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Résumé étendu 
 

La réduction de la traînée aérodynamique des véhicules terrestres est devenue 
un défi majeur en raison des contraintes de plus en plus fortes sur les émissions de 
CO2 résultant de la consommation de carburant. Pour les véhicules de formes non 
profilées, la région de basse pression à l’arrière est responsable d’une partie 
importante de la traînée aérodynamique. A titre indicatif, plus de 50% de la 
résistance à l’avancement sur une autoroute a pour origine la traînée aérodynamique. 
Au cours de ces dernières années, le développement rapide du contrôle actif des 
écoulements a ouvert une nouvelle voie vers la réduction de traînée. Dans ce cadre, la 
manipulation du sillage par des dispositifs actifs est l'un des sujets les plus traités. 

Le but de cette thèse est de développer des stratégies de contrôle efficaces pour 
la réduction de traînée aérodynamique des véhicules terrestres. Pour atteindre cet 
objectif, nous examinons expérimentalement les effets d’un forçage fluidique sur le 
sillage d’un modèle de véhicule simplifié à culot droit. Le forçage est effectué par des 
jets pulsés placés aux arêtes du culot. Seize capteurs de pression répartis sur la 
surface arrière permettent d’estimer la traînée instantanée. Dans ce manuscrit 
composé de six chapitres, des stratégies de contrôle, basées sur des méthodes 
d’apprentissage ou sur la compréhension physique des phénomènes, sont mises en 
œuvre. Afin d’améliorer la compréhension, les résultats ainsi obtenus sont analysés 
physiquement. 
 
Chapitre 1 

Dans ce chapitre, nous introduisons le contexte industriel et sociétal de notre 
étude en considérant la réduction indispensable de la consommation et de l’émission 
de gaz à effet de serre. Nous présentons les mécanismes de base par lesquels la traînée 
est générée sur les véhicules terrestres. Nous nous intéressons principalement aux 
véhicules ayant un culot droit. Le décollement de l’écoulement dans le sillage des 
véhicules joue un rôle majeur dans la traînée. La compréhension fine des dynamiques 
intervenant dans le sillage aide à mieux contrôler l’écoulement de sillage. Une revue 
de la littérature est réalisée. Nous récapitulons les caractéristiques principales des 
instabilités dans la dynamique du sillage induit par le détachement des couches 
limites : instabilité convective pour le développement des couches cisaillées 
turbulentes et instabilité absolue provoquant l’émission des tourbillons alternés de 
Von-Kàrmàn. Ces instabilités possèdent une large gamme d’échelles de temps et de 
longueur, et sont associées à la diminution de la pression derrière le véhicule. La 
dynamique de la bulle de recirculation conduit à un sillage moyen comprenant deux 
structures contrarotatives. Nous rappelons aussi des concepts démontrant les liens 
entre la forme de la bulle moyenne et la pression moyenne au culot dans les études de 
Roshko (1993 a, b) portant sur des sillages bidimensionnels. Ces concepts aident à 
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comprendre les effets du contrôle et enrichissent la conception des stratégies de 
contrôle. 

Les dynamiques présentes dans le sillage turbulent sont une conséquence des 
interactions fortement non-linéaires entre les tourbillons à différentes échelles. La 
nature instable de l’écoulement rend le sillage très sensible aux excitations externes 
qui peuvent ainsi être adaptées pour répondre à des objectifs de contrôle spécifiques. 
Une revue des stratégies de contrôle pour la réduction de traînée est ensuite abordée 
dans le cas particulier des corps simplifiés de véhicule à culot droit. Le contrôle passif 
impose une légère modification de la configuration d'origine via des dispositifs 
additionnels comme des volets. Bien que les dispositifs passifs soient efficaces pour la 
réduction de traînée, leurs applications industrielles sont encore limitées car des 
surfaces additionnelles ne sont pas pratiques à utiliser. Par ailleurs, un autre 
inconvénient du contrôle passif est qu’il ne peut pas être désactivé lorsqu'il n’est pas 
nécessaire. Face à ces contraintes, des études sur le contrôle actif ont rapidement 
émergé au cours de ces dernières décennies. Le contrôle actif introduit de l’énergie 
dans le système et peut imiter les effets du contrôle passif. En outre, le contrôle peut 
alors être activé ou désactivé selon les besoins. Un des dispositifs actifs les plus 
utilisés pour manipuler des écoulements de sillage est le jet synthétique ou jet pulsé 
périodique. Ce type de forçage fluidique instationnaire peut être appliqué d'une 
manière prédéterminée en boucle ouverte. Le forçage périodique en est un exemple 
particulier. Dans ce cas, la commande de contrôle ne dépend pas de l’état de 
l’écoulement. Le contrôle en boucle fermée, pour lequel l'actionnement est déterminé 
via des capteurs enregistrant l'état de l'écoulement, offre un potentiel supplémentaire 
pour améliorer l'efficacité du contrôle en adaptant la commande aux modifications de 
l'écoulement. Le contrôle en boucle fermée peut être basé sur un modèle. Cependant, 
les dynamiques fortement non linéaires présentes dans l’écoulement posent un défi 
immense pour construire un modèle dynamique forcé qui puisse traduire précisément 
les interactions des tourbillons aux différentes échelles. 

Dans cette thèse, nous contournons ces difficultés de modélisation en 
développant une stratégie de contrôle sans modèle : le contrôle via la programmation 
génétique linéaire (LGPC). Cette méthode, entièrement basée sur les données, 
optimise les lois de contrôle via une technique d’apprentissage automatique qui imite 
le processus de l'évolution dans la nature. Basé sur un principe d’évolution génétique, 
le contrôle par LGPC explore et exploite la dynamique fortement non linéaire du 
sillage d'une manière non supervisée avec pas ou peu de connaissances antérieures sur 
le système. Ainsi, le problème revient à trouver une loi de contrôle qui optimise une 
fonction de coût donnée. Cette optimisation est réalisée par programmation génétique 
linéaire qui permet de faire évoluer un ensemble de lois de contrôle dans un espace de 
recherche de grande dimension. En particulier, notre étude généralise les études 
antérieures sur le contrôle par programmation génétique en incluant dans l'espace de 
recherche de contrôle le forçage multi-fréquences, le signal des capteurs, l’historique 
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des informations temporelles et leurs combinaisons. De cette manière, il est possible 
de construire tout type de loi de contrôle. 

 
 

Chapitre 2 
Dans ce chapitre, nous commençons par présenter la méthode LGPC. Par la 

suite, nous démontrons son efficacité pour stabiliser un système dynamique constitué 
de trois oscillateurs couplés non linéairement. Ces oscillateurs sont couplés via les 
taux de croissance et possèdent trois fréquences incommensurables. Ce système 
possède les mêmes caractéristiques dynamiques que celles rencontrées dans le contrôle 
des écoulements turbulents. Dans l’état non forcé, les premier et deuxième oscillateurs 
sont linéairement instables (amplitudes limitées), alors que le troisième est stable. 
L’objectif du contrôle est de stabiliser le premier oscillateur, en appliquant le forçage 
sur le deuxième et troisième oscillateur. Cet objectif peut être atteint en atténuant en 
boucle fermée le deuxième oscillateur ou en excitant en boucle ouverte le troisième. 
LGPC est utilisé pour explorer automatiquement ces mécanismes. Trois catégories de 
LGPC sont développées : 
•  LGPC-1 : ! = #(%), contrôle multi-fréquences ; 
• LGPC-2 : ! = #('), contrôle en boucle fermée basé sur les signaux des capteurs ; 
• LGPC-3 :	! = #(', %), contrôle généralisé. 

 
La dernière catégorie comprend à la fois les capteurs ' et les fonctions périodiques %, 
permettant que l’algorithme d’apprentissage choisisse automatiquement entre un 
contrôle en boucle ouverte, un contrôle en boucle fermée basé sur les capteurs ou une 
combinaison des deux en fonction de leur performance respective. LGPC-1 détermine 
automatiquement la fréquence optimale du forçage périodique et cela en utilisant 
moins de temps qu'un balayage exhaustif des paramètres. Les lois de contrôle 
obtenues avec LGPC-2 et -3 excitent toutes les deux le troisième oscillateur via un 
forçage à haute amplitude s’accompagnant d’une transition rapide. Quant à lui, le 
second oscillateur est maintenu à un faible niveau de fluctuation. Après la transition 
rapide, le premier et deuxième oscillateur entrent dans un état quasi-stable à des 
niveaux de fluctuation presque nuls. Le système n’a alors plus besoin d’être forcé et 
l’amplitude de la commande de contrôle s’atténue. Ainsi, le système complet est 
stabilisé en injectant de l’énergie uniquement au début de la fenêtre de contrôle. Les 
contrôleurs basés sur le retour des états du système surpassent le forçage périodique 
optimal parce qu’ils induisent un niveau de fluctuation plus faible et consomment une 
énergie d'actionnement inférieure. Les mécanismes d'actionnement qui ont été 
explorés démontrent que l’interaction entre des fréquences différentes peut constituer 
le seul mécanisme permettant de stabiliser un système, ce qui est typique pour le 
contrôle d’un écoulement turbulent.  
 

vii



Chapitre 3 
Suite au succès rencontré sur le système dynamique traité au chapitre 2, 

LGPC est appliqué à des expériences réalisées sur un véhicule simplifié à culot droit 
pour réduire la traînée. La vitesse à l’infini amont est fixée à 15m/s, ce qui 
correspond à un nombre de Reynolds égal à *+, = 3×101	basé sur la hauteur 2 du 
modèle. A ce régime, le sillage présente une asymétrie selon la direction normale au 
sol et une symétrie selon la direction latérale. Des jets pulsés sont positionnés sur des 
fentes le long des quatre arêtes du culot. La direction de l’axe des jets est parallèle 
aux couches limites en amont du décollement. Les jets sont pilotés par des 
électrovannes réparties d’une manière homogène autour du périmètre des arêtes. Le 
système complet assure un jet quasi-bidimensionnel le long de chaque arête. Pour ce 
chapitre, les quatre fentes d'actionnement sont couplées à des déflecteurs de surface 
de type Coanda afin de bénéficier de l’effet Coanda. Un réservoir d’air comprimé de 3 
litres est installé à l’intérieur de la maquette et connecté aux électrovannes. En 
changeant la pression dans le réservoir, l’amplitude du jet peut être réglée. Dans ce 
chapitre, la pression initiale du réservoir est fixée à 345 = 4bar. Les paramètres à 
optimiser sont la fréquence et le rapport cyclique. Selon Barros et al. (2016b), le 
forçage périodique optimal sur cette configuration correspond à une fréquence élevée 
et à un rapport cyclique faible, associé à une réduction de traînée de 19%. Dans notre 
étude, LGPC-1 identifie rapidement un forçage bi-fréquence qui pilote simultanément 
les quatre fentes d'actionnement. Ce forçage, obtenu en testant seulement 200 
individus et cela en moins d’une heure, correspond à une réduction de traînée de 22%, 
surpassant la valeur de référence obtenue avec le forçage périodique optimisé. 
L'énergie consommée par le forçage ne représente que 30% de l'énergie 
aérodynamique récupérée (seule l’énergie dissipée dans les jets instationnaires est 
comptabilisée ici). Les deux fréquences impliquées dans la meilleure loi de contrôle se 
trouvent être encore des fréquences élevées, soit 2078,9: et 4078,9: respectivement, 78,9: 
étant la fréquence du détachement tourbillonnaire de Von-Kàrmàn. Ce forçage à 
haute fréquence conduit à une suppression du contenu énergétique à très basses 
fréquences des signaux de pression au culot et à une atténuation globale de l'énergie 
cinétique moyenne et turbulente dans le sillage, aboutissant à un sillage plus stabilisé. 
De manière concomitante, la géométrie moyenne du sillage est modifiée de sorte que 
les couches de cisaillement sont déviées vers l’intérieur du sillage, ce qui donne une 
bulle de recirculation plus courte, plus étroite et plus profilée. Le couplage de ces 
effets est responsable de la réduction de traînée. Par ailleurs, la loi de contrôle 
obtenue par LGPC-2, qui est basée sur les signaux des capteurs, reproduit le forçage 
à haute fréquence avec une réduction de traînée comparable au forçage périodique 
optimal. Dans la meilleure loi de contrôle, LGPC-2 sélectionne un seul capteur parmi 
les douze disponibles dans le culot. Nous montrons que ce capteur est capable, d’une 
part, de capturer une dynamique suffisamment forte de l’écoulement non forcé pour 
déclencher le cycle d’actionnement, et d’autre part, de donner un bon rapport signal 
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sur bruit afin de créer un forçage périodique à haute fréquence dans l’écoulement 
forcé. Par conséquent, LGPC-2 fournit non seulement l'optimisation des lois de 
contrôle mais également une optimisation de la sélection des capteurs. Le résultat de 
LGPC-3 est similaire à celui de LGPC-1. Les résultats des Chapitres 2 et 3 soulignent 
le potentiel de LGPC dans la découverte et l'exploitation de mécanismes de contrôle 
non linéaires efficaces. 
 
Chapitre 4  

Dans ce chapitre, nous étudions le cas d’un sillage intermittent présentant un 
comportement bimodal à dérapage nul. Ce sillage est caractérisé par une brisure de 
symétrie de la zone de recirculation qui bascule aléatoirement entre deux états 
asymétriques selon la direction latérale. L’écoulement naturel présenté dans le 
Chapitre 3 n’a pas montré ce comportement bimodal. D’après les études de Barros et 
al. (2017), le sillage bimodal peut être provoqué par un cylindre collé au sous-
bassement du corps selon la direction latérale. La vitesse à l’infini amont est fixée à 
30m/s, ce qui correspond à un nombre de Reynolds égal à *+, = 6×101 . Nous 
observons qu’au moment du basculement entre les deux états, la pression au culot 
augmente, ce qui montre l'intérêt de symétriser le sillage en terme de réduction de 
traînée. Des essais de forçage périodique sur une seule arête montrent que le sillage 
est toujours bloqué dans un des deux états asymétriques et présente une région de 
pression plus basse proche de l’arête forcée. Finalement, nous en déduisons une 
stratégie de contrôle en boucle fermée permettant de symétriser le sillage. Cette 
stratégie repose sur du contrôle en opposition. Pour cela, nous utilisons le gradient 
latéral de pression au culot comme retour d’information en temps réel. Lorsqu'une 
région de pression plus basse est détectée le long d'une arête, le forçage est appliqué 
sur l’arête opposée afin de générer une inversion de la recirculation. La performance 
de la symétrisation du sillage dépend notamment de la fréquence de forçage. Le 
sillage le plus symétrique est obtenu pour 78, = 0,8. Barros et al. (2016b) ont montré 
que cette valeur de fréquence amplifie le plus les instabilités de la couche cisaillée et 
induit l’augmentation la plus élevée de fluide entraînée dans la région de recirculation. 
Ces caractéristiques de l'actionnement permettent à 78, = 0,8  de modifier 
efficacement la recirculation de l’écoulement et de supprimer les ruptures de symétrie. 
Cependant, l’augmentation de pression au culot est limitée à 3%. En effet, bien que 
les états symétriques du sillage augmentent la pression au culot, les effets 
d'actionnement associés à 78, = 0,8  (augmentation du mélange de la couche de 
cisaillement et amplification du détachement tourbillonnaire de Von-Kàrmàn), sont 
préjudiciables à l’augmentation de la pression au culot. Par conséquent, cette 
stratégie de contrôle doit encore être améliorée pour atténuer l'effet néfaste de 
l'actionnement. Un moyen possible est de déterminer l'énergie minimale nécessaire 
pour déclencher le basculement d’un état vers l’autre. 
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Chapitre 5  
Ce chapitre traite du sillage asymétrique avec un angle de dérapage modéré 

égal à 5 degrés. Cette valeur de l’angle est choisie car elle est représentative des 
valeurs de dérapage rencontrées fréquemment par un véhicule. La vitesse à l’infini 
amont est fixée à 25m/s, ce qui correspond à un nombre de Reynolds égal à *+, =
5×101 . Pour l’écoulement non forcé, le sillage moyenné en temps présente une 
recirculation plus large proche du côté sous le vent. En appliquant un forçage 
périodique sur une seule arête, nous observons que le forçage sur l’arête sous le vent 
augmente la traînée alors que celui sur l’arête au vent entraîne une réduction de 
traînée. Dans ce dernier cas, la réduction de traînée la plus élevée (environ 6%) est 
obtenue pour deux fréquences ayant une différence d'un ordre de grandeur : (i) 
l'actionnement à basse fréquence (78, = 0,48)  augmente particulièrement la 
turbulence de la couche de cisaillement, et ainsi modifie la recirculation à grande 
échelle en réduisant la traînée par symétrisation du sillage ; (ii) l'actionnement à 
haute fréquence (78, = 6) agit comme un volet fluidique et réduit la traînée par un 
effet de vectorisation de la couche cisaillée. Ces résultats de forçage périodique au 
vent nous inspirent la construction d’un contrôle bi-fréquence afin de réduire 
davantage la traînée en combinant la symétrisation du sillage avec l'effet de volet 
fluidique. Toutefois, en combinant les deux fréquences 78, = 0,48 et 78, = 6, c'est-à-
dire en considérant un forçage du type 78,>? = 0,48	⨂6 , il y a une inversion de 
l’asymétrie du sillage par rapport à l’écoulement non forcé, et une diminution de la 
réduction de traînée par rapport au cas de la fréquence unique 78, = 0,48 . Cette 
découverte indique que 78,>? = 0,48	⨂6 n’est pas adapté pour symétriser le sillage. En 
faisant varier dans ce forçage bi-fréquence la valeur de la basse fréquence, nous avons 
trouvé que la configuration optimale est 78,>? = 0,24	⨂6 . Ce forçage donne une 
réduction de traînée de 7% qui surpasse le forçage optimal à la fréquence unique. Le 
sillage correspondant est simultanément symétrisé et vectorisé. Nous pouvons ainsi 
considérer ce contrôle bi-fréquence comme un forçage « ajusté » à basse fréquence en 
« ajoutant » un volet fluidique. Ces mécanismes d'actionnement qui combinent les 
deux effets de la symétrisation et de la vectorisation ne peuvent pas être explorés par 
un forçage à fréquence unique. En outre, en appliquant LGPC-3 sur l’arête au vent 
dans l'objectif de minimiser la traînée, nous retrouvons de manière automatique la 
même combinaison de fréquences, soit 78, = 0,24 et 78, = 6. Ce résultat démontre à 
nouveau l'efficacité de LGPC pour déterminer une loi de contrôle optimale avec peu 
de connaissances préalables du système. Finalement, l’effet engendré en ajoutant des 
surfaces Coanda au voisinage des fentes d’actuation est étudié. Le couplage de la 
surface Coanda et de l’actuation bi-fréquence au vent amplifie encore la vectorisation 
et la turbulence de la couche de cisaillement, aboutissant à une asymétrie de sillage 
inversée pour toute la gamme de basse fréquence étudiée. 

 
Chapitre 6  
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Ce chapitre résume les résultats présentés dans ce manuscrit de thèse. Nous 
montrons que les stratégies de contrôle développées dans cette étude sont efficaces 
pour contrôler différents types de sillages derrière un modèle simplifié de véhicule. 
Les analyses physiques des résultats clarifient des facteurs importants pour modifier 
la traînée du modèle, comme la vectorisation de la couche de cisaillement et la 
symétrisation du sillage. Des perspectives sont aussi discutées. Nous pouvons étendre 
la recherche actuelle à des conditions plus complexes de vitesse amont variable ou de 
rafale. Pour cela, nous pouvons chercher avec LGPC un contrôleur robuste en 
incluant la vitesse amont comme un capteur supplémentaire ou en évaluant la 
fonction de coût dans différentes conditions de fonctionnement. Par ailleurs, LGPC 
peut être appliqué sur le sillage bimodal afin d’explorer de nouveaux mécanismes 
d'actionnement autres que le contrôle par opposition. Nous pouvons également 
imaginer aborder des problèmes avec un angle important de dérapage pour chercher 
de manière couplée à réduire la consommation et à améliorer la sécurité de conduite. 
Pour cela, nous pouvons développer une version multi-objectif de LGPC afin de 
déterminer l'actionnement optimisé correspondant au pilotage indépendant des quatre 
fentes d'actionnement. 
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Chapter 1

Introduction

Focus of the present thesis is drag reduction of road vehicles which is of crucial importance
for the sustainable development of natural resources. In these introductory paragraphs, we
briefly review the origin of drag for road vehicles, identify the importance of wake flow in the
drag and address the main wake dynamics with a particular attention on the simplified square-
back car models. The development of flow control strategies smooths the path for achieving
drag reduction. We provide an overview of the current wake control strategies, highlighted by
successful experimental practices. Finally, we outline the topics covered in the manuscript.

Contents
1.1 Industrial context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Bluff body wakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Origin of drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Wake dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Simplified square-back car model . . . . . . . . . . . . . . . . . . . . 6

1.3 Flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Objectives and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Industrial context

Over the past 50 years, sales of automobiles undergo a tremendous growth ascribed to the
continuous innovations in horsepower, safety, and rider amenities. The number of vehicles in
operation worldwide, including cars, trucks and buses, surpassed the 1 billion-unit mark in
2010 for the first time ever (Sousanis, 2011). This number is expected to double worldwide in
the next two decades. The billion vehicles pose a severe challenge for the planet to sustain,
as they are emitting extraordinary quantities of greenhouse gases as carbon-dioxide CO2 into
the atmosphere, are draining the world’s conventional petroleum supplies, are inciting political
skirmishes over oil, and are overwhelming city roads (Sperling & Gordon, 2008). In particular,
European union legislation has set standards for new passenger cars regarding their CO2 emis-
sions. The current limit is set as 130 grams of CO2 per kilometer, and the new limit imposes a
reduction of 30% (95 grams of CO2/km) by the year 2021 (EU, 2017). Car manufacturers have
to pay an excess emissions premium for the exceeded emissions.

The limited fuel resources and the CO2 regulation have forced the car manufacturers to
adapt novel technologies faster than anticipated. The improvements of the technology in en-
gines, transmissions, materials and aerodynamics are mainly pursued. The focus of the present
study is to improve the aerodynamic performance of road vehicles aiming at drag reduction.

1
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Figure 1.1: History of the drag for road vehicles (Hucho, 1998; Grandemange, 2013). CD is the
normalized drag coefficient.

In fact, when road vehicles move in a fluid, they have to resist a force acting opposite to their
motion. This force is known as the drag. When the fluid is a gas like air, it is specifically called
aerodynamic drag, which is the concern of our study. The power consumed to resist the drag
constitutes an important portion of the total power expense. At a speed of 50 km/h the aero-
dynamic drag accounts for 50% of the total drag reaching 80% at 130 km/h (Brunton & Noack,
2015). This explains why the car manufacturers are interested in improving the aerodynamic
performance of road vehicles, as highlighted in Fig. 1.1 for the history of the drag evolution
since 1900 (Hucho, 1998). These improvements of drag reduction were mainly achieved by the
optimization of the vehicle shape. Nowadays, the shapes of vehicles are very alike (Rossitto,
2016) because all the manufacturers are pursuing the shape optimization for drag reduction
and tend to follow one unique optimal shape under the similar constraints from functional,
economic and aesthetic aspects. This leaves little room to reduce further the drag from the
geometry of vehicles. Therefore, alternative technologies without the geometry modification
should be flourished to provide more design liberties.

Flow control can help to fulfill these requirements and is the topic of the present study.
Flow control is a rapidly progressing research field existing in a multitude of applications in-
cluding drag reduction of road vehicles, ships and submarines, lift increase of airplanes and
efficiency improvement of renewable energies (Brunton & Noack, 2015). Here, we are particu-
larly interested in its application on the drag reduction of road vehicles. Our aim is to develop
effective control strategies to minimize the drag thus to reduce the fuel consumption and CO2

emissions. In the following, we give an introduction about the basic flow features surrounding
road vehicles. Numerous flow control strategies for drag reduction will be reviewed and the
challenges confronted to the flow control will be highlighted.

1.2 Bluff body wakes

1.2.1 Origin of drag

In this section we present the basic mechanisms by which drag is generated on road vehicles.
Figure 1.2(a) shows a sketch of the flow around a car model. In a relative reference, we consider
that the car is at rest and the flow moves from the left to right. The oncoming flow impinges on
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Figure 1.2: Sketch illustrating the drag origin for road vehicles: (a) aerodynamic drag, skin friction;
(b) induced drag if existed (Hucho, 1998). The color in the wake flow of (a) indicates the intensity of
the streamwise velocity (blue: low velocity; red: high velocity).

the front part of the car model and comes to a complete stop, creating a high pressure region.
Whereas at the rear part, due to the abrupt change of the car geometry, the flow is forced
to separate from the model trailing edges and forms a recirculation region behind the model
associated with a low pressure inside. This separated flow is denominated wake. The pressure
difference between the front and rear part of the model creates an important resistance to the
motion of the car which is called the pressure drag.

On the other hand, along the surfaces of the car, the flow creates a shear force parallel to
the surface which corresponds to the so-called friction drag. The nature of friction drag is due
to viscosity of the fluid. For the geometries like cars, the main contribution of the drag comes
from the pressure drag, and the bodies having this feature is referred to as bluff bodies. In
contrast, aircrafts and ships suffer primarily from friction drag, and the geometries alike are
called streamlined bodies, which are not the concern of the present work.

Additionally, for certain models having a moderate slant angle (often between 10◦ to 30◦) at
the rear part, see Fig. 1.2(b) for a fastback car model (Hucho, 1998), a pair of intense counter-
rotating longitudinal vortices develops in the wake due to the pressure difference between the
car’s roof and side surface. The portion of drag related to these vortices is called induced drag,
which is commonly studied in aeronautics. The control of induced drag is often the interest for
sedan or fastback cars. For square-back blunt-edged cars, this is of less concern as the wake
is governed by the massive recirculation flow behind the base where no intense streamwise
vortices are observed. However, high asymmetry in such wakes may change the organization
of the recirculation flow which is likely to result in a pair of counter-rotating vortices in the
far wake (Grandemange et al., 2015). Nevertheless, the influence of such vortices on the drag
remains unclear.
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The illustration above highlights the importance of wake to drag. Hence, wake manipulation
has been the subjects of intense research (Choi et al., 2008). The aim is often to increase the
pressure over the vehicle base surface, in this way the pressure difference decreases and the drag
reduces.

1.2.2 Wake dynamics

After showing the importance of wake, now we describe the fundamental characteristics of bluff
body wakes to understand the involved dynamics.

The investigated wake flow is highly turbulent at a Reynolds number of the order 105 since
we are interested in the conventional speed of cars for industrial applications. Figure 1.3 shows a
sketch of the wake flow on the vertical symmetric plane of a square-back car in a two-dimensional
point of view for clarity. However, we note that the real flow is highly three-dimensional with
more complexities.

Figure 1.3: A sketch illustrating the fundamental wake features behind a square-back car. The
separation of the boundary layer imposed by the sharp edge conditions the roll-up of the free shear
layers whose interaction yields the periodic vortex shedding and the reversed flow in the wake region.

In general, the wake is characterized by a broadband spectrum of vortex length and time
scales interacting strongly among them. The boundary layer develops along the car surface
and is forced to separate at the blunt trailing edges due to the abrupt change of geometry.
For cars having a curved trailing edge or a slant window, the flow separates due to an adverse
pressure gradient and the separation point is not fixed. The boundary layer detachment sheds
concentrated vorticity into the wake and conditions the roll-up of the free shear layers origi-
nating from the trailing edges. From the stability point of view, shear layer or, equivalently,
mixing layer, is convectively unstable (Huerre & Monkewitz, 1990). Its streamwise evolution is
a noise amplifier of upstream perturbations. This feature is also known as the Kelvin-Helmholtz
instability (Drazin & Reid, 2004). As illustrated in Fig. 1.4 for a canonical mixing layer, the
small-scale vortices near the origin of the mixing layer roll up gradually into larger and larger
coherent structures, manifesting the high-dimensional multi-scale vortex dynamics involved in
this type of flow.

The shear layers originating from opposite edges carry vorticity of opposite sign. When the
vortex in one shear layer grows large and strong enough, it is capable to interact with its facing
shear layer. Gerrard (1966) introduced an interesting scenario to interpret this interaction in
the wake of a two-dimensional cylinder, as illustrated in Fig. 1.5(a). Fluid on the lower side is
drawn across the wake by the action of the growing vortex I on the upper side. Part (1) and
(2) are entrained by the upper shear layer while part (3) induces a reversed flow and creates
a vortex II close to the base carrying an opposite sign to the entraining vortex I, but the
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Figure 1.4: Illustration of the streamwise evolution of a canonical mixing layer (courtesy from V.
Parezanović).

I
II

(1)(2)

(3)

(a) (b) (c)

Figure 1.5: (a) Illustration of the interaction of opposing shear layers in a two-dimensional cylinder
wake (Gerrard, 1966). (b) Vortex shedding in the flow past a cylinder at Re = 104 (figure from
Van Dyke 1982). (c) Sketch of the mean cylinder wake (adapted from Grandemange 2013). The red
dashed line indicates the recirculation bubble boundary. Lr and Hr are the bubble length and width
respectively. For square-back bluff bodies, Hr is the height H of the model.

intensity of vortex II is considerably less than that of vortex I. The approach of oppositely-
signed vorticity in sufficient concentration cuts off the connection of the upper shear layer to
vortex I. Thus vortex I ceases to increase in strength and is shed from the body, and now the
lower shear layer takes the role to draw the fluid from the upper side across the wake. This
scenario occurs periodically and leads to the famous vortex shedding dynamic, as exemplified
in Fig. 1.5(b). In time average, see Fig. 1.5(c), this periodic process leads to a recirculation
bubble zone with two trapped recirculating structures inside. As introduced in § 1.2.1, the
low pressure inside this zone accounts for an important part of the total drag. Analyses on
the relation between the base pressure and the bubble size have been performed by Roshko
(1993a,b). The bubble size is determined by the streamlines enclosing the recirculation region.
They modeled the base pressure by working with the balance of pressure and stress forces on the
mean wake (Sychev, 1982) and concluded that the base pressure decreases with the increasing
wake bluffness (Roshko, 1955). A higher bluffness corresponds to a shorter and wider bubble
and a low aspect ratio Lr/Hr, where Lr and Hr are the bubble length and width respectively.
Indeed, according to Gerrard (1966), the vortex II in Fig. 1.5(a) tends to be weaker the greater
the entrained flow in (1) and (2) is. As a consequence, the formation of vortex II is closer to the
base resulting in a shorter bubble length Lr and a decrease of pressure inside the recirculating
region and also near the base.

The scenario above is mainly associated with two-dimensional flows in which cases the vortex
shedding dynamic is prominent. For the three-dimensional wake of a car, the interaction of
shear layers comes from all four edges resulting in a more complex wake dynamic. However,
the vortex shedding mode is still discernible in the symmetry planes of the model but has a
much lower energy than that of the two-dimensional flows. In stability theory, vortex shedding is
characterized as an absolute instability exhibiting an oscillatory behavior (Huerre & Monkewitz,
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1990). In summary, the turbulent wake dynamics are a consequence of the strongly nonlinear
interactions of high-dimensional multi-scale vortices. The intrinsically unstable nature makes
the wake flow highly sensitive to external excitations which can be tailored to meet specific
control goals (to be commented in § 1.3).

1.2.3 Simplified square-back car model

In vehicle aerodynamics, numerous studies have been conducted with the simplified model of
road vehicles as they can reproduce the important flow structures around realistic road vehicles
and favor the comparison between different experimental and numerical studies. One of the
most investigated models is the Ahmed body, proposed originally by S. R. Ahmed in 1984
(Ahmed et al., 1984). Figure 1.6 shows two variants of the Ahmed body. They both have
a rounded front part, but one has a slanted rear surface permitting to study the effect of a
variable slant angle, while the other has a square-back base surface. Through the work of
Ahmed et al. (1984), the comprehension of the flow around different shapes of road vehicles
has been significantly improved. Since then, Ahmed body has been the model of intensive
research in both numerical simulations (Krajnović & Davidson, 2005a,b; Minguez et al., 2008;
Guilmineau, 2008; Aljure et al., 2014; Östh et al., 2014) and experiments (Bayraktar et al.,
2001; Lienhart & Becker, 2003; Grandemange et al., 2013b; Zhang et al., 2015; Barros et al.,
2016a,b). The present study focuses particularly on the square-back variant of the Ahmed
body.

Figure 1.6: Ahmed body for a slanted (left) and square-back (right) rear surfaces (adapted from Choi
et al. 2014).

The dynamics in the near wake region described in § 1.2.2 have been observed in multi-
ple studies of the simplified square-back car models. A typical non-dimensional parameter for
characterizing different wake dynamics is the Strouhal number St = fl/U∞, also called the
dimensionless frequency, where f is the characteristic frequency of the motion, l the character-
istic length of the model and U∞ the oncoming velocity. In the following, we list some typical
frequencies reported in the literature.
• Shear layer dynamics: Duell & George (1999) measured at the start of the top shear

layer a dimensionless frequency of StH = 1.157 based on the model height H and as-
sociated it with the vortical structures being rolled-up by the shear layer close to the
blunt trailing edge. As these vortices are convected along the shear layer, vortex pairing
occurs which halves the characteristic frequency. Similar observations have been made
by Barros (2015): the most amplified frequency at several streamwise locations inside the
shear layer decreases with the increasing streamwise distance. This scenario agrees well
with that observed in a canonical mixing layer flow (Ho & Huerre, 1984).
• Vortex shedding: this mode has been observed in multiple studies (Grandemange et al.,

2013b; Lahaye et al., 2014; Volpe et al., 2015; Barros et al., 2016a,b) and they all identified
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a frequency around St ∼ 0.2 which is the value typically found in the two-dimensional
flows (Roshko, 1955; Gerrard, 1966; Bearman, 1965). In particular, the peak of the as-
sociated energy is more clear when the measurement is taken in the plane of symmetry.
Moreover, the vortex shedding frequency is one order of magnitude lower than the dy-
namics in shear layers.
• Bubble pumping: some studies also observed a very low frequency around St ∼ 0.08 from

the base pressure signals or velocity fluctuations inside the recirculation bubble (Duell &
George, 1999; Khalighi et al., 2001; Lahaye et al., 2014; Volpe et al., 2015). The origin
of this frequency can be traced back to the study of Berger et al. (1990) on the wake
past a disk. The authors revealed an axial oscillation of the rear stagnation point of the
recirculation bubble from the flow visualization experiments and termed this phenomenon
as the bubble pumping.

Although similar dynamics are found in the aforementioned literature, the recirculating flow
orientation in the mean wake differs among them and is demonstrated to be very sensitive to
perturbations of the experimental setup, slight variation of the cross-sectional geometry and
ground clearance (the distance between the model undersurface and ground). Grandemange
et al. (2013a) systemically studied the impacts of the ground clearance and various aspect
ratios H/W (H and W are the model height and width respectively) on the wakes past the
blunt-edged models. The main results are highlighted in Fig. 1.7 where the wake symmetry
and asymmetry are represented by the probability distributions of the pressure gradients along
the spanwise (y) and wall-normal directions (z). The organization of the recirculating flow
inside the wake is sketched in the inserted figures. For the case of H/W = 0.74 (Ahmed
body geometry), increasing the ground clearance breaks the initial symmetric distribution of
the lateral wake. Instead, a bi-modal wake appears which is characterized by two preferable
asymmetric states switching between them in a stochastic way (Grandemange et al., 2013b)
and is associated with the bifurcations in the laminar regime (Grandemange et al., 2012; Rigas
et al., 2014). Besides, a residual yaw angle is very likely to trap the wake in one asymmetric
state. Concomitantly, the vertical wake is also modified pointing to a close link between the
lateral and vertical wake organization. Conversely, at H/W = 1.34, the lateral wake remains
symmetric with the increasing ground clearance, whereas the bi-modal behavior appears in the
wall-normal direction beyond a certain value.

Recently, Barros et al. (2017) investigated the effects of the underflow perturbations on the
recirculating flow orientation for a square-back car model with H/W = 0.85 at a given ground
clearance. The perturbations are imposed with passive devices located between the model and
the ground. By changing the size of the passive devices, the wall-normal wake transitions from
the initially asymmetric topology to a symmetric distribution. Concomitantly, the initially
symmetric lateral wake changes to the intermittent bi-modal wake, indicating a competition
between the spanwise and wall-normal wake balance. The flow states identified in Grandemange
et al. (2013b) and Barros et al. (2017) prove the high sensitivity of the square-back body wakes
and unify the distinct wake topologies observed in the aforementioned literature.

Understanding the wake dynamics and the mean wake topologies is important because on
the one hand it inspires the conception of flow control strategies for drag reduction, on the other
hand, it constitutes a base for the physical understanding of the control effects throughout the
manuscript.

1.3 Flow control

In this section, we give a review on the flow control strategies applied on the bluff body wakes
for drag reduction purpose. The focus is placed on the direct wake control of the blunt-edged
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Figure 1.7: Impacts of the ground clearance and cross-sectional geometry on the organization of
the mean recirculating flow in the wake (adapted from Grandemange et al. 2013a). Figures show the
probability density function of the base pressure gradients ∂Cp/∂y and ∂Cp/∂z in the spanwise/lateral
direction (y) and wall-normal direction (z) respectively as a function of the ground clearance G/H,
where Cp is the normalized base pressure, H is the model height, W the width and G the ground
clearance. The inserted sketches illustrate the recirculation structures in the wake.

bluff bodies having a fixed separation point.

Flow control can be classified into three groups: passive, active open-loop and active closed-
loop controls. Passive control uses actuators without power input to improve the desired
performance by imposing a small change of the original configuration. The use of base cavities
and boat tails is considered to be one of the most effective and practical passive devices for
drag reduction (Choi et al., 2014). Figure 1.8 shows a sketch of the base cavity and boat tail.
A base cavity is formed by four downstream extension plates placed around the base perimeter
and parallel to the model side surfaces. Successful applications of the base cavity can be found
in Duell & George (1993, 1999), Khalighi et al. (2001, 2012) and Evrard et al. (2016). They
reported an increase of the base pressure with a more uniform distribution and a reduction
of the wake unsteadiness and turbulence intensities. The recirculation bubble is narrower in
Khalighi et al. (2001, 2012) and longer in Evrard et al. (2016). Ventilated cavities are studied
by Howell et al. (2012) and Garćıa de la Cruz et al. (2017b) with a similar observation of the
base pressure increase. A boat tail resembles the cavity but the extension plates are tilted
inward rendering a slant angle with the model side surfaces. The slanted plates deviate the
flow at the trailing edges and lead to a narrower bubble (Khalighi et al., 2012). The base
pressure is concomitantly increased. It is shown that the length and slant angle of the boat
tail strongly affect the drag-reduction performance (Han et al., 1992; Yi, 2007). Fourrié et al.
(2011) applied a deflector on the upper edge of a slanted Ahmed body and achieved 9% drag
reduction with a deflection angle of about 4◦. Although passive devices are effective for drag
reduction, their industrial applications are still limited as the extended surfaces are impractical
and cannot be ‘turned off’ when not needed.
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Base cavity Boat tail

Figure 1.8: Passive control devices: base cavity and boat tail (figure from Barros 2015).

Facing the constraints of passive control devices, studies on active flow control (AFC) using
actuators with power input have rapidly emerged in recent decades. AFC can imitate the effects
of passive control. In addition, AFC may be turned on or off depending on the requirement.
Cattafesta & Shelpak (2011) give an extensive overview of possible actuation mechanisms,
whereas Choi et al. (2008) present the most common AFC approaches on bluff bodies. AFC
can be performed in a predetermined open-loop manner regardless of the flow state. Vehicle
models with steady jet blowing at the trailing edges have been investigated by Rouméas et al.
(2009); Wassen et al. (2010) and Littlewood & Passmore (2012). By varying the angle of the
jets with respect to the free-stream flow, they concluded that a jet angled into the wake at
45◦ creates a turning of the flow and leads to a better base pressure recovery than the other
investigated angles. The effect is similar to that created by a boat tail, hence such blowing
can be considered as a fluidic boat tail. Further drag reduction was achieved by coupling the
jet with a Coanda surface to create a Coanda effect (Geropp & Odenthal, 2000; Englar, 2001,
2004; Pfeiffer & King, 2012; Khalighi et al., 2012) which deviates the free-stream flow towards
the center of the wake region, increasing the pressure on the model base. A main issue of the
steady blowing is its high energy investment. Only a few cases in the literature above deliver
a positive balance between the gain in drag reduction and the energy spent in driving the jets.

To improve the actuation efficiency, the use of unsteady periodic synthetic or pulsed jets
becomes a promising alternative strategy. Actually, their application in flow control gains a
satisfactory achievement in recent years (Glezer et al., 2005; Krentel et al., 2010; Park et al.,
2013; Joseph et al., 2013; Oxlade et al., 2015; Seifert et al., 2015; Barros et al., 2016b). Beyond
the benefits in actuation efficiency, the interaction of the unsteady jets at distinct frequencies
with the unstable wake dynamics constitutes a key enabler for flow control. As discussed in
§ 1.2, the convectively unstable shear layers have characteristics of nonlinear amplifiers, thus
being sensitive to external forcing at distinct frequencies. This sensitivity can be highlighted by
the excited mixing layer submitted to different forcing frequencies (Parezanović et al., 2015),
as demonstrated in Fig. 1.9. Excitation at the low frequency f = 10 Hz provokes an earlier
creation of large-scale structures and increases the layer growth rate, resulting in an enhanced
mixing. On the contrary, the high frequency f = 400 Hz prevents the formation of the large-
scale structures and reduces the growth rate of the mixing layer, leading to a stabilization of the
flow. In fact, the forcing at a given frequency is able to govern the growth of the instability wave,
therefore the shear layer submitted to different excitations behaves quite distinctly (Fiedler,
1998). Due to the changes in shear layer dynamics, their interactions and the resulting vortex
shedding are accordingly modified, so do the mean wake and the related drag. The low-
frequency wake control has been demonstrated to either enhance the flow instability manifested
by the amplified oscillation of vortex shedding (Glezer et al., 2005; Barros et al., 2016a; Gao
et al., 2016) or attenuate the instability by destroying the formation of shedding (Pastoor et al.,
2008). Conversely, the high frequency forcing is able to stabilize the turbulent wake (Glezer
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Figure 1.9: Smoke visualization of the effect of pulsed jets on a transient mixing layer (figure repro-
duced from Parezanović et al. 2015). (a) Unforced flow. (b) Excitation at f = 10 Hz. (c) Excitation
at f = 400 Hz.

et al., 2005; Qubain, 2009; Morrison & Qubain, 2009; Vukasinovic et al., 2010; Oxlade et al.,
2015; Barros et al., 2016b). The control enabler is the frequency-crosstalk effect relying on
the nonlinear interactions of low-frequency, high-frequency and the dominant modes of the
flow. Moreover, similar to the Coanda steady blowing, the combination of passive devices and
unsteady actuation has been also developed by numerous studies, such as Chaligné et al. (2013);
Nayeri et al. (2009); Schmidt et al. (2015); Barros et al. (2016b) and Seifert et al. (2016). The
main idea is to further increase the performance of the unsteady forcing by coupling it to the
Coanda and boat-tailing effects.

Closed-loop control, for which the actuation is determined by the sensors recording the
flow state, offers further potential to improve the actuation efficiency by adapting the control
to changing flow conditions. An extensive overview of the recent developments of closed-loop
turbulence control is given in Brunton & Noack (2015). Depending on the operating timescale
of controllers and the required design effort, most literature on closed-loop control falls in one
of the four categories presented in Fig. 1.10. There exists a well established framework for
the stabilization of laminar flows with in-time model-based control. ‘In-time’ means that the
controller operates on the timescale of the physical processes (Brunton & Noack, 2015). The
control may be based on a local linearization of the Navier-Stokes equation. Various configura-
tions have been studied, such as boundary layer flow (Liepmann & Nosenchuck, 1982; Bagheri
et al., 2009), circular cylinder wake (Roussopoulos, 1993) and open cavity flow (Rowley et al.,
2006; Samimy et al., 2007). However, turbulent flow is characterized by broadband frequency
dynamics with complex frequency crosstalk: actuation at one frequency may change the whole
spectrum of frequencies and thus ultimately affects the mean flow. In this case, a physics-based
model-based control logic should be able to distill the complex physical mechanism and its rela-
tion to control. This implies that, for many cases, frequency crosstalk needs to be incorporated
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in the model which indeed constitutes a big challenge. Simple examples of such control-oriented
models can be found in Luchtenburg et al. (2009) and Sipp (2012) which describe an actuation
at lower or higher frequency for stabilizing the dominant vortex shedding oscillation. In gen-
eral, incorporating multiple frequency crosstalks in a model-based control strategy constitutes
a significant challenge, both, from a robust modeling and from a control design perspective, due
to the difficulties in the mathematical modelling of the nonlinearities and limited knowledge of
flow. Nevertheless, model-based feedback control has enjoyed many success stories for weakly
and moderately nonlinear dynamics with only a few dominant frequencies. A large portion of
the controllers in this case are derived from a reduced-order model, such as Galerkin (Gerhard
et al., 2003) or vortex models (Protas, 2004), or simple experimentally obtained input-output
black-box models (Becker et al., 2005; Henning & King, 2005, 2007; Dahan et al., 2012). For
the latter category, adaptive concepts are quite promising to maintain performance goals un-
der uncertainties (Garwon & King, 2005). ‘Adaptive’ means that the controller operates on a
timescale much larger than the physical processes. The response to adaptive control may be ad-
equately modeled by linear or weakly nonlinear dynamics (Pfeiffer & King, 2012) by averaging
over many strongly nonlinear frequency crosstalk mechanisms.

Alternatively, closed-loop control has been designed in a model-free manner, where no un-
derlying model is required. Adaptive approaches can be used to find automatically the optimal
actuation parameters by a slow feedback of a working open-loop control. Extremum and slope-
seeking control are the most widely used adaptive controllers. The former often optimizes the
actuation frequency by identifying the extremum with respect to a given cost function, while the
latter assures a minimum actuation amplitude to achieve the desired performance. Drag reduc-
tion of a bluff body targeting the lowest cost of global energy consumption has been achieved
by Beaudoin et al. (2006) and Pastoor et al. (2008). Although this approach is not in-time, the
slow feedback has benefits to maintain the performance despite slowly changing environmental
conditions. In-time model-free control may be performed by first specifying a given parameter-
ized control structure, such as PID (Proportional-Integral-Derivative) controller (Zhang et al.,
2004), and then employing tuning methodologies to improve performance. Other methods are
the physics-based opposition and phase control. This kind of controller often requires a pre-
vious understanding of the actuation effects. Examples include the skin-friction reduction in
a wall-bounded turbulent flow (Choi et al., 1994) and the stabilization of the wake past a D-
shaped body (Pastoor et al., 2008). In more complex configurations with multiple actuators
and sensors, no generic simple recipes for the control law can be offered. The challenge of the
problem lies on the appropriate selection of actuators, sensors and optimization of control laws
under a given specific objective.
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Yet, when looking at the flight maneuvers of birds, it is clear that nature has found im-
pressive flow control solutions without apparent knowledge of the flow governing equations or
reduced-order modeling. An eagle, for instance, can land gently under gusty wind conditions
and in rain by moving its wings and feathers to manipulate fluid forces. This suggests us an
alternative way to perform flow control through optimization process emulating natures evolu-
tion. Machine learning, and in particular evolutionary algorithms, can help us to achieve the
control goal by mimicking the learning process of nature. The development of evolutionary
computation starts from the fundamental work of Holland (1962); Rechenberg (1965); Schwefel
(1968) over 50 years ago. With the current advancement of big data and progress of powerful
computer techniques, machine learning gets a fertile ground to grow and has been applied in
myriad applications of control, modeling and prediction (Dracopoulos & Kent, 1997; Fleming
& Purshouse, 2002; Duriez et al., 2016). Genetic algorithms (Holland, 1962) and genetic pro-
gramming (Koza, 1992) are the two most applied evolutionary algorithms. They can learn and
refine an effective control only based on the control performance (cost function) as measured
on the control system. Genetic algorithms are employed for the parameter identification of
controllers with a given structure like PID controller (Benard et al., 2015). Genetic program-
ming achieves both structure and parameter identification, thus it enables to identify arbitrary
nonlinear control laws. In this case, neither a model, nor the control law structure needs to
be known. The methodology of solving optimal control problems with methods of genetic pro-
gramming is referred to as Genetic Programming Control (GPC). This recent topic enables
control on challenging nonlinear high-dimensional systems before we are fully able to under-
stand the mechanisms. Successful applications of GPC include the separation control (Gautier
et al., 2015; Debien et al., 2016) and mixing layer control (Parezanović et al., 2016). In par-
ticular, Duriez et al. (2016) have highlighted the merit of GPC by showing the limitations of
a linear system identification for the strongly nonlinear mixing layer. They identified a linear
input-output model from actuations to sensors data and concluded that the linear model fails
to capture the stochastic fluctuations and coherent nonlinear phenomena of the flow.

1.4 Objectives and outline of the thesis

In this study, we aim to develop effective active flow control strategies for drag reduction of
a simplified square-back car model in experiments. The actuation is performed by pulsed jets
at the trailing edges and the flow is monitored with 16 pressure sensors distributed at the
rear side. We address the challenges of nonlinear turbulence control—which is often beyond
the capabilities of model-oriented approach—by developing a simple yet powerful model-free
control strategy: the data-driven linear genetic programming control (LGPC). LGPC advances
the previous GPC by employing linear genetic programming (LGP) as a simpler algorithm for
the control of multiple-input multiple-output systems. The control problem is formulated as
an optimization problem: find a control logic which optimizes a given cost function as the
drag reduction. This optimization is performed by LGP which enables to explore and evolve
control laws in a high-dimensional control search space by learning from the training data
of experiments. No or little prior knowledge about the controller is required for LGPC. The
innovation in this work is a very general ansatz for the control search space which includes multi-
frequency forcing, sensor-based feedback including also time-history information feedback and
combinations thereof, thus any perceivable control logic can be constructed.

We apply LGPC on the drag control experiments of the square-back car model. The investi-
gated wake presents a lateral symmetry and a wall-normal asymmetry due to the ground effect.
This wake was studied previously by Barros et al. (2016b) using periodic forcing. The aim
of this study is to explore further drag reduction by searching control laws in a control space
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more general than periodic forcing. On the other hand, we also investigate the turbulent wakes
having a lateral asymmetry: an intermittent bi-modal wake at zero yaw and an asymmetric
wake at a moderate yaw angle of 5 degrees. Periodic forcing is first performed on these flows
to be compared with other control strategies. From the flow responses to the periodic forcing
tests, we infer a physics-based controller with a given structure for each asymmetric wake. A
parametric study with respect to the actuation frequency is performed to identify the optimal
parameter in the inferred control law. In particular, for the yawed configuration, LGPC is also
applied targeting drag reduction and the results are compared with those obtained with the
physics-based approach.

The outline of the thesis is as follows. The manuscript is separated into two parts with re-
spect to the two control strategies mentioned above. Part I introduces the design of LGPC and
demonstrates its application on the stabilization of a forced nonlinearly coupled three-oscillator
model (Chapter 2) and on the drag control experiments (Chapter 3). The three-oscillator model
illustrates that frequency crosstalk between actuation and dynamics can be the only enabling
mechanism for stabilization — as typical in turbulence control. Moreover, the system com-
prises open- and closed-loop stabilization mechanisms, foreshadowing another feature of the
studied experiment. Chapter 3 pursues the drag reduction of the square-back car model using
LGPC in experiments. The additional challenges compared to the dynamical system comprise
the high-dimensional dynamics, time delays, high-frequency noise, low-frequency drifts and
implementation of the algorithm in the experimental hardware. These factors have been auto-
matically exploited by LGPC. Additionally, we justify the optimization of LGPC by studying
in-depth the actuation mechanisms associated with the optimal control law.

Part II applies the physics-based control building on the prior knowledge derived from the
periodic forcing tests. In Chapter 4, an opposition feedback control is proposed to suppress
the bi-modal behavior of the wake. We give a detailed analysis of the base pressure recovery
mechanisms from which the pros and cons of the control are learned. Chapter 5 extends the
drag reduction problem to the small yaw angle configuration. We come up with a bi-frequency
forcing strategy which outperforms the single-frequency forcing and explores the actuation
mechanisms that can not be achieved by the latter. In addition, a comparison between LGPC
and the bi-frequency forcing is addressed.

Finally, we summarize in Chapter 6 the main results and provide an outlook of future works
to improve and generalize the present approach.
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PART I

Linear genetic programming control
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Chapter 2

Design of linear genetic programming
control

Most of the following contents are presented in Li et al. (2017b).
In this chapter we discuss the central topic of this part: the use of linear genetic programming
control (LGPC) for the optimization of control laws in a high-dimensional search space. We
present the concept of LGPC, its implementation details on complex systems with multiple
actuators and sensors, and a visualization method to draw a landscape of the discovered control
laws for further investigations. In addition, we apply LGPC on an illustrative example—a
forced nonlinearly coupled three-oscillator model—to demonstrate the performance of LGPC
and to foreshadow the complex frequency crosstalk in turbulent flows.
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2.1 Linear genetic programming control

Following Duriez et al. (2016), the control design is formulated as a regression problem: find
the control law which optimizes a given cost function. We employ linear genetic programming
as a powerful and general regression method for nonlinear functions and for potential multiple
extrema of the cost function. In § 2.1.1, a general control problem is formulated. In § 2.1.2, we
introduce a matrix as simple control law representation. This law will be evolved with linear
genetic programming (LGP) described in § 2.1.3. This evolution is visualized with classical
multidimensional scaling method as outlined in § 2.1.4.

17
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2.1.1 Control problem

We consider a multiple-input multiple-output (MIMO) system with the state a ∈ RNa , an
input vector b ∈ RNb commanding actuation and an output vector s ∈ RNs sensing the state.
Here, Na, Nb and Ns denote the dimension of the state, the number of actuators and sensors,
respectively. The general form of the system reads

da

dt
= F(a, b) (2.1a)

s = G(a) (2.1b)

b = K(s). (2.1c)

The control b directly affects the state a through a general nonlinear propagator F. G is a
measurement function comprising the sensor signals s as function of the state a. The control
objective is to construct a MIMO controller b = K(s) so that the system has a desirable
behaviour. Most control objectives can be formulated in a cost function J(a, b). The definition
of J depends on the control goal. For instance, in a drag reduction problem, we define J as the
drag power penalized by the actuation power.

The aim is to find the control law b = K(s) which optimizes a given cost function J .
The cost only depends on the control law, or, symbolically J (K(s)) for a well-defined initial
value problem or statistically stationary actuation response. Summarizing, the control task is
transformed to an optimization problem via cost minimization and is equivalent to finding Kopt

such that
Kopt(s) = argmin

K
J(K(s)). (2.2)

2.1.2 Ansatz for the control law

A control law maps Ns sensor signals into Nb actuation commands. For simplicity, we assume
a single-input plant, i.e. Nb = 1. Following linear genetic programming (Brameier & Banzhaf,
2007), we assume this control law can be represented by a given maximum number of instruc-
tions. These instructions change the content of Nr registers, r1, . . . , rNr . The registers may
be variables or constants. As concrete example, we assume that the first Ns registers are ini-
tialized with the sensor signals, the next Nb = 1 register represents the actuation command,
initially zero, and the next registers contain Nc constants. These constants are the same for all
considered control laws in one optimization.

An instruction includes an operation on one or two registers and assigns the result of the
operation to a destination register, e.g., the instruction r1 := r2 + r3 includes two operands,
the registers r2 and r3, and assigns the result to r1. One instruction with two operands can be
coded as an array of four integers referring to the two operands, the operator and the destination
register, respectively. Note that for the instruction with one operand only an array of three
integers is required. However, to maintain a unified representation, a fourth integer is equally
assigned but ignored. Consequently, the set of Ni instructions can be coded as a matrix M
with dimension Ni × 4. An example with Ni = 5 is presented in Fig. 2.1. Constant registers
are write-protected. This means that the constants cannot be destination registers and their
values are initialized at the beginning of a run from a user-defined range. One or more variable
registers are defined as output register(s). The remaining variable registers are referred to as
input registers. For the decoding, the input registers are initialized by the sensor values and the
output register(s) by zero. The destination registers are updated after each instruction. After
executing all the instructions, the final expression of the output register yields the control law
K. This matrix representation can interpret the instructions efficiently by casting the integer
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Figure 2.1: (a) An example of matrixM comprising five instructions (Ni = 5). The matrix is displayed
in the centre of the figure. The five instructions are shown on the right side of the matrix. Let R =
{r1, r2, r3, r4, r5, r6} denotes the set of registers, indexed by the integer numbers {1, ..., 6}. The first
four registers are variables, i.e. they can be assigned a new value. The last two registers are constants
and therefore write-protected. The operand(s) of instructions are coded in the first two columns of the
matrix. They can assume any value from {1, ..., 6}. The operator set O = {+,−,×,÷, exp} is indexed
by an integer number {1, ..., 5} and coded in the third column of the matrix. The last column encodes
the destination registers, which can be one of the variables from {r1, ..., r4}. (b) Interpretation of the
matrixM. In this example, we have three input registers {r1, r2, r3} and one output register r4. Input
registers are initialized by the sensors and output register by zero. Step 1 shows the updated registers
after implementing the first instruction. Based on this result, we implement the second instruction
and obtain the updated result in step 2, etc. The final expressions are obtained after implementing
all five instructions. The expression of output register r4 is the targeted function K.

values.
There is only a finite number of control laws for a given number of registers Nr, of operations

No and of constants Nc:
[Nr ×Nr ×No × (Nr −Nc)]

Ni .

This number is, however, astronomical, even accounting for different matrices leading to the
same control law. Already the simple matrix of Fig. 2.1 has over 1.9×1014 different realizations.
Despite the discrete nature of possible control laws, almost any reasonably smooth control law
can be approximated by such a set of instructions with suitable number of instructions.

Evidently, an exhausting search of control laws and testing in an experiment is not an
option. Instead, we optimize the control laws by employing linear genetic programming (LGP)
as powerful evolutionary search algorithm. The optimization process of LGP is provided in the
following section.

2.1.3 Linear genetic programming control

The employed control optimization has many similarities with GPC (Duriez et al., 2016) using
the classical tree-based genetic programming (TGP) by Koza (1992). In this work, we advance
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GPC with simpler LGP as regression method. TGP and LGP are equivalent in the sense that
any LGP-law can be expressed in TGP and vice versa. The difference is the linear versus
recursive coding of LGP and TGP, respectively. The function in TGP is represented as a
recursive tree, as shown in Fig. 2.2. The root holds the output variable, each branching node
is an elementary operator, such as +,−,×,÷, and leaves hold the sensor inputs and constants.
The control law b is obtained by expressing the tree in a recursive way. Instead, LGP represents

Figure 2.2: Illustration of function tree representation used in TGP. Figure from Brunton & Noack
(2015).

a function with a sequence of instructions (see Fig. 2.1). The term linear in LGP refers to the
linear sequence of instructions, and not to superposition principle like in differential equations.
We select LGP over TGP based on two reasons. First, multiple usage of register contents
results into a graph-based data flow which permits a more compact solution than the tree-based
structure. In addition, by simply changing the number of input and output registers, LGP is
applicable to systems with multiple actuators and multiple sensors. The linear instructions
are much easier to code and implement in this case than the tree-based counterpart. Second,
in LGP, special noneffective and effective codes coexist. The noneffective code refers to the
instructions not having an impact on the program output, e.g. the third instruction r3 := r3/r4

in Fig. 2.1(a). The omission of this instruction will not modify the final output r4 = exp(4s1).
The noneffective code is considered to be beneficial. It protects the effective code from bad
variation effects of genetic operations and allows the variations to remain neutral in terms of
performance. Given these attributes, we choose LGP over TGP to perform this study. As
presented before, we refer to this method as linear genetic programming control (LGPC).

The implementation of LGPC for closed-loop control is sketched in Fig. 2.3. The real-time
control process occurs in the inner loop with a control law proposed by LGPC. The control law
is evaluated in the dynamical system during an evaluation time T . Then, a cost J is attributed
to it quantifying the performance of the control law. The cost value J for each control law is
sent to LGPC through a slow outer loop where LGPC can learn from them and evolve these
laws.

The learning process is detailed in the lower part of Fig. 2.3. An initial population of
control law candidates, called individuals, is generated randomly like in a Monte-Carlo method,
corresponding to the first exploration of the search space. Each individual is evaluated in
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Figure 1. A simple example of implementation of genetic operations on the matrix.Figure 2.4: A simple example showing the realization of genetic operations on the individuals for a
fixed number of instructions.

the inner loop and a cost J is attributed to them. After the whole generation is evaluated,
its individuals are sorted in ascending order based on J . The next generation of individuals
is then evolved from the previously evaluated one by genetic operators (elitism, replication,
crossover, and mutation). Elitism is a deterministic process which copies a given number of
top-ranking individuals directly to the next generation. This ensures that the next generation
will not perform worse than the previous one. The remaining genetic operations are stochastic
in nature and have specified selection probabilities. The individual(s) used in these genetic
operators is (are) selected by a tournament process: Nt randomly chosen individuals compete
in a tournament and the winner (based on J) is selected. Replication copies a statistically
selected number of individuals to the next generation. Thus better performing individuals
are memorized. Crossover involves two statistically selected individuals and generates a new
pair of individuals by exchanging randomly their instructions. This operation contributes to
breeding better individuals by searching the space around well-performing individuals. In the
mutation operation, random elements in the instructions of a statistically selected individual
are modified. Mutation serves to explore potentially new and better minima of J . These genetic
operations are directly applied to the matrices as depicted in Fig. 2.4. After the new generation
is filled, the evaluation of this generation can be pursued in the plant. This learning process will
continue until some stopping criterion is met. There is no mathematically assured convergence
for LGPC. Different stopping criteria are used. Ideally, the process is stopped when a known
global minimum is obtained (which is unlikely in an experiment). Alternatively, the evolution
terminates upon too slow improvement from one generation to the next or when a predefined
maximum number of generations is reached. By definition, the targeted optimal control law is
the best individual of the last generation.

LGPC can also be used to explore open-loop control by including time-periodic functions h
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in the inputs of control law, i.e. b = K(h). This method permits to search a much more general
multi-frequency control which is hardly accessible to a parametric study of single frequency.
Furthermore, the range of LGPC can be extended by comprising both the sensors s and time-
periodic functions h into the inputs of K. This results in a non-autonomous control law b =
K(s,h). This generalization permits to select between open-loop actuation b = K(h), sensor-
based feedback b = K(s) or combinations thereof b = K(s,h) depending on which performs
better. In the following, we term the approach optimizing open-loop frequency combinations
b = K(h) as LGPC-1. The approach to optimize autonomous controllers b = K(s) is referred
to as LGPC-2. The generalized non-autonomous control design b = K(s,h) is denoted as
LGPC-3.

2.1.4 Visualization of control laws

LGPC systematically explores the control law space by generating and evaluating a large num-
ber of control laws from one generation to the next. An assessment of the similarity of control
laws gives additional insights into their diversity and convergence to optimal control laws, i.e.
into the explorative and exploitative nature of LGPC. For that purpose, we rely on Multidi-
mensional Scaling (MDS) (Mardia et al., 1979), a method classically used to visualize abstract
data in a low-dimensional space. The main purpose of MDS is to visualize the (dis)similarity
of objects or observations. MDS comprises a collection of algorithms to detect a meaningful
low-dimensional embedding given a dissimilarity matrix. Here, we employ Classical Multidi-
mensional Scaling (CMDS) which originated from the works of Schoenberg (1935) and Young
& Householder (1938).

Let us define NK as the number of objects to visualize, and D = (Dij)1≤i,j≤NK
as a given

distance matrix of the original high-dimensional data. The aim of CMDS is to find a centred
representation of points Γ = [γ1 γ2 . . . γNK

] with γ1, . . . ,γNK
∈ Rr, where r is typically

chosen to be 2 or 3 for visualization purposes, such that the pairwise distances of the points
approximate the true distances, i.e. ||γi − γj||2 ≈ Dij. The details of the implementation are
given in Appendix A.

We choose to visualize all control laws in a two-dimensional space r = 2. Thus, the number of
objects is NK = M×N , where M is the number of individuals in a generation, and N is the total
number of generations. The distance between two control laws bi and bj, i, j ∈ {1, . . . , NK} shall
measure their ‘effective difference’. Let us consider the non-autonomous feedback bi = bi (si,hi).
Here, si(t) denotes the sensor reading and hi(t) the harmonic control input on the corresponding
bi-forced system. The squared difference between bi and bj is defined as

D2
ij =

1

2

(
|bi (si(t),hi(t))− bj (si(t),hi(t))|2 + |bi (sj(t),hj(t))− bj (sj(t),hj(t))|2

)
+ α |Ji − Jj|.

(2.3)

The time average of the first term in Eq. (2.3), represented by the overbar, is taken over the
sensor reading si and harmonic input hi of the control law bi, and sj and hj of the control law
bj in the evaluation time interval. The permutation of control laws bi and bj with its arguments
guarantees that the distance matrix is symmetric. More importantly, this ensures that the
control laws are compared in the relevant sensor space with an equal probability of both forced
systems.

The second term in Eq. (2.3) penalizes the difference of their achieved costs J with coefficient
α. The penalization coefficient α is chosen as the ratio between the maximum difference of two
control laws (first term of D2

ij) and the maximum difference of the cost function (second term
of D2

ij). Thus, the dissimilarities between control laws and between the cost functions have
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comparable weights in the distance matrix Dij. This penalization evidently smoothes the
control landscape.

A problem may arise for the comparison of two pure open-loop forcings bi and bj. We
expect, for instance, that bi = cos(t) and bj = sin(t) give rise to the same actuation response
modulo a time shift τ = π/2 and would consider these control laws as equivalent. Even for
sensor-based feedback enriched by harmonic input, we expect the actuation response to be ’in
phase’ or synchronized with the harmonic input. This expectation is taken into account by
minimizing the difference between two control commands modulo a time shift:

D2
ij =

min
τ

(
1

2

(∣∣bi(si(t),hi(t))− bj(si(t− τ),hi(t− τ)
)∣∣2 +

∣∣bi(sj(t),hj(t))− bj(sj(t− τ),hj(t− τ)
)∣∣2))

+ α|Ji − Jj |.
(2.4)

Evidently, Eq. (2.3) and Eq. (2.4) concide at τ = 0.

Summarizing, the square of the distance matrix D2 =
(
D2
ij

)
is defined as follows:

(1) If both control laws have non-trivial harmonic input (are non-autonomous), Eq. (2.4)
defines the distance.

(2) Otherwise, Eq. (2.3) is employed.

Applying CMDS to the distance matrix D, each control law bi is associated with a point
γi = (γi,1, γi,2) such that the distance between different γi emulates the distance between control
laws defined by Eq. (2.3) and Eq. (2.4). More generally, γi are feature vectors, the coefficients of
which represent those features that contribute most on average to the discrimination of different
control laws.

2.2 Application on a three-oscillator model

Before implementing LGPC in experiments, we first apply it on a well-defined dynamical sys-
tem to illustrate its performance in resolving complex problems. The aim is to stabilize a forced
dynamical system with three nonlinearly coupled oscillators at three incommensurable frequen-
cies extending the generalized mean-field model (Luchtenburg et al., 2009) (see Chapter 5 of
Duriez et al. 2016). Figure 2.5 gives a sketch illustrating the dynamics of the three-oscillator
model. The goal is to stabilize the first unstable, amplitude-limited oscillator, while the forc-
ing is performed on the second and third oscillator. The second oscillator has also unstable,
amplitude-limited dynamics and destabilizes the first oscillator. The third oscillator has linear
stable dynamics and has a stabilizing effect on the first. The stabilization of the first oscillator
can be performed by closed-loop suppression of the second oscillator or open-loop excitation
of the third one. In the following, we formulate the control problem mathematically (§ 2.2.1),
parametrically explore the effect of periodic forcing like in many turbulence control experiments
(§ 2.2.2), and apply LGPC (§ 2.2.3).

2.2.1 Problem formulation

The system has three oscillators at frequency ω1 = 1, ω2 = π and ω3 = π2, the coordinates
of which being (a1, a2), (a3, a4) and (a5, a6), respectively. The evolution equation of the state
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Unforced state
First

Second Third

Forced state

First

Second Third

(a) (b)

Unstable

Unstable Stable

Figure 2.5: Illustration of the three-oscillator model: (a) unforced state and (b) forced state. The red
dashed arrows indicate the trend of the oscillator amplitudes at unforced and forced states respectively.
The sign ‘−’ and ‘+’ in (b) represent the suppression and excitation of oscillators, respectively.

a = (a1, a2, . . . , a6) reads:

da1

dt
= σ1a1 − ω1a2

da3

dt
= σ2a3 − ω2a4

da5

dt
= σ3a5 − ω3a6

da2

dt
= σ1a2 + ω1a1

da4

dt
= σ2a4 + ω2a3 + b

da6

dt
= σ3a6 + ω3a5 + b

σ1 = −r2
1 + r2

2 − r2
3 σ2 = 0.1− r2

2 σ3 = −0.1

ω1 = 1 ω2 = π ω3 = π2,

(2.5)

where r2
1 = a2

1 + a2
2, r2

2 = a2
3 + a2

4 and r2
3 = a2

5 + a2
6 denote the fluctuation level of the three

oscillators, respectively. The growth rate for each oscillator is denoted by σi, i = 1, . . . , 3. The
frequency for each oscillator is denoted by ωi, i = 1, . . . , 3. Without forcing b ≡ 0, the first and
second system are linearly unstable with asymptotic amplitudes ru1 = ru2 =

√
0.1. Here, and in

the following, the superscript ‘u’ refers to asymptotic values for unforced dynamics. The third
system is linear and stable, i.e. converges to the vanishing amplitude ru3 = 0. The forcing b is
only applied on the second and third oscillators. A linearization of Eqs. (2.5) around the fixed
point a = 0 yields three uncoupled oscillators thus makes the first oscillator uncontrollable.

The effect of the forcing on the first oscillator can be inferred from the growth rate formula
for σ1 (see first column in Eqs. (2.5)). The fluctuation level r2 of the second system destabilizes
the first oscillator, while the third system stabilizes it with increasing fluctuation level r3. Hence,
stabilization of the first oscillator may be achieved by exploiting one of two frequency crosstalk
mechanisms: stabilizing the second system or exciting the third one. The stabilization of the
second system requires feedback b = K(a) while excitation of the stable oscillator can be
performed with periodic forcing b(t) = B sin (π2t) at the resonance frequency and sufficiently
large amplitude B.

The cost function to be minimized is the averaged energy of the unstable oscillator Ja =
a2

1 + a2
2 penalized by the actuation cost Jb = b2. Here, the temporal averaging is indicated by

the overbar. Without forcing, Jua = (ru1 )2 and Jb ≡ 0. We normalize the total cost by the
unforced value Jua of the first oscillator to characterize the relative benefit of actuation:

J =
Ja + Jb
Jua

. (2.6)
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By definition, J = 1 for the unforced system.
The numerical evaluation of J is based on the integration of the dynamical system Eq. (2.5)

with the initial condition a(0) = (0.1, 0, 0.1, 0, 0.1, 0) at t = 0. In the first 10 periods of the
target oscillator, i.e. for t ∈ [0, t0] with t0 = 102π

ω1
= 20π, no forcing is applied and the system

converges to unforced quasi-periodic dynamics (ru1 )2 = 0.1, (ru2 )2 = 0.1, ru3 = 0. The cost
functional is evaluated in the next 500 periods, t ∈ [20π, 1020π]. This time interval contains
an actuated transient but is dominated by the post-transient dynamics, thus sufficient for
statistical averaging.

2.2.2 Open-loop periodic forcing

First, open-loop periodic forcing is studied, following a practice of many turbulence control
experiments. The goal is to minimize the cost function Eq. (2.6) with periodic forcing b(t) =
B sin(ωt) employing a parametric variation of the amplitude B and frequency ω in the range
of [0, 1] and [0, 4π], respectively. The performance (Eq. (2.6)) at amplitude B and frequency
ω is scanned with increments 0.01 and 0.01π, respectively. The corresponding colormap of J
is shown in Fig. 2.6. This figure displays a local minimum of J◦ = 0.031. The corresponding
parameters are denoted by the superscript ‘◦’ in the following. The low value indicates a
stabilization by over one order of magnitude in the fluctuation level, accounting for the actuation
expense. The minimum J is reached at the eigenfrequency of the third oscillator ω◦ = π2, as
σ1 < 0 for r2

3 > 0.1, numerically observing that the second oscillator is hardly affected by the
forcing at a non-resonant frequency, r◦2 ≈ ru2 =

√
0.1. The optimal amplitude B◦ = 0.07 is

numerically determined as the best trade-off between the achieved stabilization and actuation
cost. This amplitude leads to r2

3 ≈ 0.12 and σ1 ≈ −0.02. For a larger time evaluation horizon,
the current results suggest a better performance at lower actuation B ≈ 0.05 leading to r2

3 ≈ 0.1
which just neutrally stabilizes the first oscillator σ1 ≈ 0, exploiting that the second oscillator is
unaffected by forcing. The corresponding analytical approximations are described in Chapter
5 of Duriez et al. (2016).

Figure 2.6: Colormap of cost value J under the periodic forcing b(t) = B sin(ωt).

On the other hand, the maximal J value is associated with the forcing at the eigenfrequency
of the second oscillator ω2 = π, as the excitation of r2 leads to σ1 > 0, resulting in an increase
of r1. These results show that the enabler of open-loop control is the third oscillator rather
than the second.

The unforced transient and actuated dynamics of the system are illustrated in Fig. 2.7 under
the optimal periodic forcing b◦(t) = 0.07 sin(π2t). The unforced state during the time window
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Figure 2.7: Dynamics of the model system Eq. (2.5) with the optimal periodic forcing b◦(t) =
0.07 sin(π2t) applied at t/(2π) > 10. Unforced state: blue dashed line; forced state: red line. (a-
d) Time evolution of r2

1, r2
2, r2

3, σ1 and σ2. Only the first 110 periods are shown here for clarity. (e)
Phase portrait of r2

2 against r2
3 and (f) r2

1 against r2
3. The circle indicates the initial point and the

arrows the time direction.

t ∈ [0, 20π] is depicted by a blue dashed line and the forced one at t > 20π by a red curve. For
clarity, only the first 110 periods are shown in Fig. 2.7 (a-d). Figure 2.7 (e,f) cover the whole
time interval t ∈ [0, 1020π]. When unforced, the unstable oscillators self-amplify towards the
limit cycle (ru1 )2 = (ru2 )2 = 0.1, whilst the stable oscillator vanishes to (ru3 )2 = 0. Convergence
is implied by σ1 = 0 and σ2 = 0. Once b starts at t0 = 20π, r3 is rapidly excited to an energy
level of r2

3 = 0.12, while r2 keeps its original fluctuation level r2
2 = 0.1. The resulting system

yields σ1 < 0 which leads consequently to the stabilization of (a1, a2), i.e. r2
1 ≈ 0. The phase

portraits in Fig. 2.7(e) and (f) illustrate the interactions between different oscillators. The circle
indicates the initial point and the arrows the time direction. The forced trajectories represent
low-pass filtered data, i.e. do not resolve cycle-to-cycle variation. In particular, Fig. 2.7(f)
shows clearly that r2

1 decreases with the increase of r2
3, corroborating that a high-frequency

forcing stabilizes a low-frequency unstable oscillator via frequency crosstalk.

2.2.3 Results of LGPC

LGPC is applied to solve the control problem of § 2.2.1. For all LGPC tests, up to N = 50
generations with M = 500 individuals in each are evaluated. Hereafter, we denote the cost
value of the mth individual in the nth generation by Jnm (m = 1, . . . ,M ;n = 1, . . . , N). After
generating the individuals, each is pre-evaluated based on the state a of the unforced system.
The resulting actuation command is an indicator for their feedback control performance. If
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Parameters Value
Population size M =500
Total generation N =50
Tournament size Nt=7
Elitism Ne = 1
Replication Pr = 10%
Crossover Pc = 60%
Mutation Pm = 30%
Min. instruction number 2
Max. instruction number 30
Operations +,−,×,÷, sin, cos, tanh, ln
Number of constants Nc = 6
Constant range [−10, 10]

Table 2.1: LGPC parameters for the three-oscillator model.

no actuation (b = 0,∀t) is obtained in the pre-evaluation, this individual cannot change the
unforced state. As a consequence, the individual is not subjected to a testing and is assigned a
high cost value. This pre-evaluation step saves numerical testing time. Additionally, the actu-
ation command is limited to the range [-1, 1] to emulate an experimental amplitude-bounded
actuator.

The parameters of LGPC are similar to those of most GPC studies (see, e.g. the textbook
Duriez et al. 2016) and listed in table 2.1. Elitism is set to Ne = 1, i.e. the best individual of a
generation is copied to the next one. The probabilities for replication, crossover and mutation
are 10%, 60% and 30%, respectively. The individuals on which these genetic operations are
performed are determined from a tournament selection of size Nt = 7. The instruction number
in the initial generation is selected between 2 to 30 with a Gaussian distribution to ensure
the population diversity. Moreover, duplicate individuals are rejected and replaced by new
explored individuals. In the following generations, the instruction number in one individual can
be changed by the genetic operators. The maximum instruction number for each individual
is capped by 100. Elementary operations comprise +, −, ×, ÷, sin, cos, tanh and ln. The
operation ‘÷’ and ‘ln’ are protected, i.e. the absolute value of the denominator of ÷ is set
to 10−2 when |x| < 10−2. Similarly, ln(x) is modified to ln(|x|) where |x| is set to 10−2 when
|x| < 10−2. In addition, we choose six random constants in the range [−10, 10] with uniform
probability distribution.

In the following, we introduce successively the results of open-loop multi-frequency forcing
LGPC-1, full-state feedback control LGPC-2 and non-autonomous control LGPC-3.

LGPC-1

First we search for generalizing the open-loop control by including the best periodic forcing
at all eigenfrequencies, i.e. b = K(h) where h = (h1, h2, h3) = (sin(t), sin(πt), sin(π2t)). This
approach, called LGPC-1, contains the best periodic forcing frequency ω◦ = π2, thus it should
be at least as good than the optimal periodic forcing b◦. Figure 2.8 displays the ‘spectrogram’ of
the cost values for the whole collection of control laws. Each generation n is seen to consist of
a large range of cost values. The decreasing J values towards the right bottom with increasing
generation evidences the learning of increasingly better control laws. The best cost value of
each generation is highlighted by a red line. The best individual (m = 1) in the last generation
(n = 50) reads

b�(t) = −0.37 sin
(
− 0.18 sin(π2t)

)
. (2.7)
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Figure 2.8: Spectrogram of all computed Jnm (m = 1, . . . ,M ;n = 1, . . . , N) for LGPC-1. For each
generation n, Jnm is ordered with respect to their cost Jn1 6 Jn2 6 . . . 6 JnM . The color shows the
distribution of cost values. Darker color indicates larger proportion. The red line highlights the best
cost value of each generation Jn1 .

Here, and in the following, the superscript ‘�’ refers to LGPC-1. When applying a first order
approximation on b�, we get b�(t) ≈ 0.067 sin(π2t). This expression resembles that of the
optimal periodic forcing b◦(t) = 0.07 sin(π2t), and leads to a slightly better cost J� = 0.03 as a
better amplitude with a higher precision is explored by LGPC-1. The dynamics of the system
with b� are similar to Fig. 2.7 and are not shown here for brevity.

If we increase the precision of B to 0.001 in the parameter scan of the periodic forcing in
§ 2.2.2, we should find the same result. However, the number of evaluations raises to NB×Nω =
1001 × 401 = 401000 (NB and Nω being the number of the amplitudes and frequencies to be
tested, respectively) which is 16 times that of LGPC-1 which equals M×N = 500×50 = 25000.
In summary, LGPC-1 identifies automatically the optimal frequency ω� = π2 and the optimal
amplitude B� = 0.067 by employing less time than that for the periodic forcing with an
exhaustive parameter sweep.

LGPC-2

Next, an autonomous full-state feedback law (LGPC-2) is optimized,

b = K(a) = K(a1, a2, a3, a4, a5, a6).

The ‘spectrogram’ of the cost values is shown in Fig. 2.9. The successive jumps of the best cost
value for each generation (red line) reflect the evolution process to better individuals. The
targeted LGPC-2 feedback law, i.e. the best individual in the last generation, reads as follows:

b� = tanh

(
sin

(
tanh

(
tanh

(
tanh

((
ln(a4) +

5.8
a6

1−a6
a4

)
a4

)))))
. (2.8)

Here, and in the following, the superscript ‘�’ refers to LGPC-2. The corresponding cost
J� = 0.0038 is more than seven times better than the value achieved with the optimal open-
loop control b◦. Closed-loop control b� leads to both, a smaller fluctuation level Ja and a lower
actuation energy Jb. The corresponding dynamics are depicted in Fig. 2.10. Instead of the
regular excitation of periodic forcing, Fig. 2.10(a) shows that b� gives a strong initial ‘kick’ on
the system by exciting the third oscillator to a high energy level of r2

3 = 0.5 (see Fig. 2.10(d),
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Figure 2.9: Same as Fig. 2.8, but for LGPC-2.
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Figure 2.10: Dynamics of the dynamical system Eq. (2.5) with the LGPC-2 control b� applied at
t/(2π) > 10. Unforced state: blue dashed line; forced state: red line. (a-e) Time evolution of b, r2
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(f) and (g)), while simultaneously stabilizing the second oscillator, r2
2 ≈ 0 (see Fig. 2.10(c) and

(f)). The first oscillator exhibits consequently a fast decay as σ1 has decreased to σ1 = −0.5
due to the change in r2

2 and r2
3 (see Fig. 2.10(b), (e) and (g)). This fast transient takes about

one period ∆t = 2π, see the close view of forcing b in Fig. 2.10(a). It should be emphasized
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that LGPC-2 discovers and exploits both frequency crosstalk mechanisms: the excitation of
the third oscillator for a quick transient and the suppression of the second oscillator to sustain
the low fluctuation level of the target dynamics.

Following this fast transient, the first and second oscillators enter into a quasi-stable state
at nearly vanishing fluctuation levels. Subsequently, the control command vanishes as full-
state feedback shows no need to actuate after the energy is defeated. With vanishing b, the
third oscillator decays exponentially fast. This transient process converges to the fixed point as
depicted in Fig. 2.10(f) and (g). Now, the first oscillator has a stabilizing growth rate σ1 ≈ −r2

1.
LGPC-2 shows an example of the performance of feedback control better than the open-loop
control. With only a tiny investment of actuation energy at the very beginning of the control,
the whole system remains stabilized without actuation even after thousands of periods.

It should be noted that closed-loop control is not necessarily better than open-loop actua-
tion. Suppose the growth-rate of the first oscillator reads

σ1 = 0.1− r2
1 + r2

2/100− r2
3. (2.9)

In this case, exciting the third oscillator is the only effective stabilizing mechanism and this
excitation can already be done with open-loop forcing.

LGPC-3

Finally, we explore a more general class of control laws which combines full-state feedback a
and the best periodic forcing at all eigenfrequencies h = (sin(t), sin(πt), sin(π2t)), as discussed
in § 2.1. Then, the generalized LGPC-3 control law b = K(a,h) includes the pure full-state
feedback and the best periodic forcing frequency ω◦. Hence, it should be at least as good than
LGPC-2. The learning process is similar to Fig. 2.9, thus we do not show the convergence of
cost values here for brevity. The optimal control law from LGPC-3 reads

b•(t) = tanh

(
sin

(
tanh

((
3a2 sin(t) sin(π2t)− a4

))))
. (2.10)

Here, and in the following, the superscript ‘•’ refers to LGPC-3 results. This control law achieves
a better cost value J• = 0.0025 compared to LGPC-2 with similar dynamics. Hence, the results
are not detailed here to avoid redundancies. It is worth to note that Eq. (2.10) can also be
expressed as b• = K1

(
3a2h1h3 − a4

)
where K1 represents the operator ‘tanh(sin(tanh(·)))’. To

shed light on the contribution of each term to b•, Fig. 2.11 displays the temporal evolution
of the actuation command b• and the relevant input from the states and from the harmonic
functions. It shows that the harmonic component h1h3 destabilizes the stable oscillator by a
quasi-periodic forcing while the states a2 and a4 act as an amplitude regulator.

To summarize, optimal periodic forcing (PF), open-loop multi-frequency forcing (LGPC-1),
full-state feedback (LGPC-2), and generalized feedback (LGPC-3) are compared. The contri-
butions to the cost function are depicted in Fig. 2.12, showing that the generalized feedback
outperforms the optimal periodic forcing and full-state feedback. The stabilizing mechanisms
are schematically depicted in Fig. 2.13.
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Figure 2.13: Synthesis of system dynamics under the forcing. The energy level of each oscillator is
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2.2.4 Control landscape for LGPC-3

In this section, we illustrate the control laws and cost function values by an easily interpretable
‘topological landscape’ using the visualisation technique described in § 2.1.4. Figure 2.14 visu-
alizes the control laws determined by LGPC-3 following Eq. (2.4) for the three-oscillator model.
Due to the huge number of control laws (NK = 500 × 50 = 25000), we present every 10th in-
dividual in every 10th generation for clarity. Each symbol represents a control law which is
color-coded with respect to its performance ranking, for instance the dark color represents the
best 10% of the presented control laws. The control laws in the first generation cover a signifi-
cant portion of the control space, like in a Monte-Carlo search. When the value of n increases,
we observe a global movement of control laws towards the region close to (γ1, γ2) ≈ (0, 0) where
better performance is obtained (darker color), suggesting the convergence towards better con-
trollers. Moreover, the distances between control laws of different generations are also decreased
resulting in a dense distribution, pointing to an increased similarity between control laws. In
particular, at the last generation n = 50, the control laws only occupy a small region of the
control space. The inserted figure gives a close view of the control laws near the origin point,
where the best control law(s) are found at (γ1, γ2) ≈ (−0.18, 0.02). These observations show
that LGPC has effectively explored the control space and identified the extrema in this space.
The control laws become more and more similar with increasing generation.

-2 -1 0 1 2 3

γ1

-2

-1

0

1

2

3

γ2

-2 -1 0 1 2 3

γ1

-2

-1

0

1

2

3

-2 -1 0 1 2 3

γ1

-2

-1

0

1

2

3

10

25

50

75

90

-2 -1 0 1 2 3

γ1

-2

-1

0

1

2

3

γ2

-2 -1 0 1 2 3

γ1

-2

-1

0

1

2

3

-2 -1 0 1 2 3

γ1

-2

-1

0

1

2

3

-0.3 -0.25 -0.2

0

0.02

0.04

n = 20n = 10

n = 50n = 40n = 30

n = 1

Figure 2.14: Visualization of the control laws obtained for the three-oscillator model by LGPC-3. n
represents the generation number. The color scheme corresponds to the percentile rank of the control
laws with respect to their performance J . Darker color presents better performance. Control law
bi is presented by the point γ = (γ1, γ2). The distance between two control laws, i.e. two points,
approximates their respective dissimilarity.



34 CHAPTER 2. DESIGN OF LINEAR GENETIC PROGRAMMING CONTROL

2.3 Summary

Three categories of LGPC are investigated in this work: an open-loop multi-frequency control
b = K(h), named LGPC-1, an autonomous sensor-based feedback control b = K(s), termed
LGPC-2, and a generalized non-autonomous control b = K(s,h) comprising the sensors s and
time-periodic functions h, called LGPC-3. All of them are successfully applied to the stabiliza-
tion of a forced nonlinearly coupled three-oscillator model. The obtained control laws stabilize
the first unstable oscillator by exploiting two frequency crosstalk mechanisms: (1) the excita-
tion of the third oscillator by a hard ’kick’ for a quick transient and (2) the suppression of the
second oscillator to sustain the low fluctuation level of the target dynamics. Following the quick
transient, the first and second oscillators enter into a quasi-stable state at nearly vanishing fluc-
tuation levels. Hence, the full-state feedback hardly needs to actuate and the control command
starts to vanish. The whole system is stabilized with only a small investment of the actuation
energy at the very beginning of the control. Thus, LGPC laws show a performance over the
optimal open-loop control as both a lower fluctuation level and a lower actuation energy are
obtained. The explored control demonstrate the vital importance of frequency crosstalk for
control design.

The visualization landscape of control laws provides not only a simple and revealing picture
of the exploration and exploitation characteristics of the control approach, but also inspires
further improvement of the methodology. The example given in Fig. 2.14 indicates clearly the
search space topology and distills the local extrema in this feature space. This feature space
has been shown to estimate the cost function of an untested control law (Kaiser et al., 2017)
and may be used to avoid the redundant testing of control laws in unpromising terrain. Thus,
testing time can be reduced. The visualization is becoming an important component of LGPC
for on-line decisions during a control experiment.



Chapter 3

Drag reduction of a car model by
LGPC

Most of the following results are published in Li et al. (2017a).
In this chapter we apply LGPC on the turbulence control experiments of a square-back car
model. The objective is to find an effective control law minimizing the drag and to understand
the associated actuation mechanisms. The three categories of LGPC introduced in the previous
chapter are all investigated. For each category, we justify the optimization of LGPC by analyzing
the instantaneous flow responses corresponding to the optimal control law and the mean wake
modifications.
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3.1 Control problem

The control objective is a net energy saving from drag reduction accounting for the actuation
expenditure. Both, the drag reduction and the actuation energy are determined for the best
presented control laws. However, for the rapid testing of many control laws, we employ two
results of an open-loop study in the same experiment by Barros et al. (2016b). First, the drag
is in good approximation a monotonous function of base-pressure coefficient for all actuation
frequencies. Second, the invested actuation power was found to be a small fraction of the drag-
related power saving. In summary, the base-pressure coefficient can be expected to be a good
surrogate for control goal. The resulting cost function J is defined in terms of the pressure
sensors over the rear side:

J =
〈Cp〉a
〈Cp〉u

. (3.1)

Here, Cp = (p − po)/q is the pressure coefficient, where p is the local static pressure, po is the
free-stream static pressure and q = 0.5ρU2

∞ is the dynamic pressure corresponding to a free-
stream velocity of U∞. 〈Cp〉 and Cp represent the area-averaged and time-averaged pressure
coefficient, respectively (see the following section § 3.2.3 for the pressure sensor distribution).
The subscript ‘a’ indicates the value for the actuated flow, whereas the subscript ‘u’ corresponds
to the unforced flow. Thus, the cost function J represents the relative change of the area- and
time-averaged base pressure by actuation with respect to the unforced flow.

The performance of the control law is quantified by J . Cp is negative at the rear side due to
the decreased pressure in the wake. By definition, J = 1 for the unforced flow. J < 1 quantifies
the increase of base pressure, corresponding to a reduction of the drag. Inversely, J > 1 stands
for a drag increase. As outlined in the previous chapter, the control task is to minimize the
cost function. The three categories of LGPC introduced in Chapter 2 are all investigated: the
open-loop multi-frequency forcing b = K(h) (LGPC-1), feedback control b = K(s) (LGPC-
2) and the non-autonomous control b = K(s,h) (LGPC-3). In this study, the actuation b
is performed with pulsed jets located at the four trailing edges. The time-periodic functions
h contain different frequencies of the pulsed jets. For sensor feedback, s is composed of the
pressure sensors distributed over the rear surface. The details of the actuators and sensors will
be described in the following section.

3.2 Experimental setup

In this section, the experimental facility is described, following an input-output framework ap-
propriate to flow control. In § 3.2.1, the wind tunnel is outlined. The actuator system and
measurements (pressure sensors, drag and velocity) are then detailed in § 3.2.2 and § 3.2.3,
respectively. Section 3.2.4 presents the real-time system, followed by the experimental imple-
mentation details of LGPC in § 3.2.5.

3.2.1 Flow configuration and wind tunnel

Experiments are conducted in a closed-loop wind tunnel (S620, ENSMA, Poitiers, France). A
schematic of the entire wind tunnel facility is shown in Fig. 3.1 which depicts the position of
the test section, the fan system and the flow conditioning grids. The convergence ratio between
the grid section and the rectangular test section is 7:1. The test section measures 2.4 m wide,
2.6 m high and 6 m long. The maximum free-stream velocity is about 60 m s−1 with a turbulence
intensity of approximately 0.5%. The flow stability in the tunnel is ensured for velocities greater
than 5 m s−1.
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Figure 3.1: Schematic of wind tunnel facility. The arrows inside the tunnel indicate the direction of
the generated flow.

A sketch of the model in the test section is presented in Fig. 3.2(a). The blunt-edged bluff
body is a simplified car model similar to the square-back Ahmed body (Ahmed et al., 1984). It
has the following dimensions: height H = 0.297 m, width W = 0.350 m and length L = 0.893 m.
S = HW is the frontal area of the bluff body. The front edges are rounded with a radius of
0.085 m. The model is mounted over a raised floor with an elliptical leading-edge to control
the boundary layer thickness. An adjustable trailing edge flap at the end of the raised floor is
used to control the incident angle on the leading edge. Without the model, the zero incident
angle is obtained at αFlap = 5.7◦. After this adjustment, the model is installed with a ground
clearance of G = 0.05 m, as in Ahmed et al. (1984). The blockage ratio considering the upper
area above the raised floor is 2.2%.

The flow is described in a Cartesian coordinate system with x, y, z representing streamwise,
spanwise (or lateral) and transverse (or wall-normal) directions, respectively. The origin O is
placed on the raised floor at the streamwise position of the rear surface.

A Pitot tube mounted on the roof measures the static pressure po and the upstream velocity
U∞ in the wind tunnel. Besides, a temperature probe installed close to the Pitot permits to
obtain the wind tunnel temperature To. To together with the static pressure po allow us to
calculate the flow density ρ. Given these quantities, we are able to calculate the Reynolds
number based on the height of the model ReH = ρHU∞/µ where µ is the dynamic viscosity
of the air. The results in this chapter are obtained with a constant free-stream velocity U∞ =
15 m s−1, corresponding to ReH ≈ 3 × 105. The turbulent boundary layer thickness at this
velocity is measured at x = −L = −3H with a micro-Pitot tube and without the model installed
in the wind tunnel. The boundary layer thickness based on 99% of the free-stream velocity is
δ0.99 = 0.26G. The corresponding shape factor is Hshape = 1.4 suggesting a turbulent boundary
layer. In the study of Barros (2015), the author compared the boundary layer characteristics
at x = −3.4H with and without the model at a similar upstream velocity, and the results show
that the presence of model does not change importantly δ0.99 but leads to a lower Hshape.
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Drag Balance
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Figure 3.2: Experimental setup. (a) Wind tunnel and model geometries. Inserted figure shows
actuators and sensors on the model. (b) Side view of actuation system. (c) Locations of pressure
sensors.

3.2.2 Actuator system

The model is equipped with actuator slits at all four trailing edges, as illustrated in Fig. 3.2(a).
The slit width is hslit = 1 mm. The pressured air, which is supplied by a compressed air
reservoir, are blown tangentially to the free-stream velocity through these slits. The reservoir
with volume 3 litres is positioned inside the model and connected to the laboratory compressed
air network through three 10 mm diameter tubes. The internal pressure of the reservoir is
referred to as P0.

The pulsed blowing is driven by 32 solenoid valves (Matrix R© OX 821.100C2KK) which are
installed between the reservoir and the actuator slits, as depicted in Fig. 3.2(b). These valves
are distributed homogeneously along the trailing edges. The zone between the outlet of the
valves and the slit exit is specifically designed so that the exiting flow is continuous along the
periphery of four edges, as detailed in Barros et al. (2016b). The solenoid valve generates the
pulsed jet in ON/OFF mode within the frequency range [0, 500]Hz. The system enables to
control the frequency at the four edges simultaneously or independently. In the present study,
we control only the ON/OFF of the solenoid valves. Note that the actuator system has a
mechanical time delay between the control command and the induced fluctuation at the outlet
of the slit. This time delay of about 1 ms is identified by measuring simultaneously the voltage
of the valve and the velocity fluctuation at the outlet of the slit. In addition, a rounded surface
of radius 9hslit adjacent to each slit exit is installed as an additional passive device in a manner
similar to Barros et al. (2016b). Figure 3.2(b) shows a close-up view of the Coanda surface at
the exit zone.
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The actuation amplitude can be characterized by the momentum coefficient:

Cµ =
SJetV 2

Jet

SU2
∞

(3.2)

where SJet is the slit cross-sectional area and VJet the jet velocity. The overbar denotes the time
average. The jet velocity is measured at 1 mm downstream of the centreline of the slit exit by
the use of a single hot-wire probe in still-air without the Coanda surface. VJet depends on the
actuation frequency f , duty cycle DC and supply pressure P0. For open-loop control, f and
DC are predetermined while for closed-loop control, they are unknown before implementing
the control law. In this study, we choose to maintain a constant initial supply pressure at
P i

0 = 4 bar before actuation. When actuation starts, the pressure in the reservoir decreases
to about P0 = 1.4 bar with a continuous blowing. With a pulsed blowing, P0 depends on the
actuation frequency f and duty cycle DC. We exemplify in Fig. 3.3 the time series of jet velocity
for two frequencies having one order of magnitude difference with the initial pressure P i

0 = 4 bar.
At the low frequency f = 20 Hz, the velocity signal exhibits a rectangular waveform with an
overshoot at the beginning of each stroke phase. While at the high frequency f = 400 Hz, the
signal presents an irregularly triangle waveform. The initial pressure level P i

0 = 4 bar is used
throughout the experiments. The actuation amplitude Cµ is finally obtained by a posteriori
measurement of VJet using the registered open- and closed-loop actuation signals.
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Figure 3.3: Time series of jet velocity measured at 1 mm downstream of the centreline of the actuation
slit.

3.2.3 Pressure sensors and measurements

Pressure sensors

Drag reduction is highly correlated with the base pressure from which the control performance
can be quantified. We have 16 pressure taps distributed at the rear surface, as illustrated
in Fig. 3.2(a) with a perspective view. These pressure taps are numbered as presented in
Fig. 3.2(c). The pressure is obtained by differential sensors Sensortechnics R© HCLA02X5DB
with the following characteristics: operating pressure range ±250 Pa, response delay 0.5 ms and
uncertainty due to non-linearity and hysteresis less than 0.25% of full-scale span. These sensors
are connected to the pressure taps through a 0.04 m long metallic tube and a 0.9 m long vinyl
tube as indicated in Fig. 3.4(a). A 2 m long tube is added as a branch of the vinyl tube before
it reaches the pressure sensor. This long tube is designed to damp pressure oscillators inside
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the tube ducts. Besides, all the sensors are connected in common to the static pressure po of
the wind tunnel through a 10m long vinyl tube connected with the Pitot tube on the roof.

(a)

2 m long

(b)

Model
rear surface

metallic tube
0.04 m

vinyl tube
0.9 m

Pressure
sensor

Figure 3.4: Pressure sensor properties. (a) Sketch of the connection between the pressure tap and the
differential sensor (figure from Barros 2015). po is the static pressure in the wind tunnel. (b) Impulse
response of one sensor.

The tube mounting between the pressure taps and sensors results in distortions between
the recorded signals and the pressure values at the taps location. The recorded signals can be
corrected by rebuilding the signals at the taps location. A specially designed coupler having a
reference microphone B&K is applied to obtain a transfer function for each sensor. An intrinsic
impulse response is then derived for each sensor from this transfer function. We present in
Fig. 3.4(b) an example of this impulse response. The corrected signal is obtained by convolving
the impulse response with the measured signal. The methodology has been successfully applied
in the literature (Ruiz et al., 2009, 2010; Beaudet, 2014). The distortion of recorded signals is
inferred from the spectrum of the transfer function. It presents a low-pass filter behaviour with
a linear phase. The linear phase leads to a time delay of about 3.5 ms (involving the response
delay 0.5 ms of the sensor) between the fluctuations at the pressure taps and the recorded
signals, as shown in its impulse response in Fig. 3.4(b). The passband of the low-pass filter,
calculated at -3dB in amplitude, is f ∈ [0, 100]Hz corresponding to a Strouhal number range
of StH = fH/U∞ ∈ [0, 2]. This interval covers StH = 0.2 which is the typical vortex shedding
frequency found in the bluff body wakes (Roshko, 1955). When the flow is forced at frequencies
higher than 100 Hz, the pulsation strongly affects the sensing. Indeed, the forcing frequency is
so energetic that the sensor spectrum still manifests a high energy level at the forcing frequency
despite the energy attenuation by the tube mounting. Based on this fact, the recorded signals
can be used reasonably. This correction can only be performed a posteriori but not on-line.
Unless the information at the location of pressure taps is needed (the analysis in § 3.4.2), all
the results are obtained directly from the recorded signals without correction.

The pressure measurements are sampled at a rate of Fs = 2 kHz. The time-history pres-
sure signals will be used as sensor signals in the closed-loop control (see details in § 3.2.4) to
determine in real-time the actuation. The dimensionless pressure coefficient is defined for each
pressure tap i as:

Cpi =
pi − po
q

, i = 1, . . . , 16 (3.3)

where pi is the measured pressure.
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Drag measurements

To quantify the effects of actuation on the drag, the aerodynamic force is measured using an
in-house unidirectional balance mounted inside the raised floor, as depicted in Fig. 3.2(a). The
principle of the balance is to measure the displacement of two metal plates by the use of a
9217A Kistler piezoelectric high sensitive sensor. The upper plate is connected to the model
through four profiled support feet. The lower plate is fixed to the main support as well as the
raised floor. The aerodynamic force on the model creates a downstream displacement of the
upper plate against the lower one resulting in an expansion of the sensor. We can then derive
the drag force FD from this deformation. This concept idea of balance is described in the study
of Winkelmann & Gonzalez (1990). The calibration of the system is performed by the use of
standard masses up to 2 kg using a pulley system connected to the rear surface of the mounted
model (Barros, 2015).

The data acquisition is performed at the same sampling rate of pressure measurements Fs =
2 kHz. A low-pass filter at 1 Hz is used to get the time-averaged drag FD. The corresponding
time-averaged drag coefficient CD is defined according to:

CD =
FD
qS

. (3.4)

Note that the pulsed jets could create a thrust on the model. For accurate estimation of
the drag, this thrust is measured in quiescent air using the registered open- and closed-loop
actuation signals and subtracted from the measured drag at full speed. For the rapid testing of
a large amount of control laws, we select the base pressure recovery as the cost function due to
the reasons described in § 3.1. Drag measurements are only performed for the top performing
control laws.

Velocity measurements

For analyzing the wake dynamics, velocity fields are obtained using a two-component Particle
Image Velocimetry (PIV) system. The measurements are taken in the symmetry plane located
at y = 0. Two field dimensions are investigated, as indicated in Fig. 3.5. The first field measures
1.4H × 2H and spans the whole wake containing entirely the recirculation flow region. The
second field focuses on the shear layer dynamics in a region downstream of the top trailing edge
and has a small size of 0.5H × 0.34H. For both fields, the measured regions are illuminated
by a laser sheet generated by a Nd:YAG laser. The images are captured by a LaVision Imager
LX 16M camera with resolution of 4920 × 3280 pixels. For the larger field, image pairs are
captured at a frequency of 3 Hz. The time between a pair of images yielding one velocity field
is 90 µs. While for the smaller field, random and phase-locked PIV are both performed. They
have the same time interval 10 µs. The random PIV is recorded with a frequency of 3 Hz. The
phase-locked PIV is triggered by an external clock at a frequency of 4 Hz. Velocity vectors for
both fields are processed with an interrogation window of 32 × 32 pixels with a 50% overlap,

Figure 3.5: PIV fields of view.
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giving a spatial resolution of 2.3 mm and 0.54 mm corresponding to 0.008H and 0.0018H for the
large and small field respectively. The velocity statistics are computed with 1000 independent
images.

Hot-wire is used to measure the jet velocity as mentioned in § 3.2.2. The measurements are
obtained by a StreamlinePro Anemometer System using a single wire probe (55P11) which is
fixed to a profiled displacement system installed on the roof of the wind tunnel.

3.2.4 Real-time system

For closed-loop control, real-time processing is performed by a Labview Real-Time module,
which is implemented on a National Instrument PXIe-8820 Real-Time controller running at
a sampling rate of FRT = 2 kHz, where the subscript RT indicates Real-Time. Sensor data
acquisition for open- and closed-loop control is performed at the same sampling rate by a
National Instrument PXIe-6363 DAQ card. Four digital outputs are used to operate the four
actuator slits in ON/OFF mode. Since the solenoid valve cannot respond in less than 1 ms, the
ON/OFF command needs to have at least 1 ms. Under the present sampling rate FRT, this value
corresponds to two sampling points. For the effective working of the actuator, a verification is
performed before sending the command to the actuators to ensure that the ON/OFF command
lasts at least 1 ms.

The reachable periodic frequencies f consistent with FRT can be derived from f = FRT/Nsp,
where Nsp is the number of sampling points in one time period of f . The working frequency
range of actuators ([0, 500]Hz) imposes a minimum value for Nsp, being Nsp > 4. For a given f ,
the possible duty cycles DC can be deduced from DC = i/Nsp, i = 2, . . . , Nsp − 2. The value
of i starts from 2 and ends at Nsp − 2 to ensure a response time of 1 ms (2 sampling points)
for an effective working of the actuators. Thus, the number of possible duty cycles NDC for a
given f is NDC = Nsp− 3 = FRT/f − 3, which increases with Nsp and decreases with f . Figure
3.6 represents with blue dots the ensemble of periodic forcing frequencies f and duty cycles
DC calculated in the way described above. The Strouhal number StH is also shown. It is clear
that the number of possible duty cycles reduces as the frequency increases due to the limited
sampling points in one period. The red filled circles highlight the selected periodic forcing cases
considered in the following. Hereafter, all the frequencies are given in terms of StH .
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Figure 3.6: Ensemble of open-loop frequencies f and duty cycles DC derived from FRT = 2 kHz. Blue
dots represent a subset of the combinations of f and DC consistent with FRT. Red dots highlight the
cases considered in this study.

3.2.5 Experimental implementation of LGPC

The LGPC architecture is shown schematically in Fig. 3.7. In experiments, LGPC is executed
in the same way as for the dynamical system plant in Chapter 2:
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1. LGPC provides a generation of control laws to be evaluated by the experimental plant.

2. The plant evaluates and grades the individuals in terms of the given cost function.

3. LGPC evolves the next generation.

4. The process from 1 to 3 iterates until a pre-determined criterion is met.

5. After this learning phase, the best control law is determined.

Control law

LGPC

Sensors

 Cost

A
ct

ua
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Figure 3.7: Schematic of LGPC architecture in experiments.

LGPC encompasses new features to adapt to experimental applications. As the solenoid
valve works in ON/OFF mode, the output of the control laws is passed through the Heaviside
function to transform the continuous output to a binary ON/OFF signal, i.e. H(K(s)), where
K(s) gives a continuous output and H represents the Heaviside function. In the following, we
assume that K is the binarized control law, i.e. b = 1 and b = 0 correspond to actuation
ON and OFF, respectively. This binary operation eliminates the amplitude information in the
control laws. Therefore, the same actuation signal b can be obtained from different control law
expressions. The uncertainty in the actuation mechanism may change J in different evaluations
for the same individual. If an individual appears multiple times in several generations, it is
evaluated each time and its cost is the averaged value of all its past evaluations. A predeter-
mined number of best individuals in each generation are re-evaluated several times to ensure
good and robust performance.

The LGPC parameters for this study are displayed in table 3.1. Each generation is composed
of M = 50 individuals. An optional pre-evaluation of individuals is performed for all the
generations. After generating the individuals, each is pre-evaluated based on the pressure
signal of the unforced flow. The resulting actuation command is an indicator for their feedback
control performance. If no actuation (b = 0,∀t) or continuous blowing (b = 1,∀t) is obtained
in the pre-evaluation, this individual may be considered a prospectively bad performer and is
discarded for evaluation by assigning a high cost value to it. This pre-evaluation step saves
experimental testing time.

Elitism is set to Ne = 1, i.e. the best individual of a generation is copied to the next.
The replication, crossover and mutation probability are 10%, 50% and 40%, respectively. The
individuals on which these genetic operations are performed come from a tournament selection
of size Nt = 7. The instruction number varies between 5 to 30 (except where noted otherwise)
with a Gaussian distribution. Elementary operations comprise +,−,×,÷, sin, cos, tanh and
log10. The operation log10 is protected, i.e. log10(x) is modified to log10(|x|) where x is the
variable. If the actuation command at time tk is not a number (NaN) or infinity (Inf) due to the
sensitive operator ÷, it is modified to take the command one step before, i.e. b(tk) = b(tk−1).
In addition, we choose six random constants in the range [−1, 1].
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Parameters Value
Population size M =50
Tournament size Nt=7
Elitism Ne = 1
Replication Pr = 10%
Crossover Pc = 50%
Mutation Pm = 40%
Min. instruction number 5
Max. instruction number 30
Operations +,−,×,÷, sin, cos, tanh, log10

Number of constants Nc = 6
Constant range [−1, 1]

Table 3.1: LGPC parameters in the experiments.

The evaluation of every individual takes T = 10 s. This value corresponds to 500 convective
time units defined by tc = H/U∞. For the unforced flow, the convergence time determined by

Tconv = argmin
t
|〈Cp(t)〉 − 〈Cp〉

〈Cp〉
| < 0.5%

is about 300tc. To give an idea about this convergence time for the forced flow, we investigate
open-loop forcing signals at f = 5 Hz and f = 500 Hz, representing large and small actuation
time scales respectively. The convergence time is around 450tc for f = 5 Hz and 200tc for
f = 500 Hz. These results indicate that T = 10 s ≈ 500tc is sufficient for an approximately
accurate average value. It should be noted that LGPC requires only an accurate ordering of
the costs associated with the considered individuals. Hence, we refrain from using, say, 100 s to
obtain slightly more accurate values. There is a time gap of about 6 s between two individuals for
data recording, reservoir refilling and communication between LGPC and the control module.
The best five individuals of each generation are re-evaluated five times. Overall, approximately
five generations each consisting of 50 individuals are evaluated in less than two hours.

3.3 Unforced flow

We first give a brief review of the unforced flow to establish a basic understanding of the wake.
Throughout this manuscript, all physical quantities are normalized by U∞ and H. Figure 3.8(a)
shows in the symmetry plane y=0 the contour maps of the time-averaged streamwise velocity
u combined with the streamlines. We remark that the streamlines give only a qualitative 2D
picture of the wake as the flow is fully three-dimensional. As outlined in Chapter 1, the shear
layer emerging from the four trailing edges develops and rolls up into large-scale structures.
This amplification of the shear layer dynamics is crucial to entrain the free-stream fluid into
the wake region, leading to the formation of a recirculation bubble. The negative values of u
(blue zone) point out clearly the momentum loss in the wake which is closely related to the
drag. Streamlines in Fig. 3.8(a) show that two counter-rotating structures coexist in the mean
wake, where the upper structure rotating in the clockwise direction is bigger and closer to the
rear surface than the lower one. The vertical wake asymmetry is not surprising as the presence
of the ground acts as a perturbation, leading to flow features that differ from above and under
the model. The distribution of the 2D-approximated turbulent kinetic energy k = 0.5(u′2 +w′2)
is shown in Fig. 3.8(b), where u′ = u−u and w′ = w−w represent the velocity fluctuations. It
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highlights the concentration of k in the shear layer region resulting from the important velocity
fluctuations. The evolution of the shear layer leads to an increase of k along the streamwise
direction. Moreover, the fluctuations are more important in the lower shear layer due to the
ground effect.
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Figure 3.8: Time-averaged wake for the unforced flow in the vertical symmetry plane y = 0. From
left to right: (a) the contour maps of the time-averaged streamwise velocity u overlapped with the
streamlines; (b) the turbulent kinetic energy k and (c) the time-averaged base pressure.

The time-averaged base pressure distribution, measured during 1 min, is shown in Fig.
3.8(c). The top-down asymmetry along z is in agreement with the wake topology in Fig. 3.8(a).
A low pressure zone is obtained near the upper edge, which is associated with the upper large
clockwise vortex. The pressure distribution is nearly symmetric along y implying a symmetric
wake in the spanwise direction. Its slight asymmetry may be related to the imperfections of
the model and wind tunnel.

At the working condition U∞ = 15 m s−1, the area- and time-averaged base pressure co-
efficient is 〈Cp〉 = −0.235. The corresponding time-averaged drag coefficient is CD = 0.306,
which was measured with the Coanda surface. In table 3.2, we summarize these quantities
for various Reynolds numbers corresponding to U∞ = 10, 15 and 20 m s−1, respectively. With
increasing ReH , 〈Cp〉 increases and CD decreases. These observations are the same as stated
in Barros et al. (2016b), and are assumed to be related to the flow detachment on the model’s
front curved edges. In fact, these separations may impact the separating boundary layer at the
trailing edges and the wake, leading to modifications in CD.

ReH = HU∞/ν 〈Cp〉 CD
2× 105 -0.236 0.343
3× 105 -0.235 0.306
4× 105 -0.232 0.286

Table 3.2: Unforced flows: averaged base pressure and drag coefficients for various Reynolds number.

3.4 LGPC-1: multi-frequency forcing

We refer input and output to the experimental plant, i.e., input indicates actuation and output
implies sensor. Except stated otherwise, the same actuation is maintained along all edges.
This simultaneous actuation is referred to as single-input. A preliminary periodic forcing is
performed as benchmark for the results of LGPC. The tested frequencies and duty cycles (DC)
are the subset of the harmonics derived from FRT = 2 kHz, see the red dots in Fig. 3.6. The
optimal periodic forcing is found at St◦H = 6.6 and DC◦ = 33%, resulting in J = 0.67 which
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corresponds to 33% base pressure recovery associated with 22% drag reduction. Hereafter, this
optimal solution, denoted by b◦ and named as SIPF for single-input periodic forcing, will be
used as reference.

In the turbulent wake, the frequency dynamics are broadband suggesting that the periodic
forcing space may be not sufficient to search for the optimal control law. In this section, we
extend the search space of open-loop control by exploring the multi-frequency forcing using
LGPC-1. The results of LGPC-1 are given in § 3.4.1. The corresponding optimal control is
analyzed in detail in § 3.4.2 and the mean wake modifications associated with the optimal
control is presented in § 3.4.3.

3.4.1 LGPC-1 results

The introduction of multiple frequencies in the actuation should expand the search space of
control laws. Multi-frequency forcing has already reported benefits in other flow configurations,
for instance pressure recovery in a diffuser (Narayanan et al., 2002). So far, this was not
explored for the drag reduction problem. LGPC-1 is particularly appropriate for constructing
multi-frequency signals and determining the optimal actuation. In the case with simultaneous
actuation along four edges, this control category can be also labeled as SIMFF for single-input
multi-frequency forcing.

In the LGPC-1 framework, the open-loop control laws are written as b(t) = K(h(t)). We
define h = {h1, ..., h9} where hi(t) = sin(2πfit) represents the harmonic function at the fre-
quency fi. The values of fi considered in this study and the corresponding Strouhal number
StHi

= fiH/U∞ are presented in table 3.3. The goal is to find an optimal function Kh, where
the superscript ‘h’ indicates harmonic, such that bh(t) = Kh(h(t)) minimizes the cost function
J .

Controller input h1 h2 h3 h4 h5 h6 h7 h8 h9

fi (Hz) 10 20 50 100 200 250 333 400 500
StHi

0.2 0.4 1 2 4 5 6.6 8 10

Table 3.3: Description of the harmonic functions hi(t) = sin(2πfit) used as inputs of LGPC-1 for
multi-frequency forcing.

Four generations with 50 individuals in each generation are evaluated. The generation
number is small because after four generations half of the individuals have similar J values
near the optimal one as shown in Fig. 3.9(a). When the number of generation n increases,
we observe a global trend to obtain lower values of J , but the evolution of the top-performing
individuals is insignificant. To clarify this behavior, the cost Jn1 of the optimal individual
(m = 1) in each generation n is shown in Fig. 3.9(b). The dots correspond to the averaged J
values and the error bars show the standard deviation of repeating evaluations of the optimal
control law. For the two first generations (n = 1, 2), the optimal individual exhibits the same
frequency (St◦H = 6.6) and duty cycle (DC◦=33%) as the optimal SIPF solution b◦. In the
third generation, a new individual evolves leading to a gain of 1% in reduction of J compared
to the previous generations. This individual is confirmed to be the optimal one at the fourth
generation. Due to the experimental uncertainties, there is a slight difference in the averaged
J values for the identical actuations, like the optimal individual at n = 3 and n = 4.

We focus on the converged generation. Due to the binary ON/OFF command, and the
necessity to apply an Heaviside function to the control law (see § 3.2.5), it is possible to have
different control laws which give the same actuation b. For instance, the first five individuals
of the last generation may have only three different kinds of actuations with respect to the
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Figure 3.9: Results of LGPC-1 for single-input multi-frequency forcing. (a) Evolution of the cost
function J versus the individuals m for four generations n = 1, . . . , 4. (b) Cost of the optimal individual
Jn1 in the four generations n = 1, . . . , 4. The dots correspond to the averaged J values and the error
bars show the standard deviation of repeating evaluations of the optimal control laws.

spectral behavior. In the following, we name the first three distinct actuations in the top-
ranking individuals of the last generation as bh

1, b
h
2 and bh

3, respectively. The actuation power
spectral densities Sb for bh

m (m = 1, . . . , 3) are displayed in Fig. 3.10(a) in the range StH ∈ [0, 10]
with a vertical shift for clarity. One period of the actuation bh

m and its corresponding duty cycle
are presented in Fig. 3.10(b). The solution bh

3 contains a single-frequency corresponding to the
optimal SIPF b◦. bh

1 and bh
2 exhibit a multi-frequency dynamics with the dominant frequency

StH = 8 and St◦H = 6.6, respectively, and their subharmonics (StH = 4 and StH = 3.3).
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Figure 3.10: Actuation properties of the three top performing individuals in the last generation of
LGPC-1. (a) Power spectral densities Sb for the control laws bh1 , bh2 and bh3 . (b) One period of the
actuation bhm (m = 1, . . . , 3). Values on the vertical axis are shifted for clarity.



48 CHAPTER 3. DRAG REDUCTION OF A CAR MODEL BY LGPC

To discuss the energetic efficiency of the control, we define an actuation efficiency coefficient
Ae and a relative power savings coefficient Ps as follows:

Ae =
|∆CD|SU3

∞

SJetV 3
Jet

and Ps =
1
2
|∆CD|SU3

∞ − 1
2
SJetV 3

Jet

1
2
CDuSU3

∞
, (3.5)

with ∆CD = CDu − CDa where the subscripts ‘u’ and ‘a’ indicate the unforced and actuated
flows, respectively. The actuation efficiency Ae represents the ratio between the mechanical
power gained by the drag reduction and the mechanical power consumed by the pulsed jets.
The relative power saving Ps represents the net power saving related to the control normalized
by the power consumed by the aerodynamic drag in the unforced flow. The expressions of the
control laws bh

m, m = 1, ..., 3 are reported in table 3.4 with the corresponding values of the cost
J , the actuation amplitude Cµ, the actuation efficiency Ae and the power saving Ps. All the
actuation efficiencies Ae are greater than 1 and all the relative power saving coefficients Ps are
greater than 0 indicating that the net energy balance is positive. The optimal actuation bh

1

results in about 34.6% of base pressure recovery. The returned gain of the invested actuation
power is approximately three. The power consumed by the aerodynamic drag has been saved
by 15.6%.

Control law J Cµ(×10−3) Ae Ps
bh

1 = H (h5/h8 − 0.622) 0.654 9.834 2.958 0.156
bh

2 = H ((h9 − h7 − 0.2) 0.661 10.927 2.317 0.131
bh

3 = H ((−0.479h7 − 0.2) 0.664 9.609 2.841 0.146

Table 3.4: Performance of the three top performing individuals in the last generation of LGPC-1. H
represents the Heaviside function. By definition, H(x) = 0 if x 6 0 and H(x) = 1 otherwise.

In the following, we study the convergence of LGPC-1 towards the optimal control law
by analyzing how the different harmonic functions hi are selected over the generations. The
percentage Phi of having hi involved in the individuals is displayed in Fig. 3.11(a) for all the
generations. In the first generation, all the harmonic functions are loosely equivalent to be
chosen. Note that if the population was larger, we would have a uniform distribution of hi. At
the second generation, the percentage of presence of h7 raises abruptly for becoming largely
dominant. At the third generation, Ph8 grows and now becomes dominant. At convergence,
h7 and h8 are the two harmonic functions most commonly found in all the individuals. This
result demonstrates the ability of LGPC-1 to select automatically the optimal harmonic forcing
parameters. The spectrum of J-values of individuals which include hi in the expression of the
individuals is shown for all the generations in Fig. 3.11(b). More precisely, we plot for each
individual the cost J (in ordinate) against the harmonic functions hi (in abscissa) occurring in
it. Over the generations, the data points move progressively from a relatively sparse distribution
to a concentrated distribution in the bottom right region, proving that the best individuals are
obtained for high frequencies.

In addition, multiple-input multi-frequency forcing (MIMFF) has also been performed by
driving the top, down, left and right actuators independently. The search space is much more
larger than that of the single-input control. The optimal single-input control law (SIMFF) was
inserted in the first generation to accelerate convergence. The results show that LGPC-1 with
multiple inputs did not improve the performance for the best single-input law.
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3.4.2 Analysis of the optimal control law

Now we focus on how the optimal single-input LGPC-1 law b� = bh
1 = H (h5/h8 − 0.622)

influences the base pressure. We first investigate the instantaneous impact of actuation on
the base pressure. Figure 3.12(a) represents the time evolution of the bottom-middle pressure
coefficient Cp4 under several periods of the actuation b�. Cp4 is corrected in amplitude and
phase based on the approach described in § 3.2.3. In addition, b� is shifted 1 ms downward
in time to take into account the actuator delay (see § 3.2.2). The corrected signals are used
here because we are interested in the pressure response at the base surface to the actuation.
We notice in Fig. 3.12(a) that the apparent frequency in pressure fluctuation is tightly related
to that of the actuation. This correlation can be further inferred from the spectral coherence
Ψb,Cpi

which is defined at each frequency f as follows:

Ψb,Cpi
(f) =

Gb,Cpi
(f)√

Gb(f)GCpi
(f)

, i = 1, ..., 16 (3.6)

where Gb,Cpi
is the cross-spectral density between the actuation b� and the ith pressure co-

efficient Cpi , and Gb and GCpi
are the auto-spectral density of b� and Cpi , respectively. Fig-

ure 3.12(b) displays the amplitude of the spectral coherence Ψb,Cpi
. We observe a level of

coherence of about 100% at StH = 4 and StH = 8 which are indeed the forcing frequencies
shown in Fig. 3.10(a). These high values of coherence at the forcing frequencies have been
equally observed for the other pressure signals implying that all sensors over the base are corre-
lated to the actuation regardless of their locations. From these observations a question arises:
do the sensors respond to the actuation at the same time? To address this question, the co-
herence ΨCpi ,Cpj

between the pressure signals Cpi and Cpj is studied. From φi,j, the phase of
ΨCpi ,Cpj

, we have determined the time shift at frequency f between the pressure signals Cpi
and Cpj as φi,j/(2πf). This value is of the order of 0.2 ms for all sensors which may be related
to the distance between pressure taps and to the slight length difference of tube mounting of
two sensors. We can then conclude that all the pressure signals respond to the actuation at the
same time.

The results above have important implications for the understanding of actuation effects.
As described in Barros et al. (2016b), the combination of pulsed jets and Coanda surface creates
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Figure 3.12: Impact of the optimal LGPC-1 law b� on the pressure coefficients. (a) Instantaneous
response of Cp4 to the actuation b�. The time is shifted by a randomly chosen value t0. (b) Amplitude
of the spectral coherence between the actuation b� and pressure coefficient Cp4 .
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a boat-tailing effect resulting in an inward shear layer deviation close to the separating edges,
and thus yields a time-averaged base pressure increase. Here we want to elucidate the existence
of an instantaneous boat-tailing effect by analysing the temporary response of the pressure to
the actuation. The underlying dynamics can be derived from the time history of the area-
averaged pressure 〈Cp〉 under the unsteady forcing. Figure 3.13 shows the phase average of
the jet velocity, denoted by JVJetK, and the phase average of the area-averaged base pressure,
denoted by J〈Cp〉K, under a frequency StH = 2 (a) and the optimal control b� (b). The symbol
J·K stands for the phase average 1. A moderate value of frequency is chosen in (a) to gain
insights on the jet propagation over the surface due to its relatively long pulse duration. An
overshoot of JVJetK is observed at the very beginning of the blowing in Fig. 3.13(a), which may
be related to the specific functioning of the valve, i.e. the sudden pressure relief at the outlet
of the just opened valve. This overshoot lasts about 1 ms and then the jet stabilizes and
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Figure 3.13: Phase-averaged jet velocity JVJetK/U∞ and pressure coefficient J〈Cp〉K with 〈Cp〉 the area-
averaged base pressure. (a) Forced flow at StH = 2 and DC = 50%. (b) Optimal LGPC-1 law b�.
The phase average is performed with respect to the lower frequency i.e. StH = 4. The vertical dashed
line indicates the time duration for the unsteady overshoot. The inserted figures indicate the different
interaction of the jet flow with the Coanda surface in the unsteady and quasi-steady state, respectively.

develops to a quasi-steady blowing. A similar duration of the overshoot has been observed
in lower frequencies corroborating that this is probably a characteristic of the actuators. The
pressure signal shows correspondingly a sudden and strong increase just at the same time of the
overshoot. Following the stabilization of the blowing, the pressure also stabilizes and fluctuates
around a particular value. We conjecture that the fluctuations at the different states, unsteady
overshoot and quasi-steady blowing, are related to the movement of the separation point over
the Coanda surface. We then propose a conceptual scenario attempting to explain the different
mechanisms in the unsteady overshoot and quasi-steady state. During the unsteady overshoot,
the jet travels over the rounded surface carrying a strong velocity inside the forefront of the jet
while facing a relatively low-velocity flow on its outside. As a first-order approximation, this
process is too short to give the opportunity to the viscosity to affect the flow. Therefore, the

1JgK(t) = 1
Nperiod

∑Nperiod

i=0 g(t + iT ), where g is the quantity to calculate, Nperiod the number of periods

included in the recording time and T the period.
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instantaneous velocity acceleration is almost totally used to compensate the reversed pressure
force over the rounded surface. We denote by tProp the propagation time of the jet from the slit
exit to the end of the Coanda surface. This propagation time can be estimated as tProp = `/VJet

where ` = πr/2 is the arc length of the surface and VJet is the time-averaged jet velocity. If
we approximate VJet by the oncoming velocity U∞, we obtain tProp = 0.94 ms. This value is
surprisingly close to the duration of the unsteady overshoot. This means that the jet flow can
completely attach on the surface within the unsteady state under the condition of VJet > U∞.
By intuition, the flow may be highly deviated as illustrated in the inserted figure for the
overshoot state. Once entering into the steady state, the pressure fluctuation decreases. The
reason is twofold: first, the jet velocity has significantly decreased compared with the overshoot
resulting in a lower jet momentum flux; second, viscous effects have now the time to reduce
the mean wall momentum and to induce an earlier flow separation and a less deviated flow, as
shown in the inserted figure for the quasi-steady state. When the blowing is stopped, there is
a significant decrease of pressure which remains unclear. It seems as if the jet closure somehow
induces a strong detachment of the flow.

Given the important role played by this unsteady effect, one would expect that the actu-
ation should take advantage of this unsteady overshoot to gain benefits in the base pressure.
Figure 3.13(b) shows the phase-averaged jet velocity JVJetK measured for the actuation b�. This
jet velocity exhibits two overshoots in one period. The base pressure is consequently excited
to a high value. Our conjecture above concerning the relation between the pressure increase
and the flow deviation is confirmed here by the phase-locked PIV measurements of the small
field surrounding the Coanda surface, as presented in Fig. 3.14. The red circles in the figures
of J〈Cp〉K indicate the phases of the velocity fields. In Fig. 3.14(a), the flow is attached until
to the end of the Coanda surface, resulting in a significant flow deviation manifested by the
streamline curvature. Correspondingly, we observe an increase of J〈Cp〉K. Fig. 3.14(b) shows
a less deviated streamline due to an earlier flow separation on the curved surface, hence the
resulting J〈Cp〉K is much smaller than that in (a).
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Figure 3.14: Phase-locked velocity vectors for the forced flow with the optimal LGPC-1 law b� at (a)
phase t/T = 0.1 and (b) phase t/T = 0.2. T is the period with respect to StH = 4. The red circles in
the figures of J〈Cp〉K indicate the phase of the velocity field on the left. The streamlines are drawn to
highlight the change of its curvature.

The repeated unsteady flow deviation as presented in Fig. 3.14(a) leads ultimately to a time-
averaged base pressure recovery. This explains why the high-frequency forcing yields a better
performance. We define tPulse the pulse duration of one pulsed jet and tInt the intermittent
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time between two successive pulsed jets. It is expected that tPulse could be as small as possible
to eliminate the quasi-steady blowing. In addition, JVJetK should be strong enough to drive
the jet to the end of the Coanda surface in tPulse. Considering the actuator response time and
the characteristic time for the overshoot, the smallest value for tPulse is determined to be 1 ms.
Surprisingly, the top-ranking individuals in Fig. 3.10(b) are all in good agreement with our
hypothesis. They have all tPulse = 1 ms but tInt is different. The optimal control b� = bh

1 is the
only actuation including tInt = 1 ms, as shown in Fig. 3.12(a). We may conclude that b� meets
best the requirements for tPulse, tInt and JVJetK ensuring a maximized repeat of the unsteady
overshoot effect, and therefore is chosen as the optimal controller.

3.4.3 Analysis of the near wake

Now, we focus on the effects of the best LGPC-1 control b� on the near wake dynamics identified
from the PIV measurements. We remind that all presented quantities are normalized by U∞
and H. Figure 3.15 shows the color map of the time-averaged velocity norm ‖u‖ =

√
u2 + w2

overlapped with 2D streamlines (a, b) and 2D estimation of the turbulent kinetic energy k =
1
2
(u′2+w′2) (c-f) for the unforced (a,c,e) and controlled flow (b,d,f). u and w represent the time-

averaged streamwise and cross-stream velocity, respectively. u′ and w′ are their corresponding
velocity fluctuations.

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.5

1

1.5
(a)

0

1.1

(c)

(b)

(e)

(d)

0 0.5 1 1.5 2
0

0.5

0 0.5 1 1.5 2

1

1.5

0 0.5 1 1.5 2
0

0.5

0 0.5 1 1.5 2

1

1.5

(f)

0

0.028

0

0.08

Figure 3.15: Near wake dynamics for the unforced baseline flow (a,c,e) and the forced flow with the
optimal LGPC-1 control b� (b,d,f). (a,b) Time-averaged velocity norm ‖u‖ and 2D streamlines; (c,d)
2D estimation of the turbulent kinetic energy k for the upper shear layer; (e,f) k for the lower shear
layer.

The forcing induces significant changes in the wake. First, the shear layers are highly
deviated towards the center of the wake, resulting in a thinner and shorter recirculation bubble.
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The bubble length Lr is quantified by the maximum streamwise position of the contour line
u = 0, i.e.

Lr = max
x

(u(x) = 0). (3.7)

For the forced flow, Lr ≈ 1.06, reduced by 25% compared with the baseline flow length Lr ≈
1.42. The vectorization of the shear layer is highlighted in Fig. 3.16(a) by the velocity angle
θ = arctan(w/u) of the streamline emerging from the point (x, z) = (0.033, 1.198) located
close to the top separating edge. The angle variation immediately downstream of the trailing
edge (x < 0.1) indicates that there is a reversal in the sign of the streamline curvature. This
modification of curvature results in a local rise in base pressure. Second, the vectorization of
shear layers is accompanied by an overall reduction of the turbulent kinetic energy k inside the
recirculation bubble, which can be qualitatively observed in Fig. 3.15(d) and (f). Following
the analyses in Barros et al. (2016b), we quantify the modification of the wake dynamics by
evaluating the streamwise evolution of the integral of the turbulent kinetic energy K(x) and
averaged kinetic energy E(x) inside the domain Ω(u<0) defined as follows:

K(x) =

∫
Ω(u<0)

k(x, y)dy, (3.8)

E(x) =

∫
Ω(u<0)

u2(x, y)

2
dy︸ ︷︷ ︸

U(x)

+

∫
Ω(u<0)

w2(x, y)

2
dy︸ ︷︷ ︸

W(x)

. (3.9)

The results are shown in Fig. 3.16 (b) and (c). We observe an overall reduction of K in the
forced flow from x/Lr = 0.25, indicating an attenuation of the velocity fluctuations in the wake.
A decrease of E is discernible very close to the base (x/Lr < 0.08) and further downstream
x/Lr > 0.33. Between these two bounds, there is a slight increase of E . To gain insights into this
evolution, we present separately the contribution of streamwise velocity U(x) and cross-stream
velocity W(x) to E(x). The decrease of E in the range x/Lr < 0.08 is directly related to the
reduction of W near the base, indicating that the cross-stream flow adjacent to the base is less
energetic in the forced flow. Further downstream,W increases compared with the baseline flow.
In fact, the prominent deviation of the shear layers pushes the flow towards the central region
of the wake and thus increases the absolute value of cross-stream velocity. Correspondingly, we
observe an increase of E in the range x/Lr ∈ [0.08, 0.33]. Beyond x/Lr = 0.33, the decrease of U
is amenable to the diminution of E . The overall attenuation of U indicates that the streamwise
motion of the reversed flow is reduced by the forcing.

These observations show that a base pressure recovery is associated with: (1) the vector-
ization of the shear layers which changes the streamline curvature and narrows and shortens
the bubble; (2) the stabilization of the wake induced by the enhanced interaction of the small-
and large-structures due to the high-frequency forcing. These mechanisms are consistent with
the results in Barros et al. (2016b) except that they did not observe a shorter bubble. This
difference is related to the actuation parameters. We actuate at a lower frequency and higher
amplitude, yielding a higher angle deviation which is responsible for reducing the bubble length.

3.5 LGPC-2: Feedback control

In this section, we explore the opportunities of the sensor-based closed-loop control by employ-
ing LGPC-2. Similar to the previous section, all actuators are operated simultaneously by a
single actuation command. The results of LGPC-2 are given in § 3.5.1. The resulting control
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Figure 3.16: Effects of the optimal LGPC-1 control b� on the shear layer deviation and the velocities
inside the recirculation bubble. (a) Evolution of the velocity angle θ along the streamline emerging
from the point (x, z) = (0.033, 1.198) (marked by ‘×’ in the inserted figure) close to the top trailing
edge; (b,c) streamwise evolution of K (see Eq. (3.8)) and E (see Eq. (3.9)).

laws are visualized and interpreted in § 3.5.2. Section 3.5.3 presents a physical analysis of the
optimal control law.

3.5.1 LGPC-2 results

The closed-loop control law is expressed as b = K(s), where s consists of the pressure sensors
distributed over the rear surface. For the feedback, it was found that the first 12 sensors in
Fig. 3.2(c) are sufficient for the performance of the controller, the sensors 13–16 providing
redundant information. The cost J is evaluated based on all 16 sensors following Eq. (3.1).
This control is referred to as single-input multiple-output (SIMO) as we have one actuation
command and 12 sensor signals. From the sensors, only the fluctuation part is fed back to
mitigate the effect of slow drifts. The fluctuation of ith sensor s′i is defined as:

s′i(t) = si(t)− si(t) (3.10)

where

si(t) =
1

τav

∫ t

t−τav
si(t) dt (3.11)

is the moving average of the signal over a period τav = 0.1 s. Summarizing, the control law has
the form

b = K(s′) with s′ = {s′1, ..., s′12}.
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The results of the LGPC-2 experiment are presented in Fig. 3.17. We stop LGPC-2 after five
generations because the cost J does not evolve anymore. Figure 3.17(a) shows the evolution
of J versus the index of the individual m. Almost all the individuals improve their values
of cost function compared to those of the first generation. We focus on the evolution of the
optimal individual in each generation in Fig. 3.17(b). The optimal individual yielding J ≈ 0.72
is found from the generation n = 2 and is further confirmed as the optimal one until n = 5.
The error bar is determined from re-evaluations of mathematically equivalent control laws
in all the generations. The spectrum of the optimal individual in the final generation n = 5,
denoted by b•, is shown in Fig. 3.17(c). The spectrum of the optimal SIPF b◦ is also included for
comparison. b• evidences a dominant frequency at StH = 6.9 with a duty cycle of DC = 34.7%.
Both parameters are quite close to those of b◦. However, b• has a more complex spectrum than
b◦. The components of this spectrum are more clear in Fig. 3.18 where the time evolution of
frequency is shown using the continuous Morlet wavelet transform (Lewalle, 1995). After a
short transient, the control self-sustains loosely around StH = 6.9 with occasionally coexistent
low-frequency components.
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Figure 3.17: Results of LGPC-2 for sensor-based single-input multiple-output (SIMO) control. (a)
Evolution of the cost function J versus the individuals m for five generations n = 1, . . . , 5. (b) Cost of
the optimal individual Jn1 in each generation n. (c) Power spectral density Sb for the optimal LGPC-2
law b• and the optimal SIPF b◦.

Figure 3.18: Time evolution of frequency for the optimal LGPC-2 control b•. Z is the norm of Morlet
wavelet transform. Higher value indicates higher energy in the spectrum.

Table 3.5 compares the main characteristics of b• and b◦. Closed-loop control has similar
actuation features (dominant frequency and duty cycle) as b◦. Yet, the performance of b• is
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slightly worse. The presence of low-frequency components in b• may degrade the performance.

StH DC J Cµ(×10−3) Ae Ps
b• 6.9 34.7% 0.718 10.147 2.428 0.096
b◦ 6.6 33% 0.664 9.609 2.841 0.146

Table 3.5: Performance of the optimal LGPC-2 control b• compared with the optimal SIPF b◦.

Intriguingly, the optimal control law reads

b• = H(tanh(tanh(s′4))− 0.1). (3.12)

Over the 12 sensors, the optimal control law selects only s′4. We present in Fig. 3.19 how LGPC-
2 progressively identifies s′4 in the optimal control law. Figure 3.19(a) illustrates the percentage
Ps′i of having s′i involved in the individuals, and subfigure (b) represents the spectra of J-values
of individuals which include s′i in their expression. Like in Fig. 3.11, the first generation n = 1
chooses each sensor signal with comparable percentage. For a sufficiently large population, all
the sensor signals would have nearly equal percentage. We observe a minimum J value at s′4 in
the first generation. The advantage of choosing s′4 is already evident from the second generation.
Half of the individuals in the following generations select s′2, s

′
3 and s′4. Correspondingly, the

data points in Fig. 3.19(b) represent the progressing move of J from a uniform distribution
over all the sensors to a concentrated distribution over s′2, s

′
3 and s′4. In particular, the highest

probability is found at s′4. This observation indicates that LGPC-2 provides not only an optimal
law but also a sensor selection when initially multiple sensors are provided to the controller.
This optimal law will be physically interpreted in § 3.5.3.

3.5.2 Visualization of control laws

A two-dimensional visualization of control laws is obtained by applying the method described
in § 2.1.4. This visualization contributes to get a better understanding of the evolution of
control laws. The entire collection consisting of NK = M × N = 50 × 5 = 250 individuals
is considered here. The penalization coefficient in the distance matrix Eq. (2.3) is chosen to
be α = 3.5 according to the description in § 2.1.4. CMDS, as explained in § A, yields an
ensemble of two-dimensional feature vectors {γi}NK

i=1, with γi = (γi1 , γi2)
T . For each individual

i, the mutual distances between feature vectors quantify the dissimilarity between different
control laws. For further analysis, the ensemble is then partitioned using the k-means clustering
algorithm (Lloyd, 1956; Kaiser et al., 2014). Mainly five clusters, denoted by kc ∈ {1, ..., 5},
can be distinguished. The resulting Voronoi diagram of the clusters is displayed in Fig. 3.20.
Each control law is displayed as a circle which is color-coded by the ordering, here defined in
terms of the percentile rank. For instance, an individual that performs equal or better than
90% of the ensemble of evaluated control laws is said to be at the 90th percentile rank.

The broad distribution of points over the space illustrates that LGPC-2 has successfully
explored a diversity of control laws. The clusters are ordered according to the mean J−value
in a cluster. Thus, it can be seen from the distribution of J that the control laws in the lower
clusters kc = 1, 2, 3 have better performance than the upper ones kc = 4, 5. The top-ranking
control laws are located in the cluster kc = 1. A spectral analysis of the control laws in each
cluster shows that this clustering partition discriminates their actuation frequency characteris-
tics. The control laws in the cluster kc = 1 exhibit a similar spectrum as that of the optimal
actuation b• shown in Fig. 3.17(c). Their dominant frequency is around StH = 6.9. The con-
trol laws in its neighbouring cluster kc = 4 have the similar dominant frequency as the laws of
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Figure 3.20: Visualization of (dis)similarity associated with the entire collection (250 individuals) of the
sensor-based LGPC-2 control laws. Each circle represents an individual control law and the distance
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to the percentile rank of the control laws with respect to their performance J . Darker color indicates
better individuals with lower J values. The feature vectors {γi}NK

i=1 are further analyzed by applying
a cluster algorithm. The best performing individuals belong to cluster 1.

kc = 1. However, they have a larger duty cycle resulting in a different energy distribution in
the actuation spectrum. The clusters kc = 3 and 5 contain the control laws showing a white
noise behaviour with no obvious dominant frequencies. The control laws in the upper cluster
kc = 5 have a larger duty cycle that those of the lower cluster kc = 3. The control laws in
the cluster kc = 2 possess clearly a high dominant frequency around StH = 8.6. It seems that
the horizontal coordinate distinguishes the actuation frequencies, whilst the vertical coordinate
differentiates the duty cycles. These observations are consistent with their performance distri-
butions. By looking into the evolution of points as the generation increases, a global downward
shifting can be observed which indicates their convergence to the top-performing individuals.
The visualization provides a simple and revealing picture of the exploration and exploitation
characteristics of the control approach, inspiring further improvement of the methodology.

3.5.3 Analysis of the optimal control law

In this section, we analyze the pressure dynamics with an aim of understanding why LGPC-2
has determined the optimal law b• (see Eq. (3.12)).

We have mentioned previously in § 3.4.2 that better performance is expected for a large jet
velocity VJet under high-frequency forcing. As we binarize the ON/OFF control command with
a Heaviside function, an oscillating movement around the threshold of the Heaviside function is
responsible to trigger intermittently the actuation. Therefore, the selected sensors are expected
to fulfil three properties. First, they should exhibit fluctuations of the unforced baseline to
provoke the actuation at the very beginning. Second, they should highly correlate with the
high-frequency forcing and yield corresponding fluctuations around the threshold. Third, the
low-frequency drifts in the sensors originating from the motion of the separated bubble or the
vortex shedding, should not interfere with the high-frequency feedback between actuation and
sensing. These expected properties guide our analysis of the sensors for insights into the sensor
selection.

First, we search for sensors with large fluctuation levels for the unforced flow. Figure 3.21(a)
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Figure 3.21: Characteristics of the sensor fluctuation in the unforced flow. (a) Color map of the
standard deviation of the sensor signal σui , i = 1, . . . , 16. (b) The spectra of sensor signals s′i located
on the symmetry line y = 0. Values on the vertical axis are shifted for clarity. The levels of standard
deviation σui of s′i (i = 1, . . . , 4) are also given in the figure.

displays the color map of the standard deviation σui of the sensor signal s′i (i = 1, . . . , 16) for
the unforced flow. The largest fluctuation level can be observed in the vicinity of the lower
edge, especially close to the symmetry line y = 0. The spectral analysis is carried out using
the signals on this symmetry line. The resulting power spectral density (PSD) is shown in
Fig. 3.21(b) with a vertical shift for clarity. Clearly, s′3 and s′4 feature a larger fluctuation level
than the others. The vortex shedding mode around StH = 0.2 can hardly be seen in this figure.
The important energy content around StH = 0.1 in each sensor indicates a global motion of the
separation bubble, which is induced by an axial oscillation of the recirculation bubble (Berger
et al., 1990). The energy reaches its maximum in sensor s′3. Based on this observation, we
assume that s′3 and s′4 could be the desired candidate sensors in LGPC-2. The next analysis
concerns the forced flow. Figure 3.22 shows the color map of the standard deviation of the sensor
signal s′i (i = 1, . . . , 16) and the spectra of the sensors on the symmetry line (y = 0) under the
optimal sensor-based LGPC-2 control b• (a,c,e) and the optimal SIPF b◦ (b,d,f). The latter is
presented for comparison. Note that the color bar range is different from that in Fig. 3.21. For
both forced flows, the pressure fluctuation level is highly increased by the actuation compared
to the unforced flow. Fluctuations in the LGPC-2 case are higher than those in the SIPF
case. This is assumed to be related to higher actuation fluctuations introduced by the LGPC-2
control, as evidenced in Fig. 3.17(c). These fluctuations are reflected on the base pressure due
to the high level of correlation between actuation and sensing at the frequency of actuation
(see § 3.4.2). In addition, the region with high fluctuation level is shifted slightly towards the
centre of the base for both cases. Characteristic features of high-frequency forcing are the large
time delay (τd = 4.5 ms) from actuation to sensing and the high correlation between actuation
and sensing. The time delay roughly corresponds to two periods of the optimal periodic forcing
St◦H = 6.6. For closed-loop control, these features indicate that the actuation pulse will be
felt by the sensors after time τd, and this oscillation in sensors will trigger in real-time another
actuation pulse. In other words, an actuation pulse is triggered by the effect of previous pulses.
Once some stochastic flow perturbations produce a high-frequency sensor oscillation around the
right threshold, the system would self-sustain the high frequency forcing. This explains why the
optimal feedback law yields such highly periodic dynamics. One can confirm this behavior from
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Figure 3.22: Characteristics of the sensor fluctuation in forced flows for (a,c,e) the optimal LGPC-
2 control b• and (b,d,f) the optimal SIPF b◦. (a,b) Color maps of the standard deviation of the
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the low-frequency range StH = [0, 1]. Values on the vertical axis are shifted for clarity. Spectrum of
the unforced flow is repeated (in dashed grey line) for comparison.



62 CHAPTER 3. DRAG REDUCTION OF A CAR MODEL BY LGPC

the spectra in Fig. 3.22(c,d) where the forcing frequencies, indicated by the arrows, are felt by
all sensors, being in agreement with the previous results in § 3.4.2. Based on these analyses,
we assume that both s′3 and s′4 have the capability to capture and amplify the perturbation
created by the actuation and feed it back to maintain the forcing.

We now focus on the low-frequency spectrum of the sensor signals under the forcing, which
is highlighted in Fig. 3.22(e,f). The spectra of the unforced flow is also presented for reference.
An important observation is that the prominent low-frequency dynamics (around StH = 0.1)
in the unforced flow is damped by the high-frequency forcing. This damping is even more
evidenced by comparing the spectrum of the area-averaged base pressure 〈Cp〉, as depicted in
Fig. 3.23. This may be related with the enhanced interactions between small- and large-scale
motions introduced by the forcing, which consequently increases the dissipation in the shear
layer and inhibit the entrainment of fluid in the recirculating flow (Oxlade et al., 2015; Barros
et al., 2016b). Moreover, the damping effect is more prominent for the optimal SIPF b◦, the
drag reduction of which is better than that of the optimal LGPC-2 b•. Thus, we conjecture
that the damping in the natural instabilities (bubble pumping or vortex shedding) may be a
constituent part for the drag reduction. Figure 3.22(e,f) also presents that for both forced
flows, the maximum energy at low frequencies is reproducibly found for s′3. This property is,
however, a disadvantage for selecting s′3 as feedback sensor, due to the third postulated sensor
property. All these considerations lead naturally to the selection of s′4 for feedback.
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Figure 3.23: Spectrum of the area-averaged base pressure 〈Cp〉 for the unforced flow (black line), the
optimal LGPC-2 b• (red line) and the optimal SIPF b◦ (blue line) within the low frequency range
StH = [0, 0.5].

In summary, s′4 captures, on the one hand, strong enough dynamics in the unforced flow to
trigger the feedback cycle and, on the other hand, small enough low-frequency dynamics in the
forced flow to maintain the fluctuations around the trigger threshold. Given these conditions,
s′4 is capable to create a nearly periodic high-frequency forcing and it self-adapts to converge to
the optimal periodic forcing. Due to the complex dynamics in the flow, closed-loop control has
a much noisier spectrum than open-loop control. In time domain, this indicates that there exist
a variety of pulse durations tPulse and intermittent quiet times tInt in the actuation command.
In light of the analysis of § 3.4.2, this variety may influence the instantaneous curvature of the
shear layer and degrade globally the control performance.

3.5.4 Morlet filtering of sensor signals

In this section, we explore the potential benefits of extracting frequencies of interest in the
sensor signals by applying a specific filter. A Morlet wavelet Filter (MF) is particularly suited
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to this task. In time domain, the Morlet wavelet ψ is a cosine function modulated by a Gaussian
envelope. It is then defined for a frequency fc as:

ψ(t) =
1√
2πσ

exp(− t2

2σ2
) cos(2πfct). (3.13)

In frequency domain, MF is a band-pass filter which attenuates the undesired frequencies
outside the range [fc − λ/2, fc + λ/2], where λ represents the bandwidth which is governed
by the parameter σ. In our applications, only the fourth sensor s4 identified for the optimal
LGPC-2 control is chosen as the output of the plant, resulting in SISO (single-input single-
output) system. To avoid the confusion, we denote the fourth sensor s4 as s and its fluctuation
s′4 as s′. The sensor s in the feedback control law b = K(s) is defined as s = [ŝ, . . . , ŝ5, s, s

′],
where

ŝi(t) =

∫ τP

0

ψi(t̃)s
′(t+ t̃− τP )dt̃, i = {1, ..., 5}

s(t) =
1

τP

∫ t

t−τP
s(t)dt

s′(t) = s− s(t).

(3.14)

ψi represents the ith Morlet wavelet and s is the moving average of the signal over a period
of τP = 0.1 s. For i = {1, ..., 5}, we set fci = {100, 200, 250, 320, 400}Hz. The corresponding
Strouhal numbers are StHci

= fciH/U∞ = {2, 4, 5, 6.5, 8}. Figure 3.24 represents the five
wavelets in the time and frequency domains. One may notice that the center frequencies in
the frequency domain are slightly different to the values of fci . This is related to the frequency
resolution of the MF which is determined by the wavelet length τP considered in Eq. (3.14). In
the present study, the wavelet includes 200 points for a time window of τP = 0.1 s within the
frequency fRT = 2 kHz. This leads to a frequency resolution of about ∆f = 10 Hz (∆StH = 0.2).
The spectra can then be shifted within ∆StH = 0.2 with respect to the set ones.

The optimal control law b•̂ = H(tanh (ŝ4) − 0.13) is obtained after four generations. ŝ4

denotes the filtered signal of s through the wavelet ψ4 with the centred frequency at StHc = 6.5.
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This frequency is closest to that of the optimal periodic forcing St◦ = 6.6 among the provided
filtering frequencies. The spectra of the b•, b•̂ and b◦ are shown in Fig. 3.25. b•̂ shows a single
peak at StH = 6.6, indicating that the noisy fluctuations in b• are filtered out by the MF. As
a result, b•̂ leads to approximately a single-frequency forcing which is the same as the optimal
SIPF b◦, and yields J = 0.67 as well.
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Figure 3.25: Power spectral density Sb of the optimal SISO control law (category LGPC-2) b•̂. The
spectra of the optimal SIPF b◦ and the optimal SIMO control law b• (category LGPC-2) are also given
for comparison.

3.6 LGPC-3 and multiple-input control

Finally, a test of the generalized non-autonomous control LGPC-3 is performed by combining
the optimal harmonic forcing h◦ = sin(2πf ◦t) and the sensors s′ of LGPC-2 of § 3.5.1, i.e.
b = H(K(s′, h◦)). LGPC-3 converges quickly to the optimal periodic forcing b◦. The finding
is in agreement with the results of LGPC-2 where the optimal control emulates the optimal
periodic forcing but is slightly worse. LGPC-3 prefers to select the optimal periodic forcing to
the sensor feedback. Upon these results, we do not pursue LGPC-3 with b = H(K(s′,h)) by
including multiple frequencies in this experiment. We assume the result will be the same with
LGPC-1.

In addition, tests by operating separately the four actuation slits were also performed with
the sensor feedback, constituting a multiple-input multiple-output forcing (MIMO). The op-
timal control laws quickly converge to single-input simultaneous actuation at all four sides,
suggesting no performance benefit from operating the four actuators independently in this
study. This may be related to the underlying physics for minimizing the drag reduction. It is
required to have four edges forced simultaneously to achieve maximized deviation of the flow
curvature. However, in the cases where distinct actuators yields different effects, e.g. actuators
at different chord position of an airfoil, MIMO control may be a promising control method.

3.7 Summary

The performance in terms of the cost value J is synthesized in Fig. 3.26. In all considered
classes of control laws, LGPC-1 identifies a bi-frequency forcing as the most effective control
which induces 34% base pressure recovery associated with 22% drag reduction. It beats the
past benchmark 19% obtained from periodic forcing with the same configuration (Barros et al.,
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Figure 3.26: Synthesis of the cost value J for different controls. PF: periodic forcing.

2016b). The consumed actuation energy accounts for only 30% of the aerodynamic power
saving. It is noteworthy that this control law has been identified by testing only 200 individuals
in less than 1 hour. The testing time is less than employed for finding the best frequency and
duty cycle for the periodic reference with an exhausting parameter sweep. The two frequencies
included in the optimal control law are both one order of magnitude larger than the natural
vortex shedding frequency, indicating that the drag reduction is achieved at high frequencies.
The associated instantaneous flow response shows that this actuation takes the full advantage
of the unsteady shear layer deviation resulted from the interaction of the high-frequency pulsed
jets with the Coanda surface. The mean wake geometry is modified such that the shear layers
close to the trailing edges are deviated towards the wake center, resulting in a shorter, narrower,
more stream-lined shaped bubble. The change of the mean wake geometry is accompanied with
a reduction of the velocity fluctuations inside the recirculating bubble. The drag reduction is
ultimately achieved by the combined effect of the wake shaping and the damping of velocity
fluctuations.

In particular, the feedback control LGPC-2 reproducibly selects only one sensor near the
center of the bottom edge in the optimal control law. The corresponding actuation shows a
highly periodic behavior whose dominant frequency is close to the optimal periodic forcing
frequency. It was further shown that the selected sensor listens to the high-frequency flow
components with good signal to noise ratio, thus capable of creating a nearly periodic high-
frequency forcing and it self-adapts to converge to the optimal periodic forcing. This finding
suggests that LGPC provides not only an optimal actuation but also a sensor optimization
for a general class of control laws. Moreover, LGPC-2 finds a SISO control as the optimal
control law in a SIMO framework. This observation guided us to explore SISO control with the
optimal sensor and its time history information. The resulting SISO control law outperforms
the optimal SIMO control and yields a similar actuation as the optimal periodic forcing.
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Chapter 4

Feedback control of bi-modal wake
dynamics

Part of the following contents are published in Li et al. (2016).
In this chapter, we apply a physics-based feedback control to manipulate an intermittent bi-
modal wake flow targeting wake symmetrization. Fluidic actuation is applied on lateral edges.
The physics-based controller is inferred from preliminary single edge open-loop tests and is
demonstrated to successfully suppress the bi-modality. The results show a slightly base pressure
recovery concomitant with the wake symmetrization. By analyzing the associated pressure gra-
dient and near wake features, we identify that this pressure recovery is due to a net balance
between the favorable effect of wake symmetrization and adverse effect of shear-layer mixing
and vortex shedding amplification.
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4.5.1 Control design and performance . . . . . . . . . . . . . . . . . . . . . 80

4.5.2 Effects on the base pressure and near wake . . . . . . . . . . . . . . . 83

4.1 Bi-modal wake features and manipulations

The turbulent wake of the square-back car model presented in Chapter 3 presents a spanwise
symmetry and a top-bottom asymmetry due to the ground effect. However, the wake of such
square-back bluff bodies is very sensitive to perturbations, such as the ground clearance and
the support setup between the model and the ground. Recently, Grandemange et al. (2013b)
has identified a reflectional symmetry breaking behavior in the turbulent wake of a similar
square-back body under a well aligned condition. The relative wake is denoted by bi-modal
wake, also known as bi-stable wake. The feature of a bi-modal wake consists of two mirror
asymmetric flow states which switch between them in a stochastic way. Such symmetry breaking
behavior of turbulent wakes have been equally observed in very distinctive geometries, such as
the flow over a three-dimensional double backward-facing step (Herry et al., 2011), a notch-
back vehicle shape model (Lawson et al., 2007) and the wake of an axisymmetric bluff body
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(Rigas et al., 2014). However, the asymmetry is not observed in the mean wake obtained
over long-time averages when two asymmetric states are equiprobable. Recent studies link this
feature of bi-modality or multi-modality (for the axisymmetric wake in Rigas et al. 2014) to the
symmetry breaking seen at low Reynolds numbers and attribute the feature to a supercritical
pitchfork bifurcation observed both numerically (Fabre et al., 2008; Meliga et al., 2009) and
experimentally (Grandemange et al., 2012; Rigas et al., 2014) with increasing Reynolds number.

Several techniques have been applied to manipulate such instantaneous symmetry breaking
wakes targeting the attenuation of the bi-modal behavior. Most of the studies use passive
devices. Grandemange et al. (2014) and Cadot et al. (2015) perturbed the wake of the square-
back Ahmed body with a vertical control cylinder, showing that if adequately located the
bi-modal behavior could be suppressed, associating with a drag reduction. Recent experiments
of Evrard et al. (2016) show that the bi-modal wake has been symmetrized using base cavities,
leading to a drag reduction around 10%. The asymmetric flow states and its inherent vortex
topology are fully stabilized increasing the base pressure. Similar results have been achieved
for the axisymmetric body using a perimetric slit located at the base edge communicating an
internal cavity with the external flow (Garćıa de la Cruz et al., 2017b). The results above
suggest the importance of symmetrization of such wakes for drag reduction. Although these
passive controls are effective, the suppression of the bi-modal behavior remains unclear due to
the geometric modifications. This gives us the motivation to investigate geometry-free active
control techniques and especially to develop feedback control approaches in order to adapt in
real time to the flow states (Brunton & Noack, 2015).

Only few studies address the feedback control of bi-modal wakes. Evstafyeva et al. (2017)
numerically simulated the actuation effects of unsteady synthetic jets on the low-Reynolds-
number wake of the square-back Ahmed body by applying a linear feedback control strategy
with the aim to attenuate the base pressure fluctuations. The results show a reduction in
drag and re-symmetrization of the wake. Brackston et al. (2016) performed the experimental
feedback control for high-Reynolds-number wake of the Ahmed body. The wake bi-modality is
modeled by a nonlinear Langevin equation using the statistical modeling approach proposed in
Rigas et al. (2015). Based on this model, they designed a feedback controller to suppress the
symmetry-breaking modes using oscillating lateral flaps. The controller achieves a successful
suppression of the bi-modality of the wake and concomitantly reduces the drag by 2%.

In this study, we present the first feedback control of bi-modal wake using unsteady pulsed-
jets. The control authority of the unsteady jets for drag manipulation has been shown in
Chapter 3, Oxlade et al. (2015) and Barros et al. (2016a,b). Here, we explore its capability in
the bi-modal turbulent wake control. A physics-based opposition control strategy is proposed
to mitigate wake asymmetries. Successful applications of opposition control range from wall-
bounded flows to yaw moment and vortex shedding control (Choi et al., 1994; Pastoor et al.,
2008; Pfeiffer & King, 2012). Our goal is twofold: first we show that feedback control using
pulsed jets can be used to manipulate asymmetric bi-modal dynamics of a turbulent wake flow;
then we quantify the pressure recovery resulted from the wake symmetrization by comparing
the feedback performance with open-loop strategies. To achieve this control, the wake is forced
by two lateral jets located at the rear edges of the model and monitored with base pressure
sensors.

4.2 Experimental setup

The experimental facility and the model are identical to the ones used in Chapter 3. This
section only details the essentials and differences with the setup presented in § 3.2.
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Grandemange et al. (2013a) showed that the symmetry-breaking mode depends upon the
cross-sectional aspect ratio of the car model and ground effect. Given the model used in this
study and the ground clearance G = 0.05 m, no bi-modal behavior is observed in the wake
as presented in Chapter 3. However, following the sensitivity analysis of Barros et al. (2017)
and Barros (2015), we disturb the underflow with a spanwise cylinder of diameter 8 mm (see
Fig. 4.1(a)) to obtain a balanced wake along z and bi-modal dynamics along y, as the case in
Grandemange et al. (2013b). The position of the cylinder (here at x = −0.05H) was carefully
chosen in order to have two equiprobable asymmetric states in a relatively long time (about
5 min). The control results throughout this chapter (and of only this chapter) were obtained
with this wake configuration. All measurements were conducted with a constant free-stream
velocity U∞ = 30 m s−1 corresponding to a Reynolds number ReH = U∞H/ν = 6× 105.

Figure 4.1: Experimental setup. (a) Sketch of the model showing the position of the perturbing
cylinder and PIV plane. (b) Lateral actuation slits. (c) Distribution of the pressure sensors over the
rear surface.

The actuator system utilizes only two lateral slits: right (R, y > 0) and left (L, y < 0)
as indicated in Fig. 4.1(b). Same as the previous chapter, we denote by VJet the exit jet

velocity, and by Veff = (V 2
Jet)

1
2 the effective jet velocity where the overline represents a time

average. The forcing amplitude is defined by the momentum coefficient Cµ (see Eq. (3.2)). This
forcing amplitude can be regulated by setting the initial input pressure P i

0 of the compressed air
reservoir inside the model. Figure 4.1(c) reminds the readers the 16 unsteady pressure locations
over the base surface. Their measurements are used to quantify the forcing effects on the base
pressure and to provide sensing for the real-time feedback control.

Wake velocity measurements are carried out using a two-dimensional PIV system in the mid-
height plane z = 0.67 (see Fig. 4.1(a)) to analyze the bi-modal dynamics and control effects.
The whole wake is captured by two LaVision Imager Pro X 4M cameras with a resolution of
2048× 2048 pixels. The field of view covers a region of approximately 2.3 H×1.6 H. Velocity
vectors are processed with an interrogation window of 32×32 pixels and a 50% overlap, resulting
in a spatial resolution of 3.9 mm corresponding to 0.013H. The time between one pair of images
is 65 µs and the image pairs are recorded at a sampling rate of 3.5 Hz. For the unforced flow,
due to the long time-scale of the asymmetric states, we recorded 7500 images in order to
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cover as many as possible the switching events and to approach an equiprobable distribution
of asymmetric states. For forced flows, 2000 images were taken.

Closed-loop actuation and data acquisition are controlled using the same instruments as
presented in § 3.2.4: a National Instrument R© PXIe-8820 Real-Time system coupled to a PXIe-
6363 DAQ card, both running with a sampling frequency of 2 kHz.

4.3 Unforced bi-modal flow

In this section, we describe the fundamental features of the unforced flow in order to compare
with the forced flows in the following sections.

Wake asymmetries can be quantified by estimating the base pressure gradients ∂Cp/∂y and
∂Cp/∂z which are defined as follows:

∂Cp
∂y

=
1

2

Cp8 − Cp5
y8 − y5

+
1

2

Cp7 − Cp6
y7 − y6

,

∂Cp
∂z

=
1

2

Cp1 − Cp4
z1 − z4

+
1

2

Cp2 − Cp3
z2 − z3

.

(4.1)

These estimations use the pressure sensors in the symmetric (y = 0) and horizontal (z = 0.67,
mid-height of the body) planes, respectively. Time series of these gradients in the unforced
flow and their probability density functions (PDF) are presented in Fig. 4.2(a). We denote
by t∗ = t/tc = t/(H/U∞) the dimensionless time. Pressure was acquired during 5 minutes,
corresponding to flow statistics over t∗ = 3×104. The PDF of ∂Cp/∂y reports clearly the lateral
bi-modal reversals and shows the two most probable asymmetric gradients at (∂Cp/∂y)peak '
±0.15. The time scale of being in one state is about 103H/U∞. Along the wall-normal axis z,
the PDF of ∂Cp/∂z is centered around zero, indicating a statistically symmetric pressure field
along z. This feature is similar to what has been observed in Grandemange et al. (2013b).

Although the time taken to switch between two states is negligible with respect to the long
time scale of each state, it is still interesting to look at this quantity for better understanding
of the switching process. We estimate this switching time Tsw by the transition time of ∂Cp/∂y
between two peaks of the PDF. We apply a first-order low-pass filter with a cut-off frequency
of StHc = 0.03 on ∂Cp/∂y to better distinguish the switching moment. This cutoff frequency
corresponds to a time scale of 30tc. An ensemble of 150 flipping events are investigated. The
distribution of Tsw for these switches is shown in Fig. 4.2(b). It presents a large range of time
scales varying from 18tc to 115tc. This distribution leads to a mean value of Tsw/tc ≈ 43 and
a standard deviation of σ/tc = 18. In particular, Tsw is about 7 times larger than the vortex
shedding period (Tvs/tc = 6.25 when StvsH = 0.16 (Barros, 2015), which means that a slow
reorganization of the near wake flow is involved in this process.

Figure 4.3(a) shows the time-averaged base pressure and velocity field in the mid-height
plane. The pressure map shows a uniform lower pressure region surrounded by a higher pressure
along the lateral edges. Symmetry distribution is seen both along y and z. The base pressure
for this baseline flow is 〈Cp〉u = −0.235. In the velocity map, the 2D streamlines show clearly
two balanced counter-rotating structures in the recirculating region, corroborating a symmetric
topology over long time averages. The fluctuation intensity is demonstrated by the mean
turbulent kinetic energy k. It is concentrated along the lateral shear layers with a comparable
intensity in each side. From these mean distributions, we can hardly distinguish the asymmetric
states related to the PDF peaks in Fig. 4.2(a).

In order to better understand the pressure and wake dynamics, we isolate the two reflectional
asymmetric states and the low probable symmetric state by a conditional average with respect
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(a)

(b)

Figure 4.2: Unforced bi-modal flow. (a)Time series of pressure gradients and probability density
function (PDF) along the y and z directions. PDFs are normalized by their maximum values. t∗ = t/tc
is the dimensionless time. The dashed lines represent the most probable values. For clarity, only part
of the recording signals are presented in the lower figures. (b) Distribution of the switching time scale
Tsw between the transition of two states.

to the value of ∂Cp/∂y. We apply again the low-pass filter presented before (cut-off frequency
StHc = 0.03) on ∂Cp/∂y to better distinguish each state. The filtered gradient is denoted

by ̂∂Cp/∂y. By selecting a threshold at ̂∂Cp/∂y = ±0.06, which corresponds to 40% of the
most probable gradient (∂Cp/∂y)peak, we define three states: state #Nu for negative values in
̂∂Cp/∂y < −0.06, state #Pu for positive values in ̂∂Cp/∂y > 0.06 and state #Su for values in

−0.06 < ̂∂Cp/∂y < 0.06. The subscript ‘u’ stands for the unforced flow. The simultaneous
measurement of the velocity and base pressure allow us to identify the state of each captured
velocity field and then to correlate the conditionally averaged velocity to that of the base
pressure. Although 7500 images were taken, only around 500 images locate at state #Su due
to its small characteristic time scale in comparison with those of the asymmetric states #Nu

and #Pu.

Figure 4.3(b), (c) and (d) display the conditionally averaged base pressure and velocity field
for the states #Pu, #Nu and #Su, respectively. For the state #Pu, a low pressure region is
seen near the left edge (y < 0), corresponding to the large counter-clockwise rotating structure
at the same side. The high pressure region near the right edge results from the impingement
of the recirculating flow on the model base. The relevant kinetic turbulent energy exhibits
a higher intensity along the right shear layer (y > 0). The state #Nu flips the observations
above regarding the state #Pu to their opposite side. For the low probable state #Su, the
pressure map is symmetric and more uniform than the other two states. It presents a high
pressure region along the central line y = 0. This distribution agrees with the corresponding
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Figure 4.3: Time-averaged results for the unforced bi-modal flow. From top to bottom: distribution of
time-averaged base pressure Cp, streamwise velocity u overlaid with streamlines and turbulent kinetic
energy k. From left to right: (a) total time-averaged results; conditional averaged results for state (b)
#Pu, (c) #Nu and (d) #Su.

velocity field where the recirculating flow impinges normally on the central base. Besides, the
mean streamline topology is very similar to that presented in Fig. 4.3(a) for the total mean
field but presents a 6% longer bubble length. The k distribution of the state #Su is also
symmetric, but is noisy due to the limited number of images which do not provide a good
convergence for the second order statistics. Another interesting point is the comparison of the
conditionally averaged base pressure of each state with the total mean value 〈Cp〉u = −0.235.
The two asymmetric states lead to the same value: 〈Cp〉#Pu = 〈Cp〉#Nu = −0.236 which is
0.4% lower than 〈Cp〉u. While the symmetric state #Su yields 〈Cp〉#Su = −0.219, being 7%
greater than 〈Cp〉u. The variation of the base pressure for the three states can be also seen
from the diagram of the time series of the area-averaged base pressure 〈Cp〉 versus ∂Cp/∂y, as
shown in Fig. 4.4. The distribution is colored by the PDF of ∂Cp/∂y. The unstable symmetric
mode #Su, observed when two stable asymmetric modes switch, clearly shows a higher base
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pressure (about 7%), corroborating the need for the symmetrizing control in order to achieve
the drag reduction. The conditionally averaged results here agree qualitatively with those in
Grandemange et al. (2013b); Volpe et al. (2015); Perry et al. (2016).

PDF

0

1

#N #P

#S

u

u

u

Figure 4.4: Diagram of the time series of the area-averaged base pressure 〈Cp〉 versus ∂Cp/∂y colored
by the PDF of ∂Cp/∂y. The PDF are normalized by their maximum value. The dashed line indicates
the time- and area-averaged base pressure value 〈Cp〉u. The regions corresponding to the three states
#Nu, #Su and #Pu are also marked in the figure.

4.4 Single edge open-loop forcing

Before performing the feedback control, single edge open-loop forcing is applied to get insights
on the wake response to actuation.

A parametric study is performed with frequencies within StH ∈ [0.1, 2] under a constant
initial supply pressure P i

0 = 1.5 bar. The duty cycle is fixed at DC=50%. The resulting effective
jet velocity is about Veff = 0.2U∞ for all the frequencies, leading to Cµ ≈ 5×10−4. The actuation
is applied either along right (R) or left (L) edge for a duration of 2 min, amounting to 12000tc.
Figure 4.5(a) exemplifies the variation of PDF of ∂Cp/∂y and the corresponding color map of
base pressure for StH = {0.2, 0.8, 2} applied on R and L respectively. When the control is
applied on R, all PDFs of ∂Cp/∂y are concentrated at a negative value, presenting only one
asymmetric state of type #N. Correspondingly, the base pressure distributions show a lower
pressure close to the forced edge R. Similarly, forcing on L results in the asymmetric state of
type #P, featuring a lower pressure close to the edge L and a PDF concentrated at a positive
∂Cp/∂y. These features are observed for the whole range of the tested frequencies mentioned
above and are in agreement with the single slit actuation results in Barros (2015) where no
bi-modal behavior was measured. We note that the wake remains statistically symmetric along
z for all open-loop tests (not shown here).

The pressure response when actuation suddenly starts is reported in Fig. 4.5(b) for the case
of StH = 0.8. Once actuation is turned on, the wake quickly selects the relevant asymmetric
state. We further check the time Tsw taken to switch from one mode to the other submitted to
the actuation. The mean value Tsw obtained from 8 independent experiments at StH = 0.8 is
Tsw/tc = 38, which is of the same order of magnitude as Tsw/tc = 40 of the unforced bi-modal
flow (Fig. 4.2(b)). Moreover, when compared to 〈Cp〉u, the base pressure of the forced flow in
Fig. 4.5(a) is reduced by 4%, 9% and 6% for StH = 0.2, 0.8 and 2, respectively. The results have
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Figure 4.5: Results of single edge, open-loop forcing. (a) PDF of ∂Cp/∂y for controls applied on the
right (R) and left (L) edge respectively with StH ∈ {0.2, 0.8, 2}; the forced edge is highlighted by a
dashed line. (b)Time evolution of pressure gradients for the forcing at StH = 0.8 along R and L; the
arrows indicate the onset of actuation.

no dependence on which edge the actuation is applied. In particular, the pressure is even lower
than the asymmetric state of the unforced flow (Fig. 4.3(b) and (c)). This finding indicates
that single-edge forcing modifies the wake dynamics by local excitation of one shear-layer which
results in a drag increase.

In the following, we investigate specifically the forced wake dynamics at StH = 0.8 which
leads to the highest drag increase. Only the results of the right edge forcing are presented. We
assume that the mechanisms are the same for the left edge forcing. As the forced flow presents
only the state #N, it is interesting to compare it with the state #Nu of the unforced flow.
Figure 4.6(a) depicts the wake topologies by 2D streamlines obtained from the unforced flow
state #Nu and the forced flow. Both present a large clockwise-rotating structure at the side
y > 0, in agreement with the location of the low pressure region. Although they feature a similar
pattern of flow organization, the bubble length of the forced flow is reduced by 5%. The position
of the saddle point (indicated by ‘Sa’ in the figures) is also modified. The streamwise position
is decreased by 10% from xs = 1.45 (unforced flow) to xs = 1.3 (forced flow), whereas the off-
axis distance |y|s is significantly increased by 50%, moving from ys = −0.22 (unforced flow) to
ys = −0.33 (forced flow). These results suggest that the forced wake is more oriented towards
the left side and leads to a higher degree of asymmetry. This observation is also confirmed
by the pressure distribution along the mid-height line (Fig. 4.6(b)) and the mean pressure
gradient value: with actuation (∂Cp/∂y)a = −0.18, being 20% greater than the negative peak

value (∂Cp/∂y)peak = −0.15. The pressure decrease induced by the forcing is more pronounced
near the forced edge R and thus yields a more important gradient.

The observations above show a close link between the decrease of base pressure and the
shorter and more asymmetric wake. The shorter wake associated with a lower base pressure
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Figure 4.6: Results of the right edge forcing at StH = 0.8. (a) 2D streamlines for the unforced flow
state #Nu (left) and the forced flow (right) overlaid on the contour maps of the mean streamwise
velocity u. Lr (see Eq. (3.7)) indicates the bubble length and is highlighted by the dashed line.
The letters R and L indicate the right and left side respectively. (b) Pressure distribution along the
mid-height line of the model.

has been already investigated in Barros et al. (2016b) with a top-edge forcing around the same
frequency StH = 0.8. They found that the velocity fluctuations along the forced shear layer
are most amplified at frequencies close to StH = 0.8. Here, we observe similarly a noticeable
increase of velocity fluctuations along the forced right shear layer, as demonstrated in Fig. 4.7(a-
c) for the Reynolds stresses u′u′, u′v′ and v′v′, respectively. Moreover, the left shear layer shows
also a minor increase of velocity fluctuations, indicative of the interactions between two facing
shear layers. The modifications of velocity fluctuations along the shear layers are directly related
to the local pressure gradient along the boundary of the recirculation bubble as demonstrated
in the following equation (Bradshaw, 1973):

1

ρ

∂p

∂n
=
us

2

Rs

− ∂v′nv
′
n

∂n
, (4.2)

where us is the velocity along a curved streamline, Rs the radius of the local streamline cur-
vature, n the vector normal to the streamline and v′n the velocity fluctuation along n in the
streamline coordinates. The terms negligible to us are neglected. When integrated along n, an
increase of the velocity fluctuation v′nv

′
n leads directly to a decrease of pressure. On the other

hand, the shortening of the bubble length with a conservation of the wake height decreases the
aspect ratio Lr/H of the recirculation bubble which leads to a higher wake bluffness with a
lower radius Rs of the bubble curvature, as observed in the 2D wakes (Roshko, 1955, 1993b).
The reduction of Rs is detrimental for the drag as it increases ∂p/∂n, resulting in a lower
pressure along the recirculation boundary. According to Barros et al. (2016b), at first order ap-
proximation, the variation of pressure along the bubble boundary (δCp)∂B = (Cpa)∂B− (Cpu)∂B
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Figure 4.7: Effects on shear layer dynamics of the right edge forcing at StH = 0.8. (a-c) Distribution
of the Reynolds stresses u′u′, u′v′ and v′v′ for the unforced flow state #Nu and the forced flow. (d)
Streamwise evolution of the shear layer thickness δw.

determines that of the base pressure (δCp)base. This was quantified by the balance of streamwise
forces acting on the contour of the mean recirculation region (Sychev, 1982; Roshko, 1993a,b).
Hence, when (δCp)∂B < 0, we get (δCp)base < 0, pointing to a decrease of base pressure.

Additionally, the enhancement of shear layer dynamics modifies its associated thickness and
growth rate. To clarify these modifications, we quantify the shear layer thickness evolution by
the vorticity thickness following Brown & Roshko (1974)

δw = |ω|−1
max

∫ ymax

ymin

|ω|dy ≈ umax − umin

|∂u
∂y
|max

. (4.3)

Here, we take ymax = 0.8 in the outer flow and ymin = 0 on the symmetric line. Only the initial
development of the shear layer in the range x ∈ [0, 0.5] is investigated. The streamwise evolution
of δw for the forced shear layer is shown in Fig. 4.7(d). The increase of δw corresponds well
to the evolution of Reynolds stresses in Fig. 4.7(a-c) where a larger region of high fluctuation
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values is observed in the forced shear layer. Moreover, the increase of the derivative dδw/dx
indicates a higher growth rate of the shear layer. As entrainment is the main process responsible
for the shear layer growth, more fluid is expected to be entrained from the free stream into
the wake region by actuation. We further quantify the entrained flow using the streamwise
evolution of the integral of the spanwise velocity kinetic energy V(x) inside the domain Ωu<0

defined as follows:

V(x) =

∫
Ω(u<0)

v2(x, y)

2
dy. (4.4)

The result is shown in Fig. 4.8. The overall increase of V(x) corroborates the expectation above
and is in agreement with the result of Barros et al. (2016b). The increased degree of asymmetry
observed in Fig. 4.6 is most likely related to the enhancement of entrained flow from the forced
shear layer. Concomitantly, the higher growth rate brings an earlier interaction of the opposing
shear layers which reduces the bubble length Lr. As discussed in the previous paragraph, the
reduction of Lr is associated with a decrease of Rs, hence the change of the bubble curvature
is an implicit consequence of the increase of shear layer turbulence.

0 0.5 1

x/Lr

0

0.01

0.02

0.03

V(x)

Unforced flow: state #Nu

StH = 0.8 along R

Figure 4.8: Streamwise evolution of V, see Eq. (4.4), inside the recirculation bubble.

The higher degree of asymmetry may also have a detrimental effect on drag. It has been
shown in Grandemange et al. (2013c, 2014) that an asymmetric wake is associated with an
induced drag which is likely related to the square of the lateral force C2

y . With the presence
of the bi-modality, the lateral force Cy was seen to switch between two equal and opposite
extremes as the behavior of ∂Cp/∂y (Brackston et al., 2016; Perry et al., 2016). Once the
state is locked, we assume that Cy is also locked around one extreme value. Higher degree of
asymmetry would lead to a greater Cy and consequently a higher induced drag.

To summarize, the single edge open-loop forcing locks the wake into one asymmetric flow
state and induces pressure decrease close to the forced edge. The reason of drag increase is
twofold. First, in the near wake, the increase of velocity fluctuations along the forced shear layer
decreases the base pressure leading to a higher drag. Second, the higher degree of asymmetry
may lead to a higher induced drag due to the longitudinal vortices in the far wake. Further
measurements on the iso-x planes would be required to confirm the second factor. The results
are inspiring for the design of the feedback control described in the following section.
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4.5 Feedback control

Single edge forcing results show the ability of control to force asymmetric states. Based on this
fact, we propose an opposition control strategy to symmetrize the unforced bi-modal wake. In
§ 4.5.1, we present the design of the controller and the resulting performance. In § 4.5.2, we
illustrate the impacts on the base pressure and near wake of the optimal controller obtained in
§ 4.5.1.

4.5.1 Control design and performance

The aim of the control is to symmetrize the wake. Single edge forcing induces a pressure drop
close to the forced edge, thus by detecting the local pressure drop along one rear side, forcing
can be applied on the opposite edge to generate an instantaneous and opposing flow reversal.
The control law needs a real-time feedback of the flow asymmetry, which can be obtained by
computing ∂Cp/∂y. The low-pass filter used in § 4.3 to identify the states of the unforced flow
is again applied on the gradient to distinguish the long-time bi-modal dynamics from the other

time scales of the wake. We remind that the filtered value is denoted by ̂∂Cp/∂y. The block
control diagram is illustrated in Fig. 4.9(a). The controller can be expressed by:

bR(t) = H

(
∂̂Cp
∂y
− α

)
H(sin(2πft))

bL(t) = H

(
− ∂̂Cp

∂y
− α

)
H(sin(2πft)),

(4.5)

where bR and bL represent the control along right (R) and left (L) edge, respectively. H denotes
the Heaviside function which transforms the continuous output to a binary output (H(x) = 0, if

x 6 0; H(x) = 1, otherwise). The term involving ̂∂Cp/∂y determines when the control should
be applied. A positive pressure gradient threshold α must be defined beforehand: for example,
̂∂Cp/∂y > α implies right edge actuation while no actuation is applied when | ̂∂Cp/∂y| < α.

The choice of α is a compromise between the control performance and the actuation cost. At
this moment, we follow the procedure in § 4.3 for the identification of different states and set
α = 0.06 as the threshold. The influence of different values of α on the result will be detailed
later.

This controller combines the closed-loop gradient feedback with an open-loop periodic forc-

ing. When actuation is commanded, i.e. H( ̂∂Cp/∂y − α) = 1 or H(− ̂∂Cp/∂y − α) = 1, jets
are pulsed with a frequency f and a given pressure supply P i

0. The duty cycle within each
periodic of pulse is fixed at 50%. A systematic study is conducted by varying the frequency f
in the range of StH ∈ [0.1, 2] with a similar supply pressure P i

0 = 1.5 bar as in the previously
described open-loop forcing case. The actuation is applied during 2 min, amounting to 12000tc.
Figure 4.9(b) presents the resulting PDFs of ∂Cp/∂y. The most probable values (dashed lines)
show a convergent-divergent diagram with respect to ∂Cp/∂y = 0 for increasing frequency. A
remarkable damping of asymmetries is found within the frequency range StH ∈ [0.2, 1]. The
degree of asymmetry can be quantified by the root mean square of the pressure gradients,
defined by RMS = ((∂Cp/∂y)2)

1
2 . Either the bi-modal symmetry breaking or locking in one

of two asymmetric states will induce large RMS: smaller RMS values mean more symmetric
wakes (Grandemange et al., 2014). Thus RMS is used here as an indicator of control perfor-
mances. The variation of RMS with respect to StH are shown in Fig. 4.9(c). Compared to
the unforced value RMSu = 0.167, all frequencies lead to a smaller RMS, indicative of a lower
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Figure 4.9: Feedback control results. (a) Block diagram of the closed-loop control. α is the threshold
to trigger the control and f is the forcing frequency. (b) PDF of ∂Cp/∂y for the unforced flow (Ref)
and the closed-loop forced flows at P i0 = 1.5 bar versus StH . The PDFs are shifted for clarity. The
dashed lines indicate the most probable values. (c) RMS of ∂Cp/∂y versus StH at different supply
pressures P i0. The baseline yields RMSu=0.167.

degree of asymmetry. The optimal control leading to the most symmetric distribution with the
minimum RMS is found at StH = 0.8. We equally show in Fig. 4.9(c) the RMS values obtained
with a higher supply pressure P i

0 = 1.7 bar to illustrate the influence of the jet amplitude. The
curve remains the same trend of variation with increasing StH but shifts overall towards lower
values. The minimum RMS still locates at StH = 0.8. We further investigate if the RMS at
StH = 0.8 can be more reduced if we continue to increase P i

0. The results with P i
0 = 2.5 bar

and 3.5 bar are provided in Fig. 4.9(c). No important improvement is noted, suggesting that
the performance of the feedback control at StH = 0.8 has converged from the supply pressure
P i

0 = 1.7 bar.
According to the investigations in § 4.4 and in Barros et al. (2016b), the actuation at

StH = 0.8 particularly enhances shear layer mixing and induces higher entrainment responsible
for altering the recirculating dynamics. The results of the feedback control corroborate the
impact of actuation at this time-scale. At higher frequencies (StH = 1.5 and 2), the PDFs
exhibit a wide distribution with a higher RMS. In fact, shear layer mixing is less enhanced at
these frequencies when compared to StH ∈ [0.2, 1] (Barros, 2015). The actuation is consequently
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less effective to symmetrize the bi-modal wake.

In the following, we focus on the actuation responses of the flow to the forcing at StH = 0.8
and P i

0 = 1.5 bar. Feedback control transients are presented in Fig. 4.10(a). The lateral
asymmetries are notably damped when actuation is turned on, as demonstrated by the time

series of ̂∂Cp/∂y and the centered PDF. A close view of the feedback evolution is presented
in the time plot of Fig. 4.10(b). Edge activation always occurs once the gradient crosses the
threshold and is represented by bR (red) and bL (blue) respectively for the right and left edges.
In this particular feedback case, the mean duty cycle, i.e. the total opening time of the valves
divided by the whole control time, is DC = 30%, which is only 60% that of the open-loop control
having DC = 50%. The small duty cycle value indicates a low-energy consumption for this
control strategy. The influence of the choice of α is investigated at StH = 0.8. Figure 4.10(c)
shows the PDFs obtained at α = {0.02, 0.06, 0.1}, corresponding to 13%, 40% and 67% of
(∂Cp/∂y)peak respectively. Their RMS values and mean duty cycles are also given in the figure.
All three values of α lead to a zero-centralized distribution. α = 0.06 is seen to be the optimal
choice in terms of the performance of symmetrization as it presents a thinner distribution with
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Figure 4.10: Feedback control results with StH = 0.8 and P i0 = 1.5 bar. (a) Time evolution of the

filtered pressure gradient ̂∂Cp/∂y and the PDF of ∂Cp/∂y. The arrows indicate the start and end
of the control. (b) Zoom of the feedback control. The control commands bL and bR are scaled and
shifted for figure clarity. (c) PDFs of ∂Cp/∂y for three threshold values: α = {0.02, 0.06, 0.1}. Their
corresponding duty cycle DC and RMS are also provided in the figure.
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a lower RMS. The mean duty cycle DC decreases with increasing α. At α = 0.02, the no-

actuated interval | ̂∂Cp/∂y| < 0.02 is too narrow, therefore the actuation switches frequently
between the right and left edge resulting in a high DC. As the actuation introduces the
pressure fluctuation, we assume that the higher DC at α = 0.02 is amenable to its slightly
larger RMS when compared to the case of α = 0.06. Reversely, at α = 0.1, the no-actuated

interval | ̂∂Cp/∂y| < 0.1 is too wide, therefore the gradient fluctuations are higher than that

constrained by | ̂∂Cp/∂y| < 0.06 and lead to also a higher RMS. Hence we chose α = 0.06 as
the appropriate value as it presents a good compromise between the control performance and
the energy investment.

4.5.2 Effects on the base pressure and near wake

Having discussed the effect of the feedback control on the wake asymmetry, it is worth assess-
ing their impact on the mean base pressure. Although there is a clear variation of the RMS
with StH , the base pressure is increased by approximately 3% for all the investigated frequen-
cies. The results point out the benefit of the feedback control to the drag reduction, but also
show that there is not a linear dependence of the drag reduction on the degree of asymmetry
(quantified by RMS). Wake symmetrization is not the only mechanism that changes drag. The
concomitant actuation effect may also play an important role. To understand the coupled ef-
fects, we investigate the base pressure and mean wake resulted from the feedback control at
StH = 0.8 with P i

0 = 1.5 bar.
Figure 4.11(a) compares the base pressure and near wake for the bi-modal baseline flow, the

conditionally averaged state #Su of the unforced flow and the feedback controlled flow. The
comparison of the forced flow with the unforced state #Su is interesting as they both feature
a symmetric distribution. The forced flow leads to a mean base pressure of 〈Cp〉CL

a = −0.229,
being 3% larger than the mean unforced value 〈Cp〉u. However, 〈Cp〉CL

a is 4% lower than the
averaged pressure 〈Cp〉#Su of the state #Su. For the velocity field, all three cases are symmetric
with respect to y = 0, but show a discrepancy in the bubble length and the positions of the
two centers of the recirculating zones. The bubble length follows an order of (Lr)u < (Lr)

CL
a <

(Lr)#Su . Intriguingly, the base pressure obeys a similar order: 〈Cp〉u < 〈Cp〉CL
a < 〈Cp〉#Su . This

finding agrees with the discussion in § 4.4 regarding the influence of the change of Lr on the
radius Rs of the bubble curvature and the base pressure (Eq. (4.2)). Here, a longer bubble
length Lr implies a larger Rs which is favorable to increase the base pressure. Besides, the
centers of the recirculating zones in the forced flow are closer to the base than the other two
cases, meaning that the roll-up process of the shear layer has been changed by actuation. In
fact, forcing at StH = 0.8 enhances the shear layer mixing and increases the entrainement of
external momentum into the wake (see § 4.4). These features of excitation make it efficient to
promote the switching of asymmetric states and thus leads to a more symmetric wake. On the
other hand, the enhancement of shear layer mixing leads to high turbulent fluctuations and
reduces the bubble length, both decreasing the base pressure according to Eq. (4.2) in § 4.4
which may explain why 〈Cp〉CL

a is lower than 〈Cp〉#Su .
In Fig. 4.11(b), we analyze the power spectral density of ∂Cp/∂y to shed light on the lateral

wake dynamics. The spectrum of the unforced bi-modal flow points to a high energy content in
the low frequency band StH < 0.02, corresponding to the long time scale between two switches.
Nevertheless, the conditionally averaged state #Su of the unforced flow shows a significant
lower value in this frequency interval. Conversely, a broadband energy increases at smaller
time scales of StH > 0.1. In particular, we can recognize a peak at StH = 0.16 which is the
vortex shedding frequency measured in the unforced flow (Barros et al., 2016a). Note that
this peak is not discernible for the asymmetric states #Nu and #Pu (not shown here). The
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Figure 4.11: Effects of the feedback control at StH = 0.8 with P i0 = 1.5 bar on the base pressure,
near wake and spectrum of the gradient ∂Cp/∂y. (a) Color maps of the base pressure and velocity
magnitude ‖u‖ for the unforced bi-modal flow (top), the conditionally averaged state #Su (middle)
and the feedback controlled flow (bottom). Velocity vectors are overlaid on the maps of ‖u‖. The
bubble length is highlighted by a dashed line. The symbols ‘+’ indicate the location of the centers of
the recirculation zones. (b) Power spectral density (PSD) of the lateral pressure gradient ∂Cp/∂y.

finding suggests that the shedding process is more prominent in a symmetric wake. For the
feedback controlled flow, a damping of the energy at StH < 0.02 is clear compared to the bi-
modal flow, revealing the suppression of the bi-modality. The high energy content at StH < 0.1
corresponds to the time taken to switch continuously from one state to the other submitted
to the actuation. When compared to the state #Su, the forced flow features a greater energy
at StH < 0.1, indicative of a more fluctuating movement at these time scales. Moreover, a
discrete peak also appears at StH = 0.16 and its intensity is much higher than that of the
state #Su. According to Barros et al. (2016a), the amplification of the antisymmetric vortex
shedding leads to an increase of the drag. This constitutes another reason for the lower 〈Cp〉CL

a

with respect to 〈Cp〉#Su .

Figure 4.12 presents the diagrams of 〈Cp〉 versus ∂Cp/∂y for the three configurations above
to compare the effects of the wake symmetrization and enhancement of shear layer mixing on
the statistics of 〈Cp〉. The plot is colored by the PDF of ∂Cp/∂y. In Fig. 4.12(a), one can
clearly notice the benefit of the symmetric state #Su which leads to a higher base pressure.
In Fig. 4.12(b), the detrimental influence of the shear layer excitation can be recognized as
the mean pressure value 〈Cp〉OL

a is 9% lower than 〈Cp〉u. When applying the feedback control
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with StH = 0.8, as displayed in Fig. 4.12(c), the two effects shown in Fig. 4.12(a) and (b) are
combined and yields ultimately a slight pressure recovery (3%) with a symmetrized distribution
of ∂Cp/∂y.

The findings above indicate that the base pressure recovery mechanism associated with the
feedback control is a trade-off between the favorable effect of wake symmetrization and the
adverse effect of shear layer mixing and vortex shedding amplification. At StH = 0.8, although
the degree of asymmetry is most reduced, it also leads to the most important mixing of shear
layer and amplification of vortex shedding. For the other frequencies, the shear layer mixing
is less enhanced and the vortex shedding is less amplified, however, the asymmetric states are
also less suppressed. Hence, the resulting base pressure recovery for all the frequencies does
not differ significantly from each other.

In conclusion, the physics-based feedback opposition control has been able to mitigate the
bi-modal wake dynamics through the unsteady shear layer forcing. We find that by reducing
the wake asymmetry, as measured by the root mean square of the lateral pressure gradient, the
base pressure is increased by 3%, indicative of a slight drag reduction. The results align with the
studies of Cadot et al. (2015); Evrard et al. (2016) and Brackston et al. (2016) which show that
the suppression of the bi-modality can yield a drag reduction. Only a modest 3% base pressure
recovery is achieved because the favorable effect of the wake symmetrization is counteracted
by the increase of the shear layer dynamics. Yet, the amplified shear layer dynamics are
indispensable for the wake symmetrization. In order to advance the control performance with
the present setup, improvements of the control should be made to reduce the detrimental effect
of periodic actuation phases. It would be particularly interesting to determine the minimal
energy needed to trigger the mode switching. The study paves the way for the control of wake
balance or reorientation which is of great importance in windy environment.
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Chapter 5

Drag reduction of the car model at yaw

In this chapter, we pursue drag reduction of the car model at a slight yaw angle with the
oncoming velocity. Fluidic actuation is applied on different lateral edges. We analyze the effects
of forcing on drag and correlate these effects on the modifications of the base pressure and near
wake to shed light on the underlying flow control mechanisms. Based on the flow responses to
the periodic forcing, a physics-based bi-frequency actuation is proposed which outperforms the
optimal periodic forcing. Moreover, the forcing effects by the addition of the Coanda surface
are compared to those without this surface, demonstrating the sensitivity of the wake dynamics
to different types of actuations.
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5.1 Crosswind effects

Road vehicles are often exposed to side flows, for example when passing through a constant
crosswind, wind gusts or unsteady wakes by other vehicles. The flow in the vehicle’s reference
system will be the vector combination of the side flow and the reciprocal of vehicle’s forward
velocity (Sims-Williams, 2011), as depicted in Fig. 5.1.
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Yaw

Windward

Leeward

Figure 5.1: Vector combination of the vehicle velocity Uveh and side wind Uwind. U∞: the resultant
velocity vector seen by the vehicle. Adapted from Sims-Williams (2011).

The lateral side which is sheltered from the wind is called leeward, while the opposite flank
facing the wind is denominated as windward. The side wind introduces the imbalance dynamics
between the windward and leeward side, resulting in an asymmetric pressure distribution over
the side surfaces of the vehicle. These asymmetric features raise mainly two concerns. First,
they affect the driving comfort and safety, especially under unsteady crosswinds. The vehicle
can be deviated from its trajectory by the combined action of the side force and yaw moment.
In the cases of buses, trucks or trains, the vehicle can be even overturned by the effect of roll
moment (Baker, 1986) due to their large lateral side area. The driving comfort and safety are
mostly the concerns for large yaw angles of more than 20 degrees. Second, the drag increases
under crosswind conditions as observed in previous studies (Gohlke et al., 2007; Grandemange
et al., 2015; Garćıa de la Cruz et al., 2017a; Rossitto et al., 2017). Gohlke et al. (2007) and
Rossitto et al. (2017) reported a quasi-linear drag increase with increasing yaw angles up to 15◦.
This increased drag is of major interest especially at small yaw angles as the yaw moment barely
induces any risks in this case. In particular, small angles commonly appear in the real world
situations. Figure 5.2, reported by D’Hooge et al. (2014), shows that the majority of possible
yaw angles are within the range of 0◦ to 6◦, which covers more than 88% of the probability
distribution. It is not the intention of this study to assess the driving safety due to large yaw

Figure 5.2: Probability distribution of the yaw angle for a ground vehicle traveling at 70 mile per hour
(D’Hooge et al., 2014).

angles or unsteady crosswinds but to explore the potential of drag reduction for vehicles at
small yaw angles. The simplest measure is to determine the drag coefficient at a representative
average yaw angle (Howell, 2015).

Flow control using passive or active devices for drag reduction of vehicles under yaw angles
is challenging and remains relatively not well understood. Garćıa de la Cruz et al. (2017a)
minimizes the drag force of a sub-scaled Ahmed body with two lateral rear flaps. They per-
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formed a parametric study by varying different flap deflections, yaw angles and flap lengths.
Optimal flap configurations, which are non-symmetric for non-zero yaw angles, are those that
minimize the lateral force on the vehicle, while also minimizing the contribution of the flap-
induced drag. Based on their results, an adaptive flap system can be designed to improve the
static-flap performance. Active flow control with a steady Coanda blowing was investigated
in Pfeiffer & King (2012). The authors developed a robust multi-variable closed-loop control
strategy to reduce the drag and yaw moment of a three-dimensional bluff body for crosswind
yaw angles from 0◦ to 10◦. The controller is synthesized using linear black-box models identified
from experimental data. It achieves 22% drag reduction for straight oncoming flow (zero yaw
angle), and reduces the yaw moment to zero at a yaw angle as large as 10◦. However, in the
later case, drag was slightly increased compared to the unforced flow.

Most of the studies directly impact the geometry of the model by the addition of base flaps
or curved surfaces. Based on our results in Chapter 3 and Chapter 4, fluidic blowing using
pulsed jets similarly improve the aerodynamic performance. However, it affects directly the
wake dynamics without changing the model geometry. This fact can be considered as a great
advantage over passive devices.

In this work, we apply fluidic forcing to manipulate the wake past a yawed car model
subjected to a moderate yaw angle of 5◦. According to Fig. 5.2, this yaw angle happens with
a high probability. The purpose here is to investigate the control authority of pulsed jets to
decrease drag. Although the aerodynamics under steady yaw conditions differ significantly
from unsteady crosswind flows, the simplified steady configuration provides insights to more
complicated oncoming flow dynamics.

5.2 Experimental setup

The experimental facility and the model are identical to the ones described in Chapter 3. This
section only presents the differences with respect to the setup detailed in § 3.2.

A sketch of the setup is shown in Fig. 5.3. Two coordinate systems are distinguished: the
aerodynamic coordinates (Xo, Yo, Zo) with Xo parallel to the free-stream velocity U∞ and the
body-fixed coordinates (x, y, z) aligned with the length axis of the car model. The origin of the
former system lies at point Oo which is located on the raised flow and at the center of the car
model, while the latter system has the same origin O as described in the previous chapters for
a clear demonstration of the wake region. Crosswind is simulated by turning the model with
respect to the upstream velocity by a yaw angle β. At zero incidence, i.e. β = 0◦, Xo aligns
with x, similar to the analysis reported in the previous chapters. Here, the yaw angle is fixed
at β = 5◦. The experiments were performed at U∞ = 25 m s−1, corresponding to a Reynolds
number ReH ≈ 5× 105, based on the height of the model.

Measurements of forces and moments

In a yawed configuration, not only the drag but also the side force and yaw moment need to
be characterized. For that, we use of a six-component force and moment balance. It enables
measurements of the forces and moments acting on the model along the three directions. The
measuring system is composed of a 9129AA Kistler multicomponent dynamometer using piezo-
electric force sensors and a 5080A charge amplifier. The maximum permitted measuring range
is [-10, 10]kN for forces and [-500, 500]N·m for moments. The calibrated range used here is
[0, 60]N. Measurement uncertainty due to the hysteresis and nonlinearity is less than 0.3% of
the full scale span.
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Figure 5.3: Sketch of the yawed model setup. (a) Top view; (b) side view; (c) perspective view.

The balance has been calibrated outside the wind tunnel. More than 150 independent
experiments with calibrated loads on the different measurement channels allow us to establish
an calibration matrix. The corresponding equation is:

S = GF , (5.1)

where S is the signal vector, F the known load vector and G the calibration matrix. For a
multi-component force transducer, the design ensures that all the loads acting on the model
are separated into single component as best as possible. In principle, there is only a linear
interaction between the load and the measured signal. G is a 6 × 6 matrix with non-zeros
values on the diagonal. In reality, there exist systematic errors due to interactions among
different components which may cause a few-percent difference in the linear characteristic.
Therefore it is often necessary to measure more components in order to separate the errors
during calibration to improve the accuracy. In the present study, these interactions are taken
into account by including second-order nonlinear terms in the matrix G which is of size 6× 21.
The matrix G is then used in the analysis software to determine the aerodynamic loads from
the measured balance data: Fa = (G)−1S (Tropea & Yarin, 2007; Paillé, 2017).

The balance is mounted inside the raised floor and is connected to the model through a
metal plate of thickness 15 mm, as shown in Fig. 5.3(b). The metal plate is connected to the
model by the use of four profiled supports and is aligned with the model, while the balance
is parallel to the wind tunnel axis X0, as depicted in Fig. 5.3(a). Thus the balance measures
aerodynamic forces in the wind tunnel frame. However, we are interested in the forces in the
model frame as the drag to be overcome by the propulsion system is against the car’s travel
motion. At this end, the measured quantities are projected on the body axes (x, y, z) with the
origin Oo of the wind tunnel frame. In the following, the mentioned forces and moments refer
to the body-fixed reference (x, y, z) with the origin Oo as presented in Fig. 5.3(c). The data
is acquired by a 16-channel Data Translation DT9857E data acquisition module at 100 Hz.
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A low-pass filter at 10 Hz is used to get the time-averaged forces Fi and moments Mi with
i ∈ {x, y, z}. Each coefficient of the forces and moments is expressed as follows:

Drag coefficient: Cx = Fx/qS

Lateral force coefficient: Cy = Fy/qS

Lift coefficient: Cz = Fz/qS

Roll moment: CMx = Mx/qSlm

Pitch moment: CMy = My/qSlm

Yaw moment: CMz = Mz/qSlm

(5.2)

where q = 1/2ρU2
∞ is the dynamic pressure, S = HW is the frontal area of model and lm =

1/2Lf is half the distance between two support feet (see Fig. 5.3(a)). To be consistent with the
previous chapters, we make Cx = CD without ambiguity.

Note that there is a drift in the output signal over time, which is a typical characteristic
of using piezoelectric sensors. Although the design of the balance has limited this drift, it still
affects the accuracy of the measurements when the recording time is long. Hence, we remove
this drift from the raw data by estimating a drift rate α using signals in quiescent air recorded
over more than 30 s. The corrected signal is obtained by subtracting αt from the original
recorded data, where t is the relevant recording time. The coefficient α varies from different
experiments and it was calculated for each of them to improve the accuracy of the corrected
data.

Although the six force components are measured, we focus on the most relevant quantities
concerning the crosswind dynamics, i.e. the drag force CD along x, the side force Cy along y
and the yaw moment CMz along z.

Reservoir pressure regulation

In the previous chapters, the actuation amplitudes are regulated by changing the initial supply
pressure P i

0 in the compressed air reservoir located inside the model (see Fig. 3.2(b)). In this
chapter, we apply a proportional-integral-derivative (PID) controller to maintain the reservoir
pressure at a constant set-point during the actuation for all investigated frequencies. The sensor
of the PID controller is a Bourdon Sedem R© E913 pressure transmitter which measures the
instantaneous pressure inside the reservoir. An electro-pneumatic regulator (SMC R© ITV3030)
is used to control the reservoir pressure steplessly according to the output command of the PID
controller. In the following, we denote by P0 the supply pressure in the reservoir.

Velocity measurements

PIV measurements are performed with the same methodology described in § 3.2.3. The mea-
surements are acquired in the lateral plane at mid height z = 0.67, as presented in Fig. 5.3(c).
The time between a pair of images yielding one velocity field is 50 µs. The image pairs are
recorded at a sampling rate of 3.5 Hz. Velocity vectors are processed with an interrogation win-
dow of 32 × 32 pixels with a 50% overlap, giving a spatial resolution of 2.7 mm corresponding
to 0.009H. The field of view covers a region of approximately 2.5 H × 1.8 H. The velocity
statistics are computed with 1500 independent velocity fields.

Hot-wire measurements using the StreamlinePro Anemometer System described in § 3.2.3
are performed for the measurement of boundary layer profiles over the model’s lateral surface.
The hot-wire probe is fixed to a profiled traverse system installed on the roof of the wind tunnel.
Boundary layer profiles are measured with respect to the normal direction of the model’s surface,
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thus the probe is carefully regulated to align with the model axis x and is traversed along y.
The precision of the displacement system is 16 µm.

Real-time system

The control applied in this chapter uses the same Labview Real-time module presented in
§ 3.2.4. The main difference is that we increase the sampling rate of the real-time processing
to FRT = 5 kHz and the acquisition frequency to 2.5 kHz. The increase of FRT is to have more
possibilities of periodic frequencies and their corresponding duty cycles (DC). For details, see
§ 3.2.4. The tested periodic frequencies and duty cycles are the subset of the harmonics derived
from FRT = 5 kHz, as shown in table 5.1. The displayed duty cycles are obtained by changing

Nsp f [Hz] StH DC
— 0 0 100%
500 10 0.12 47%
357 14 0.17 47%
278 18 0.21 47%
250 20 0.24 47%
156 32 0.38 47%
125 40 0.48 47%
100 50 0.6 47%
74 68 0.8 46%
63 80 1 46%

Nsp f [Hz] StH DC
50 100 1.2 48%
33 151 1.8 45%
25 200 2.4 48%
20 250 3 45%
17 294 2.3 47%
15 333 4 47%
13 385 4.6 46%
12 417 5 42%
11 455 5.4 45%
10 500 6 40%

Table 5.1: Tested periodic forcing parameters. Nsp is the number of sampling points in one time
period of f ∈ [0, 500]Hz. f = 0 denotes the continuous blowing.

the threshold of the Heaviside function from 0 to 0.1, i.e. b(t) = H
(

sin(2πft)− 0.1
)
, b(t) being

the control law to generate periodic forcing. The value 0.1 is chosen based on the results of
Chapter 3 which show that high frequencies with a duty cycle lower than 50% perform better
than those having a high duty cycle.

5.3 Unforced flow

In this section, we describe the unforced flow characteristics at yaw angle β = 5◦. The results
furnish the baseline to be compared with the forced wakes. First, we compare the boundary
layer profiles close to the flow separation over the leeward and windward sides. Then, we
illustrate the statistics and dynamics of the base pressure and near wake. We also discuss the
mean forces and moments for this yaw configuration.

Boundary layer conditions

The boundary layer at separation sheds vorticity into the flow and conditions the roll-up process
of the free shear layers originating from the trailing edges (Morris & Foss, 2003). To identify
different boundary layer conditions, the hot-wire anemometry is used to measure the streamwise
velocity at two points located at the leeward and windward trailing edge. The hot-wire probe
is displaced 1mm downstream of the trailing edge for safe traversing. The coordinates for
the two points are respectively (x, y, z) = (0, 0.6, 0.67) and (0,−0.6, 0.67) which are indicated
in Fig. 5.4(a). Figure 5.4(b-d) present the profiles of the time-averaged streamwise velocity
and the standard deviation. The ordinate ∆y corresponds to the wall distance. Figure 5.4(b)
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illustrates the dimensional profiles, while in Fig. 5.4(c,d) we normalize ∆y by the boundary
layer thickness δ0.99 which is δlee

0.99 = 18.5 mm for the leeward and δwind
0.99 = 14.6 mm for the

windward side. Note that the mean velocity u is already divided by the upstream velocity U∞.
The most significant difference between the two boundary conditions lies in the wall vicinity.
Instead of a typical turbulent boundary layer profile as observed at the windward side, leeward
side presents a layer of thickness 1 mm close to the wall with very low velocities inside. We
further give a close view of this layer in Fig. 5.4(c). Intriguingly, there exists a reversal in the
sign of the velocity gradient with a minima at ∆y/δlee

0.99 = 0.032. This profile is reminiscent of
the separated boundary layer except that we do not observe a reversed flow here as the hot-wire
measurement technique applied in this study is not able to distinguish the flow direction. Based
on the observation, we assume that the velocities below ∆y/δlee

0.99 = 0.032 may be negative due
to an adverse pressure gradient and that the leeward boundary layer has separated upstream
of the trailing edge. Figure 5.4(d) shows that the maximum fluctuating velocities of both
boundary layers are more than 15% of the upstream velocity and are concentrated close to the
wall.
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Figure 5.4: Time-averaged streamwise velocity from the hot-wire measurements. (a) Measuring point
positions. (b) Dimensional boundary layer velocity profiles. Note that we denote by u the non-
dimensional velocity. (c) Non-dimensional boundary layer velocity profiles. The inserted figure gives
a close view of the leeward profile near the wall. (d) Standard deviation of the velocity.
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Near wake and base pressure

Now we turn our attention to the near wake flow. The aim here is to compare the yawed
(β = 5◦) and aligned configurations by detailing their wake, base pressure and aerodynamic
forces.

To clarify the changes of flow caused by a yaw angle, we compare in Fig. 5.5 the mean
velocity field in the mid-height plane z = 0.67 and the base pressure for the aligned and yawed
model. Note that the results for the aligned model were obtained at U∞ = 30 m s−1, but the
corresponding wake topology is equivalent to that at U∞ = 25 m s−1. In particular, Barros
(2015) demonstrated that the mean velocity profiles in the wake are almost superimposed for
these two upstream velocities. Thus, we consider that this comparison is sufficient to describe
the influence of yaw angle.
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Figure 5.5: Mean wake in the mid-height plane and base pressure for (a-c) the aligned model at
U∞ = 30 m s−1 and (d-f) the yawed model at U∞ = 25 m s−1. From left to right: the color maps of the
mean streamwise velocity u, the mean spanwise velocity v and the base pressure. Black lines in (a)
and (d) are iso-contour lines at u = ±0.25. The arrows on the model show the direction of oncoming
velocity.

For the aligned model, the distributions of u, v and Cp are all symmetric with respect to
y = 0. The presence of the yaw angle breaks this symmetry. The iso-contour lines in Fig. 5.5(d)
are deviated towards the windward side, and a high curvature is observed at the leeward side
near the end of the recirculation region. The distribution of v in Fig. 5.5(e) shows that most
of the free-stream flow is entrained into the wake region from the leeward side, manifested by
the large blue region with negative spanwise velocities. Thus, the mean wake exhibits a large
clockwise recirculating structure which is shown later in Fig. 5.12. This asymmetry is expected
as the boundary conditions at the windward and leeward side differ from each other leading
to different shear layer dynamics and recirculating flows. The observations suggest us that if
the entrained flow from the windward side can be increased by the shear layer excitation, it
may counteract the opposing leeward flow and symmetrize the wake which has been shown
to be beneficial for the drag reduction in Chapter 4. This problem will be the subject of
§ 5.5. Additionally, the distribution of Cp in Fig. 5.5(f) is consistent with the velocity field. A
large low-pressure zone located near the leeward edge confirms the existence of the clockwise
recirculating flow at the same side. On the other hand, we observe that the topology of the
horizontal velocity field at mid-height z = 0.67 for the yawed configuration is quite similar to
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that of the vertical velocity field at y = 0 for the aligned condition (see Fig. 5 in Barros et al.
2016b).

The wake dynamics can be further analyzed by the distribution of Reynolds stresses u′u′, v′v′

and u′v′. These quantities are depicted in Fig. 5.6 for the two configurations as in Fig. 5.5. All
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Figure 5.6: Reynolds stresses in the mid-height plane for (a-c) the aligned model at U∞ = 30 m s−1 and
(d-f) the yawed model at U∞ = 25 m s−1. The arrows on the model show the direction of oncoming
velocity.

three quantities are concentrated along the shear layers, especially for u′u′ and u′v′. The shear
layers of the aligned model feature a symmetric distribution, in agreement with the balanced
wake shown in Fig. 5.5. For the yawed configuration, the velocity fluctuations along the leeward
shear layer are considerably higher than those along the windward shear layer. The turbulent
dynamics along the leeward shear layer are expected to be damped by the flow curvature (Borée
et al., 2002; Bradshaw, 1973). These distributions of Reynolds stresses are similar to those on
the vertical plane y = 0 for the aligned model where the fluctuating motions are concentrated
in the bottom shear layers with wall proximity. In particular, leeward (windward) shear layer
resembles the top (bottom) shear layer of the aligned model. This observation suggests that
the presence of side wind induces similar global effects as those created by the wall proximity
or by any other asymmetries or controls (Barros et al., 2017).

Mean forces and moments

Table 5.2 compares the base pressure, forces and moments for aligned and yawed configurations.
The yaw condition decreases the time-averaged base pressure by 22% and increases the drag by
3%. The important base pressure drop is associated with the appearance of the wake asymmetry
demonstrated in Fig. 5.5(d,e). The drag increase is consistent with the results of Pfeiffer &
King (2012), but is smaller than the observations of Grandemange et al. (2015) and Garćıa de
la Cruz et al. (2017a) with flaps installed at the back surface.

We did not measure Cy and CMz for the aligned model, but these values are assumed to
be near zero as the distribution of velocity and pressure is symmetric with respect to y = 0,
see Fig. 5.5(a-c). For the yawed configuration, an important side force Cy is obtained which
is induced by the asymmetric pressure distribution along the leeward and windward surface.
Although the measurements of the pressure along the lateral surfaces are not available in the
present study, we can get a hint from the results of Pfeiffer & King (2012) where a similar 3D
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Configuration 〈Cp〉 CD Cy CMz

Aligned model -0.231 0.266 – –
Yaw angle β = 5◦ -0.280 0.274 0.314 -0.23

Table 5.2: Averaged base pressure, forces and yaw moment coefficients for the unforced flow past the
aligned and yawed model. Results are obtained at U∞ = 25 m s−1.

bluff body was investigated at a crosswind angle β = 10◦. The pressure around the model of
their study is shown in Fig. 5.7. It illustrates an overall lower pressure on the leeward side than

Scale:

Figure 5.7: Results extracted from Pfeiffer & King (2012). Pressure distribution along a cross-section
of the 3D bluff body at yaw angle β = 10◦. The length of the black arrows correspond to the magnitude
of the pressure coefficients. Positive (negative) pressure coefficients point inwards (outwards).

the windward side which leads to a positive lateral force. In particular, the lowest pressure
locates near the leeward nose of the model which is related to the high flow curvature at this
region. According to Grandemange et al. (2014), a non-zero lateral force Cy is likely to increase
the drag due to the induced drag effect which is linked to the streamwise vorticity in the far
wake. However, the issue of induced drag for square-back bluff bodies remains to be clarified
with further investigations. On the other hand, the result in Fig. 5.7 points to a different
contribution of the side forces from the front and rear parts of the model. The yaw moment
is actually generated by this different contribution. In the present study, the yaw moment is
negative, indicating that a larger contribution of the side force comes from the front part due
to the low pressure near the leeward nose of the model.

5.4 Leeward forcing

In the following, we focus on the actuated flows. In this section, periodic forcing is applied
along the leeward edge. The aim is to investigate the effects of leeward forcing on the base
pressure, drag and near wake. The results will motivate and provide hints for future studies of
closed-loop control.

5.4.1 Global effects of actuation

To quantify the effects of actuation at various frequencies and amplitudes, we define the fol-
lowing parameters:

γp =
〈Cp〉a
〈Cp〉u

, γD =
CDa

CDu

, γy =
Cya
Cyu

, γMz =
CMza

CMzu

. (5.3)
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The subscript ‘u’ represents unforced flow and ‘a’ stands for actuated flow. These parameters
indicate the changes of base pressure, drag, side force and yaw moment, respectively. The
definition of γp is the same as the cost function J in Chapter 3: γp < 1 (γp > 1) represents
the increase (decrease) of base pressure. For the other three parameters, a value smaller than
1 corresponds to a reduction of the absolute value of the related quantity. The effects of
actuation on these parameters are shown in Fig. 5.8. For a clearer plot, the abscissa is shown
with a logarithm scale. The applied frequencies and their corresponding duty cycles are listed
in table 5.1. The uncertainties of these measured ratios are about 0.3% based on a confidence
interval of 95%. For all the investigated frequencies, the leeward actuation increases both γp
and γD. Augmenting the supply pressure P0 further promotes this increase of γp and γD for
the whole frequency range. The highest value of γp and γD are both found at StH = 0.8
independent of P0. Note that this frequency value is also responsible for the highest increase
of drag in the study of Barros et al. (2016b) when the forcing is applied along the top leading
edge. In addition, the trend of γp in Fig. 5.8 agrees well with the curve in Fig. 8 of Barros et al.
(2016b) which demonstrates this dependence of γp on StH of the top edge without yaw angle.
We have mentioned in § 5.3 the similarity of the unforced flow features between the mid-height
plane z = 0.67 at β = 5◦ and the symmetric plane y = 0 at β = 0◦. Here, the variation of γp
for these two cases further underlines their similarity in the forced flow features.

Leeward actuation increases γy for almost all the test cases while decreases γMz for the
whole range of StH . Few points around StH = 0.8 are below γy = 1 but their variations are
as small as the measurement uncertainty 0.3%. The dependence of γy on P0 is not clear for
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Figure 5.8: Effects of leeward forcing on the ratios of base pressure γp, drag γD, side force γy and
yaw moment γMz as a function of the non-dimensional frequency StH and supply pressure P0. The
unforced value equals to 1 for all four quantities.
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StH < 5.5 since the variations with P0 are less than ±1%. At StH = 6, the impact of P0 is
more pronounced and it appears that γy increases and γMz decreases with increasing P0. The
highest value of γy and the lowest value of γMz are both obtained at StH = 6 with P0 = 2.5 bar.
In addition, at StH = 0.8 where γD has been increased by 9%, the corresponding variations of
γy and γMz remain small (less than 2%), indicating that the forcing effect at this frequency is
more important on the drag than on the side force and moment.

Moreover, Fig. 5.8 suggests a positive correlation between γp and γD, and a negative cor-
relation between γy and γMz . Their linear relations and correlation coefficients are reported
in Fig. 5.9. The decrease of base pressure accounts for 100% of the drag increase, while
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their correlation coefficient, respectively. Note that 1− γp = ∆Cp/〈Cp〉u.

without yaw, Barros (2015) measured that only 70% of base pressure increase contributes to
the drag increase. This suggests that the CD vs. Cp relation should be reviewed for the yawed
configuration. The ratio between the decrease of γMz and increase of γy is −1.14. We have
mentioned before that the yaw moment is related to the balance of side forces Cy in the front
and rear parts of the model. To gain insights on the variation of Cy in the rear part, we show in
Fig. 5.10 the profiles of the streamwise velocity u measured at x = −0.08 prior to the leeward
separation. The velocity is accelerated by actuation, implying a decrease of the corresponding
pressure. We also verify that the actuation does not affect the velocity over the windward
side. This suggests that Cy in the rear part increases. Therefore, a counter-moment is created,
which reduces the yaw moment. Similar observations have also been reported in Pfeiffer & King
(2012) where side surface pressures were measured by sensors. Fig. 5.10 also presents that the
velocity acceleration is more pronounced at StH = 6, revealing a higher side force and a higher
counter-moment. Hence this frequency yields the most significant increase of γy and reduction
of CMz .

5.4.2 Effects on the base pressure and near wake

To shed more light into the underlying mechanisms responsible for increasing drag, we devote
the following paragraphs to analyze the dynamic changes of base pressure and near wake under
actuation. We focus here on two configurations with P0 = 2.5 bar: (1) the low-frequency forcing
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Figure 5.10: Profiles of the time-averaged streamwise velocity u over the rear leeward surface at
x = −0.08 (data extracted from PIV measurements). Note that the side surfaces of the model are
located at y = ±0.6.

at StH = 0.8 with the maximum drag increase (+9%); (2) the high-frequency forcing at StH = 6
with the minimum yaw moment (−6%) and less increase of drag (+4%).

First, we describe the effects of actuation on the base pressure distribution and the temporal
variation of the lateral pressure gradient. The data used for this analysis are recorded during
2.5 minutes, corresponding to 12000 convective time units tc = H/U∞. Figure 5.11(a) compares
the contour maps of the time-averaged base pressure for the unforced and forced flows. It is
clear that the base pressure near the forced edge is decreased by actuation at both frequencies
(see blue zones on the pressure distribution). Figure 5.11(b) highlights the four pressure values
at the model’s mid-height line. The actuations reduce the pressure along the whole spanwise
direction. This observation is consistent with the findings of the open-loop tests of the bi-
modal wake control: the base pressure drops close to the forced edge independently of the
applied frequency. We also investigate the statistics of the lateral pressure gradient defined as:

∂Cp
∂y

=
1

2

Cp8 − Cp5
y8 − y5

+
1

2

Cp7 − Cp6
y7 − y6

. (5.4)

This definition was used in Chapter 4 to quantify the lateral wake asymmetry. Figure 5.11(c)
shows the PDF of ∂Cp/∂y. The three curves collapse with the most probable gradient at
∂Cp/∂y = −0.12, indicating that the forcing has no impact on the degree of asymmetry. Note
that the pressure gradient ∂Cp/∂z along z is centered around zero for all three cases (not shown
here). We further analyze the spectrum of ∂Cp/∂y (Fig. 5.11(d)) which reflects the lateral wake
dynamics such as vortex shedding. Not only distinct peaks at the forcing frequency can be
distinguished, a broadband increase in the low frequency range (StH < 0.15) is also discernible.
This suggests that the actuation promotes the low-frequency wake motions by exciting the
shear layer at a higher frequency.

The changes of base pressure are related to the modifications of the near wake flow. Fig-
ure 5.12 shows the time-averaged in-plane streamlines of the velocity field in the mid-height
plane for all three configurations. All of them feature a similar streamline topology with a
more extended clockwise recirculating motion close to the leeward side. This is in agreement
with the distribution of the mid-height line pressure in Fig. 5.11(b) and the coincident PDF
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Figure 5.11: Effect of leeward actuation on the base pressure at StH = 0.8 and StH = 6 with
P0 = 2.5 bar. (a) Distribution of time-averaged pressure Cp for the unforced flow and two forced flows.
The forced edge is highlighted by the red dashed line. (b) Cp on the mid-height line; (c) PDF of the
lateral pressure gradient; (d) PSD (power spectral density) of the lateral pressure gradient.
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Figure 5.12: Effects of leeward forcing on the near wake in the horizontal mid-height plane z = 0.67.
Streamlines of the mean velocity field overlapped with the contour maps of the velocity magnitude
‖u‖ =

√
u2 + v2.

of ∂Cp/∂y shown in Fig. 5.11(c). In particular, the location of the lowest pressure value in
Fig. 5.11(b) agrees with the location of the center of the leeward recirculating structure. A sig-
nificant difference can be observed in the bubble length. A decrease of 8% and 4% is measured
respectively for the low-frequency (StH = 0.8) and high-frequency forcing (StH = 6). These
observations are very similar to those analyzed in § 4.4 where we compare the asymmetric state
#Nu of the unforced bi-modal flow with the forced asymmetric wake, except that here we do
not observe a change of the degree of asymmetry.

The effects of actuation on the shear layer dynamics resemble also those in § 4.4. We
observe similarly a significant enhancement of the turbulent dynamics along the forced shear
layer, as shown in Figure 5.13 for the distributions of u′u′, u′v′ and v′v′ along the forced leeward
shear layer of the three cases. In particular, the turbulent fluctuations are most amplified at
StH = 0.8, in agreement with the results in Barros et al. (2016b). Figure 5.13(d) reports the
streamwise evolution of the shear layer thickness δw (Eq. (4.3)). The increase of δw and its
derivative dδw/dx for the forced flow illustrates a thicker shear layer with a higher growth rate.
These changes lead to a reduction of the bubble length (see Fig. 5.12) and an increase of the
entrained flow inside the recirculation bubble as demonstrated in Fig. 5.14 for the streamwise
evolution of the integral of the spanwise velocity kinetic energy V inside the domain Ωu<0

(Eq. (4.4)). Moreover, the shorter bubble length and the higher increase of the entrained flow
at StH = 0.8 is coherent with its higher shear layer thickness δw and growth rate dδw/dx.

Similar to the scenario described in § 4.4, the enhancement of the shear layer turbulent
dynamics is detrimental to the drag reduction. On the one hand, it decreases the pressure
along the bubble boundary explicitly by increasing the fluctuation term v′nv

′
n in Eq. (4.2). On

the other hand, it enhances the entrainment process which reduces the bubble length thus
decreasing the radius Rs of the bubble curvature. The reduction of Rs leads also to a pressure
decrease along the boundary ∂B of the bubble (see Eq. (4.2)). As (δCp)∂B ∼ (δCp)base (Barros
et al., 2016b), we obtain ultimately a decrease of base pressure and drag increase.
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Figure 5.13: Effects of leeward forcing on the shear layer dynamics. Distribution of (a) u′u′, (b) u′v′

and (c) v′v′ for the unforced flow and forced flows with StH = 0.8 and StH = 6. (d) Streamwise
evolution of the shear layer thickness δw according to Eq. (4.3).
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Figure 5.14: Streamwise evolution of V (Eq. (4.4)) for the unforced flow and leeward forced flows at
StH = 0.8 and StH = 6.

5.5 Windward forcing

Having examined the leeward forcing, this section is devoted to investigate the windward forc-
ing. In § 5.5.1 we report the global effects of actuation on the base pressure, drag and yaw
moment. The associated changes of the near wake dynamics and the underlying physical mech-
anisms are discussed in § 5.5.2.

5.5.1 Global effects of actuation

When discussing Fig. 5.8 in the previous section, we noted that the supply pressure P0 does
not affect significantly the behavior of the curve. Here we focus only on the influence of the
forcing frequency by looking at the results at a constant pressure supply P0 = 2.5 bar. At
this pressure level, the effective jet velocity Veff, calculated as Veff = (V 2

Jet)
1
2 , is about 0.5U∞

for the considered frequencies. The variations of the base pressure, drag, side force and yaw
moment, represented by γp, γD, γy, γMz , respectively, are presented in Fig. 5.15. For the whole
range of frequencies, the windward forcing increases the base pressure, reduces drag and side
force, and augments the yaw moment, imposing exactly the opposite effects when compared
with those of leeward forcing. One can still note the positive correlation between γp and γD and
the negative correlation between γy and γMz . Their correlation coefficients are ργp,γD = 0.84
and ργy ,γMz

= −0.74, respectively. Intriguingly, when considering the points at StH > 0.8, we
found ργp,γD ≈ 1. This finding indicates that the drag reduction at low frequencies (StH 6 0.8)
is not well correlated to the base pressure. To identify the origin of this behavior, we would
need pressure measurements along the side of the model which we do not have in the present
experimental setup.

It is interesting to note that γD presents two minimums located at StH = 0.48 and StH = 6,
respectively. They both reduce the drag by about 6%, StH = 0.48 being slightly better.
However, they present a significant difference in the side force γy and yaw moment γMz . Forcing
at StH = 0.48 has an insignificant increase of yaw moment (2%), whereas nearly 10% of increase
is obtained at StH = 6. Analogous to our analysis of leeward forcing, this modification is related
to the change of Cy at the rear windward side. We report the spanwise profiles of u at the
windward and leeward separation point at x = 0.01 in Fig. 5.16. At the forced windward side,
the actuation StH = 6 notably accelerates the flow, implying a decrease of pressure close to
the rear windward edge. This acceleration effect is quite similar to that induced by an inward-
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Figure 5.15: Effects of windward forcing on the ratios of base pressure γp, drag γD, side force γy and
yaw moment γMz as a function of the non-dimensional frequency StH . The supply pressure is fixed
at P0 = 2.5 bar.
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deviated flap along the windward edge. Hence it is reasonable to compare the actuation at
StH = 6 to a virtual fluidic flap having the similar effect of a real flap. In contrast, StH = 0.48
shows no evident variation of the velocity.

Although no actuation is applied at the leeward edge, we note a deceleration close to the
leeward separation (see Fig. 5.16), indicating an increase of the wall pressure. Moreover, it
suggests that there exists a reorganization of the free-stream flow surrounding the model under
actuation. The change of wall pressure along the respective side corroborates the decrease of
γy and increase of γMz . In particular, StH = 6 exhibits both an increase of pressure on the
leeward side and a decrease of pressure on the windward side, thus resulting in larger changes
of γy and γMz .

We may further estimate the pressure increase related to the flow deceleration in the po-
tential flow at y = 0.72 by applying Bernoulli equation on a streamline emerging from the
upstream flow. Assuming that the upstream flow has the same pressure and velocity for the
three cases, we can write (δCp)po = (pa − pu)/0.5ρU2

∞ = u2
u − u2

a where ‘po’, ‘u’ and ‘a’ are the
potential, unforced and actuated flow, respectively. Note that uu and ua are normalized by U∞.
Based on the data in Fig. 5.16, we obtain (δCp)po = 0.026 and 0.029 respectively for StH = 0.48
and 6. These values will be used later for the comparison of changes in base pressure.

Given the significant difference of the yaw moment for StH = 0.48 and StH = 6, we would
expect two contrasting actuation mechanisms. In the following paragraphs, we analyze what
these two mechanisms are and how they lead to the similar drag reduction with more details
of the base pressure and velocity field data set.

5.5.2 Effects on the base pressure and near wake

We focus now on the analyses of drag reduction achieved by both StH = 0.48 (low frequency)
and StH = 6 (high frequency) along the windward edge. Similar to Fig. 5.11, the effects of the
windward actuation on the base pressure statistics are resumed in Fig. 5.17. The distribution
of the base pressure for the two forced flows shown in Fig. 5.17(a) are quite different. For
StH = 0.48, the pressure is more uniform, whereas a clear spanwise pressure gradient can be
noticed for StH = 6. This observation can be also confirmed from Fig. 5.17(b) which highlights
the pressure values along the mid-height line of the model. The actuation at StH = 0.48
increases the pressure close to the leeward edge and decreases that close to the windward edge,
resulting in a balanced distribution. While for StH = 6, a global increase of the pressure
is obtained. To gain insights on the relation between the base pressure increase close to the
leeward edge and that related to the flow deceleration in the free-stream flow shown in Fig. 5.16,
we apply the equation of the time-averaged momentum conservation along the y direction
immediately downstream of the trailing edge where the mixing layer assumptions (u � v and
∂/∂y � ∂/∂x) are reasonably valid. The equilibrium between the dominant terms reads:

∂Cp
∂y

+ 2
∂v′v′

∂y
= 0. (5.5)

Thus, after integration in the y direction, Eq. (5.5) shows that Cp + 2v′v′ is constant across
the mixing layer. So we get (Cp)po + 2(v′v′)po = (Cp)b + 2(v′v′)b where ‘po’ and ‘b’ means the
potential flow and the model base respectively. In the potential flow, we have (v′v′)po ≈ 0.
Hence the relation above can be expressed as

(δCp)b = (δCp)po − 2(δv′v′)b, (5.6)
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Figure 5.17: Effect of windward actuation on the base pressure. (a) Distribution of the time-averaged
pressure Cp for the unforced flow and forced flows at StH = 0.48 and StH = 6 with P0 = 2.5 bar.
The forced edge is highlighted by the red dashed line. (b) Cp on the mid-height line. (c) PDF of the
pressure gradient ∂Cp/∂y. (d) Joint PDF of the area-averaged base pressure 〈Cp〉 versus ∂Cp/∂y. The
letters ‘A’ and ‘S’ indicates the asymmetric and symmetric state of the forced wake at StH = 0.48
respectively. (e) PSD of the pressure gradient ∂Cp/∂y.
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where (δCp) = Cpa − Cpu. We take (δCp)po calculated in § 5.5.1 with the potential flow data,
(δCp)b measured at the pressure sensor closest to the leeward edge and (δv′v′)b nearest to the
pressure sensor from the PIV measurements. The results reported in table 5.3 agrees well with
Eq. (5.6). This relation demonstrates that the pressure increase in the free-stream flow (positive
(δCp)po) contributes to the base pressure recovery close to the trailing edge, whereas δ(v′v′)b

constitutes a detrimental component.

(δCp)po (δv′v′)b (δCp)po − 2(δv′v′)b (δCp)b

StH = 0.48 0.026 0.009 0.008 0.01
StH = 6 0.029 0.006 0.017 0.014

Table 5.3: Comparison of the pressure increase in the outer potential flow and on the base surface
near the leeward edge. For details, see text.

We further analyze the temporal variation of the pressure gradient ∂Cp/∂y and its relation
with the temporal variation of the base pressure. Figure 5.17(c) shows the PDF of ∂Cp/∂y, and
Fig. 5.17(d) presents the joint PDF of the area-averaged base pressure 〈Cp〉 versus ∂Cp/∂y. The
PDF at StH = 0.48 covers a broad interval showing not only probabilities at negative values
but also non negligible percentage at positive values. Correspondingly, the joint PDF features
an extended colored zone suggesting a more fluctuating wake. In addition, when ∂Cp/∂y
approaches to zero, a higher base pressure is obtained. This observation reminds us the results
of the bi-modal wake as presented in Fig. 4.2 and Fig. 4.4 of Chapter 4 where two peaks of
PDF appear respectively at the negative and positive side. The difference here is that we do
not observe a distinct peak at positive ∂Cp/∂y. It seems that the forced wake at StH = 0.48
meanders between two different states: one is asymmetric as in the unforced flow and another
is statistically symmetric but exhibits a fluctuating spanwise movement. These two states are
qualitatively indicated in Fig. 5.17(d) by the letters ‘A’ and ‘S’. The state ‘S’ presents a higher
〈Cp〉, suggesting that the drag reduction at StH = 0.48 may be related to the presence of this
mean symmetric state. The appearance of two states suggests that the actuation affects the
organization of the global wake. The PDF of the pressure gradient along z (not shown here)
is also broader but centered at zero. In contrast, forcing at StH = 6 does not modify the PDF
curve, indicating no change of the asymmetric organization of the near wake. In addition, the
PDF of the wall-normal pressure gradient, not shown here for brevity, also collapses with that
of the unforced flow. The joint PDF conserves the concentrated distribution at negative values
similar to the unforced flow, but presents an overall increase of 〈Cp〉. In contrast to the case
StH = 0.48, the increase of 〈Cp〉 at StH = 6 seems to be associated with a global effect imposed
on the mean unforced wake.

Figure 5.17(e) presents the PSD of ∂Cp/∂y to demonstrate the changes in the spanwise wake
dynamics. At StH = 0.48, a significant increase of energy is observed at very low frequency
range (StH < 0.1), in agreement with the appearance of the highly fluctuating spanwise motion
reported in Fig. 5.17(d). Moreover, in addition to the peak at the forcing frequency StH = 0.48,
one can note another peak emerging at StH = 0.16, which is not observed in the other two
cases. This frequency is related to the vortex shedding mode also observed in the wake of the
aligned model and in the forced flow of Chapter 4. This finding reveals again that low-frequency
dynamics associated with large-scale motions are highly modified by StH = 0.48. At StH = 6,
the spectrum shows a prominent peak at the forcing frequency, which is accompanied by an
overall attenuation of the energy in the frequency range StH ∈ [0.1, 1]. The slight increase
of energy at StH < 0.1 may be related to the moderate increase of fluctuations shown in
Fig. 5.17(d).

We investigate now the relation between the base pressure and near wake changes. Fig-
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Figure 5.18: Effect of the windward forcing on the near wake. (a) Color maps of the time-averaged
spanwise velocity v on the mid-height plane z = 0.67 for the unforced flow and forced flows at
StH = 0.48 and StH = 6. (b) Streamlines of the mean velocity field overlapped with the contour
maps of the velocity magnitude ‖u‖ =

√
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ure 5.18 shows the time-averaged spanwise velocity v and the 2D-approximated streamlines.
At StH = 0.48, the actuation strongly modifies the recirculating flow by symmetrizing v along
the opposing shear layers. The flow entrained into the wake from the windward side is enhanced
by actuation, resulting in a more balanced wake, as presented by the in-plane streamlines where
the two counter-rotating recirculations feature the similar size. However, at StH = 6, the forced
flow exhibits the same topology as the unforced flow. In the following paragraphs, we analyze
first the case with StH = 6, then with StH = 0.48.

The mean flow topology of the forced wake with StH = 6 agrees well with the pressure
distribution on the mid-height line shown in Fig. 5.17(b), the lowest pressure being closest to
the center of the leeward recirculation. The frequency StH = 6 corresponds to nearly 30 times
that of the natural shedding frequency. The effect of such a high-frequency forcing has been
already investigated in Barros et al. (2016b) as well as in Chapter 3 with actuation along the
four trailing edges. It creates a fluidic boat-tailing effect which is characterized by an inward
deviation of the shear layer close to the separating edges leading to a thinner wake. This effect
is analogous to that of an inward-deviated flap installed at the trailing edge which modifies the
shape of the bubble by adding a surface geometry (Grandemange et al., 2015; Garćıa de la Cruz
et al., 2017a). Here, we would expect the same effect for the windward high-frequency forcing.
The analysis of flow accelerations discussed with Fig. 5.16 has shown the analogy between the
windward high-frequency and a fluidic flap. To further demonstrate this effect, Fig. 5.19(a)
shows the iso-contour lines at u ∈ {−0.25, 0.25, 0.6}. The contours in the forced flow are
deviated towards the leeward side, indicating a vectoring effect by actuation. To quantify this
deviation, the angle θ of the streamline emerging from the leeward and windward separation
point (x, y) = (0, 0.6) and (x, y) = (0,−0.6), respectively, is plotted in Fig. 5.19(b). Along
the leeward streamline, no deviation is noticed, while a higher angle is obtained all along the
windward streamline. The angle at x = 0 increases from 2◦ (unforced flow) to 7.5◦ (forced flow).
In particular, the initial drop of θ in the forced flow implies a reversal of the sign of streamline
curvature immediately downstream of the forced edge, which is characteristic of a local rise in
base pressure. This finding corroborates again that forcing at StH = 6 is analogous to a fluidic
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Figure 5.19: Effect of the windward forcing StH = 6 on the wake orientation. (a) Iso-contour lines of
time-averaged streamwise velocity u ∈ {−0.25, 0.25, 0.6}. Black line: unforced flow; red dashed line:
high-frequency forced flow. (b) Streamwise evolution of the velocity angle θ = arctan(v/u) of the
streamline issuing from the leeward (x, y) = (0, 0.6) and windward separation point (x, y) = (0,−0.6).

deviated flap which leads to a global vectorization of the mean wake. The wake vectorization
is accompanied with a deceleration of the leeward outer flow as observed in Fig. 5.16. The
ultimate base pressure increase across the spanwise direction may be a result of the combined
effect of the fluidic flap and the decrease of u in the leeward outer flow.

Moreover, we note a slight increase of the wake length of about 2%, as indicated in Fig. 5.18.
This is closely related to the reduced shear layer growth and wake entrainment rate resulted
from actuation. The related reduction can be quantified by the streamwise evolution of the
integral of the turbulent kinetic energy K and averaged kinetic energy E inside the domain
Ω(u<0) defined in Eq. (3.8) and (3.9). We replace w by v in Eq. (3.9) to study the mid-height
plane. The results are shown in Fig 5.20. Both quantities are damped by actuation. Reduced
turbulent energy has been also reported in the studies of Glezer et al. (2005); Dandois et al.
(2007); Vukasinovic et al. (2010); Oxlade et al. (2015); Barros et al. (2016b) and our results
in Chapter 3. It is explained by the high dissipation rate promoted by the small-scale jet
structures which inhibits the flow from being entrained into the separating shear layer. Given
the analysis above, we conclude that high-frequency forcing has not only a fluidic wake shaping
effect like a deviated flap but also a stabilizing effect on the wake fluctuations.

0 0.5 1 1.5

x

0

0.01

0.02

0.03

K(x)

Unforced flow
Windward StH = 6

0 0.5 1 1.5

x

0

0.01

0.02

0.03

0.04

0.05

E(x)

Figure 5.20: Streamwise evolution of K (Eq.(3.8)) and E (Eq.(3.9)) for the baseline and windward
forcing at StH = 6.

We turn our attention now to the case StH = 0.48. The actuation mechanisms differ from
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those analyzed above for StH = 6. A symmetrized mean wake is achieved, indicating that
the actuation induces a change of the recirculating flow in the wake. We emphasize that the
capability of such low-frequency forcing to force the reorientation of the recirculating flow in the
near wake has been already demonstrated in the control of bi-modal wake (Chapter 4) and in
the single-edge actuation (Barros et al., 2016b). Besides, once the wake is symmetrized either
by the windward forcing or by the control of bi-modality, the anti-symmetric vortex shedding is
enhanced, as evidenced in Fig. 5.17(c) and Fig. 4.11(b). This symmetrization similarly changes
the curvature of the streamlines surrounding the recirculation region as indicated in Fig. 5.21.
The results of StH = 6 are also presented for comparison. The iso-contour lines of u show that
the wake with StH = 0.48 is thinner and shorter than the unforced and the high-frequency
forced flows. The thinning of wake for StH = 0.48 is also measured by the high streamline
angles at x > 0.5 on the windward side while no important angle change is noticed on the
leeward side. However, the angle immediately downstream of the windward trailing edge shows
no boat-tailing effect when compared to StH = 6. The initial angle fluctuation may be related
to the pulsed-jet structure at StH = 0.48. This fact means that the thinner wake is more likely
to be a result from the wake symmetrization than the fluidic boat-tailing effect.
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Figure 5.21: Effect of windward forcing StH = 0.48 on the wake topology and streamlines. The results
of StH = 6 are repeated for comparison. (a) Iso-contour lines of the time-averaged streamwise velocity
u ∈ {−0.25, 0.25, 0.6}. (b) Streamwise evolution of the velocity angle θ of the streamline issuing from
the leeward (x, y) = (0, 0.6) and windward separation point (x, y) = (0,−0.6).

The recirculation bubble length Lr is reduced by 8% for StH = 0.48. According to the
discussion in § 5.4.2, this reduction is associated with the shear layer dynamics. Figure 5.22(a)
compares the distribution of v′v′ along both shear layers for the unforced flow and the windward
forced flow with StH = 0.48. The resulting streamwise evolution of the maximum v′v′ is
presented in Fig. 5.22(b). The forced flow features an increase of fluctuations along both shear
layers for the whole range of the shown streamwise distance. The more significant increase of
v′v′ near the forced windward edge appears to play an essential role for the development of
the shear layer further downstream. Along the leeward side, v′v′ is also increased although no
actuation is applied here, indicating the interactions between opposing shear layers. Larger
velocity fluctuations suggest a higher mixing of the shear layer. This can be further confirmed
from the shear layer thicknesses as shown in Fig. 5.22(c). The thicker shear layer with a higher
growth rate is amenable to the bubble shortening observed in Fig. 5.18, the physics being
already discussed in the leeward forcing section § 5.4.

Note that in the results presented by Barros (2015), when the wake is forced at all four
shear layers with this low frequency, the drag is increased. However in the present study,
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evolution of the maximum v′v′ along the shear layers. (c) Streamwise evolution of the shear layer
thickness δw (see Eq. (4.3)).

we achieve an important drag reduction with the single edge low-frequency forcing. The most
important difference is the emergence of a symmetric state in our results. The counter-clockwise
recirculation at the windward side extends by the effect of the windward shear layer excitation.
Concomitantly, the opposing clockwise recirculation shrinks in size, the center of which moves
away from the base compared to the unforced flow. Thus, the lowest pressure value on the mid-
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height line of the unforced flow is increased (see Fig. 5.17(b)). The wake symmetrization also
alters the outer flow yielding a pressure increase in the leeward potential flow (see table 5.3).
Hence, the base pressure recovery at y > 0 in Fig. 5.17(b) may be ascribed to the modification
of the clockwise recirculating flow and the combined pressure increase in the leeward potential
flow. On the other hand, the base pressure decreases at y < 0 as a consequence of the extension
of the windward counter-clockwise recirculation under actuation. The base pressure increase
dominates this competition, so we obtain ultimately an area- and time-averaged base pressure
recovery.

Additionally, following the studies of 2D bluff body wakes (Roshko, 1955, 1993b), high
bluffness having a thick and short bubble would increase the drag. In the case of StH = 0.48,
although the bubble is shortened, it is also thinner. It would be difficult to estimate the change
of bluffness and its influence on the drag. On the contrary, the longer recirculation region
observed at StH = 6 is beneficial for drag reduction.

Summary We explored in this section how the windward forcing at frequencies StH = 0.48
and StH = 6 lead to similar drag reduction by investigating the associated base pressure
and wake properties. Two fundamentally different mechanisms are identified. Low-frequency
forcing promotes the turbulent vortex roll-up along the windward shear layer and enhances
the mixing between the free-stream flow and the inner recirculating flow, thus increases the
entrainment of fluid, leading to a symmetrized wake with a shorter and thinner bubble. This
wake symmetrization increases the base pressure and decreases the drag. High-frequency forcing
operates like a fluidic flap and imposes a fluidic boat-tailing effect which deviates the wake
towards the leeward side without changing the organization of the recirculating flows. In
addition, it has a stabilizing effect on the wake fluctuations. The resulting bubble region is
thinner and longer. In this high-frequency forcing case, the wake shaping is responsible for
drag reduction. Note that although similar drag reduction of about 6% is achieved for both
cases, the forcing at StH = 0.48 provides an interesting application for car manufacturers as it
barely increases the yaw moment which is not the case for StH = 6.

5.6 Windward bi-frequency forcing

In the previous section, It was demonstrated that windward forcing decreases the drag either
by wake symmetrization resulting from the shear layer turbulence enhancement or by fluidic
boat-tailing. These two effects are obtained respectively at two frequencies with one order
of magnitude difference. The results point to the following question: can the boat-tailing
effect be superimposed on a symmetrized wake to achieve further drag reduction by using both
mechanisms? The goal of this section is to provide hints to this question by analyzing the
effects of a bi-frequency forcing on the flow dynamics.

5.6.1 Global effects of bi-frequency actuation

We first present the methodology to generate the bi-frequency actuation. The idea is to super-
impose two harmonics at low and high frequency, respectively. The binary actuation command
is obtained by multiplying a squarewave at low frequency flow with another one at high fre-
quency fhigh. The corresponding control law reads:

bbf(t) = bLF (t)× bHF (t) = H
(

sin(2πflowt)
)
× H

(
sin(2πfhight− 0.1)

)
, (5.7)



5.6. WINDWARD BI-FREQUENCY FORCING 113

0 0.5 1

0

1

bLF

0 0.5 1

0

1

bHF

0 0.5 1

t/TLF

0

1

bLF × bHF

Figure 5.23: Bi-frequency actuation command generated by the multiplication of two periodic square-
waves at low and high frequency respectively. TLF corresponds to the period of the low frequency
component.

where the subscript ‘bf’ denotes bi-frequency and the threshold 0.1 is the same as that taken in
the generation of periodic forcing (see § 5.2). An example is shown in Fig. 5.23 with StHlow

=
flowH/U∞ = 0.48 and StHhigh

= fhighH/U∞ = 6. In this study, we fix the high frequency
to StHhigh

= 6 since the boat-tailing effect is most effective at this value. A large range of
low-frequency forcing can influence the roll-up of vortices in the shear layer thus modifying
the recirculating flow in the near wake. The frequency StH = 0.48 has the maximum drag
reduction in periodic forcing but may not maintain the same performance when combined with
high-frequency forcing. Given such considerations, we perform a parametric study by varying
the low frequency in the range StHlow

∈ [0.12, 3] in order to determine the best actuation
frequency in terms of drag reduction. The lowest and highest values of StHlow

correspond to
1
50
StHhigh

and 1
2
StHhigh

respectively. This kind of bi-frequency forcing has been investigated
numerically by Inoue (1992) on the development of a mixing layer. In his study, the maximum
ratio between the high and low frequency (StHhigh

/StHlow
) is only up to 8. Our study covers

more ratio possibilities, and the high ratio up to 50 enables us to explore new mechanisms
resulting from the combination of frequencies having one order of magnitude difference. In the
following, we denote by StHbf

= StHlow
⊗ StHhigh

the combined bi-frequency forcing.

To clarify the differences in the pulsed-jet pattern and actuation energy for periodic and
bi-frequency forcing, we exemplify in Fig. 5.24 the phase-averaged jet velocity for the cases
StH = 0.48 and StHbf

= 0.48⊗ 6. The supply pressure is maintained constant at P0 = 2.5 bar,
the same as in § 5.5. The velocity overshoot related to the sudden opening of the solenoid valve
is about 1.4U∞ for both. This overshoot appears only once for StH = 0.48, on the contrary
to its periodic occurrence for the case of StHbf

= 0.48 ⊗ 6. The behavior of high-frequency
forcing in the latter case is similar to that of a single high-frequency forcing. Regarding to the
actuation energy, the momentum coefficient Cµ of StHbf

= 0.48 ⊗ 6 is less than half that of
StH = 0.48.

We report the effects of bi-frequency forcing on the pressure and drag in Fig. 5.25(a) with
respect to the low frequency StHlow

. For comparison, the curves of periodic forcing as a function
of StH are also shown. It is clear that the bi-frequency forcing behaves quite differently. It
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Figure 5.24: Phase-averaged jet velocity JVJetK/U∞ for StH = 0.48 (left) and StHbf
= 0.48⊗ 6 (right).

TLF is the period of low frequency StH = 0.48.

leads to a higher base pressure recovery except for StHlow
= 0.17. Regarding the curve of γD,

a higher drag reduction is achieved for most of the cases. The highest drag reduction of about
7% is obtained at StHbf

= 0.24 ⊗ 6, outperforming the best periodic forcing at StH = 0.48.
But StHbf

= 0.48 ⊗ 6 does not perform as well as StH = 0.48. Intriguingly, another local
minimum can be identified at StHbf

= 1.8 ⊗ 6, the low frequency of which being one order of
magnitude larger than that of the optimal bi-frequency forcing StHbf

= 0.24 ⊗ 6. Moreover, a
peak at StHbf

= 0.17 ⊗ 6 is noticeable and is associated with the lowest drag reduction. This
peak is also discernible at StH = 0.17 in the drag curve of periodic forcing. A further study
on the pressure gradient spectrum reveals that the vortex shedding frequency at StvsH = 0.16 is
significantly enhanced for the cases of StHbf

= 0.17⊗ 6 and StH = 0.17, presenting a harmonic
resonance. This finding is similar to the results obtained by Barros et al. (2016a) for the forced
wake resonances with an out-of-phase actuation along the lateral edges at the vortex shedding
frequency. Their study also showed that this resonance increases the drag for the aligned
condition. Our results here demonstrate that the wake resonance can also be achieved by a
single edge forcing at the vortex shedding frequency. However, it does not yield drag increase
under yawed condition but leads to the least drag reduction. Intriguingly, this resonance is
even more amplified when a high-frequency effect is superimposed.

To better understand the curve trend of γD under bi-frequency forcing, we display in
Fig. 5.25(b) the color map of the time-averaged base pressure Cp as a function of the forc-
ing frequency. We compare the results with and without the combination of StHhigh

= 6. In the
case of periodic forcing, the low pressure regions (blue zones) are all located near the leeward
edge as in the unforced flow. In contrast, a reversal distribution is shown in several results of
the bi-frequency forcing, indicating a change in the sign of the gradient ∂Cp/∂y. To quantify

the variation of ∂Cp/∂y, Fig. 5.25(c) shows the evolution of ∂Cp/∂y with increasing frequency
for both periodic and bi-frequency forcing. The whole frequency range of periodic forcing yields
∂Cp/∂y < 0 with the smallest |∂Cp/∂y| obtained at StH = 0.48. The bi-frequency actuation,

however, leads to a positive ∂Cp/∂y in the range StHlow
∈ [0.24, 1.8]. ∂Cp/∂y first increases

up to a maximum positive value at StHbf
= 0.48 ⊗ 6 followed by a gradual decrease to −0.1.

When crossing the line ∂Cp/∂y = 0, a symmetric base pressure distribution is correspondingly
observed in Fig. 5.25(b). The bi-frequency forcing StHbf

= 0.48⊗6 combines StH = 0.48 which
induces the highest enhancement of the shear layer turbulence in periodic forcing and StH = 6
which has the most effective fluidic boat-tailing effect. The combined effect reverses the lateral
pressure gradient which is linked to an opposing wake asymmetry with respect to the unforced
flow. As discussed in the following sections, this means that the turbulence forcing at low
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Figure 5.25: Effect of windward bi-frequency forcing on the base pressure. (a) Dependence of the base
pressure and drag on the low-frequency component StHlow

in the bi-frequency actuation (red line).
Periodic forcing (black line) as a function of StH is shown for comparison. (b) Color maps of Cp.
The red dashed line indicates the forced edge. (b) Evolution of the time-averaged pressure gradient
∂Cp/∂y with increasing frequency, StH for periodic forcing and StHlow

for bi-frequency forcing. The

gray dashed line indicates the value of ∂Cp/∂y for the unforced flow.
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frequencies needs to be tuned in order to achieve the mean wake symmetry for various mean
separation angles of the windward shear layer.

Based on the discussion in § 5.5, we would expect a higher drag reduction for the cases
with |∂Cp/∂y| ≈ 0 as they correspond to a symmetrized wake. On the other hand, less drag

reduction is expected for a large positive value of ∂Cp/∂y since a reversed asymmetry is raised
by the actuation. To shed further light on the connection between the degree of symmetry and
drag reduction, we report in Fig. 5.26 the values of ∂Cp/∂y in the same plot of γD for the bi-

frequency actuation. One can notice that in the range of StHlow
∈ [0.24, 1.8] where ∂Cp/∂y > 0,

the curve of γD shows the same trend as that of ∂Cp/∂y. A higher drag reduction is obtained

when |∂Cp/∂y| < 0.05 ≈ 0, corroborating the correlation between drag reduction and wake

symmetrization. In particular, the two points closest to ∂Cp/∂y = 0 (StHbf
= 0.24 ⊗ 6 and

StHbf
= 1.8⊗ 6 respectively) corresponds exactly to the global and local minimum observed in

the curve of γD in Fig. 5.25(a). When StHlow
> 1.8, ∂Cp/∂y decreases to negative values and

lower drag reduction is obtained.

Figure 5.26: Variation of γD (4) and ∂Cp/∂y (∗) as a function of StHlow
for the windward bi-frequency

actuation. The blue dashed line corresponds to the zero pressure gradient.

For StHlow
= 0.17 and 0.21, we notice a low drag reduction even if |∂Cp/∂y| < 0.05. The

reason may lie in the strong amplification of the oscillating vortex shedding when forcing at
frequencies near StvsH = 0.16 which has been shown to be detrimental to the drag reduction
(Barros et al., 2016a).

Bi-frequency forcing also modifies Cy and CMz when compared to the periodic forcing.
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Figure 5.27: Side force and yaw moment as a function of StHlow
for the windward bi-frequency actu-

ation (red line) and as a function of StH for the periodic forcing (black line).
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Except StHbf
= 3⊗ 6, bi-frequency forcing leads to a global higher reduction of Cy and greater

increase of CMz . In particular, the reduction of Cy for the cases where StHlow
< 2.4 is even higher

than that of the single high-frequency forcing StH = 6. This observation is not surprising since
the combination with StHhigh

= 6 introduces a flow acceleration close to the forced trailing edge,
thus creating a low pressure zone near the rear windward side which decreases Cy and increases
CMz . Besides, an extremum is obtained at StHbf

= 0.48 ⊗ 6 for both Cy and CMz , indicating
a highest flow acceleration in this case. No evident changes are observed at StHbf

= 3 ⊗ 6
because StHbf

= 3 ≈ 18StvsH can not be reasonably considered as low frequency. The resulted
combination performs similarly to the single high-frequency forcing at StH = 3.

Based on these observations, we select two configurations to clarify the effects of bi-frequency
forcing on the near wake flow: (1) StHbf

= 0.24⊗ 6 which results in the highest drag reduction
(7%); (2) StHbf

= 0.48⊗ 6 in order to compare with the best periodic forcing StH = 0.48. This
will be discussed in the following section.

5.6.2 Effects on the base pressure and near wake

In this section, we analyze how the bi-frequency forcing modifies the wake and how they differ
from the single low-frequency forcing. The aim is to understand how the low frequency StHlow

∈
{0.24, 0.48} and high frequency StHhigh

= 6 take effect during the bi-frequency forcing. In the
following, we focus on the comparison of four configurations: the unforced flow, the optimal drag
periodic forcing StH = 0.48, the optimal drag bi-frequency StHbf

= 0.24⊗6 and StHbf
= 0.48⊗6

which yields the highest spanwise pressure gradient.
First, we analyze the statistics of the base pressure from which the spanwise flow movement

can be inferred. Figure 5.28(a) shows the PDF of the pressure gradient ∂Cp/∂y for each con-

figuration. The center of the PDF distribution, i.e. the time-averaged gradient value ∂Cp/∂y,

moves gradually from the small negative value (∂Cp/∂y = −0.053 at StH = 0.48) to the small

positive value (∂Cp/∂y = 0.037 at StHbf
= 0.24 ⊗ 6) and then to the high positive value

(∂Cp/∂y = 0.16 at StHbf
= 0.48 ⊗ 6). This evolution appears more clearly in the joint-PDF

color maps shown in Fig. 5.28(b). The small value of ∂Cp/∂y at StH = 0.48 indicates that it
is effective to symmetrize the wake. On the other hand, the coexistence of the asymmetric and
symmetric states suggests that this frequency may not be strong enough to fully symmetrize
the wake. For StHbf

= 0.24 ⊗ 6, only one single symmetric state is observed but the PDF of
the pressure gradient features a wide band suggesting a more fluctuating spanwise movement.
This observation is similar to the results of the feedback control of the bi-modal behavior in
Chapter 4 where the wake is symmetrized but presents also high fluctuations. The disappear-
ance of the asymmetric state ‘A’ suggests that StHbf

= 0.24 ⊗ 6 is just enough to achieve an
adequate wake symmetrization. The resulting higher degree of symmetry is the reason why the
value of Cp at StHbf

= 0.24⊗ 6 is higher than that at StH = 0.48. Forcing at StHbf
= 0.48⊗ 6

appears to be too strong for the symmetrization that the PDF distribution center is reversed
to the positive side making the wake again asymmetric. These measurements suggest that
by carefully selecting the low frequency component for the bi-frequency forcing, we are able to
symmetrize the wake or even reverse the wake asymmetry. Apparently, this can not be achieved
by a single-frequency forcing.

Now we look at the time-averaged base pressure distribution. In Fig. 5.28(c), we show the
pressure coefficients on the mid-height line of the model as in the previous sections. Focus
is placed on the two bi-frequency forcing cases since StH = 0.48 has already been analyzed
in § 5.5. The uniform distribution for StHbf

= 0.24 ⊗ 6 and the reversed distribution for
StHbf

= 0.48 ⊗ 6 with respect to the unforced case are clearly visible. In the latter case, the
lowest pressure is located at the opposing position with respect to that of the unforced flow,
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Figure 5.28: Comparison of the windward forcing effects on the base pressure for the unforced flow
and the forced flows at StH = 0.48, StHbf

= 0.24 ⊗ 6 and StHbf
= 0.48 ⊗ 6. (a) PDF of the lateral

pressure gradient ∂Cp/∂y. (b) Joint PDF of area-averaged base pressure 〈Cp〉 versus ∂Cp/∂y. (c)
Mid-height line distribution of the pressure Cp. (d) Profile of the time-averaged streamwise velocity
u along x = 0.01 at the leeward side.

suggesting a reflectional change of the corresponding recirculation in the wake. Furthermore,
the pressure close to the unforced leeward edge is increased by 15% and 33% for StHbf

= 0.24⊗6
and StHbf

= 0.48⊗ 6, respectively. According to Eq. (5.6), we would expect a pressure increase
in the outer flow and this increase may be highest at StHbf

= 0.48⊗ 6. This expectation is well
confirmed by Fig. 5.28(d). In addition, the data at the corresponding points agree well with
Eq. (5.6). This change in the outer flow is closely related to the altered wake features induced
by actuation which will be discussed in the following paragraphs.

The 2D streamlines of the unforced and forced wakes are depicted in Fig. 5.29. The wakes
under actuation frequencies StH = 0.48 and StHbf

= 0.24 ⊗ 6 exhibit both symmetric recircu-
lations and a shorter bubble length in comparison to the unforced flow. The higher degree of
symmetry in the case of StHbf

= 0.24 ⊗ 6 can be identified from the backward flow direction
parallel to the x axis in the middle of the recirculation region. Another difference is the position
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of the centers of the two counter rotating recirculations. At StHbf
= 0.24⊗ 6, the center of the

windward recirculation is closer to the base than that of the leeward recirculation, in contrast
to the case of StH = 0.48. This distribution agrees with the ∂Cp/∂y values and the distribution
of Cp on the mid-height line in Fig. 5.28(c). The lowest pressure for these two cases is located
at the opposite side, associated with the corresponding center of the recirculation closer to the
base. At StHbf

= 0.48⊗ 6, the wake is asymmetric with a larger recirculation at the windward
side, in opposition to the unforced flow. This asymmetry is consistent with the observations
in Fig. 5.28. In addition, the bubble length becomes even shorter than the other two forced
configurations.

0
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Unforced flow

Windward

Windward

Windward

Windward

Leeward

Figure 5.29: Comparison of the mean wake recirculations in the mid-height plane z = 0.67 for the
unforced flow and forced flows at StH = 0.48, StHbf

= 0.24⊗ 6 and StHbf
= 0.48⊗ 6. The streamlines

are overlapped with the contour maps of the velocity magnitude ‖u‖ =
√
u2 + v2.

The modification of the global wake symmetry or reversed asymmetry points to the impor-
tant role of the low-frequency forcing on the flow. What is the contribution of the high-frequency
component in the bi-frequency forcing? Can we still observe the fluidic boat-tailing effect in
this case? To answer these questions, we examine in Fig. 5.30(a) the iso-contour lines of u for
the bi-frequency forcing StHbf

= 0.24 ⊗ 6. It shows that the wake is not only symmetrized by
forcing but also deviated towards the leeward side. The deviation downstream of the windward
edge is most significant and results in a thinner wake. We further investigate the velocity an-
gle along the streamline emerging from the windward trailing edge in Fig. 5.30(b). The case
StHbf

= 0.24 ⊗ 6 is compared with StHbf
= 0.48 ⊗ 6 and StH = 6 to clarify the influence of

the high-frequency component StHhigh
= 6. The two curves corresponding to StHbf

= 0.24 ⊗ 6
and StH = 6 nearly collapse immediately downstream of the separation (x < 0.15). Therefore
the boat-tailing effect related to StH = 6 also acts at StHbf

= 0.24⊗ 6. In contrast, this is not
observed for the single-frequency forcing at StH = 0.48. Moreover, in the near field x < 0.6,
the velocity angle for StHbf

= 0.24 ⊗ 6 is higher than that for StH = 0.48, suggesting that
the former leads to a larger shear layer deviation and a thinner wake. Further downstream at
x > 0.6, the two curves for StHbf

= 0.24 ⊗ 6 and 0.48 ⊗ 6 collapse. In addition, their angle
in this interval is even higher than the single high-frequency forcing StH = 6. These findings
confirm the effectiveness of high-frequency boat-tailing in the bi-frequency actuation immedi-



120 CHAPTER 5. DRAG REDUCTION OF THE CAR MODEL AT YAW

Unforced flow
Windward

(a) (b)

0 0.5 1
0

5

10

15

20
Unforced flow

Windward

Windward
Windward

Windward

Leeward

Figure 5.30: Effect of bi-frequency forcing on the wake orientation. (a) Iso-contour lines of the time-
averaged streamwise velocity u ∈ {−0.25, 0.25, 0.7} for unforced flow and forced flow at StHbf

= 0.24⊗6
on the mid-height plane z = 0.67. (b) Streamwise evolution of the velocity angle θ of the streamline
issuing from the windward trailing edge (x, y) = (0,−0.6).

ately downstream of the forced trailing edge. We may consider the bi-frequency forcing as a
‘tuned’ low-frequency forcing by ‘adding’ a fluidic flap. Forcing at StHbf

= 0.24⊗ 6 permits to
adequately symmetrize the wake and to achieve also a thinner wake by boat-tailing effect. Nev-
ertheless forcing at StHbf

= 0.48⊗ 6 seems to be too strong to symmetrize the wake. It yields
a reversed asymmetry with respect to the unforced flow and leads to a lower drag reduction
compared to StHbf

= 0.24⊗ 6.

As discussed in the previous section, we would expect different shear layer thicknesses and
growth rates for the three forced cases in Fig. 5.29. Figure 5.31 shows the streamwise evolution
of the corresponding windward shear layer thickness. The bi-frequency forcing leads to a thicker
shear layer and a higher growth rate than the single-frequency forcing. The thickest shear layer
associated with the highest initial growth rate is found for StHbf

= 0.48⊗ 6. This agrees with
the reversal of wake asymmetry which is related to the enhancement of the entrainment in the
windward shear layer. The comparison illustrates that the coupling of low and high frequency
enhances further the effect obtained with a single low frequency forcing. In the following section,
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Figure 5.31: Streamwise evolution of the windward shear layer thicknesses.
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we will examine the phase-averaged flow field to get a further understanding on the unsteady
entrainment mechanisms.

5.6.3 Analysis of the phase-averaged velocity statistics

We compare the two forcing configurations StH = 0.48 and StHbf
= 0.48 ⊗ 6 with the aim

to understand why the mean wake is symmetrized and reversed, respectively. According to
Hussain & Reynolds (1970), in a flow with highly periodic characteristics, the velocity u(x, t)
can be decomposed into a mean component u, a periodic fluctuation ũ and a chaotic fluctuation
u′′:

u(x, t) = u(x) + ũ(x, t) + u′′(x, t). (5.8)

ũ is the contribution of the periodic movement and is defined as ũ = JuK− u where JuK is the
phase-averaged velocity. u′′ is the random velocity fluctuation associated with the turbulent
motion. This decomposition enables the determination of the relative contribution of the peri-
odic and random motions to the Reynolds stress. In fact, the time-averaged Reynolds stresses
are equal to the sum of the time-averaged correlations due to periodic fluctuations and random
motions, for example, u′v′ = (ũ+ u′′)(ṽ + v′′) = ũṽ + u′′v′′. In particular, we are interested
in the transport of the fluid momentum towards the wake region through the boundary of the
recirculation bubble by actuation. To do so, we examine the vn component in the streamline
coordinates (vn = v cos(θ) − u sin(θ) where θ = arctan(v/u)) rather than v in the model ref-
erence system. Here we take the mean streamline emerging from the windward trailing edge
(x, y) = (0,−0.06) to approximate the boundary of the recirculation bubble. It can be shown
that by projecting the fluctuating velocity vector on this line we can get:

u′v′n = ũṽn + u′′v′′n. (5.9)

This equation enables us to identify the corresponding contributions of ũṽn and u′′v′′n to u′v′n
and to distinguish their differences in periodic and bi-frequency forcing.

First we examine the quantity ũṽn for different phases. Note that in the present study
no phase-locked PIV measurements are performed. However, the velocity measurement (at a
sampling rate of 3.5 Hz) and the actuation command signal (at a sampling rate of 5 kHz) were
recorded simultaneously. This enables us to attribute a phase to the acquired pictures. By
dividing the period into Nwd equal windows (window width 2π/Nwd), we are able to distribute
the phase-identified velocity fields into the corresponding window. Then we can obtain an
approximation of the phase-averaged velocity statistics by averaging the velocity fields in the
same window. A similar procedure has been successfully applied by Perrin et al. (2007). Here,
we set Nwd = 25. The number of pictures in each phase window is approximately 60.

Figure 5.32(a) and (b) compares the phase-averaged spanwise periodic fluctuation ṽ at
phases t/T ∈ {0.16, 0.32, 0.48, 0.64, 0.8, 0.96} for both forced cases. The velocity field of the
periodic fluctuations (ũ, ṽ) is overlaid over the color maps. Figure 5.32(c) shows the evolution
of ũṽn with increasing phase along the separation streamline of the mean recirculation bubble.
At the very beginning of the stroke phase (t/T = 0), the pulse-jet creates a pair of counter
rotating vortices at the exit of slit, the size of which is too small to be captured in the present
measurement. With increasing stroke time, these two vortices grow up and are convected
downstream. At t/T = 0.16, we can clearly distinguish a positive (red spot) and negative (blue
spot) ṽ downstream of the actuation slit for both forced flows. A sketch is given in Fig. 5.32(a)
to facilitate the understanding. The positive ṽ is related to the jet-induced counter-clockwise
rotating vortex. The constitution of the negative ṽ is twofold. First, it may be related to the jet-
induced clockwise rotating vortex. The location of the negative ṽ is downstream of the positive
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Figure 5.32: Color maps of the phase-averaged spanwise periodic fluctuation ṽ at the single frequency
forcing StH = 0.48 (a) and the bi-frequency forcing StHbf

= 0.48 ⊗ 6 (b). From top to bottom,
the snapshots correspond to the phases t/T ∈ {0.16, 0.32, 0.48, 0.64, 0.8, 0.96}. Periodic fluctuation
velocity vectors (ũ, ṽ) are overlaid over the color maps. The sketch at t/T = 0.16 illustrates the
evolution of the jet structures from t/T = 0 to 0.16. The inserted circles at t/T = 0.48 indicate two
counter-clockwise rotating structures. (c) Streamwise evolution of the periodic fluctuation ũṽn along
the separation streamline of the mean recirculation bubble at the corresponding phases of (a) and (b).
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ṽ because the clockwise rotating vortex is initially adjacent to the boundary layer and thus
is convected with a higher velocity about Vc ≈ 0.5U∞, whereas the counter-clockwise rotating
vortex is adjacent to the recirculating flow with a much lower velocity. On the other hand,
Barros (2015) has shown that the formation of the jet structure downstream of the trailing
edge induces a disruption of the shear layer. If this is true in our case, the disruption would
yield the roll-up of a counter-clockwise rotating vortex which induces a negative ṽ downstream
of the positive ṽ (see the inserted sketch). A better spatial resolution of the velocity field would
be required to identify these two contributions of negative ṽ. The streamwise evolution of ũṽn
at t/T = 0.16 presents two peaks at the corresponding positions of the positive and negative
ṽ. The positive sign of the two peaks indicates that at the position of negative ṽ, ũ is also
negative. The peak value and location of both forced cases are quite similar at this phase.

With increasing t/T , the positive and negative ṽ are progressively convected downstream.
From t/T = 0.32, the bi-frequency forcing StHbf

= 0.48⊗6 features a higher periodic fluctuation
until to the end of the actuation period, manifested both by the darker color in Fig. 5.32(b) and
by the peak value of ũṽn in Fig. 5.32(c). The highest fluctuation is observed at t/T = 0.48 close
to the end of the stroke phase. In particular, at t/T = 0.48 we can notice clearly an induced
outward movement upstream of the significant positive ṽ (dark red spot) and an inward move-
ment downstream of the significant negative ṽ (dark blue spot), forming two counter-clockwise
rotating structures which are marked by the circles and labeled by I© and II© respectively in
the figure. The generation of the counter-clockwise rotating structure II© supports our above
conjecture concerning the disruption of the shear layer.

To show the influence of the high periodic fluctuation on the absolute wake movement,
we display in Fig. 5.33 the distribution of the phase-averaged spanwise velocity JvK overlaid
with the velocity vector (JuK, JvK) at phases t/T ∈ {0.48, 0.8}. For StH = 0.48, the strong

Figure 5.33: Phase-averaged spanwise velocity JvK overlaid with the phase-averaged velocity vectors
(JuK, JvK). Left column: StH = 0.48; right column: StHbf

= 0.48⊗ 6.

periodic movement related to the counter-clockwise structure I© in Fig. 5.32(c) enables the flow
to penetrate into the center of the recirculating region thus symmetrizing the mean wake. For
StHbf

= 0.48 ⊗ 6, the periodic fluctuation is even higher; the resulting spanwise flow crosses
the central line y = 0 and affects the leeward side, hence reversing the mean wake asymmetry.
From these observations, we infer that the bi-frequency forcing further increases the periodic
fluctuation induced by the single low-frequency forcing and promotes the effects of the latter.
This also explains why StHbf

= 0.24⊗ 6 can symmetrize the wake while StH = 0.24 can not.
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From ũṽn obtained at all phases, we can calculate the time-averaged periodic fluctuation
ũṽn and identify its contribution to the time-averaged shear stress u′v′n. Figure 5.34 shows
the streamwise evolution of u′v′n, ũṽn and u′′v′′n along the separation streamline of the mean
recirculation bubble. u′′v′′n is obtained by u′′v′′n = u′v′n − ũṽn. The unforced flow is also shown
for comparison. Immediately downstream of the actuation slit (x < 0.2), ũṽn increases for
both types of actuation compared to the unforced flow. In addition, the bi-frequency forcing
StHbf

= 0.48 ⊗ 6 provokes a higher value for all three quantities in this zone. The higher
values of u′′v′′n for the bi-frequency forcing may be related to the high-frequency component at
StHhigh

= 6. Further downstream, the values of u′v′n for StHbf
= 0.48⊗6 remain nearly constant

and become lower than those for StH = 0.48, although the values of ũṽn for StHbf
= 0.48 ⊗ 6

are globally higher than those for StH = 0.48. The difference is due to the random motion
component u′′v′′n which starts to drop in the range x > 0.2 for StHbf

= 0.48 ⊗ 6 but strongly
increases for StH = 0.48. To quantify exactly the contribution of the periodic and random
motions to the total stress, we integrate the three quantities along the interval x ∈ [0, 0.5]. For
StH = 0.48, the contribution is 31% and 69% for the periodic and random motions, respectively.
For StHbf

= 0.48 ⊗ 6, the contribution is 49% and 51%, respectively. The periodic motion
contribution is clearly more important for the bi-frequency forcing. Additionally, close to the
trailing edge (x < 0.2), the random motion component u′′v′′n of the forced flows is in the same
order of magnitude as the unforced flow, indicating that the increase of u′v′n close to the trailing
edge under actuation is related to the increase of the periodic motion component ũṽn.
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Figure 5.34: Streamwise evolution of the total shear stress u′v′n, the periodic motion component ũṽn
and the random motion component u′′v′′n along the separation streamwise of the recirculation bubble.
We remind that u′v′n = ũṽn + u′′v′′n.

We did not discuss the influence of the jet velocity on the results because no parametric
study of the supply pressure was performed. However, we presume that the jet velocity VJet

would highly affect ṽn and hence ũṽn. Small ũṽn would be unable to reorient the wake. Similarly,
strong ũṽn would reverse the wake asymmetry.

The discussions above furnish a global view of what happens when the wake is forced using a
bi-frequency actuation. To conclude, from the time-averaged view, StHbf

couples the large-scale
structure modification achieved at StHlow

and the boat-tailing effect achieved at StHhigh
= 6 by

enhancing the shear layer entrainment and simultaneously deviating the shear layer and the
global wake. From the phase-averaged view, the periodic fluctuation motion related to the low-
frequency jet is further enhanced by the bi-frequency forcing and leads to higher entrainment
rates which are capable of altering the organization of recirculating flow in the wake.
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5.6.4 On the drag reduction using LGPC

Having performed the systematic bi-frequency forcing tests, we wonder if there exist other
combinations of multiple frequencies that can reduce the drag even further? Is the base pressure
feedback useful to get better results? One effective way to answer these questions is to apply
LGPC for finding the optimal solution by the use of automatic learning.

We apply the generalized non-autonomous control design LGPC-3 b = K(s,h) as introduced
in Chapter 2, where s is the sensor feedback and h is a vector of time-periodic functions. Only
the windward edge is forced and the lateral pressure gradient is returned, constituting a non-
autonomous single-input single-output system with respect to the experimental plant. The
control objective is to minimize the drag. Hence, we define the cost function to be minimized
as the time-averaged drag under the actuated state normalized by its unforced value:

J =
CDa

CDu

. (5.10)

This is exactly the definition of γD presented in Eq. (5.3). We note that, due to the existence
of drift in the balance signal output, J estimated from the real-time data needs to be corrected.
This correction can only be performed a posteriori for each generation. In this way, we ensure
that the breeding of the next generation is based on the corrected J values.

Given the significant changes in the dynamics of the lateral pressure gradients discussed
previously, the feedback of this gradient may provide important information for a closed-loop
control. Hence, we define the sensor input vector s of LGPC-3 as

s = (s1, s2) = (
∂Cp
∂y

,
∂̂Cp
∂y

). (5.11)

s1 is the real-time lateral pressure gradient which contains broadband dynamics. s2 is deter-
mined by filtering s1 using a first order low-pass filter. The inclusion of a filtered signal in the
sensor feedback is inspired from the open-loop results which showed significant modifications
of the low-frequency dynamics. The cutoff frequency at -3dB corresponds to StH = 0.36, thus
the passband covers the vortex shedding mode. By low-pass filtering s1, we put our interest
specially on the low-frequency dynamics. The time-periodic input vector h comprises 12 har-
monic functions hi(t) = sin(2πfit), i = 1, . . . , 12 listed in table 5.4. The selected frequencies are
a subset of those presented in table 5.1. The variety of frequencies permits LGPC to explore
new possibilities of frequency combination.

Controller input h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

fi (Hz) 10 18 20 40 68 100 200 294 333 417 455 500
StHi

0.12 0.21 0.24 0.48 0.8 1.2 2.4 2.3 4 5 5.4 6

Table 5.4: Description of the harmonic functions hi(t) = sin(2πfit) used as inputs of LGPC-3 for
windward forcing.

Up to N = 9 generations with M = 50 individuals in each are evaluated. Each individual
is tested for a time period of T = 10 s. This value is approximately 840 convective time
units tc = H/U∞, which is sufficient for a good statistical accuracy. The evolution of J with
increasing generation is depicted in Fig. 5.35. When the generation n increases, the values of
J decrease gradually, highlighting the learning of increasingly better control laws. After n = 7,
the performance of the best individual appears to converge.
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Figure 5.35: Evolution of the cost value J versus the individual m for 9 generations n = 1, . . . , 9.

The optimal control law reads:

b� = H
(
− 0.931(h12 − h3)− 0.1

)
. (5.12)

This law combines two harmonic functions: h3 at StH = 0.24 and h12 at StH = 6. They
are exactly the two frequencies whose combination leads to the maximum drag reduction in
the bi-frequency forcing (see § 5.6.1). In addition, no sensor feedback is included in b�. The
resulting cost J = 0.925 is slightly better than J = 0.933 obtained for the bi-frequency forcing
StHbf

= 0.24 ⊗ 6. A comparison of their actuation command is given in Fig. 5.36 for one
period with respect to the low frequency StH = 0.24. Major differences are the time window
covered by the high frequency signal and the duty cycle of the high-frequency forcing. The
resulting duty cycle of b� is 41.6%, which is larger than the duty cycle value 21% obtained for
StHbf

= 0.24 ⊗ 6. The slight difference in the cost value J could be due to this difference of
duty cycles.

With the result of LGPC-3, we confirm that the combination of StH = 0.24 and StH = 6
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Figure 5.36: Comparison of the actuation command for the bi-frequency forcing StHbf
= 0.24⊗ 6 and

the optimal LGPC-3 law b�. TLF is the period of the low-frequency StHlow
= 0.24.
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overperforms the other configurations examined in the present study. The influence of the duty
cycle on drag reduction appears to be small once the combined frequencies are determined. The
underlying mechanisms of the drag reduction are similar to the case of StHbf

= 0.24 ⊗ 6 and
are not described here to avoid redundancy. With this finding, LGPC is proven to be effective
to find the optimal control with no or little prior knowledge about the control system.

5.7 Unsteady Coanda blowing effect

In this section, we aim to investigate how the unsteady actuation effects discussed previously are
affected by the presence of the Coanda surface. For that, Coanda surfaces are added adjacent
to each actuation slit as illustrated in Fig. 3.2 of Chapter 3. We focus on the windward
forcing due to its benefits for drag reduction. The Coanda effect is known to deviate the shear
layer towards the center of the wake. High-frequency forcing also implies this effect. The
results of Chapter 3 and Barros et al. (2016b) demonstrated that when unsteady blowing is
coupled with the Coanda surface, the shear layer deviation is more effective for drag reduction.
Furthermore, bi-frequency forcing as introduced in § 5.6 can also act on deviation. In the
following, a detailed comparison for periodic forcing (PF), bi-frequency forcing (BiF), Coanda
periodic forcing (CoaPF) and Coanda bi-frequency forcing (CoaBiF) is discussed to clarify how
the varying shear layer deviation affects the wake and the corresponding drag.

To perform a global and complete comparison, the curves of γp, γD, γy and γMz , the lateral

pressure gradient ∂Cp/∂y and the corresponding base pressure distribution are displayed in
Fig. 5.37(a), (b) and (c), respectively. For the bi-frequency forcing, the abscissa in Fig. 5.37(a)
and (b) is the lower frequency StHlow

in the combination of StHbf
= StHlow

⊗StHhigh
. All forcing

configurations are performed at the supply pressure P0 = 2.5 bar. The curves of γp and γD with
the addition of Coanda surface obey a similar behavior, demonstrating that the correlation
between the base pressure and drag reduction is not modified by the presence of Coanda effect.

We initially focus on the drag ratio γD by comparing BiF with CoaPF. When StH 6 0.48,
the curves of γD for BiF and for CoaPF almost collapse. In addition, their pressure gradient
∂Cp/∂y and pressure distribution also match. This shows that BiF couples the low-frequency
effect with a boat-tailing effect. Moreover, this boat-tailing effect of StHhigh

= 6 is equivalent
to the passive Coanda device in the considered low-frequency range. For StH > 0.48, CoaPF
leads to a higher drag reduction than BiF. The reasons for such a difference can be inferred
from the curve of ∂Cp/∂y and the pressure distribution. CoaPF leads to a lower ∂Cp/∂y

than BiF in the interval 0.48 < StH < 2. In addition, the frequency where ∂Cp/∂y becomes
negative is reduced to StH ≈ 1 for CoaPF compared to StH ≈ 2 for BiF. This indicates that
the shear layer deviation and the enhancement of the turbulence fluctuations obtained with
CoaPF is less than those of BiF. For example, when the wake is only symmetrized by CoaPF
at StH = 0.8, it is rather reoriented to a reversed asymmetry at StHbf

= 0.8 ⊗ 6 (inferred
from the pressure distribution in Fig. 5.37(c)). When the wake comes back to the symmetric
state for BiF at StHbf

= 1.8 ⊗ 6, the unsteady Coanda boat-tailing effect at StH = 1.8 seems
to be more effective to reduce the drag. Moreover, the performance of CoaPF is more robust
than BiF in the interval StH ∈ [0.24, 2.4]. The best drag reduction is achieved at CoaPF
StH = 6, yielding 15% drag reduction which is 2.5 times better than the value achieved with
PF at the same frequency without Coanda. This huge drag reduction is related to the enhanced
boat-tailing effect resulted from the unsteady Coanda blowing which deviates further the shear
layer towards the leeward side and leads to a higher change of the curvature of the streamline
immediately downstream of the forced trailing edge. We will quantify in detail the changes
of the velocity angle induced by this high-frequency Coanda blowing in a later discussion.
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Figure 5.37: Comparison of forcing effects as a function of StH for PF and CoaPF, and of StHlow
for

BiF and CoaBiF. (a) Variations of γp, γD, γy and γMz . (b) Variations of ∂Cp/∂y. The dashed gray
lines in (a) and (b) indicate the unforced value. (c) See next page.
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Figure 5.37: Follow-up of the figure in the previous page. (c) Color maps of the base pressure. The
forced edge is highlighted by the red dashed line.
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Additionally, we note from Fig. 5.37(b) that the mean pressure gradient ∂Cp/∂y is the same for
both PF and CoaPF at StH = 6, albeit they feature a significant difference of drag reduction.
This corroborates that the boat-tailing effect related to the high-frequency forcing induces no
change of the degree of asymmetry of the wake.

When adding the Coanda effect to BiF, the shear layer deviation and turbulence level at low
frequencies are further enhanced. This is confirmed by the positive ∂Cp/∂y over the whole span
of StHlow

in Fig. 5.37(b) and the location of low pressure regions (blue zones) in Fig. 5.37(c).
The resonance at the vortex shedding mode is more pronounced with CoaBiF, as underlined
by the uniform low pressure distribution over the base surface. This resonance increases the
drag by 10%. The corresponding curve of γD exhibits a larger slope compared with the other
three categories. When StHlow

< 0.8, the drag reduction performance is degraded. Given

its high value of ∂Cp/∂y, we may relate this performance degradation to the high degree of
wake asymmetry which is associated with an important pressure drop close to the forced edge.
For StHlow

> 2, although ∂Cp/∂y stays on a high level, the drag reduction is about 2% higher
with CoaBiF compared to CoaPF. At these frequencies, the shear layer vectorization in CoaBiF
starts to damp, the pressure drop near the forced windward edge is attenuated and the pressure
close to the unforced leeward edge is increased, leading to slightly higher base pressure and drag
reduction.

Now we focus on the impact of unsteady Coanda blowing on the side force and yaw moment,
as shown in Fig. 5.37(a). Clearly, the addition of the Coanda surface further decreases the side
force and increases the yaw moment. This modification can be ascribed to three reasons: (1)
the enhancement of the flow acceleration over the rear windward surface introduced by the
Coanda effect, (2) the low pressure along the Coanda surface and (3) the flow deceleration over
the rear leeward surface. The resultant effect of the four forcing categories on γy and γMz can
be ordered in the following way: PF<BiF<CoaPF<CoaBiF with the most prominent change
for CoaBiF. In particular, we note that despite a 15% drag reduction at CoaPF StH = 6, the
corresponding yaw moment is increased almost by 36%. This suggests that, for a small yaw
angle as in the present study, a trade-off must be determined between minimizing the drag and
meanwhile not triggering the safety issues caused by the large yaw moment. Despite the better
performance of the boat-tailing effect for drag reduction, the associated yaw moment is high.
On the contrary, for BiF with which we achieve drag reduction by changing the dynamics of
the shear layer, although less drag reduction is obtained, the increase of the yaw moment is
significantly lower than that induced by the boat-tailing effect. For safety considerations, BiF
would be better than CoaPF and CoaBiF.

We have mentioned above that the significant difference of drag reduction between PF and
CoaPF at StH = 6 is related to the enhanced flow deviation downstream of the trailing edge.
Figure 5.38 confirms this point by showing (a) the streamlines in the mid-height plane, (b)
the iso-contour lines of the time-averaged streamwise velocity u, (c) the velocity angle along
the streamline originating from the windward trailing edge (x, y) = (0,−0.06) and (d) the
pressure on the mid-height line of the model. The streamlines show no change of the flow
organization inside the recirculation bubble. The bubble length for CoaPF is slightly reduced
by 2% compared to that of PF. The increase of flow deviation by the Coanda effect is clear
in Fig. 5.38(b) and (c). The contour lines of CoaPF are more deviated towards the leeward
side. The velocity angles along the streamline originating from (x, y) = (0,−0.6) are larger
for CoaPF than for PF over the whole range of x. The initial angle at x = 0.05 for CoaPF is
11◦ which is twice that of PF. This significant increase of flow deviation leads to a higher base
pressure along the whole span of the model mid-height without changing the lateral pressure
gradient, as shown in Fig. 5.38(d). For comparison, in the results of Garćıa de la Cruz et al.
(2017a) under a yaw angle of 6◦, the optimal windward flap angle is around 15◦ which is close
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to our results. The high deviation results in a thinner and slightly shorter bubble, similar to the
result in § 3.4.3 with high-frequency Coanda forcing along the four trailing edges. Moreover,
we observe a further damping of the turbulent kinetic energy K and average kinetic energy E
inside the forced bubble for CoaPF when compared to that for PF, similar to the observation
in Fig. 5.20. This damping may also have a contribution to the drag reduction.
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Figure 5.38: Comparison of the effects on the mean wake and base pressure for PF and CoaPF
at high-frequency forcing StH = 6. (a) Streamlines of the mean velocity in the mid-height plane
z = 0.67. (b) Iso-contour lines of the time-averaged streamwise velocity u ∈ {−0.25, 0.25, 0.7}. (c)
Streamwise evolution of the velocity angle θ of the streamline originating from the windward trailing
edge (x, y) = (0,−0.6). (d) Time-averaged pressure coefficient Cp on the mid-height line of the model.

Figure 5.39 displays how the wake orientation is progressively modified by the PF, BiF,
CoaPF and CoaBiF for three representative frequencies at StH and StHlow

: 0.24, 0.48 and 0.8.
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BiF and CoaPF share similar wake topologies for StH < 0.5 and StHlow
< 0.5, corroborating

again the equivalent effect of StHhigh
= 6 and the Coanda deflection surface. More precisely, at

StH < 0.5 and StHlow
< 0.5, the ability of the four forcing categories to reorient the wake obeys

the following order: PF<BiF≈CoaPF<CoaBiF. When StH > 0.5 and StHlow
> 0.5, this order

becomes PF<CoaPF<BiF<CoaBiF.
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Figure 5.39: Comparison of forcing effects on the wake topology. Left column: StH = 0.24 for PF
and CoaPF; StHbf

= 0.24 ⊗ 6 for BiF and CoaBiF. Middle column: similar to the former but with
StH = 0.48 and StHbf

= 0.48 ⊗ 6. Right column: similar to the former but with StH = 0.8 and
StHbf

= 0.8⊗ 6.

In summary, with the comparison of the four forcing categories, we have demonstrated that
global wake recirculations can be effectively modified with a variety of actuation patterns along
the windward trailing edge. In particular, the new bi-frequency forcing can achieve actuation
mechanisms which can not be explored by the single-frequency periodic forcing. The multiple
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interaction mechanisms between pulsed jets of different time scales and the windward shear
layer play a crucial role in changing the separation angle and thus the wake geometries. The
results presented here point to the exciting future directions for closed-loop control under gusty
conditions.
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Chapter 6

Conclusions and perspectives

6.1 General synthesis

Drag reduction of road vehicles has become a cornerstone challenge due to the increasing
government constraints and taxation of CO2 emissions resulting from the corresponding fuel
consumption. In particular, the low pressure in the wake resulted from the flow separation
constitutes an important portion of the aerodynamic drag for the bluff form vehicles. In recent
years, the rapid development of active flow control smooths the path for achieving drag reduc-
tion. Wake manipulation by active devices is one of the most developed fields among various
studies.

In the present work, we pursue drag reduction of a square-back car model similar to the
Ahmed body studied in Ahmed et al. (1984) with a flat base. The wake flow is manipulated by
jet actuators at the four trailing edges and is monitored by pressure sensors distributed at the
rear side. The investigated turbulent wake is a big challenge for model-based control design
due to the difficulties to construct corresponding mathematical models and limited knowledge
about the flow in experiments. Our study circumvents this challenge by developing a simple
yet effective model-free control strategy: the data-driven linear genetic programming control
(LGPC). It optimizes automatically the control laws by mimicking the nature’s evolution and
learning from trials. The innovation in this work is a very general ansatz for control laws
which incorporate multi-frequency forcing, sensor-based feedback including also time-history
information feedback and combinations thereof. In this way, any perceivable control logic can
be constructed.

We highlight the achievements of LGPC in Part I of Fig. 6.1. The effectiveness of LGPC
in discovering and exploiting strongly nonlinear actuation mechanisms is first demonstrated
for the stabilization of a forced nonlinearly coupled three-oscillator model (Chapter 2). This
model mimicks nonlinear frequency crosstalk features of turbulence control. Three categories
of LGPC are developed:

• LGPC-1: b = K(h), open-loop multi-frequency control;
• LGPC-2: b = K(s), sensor-based feedback control;
• LGPC-3: b = K(s,h), generalized non-autonomous control.

The last category comprises both the sensors s and the time-periodic functions h, thus per-
mitting to select between open-loop actuation, sensor-based feedback or combinations thereof
depending on which performs better. LGPC-1 explores automatically the optimal amplitude
and frequency of the periodic forcing by employing less time than an exhaustive sweep of the
actuation parameters. The sensor-based control laws obtained with LGPC-2 and -3 both excite
the third oscillator by a hard ‘kick’ for a quick transient meanwhile sustain the second oscillator
at a low fluctuation level. Following the quick transient, the first and second oscillators enter
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Figure 6.1: Synthesis of the highlighted results for each chapter. Inserted sketches illustrate qualita-
tively the recirculating flow in the wake.

into a quasi-stable state at nearly vanishing fluctuation levels. Hence, the state feedback hardly
needs to actuate and the control command starts to vanish. The whole system is stabilized with
only a small investment of the actuation energy at the very beginning of the control. Thus, the
sensor-based controllers overperform the optimal periodic forcing as both a lower fluctuation
level and a lower actuation energy are obtained. The explored actuation mechanisms demon-
strate that the frequency crosstalk can be the only enabling mechanism for stabilization, as
typical in turbulence control.

Following the successful demonstration on the dynamical system, LGPC is applied to the
drag control experiments of the square-back car model (Chapter 3). The investigated wake
is symmetric in the spanwise direction and asymmetric in the wall-normal direction. The
four actuation slits are all coupled with Coanda surface deflectors. According to Barros et al.
(2016b), the optimal periodic forcing on this configuration was found to be at a high frequency
and a low duty cycle, yielding 19% drag reduction. In our study, LGPC-1 rapidly identifies a
bi-frequency forcing with four actuation slits in unison by testing only 200 individuals in less
than 1 hour. This bi-frequency forcing leads to 22% drag reduction, overperforming the past
benchmark 19% obtained with the optimized periodic forcing. The estimated actuation power
accounts for only 30% of the aerodynamic power saving. In particular, the two frequencies
involved in the best control law are again found to be at high frequencies which are 20StvsH
and 40StvsH respectively, StvsH being the vortex shedding frequency. This high-frequency forcing
leads to a broadband suppression of energy at very low frequencies for base pressure signals and
a global attenuation of the averaged and turbulent kinetic energy in the near wake, resulting
in a more stabilized wake. Concomitantly, the mean wake geometry is modified such that the
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shear layers are deviated towards the center, resulting in a shorter, narrower, more stream-lined
shaped bubble. The drag reduction is ultimately achieved by the combined effect of the wake
shaping and stabilization, and can legitimately be called fluidic boat tailing. On the other
hand, the sensor-based feedback LGPC-2 reproduces high-frequency forcing with a comparable
drag reduction to the optimal periodic forcing. This achievement is remarkable considering the
experimentally observed time delay of two actuation periods between actuation and sensing.
Moreover, LGPC-2 chooses the only sensor which can capture strong enough dynamics in the
unforced flow to trigger the feedback cycle and give a good high-frequency signal to noise ratio
in the forced flow to create a nearly periodic high-frequency forcing. Hence, LGPC-2 provides
not only the optimization of control laws but also a sensor optimization for a general class of
control laws. The results of Chapter 2 and 3 highlight the potential of LGPC in discovering
and exploiting the most effective nonlinear open- and closed-loop control mechanisms.

In this study, we also particularly address the drag reduction for the square-back car model
having a spanwise asymmetric wake. The achievement of this part is synthesized in Part II of
Fig. 6.1. In Chapter 4, an intermittent bi-modal wake at zero yaw angle is studied. It consists
of two meta-stable asymmetric states which switch between them in a stochastic way, and a low
probable unstable symmetric state occurring during the switch of the two asymmetric states.
In particular, the base pressure increases once the switch occurs, pointing to the interest of the
wake symmetrization control for drag reduction. Single edge periodic forcing tests show that the
wake is always blocked into one asymmetric state by actuation and exhibits a low pressure region
close to the forced edge. From these flow responses, we infer a physics-based feedback opposition
control to symmetrize the wake. When a lower pressure region is detected along one rear side,
forcing is applied on the opposite edge to generate an instantaneous and opposing flow reversal.
The performance of wake symmetrization depends importantly on the forcing frequency in the
feedback-determined actuation phase. The most symmetric distribution is found at StH = 0.8,
being the same frequency identified by Barros et al. (2016b) which induces the highest shear-
layer mixing and entrainment of fluid into the recirculation region. These actuation features
enable StH = 0.8 to alter the large-scale recirculating flow and thus to achieve the wake balance.
However, only 3% base pressure recovery is obtained with this effective symmetrization. In
fact, although the wake symmetrization increases the base pressure, the concomitant actuation
effects, namely the enhancement of shear layer mixing and the amplification of vortex shedding,
decreases the base pressure. Hence, this control approach needs to be further improved to
mitigate the detrimental effect of actuation. A possible way is to determine the minimal energy
needed to trigger the mode switching.

Chapter 5 addresses the asymmetric wake at a moderate yaw angle of 5◦. From single
edge periodic forcing, we observe that the leeward forcing increases drag while the windward
forcing leads to drag reduction. Intriguingly, the highest drag reduction (about 6%) in the
latter case is achieved at two frequencies having one order of magnitude difference: (1) the low-
frequency actuation at StH = 0.48 particularly enhances the forced shear layer turbulence, thus
altering the large scale recirculating flow and reducing the drag by wake symmetrization; (2) the
high-frequency actuation at StH = 6 acts as a fluidic flap, reducing the drag by a boat-tailing
effect. These results of windward periodic forcing inspire us to develop a bi-frequency actuation
strategy attempting to further reduce the drag by combining the symmetrization with the
fluidic flap effect. However, the combination of StH = 0.48 with StH = 6, i.e. StHbf

= 0.48⊗ 6,
reverses the wake asymmetry compared to the unforced flow and yields less drag reduction
than StH = 0.48. This finding indicates that StHbf

= 0.48⊗ 6 is too strong to symmetrize the
wake. By varying the low-frequency component in the bi-frequency forcing, we found that the
optimal configuration is StHbf

= 0.24 ⊗ 6 which yields 7% drag reduction, outperforming the
optimal single-frequency forcing. The resulting wake is simultaneously symmetrized and boat-
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tailed. We can properly consider this bi-frequency control as a ‘tuned’ low-frequency forcing
by ‘adding’ a fluidic flap. The combined actuation mechanisms can not be explored by any
single-frequency periodic forcing. In addition, by applying LGPC-3 on the windward edge with
the objective of drag minimization, LGPC-3 identifies automatically the same combination of
StH = 0.24 and StH = 6. This result demonstrates again the effectiveness of LGPC to explore
the optimal control law with little prior knowledge of the system.

6.2 Perspectives

We can extend the present research to more complex conditions such as the varying oncoming
velocity and wind gust. For that we may pursue a robust controller with LGPC by involving the
oncoming velocity as an additional sensor or evaluating the cost function at different operating
conditions. Moreover, LGPC will be applied on the bi-modal wake to explore potentially new
actuation mechanisms other than the opposition control. Larger yaw angle problems will be
also addressed. Both the fuel consumption and driving safety shall be considered. To this end,
a multi-objective LGPC will be constructed to determine the optimized actuation by driving
the four actuation slits independently.

In the very foreseeable future, LGPC and more generally, machine learning control (Duriez
et al., 2016), can be expected to solve the control, dynamic modeling and cost function estima-
tion highly effectively and automatically in one or few hours of wind-tunnel testing time. The
diagrams for solving these tasks are sketched in Fig. 6.2.
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Figure 6.2: LGP for control, modeling and estimation (figure reproduced from Noack 2017). P:
plant; C: control law; M: model; s: sensors; J : cost function. The red dashed arrows highlight the
contribution of LGP.

LGPC explores automatically effective control laws from trial data. It is possible that the
control optimization exploits the constraints or imperfections of the plant. The optimized
solution may have no physical interests if it is related to the defects of actuators or sensors.
Hence the characteristics of the actuators and sensors are better to be known a priori so that we
can assess their influence on the results. In general, LGPC replaces the conventional paradigm
of ‘from understanding to control ’ by the new paradigm of ‘from control to understanding ’. It
bypasses the challenges of constructing a control-oriented model and goes beyond the model-
based approach by identifying powerful nonlinear control laws which may be too complex to be
predicted by any model. LGPC has already distilled new and unexpected actuation mechanisms
in a number of experiments and simulations via collaborative projects of Pprime and LIMSI.
To date, applications of LGPC to other plants include:
• Mixing increase behind a backward-facing step and drag reduction of car models in wind-

tunnel experiments (Chovet et al. 2017, LAMIH).
• Jet mixing enhancement with multiple minijet actuators (Fan et al. 2017; Wu et al. 2017,

Harbin Institute of Technology).
• Drag reduction of turbulence boundary layer (Harbin Institute of Technology).
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• Stabilization of a fluidic pinball in experiments (Raibaudo et al. 2017, University of Cal-
gary).
• Stabilization of a fluidic pinball in numerical simulation (Cornejo Maceda 2017, LIMSI).

LGPC has outperformed hitherto known control strategies for these plants.
The development of a performance estimator helps to significantly accelerate the learning

process and reduce the training time required for LGPC. Kaiser et al. (2017) has proposed
an estimator which estimates the cost value for newly bred, untested individuals based on
the information collected from the tested individuals. The estimation is served by an online
visualization of the control laws which display the performance and similarity of control laws in
two-dimensional proximity maps (see § 2.2.4 and § 3.5.2). These feature extraction techniques
enables the estimator to determine the location of the untested control laws on the map. Based
on the proximity to other control laws, we can select control laws which are newly explored or
exploited for the next generation to be evaluated. In this way, redundant or similar testings
can be avoided and the training time will be significantly reduced.

Dynamic modeling is also strongly modified by the data-driven approaches (Quade et al.,
2016; Loiseau et al., 2017). The data-driven regression foundation of LGP may allow to derive
simple human-interpretable nonlinear models from the rich actuation response data of control
laws. For instance, sparse identification of nonlinear dynamics (SINDy) has been shown to
derive nonlinear reduced-order models for cylinder flows from properly prepared data (Loiseau
et al., 2017). Combining such an approach with LGPC using the rich data set from actuation
to sensing may result in interpretable models distilling new actuation mechanisms that are
discovered in the controlled flow. The identified models can then serve as a low-dimensional
surrogate of the actual experimental plant in order to facilitate the computation of nonlinear
optimal feedback control laws.

The new paths opened by LGPC and more generally, the data-driven approaches, will play
a transformative role in future flow control and fluid mechanics in general.
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Appendix A

Classical multidimensional scaling
(CMDS)

Classical multidimensional scaling (CMDS) is employed to visualize the similarity of control laws (see
§ 2.1.4). CMDS aims to find a low-dimensional representation of points γi, i = 1, . . . , NK , such that
the average error between the distances between points γi and the elements of a given distance matrix
D, here emulating the distances between the time series of different control laws, is minimal. In order
to find a unique solution to CMDS, we assume that Γ = [γ1 γ2 . . . γNK

] with γ1, . . . ,γNK
∈ Rr

is centered, i.e., Γ is a mean-corrected matrix with 1
NK

∑NK
i=1 γi = [0 . . . 0]T . Rather than directly

finding Γ, we search for the Gram matrix B = ΓTΓ that is real, symmetric and positive semi-definite.
Since Γ is assumed to be centred, the Gram matrix is the Euclidean inner product, and we have
D2
ij = ||γi−γj ||22 = Bii+Bjj−2Bij . In the first step of the classical scaling algorithm, the matrix D2

of elements (D2)ij = −1
2D

2
ij is constructed. Then, we form the ‘doubly centred’ matrix B = CD2C,

where C = INK
−N−1

K JNK
with INK

the identity matrix of size NK and JNK
an NK ×NK matrix of

ones. The term ‘doubly centred’ refers to the subtraction of the row as well as the column mean. Let
the eigendecomposition of B be B = V ΛV T where Λ is a diagonal matrix with ordered eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λNK

≥ 0 and V contains the eigenvectors as columns. Then Γ can be recovered from

Γ = Λ
1
2V T . (A.1)

Having only the distance matrix, the resulting representation is only defined up to a translation, a
rotation, and reflections of the axes. If the distance matrix is computed using the Euclidean distance
and all eigenvalues are non-negative, Γ can be recovered. If r < NK , there existNK−r zero eigenvalues,
in which case a low-dimensional subspace can be found where the presentation of Γ would be exact.
For other distance metrics, the distances of the presentation found by CMDS is an approximation
to the true distances. Some eigenvalues may be negative and only the positive eigenvalues and their
associated eigenvectors are considered to determine an approximative representation of Γ. Note that
for the Euclidean distance metric, CMDS is closely related to a principal component analysis (PCA)
commonly used to find a low-dimensional subspace. While CMDS, and multi-dimensional scaling
generally, uses a distance matrix as input, PCA is based on a data matrix. A distance matrix D can
be directly computed for the centred matrix Γ. If the Euclidean distance is employed for computing the
distances, the result from applying CMDS to D corresponds to the result from applying PCA to Γ. A
proof can be found in Mardia et al. (1979). The quality of the representation is typically measured by∑r

i=1 λi/
∑NK−1

i=1 λi, and more generally if B is not positive semi-definite using
∑r

i=1 λi/
∑

λ>0 λi.
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Aerodynamic drag reduction of a square-back car model using linear genetic programming and  physics-
based control 

The thesis aims to develop effective active flow control strategies for aerodynamic drag reduction of road vehicles. 
We experimentally examine the effects of fluidic actuation on the wake past a simplified square-back car model. 
The actuation is performed with pulsed jets at trailing edges and the flow is monitored with 16 pressure sensors 
distributed at the rear side. We address the challenging nonlinear turbulence control---which is often beyond the 
capabilities of model-oriented approach---by developing a simple yet powerful model-free control strategy: the 
data-driven linear genetic programming control (LGPC). This method explores and exploits strongly nonlinear 
dynamics in an unsupervised manner with no or little prior knowledge about the system. The control problem is to 
find a control logic which optimizes a given cost function by employing linear genetic programming as an easy 
and simple regression solver in a high-dimensional control search space. In particular, the present work advances 
and generalizes the previous studies of genetic programming control by comprising multi-frequency forcing, 
sensor-based feedback including also time-history information feedback and combinations thereof in the control 
search space. The performance of LGPC is successfully demonstrated on the drag control experiments of the car 
model where the investigated turbulent wake exhibits a spanwise symmetry and a wall-normal asymmetry. 
Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered 
classes of control laws. The consumed actuation energy accounts for only 30% of the aerodynamic power saving. 
In this research, we also study the turbulent wakes having a lateral asymmetry: an intermittent bi-modal wake at 
zero yaw and an asymmetric wake at a moderate yaw angle of 5 degree. For the bimodal wake exhibiting a 
reflectional symmetry-breaking, a physics-based opposition feedback control is inferred from the previous open-
loop control tests. The controller successfully suppresses the bi-modality of the wake and renders a symmetrized 
wake with a concomitant drag reduction. For the asymmetric wake at yaw, we infer from the single-frequency 
forcing results a bi-frequency control at the windward edge comprising two frequencies having one order of 
magnitude difference. This bi-frequency actuation combines the favorable effects of fluidic boat-tailing and 
balance control of the shear layers. Importantly, LGPC is also applied to this yawed situation and converges to the 
same bi-frequency actuation. The control strategies proposed in the present study open promising new paths for 
the control of drag reduction in more complex conditions such as the varying oncoming velocity and wind gust. 

Key words: Aerodynamic drag, Wake, Flow control, Feedback control  

 

Réduction de la trainée aérodynamique d’un véhicule à culot droit en utilisant un contrôle basé sur la 
programmation génétique linéaire et sur la physique  

Le but de la thèse est de développer des stratégies de contrôle efficaces pour la réduction de la trainée 
aérodynamique des véhicules terrestres. Nous examinons expérimentalement les effets d’un forçage fluidique sur 
le sillage d’un modèle de véhicule simplifié à culot droit. Le forçage est effectué par des jets pulsés aux arêtes et 
16 capteurs de pression répartis à la surface arrière permettent d’estimer la traînée instantanée. Nous abordons le 
problème difficile du contrôle de l’écoulement turbulent non linéaire---qui est souvent au-delà des capacités de la 
modélisation réduite---par le développement d'une stratégie de contrôle sans modèle: le contrôle via la 
programmation génétique linéaire (LGPC) dirigé par les données. Cette méthode explore et exploite la dynamique 
fortement non linéaire d'une manière non supervisée avec pas ou peu de connaissances antérieures sur le système. 
Le problème est de trouver une logique de contrôle qui optimise une fonction de coût donnée. Cette optimisation 
est réalisée par la programmation génétique linéaire comme un solveur de régression simple dans un espace de 
recherche de grande dimension. En particulier, cette recherche fait progresser et généralise les études antérieures 
sur le contrôle via la programmation génétique en incluant le forçage multi-fréquences, le signal des capteurs, 
l’historique des informations temporelles et leurs combinaisons dans l'espace de recherche de contrôle. La 
performance de LGPC est démontrée avec succès sur les expériences de contrôle de traînée du modèle de véhicule 
simplifié où le sillage turbulent présente une symétrie latérale et une asymétrie normale à la paroi. Environ 33% de 
récupération de pression au culot associée à 22% de réduction de trainée est obtenue dans toutes les classes de lois 
de contrôle considérées. L'énergie consommée du forçage ne représente que 30% de l'énergie aérodynamique 
récupérée. Dans ce travail, nous étudions également les sillages turbulents ayant une asymétrie latérale: un sillage 
intermittent et bi-modal à dérapage nul et un sillage asymétrique avec un angle de dérapage modéré de 5 degrés. 
Pour le sillage intermittent, un contrôle de rétroaction en opposition basé sur la physique est déduit à partir des 
essais précédents de contrôle en boucle ouverte. Le contrôleur supprime avec succès la bi-modalité du sillage et 
rend le sillage symétrique avec une réduction de traînée concomitante. Pour le sillage asymétrique en dérapage, 
nous construisons un contrôle bi-fréquence à l’arête au vent à partir des résultats de forçage à fréquence unique. Ce 
forçage bi-fréquentiel comprend deux fréquences ayant une différence d'un ordre de grandeur. Il combine les effets 
favorables de la vectorisation du sillage et le contrôle de l'équilibre des couches de cisaillement. Il est important de 
noter que la stratégie LGPC est également appliqué à cette situation en dérapage et converge vers le même forçage 
bi-fréquentiel. Les stratégies de contrôle proposées dans cette étude ouvrent de nouveaux chemins prometteurs 
pour le contrôle de la réduction de la traînée dans des conditions plus complexes de vitesse amont variable ou de 
rafale.   

 
Mots clés: Traînée aérodynamique, Sillage, Contrôle des écoulements, Contrôle en boucle fermée 
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