′b =
κϕ(q,ΠΣ(nobs(σs0, time(σ.(δ, a)))) .σc), and σ′c = ΠΣ(σ′b)

−1 .(ΠΣ(σb) .σc).
Thus, σ′b is such that σt0 = σs . σ

′
b, thus c after (a/ pass-uncont(a)/a) =

〈σ−1
s . σt0, σd,Reach(σs . (time(σ . (δ, a)) − time(σs, a))), 0〉. Then, rules

delay() and dump() can be applied, until date t is reached, leading to
the configuration 〈nobs(σt0, t), σd,Reach(σt0, t), t− time(obs(σt0, t))〉.

Moreover, considering the transitions taken,
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output(σ . (δ, a), t) = output(σ, time(σ . (δ, a))) . (time(σ . (δ, a))−
time(σs), a) . obs(σ′b, t− time(σ . (δ, a)))

= σs . (time(σ . (δ, a))− time(σs), a).

obs(σ′b, t− time(σ . (δ, a)))

= obs(σt0, t)

Thus, P(σ . (δ, a), t) holds.

• Otherwise, a ∈ Σc, and then rule store-cont(a) can be applied from con-
figuration c, leading to c after (a/ store-cont(a)/ε) = 〈σ′b, σ′c, Reach(σs0,
time(σ . (δ, a))), t − time(σs)〉, with σ′b = κϕ(Reach(σs0, time(σ . (δ, a))),
ΠΣ(nobs(σs0, time(σ.(δ, a)))) .σc .a)+t (t−time(σs)) and σ′c = ΠΣ(σ′b)

−1 .
(ΠΣ(nobs(σs0, time(σ . (δ, a))))) . σc . a. Thus, σ′b is such that σt0 = σs . σ

′
b,

and σ′c = σd. Then, rules delay() and dump() can be applied until
date t is reached, leading to ReachE(σ . (δ, a), t) = 〈nobs(σt0, t), σd,
Reach(σt0, t), t− time(obs(σt0, t))〉.
Moreover, considering the transitions taken,
output(σ . (δ, a), t) = output(σ, time(σ . (δ, a))) . obs(σ′b, t− time(σs))

= σs . obs(σ′b, t− time(σs))

= obs(σs . σ
′
b, t)

= obs(σt0, t)

Thus, P(σ . (δ, a), t) holds.

Thus, in both cases, P(σ . (δ, a), t) holds.
This means that for any t ∈ R≥0, P(σ . (δ, a), t) holds.
Thus P(σ) =⇒ P(σ . (δ, a)).

We have then shown by induction that P(σ) holds for any σ ∈ tw(Σ). In
particular, this means that for any σ ∈ tw(Σ), if (σ, 〈σs0, σc〉) ∈ storeϕ, then
for any t ∈ R≥0, obs(σs0, t) = output(σ, t). Thus, if 〈(σ, t), o〉 ∈ Eϕ, then
o = obs(σs0, t) = output(σ, t).

Runtime Enforcement of (Timed) Properties with Uncontrollable Events 163



A.2. Proofs of Chapter 4

164 Matthieu Renard



Bibliography

Alcalde, Baptiste, Cavalli, Ana, Chen, Dongluo, Khuu, Davy and Lee,
David, 2004. Network protocol system passive testing for fault management:
A backward checking approach. In International Conference on Formal
Techniques for Networked and Distributed Systems, pages 150–166. Springer.

Alur, Rajeev, Courcoubetis, Costas, Halbwachs, Nicolas, Dill, David
and Wong-Toi, Howard, 1992. Minimization of timed transition systems.
In CONCUR’92, pages 340–354. Springer.

Alur, Rajeev and Dill, David, 1992. The theory of timed automata. In
de Bakker, J.W., Huizing, C., de Roever, W.P. and Rozenberg, G.,
editors, Real-Time: Theory in Practice, volume 600 of Lecture Notes in
Computer Science, pages 45–73. Springer Berlin Heidelberg. ISBN 978-3-
540-55564-3. doi:10.1007/BFb0031987.
URL http://dx.doi.org/10.1007/BFb0031987

Alur, Rajeev, Fix, Limor and Henzinger, Thomas A, 1999. Event-clock
automata: a determinizable class of timed automata. Theoretical Computer
Science, 211(1-2):253–273.

Basin, David, Jugé, Vincent, Klaedtke, Felix and Zălinescu, Eugen,
2013. Enforceable security policies revisited. ACM Trans. Inf. Syst. Secur.,
16(1):3:1–3:26. doi:10.1145/2487222.2487225.
URL http://doi.acm.org/10.1145/2487222.2487225

Bauer, Andreas and Falcone, Ylies, 2012. Decentralised ltl monitoring. FM
2012: Formal Methods, pages 85–100.

Bauer, Andreas, Leucker, Martin and Schallhart, Christian, 2006. Mon-
itoring of real-time properties. In International Conference on Foundations
of Software Technology and Theoretical Computer Science, pages 260–272.
Springer.

Bauer, Andreas, Leucker, Martin and Schallhart, Christian, 2007. The
good, the bad, and the ugly, but how ugly is ugly? In Runtime Verification,
pages 126–138. Springer.

165

http://dx.doi.org/10.1007/BFb0031987
http://doi.acm.org/10.1145/2487222.2487225


BIBLIOGRAPHY

Bauer, Andreas, Leucker, Martin and Schallhart, Christian, 2011. Run-
time verification for ltl and tltl. ACM Transactions on Software Engineering
and Methodology (TOSEM), 20(4):14.

Bauer, Lujo, Ligatti, Jay and Walker, David, 2009. Composing expressive
runtime security policies. ACM Transactions on Software Engineering and
Methodology (TOSEM), 18(3):9.

Bengtsson, Johan and Yi, Wang, 2004. Timed automata: Semantics, algo-
rithms and tools. Lecture Notes in Computer Science, 3098:87–124.

Bloem, Roderick, Könighofer, Bettina, Könighofer, Robert and Wang,
Chao, 2015. Shield synthesis: Runtime enforcement for reactive systems.
CoRR, abs/1501.02573.
URL http://arxiv.org/abs/1501.02573

Cavalli, Ana, Gervy, Caroline and Prokopenko, Svetlana, 2003. New
approaches for passive testing using an extended finite state machine speci-
fication. Information and Software Technology, 45(12):837–852.

Chang, Edward, Manna, Zohar and Pnueli, Amir, 1992. Characterization
of temporal property classes. Automata, languages and programming, pages
474–486.

Chen, Feng and Rosu, Grigore, 2005. Java-mop: A monitoring oriented
programming environment for java. In TACAS, volume 3440, pages 546–
550. Springer.

Cuppens, Frederic, Cuppens-Boulahia, Nora and Ramard, Tony, 2006.
Availability enforcement by obligations and aspects identification. In Avail-
ability, Reliability and Security, 2006. ARES 2006. The First International
Conference on, pages 10–pp. IEEE.

Dill, David L, 1989. Timing assumptions and verification of finite-state con-
current systems. In International Conference on Computer Aided Verifica-
tion, pages 197–212. Springer.

Dolzhenko, Egor, Ligatti, Jay and Reddy, Srikar, 2015. Modeling runtime
enforcement with mandatory results automata. International Journal of
Information Security, 14(1):47–60.

El-Hokayem, Antoine and Falcone, Ylies, 2017a. Monitoring decentralized
specifications. In 26th International Symposium on Software Testing and
Analysis, ISSTA.

El-Hokayem, Antoine and Falcone, Yliès, 2017b. Themis: A tool for de-
centralized monitoring algorithms.

166 Matthieu Renard

http://arxiv.org/abs/1501.02573


BIBLIOGRAPHY

Falcone, Yliès, Fernandez, Jean-Claude and Mounier, Laurent, 2012.
What can you verify and enforce at runtime? International Journal on
Software Tools for Technology Transfer, 14(3):349–382.

Falcone, Ylies, Havelund, Klaus and Reger, Giles, 2013. A tutorial on
runtime verification. Engineering Dependable Software Systems, 34:141–175.

Falcone, Yliès, Mounier, Laurent, Fernandez, Jean-Claude and
Richier, Jean-Luc, 2011a. Runtime enforcement monitors: composition,
synthesis, and enforcement abilities. Formal Methods in System Design,
38(3):223–262. doi:10.1007/s10703-011-0114-4.

Falcone, Yliès, Mounier, Laurent, Fernandez, Jean-Claude and
Richier, Jean-Luc, 2011b. Runtime enforcement monitors: composition,
synthesis, and enforcement abilities. Formal Methods in System Design,
38(3):223–262. doi:10.1007/s10703-011-0114-4.
URL http://dx.doi.org/10.1007/s10703-011-0114-4

Fong, Philip WL, 2004. Access control by tracking shallow execution history.
In Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on, pages
43–55. IEEE.

Girault, Johan, Loiseau, Jean Jacques and Roux, Olivier H, 2013. Syn-
thèse en ligne de superviseur compositionnel pour flotte de robots mobiles.
European Journal of Automation, MSR, 13:1–3.

Hallé, Sylvain, Khoury, Raphaël, El-Hokayem, Antoine and Falcone,
Yliès, 2016. Decentralized enforcement of artifact lifecycles. In Enterprise
Distributed Object Computing Conference (EDOC), 2016 IEEE 20th Inter-
national, pages 1–10. IEEE.

Hamlen, Kevin W, Morrisett, Greg and Schneider, Fred B, 2006. Com-
putability classes for enforcement mechanisms. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 28(1):175–205.

Larsen, Kim G, Pettersson, Paul and Yi, Wang, 1997. Uppaal in a
nutshell. International Journal on Software Tools for Technology Transfer
(STTT), 1(1):134–152.

Leroy, Xavier, 2006. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In ACM SIGPLAN Notices,
volume 41, pages 42–54. ACM.

Ligatti, Jay, Bauer, Lujo and Walker, David, 2005. Edit automata: En-
forcement mechanisms for run-time security policies. International Journal
of Information Security, 4(1):2–16.

Runtime Enforcement of (Timed) Properties with Uncontrollable Events 167

http://dx.doi.org/10.1007/s10703-011-0114-4


BIBLIOGRAPHY

Ligatti, Jay, Bauer, Lujo and Walker, David, 2009. Run-time enforcement
of nonsafety policies. ACM Trans. Inf. Syst. Secur., 12(3):19:1–19:41. doi:
10.1145/1455526.1455532.
URL http://doi.acm.org/10.1145/1455526.1455532

Manna, Zohar and Pnueli, Amir, 1990. A hierarchy of temporal properties
(invited paper, 1989). In Proceedings of the ninth annual ACM symposium
on Principles of distributed computing, pages 377–410. ACM.

Martinell, Fabio and Matteucci, Ilaria, 2007. Through modeling to syn-
thesis of security automata. Electronic Notes in Theoretical Computer Sci-
ence, 179:31–46.

McMillan, Kenneth L, 1993. Symbolic model checking. In Symbolic Model
Checking, pages 25–60. Springer.

Pinisetty, Srinivas, Falcone, Yliès, Jéron, Thierry and Marchand,
Hervé, 2015a. Tipex: a tool chain for timed property enforcement during
execution. In Runtime Verification, pages 306–320. Springer.

Pinisetty, Srinivas, Falcone, Yliès, Jéron, Thierry and Marchand,
Hervé, 2015b. TiPEX: A Tool Chain for Timed Property Enforcement
During eXecution. In Bartocci, Ezio and Majumdar, Rupak, editors,
RV’2015, 6th International Conference on Runtime Verification, volume
9333 of Lecture Notes in Computer Science, page 12. Springer, Vienne, Aus-
tria. doi:10.1007/978-3-319-23820-3\_22.

Pinisetty, Srinivas, Falcone, Yliès, Jéron, Thierry, Marchand, Hervé,
Rollet, Antoine and Nguena-Timo, Omer, 2014a. Runtime enforcement
of timed properties revisited. Formal Methods in System Design, 45(3):381–
422. doi:10.1007/s10703-014-0215-y.

Pinisetty, Srinivas, Falcone, Yliès, Jéron, Thierry, Marchand, Hervé,
Rollet, Antoine and Nguena-Timo, Omer Landry, 2012. Runtime en-
forcement of timed properties. In Qadeer, Shaz and Tasiran, Serdar,
editors, Runtime Verification, Third International Conference, RV 2012,
Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers, volume
7687 of Lecture Notes in Computer Science, pages 229–244. Springer. ISBN
978-3-642-35631-5. doi:10.1007/978-3-642-35632-2{\_}23.

Pinisetty, Srinivas, Falcone, Yliès, Jéron, Thierry, Marchand, Hervé,
Rollet, Antoine and Nguena-Timo, Omer Landry, 2014b. Runtime en-
forcement of timed properties revisited. Formal Methods in System Design,
45(3):381–422.

168 Matthieu Renard

http://doi.acm.org/10.1145/1455526.1455532


BIBLIOGRAPHY

Pinisetty, Srinivas, Falcone, Yliès, Jéron, Thierry, Marchand, Hervé,
Rollet, Antoine and Nguena Timo, OmerLandry, 2013. Runtime en-
forcement of timed properties. In Qadeer, Shaz and Tasiran, Serdar,
editors, Runtime Verification, volume 7687 of Lecture Notes in Computer
Science, pages 229–244. Springer Berlin Heidelberg. ISBN 978-3-642-35631-
5. doi:10.1007/978-3-642-35632-2_23.
URL http://dx.doi.org/10.1007/978-3-642-35632-2_23

Ramadge, P. J. G. and Wonham, W. M., 1989. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81–98. doi:10.1109/5.21072.

Renard, Matthieu, Falcone, Yliès, Rollet, Antoine, Jéron, Thierry and
Marchand, Hervé, 2017a. Optimal enforcement of (timed) properties with
uncontrollable events. Mathematical Structures in Computer Science, page
1–46. doi:10.1017/S0960129517000123.

Renard, Matthieu, Falcone, Yliès, Rollet, Antoine, Pinisetty, Srini-
vas, Jéron, Thierry and Marchand, Hervé, 2015. Enforcement of (timed)
properties with uncontrollable events. In Leucker, Martin, Rueda, Camilo
and Valencia, Frank D., editors, Theoretical Aspects of Computing -
ICTAC 2015, volume 9399 of Lecture Notes in Computer Science, pages
542–560. Springer International Publishing. ISBN 978-3-319-25149-3. doi:
10.1007/978-3-319-25150-9_31.

Renard, Matthieu, Rollet, Antoine and Falcone, Yliès, 2017b. Grep:
Games for the runtime enforcement of properties. In Testing Software
and Systems: 29th IFIP WG 6.1 International Conference, ICTSS 2017,
St. Petersburg, Russia, October 9-11, 2017, Proceedings, pages 259–275.
Springer International Publishing, Cham. ISBN 978-3-319-67549-7. doi:
10.1007/978-3-319-67549-7_16.
URL https://doi.org/10.1007/978-3-319-67549-7_16

Renard, Matthieu, Rollet, Antoine and Falcone, Yliès, 2017c. Runtime
enforcement using Büchi games. In Proceedings of Model Checking Software
- 24th International Symposium, SPIN 2017, Co-located with ISSTA 2017,
Santa Barbara, USA, pages 70–79. ACM Press.

Rinard, Martin, 2003. Acceptability-oriented computing. Acm sigplan no-
tices, 38(12):57–75.

Schneider, Fred B., 2000. Enforceable security policies. ACM Trans. Inf.
Syst. Secur., 3(1):30–50. doi:10.1145/353323.353382.
URL http://doi.acm.org/10.1145/353323.353382

UDBM, 2011. Uppaal DBM Library. http://people.cs.aau.dk/~adavid/
UDBM/. Accessed: 2017-04-27.

Runtime Enforcement of (Timed) Properties with Uncontrollable Events 169

http://dx.doi.org/10.1007/978-3-642-35632-2_23
https://doi.org/10.1007/978-3-319-67549-7_16
http://doi.acm.org/10.1145/353323.353382
http://people.cs.aau.dk/~adavid/UDBM/
http://people.cs.aau.dk/~adavid/UDBM/


BIBLIOGRAPHY

Viswanathan, Mahesh, 2000. Foundations for the run-time analysis of soft-
ware systems.

Wu, Meng, Zeng, Haibo and Wang, Chao, 2016. Synthesizing runtime en-
forcer of safety properties under burst error. In NASA Formal Methods
Symposium, pages 65–81. Springer.

170 Matthieu Renard


	Techniques de vérification
	L'analyse statique
	Le test actif
	Vérification à l'exécution

	Enforcement à l'exécution
	Mécanisme d'enforcement

	Contributions de la thèse
	Formalisme des propriétés
	Évènements incontrôlables
	Utilisation de la théorie des jeux pour l'enforcement
	Implantation

	Plan succinct
	Contents
	Introduction
	Static Analysis
	Active Testing
	Runtime Verification
	Runtime Enforcement
	Contributions of this Thesis
	Models for Properties
	Uncontrollable Events
	Modelling Enforcement Mechanisms
	Enforcement Primitives
	Enforcing using Games
	Implementation

	Detailed Outline of this Thesis

	Associated Articles
	State of the Art
	Runtime Verification
	Runtime Enforcement
	Enforcing Safety Properties
	Enforcing more than Safety Properties
	Enforcing Safety Properties with Uncontrollable Events
	Enforcing Timed Properties
	Instrumentation of Enforcement Monitors


	Preliminaries and Notation
	Untimed notions
	Automata
	Timed Languages
	Timed Automata
	Timed properties
	Traces manipulation
	Graphs and Büchi games.
	Functions

	Enforcing Properties with Uncontrollable Events: A First Approach
	Introduction
	Enforcing Untimed Properties
	Enforcement Functions and their Requirements
	A First Simple Enforcement Function
	An Optimal Enforcement Function 
	Enforcement Monitors

	Enforcing Timed Properties
	Enforcement Functions and their Properties
	A Sound, Compliant and Optimal Enforcement Function
	Enforcement Monitors

	Conclusion

	Enforcing Properties using a Büchi Game
	Introduction
	Notation Changes
	Timed Words
	Timed Automata
	Enforcement Functions

	Enforcing Untimed Properties
	Enforcement Functions and their Requirements
	Synthesising Enforcement Functions
	Enforcement Monitors

	Enforcing Timed Properties
	Enforcement Functions and their Properties
	Synthesising Timed Enforcement Functions
	Enforcement Monitors

	Conclusion

	GREP: Games for Runtime Enforcement of Properties
	Introduction
	Description of the approach
	General Functioning of GREP
	Symbolic Computing Module (SCM)
	Enforcement Monitor Module (EMM)
	Running GREP

	Performance Evaluation
	Comparison with TiPEX
	Performance Evaluation with Uncontrollable Events

	Conclusion

	Conclusion
	Summary
	Future Work

	Proofs
	Proofs of Chapter 3
	Proofs for the Untimed Setting (Section 3.1)
	Proofs for the Timed Setting (Section 3.2)

	Proofs of Chapter 4
	Proofs for the untimed setting (Section 4.2)
	Proofs for the timed setting (Section 4.3)


	Bibliography

