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ABSTRACT 

 

The influence of environment (exercise and diet) during gestation on oxidative stress status and 

glucose metabolism of offspring. 
 

Prevalence of metabolic diseases is growing up in our modern societies and constitutes a major public health 

concern. Family history, environment and lifestyle play a role in the susceptibility to several metabolic 

disorders. Based on epidemiological data, a link has been established between the environment during the 

first stages of life and diseases occurrence in adulthood leading to the concept of "Developmental Origins of 

Health and Diseases" (DOHaD). A first aim of this work was to study, using a murine model, the effect of 

daily maternal exercise during gestation on offspring body composition, oxidative stress status (OS), liver 

and muscle mitochondrial and pancreatic functions and energy substrates handling. A second aim was to 

evaluate ahigh fructose diet (F) as an alternative experimental model of Gestational diabetes mellitus (GDM) 

on rats to test the effect of an ironenrichment (FI) during pregnancyon glucose tolerance and OS status on 

mothers and offspring. Our results show a significant reduction in mitochondrial H2O2 release, as an index of 

reactive oxygen species (ROS) production and signalling, in liver and muscle of offspring from trained 

mothers. These changes are related to alterations in the mitochondrial oxygen consumption, mitochondrial 

membrane composition and in the activity of antioxidant enzymes. Moreover, maternal training before and 

during gestation is associated to changes in offspring pancreas structure and function and in energy 

substrates handling. We also confirmed that a fructose diet could be proposed as an experimental model of 

GDM. We then showed that in rat pups born from mothers fed a fructose iron-enriched diet (FI), the 

activities of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione-S-transferase in liver and 

GPx in brain were altered, depending on the gender. Thus, alterations in the glycemic and redox status in 

newborns suggest that fetuses are more sensitive than their mothers to the effect of an iron-enriched diet in 

the case of GDM.This work proposes a novel experimental model for GDM and confirms some studies 

conducted in the framework of the DOHaD concept and strengthens the idea that the environment during the 

early stages of life has an impact on the future health. 

Key words:Exercise, Gestation, Offspring, Mitochondria,Oxidative Stress, Gestational Diabetes, Iron, High-

Fructose Diet 

 

Influence de l'environnement (exercice et nutrition) durant la gestation sur l’état de stress oxydant et 

le métabolisme du glucose de la descendance. 
 

Les maladies métaboliques sont en pleine expansion dans nos sociétés actuelles et constituentun enjeu de 

santé publique majeur. Les antécédents familiaux, l'environnement et les habitudesde vie de l'individu vont 

jouer un rôle dans la susceptibilité à certains de ces désordresmétaboliques. Sur la base de données 

épidémiologiques, un lien a été établi entre environnementdurant les premières phases de la vie et survenue 

de pathologies à l'âge adulte conduisant auconcept des "Developmental Origins of Health and 

Diseases"(DOHaD). Le premier objectif de ce travail était d'étudier, à partir d'un modèle murin, 

lesconséquences de l'exercice physique quotidien de la mère pendant la gestation sur la composition 

corporelle, le statut oxydant, la fonction pancréatique et mitochondriale du foie et du muscle et la gestion des 

substrats énergétiquesde la descendance. Un deuxième objectif était de valider un modèle de diabète 

gestationnel à partir d’un régime riche en fructose et d’étudier l’effet d’une supplémentation en fer durant ce 

diabète gestationnel sur le statut oxydant et la tolérance au glucose des mères et de la descendance. Nos 

résultats montrent une réduction significative de la production mitochondriale d’H2O2, un indicateur de la 

production d’espèces réactives de l’oxygène,dans le foie et dans le muscle des petits de mères entrainées. 

Ces changements sont reliés à des altérations de la consommation d’oxygène mitochondriale, de la 

composition des membranes mitochondriales et de l’activité des enzymes antioxydantes. De plus, 

l'entraînement maternel avant et pendant la gestation est associé à des modifications de la structure et de la 

fonction du pancréas de la descendance et semble modifier sa gestion des substrats énergétiques.  

Nous avons également confirmé qu’une diète riche en fructose durant la gestation peut être utilisée comme 

un modèle induisant un diabète gestationnel. Nous avons ainsi démontré chez les petits nés de mères 

nourries avec un régime riche en fructose et en fer, que les activités des enzymes antioxydantes comme la 

glutathion peroxidase (GPx), la glutathion-S-transferase dans le foie et la GPx dans le cerveau étaient 

altérées, les résultats étant différents selon le sexe des petits. Les différents résultats obtenus chez la 

descendance montrent que dans le cas d’un diabète gestationnel, les fœtus sont plus sensibles que leurs 

mères aux effets d’un régime riche en fer. Ce travail de thèse vient compléter les travaux menés dans le 

cadre des DOHaD et renforce l'idée que l'environnement lors des premières phases de la vie va avoir des 

conséquences sur lasanté de l'individu. 

Mots-clés : exercice, gestation, descendance, mitochondries, stress oxydant, diabète gestationnel, fer, 

régime riche en fructose. 
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INTRODUCTION 

The increased prevalence of metabolic diseases in our modern societies constitutes a major 

public health problem. Genetic factor, environment and lifestyle play a role in the 

susceptibility to several metabolic disorders. Based on epidemiological data, a link has been 

established between the environment during the first stages of life and diseases occurrence in 

adulthood leading to the concept of "Developmental Origins of Health and Diseases" 

(DOHaD). The intrauterine life environment is of importance for fetal growth and closely 

related to health status in later life (Gluckman 2005, 2008).
 
Results show that the gestational 

environment can play an important role in influencing later susceptibility to chronic diseases 

such as diabetes in postnatal offspring (Gluckman, 2008). In addition, exposure to an 

inappropriate environment such as intrauterine oxidative stress during fetal and neonatal 

development may changes offspring susceptibility with permanent effects on the health of 

offspring (Zambrano et.al 2016). 
 

On the other hand, pregnancy is a physiological state associated with a moderate increase of 

oxidative stress related to high metabolic turnover and elevated tissue oxygen requirements 

(Wisdom 1991, Morris 1998, Toescu 2002). Under normal condition, the increased reactive 

oxygen species (ROS) production will be compensated through increased production of 

endogenous antioxidants to maintain the equilibrium of redox status (Trachootham et.al. 

2008). When the ROS production is high enough to exceed the capability of the body's 

antioxidant system, it will disrupt redox balance and causes oxidative stress. Intrauterine 

oxidative stress can alter mitochondrial function and may be one of a key underlying 

mechanism in fetal programming (Thompson et.al. 2012; Reusens et.al. 2011).
 During 
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pregnancy, unbalanced diet (Szostak-W 2014, Grieger et.al.2015), prolonged stress 

(Entringera et.al. 2011), alcohol consumption (Li et.al. 2004), smoking exposure (Genbacev 

et.al. 2003; See-Ling and Hamid 2014), physical inactivity (Laufs et.al. 2005) contribute to 

intrauterine oxidative stress, which may increase the probability of risk of diseases in 

childhood and adult life. 

Intrauterine oxidative stress in pregnancy may be induced by maternal imbalanced diet, 

hypoxia, utero-placental insufficiency and/or a positive caloric balance. The impact of 

oxidative stress during pregnancy can promote pregnancy disorders such as placental growth 

disruption, preeclampsia, premature delivery and gestational diabetes mellitus (Kim 2014, Al 

Gubory 2010, and Agarwal 2012). Since oxidative stress in the pregnant female is closely 

linked to oxidative stress on the fetus (Argüelles 2006), it can disrupt the fetal development 

proces, fetal growth restriction, and low birth weight (Gavard 2008, Clapp 2002). Moreover, 

oxidative stress during pregnancy is also linked to the pathogenesis and progression of 

neonatal diseases (Harvey 2002, Biri 2007, Karowicz-Bilinska 2007, Jantasing 2008, and 

Ostlund 2003). Thus, it seems important to limit oxidative stress during pregnancy to reduce 

the risk of disease later in life of the offspring. 

Modification of the environment around gestation by regular exercise is of importance. Level 

of physical activity is now a significant component of a good health (Paffenbarger 2001). 

Regular physical activity during pregnancy is already known to have many maternal benefits 

including weight and body composition control. Moreover, it improves cardiovascular health 

(Clapp 1995), reduces the risk of glucose intolerance and gestational diabetes.
 
Finally, the 

benefits in offspring include a decrease in fat mass at birth and in childhood, a better stress 

tolerance and cognitive characteristics (Clapp 1996), an advance in neurobehavioural 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Szostak-Wegierek%20D%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Grieger%20JA%5Bauth%5D
http://atvb.ahajournals.org/search?author1=Ulrich+Laufs&sortspec=date&submit=Submit
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maturation (Melzer 2010; Snapp 2008), an enhancement of insulin sensitivity in the adult 

offspring (Carter 2013), and a decrease in oxidative damage markers (Radak 2008). However, 

the mechanism by which exercise elicited such a metabolic adjustment remains unclear. We 

hypothesize that moderate-intensity endurance training before and during gestation could 

modify the pancreatic Islet β-cell and mitochondrial function of offsprings. In this way, 

endurance training has been known to have beneficial effects on redox balanced; it could be 

of potential interest on the redox state of the newborn.  

In parallel, modification of the environment around gestation through unbalanced diet, such as 

high-fat/high-fructose diet may lead to intrauterine oxidative stress. On the other hand, 

gestation insulin sensitivity if modified during pregnancy, maternal high fructose diet may 

pose a challenge for the health of the mother and offspring.
 
This is associated with both low 

and high birth weight of offspring, oxidative imbalance during fetal life, disruption of 

mitochondrial function and glucose metabolism of offspring, as well as gestational diabetes 

mellitus (Donovan 1990, Bernard 2005). Gestational diabetes mellitus (GDM) is marked by 

increased insulin resistance that associated with a rising level of oxidative stress (OS). In 

addition, excessive iron intake may also elevate insulin resistance and oxidative stress, which 

could aggravate the risk of GDM. The alterations in the blood glucose and redox balanced 

status in newborns suggest that fetuses are more sensitive than their mothers to the effect of 

an iron-enriched diet in the case of GDM.  

Furthermore, streptozotocin may not be suitable to create an experimental model of GDM that 

represents insulin resistance, because it induces necrosis of the pancreatic-cells leading to 

Type 1 diabetes (Damasceno 2014). On the other hand, a diet rich in fructose has been used to 

study insulin resistance in experimental research (Busserolles 2003, Kolderup 2015) but, so 
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far, not in pregnancy. The purpose of this study is to evaluate fructose diet as an alternative 

model of GDM on rats and the worst effect of a fructose iron-enriched diet on glucose 

tolerance and oxidative stress status during pregnancy. 

In the present study, a mouse model was used to examine the effect of moderate intensity 

endurance training before and during gestation on the redox state (thiols level and glutathion 

peroxidase (GPX) activity) and on glucose metabolism (structure and function of pancreatic 

Islet β-cells, measuring of glucose tolerance, insulin sensitivity, insulin secretion, insulin 

signaling pathway (PKB phosphorylation) of offspring. In addition, this study proposed a 

novel experimental model for GDM, and gived an overview on the effects of a moderate iron 

consumption that increased the risk of disruption glucose and oxidative damage to rat’s 

newborn. 

This study was performed at the Laboratory of Bioenergetics and Fundamental Applied 

(LBFA) INSERM U1055 Grenoble-France and Laboratory INSERM UMR U870/INRA 

U123/INSA Lyon-France. This work was supported by INSERM, by Joseph-Fourier 

University and by the SFR-SEM from UFRAPS of Grenoble-France and a grant by Ministry 

of Education, Republic of Indonesia.   
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CHAPTER I 

                                        LITERATURE REVIEW 

 

Introduction 

Oxidative stress is related to mitochondria, which play an important role in cellular function 

and are very sensitive to environmental changes (Cui et.al. 2011). Intrauterine oxidative stress 

can alter mitochondrial function and may be one of a key underlying mechanism in fetal 

programming (Thompson et.al. 2012; Reusens et.al. 2011).
 This chapter will address recent 

reviews and current study identifying the influence of oxidative stress on the fetus.  

The influence of low protein/high fat/high fructose diet of maternal and micronutrient 

supplementation of iron around gestation on the programming of fetal metabolism will be 

discussed in this chapter. Furthermore, their effects on oxidative stress status, mitochondrial 

function of brain and liver, and glucose metabolism of mother and offspring will be described 

in this chapter. 

Exercise has been proposed to improved overall physiological, psychological and metabolic 

health (Melzer 2010).
 

Thus, maternal exercise before and during pregnancy will be 

highlighted with respect to metabolic changes that can affect the early life environment. 

However, until now there are discrepancies in the results of studies on the impact of exercise 

on pregnancy both on pregnant women and their baby. This might be due to differences in the 

intensity, time, frequency, and duration of exercise.
 
This chapter also describes common 

animal models used to study the fetal adaptive responses to maternal exercise through the 

alteration of mitochondrial and pancreatic Islet β-cell function in the early life. 
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I.1. MITOCHONDRIA and OXIDATIVE STRESS   

1.1.1 Structure and Function of Mitochondria 

Mitochondria have a major role in cellular function, not only in ATP production, but also play 

important roles in cellular processes such as ROS production, apoptosis signaling, Ca
2+

 

homeostatsis, metabolic cellular signaling, and regulation of energy expenditure
 
(Cooper 

2000, Farris et.al. 2005, Suen et.al. 2008, Cheng et.al. 2013, Tait et.al. 2012).
 
It contains outer 

and inner membranes which are made up of phospholipids and also contain a number of 

enzymes and proteins involved in energy transduction. The space between outer and inner 

membrane is called the inter membrane space (Cooper 2000). (Fig.1)    

 

  

 

 

 

Figure 1: Structure of mitochondrion (Schmidt) 

The outer membrane is composed of 50 % protein and 50 % lipid. It contains a special protein 

called porin which makes it permeable to molecules of about 10 kilodaltons or less, such as 

ions, nutrient molecules, ATP and ADP. 

 

  

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256704/#r87
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256704/#r14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256704/#r89
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schmidt%20CW%5Bauth%5D
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The structure of inner membrane is very complex, including the electron transport chain 

(ETC), ATP synthetase complex, and transport proteins. It is composed of about 80 % protein 

and 20 % lipid. The folds are organized into layers, called cristae. The cristae largely 

increases the total area of the inner membrane. The inner membrane has the respiratory chain 

and many specific transporters that ensure the passage of necessary elements for the 

production of ATP. This membrane is permeable to O2, water, and CO2 but is almos not 

permeable to protons, which allows the respiratory chain to build and sustain a gradient of 

protons required to drive the ATP synthesis.  

The mitochondrial matrix contains mitochondrial DNA (mtDNA), enzymes of the Krebs 

cycle (citric acid cycle) and of the β-oxidation process (Fig.2). In the cytosol, the initial step 

of glucose metabolism (glycolysis) converts glucose in pyruvate. Then, in the mitochondrial 

matrix, fatty acids and pyruvate are imported from the cytosol and converted in acetyl CoA. 

Through the citric acid cycle, acetyl CoA is then oxidized to CO2 (Fig.2). Theses pathways 

produce NADH + H
+
 and FADH2 which provide electrons to the respiratory chain. 

 

 

       Figure 2: Metabolism of pyruvate and fatty acids in the matrix of mitochondria (Cooper)
  

http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3167/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3042/
http://www.ncbi.nlm.nih.gov/books/NBK9896/figure/A1628/?report=objectonly
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3095/
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I.1.2 Respiratory Chain  

The respiratory chain contains four enzyme complexes, which are in turn acceptors and 

electron donors. The energy released during these redox reactions allows the vectorial 

transport of protons from matrix to the inter membrane space at complex I (NADH-

ubiquinone reductase), III (ubiquinone-cytochrome c reductase), and IV (cytochrome oxidase) 

as shown in Fig 3 (Shaughnessy).  

The production of mitochondrial ATP occurs through the electrons flow derived from the 

reduced equivalents: nicotinamide adenine dinucleotide (NAD) and flavin adenine 

dinucleotide (FAD) (Fig.3). ATP production requires two main phases, namely the oxidation 

of NADH+H
+
 or FADH2 to NAD

+
 or FAD and the phosphorylation of ADP to ATP 

(oxidative phosphorylation) (Yano 2002, Benard et.al. 2006).   

     
 

Figure 3: Schematic representation of the respiratory chain or electron transport chain,             

and ATP synthase. 
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Electrons pass through a series of complexes in the inner mitochondrial membrane known as 

the electron transport system (ETC). As a result of this electron transfer, protons (H
+
) are 

transferred across the inner mitochondrial membrane producing a large mitochondrial 

membrane potential (Figure 3). The H
+
 gradient created by the accumulation of proton outside 

the inner membrane activates a fifth complex enzyme called ATP synthase. When protons 

reenter the matrix through the F0F1 ATP synthase, they release an energy used by the enzyme 

to produce ATP from ADP and Pi present in the matrix. Moreover, when the electrons finally 

arrive at complex IV, they are accepted in the matrix by molecular oxygen to form H2O in the 

matrix (Farris 2005). (Figure 3)  

Complex I is the biggest component of the respiratory chain. In this complex, on-going 

oxidation of NADH + H
+
 leads to several redox reaction that finally transfer electrons to 

ubiquinone (Yano 2002). Reduction of ubiquinone is coupled with the transfer of protons 

from the matrix to the inter membrane space. FADH2 is oxidized at Complex II (succinate-

ubiquinone oxidoreductase) which allows the transfer of electrons to ubiquinone that is not 

associated with the efflux of protons.
  

Mitochondrial respiration is activated by the reduced equivalents (NADH+H
+
 and FADH2) 

and by high concentrations of ADP. Extra-mitochondrial oxygen consumption can occur by 

enzymatic and non-enzymatic reactions, including NADPH oxidase, xanthine oxidase, 

uncoupled NO synthase, d-aminooxidase, cytochrome p450, and proline hydroxylation
 
(Yano 

2002).
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I.1.3 Protein, DNA, and Biogenesis of Mitochondria  

In human cells, mitochondrial proteins are encoded by genes derived from the nucleus and 

mitochondria. Mitochondrial genes encode 13 subunits proteins of oxidative phosphorylation 

complexes, twenty-two transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs), all of 

these proteins are important for electron transport and ATP production, and consequently for 

normal cellular physiology (Fariss 2005). The subunit expression levels of oxidative 

phosphorylation and the number and size of mitochondria determine the ability of 

mitochondrial oxidation (Fariss 2005). 

mtDNA is highly sensitive to oxidative stress which can cause lethal injury through the 

loss of electron transport, mitochondrial membrane potential, and ATP generation. 

Furthermore, mitochondrial genome is more sensitive to mutagenic stressors because 

mitochondrial genes are less protected by histon while they are close to the source of ROS.
 
 

Moreover, in mammalian cells, the repair system capacity of mitochondrial DNA is limited 

(Yakes 1997).
 

In addition to mitochondria’s role in energy production and apoptosis, these organelles serve 

as sites of iron-sulfur cluster synthesis. Iron, like oxygen, is essential for life, but is also one 

of mitochondrial toxicants (e.g. alkylating agents, iron, hyperoxia, doxorubicin and rotenone) 

that stimulate ROS production (Liang 2004). High concentrations of iron rapidly reduce the 

transcription of a large set of genes that encode mitochondrial ribosomal proteins, as well as, 

reduce OXPHOS and the total components of electron transport chain. This disruption of 

electron transport can enhance H2O2 production of mitochondria. The combination of 

increased iron and physiological concentrations of H2O2 generated in the mitochondria during 
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OXPHOS might result in the generation of DNA damage (Yakes 1997). In addition, the 

results of two studies of Santos 2003, 2004 suggest that mitochondrial telomerase sensitizes 

cells to oxidative stress, which may result in apoptotic cell death, and imply a new function 

for telomerase in mitochondrial DNA. Finally, these results indicate that mtDNA damage 

following oxidative stress can lead to a vicious cycle of ROS propagation and mtDNA 

oxidation. The cascade initiated by oxidative mtDNA damage that leads to faulty gene 

expression, deficiency of important enzymes in the electron transport, subsequent ROS 

generation and ultimately cell death, is known as the mitochondrial catastrophe hypothesis. 

mtDNA damage, therefore, represents an important target for intervention.  

I.1.4 Role of mitochondria in muscle 

Mitochondria are essential for the function of skeletal muscle and they ensure the level of 

ATP required for contraction by the muscle sarcomere. The capacity of mitochondrial 

function directly affects the muscle function. Due to the main contribution to total body mass, 

muscle mitochondria have a very significant role in the metabolism of the body as a whole. 

This is supported by the discovery of an increase in skeletal muscle mitochondrial content of a 

person with hypermetabolism and not prone to weight gain (Luft syndrome).
 
 

I.1.5 Role of mitochondria in liver 

The regulation of multiple metabolic functions is centralized in the liver. Ultrastructure and 

function of liver mitochondrial are different from in muscle. Areas of mitochondria in the 

liver are 44% lower than in the heart, with a smaller size, fewer cristae, and a lower density of 
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mitochondria. Moreover, the protein expression of several components of the oxidative 

phosphorylation and transcription factor A (TFAM) that regulates replication and 

transcription of the mitochondrial DNA, as well as citrate synthase activity is also lower in the 

liver (7% lower than the heart muscle). In function, the isolation of mitochondria has relative 

decreased oxidative phosphorylation proteins, cytochrome respiratory chain, and a maximum 

capacity of complex III and IV.
 
In addition, fatty acid oxidation in the liver is known to be 

related with mitochondrial function. Disruptions in the number of mitochondria and/or 

function could impact multiple cellular processes in hepatocytes, both directly such as 

decreased ATP production, altered status of oxidative stress, reduced fatty acid oxidation, and 

indirectly through the influence on required energy processess, such as gluconeogenesis, 

synthesis of cholesterol, proteins, urea, bile acids, and detoxification. A study by Borengasser 

et.al.2011 demonstrated a significant reduction in several markers of liver mitochondrial 

function in rat pups whose born to obese mothers, including SIRT3 mRNA as a marker of 

mitochondrial DNA copy number and biogenesis, mitochondrial protein content, decreased 

fatty acid oxidation, ETC complexes II, III, and ATPase, as well as expression of PGC-1α 

mRNA as a regulator of mitochondrial biogenesis.  

I.1.6 Reactive Oxygen Species (ROS)   

Free radicals generated during normal cellular metabolism are chemical species, atoms or 

molecules that have unpaired electron on their molecular orbital electrons. Reactive Oxygen 

Species (ROS) and Reactive Nitrogen Species (RNS) are the most important groups of free 

radicals produced by the body. 
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ROS are byproducts of mitochondrial ETC and also an inevitable byproduct of various 

cellular and extracellular redox reactions (Algubory et.al. 2010, Gomez et.al. 2007).
 
At low or 

moderate levels, ROS have role in physiological processes involved in the regulation of cell 

signaling, enzymes and gene expression that sensitive to redox,
 
but higher concentration of 

ROS can cause oxidation of proteins, lipids and DNA (Gomez et.al. 2007).  

                                   

 

                  Figure 4. ROS production by electron transport chain in mitochondria 

In normal aerobic metabolism, mitochondria are a major source of ROS production at 

complex I and III of the respiratory chains (Figure 4). Indeed, the electron transport chain is 

recognized as one of the main sites of superoxide anion generation (O2
-
), hydrogen peroxide 

(H2O2) and hydroxyl radical (OH
•
). 1-3% of the oxygen used by mitochondria is partially 

reduced to form ROS as a result of electron leakage (Turrens 2007, Fusch 2003).  

During normal metabolism, many cellular components or enzymatic reactions produce ROS, 

especially superoxide anion (O2
-
) and hydrogen peroxide (H2O2). Superoxide anion (O2

-
) has a 

very short half life, because it is immediately converted by mitochondrial superoxide 
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dismutase (Mn-SOD or SOD2) to form H2O2 (Cadenas 1975). Then, catalase, which is an 

antioxidant enzyme, catalyzes the reaction converting H2O2 to H2O and O2. Under certain 

conditions, hydrogen peroxide (H2O2) can be catalyzed by cupper and iron and form highly 

reactive hydroxyl radical (Fenton reaction). Hydroxyl radical (OH
•
) may cause the 

peroxidation of lipids, proteins, glucose, and DNA.  

The highest ROS production occurs when the proton gradient is high, while oxygen 

consumption or ATP requirement is low. Excessive caloric intake and low energy expenditure 

will lead to high proton gradient and decreased ATP requirement, while exercise will increase 

the requirement for ATP, where electron transfer will be paired with ATP production and 

decrease proton gradient. 

Moreover, ROS generation can occur through several different mechanisms at each level, 

such as ischemia-reperfusion, activation of neutrophils and macrophages (NADPH oxidase), 

the process of electron transport in the mitochondrial respiratory chain, Fenton chemical 

reaction, endothelial cell xanthine oxidase, metabolism of free fatty acids and prostaglandins, 

NO synthase from arginine, and hypoxia.
   

I.1.7 Antioxidant  

Under normal/physiological conditions, antioxidants prevent excessive ROS generation to 

maintain in equilibrium through scavanger molecules or convertion of ROS into H2O. In the 

body there are two groups of antioxidants, the enzymatic and non-enzymatic antioxidant.
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I.1.7.1 Enzymatic antioxidant 

Antioxidants in this group are also known as natural antioxidants which can neutralize excess 

ROS and prevent damage to the cell structure. The main enzymatic antioxidants are 

superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Increased 

oxidative stress can induce the antioxidant enzymatic activity such as superoxyde dismutase. 

If SOD is found at the start of the pregnancy, the activity of this enzymatic antioxidant will 

protect the developing embryo from damage caused by free radicals (Wang et.al.2002).                      

In line with the gradual increase of MDA levels in pregnant women in comparison with non-

pregnant women, the levels of superoxyde dismutase, glutathione peroxidase and catalase 

decrease gradually. The lowest decline is in the third trimester (Patil et.al. 2007).
 
  

Superoxide anion (O2
-
) is produced by the reduction of molecular oxygen and will initiate a 

chain reaction of free radical formation. It was found that SOD can change the superoxide 

anions to hydrogen peroxide and the reaction was instrumental in antioxidant enzymatic 

reaction. In mammals, SOD has three isozyme: (1). SOD1 is encoded by the Cu, Zn-SOD 

containing Cu and Zn as the metal cofactor and is cytosolic isoform in cytoplasm; (2). SOD2 

is encoded with Mn-SOD is a mitochondrial isoform containing metals Mn in mitochondria; 

(3). SOD3 encoded with ECSOD (extracellular form) that has a similar structure with CuZn-

SOD and also contain Cu and Zn metal cofactors (Fukai 2011). 
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I.1.7.2 Non-enzymatic antioxidant  

Other categories that are members of the non-enzymatic antioxidant defenses against the toxic 

effects of free radicals are represented by small molecules, vitamins and metals. Among them, 

vitamin C and E and beta carotene directly scavenge free radicals. Non-enzymatic 

antioxidants are also known as synthetic antioxidants or dietary supplementation. The 

antioxidant system is influenced by dietary intake of antioxidant vitamins or minerals such as 

vitamin C, vitamin E (tocopherol), selenium, zinc, taurine, hipotaurin, glutathione, beta 

carotene.
 
 

Antioxidants in this group play a role in the lipophilic environment. Vitamin A acts as an 

antioxidant breaker chain reaction, vitamin C acts as scavenging superoxide, free radicals and 

various lipid hydroperoxide. In addition, vitamin C can also stop the propagation of 

peroxidation process, and help cycle oxidation of vitamin E and glutathione. Lipid 

peroxidation was regarded as a marker of pro-oxidant. On the contrary, the reduced form of 

glutathione, vitamin E, vitamin C, and vitamin A can be seen as an antioxidant. 

The power of antioxidant (total antioxidant) was assayed by determining of ferric reducing 

ability of plasma (FRAP) as a novel method by Benzi et.al.1996. The reduction of ferric to 

ferous at low pH causes the formation of a colored complex of ferrous-tripyridyltriazine. The 

value of FRAP was obtained by comparing the absorbance of standard ferrous ion with the 

sample at 593 nm. The FRAP measurement is inexpensive and reagents are simple to prepare.  
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I.1.8 The Role of ROS in Normal Fetal Development 

In physiological levels, ROS play important roles as second messengers in many intracellular 

signaling cascades (Burton 2011). They regulate various signaling transduction pathways 

from the beginning of reproductive processes such as folliculogenesis stage, oocyte 

maturation, corpus luteum and uterine function, embryogenesis, implantation and until the 

development of fetoplacenta (Agarwal et.al. 2008). 
 

It has been known that pregnancy is a physiological state in which an increase in ROS 

production is associated with high metabolic activity of the mitochondria. Morris et.al. 1998 

reported that in women with normal pregnancy there is a significant increase in markers of 

oxidative stress (lipid peroxidation [180%], malondialdehyde [34%], and the antioxidant 

vitamin E [84%]). Moreover, pregnancy is also associated with a decrease in the total 

antioxidant ability and uric acid in the first trimester but it is gradually increase during 

pregnancy, reaching normal values during the postpartum period. In addition, normal 

pregnancy is associated with significant changes in lipid metabolism marked by 

hypertriglyceridemia and shift to the dominant direction of LDL. Toescu et.al.2002 have 

shown that these changes correlated with increased levels of lipid peroxidation as the 

pregnancy progress.  

The placenta has been identified as an important place of lipid peroxidation because of its 

high content of polyunsaturated fatty acids (PUFAs).
 
Peroxidation marker levels, such as 

lipids and malondialdehyde (MDA) were higher in pregnant women than in non-pregnant 

women (Patil et.al. 2006). Lipid peroxidation increases during the second trimester, and then 

gradually decreases. The changes observed in the lipid hydroperoxide (LHP) were 
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significantly correlated with increased LDL profile. Moreover, the metabolism of maternal 

lipids is specifically altered during pregnancy. LDL particles become smaller and denser than 

in non-pregnant women, which make then more susceptible to oxidation. Thus, elevated 

triglycerides and the accumulation of small, dense LDL during pregnancy are thought to 

increase the risk of endothelial damage (Winkler et.al. 2000). Biochemical changes may be 

relevant for long-term cardiovascular health of women, especially with high parity or those 

who are at high risk for cardiovascular disease (for example, women with diabetes).
 
 The 

placenta is also a source of antioxidants that control enzymatic lipid peroxidation placenta in 

pregnancy without complications. All the major antioxidant defense system, including SOD, 

catalase, GPX, glutathione, vitamin C and E are found in the placenta and may be sufficient to 

control lipid peroxidation in normal pregnancy. 

Embryonic development occurs at a relatively low oxygen environment. This situation is very 

sensitive to injury caused by oxidant molecules due to low antioxidant capability (Toescu 

et.al. 2002). During the formation of the placenta, there is an increase in oxygen transfer 

which would increase the formation of reactive oxygen species (ROS) in the cell. This will 

encourage the conversion of the cellular redox status from reduction to oxidation, which will 

act as a driving force for cell differentiation. With the maturation of the placenta, there is an 

increase in the transfer of oxygen to the developing fetus, which is needed to sustain the 

increased speed metabolism during the phase of rapid growth of the fetus.
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I.1.9 Oxidative Stress 

Haliwell 1999 defines oxidative stress as the inability the body to defend against the attack of 

ROS or when the level of ROS exceeds the antioxidant capacity of the body. Oxidative stress 

(OS) is also defined as disequilibrium of the redox balance.   
 

While ROS production plays an important role in cell signaling, a high level of ROS induces 

oxidative damage to protein, membrane lipid, and DNA. This leads to mitochondrial 

dysfunction (Cui et.al. 2011). 

The generation of ROS has both physiologic and pathologic roles in the placenta and the 

fetus. Oxidative stress is also involved in the etiology of some diseases includes aging, cancer, 

diabetes, and cardiovascular diseases. ROS have extremely short half-lives, it is difficult to 

measure ROS directly. Instead, the evaluation of oxidative stress can be determined by 

measuring several products of the damage produced by oxidative stress, such as thiobarbituric 

acid reactive substances (TBARS) which is formed as a byproduct of lipid peroxidation 

(Janero 1990).  

I.1.10 Oxidative Stress in Pregnancy 

Oxidative stress in pregnancy is closely linked to oxidative stress in the fetus. The effects of 

oxidative stress intrauterine on offspring are influenced by the severity and duration as well as 

the gestational age of the fetus at the time of exposure to the stress.
 
In addition, Gupta 

et.al.2007 indicates that oxidative stress has been suggested to play a role in recurrent 

abortion, preeclampsia, intra-uterine growth restriction and fetal death. 

https://en.wikipedia.org/wiki/Lipid_peroxidation
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Arguelles et.al. 2006
 
showed that a high oxidative stress in pregnant women is closely related 

to oxidative stress in fetal and in newborns, leading to pathogenesis or progress of neonatal 

disease.
  
Oxidative stress in children is even greater when compared to the mother, probably 

because of their antioxidant defense is still poorly developed.
 
 Excessive oxidative stress in 

pregnant women is also associated with other complications of pregnancy including 

preeclampsia and GDM. This pathology has a very bad effect on the health of the fetus and 

can even cause death (Rao 2007).
 
  

Emerging biological evidences suggest that oxidative stress can be induced among other 

things by unbalanced mother's diet (deficiency or excess of nutrients), hypoxia, placental 

insufficiency-utero, and/or positive caloric balance; a key that can be related to disease 

progression or permanent fetal programming.
 
 

 

I.2 GLUCOSE HOMEOSTASIS and PANCREAS 

Maintenance of plasma glucose homeostasis, in response to nutrient conditions and hormonal 

signals, is important for the survival of mammalian organisms. Insulin decreases plasma 

glucose level by inhibiting glucose production in the liver and by increasing glucose 

consumtion in mucle and adipose tissues. In contrast, glucagon and glucocorticoids hormones 

enhance glucose levels through the activation of gluconeogenesis, glycogenolysis in the liver 

and reduction of glucose utilization in skeletal muscle. 
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I.2.1 Glucose transporter proteins (GLUT) 

Glucose transporter GLUT 1 is located in the red blood cells, placenta, micro vessels of blood 

brain barrier, kidney, colon, and other cells, while GLUT 2 in the liver cells, pancreatic β 

cells, and the basolateral surface of the small intestine. GLUT 3 is in neurons, placenta, and 

testis. GLUT 4 is in the fat cells, skeletal muscle, and heart and mediates glucose uptake 

stimulated by insulin. GLUT 5 as a transporter of fructose is located in the small intestine, 

testis, sperm, kidney, skeletal muscle, adipose tissue, and brain.
 
 

In order to maintain normal blood glucose levels, glucose metabolism is regulated by 

homeostatic mechanisms involving several hormones, liver and extra-hepatic tissues. Glucose 

enters the liver and the pancreatic β-cells freely through GLUT 2 and is phosphorylated by 

glucokinase. Concerning the function of β-cells, an increase in blood glucose increases the 

metabolism flow through glycolysis, the citric acid cycle, and ATP formation. Increased ATP 

inhibits K
+
 pathway which is sensitive to ATP (ATP-sensitive K

+
 channels) induces the 

cellular membrane depolarization, enhances the Ca2
+
 influx and stimulates insulin exocytosis. 

After a meal, skeletal muscle is the main site for glucose consumption. Insulin immediately 

decreases blood glucose by increasing glucose transport into muscle and fat tissue by 

mobilizing GLUT4 in the cell to the surface of cell membrane.
 
 

GLUT-4 is the primary glucose transporter in muscle cells and fat. GLUT-4 is different from 

other glucose transporer, mainly because insulin favors the translocation of GLUT-4 from the 

storage vesicles towards the plasma membrane (Murabayashi 2012) by a mechanism that 

involves the protein kinase B (PKB) pathway (Figure 5).  
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Figure 5. The role of protein kinase B (PKB) and GLUT 4 in glucose uptake (Jewell 2010).  

 

I.2.2  Insulin
 
 

Insulin is highly important for glucose homeostasis but is also involved in cellular growth, 

cellular differentiation, synthesis and degradation of protein, transcription of gene, turnover of 

mRNA, and lipid metabolism (Kahn 1985, Rosen 1987). Synthesis and secretion of insulin is 

regulated by both nutrient and non-nutrient secretagogues in response to environmental 

stimuli in coordination with other hormones.
 
Nutrient secretagogue such as glucose induces 

the secretion of insulin from β-cell by increasing intracellular ATP and closing of K
+
-ATP 

channels. Generation of cyclic AMP and other cellular energy intermediates are also 

augmented, further enhancing insulin release. Non-nutrient secretagogues that induce insulin 

secretion may act via neural stimuli such as cholinergic and adrenergic pathways, or through 

peptide hormones and cationic amino acids. Insulin has also the mitogenic and growth effect, 

which is mostly mediated by a cascade of Akt and activation of the Ras/MAPK pathway. 
 

http://jn.nutrition.org/content/130/6/1531.long#ref-10
http://jn.nutrition.org/content/130/6/1531.long#ref-21
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I.2.2.1  Insulin signaling pathways   

Insulin mediates its actions through binding to insulin receptors. Insulin activates the insulin 

receptor tyrosine kinase (IR), which phosphorylates and recruits different substrates such as 

IRS family proteins. The insulin receptor is composed of a heterotetramer located on the cell 

membrane consisting of 2 α and 2 β glycoprotein subunits linked by disulphide bonds.
  
Insulin 

binds to the extracellular insulin receptor (IR) α-subunit, resulting in conformational change 

enabling ATP to bind to the intracellular component of the IR β-subunit which contains an 

intrinsic tyrosine kinase (Kasuga et.al.1982).  

                  

Figure 6. Insulin signaling pathway (Pessin 2000).
 

Subsequent steps in insulin signal transduction are mediated via the phosphorylation of 

specific intracellular proteins, including insulin receptor substrate-1 (IRS-1) (Sun et al. 1991). 

Tyrosine phosphorylated IRS-1 serves as a docking protein that bind to various signaling 

partners containing src homology-2 (SH2) domains such as phosphatidylinositol 3-kinase 

(PI3-kinase/PI3K) and phosphotyrosine phosphatase SHPTP2 (or Syp), and other SH2-
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containing proteins that lack enzymatic activity but which connect IRS-1 and other 

intracellular signaling systems (White 1997). Among them, PI3K which has a major role in 

insulin function, mainly through activation of serine and threonine kinases such as Akt/protein 

kinase B (PKB), protein kinase C (PKC) and PI dependent proteine kinases 1 & 2 (PIPD 1-2).
 
 

Akt/PKB activation induces glycogen synthesis through inhibition of GSK-3; protein 

synthesis through mTOR and downstream of the element; and cell survival through inhibition 

of several pro-apoptotic agents (Figure 6).
 
 

In addition, insulin signaling inhibits gluconeogenesis in the liver, through binding 

CREB/CBP/Torc2 disorders. Insulin signaling also promotes the synthesis of fatty acids 

through activation of SREBP-1C, USF1, and LXR. A negative feedback signal derived from 

the Akt/PKB, PKCδ, p70 S6K, and MAPK cascades resulting in serine phosphorylation and 

inactivation of IRS signaling.
 
 

Exercise stimulates glucose uptake by an insulin-dependent pathway involving AMPK that 

plays a crucial role in arranging a glucose uptake during exercise and may be involved in 

improving insulin sensitivity as the effects of both acute and chronic exercise (O'Neill et.al. 

2011). Moreover, AMPK protein expression and activity are increased by chronic exercise 

training (Lee-Yang 2009). The increasing of insulin sensitivity in muscle involves both 

insulin signaling downstream of Akt and GSK-3 and stimulation process directly involved in 

the activation of glycogen synthase and glucose transporter translocation (Huang 2007). 

Insulin (nutrient supply) stimulates GLUT 4 translocation through the PI 3-kinase pathway, 

while exercise (muscle contraction) stimulates it through both elevated AMP/ATP ratios and 

intracellular [Ca
2+

] leads to activation of protein kinases (Akt, aPKCλ/δ, AMPK, CaMKII 

cPKC) that phosphorylate putative effectors (Figure 7) (Huang 2007).   
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Figure 7. Signaling pathways stimulated by insulin and exercise leading to GLUT4 

translocation (Huang 2007). 

 

I.2.2.2  Insulin Secretion  

Insulin secretion may be influenced by alterations in synthesis at the level of gene 

transcription, translation, and post-translational modification in the Golgi as well as by factors 

influencing insulin release from secretory granules. Longer-term modification may occur via 

influences on β-cell mass and differentiation.
 
  

Increased levels of glucose induce the “first phase” of glucose-mediated insulin secretion by 

releasing insulin from secretory granules in the β-cell. The entry of glucose into the pancreatic 

β-cell freely through GLUT 2 transporter increases ATP production as there is no possibility 

of glucose storage (glycogen synthesis) in β-cell.
 
This results in the closure of K

+
-ATP-

dependent channels leading to membrane depolarization and activation of voltage dependent 

calcium channels, which in turn leads to an increase in intracellular calcium concentration 

triggering pulsatile insulin secretion.
 
Other mediators of insulin release include activation of 
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phospholipases and protein kinase C (e.g. by acetycholine) and stimulation of adenylyl 

cyclase activity and activation of β-cell protein kinase A, which potentiates insulin secretion. 

This latter mechanism can be activated by hormones such as vasoactive intestinal peptide 

(VIP), PACAP, GLP-1, and GIP. These factors appear to play a significant role in the second 

phase of glucose mediated insulin secretion, after refilling of secretory granules translocate 

from reserve pools (Wilcox 2005).
 
 

I.2.2.3 The role of mitochondria in glucose homeostasis and insulin resistance 

Insulin regulates homeostasis of nutrient and metabolic via the IRS–PI3K–AKT (PKB) 

signaling cascade that targets FOXO1 and mTOR (Cheng Z 2010). Mitochondria play the 

main role in metabolism, and metabolic diseases indicate that mitochondrial malfunction can 

cause insulin resistance. However, the proper molecular mechanism between insulin 

resistance and dysfunction of mitochondria remains unclear. In addition, mitochondria 

produce a moderate amount of ROS and improve sensitivity of insulin through the regulation 

of redox reactions at the protein tyrosine phosphatase and insulin receptors. However, chronic 

exposure to excessive level of ROS could induce the alteration of mitochondrial function 

leading to insulin resistance. Moreover, mitochondria play a role in cellular energy 

metabolism, including beta cells, regulation of insulin secretion and tissue sensitivity to the 

hormone insulin. Therefore, the mitochondrial dysfunctions induced by an increase in ROS 

production due to excess dietary factors seem to play an important role in insulin resistance.
 
 

Factors that affect mitochondrial function including oxidative stress, genetic factor, aging, and 

mitochondrial biogenesis may affect mitochondrial function leading to insulin resistance and a 

variety of pathological conditions. Excessive intake of nutrients (high calory or high fat diet) 
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increases ROS production, decreases mitochondrial biogenesis and causes mitochondrial 

dysfunction.
 
 Mitochondrial dysfunction will lower β-oxidation and ATP production, and 

increases the production of ROS. 
 
 

 

Figure 8. The mechanism of mitochondrial dysfunction (Kim et.al. 2008) 

Decreased ability of oxidation would reduce the expression of mitochondrial proteins encoded 

by the mitochondrial genome (cytochrome c oxidase 1) and nuclear (succinate dehydrogenase 

and pyruvate dehydrogenase). The mitochondrial number and genes expression involved in 

biogenesis of mitochondria are significantly reduced in adipocytes from patients with type-2 

diabetes or obesity. Mitochondrial gene mutation caused by aging or the conditions of stress 

cells may be one of the mechanisms underlying insulin resistance. PGC-1α is a major 

regulator of mitochondrial biogenesis. However, its activity is not constant and can change in 

response to different metabolic conditions. Two metabolic sensors, AMPK and SIRT1 affect 

the activity of PGC-1α through phosphorylation and deacetylation. The coordination between 

AMPK, SIRT1, and PGC1α play an important role in the regulation of metabolic homeostasis. 

PGC-1 α is also known as a transcriptional regulator of uncoupling protein (UCP) that play a 
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role in thermogenesis in fat tissue. PGC-1α is primarily expressed in high energy oxidative 

capacity tissues, such as skeletal muscle, heart, liver, brown adipose tissue and brain. 

Moreover, its activity is strongly induced in conditions that require energy, such as exercise, 

fasting and cold (Cantó 2013). 

PGC-1 α is also a coactivator of nuclear transcription factors such as NRF-1, PPAR γ, and 

PPAR α. NRF-1 regulates the expression of many mitochondrial genes, including oxidative 

phosphorylation genes and transcription factor A (TFAM) of mitochondria (Patti 2003). 

TFAM is a direct regulator of replication and transcription of the mitochondrial DNA. PGC-1 

α expression is reduced in insulin resistance and diabetes. Expression of NRF-1 also 

decreased in patients with DM (Patti 2003, Kim 2008).
 
 Thus, patients with insulin-resistance 

have fewer mitochondria in muscle that may be caused by a reduced expression of PGC-1 α 

and PGC-1 β (Wu 1999). Because PGC-1 expression is regulated by endothelial NO syntase 

(eNOS)/cGMP/PGC-1 axis, eNOS also plays an important role in mitochondrial biogenesis.    

The evaluation of insulin resistance can be evaluated by simple and complex techniques. The 

important is their validity and reliability. Hyperinsulinaemic euglycaemic clamp is a highly 

sensitive technique for estimating insulin resistance, but it is a complex technique. However, 

there is a simple method assessed and validated, such as homeostasis model assessment 

(HOMA) (Borona 2000, Borai 2011). 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cant%26%23x000f3%3B%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19276888
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I.2.3  Pancreas 

 

 

 

 

 

 

Figure 9. The differences structure between human and rat pancreas (islets of Langerhans) 

Endocrine microorgans called islets of Langerhans occupy 1–4% of total pancreas volume 

(TPV), while exocrine and mesenchyme amounts to 96–99% of TPV (Dolenšek et.al.2015). 

Each lobe of pancreas consists of several lobules which their sizes are proportional to the size 

of the organism, but the islets of Langerhans are of fairly comparable size in humans and 

mice. In humans, the diameter of lobules are 1–10 mm,
 
while they are 0,5-1,5 mm in mice 

(In't Veld 2010). Murakami et.al.1992 reported that islet of rat received streams of afferent 

vessels on the surface and issued through efferent veins on the inside, but there is no 

consistent rules concerning microcirculatory patterns in human islet. Cell composition and 

location of the islets of Langerhans within the pancreas are markedly different in the 2 

species. The dstribution of endocrine cells in humans are diffuse, while mantle-core pattern in 

mice (Dolenšek et.al.2015). 

     

https://www.ncbi.nlm.nih.gov/pubmed/?term=Dolen%26%23x00161%3Bek%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26030186
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dolen%26%23x00161%3Bek%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26030186


30 

 

There are several types of polypeptide-hormone-secreting endocrine cells in the island of 

Langerhans, where most are beta cells that synthesize and secrete insulin. In human, Beta 

cells make up 50–70% of the total number of cells in islets; Alpha cells that secrete glucagon, 

contributing 20–40% in islets. Whereas in mice, 60–80% of cells are Beta cells and 10–20% 

of the total number of cells in islets are Alpha cells. Thus, the ratio between beta and alpha 

cells is higher in mice than in humans. The others types of endocrine cells are Delta cells, PP 

cells, and epsilon cells releasing somatostatin, pancreatic polypeptide, and ghrelin, 

respectively.  

 

I.2.3.1  Programming of pancreatic β-cell   

There is a critical period in the differentiation and maturation of tissues and cells that is 

involved in organogenesis during pregnancy and postnatal early life. Some studies on animal 

models revealed that stress in early life environment also triggers an adaptive response in 

growth of pancreatic β-cell in the fetus.
  
 

During the end phase of fetal life in the uterus and the early postnatal life, beta-cell mass is 

determined by the recruitment of undifferentiated precursors, as well as the level of 

replication and beta cell apoptosis. Obviously, disturbing in the intrauterine environment can 

affect the endocrine cells development and contribute to the growth of beta cells, 

corresponding to an adaptive metabolic response in the short term. However, this adaptive 

response may in turn be detrimental if maintained in the long term, because it can encourage 

beta-cell failure and diabetes in later life.
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Additionally, Portha 2005 reported that both maternal undernutrition (i.e., low protein/low 

calorie diet) and overnutrition (i.e., high fat/high calorie/high fructose diet) stimulate an 

adaptive response of pancreatic β-cell in the fetus, impairing insulin secretion. Low-energy 

and low protein diet of pregnant women reduces β-cell mass development through different 

mechanisms. Low-calorie diet causes a reduction in β-cell neogenesis, while low protein diet 

reduces vascularization and proliferation without change-β cell differentiation (Portha 2005).
 

Moreover, Cerf et.al.2005 showed that high fat diet during pregnancy significantly reduced 

the volume and the number of β-cells. The disturbance of β-cell growth causes the failure of 

β-cell function and impairs glucose tolerance, insulin secretion, and triggers the onset of 

insulin resistance leading to high blood glucose and overweight or obesity of offspring in 

adulthood (Wilcox et.al. 2005).
  
This is supported by strong evidence suggesting that children, 

who are exposed to an unsuitable environment during the fetal life period associated with the 

nutritional status of maternal, are programmed for the development of a number of chronic 

diseases such as obesity and diabetes, which perpetuate the vicious circle of obesity and 

diabetes in an entire generation (Fernandez-Twinn et.al. 2006).
   

I.2.3.2  The role of mitochondria on pancreatic β-cell   

In pancreatic beta-cells, mitochondria play a major role in coupling glucose metabolism 

through integrating and generating metabolic signals to stimulate insulin secretion (Maechler 

et.al.2010; Supale et.al.2012). This is supported by study of Soejima et.al.1996 which 

indicates that the removal of mitochondrial genes in β-cells impaired insulin secretion, 

whereas pancreatic β-cell function was recovered when β-cells were replenished with normal 

mitochondria.  



32 

 

Insulin secretion occurs in the pulsatile mode synchronous with influxes Ca2
+
 during both 

first and second phases. The rapid phase (first phase) and the longer phase (second phase) are 

highly dependent on glucose metabolism and mitochondrial oxidative capacity. Glucose 

oxidation by mitochondria will produce ATP and increase the ratio of ATP/ADP. The ratio of 

ATP/ADP is mainly regulated by mitochondrial function. The increased ratio of ATP/ADP 

contributes to the inhibition of potassium channels (KATP), which would cause membrane 

depolarization, opening of voltage-gated calcium channel, calcium influx, and insulin 

secretion (Kim et.al. 2008). Thus, disruptions in mitochondrial function induce β-cell 

dysfunction. 
 

I.2.3.3 The correlation between decreased oxidative function of muscle mitochondria 

and insulin resistance  

Over 80% of glucose disposal occurs in skeletal muscle. Therefore, insulin resistance in this 

tissue will greatly affect the whole body glucose homeostasis.
 
 In addition, multiple metabolic 

defects observed in insulin-resistant muscle will cause interference which includes: 1. 

Reduced insulin-stimulated glycogen synthesis; 2. Alteration in insulin signal transduction; 3. 

Increased lipid accumulation in muscle. 

In humans, dysfunction of muscle mitochondria is associated with insulin resistance. 

Moreover, the oxidative activity of citrate synthase and acyl CoA dehydrogenase is strongly 

correlated with insulin sensitivity, even better than triglycerides or long-chain fatty acid acyl 

CoA. Simoneau and Kelley,
 
1997, who observed obese individuals, showed a decrease in 

citrate synthase, malate dehydrogenase, carnitine palmitoylotransferase 1 (CPT1) and 

cytochrome oxidase (COX) activity in fasting state, and in parallel an increase in activity of 
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glycolytic enzymes hexokinase and phosphofructokinase. Moreover, accumulation of lipids in 

skeletal muscle of sedentary people impaired insulin-stimulated glucose metabolism. A 

decrease in oxidative capability of tissues to adjust lipid oxidation to the lipid availability can 

cause the accumulation of fat tissue as triglycerides. This accumulation may induce 

lipotoxicity, which is reflected in the cellular accumulation of ceramides and diglycerides 

(Moro et.al. 2008). The lipid species can interfere with insulin signaling through different 

mechanisms. Both increased serine phosphorylation of insulin receptor and / or reduction of 

serine phosphorylation of PKB/Akt, which ultimately impair insulin sensitivity (Summers and 

Nelson, 2005). The decreased mitochondrial ability to regulate oxidative metabolism 

appropriately associated with decreased mitochondrial function are caused by: 1) 

abnormalities in mitochondrial density in vivo or 2) the intrinsic defects of lipid metabolism 

or other substrates.
 
 Ritov et.al. 2010 demonstrated that complex I activity of the respiratory 

chain, which is assessed through the rotenone sensitive NADH oxidoreductase activity, was 

reduced by 20% in biopsy samples of skeletal muscle of obese individuals and by 40% in type 

2 DM. Boushel et.a.l.2013 also found a decrease in ADP and oxygen consumption stimulated 

by succinate (complex II) in the muscle fibers of obese people with type 2 DM.  

I.3 THE EFFECT OF EXERCISE AROUND GESTATION ON OFFSPRING 

According to the recomendation of the Centers for Disease Control and Prevention and the 

American College of Sports Medicine (CDC-ACSM), women with no obstetric complications 

in pregnancy may practice moderate physical exercise (60-90% of maximal heart rate or 50-

85% of VO2max) and light exercise (60-70% of maximal heart rate or 50-60% of VO2max) 

for about 30 minutes or more a day, all days of the week for developing and maintaining 
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physical fitness. The CDC-ACSM also recognises that more intense exercise during 

pregnancy performed in 20–60 minute sessions on three to five days a week results in higher 

levels of physical fitness (Artal et.al. 2003). 

Maternal exercise before and during pregnancy will be highlighted with respect to metabolic 

changes that can affect the early life environment. However, until now there are differences in 

the results of existing studies on the impact of exercise on pregnancy to pregnant women and 

their baby. Such differences are influenced by exercise intensity (mild 30-50% of VO2max, 

moderate 65-75% of VO2max, heavy 85-90% of VO2max), time (the first/second/third of 

trimester), frequency, and duration during exercise.
 
Moreover, there is substantial evidence 

suggesting that different patterns of exercise during pregnancy have diverse effects on the 

relationship between exercise and pregnancy outcome. A lower volume of regular exercise or 

a reduction in volume in the second half of pregnancy seems to stimulate fetal growth, leading 

to increased birth weight as compared with the offspring of control women who do not 

exercise during pregnancy.
 
Increased birth size has been associated with balanced increase in 

fat and lean mass.
 
In contrast, Clapp 1990 reported that maintaining a vigorous weight-

bearing exercise program throughout pregnancy leads to reduced birth weight and neonatal fat 

mass (no change in percent lean mass). Moreover, Hopkins 2010 reported that regular 

moderate or vigorous exercise started in the second half of pregnancy consistently reduced the 

offspring birth weight without an alteration in fat percentage accompanied by decreasing 

levels of insulin-like growth factor I (IGF-I) and IGF-II hormones in offspring, suggesting 

that maternal exercise elicited adaptations in nutrient to the fetus, leading to reduced fetal 

growth stimulation by growth hormone.  
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In general, regular exercise during the early and mid-pregnancy stimulates the growth of the 

placenta, but if done at the end of pregnancy it can cause fetal growth retardation. Regular 

exercise with moderate intensity during pregnancy causes a decrease in oxygen delivery by 

50% or more during exercise, but it can improve oxygen delivery at rest and when not 

exercising (Clapp 2006).  

Radak et.al. 2013 gave an advice that training will be based on the theory of hormesis, which 

indicated that exercise had a beneficial effect when it done on a regular basis with moderate 

intensity. Additionally, exercise is usually accompanied by increased heart rate and changes 

in blood flow. Regular, moderate intensity exercise is advised for pregnant women (Practice 

et.al. 2002). Although in reality only a few women follow that advice (Petersen et.al. 2005). 

Altering maternal heart rate and blood flow affect fetal heart rate (Collings et.al. 1983) as well 

as oxygen and nutrients available to the growing fetus (Salvesen et.al. 2011).   

Exercise will lead to the formation of ROS which in turn will induce the production of 

myokines in muscles that mediate the metabolic effects and increased the expression of genes 

involved in mitochondrial biogenesis. But, if it is performed regularly, exercice can reduce 

basal ROS production and oxidative damage, such as decreased susceptibility to lipid 

peroxidation, increase antioxidants and repair system against oxidative damage (e.g., 

increased SOD and catalase in the body).
 
Others investigators reported an increase, decrease 

or no change
 
in oxidative damage (Niess et.al. 2007).  

The purpose of regular exercise is to avoid excessive increases in ROS, which has a double-

edged sword effect. Excessive production will be harmful to organisms because they are 

responsible for the oxidative damage of membrane lipids and proteins and the level of DNA, 
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causing DNA mutations. Moreover, it has an effect on apoptosis and aging as well as 

oxidative damage associated with various diseases including metabolic syndrome. This 

condition was supported by the results of studies that showed the detrimental effects of free 

radicals in type 2 diabetes, because they play a role in insulin resistance.
 
 

In humans, maximal oxygen uptake is correlated with the expression of genes of oxidative 

phosphorylation. Decreased physical activity is associated with reduced oxidative 

phosphorylation genes in muscle. In contrast, oxidative phosphorylation gene expression 

increases with exercise training, a potent promoter of insulin sensitization.
  

I.3.1 The effects of exercise during gestation on glucose metabolism   

Change in physical activity by regular exercise during pregnancy will influence the energy 

metabolism and pancreas function of mother and fetus. During exercise, skeletal muscle 

contraction stimulates glucose uptake and increases insulin sensitivity. In addition, exercise 

improves insulin activity and glucose tolerance in diabetic patient and animal models. 

Moreover, regular exercise prior to and during pregnancy attenuates weight gain during 

pregnancy (Kramer
 
2011), reduces by 50% the risk of glucose intolerance in pregnancy 

(Kramer 2011, Oken 2006,), increases insulin secretion and prevents gestational diabetes of 

mother (Clapp 2006, Leandro 2012). This condition is important for breaking the vicious 

circle between GDM and risk of obesity and type-2 diabetes mellitus of offspring.  
 

Exercise and muscle contraction overcome insulin resistance by increasing the enzyme 

activity of adenosine 5-monophosphate kinase (AMPK) that enhanced the cellular glucose 

absorption. This occurred because AMPK mediates the translocation of glucose receptor 
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GLUT4 of skeletal muscle toward the plasma membrane.
 
This is supported by the result study 

of Wisloff 2001 which showed an improvement of insulin action of rats trained by treadmill 

for one hour/day with a speed of 41.6 cm/sec, the slope of 10%, 75% VO2 max.
 
  

Another study performed by Oken E et.al. 2006 reported that the strong activity (7-13 hours 

per week) prior to pregnancy and mild to moderate exercise (3-6 hours/week) during 

pregnancy may reduce weight gain during pregnancy, the risk of impaired glucose tolerance 

in pregnancy and gestational diabetes. In addition, James F Clapp III (2010)
 
reported that 

regular exercise during pregnancy may reduce markers of insulin resistance and may decrease 

blood glucose levels during and immediately after exercise. In contrast, Hopkins et.al.2012 

reported that 15 weeks of moderate-intensity cycling exercise that began mid-pregnancy had 

no impact on insulin sensitivity in late pregnancy. Reinforced by Stafne et.al.2012 and 

Ramirez-Velez 2012
 
who reported that there was no difference in the prevalence of insulin 

resistance in the group during the 12-week of training that begin in mid-pregnancy with a 

frequency of 3 days or more/week compared with control group. 

However, study about the effect of maternal exercise during pregnancy and its underlying 

mechanism on offspring is minimal. This thesis will explore the influences of regular exercise 

before and during pregnancy on oxidative status of fetus by measuring oxidative stress marker 

of newborn plasma. The present study will also evaluate the effect of exercise on 

mitochondrial function of offspring by measuring O2 consumption, ROS production, 

antioxidant capacity and activity of respiratory complex I, II, III, IV. Moreover, the effects of 

exercise before and during pregnancy on pancreatic Islet β-cell function will be studied by 

evaluating glucose tolerance, insulin sensitivity, insulin secretion, insulin signaling pathway 

(PKB phosphorylation), and structure of β-cell pancreas. 
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I.3.2. The effects of exercise during gestation on oxidative stress of offspring  

Pregnancy is a physiological state associated with enhanced oxidative stress related to high 

metabolic turnover and elevated tissue oxygen requirements. Intrauterine stress induces 

increased risk of adult disease through fetal programming mechanisms. During pregnancy, the 

mitochondrial activity of the placenta produces reactive oxygen species (ROS), mainly 

superoxide anion. On the contrary, all the major antioxidative defense systems, including 

SOD, catalase, GPx, glutathione, vitamin C and E, are found in the placenta and may prevent 

lipid peroxidation in normal pregnancies (Myatt 2004).
  

Excessive production of ROS may 

occur at certain windows in placental development and in pathologic pregnancies, such as 

those complicated by pre-eclampsia and/or IUGR, overpowering antioxidant defenses with 

deleterious outcomes (Myatt 2004).
  

ROS generated by a variety of intrauterine conditions may be one of the key downstream 

mediators that initiates epigenesis and programming of the offspring. ROS generation 

normally is balanced by the cell’s antioxidant defense mechanisms, which maintains its redox 

state and is important in physiological regulation in both the embryo and fetus (Trachootham 

 2008).  

In the first trimester, establishment of blood flow into the intervillous space is associated with 

a burst of oxidative stress (Myatt 2004).
 
Levels of peroxidation markers, such as lipid 

hydroperoxide and malondialdehyde (MDA), are higher in pregnant than in non-pregnant 

women. Experimental investigations have well demonstrated the role of redox balance in 

modulating gene expression, and recent studies indicate that both the insulin functional axis 

and blood pressure could be sensitive targets to oxidative stress programming (Luo 2006).
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Figure 10. The consequences of changes in the redox balance in skeletal muscle (Niess 2007). 

Exercise increases ROS generation and creates a pro-oxidant environment. This acidic 

environment during exercise induces oxygen release from hemoglobin and increases PO2 in 

tissues, as well as the release of iron from transferrin. When exercise is repeated regularly, the 

body quickly adjusts so that oxidative stress is eliminated or reduced. The body's adaptations 

to a regular exercise seem to have an antioxidant effect (Neiss 2007) (Fig.10). In addition, 

exercise activates AMPK may through pathways: (1) phosphorylation of PGC-1α leads to 

increase SIRT3 protein expression that modulate mitochondrial biogenesis; (2) enhances the 

ability of skeletal muscle to better handle ROS via deacetylation and activation of MnSOD, as 

a response to exercise training (Brandauer et.al. 2015). 

In humans, regular exercise effects have been identified with an enhanced activity of 

antioxidative enzymes. Adaptation response to regular exercise stimulates women’s bodies 

more resistant against production of pro-oxidants by increasing the number of mitochondria 

and decreasing the susceptibility to lipid peroxidation. Evidence suggests that women who are 

physically active are more resistant to the development of preeclampsia (Yeo 2008).  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Brandauer%20J%5BAuthor%5D&cauthor=true&cauthor_uid=25852572
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Naziroğlu 2004 have reported that moderate exercise training in pregnant rat improved 

vitamins A and E, increased MDA, glucose levels and white blood cell counts that decreased 

during pregnancy. A similar study in pregnant women, Wagey et.al.2011 demonstrated that 

exercise was performed during pregnancy from 20 weeks of gestation (30 minutes, twice a 

week) showed significantly higher decrease of (MDA) among treatment compared with 

control group without exercise. In addition, there were significantly higher increase of 

superoxide dismutase (SOD), glutathione peroxidase (GSHPx), and catalase (CAT) levels of 

exercise group compared with non-exercise group. Furthermore, Ramirez 2012 showed that a 

12-weeks of aerobic exercise increased antioxidant status in nulliparous women.
 

 

I.4 THE EFFECT OF NUTRITION AROUND GESTATION ON OFFSPRING 

The modification of nutrition and supplementation during gestation can influence oxidative 

balance during fetal life and function of mitochondrial as well as glucose metabolism of 

offspring (Gluckman et.al. 2005, 2008).
 
The nutritional status during critical periods of early 

life is an important determinant for proper development of the organism and maturation of 

metabolic and endocrine systems. An aberration in the quality and/or quantity of maternal 

nutrition resulting in an altered intrauterine environment has been shown to be responsible for 

adverse consequences in the offspring. Fetal development in the hyperinsulinemic/obese HF 

maternal diet intrauterine environment results in fetal hyperinsulinemia without significant 

changes in their plasma glucose levels (Srinivasan 2006). Because insulin is a potent 

modulator of the central nervous system development, elevated concentrations during critical 

http://www.ncbi.nlm.nih.gov.gate2.inist.fr/pubmed?term=Naziro%C4%9Flu%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15202787
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periods of development can lead to malprogramming of central regulators of body weight and 

metabolism (Symonds et.al. 2007, Reusens et.al. 2006).  

 

I.4.1 The effect of nutrition around gestation on glucose metabolism  

I.4.1.1 High fat diet   

Srinivasan et.al.2003 showed that prolonged consumption of a high fat diet (HFD) by 

maternal rats results in an adverse maternal intrauterine environment, predisposing the fetuses 

to metabolic malprogramming. These early fetal maladaptations eventually predispose them 

in their adult life to the metabolic syndrome-like phenotype (increased body adiposity, 

chronic hyperinsulinemia, glucose intolerance, and hyperlipidemia). Pancreatic adaptations, 

including increase in pancreatic insulin content and the amplified insulin secretory response 

of the HF fetal islets to various secretogogues, were most likely contributing factors for the 

observed fetal hyperinsulinemia (Srinivasan 2006).
 
Other studies by Winzell et.al.2004, 

Woods et.al.2003 have demonstrated that a high-fat diet (HFD) to normal rats results in 

increased body weight, hyperinsulinemia, and insulin resistance in their adulthood.  

In addition, maternal diet high in calories and high fat diet (HFD) cause similar long-term 

programming to the risk of offspring obesity (Catalano 2003). The HFD increased 

transplacental transport of glucose (5-fold) and neutral amino acids (10-fold) in vivo. In 

microvillous plasma membranes (MVMs) isolated from placentas of HFD animals, protein 

expression of GLUT1 was increased 5-fold, and protein expression of sodium-coupled neutral 

amino acid transporter (SNAT) 2 was elevated 9-fold. On the contrary, MVM protein 

expression of GLUT 3 or SNAT4 was unaltered. These data indicate that up-regulation of 
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specific isoforms of placental nutrient transporter is the mechanism that links maternal high-

fat diet and obesity to fetal overgrowth (Jones et.al.2009). 
 

Srinivasan et.al.2006 also demonstrated that on gestational day 21, plasma insulin levels and 

the insulin secretory response of islets to various secretogogues were significantly increased 

in hight fat (HF) fetuses. The HF male offspring weaned onto low calory (LC) diet (HF/LC) 

demonstrated increases in body weight from postnatal day 60 onward.
 
In adulthood, HF/LC 

male rats were significantly heavier than controls, had increased plasma levels of insulin, 

glucose, free fatty acids, and triglycerides, and demonstrated glucose intolerance. HF/LC male 

islets secreted higher amounts of insulin in response to low glucose concentrations, but their 

response to a high glucose concentration was similar to that of LC/LC islets. In another set of 

experiments, when the male offspring of HF maternal rats were weaned onto a high-sucrose 

diet (HF/HSu), their metabolic profile was further worsened. These results indicate that 

chronic consumption of a HF diet by mother rats malprograms the male offspring for glucose 

intolerance and development of increased body weight in adulthood
 
(Srinivasan et.al. 2006).

 
 

Kozak et.al. 2000, 2005 also demonstrated that a HF diet during gestation and lactation 

affected body weight regulation in the adult offspring via alterations in the functioning of 

neuropeptide Y. Exposure of fetal brain to excess insulin during development in the 

hyperinsulinemic HF maternal environment may result in an abnormal development of the 

energy homeostasis, predisposing to increased body weight gain in adulthood. The observed 

fetal hyperinsulinism in that study could be a contributing factor for the phenotype of the 

adult offspring of the HF female rats. Moreover, Cerf et.al.2005 demonstrated that feeding a 

HF diet to female rats throughout gestation resulted in significant decreases in β-cell volume 

and number and converse changes in α-cells, resulting in hyperglycemia in 1-day-old 
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newborn rat pups without changes in serum insulin concentrations. Furthermore, Taylor PD 

et.al.2005 reported that a HF maternal diet during prenatal until suckling induced abnormal 

glucose homeostasis, reduced whole body insulin sensitivity, impaired-cell insulin secretion 

and changed the structure of pancreas (insulin secretory granule morphology) of offspring, 

which is preceded by reduced tissue mtDNA content and altered mitochondrial gene 

expression.       

4.1.2  Low protein diet 

Islets from fetuses of maternal fed a low-protein diet demonstrated a reduction of cell 

proliferation, islet size, islet vascularization, and an impairment of insulin secretory capacity 

(Dahri S 1991, 12, 36 from Sinivasan).
 
Zambrano et.al. 2006 indicated that male but not 

female offspring of maternal with protein restriction during pregnancy showed evidence of 

insulin resistance, higher cholesterol, and also higher triglycerides (TG) compared with 

normal diet. Furthermore, Villar-Martini et.al.2009 demonstrated that at day 10 (end of the 

nephrogenesis period), the number of renal corpuscles and mature corpuscles was lower in 

low protein offspring than in normal protein offspring of the same sex. In adulthood, low 

protein offspring had higher blood pressure, and showed thicker glomerular basement 

membrane (Villar-Martini).  

4.1.3 High fructose diet 

Fructose is a natural sugar and predominant monosaccharide found in fruit, honey, and some 

vegetables (Henry et.al.1991). In the mid-19
th

 century, fructose was used commercially and 
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widely as a sweetening substitute (fructose corn syrup) (Elliott et.al.2002, Tappy et.al.2010). 

Diet rich in fructose is associated with various adverse health consequences such as obesity 

and metabolic syndrome that risen dramatically (Johnson et.al. 2007).  

 

Figure 11. Metabolism of fructose (Harper) 
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It has been generally accepted that the absorption of fructose in humans intestinal occurs via 

facilitated diffusion alone, through the members of glucose transporter family, GLUT5 and 

GLUT2 (Riby JE et.al.1993). Metabolism of fructose is different to glucose pathway and 

undergoes a faster glycolysis in liver than does glucose, because it bypasses the regulatory 

step catalyzed by phosphofructokinase. Therefore, high fructose diet causes fructose to flood 

the pathway in liver increasing fatty acids and triacylglycerol synthesis, VLDL secretion, 

serum triglycerides, and finally LDL cholesterol level (Fig. 8). Some of fructose is converted 

to glucose. Sun et.al.2012 reported the mean of conversion rate from fructose to glucose in               

3–6 hours after ingestion was 41% ± 10.5. 

Moreover, fructose stimulate the release of gastric leptin, which in turn leads to increased 

insertion of GLUT 2/GLUT 5 transporters into small intestine via apical membrane which 

increases fructose transport across the intestinal wall (Sakar 2009). It appears that excessive 

fructose consumption for long periods of time have potentially negative effect on metabolic 

function. Blakely et.al.1981, Tuovinen et.al.1975 reported that fructose diet altered several 

enzymes activity and metabolism of hepatic carbohydrate leading to hepatic insulin 

resistance, although the exact molecular mechanisms involved are unknown.  

It is highly important; fructose consumption does not induce pancreatic insulin secretion due 

to an absence of GLUT5 transporters in the pancreas and it cannot stimulate gastric inhibitory 

peptide, which stimulates insulin secretion (Bray et.al. 2004). Bezera et.al. 2000 reported that 

a high fructose diet did not decrease the level of insulin receptor IR and the IRS-1 in the liver 

and muscle, but reduced tyrosine-phosphorylation of the insulin receptor after insulin 

stimulation (IRS-1 association with PI 3-kinase and IRS-1 association with SHP2) in the liver 
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of rats. These data indicate that fructose rich diet induced insulin resistance via the alterations 

in the early steps of insulin signal transduction.  

On the other hand, literature review shows different results on glucose homeostasis by 

administration of high fructose diet (HFD). Some studies state that changes occured (Kelley 

2004, Girard 2006, Sharabi 2007), but others do not confirm (Jürgens et.al. 2005, Roglans 

et.al. 2007, Sanchez-Lozada et.al. 2007). Agrawal et.al.2012 also demonstrated that high-

fructose and low omega-3 fatty acid consumption induced a metabolic syndrome like state in 

the brain as well as impaired cognitive function, suggesting an interaction between 

consumption of fructose and the function of brain. In addition, a diet rich in fructose has been 

related to symptoms of metabolic syndrome, including hyperglycemia, dyslipidemia, and 

insulin resistance.
 
However, few studies have examined the effect of high fructose diet during 

pregnancy on glucose metabolism and oxidative status of offspring.   

In animal model, Douard 2008 reported that under normal conditions, in the prenatal and 

suckling period of rat development, intestinal GLUT5 (the fructose transporter at the apical 

cell membrane) mRNA levels and fructose transport rates are very low. Therefore, the 

administration of large amounts of fructose during fetal/neonatal life resulting in intolerance 

to the fructose, which may impairs body weight gain.  

Ghezzi et.al. 2011 demonstrated that the glucose tolerance of the animals was not altered by 

the excessive intake of fructose (60%) in animal study. Ghezzi also reported no significant 

difference in glycogen synthesis, glucose uptake and glucose oxidation rates by the isolated 

soleus muscle between rats fed the HFD and those fed the control. However, insulin 

sensitivity decreased in the group fed the fructose-rich diet and maintained in proper litters                  
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(8 pups/litter) during lactation. On the other hand, Ghezzi 2011 found that the fructose rich 

diet (60%) during pregnancy led to dyslipidemia and increased serum concentrations of total 

cholesterol and triglycerides. This study was supported by the results of research by Bezerra 

2001 that found insulin resistance, but contrast with the study by Moura that showed that 

administration of HFD after weaning induced intolerance to glucose without changing insulin 

sensitivity. In addition, Rodríguez et.al.2013 reported that fructose administration (10% 

wt/vol) in drinking water throughout gestation resulted in hypertriglyceridemia of mothers, 

whereas fetuses showed a hypotriglyceridemia and higher hepatic triglyceride content than 

those from control fed mothers. Moreover, genes expression of lipogenesis was higher but 

genes expression of fatty acid catabolism was lower in fetuses from fructose-fed mothers. 

In another study, Mortensen et.al.2014 showed that maternal fructose exposure did not affect 

the birth weight, litter size, and body fat percentage, but significantly lowered body weight of 

the offspring throughout life after weaning, Moreover, the isolation of mitochondrial brain 

showed a significantly increased of state 3 respiration (8%) with the combinations substrate of 

malate/pyruvate, malate/pyruvate/succinate, and malate/pyruvate/succinate/rotenone, as well 

as a significant decrease in P/O2 ratio, compared to the control.  

I.4.2 The effect of nutrition around gestation on oxidative stress    

I.4.2.1. Iron supplementation   

Iron is a major component of oxygen transporters in the body. Iron supplementation is usually 

recommended for pregnant women to fulfill the iron needs of both mother and fetus at dose   

5-25 mg iron/100 g (Lin 1976). Although iron is an essential mineral, it can also be toxic in 

http://www.ncbi.nlm.nih.gov/pubmed?term=Rodr%C3%ADguez%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23643523
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certain conditions. As a redox-active transitional metal, iron is a strong prooxidant potentially 

hazardous when present in excess amounts. Through Fenton reaction, iron can produce 

reactive oxygen or nitrogen species and catalyzes several cellular reactions that result in the 

formation of hydroxyl radicals and induces oxidative stress (Andrews 1999, Rajpathak 2009). 

Moreover, iron supplementation can reduce the risk of preterm birth or low birth weight, but 

excessive iron intake may increase ROS production during pregnancy, which may cause 

pancreatic β-cell dysfunction (Goldstein 2005). Insulin resistance and gestational diabetes 

mellitus (GDM) have been associated with high plasma ferritin and biological evidence of 

oxidative stress (Casanueva 2003). 

During pregnancy, a physiological increase of oxidative stress and defense mechanisms has 

been observed. In a large prospective cohort study, Bowers et.al.2011 identified a significant 

and positive association between prepregnancy dietary heme iron intake and GDM risk. In an 

epidemiological study, Lachili 2001 studied the effect of a daily combined iron 

supplementation (100mg as fumarate) and vitamin C (500mg) during the third trimester. They 

found an increased thiobarbituric acid reacting substances (TBARs) plasma level. Another 

study (Rehema 2004) conducted in a small group of borderline anemic pregnant women 

reported that daily iron prophylactic doses (36 mg as aspartate) for 4 weeks did not 

deleteriously change the physiological pattern of oxidative stress parameters. Moreover, 

Devrim 2006 reported an increase in the oxidant malondialdehyde (MDA) and a decrease in 

antioxidant parameter glutathione peroxidase (GSH-Px) level in blood plasma at delivery in 

27 pregnant women who took daily 100mg of iron supplements during pregnancy. On the 

contrary, Chan et.al.2007 demonstrated that iron supplement in the prevalent dose (60 

mg/daily) from early pregnancy did not increase the risk of GDM.   
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Moreover, mediated oxidative stress may contribute to B-cell dysfunction and insulin 

resistance even in the absence of significant iron overload (Swaminathan 2007, Rajpathak 

2009). On the other hand, the pancreatic β-cell is particularly susceptible to oxidative stress 

because of a weak antioxidant defense. Therefore, high body iron levels can damage 

pancreatic β-cell function and impair glucose metabolism (Buchanan 2007).  

Further, Yakes 1997 reported that high concentrations of iron rapidly reduce the transcription 

of a large set of genes that encode mitochondrial ribosomal proteins as well as reduce 

oxidative phosphorylation (OXPHOS) and the total complement of electron transport 

proteins. The dysregulation of electron transport can lead to increased mitochondrial 

production of H2O2. The combination of increased iron and physiological concentrations of 

H2O2 generated in the mitochondria during OXPHOS might result in the damage of DNA. In 

mammalian cells, mtDNA is much more sensitive than nuclear DNA (nDNA) to H2O2 

induced damage, probably due to the availability of iron in the mitochondria. Moreover, 

human cells have a limited capacity for repairing H2O2-induced mtDNA damage (Yakes 

1997). 

 

4.2.2. High fat diet 

Maternal consumption of a high fat diet (HF) was associated with changes in vascular 

function and oxidative balance in the offspring through increased ROS generation, reduced 

Nitric Oxid bioavailability, and led to increased oxidative stress of offspring (Torrens 2012). 

At energy balance, HF increases the flux of fatty acids through skeletal muscle for oxidation. 

HF down regulated PGC1α and PGC1β mRNA, as well as genes encoding proteins in 

complexes I, II, III, and IV of the electron transport chain (Sparks 2005).  
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Furthermore, Taylor et.al.2005 reported other consequences of a maternal HF during prenatal 

until suckling periode including abnormal glucose homeostasis, attenuated insulin sensitivity, 

impaired cellular insulin secretion and alteration of the structure of pancreas (insulin secretory 

granule morphology) of offspring, which is preceded by reduced tissue mtDNA content and 

altered mitochondrial gene expression.  

In addition, Zhang et.al.2011 reported that maternal HF significantly increased plasma TG 

and hepatic TBARS concentrations and the size of hepatic lipid droplets in offspring rats. The 

expression of antioxidant defense genes, such as glutathione peroxidase-1 (GPx-1) and Cu/Zn 

superoxide dismutase (Sod1) were significantly lower in the liver of rat offspring. Other study 

by White et.al.2009 suggests that HF increases oxidative and inflammatory signaling in brain. 

Moreover, Watkins et.al.2011 showed that male offspring from dams fed low protein diet 

displayed significantly decreased expression of the mitochondrial uncoupling protein 1 

(Ucp1) gene compared to normal diet offspring. Another study, Mortensen et.al.2014 showed 

that maternal fructose exposure caused a significantly lower body weight of the offspring 

throughout life after weaning, while birth weight, litter size, and body fat percentage were 

unaffected. Moreover, isolated brain mitochondria displayed a significantly increased state 3 

respiration of 8%, with the substrate combinations malate/pyruvate, malate/pyruvate/ 

succinate, and malate/pyruvate/succinate/rotenone, as well as a significant decrease in the 

P/O2 ratio, compared with the control.  
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I.5  GESTATIONAL DIABETES MELLITUS 

Gestational diabetes mellitus (GDM) is related to increased insulin resistance and an 

increased level of oxidative stress (OS) caused by both excess free radicals and/or a defect in 

antioxidant defenses (Lappas et.al.2011, Zein et.al.2014, Gelaleti et.al.2015, Shang 

et.al.2015). According to American Diabetes Association 2004, GDM is one of the most 

common complications of pregnancy. It was approximately 7% of all pregnancies and up to 

14% of pregnancies in high-risk populations. Therefore, it is important to determine 

modifiable factors that may increase the risk of GDM. High iron consumption could increase 

insulin resistance and OS, which could aggravate GDM risk. GDM can increase the risks on 

both mothers (e.g., hypertension in pregnancy, preeclampsia, cesarean and diabetes later in 

life) and the fetus (macrosomia, neonatal hypoglycemia, shoulder dystocia). 

 

However, epidemiological evidence suggests that the risk of GDM is increased along with 

maternal age (Marcinkevagea 2011), it could also predict the occurrence of diseases later in 

life for the newborn (Leiva 2011). Despite a better diagnosis of GDM and the identification of 

the detrimental consequences for mothers and babies in many countries, there is still no 

consensus regarding the origin of GDM (Harlev et.al. 2010). This increases a great interest in 

understanding the etiology and patho-physiological mechanisms of GDM. 
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CHAPTER II 

PERSONAL WORK 

II.1 SCIENTIFIC OBJECTIVES  

The objective of the present study was to examine the effect of moderate intensity endurance 

training before and during gestation on the redox state in the plasma and on liver 

mitochondria of newborns from trained mother compared to those from untrained mothers. 

Moreover, the effect of maternal exercise on pancreatic islet β-cells function of offspring were 

evaluated by measuring of glucose tolerance, insulin sensitivity, insulin secretion, insulin 

signaling pathway (PKB phosphorylation) and evaluating the alteration of structure of 

pancreatic β-cells.  

Furthermore, in this study, two studies were also performed to examine the effects of fructose 

diet and iron-enriched fructose diet during pregnancy on both maternal and offspring. The 

first preliminary study was conducted to show that the fructose diet could be used as a model 

of gestational diabetes. The second study demonstrated that iron supplementation could be 

deleterious in case of gestational diabetes” by evaluating the effects of iron-enriched fructose 

diet during pregnancy on glucose metabolism and oxidative status in brain and liver of rat 

offspring.   
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II.2 MATERIALS AND METHODS 

 

II.2.1  THE INFLUENCE OF EXERCISE AROUND GESTATION ON 

OXIDATIVE STRESS AND GLUCOSE METABOLISM IN OFFSPRING  

II.2.1.1 Animals and Experimental design  

All study protocols were reviewed and approved by the Institutional Ethic Committee for 

Animal Care (Protocol 00174.02 accepted in March 2014). The rats were maintained and 

handled in agreement with the Guidelines for the Care and Use of Laboratory Animals 

published by the European Union (2010/63/UE) and the French Ministry of Research (2013-

118). 

A. FISRT PART: THE INFLUENCE OF EXCERCISE AROUND GESTATION ON 

OXIDATIVE STRESS IN OFFSPRING  

 

In the first part of the core study, an experimental study was performed in female Wistar rats 

to examine the effect of moderate intensity endurance training 4 weeks before mating until the 

18
th

 day of gestation on the redox state in the plasma and on liver mitochondria of offspring at 

weaning (21 days old) from trained mother compared to those from untrained mothers. 

Moreover, assessment of oxygen consumption, ROS production, complex respiratory enzyme 

activities of the electron transport chain, and citrate synthase activity in liver and muscle 

mitochondria of offspring. Besides, the concentration of cytochromes, α-Tocopherol and 

Quinone in liver mitochondria, as well as fatty acids composition in liver, plasma, and liver 

mitochondria of offspring were measured.   
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In the core study (study 1) twenty four adult nulliparous female Wistar rats (12 weeks-old), 

bred in the animal facility, were housed three per cage for the first part of protocol (4 weeks 

before mating) in a controlled environment: 25°C, 50 ± 10% relative humidity and 12h:12h 

light: dark, during all the experiment (Study 1). All the rats have had free access to water and 

food (rat chow for growth SAFE A03, AUGIS, France). Females were randomly assigned to 

one of two age- and weight-matched groups (exercise MTr and control MSed). Exercise 

training consisted of continuous running on a motor-driven rodent treadmill (Bio lab, France) 

(Figure 12) 5 times/wk and the intensity was gradually increased. Rats progressively ran from 

15 min/day at 15 m/min, 0% slope, up to 60 min/day at 25 m/min, 10% slope, for the last 4 

weeks. Sedentary females were housed in identical cages without exercise training protocol. 

Half of the animals from the MSed and the MTr groups were used for the first part of study 1 

(the influence of exercise around gestation on oxidative stress in offspring) and the remaining 

were used only to produce pups for the second part of study 1 (the influence of exercise 

around gestation on anthropometry and glucose metabolism) and were not included in the 

results on mothers.             

 

Figure 12. Motor-driven rodent treadmill (Bioseb, France) 
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In order to verify the efficacy of the exercise training protocol, we have done a pilot study on 

twelve females with the same moderate intensity of training 4 weeks before gestation until the 

18
th

 day of gestation. In order to measure citrate synthase (CS) activity, in this pilot study, 

mothers were sacrificed just after delivery. The morning of sacrifice, the mothers were 

weighted and decapitated without anesthesia. Retroperitoneal, urogenital and mesenteric 

adipose tissues were collected and weighed. Liver and plantaris muscle of the right leg were 

dissected out. Parts were frozen in liquid nitrogen and stored at -80°C. The activity of CS 

enzyme is recognized to be a good index of mitochondrial genesis and a good marker of 

muscle adaptation to exercise training. (Holloszy JO 1984). 

Food intake and body weight were recorded once a week. For mating, two male rats were 

placed in contact with three females for one week. Pregnancy was diagnosed with 

examination of vaginal smears for the presence of spermatozoa (Figure 13). Pregnant female 

were single-housed.  

 

Figure 13. Spermatozoa on vaginal smears 
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On postnatal day 1, litter sizes were equalized to 8 pups. Pups were cross-fostered from other 

litters from the same group and the same age to maximize the number of males per litter. 

Offspring body weights were recorded at day 1, 7, 14, and 21. Although this study examined 

only babies at the weaning age (21 days old), but we want to continue in another study to 

examine in adult offspring. So that, only male babies were used as subject, because we want 

to minimize confounding factor such as hormonal factor in adult female offspring that may 

influence the result. To verify that no difference in mitochondrial function between both 

female and male babies, we have performed preliminary study showed that no difference in 

oxygen consumption and ROS production between male and female rat offspring. 

Blood and tissue sampling  

At weaning, 9 male babies from each group were weighted and decapitated without 

anesthesia. Blood samples were collected and centrifuged to separate plasma and packed red 

blood cells before storage at -80°C until further analysis. Retroperitoneal, epididymal and 

mesenteric adipose tissues were collected and weighed. Liver and muscles of both hind legs 

were dissected out. Parts were frozen in liquid nitrogen and stored at -80°C. Remaining parts 

were used to prepare isolated mitochondria as described below.  

Mothers were also sacrified after babies in the same conditions. Six females from each group 

were weighted and decapitated without anesthesia.  

Adipose tissues (visceral fat) weight corresponds to the sum of the weight of mesenteric, 

retroperitoneal and urogenital adipose tissues were collected and weighed.  
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a. Isolation of muscle mitochondria  

 Mitochondria were isolated from muscles from both hind legs. Muscles were  chopped in a 

cold (4°C) isolation buffer (150 mM sucrose, 75 mM KCl, 1 mM KH2PO4, 5 mM MgCl2, 1 

mM EGTA, 50 mM Tris-HCl, pH 7.4).  

 In coldroom, muscles pieces were transferred into 30 mL of isolation buffer supplemented 

with 0.2 % fat-free bovine serum albumin and were then added with 0.2 mg/mL subtilisin 

for breaking down the wall of muscle cells to make the mitochondria to be more easily 

extracted. 

 After one-minute incubation, the suspension was diluted twice with isolation buffer, 

transferred to a glass-teflon Potter, and homogenized using a motor-driven homogenizer at 

500 rpm/minute, up and down ± 25 times.  

 Nuclei and cell debris were removed by centrifugation at 800 g for 10 min at 4°C. This step 

was done three times. 

 Mitochondria were isolated by spinning twice the supernatant at 8000 g for 10 min at 4°C. 

The supernatant was discarded 

 The mitochondrial pellet was resuspended in 300 µL of isolation buffer and kept on ice.  

 Mitochondrial protein contents were determined using the bicinchoninic acid assay 

(Pierce) using bovine serum albumin (BSA) as a standard. Samples were diluted 50 times 

and dispensed on a 96-well microplate and 200 µL of the Pierce reagent was dispensed in 

each well.  
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 Samples were incubated 30 minutes at 37 °C and optical density were recorded at 462 nm 

and were analyzed using KcJunior software (Biotek) to express the protein 

concentrations in mg/m/l. 

 

b. Isolation of liver mitochondria  

 Liver mitochondria were isolated using the same procedure than for muscle mitochondria 

except that there was no digestion with subtilisin.  

 In coldroom, liver was cut into small pieces in 30 mL cold (4°C) isolation buffer (250 mM 

sucrose, 1 mM EGTA, 20 mM Tris-HCl, pH 7.4) added with BSA 15% to agglutinate fat 

traces. 

 The suspension was transferred to a glass-teflon Potter, and homogenized using a motor-

driven homogenizer at 500 rpm/minute, up and down ± 20 times. 

 Nuclei and cell debris were removed by centrifugation at 800 g for 10 min at 4°C. This 

step was done three times. 

 Mitochondria were isolated by spinning twice the supernatant at 8000 g for 10 min at 4°C. 

The supernatant was discarded 

 The mitochondrial pellet was resuspended in 300 µL of isolation buffer and kept on ice.  

 Mitochondrial protein contents were determined using the bicinchoninic acid assay 

(Pierce) using bovine serum albumin (BSA) as a standard. Samples were diluted 100 

times and dispensed on a 96-well microplate and 200 µL of the Pierce reagent was 

dispensed in each well.  
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Samples were incubated 30 minutes at 37 °C and optical densities was recorded at 462 nm 

and were analyzed using KcJunior software (Biotek) to express the protein concentrations 

in mg/m/l. 

 

c. Oxygen consumption measurement 

The rates of oxygen consumption of isolated muscle mitochondria were measured using a 

Clark-type O2 electrode (Oxygraph, Hansatech Instruments). Mitochondria (0.2 mg/mL) were 

incubated at 30 °C in a respiration buffer containing 125 mM KCl, 5 mM Pi, 20 mM Tris-

HCl, 0.1 mM EGTA, 0.1 % fat free BSA (pH 7.2). The suspension was constantly stirred with 

a built-in electromagnetic stirrer and bar flea. Measurements were carried out in the presence 

of either glutamate (5 mmol.L
-1

)/malate (2.5 mmol.L
-1

) and succinate (5 mmol.L
-1

) as 

substrates, after the addition of 1 mmol.L
-1

 ADP (state 3), followed by the addition of 0.25 

mg.mL
-1

 oligomycin (state 4) and addition of 2µl of dinitrophénol (DNP). 

 

Figure 14. Oxygraphic chamber, Hansatech Instruments 
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Moreover, the assessment of oxygen consumption includes serial addition of various 

substrates, inhibitors, and uncouplers which allow a comprehensive assessment of 

mitochondrial function: 

1. Basal respiration was measured by adding a suspension of mitochondria (0.2 mg/mL) in 

the absence of exogenous substrates. 

2. Respiration state 2 (complex I) was measured by adding glutamate (5 mmol.L
-1

) / malate 

(2.5 mmol.L
-1

) as substrate. In the absence of adenylates, oxygen consumption with G / M 

reflects the state 2 respiration by the complex I. 

3. Respiration state 2 (complex I+II) was measured by adding succinate (5 mmol.L
-1

) to the 

respiration chamber after addition of glutamate/malate (G/M) to provide additional 

electrons through complex II. 

4. Addition of 1 mmol.L
-1

 ADP (state 3), followed by the addition of 0.25 mg.mL
-1

 

oligomycin (state 4). 

5. Uncoupled respiration was measured after addition of 2µl of dinitrophénol (DNP). 

6. The respiratory rate measured in each condition was determined from the linear portions of 

the curves. 

d. Mitochondrial H2O2 release 

Generation of mitochondrial H2O2 was determined by fluorimetry by measuring the linear 

increase in fluorescence due to enzymatic oxidation of amplex red (excitation at 560 nm, 

emission at 584 nm) by H2O2 in the presence of horseradish peroxidase (Batandier 2002, 
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Lacraz, 2008). Muscle mitochondria (0.2 mg/mL) were incubated at 30 °C in the same 

medium as for mitochondrial respiration added with 6 U/mL of horseradish peroxidase and 1 

µM amplex red. The reaction was started by addition of the same combination of G/M/S as 

substrates as used for mitochondrial respiration. Mitochondrial H2O2 release was measured 

both in basal conditions (substrate alone) and after sequential addition of 2 mM rotenone and 

2 mM antimycin A to determine the maximum rate of H2O2 production of complexes I and 

I+III by the respiratory chain, respectively. 

 

 

Figure 15. Equation oxidation of by H2O2 (Batandier C et.al. 2002)
 

 

 

e. Determination of enzymatic activities:  

Enzymatic activities of individual complexes of the electron transport chain in liver 

and muscle mitochondria 

The measurement of the specific activity of the respiratory chain complex I, II, and III was 

performed spectrophotometrically. Enzyme activity was expressed as µmoles of reduced or 

oxidized substrate per min and per mg of mitochondrial protein. 

Rotenone-sensitive NADH-ubiquinone oxidoreductase (complex I) was assayed using 100 

μmol.L
-1

 decylubiquinone as electron acceptor and 200 μmol.L
-1

 NADH as a donor, in a 10 

mmol.L
-1

 KH2PO4/K2HPO4 buffer, pH 7.5 containing 3.75 mg.mL
-1

 BSA, 2 mmol.L
-1

 KCN 
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7.5 μmol.L
-1

 antimycin A. Oxidation of NADH was then measured at 340 nm, before and 

after the addition of 4 μmol.L
-1

 rotenone to allow the calculation of the rotenone-sensitive 

specific activity which is characteristic of complex I. 

Succinate-ubiquinone reductase (complex II) activity was quantified by measuring the 

decrease in absorbance due to the reduction of 100 μmol.L
-1

 DCIP at 600 nm. The 

measurement was performed in 50 mmol.L
-1

 KH2PO4/K2HPO4, pH 7.5 in the presence of 100 

μmol.L
-1

 decylubiquinone, 2 μmol.L
-1

 rotenone and 2 mmol.L
-1

 KCN.  

Ubiquinol cytochrome c reductase (complex III) activity was determined by measuring the 

reduction of cytochrome c when decylubiquinol was used as substrate and complexes I and IV 

were blocked by specific inhibitors. The change in absorbance at 550 nm was first evaluated 

at 30°C for 1 min in the presence of potassium phosphate buffer 90.7 mM, pH 7.4, EDTA 50 

µM, bovine serum-albumin (1 mg/ml), KCN 1 mM, oxidized cytochrome c (100 µM), 

decylubiquinol 0.11 mM and the 200-times diluted sample in order to evaluate total activity. 

The non specific activity was then measured with antimycin A (5 µg/ml) for 2 min and 

complex III activity was then calculated by subtraction. 

Cytochrome c oxidase (complex IV) activity was assayed on freshly isolated liver and muscle 

mitochondria by oxygraphy with TMPD/Ascorbate as electron donor/acceptor in the presence 

of DNP as uncoupling agent. 

 

f. Citrate synthase activity 

Citrate synthase is the initial enzyme of the tricarboxylic acid (TCA) cycle and is an exclusive 

marker of the mitochondrial matrix (Srere, 1969). Plantaris muscle or liver samples (50 mg) 
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were homogenized at 4°C in 450 µL of 100 mM KH2PO4, pH 7.4. The homogenates were 

centrifuged (1500 g, 5 min, 4°C), and the resulting supernatant was collected and stored at -

80°C until determination of enzymatic assays. Activity of citrate synthase was assessed 

according to Srere (Srere, 1969). Results were expressed as µmol/min/mg of wet tissue. 

g. Activity of glutathione peroxidase (GPx)  

A portion of frozen liver (100 mg) was homogenized with a potter Elvehjem, at 4°C, in buffer 

containing KH2PO4 100 mM, DTT 1 mM, and EDTA 2 mM, pH 7.4. After centrifugation 

(3000 g/min for 5 min), the supernatant was used for enzymatic assays. GPx activity in 

supernatant and in plasma was evaluated by the modified method of Günzler et.al. (1974) 

using terbutyl hydroperoxide (Sigma Aldrich) as a substrate. 

 

h. Biochemical assays:  

Quantification of fatty acid esters was performed by gas chromatography coupled to mass 

spectroscopy. Samples from liver, liver mitochondria and plasma containing internal 

standards were saponified in 0.6 N ethanolic potassium hydroxide. Fatty acids were further 

extracted, derivatized and resuspended in 100 μL hexane, and 1 μL was used for fatty acid 

composition determination (Viens 1996). Cytochrome content of the respiratory chain (in 

liver mitochondria) was measured by comparison of the spectra of fully oxidized (potassium 

ferricyanide) compared with fully reduced (sodium dithionite) cytochromes, and absorbance 

values were used to calculate the amounts of cytochromes (Williams 1964). Quinones 9 (Q9) 

and 10 (Q10) were measured on powdered frozen tissues, liver mitochondria and plasma. 

After solubilization and extraction in 2-propanol, Q9 and Q10 were detected by reverse-phase 

HPLC with electrochemical detection on the same run (Galinier 2004). 



64 

 

Protein oxidation in the plasma and liver was evaluated by the disappearance of protein thiol 

groups (Faure, 1995). Standards and plasma samples (20 µL) were measured 

spectrophotometrically at 415 nm in KH2PO4/K2HPO4 buffer 50 mM, EDTA 100 mM, pH 8 

and bis-5,5'-dithio-bis(2-nitrobenzoic acid 10 mM. 

 

Figure 16. The scheme of first part of study the influence of exercise around gestation                     

on oxidative stress of offspring 
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B. SECOND PART: THE INFLUENCE OF EXCERCISE AROUND GESTATION 

ON GLUCOSE METABOLISM OF OFFSPRING  

 

In the second part of the core study, effect of moderate intensity endurance training 4 weeks 

before mating until the 18
th

 day of gestation on the pancreatic islet β-cells function of 

offspring were evaluated by measuring of glucose tolerance, insulin sensitivity, insulin 

secretion, insulin signaling pathway (PKB phosphorylation), insulin content, and evaluating 

the structure of pancreatic β-cells.  

a. Glucose and insulin tolerance  test  

Intraperitoneal glucose tolerance test (IpGTT) and intraperitoneal insulin tolerance test 

(IpITT) were performed in male rat offspring.  

After fasting overnight, glucose was intraperitoneally injected at 1 g.kg
-1

 body weight. Blood 

glucose readings were taken via tail pick before (T = 0 min) and 5, 10, 15, 20, 25, 30, 35, 40, 

45, 60, 90, 120 min after glucose injection using an Accu-Chek glucometer (Roche Diabetes 

Care ®, Meylan, France). Areas under the curve were related to T = 0 min. 

After fasting six hours, insulin was intraperitoneally injected at 0.15 g.kg
-1

 body weight. 

Blood glucose readings were taken via tail pick before (T = 0 min) and 5, 10, 15, 20, 25, 30, 

35, 40, 45, 60, 90, 120 min after insulin injection using an Accu-Chek glucometer (Roche 

Diabetes Care ®, Meylan, France). Areas under the curve were related to T = 0 min. 
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b. Isolation of rat Islet cells 

Prior to isolation procedure, digestion solution and isolation buffer were prepared. Digestion 

solution consisted of 10 mg collagenase + 10 ml Hanks Balanced Salt Solution (HBSS) for 

young rat and 15 mg collagenase + 15 ml HBSS for an adult rat and was placed in an ice bag. 

Isolation buffer consisted of HBSS+SVFd and was kept at 4 
°
C. 

1. After anaesthetization, pancreas was slowly injected with a small amount of digestion 

solution (2.5 ml for young and 5 ml for adult rat) via canal of bile duct. It was then 

dissected and placed in a 50-ml tube containing the digestion solution.  

2. The pancreas was incubated for 12 minutes 45 seconds in a 37°C-waterbath. 

3. Digested pancreas was filtered and suspension was transferred in two new 50-ml tubes. 

4. 10 ml of solution HBSS+SVFd (without collagenase) were added in each tube and shaked 

well for 10 seconds.  

5. 30 ml of solution HBSS+SVFd were then added in each tube that was centrifuged at 259 g 

at 4°C for 2 minutes.  

6. The supernatant was slowly eliminated and the pellet was added with 10 ml of 

HBSS+SVFd, and was then slowly resuspended 

7. Tubes were then filled with solution HBSS+SVFd and then centrifuged at 259 g at 4°C for 

2 minutes. This step was repeated twice.  

8. The pellet was kept and then added with 10 ml of HBSS+SVFd and was then slowly 

resuspended. 

9. Tubes were then filled with solution HBSS+SVFd and then centrifuged at 259 g at 4°C for 

2 minutes. This step was repeated twice. 
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10. The pellet was kept and added with 5 ml of Histopaque solution, slowly resuspended. 5 ml 

of Histopaque were then added.  

11. The suspension composed of pellet+Histopaque and 10 ml HBSS (without SVFd) were 

layered very slowly in each falcon in order to make a three steps density gradient. Tubes 

were then centrifuged at 900 g at 20°C for 20 minutes. 

12. The middle layer from the 2 tubes were taken carefully and placed in a new tube containing 

10 ml of HBSS+SVFd that were centrifuged at 259 g at 4°C for 2 minutes. 

13. The pellet was kept and slowly resuspended with 10 ml of HBSS+SVFd, and tubes were 

filled with additional HBSS+SVFd solution. Tubes were centrifuged at 259 g at 4°C for 2 

minutes. This step was repeated twice.  

14. The pellet was slowly resuspended in 700 µL of RPMI+antibiotics. 

15. The suspended pellet was placed in a sterile petri dish and was then added with 700 µL 

RPMI used to rinse the tube. 

16. Finally, 700 µL of RPMI were added into the petri dish.  

17. The number of islet was counted under light microscope and islets were then stored 

overnight at -20°C for glucose stimulation insulin secretion (GSIS) tests. 

 

c. Glucose-stimulated insulin secretion (GSIS) test (modified byVial G, 2013) 

Pancreatic islets isolation was performed for insulin secretion measurements using Serva® 

protocol with slight modifications by Guillaume Vial. A 35 mm Petri dish was coated using 

50 µl of matrix and incubated for 2 h at 37 °C and then rinsed twice with sterile distilled 

water. Coated Petri dish was dried under the culture hood before use. 
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Preparation of Krebs: 

KRBH solution 

                       mM  MW    For   1L 

NaCl                125  58.44    7.305g  

KCl                 4.74  74.55    0.353g 

NaHCO3          5  84.01    0.42g 

CaCl2              1  147.02 (2H2O)   0.147g 

MgSO4            1.2  246.5 (7H2O)   0.2959g 

K2HPO4         1.2  174.18 (or 228.2 if 3H2O) 0.209g (or 0.274g) 

HEPES            25  238.3    5.957g 

BSA                0.1% w/v     1g 

pH 7.4 

Filter through 0.22μM under hood. 

Aliquote and store at -20 ° C. 

 

Prepare Krebs solution with 2.8 mM glucose and another with 16.7 mM: 

For 10 ml of 2.8 mM (0.5g / L): 50 µl of solution 100g / L (Sigma) 

For 10 ml of 16.7 mM (3g / L): 300 μL of solution 100g / L (Sigma) 
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GSIS protocol: 

1. The islets in Petri dish were taken and placed in two 2-ml sterile microtubes wetted with 1 

drop of RPMI. 

2. Incubation with glucose 0.5 g/L (2.8 mM): 1ml/each tube at 37 °C for 1 hour and then 

centrifugation at 1100 rpm/20°C/2 minutes 

3. Elimination of the supernatant and addition of 1ml glucose 0.5 g/L to the pellet in each 

tube and incubation at 37 °C for 1 hour 

4. Centrifugation at 1100 rpm/20°C/2 minutes 

5. The supernatants were collected carefully and separated in two tubes (one for GSIS 0.5 g/L 

and one for GSIS Arg/0.5 g/L) that were stored at -80 °C until insulin secretion 

measurements. 

6.  The pellets were kept and incubated with 1ml/each tube of glucose 3 g/L (16.7 mM) at 37 

°C for 1 hour and tube were then centrifuged at 1100 rpm/20°C/2 minutes 

7. The supernatants were taken and separated in two tubes (one for GSIS 3 g/L and one for 

GSIS Arg/3 g/L) that were then stored at -80 °C until insulin secretion measurements.  

8. The pellets were kept and incubated overnight in 1 ml of ethanol acid (EtOH 70% + 0.18N 

HCl) per tube at -20 °C. 

9. The bottom was scraped with sterile tips and stored at -80°C until measurements of total 

insulin. 

Composition of EtOH / HCl: 

For 100 mL: 75 ml of absolute ethanol + 1.5 mL 12 N HCL + 23.5 mL H2O. 
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d. Insulin load test and analysis of insulin signaling (PKB/AKt) in skeletal muscle and 

in liver  

After a 6-hour fast, 3-week (others than those used for tolerance tests) old rats were 

intraperitoneally injected with NaCl (0.9%) or with insulin (10 mIU.g
-1

 body weight). 15 min 

after injection, rats were killed and gastrocnemius muscle and liver were rapidly removed and 

frozen until their use to determine phosphokinase B (PKB) phosphorylation level by Western 

blotting as an indicator of insulin sensitivity. 

 

Figure 17. The scheme of second part of study the influence of exercise around gestation                     

on glucose metabolism in offspring 

II.2.1.1  Statistical analyses 

All data are presented as mean ± SE. One-way analysis of variance (ANOVA) was used to 

determine the global effect of training of the mothers on offspring. When appropriate, 

differences between groups were tested with a PLSD Fisher post-hoc test. Statistical 

significance was accepted at P<0.05. Mann Whitney tests were applied when values were 

non-normally distributed. 
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II.2.2  THE INFLUENCE OF DIET AROUND GESTATION ON OXIDATIVE 

STRESS IN OFFSPRING  

II.2.2.1 Animals care 

All study protocols were reviewed and approved by the Institutional Ethic Committee for 

Animal Care (Protocol 00174.02 accepted in March 2014). The rats were maintained and 

handled in agreement with the Guidelines for the Care and Use of Laboratory Animals 

published by the European Union (2010/63/UE) and the French Ministry of Research (2013-

118). 

Eighteen female Wistar rats (12 weeks-old) from Charles River laboratory, L'Arbresle, 

France, were housed in individual cages in a controlled environment: 25°C, 50 ± 10% relative 

humidity and 12h:12h light:dark, during all the experiment with free access to food and water.  

II.2.2.2 Diets 

The diets (chow) were bought from SAFE, 89290 Augis, France. The 18 female Wistar rats 

were randomly divided in 3 groups (n=6 for each): control group (C), fructose group (F), and 

fructose iron-enriched group (FI). The control group received a standard diet (A04) as shown 

in Table 1. The FI group received the same fructose-rich diet but containing 22 mg of 

iron/100 g diet (Table 1). The diets were given 4 weeks before gestation and during the 3 

weeks of gestation. The diet was given 4 weeks before gestation in order to get negative effect 

on metabolic function on mother before gestation. The iron content of the pellets for the 

Fructose and Fructose-Iron diet were assayed using a quadrupole ICP-MS Thermo X-series II 

completed with crash/reaction cell technology (CCT), concentric nebulizer and used Xt 
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interface. The collision reaction gas was a mixture of Helium (He) and H2 (97/7). The samples 

were mineralized in nitric acid and were then diluted 100 times in water prior to analysis. 

Measuring of Fe
2+

 and Fe
3+

 used Ga as internal standard. Four calibration standards (0-200-

1000, and 2000 nmol/l) were used to make a calibration curve. Method accuracy was assessed 

by analyzing NIST standardized reagent 1577b (bovine liver) and ARC/CL total diet 

standardized reagent at the beginning and at the end of the analytical run. The precision value 

was 3.40% and the bias was 1.67%. 

 

Table 1: Composition of the diets (g/100g diet) 

Composition Standard A04 

(group C) 

Fructose rich diet 

(group F) 

Fructose-Iron diet 

(Group FI) 

Starch 62 0 0 

Fructose 0 65 65 

Casein 22.7 20 20 

Vegetal oils 4.5 5 5 

Mineral and vitamins 6.25 6.25 6.25 

Iron mg/100 g diet 10 12 22 

Cellulose 4.50 5 5 

kCal/100 g diet 379 385 385 

 

II.2.2.3 Experimental procedures 

All pregnant rats were weighed weekly and pups were weighed at delivery. One day after 

delivery and after an overnight fasting, the mothers were anaesthetized with sodium 

pentobarbital intraperitoneally. Some of the female rats were unfertilized, which is a common 

figure in animal facilities. Therefore, the final number of mothers with pups was for each 

group: C: n=4, F: n=5, FI: n=5. Blood samples were collected from mothers by heart 
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puncture in heparinized tubes protected from light and centrifuged at room temperature for 10 

min at 3000 g. Plasma was immediately isolated, aliquoted and stored at –80 °C until analysis.  

The morning of sacrifice males and females pups were weighed and decapitated without 

anesthesia. Blood glucose measurements were taken by a drop of blood using a glucometer as 

previously described. Immediately after blood collection, the rats were sacrificed and visceral 

fat mass was weighed. Pups liver and brain were removed, weighed, frozen in liquid nitrogen, 

and stored at -80 °C until analysis. Before analysis, tissue samples were homogenized (10% 

w/v) in a buffer composed of 10 mM Tris, 1 mM DPTA (diethylene triamine pentaacetic 

acid), 1 mM PMSF (phenylmethanesulfonylfluoride), pH=7.4 and centrifuged at 3000 g/4 

°C/10 min. 

 

II.2.2.4 Biological parameters 

Enzymatic and colorimetric methods on Roche/Hitachi modular 912 (Roche diagnosis, 

Meylan, Fr) were used to determine the concentration of fasting glucose, triglycerides, and 

cholesterol in mothers. Insulin concentration in mothers was determined using a commercial 

radioimmunoassay kit (Merck Millipore Corp, Germany). Glycemia in pups was determined 

using an AccuChek
®
 glucometer (Roche Diabetes Care, Meylan, France).  

Insulin sensitivity was calculated using the Homeostasis Model Assessment-insulin resistance 

(HOMA-IR), first described by Matthews et.al. 1985. The value can be calculated from the 

fasting concentrations of insulin and glucose using the following formula:  

                                fasting glucose (mg/dL) x fasting insulin μUI/mL  

                           ------------------------------------------------------------------- 

22.5 
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Oxidative stress status was evaluated by measuring of thiobarbituric acid reactive substances 

(TBARS), plasma thiols (SH) groups, the reduced and oxidized form of glutathione 

(GSH/GSSG), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activity, and 

total plasma antioxidant (ferric reducing antioxidant power, FRAP).  

TBARS level of plasma were assessed as described by Richard et.al. 1992. During 

measurement, lipoperoxidation process was inhibited by adding 20 g/L (10 µL) of Butylated 

hydroxytoluene (BHT) in solution (Sigma Chemical Co., via Coger, Paris, France) to each 

tube. Then, 100 µL of polypropylene and 750 µL of a buffer solution consisted in 

thiobarbituric acid and HC1O4 were then added to the sample. Tubes were mixed by vortex 

and incubated at 95 
0
C for 60 minutes. To stop the reaction, the samples were cooled in an ice 

bath. To each tube, 2 ml of butanol were added to extract the TBA-MDA complexes. The 

phases were then separated by centrifugation. The determination of TBARS was done at 

excitation wavelength of 532 nm and emission wavelength of 553 nm.   

The power of antioxidant was assayed by measuring FRAP as a novel method. Reduction of 

fe
3+

 to fe
2+

 at low pH causes formation of a colored complex of ferrous-tripyridyltriazine. The 

value of FRAP was obtained by comparing the absorbance of standard ferrous ion with the 

samples at 593 nm. Absorbance changes are linear over a wide concentration range with 

antioxidant mixtures, including plasma, and with solutions containing one antioxidant in 

purified form. There is no apparent interaction between antioxidants. Measured stoichiometric 

factors of Trolox, α-tocopherol, ascorbic acid, and uric acid are all 2.0 and that of bilirubin is 

4.0. Activity of albumin is very low. Within- and between-run CVs are <1.0 and <3.0%, 

respectively, at 100–1000 μmol/l. The FRAP assay is inexpensive, reagents are simple to 

prepare, results are highly reproducible, and the procedure is straightforward and speedy. The 
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FRAP assay offers a putative index of antioxidant, or reducing, potential of biological fluids 

within the technological reach of every laboratory and researcher interested in oxidative stress 

and its effects. 

Plasma thiols (SH) groups were assayed as described by Faure and Lafond, 1995. The 

reduced and oxidized form of glutathione (GSH/GSSG) was determined by a kinetic method 

as prescribed by Akerboom and Sies, 1981. Glutathione peroxidase (GPx) activity was 

evaluated by the modified method of Gunzler et.al. 1974 using terbutyl hydroperoxide as a 

substrate instead of hydrogen peroxide. The glutathione-S-transferase (GST) activity was 

determined by the method of Habig et.al.1974.  

 

II.2.2.5. Statistical analyses 

All data are presented as mean ± SE. One-way analysis of variance (ANOVA) was used to 

determine the effect of diet in mother (high fructose diet and fructose iron-enriched diet) on 

offspring. When appropriate, differences between groups were tested with a PLSD Fisher post 

hoc test. Statistical significance was accepted at p < 0.05. Mann Whitney tests were applied 

when values were non-normally distributed.  
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III.1. THE INFLUENCE OF EXERCISE AROUND GESTATION ON 

OXIDATIVE STRESS IN OFFSPRING  

III.1.1. The influence of exercise around gestation on citrate synthase 

activity in the mother  

 

    Table 2. Citrate synthase activity in liver and muscle of mothers (Pilot study) 

    Sedentary  Trained  

Citrate synthase activity in liver 

(µmol/min/g of wet tissue) 

   73.30 ± 2.70 82.72 ± 3.71 * 

Citrate synthase activity in muscle 

(µmol/min/g of wet tissue) 

   240.40 ± 20.12 324.89 ± 15.55 * 

 

Values are means ± SE of n = 6 rats/group. 

*Significantly different from sedentary group (p < 0.01). 

 

Since the major effects of training on Citrate synthase usually disappear after 3 weeks without 

exercise and as we have to use our offspring at weaning (21 days) to obtain sufficient tissue, 

we conducted a pilot study where mothers were trained using the same training protocol as for 

the central study. We sacrificed the mothers just after delivery to confirm that such training 

program was efficient and that mothers will be trained before and during gestation. 

Maximal activity of citrate synthase (CS), a classic marker of skeletal muscle and liver 

mitochondrial adaptation to exercise training [Holloszy JO, Coyle EF (1984)], was 

significantly higher in the trained group compared to the sedentary group (P<0.05). 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0074098#pone.0074098-Holloszy1
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III.1.2 The influence on anthropometry of mothers and offspring  

 

Table 3. Characteristics of mothers and litters (central study). 

 Sedentary (C) Trained (TG) 

Body weight at the beginning 

Body weight after 4 weeks training 

Body weight after nursing 

Weight gain during the last week of 

gestation (% of body weight) 

260 ± 5 

277 ± 22  

297 ± 7 

13.02 ± 3.62 

260 ± 4 

276 ± 19 

286 ± 4 

9.49 ± 2.16 

Food intake during the last week of 

gestation (g/100g of body weight) 

53.44 ± 6.41 62.21 ± 16.18 

Adipose tissues weight (g/100g of     

body weight) 

Muscle (g.kg PC
-1

) 

54.3 ± 6.0 

 

5,90±0,24 

39.5 ± 2.7* 

 

6,02±0,11 

Number of newborns 10.7 ± 0.9 10.7 ± 1.5 

% of male  63 45 

  

Values are means ± SE of n = 6 rats/group.  

*Significantly different from the control group (p < 0.05) 

 

Adipose tissues weight corresponds to the sum of the weight of mesenteric, retroperitoneal 

and urogenital adipose tissues. 

 

There was no difference in mother body weight between the two groups after the 4 first weeks 

of training (277 ± 22 g vs. 276 ± 19 g for Control and Trained groups, respectively) (Table 3). 

After nursing, body weight of trained mothers tended to be lower than that of Control mothers 

(297 ± 7 g vs. 286 ± 4 g for Control and Trained groups, respectively) (Table 3). Food intake 

was similar between both groups throughout the study from the beginning of the protocol to 

the end of lactation (Table 3). Relative muscle mass estimated as the sum of plantaris, 

externus longitudinalis, gastrocnemeus, and quadriceps muscles measured at sacrifice was no 
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difference in mother between the two groups (5,90±0,24 vs 6,02±0,11 for Control and Trained 

groups, respectively) (Table 3). However, relative fat mass estimated as the sum of 

retroperitoneal, urogenital and mesenteric fats depots, was significantly lower in trained 

mothers (TG) compared with control mothers (C) (39.5 ± 2.7 vs. 54.3 ± 6.0 g.kg
-1

 body 

weight for trained and control groups, respectively. P < 0.05) (Table 3). Moreover, exercise 

training before and during gestation had no effect on the litter size or on sex ratio of the litter.  

 

 

III.1.3. The influence of maternal exercise on citrate synthase activity 
in offspring  

 

 

 

Figure 18. Citrate synthase activity in liver (upper panel) and in muscle (lower panel) in 

offspring from sedentary (C) or trained (TG) mothers. 

Values are means ± SE of n = 9 rats/group.                                                                                

Endurance training of mother did not alter liver or muscle citrate synthase activity in offspring
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III.1.4. The influence of maternal exercise on oxygen consumption of  

               Offspring 
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Figure 19. Oxygen consumption by isolated muscle mitochondria (upper panel) and by 

isolated liver mitochondria (lower panel) with glutamate/malate+succinate as 

substrates in offspring from C or TG mothers. 

Values are means ± SE of n = 7-9 rats/group 

*Significantly different from control group (p < 0.01).  
 

State 3 (ADP-stimulated) and state 4 oxygen consumptions (with glutamate/ malate + 

succinate as substrates) in liver mitochondria were lower in young rats from trained mothers 

compared to those from sedentary mothers. There is no significant difference in oxygen 

consumption by muscle mitochondria between groups and no differences as well in the 

uncoupled condition (+DNP). 
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III.1.5 The influence of maternal exercise on ROS production of 
offspring 

             

 

             

Figure 20. H2O2 production by isolated liver mitochondria (upper panel) and by isolated 

muscle mitochondria (lower panel) with glutamate/malate+succinate as substrates 

in offspring from C or TG mothers. 

 Values are means ± SE of n = 7-9 rats/group. 

*Significantly different from control group (p < 0.01). 

There is a significant decrease in spontaneous H2O2 production with glutamate/malate + 

succinate (GMS) by liver and muscle mitochondria from young rats from trained mothers. 

This modification seems to be associated with a decrease in ROS production due to reverse 

electron flux through complex I since there is no more differences after addition of rotenone. 
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III.1.6  The influence of maternal exercise on GPX activity and thiols 
concentration in plasma of offspring 
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Figure 21. Plasma GPX activity (upper panel) and Thiols concentration (lower panel) in 

offspring from sedentary (C) or trained (TG) mothers. 

 

Values are means ± SE of n = 5-9 rats/group. 

*Significantly different from control group (p < 0.01). 
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III.1.7  The influence of maternal exercise on GPX activity and thiols  

concentration in liver of offspring 
 

 

 

 

Figure 22. Activity of GPX activity (upper panel) and Thiols concentration (lower panel) in 

liver of offspring from sedentary (C) or trained (TG) mothers. 
 

Values are means ± SE of n = 5-9 rats/group. 

*Significantly different from control group (p < 0.01). 

Measurements of muscle GPX activity and muscle thiol concentrations could not be 

performed because rats were very young and there was not enough muscle tissue available for 

all analyzes.  

The blood and liver redox status of young rats from trained mothers is altered: we observed an 

enhanced GPX activity associated with an increase in oxidative damages on proteins (as 

indicated by a reduced thiols concentration in blood).  
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III.1.8 The influence of maternal exercise on enzymatic activities of 
ETC in liver and muscle of offspring 

 

Table 4. Enzymatic activities of individual complexes of the electron transport chain. 

Offspring C         TG 

C-I, activity, μmol.min-1.mg 

protein in liver 
 

28.47 ± 3.31 28.5 ± 2.83 

C-I, activity, μmol.min-1.mg 

protein in muscle 
 

54.34 ± 5.68 50.76 ± 5.39 

C-II, activity, μmol.min-1.mg 

protein in liver 
 

240.58 ± 5.51 210.17 ± 2.76 * 

C-II, activity, μmol.min-1.mg 

protein in muscle 
 

548.56 ± 47.87 339.66 ± 25.08 * 

C-III, activity, μmol.min-

1.mg protein in liver 
 

484.08 ± 17.32 483.78 ± 24.19  

C-III, activity, μmol.min-

1.mg protein in muscle 
 

3045.94 ± 95.51 2449.32 ± 128.44 * 

TMPD/ascorbate in liver 

nmolO2/min/mg protein 

206.96 ± 22 284.41 ± 12.67 * 

TMPD/ascorbate in muscle 

nmolO2/min/mg protein 

707.93 ± 47.36 869.42 ± 26.93 * 

Values are means ± SE of n = 7-9 rats/group. 

*Significantly different from control group (p < 0.01).  

Activities of CI, CII, CIII were expressed in nmoles of oxidized or reduced substrates by each 

complex. 

 

There was no difference in the complex I activity in both liver and muscle of offspring from 

trained mothers. However, complex II and complex III activities were lower in both liver and 

muscle from offspring from trained mothers while complex IV displayed a higher activity. 
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III.1.9  The influence of maternal exercise on cytochromes 
concentrations in liver mitochondria of offspring 

 

Table 5. Cytochromes concentration (nmole/mg protein) measured by spectrophotometry in 

liver mitochondria isolated from offspring from sedentary (C) or trained (TG) 

mothers. 

Offspring C TG 

Cytochromes a+a3, pmol.mg 

prot-1  

131.27 ± 53.33 260.83 ± 46.14 * 

Cytochrome b, pmol.mg prot-1 190.47 ± 28.33 192.77 ± 16.71 

Cytochromes c+c1, pmol.mg prot-

1 

207.9 ± 63.59 306.89 ± 64.36 

Cytochrome c, pmol.mg prot-1 126.39 ± 19.81 120.18 ± 29.9 

 

Values are means ± SE of n = 7-9 rats/group. 

*Significantly different from control group (p < 0.01). 

While the major part of the content of respiratory chain cytochromes (b, c+c1, c) was not 

affected by the training in the mothers, we observed an increased in a+a3 cytochrome content 

in liver mitochondria from young rats from trained mothers compared to those from sedentary 

mothers. 
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III.1.10 The influence of maternal exercise on α-Tocopherol and 
Quinone concentrations in liver of offspring 

 

Table 6. Electron transport chain composition in offspring is modified by training of the 

mother during gestation. Concentrations of α-Tocopherol reduced (red) and 

oxidized (ox) quinone pools (Q9 and Q10) were measured in liver tissue. 
 

 C TG 

 

α-Tocopherol, nmol.g wet liver-1 

redQ9, nmol.g wet liver-1 

redQ10, nmol.g wet liver-1 

oxQ9, nmol.g wet liver-1 

oxQ10, nmol.g wet liver-1 

redQ9/oxQ9 

Total Q9+Q10, nmol.g wet liver-1 

 

8.26 ± 0.78 

51.06 ± 1.62 

8.84 ± 0.54 

12.16 ± 1.14 

ND 

4.35 ± 0.36 

72.07 ± 2.51 

 

13.42 ± 0.65 * 

58.17 ± 1.41 * 

11.39 ± 0.61 * 

12.30 ± 1.07 

ND 

5.07 ± 0.53 

82.56 ± 0.86 * 

Values are means ± SE of n = 7-9 rats/group. ND: not detected 
 

*Significantly different from control group (p < 0.01)* 

 

Training of the mothers was associated with a significant increase in reduced Q9 and Q10 

(Table 6) in offspring. Q9 oxidized levels and redQ9-to-oxQ9 ratio were not significantly 

affected by mother training. Interestingly, the change in Q9 and Q10 reduced content in 

offspring from trained mother (TG) was associated with an increase in quinone pool (total 

Q9+Q10) and in alpha-tocopherol content.  
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III.1.11 The influence of maternal exercise on fatty acids in plasma, 
liver mitochondria, and liver of offspring 

 

Table 7. Plasma, liver and isolated liver mitochondria fatty acids composition in young rats 

from trained (TG) and untrained (C) mothers. 

 Plasma 

 C TG 

Fatty acids 

Short chains  

12:0 (%) 

Long chains  

14:0-24:0 (%) 

Very Long chains  

26:0 (%) 

 

 

1.49 ± 0.50 

 

98.48 ± 0.49 

 

0.009 ± 0.001 
 

 

 

5.01 ± 0.41 * 

 

94.99 ± 0.41 * 

 

0.005 ± 0.0004 * 
 

Total MUFA (%)  

Total SFA (%) 

Total n-3-FA (%) 

Total n-6-FA (%) 

(n-3)/(n-6) 

Grand Total (1) 

 

62.86 ± 1.22 

37.11 ± 1.23 

4.76 ± 0.27 

42.01 ± 1.81 
 

0.116 ± 0.011 

3056.47 ± 217.42 

54.85 ± 1.61 * 

45.15 ± 1.61 * 

4.37 ± 1.15 

39.21 ± 1.33 

0.112 ± 0.003 

4215.56 ± 283.18 * 

  

 Liver Mitochondria  

           C        TG 

Fatty acids  

Short chains  

12:0 (%) 

Long chains  

14:0-24:0 (%) 

Very Long chains  

26:0 (%) 

 

 

0.045 ± 0.004 

 

99.95 ± 0.004 

 

0.001 ± 8.55E-5 

 

 

 

0.14 ± 0.009 * 

 

99.86 ± 0.009   

 

0.001 ± 4.36E-5 
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Total MUFA (%)  

Total SFA (%) 

Total n-3-FA (%) 

Total n-6-FA (%) 

(n-3)/(n-6) 

Grand Total (1) 

55.84 ± 0.42 

44.16 ± 0.42 

12.59 ± 0.39 

36.09 ± 0.39 

0.349 ± 0.013 

0.134 ± 0.006 

52.88 ± 0.45 * 

47.12 ± 0.45 * 

14.11 ± 0.25 * 

32.92 ± 0.41 * 

0.427 ± 0.010 * 

0.140 ± 0.005 

   

 Liver  

 C TG 

Fatty acids  

Short chains  

12:0 (%) 

Long chains  

14:0-24:0 (%) 

Very Long chains  

26:0 (%) 

 

 

0.450 ± 0.057 

 

99.52 ± 0.05 

 

0.002 ± 3.07E-4 

 

 

0.578 ± 0.046 * 

 

99.41 ± 0.046 

 

0.002 ± 6.65E-5 

Total MUFA (%)  

Total SFA (%) 

Total n-3-FA (%) 

Total n-6-FA (%) 

(n-3)/(n-6) 

Grand Total (1) 

56.25 ± 0.56 

43.72 ± 0.549 

9.52 ± 0.47 

33.58 ± 0.34 

0.284 ± 0.016 

26.94 ± 1.41 

55.77 ± 0.76  

44.22 ± 0.766 

11.03 ± 0.27 * 

32.69 ± 0.27 * 

0.338 ± 0.01 * 

34.15 ± 1.03* 

 

(1) plasma: ng/μL ; liver: ng.μg wet liver-1 ; liver mitochondria: ng.g prot-1 

*Significantly different from control group (p < 0.01). 

Values are expressed as relative amounts from the total fatty acids content as means ± SE 

from n=7 in C group and n=9 in TG group. Grand Totals are expressed in ng/μL for plasma, 

in ng/mg protein for mitochondria and in ng/μg for liver.  
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Training in mother was responsible for a marked change in offspring body lipid content and 

composition. Total plasma and liver fatty acids were increased in offspring by mother’s 

training and fatty acid composition was markedly altered (Table 7). Indeed there is an 

increased in fatty acids short chain in plasma, liver and liver mitochondria with a decreased in 

long chain (in plasma and liver mitochondria, not in liver) in offspring from training mother 

compared to offspring from control mother. Mono unsaturated fatty acids (MUFA) were 

lower (in plasma and liver mitochondria) TG group compared with C group while saturated 

fatty acids (SFA) were higher (in plasma, liver and just a tendency for liver mitochondria). 

Total n-3 fatty acids and n-3/n-6 ratios measured in liver and liver mitochondria were also 

higher in offspring from training mother compared to offspring from control mother. The 

changes found in liver and liver mitochondria were not similar to those found in the plasma 

where there is no difference in total n-3 fatty acids and n-3/n-6 ratio. The increasing of short 

chain fatty acids enhances the membrane fluidity (Puri 2006).  

Discussion  

Considering the potential negative consequences on the newborn of an excessive oxidative 

stress during pregnancy, the aim of this study was to investigate whether endurance training 

of the mother during pregnancy had effects on the redox status of the newborn.  

For the first time, to our knowledge, we show that submaximal maternal exercise modifies the 

offspring mitochondrial function and structure and that it may be possible to act on the redox 

state in offspring by modifying maternal physical activity before and during pregnancy. Our 

purpose was to test the effect of daily chronic exercise during the gestation on fit females that 

were already active before gestation. We chose to train them for 4 weeks before mating; as 
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such duration is usually sufficient to get the first signs of adaptation to chronic endurance 

exercise (Wisloff U 2001). Studies using voluntary exercise in rodents with running wheels 

showed that the running distance decreased dramatically in the last week of gestation (Carter 

LG 2012, Eclarinal JD 2016). So we chose a compulsory treadmill exercise that allowed us to 

test the effects of exercise throughout all the gestational periods, with no change in training 

parameters and especially no reduction in exercise intensity and duration until day 18 of the 

gestation. To ensure that these adaptations were significant, we also chose a sufficiently high 

intensity. We used intensity parameters that are classically found in the literature (Bedford 

1979, Lahaye 2010, Zguira 2013). Based on data collected in our laboratory, the speed and 

slope of the treadmill that we used would correspond to an intensity of about 55% of the 

maximal aerobic speed. That intensity matches the guidelines for exercise in pregnant women 

from a lot of countries around the world (Evenson 2014). However, the frequency and the 

duration are above most of the guidelines, except those from Denmark and the US that 

recommend at least 30 min of moderate-intensity exercise most of the days or daily (Evenson 

KR 2014).  

We first established that endurance training imposed on rats during gestation was effective 

and did not disturb the gestation to the point of endangering the life of the mother and 

offspring. In order to, maximal activity of citrate synthase (CS) was performed in liver and in 

muscle of the control and training mother. CS activity is a classic marker of skeletal muscle 

and liver mitochondrial adaptation to exercise training (Holloszy 1984, Carter 2012, Vigelso 

et.al.2014). Its increase is a strong indication of adaptation to training. CS activity in liver and 

in muscle increased after mother training session (P<0.05, Table 2) indicated that our training 

protocol was effective on training mothers and induced mitochondrial modifications.  

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0074098#pone.0074098-Holloszy1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0074098#pone.0074098-Holloszy1
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Moreover, our result on litter was not difference with previously studies reported that 

voluntary and controlled low-intensity exercise during gestation has no negative 

consequences on dams and litter (Carter 2013, Platt 2013). Our training protocol appears to be 

safe for the mother and their pups since no differences were found in the number of pups per 

litters and the probability of gender their pups (Table 3), suggesting that moderate intensity 

endurance training before and during gestation has no negative effect on glucose metabolism 

of mother and offspring affect and maintaining the fulfillment of nutrients to the fetus 

(Hopkins 2010, Clapp 2006). Maternal exercise had no effect on maternal body weight, food 

intake or body composition.  

On the contrary, no differences in liver or muscle citrate synthase activity in the offspring. 

This finding may caused by the exercise training was not performing to the offspring. In 

contrast to our finding, a study in mouse brain by Park et.al.2013 reported an increase in 

activity of citrate synthase of offspring born to trained mothers. Different to muscle and liver, 

the increased citrate synthase activity in the brain of offspring born to trained mothers 

suggests that brain is a highly oxygen and glucose dependent organ in order to maintain the 

Na+-K+ membrane potential required for transmission of the nerve impulses (Berg et.al.2002). 

Our study presents novel data on modifying of offspring’s oxygen consumption of 

mitochondria. Different to previous study in biochemical adaptation response to regular 

strenuous exercise by Holloszy 1967 that increased the oxygen consumption on mother, we 

found the mitochondrial oxygen consumption of offspring born to trained mothers was 

significantly decreased in state 3 and state 4 of the liver, but not significant in the muscle. 

This result may be as an adaptation to maternal exercise training before and during gestation. 

The decreasing of oxygen consumption can reduce the rate of ROS production, because 1-3% 
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of the oxygen used by mitochondria is partially reduced to form ROS as a result of electron 

leakage (Turrens 2007, Fusch 2003).  

The reduction of ROS production is confirmed by our data in the current study (Figure 20) 

that showed a significant decrease in spontaneous H2O2 production with glutamate/malate 

+succinate (GMS) in the liver and muscle mitochondria of offspring born to trained mothers. 

This finding not differ with a study by Radak et.al.2005 reported a reduction in basal ROS 

production and in oxidative damage in rats subjected to moderate intensity exercise training. 

Moreover, the reducing of oxygen consumption that followed by the decreasing of enzymatic 

activity in complex II in the liver and muscle mitochondria and complex III in the muscle 

mitochondria (Table 3) might reduce the electrons flow in the electron transport chain in units 

of time. The decreasing of electron flow may reduce the electron leakage in the electron 

transport chain leads to reduce generation of ROS superoxide O2
-
 (Park et.al. 2013). 

Moreover, the increased activity of Complex IV in liver and in muscle causes the electron 

have reached the complex III immediately transferred into the matrix of mitochondria to join 

with half of Oxygen (½ O2) forms water (H2O) which ultimately decreases ROS production 

(Harper et.al. 2004, Boveris et.al.1973; Kudin et.al. 2004). While the total amount of ROS 

production by Antimycin A (AA) were higher than those with GMS caused by a reverse-

electron flux in complex I of the respiratory chain. 

Since there is a link between mother and her fetus during intrauterine life (Argüelles 2006), 

we examined the redox state in the newborn as a representation of maternal environment. The 

current study showed an alteration in the redox state of newborn rats. Thiols level, as a marker 

of protein damages by oxidative stress, was significantly lower in the plasma of newborns 
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from trained mothers, not in the liver offspring. But the activity of GPx was significantly 

increased both in the plasma and liver tissue of newborn rats (Figures 21 and 22). This finding 

indicates that there is an increasing of protein damages by oxidative stress, but the rat 

offspring from trained mothers are able to adaptation by enhancing the activity of GPx in the 

plasma and liver tissue in order to maintain the balancing redox. No significant diference in 

thiols level of the liver tissue may caused by a recycle of thiols synthesis in the liver offspring 

from trained mother. Regarding that the redox balance has a major role throughout 

embryonic, fetal, and postnatal development (Phyllis 2004) and that mitochondrial function 

plays an important role in cellular redox/oxidative balance control with consequences on the 

life and death of cells (Apostolova et.al. 2015), the balanced redox of rat offspring which is 

induced by moderate intensity exercise training can stimulate optimally programming of the 

cellular growth and fetal organogenesis, and also the structure, number and capability of 

offspring mitochondria during fetal life.    

Moderate-intensity endurance training before and during gestation increased significantly the 

levels of reduced-Q9, reduced-Q10, oxidized-Q9, and quinone pools (total Q9+Q10) (Table 

6) in the liver tissue of the offspring. These higher levels of Quinones, which are necessary to 

Complex I and Complex III, would increase the probability of catching the electrons within 

the electron transport chain and would prevent them from leaving the transport chain which is 

known to frequently occur at both Complexes I and III (Boveris and Chance, 1973; Kudin 

et.al. 2004). This would result in the reduction of ROS superoxide (O2
-
) production from 

escaped highly energized electrons. Cytochromes a+a3, transfer the electrons from 

cytochrome c to the molecular oxygen to form H2O in the mitochondrial matrix and thus the 

increase in cytochrome a+a3 that we found would contribute to inhibit the formation of ROS 
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superoxide (Yano T, 2002) by orienting electrons toward the last step of the electron transfer 

chain. A decrease in ROS production will increase producing of cytochromes a+a3 with 

possible mechanism as follows: a decrease in ROS production leads to decreasing of ROS 

attack against proteins and mitochondrial DNA induces enhancing of the expression of 

mitochondrial proteins which is required to form cytochrome oxidase. Because the genome 

cytochromes a+a3 derived from mitochondria (Fontanessi et.al. 2006), the increased 

expression of mitochondrial proteins causes increased production of cytochromes a+a3. 

Moreover, the increasing of cytochrome oxidase contributes to an increase of energy storage 

in the formation of an electrochemical gradient that will be used by the oxidative 

phosphorylation system for the synthesis of ATP (Fontanessi et.al. 2006).     

In addition to these findings, α-tocopherol, which is accepted as the most potent radical-

scavenging lipophilic antioxidant (Lobo et.al. 2010) was increased in the offspring. In 

biological membranes, α-tocopherol is present in a low ratio of α-tocopherol: phospholipids, 

which are abundant and highly susceptible to oxidative damage. For every 1000–2000 

molecules of phospholipid, it is predicted only 1 molecule of α-tocopherol is present for 

antioxidant defense (Sen et.al.2000). Hence, the increased level of α-tocopherol has beneficial 

effects either as an antioxidant by a peroxyl radical scavenger (Traber 2007) and preventing 

the free radical chain reaction of lipid peroxidation (Apostolova et.al.2015) or non-antioxidant 

effect to modulate a number of cell functions (Azzi 2007) such as inhibition of monocyte 

reactive oxygen species, the changes in cellular membrane fluidity (Rimbach et.al. 2002, Van 

Aalst et.al. 2004), and also to maintain the integrity of long-chain polyunsaturated fatty acids 

(PUFA) in the cellular membrane to maintain their function (Traber 2007). These findings 

suggest that maternal exercise training reduced ROS production of offspring through 
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increased acceptor electron within respiratory chain and antioxidant in the mitochondria and 

tissue of the liver of the offspring. 

We also present novel data on alteration in composition of fatty acids in plasma, liver, and 

liver mitochondria of offspring born to trained mothers. During pregnancy, growth of new 

tissue increases the requirement for essential fatty acids (EFA) and also raises mobilization of 

EFA from maternal tissue stores to the fetus for vital organ development (Ogburn 1991). 

However, Holman et.al.1991 reported significant lower essential fatty acids in pregnant 

women compared to non-pregnant women, suggesting lower mobilization EFA to the fetus. 

The deficiency must be minimized for the special needs of the fetus for brain and vital organ 

development. The present study showed an increase in total fatty acids in plasma, liver and 

liver mitochondria of offspring born to trained mothers. We also found an increase in levels of 

n-3 fatty acids, followed by decreasing levels of n-6 fatty acids and increasing n-3/n-6 ratio in 

the liver tissue and liver mitochondria of offspring from training mothers. The enhancing of 

omega-3 (n-3) which plays a role in the reduction of inflammation (Valentine et.al.2004) and 

increasing the ratio of n-3/n-6 stimulated by maternal exercise protects the liver cells and liver 

mitochondria of the inflammatory process of the offspring. Moreover, regarding to increasing 

n-3/n-6 fatty acid ratio could reduce the consequences of obesity-associated inflammation 

(Heerwagen et.al. 2013), it could be expected that the increasing of n-3/n-6 fatty acid ratio in 

the offspring of trained mother may reduce the risk of obesity-induced inflammation during 

fetal metabolic programming.  

Our data also showed, in offsprings from trained mothers, that the composition of short chain 

fatty acids increased significantly, while the long chain fatty acids decreased significantly in 

the plasma, liver and liver mitochondria. The changes in this composition have a good effect, 

http://www.sciencedirect.com/science/article/pii/S0163782704000220
http://www.sciencedirect.com/science/article/pii/S0163782704000220
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because short chain fatty acids are more resistant to free radical attack or lipid peroxidation 

compared with long chain fatty acids (Hulbert 2008) leads to protection of lipids and protein 

membrane damage and improving the membrane function to maintain their bioactivity. In 

contrast, Argüelles 2006 showed the damage effect of the lipid peroxidation of the membrane 

caused the degeneration of membrane structure and loss of function of membrane proteins 

leads to changed membrane fluidity and increased membrane rigidity, and also increased 

membrane permeability due to the presence of oxidized lipids (Wong-ekkabut et.al. 2007).   

 

CONCLUSIONS 

Moderate intensity exercise training 4 weeks prior to and until the 18
th 

day of gestation: 

1. Modifies oxygen consumption and activity of complex respiratory chain II, III, IV                   

in rat offspring 

2. Reduces ROS production in rat offspring 

3. Increases endogen antioxidant (GPx, Quinone), cytochrome a+a3, and                                  

α-tocopherol in rat offspring 

4. Increases the level of short chain FA, n-3 FA, and ratio n-3/n-4 FA in plasma, liver, and 

liver mitochondria of offspring 
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III.2  THE INFLUENCE OF EXERCISE AROUND GESTATION 

ON ANTHROPOMETRY AND GLUCOSE METABOLISM  

  

III.2.1  The influence on anthropometry in the rat offspring 

 

Table 8.  Body and relative organ weights, and area of the pancreatic islets of offspring at 

weaning 

 

 

 

C TG 

Body weight (BW) (g) 51,6±3,4 47,5±1,2 

Organ weight (g/kg BW) 

  Liver 31,81±0,75 30,97±0,19 

Kidney 6,02±0,11 5,99±0,11 

Adipose tissue 8,68±0,57 9,00±0,35 

Muscle 4,58±0,13 4,54±0,07 

Pancreas 4,54±0,14 3,96±0,18* 

Area of Islets (µm²) 44669±6761 22822±4036* 

 

Data are the mean ± SE (n = 16 for C; n = 17 for TG; n = 11 to 13 for the area of islets).  

*Significantly different from the control group (p < 0.05). Adipose tissues weight corresponds 

to the sum of mesenteric, retroperitoneal and epididymal weight. 

 

Figure 23. Body weight throughout the experiment in offspring from sedentary (C) or trained 

(TG) mothers   
 

Values are means ± SE of n = 9 rats/group. 

*Significantly different from the control group (p < 0.05). 
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At weaning, the body weight was not different between the two groups of pups (51.6 ± 3.4 vs. 

47.5 ± 1.2 g, respectively, p > 0.05) (Table 8). Relative organ weights were not different 

between the two groups of pups for liver, kidney, muscles and adipose tissue but pancreas 

relative weight was significantly lower in TG group. In addition, the average area of 

pancreatic islets measured in 21-old days pups was significantly lower in the offspring of the 

TG group compared with those from the C group (Table 8).  

 

III.2.2  The influence on the weight and structure of pancreas in offspring  

 

The pancreas weight of offspring at weaning was shown in Table 8. The relative weight of the 

pancreas was significantly lower in the offspring of the TG group than in the C group (3.96 ± 

0.18 vs. 4.53 ± 0.14 g.kg-1, respectively, p <0.05) (Table 8). In addition, the average area of 

pancreatic islets measured in 3-weeks old pups was significantly lower in the offspring of the 

TG group compared with those of C group (Table 8, Figure 24).  

 

Figure 24. Histological structure of Langerhans islands and acini of pancreas of offspring 

from control (C, left) and trained (TG, right) mothers.  

Values are means ± SE of n = 9 rats for C group; n = 12 rats for TG group. 

*Significantly different from control group, (p < 0.05) 
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Histological analysis of pancreas structrure showed that the size islets of Langerhans of 

offspring from TG was significantly smaller (22822±4036 µm²) than those from C mothers 

(44669±6761 µm²) (p < 0.05) and that the acini of the rat from control mothers were larger 

than those from trained mothers (Figure 24). 

 

III.2.3  The insulin content of the pancreas from the β-islets 
 

                                

Figure 25. Insulin content of the pancreas from the β-islets of offspring from sedentary (C)   

or trained (TG) mothers.  

Values are means ± SE of n = 6-8 rats/group.                                                                          

The pancreatic insulin content was not different between animals of TG and C mothers, at the 

age of 21 days old (Fig. 25). 

III.2.4  The insulin secretion from the β-islets of offspring 
 
 

 

Figure 26. Insulin secretion from the β-islets of pups aged 30 days after incubation in low 

glucose (2.8 mM) and then high glucose (16.7 mM) or low glucose (2.8 mM) + 

Arginine (20mM ) of pups from sedentary (C) or trained (TG) mothers. 
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Values are means ± SE of n = 6-8 rats/group. 

*Significantly different from the other group (p < 0.05), 

At weaning (21 days old), the secretion of insulin from the β-islets of pups of trained mothers 

was not different from those of sedentary mothers, whether provided by low glucose (2.8 

mM) or high glucose (16.7 mM) (Figure 33). However, the secretion of insulin from the islets 

of pups of trained mothers was significantly higher than those β-islets pup sedentary mothers 

down glucose requirements (2.8 mM) + arginine (20 mM) (+ 96%,  p = 0.01 ) (Figure 26). 

III.2.5. Observation on basal/fasting blood glucose and insulin in 28 days old offspring 

 

 

Figure 27. Basal/fasting blood glucose (left panel) and insulin (right panel) in offspring from 

sedentary (C) or trained (TG) mothers.  

Values are means ± SE of  n=6 rats/group.  

*Significantly different from the other group (p < 0.05) 

 
After a 6h-fast, 28 day-old pups from trained mothers showed a lower glycemia compared 

with pups from control mothers (119.7±2.4 vs. 130.5±4.1 mg.dL
-1

, respectively, P<0.05) 

(Figure 26) while insulinemia was similar in both groups even if it tended to be higher in rats 

from trained mothers (0.31±0.04 vs. 0.21±0.05 ng.mL
-1

 for trained and control mothers, 

respectively, P=0.158) (Figure 26). 
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III.2.6. The influence on glucose tolerance (IpGTT) of offspring at 21 days old 
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Figure 28. Area under the curve of glucose tolerance of offspring at 21 days old from control 

(C) and trained (TG) mothers.  

Values are means ± SE of  n = 10-12 rats/group. 

 

Figure 29. Glycemia of glucose tolerance of offspring at 21 days old from control (C) and 

trained (TG) mothers.  

Values are means ± SE of  n = 10-12 rats/group. 

At weaning, glucose tolerance was not different between the offspring of C and TG groups 

(108±12.6 vs. 105±11.3 mg/dL, respectively). Indeed, throughout the duration of ipGTT test, 

blood glucose was not different between the two groups (Figure 28). This is confirmed by the 

area under the curve, used as a measurement of the elimination of blood glucose, which is not 

significantly different between the two groups of pups (12068 ± 647 vs. 11717 ± 821 mg/dL. 

* 120 min for TG and C, respectively)  (Figure 27).   
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III.2.7. The influence on insulin tolerance (IpITT) of offspring at 28 days old 

                            

Figure 30. Area over the curve of insulin tolerance of offspring at 28 days old from                 

control (C) and trained (TG) mothers.  

Values are means ± SE of  n = 10-12 rats/group;    

 

 

                      

Figure 31. Glycemia of insulin tolerance of offspring at 28 days olds from sedentary (C)                 

or trained (TG) mothers.  

 

Values are means ± SE of n = 10-12 rats/group. 

*Significantly different from the other group (p < 0.05), 

At 28 days of age, pups from TG mothers had a lower blood glucose level than those from C 

mothers (118±5.6 vs. 132±4.3 mg/dL, respectively) for the duration of the test ipITT                       

(p< 0.05) (Figure 30). However, the area over the curve is not significantly different between 

the two groups, though it tends to be higher in the offspring from the TG group (5318 ± 513 

vs. 3507 ± 1178 mg.dL-1 * 120 min for TG and C, respectively) (Figure 29). 
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III.2.8  The influence on insulin signaling (PKB) of 21 days old offspring 

III.2.8.1  Insulin signaling (PKB) in offspring at basal state 

                 

Figure 32. PKB phosphorylation (pPKB) in the basal state of the liver (upper panel) and    

muscle (lower panel) of offspring from sedentary (C) or trained (TG) mothers.  

Values are means ± SE of n=6 rats/group. 

*Significantly different from the other group p<0.05 
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III.2.8.2 Insulin signaling (PKB) activity stimulated by a high dose of insulin in offspring  

 

              

Figure 33. PKB phosphorylation (pPKB) under stimulation by a high dose of insulin in the 

liver (upper panel) and muscle (lower panel) offspring from sedentary (C) or 

trained (TG) mothers.  

 

Values are means ± SE of n = 6 rats/group. 

Insulin signalling was studied by measuring the level of expression of PKB and its 

phosphorylated form (pPKB) both in liver and gastrocnemius muscle after either a NaCl or an 

insulin load. Figure 31, 32 shows the pPKB/PKB ratio obtained.  

At 21 days of age, pups from trained group showed an increase in the pPKB/PKB ratio 

compared with pups from Control group in basal condition (respectively T- and C-) both in 

liver (+77%) and muscle (+97%) (Figure 31). However, these differences were not seen after 

an insulin load injection (T+ and C+) neither in liver nor in gastrocnemius muscle (Figure 32). 
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DISCUSSION 

We have found that maternal moderate intensity endurance training 4 weeks before mating 

until 18
th

 of gestational can improve long-term metabolic outcomes in offspring. Trained 

mothers have no effect on body weight at birth and during the lactation period. This finding 

was supported by Hopkins et.al. 2011 who demonstrated in humans that within normal, 

healthy pregnancy, maternal insulin sensitivity is regulated to achieve optimal fetal growth 

persistently and showed different response to the exercise training compared with non-

pregnant individuals. Moreover, there was no significant difference in fat body mass between 

the two groups of offspring. Additionnaly, these results from Carter et.al.2013 and Clapp 

2006 reported no difference in body weight and fat mass of offspring born to both trained and 

sedentary mothers consistently with our findings. These results suggest that moderate-

intensity endurance training during 4 weeks before mating until 18
th

 of gestational day did not 

affect the delivery of the nutrients to the fetus. 

The effect of maternal exercise on mother weight gain during pregnancy. In the present 

study, we found that the food intake of trained mothers tended to increase (p = 0.098) during 

the last week of pregnancy, but the weight gain tended to be lower (p = 0.136) during the final 

weeks of pregnancy when compared to sedentary mothers as shown at Table 3. In contrast, 

the total mass of visceral fat was significantly lower (p<0.05) in trained mothers than those in 

the sedentary mothers. The results suggest that a maternal moderate intensity endurance 

training 4 weeks before gestation until the 18
th

 day of gestation induces increased of glucose 

uptake into cells and prevents fat accumulation and development of obesity during pregnancy. 

This similar to the findings of Haakstad et.al.2011 who reported that exercise before and 
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during pregnancy could prevent the excessive gestational weight gain and reduced post-natal 

weight retention. Another study by Tobias et al. 2011 showed that intensive exercise during 

pregnancy will reduce the risk of gestational diabetes mellitus (GDM) by 51%. In addition to 

this, Hopkins et.al. 2011 showed that within healthy pregnant woman, maternal insulin 

sensitivity is regulated to achieve optimal fetal growth persistently and showed a different 

response to the exercise training compared with non-pregnant individuals. On the other hand, 

the prevention of obesity in pregnant woman has a positive impact in the prevention of 

mitochondrial dysfunction in the fetus. This was indicated by Borengasser et al. 2011 who 

reported a significant decrease in mitochondrial function of liver of offspring born from obese 

mice, decreases in SIRT3 mRNA, mitochondrial protein content, fatty acid oxidation, ETC 

complex I, II, and ATPase activity, as well as in the expression of PGC-1α mRNA. 

 

The effect of maternal exercise on the weight and structure of pancreas in offspring. The 

weight of pancreas of the rat from trained mothers was lower (-11%) than those of the control 

group at the age of 21 days (p<0.05). This finding was supported by the histological structure 

of pancreas showed that the size of islets and acini of the rat from control mothers were larger 

than those from trained mothers. This is probably related to the programming of the 

pancreatic mass of the fetus in the uterine. The sufficient levels of fetal insulin induces the 

optimal proportion and development of pancreatic β-cells mass, while the lack of fetal insulin 

would induce cell proliferation, increase in vascularization and hyperplasia of β-cell pancreas 

during its development leads to larger islets of Langerhans. Due to larger size, central part of 

islets would be more susceptible to hypoxia leads to disruption of insulin synthesis in 

postnatal rat pups (Duvillié et.al. 2002). In addition to this, the results of our study are in line 

with the results of Carter et.al.2012 who reported that smaller size of Langerhans islets was 
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more effective in insulin synthesis than larger islets of Langerhans due to the higher 

vulnerability to hypoxia in the center part. This will affect the synthesis of insulin of 

offspring. Regarding to this, the size of pancreas indicates that maternal moderate intensity 

endurance training during 4 weeks before gestation until the 18
th

 day of gestation induces the 

development of optimal proportion of fetal pancreatic β-cells mass related to the normal 

function of pancreatic β-cells. 

The effect of maternal exercise on the glucose and insulin tolerance of offspring. The 

impact of exercise training during pregnancy on glucose tolerance test of rats offspring at 21 

days of age was not different between the two groups (p > 0.05). While, as response to ipITT, 

offspring from trained mothers had lower blood glucose levels than those from sedentary 

mothers during the whole ipITT. However, the area over the curve (AOC) was not 

significantly different between the two groups. These results suggest that moderate intensity 

endurance training during 4 weeks before mating until the 18
th

 day of gestation does not affect 

the insulin sensitivity of offspring at weaning or during lactation period. This finding is 

supported by Carter 2012, 2013 who reported that differences in insulin sensitivity of rat were 

detected until offspring reached 10-months of age.  

The effect of maternal exercise on insulin secretion of offspring.  

We then looked at the insulin secretory capacity of these islets in various conditions. In low 

glucose condition, basal islet insulin secretion was not affected by maternal exercise at 

weaning. Under high glucose condition, the stimulated insulin secretion only tended to be 

higher in weaning rats from the trained mothers. This may be due to the fact that insulin 

release of β-cells islet in response to glucose stimulation is reduced in young rats (Bliss et.al. 
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1992). To clarify this problem, we then assessed the insulin secretion after a glucose + 

arginine incubation known to be efficient in fetal and young rats. In such a condition, we 

found that maternal exercise enhanced the islet insulin secretion in their offspring which may 

due to smaller size of islets. This consistent with study by Carter et.al. 2012 and Huang et.al. 

2011 who showed that small islets are more effective in insulin synthesis.   

Moreover, the glucose enters through GLUT 2 into the pancreatic β-cells where it is detected 

by the glucokinase, which phosphorylates it into glucose-6-phosphate (G6P). Oxidation of 

glucose by mitochondria is used for ATP production and would increase the ratio of 

ATP/ADP. Increasing the ratio of ATP/ADP contributes to the inhibition of potassium 

channels (KATP), which causes membrane depolarization, opening of voltage-gated calcium 

channels, resulting in increased Ca
2+

 influx. Increased intracellular calcium stimulates the 

secretion (exocytosis) of insulin. Therefore, the function of the mitochondria may be 

correlated with ß-cell function through the ratio of ATP/ADP (Fariss 2005). Improved 

mitochondrial function induced by a maternal regular exercise would increase the synthesis of 

ATP quicker and more efficient than in the sedentary group. 

The effect of maternal exercise on insulin signaling (PKB phosphorylation) of offspring. 

This tendency of elevated insulinemia without a hyperglycemia in pups from trained mothers 

could be an early marker of insulin resistance. To precise such insulin resistance, we then 

performed intra peritoneal glucose tolerance test (ipGTT) and insulin tolerance test (ipITT) on 

our animals. Our results show that glucose disposal, as judged by the AUC during ipGTT, and 

overall insulin sensitivity reflected by the AOC during ipITT was not affected by maternal 

training. Taken together, these results suggest that, despite a trend of elevated insulinemia, 
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pups from trained mothers were not insulin resistant. This tendency of higher blood insulin 

could be also a sign for alterations in the insulin signalling. The main insulin sensitive tissues 

include skeletal muscle, liver and adipose tissue. Thus, we examined pPKB/PKB ratio in 

gastrocnemius muscle and in liver, both in basal conditions and after an insulin load. In basal 

conditions, the higher pPKB/PKB ratio measured in both tissues in 21 days old rats from 

trained mothers might be merely due to the trend in a higher plasma insulin level mentioned 

above. Results after the insulin load confirm that hypothesis since there is no difference in 

pPKB/PKB ratio between the two groups in that insulin stimulated condition. So, we can 

conclude that maternal exercise before and during gestation did not modify liver and muscle 

insulin pathway activation in offspring at weaning. 

 

CONCLUSIONS 

 

Based on the above results, it looks that moderate intensity exercise training during 4 weeks 

before mating to the 18
th

 day of gestation tend to lower weight gain during pregnancy of 

trained mother, alters the microscopic structure of islets of Langerhans in the offspring, tend 

to increase basal insulin, decreases basal glycemia in the rat offspring, and increases insulin 

secretion and insulin signaling in rat pups. 
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III.3  HIGH FRUCTOSE DIET AS AN ALTERNATIVE EXPERIMENTAL 

MODEL OF GESTATIONAL DIABETES MELLITUS ON RATS  

III.3.1 The influence of high fructose diet on anthropometric parameters of 

mothers and offspring 

Table 9. Anthropometric parameters of mothers and rats pups after delivery  

 Control Fructose P value 

Weight gain (g) 17.2 ± 0.63 21.5 ± 1.95 P > 0.05 

Total visceral fat   

(g/100 g body weight) 

3.41 ± 0.53 4.11 ± 0.35 P > 0.05 

 

Number of pups/dam 9.5 ± 2.18 10.0 ± 2.28 P > 0.05 

Male pups/dam 4.0 ± 0. 58 3.6 ± 0.81 P > 0.05 

Female pups/dam  5.5 ± 1.66 6.4 ± 1.69 P > 0.05 

Weight pups (g) all 8.5 ± 0.9 9.5 ± 1,7* P = 0.002 

Male pups 8.94 ± 0.26 10.30 ± 0.45* P = 0.03 

Female pups 8.17 ± 0.2 9.13 ± 0.26* P = 0.01 

Liver weight all 

(g/100 g body weight) 

3.54 ± 0.05 3.02 ± 0.04* P < 0.001 

 

Liver male pups 3.58 ± 0.09 2.94 ± 0.07* P < 0.001 

Liver female pups 3.51 ± 0.06 3.07 ± 0.05* P < 0.001 

Brain weight all 

(g/100 g body weight) 

4.14 ± 0.06 4.12 ± 0.06 P > 0.05 

 

Brain male pups 3.98 ± 0.07 3,93 ± 0.1 P > 0.05 

Brain female pups 4.25 ± 0.07 4.21 ± 0.07 P > 0.05 

 

Values are expressed as mean ± SE. Number of mothers rats: n=4 for control fed group, n=5 

for fructose fed group, and number of pups: n=38.   

*Significantly different from control group (p < 0.05) 
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The results on the anthropometric parameters showed that the weight gain and the total fat 

mass in mothers fed high fructose were not significantly different compared to those from the 

control diet (p > 0.05). In contrast, maternal diet rich in fructose significantly increased the 

birth weight of their pups compared to those from mothers fed a control diet as shown in 

Table 8. The livers weight of pups from the F group was significantly lower than those from 

the control group, but the brain weight was unaffected by the maternal diet. 

 

III.3.2  The influence of high fructose diet on biochemical metabolic parameters 

in mothers and offspring 

Table 10. Biochemical metabolic parameters in mothers and rats pups after delivery 

 Control Fructose P value 

Glycemia (mg/dL) 143 ± 4.14 163 ± 3.60* P = 0.008 

Insulin (ng/mL) 0.58 ± 0.74 1.96 ± 0.80* P = 0.016 

HOMA-IR(U) 5.13 ± 0.75 19.46 ± 10.71* P = 0.014 

Cholesterol (mg/dL) 54 ± 0.01 66 ± 0.03*            P = 0.05 

Triglycerides (mg/dL) 33 ± 0.05 88 ± 0.20*            P = 0.02 

Glycemia all pups 

(mg/dL)           

106 ± 2 78 ± 2 * P < 0.001 

Glycemia-male pups 112 ± 3 74 ± 3* P < 0.001 

Glycemia-female pups 100 ± 2 81 ± 2* P < 0.001 

 

Values were expressed as mean ± SE. Number of mothers rats: n=4 for control fed group, n=5 

for fructose fed group, and the number of pups: n=38 

The values of biochemical parameters of mother rats showed that a high fructose diet 

increased significantly the levels of glycemia, cholesterol, triglycerides, and also in insulin, 

leading to a significant increase in insulin resistance supported by the result of HOMA test. In 

contrast, the glycemia level of newborns was decreased with high fructose diet (p < 0.05). 
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Discussion 

Modification of nutrition and supplementation during gestation can influence oxidative 

balance during fetal life and mitochondrial function as well as glucose metabolism of 

offspring. The nutritional status during critical periods of early life is an important 

determinant for proper development of the organism and maturation of metabolic and 

endocrine systems. Consumption of excessive fructose for long periods has potentially 

negative effects on metabolic function (Sakar 2009). Furthermore, gestation is marked by 

compromised insulin sensitivity; therefore, maternal high fructose diet may pose a challenge 

for the health of the mother and offspring.
 
This is associated with weight gain of mother 

during pregnancy, high birth weight of offspring, impairing of glucose metabolism of 

offspring, as well as gestational diabetes mellitus (GDM) (Donovan 1990, Bernard 2005). On 

the other hand, there is no satisfactory model for studying GDM since streptozotocin, an agent 

usually used for experimental diabetes induction, might not be suitable to make experimental 

model of GDM as it induces pancreatic-cells necrosis that leads to Type 1 diabetes 

(Damasceno 2014), while the features of GDM are more like Type 2 diabetes. Besides, a diet 

rich in fructose has been used to study insulin resistance in experimental research (Busserolles 

2003, Kolderup 2015), but not in pregnancy. In addition, it has been shown that GDM is 

related with oxidative stress and increased insulin resistance. Thus, the purpose of this study 

was to evaluate diet rich in fructose as an alternative model of GDM by inducing insulin 

resistance on rats.  

The levels of cholesterol and triglycerides rise as a response to high fructose diet.  

Fructose experience faster glycolysis in the liver than glucose, since it bypasses the regulatory 

pathway catalyzed by phosphofructokinase (Bender 2012). Therefore, diet rich in fructose 
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causes fructose to flood the pathway in liver. It increases fatty acids and triacylglycerol 

synthesis, VLDL secretion, serum triglycerides and finally increases LDL cholesterol level 

(Bender 2012). In addition to this, the increase in triglycerides level may also cause by an 

attenuation of the stimulation of insulin secretion after fructose administration that leads to 

reduce the lipoprotein lipase activity of adipose tissue and impair the triglycerides clearance 

(Chong et.al, 2007).  

A significant elevation in the plasma levels of glucose and insulin was observed in mother’s 

rats which were given a diet rich in fructose, suggesting that the ability of insulin to stimulate 

glucose disposal is clearly impaired in peripheral tissues associated with insulin resistance due 

to high fructose feeding. These results in the current study were supported by HOMA 

measurements that were significantly increased in the high fructose group. Similar results 

were obtained by Hininger-Favier et.al.2009 in adult male rats and Damasceno et.al.2002 

with diabetes induced by streptozotocin. Insulin resistance in response to high fructose diet 

can be caused by several mechanisms: (1) high-fructose diet can induce intrauterine oxidative 

stress because some of the ingested fructose will be converted to glucose with a mean 

conversion rate of 41% ± 10.5 from fructose to glucose in 3 to 6 hours after ingestion leading 

to hyperglycemia (Sun et.al. 2012). The hyperglycemia condition induces increase in ROS 

production and may cause pancreatic β-cell dysfunction (Goldstein 2005) that leads to 

imparing of insulin synthesis; (2) the elevated accumulation of ROS induces the activation 

serine / threonine kinase cascade which further phosphorylates several targets such as insulin 

receptor and insulin receptor substrate (IRS) proteins (Evans et.al. 2005). Enhanced serine 

phosphorylation of IRS will reduce its ability to phosphorylate tyrosine and accelerate the 

degradation of IRS-1 leading to disruption in glucose uptake by muscle, liver and adipose 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hininger-Favier%20I%5BAuthor%5D&cauthor=true&cauthor_uid=20368373
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tissues (Evans et.al.2005); (3) fructose diet alters several enzymes activity and metabolism of 

hepatic carbohydrate leading to hepatic insulin resistance, although the exact molecular 

mechanisms involved are unknown (Blakely et.al.1981, Tuovinen et.al. 1975); (4) high 

fructose diet does not decrease the level of insulin receptor IR and the IRS-1 in the liver and 

in the muscle, but reduces tyrosine phosphorylation of the insulin receptor after insulin 

stimulation (IRS-1 association with PI 3-kinase and IRS-1 association with SHP2) in the liver 

of rats. This indicates that fructose rich diet induces insulin resistance through the alterations 

in the early steps of insulin signal transduction that leads to an increased weight gain and to 

hyperinsulinemia in mothers (Bezera 2000) as were shown in Table 8, 9. 

Moreover, maternal diet rich in fructose significantly increased the birth weight of newborns 

compared to birth weight of newborns from mothers with control diet. This finding was 

consistent with previous study which found that consumption of high fructose diets induces an 

increase in the risk of macrosomia (large birth weight) in the GDM women (KC et.al. 2015). 

The increase in birth weight may be caused by exposure to chronic maternal hyperglycemia 

during fetal life inducing hyperinsulinemia in the fetus and a higher deposition of fat leading 

to large birth weight (Capra et.al. 2013). It might also be caused by a higher expression of 

genes involved in lipogenesis but the gene expression of fatty acid catabolism is lower in 

fetuses of mothers fructose fed diet (Rodríguez et.al.2013). In addition, a study by Douard 

2008 reported that under normal conditions, in the prenatal and suckling period of rat 

development, intestinal GLUT5 (the fructose transporter at the apical cell membrane) mRNA 

levels and fructose transport rates are very low. Therefore, administration of large amounts of 

fructose during fetal/neonatal life could result in intolerance to the substrate, which may 

impair body weight gain. Moreover, the increased body weight was followed by significantly 
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lower glycemia in both male and female offspring born to high fructose diet mothers. 

Hypoglycemia occurs as a response to prolonged fetal exposure to maternal hyperglycemia in 

intrauterine environment during fetal life leading to fetal hyperinsulinemia (Capra et.al. 

2013). This finding was supported by the fact that the neonate of GDM mothers showed 

hypoglycemia associated with macrosomia as most common metabolic disorder (KC et.al. 

2015). However, this is in contrast with the finding by Srinivasan 2006 who reported the fetal 

development in the hyperinsulinemic intrauterine environment due to high fructose maternal 

diet results in fetal hyperinsulinemia without significant changes in their plasma glucose 

levels    

 

CONCLUSIONS 

Maternal high fructose diet 4 weeks before and during gestation tend to increase the weight 

gain in mother rat, but it has no influence on number and gender of offspring. Moreover, it 

increases the glycemia, cholesterol, triglycerides, insulinemia and HOMA test leading to a 

significant increase in insulin resistance of mother rat. Our experimental GDM model induced 

by high fructose diet shows similarity in metabolic and anthropometric effects observed in 

women with GDM. It enables us to propose fructose diet as an experimental model of GDM                       

In contrast, high fructose diet during pregnancy increases the birth weight, decreases the 

glycemia level and liver weight of rat newborns.   
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III.4 THE INFLUENCE OF FRUCTOSE DIET (F) and FRUCTOSE-

ENRICHED IRON DIET (FI) DURING PREGNANCY ON 

OXIDATIVE STRESS (OS), ANTHROPOMETRIC, AND 

BIOCHEMICAL PARAMETERS. 
 

 

III.4.1  The influence of F and FI diet on anthropometric and biochemical 

metabolic parameters of mothers and offspring 
 

 

 

Table 11. Anthropometric and biochemical parameters in mother rats fed with the F or the FI 

diet 

Parameters          F group       FI group           p value 

Mother weight gain (g)    21.5 ± 1.95   27.5 ± 1.6   p > 0.05 

Mother glycemia (mg/dL)   163.24 ± 3.6   161.44 ± 5.76   p > 0.05 

Mother insulinemia (ng/mL)   1.96 ± 0.78                    1.05 ± 0.67   p > 0.05 

HOMA-IR (U)     19.46 ± 10.71   10.01 ± 6.15   p > 0.05 

Mother cholesterol (mg/dL)  66 ± 0.03   64 ± 0.66   p > 0.05 

Mother triglyceride (mg/dL)   88 ± 0.20   77 ± 0.17   p > 0.05 

 

 

Results were expressed as mean ± SE; n per group (F: n = 5 mothers and n = 50 pups) and 

(FI: n = 5 mothers and n = 38);  

*Significantly different from F group (p < 0.05) 
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Table 12. Anthropometric and biochemical parameters in offspring of mother rats fed with the 

F or the FI diet 

Parameters          F group       FI group           p value 

Number of pups/dam    10.0 ± 2.3   7.6 ± 2.2   p > 0.05 

Male pups/dam     3.6 ± 0.8   3.8 ± 1.7   p > 0.05 

Female pups/dam    6.4 ± 1.7   3.8 ± 0.9*   p < 0.05 

Pups glycemia (mg/dL) All   78 ± 1.8   85 ± 1.8 *  p = 0.02 

Male pups     74.4 ± 2.77   86.25 ± 2.52*   p = 0.003 

Female pups     81.13 ± 2.26   83.18 ± 2.64  p > 0.05 

Pup weight (g) all    9.3 ± 0.10   11.0 ± 0.34*   P <0.001 

Male pups     10 ± 0.62  11.1 ± 0.16   p =0.06 

Female pups     8.9 ± 0.37   10.9 ± 0.13*  p =0.003 

 

 

Results were expressed as mean ± SE; n per group (F: n = 5 mothers and n = 50 pups) and 

(FI: n = 5 mothers and n = 38);  

*Significantly different from F group (p < 0.05) 

 

Observation of anthropometric parameters showed fructose-enriched diet did not modify the 

levels of glycemia, insulinemia, cholesterol and triglycerides between the two groups of diet, 

except that the weight gain of the mothers fed FI diet tends to increase, but not significantly 

compared with F diet fed mothers (p = 0.0526) (Table 10). However, in the offspring born 

from the mothers fed the FI diet, the levels of glycemia and birth weight were higher and the 

number of females in the FI group was significantly lower than in F group.  
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III.4.2 The influence of F and FI diet on Oxidative Stress parameters in 

mothers and offspring 

 

Table 13. Plasma OS parameters in mother fed with the F or the FI diet 

OS parameters of mothers Group F Group FI p-value 

TBARS (μM/L) 4.6 ± 0.13  4.03 ± 0.14*  p < 0.05 

GPx activity (U/L) 6349 ± 304  6464 ± 110   0.88 (NS)  

FRAP (μM/L) 273 ± 20  284 ± 25  0.36 (NS)  

SH (μM/L) 327± 38 295 ± 35  0.87 (NS) 

 

Results were expressed as mean ± SE;  

The number of mothers rats: n=4 for control fed group, n=5 for fructose fed group.                           

NS: not significant 

 

The results of plasmatic OS parameters of mother rats are presented in Table 12. No 

significant difference was found on GPx activity and FRAP between mother rats fed with F 

and FI diet. However, surprisingly, iron decreases lipid peroxidation measured by TBARS in 

mother rats.  
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Table 14. OS parameters in the liver of offspring from mothers fed with the F or the FI diet  

OS parameters                      F group                     FI group                    p value 

TBARS (μM/L)                          1.05 ± 0.2    0.99 ± 0.2   P > 0.05  

Male     1.12 ± 0.10   1.05 ± 0.10   P > 0.05 

Female     0.95 ± 0.13   0.92 ± 0.19   P > 0.05 

GPx activity (U/gP)   254 ± 7.0   225 ± 6.6*   P = 0.03 

Male     253 ± 15   232 ± 7.9   P > 0.05 

Female     255 ± 10   217 ± 11*   P = 0.005 

GSH (μM/g P)   636 ± 57   569 ± 32   P > 0.05 

Male     711 ± 73   522 ± 33*   P = 0.03 

Female     562 ± 82   625 ± 52   P > 0.05 

GSH/GSSG    87.79 ± 6.34   88.87 ± 4.15   P > 0.05 

Male     83.82 ± 30.9   87.63 ± 13   P > 0.05 

Female     82.44 ± 21.36   91.79 ± 15.46   P > 0.05 

FRAP (μM/g protein)   210 ± 5.8   197 ± 4.9   P > 0.05 

Male     217 ± 7.8   201 ± 6.9   P > 0.05 

Female     202 ± 8.0   193 ± 7.0   P > 0.05 

GST (nM/mg protein)   232 ± 5.4   249 ± 4.3*   P = 0.015 

Male     228 ± 8.5   257 ± 6.9*   P = 0.02 

Female     236 ± 7.0   242 ± 4.0   P > 0.05 

 

 

Results were expressed as mean ± SE;   * p ≤ 0.05, 

The number of rats pups was in F Group (F): n = 50, 18 males; 32 females,                               

and in FI Group: n = 38, 19 males;19 females. 
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Table 15. OS parameters in brain of offspring from mothers fed with the F or the FI diet  

OS parameters                      F group                     FI group                    p value 

GPx activity (U/gP)   104,1 ± 3.8  92,8 ± 3.5*  P = 0.04 

Male     113 ± 3.9  91 ± 2.4 *  P = 0.001 

Female     95 ± 4.0  95 ± 8.0  P > 0.05 

GSH (μM/g P)   273 ± 6.4  256 ± 6.7  P > 0.05 

Male     259 ± 3.0  250 ± 6.0  P > 0.05 

Female     301 ± 6.0  266 ± 1.4  P > 0.05 

GSH/GSSG    76.08 ± 7.13  86.47 ± 11.16  P > 0.05 

Male     79.56 ± 19.54  88.08 ± 40   P > 0.05 

Female     70.55 ± 19.53  81.25 ± 24.2  P > 0.05 

FRAP (μM/g protein)   254 ± 4.0  253 ± 4.1  P > 0.05 

Male     258 ± 3.3  258 ± 6.5  P > 0.05 

Female     250 ± 7.3  248 ± 4.8  P > 0.05 

GST (nM/mg protein)   216 ± 8.3  228 ± 5.6  P > 0.05 

Male     213 ± 36  230 ± 17  P > 0.05 

Female     213 ± 27  226 ± 29  P > 0.05 

 

 

Results were expressed as mean ± SE;   * p ≤ 0.05 

The number of rats pups was in F Group (F): n = 50, 18 males; 32 females and                                     

in FI Group: n = 38, 19 males; 19 females. 

 

The results represented in Tables 12 and 13 showed that GPX activity in the liver and brain 

was significantly decreased in offspring born from FI diet mothers. The gender analysis 

showed that in the liver, GPx activity was significantly lower in female offspring, while in the 

brain, it was significantly decreased in male offspring. The liver GSH level was significantly 

lower only in male pups of the FI group compared to those from F group. The activity of GST 
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was significantly increased in liver of the FI diet group, but only in male offspring. There was 

no significant difference in total antioxidant capacity measured by FRAP assay between the 

two groups. 

Discussion 

Iron supplements are usually advised for pregnant women to meet the iron needs of both 

mother and fetus at a dose 5-25 mg iron/100 g (Lin et.al.1976), but excessive iron intake 

increases ROS production during pregnancy probably through Fenton reaction. Furthermore, 

chronic consumption of high fructose diet contributes to excessive ROS production and thus 

to induction of oxidative stress, mediating insulin resistance (Houstis et.al.2006, Suwannaphet 

et.al.2010). In the current study, the dose of iron in the fructose-enriched iron (FI) diet was 22 

mg/100 g diet, corresponding to a moderate dose, as iron is rarely consumed in an excessive 

dose during pregnancy, and because the purpose of this study was to examine the hypothesis 

that an increased iron intake would induce metabolic and oxidative disorders during GDM 

and may have sex-related differences effect in offspring.   

The result showing that the number of female offspring from FI group was smaller than in F 

group might correlate with iron supplementation. This is supported by Vila` L et.al.2011; 

Rodríguez et.al. 2015 who showed a sex-dependent influence of the diet in the offspring born 

from mothers fed a fructose-enriched iron diet during pregnancy. To confirm this, further 

studies are necessary.  

In mothers, the result showed that the fructose-enriched iron diet did not influence the 

oxidative status of the mothers between the two groups. In contrast, TBARS were reduced in 
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the FI group. Although this result seems surprising, clinical studies have also reported a 

decrease in TBARS in the case of GDM (Santra et.al.2003, Kharbs et.al.2008). This finding 

contrast with an epidemiological study in pregnant women by Lachili 2001 that showed the 

effect of a daily combination iron supplement (100 mg as fumarate) and vitamin C (500mg) 

for the third trimester that increased thiobarbituric acid reacting substances (TBARs) plasma 

level, but the the higher dose of iron given was 100 mg, while in our study only 22 mg/100 g 

diet iron were given. 

Interestingly, although no difference in GPx activity and SH level between the two groups of 

mothers, but the activity of GPx and GSH level in livers and brains of newborns from FI diet 

was decreased. This suggests that fetuses were more sensitive to the effect of diet during 

pregnancy than their mothers (Table 11, Table 12).  We found a sex-dependent effect on 

oxidative stress parameters in offspring. Male offspring born from FI diet mothers showed 

decreased GPx activity in the brain compared to those from F diet mothers (p < 0.05), but this 

result was unchanged in female offspring born from mothers in the FI diet group. Similarly, 

GPx activity in the liver offspring was decreased in both male and female offspring born from 

mothers in the FI diet group compared to those from F diet mothers, but the effect was only 

significant in the female offspring (p < 0.05). The inhibition of GPx activity has often been 

reported in cases of obesity and insulin resistance (Kobayashi 2009). Similar to our results, a 

difference by sex of liver GPx activity has been reported in pups born from diabetic mothers 

(Kruse MS 2014). The decrease in GPx is a common feature of the route toward Type 2 

diabetes (Aouacheri et.al.2015.). In addition, the increase in catabolism of fructose causes 

decreasing of total glutathione concentrations and reducing of hepatic antioxidant enzyme 

activities such as CAT, SOD, and GPx (Suwannaphet et.al. 2010). The findings of this study 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kruse%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=24824431
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are in line with other studies that reported a significant increase in lipid peroxidation and a 

significant decrease of hepatic antioxidant enzyme activities in fructose-induced diabetic rats 

(Basciano et.al. 2016).  

Moreover, there was no difference in total GSH level in the brain and liver between the two 

groups of diet, except for the GSH level in the liver of male offspring born from FI diet 

mothers that was significantly lower than in those from F diet mothers. In the liver, reduced 

GSH levels of males born from the FI diet-fed mothers served as an indicator of iron-induced 

OS, which can be attributed to the high glycemic values in this gender. In the liver of females, 

the level of GSH was not modified, which may be due to less oxidation caused by iron. In this 

study, the liver of male appeared to be more sensitive than liver of female to the effects of a 

diet rich in iron. A study by Kim et.al.2011 assessed the association of elevated serum ferritin 

concentration with insulin resistance and impaired glucose metabolism in Korean men and 

women, showing that iron overload was associated with insulin resistance in men, but not in 

women.  

The activity of GST was increased in the brain and liver of offspring in FI diet group, but the 

effect was only significant in the male offspring. It could represent an adaptive response to 

address an increasing production of ROS caused by iron. Indeed, some evidence suggests that 

GST served to protect cells from oxidative stress, because GST is regulated by ROS such as 

H2O2. GST detoxification some oxidative metabolites produced by the OS (Hayes et.al.1995). 

GST is a phase 2 enzyme antioxidant prototype that is involved in the detoxification of 

various toxic and potentially carcinogenic compounds. In accordance with our results, an 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Hayes%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=8770536
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increase in GST was associated with a decrease in GPx higher in iron-treated rats (Madra 

et.al.1996).  

These alterations may be mediated by the pregnancy condition that displays an increased 

vulnerability to oxidative stress, because of mitochondria-rich placenta. Iron, one of the 

transition metals, is very abundant in the placenta and plays an important role in the 

production of free radicals. Plasma thiol levels (especially reduced glutathione) were found to 

be lower during pregnancy compared to non-pregnant women, suggesting an oxidative stress 

environment during pregnancy (Yamada et.al. 1991, Wisdom et.al. 1991). In parallel, 

fructose-induced hyperglycemia is one of the important factors that increase ROS production 

and causes the depletion of the antioxidant defense status in various tissues (Reddy et al., 

2009). Therefore, an environment rich in Fe
3+

 such as chronic maternal fructose-enriched iron 

diet induces an increase in oxidized thiols levels (especially reduced glutathione) (Wisdom 

et.al. 1991). In this reaction, iron can produce reactive oxygen or nitrogen species and 

catalyzes several cellular reactions that result in the formation of hydroxyl radicals and 

induces oxidative stress (Andrews 1999, Rajpathak 2009). Therefore, maternal high fructose-

enriched iron diet may pose a worse impact on glucose tolerance and oxidative stress of 

mothers and offspring. Moreover, Yakes 1997 reported that high concentrations of iron 

rapidly reduce the transcription of a large set of genes that encode mitochondrial ribosomal 

proteins, oxidative phosphorylation proteins, and the total complement of electron transport 

proteins. The dysregulation of electron transport can lead to increased mitochondrial 

production of H2O2. The combination of increased iron and physiological concentrations of 

H2O2 generated in the mitochondria during OXPHOS might result in the DNA damage. In 

mammalian cells, mtDNA is much more sensitive than nuclear DNA (nDNA) to H2O2 
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induced damage, probably due to the availability of iron in the mitochondria. Moreover, 

human cells have a limited capacity for repairing H2O2-induced mtDNA damage (Yakes 

1997). 

 

CONCLUSIONS 

 

Middle Iron enriched fructose diet 4 weeks before and during gestation reduces the female 

gender of rat pups, decreases the level of TBARS  in the mothers rat. In male pups, this 

maternal diet increases glycemia, GST activity, and decreases GSH level. On the other hand 

in female pups, this diet increases birth weight and reduces GPx activity. These findings 

suggest that the influence of maternal moderate iron-enriched diet has been shown to be sex-

dependent in the offspring, and the fetuses are more sensitive than their mother to the impact 

of a middle iron-enriched diet. Future studies are needed to clarify the relationship between 

the potential risk for male and female offspring and the characteristic of disorder.   
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CHAPTER IV 

CONCLUSIONS 

 

1. The modification of environment during gestation by moderate-intensity exercise 4 

weeks before mating until and 18
th

 day of gestation can modify mitochondrial function 

of offspring 

2. The modification of environment during gestation by moderate-intensity exercise 4 

weeks before mating until and 18
th

 day of can modify glucose metabolism of offspring 

3. High fructose diet during gestation can become a model of gestational diabetes 

mellitus on rat 

4. High fructose enriched-iron diet during gestation can increase the risk of oxidative 

damage and glucose metabolism disorder in offspring. 
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CHAPTER V 

THE LIMITATIONS OF THIS STUDY 

 

1. The oxidative stress parameter, glycemia, and insulin on trained mother rats was not 

measured 

2. The protocol training was performed only in one intensity until the eighteen day of 

gestation  

3. The expression of proteins that regulated the mitochondrial function in mother and 

offspring were not measured in order to verify the modification of mitochondrial function 

in offspring was correlated with the characteristic of mitochondrial mother that given    

4. The insulinemia of rat pups induced by high fructose and high fructose-iron should be 

measured 
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                                                CHAPTER VI 

PERSPECTIVE STUDY 

 

To clarify the alteration of mitochondrial function of offspring born to trained mother is 

induced by maternal moderate-intensity exercise training, further studies are needed to asses: 

(1) Genes encode oxidative phosphorylation complex in mother and offspring 

(2) Protein expression of mitochondrial transcription factor A (TFAM) of pancreatic ß-cell 

offspring 

(3) The proper number of pancreatic ß-cells in the islets of Langerhans using proprium iodide 

(PI) staining which can distinguish ß-cells from other endocrine cells 

(4) Continue this study in adult offspring (7 months old) in order to examine the alteration of 

mitochondrial function in 21 days old will persistent in adulthood 

(5) The benefit of these study will be recommended on pregnant woman 
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Quiclet C, Siti F, Dubouchaud H, Vial G, Berthon P, Fon-
taine E, Batandier C, Couturier K. Short-term and long-term
effects of submaximal maternal exercise on offspring glucose
homeostasis and pancreatic function. Am J Physiol Endocrinol
Metab 311: E508 –E518, 2016. First published July 5, 2016;
doi:10.1152/ajpendo.00126.2016.—Only a few studies have ex-
plored the effects of maternal exercise during gestation on adult
offspring metabolism. We set out to test whether maternal con-
trolled submaximal exercise maintained troughout all gestational
periods induces persistant metabolic changes in the offspring. We
used a model of 15-wk-old nulliparous female Wistar rats that
exercised (trained group) before and during gestation at a submaxi-
mal intensity or remained sedentary (control group). At weaning,
male offspring from trained dams showed reduced basal glycemia
(119.7 � 2.4 vs. 130.5 � 4.1 mg/dl, P � 0.05), pancreas relative
weight (3.96 � 0.18 vs. 4.54 � 0.14 g/kg body wt, P � 0.05), and
islet mean area (22,822 � 4,036 vs. 44,669 � 6,761 �m2, P �
0.05) compared with pups from control dams. Additionally, they
had better insulin secretory capacity when stimulated by 2.8 mM
glucose � 20 mM arginine compared with offspring from control
dams (�96%, P � 0.05). At 7 mo of age, offspring from trained
mothers displayed altered glucose tolerance (AUC � 15,285 � 527
vs. 11,898 � 988 mg·dl�1·120 min, P � 0.05) and decreased
muscle insulin sensitivity estimated by the phosphorylated PKB/
total PKB ratio (�32%, P � 0.05) and tended to have a reduced
islet insulin secretory capacity compared with rats from control
dams. These results suggest that submaximal maternal exercise
modifies short-term male offspring pancreatic function and appears
to have rather negative long-term consequences on sedentary adult
offspring glucose handling.

gestation; exercise; offspring; glucose homeostasis; pancreas

BASED ON EPIDEMIOLOGICAL DATA, Barker and Osmond (4), Han-
son and Gluckman (36), and McMillen and Robinson (49)
described the concept of the “Developmental Origins of Health
and Diseases,” suggesting that the in utero environment and the

first stages of life environment may play a role in the occur-
rence of diseases in adulthood. Many epidemiological and
experimental studies relate early nutritional environment to
metabolic disorders such as diabetes, insulin resistance, and
obesity as well as hypertension or cardiovascular diseases
(3–5, 33, 45, 46, 48, 55, 56, 66, 73, 75, 82). Among them, type
2 diabetes mellitus (T2DM) is growing in modern societies at
an alarming rate (79a). Environmental (i.e., food intake, obe-
sity, and physical activity level, among others) and genetic
factors are thought to play a role in the susceptibility to this
disease (68).

Some studies have also established a link between increased
glucose intolerance or T2DM prevalence in adulthood and a
maternal nutrient intake during gestation (44, 49, 59, 60, 69,
73) or offspring low (3, 10, 35, 48, 81) or high (3, 8, 48, 81)
birth weight. This suggests that an inadequate maternal
nutritional environment during fetal life may influence fetal
development.

To enhance the chances for a successful parturiency and to
improve both their health and that of their developing child,
women are prone to adopt a healthy lifestyle when pregnant
(29, 32). Many of them may be willing to eat a healthier diet
and stay physically active during that period (32).

Regular moderate exercise has been shown to decrease
susceptibility to T2DM in pregnant women (26, 27, 50, 63), by
enhancing insulin sensitivity and fostering non-insulin-stimu-
lated glucose uptake (61, 78). The effects of gestational exer-
cise on the mother are now well known, including improved
aerobic capacity and cardiovascular fitness or reduced gesta-
tional diabetes incidence (2, 24, 27, 53, 62, 63). However,
potential outcomes on offspring are still to be studied. Recent
studies show that voluntary exercise during pregnancy and
nursing can improve glucose tolerance and insulin sensitivity
in adult offspring (13, 14). It has been proven that a controlled
mild pace of exercise during pregnancy is safe in mice and
humans (18, 57, 67, 70, 79). However, the effects of a con-
trolled submaximal yet intense exercise during gestation on
offspring health are contradictory (41, 70, 71). The literature
reports various effects of maternal exercise on offspring birth
weight and body composition (20–23, 37, 38). However, most
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of them show decreased body and fat mass in offspring from
exercised dams (20, 21, 37). Currently, one hypothesis to
explain the differences observed in birth weight would be
changes in placental growth and in glucose and oxygen deliv-
ery toward the fetus during maternal exercise (17). Even if the
reduction in placental blood flow is blunted by gestational
exercise training with increased oxygen and substrate delivery
during resting conditions, placental oxygen and nutrient deliv-
ery remained lower during moderate- to high-intensity exercise
sessions (16). However, the consequences of these changes in
uterine blood flow during exercise on fetus well being are
conflicting (64, 70).

Taken together, these data suggest that the antenatal period,
with many factors, including the mother’s physical activity
level, that can influence the intrauterine development and
offspring birth weight, could be of major importance in the
development of chronic diseases later in life (11, 25, 31, 40,
65, 72).

Considering the known effects of voluntary maternal exer-
cise on glucose tolerance and insulin sensitivity in adult rodent
offspring (13, 14), we have developed a model of pregnant rats
subjected to compulsory exercise to study, with a functional
approach and physiological tools, the impact of this constraint
on glucose handling in pups. We postulate that metabolic
improvements (13, 14) can result from structural and metabolic
changes of the pancreas in the offspring from exercised dams.
The literature shows that the effects of exercise during preg-
nancy on offspring depend on the intensity and the duration of
this exercise (19, 47, 79). We wanted to test whether the
metabolic adaptations such as improved glucose tolerance and
greater insulin sensitivity were also present if the exercise was
compulsory, submaximal but yet intense (55% of maximal
aerobic speed), and maintained until almost the end of preg-
nancy rather than voluntary.

RESEARCH DESIGN AND METHODS

Animals. Nulliparous 15-wk-old female Wistar rats (Charles
River Laboratories, Saint Germain-Nuelles, France) were
housed three per cage with access to food (A03; SAFE Diets,
Augy, France) and water ad libitum. The animal facility was on
a 12-h light-dark cycle and maintained at a temperature of
22 � 2°C. All experimental procedures were carried out in
accordance with European Directive 2010/63/UE. They were
reviewed by the Institutional Ethics Committee for Animal
Care and Use and authorized by the French Ministry of
Research (00174.01 accepted in March 2014). After a 1-wk
acclimatization period, female rats were assigned to either a
sedentary (control; n � 9) or trained (n � 12) group. Body
weight and food consumption were monitored once/wk during
breeding and pregnancy. Trained females were exercised using
a motorized treadmill (Bioseb, Vitrolles, France) 5 days/wk
during the 4 wk before gestation and during the first 18 days of
gestation, whereas female rats from the control group were
kept in their cages. The treadmill speed and the duration of the
training session were gradually increased during the first 3 wk
of training to reach a speed of 25 m/min for 60 min. After 4 wk
of controlled exercise, females from each group were housed
with male rats during 1 wk for mating. The male rats did not
exercise during the study. Vaginal smears were performed each
day until spermatozoa were found to determine the first day of

gestation. On postnatal day 2, litter sizes were equalized to
eight pups. Pups were cross-fostered from other litters from the
same group and the same age to maximize the number of males
per litter. Mothers from the trained group did not exercise
during nursing. Pups were weighted on postnatal days 7, 14,
and 21. Only male pups were used in the study. Some pups
were tested at weaning (3–4 wk of age), and others were
housed two per cage until 7 mo of age without any controlled
physical activity and fed with food (A04 rodent diet; SAFE
Diets) and water ad libitum. Mothers were euthanized after
nursing and offspring at weaning and at 7 mo of age. Selected
fat depots, skeletal muscles, and organs were dissected and
weighed to estimate the changes in body composition and/or
collected and stored at �80°C for other measurements.

Intraperitoneal glucose tolerance test. Intraperitoneal glu-
cose tolerance tests (IPGTT) were performed on pups at 3 wk
and 7 mo of age after a 16-h overnight fast. Only a few pups
(n � 8–14) from each group were tested at 3 wk of age.
Glucose was intraperitoneally injected at 1 g/kg body wt.
Blood glucose readings were taken via tail pick before (t � 0
min) and 5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 90, and 120 min
after glucose injection using an Accu-Chek glucometer (Roche
Diabetes Care, Meylan, France). Areas under the curve (AUC)
were related to t � 0 min.

Intraperitoneal insulin tolerance test. Intraperitoneal insulin
tolerance tests (IPITT) were performed on pups from each
group used for IPGTT at 4 wk and 7 mo of age after a 6-h fast.
Insulin was intraperitoneally injected at 1 mIU/g body wt.
Blood glucose readings were taken via tail pick before (t � 0
min) and 10, 20, 30, 40, 50, 60, 90, and 120 min after insulin
injection, as described above. Blood samples were collected
before insulin injection to determine fasting plasma insulin by
radioimmunoassay (RIA) kit (Merck Millipore). Areas over the
curve (AOC) were related to t � 0 min.

Insulin load test and analysis of insulin signaling in skeletal
muscle and liver. After a 6-h fast, 3-wk- (other than those used
for tolerance tests) and 7-mo-old rats were intraperitoneally
injected with NaCl (0.9%; control C� and trained T�) or with
insulin (10 mIU/g body wt; control C� and trained T�). Rats
were euthanized 15 min after injection, and gastrocnemius
muscle and liver were rapidly removed and frozen until their
use to determine protein kinase B (PKB) phosphorylation level
by Western blotting as an indicator of insulin sensitivity (76).
Tissues were homogenized in PBS buffer containing 1% NP-
40, 0.5% sodium deoxycholate, 0.1% SDS supplemented with
5 mM EDTA, 1 mM Na3VO4, 20 mM NaF, 1 mM DTT, and
protease inhibitor cocktail (P2714; Sigma). Proteins were sub-
jected to SDS-10% PAGE. Separated proteins were transferred
onto polyvinylidene difluoride (PVDF) membrane and incu-
bated overnight with primary antibodies (total Akt/PKB, no.
9272, and phospho-Akt/PKB Ser473, no. 9271; Cell Signaling
Technology). Primary antibodies were detected with a horse-
radish peroxidase-conjugated secondary antibody (no. 172-10-
19; Bio-Rad) and revealed with enhanced chemiluminescence
system (Pierce).

Pancreas insulin content. Pancreases were dissected just
after euthanasia and stored at �80°C. They were then homog-
enized at 4°C in 6 ml of acidified ethanol (0.18 M HCl in 70%
ethanol) and placed overnight on a rotative wheel (20 rpm,
4°C). The day after, homogenates were sonicated twice for 10
s each time and then placed on a rotative wheel for 2 days (20

E509MATERNAL EXERCISE AND OFFSPRING METABOLISM

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00126.2016 • www.ajpendo.org

 by 10.220.32.246 on S
eptem

ber 8, 2016
http://ajpendo.physiology.org/

D
ow

nloaded from
 

http://ajpendo.physiology.org/


rpm, 4°C). Homogenates were then centrifuged (150 g, 5 min,
4°C). Supernatants were collected and centrifuged (3,200 g, 20
min, 4°C). The resulting supernatants were collected and
stored at �80°C until insulin content assay by RIA kit (Merck
Millipore).

Pancreas histology. In a subset of animals from each group,
pancreases were dissected just after euthanasia, fixed in Tissue-
Tek, and stored at �80°C. Cross-sections were done using a
cryostat on glass slides. Sections were randomly selected and
colored using hematoxylin-eosin staining. Islets were outlined
and their areas expressed in square micrometers using ImageJ
software.

Islet isolation and glucose-stimulated insulin secretion test.
Pancreatic islet isolation was performed on the rats used for
IPGTT and IPITT by collagenase digestion. Rats were anes-
thetized by an intraperitoneal injection of pentobarbital sodium
(5 mg/100 g body wt). The abdomen was opened and the
pancreas exposed as much as possible. The pancreatic duct was
clamped with an hemostat at its duodenal insertion with care to
avoid pancreatic tissue injuries. The bile duct at the proximal
end was isolated and cut with fine scissors at one-third of the
way across. A 26G catheter was inserted and fixed in the bile
duct. A collagenase digestion solution (10 ml of collagenase
from Clostridium histolyticum type XI at 1 mg/ml; Sigma-
Aldrich, Saint-Quentin Fallavier, France) in Hanks’ balanced
salt solution (HBSS) was infused slowly. The pancreas was
then carrefully removed and placed in 7.5 ml of HBSS at 4°C
and incubated in a water bath preset at 37°C for 11 min. After
incubation, the tubes were vigorously hand-shaked for 15 s
before the addition of 25 ml of a “wash solution” (HBSS; 5%
fetal bovine serum). The tubes were centrifuged (250 g, 2 min,
4°C) and the supernatants discarded. The pellets were filtered
through a wire mesh. Twenty-five milliliters of wash solution
was then added, the tube was centrifuged (250 g, 2 min, 4°C),
and the supernatant was poured off. The washing procedure
was repeated two more times. After the last centrifugation, 5
ml of the supernatant was kept with the pellet. A density
gradient was then prepared by pouring 10 ml of Histopaque
1.119 (Sigma-Aldrich) in a 50-ml tube that was overlayed with
10 ml of Histopaque 1.077. Islets were then resuspended with
7.5 ml of Histopaque 1.119 � 3.5 ml of Histopaque 1.077, and
the suspension was layered on the Histopaque 1.077 phase,
followed by 10 ml of HBSS on top. The gradient was centri-
fuged (1,750 g, 20 min, 20°C) with slow acceleration and no
braking. The islets were then collected from each of the
interfaces. The islets were washed three times in 25 ml of wash
solution (1 time at 350 g, 5 min, 4°C, and 2 times at 250 g, 2
min, 4°C). Islets were then cultured in RPMI, 10% FBS, 1%
sodium pyruvate, and 1% antibiotic/antimycotic solution over-
night at 37°C. The day after isolation, the islets were incubated
with either glucose or glucose plus arginine to determine their
insulin secretory capacity. After a 1-h preincubation in 2.8 mM
low-glucose medium at 37°C, islets were then incubated for 1
h in 2.8 mM low-glucose medium at 37°C, and supernatants
were collected. Islet insulin secretion was then stimulated by
incubation with either 16.7 mM high glucose medium for
3-wk-old and 7-mo-old rats or 2.8 mM low glucose � 20 mM
arginine medium for 3-wk-old rats only (1) for 1 h at 37°C, and
supernatants were collected. Residual total insulin was ex-
tracted in 0.18 M HCl and 70% ethanol. Samples were stored

at �80°C until insulin assay by ELISA (3 wk of age; Alpco) or
RIA (7 mo of age; Merck Millipore) kits.

Statistical analysis. Data are expressed as means � SE. Data
were analyzed using one-way or two-way ANOVA with Holm-
Sidak post hoc test. Kruskall-Wallis tests were applied when
values were not normally distributed (Sigma Plot). P � 0.05
was considered significant, and P � 0.2 was considered as
tendency.

RESULTS

Exercise training before and during gestation reduces fat
depots in the mothers without any alteration in food intake or
other organs. Body weight of female Wistar rats was similar in
the two groups at the beginning of the study and after the first
4 wk of training (Table 1). After nursing, body weight of
trained mothers tended to be lower than that of control mothers
(286 � 4 vs. 297 � 7 g for trained and control groups,
respectively, P � 0.136; Table 1). Food intake was similar
between both groups from the beginning of the protocol to the
end of lactating period (Table 1). Exercise training did not
affect the weight of organs such as liver, kidney, pancreas, or
muscles (Table 1). However, relative mass of the sum of
retroperitoneal, urogenital, and mesenteric fats depots was
significantly lower in trained mothers compared with control
mothers (39.5 � 2.7 vs. 54.3 � 6.0 g/kg body wt for trained
and control groups, respectively, P � 0.05; Table 1).

Exercise training before and during gestation in mothers has
no effect on the litter outcomes. The number of pups per litter
as well as the sex ratio were similar in the trained and control
groups (Table 2). Offspring body weights were not affected by
mother exercise intervention at any time (Table 2).

Maternal exercise affects offspring pancreas weight and
islets size at 3 wk of age. At weaning, body weight and organ
relative weight were not different in offspring from control or
trained mothers, except for the pancreas (Table 3). Indeed,
pancreas relative weight was found to be lower in pups from
trained mothers compared with that of pups from control
mothers (3.96 � 0.18 vs. 4.53 � 0.14 g/kg body wt for trained
and control groups, respectively, P � 0.05; Table 3). More-
over, mean islet area measured in 3-wk-old pups from trained
dams is significantly smaller compared with that measured in
pups from control dams (Table 3). At 7 mo of age, no

Table 1. Maternal BW, FI, and organ relative weight
after nursing

Control Trained

BW before the study, g 260 � 5 260 � 4
BW before gestation, g 277 � 22 276 � 19
BW after nursing, g 297 � 7 286 � 4
FI before gestation, g/day 18.4 � 0.5 18.4 � 0.4
FI after gestation, g/day 23.0 � 1.3 20.7 � 0.7
FI after nursing, g/day 70.3 � 1.5 73.0 � 1.4
Pancreas, g/kg BW 4.34 � 0.32 4.26 � 0.18
Liver, g/kg BW 26.01 � 0.98 30.34 � 1.94
Kidney, g/kg BW 2.89 � 0.13 3.17 � 0.08
Fat, g/kg BW 54.30 � 5.97 39.45 � 2.65*
Muscles, g/kg BW 5.90 � 0.24 6.02 � 0.11

Data are means � SE (n � 9 for control and n � 12 for trained). BW, body
weight; FI, food intake. Fat mass was calculated as the sum of retroperitoneal,
urogenital, and mesenteric fat depots. Muscle mass was calculated as the sum
of gastrocnemius, plantaris, and soleus muscles. *P � 0.05 vs. control.
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differences were found in body and organ relative weights,
including pancreas (Table 3). However, we noticed that there is
a tendency to a higher relative fat pad mass (P � 0.153) in rats
from trained mothers compared with those from control moth-
ers (Table 3).

Effect of maternal exercise on offspring blood glucose and
insulin levels. After a 16-h fast, 21-day-old pups showed a
similar glycemia in both groups (104.6 � 4.6 vs. 108.0 � 2.7
mg/dl for trained and control groups, respectively; Fig. 1A).

After a 6-h fast, 28-day-old pups from trained mothers
showed a lower glycemia compared with pups from control
mothers (119.7 � 2.4 vs. 130.5 � 4.1 mg/dl, respectively, P �
0.05; Fig. 1B), whereas insulinemia was similar in both
groups even if it tended to be higher in rats from trained
mothers (0.31 � 0.04 vs. 0.21 � 0.05 ng/ml for trained and
control groups, respectively, P � 0.158; Fig. 1C).

In 7-mo-old rats, neither blood glucose nor insulin levels
were different, whatever the duration of the fasting (Fig. 1,
D–F).

Effect of maternal exercise on offspring glucose tolerance.
At 21 days of age, there was no difference in blood glucose
levels between the two groups at any point of the IPGTT (Fig.
2A), and area under the curve (AUC) as a measure of the
overall glucose disposal was not significantly different between
both groups (Fig. 2B).

However, in 7-mo-old rats, blood glucose levels were higher
in animals from the trained group compared with those from
the control group during the first 15 min of the IPGTT (Fig.
2E). Moreover, the AUC is significantly larger in the trained
group compared with the control group (15,258 � 924 vs.
11,614 � 1,366 mg·dl�1·120 min for the trained and control
groups, respectively, P � 0.05; Fig. 2F).

Effect of maternal exercise on offspring insulin sensitivity.
At 28 days of age, offspring from trained dams displayed lower
blood glucose levels during the IPITT compared with the pups

from control group (Fig. 2C) due to a significantly lower
starting glycemia (as already shown in Fig. 1B). However, the
overall insulin sensitivity estimated by the area over the curve
(AOC) appeared to be similar in both groups (5,318 � 513 vs.
3,507 � 1,178 mg·dl�1·120 min for the trained and control
groups, respectively; Fig. 2D).

At 7 mo of age, blood glucose levels were not different at
any point of the IPITT between animals from the trained group
compared with those from the control group (Fig. 2G). This is
confirmed by the AOC, which was similar between both
groups (Fig. 2H).

Effect of maternal exercise on offspring insulin signaling in
liver and skeletal muscle. Insulin signaling was studied by
measuring the level of expression of PKB and its phosphory-
lated form (pPKB) in both liver and gastrocnemius muscle
after either a NaCl or an insulin load. Figure 3 shows the
pPKB/PKB ratios obtained.

At 21 days of age, pups from the trained group showed an
increase in the pPKB/PKB ratio compared with pups from the
control group in basal the condition (T� and C�, respectively)
in both liver (�77%, P � 0.05; Fig. 3A) and muscle (�97%,
P � 0.05; Fig. 3C). However, these differences were not seen
after an insulin load injection (T� and C�) in either liver (Fig.
3A) or gastrocnemius muscle (Fig. 3C).

At 7 mo of age, pPKB/PKB ratio was similar in the liver of
animals from the two groups whatever the condition (NaCl
load or insulin load; Fig. 3E). In muscle, under insulin load,
pPKB/PKB ratio was significantly lower in rats from the
trained group (T�) when compared with rats from the
control group (C�) (�32%, P � 0.05) (Fig. 3G), whereas it
remained similar between groups in basal condition (T� vs.
C�; Fig. 3G).

Effect of maternal exercise on offspring pancreas insulin
content and islet insulin secretion. The total insulin content in
pancreas was not different between trained and control groups
whether at 3 wk of age (Fig. 4A) or at 7 mo of age (Fig. 4C).

At 28 days of age, the islet insulin secretion was not
significantly different in pups from trained dams compared
with those from control dams either after low glucose (2.8
mM) or high glucose (16.7 mM) incubation (Fig. 4B). How-
ever, islet insulin secretion after low glucose (2.8 mM) �
arginine (20 mM) incubation was significantly higher in pups
from trained dams compared with those from control dams
(�96%, P � 0.01; Fig. 4B).

Table 2. Litter outcomes

Control Trained

Litter size 12.1 � 2.0 10.8 � 3.8
No. of males 5.2 � 1.8 5.2 � 2.5
No. of females 6.9 � 2.0 5.7 � 2.6
Day 7 BW, g 16.1 � 1.0 16.9 � 0.6
Day 14 BW, g 32.5 � 1.3 32.9 � 0.9
Day 21 BW, g 50.9 � 1.7 50.1 � 1.0

Data are means � SE (n � 9 for control and n � 12 for trained).

Table 3. Offspring body outcomes

Weaning 7 Mo of Age

Control Trained Control Trained

Body weight, g 51.61 � 3.43 47.49 � 1.16 506.9 � 24.5 528.8 � 16.6
Organ weights, g/kg BW

Liver 31.81 � 0.75 30.97 � 0.19 27.88 � 0.76 28.36 � 0.84
Kidney 6.02 � 0.11 5.99 � 0.11 2.26 � 0.03 2.38 � 0.05
Fat 8.68 � 0.57 9.00 � 0.35 45.97 � 4.38 54.71 � 3.04
Muscles 4.58 � 0.13 4.54 � 0.07 5.97 � 0.21 5.53 � 0.24
Pancreas 4.54 � 0.14 3.96 � 0.18* 2.94 � 0.17 3.03 � 0.11
Islet area, �m2 44,669 � 6,761 22,822 � 4,036*

Data are means � SE (n � 16 for control and n � 17 for trained at weaning; n � 8 for control and n � 6 for trained at 7 mo of age; n � 11–13 for islet
area). Fat mass was calculated as the sum of retroperitoneal, epididymal, and mesenteric fat depots. Muscle mass was the sum of gastrocnemius, plantaris, and
soleus muscles. *P � 0.05 vs. control.
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At 7 mo of age, islet insulin secretion was higher after high
glucose (16.7 mM) incubation compared with the low-glucose
(2.8 mM) incubation condition (P � 0.05) (Fig. 4D). However,
the islet insulin secretion tended to be lower in rats from
trained group compared with rats from control group whether
in the low-glucose (2.8 mM) or high-glucose (16.7 mM)
condition (P � 0.102 and P � 0.255, respectively; Fig. 4D).

DISCUSSION

For the first time, to our knowledge, we show that submaxi-
mal maternal exercise alters the offspring pancreatic function.
Especially, we observed 1) a decline in insulin secretion with
age in animals from the exercised mothers along with 2) a
glucose intolerance and 3) a skeletal muscle insulin resistance
that are not present in offspring from sedentary dams.

Our purpose was to test the effect of daily chronic exercise
during the gestation on fit females that were already active
before gestation. We chose to train them for 4 wk before
mating, as such a duration is usually sufficient to get the first

signs of adaptation to chronic endurance exercise (77). Studies
using voluntary exercise in rodents with running wheels
showed that the running distance decreased dramatically in the
last week of gestation (13, 28). So we chose a compulsory
treadmill exercise that allowed us to test the effects of exercise
throughout all the gestational periods, with no change in
training parameters and especially no reduction in exercise
intensity and duration until day 18 of the gestation. To ensure
that these adaptations were significant, we also chose a suffi-
ciently high intensity. We used intensity parameters that are
classically found in the literature (6, 43, 84). Based on data
collected in our laboratory, the speed and slope of the treadmill
that we used would correspond to an intensity of about 55% of
the maximal aerobic speed. That intensity matches the guide-
lines for exercise in pregnant women from a lot of countries
around the world (30). However, the frequency and the dura-
tion are above most of the guidelines, except those from
Denmark and the US that recommend at least 30 min of
moderate-intensity exercise most of the days or daily (30).

Fig. 1. Maternal exercise reduces 6-h-fasting
glycemia and tends to increase 6-h-fasting
insulinemia in 28-day-old offspring. Rat off-
spring fasting glycemia was measured after a
16-h fast (A and D) and a 6-h fast (B and E)
at 21 days (A), 28 days (B), and 7 mo of age
(D and E). Fasting insulinemia was deter-
mined after a 6-h fast (C and F) at 28 days
(C) and 7 mo of age (F). Data are means �
SE; n � 4 for control and n � 6 for trained
groups in C; n � 8 –14 in A, B, D, E and F.
*P � 0.05 vs. control.
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Moreover, some authors have reported that voluntary and
controlled low-intensity exercises during gestation have no
negative consequences on dams and litter (14, 57). Our training
protocol appears to be safe for the mother and the litter since
no differences were found in sex ratio, number, or birth weight
of pups. Maternal exercise had no effect on maternal body

weight but seemed to change body composition since the
weight of the sum of several selected fat pads was lower in
trained mothers. Such reduced relative fat mass after endurance
training has been described previously in male and female rats
(34, 83). It may be explained by a higher energy expenditure in
trained mothers, whereas food comsumption is the same as for

Fig. 2. Maternal exercise alters 7-mo-old
offspring glucose tolerance. Rat offspring
underwent an intraperitoneal glucose toler-
ance test (IPGTT) at 3 wk (A and B) and at 7
mo of age (E and F) to assess whole body
glucose tolerance. Following a 16-h fast,
glucose was injected intraperitoneally at 1
g/kg body wt. Blood glucose levels were
monitored before injection (0) and 5, 10, 15,
20, 25, 30, 35, 40, 45, 60, 90, and 120 min
after glucose injection (A and E). Areas un-
der the curve (AUC) of IPGTT (C and G)
were related to the value at t � 0 min. Rat
offspring also underwent an intraperitoneal
insulin tolerance test (IPITT) at 4 wk (C and
D) and at 7 mo of age (G and H) to assess
whole body insulin sensitivity. Following a
6-h fast, insulin was injected intraperitone-
ally at 1 mIU/g body wt. Blood glucose
levels were monitored before injection (0)
and 10, 20, 30, 40, 50, 60, 90, and 120 min
post-insulin injection (C and G). Areas over
the curve (AOC) of IPITT (D and H) were
related to the value at t � 0 min. Data are
means � SE; n � 8–14. *P � 0.05 vs.
control.
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controls. In the offspring, the maternal training had no conse-
quence on body weight or body composition as suggested by
the muscle mass and the fat mass measured. This surprising
result could be explained by the duration of exercise sessions
(1 h/day), which is shorter than voluntary exercise using
running wheels and the running distance (1.5 km/day in our
study vs. 1.5–8 km/day at early gestationnal age to �1 km/day
at late gestationnal age on running wheels) (12, 14, 28, 58).
Reduced caloric intake in trained mothers appears to have no
negative consequences on offspring growth, as judged by a
similar body weight in both groups. This could be due to the
fact that maternal exercise training is thought to increase
resting placental bed blood flow (16) and then nutrient delivery
at the maternal-placental interface. During pregnancy, post-
prandial maternal blood glucose levels would vary in accor-
dance with the type of carbohydrates ingested. In our study,
diet was composed mainly of low-glycemic carbohydrates that
are associated with no change in blood glucose levels through-
out pregnancy and with normal-size offspring contrary to

high-glycemic carbohydrate ingestion (16). However, the train-
ing program was associated with a lower relative pancreas
weight in weanling rats that was not associated with changes in
pancreas total insulin content. Moreover, histological cuts
revealed that islet area is reduced in pups from trained mothers.
We then looked at the insulin secretory capacity of these islets
in various conditions. In low-glucose conditions, basal islet
insulin secretion was not affected by maternal exercise at
weaning. Under high-glucose condition, the stimulated insulin
secretion tended to be higher only in weanling rats from the
trained mothers. This may be due to the fact that islet insulin
release in response to glucose stimulation is reduced in young
rats (7, 9, 42, 51). To alleviate this problem, we then measured
the insulin secretion after a glucose plus arginine incubation
known to be efficient in fetal and young rats (1). In such a
condition, we found that maternal exercise enhanced the islet
insulin secretion, which is consistent with the litterature. In-
deed, a recent study showed that small islets have a higher
insulin secretion (39). These changes in islet insulin secretion

Fig. 3. Muscle insulin sensitivity is reduced
in 7-mo-old trained group rats. Rat offpring
underwent an insulin load test at 3 wk (A and
C) and 7 mo of age (E and G) to assess liver
and muscle insulin pathway activation as an
indicator of insulin sensitivity. Insulin bolus
was injected intraperitoneally at 10 mIU/g
body wt to half of the rats in each group (C�
and T�), and the others were injected with
NaCl (C� and T�). Liver (A and E) and
gastrocnemius muscle (C and G) samples
were collected 15 min after injection to de-
termine phosphorylated (p)PKB/PKB ratio
(Ser473) by Western blotting. Representative
Western blots show phosphorylated and total
(pPKB and PKB, respectively) PKB content
in liver and gastrocnemius muscle of 3-wk-
(B and D, respectively) and 7-mo-old (F
and H, respectively) offspring from con-
trol (C) and trained mothers (T) after NaCl
(C� and T�) or insulin (C� and T�)
injection. Quantitation of the signals was
expressed in arbitrary units. Data are
means � SE; n � 8 for C�, C�, T�, and
T� (A and C); n � 4 for C� and C�, and
n � 3 for T� and T� (C and G). *P �
0.05 vs. C�; #P � 0.05 vs. C�.
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could be responsible for the trend of higher insulinemia found
in pups from trained mothers after a 6-h fast.

This tendency of elevated insulinemia without hyperglyce-
mia in pups from trained mothers could be an early marker of
insulin resistance. To measure such insulin resistance pre-
cisely, we then performed glucose tolerance (IPGTT) and
insulin tolerance tests (IPITT) on our animals. Our results
show that glucose disposal, as judged by the AUC during
IPGTT, and overall insulin sensitivity reflected by the AOC
during IPITT were not affected by maternal training. Taken
together, these results suggest that, despite a trend of elevated
insulinemia, pups from trained mothers were not insulin resis-
tant. This tendency of higher blood insulin could be also a
sign for alterations in the insulin signaling. The main insu-
lin-sensitive tissues include skeletal muscle, liver, and adi-
pose tissue (52). Serine/threonine protein kinase Akt/PKB
(15) and the ratio between phosphorylated PKB and total
PKB content (pPKB/PKB) is classically considered as a
good marker of insulin pathway activation (76, 80). Thus,
we examinated pPKB/PKB ratio in gastrocnemius muscle
and in liver both in basal conditions and after an insulin
load. In basal conditions, the higher pPKB/PKB ratio mea-
sured in both tissues in 3-wk-old rats from trained mothers
might be due merely to the trend in a higher plasma insulin
level mentioned above. Results after the insulin load con-
firm that hypothesis since there is no difference in pPKB/
PKB ratio between the two groups in that insulin-stimulated
condition. So, we can conclude that maternal exercise be-
fore and during gestation did not modify liver and muscle
insulin pathway activation in offspring.

These effects of maternal exercise on the offspring are age
dependent, since results on 7-mo-old rats are different from

those obtained on 3-wk-old rats. Indeed, at 7 mo of age, organ
weights were not different between both groups, suggesting
that maternal exercise effects would have no significant impact
on body composition, including the pancreas. However, rela-
tive fat mass tended to be higher (P � 0.153) and relative
muscle mass lower (P � 0.183) in offspring from trained dams.
Together, these two results suggest that offspring of trained
rats tended to have more fat and may have a significantly
higher percentage of body fat. In another set of similar exper-
iments, food consumption was monitored during the first 10 wk
after weaning (i.e., 3 mo old), and we did not find any
difference between rats from either group (unpublished data).
Unfortunately, we do not have any data for the 3- to 7-mo
period, but we cannot exclude that food intake becomes dif-
ferent; meanwhile, that could explain the tendency of increased
fat mass in rats from the trained group at 7 mo of age. It can
also be a consequence of the impossibility to perform their
spontaneous activity, resulting in a positive energy balance.
Indeed, a study showed that offspring from females that had
access to running wheels during gestation were more active in
adulthood (28). This would suggest that the lifelong propensity
of offspring to exercise depends on maternal physical activity
level during gestation (28). In our study, offspring from active
mothers could not exert their potential higher spontaneous
physical activity while being fed ad libitum. Taken together,
these conditions would ultimately lead to an increase in adi-
posity. Moreover, there were no differences in 6-h or 16-h
fasting glycemia, but insulinemia tended to be increased in rats
from trained dams after a 6-h fast. However, AUC during
IPGTT was significaly larger in 7-mo-old rats born from
Ttained mothers. This suggests that submaximal maternal ex-
ercise would be associated with a worse glucose tolerance in

Fig. 4. Maternal exercise does not modify
offspring pancreas insulin content but en-
hances short-term islet insulin secretory ca-
pacity and tends to reduce it with aging.
Offspring pancreas was collected at 3 wk (A)
and at 7 mo of age (C) to determine total
insulin content. There were no differences in
pancreas insulin content between both
groups at 3 wk of age (A) or at 7 mo of age
(C). Offspring pancreatic islets were isolated
at 4 wk (B) and at 7 mo of age (D) to assess
their insulin secretory capacity. The day af-
ter isolation, islets were incubated with low
glucose (2.8 mM G) and then with high
glucose (16.7 mM G) (B and D) or low
glucose � arginine (2.8 mM G � 20 mM A)
(B). Supernatants were collected and islet
insulin secretion determined by ELISA (B)
or RIA (D). Data are means � SE; n � 5–9.
*P � 0.05 vs. control.
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adult offspring. Here, we show that maternal exercise may
have various effects on prospective offspring glucose toler-
ance, depending on the training session intensity and offspring
sex and age. Indeed, our submaximal compulsory exercise
program led to a decrease in glucose tolerance in adult off-
spring, whereas some studies showed that low-intensity volun-
tary maternal exercise improved it (13, 14). These discrepan-
cies could be expained by several factors. First, these studies
were conducted on mice (13) or female Sprague-Dawley rats
(14) aged �16 mo. Moreover, the females had access to
running wheels before and throughout gestation and during
lactation. In our study, we used 7-mo-old Wistar rats. More-
over, only male offspring were included, and maternal tread-
mill exercise was compulsory and conducted only before and
during gestation, with no change in exercise parameters. In
animals from trained mothers, the lower glucose tolerance
observed may be due to either exhaustion in islet insulin
secretion or a higher insulin resistance (74). Even if pancreas
total insulin content was similar between both groups, the
tendency to have a lower islet insulin secretion both in basal
and in glucose-stimulated conditions may play a role in the
glucose intolerance observed in 7-mo-old rats from trained
dams. It is unlikely that liver could contribute to that glucose
intolerance since the phosphorylation levels of PKB in liver are
similar in both groups in basal and insulin-stimulated condi-
tions. In skeletal muscle, the lower pKB/PKB ratio under
insulin stimulation in the rats from trained mothers suggests
that long-term insulin signaling in muscle could be reduced by
maternal exercise done before and during gestation. These
results suggest that even if the muscle insulin pathway activa-
tion observed with maternal exercise is altered at 7 mo of age,
this has no consequences on the overall insulin response at the
whole body level, as shown by the lack of difference in AOC
during IPITT.

The smaller relative pancreas weight and the smaller islet
size could be related to a suboptimal nutritional state of both
the mother and the fetus. Indeed, despite the increase of energy
expenditure due to training sessions, trained dams had the same
food intake as the control dams. This supports the idea that
offspring from trained dams may have encountered reduced
susbstrate availability during maternal exercise. It has already
been shown that during exercise sessions there could be a
transient fetal hypoglycemia (17). These two factors (reduced
energy balance and hypoglycemia) could impact the islet
insulin secretory capacity under stimulation that could contrib-
ute to the trend of increased insulinemia that we observed in
pups from trained dams.

Our study shows that submaximal maternal exercise leads
to an inappropriate insulin secretion relative to ambient
glucose in rodent offspring. Associated with the reduced
muscle insulin pathway activation and glucose intolerance
that we observed in 7-mo-old offspring, such maternal
exercise could increase the susceptibility to T2DM that
could be amplified when exposed to bad nutrition such as
high-fat diet or to physical inactivity during adulthood. This
suggests that daily exercise during the late period of the
gestation would be detrimental to offspring, but further
studies are needed to determine whether the intensity of
such exercise programs may play a role as well.
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Abstract Gestational diabetes mellitus (GDM) is associated
with increased insulin resistance and a heightened level of
oxidative stress (OS). Additionally, high iron consumption
could also increase insulin resistance and OS, which could
aggravate GDM risk. The aim of this study is to evaluate a
high fructose diet (F) as an alternative experimental model of
GDM on rats. We also have evaluated the worst effect of a
fructose iron-enriched diet (FI) on glucose tolerance and OS
status during pregnancy. Anthropometric parameters, plasma
glucose levels, insulin, and lipid profile were assessed after
delivery in rats fed an F diet. The effects observed in mothers
(hyperglycemia, and hyperlipidemia) and on pups
(macrosomia and hypoglycemia) are similar to those observed
in women with GDM. Therefore, the fructose diet could be
proposed as an experimental model of GDM. In this way, we
can compare the effect of an iron-enriched diet on the meta-
bolic and redox status of mother rats and their pups. The
mothers’ glycemicwas similar in the F and FI groups, whereas
the glycemic was significantly different in the newborn. In rat
pups born to mothers fed on an FI diet, the activities of the
antioxidant enzyme glutathione peroxidase (GPx) and

glutathione-S-transferase in livers and GPx in brains were
altered and the gender analysis showed significant differences.
Thus, alterations in the glycemic and redox status in newborns
suggest that fetuses are more sensitive than their mothers to
the effect of an iron-enriched diet in the case of GDM preg-
nancy. This study proposed a novel experimental model for
GDM and provided insights on the effect of a moderate iron
intake in adding to the risk of glucose disorder and oxidative
damage on newborns.

Keywords Gestational diabetes . Oxidative stress . High
fructose diet . Iron

Introduction

In the field of obstetrics, gestational diabetes mellitus (GDM)
is one of most common complications of pregnancy affecting
up to 14 % of all pregnancies, depending on the population
studied and the diagnostic tests employed [1]. Since GDM is a
cause of concern due to increased risks on both mother (e.g.,
hypertension, preeclampsia, cesarean delivery, and diabetes
later in life) and fetus (macrosomia, neonatal hypoglycemia,
shoulder dystocia), there is great interest in understanding the
etiology and pathophysiological mechanisms of GDM. As the
majority of cases return to normal glycemic levels postpartum,
GDM has been considered a Btransient condition.^ However,
evidence suggests that GDM should be viewed more as a
marker for chronic disease as mothers age [2], but it could
also predict occurrence of diseases later in life for the newborn
[3]. Despite the better diagnosis of GDMand recognition of its
adverse consequences for mother and baby in many countries,
there is still no consensus regarding the origin of GDM [4]. It
is well known that this risk increases with advancing maternal
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age, racial/ethnic disparities, and obesity, but other factors
might also be involved [4, 5].

It is well documented that GDM is associated with oxida-
tive stress (OS), owing to both overproduction of free radicals
and/or a defect in the antioxidant defenses [6–9]. Multiple
biochemical pathways and mechanisms of action for glucose
toxicity have been suggested [10]; all these pathways have in
common the formation of reactive oxygen species (ROS), and
they relate to insulin resistance [11].

So far, streptozotocin, an agent of choice for experimen-
tal diabetes induction, leading to specific necrosis of the
pancreatic β-cells [12], has been extensively [13, 14] used
to clarify or to prevent [15] the biochemical mechanisms of
GDM. However, this experimental model leads to type 1
diabetes, while the features of GDM are more like a type 2
diabetes (DT2). Therefore, streptozotocin is probably not a
good model for GDM [13, 14]. A fructose-rich diet has
been used as an experimental model for the study of insulin
resistance [16, 17] but, so far, not in pregnancy.

Recent studies suggest that iron overload may impair
the regulation of body glucose metabolism [18]. A meta-
analysis concluded that high iron intake is significantly
associated with a greater risk of type 2 diabetes [19]. It is
still not clear whether iron leads to the development of
GDM, and despite the association between iron intake
and GDM risk being examined in several studies
[20–24], so far no consensus has been reached [25]. Iron
is an essential trace element required for crucial functions
of the body, such as oxygen transport and energy produc-
tion. However, a high iron level increases ROS production,
which may cause pancreatic β-cell dysfunction [26], and
insulin resistance and gestational diabetes have been asso-
ciated with high plasma ferritin and biological evidence of
oxidative stress [27].

This study had a dual purpose: to propose the fructose diet
as an experimental model for studying GDM and to determine
the effects of a moderate iron-enriched fructose diet on the
metabolic and OS status of newborns.

Material and Methods

Animal Care

All experimental procedure was reviewed and approved by
the Joseph Fourier University Institutional Ethic Committee
for Animal Experiment. The rats were maintained and handled
in agreement with the Guide for the Care and Use of
Laboratory Animals. The female Wistar rats (Charles River,
L’Arbresle, France), 12 weeks old, were housed in wire-
bottomed cages in a temperature-controlled room (22 °C),
50 ± 10 % relative humidity, and a 12-h light/12-h dark cycle.

Diets

The diets were purchased from SAFE, 89290 Augis, France.
The control group (C, n = 6) was fed by a standard Purina
chow. The fructose group received the fructose-rich diet (F,
n = 6) containing 65 % of fructose and 12 mg iron/100 g as
indicated in Table 1. The fructose iron-enriched diet received
the same fructose-rich diet but containing 22 mg iron/100 g
diet (FI, n = 6) (Table 1). All rats were fed for 4 weeks before
mating and during gestation for 3 weeks. The analytical mea-
surement of the iron content of the pellets for the F and FI diet
was determined using a quadrupole ICP-MS ThermoX-Series
II equipped with collision/reaction cell technology (CCT),
quartz impact bead spray chamber, and concentric nebulizer.
The Xt interface option was used. The collision reaction gas
was a mixture of He and H2 (97/7). The samples were miner-
alized in nitric acid and then diluted 100-fold in water prior to
analysis. Fe 56 and Fe 54 were measured and Ga 71 was used
as internal standard. An external standard calibration curve
was generated using four calibration standards (0–200–1000
and 2000 nmol/l). Method accuracy was assessed by analyz-
ing NISTstandard reference material 1577b (bovine liver) and
ARC/CL total diet reference material at the beginning and end
of the analytical run. The between-run precision was 3.40 %
and the bias was −1.67 %.

Table 1 Composition of the diets
(g/100 g diet) Composition Purina chow (group C) Fructose-rich diet (group F) Fructose-iron diet (group FI)

Starch 62 0 0

Fructose 0 65 65

Casein 22.7 20 20

Vegetal oils 4.5 5 5

Mineral and vitamins 6,25 6,25 6,25

Iron mg/100 g diet 10 12 22

Cellulose 4,50 5 5

kCal/100 g diet 379 385 385
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Experimental Procedures

Eighteen rats are weighed weekly and pups were weighed at
delivery. One day after delivery and after overnight fasting,
the mothers were anesthetized with sodium pentobarbital in-
traperitoneally. Some of the mothers were unfertilized which
is common figure in animal facilities; therefore, the number of
mother with pups was for each group: C (n = 4), F(n = 5), FI
(n = 5). Blood from mothers was collected by heart puncture
in heparinized tubes protected from light and centrifuged at
room temperature for 10 min at 3000g. Plasma was immedi-
ately isolated, aliquoted, and stored at −80 °C until analysis.
The morning of sacrifice, males and females pups were
weighed and decapitated without anesthesia. Blood glucose
readings are taken via a drop of blood using a glucometer.
Immediately after blood collection, the rats were sacrificed
and visceral masses were weighed. Pups’ livers and brains
were removed, weighed, frozen in liquid nitrogen, and stored
at −80 °C until analysis. Before analysis, tissue samples were
homogeneized (10 %) in buffer (10 mM Tris-base, 1 mM
diethylene triamine pentaacetic acid (DPTA)), 1 mM
phenylmethanesulfonyl fluoride (PMSF), pH = 7.4) and cen-
trifuged at 3000g and 4 °C for 10 min.

Biological Parameters

Fasting glucose, cholesterol, and triglyceride levels were
evaluated by enzymatic and colorimetric methods on
Roche/Hitachi modular 912 (Roche diagnosis, Meylan,
France). Glycemia from pups were assessed using an
Accu-Chek® glucometer (Roche Diabetes Care, Meylan,
France). Insulin levels were assessed using commercial
radioimmunoassay kit (Merck Millipore Corporation,
Germany). Insulin sensitivity was calculated using the ho-
meostatic model assessment-insulin resistance (HOMA-
IR) (formula: fasting glucose (mg/dL) × fasting insulin
μUI/mL/405). Plasma thiobarbituric acid reactive sub-
stance (TBARS) concentrations were assessed as described
by Richard et al. [28]. Total plasma antioxidant status was
estimated using ferric reducing antioxidant power (FRAP)
assay as described by Benzie et al. [29]. Plasma thiol (SH)
groups were assayed as described by Faure and Lafond
[30]. The reduced (GSH) and oxidized (GSSG) form of
glutathione was determined by a kinetic method as pre-
scribed by Akerboom and Sies [31]. Glutathione peroxi-
dase (GPx) activity was evaluated by the modified method
of Gunzler et al. [32], using terbutyl hydroperoxide as a
substrate instead of hydrogen peroxide. The glutathione-S-
transferase (GST) activity was determined by the method
of Habig et al. [33].

Statistical Analysis

Data statistical analyses were performed using the statistical
software package (Statistica Program, Statistical Software,
Paris, France). Values were expressed as mean ± standard er-
ror of the mean (SEM). Statistical analyses of the data were
performed by analysis of variance, using the t test for compar-
ison of the means. Statistical significance was set at p < 0.05.

Results

Evaluation of a Fructose Diet as a Model of Gestational
Diabetes

The results of anthropometric and biochemical parameters of
mother rats and their offspring are represented in Table 2. A
high-fructose diet increased significantly the weight of their
pups compared to the control fed group. The weight gain and
the visceral fat mass were enhanced but not significantly dif-
ferent between the two groups of mothers. The livers of pups
from the F group were significantly lower than those of the
control group, but the brain weight was unaffected by the
maternal diet. The results showed that a high-fructose diet
increases significantly glycemia, insulin, cholesterol, and tri-
glyceride of mothers, leading to a significant increase in insu-
lin resistance followed by the HOMA test. On the contrary,
glycemia of newborns were decreased.

Evaluation of Anthropometric and Oxidative Stress
Parameters in Pups and Mothers Fed a Fructose Diet (F)
or a Fructose Enriched with an Iron Diet (FI)
during Pregnancy

Although a trend to an increase, the FI diet did not modify
significantly the body weight gain during pregnancy, com-
pared to the F fed group (Table 3). In addition, the FI diet
had no effect on mothers’glycemia, insulinemia, cholester-
ol, and triglycerides. However, glycemia and body weight
were increased in the pups born of the mothers fed the FI
diet and the number of females in the FI group was signif-
icantly lower. There are gender differences since the gly-
cemia was significantly increased only in male pups
(p < 0.03) and the difference of body weight was signifi-
cant for the female (p < 0.003) but almost significant
(p = 0.06) in male pups.

The results of plasmatic OS parameters of mother rats are
represented in Table 4. No significant difference was found on
GPx activity, TBARS, and FRAP between rats fed with F and
FI diet. The oxidative status was also assayed in livers and
brains of offspring from the two groups, and results are
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represented in Tables 5 and 6, respectively. In pups born to
mothers in the FI diet group, brain and liver GPx activity was
significantly decreased. The gender analysis showed that in
the brain, GPx activity was related to a significant decrease in

males, while the FI diet has no effect in females. Similarly, we
found a gender effect on hepatic GPx, which is decreased in
both groups, but the effect was also significant only in
females.

Table 2 Anthropometric and
biochemical parameters of mother
rats and pups after delivery

Parameters Control Fructose P value

Weight gain (g) 17.2 ± 0.63 21.5 ± 1.95 P > 0.05

Total visceral fat (g/100 g body weight) 3.41 ± 0.53 4.11 ± 0.35 P > 0.05

Glycemia (mg/dL) 143 ± 4.14 163 ± 3.60* 0.008

Insulin (ng/mL) 0.58 ± 0.74 1.96 ± 0.80* 0.016

HOMA-IR(U) 5.13 ± 0.75 19.46 ± 10.71* 0.014

Cholesterol (mg/dL) 54 ± 0.01 66 ± 0.03* 0.05

Triglyceride (mg/dL) 33 ± 0.05 88 ± 0.20* 0.02

Number of pups/dam 9.5 ± 2.18 10.0 ± 2.28 P > 0.05

Male pups/dam 4.0 ± 0.58 3.6 ± 0.81 P > 0.05

Female pups/dam 5.5 ± 1.66 6.4 ± 1.69 P > 0.05

Weight (g) all 8.5 ± 0.9 9.5 ± 1,7* 0.002

Male pups 8.94 ± 0.26 10.30 ± 0.45* 0.03

Female pups 8.17 ± 0.2 9.13 ± 0.26* 0.01

Liver weight all (g/100 g body weight) 3.54 ± 0.05 3.02 ± 0.04* <0.001

Male pups 3.58 ± 0.09 2.94 ± 0.07* <0.001

Female pups 3.51 ± 0.06 3.07 ± 0.05* <0.001

Brain weight all (g/100 g body weight) 4.14 ± 0.06 4.12 ± 0.06 P > 0.05

Male pups 3.98 ± 0.07 3,93 ± 0.1 P > 0.05

Female pups 4.25 ± 0.07 4.21 ± 0.07 P > 0.05

Glycemia (mg/dL) all 106 ± 2 78 ± 2 * <0.001

Male pups 112 ± 3 74 ± 3* < 0.001

Female pups 100 ± 2 81 ± 2* < 0.001

Results were expressed as mean ± SEM; the number of rats was in the control fed group (n = 4 mothers and n = 38
pups) and in the fructose-fed group (n = 5 mothers and n = 50 pups ). *P < 0.05

Table 3 Anthropometric
parameters of mothers and pups
fed with an F diet or an FI diet

Parameters F FI P value

Mothers weight gain (g) 21.5 ± 1.95 27.5 ± 1.6 P > 0.05

Mothers glycemia (mg/dL) 163.24 ± 3.6 161.44 ± 5.76 P > 0.05

Mothers insulinemia (ng/mL) 1.96 ± 0.78 1.05 ± 0.67 P > 0.05

HOMA-IR(U) 19.46 ± 10.71 10.01 ± 6.15 P > 0.05

Mothers cholesterol (mg/dL) 66 ± 0.03 64 ± 0.66 P > 0.05

Mothers triglyceride (mg/dL) 88 ± 0.20 77 ± 0.17 P > 0.05

Number of pups/dam 10,0 ± 2,3 7,6 ± 2,2 P > 0.05

Male pups/dam 3.6 ± 0.8 3.8 ± 1.7 P > 0.05

Female pups/dam 6.4 ± 1.7 3.8 ± 0.9* 0.05

Pups glycemia (mg/dL) All 78 ± 1.8 85 ± 1.8 * 0.02

Male pups 74.4 ± 2.77 86.25 ± 2.52* 0.003

Female pups 81.13 ± 2.26 83.18 ± 2.64 P > 0.05

Pup weight (g) all 9.3 ± 0.10 11.0 ± 0.34* <0.001

Male pups 10 ± 0.62 11.1 ± 0.16 0.06

Female pups 8.9 ± 0.37 10.9 ± 0.13* 0.003

Results were expressed asmean ± SEM; the number of rats was in fructose group (F: n =mothers and n = 50 pups)
and in fructose-iron (FI: n = 5 mothers and n = 38); *P < 0.05
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Even though there was no difference in total hepatic GSH
between the two groups, the hepatic GSH concentration was
significantly lower in male pups of the FI group but no differ-
ence was observed for female pups. The activity of GST was
significantly increased in livers of the FI diet group, and the
gender analysis showed a significant increase only in males’
livers. In the brain, no difference for GSH and GST was ob-
served between groups. There was no significant difference in
total antioxidant capacity measured by FRAP assay between
the two groups.

Discussion

Diabetes in pregnant women is associated with increased risk
of maternal, fetal, and neonatal complications, which makes
GDM a significant public health challenge. Aside from non-
modulating factors of GDM as the mother ages, inadequate

nutritional habits, such as high consumption of fructose and
iron, might induce oxidative stress and insulin resistance.
Therefore, we aimed to assess the fructose diet as a model of
diet-induced GDM and then the effect of an iron-enriched
fructose diet in inducing metabolic disorder and oxidative
stress.

The Fructose Diet as a Model of GDM

So far, streptozotocin diabetes is the first choice for studying
experimental GDM [12] and, to our knowledge, the onlymod-
el. However, streptozotocin induces specific necrosis of the
pancreatic 훽-cells, such as type 1 diabetes, rather than
insulin-resistant diabetes, and it is still challenging for induc-
ing GDM with streptozotocin [13, 34]. Thus, we evaluated a
fructose-rich diet to feed pregnant rats as an experimental
animal model for GDM by inducing insulin resistance. Here,
the effect of an F diet to induce insulin resistance assessed
with the HOMA score during pregnancy was consistent with
that obtained with the same F diet in adult rats [35] and with
diabetes induced by streptozotocin [36]. Furthermore, in this
experimental model, the weight of newborns was significantly
larger in the group of mothers fed with the F diet, and this
effect is in agreement with the well-documented increased risk
of macrosomia in the GDM women [37]. According to the
recent guidelines of the Institutes of Medicine, weight gain
associated with GDM increases the risk of miscarriages and
other adverse outcomes [38], leading to a need for dietary
counseling. While the pups were bigger, their blood glucose

Table 4 Plasmatic OS parameters in mother rats fedwith the F or the FI
diet

OS parameters of mothers F (n = 5) FI (n = 5)

TBARS (μM/L) 4.6 ± 0.13 4.03 ± 0.14

GPx activity (U/L) 6349 ± 304 6464 ± 110

FRAP (μM/L) 273 ± 20 284 ± 25

SH (μM/L) 327 ± 38 295 ± 35

Results were expressed as mean ± SEM

Table 5 Liver OS parameters in
newborn rats born to rats fed with
F and with FI diet

OS parameters Group F (n = 50)
(18 males; 32 females)

Group FI (n = 38)
(19 males;19 females)

P value

TBARS (μM/L) 1.05 ± 0.2 0.99 ± 0.2 P > 0.05

Male 1.12 ± 0.10 1.05 ± 0.10 P > 0.05

Female 0.95 ± 0.13 0.92 ± 0.19 P > 0.05

GPx activity (U/gP) 254 ± 7.0 225 ± 6.6* 0.03

Male 253 ± 15 232 ± 7.9 P > 0.05

Female 255 ± 10 217 ± 11* 0.005

GSH (μM/g P) 636 ± 57 569 ± 32 P > 0.05

Male 711 ± 73 522 ± 33* 0.03

Female 562 ± 82 625 ± 52 P > 0.05

GSH/GSSG 87.79 ± 6.34 88.87 ± 4.15 P > 0.05

Male 83.82 ± 30.9 87.63 ± 13 P > 0.05

Female 82.44 ± 21.36 91.79 ± 15.46 P > 0.05

FRAP (μM/g protein) 210 ± 5.8 197 ± 4.9 P > 0.05

Male 217 ± 7.8 201 ± 6.9 P > 0.05

Female 202 ± 8.0 193 ± 7.0 P > 0.05

GST (nM/mg protein) 232 ± 5.4 249 ± 4.3* 0.015

Male 228 ± 8.5 257 ± 6.9* 0.02

Female 236 ± 7.0 242 ± 4.0 P > 0.05

Results were expressed as mean ± SEM; *P ≤ 0.05
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level was significantly lower than in the control group. This
result is also consistent with the fact that the hypoglycemia
associated with macrosomia is one of the most common met-
abolic disorders of the neonate of a GDM mother [37]. It
occurs due to the hyperinsulinemia of the fetus in response
to the maternal hyperglycemia in utero. The lower liver
weight, observed both in male and female pups, could be
explained by a decrease in glycogen storage level in response
to a state of hepatic insulin resistance [39]. Taken as a whole,
our results suggest that the fructose diet could be an alternative
successful experimental model for studying GDM.

The Fructose Diet as a Model of GDM

In the second part of our study, we tested the hypothesis that
an increased iron intakewould inducemetabolic and oxidative
disorders during GDM. Iron requirements to meet the fetal
pups’ needs were estimated at 5–25 mg iron/100 g diet [40].
In our study, the dose of iron in the FI diet (22 mg/100 g diet)
corresponded to a moderate, but not too heavy dose, because
our goal was to assess the consequences of a high, but not an
excessive iron intake, which is rarely the case during pregnan-
cy. Furthermore, our goal was not to confirm the benefit of
iron in cases of anemia, but we aimed to evaluate the effect of
an iron-rich diet to rats of normal iron status in case of GDM,
to increase insulin resistance and OS. Therefore, in the fruc-
tose diet, the level of iron was normal. Despite that the FI diet
did not induce significant metabolic changes in mothers, the
body weights of the newborns were increased and their gly-
cemia was significantly increased. The increase in body
weight induced by iron during GDM was more important in

female. The number of female progeniture was also smaller in
the group of pups born frommothers with a higher iron intake.
In a previous study, iron supplementation to pregnant rats was
associated to an increased number of placentas without a de-
veloping fetus, which could take in part to our result [41].
Since diet gender effects have been reported in offspring born
frommothers fed with fructose liquid intake during pregnancy
[42, 43], we can hypothesize that the FI diet could play a part
in the small number of females in the FI diet group. Further
experiments are necessary to confirm that this effect is caused
by the FI diet.

The FI diet did not affect the oxidative status of the
mothers. A previous study [44] in an experimental model of
GDM induced by streptozotocin reported an increase in OS
induced by intra-peritoneal iron. However, in this study, both
the method and the high dose of iron, in contrast to ours, might
explain the discrepancies in oxidative stress.

Interestingly, despite the apparently similar OS level be-
tween the mothers fed with the F or the FI diet, the redox
status of the livers and brains of newborns was altered. This
suggests that fetuses were more sensitive to the effect of iron
during pregnancy than their mothers.

The GPx activity was decreased both in the liver and the
brain of pups born from the FI-fed mothers. The inhibition of
GPx activity has often been reported in cases of obesity and
insulin resistance [45]. In line of our results, a difference by
sex of hepatic GPx activity has also been reported in pups
born to diabetic mothers [46]. The decrease in GPx is a com-
mon feature of the route toward DT2 [47] and aging [48] and
in neurodegenerative diseases [49]. Interestingly, it has been
shown that iron supplementation in neonate mice increases the

Table 6 Brain OS parameters in
newborn rats born to rats fed with
F and with FI diet

OS parameters F (n = 50)
(18 males; 32 females)

FI (n = 38)
(19 males;19 females)

P value

GPx activity (U/g protein) 104,1 ± 3.8 92,8 ± 3.5* 0.04

Male 113 ± 3.9 91 ± 2.4 * 0.001

Female 95 ± 4.0 95 ± 8.0 P > 0.05

GSH (μM/g protein) 273 ± 6.4 256 ± 6.7 P > 0.05

Male 259 ± 3.0 250 ± 6.0 P > 0.05

Female 301 ± 6.0 266 ± 1.4 P > 0.05

GSH/GSSG 76.08 ± 7.13 86.47 ± 11.16 P > 0.05

Male 79.56 ± 19.54 88.08 ± 40 P > 0.05

Female 70.55 ± 19.53 81.25 ± 24.2 P > 0.05

FRAP (μM/g protein) 254 ± 4.0 253 ± 4.1 P > 0.05

Male 258 ± 3.3 258 ± 6.5 P > 0.05

Female 250 ± 7.3 248 ± 4.8 P > 0.05

GST (nM/mg protein) 216 ± 8.3 228 ± 5.6 P > 0.05

Male 213 ± 36 230 ± 17 P > 0.05

Female 213 ± 27 226 ± 29 P > 0.05

Results were expressed as mean ± SEM; *P ≤ 0.05
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risk of Huntington’s disease associated with an increased ox-
idative stress [50] while GPx was neuroprotective in a model
of this neurodegenerative disease [51]. Therefore, the GPx
decline observed in the brains of the FI males could have
important implications for cognitive function. In future stud-
ies, it would be interesting to evaluate the consequences of this
decrease on their behavior in adulthood.

In our study, males’ livers seemed to be more sensitive than
those of female to the effect of iron-rich diet. Indeed, the
reduced GSH levels of males born to the FI diet-fed mothers
served as an iron-induced OS indicator, while in the liver of
females, the GSH levels were not modified. In line with this
effect, Kim et al. [52] found that iron overload is associated
with insulin resistance in men, but not in women. In addition,
the GSTactivity was increased in the liver of pups from the FI
group. This would appear to represent an adaptive response to
cope with an increased ROS production induced by iron.
Indeed, several lines of evidence suggest that GST plays a role
in protecting cells from the consequences of such stress, since
GST is regulated by ROS such as H2O2. The induction of GST
by ROS has been described as an adaptive response to detox-
ify some oxidative metabolites produced by OS [53]. GST is a
prototypical phase 2 antioxidant enzyme, which has a part in
the detoxification of a broad range of toxic and potentially
carcinogenic compounds [53]. In accordance with our results,
an enhancement of GSTwas associated with a higher decrease
in GPx in iron-treated mice [54]. Also in agreement with our
data, suggesting that male might be more sensitive to female
to the diet of mothers during pregnancy, a gender effect has
been reported with a 10 % (w/v) fructose in drinking water
during pregnancy, which increased oxidative stress in the liver
of male progenitor but not in female [43]. In this study, in
relation with an increased oxidative stress in livers of male
offspring, a feature of a metabolic syndrome was observed
in male while the females were more resistant. However, it
is worth noting that the model of fructose in drinking water is
not a model of GDM since it is not associated with glucose
impairment [55] during pregnancy. Furthermore, in this study
the analyses were performed later after delivery (90 days)
while at delivery in our study. Therefore, we cannot exclude
that postnatal nutrition could modify metabolic abnormalities
induced by iron-fed fetal programming associated with GDM.
This deserves further investigation to evaluate later in life the
consequences of an oxidative stress in the liver of pups born
from mothers with a GDM and with high iron intake.

In conclusion, the similarity in the metabolic and anthro-
pometric effects observed in GDM in women and those of our
experimental model allows us to propose the fructose diet as
an experimental model of GDM. Clearly, these results indicate
that a moderately high iron intake, in the case of GDM, in-
duces adverse effects in the pups (macrosomia and impaired
redox status both on the liver and the brain) without significant
effects on their mothers. Future studies are warranted to clarify

the link between these potential characteristics of a metabolic
and oxidative altered state and a possible increased risk of
chronic diseases later in life. Proper management of GDM,
regarding iron intake in particular, would be of benefit for
the newborn’s health and the prevention of diseases in
adulthood.
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