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Abstract

Automated Mitosis Detection in Color and Multi-spectral
High-Content Images in Histopathology: Application to Breast
Cancer Grading in Digital Pathology

Digital pathology represents one of the major and challenging evolutions in modern
medicine. Pathological exams constitute not only the gold standard in most of medical
protocols, but also play a critical and legal role in the diagnosis process. Diagnosing a
disease after manually analyzing numerous biopsy slides represents a labor-intensive work
for pathologists. Thanks to the recent advances in digital histopathology, the recognition
of histological tissue patterns in a high-content Whole Slide Image (WSI) has the potential
to provide valuable assistance to the pathologist in his daily practice. Histopathological
classification and grading of biopsy samples provide valuable prognostic information that
could be used for diagnosis and treatment support. Nottingham grading system is the
standard for breast cancer grading. It combines three criteria, namely tubule formation
(also referenced as glandular architecture), nuclear atypia and mitosis count. Manual
detection and counting of mitosis is tedious and subject to considerable inter- and intra-
reader variations. The main goal of this dissertation is the development of a framework able
to provide detection of mitosis on different types of scanners and multispectral microscope.

The main contributions of this work are eight fold. First, we present a comprehensive
review on state-of-the-art methodologies in nuclei detection, segmentation and classifi-
cation restricted to two widely available types of image modalities: H&E (Hematoxylin
Eosin) and IHC (Immunohistochemical). Second, we analyse the statistical and mor-
phological information concerning mitotic cells on different color channels of various color
models that improve the mitosis detection in color datasets (Aperio and Hamamatsu scan-
ners). Third, we study oversampling methods to increase the number of instances of the
minority class (mitosis) by interpolating between several minority class examples that lie
together, which make classification more robust. Fourth, we propose three different meth-
ods for spectral bands selection including relative spectral absorption of different tissue
components, spectral absorption of H&E stains and mRMR (minimum Redundancy Max-
imum Relevance) technique. Fifth, we compute multispectral spatial features containing
pixel, texture and morphological information on selected spectral bands, which leverage
discriminant information for mitosis classification on multispectral dataset. Sixth, we per-
form a comprehensive study on region and patch based features for mitosis classification.
Seven, we perform an extensive investigation of classifiers and inference of the best one for
mitosis classification. Eight, we propose an efficient and generic strategy to explore large
images like WSI by combining computational geometry tools with a local signal measure
of relevance in a dynamic sampling framework.

The evaluation of these frameworks is done in MICO (COgnitive MIcroscopy, ANR
TecSan project) platform prototyping initiative. We thus tested our proposed frameworks
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on MITOS international contest dataset initiated by this project. For the color framework,
we manage to rank second during the contest. Furthermore, our multispectral framework
outperforms significantly the top methods presented during the contest. Finally, our
frameworks allow us reaching the same level of accuracy in mitosis detection on brightlight
as multispectral datasets, a promising result on the way to clinical evaluation and routine.

Keywords

Histopathology, Digital Patholgy, Breast Cancer, Multispectral imaging, Mitotic Count,
Nuclei Detection, Nuclei Segmentation, Nuclei Classification,

Détection Automatique de Mitoses dans des Images
Histopathologiques Haut-Contenu, Couleur et

Multispectrales : Application à la Gradation du Cancer du
Sein en Pathologie Numérique

La pathologie numérique constitue l’une des évolutions majeures de la médecine mo-
derne. Les examens pathologiques représentent la référence médicale et légale de la plupart
des protocoles médicaux, occupant ainsi une place essentielle dans le processus de diagnos-
tic. Le diagnostic histopathologique d’une maladie par analyse manuelle - au microscope -
de nombreuses lames de biopsie, représente un travail intensif, laborieux, pour les patho-
logistes. Grâce aux progrès récents dans l’histopathologie numérique, la reconnaissance de
tissus histologiques dans une image de lame entière à haut contenu a le potentiel de four-
nir une aide précieuse au médecin, dans sa pratique quotidienne. La gradation de lames
de biopsie fournit des informations pronostiques précieuses qui pourraient être utilisées
pour le diagnostic et le traitement. Le système de gradation Nottingham représente le
standard actuel pour la gradation du cancer du sein. Il combine trois critères, à savoir les
architectures glandulaires, les atypies nucléaires et le compte de mitoses. La détection et
le comptage manuel des mitoses est un travail fastidieux, sujet à des variations inter-et
intra- observateur considérables. L’objectif principal de cette thèse de doctorat est le dé-
veloppement d’un système capable de fournir une détection des mitoses sur des images
provenant de différents types de scanners rapides automatiques ainsi que d’un microscope
multispectral.

Les principales contributions de ce travail portent sur huit aspects. Tout d’abord, nous
présentons un examen complet de l’état de l’art des méthodes de détection, segmentation
et classification de noyaux limitée à deux types de modalités d’images largement répan-
dues : H&E (hématoxyline et éosine) et IHC (immunohistochimie). Deuxièmement, nous
analysons les informations statistiques et morphologiques concernant les mitoses dans dif-
férents canaux de couleurs pour différents modèles de couleurs qui améliorent la détection
des mitoses dans les images couleurs (scanners Aperio et Hamamatsu). Troisièmement,
nous étudions des méthodes de sur-échantillonnage pour augmenter le nombre d’instances
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de la classe minoritaire (mitose) par interpolation entre plusieurs exemples de classes mi-
noritaires qui sont proches les uns des autres, ce qui rend la classification plus robuste.
Quatrièmement, nous proposons trois méthodes différentes pour la sélection des bandes
spectrales comprenant l’absorption spectrale relative des différents composants des tissus,
l’absorption spectrale des colorants H&E et la technique mRMR (minimum Redundancy
Maximum Relevance). Cinquièmement, nous calculons les caractéristiques spatiales mul-
tispectrales au niveau des pixels, des textures et des informations morphologiques sur les
bandes spectrales sélectionnées, qui exploitent l’information discriminante pour la classi-
fication des mitoses sur les données multispectrales. Sixièmement, nous procédons à une
étude approfondie du calcul de signatures au niveau de la région d’une mitose ou d’un
carré englobant une mitose pour le classement de celles-ci. Septièmement, nous effectuons
une étude approfondie des classifieurs, afin d’identifier le plus approprié et efficace pour
la classification des mitoses. Huitièmement, nous proposons une stratégie performante et
générique pour explorer les lames virtuelles, stratégie combinant des outils de géométrie
algorithmique avec une mesure locale de pertinence dans le cadre d’un échantillonnage
dynamique.

L’évaluation des différents systèmes proposés est effectuée dans le cadre du projet
MICO (MIcroscopie COgnitive, projet ANR TecSan piloté par notre équipe). Dans ce
contexte, les systèmes proposés ont été testés sur les données du benchmark international
MITOS. En ce qui concerne les images couleur, notre système s’est ainsi classé en deuxième
position du concours selon la valeur du critère F-mesure. Par ailleurs, notre système de
détection de mitoses sur images multispectrales surpasse largement les meilleurs résultats
obtenus durant le concours. Sur les images multispectrales, nous obtenons ainsi le même
niveau de précision dans la détection de mitoses que sur les images couleur, avec une
précision accrue des bandes spectrales relevantes, permettant ainsi la mise au point d’un
processus ciblé, un résultat prometteur en vue de la validation et de l’utilisation de la
détection automatique de mitoses dans un environnement clinique.

Mots-clefs

Histopathologie, Pathologie Numérique, Cancer du Sein, Images Multispectrales, Seg-
mentation et Classification de Noyaux, Détection de Mitoses





Acronyms

Acronyms Description

Acc Accuracy
ACM Active contour model
BR Blue-ratio
CAD Computer aided diagnosis
CD Centroid distance
CNA Cyto-nuclear atypia
CNN convolutional neural networks
CV Cross validation
EM Expectation maximization
ER Error rate
DoG Difference of Gaussian
DT Decision tree
FCM Fuzzy c-means clustering
FL Follicular lymphoma
FNAR False negative area ratio
FP False Positives
FPAR False positive area ratio
FPR False positive rate
Gcut Graph cut
GLCM Grey level co-occurrence matrix
GLRLM Grey level run-length matrix
GMM Gaussian mixture model
GT Ground truth
GVF Gradient vector flow
HC Haralick Co-occurrence
HD Hausdorff distance
H&E Hematoxylin & Eosin
HES Hematoxylin Eosin Saffron
HPF High power field
IDM Inverse difference moment
IHC Immunohistochemical
ITM2C Intensity, Textural & Morphology based Mitosis detection in Color images
JI Jaccard index
LDA Linear discriminant analysis
LoG Laplacian of Gaussian
L-SVM Linear support vector machine
MAD Mean average distance
MAP Maximum a posteriori



6 Acronyms

MI Mutual Information
MITM3 Multispectral Intensity, Textural & Morphology based Mitosis detection in

Multispectral images
MLP Multilayer Perceptron
MMSF Morphological & Multispectral Statistical Features
MRF Markov random field
mRMR minimum redundancy maximum relevance
MSI Multispectral Imaging
Ncut Normalized cut
NGS Nottingham grading system
NL-SVM Non-linear support vector machine
OR Overlap ratio
PPV Positive predictive value
RL Run-length
ROI Region of interest
RST Radial symmetry transform
SB Spectral band (multi or hyper)
SDE Segmentation distortion evaluation
SIFT Scale-invariant feature transform
SVM Support vector machine
TMA Tissue micro array
TMC Textural based Mitosis detection in Color images
TNR True negative rate
TP True positives
TPR True positive rate
WSI Whole slide image

Table 1: Description of Acronyms



Notations

Notations Description

E Energy or Force
H(·) Heaviside function
N Gaussian distribution
I Image of size (m,n)
I(x, y) Image pixel value at position x and y
I(i) ith pixel value of image I
d(i, j) Distance between pixel i and j
Ii Subset (region) of image
N(i) Neighbors of pixel ’i’
U Total number of pixels in image
P Probability
G(V,E) Graph with V vertices and E edges
PG(u, v) Set of paths connecting 2 vertices (u, v)
T Threshold value
w Weight
µ Mean (average)
σ2 Variance
σ Standard deviation
φ or Φ Level set
ψ or Ψ Shape
̟ Contour
δ(·) Dirac delta function

Table 2: Description of Notations
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Chapter 1

Role of Image Analysis in
Histopathology

Résumé du chapitre

L’objectif principal de cette recherche est l’étude des techniques d’analyse quanti-
tative d’images pour la détection, la segmentation et la classification de noyaux en
histopathologie. Bien que ce soit un problème pour le diagnostic et le pronostic de nom-
breux types de cancers, nous concentrerons notre recherche au développement d’un sys-
tème automatisé pour la quantification des noyaux, et plus spécifiquement les noyaux
de mitoses dans le cancer du sein en histopathologie. Ce chapitre présente les motiva-
tions pour l’aide au diagnostic en histopathologie, et plus particulièrement l’importance
de l’analyse quantitative d’images pour aider à la gradation du cancer du sein. Nous
présentons brièvement la préparation des lames de biopsie et la typologie de l’imagerie
en histopathologie. Nous expliquons aussi brièvement le cancer du sein et le système de
gradation de Nottingham. Enfin, nous énumérons quelques types de noyaux présents
dans les images histologiques de cancer du sein et nous mettons en évidence les défis
liés à leur détection.

1.1 Introduction

The main goal of this research is the study of quantitative image analysis techniques
for nuclei detection, segmentation and classification in histopathology. Although this
is a problem of interest in diagnosis and prognosis of many types of cancer, we focus
our research to develop an automated framework for quantification of nuclei, specifically
mitosis nuclei, in breast cancer histopathology. This chapter presents the motivation
behind computer aided diagnosis (CAD) systems in histopathology, more specifically the
importance of quantitative image analysis in breast cancer grading. We shortly present
the specimen preparation and the typology of imaging in histopathology. We also briefly
explain the breast cancer and the corresponding grading system. At last, we list the
different types of nuclei in breast cancer histological images and highlight the challenges
in their detection.

1.2 Histopathology

Histopathology is the microscopic examination of nuclei 1 morphology and tissue dis-
tribution supplemented with in situ molecular information for a purpose of studying

1. Thereafter, we use the word nuclei to refer both a nucleus and cell(s) in that context.
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the manifestation of disease. Its understanding is a key link between anatomy and ar-
eas of physiology, pharmacology, molecular biology and pathology. In clinical practice,
histopathologists examine histology slides under microscope and identify morphological
and structural characteristics at various scales (e.g., nuclei, tubule, follicles, etc.), as an
indicator for cancer presence. These characteristics have similar resemblance in benign
and malignant tissues.

Histopathologists play a key role both in diagnosing disease entities and determining
biomarkers related to the prognosis and response to specific therapy of malignant tu-
mors [120]. The integrative role of histopathologists, particularly in diagnosing malignant
tumors and screening for biomarkers related to patients’ response to molecular targeted
therapy, upgrades their responsibility in therapy decision [108]. Besides, the diagnosis from
histopathology image remains the “gold standard” in diagnosing considerable number of
diseases including almost all types of cancers [152].

1.3 Histopathology Imaging

1.3.1 Specimen Preparation

In clinical pathology, a biopsy sample is extracted from suspicious lesion and his-
tological sections are placed onto glass slides for a microscopic examination. The slide
preparation normally consists of a sequence of steps. First, biopsy samples are extracted
from suspicious lesion. Second, fixation is used to stop the metabolic activities in the
tissue and preserve the nuclei and their morphology and architectural structure. Third,
tissue is processed using dehydration, clearing, infiltration and embedding [30, 127, 182].
Dehydration is applied to remove water, the main constituent of the tissue. Clearing is
used to clean the dehydrant (e.g., alcohols) and make the tissue transparent. Infiltration
refers to the saturation of the tissue constituents (e.g., nuclei and vacuities). Embedding
removes the clearing agent and becomes solidified in molds to provide sufficient external
support for sectioning. Next step is sectioning in which the embedded tissue sample is cut
into thin sections (e.g., 5µm thick for light microscopy) to be placed on a slide. Finally,
these thin sections are mounted to a glass slide and stained with one or more pigments.
The objective of staining is to enhance the contrast and highlight specific intra- or extra
cellular structures under the microscope.

Hematoxylin and Eosin (H&E) , and Immunohistochemical (IHC) stainings are two
widespread staining protocols in histopathology. H&E staining has been used by patholo-
gists for over a hundred years [53] and is still indispensable for recognizing various tissue
types and the morphological changes that form the basis of contemporary cancer diag-
nosis. Hematoxylin stains DNA rich nuclei in blue, while eosin stains cytoplasm in dark
pink shade, muscle in medium pink shade, stroma and connective tissue in light pink
shade (see Fig. 1.1(a)). Nuclei show varying cell-type and cancer-type specific patterns
of concentrated heterochromatin and prominent nucleoli that are diagnostically very im-
portant. Due to incorrect concentration and/or pH of eosin, it ends up being two shades
of eosin, instead of three shades of eosin, with the muscle and stroma/connective tissue
having the same shade. Adding saffron in Hematoxylin Eosin Saffron (HES) gives the
stroma/connective tissue a more yellowish shade (see Fig. 1.1(b)). With HES, it is easier
to differentiate muscle from stroma/connective tissue. These dyes provide useful visual
clues for the segmentation of nuclei.

A limitation of hematoxylin staining is that it is incompatible with immunofluores-
cence. It is useful, however, to stain one serial paraffin section from a tissue in which
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(a) H&E (b) HES (c) IHC

Figure 1.1: Examples of H&E, HES and IHC stained breast cancer images.

immunofluorescence will be performed. Hematoxylin, generally without eosin, is useful
as a counter stain for many immunohistochemical or hybridization procedures that use
colorimetric substrates (such as alkaline phosphatase or peroxidase).

IHC aims at identifying tissue components by the interaction of target antigens with
specific antibodies tagged with a visible label. Samples can be viewed by either light or
fluorescence microscopy. Fig. 1.1(c) shows an example of IHC under light microscopy.
Using specific tumor markers, physicians use IHC to diagnose a cancer as benign or ma-
lignant, determine the stage and grade of a tumor, and identify the cell type and origin of
a metastasis to find the site of the primary tumor [38].

1.3.2 Fast Slide Scanners

After slide preparation and staining, next step is digital image acquisition using a fast
slide scanner . Slide scanners capture digital images that contain relevant information
about specimen at a microscopic level. They are capable of digitizing complete slides at
high magnifications. The two main groups of acquisition modalities for microscopic images
(WSI devices) can be distinguished: modalities using both a motorized microscope and a
camera and slide scanners [169, 147, 126]. For illumination, uniform light spectrum is used
to highlight the tissue slide. The imaging system uses one or multiple lenses to magnify
the sample and captures digital image with a charge coupled device (CCD) camera .

All manufacturers of slide scanners were invited to participate in the 2nd Interna-
tional Scanner Contest (ISC) 2012 in Berlin, under the auspices of the European Society
of Pathology, German Society of Pathology, and the Berufsverband Deutscher Patholo-
gen e.V. (German Professional Organization of Pathologists) [132, 41]. This ISC 2012
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contained five domains to evaluate different capabilities of participating systems [2]. Dur-
ing the contest, seven scanning systems (Metafer-VSlide SFx80, NanoZoommer HT 2.0,
Pannoramic Desk, Pannoramic 250, TISSUEScope 4000, UltraFastScanner UFS, VS120
S5) from 6 participants (3DHistech, Hamamatsu, Huron, Metasystems, Olympus, Philips)
were evaluated using 32 tests. A list of slide scanners with corresponding specification are
shown in Table 1.1.

Color (RGB) Microscopy

Color microscopy is the standard technique in pathology to study the morphology of
tissue. In color microscopy, the tissue sample is exposed under visible light from illumination
source. A condenser lens is used for focusing the light onto the sample. The dense areas
of sample absorb some component of light and produces contrast in the sample. The
magnification is limited by the resolving power possible with the wavelength of visible light.

Multispectral Microscopy

In the recent years, scientists have begun to exploit multispectral imaging technology
[181, 99, 52, 101, 98, 21, 100, 89] on microscopy image analysis with the objective of deter-
mining the makeup of nuclei and other tissue constituents. The principle of this technology
is to employ both the visible light and beyond (e.g., ultraviolet and infrared) in the electro-
magnetic spectrum to collect and process specimens more comprehensively. With data richer
than regular brightfield imaging technologies using only visible light, tissue constituents can
be more easily identified by using their unique spectral signatures. The main disadvantage
of this technique is high cost and complexity for data processing and storage. Its advantage
resides into the possibility to control the bandwidth, according to the correlation with the
requested patters. This method could also be used in combination with a fast low magnifi-
cation color acquisition analysis, by focusing on a precise high-magnified region of interest
and a precise (set of) bandwidth(s).

1.4 Computer Aided Diagnosis Systems in Histopathology

After specimen preparation and image production, the resulting digital histology im-
ages are analyzed by histopathologists. Manually analyzing numerous slides represents a
labour-intensive work for histopathologists, leading to an important inter- and intra-observer
variability. Thanks to recent advances in digital histopathology, the recognition of histolog-
ical tissue patterns in a high-content whole slide images (WSI) within a CAD framework,
constitute an important environment for quantitative second opinion and provides diagnos-
tic numerical support. CAD is a blooming interdisciplinary field, combining elements of
artificial intelligence and digital image processing with medical knowledge.

Researchers in histopathology have been familiar with the importance of quantitative
analysis of histopathological images. These analyses are used to confirm the presence or
the absence of disease and also to help in disease progression evaluation. Being important
in diagnostic pathology, this quantitative assessment is also used to understand the ground
realities for specific diagnostic being rendered like specific chromatin texture in the can-
cerous nuclei, which may indicate certain genetic abnormalities. In addition, quantitative
characterization of pathology imagery is important not only for clinical applications (e.g.,
to reduce/eliminate inter- and intra-observer variations in diagnosis) but also for research
applications (e.g., to recognize the abnormalities for drug discovery [188] and to understand
the biological mechanisms of the disease process) [66]. As a consequence, the use of CAD
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in histopathology can substantially enhance the efficiency and accuracy of histopathologists
and overall benefit of the healthcare service.

The research on quantitative image analysis in histopathology imagery can be traced
back to the works of Bartels et al. [16], Thiran et al. [168] and Mouroutis et al. [125] but
has largely been overlooked, perhaps due to the lack of computational resources and the
relatively high cost of digital imaging equipment for pathology. The last few years witnessed
a remarkable increase in research studies on digital pathology applications, thanks to recent
advances in high-throughput whole slide tissue scanning technology. Quantitative analysis
has recently become a vital part in most CAD systems.

Quantitative analysis in histopathology has been conducted for numerous cancer detec-
tion and grading applications, including brain [67, 8, 91, 31], breast [164, 60, 65, 133, 39,
79, 80, 17, 45, 73, 176], cervix [85, 71], liver [74], lung [27, 28] and prostate [177, 128, 12]
cancer grading. These systems consist of conventional image processing and analysis tools
including preprocessing, object detection and segmentation, feature computation, feature
selection and classification.

1.5 Cancer and Grading System

The nuclei normally replace themselves through nuclei division (i.e., mitosis), healthy
new nuclei take over as old nuclei die out (i.e., apotosis). Mutation is a phenomenon
during nuclei division that results in several different types of changes in gene sequences.
Consequently, mutation can turn on respectively off certain genes in nuclei. These nuclei
changes induce ability to divide without control or order, producing more similar nuclei.
The normal proliferation of nuclei may result in the gross enlargement of an organ, called
hyperplasia. Abnormal proliferation of nuclei may result in tumor (neoplasm). Tumor may
be benign, pre-malignant (carcinoma in situ) or malignant (invasive cancer). In benign
tumors, nuclei proliferate gradually, being close to "normal" (i.e. small, circular, uniform
shape, with homogeneous texture) in appearance. They do not invade surrounding tissues
and body parts. In malignant tumors, nuclei proliferate rapidly and eventually can spread
beyond the original tumor to other parts of the body.

1.5.1 Breast Cancer

Breast cancer refers to a malignant tumor that has developed from nuclei in the breast.
Normally, breast cancer either begins in the lobules (glands producing the milk) nuclei, or in
the ducts (passages that drain milk from the lobules to the nipple). Breast cancer can often
begin in the stromal tissues, which include the fatty and fibrous connective tissues of the
breast. Depending on proliferation of nuclei, breast cancer can be classified as carcinoma
in situ and infiltrating cancer. In carcinoma in situ, epithelial proliferation is located in the
ducts and lobules, without infiltration of the neighboring parts of the organ (see in Figure
1.2(a), 1.2(c)). Infiltration cancer is a cancer invading the mammary tissue, evolving locally
then making metastasis (see in Figure 1.2(b), 1.2(d)). A range of cell proliferation in ducts
of the breast is described in Figure 1.3.

The molecular, cellular and pathological processes that occur in the transformation
from normal tissue to carcinoma in situ tissue and then to breast cancer tissue are shown
in Figure 1.4. The main changes that cause breast cancer, including the accumulation
of genetic changes, oncogene expression (e.g., HER2/neu), and the loss of normal cell-
cycle regulation, appear to have occurred by the time ductal carcinoma in situ (DCIS) is
present. At this stage, main clinical features of a subsequent invasive breast cancer are
already determined although additional events, including tissue invasion and changes in the
surrounding stroma, characterize the invasive tumor [5].
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(a) Ductal carcinoma in situ (DCIS) (b) Invasice ductal carcinoma (IDC)

(c) Lobule carcinoma in situ (LCIS) (d) Invasive lobule carcinoma (ILC)

Figure 1.2: Different types of breast cancer [7] (A: Ducts, B: Lobules, C: Dilated section
of duct to hold milk, D: Nipple, E: Fat, F: Pectoralis major muscle, G: Chest wall/rib
wall, H: Normal Duct Nuclei, I: Ductal cancer nuclei breaking the basement membrane,
J: Basement membrane, K: Ductal cancer nuclei, L: Lumen /center of duct, M: Normal
lobular nuclei, N: Lobular cancer nuclei breaking the basement membrane and O: Lobular
cancer nuclei).
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Figure 1.3: Range of breast ductal cancer ([7]).
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Figure 1.4: Pathobiologic events associated with breast ductal cancer ([5]).

1.5.2 Grading System

Cancer grading refers to how the cancer nuclei look under the microscope compared with
normal tissue nuclei. It is different from staging that measures the size of neoplasm and its
invasion and metastasis. Infiltrative breast cancers are graded by Nottingham grading sys-
tem (NGS) , an international grading system recommended by World Health Organization.
NGS has been proposed by Elston and Ellis [48]. It compares the appearances of the breast
cancer tissue to the appearances of normal breast tissue. It influences the prognosis and
can affect treatment response. It has three grades I, II and III obtained from the addition
of three criteria: gland formation, nuclear atypia and mitotic count. Each of the three
criteria are rated 1, 2 or 3 (see Table 1.2). The assessment of the criteria of the grade is
semi-quantitative. The addition of the three criteria gives the final grade of breast cancer.
The minimum possible score is 3 (1+1+1) and the maximum possible score is 9 (3+3+3).
Grade III is assigned to any patient with a score of 8 or 9. Grade II refers to scores of 6 or
7 while grade I refers to scores of 3, 4 or 5.

The mitosis count, alone or within the grade, is currently the best labeling of cell
proliferation, and furthermore it is crucial and independent prognosis factor. In NGS, it
is stated that Mitotic activity is best assessed at the periphery of the tumor where active
growth is most likely. A minimum of 10 high power fields (HPFs) at 40X magnification is
assessed [48] by identify truly mitotic nuclei according to Van Diest and Baak criteria (no
nucleus membrane, basophilic cytoplasm, hairy extensions clearly recognizable, either as a
ball, or on a plane, or as two balls, see Figure 1.5).
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Criteria Score Description

Gland formation
1 more than 75% of the tumor forms gland
2 10− 75% of the tumor forms gland
3 less than 10% of the tumor forms gland

Nuclear atypia
1 small, regular uniform nuclei
2 moderate increase in size and variability
3 marked variation

Mitosis counts
1 less than 11 mitosis in 10 HPF
2 between 11 and 20 mitosis in 10 HPF
3 greater than 20 mitosis in 10 HPF

Table 1.2: Nottingham Grading System

(a) Prophase is a stage of mitosis in which the
chromatin condenses (i.e. becomes shorter and fat-
ter) into a highly ordered structure called chromo-
some, in which the chromatin becomes visible. Mi-

tosis in prophase stage is not considered for

mitosis count.

(b) Metaphase is a stage of mitosis in the eukary-
otic cell cycle in which condensed & highly coiled
chromosomes, carrying genetic information, align in
the middle of the cell before being separated into
each of the two daughter nuclei.

(c) Anaphase is the stage of mitosis when chromo-
somes separate in a eukaryotic cell. Each chromatid
moves to opposite poles of the cell, the opposite
ends of the mitotic spindle, near the microtubule
organizing centers.

(d) Telophase is a stage of mitosis in an eu-
karyotic cell in which the effects of prophase and
prometaphase events are reversed. Two daughter
nuclei form in the cell. The nuclear envelopes of
the daughter nuclei are formed from the fragments
of the nuclear envelope of the parent cell. As the
nuclear envelope forms around each pair of chro-
matids, the nucleoli reappear.

Figure 1.5: Different phases of mitosis.
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1.6 Motivation of Our Study

Worldwide, breast cancer accounts for 22.9% of all cancer in women [23]. It is estimated
that about 1 in 8 US women will develop invasive breast cancer over the course of her life-
time [7]. In 2011, an estimated 230,480 new cases of invasive breast cancer were diagnosed
in women in the United States, along with 57,650 new cases of non-invasive (in situ) breast
cancer [7]. About 39,520 women in the United States were expected to die in 2011 from
breast cancer, though death rates have been decreasing since 1990, especially in women
under 50. These decreases are thought to be the result of treatment advances, earlier detec-
tion through screening and increased awareness [7]. Prognostic assessments and successful
treatments for breast cancer vary highly depending on the cancer type, stage, treatment
and geographical location of the patient.

Histopathological examination is based on the visual observation of chromatin texture,
shapes and sizes of nuclei, size of nucleoli, thickness of nuclear membrane, and regularity
of nuclear contour of the population of tumor nuclei that can also be analyzed using quan-
titative image analysis techniques. Mostly, these image analysis techniques provide more
objective prognostic clues, which may be insufficiently observed and quantified by human
visual examination. Thus, a computer assisted quantitative image analysis in histopathol-
ogy is likely to improve the diagnostic and prognostic capabilities and to boost the efficiency
of histopathologists by giving a reliable second opinion. These quantitative tools for tissue
characterization are also important for understanding the biological mechanism of disease
progression.

The most difficult challenge in quantitative image analysis is represented by the spatial
analysis, more specifically by the automated nuclei detection, segmentation and classifica-
tion [54]. The objective of nuclei classification is to assign different labels to different types
of nuclei as normal, cancer, mitotic, apoptosis, lymphocytes etc. Quantitative image analy-
sis in cytology has been studied for years and numerous solutions [180, 162, 34, 137, 61] have
thus been proposed in the literature. The application of these solutions to histopathology
is rather complicated due to the radical differences between the two imaging modalities and
to the highly complex image characteristics. Indeed, in cytology imagery, the detection,
segmentation and classification of nuclei are generally facilitated due to the well-separated
nuclei and the absence of complicated tissue structures. In contrast, the detection, segmen-
tation and classification of nuclei in histopathology imagery are relatively difficult since most
of the nuclei are clustered, being parts of complex structures/architectures (tubules, blood
vessels, nerves, muscles, DCIS) and zones/territories (neoplasm, fat, necrosis, connective tis-
sue, hyperplasia, fibrosis) which provide a more comprehensive examination and understand-
ing of the evolution of the disease. These complex structures formulate different challenges
for quantitative image analysis. Nevertheless, recent works [158, 51, 17, 140, 11, 113, 176]
show great potential for computer aided diagnostic of histopathological datasets for breast
cancer grading.

Nuclei look different due to different tissue, nuclei type, cancer grade and nuclei life cy-
cle. Having importance in cancer diagnosis and grading, these nuclei are broadly classified
into two categories depending on nuclei type: lymphocyte and epithelial nuclei. Lympho-
cyte nuclei are inflammatory nuclei having regular shape and smaller size than epithelial
nuclei [see in Fig. 1.6(a)]. Epithelial nuclei have nearly uniform chromatin distribution with
smooth boundary [see in Fig. 1.6(b)]. In high grade cancer tissue, epithelial nuclei, often
called cancer nuclei, are larger in size, having heterogeneous chromatin distribution, irreg-
ular boundaries and clearly visible nucleoli as compared to normal epithelial nuclei [see in
Fig. 1.6(c)]. The variation in nuclei shape, size and texture during nuclei life cycle, mitotic
nuclei, is another factor of complexity [see in Fig. 1.6(d)].

Nuclei detection, segmentation and classification are important steps in cancer diagnosis
and grading. The presence of nuclei and their aspect are critical signs for evaluating the
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(a) Lymphocyte (b) Epithelial (c) Cancer (d) Mitosis

Figure 1.6: Different types of nuclei.

(a) Artifacts (b) Overlapping (c) Heterogeneity

Figure 1.7: Examples of challenges in nuclei detection and classification.

existence of disease and its severity. For example, infiltration of lymphocyte in breast cancer
histopathology images are related to patient survival and outcome [10]. Similarly, nuclei
pleomorphism has diagnostic value for cancer grading [49, 163, 46]. Furthermore, mitosis
count is also an important prognostic parameter in breast cancer grading [49]. Therefore,
nuclei detection, segmentation and classification are prerequisites to cancer diagnosis and
prognosis.

Automated nuclei detection, segmentation and classification is now a well-studied topic
for which a large number of methods have been described in the literature and new method-
ologies continue to be investigated. Detection, segmentation and classification of nuclei in
routinely stained histopathological images pose a difficult computer vision problem due to
variations in dyes concentration, artefacts, noise and damaged nuclei boundaries during the
slide preparation process, as imperfections in the staining and scanning of the slide. Fur-
thermore, nuclei are clustered and heterogeneous in terms of both intensity gradient and
color, even within the same nuclei. This may be due to uneven activation intensity lead-
ing to variable color intensity, the superposition of different colors on tissue layers and the
variation of the illumination over the tissue specimen. All these problems (highlighted in
Fig. 1.7) make the nuclei detection, segmentation and classification a challenging problem.
A successful quantitative image analysis approach will have to overcome these issues in a
robust way, in order to maintain a high level in the quality and accuracy of nuclei detection,
segmentation and classification.

Multispectral imaging (MSI) has the advantage to retrieve spectrally resolved informa-
tion of a tissue image scene at specific frequencies across the electromagnetic spectrum.
MSI captures images with accurate spectral content, correlated with spatial information,
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by revealing the chemical and anatomic features of histopathology [98, 100]. This modality
provides option to biologists and pathologists to see beyond the RGB image planes to which
they are accustomed. Recent publications [52, 101, 183, 89] have begun to explore the use
of extra information contained in such spectral data. Specifically, a comparison of spectral
methodologies demonstrate the advantage of multispectral data [99, 58]. The added ben-
efit of MSI for analysis in routine H&E histopathology, however, is still largely unknown,
although some promising results are presented in [148, 52, 89, 183].

1.7 Thesis Strucure

This thesis is structured in six chapters. Chapter 2 gives a comprehensive review
on state-of-the-art methodologies in nuclei detection, segmentation and classification in
histopathology. Chapter 3 introduces two frameworks for mitosis detection in color images
of breast cancer histopathology. Chapter 4 describes automated mitosis detection frame-
work for multispectral images of breast cancer histopathology. Chapter 5 illustrates the
orientable 2-Manifold surfaces and dynamic sampling algorithm for selection of frames on
WSI. Thesis concludes in chapter 6 with its main contributions and future work.

1.8 Conclusion

This chapter described a brief overview of the histopathology and histology specimen
preparation and imaging. It has been demonstrated that histopathological examination
is based on the visual observation of chromatin texture, shapes and sizes of nuclei that
can also be analyzed using quantitative image analysis techniques. Our study focuses on
histopathology images of cancer, in particular breast cancer grading, with its associated
breast cancer grading system. It has been discussed that quantitative image analysis in
histopathology improves the diagnostic and prognostic capabilities and boosts the efficiency
of histopathologists by giving a reliable second opinion. We explained the different types of
nuclei in breast cancer and their importance in breast cancer grading, having also highlighted
the challenges in nuclei detection, segmentation and classification. The next chapter will
introduce a comprehensive review on state-of-the-art methodologies in nuclei detection,
segmentation and classification in histopathology.





Chapter 2

Review of Quantitative Image
Analysis Methods in
Histopathology

Résumé du chapitre

Nous présentons un aperçu détaillé des méthodes d’analyse quantitative des im-
ages histopathologiques en général à travers un état de l’art des publications portant
sur l’analyse d’images histopathologiques couvrant différentes modalités d’images et
plusieurs types de cancer. Nous présentons brièvement les nombreux systèmes dévelop-
pés pour l’analyse d’images histopathologiques qui utilisent un seul ou une combinaison
de différents algorithmes de traitement d’image. Nous commençons par introduire les
méthodes de traitement d’image les plus couramment utilisées pour l’analyse d’images
histopathologiques, puis nous expliquons brièvement les différentes approches utilisées
par ces systèmes pour le prétraitement, la détection de noyaux, la segmentation, la
séparation des noyaux accolés et la classification. Les méthodes similaires sont re-
groupées afin de fournir une description plus compacte des techniques générales qui
sont utilisées dans la détection des noyaux, la segmentation, la séparation des noyaux
accolés et la classification. Enfin, nous soulignons les limites et les défis non réso-
lus par les systèmes existants pour l’analyse quantitative d’image avant de donner un
aperçu du système que nous proposons et des nouveautés introduites.

2.1 Introduction

In this chapter, we present an extensive overview of quantitative image analysis meth-
ods in general histopathology. This literature review covers a range of image modalities,
tissue and cancer type wherein we see a wide range of performance. We shortly explain nu-
merous previous frameworks, which use single or combination of different image-processing
algorithms. In the following subsections, we first introduce a short description of most com-
monly used image-processing methods, in order to later briefly explain different approaches
used for preprocessing, nuclei detection, segmentation, separation and classification. We
also make a deliberate attempt for grouping similar methods under same heading, in order
to provide a more compact description of the general techniques that are used in nuclei
detection, segmentation, separation and classification. In last, we point out the limita-
tions and open challenges in existing frameworks for quantitative image analysis and give
overview of proposed framework with a list of novelties.
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2.2 Image-Processing Methods

We begin with basic definitions. An image I is a function:

I : U −→ [0, 1]c (2.1)

where U = J0;m− 1K× J0;n− 1K, m and n are the numbers of rows and columns, and c is
the number of channels (also called colors), usually c ∈ {1, 3}. I(i) is the ith pixel value in
the image I, where i ∈ U. A part of image I denoted Ii is a restriction of I to a connected
subset of pixels.

2.2.1 Thresholding

Thresholding is a method used for converting intensity image I into a binary image I ′

by assigning all pixels to the value one or zero if their intensity is above or below some
threshold T . Threshold T can be global or local. If T is a global threshold, then I ′ is a
binary image of I as:

I ′(i) =

{

1 if I(i) ≥ T

0 otherwise
(2.2)

A threshold value can be estimated using computational methods like Ostu method,
which determines an optimal threshold by minimizing the intra-class variance [130]. For a
given image with L different gray levels, the intra-class variance is:

σ2
ω(T ) = ω0(T )σ2

0(T ) + ω1(T )σ2
1(T ) (2.3)

where ω0 and ω1 are probabilities of two classes separated by a threshold T and σ2
0 and σ2

1
are the variances of these classes, respectively. With P (i) indicating the probability of the
occurrence of gray level i in the image, ω0 and ω1 are defined as:

ω0 =
T−1∑

i=0

P (i), ω1 =
L−1∑

i=T

P (i) (2.4)

Another thresholding technique is local (adaptive) thresholding that handles non-uniform
illumination. It can be determined by either splitting an image into sub-images and calcu-
lating thresholds for each sub-image or examining the image intensity in the pixel’s neigh-
borhood [178].

2.2.2 Morphology

Morphology is a set-theoretic approach that considers an image as the elements of a
set [156] and process images as geometrical shapes [72]. The basic idea is to probe an image
I with a simple, pre-defined shape, drawing conclusions on how this shape fits or misses the
shapes in the image. This simple probe is called structuring element and is subset of the
image. The typically used binary structuring elements are crosses, squares and open disks.

The two basic morphological operators are the erosion ⊖ and the dilation ⊕. Let I :
U −→ {0, 1} be a binary image and Uf = I−1({1}) be the foreground pixels. The erosion
and dilation of the binary image I by the structuring element S ∈ Z× Z are defined as:

Erosion: Uf ⊖ S = {x|∀s ∈ S, x+ s ∈ Uf}

Dilation: Uf ⊕ S = {x+ s|x ∈ I ∧ s ∈ S}
(2.5)

The basic effect of erosion (dilation) operator on a image is to shrink (enlarge) the
boundaries of foreground pixels. Two other major operations in morphology are opening ◦
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and closing •. Opening is an erosion of an image followed by a dilation; it eliminates small
objects and sharpens peaks in the object. Opening is mathematically defined as:

Uf ◦ S = [Uf ⊖ S]⊕ S (2.6)

Closing is a dilation of an image followed by an erosion; it fuses narrow breaks and fills
small holes and gaps in the image. Closing is mathematically defined as:

Uf • S = [Uf ⊕ S]⊖ S (2.7)

White and black top-hat transforms are two other operations derived from morphology.
They allow to extract small elements and details from given images. The white top-hat
transform is defined as the difference between image I and its opening as:

Tw(I) = Uf − [Uf ◦ S] (2.8)

The black top-hat transform is defined as the difference between image I and its closing
as:

Tb(I) = Uf − [Uf • S] (2.9)

In addition, morphological gradient, which is the difference between the dilation and
the erosion of a given image, is useful for edge detection. It is defined as:

G(I) = [Uf • S]− [Uf ◦ S] (2.10)

2.2.3 Region Growing

Region growing [189] is an image segmentation method consisting of two steps. The first
step is selection of seed points and the second step is a classification of neighboring pixels to
determine whether those pixels should be added to the region or not by minimizing a cost
function. Let Pr(Ii) is a logical predicate which measures the similarity of a region Ii. The
segmentation results in a partition of I into regions (I1, I2, . . . , In), so that the following
conditions hold:

i. Pr(Ii) = TRUE, ∀i = 1, 2, . . . , n

ii. Pr(Ii ∪ Ij) = FALSE, ∀Ii, Ij(i 6= j, i, j = 1, 2, . . . , n), adjacent regions

The Pr that often used are grey level (average intensity and variance), color, texture and
shape related.

2.2.4 Watershed

Watershed is a segmentation method that usually starts from specific pixels called mark-
ers and gradually floods the surrounding regions of markers, called catchment basin, by
treating pixel values as a local topography. Catchment basins are separated topograph-
ically from adjacent catchment basins by maximum altitude lines called watershed lines.
It allows classifying every point of a topographic surface as either belonging to the catch-
ment basin associated with one of the local minima or to the watershed line. Details about
watershed can be found in [146]. The basic mathematical definition contains lower slope
LS(i), that is the maximum slope connecting pixel i in the image I to its neighbors of lower
altitude as:

LS(i) = max
j∈N(i)

(
I(i)− I(j)
d(i, j)

)

(2.11)
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where N(i) is neighbors of pixel i and d(i, j) is the Euclidean distance between pixels i
and j. In case of i = j, the lower slope is forced to be zero. The cost of moving from pixel
i to j is defined as:

cost(i, j) =







LS(i) · d(i, j) if I(i) > I(j)

LS(j) · d(i, j) if I(i) < I(j)
1
2(LS(i) + LS(j)) · d(i, j) if I(i) = I(j)

(2.12)

The topographical distance between the two pixels i and j is expressed as:

min
(i0,...,it)∈Π

t−1∑

k=0

d(ik, ik+1) · cost (ik, ik+1) (2.13)

where Π is the set of all paths from i to j.
The catchment basin CB(mi) of a local minimum mi is defined as the set of pixels,

which have smaller topographical distances to mi than any other local minimum. The set
of pixels, which do not belong to any catchment basin, is referred as the watershed pixels.
The watershed transformation is usually computed on the gradient image instead of the
intensity image.

2.2.5 Active Contour Models and Level sets

Active contour models (ACMs) or deformable models, widely used in image segmen-
tation, are deformable splines that can be used to delineate structures in an image using
gradient information by seeking to minimize an energy function [83]. In nuclei segmentation,
the contour points that yield the minimum energy level form the boundary of a cell. The
energy function is often defined to penalize discontinuity in the curve shape and gray-level
discontinuity along the contour [164]. The general ACM is defined using the energy function
E over the contour points c as:

E =
∮

c
(α EInt(c) + β EImg(c) + γ EExt(c)) dc (2.14)

where EInt controls the shape and length of the contour (often called internal force or en-
ergy), EImg influences adjustment of local parts of the contour to the image values regardless
of the contour geometry (referring as image force or energy) and EExt is user defined force
or prior knowledge of object to control the contour (referring as external force or energy).
α, β and γ are empirically derived constants.

There are two main forms of ACMs. An explicit parametric representation of the con-
tour, called snakes, is robust to image noise and boundary gaps as it constrains the extracted
boundaries to be smooth. However, in case of splitting or merging of contours, snakes are
restricted for topological adaptability of the model. Alternatively, the implicit ACM, called
level sets, is specifically designed to handle topological changes, but they are not robust to
boundary gaps and have other deficiencies as well [165]. The basic idea is to determine level
curves from a potential function.

2.2.6 K-means Clustering

The K-means clustering [110] is an iterative method used to partition an image into K
clusters. The basic algorithm is:

i. pick K cluster centers, either randomly or based on some heuristic

ii. assign cluster label to each pixel in the image that minimizes the distance between
the pixel and the cluster center
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iii. re-compute the cluster centers by averaging all the pixels in the cluster

iv. repeat steps ii) and iii) until convergence is attained or no pixel change its cluster

The difference is typically based on pixel value, texture and location, or a weighted
combination of these factors. Its robustness depends mainly on the initialization of clusters.

2.2.7 Probabilistic Models

Probabilistic models can be viewed as an extension of K-means clustering. Gaussian mix-
ture models (GMM) are a popular parametric probabilistic model represented as weighted
sum of Gaussian cluster densities. The image is modelled according to the probability
distribution:

P (I(i)) =
K∑

k=1

wk N (I(i) | µk, σ
2
k) (2.15)

where K is the number of clusters (objects in the image), µk, σ2
k and wk are mean, variance

and weight of cluster k, respectively. The wk are positive real values such that
∑K
k=1 wk = 1.

The parameters of GMM are estimated from training data using computation method
like Expectation Maximization (EM) [43] that iteratively finds maximum likelihood. The
EM is based on the following four steps:

i. Initialization: The parameters, µ(0)
k , σ2(0)

k and w
(0)
k , are randomly initialized for each

cluster Ck.

ii. Expectation: For each pixel I(i) and cluster Ck, conditional probability P (Ck|I(i)) is
computed as:

P (Ck|I(i))(t) =
w

(t)
k N (I(i) | µ(t)

k σ
2(t)

k )
∑K
j=1 w

(t)
j N (I(i) | µ(t)

j σ
2(t)

j )
(2.16)

iii. Maximization: The parameters µ(t)
k , σ2(t)

k and w
(t)
k of each cluster Ck are now max-

imized using all pixels and the computed probabilities P (Ck|I)(t) from expectation
step as:

µ
(t+1)
k =

∑U
i P (Ck | I(i))(t) · I(i)
∑U
i P (Ck | I(i))(t)

(2.17)

σ
(t+1)
k =

∑U
i P (Ck | I(i))(t) · (I(i)− µ(t+1)

k )2

∑U
i P (Ck | I(i))(t)

(2.18)

w
(t+1)
k =

∑U
i P (Ck | I(i))(t)

U
(2.19)

with U, the total number of pixels in I.

iv. Termination: steps (ii) and (iii) are repeated until parameters converge.

Instead of pixel values, other features can be used like texture. Carson et al [26] described
the use of a new set of texture features polarity, anisotropy and contrast. Polarity is measure
of gradient vector for all neighborhood pixels, anisotropy is a ratio of the eigenvalues of the
second moment matrix, and contrast is a measure of homogeneity of pixels.

2.2.8 Graph Cuts

Graph cuts (Gcuts) refers to a wide family of algorithms, in which an image is conceptu-
alized as weighted undirected graph G(V,E) by representing nodes V with pixels, weighted
edges E with similarity (affinity) measure between nodes W : V 2 −→ R

+. A similarity
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measure is computed from intensity, spatial distribution or any features between two pix-
els. The Gcuts method partitions the graph into disjoint subgraphs so that similarity is
high within the subgraphs and low across different subgraphs. The degree of dissimilarity
between two subgraphs A and B can be computed as the sum of weights of the edges that
must be removed to separate A(VA, EA) and B(VB, EB). This total weight is called a cut.

cut(A,B) =
∑

u∈VA,v∈VB

w(u, v) (2.20)

An intuitive way is to look for the minimum cut in the graph. However, the minimum cut
criterion favors small isolated regions, which are not useful in finding large uniform regions.
The normalized cut (Ncut) solves this problem by computing the cut cost as a fraction of
total edge connections to all the nodes in the graph. It is mathematically defined as:

Ncut(A,B) =
cut(A,B)
asso(A,G)

+
cut(A,B)
asso(B,G)

(2.21)

with asso(A,G), asso(B,G), associations of subgraphs A and B with all the nodes in graph,
defined as:

asso(A,G) =
∑

u∈VA,t∈V

w(u, t), (2.22)

asso(B,G) =
∑

v∈VB ,t∈V

w(v, t) (2.23)

Ncut value won’t be small for the cut that partitions isolating points, because the cut
value will be a large percentage of the total connection from that set to the others. The
basic procedure used to find the minimum normalized cut [160] is as follow:

i. Set up a weighted graph, compute the edge weights matrix W and the diagonal
matrix D with size U× U. The W is a similarity matrix where contains elements of
W = (w(i, j)i,j∈V ) that denotes similarity between node i and j. The D is summarized
information with d(i) on its diagonal where d(i) is total connection from node i to all
the other nodes and defined as:

d(i) =
∑

j∈V

w(i, j) (2.24)

ii. Let s be an indicator vector, si = 1 if node is in graph A and −1, otherwise. Let t be
the continuous approximation to s defined as:

t = (1 + s)−

∑

si>0 di
∑

si<0 di
(1− s) (2.25)

solve the system of equations:

(D −W )t = λDt (2.26)

for eigenvectors t and eignvalues λ [160].
iii. Use eigenvector with the second smallest eigenvalue to bipartition the graph to find

the splitting point such that Ncut is minimized
iv. decide if the current partition is stable and check the value of the resulting Ncut
v. Recursively repartition the segmented part if required

These image-processing methods are extensively used in recently proposed frameworks
for preprocessing, nuclei detection, segmentation, separation and classification. Based on
these image-processing methods, we compiled a list of existing frameworks for nuclei detec-
tion, segmentation, separation and classification in histopathology as shown in Table 2.1.
In following subsections, we discussed how different image-processing methods have been
used.



R
e

f.
D

a
ta

se
t

O
b

je
c
t

S
e

g
m

e
n

ta
ti

o
n

S
e

p
a

r
a

ti
o

n
C

la
ss

ifi
c
a

ti
o

n
M

e
tr

ic
s

[1
77

]
6

fl
u

or
es

ce
nt

p
ro

st
at

e
im

ag
es

nu
cl

ei
H

-m
ax

im
a

tr
an

sf
or

m
w

it
h

w
at

er
-

sh
ed

d
is

ta
n

ce
tr

an
sf

or
m

-
-

[6
7]

20
H

&
E

b
ra

in
im

-
ag

es
ca

n
ce

r
nu

cl
ei

H
ys

te
re

si
s

th
re

sh
ol

d
in

g
&

m
or

p
h

o-
lo

gi
ca

l
op

er
at

io
n

s
w

at
er

sh
ed

tr
an

sf
or

m
M

or
p

h
ol

og
y

O
R
>

0.
9

[3
7]

20
8

H
&

E
b

re
as

t
W

S
I

ca
n

ce
r

nu
cl

ei
H

ou
gh

tr
an

sf
or

m
&

A
C

M
-

m
or

p
h

ol
og

y
&

te
xt

u
re

w
it

h
S

V
M

T
P

R
=

0.
92

,
F

P
R

=
0.

8,
F

-S
co

re
=

0.
89

,
K

ap
p

a=
0.

72

[6
8]

8
H

&
E

p
ro

st
at

e
im

ag
es

nu
cl

ei
F

C
M

w
it

h
sp

at
ia

l
co

n
st

ra
in

t
cl

u
s-

te
ri

n
g

&
m

u
lt

ip
h

as
e

le
ve

l
se

t
it

er
at

iv
e

vo
ti

n
g

&
or

ie
nt

ed
ke

rn
el

-
T

P
R

=
0.

82
,

P
P

V
=

0.
8

[1
86

]
86

H
&

E
b

lo
od

im
-

ag
es

nu
cl

ei
&

ly
m

-
p

h
oc

yt
es

gr
ad

ie
nt

b
as

ed
co

lo
r

G
V

F
sn

ak
e

co
n

ca
vi

ty
d

et
ec

ti
on

&
D

ij
k-

st
ra

b
as

ed
ed

ge
p

at
h

se
le

c-
ti

on
-

A
cc

=
0.

89

[1
57

]
17

H
&

E
F

L
W

S
I

ly
m

p
h

oc
yt

es
K

-m
ea

n
s

cl
u

st
er

in
g

&
w

at
er

sh
ed

le
as

t
sq

u
ar

e
el

li
p

se
fi

tt
in

g
m

or
p

h
ol

og
y,

te
xt

u
re

&
to

p
ol

og
y

w
it

h
B

ay
es

ia
n

-

[3
9]

6
H

&
E

b
re

as
t

W
S

I
ca

n
ce

r
nu

cl
ei

gr
ad

ie
nt

in
p

ol
ar

sp
ac

e
-

m
or

p
h

ol
og

y
&

te
xt

u
re

A
cc

E
rr

or
=

7.
84

[1
66

]
ki

67
b

re
as

t
im

ag
es

nu
cl

ei
G

cu
ts

-
-

-

[1
57

]
10

H
&

E
b

ra
in

R
O

I
m

it
os

is
2-

st
ep

th
re

sh
ol

d
in

g
w

it
h

li
ke

li
h

oo
d

b
as

ed
p

os
te

ri
or

p
ro

b
ab

il
it

y
-

-
T

P
R

=
0.

81

[7
9]

87
IH

C
b

re
as

t
im

-
ag

es
nu

cl
ei

ad
ap

ti
ve

th
re

sh
ol

d
in

g,
H

-m
ax

im
a

tr
an

sf
or

m
&

w
at

er
sh

ed
H

-m
in

im
a

tr
an

sf
or

m
b

as
ed

m
ar

ke
r

ex
tr

ac
ti

on
-

T
P

R
=

0.
96

[8
0]

63
IH

C
b

re
as

t
im

-
ag

es
nu

cl
ei

G
M

M
&

E
M

b
as

ed
to

p
og

ra
p

h
ic

su
rf

ac
e

es
ti

m
at

io
n

B
ay

es
ia

n
b

as
ed

cl
u

st
er

an
al

-
ys

is
&

se
p

ar
at

io
n

u
si

n
g

L
D

A
B

ay
es

ia
n

S
D

E
=

0.
14

[1
58

]
10

H
&

E
F

L
W

S
I

ly
m

p
h

oc
yt

es
G

M
M

&
E

M
an

d
ad

ap
ti

ve
th

re
sh

-
ol

d
in

g
R

S
T

&
sp

at
ia

l
vo

ti
n

g
sc

h
em

e
m

or
p

h
ol

og
y

&
te

xt
u

re
A

cc
=

0.
81

[5
1]

9
H

&
E

b
re

as
t

W
S

I
ly

m
p

h
oc

yt
es

G
M

M
&

E
M

an
d

ge
od

es
ic

A
C

M
co

n
ca

vi
ty

d
et

ec
ti

on
&

ed
ge

p
at

h
se

le
ct

io
n

in
te

n
si

ty
w

it
h

K
-m

ea
n

s
cl

u
st

er
in

g

T
P

R
=

0.
8,

P
P

V
=

0.
86

,
H

D
=

2.
1,

M
A

D
=

0.
9,

O
R

=
0.

72

[1
7]

41
H

&
E

b
re

as
t

W
S

I
ly

m
p

h
oc

yt
es

re
gi

on
gr

ow
in

g
&

B
ay

es
ia

n
an

d
M

R
F

b
as

ed
M

A
P

es
ti

m
at

io
n

-
in

te
n

si
ty

,
m

or
p

h
ol

og
y

&
te

xt
u

re
w

it
h

S
V

M
H

D
=

3.
7,

A
cc
>

0.
9

[9
]

10
H

&
E

b
re

as
t

im
-

ag
es

nu
cl

ei
G

cu
ts

-
-

F
-S

co
re

=
0.

97

[7
4]

H
&

E
li

ve
r

im
ag

es
ca

n
ce

r
nu

cl
ei

m
ar

ke
r

co
nt

ro
ll

ed
w

at
er

sh
ed

&
G

V
F

A
C

M
-

in
te

n
si

ty
,

m
or

p
h

ol
og

y
&

te
xt

u
re

u
si

n
g

S
V

M
w

it
h

d
ec

is
io

n
gr

ap
h

-

[2
7]

10
IH

C
lu

n
g

W
S

I
ca

n
ce

r
nu

cl
ei

lo
ca

l
ad

ap
ti

ve
th

re
sh

ol
d

in
g

w
at

er
sh

ed
-

A
cc

=
0.

8

[8
]

32
0

H
&

E
b

ra
in

ia
m

ge
s

nu
cl

ei
ad

ap
ti

ve
th

re
sh

ol
d

in
g

&
m

or
p

h
o-

lo
gi

ca
l

gr
ad

ie
nt

te
xt

u
re

w
it

h
B

ay
es

ia
n

te
xt

u
re

A
cc

=
0.

92
5

[1
28

]
17

H
&

E
p

ro
st

at
e

W
S

I
ca

n
ce

r
nu

cl
ei

m
ax

im
u

m
ob

je
ct

li
ke

li
h

oo
d

b
in

a-
ri

za
ti

on
-

in
te

n
si

ty
,

m
or

p
h

ol
og

y
&

te
xt

u
re

w
it

h
S

V
M

T
P

R
=

0.
78

,F
P

R
=

0.
6



36
Chapter 2. Review of Quantitative Image Analysis Methods in

Histopathology

..
.c

on
ti

nu
ed

R
e

f.
D

a
ta

se
t

O
b

je
c
t

S
e

g
m

e
n

ta
ti

o
n

S
e

p
a

r
a

ti
o

n
C

la
ss

ifi
c
a

ti
o

n
M

e
tr

ic
s

[4
5]

95
H

&
E

b
re

as
t

W
S

I
nu

cl
ei

d
yn

am
ic

th
re

sh
ol

d
in

g
&

m
or

p
h

ol
-

og
y

w
at

er
sh

ed
b

as
ed

im
m

er
si

on
si

m
u

la
ti

on
-

-

[1
75

]
19

H
&

E
b

re
as

t
W

S
I

ca
n

ce
r

nu
cl

ei
R

S
T

&
m

ar
ke

r
co

nt
ro

ll
ed

w
at

er
-

sh
ed

-
-

A
cc

=
0.

81

[9
0]

21
H

&
E

F
L

im
-

ag
es

ly
m

p
h

oc
yt

es
lo

ca
l

F
ou

ri
er

tr
an

sf
or

m
b

as
ed

p
ix

-
el

s
cl

as
si

fi
ca

ti
on

co
n

ca
vi

ty
d

et
ec

ti
on

&
F

ou
ri

er
sh

ap
e

d
es

cr
ip

to
r

-
A

cc
=

0.
76

,
E

R
=

7.
5

[9
1]

11
H

&
E

b
ra

in
R

O
I

nu
cl

ei
G

V
F

A
C

M
d

is
ta

n
ce

tr
an

sf
or

m
&

w
at

er
-

sh
ed

-

F
P

A
R

=
0.

23
,

F
N

A
R

=
0.

13
,

E
R

=
.3

6,
JI

=
0.

72
,

C
D

=
3,

H
D

=
7,

A
U

C
=

0.
73

[1
24

]
H

&
E

b
re

as
t

im
-

ag
es

ca
n

ce
r

nu
cl

ei
ge

od
es

ic
A

C
M

co
n

ca
vi

ty
d

et
ec

ti
on

&
D

ij
k-

st
ra

b
as

ed
ed

ge
p

at
h

se
le

c-
ti

on
-

-

[1
49

]
8

IH
C

b
re

as
t

W
S

I
m

it
os

is
m

u
lt

i-
re

so
lu

ti
on

G
cu

ts
-

te
xt

u
re

T
P

R
>

0.
7,

T
N

R
=

0.
8

[1
1]

80
H

&
E

p
ro

st
at

e
W

S
I

nu
cl

ei
&

ly
m

-
p

h
oc

ty
es

w
at

er
sh

ed
sh

ap
e

p
ri

or
s

b
as

ed
A

C
M

in
le

ve
ls

et
fo

rm
at

io
n

m
or

p
h

ol
og

y
w

it
h

S
V

M
T

P
R

=
0.

86
,

P
P

V
=

0.
66

,
O

R
=

0.
91

[1
40

]
23

4
T

M
A

b
re

as
t

im
ag

es
nu

cl
ei

-
si

n
gl

e
p

as
s

vo
ti

n
g

w
it

h
m

ea
n

sh
if

t
&

le
ve

ls
et

-
T

P
R

=
0.

78
,

P
P

V
=

0.
9,

E
R

=
6.

63

[9
5]

6
H

&
E

b
re

as
t

im
ge

s
ca

n
ce

r
nu

cl
ei

-
M

P
P

w
it

h
sh

ap
e

te
rm

b
as

ed
A

C
M

-
F

-S
co

re
=

0.
7,

JI
=

0.
64

[3
1]

44
9

H
&

E
b

ra
in

im
ag

es
nu

cl
ei

m
u

lt
i-

re
fe

re
n

ce
G

cu
ts

co
nv

ex
it

y
co

n
st

ra
in

ts
-

T
P

R
=

0.
85

,
P

P
V

=
0.

75

[1
73

]
6

H
&

E
b

re
as

t
im

-
ag

es
ca

n
ce

r
nu

cl
ei

te
xt

u
re

b
as

ed
p

ro
b

ab
il

it
y

m
ap

&
A

C
M

-
in

te
n

si
ty

&
te

xt
u

re
w

it
h

S
V

M
-

[1
79

]
H

&
E

im
ag

es
nu

cl
ei

co
nt

ou
r

b
as

ed
m

in
im

u
m

a
p

ri
or

m
od

el
co

n
ca

vi
ty

d
et

ec
ti

on
-

T
P

R
=

0.
91

,
p

P
V

=
0.

86

[1
76

]
51

IH
C

b
re

as
t

W
S

I
nu

cl
ei

cl
u

st
er

in
g

&
A

C
M

-
in

te
n

si
ty

&
te

xt
u

re
w

it
h

A
d

ab
oo

st
A

cc
=

0.
95

[8
8]

M
IT

O
S

[1
]

m
it

os
is

G
M

M
&

E
M

-
in

te
n

si
ty

w
it

h
S

V
M

T
P

R
=

0.
57

,P
P

V
=

0.
47

,
F

-S
co

re
=

0.
51

[1
13

]
M

IT
O

S
[1

]
m

it
os

is
ad

ap
ti

ve
th

re
sh

ol
d

in
g

&
m

or
p

h
o-

lo
gi

ca
l

op
er

at
io

n
s

-
in

te
n

si
ty

,
m

or
p

h
ol

og
y

&
te

xt
u

re
w

it
h

S
V

M
T

P
R

=
0.

75
,

P
P

V
0.

59
,

F
-S

co
re

=
0.

66

T
ab

le
2.

1:
A

su
m

m
ar

y
of

st
at

e-
of

-t
he

-a
rt

nu
cl

ei
de

te
ct

io
n

an
d

se
gm

en
ta

ti
on

fr
am

ew
or

ks
in

hi
st

op
at

ho
lo

gy



2.3. Preprocessing 37

2.3 Preprocessing

Preprocessing can be performed to compensate for adverse conditions such as the pres-
ence of batch effects. Batch effect refers to unevenness in illumination, color or other image
parameters recurring across multiple images. Noise reduction and artefacts elimination can
also be performed prior to detection and segmentation. Additionally, region of interest
(ROI) detection can also be performed in order to reduce processing time.

2.3.1 Illumination Normalization

The illumination can be corrected either by using white shading correction or by es-
timating the illumination pattern from a series of images. In white shading correction, a
blank (empty) image is captured and used to correct images pixel by pixel [117]. A common
equation is:

Transmittance =
Specimen value− Background value

White Reference value− Background value
(2.27)

A downside of this method is that a blank image must be acquired for each objective
magnification whenever the microscope illumination settings are altered.

An alternative normalization method is based upon the intrinsic properties of the image
which are revealed through Gaussian smoothing [97]. Another possible way is to estimate
from background by exploiting the images of the specimen directly, even in the presence of
the object [59, 135]. Can et al [25] introduced a method to correct nonuniform illumination
variation by modeling the observed image I(i) as product of the excitation pattern, E(i),
and the emission pattern, M(i) as:

I(i) = E(i)×M(i) (2.28)

While the emission pattern captures the tissue dependent staining, the excitation pattern
captures the illumination. From a set of J images, Ij(i) is denoted an ordered set of pixels.
Assuming that a certain percentage, g, of the image is formed from stained tissue (non-zero
background), then a trimmed average of the brightest pixels can be used to estimate the
excitation pattern:

E
′

AV E(i) =
1

J −K + 1

J∑

j=K

Ij(i) (2.29)

where K is set to an integer closest to J(1− g) + 1.

2.3.2 Color Normalization

Many color normalization techniques have been proposed [64, 112, 109, 93], including
histogram or quantile normalization in which the distributions of the three color chan-
nels are normalized separately. Kothari et al [93] used histogram based normalization in
histopathological images. They proposed a rank function that maps the intensity ranges
across all pixels. Alternatively, Reinhard et al [143] proposed a method for matching the
color distribution of an image to that of reference image by use of a linear transform in a per-
ceptual color model (Lab). Magee et al [111] extended Reinhard’s normalization approach
to multiple pixel classes by using a probabilistic (GMM) color segmentation method. It
applies a separate linear normalization for each pixel where class membership is defined by
a pixel being coloured by a particular chemical stain or being uncoloured i.e., background.

In order to deal with stains colocalization, a very common phenomenon in histopatho-
logical images, color deconvolution is effective in separation of stains [153]. Ruifrok [153]
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explains how virtually every set of three colors can be separated by color deconvolution and
reconstructs for each stain separately. It requires prior knowledge of color vectors (RGB) of
each specific stain. Later, Macenko et al [109] proposed the automatic derivation of these
color vectors, a method further refined by Niethammer et al [129] and Magee et al [111].
Several nuclei detection and segmentation methods [37, 27, 175, 173, 87] are using color
deconvolution based separation of stains in the histopathological images.

Different color models can be used. Several detection and segmentation methods [67,
68, 39, 74, 27, 8, 140] use the RGB color model, yet the RGB model is not a perceptually
uniform color model. Other more perceptual color models such as HSV, Lab and Luv are
sometimes used [185, 186, 17, 13, 45, 128, 91, 87, 88, 113].

2.3.3 Noise Reduction and Image Smoothing

Thresholding is used for noise reduction that usually follows filtering and background
correction in order to minimize random noise and artefacts [15, 85]. The pixels that lie
outside threshold values often determined using intensity histogram are considered to be
noisy. Alternatively, applying threshold function on a group of pixels instead of an individual
pixel eliminates a noisy region. While such techniques are successful to eliminate small spots
of noise, they fail at eliminating large artefacts [69].

Alternatively, morphological operations can also be used for noise reduction. Noise and
artefacts are eliminated using morphological operations like closings and openings [175].
Morphological grayscale reconstruction methods are used to eliminate noise while preserving
the nuclei shape [74, 79, 80, 88]. While thresholding and filtering reduce noise according to
pixel intensities, morphology reduces noise based on the shape characteristics of the input
image, as characterized by a structuring element. Morphology cannot distinguish the cellular
areas and artefacts having a cell-like shape but different intensity values. Thresholding (prior
or subsequent to applying the morphological operations) removes such artefacts.

Adaptive filters [62], Gamma correction [39], and histogram equalization [157] have
been used to increase the contrast between foreground (nuclei) and background regions.
Anisotropic diffusion is used to smooth nuclei information without degrading nuclei edges [157,
87]. Gaussian filtering is also used to smooth nuclei regions [177, 17, 124].

2.3.4 Region Of Interest Detection

In some frameworks, noise reduction and ROI detection are performed at the same
time. For instance, in the case of tissue-level feature extraction, the pre-processing step
thresholds the image to identify the ROI by eliminating both noisy regions and those with
little content [69]. While, in case of cellular-level feature extraction, noise reduction is
followed by ROI detection to determine the nuclei region [87, 88].

Thresholding is popular for ROI detection. In follicular lymphoma (FL) tissue, there
are five cytological components: nuclei, cytoplasm, extra-cellular material, red blood cells
(RBCs) and background regions. Sertel et al [157] introduced the nuclei and cytological
components as ROI for grading of FL. RBCs and background regions show uniform patterns
as compared to other nuclei in FL tissue; thus thresholding is performed in RGB color model
for elimination of RBCs and background. Similarly, Dalle et al [39] selected neoplasm ROI
by using Otsu thresholding along with morphological operations.

Clustering is another method that commonly used for ROI detection. Cataldo et al [27]
performed the automated separation of cancer from non-cancerous regions (stroma, blood
vessels) using unsupervised clustering. Later, cancer and non-cancerous regions is refined
using morphological operations. Dundar et al [45] proposed a framework for classification of
intraductal breast lesions as benign or malignant using cellular component. The intraductal
breast lesions contain four components: cellular, extra cellular, regions with hues of red
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and illumina. The H&E stained image data is modeled into four components using GMM.
Parameters of GMM model are estimated using EM [43]. The resulting mixture distribution
is used to classify pixels into four categories. Those classified as cellular component are
further clustered by dynamic thresholding to eliminate blue-purple pixels with relatively
less luminance. The remaining pixels are considered cellular region and is used in lesion
classification.

Using textural information, Khan et al [88] proposed a novel and unsupervised approach
to segment breast cancer histopathology images into two regions; Hypo-Cellular Stroma
(HypoCS) and Hyper-Cellular Stroma (HyperCS). This approach is employed magnitude
and phase spectrum in the Gabor frequency domain to segment HypoCS and HyperCS
regions, respectively. For mitosis detection in breast cancer histopathology images using
this approach as ROI detection, it reduces the false positive rate (FPR) from four times [87].

2.4 Nuclei Detection, Segmentation and Classification Meth-
ods

2.4.1 Detection Methods

Identification of initial markers or seed points, usually one per nuclei and close to its
center, is a pre-requisite for most nuclei segmentation methods. The subsequent frameworks
use seeds points in order to delineate the spatial extent of each nuclei. Indeed, the accuracy
of such segmentation methods depends critically on the reliability of the seed points. The
early works in this field relies upon the peaks of the Euclidean distance map [39]. H-maxima
transform detects local maxima as seed points [177, 166, 79, 80] but it is overly sensitive to
texture and often results in overseeding. Hough transform detects seed points for circular
shaped nuclei but requires heavy computation [37]. Centroid transform also detects seeds
but limitations make it useful only for binarized images and unable to exploit additional
cues.

The Euclidean distance map is commonly used for seeds detection and Laplacian of
Gaussian (LoG) is a generic blob detection method. Using multiscale LoG filter with a
Euclidean distance map offers important advantages, including computational efficiency
and ability to exploit shape and sizes information. Al-kofahi et al [9] proposed a distance
constrained multiscale LoG filtering method to identify the center of nuclei by exploiting
shape and size cues available in the Euclidean distance map of the binarized image. The
main steps of this methodology as follow:

i. Initially, compute the response of the scale-normalized LoG filter (LoGnorm(i; ξ) =
ξ2 LoG(i; ξ)) at multiple scales ξ = [ξmin, · · · , ξmax].

ii. Use the Euclidean distance map DN (i) to constrain the maximum scale values when
combining the LoG filtering results across scales to compute a single response surface
RN (i) as:

RN (i) = arg max
ξ∈[ξmin,ξMAX]

{LoGnorm(i; ξ) ∗ IN (i)} (2.30)

where ξMAX = max{ξmin,min{ξmax, 2×DN (i)}} and IN (i) is the nuclear channel image
extracted by separating the foreground pixel from background pixel using automatic
binarization.

iii. Identify the local maxima of RN (i) and impose a minimum region size to filter out
irrelevant minima.

This methodology improves the accuracy of seed locations. The main disadvantage of
this methodology is its sensitivity to even minor peaks in the distance map that results in
over segmentation and detection of tiny regions as nuclei.
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Radial symmetry transform (RST) is also used for seeds detection. Loy and Zelinsky
[107] proposed fast gradient based interest operator for detection of seed points having
high radial symmetry. Although this approach is inspired by the results of the generalized
symmetry transform, it determines the symmetrical contribution of each pixel around it,
rather than considering the contribution of a local neighborhood to a central pixel. Veta et

al [175] also employed RST for seeds detection.
Recently, several other approaches have been proposed to detect the seed points. Qi

et al [140] proposed a novel and fast algorithm for seed detection by utilizing single-path
voting with shifted Gaussian kernel. The shifted Gaussian kernel is specifically designed by
amplifying the voting at the center of targeted object and resulted in low occurrence of false
seeds in overlapping regions. First, a cone shape (rmin, rmax,∆) with its vertex at (x, y) is
used to define the voting area A(x, y ; rmin, rmax,∆) where rmin is a minimum radius, rmax is
a maximum radius and ∆ is aperture angle of cone. The voting direction α(x, y) is computed
using the negative gradient direction −(cos(θ(x, y)), sin(θ(x, y)) where θ is the angle of
the gradient direction with respect to x axis. The voting image V (x, y ; rmin, rmax,∆) is
generated using shifted Gaussian kernel with its means µx, µy and standard deviation σ

located at the center (x, y) of the voting area A and oriented in the voting direction α using
single path approach as:

V (x, y; rmin, rmax,∆) =
∑

(u,v)∈A

||▽I(x, y)|| N (x, y, µx, µy, σ) (2.31)

where ||▽I(x, y)|| is magnitude of gradient image and N (x, y, µx, µy, σ) is a 2D shifted
Gaussian kernel which is defined as:

N (x, y, µx, µy, σ) =
1

2πσ2 exp

(

−
(x− µx)2 + (y − µy)2

2σ2

)

(2.32)

where µx = x+ cos θ
2 (rmax + rmin) and µy = y− sin θ

2 (rmax + rmin). Later, the seed points are
determined by executing mean shift on the sum of voting images.

The counting of nuclei by types is highly important for grading purpose. However,
manual counting of such nuclei is tedious and subject to considerable inter and intra reader
variations. Fuchs and Buhmann [54] reported 42% disagreement between five pathologist
on nuclei classification as normal or atypical. They also reported intra-pathologist error
of 21.2%. This shows the high potential added value of automatic counting tools. This
shows the considerable margin remaining to be fulfilled by a consensual use of digital tools
combined with a more focused use of the pathologists skills (difficult cases, sensitive areas),
in order to reach better clinical rates.

Mitosis count provides clues to estimate the proliferation and the aggressiveness of the
tumor [149]. Anari et al [13] proposed fuzzy c-means clustering (FCM) method along with
ultra-erosion operation in Lab color model for detection of mitotic nuclei in IHC images
of Meningioma and reported detection accuracy nearly equal to manual annotation. The
FCM method is based on the minimizing following objective function:

Jm(V,C) =
c∑

k=1

U∑

i=1

vmki ‖I(i)− Ck‖
2 (2.33)

with m > 1(m ∈ R), U is the total number of pixels in I, C = {C1, C2, . . . , Cc} the cluster
centers, and V = [vki], a c×U matrix in which vki is the kth membership value of ith pixel,
such that

∑U
i=1 vki = 1. The membership function vki is:

vki =
1

∑U
j=1

(
‖I(i)−Ck‖
‖I(i)−Cj‖

) 2
m−1

(2.34)
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with the cluster center:

Ck =
∑U
i=1 v

m
ki · I(i)

∑U
i=1 v

m
ki

(2.35)

Recently, Roullier et al [149] proposed graph based multi-resolution framework for mi-
totic nuclei detection in breast cancer IHC images. This approach corresponds to unsu-
pervised clustering at low-resolution followed by refinements at a higher resolution. At
multi-resolution level, mitotic regions are initially segmented by using the discrete label
regularization function following:

min
f∈H(V )

{R(f) +
λ

2

∥
∥
∥f − f0

∥
∥
∥

2
} (2.36)

where the first term R(f) is the regularizer and is defined as the discrete Dirichlet form of
the function f ∈ H(V ) : Rw(f) = 1

2

∑

u∈V [
∑

v∼u w(u, v)(f(v) − f(u))2]
1
2 and H(V ) is the

Hilbert space of real valued functions defined on the vertices V of a graph. The second
term is the fitting term. λ ≥ 0 is a fidelity parameter called the Lagrange multiplier which
specifies the trade-off between the two competing terms. The Gauss-Jacobi method is used
to approximate the solution of minimization (2.36) by following iterative algorithm:







f (0)(u) = f0(u)

f (t+1)(u) =
λf0(u)+

∑

v∼u
w(u,v)f (t)(v)

λ+
∑

v∼u
w(u,v)

, ∀u ∈ V
(2.37)

where f (t) is function at the iteration step t. More details on these definitions can be found
in [149]. This discrete regularization is adapted for labeling the mitotic regions at higher
resolution. The authors reported more than 70% TPR and 80% TNR.

The use of EM for GMM was recently proposed by Khan et al [87] for the detection of
mitotic nuclei in breast cancer histopathological images. In this framework, pixel intensity
is modelled as mitotic and non-mitotic region by a Gamma-Gaussian mixture model as:

f(Ii; θ) = ρ1Γ (Ii;ψ, ξ) + ρ2 N (Ii;µ, σ) (2.38)

where ρ1 and ρ2 represent the mixing proportions (prior) of the intensities belonging to
mitotic and non-mitotic regions. Γ(Ii;ψ, ξ) represents Gamma density function for mitotic
regions; it is parameterized by shape (ψ) and scale (ξ) parameters. N (Ii;µ, σ) represents
Gaussian density function for non-mitotic regions; it is parameterized by µ and σ.

Ciresan et al [35] used deep max-pooling convolutional neural networks (CNN) to detect
mitotic nuclei and achieved highest F-Score (78%) during ICPR 2012 contest [150]. The
CNN is used to compute a map of probabilities of mitosis over the whole image. Using
ground truth (GT) mitosis in training dataset, CNN is trained to classify each pixel in the
images, using as context a patch centered on the pixel. Their approach proved to be very
efficient specifically having few false positives (FP) as compared to other contestants.

Grading of lymphocytic infiltration based on detection of large number lymphocyte
nuclei in HER2+ breast cancer histopathology was reported by Basavanhally et al [17]. In
this framework, lymphocyte nuclei are automatically detected by a region growing method,
which uses contrast measures to find optimal boundary. This framework has reported high
detection sensitivity, resulting in a large number of other nuclei being detected. In order
to reduce the number of FP, size and luminance information based maximum a posteriori
(MAP) estimation is applied to temporarily label candidates as either lymphocyte or cancer
nuclei. Later, Markov random field (MRF) theory with spatial proximity is incorporated in
order to finalize the labels. This framework is evaluated on 41 HER2+ WSI and reported
90.41% detection accuracy as compared to 94.59% manual detection accuracy.
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2.4.2 Segmentation Methods

Nuclei features like size, texture, shape and other morphological appearance are im-
portant indicators for grading and prognosis of cancer. Consequently, classification and
grading of cancer is highly depending on segmentation quality of nuclei. Depending on
the type of the feature extraction method to be deployed, this may include determining
the exact boundary points of nuclei [164] or determining their coarse locations [65]. In
the former case, segmentation requires higher magnification images to resolve the exact
details of nuclei and the success of the next steps becomes more sensitive to the success of
the segmentation. A large number of publications on nuclei segmentation in histopathology
use state-of-the-art image segmentation methods based on thresholding, morphology, region
growing, watershed, ACMs, clustering and Gcuts separately or in combination.

The simplest way to detect and segment nuclei in histopathological images is based on
thresholding and morphological operations, a simple methodology to segment nuclei [133,
67, 8]. This methodology reports higher performance on well-defined, preferably uniform
background. The main parameters to tune this methodology are the size and shape of the
structuring elements and threshold level. The difference between nuclei and background
regions may be diffuse, making it harder to find a reliable threshold level. Even though this
methodology is usually defined only on grayscale images, it can be extended to color images
or stacks of images, using multi-dimensional kernels. This methodology actually suffers
from its simplicity by including little object knowledge. In addition, this methodology
lacks robustness on size and shape variations, as well as texture variations, which are very
frequent in histopathological images. This methodology is not meant to segment clustered
or overlapping nuclei.

Several frameworks have been using watershed transform for nuclei segmentation [177,
36, 79]. The main advantage of watershed is that there is no tuning to do before using it.
However, it requires the prior detection of seed points. Edge map and distance transform are
used for seeds detection [177, 79]. The reported results are suboptimal for ring-shaped nuclei
having clear homogeneous regions. Furthermore, watershed transform does not include any
prior knowledge, which may contribute to robustness.

ACMs can combine both shape characteristics (smoothness and shape model) with image
features (image gradient and intensity distribution). However, the resulting segmentation
is strongly dependent upon the initial hypothesis, a problem usually solved by the accurate
detection of seed point. Cosatto et al [37] described an automated method for accurately
and robustly measuring the size of neoplastic nuclei and providing an objective basis for
pleomorphism grading. Initially, a Difference of Gaussian (DoG) filter is used to detect
nuclei and Hough transform is used to pick up radially symmetric shapes. Finally an ACM
with shape, texture and fitness parameters are used to extract nuclei boundaries. The
authors claimed 90% TPR.

Huang and Lai [74] proposed watershed and ACM based framework for nuclei segmen-
tation in hepatocellular carcinoma biopsy images. Initially, a dual morphological grayscale
reconstruction method is employed to remove noise and accentuate the shapes of nuclei.
Then, a marker-controlled watershed transform is performed to find the edges of nuclei. Fi-
nally, ACM is applied to generate smooth and accurate contours for nuclei. This framework
achieves poor segmentation in case of low contrast, noisy background and damaged/irregular
nuclei.

Dalle et al proposed gradient in polar space (GiPS), a novel nuclei segmentation method
[39]. Initially, nuclei are detected using thresholding and morphological operations. Then,
transformation into polar coordinate system is performed for every patch with the center
of mass of the nucleus as the origin. Finally, a biquadratic filtering is used to produce a
gradient image from which nuclei boundaries are delineated. GiPS reports overall 7.84%
accuracy error.



2.4. Nuclei Detection, Segmentation and Classification Methods 43

Ta et al [166] proposed a method based on graph based regularization. A strong speci-
ficity of this framework is to use graphs as a discrete modeling of images at different levels
(pixels or regions) and different component relationships (grid graph, proximity graph, etc.).
Based on Voronoi diagram, a novel image partition (graph reduction) algorithm is proposed
for segmentation of nuclei in serous cytological and breast cancer histopathological images.
A pseudo-metric δ : V × V → R is defined as:

δ(u, v) = min
ρ∈PG(u,v)

m−1∑

i=1

(f(ui+1)− f(ui))
√

w(ui, ui+1) (2.39)

where w(ui, ui+1) is a weight function between two pixels and PG(u, v) is a set of paths
connecting two vertices. Given a set of K seeds S = (si ⊆ V ), where i = 1, 2, . . . , K, the
energy δ : V → R induced by the metric δ for all the seeds of S can be expressed as:

δS(u) = min
si∈S

δ(si, u) ∀u ∈ V (2.40)

The influence zone z (also called Voronoi cell) of a given seed si ∈ S is the set of vertices
which are closer to si than to any other seeds with respect to the metric δ. It can be defined,
∀j = 1, 2, ..., K and j 6= i, as

z(si) = {u ∈ V : δ(si, u) ≤ δ(sj , u)} (2.41)

Then, the energy partition of graph, for a given set of seeds S and a metric δ, is the set
of influence zones Z(S, δ) = {Z(si),∀si ∈ S}.

Kofahi et al [9] proposed another Gcuts based method for segmentation of breast cancer
nuclei. Initially, the foreground is extracted using Gcut based binarization. The pixel
labeling I ′(i) is done by minimizing the following energy function:

E(I ′(i)) = − lnP(I(i)) +
∑

i

∑

j∈N(i)

η(I ′(i), I ′(j))

×exp

(

−
I(i)− I(j)

2σ2
I′

) (2.42)

where P(I(i)|k), k = 0, 1 are Poisson distribution, N(i) is a spatial neighborhood of pixel i
and

η(I ′(i), I ′(j)) =

{

1, if I ′(i) 6= I ′(j)

0, otherwise
(2.43)

In (2.42), the first term is a data term that represented the cost of assigning a label to
a pixel and the second term is a pixel continuity term that penalizes different labels for
neighboring pixels when |I(i)− I(j)| < σI′ . After binarization, nuclear seed points are de-
tected by combining multi-scale LoG filtering constrained by a distance map based adaptive
scale selection (2.30). These detected seed points are used to perform initial segmentation
and later, refined using a second Gcuts based method with combination of alpha expansion
and graph coloring to reduce computational complexity. The author reported 86% accu-
racy on 25 histopathological images containing 7400 nuclei. The framework often causes
over-segmentation when chromatin is highly textured and the shape of nuclei is extremely
elongated. In case of highly clustered nuclei with weak borders between nuclei, under-
segmentation may occur.

For nuclei segmentation in Glioblastoma histopathology images, Chang et al [31] pro-
posed a multi-reference Gcuts (MRGC) framework for solving the problem of technical and
biological variations by incorporating geodesic constraints. During labeling, a unique label
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L(i) is assigned to each vertex v ∈ V and the image cutout is performed by minimizing the
energy:

E =
∑

v∈V

(EgfL(v) + ElfL(v)) +
∑

(v,u)∈E

Esmoothness(L(v), L(u)) (2.44)

where Egf and Elf are the global and local data fitness term applying the fitness cost for
assigning L(v) to v, and Esmoothness(L(v), L(u)) is the prior energy, denoting the cost when
the labels of adjacent vertices, v and u are L(v) and L(u), respectively.

Recently, Nguyen et al. [128] proposed maximum object likelihood binarization (MOLB)
algorithm for nuclei segmentation. First transformation of RGB image into Lab color model
is performed and select ’b’ channel for nuclei segmentation as it best represent the nuclei.
By maximizing the average object likelihood of the nuclei, a binarized image is obtained
using following threshold function:

tO = argmaxi
1
nt

nt
∑

i=1

g(f(Bt
i)|Θ̂) (2.45)

where f(Bt
i) is feature vector of blob Bt

i and g(f(Bt
i)) is the object likelihood of blob Bt

i

since it estimated how similar the features of Bt
i are to the features of the object of interest

O having density g and parameter Θ̂.
Vink et al introduced a deterministic approach using machine-learning, to segment ep-

ithelial, lymphocyte and fibroblast nuclei in IHC breast cancer images [176]. Initially, the
authors report that one detector cannot cover the whole range of nuclei as diversity in
appearance is too large to be covered by a single detector. They formulate two detectors
(pixel based and line based) using modified AdaBoost. The first detector focuses on the in-
ner structure of nuclei and second detector covers the line structure at the border of nuclei.
The outputs of these two detectors are merged using an ACM to refine the border of the
detected nuclei. The authors report 95% accuracy with computational cost of one second
per field of view image.

These nuclei segmentation frameworks have reported good segmentation accuracy on
lymphocyte, mitotic and epithelial nuclei having regular shape, homogeneous chromatin
distribution, smooth boundaries and individual existence. However these frameworks have
poor segmentation accuracy for cancer nuclei especially when cancer nuclei are clustered
and overlapping. Furthermore, they are intolerant to chromatin variations, which are very
common in cancer nuclei.

2.4.3 Separation Methods

A second generation of nuclei segmentation frameworks tackles the challenges of het-
erogeneity, overlapping and clustered nuclei by using machine-learning algorithms together
with classical segmentation methods. In addition, statistical and shape models are also used
to separate overlapping and clustered nuclei. As compared with nuclei segmentation meth-
ods, these methods are more tolerant to biological variation, partial occlusion and different
staining.

Watershed transform is employed to address the problem of overlapping nuclei as a group
of basins in the image domain, where ridges in-between basins are borders that isolate nuclei
from each other [67, 79, 27, 45, 90]. Wahlby et al. [177] addressed the problem of clustered
nuclei and proposed a methodology that combined the intensity and gradient information
along with shape parameters for improved segmentation. Morphological filtering is used
for finding nuclei seeds. Then, seeded watershed segmentation is applied on the gradient
magnitude image to create the region borders. Later, the result of the initial segmentation
is refined with gradient magnitude along the boundary separating neighboring objects, re-
sulting in the removal of poorly contrasted objects. In final step, distance transform and
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shape based cluster separation methodologies are applied keeping only the separation lines,
which went through deep valleys in the distance map. The authors reported 90% accu-
racy for overlap nuclei. Cloppet and Boucher [36] presented a scheme for segmentation
of overlapping nuclei in immunofluorescence images by providing a specific set of markers
to the watershed algorithm. They defined markers as split between overlapping structures
and resulted in 77.59% accuracy in case of overlapping nuclei and 95.83% overall accuracy.
In [161], a similar approach is used for segmentation of clustered and overlapping nuclei
in tissue micro array (TMA) and WSI colorectal cancers. First, combined global and lo-
cal thresholding is used to select foreground regions then applied morphological filtering for
seeds detection. Region growing is applied on detect seeds which produces initial segmented
nuclei. Later, clustered nuclei are separated using watershed and ellipse approximation. The
authors claimed 80.3% accuracy.

The main problem with most ACMs is their sensitivity to initialization. To solve this ini-
tialization problem, Fatakdawala et al [51] proposed EM driven Geodesic ACM with overlap
resolution (EMaGACOR) for segmentation lymphocyte nuclei in breast cancer histopathol-
ogy and reported 86% TPR and 64% PPV. EM based ACM initialization allows the model to
focus on relevant objects of interest. The magneto-static active contour (MAC) [184] model
is used as a guiding force F for contour towards boundary. Based on contours enclosing
multiple objects, high concavity points are detected on the contours and used in construc-
tion of edge-path graph. Then high concavity points and size heuristic based scheme is
used to resolve overlapping nuclei. The degree of concavity/convexity is proportional to the
angle θ(cw) between contour points and computed as:

θ(cw) = π − arccos
(

(cw − cw−1) · (cw+1 − cw)
|cw − cw−1||cw+1 − cw|

)

(2.46)

where cw is a point on the contour.
Yang et al [186] proposed a nuclei separation methodology in which concave vertex

graph and Ncut algorithm are used. Initially, the outer boundary is delineated via robust
estimation and color active model, and a concave vertex graph is constructed from auto-
matically detected concave points on boundaries (2.46) and inner edges. By minimizing a
morphological based cost function, the optimal path in graph is recursively calculated to
separate the touching nuclei.

Mouelhi et al proposed an automatic separation method for clustered nuclei in breast
cancer histopathology [124]. First, a modified GAC with Chan-Vese energy model is used to
detect the nuclei region [29]. Second, high concavity points along touching nuclei regions are
detected (2.46). Third, the inner edges are extracted by applying watershed transform on
a hybrid distance transform image, which combines geometric distance and color gradient
information. Four, concave vertex graph using high concavity points and inner edges is
constructed. Last, the optimal separating curve is selected by computing the shortest path
in the graph.

Moreover, for the recognition of single nuclei in nuclei cluster, Kong et al [90] integrated a
framework consisting of a novel supervised nuclei segmentation and touching nuclei splitting
method. For initial segmentation of nuclei, each pixel is classified into nuclei or background
regions by utilizing color-texture in the most discriminant color model. The differentiation
between clustered and separated nuclei is computed by the distance between the radial
symmetry center and the geometrical center of the connected component. For splitting of
clustered nuclei, the boundaries of touching clumps are smoothed out by Fourier shape de-
scriptor and then carried out concave point detection. The author evaluated this framework
on FL images and achieved average 77% TPR and 5.55% splitting ER.

Another adaptive ACM scheme that combines shape, boundary, region homogeneity
and mutual occlusion terms in a multi-level set formulation was proposed by Ali et al
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[12, 11]. The segmentation of K overlapping nuclei with respect to shape prior ψ is solved
by minimizing following level set φ function:

E(Φ,Ψ, IF, IB) =
βs

K=2∑

k=1

∫

̟
(φk(I)− ψ(I))2 |▽φk| δ(φk)dI

︸ ︷︷ ︸

Shape + boundary energy

+
βr

∫

̟
(ΘFHχ1∨χ2)dI +

∫

̟
(ΘB −Hχ1∨χ2)dI

︸ ︷︷ ︸

Region energy

+
ω

∫

̟
Hχ1∧χ2dI +

K=2∑

k=1

∫

̟
(φk − ψk)

2dI

︸ ︷︷ ︸

Mutual occlusion energy

(2.47)

where Φ = (φ1, φ2), Ψ = (ψ1, ψ2), IF and IB are foreground and background regions,
βs, βr, ω > 0 are constants that balance contributions of the shape and boundary, region
and mutual occlusion term, respectively, δ(·) is the Dirac delta function, and δ(φk) is the
contour measure on {φ = 0}, H(·) is the Heaviside function, Hχ1∨χ2 = (Hψ1+Hψ2−Hψi

Hψ2),
Hχ1∧χ2 = Hψ1Hψ2 , and Θj = |I − Ij|

2 + µ|▽Ij|
2 and j ∈ {F,B}. Watershed transform is

used for model initialization. The authors evaluated this framework on overlapping nuclei
in prostate and breast cancer images and reported 86% TPR and 91% OR on breast images
and 87% TPR and 90% OR on prostate images.

Qi et al [140] proposed a two-step method for the segmentation of overlapping nuclei in
Hematoxylin stained breast TMA specimens that require very little prior knowledge. First,
seed points are computed by executing mean shift on the sum of the voting images (2.31).
Second, the following level set representation of the contours is used:

E = αN

K∑

k=1

∫

Λk

|I − µk|
2di+ αB

K∑

k=1

∫

ΛB

|I − µb|
2di

+ β
K∑

k=1

∫ 1

0
g(|▽I(̟k(z))|)|̟

′
k(z)|dz

+ λ
K∑

k=1

K∑

j=1,j 6=k

Λk ∩ Λj

(2.48)

where αN , αB, β > 0 are constants that balance contributions of each term, ̟k(k =
1, . . . , K) is the nuclei contours that evolve towards boundaries, K is number of nuclei,
Λk is region inside each contour ̟k, ΛB is the background which represents the regions
outside all the nuclei, µk and µb are mean intensities of nuclei and background regions, and
g is a sigmoid function g(x) = (1+e

( x−ν
ζ

)) with ν controls the slope of the output curve and
ζ controls the window size. The last term in (2.48) is the repulsion term used to represent
the repulsion energy between each touching nuclei and the λ is a regulation parameter. This
repulsion term separates the touching nuclei to create smooth and complete contour of each
nucleus. The authors claimed 78% TPR and 90% PPV in case of touching nuclei.

To overcome ACMs initialization sensitivity, Kulikova et al [95] proposed a method
based on marked point processes (MPP). This methodology, a type of high order ACM,
is able to segment overlapping nuclei as several individual objects, while no need to be
initialized with the location of the nuclei to be detected. A shape prior term is used for
handling overlapping nuclei. Fig. 2.1 shows a comparison of results using MPP, GiPS [39]
and Levelset [123].
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(a) Original (b) GIPS [39] (c) Level set [123] (d) MPP [95]

Figure 2.1: Results of segmentation and separation using different methods on same area
of an image.

(a) Probability map im-
age

(b) ACM on probability
map image

(c) Hematoxylin stained
image

(d) ACM on Hema-
toxylin stained image

Figure 2.2: Segmentation results using ACM methods on probability and Hematoxylin
stained image [173].

Recently, Veillard et al [173] proposed a method based on the creation of a new image
modality consisting in a grayscale map where the value of each pixel indicated its probabil-
ity to belong to a nuclei. This probability map is calculated from texture, scale information
and simple pixel color intensities. The resulting modality has a strong object-background
contrast and even out the irregularities within the nuclei and background. Later, segmen-
tation is performed using an ACM with a nuclei shape prior [95] which resolve overlapping
nuclei problem. Fig. 2.2 shows the result of ACM segmentation on probability map image
and Hematoxylin stained image, produced using color deconvolution [153].

In general, model based approaches segment nuclei using a priori shape information,
which may introduce a bias favoring the segmentation of nuclei with certain characteristics.
To address this problem, Wienert et al [179] proposed a novel contour based minimum
model for nuclei segmentation using minimal a priori information. This minimum model
based segmentation framework consists of six internal processing steps. First, all possible
closed contours are computed regardless of shape and size. Second, all initially generated
contours are ranked using gradient fit. This gradient fit is computed using Sobel operator
with its 3× 3 convolution kernels Kx and Ky as:

GradientFiti =

∑

j ̟i(j)max

|̟i|
,

̟i(j)
max =

{

1, if max{|S(̟u(v))|} = |S(̟i(j))|

0, otherwise

∀ u, v (xi − 1 ≤ u ≤ xi + 1) ∩ (yi − 1 ≤ v ≤ yi + 1)

|S| =
√

(I ×Kx)2 + (I ×Ky)2

(2.49)
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where ̟i is ith contour and ̟i(j) its jth contour pixel. The mean gradient and the gradient
fit are combined for evaluation of contour.

Contour Valuei = MeanGradienti ·GradientFiti (2.50)

Third, non-overlapping segmentation is performed with ranked labeling in two dimen-
sional map. Four, segmentation is improved using contour optimization. Five, cluster nuclei
are separated using concavity point detection (2.46). Last, segmented regions are classified
as nuclei or background using stained related information. This framework avoids a seg-
mentation bias with respect to shape features. The authors managed to achieve 86% TPR
and 91% PPV on a dataset of 7931 nuclei.

RST is an iterative algorithm attributed votes to pixels inside the region [107]. Maxima
after the final iteration are used as marker of a nuclei segmentation algorithm such as
watershed. Each boundary point contributes votes to a region defined by oriented cone-
shape kernels as:

A(x, y ; rmin, rmax,∆) ={(x+ r cosφ, y + r sinφ)

| rmin ≤ r ≤ rmax,

θ(x, y)−
∆
2
≤ φ ≤ θ(x, y) +

∆
2
}

(2.51)

where the radial range is parametrized by rmin and rmax and the angular range by ∆.
θ(x, y) is the angle between the positive x-axis and the voting direction. These parameters
are updated using votes from the previous iterations.

Schmitt and Hasse [155] separated the clustered nuclei using RST based on the idea
that center of mass in a nuclei is considered as a basic perceptual event that supports
separation of clustered nuclei. They initialized iterative voting along the gradient direction
where, at each iteration, the voting direction and shape of the kernel are refined iteratively.
The voting area can be regulated by selecting the number of steps in the evolution of the
kernel shape. Few number of steps resulted in fragmentation of the center of mass and large
number of steps increased computational cost. They also proposed a way to deal with holes
and sub holes in the region by processing boundaries iteratively. The major steps of RST
algorithm are listed as:

i. Initialization: rmin, rmax, K,∆k and B are initialized where K is total number of it-
erations, ∆k is angular range at kth iteration such that (∆max = ∆0 > ∆1 > · · · >
∆K),∆k = ∆max and k = K, and B is set of all boundary points from external bound-
ary of regions and holes inside regions in the binary image. The kernel radial range
is initialized for each boundary point as rmin = 1.66 × d and rmax = 0.33 × d where
d is the distance between the boundary point and the local maximum in the distance
transformed image. The kernel direction θ is also initialized towards local maximum
point d. The voting direction is initialized along gradient direction.

ii. Determine the votes: Reset the vote image V (x, y ; rmin, rmax,∆k) = 0 for all pixels
(x, y). For all points (p, q) ∈ B and (u, v) ∈ A(p, q ; rmin, rmax,∆k) update the vote
image by:

V (u, v ; rmin, rmax,∆k)← V (u, v ; rmin, rmax,∆k) + ε (2.52)

where ε is the voting magnitude for each pixel of the image.

iii. Update the voting direction for each boundary point (i, j) ∈ B along the maximum
value in the voting area.

iv. Update rmin and rmax.

v. Refine the angular range ∆k, k = k − 1 and repeat steps ii− iv until k = 0.
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vi. To avoid over-segmentation the voting landscape arisen during the last iteration step
is smoothed by median filtering.

vii. In the last, local maxima are determined and used as marker for a marker based
watershed transformation.

One limitation of RST is the prior knowledge of scale, which cannot be generalized. To
overcome this limitation multi-scale extension of the RST seem to be reasonable. A similar
method [155] is used in [68] to decompose regions of clustered nuclei in H&E stained prostate
cancer biopsy images. They initially obtained regions of clustered nuclei by clustering and
level-set segmentation. Recently, Veta et al [175] proposed a method similar to [74] that
met the objective of nuclei segmentation in H&E stained breast cancer biopsy images by
applying the fast RST [107] to produce markers for the watershed segmentation. Sertel et al

[158] proposed adaptive likelihood-based nuclei segmentation for FL centroblasts. Initially,
cellular components are clustered using GMM with EM. Using fast RST, spatial voting
matrix is computed along the gradient direction. Finally, local maxima locations associated
with individual nuclei are determined.

Alternatively, EM and GMM based unsupervised Bayesian classification scheme was
used for segmentation of overlapping nuclei in IHC images [80]. The separation of over-
lapping nuclei is formulated as cluster analysis problem. This approach primarily involves
applying the distance transform to generate topographic surface, which is viewed as a mix-
ture of Gaussian. Then, a parametric EM algorithm is employed to learn the distribution of
topographic surface (GMM). On the base of extracted regional maxima, cluster validation is
performed to evaluate the optimal number of nuclei. The cluster validity index consists of a
compactness measure ϕ (the smaller value means more compact) and a separation measure
ε between the clusters. The main idea is to have nuclei as compact and as well separated as
possible. Thus, cluster parameters are chosen to maximize ε

ϕ
. A priori knowledge for the

overlapping nuclei is incorporated to obtain separation line without jaggedness, as well as to
reconstruct occluded contours in overlapping region. They achieved improvements of up to
6.80%, 5.70% and 3.43% with respect to classical watershed, conditional erosion and adap-
tive H-minima transform schemes in terms of separation accuracy. Overall, they achieved
93.48% segmentation accuracy for overlapping nuclei on specimens of cervical nuclei and
breast invasive ductal carcinomas.

The novelty of these approaches are to use machine-learning and statistical methods to
eliminate malformed nuclear outlines and thus to allow robust nuclei segmentation. The
ability to manually train these models is constrained by the availability of expert annotations
of the objects of interest. Datasets for training are difficult to define due to variability across
images. Furthermore, such models may not be generalizable and have limited application
due to the manual training step, sensitive to initialization, and potentially limited ability
to segment multiple overlapping objects.

2.4.4 Nuclei Features and Classification Methods

Features computed from segmented nuclei are usually a prerequisite to nuclei classifica-
tion that generate higher-level information regarding the state of the disease. The classifiers
use nuclei features, which capture the deviations in the nuclei structures, to learn how to
classify nuclei into different classes. In order to extract features, there are two different
types of information available in the image: (i) the intensity values of pixels and (ii) their
spatial interdependency [42]. Although all feature computation methods use the informa-
tion on the intensity values, only a few use the spatial dependency between them. The use
of intensity values only results in higher sensitivity to the noise that arises from the stain
artefacts and the image acquisition conditions.
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Category Features

Cytology Nucleoli
Intensity Density, Hue, Hyperchromatism, mean, median, variance, skewness,

kurtosis, etc
Morphology Area, Area overlap ratio, Center of mass, Compactness, Concavity

(Convexity), Density, Diameter, Inflection points, Minor axis, Ma-
jor axis, Nucleocytoplasmic ratio, Peakiness, Perimeter, Radial ratio,
Roundness, Shape Inertia, Smoothness, Symmetry

Texture Co-occurrence, Fractal, Gabor, Markov random field, Run-Length,
SIFT, Wavelets, Haar like features etc

Table 2.2: Summary of Nuclei Features used in Histopathology

We found a compilation of features for cytopathology imagery [145], but found relatively
little such work for histopathology imagery. In histopathology, these features can be cate-
gorized into the following four categories: cytological, intensity, morphological and texture
features. A summary of nuclei features is listed in Table 2.2; definition for all listed features
can be found in [20, 113, 42].

In some frameworks, the computed features, like intensity and texture features, are
explicitly used for segmentation of nuclei with K-means clustering [158, 51]. To address the
problem of heterogeneity in cancer nuclei, Veillard et al [173] used intensity and textural
features with support vector machine (SVM) classifier for the creation of a new image
modality to segment cancer nuclei. Recently, Vink et al [176] constructed a large features
set and modified AdaBoost to create two detectors that solved the problem of variations
in nuclei segmentation. The first detector is formulated with intensity features, the second
detector is constructed using Haar like features.

In addition to the morphological features computed from cytological regions, Huang
et al [74] extracted intensity and Haralick co-occurrence (HC) features. They extracted a
total of 14 features (intensity, morphological and texture features) from segmented nuclei
in biopsy images, which comprise both local and global characteristics so that benignancy
and different degrees of malignancy can be distinguished effectively. A SVM-based decision
graph classifier with feature subset selection on each decision node of classifier is used in
comparison with k-nearest neighbor and simple SVM, the accuracy rate of classification
promoted from 92.88% to 94.54% with SVM-based decision graph classifier.

Intensity and morphological features are extensively used for nuclei classification as
epithelial and cancer nuclei in [37, 39, 45]. An exhaustive set of features including mor-
phological and texture features are explored to determine the optimal features for nuclei
classification [104]. Their results of feature selection demonstrated that Zernike moment,
Daubechies wavelets and Gabor wavelets are the most important features for nuclei clas-
sification in microscopy images. Malon and Cosatto [113] computed intensity, texture and
morphological features and used these features with SVM for classification of segmented
candidate regions into mitotic and non-mitotic regions.

Al-Kadi [8] presented that combining several texture measures instead of using just one
might improve the overall accuracy. Different texture measures tend to extract different fea-
tures each capturing alternative characteristics of the examined structure. They computed
four different texture features, two of them are model-based: Gaussian Markov Random
Field (GMRF) and Fractal Dimension (FD); the other two are statistically based: HC and
RL features. Using selected features after excluding highly correlated features, Bayesian
classifier was trained for meningioma subtype classification. They studied the variation of
texture measure as the number of nuclei increased; the GMRF was nearly uniform, while
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the RL and FD performed better in the high frequencies. They also studied the texture
measures’ response to additive texture distortion noise while varying cell nuclei shape den-
sities. The GMRF was the least affected, yet the RL and FD performed better in high and
low shape frequency, respectively. The combination of GMRF and RL improved the overall
accuracy up to 92.50% with none of the classified meningioma subtypes achieving below
90%.

By observing the cancer detection procedure adopted by pathologists, Nguyen et al

[128] developed a novel idea for cancer detection in prostate using cytological (nuclear)
textural features. Prominent nucleoli (cytological feature) inside nuclei region is used to
classify nuclei as cancerous or not. In addition, prostate cancer is detected using cytological,
intensity, morphological, and textural features having 78% TPR on a dataset including six
training and 11 test WSI.

2.5 Spectral and Spatial Characterization

MSI is a recent medical imaging technology, proven successful in increasing the seg-
mentation and classification accuracy in histopathology [21, 183]. We found few methods
in the MSI literature for spatial characterization of histopathological images. The main
idea for extracting features from MSI is the use of combined spectral and spatial informa-
tion for discrimination of regions or objects. Fernandez et al [52] coupled high-throughput
Fourier transform infra-red spectroscopic imaging of tissue microarrays with statistical pat-
tern recognition of spectra indicative of endogenous molecular composition and demonstrate
histopathological characterization of prostatic tissue. They explicitly defined metrics con-
sisting of spectral features that have a physical significance related to tissue biochemistry
and facilitating the measurement of cell types.

We found few methods in the MSI literature for spatial characterization of histopatho-
logical images. Some of them employed single spectral band (SB) of MSI [118, 113] and
other used multiple SBs of MSI [89, 183, 21]. Some methods computed one type of features
on single SB for quantitative analysis. Masood and Rajpoot [118] proposed a colon biopsy
classification method based on spatial analysis of hyperspectral images. First, SB 588 nm
was selected, as it is the one that seemed to contain more textural information. Then, using
circular local binary pattern algorithm, spatial analysis of patterns was represented by a fea-
ture vector in the selected SB. Later, classification was achieved using subspace projection
methods like principal component analysis, linear component analysis and support vector
machine.

Some methods computed different types of features on single SB for quantitative analy-
sis. Malon and Cosatto [113] demonstrated a segmentation based features with CNN using
the selected SB for identification of mitotic figures and achieved the best F-Measure (59%)
on multispectral dataset during ICPR contest 2012 [150]. First, focal plane number five
was selected as it was clearly focused. Second, two SBs were selected using PCA to extract
the top two eigenvectors from a set of 10 SBs of hematoxylin and eosin images. Third,
two step thresholding was applied on first eigenvectors (hematoxylin image) to obtain can-
didate blobs. Fourth, a set of shape, contour, pixel and texture features was computed
on the selected SB only. Fifth, log likelihoods of class membership were computed using
convolutional neural network classifier for each patch of candidate blob. In the last, the
SVM classifier was used to classify each blob as either mitotic or non-mitotic blob using
output of convolutional neural network along with feature vector. The previous approaches
[118, 113] are limited to single SB. They discard additional potentially relevant information
from other SBs.

Instead of limiting themselves to a single SB, some authors use multiple and sometime
even all SBs, from a given dataset. Boucheron et al [21] presented a study in which the ad-
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ditional SBs have additional useful information for nuclear classification in histopathology
as compared to the three standard bands of RGB imagery. Using all SBs, they reported
a 0.79% improvement in performance compared to the next best performing image type.
Similarly, Wu el al. [183] proposed a multilayer conditional random field model using a
combination of low-level cues and high-level contextual information for nuclei separation
in high dimensional data set obtained through spectral microscopy. In this approach, the
multilayer contextual information is extracted to interpret spectral data with dynamically
imposed pairwise constraints along the neighboring spectral bands. It is an unsupervised
process, which efficiently helps to suppress segmentation errors caused by intensity inhomo-
geneity and variable chromatin texture. Khelifi et al [89] proposed a spatial and spectral
gray level dependence method in order to extend the concept of gray level co-occurrence
matrix by assuming the presence of texture joint information between SBs. Some SBs
have more relevant information for specific object or region classification than others. This
approach is limited to a single spatial feature computed from all SBs. These approaches
[21, 183, 89] used all available SBs but were limited to one type of features only. One
possible improvement in object classification is multispectral spatial analysis using more
types of features. Another possibility of additional improvement is the selection of SBs by
minimization of the redundancy and maximization of the relevancy.

2.6 Performance Metrics

In order to compare the performance of a new approach to existing approaches, per-
formance metrics are typically used that provides a ranking of the candidate algorithms
(usually using numeric scores). Many performance metrics have been used to rank new
algorithms, some measure similar features, but other measure drastically different quanti-
ties. For example, methods such as the root of the mean square error (RMSE) measure
the distance between predicted preferences and true preferences over items, while the recall
metric computes the portion of favored items that are suggested. Clearly, it is unlikely that
a single approach would outperform all others over all possible methods. Therefore, we
should expect different metrics to provide different rankings of approaches. Performance
metrics are categorized into three classes; detection, segmentation and classification metrics.

2.6.1 Detection Metrics

The metrics used to evaluate nuclei detection include: false negative (FN), false positive
(FP), true negative (TN), true positive (TP), precision or positive predictive value (PPV),
specificity or true negative rate (TNR), recall or sensitivity or true positive rate (TPR),
F-score or F-measure (FM) and error rate (ER). They are defined as: FN is the number
of ground truth nuclei that have not been detected, FP is the number of detected nuclei
that are not ground truth nuclei, TN is number of nuclei that are neither in ground truth
nor in detected nuclei, TP is the number of detected nuclei that are ground truth nuclei,
(

TPR = TP
TP+FN

)

,
(

PPV = TP
TP+FP

)

and
(

FM = 2× TPR×PPV
TPR+PPV

)

.

2.6.2 Segmentation Metrics

Segmentation results are compared to manual segmentation performed by an patholo-
gists (which serves as ground truth for segmentation evaluation) by computing boundary
based metrics, namely TP (proportion of nuclei pixels that are correctly labeled as positive),
TN (proportion of non-nuclei pixels that are correctly labeled as negative), centroid distance
(CD, defined as distance between centroids of a corresponding pair of nuclear boundaries de-
tected by algorithm and human), area overlap metrics like false-positive area ratios (FPAR,
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defined as area detected by algorithm but not by human over human markup area), and
false-negative area ratios (FNAR, defined as area detected by human but not by algorithm
over human markup area), error-rate (ER, defined as the sum of FPAR and FNAR), over-
lap or Jaccard coefficient or Mean intersection to union ratio (MI2UR), TPR, PPV, TNR,
FM, performance, overlap detection ratios (OR), overlap ratio (OV), pixel error (PE) and
segmentation distortion evaluation (SDE). These measures are defined as follows:

TPR =
|IS ∩ IG|

|IS |
(2.53)

PPV =
|IS ∩ IG|

|IG|
(2.54)

TNR =
U− |IS ∪ IG|

U− |IG|
(2.55)

Performance =
TP + TN

2
(2.56)

MI2UR =
|IS ∩ IG|

|IS ∪ IG|
(2.57)

OR =
Number of overlaps resolved

Total number of overlaps
(2.58)

OV =
TP

TP + FP + FN
(2.59)

where U is the total number of pixels, IS is the segmented region, IG is the GT region, |IS |
is the number of pixels of segmented nuclei and |IG| is the number of pixels of GT nuclei.

The Hausdroff distance (HD) [76] and mean absolute distance (MAD), similarity mea-
sures, are used to compare the fidelity of automated segmentation region IS against the GT
region IG. For each segmented region, HD and MAD are calculated as:

HD = max
v∈IG

min
u∈IS

d(u, v) (2.60)

MAD =

∑

v∈IG
min
u∈IS

d(u, v)

|IG|
(2.61)

2.6.3 Classification Metrics

The metrics used for classification are TP, FP, TNR, TPR, PPV, PRC, accuracy (Acc),
kappa, F-Score, correct classification rate (CCR), receiver operating characteristics (ROC)
and precision recall curve (PRC). The ROC shows performance as a tradeoff between TPR
and FPR or TNR [190]. The PRC shows performance as a tradeoff between PPV and
TPR. While both curves measure the proportion of preferred items that are actually rec-
ommended, ROC emphasize the proportion of items that are not preferred and end up
being recommended while PRC emphasizes the proportion of recommended items that are
preferred. The Acc is defined as:

Acc =
TP + TN

TP + TN + FP + FN
(2.62)

The CCR is defined as

CCR =
C∑

k=1

P (Ci)
ni

Ni

(2.63)
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Figure 2.3: The count of performance metrics used in nuclei detection, segmentation and
classification.

where ni is the number of samples correctly classified to the ith class by using classifier, C
is the total number of classes, Ni is the total number of samples in the ith class, P (Ci) is
the prior probability that an observed data falls in class Ci.

Figure 2.3 describes the count of different performance metrics used for nuclei detection,
segmentation and classification methods.

2.7 Evaluation Methods

The supervised CAD systems need to be trained on manually annotated data. A medical
expert, who labels the samples according to their class, usually provides these training data.
Like many other biomedical applications, training data is not abundant either due to the
cost involved in obtaining expert annotations or because of overall data scarcity. It generally
requires two steps; first step is training the system to learn the parameters, and second step
is testing or validating the system to evaluate the success of results. The amount of data in
training and testing has critical impact on system performance. More data in training lead
to better system designs, whereas more data in testing lead to more reliable evaluation of
the system.

Cross-Validation (CV) is a statistical method of evaluating and comparing the systems
according to the accuracy obtained on the training set. It brings the risk of memorization
of data and obtaining over-optimistic error rates. To avoid the memorization problem, the
system should be evaluated on a separate dataset (i.e. testing data), which is not used in
training dataset. In typical CV, the training and testing sets must crossover in successive
rounds such that each data point has a chance of being validated against. The basic form
of CV is K-fold cross validation (Kf-CV). Other forms of CV are special cases of Kf-CV or
involve repeated rounds of Kf-CV. In Kf-CV the data is first partitioned into K equally (or
nearly equally) sized segments or folds. Subsequently K iterations of training and testing
are performed such that a different fold of the data is holdout for testing while the remaining
K-1 folds are used for training in each iteration.

Leave-one-out cross-validation (LOOCV) is a special case of Kf-CV where K equals the
number of instances in the data. For each iteration, nearly all the data, except for a single
observation, are used for training and the single observation is used to test the mode. An
accuracy estimate obtained using LOOCV is known to be almost unbiased but it has high
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Table 2.3: List of Evaluation Techniques Used in Previous Studies

Techniques Research Studies

Separate training and testing set [134, 65, 187, 136, 183, 88, 113, 150]
HOV [133, 39, 8, 74, 27, 22, 128, 33]
Kf-CV [164, 37, 157, 17, 12, 45, 31]
LOOCV [45, 138]

variance, leading to unreliable estimates [47]. In holdout validation (HOV), a subset of data
is chosen randomly from the initial sample to form a testing set, and the remaining data are
retained as the training set. This would generally not be considered to be CV since only a
single partition of the data into training and testing sets is used. In Table 2.3, we provide
the list of evaluation methods used in different studies.

2.8 Inspection and Editing Software

CellProfiler [82], ImageJ [142], ITK [77], LNKnet [105], Matlab [119], PLoS [159] and
Weka [139] are well-known software packages, which are extensively used for preprocessing,
segmentation, feature computation, feature selection and classification. These software
packages integrate existing state-of-the-art methods like anisotropic diffusion, morphological
operators, watershed, ACMs, thresholding, neural network, fuzzy, clustering, and other
machine-learning methods into a modular software package. With LNKnet, Petushi et al

[133] used LDA, SFFS and SFBS methods for feature selection and identified as accurately
predicting the histologic grade significantly more frequently than other non-selected features.

2.9 Limitations and Challenges in Previous Frameworks

Since last decade, a huge number of articles have been published in the field of histopathol-
ogy focusing on nuclei detection, segmentation and classification in different image modali-
ties. Still there are some open research areas with little studies. These open research areas
have unique challenges, which should be covered in future research. One of these is bench-
mark datasets. The results of previous studies are based on their own datasets. However, we
believe that it is not straightforward to evaluate and numerically compare different studies
solely based on their reported results as they used different datasets, evaluation methods
and performance metrics. For numerical comparison of the studies, it is definitely necessary
to develop benchmark datasets. These datasets should consist of samples that are taken
from a large number of patients and annotated by different pathologists. Such an effort
would make possible the numerical comparison of the results obtained by different studies
and to identify the distinguishing features. To the best of our knowledge, we only found
few benchmark datasets: UCSB Bio-Segmentation [57], the MITOS mitosis detection [1]
benchmark, as well as a recent similar initiative AMIDA [3].

The UCSB Bio-Segmentation Benchmark dataset consists of 2D/3D images and time-
lapse sequences that can be used for evaluating the performance of novel state-of-the-art
computer vision methods. The data covers sub-cellular, cellular and tissue level. Tasks
include segmentation, classification, and tracking.

The MITOS benchmark has been set up to provide a database of mitosis freely available
to the research community. Mitotic count is an important parameter in breast cancer
grading as it gives an evaluation of the aggressiveness of the tumor. Detection of mitosis



56
Chapter 2. Review of Quantitative Image Analysis Methods in

Histopathology

is a very challenging task, since mitosis are small objects with a large variety of shape
configurations but it has not been addressed well in the literature, mainly because of the
lack of available data. The MITOS benchmark has been set up as an international contest of
mitosis detection in the framework of conference ICPR 2012. AMIDA benchmark reedited
in 2013 the same type of challenge (mitosis detection from H&E images), as MITOS did in
2012.

Most of these benchmarks highlighted the fact that working on common professional
digital image databases allow us to overcome any bias of the ones tested for the purpose of
a precise publication. We all still more way to go to reach clinically acceptable results, at
the image of the best results of MITOS, which from about 120 initial candidates (institutes,
academia and major companies in the area) kept only 17 at the final round, with FM of
about 0.7821 at best [1].

Preparing the GT, more specifically for nuclei, is another challenging problems. Fuchs
and Buhmann [54] reported 42% disagreement between five pathologists on nuclei classifica-
tion as normal or atypical. They also reported intra-pathologist error of 21.2%. In addition,
the results of a very self-confident pathologist who was always very certain of his decisions
but ended up with an error of 30% in the replication experiment. On the other hand, the
results of a very cautious expert who is rather unsure of his decision, but with a misclassifi-
cation error of 18% he performed significantly better than the previous one. This concludes
that self-assessment is not reliable information to learn from. The intuitive notion, to se-
lect only those samples having high confidence by domain experts is not valid. A similar
study by Malon et al [114] reported a moderate agreement between three pathologists for
identifying mitotic cells on H&E stained breast cancer slides.

Other issues regarding standardization and experimental methods include: (i) different
scanners used for image acquisition with different image resolution and pixel size, (ii) dif-
ferent staining characteristics, (iii) different lightening conditions, (iv) magnification levels,
(v) different number and size of images (frames, whole slide images and regions of interest
are examples of types of images used by the different authors).

Preprocessing consists in determining regions of interest, removing noise and enhancing
image. Although different techniques such as histogram equalization, anisotropic diffusion,
gamma correction, thresholding and morphology show different levels of success in noise and
artefacts removal and image enhancement, yet the problem has not been entirely solved.

Segmentation methods like thresholding, region growing and watershed can locate the
nuclei region but problems arise when they try to segment the touching and overlapping
nuclei. They employ only local intensity information without any prior knowledge about
the object to be segmented and produce inaccurate nuclei boundaries.

Dealing with overlapping and clustered nuclei is still a major challenge in the field
of nuclei segmentation. While different methods have been developed with various levels
of success in literature for the problem of overlapping and clustered nuclei, the problem
has not yet been completely solved. A variety of schemes taking into account concavity
[186, 51, 12, 90, 124, 179], distance transform [177, 79, 91], marker-controlled watershed
[74, 67, 27, 45, 175], adaptive ACM with shape term and curvature information [95, 173,
11, 140], GMM & EM [80] and graphs [186, 9, 124] have been investigated to separate
overlapping and clustered/touching nuclei. These methods have good results for nuclei
that are slightly touching or overlapping each other, but they are not suitable for specimens
containing larger numbers of nuclei with extensive overlapping and touching. These methods
suffer from dependencies inducing instability.

For instance the computation of curvature is highly dependent on concavity point detec-
tion algorithm, region growing tends to rely on shape and size of nuclei, marker-controlled
watershed needs true nuclei markers, and ellipse-fitting techniques are unable to accommo-
date the shape of most nuclei. Most of these methods also require prior knowledge. In spite
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of the availability of few methods like clustering, GMM & EM and new image modality [173]
able to deal with heterogeneity, accurate segmentation of touching or overlapping nuclei is
still an open research area.

In MSI, the question is how to select the correct SBs from the spectral range to best
characterize the problem. More specifically, there are strong correlations between SBs and
some SBs cannot discriminate between nuclei and others; this is the reason why the effective
dimension of SBs for classification is less than the total number of SBs. In literature, we
found one possible solution that uses information theory, more specifically, by means of
measures based on the mutual information (MI) to feature selection for pixel classification.
Furthermore, Martinez-Uso et al [116] proposed a hierarchical clustering framework based
on MI for SBs selection. Kamandar et al [81] used minimum redundancy maximum relevance
(mRMR) technique [131] for SBs selection in AVARIS data.

To the best of our knowledge, only comparatively few supervised machine-learning tech-
niques like Bayesian [17, 80], SVM [173] and AdaBoost [176] are used for nuclei segmen-
tation. The basic philosophy of the machine-learning is that human provide examples of
the desired segmentation (GT), and leave the optimization and parameter tuning tasks to
the learning algorithm. They are supposed to adaptively extract domain specific knowledge
and also to optimize tuning parameters. Although the context and domain information
is utilized to improve the accuracy of nuclei segmentation, the nuclear characteristics are
rarely used for nuclei segmentation. Overfitting, as the fact that two real clinical situations
may have quite different characteristics, induces serious limitations to the machine-learning
based methods.

This methodology review highlights an important gap to be fulfilled by all scientists in
order to be able to reliably go to the next generation of important challenges, related to the
"digital" exploration and the understanding of the WSI as an essential high-content imaging
diagnostic biomarker and prognosis support. Consolidating, in the next few years these
approaches with mining structured big data and analytics as with genomics and molecular
imaging technologies, will certainly have the potential to lead to the next generation of
healthcare technologies.

2.10 Overview of Proposed Framework and Scientific Con-
tributions

In this thesis we aim at proposing novel frameworks for mitosis detection in color and
multispectral images of breast cancer histopathology. In order to reach the aim, our main
research directions and objectives are:

i. A comprehensive analysis of different color spaces and color channels for mitosis dis-
crimination

ii. An extensive studies of intensity (first order statistical) features and texture (second
order statistical) features in various color channels of different color models rather
than single color model

iii. A study of region and patch based texture features for mitosis classification

iv. An automatic and unsupervised focal plane selection

v. An encyclopedic study of spectral absorption responses of different tissue components

vi. A study of multispectral statistical features in selected SBs rather than single or all
SBs

vii. An extensive investigation of classifiers for mitosis classification

viii. An inspection of over-sampling method for balancing the skewed dataset by increasing
the number of minority class to improve the predictive accuracy of classification
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ix. An extension of itk::QuadEdgeMesh data structure to handle both primal and dual
meshes, simultaneously, and illustrating two types of primal meshes: triangular /
simplex meshes and Voronoi / Delaunay

x. An efficient and robust strategy to explore WSI by combining computational geometry
tools with local signal measure of relevance in a dynamic sampling framework

xi. A real time evaluation of proposed frameworks in Cognitive Microscope (MICO) plat-
form prototyping

This thesis proposes three frameworks for mitosis detection in breast cancer histopathol-
ogy. The first is the Textural based Mitosis detection in Color images (TMC), second is
Intensity, Textural & Morphology based Mitosis detection in Color images (ITM2C), and
third is Multispectral Intensity, Textural and Morphology based Mitosis detection in Mul-
tispectral images (MITM3) frameworks.

In TMC framework, we investigate the various intensity and texture features using
machine-learning techniques for mitosis detection. We also explore the features charac-
teristics in three channels of RGB color model and blue-ration (BR) image, a new image
modality.

In ITM2C framework, we comprehensively analyse the intensity and texture features
in various color channels of different color models rather than a single color model and
also combine selective intensity and textures features with morphological features in order
to identify mitosis. In this framework, we also investigate the over-sampling method for
balancing the unbalanced dataset by interpolating existing training samples.

In MITM3 framework, we address two important questions: First, does the multispectral
statistical analysis on selected SBs (as opposed to single SB or all the SBs) suffice for efficient
classification of mitotic and non-mitotic figures. An obvious advantage of using selected SBs
is its reduced computational and storage complexity. Second, how effective are the multiple
features for discrimination of mitotic and non-mitotic figures as compared to one type of
features. The main novel contributions of this framework are:

i. An automatic and unsupervised focal plane selection process

ii. Three different methods for SBs selection including relative spectral absorption of
different tissue components, spectral absorption of H&E stains and mRMR technique.

iii. Computation of morphological & multispectral statistical features (MMSF) containing
intensity, texture and morphological features which leverage discriminant information
from a given candidate across selected SBs for classification of mitotic and non-mitotic
figures.

iv. An extensive investigation of classifiers and inference of the best one for mitotic figures
classification.

We evaluate our proposed frameworks on MITOS dataset [150]. The dataset is made
up of 50 high power fields (HPF) coming from five different patient slides scanned at ×40
magnification. There are 10 HPF per slide. The pathologist has annotated all the mitosis
nuclei manually in each selected HPF on the images generated by the Aperio scanner,
Hamamatsu scanner and multispectral microscope as shown in Figure 2.4.

We also propose an extension of itk::QuadEdgeMesh data structure to handle both primal
and dual meshes, simultaneously. The new data structure, itk::QuadEdgeMeshWithDual,
already include by default the due topology, to handle dual geometry as well. Two types
of primal meshes are specifically illustrated: triangular / simplex meshes and Voronoi /
Delaunay.

Furthermore, we propose an innovative platform in which dynamic sampling method
performed fast analysis of WSI. We test dynamic sampling method for real time evaluation
of Cyto-nuclear atypia (CNA) score on breast cancer WSI in MICO platform. In the
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Figure 2.4: MITOS Dataset generated by Aperio scanner, Hamamatsu scanner and mul-
tispectral microscopy. These HPF are selected and annotated by senior pathologist.

medical application, more specifically analysing WSI, our dynamic sampling method has
proved its ability to accurately find and measure the highest levels of CNA in a WSI within
an acceptable time frame as well as to provide a useful, reliable visualization map for the end
user. From a more global standpoint, this dynamic sampling method makes it possible to
speed up the analysis, enhance the visualization and assist the exploration of high-content
images.

2.11 Conclusion

In this chapter, we have briefly described the most commonly used image-processing
methods. We have demonstrated the different steps of existing frameworks in quantitative
histopathology. We have comprehensively described the state-of-the-art frameworks for
nuclei detection, segmentation and classification, used in various types of tissue analysis and
cancer grading. At last, we have identified the limitations and open challenges in existing
frameworks and give overview of proposed framework with novelties. In next chapter, we will
propose two frameworks for mitosis detection in color images of breast cancer histopathology.





Chapter 3

Automated Mitosis Detection in
Color (RGB) Images

Résumé du chapitre

Dans ce chapitre, nous proposons deux systèmes pour la détection de mitoses dans des
images couleur de cancer du sein en histopathologie. Nous expliquons les différentes
étapes de chaque système proposé, à savoir le pré-traitement de l’image, la détection
et la segmentation des candidats, le calcul de descripteurs pour obtenir une signature
de chaque candidat, la sélection des paramètres les plus discriminants, la classification
des candidats et la prise en compte de l’asymétrie entre le nombre d’exemples de mi-
toses (peu nombreux) et de non-mitoses (très nombreux) dans le jeu d’apprentissage.
Dans le premier système, nous étudions les caractéristiques de texture pour la discrim-
ination de mitoses. Nous explorons également la caractérisation des descripteurs dans
les trois canaux rouge-vert-bleu (RVB) des images couleur et dans l’image rapport de
bleu (blue ratio). Dans le second système, nous analysons l’apport de l’intensité et
de la texture dans les canaux de couleur sélectionnés de plusieurs modèles de couleur
ainsi que la combinaison de descripteurs morphologiques pour l’identification des mi-
toses. Nous introduisons le concept d’asymétrie des données pour prendre en compte
le déséquilibre du jeu de données d’apprentissage, et nous comparons les résultats de
nos deux systèmes avec ceux du concours MITOS [150]. Enfin, nous introduisons
les stratégies utilisées pour la détection de mitoses et de l’atypie des noyaux dans les
images d’histopathologie.

3.1 Introduction

In this chapter, we propose two frameworks for mitosis detection in color images of breast
cancer histopathology. We explain different steps of the proposed frameworks in detail.
These steps are pre-processing, candidate detection and segmentation, feature computation
and selection, candidate classification and handling training set asymmetry. In the first
framework, we investigate the texture features for mitosis discrimination. We also explore
the features characterization in three channels of RGB color model and blue-ratio (BR)
image. In the second framework, we comprehensively analyze the intensity and texture
features in selected color channels of various color models rather than a single color model
and also combine morphological features in order to identify mitosis. We introduce the
concept of data asymmetry for handling imbalanced training set, and we compare the results
of the proposed frameworks with the MITOS contest result [150]. Finally, we briefly explain
the strategies used for mitosis detection and nuclei pleomorphism in WSI.
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Figure 3.1: Example of ground truth mitosis nuclei for Aperio (first row) and Hamamatsu
(second row) scanners.

Figure 3.2: Some example of non mitosis nuclei for Aperio (first row) and Hamamatsu
(second row) scanners. The non mitosis nuclei are located in the centre of each image.

3.2 Challenges in Mitosis Count

Mitosis count is an important parameter in breast cancer grading as it gives an evaluation
of the aggressiveness of the tumor. Detection of mitosis is a very challenging task because
they are small objects with a large variety of shape configurations, texture variation and
low frequency of appearance. Some example of GT mitosis are shown in Figure 3.1. Mitosis
have similarity with other types of nuclei, as shown in Figure 3.2 and other objects e.g.,
apoptosis and dust particles, as shown in Figure 3.3.

Mitosis count has not yet been addressed well in the literature. Only few works concern
detection of mitosis. Belien et al [19] counted mitosis on Feulgen stained breast cancer
sections. Liu et al [102] and Huh et al [75] proposed mitosis detection in time-lapse phase
contrast microscopy image sequences of stem nuclei populations and Schlachter et al [154]
performed detection of mitosis in fluorescence staining of colorectal cancer. Roullier et

al [149] proposed detection of mitosis on breast cancer slides with an IHC staining that
highlights specifically mitosis.

Few works concern mitosis counting on H&E stained slides. Malon et al [115, 113]
proposed the use of CNN. Sertel et al [157] presented a method for mitosis and karyorrhexis
nuclei (dying nuclei) counting all of them, without distinction. For breast cancer grading,
only mitosis nuclei must be counted. Recently, Ciresan et al [35] used CNN to compute a
map of probabilities of mitosis over the whole image. Their CNN has been trained with GT
mitosis from the training dataset. Their approach proved to be very efficient as they had
the best FM on Aperio dataset during ICPR contest [150].
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(a) Apoptosis (b) Apoptosis (c) Dust

(d) Apoptosis (e) Apoptosis (f) Dust

Figure 3.3: Example of apoptosis and dust particle that looks similar to mitosis nuclei for
Aperio (first row) and Hamamatsu (second row) scanners.

Aperio and Hamamatsu scanners

Training Data Set 226 mitotic cells
35 HPFs 69.3% of total

Evaluation Data Set 100 mitotic cells
15 HPFs 30.7% of total

TOTAL 326 mitotic cells

Table 3.1: Number of HPFs and mitosis nuclei in training and evaluation data sets.

3.3 Color Dataset

The dataset of MITOS contest is made up of 50 HPF coming from five different patient
slides scanned at ×40 magnification. There are 10 HPF per slide. The pathologist has
annotated all the mitosis nuclei manually in each selected HPF on the images generated
by the Aperio and Hamamatsu scanner. A HPF has a size of 512 × 512 µm2 (that is an
area of 0.262 mm2), which is a surface equivalent to that of a microscope field diameter of
0.58 mm. These 50 HPFs contain a total of 326 mitotic cells on images of both scanners.
Table 3.1 gives the number of mitosis nuclei in the training and the evaluation data sets.

Aperio scanner has a resolution of 0.2456 µm per pixel. Hamamatsu scanner has a
slightly better resolution of 0.2273 µm (horizontal) and 0.22753 µm (vertical) per pixel.
Note that a pixel of Hamamatsu scanner is not exactly a square. Table 3.2 shows the
resolutions of the different scanners. For example, a mitosis having an area of 50 µm2 will
cover about 830 pixels of the image produced by Aperio scanner and about 965 pixels of
the image produced by Hamamatsu scanner.

3.4 Textural based Mitosis detection in Color images (TMC)
Framework

We propose a TMC framework for mitosis detection in color images of breast cancer
histopathology. This framework addresses the shortcomings of previous works which are:
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Equipment Resolution per pixel
HPF Dimension to cover
an area of 512× 512 µm2

Aperio Scanner 0.2456 µm 2084× 2084 pixels

Hamamatsu Scanner
0.2273 µm horizontal

2252× 2250 pixels
0.22753 µm vertical

Table 3.2: Resolution of the Aperio and Hamamatsu scanners.

Figure 3.4: TMC Framework.

(1) by including comprehensive analysis of texture features (second order statistics features
such as Haralick Co-occurrence (HC) and run-length (RL) features) in RGB color model
and BR image, and (2) by exploring different classifiers to achieve a higher accuracy of
mitosis detection. The aim is to improve the accuracy of mitosis detection by integrating
the color channels that better capture the texture features, which discriminate mitosis from
other objects. This framework is shown in Figure 3.4. First, we transform RGB image
into BR images and channels of RGB color model. Second, we perform histogram analysis
on selected regions in all color channels. Third, we perform smoothing, thresholding and
morphological operations on selected color channel to generate candidate mitosis regions.
The boundaries of these regions are refined using ACM segmentation. We select candidate
regions using morphological rules; we calculate the centre of each region as seed point of
candidate and extract a patch of size 70 × 70 pixels from BR image and red, green and
blue channels. Fourth, we compute HC and RL for each candidate patch. Fifth, we select
features having better discrimination of mitosis regions from others. Finally, a classification
is performed to put the candidate patch in the mitosis or in the non-mitosis class. Four
different classifiers have so been evaluated: DT, MLP, L-SVM and NL-SVM.

3.4.1 Blue-Ratio Image

In H&E stained images, nuclear and cytoplasm regions appear as hues of blue and purple
while extracellular material have hues of pink. In order to reduce the extracellular regions
responses, the RGB images are transformed into new image called Blue-Ratio (BR) image
to accentuate the nuclear dye [31] as:

BR =
100×B

1 + R + G
×

256
1 + B + R + G

(3.1)
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(a) RGB Image (b) BR Image

Figure 3.5: RGB and BR Image.

where B, R and G are blue, red and green channel of RGB, respectively. In a BR image,
a pixel with a high blue intensity relatively to its red and green components is given a
high value, whereas, a pixel with a low blue intensity as compared to its red and green
components is given a low value. As we are interested in nuclei, which appear as blue-
purple areas, a blue-ratio image is an efficient tool to have a first clue on the position of
nuclei in the image. An example of blue-ratio image is shown in Figure 3.5. A histogram of
absorption responses of mitosis, nuclei and background regions in BR images are shown in
Figures 3.6(d) and 3.7(d) for Aperio and Hamamatsu images, respectively. These histograms
describe the separation of mitosis, nuclei and background regions.

3.4.2 Color Channels Histogram Analysis & Importance of Red Channel

We compute absorption responses of mitosis and non-mitosis nuclei, and background
regions for three color channels and BR image. The histogram analysis of these absorption
responses for Aperio and Hamamatsu images are shown in Figures 3.6 and 3.7, respec-
tively. The peaks of the mitosis and non-mitosis nuclei are almost similar in BR image
and red, green and blue channels. Peaks of mitosis and non-mitosis nuclei are different
from peaks of background regions in red, green and blue channels. As peaks of mitosis
nuclei and background regions have the best separation in red channel as compared to BR
image and green and blue channels, we select red channel for candidate detection. While
red channel histogram analysis is thus able to differentiate between different tissue parts
(i.e., nuclei, background) but absorption responses of mitosis and non-mitosis nuclei is not
distinguishable.

The process of nuclei division has four different stages and each has different size, shape
and textures. This motivates further textural analysis on different color channels to achieve
reasonable classification of regions into mitosis and non-mitosis nuclei. For feature compu-
tation, we select all color channels including BR image.
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(a) Histogram of Red Channel (b) Histogram of Green Channel

(c) Histogram of Blue Channel (d) Histogram of Blue-Ratio Images

Figure 3.6: Histogram analysis of different channels on Aperio dataset.

(a) Histogram of Red Channel (b) Histogram of Green Channel

(c) Histogram of Blue Channel (d) Histogram of Blue-Ratio Images

Figure 3.7: Histogram analysis of different channels on Hamamatsu dataset.
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3.4.3 Candidate Detection in Red Channel

First, we smooth red channel image using median filter as shown in Figure 3.8(a) and
3.9(a). Then we perform binary thresholding on enhanced image using the threshold T as
shown in Figure 3.8(b) and 3.9(b):

IB(x, y) =

{

1, if I(x, y) < T

0, otherwise
(3.2)

The T value is selected from the histogram of red channel where mitotic and background
regions are well separated.

Morphological opening and closing are applied to the binary image IB(x, y) to merge
the clustered region into large regions, fill holes and eliminate too small regions. Then we
segment the boundaries of candidates using active contour models with a level set imple-
mentation [123]. The key steps for the segmentation method are as follows:

i. We present a given nuclei contour ̟(t) as the zero level of the signed distance function
ψ(x, t). Formally, ̟(t) = {x : ψ(x, t)}

ii. We use the active contour formation as:

∂ψ

∂t
= f(I)(αb+ βk)|▽ψ|+ γ▽f · ▽ψ (3.3)

where α, β and γ are user-defined settings for the relative scaling of the terms, f refers
to the image-based feature function that is minimized at nuclei boundary and remains
high elsewhere, b is a balloon force that is added to evolve the curve outwards, k is
the curvature along the normal to the level set contour and ▽f · ▽ψ is the boundary
attraction term. The result of segmentation is shown in Figure 3.8(c) and 3.9(c).

Finally, we select candidates by filtering based on size of candidates and take a patch
from BR image and red, green and blue channels. As Aperio and Hamamatsu scanners have
different resolution per pixel, the size of window on Aperio dataset is 17.192µm×17.192µm
and the size of window on Hamamatsu dataset is 15.911µm × 15.927µm. An example of
candidate detection is shown in Figure 3.8(d) and 3.9(d).

3.4.4 Texture Features Computation

During mitosis (nuclei division), nuclei undergo four different stages and each has differ-
ent shape, size and textures that are very distinguishable from shape or texture of nuclei not
under division process. This motivates further texture analysis of these candidate regions.
We compute two types of textural features for classification of these candidates as mitosis
and non-mitosis regions.

Haralick Co-occurrence (HC) Features

The human eye cannot discriminate between texture pairs with matching second order
statistics [78]. The first machine vision framework for calculating second order or grey level
co-occurrence texture information was developed by analysing aerial photography images
[70]. In this technique grey level co-occurrence matrix GLCM(i, j ; d, θ) is computed. This
matrix is square with dimension Ng where Ng is the total number of grey levels in the
image. The value at ith row and jth column in the matrix is produced by counting the total
occasions a pixel with value i is adjacent to a pixel with value j at a distance d and angle
θ. Then the whole matrix is divided by the total number of such comparisons that have
been made. Alternatively we can say that each element of GLCM matrix is considered as
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(a) Smooth Image (b) Threshold Image

(c) Segmented Image (d) Selected Candidates (Green circle=TP, Yellow
circle=FP, Blue circle=FN)

Figure 3.8: Different steps of candidate detection on Aperio image.
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(a) Smooth Image (b) Threshold Image

(c) Segmented Image (d) Selected Candidates (Green circle=TP, Yellow
circle=FP, Blue circle=FN)

Figure 3.9: Different steps of candidate detection on Hamamatsu image.
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Figure 3.10: The four directions of adjacency that are defined for calculating texture
features.

Table 3.3: Notation for HC Features

P (i, j) = GLCM(i, j)/R (i, j)th entry in a normalized GLCM and R is the maxi-
mum number of resolution cells in the GLCM.

Px(i) =
∑Ng

j=1GLCM(i, j) ith entry in the marginal-probability matrix obtained by
summing the rows of P (i, j).

Ng is the number of distinct grey-levels in the image.
µx and µy are means of P (i, j).
σx and σy are standard deviations of P (i, j).

the probability that a pixel with grey level i is to be found with pixel with grey level j at
a distance d and angle θ.

GLCM =















P (1, 1) P (1, 2) · · · P (1, Ng)

P (2, 1) P (2, 2) · · · P (2, Ng)

· · · ·

· · · ·

· · · ·

P (Ng, 1) P (Ng, 2) · · · P (Ng, Ng)















(3.4)

By varying the displacement vector between each pair of pixels many GLCMs with
different directions can be generated. We define adjacency in four directions (vertical,
horizontal, left and right diagonals as shown in Figure 3.10) with one displacement vector,
and as a result we compute four GLCMs. For this framework, we compute four GLCMs
on each candidate patch in all color channels. In our problem, texture information is
rotationally invariant. So, we take average in all four directions and result is one GLCM.

The GLCM captures the properties of a texture but they are not directly useful for fur-
ther analysis, such as the classification using these matrices. To illustrate the computational
requirements of this framework, we compute eight of the 14 numeric features proposed by
Haralick [70] from the GLCM in order to represent the texture more compactly. These eight
texture features are:

Correlation : the correlation of a pixel to its neighbor over the whole image

Correlation =

∑Ng

i,j (i− µx) (j − µy) P (i, j)

σxσy
(3.5)

When correlation is high, the image will be more complex than when correlation is low.
Cluster shade : is a measure of the skewness of the GLCM, in other words the lack
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of symmetry

Cluster shade =
Ng∑

i,j

(i+ j − µx − µy)
3P (i, j) (3.6)

When cluster shade is high, the image is not symmetric.
Cluster prominence : is also a measure of the skewness of the GLCM

Cluster prominence =
Ng∑

i,j

(i+ j − µx − µy)
4P (i, j) (3.7)

When cluster prominence is low, then there is a peak in the GLCM around the mean values
that indicates little variations in grey values

Energy : also known as angular second moment, describes uniformity of the texture

Energy =
Ng∑

i,j

P (i, j)2 (3.8)

When energy is high, the image is homogeneous because of fewer entries of large magnitude
in GLCM. Its range is [0,1].

Entropy : is a measure of the randomness

Entropy = −
Ng∑

i,j

P (i, j) log2 P (i, j) or 0 if P (i, j) = 0 (3.9)

A homogeneous image has lower entropy than a heterogenous image. Its value is ≥ 0. In
fact, when energy gets higher, entropy should get lower.

Hara-correlation : is a measure of grey level linear dependence between pixels at the
specified positions relative to each other.

Hara-correlation =

∑Ng

i,j (i j) P (i, j) − (µx µy)

σxσy
(3.10)

Inverse Difference Moment (IDM) : also knows as local homogeneity. It measures
the closeness of the distribution of elements in the GLCM to the GLCM diagonal.

IDM =
Ng∑

i,j

1
1 + (i− j)2 P (i, j) (3.11)

When the IDM is low, then the image is inhomogeneous, and a relatively higher value for
homogeneous images. Its range is [0,1].

Inertia : also knows as contrast. It measures the local variations.

Inertia =
Ng∑

i,j

(i− j)2P (i, j) (3.12)

Its range is [0,N2
g ].
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Run-length (RL) Features

The set of consecutive pixels, with same grey level, collinear in a given direction, consti-
tute a grey level run. The run length is the number of pixels in the run and the run length
value is the number of times such a run occurs in an image. With investigation that, in a
coarse texture, relatively long grey level runs would occur more often and that a fine texture
should contain primarily short runs, Galloway proposed the use of a grey level run length
matrix GLRLM for texture feature extraction [55]. GLRLM(i, j ; θ) is defined as the num-
ber of runs with pixels of grey level i and run-length j in direction of θ. The dimension of
GLRLM is Ng×R, where Ng is the number of grey levels and R is the maximum run length.
Similarly to the GLCM, we compute GLRLMs for four directions (vertical, horizontal, left
and right diagonals as shown in Figure 3.10) and later average them.

We compute GLRLM for each candidate region, and then the following ten second order
statistics features are derived:
Short Run Emphasis (SRE) :

SRE =
1
Nr

Ng∑

i

R∑

j

P (i, j)
j2 (3.13)

Long Run Emphasis (LRE) :

LRE =
1
Nr

Ng∑

i

R∑

j

P (i, j) · j2 (3.14)

Grey-level Nonuniformity (GLN) :

GLN =
1
Nr

Ng∑

i





R∑

j

P (i, j)





2

(3.15)

Run Length Nonuniformity (RLN) :

RLN =
1
Nr

R∑

j





Ng∑

i

P (i, j)





2

(3.16)

Low Grey-level Run Emphasis (LGRE) :

LGRE =
1
Nr

Ng∑

i

R∑

j

P (i, j)
i2

(3.17)

High Grey-level Run Emphasis (HGRE) :

HGRE =
1
Nr

Ng∑

i

R∑

j

P (i, j) · i2 (3.18)

Short Run Low Grey-level Emphasis (SRLGE) :

SRLGE =
1
Nr

Ng∑

i

R∑

j

P (i, j)
i2 · j2 (3.19)
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Short Run High Grey-level Emphasis (SRHGE) :

SRHGE =
1
Nr

Ng∑

i

R∑

j

P (i, j) · i2

j2 (3.20)

Low Run Low Grey-level Emphasis (LRLGE) :

LRLGE =
1
Nr

Ng∑

i

R∑

j

P (i, j) · j2

i2
(3.21)

Low Run High Grey-level Emphasis (LRHGE) :

LRHGE =
1
Nr

Ng∑

i

R∑

j

P (i, j) · i2 · j2 (3.22)

where Nr is the total number of runs.
The eight HC features and ten RL features are computed for each candidate patch in

BR and red, green and blue channels of RGB color model, which resulted in a total of 72
features.

3.4.5 Feature Normalization and Selection

Feature Normalization

In most cases, the features have different dynamic ranges. These different dynamic
ranges of features affect the majority of classifiers which use the distance between two
points. If one of the features has a broad range of values, the distance will be governed by this
particular feature. Therefore, dynamic ranges of features are normalized so that each feature
contributes proportionately to the final distance. We solve this problem by normalizing the
features values so that they lie within similar dynamic ranges. The normalization formula
is given as:

f ′ =
f − fmin

fmax − fmin
(3.23)

where f is original feature value, f ′ is the normalized feature value, fmin is the minimum
feature values and fmax is the maximum feature value.

Feature Selection

Conceptually, a large number of descriptive features are highly desirable for classification
of a patch as mitosis or non-mitosis. However, when we use all the extracted features for
classification of candidate patch as mitosis and non-mitosis, the classification performance
is poor. Some features are irrelevant for classification and some features are redundant
that represents duplication of features and does not provide additional class discriminatory
information, degrading the classification performance.

We use consistency subset evaluation method [103] to select a subset of features that
maximize the consistency in the class values using the projection of subset of features from
the training dataset. We evaluate the subset of features by looking for the combinations of
features whose values divide the data into subsets containing a strong single class majority
[92]. The search is biased in favor of small feature subsets with high class consistency. Our
consistency subset evaluator uses the consistency metric proposed by Liu and Setiono [103]
as:

Consistencys = 1−

∑J
j=0 |Dj | − |Mj |

N
(3.24)
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where s is a feature subset, J is the number of the distinct combinations of features for s, |Dj |
is the number of occurrences of the jth feature combination, |Mj | is the cardinality of the
majority class for the jth feature combination and N is the total number of instances. The
consistencies of these subsets are not less than that of the full set of features. We use these
subsets in conjunction with a hill climbing search method, augmented with backtracking,
which looks for the smallest subset with consistency equal to that of the full set of features.

3.4.6 Classification Techniques

This section presents a brief overview of the types of classifiers used for classification
of mitosis and non-mitosis regions throughout this thesis. Since the last decade, classifiers
based on a statistical learning theory have shown remarkable abilities to deal with both
high-dimensional data and a limited training set [171, 172]. We select four well-known
classification techniques which are briefly described below.

Decision Tree (DT)

The first classification technique used in this thesis is functional tree, a type of decision
tree (DT) classifier. This classifier build decision tree in two phases [56]. In the first phase
a large decision tree is constructed. In second phase, this tree is pruned back. We used
divide-and-conquer approach to grow the tree. The most relevant aspects are the splitting
rule, the termination criterion, and the leaf assignment criterion. We use logistic regression
model at the inner nodes and leaves for the construction of new attributes [96]. It models
the posterior class probabilities as:

P (C = c,X = x) =
eFc(x)

∑C
i=1 e

Fi(x)
(3.25)

where C is a label set, X is an instance set and Fc(x) =
∑K
k=1 fkc(x) and the fkc are

functions of the input variables.

Multilayer Perceptron (MLP)

The second classification technique used in this thesis is multilayer perceptron (MLP)
classifier. Simple perceptron consists of a layer of input neurons, coupled with a layer of
output neurons, and a single layer of weights between them. The learning process consists
of selecting the appropriate weights between the input and output layer. This simple per-
ceptron only solve linearly separable problems. To obtain a bilinear solution, more layers
of weights are added to the simple perceptron model obtaining the MLP [167, 84]. In MLP
classifier (Figure 3.11), each node of a hidden layer or output layer and the output y(j) of
node j is related to its input as:

y(j) =
1

1 + e−S(j) (3.26)

where S(j) =
∑K
k=1 y(k)w(k, j) and w(k, j) are connections weights between the previous

node k and the current node j; y(k)w(k, j) is the weighted output of the previous node k,
which is used as input to node j; K is number of inputs to node j; and S(j) is the sum of
all weighted input y(k)w(k, j) of the previous layer to node j.

The connection weights w(k, j) between different layer nodes are calculated iteratively
until they stabilize, by following:

w(k, j)t+1 = w(k, j)t + αε(j)y(j) + β(w(k, j)t − w(k, j)t−1) (3.27)
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Figure 3.11: The used architecture of MLP contains one input layer with nodes equal to
number of features, one hidden layer and one output layer with two classes.

where (t+ 1), t, (t− 1) correspond to next, current and previous weights, respectively, α, β
are constants, ε(j) is the error between the desired output y(j)′ and actual output y(j),
and is computed as:

ε(j) = (y(j)′ − y(j))y(j)(1− y(j)) (3.28)

and error for a hidden layer node is computed as:

ε(j) = y(j)(1− y(j))
L∑

l

ε(l)w(j, l) (3.29)

where l is associated with all layers nodes to the right of the current node j.
In our experiment, we used this MLP with backpropagation as learning model and

sigmoid as activation function.

Linear Support Vector Machine (L-SVM)

The third classification technique used in this thesis is the Linear SVM (L-SVM) method
[50]. Compared with conventional classification methods which minimize the empirical
training error, the goal of SVM is to minimize the upper bound of the generalization error
by finding the largest margin between the separating hyperplane and the data. The theory
of L-SVM is briefly described as follows.

For a given set of instance-label pairs (xk, ck), k = 1, · · · , K, xk ∈ R, ck ∈ {Mitosis,NonMitosis},
L-SVM solves the following unconstrained optimization problem with loss function ε(w;xk, ck):

min
w

1
2
wTw + α

K∑

k=1

ε(w;xk, ck)

ε(w;xk, ck) = (max(0, 1− ckw
Txk))

2

(3.30)

where α > 0 is penalty parameter.
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In the testing phase, we classify an instance xk as mitosis if wTxk > 0, and non-mitosis
otherwise.

Non-linear Support Vector Machine (NL-SVM)

Using kernel methods, it is possible to build a non-linear SVM (NL-SVM) in a very
effective way. In NL-SVM, the separating hyperplanes in the transformed feature space are
defined as:

z · xk + b = +1 (3.31)

where z is normal to the hyperplanes, xk is instance, +1 is referred to mitosis class, −1 is
referred to non-mitosis class and b is the bias which describes the distance of the decision
hyperplane from the origin (that is equal to b

||z||). A NL-SVM can be formulated by following
optimization problem:

min
z,b,ξ

1
2
||z||2 + α

K∑

k=1

ξk

subject to ck(z · K(xk) + b) ≥ 1− ξk

(3.32)

where ξk ≥ 0 are real non-negative slack-variables, || · || represents the norm of a vector.
Using this objective function, a training instance xk is mapped to a higher dimensional
space by a kernel function K and a user defined penalty parameter α > 0. By minimizing
1
2 ||z||

2, we can get maximum margin between the separating hyperplane and the data. To
reduce the number of training errors, the penalty term α

∑K
k=1 ξk consists of a number of

positive-valued slack-variables ξk which can be used to construct a soft margin hyperplane.
In this thesis, we train all instances with the radial base function (RBF) kernel as:

K(xk, xj) = e−
γ||xk−xj ||2

2σ2 (3.33)

where γ > 0 is user defined constant.

3.4.7 Experiments and Results

This framework is evaluated on MITOS Aperio and Hamamatsu datasets [1]. The results
of candidate detection and classification techniques are compared with GT information pro-
vided along with the dataset. The metrics used to evaluate the mitosis detection included:
TP, FP, FN, TPR, PPV and FM.

Candidate Detection

We performed candidate detection on red, green and blue channels, and also on BR
image. The candidate detection results are ranked according to FM and PPV as shown in
Figure 3.12. The green channel detected maximum number of mitosis with a large number
of non-mitosis as well, that result in a large number of candidates for classification.

On Aperio training dataset, red channel detects 194 mitosis out of 4386 detected can-
didates, green channel detects 207 mitosis out of 10103 detected candidates, blue channel
detects 202 mitosis out of 9291 detected candidates and BR image detects 196 mitosis out
of 8451 detected candidates. On Aperio evaluation dataset, red channel detects 90 mito-
sis out of 1780 detected candidates, green channel detects 91 mitosis out of 4991 detected
candidates, blue channel detects 84 mitosis out of 5006 detected candidates and BR image
detects 90 mitosis out of 4351 detected candidates.
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Table 3.4: TMC Classification Results on MITOS Aperio Evaluation Dataset (GT = 100).

Classifiers TP FN FP TPR PPV FM

All Features
DT 63 37 50 63% 56% 59.15%
MLP 65 35 51 65% 56% 60.19%
L-SVM 62 38 38 62% 62% 62.00%
NL-SVM 57 43 25 57% 70% 62.64%

Selected Features
DT 59 41 26 59% 69% 63.78%
MLP 76 24 52 76% 59% 66.67%
L-SVM 68 32 40 68% 63% 65.38%
NL-SVM 59 41 21 59% 74% 65.56%

On Hamamatsu training dataset, red channel detects 203 mitosis out of 5336 detected
candidates, green channel detects 208 mitosis out of 9996 detected candidates, blue channel
detects 209 mitosis out of 10851 detected candidates and BR image detects 202 mitosis
out of 7956 detected candidates. On Hamamatsu evaluation dataset, red channel detects
89 mitosis out of 2467 detected candidates, green channel detects 84 mitosis out of 4967
detected candidates, blue channel detects 86 mitosis out of 4708 detected candidates and
BR image detects 88 mitosis out of 4032 detected candidates.

Overall, the green and blue channels detect more mitosis as compared to red channel and
BR image, but also more non-mitosis. The red channel detects less non-mitosis than other
color channels, on both datasets (Aperio and Hamamatsu). On Aperio dataset, it missed
32 and 10 GT mitosis from training and evaluation datasets, respectively. On Hamamatsu
dataset, it missed 23 and 11 GT mitosis from training and evaluation datasets, respectively.
Overall, the red channel outperformed during candidate detection with respect to FM and
PPV.

Candidate Classification on MITOS evaluation dataset

In this experiment, we evaluate this framework on MITOS evaluation dataset. First
we use all computed features of each color channel separately for classification of detected
candidates as mitosis and non-mitosis. The classification results on Aperio and Hamamatsu
evaluation sets are shown in Figure 3.13. Overall, the red channel reports the highest mitosis
detection on both datasets. The blue channel detects very few mitosis regions as compared
to other color channels. L-SVM and MLP classifiers report higher classifications results
using texture features of red channel on both datasets.

Using features from all color channels and BR image, the classification of mitosis regions
is improved as shown in Tables 3.4 and 3.5. On Aperio dataset, the MLP classifier reports
the highest TPR 65%, but low PPV 56% as well. As compared with other classifiers, the
NL-SVM classifier detects few mitosis with also few FP and resulted highest FM 62.64%.
When we select features from a set of all textural features computed in all color channels and
BR image using feature selection technique (explained in section 3.4.5), the classification
results are improved by reduction of FP. The MLP classifier reports the highest TPR 76%
and FM 66.67% and NL-SVM reports the highest PPV 74%.

On Hamamatsu dataset, the L-SVM classifier reports the highest TPR 56%, but low
PPV 51% as shown in Table 3.5. As compared with other classifiers, the NL-SVM classifier
detects few mitosis with also few FP and resulted highest FM 53.89%. When we select
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(a) Candidate detection on Aperio Dataset

(b) Candidate detection on Hamamatsu Dataset

Figure 3.12: Candidate detection results (FM and PPV metrics) on four color channels.
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(a) Classification results using single channel texture features on Aperio dataset

(b) Classification results using single channel texture features on Hamamatsu dataset

Figure 3.13: TMC classification results using single channel texture features with four
classifiers.
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Table 3.5: TMC Classification Results on MITOS Hamamatsu Evaluation Dataset (GT
= 100).

Classifiers TP FN FP TPR PPV FM

All Features
DT 45 55 23 45% 66% 53.57%
MLP 44 56 21 44% 68% 53.33%
L-SVM 56 44 53 56% 51% 53.59%
NL-SVM 45 55 22 45% 67% 53.89%

Selected Features
DT 46 54 22 46% 68% 54.76%
MLP 48 52 28 48% 63% 54.55%
L-SVM 59 41 52 59% 53% 55.92%
NL-SVM 47 53 21 47% 69% 55.95%

Table 3.6: Classification Results on MITOS Aperio Full Dataset using 5-Fold CV (GT =
326).

Classifiers TP FN FP TPR PPV FM

All Features
DT 168 158 78 52% 68% 58.74%
MLP 171 155 77 52% 69% 59.58%
L-SVM 167 159 63 51% 73% 60.07%
NL-SVM 164 162 51 50% 76% 60.63%

Selected Features
DT 169 157 51 52% 77% 61.90%
MLP 189 137 79 58% 71% 63.64%
L-SVM 183 143 74 56% 71% 62.78%
NL-SVM 171 155 49 52% 78% 62.64%

features from a set of all textural features computed in all color channels and BR image
using feature selection technique, the classification results are improved by more detection
of mitosis and few FP. The L-SVM classifier reports the highest TPR 59% and NL-SVM
reports the highest PPV 69% and FM 55.95%.

Candidate Classification on MITOS full dataset using 5-Fold CV

In this experiment, we evaluate proposed framework on MITOS full dataset using 5-Fold
CV. Classification results on Aperio and Hamamatsu dataset are shown in Table 3.6 and
3.7, respectively. On Aperio dataset, the MLP and DT classifiers detect the more number
of mitosis but with more FP, as well. The NL-SVM classifier reports the higher FM 60.63$
and PPV 76% as compared to other classifiers. On selected features, the MLP classifiers
detects more mitosis and overall reports the highest FM 63.64%.

On Hamamatsu dataset, the L-SVM classifier detects the more number of mitosis but
with more FP, as well. The NL-SVM classifier reports the higher FM 50.49$ and PPV 71%
as compared to other classifiers. On selected features, the MLP classifiers detects more
mitosis and overall reports the highest FM 51.61%.
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Table 3.7: Classification Results on MITOS Hamamatsu Full Dataset using 5-Fold CV
(GT = 326).

Classifiers TP FN FP TPR PPV FM

All Features
DT 131 195 68 40% 66% 49.90%
MLP 139 187 89 43% 61% 50.18%
L-SVM 156 170 137 48% 53% 50.40%
NL-SVM 128 198 53 39% 71% 50.49%

Selected Features
DT 133 193 63 41% 68% 50.96%
MLP 144 182 88 44% 62% 51.61%
L-SVM 158 168 131 48% 55% 51.38%
NL-SVM 131 195 53 40% 71% 51.37%

3.4.8 Discussion

In this framework, we have analyzed the RGB color model for mitosis detection on
Aperio and Hamamatsu datasets. The histogram analysis of mitosis and background regions
in all color channels showed that red channel has more information for mitosis regions
discrimination as compared to other color channels. The candidate detection experiment
supports the hypothesis of histogram analysis that red channels detect more mitosis with few
non-mitosis candidates. An important finding is that green channel have more information
than blue channel, which contain higher absorption response for mitosis nuclei as compared
to other tissue components. The textural features computed from red channels contain more
information for mitosis regions as compared to textural features computed from other color
channels. Using textural features from all color channels, we manage to get FM 62.64%
on Aperio dataset and 53.89% on Hamamatsu dataset with NL-SVM classifier. In case of
selected textural features, we improve the FM up to 66.67% on Aperio dataset and 55.95%
on Hamamatsu dataset.

3.5 Intensity, Textural and Morphology based Mitosis de-
tection in Color images (ITM2C) Framework

The intensity, textural and morphology based mitosis count in color images (ITM2C)
framework addresses some shortcomings in the previous framework like too low mitosis
detection rate, too many false positives and having poor discrimination between mitosis
and non-mitosis regions. More shortcomings are: (1) comprehensive analysis of statistical
features in different color models, (2) combining statistical features with morphological fea-
tures for mitosis discrimination and (3) exploring oversampling methods for balancing the
unbalanced training set by increasing the minority class and decreasing the majority class to
improve the predictive accuracy of mitosis classification. This improved framework contains
(1) a robust multi-channels statistical features computation which integrates segmented nu-
clei features for variety of color models, (2) nuclei features describing nuclear morphology,
pixel information and texture; and (3) studies of oversampling methods to increase minor-
ity (mitosis) class size by interpolating between several minority class examples that lie
together, which makes classification more robust. This framework consists of three main
components: color channels selection, candidate detection and segmentation, and feature
computation and classification as shown in Figure 3.14.
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Figure 3.14: ITM2C Framework.

3.5.1 Color Channels Selection and Color Deconvolution

In H&E stained images, hematoxylin is a purple-blue dye that binds to the nuclei chro-
matin and eosin is a pinkish dye that binds to the cytoplasmic components. In order to
study the specific information carried by hematoxylin stain, which highlights different cel-
lular structures in the tissue, we separate these two stains using color deconvolution [153].
After separation, we select hematoxylin stained component of image for further processing.

The color representation plays an important role in histological image analysis since it
carries usually more information than other features of a given color image [121]. For in-
stance, different color space transformations have been applied to increase the separability
between nuclei and non-nuclei during nuclei detection, segmentation and classification. In
addition, different color models are proposed to separate a color into more useful compo-
nents that bring new information to the system. In this framework, our goal is to investigate
the various color channels of different color models and select those channels having better
pixels and texture information for mitosis detection. We convert RGB images into three
other color models namely HSV (more intuitive for human perception), Lab and Luv (uni-
form color separation). These four color models present common color models studied in
histopathology. By doing histogram analysis of mitosis nuclei, non-mitosis nuclei and back-
ground regions in all channels of RGB, HSV, Lab and Luv color models, we selected eight
color channels which are R(RGB), G(RGB), B(RGB), V(HSV), L(Lab), L(Luv), BR image
and Hematoxylin (H&E) image. The histograms of V(HSV), L(Lab), L(Luv) and Hema-
toxylin(H&E) image are shown in Figure 3.15 and 3.16 whereas the histograms of R(RGB),
G(RGB), B(RBG) and BR image are shown in Figure 3.6 and 3.7.

3.5.2 Candidate Detection

This step is similar as explained in section 3.4.3.

3.5.3 Feature Computation and Classification

For each candidate, we extract two sets of quantitative features which are morphological
and statistical features. The statistical features are intensity based (first order) and texture
based (second order) statistical features.
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(a) Histogram of V (HSV) Channel (b) Histogram of L (Lab) Channel

(c) Histogram of L (Luv) Channel (d) Histogram of Hematoxylin (H&E) Images

Figure 3.15: Histogram analysis of selected channels on Aperio dataset.

(a) Histogram of V (HSV) Channel (b) Histogram of L (Lab) Channel

(c) Histogram of L (Luv) Channel (d) Histogram of Hematoxylin (H&E) Images

Figure 3.16: Histogram analysis of selected channels on Hamamatsu dataset.
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Intensity Features

The intensity based features determine the distribution of grey level values within the
candidate regions. These features are computed in all eight selected color channels. The
computed features are:

Mean (Mn) :

Mn =
∑

i I(i)
U

(3.34)

where I(i) is grey level values and U is the number of pixels in the segmented regions.
Median (Md) : describes the central tendency. After arranging all the grey level

values in ascending order, the middle value is median of the candidate region.
Standard Deviation (SD) : represents the variation of grey level value in comparison

with the mean value (Mn).

SD =

√

(
∑

i I(i)−Mn)2

U
(3.35)

Skewness : describes the degree of histogram asymmetry around the mean.

Skewness =
1
U

(
∑

i I(i)−Mn)3

SD3 (3.36)

Kurtosis : describes the sharpness of the grey level histogram.

Kurtosis =
1
U

(
∑

i I(i)−Mn)4

SD4 (3.37)

where U is total number of pixels in the segmented regions.

Morphological Features

Besides intensity and texture features of candidate regions, various shape and geomet-
rical features are computed for candidate classification as mitosis or non-mitosis. These
features are:

Area: is computed by counting the number of pixels in the segmented region.

Area =
∑

i

IB(i) (3.38)

where IB(i) is the binary mask of a object consisting of oneŠs within the object and zeros
elsewhere.

Perimeter : is measured the distance around the boundary of the object, where bound-
ary pixels are 8-connected:

Perimeter =
B∑

i=1

√

(x(i+ 1)− x(i))2 + (y(i+ 1)− y(i))2 (3.39)

where x and y are the x- and y-coordinates of the B boundary pixels.
Roundness : measures shape irregularity as:

Roundness =
Perimeter2

Area
(3.40)

Elongation : is computed as the ratio of the largest axis and the smallest axis. Its
value is greater or equal to 1.

Elongation =
Major Axis
Minor Axis

(3.41)



3.5. Intensity, Textural and Morphology based Mitosis detection in
Color images (ITM2C) Framework 85

Equivalent spherical perimeter : is the equivalent perimeter of the hypersphere of
the same size.

These five morphological features reflect the phenotypic information of mitosis. Utilizing
pixel intensity information of the selected color channels including BR and Hematoxylin
image, we compute five intensity features of each segmented regions in all selected color
channels. Using mask from candidate segmentation, HC and RL features are also computed
for all selected color channels as explained in section 3.4.4.

Handling Imbalanced Dataset

There is a high degree of imbalance in the dataset as mitosis candidates are very few
in number as compared to the non-mitosis candidates. In case of imbalanced dataset, the
class boundary learned by the standard machine learning classifiers is biased towards the
majority class resulting in a high false negative rate [94]. It is of utmost importance to
balance the class distribution in the training set before training a classifier. To handle
imbalanced dataset, we perform two things; (1) down sampling of non-mitosis instances
and (2) oversampling of mitosis instances.

First, we remove borderline instances (having higher probability of being classified in-
correctly) from non-mitosis instances. Second, we apply synthetic minority oversampling
technique (SMOTE) [32] on mitosis instances of training set to increase number of mitosis
in order to reduce bias of classifiers towards non-mitosis class. This oversampling approach
creates extra synthetic training data for minority class by operating in feature space rather
than data space. Depending upon the amount of over-sampling required, neighbors from
the k nearest neighbors are randomly chosen. Two neighbors from the five nearest neighbors
are chosen and one sample is generated in the direction of each. SMOTE provides more
related minority class samples to learn from, thus allowing a classifier more coverage of the
minority class due to broader decision regions.

3.5.4 Experiments and Results

Candidate Detection

We performed candidate detection on selected 8 color channels. The candidate detection
results are ranked according to FM and PPV as shown in Figure 3.17. Overall, the R(RGB)
channel has higher FM on both datasets (Aperio and Hamamatsu). The G(RGB) channel
detected maximum number of mitosis with a large number of non-mitosis as well, that
result in a large number of candidates for classification. On Aperio dataset, R(RGB) and
V(HSV) have almost similar FM and PPV, but R(RGB) channel has better FM and PPV
than V(HSV) channel on Hamamatsu dataset. The R(RGB) channel outperformed overall
during candidate detection with respect to FM and PPV.

Candidate Classification using features from Individual Color Channel

In this experiment, we evaluate this framework on MITOS evaluation dataset using
computed features from individual color channels. The classification results on Aperio and
Hamamatsu evaluation sets are shown in Figure 3.18. Overall, the R (RGB) and V (HSV)
channels report the highest mitosis detection on both datasets. The green channel detects
very few mitosis regions as compared to other color channels. The L-SVM classifier reports
higher classifications results with more TP and FP. The NL-SVM classifier reports higher
PPV with few FP but few TP as well.
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(a) Candidate detection on Aperio Dataset

(b) Candidate detection on Hamamatsu Dataset

Figure 3.17: Candidate detection results on selected eight color channels.
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(a) Classification result using single channel features on Aperio dataset.

(b) Classification result using single channel features on Hamamatsu dataset.

Figure 3.18: ITM2C classification results using single channel features with four classifiers.
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Table 3.8: ITM2C Classification Results on MITOS Aperio Evaluation Dataset (GT =
100).

Classifiers TP FN FP TPR PPV FM

All Features
DT 65 35 27 65% 71% 67.71%
MLP 68 32 31 68% 69% 68.34%
L-SVM 72 28 38 72% 66% 68.57%
NL-SVM 58 42 12 58% 83% 68.24%

Selected Features
DT 67 33 25 67% 73% 69.79%
MLP 66 34 23 66% 74% 69.84%
L-SVM 74 26 30 74% 71% 72.55%
NL-SVM 59 41 11 59% 84% 69.41%

Candidate Classification using Features from Selected Color Channels

Using features from all selected color channels, the classification of mitosis regions is
improved as shown in Table 3.8 and 3.9. On Aperio dataset, the L-SVM classifier detects
more TP and also more FP as well. The L-SVM classifier with all computed features reports
highest FM 68.57%, but also low PPV 66%. As compared with other classifiers, the NL-
SVM classifier detects few mitosis with also few FP and results FM 68.24%. When we select
features from a set of all computed features in selected color channels using feature selection
technique (explained in section 3.4.5), the classification results are improved by detection
of more mitosis and less FP. The L-SVM classifier reports the highest TPR 74% and FM
72.55% and NL-SVM classifier reports the highest PPV 84%.

On Hamamatsu dataset, the L-SVM, MLP and DT classifiers detect more mitosis and
more FP as well. The L-SVM classifier with all computed features reports highest FM
61.31%, but also low PPV 62%. As compared with other classifiers, the NL-SVM classifier
detects few mitosis (53) with also few FP (20) and results FM 61.27%. When we select
features from a set of all computed features in selected color channels, the L-SVM classifier
reports the highest TPR 63% and FM 64.62% and NL-SVM classifier reports the highest
PPV 74%. The visual results of candidate detection and candidate classification on Aperio
and Hamamatsu sample image are shown in Figures 3.19 and 3.20, respectively, (green circle
represents TP, blue circle represent FN and yellow circle represent FP).

Region vs Patch based features in ITM2C Framework

Besides segmented region based textural features, we also compute texture features
on different patch size of detected candidates. The different patch sizes used in feature
computation are shown in Table 3.10. The results of classification on different patch size
features and region based features with L-SVM classifier are shown in Figure 3.21. In case of
Aperio dataset, features computed on patch size 17.192µm×17.192µm show maximum FM
and TPR as compared with region and other patch sizes. By reducing the patch size, we have
fewer FP but fewer TP as well. With features computed on patch size 17.192µm×17.192µm,
we manage to achieve TPR 73%, PPV 76% and FM 74.49%. On Hamamatsu dataset,
features computed on patch size 13.638µm× 13.652µm reports maximum FM and TPR as
compared with region and other patch sizes. With this patch size features, we manage to
achieve TPR 71%, PPV 58% and FM 64.84%.
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(a) Candidate Detection on Aperio Image

(b) Candidate Classification on Aperio Image

Figure 3.19: Visual results of mitosis detection on Aperio images (green circles represent
TP, blue circles represent FN and yellow circles represent FP).
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(a) Candidate Detection on Hamamatsu Image

(b) Candidate Classification on Hamamatsu Image

Figure 3.20: Visual results of mitosis detection on Hamamatsu images (green circles rep-
resent TP, blue circles represent FN and yellow circles represent FP).
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(a) Classification Results on Aperio Dataset

(b) Classification Results on Hamamatsu Dataset

Figure 3.21: Classification results of region and patches based features with L-SVM clas-
sifier.
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Table 3.9: ITM2C Classification Results on MITOS Hamamatsu Evaluation Dataset (GT
= 100).

Classifiers TP FN FP TPR PPV FM

All Features
DT 60 40 37 60% 62% 60.91%
MLP 60 40 38 60% 61% 60.61%
L-SVM 61 39 38 61% 62% 61.31%
NL-SVM 53 47 20 53% 73% 61.27%

Selected Features
DT 61 39 34 61% 64% 62.56%
MLP 60 40 31 60% 66% 62.83%
L-SVM 63 37 32 63% 66% 64.62%
NL-SVM 55 45 19 55% 74% 63.22%

Table 3.10: Patch sizes in pixels and µm on the Aperio and Hamamatsu dataset.

Patch sizes in pixels Aperio Dataset (µm) Hamamatsu Dataset (µm)

Patch 80× 80 19.648× 19.648 18.184× 18.202
Patch 70× 70 17.192× 17.192 15.911× 15.927
Patch 60× 60 14.736× 14.736 13.638× 13.652
Patch 50× 50 12.28× 12.28 11.365× 11.377
Patch 40× 40 9.824× 8.824 9.092× 9.101

3.5.5 Discussion

ITM2C framework is proposed to count mitosis in H&E stained breast cancer histological
images. This framework is based on multi-channel statistical and morphological features.
Initially histogram analysis is performed on different color channels of various color spaces
including BR and Hematoxylin (H&E) images to select the relevant color channels for
mitosis discrimination. We perform candidate detection on all the selected (eight) color
channels. The candidate detection results conclude that R(RGB) and V(HSV) are reported
to have maximum FM and PPV on both Aperio and Hamamatsu datasets. This is also
validated from histogram analysis of mitosis and background regions where both regions
are well separated peaks.

In experiment of candidate classification using single channel statistical features, R
(RGB) channel features show more discrimination as compared to other color channels
features. By comparing classifiers, L-SVM classifier detects high number of mitosis with
high number of FP as well. Overall, L-SVM classifier using R(RGB) computed features
reports the highest FM 50% and 42% on Aperio and Hamamatsu datasets, respectively. The
V(HSV) channel features shows slightly less performance as R(RGB) channels features. As
compared to single channel patch features computed in TMC framework, the single channel
region features computed in ITM2C framework reports low performance.

By combining all selected channels based regions features with morphological features,
the ITM2C framework manages to improve the mitosis detection on Evaluation dataset from
66.67% to 71.29%. The improved framework detects more mitosis and less FP as compared
to previous framework.

To compare the contribution of region and patch based features, we have made a study
of mitosis classification using region and different patch sizes based features. By taking the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.22: Aperio (first row) and Hamamatsu (second row) patches of mitosis nuclei on
which texture features are computed.

advantage of neighboring regions of each candidate, the patch based features carries more
discriminate information for mitosis detection. It is interesting to see that best results are
achieved with different patch sized for both datasets (Aperio and Hamamatsu). The patch
size 17.19µm× 17.19µm gives best result on Aperio dataset and the patch size 13.64µm×
13.65µm gives best result on Hamamatsu dataset. Examples of different patches of mitosis
in Aperio and Hamamatsu datasets are shown in Figure 3.22. An important finding is that
texture is different in Aperio and Hamamatsu datasets not only inside mitosis regions but
also in neighboring mitosis regions.

From the classifiers point of view, NL-SVM classifier always detects very few FP and
results in high PPV. The L-SVM classifier always detects maximum number of mitosis, but
with high number of FP as well. MLP classifier shows good results on selected features.

One of the parameters that mostly affect our experiments is the unbalanced training set
having a huge number of non-mitosis compared to the small number of mitosis. Indeed, most
classifiers are biased toward non-mitosis, which resulted high number of FP and low number
of TP. Handling imbalanced dataset, by over-sampling of mitosis using SMOTE and non-
mitosis cleaning, shows improvement in mitosis detection. The SMOTE method effectively
forces the decision region of the minority class to become more general, thus eventually
it reduces the bias of non-mitosis class and results in classification improvement. Figure
3.23 illustrates the ROC curve obtained with patches features. Figure 3.24 illustrates the
margin curve between the probability predicted for mitosis class and the highest probability
predicted for the non-mitosis class. This clearly demonstrates that our proposed framework
results in an improved ability to distinguish mitosis from other objects.

To the best of our knowledge, MITOS is the only available de facto gold standard dataset
of both multispectral and color images. It not only provides basis for comparison between
our proposed framework and other previous frameworks, but also for comparison between
multispectral and color images. Using this dataset, IPAL CNRS laboratory organized a
contest during ICPR 2012 [150]. They also provided the performance metrics to evaluate
the framework for mitosis count. The results of this framework has been submitted in this
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(a) Aperio Dataset

(b) Hamamatsu Dataset

Figure 3.23: The ROC curves of classification result using patch based features with L-
SVM classifier.
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(a) Aperio Dataset

(b) Hamamatsu Dataset

Figure 3.24: The margin curve illustrating the prediction margin between mitosis and non
mitosis class.
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Figure 3.25: Comparison of ITM2C framework results with MITOS contest result on
Aperio Dataset. IDSIA: Dalle Molle Institute for Artificial Intelligence Research [35],
SUTECH: Shiraz university of technology, NEC: NEC Corporation [113], Warwick [87].

contest and ranked second on both Aperio and Hamamatsu dataset. The comparison of
results on Aperio and Hamamatsu dataset are shown in Figures 3.25 and 3.26.

The missed mitosis normally are small in size and exhibit faint nuclear material as
shown in Figure 3.27. These mitosis have also been missed by all the methods during
MITOS contest 2012 [150]. A few examples of FPs are shown in Figure 3.28. The numerous
FP are lymphocytes and artifacts that have dark regions and look like mitosis. In addition,
some FP is in non-tumor region. One possibility of improvement can be selection of tumor
region for mitosis detection.

The proposed frameworks are developed using Insight Segmentation and Registration
Toolkit (ITK) [77] and Weka [139]. The candidate detection, segmentation and features
computation are developed in ITK and feature selection and classification are developed
using Weka.

3.6 MICO Platform Prototype

The Cognitive Microscope (MICO) project, funded by French National Research Agency
(ANR), aims at enhancing the diagnosis process through a synergy between knowledge, con-
text, cognition and experience based on a user-centered approach to provide visual progno-
sis assistance to pathologists [151, 106, 141]. The global architecture of MICO platform is
shown in Figure 3.29. This project, launched in February 2011 for duration of three years,
aims at developing a pertinent and robust tool for breast cancer grading, in order to give
pathologists a second opinion on the state of a patient. MICO project raised the interest of
both industrials and medical institutes. Figure 3.30 shows the list of the partners involved
in this project.

3.6.1 Evaluation of ITM2C frameworks in MICO Platform

MICO platform addresses two criteria of NGS, i.e., mitosis count and cyto-nuclear atypia
(CNA). Automated evaluation of mitosis count and CNA on WSI requires heavy image
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Figure 3.26: Comparison of ITM2C framework results with MITOS contest result on
Hamamatsu Dataset. NEC: NEC Corporation [113].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.27: Some examples of FNs. The missed mitotic nuclei are located in the center
of each image. First row images (a-d) from Aperio and second row images (e-f) are from
Hamamatsu Dataset.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.28: Some examples of FPs. The false mitotic nuclei are located in the center
of each image. First row images (a-f) from Aperio and second row images (g-l) are from
Hamamatsu Dataset.

Figure 3.29: Architecture of MICO 2.0.
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Figure 3.30: MICO ANR TecSan project partners.

processing computations. However, it is not possible to compute the mitosis count and
CNA on a ROI within reasonable time. Strategies are proposed to overcome the processing
power limitations. As the histopathology expert doesn’t need to watch every part of the WSI
in order to grade it, MICO aims to understand and reproduce this expert behavior during
automated grading. For mitosis count, we employ stereology flow for selection of frames in
ROI as shown in Figure 3.31. First, the whole slide image is observed by a histopathologist,
for the slide territories corresponding to tumor areas to be annotated using Calopix user
interface [4]. Then the relevant territories are extracted from Calopix information storage
system, for them to be split into rectangles called HPF frames. In the tumor, we are looking
for the area having the highest concentration of mitotic cells. To perform this search faster,
we operate a sampling on the set of frames covering the tumor (see Figure 3.32): the frames
are grouped into blocks of 3×3 frames (see Figure 3.33). In each 3×3 block, only the top
left frame is analyzed for mitosis detection. This sampling of one frame analyzed out nine
give us a broad picture of the concentration of mitosis in each area of the tumor. To select
the area having highest number of mitosis, we now consider blocks of 4×4 frames such that
the frames at each corner of a block have already been analyzed for mitosis detection. We
compute the sum of mitosis detected so far in each 4×4 block, and we select the block (or
the blocks) having highest number of mitosis for further analysis. In this block of 16 frames,
the four frames at the corners of the block have already been analyzed. We now proceed
to detection of mitosis on the 12 remaining frames of the block. So all the 16 frames of
the block are now analyzed. According to Nottingham Grading System, mitotic count is
given for 10 consecutive frames. To comply with this definition, we select from our block
of 16 frames the 10 frames with highest number of mitosis. The resulting mitotic count for
the tumor territory will be equal to the sum of mitosis detected on these 10 frames. Of
course, in case we had analyzed more than one 4×4 block, the final mitotic count will be
the highest one among all the 4×4 blocks.

This whole strategy is split in several algorithm definitions that are properly designed
towards MICO platform realisation. These algorithms are designed to communicate using
Extensible Markup Language (XML) [24], a self-describe language, easy to read and to
maintain. These algorithms are:

i. TerritoryExtractor : extracts a labelled polygon from Calopix WFML file.
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Figure 3.31: Stereology flow used for mitosis score over a ROI.

ii. FrameGenerator: cuts a polygon into frames as shown in Figure 3.32.

iii. FrameSampler3×3 : generates the blocks of 3×3 frames and launches the detection
of mitosis on the top left frame of each 3× 3 block.

iv. FrameSampler4×4 : generates blocks of 4×4 frames such that the four frames on
the corner of a block have already been analyzed for detection of mitosis; computes
the number of mitosis detected on each 4× 4 block; selects the 4× 4 block having the
highest number of mitosis; launch the detection of mitosis on the 12 frames not yet
analyzed of the block so that all the 16 frames of the 4 × 4 block will be analyzed;
among the 16 frames of the block, select the 10 frames having the highest number of
mitosis and add these number of mitosis together: this is the resulting mitotic count
for the whole tumor area.

v. ITM2C Framework : count the mitosis on given frame.

vi. MitoticScorer : selects 10 frames having the highest number of mitosis in 4 × 4
block and add these number of mitosis together to provide a mitotic score.

A list of snapshots of mitosis detection is shown in Figure 3.34. These snapshots are
taken from video developed during MICO 2.0 platform evaluation (http://ipal.cnrs.fr/

data/z/MICO_mitosis.mp4).

3.7 Conclusion

In this chapter, we have proposed two frameworks for mitosis count in breast cancer
histopathology. These frameworks consist of candidate detection and segmentation, fea-
tures computation and selection, classification and handling unbalanced training datasets.
We select color channels based on histogram analysis of different color channels of various

http://ipal.cnrs.fr/data/z/MICO_mitosis.mp4
http://ipal.cnrs.fr/data/z/MICO_mitosis.mp4
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Figure 3.32: Territories and frames.
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Figure 3.33: Frames analyzed by ITM2C Framework are displayed on TRIBVN Calopix
platform. The color code is based on the number of mitosis detected in the frame (from
blue for zero mitosis to red for 10 or more mitosis).

(a) Calopix user interface (b) Calling Mitosis Detection from Calopix

(c) Mitosis Detection execution (d) Result of Mitosis detection with confidence

Figure 3.34: Snapshot of Mitosis Detection video in MICO 2.0 platform [6].
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color models using selected sampled of mitosis and non-mitosis nuclei and background re-
gions. These frameworks are evaluated on MITOS benchmark, on Aperio and Hamamatsu
datasets. Finally, we suggested an efficient generic strategy to explore large images like WSI
with a local signal measure of relevance. The real time evaluations of these frameworks are
done in the MICO project platform prototyping. In next chapter, we will propose an au-
tomated mitosis detection framework for breast cancer MSI based on multispectral spatial
features.





Chapter 4

Automated Mitosis Detection in
Multispectral Images

Résumé du chapitre

L’imagerie multispectrale présente l’avantage de fournir les caractéristiques d’un tissu
pour différentes fréquences du spectre électromagnétique. L’imagerie multispectrale
capture les images avec un contenu spectral précis, en corrélation avec l’information
spatiale, en révélant les caractéristiques anatomiques chimiques de l’histopathologie
[98, 100]. Cette modalité permet aux biologistes et aux médecins de voir au-delà
des images couleur rouge-vert-bleu (RVB) auxquelles ils sont habitués. Des publi-
cations récentes [52, 101, 183, 89] ont commencé à explorer l’utilisation des informa-
tions supplémentaires contenues dans les images multispectrales. Plus précisément,
la comparaison de méthodes spectrales montre l’avantage des données multispectrales
[99, 58]. Cependant, l’avantage supplémentaire apporté par les images multispectrales
pour l’analyse d’images colorées par hématoxyline et éosine (H&E) en histopathologie
est encore largement inconnu, bien que certains résultats prometteurs soient présen-
tés dans [148, 52, 89, 183]. Pour autant que nous sachions, il n’existe actuellement
aucune étude portant sur l’utilisation d’images multispectrales pour la détection de
mitoses en histopathologie.

Dans ce chapitre, nous présentons une extension aux images multispectrales du sys-
tème précédent pour le comptage des mitoses dans le cas du cancer du sein. L’imagerie
multispectrale est une technologie d’imagerie médicale récente qui a déjà montré dans
d’autres domaines l’augmentation de la précision de la segmentation qu’elle permet
d’obtenir. Le système proposé comprend la sélection de plan focal et de bandes spec-
trales, la détection de candidats mitoses et de calcul des caractéristiques spatiales mul-
tispectrales. Nous proposons trois méthodes différentes pour la sélection des bandes
spectrales. Ce système est évalué sur le jeu de données multispectral du concours
MITOS.

Chaque mitose présente différents niveaux d’informations pertinentes selon les ban-
des specrales étudiées. Ce système répond également à deux questions importantes.
Premièrement, l’analyse spatiale-spectrale sur les bandes spectrales sélectionnées (par
opposition à l’analyse spatiale sur une seule bande spectrale ou l’analyse spatiale-
spectrale sur toutes les bandes spectrales disponbles) est-elle suffisante pour la clas-
sification efficace des noyaux détectés en mitose ou non-mitose ? Un avantage évident
de l’utilisation d’une sélection de bandes spectrales est la diminution de la complexité
de calcul et du volume de données à manipuler. Deuxièmement, quelle est l’efficacité
des multiples descripteurs pour la discrimination des noyaux des mitoses et des noyaux
des non-mitoses par rapport à un seul type de descripteur ?
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4.1 Introduction

Multispectral Imaging (MSI) has the advantage to retrieve spectrally resolved informa-
tion of a tissue image scene at specific frequencies across the electromagnetic spectrum.
MSI captures images with accurate spectral content, correlated with spatial information,
by revealing the chemical and anatomic features of histopathology [98, 100]. This modality
provides option to biologists and pathologists to see beyond the RGB image planes to which
they are accustomed. Recent publications [52, 101, 183, 89] have begun to explore the use
of extra information contained in such spectral data. Specifically, comparisons of spectral
methodologies demonstrate the advantage of multispectral data [99, 58]. The added benefit
of MSI for analysis in routine H&E histopathology, however, is still largely unknown, al-
though some promising results are presented in [148, 52, 89, 183]. As far as we know, there
is no existing study of the use of MSI for automation of mitosis detection in breast cancer
histopathology.

In this chapter, we present another framework, an extension of previous framework, for
counting of mitosis nuclei in breast cancer MSI. MSI is a recent medical imaging technology,
proven successful in increasing the segmentation accuracy in other fields. The proposed
framework includes a selection of SBs and focal plane, detection of candidate mitosis nuclei
and computation of morphological & multispectral statistical features (MMSF). We propose
three different methods for SBs selection. This framework is evaluated on MITOS MSI
(multispectral) dataset.

Each mitosis region has different level of relevant information in different SBs. This
framework also addresses two important questions: First, does the spatial-spectral analysis
on selected SBs (as opposed to spatial analysis on single SB or spatial-spectral analysis of
all the SBs) suffice for efficient classification of mitosis and non-mitosis nuclei. An obvious
advantage of using selected SBs is its reduced computational and storage complexity. Sec-
ond, how effective are the multiple features for discrimination of mitosis and non-mitosis
nuclei as compared to one type of features.

4.2 Multispectral Dataset

The MITOS MSI dataset is made up of 200 images coming from five different slides
scanned at 40X magnification using a 10 spectral bands (SBs) microscope. There are 40
images per slide and each image has a size of 251.6 × 251.6µm2 (that is an area of 0.063
mm2). The 200 images contain a total 322 mitosis nuclei. The training data set consists
of 140 images containing 224 mitosis and the evaluation data set consists of 60 images
containing 98 mitosis [150].

The SBs are all in the visible spectrum. There is some spectrum overlapping for the
SBs. In addition, for each spectral band, the digitization has been performed at 17 different
focal planes (17 layers Z-stack), each focal plane being separated from the other by 500
nm. Therefore, for each image, there is a stack of 170 files (10 SBs and 17 focal planes for
each SB). Figure 4.1 shows the spectral overage of each of the 10 SBs of the multispectral
microscope.

4.3 Multispectral Intensity, Textural & Morphology-based
Mitosis detection in Multispectral images (MITM3) Frame-
work

In the proposed framework, we address the shortcomings of previous works, including
(1) selection of focal plane and SBs; (2) analysis of multispectral statistical features in
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Figure 4.1: SBs of the multispectral microscope and examples for each SB.

selected SBs rather than single [118, 113] or all SBs [21, 183, 89] and (3) selection of the
best classifier for discrimination of mitosis nuclei from other microscopic objects. The main
novel contributions of this work are:

i. An automatic and unsupervised focal plane selection process

ii. Three different methods for SBs selection including relative spectral absorption of
different tissue components, spectral absorption of H&E stains and mRMR technique.

iii. Computation of morphological & multispectral statistical features (MMSF) containing
intensity, texture and morphological features which leverage discriminant information
from a given candidate across selected SBs for classification of mitosis and non-mitosis
nuclei.

iv. An extensive investigation of classifiers and inference of the best one for mitosis nuclei
classification.

v. Comparison of patch and region based features for mitosis classification.

The framework for mitosis detection in breast cancer MSI are shown in Figure 4.2.
The proposed framework has five main steps. Step one performs a selection of the most
informative focal plane based on maximum gradient information of mitosis nuclei from
background. Step two is responsible for the selection of relevant SBs for the objective of
mitosis detection. Candidates for mitosis nuclei are detected in step three. Then, in step
four, a MMSF signature vector of intensity and texture information across selected SBs is
computed for each detected candidate. In addition, using segmented regions of detected
candidates, morphological features are also computed and added to the signature vector.
During step five, candidates are classified into mitosis and non-mitosis classes using DT,
MLP as well as L-SVM and NL-SVM classifiers. A side advantage of performing the spatial
analysis on multiple SBs simultaneously is to investigate whether improvement in accuracy
can be achieved with MMSF computation in selected SBs over those methods which use
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Figure 4.2: MITM3 Framework.

single SB [118, 113] or all SBs [21, 183, 89]. In addition, we comprehensively analyse patch
and region based features for mitosis discrimination.

4.3.1 Focal plane Selection using Maximum Gradient

For selection of focal plane, average gradient of mitosis nuclei from background regions
is computed on all the focal planes. The computed gradient vector of image I:

h
I =

[
∂I

∂x
,
∂I

∂y

]

(4.1)

where ∂I
∂x

and ∂I
∂y

are partial derivative of I with respect to x and y directions, respectively
as:

∂I(x, y)
∂x

=
I(x+ 1, y)− I(x− 1, y)

2
∂I(x, y)
∂y

=
I(x, j + 1)− I(x, y − 1)

2

(4.2)

The maximum average gradient focal plane (i.e. having the best focus) is selected for
the next steps of the framework.

4.3.2 Spectral Bands Selection

The main tissue components visible in the data set images can globally be categorized
into fat, stroma and epithelial nuclei as shown in Fig. 4.3. As our purpose is the detection
of mitotic nuclei only, we further subdivided epithelial nuclei into mitotic and non-mitotic
nuclei. We selected 200 image patches, a patch being a region of interest of 150 × 150 pixels,
for each tissue components and computed the spectral absorption responses of each tissue
components for the available 10 spectral bands as shown in Fig. 4.4(a). In 4.4(a), fat tissue
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Figure 4.3: Example of different components of breast tissue in H&E stained histopatholog-
ical image. Left image sample is a taken from spectral band 8, focal plane 6 of multispectral
microscope; right image is taken from Aperio Slide Scanner.

is negligible as it has very low absorption response. Moreover, mitotic and non-mitotic
nuclei contributions are indistinguishable. We select mitotic nuclei and stroma curves to
compute the maximum differentiation in contribution to pixel intensity. In 4.4(b), one can
see that bands 7, 8 and 9 exhibit the biggest difference between mitotic nuclei and stroma
contributions. They are the best candidates for maximum differentiation.

Method 2: Hematoxylin and Eosin Spectral Absorption

To illustrate the possible correlation between SBs and the staining characteristics of the
spectral samples, the plot of hematoxylin and eosin dyes spectral absorptions are shown in
Figure 4.5 (this plot is derived from the work of Bautista and Yagi [18]). Hematoxylin stains
nuclei material, while eosin stains both nuclei and cytoplasm. The H−E plot in Figure 4.5
shows the difference of absorption between hematoxylin and eosin. The bands for which
H−E is maximum are more suitable for discrimination between nuclei and cytoplasm. The
absorption response of hematoxylin is maximum in SBs 7 and 8 with almost zero eosin
response. Therefore, these bands should be good options for the task of mitosis detection.
As SBs 4 and 5 have almost the same hematoxylin and eosin response, they should not
provide much discriminating information between nuclei and cytoplasm, so they might be
not suitable for mitosis detection. Hence, in this method, we reconstruct the spectrum of
a pixel by using staining characteristics of tissue components for selection of the optimal
number of SBs for mitosis discrimination in H&E stained MSI.

Method 3: mRMR Technique

In this method, mRMR technique [131] is used for SBs selection. Selection is based on
two criteria; minimum redundancy R(S, c) and maximum relevance D(S, c). The relevancy
of selected SBs to class labels has been measured by average of mutual information (MI)
between each SB and class label. Their redundancy is measured by an average of MI between
each pair of SBs. The average relevancy of selected SBs is defined as:

D =
1
|S|

∑

si∈S

MI(si; cj) (4.3)

where S denotes the selected SBs set, |S| denotes the number of selected SBs, cj denotes
jth class label in class set C, si denotes ith SBs in S and MI is mutual information between
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(a) Normalized absorption spectra of four tissue
components in 10 SBs

(b) Difference of mitotic nuclei and stroma ab-
sorption spectra in 10 SBs

Figure 4.4: Normalized absorption spectra of four tissue components in 10 spectral bands
(SBs). Note that SB 1 (white band), in nature, is different from other SBs and may serve
as reference as it covers the whole visible spectrum and contains all the information that
other bands are containing, although at a lower resolution. It is separated from other SBs
by a dotted line.

Figure 4.5: Normalized plot of the hematoxylin (blue line) and eosin (red line) dye ab-
sorption spectra in MSI and the difference of hematoxylin and eosin (green line).
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SB si and class label cj . MI is computed using entropy as

MI(S;C) = H(S)− H(S|C) (4.4)

where

H(S) = −
∑

si∈S

p(si) log2(p(si)) (4.5)

and

H(S|C) = −
∑

si∈S

∑

cj∈C

p(si, cj) log2(p(si|cj)) (4.6)

are entropy functions that calculates the uncertainty of the SBs and the class labels. In
(4.5) and (4.6), p(si) is the probability density function of si and p(si|cj) is the conditional
probability density function of si and cj . By maximizing D for full SBs set ST , we can
select a SBs set S having maximum relevance for mitosis discrimination by observing all
SBs set ST .

It is likely that selected SBs have rich redundancy. Therefore, the minimum redundancy
R(S, c) is added to select mutually exclusive SBs.

R =
1
|S|2

∑

si,sj∈S

MI(si; sj) (4.7)

MI(si; sj) is maximum when two SBs si and sj have functional dependency and MI(si; sj) =
0 if si and sj are statistically independent. By minimizing R for selected SBs, we select SBs
set with minimum redundancy.

Selection of Spectral Bands in Set (S) in Equations (4.3), (4.4), (4.5), (4.6)
and (4.7):

The incremental search method is used to find the n SBs from the set {ST − Sn−1},
maximizing the following condition expression:

max
si∈ST −S(n−1)



MI(si; c)−
1

n− 1

∑

sj∈S(n−1)

MI(si; sj)



 (4.8)

The image samples, used in computation of spectral absorption of different tissue compo-
nents, are divided into two classes. The non-mitosis class consists of three tissue components
including adipose, cytoplasm and nuclei, and the remaining samples belong to mitosis class.
We perform mRMR on these image samples and their MI, with ranking shown in Table 4.1.
Figure 4.6 shows the relevant contribution of each SB in accumulated MI.

4.3.3 Candidate Detection on Selected SB

We perform candidate detection on the selected SB that has higher MI and difference
between absorption response of mitosis and other tissue components. On the selected SB,
we perform candidate detection as explained in section 3.4.3. Resulting candidates that
are too small or too big to be mitotic nuclei were filtered out based on a minimum area
of 200 pixels (that is 37 µm2, corresponding roughly to a circle of diameter 6.86 µm) and
a maximum area of 5,500 pixels (that is 1,017.5 µm2, corresponding roughly to a circle of
diameter 36 µm), computed on the segmented regions from MITOS multispectral dataset.
An example of candidate detection is shown in Figure 4.7(d).

The process of nuclei division has four different stages, each one exhibiting different
shape, size and textures. This motivates further spatial and morphological analysis on
multispectral data to achieve reasonable classification of regions into mitosis and non-mitosis
types.
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Figure 4.6: Relevant contribution of each SB in accumulated MI.

Table 4.1: SBs Mutual Information (MI) Measure.

SBs MI Accumulated MI Accumulated MI%

SB 8 3.60 3.60 33%

SB 9 3.59 0.95 42%

SB 7 3.38 0.94 51%

SB 6 3.18 0.93 60%

SB 2 3.16 0.92 69%

SB 1 3.11 0.91 78%

SB 3 3.05 0.89 86%

SB 0 2.99 0.88 91%

SB 4 2.94 0.85 95%

SB 5 2.85 0.82 100%
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(a) Smooth Image (b) Threshold Image

(c) Segmented Image (d) Selected Candidates (Green circle=mitotic re-
gion, red circle=non-mitotic region)

Figure 4.7: Different steps in candidate detection on breast cancer MSI histopathology.
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Figure 4.8: Top three ranked focal planes using candidate detection results in all SBs.

4.3.4 Multispectral Spatial Features (MMSF) Computation

We compute MMSF vector consisting of intensity and textural features in several selected
SBs as explained in section 3.5.3 and 3.4.4. In addition, we also compute morphological
features (such as area, roundness, elongation, perimeter and equivalent spherical perimeter)
from segmented regions during candidate detection as explained in section 3.5.3.

4.4 Experiments and Results

The proposed framework is evaluated on MITOS MSI dataset [1]. The results of candi-
date detection and classification methods are compared with ground-truth (GT) information
provided along with the dataset. The metrics use to evaluate the mitosis detection included:
TP, FP, FN, TPR, PPV and FM. In addition to MITOS contest, the proposed framework
is also evaluated with 5-fold CV [44] by merging the training and evaluation sets.

4.4.1 Focal Plane Selection

To gain a better understanding of the relative contributions of specific SBs, we perform
candidate detection in all available SBs using six selected z-stack focal planes according to
maximum gradient as explained in selection 4.3.1. The results of candidate detection are
ranked according to FM and reports top three ranked results in Figure 4.8. The focal plane
6 has more information for candidate detection as compared to other focal planes.

4.4.2 SBs Selection

How many SBs are necessary for a good detection of mitosis figures? Which SBs are
relevant for mitosis figure detection? To discuss these two questions, we tried first to evaluate
the contributions of each SBs using three different proposed methods as discussed in 4.3.2.
The results are shown in Table 4.2. The SBs ranking in method one is based on difference
between spectral absorption of mitosis nuclei and cytoplasm, while the SBs ranking in
method two is based on difference between hematoxylin and eosin spectral absorption.
These three rankings put the same SBs 7, 8 and 9 in top position. More specifically, the
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Table 4.2: Different Rankings of SBs. The upper dotted line shows that SBs 7,8 and 9 are
at top three positions in these ranking. The lower dotted line shows that SBs 4 and 5 are
at bottom three positions.

Method 1 Method 2 Method 3

SB Mitosis−Cytoplasm SB H−E SB MI

7 0.47 7 0.96 8 3.6

8 0.45 8 0.91 9 3.59

9 0.36 9 0.64 7 3.38

3 0.33 1 0.39 6 3.18

2 0.31 6 0.33 2 3.16

6 0.30 0 0.23 1 3.05

1 0.30 2 0.23 3 3.05

4 0.29 3 0.21 0 2.99

0 0.28 5 0.04 4 2.95

5 0.27 4 0 5 2.83

top position in method one and two is occupied by SB 7 while method three gives the top
position to SB 8 on the basis of highest MI.

At the bottom of the table, there are SBs 4 and 5 for all three rankings. According to
method two ranking, the difference between absorption response of hematoxylin and eosin
in SBs 4 and 5 are almost zero which represent that these two SBs are irrelevant for mitosis
discrimination. Based on these analyses, we ignore SBs 4 and 5 for mitosis discrimination.

Considering the available SBs and their rankings, our selection of SBs contains the
following eight bands: 8, 9, 7, 6, 2, 1, 3, and 0.

4.4.3 Candidate Detection

We perform candidate detection in top three SBs of the three proposed SBs selection
methods. Those three SBs are 7, 8 and 9. In order to evaluate the ability of these SBs to
provide adequate information for detection of mitosis, we also perform separately candidate
detection on SB 1 only as this band covers the whole visible spectrum. The results of
candidate detection step are ranked according to FM and reported in Figure 4.9.

SB 8 has higher FM than SBs 7, 9 and 1 with more TP and less FP. Although SB 1
covers the full spectrum of light, it reported poor results for candidate detection.

On training and evaluation sets, the candidate detection using SB 8 detects 3583 and
1655 candidates, containing 202 and 92 ground truth mitosis from a total 224 and 98
ground truth mitosis, respectively. Among all the detected candidates, there are 3381 and
1563 non-mitosis in the training and evaluation sets, respectively. The candidate detection
step generates a large number of FP and missed 22 and 6 GT mitosis from training and
evaluation sets, respectively.

4.4.4 Candidate Classification

Classification using Region and Patch based MMSF on MSI Evaluation Dataset

It is common practice that object are classified using information (intensity, texture and
morphology) computed from object region. Besides region information, the information
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Figure 4.9: Candidate detection results on selected SBs.

Table 4.3: Patch sizes in pixels and µm on the MSI Dataset.

Patch sizes in pixels Multispectral Microscope (µm)

Patch 110× 110 20.35× 20.35
Patch 100× 100 18.50× 18.50
Patch 90× 90 16.65× 16.65
Patch 80× 80 14.80× 14.80
Patch 70× 70 12.95× 12.95
Patch 60× 60 11.1× 11.1

computed from neighbouring region can also help to improve the classification. In order
to validate this hypothesis and optimal size of patch for MMSF computation, we compute
MMSF on different patch sizes as shown in Table 4.3.

The results of classification using all SBs MMSF of different patch size with L-SVM
classifier are shown in Figure 4.10. MSI training dataset is used for training of L-SVM
classifier and MSI evaluation dataset is used to test the classification accuracy of proposed
framework with MMSF computed on different patch sizes. The classification results empha-
sis that the rate of mitosis detection increases by decreasing patch size and gets maximum
mitosis detection with patch size 80 × 80 and after that reduces the detection of mitosis.
We get maximum TPR 76% on patch 80 × 80 but minimum PPV. While patch 90 × 90
reports maximum FM and PPV. Now onward, we will use patch 90 × 90 for patch based
MMSF for next experiments.

We also evaluate MITM3 framework by comparing segmented region and patch based
MMSF as shown in Table 4.4. In this experiment, MSI training set is used to train the
four selected classifiers and MSI evaluation set is used to test the classification accuracy of
proposed framework with MMSF computed on region and patch. Classification is performed
from MMSF computed both on selected eight SBs and on all the SBs. In case of region based
MMSF computed using all SBs, NL-SVM classifier detects few FP as compared to other
classifiers but few TP as well. While DT classifier detects more mitosis as compared to other
classifiers, but more FP. Overall, L-SVM classifier reports the highest FM 61.69%. In case
of region based MMSF using selected eight SBs, L-SVM detects more mitosis as compared
to other classifiers with more FP. The NL-SVM classifier performs better by detecting few
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Figure 4.10: Classification results using different patch size based MMSF (L-SVM classi-
fier).

FP and report the highest FM 63.74%. Using patch based MMSF, all classifiers report
better results in comparison with region based MMSF. The L-SVM classifier, with MMSF
computed on all SBs and selected eight SBs, reports the highest FM 71.96% and 73.74%,
respectively. As patches carry more information for mitosis discrimination than region, we
select patch 90× 90 based MMSF for classification of candidates in coming experiments.

To consider potential over-fitting of classification, we have also tested our proposed
framework using a training set made up from three out of the five slides and an evaluation set
made up of the remaining two slides. LSVM classifier outperformed DT, MLP and NLSVM
classifiers with TPR (90%), PPV (65%) and F-Measure (75.60%) on all spectral bands and
TPR (84%), PPV (76%) and F-Measure (80%) on selected eight spectral bands. These
results eliminate the potential risk of over-fitting of classification. In addition, by reducing
the number of features, the classification results are of lower quality. This demonstrates
that there is no over-fitting in our framework when using the complete set of features from
selected spectral bands.

Classification using Single SB MMSF on MSI Evaluation Dataset

In this experiment, we evaluate MITM3 framework on MSI evaluation dataset using
computed MMSF from single SB. The classification results achieved with L-SVM classifier
are shown in Figure 4.11. This classification result also supports the result of SBs selection.
We get poor results from SBs 4 and 5 that conclude these SBs are irrelevant for mitosis
detection as also discussed in SBs selection. SB 8 contains more information as compared
to rest of SBs which is also validated from SBs selection 4.2 and candidate detection results
4.9.

Using mRMR ranking of SBs, the different selection of SBs are also tested using all
the classifiers introduced in Section 3.4.6. However, for both clarity and briefness, we only
plot FM curves of classification results with all classifiers in Figure 4.12. Similar results
are obtained in other cases. Figure 4.12 shows that FM increases while we add more SBs
to the set of selected SBs. FM reaches a peak with a set of eight selected SBs, then it
starts decreasing when adding more SBs. The sequence of SBs selection is according to
ranking of MI from mRMR. In case of few SBs MMSF, L-SVM, NL-SVM and DT report
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Table 4.4: Region vs Patch based MITM3 Classification Results on MSI Evaluation
Dataset (GT = 98).

Classifiers TPR PPV FM TPR PPV FM

Region based MMSF
All SBs MMSF Selected 8 SBs MMSF

DT 67% 53% 59.19% 62% 62% 62.24%
MLP 64% 56% 59.72% 60% 66% 63.10%
L-SVM 63% 60% 61.69% 64% 62% 63.32%
NL-SVM 54% 68% 60.23% 59% 69% 63.74%

Patch based MMSF
All SBs MMSF Selected 8 SBs MMSF

DT 61% 71% 65.57% 65% 70% 67.72%
MLP 63% 67% 64.92% 66% 70% 68.06%
L-SVM 69% 75% 71.96% 74% 73% 73.74 %
NL-SVM 55% 77% 64.29% 59% 77% 67.05%

Figure 4.11: Classification results using single SB MMSF with L-SVM classifier.
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Figure 4.12: Plot of FM using SBs selection. Result from using all SBs from left to the
current, e.g. SB 2 result uses SB 8, 9, 7, 6, 2. This order is taken from the mRMR
ranking. First vertical dotted line shows that selecting first two SBs features matches
the previous best result. Second vertical dotted line highlights the overall best result by
selecting features up to SBs 0 which shows 25% increased in FM.

poor classification accuracy while MLP reports higher classification accuracy. As more SBs
are selected L-SVM classifiers start performing better than other classifiers and reached
maximum performance with first eight selected SBs. Figure 4.13 plot the TPR, PPV and
FM of L-SVM classifier.

Classification on MSI Dataset using 5-Fold CV

In this experiment, the assessment of classification performance is made using 5-fold
CV by combining both MSI training and evaluation sets. Classification results are shown
in Table 4.5. In case of all SBs MMSF, L-SVM classifier outperforms the other classifiers
and achieved the highest TPR (59%) and FM (65.74%). Overall, NL-SVM reported higher
PPV (76%) but with few number of detected mitosis as well. In case of selected eight SBs
MMSF, L-SVM classifier has its FM improved thanks to higher TPR and PPV.

Besides SBs selection, we also evaluate our framework on selected MMSF using feature
selection technique as discussed in section 3.4.5. According to results of feature selection,
most of the features are selected from SBs 1, 2, 6, 7, 8 and 9. None of feature is selected
from SBs 4 and 5. A comparison of classification results with all SBs MMSF, selected 8
SBs MMSF and selected MMSF using feature selection technique are shown in Table 4.5.
Overall, L-SVM classifier achieved the highest TPR (65%) and FM (67.75%) with selected
8 SBs MMSF and NL-SVM achieved the highest PPV (80%) with selected MMSF using
feature selection technique.

Classification on MSI Dataset with White SB vs other SBs

To investigate the relative contribution of SBs, we also performed a comparative study of
mitosis classification using spatial features from white SB (SB 1) with MMSF features from
rest of SBs and the achieved results are shown in Table 4.6. It is important to note that the
multispectral bands features (MSBF) excluding white SB outperforms with all classifiers
and reports the highest FM 66.56% with L-SVM. The classification results obtained with
all four classifiers are low using white spectral band features (WSBF). This experiment
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Figure 4.13: Plot of TPR, PPV and FM with L-SVM classifier using the order of SBs
selection. Result from using all SBs from left to the current, e.g. SB 2 result uses SB 8,
9, 7, 6, 2. This order is taken from the mRMR ranking.

Table 4.5: Classification Results on MSI Dataset using 5-Fold CV (GT = 322).

Classifiers TP FP TPR PPV FM

All SBs MMSF
DT 178 95 55% 65% 59.83%
MLP 180 82 56% 69% 61.64%
L-SVM 190 66 59% 74% 65.74%
NL-SVM 171 53 53% 76% 62.64%

Selected eight SBs MMSF
DT 186 81 58% 70% 63.16%
MLP 183 70 57% 72% 63.65%
L-SVM 208 84 65% 71% 67.75%
NL-SVM 173 51 54% 77% 63.37%

Selected MMSF using feature selection technique
DT 178 75 58% 70% 63.16%
MLP 183 78 57% 70% 62.78%
L-SVM 202 82 63% 71% 66.67%
NL-SVM 168 43 54% 80% 63.04%
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Table 4.6: Classification Result on MSI Dataset with SB 1 vs other SBs using 5-Fold CV
(GT = 322).

Classifiers TP FP TPR PPV FM

Using WSBF
DT 136 72 42% 65% 51.32%
MLP 142 51 44% 74% 55.15%
L-SVM 181 166 56% 52% 54.11%
NL-SVM 141 42 44% 77% 55.84%

Using MSBF
DT 175 102 54% 63% 58.43%
MLP 180 80 56% 69% 61.86%
L-SVM 209 97 65% 68% 66.56%
NL-SVM 164 54 51% 75% 60.74%

illustrates that multispectral bands have much more information for mitosis classification
than white band alone.

Classification on MSI Dataset with Blue, Green and Red SBs

In this experiment, we explored the impact of different parts of visible spectrum on
the mitosis classification. The range of visible spectrum is divided into three parts: blue
spectrum (SB 2,3,4), green spectrum (SB 5,6,7) and red spectrum (SB 8,9,0). Each spectrum
MMSF are used for mitosis classification and results are shown in Table 4.7. The red SBs
MMSF reports the highest TPR (67%) with L-SVM classifier. The green SBs MMSF
reports the highest PPV (78%) with NL-SVM classifier, while red SBs MMSF reports the
highest FM (61.19%) with L-SVM classifier. These results illustrate that red SBs have more
information for mitosis classification as compared to green and blue SBs. An important
thing is that green SBs have more information as compared to blue SBs that might be due
to SBs 6 and 7 having higher absorption response for mitosis figures.

Classification with Morphology, Intensity and Texture Features on MSI Dataset

In this experiment, we explored the impact of different features of MMSF on the mitosis
classification. The MMSF contains three different types of features: multispectral intensity
features (MSIF), multispectral texture features (MSTF) and morphology features (MorF).
We also evaluate the combination of intensity and texture feature (MSITF). These feature
set are used for mitosis classification using four classifiers and results are shown in Figure
4.14. The classification results with MorF are worst using all classifiers. The MSTF reports
higher TPR, PPV and FM as compared to MSIF. In case of combining intensity and tex-
ture, MSITF improves the classification results. These results illustrate that texture have
more information for mitosis classification as compared to intensity and morphology. An
important thing is that alone morphological features are worst for mitosis classification.
Mitosis classification improves in case of combining all features.

4.5 Discussion

The results seem to indicate the best scores are achieved using the selected focal plane,
across selected SBs. The proposed focal plane selection is automatic and unsupervised. We
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Table 4.7: Classification Result on MSI Dataset with blue, green and red SBs (GT = 322)
using 5-Fold CV.

Classifiers TP FP TPR PPV FM

Red SBs MMSF
DT 163 96 51% 63% 56.11%
MLP 156 65 48% 71% 57.46%
L-SVM 216 168 67% 56% 61.19%
NL-SVM 159 52 49% 75% 59.66%

Green SBs MMSF
DT 160 74 50% 68% 57.55%
MLP 162 86 50% 65% 56.84%
L-SVM 210 155 65% 58% 61.14%
NL-SVM 155 45 48% 78% 59.39%

Blue SBs MMSF
DT 139 97 43% 59% 49.82%
MLP 149 66 46% 69% 55.49%
L-SVM 173 114 54% 60% 56.81%
NL-SVM 147 50 46% 75% 56.65%

Figure 4.14: Classification results on different subset of MMSF using 5-Fold CV.
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Figure 4.15: Comparison of (MITM3) framework results with MITOS contest result. Ver-
tical dotted line is used to separate the result of contestant’s method and proposed method.

performed selection of focal separately for each SB. However, as the best focal plane is the
same for all of the SBs except SB 4, in future we could use the best focal plane computed
on one SB only. It is not necessary to compute it for each SB separately. In other words,
finding the best focal plane and finding the best SBs are separable problems.

The best FM for candidate detection was achieved on SB 8. The fact that the proposed
framework achieved better results when using SBs 8, 9 and 7 for candidate detection than
when using the full spectrum (SB 1) supports the claim that MSI improves the accuracy
of the framework. As SBs 7, 8 and 9 actually overlap in terms of spectrum; it would be
interesting to apply spectral unmixing between SBs 7, 8 and 9 to see if it can further improve
the results. The results illustrate clearly the improved accuracy resulting of the SB selection
process.

Separate training and evaluation sets of MITOS dataset [1] have been used for training
and evaluation of the proposed framework. The comparison of proposed framework results
with MITOS contest results [150] are shown in Figure 4.15. Malon and Cosatto [113] method
ranked first during the contest with 58.90% FM. Recently, Tripathi et al [170] proposed a
2-sieve model for mitosis detection and reported 85% TPR, 60% PPV and 70.20% FM
without balancing the training set and 82% TPR, 73% PPV and 77.20% FM with training
set balancing. In comparison with MITOS contestants, the proposed framework compute
features on selected SBs that have higher mitosis absorption response as compared to other
tissue components. Using selected SBs MMSF and L-SVM classifier, we managed to achieve
highest FM (73.74%) without balancing training set.

Figure 4.16 illustrates the ROC curve [190] obtained with selected SBs MMSF. Figure
4.17 illustrates the margin curve between the probability predicted for mitosis class and the
highest probability predicted for the non-mitosis class. This clearly demonstrates that our
new proposed framework results in an improved ability to distinguish mitosis from other
objects.

In order to study the MMSF for classification of mitosis figures, we performed SBs selec-
tion by studying which SBs have minimum redundant and maximum relevant information
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Figure 4.16: The ROC curve of classification result using selected SBs MMSF with L-SVM
classifier.

Figure 4.17: The margin curve illustrating the prediction margin between mitosis and non
mitosis class.
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for mitosis classification. Figure 4.12 show the results (FM) of mitosis classification using
a selection of SBs based on mRMR ranking. With top two SBs, we match the best results
achieved during MITOS contest [150]. With top eight SBs, we achieve 73.74% FM which
is a 25% increase over the best know results. Adding more SBs (SBs 4 and 5), only has a
negative impact on the results. This concludes that SBs 4 and 5 are irrelevant for mitosis
discrimination. We also performed candidate classification using each SBs MMSF and re-
sults are shown in Figure 4.11. The results of classification also support the mRMR ranking
of SBs and absorption response of SBs. To illustrate the possible correlation between se-
lected SBs and the staining characteristics of the spectral samples, the shape of H−E plot
in Figure 4.5 validated the proposed selection of SBs.

We also used the analysis of different subsets of multispectral features as complement
to the analysis of performance on MMSF. Specifically, we have shown in experiment that
multispectral data contains more discriminant information for detection of mitosis than
white SB, which covers the full visible spectrum. According to experiment using red, green
and blue SBs MMSF, red SBs (8,9,0) are more helpful for mitosis discrimination as compared
to blue SBs (2,3,4) and green SBs (5,6,7). An important finding is that green SBs have more
information than blue SBs, which might be reason of SB 6 and 7, which contain higher
absorption response for mitosis nuclei as compared to other tissue components. In addition,
multispectral texture features have more information for mitosis classification as compared
to multispectral intensity features.

By comparing patch and regions features computed in MITM3 framework, the result
of mitosis classification is better in patch based features computation. One limitation of
region-based features is the inappropriate segmentation of candidates. The segmentation
method is efficient and robust on nuclei having homogenous regions, while it is not robust
for other type of regions and under segment most candidate regions. The computation
of features on under segmented candidate regions might be reason for poor classification
results. By taking the advantage of neighboring regions of each candidate, the patch based
features carries more discriminate information for mitosis detection.

From the classifiers point of view, NL-SVM classifier always detects very few FP and
results in high PPV. The L-SVM classifier always detects maximum number of mitosis, but
with high FP as well. MLP classifier also shows good results after L-SVM classifier.

The majority of mitosis missed by the proposed framework is significantly different
from the detected mitosis. Missed mitosis has very light nuclear material and a small size
as compared to detected mitosis. In addition, some missed mitosis figures are clustered in
small heterogeneous regions. Furthermore, most of FP is lymphocytes that look very similar
to mitosis figures.

Our proposed framework achieve better performance on Aperio and Multispectral dataset
as compared to Hamamatsu Dataset as shown in Figure 4.18. The important information
is that our frameworks get better classification results on patch based texture features as
compared to region based texture features. Examples of selective mitosis patches for each
datasets are shown in Figure 4.19. In Hamamatsu dataset, texture is blurred, probably
due to bad focus during scan of the slide. This might be reason for poor classification
results on Hamamatsu Dataset. While Aperio and Multispectral patch size is almost sim-
ilar but Hamamatsu patch size is smaller. It might be reason the background texture in
Hamamatsu Dataset is not informative for mitosis classification as in case Aperio and Mul-
tispectral Dataset. Even we do not perform any training set balancing in Multispectral
dataset; we get almost similar classification results in Multispectral Dataset as compared to
Aperio Dataset. It would be interesting to perform training set balancing in Multispectral
to see if it can improve the classification results and give better results than Aperio Dataset.
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Figure 4.18: The proposed framework results on MITOS Aperio, Hamamatsu and Multi-
spectral Datasets.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4.19: Multispectral (first), Aperio (second row) and Hamamatsu (thrid row)
patches of mitosis on which texture features are computed.
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4.6 Conclusion

In this chapter, we have proposed an automated mitosis detection framework for breast
cancer MSI based on morphological & multispectral statistical features. First, focal plane
selection is performed using maximum gradient information. Based on MI of SBs and spec-
tral absorption of different tissue components and stains, SBs were selected for candidate
detection and feature computation. Candidate detection was performed on the SBs that
have relatively higher MI and mitotic absorption spectra. Then, MMSF are computed
for each candidate in eight selected SBs, a highly efficient model for capturing spectral and
spatial features for object discrimination. Multispectral texture features have more informa-
tion for mitosis classification as compared to multispectral intensity features. The proposed
framework outperformed the MITOS contest results with 25% improvement of FM. We
expect to improve mitosis detection performance by selecting the feature set through the
computation of MMSF of candidate regions in selected SBs. In future work, we plan to in-
vestigate unmixing of bands as most SBs have overlapping area, which increase redundancy.
The pre-selection of the focal plane (or volumes) is also of great importance to reduce the
complexity of the dataset and improve the actual performances to reach clinical operational
acceptance expected by our professional consortia.

Due to the high-content nature of the WSI, in order to comply to the same operational
clinical expectations, the image exploration needs dynamic tools, enabling efficient selection
of the microscopic frames (HPF) which need to be analysed. The next chapter is therefore
dedicated to describe an orientable 2-Manifold meshes and dynamic sampling framework for
WSI analysis. This operational framework, inspired by [174], can be used to model the WSI
and select the HPF for CNA and mitosis detection. We therefore propose an extension of
existing data structure to handle duality of meshes simultaneously. In addition, we describe
the dynamic sampling algorithm for CNA evaluation on WSI in MICO project prototype,
in correlation with an existing CNA evaluation module [14], on the dynamically selected
HPF.





Chapter 5

Orientable 2 - Manifold Meshes
and Dynamic Sampling

Résumé du chapitre

Les images de lames entières sont des images à haute contenu. L’amélioration de
l’efficacité de l’analyse est capable de stimuler, dans un proche avenir, un échantillon
supplémentaire à analyser. Le volume de ces images de lames entières devient de plus
en plus important, menant —à notre avis— à un défi lié au gros volume de données
en pathologie numérique. Il est essentiel de soutenir cette tendance menant à une
meilleure qualité des soins de santé aux patients. Garder l’exploration de ce gros
volume de données dans les limites opérationnelles cliniques nécessite de nouveaux
outils d’échantillonnage dynamique efficaces.

Dans ce sens, ce chapitre décrit brièvement des surfaces et des maillages multiples,
en particulier les maillages 2-variété (variété topologique de dimension 2) orienta-
bles. Nous proposons une extension d’ITK [77] pour gérer simultanément des mailles
primales et duales. Nous introduisons la structure de données, une extension de
itk::QuadEdgeMesh, un filtre pour calculer et ajouter à une structure le double d’un
maillage existant, et un adaptateur qui fournit au processus de pipeline le maillage dual
comme s’il était un itk::QuadEdgeMesh natif ITK. La nouvelle structure de données
itk::QuadEdgeMeshWithDual est une extension de la structure itk::QuadEdgeMesh

déjà existante dans ITK [63], qui incluait déjà par défaut la topologie. Elle apporte
en plus la gestion de la géométrie duale. Deux types de maillages primales ont été
particulièrement illustrés : maillages triangulaires / simplex et Voronoi / Delau-
nay. Nous implémentons également une stratégie d’analyse de lames virtuelles pour
l’évaluation de l’atypie nucléaire au moyen d’un échantillonnage dynamique utilisant
les diagrammes de Voronoi.

5.1 Introduction

WSI is a high-content image. Increasing the efficiency of the analysis is able to stimulate, in the
near future, additional sample to be analysed. The volume of these WSI is therefore increasingly
important, leading - in our opinion - to an important big data challenge in future digital pathology.
This trend is essential to be sustained, on the way to an increase quality of patient healthcare.
Keeping the exploration of this big database still in clinical operational limits needs novel efficient
dynamic sampling tools.

In clinical practice, mitosis and nuclear atypia score is determined by analysing the WSI or
ROI. But in digital pathology, detection of mitosis and nuclear atypia is usually done on a HPF
as shown in Figure 5.1(a). There are usually more than thousand HPF per WSI. So, computing
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(a) HPF analysis for mitotic detection/nculei
atypia in WSI

(b) Voronoi diagram computed using analysed
HPF of WSI

Figure 5.1: Switching from HPF to WSI Analysis.)

mitosis and nuclear atypia score on WSI after analysing more than thousand HPFs is a time
consuming and tedious job. A dynamic sampling framework is proposed to select HPF for mitosis
and nuclear atypia detection from Voronoi diagram that is computed using already analysed HPFs
5.1(b).

In this sense, this chapter briefly describes manifold surfaces and meshes, especially orientable
2-manifold mesh. We propose an extension of ITK [77] to handle both primal and dual meshes
simultaneously. We present the data structure, an extension of itk::QuadEdgeMesh, a filter to com-
pute and add to the structure the dual of an existing mesh, and an adaptor which let a downward
pipeline process the dual mesh as if it is a native itk::QuadEdgeMesh. The new data structure,
itk::QuadEdgeMeshWithDual, is an extension of the already existing itk::QuadEdgeMesh [63], which
already included by default the due topology, to handle dual geometry as well. Two types of primal
meshes have been specifically illustrated: triangular / simplex meshes and Voronoi / Delaunay. We
also implement incremental scheme based dynamic sampling algorithm using Voronoi / Delaunay
for real time evaluation of CNA on WSI.

5.2 Surfaces and Meshes

5.2.1 Notions of deformable surfaces

A deformable surface can be characterized by vector of shape parameters q = (q1, ..., qnq
)T

and vector of deformation parameters q = (d1, ..., dnd
)T that controls the application of a global

transformation Td on the surface:

S(q, d) = Td(Sq) : R
nq X R

nd X Ω −→ R3

(q1, ..., qnq
, d1, ..., dnd

) 7−→ Td(Pq(r, x))
(5.1)

where (r,x) denotes a point of surface parameter domain Ω.

A deformable surface can be represented by continuous and discrete models. With discrete
representation, the geometry of surfaces is only known at a finite set of points. Continuous surfaces
representation must be discretised for computational needs but they offer the ability to compute
differential quantities such as surface norm or curvatures almost everywhere on the surface. Most
discrete models are meshes defined as a set of points with some connecting relation that includes
topological constraints.
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5.2.2 Orientable 2-Manifold Mesh: A discrete real-world object

The surfaces of real world objects are oriented 2-manifolds. Those are usually represented
in computer using meshes, which are the sampled, discrete version of the underlying, supposedly
continuous surface. The definition of surface mesh is of combinatorial nature [86], that improves
reasoning about data structure like the same facet cannot appear on both sides of an edge. The
surface mesh is a union C = V ∪ E ∪ F of three disjoint sets together with an incidence relation
where V the vertices, E the edges and F the facets of the mesh. The incident relation on C must
be symmetric. No two elements from the same set V , E, F are incident. There are four additional
conditions: (1) every edge is incident to two vertices, (2) every edge is incident to two facets, (3) for
every incident pair of vertices or facets, there are exactly two edges incident to both and (4) every
vertex and every facets is incident to at least one other element. The neighbourhood of a vertex
are edges and facets which are incident to that vertex. Thus, the neighbourhood decomposes into
disjoint cycles, where each cycle is an alternating sequence of edges and facets.

A surface mesh is 2-manifold if (1) each edge is incident to only one or two facets and (2) the
facets incident to a vertex form a close or an open fan i.e. for each point on a 2-manifold there
exists a neighbourhood that is homeomorphic to the open disc. If every vertex has a closed fan, the
given 2-manifold has no boundary. If a vertex has a open fan, then edges are incident to one facet;
they are called border edges and they form the boundary of the 2-manifold mesh. A non-manifold
example would be two tetrahedra glued together at a single vertex or common edge as shown in
figure 5.2. A mesh is a 2-manifold if and only if the neighbourhood of each vertex decomposes
into a single cycle. The next distinction is between orientable and non-orientable mesh. A surface
mesh is oriented if each cycle around a facet is oriented and if, for each edge, the two cycles of
its two incident facets are oriented in opposite direction. A 2-manifold mesh is orientable if there
exists such an orientation. This new data structure only considers orientable 2-manifolds mesh
representation with and without boundary.

Genus is a topologically invariant property of a surface defined as the largest number of non-
intersecting closed curves that can be drawn on the surface without separating it. Also, it is a
complete invariant in the sense that, if two orientable closed surfaces have the same genus, they
must be topologically equivalent. The genus of a surface is related to the Euler characteristic χ.
For an orientable surface such as a sphere (genus 0) or torus (genus 1), the relationship is

χ = 2 − 2g − b (5.2)

with g being the genus, and b being the number of borders (for non-closed surfaces).
Given an arbitrary polygonal mesh τ of a regular region R ⊂ S of a surface S, we shall denote

by F the number of polygonal faces, by E the number of sides (edges), and by V the number of
vertices of the triangulation. Another way to compute the Euler characteristic is then

F − E + V = χ (5.3)

Special cases of discrete 2-manifolds of interest to us are triangular meshes and simplex meshes
illustrated in figure 5.3.

5.2.3 Special Case A: Triangular Meshes

A common representation of discrete surfaces are triangulation τ for which the surface R ⊂ S
is composed of a set of adjacent triangles Ti, i = 1, ..., n, such that

– ∪n
i=1 Ti = R.

– If Ti ∩ Tj 6= φ, then Ti ∩ Tj is either a common edge of Ti and Tj or a common vertex
of Ti and Tj .

Each triangles of a triangulation shares at least one of its edge with a neighbouring triangle.
Triangles being the simplest polygon that can represent a surface, it has been used intensively

in computer graphics and is still ubiquitous today in surface representations and corresponding
data formats.
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Figure 5.2: Examples of Meshes

Figure 5.3: Triangulation and Simplex Mesh

5.2.4 Special Case B: Simplex Meshes

Simplex meshes are used for discrete surface representation. Simplex meshes have two main
properties, (1) each vertex is adjacent to a fixed number of neighbouring vertices: 2 for a contour
(1-simplex mesh), 3 for a surface (2-simplex mesh) and 4 for tetrahedron (3-simplex mesh, not
treated here); and (2) the topology of a 2-simplex mesh is dual of a triangulation. A k-simplex can
be referred to a (k+ 1)-connected mesh. For instance, a segment of non-zero length is a 1-simplex,
a triangle (polygon) of non-zero area is a 2-simplex and a tetrahedron of non-zero volume is a
3-simplex mesh. Formally, a k-Simplex Mesh (kSM) of R3 is defined as a pair (V (M), N(M)) [40]
where:

V (M) = {Pi}, {i = 1, ..., n}, Pi ǫ R
3 (5.4)

N(M) : {1, ..., n} −→ {1, ..., n}k+1

i 7−→ (N1(i), N2(i), ..., Nk+1(i))
(5.5)

∀i ǫ {1, ..., n}, ∀j ǫ {1, ..., k + 1}, ∀l ǫ {1, ..., k + 1}, l 6= j

Nj(i) 6= i
(5.6)

Nl(i) 6= Nj(i) (5.7)

V (M) is the set of vertices of M and N(M) is the associated connectivity function. Equations
(5.6) and (5.7) present a mesh from exhibiting loops. It is important to make a distinction between
the topological nature of a mesh represented by its connectivity function N(M) and its geometric
nature corresponding to the position of its vertices V(M).

The structure of a simplex mesh is the one of a simply connected graph and does not in itself
constitute a new surface representation. The simplex mesh representation has several desirable
properties that make them well suited for the recovery of geometric models from range data.
The characteristics of simplex mesh for discrete surfaces include generality (represent all types of
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(a) 2D Triangular Mesh with its Dual

(b) 2D Quad Mesh with its Dual

Figure 5.4: Examples of Dual Meshes. (We also sampled the border points.)

orientable surfaces regardless of their genus and end numbers), simplicity (minimum number of
vertices to represents a surface or shape) and adaptability.

5.3 Duality

5.3.1 Notion of Duality

We define A and B to be dual surface meshes i.e., B is dual of A and vice versa, if the following
conditions are satisfied.

– The number of vertices of A is the same as the number of face of B, so that they can be put
into one-to-one correspondence.

– The number of vertices of B is the same as the number of face of A, so that they can also
be put into one-to-one correspondence.

– Each pair of vertices of A that map to adjacent faces in B is joined by an edge which can
be put into correspondence with the common edge of the associated pair of faces of B. The
edges that join adjacent vertices of B can be put into the same correspondence with the
common edges of the associated pairs of elements of A.

Figure 5.4 illustrates the duality of meshes. Each boundary edge of a face in mesh A is put
into correspondence with a half-open edge in mesh B which starts at the corner corresponding to
that face in A as shown in figure 5.4.

5.3.2 Triangulation - Simplex Duality

One of the most interesting way of considering simplex meshes is through duality of trian-
gulations. The structure of a k-simplex mesh is indeed closely related to the structure of a k-
triangulation. A k-triangulation of R

d is composed of p-simplices ( 1 ≤ p ≤ k ) which are the
p-faces of the triangulation. We define a p-face of a k-simplex mesh as being the dual of a (k − p)
simplices of a k-triangulation. For instance, a 1-face of a 2-simplex mesh is an edge and a 2-face of
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Figure 5.5: a) A 1-Simplex mesh and its dual; b) A 2-Simplex mesh and its dual trian-
gulation; c) same as (b). The dual of the triangulation boundary is considered to extract
the simplex mesh.

a 2-simplex mesh is a polygon. In general, a p-face of a k-simplex mesh is a (p− 1)-simplex mesh
and is, therefore, made of q-faces (q < p). A simplex mesh is said to be regular if all p-faces have
the same number of vertices.

Simplex meshes are dual of triangulations. Thus, their connectivity functions N(M) are mapped
by an homeomorphism. Simplex meshes are topologically equivalent to triangulations but not
geometrically equivalent. We can define a topological transformation that associates a k-simplex
mesh to a k-triangulation. This transformation is pictured in figure 5.5 and considers differently
the vertices and edges located at the boundary of the triangulation from those located inside.

5.3.3 Delaunay - Voronoi Duality

Taking a set of points P in R
3, the Delaunay triangulation of P is a specific triangulation of P

that respects the Delaunay criterion stating that no point of P should be inside of the circumference
circle of any triangle of the triangulation of P. Taking a set of points P in R

3, the Voronoi diagram
(or tesselation) is the partition of R3 into n polyhedral regions such as each region T has a set of
points in R

3 which are closer to T than to any other region.
The Voronoi diagram is the dual of the Delaunay triangulation, and the Delaunay triangulation
is the dual structure of the Voronoi diagram. By dual, we mean to draw a line segment between
two Voronoi vertices if their Voronoi polygons have a common edge, or in more mathematical
terminology: there is a natural bijection between the two which reverses the face inclusions. The
duality between Delaunay triangulations and Voronoi diagram is geometric because it depends on
the position of its vertices.

5.4 Implement Duality in ITK

5.4.1 Existing Data Structure for Meshes in ITK

The QuadEdgeMesh data structure in ITK, as depicted in figure 5.6, can handle discrete 2-
manifold surfaces. It actually stores the geometry and both primal and dual topology. It has a
constant complexity local access on modifications. The QuadEdgeMesh data structure is a 3 layers
structure in which the bottom layer is called QuadEdge (QE) layer that represents the topology,
the intermediate layer is called QE Geometric (QEGeom) layer that links topology and geometry
and finally the upper layer is native to ITK called ITK layer. The QE data structure is presented
in detail in [63]. For each edge, there are 4 QEs in the structure as illustrated in figure 5.6(b). It
contains two primal QEs and two dual QEs. For the sake of simplicity, we only draw connection for
one point and one face from QE to QEGeom and QEGeom to ITK layer as shown in figure 5.6(b),
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(a) QuadEdgeMesh structure (b) QuadEdge structure

Figure 5.6: Existing data structures

Table 5.1: QuadEdgeMesh Data Structure

Primal Dual

Geometry Yes No
Topology Yes Yes

conversely both points and faces are equally linked in the data structure. This data structure
only need three operators as Rot, Onext and Splice to implement all other modifications (Euler
operator) and accessibility of the mesh.

Currently, QuadEdgeMesh data structure have topological duality but lack geometrical duality
as represent in table 5.1. There are only few filters available in ITK that transform triangular
mesh to simplex mesh but it is specific not generic to duality. Additionally, in many cases it is of
much interest to have both representations of a discrete surface directly integrated in the structure.
Our contribution includes an extension of data structure that contains both primal and dual mesh
simultaneously, a filter that transforms primal mesh to primal/dual mesh just using single data
structure and an adaptor for displaying dual mesh.

5.4.2 Extension in data structure, QuadEdgeMeshWithDual data struc-
ture

We create a new class itk::QuadEdgeMeshWithDual derived from itk::QuadEdgeMesh. This
class now stores both primal and dual mesh simultaneously. The new design of QuadEdgeMesh-
WithDual data structure contains double reference i.e., one for primal point to dual cell and one
for primal cell to dual point as depicted in figure 5.7(a). For the sake of simplicity, we only draw
connection from QE layer to QEGeom layer and QEGeom layer to ITK layer for one point and
one face instead of both points and both faces as shown in figure 5.7(a). The primal and dual
overlapping structures of connections at QEGeom layer is shown in figure 5.7(b).

Furthermore, this class contains three new containers; DualPointsContainer for dual points,
DualCellsContainer for dual cells and DualEdgeCellsContainer for boundary edges and three new
functions; AddDualPoint for adding dual point, AddDualFace for dual cells (polygon) and Ad-
dDualEdge for boundary edges.

In order to keep the primal-dual references in a single data structure, we have two design
options. In first design, we use to maintain two look up tables; one table for storing references
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(a) QuadEdgeMeshWithDual’s layers (b) QEGeom Layer of Quad-
EdgeMeshWithDual

Figure 5.7: QuadEdgeMeshWithDual data structure

Table 5.2: Summaries of changes in new data structure

Old Data Structure New Data Structure

Changes OriginRef Type Point ID P air < P oint, Cell >

Cell ID P air < Cell, P oint >

Additions Dual Containers
-

DualPointsContainer

DualCellsContainer

DualEdgeCellsContainer

Not yet implemented Dual Data Containers - -

of primal cell to dual point and second table for primal point to dual cell. The advantage of this
approach is backward compatibility of code and test cases. The bad side of this design is to maintain
these tables that having the complexity nlog(n) causing severe degradation of performance in case
of large mesh. In second design, we modify the existing data structure by adding two reference
pair; primal point to dual cell and primal cell to dual point as shown below. With this design, no
look up table is required to maintain the primal and dual references. So it is very efficient approach
but not compatible with respect to previous code and test cases.

typedef GeometricalQuadEdge<

std::pair<PointIdentifier, CellIdentifier>,

std::pair<CellIdentifier, PointIdentifier>,

PrimalDataType,

DualDataType

> QEPrimal;

A summaries of changes in new data structure can be depicted in Table 5.2

5.4.3 Primal to primal/dual filter

In order to transform primal mesh into dual mesh, we also create a new filter called itk::QuadEdg-
eMeshToQuadEdgeMeshWithDualFilter. This filter is templated with QuadEdgeMeshWithDual
data structure. This filter generate dual mesh from primal mesh in three phases; first phase is
computing dual point from primal cells, second phase is computing dual cells from primal points,
and in last phase, primal borders edges are used to generate dual border cell.

We also implement a new adaptor for connecting the dual mesh natively to a downward pipeline.
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5.4.4 Dual point functor

As explained before, there is no geometrical duality between the primal and the dual. Therefore
any formula that computes points that satisfy the criteria of duality detailed in section 5.3.1 can
be used. Not to restrict ourselves to a single option that may limit the application of the filter, a
functor is used to compute the dual point. Depending on the case faced, the user is able to choose
from the already two existing dual point functor, or use his own functor. Except from the classic
ITK macro, typedef definition and constructor/destructor, the functor has only one method where
the process is done.

template< class TInputMesh, class TOutputMesh=TInputMesh>

class DualPointFunctor

{

typedef typename TInputMesh::CellsContainer CellsContainer;

typedef typename CellsContainer::ConstIterator CellIterator;

...

inline OutputPointType

operator() ( const TInputMesh* primalMesh, CellIterator cellIterator )

{...}

};

Barycentre By default, the barycentre of each face is used to compute the location of the dual
point. It has the advantage to be relatively straightforward to compute, to compute a dual point,
which is always located within the face, and to work with any kind of face. The following equation
is used to compute the centre

M =
P1 + P2 + ... + Pn

n
(5.8)

where P1, P2, ..., Pn are the points retrieved from the current cell.

Circumcentre The circumcentre is a particular dual point of triangle mesh. It is the centre of
the circumference circle of a triangle and is determined by the crossing point of the perpendicular
bisectors. As such, it is not always within the face, and more costly to compute. The interest
of this is in the case of the Delaunay triangulation in order to obtain its dual, the corresponding
Voronoi tesselation. The following equation is used to compute the centre

M = P1 +
|P3 − P1|2 [(P2 − P1) × (P3 − P1)] × (P2 − P1) + |P2 − P1|2 [(P3 − P1) × (P2 − P1)] × (P3 − P1)

2 |(P2 − P1) × (P3 − P1)|2

(5.9)

where P1, P2, P3 are the points retrieved from the current triangle, and × the cross product. In
order to simplify the calculus and avoid the use of square roots the edge length are squared and the
coordinates of all the point relative to the first point P1 are used. Due to the floating-point errors
such solution may be unstable in the case of the denominator is close to 0. To prevent such case,
the exact geometric predicate implemented for ITK [122] is used for the cross product calculation.

5.4.5 Dual borders calculation

As shown in figure 5.4, the dual of a primal mesh that contain a border is not a closed mesh.
The dual edge point obtain from the primal border are not included into any faces of the dual.
This representation may be problematic to some other process which may not take into account the
EdgeContainer that store the edges in the QuadEdgeMesh structure, and therefore discard edges
that are not part of any face (i.e. Mesh writing filter). If the dual edge points are not computed,
the effect still occurs but is less important that in the previous case. Another option is to create a
border by connecting the dual edge point, however this solution may lead to some flipped triangles
in specific configuration. The SetBorders() methods allow the user to decide how the filter should
manage the borders (Fig. 5.8). By default the filter will compute the dual edge point and create
a border to the dual mesh.
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(a) Dual without dual edge point (b) Dual with dual edge point (c) Dual with dual edge point bor-
der

Figure 5.8: Dual borders management options

(a) Primal mesh (b) Primal mesh with in-
ner dual cells

(c) Primal and dual mesh (d) Dual mesh

Figure 5.9: Primal to dual mesh

5.5 Validation

5.5.1 Test on planer triangular to simplex mesh with and without holes

We create a square triangulated (primal) mesh as shown in figure 5.9(a). Green color repre-
sents primal points and cells. From this primal mesh, we would try to generate dual mesh. First,
we generate dual points using the BarycentreDualPointFunctor on the primal cells as shown in fig-
ure 5.9(b) with red points. We add these dual points in m_DualPointsContainer of itk::QuadEdge-
MeshWithDual by using AddDualPoint(). Second, we iterate around each primal point to form
dual cells and add dual cell in m_DualCellsContainer of itk::QuadEdgeMeshWithDual by using
AddDualFace(). By doing this we generate all dual cells except boundary cells. Dual cells are
represented by red color in figure 5.9(b).

In order to tackle borders, first we get boundary edges of primal mesh. Select one boundary
edge from list; create a new point (dual) in the middle of edge and add in m_DualPointsContainer
of itk::QuadEdgeMeshWithDual by using AddDualPoint(...).

In figure 5.9(c), red points on border lines represent boundary points of dual mesh. Then, find
the dual point associated with the face on the left and make an edge between these two dual points.
Now iterate along left triangle to form dual cell and add this dual cell into m_DualCellsContainer
of itk::QuadEdgeMeshWithDual by using AddDualFace(). In figure 5.9(c), red cells represent dual
cells. The final dual mesh generated from primal mesh is shown in following figure 5.9(d).

For testing this data structure and filter, we deleted one primal edge and re-run the whole code
for getting dual mesh. The snapshot of re-run is shown in figure 5.10.



5.5. Validation 139

(a) Primal mesh with inside hole (b) Primal with dual mesh (c) Dual mesh with inside hole

Figure 5.10: Primal to dual mesh with inside hole

(a) Delaunay Mesh (b) Delaunay and Voronoi Mesh (c) Voronoi Mesh

Figure 5.11: Delaunay to Voronoi Mesh

5.5.2 Test with Delaunay to Voronoi

Using the PointSetToDelaunayTriangulationFilter [144], we tested this data structure on De-
launay mesh to Voronoi diagram. We input a planer Delaunay mesh into new data structure
as shown in figure 5.11(a) and generate the corresponding Voronoi diagram by using Quad-
EdgeMeshToQuadEdgeMeshWithDualFilter and the CircumcentreDualPointFunctor as shown in
figure 5.11(b). Later, the Voronoi diagram is shown in figure 5.11(c) using new adaptor itk::QuadEd-
geMeshWithDualAdaptor.

5.5.3 Test on non planar mesh

We perform last test on non-planer mesh. A spherical triangulation mesh can be seen in
figure 5.12(a), generated simplex (dual) mesh along with triangulation (primal) mesh can be seen
in figure 5.12(b) and finally, simplex (dual) mesh generated with new adaptor can be seen in
figure 5.12(c).

5.5.4 Usage

An example of code is provided here. The filter QuadEdgeMeshToQuadEdgeMeshWithDual-
Filter is templated on float and 3 dimensions itk::QuadEdgeMeshWithDual.

// Typedef definition

typedef itk::QuadEdgeMeshWithDual< float, 3 > MeshType;
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(a) Non-Planer Triangulation
Mesh

(b) Non-Planer Triangulation and
Simplex Mesh

(c) Non-Planer Simplex Mesh

Figure 5.12: Non-Planer Mesh containing (Triangulation and Simplex Mesh)

typedef itk::QuadEdgeMeshToQuadEdgeMeshWithDualFilter< MeshType >

FillDualFilterType;

typedef itk::QuadEdgeMeshWithDualAdaptor< MeshType > AdaptorType;

typedef itk::VTKPolyDataWriter< MeshType > MeshWriterType;

typedef itk::VTKPolyDataWriter< AdaptorType > DualMeshWriterType;

// Create primal mesh

MeshType::Pointer myPrimalMesh = MeshType::New();

CreateSquareTriangularMesh< MeshType >( myPrimalMesh );

// Create dual mesh

FillDualFilterType::Pointer fillDual = FillDualFilterType::New();

fillDual->SetInput( myPrimalMesh );

fillDual->Update();

AdaptorType* adaptor = new AdaptorType();

adaptor->SetInput( fillDual->GetOutput() );

// Write dual mesh

DualMeshWriterType::Pointer writer = DualMeshWriterType::New();

writer->SetInput( adaptor );

writer->SetFileName( "TestSquareTriangularSimplexMesh.vtk" );

writer->Write();

5.6 Dynamic Sampling for Cyto-Nuclear Atypia Score in
MICO Platform

Automated evaluation of CNA on WSI requires heavy image processing computations. How-
ever, it is not possible to compute the CNA on a ROI within reasonable time. Strategies are
proposed to overcome the processing power limitations. As the histopathology expert doesn’t need
to watch every part of the WSI in order to grade it, MICO aims to understand and reproduce this
expert behavior during automated grading. The strategy used for CNA evaluation to avoid ex-
haustive analysis of WSI is dynamic sampling method based on computational geometry. Initially,
the WSI is observed by an histopathologist, for slide territories to be annotated using Calopix user
interface [4]. Then, the relevant territories are extracted from Calopix information storage system,
for them to be split into several HPF frames. Then, 50 of these frames are randomly selected, and
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CNA scores are computed within the selected frames using MPP with simple and complex shape
objects [14]. These scores are used for the initialization step of a Voronoi diagram [174]. This
geometric construction is aimed at approximating the score within a whole Voronoi cell by the
score of the frame at its centre, which results in a nearest neighbor approximation. Accordingly,
the most undermined areas are at the intersection of multiple cells, i.e., frames containing a vertex.
Next frame is selected based on following two criteria: (1) at least one of its neighboring Voronoi
cells has a high score that controls the convergence of the method towards areas with high score,
and (2) the distance between the new sample and its neighbors is not too short that prevents
oversampling. The final overall CNA grade is the grade of the most atypia frame. This strategy is
shown in Figure 5.13. Figures 5.14 and 5.15 shows the evolution (200 frames, 300 frames and 400
frames) of a Voronoi driven CNA analysis on two WSIs.

5.6.1 Dynamic Sampling Algorithm

At each iteration, given E the frames already computed nuclear atyia in the WSI, we construct
the Voronoi diagram of the centroids of the frames in E denoted V DE . V DE is a collection of
Voronoi cells {vx | x ∈ E}, defined by vx = {p ∈ I | ∀y ∈ I − {x},Dist(p, x) ≤ Dist(p, y)}. The
set of Voronoi vertices, later referred as VE are the vertices of the planar graph representation of
V DE . VE share the modesty to be locally the farthest position from their nearest neighbor in E,
therefore in the case of our algorithm from already computed frames.

The geometric construction of Voronoi diagram V DE is performed by approximating the score
S within a whole Voronoi cell. This score is computed from score of the frame at its center which
results in a nearest neighbor approximation. Accordingly, the most undetermined areas are at the
intersection of multiple cells, i.e., frames containing a vertex from VE . We select our next frame
x out of VE by two criteria; (1) at least one of its neighboring cells has a high score, and (2) the
distance between the new sample and its neighbors is not too short. The first condition controls
the convergence of the algorithm towards areas with high scores and latter condition prevents over
sampling.

The pseudo-code for one iteration of dynamic sampling algorithm is given below:
Input : current frames E, Voronoi diagram V DE , p, d, maxE

Output : updated values E, V DE , maxE

i. Compute VE

ii. Sort VE according to decreasing distance to E

iii. for every x ∈ VE do

iv. if Dist(x,E) ≥ d) then

v. if MaxScore(x) ≥ p×maxE then

vi. E = E ∪ {x}

vii. update V DE

viii. maxE = max(S(x), maxE)

ix. break loop

x. end if

xi. else

xii. break loop

xiii. end if

xiv. end for

5.7 Conclusion

We have proposed an extension of itk::QuadEdgeMesh data structure to handle both primal
and dual meshes, simultaneously. The new data structure, itk::QuadEdgeMeshWithDual, already
include by default the due topology, to handle dual geometry as well. Two types of primal meshes
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Figure 5.13: Dynamic sampling method applied over a ROI for CNA score.
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(a) VD after 200 Iter. (b) VD after 300 Iter. (c) VD after 500 Iter.

(d) ID after 200 Iter. (e) ID after 300 Iter. (f) ID after 500 Iter.

(g) Actual WSI (h) Annotated WSI

Figure 5.14: Dynamic sampling method applied over WSI. The incrementally construction
of Voronoi Diagram (VD) (first row) and its Intensity Map (IM) (second row)of score are
shown. Each cell contains a single frame at its center. The bright color in IM represents
higher CNA score (mean higher degree of malignancy). After 200 iteration, the whole
WSI area is being explored. No area seems favored. After 300 iteration, the algorithm
converges towards a high CNA. After 500 iteration, the sampling is very dense around this
area and remains sparse in others.
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(a) VD after 200 Iter. (b) VD after 300 Iter. (c) VD after 400 Iter.

(d) ID after 200 Iter. (e) ID after 300 Iter. (f) ID after 400 Iter.

(g) Actual WSI (h) Annotated WSI

Figure 5.15: Dynamic sampling method applied over WSI. The incrementally construction
of Voronoi Diagram (VD) (first row) and its Intensity Map (IM) (second row)of score are
shown. Each cell contains a single frame at its center. The bright color in IM represents
higher CNA score (mean higher degree of malignancy). After 200 iteration, the whole
WSI area is being explored. No area seems favored. After 300 iteration, the algorithm
converges towards a high CNA. After 400 iteration, the sampling is very dense around this
area and remains sparse in others.
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have been specifically illustrated: triangular / simplex meshes and Voronoi / Delaunay. We also
test our proposed data structure without and with hole in meshes.

Finally, we modeled WSI as 2-manifold mesh. We have implemented dynamic sampling method
for selection of HPF in WSI. In addition, we have tested dynamic sampling method for the eval-
uation of CNA score on breast cancer WSI in MICO platform. In the medical application, more
specifically analysing WSI, our dynamic sampling method has proved its ability to accurately guide
the finding of the highest levels of CNA in a WSI within an acceptable time frame as well as to
provide a useful, reliable visualization map for the end user. From a more global standpoint, this
dynamic sampling method makes it possible to speed up the analysis, enhance the visualization
and assist the exploration of high-content images.





Chapter 6

Overall Conclusion and Future
Perspectives

Conclusion

L’objectif général de cette thèse portait sur l’étude des défis relatifs aux techniques
robustes d’analyse quantitative d’images en histopathologie. Depuis la dernière décen-
nie, un important volume de recherches a porté sur l’histopathologie, notamment pour
la détection, la segmentation et la classification de noyaux dans différentes modal-
ités d’imagerie. Détection, segmentation et classification de noyaux sont des étapes
importantes pour le diagnostic et la gradation du cancer. La présence de noyaux et
leur aspect sont les signes essentiels pour l’évaluation de la présence de la maladie et
de sa gravité. La détection, la segmentation et la classification des noyaux dans les
images histopathologiques posent de nombreux et difficiles problèmes de vision par or-
dinateur en raison de la forte variabilité dans les images causée par un certain nombre
de facteurs, notamment les différences dans la préparation des lames, l’acquisition de
l’image et la structure complexe des tissus observés.

Nous avons présenté une étude exhaustive de l’état de l’art des méthodes de détec-
tion, de segmentation et de classification des noyaux limitée à deux types de modalités
d’images largement disponibles : hématoxyline et éosine (H&E) d’une part et im-
munohistochimie (IHC) d’autre part. Cette revue de la littérature met en lumière
des domaines de recherche ouverts peu étudiés. Ces domaines de recherche ouverts
présentent des défis uniques qui devraient être abordés par de futures recherches. L’un
de ces défis concerne la disponibilité de jeux de données communs. Les résultats
des études actuellles sont basés sur leurs propres jeux de données qui ne sont pas
publics. Nous pensons qu’il n’est pas satisfaisant ni même possible d’évaluer et de
comparer numériquement les différentes études uniquement en fonction de leurs ré-
sultats puisqu’aucune de ces études n’ont utilisé des jeux de données communs, des
méthodes d’évaluation identiques ou encore des indicateurs de performance similaires.
Pour comparer les résultats numériques de chaque étude, il est nécessaire de disposer
de jeux de données de référence publics pouvant être utilisés par tous. Ces jeux de
données doivent être validés médicalement, constitués d’échantillons pris à partir d’un
grand nombre de patients et annotés par différents médecins, comme l’a fait le projet
MICO avec le jeu de données du concours MITOS lors de la conférence ICPR 2012,
ou encore avec le jeu de données du concours MITOS & ATYPIA pour la conférence
ICPR 2014. Un tel effort rendrait possible la comparaison numérique des résultats
obtenus par différentes études et l’identification de leurs caractéristiques distinctives.

Parmi les différentes études, la détection et la classification automatique de noyaux
est une tâche récurrente, particulièrement difficile pour les images histopathologiques.
Le compte du nombre de mitoses est un paramtre pronostique important pour la gra-
dation du cancer, en particulier dans le cas de la gradation du cancer du sein. Nous
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avons proposé trois systèmes de détection automatique de mitoses pour différents types
de scanners et un microscope multispectral, à savoir les systèmes TMC et ITM2C pour
les images couleur et le système MITM3 pour les images multispectrales. Ces système
effectuent la détection et la segmentation de candidats, le calcul et la sélection de de-
scripteurs, la classification et enfin la gestion de l’asymétrie des jeux de données. Les
principales contributions apportées par les systèmes TMC et ITM2C sont au nombre de
sept. Tout d’abord, nous avons analysé de manière exhaustive les informations statis-
tiques et morphologiques concernant les noyaux mitotiques dans différents canaux de
couleurs de plusieurs modèles de couleurs qui améliorent la détection de mitoses dans
les images couleur produites par les scanners Aperio et Hamamatsu. Deuxièmement,
nous avons effectué une étude approfondie sur les descripteurs calculés au niveau de
la région englobant une mitose ou du seul noyau segmenté d’une mitose pour le classe-
ment des mitoses. Troisièmement, nous avons étudié des méthodes de suréchantil-
lonnage pour augmenter le nombre d’instances de la classe minoritaire (mitose) par
interpolation entre plusieurs exemples proches de la classe minoritaire, ce qui rend la
classification plus robuste. Quatrièmement, nous avons effectué une étude approfondie
sur de nombreux classifieurs pour proposer celui qui est le meilleur pour la classifi-
cation des mitoses. Cinquièmement, nous avons évalué notre système sur les jeux
de données du concours MITOS organisé à l’occasion de la conférence internationale
ICPR 2012. Notre système a été classé en deuxième position sur 17 finalistes pour
les jeux de données Aperio et Hamamatsu. Sixièmement, nous avons proposé une
stratégie efficace et générique pour explorer les grandes images que sont les images de
lame entière en combinant des outils de géométrie algorithmique avec une mesure de
signal local de pertinence dans le cadre d’un échantillonnage dynamique. Septième-
ment, nous avons également procédé à l’évaluation de ces systèmes dans le prototype
de plateforme du projet MICO.

Nous avons également proposé le système MITM3 pour les données multispectrales.
Les principales contributions de ce système sont au nombre de six. Tout d’abord,
nous avons proposé une sélection automatique non supervisée du meilleur plan focal
des données multispectrales. Deuxièmement, nous avons proposé trois méthodes dif-
férentes pour la sélection des bandes spectrales, à savoir l’absorption spectrale relative
des différents composants des tissus, l’absorption spectrale des colorants hématoxyline
et éosine et la technique de mRMR. Troisièmement, nous avons calculé les descrip-
teurs spatiaux multispectraux comprenant des informations au niveau du pixel, de la
texture et de la morphologie pour les bandes spectrales sélectionnées qui exploitent
l’information discriminante pour la classification des mitoses dans les images multi-
spectrales. Quatrièmement, nous avons effectué une étude approfondie sur les descrip-
teurs calculés au niveau de la région englobant une mitose ou du seul noyau segmenté
d’une mitose pour la classification des mitoses. Cinquièmement, nous avons effec-
tué une étude approfondie sur de nombreux classifieurs pour proposer celui qui est le
meilleur pour la classification des mitoses. Sixièmement, nous avons évalué notre sys-
tème sur le jeu de données multispectrales du concours MITOS et nous avons réussi
à obtenir le F-score le plus élevé.

Parmi les résultats du concours MITOS sur les trois types de jeux de données, notre
système pour les données multispectrales a amélioré de manière significative les résul-
tats du concours selon le F-score. En ce qui concerne les jeux de données des images
couleur des scanners Aperio et Hamamatsu, nous avons réussi à atteindre la deuxième
place du concours. Nos systèmes parviennent à atteindre le même niveau de préci-
sion dans la détection des mitoses sur les images du scanner Aperio et sur les images
multispectrales.

Par ailleurs, nous avons également proposé une extension de la structure de don-
nées itk::QuadEdgeMesh capable de gérer à la fois les maillages primales et duales.
La nouvelle structure de données, itk::QuadEdgeMeshWithDual, apporte en plus la
gestion de la géométrie duale. Deux types de maillages primales ont été spécialement
illustrés : maillages triangulaires / simplex et Voronoi / Delaunay.
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Finalement, nous avons proposé une plate-forme innovante dans laquelle une méth-
ode d’échantillonnage dynamique permet d’effectuer rapidement l’analyse d’une im-
age de lame entière. Nous avons testé la méthode d’échantillonnage dynamique pour
l’évaluation du score de l’atypie nucléaire du cancer du sein sur des images de lames
entières. Notre méthode d’échantillonnage dynamique a prouvé sa capacité à détecter
et à mesurer précisément les plus hauts niveaux d’atypie nucléaire dans une image de
lame entière dans un laps de temps acceptable ainsi que de fournir une carte de visu-
alisation fiable et utile pour l’utilisateur. D’un point de vue plus global, cette méthode
d’échantillonnage dynamique permet d’accélérer l’analyse, d’améliorer la visualisation
et d’aider l’exploration de très grandes images.

Perspectives

Dans de futurs travaux, nous envisageons d’optimiser la détection de candidats en
réduisant le nombre initial de candidats pour la classification des mitoses. Une voie
possible pour atteindre cet objectif est la sélection automatique des zones tumorales afin
de circonscrire la détection des mitoses uniquement aux zones contenant des cellules
tumorales. Nous prévoyons également d’étudier le calcul d’autres modèles de descrip-
teurs pour la détection de mitoses. Dans la présente étude, nous avons analysé en
détail les descripteurs calculés au niveau du seul noyau segmenté d’une mitose ainsi
que des descripteurs basés sur la taille de la région englobant une mitose pour la clas-
sification des mitoses. Il serait intéressant de calculer les caractéristiques de texture
séparément à l’intérieur des noyaux segmentés et dans la région voisine entourant les
noyaux segmentés afin d’étudier si cela permet d’améliorer les résultats de la classifi-
cation.

Il y a un important degré de déséquilibre dans le jeu d’apprentissage, les instances de
la classe mitose étant très peu nombreuses par rapport aux exemples de non-mitoses.
Dans ce cas, la frontière entre les classes apprise par les algorithmes d’apprentissage
est biaisée vers la classe majoritaire, ce qui a pour effet d’obtenir des taux élevés de
faux négatifs et de faux positifs. Ceci est dû à la présence dans les images histopathologiques
de nombreux types de noyaux et d’autres objets qui ressemblent beaucoup aux mitoses.
Une manière possible d’améliorer la précision de la classification est de faire de la
classification des mitoses un problème multi-classes.

En ce qui concerne l’imagerie multispectrale, nous prévoyons d’étudier la déconvo-
lution de bandes spectrales car la plupart des bandes spectrales du jeu de données
multispectrales ont des zones de chevauchement, ce qui augmente la redondance. La
pré-sélection du plan focal est également d’une grande importance pour réduire la com-
plexité du jeu de données et améliorer la performance en détection de mitoses afin de
parvenir à atteindre un niveau de qualité acceptable.

6.1 Conclusion

The overarching goal of this dissertation is to investigate challenges in robust quantitative image
analysis techniques in histopathology. Since last decade, a significant amount of research has been
done in the field of histopathology, focusing on nuclei detection, segmentation and classification in
different image modalities. Nuclei detection, segmentation and classification are important steps
in cancer diagnosis and grading. The presence of nuclei and their aspect are critical signs for
evaluating the existence of disease and its severity. In routinely stained histopathological images,
detection, segmentation and classification of nuclei pose a difficult computer vision problem, due
to high variability in images. This issue is caused by a number of factors, including differences in
slide preparation, image acquisition and complex tissue structure.

We have presented a comprehensive review on state-of-the-art methodologies in nuclei detec-
tion, segmentation and classification restricted to two widely available types of image modalities:
H&E and IHC. This literature review highlights open research areas with few existing studies.
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These open research areas are characterized by unique challenges, which should be covered in
future research. Evaluating and comparing the existing studies is objectively impossible to do
solely based on their reported results, as they used different (often unbalanced, inconsistent or
even medically irrelevant) datasets, evaluation methods and performance metrics. For a relevant
numerical comparison of the studies, it is definitely necessary to develop representative, referenced
benchmark datasets. These datasets should be medically validated and consist of samples that are
taken from a large number of patients and annotated by different pathologists - like our MICO
project did with MITOS and will soon do with MITOS & ATYPIA @ ICPR. Such an effort will
make possible the numerical comparison of the results obtained by different studies and to identify
the distinguishing features.

This methodology review also highlights an important gap to be fulfilled by all scientists in order
to be able to reliably go to the next generation of important challenges, related to the “digital”
exploration and the understanding of the WSI as an essential high-content imaging diagnostic
biomarker and prognosis support. Consolidating, in the next few years these approaches with
mining structured big data and analytics as with genomics and molecular imaging technologies,
will certainly have the potential to lead to the next generation of healthcare technologies.

Among the various studies, automated nuclei detection and classification is a recurring task,
particularly difficult on histopathology images. Mitosis count is an important prognostic parameter
for cancer grading particularly in breast cancer grading. Automated mitosis detection frameworks
have been proposed for different types of scanners and multispectral microscope datasets. We have
proposed three frameworks; TMC and ITM2C frameworks for color datasets and MITM3 frame-
work for multispectral dataset. These frameworks consist of candidate detection and segmentation,
features computation and selection, classification and handling unbalanced training datasets. The
main contributions in TMC and ITM2C frameworks are seven fold. First, we have comprehen-
sively analysed the statistical and morphological information concerning mitotic nuclei on different
color channels of various color models that improve the mitosis detection in color datasets (Ape-
rio and Hamamatsu scanners). Second, we have performed a comprehensive study on region and
patch based features for mitosis classification. Third, we have studied oversampling methods to
increase the number of instances of the minority class (mitosis) by interpolating between several
minority class examples that lie together, which makes classification more robust. Fourth, we have
performed an extensive investigation of classifiers and inference of the best one for mitosis classi-
fication. Fifth, we have evaluated our framework on MITOS datasets during ICPR 2012 contest
and ranked second from 17 finalists on Aperio and Hamamatsu datasets. Sixth, we have proposed
an efficient and generic strategy to explore large images like WSI by combining computational ge-
ometry tools with a local signal measure of relevance in a dynamic sampling framework. Seventh,
we have also performed real time evaluations of these frameworks in MICO platform prototyping.

We have also proposed an automated MITM3 framework for multispectral dataset. The main
contributions of this framework are six fold. First, we have proposed an automatic and unsu-
pervised focal plane selection for multispectral dataset. Second, we have proposed three different
methods for spectral bands selection including relative spectral absorption of different tissue com-
ponents, spectral absorption of H&E stains and mRMR technique. Third, we have computed
multispectral spatial features containing pixel, texture and morphological information on selected
spectral bands which leverage discriminant information for mitosis classification on multispectral
dataset. Fourth, we have performed a comprehensive study on region and patch based features
for mitosis classification. Fifth, we have performed an extensive investigation of classifiers and
inference of the best one for mitosis classification. Sixth, we have evaluated this framework on
MITOS multispectral dataset and have managed to achieve the highest FM.

Compared to MITOS contest results on three types of datasets, our multispectral framework
have outperformed significantly the results of the contest according to FM, while for the color
framework for Aperio and Hamamatsu datasets, we managed to rank in second position of the
contest. Our frameworks manage to reach the same level of accuracy in mitosis detection on
Aperio and Multispectral datasets.

Furthermore, we have also proposed an extension of itk::QuadEdgeMesh data structure to han-
dle both primal and dual meshes, simultaneously. The new data structure, itk::QuadEdgeMeshWithDual,
already include by default the due topology, to handle dual geometry as well. Two types of primal
meshes have been specifically illustrated: triangular / simplex meshes and Voronoi / Delaunay.
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Finally, we proposed an innovative platform in which dynamic sampling method performed fast
analysis of WSI. We tested dynamic sampling method for real time evaluation of CNA score on
breast cancer WSI in MICO platform. In the medical application, more specifically analysing WSI,
our dynamic sampling method has proved its ability to accurately find and measure the highest
levels of CNA in a WSI within an acceptable time frame as well as to provide a useful, reliable
visualization map for the end user. From a more global standpoint, this dynamic sampling method
makes it possible to speed up the analysis, enhance the visualization and assist the exploration of
high-content images.

6.2 Future Perspectives

In future work, we plan to optimize the candidate detection by reducing the number of initial
candidates for mitosis classification. One possible way is the automated selection of tumor areas
that restrict the detection of mitosis to areas containing tumor cells only and avoid potentially
misleading results from analysis of stromal regions. We plan to investigate other model-based
features computation for mitosis detection. In the current study, we comprehensively analysed
region based features and also different patch size based features for mitosis classification. It
would be interesting to compute separate texture features for segmented regions (in region) and
neighboring region (out region) to see if it can further improve the classification results.

There is a high degree of imbalance in the training set, mitotic instances being very few in
number as compared to the non-mitotic instances. In this case, the class boundary learned by the
standard machine learning algorithms is biased towards the majority class resulting in high false
negative and false positive rates. It might be reasonable to consider many types of nuclei and other
mitosis-like objects in the classification, as it is practically the case in histopathological images. A
possible way to improve this classification accuracy is to migrate the mitosis classification into a
multi-class problem.

Specifically for multispectral imaging, we plan to investigate unmixing of SBs as most SBs
have overlapping area, which increase redundancy. The pre-selection of the focal plane is also of
great importance to reduce the complexity of the dataset and improve the actual performance to
reach clinical operational acceptance expected by our professional consortia.





Appendix A

Glossary

Adenocarcinoma : A carcinoma originating in glandular tissue.
Aspirative cytology : Cytology specimens extracted via syringe.
Atypia : Cells or tissue displaying some characteristics of a malignancy, but not considered

either malignant or benign. The diagnosis of atypia generally requires a more comprehensive (and
possibly invasive) follow-up to determine the true diagnosis.

Benign : A condition which will not metastasize and is not harmful in and of itself.
Brightfield microscopy : Microscopy techniques using a broad spectrum light source to

visualize the specimen.
Carcinoma : A cancer of the epithelium.
Chromatin : Nuclear material that is readily stained, consisting of the nucleic acids and

associated proteins.
Confocal : Confocal microscopy images different focal planes through the specimen.
Counterstain : A stain used as contrast to another, generally more specific, stain.
Cytology : The study of cells at a microscopic level, generally via a light microscopy technique.
Cytopathology : The study of diseased cells at the microscopic level.
Densitometry : Measurements related to the optical density of a sample.
Ductal carcinoma : Carcinoma originating in ductal structures.
Eosin : A pink-staining acidic dye that stains membranes and fibers.
Epithelium : The internal and external lining of cavities within the body; also the external

covering (skin).
Feulgen : A stain specific to DNA which lends a purple color.
Fibroadenosis : A benign cause of many breast lumps.
Fine needle aspiration : A procedure using a small needle inserted into the lesion and

drawing a small amount of cellular material into a syringe; a form of aspirative cytology.
Fluorescence imagery : Fluorescent dyes are attached to antibodies specific to some fea-

ture of interest (e.g., certain proteins) and imaged by exciting the fluorescence of the dyes with
appropriate incident light. This method can very specifically target certain molecular attributes
of a biological specimen.

Gleason grading : A grading for prostate cancer, characterizing the tumor into one of 5
categories based on tumor differentiation.

Hematoxylin : A blue-staining basic dye that stains genetic material; this is mainly seen
in nuclear material, although some components of cytoplasmic and extracellular material is also
stained.

Histology : The study of tissue at a microscopic level, generally via a light microscopy
technique.

Histopathology : The study of diseased tissue at the microscopic level.
Hyperchromasia : An overall increase in staining intensity.
Hyperplasia : Abnormalities in the characteristics of cells and tissues, generally including an

increase in cellularity and/or mitosis; often used interchangeably with dysplasia.
Immunostain : Immunostains use antibodies to specifically target molecules of interest,

similar to fluorescence imaging, but use standard dyes for viewing with light microscopy.
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in situ : Within normal boundaries, not invading surrounding tissues.
in vivo : Living tissue in its natural environment.
Karyometry : Nuclear characteristics, generally texture.
Lobular carcinoma : A type of adenocarcinoma.
Malignant : A condition which will eventually lead to death if untreated. Malignant condi-

tions tend to metastasize, grow uncontrollably, and lack proper tissue differentiation.
Metastasis : The spread of cancer from the originating tissue to other parts of the body.
Microarray : Tissue microarrays align many (hundreds or thousands) of tissue core samples

on a single slide; this allows for simultaneous analysis of all samples and is commonly used in
high-throughput operations.

Nucleolus : A small, round sub-organelle within the cell nucleus.
Pathology : The study of disease, with emphasis on disease structure and the effects on the

body as a whole.
Pleomorphic : Containing more than one stage of the life cycle.
Premalignancy : A diseased state that, while not considered cancerous, will progress to

cancer if left untreated.
Stroma : Connective tissue.
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