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1 General introduction 

1.1 Colloidal semiconductor quantum dots (QDs) 

 

Over the last 30 years, following the pioneering work of Efros, Emikov, Brus and Henglein great 

advancements have been achieved in the field of colloidal nanocrystals (NCs) synthesis and engineering.1-4 

While early studies focused primarily on CdS and CdSe based NCs and the study of their size-dependent 

optical properties, the field has now expanded to include various classes of materials with different types of 

core, shell or passivation chemistry for manifold applications, spanning form biology, optoelectronics to 

solar and thermal energy conversion.5 Fluorescent QDs are mainly characterized by their unique optical 

properties, which make them appealing alternatives to conventional organic dyes in a number of 

applications, in particular in biological labeling and signaling.6 Organic dyes are characterized by asymmetric 

emission spectra and narrow absorption spectra, which means that they can only be excited within a 

narrow window of wavelengths. QDs instead exhibit narrow, symmetrical and tunable emission spectra 

according to their size and composition. This allows a closer spacing of different probes without substantial 

spectral overlap. Furthermore, they also have broad absorption spectra, allowing the excitation of all colors 

of QDs simultaneously with a single excitation light source and the minimization of sample auto-

fluorescence of biological background by choosing an appropriate excitation wavelength.7, 8 Moreover, they 

exhibit excellent photostability compared to most organic dyes that suffer of photobleaching,6 as evidenced 

in Figure 1-1. For all these reasons, a part of our work will be focus on the synthesis and functionalization of 

QDs in order to replace traditional luminescent probes in biological detection.  

Another interesting asset of the QDs is their large surface area giving the possibility to introduce numerous 

additional functionalities by surface functionalization. The facile linking of multiple functionalities enables 

the production of multimodal diagnostic and therapeutic agents, including in addition to the possibility of 

fluorescence detection for example active species and their controlled release, contrast agents for other 

imaging modes like MRI, molecules for tumor targeting, cell penetration, and so on. These later advantages 

make QDs ideal candidates for biological sensing and imaging as demonstrated in different studies.9-11 

For biological purpose, the efforts of researchers to develop QD as probe has focused in particular on the 

synthesis, solubilization and bioconjugation of highly luminescent and stable QDs, and this part we will 

discuss in section 1.2. 
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Figure 1-1. Images taken from Ref.6, 10, representing the unique photo-physical properties of QD probes. A) Narrow size-tunable 
light emission profile enables precise control over the probe color by varying the nanoparticles size. B) Photobleaching curves 
showing that QDs are several thousand time more photostable than organic dyes under the same condition, whereas their quick 
photobleaching limits accurate quantitative analysis. C) Comparison of mouse skin and QD emission spectra, demonstrating the 
capability of absorbing high-energy (UV-blue) light of QDs allow efficient separation of the QD signal over fluorescent background.  

 

1.1.1 Definition and photophysical properties of QDs 

 

Colloidal semiconductor NCs or QDs are crystalline particles of dimensions between 1 and 10 nm, i.e. in 

most cases significantly smaller than the exciton Bohr diameters of the associated semiconductors. In this 

case, the electron-hole pair (exciton) is “squeezed” in the particle and the optical properties of the QDs are 

depending on their size. The biggest particles experience the lowest spatial confinement hence the longest 

emission wavelength and vice versa. Beside the influence on the band gap, which is a function of the QD 

diameter, the quantum confinement effect also leads to the discretization of the electron and hole energy 

levels (Figure 1-2). The relative positions of the highest occupied state and lowest unoccupied state, 

equivalent to the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO) for molecular dyes, and corresponding to the top of the valence band and the bottom of the 

conduction band of the bulk material, are determined by the size of the QD.  
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Figure 1-2. Quantum confinement effect: a) size-dependent emission of CdSe QDs under UV light b) Discretization of the valence 
and conduction bands (VB, CB) into discrete energy levels. Absorption (Abs.) takes place of photons with larger energy than the 
band gap energy (Eg), fluorescence emission (Em.) occurs from the lowest excited level to the highest ground state level.12 

 

One of the challenges in QD synthesis is that their optical properties can be dramatically affected by surface 

trap sites. Unpassivated surface atoms can act as recombination centers for photoexcited carriers and 

diminish or even extinct fluorescence emission. In order to passivate them and increase the fluorescence 

intensity of the QDs, the most widespread approach consists in coating them with shells of semiconductors 

of different nature (Figure 1-3).13 In such core/shell NCs the emissive core is surrounded by a shell of a few 

atomic layers of a larger band gap semiconductor. The shell greatly improves the photoluminescence 

quantum yield (PL QY) as well as the photo- and chemical stability of the QDs, while the size of the core 

determines the emission wavelength of the QD.  

 

 

Figure 1-3. Illustration of core, core/shell and core/shell/shell QDs.14 

 

In this case, the band alignment of the core and shell materials is chosen in a way that the conduction band 

edge of the shell (the higher band gap material) is of higher energy than that the core (the lower band gap 

material), and the valence band edge of the shell has lower energy than that the core (type I alignment). 

Consequently, both electrons and holes are confined in the core. CdSe/ZnS and InP/ZnS core/shell NCs are 

typical examples. There are also other core/shell systems, in which one of the carriers is localized in the 
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core and the other one in the shell, namely in cases of staggered (type II) band alignment. CdSe/ZnTe and 

InP/CdSe are examples where the electron (hole) is confined in the core and the opposite carrier in the 

shell.15 Interestingly, the resulting band gap of such type II systems is narrower than the gap of each of the 

constituting materials. On the other hand, generally an additional outer shell of a large band gap material is 

required as the carrier localized in the shell can easily be trapped on surface states. Such core/shell/shell 

systems find also widespread use in type I systems, the most intensively investigated being CdSe/CdS/ZnS. 

In this case, the intermediate shell serves as “lattice adapter”, i.e. its purpose is to reduce crystallographic 

strain at the interface between the core and outer shell material. Even though lattice mismatch is less a 

problem in 0D QDs than in 2D quantum wells, its value should not exceed 10% (like in CdSe/ZnS) and ideally 

is below 5% (like in CdSe/CdS and in CdS/ZnS).  

Nowadays it is possible to synthesize QDs that emit within the whole visible and NIR spectral regions by 

tuning the size and/or the composition of the particle. Figure 1-4 shows the emission ranges reported for 

different types of QDs. Nonetheless, to date most of the studies focus on cadmium chalcogenide NCs like 

CdSe, whose intrinsic toxicity restricts their wide-scale application. Indium phosphide (InP) is one of the 

most promising alternatives.16 It is a III-V semiconductor (bulk value of Eg: 1.35 eV) with a Bohr exciton 

radius of ∼ 10 nm.17 Its photoluminescence can be tuned from blue to the near infrared by varying the size 

of the NCs and the very limited number of toxicological studies indicate a much lower intrinsic toxicity 

compared with CdSe.18, 19 

 

Figure 1-4. PL emission ranges for the most studied types of semiconductor nanocrystals.20 

 

Although the optical properties of InP-based NCs in terms of PL line width and QY are (still) inferior to the 

best reported Cd-containing QDs, significant progress in their chemical synthesis has been made in the past 

decade. While InP core NCs have a QY of less than 1%, values above 50% have been reported for InP/ZnS 

core@shell NCs.21, 22 Our team reported the single-step synthesis of InPZnS alloy NCs reaching a PL QY 

>60%.23, 24 Using Zn in the synthesis of the core InP NCs, leading to InZnP alloy QDs, also enables to greatly 
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enhance the emission efficacy.25 The best value reported today (85%) has been obtained by using a thin 

GaP interfacial layer between the InZnP core and the ZnS shell.26 

 

1.2 QDs in biotechnology 

1.2.1 Surface functionalization  

 

The use of semiconductor QDs as biological fluorescents probes requires that they (a) are water soluble, (b) 

present long-term colloidal stability without aggregation and precipitation, (c) offer reactive groups on their 

surface, and (d) maintain their photophysical properties when transferred into aqueous buffer. NC surface 

functionalization is a process consisting in the introduction of amphiphilic or hydrophilic organic molecules 

or macromolecules, peptides or other bioactive molecules on the surface of the QDs in order to induce 

water solubility, prevent their aggregation, enhance their resistance to oxidation, reduce their toxicity, 

optimize their behavior (e.g. circulation, uptake) in biological environment and allow their link with specific 

targets.27 

High quality QDs are mostly synthesized in non-polar organic solvents; their hydrophobic surface must be 

converted to a hydrophilic one in order to solubilize them in aqueous buffer. This solubilization procedure 

of QDs in aqueous media while maintaining their emission properties and achieving high colloidal stability is 

a great challenge. It can be achieved by either (a) ligand exchange, a process primarily driven by mass-

action in which the native hydrophobic ligand is substituted with bifunctional ligands or by (b) 

encapsulation of the original hydrophobic QD within a heterofunctional amphiphilic coating. In the latter 

case the strategy is based on compounds capable of assembling with the QD surface via hydrophobic 

interactions and bearing amphiphilic moieties leading to the desired change of solubility (Figure 1-5). The 

hydrophobic domain allows for the encapsulation of QDs by a hydrophobic cavity whereas the hydrophilic 

domain enables the dispersion of QDs in aqueous solution. The coating molecules include phospholipids, 

bock copolymer, liposomes and appropriate precursors for generating a silica shell around the particles.10, 28 

This solubilization strategy can easily be extended to insert additional functionalities on the QD surface. 

Another appealing feature of the encapsulation strategy is the conservation of the PL QY as the initial 

surface state is not modified.  
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Figure 1-5. Scheme illustrating different strategies for the water solubilization of hydrophobic QDs. A-F: Ligand-exchange 
procedures; G-H: encapsulation procedures.10 

 

In contrast, ligand exchange with bifunctional molecules containing an anchoring site for the QD surface 

and a hydrophilic site assuring dispersibility of the QDs in aqueous media is a method that radically changes 

the surface of the NCs. By consequence this strategy bears a high risk of diminishing the PL QY through the 

generation of surface trap states. These can trap charge carriers despite a protective inorganic shell 

because the latter is generally only a few atomic layers thick and therefore the escape of the carriers to 

surface states, e.g. via tunnelling, is still possible. On the other hand, the ligand exchange strategy has a 

strong potential for providing QDs that are smaller in size than the encapsulation technique, which can be 

of importance for some applications (see below). It also offers the possibility of coupling biological 

entities.29 

Most procedures for ligand exchange use bifunctional thiol-based molecules for the incubation with the 

hydrophobic QDs, which are usually coated with fatty acid or trioctylphosphine oxide (TOPO) ligands.30 

Thiols can strongly interact with ZnS, which is the most widely applied shell material for QDs. Common 

examples of such ligands are thioalkyl acids containing a carboxylate terminal group such as mercaptoacetic 

acid (MAA), mercaptopropionic acid (MPA), or mercaptoundecanoic acid (MUA). In their thiolate form 

these molecules interact strongly with the ZnS surface of the QDs, exposing the polar carboxylate group to 

the surrounding solution and imparting aqueous solubility (Figure 1-6).31 
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Figure 1-6. Commonly used thioalkyl acid ligands for aqueous solubilization of QDs: mercaptoacetic acid (MAA), mercaptopropionic 
acid (MPA), mercaptohexanoic acid (MHA), mercaptoundecanoic acid (MUA), dihydrolipoic acid (DHLA), mercaptosuccinic acid 
(MSA), mercapthoethane sulfonate (MES) and DHLA appended with poly(ethylene glycol) (PEG).31 

 

In summary, two major methods for engineering the surface chemistry exist in view of the use of QDs in 

biological media. Encapsulation approaches are very efficient but they imply a large increase in the 

hydrodynamic diameter of the QDs, from less than 10 nm to 15-25 nm in most cases. Maintaining a small 

hydrodynamic diameter is crucial for some biological applications. This is particularly true for those relying 

on Förster resonance energy transfer (FRET) because the FRET efficiency is strongly dependent on the 

distance between the donor and the acceptor (cf. 1.2.3.1). Therefore, we focused in this work on the 

aqueous phase transfer of QDs by means of ligand exchange with small zwitteronic molecules that offer 

several advantages for bioapplications (cf. Chapter 2).  
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1.2.2 Bioconjugation strategies 

 

As discussed in section 1.1, most organic dyes generally used as fluorescent probes suffer from 

photobleaching, a low brightness above background fluorescence, a wide overlap of the absorption and the 

emission spectra of different dye molecules, and so on.7, 32 These shortcomings severely limit the use of 

organic dyes for detection of rare events or multiplexed imaging and analysis. In contrast, QDs are 

characterized by bright, stable fluorescence and, hence, are particularly interesting as tools for biological 

imaging and diagnostics.33 Moreover, all visible and NIR emitting QDs can be excited at the same 

wavelength in the UV/blue, which can be very far from their respective emission bands, removing the need 

of several excitation sources and filtering systems. Despite these advantages QDs issues related to the 

reproducibility, stability and toxicity of QD-bioconjugates still negatively impact their widespread utilization 

in biotechnologies.34  

The first proof-of-principle applications of QDs in biological imaging have been reported by Bruchez et al. 

and Chan et al. in 1998.7, 8 Since then the optical properties of QDs have been greatly exploited in a variety 

of cell imaging experiments, in vivo imaging, fluoroimmunoassays, DNA sequencing, and other types of 

bioconjugation.35 Different conjugation protocols have been developed to specifically bind biomolecules to 

QDs, such as peptides, lipids, polysaccharides or nucleic acids, creating divers bio-non-bio interactions. 

Given the versatility of the QD surface for bioconjugation, the possibility of applications is enormous. For 

example, QDs can be labeled with tumor-targeting antibodies and traced with fluorescence imaging 

techniques or can be employed in tracking cancer cells in metastasis. However, the efficiency of a 

fluorescence based probe in biomedical imaging highly depends on the fate of the photons propagating in 

and out of the living tissue and for diagnostics the stability of the probe in biological serum. Due to the 

large sizes of antibodies (ca. 10 nm in length for IgG), AB conjugation to QDs is a challenging task (see 

section 1.2).  

Among the large number of bioconjugation strategies we only discuss the most widely used in the 

following.36 Among them, amine-reactive chemistry using N-hydroxysuccinimid (NHS-) esters, carboxyl-

reactive chemistry using carbodiimide (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide – EDC crosslinking 

for coupling with an amine-containing compound), and sulfhydryl-reactive chemistry using maleic acid 

imides are the most prominent. Since a heterobifunctional crosslinker has different reactive groups on 

either end of the molecule, each side can be directed specifically toward different functional groups on 

proteins or other molecules. Therefore, heterobifunctional reagents are commonly used to crosslink 

proteins and other molecules in a two- or three-step process that limits the degree of polymerization often 

obtained using homobifunctional crosslinkers.36 The most popular heterobifunctional reagents are those 

which contain amine-reactive and sulfhydryl-reactive ends (Figure 1-7). The amine-reactive group is usually 
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an active ester, most often an NHS ester, while the sulfhydryl-reactive group may be one of several 

different functional groups. Succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) is a 

hetero-bifunctional reagent of utmost utility in protein conjugation processes. The NHS ester end of the 

reagent can react with a primary amine group to form stable amine bonds. The maleimide end of SMCC is 

specific for the coupling to sulfhydryls when the reaction pH is in the range of 6.5-7.5. However, this 

compound suffers from a cross-bridge that is both water-insoluble and immunogenic. Redesigning this 

crosslinker to have a PEG cross-bridge provides enhanced water solubility for modified proteins or other 

molecules as well as displaying very low immunogenicity. Moreover, a PEG group used as a cross-bridge in a 

heterobifunctional reagent to prepare immunogen conjugates will result in non-immunogenic 

modifications on the carrier protein and thus no antibody production against the polyether linker.37  

 

Figure 1-7. Principles of nanoparticles bioconjugation. A) Amine-reactive chemistry: primary amines on the antibody are modified 
with N-hydroxysuccinimide (NHS) esters that conjugate in solution with activated QDs (functionalized with 4-formylbenzamide). B) 
Sulfhydryl-reactive chemistry: maleimide-functionalized QDs conjugate with antibodies via in situ reduced disulfide bonds.38 

In this work we have focused our attention on the conjugation of maleimide-functionalized QDs to antibody 

sulfhydryl groups and therefore we review some strategies using the sulfhydryl chemistry in the following. 

Min et al. demonstrated a method to efficiently capture and quantify circulating tumor cells (CTCs) using 

Anti-EpCAM antibody-conjugated QDs.39 The QD-attached CTCs are isolated using anti-IgG-modified 

magnetic beads. The antibody was thiolated using succinimidyl-S-acetylthioacetate (SATA) and the QDs 

were coated with DSPE-PEG 2000 and DSPE-PEG2000-amine (Figure 1-8). Anti-EpCAM antibody was 

successful conjugated using a heterobifunctional linker, sulfo-SMCC. 
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Figure 1-8. Construction of anti-EpCAM antibody-conjugated quantum dots (anti-EpCAM-QDs) as primary nanoparticles. DSPE-PEG 
2000-methoxy and DSPE-PEG 2000-amine were grafted onto the surface of the QDs and the resulting QDs and antibodies were 
conjugated using a sulfo-SMCC linker.39 
 

 

In another example of sulfhydryl coupling chemistry, the conjugation of anti-interleukin-10 antibodies to 

CdSe/ZnS QDs by means of a SMCC was demonstrated (cf. Figure 1-9).40 Interleukin-10 molecules 

participate in the inter-cellular communication. A commercially available conjugation kit from Invitrogen 

was used to perform the attachment of the antibodies to the QDs.  

 

Figure 1-9. Conjugation of CdSe/ZnS QD PEG amide to thiol-containing anti-interleukin-10 antibodies using SMCC as linker.40 

  

Recently, a new strategy for the preparation of near-infrared (NIR) emitting protein-functionalized QDs at 

room temperature was presented (Figure 1-10).41 ZnxHg1-xSe QDs were synthetized in aqueous solution and 

directly protein-functionalized as the protein molecules and small hydrophilic thiols (e.g. 

mercaptopropionic acid) are both used simultaneously as ligands during the reaction. According to the 

authors, protein molecules will bind to the QDs through the coordination of amino acid residues with Zn2+ 

ions on QD surface and the small thiol-containing MPA molecules would serve as additional surface ligands. 
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Figure 1-10. One-step synthesis of protein-functionalized NIR emitting ZnxHg1-xSe QDs using Zn2+, Hg2+, and HSe- ions as precursors 
in aqueous solution and MPA and the protein as ligands.41 

 

The instructive review article of Montenegro et al. summarizes strategies of controlled bioconjugation of 

nanoparticles with special emphasize on the questions of how to precisely adjust the number of 

biomolecules per NP precisely and how to attach ABs on NPs in an oriented way (cf. Figure 1-11).42 

Controlling the AB orientation on the NC surface is of crucial importance to ensure its optimal interaction 

with antigens.  

 

Figure 1-11. Schematic representation of strategies AB conjugation on NCS and for controlling their orientation.42 The different 
methods are discussed in the text. 

 

Figure 1-11a shows the electrostatic adsorption between the antibody and the surface of the NP. It is based 

on the electrostatic interactions, eventually enforced by hydrophobic, hydrogen binding, and van der Waals 

attractive forces. Using this method causes denaturation of the immobilized ABs, thus yielding poor 

reproducibility.43, 44 Strategy b) is less straightforward as it involves the covalent binding of ABs on the NC 

surface, which needs generally to be preceded by the insertion of functional groups on the NP surface. It 

also relies on the use of chemical linkers/crosslinkers, and/or chemical modification of the AB. Method c) 
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involves binding through sugar moieties of the AB, which guarantees an oriented immobilization on the 

NCs’ surface. Carbohydrate chains on the Fc region of the AB are mildly oxidized to CHO (reactive 

aldehydes) and can be directly reacted with primary amines on the NC surface or to NCs that have been 

activated with hydrazide groups. Strategy d) uses appropriate crosslinking biomolecules to obtain oriented 

immobilization of ABs. These biomolecules are directly coupled on the NP surface. Finally, method e) 

combines ionic adsorption plus covalent binding to promote oriented immobilization. To achieve this, 

bifunctional NPs are prepared containing both ionizable groups and reactive groups at their surface. 

In summary, different strategies based on sulfhydryl chemistry using SMCC or EDC/NHS crosslinkers for 

bioconjugation of proteins to NCs have been developed over the last years. In this study we are focusing on 

the development of compact QD-AB conjugates. As mentioned we will use the maleimide/sulfhydryl 

bioconjugation strategy. With the goal to further reduce the size of our probes we will apply antibody 

fragments instead of full ABs. The use of fragmented ABs is also advantageous because their conjugates 

display less interference with various Fc binding proteins, less immunogenicity (due to lack of the Fc 

region), and lower nonspecific binding to surfaces or membranes. Enzymatic digests of IgG can result in two 

particularly useful fragments called Fab and F(ab’)2, prepared by action of papain and pepsin, respectively 

(Figure 1-12). 

 

 

 

Figure 1-12. Antibody hypervariable regions. Schematized drawing of how the three hypervariable regions in each light and heavy 
chain together form the antigen-binding site of the AB.45 
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1.2.3 QDs for in vitro diagnostics (IVD) 

 

One of the most popular biotechnological applications with high potential for the use of QDs is in vitro 

diagnostics (IVD). A good IVD agent should be highly luminescent, stable, capable of bioconjugation and 

yield a very high sensitivity, i.e. a very low detection limit (LOD). Among the large number of different 

immunoassays in clinical diagnosis, we will focus here on those based on FRET, and in particular time-gated 

Tb-to-QD FRET. Indeed, a rapid, sensitive and specific immunoassay for protein markers in whole blood or 

plasma would largely improve the early diagnosis as well as monitoring therapy and disease progression. 

Important parameters for the immunoassay are that it must be fast, simple of use and inexpensive allowing 

for uncomplicated diagnosis and better treatment. Homogeneous assays based on FRET are an ideal basis 

to meet the challenging requirements of IVD. They do not require any washing or separation steps 

(homogeneous), the fast solution-phase kinetics allow short incubation times and time-resolved detection 

permits nearly background-free measurements. Moreover, the ratiometric format (luminescence detection 

of FRET from a donor to an acceptor) offers an instantaneous suppression of sample or measurement 

fluctuations resulting in an extremely good reproducibility. Since the first proof-of-concept study in 2005,46 

which used biotin-streptavidin as biological binging model, there have been many applications that used 

Ln-to-QD FRET for versatile, multiplexed, and sensitive bioanalysis.  

 

1.2.3.1 Homogeneous Tb-to-QD Förster Resonance Energy Transfer (FRET) 

immunoassays  

 

Homogeneous FRET sandwich immunoassays, which use donors and acceptors labeled with antibodies that 

bind to different epitopes of a biomarker, are a smart solution to perform the rapid and separation-free 

biomarker detection. Since several years Ln-donor-based time-gated FRET immunoassays using organic 

dyes as acceptors have been applied in commercial diagnostic kits. Indeed, this technology can also be 

found on many commercial fluorescence plate readers for biological and biochemical analysis. Geißler et al. 

achieved picomolar detection limits for five different lung cancer tumor markers by combining 15 different 

biomolecules (10 antibodies interacting with 5 tumor markers) in a 5-fold multiplexed FRET immunoassay 

using Tb-to-dye time-gated FRET.47 Nonetheless spectral crosstalk in such multiplex assays using dyes is 

unavoidable and therefore computational treatment of the data is required. Initial studies on biotin-

streptavidin binding systems showed the advantages of Tb-to-QD FRET over Tb-to-dye FRET concerning 

multiplexing and sensitivity.48 However, the implementation of Tb-to-QD FRET in immunoassays has been 

limited, due to the much larger sizes of the antibodies, compared to biotin-streptavidin and the difficulty to 

create reproducibly stable and highly luminescent QD-AB conjugates. Only very recently, different 
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examples have demonstrated the efficient use of this system. Wegner and collaborators used TG-FRET 

immunoassays against prostate specific antigen (PSA). Figure 1-13 shows the principle of the QD-based 

homogeneous FRET immunoassay that explored all different combinations of conjugates. It showed that 

the combination of Tb-IgG conjugates and QD-F(ab) conjugates provided the best sensitivity compared to 

the other possible combinations of donor and acceptor antibody conjugates.11 In other words, the best 

immunoassay systems combining maximum sensitivity (minimum LOD), minimum antibody modification 

(no IgG reduction for the Tb conjugates), and maximum separation efficiency was the (Tb-IgG)+(QD-F(ab)) 

system. LODs down to 1.6 ng/mL in 50 µL serum samples demonstrated the relevance of these assays for 

clinical diagnostics. It should be noted that these Tb-to-QD FRET immunoassays used a commercial QD-

antibody conjugation kit from eBioscience, which is not available anymore. We will see in Chapter 3 that 

we developed a strategy for the synthesis of much more compact QD-AB conjugates which allowed to 

achieve a further twofold improvement of the LOD.  

 

Figure 1-13. Top: Tb-AB conjugates; bottom: QD-AB conjugates. Each containing different primary antibodies against PSA.11 

 

Very recently, Bhuckory et al. investigated currently commercially available QDs (Qdot-ITK from Thermo 

Fisher – Life Technologies), which were conjugated to free sulfhydryls of reduced anti-PSA IgG antibodies 

using sulfo-EMCS crosslinkers (Figure 1-14). Tb-complexes were conjugated to anti-PSA IgG antibodies 

(specific to a different PSA epitope than the F(ab)) using amino-reactive chemistry. The performance of the 

resulting FRET immunoassay will be discussed in comparison with our results in Chapter 3. 
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Figure 1-14. Scheme showing the reduction of IgG antibodies followed by the sulfhydryl coupling reaction with maleimide-
functionalized QDs.49 

 

1.2.3.2 Principle of FRET detection 

 

Förster Resonance Energy Transfer is the non-radiative transfer of energy between a donor and an 

acceptor, forming the FRET pair, via a dipole-dipole coupling mechanism.50 The distance between the donor 

and the acceptor molecules is typically in the range of 1-10 nm, in extraordinary conditions FRET at larger 

distances up to 20 nm has been reported. Ln-to-QD FRET allows for a complete suppression of the emission 

of photoexcited QDs by using time-gated PL detection, i.e. by using a pulsed excitation source and applying 

a delay (in the microsecond range) between excitation and detection. This is possible due to the large 

differences in the excited state lifetimes of both fluorophores, nanoseconds in the case of QDs, 

milliseconds in the case of Ln complexes. As a result, the observed QD PL is a pure FRET signal that is 

generated by sensitization from the Ln. This acceptor-background-free FRET has some influence on the 

FRET efficiency (ηFRET, eq.3), which is generally defined by the donor-acceptor distance (r) and the Förster 

radius (or Förster distance) R0. The Förster radius (R0) is the distance between donor and acceptor where 

the energy transfer is 50% efficient (Figure 1-15). R0 can be calculated using the spectral overlap integral of 

donor luminescence and acceptor absorption, as defined by eq. 1.  

 

            (1) 

where K2 is the orientation factor between the two dipole moments, ΦD is the donor luminescence 

quantum yield, n is the refractive index of the solvent, NA is Avogadro’s number, and J(λ) is the spectral 

overlap integral defined by eq. 2. 

          
(2) 

J is dependent on the acceptor molar absorptivity (ԑ) and the donor area-normalized emission spectrum 
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Finally, the FRET efficiency ηFRET can be calculated using eq. 3, displaying the characteristic r –6 distance 

dependence: 

 

(3) 

 

where τ are the decay times of the donor in absence (subscript “D”) and in presence (subscript “DA”) of the 

acceptor. The sensitivity of ηFRET to the D-A distance is shown in Figure 1-15. 

 

 

 

Figure 1-15. Left: Visualization of the spectral overlap integral J(λ) between the donor D and acceptor A. Right: Relationship 
between the Förster radius and the FRET efficiency where the FRET efficiency is inversely proportional to the sixth power of the D-A 
distance. 

In this Figure it becomes clear that the largest dynamic range lies in a region between 0.5 R0 < r < 2.0 R0. 

Beyond this region, FRET is either too efficient (100%) or negligible (0%), making it insensitive to distance 

changes, which is important for applications relying on the use of FRET as so-called “molecular ruler”.  

After donor excitation, FRET is in competition with radiative and non-radiative deactivation of the donor. 

Upon acceptor excitation via FRET, it can again return to its energetic ground state by radiative or non-

radiative transitions (cf. Figure 1-16). 
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Figure 1-16. Principle of donor / acceptor interaction in FRET. (a) Simplified energy-level diagram (Jablonski diagram) representing 
the excitation of the donor (hv) from an electronic ground state (D) to an excited state (D*), subsequent inner relaxation (dotted 
arrow), followed by radiative decay (kR), non-radiative decay (kNR) or FRET (kFRET). For FRET occurring from D to A, the difference 
between the respective energy levels needs to be equal (resonance condition). After FRET, the acceptor is in an excited state (A*), 
followed by radiative or non-radiative decay to its ground state (A). (b) Summary of the different decay pathways after donor 
excitation (hvex). 

 

1.2.3.3 FRET using QDs as energy donors or as acceptors 

 

QDs can be used as both FRET donors and acceptors. The main advantages of the QDs used as donor are 1) 

their size tunability, which allows to adjust a spectral overlap with almost any acceptor, 2) their broad 

absorption spectra which allow excitation at almost any wavelength, 3) the attachment of several acceptors 

to the large surface of QDs, which allows an increase of the FRET efficiency. 

Using QDs as acceptors there is efficient direct excitation of the QDs at almost any wavelength used for 

donor excitation, due to their broad absorption spectrum. This will lead to inefficient FRET, as a result of 

the small ratio of excited Tb donors to ground state QD acceptors. To avoid this problem, the use of long-

lived luminescent lanthanide complexes (LLCs) as donors, pulsed excitation and time-gated detection is the 

best solution (cf. Figure 1-17). Indeed, several microseconds after the excitation pulse, all QDs have 

decayed back to their ground states, whereas most of the LLCs have remained in their excited states 

leading to efficient FRET. Moreover, due to the large spectral overlap between Ln emission and QD 

absorption, these FRET systems result in very long Förster distances of >10 nm.51 
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Figure 1-17. Scheme of the FRET pair composed of Tb donors and QD acceptors indicating the ranges of excited state lifetimes. 

 

1.3 Cancer and nanomedicine: a brief introduction 

 

Nanomedicine is a cutting-edge area of biomedical research that exploits the application of nanotechnology 

to medical science. It involves the design and development of novel nanostructured material that, once 

engineered, promise a profound impact in prevention, diagnosis, and treatment of several diseases.52 

Cancer, due to an abnormal accumulation of cells, is one of the diseases that have the strongest impact on 

the population. It is estimated that 80% of cancer related deaths are due to metastases. Indeed, morbidity 

and mortality associated with tumors mostly result from the invasion of adjacent and distant tissue given 

rise to metastases. This dismal scenario is primarily due to the fact that most patients are diagnosed when 

the cancer has reached an advanced stage, which often is the result of a lack of specific symptoms and 

limitation in diagnostics that allow the disease to elude detection during its formative stage. Thus, it is clear 

that further progress needs a deeper understanding of tumor initiation and progression and methods for 

monitoring tumor development. Tumor cells gain advantages in initial growth through dysfunction of 

growth factor responses that are mediated by receptor proteins expressed on cell membranes.53 Thus, 

methods to detect, identify and quantify cell surface proteins or marker proteins in a sensible way may 

potentially facilitate reliable early-stage cancer diagnostics. We have already addressed this topic in section 

1.2.2, and we highlighted that one of the promising methods in this context is based on FRET-

immunoassays, to directly quantify the biomarker concentration in serum samples. Among the myriad of 

biomarkers, in this thesis we use the prostate specific antigen (PSA) as biomarker specific for prostate 

cancer. This cancer is common, a frequent cause of cancer death and, has surpassed lung cancer as the 

most common cancer in men.54 PSA is a glycoprotein and is expressed by both normal and neoplastic 

prostate tissue. The measurement of its absolute value in serum is useful for determining early stage of 

prostate cancer. The American Cancer society systematically reviews the literature assessing PSA 

performance.54 This analysis estimated the sensitivity of a PSA cut-off level of 4.0 ng/mL was 21% for 
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detecting any prostate cancer and 51% for detecting high-grade cancers (Gleason ≥8). Using a cut-off value 

of 3.0 ng/mL increased these sensitivities to 32 and 68%, respectively. Thus, we note that a lower PSA cut-

off value is highly desirable, because a fraction of men with PSA levels below 4 ng/mL were found to have 

prostate cancer.55  

This improvement of test sensitivity by lowering the PSA cut-off value is however normally accompanied by 

a reduced test specificity, leading to far more false-positive test and unnecessary biopsies.56 To avoid this 

problem time-gated FRET immunoassays have proven a great potential on the way towards systems for 

real-time in vitro diagnostics. The commercial KRYPTOR compact plus plate reader is a fully automated, 

closed laboratory analysis system that can be perform various analyses in random-access operations using 

TRACE (Time Resolved Amplified Cryptate Emission) Technology. Cezanne/Thermo Fisher (partner of my 

PhD project) employs TRACE technology in the scope of an exclusive license to develop innovative in vitro 

diagnostic reagents. 

 

1.4 Nanotoxicological aspects 

 

In this Introduction we have shown that QDs offer great opportunities for bioapplications. On the other 

hand, the use of NCs in real-life biological imaging, detection and diagnostics is still very limited. One major 

drawback which severely limits the potential for clinical translation of QDs is the toxicity concern of 

commonly used II-VI semiconductors, such as CdSe and CdTe QDs. These semiconductor QDs are easily 

disintegrated in biological systems if their surfaces are not carefully coated with inert protective shells, 

biocompatible polymers, and biomolecules. The release of Cd2+ ions as a result of degradation of the 

coatings that surround the NC triggers severe toxicity due to the fact that Cd2+ can penetrate the cell using 

calcium channels and saturate them. It also reduces the availability of antioxidant factors and thus 

increases the concentration of reactive oxygen species (ROS).57 Therefore, over the past years, the 

emphasis has shifted toward the synthesis of non-Cadmium based QDs for bioapplications. In this direction, 

QDs made up of III-V semiconductors, such as indium phosphide (InP), have drawn considerable attention.  

It is hard to give a single explanation for the toxicity of QDs, which appears to depend very much on the 

chemical composition of the core (or core/shell structure) and the surface, which represents the key 

interface interaction with biological components. The small size, combined with very high surface:volume 

ratio, makes NPs very reactive compared to larger particles. In general, particles covered with thick polymer 

coatings are less damaging to the cells,58 while the elimination of this protective coating (for example, 

through irradiation, low pH, lysosomal or metabolic degradation) can induce cell damage and death.59 Two 

possible mechanisms have been proposed to explain these toxicity phenomena: the first one is the release 
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of metal ions from the core of the NC, the second one is the formation of reactive molecules, such as 

reactive oxygen species (ROS).  

 

 

Figure 1-18. ROS produced by QDs can cause damage to organelles. In addition, the precipitation of QDs on the cell surface even 
without the entry into the cell can damage the function and eventually lead to cell death.60  

 

Indeed, NPs often escape the endosomal trafficking and continue their journey into the cytoplasm, in cell 

organelles, or into the nucleus, affecting the cells’ structural or functional integrity. NPs can further induce 

genotoxic effects either by direct interaction with the genetic material or by indirect action through 

reactive oxygen species or ions released from the NP core. QDs act as active redox nanoparticles (electron 

donors)61 and can generate highly reactive radicals with or without exposure to light.62 At high 

concentrations, ROS can cause damage to cellular proteins, lipids, DNA and carbohydrates, causing 

apoptosis or necrosis. 

Toxicological studies of cadmium-free QDs are very scarce in the literature but suggest that InP-based QDs 

minimize the toxic effects observed with their CdSe-based counterparts. This feature is of course an 

essential prerequisite for the use of such NCs in the biomedical field. Nanotoxicology studies conducted 

both in vitro and in vivo on Drosophila melanogaster show that CdSe/ZnS QDs are more toxic than InP/ZnS 

QDs despite the similar physicochemical properties and equivalent localization in the cell.63 The effect is 

due to the release of core metal ions indicating that the indium toxicity is virtually zero compared to that of 

cadmium. Other findings in mice confirm that InP/ZnS QDs do not show toxicity in vivo during the 

evaluation period (84 days), suggesting that these NPs are suitable for use in biological systems.64 

Concomitant with the increased use of QDs in consumer products such as sun creams, textile fibers, TV 

screens and other types of displays, solar cells, etc. there is a strong need to increase the investigation of 
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potential toxic effects due to unintentional release or contamination of the environment through 

powder/water waste-streams.65-68 Furthermore, an urgent evaluation of QD toxicity on human beings is 

strongly needed. 

Actually, most nanotoxicity studies have focused on in vitro investigations, representing over-simplification 

of bio/non-bio interactions and not taking in account the real biological complexity and systemic 

networking of whole animals; hence, in vivo tests are central to achieve an accurate estimation of 

nanotoxicity in living organisms.69 The European directives encourage experiments on model systems to 

minimize testing on vertebrate animals. We will address this point in Chapter 4 where we present recent 

studies using a small invertebrate animal, the freshwater polyp Hydra vulgaris, and in parallel preliminary 

studies on keratinocytes from human skin biopsies. 
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1.5 Aim and motivation of the thesis 

 

The work presented in this PhD thesis is part of the ANR project NanoFRET and our main task was the 

development of stable, highly luminescent and FRET-compatible QD-antibody conjugates. Such immuno-

QDs are together with the AB-labeled Tb donor integral part of FRET immunoassays and of potential 

interest for the project’s industrial partner Cezanne-Thermo Fisher. One of the main motivations of the 

NanoFRET project is to fill the current lack of stable, functional, highly luminescent and small QD-antibody 

conjugates that provide a high binding capacity and yield efficient FRET, generating highly sensitive 

immunoassays.  

In my thesis I first focus on the development of a QD functionalization strategy yielding stable, compact and 

highly luminescent NCs to be conjugated with antibodies and used as FRET acceptor in immunoassays. We 

will present this strategy in Chapter 2, keeping in mind all the main characteristics required. In Chapter 3 

the binding of fragmented antibodies on this nanoprobe as well as the evaluation in FRET immunoassays 

against PSA will be addressed. In addition, we extend our studies to systems relying on the grafting of 

paramagnetic (Gd) or luminescent (Tb, Eu, Yb) lanthanide complexes on the QD surface with the goal to 

design multimodal probes.  

Chapter 4 aims at assessing the toxicological impact of the different InP- and CdSe-based QDs used in our 

study. The main interest of these experiments is the direct comparison of the different QD materials, while 

using an identical surface chemistry. We have tested them in different biological systems, ranging from in 

vitro cultured human cells to in vivo animal models, Hydra polyps and keratinocytes from human skin 

biopsies, respectively. 

Each chapter contains its corresponding experimental section in the end.  

The manuscript is completed by a Conclusion and Perspectives section, a list of abbreviations and a list of 

my scientific publications / communications. 
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2 Phase transfer of QDs from organic solvent to aqueous 

medium 

2.1 Introduction 

 

One of the main goals of this thesis is to develop stable and strongly luminescent immune-QDs for 

application in FRET immunoassays. In this chapter, we focus on the surface functionalization of QDs making 

them hydrosoluble and adding functionalities for simple antibody conjugation. Emphasis will be given most 

particularly on conserving a small hydrodynamic diameter and a maximum of the initial fluorescence 

intensity. The thickness of the organic coating is of great importance as large hydrodynamic diameters 

increase the donor−acceptor distance and diminish the FRET efficiency.37 As already mentioned in Chapter 

1, the possibility to disperse nanocrystals (NCs) in aqueous medium is a fundamental criterion for their use 

in biotechnology. Semiconductor NCs prepared in organic solvents are hydrophobic and therefore their 

phase transfer to aqueous medium is an essential step, for which several strategies have been developed as 

summarized below (cf. Figure 2-1a). In view of the utilization of QD in biological applications, the basic 

requirements are: a) colloidal stability in water at physiological pH over an extended period of time in 

water, b) high fluorescence efficiency, c) small hydrodynamic diameter (Dh), d) low non-specific binding in 

biological environment.  

One strategy for aqueous phase transfer consists of the use of phospholipid micelles70 or amphiphilic 

polymers71 as phase transfer agents. The latter encapsulate the QD, which keeps its initial surface ligands. 

The amphiphilic molecules stick to the surface via hydrophobic interactions involving their apolar groups. 

Their polar moieties point to the exterior, giving hydrosolubility and stability to the QDs. In many cases 

polyethyleneglycol (PEG) moieties of different chain length are applied, which strongly increase the 

hydrodynamic diameter. It therefore ranges generally in between 15-25 nm for QDs transferred with this 

method, while the inorganic core may be much smaller than 10 nm. This drawback is counterbalanced by 

the fact that the encapsulation method typically conserves the initial PL QY. Therefore, this approach is an 

appealing choice for bio-applications not relying on small size of the QDs. Another approach, which falls 

also in the range of larger hydrodynamic diameters is the coating of the nanocrystal surface with a silica 

shell.72 Silica has many advantageous features such as optical transparency, chemical robustness and there 

exist also a huge variety of differently substituted silanes facilitating the addition of further functionalities 

to the QD surface. The silica coating can be achieved by introducing a first layer of appropriate silanes on 

the QD surface, either by hydrophobic interactions or by chemical grafting, followed by controlled 

hydrolysis in presence of further silane precursors. Another possibility is the use of micelles as nanoreactors 

for the silica shell growth, derived from the Stöber method for synthesis of silica nanoparticles. The first 
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method is preferable if thin silica shells are sought, as the second approach generally leads to particle sizes 

at least on the order of 40-50 nm.  

 

Figure 2-1. a) Most popular methods for the aqueous phase transfer of QDs. b) Zwitterionic (Cys, Pen) and anionic (TGA, DHLA) 
thiol-containing ligands used in ligand exchange phase transfer. 

 

Much smaller hydrodynamic diameters can be obtained by modifying the surfactants on the QD surface 

using ligand exchange reactions. For this purpose, bifunctional ligands are used which include on one end a 

functional group assuring hydrosolubility of the QDs, and on the other end an anchorage site, capable of 

interacting strongly with the QD surface. The anchorage sites can be of different nature, such as amine, 

phosphine, or thiol based end groups. Thiol anchoring functions offer a high affinity with the surface of 

many types of QDs, most of which contain an outer ZnS shell. Such an approach consists in reacting the 

hydrophobic QDs30 in a solution containing an excess of thiol based ligand. In their thiolate forms, these 

molecules coordinate strongly with the metal ions on the surface of QDs, which is primordial for the 

colloidal stability of the QDs.73  

The detailed solubilization strategies rely also on the nature of the hydrophilic functional group. In general, 

these are of neutral nature (e.g. methoxy- or hydroxyl-terminated PEG),29, 74 anionic (e.g. carboxylates) or 

zwitterionic (e.g. cysteine), while cationic examples (e.g. ammonium) are less common.33 The use of ionic 

hydrophilic groups can be problematic for the overall stability of the QDs, which will depend on the pH and 

the ionic strength of the medium. In the case of anionic and zwitterionic groups, it was demonstrated that 

the samples were stable over periods ranging from days to months at sufficiently basic pH.75 The negatively 

charged carboxylic acid groups provide electrostatic repulsion, which maintains the QDs in colloidal 

aqueous solution. However, at acidic pH or in solutions of high ionic strength, there is a greater tendency 

for aggregation due to the charge neutrality of the carboxylic acid groups.31 It has been shown that more 

acidic thioalkyl acid ligands yield QDs that are more resistant to aggregation at low pH.76 For example, 

mercaptoacetic acid (MAA, pKa: 3.68) capped QDs aggregate and precipitate more slowly than dihydrolipoic 

acid (DHLA, pKa: 4.73) capped QDs, while mercaptosuccinic acid (MSA, pKa1: 3.16, pKa2: 4.67) shows the 
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least tendency for aggregation.77 This behaviour was ascribed to the presence of two carboxylate groups on 

the same molecule, resulting in a higher charge density. Summarizing, these studies have shown that small 

mercaptocarboxylic acid type ligands offer a library of suitable surfactants, working at different pH values 

and allowing increasing the pH range of utilization of QDs.  

Even if in most of the cases the lack of stability with this kind of ligands is due to the change in the pH or in 

ionic strength, instability can also be generated by desorption of the thiol anchoring function from the 

surface of the QD with time. In order to avoid this problem, ligands with a higher affinity for the QD surface 

have been proposed, such as multi-thiolated compounds. One of the most popular approaches is based on 

the use of dihydrolipoicacid (DHLA) derivatives. Several studies have shown that the use of bidentate DHLA 

increases the colloidal stability at neutral pH to periods ranging from several months to a year.78-80  

However, one of the downsides of direct ligand exchange with hydrophilic thiols is its effect on the optical 

properties of the QDs. Ligand exchange tends to reduce quantum yields of the QDs in comparison to the 

initial value in organic solvent. This effect is particularly pronounced in the case of thiol and dithiol 

anchoring groups. The latter are known to effective hole acceptors and thus to reduce the probability of 

radiative recombination.81 In addition, oxidation of the thiols can lead to the formation of the disulfide 

bonds, which are also efficient PL quenching centers.75  

In this context, penicillamine (Pen) has also drawn strong attention. This small ligand, which is structurally 

similar to cysteine (cf. Figure 2-1b) was found to enhance colloidal stability over a range of physiologically 

relevant pH values.82 Furthermore, due to its zwitterionic nature, it provides weak interactions with cell 

membranes and with other biomolecules, such as serum proteins. In addition, Pen offers the opportunity 

for selective bio-conjugation via its carboxylate group or its primary amine group. This superior colloidal 

stability compared to cysteine-coated QDs was ascribed to steric effects caused by the two methyl groups 

(instead of protons) at the carbon atom in α position to the thiol group.75 This structural difference has a 

strong influence on the reactivity of both molecules. In particular, the sterically hindered thiol group in Pen 

makes it less susceptible to oxidation as compared to cysteine. In the literature, Pen has been used as a 

capping ligand in the aqueous synthesis of QDs83, 84 and also as a phase transfer agent at pH 7.4.75, 82 While 

the stability of the CdSe/ZnS NCs phase transferred with Pen at pH 7.4 was high, a rather long reaction time 

(18h) has been reported. On the other hand, in our team Tamang and coworkers found that the pH value 

during an aqueous phase transfer procedure played an important role for increasing the stability of the 

QDs. By adjusting the pH to 9 the phase transfer reaction took place within 2h or less and after purification 

and transfer to 1xPBS buffer the product was stable for approximately ten weeks before an increase of the 

hydrodynamic diameter occurred.75 The thiol group of the Pen ligand is deprotonated at elevated pH, and 

thiolates have been shown to bind the QDs ZnS surface more strongly than thiols.85 In Tamang’s study it 

was also shown that the QY could be improved by adding tris(carboxyethyl)phosphine (TCEP) as reducing 

agent during the phase transfer in order to avoid disulfide formation, which is favoured at basic pH.75 
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Concluding, hydrophilic thiols are suitable surface ligands for the preparation of water-soluble QDs of small 

hydrodynamic diameter. Zwitterionic molecules, such as cysteine or Pen are of particular interest as they 

minimize non-specific interactions in biological media. However, the conditions of the aqueous phase 

transfer need to be carefully optimized in order to achieve long-term colloidal stability paired with 

minimized losses of PL QY. 

Building to the above-cited studies and with the goal to optimize the synthesis of compact, stable and 

highly luminescent QDs suitable for subsequent use in FRET immunoassays, in this chapter the phase 

transfer of InP-based QDs and Cd-based QDs, using the Pen ligand will be addressed. Another aspect that 

will be investigated is the use of a bifunctional crosslinker that enables the subsequent conjugation with 

proteins.  

 

Aiming at maintaining a small hydrodynamic diameter, we decided to use the heterobifunctional linker 

MAL-dPEG3-Lipoic acid, named here Mal1, which is commercially available from Quanta BioDesign (Figure 

2-2). Using this molecule in a post-functionalization step after phase transfer has several advantages:36 it 

contains at one end a dithiol function capable of strongly interacting with the surface of the QDs and 

replacing Pen ligands, and at the other end there is a functional group impairing the chemical functionality, 

namely a maleimide group allowing for the facile and selective conjugation of sulfhydryl groups present in 

biomolecules, such as cysteine groups in antibodies, resulting in a stable thioether bond.86 Both functional 

moieties are linked by a short polyethylenglycol (PEG) chain that is beneficial for water-solubility of the 

QDs. It is obvious that a molecule containing both thiol groups and a maleimide function should be very 

unstable, and therefore as-received Mal1 contains the dithiol group in its non-reduced disulphide form. 

Furthermore, the compound has to be kept at low temperature (-20°C) in order to avoid its degradation. 

We expect several challenging tasks related with the use of Mal1: i) during the cleavage of the disulfide 

bond experimental conditions have to be found which avoid crosslinking due to the head-to-tail binding of 

ligand molecules; ii) the integrity and reactivity of the maleimide function is strongly pH dependent, and 

therefore once again the optimum conditions for the post-functionalization and antibody conjugation have 

to be determined. 

 

            

Figure 2-2. Left: ligand Mal1, in red the lipoic acid moiety, in blue the PEG spacer and in green the maleimide function. Right: 
reaction of the maleimide group with a sulfhydryl compound (thiol) leading to the formation of a stable thioether bond. 
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2.2 Synthesis and properties of InPZnS@ZnSe/ZnS and CdSe@ZnS nanocrystals 

 

As already mentioned in Chapter 1, the most important properties of QDs for bio-applications are their 

size-dependent narrow emission with high fluorescence quantum yield combined with a broad absorption 

spectrum resulting in a large effective Stokes shift and their long-term resistance against photobleaching.87, 

88 Over the past few years, III-V Nanocrystals are of increasing interest as a replacement for toxic CdSe QDs. 

Among them Indium phosphide (InP) is one of the most appealing candidates because, with a bulk band 

gap of 1.35 eV, the photoluminescence can be tuned over the whole the visible range to the near infrared 

by varying the size. However, in terms of emission line width and PL QY InP still lies behind high quality 

CdSe QDs. The best values are 40-60 nm FWHM (vs. 20-30 nm for CdSe) and it is challenging to obtain PL 

QYs exceeding 50%, while with CdSe based QDs virtually unity QY is achieved. 

In this study we use alloy InPZnS core QDs,24, 89 which have been overcoated with a graded Zn (Se,S) shell in 

order to enhance their photo- and chemical stability. The range of emission of these NCs is 500-620 nm, 

and the highest QYs of up to 50-60% are obtained with green-emitting QDs (≈530 nm). As this emission 

wavelength does not overlap with the emission of Tb complexes, the use of InPZnS@ZnSe/ZnS (named 

here core@shell or QD530) NCs is advantageous for the FRET immunoassays described in Chapter 3. For 

toxicological studies (Chapter 4) we also used the InPZnS core QDs emitting at 510 nm (named here core-

only or QD510). The synthesis protocols for QD510 and QD530, described in the experimental section, 

were optimized by Tim Senden during his master thesis project and by Dr. Christophe Lincheneau during his 

post-doc. Briefly, for the synthesis of the InPZnS core all precursors except for P(SiMe3)3 are mixed in 

octadecene, degassed and heated to 100°C (cf. Figure 2-3). We prefer this procedure over a “real” heat-up 

synthesis where everything is mixed in the beginning because we have observed that P(SiMe3)3 undergoes 

reactions already at room temperature. Therefore here the phosphorus precursor is injected at 100°C and 

the reaction mixture is immediately heated to 300°C with a large heating ramp (around 50°C/min) and kept 

at this temperature for 20 min. In a subsequent step, and without intermediate purification, the graded 

Zn(Se,S) is grown, by injecting first the Zn precursor (Zn oleate) and then the chalcogenide precursors 

(TOPS, TOPSe) at 220°C, followed by heating to 300°C for 20 min. The optical properties of the obtained 

InPZnS@ZnSe/ZnS QDs will be presented in the following sections. 
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Figure 2-3. Synthesis of InPZnS alloy core NCs (a) and subsequent growth of a graded Zn(Se,S) shell (b). 

 

In our study we have also used hydrophobic CdSe@ZnS-based QDs emitting at 605, 655 and 705 nm 

(named here QD605, QD655 and QD705) from Life Technologies / Thermo Fisher.90 The first reason is to 

have narrow emitters at longer wavelengths where no emission of Tb3+ takes place (cf. Chapter 3). The 

second reason is that the QDs of Life Technologies can be considered as “standards” in this field: they show 

the best and certified emission properties and moreover the identical inorganic QDs (but with hydrophilic 

polymer coating) are applied in commercial bio-conjugation kits. Therefore we can directly compare our 

surface functionalization strategy with these commercial products, in particular the performance of the 

QDs in FRET-based biodetection. Furthermore, by applying the same surface functionalization for aqueous 

phase transfer on the InP-based and the CdSe-based QDs we can discriminate the influence of the inorganic 

part of the QD in toxicological studies aiming at the comparison of InP and CdSe (cf. Chapter 4). 
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2.3 Phase transfer and post-functionalization: synthesis of water dispersable, 

bifunctional QDs 

 

The QDs used in this thesis are coated with hydrophobic organic surfactants (fatty acids in the case of InP, 

trioctylphosphine oxide in the case of CdSe) rendering them soluble in non-polar solvents (e.g. chloroform, 

hexane, and toluene). The QDs were transferred from the organic to the water phase by means of ligand 

exchange using penicillamine (Pen), starting from a procedure developed before in our laboratory.75 The 

phase transfer protocol relies on the use of a biphasic mixture of QDs in chloroform and Pen in aqueous 

solution of precisely controlled pH of 9, in presence of the mild reducing agent TCEP (Figure 2-4). As 

mentioned in the introduction of this chapter, basic pH is of primary importance for achieving the 

deprotonation of the Pen thiol group, which results in stronger binding to the surface of the different ZnS-

coated QDs. TCEP prevents Pen disulfide formation because this reaction does not only reduce the colloidal 

stability but also diminish the fluorescent quantum yield (QY).75 The driving force of the phase transfer 

reaction is the higher binding energy of the thiolate functions with the ZnS surface of the QDs (Ebinding Zn-

Sthiolate = 194.7 kJ/mol, S-Sthiolate = 105.1 kJ/mol)85 in comparison with the initially coordinating carboxylic 

acids or TOPO ligands (no numerical data found).  

 

 

Figure 2-4. Schematic representation of the aqueous phase transfer of QDs using penicillamine (Pen) 

 

An important factor to control is the purification step before the phase transfer, which assures the 

quantitative progress of the reaction. Any kind of side-product related to the synthesis, including excess of 

reagents or surfactants must be washed off to allow an efficient phase transfer. Therefore, pre-purified 

samples after synthesis were submitted to further purification steps. The initial purification comprises three 

cycles of precipitation through the addition of a methanol/chloroform mixture and excess acetone, 

centrifugation and redispersion in chloroform. This procedure is necessary to remove secondary products 

and ODE. The additional purification consists of three cycles of precipitation / redispersion using an 

ethanol/methanol mixture and chloroform, which assures the quantitative removal of excess shell 

precursors. This step is of particular importance when Zn stearate is used as the Zn precursor for shell 

growth instead of Zn oleate. In the case of the commercial CdSe/ZnS QDs the initial solvent decane was 
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changed to chloroform prior to phase transfer by precipitation with a methanol/isopropanol mixture 

followed by redispersion. All QDs are in 3-6 µM concentration in chloroform after the purification, as this 

solvent allows for solubilizing the ligands leaving the NC surface during the phase transfer reaction.  

All the vials used are pre-autoclaved and the DI water solutions are filtered using a 0.2 µm filter and 

degassed. Phase transfer occurs within max. 2 hours upon vigorous mixing of the QD colloidal solution with 

a 0.2 M solution of Pen in MilliQ water containing 200 µL of a 0.5 M TCEP solution. After this step the 

samples are purified to remove excess Pen and TCEP by using size exclusion chromatography. Under 

optimized conditions, this phase transfer results in a very compact (around 1 nm thick) organic surface 

layer and very high colloidal stability for several years, as shown in the next section. The quantitative phase 

transfer was easily detected by the mutual colour change of both phases (cf. Figure 2-5). 

 

 

 

Figure 2-5. Mutual colour change of the chloroform phase (bottom) and aqueous phase (top) during phase transfer. Yellow sample: 
QD530; brown sample: QD705.  

 

For the toxicity studies in Chapter 4 also core InPZnS and CdSe QDs are used. For these samples, which are 

much more sensitive to surface modifications, different protocols have been tested to obtain a good phase 

transfer while preserving at least a minimum of fluorescence. First of all, the pre-purification step must be 

no aggressive, as repeated washing cycles with methanol remove surface ligands leading to unpassivated 

surface sites, which can act as PL quenching centers. For this reason purification was carried out using 

ethanol, and the phase transfer reaction has been stopped directly after completion (in this case after 60-

90 min).  

In conclusion, the chosen biphasic approach allows for solubilizing the different types of QDs investigated in 

this study (InPZnS and CdSe core, InPZnS@ZnSe/ZnS and CdSe@ZnS core@shell) with only minor variations 

of the protocol. In a subsequent post-functionalization step the maleimide containing bifunctional ligand 

Mal1 is then introduced. This step is carried out under reduction of the disulfide group by means of TCEP 

(Figure 2-6).36 Briefly, a solution of Mal1 (1 mL, 10 mM) and TCEP (0.046 mL, 0.5 M) in degassed water are 

added to a suspension of QD-Pen (0.5 mL, 5.2 µM in degassed water) and the pH is adjusted to 7.0 by 

dropwise addition of 0.5 M tetramethylammonium hydroxide (TMAOH). The mixture is vortexed at 800 

rpm overnight at room temperature. The resulting colloidal solution is purified by size exclusion 
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chromatography. The obtained QD-Mal1 are then concentrated under vacuum to a final volume of 400 µL 

and stored at 4°C in the dark. The overall length of Mal1 (around 3 nm) makes the maleimide functions 

stick out of the Pen corona and hence offer a better availability for subsequent antibody conjugation. 

According to our studies, the Mal1 ligand does not affect the high colloidal stability of the Pen-capped QDs 

as both types of samples (QD-Pen and QD-Mal1) do not exhibit signs of aggregation even after storage for 

more than two years. Colloidal stability is assessed by using combined DLS and absorption spectroscopy 

measurements (see below). 

 

Figure 2-6. Scheme showing the post-functionalization of QDs with the heterobifunctional ligand Mal1 after activation of the 
anchorage site by cleavage of the S-S bond using TCEP. An excess of Mal1 is reacted at pH 7 with Pen-capped QDs in aqueous 
solution, followed by purification using size exclusion chromatography. 

 

The control of the pH value is critical during the post-functionalization procedure. In particular, the pH of 

the reaction mixture should be < 8 as higher values increase the rate of hydrolysis of the maleimide group 

to non-reactive maleamic acids. In a series of control experiments we determined pH 7 to be optimal, 

leading to efficient post-functionalization with Mal1 while preserving the reactivity of the maleimide 

function. For subsequent antibody conjugation the pH value should also be adjusted to around 7, because 

the maleimide group reacts specifically with the sulfhydryl group of proteins in a pH between 6.5 and 7.5, 

leading to the irreversible formation of a stable thioether linkage. Under more alkaline conditions (pH>8.5), 

the coupling with primary amines is favoured. We will discuss the antibody binding in more details in the 

next chapter (Section 3.2). 
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2.4 Characterization of the obtained QDs 

2.4.1 Optical characterization 

 
Once the functionalization and post-functionalization have been achieved, the optical and structural 

properties of the QDs were characterised by the means of various techniques. We start here with the main 

feature of the QDs, their optical characteristics. 

For all types of QDs each functionalization step was firstly studied using absorption and photoluminescence 

spectroscopy. The absorption spectra exhibited the excitonic peak centred at 470, 590 and 620 nm for 

QD530, QD605 and QD655, respectively, which is indicative of the lowest energy transition of the QD. For 

QD705 this spectral feature is not visible, the absorption spectrum just presents a steady rise from the 

absorption onset on towards shorter wavelengths. The spectra shown in Figure 2-7 demonstrate that no 

major changes were observed in the UV-Vis absorption spectra upon functionalization with Pen and Mal1. 

We attribute the decrease of absorbance in the UV/blue range visible in the spectra of QD605 and QD705 

to the replacement of initial organic ligands eventually absorbing in this range by Pen and Mal1. Upon 

excitation at 400 nm (QD530) or 480 nm (all other QDs) in each case the bright emission of the QDs was 

observed as a narrow peak centred at 530, 615, 659, 715 for QD530, QD605, QD655 and QD705 

respectively. Here also no major changes were observed in the shape and position of the emission spectra 

in comparison to those obtained for the hydrophobic samples. However, an important point to be 

addressed is the ubiquitously observed reduction of fluorescence upon phase transfer by ligand exchange. 

An average decrease of 20-30% has been observed during functionalization with Pen: the fluorescence 

emission efficiencies of the QDs in chloroform were very high with quantum yields of 0.50 (QD530), 0.80 

(QD605), 0.60 (QD655) and 0.92 (QD705) (cf. Table 2-1) and were decreased to 0.32, 0.60, 0.30 and 0.74, 

respectively. QD655 is clearly less well performing compared to the other commercial QDs, with a loss of 

QY of 50%. On the other hand, these results confirm that our approach is suitable for the aimed 

application, as each one of the QDs exhibited QYs of at least 30% in the aqueous phase. It should be noted 

that in Table 2-1 only the best performances were reported. In the case of some batches of QD530, upon 

phase transfer QYs below 15% were obtained whereas in the case of the Cd-based QD no significant 

difference were observed from one batch to another. As we tested various synthetic conditions for the InP-

based QDs, the observed batch-to-batch variations were not unexpected. In contrast, due to the low batch-

to-batch variation of the characteristics of the commercial Cd-based QDs can also be used as a control to 

optimize the functionalization and the post-functionalization.90 The details of the PL QY measurements will 

be presented in the next section. 
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Figure 2-7. PL and UV-Vis spectra of QD530 (a), QD605 (b), QD655 (c) and QD705 (d) in chloroform (black), after functionalization 
with Pen (red) and with Mal1 (blue) in 1X PBS buffer. Insets: photographs of the samples under UV light. 

 

Table 2-1: Photophysical properties of the used QDs (emission wavelength for QD-Pen).  

Sample Excitation 

wavelength (nm) 
Emission 

wavelength (nm) 
QY in CHCl3 (%) QY with Pen 

(%) 

QY with 

Mal1 (%) 

QD530 400 530 50 32 14 

QD605 480 615 80 60 23 

QD655 480 659 60 30 13 

QD705 480 715 92 74 54 

 
 
Upon post-functionalization with Mal1, even if once again the shape of the emission spectra remained 

unchanged, the PL QY showed a further decrease by ca. 20-40% (Table 2-1). We do not have a detailed 

explanation for this behaviour but tentatively attribute it to the presence of the maleimide moiety in the 

close environment of the QDs, which could eventually act as a luminescence quencher. Furthermore, the 

bulkier dithiol-containing Mal1 ligands may lead to a lower ligand density per QD surface area and induce 

unpassivated surface sites acting as trap states. However, since of the QYs of all final samples QD-Mal1 are 

well above 10% they can still be used in the aimed application, albeit with an expected lower FRET 

efficiency for the samples of lower QY QD530 and QD655.  

Figure 2-8 shows the absorption (black) and fluorescence (red) spectra of the core-only InPZnS QDs after 

phase transfer with Pen in comparison with the InPZnS@ZnSe/ZnS core@shell NCs (QD530). The first 

absorption peak was at 410 nm for the core-only sample (vs. 470 nm for the core/shell system) and the PL 

emission peak at 510 nm (vs. 530 nm). It should be noted that the emission of the core-only sample after 
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phase transfer was still visible under UV light and detectable with the spectrometer but the PL QY was < 

1%. 

 

 
Figure 2-8. Upper panel: UV-Vis and PL spectra of QD530 (left) core@shell and QD510 (right) core-only after phase transfer. Lower 

panel: PL intensity 

 

2.4.1.1 Fluorescence quantum yields 

 

The absolute fluorescence QYs of each type of QDs were determined by comparison with a standard of 

known QY emitting in the same spectral range (freshly prepared solution of Fluorescein 27 in 0.1 M NaOH; 

QY = 93%, Rhodamine 6G in ethanol; QY = 95%91 or QD705 in chloroform; QY=92%90). The QY was 

calculated with the following formula: 

 

ΦNC = ΦStandard·(aNC/aStandard)·(n2
NC/n2

Standard) 

 

where Φ is the QY, a the gradient (slope) of the plot of the integrated fluorescence intensity vs. absorbance 

(and n the refractive index of the solvent (1.375 for hexane, 1.446 for chloroform, 1.333 for water and 

buffer and 1.36 for ethanol91). All spectra were corrected for the instrumental response with calibration 

curves furnished by the supplier and the estimated errors on QY are ± 15% of the calculated values. 

Aliquots or purified samples of the QDs in hexane, chloroform or water were put into 1 cm quartz cuvettes 

and diluted until the absorbance at the excitation wavelength was under 0.1. At least four samples of 

different concentrations were prepared and measured for determining the slopes (cf. Figure 2-9). Both the 
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sample and the reference were excited at 400 nm in the case of InP based QDs and at 480 nm for CdSe 

based QDs. We note that exciting fluorescein at 400 nm is of course far from optimal (480 nm), but 

unfortunately the large Stokes shift and broad excitonic peak of the InP-based QDs does not allow to excite 

this sample at longer wavelengths without losing part of its PL intensity. Therefore, in the future it will be 

better to use another standard (e.g. certified QDs emitting in the green range) or an integration sphere for 

a more precise determination of the QY of InP-based QDs.  

 

 

Figure 2-9. Integrated photoluminescence signal vs. absorbance plot for QD-Pen. a) Rhodamine (black), QD655 (red), QD605 
(orange); b) QD705 in CHCl3 (black) and QD705-Pen (red); c) Fluorescein (black) and QD530 (green).  
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2.4.2 Structural characterization 

 
The size and morphology of the inorganic part of the QDs were characterized using transmission electron 

microscopy (TEM), revealing nearly monodisperse, spherical (QD530, QD605 and QD655) or elongated 

(QD705) nanocrystals as depicted in Figure 2-10. The size distributions have also been calculated and are 

shown in the same Figure. 

 

 

Figure 2-10. Transmission electron microscopy images of QD-Pen. Mean size from left to right QD530: 5.4 ± 1.0 nm; QD605 7.2 ± 
1.0 nm; QD655: 6.5 ± 0.8 nm; QD705: long axis: 9 ± 2 nm, short axis: 4.8 ± 0.7 nm. 

As shown in Figure 2-11 in the case of the InP-based QDs a size increase was observed upon ZnSe/ZnS shell 

growth on the InPZnS core, from 3.5±0.5 nm to 5.4±1 nm. This increase in size of around 2 nm indicates 

that approximately 3 monolayers of the ZnSe/ZnS shell have been grown around the InPZnS core.  

 

Figure 2-11. Transmission electron micrographs of InP-based QDs, the identical sample with (left) and without double shell (right) in 
water; i.e. core@shell and core-only respectively. 
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2.4.2.1 Hydrodynamic size and dispersibility of QDs 

 

The hydrodynamic diameter and the dispersibility of the QDs are very important properties for their bio-

applications and in our case to be used in FRET immunoassays. Hydrodynamic sizes of the QDs were 

evaluated by using dynamic light scattering (DLS). While TEM observations give information about the size 

of the inorganic core, DLS takes into account the surfactants and their interactions with solvents molecules. 

DLS thus allows determining the hydrodynamic diameter of the QDs. In the case of anisotropic 

nanoparticles (QD705), the size of the particle is approximated by a sphere having the same volume. These 

measurements confirmed the narrow size distributions observed with TEM and revealed small 

hydrodynamic diameters, which slightly increased with each functionalization step. QD-Pen exhibits a 

hydrodynamic diameter, which is 1.5 nm larger than the TEM diameter, corresponding to a 0,75 nm thick 

ligand shell in accordance with the compact size of the Pen molecule. Upon post-functionalization, an 

increase of the hydrodynamic diameter has also been detected. As shown in Figure 2-12, an increase of the 

hydrodynamic diameter from QD-Pen to QD-Mal1 of ca. 3-4 nm has been observed. This increase is 

consistent with the successful grafting of the ligand Mal1 at the QD surface, which has a stretched length of 

approximately 3 nm. Even the largest sized QDs (QD705) exhibit a small hydrodynamic diameter and 

narrow size distribution after each step of functionalization.  

The zeta potential is another important parameter for the characterization of the QDs allowing the 

estimation of the magnitude of the electrostatic charge / repulsion of the QDs, which is one of the 

fundamental parameters affecting their stability. Both the Pen-capped and Mal1-capped QDs exhibited 

negative zeta potential values between –22 and –36 mV and low polydispersity indices (PDI) confirming 

good colloidal stability (Table 2-2). The good colloidal stability in the aqueous phase is assured by the 

electrostatic repulsion between the QDs, caused by negative charge on the carboxylate group of the Pen 

ligands. Upon post-functionalization the zeta potential changes from a mean value of –33 mV to –24 mV 

due to the reduction of the fraction of the negatively charged Pen ligands at the QD surface in favour of the 

neutral Mal1 ligands. However, we expect that the short PEG moieties of Mal1 also contribute to the 

colloidal stability of QD-Mal1 in aqueous media.  
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Figure 2-12. DLS measurements of the different types of QDs before and after post-functionalization with Mal1. The average 
hydrodynamic diameter d (nm) of each measurement, repeated 3 times, is given in the legend. 
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Table 2-2. Polydispersity indices (PDI) and zeta potentials of the Pen- and Mal1-capped QDs. 

Sample PDI-Pen PDI-Mal1 Zeta-Pen (mV) Zeta-Mal1 (mV) 

QD530 0.33 0.58 -31 -24 

QD605 0.15 0.23 -33 -27.5 

QD655 0.12 0.57 -34 -22 

QD705 0.08 0.23 -36 -24 

 

 

In each case, the system was controlled over a period of more than two years, showing no aggregation and 

very good colloidal stability. The absence of aggregation was verified by DLS, after checking that the 

concentration had not changed using UV-vis spectroscopy. As an example the long-term study of QD705-

Pen is depicted in Figure 2-13. Even after 2 years the zeta potential values remained quasi-unchanged and 

were evaluated at -30 mV confirming still good colloidal stability. In between 12 months and 2 years of 

observation, a slight increase of the hydrodynamic diameter from around 10.0 to 12.0 nm has been 

observed, which could be the result of a modification of the solvation sphere around the QD rather than a 

sign of aggregation, which should lead to a larger diameter increase. However, a decrease in the QY from 

74% to 23% for QD705 was observed, as depicted in Figure 2-14. This could be due to the desorption of a 

small fraction of Pen ligands from the NC surface, which does not affect the hydrodynamic diameter or the 

colloidal stability of the QD, but may generate surface trap states. Desorbed Pen ligands may also undergo 

dimerization under disulfide formation generating additional quenching centers. 

 

 

 
 

Figure 2-13. DLS measurements of QD705-Pen after 1 day, 12 months and 2 years. 
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Figure 2-14. PL spectra of QD705-Pen 1 day (red) and 2 years (black) after aqueous phase transfer. 

 

The colloidal stability and high PL QY in the aqueous phase is evident even by checking with the bare eyes 

when looking at the different samples under UV-illumination (Figure 2-15).  

 

   

Figure 2-15. Left two images: photographs QD530 dispersed in chloroform (left) and of QD530-Pen in water (right). Right: 
Photographs of Pen-functionalized QD705, QD655, QD605 (2x) and QD530 taken two years after aqueous phase transfer with Pen 
(all samples under UV illumination). 
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2.4.2.2 FTIR spectroscopy and gel electrophoresis  

 

With the goal to put into evidence the successful surface functionalization, FTIR spectra of QDs capped with 

Pen and Mal1 were measured and compared with the spectra of Pen and Mal1 alone. We emphasize that 

all types of QDs behave similarly; therefore we just name them QD without further specification in the FTIR 

studies. As shown in Figure 2-16 (left) the characteristic S-H stretching vibration band of Pen at 2500-2600 

cm-1 has completely disappeared in the FTIR spectrum of QD-Pen, reflecting the binding of the thiolate 

groups to the ZnS surface of the QDs. In addition, FTIR also clearly revealed the peaks corresponding to the 

carbonyl stretch vibrations of the maleimide function centred at 1000 cm-1 in QD-Mal1 (Figure 2-16 right). 

This showed that the maleimide function is intact, and that it points out of the QD surface as its vibrations 

remained unchanged with respect to the free molecule. 

 

Figure 2-16. Left: FTIR spectra of Pen and QD-Pen. Right: FTIR spectra of Mal1 (red), QD-Pen (blue) and QD-Mal1 (green) and 
indication of the characteristic vibrations. 

 

In addition, QD-Pen post-functionalized with Mal1 was monitored using agarose gel electrophoresis, a 

technique normally used for DNA, RNA and protein separation. Based on the charges present on the 

molecules, loaded DNA, RNA and proteins will move toward the positive side at different speeds. The 

movement speed is based on the molecular weights of segments; the smaller the molecule weight, the 

faster the movement speed. Gel electrophoresis has also been proven to be useful in the analysis of 

nanoparticles, as for example in the separation of QD-DNA conjugates.92 More generally it has been shown 

that gel electrophoresis can be used for the separation both of QDs and QD-biomolecule conjugates.93 

Furthermore, by comparing the size of different conjugates, samples showing complete conjugation can be 

separated from samples with incomplete conjugation. As depicted in Figure 2-17, nanoparticles at the first 
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and second step of functionalization (QD-Pen and QD-Mal1) were loaded on the gel. For each type of the 

QDs a delay in the migration pattern was observed in the case of QD-Mal1. This retardation is indicative of 

the successful post-functionalization with Mal1, remains however a qualitative signature. In order to 

quantify the number of Mal1 we tried different techniques, unfortunately without success. First we 

attempted to use NMR spectroscopy but, due to the high concentrations required, we were not able to 

quantify the Mal1/Pen ratio. Next we tried to exploit colorimetric approaches based on the differences in 

the absorption spectra of the different ligands. However, as the absorbance of the QDs is extremely high in 

the UV range where Pen and Mal1 absorb, their quantification by this method is not possible without large 

error bars. Then again we tried to quantify using a DNA ladder (DirectLoad™ 50 bp DNA Step Ladder, from 

Sigma Aldrich) which required 2% agarose gel concentration; however at this concentration it was not 

possible to observe the QDs band. 

 

 

 
Figure 2-17 Gel electrophoresis characterization of the samples QD530 (a), QD705 (b), QD605 (c) and QD655 (d) capped with Pen 
(left bands) or Mal1 (right bands), carried out on 1% agarose gel in 25 mM Hepes buffer at 100 V on a RunOne System. Prior to gel 
electrophoresis, to each sample a solution corresponding to 20% of the sample volume and containing Orange G and 30% glycerol 
in 6% loading buffer was added. For visualization, the gel was placed on a UV transilluminator, and an image was captured with a 
Gel Doc XR system (Bio-Rad, Hercules, CA). In (a) the image shown here was acquired after 10 min while in b, c and d it was taken 
after 20 min.  
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2.5 Conclusion 

 

In this chapter we developed a versatile phase transfer and post-functionalization approach, applicable to 

QDs of various compositions, sizes and shapes. In the first step, the aqueous phase transfer of 

InPZnS@ZnSe/ZnS NCs core@shell NCs emitting at 530 nm, InPZnS core-only QDs emitting at 510 nm and of 

commercial hydrophobic CdSe-based QDs emitting at 605, 655 and 705 nm was achieved by surface ligand 

exchange with penicillamine (Pen). In the second step, we introduced maleimide functional groups on the 

NC surface, which can bind to sulfhydryl groups, for example, in the hinge regions of antibodies.94 This 

coupling between maleimide and sulfhydryl groups is known to be highly efficient and to provide a stable 

linkage.36, 86 The post-functionalization has been achieved by applying the heterobifunctional crosslinker 

Mal1 containing a lipoic acid anchoring function and a maleimide group, separated by three poly(ethylene) 

glycol moieties. The bidentate (reduced) lipoic acid function is able to substitute Pen molecules and 

provides excellent stability of the Mal1 ligand on the NC surface. Successful grafting of the Mal1 ligand has 

been evidenced by dynamic light scattering (DLS), FTIR and agarose gel electrophoresis, even though the 

exact number of Mal1 ligands per NC could not be quantified. One challenge was to identify appropriate 

conditions in terms of ligand concentration and pH value, which allowed preventing from undesired 

crosslinking reactions this ligand is prone to. This method yielded very compact (hydrodynamic diameter < 

10 nm) and strongly fluorescent probes (QYs up to 54%), with excellent long-term stability (> 2 years) in 

various buffers and water. Due to the dynamic binding interactions between the thiol and ZnS, QDs coated 

with monothiol ligands normally tend to have shorter shelf lives.95 In the literature the stability of QDs after 

ligand exchange has been evaluated to be less than one year.96 We attribute the improved stability in first 

place to the optimized aqueous phase transfer with Pen, in particular to the precise pH control enabling 

deprotonation of the thiol function and enabling strong thiolate binding to the QD surface, while 

preventing from disulphide formation due to the addition of TCEP. Efficient electrostatic repulsion of the 

QDs is assured by the negatively charged carboxylate groups of the Pen ligand, as demonstrated by zeta 

potential measurements. Although post-functionalization with the (neutral) Mal1 ligand leads to a smaller 

absolute value of zeta potential, the colloidal stability is not affected, presumably due to the presence of 

the short PEG chains. Importantly, FTIR indicates the integrity of the maleimide functions, which are 

expected to stick out of the Pen ligand shell of the QDs. The application of these functions for the 

conjugation of antibodies will be explored in the next chapter. 
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2.6 Experimental section 

 

Chemicals. D-Penicillamine, tetramethylammonium hydroxide (TMAOH), phosphate-buffered saline 

solution (10X PBS), tris(2-carboxyethyl) phosphine hydrochloride solution 0.5 M (TCEP), 

tris(hydroxylmethyl)aminomethane (TRIS/Cl), agarose powder, indium acetate (99.99%), myristic acid 

(>99%), tris(trimethylsilyl)phosphine (95%), 1-dodecanethiol (97%), 1-octadecene (90%), were purchased 

from Sigma-Aldrich. Zinc stearate (90%) was acquired from Riedel de Haën. MAL-dPEG3-Lipoic acid (Mal1) 

was purchased from Quanta Biodesign. QD CdSe 605, 655 and 705 were purchased from Life 

Technologies/Thermo Fisher.27 Solvents were purchased from Aldrich, Fluka, and Acros, and used without 

further purification. All water solutions were prepared from ultrapure laboratory grade water (resistivity 18 

MΩ cm) that was filtered and purified using a Millipore MilliQ cartridge system and autoclaved. 

Instruments. Absorption and emission spectra were recorded on the following spectrometers: HP 8452A 

and Perkin Elmer Lambda 35 for UV-Vis absorption; Hitachi F-4500 fluorescence spectrophotometer 

equipped with a 150 W xenon lamp and excitation monochromator. The hydrodynamic diameter (by 

dynamic light scattering) and zeta potential of the NCs dispersed in water were measured using a Malvern 

Zeta Sizer (NanoZS). Fourier transform infrared (FTIR) spectra were taken on a Perkin Elmer Paragon 500 

spectrometer equipped with an attenuated total reflection (ATR) setup. Gel images were acquired using a 

Gel Doc XR system (Bio-Rad, Hercules, CA).  

Transmission Electron Microscopy 

Conventional and high resolution transmission electron microscopy (HRTEM) images were recorded on a 

JEOL 3010 working at 300 kV, equipped with a LaB6 gun and a GatanOrius SC 200 2k x 2k CCD camera. Size 

distributions were determined manually on some hundred NCs using Fiji software; the low contrast of the 

QDs on the amorphous carbon film supported by a copper grid did not allow reliable binarization of the 

images and automatic determination of the mean size and its standard deviation. 

InPZnS@ZnSe/ZnS QD Synthesis. 

The synthesis of InPZnS@ZnSe/ZnS alloy core / gradient shell nanocrystals is based on reported 

procedures.23, 97 All steps except for nanocrystal purification have been carried out under inert atmosphere. 
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Preparation of precursor solutions. 

For the preparation of the indium myristate (In(MA)3) stock solution (0.1 M), 1 mmol of anhydrous indium 

acetate was mixed with 3 mmol of myristic acid (MA) and 10 mL of 1-octadecene (ODE) in a 50 mL three-

neck flask equipped with a condenser. The mixture was heated to 100-120 °C for 1 h under vacuum until an 

optically clear solution was obtained. After backfilling the flask with Ar and cooling to room temperature, 

the turbid solution of indium myristate was stored in a glovebox. For the zinc oleate (Zn(OA)2) stock 

solution (0.4 M), 5 mmol of zinc acetate, 10 mmol of oleic acid (OA) and 9.35 mL of ODE were loaded into a 

50 mL three-neck flask and the same procedure as for the preparation of In(MA)3 was followed. The zinc 

stearate (Zn(St)2) stock solution (0.1 M) was prepared by heating 1 mmol of Zn(St)2 with 10 mL of ODE at 

120°C for 1 h. A 0.4 M TOPSe stock solution was prepared by the dissolution of 2 mmol Se powder in 5 mL 

of trioctylphosphine (TOP) under stirring for 24 h. A TOP-S stock solution was prepared with the same 

procedure using elemental sulphur. 

 

Synthesis of InPZnS alloy nanocrystals. 

In a glovebox, 1 mL of the In(MA)3 stock solution (0.1 mmol In(MA)3), 1 mL of the Zn(St)2 stock solution (0.1 

mmol), 0.1 mmol of 1-dodecanethiol (DDT) and 7.5 mL of ODE were added to a 50 mL three-neck flask. 

Afterwards the flask was equipped with a condenser and connected to a Schlenk line. Next, the mixture 

was heated under vigorous stirring to 300°C with a ramp of around 60°C/min using a molten salt bath. 

When the temperature inside the flask reached 100°C, 0.1 mmol of tris(trimethylsilyl)phosphine (P(TMS)3), 

diluted with 1 mL of ODE, were injected. During the heating, NC formation is visible by the color change of 

the reaction mixture to dark yellow/orange. After 30 min, the reaction mixture was cooled to below 220 °C 

to stop growth.  

 

Growth of a ZnSe/ZnS gradient shell. 

For the ZnSe/ZnS gradient shell growth, a 10 fold excess of precursors was used with respect to the core 

synthesis, and a Se:S ratio of 0.2. Briefly, Zn(OA)2 (1 mmol, 2.5 mL of the 0.4 M stock solution) was added 

dropwise to the reactive mixture at 220°C. This was followed by the successive injection of TOP-Se (0.2 

mmol, 0.5 mL of the 0.4 M solution) and TOP-S (0.8 mmol, 2 mL of the 0.4 M solution). The resulting 

mixture was heated to 300°C within 10 minutes and then kept at this temperature for 20 min. After cooling 

down to room temperature, purification of the QDs was performed via three cycles of 

precipitation/redispersion. First, 10 mL of a 1:1 (v/v) mixture of chloroform/methanol and 100 mL of 

acetone was added. Then the resulting suspension was centrifuged (8000 rpm for 5 minutes), the 

supernatant discarded and the obtained solid dispersed in 5 mL of chloroform. Finally, the QDs can be 

dispersed and stored in a variety of organic solvents, like hexane, toluene or chloroform. 
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Determination of the molar extinction coefficient and of the concentration of InP-based QDs. 

 
While literature data can be found on InP core nanocrystals,98, 99 the molar extinction coefficient and 

size/excitonic peak correlations for InPZnS alloy or InPZnS/ZnSe/ZnS core/shell QDs are unknown. 

Therefore we determined the molar extinction coefficient of our QD530 NCs in order to be able to 

conveniently estimate their concentration in divers colloidal solutions by simply taking a UV-vis absorption 

spectrum. First, with a known amount of the parent QD530 sample thermogravimetric analysis (TGA) was 

carried out; by this way the total fraction of the organics (surface ligands) was obtained. The inorganic 

diameter of the NCs has been estimated from TEM (depending on the batch between 4.8 and 5.4 nm) and 

for the calculations a mean density value of 4710 kg/m3 has been taken, the values of InP, ZnSe and ZnS 

being 4810 5650 and 3980 kg/m3, respectively. Assuming spherical shape a 4.9 nm sample results for 

example in a molar weight of 174 kg/mol, based on which the molar quantity of NCs in the sample used for 

TGA can be calculated. Finally, the knowledge of the molar concentration enables us to calculate the molar 

absorptivity of the given sample at the wavelength λ by measuring its absorption spectrum and using 

Lambert-Beer’s law (cf. Figure 2-18):  

A = ɛ *c *l 

where A, ɛ, c and l are the absorbance at λ (dimensionless), molar absorptivity (M-1.cm-1), molar NC 

concentration (M), and path length of the cuvette in which the sample is contained (cm), respectively. For 

our InPZnS/ZnSe/ZnS QDs we determined ɛ at 450 nm as 4.15x105 M-1.cm-1, which is in good agreement 

with the literature on InP QDs.39 As a consequence, the concentration of InP NCs can easily be estimated 

from the absorption spectrum using Lambert- Beer’s law. One of the major advantages of the described 

method is that it is entirely based on the properties of the inorganic core of the NCs and not on the organic 

surfactant layer, giving therefore more accurate results.13 

 

Figure 2-18. Concentration versus absorbance plot (at 450 nm) for QD530 (path length of the cuvette: 1 cm). The slope of the graph 
equals the molar absorptivity. 
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Purification prior to phase transfer. 

Thorough purification of the initial QDs, enabling the complete removal of excess surface ligands or side 

products is crucial for successful phase transfer. 1 mL of the InPZnS@ZnSe/ZnS QDs in chloroform were 

mixed with 1 mL of anhydrous ethanol (in some case the QDs in chloroform were purified with a 4 mL of 

ethanol/methanol (3:1 v:v) mixture) and centrifuged at 10 000 rpm for 2 minutes. The clear solution of 

supernatant was discarded and the precipitate was dispersed in 1 mL of chloroform. This cycle was 

repeated three times. For the commercial CdSe/ZnS-based QDs in decane the solvent was changed to 

chloroform prior to phase transfer. 4 mL of a methanol/isopropanol (3:1 v:v) mixture were added to 1mL of 

the QD colloidal solution and centrifuged for 2 min at 10 000 rpm. The supernatant was discarded and the 

resulting pellet dispersed in 1mL of chloroform.  

 

Surface Modification of QDs with Pen and Mal1: 

• Phase transfer. A 0.2 M solution of penicillamine (containing 200 µL of 0.5 M TCEP) was prepared 

in 1 mL of degassed MilliQ water (18 MΩ). The pH was adjusted to 9 by drop-wise addition of 0.5 M 

TMAOH. 500 μL of the phase transfer solution was mixed with 1 mL of a 3-5 μM colloidal solution of 

QDs in chloroform. The biphasic mixture was stirred vigorously at ~1400 rpm for 2 h at room 

temperature. At the end of the transfer, affording QD-pen, the biphasic mixture results either in a 

clear separation of two phases or in an emulsion. Finally, the mixture is centrifuged at 5000 rpm for 

1 min to obtain a clear phase separation. The QDs in the (upper) aqueous phase are separated from 

the (lower) organic phase. 

• Purification and storage. A NAPTM-5 -10, -25 size exclusion column (SephadexTM G-25 DNA Grade 

from GE Healthcare) was vertically clamped and equilibrated according to the manufacturer’s 

protocol. QDs in water were added and after being adsorbed on the gel bed, they were eluted 

using 1X PBS buffer and kept at 4°C in the dark for storage. 

• Post-functionalization  

The steps for dissolving and conjugating the Mal1 linker to the quantum dots are described below: 

1. In a round bottom glass vial, to 3 mL ultrapure DI H2O 0.0165 g of Mal1 are added (final 

concentration ~ 10 mM). 

2. The vial wrapped with Al-foil is placed on a stirrer: 300 rpm, 12 hours at room temperature. 

3. The solution of Mal1 and a solution of TCEP (0.046ml, 0.5M) in degassed DI water are added to the 

dispersion of QD-Pen (0.5ml 5.0 x 10-6 M). 

4. The pH of the solution is adjusted to approx. 6.5-7.0 with TMAOH. 
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5. The solution is flushed with argon for 10 minutes and mixed at room temperature at 800 rpm for 8 

hours.  

6. Samples are purified using PD-10 column from GE-Healthcare according to manufacturer’s protocol 

(the column is backlit with UV light to collect effectively QDs). 

7. The purified samples are then concentrated using 30 K 4 mL Amicon spin columns at 4000g for 4 

min affording a final volume of 400 µL. Alternatively concentration can be achieved under vacuum. 

The samples are kept at 4°C in the dark for storage. 

 

Characterization of the QDs 

Hydrodynamic size and dispersibility of QDs 

The hydrodynamic diameter of the water-soluble NCs dispersed in water was measured by dynamic light 

scattering, using a Malvern Zeta Sizer (NanoZS). Given the sensitivity of the instrument, multiple runs (>3) 

were performed to avoid erroneous results. The spectra have been corrected by the instrument software 

for viscosity (0.882 mPa 3s at 25 °C), absorption (0.01), solvent (water) refractive index (1.33) and material 

(InPZnS/ZnSe/ZnS and CdSe/ZnS) refractive index (2.7 and 2.45). The data are collected in automatic mode 

and expressed in number %. The zeta potential is measured in the same instrument but under zeta 

potential settings. The used Pen-capped NCs were passed through Nap5 size exclusion columns from GE-

Healthcare, dispersed in 1x PBS buffer and filtered (0.22 µm) prior to the measurements. 

 

Gel electrophoresis  

Preparation: For a 1 % gel, 0.4 g agarose powder were mixed in a 100 mL Erlenmeyer flask with 40 mL of 25 

mM Hepes buffer, and heated in a microwave oven for some minutes until the solution started to boil. The 

flask was panned to help the agarose powder to dissolve totally, the flask was then again heated to the 

boiling point. 

The hot and clear agarose was poured in a 10.7 x 5.2 cm gel tray levelled in a gel caster (RunOne System). A 

comb (12 wells) was placed into the gel. The gel was allowed to cool down to room temperature and to 

solidify within at least 1 hour. The comb was removed, the gel was taken out of the casting device and 

placed into the electrophoresis device which was filled with 25 mM Hepes buffer until the whole gel was 

covered. 
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Loading and running: The samples were mixed with about 20 % of their volume with the loading buffer (30 

% glycerol in 25mM Hepes) and carefully filled into the wells. The electrophoresis devices were run at a 

constant voltage of 100 V. 

Imaging: After 5, 10, 20, 30 minutes the gels were taken out and a digital picture was taken (BioRad Gel 

Doc) showing the gel under visible or UV light. The resulting images were saved on the computer connected 

to the camera. 
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3 Application of QDs in biological detection and imaging 

3.1 Introduction 

 

This chapter is devoted to the investigation of the applications and unique properties of quantum dots 

(QDs) and lanthanide (Ln) complexes for biological detection and imaging. Ln ions and QDs provide 

exceptional photophysical properties that cannot be found in any other luminescent material.100 

In the first section we focus on FRET immuno-assays based on terbium complexes acting as the donor and 

QDs acting as the acceptor in a sandwich complex Tb-AB1-AG-AB2-QD (AB1, AB2: antibodies, AG: 

antigen/biomarker). In the second part of this chapter, we discuss the bio-applications of Ln-QD conjugates 

obtained by direct grafting of Ln complexes on the QD surface.  

As mentioned in the introduction Chapter 1, FRET-immuno-assays are based on biomolecular recognition 

events that occur between a biomarker and two specific antibodies labeled with different fluorophores. 

Upon the immune interaction, the spatial proximity of the two dyes can enable Förster resonance energy 

transfer, which can be used to quantify the biomarker concentration.  

However, while the development of monoclonal antibodies provides very specific interactions with 

biomarkers, the use of conventional fluorescent labels shows limited detection sensitivity and no possibility 

of multiplexed analysis on a single sample.28 Indeed, fluorescent proteins and organic fluorophores are 

extensively used in many bioimaging and in biosensing investigations.101 However, their fluorescence is 

relatively weak and unstable, which precludes the use of high excitation densities and limits the possibility 

of long-term studies.102 Additionally, their PL lifetimes are in the same range (few nanoseconds) as the 

biological autofluorescence, which does not allow time-gated (TG) detection for increasing the signal-to-

noise ratio (SNR) and for better differentiation between different target molecules.103, 104 As already 

mentioned, QDs possess unique optical properties, which make them interesting alternatives over 

traditionally used organic dyes or fluorescent proteins, namely: size-dependent, narrow, tunable emission 

spectra and broad excitation spectra, large absorption cross-sections, high fluorescent quantum yields and 

long-term resistance against photobleaching.32, 105 In particular in combination with luminescent lanthanide 

complexes (LLCs) and time-resolved FRET (TR-FRET) spectroscopy these nanoprobes provide significant 

sensitivity, distance, and multiplexed detection advantages compared to other donor-acceptor pairs.106-108 

Within the plethora of QD-FRET biosensing applications for the analysis of biomolecular interactions, 

homogeneous sandwich immunoassays, which quantify biomarkers via two different antibodies that 

engage in FRET upon biomarker recognition, are highly selective and sensitive but also range among the 

most challenging systems. This is because the relatively large sizes of ABs (ca. 10 nm in length) and QDs 

(depending on their emission wavelength and surface coatings) plus the connection of the ABs via a 
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biomarker (often proteins with sizes of up to several nm) lead to long distances between the QDs and their 

FRET partners. FRET-immunoassay have been developed using QDs as donors9, 79, 109-115 as well as 

acceptors.11, 49, 116-119 These Tb-to-QD FRET immunoassays could provide multiplexing capability and 

clinically relevant limits of detection (LODs) in serum samples.11, 49 

Although QDs are theoretically very well suited as FRET acceptors due to their strong absorbance over a 

broad wavelength range yielding large overlap integrals, the unavailability of stable, reproducible, 

biocompatible QDs has restricted their use in real applications. Nonetheless, several commercial suppliers 

of biocompatible QDs exist.120 However, if QDs are used as FRET acceptors there is an efficient direct 

excitation of the QD at almost any wavelength used for donor excitation (due to the broad absorption 

spectrum of the QD). This will hamper the selective excitation of the respective FRET donor and therefore 

results in inefficient FRET.  

The solution for this problem is the use of donors with long excited-state lifetimes such as LLCs (lifetimes up 

to several milliseconds) in combination with pulsed excitation. This offers the possibility of delayed or time-

gated acquisition of the emitted light. By this way, autofluorescence of the sample, fluorescence of other 

labels and light scattering are largely suppressed, and the signal to background ratio is improved. 

Additionally, the combination of LLCs donors and QD acceptors for FRET enables energy transfers over large 

distances exceeding 10 nm and in exceptional cases up to 20 nm, due to the large spectral overlap. 

As mentioned in the Chapter 2 (section 2.3), the aqueous phase transfer process– for which QDs have to be 

chemically modified to be stable in aqueous solutions and tagged with the recognition molecules or drugs 

for biomedical applications-is a critical process. These steps can cause significant alterations in brightness, 

stability and size of the QDs.121 

Normally, the relatively large surface of QDs gives rise to multiple interactions with the biological 

environment, which can cause further changes in their physical and chemical properties. Many literature 

protocols and commercial products rely on the encapsulation of the QDs with bulky amphiphilic polymers, 

which leads to hydrodynamic diameters in the range of 15-20 nm or more resulting in long FRET donor-

acceptor distances and unfavorable binding conditions. This leads to lower sensitivities compared to 

conventional time-resolved (TR)-FRET immunoassays that use lanthanide donor and organic dye acceptor 

AB conjugates.101, 122 These assays are frequently used in diagnostics and are commercially available under 

the brand name HTRF (homogeneous time-resolved fluorescence), TRACE (time-resolved amplified cryptate 

emission) or LANCE (lanthanide chelate excitation).123-125 The development of QD-AB conjugates with 

compact surface functionalization for aqueous phase transfer and high-performance photophysical 

properties for efficient FRET immunoassays would therefore present a milestone of utmost importance for 

the integration of QDs into clinical in-vitro diagnostics (IVD). Further improvement of the sensitivity and 

selectivity of these assays can be achieved thanks to 1) the multiplexing possibilities offered by the QDs as 
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well as 2) by the development of efficient NIR emitting QDs, maximizing the spectral overlap integral with 

Ln complexes. 

As presented in the Chapter 2, we focus on direct ligand exchange, which yields a much more compact 

surface coating beneficial for FRET applications. In fact, our approach represents a novel QD 

functionalization and bioconjugation approach, which yields stable and highly luminescent QD-antibody 

conjugates for improved TR-FRET immunoassays.  

 

Aqueous phase transfer of lab-synthesized InPZnS@ZnSe/ZnS QDs emitting at 530 nm and commercial 

CdSe@ZnS QDs (Life Technologies) emitting at 605, 655 and 705 nm was achieved by surface ligand 

exchange with penicillamine (Pen). These QD emission wavelengths have been selected as they give 

minimal interference with the emission of Tb-complexes, used as FRET donor (Figure 3-1). Under optimized 

conditions, this functionalization results in a very compact, around 1 nm thick, organic surface layer while 

preserving high PL quantum yields. The zwitterionic Pen also results in low non-specific binding and very 

high colloidal stability of several years in aqueous buffers, as shown in section 2.4. 

 

 

Figure 3-1. Typical narrow and well separated emission bands of Tb3+ allowing for a large choice of possible FRET acceptors, whose 
emission bands should be selected such as to avoid overlap allowing for the suppression of Tb background emission. The 
absorption spectrum of QD705 is also indicated (red line). 

Routine fluorescence-based immunelabeling strategies depend on four main parameters, which impose 

limitations on their practical use: the affinity of ABs, the optical properties of the fluorescent probes, the 

labeling method, and the size of the resultant conjugate composed of the AB, fluorescent probe, and 

optional linker molecules. The use of luminescent terbium complexes as FRET donors for QD acceptors is a 

great possibility to overcome the large distances in homogeneous FRET immunoassays and to provide at 

the same time high sensitivity and multiplexing capability.107, 108, 126, 127 
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Figure 3-2 presents the absorption and PL spectra of the different types of QDs used in this study in 

comparison with the PL of the Tb donor (LumiphoreTM). The extremely long excited-state lifetimes of up to 

few ms of the Tb complex can be used for time-gated PL detection, which leads, as stated before, to a very 

efficient reduction of background fluorescence.107, 126-129 

The conjugation of a fluorescent probe with an antibody (AB)130 allows both specific recognition of the 

target and quantitative detection of the associated fluorescent signal.  

 

Figure 3-2. Spectral overlap of the different types of QD used in this study, a) QD605, b) QD705 and c) QD530 absorption spectra 
(black line) and area-normalized Tb-complex emission spectra (green line). 

 

In the following paragraphs we will give a brief overview about antibodies, the procedure to obtain the 

immune-probe (QD-antibody bioconjugates) and their application as FRET acceptors in homogeneous time-

gated immunoassay using Tb-ABs as FRET donors, both coupled by an immunological sandwich complex 

between the two ABs and a prostate specific antigen (PSA).  
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3.1.1 Antibodies and fragments of antibodies- structure and function 

 

Antibodies defend vertebrates against infection by inactivating viruses and microbial toxins and by 

recruiting the complement system and various types of white blood cells to kill invading pathogens.45 

The simplest antibodies are Y-shaped molecules with two identical antigen binding sites, one at the tip of 

each arm of the Y (Figure 3-3).45 They are composed of four polypeptide chains, two identical heavy and 

two identical light chains. Parts of both the heavy and light chains usually combine to form the antigen-

binding sites. There are five classes of antibodies (IgA, IgD, IgE, IgG, and IgM), each with a distinctive heavy 

chain (a, d, e, g, and m, respectively).131 

The heavy chains also form the tail (Fc region) of the antibody, which determines the biological properties 

of the antibody class. Either type of light chain (k or l) can be associated with any class of heavy chain; this 

choice has no effect on the properties of the antibody, except for its specificity for antigens. Each light and 

heavy chain is composed of a number of Ig domains—βsheet structures constructed from about 110 amino 

acids. A light chain has one variable (VL) and one constant (CL) domain, while a heavy chain has one 

variable (VH) and either three or four constant (CH) domains (Figure 3-4). The amino acid sequence 

variation in the variable domains of both light and heavy chains is concentrated in several small 

hypervariable regions, which protrude as loops at one end of these domains to form the antigen-binding 

site. 

 
 
Figure 3-3. Schematic representation of an immunoglobulin (IgG). It should be distinguish the heavy chains (dark green), the light 
chains (light green), the disulfide bridges and the amino groups in the terminal portion, which also represents the binding site for 
the antigen.45 Image taken from Molecular Biology of the Cell (©Garland Science 2008) 
 

The conjugation of nanoparticles with antibodies combines the properties of the nanoparticles themselves 

with the specific and selective recognition ability of the antibodies to antigens.132 

To achieve this reaction, the antibodies do not only need to be conjugated to the QDs, they also need to 

preserve their binding efficiency for their antigen, to allow another primary antibody (labeled with LLCs) to 

bind to the same antigen and to offer a donor-acceptor distance short enough for efficient FRET. With this 
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in mind, we investigated the QDs-antibody (QD-AB) conjugation and purification efficiency using entire IgG 

ABs and Fab fragments ABs. Fragmentation is performed using standard fragmentation kit, working with 

papain and pepsin cleavage as shown in Figure 3-4. 

One method of introducing sulfhydryl residues into antibody molecules for conjugation with maleimide-

actived QDs is to reduce indigenous disulfide group in the hinge region of the immunoglobulin structure. In 

the following sections, we will investigate this bio-conjugation.36 

 

 

Figure 3-4. Structure of an IgG molecule and relative fragments antibody obtain from the action of enzymes papain and pepsin. 
Image taken from 132 

 

3.1.2 Flexible antibody conjugation and purification 

 

Initial attempts for the conjugation of full IgG antibodies with the QDs did not yield satisfying results in 

terms of FRET efficiency. The complex in this scenario is composed of a QD (ca. 8 nm diameter), a first AB 

(ca. 150 kDa corresponding to a length of approximately 10 nm for the Y-shaped IgG), a biomarker 

(different sizes, e.g., 32 kDa or ca. 2 nm for prostate specific antigen, PSA), and finally a second AB with the 

Tb complex. In order to have a more compact system with lower separation distance between the donor 

and acceptor, monoclonal fragmented antibodies (F(ab), ca. 50 kDa) and full-size IgG against PSA were 

conjugated to QDs and Tb complex, respectively.11 These probes enabled the realization of homogeneous 

Tb-to-QD FRET immunoassays.  

The Tb complexes (Lumi4-Tb-NHS) were labelled directly to available primary amines of the IgGs while the 

coupling of F(ab) to the QDs employs sulfhydryl chemistry94 where the reactive maleimide functionalities 

introduced on the QD surface target free biomolecular thiols, such as those in the hinge region of Ab or 

F(ab). Such bioconjugation allows the formation of a nanocrystal (NC) retaining its optical properties with 

the specific and selective recognition ability of the antibodies to antigens.132 As depicted in Figure 3-5c the 

F(ab) were first activated through reduction of the S–S bond by TCEP and the maleimide group was coupled 

with the free thiol group of the reduced F(ab) to form a covalent thioether bond.36 The same 
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functionalization and post-functionalization approach was implemented to allow the linkage of F(ab) to all 

types of QDs studied, namely InPZnS@ZnSe/ZnS emitting at 530 nm (QD530) and CdSe@ZnS emitting at 

605 and 705 nm (QD605 and QD705). As mentioned before, these wavelengths have been selected, as they 

give minimal interference with the emission of Tb-complexes, used as FRET donor (Figure 3-1). Another 

important aspect of our investigation was the performance evaluation of QDs with different PL emission 

wavelengths and composition (QD530, QD605, and QD705). This evaluation is very important for their 

application as acceptors in FRET assays with Tb donors because the variations in shapes, sizes, spectral 

overlap (QD absorption with Tb emission), and PL wavelength range lead to differences in FRET and 

detection efficiencies, which can result in significant differences in sensitivity. Therefore a careful 

photophysical characterization and sensitivity evaluation within comparable immunoassays for the same 

antigen are indispensable for designing and optimizing such homogeneous FRET immunoassays, in 

particular for multiplexed detection with different QD colors. In the following paragraphs, we will discuss 

the photophysical properties of the assay constituents (Tb and QD AB-conjugates) and we will show their 

performances in Tb-QD FRET immunoassays for the detection of PSA in low volume serum samples. We 

would like to point out that these results have been obtained in the frame of an ongoing collaboration with 

the NanoBioPhotonic group of IEF Orsay. 

 

 

 

Figure 3-5. Schematic representation of the aqueous phase transfer of QDs with penicillamine (Pen) and post-functionalization with 
Mal1 for subsequent conjugation to sulfhydryl groups of fragmented F(ab) antibodies. 
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3.1.3 Photophysical characterization of the Tb-QD-AB conjugates 
 

As already described in the Chapter 2, surface functionalization of the QDs with Pen and post-

functionalization with Mal1 did not lead to significant modifications of their UV-Vis and PL spectra (cf. 

section 2.4). The absorption and PL spectra of the three QD-AB conjugates are shown in Figure 3-6. QDs 

concentrations were determined using the molar attenuation coefficients of ɛ450nm(QD530) = 4.2 x 105 M-1 

cm-1 (experimentally determined), ɛ405nm(QD605) = 2.8 x 106 M-1 cm-1 and ɛ405nm(QD705) = 8.3 x 106 M-1 cm-1 

(provided by the supplier).27 The photophysical properties of the QDs were slightly altered by the F(ab) 

conjugation, as summarized in Table 3-1, compared to the Pen-capped QDs. 

A PL red shift of 4 nm could be detected for the CdSe-based QD605 and QD705, while a blue shift of 3 nm 

was found for the InP-based QD530. Further experiments are needed to unequivocally elucidate the origin 

of these shifts; we tentatively ascribe them to the quantum confined Stark effect, induced by the change of 

the dielectric environment of the QDs upon conjugation with F(ab).39 AB-conjugation also led to changes in 

the PL lifetimes (Table 3-1) from 24 to 18 ns for QD530, from 4.6 to 10 ns for QD605, and from 79 to 41 ns 

for QD705. These changes are attributed to the generation (lifetime shortening) or filling (lifetime increase) 

of electronic trap states acting as competing de-excitation channels upon F(ab) attachment. 
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Figure 3-6. a) Top: absorption (black line) and PL (green, excitation wavelength 365nm) spectra of Tb-AB conjugate. Bottom: Tb-AB 
PL decay curve (490±0.5nm) upon pulsed excitation at 365nm with a repetition rate of 100 Hz. Amplitude-averaged decay time: 

τ(Tb) = (2.6±0.7) ms. b-d) Top: absorption (black) and PL (red) spectra; bottom: PL decay curves of F(ab)-conjugated 
InPZnS@ZnSe/ZnS (QD530), CdSe@ZnS (QD605), and CdSe@ZnS (QD705) QDs in 1X PBS buffer. Amplitude-averaged PL lifetimes: 

τQD530 = (17.7 ± 2.8)ns, τQD605 = (10.4 ± 1.1)ns, and τQD705 = (40.7 ± 6.4)ns. 
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Table 3-1. Optical characterization of QD-F(ab) conjugates, performed by excitation at 405 nm using as excitation sources a 
continuous-wave Xe lamp and a pulsed laser diode from Edinburgh Instruments for steady-state and time-resolved measurements, 
respectively. 

Sample 
InPZnS/ZnSe/ZnS 530 CdSe/ZnS 605 CdSe/ZnS 705 

-Pen -F(ab) -Pen -F(ab) -Pen -F(ab) 

λemission (nm) 505 ± 1 502±1 602±2 606±0.5 699±2.5 703±0.5 

Average lifetime (ns) 24.3±6.1 17.7±2.8 4.6±0.4 10.4±1.1 79.4±20.8   40.7±6.4 

 

Sizes and morphologies of the inorganic parts of the QDs were characterized using transmission electron 

microscopy (TEM), which revealed nearly monodisperse spherical (QD530 and QD605) and elongated 

(QD705) nanocrystals (cf. section 2.4). The hydrodynamic diameters of the QDs were evaluated by dynamic 

light scattering (DLS). As shows in Figure 3-7, these measurements confirmed the narrow size distribution 

observed with TEM and revealed small hydrodynamic diameters, which increase with each 

functionalization step. As exemplified by QD705 (cf. Figure 3-7b), introduction of the Mal1 ligand led to a 

size increase from 8 to 10 nm with respect to QD705-Pen, which is expected for a ligand with an 

approximate length of 3.0 nm. Conjugation with F(ab) led to a further increase to 13 nm as total 

hydrodynamic diameter, which makes this AB-QD conjugate one of the smallest AB-functionalized NIR 

emitting nanoprobes ever reported. Colloidal stability of the QDs in water or relevant buffer solutions is of 

crucial importance for biological detection. The obtained Pen- and Mal1-functionalized QDs showed no sign 

of aggregation after storage of more than two years at 4°C in the dark in 1xPBS buffer (pH = 7.4), as 

confirmed by combined periodical DLS and UV-Vis absorption measurements (Section 2.4). After F(ab) 

conjugation, the colloidal stability was determined to be at least 3 months, which is the current limit of our 

measurements. The photophysical and morphological characterization results have confirmed that our 

approach of using an optimized ligand exchange with Pen, followed by post-functionalization with Mal1, is 

an efficient and simple way of obtaining highly luminescent, stable, and compact QDs ready for further 

functionalization with small F(ab) ABs to yield very small fluorescent AB-nanoprobes. 
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Figure 3-7. Size distribution of a) QD605, b) QD705 and c) QD530 after each functionalization step (Pen-capping: green; Mal1-
functionalization: red; F(ab)-conjugation: blue) obtained by DLS measurements. The average hydrodynamic diameter d (nm) of 
each measurement is given in the legend. 

 

Gel electrophoresis and FTIR (Figure 3-8) measurements further confirmed successful post-

functionalization with Mal1 and F(ab) conjugation of the QDs. For all QDs, the bands on the agarose gel 

corresponding to the QD-F(ab) conjugates were the most retarded due to the larger sizes of the AB-QD 

conjugates. FTIR revealed, by comparison to the free, i.e. not QD-bound, molecules, peaks corresponding to 

the carbonyl stretching vibrations of the maleimide function in QD-Mal1 as well as the characteristic band 

of the N-H stretching vibration of F(ab) in QD-Mal1-F(ab). In these characterizations all three types of QDs 

(i.e. InP and CdSe-based QDs), which was expected as they mainly differ in the inorganic core composition 

but all possess an identical ZnS outer shell and the same first ligand exchange procedure with Pen has been 

used. 
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Figure 3-8. Left: Gel electrophoresis of the sample QD530; the image shown were acquired after 10 min. The left band refers to the 
sample functionalized with Mal1 and the right to that bioconjugated with F(ab). Right: FTIR spectra of F(ab) and of CdSe/ZnS 
QD705-Mal1 and QD705-Mal1 after F(ab) conjugation. 

 

3.1.4 Homogeneous FRET immunoassays for PSA. 

 

To demonstrate the functionality of the compact QD-AB conjugates, we performed homogeneous Tb-to-QD 

FRET immunoassays against PSA on a KRYPTOR compact plus clinical fluorescence plate reader 

(Cezanne/Thermo Fisher) (cf. Figure 3-9). PL intensities of Tb (ITb) and QDs (IQD) were acquired 

simultaneously in a time-gated detection window between 100 µs to 900 µs after pulsed excitation at 337 

nm using a nitrogen laser operating at 20 Hz.  

Due to the extremely long PL lifetimes of Tb (ms) compared to QDs (ns), the time-gating allows efficient 

suppression of short-lived sample autofluorescence and direct excitation of the QDs. This allows obtaining 

solely the pure FRET signals (FRET-quenched Tb PL and FRET-sensitized QD PL). Optical band pass filters for 

the Tb donor and QD acceptor detection channels were (494±10) nm for Tb and (522±6) nm, (607±4) nm, 

and (707±8) nm for QD530, QD605 and QD705, respectively. The FRET-ratio was defined as: 

 

FRET � ratio �
I���100 � 900	μs�

I���100 � 900	μs�
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Figure 3-9. a) Scheme of the immunoassay relying on FRET from the donor D (terbium complex) to the acceptor A (InP or CdSe 
based QD). b) KRYPTOR compact plus fluorescent plate reader used for our measurements. The samples are excited with a nitrogen 
laser (337 nm) and the emission from the sample is separated via dichroic mirrors and bandpass filters into two channels, which 
were measured simultaneously. In one channel the donor (Terbium emission) is collected, named ChD, and in the other channel the 
emission of the acceptor (QDs) named ChA. c)The intensity of the two channels are measured in a time window from 100 µs to 900 
µs after the excitation pulse (time-gating). The ratiometric measurement allows correcting errors like fluctuation in laser intensity. 

 

Within all the FRET-assays the Tb-AB and QD-AB concentrations were kept constant (3 nM Tb-AB with 3 nM 

QD605-AB or QD705-AB, and 9 nM Tb-AB with 9 nM QD530-AB) while PSA concentrations, prepared in 

serum, ranged from 0.05 nM (for QD605 and QD705) or 0.1 nM (for QD530) to 9 nM. 50 µL of each AB-

conjugate (Tb-AB and QD-AB) were mixed with 50 µL of serum for a total working volume of 150 µL. The 

three immunoassay calibration curves (FRET-ratio over total PSA concentration) are presented in Figure 

3-10.  

All three assays showed a steep FRET-ratio increase with increasing PSA concentration up to ca. 2 to 4 nM, 

which was expected due to a saturation of Tb-QD FRET complexes (in the concentration range of Tb-AB or 

QD-AB). It should be noted that the FRET-ratio increase was very small (only ca. 5 % at the maximum) for 

the Tb-QD530 assay, which was most probably related to the lower Förster distance of Tb-QD530 (R0 = 6.6 

nm) compared to the values of Tb-QD605 (R0= 8.3nm) and Tb-QD705 (R0 = 11 nm). These findings can be 

understood by analyzing the overlap integrals of the different D-A pairs (cf. Figure 3-2). 
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As described in the introduction Chapter 1, one of the most important parameters in order to achieve 

efficient FRET is the overlap spectra between D and A (the emission spectra of the donor has to overlap 

with the absorption spectrum of the acceptor), is evident that for the probe QD605 and QD705 they have a 

large spectral overlap in comparison to the probe QD530. Therefore, only the latter two FRET systems (for 

which the FRET-ratio increases were ca. 45 % and 100 % at maximum) could be used for a quantitative 

evaluation of PSA immunoassays (Figure 3-10b and c). 

 

 
 

Figure 3-10. Calibration curves for total PSA (TPSA) homogeneous FRET immunoassays using Tb-QD530 (a), Tb-QD605 (b), and Tb-
QD705 (c) FRET pairs. The assays b and c could be used for quantitative analysis. Black data points (squares) were from a first set of 
experiments using PSA concentrations between 0 and 9 nM. Red data points (circles) were taken in a second set of experiments for 
a statistical analysis of LODs in the linearly increasing parts of the assay curves. Grey lines in the graphs are added to guide the eye. 
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A first assay calibration curve over a concentration range of 0 to 9 nM (black squares) revealed a linear 

FRET-ratio increase, followed by a saturation and a FRET-ratio decrease. This decrease is due to the so-

called Hook-effect, describing the increase of the fraction of single fluorophore (Tb-AB-PSA and QD-AB-PSA) 

binding complexes compared to sandwich FRET (Tb-AB-PSA-AB-QD) binding complexes. A second 

calibration curve, with many more PSA concentrations in the linearly increasing parts of the assay curves 

(red circles), was used to determine the LODs. This is done by dividing three times the standard deviation of 

the FRET-ratio from PSA-free samples by the slope of the linearly increasing part of the calibration curve in 

the 0 to 1 nM concentration range. All samples for the statistical analysis were prepared and measured in 

triplicates (n=9) apart from the PSA-free samples which were prepared 10 times and measured in triplicates 

(n=30).  

Förster distances (donor-acceptor distance of 50 % FRET efficiency) were calculated as: 

 

�� � 0.02108	�� !"#$
%&
'�

(
) nm 

 

Where: 

 

�² (orientation factor) = 2/3 

ΦTb (Tb luminescence quantum yield) = 0.67 

ȵ (refractive index) = 1.35 

J (overlap integral) = * +,-./01
231

4��

25�
 

With +,-: area-normalized Tb emission spectrum and . QD: QD molar absorptivity spectra (cf. Figure 3-2).  
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In Table 3-2 the Förster distances for all FRET-pairs and LODs obtained for the Tb-QD605 and Tb-QD705 

FRET pairs are summarized. We also added the LOD values obtained for the same Tb-to-QD FRET 

immunoassays against PSA using the readily surface-coated (thick PEG/polymer coating) hydrophylic 

QD605 and QD705 from the same supplier (Life Technologies).49 It should be noted that the only difference 

from our QD605 and QD705 samples is therefore the surface functionalization. Both Tb-QD assays with 

compact QDs provide LODs below the clinical cut-off value for PSA (4 ng/mL),26 and these LODs are also 6.2 

and 2.5 fold lower compared to the same assays using the larger commercial QDs.49 These results confirm 

the superior performance of the compact QD-AB conjugates for homogeneous FRET immunoassays.  

Table 3-2. Förster distances R0 and LODs of Tb-QD FRET immunoassays against PSA. 

Donor-AB Acceptor-AB R0 (nm) LOD (nM) 
LOD (ng/mL) 

compact QDs 

(this study) 

LOD (ng/mL) * 

Qdot ITKTM amino PEG 

Clinical cut-off  

level of PSA 

Tb-IgG QD605-F(ab) 8.3 0.12 3.7 23 

4 ng/mL 

Tb-IgG QD705-F(ab) 11.0 0.02 0.8 2.0 

Tb-IgG QD530-F(ab) 6.6 - -   

*Taken from reference.49 Same Tb-QD FRET immunoassays against PSA, which used the same commercial QDs but with a thick PEG/polymer coating 
(as provided by the supplier). 

 

In conclusion, the advantages of the compact (hydrodynamic diameter < 13 nm), stable, and strongly 

fluorescent QD-AB conjugates for clinical diagnostics has been demonstrated in Tb-to-QD FRET 

immunoassays for the detection of prostate specific antigen (PSA) in 50µL serum samples on a 

commercially available clinical fluorescence plate reader (KRYPTOR). While the spectral overlap integral of 

the 530 nm emitting probe with the Tb donor is too low for practical use, the limit of detection (LOD) 

determined for the 705 nm probe is significantly lower (0.8 ng/mL) than the clinical cut-off level (4 ng/mL); 

the LOD of the 605 emitting probe is 3.7 ng/mL. 

The achieved LODs down to 0.8 ng/mL are 2.5 fold lower than the best Tb-to-QD PSA FRET immunoassays 

reported so far that used commercial QDs with thick organic surface coatings. Another important aspect of 

this investigation was the performance evaluation of QDs with different PL emission wavelengths and 

composition (QD530, QD605, and QD705).  

This evaluation is very important for their application as acceptors in FRET assays with Tb donors because 

the variations in shapes, sizes, spectral overlap (QD absorption with Tb emission), and PL wavelength range 

lead to differences in FRET and detection efficiencies, which can result in significant differences in 

sensitivity. 
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3.2 Dual modality probes by grafting of lanthanide complexes on the QD 

surface 

 

In this section the development of a dual modality probes for Magnetic Resonance Imaging (MRI) and 

fluorescence imaging will be presented. The InP-based QDs (QD530) have been used for these studies as 

they have a high potential as less toxic nanocrystals in biological imaging application. Part of these results 

have been recently published.133 

MRI is an imaging technique based on Nuclear Magnetic Resonance (NMR) where a map of 1H NMR signals 

from a given sample is generated.134 It is a widely applied imaging technique, which allows the non-invasive 

acquisition of anatomical images with high spatial resolution, using the body’s natural magnetic properties 

to produce detailed images from any part of the body. For imaging purposes, the hydrogen nucleus is used 

because of its abundance in water and fat. However, MRI is also a low sensitive technique. Indeed, most 

diseases manifest themselves by an increase in water content, so MRI is a sensitive test for the detection of 

disease. The exact nature of the pathology can be more difficult to ascertain: for example, infection and 

tumor can in some cases look similar. This drawback can be overcome by the introduction of external 

agents, named contrast agents, which increase the signal intensity. Among the most commonly employed 

molecules to induce an improvement in signal intensity, the lanthanide complexes, mainly Gd3+ complexes 

are the most efficient.135 A further strategy to improve the image quality is the combination of different 

imaging modalities, in order to create a multimodal agent. Bimodal Optical Imaging (OI)/MRI, is of 

particular interest due to the great gain in sensitivity by OI.136 Indeed, a bimodal probe allows combining 

the high resolution of MRI with the high sensitivity of optical imaging. 

This section is devoted to the study of grafting lanthanide complexes on QDs to be used as probes for MRI 

and for OI. One way of preparation of these probes is to graft Gd complexes on quantum dots (Figure 3-11). 

The replacement of gadolinium by another lanthanide (i.e. Eu, Tb, Yb) allows us studying the mechanisms of 

charge or energy transfer. In these systems, the QDs can act as antenna for sensitizing the emission of the 

grafted Ln ions. 
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3.2.1 Grafting of Gd complexes on InPZnS@ZnSe/ZnS nanocrystals and MRI studies 

 

Lanthanide ions have attracted broad attention for a wide range of applications spanning from material 

science to bioanalysis due to their specific intrinsic photophysical properties, narrow emission lines, large 

effective Stokes shifts, high resistance to photobleaching.137-139 In this study, we carried out the preparation 

of bimodal probes by grafting gadolinium picolinate complexes (Gdebpatcn) with three different spacers 

(lipoic acid, mercaptobenzoique and methylenemercaptobenzoique) on the In-based QDs (QD530). 

Gd(DO3ApropSH) has been tested as well to compare with a system already reported in literature. The 

molecular structures of the Ln complexes are presented in Figure 3-11, they have been prepared by Maria 

Moula-Karimdjy during her PhD thesis at CEA/INAC/SCIB Grenoble. The grafting of the Gd complexes on the 

InPZnS@ZnSe/ZnS-Pen QDs (QD530) was achieved following a procedure reported earlier in our 

laboratory.140 Briefly, it relies on adding 200 equivalents of Gd-complexes to one equivalent of QDs in 

presence of 9000 equivalents of tris(carboxyethyl)phosphine (TCEP) as a reducing agent and followed by 

vortexing (800 rpm) for 12hs at 20°C. TCEP is used to cleave and to avoid the formation of the disulfide 

bonds, in situ facilitating the grafting of thiols on the ZnS shell. As the reducing ability of TCEP is 

compromised at higher pHs, only slightly basic pH (9) was maintained to facilitate thiolate formation and 

drive the ligand exchange process. After purification the spectroscopic properties of the QDs did not 

change. The fluorescence quantum yield is 8% in 1xPBS (Table 3-3). 

 

Figure 3-11. Diagram showing the grafting of the Gd complexes on penicillamine capped In-based QDs. Gd1 [Gd(ebpatcnSS)]; 
Gd2[Gd(ebpatcnSH]; Gd3[Gd(ebpatcnCh2SH)]; Gd4[Gd(DO3ApropSH)].  
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These Gd complexes have been selected due to their good performances and characteristics obtained 

before in our laboratory:  

• the lipoic acid spacer (Gd1), offers the possibility to grafting a great number of complexes, due to 

their long chain; 

• the mercaptobenzoique spacer (Gd2), gives a high relaxivity for Gd thanks to their rigidity; 

• the methylenemercaptobenzoique (Gd3), for combining the rigidity with the steric distance. 

• The [Gd(DO3ApropSH)(H2O)] (Gd4) has also been selected to have a comparison with this standard 

contrast agents 

 

The first evidence of successful grafting comes from the increase of the mean hydrodynamic diameters 

from around 6nm for the penicillamine (Pen) capped QDs to 8-10 nm depending on the different Gd 

complexes grafted as shown in Figure 3-12A.  
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Figure 3-12. A) DLS spectra of QD-Pen before (black) and after (red) grafting Ln-complexes: a) Gd1 [Gd(ebpatcnSS)]; b) Gd2 

Gd(ebpatcnSH; c) Gd3 [Gd(ebpatcnCh2SH)]; d) Gd4 [Gd(DO3ApropSH)].B) Transmission electron micrographs of QD530 and QD-
Gd1 at two different magnifications. 

 

In addition, we investigated the fluorescence properties of QD530 grafted with the different Gd complexes. 

Figure 3-13 shows the absorption and photoluminescence spectra of the samples. The absorption spectra 

show the excitonic peak around 450 nm. As described in the chapter 2 (experimental section), we 

experimentally determined the molar absorptivity of ɛ450nm(QD530) = 4.2 x 105 M-1 cm-1 in relation to the 

first excitonic peak and the diameter following the equation described in the experimental section. These 

data allow us calculating the concentration of the QDs. The intensity of excitonic peak is not the same and a 
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slight spectral shift is observed. The former is likely caused by concentration differences, while the latter 

arises from small differences in the batches of the used QDs.  

 

 

Figure 3-13. Absorbance (left) and luminescence spectra (right) of QD-Pen (QD530) after grafting with Gd complexes 

 

The emission efficiency of QDs is expressed in terms of the fluorescence quantum yield (QY), which is the 

ratio between the number of absorbed photons and the number of emitted photons (described in the 

experimental part). We observed a slight diminution of the QY after grafting Gd complexes, but in general 

the presence of Gd complexes did not change significantly the optical properties of QD530 (Table 3-3).  

 

Table 3-3. Fluorescence QY before and after grafting of the Gd complexes 

 QY before grafting (%) QY after grafting (%) 

GdebpatcnSSQD (Gd1) 8 7 

GdebpatcnSQD (Gd2) 7 6 

GdebpatcnCH2SQD(Gd3) 8 6 

GdDO3ApropSQD (Gd4) 7 6 

 

The zeta potential values are between -40 and -30 mV confirming sufficient electrostatic repulsion for good 

colloidal stability and moreover no significant change was observed after the grafting. Second, the nuclear 

magnetic resonance dispersion (NMRD) profile of the purified sample showed a marked increase in 

relaxivity, r1 at around 20 MHz as compared to the free Gd complexes (Figure 3-14). The relaxivity – the 

increase of 1/T1 per mM of added Gd complexes – is the efficiency of contrast agents. 

It should be noted that the complex properties that affect relaxivity of water protons are (a) the hydration 

number, q (b) the distance between the water proton and the unpaired electron spin of the Gd ions, r (c) 

the rotational correlation time, τR (d) the water exchange rate, τm i.e. the rate of water exchange between 

the water molecule directly coordinated to the Gd ions and the water present in the bulk solvent and (e) 
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the electronic relaxation time, T. The intensity of the MRI signal depends on the relaxivity of water protons; 

with increase in r1 the MRI signal increases.141 The presence of Gd complexes improves the MRI signal by 

increasing the relaxivity (r1) of the surrounding water molecules. The increase in r1 depends on both the 

properties of the complex as well as the applied magnetic field. In NMRD experiments the dependency of 

the relaxivity on the magnetic field and the profile is also affected by the change in the properties of the 

complex in the presence of QDs. The NMRD profiles of the different samples are shown in Figure 3-14, 

which plots the variation of the relaxivity as a function of the applied magnetic field. 

 

 

 

Figure 3-14. NMRD profiles for the different Gd complexes grafted on the QD surface indicating the relaxivity per Gd ion. 

 

The increase of relaxivity depends on the number of complexes grafted per QD and on the spacer used. The 

number of complexes per QD was determined by combining two techniques, absorption spectroscopy to 

determine the concentration of QDs and Gd complexes in solution and magnetic susceptibility 

measurements to know the global complex concentration. This allows us measuring the number of Gd 

complexes per QD: 110, 30, 80, and 50 for Gd1=[Gd(ebpatcnSS)]; Gd2=[Gd(ebpatcnSH]; 

Gd3=[Gd(ebpatcnCh2SH)]; Gd4=[Gd(DO3ApropSH)], respectively (cf. Table 3-4).  

The flexible lipoic acid spacer (Gd1), allows for grafting the largest number of complexes on the QD surface 

(110), due to the decrease in the steric interactions between the complexes and QDs. The phenyl spacer 

(Gd2), on the other hand, shows the smallest number for complexes par QD, but by adding methylene 

group (Gd3) between the aromatic group and the amide bond, the steric interaction decreases and this 

feature offer the possibility to grafting a larger number of complexes on QD surface. Due to their rigidity, 

the phenyl spacers result in a stronger increase of relaxivity per Gd, up to 37 mM-1s-1 per Gd at 35 MHz and 
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25°C, which represents an almost tenfold increase with respect to the standard commercial contrast agent 

(GdDOTA: 4.3 mM-1s-1). 

Table 3-4 summarizes the number of complexes per QD as well as r1 of the free and grafted complexes.  

 

Table 3-4. Relaxivity r1 in mM-1s-1 at 35 MHz and 25° C for gadolinium complexes in solution and after grafting on QD surface. For 
comparison r1 (GdDOTA) = 4.3 mM-1s-1 at 35 MHz and 25°C. 

 

 r
1
  r

1
 per Gd Number of complexes per 

QD 
r

1
 per QD  

 Free complexes Grafted complexes 

Gd1 4.18±0.05 14±1 ~ 110 ~ 1500 
Gd2 1.76±0.05 30±2 ~ 30 ~ 900 
Gd3 4.31±0.05 37±2 ~ 80 ~ 3000 
Gd4 1.23±0.05 29±2 ~ 50 ~ 1500 

 

Summarizing, we have demonstrated the preparation of a well MRI/optical probes based on less toxic InP 

QDs, which show high relaxivity obtained by the direct covalent attachment of Gd complexes to the 

nanocrystal surface. In particular, the use of a flexible and long spacer results in a small effect on the 

relaxivity (Gd1), while using a more rigid spacer such as mercaptobenzoic (Gd2) and 

methylenmercaptobenzoic (Gd3), induces a significant increase of r1 per Gd. Moreover, in Gd3 the 

presence of a methylene group in vicinity of the thiol anchoring function allows reducing the steric 

interactions and results in a larger number of complexes, grafted on QDs surface. This system results in the 

highest r1 per Gd among the systems used in this study and is a promising progress towards bimodal 

probes. 
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3.3 Grafting of Eu, Tb and Yb complexes on InPZnS@ZnSe/ZnS nanocrystals and 

optical studies: energy transfer vs. dual emission probes 

 

The versatile synthetic strategy used herein allows the introduction of additional modalities on the QDs. 

Indeed we also demonstrate the covalent attachment of the chemically equivalent visible and NIR emitting 

Tb, Eu and Yb complexes that will be presented in the following paragraphs.  

 

Biluminescent Ln-QD conjugates with energy transfer from the QD to a Ln can also find applications as light 

sources in white LEDs.142 Moreover, the size-tunable absorption and emission wavelengths and the large 

absorption cross sections make QDs appealing chromophores for the sensitization of various LnIII ions. The 

sensitization of LnIII emission by QDs has not been achieved so far in QD-Ln conjugates. In fact, to date only 

the luminescence sensitization of TbIII in doped CdSe and of EuIII in doped InPZnS nanocrystals have been 

reported.143, 144 

In the first section of this chapter the energy transfer from the lanthanide to the QD has been applied to 

develop highly sensitive in time-resolved fluoroimmunoassay. Here the energy transfer from the QD to 

lanthanides is investigated. 

The same batch of core@shell InPZnS@ZnSe/ZnS QDs (QD530) functionalized with Pen has been used to 

graft the Eu, Tb and Yb complexes and the ligand Gd1-[Ln (ebpatcnSS)] (cf. Figure 3-11) was chosen, which 

provides strong grafting via its dithiol function. Figure 3-15 shows the grafting of the Ln complexes on the 

QD530 surface that was achieved following the same procedure as described before for the Gd 

complexes.140 

 

 

Figure 3-15. Scheme showing the grafting of Ln complexes (Ln= Eu, Tb and Yb) on QD530. 

 

As for the Gd complexes, DLS measurements revealed that the QD-Ln conjugates show an increase of the 

hydrodynamic diameter (from 6 nm to 9-10 nm) and a narrow size distribution (Figure 3-16).  

  



CHAPTER III. Application of QDs in biological detection and imaging 

 

74 
 

The zeta potential values are again between -40 and -30 mV. The UV-Vis and PL spectra were not affected 

by the grafting (cf. Figure 3-17). However, we noted a difference in the PL quantum yield and lifetime. The 

QY of the used QD530 was 15%, after grafting of the complexes on the QD surface, values in the range of 1-

10% have been measured, depending on the grafted Ln complex (Table 3-5). 

 

 

Figure 3-16. DLS spectra of QD-Pen before (black) and after (red) grafting, of the Ln complexes [Ln(ebpatcnSS)] with a) Ln=Eu, b) 

Ln=Tb and c) Ln=Yb. 

 

The PL lifetimes have been fitted with 3 exponentials using the following Formula:145 

   

With  ti: Life time 

 α: weighing factor 

 

The shortest decay lifetime is typically associated with surface related traps of shallow nature, the two 

longer ones with excitonic recombination and defects on the core/shell interface. 

 

 

Figure 3-17. UV-Vis absorption (left) and photoluminescence spectra (right), excitation wavelength: 400 nm, of QD-Pen (QD530) 
after grafting with Ln complexes. 
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Table 3-5. Quantum yield (Φ) and lifetimes (τ ) before and after grafting 

 QD530 QD-Eu QD-Tb QD-Yb 

Φ 15 1 10 5 

τ1 (QD) 3.9 0.9 3.3 3.2 

τ2 (QD) 22.9 5.6 18.9 16.4 

τ3 (QD) 83.6 55.6 71.8 61.8 

 

The decrease of PL QY and concomitant decrease of the lifetimes suggest an energy transfer from QDs to Ln 

complexes providing an additional deexcitation path to radiative recombination. This drop is the most 

pronounced for QD-Eu and the least one for QD-Yb. The values of the lifetime follow the same trend. To 

confirm the Ln sensitization via the QDs, PL measurements were performed using 273 nm and 370 nm as 

excitation wavelengths (Figure 3-19). The former excites both the piconilate ligand and the QDs, the latter 

excites exclusively the QDs. 

Direct excitation at the absorbance band of the picolinate ligand (273 nm) resulted in the characteristic 

Eu(5D0→7Fj) and Tb(5D4→7Fj) luminescence emission of the EuIII and TbIII complexes (Figure 3-18). In 

addition, the emission spectra show a band centered at 525 nm resulting from the photoluminescence of 

the QDs. In QD-Yb, the excitation at 273 nm in the absorption band of the ligand did not result in the 

luminescence emission of the YbIII in the near infrared region. In this case the sensitization of YbIII through 

the ligand is not possible. Indeed, for QD-Yb, excitation at 273 nm results in the absence of emission, 

probably due to a weaker efficiency of both the Xenon lamp (low power) and the gratings (tail) in this 

region compared to 370 nm. The combination of these two factors makes the YbIII NIR luminescence too 

weak to be detected at 273 nm as observed for QD-Eu. 

Moreover, the presence of a coordinated water molecule leads to deactivation of the YbIII luminescence 

emission. On the other hand, excitation at 370 nm results in a weak emission of the EuIII at 618 nm (Figure 

3-18, left) and of YbIII at 978 nm assigned to the 2F5/2�
2F7/2 transition (Figure 3-18, right and Figure 3-20). 

The presence of QD-sensitized EuIII and YbIII emission was confirmed by the absence of luminescence when 

the free complexes were excited at 370 nm. For QD-Eu, the decrease of the QD lifetimes is most 

pronounced, while the EuIII emission lifetime measured in QD-Eu is similar to the one measured in the free 

complex in water (0.49 and 0.48 ms, respectively). These data indicate that an energy transfer occurs in 

QD-Eu from the QD to EuIII but is quenched by probable non-radiative deactivation pathways, the emission 

of the QD and the first accepting electronic level of the EuIII (5D0) being very close in energy and in 

resonance.  
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Figure 3-18. (Left) Normalized absorption spectra of QD530 (blue) and emission (Ex at 273 nm) spectra of QD (green), QD-Ln (Tb: 
orange, Eu: red); (right) normalized emission spectra (Ex at 370nm) of QD-Yb in the Vis (red) and NIR range (blue).133 

 

 

Figure 3-19. Excitation (at 273 nm and 370 nm) and emission spectra of QD-Eu (left) and QD-Tb (right) in 1X PBS buffer. 
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For QD-Tb, the decrease of the QD lifetime is less significant compared to QD-Eu and QD-Yb. Moreover, in 

that case, the emission of QD overlaps the Tb (5D4) level, suggesting no (or little) energy transfer in this 

case. 

 

Figure 3-20. Energy levels and transitions of Eu3+, Tb3+, Yb3+ and QD530. 

 

3.4 Conclusion 

 

In this chapter the interaction and specific optical properties of QDs and Ln complexes have been explored 

for creating novel probes for biological detection and imaging. In the first section we used a terbium 

complex as a FRET donor and InP- or CdSe-based QDs as FRET acceptor in homogeneous immunoassays for 

detection of PSA. In this type of immunoassays the relatively large dimensions of the biological recognition 

system that contains antibodies, biomarkers, and a nanoparticle have limited the application of QDs.146 

While, Tb-to-dye FRET immunoassays have been demonstrated for the multiplexed detection of up to five 

different tumor markers,47 the application of Tb-to-QD FRET has so far been limited to the detection of 

single antigens. Lab-synthesized QDs have been used for the detection of alpha-fetoprotein (AFP) and 

carcinoembryonic antigen (CEA) in buffered solution116, 117 and commercial QD-antibody conjugation kits for 

the detection of prostate specific antigens (PSA) or the epidermal growth factor receptor (EGFR).11, 119 

In this study we presented a two-step procedure for the preparation of compact, highly luminescent, and 

colloidal stable QDs that were further used for the simple and functional conjugation with fragmented F(ab) 

ABs, to yield the smallest fluorescent AB-nanoparticle conjugates reported to date. This compact size is an 

efficient means to maximize the FRET efficiency and hence the sensitivity of the assays. In the first step 

aqueous phase transfer was achieved by ligand exchange with zwitterionic penicillamine. The second post-
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functionalization step introduced a bifunctional ligand, which contained reactive maleimide functions. The 

latter could be used for the selective and stable conjugation to sulfhydryl groups on ABs. Although this 

bioconjugation strategy was demonstrated only with InPZnS@ZnSe/ZnS, and CdSe@ZnS core/shell QDs and 

F(ab) antibodies, we expect that it is applicable to a wide variety semiconductor nanocrystals and metal 

nanoparticles containing surface atoms with binding affinity for thiolate ligands and biomolecules 

containing sulfhydryl groups (e.g., on available cysteines).  

The immediate applicability of the compact QD-AB conjugates to biosensing was demonstrated in 

homogeneous FRET immunoassays against PSA, using Tb-ABs as FRET donors and the QD-ABs as FRET 

acceptors, both coupled by an immunological sandwich complex between the two ABs and the PSA 

biomarker. Detection of PSA in 50 μL serum samples with subnanomolar (20 pM = 0.8 ng/mL) detection 

limits showed the clinically relevant concentration range, in which these FRET immunoassays can be 

applied for. Not only were the LODs of two Tb-QD FRET immunoassays (using 605 nm and 705 nm emitting 

QDs) well below the clinical cutoff value of PSA (4 ng/mL), the utilization of the compact QD-AB conjugates 

also provided a 6.2 and 2.5 fold sensitivity improvement compared to the same commercially available QDs 

that were purchased with a standard PEG/polymer-based coating. These highly sensitive and homogeneous 

Tb-to-QD FRET immunoassays are suitable for any other biomarker against which two specific ABs exist. 

Our results show that the compact QD-AB conjugates have a large potential for improving diagnostic 

applications, and given the multiplexing capability of Tb-QD FRET, and demonstrated that these small 

nanoparticle-AB fluorescent probes will become important players in clinical in-vitro diagnostics. 

In the second part of this chapter QDs and LnIII complexes have been chosen to promote either the 

generation of dual modality (MRI/PL) or dual emission (QD and Ln) probes. Here we focused on InP-based 

QDs, due to their lower toxicity compared to CdSe-based QDs. The obtained results show that an efficient 

grafting of various Ln complexes on the QDs surface has been obtained.  

The incorporation of Gd complexes with a more rigid spacer such as mercaptobenzoic and 

methylenmercaptobenzoic, induced a significant increase of the relaxivity. Moreover the presence of 

methylene groups allowed reducing the steric interactions and linking a larger number of complexes on the 

QDs surface. This system is promising for future application in vivo as bimodal probes combining MRI and 

fluorescence imaging capabilities. 

Finally, the synthesis of stable hybrid nanoparticles combining InPZnS@ZnSe/ZnS QDs and grafted 

Luminescent Ln Complexes has been performed. The obtained QD-Ln conjugates demonstrate the potential 

of using QDs to sensitize both the visible and NIR emission of lanthanide ions incorporated into QD grafted 

complexes. One exception are QD-Tb conjugates for which the photophysical properties only slightly 

change. In this case, the emission of the QDs overlaps the Tb (5D4), first accepting level with the presence of 

a back transfer from Tb to the QDs. When the energy level of the excited state of the Ln ion is lower than 

the QDs ones, the QDs can populate the energy levels of the excited state of Ln and the Ln reemits this 
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energy. On the other hand, when the energy level of the Ln is higher than the QDs one, there is a possibility 

that a back transfer occurs. And, we clearly demonstrated an energy transfer for QD-Eu and QD-Yb. 

The exact mechanism of this energy transfer is unclear and future studies will be directed towards the 

optimization of the transfer through an appropriate matching of the Ln and QD energy levels and the 

thorough investigation of the transfer mechanism.147 

Finally I would like to conclude this chapter by citing Wegner and Hildebrandt: ”Although QD-based 

bioimaging is a relatively young research field and although applications as imaging agents in humans are a 

rather long-term perspective, the future of QDs for more in vitro and in vivo investigations are brilliant just 

as the QD fluorescence”.28 Indeed, despite several advantages of QDs over fluorescent proteins and other 

organic dyes they have still not become standard fluorophores for diagnostic applications or bioimaging 

tools on humans. The main reasons come from reproducibility and stability problems of QD-

bioconjugates.34 The assessment of biocompatibility and biosafety of QDs and related toxicity issues, which 

will be addressed in the next chapter, are a critical issue for further applications as well. Although toxicity 

issues have been largely resolved by the application of appropriate surface coatings so their application in 

IVD is not so much hampered by that issues, the main problem is still limiting QD application in living 

system. We will investigate the toxicity of these promising NCs in the next chapter. 
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3.5 Experimental section 

 

Chemicals. D-Penicillamine, tetramethylammonium hydroxide (TMAOH), phosphate-buffered saline 

solution (10X PBS), tris(2-carboxyethyl) phosphine hydrochloride solution 0.5 M (TCEP), 

tris(hydroxylmethyl)aminomethane (TRIS/Cl), bovine serum albumin (BSA), agarose powder, indium acetate 

(99.99%), myristic acid (>99%), tris(trimethylsilyl)phosphine (95%), 1-dodecanethiol (97%), 1-octadecene 

(90%), were purchased from Sigma-Aldrich. Zinc stearate (90%) was acquired from Riedel de Haën. MAL-

dPEG3-Lipoic acid (Mal1) was purchased from Quanta Biodesign. QD CdSe 605 and 705 were purchased 

from Life Technologies/Thermo Fisher27 while the NHS-activated terbium complex (Lumi4-Tb) was provided 

by Lumiphore in lyophilized form. Prostate specific antigen (PSA) and monoclonal primary antibodies 

against PSA (IgGs: “PSR222” and “PSS233”) were provided by Cezanne/ThermoFisher. Solvents were 

purchased from Aldrich, Fluka, and Acros, and used without further purification. All water solutions were 

prepared from ultrapure laboratory grade water (resistivity 18 MΩ cm) that was filtered and purified using 

a Millipore MilliQ cartridge system and autoclaved. 

Instruments. Absorption and emission spectra were recorded on the following spectrometers: HP 8452A 

and Perkin Elmer Lambda 35 for UV-Vis absorption; Hitachi F-4500 fluorescence spectrophotometer 

equipped with a 150 W xenon lamp and excitation monochromator as well as PicoQuant Fluotime 300 for 

photoluminescence (PL). Decay curves were acquired on the Fluotime 300 and fitted using EasyTau 

(PicoQuant). The hydrodynamic diameter (by dynamic light scattering) and zeta potential of the NCs 

dispersed in water were measured using a Malvern Zeta Sizer (NanoZS). Fourier transform infrared (FTIR) 

spectra were taken on a Perkin Elmer Paragon 500 spectrometer equipped with an attenuated total 

reflection (ATR) setup. Gel images were acquired using a Gel Doc XR system (Bio-Rad, Hercules, CA). HRTEM 

analyses were performed on a JEOL 3010 working at 300 kV, equipped with a LaB6 gun and a Gatan Orius SC 

200 2k x 2k CCD camera. 

InPZnS@ZnSe/ZnS QD Synthesis. The synthesis of InPZnS@ZnSe/ZnS alloy core gradient shell nanocrystals 

is based on reported procedures.23, 97 All procedures except for nanocrystal purification have been carried 

out under inert atmosphere. 

Preparation of precursor solutions. For the preparation of the indium myristate (In(MA)3) stock solution 

(0.1 M), 1 mmol of anhydrous indium acetate was mixed with 3 mmol of myristic acid (MA) and 10 mL of 1-

octadecene (ODE) in a 50 mL three-neck flask equipped with a condenser.  
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The mixture was heated to 100-120 °C for 1 h under vacuum until an optically clear solution was obtained. 

After backfilling the flask with Ar and cooling to room temperature, the turbid solution of indium myristate 

was stored in a glovebox. For the zinc oleate (Zn(OA)2) stock solution (0.4 M), 5 mmol of zinc acetate, 10 

mmol of oleic acid (OA) and 9.35 mL of ODE were loaded into a 50 mL three-neck flask and the same 

procedure as for the preparation of In(MA)3 was followed. The zinc stearate (Zn(St)2) stock solution (0.1 M) 

was prepared by heating 1 mmol of Zn(St)2 with 10 mL of ODE at 120°C for 1 h. A 0.4 M TOPSe stock 

solution was prepared by dissolution of 2 mmol of Se powder in 5 mL of trioctylphosphine (TOP) under 

stirring for 24 h. A TOPS stock solution was prepared with the same procedure using elemental sulfur. 

Synthesis of InPZnS alloy nanocrystals. In a glovebox, 1 mL of the In(MA)3 stock solution (0.1 mmol 

In(MA)3), 1 mL of the Zn(St)2 stock solution (0.1 mmol), 0.1 mmol of 1-dodecanethiol (DDT) and 7.5 mL of 

ODE were added to a 50 mL three-neck flask. Afterwards the flask was equipped with a condenser and 

connected to a Schlenk line. Next, the mixture was heated under vigorous stirring to 300°C with a ramp of 

around 60°C/min using a molten salt bath. When the temperature inside the flask reached 100°C, 0.1 mmol 

of tris(trimethylsilyl)phosphine (P(TMS)3), diluted with 1 mL of ODE, were injected. During the heating, NC 

formation is visible by the color change of the reaction mixture to dark yellow/orange. After 30 min, the 

reaction mixture was cooled to below 220 °C to stop growth.  

Growth of a ZnSe/ZnS gradient shell. For the ZnSe/ZnS gradient shell growth, a 10 fold excess of precursors 

was used with respect to the core synthesis, and a Se:S ratio of 0.2. Briefly, Zn(OA)2 (1 mmol, 2.5 mL of the 

0.4 M stock solution) was added dropwise to the reactive mixture at 220°C. This was followed by the 

successive injection of TOP-Se (0.2 mmol, 0.5 mL of the 0.4 M solution) and TOP-S (0.8 mmol, 2 mL of the 

0.4 M solution). The resulting mixture was heated to 300°C within 10 minutes and then kept at this 

temperature for 20 min. After cooling down to room temperature, purification of the QDs was performed 

via three cycles of precipitation/redispersion. First, 10 mL of a 1:1 (v/v) mixture of chloroform/methanol 

and 100 mL of acetone were added. Then the resulting suspension was centrifuged (8000 rpm for 5 

minutes), the supernatant discarded and the obtained solid dispersed in 5 mL of chloroform. Finally, the 

QDs can be dispersed and stored in a variety of organic solvents, like hexane, toluene or chloroform. 

Purificationbefore phase transfer. Thorough purification of the initial QDs, enabling the complete removal 

of excess surface ligands or side-products is crucial for successful phase transfer. 1 mL of the 

InPZnS/ZnSe/ZnS QDs in chloroform were mixed with anhydrous ethanol (1mL) and centrifuged at 10 000 

rpm for 2 minutes.  

The clear solution of supernatant was discarded and the precipitate was dispersed in 1 mL of chloroform. 

This cycle was repeated three times. For the commercial CdSe/ZnS-based QDs in decane the solvent was 

changed to chloroform prior to phase transfer. 4 mL of a methanol/isopropanol (3:1 v:v) mixture were 

added to 1mL of the QD colloidal solution and centrifuged for 2 min at 10 000 rpm. The supernatant was 

discarded and the resulting pellet dispersed in 1mL of chloroform.  
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Phase transfer. A 0.2 M solution of penicillamine (containing 200 µL of 0.5 M TCEP) was prepared in 1 mL of 

degassed MilliQ water (18 MΩ). The pH was adjusted to 9 by drop-wise addition of 0.5 M TMAOH. 500 μL of 

the phase transfer solution was mixed with 1 mL of a 3-5 μM colloidal solution of QDs in chloroform. The 

biphasic mixture was stirred vigorously at ~1400 rpm for 2 h at room temperature. At the end of the 

transfer, affording QD-pen, the biphasic mixture results either in a clear separation of two phases or in an 

emulsion. In the latter case, the mixture is centrifuged at 5000 rpm for 1 min to obtain a clear phase 

separation. The QDs in the (upper) aqueous phase are separated from the (lower) organic phase. 

Purification and storage. A NAPTM-5 -10, -25 size exclusion column (SephadexTM G-25 DNA Grade from GE 

Healthcare) was vertically clamped and equilibrated according to the manufacturer’s protocol. QDs in water 

were added and after being adsorbed on the gel bed, they were eluted using 1x PBS buffer and kept at 4°C 

in the dark for storage. 

Post-functionalization. Solutions of Mal1 (1 mL, 10 mM) and TCEP (0.046 mL, 0.5 M) in degassed water 

were added to a suspension of QD-Pen (0.5 mL, 5.2 µM in degassed water) and the pH was adjusted to 7.0 

by drop wise addition of 0.5 M TMAOH. The mixture was vortexed at 800 rpm overnight at room 

temperature. The resulting fine suspension was purified by size exclusion chromatography with a NAPTM-10, 

-25 columns (SephadexTM G-25 DNA Grade from GE Healthcare). The obtained QD-Mal1 were then 

concentrated under vacuum or by using a 30 kDa molecular weight cut-off (MWCO) spin column from 

Millipore, centrifuging at 4000g for 4 min with a final volume of 400 µL. Storage at 4°C as above. 

Preparation of QD-F(ab) conjugates. IgGs were fragmented to F(ab) using Pierce™ Mouse IgG F(ab’) F(ab’)2 

preparation kit following the instructions provided by the supplier. Prior to conjugation of the QDs to the 

F(ab)s in a molar ratio of 1:20, disulfide bonds of the latter were reduced to sulfhydryls with 5 mM of TCEP 

in 1X PBS by mixing for 30 minutes at 30 rpm at room temperature. Purification from excess TCEP was 

performed using Zeba 7K spin columns (Thermo Fisher) according to the manufacturer’s protocol. The 

resulting purified F(ab) was then mixed with the QDs in 1X PBS and incubated for 4 hours while rotating at 

30 rpm at RT.  
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Conjugates were washed from unbound F(ab)s 4 times with 1 mL 1X PBS pH 7.5 using a 100 kDa MWCO 

spin column from Millipore at 1000g. Supernatants were taken after a final centrifugation at 4000g for 5 

minutes. 

QD PL quantum yields. The absolute fluorescence QYs of the QDs were determined by comparison with a 

standard of known QY (freshly prepared solution of Fluorescein 27 in 0.1 M NaOH; QY = 93%, Rhodamine 

6G in ethanol; QY = 95%91 or QD705 in chloroform; QY=92%90). The QY was calculated with the following 

formula: 

ΦNC = ΦStandard·(aNC/aStandard)·(n2
NC/n2

Standard) 

 

Where Φ is the QY, a the gradient (slope) of the plot of the integrated fluorescence intensity vs. absorbance 

and n the refractive index of the solvent (1.375 for hexane, 1.446 for chloroform, 1.333 for water and 

buffer and 1.36 for ethanol30). All spectra were corrected for the instrumental response with calibration 

curves furnished by the supplier and the estimated errors on QY are ± 15% of the calculated values. 

Aliquots or purified samples of the QDs in hexane, chloroform or water were put into 1 cm quartz cuvettes 

and diluted until the absorbance at the excitation wavelength was around 0.1. At least four samples of 

different concentration were prepared and measured for determining the slopes. Both the sample and the 

reference were excited at 460 nm for InP based QDs and at 480 mn for CdSe based QDs.  

Hydrodynamic size and dispersibility of QDs. The hydrodynamic diameter of the water-soluble QDs was 

measured by dynamic light scattering (Malvern Zeta Sizer NanoZS). Multiple runs (>3) were performed and 

averaged, and the QDs in 1X PBS buffer were filtered (0.22 µm) prior to the measurements. The spectra 

have been corrected by the instrument software for viscosity (0.882 mPa s at 25 °C), absorption (0.01), 

solvent (water) refractive index (1.33) and material refractive index (assumed as 2.7 and 2.45 for In- and 

Cd-based QDs, respectively31). The data were collected in automatic mode and expressed in number %. The 

zeta potential was measured using the same instrument under zeta potential settings.  

Gel electrophoresis. A 1% gel was prepared in 25 mM Hepes buffer (pH 7.4) and poured in a 10.7 x 5.2 cm 

gel tray leveled in a gel caster (RunOne System). A comb (12 wells) was placed into the gel. The gel was 

allowed to cool down to room temperature and to solidify within at least 1 hour. The comb was removed 

and the gel was taken out of the casting device and placed into the electrophoresis device which was filled 

with 25 mM Hepes buffer pH 7.4 until the whole gel was covered.  
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The samples were mixed with about 20 % of their volume with the loading buffer (30 % glycerol in 25mM 

Hepes buffer with 0.3% Orange G) and carefully filled into the wells. The electrophoresis devices were run 

at a constant voltage of 100 V. After 5, 10, 15 and 30 min an image was taken placing the gel on a UV 

transilluminator (Gel Doc XR system, Bio-Rad). 

FRET immunoassays. All FRET assays contained 50 µL of each AB-Tb and QD-AB conjugate (in 10 mM 

TRIS/Cl; 0.5% BSA pH 7.4) at constant concentrations, to which 50 µL of serum with increasing 

concentrations of TPSA was added. The homogeneous FRET immunoassays were measured on a modified 

“KRYPTOR compact plus” clinical fluorescence plate reader from Cezanne/Thermo Fisher. The reader 

simultaneously detects the time-gated PL intensities, in a time window from 100 µs to 900 µs, in the Tb 

donor and the QD acceptor channels. 

Preparation QD-Ln. Solutions of lanthanide complexes (0.25 mL, 2.1 mM, 200 eq) and TCEP (0.046 mL, 0.5 

M, 9000 eq) in degassed water were added to the suspension of QD-Pen (0.5 mL, 5.2 μM, 1 eq) in degassed 

water, and the pH of the resulting suspension was adjusted to 9 with 0.5 M tetramethylammonium 

hydroxide solution (TMAOH). The mixture was shaken at 800 rpm overnight at 20°C. The resulting colloidal 

solution was purified by size exclusion chromatography with a NAPTM-25 columns (SephadexTM G-25 DNA 

Grade from GE Healthcare) eluted in 1x PBS buffer. 

The number of LnIII complexes per QD was determined for independent syntheses by combined magnetic 

susceptibility measurements (on the Gd complex) and UV-visible spectroscopy. 
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4 Nanotoxicology studies on QDs 

4.1 Introduction 

 

In this chapter we will focus on nanotoxicology studies on QDs providing firstly a brief literature overview 

and secondly the results obtained in the framework of two collaborations with specialists in this 

interdisciplinary field, which have been initiated during my thesis. 

As already mentioned in the first chapter, it is extremely important to address these issues. While a huge 

body of work exists on inorganic nanoparticles (e.g. TiO2, ZnO, Au, Ag, etc.), nanotoxicological studies on 

QDs focus mainly on Cd-based materials. Moreover, the comparability of the data suffers from variations in 

the sample preparation and used methodology. In the case of InP QDs, only very scarce literature data 

exists.18, 19 Indeed, new bio/non-bio interactions have to be taken in consideration as soon as a biological 

molecule is linked to a nanoscale support. Nanosized functional objects present chemical and physical 

characteristics at the same size scale (or even smaller) as that of cell surface receptors and they may 

interfere with cellular processes, eliciting undesired responses, such as cell uptake, sequestration in 

endosomal/lysosomal compartments, and activation of signaling cascade pathways or affecting the 

epigenetic program.148  

Moreover, the widespread use and the fast-growing advances in the synthesis and engineering of colloidal 

NCs for manifold applications, spanning from biology, optics, electronics to medicine,5 has promoted the 

need to investigate potential toxic effects due to unintentional release or contamination of the 

environment through powder/water waste-streams65-68 and even an urgent evaluation of their toxicity on 

human beings is strongly needed. In fact, the employment of nanoparticles in biomedical research and 

clinical practices for diagnosis and therapy need adequate toxicological evaluation, so that this technology 

can be used in a responsible and sustainable manner and with minimal risks for human health.149, 150 The 

elicitation of several pathways concerning the internalization, the activation of genetic cascades, and 

biochemical networks151 have been found upon NPs exposure. However, the whole processes provoked in a 

cell/living organism upon NP exposure are complex and dependent on the NP and the biological target. 

Recent literature suggests manifold pathways possibly involved, from oxidative stress to pro-inflammatory 

gene activation151-153 but still remain separate pieces of a complex puzzle.154 

The exposure routes of nanomaterials envisaged in humans are inhalation (principal channel for the 

worker), ingestion (predominant pathway for the general population) and skin contact. While the 

pulmonary route has been subject of numerous research projects, the toxicity in the other two channels is 

much less explored. In the case of high tech products containing QDs, the manufacturing phase does not 

appear to be a critical phase from the point of view of health and environmental risk. Indeed, most often, 

these QDs are synthesized in organic phase and the steps of the manufacturing process (e.g. use in 



CHAPTER IV. Nanotoxicology studies on QDs 

 

86 
 

optoelectronics, like displays and screens) involve inclusion in polymer matrices in the early stages of 

manufacture. This embedding and also the fact that QDs are colloids with surfactants which tend to stick to 

surfaces very strongly decrease the risk of exposure via inhalation as the volatility of these NCs is extremely 

low as compared to other types of surfactant-free nanoparticles obtained for example by grinding of ball-

milling of bulk materials.  

However, an accidental dermal exposure of the worker must be considered. The skin is the most likely body 

surface to come into contact with the nanomaterials; QDs can be absorbed through the skin into the blood. 

Moreover the skin is the largest organ of the human body and fulfills many different functions: it acts as the 

first barrier to xenobiotics, it prevents dehydration and allows the metabolism of several compounds and 

moreover it also plays an important role in the temperature regulation and in the immunological response. 

Skin absorption of nanoparticles is a wide issue, which needs to be better understood and there are 

conflicting results in the literature about QDs skin penetration. Tang and coworkers demonstrated 

penetration and permeation of QDs through rat skin, since cadmium was found inside the liver and kidney 

after skin exposure, raising concerns on QDs systemic toxicity.155  

Wang and coworkers demonstrated QD penetration into the skin only after 8 h of skin exposure but not 

after 24 h.156 In summary, QDs can permeate the skin, mostly when it is damaged or exposed to UVB light, 

and Cd leached out of the QDs can diffuse into internal organs. Accordingly, the aim of our study was to 

investigate the impact of InP-based QDs – with and without shell and using also Cd-based QDs for 

comparison –in vitro on cells extracted from human skin. In the quest of identifying QDs less toxic to human 

health we used InP as alternative material for safer and advanced biological applications. These studies 

have been carried out in collaboration with Dr. Adeline Tarantini and Dr. Marie Carrière from our Institute. 

As mentioned above, in the literature most of the studies focus on the toxicity related to Cd-based QDs and 

there are only very few reports on InP-based QDs. Moreover, working with primary keratinocytes from 

human skin biopsies is difficult due to the differences found for samples from different donators; therefore 

our approach is for the moment still in its preliminary phase. 

In a complementary study, we decided to investigate the in vivo toxicity using Hydra vulgaris– a primitive 

organism at the basis of metazoan evolution– as a model in collaboration with Dr. Claudia Tortiglione from 

the Nanobiomolecular Group at National Research Council (CNR), Pozzuoli, Italy. Hydra assays are fast, 

reliable and less expensive than cell culture assays, and yet provide an extraordinary wide repertoire of 

responses, and determination of toxicity endpoints, both in vivo and in vitro. The decision to combine and 

investigate in vivo systems was motivated by the fact that, although cultured cells represent valid models to 

describe basic interactions with nanomaterials, they do not fulfill the in vivo response complexity. Hydra is 

mainly used by biologists to study developmental and regeneration processes and has been shown to have 
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great potential, inspiring both chemists and toxicologists as a new model to decipher the molecular basis of 

the bio/non-bio interaction and to assess nanoparticle toxicity.157 Since 2007 the Nanobiomolecular Group 

at CNR pioneered the use of cnidaria species for nano-eco-toxicology study. In the following paragraph we 

will first describe the effect of QDs on Hydra vulgaris, and then the effects on primary keratinocytes from 

human skin biopsies, cultured in vitro. Finally, we will try to correlate the observed behavior of the same 

NCs in these two systems and to assess similarities and differences. 

 

4.2 Toxicity studies of InPZnS@ZnSe/ZnS-and CdSe@ZnS nanocrystals 

4.2.1 Quantum dot preparation 

 

InP-based QDs, namely InPZnS@ZnSe/ZnS core/shell NCs emitting at 530 nm (QD530) and alloyed InPZnS 

core-only NCs emitting at 510nm (QD510), are synthesized in our laboratory and transferred from the 

organic to the water phase by means of ligand exchange using penicillamine (Pen), following the procedure 

described in Chapter 2. Under optimized conditions this functionalization results in a very compact, around 

1 nm thick organic surface layer while preserving high fluorescence quantum yields. 

 

Moreover, zwitterionic Pen results in low non-specific binding and a very high colloidal stability of more 

than two years. In parallel, the same functionalization chemistry was applied on hydrophobic commercial 

QDs based on CdSe/ZnS: QD605/QD655/QD705 from Life Technologies (Thermo Fisher), emitting at 605, 

655 and 705 nm. 

The present study deals with the toxicity of InP-based QD530 whose optical properties are shown in Figure 

4-1a, in comparison with CdSe-based QD605 and QD655 (Figure 4-1c-d) used as references considering that 

their degradation and toxic effects are much better documented. In all cases the QDs are coated with an 

outer ZnS shell and present the same surface chemistry (Pen capping). In parallel the core-only InPZnS NCs 

QD510 (Figure 4-1b) are evaluated as well. For the Cd-based QDs (QD605 and QD655), the study of the 

core-only systems was not possible, because on the one hand the corresponding QDs were not 

commercially available and on the other hand CdSe core QDs prepared in our lab lost all fluorescence upon 

aqueous phase transfer with Pen. 
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Figure 4-1. UV-Vis (black line) and PL (red line) spectra of the QDs used for in vivo nanotoxicological studies in Hydra vulgaris after 
aqueous phase transfer with penicillamine (Pen): InPZnS/ZnSe/ZnS core/shell QD530 (a), InPZnS alloy core QD510 (b), CdSe/ZnS 
QD605 (c) and CdSe/ZnS QD655 (d). 
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4.2.2 Hydra Vulgaris as a model system for nanotoxicology studies 

 

In this small section we will briefly describe the structural anatomy and physiology of Hydra to facilitate the 

understanding of the mechanisms of tissue dynamics, reproduction, and regeneration, on which the 

subsequent toxicity tests rely, highlighting at the same time the advantages of using this model organism.158 

The freshwater coelenterate Hydra vulgaris belongs to the animal phylum Cnidaria that arose almost 600 

million years ago159 (Figure 4-2). 

 

 
Figure 4-2. Cnidaria position in Metazoan phylogeny. 

 
Its body plan is very simple, consisting of a single oral–aboral axis with radial symmetry. The structures 

along the axis are a head, a body column and a foot to anchor to a substrate. It is shaped as a tube, about 

5-20 mm long and 0.3-1.0 mm wide. The head is divided in two structures, the hypostome (mouth) at the 

apex; below comes the tentacle zone from which a ring of six to eight tentacles emerges (Figure 4-3). 

 

 

 

Figure 4-3. Photograph of living Hydra vulgaris showing an adult animal with a bud emerging from the gastric region. 
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The body has a bilayer structure, made of two unicellular sheets (ectoderm and endoderm) continuously 

dividing and migrating towards the animal oral and aboral extremities to be sloughed off. A third cell 

lineage, the interstitial stem cells lineage, is located in the interstices, among the epithelial cells of both 

layers and absent in the regions of the head and foot (Figure 4-4). These interstitial cells are multipotent 

stem cells that differentiate into nematocytes, secretory cells, gland cells, neurons and gametes. 

 

 

 
 

Figure 4-4. Anatomical structure of Hydra vulgaris. A) The animal is shaped as a hollow tube with a head at the apical end, and a 
foot, or basal disc at the other. The head is in two parts, the hypostome (mouth) at the apex, and below the tentacle zone from 
which a ring of six to eight tentacles emerges. B) Schematic representation of the bilayered structure of the animal: the body wall 
is composed of two self-renewing cell layers, an outer ectoderm and an inner endoderm, separated by mesoglea. Along the body 
the two epithelial layers are composed by epithelia muscular cells, while the interstitial cells and their differentiated products 
(neurons, nematocytes and secretory cells) are interspersed among the two layers. 

 

Most of the Hydra body is occupied by the gastric region, where the digestion takes place. In the lower part 

of the body the budding of new animals occurs, and this process accounts for the rapid asexual 

reproduction, which enables massive culturing of the animal in laboratory conditions. In fact the epithelial 

cells structuring the body continuously divide and contribute to the formation of new individuals, budding 

from the gastric region, and detaching from the mother in about 3 days.160 The biological cycle of Hydra, 

unlike other cnidarians, includes only one stage of polyp that can reproduce by both asexual and sexual 

means. Hydra in their natural habitat typically reproduces by budding during the regular feeding regime, 

but they produce male gametes and / or female in autumn (Figure 4-5). 

In laboratory condition, the main method of reproduction is budding. Massive culturing is achieved thanks 

to fast mitotic reproduction, warranting a large number of identical clones.161 
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Figure 4-5. Biological cycle of Hydra. Hydra polyps reproduce both sexually and asexually. 

 

The growth rate of Hydra tissue is normally regulated by a balance between the epithelial cell cycle length, 

phagocytosis of ectodermal cells in “excess”, and bud formation.162 Environmental factors, such as the 

presence of pollutants or the feeding regime, can affect this balance. Thus, the population growth rate is an 

indirect measure of the Hydra tissue growth rate and cell viability. Another peculiar feature of Hydra 

physiology is the remarkable capacity to regenerate amputated body parts (see Figure 4-6). In fact, 

following amputation at mid-gastric level, the two polyp halves immediately initiate an asymmetric process 

at the wound site: the upper half undergoes foot regeneration in about two days, whereas the lower half 

initiates the head regeneration process, which is completed in three days (Figure 4-6). Morphogenetic 

processes take place during the first 48 h post amputation, followed by cell proliferation to restore the 

adult size.163, 164 This ability of self-regeneration is due to the continuous production of adult tissue cells and 

signaling factors. The tissue regeneration shows a directional property called polarity, which confer the 

capability to regenerate a head in the apical part, and a foot in the basal extremity. The polarity depends on 

a gradient of molecules, which provide positional information.165 In contrast to vertebrates, in which the 

morphogenetic signal is active only during embryogenesis, in Hydra it is continuously active, which makes 

Hydra a source of stem cells.164 
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Figure 4-6. The regeneration process in Hydra vulgaris. After amputation, the two polyps start immediately an asymmetric process 
at the wound site: the upper half undergoes foot regeneration in about two days, while the lower half initiates the head 
regeneration process, which is completed in three days. 

 
The regeneration process can be adversely affected by the presence of organic and inorganic pollutants and 

specific assays have been developed to quantify this effect.166, 167 Hydra is very sensitive to environmental 

toxicants and it has been used as a biological indicator of water pollution. The responsiveness to different 

environmental stressors varies among different species, but it is always quantifiable by standardized 

protocols in terms of median lethal concentration and median lethal time (LC50 and LT50). For this reason, 

short term (lethality) and long-term (sub-lethality) tests based on the evaluation of polyp morphology, 

reproductive activity and regeneration efficiency can be used to test the potential toxicity/teratogenic 

effect of any kind of medium suspended compound. 

Finally, the conservation of the key regulatory genetic pathways in Hydra enabled the molecular 

characterization of QD treated polyps, through the assessment of transcriptional modulation of known or 

novel toxicity biomarkers associated to QD exposure. In a recent study, aimed to identify the molecular 

pathways elicited in Hydra by exposure to core/shell CdSe/ZnS QDs coated by a positively charged polymer, 

the authors profiled the transcriptomic changes occurring in two aquatic species (Hydra and Stylophora) by 

RNA sequencing (RNA-seq) analysis. The results showed in Hydra 2055 differentially expressed genes 

(DEGs) in response to QDs and in particular towards those that were highly up-regulated, two DEGs were 

selected, namely carbonic anhydrase and the serine protease inhibitor antistasin. These two genes showed 

the highest upregulation as proven by validation step using quantitative reverse transcription polymerase 

chain reaction PCR (qRTPCR) as well (Ambrosone et al., submitted). Therefore, these genes appear to be 

valid candidates to be analysed upon treatment with QDs of different chemical composition as they likely 

represent novel biomarkers for toxicity induced by semiconductor QDs. 
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4.2.3 In vivo and in vitro analyses to investigate interactions between semiconductor 

nanocrystals and Hydra 

 

4.2.3.1 Hydra exposure to QDs: Impact on morphology, regeneration and reproductive 

capabilities 

 

Living animals were soaked in culture medium supplemented with increasing doses of InP-based core 

(QD510) and core/shell (QD530) NCs (from 50nM to 100nM) and monitored at 24, 48 and 72h of 

incubation. The QD concentrations were selected according to the results of various experiments. 

Progressive physical damages were observed, as shown by representative images shown in Figure 4-7A. To 

describe and quantify the morphological alterations induced by NPs, a numerical score originally introduced 

in the 1980s has been used.168 This score system, initially developed to monitor and quantify the effects of 

aquatic pollutants on Hydra regenerating potential,167, 169 has been subsequently adapted and modified by 

the Nanobiomolecular Group at CNR for nanotoxicology investigations. The scores run from 10 (indicative 

of healthy conditions) to 0 (animal fully disintegrated).  

Median scores recorded at each QD test concentration decreased for treated animals with increasing 

concentration and incubation time (Figure 4-7B). By comparing the median scores of animals exposed to 

core-only QD510 and to core/shell QD530 NCs, lower values were produced at each time point and test 

concentration for the former, indicating a more toxic effect of the core-only NCs. This is not unexpected as 

the protective ZnSe/ZnS shell is supposed to prevent In3+ ions from leaching out. Moreover, these 

experiments enabled us also to determinate the doses to assess QD long-term effects; the concentrations 

of 30 nM and 70 nM were selected. 
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Figure 4-7. A) Hydra response to environmental stimuli through a broad range of morphological changes. The green arrow 
represents the score system168 used to evaluate progressive morphological changes of polyps exposed to QDs running from 10 
(normal) to 0 (disintegrated). B) Toxicity curves of Hydra polyps exposed to different concentrations of QDs. 20 polyps without bud 
were incubated with 25nM, 50nM and 100nM of QDs supplied as core-only InPZnS QDs and core/shell InPZnS@ZnSe/ZnS QDs using 
incubation times of 24, 48 and 72 h in Hydra medium at pH7. 

 

The QD toxicity screening in vivo, at whole animal level, was completed by the assessment of the impact on 

the regenerative and reproductive capabilities. As mentioned above, Hydra polyps are characterized by a 

remarkable capacity to regenerate amputated body parts: during the first 48h post amputation (p.a.) 

morphogenetic processes take place, followed by cell proliferation to restore adult size. Healthy polyps 

were bisected in the upper gastric region and allowed to regenerate (Figure 4-8A upper panel) in presence 

of 30 nM or 70 nM QDs, or in normal medium. At 48h and 72h p.a. animals were inspected for viability and 

regeneration stage. The regeneration stages are classified like in Figure 4-6. Basically, stage 0 indicates a 

complete inhibition of regeneration (0 tentacle), while stage 1 indicates heads with aberrant tentacle (one 

or two), and finally stage 2 means normal regeneration (four to six tentacles). Polyp exposure to the QD530 

core/shell NCs slightly impaired patterning during the first 48h, indeed 60% of the polyps are at stage 1; on 

the contrary exposure to core-only QD510 NCs impaired most of the polyp regeneration.  
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More precisely, after 72h all the control animals and those treated with 30 nM of QD530 have completed 

the regeneration process (100% Stage2). The other stumps are still at stage 1, namely 15% of the polyps 

treated with the higher dose of QD530 as well as 35 % and 10% of the polyps treated with QD510 (30nM 

and 70 nM, respectively). 

 

Figure 4-8. Influence of InP-based QDs on Hydra regeneration and reproduction. A) Impact of the QDs on regeneration. 20 polyps 
were bisected in the upper gastric region and incubated in presence of 30 nM and 70 nM core-only (QD510) and core/shell 

(QD530) QDs. The regenerating polyps were observed through a stereomicroscope and were grouped in three stages according to 
their number of tentacles. B) Impact of the QDs on reproduction. 5 animals with one bud were treated with 70 nM of core-only 
(QD510) and core/shell (QD530) QDs for 24 h and the following day each animal was washed and placed in a well. Both control and 
treated Hydra were fed once a day during 14 days.  
 

Beside the effect on regeneration, the reproductive capability of QD treated polyps was estimated. In 

Hydra, the epithelial cells structuring its body continuously divide, migrate toward the animal ends, 

contributing to the formation of new individuals, budding from the gastric region, and detaching from the 

mother animal in about 3 days (Figure 4-8B upper panel).162 Environmental factors, such as the presence of 

pollutants or the feeding regime, can affect this process. Thus, the population growth rate is an indirect 

measure of the Hydra tissue growth rate and cell viability. A group of founder animals (n°) either untreated 

or incubated 24h with 70nM QDs, were monitored over two weeks, and the total number of individuals (n) 

used to calculate the growth rate constant (k) over the duration of the experiment (t), is defined by the 

equation ln(n/n°) = kt. In the graph of Figure 4-8B the growth rate curve of animals treated show no 

difference from the others (k values did not evolve significantly). 
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These results indicate a slowdown in the regenerative process after QDs exposure, except for the polyps 

exposed to the lowest QD concentrations (30nM) of QD530 core/shell NCs, as all these stumps complete 

the regeneration process as in the case of the untreated animals. In light of these results it is clear that the 

core-only InPZnS NCs QD510 induce a slight effect on the regenerative capacity, compared to the core/shell 

system QD530, but not on the reproductive capacity of Hydra. The same in vivo screening was conducted 

with the Cd-based QDs QD655 emitting at 655 nm. For simplicity all the other data are not shown, but the 

behavior of this type of QDs was almost identical as that observed with QD530, i.e. no significant 

morphological changes and no impairment of the reproductive capability were found.  

In order to evaluate the efficiency of internalization of QDs, polyps were incubated for 24h with 50 nM of 

all three types of QDs (QD510, QD530 and QD655). The process was monitored with phase-contrast and 

fluorescence microscopy revealing that the QDs were internalized into the Hydra tissue, and accumulated 

into granular-like storage structures. Figure 4-9 shows the biodistribution of the InP- and CdSe-based 

core/shell QDs.  

 

 

Figure 4-9. Biodistribution of InP-based (left two columns) and CdSe-based (right two columns) core/shell QDs in Hydra vulgaris. 
For each QD type: left column: images of bright field microscopy; right column: fluorescence microscopy images showing the 
internalization of the QDs. Upper row: hypostome and tentacles, lower row: body. All scale bars: 200 microns. 

 

The low PL QY of core-only InPZnS QDs did not allow for the determination of the bio-distribution by means 

of fluorescence microscopy. However, using ICP-AES we measured the intracellular indium concentration of 

animals treated with core-only and core/shell InP-based QDs.  
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As shown in Figure 4-10, the In content is significantly higher in animals treated with the core-only InPZnS. 

Further experiments are needed to elucidate this behavior in more detail, but for the moment we ascribe it 

to either an extracellular degradation (leaching out In from the particles) or to a size effect, as the smaller 

sized core-only QDs may exhibit a higher degree of internalization. A combination of both effects is of 

course also possible. 

 

 

Figure 4-10. The intracellular In amount was evaluated by elemental analysis using ICP-AES. The Hydra polyps were incubated with 

70 nM of core-only QD510 NCs or core/shell QD530 NCs for 24 h. 

 

4.2.3.2 Hydra exposure to QDs: effects on the cellular level 

 

The study of the effects of QDs on Hydra was completed by the assessment of apoptosis and genotoxic 

effects. Apoptosis (from the Greek word meaning “falling off”, as leaves from a tree), is not a random 

process but occurs by a programmed sequence of molecular events. This programmed cell death occurs 

physiologically during the growth, development, and maintenance of multicellular organisms. Indeed, this 

equilibrium depends not only on the production of cells but also on the mechanisms to destroy them. Cells 

dying by apoptosis undergo characteristic morphological changes. They shrink and condense, the 

cytoskeleton collapses, the nuclear envelope disassembles, and the nuclear chromatin condenses (picnotic 

nuclei) and breaks up into fragments. The cell surface often bulges outward and, if the cell is large, it breaks 

up into membrane-enclosed fragments called apoptotic bodies.131 In Hydra, apoptosis is a physiological 

mechanism that keeps the size of the animal constant, as well as being involved in development processes 

and gametogenesis. To gain deeper insights into the induction of apoptosis by QDs, the detection and 

quantification of picnotic nuclei was carried out. This was evaluated by 40-6-Diamidino-2-phenylindole 

(DAPI) staining. Briefly, untreated and QD treated polyps were macerated and the single cell suspension 

was fixed with 4% of paraformaldehyde and spread on slides.  
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After extensive washing in PBS, the macerates were stained with DAPI for 2 min and washed in PBS. The 

DAPI staining of nuclei allows observing the characteristic signs of apoptosis like the nucleus damage. The 

slides were observed with phase-contrast and fluorescence microscopy to detect picnotic nuclei (Figure 

4-11). More than 300 cells were counted for each treatment and the percentage of apoptotic nuclei was 

determined. 

 

 

Figure 4-11. Microscope image of single cells prepared from QD treated Hydra. Left, an ectodermal epithelial cell in bright field. 
Right, fluorescence imaging following DAPI staining shows a picnotic nucleus (white arrow), typical of apoptosis process, in the 
epithelial cell. 

 

Figure 4-12 shows that cells treated with Cd-based (QD655) QDs for 24h show the highest percentage 

(18%) of damaged nuclei. Nonetheless, cells treated (using the same dose and time) with core-only InPZnS 

QDs (QD510) also presents 10% of damaged nuclei, compared to 4% induced by core/shell InP-based QDs 

(QD530). The presence of apoptotic nuclei (2-3%) occurring also in untreated polyps is due to the 

physiological role played by programmed cell death in the maintenance of the steady state in continuously 

renewing tissues, as reported elsewhere.170 These results demonstrate both the protective effect of the 

shell around the InPZnS core NCs and the higher toxic effect of Cd-based QDs. 

 
 

Figure 4-12. Cellular assessment of apoptosis induction by QDs. Following 24h incubation with 50 nM QDs, 20 polyps were 
macerated in single cells and the percentage of apoptotic cells was determined by counting the DAPI-stained fragmented nuclei. 

  



CHAPTER IV. Nanotoxicology studies on QDs 

 

99 
 

4.2.3.3 Genotoxic effects 

 

We further investigate the gene expression levels of two genes, antistasin and carbonic anhydrase using 

Real Time PCR (qRT-PCR). To normalize RNA levels, Elongation 1-alpha (EF1-α), was employed as internal 

calibrator (Figure 4-13). 

Antistasin, a 17kDa serine protease inhibitor –serine protease, belong to a large family of protein-cleaving 

(proteolytic) enzymes including the digestive enzymes chymotrypsin, trypsin, and elastase, and several 

proteases involved in blood clotting. Originally isolated from the salivary gland of the Mexican leech 

(Haemanteria officinalis) this protein is a potent anticoagulant by virtue of its ability to inhibit certain 

factors in the coagulant cascade and it plays a role as inhibitor of metastasis. In Hydra this gene may play a 

role as protector from the digestive enzyme secreted by the polyp itself, similar to some mammalian 

protease inhibitors.171 

Carbonic anhydrase (CA) is a metalloprotease - is a zinc-containing enzyme- that catalyzes the reversible 

hydration of carbon dioxide: CO2 + H2O ↔ HCO3− + H+. Its activity is virtually ubiquitous in nature. In the 

last years the interactions between CA and heavy metals have found a number of applications in 

environmental and health fields, including the development of biomarkers of pollution exposure, in vitro 

bioassays, and biosensors.172 Intriguing aspect of the biochemistry of CA is the inhibition by heavy metals. It 

has been documented for some species and some metals, but the mechanisms behind the inhibition are 

still unknown. These aspects it’s important and open new perspective for biomarker development.  

In summary these two genes are involved in cell stress responses and may represent novel biomarker for 

toxicity induced by semiconductor QDs. 
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Figure 4-13. Gene expression patterns of selected stress responsive genes in QDs-treated polyps analyzed by qRT-PCR. The 

Elongation factor 1-alpha (EF-1α) is used as reference gene. The data represent mean of two biological replicates. The value of each 
biological replicates is the average of three technical repeats. 
 

Animals were incubated with 50 nM and 100 nM of QDs supplied as core/shell and core-only for 8 h and 

24h, and then processed for qRT-PCR analysis, using specific primers (see experimental section). Results of 

Figure 4-13 show the gene expression level obtained. Overall, the general trend of these genes profiling 

indicates an enhancement of stress responsive genes more pronounced for the core-only. 

In detail the gene antistasin showed increased expression at the doses tested even if this evidence is more 

pronounced after 24 h for the core/shell at 50 nM. For the core-only this gene appears to be upregulated in 

all the samples analyzed (except at 50 nM after 8h). The carbonic anhydrase gene result highly 

overexpressed in all the experimental conditions indicating a great sensitivity of this gene for any type of 

treatment. 
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4.2.4 Cytotoxicity study using primary keratinocytes from human skin biopsies 

 

Although this study is still preliminary, we report two representative experiments based on cytotoxicity and 

proliferation studies in keratinocytes exposed to QDs. Cytotoxicity and the ability of keratinocytes to 

proliferate following exposure to QDs were evaluated using the same plate with a lactate dehydrogenase 

assay and a 5-Bromo-2′-deoxy-uridine (BrdU) assay, respectively. Figure 4-14 shows cytotoxicity after 24h 

incubation at the highest tested doses (200 nM) for core-only InPZnS (QD510) and InPZnS@ZnSe/ZnS 

core/shell QDs(QD530) compared to Cd-based QDs (QD605). For all types of QDs, a slight decrease in cell 

proliferation was found, which started at doses of 50nM and was more pronounced at 200nM. Figure 4-15 

shows the efficient internalization of QD605 and QD530 into keratinocytes. 

 

 

Figure 4-14. Left: cytotoxicity study using the lactate dehydrogenase assay; right: proliferation study using the BrdU assay. 

 

 

Figure 4-15. Fluorescence microscopy images of keratinocytes exposed to QD605 (left), and to QD530 (right). 
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4.3 Conclusion 

 

The results presented in this chapter are part of toxicological research, aiming at the study of the 

interactions between nanomaterials and biological systems, which is a prerequisite for the use of novel 

nanomaterials in biology and medicine for diagnostic and therapeutic purposes. The aim of these studies 

resides in comparing QDs of different chemical composition but with the same surface coatings to assess 

the effect of the inorganic core (InP-based vs. CdSe-based) and the role played by the protective ZnS outer 

shell. In particular, here we showed in vivo and in vitro toxicity studies comparing core-only and core/shell 

InP-based QDs emitting at 510 nm and 530 nm, respectively and CdSe-based QDs emitting at 605 nm and 

655 nm transferred to the aqueous phase by means of ligand exchange with zwitterionic penicillamine 

(Pen). The obtained results represent a significant progress in the field of nanotoxicology of QDs because i) 

nowadays such studies almost exclusively address Cd-based QDs and ii) the aqueous phase transfer using 

Pen has not yet been validated using in vivo and in vitro toxicity studies. 

By using as toxicity model the freshwater polyp Hydra vulgaris, we determined several toxicity endpoints in 

vivo (morphology, reproduction rate, efficiency of regeneration), ex vivo (cell apoptosis rate) and at the 

molecular level (changes in expression levels of two marker genes i.e. antistasin and carbonic anhydrase). 

Overall, the general trend of these genes profiling showed an upregulated pattern after 24h in all the 

experimental condition. This general trend of gene expression is similar to the one induced by treatment 

with Cd-based QDs but different compared to other type of NPs, i.e. iron oxide, suggesting that these genes 

are toxicity markers associated to QDs with a semiconductor core. Our studies show that the QDs induce 

alterations ex vivo and in vitro at the molecular level while no effects on the in vivo behaviour have been 

detected. In particular, all types of QDs did not affect the morphology and growth rate of Hydra. At the 

cellular level the QD treatment enhances apoptosis pointing at a cytotoxic effect, which increase in the 

order InPZnS/ZnSe/ZnS core/shell <InPZnS core <CdSe/ZnS core/shell. This order indicates the protective 

character of the ZnSe/ZnS shell and also demonstrates the higher cytotoxicity of CdSe with respect to InP. 

However, when we used more sensitive methods, all three types of tested QDs alter the expression of 

proteinase inhibitor and metal proteases, indicative of genotoxic effects. The occurrence of such subtle 

genetic variations, in absence of morphological damages, also indicates the importance of genotoxicity 

studies for QD risk assessment. 

Considering that working with primary keratinocytes from human skin biopsies is complicated due to the 

differences found for different donators, this approach is for the moment still in its preliminary phase. 
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By consequence these results are still too weak for drawing conclusions of any certainty aiming at 

correlating the impact of the same type of QDs in vivo and in vitro. Globally, the results demonstrate the 

protective effect of the shell around the InPZnS core and the higher toxic effect of Cd-containing 

nanoparticles, supporting the choice InP as alternative for safer and advanced biological applications. 

Future experiments on keratinocytes (most of them are already in progress) are needed to better 

investigate the toxicity induced in these two systems. It remains of intriguing interest to draw correlations 

between the behaviour of the same QDs in the two systems (Hydra and keratinocytes). In fact, the 

nanotoxicology research community needs not only standardized protocols for measuring the biological 

response in vitro and in vivo, but also a database repository to collect large datasets from screening 

different biosystems, obtained by different laboratories.173 Therefore our results may constitute a valuable 

contribution to this field. There are still many doubts about the use of QDs functionalized with active 

molecules in the biomedical field and in the emerging domain of theranostics, because of the potential risk 

caused by the heavy metals contained in the core and due to significant discrepancies between conclusions 

from in vitro and in vivo studies. For this reason, nanotoxicological studies using rapid, reliable and low-cost 

methods allowing for the screening of the effects of identical samples in vivo and in vitro, such as those 

proposed in in this work, are necessary and indispensable so that new nanomaterials can become 

integrative part of the nano-bio-medicine of the future. 
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4.4 Experimental section 

 

Materials and Methods 

Culture of test organisms 

Hydra vulgaris were cultured in Hydra medium comprising 1 mM calcium chloride and 0.1 mM sodium 

hydrogen carbonate at pH 7.161 The animals were fed on alternate days with Artemia nauplii at 18°C with a 

12:12 h light:dark regime. Polyps from homogeneous populations, three-weeks-old and carrying one or two 

buds, were selected for the experiments. 

Culture of human keratinocytes 

Human skin samples were obtained immediately after breast plastic surgery from healthy donors. 

Keratinocytes were isolated from the whole skin and frozen until use.174 Cells were cultured in Keratinocyte 

serum-free medium supplemented with 1.5 ng/ml EGF, 25 µg/ml bovine pituitary extract and primocin and 

maintained at 37°C in a humidified atmosphere. For the experiments, keratinocytes at passages 2 or 3 were 

seeded in 96 well plates at a density of 10 000 cells/well and incubated overnight before exposure with the 

QDs. QDs in PBS were diluted in the culture medium of the cells. 

 

Chronic toxicity induced by QDs to individual polyps 

Toxicity tests were carried out on groups of 20 polyps, placed into plastic multiwells maintained at a 

temperature of 18°C in an incubator with a light regime of 12 h light and 12h dark. A range of nominal 

concentrations was selected for InP-and Cd-based QDs, to assess the progressive effects on the morphology 

and physiology of individual polyps. Exposure was carried out for 24, 48 and 72h, and new test solution was 

completely replaced every 24 h. Effects were recorded by microscopic examination of each polyp at 24 h 

intervals and a score was assigned ranging from 10 for a normal polyp to 0 if it was disintegrated, as 

described in Figure 4-7 constructed by Wilby.167 The median scores were analysed at 24, 48 and 72h for 

each concentration of the QDs. 
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Elemental analysis 

150 polyps were incubated 12 h with 70 nM of InP-based core-only or core/shell QDs, washed, digested by 

the addition of concentrated acid (HCl/HNO3 3:1 (v/v) mixture) and the intracellular In content was 

measured by means of ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry). Similarly, the 

core-only concentration was also evaluated in the Hydra culturing medium used for QD incubation, 

allowing the estimation of the extracellular In contents. 

 

Hydra growth rates and regeneration  

Animals (five Hydra with one bud) were treated with 70 nM of QDs for 24h, washed, and the following day 

placed in 3.5 cm petri dishes (1 Hydra/dish). Control polyps at the same developmental stage were not 

treated. Both treated and untreated Hydra were fed once daily for 18 days. The growth rate constant (k) of 

an exponentially growing group of animals is defined as ln(n/n0)= kt where n is the number of animals at 

time t and n0 the number of animal at t0. For n/n0 = 2, t = T2, the doubling time of the population. T2 was 

determined by linear regression.162 For regeneration experiments, groups of 20 polyps were bisected in the 

upper gastric region and incubated in presence of 30 nM and 70 nM QDs. The regenerating polyps, 

monitored through a stereomicroscope, were grouped in three stages according to their tentacle 

morphogenetic process. 

Assessment of apoptosis  

Apoptotic cell death was evaluated by 4'-6-Diamidino-2-phenylindole (DAPI) staining and confirmed by 

Terminal deoxynucleotidyl Transferase-mediated dUTP nick end labeling (TUNEL) assay.170 Briefly, 

untreated and QD treated polyps were macerated and the single cell suspension was fixed with 4% 

paraformaldehyde and spread on slides. After extensive washing in PBS, macerates were stained with DAPI 

for 2 min and washed in PBS. Slides were observed with phase-contrast fluorescent microscopy to detect 

picnotic nuclei. More than 300 cells were counted for each treatment and the percentage of apoptotic 

nuclei was determined. In Situ Cell Death Detection Kit Fluorescein (Roche) was used for TUNEL assay to 

confirm the nuclear shrinkage in macerates. In particular, fixed cells were permeabilized for 2 min with 

0.1% Triton X-100 / 0.2% sodium citrate solution. Slides were incubated with 50 µl TUNEL reaction mixture 

in a humid dark chamber for 60 min at 37°C, extensively washed in PBS and counterstained with DAPI 

solution. The presence of apoptotic cells was confirmed by counting fluorescein-labelled nuclei by 

fluorescent microscopy. 
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RNA extraction and qRT-PCR 

For each experimental condition RNA was extracted from groups of 25 animals by purification in Trizol 

Reagent (Life Technologies) according to manufacturer's instructions. RNA was quantified and quality 

checked by SmartSpec plus spectrophotometer (Biorad, CA, USA) and 2100 Bioanalyzer (Agilent 

Technologies), respectively. 

Before starting the reverse transcription RNA samples were treated with DNaseI (Amplification Grade, 

Invitrogen) according to manufacturer’s instruction. The first-strand cDNA was synthesized by High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystem) using 0.5 μg of DNA-free RNA in a final volume of 20 

μL, according to the manufacturer’s instructions. 

Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed in 25 μL 

of reaction mixture consisting of 1x Express SybrR GreenER qPCR SuperMix with premixed ROX (Invitrogen), 

serial cDNA dilutions and 0.3 µM each primer. The reactions were processed using the StepOne Real-Time 

PCR System (Applied Biosystem) according to the following thermal profile: 95°C for 2 min, one cycle for 

cDNA denaturation; 95°C for 15 sec and 60°C for 1 min, 40 cycles for amplification. 

Specific primers of Hydra homologues genes of antistasin and carbonic anhydrase were designed using 

Primer3 software (http://frodo.wi.mit.edu/primer3/) and are listed in Table 4.1. These primer pairs were 

chosen to amplify products of 100–200 bp in length. Blast searches against the whole Hydra genome were 

performed to verify primers specificity. The Real Time PCR (qRT-PCR) experiment measures the number of 

cycles needed to attain a threshold concentration of Q-PCR product (Ct). The threshold value is chosen to 

fall within the exponential amplification phase, before limiting reagents become a factor in the efficiency of 

each cycle. This method requires a known reference gene with constant expression in all tested samples 

and whose expression is not changed by the treatment under study. A pair of primers for Hydra Elongation 

1 alpha (HyEF1-α) housekeeping gene has been used as standard reference. The number of cycles needed 

for the standard to reach a specified Ct is used to normalize the Ct for the selected genes. A higher Ct for the 

gene of interest implies a lower initial concentration in the sample, and vice versa. To capture intra-assay 

variability all qRT-PCR reactions were carried out in triplicate. For triplicate samples, Ct is calculated as the 

average value among the replicates. The expression of the following genes was assessed by Real time PCR: 

antistasin, carbonic anhydrase and Hydra Elongation 1 alpha (HyEF1-α) as control. Nucleotide sequences 

and alignments were obtained from Hydra genome database (http://Hydrazome.metazome.net). The 

expression profiles were analyzed by applying the ΔΔCt method where the values of the gene of interest 

were normalized for the values of reference control gene (HyEF1- α). 
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Primers DNA Sequence 

Ef1α qRTforward 5I-ccaggagacaatgtcggttt-3I 

Ef1α qRTreverse 5I-gcttcaatggcaggatcatt-3I 

Antistasin qRTforward 5I-actgtgccttggtaagatgc-3I 

Antistasin qRTreverse 5I-cacgcaacaatactcctccg-3I 

Carbonic anhydrase qRTforward 5I-agctctcaatttcgatcggc-3I 

Carbonic anhydrase qRTreverse 5I-ttgtaagtcaacgcccctcc-3I 

Table 4-1. Primer sequences used in this study. 

 

Cytotoxicity assay in keratinocytes  

Cytotoxicity was evaluated using the lactate dehydrogenase assay (LDH kit from Sigma). It is a colorimetric 

test which consists in measuring the release of lactate dehydrogenase from damaged or dying cells. 

Following exposure to the QDs, 50 µl of cell supernatant was collected and transferred to a new 96- well 

plate. 100 µl of a mix co-factor, substrate, dye (1:1:1) was then added. Following 20 min of reaction, 

absorbance was measured at a wavelength of 450 nm with correction at 650 nm using a 

spectrophotometer plate reader. Absorbance values were converted into % mortality by comparing the 

values to that of the positive control (cells exposed to triton x100 for 24h). 

Measurement of 5-Bromo-2′-deoxy-uridine (BrdU) incorporation for the quantification of cell 

proliferation 

The cell proliferation ELISA BrdU kit was from Roche. This assay is a colometric test that measures the 

incorporation of BrdU, an analogue of thymidine, during DNA synthesis. The cells were incubated for 2h 

with 100 µM of BrdU solution diluted in the culture medium. Then, they were rinsed with phosphate buffer 

saline (PBS) and were fixed with a solution (Fixdenat) for 30 min before adding the solution of anti-BrdU 

antibody conjugated with peroxydase. Following a 45 min incubation, the cells were washed 3 times with 

PBS and finally, the substrate of peroxydase was added for 20 min. Absorbance was then measured at 370 

nm with correction at 492 nm using a spectrophotometer plate reader. 
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5 Conclusion and perspectives 
 

In this thesis we have focused on the exploration of the interaction between QDs and Lanthanide (Ln) 

complexes for creating novel probes for biological detection and imaging. One of the biggest challenges to 

be faced was to render the QDs water-soluble, and biocompatible, while conserving their optical 

proprieties and functionality. Our main goal was the development of stable and strongly luminescent QD-

antibody conjugates for application in Förster resonance energy transfer (FRET) immunoassays aiming at 

the detection of prostate specific antigen (PSA) in a small volume of serum. Within the huge variety of QD-

FRET biosensing application for the analysis of biomolecular interactions, homogeneous sandwich 

immunoassay, which quantify biomarker via two different antibodies that engage in FRET upon biomarker 

recognition, range among the most sensitive but also the most challenging systems. Indeed, in this type of 

immunoassay the relative large dimensions of the biological recognition system that contains antibodies, 

biomarker, and QD decrease the FRET efficiency. The development of QD-AB conjugates with compact 

surface functionalization for aqueous phase transfer represents therefore an important progress for the 

integration of QDs into clinical in vitro diagnostics. Using QDs as acceptors and terbium (Tb) complexes as 

donors, whose long excited-state lifetimes (milliseconds) enable time-gated detection and a concomitant 

suppression of directly excited QD PL and autofluorescence background, allows for the fast and sensitive 

detection of biomarkers.  

We have designed a novel QD functionalization and bioconjugation approach based on a two-step 

procedure yielding a compact QD-AB conjugate. In the first step aqueous phase transfer of lab-synthesized 

InP-based InPZnS/ZnSe/ZnS QDs emitting at 530 nm and of commercial hydrophobic CdSe-based QDs 

emitting at 605 nm and 705 nm was achieved by surface ligand exchange with penicillamine (Pen). In the 

second step we further functionalized the QD surface with a bifunctional ligand (Mal1) containing a lipoic 

acid anchoring function spaced by three poly(ethylene) glycol (PEG) moieties from a maleimide group, 

which enables the subsequent coupling to sulfhydryl group of proteins. The obtained Pen- and Mal1-

functionalized QDs showed no sign of aggregation after storage of more than two years in aqueous buffer 

at pH 7.4. This is an outstandingly long shelf-life for QDs with such a compact surface ligand shell and 

hydrodynamic diameters of 7-9 nm depending on the type of QD used. Furthermore, the QDs conserved 

between 60 and 80% of their initial fluorescence efficiency. We next demonstrated that the maleimide 

function maintained its reactivity by the successful conjugation with fragmented antibodies (F(ab)). 

Although we demonstrated here this bioconjugation strategy only with InPZnS/ZnSe/ZnS (QD530), CdSe-

based QDs (QD605 and QD705), and F(ab) antibodies, it is applicable to any kind of nanoparticles 

containing surface atoms with binding affinity for thiolate ligands and biomolecules containing sulfhydryl 

groups. Our approach yielded the smallest fluorescent QD-AB conjugates reported to date with a 

hydrodynamic diameter < 13 nm for QD705.  
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The advantages of the obtained compact QD-AB conjugates became visible in Tb-to-QD FRET 

immunoassays for the detection of PSA on a commercial available clinical fluorescence plate reader 

(KRYPTOR). The direct applicability of the probes was confirmed by the detection of PSA in 50 µL serum 

samples with subnanomolar detection limits (LODs). While the spectral overlap integral (QD absorption 

with Tb emission) of the probe emitting at 530 nm with the Tb donor was too low for practical use, the LOD 

determined for the probe emitting at 705 nm is significantly lower (0.8 ng/mL) than the clinical cut-off level 

(4 ng/mL).175 The LOD of the probe emitting at 605 nm was 3.7 ng/mL. The utilization of our compact QD-

AB conjugates also provided a 6.2 and 2.5 fold sensitivity improvement compared to the best study 

reported for the detection of PSA using the same commercially available QDs but containing already an 

organic coating for rendering them hydrosoluble. The latter differ from our QDs thus only by their (thicker) 

surface coating, increasing the D-A distance in FRET assays. It should be noted that the best immunoassay 

systems combined maximum sensitivity (minimum LOD), minimum antibody modification (no IgG reduction 

for the Tb conjugates), and maximum separation efficiency.11 All these parameter were demonstrated in 

our system. Moreover this assay is performed in serum samples, which means under the same conditions 

as commercial clinical Tb-based FRET assays. Ongoing works concern the shift of the absorption and 

emission spectra of the InP-based QDs to the NIR, in order to achieve highly sensitive FRET immunoassays 

without relying on Cd-based NCs. Alternatively, our team also develops MInE2-based NCs (M: Cu, Ag; E: S, 

Se), for which efficient NIR absorption and emission can easily be obtained, albeit with a comparably broad 

PL line width (generally at least 100 nm FWHM). 

In this work we also explored the grafting of lanthanide complexes on the surface of QDs with the goal to 

introduce additional imaging modalities for Magnetic Resonance Imaging (MRI) and fluorescence imaging. 

In this case, only the InP-based QD (QD530) have been used for these studies as they have a high potential 

as less toxic nanocrystals in biological applications. First of all, the incorporation of a MRI contrast agent 

(Gd picolinate complex) using different types of organic spacers has been achieved demonstrating that a 

more rigid linker resulted in a significant increase of the relaxivity, up to 35 mM-1s-1 per grafted Gd complex 

at 20 MHz (i.e. 1100 mM-1s-1 per QD containing around 30 grafted complexes). This system thus combines 

the specific advantages of MRI and fluorescence imaging capabilities making it appealing for in vivo 

diagnostics. Additionally, we performed the synthesis of stable hybrid nanoparticles combining QD530 and 

grafted luminescent lanthanide complexes (Tb, Eu, Yb). The resulting hybrids exhibit characteristic Ln (Eu 

and Yb) centered luminescence upon QD excitation at 370 nm, i.e. at a wavelength where the organic cage 

containing the lanthanide does not absorb, suggesting that an energy transfer occurs from the QD to the 

lanthanide. The obtained QD-Ln conjugates exhibit either dual (QD and Ln) emission or energy transfer 

depending on the excitation wavelength, showing the potential of using QDs to sensitize both the visible 

and NIR emission of Ln ions incorporated into QD-grafted complexes.147 Further experiments are needed to 
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elucidate the detailed mechanisms behind the energy transfer in these systems and to optimize the 

transfer through the improved matching of the Ln and QD energy levels. This latter point needs to be 

addressed in particular for Tb complexes, for which not energy transfer could be achieved. 

The last part of this study focused on the assessment of toxicity induced by the used QDs. In the quest for 

identifying QDs less toxic to human health and the environment, we investigated the impact of InP-based 

QDs – with and without protective Zn(Se,S) shell – and compared them with commercial Cd-based 

core/shell QDs using an identical surface functionalization with Pen for aqueous phase transfer. Therefore 

all types of QDs studied only differ in their inorganic part, making it possible to draw conclusions on the 

toxic effects of InP or CdSe without being biased by differences in the surface chemistry. Our studies were 

carried out in two systems: in vitro on cells extracted from human skin (primary keratinocytes) and in vivo 

using the freshwater polyp Hydra vulgaris as model organism. The decision to combine and investigate in 

vivo systems was also motivated by the fact that, although cultured cells represent valid models to describe 

basic interactions with nanomaterials, they do not fulfill the in vivo response complexity. The results 

obtained so far in vitro are still very preliminary and exhibit relatively large assay-to-assay variations. 

However, by using as toxicity model Hydra vulgaris, we unambiguously determined several toxicity 

endpoints. This polyp offers several advantages: it has a low cost of rearing and under controlled conditions 

reproduces itself asexually, has a simple anatomical structure, it is transparent and hence enables the 

localization of fluorescent QDs on the level of the whole animal as well as cell migration studies under 

physiological conditions. Moreover, despite the simplicity of its nervous system, organized as a mesh-like 

network of neurons extending throughout the animal, the complexity of the mechanisms underlying 

neurotransmission resembles those of higher vertebrates, making Hydra an ideal system to study the 

behavioral response of a whole animal to an external stimulus, i.e. bioactive nanomaterials. Using different 

approaches in vivo at the level of whole animal we assessed the short-term impact of the QDs, analyzing 

the possible induction of morphological changes, and the long-term impact on the reproductive and 

regenerative capacity of the animal. At the cellular level (ex vivo) we assessed the induction of apoptosis 

and at molecular level (in vitro) the induction of the expression of genes involved in cells’ stress response. 

We concluded that the toxicity is not evident at the whole animal level, while clear effects are seen at the 

cellular level, by induction of the apoptosis process, which increases in the order InPZnS/ZnSe/ZnS 

core/shell < InPZns core < CdSe/ZnS core shell. This order confirms the protective character of the shell and 

also demonstrates the higher cytotoxicity of CdSe-based QDs with respect to InP-based QDs. However, 

when we used more sensitive methods (i.e. molecular analysis) we observed that the animal reacts by 

activating genes involved in the stress response with all types of QD used.   

Although the results obtained with primary keratinocytes are still too weak for drawing conclusions of any 

certainty aiming at the correlation of the impact of the same type of QDs in vivo and in vitro, globally the 
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preliminary results demonstrated the same trend, namely the protective effect of the shell around the 

InPZnS core and the higher toxic effect of Cd-containing NCs. These results support the choice of InP as 

alternative QD material for safer and advanced biological applications although it is definitively wrong to 

entitle InP-based QDs as “non toxic”. Experiments are currently underway to backup the in vitro toxicity 

studies. The occurrence of subtle genetic variations in the absence of morphological damages indicates the 

importance of genotoxicity studies for nanoparticles risk assessment. For this reason, we envisage using 

integrated techniques available at ESRF (European Synchroton Radiation Facility). These new approaches 

allowing investigating the biodistribution, intracellular trafficking, the fate of the internalized QDs and the 

relation to their composition, which to date is not possible to resolve by using different methodologies. It 

remains of intriguing interest to draw a correlation between the behavior of the same QDs in the two 

systems (Hydra and keratinocytes). 
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Abbreviations 

 
AB: antibody 
AG: antigen 
BrdU=5-Bromo-2′-deoxy-uridine  
Cys: cysteine 
DAPI: 4'-6-Diamidino-2-phenylindole  
Dh: hydrodynamic diameter  
DHLA: dihydrolipoic acid  
DLS: dynamic light scattering 
DNA: deoxyribonucleic acid 
Eu: Europium 
Fab: fragments antibody 
FRET= Förster resonance energy transfer 
FTIR: Fourier transform infrared spectroscopy 
Gd: gadolinium 
HEPES: acido 4-2-idrossietil-1-piperazinil-etansolfonico 
IgG: immunoglobulin 
InP: Indium phosphide  
IVD: in vitro diagnostic 
LEDs: Light Emitting Diode 
LLCs= luminescent lanthanide complexes  
Ln: Lanthanide 
LODs = limits of detection  
MAA: mercaptoacetic acid  
MRI= Magnetic Resonance Imaging 
MSA: mercaptosuccinic acid  
NC: nanocrystal  
NIR: near infrared 
NIR= near infra read  
NMR: nuclear magnetic resonance 
NMRD: nuclear magnetic resonance dispersion 
NPs: nanoparticles 
ODE: 1-octadecene  
OI= Optical Imaging 
P(TMS)3: tris(trimethylsilyl)phosphine 
PBS : phosphate buffer saline 
PEG : polyethylene glycol 
PEG: polyethylene glycol 
Pen: penicillamine 
pH : potentia hydrogenii 
PL : photoluminescence 
PSA= prostate specific antigen 
QDs: quantum dots 
QY: quantum yield 
RNA: Ribonucleic acid 
rpm: rotaion per minute 
SATA: N-succinimidyl-s-acetylthioacetate   
SMCC: 4-(N-maleimidomethyl) cyclohexane-1-carboxylate 
SNR=signal-to-noise ratio  
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Tb: Terbium 
TCEP: tris(2-carboxyethyl) phosphine hydrochloride 
TEM: transmission electron microscopy 
TG=time-gated 
TGA: thermogravimetric analysis  
TGA: thioglycolic acid 
TMAH: tetramethylammonium hydroxide 
TOP: trioctylphosphine  
TPSA: Total prostate specific antigen 
TRPL = time resolved photoluminescence 
UV-Vis : ultraviolet-visible 
Yb: ytterbium 
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Résumé français : La médecine moderne fait aujourd’hui face à de nombreux défis, comme le diagnostic précis et 

rapide des maladies. En raison de leurs propriétés photophysiques uniques, les quantum dots (QDs) sont des 

marqueurs fluorescents prometteurs pour la détection biologique. Le but principal de ce travail est le développement 

de conjuguées QD-anticorps (AB) en vue de leur utilisation dans des fluoroimmunoassays FRET (Förster Resonance 

Energy Transfer) pour la détection de la PSA (Antigène Spécifique de la Prostate), biomarqueur du cancer de la 

prostate. Dans ces systèmes, les QDs agissent comme accepteurs d’énergie en combinaison avec des complexes de 

terbium agissant comme donneurs. Grâce aux propriétés de luminescence spécifiques de ces deux classes de 

fluorophores, la mesure résolue en temps du signal de QDs permet la détection rapide et sensible des marqueurs 

biologiques. Nous avons développé une nouvelle approche en deux étapes pour la fonctionnalisation et la 

bioconjugaison de QDs qui donne des systèmes QD-AB fortement luminescents, stables et ultra compacts, maximisant 

ainsi l'efficacité de FRET. Dans une première étape, le transfert en phase aqueuse de QDs de phosphure d’indium (InP) 

synthétisés au laboratoire, émettant à 530 nm et de QDs commerciaux de CdSe émettant à 605 nm et 705 nm a été 

réalisé par échange de ligands de surface avec de la pénicillamine. Ensuite, la post-fonctionnalisation avec un ligand 

hétérobifonctionnel contenant un groupe acide lipoïque et une fonction maléimide permet le couplage ultérieur à des 

groupes sulfhydryle des protéines, a été effectuée. Après conjugaison des QDs avec des anticorps fragmentés (F(ab)) 

un très petit diamètre hydrodynamique (<13 nm) et une stabilité colloïdale à long terme (plusieurs années) ont été 

obtenus. L'applicabilité des sondes obtenues a été confirmée par la détection de PSA dans des échantillons de sérum, 

avec des limites de détection (LOD) très basses (0,8 ng/mL) pour les sondes émettant à 705 nm, dont l'absorption du 

spectre montre le plus grand recouvrement spectral avec l'émission du Tb. De plus, le greffage direct de complexes de 

terres rares sur la surface de QD a également été exploré, donnant accès à des sondes bimodales pour l'imagerie par 

resonance magnétique et par fluorescence (avec Gd) ou à des sondes biluminescentes (avec Eu, Yb). Dans ce dernier 

cas, la sensibilisation de la luminescence proche infrarouge de l’Yb par les QDs à base d’InP a été démontrée. Enfin 

nous avons réalisé des études de nanotoxicologie sur les différents types de QDs utilisés. En particulier, nous avons 

étudié la toxicité in vivo en utilisant l'organisme modèle Hydra vulgaris et la toxicité in vitro en utilisant des cellules de 

kératinocytes humains en comparant l’effet de systèmes cœur et cœur-coquille de QDs d’InP et de CdSe. 

Résumé anglais : One of the many challenges modern medicine is facing today is the accurate and early diagnosis of 

diseases. Due to their unique photophysical properties semiconductor quantum dots (QDs) are promising fluorescent 

labels for biosensing. The major aim of this work is the development of QD-antibody (AB) conjugates to be used in 

Förster resonance energy transfer (FRET)-immunoassays for the detection of the tumor biomarker PSA (prostate 

specific antigen). In these assays, the QDs act as FRET acceptors in combination with terbium complex donors. Thanks 

to the specific luminescence properties of these two classes of fluorophores, time-gated detection of the QD signal 

allows for the fast and sensitive detection of biomarkers. We developed a novel two-step approach for QD 

functionalization and bioconjugation which yields ultra compact, stable and highly luminescent QD-AB conjugates 

maximizing FRET efficiency. In the first step aqueous phase transfer of lab-synthesized InP-based QDs emitting at 530 

nm and of commercial CdSe-based QDs emitting at 605 nm and 705nm was achieved by surface ligand exchange with 

penicillamine. Then, post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a 

maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD 

conjugation with fragmented antibodies (F(ab)); the obtained conjugates have a very low hydrodynamic diameter < 13 

nm and long-term colloidal stability. The applicability of the obtained probes was confirmed by the detection of PSA in 

serum samples with detection limits (LODs) down to 0.8 ng/mL for the 705 nm emitting probes, whose absorption 

spectrum shows the largest overlap integral with the Tb emission. In addition, direct grafting of rare earth complexes 

on the QD surface has also been explored, giving access to dual-mode imaging agents (with Gd) or to biluminescent 

(with Eu, Yb) probes. In the latter case, the sensitization of Yb NIR luminescence by InP-based QDs has been firstly 

demonstrated. Finally, we carried out nanotoxicological studies on the different types of QDs used. In particular we 

investigated in vivo toxicity using the model organism Hydra Vulgaris and in vitro toxicity using human keratinocyte 

cells comparing core and core/shell InP-based and CdSe-based QDs. 

 

 


