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Introduction

“Le seul véritable voyage, le seul bain de Jouvence, ce ne serait pas d’aller vers
de nouwveaux paysages, mais d’avoir d’autres yeux, de voir l'univers avec les yeux
d’un autre, de cent autres, de voir les cent univers que chacun d’eux voit, que
chacun d’euzx est.”

Marcel Proust, La Prisonniere

Ce mémoire de these est composé de trois chapitres, correspondant a trois prépublications successives
(arXiv:1612.05081, arXiv:1703.02954, arXiv:1710.00563). Chaque chapitre est pourvu d’une introduc-
tion présentant ses résultats les plus importants et d’une courte mise en contexte historique.

Dans cette introduction générale, nous nous proposons, d’une part, de mettre en évidence la cohésion
des différentes questions étudiées dans ces trois articles en les ramenant toutes & un méme probléme racine,
le probleme de comprendre la vraie portée des méthodes de Nesterenko sur l’indépendance algébrique de
valeurs de formes quasi-modulaires. D’autre part, nous décrivons quelques développements historiquement
importants de la théorie des nombres transcendants, destinés a mettre notre contribution en perspective.

Dans ce mémoire, nous adopterons un point de vue géométrique. Le rapport entre la théorie des nombres
transcendants et la géométrie sera observé a deux niveaux distincts : I’étude de la transcendance de nombres
ayant une nature géométrique — les périodes des variétés algébriques — et l'application de techniques
géométriques aux méthodes de démonstration de la transcendance de certains nombres.

C’est aussi notre intention, dans les paragraphes qui suivent, de montrer que ce regard géométrique, non
seulement fournit des outils supplémentaires pour la compréhension des phénomenes classiques de transcen-
dance, mais suscite aussi de nouveaux problemes tout aussi stimulants.

Indépendance algébrique de valeurs de fonctions analytiques

Le terme < transcendant > en mathématiques est ’antonyme d’< algébrique ». Ainsi, un nombre com-
plexe « est dit transcendant s'il n’est pas algébrique, i.e., s’il n’existe pas de polynéme non-nul P € Q[X]
tel que P(a) = 0. Plus généralement, des éléments a,...,a, dans un corps K sont dits algébriquement
indépendants sur un sous-corps k de K s’il n’existe pas de polynéme non-nul P € k[Xq,...,X,] tel que
P(ai,...,a,) =0; on dit alors que 'ensemble {aq,...,a,} C K est algébriquement indépendant sur k.

Un probleme de transcendance consiste donc a établir si un certain objet mathématique — un nombre,
une fonction, une variété, etc. — est ou non algébrique. En termes quantitatifs, il s’agit de calculer, ou
tout simplement d’estimer, le degré de transcendance d’une extension de corps. Rappelons que, si K est
une extension du corps k, un sous-ensemble S de K est dit algébriquement indépendant sur k si tous ses
sous-ensembles finis sont algébriquement indépendants sur k ; le degré de transcendance degtr;, K se définit
alors comme la plus grande cardinalité d’un sous-ensemble de K algébriquement indépendant sur k.

Dans le cas arithmétique, ou I’on étudie 'indépendance algébrique sur @Q, il est connu depuis le papier fon-
dateur de Liouville [62] qu’un probléme de transcendance se rameéne souvent & une probléme d’approzimation
diophantienne. Ainsi, d’apres Liouville, la transcendance ou l’algébricité d’un nombre réel se lit de la fagon
dont il est approché par des nombres rationnels. Voici I’énoncé qui formalise le célebre critére de Liouville :
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THEOREME (Liouville; cf. [3] Ch. 1). Si un nombre réel o est algébrique de degré d > 1 sur Q, alors il
existe un réel € > 0 tel que

P E
a—=|>—
q’ q4

pour tous les nombres rationnels de la forme p/q avec p,q € Z copremiers et ¢ > 0.

Au fil des années, des criteres de transcendance plus généraux se sont développés, tout en restant dans 1’es-
prit de I’idée originale du théoreme de Liouville ; citons par exemple les sophistiqués criteres d’indépendance
algébrique de Nesterenko [74] et Philippon [85].

Ce rapport entre la théorie des nombres transcendants et ’approximation diophantienne suggere l'inves-
tigation de nombres qui s’obtiennent comme de valeurs de fonctions analytiques ; en principe, des propriétés
de nature analytique de ces fonctions, comme des conditions de croissance, des équations fonctionnelles ou
différentielles, etc., peuvent fournir des outils supplémentaires a I’étude de problemes d’approximation de ses
valeurs.

Historiquement, ces vagues idées se sont matérialisés en des résultats a la fois précis et généraux en deux
exemples remarquables : les théories de Siegel-Shidlovsky et de Schneider-Lang.

La théorie de Siegel-Shidlovsky concerne I'indépendance algébrique de valeurs de E-fonctions de Siegel
en des points algébriques. Rappelons qu'une série

définit une E-fonction si :
(1) il existe un corps de nombres K C C tel que a,, € K pour tout n > 0;

(2) pour tout € > 0, on a max, |o(a,)| = O(n"), ot o parcourt ’ensemble de tous les plongements de
corps de K dans C;

(3) pour tout € > 0, il existe une suite d’entiers strictement positifs (¢,)n>0 telle que ¢, = O(n"¢) et
gnayj est un entier algébrique de K pour tout 0 < k < n.

La deuxiéme condition ci-dessus implique que f est une série entiere sur C. Parmi les exemples remar-
quables de E-fonctions, on rencontre la fonction exponentielle et quelques classes particulieres de fonctions
hypergéométriques, dont la fonction de Bessel

wor= 55 ()"

THEOREME (Siegel-Shidlovsky; ¢f. [3] Ch. 11). Soient n > 1 un entier et fi,..., fn des fonctions
entieres sur C a coefficients de Taylor en l'origine dans un méme corps de nombres K C C et supposons
qu’ils existent des fonctions rationnelles g;; € K(z), 1 <1,j <n, telles que

dfi
% = Zgz’jfj
j=1

pour tout 1 < i < mn. Side plus :
(1) dEgtrK(z)K(z)(fh ERE) fn) =mn, et
(2) chaque f; est une E-fonction de Siegel,

alors, pour tout nombre algébrique non-nul o € C qui n’est pas contenu dans l’ensemble des péles des g;j,
on a

degtrc K(f1(v), ..., fo(@)) =n.
Puisque Jy satisfait I’équation de Bessel :
d?Jy dJy

+ 22— +2%Jy =0,

2
i dz? dz
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on déduit du théoréme ci-dessus que Jy(«) et Jj(«) sont algébriquement indépendants pour tout nombre
algébrique a € C.

La théorie de Schneider-Lang, & son tour, considere une autre notion de croissance. Etant donné un
nombre réel p > 0, on dit quune fonction f entiere sur C est d’ordre inférieur a p s’ils existent des nombres
réels a,b > 0 tels que

f(2)] < ae”V

pour tout z € C. Une fonction méromorphe sur C est dite d’ordre inférieur a p si elle peut s’écrire comme
quotient de deux fonctions entieres d’ordre inférieur a p.

THEOREME (Schneider-Lang ; ¢f. [94] Thm. 3.3.1). Soient p1, p2 > 0 des nombres réels, K C C un corps
de nombres, n > 2 un entier et fi,..., f, des fonctions méromorphes sur C telles que lanneau K|[f1, ..., fr]
est stable par la dérivation d%. Supposons en plus que :

(1) f1 et fo sont algébriquement indépendantes sur K ;
(2) fi est d’ordre inférieur a p;, pour i = 1,2.

Alors, si S dénote l'ensemble des o € C tels que, pour tout 1 < i < n, a n’est pas un pdle de f; et f;(a) € K,
on a :

card($) < (o1 + p2)[K : Q).

Cet énoncé généralise les théoréemes classiques de Hermite-Lindemann et de Gelfond-Schneider. La trans-
cendance de 7 et de e, par exemple, se déduit facilement du théoréme ci-dessus en prenant fi(z) = z et
fa(z) = €.

Meéme si les conclusions des théoremes de Siegel-Shidlovsky et de Schneider-Lang sont de nature assez
différentes, il est remarquable que les hypotheses de ces deux résultats partagent la méme structure. Dans
les deux cas, il s’agit de fonctions, holomorphes ou méromorphes, définies sur C tout entier, reliées par une
équation différentielle algébrique a coefficients dans un corps de nombres, et ’on impose additionellement :
(1) une propriété d’indépendance algébrique fonctionnelle; (2) des conditions de croissance sur ces fonctions
ou sur ses coefficients de Taylor.

Que peut-on dire de fonctions définies sur des domaines de C plus généraux, comme des disques ? Dans
ce cas, Mahler a développé une méthode pour étudier la transcendance de valeurs de certaines fonctions
satisfaisant des équations fonctionnelles (cf. [64]).

Considérons, par exemple, U'invariant modulaire j de Klein (c¢f. [91] VII 3.3). Rappelons que j est une
fonction holomorphe sur le demi-plan de Poincaré H = {r € C | Im7 > 0}, invariante sous l’action de

SLo(Z) sur H donnée en 7 € H par
a b L at +b
c d o +d

En particulier, on a j(7 + 1) = j(7) et l'on en déduit que j admet un développement de Fourier : si
D = {q € C| |g| < 1} dénote le disque unité centré en l'origine, alors il existe une fonction holomorphe
J sur D\ {0} telle que J(e*™7) = j() pour tout 7 € H. On peut prouver que J s’étend en une fonction
méromorphe sur D et que son développement en série de Laurent est donné par

1 (o)
J(q) = i 744+ c(n)g"
n=1

avec c(n) entier (¢f. [91] VII 3.3 Remarque 2).

La fonction j classifie les courbes elliptiques, ce qui lui accorde un réle central en théorie de nombres. Ceci
motive aussi I’étude de la transcendance de ses valeurs. Dans cette direction, Schneider a prouvé que, pour un
nombre algébrique 7 € H, j(7) est algébrique si et seulement si 7 est quadratique imaginaire ([90] 11.4). La
démonstration de Schneider se ramene a une application du théoréme de Schneider-Lang a certaines fonctions
elliptiques (associées au réseau Z + 7Z). Schneider a lui méme posé la question ([90] p. 138), encore ouverte
a ce jour, de savoir si son résultat pouvait se déduire d’'une étude directe des propriétés de la fonction j.
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En 1969, Mahler [64] a posé le probléme suivant : sa méthode sur les fonctions satisfaisant des équations
fonctionnelles peut-elle étre adaptée pour traiter la fonction J ? Cette question I’a amené a conjecturer que
J(z) est transcendant pour tout z € D\ {0} algébrique.

La question de Mahler a obtenue une réponse positive en 1996, dans un travail en collaboration de
Barré-Sirieix, Diaz, Gramain et Philibert.

THEOREME (Barré-Sirieix-Diaz-Gramain-Philibert [4]). Pour tout z € D\ {0}, on a
degtrqQ(z, J(2)) > 1.

Peu de temps apres, cet énoncé a été généralisé par Nesterenko, qui a réussi a combiner les nouvelles idées
introduites dans la démonstration de ce résultat avec ses propres méthodes développées dans ses investigations
sur la théorie de Siegel-Shidlovsky et les criteres de transcendance.

Considérons les g-expansions des séries d’Eisenstein classiques

= ng" = nign = pSq
Ey(g):=1-24)" o Ey(q) =1+240) =g Eg(q) =1-504)
n=1 n=1 n=1

n
TL’

I—q
vues comme des fonctions holomorphes sur le disque unitaire complexe D ; ainsi

B}
J= 17282
(*) B} - B2

THEOREME (Nesterenko [75]). Pour tout z € D\ {0}, on a
trdegqQ(z, E2(2), E4(2), Es(2)) > 3.

A titre d’exemple, ce théoreme appliqué a la valeur z = e 2" fournit I'indépendance algébrique de
m,e™, I'(1/4). Il convient de rappeler que 'indépendance algébrique de seuls 7 et e™ était ouverte avant le
théoreme de Nesterenko.

Tout aussi frappante que la simplicité et la puissance de ce résultat en est la démonstration par Nesterenko
dans [75]. Apres réduction de son énoncé a un probléme d’approximation diophantienne via un critére
d’indépendance algébrique dii & Philippon ([85] Théoréme 2.11) !, Nesterenko emploie une méthode qui fait
intervenir diverses propriétés remarquables des séries d’Eisenstein, comme les équations de Ramanujan

dE, E2-E, dE, IEE,—FEs dEs FEyEg— E?
Tig 1z Tag - s a1
et I'intégralité de ses coefficients de Taylor, en plus de deux conditions techniques :
(N1) [Condition de croissance] pour tout k € {1,2,3}, la suite de coefficients de Taylor en 'origine
(E;Z)(O)/n!)nzo est d’ordre de croissance polynomiale en n, et

(N2) [Lemme de zéros] il existe une constante réelle C' > 0 telle que
ordg—oP (¢, E2(q), Ea(q), Eo(q)) < C(deg P)"
pour tout polynéme non-nul P € C[Xy, X7, Xo, X3].

Notons que la propriété (N1) est triviale, alors quune bonne partie de [75] est dédiée a la preuve d’'une
version renforcée de (N2).

Remarquons au passage que Philippon a étendu, dans [86], la méthode de Barré-Sirieix, Diaz, Gramain
et Philibert a une classe de fonctions, appélées K -fonctions, qui contient les séries d’Eisenstein. Ceci lui
permet de retrouver en particulier le résultat de Nesterenko.

Le caractere général de la demonstration de Nesterenko suggere que pour n’importe quelle famille de fonc-
tions holomorphes sur le disque unitaire f1,..., f, a coefficients de Taylor entiers, satisfaisant des équations
différentielles algébriques & coefficients rationnels, et vérifiant des conditions semblables & (N1) et (N2) ci-
dessus, des arguments analogues a ceux pour les séries d’Eisenstein donneraient un résultat d’indépendance
algébrique pour les valeurs de f1,..., fn.

1. Ceci marque, d’ailleurs, une différence importante avec la démonstration du théoréme de Barré-Sirieix, Diaz, Gramain
et Philibert qui ne fait pas appel & un critére général de transcendance comme celui de Philippon.
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Le probleme de 'existence de telles fonctions f1, ..., f, qui ne seraient pas reliées a des formes modulaires
classiques (dans un sens assez vague) a été énoncé de fagon explicite par Zudilin dans [100], qui a aussi étudié
quelques candidats provenant du phénomene de la symétrie miroir ([97]) ; cependant, les cas ot Zudilin peut
vérifier toutes les propriétés requises par la < méthode de Nesterenko > sont tous de nature modulaire.

L’objective de cette these est d’apporter quelques contributions a ces questions liés au théoreme de
Nesterenko. Nos investigations ont été axés sur deux lignes de recherche essentiellement indépendantes :

(a) étude géométrique de la méthode de Nesterenko per se;
(b) recherche de nouveaux exemples d’application.

A premier abord, on s’attend & que ces nouveaux exemples dans (b) soient trouvés dans des construc-
tions algebro-géométriques naturelles, comme les candidats provenant de la symétrie miroir le suggerent.
L’avantage de reformuler la méthode de Nesterenko en termes d’hypotheses géométriques serait donc de la
rendre adaptée aux équations différentielles d’origine géométrique construites en (b).

Dans les prochaines sections, nous exposons nos principales contributions et nous discutons, a la fin de
cette introduction, quelques questions ouvertes issues de nos travaux.

Croissance modérée de courbes analytiques

Le point de départ dans I’étude de la partie (a) de notre programme est 1'observation de Bost et
Randriambololona que la condition de croissance polynomiale dans la méthode de Nesterenko peut étre
remplacée par une autre condition plus faible de < croissance modérée >, formulée de maniére purement
géométrique.

Fixons (M, h) une variété hermitienne et considérons la (1,1)-forme réelle positive associée a h

w=—Imh;

en coordonnées locales (z1,...,2,) sur M, si h =31, <, hiudzr ® dz;, alors

)
w=§ Z hiidzi N dz;.

1<k, l<n

Soit R > 0 un nombre réel, Dr = {z € C | |z| < R} le disque complexe de rayon R centré en l'origine
et ¢ : Drp — M une application analytique. Pour tout ¢ €]0, R[, 'aire du < disque » ¢(D;) C M se calcule

par
Au(t) :/ Y w.
Dy

On définit alors la fonction caractéristique T, :]0, Rl— R de ¢ en prenant une < intégrale logarithmique >

/ A,(r)dlogt.

Dans le cas particulier ou M = P(C) et h est la métrique de Fubini-Study, on a, sur la carte affine
C c PYC),
i = i 1
= —00dlog(1 = — —————_dzAdZ
271_ Og( +|Z| ) 2,“_ (1+|Z|2)2 z 2
et l'on constate que la fonction caractéristique Ty, d’une application analytique ¢ : Dr — P!(C) définie
comme ci-dessus n’est autre que la fonction caractéristique d’Ahlfors-Shimizu (cf. [93] V) :

o= e ()

DEFINITION. Soit R > 0 un nombre réel et (M, h) une variété hermitienne. On dit qu’une application
analytique ¢ : Dp — M est & croissance modérée s’ils existent des réels a,b > 0 tels que

1
Ty(r) <a-+blog 1

pour tout r €]0, R[.

13



Remarquons que, si M est une variété complexe compacte, alors toutes les métriques hermitiennes sur
M sont < comparables > ; il en résulte que la propriété de croissance modérée d’une application analytique
@ : Dp — M ne dépend pas du choixz de métrique hermitienne sur M.

Munissons le disque Dg de la métrique de Poincaré :

R

R |dz|.

Parmi les classes générales d’exemples de courbes analytiques a croissance modérée, on trouve les < courbes
a dérivée bornée > ; par définition, ce sont les courbes ¢ : D — M dont la norme de 'application tangente
D.¢:T,Dr — T,y M par rapport aux métriques h sur M et de Poincaré sur Dg est uniformément bornée
pour z € Dp.

Compte tenu de cette observation, un résultat de Brunella (cf. [34] Théorémes 15 et 16) entraine que,
pour un feuilletage F singulier de dimension un générique sur P"(C), toute courbe analytique intégrale de
F paramétrée par un disque est a croissance modérée. En ce sens, la croissance modérée est une condition
naturelle pour les courbes intégrales de feuilletages.

Par ailleurs, dans le cas R = 1, une courbe analytique

©=(p1,...,0n): D— C" CP"(C)
dont les suites de coefficients de Taylor (go,gm) (0)/m!)m>0 ont une croissance polynomiale en m pour tout
1 <k < n, est a croissance modérée (Exemple 3.4.5). La croissance modérée généralise donc la condition de
croissance (N1) considérée dans la méthode de Nesterenko.

Dans la recherche de nouveaux exemples d’application de la méthode de Nesterenko, I'une des principales
difficultés se doit au fait que la condition de croissance polynomiale sur les coefficients de Taylor est trop
restrictive, n’étant pas préservé par des simples manipulations algébriques sur les fonctions. Par exemple, la
suite de coefficients de Taylor en I'origine (¢(n))n>0 de la fonction

3

E4

ne croit pas polynomialement en n; en fait,
6471'\/5

c(n) ~ W

lorsque n — +oo (voir [84] ou [87]).

La croissance modérée résout cette difficulté. Si 'on se restreint aux variétés ambiantes M projectives
— c’est-a~dire, M s’identifie & 'analytifié X (C) d’une variété algébrique projective lisse X sur C —, alors
des arguments standards en théorie de Nevanlinna permettent de démontrer que, sous une hypothese de
non-dégénérescence, la croissance modérée est un invariant birationnel :

THEOREME 1 (¢f. Corollary 3.4.12). Soit f : X — Y un morphisme birationnel de C-variétés algébriques
projectives lisses. Si R > 0 est un nombre réel, alors une application analytique ¢ : Dp — X(C) dont
limage est Zariski-dense est a croissance modérée si, et seulement si, f o : Dp — Y(C) est a croissance
modérée.

Signalons au passage que ce résultat nous permet aussi de définir la notion de croissance modérée d’une
courbe analytique Zariski-dense dans une variété quasi-projective lisse en considérant des compactifications
(¢f. Corollaire 3.4.13).

Une généralisation géométrique de la méthode de Nesterenko

Dans le troisieme chapitre de cette these, nous prouvons un énoncé géométrique qui généralise la méthode
de Nesterenko en trois directions : (1) suivant Bost et Randriambololona, la condition de croissance polyno-
miale est remplacée par la croissance modérée ; (2) anneau d’entiers Z est remplacé par un anneau d’entiers
algébriques quelconque; (3) Pespace affine (variété ambiante) est remplacé par une variété quasi-projective
plus générale.

14



Avant de présenter ’énoncé précis de notre théoreme, expliquons comment la condition technique (N2)
dans la preuve de Nesterenko se formalise dans notre cadre géométrique général.
Fixons un corps k quelconque.

DEFINITION. Soit X une variété projective de dimension n sur k, munie d’un fibré en droites ample
L. On dit qu’une courbe formelle ¢ : Spf k[q] — X (i.e., ¢ est un morphisme de k-schémas formels) est
ZL-dense s'il existe une constante réelle C' > 0 telle que

(ZL) ordg—op*s < Cd"™
pour tout entier d > 1 et toute section non-nulle s € I'(X, L®9).

Il découle de I'amplitude de L que 'image de toute courbe formelle ZL-dense est Zariski-dense. Ainsi, la
notion de ZL-densité peut s’interpréter comme une version renforcée de la Zariski-densité.

Cette définition généralise bien la conclusion du < lemme de zéros > considéré par Nesterenko : la
condition en (N2) ci-dessus revient & dire que la courbe formelle

¢ :SpfClq] — AL C PE
q— (qa EQ(Q)a E4(Q)a Eﬁ(Q))

est ZL-dense dans P¢ muni du fibré ample Opa (1). La terminologie « ZL-dense > provient de Zero Lemma.

La ZL-densité est une notion véritablement géométrique. Tout d’abord, remarquons qu’elle ne dépend
pas du choix de L (¢f. Proposition 3.2.9). En outre, si X est supposé seulement quasi-projectif, la ZL-densité
d’une courbe formelle ¢ dans X dont le k-point ¢(0) € X (k) est régulier ne dépend pas de la compactification
projective de X choisie (¢f. Corollaire 3.2.16). Finalement, si X est supposée géométriquement intégre, alors
une courbe formelle ¢ : Spfk[g] — X est ZL-dense dans X si, et seulement si, pour toute extension de
corps K de k, la courbe ¢ : Spf K[g] — Xx, obtenue par changement de corps de base, est ZL-dense
dans Xg.

Nous sommes maintenant en mesure d’énoncer notre théoreme.

Soit K un corps de nombres et dénotons par Ok son anneau d’entiers. Rappelons qu'une wvariété
arithmétique sur Ok désigne un schéma integre X muni d’un morphisme plat, séparé et de type fini
X — Spec Ok

THEOREME 2 (c¢f. Théoreme 3.1.2). Soit X une variété arithmétique quasi-projective sur Ok de dimen-
sion relative n > 2, avec fibre générique Xk lisse, et soit ¢ : Spf Ok [q] — X un morphisme de Ok -schémas
formels tel que, pour tout plongement de corps o : K < C, la courbe formelle ¢, : Spf Clq] — X, obtenue
de @ par changement de base, se reléve en une courbe analytique p, : Dr, C C — X,(C) définie sur un
disque de rayon R, > 0 centré en l'origine.

Supposons que

IR, =1

et qu’il existe un champ de vecteurs v € T'(Xg,Tx, k) \ {0} sur la fibre générique de X tel que
&K : Spt K[q] — Xk satisfait l'équation différentielle

Si de plus :
(1) la courbe formelle pi est ZL-dense dans Xk, et

(2) pour chaque plongement de corps o0 : K — C, la courbe analytique ¢, : Dr, — X,(C) est a
croissance modérée,

alors, pour tout o : K — C, et tout z € Dg, \ {0}, le corps de définition K(p,(2)) du point complexe v, (z)
dans Xg satisfait

degtr x K (¢, (2)) > n— 1.
2. L’exposant n = dim X dans la borne polynomiale ci-dessus est le plus petit possible (cf. Proposition 3.2.6).
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Le théoréme de Nesterenko se retrouve comme le cas particulier K = Q, X = A%, et ¢ : Spf Z[q] — A7
définie par 4(q) = (q, E2(q), Ea(q), Es(q))-

Dans le Théoréme 2, la condition (1) est, comme la condition (2), naturelle pour les courbes intégrales de
champs de vecteurs algébriques. Ceci est aussi dii a Nesterenko ([75] Théoréme 6), qui prouve qu’une solution
d’une équation différentielle satisfaisant la D-propriété (cf. Définition 3.B.1) satisfait aussi le lemme de zéros
(ZL). Ce résultat, et sa démonstration, ont été étendus dans un cadre géométrique par Binyamini [10]. Dans
I’annexe 3.B, nous indiquons comment adapter les arguments de Binyamini pour obtenir la généralisation
suivante :

THEOREME 3 (c¢f. [10] et Théoreme 3.B.2). Soit X une variété quasi-projective lisse sur un corps
k algébriquement clos de caractéristique nulle, v € T'(X,Tx/;) \ {0} un champ de vecteurs sur X et
@ : Spfk[q] — X une courbe formelle lisse satisfaisant I’équation différentielle
de R
-~ =vo.
qdq ¥
St @ satisfait la D-propriété pour le feuilletage engendré par v, alors ¢ est ZL-dense dans X .

Notre démonstration de la généralisation géométrique du théoréeme de Nesterenko suit la structure de la
preuve de Nesterenko dans [75]. En particulier, nous employons le méme critére d’indépendance algébrique
de Philippon [85]. Pour cela, nous montrons dans I’annexe 3.A comment ce critére peut étre généralisé & des
variétés arithmétiques projectives plus générales que P".

Remarquons finalement que les hypotheses du théoréme ci-dessus suivent le méme schéma général de
celles des théoremes de Siegel-Shidlovsky et de Schneider-Lang. Notre résultat peut s’interpréter donc
comme un complément < hyperbolique > a ces méthodes < paraboliques >, qui admettent elles aussi des
généralisations géométriques (cf. [1], [7], [37], [36], [46]).

Périodes de variétés abéliennes

L’intérét dans le théoreme de Nesterenko provient, dans une large mesure, du fait que les valeurs des
séries d’Eisenstein classiques, ou plus généralement des formes quasi-modulaires, sont des < périodes > de
courbes elliptiques.

Grosso modo, une période est un nombre complexe qui peut s’exprimer comme la valeur d’une intégrale
d’origine algebro-géométrique. Les premiers résultats sur la transcendance de périodes elliptiques remontent
a Schneider. Dans les deux derniéres décennies, 1’étude de ces nombres a connu un regain d’intérét, da
notamment a son lien étroit avec la théorie des motifs. Un survol sur la théorie des périodes en général nous
emmeénerait trés loin; pour cela, nous renvoyons a [56], [2] et [47]. Nous nous bornerons ici & les périodes
abéliennes.

Soit g > 1 un entier, k un sous-corps de C et X une variété abélienne de dimension g sur k. Alors on
dispose, pour tout ¢ > 0 entier, du k-espace vectoriel de i-éme cohomologie de de Rham algébrique :

Hag (X/k) = H'(Q% 1),

et du Q-espace vectoriel de i-eme cohomologie singuliere, ou cohomologie de Betti, sur le tore complexe
X(C):

H'(X(C),Q).
Pour n’importe quelle théorie de cohomologie de Weil (de Rham, Betti, ¢-adique, etc.), le premier groupe
de cohomologie H'(X) est un espace vectoriel de dimension 2g et, pour i > 0 entier, H'(X) s’identifie
canoniquement & la puissance extérieure A" H'(X). Pour cette raison, il suffit de considérer les groupes de
cohomologie H'! dans la suite.

Les périodes de X sont des invariants numériques provenant de 1’isomorphisme de comparaison de
Grothendieck :

c: Hir(X/k) @, C — H'(X(C),Q) ®q C.
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Si H1(X(C), Q) dénote le premier groupe d’homologie singuliere de X (C) & coeflicients dans Q, alors 1'ac-
couplement induit par 'isomorphisme ¢

Hy(X(C),Q) x Hig(X/k) — C

est précisement 1’< accouplement de périodes >, défini par I'intégration des classes de cohomologie algébriques
a coefficients dans k sur des cycles singuliers, et I’on définit le corps

P(X/k)cC

des k-périodes de X comme le sous-corps de C engendré sur k par les éléments dans I'image de ’accouplement
ci-dessus. Autrement dit, P(X/k) est le corps de rationalité de I'isomorphisme linéaire c.

Comment calculer degtr,P(X/k) ou degtrgP(X/k) pour une variété abélienne X donnée ?

Lorsque le corps k est contenu dans Q, la cléture algébrique de Q dans C, Grothendieck a formulé une
conjecture qui donne une réponse géométrique, ou plutét motivique, a cette question dans un cadre plus
large : toutes les relations algébriques parmi les périodes d’une k-variété projective X proviendraient de
cycles algébriques sur des puissances X xy --- X, X de X (cf. [40] note de bas de page 10, [60] p. 40-44).

La conjecture de Grothendieck pour une variété abélienne X peut se reformuler en termes du groupe
Mumford-Tate MT(X), i.e., le plus petit Q-sous-groupe algébrique de GLy1(x(c),Q) XQGm,q qui fixe toutes
les classes de Hodge dans des puissances tensorielles mixtes de la Q-structure de Hodge sous-jacente a
HY(X(C),Q) (cf [29] 1.3). La conjecture suivante est une version de la conjecture de Grothendieck, valable
pour des corps k C C arbitraires, proposée par André ([2] 23.4.1) dans un cadre plus général :

CONJECTURE (Grothendieck-André). Pour toute variété abélienne X sur un corps k C C, on a :

2
degtrqP(X/k) > dim MT(X).

Deligne [28] (cf. [29] Corollaire 1.6.4) a prouvé, comme conséquence de ses travaux sur les cycles de
Hodge absolus, que 'on a toujours la borne supérieure :

degtr, P(X/k) < dim MT(X).
En particulier, dans le cas o1 k C Q, la conjecture de Grothendieck devient une égalité :
degtrqP(X/k) = dim MT(X).

On dispose de tres peu d’évidence pour la conjecture de Grothendieck-André. A part un résultat de
Wiistholz sur les relations linéaires entre les périodes (cf. [95]), un théoréeme de Chudnovsky affirme que,
dans le cas k C Q, on a degtrqP(X/k) > 2 pour n’importe quelle variété abélienne X simple ([24] Ch. 7,
Proposition 2.5). Pour les courbes elliptiques — i.e., les variétés abéliennes de dimension g = 1 —, le résultat
de Chudnovsky prouve la conjecture des périodes dans le cas de < multiplication complexe >. Lorsque X est
une courbe elliptique sans multiplication complexe, la conjecture de Grothendieck (pour k C Q) s’écrit

degtrqP(X/k) 24
et reste encore ouverte.

Le théoréme de Nesterenko non seulement renforce le résultat de Chudnovsky pour les courbes elliptiques,
mais fournit aussi un autre point de vue sur ce probleme, que 'on peut appeler le point de vue modulaire
sur la conjecture de périodes. Expliquons cela.

Rappelons que le demi-plan de Poincaré H classifie les tores complexes de dimension 1 munis d’une base

orientée de leur premier groupe d’homologie singuliere a coefficients dans Z : a 7 € H, on associe le tore
complexe C/(Z + 7Z) muni de la base (v,,d,) de H1(C/(Z + 7Z),Z) induite par les lacets

v :0,1] — C/(Z + 7Z) 0-:00,1] — C/(Z+7Z)
t— [t] t — [t7].

La théorie de Weierstrass implique que, pour chaque 7 € H, ils existent ¢s ,,g3- € Q(j(7)) tels que
93 — 2793 . # 0 et que le tore C/(Z + 7Z) soit isomorphe au complexifié E,(C) de la courbe elliptique E,
sur Q(j(7)) donnée par 'équation y* = 42> — go ; — g3 -
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En considérant la base (%T, x%) de HJz(E-/Q(j(7))), on obtient quatre périodes :
dx dz / dz / dz
Wi,r = —, W2 = — M= T—, M2 = r—,

v Y 5. Y .Y 5, Y

qui engendrent le corps de périodes P(E./Q(j(T))) :
P(ET/Q(.](T))) = Q(](T)v Wi, r, W2, M, 7, 772,7')~

La théorie classique des formes modulaires entraine les formules

TiT w1,r n,r 2miT wi,r 4 2miT Wi1,r 6
By (e :12( )( ) E —12 T( ) E — 216 T( )
2(e™) omi ) \ 2mi 1(€7) = 1202 (5 6(e™) 937\ 9mi

Finalement, compte tenu de 'expression de j en termes de E4 et Eg (voir (x)) et de la relation de périodes
de Legendre wy 12, — wa +M,+ = 27, on conclut que

(P) degtrQP(ET/Q(j (1)) = degtrQQ(Qm', T, Eg(e%”), E4(e2””), E6(62”T)).
Le théoreme de Nesterenko implique que, pour tout 7 € H, on a

degtrQQ(E2(627ri‘r)’E4(627r1'7')’E6(627r1'7')) Z 2.

Or, si E est une courbe elliptique complexe quelconque, alors il existe 7 € H tel que E(C) soit isomorphe
au tore complexe C/(Z + 7Z), et Q(j(7)) est le corps de définition de E. En particulier, on conclut de (P)
que le théoreme de Chudnovsky pour les courbes elliptiques sur Q

degtrqP(E/Q) > 2

est un corollaire du théoreme de Nesterenko.
Il est naturel a ce stade de se demander si cet approche modulaire a la conjecture de périodes se généralise
aux variétés abéliennes de dimension quelconque.

Equations de Ramanujan supérieures

Dans les deux premiers chapitres de cette these, nous franchissons un premier pas dans ’étude de cette
question ci-dessus. En particulier, nous généralisons la formule (P) : pour tout entier g > 1, il est possible de
paramétrer les corps de périodes de variétés abéliennes de dimension g, a extension algébrique pres, par une
solution de certaines équations différentielles algébriques a coefficients rationnels, les équations de Ramanujan
supérieures.

Expliquons comment définir ces équations différentielles géométriquement.

Notre construction a été inspiré de la réinterprétation géométrique des équations de Ramanujan < clas-
siques » par Movasati (¢f. [69]) et constitue une généralisation de celle-ci en dimensions supérieures (voir
aussi [70] pour un autre point de vue). Remarquons qu’une interprétation géométrique des équations de
Ramanujan, par le biais de la dérivée de Serre sur les formes modulaires, a été considérée précédemment par
Deligne (cf. [51] Appendix A).

La cohomologie de de Rham d’une variété abélienne principalement polarisée (X, \) de dimension g sur
un corps k est munie de deux structures supplémentaires : (1) un sous-espace vectoriel F*(X/k) C H}g (X/k)
de dimension g, le sous-espace de Hodge, canoniquement isomorphe a l’espace de formes holomorphes
HO(X, Q% /i) i (2) une forme k-bilinéaire symplectique (i.e., alternée et non-dégénérée) (, ) induite par la
polarisation principale .

DEFINITION. Soit (X, \) une variété abélienne principalement polarisée de dimension g sur un corps k.
Une base b = (w1, ...,wy,N1,...,1,) du k-espace vectoriel H}g (X/k) est dite base Hodge-symplectique de
(X, ) si b est une base symplectique par rapport a (, ) et si (w1, ...,w,) est une base de F*(X/k).

A part la terminologie, cette définition n’est pas nouvelle ; le choix d’une base de Hl, (X/k) de la forme
ci-dessus est classique dans la théorie des variétés abéliennes.

Nous considérons ensuite, pour un entier g > 1 donnée, un <« champ de modules > sur Spec Z, que nous
dénotons By, classifiant les variétés abéliennes principalement polarisées de dimension g munies d’une base
Hodge-symplectique.
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THEOREME 4 (cf. Théorémes 1.3.2 et 1.4.1). Le champ B, sur SpecZ est un champ de Deligne-Mumford
lisse de dimension relative 29> + g sur Spec Z. De plus, le changement de base By ®z Z[1/2] est représentable
par un schéma quasi-projectif lisse B, sur Spec Z[1/2].

Le résultat de représentabilité dans 1’énoncé ci-dessus repose essentiellement sur un théoréme d’Oda [78]
sur le module de Dieudonné associé a la cohomologie de de Rham d’une variété abélienne en caractéristique
positive.

Nous démontrons ensuite (Théoreme 1.5.4) que la théorie de déformations de variétés abéliennes permet
de décrire le fibré tangent Tp ;7 de B, en termes de la cohomologie de de Rham relative du schéma abélien
universel sur le champ de modules de variétés abéliennes principalement polarisées de dimension g. Ceci nous
permet de définir une famille canonique (v;5)1<i<j<4 de champs de vecteurs sur B, que 'on appelle champs
de Ramanujan supérieurs. Ceux-ci se caractérisent aussi par la propriété suivante.

Soit X, le schéma abélien universel sur B, et V la connexion de Gauss-Manin sur la cohomologie de de
Rham relative Hp (X,/By).

THEOREME 5 (cf. Proposition 1.5.7 et Corollaire 1.5.10). Si (w1, ..., wg, M1, ..., 1) dénote la base Hodge-
symplectique universelle sur By, alors (vij)1<i<j<g est Uunique famille de champs de vecteurs sur B, satis-
faisant, pour tout 1 <i<j<g :

(1) Vy,wi =15, Vo, wj =m0, et Vo, wp =0 pour tout k & {i,j},
(2) Ve =0 pour tout 1 < k < g.

En particulier, les champs v;; commutent entre euz.

Dans le cas g = 1, la théorie classique des courbes elliptiques permet d’identifier By ®z1 /) Z[1/6] avec
le schéma affine Spec Z[1/6, e, 4, €6, (€3 — €2) 1] et I'on déduit du théoréme ci-dessus que

e3—eq O exeq4 —€g O eseg — el 0

12 862 3 864 2 866

V11 =

coincide avec le champ de vecteurs associé aux équations de Ramanujan classiques.
Nous généralisons la solution (Es, E4, Eg) comme suit. Rappelons que, pour g > 1 entier, le demi-espace
de Siegel

H, = {7 € My,(C)|'r=7et Im7 >0}

classifie les tores complexes principalement polarisés de dimension g munis d’une base symplectique du
premiere groupe d’homologie a coefficients entiers : & 7 € H, correspond un tore principalement polarisé
(Xg.r, Eg-) muni de la base Bg r = (V1,751 Yg,r: 01,7 - - -1 0g,7) de H1(Xg 7, Z). Ici, Xy = CI/(Z9 +TZ9),
E, - dénote la forme de Riemann principale

E,;:C'xCY—R
(v,w) — Im(*T(Im 1)~ w),
et la base 8y, est donnée par les lacets
i 10,1] — X - 87 [0,1] — X -
t— [teg] t —> [t7y]

oue; € CY (resp. 7; € CY9) dénote la j-eme colonne de la matrice identité 1, € My 4(C) (resp. 7 € Myx4(C)).
Remarquons au passage que tout tore muni d’une polarisation est algébrisable, i.e., s’identifie a 'analytifié
d’une variété abélienne complexe polarisée.

L’isomorphisme de comparaison

Hig(Xyr) = H' (2%, ) — Homz(Hy(X, ;,Z),C)

OL|—>/O[
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nous permet donc de définir une base by ; = (Wi r, ..., Wgrs My 1s---,M,,) de Hig(Xy7) par :

/ Wi r = 51‘;', / Wi = Tij, / Nir = 0, / Nir = 5ij~
v é v 5

J,T J,T J,T
Voir Section 2.4.1 pour une définition alternative de by -.

3T

THEOREME 6 (cf. Théoreme 2.4.2). Pour tout 7 € Hy, la base by, de Hix (X, +) est Hodge-symplectique.
De plus, Uapplication analytique

vy Hy — Bg(C)

induite par b, satisfait les équations différentielles

— = 1<k<Ii<y.
271 0Ty UKL © Py sh=t=9
Remarquons que, sous Uidentification By(C) = {(21,22,23) € C? | 25 — 22 # 0} ci-dessus, la courbe
analytique ¢7 : H — B1(C) est donnée par

01 (7_) — (EQ(GQMT), E4(€2mT), E6(82m7—)).
Dans le cas général, nous prouvons quelques résultats de transcendance fonctionnelle.

THEOREME 7 (c¢f. Théoréme 2.7.1). Toute feuille analytique dans By(C) du feuilletage engendré par les
champs de Ramanugjan supérieurs est Zariski-dense dans By c.

Remarquons que des feuilletages algébriques de dimension r (i.e., engendrés par un sous-fibré involutif
algébrique de rang r du fibré tangent d’une variété algébrique) dont toutes les feuilles analytiques sont Zariski-
denses jouent un role important dans les < estimées de multiplicité > en approximation diophantienne, du
moins lorsque r = 1, ou cette propriété implique la D-propriété de Nesterenko.

D’apres les Théorémes 6 et 7, 'image de ¢, est Zariski-dense dans B, c. Un argument simple permet
alors d’en déduire le résultat plus fort que le graphe de ¢, :

{(1,4(7)) € Symg(C) x By(C) | T € Hy}

est Zariski-dense dans Sym, ¢ XcBy,c, ot Sym, dénote le Z-schéma en groupes des matrices symétriques
d’ordre g (c¢f. Corollaire 7.2). Ce dernier résultat est un analogue partiel en dimension supérieure d’un
théoréme de Mahler [63] sur Iindépendance algébrique des fonctions 7, e*™", Ey(7), E4(T), Eg(T).

Remarquons que des généralisations en dimension supérieure des équations de Ramanujan, sous forme de
systemes d’équations aux dérivées partielles satisfaits par certaines Thetanullwerte, ainsi que des résultats de
transcendance fonctionelle & la Mahler sur ces derniéres, ont été obtenus par Zudilin [97] et Bertrand-Zudilin
[8], [9]. Le lien précis entre leur résultats et les notres n’est pas complétement clair & ce stade.

Finalement, nous montrons que ¢, paramétrise les corps de périodes de variétés abéliennes principalement
polarisées de dimension g. Pour cela, on remarque que toute variété abélienne complexe X admet un plus
petit sous-corps algébriquement clos & C C de définition, i.e., pour lequel il existe une variété abélienne X
sur k telle que Xo ® C = X (c¢f. Lemme 2.5.1). On définit alors le < corps de périodes absolu > de X par

P(X) = P(Xo/b);

ceci ne dépend pas du choix de Xj.
Pour 7 € Hy, on dénote par Q(27i, 7, pg4(7)) le corps de définition du point complexe (27i, T, ¢4(7)) de
la Q-Val‘iété Gm’Q XQ Symg’Q XQB!LQ.

THEOREME 8 (cf. Théoréme 2.5.3). Fizons g > 1 entier. Pour tout T € Hy, le corps de périodes P(Xg ;)
est une extension algébrique de Q(2mi, T, p4(T)).

Pour tout 7 € Hy, on a donc
degtrQP(Xg,T) = degtrQQ(Zm', T, 04(7)),
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ce qui généralise (P) ci-dessus. En particulier, la Zariski-densité du graphe de ¢, peut s’interpréter comme
une variante fonctionnelle de la conjecture de périodes : outre les relations induites par les donnés de polari-
sation, il n’y a pas d’autre relation algébrique simultanément satisfaite par les périodes de toutes les variétés
abéliennes principalement polarisées.

Signalons que Bertrand et Zudilin ont aussi obtenu un résultat analogue au Théoreme 8 ci-dessus pour
le corps différentiel engendré par les formes modulaires de Siegel ([8] Proposition 2).

Quelques questions ouvertes

Comme remarqué par Schneider dans [90] p. 138, il n’y a pas de difficulté & trouver des questions
non résolues dans la théorie des nombres transcendants.® Néanmoins, dans la fin de cette introduction,
nous tenons a signaler quelques questions issues des travaux réalisés dans cette these et quelques directions
d’investigation que nous jugeons intéressantes.

Tout d’abord, le Théoreme 2 ci-dessus permet de formuler une version mathématiquement précise du
probléeme concernant ’existence de nouveaux exemples d’application de la méthode de Nesterenko : existe-t-il
un exemple d’application du Théoréme 2 dont l’énoncé de transcendance résultant ne soit pas contenu dans
le théoréme de Nesterenko ?

Si les candidats provenant de la symétrie miroir semblent prometteurs, a ce stade nous ne pouvons pas
exclure la possibilité d’une réponse négative a cette question. Remarquons, cependant, qu'une preuve de ce
fait serait tout aussi remarquable que la découverte d’un nouveau exemple, puisque ceci impliquerait que les
fonctions quasi-modulaires sont les uniques fonctions satisfaisant les hypotheses du Théoreme 2, lesquelles
ne font pas référence explicite a la nature géométrique des fonctions modulaires liées aux courbes elliptiques.

Il est aussi naturel de se demander si le Théoréeme 2 admet des généralisations en dimension supérieure.
Nos travaux sur les équations de Ramanujan supérieures indiquent que ¢, ou une variante de cette construc-
tion, seraient des candidats naturels a ’application de telles généralisations.

L’accomplissement de ce programme aurait grand intérét dans la théorie des nombres transcendants. En
effet, d’apres le Théoreme 8, un résultat d’indépendance algébrique sur les valeurs de ¢, entrainerait des
estimés de degrés de transcendance dans la direction de la conjecture de périodes pour les variétés abéliennes.

3. < Es macht keine Schwierigkeit, ungeldste Fragen aus dem Gebiet der transzendenten Zahlen aufzuwerfen. >
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Chapitre 1

Higher Ramanujan Equations I : moduli stacks of abelian varieties
and higher Ramanujan vector fields

Abstract

We describe a higher dimensional generalization of Ramanujan’s differential equations satis-
fied by the Eisenstein series Fo, F4, and Eg. This will be obtained geometrically as follows. For
every integer g > 1, we construct a moduli stack By over Z classifying principally polarized abe-
lian varieties of dimension g equipped with a suitable additional structure : a symplectic-Hodge
basis of its first algebraic de Rham cohomology. We prove that By is a smooth Deligne-Mumford
stack over Z of relative dimension 2¢g* + g and that B, ® Z[1/2] is representable by a smooth
quasi-projective scheme over Z[1/2]. Our main result is a description of the tangent bundle Tp_,z
in terms of the cohomology of the universal abelian scheme over the moduli stack of principally
polarized abelian varieties A4. We derive from this description a family of g(g + 1)/2 commuting
vector fields (vi;)1<i<j<g on By ; these are the higher Ramanujan vector fields. In the case g = 1,
we show that v11 coincides with the vector field associated to the classical Ramanujan equations.

This geometric framework taking account of integrality issues is mainly motivated by ques-
tions in transcendental number theory. In the upcoming second part of this work, we shall relate
the values of a particular analytic solution to the differential equations defined by v;; with Gro-
thendieck’s periods conjecture on abelian varieties.

1. Introduction

Consider the classical normalized Eisenstein series in Z[g]

Ea(q) =1 24502 T gy )—1+240§: na (@) =1 504§: g
2\q) = n:11_qna 4\q) = n:11_qn7 6\q) = n:11_qn
and let 0 = qd%. In 1916 [88] Ramanujan proved that these formal series satisfy the system of algebraic
differential equations
E2 — B, EyEy — Eg EyEq — E2
—, By =—"77"7-—— —_ .
12 3 2

The study of equivalent forms of such differential equations actually predates Ramanujan. To the best of our
knowledge, Jacobi was the first to prove in 1848 [49] that his Thetanullwerte satisfy a third order algebraic
differential equation. In 1881 [45] Halphen found a simpler description of Jacobi’s equation by considering
logarithmic derivatives. Further, in 1911 [22] Chazy considered a third order differential equation ! satisfied
by the Eisenstein series Fs :

(R) 0E, =

(C) 03By = Ey0°Ey — g(aEQ)?

We refer to [79] for a thorough study of Jacobi’s, Halphen’s, and Chazy’s equations, and the relations between
them. We point out that Ramanujan’s and Chazy’s equations concern level 1 (quasi-)modular forms, whereas
the equations of Jacobi and Halphen involve level 2 (quasi-)modular forms.

A higher dimensional generalization of Jacobi’s equation concerning Thetanullwerte of complex abelian
varieties of dimension 2 was first given by Ohyama [80] in 1996, and for any dimension by Zudilin [97] in
2000 (see also [8]).

1. In Chazy’s original notation (cf. [22] (4)) the equation he considered is written as y"" = 2yy’’ — 3(y’)2. If derivatives in
this equation are with respect to a variable ¢, equation (C) is obtained from this one by the change of variables ¢ = e2*.
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This paper, and its sequel, grew out from our attempt to obtain a more conceptual understanding of
the Ramanujan equations and their higher dimensional extensions. This could possibly shed some light on
their arithmetical and geometric properties. An important motivation for this program is the central role
of the original Ramanujan equations (R) and of the integrality properties of the series Es, F4, and Fg, in
Nesterenko’s celebrated result on the transcendence of their values, when regarded as holomorphic functions
on the complex unit disc D = {z € C | |z| < 1} :

THEOREM 1.1 (Nesterenko [75] 1996). For every ¢ € D\ {0},

trdegqQ(q, F2(q), E4(q), Ee(q)) > 3.

In contrast with the concrete methods of Ohyama and Zudilin based on theta functions, our geometric
approach allows us to construct by purely algebraic methods some higher dimensional avatars of the system
(R), involving suitable moduli spaces of abelian varieties that enjoy remarkable smoothness properties over
Z. Another important difference between our approach and that of Ohyama and Zudilin is that we work in
“level 17, although it should be clear that we can also introduce higher level structures in the picture.

We next explain our main results.

Fix an integer g > 1. Let k be a field and (X, \) be a principally polarized abelian variety over k of
dimension g (here A\ denotes a suitable isomorphism from X onto the dual abelian variety X*). Then the
first algebraic de Rham cohomology HJy (X/k) is a k-vector space of dimension 2g endowed with a canonical
subspace F''(X/k) of dimension g (given by the Hodge filtration) and a non-degenerate alternating k-bilinear
form

(, )x+ Ha(X/k) x Hig(X/k) — k

induced by the principal polarization A. By a symplectic-Hodge basis of (X,)\), we mean a basis b =
(Wi ..y Wy, M, - -, 1) of the k-vector space Hip(X/k), such that

(1) each w; is in F'(X/k), and

(2) b is symplectic with respect to (, )x, that is, (w;,w;)x = (75, m;)x = 0 and (w;,n;)x = d;; for every

1<ij<gy.

We may consider the moduli stack B, classifying principally polarized abelian varieties of dimension g
equipped with a symplectic-Hodge basis; we prove that By is a smooth Deligne-Mumford stack over Spec Z
of relative dimension 2g2 + g. This stack is not representable by a scheme (or even an algebraic space).
Nevertheless, we prove that By @ Z[1/2] is representable by a smooth quasi-projective scheme B, over
Z[1/2]. This result relies essentially on a theorem of Oda ([78] Corollary 5.11) relating Hjg(X/k) to the
Dieudonné module associated to the p-torsion subscheme X [p] when k is a perfect field of characteristic p.

The main result in this paper is a description of the tangent bundle T,z in terms of the first relative de
Rham cohomology of the universal abelian scheme over the moduli stack A, of principally polarized abelian
varieties of dimension g (see Theorem 5.4 for a precise statement). From this description, we construct a
family (vij)1<i<j<g of g(g + 1)/2 commuting vector fields over By ; these are the higher Ramanujan vector
fields. Concretely, if (w1,...,wg,M1,...,14) denotes the universal symplectic-Hodge basis over B, and V
denotes the Gauss-Manin connection on the first relative de Rham cohomology of the universal abelian
scheme over By, then for every 1 <i < j < g we have

(1) Vo, wi =nj5, Vy,wj =n;, and V,, wi = 0 for every k & {i,j},
(2) Vy,me =0 for every 1 < k < g,
and these equations completely determine v;;.

When g = 1, we shall recall how B; may be identified, by means of the classical theory of elliptic curves,
with an open subscheme of A%u/z] = SpecZ[1/2,bs, by, bg]. Under this isomorphism, the vector field vy gets
identified with

0 0 0
2b48—b2 + 3b6674 + (babg — bi)a—b6
which is, up to scaling, the vector field associated to Chazy’s equation (C) 2 We also show that B; ® Z[1/6]
may be identified with the open subscheme Spec Z[1/6, ez, €4, €6, 1/(e3 — €2)] of A?iu/ﬁ]’ and that, under this

2. An integral curve of this vector field for the derivation 6 is given by g — (E2(q), %HEQ (), éngQ (9)).
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isomorphism, the vector field v1; gets identified with the “original” vector field associated to the Ramanujan
equations (R) :

e3—eq O exey —eg O eseq — €2 0

12 Oes 3 Oey 2 Oeg

A geometric description of the above vector field in terms of the universal elliptic curve and the Gauss-Manin
connection on its de Rham cohomology has actually been given by Movasati in [67] (see also [69]), and this
has been one of the starting points of our construction. Let us remark that this point of view was already
implicitly contained in the concept of “Serre derivative” of modular forms ([92] 1.4) and in its geometric
interpretation given by Deligne ([51] A1.4).

In the sequel of this paper, Higher Ramanugjan equations II : periods of abelian varieties and transcendence
questions, we shall introduce analytic methods in our construction and we shall tackle some transcendence
questions. We shall prove, for instance, that every leaf of the holomorphic foliation on the complex manifold
By(C) defined by the higher Ramanujan vector fields is Zariski-dense in B,. We shall also construct a
particular solution ¢4 to the differential equations defined by the higher Ramanujan vector fields that will
constitute a higher dimensional generalization of the solution ¢ — (F2(q), E4(q), E¢(q)) when g = 1. Finally,
we shall give a precise relation between the transcendence degree over Q of values of ¢, and Grothendieck’s
periods conjecture on abelian varieties.

We expect that the results in this paper, and in its sequel, might interest specialists in transcendental
number theory. We have tried to keep prerequisites in abelian schemes and algebraic stacks to a minimum
by recalling many notions and constructions that are well known to specialists in algebraic geometry, and
by citing precise results in the (rather scarce) literature on these subjects.

1.1. Acknowledgments. This work was supported by a public grant as part of the FMJH project,
and is part of my PhD thesis under the supervision of Jean-Benoit Bost. I thank him for suggesting me this
research theme, and for his careful reading of the manuscript of this paper.

1.2. Terminology and notations.

1.2.1. By a wvector bundle over a scheme U we mean a locally free sheaf £ over U of finite rank. A line
bundle is a vector bundle of rank 1. A subbundle of £ is a subsheaf F of £ such that F and £/F are also
vector bundles, that is, F is locally a direct factor of £. If £ has constant rank r, by a basis of £ over U we
mean an ordered family of r global sections of £ that generate this sheaf as an Oy-module. The dual of a
vector bundle € is the vector bundle £¥ := Homoe,, (€, Ov).

1.2.2. Let U be a scheme. By an abelian scheme over U, we mean a proper and smooth group scheme
p: X — U over U with geometrically connected fibers. The group law of X over U is commutative (cf.
[72] Corollary 6.5) and will be denoted additively. A morphism of abelian schemes over U is a morphism of
U-group schemes.

When p is projective, the relative Picard functor Picx,y is representable by a group scheme over U
([13] Chapter 8). Then, the open group subscheme X of Picy /U > Whose geometric points correspond to line
bundles some power of which are algebraically equivalent to zero, is a projective abelian scheme over U,
called the dual abelian scheme; we denote its structural morphism by p? : X* — U. There is a canonical
biduality isomorphism X — X (cf. [13] 8.4 Theorem 5). The formation of both the dual abelian scheme
and the biduality isomorphism is compatible with every base change in U. The universal line bundle over
X xy X, the so-called Poincaré line bundle, will be denoted by Pxu-

A principal polarization on a projective abelian scheme X over U is an isomorphism of U-group schemes
A: X — X satisfying the equivalent conditions (cf. [72] 6.2 and [30] 1.4)

(1) X is symmetric (i.e. A = A under the biduality isomorphism X = X') and (idx,\)*Px v is
relatively ample over U.

(2) Etale locally over U, X is induced by a line bundle on X (cf. [72] Definition 6.2) relatively ample
over U.

A principally polarized abelian scheme over U is a couple (X, ), where X is a projective abelian scheme
over U and A is a principal polarization on X.
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1.2.3. If X — S is a smooth morphism of schemes, the dual Ox-module of the sheaf of relative
differentials Qﬁ( /s (i.e. the sheaf of Og-derivations of Ox) is denoted by T'x/g. This is a vector bundle over
X whose rank is given by the relative dimension of X — S. If S = Spec R is affine, we denote T'x;s = T'x/r-

The Lie bracket [, ] : Tx/s x Tx;s — Tx/s is defined on derivations by [0y, 62] = 61 0 0 — 6 0 0;.

If S is a scheme, and f : X — Y is a morphism of smooth S-schemes, then there is a canonical
morphism of Ox-modules f*Q%,/S — Q}(/S. Further, as Y — S is smooth, the canonical morphism of

Ox-modules f*Ty;g — (f*Q%,/S)V is an isomorphism. We denote by
Df:Tx;s — fTys

the dual Ox-morphism of f*Q%,/S — Q%{/s after the identification (f*Q%//S)V & f*Tys. If f is smooth,
we have an exact sequence of vector bundles over X

Df  ox
0— Tx/y — Tx/g — f Ty/s — 0.

1.2.4. If U is any scheme, the category of U-schemes (resp. U-group schemes) is denoted by Sch i
(resp. GpSch /U). The category of sets is denoted by Set. If C is any category, its opposite category is denoted
by C°P.

1.2.5.  We shall use the language of categories fibered in groupoids and the elements of the theory of
Deligne-Mumford stacks. We follow the same conventions and terminology of [82]. In particular, if S is a
scheme, whenever we talk about a stack over the category of S-schemes Sch/g (cf. [82] Definition 4.6.1), or
simply a stack over S (or an S-stack), we shall always assume that Sch,g is endowed with the Etale topology.

In view of [82] Corollary 8.3.5, by an algebraic space over a scheme S we mean a Deligne-Mumford stack
X over S such that for any S-scheme U the fiber category X (U) is discrete (i.e. any automorphism is the
identity).

The étale site of a Deligne-Mumford stack X is denoted by Et(X) (cf. [82] Paragraph 9.1). We recall that
the objects of the underlying category of Et(X) are étale schemes over X, that is, pairs (U, u) where U is an S-
scheme and u : U — X is an étale S-morphism ; morphisms are given by couples (f, f) : (U’,u") — (U, u),
where f : U’ — U is an S-morphism and f° : v/ — wo f is an isomorphism of functors U’ — X. Coverings
in Bt(X) are given by families of morphisms {(f;, f?) : (Ui, u;) — (U, u)}ies such that {f; : Uy — Ulics
is an étale covering of U.

The structural sheaf on Et(X), which to any (U, u) associates the ring I'(U, Op), is denoted by Ox,,.
We recall that an Oy,,-module F is said to be quasi-coherent if u*F is a quasi-coherent Oy-module for any
object (U, u) of Et(X).

By a vector bundle over a Deligne-Mumford stack X', we mean a locally free Ox,,-module of finite rank.
We define subbundles, bases, and duals as in 1.2.1.

1.2.6. Sheaves of differentials and tangent sheaves can also be defined for Deligne-Mumford stacks. If
X is a Deligne-Mumford stack over S, we define a presheaf of Oy, -modules Q% /s on Et(X) by

F((Uv u)’ Q%(/S) = F(U’ erj/s)
for any étale scheme (U,u) over X ; restriction maps are defined in the obvious way. Since, for any étale
morphism of S-schemes f : U’ — U, the induced morphism f*Qllj /s Q}], /s is an isomorphism of Oy-
modules, and for any S-scheme U the sheaf Q,lj /s is a quasi-coherent Oy-module, we see that Qi{ /s is in
fact a quasi-coherent sheaf over X' (cf. [82] Lemma 4.3.3). Note that u*Qﬁg/S = Q%]/S for any étale scheme
(U,u) over X.

Let ¢ : X — Y be a morphism of Deligne-Mumford stacks over S. If ¢ is representable by schemes, then
there exists a unique morphism of Oy-modules Q%, /s cp*Q}Y /s inducing, for any étale scheme (V,v) over
Y, the canonical morphism Q%,/S — L,O;QlU/S, where (U, u) (resp. ¢’ : U — V) denotes the étale scheme
over X' (resp. the morphism of S-schemes) obtained from (V,v) (resp. ¢) by base change. If, moreover, ¢
is quasi-compact and quasi-separated, by adjointness (cf. [82] Proposition 9.3.6), we obtain a morphism of
Ox,,-modules
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We then define a quasi-coherent Oy,,-module
Q}/y = coker(go*Qi,/S — Qﬁ(/s).

If X is a smooth Deligne-Mumford stack over S, then Qi( /s is a vector bundle over X'. We define Ty /5
as the dual Ox,,-module of Q}Y/S' If o : X — Y is a morphism of smooth Deligne-Mumford stacks over .S
representable by smooth schemes, then Qﬁf /v is a vector bundle over X, and its dual is denoted by Ty y.

Moreover, in this case, the morphism in (1.1) is injective and induces a surjective morphism of O, ,-modules
Dy :Tx;s — ¢*Ty,s. We thus obtain an exact sequence of quasi-coherent Ox,, -modules

D *
0— T/y/y — T/y/s _W) ©@ Ty/s — 0.

2. Symplectic-Hodge bases

We start this section by recalling the definition of the de Rham cohomology of an abelian scheme and
its main properties. We next explain how to associate to a principal polarization on an abelian scheme a
symplectic structure on its first de Rham cohomology. This leads us to the definition of symplectic-Hodge
bases.

2.1. De Rham cohomology of abelian schemes. Let p: X — U be an abelian scheme of relative
dimension g.

We recall that, for any integer ¢ > 0, the i-th de Rham cohomology sheaf of Oy-modules associated to
p is defined as the i-th left hyperderived functor of p, applied to the complex of relative differential forms

QB(/U :
Hip(X/U) = R'p.Q% -
If F: X — Y is a morphism of abelian schemes over U, we denote by F* : Hip(Y/U) — Hiz(X/U) the

induced Oy-morphism on cohomology.
One can prove that there is a canonical isomorphism given by cup product

N Hin(X/U) =5 Hig(X/U),

and that Hjg (X/U) is a vector bundle over U of rank 2g. Moreover, the canonical Oy-morphism p, Q% v
H}p(X/U) induces an isomorphism of p*Qk/U with a rank g subbundle of Hl, (X/U), its Hodge subbundle
F1(X/U). 1t fits into a canonical exact sequence of Op-modules :

(2.1) 0 — FYX/U) — Hixr(X/U) — R'p.Ox — 0.

The formation of Hig(X/U), F*(X/U), R'p.Ox, and the above exact sequence is compatible with every
base change in U.
For a proof of all these facts, the reader may consult [5] 2.5.

2.2. Symplectic form associated to a principal polarization. Let p : X — U be a projective
abelian scheme of relative dimension g and A : X — X* be a principal polarization. In this paragraph, we
recall how to associate to A a canonical symplectic Op-bilinear form

(, )x: Hag(X/U) x Hag(X/U) — Ov.

We refer to Appendix 1.A for basic definitions and terminology concerning symplectic forms on vector bundles
over schemes.

Recall that to any line bundle £ on X we can associate its first Chern class in de Rham cohomology
c1,ar (L), namely the global section of H3g (X/U) given by the image of the class of the line bundle £ under
the morphism of Opy-modules

R'p.O% — RlP*QB(/Um > Hir(X/U)
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induced by dlog : Ox — Q% ;[1]. 3
We apply the above construction to the Poincaré line bundle Px,yy on the projective abelian scheme
X xy Xt over U. Let

Oxyu + Hin(X/U)Y — Hig(X'/U)
be the morphism of Oy-modules given by the image of ¢1 gr (Px/¢) in the Kiinneth component Hig (X/U)®o,
HIz(X?/U) of H33(X/U), and consider the isomorphism of Op-modules
X' Hog (X'/U) — Hgp(X/U)
induced by the principal polarization A : X — X*. For any sections v and § of H(%R(X/U)V7 we put
Qx(7,0) =00 X" 0 dx/u(7)-

It is clear that Qx defines an Oy-bilinear form over Hiy (X/U)Y. By [5] 5.1.3.1, ¢x,y is in fact an
isomorphism ; in particular, @, is non-degenerate. By duality, we can thus define a non-degenerate bilinear
form (, )\ over Hiz(X/U) via

<Q>\(’Y» )7@)\(57 )>)\ = QA(’V?a))
where we identified Hlg (X/U)VY with Hlg (X/U).
LEMMA 2.1. The non-degenerate bilinear form (| ) is alternating, thus symplectic.

PRrROOF. It suffices to prove that @, is alternating. Since A is a polarization, it is étale locally over U
induced by a line bundle £ over X relatively ample over U. We consider the first Chern class ¢1 gr(£) in
H2 (X/U) = A’ HIg(X/U). Then, one can verify that @ defined above coincides with the alternating form

(7, 0) — v A d(c1ar(L)).
We refer to [30], Section 1, for further details. |

Thus we obtain a symplectic vector bundle (H}z (X/U),(, )a) over U in the sense of Definition 1.A.1.

LEMMA 2.2. FY(X/U) is a Lagrangian subbundle of Hiz(X/U) with respect to the symplectic form

<7>)\'

PROOF. Since the rank of Hiy (X/U) is 2g, and F*'(X/U) is a rank g subbundle of H} (X/U), it suffices
to prove that F'1(X/U) is isotropic with respect to (, ) (cf. Corollary 1.A.4). This follows immediately from
the compatibility of ¢ x, with the exact sequence (2.1), that is, from the existence of canonical morphisms
qbg( U and (bﬁ( U making the diagram

0 —— (R'p.0x)" —— HIg(X/U)Y —— F'(X/U)Y — 0
lﬂﬁg(/u l(bX/U lﬂﬁﬁ(/u
0 —— FY(X'JU) —— Hlp(X'/U) —— R'pLOxi —— 0

commute ([5] Lemme 5.1.4; the morphisms ¢ v and % Ju are uniquely determined by this commutative
diagram, and are isomorphisms). [ ]

REMARK 2.3. It is clear from the above construction that the formation of the symplectic form ( , )y
is compatible with base change. Namely, if f : U’ — U is a morphism of schemes, and (X', \') denotes the
principally polarized abelian scheme over U’ obtained by base change via f, then f*(, ), coincides with
(', ) under the base change isomorphism f*H}z (X/U) — Hl;(X'/U").

3. We adopt the same sign conventions of [5] 0.3 for the differentials of the shifted complex Q% v

Rlp*Q;(/U[l] ~ H2. (X/U).

[1] and for the isomorphism
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2.3. Symplectic-Hodge bases of H} (X/U). Let U be a scheme and (X, \) be a principally polarized
abelian scheme over U of relative dimension g.

DEFINITION 2.4. A symplectic-Hodge basis of (X, ),y is a sequence b = (w1, ...,wg,M1,...,ny) of 2g
global sections of Hjy (X/U) such that :

(1) wi,...,w, are sections of F'(X/U), and
(2) b is a symplectic basis of (Hlz (X/U),{, )») (Definition 1.A.7).

Let us note that symplectic-Hodge bases may not exist globally, but such bases always exist locally for
the Zariski topology over U by Proposition 1.A.8.

3. The moduli stack B,

In this section, we define for every integer g > 1 a category B, fibered in groupoids over the category
of schemes Sch,z classifying principally polarized abelian schemes of relative dimension g endowed with a
symplectic-Hodge basis.

We prove that B, — SpecZ is a smooth Deligne-Mumford stack over SpecZ of relative dimension
2¢% + g. The main point in proving this result will be to remark that for any principally polarized abelian
scheme (X, \) of relative dimension g over an affine scheme U = Spec R, there is a natural free and transitive
right action of the Siegel parabolic subgroup P,;(R) of Spy,(R), consisting of “upper triangular matrices”,
on the set of symplectic-Hodge bases of (X, )y

3.1. The moduli stack A,. Let g > 1 be an integer. To fix ideas and notations we recall the definition
of the moduli stack of principally polarized abelian schemes of relative dimension g.
For any scheme S, we define a category fibered in groupoids A,y s — Sch /g as follows.

(i) An object of A, g is given by an S-scheme U and a principally polarized abelian scheme (X, \) of
relative dimension g over U ; when U is not clear in the context, we shall incorporate it in the notation
by writing (X, \),y. A morphism (X, ),y — (Y, u),v in Ay s, denoted F/y, is given by a cartesian
diagram of S-schemes

X sy
| o |
preserving the identity sections of the abelian schemes and identifying A with the pullback of u by

f U — V. We shall occasionally denote F; simply by F' when there will be no danger of confusion.
We may also denote (X, \) = (Y, p) xp V.

(ii) The structural functor Ay 5 — Sch g is given by sending an object (X, \),i of Ay s to the S-scheme
U, and a morphism F/ to f.

If S = Spec R is affine (resp. S = Spec Z), then we denote A, s =: Ay r (resp. Ay g =: Ay).

Recall that the category of S-schemes can be seen as a subcategory of the 2-category of categories fibered
in groupoids over Sch,g by sending each S-scheme U to the category Sch iy endowed with its natural functor
Sch,yy — Sch/ 5. In the sequel, we shall adopt the standard convention of denoting Sch iy simply by U when
working in the context of categories fibered in groupoids. Then A g is canonically equivalent to A, Xz S as
categories fibered in groupoids over S.

We summarize the main properties of A, ¢ we are going to use in the form of the next theorem.

THEOREM 3.1. For any scheme S and any integer g > 1, Ay 5 is a smooth Deligne-Mumford stack over
S of relative dimension g(g+1)/2.

A proof that A, g is a Deligne-Mumford stack over S is essentially contained in [72] Theorem 7.9 (cf.
[81] Theorem 2.1.11). Smoothness and relative dimension are obtained by a theorem of Grothendieck (cf.
[83] Proposition 2.4.1).
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3.2. Definition of B,. Let F/; : (X,\),y — (Y,p),v be a morphism in A,. By the compatibility
with base change of the symplectic forms induced by principal polarizations (Remark 2.3), the pullback F*b
of every symplectic-Hodge basis b of (Y, ),y is a symplectic-Hodge basis of (X, A),;;. We can thus define a
functor

B, Aj® — Set
that sends every object (X, ),y of Ay to the set of symplectic-Hodge bases of (X, \),y, and whose action

on morphisms is given by pullbacks as above.
From the functor B, we form a category fibered in groupoids

By, — SpecZ
as follows.

(i) An object of By is a “triple” (X, A,b), where (X, ),y is an object of A, and b € B, (X, \). An arrow

,Ab)  y — (Y, 1, c)/y 18 given by a morphism : , v — (Y, ),y such that b = c. We

X,\0), Y, Jv is gi b hism Fy;: (X, N), Y, 1), h that b = F*c. W
denote by

Ty By — Ay
the forgetful functor (X, \,b) v — (X, A),u.

(ii) The structural functor B; — Spec Z is defined as the composition of m, with the structural functor
Ay — SpecZ.

The rest of this section is devoted to the proof of the next theorem.

THEOREM 3.2. The category fibered in groupoids B, — Spec Z is a smooth Deligne-Mumford stack over
Spec Z of relative dimension 2g* + g.

3.3. Siegel parabolic subgroup and proof of Theorem 3.2. Fix a scheme U and an object (X, \)
of A, lying over U. Then we can define a functor

that sends a U-scheme U’ to the set B ((X,\) xy U’). It is clear that this functor defines a sheaf for the
Zariski topology over Sch .

Let us now consider the symplectic group Sp,,, namely the smooth affine group scheme over SpecZ of
relative dimension 2g2 + g such that for every affine scheme V = Spec R

A B A,B,C,D € Myy4(R) satisfy
Spay (V) = {( C D ) € Magyxzg(R) ‘ T _ gt T_ T T T _ -
ABT = BAT, DT = DCT, and ADT — BCT =1,

The Siegel parabolic subgroup Py of Spy, is defined as the subgroup scheme of Sp,, such that, for every
affine scheme V = Spec R,

P,(V) = {( ’3 (A%,l ) € Mayxoy(R) ’ A € GL,(R) and B € M,y ,(R) satisfy ABT = BAT} )

Note that P, is a smooth affine group scheme over SpecZ of relative dimension g(3g + 1)/2.
Let (X, A, b) be an object of By lying over V = Spec R and consider b = (w 7 ) as a row vector of order
2g with coefficients in the R-module Hl (X/V). For any

A B
p(o (AT)—l)EPg(V)
it easy to check that
b-p=(wA wB+n(AT)"1)
is a symplectic-Hodge basis of (X, A),y. This defines a right action of Py(V) on B (X, ) :
B, (X,\) x Py(V) — B (X, \).
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Moreover, it is clear that if V/ C V is an affine open subscheme of V, then the natural diagram

B,(X,\) x Py(V) ——— B,(X,\)

l |

B, (X', \) x Py(V') —— B (X', X)

commutes, where (X', \) = (X, \) xy V',
Thus, for any scheme U, and any object (X,\) of A, lying over U, we obtain a right action of the
U-group scheme P, 7 = Py xz U on E(X’A).

LEMMA 3.3. The Zariski sheaf B x ) over Sch,y is a right Zariski Py -torsor for the above action.

ProOOF. If V is any affine scheme over U such that B X_’)\)(V) is non-empty, a routine computation
shows that the action of Py(V) on B (X,2) (V) is free and transitive. Moreover, it was already remarked above
that symplectic-Hodge bases exist locally for the Zariski topology. |

Since Py is affine, smooth, and of relative dimension ¢(3g + 1)/2 over U, Lemma 3.3 immediately
implies the following corollary.

COROLLARY 3.4. For every scheme U, and every object (X, ) of A, lying over U, the functor Bx
is representable by a smooth affine U-scheme B(X, \) of relative dimension g(3g +1)/2.

REMARK 3.5. Let us keep the notation of the above corollary. Recall that the principally polarized
abelian scheme (X, \) over U corresponds to a morphism U — A,. Then B(X, \) is a scheme representing
Bg XA, U.

PROOF OF THEOREM 3.2. Recall that for any scheme U and any abelian scheme X over U, Hi (X/U)
is a quasi-coherent sheaf over U, and that any quasi-coherent sheaf over U induces a sheaf over Sch /iy endowed
with the fppf topology ([82] Lemma 4.3.3). Since the étale topology is coarser than the fppf topology, this
shows in particular that Hjg(X/U) induces a sheaf over Sch yu endowed with the étale topology; this
immediately implies that B, — Spec Z is a stack over Spec Z.

It follows in particular from Corollary 3.4 that the morphism 7, : By — A4 is representable by smooth
schemes (Remark 3.8). Hence, as A, — Spec Z is a Deligne-Mumford stack over Spec Z, the same holds for
By, — SpecZ (cf. [82] Proposition 10.2.2). The smoothness of B, — Spec Z follows by composition from
that of A; — SpecZ and that of 7,. Finally, we can compute the relative dimension of B, — SpecZ as
the sum of that of A; — SpecZ and that of 7y :

glg+1) N g(3g+1)

=2¢° +g.
5 5 g-+yg

4. Representability of B, by a scheme

It is easy to see that if S is a scheme over Fy, then By xz S — S is not representable. Indeed, if
(X,A,b)u is an object of B, lying over a scheme U over Fy, then the involution [-1] : P +—— —P on X
defines a non-trivial automorphism [—1] iq,, : (X, \),0 — (X, A),r in Ay(U) such that

[-1]*b=-b=0b,

thus a non-trivial automorphism of (X, A,b) i in By (U).
For any ring R, let us denote By r := By ®z R. In this section we prove the following theorem.

THEOREM 4.1. The stack By z(1/2) — Spec Z[1/2] is representable by a smooth quasi-projective scheme
B, over Z[1/2] of relative dimension 2g* + g.

Let us briefly summarize our proof of Theorem 4.1.

We shall first prove that B, zj1 /2 is an algebraic space over Z[1/2]. This amounts to proving that the
functor B, is rigid over Z[1/2] (see Definition 4.2 below). By the classical “rigidity lemma” for abelian
schemes (Lemma 4.6), we reduce the proof that B, is rigid over Z[1/2] to proving that B, is rigid over any
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algebraically closed field of characteristic 0 or p > 2. In positive characteristic, this will be obtained by a
theorem of Oda characterizing the first de Rham cohomology of an abelian variety over a perfect field of
characteristic p in terms of its p-torsion subgroup scheme.

Finally, we use the existence of a quasi-projective surjective étale scheme over A, 71 /9] to conclude, via
a simple base-change argument, that B, z[1 /2] is actually representable by a quasi-projective Z[1/2]-scheme.

4.1. Rigidity over Z[1/2]. Let R be a ring. The following terminology has been borrowed from [52]
4.4.

DEFINITION 4.2. We say that the functor B, (cf. paragraph 3.2) is rigid over R if, for every R-scheme
U, and every object (X, \) of Ay lying over U, the action of Auty (X, ) on B, (X, ),y is free.

Note that B, is rigid over R if and only if the fiber categories of By, r — Spec R are discrete. As By
is a Deligne-Mumford stack over SpecZ, this amounts to saying that By p — Spec R is an algebraic space
over Spec R (see our terminology conventions in 1.2.5).

LEMMA 4.3. Let k be a field of characteristic 0. Then B, is rigid over k.

PROOF. Let (X, A, b) be an object of B, lying over k and ¢ : X — X be a k-automorphism of (X, \)
such that ¢*b = b; we must show that ¢ =idx.

We claim that it is sufficient to treat the case k = C. In fact, as X is of finite type over k, by “elimination
of Noetherian hypothesis” (cf. [42] 8.8, 8.9, 8.10, 12.2.1, and [43] 17.7.9), there exists a subfield kqy of k, of
finite type over Q, and a principally polarized abelian variety (Xo, Ao) over ko endowed with a symplectic-
Hodge basis by and a kg-automorphism g of (Xo, Ag) satisfying by = bo, such that (X, A, b) (resp. @) is
obtained from (Xo, Ao, bo) (resp. ¢g) by the base change Speck — Spec kg. After fixing an embedding of
ko in C, we finally remark that if ¢ ¢ is the identity over Xy ®, C, then the same holds for ¢g, and thus
also for ¢.

Let then & = C. It is sufficient to prove that the induced automorphism of complex Lie groups ¢*" :
Xan — XA ig the identity. As X" is a complex torus, the exponential exp : Lie X — X2" is a surjective
morphism of complex Lie groups. Therefore, it follows from the commutative diagram

Lie X —2°% | Lie X

expl lexp

an an
X X

that it sufficient to prove that Lie¢ = idpi x. Now, if ¢ preserves symplectic-Hodge basis of (X, \), then
in particular the C-linear map ¢* : HY(X, Qk/c) — HO(X, Q%{/c) is the identity, and thus its dual

Liep : Lie X — Lie X is also the identity. |

We now treat the case of positive characteristic. Let us briefly recall some notions in Dieudonné theory
and its relations with abelian varieties.

Let k be a perfect field of characteristic p > 0. We denote by W the ring of Witt vectors over k, and by
o the unique ring automorphism of W lifting the absolute Frobenius x — zP of k. We can then define a
W-algebra D generated by elements F' and V subjected to the relations

FV=VF=p, Fx=oc(x)F, 2V =Vo(x)
for any x € W.
The theory of Dieudonné (cf. [78] Definition 3.12) provides an additive contravariant functor
(4.1) G+— M(G)

from the category of commutative finite k-group schemes of p-power order to the category of left D-modules.
This functor is shown to be faithful and its essential image is given by the category of left D-modules of
finite W-length : M(G) is of W-length r if and only if G is of order p” ([78] Corollary 3.16).

Now, let X be an abelian variety over k and consider the k-vector space Hliy(X/k) as a W-module
via the canonical map W — k. Then one can endow HJp(X/k) with the structure of a D-module, the
action of F' (resp. V') being induced by the relative Frobenius on X (resp. the Cartier operator in degree
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1); we refer to [78] Definition 5.3 and Definition 5.6 for further details. This construction is functorial in
the sense that for any morphism ¢ : X — Y of abelian varieties over k, if we endow H}y(X/k) and
Hjp(Y/k) with the preceding D-module structure, then the induced morphism on de Rham cohomology
©* : Hig(Y/k) — Hig(X/k) is D-linear.

In the next statement, for any abelian variety X over k, we regard H, (}R(X /k) with the above D-module
structure, and we denote its p-torsion subscheme by X|[p|. Note that X[p] is a commutative finite k-group
scheme of order p?dim X

THEOREM 4.4 (Oda, [78] Corollary 5.11). The contravariant functors X — M(X|[p]) and X —
Hip(X/k) from the category of abelian varieties over k to the category of (p-torsion) D-modules of finite
W -length are naturally equivalent.

LEMMA 4.5. Let k be a perfect field of characteristic p > 2. Then B, is rigid over k.

PrOOF. Let (X, A) be a principally polarized abelian variety over k of dimension g and ¢ : X — X be
a k-automorphism of (X, ).

If ¢ preserves a symplectic-Hodge basis of (X, )/, then in particular ¢* : Hip(X/k) — Hig(X/k)
is the identity ; a fortiori, ¢ induces the identity on Hiy (X/k) regarded as a D-module. Then, by Theorem
4.4, ¢ induces the identity on the D-module M (X|[p]). As the functor G — M (G) in (4.1) is faithful, ¢
restricts to the identity on the p-torsion subscheme X [p] of X. As ¢ preserves, in addition, the polarization
A on X, and since p > 3, then necessarily ¢ = idx (cf. [71] IV.21, Theorem 5). |

Recall the following version of the classical “rigidity lemma” for abelian schemes which follows from the
arguments in the proof of Proposition 6.1 in [72].

LEMMA 4.6. Let A be a local Artinian ring, and X be an abelian scheme over A. If ¢ + X — X s
an endomorphism of A-group schemes restricting to the identity on the closed fiber of X — Spec A, then
» = idx.

PROPOSITION 4.7. The functor B, is rigid over Z[1/2].

PRrROOF. Let U be a Z[1/2]-scheme, (X, \) be an object of A, lying over U, and ¢ be an automorphism
of (X, ) in the fiber category A, (U) preserving an element b of B, (X, \). We must show that ¢ = idx.
This being a local property over U, we can assume that U is affine.

Suppose that U is Noetherian. By Lemmas 4.3 and 4.5, for every geometric point w of U, we have
¢x, = idx,. Let Z be the closed subscheme of U where ¢ = id. Then Z contains every closed point of U.
By Lemma 4.6, and Krull’s intersection theorem, Z is also an open subscheme of U ; hence Z = U, which
amounts to saying that ¢ = idx.

In general, by “elimination of Noetherian hypothesis” (cf. [42], 8.8, 8.9, 8.10, 12.2.1, and [43], 17.7.9),
there exists an affine Noetherian scheme Uy under U, and a principally polarized abelian scheme (Xo, o)
over Uy endowed with a symplectic-Hodge basis by, and with an Up-automorphism g, such that @by = bo,
and (X, \) (resp. b, resp. ¢) is deduced from (Xo, \g) (resp. bo, resp. ¢g) by the base change U — Up. The
preceding paragraph shows that ¢ = idy,, hence ¢ =idx. |

4.2. Proof of Theorem 4.1. We briefly recollect some facts on quotients of schemes by actions of
finite groups.

Let S be a scheme and I" be a finite constant group scheme over S, that is, an S-group scheme associated
to a finite abstract group |T'|.

For any S-scheme X, an S-action of I on X is equivalent to a morphism of groups |I'| — Autg(X).
If X is an S-scheme, we say that an action of I" on X is free if the action of I'(U) on X (U) is free for any
S-scheme U.

The next lemma easily follows from [44] V and [55] IV.1.

LEMMA 4.8. Let S be an affine Noetherian scheme and X be a quasi-projective S-scheme equipped with
an S-action of a finite constant group scheme I' over S. Then

33



(1) There exists a quasi-projective S-scheme Y and a I'-invariant surjective finite morphism p : X —
Y such that the natural morphism of sheaves of rings over Y

Oy — (p.Ox)"!
is an isomorphism. We denote Y =: X/T".
(2) If moreover the action of T' on X is free, then p is étale and
I'xg X — X xy X
(v, ) — (2,7 )
s an isomorphism.

REMARK 4.9. Part (2) in the above lemma implies that, when the action of T on X is free, then the
stacky quotient [X/T] (cf. [82] Example 8.1.12) is representable by the scheme X/T.

PROOF OF THEOREM 4.1. Recall from [72] Theorem 7.9 (cf. [81] proof of Theorem 2.1.11) that there
exists a quasi-projective scheme Ay ;4 over Z[1/2] endowed with an action by the constant finite group
scheme I' = GLy(Z/4Z) 71 /2) over Z[1/2], and with a surjective étale morphism Ay 1 4 — Ay z[1 /2] inducing
an isomorphism of the stacky quotient [Ag 1 4/T'] with Ay 71 /2] ; namely, Ay 4 is a scheme representing the
functor

AP — Set
(X, \) v — Tsomepsen ,, ((Z/AZ)77, X[4]).
As the morphism of Deligne-Mumford stacks over SpecZ
g By — Ay
is representable by smooth affine schemes (Remark 3.8), the fiber product

F = A9,174 X Ag z1/2) ngz[l/Q]

is representable by a smooth affine scheme B over Ay ;1 4 via the first projection 7 — A 1 4. In particular,
B is affine and of finite type over Ay ;4. Since Ay 14 is quasi-projective over Z[1/2], it follows that B is a
quasi-projective Z[1/2]-scheme.

The action of I' on Ay 1 4 naturally induces an action of I' on F, thus on B. As B 71 /9] is an algebraic
space by Proposition 4.7 (cf. remark following Definition 4.2), this action is free. Moreover, by the compatibi-
lity of quotients of stacks by group actions with base change (cf. [89] Proposition 2.6), the second projection
F — By z[1/2) induces an isomorphism of the stacky quotient [B/I'] with By 71 /9. Finally, by Lemma 4.8
and Remark 4.9, we conclude that B, 71 /2] is representable by the quasi-projective Z[1/2]-scheme B/T. W

5. The vector bundle 75,z and the higher Ramanujan vector fields

Fix an integer g > 1. We define a presheaf H (resp. ) of O 4, .,-modules on Et(A,) as follows. Let (U, u)
be an étale scheme over Ay, and (X, \) be the principally polarized abelian scheme over U corresponding to
u:U — Ay. We put

D (U, u), Hy) = (U, Hyp(X/U)) (resp. D((U,u), F,) = (U, F* (X/U)))

If (f,f%) : (U,«') — (U,u) is a morphism in Et(Ag), the restriction map is given by the base change
morphism f*H}g (X/U) — HIg(X'/U’) (vesp. f*FY(X/U) — FY(X'/U’)), where (X', \) = (X, \)xyU’.
As the base change morphism is actually an isomorphism (i.e. the formation of H}g (X/U) (resp. F(X/U))
is compatible with base change), and Hjy(X/U) (resp. F*(X/U)) is quasi-coherent, H, (resp. Fy) is a
quasi-coherent sheaf over A, (cf. [82] Lemma 4.3.3). We finally remark that #,, is actually a vector bundle
of rank 2¢ over A, and that 7y is a rank g subbundle of H,.

REMARK 5.1. The sheaf H, should be thought as the first de Rham cohomology of the universal abelian
scheme over Ay, and F, as its Hodge subbundle.
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In this section we describe the tangent bundle Ty, 7z in terms of H, and F,; see Theorem 5.4 for a
precise statement. This will be obtained by realizing By as a substack of the stack over A, associated to the
vector bundle HF9.

Further, Theorem 5.4 will allow us to construct a certain family of g(g+1)/2 global sections v;; of Tp, /7
that we call higher Ramanujan vector fields.

5.1. The Gauss-Manin connection and the Kodaira-Spencer morphism on A,/Z.

5.1.1. In order to give a precise statement of Theorem 5.4, we need to recall some basic facts concerning
Gauss-Manin connections and Kodaira-Spencer morphisms over abelian schemes.

Fix a base scheme S and let p : X — U be a projective abelian scheme, with U a smooth S-scheme.
Then there is defined an integrable S-connection over the de Rham cohomology sheaves ([53] ; see also [50]),
the Gauss-Manin connection

(5.1) V: Hig(X/U) — Hig(X/U) ®oy, /s,

whose formation is compatible with every base change U’ — U, where U’ is a smooth S-scheme.
The Gauss-Manin connection on HJy (X/U) induces a morphism

Tyss — Homos (Hig(X/U), Hig (X/U))
0 — V@( )
Restricting to F1(X/U) and passing to the quotient (cf. exact sequence (2.1)), we obtain an Oy-morphism
Tys —Homo, (F'(X/U), R'p,Ox) = FY(X/U)" ®0, R'p.Ox.

Applying the inverse of the canonical isomorphism ¢§(,,/U : FYX!/U)Y = R'p.Ox (cf. proof of Lemma
2.2, where we identified X with X* via the canonical biduality isomorphism), we obtain an Oy-morphism

§:Ty/s — FHX/U)Y @0, FH(X'/U)Y.

This is, possibly up to a sign, the dual of p defined in [31] I11.9.4

5.1.2. Now, with the same notation and hypotheses as above, let A : X — X* be a principal polari-
zation. The Gauss-Manin connection V on H}y (X/U) is compatible with the symplectic form ( , ), in the
following sense. For every sections 6 of Ty;/g, and a and 3 of Hip(X/U), we have

(5.2) 0{cv, B)x = (Voo B)x + (@, Vo).
This can be deduced from the fact that the first Chern class in H3g (X x X*/U) of the Poincaré line bundle

Px,v is horizontal for the Gauss-Manin connection, since it actually comes from a class in Hip (X xy X*/S).
By composing § with (\*)V)~!: FL(X/U)Y = F}(X/U)V, we obtain a morphism
(5.3) K Tys — FHX/U)Y @0, F(X/U)Y.
This is the Kodaira-Spencer morphism associated to (X, ),y over S. It follows from the compatibility
(5.2) that & factors through the submodule of symmetric tensors in FY(X/U)Y ®0, F'(X/U)V, denoted
D2(FHX/U)Y).
REMARK 5.2. As ¢¥(,,/U = —¢x/u under the canonical biduality isomorphism X = X* (cf. [5] Lemme

5.1.5), one may verify that the composition

(D%t )" )Vy—t

gt g xt o)y (2 Ry x o)
considered above is given by the isomorphism of vector bundles Hlg (X/U)/F'(X/U) — F}(X/U)Y induced
by (cf. Lemma 1.A.2)

Rlp* Ox

1 1 \Y
Hig(X/U) — Har(X/U)
ar— ( ,a)x.
4. With notations as in the proof of Lemma 2.2, there are two natural ways of identifying R'p.Ox with F1(X*/U)V : one

by (qbg(/U)V, and another by ¢§(t/U' These produce the same isomorphisms up to a sign. In [31] this choice is not specified.
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Thus, if b = (w1,...,wy,M1,...,7y) is a symplectic-Hodge basis of (X, )y, & admits the following explicit
description in terms of b :

g

K(0) = Z( M)A ® (5 Vowi)a.

i=1

Finally, we remark that the Kodaira-Spencer morphism is natural in the following sense. Let U’ be a
smooth scheme over S and let F; : (X', \),i;v — (X, A),uv be a morphism in Ay 5. Denote by  (resp. ')
the Kodaira-Spencer morphism associated to (X, ), (vesp. (X', \’),y) over S. Then the diagram

D
Tyiys ! ["Tys
¥ I
F2F1 X/ U/\/ 1—\2 *FIXUV
(FHX'/U") )W (f (X/U)Y)

commutes.

5.1.3. Let S be a scheme, and denote by H, g (resp. F, s) the vector bundle over A, g obtained from
H, (resp. Fg4) by the base change A, g — Ay. As A, ¢ —> S is smooth, the naturality of the Gauss-Manin
connection permits us to construct a “universal” Gauss-Manin connection

. 1
ViHgs — Hys Qou, o Pa, s/

and the naturality of the Kodaira-Spencer morphism permits us to construct a “universal” Kodaira-Spencer
morphism

ki Ta, s — D2(F)s)-

These are morphism of sheaves on the étale site of Ay g given, for any étale scheme (U,u) over A, g cor-
responding to the principally polarized abelian scheme (X, \) over the S-scheme U, respectively by the
Gauss-Manin connection (5.1) and the Kodaira-Spencer morphism of (X, ),y over S (5.3); note that as
u:U — Ay g is étale, then U is smooth over S.

We remark that the universal Kodaira-Spencer morphism « : T4, ; — 2 (.7-';5) is actually an isomor-
phism of O 4, 4 ,-modules (cf. [31] Theorem 5.7.(3)).

Finally, let ¢ be a smooth Deligne-Mumford stack over S and u : Y — A4 s be a quasi-compact and
quasi-separated morphism of S-stacks representable by schemes. Then, the Gauss-Manin connection over
(U, u), or simply over U if u is implicit,

1
V: u*/H!LS U*H%S D0y ¢ QZ/{/S

is defined by pulling back the universal Gauss-Manin connection on A4 g. Further, we may define a Kodaira-
Spencer morphism over (U, u) as the composition

. Du, u'K 2 v
Koy, - TL{/S — u*TAg,s/S — T (u*]:gjs).

5.2. The embedding i, : B, — V,. We shall employ the following notations in the statement of
Theorem 5.4. Consider the morphism of coherent Op, . -modules

. x7Dg
mg e H, > Myxg(Os, )

defined as follows. Let (U, u) be an étale scheme over By, and let (X, \,b) 1, b= (w1,...,wg,M1,...,7,), be

the corresponding object of the fiber category By(U). Then the morphism m, sends a section (ax,...,ay)
of Hiz(X/U)® to the section
(5.4) ((ai; nj)a)1<ii<g

of Myxy(Oy). We can thus define a subbundle S, of m;HF9 as the inverse image of the subbundle of
symmetric matrices Sym,(Op, ) by this morphism. In other words, if (U,u) and (X, \,b),y are as above,
a section (a,...,ay) of Hip(X/U)®9 is in S, if and only if the matrix (5.4) is symmetric.
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REMARK 5.3. Note that m, is surjective : with the above notations, for a given matrix (a;j)1<i j<g in
Myxg(Ov), take a; = 327_, ajjw;. In particular, Sy is a subbundle of myHP9 of rank g* + g(g +1)/2 =
g(3g +1)/2.

THEOREM 5.4. Consider the morphism of quasi-coherent Op,, .. -modules

cg:Tg,jz — D2 (mp F)) @ myHo
defined by

Cg(o) = (HU(G)a Von, ..., Veﬁg)

for every étale scheme (U, u) over B, corresponding to the object (X, A, b) ;7 of By(U), whereb = (w1, ... ,wg, M1, ...

and 60 a section of Ty z. Then ¢, induces an isomorphism of T, ;7 onto the subbundle FQ(W;.F;/) ©S, of
D2(npF)) @ miHD9.

A proof of this result will be given at the end of this paragraph.
5.2.1. Consider the associated space of the vector bundle HZ9 (cf. [82] 10.2)

Vy = V((H?g)v) = SpeCAg (Sym(H?g)v).
This is a Deligne-Mumford stack over Spec Z whose objects lying over a scheme U are given by “(g+2)-uples”
(X7 >\7 ap,... 7ag)/U7

where (X, \) ¢ is an object of Ay(U), and o is a global section of Hjy (X/U) for every 1 < i < g. Note that
the forgetful functor

¢, YV, — A,

defines a morphism of stacks representable by smooth affine schemes.
We define a morphism of stacks

ig: By —V,

as follows. Let (X, A, b) iy be an object of By and denote b = (w1, ...,wg,M1,...,ny). Then iy sends (X, A, )17
to the object

(Xa Avnlv"'vng)/U

of V,. The action of ¢, on morphisms is evident. Note that the diagram of morphisms of stacks

is (strictly) commutative.
LEMMA 5.5. The morphism iy : By — Vy is an immersion of stacks.

PROOF. Let U be ascheme and U — V; be a morphism corresponding to the object (X, A, a1, ..., ay) /v
of Vy(U). Then the fiber product B, xy, U can be naturally identified with the locally closed subscheme of
U defined by the equations

A ATy #0
<Ozi70tj>)\ :0, V’L,]
where @; denotes the image of a; in H}z (X/U)/F*(X/U) (cf. Proposition 1.A.8 (2)). |
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5.2.2. The proof Theorem 5.4 relies on Ehresmann’s point of view on connections on vector bundles.
Let us briefly recall how this goes in our context.

Let S be a scheme, X be a smooth S-scheme and £ be a vector bundle over X. We denote by £ = V(£V)
the associated space and by p : E — X the projection morphism. As p is smooth, we have the exact sequence
of vector bundles over

0 — Ti/x — Trys =5 p*Tx)s — 0.

We claim that every S-connection V : £ — £ ®p Qﬁ( /s induces a canonical splitting of the above exact
sequence. In fact, this can be obtained by means of the projection

Py : TE/S — TE/X

defined as follows. The vector bundle T/ x is canonically isomorphic to p*€ ([43] Corollaire 16.4.9); it is
thus endowed with a universal global section, say s. We put Py (0) = (p*V)gs.

It is not difficult to transpose the above considerations to the case of smooth Deligne-Mumford stacks
(cf. 1.2.6).

5.2.3.  Proof of Theorem 5.4. Let V4 and ®, : V; — A, be as in 5.2.1. According to the discussion in
5.2.2, the connection on ’H?g given by the direct sum of the “universal” Gauss-Manin connection V : H, —
Hy ®o Ay Qi‘q sz at each factor induces a splitting of the exact sequence

Dd,
0— TVg/Ag — Tvg/Z — (bgT.Ag/Z — 0.

Thus, after identifying Ty, ,4, with @;H?g , we obtain an isomorphism

519 : Tvg = (I);T_Ag/z Sv) (I);HSBQ
given explicitly by

Elg(e) = (D(bg(e)? ngél, sy v9ag)

for every étale scheme (U, u) over Vg, corresponding to the object (X, ), au,...,ay),u of Vy(U), and every
section 6 of Tyz.

By composing ¢, with the Kodaira-Spencer isomorphism & : T,z =12 (}";/) (see 5.1.3), we obtain
an isomorphism

g : Ty, 7 — TP} F)) & O;HPI
given explicitly by
¢4(0) = (ku(0),Voai,...,Veay)

with notations as above. Finally, note that the morphism ¢, in the statement is defined by restricting ¢, to
B, via the immersion i, : B, — V; (cf. Lemma 5.5). In particular, as B, is a smooth substack of V, via
ig, then ¢, induces an isomorphism of T, 7z onto a subbundle, say &, of 1"2(71';]:3/) &) 71';7-[399. To finish the
proof, it is sufficient to show that £ = I'*(7}F)) & S,.

Note that the compatibility (5.2) between Gauss-Manin connections and principal polarizations implies
that ¢, factors by the subbundle I'*(7} F,/) ® S,. Indeed, let (U, u) be an étale scheme over B, corresponding
to the object (X, A, b),u of By(U), with b = (w1,...,wg,n1,...,1y), and let 6 be a section of Ty;/z. Then, as
(ni,mj)x = 0, we obtain

0=Vomi,m)x = (Voni,nj)x + mi, Van;)a = (Veni, nj)x — (Van;, i) x.

This proves that &, is a subbundle of I'? (m3F, ) © Sy To conclude, we simply remark that the ranks of

the subbundles £, and T*(7}F,)) ® Sy of T?*(m; F)') © i HT9 coincide (cf. Remark 5.3). ]
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5.3. The higher Ramanujan vector fields. Let

9,6t

(, )imgHy x Ty Hy — Op
be the symplectic Op, ,-bilinear form given, for each étale scheme (U, u) over B, corresponding to the object
(X7 )\7b)/U of BQ(U)7 by

w ()= I Hig(X/U) x Hyp(X/U) — Oy

This is well-defined by Remark 2.3.
We denote by

by = (W1, s Wgs M, -5 1)

the “universal” symplectic-Hodge basis over By. Namely, by is the basis of the vector bundle 7, such that
for every étale scheme (U, u) over B, corresponding to the object (X, \,b),y of By(U) we have u*b, = b.
Note that vector bundle 7r;.7-'gv is trivialized over B, by the global sections

( mi):myFyg — Op

g,ét

for 1 < i < g (this is the dual basis of (wy,...,w,)). Accordingly, I*(r;F,/) is trivialized by the global
sections

o5 = (o) @ ,m) =]
e )+ ()@ () i<

for1<i<j<g.
Let ¢g : Tp, /z =12 (7‘(';]:;/) ® S, be the isomorphism of Op_ ,-modules defined in Theorem 5.4.

g,ét
DEFINITION 5.6. For every 1 <14 < j < g, we define the higher Ramanugjan vector field v;; as being the
unique global section of T, /7 such that cy(vij) = (ij,0).
Let us denote the “universal” Gauss-Manin connection over B, by (cf. 5.1.3)
* * 1
VimgHy — mHy oy, Q3,2
PROPOSITION 5.7. The higher Ramanugjan vector fields are the unique global sections vi; of T, ;7 such
that, for every 1 <i<j<g,
(1) Vy,wi =15, Vo,wj =10, and Vy, wp =0 for k & {i,j}.
(2) Vy,me =0, for every 1 <k <g.

PRrROOF. The vector fields v;; satisfy (2) by definition of ¢, in Theorem 5.4. Moreover, using the explicit
expression of the Kodaira-Spencer morphism in Remark 5.2, we see that

g .
(55) < ,77k>®< 7vv,3jwk:>: < 7771>®< »7h> Z_j
k=1 < ’ni>®< 777j>+< 7nj>®< ’ni> 1<)
in T?(m3 F)) for every 1 < i < j < g. As by is symplectic with respect to ( , ), by evaluating the second
factors at 7, for every 1 < < g in the above equation, we see that V,, wy lies in the subbundle of 7} H,
generated by n1,...,1g, forevery 1 <i<j<gand 1<k <g.
Thus, to prove that the vector fields v;; satisfy (1), it is sufficient to prove that

(5‘6) <(JJ[, V’Ui]‘wi> = 5[]7 <wl) v’l)”w]> = 5”? a‘nd <(JJZ, v’Uij“)k?> = 0 fOI' k € {l)j}

for every 1 <1 < g. This in turn follows immediately from (5.5) by evaluating the second factors at w.

To prove unicity, let (w;;)1<i<j<g be a family of vector fields on By satisfying (1) and (2). Note that, by
the explicit expression of the Kodaira-Spencer morphism in Remark 5.2, equations in (1) imply i, (w;;) = ¢i;
in the notation preceding Definition 5.6. Thus, by (1) and (2),

cg(wij) = (¢ij,0) = cg(vij)
for every 1 <14 < j < g, that is, w;; = v;; (cf. Definition 5.6). [ |
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Let S be a scheme. We denote by 7y 5 : By g — Ay s the base change of 7y : By — A4 by Ay s — Ay,
and by

— * 1
Vv ﬂ—gvsH-‘]’S 71—9757-[973 ®OBQ,S,ét QBQ,S/S
the “universal” Gauss-Manin S-connection over By s.

REMARK 5.8. Let Ry s be the Op, ¢ ,,-submodule of T, /s generated by all the v;; ; if S = SpecZ, we
denote simply R, s =: Ry. It is clear from Theorem 5.4 that R, s is the kernel of the surjective Op, g -
morphism

TBQ,S/S — Sg
60— (Vom,...,Vang)
In particular, R, s is a subbundle of Tp, /s of rank g(g +1)/2.
LEMMA 5.9. Let 0 be a section of T, ¢/s such that Vow; = Ven; =0 for every 1 <1 < g. Then § = 0.

PROOF. Let 0 be as in the statement. By Remark 5.8, 6 is in the subbundle Ry s of T, /5, thus there
exist sections (fi;)1<i<j<g of Op, 5., such that

0 = Z fijvij~
1<i<j<g
We prove that each f;; = 0 by induction on 7. For ¢ = 1, we have by Proposition 5.7
g
0=Vewr = > fijVu,w1 =Y fum,
1<i<j<g j=1
thus f1; =0 for every 1 <j <g.1f 2 <4y < g and f;; =0 for every ¢ < ig and ¢ < j < g, we have
g
0=Vowi, = > fijVe,wic =D fioiys
10<i<j<g Jj=to
thus f;,; = 0 for every 7o < j < g. m
Let [, | denote the Lie bracket in Tp, /7.
COROLLARY 5.10. The higher Ramanujan vector fields commute. That is,
[vij, virjr] =0
foranyl1<i<j<gandl<i <j <g.

PROOF. Let us first remark that, as the Gauss-Manin connection is integrable, for any sections 6 and 6’
of T, sz, we have

V.o = VoVe — Vo V.

This implies that R is integrable : if § and ¢’ are both sections of Ry, then [¢,6'] is a section of Rgy. In
particular, = [v;;,v;] is a section of R,. By Lemma 5.9, to prove that § = 0, it is sufficient to prove that
Vowg =0 for every 1 <k <g.

We have

Vewk = V’Utj (vvi/j/wk) - V’L)i/j/ (vvijwk)-

It follows from Proposition 5.7 that Vvi/j,wk (resp. Vy,,wy) is an element of {0,71,...,74}; hence V,,; (Vvi,j,wk) =
0 (resp. Vvi,j/ (ijwk) = O) |
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5.4. The action of Siegel parabolic subgroup P, on the higher Ramanujan vector fields.
Geometrically, 7, : B, — A, may be regarded as a “principal Py-bundle” over A, (cf. Lemma 3.3). It
is therefore natural to ask how the integrable subbundle R, of T,z (cf. Remark 5.8 and Corollary 5.10)
transforms under the action of F.

In order to formulate precise statements, fix an affine base scheme S = Spec R and let p € P,(S). Then,
p induces an S-automorphism of By s given by

p: BQ’S — Bg’s
(X’)‘7b)/U — (Xa Aab p)/U
where we have implicitly identified p with its image by the natural map P,(S) — P,(U) to compute b - p.

PROPOSITION 5.11. Let us write

= (61 (AE)A )EPg(S)7

and consider the tangent map
Dp:Tp, s/s — p*1s, /s
Then Dp(Ry,s) C p*Ry.s if and only if B = 0.

Let us introduce some preliminary notation before proving this result. Note that Dp induces an R-
automorphism

ps : T(Bg,s, T, /5) — T'(Bg,s, T8, s/5)
which is compatible with the “universal” Gauss-Manin S-connection
ok * 1

VvV Wg,SHg,S — Wg’ng,S ®05g,s,ét QBg)s/S
in the following sense. Denote by

P F(BQ,S’W;,SHQ,S) — F(Bgﬁﬂr;,SHg,S)
the R-automorphism induced by the isomorphism of vector bundles p*mj ¢Hg s — T, sHg,s (observe that
Tg,5 0P = Ty 5). Then, for any a € F(ngs,ﬂ;s?-[gys), and any 0 € I'(By 5, T, 5/5), we have
(5.7) p*(Vp,00) = Vo(p*a).

REMARK 5.12. The automorphism p* introduced above is characterized by

*

(pwr o pwy pm o p )= (wn e we om e ) (A
9 9 9 9 0 (A7)
where by = (w1,...,Wg,M,---,1N,) is the universal symplectic-Hodge basis of 7 sH, 5.

PrRoOOF OF PROPOSITION 5.11. Since the vector bundle R, g is generated by the higher Ramanujan
vector fields v;;, we have Dp(Ry 5) C p*Rg s if and only if

PxVi5 € F(Bg,SaRg,S)

for every 1 <1i < j < g. Further, by Remark 5.8, p,v;; lies in I'(B, g, Ry,s) if and only if

V;U*Uijnk =0
for every 1 < k < g. Finally, by the compatibility (5.7), we conclude that Dp(Rg4 s) C p* Ry, s if and only if
forevery 1<i<j<gand1<k<g.

Now, by Remark 5.12, we have
g
Pk =Y wiBik +m(A i
1=1
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Using Proposition 5.7, we obtain

Mm

vl] (P k)

W) Bu = 1 Bk, 1=
Ve n;Bik +miBjr 1< j

l:l

The assertion follows. ]

Let Ly be the subgroup scheme of P, given by

Ly(V) = {( 0 uno ) € Magrcay(Ro) ‘A e GLg(RO)}

for any affine scheme V' = Spec Ry. The above proposition shows in particular that the action of L, on
By preserves the integrable subbundle R4. The next proposition gives a precise transformation law for the
higher Ramanujan vector fields v;; under the action of L.

PROPOSITION 5.13. Let v = (v;5)1<i,j<g be the unique symmetric matriz of global sections of Tp,s/s
where v;; are the higher Ramanujan vector fields for 1 <1 < j < g. For every

p= ( 61 (ATO),l ) € L,(S)

if we denote p.v = (p«vij)i<ij<g, then we have the equality of matrices of sections Ty, ;/g over S
pev = AvAT,
PROOF. For each 1 <i<j <g, put
g
Z AimvmnAjn-
m,n=1

Then we must prove that p,v;; = w;; for every 1 <14 < j < g, which, by Lemma 5.9, is equivalent to proving
that

(58) vp*vijwk = v’wijwka vp*vunk = v’wij’rlk
for every 1 < k < g. By compatibility (5.7), equations (5.8) are equivalent to
V'Uij (p*Wk) = p*(v'wijwk)) VUU (p*nk) = p*(ku’r}k)'

As each n;, is horizontal for the Gauss-Manin connection, we have V,,, ., = 0. Further, as p € Ly(S), each
Pk is an R-linear combination of 7y, ..., 7n4; thus p*n, is horizontal for the Gauss-Manin connection.
We are thus reduced to proving that

V'Ui,j (p*wk) = p* (Vﬂ)ij Wk)
forevery 1 <i<j<gand1l<k<g. On the one hand, we have
g
prwk =Y widn,
=1
so that, by Proposition 5.7,
g
v” p O.Jk Z val Alk - n]Azk + nzA]k-
=1
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On the other hand,

g
VWi = Z Aim (Vo wk)Ajn

m,n=1
g9 g
n=1 m=1

g g
= A (Z 'f]nAjn> + (Z Aimnm> Ajr,
n=1 m=1

hence, by Remark 5.12,

g
p*(kuwk zk <Zp nn n > (Z imP nm> jk — Aiknj +77iAjk-

m=1

6. The case g =1 : explicit equations

When g = 1, we can compute explicit equations for B, and for the Ramanujan vector field.

6.1. Explicit equation for the universal elliptic curve X; over B; and its universal symplectic-
Hodge basis. Fix a scheme U. Let us recall that every elliptic curve E over U (namely, an abelian scheme
of relative dimension 1) has a canonical unique principal polarization A\ : E — E! given, for any U-scheme
V and any point P € E(V), by

Ag(P) = Og([P] - [0])
where O € E(V) denotes the identity section and Og([P] — [O]) denotes the class in E*(V) of the inverse of
the ideal sheaf defined by the relative Cartier divisor [P] — [O].
Therefore, the functor
E+— (E, )\E)

defines an equivalence between the category of elliptic curves over U and that of principally polarized elliptic
curves over U. We can thus “forget” the principal polarization : an elliptic curve E will always be assumed
to be endowed with its canonical principal polarization Ag. In particular, an object of By will be denoted
simply by a “couple” (E,b) .

REMARK 6.1. The symplectic form induced by Ag coincides with the composition of the cup product in
de Rham cohomology Hjx (E/U) x Hig(E/U) — H3y(E/U) with the trace map H3g(E/U) — Oy.

THEOREM 6.2. Let
Bl = Spec Z[1/2,b2»b4ab6?A71]

where
b2(b2 — bob ba b b
A = ba(b1 = babs) — 863 — 27b2 + Obobsbg = 16 disc [ 2° + =a® + —a + — ) |
4 4 2 4
and let X1 be the elliptic curve over By given by the equation
ba b b
2 __ .3 Y4 ﬁ
yo=a" + — 17 - 9 T+ 1
Then by = (w1,m1) defined by
o e 38 =0
1= 2y’ n = 2%

is a symplectic-Hodge basis of X1,p, and the morphism By — By corresponding to (X1,b1),p, induces an
isomorphism of By with the Z[1/2]-stack By z1/2-
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In other words, if (X1,b1),p, is defined as above, then for any Z[1/2]-scheme U, and any elliptic curve £
over U endowed with a symplecticcHodge basis b, there exists a unique morphism
F/f : E/U — X1/31 in -Al,Z[l/Q] such that F*b; = b.

PROOF. It is classical that w; so defined is in F'(X;/B;). To prove that (wi,m)x, = 1 one can,
for instance, use the compatibility with base change to reduce this statement to an analogous statement
concerning an elliptic curve over C, and then apply the classical residue formula (cf. [29] pp. 23-25).

Let U be a Z[1/2]-scheme and (E,b),y be an object of B1(U), with b = (w,n). It is sufficient to prove
that, locally for the Zariski topology over U, there exists a unique morphism (E,b),; — (X1,b1)/p, in
Bi,z11/2)-

We follow essentially the same steps in [52] 2.2 to find a Weierstrass equation for an elliptic curve. Let
us denote by O : U — E the identity section of the elliptic curve E over U and by p : E — U its structural
morphism. Locally for the Zariski topology on U we can find a formal parameter ¢ in the neighborhood of
O such that w has a formal expansion in ¢ of the form

w=(1+O0(t))dt,

where O(t) stands for a formal power series in ¢ of order > 1. Up to replacing U by an open subscheme, we
can and shall assume from now on that ¢ exists globally over U.
There exist bases (1,z) of p.Og(2[0]), and (1,z,y) of p.Or(3[0]), such that

(6.1) x:éﬂ+0@)am,y:%ﬂ+0@)

Then the rational functions x and y necessarily satisfy an equation of the form
y? + a1zy + asy = ° 4 ax2® + asx + ae,
where a; are uniquely defined global sections of Oy . Since 2 is invertible in U, the above equation is equivalent

to
2 2
ay %)2_ 3 ai +4az\ o aras + 2ay4 az + 4ag
(y+2x+2 = +<4 z° + B T+ TR

ay

Therefore, after the change of coordinates (z,y) — (z,y + %

b b b
2 3 2 9 4 6
Yy = +—4x +—2x+—4,

where b; are global sections of O . Put differently, we obtain a morphism Fy; : £,y — X1/p, in Aizp1/2)-
By considering formal expansions in ¢, we see that F*w; = w. In particular,

(w, F*’Ih) = F*bl

x4 %), we can assume that z and y satisfy

is a symplectic-Hodge basis of E,;;, and there exists a section s of Oy such that n = F*n; + sw. Thus, after
the change of coordinates (z,y) — (x+s,y), we have F*b; = b. Therefore, we have constructed a morphism
F/f : (E, b)/U — ()(17 bl)/Bl in Bl,Z[1/2]~

We now prove that the morphism F); is unique. Let F//f, 1 (E, b))y — (X1,b1),p, be any morphism
in By zp/. If f' = (b3, b, bg) are the coordinates of f/, then F” is given by a basis (1,27,y") of p.Og(3[0])
satisfying

) W)= @)+ 2wy + By 1 Y
4 2 4

As both (1,z,y) and (1,2',y") (resp. (1,2) and (1,2)) are a basis of p.Og(3[0]) (resp. p.Og(2[0])), then
there exists global sections c¢1, ¢z, c3 of Oy (resp. u,v of Of) such that

¥ =u(z+cq)
y = v(y + cow + c3).
Note that equation (x) implies that u3 = v
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Now, as (F')*w; = F*w;, we obtain

W e u e
2y 2y v2(y+cax+c3) 2y’
thus cox + c3 = 0 and u = v. Since u® = v?, we obtain u = v = 1 and (z/,y') = (z + ¢1,y). Finally, as
(F")*m = F*m, we have
gl _de _de e de
2y" 2y 2y 2y 2y
hence ¢; = 0. Thus (2/,y") = (x,y) and this also implies that f = f’. [ ]

REMARK 6.3. By considering the change of variables

bg = €2 €y = b2
by = (€3 —e4)/24 = eq = b3 — 24by
b = (46% — 12e50e4 + 866)/1728 e = bg — 36boby + 216bg

we see that By ®z1/2) Z[1/6] is isomorphic to
Spec Z[1/6, ea, €4, €6, (e3 — e2) 1]
Under this identification, the universal elliptic curve X; is given by the equation

9 e2\? eq € €6
) D)
Y Tt 12 "t 13) T 356

and the universal symplectic-Hodge basis by by (dz/y, zdz/y).

6.2. Explicit formula for the Ramanujan vector field. It is also possible to give an explicit formula
for the Ramanujan vector field v11 over B;. Indeed, consider the global section of Tz, /z[1/2) given by

) ] 0 O
v = 2[)4 ab2 + 3b6 (9()4 + (b2b6 b4)ab6 .

One may easily verify using the expression for the Gauss-Manin connection on HJy(X1/Bj) given in 1.B.3
that

Vo(wr m )= (w ’71)((1) 8)

By Proposition 5.7, v is the Ramanujan vector field v1; over Bj.

REMARK 6.4. Under the isomorphism By ®z1/9) Z[1/6] = Z[1/6, €3, €4, €5, (¢] — §) '] of Remark 6.3,
v gets identified with the vector field associated to the classical Ramanujan equations :

e3 —eq O esey —eg O eseg — €3 0

12 662 3 864 2 666 '

1.A. Symplectic vector bundles

Fix once and for all a scheme U.

1.A.1. Symplectic vector bundles. Let £ a vector bundle over U. An Oy-bilinear map
(,):ExE— Oy
is said to be
(1) non-degenerate if the Oy-morphism e — ( ,e) from & to £Y is an isomorphism,

(2) alternating if (e, e) = 0 for every section e of &.

DEFINITION 1.A.1. A symplectic form over £ is a non-degenerate and alternating Op-bilinear form over
E. A symplectic vector bundle over U is a couple (€, (, }), where & is a vector bundle over U and (, ) is a
symplectic form over £.
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1.A.2. Lagrangian subbundles. Let (£,( , )) be a symplectic vector bundle over U and F be a
subbundle of £. We denote by F{ -} the subsheaf of £ consisting of those sections e of £ such that (f,e) =0
for every section f of F.

LEMMA 1.A.2. We have an exact sequence of Oy -modules
0—F)—€&—F —0
er—( ,e)lr
In particular, F* ) is a subbundle of £ of rank rank(€) — rank(F).

PROOF. The sequence 0 — F(+ ) — & — FV is exact by definition. To see that & — FV defined
above is surjective, one may work locally and remark that in this case F is a direct factor of £, and thus any
Oyp-linear functional on F can be extended to &£ ; then one applies the non-degeneracy of the bilinear form

(s ) ]

DEFINITION 1.A.3. A subbundle F of £ is said to be isotropic with respect to (, ) if F € F¢ ). An
isotropic subbundle of € such that F = F¢ ) is said to be a Lagrangian subbundle.

The next result easily follows from Lemma 1.A.2.

COROLLARY 1.A.4. Let F be an isotropic subbundle of €. Then 2rank(F) < rank(€). Moreover, F is
Lagrangian if and only if 2 rank(F) = rank(&).

The next lemma shows that Lagrangian subbundles exist locally for the Zariski topology over U. This
implies in particular that the rank of every symplectic vector bundle is even.

LEMMA 1.A5. Let (€,(, )) be a symplectic vector bundle over U and assume that U = Spec R, where
R is a local ring. Then there exists a Lagrangian subbundle of €.

PRrROOF. Let S be the set of isotropic subbundles of £ ordered by inclusion. It is sufficient to prove that
every maximal element in S is a Lagrangian (maximal elements always exist ; consider the rank, for instance).

We proceed by contraposition. Let F be an element of S that is not a Lagrangian. As R is local and
both F and F{-) are subbundles £ (cf. Lemma 1.A.2), there exists an integer & > 1 and global sections
e1,..., e, of F4o ) such that

f< ) ) :f@OUel@"'@OU€k~
In particular, F @ Ope; is an element of S strictly containing F ; thus, F is not maximal. ]

REMARK 1.A.6. The same proof applies to any ring R such that every projective R-module is free, e.g.,
R a principal ideal domain, or R a polynomial ring over a field.

1.A.3. Symplectic bases. Let (£,(, )) be a symplectic vector bundle of constant rank 2n over U.

DEFINITION 1.A.7. A symplectic basis of (€, (, )) over U is a basis of £ over U of the form (eq, ..., en, f1,...

with (e;,e;) = (fi, f;) = 0 and (e;, f;) = 0;; for all 1 < 4,5 < n.

As Lagrangian subbundles exist locally by Lemma 1.A.5, the next proposition implies in particular that
symplectic bases also exist locally.

PROPOSITION 1.A.8. Let U be an affine scheme, (€,( , )) be a symplectic vector bundle over U, and L
be a Lagrangian subbundle of £. Then

(1) Every basis (e1,...,e,) of L over U can be completed to a symplectic basis (e1,...,€n, f1,..y fn)

of €& over U.
(2) If F is a Lagrangian subbundle of €& such that L& F = &, and (f1,..., fn) is a basis of F over
U, then there exists a unique basis (e1,...,e,) of L over U such that (e1,...,en, f1,...,fn) i a

symplectic basis of € over U.
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PRrROOF. Consider the surjective morphism of Op-modules (cf. Lemma 1.A.2)
E—rY
e—{ ,e)|c.
Since U is affine, there exists a sequence (f7, ..., f}) of global sections of £ lifting the dual basis of (e1,...,ey)
in £V, so that (ei, f}) = 6ij for every 1 < 4,j < n. As L is an isotropic subbundle of £, to prove (1) it is
sufficient to show the existence of global sections ¢; of £ such that
fi=Ffi+4
satisfy (f;, fj) =0 for every 1 <1i,j <mn.
Since the bilinear form (, ) is alternating, A == ((f], f}))1<i,j<n is an antisymmetric matrix in My, xn (Ou (U)).
Thus, there exists a matrix B = (bij)1<i j<n i Mpyxn(Op(U)) such that A= B — BT. We put
Zi = - Z bijej,
j=1
hence
(fis f5) = (fL, £7) + (i £7) — (&5, £i) = (fis £}) + bij — bji = 0.
We now proceed to the proof of (2). As F is an isotropic subbundle of £ satisfying £ & F = &, the
morphism of Oy-modules

F—LY

f — < ) f>|£
is injective by non-degeneracy of { , ), thus an isomorphism since F and £Y have equal rank. The existence
and unicity of (ey,...,e,) follows from remarking that (e1,...,en, f1,..., fn) is a symplectic basis of £ over

U if and only if (eq,...,e,) is the basis of £ over U dual to the basis ({ , fi)|z,---,{ ,fa)lc) of LY. |

1.B. Gauss-Manin connection on some elliptic curves
1.B.1. The Weierstrass elliptic curve. Let
W := Spec C[gz, g3, A™']
where
A = g3 — 27g3.
Then we can define an elliptic curve E over W by the classical Weierstrass equation
y? = 4a® — gy — gs.
Further, we define a symplectic-Hodge basis (w,7) of E,y by the formulas
dx dx

w: , n=xr—.
Y

LEMMA 1.B.1. With the above notations, the Gauss-Manin connection V on Hlp (E/W) is given by
L@ Qo
V(w =(w ® —
(o )= (e e (0 ol
where

1 9
Qi = —195 dgs + 593 dgs

3 1
Q2 = —gagadgs — ~ g3 d
12 89293 g2 492 g3

9
Doy = —593 dgs + 3g2 dgs
QQ2 == *Qll-
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Let us briefly explain how these expressions follow from the description given in [51] A1.3 of the Gauss-
Manin connection on the relative first de Rham cohomology of the universal elliptic curve E over the Poincaré
half-plane H (whose fiber at each 7 € H is given by the complex torus E, = C/(Z + Z7)).°

We first remark that for any v € C* we can define an automorphism M, ,, : E,y — E,y in the
category A; ¢ by

/J'u(927 g3) = (u_4927 u_693)7 Mu(x, y) = (U_Qx? u—3y).

Using that the Gauss-Manin connection commutes with base change and admits regular singularities, we
deduce by homogeneity that there exists constants cq,...,cg in C such that

Qi1 = c195 dgo + c2g3 dgs, o = 39295 dga + cag5 dgs,
Q21 = c593dga + cog2dgs, oo = 795 dga + csg3 dgs.

To determine these constants, we consider the cartesian diagram in the category of complex analytic spaces

E —Y— E(C)

given by the classical Weierstrass theory :

() = (92(7), 95(7)),  ¥r(2) = (9-(2), 07(2))

Finally, we apply once again that that the formation of the Gauss-Manin connection (now in the complex
analytic category) commutes with base change, and we use the formulas in [51] A1.3 :

V(e gz ) = (e prlads ) g ((TOTIROAE SO BV ) g

1.B.2. The elliptic curve X,p over Z[1/6]. Let
B = SpecZ[1/6, ez, e4, 6, A1]
where
A=el — el

We define an elliptic curve X over B by

9 e2\3 e4 €2 €6
) )
y Tt 12 "1t 13) T 356

We define a symplectic-Hodge basis (w,7) of X,g by the formulas

Note that there is a morphism F; : (X¢) s — £ w in Aj ¢ given by

€4 €6 €2
) ) =\75' 572 /> F ) = ( 190 )
fe2,eq,e6) (12 216) (z,y) = (z+ 2Y

By pulling back the Gauss-Manin connection on H, éR(E /W) described in Lemma 1.B.1 by the morphism
F¢, we obtain that the Gauss-Manin connection V on Hjp (X/B) over Z[1/6] is given by

_ l Q1 Qi
V(e n)=(w oz gl o)

5. A direct algebraic approach is also possible. See for instance [53] 3 and [54] 3.4.
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where

()& 762 g — €2€
Q- <2‘644) dey + <6624> des

A eqe6 — 2e0e3 + e3eg e2 — 2egeq + e2ey
Qg = ——deg — d d
127 Tpiee < 48 cat 72 0

921 = 366d64 - 264d66
Q22 = _Qll~

1.B.3. The universal elliptic curve X; 5 over Z[l/2]. Consider the elliptic curve X; over By
defined in Theorem 6.2 and let ©,, : (X1,z(1/6))/B, 5,5 — X/B be the isomorphism in A, z[1/6) given by

@(bg, by, bg) = (bz, b3 — 24by, b — 36boby + 216bg), ®(x,y) = (z,2y).

If (w1,7m1) denotes de symplectic-Hodge basis of Xi,p, defined in Theorem 6.2, then by pulling back
the Gauss-Manin connection on Hjg (X/B) described in 1.B.2 by the isomorphism ®,,,, we obtain that the
Gauss-Manin connection V on H} (X1/B1) over Z[1/2] is given by

o 1 Q1 Qi
Vo m)= (o m)oy(gn o2 )

where
b3bs — 6babs — bab3 403 — 3bab 18b5 — bzb
1 = 22 by + — o dbg + - dbg
2b% + 952 — 2b3b4b b3bs — bob3 — 6byb 403 — 3bob
Gy = 00 SN gy, 2200 D20 DN gy L2200 g
3b2b5 — 4b3 boby — 18b 24b, — b3
Qo = 25— dby + 22— dby + ———2dbg
4 2 4
Qo2 = —1.
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Chapitre 2

Higher Ramanujan Equations II : periods of abelian varieties and
transcendence questions

Abstract

In the first part of this work, we have considered a moduli space B, classifying princi-
pally polarized abelian varieties of dimension g endowed with a symplectic-Hodge basis, and we
have constructed the higher Ramanujan vector fields (vii)i1<k<i<g on it. In this second part,
we study these objects from a complex analytic viewpoint. We construct a holomorphic map
pg + Hy — By4(C), where H, denotes the Siegel upper half-space of genus g, satisfying the
system of differential equations ﬁ gf:l = v opy, 1 <k <1< g. When g =1, we prove that ¢,
may be identified with the triple of Eisenstein series (E2, FE4, Eg), so that the previous differential
equations coincide with Ramanujan’s classical relations concerning Eisenstein series. We discuss
the relation between the values of ¢, and the fields of periods of abelian varieties, and we explain
how this relates to Grothendieck’s periods conjecture. Finally, we prove that every leaf of the
holomorphic foliation on By (C) induced by the vector fields vy, is Zariski-dense in Bg,c. This last
result implies a “functional version” of Grothendieck’s periods conjecture for abelian varieties.

1. Introduction

1.1. In the first part of this work ([32]) we have considered for any integer g > 1 a smooth moduli stack
By over Z classifying principally polarized abelian varieties of dimension g endowed with a symplectic-Hodge
basis of its first algebraic de Rham cohomology, and we have constructed a family (vg)1<k<i<g of g(g+1)/2
commuting vector fields on By, the higher Ramanujan vector fields. We have also proved that B, ® Z[1/2] is
representable by a smooth quasi-projective scheme B, over Z[1/2]. In particular, the set of complex points
B,(C) has a natural structure of a quasi-projective complex manifold.

In this second part, we consider the differential equations defined by the higher Ramanujan vector fields,
and we study their complex analytic solutions. Let

H, = {1 € M,»,(C) | 7" =7, Im7 >0}

be the Siegel upper half-space of genus g. This is a complex manifold of dimension ¢g(g + 1)/2 admitting the
holomorphic coordinate system (7x)1<k<i<g, Where 74 : H; — C is the holomorphic map associating to
T € Hy its entry in the kth row and [th column. Using the universal property of B,(C), we shall construct
a holomorphic map

pg : Hy — B,(C)
satisfying the system of differential equations
1 Oy

1.1 —
(1.1) 278 0Ty

=vpowy, 1<k<I<g
When g = 1, the Siegel upper half-space H; is the Poincaré upper half-plane H = {r € C | Im7 > 0},
and the classical theory of elliptic curves provides an isomorphism
B1 ® Z[1/6] 2= Z[1/6, €3, €4, €6, (¢] — €§) '],
under which the vector field v1; becomes the “classical” Ramanujan vector field (cf. [32] Section 6)

2 2
e5—eq O egeq —eg O eseg —ey O

1.2 = —_— — —_—

(1.2) v 12 9es 3 da 2 e
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In this situation, the holomorphic map 1 gets identified with
T+ (Ea(7), E4(7), Eg(T)),

where Es, Ey, B : H — C are the classical (level 1) Eisenstein series normalized by Fag(+ico) = 1, and
we obtain Ramanujan’s original relations between Eisenstein series :

1 dB;, FE2-E, 1 dEy E3Ey— Fg 1 dBEs FE2Es — E3
2ri dr 12 7 2midr 3 ©o2miodr 2 '

1.2. As explained in the introduction of [32], questions in Transcendental Number Theory constitute
our main source of motivation for the study of these higher dimensional analogs of Ramanujan’s equations.
We shall illustrate this point by relating the values of ¢, with Grothendieck’s periods conjecture on abelian
varieties. In order to fully motivate a precise statement of our result, let us digress into a discussion of periods
of abelian varieties and Grothendieck’s conjecture on the algebraic relations between them.

Let X be a complex abelian variety and k& C C be the smallest algebraically closed subfield of C over
which there exists an abelian variety X such that X is isomorphic to Xy ®; C as complex abelian varieties
(cf. Lemma 5.1). By a period of X, we mean any complex number of the form

La

where « is an element of the first algebraic de Rham cohomology H g (Xo/k) and v € Hy(Xo(C),Z) is the
class of a singular 1-cycle. We define the field of periods P(X) of X as the smallest subfield of C containing
k and all the periods of X.! Equivalently, P(X) may be regarded as the field of rationality of the comparison
isomorphism

H'(X(C),C) = Hom(H,(Xo(C),Z),C) = Hiz(Xo/k) s C.

A central problem in the theory of transcendental numbers is to determine, or simply to estimate, the
transcendence degree over Q of the field of periods P(X).

In a first approach, one might observe that any algebraic cycle in some power X™ of X induces an
algebraic relation between its periods (cf. [29] Proposition I.1.6). Broadly speaking, Grothendieck conjectured
that every algebraic relation between periods of an abelian variety can be “explained” through algebraic
cycles on its powers.

A convenient way of giving a precise formulation for Grothendieck’s conjecture is by means of Mumford-
Tate groups. Let X be a complex abelian variety, and denote by H the Q-Hodge structure of weight 1
with underlying Q-vector space given by H'(X(C), Q), and Hodge filtration F'H given by H°(X, Qﬁ(/c) C
H!:(X/C) = H'(X(C),Q) ®q C. The decomposition Hc = F*H @ F1H corresponds to the morphism of
real algebraic groups

h:C* — GL(HR),

where h(z) acts on F'H by a homothety of ratio z=', and on FLH by a homothety of ratio z~!. The
Mumford-Tate group MT(X) of X is defined as the smallest Q-algebraic subgroup of GL(H) such that h
factors through MT(X)g. It can also be interpreted as the smallest Q-algebraic subgroup of GL(H) x G.,.q
fixing all Hodge classes in twisted mixed tensor powers of the Q-Hodge structure H (cf. [29] 1.3).

The following formulation of Grothendieck’s periods conjecture (GPC) for abelian varieties is a specia-
lization of the “generalized Grothendieck’s periods conjecture” proposed by André ([2] 23.4.1; see also [60)]
Historical Note pp. 40-44 and [40] footnote 10).

CONJECTURE (Grothendieck-André). For any complex abelian variety X, we have
2
trdegqP(X) > dimMT(X).

1. This definition is not standard. Usually, one starts with an abelian variety X defined over a subfield K C C, and one
defines K-periods in terms of HéR(X/K). Our “absolute” definition considering a minimal algebraically closed field of definition
is convenient for our purposes and will be justified in the sequel.
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It follows from Deligne [28] (cf. [29] Corollary 1.6.4) that we always have the upper bound
trdegqP(X) < dim MT(X) + trdegqF,

where k is the smallest algebraically closed subfield of C over which X may be defined. In particular, if X
is definable over the field of algebraic numbers Q — the case originally considered by Grothendieck — the
above conjectural inequality becomes the conjectural equality

trdegqP(X) = dim MT(X).

In the case g = 1, the Mumford-Tate group of a complex elliptic curve F may be easily computed. Its
dimension only depends on the existence or not of complex multiplication, and GPC predicts that

? [ 2 if E has complex multiplication
trdegQP(E) = { 4 otherwise.

Even in this minimal case, GPC is not yet established in full generality — only the complex multiplication
case is understood ; see below. Nevertheless, an approach that has been proved fruitful for obtaining non-
trivial lower bounds in the direction of GPC relies on a modular description of the fields of periods of elliptic
curves, which we now recall.
Let E be a complex elliptic curve and let j € C be its j-invariant. Then E admits a model
E: y’ =42’ — gow — g3

with g2,93 € Q(j), and we can consider the algebraic differential forms defined over Q(j)

dx dxr

wi=—, n=z—.
Y Y

They form a (symplectic-Hodge) basis of the first algebraic de Rham cohomology Hig(E/Q(j)). If (v,6) is
any basis of the first singular homology group H;(E(C),Z), we may consider the periods

(A)l:/(JJ, WQ:/LL), 771:/777 772:/77
vy 5 o 4

We may assume moreover that the basis (7,6) is oriented, in the sense that their topological intersection
product yN4J = 1.
The field of periods of FE is given by

P(E) = w(whwzﬂhﬂb),

where Q(j) denotes the algebraic closure of Q(j) in C. Now, observe that wy # 0 and let
wo
7= =
w1
As the basis (v,9) of H1(E(C),Z) is oriented, the complex number 7 is in H. By the classical theory of
modular forms, we have

w1 m w1 4 w1 6
Ey(7) = 12 (—) (—) L Ey(r) =12 (—) . Eg(r) = —216 (—)
2(7) 211 21 4(7) 92 211 6(7) g3 211

Finally, Legendre’s periods relation and the definition of j show that P(F) is an algebraic extension of the
field Q(27i, T, E2(7), E4(7), Es(7)), and we obtain

(1.3) trdegQP(E) = trdegQQ(27Ti, T, Eo(7), E4(7), E6(7)).

In this way, the problem of estimating the transcendence degree of fields of periods of elliptic curves
translates into the problem of estimating the transcendence degree of values of some analytic functions.
Accordingly, the theorem of Nesterenko [75] asserts that, for any 7 € H,

trdegqQ(e*™, Es(7), E4(T), Eg(7)) > 3.
As an immediate consequence, we obtain

trdegq Q(2mi, 7, E2(7), Ea(T), E6(7)) > trdegqQ(FE2(7), Ea(T), E6(T)) > 2
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for any 7 € H. Equivalently, by equation (1.3), for any complex elliptic curve F, we obtain the uniform
bound

trdegqP(E) > 2,

which is sharp when E has complex multiplication. This last result had already been previously established
by Chudnovsky (cf. [23]) via elliptic methods. 2

1.3. In this paper, we generalize the modular description (1.3). Namely, let g > 1 be an integer and, for
any 7 € Hy, let X be the complex abelian variety given by the (polarizable) complex torus C9/(Z9 4 77Z9).
We shall prove that, for any 7 € Hy, the field of periods P(X;) is an algebraic extension of Q(27i, T, ¢4(T))
(the residue field in A}Q xq Symy q XqBy,q of the complex point (27i, 7, ¢4(7)), where Sym, denotes the
group scheme of symmetric matrices of order g x g); in particular, we obtain

trdegqP(X,) = trdegq Q(27i, 7, g (7))

This generalized modular description raises the question of whether it is possible to adapt Nesterenko’s
methods to this higher dimensional setting. Guided by this problem, we are naturally lead to study the higher
Ramanugjan foliation, namely, the holomorphic foliation on By (C) generated by the higher Ramanujan vector
fields.

We shall prove that every leaf of the Ramanujan foliation on B,(C) is Zariski-dense in B, c. This
property of a foliation plays an important role, at least in the case in which leaves are one dimensional
(where it implies Nesterenko’s D-property), in the “multiplicity estimates” appearing in applications of
differential equations to transcendental number theory (cf. [10], [73], [75]).

The Zariski-density of the image of ¢, : Hy — By(C) in By ¢ also implies the a priori stronger result
that its graph

{(1,4(7)) € Symg(C) X Bg(C) | T € Hy}

is Zariski-dense in Sym, ¢ xcBy,c (cf. [8], Theorem 1, where a similar question is investigated in the context
of derivatives of Siegel modular forms). This can be seen as an analog — but not a complete generalization
by the lack of the modular parameter ¢ — of Mahler’s result [63] on the algebraic independence of the
holomorphic functions 7, €27, Ey(7), E4(7), and Eg(7), of 7 € H. Under the viewpoint of [8], Bertrand
and Zudilin obtained in [9], Theorem 1, a full generalization of Mahler’s result.

Geometrically, the Zariski-density of the graph of ¢ in Sym, ¢ XcBy,c can also be interpreted as a
“functional version” of GPC : loosely speaking, it says that there is no algebraic relation simultaneously
satisfied by the periods of every (principally polarized) abelian variety other than the relations given by the
polarization data.

Our density results will rely on a characterization of the leaves of the higher Ramanujan foliation in
terms of an action by Sp,,(C). In fact, from the complex analytic viewpoint, the complex manifold B, (C)
and the higher Ramanujan vector fields admit a simple description in terms of algebraic groups.

Namely, we shall explain how to realize B,(C) as a domain (in the analytic topology) of the quotient
manifold Sp,,(Z)\ Spy,(C), and we shall prove that under this identification the higher Ramanujan vector
field vy, is induced by the left invariant holomorphic vector field on Sp,,(C) associated to
1 Kl
s ( o ) € LieSp,, (C),

where EF is the symmetric matrix of order g x g whose entry in the kth row and /th column (resp. Ith row
and kth column) is 1, and whose all other entries are 0.
Furthermore, the solution ¢, : Hy — B, (C) of the higher Ramanujan equations is identified to

SN K 109 1Tg )] € SDay(Z)\Spay (C),

2. We should also point out that the modular parameter e2™*7, ignored in our discussion, has a geometric interpretation.
Namely, it is a period of a certain 1-motive naturally attached to E. We refer to [6] (cf. [2] 23.4.3) for further discussion on
these matters.

54



where 1, denotes the identity matrix of order g x g. This enables us to obtain every leaf of the higher
Ramanujan foliation as the image of a holomorphic map @5 : Us — By(C) defined on some explicitly
defined open subset Us C H, obtained from ¢, via a “twist” by some element § € Sp,,(C).

In the case g = 1, the above twisting procedure may be illustrated as follows. Let

a b
§<C d)ESLQ(C)7
let Us = {r € H| ¢t + d # 0}, and define a holomorphic map ¢; : Us — B1(C) C C? by

ws(T) = ((CT +d)?Eq () + %(CT +d), (et + d)*Ey4(7), (er + d)°Eg (T))

Then one may easily check that y; satisfy the differential equation
1 dps —2

il AL d
2 dr (er +d) v o g5
where v is the classical Ramanujan vector field defined by (1.2).

1.4. As acknowledged in [32], our definition of the moduli stack B, was inspired by Movasati’s point
of view on the Ramanujan vector field in terms of the Gauss-Manin connection on the de Rham cohomology
of the universal elliptic curve (cf. [69] 4.2), which corresponds to the case g = 1 of our construction.

After I completed a first version this article, H. Movasati has kindly indicated to me that a number of its
results and constructions has some overlap with his article [70]. In this work, he considers complex analytic
spaces U classifying lattices in maximal totally real subspaces of some given complex vector space Vp (i.e.
subgroups of Vj generated by a C-basis of V}) satisfying suitable compatibility conditions with a fixed Hodge
filtration F{J on Vj, and a fixed polarization g ; these spaces come equipped with a natural analytic right
action of the complex algebraic group

Go = {g € GL(Vy) | gF} = F{. for every i, and g%ty = 1o }.
For the particular case where V) = C29,
Fy = (F) =Vy D> Fy =CY x {0} D F3 =0),

and g is the standard (complex) symplectic form ([70] 5.1), the space U becomes the analytic moduli space
B,(C), investigated in the present article. Of course, the algebraic group Gy coincides with our P,(C), and
the action of Gy on U gets identified with the action of Py(C) on By(C) defined in [32] under U = B,(C).

In [70] 3.2, Movasati also describes U as a quotient I'z\ P, where P is the space of “period matrices”
and I'z is some explicitly defined discrete group. In our particular case, P may be identified with our B, (cf.
Proposition 6.6) and I'z = Sp,,(Z). Moreover, the map H, — P defined in [70] p. 584 coincides with our
g : Hy — B,4(C) constructed via the universal property of B, (C).

In his article, Movasati explicitly states the problem of algebraizing U — i.e. finding the algebraic variety
T over Q, in his notations — and the action of Gy. This is solved “by definition” in our construction, which
also shows that T', here called B 0.0 is smooth and quasi-projective. Movasati actually conjectures that the
complex manifold B, (C) admit a unique structure of complex algebraic variety (in analogy with the Baily-
Borel theorem) and that it is actually quasi-affine. On his web page 3, Movasati also indicates a construction
of what we call “higher Ramanujan vector fields” with slightly different normalizations (cf. [32] Proposition
5.7).

1.5. Acknowledgments. This work was supported by a public grant as part of the FMJH project, and
is part of my PhD thesis under the supervision of Jean-Benoit Bost. I thank Mikolaj Fraczyk for sharing his
insights on Zariski-density matters and for his interest in this work, Hossein Movasati for his kind remarks
on a first version of this article and for making me aware of his work on this circle of questions, and Daniel
Bertrand for his comments and bibliographical corrections.

1.6. Terminology and notations. Besides the terminology and notations of [32], we shall consider
the following.

3. See “What is a Siegel quasi-modular form ?” in http://w3.impa.br/~hossein/WikiHossein/WikiHossein.html.
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1.6.1. Let M be a complex manifold. Every holomorphic vector bundle 7 : V' — M may be seen as a
(commutative) relative complex Lie group over M. We shall occasionally identify V' with its corresponding
locally free sheaf of Op;-modules of holomorphic sections of .

1.6.2. If R is any ring, we denote the constant sheaf with values in R over some complex manifold M
by Rpsr. A local system of R-modules over M is a locally constant sheaf L of R-modules over M. The dual
of L is denoted by LY :== Hompg(L, Ryr).

The étalé space of a local system of R-modules L over M will be denoted by E(L); this is a topological
covering space over M whose fiber at each p € M is naturally identified to L,.

1.6.3. Let m,n > 1 be integers. The set of matrices of order m xn over a ring R is denoted by M, x(R).
We shall frequently adopt a block notation for elements in Ma,xo2,(R) :

(é g):(AB;OD),

where A, B,C,D € My xn(R).

The transpose of a matrix M € M,,«,(R) is denoted by MT € M,,«,n(R). For 1 <i <n, e; € M,,x1(R)
denotes for the column vector whose entry in the ith line is 1, and all the others are 0. The identity matrix
in M, «n(R) is denoted by 1,. For every 1 < i < j < n, we denote by EY the unique symmetric matrix
(Ezjl)lgkr,lgn € Man(R) such that

E; = .
0 otherwise.

{1 if (k1) = (i,5) or (k,1) = (j,9)

The symmetric group Sym,, is the subgroup scheme of M,,«, consisting of symmetric matrices. The
symplectic group Sps,, is defined as the subgroup scheme of GLg,, such that for every affine scheme V' = Spec R

SPoy(V) = {M € GLyy(R) | MJM T = J}

. 0o 1,
(0B,

REMARK 1.1. As J? = —1,,, the condition MJM" = J is equivalent to M~' = —JM"J; thus
MJMT = J if and only if MTJM = J. In particular, if we write

where

M= ( 4 ) € Mayon(R)
for some A, B,C,D € M, xn(R), then M is in Sp,,(R) if and only if one of the following two conditions is
satisfied
(1) ABT = BAT, CD" = DCT, and AD" — BCT =1,,.
(2) ATC=C"A,B'"D=D"B,and A'"D - C"B =1,,.
Finally, the Siegel parabolic subgroup P, of Sp,, consists of matrices (A B ; C' D) in Sp,,, such that
¢ _1(?.6.4. Let K be a subfield of C and X be an algebraic variety over K (i.e. a reduced separated scheme

of finite type over K). For any complex point T : SpecC — X, if 2 € X denotes the point in the image of
T, and k(x) denotes its residue field, we put

Let us remark that

trdeg K (Z) = min{dimY | Y is an integral closed K-subscheme of X such that 7 € Y(C)}.
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2. Analytic families of complex tori, abelian varieties, and their uniformization

In this section we briefly transpose some of the standard theory of complex tori to a relative situation,
that is, we shall consider analytic families of complex tori. To both simplify and shorten our exposition, we
shall assume that the parameter space is smooth (i.e. a complex manifold) ; this largely suffices our needs.

Most of the material included in here, and in the following section, is well known to experts — and may
be even considered as “classical” — but we could not find a convenient reference in the literature.

2.1. Relative complex tori. Let M be a complex manifold.

DEFINITION 2.1. A (relative) complex torus over M is a relative complex Lie group 7 : X — M over
M such that 7 is proper with connected fibers. A morphism of complex tori over M is a morphism of relative
complex Lie groups over M.

As any compact connected complex Lie group is a complex torus, every fiber of 7 in the above definition
is a complex torus.

In general, for any relative complex Lie group 7 : X — M over M, we may consider its relative Lie
algebra Liep; X ; this is a holomorphic vector bundle over M whose fiber at each p € M is the Lie algebra
Lie X, of the complex torus X,, := 7! (p). Moreover, there exists a canonical morphism of relative complex
Lie groups over M

exp : Lieyy X — X
restricting to the usual exponential map of complex Lie groups at each fiber.

LEMMA 2.2. Let m: X — M be a complex torus over M. Then exp : Liepys X — X is a surjective
submersion, and the sheaf of sections of the relative complex Lie group ker(exp) over M is canonically
isomorphic to

Rlﬂ'*ZX = (Rlﬂ'*ZX)v.

This follows from the classical case where M is a point via a fiber-by-fiber consideration (cf. [71] I.1).
Note that Rym.Zx is a local system of free abelian groups over M whose fiber at p € M is given by the first
singular homology group Hi(X,,Z).

DEFINITION 2.3. Let V' be a holomorphic vector bundle of rank g over M. By a lattice in V', we mean
a subsheaf of abelian groups L of O (V') such that

(1) L is a local system of free abelian groups of rank 2g,

2) for each p € M, the quotient V,,/L,, is compact.
( p , the q v/ Lyp p

It follows from Lemma 2.2 that, for any complex torus 7 : X — M of relative dimension g, Rim.Zx
may be canonically identified to a lattice in Liey; X.

Conversely, if V' is a holomorphic vector bundle of rank g over M and L is a lattice in V', then the étalé
space E(L) of L is a relative complex Lie subgroup of V over M and X := V/E(L) is a complex torus over
M of relative dimension g. Furthermore, the relative Lie algebra Liey; X gets canonically identified with V
and, under this identification, E(L) is the kernel of the exponential map exp : Lieyy X — X.

REMARK 2.4. The above reasoning actually proves that the category of complex tori over M of relative
dimension ¢ is equivalent to the category of couples (V, L) where V is a holomorphic vector bundle of rank
g over M and L is a lattice in V'; a morphism (V, L) — (V' L’) in this category is given by a morphism of
holomorphic vector bundles ¢ : V. — V' such that ¢(FE(L)) C E(L').

In what follows, we shall drop the notation E(L) and identify a local system with its étalé space.

2.2. Riemann forms and principally polarized complex tori. Let M be a complex manifold and
m: X — M be a complex torus over M.
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DEFINITION 2.5. A Riemann form over X is a C° Hermitian metric* H on the vector bundle Liep; X
over M such that

E=ImH
takes integral values on Ri7.Zx.

Observe that E is an alternating R-bilinear form. We also remark that the Hermitian metric H is
completely determined by E : for any sections v and w of Lieys X we have H(v,w) = E(v,iw) + iE(v,w).
In particular, by abuse, we may also say that E is Riemann form over X.

DEFINITION 2.6. With the above notations, we say that the Riemann form FE is principal if the induced
morphism of local systems

Rlﬂ'*ZX — (Rlﬂ'*ZX)V = Rlﬂ'*ZX
7— E(7,)

is an isomorphism.

DEFINITION 2.7. Let M be a complex manifold. A principally polarized complex torus over M of relative
dimension g is a couple (X, F), where X is a complex torus over M of relative dimension g and E is a
principal Riemann form over X.

EXAMPLE 2.8. Let g > 1 and consider the Siegel upper half-space
H, = {7 € M,,(C)|7=7", Im7 > 0}.

If g = 1, we denote H := Hj ; this is the Poincaré upper half-plane. Let us consider the trivial vector bundle
V = C9 x Hy over Hy and let L be the subsheaf of Oy, (V) given by the image of the morphism of sheaves
of abelian groups

(29 ® Z9)u, — On, (V) = Oy’
(m,n) — m+71n
where m and n are considered as column vectors of order g. Then L is a lattice in V and we denote by
py: Xy — Hy

the corresponding complex torus over H, of relative dimension g (cf. Remark 2.4). Let E, be imaginary part
of the Hermitian metric over V given by

(v,w) — T (Im7) " Lw.
One may easily verify that F, takes integral values on L and that v — E4(v, ) induces an isomorphism
L =5 LY. We thus obtain a principally polarized complex torus (Xg4, Ey) over Hy of relative dimension g.

2.3. The category 7, of principally polarized complex tori of relative dimension g. Let
Man ¢ denote the category of complex manifolds. We define a category 7, fibered in groupoids over Man ¢
as follows.

(1) An object of the category 7T, consists in a complex manifold M and a principally polarized complex
torus (X, E) over M of relative dimension g; we denote such an object by (X, E)/a;.

(2) Let (X, E)/p and (X', E') /5 be objects of T,. A morphism
F/f : (X/,E/)/M/ — (X, E)/M
in 74 is a cartesian diagram of complex manifolds

x . x

L

M/TM

4. Our convention is that Hermitian forms are anti-linear on the first coordinate and linear on the second.
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preserving the identity sections of the complex tori and such that £/ = f*E under the isomor-
phism of holomorphic vector bundles Liey;s X’ -+ f* Lieps X induced by F. We may also denote
(X',E")=(X,E) xp M.

(3) The structural functor 7, — Man ¢ sends an object (X, E) /s of T to the complex manifold M,
and a morphism F; as above to f.

ExAMPLE 2.9. We define an action of Sp,,(Z) on the object (X, E,)/u, of Ty
SPQg(Z) — Aut7—g ((Xg, Eg)/Hg)
v Fyp
as follows. Recall that an element v = (A B ; C' D) € Sp,,(R) acts on H, by
fvH; — Hy
T+ -7:= (AT +B)(Cr + D).
For « as above, consider the holomorphic map
F,:CIxH, — CY x H,
(Z7 T) — ((.7(’)/’ T)T)_lz7 v T)
where
j(v,7) == C7+ D € GLy4(C).
If v € Spy,(Z), then for every 7 € H, we have
Fy 7 (29 +7Z9) = 29 + (v - 7)29,

so that ﬁ, induces a holomorphic map F, : X, — X,. One easily verifies that

Xg & Xg

P, 2

H, — H,
fr

is a cartesian diagram of complex manifolds preserving the identity sections and the Riemann forms Fg, i.e.
it defines a morphism F, ;- (Xg, Eg)/a, — (Xg, Eg)/n, in Ty. Finally, the formula
. ‘
iz, 7) = j(n,72 - 7)i(v2, )
implies that FA,/f7 is in fact an automorphism of (X, Eg)/Hg in 7, and that v — Fv/f7 is a morphism of
5
groups.

2.4. De Rham cohomology of complex tori. Let M be a complex manifold and 7 : X — M be
a complex torus over M of relative dimension g.
2.4.1. For any integer ¢ > 0, we define the ith analytic de Rham cohomology sheaf of Op-modules by

HQR(X/M) = RiW*Q;(/Ma
where Q% /M is the complex of relative holomorphic differential forms. If M is a point, we denote Hjg (X) ==
Hip (X/M).

REMARK 2.10. If M is a point, the analytic de Rham cohomology HQR(X ) is canonically isomorphic to
the quotient of the complex vector space of C* closed i-forms over X with values in C by the subspace of
exact i-forms (cf. [29] 1.1 p. 16).

5. Actually, it follows from Proposition 3.4 below (see also Remark 3.5) that v —— F'Y/f'v is an isomorphism of groups.

59



The arguments in [5] 2.5 prove, mutatis mutandis, that there is a canonical isomorphism of Oj-modules
given by cup product

N\ Han(X/M) = Hig (X/M),

and that H}g (X/M) is (the sheaf of sections of) a holomorphic vector bundle over M of rank 2g. Moreover,
the canonical Op/-morphism 7, Q% VY Hir (X/M) induces an isomorphism of Q% /v onto a rank g
subbundle of H1 (X/M) that we denote by F*(X/M).

Analogously, it follows from the arguments of [53] that Hig (X/M) is equipped with a canonical inte-
grable holomorphic connection

V: HcliR(X/M) — ,HéR(X/M) Ko Q}\/I’

the Gauss-Manin connection.

Furthermore, the formation of Hig (X/M), F*(X/M), and V, are compatible with every base change in
M.

2.4.2. There is a canonical comparison isomorphism of holomorphic vector bundles

(2.1) c: Homz(RimZx,O0n) = R Zx @z Oy — Hig(X/M)

identifying the the local system of C-vector spaces Homz(Rim.Zx,Cyr) = R'n.Cx with the subsheaf of
Hir(X/M) consisting of horizontal sections for the Gauss-Manin connection ([26] I Proposition 2.28 and II
7.6-7.7). The induced pairing

HIR(X/M) @z RimiZx — On
awy— ) = [ a
:

is given at each fiber by “integration of differential forms” (cf. Remark 2.10).

REMARK 2.11. In particular, for any section v of Rym,Zx, any C* section « of the vector bundle
Hig(X/M), and any holomorphic vector field # on M, we have

9<La)zlv9a.

Recall that Ry7.Zx may be naturally identified with a lattice in the holomorphic vector bundle Liey; X.
Accordingly, the dual bundle (Lieys X ) gets naturally identified with a holomorphic subbundle of Homz (RimZx, Oy ).

LEMMA 2.12. With notations as above, the comparison isomorphism (2.1) induces an isomorphism of
the holomorphic vector bundle (Lieps X)Y onto FH(X/M).

This also follows from a fiber-by-fiber argument : if M is a point, by identifying H}g (X) with the C>
de Rham cohomology with values in C (Remark 2.10), the subspace F1(X) gets identified with the space of
(1,0)-forms in H}y (X), and these correspond to Home(Lie X, C) under the de Rham isomorphism (cf. [11]
Theorem 1.4.1).

2.4.3. If X admits a principal Riemann form FE, then, by linearity, we may define a holomorphic
symplectic form (, ) on the holomorphic vector bundle H}g (X/M) over M (cf. [32] Appendix A) by

(B(y, ), B, ) = ——E(y,06)

21

for any sections vy and & of Rym.Zx, where E(v, ) and E(§, ) are regarded as sections of Hig (X/M) via
the comparison isomorphism (2.1).

Since every section of R'm.Zx is horizontal for the Gauss-Manin connection V on H}g (X/M) under
the comparison isomorphism (2.1), the symplectic form ( , ) is compatible with V : for every sections «, 8
of HAz(X/M), and every holomorphic vector field § on M, we have

(2.2) 0(a, B)e = (Voo, B)E + (@, Vo B) E.
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2.5. Relative uniformization of complex abelian schemes. Let U be a smooth separated C-
scheme of finite type and (X, \) be a principally polarized abelian scheme over U of relative dimension
g. Denote by p : X — U its structural morphism. Then the associated analytic space U?" is a complex
manifold, and the analytification p*" : X®" — U?®" of p is a complex torus over U?" of relative dimension g.

Since the analytification of the coherent Op-module H}g (X/U) is canonically isomorphic to Hg (X2 /U"),
the symplectic form ( , )x on H}z(X/U) defined in [32] 2.2 induces a symplectic form (, )3 on the holo-
morphic vector bundle H}g (X /U™) over U,

LEMMA 2.13. Let v and § be sections of Rip*™Zx=x, and let o and 3 be sections of Hig (X?™/U™) such
that v = ( ,a)3" and 6 = ( ,B)3" under (the dual of ) the comparison isomorphism (2.1). Then
(1) The formula

1 an
%W,BX\

E)\ (rYa 6) =
defines a Riemann form over X2".
(2) The holomorphic symplectic forms ( , Yg, and {, )3 over Hig (X /U) coincide.
PROOF. We can assume U = Spec C, so that (X, \) is a principally polarized complex abelian variety.
Recall from [32] 2.2 that we have constructed an alternating bilinear form @y on Hlg (X/C)Y, and that
the bilinear form (, ) over Hiy (X/C) is obtained from @ by duality. Therefore, to prove (1), it is sufficient
to prove that, under the identification of Hy(X?",Z) with an abelian subgroup of Hp (X/C)Y via (the dual
of) the comparison isomorphism (2.1), for any elements v and § of Hy(X?",Z),

1
E 0) = — )
)\(77 ) 271 Q)\(’% )
is in Z, and that the induced morphism
(%) H{(X*,Z) — Hom(H,(X*,Z),Z)
v Ex(7, )

is an isomorphism of abelian groups.
Note that, with this definition, (2) is automatic, since for any «, 6 € Hy(X?*",Z) we have

1 1 1

<E>\(77 )aE)\(dv )>E>\ = %E/\(%(S) = WQ)\(’%(S) = W<QX(77 )aQ)\(av )>§\n
= (5= Qa0 ) 5@ )3 = (Ba(, ), Bald, )3

where we identified the vector space Hlg(X/C) with H}z(X?") via the canonical analytification isomor-
phism.
Now, the topological Chern class ¢1 top : Pic(X) — H 2(Xan 7Z), defined via the exponential sequence

0— Zxm — Oxan — O%un — 0
f— exp(2mif)
and the de Rham Chern class ¢1 qr : Pic(X) — H33(X/C) (cf. [32] 2.2) are related by the following
commutative diagram (cf. [27] 2.2.5.2)

C1,dR

Pic(X) H?.(X/C)

HQ(Xan’ Z) N I{2(}(an7 C)

—2mi
where the arrow H32g(X/C) — H?*(X*, C) = Hom(H>(X,Z),C) is given by the comparison isomor-
phism.
If £ is an ample line bundle on X inducing A, then Q) = c1 qr(£) under the identification H3g(X/C)
with the vector space of alternating bilinear forms on H}(X/C)V (cf. [32] proof of Lemma 2.1). By the
commutativity of the above diagram, we see that E\ = —c1 10p(£) under the identification of H (X, Z)

61



with the module of alternating (integral) bilinear forms on H;(X?",Z). This proves that E) takes integral
values.

To prove that (x) is an isomorphism, we simply use the fact that A" is an isomorphism of X onto
its dual torus, hence the determinant of the bilinear form on H;(X?",Z) induced by ¢1 top(£) is 1 (cf. [11]
2.4.9). u

Thus, for any smooth separated C-scheme of finite type U and any principally polarized abelian scheme
(X, \) over U of relative dimension g, the above construction gives a principally polarized complex torus
(X2 Ey) over U of relative dimension g.

Recall from [32] 3.1 that we denote by A, ¢ the moduli stack over C of principally polarized abelian
schemes of relative dimension g over C-schemes. Let SmVar ¢ be the full subcategory of Sch,¢ consisting of
smooth separated C-schemes of finite type, and A7"¢ be the full subcategory of Ay ¢ consisting of objects
(X, ) v of Ay c such that U is an object of SmVar c.

We can summarize this paragraph by remarking that we have constructed a “relative uniformization
functor” A"t — 74 making the diagram

sm

9,C Tg

l J

SmVar,c —— Man ¢

(strictly) commutative, where SmVar,c — Man ¢ is the classical analytification functor U —— U".

REMARK 2.14. One can prove that the above diagram is “cartesian” in the sense that it induces an
equivalence of categories between A7 and the full subcategory of 7, formed by the objects lying above the
essential image of the analytification functor SmVar,c — Man ¢ (cf. [27] Rappel 4.4.3 and [12] Theorem
3.10). In particular, for any object U of SmVar,c and any principally polarized complex torus (X', E) over
U?" of relative dimension g, there exists up to isomorphism a unique principally polarized abelian scheme
(X, X) over U of relative dimension g such that (X', E) jyan is isomorphic to (X*", Ey) jpen in Tg(U®"). In this
paper, we shall only need this algebraization result when U = Spec C, which is classical (cf. [71] Corollary
p. 35).

3. Analytic moduli spaces of complex abelian varieties with a symplectic-Hodge basis

In this section we consider some moduli problems of principally polarized complex tori, regarded as
functors

TP — Set

where 7, is the category fibered in groupoids over the category of complex manifolds Man ¢ defined in 2.3.

Recall that we denote by B, the smooth quasi-projective scheme over Z[1/2] representing the stack
By ®z Z[1/2] (see [32] Theorem 4.1). We shall prove in particular that the complex manifold By(C) = B}’
is a fine moduli space in the analytic category for principally polarized complex abelian varieties of dimension
g endowed with a symplectic-Hodge basis.

3.1. Descent of principally polarized complex tori. Let M be a complex manifold and (X, E) be
a principally polarized complex torus over M of relative dimension g.

If My is another complex manifold and M — My is a holomorphic map, we say that (X, F) descends
to My if there exists a principally polarized complex torus (Xo, Eo) over My and a morphism (X, E)/p; —>
(Xo, Eo) /am, in Ty, i.e. a cartesian diagram of complex manifolds

X — Xy
| = |
M —— M,
which is compatible with both the identity sections and the principal Riemann forms (cf. Paragraph 2.3).
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LEMMA 3.1. With the above notations, suppose that there exists a proper and free left action of a discrete
group I on M. If the action of T on M lifts to an action of I on (X, E)/r in the category Ty, then (X, E)
descends to a principally polarized complex torus over the quotient T\ M.

SKETCH OF THE PROOF. Consider X as a pair (V, L), where V is a holomorphic vector bundle over M
of rank g, and L is a lattice in V' (cf. Remark 2.4). Then, to every v € T' there is associated a holomorphic
map ¢~ : V — V making the diagram

Py
_

v v
commute, and compatible with the vector bundle structures. It follows from the commutativity of this
diagram that the action of I' on V is also proper and free. Thus, there exists a unique holomorphic vector
bundle structure on the complex manifold I'\V" over I'\ M such that the canonical holomorphic map V —
I'\V induces a vector bundle isomorphism of V' onto the pullback to M of the vector bundle I'\V over I'\ M.
Analogously, one descends the lattice L to a lattice in T'\V (consider the étale space, for instance),

and the bilinear form E on V to a bilinear form on I'\V, which is seen to be a principal polarization a
posteriori. |

3.2. Integral symplectic bases over complex tori. Let M be a complex manifold and (X, E) be a
principally polarized complex torus over M of relative dimension g. We denote by 7 : X — M its structural
morphism.

DEFINITION 3.2. An integral symplectic basis of (X, E)pr is a trivializing 2g-uple (v1,...,7g,01,...,04)
of global sections of Rim.Zx which is symplectic with respect to the Riemann form F, that is,

E(’}/Z‘,’Yj) = E((Si,éj) =0 and E(’yi,éj) = 5ij
forany 1 <14,j <g.

ExAMPLE 3.3. Consider the principally polarized complex torus (Xg4, E4) over H, of Example 2.8 and
recall that a section of Rip, Zx, is given by a column vector of holomorphic functions on Hy of the form
T+ m + 7n, for some sections (m,n) of (Z9 © Z9)u,. We can thus define an integral symplectic basis

Bg=("1s---17g:01,-..,04)
of (X97Eg>/Hg by
vi(T) :=e; and §(7) = Te;
for any 7 € Hy.

Let (X', E')/ar and (X, E) /pr be objects of 7, with structural morphisms 7’ : X’ — M’ and 7: X —
M. If Fy: (X', E') e — (X, E) /s is @ morphism in 7y, then the isomorphism of vector bundles
(3.1) Liep X' =5 f*Liey X

induced by F identifies the lattice Rim.Zyx, with f*Rim.Zx. If v is a section of Rim.Zx, we denote by
F*~ the section of Rym,Zx, mapping to f*y under (3.1). As the isomorphism (3.1) also preserves the
corresponding Riemann forms, for any integral symplectic basis (71,...,74,01,...,04) of (X, E) /s, the 2g-
uple of global sections of Ry7.Zx/ given by

F*,B = (F*’yl,...,F*VQ,F*(Sl,...,F*(Sg)
is an integral symplectic basis of (X', E') /a .

PROPOSITION 3.4 (cf. [11] Proposition 8.1.2). The functor T, — Set sending an object (X, E)nr of
Ty to the set of integral symplectic bases of (X, E) s is representable by (Xg, Eg) /u,, with universal integral
symplectic basis B, defined in Example 3.3.
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PROOF. Let (X, E),y be an object of 7, with structural morphism 7 : X — M, and let 8 =
(715+++,7g,01,---,d4) be an integral symplectic basis of (X, E)/ys. Let W be the real subbundle of Lieys X
generated by 71,...,7,. Since E is the imaginary part of a Hermitian metric, for any nontrivial section ~y of
W, we have E(v,iy) # 0. As W is isotropic with respect to E, it follows that Lieys X = W @ W as a real
vector bundle. In particular, v := (y1,...,7,) trivializes Lieps X as a holomorphic vector bundle. Hence, if
§ = (61,...,d4), then there exists a unique holomorphic map 7 : M — GL,4(C) such that § = y7, where 7
and ¢ are regarded as row vectors of global holomorphic sections of Liey; X.

Let A = (E(Vk, 1)) 1<ki<g € Mgxg(C). Since

0 =vRer+iyImr,
the matrix of E in the basis 3 is given by

0 AlmT
—(AIm7)T (Rer)TAIm7 — (Im7)TATReT /-~

Using that 3 is symplectic with respect to E, and that A is symmetric and positive-definite (recall that E
is the imaginary part of a Hermitian metric), we conclude that 7 factors through Hy C GL4(C).

Finally, writing X as the quotient of Liey; X by Rim.Zx, we see that 7 lifts to a unique morphism in 7,

F/T : (X, E)/M — (Xg, Eg)/Hg

satisfying F*3, = B. |

REMARK 3.5. We may define a left action of the group Spy,(Z) on the functor 7P — Set of integral
symplectic bases, considered in the above proposition, as follows. Let (X, E),y be an object of 7, and
B be an integral symplectic basis of (X, E),y. Let v = (A B ; C D) € Spy,(Z), and consider 8 =
(M15-++,7,01,...,04) as a row vector of order 2¢g; then we define

DT BT
fyﬂ:(ryl f}/g 61 69)<CT AT)
The morphism

Fy g,

defined in Example 2.9 is the unique morphism in 7, satisfying
F»;kﬁg =7" Bg-
3.3. Principal (symplectic) level structures.

3.3.1. Let U be a scheme, and X be an abelian scheme over U. Recall that, for any integer n > 1, we
may define a natural pairing, the so-called Weil pairing,

: (ngEg)/H_q — (Xg’Eg)/Hg

X[n] x X'[n] — pnu,
where pi, 7 denotes the U-group scheme of nth roots of unity (cf. [71] IV.20).

Fix an integer n > 1, and let ¢, € C be the nth root of unity e*n . For any scheme U over Z[1/n, ],
and any principally polarized abelian scheme (X, \) over U of relative dimension g, by identifying X*[n] with

X|[n] via A, and p,, v with (Z/nZ)y via (,, we obtain a pairing
e} s X[n] x X[n] — (Z/nZ)y.

n

The formation of e is compatible with every base change in U. Moreover, e is skew-symmetric and non-
degenerate (cf. [71] IV.23).

Since, for any integer n > 3, there exists a fine moduli space Ay 1, over Z[1/n] for principally polarized
abelian varieties of dimension g endowed with a full level n-structure (see [72] Theorem 7.9, and the following
remark; see also [65] Théoreme VIL.3.2), there also exists a fine moduli space Ay, over Z[1/n,(,] for
principally polarized abelian varieties (X, A) of dimension g endowed with a symplectic basis of X|[n| for the
pairing e}y (cf. [31] IV.6). The scheme A, , is quasi-projective and smooth over Z[1/n,(,], with connected
fibers. In the sequel, we denote the universal principally polarized abelian scheme over Ay, by (Xgn, Agn),
and the universal symplectic basis of X, ,[n] by agn.
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3.3.2. Let (X, E)/p be an object of T, with structural morphism 7 : X — M. For any integer n > 1,
by an integral symplectic basis modulo n of (X, E) /r, we mean a 2g-uple of global sections of the local system
of Z/nZ-modules

Rl’/T*(Z/TLZ)X = Rl’/T*Zx/TLRl’]T*ZX
which is symplectic with respect to the alternating Z/nZ-linear form on Rym.(Z/nZ)x induced by E.

REMARK 3.6. Every integral symplectic basis of (X, E) /5 induces an integral symplectic basis modulo
n of (X, E)/pr. Conversely, since the natural map Spy,(Z) — Spy,(Z/nZ) is surjective, locally on M, every
integral symplectic basis modulo n of (X, E) sm can be lifted to an integral symplectic basis of (X, E) /M-

The notion of integral symplectic bases modulo n is compatible with the notion of principal level n
structures of 3.3.1 in the following sense. Let (X, \) /iy be an object of A} (see 2.5) with structural morphism
p: X — U. The étalé space of the local system R1p2*(Z/nZ)xan is canonically isomorphic to the n-torsion
Lie subgroup X"[n] of X", Under this identification, the pairing e} on X[n] coincides, up to a sign, with
the reduction modulo n of the Riemann form E) (cf. [71] IV.23 and IV.24), and thus an integral symplectic
basis modulo n of (X", Ey) /yan canonically corresponds to a symplectic trivialization of X *"[n] with respect
to ef‘l.

3.3.3. Let I'(n) the kernel of the natural map Spy,(Z) — Spy,(Z/nZ). Recall that for any n > 3 the
induced action of I'(n) on Hy is free ([71] IV.21 Theorem 5) and proper.

The following proposition is well known.

PROPOSITION 3.7. For any integer n > 3, the complex manifold A, ,(C) = A3, o is canonically biho-
lomorphic to the quotient of Hy by I'(n), and the functor TP — Set sending an object (X, E)/n of Ty to
the set of integral symplectic basis modulo n of (X, E) /s is representable by (X3, o, Ekg,n)/AZ“n o
PROOF. As the action of I'(n) on Hy is proper and free, the quotient

Agn=T(n)\H,

is a complex manifold, and the canonical holomorphic map Hy, — A, ,, is a covering map with Galois group
['(n). Moreover, since the action of I'(n) on Hy lifts to an action of I'(n) on (X, F,)/u, in the category 7,
the principally polarized complex torus (X, E,) over H, descends to a principally polarized complex torus
(Xgn, Egn) over Ay, (Lemma 3.1).

Let Bj be the integral symplectic basis modulo n of (X, E,) /H, obtained from j; by reduction modulo
n. Then 3, is invariant under the action of I'(n), and thus it descends to an integral symplectic basis modulo
n of (Xgn, Egvn)/Ag,n7 say Bgn.-

The object (Xgn,Egn)/a,, of Ty so constructed represents the functor in the statement with 3y,
serving as universal symplectic basis modulo n. Indeed, let (X, E) 5 be an object of 7y, and 8 be an integral
symplectic basis modulo n of (X, E) /5. By Remark 3.6, there exists an open covering M = J,¢; U’ and,
for each i € I, an integral symplectic basis 8% of (X, E) jyi lifting 3. By Proposition 3.4, we obtain for each
i € I a morphism F/ifi (XL E) ju — (X, Eg)/Hg in T, satisfying (F?)*8, = . Finally, by construction,
for any ¢,j € I, the compositions of F;fi and F/]fj with the projection (X, Eg) /s, — (Xgn: Egn)/a, .
agree over the intersection U’ N U7 ; hence they glue to a morphism

Fyp o (X, E) — (Xgin, Egin) /A,
satisfying F* 84, = 8, and uniquely determined by this property.

To finish the proof, it is sufficient to show that (X;ﬁl’c, Ekgun)/AZ‘,‘,,L,c is isomorphic to (Xgn, Egn)/a, .,

in the category 74. By the compatibility of principal level n structures with integral symplectic bases modulo
n, there exists a unique morphism in 7,

Fjp: (X;f}L’c,E/\g,n)/A;?n’c — (Xgn Egin)/a,..

such that F*f, , is the integral symplectic basis modulo n of (X';‘y“nyc7 E*gm)/A‘;f'n,c associated to ag,, (the
universal principal level n structure of (X, Agn)/a, ). Since complex tori (over a point) endowed with a
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principal Riemann form are algebraizable (cf. Remark 2.14), the holomorphic map
[ Agn(C) =A% ¢ — Ay

is bijective. As the complex manifolds A, ,, and A, ,(C) have same dimension, f is necessarily a biholomor-
phism ([39] p. 19). [ ]

3.4. Symplectic-Hodge bases over complex tori.

3.4.1. Let M be a complex manifold and (X, FE) be a principally polarized complex torus over M of
relative dimension g. As in [32] Definition 2.4, by a symplectic-Hodge basis of (X, E),;, we mean a 2g-
uple b = (wi,...,wg, M1, -..,7g) of global sections of the holomorphic vector bundle Hiy (X/M) such that
wi,...,w, are sections of the subbundle F'(X/M), and b is symplectic with respect to the holomorphic
symplectic form ( , )g.

It follows from Lemma 2.13 that this notion of symplectic-Hodge basis is compatible with its algebraic
counterpart ([32] Definition 2.4) via the “relative uniformization functor” in 2.5.

3.4.2.  Consider Siegel parabolic subgroup of Sp,,(C)

P,(C) = {< ‘g (A%*l ) € Magx24(C) ‘ A € GL,(C) and B € M, (C) satisfy ABT = BAT} .
Note that P,(C) is a complex Lie group of dimension ¢(3¢g + 1)/2.

Let (X, F) be a principally polarized complex torus of dimension g. If b = (w n) is a symplectic-Hodge
basis of (X, E), seen as a row vector of order 2g with coefficients in Hlz (X), and p= (A B; 0 (AT)™1) €
P,(C), then we put

b-p=(wA wB+nA")1)

It is easy to check that b-p is a symplectic-Hodge basis of (X, E), and that the above formula defines a free
and transitive action of P,(C) on the set of symplectic-Hodge bases of (X, E).

3.4.3. For a complex manifold M, let us denote by Man ,; the category of complex manifolds endowed
with a holomorphic map to M.

LEMMA 3.8 (cf. [32] Corollary 3.4). Let M be a complex manifold and (X, E) be a principally polarized
complex torus over M of relative dimension g. The functor

Man}, — Set
M’ — {symplectic-Hodge bases of (X, E) xp M'}
is representable by a principal P,(C)-bundle B(X, E) over M.

PROOF. Let us denote by 7 : V. — M the holomorphic vector bundle H}y (X/M)®9 over M. For any
p € M, the fiber 7~!(p) = V,, is the vector space of g-uples (a1, ..., a,), with each a; € Hig(X,). Let B be
the locally closed analytic subspace of V' consisting of points v = (a1, ..., a4) of V such that

L:=Ca;+---+Cay

is a Lagrangian subspace of Hjp (X (,)) with respect to ( , )E, ., satisfying

‘Fl(Xﬂ'(’U)) &L= HcllR(Xﬂ’(v))

By [32] Proposition A.7. (2), a symplectic-Hodge basis (w1, ...,wg, 71, ...,n4) of a principally polarized
complex torus is uniquely determined by (m1,...,7,). In particular, for each p € M, the fiber B, = BNV,
may be naturally identified with the set of symplectic-Hodge bases of (X, E,).

Thus, it follows from 3.4.2 that B is a principal P,(C)-bundle over M ; in particular, it is a complex
manifold. We also conclude from the above paragraph that B represents the functor in the statement. W

REMARK 3.9. The above construction is compatible, under analytification, with its algebraic counter-
part. Namely, let U be a smooth separated C-scheme of finite type, and (X, A) be a principally polarized
abelian scheme over U. The complex manifold B(X?", E) over U*" constructed in Lemma 3.8 is canonically
isomorphic to the analytification of the scheme B(X, \) over U constructed in [32] Corollary 3.4.
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Recall that we denote by (X, Ay) the universal principally polarized abelian scheme over By, and by by
the universal symplectic-Hodge basis of (X4, ,),5,-

PROPOSITION 3.10. The functor TP — Set sending an object (X, E) nr of Ty to the set of symplectic-
Hodge bases of (X, E) p is representable by (X;?C, Ekg)/Bg}“‘c’ with universal symplectic-Hodge basis by .

PRrROOF. By Lemma 3.8, there exists a complex manifold B, := B(X,, E,) over H, representing the
functor

Man°?
/Hyg

M +—— {symplectic-Hodge bases of (X, Ey) xu, M}

— Set

Let (XB,, EB,) = (Xy, Ey) xu, By. Note that the principally polarized complex torus (Xg,, EB,) over B,
is equipped with a universal symplectic-Hodge basis bg,, and with an integral symplectic basis g, obtained
by pullback from S, via the canonical morphism (XB;7 Eg,)B, — (X4, Ey)/u, in Ty.

We now remark that (Xg,, £, ),B, represents the functor 7» — Set sending an object (X, E) /5 of T
to the cartesian product of the set of symplectic-Hodge bases of (X, E) /5, with the set of integral symplectic
bases of (X, E),ns, with (bg,,8B,) serving as a universal object. Thus, for any element v € Spy,(Z), there
exists a unique automorphism ‘I’www of (Xg,, EB,)/B, in T, such that ¥>bp, = bg, and ¥V Bp, = - BB,
(where the left action of Spy,(Z) on integral symplectic bases is defined as in Remark 3.5).

As the functor B, : AP — Set is rigid over C ([32] Lemma 4.3), we see that

(1) v+— Uy )y, is in fact an action of Spo,(Z) on (XB,, EB,),/B, in the category 7, and
(2) the action v+ 1), of Sp,,(Z) on the complex manifold By is free; it is also proper since it lifts
the action on H,.

Let M be the quotient manifold Sp,,(Z)\B, and descend (Xp,, E', ) to a principally polarized complex
torus (X, E) over M. Since bp,, is invariant under the action of Sp,,(Z), we can descend it to a symplectic-
Hodge basis b of (X, E)/ps. As in the proof of Proposition 3.7, we may check that (X, E),); represents the
functor in the statement, with b serving as universal symplectic-Hodge basis.

To finish the proof, we must prove that (X, E) /s is isomorphic to (X;’nc, E’\g)/BSf‘c in 74. For this, it is
sufficient to remark that, by the universal property of (X, E)/y, there exists a unique morphism in 7,

Frp (Xgo, Ex,)pang — (X, E)
satisfying F*b = by, and that the holomorphic map
f:By(C)=Bjc — M

is bijective since principally polarized complex tori (over a point) are algebraizable (cf. Remark 2.14) ; then
f is necessarily a biholomorphism ([39] p. 19). |

4. The higher Ramanujan equations and their analytic solution ¢,

Fix an integer g > 1. Let us consider the holomorphic coordinate system (7;)1<k<i<g on the complex
manifold Hg, where 71, : H, — C associates to any 7 € H, its entry in the kth row and /th column. To
this system of coordinates is attached a family (6x;)1<r<i<g of holomorphic vector fields on Hy, defined by

1 0
O = — —.
M 278 0Ty

Let (vg1)1<k<i<g be the family of holomorphic vector fields on By(C) induced by the higher Ramanujan

vector fields on B, defined in [32] 5.3.

DEFINITION 4.1. Let U be an open subset of H,. We say that a holomorphic map u: U — B, (C) is a
solution of the higher Ramanujan equations if

Oriu = v ou
forevery 1 <k <I[<g.
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In this section, we construct a global holomorphic solution
¢g : Hg — B,(C)
of the higher Ramanujan equations. In view of the universal property of the moduli space B, (C) (Proposition

3.10), the holomorphic map ¢, will be induced by a certain symplectic-Hodge basis of the principally polarized
complex torus (X, Ey) over Hy.

4.1. Definition of ¢, and statement of our main theorem. Recall that the comparison isomor-
phism (2.1) identifies the holomorphic vector bundle (Liep, X4)¥ over Hy with F*(X,/H) (Lemma 2.12).
Moreover, it follows from the construction of X, in Example 2.8 that Liem, X, is canonically isomorphic to
the trivial vector bundle CY x H, over H,. Under this isomorphism, we define the holomorphic frame

(dz, ..., dzg)
of F1(X,/H,) as the dual of the canonical holomorphic frame of C¥ x H,,.
THEOREM 4.2. For each 1 < k < g, consider the global sections of Hir(Xy/H,)
wyg = 2midz, 1Ny, = Vo, Wk
where ¥V denotes the Gauss-Manin connection on Hig(X,/H,). Then,
(1) The 2g-uple
by = (Wi, ., Wy, My, -5 1)

of holomorphic global sections of Hir(Xy/Hy) is a symplectic-Hodge basis of the principally pola-
rized complex torus (Xy, Ey) /a1, -

(2) The holomorphic map
¢g : Hg — B,y(C)
corresponding to by by the universal property of By(C) is a solution of the higher Ramanujan
equations (Definition 4.1).
The main idea in our proof is to compute with a C* trivialization of the vector bundle H}y (X,/H,).
In the next subsection we develop some preliminary background.
4.2. Preliminary results. Consider the complexr conjugation, seen as a C°° morphism of real vector
bundles over Hg,
Har(Xg/Hy) — Hir(Xy/Hy)
a—r
induced by the comparison isomorphism (2.1), and denote dz;, = dzj, for every 1 < k < g. We may check
fiber by fiber that the 2g-uple of C*> global sections of H}g (X,/H,)
(th PN ,ng, d21, ey dgg)

trivializes Hlg (X,/H,) as a C*> complex vector bundle over H,.
For1<i<j<gand1<k<yg,let us define

77? =V, wy,
so that
M = n’lgk~
PROPOSITION 4.3. Consider the notations in 1.6.3. For every 1 <i<j<g and 1 <k < g, we have
g
n = Z e/ EY(Im7) te;Imdyz
1=1

as a C™ section of Hig(X,/Hy), where Imdz, == (dz — dz;)/2i.
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PROOF. For 1 <i<j<gand 1<kl <g,let )\zl and ,u;jl be the C*° functions on Hy with values in
C defined by the equation
g
n? =Y (\jdz + pdz).
1=1
We must prove that Ay, + ui; = 0 and that A\, = Zel EY (Im7)'e;.
Let us consider the 1ntegral symplectic basis 8y = (v1,...,7g,01,...,d4) Of Rip, Zx, defined in Example
3.3. Forevery 1 <i<j<gand 1<kl <g, we have (cf. Remark 2.11)
i 0 0
/’I’]ka Vadzk—— dzk:—(skl:()
ol v O aTij m aTij

and

B ) y
nyY = adzk:—/dzk:—Tkl:E].
/al g 5 T orij Js, 0T M

Thus, by definition of )\i and ukl, we obtain

0= / nid = <A;{n / Az + 1 / dzm) = \J + )
" 1 il Vi

m=

and
B B g
E’]ngl = / T”]qu Z ( / dzm + /»L / dzwn) Z A Tml Tml = 27/ Z )\ ImT TYLl

In matricial notation, if we put \¥ = ()\;gl)lgk,lgg € My 4(C), then we have shown that
2iA7 Tm 7 = E¥
The assertion follows. n
Specializing to the case ¢ = j = k in the above proposition, we obtain the following formulas.

COROLLARY 4.4. For any 1 < k < g, we have
g

N, = Z((ImT)*l)kl Imdz.

=1

In particular, m;, is the unique global section of Hir(Xy/Hy) satisfying

/ nk =0 (lnd / 'I"k = 5k;l
" &

for every 1 <1 < g. In other words, n;, may be identified with Eg(vyy, ) under the comparison isomorphism
(2.1).

Since every section of R'p, Zx, = (Rip,, Zx,)", seen as a section of Hjp (X,/H,) via the comparison
isomorphism (2.1), is horizontal for the Gauss-Manin connection, we obtain the next corollary.

COROLLARY 4.5. For any 1 < k < g, the global section m;, of Hix(X,/H,) is horizontal for the Gauss-
Manin connection :

Our next goal is to use the duality given by the Riemann form F, to express dz; in terms of C'™ sections
of LieHg Xy

LEMMA 4.6. Let 1 <k < g, and denote by 1, the k-th column of T € Hy. Then
de = 7Eg(l-]:m7'k, ) + iEg(ImTka )
as a C™ section of Hig(X,/H,) under the comparison isomorphism (2.1).

69



PRrOOF. Note that Im7; = (Im7)ey. Let v be a section of Rip, Zx,. As ImT is symmetric and v =
Re~ + ¢Im~y, we have

—Ey(tIm7y,y) + tEg(Im 7y, 7) = —Im(: Im TkT(Im 7)) + i Im(Im TkT(Im )7 19)

= Im(ie] (Im7)(Im 7) ~1y) + i Im(e] (Im 7)(Im 7) ~1~)
= Re(ej) +ilm(ef7)

=efy=dzu(y).

4.3. Proof of Theorem 4.2. We prove parts (1) and (2) separately.

PROOF OF THEOREM 4.2 (1). As each wy is by definition a section of F'(X,/H,), to prove that b,
is a symplectic-Hodge basis of (Xg, E,) /H, it is sufficient to show that it is a symplectic trivialization of
Hir(Xy/Hgy) with respect to the holomorphic symplectic form ( , )g,. For this, we claim that it is enough
to prove that

(%) (wisn;) B, = 0ij
for every 1 < i < j < g. Indeed, by Corollary 4.5 and by the compatibility (2.2), equation (x) implies that
(n:m;)E, =0 (apply Vy,,). Since we already know that F'(X,/H,) is Lagrangian, this proves indeed that
b, is a symplectic trivialization of Hlg (X,/H,).
Fix 1 <i < j <g. By Corollary 4.4, we have
g

n; = Z((ImT)*l)jl Imdz,

=1
thus

g
(wi7 77j>Eg = 2m Z((ImT)_1>jl<dZ¢, Imdzl>Eg
=1

Now, using Lemma 4.6, we obtain
(dzi,Imdz)p, = (—Eg(ilm7;, ) +iE,(ImT;, ), Eg(ImT, ))p,
= —(Ey(ilmT;, ),E,(Imm, ))p, +i(Ey(ImT;, ), By(Im7, ))p

g9

1
= 5 (= Eg(iTmr;, Im7) +iEy (Tm 7, Tm 7))
e
1
22—7”1 (ZIHIT (Im7)~ 1Imﬂ)
1

1
= %eg—(lmT)el = %(Im T)il'

Therefore, since Im 7 is symmetric,

wl,nJ Z Im7)~ jl (Im ) = &55.

Let M be a complex manifold and (X, E) be a principally polarized complex torus over M of relative
dimension g. Let us denote by V the Gauss-Manin connection on "HéR(X /M). To any symplectic-Hodge
basis b = (w1, ..., Wy, M1, ...,1) of (X, E)/n we can associate a morphism of Oys-modules (cf. [32] Theorem
5.4)

c: Ty — T*H(FY(X/M)Y) & Hig (X/M)®I
0 — (k(0), Vom, ..., Vong)
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where

Ty — T2(FHX/M)Y)
0n—>z< Ve ®{ ,Vew)E
i—1

is the Kodaira-Spencer morphism defined as in [32] 5.1.2.9

This construction is compatible with base change : if M’ is another complex manifold, (X', E’) is a
principally polarized complex torus over M’ of relative dimension g, and o’ is a symplectic-Hodge basis of
(X', E") /v, then for any morphism F; : (X', E') a0 — (X, E) /5 in Ty such that F*b = b', the diagram

Df

Ty T
i |
D2(FHX/M')Y) & Hip (X' /M) —=—— f*(THFHX/M)Y) & Hap (X/M)®9)
commutes.

REMARK 4.7. Applying the above construction to the universal symplectic-Hodge basis by of (X gc By, )/ B
we obtain the analytification ¢}’ of the morphism ¢, defined in [32] Theorem 5.4.

Part (2) in Theorem 4.2 will be an easy consequence of the following characterization.

PROPOSITION 4.8. Let U C Hy be an open subset and v : U — B,y(C) be the holomorphic map
corresponding to a principally polarized complex torus (X, E) over U endowed with some symplectic-Hodge
basis b = (w1,...,wq,N1,-..,MNg). Then the following are equivalent :

(1) w is a solution of the higher Ramanujan equations.

(2) For every 1 <i < j<g, we have
c(0ij) = u*cgc(vig)

where ¢ : Ty — T2(FYX/U)Y) & HIg (X/U)®9 is the morphism defined above for the symplectic-
Hodge basis b of (X, E) v, and vij are the higher Ramanujan vector fields on By(C).
(8) For every 1 <1i < j <g, we have
(i) Vo, wi =1;, Vo,,wj =mn;, and Vo, wr =0, for k ¢ {i,j}
(ii) Vo, m =0, for 1 <k <g.

PROOF. The equivalence between (1) and (2) follows from the commutativity of the diagram

Du %
TU u TB 3?0

cl e
P2(FHX/U)Y) @ Hig(X/U)® —— u* (P(FH(XJ6/Byle)”) & Hir(X§'e/Byic) ™)
and the injectivity of u*cf’q (cf. [32] Theorem 5.4).
The same argument in the proof of [32] Proposition 5.7 proves the equivalence between (2) and (3). H

PROOF OF THEOREM 4.2 (2). By Proposition 4.8, it is sufficient to prove that, for every 1 <i < j < g,
we have

(1) Vo, wi =mn;, Vg, ,wj =n;, and Vg, wy, =0, for k ¢ {7, j}

(ii) Vg,;mp =0,for 1 <k <g.
Now, (i) follows directly from Proposition 4.3, and (%) is the content of Corollary 4.5. |

6. Recall that I'2(F1(X/M)V) denotes the submodule of symmetric tensors in F1(X/M)Y @ F1(X/M)V.
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4.4. The case g = 1. We now explicitly describe the holomorphic map ¢; : H — B;(C). For every
k > 1, let us denote by Fy; : H — C the classical (level 1) Eisenstein series of weight 2k normalized by
Eap(+ico) = 1.
PROPOSITION 4.9. Let 1 : H — B1(C) be the holomorphic map defined in Theorem 4.2 for g = 1.
Then
(1) Under the identification By = Spec Z[1/2, ba, by, b, A™1] of [32] Theorem 6.2, we have

or(r) = (Ba(r). 50Ba(r). 0B )

_ 1 da
where 0 = 5.

(2) Under the identification of [32] Remark 6.3, we have
©1(7) = (E2(7), Ea(T), E6(T)).
PROOF. By the change-of-coordinates formulas in [32] Remark 6.3, it is sufficient to prove (2). For every

7 € H, we denote by X, the complex elliptic curve defined by the equation

s _ Balr) . Be(7)

2
= 4 .
yo= 12 216

Recall that there is an isomorphism
F, X, = X.(C)
2 3 .
R ((%) pr(2): (ﬁ) o (2): 1) if 2#£0
(0:1:0) ifz=0

where @, denotes the Weierstrass p-function associated to the lattice Z + 7Z C C. Furthermore, we have
(cf. [51] A1.3.16)

_ _ 1 Es(7)
1, = Vowy = 57 pr(2)dz — o

Let ¢ : H — B1(C) be given by ¢(7) = (E2(7), E4(T), Eg(7)). Then, for every 7 € H, the isomorphism
Or: X r = Xip(n)(C)
2 T 3 .
(G ere) = BE () ) 1) s £0
0:1:0) it =0

d d
o <x> =w; and @I (xx> =n;.
Y Y

By making 7 vary in H, we obtain a morphism @/, : X; — X{'g in Ti. Since ®*(dx/y, xzdz/y) = by, we
must have ¢ = ¢ by definition of ¢;. ]

satisfies

5. Values of ¢, and transcendence degree of fields of periods of abelian varieties

Let X be a complex abelian variety (resp. a complex torus). For any subfield k& of C, we say that X
is definable over k if there exists an abelian variety Xy over k such that X is isomorphic to Xy ®; C as a
complex abelian variety (resp. isomorphic to Xo(C) as a complex torus).

LEMMA 5.1. For any complex abelian variety X (resp. polarizable complex torus), there exists a smallest
algebraically closed subfield k of C over which X is definable.

PROOF. Let g be the dimension of X, and let A : X — X! be any polarization on X (not necessarily
principal). If X is of degree d?, then the isomorphism class of the couple (X, \) defines a complex point
T € Aya1(C), where A, 41 denotes the coarse moduli space over Q of abelian varieties of dimension g
endowed with a polarization of degree d? (cf. [72] Theorem 7.10). Let k be the algebraic closure in C of the
residue field Q(Z) (see 1.6.4).
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It is clear that X is definable over k. To prove that k is the smallest algebraically closed subfield of C
with this property, let k' be any algebraically closed subfield of C over which there is an abelian variety
X’ such that X is isomorphic to X’ @ C. As k’ is algebraically closed, the polarization A on X descends
to a polarization A" on X’ such that (X, A) and (X', ) ® C are isomorphic as polarized complex abelian
varieties 7. Thus the morphism  : Spec C — Ay 41 factors through Speck’, which implies that Q(Z) C £’.
As k' is algebraically closed, we obtain k C k'. |

DEFINITION 5.2. Let X be a complex abelian variety, k be the smallest algebraically closed subfield of
C over which X is definable, and fix a k-model X, of X. The field of periods P(X) of X is defined as the
smallest subfield of C containing k£ and the image of pairing

Hig(Xo/k) ® Hi(Xo(C),Z) — C

a®’yH/a
Y

given by “integration of differential forms” (cf. 2.4.2).

Note that P(X) does not depend on the choice of Xj.
This section is devoted to the proof of the following theorem (cf. [8], Proposition 2, for an analog in the
context of derivatives of Siegel modular forms).

THEOREM 5.3. Let g > 1 be an integer. With notations as in Example 2.8 and Theorem 4.2, for every
T € H, the field of periods P(X, ) of the polarizable complex torus X, » == C9/(Z9 + 7Z9) is an algebraic
extension of Q(2mi, T, g (7)). In particular,

trdegq Q (27, 7, g (r) = trdegQP(Xg)T).

5.1. Period matrices. Let us consider the general symplectic group; namely, the subgroup scheme
GSpy, of GLg, over SpecZ such that, for every affine scheme V' = Spec R, we have

A B A,B,C,D € Myy,(R) satisfy
GSpay (V) = c D )€ Magx2q(R) T _ opgT T _ T T T x :
ABT = BAT, DT = DCT, and AD" — BCT € R*1,

We can define a morphism of group schemes
V. GSpQg — G,

as follows : if s = (A B ; C D) € GSpy,(V), then v(s) € R* satisfies ADT — BCT = v(s)1,. Note that Spy,
is the kernel of v.

We denote by Gszg the open subscheme of GSp,, defined by the condition A € GL4(R) in the above
notations.

Let (X, E) be a principally polarized complex torus of dimension g, and b = (w1, ..., wg, 71, . ..,74) (resp.
B=,-,701,...,04)) be a symplectic-Hodge basis (resp. an integral symplectic basis) of (X, E).

DEFINITION 5.4. The period matriz of (X, E) with respect to b and S is defined by

Q N
P(X,E.b,f) = ( Qi N, ) € Magx24(C),

where

Note that P(X, E,b, ) is simply the matrix of the comparison isomorphism (2.1) with respect to the
bases b of Hig(X) and (E( ,61),...,E( ,84),E(v1, ),...,E(v4, )) of Hom(H:(X,Z),C).

op

7. This follows from the fact that, for any abelian varieties X and Y over a field K, the functor Sch /K

— Set given by
U+— HomGpsch/U (X xKg U, Y xi U) is representable by an étale K-scheme.
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REMARK 5.5. In particular, let (X,\) be a principally polarized complex abelian variety, k& be the
smallest algebraically closed subfield of C over which X is definable, and (Xg, Ag) be a k-model of (X, \).
Then, if b is any symplectic-Hodge basis of (Xg, \g), and 8 is any integral symplectic basis of (X?", F)), the
field of periods P(X) of X is generated over k by the coefficients of the period matrix P(X?2, E\,b, ).

LEMMA 5.6. For any (X, E,b,3) as above, we have
(1) P(X,E,b,fB) € Gszg(C) and v(P(X, E,b,3)) = 2mi,
(2) Q' € GLy(C) (i.e. P(X,E,b,B) € GSp3,(C)) and Q7" € H,.

ProoOF. Knowing that P(X, FE b, 3) is a base change matrix with respect to symplectic bases, (1) is
simply a rephrasing of Lemma 2.13 and (2) is a particular case of the classical Riemann relations (cf. proof
of Proposition 3.4). ]

5.2. Auxiliary lemmas. We shall need the following auxiliary results.

LEMMA 5.7. The morphism of schemes
GSp3, — G Xz Sym, xz P,
s+— (v(s),7(s),p(s))

A B\ _ 1 A B\ _ A-1 BT
T(CD>.—CA and p(C’D)'_<O AT)

PROOF. We simply remark that

()\’ Z’( )0( (X}Tf)*1 )) — ( Z)ggjl (Alg—E?—lY)XT )

is an inverse to the morphism defined in the statement. |

where

is an isomorphism.

LEMMA 5.8. Let F : (X,E) — (X', E’) be an isomorphism of principally polarized complex tori of
dimension g, B = (V1,...,7¢,01,...,94) be an integral symplectic basis of (X, E) and V' be a symplectic-
Hodge basis of (X', E"). We denote by F,[3 the integral symplectic basis of (X', E") given by pushforward in
singular homology. Then the symplectic-Hodge basis

1
b= (Wiy.. Wy, M1y--s1g) = F*V - p (2 .P(X’,E',b'7F*ﬂ))
i

/77]-:0,/77]-:5”-
Vi di

The proof this lemma is a straightforward computation.

of (X, E) satisfies

for every 1 <i,j<g.

5.3. Proof of Theorem 5.3. Let A, be the coarse moduli space associated to the Deligne-Mumford
stack A, — SpecZ (which exists as an algebraic space by the Keel-Mori theorem, cf. [82] Theorem 11.1.2).
We recall that A, is a quasi-projective scheme over SpecZ (cf. [65] VII Théoreme 4.2) endowed with a
canonical morphism A, — A, inducing, for every algebraically closed field k, a bijection of A4(k) with the
set of isomorphism classes of principally polarized abelian varieties over k.

Since any principally polarized complex torus (X, F) of dimension g is algebraizable, (X, E') defines an
isomorphism class in the category A,(C) that we shall denote [(X, E)]. Let

Jg : Hg — Ay(C)
T [(Xg,rs Eg,r)]-
The next result follows immediately from our proof of the Lemma 5.1.
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LEMMA 5.9. For any 7 € Hy, the smallest algebraically closed subfield over which Xq -+ is definable is
gwen by the algebraic closure in C of the residue field Q(jq(7)).

Proor orF THEOREM 5.3. Let 7 € H, and fix any integer n > 3. The principally polarized complex
torus (Xg,7, Fg ) endowed with the integral symplectic basis modulo n induced by 8, - (cf. Remark 3.6)
defines a complex point u(7) € A, ,(C) in the fine moduli space A, ,, over Z[1/n,(,] of principally polarized
abelian varieties of dimension g endowed with a symplectic basis of its n-torsion subscheme (cf. 3.3).

Let (Xg,n, Ag,n) denote the universal principally polarized abelian scheme over A, ,,. Then, by the remark
following [32] Definition 2.4, there exists a Zariski open neighborhood U C A, & of u(r) over which
(X,.n.q>Ag.n) admits a symplectic-Hodge basis b. Let us denote by (X,\) = (X, , 5. Agn) X4, 4 U the
restriction of (X, G, Agn) to U.

In the following, fiber products will be taken with respect to Q. The symplectic-Hodge basis b of (X, \) JU
induces an isomorphism of principal Py-bundles over U

Pg’a x U ;> B(X, A)
(pvu) — bu D,

where B(X, ) is the U-scheme defined in [32] Corollary 3.4. By composing this isomorphism with the
isomorphism in Lemma 5.7, we obtain the isomorphism of Q-schemes

f : GSPZ%G x U — G'm,,a X Symgvé X B(X, )\)
(8’ u) — (V(S), 7—(5), by, - p(s))
Note that the canonical morphism h : B(X,\) — B,q = B,q is quasi-finite, since it fits into the

cartesian diagram of Deligne-Mumford stacks
h
B()(7 A) — 6976
| = ]
v A.qQ
where the bottom arrow U — Ag@ is given by the composition of the open immersion U C A n.Q with

the (canonical) finite étale morphism A, & — A g
In particular, by composing f with h, we obtain a quasi-finite morphism of Q-schemes

q: GSp;g’a xU — Gm’a X Symgﬁ X BQ,Q
given on geometric points by
q(s,u) = (v(s), 7(s), [(Xu, Adu, bu - p(s))])

where [(Xy, Ay, by - p(s))] denotes the isomorphism class in By(k(u)) of (Xy, Ay, by - p(s)), and k(u) denotes
the residue field of u € U.

Let F: (Xgr Eyr) = (X200 By, )
ponding, by the universal property of A, ,, to the reduction of the integral symplectic basis 3, modulo n,

and put

be the isomorphism of principally polarized complex tori corres-

s(r) = —ZP( ) Exuiry s bu(r)s FiBg,r) € GSpag (C).
It follows from Corollary 4.4 and Lemma 5.8 that F"*by, () - p(s(7)) = by 7, so that

[(Xu(T)v )‘u(‘r)v bu(T) p(S(T)))] = [(ng‘rv EQJ’? bgﬂ')} = Pg (T)
Thus, by Lemma 5.6, we obtain

q(s(1),u(r)) = <21m"T’ gag(T)> € G, (C) x Sym,(C) x B,(C).
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To finish the proof, it is sufficient to show that P(X, ;) is an algebraic extension of Q(s(7),u(r)). For
this, let

h Ag,n,a — Ag76
be the canonical map; then A'(u(7)) = j4(7). As h' is finite (in fact, it identifies A g with the quotient
Spog(Z/nZ) \ A, , q). the residue field Q(u(7)) is a finite extension of Q(j,(7)). Then, it follows from
Lemma 5.9 that Q(u(r)) is contained in the smallest algebraically closed field of C over which X, , is
definable (namely, the algebraic closure in C of Q(j,(7))). Finally, since 27mi € P(X, ,) by Lemma 5.6 (1),
the assertion follows from Remark 5.5. |

6. Group-theoretic interpretation of B,(C) and of the higher Ramanujan vector fields

In this section we shall explain how to realize the complex manifold B,(C) as a domain (in the analytic
topology) of the quotient manifold Spy,(Z)\ Spy,(C) (Corollary 6.7).

We shall also give an explicit expression for the higher Ramanujan vector fields, and for the holomorphic
map ¢4 : Hy — By(C), under this group-theoretic interpretation. For this, recall that the Lie algebra of
Sp,, (C) is given by

. A B T T T
Llesp2g(C):{<C D)EMggXQQ(C)‘B =B,C =C,D=-A }

For 1 <k <1< g, let us consider the left invariant holomorphic vector field V4; on Spa, (C) corresponding
to

L (0 EM .
o ( 0 0 ) € LieSp,,(C);

it descends to a holomorphic vector field V4; on the quotient Spy,(Z)\ Spa,(C).
THEOREM 6.1. Let (vp1)1<k<i<g be the higher Ramanujan vector fields on By(C). Under the identification

of By(C) with an open submanifold of Spy,(Z)\ Spa,(C) of Corollary 6.7, we have :
(1) For every 1 <k <1<y,
vk = Viil,(c)-
(2) The solution of the higher Ramanujan equations ¢, : Hy — By (C) is given by

1, 7

o) =302, @) (1) € 502y (2\802,(C).

As an example of application, we shall prove the following easy consequence of the above theorem.
COROLLARY 6.2. The image of @4 : Hy — By(C) is closed for the analytic topology.

6.1. Realization of B,(C) as an open submanifold of Sp, (Z)\ Sp,y,(C). Let B, = B(Xy, E) be
the principal P,(C)-bundle over H, associated to the principally polarized complex torus (X, E,)/u, as
defined in Lemma 3.8, so that the fiber of B, — H, over 7 € Hy is given by the set of symplectic-Hodge
bases of (X7, Eg,r).

We shall first realize B, as a “period domain” in Sp,,(C). For this, let us introduce the following
convenient modification of period matrices (Definition 5.4).

DEFINITION 6.3. Let (X, E) be a principally polarized complex torus of dimension g, and b (resp. ) be
a symplectic-Hodge basis (resp. an integral symplectic basis) of (X, E). Let
(M
P(X7E7baﬁ) - ( QQ N2 ) S GSpQg(C)

be the period matrix of (X, E) with respect to b and 3. We define

X Eb ) = mik ) g (©)
) s U T Nl %le p2g

Observe that this matrix is indeed symplectic by Lemma 5.6.
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We define a holomorphic map I1: B, — szg(C) as follows. Let g be a point in By lying above 7 € H,
and corresponding to the symplectic-Hodge basis b of (X, -, E, -), then

(q) == H(X_(]J'? Ey -, b, ﬂgn—)
where f3, is the integral symplectic basis of (X, F,)/u, defined in Example 3.3.

REMARK 6.4. Alternatively, recall that Hy may be regarded as the moduli space for principally polarized
complex tori of dimension g endowed with an integral symplectic basis (Proposition 3.4). In particular, as al-
ready remarked in the proof of Proposition 3.10, points in B, correspond to isomorphism classes [(X, E, b, 8)]
of quadruples (X, E, b, 3), where (X, E) is a principally polarized complex torus of dimension g, and b (resp.
B) is a symplectic-Hodge basis (resp. integral symplectic basis) of (X, E). Under this identification, the map
II: By — Spy,(C) is given by [(X, E,b, 8)] — II(X, E,b, B).

Let us consider the moduli-theoretic interpretation of B, of the above remark, and recall that B, is
endowed with a natural left action of the discrete group Sp,,(Z) given by

(& 8) wwnamr=[(xmas (2 )

(cf. Remark 3.5), and a right action of the Siegel parabolic subgroup P,(C) < Sp,,(C) given by
[(Xanba ﬁ)] p= [(XaEvb pvﬂ)}a

where both 8 and b are regarded as row vectors of order 2g.
Let us denote by P, the subgroup scheme of Sp,, consisting of matrices (A B ;C D) such that B = 0.
A simple computation proves the following equivariance properties of II : B, — SpQg(C).

LEMMA 6.5. Consider the isomorphism of groups
Py(C) — Py(C)
A B - (AH=1 0
p_< 0 (AT) )%p '_< 27iB A)'
Then, for any q € By, v € Spy,(Z), and p € Py(C), we have
(y-q) =1I(g) and Ti(q-p) =TI(q)p'
in Spy, (C).

Let us now consider the Lagrangian Grassmannian, namely the smooth and quasi-projective C-scheme
of dimension g(g + 1)/2 obtained as the quotient of complex affine algebraic groups

Ly = Sp2g,c/Pg,,c-
The complex manifold L,(C) = Sp,,(C)/P,(C) may be naturally identified with the quotient of
M :={(Z1, Z2) € Myx4(C) x Myxy(C) | Z{ Zy = Z3 Z1, rank(Z, Zs) = g}
by the right action of GL,(C) defined by matrix multiplication :
(Z1,75) - S = (218, Z55).
We denote the class in Ly(C) of a point (Z1, Z2) € M by (Z; : Z5). The canonical map

T SpQQ,C — Lg

W(é g>:(B:D).

7

is then given on complex points by



PROPOSITION 6.6. Let v : Hy — Ly(C) be the open embedding given by o(1) = (7 : 14). Then the
diagram of complex manifolds

B, —— Spy,(C)
l I
H, —— Ly(C)

is cartesian. That is, I1 : By — SpQQ(C) induces a biholomorphism of B, onto the open submanifold

7 (((Hy)) = { ( é g ) € SpQQ(C)’ D e GL,(C), BD ' ¢ Hg}
of Sp,(C), and makes the above diagram commute.

PROOF. The commutativity of the diagram in the statement is easy (cf. proof of Proposition 3.4). In
particular, if ¢,¢" € B, satisfy II(q) = II(¢’), then they lie above the same point 7 € H,. Let b (resp. V)
be the symplectic-Hodge basis of (X, -, Ey -) corresponding to g (resp. ¢’). Since period matrices are base
change matrices for the comparison isomorphism, and

H(Xg,‘ra Eg,‘rv b, 59,7‘) = H(Xg.,ﬂ'a Eg,r, b/» ﬂg,'r)7

it is clear that b = b’. This proves that II is injective.
Observe that B, and Sp,/(C) are complex manifolds of same dimension. Thus, to finish our proof, it
suffices to check that II(B,) = 7~ !(.(Hy)) ([39] p. 19). Let s € 7= *(.(H,)), and let 7 € H, be such that

/

(1) = n(s). Fix any ¢ € B, lying above 7 € H,. Then, there exists a unique p" € P, (C) such that s = II(q)p’.

Hence, by Lemma 6.5, s = II(q - p) € II(By). [ |
Recall from Proposition 3.10 that the canonical map

(6.1) By — B,4(C)

' (X, E,b,8)] — [(X, E, )]

induces a biholomorphism
szg(z)\Bg - Bg(c)~

Furthermore, note that Lemma 6.5 implies that the action of Sp,y,(Z) on Sp, (C) by left multiplication
preserves the open subset II(B,).

COROLLARY 6.7. The map II : By — Spy,(C) induces a biholomorphism of By(C) onto the open
submanifold of Spy,(Z)\ Spy, (C)

Spag(Z) \TI(By) = {Spy,(Z)s € Spy,(Z)\Spy,(C) | 7(s) € ¢(Hy)}.

6.2. Proof of Theorem 6.1 and of Corollary 6.2. We prove parts (1) and (2) of Theorem 6.1
separately.

PROOF OF THEOREM 6.1 (1). It is sufficient to prove that the solutions of the differential equations
defined by wvi; and by Vj; coincide. More precisely, let U be a simply connected open subset of H,, and
u: U — B,y(C) be a solution of the higher Ramanujan equations (Definition 4.1) ; we shall prove that, for

any lifting
% Bg

of u, the holomorphic map h =110 : U — Sp,,(C) is a solution of the differential equations
(6.2) Oph =Vigoh, 1<k<I<g.
where 0 = 5 B
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By the universal property of B, the holomorphic map % corresponds to a principally polarized complex
torus (X, E) over U, of relative dimension g, endowed with a symplectic-Hodge basis b = (w1, ..., wg, M1, ... ,7g)
and an integral symplectic basis 8 = (y1,...,7g,01,-..,04). For 7 € U, let us write

B Na(7)  5=Q(7)
h(r) = ( Ni(F) 04 (r)

271

> € SpQg(C)

where Qq,Qs, N1, Ny : U — M4 ,4(C) are holomorphic.
Now, since u is a solution of the higher Ramanujan equations, it follows from Proposition 4.8 (3) that,
forevery 1<i<j<g,

(1) Gijﬂl = NlEij, Ging = N2Eij
(11) Hile = 0, GijNg =0.
As U is connected, (ii) implies that N; and Ny are constant. Thus, (i) implies that 5-Q; — N;7 and

271

ﬁ(lg — No7 are also constant. In other words, there exists a unique element s € Sp,,(C) such that

for every 7 € U. Finally, since each Vj, is left invariant, it is easy to see that k is a solution of the differential
equations (6.2). |

LEMMA 6.8. For any 7 € Hy, we have
1 T
H(Xg,‘f'v Eg,T7 bg,7'7 /Bg,T) = ( 09 19 ) :

PROOF. Let us write

No(T)  55Qa(7)
H(Xg,'raEg,'r»bg,'r;Bg,T) = ( 2 .

Ni() g (r)
By definition of 8, and of by, it is clear that Q;(7) = 2mil, and that Qo(7) = 2mir. That Ni(7) = 0 and
Ny (1) =1, is a reformulation of Corollary 4.4. ]

PROOF OF THEOREM 6.1 (2). By definition, ¢, is given by the composition of
H, — B,
7 [(Xg,r: Eg,r,bg,r; Bg,r)]

with the canonical map B, — By(C). The result now follows from Lemma 6.8. [ |

PrOOF OF COROLLARY 6.2. Consider the subgroup

1, 7
Uy(C) = {( og 1, ) = M2gx2g(c)’ 7" = Z} < Spyy(C).
The statement is equivalent to asserting that the image of Uy (C) C Sp,,(C) in the quotient Spy,(Z)\ Spy, (C)
is closed, or, equivalently, that Spy,(Z) - Uy(C) C Spy,(C) is closed. Let us consider the (holomorphic) map
[ :8p2g(C) — M,y(C) x My(C)

(é g>l—>(A,C’).

SPag(Z) - Ug(C) = 1 (f(Spay(2)))-

Since f(Spy,(Z)) C My(Z) x My(Z), and My(Z) x My(Z) is a closed discrete subset of M, (C) x M,(C) for
the analytic topology, we conclude that Sp,,(Z) - U, (C) is closed in Sp,,(C). [ |

Now, one simply remarks that
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7. Zariski-density of leaves of the higher Ramanujan foliation

Let us denote by R, the subbundle of the holomorphic tangent bundle Ts (c) generated by the higher
Ramanujan vector fields v;;, 1 <14 < j < g. Since the vector fields v;; commute ([32] Corollary 5.10), R, is
an integrable subbundle of T (c). Hence, by holomorphic Frobenius Theorem, R, induces a holomorphic
foliation on B, (C); we call it the higher Ramanujan foliation.

Using the group-theoretic interpretation of B,(C) of Section 6, we shall also provide an explicit para-
metrization of every leaf L C By(C) 8 of the higher Ramanujan foliation (see Proposition 7.7 for a precise
statement).

Our main results in this section are the following Zariski-density statements.

THEOREM 7.1. Every leaf L C B4(C) of the higher Ramanugjan foliation is Zariski-dense in By ¢, that
is, for every closed subscheme Y of By c, if Y(C) contains L, then Y (C) = B4(C).

In particular, we obtain that the image of the solution of the higher Ramanujan equations ¢, : H, —
By(C) is Zariski-dense in B,.
Concerning the image of ¢ 4, we can actually derive the following a priori stronger result.

COROLLARY 7.2. The set {(7,¢4(7)) € Sym,(C)x By(C) | T € Hy} is Zariski-dense in Sym, ¢ xcBy,c-

A similar statement was proven by Bertrand and Zudilin for derivatives of Siegel modular forms (see [8],
Theorem 1).
The proof of both Zariski-density results will rely on the following elementary lemma.

LEmMA 7.3 (Fibration method). Let p: X — S be a morphism of separated C-schemes of finite type
and let E C X(C) be a subset. If, for every s € p(E), the set EN X, is Zariski-dense in Xs == p~1(s), and
one of the following conditions is satisfied,

(i) p(E) = S(C),
(ii) p is open (in the Zariski topology) and p(E) is Zariski-dense in S,
then E is Zariski-dense in X.

PROOF. Let U be a non-empty Zariski open subset of X ; we must show that £ N U is non-empty. In
both cases (i) and (ii) above, there exists a closed point s € p(E) N p(U). Since E N X is Zariski-dense in
X, and U N X, is a non-empty open subset of X, there exists a closed point t e ENUNX; C ENU. A

7.1. Characterization of the leaves of the higher Ramanujan foliation.
7.1.1.  Let U, be the unipotent subgroup scheme of Sp,, defined by

Uy(R) = { < 109 1Zg ) € Mngzg(R)’ A Z}

for any ring R.
The Lie algebra of U,(C) is given by

. 0 7
Lie Uy (C) = { ( 0 0 ) € Mggng((:)‘ A Z},
and admit as a basis the vectors

1 /0 EM :

inducing the higher Ramanujan vector fields on the quotient Spy,(Z)\ Sps,(C) (Section 6). In particular,
under the realization of B,(C) as an open submanifold of Spy,(Z)\ Spy,(C) of Corollary 6.7, the higher
Ramanujan foliation on By (C) is induced by the foliation on Sp,,(C) defined by U, (C), i.e. the foliation
whose leaves are left cosets of U, (C) in Sp,,(C).

It follows from the above discussion that, under the identification of B, (resp. B,(C)) with an open
submanifold of Sp,,(C) (resp. Spy,(Z)\ Spy,(C)) via II (cf. Proposition 6.6 and Corollary 6.7), for any leaf L

8. By definition, a leaf of the higher Ramanujan foliation on By (C) is a maximal connected immersed complex submanifold
of By(C) that is everywhere tangent to Rg.
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of the higher Ramanujan foliation on B, (C), there exists § € Sp,,(C) such that L is a connected component
of the image of 6U,(C) N B, in By(C) under the quotient map Spy,(C) — Spy,(Z)\ Spy,(C). We shall
provide a more precise result in Proposition 7.7.

7.1.2.  'We may also obtain an explicit parametrization of every leaf. For this, let us consider Symg(C) =
{Z € Myyx,(C) | ZT = Z} as an open subset of the Lagrangian Grassmannian Ly(C) (cf. discussion preceding
Proposition 6.6) via

Sym,(C) — Ly(C)
Zv—(Z:1,),

so that the embedding ¢ : H; — L,(C) defined in Proposition 6.6 is given by the restriction of Sym (C) —
L,(C) to H,. Furthermore, let

¢ Symy (C) — Spy,(C)

1, 2
Z — ( 0 1, ) .
REMARK 7.4. Under the obvious identification of Sym (C) with LieU,(C), the map ¢ is simply the
exponential exp : Lie Uy (C) — U, (C) C Spy,(C).
Now, the action of Spy,(C) on itself by left multiplication descends to a left action of Sp,y,(C) on Ly(C)

given explicitly by

< g g > (Zl ZQ):(A21+BZQCZ1+DZQ)

For any ¢ € Sp,,(C), let us define
s : 67" - Symy(C) C Ly(C) — Spyy(C)
p—> 5711/)(5 . p).

Then 15 induces a biholomorphism of 6~! - Sym (C) onto the closed submanifold §~'U,(C) C Sp,,(C).
We put

Us:={r€Hy |5 (r:1) € Symy(C) C Ly(C)} = (6" - Sym,(C)) N Hy.
Equivalently, if § = (A B ; C' D), then
Us={reH, | Cr+DeGL,(C)}.

DEFINITION 7.5. For any d € Sp,,(C), we define a holomorphic map @5 : Us — By(C) C Spa,(Z)\ Spy, (C)
by

©5(T) = Spay(Z)s(7)
for any 7 € Us.

Note that 15(Us) = 6~ 'Uy(C) N By C Spy,(C) by Lemma 6.5. In particular, the image of ¢s is indeed
in B4(C) . Moreover, if § € Uy(C), then Us = H, and @5 = ¢4 (cf. Theorem 6.1 (2)).

LEMMA 7.6. For any é € Spy,(C), Us is a dense connected open subset of H,.

PrOOF. Let 0 = (A B ; C D) € Sp,,(C). By definition, Us is the complement in H, of the codimension
1 analytic subset {7 € H, | det(CT+ D) = 0}. It is thus a dense open subset of H,. Since H, is a connected
open subset of an affine space, it follows from Riemann’s extension theorem (cf. [48] Proposition 1.1.7) that
Us is connected. [ |

PROPOSITION 7.7. For every 6 € Spy,(C), the image of the map @5 : Us — By(C) is a leaf of the
higher Ramanugan foliation on By(C), and coincides with the image of 6~ *Uy(C) N By in B,(C) under the
quotient map Spy,(C) — Spy,(Z)\ Spy, (C). Moreover, every leaf is of this form.
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PROOF. Let § € Spy,(C). It was already remarked above that 15(Us) = 6~'U,(C) N By ; by definition,
¢5(Us) is the image of 15(Us) under the quotient map Spy,(C) — Spy,(Z)\ Sp,(C). In particular, since
the higher Ramanujan foliation on B, (C) is induced by the foliation on Sp,,(C) defined by U, (C) (cf. 7.1.1),
to prove that ¢s5(Us) is a leaf of the higher Ramanujan foliation it is sufficient to prove that it is connected.
This is an immediate consequence Lemma 7.6.

Conversely, if L C B,y(C) is a leaf of the higher Ramanujan foliation, then it follows from 7.1.1 that
there exists § € Spy,(C) such that L is a connected component of the image of §~'U,(C) N By in B,(C)
under the quotient map Sp,,(C) — Spy,(Z)\ Spy, (C). By the last paragraph, 6~ 'U,(C) N B, = ¢;(U;) is
connected, and we conclude that L = ¢s5(Us). [ |

REMARK 7.8. The holomorphic maps ¢s : Us — By (C) are immersive but not injective in general. For

instance, if § = 1,4, then one easily verifies that ¢4 (7) = ¢4 (7') if and only if 7/ € Uy(Z) - 7. Thus ¢4 induces
a biholomorphism of the quotient Uy(Z)\H, onto the closed submanifold ¢,(Hg) of B4(C).

REMARK 7.9. There exist non-closed leaves of the higher Ramanujan foliation on B,(C). Take for

instance
_ ([ xly -1,
= (0 )

where 2 € R\ Q. Using the classical fact that the orbit of (x,1) in R? under the obvious left action of SLy(Z)
is dense in R?, one may easily deduce that the leaf L C By(C) given by the image of 6U,(C) N B, under
the quotient map Sp,,(C) — Sp,,(Z)\ Spy, (C) has a limit point in B,(C) \ L. In particular, the “space of
leaves” of the higher Ramanujan foliation on B, (C), which may be identified with Sp,,(Z)\ Sp,,(C)/U,(C)
by Proposition 7.7, is not a Hausdorff topological space.

The dynamics of the higher Ramanujan foliation in the case g = 1 was thoroughly studied by Movasati
in [68].

7.1.3. In the sequel, it will be useful to obtain a description of ¢s purely in terms of the universal
property of By(C). Let § = (A B ; C D) € Sp,,(C) and define a holomorphic map ps : Us — Py(C) by

(Cr+D)"t  —LcT
ps(T) = po,r = 0 (CraD)T € P,(C).

The proof of the next lemma is a straightforward computation using the equations defining the symplectic
group (cf. Remark 1.1).

we have
Ys(1) = ()5

in Spy, (C), where pj . denotes the image of ps - in Py(C) under the isomorphism defined in Lemma 6.5.

LEMMA 7.10. For every 7 € Us C Hy,

In particular, by Lemma 6.5 and Lemma 6.8, if B, is regarded as the moduli space of principally polarized
complex tori of dimension g equipped with a symplectic-Hodge basis and an integral symplectic basis, we
have

(7.1) ¥s(7) = [(Xg,r, Eg,r by, sy Bg.r)] € By
for every 7 € Us. Composing with the canonical map B, — B,(C), we obtain
(7.2) @s(1) = [(Xg.rs Eg.r,bg.r - Ps7)] € Bg(C)

for every T € Us.

7.2. Auxiliary results. Our next objective is to prove that the leaves of the higher Ramanujan foliation
on By (C) are Zariski-dense in By c. We collect in this subsection some auxiliary results. In the last analysis,
our proof is a reduction to the fact that Sp,y,(Z) is Zariski-dense in Sp,, ¢ (Lemma 7.13).

Recall that for every 7 € Hy and

5(é IB;)GSpQQ(C)
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we put
J(0,7) =C1+ D € Myyy(C),

so that Us = {r € Hy | j(6,7) € GL,(C)}.
The proof of the next lemma is a simple computation.

LEMMA 7.11. For 01,02 € Spy,(C), we have j(0102,7) = j(01,062 - 7)j(02,7). In particular, if T € Us,
and § - T € Us,, then 7 € Us,s,.

LEMMA 7.12. Let 6 € Spy,(C), v € Spyy(Z), and 7 € Usy, C Hy. Then -7 € Us and ¢s,(7) = ps(7- 7).

PRrROOF. That v-7 € Us is a direct consequence of Lemma 7.11 and the fact that j(y,7) € GL,4(C) (this
is true for any v € Sp,,(R) and 7 € Hy). Under the group-theoretic interpretation, we have

©5(T) = SPoy (Z) s~ (T) = Spay(Z)(67)"b((67) - 7)
= Spyy(Z)6 (6 (v 7)) = Spoy (Z)hs(v - 7) = @s(7 - 7).

LEMMA 7.13. The set Spy,(Z) C Spy,(C) is Zariski-dense in Spy, -
PROOF. Let Sp;, be the open subscheme of Sp,, defined by Sp;, (R) = {(A B ; C' D) € Sp,y,(R) | A €
GL4(R)} for any ring R. We may define an isomorphism of schemes Spj, — Sym, xz Sym, Xz GL4 by

A B 1 4 pT
(c D)»—>(CA ,ABT A).

Since Sym,, xz Sym,, xz GL4 may be identified to an open subscheme of the affine space AQZg2+g , we see that
Sym,(Z) x Sym,(Z) x GL4(Z) is Zariski-dense in Sym ¢ xc Sym, ¢ Xc GLg,c. Thus Spy,(Z) is Zariski-
dense in Spj, . Finally, since Spy, ¢ is an irreducible scheme, we conclude that Sp,,(Z) is Zariski-dense in
Sp29 C- [ |

LEMMA 7.14. Let 7 € Hy and p € Py(C). Then there exists 6 € Spy,(C) such that 7 € Us and p = ps -
PRrROOF. Let A € GLy(C) and B € M, ,(C) such that

p:(f} <A%-1)'

One easily verifies, using the equation ABT = BAT, that

AT —ATr
0= ( —omiBT A4 2miBTr )€ Magx24(C)
is in Spy,(C) and satisfies the required conditions in the statement. |

LEMMA 7.15. For every d € Spy,(C) and T € Hy, the subset
Stz = {ps.r € Py(C) | 7 € Spay (Z) such that j(6+,7) € GL,(C)}
of Py(C) is Zariski-dense in Py c.
PROOF. Let V' be the unique open subscheme of Spy, ¢ such that
V(C) = {7 € Spyy(C) | j(07,7) € GLy(C)}

and let h : V — P, ¢ be the morphism of C-schemes given on complex points by h(y) = ps,,» (note that
V and P, ¢ are reduced separated C-schemes of finite type). It follows from Lemma 7.14 that h is surjective
on complex points, thus a dominant morphism of schemes.

Now, we remark that S5, = h(Spy,(Z) N'V). Since Spy, ¢ is irreducible and Sp,,(Z) is Zariski-dense in
Spay,c by Lemma 7.13, Sp, (Z) NV is also Zariski-dense in Sp,, . Hence, as h is dominant and continuous
for the Zariski topology, Ss - is Zariski-dense in Py c. |
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7.3. Proof of Theorem 7.1 and Corollary 7.2. Recall from 5.3 that we denote the coarse moduli
scheme of Ay by Ay, and that we have a canonical map j, : Hy — A,(C) associating to each 7 € H, the
isomorphism class of the principally polarized complex torus (X, -, Eq - ).

PrOOF OF THEOREM 7.1. By Proposition 7.7, we must prove that, for every ¢ € Spy,(C), the image of
s : Us —> By(C) is Zariski-dense in By c.
Let
Wy - Bg,C — Ag,C

be the composition of the forgetful functor 7y : Byc = Byc — Agc with the canonical morphism
Ayc — Ay c. Note that w, acts on complex points by sending an isomorphism class in B,(C) of a
principally polarized complex abelian variety endowed with a symplectic-Hodge basis to the isomorphism
class in A4 (C) of the same principally polarized complex abelian variety.

By Lemma 7.3, we are reduced to proving that, for every x € A,(C), the set

0s(Us) Ny ()

is Zariski-dense in wg_l(m) C By c. Indeed, by surjectivity of @, on the level of complex points, this proves
in particular that wy(ps(Us)) = Ag(C) (cf. condition (i) in Lemma 7.3).

Let (X, \) be a representative of the isomorphism class x. The set of complex points of the C-scheme
w, () can be identified with the set of isomorphism classes of objects of the category By(C) lying over
(X, \); we denote these isomorphism classes by [(X, A, b)]. Then, we recall that C-group scheme P, ¢ acts
transitively on w, ! (z) by

[(X,A,0)] - p=[(X, A0 p)].
Thus, if 7 € Hy satisfies j,(7) = @, we can define a surjective morphism of C-schemes*
friPyc— wg_l(x)
P @g(7) - p.

Now, let v € Spy,(Z) be such that j(dy,7) € GLy(C). By Lemma 7.12, we have v -7 € Us and

0o~ (T) = s5(y - 7). Thus, by formula (7.2), we obtain
fT(pzi'y,T) = (pg(T) *Psy,r = 9057(7-) = 905(7 : T)'
This proves that
S5 = {Psy.r € Py(C) | 7 € Spyy(Z) such that j(6v,7) € GLy(C)} C frH(ws(Us) Nw, ' (2)).

By Lemma 7.15, Ss, is Zariski-dense in P, c. Hence, as f, is surjective and continuous for the Zariski
topology, we conclude that ¢s(Us) Nw, ' (x) is Zariski-dense in w, ! (x). |

PROOF OF COROLLARY 7.2. It is clear that Sym,(Z) is Zariski-dense in Sym, . Thus, by Theorem 7.1
and Lemma 7.3 (ii) applied to the projection on the second factor

Symg_’c Xc Bg,C — Bg,Ca

it suffices to prove that for every N € Sym_(Z) and 7 € H, we have ¢, (7 + N) = ¢4(7). This was already
observed in Remark 7.8. [ ]

9. Actually, as the automorphism group of a complex principally polarized abelian variety is finite ([71] IV.21 Theorem 5),
the stabilizer of ¢4 (7) is a finite subgroup scheme of P, c. Therefore, f- is a finite surjective morphism. We shall not use this
fact in our proof.
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Chapitre 3

Algebraic independence for values of integral curves

Abstract

We prove a transcendence theorem concerning values of holomorphic maps from a disk to
a quasi-projective variety over Q that are integral curves of some algebraic vector field (defined

over Q). These maps are required to satisfy some integrality property, besides a growth condition
and a strong form of Zariski-density that are natural for integral curves of algebraic vector fields.

This result generalizes a theorem of Nesterenko concerning algebraic independence of va-
lues of the Eisenstein series Es, E4, Es. The main technical improvement in our approach is the
replacement of a rather restrictive hypothesis of polynomial growth on Taylor coefficients by a
geometric notion of moderate growth formulated in terms of Value Distribution Theory.

1. Introduction

1.1. A theorem of Nesterenko. This work was motivated by questions related to the following
algebraic independence result.

Let Fs», E4, and Fg be the classical Eisenstein series, seen as holomorphic functions on the complex unit
disk D == {q € C| |¢| < 1}, explicitly defined by

Ex(q)=1-24) o1(j)e’, PEalq) =1+240) o3()e’, Folg) =1-504) o5(j)q’
j=1 j=1

j=1
for every q € D, where o (j) := Zd|j d* € Z. Let us also consider the g-expansion of the j-invariant

FEu(q)® 1 > ,
J(q) = 1728 4(@) 2= + 744 + Zc(j)qﬂ.
j=1

Ey(q)® — Eo(q)
THEOREM 1.1 (Nesterenko [75]). For every z € D\ {0}, we have
trdegqQ(z, E2(2), E4(2), Eg(2)) > 3.

This result is an improvement of Barré-Sirieix’s, Diaz’s, Gramain’s, and Philibert’s breakthrough [4]
concerning the solution of a conjecture of Mahler : for every algebraic z € D \ {0}, J(z) is transcendental.

In order to fully motivate our contributions, we next sketch the main steps of Nesterenko’s original proof.

In view of an algebraic independence criterion due to Philippon ([85] Théoréme 2.11 ; see also [75] Lemma
2.5), it suffices to construct a sequence of polynomials with integral coefficients Q,, € Z[Xo, X1, X2, X3], for
n > 0, such that deg @, = O(nlogn), 10g||Qnllec = O(nlog®n) — here, ||Qnlloe denotes the maximum of
the absolute values of all the coefficients of ),, —, and

—an’ < 10g|Qn(z, Ba(2), Ea(2), Bo(2))] < —bn'
for some real constants a > b > 0.

For this, Nesterenko implemented a method benefiting from the fact that Fs, E4, and Eg have integral
Taylor coefficients in their g-expansion and satisfy the so-called Ramanujan equations :
dEy E2—E4 dEy EsFE4— Eg dE¢  EyFE¢ — E}
Tag =12 0 Tag T 3 0 Tag T 2
It is also essential in his construction that

(i) [Growth condition] for each k € {1,2,3}, the sequence of Taylor coefficients (Eéj)(O)/j!)jZO grows
polynomialy in j, and
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(ii) [Zero Lemma)]® there exists a constant C' > 0 such that
ordg—oP (¢, E2(q), Ea(q), Eo(q)) < C(deg P)"
for every non-zero polynomial P € C[X,, X1, X5, X3] \ {0}.

The first condition can be easily deduced from the explicit description of the Taylor coefficients of Fsj given
above. The second, which may be regarded as a strong form of algebraic independence between the functions
q, E2(q), E4(q), and Eg(q), is a non-trivial consequence of Nesterenko’s D-property (Definition 3.B.1 below ;
cf. [75] Paragraph 6), an algebraic property concerning the global behavior of the foliation in C* induced by
the vector field
1) by 0 atmw) 0 (@ar—w) 0 (@i —ad) O
8130 12 8131 3 (91’2 2 613

A considerable part of [75] is devoted to a proof of a stronger form of the estimate in (ii).

Nesterenko’s method goes as follows.

(1) Using that the Taylor coefficients of Eo, F4, and FEg are integers of polynomial growth (property
(i) above), we may apply Siegel’s Lemma ([60] I.1 Lemma 1) to obtain auziliary polynomials with
integral coeflicients P, € Z[Xy, X1, X2, X3] \ {0} such that deg P, = n, log || P,|lcc = O(nlogn),
and

Ordq:()Pn(q7 E2 (q)7 E4(q)7 EG (Q)) Z Cn4

for some constant ¢ > 0.

(2) For afixed z € D\ {0}, the next step consists in proving the existence of a sequence j, = O(nlogn)
and of constants a > # > 0 such that the composed function f,(q) = P,(q, F2(q), E4+(q), Es(q))
satisfies

—an* <log |f7)(2)] < —pn*

for n > 0. The main point for obtaining the above lower bound is that, if all the Taylor coefficients
of f, at ¢ = z up to a sufficiently large order are too small, then its first non-zero Taylor coefficient
at ¢ = 0 will have absolute value < 1, thereby contradicting its integrality. Here, we also make
essential use of property (ii) above. This is the most delicate part of the argument.

(3) Finally, for n > 0, if we consider the differential operator
vl == 127y 0 (v =1) 0+ 0 (v = (ju — 1)),
then the Ramanujan equations imply that Q,, == vl (P,) € Z[Xo, X1, X, X3] satisfies

(12q)7" £9")(q) = Qu(gq, E2(q), Ea(q), Es(q))
for every q € D. The required properties for @,, are now easily deducible from (1) and (2).

1.2. A puzzling remark. One of the most striking features of the above method is its generality.

Indeed, a close inspection of the previous arguments suggests that, if f1, ..., f,, are holomorphic functions
on the unit disk D with integral Taylor coefficients at ¢ = 0, satisfying some algebraic differential equations
with rational coefficients, and verifying conditions akin to (i) and (ii) above, then, mutatis mutandis, the above
method applied to the system (fi,..., fin) in place of (Es, E4, Eg) would produce another transcendence
result.

This was certainly known to specialists ; see, for instance, [76] Section 3, where the pertinent properties
satisfied by Fs, FE4, and Eg were axiomatized as above — more generally, see Philippon’s notion of K-
functions introduced in [86]. Clearly, one may produce examples of such f; ad libitum by algebraically
manipulating Eisenstein series, but this procedure does not lead to new transcendence results. The problem
on the existence of functions fi, ..., f,, satisfying the above properties, but not “related” to classical modular
forms (in some imprecise sense), was explicitly stated by Zudilin in [100].

1. In Diophantine Approximation and Transcendental Number Theory, “Zero Lemma” is an umbrella term covering several
auxiliary results involving estimates of number of zeros in a certain region, or zeros multiplicities, of polynomials composed
with analytic functions.
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Since the publication of [20] and [66], it became apparent that the phenomenon of Mirror Symmetry
provides a large class of functions with integral Taylor coefficients with respect to some canonical coordinate
and which satisfy natural algebraic differential equations — see [61], [99], [57], [58], [25] for integrality
issues. In [98], Zudilin studies some candidates within Mirror Symmetry for playing the role of (f1,..., fm),
but the few cases where he is able to prove all the required properties of Nesterenko’s method — those linked
to elliptic curves and K3 surfaces — are all of modular nature.

It becomes clear in Zudilin’s work that one of the main obstructions in applying this method for such
functions is condition (i) (and, in particular, that the radius of convergence is equal to 1), which is not
verified in general. In a more basic level, computing radii of convergence or getting global information on
the domain of definition of such functions pertaining to Mirror Symmetry is a current research problem ; see
[69] for results on certain families of mirror maps.

The following phenomenon provides further evidence that condition (i) is overly restrictive. Let f be the
holomorphic function on D given by f(q) = ¢J(q) and set 6 = qd—’z. Since Q(f,0f,0%f) C Q(Ez, E4, Eg),
and this field extension is algebraic (see, for instance, the explicit formulas in [75] Paragraph 1), it follows
from Theorem 1.1 that

trdEgQQ(Za f(z)v 9f(z), 92f(2)) >3

for any z € D\ {0}. However, Nesterenko’s method cannot be directly applied to the system (f,0f,0°f)
since the sequence c(j) does not grows polynomialy in j.2 All the other good properties are nevertheless
satisfied : f, f, and 62 f have integral Taylor coefficients, the Ramanujan equations imply that f satisfies a
third order algebraic differential equation with rational coefficients, and a condition similar to (ii) also holds.

This paper grew from an observation of J.-B. Bost and H. Randriambololona that the growth condition
(i) in Nesterenko’s method could be replaced by a geometric notion of moderate growth formulated in terms
of characteristic functions ¢ la Nevanlinna Theory. Besides being weaker than the growth condition in
(i), which in principle enlarges the domain of application of Nesterenko’s method, this geometric growth
condition is preserved under some algebraic manipulations on the input functions, thereby eliminating the
odd phenomenon explained in last paragraph.

We next explain our main results. Further directions and open problems are indicated below.

1.3. Our main results : a geometric approach. Our main theorem is a general geometric formula-
tion of Nesterenko’s method valid for arbitrary rings of algebraic integers and more general quasi-projective
ambient spaces.

Let us first informally introduce the geometric notions which will replace conditions (i) and (ii) above.

1.3.1. Moderate growth. Let X be a smooth projective variety over C, and h be a C°*° Hermitian metric

on the complex manifold X (C). Let w := —Im h be the positive real (1,1)-form on X (C) associated to h. To
fix ideas, the reader may consider the example X = P¢ endowed with the Fubini-Study metric, for which w
is given in homogeneous coordinates z = (29 : -+ : z,,) by
P — j " dzp Ndz; o Zjzedz; N dZ
w — 18810g|z|2:i ijo J i Z],kfo JrkW<) k ’
27 27 |z|2 |z|*

where |z* = 377 |2]*.

Let R > 0 be a real number and denote by Dr = {z € C | |z| < R} the complex disk of radius R
centered at the origin. One may measure the growth of an analytic map ¢ : Dp — X (C) as follows. For
each t € (0, R), the area of the “disk” ¢(D;) in X(C) with respect to the metric h is given by

Ap(t) = /D Prw.

2. Actually, c(j) ~ % ; see [84] or [87].
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We may then form the characteristic function
Ttp : (O,R) — RZO

r— T,(r) ::/ A, (t)dlogt,
0
and we say that ¢ has moderate growth in X if

Ty (r)

= < 400
%

lim sup
r— R— 108;

By the compactness of X (C), moderate growth does not depend on the choice of Hermitian metric.

When R = 1, any analytic map ¢ : D — C" C P™(C) whose coordinates have Taylor coefficients
of polynomial growth has moderate growth in P (see Example 4.5 below). Therefore, moderate growth
generalizes the growth condition (i) in Nesterenko’s method.

Moderate growth is nonetheless more flexible than polynomial growth on Taylor coefficients. For instance,
as long as the image of ¢ : Dr — X (C) is Zariski-dense in X, moderate growth is a birational invariant
in the following sense : if f: X — Y is a birational morphism between smooth projective varieties over C,
then ¢ has moderate growth in X if and only if f o ¢ has moderate growth in Y (cf. Theorem 4.11 below).
In particular, this allows us to define, via compactifications, an unambiguous notion of moderate growth in
smooth quasi-projective varieties.

1.3.2. ZL-density. Let k be a field, X a projective variety over k of dimension n, and L an ample line
bundle on X. Consider a parametrized formal curve ¢ : Spf k[q] — X in X, i.e., ¢ is a morphism of formal
k-schemes.

We say that ¢ is ZL-dense in X if there exists a constant C' > 0 such that, for every integer d > 1 and
every non-zero global section s € I'(X, L®9) \ {0}, we have

ordg—op*s < Cd".

The exponent n = dim X in the above polynomial bound is the smallest possible (see Proposition 2.6
below). Moreover, since L is ample, a ZL-dense formal curve has Zariski-dense image. Thus, ZL-density may
be regarded as a strong form of Zariski-density.

For a formal curve ¢ : Spfk[g] — A} C P} the above notion boils down to a classical Zero Lemma
property — here, L = Opr (1). For instance, taking k = C, n = 4, and ¢ defined by the system of formal series
(¢, E2(q), E4(q), Fs(q)), the Zero Lemma in condition (ii) above amounts to asserting that ¢ is ZL-dense in
PL.

We shall prove that ZL-density does not depend on the choice of L (see Proposition 2.9 below). Actually,
if X is only quasi-projective, and the closed point ¢(0) in the image of ¢ is a regular point of X, then we shall
prove that ZL-density does not depend on the choice of a projective compactification of X (see Corollary
2.16 below).

1.3.3. Statement of our main theorem and proof method. Let K be a number field and Ok be its ring
of integers. By an arithmetic variety over Og we mean an integral scheme A endowed with a separated and
flat morphism of finite type X — Spec O .

The following theorem formalizes and generalizes Nesterenko’s method.

THEOREM 1.2. Let X be a quasi-projective arithmetic variety over Ok of relative dimension n > 2, with
smooth generic fiber X, and let ¢ : Spt Ok [q] — X be a morphism of formal Ok -schemes such that, for
every field embedding o : K < C, the formal curve ¢, : Spf Clq] — X, obtained from & by base change,
lifts to an analytic curve ¢, : Dp, C C — X2" defined on a disk of radius R, > 0 centered at the origin.

Assume that

Il R-=1
o K—C
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and that there exists a vector field v € T'(Xk,Tx, k) \ {0} on the generic fiber of X such that op :
Spf K[q] — Xk satisfies the differential equation

If, moreover,
(1) the formal curve ¢ is ZL-dense in Xk, and
(2) for each field embedding o : K — C, the analytic curve ¢, : Dr, — X2™ has moderate growth,

then, for every o : K — C, and every z € Dg_ ~\ {0}, the field of definition K(p,(2)) of the complex point
0o (2) in Xk satisfies

trdegq K (¢o(2)) > n — 1.

Let us remark that the conditions of ZL-density and of moderate growth, corresponding to conditions (i)
and (ii) in Nesterenko’s method, are actually very mild hypotheses.

For instance, ZL-density is automatic whenever ¢ is a smooth integral curve of some vector field satisfying
Nesterenko’s D-property. When the ambient space is an affine space, this is also a theorem of Nesterenko
([75] Theorem 6), which was recently extended to a geometric framework by Binyamini [10]. In Appendix
3.B we explain how to slightly modify Binyamini’s arguments to prove a similar statement for any smooth
quasi-projective variety.

Moderate growth, in turn, is satisfied for curves having uniformly bounded derivative on the disk (endo-
wed with the Poincaré metric ; see Example 4.3 for a precise statement). In particular, a theorem of Brunella
([34] Theorem 16 ; see also [34] Theorem 15) implies that, for a generic one dimensional holomorphic foliation
(with singularities) F on P™(C), any integral curve to F parametrized by a disk has moderate growth.

In the broader context of Transcendental Number Theory, our result may be regarded as complementary
to the Siegel-Shidlovsky and Schneider-Lang theories, which also deal with algebraic independence of values
— here, at algebraic points — of integral curves of algebraic vector fields (see [37], [36], and [46] for
general geometric formulations). Indeed, while the Siegel-Shidlovsky and Schneider-Lang criteria handle
curves parametrized by parabolic Riemann surfaces, our theorem deals with the hyperbolic case.

Our proof of Theorem 1.2 bears the same general structure of Nesterenko’s method. We also start by
reducing it to a diophantine approximation statement : Theorem 7.1 below. This is done via the same al-
gebraic independence criterion of Philippon; we explain in Appendix 3.A how to generalize it to arbitrary
quasi-projective varieties. The first step in the method, concerning the construction of “auxiliary polyno-
mials”, is replaced in our geometric framework by a construction of “auxiliary sections” given by Theorem
5.1 below, the proof of which makes essential use of Bost’s method of slopes in Arakelov Theory ([14]; cf.
[15], [17]). The second step also involves estimating some higher order derivative — here, our main tool is
a general result comparing, for a section of a Hermitian line bundle on a disk, norms of jets at two distinct
points; see Proposition 3.13 below and its corollaries. The third and last step is essentially the same trick
using the differential equation as explained above.

1.4. Further directions and open problems. With Theorem 1.2 in hand, we may turn the puzz-
ling remark explained above into a precise mathematical question : is there any example of application of
Theorem 1.2 whose resulting transcendence statement is not contained in Theorem 1.1 9 As promising as
the potential candidates from the theory of Mirror Symmetry may seem, one must face, given our current
state of knowledge, the logical possibility of a negative answer. However, a proof of this fact would also
be remarkable, since it would imply that modular functions are the only ones satisfying the (quite general)
hypotheses of Theorem 1.2, which make no reference to the geometric nature of modular functions in terms
of moduli of elliptic curves.

It is also natural to wonder if Theorem 1.2 admits a generalization in several variables; that is, one
wishes to replace a disk by a domain in a higher dimensional complex euclidean space. This conjectural
higher dimensional statement has actually good candidates of application : for any integer g > 1, there exists
a higher dimensional analog of the Ramanujan equations which lives in some smooth quasi-projective variety
of dimension 2¢2 + ¢ and admits a solution g sharing many of the relevant properties of @1 = (E2, E4, E¢)
(see [32], [33]). In [33] Section 5, we show that the fields of definition of values of ¢, are fields of periods
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of abelian varieties. Thus, conjecturally, a generalization in several variables of Theorem 1.2 would lead to
transcendence degree lower bounds in the direction of Grothendieck’s Period Conjecture for abelian varieties.
In this sense, Theorem 1.2 might be seen as a first step in this program.

1.5. Organization of this article. A great effort has been done to isolate all the different techniques
intervening in Nesterenko’s method and to place them in their natural generality. This distillation process is
aimed not only at improving the readability of our paper, but also at making these techniques suitable for
other applications in Diophantine Approximation.

Section 2 contains the definition of ZL-density and some of its basic properties; here we use elementary
Intersection Theory. Section 3 defines characteristic functions and moderate growth for 2-forms on a disk
and contains basic versions of the jet estimates we shall need later ; our main result here is Proposition 3.13
(see also Corollary 3.16). Both Sections 2 and 3 are self-contained and are of independent interest.

Section 4 treats the special case of moderate growth for analytic curves (as explained in this introduction)
and it depends only on the beginning of Section 3. Its main objective is to prove that, under a non-degeneracy
hypothesis, this concept is a birational invariant of the target space (Theorem 4.11) ; this is essentially classical
material on Nevanlinna Theory.

Section 5 is devoted to the construction of “auxiliary sections” in a geometric context. Here, we combine
the concepts of moderate growth developed in Sections 3 and 4 with Bost’s slope inequality to obtain Theorem
5.1. This section contains a review of the prerequisites in Arakelov Theory.

In Section 6 we explain how vector fields induce derivations on global sections of line bundles and we
provide some L estimates. This section is also self-contained and of independent interest.

Section 7 contains a proof of Theorem 1.2. The reader will recognize, in Lemmas 7.2, 7.3, and 7.4, natural
generalizations of the three steps of Nesterenko’s method explained above.

Finally, Appendices 3.A and 3.B concern geometric generalizations of results of Philippon and Binyamini
originally stated only for affine (or projective) spaces, as explained above. In Appendix 3.B we make use of
the basic constructions of Section 6.
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is part of my PhD thesis under the supervision of Jean-Benoit Bost. I thank him and Hugues Randriambo-
lolona for allowing me to use their preliminary non-published notes on moderate growth as a starting point
for this paper. I am also grateful to Dinh Tuan Huynh for a fruitful discussion on Nevanlinna Theory.

1.7. Terminology and notations.

1.7.1. By an (algebraic) variety over a field k we mean a separated integral scheme of finite type over
k.

1.7.2. Recall that a line bundle L on a scheme X is semiample if there exists an integer m > 1 such
that L®™ is generated by its global sections. Observe that ample line bundles are semiample, and that
semiampleness is preserved under pullbacks.

1.7.3. A real (1,1)-form w on a complex manifold M can always be written, in local coordinates
(#1,...,2n) on M, as

w = % k;l hiidzi N dz;

where H = (hg)1<k,1<n is @ Hermitian matrix. We say that w is positive (resp. semipositive) if the matrix H
is positive-definite (resp. positive-semidefinite). Note that semipositive (1,1)-forms are stable under pullbacks.

1.7.4. By a Hermitian line bundle L = (L, || ||) on a complex manifold M, we mean a holomorphic
line bundle L on M endowed with a C°° Hermitian metric || [|. If © denotes the curvature of the Chern
connection on L associated to || || (locally, © = —ddlog |le]|? where e is some trivialization of L), then we

define the Chern curvature of L by

— 1
Cl(L) = % .

This is a closed real C> (1,1)-form on M whose class in H*(M,R) coincides with the first Chern class
c1(L). We say that L is positive (resp. semipositive) if ¢1(L) is positive (resp. semipositive).
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1.7.5. We use the standard notation

c i = 1 0 10
so that dd® = ;-90.
1.7.6. The continuous function log™ : R — R is defined by

logt z — logz ifzx>1
0 otherwhise.

2. ZL-dense formal curves in quasi-projective varieties

In this section we introduce the purely algebraic concept of ZL-dense formal curves, and we prove some
of its basic properties. This notion refines the property of being Zariski-dense and isolates the content of the
Zero Lemma necessary in Nesterenko’s method ; that is, a formal curve satisfies the Zero Lemma if and only
if it is ZL-dense.

2.1. Degree of a divisor with respect to a line bundle. Let k be a field and X be a variety over

Recall from [35] 2.5 that a line bundle L on X defines an additive operator
ar— (D) Na

on the abelian group of algebraic cycles in X modulo rational equivalence; if « is the class of a subvariety
V of X, then ¢1(L) N« is by definition the class of the cycle in V associated to any Cartier divisor D of V'
for which L]y = Oy (D). The r-fold composition of this operator with itself is denoted by a — ¢1(L)" N a.

We say that a cycle class « in X is semipositive if there exists an integer m > 1 such that ma can be
represented by a non-negative cycle in X (i.e., a cycle of the form ), m;[V;] with each m; > 0). For instance,
the cycle class of a Cartier divisor D is semipositive if and only if some positive multiple of D is linearly
equivalent to an effective divisor.

LEMMA 2.1. Let L be a semiample line bundle on X. Then, for any semipositive cycle class a in X,
c1(L) Na is semipositive.

PROOF. Let m > 1 be an integer such that ma is represented by the cycle >, m;[V;], with each m; > 0.

As L is semiample, there exists an integer n > 1 such that L®" is generated by global sections. In
particular, for any subvariety V of X, the line bundle L®"|, on V admits a non-zero global section sy .

For every i, c1(L®™) N [V;] is the cycle class induced by the effective Cartier divisor div(sy,) on V;, so
that nmci (L) Na = ¢1(L®™) N'ma is represented by the non-negative cycle >, m;[div(sy;,)]. [ |

Still following the terminology of [35], for any line bundle L on X, and any r-cycle class a in X, the

L-degree of « is defined by
degy, o = deg(e: (L) Na),
where deg denotes the degree function on zero-cycle classes. If D is a Cartier divisor in X, then we denote
by
deg; D = deg(c, (L)M™X~1 0 [D])

the L-degree of the cycle class [D] induced by D.

Observe that the degree of a semipositive zero-cycle is non-negative. In the next result, we use the

following easy consequence of Lemma 2.1 : if L is semiample and « is semipositive, then deg; o > 0 (cf. [35]
Lemma 12.1).

PROPOSITION 2.2. Let X be a projective variety over a field k and L (resp. M) be an ample (resp.
semiample) line bundle on X. Then, there exists an integer m > 1 such that, for any semipositive r-cycle
class a in X, we have

0 < degy; a < m'"deg;, .
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PROOF. Let m > 1 be an integer such that N = L®™ @ MV is semiample. For any 7-cycle class « in

X, we have
: " /r X
m” degy o = degrem a = degygy @ = Z ( ) deg;(c1(N)° Na).
s
s=0

Since N is semiample and « is semipositive, it follows from Lemma 2.1 that each ¢; (N)*Na is semipositive. As
M is also semiample, we conclude that each term in the right-hand side of the above equation is non-negative,
so that m” deg; o > deg,; o > 0. |

REMARK 2.3. By combining the above proposition with a simple induction argument in r, one can
actually prove the following stronger statement. Let X be a projective variety over a field k, L be an ample
line bundle on X, and M be any line bundle on X. Then, for any integer 0 < r < dim X, there exists a
constant C' > 0 such that |deg,; a| < Cdeg; « for every semipositive r-cycle class « in X.

COROLLARY 2.4. Let X be a projective variety over a field k. If L and M are ample line bundles on X,
then there exist constants Cy,Cy > 0 such that
Cidegy D < deg; D < Cydeg,; D
for any effective Cartier divisor D in X. |

2.2. ZL-dense formal curves in projective varieties. Let X be an algebraic variety over a field k.
By a formal curve in X we mean a morphism of k-schemes ¢ : Spec k[q] — X, or, equivalently, a morphism
of formal k-schemes ¢ : Spf k[¢g] — X. The k-point of X obtained by composing the k-point of Spec k[q]
given by the ideal (¢) C k[q] with ¢ is denoted by ¢(0).

Let ¢ : Speck[q] — X be a formal curve in X, and D be an effective Cartier divisor in X. We define
the intersection multiplicity of D with ¢ (at $(0)) by

multy D = ordo@™ f,

where f € Ox () is any local equation for D around ¢(0). This clearly does not depend on the choice of f.
The multiplicity function multy is additive and takes values in N U {+oc0}.

DEFINITION 2.5. Let X be a projective variety of dimension n over a field k£ and let L be any ample line
bundle on X. We say that a formal curve ¢ : Speck[g] — X in X is ZL-dense if there exists a constant
C > 0 such that

(2.1) multy, D < C(degy, D)"
for every effective Cartier divisor D in X.

Observe that the choice of L in the above definition is irrelevant by Corollary 2.4.
Let us remark that the exponent n = dim X intervening in the polynomial bound (2.1) is the smallest
possible one :

PROPOSITION 2.6. Let X be a projective variety of dimension n over k endowed with an ample line
bundle L, and ¢ be a formal curve in X. Then there exists € > 0, and sequence of effective Cartier divisors
(Di)i>1 in X, satisfying

lim deg; D; =400 and multyD; > e(deg; D;)" for everyi > 1.

1—+o00

In the above statement, we allow the possibility that mult;D; = +oo (i.e., the divisor D; vanishes
identically along the formal curve ) by adopting the standard convention that 400 > ¢ for every t € R.

PROOF. Assume first that X = P} and L = O(1). Consider the natural projection A} \ {0} — P}
and lift ¢ to some ¢ : Spec k[q] — A} \ {0}. Let i > 1 be an integer. If P =3, _; a1 X' € k[Xo, ..., X,)]
is a homogeneous polynomial of degree i, seen as a regular function on A} \ {0}, then we may write

G P=3 | Y arbry | ¢ €kl
=0 \[I|=i
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for some by ; € k depending on the coefficients of the n 4 1 formal series defining 1/3 Since

card{I € N"+1 | || = i} = (’ +”> > i'z
n n!
it follows from elementary linear algebra that there exists a non-zero homogeneous polynomial P; of degree
i such that ordoz/}*PZ- > %z" By considering the Cartier divisors D; of P} induced by P;, we see that we
may take ¢ = 1/n! in this case.
The general case follows from the above one by considering a finite surjective morphism f : X — P}
satisfying f*O(1) = L™ for some m > 1. |

REMARK 2.7. It follows from the above proof that the Cartier divisors D; can actually be taken in the
linear system |L®™| for some fixed integer m > 1.

Any Z1L-dense formal curve ¢ in a projective variety X has a dense image in the Zariski topology. Indeed,
since X is projective, any Zariski-closed subset of X is contained in the support of some effective Cartier
divisor of X ; then, one simply remarks that ZL-density implies that mult; D < +oo for any effective Cartier
divisor D in X, so that the image of ¢ is not contained in the support of D.

The following example shows that the converse is not true in general.

ExaMPLE 2.8 (Lacunary series). Let k be a field and (n;);>0 be an increasing sequence of natural

numbers satisfying lim; , ;o “* = +oc. If h € k[q] is any formal series of the form
h(q) = Zaz‘qma a; # 0
i>0

then the formal curve ¢ : Spec k[q] — P%, given in homogeneous coordinates by ¢(q) = (1 : ¢ : h(q)), is not
ZL-dense. Indeed, for any integer d > 1, we may consider the homogeneous polynomial of degree ng

d
Py=X{7' X0 =Y i X§ X
i=0
so that
mult¢ d21V(Pd) _ nd;rl 400
ng n;
as d — 4o0.

Observe that the image of ¢ is indeed Zariski-dense. By contradiction, if C' C P% is an irreducible curve
containing the image of ¢, then, for any effective Cartier divisor D in P% whose support does not contains
C, we have multy D = i(¢(0),C - D) < deg C - deg D. By construction, this is absurd for D = div(P;) and d
sufficiently large.

For natural examples of ZL-dense formal curves we refer to Appendix 3.B.

2.3. Reformulation in terms of sections of an ample line bundle. Let X be an algebraic variety
over a field k and ¢ : Speck[g] — X be a formal curve. If L is any line bundle on X, and s is a section
of L on a neighborhood of ¢(0), we may consider the vanishing order of ¢*s € I'(Spec k[q], p*L) at ¢ = 0,
which coincides with the intersection multiplicity of the effective Cartier divisor div(s) with ¢ :

ordpp"s = mult div(s).

The next proposition shows that ZL-density is a condition that has to be checked only for Cartier divisors
arising from sections of powers of some fixed ample line bundle.

PROPOSITION 2.9. Let X be a projective variety of dimension n over a field k and L be an ample line
bundle on X. A formal curve ¢ : Speck[q] — X is ZL-dense if and only if there exists a constant C > 0
such that

ordogp*s < Cd"
for any integer d > 1, and any s € T(X, L®%)\ {0}.
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PROOF. The necessity follows from the fact that, for any s € T'(X, L®9)\ {0}, deg, div(s) = (deg; X)d.

To prove the sufficiency, fix any finite surjective morphism f : X — P} such that f*O(1) is iso-
morphic to L®™ for some m > 1. If E is an effective Cartier divisor in P?, then there exists a section
s € I'(Py, O(degp(y) ) satistying £ = div(s), so that

(2.2) mult fop B = ordo(f 0 $)"s = ordop™(f*s) < C(mdegp) £)" = Cm™ (degp(1) E)".
Let D be an effective Cartier divisor in X. Since f is finite and P} is normal, we may define the

pushforward f,D by taking norms : there is an open affine covering (U;); of P} such that D admits a local
equation h; on each f~1(U;), and we define f.D = [(Normy(h;),U;):]. As f*f.D — D is effective, we obtain

multy D < multg f* f. D = mult pop f. D.

Note that the Weil divisor associated to f.D coincides with the pushforward (of cycles) of the Weil divisor
associated to D (cf. [35] Proposition 1.4). In particular, the projection formula gives

degO(l) f«D =degrom D = mn1 deg; D
so that, by (2.2),
multy D < Cm™(degoy) f.D)" = Cm™ (deg,, D)".
|

An advantage of considering the above equivalent form of ZL-density stems from the vector space struc-
ture of the sets T'(X, L®?), d > 1. In general, a formal curve ¢ : Speck[q] — X induces, for every integer
d > 1, a decreasing filtration by linear subspaces (E?);>0 on the k-vector space E4 := I'(X, L®?) defined by
EY = {s € By | ordgp*s > i}.

REMARK 2.10. Since Ej is finite dimensional, there exists 44 > 1 such that E} = ;. B} = {s € E4 |
@*s = 0}. In other words, for every s € E; such that ¢*s # 0, we have ordop*s < ig4. In particular, this
shows that one may replace in Proposition 2.9 the condition “for any integer d > 1”7 by the weaker “for any
sufficiently large integer d”.

As a first application of Proposition 2.9, we use the filtration (E’);>¢ to show that ZL-density is a
geometric property.

ProrosiTiION 2.11. Let X be a geometrically integral projective variety over a field k and
¢ : Spfklq] — X be a formal curve. Then, for any field extension K of k, the formal curve ¢ :
Spf K[q] — Xk, obtained from ¢ by base change, is ZL-dense in Xk if and only if ¢ is ZL-dense in
X.

PROOF. Let d > 1 and ¢ > 0 be integers. Note that Fy ®, K may be canonically identified with
(X k, LEY). Moreover, since F is the kernel of the k-linear map

Eq — T(Speck[q], 9" L®%) @y, k[q]/(¢")
s+— $*s mod ¢,

we conclude that E} @y K = {t € B4 ® K | ordo@jet > i}
In particular, for every integer d > 1, and any real number x > 0, ordgp*s < & for every s € T'(X, L®%)\
{0} if and only if ordg@%t < & for every t € T'(Xg, L) \ {0}. [ |

As another application of Proposition 2.9, we prove the following result which will be used in our proof
of Proposition 2.15.

PROPOSITION 2.12. Let f: X — Y be a surjective morphism between projective varieties of dimension
n over a field k and let ¢ : Speck[q] — X be a formal curve in X. If ¢ is ZL-dense in X, then f o ¢ is
ZL-dense in'Y .
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PROOF. Let L be an ample line bundle on X admitting a global section s € I'(X, L) \ {0}, and M be
any ample line bundle on Y. Since f*M is semiample, N := L ® f*M is ample ([41] Proposition 4.5.6 (ii)).

Let d > 1 be an integer, and ¢t € ['(Y, M®9) \ {0}. Since f is surjective, f*t # 0. Thus s®¢ ® f*t is a
non-zero global section of N®¢ and, since ¢ is ZL-dense in X, there exists a constant C' > 0 independent of
d such that

ordop* (s®4 @ f*t) < Cd".
To complete the proof, it is sufficient to remark that
ordo(f o ¢)*(t) = ordgp* (f*t) < orded* (s @ f*t).
|

REMARK 2.13. The above proposition combined with the arguments in the proof of Proposition 2.9
actually show that for any finite surjective morphism f : X — Y between projective varieties over a field
k, with Y normal, a formal curve ¢ : Speck[q] — X is ZL-dense in X if and only if f o ¢ is ZL-dense in Y.

2.4. ZL-density in quasi-projective varieties. We defined a notion of ZL-density for formal curves
in projective varieties. In this paragraph, under a mild technical condition, we extend this notion, via com-
pactification, to formal curves in quasi-projective varieties. To assure that we obtain a well defined notion,
we must show that this does not depend on the choice of compactification.

Let X be an algebraic variety over a field k, and ¢ : Speck[g] — X be a formal curve. If ¢(0) is a
regular point of X, then we may define the intersection multiplicity of any Weil divisor with ¢. Indeed, if U
is a regular open neighborhood of ¢(0) and Z is a Weil divisor in X, then ZNU is induced by some Cartier
divisor D in U, and we define

multyZ = multy D.
We may thus mimic the proof of Proposition 2.9 to obtain the following result.

PROPOSITION 2.14. Let X be a projective variety of dimension n over a field k, L be an ample line
bundle on X, and ¢ : Speck[q] — X be a formal curve such that $(0) is a regular point of X. Then, ¢ is
ZL-dense in X if and only if there exists a constant C' > 0 such that, for every effective Weil divisor Z in
X

7

multy,Z < C(degy, 2)"
We are now in position to prove that a modification away from ¢ does not affect ZL-density.

PROPOSITION 2.15. Let f : X — Y be a proper morphism between projective varieties over a field k,
and U be an open subset of Y such that f induces an isomorphism f=*(U) — U. If ¢ : Speck[q] —
f~YU) C X is a formal curve such that $(0) is a reqular point of X, then ¢ is ZL-dense in X if and only
if fop is ZL-dense in'Y .

PROOF. Since f : X — Y a proper birational morphism, and Y is irreducible, f is surjective. By
Proposition 2.12, if ¢ is ZL-dense in X, then f o ¢ is ZL-dense in Y.

Conversely, suppose that f o ¢ is ZL-dense in Y. Fix an ample line bundle L (resp. M) on X (resp. Y),
and let Z be an effective Weil divisor in X. Since f is an isomorphism over U and ¢ factors through f~(U),
we have

multyZ = mult pop fi Z.
As fo@is ZL-dense in Y, there is a constant C; > 0 (not depending on Z) such that
mult pos £+ Z < Ci(degy, £+ 2)",

where n = dimY = dim X. By the projection formula, deg,, f«Z = degy.; Z. Since f*M is semiample,
it follows from Proposition 2.2 that there exists a constant Cy > 0 such that degy.,, Z < Cadegy Z. We
conclude that

mult,Z < C1C5 (degy, Z)".
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COROLLARY 2.16. Let X be a quasi-projective variety over a field k, and ¢ : Spec k[q] — X be a formal
curve such that $(0) is a regular point of X. If j; : X < X, i = 1,2, are two projective compactifications of
X, then j1 o ¢ is ZL-dense in X1 if and only if jo o ¢ is ZL-dense in Xs.

ProoF. Consider the scheme theoretic image X of (j1,j2) : X — X1 X X2 and apply Proposition
2.15 to the natural projections X — X;, 1 =1,2. |

This enables us to define a good notion of ZL-density in a quasi-projective variety.

DEFINITION 2.17. Let X be a quasi-projective variety over a field k, and ¢ : Spec k[¢] — X be a formal
curve such that ¢(0) is a regular point of X. We say that ¢ is ZL-dense in X if there exists a projective
compactification j : X — X of X such that j o ¢ is ZL-dense in X.

3. Moderate growth and jet estimates on complex disks

In this section we introduce characteristic functions and moderate growth of certain 2-forms on a disk;
these are purely analytic notions. We then proceed to establishing natural estimates on jets of sections of
holomorphic line bundles on disks. In a sense, our exposition is more basic than the usual accounts on Value
Distribution Theory, since characteristic functions of analytic curves will be a special case of our construction.

The kind of jet estimates we consider here play a central role in Diophantine Approximation and trans-
cendence proofs. They notably appear in such proofs using the formalism of Arakelov Geometry, to estimate
the height of evaluation maps, when applying Bost’s method of slopes (see, for instance, [14], [15], [38], [36],
46], [37).

3.1. Characteristic functions. Let » > 0 be a real number, and p € D, == {z € C | |z| < r}. Recall
that the Green’s function of D, at p is given by
r? — pz
r(z=p)|
This is a continuous function on C\ {p}, locally integrable over C, strictly positive on D,.\ {p}, and vanishing
identically on C\ D,..

For any locally bounded 2-form « defined on an open neighborhood of D,., we denote

T p(T) ::/ 9D, p&.
C

REMARK 3.1. An integration by parts with u(t) = th a and v(t) = logt shows that

o= (o)

Since gp,.p is the composition of gp, o with the automorphism of D, given by

gDr,p(Z) = 10g+

r?(z = p)
r2 —pz’

= [ ([ t(a;é)*a) x“

Let R > 0 be a real number, and «a be a locally bounded semipositive (1,1)-form on the disk Dg. The
non-decreasing function

orp(2) =

we obtain

T, : (O7R) — RZO
r— To 0(r)

is the characteristic function of o in Dpg. B
We shall be particularly interested in the following special case. Let L = (L, || ||) be a semipositive
Hermitian line bundle on Dg. The characteristic function of L in Dp is defined by

TZ = T‘c1 (Z) .
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We also denote T ,(r) =T, ) ,(r) for p € D, C Dp.

REMARK 3.2. Let d > 1 be an integer. As ¢; (Z®d) =d-c1(L), we have Trea p(r) =d-Tf ,(r).

3.2. Forms of moderate growth. Let R > 0 be a real number, and « be a locally bounded semipo-
sitive (1,1)-form on Dg.

DEFINITION 3.3. We say that a has moderate growth if there exist real constants a,b > 0 such that

To(r) <a-+blog

_r

R

for any 0 < r < R. When a = ¢;(L) for some semipositive Hermitian line bundle L on Dg, we rather say
that L has moderate growth.

The basic example of a form of moderate growth is the following one.
EXAMPLE 3.4 (Poincaré form). Let
) 2
7 R
dup == =——= ] dzAdz
T (R? |z|2> o
be the 2-form associated to the surface element of the Poincaré metric RZ%WMM on Dp. A direct compu-

tation shows that, for any 0 < r < R,

1
Td#R (T) =

1—

7T1 1 +7T1
—log——+-1lo
9 BTy T8

r
R R

Thus, the 2-form dur on Dy has moderate growth.
We have defined moderate growth for a form « as a growth condition on T, ¢(r) with respect to r. Our

next result shows that a similar growth condition for T, , () holds uniformly for p varying in a fixed compact
subset.

LEMMA 3.5. Let 0 < rg <11 < Ry < R be real numbers. Then there exists a constant C > 0 such that,
for every p € Dy, and every r € [Ry, R), we have

90,.p < 9, .p + Cyp, 0
PROOF. Let r € [Ry, R) and p € D,,. We set
z
Cyp = max 90,.0(2)
2€0Dy gDT7O(Z)
and
fr,p =d9D,..p — gDT1 D Cr,pgDT,(%
By definition of C, ,, we see that f,, < 0 over dD,,. Moreover, f., vanishes identically on dD,. Since f,,
is subharmonic over the domains D,, and D, \ D,,, by the Maximum Principle, we conclude that f,, <0
everywhere.

To finish the proof, it is sufficient to remark that C,., is uniformly bounded for r € [Ry, R) and p € D,,.
Indeed, for z € 0D,,, we have

r’—pz R+
90.5(2) _ 8[| _ 8 mp
o) lglf] = log

PROPOSITION 3.6. Let R > 0 be a real number, K C Dr be a compact subset, and o be a locally bounded
semipositive (1,1)-form on Dg. Fiz 0 < Ry < R such that K C Dg,. If a has moderate growth, then there
exist real numbers a,b > 0 such that

sup,e g Top(r) < a+blog

_r

R
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for every r € [Ry1, R).

PROOF. Let 0 < 79 < r; be real numbers such that K C D,, and r; < R;. By Lemma 3.5, there exists
a real constant C' > 0 such that

9D,p < 90, p +CYp, 0
for every r € [Ry, R) and every p € K, so that
Top(r) < Top(r1) + CTao(r).

Since « has moderate growth, to conclude it is sufficient to remark that the function p —— T, (1) is
continuous, thus bounded on the compact K. |

3.3. Jets and characteristic functions. Let r > 0 be a real number and p € D,. We define a
probability measure 7, ), supported on 9D, by

Lo —~1¢,..i6
[oma=5 [ vy,
where o, is the function defined in Remark 3.1. For the next proposition, we shall need the following

classical result.
LEMMA 3.7. As an equality of distributions on C, we have
—2dd°gp, p = Op — Trp.
PrOOF. Apply Remark 3.1 and Stokes’ Theorem (see also 1.7.5). [ ]

Let U be an open subset of C and L = (L, || ||) be a Hermitian line bundle over U. If s € I'(U, L) and
z € U, the m*" jet of s at z is denoted by j™s. When s has vanishing order at least m at z, j™s is simply
an element of the fiber of L ® (;)®™ at 2. In this case, if 7 is a real number strictly greater than |z|, we
denote by [|2*s||» the norm of j2*s with respect to the metric || || on L and the norm on QF, _ given by the
dual of the Poincaré metric ﬁwﬂ on D,.

The following result, relating jets of sections with characteristic functions, is a basic tool in Nevan-
linna Theory (see, for instance, [77] Section 2.3); variants of it were used in the context of Diophantine
Approximation in [15] Proposition 4.14, [16] Section 3, and [36] Theorem 5.13.

PROPOSITION 3.8. Let R > 0 be a real number, L = (L,|| ||) be a semipositive Hermitian line bundle
on Dg, and p € Dg. For every real number r € (|p|, R) and every global section s € T'(Dg, L) \ {0}, if
m = ord,s denotes the vanishing order of s at p, we have

(3.1) log [|7,"sll» = T% ,(r) + /log l|8]|7rp — /gDmp(Sdiv(s)fm[p]-

We start with a lemma that follows immediately from the explicit formula for the Green’s functions on
disks (cf. Paragraph 3.1).

LEMMA 3.9. With the above notation, if E C Dg denotes the support of the divisor div(s), then the
distribution log ||s|| + mgp, , on Dg defines a C* function over (D, \ E) U {p} and a continuous function
over 0D, \ E. Moreover,

lim (log [|s(2)[| +mgp, »(2)) = log |l7,"sl--
]

Observe now that, for a fixed s, both sides in formula (3.1) are continuous with respect to r. Since E is
discrete, we may thus assume that 8D, N E = 0.

PrOOF OF PROPOSITION 3.8. The Poincaré-Lelong formula yields the identity of currents

dd* log ||S||2 = 6div(s) —C (Z)
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Thus, by Lemma 3.7,

c1(L) = —2dd°(log ||s]| + ngT,p) + 6div(s)fm[p] +mm, .

Since 7.y is supported on 0D, and gp, , vanishes identically on 0D,., we obtain

Tz ,(r) = /QD,.,p'(—QddC(logHSH +m9D,.,p))+/QD,.,p5div(s)fm[p]‘

Note that, by our choice of r and by Lemma 3.9, the above products of distributions are well-defined.
By another application of Lemma 3.7,

Tg (1) = /(10g [sll +mgp, p)(0p — 7rp) + /gDmP(Sdiv(s)fm[p]

— [ Gog sl + man, )8, — [10glsllm + [ g0, baisie-min

where in the second equality we used once again that gp, , vanishes identically on dD,. To conclude, we
apply once more Lemma 3.9, which ensures that the function log ||s|| +mgp, , tends to log||j,"s|/ at p. W

COROLLARY 3.10. Let us keep the notations of Proposition 3.8. Then,
(3.2) log |ljp"sll» < T ,(r) + log||sll=(ap,)-
If, moreover, p' is another point of D,., and m’ denotes the vanishing order of s at p’, then
(3.3) log|ljp"sllr < T ,(r) +log |[sllz=(ap,) = m gD, p(P')-

PROOF. Since 7., is a probability measure over dD,., we have [ log ||s||m,.,, <log||s| 1 (sp,)- Thus, the
estimate (3.2) (resp. (3.3)) follows immediately from the non-negativity both of the function gp, , and of
the distribution dqiv(s)—m[p] (r€SP. Odiv(s)—m[p]—m’[p'])- |

3.4. A first application of moderate growth. We shall need the following elementary inequality.

LEMMA 3.11. Let A, B, and R be positive real numbers. Set

Then, if log(B/A) > 2, we have

1
Al
%(1;

B
) — Blogr < 2Alog (A) — Blog R.

PROOF. By homogeneity, we may assume that A = R = 1, so that r = B/(1 4+ B) and our statement is
equivalent to :
log(1 + B) — Blog(B/(1+ B)) < 2log B
when log B > 2. By subtracting log B from both sides, we see that this is yet equivalent to :
(1+B)log(1+1/B) <log B
when log B > 2. Now, this last inequality follows trivially from the fact that log(1+1/B) <1/B. |

Note that r as above is the minimum of the real function t — Alog <—1ji) — Blogt defined on the
R
open interval (0, R).

PROPOSITION 3.12. Let R > 0 be a real number and L = (L, || ||) be a semipositive Hermitian line bundle
on Dg. If L has moderate growth, then there exist constants k1, ke > 0 such that for every integer d > 1 and
every bounded global section s € I'(Dg, L®?) \ {0}, if we denote m = ordgs, then

log 170" sllr < K1d + kadlog™ m + log sl Los(Dp)-
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PROOF. Since L has moderate growth, there exist real numbers a,b > 0 such that

1
Tr(r) < a+blog (1 — )
R
for any 0 < r < R. We may assume that b > 1. By the jet estimate (3.2), for any 0 < r < R, we have
log [ljg"sllr» < d - T (r) +log Is|| L= (op,),

so that

. 1
(3.4) log ||75"sllr < ad + bd log (1 — > —mlogr +mlog R+ log ||s]| L (py)-

R

The result is trivial if m = 0. We now consider two cases. If log(m/bd) < 2, then we may take r := R/2
n (3.4) to obtain

m

log ||l5s||r < (a+ (1 + €?)blog 2)d + log 151l Lo (D) -
If log(m/bd) > 2, we apply Lemma 3.11 for A =bd and B =m :

log || sllr < ad + 2bd log (bd) +log ||s|| Lo (pg) < ad + 2bdlogm + log ||| L (D)
|

3.5. Bounding jets via Taylor coefficients at another point. In this paragraph, we compare
Taylor coefficients at different points. We start with a general result, and next we explain how moderate
growth improves the estimate.

PROPOSITION 3.13. Let R > 0 be a real number, L = (L,|| ||) be a semipositive Hermitian line bundle
on Dgr, and q € Dg \ {0}. Fiz a real number Ry satisfying |q| < Ro < R, and a global holomorphic section
so € I'(Dg, L) such that so(q) # 0. Then there exists a real number k > 1 such that, for every integer J > 1,
every integer d > 1, and every global section s € I'(Dg, L®%) \ {0}, if f denotes the germ of holomorphic
function at q such that s = fs?d in a neighborhood of q, and if m = ordys, then

—J m )
R m 9 (q
mwhﬂm<kg<Q|) (7)) Bollzmiopay + st o L) 0

0<i<J 7!

Let us first remark that if such a constant x > 0 exists for sg € I'(Dg, L) trivializing L at ¢, then an
analogous constant & > 0 will exist for any other tr1V1ahzat10n So of L in a neighborhood of ¢ — we do not

require 5y to be a global section. Indeed, if we write s = fso and 5y = usg in a neighborhood of ¢, then
f = fu? and
(4) f(k) dy() d\(5) £(4)
o V@~ FP@UO@] (@@ @]
0<j<J  j! 0<5<J k! l! 0<5<J 4! o<J<J 4!

k=]

ENG))
We conclude by the Cauchy inequalities, which ensure that maxo<;<s W

ind+ J.

grows at most exponentially

PROOF. By the above remark, up to replacing sg by z—°"d0(s0)g; we can assume that sq trivializes L
both at ¢ and at 0. Let a; € C be defined by the expansion

oo
z)=2z" Zaj(z —q)
j=0
in a neighborhood of ¢, and set
J—1
Z a;j(z —q)’
j=0

Note that g extends uniquely to a holomorphic function on Dg. Let s1,s50 € I'(Dg, L®?) be given by
s1 = gs?d and so == s — s1. Observe that both s; and s, have vanishing order at least m at O.

100



Next, we estimate ||j§"s;||r,, ¢ = 1,2; for this, we shall first assume that each ji*s; # 0. By the jet
estimate (3.2) for p = 0, we have

log [|75"s1llry < d-TE(Ro) +log|ls1l|ze<@Dg,)
Since ordyse > J, by the jet estimate (3.3) for p = 0 and p’ = ¢, we have

. .
g 35l vy < - TR0 + Y s2l~ay ~ o () 7.

Thus

m

:m -m R " :m -m R
l6"sllm = ll70"sllmo { ) = (lia"sallro + 156" s2llm0) | 75

RN\™ R R\™
< () [[s1l 2o~ (GDRO)"'( 0) () 52/l (@Dr,) | exp(d - T (Ro))
Ry lq Ry

Using that [[s2]|r(opr,) < [I51llz(@Dg,) + ISz (0D4g,) We get

. R —J R m R R m
135 s||R§<(|qT> (R) Is ||Lw<aDRo>+<1+(|°) )(R) |s1||Lw<aDRO>>exp(d-TL<Ro>>

It should be clear at this point that the same estimate holds if jg*s; = 0 or ji*s2 = 0.
We now estimate |[s1[|L=(opy,)- For any z € dDg,, we have

_ J—1
j m j m J
;) (z— )| < Ry ;(230)] (max |aj| < JRY max{1, (2Ro)"} max |a;,
so that
Is1llz=@Drg) = sup  [g(2)lllso(2)|1 < llsollf (o) RE' max{L, (2Ro)‘]}orgja<xj|aj|-

zeaDRO
To finish, we must bound the coefficients a;. By definition, for any j € N,
(f(z)> ¥ <<—1>k (k m 1) f<jk><q>>
m - m-+k . | :
ieg \ 2 —\q k (j—k)!
If j < J, then, for any 0 < k < j, we have the crude but sufficient estimate

1 &

gl dzi

a; =

k J
so that
®)(q)|
laj| < (Z |q|m+k> (gl?%(j k!
Thus,
(j)( )|
< 1y ym+J |f q )
g ag| < J(2max(1, Jg| 7))+ max

PROPOSITION 3.14. Let R > 0 be a real number, L = (L, || ||) be a semipositive Hermitian line bundle
over Dg, and let K C Dg be a compact subset. Fiz a real number Ry € (0, R) such that K C Dg,. If L has
moderate growth, then there exist real numbers ko, k1 > 1 and an integer dy > 1 such that, for any integer
d > dy and any bounded section s € T'(Dg, L®4)\ {0} for which m := ordys satisfies m > kod, we have

wma (121N
I < met () oo
for every z € K\ {0}.
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PROOF. By Proposition 3.6, there exist real numbers a,b > 0 depending only on (L, K, R;) such that

TZ,Z(T) <a-+blog —

R
for any z € K and every R; <r < R.
Let s € T'(Dg, L®?) \ {0} be a bounded section, and z € K \ {0}. We may assume that ord,s = 0. By
the jet estimate (3.3) for p = z and p’ = 0, we have, for every Ry <r < R,

)
log [ls()l| < d- T (r) + log 5]l 1= o, — mlog —

2]

1
< ad + bdlog T~ mlogr +mlog|z| 4 log ||5| o (py)-

R

Assume that m > be?d. It follows from Lemma 3.11 for A = bd and B = m that, if

_ m
T ed
then
m
bdlog — —mlogr < 2bdlog — — mlog R.
- = bd
If we also require that m > bRﬂ{l d, then r > Ry, so that

log ||s(2)]| < 2bdlogm + (ad — 2bdlog d) + mlog % +log ||| o (D)

a
b

Now, for every integer d > ev, we have ad — 2bdlogd < 0, and we get

log ||s(2)]| < 2bdlogm + mlog % +log ||| Lo (ar)-

We may thus take kg := bmax {62, Rf}%l }7 k1 = 2b, and dg = [e?]. [ ]

The following result is a combination of Proposition 3.13 together with the existence of a non-zero
global section of L (see the remark following the statement ; actually, L is holomorphically trivial on Dg)
and Proposition 3.14.

COROLLARY 3.15. Let R > 0 be a real number, L = (L, || ||) be a semipositive Hermitian line bundle on
Dr, q € Dg\ {0}, Ry be a real number satisfying |q| < Ry < R, and sg be a holomorphic trivialization of L
in a neighborhood of q. Assume moreover that L has moderate growth. Then there exist real numbers r; > 1,
1=0,...,4, and an integer dy > 1, such that, for any integer J > 0, any integer d > dy, and every bounded
section s € I'(Dg, L®%) \ {0} for which m := ordgs satisfies m > kod, if f denotes the germ of holomorphic
function at q such that s = fs?d in a neighborhood of q, we have

e |f(j)(Q)|
1 o <1 ! - d+m+J 17 9)] '
og [|79"sllr < log < Kg Isllz (Dr) T K3 Orélj?g{] i + Kad

PROOF. We take ko = Rg/|q|, k3 = K given by Proposition 3.13, and x4 = T'=(Rp). Since L has moderate
growth, we may apply Proposition 3.14 to the compact K = dDpg, to obtain real numbers kg, x; > 0 and
an integer dg > 1 such that

waa (Fo\™
Islionng < m (50 =

for any integer d > dy and any bounded section s € I'(Dg, L®?) \ {0} such that m = ordgs > kod. We
conclude by combining this bound with the estimate given by Proposition 3.13. ]

In practice, we shall be concerned with the following particular situation.
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COROLLARY 3.16. Let R > 0 be a real number, L = (L, || ||) be a semipositive Hermitian line bundle of
moderate growth on Dg, and g € Dy \ {0}. Fiz a holomorphic trivialization sg of L in a neighborhood of g,
real constants cg,c1,co > 0, with ¢y < c¢1, and an integer n > 2. For any real number C > 0, there exist real
numbers yo,v1 > 0 such that, for any sufficiently large integer d, and any bounded section s € I'(Dg, L®?)
satisfying

cod” <m = ordps < c1d”,  log||s||pe(py) < codlogd,

and

()
max log M < —md”,
0<;j<[vodlogd] J!

where s = fsgz)d on a neighborhood of q, we have
log 75" sl|r < —Cdlogd.

PROOF. Let x; > 0,7 =0,...,4, be the constants given by Corollary 3.15. We claim that it suffices to
take 7o > (log k2) 1 (nky + co + C) and 1 > c; log k3.

Indeed, let s € T'(Dg, L®?) be as in the statement. Since n > 2 and m > cod", if d is sufficiently large,
we shall have m > kod, so that the conclusion of Corollary 3.15 for J = [~odlogd] applies :

-m mﬁld d+m |f(]) (q)|
(3.5) log [|jo"sllr < log ( o Isllzoe (D + w5 S ren TI + Kad.

Since m < ¢1d", log||s|| o (p,) < c2dlogd, and J > ~ypdlogd, we obtain

mlild
log ( - |S|L00(DR)> < (nk1 + c2 — (log k2)yo)dlogd + k1 (log ey )d.
2

Thus, by our choice of vy, if d is sufficiently large, we get

mnld
(36) 0 (" Iollcon ) < ~(C+ en)dlogd,
2

for some 1 > 0.
©)
Since m < ¢1d", J < yodlogd + 1, and maxop<;<log W < —m1d™, we have

)
g (w447 e L0) < s tog — 50)+ 108 ma)dlog + (g ) 0+ )
) .

Thus, as n > 2, and by our choice of 7y, if d is sufficiently large, we obtain

()
d+m+J |f (q)| < _ m
(3.7 log <H3 fnax, ) S e2d
for some g5 > 0.
We conclude by applying (3.6) and (3.7) in (3.5), and by taking d to be sufficiently large. [ |

4. Analytic curves of moderate growth in quasi-projective varieties

This section contains mostly well-known techniques and results in Nevanlinna Theory. These are ne-
vertheless written in the literature in a form not suitable for our purposes. Although our proofs may vary,
many of the theory concerning growth of entire analytic maps (“parabolic case”) easily translate into our
hyperbolic situation; we refer the reader to the recent monograph [77] for a thorough exposition of the
general parabolic theory (in several variables).
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4.1. Analytic curves of moderate growth in compact complex manifolds. Let R > 0 be a real
number, M be a compact complex manifold, and ¢ : Dgp — M be an analytic map. Fix any Hermitian
metric h on M, and let w := —Imh be the positive (1,1)-form associated to h; in other words, if h =

Z,l:l hiidz, ® dz; in a local chart (z1,...,2,) of M, then w = 522,1:1 hiidz, A dZ.

DEFINITION 4.1. We say that ¢ : Dp — M has moderate growth if the semipositive (1,1)-form p*w on
Dpr has moderate growth (see Definition 3.3).

This notion does not depend on the choice of the Hermitian metric h. Indeed, since M is compact, any
two Hermitian metrics on M are “comparable” : if hy is another Hermitian metric on M, then there exist
real numbers «, 8 > 0 such that | ||, <l ln < B llne-

REMARK 4.2. It follows from Remark 3.1 that Ty-.,(r) = [; (th @*w) dlogt can be thought of as a
logarithmic integral of the areas of the disks ¢(D;) in M for 0 <t <.

We next consider a simple example of curves of moderate growth.

EXAMPLE 4.3 (Bounded derivative). Let ¢ : Dp — M be an analytic map, and h be a Hermitian
metric on M. Then we can write

p*w = ¢ (2)l[fnder,
where dup is the Poincaré form defined in Example 3.4, and ||¢'(2)| g,» denotes the norm of the tangent
map Do : T,Dr — T, ;)M with respect to the Poincaré metric on Dg, and the Hermitian metric h on
M. Since dpgr has moderate growth, then the analytic curve ¢ has moderate growth in M whenever the
function z — ||¢’(2)| g, is bounded on Dpg (e.g., ¢ extends continuously to D C C).

4.2. Nevanlinna’s characteristic function. Let M be a complex manifold, L = (L,|| ||) be a semi-
positive Hermitian line bundle on M, and sg € I'(M, L) \ {0} be a non-zero global section.

Let R > 0 be a real number and ¢ : Dg — M be an analytic map whose image is not contained in the
support of div(sg). We define, for every 0 < r < R,

1 /27r 1
m - s r)i = — log 7d9
%Lwo( ) 21 Jo [[s0((rei®)) ||

and
T

K

Then we can form the Nevanlinna characteristic function on the interval (0, R)

N, Z.4,(r) = (ordog™so) logr + ) (ordsp™so) log

0<|z|<r

To T = Mo Lso T No s
Let us introduce a temporary notation for the next proposition. If s is a global section of ¢*L and
m = ordgs, we denote by £(s) the unique element of the fiber of ¢*L at 0 € Dy such that jJ's = £(s) ® dz®™
(the “leading coefficient” of s).
The following classical identity (cf. [77] Theorem 2.3.31) is an immediate corollary of Proposition 3.8
applied to the section s = ¢*sy and the point p = 0.

PROPOSITION 4.4 (Nevanlinna’s First Fundamental Theorem). For every 0 < r < R, we have
Tgo*f(T) = Tga,fpso (T) + log ||£(<)O*SO)||
]

As an application we show that, when R = 1, polynomial growth of Taylor coefficients implies moderate
growth.

EXAMPLE 4.5. Let ¢ = (¢1,...,9,) : D — C™ be an analytic map with coordinates ¢;(z) =
Z;O'io a;;z7. Assume that there exist a real number C' > 1 and an integer d > 1 such that

la;| < Cj*
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for every 1 < ¢ < n and j > 0. Then, when identifying C™ with the open affine subset
Uy ={(po : -+ : pn) € P"(C) | po # 0} of P*(C) via (z1,...,2n) —> (1 : 21 : -++ : z,), the analytic
curve ¢ : D — P™(C) has moderate growth.

Indeed, let O(1) denote the line bundle O(1) on P"*(C) endowed with the Fubini-Study metric; that is,

|pil
[ Xi(p)ll =
VIpol? + -+ [pal?
for every 0 < i <mn,and p= (po : -+~ : pp) € P?(C). Since N@WXO vanishes identically, by Proposition
4.4, it is sufficient to prove that there exist a,b > 0 such that
1
My 570, x0 (1) < @+ blog T—

for every 0 < r < 1.
For any real numbers t1, .. .,t, > 0, we have log™ (37" ;) < > log* ¢; + logm, so that

log

1 " _ - .
——— =log, |1+ lpi(rei?)|2 < log™ |<pi(re”9)\ +log(v1+n).
| X0 ((rei®)) || ; ;

Since

) o] ) 1 d+1
0 -d
lpi(re’)| < C g j TJSOd!(]_—T) ,

3=0
we may take a = log(v/1+n) + nlog(Cd!) and b =n(d+1).

4.3. The field of moderate functions on a disk. In this paragraph we study more closely the case
M = P!(C). We refer to [93] Chapters V-VII for a survey on the classical work on this subject.

Let R > 0 be a real number and f be meromorphic function on Dg, i.e., an analytic map f : Dgp —
P!(C) which is not constant equal to oo = (0 : 1).

DEFINITION 4.6. We say that f is a moderate function on Dy if the analytic map f : Dgr — P1(C)
has moderated growth.

If O(1) denotes the tautological line bundle O(1) on P!(C) endowed with the Fubini-Study metric (see
Example 4.5), we denote

Tf = Tf*m.

By Proposition 4.4, we have
Ty =mso0m.x + Nyam + 00

where O(1) denotes a constant. To lighten the notation, we shall write my = m £.000, X0 (resp. Ny =
Ny omm.x,):

Let Kp,, denote the field of meromorphic functions on Dpg. It is classical (and easy to prove) that
characteristic functions are compatible with the algebraic structure of Kp, in the following sense : for

frg€ Kp, \ {0} and n € Z\ {0}, we have
(4.1) Tisg < Ty + Ty +O(1), Tpg <Tp+Ty+O0(1), Ty = |n|Ty +0(1)

It follows from the above relations that the subset K7~ of Kp, consisting of moderate meromorphic
functions is a field.

PROPOSITION 4.7 (cf. [77] Lemma 2.5.15). Let f, fi1,..., fn be meromorphic functions on Dg. If f is
algebraic over the field C(f1,..., fn) C Kpg, then there exist real numbers a,b > 0 such that

Ty Sa-%-bini.

i=1
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PROOF. Let d be the degree of f over C(fi,..., fn). If d =0, then the result follows immediately from
formulas (4.1). Assume that d > 1, and let P = X4 —gq X% ! —...—go € C(fi, ..., fn)[X] be the minimal
polynomial of f. Since each g; € C(f1,..., fn), it suffices to prove that Ty < Z?:_Ol T, +O(1).

By formulas (4.1), we have

de = T(gdflfd_2+"'+91)f+go < ng71fd_2+"-+g1 + Ty + Ty, + 0(1)

By descending induction, we get

d—1
Tpa < (d— 1Ty + Ty +O(1).
i=0
As Tya = d - Ty + O(1), we obtain
d—1
Ty < Ty +O(1).
i=0
|
COROLLARY 4.8. The field of moderate functions K5, is algebraically closed in Kp,,. |

In particular, since the inclusion Dr — P1(C) is easily seen to be an analytic map of moderate growth
(see Example 4.3), the field K7 contains the field of (univalued) algebraic meromorphic functions on Dg.

4.4. Birational invariance and moderate growth in quasi-projective varieties. In this para-
graph, we establish the birational invariance of moderate growth under a non-degeneracy hypothesis. Our
arguments follow closely those of [77] 2.5; we claim no originality.

In what follows, if f is a meromorphic function on Dg, we denote the divisor of zeros (resp. poles) of f
by divo(f) (resp. diveo(f)), so that div(f) = dive(f) — diveo (f).

LEMMA 4.9 (cf. [77] Theorem 2.5.7). Let M be a compact complex manifold endowed with a semipositive
Hermitian line bundle L = (L, || ||). Fiz global sections sg,s1 € I'(M, L), with sg # 0. Then, for any analytic
map ¢ : Drp — M whose image is not contained in the support of div(sg), if we denote by f the unique
meromorphic function on Dg such that fo*sy = p*s1, we have

Ty <T, 1. +0(Q).

»,L,s0

PrOOF. Let H be the support of div(sg). For p € M \ H, we have

[s1(@I? _ 1 s (2 + s ()2
log 41+ BOIE = log Tso@)l +1og /l1s0(p) |2 + [ls1(p)]1>-

Since M is compact, the functions ||s;|| on M are bounded, so that
[ lIsil? 1
logy/1+ < log +0(1)
l[soll® l[soll

my <m 7. +O0(1).

over M \ H. In particular, we get

Since the dive (f) < div(sg), the bound

is trivial. |

For the next lemma, we endow the line bundle O(1) over P"(C) with the Fubini-Study metric as in
Example 4.5. Moreover, if D = EzeDR n.[z] is a divisor in Dy, we denote i(z, D) = n,.
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LEMMA 4.10. Let ¢ : D — P™(C) be an analytic map whose image is not contained in the support of
div(Xp). For 1 < j < n, let us denote by f; the unique meromorphic function on Dg such that fj¢*Xo =
©*X;. Then

T, om.x < 2 Tr, +O().

n

PROOF. We first prove that M, 50X, < >

o), X0 S 2ujm1 For any real numbers a1, ...,a, > 0, we have

1 27 n ]
- . 0|2
m@,o(1),XO(r) =5 /0 log |1+ Z | fj(rei®)|2d6

j=1
n 1 2 . n
SZ%/O 10g1/1+|fj(re’9)|2d0:2mfj(r)
=1 j=1
Next, observe that to prove N%W, X, S Z?:l Ny, it suffices to show that

div(p*Xo) <) divao(£5)-
j=1
Since each dive(f;) is an effective divisor, it is sufficient to prove that, for every z € Dpg, there exists
1 < j < n such that i(z,div(¢* X)) < i(z,dives(fj)). Now, for any 1 < j < n, since fjo*Xo = ¢*X;, we
may write
leOQ(f]) = le((p*X()) + leO(f) — le((p*Xj)
Finally, we simply remark that for any z € Dpg for which Xo(¢(2)) = 0 (i.e., ord,9*Xy > 0 or, equiva-
lently, i(z,div(¢*Xo)) > 0), there exists 1 < j < n such that X;(p(z)) # 0 (i.e., ord,p*X,; = 0), so that
i(z,divee (f5)) = (2, div(p* Xo)) + i(z, divo(f)) > i(z, div(¢* Xo)). |

Let f,g9: I — R be real functions defined on some interval I C R. We say that f and g are comparable
if there exist real numbers a, b, ¢, d > 0 such that

af —b<g<ecf+d
everywhere on I.

THEOREM 4.11 (cf. [77] Theorem 2.5.18). Let R > 0 be a real number, X be a smooth projective variety
of dimension n over C, and ¢ : D — X" be an analytic map whose image is Zariski-dense in X. Then,
for any positive (1,1)-form w on X, and any transcendence basis (fi,..., fn) of the function field C(X) of
X, the real functions T+, and Z;L:1 Tt0p0 on (0, R) are comparable. In particular, ¢ has moderate growth
in X if and only if f; o ¢ are moderate functions on Dg for every 1 < j < n.

Observe that the Zariski-density hypothesis above ensures that, for any rational function f on X, the
image of ¢ is not contained in the indeterminacy locus of f, so that f o ¢ is a well-defined meromorphic
function on Dpg.

PrOOF. Let i : X — PY = ProjC[Xy,...,Xn] be a closed immersion such that i o ¢(Dg) is not
contained in the support of div(Xy), and consider the rational functions g; € C(X), 1 < j < N, given by
restriction of X;/X( to X.

It follows from the compactness of X?" (cf. remark following Definition 3.3), and from Theorem 4.4, that

the functions T,,-,, and Tiow,m, x, are comparable. By Lemmas 4.9 and 4.10, the functions Tio%m, Xo and

Z;\le Ty,0p are comparable. Furthermore, as C(X) = C(gi, . .., gn) is an algebraic extension of C(f1, ..., fn),
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we deduce from formulas (4.1) and from Proposition 4.7 that Zjvzl Ty;0p and 377 Ty o, are comparable.
Our statement follows by transitivity of comparability. ]

In particular, moderate growth in projective varieties is a birational invariant.

COROLLARY 4.12. Let f : X — Y be a birational morphism between smooth projective varieties over
C. If R > 0 is a real number, then an analytic map ¢ : Dp — X" with Zariski-dense image has moderated
growth if and only if fop: Drp — Y®" has moderate growth. |

Combining the standard argument in the proof of Corollary 2.16 with a resolution of singularities yields
the following.

COROLLARY 4.13. Let X be a smooth quasi-projective variety over C, and let j; : X — X;, i = 1,2, be
smooth projective compactifications of X. If R > 0 is a real number and ¢ : Dp — X" is an analytic map
with Zariski-dense image, then ji1 o @ has moderate growth if and only if jo o p has moderate growth. |

We may thus define an unambiguous notion of moderate growth for Zariski-dense analytic curves in
quasi-projective varieties.

DEFINITION 4.14. Let X be a smooth quasi-projective variety, R > 0 be a real number, and ¢ : D —
X®" be an analytic map with Zariski-dense image. We say that ¢ has moderate growth if there exists smooth
projective compactification j : X < X of X such that jo¢: D — X has moderate growth.

5. Construction of auxiliary sections

We prove in this section Theorem 5.1 below, generalizing the construction of auxiliary polynomials in
Nesterenko’s method. Our approach, based on Bost’s method of slopes, differs from the classical combinatorial
one. However, the backbone of the argument remains the same : Minkowski’s theorem on minima of lattices
(see Proposition 5.7 below).

5.1. Notation and statement. Let K be a number field and Ok its ring of integers. Recall that, if
X is an arithmetic variety over Ok (i.e., an integral scheme X with a separated and flat morphism of finite
type X — Spec Ok) with smooth generic fiber X, a Hermitian line bundle L = (L, (|| ||lo)o:xc) over
X is the data of a line bundle L on X and a family of C°° Hermitian metrics || ||, on the holomorphic line
bundles L, over X" deduced from L by the field embeddings ¢ : K — C, that is invariant under complex
conjugation.

If d > 1 is an integer, and s € I'(X, L®?) is a global section, we denote

sl = ma 5]l o (.
This section is devoted to the proof of the following theorem.

THEOREM 5.1. Let X be a projective arithmetic variety of relative dimension n over O with smooth
generic fiber Xk, and ¢ : Spf Ok [q] — X be a morphism of formal Ok -schemes such that, for every field
embedding o : K < C, the formal curve ¢, : Spf Clq] — X, lifts to an analytic curve p, : Dg, — X2
defined on some complex disk of radius Ry > 0. Assume that the image of ¢k : Spf K[q] — Xk is Zariski-
dense, that each ¢, has moderate growth in X3", and that [[, Ry = 1. Fiz any Hermitian line bundle
L= (L,(|| llo)o:rcesc) on X such that Ly is ample on Xx. Then, there are constants C1,Cy,C3 > 0 such
that, for every large enough positive integer d, there exists s € I'(X, L®?) such that

m = ordgp™s > Cid"
and
log||s||lx < Cad + Csdlogm.

REMARK 5.2. By Paragraph 4.4 one could also assume that & is only quasi-projective over Spec Ok,
and then construct “auxiliary sections” on any projective compactification of X having smooth generic fiber.

If we require the stronger condition of ZL-density of ¢ instead f Zariski-density, we obtain the following.
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COROLLARY 5.3. With hypotheses and notation as in Theorem 5.1, if moreover $x : Spf K[q] — Xk
is ZL-dense, then there exist constants c1,co > 0 such that, for every large enough positive integer d, there
ezists s € T(X, L®9)\ {0} such that

ordop*s > c1d"™
and
log ||s]|x < cadlogd.

5.2. Recollections on Arakelov theory ; the slope inequality. For the convenience of the reader,
we recollect in this paragraph some fundamental notions and results concerning Hermitian vector bundles
over rings of algebraic integers. Proofs and further developments can be found in [14] Appendix A, [15]
Paragraphs 4.1-4.2, and [19] Paragraphs 3.1-3.3.

Let K be number field, Ok be its ring of integers, and set .S := Spec Ok . Recall that a Hermitian vector
bundle over S is a couple E = (E,(|| ||o)o:xsc), where E is a projective Op-module of finite type, and
(I llo)e: Kk —c is a family of Hermitian norms over E, = E®,.0,—c C, invariant under complex conjugation.
If tk E = 1, we say that E is a Hermitian line bundle over S.

The multilinear constructions in the category of projective modules over Ok (e.g., tensor products,
quotients, Hom) make sense in the category of Hermitian vector bundles over S.

DEFINITION 5.4. Let E = (E, (|| ||o)s:x—sc) be a Hermitian vector bundle over S, and fix s € det E~.{0}.

We define the Arakelov degree of E by

deg(E) :=log |(det B)/Oxs| — Y log|s|s € R.
o K—C

This is easily seen not to depend on the choice of s. We define moreover the normalized Arakelov degree of
E by

and the slope of E by

when rk E > 0, and fi(F) :== —oo when rk E = 0.

PROPOSITION 5.5 (cf. [15] 4.1.1). The following properties hold :

(1) If L and M are Hermitian line bundles over S, we have
deg(L ® M) = deg(L) + deg(M).
(2) Let E be a Hermitian vector bundle over S and
E=E'>FE'>...>EN>{0}
be a filtration of E by saturated O -submodules. Then

N-—1
deg(E) = deg(EN) + Y deg(E/E™T),
=0

where EN (resp. E'/E+1) denotes the Hermitian vector bundle with underlying module EN (resp.
E'/E*Y) and Hermitian structure induced by E.

(3) For every Hermitian vector bundle E over S, and every Hermitian line bundle L over S, we have
i(E® L) = u(E) + deg,, (L).
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Let E and F be Hermitian vector bundles over S. For every maximal ideal p of O, we denote by || ||,
the non-archimedean norm over Homp, (Ek,, Fi,) associated to the Ok p-lattice Homo, , (Foy.,, Fox.,);
explicitly, if ¢ € Homg, (Ex,, Fx,) \ {0}, then |j¢[l, = |Ok /p|7*¥), where v,(p) = max{n € Z | 7, "y €
Homo, , (Eoy ,, Fog.,)} and 7, denotes some uniformizer of O ,. For a field embedding o : K — C, we
consider the operator norm on Homg(E,, F,) :

le@)llo

Pllo =
lel veEN{0}  ||v]le

Then, the height of a non-zero K-linear map ¢ : Ex — F is defined by

hr () = g (; gl + 3 log ||s0||a> .

If ¢ = 0, our convention is that hg 7 () == —o0.

PROPOSITION 5.6 (Slope inequality ; [15] Proposition 4.5). With the above notations, if ¢ : Ex — Fk
is injective, then

ﬂ(E) < ﬂmax(F) + hf,f(@);
where fimax(F) = sup{a(F’) | F' # 0 is an Og-submodule of F}.

Let us point out that fim.x(F) is attained by a saturated submodule of F (cf. [14] A.3). In particular,
if tk F = 1, then figmax(F) = iu(F).

5.3. Short vectors in filtered Hermitian vector bundles. Let K be a field, Ok its ring of integers,
and S = SpecOk. Let E = (E, (|| ||+)o:k—c) be a non-zero Hermitian vector bundle over S'; we denote its
first successive minimum by

M(E) = inf {max Is]lo

seE\{O}}.

Since s — s ® 1 identifies E with a lattice in the R-vector space E ®z R, the first successive minimum is
attained by some element s € F \ {0}.

PROPOSITION 5.7 (Minkowski). Let E be a non-zero Hermitian vector bundle over S. Then
log|[Ak| 1

log M (E) < —i(E) + %log(rkE) + AK: Q| T3

log[K : Q],

where A denotes the discriminant of K over Q.

This statement might be obtained from [19] pp. 1027-1028 by considering the Hermitian vector bundle
over Spec Z given by the direct image of E via S — SpecZ.
Let (E4)a>1 be a family of Hermitian vector bundles over S such that

rqg =1k Eg — 400
as d — +oo. Assume that, for every d > 1, we are given a separated filtration
EY=E;,DE;D>E3>---

by saturated Ox-submodules. We endow each E7* with the Hermitian vector bundle structure induced from
Ey.

ProPOSITION 5.8. With the above notation, assume that there exists an integer k > 1 and a double
sequence (Gqm)a>1,m>0 of positive real numbers, non-decreasing in m for every d > 1, such that

(5.1) rk(Ef' /BT <k
and
(5.2) A(ET /BT < agm,
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for everyd > 1 and m > 0. Then, for every d > 1 such that r4 # 0, there exists m > L%J and s € E(}"\E;”H
satisfying

— 1 log |A 1
maaxlog Isllo < max{0,—24(Eq)} + 3 logrq + agm + M +3 log[K : Q.
PROOF. Let d > 1 such that r4 # 0 and set
o3
' 2k1’
so that, by (5.1),
/ , 1
r =tk E}]" >rg—km' > T > 0.

By Proposition 5.5 (2), we have
. rm — 1 PN ey
W) = "L + Y E BB ).

4 o<icm’

(When E/ET = 0, tk(E}/EST) = 0 and a(E%/EST) = —o0, so that tk(E/ESTa(EL/EST) = 0 by
convention.) Using hypotheses (5.1) and (5.2), and that (aq,m,) is non-decreasing in m for every d, we obtain

’
m
= Tq

!
i(Eq) < kG

A Em/ e vta,me
re A(ET) + ra )

or, equivalently,

Y — rd . m
—E]) < =5 i(Fa) + o

. ’
Since rq < 2r" and m' < ;—Z, we conclude that

_ﬂ(E,T/) < max{O, _Qﬂ(ﬁd)} + aqm’-

Let s € E;l"/ be such that max, [|s||, = A1 (E7"). Then Proposition 5.7 yields

Py NN m log|Ag| 1
maxlog [|s]lo < —a(Eg") + §1Og7"d + AK - Q| T3 log[K : Q]
L 1 m log|Ag| 1
< max{0, —2i(Eq)} + 3 log 7" + agm: + K- Q +3 log[K : QJ.
Thus m = max{i € N | s € E'} > m’ satisfies the conclusion of our statement. [ |

5.4. Proof of Theorem 5.1. Consider the notation and hypotheses of Theorem 5.1. Let us first observe
that if Theorem 5.1 holds for some particular choice of Hermitian metric (|| ||o)o:5x<sc on L, then a similar
statement holds for any other choice of metric, up to modifying the constant C5. We may thus assume that
each (L,, || ||5) is a positive Hermitian line bundle on A2".

For every integer d > 1,

Ey =T(x,L%)

is a projective Og-module of finite type. For each field embedding ¢ : K — C, we may consider the uniform
norm || ||pe(xany on Ey, induced by the Hermitian metric || ||, on L,.

Note that the norm || || e (xan) is not Hermitian in general. We denote by || ||4,» the John norm on Eq
attached to || ||po(xan) (cf. [18] Appendix F); this is a Hermitian norm on E,, satisfying

(5.3) I oo xemy < I o < 21k Ea)Y2|| [ 2o (a0am)-

We may thus consider the Hermitian vector bundle over Spec O
Fd = (Ed7 (H ||d,0’)0’:K‘—)C)'
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We define a decreasing filtration (Eén)mzo by saturated submodules on E,; via
ET' = {s € Ey|ordgp*s > m}.

Since the image of ¢ : Spf K[g] — X is Zariski-dense, (EJ")m>0 is a separated filtration. The subquo-
tients E7"/E"™ bear Hermitian vector bundle structures E7'/E7"! induced by Ey.

Let us denote by € the fiber of coherent sheaf Qépf Oxlal/ox & the point of Spf O [q] given by the ideal
(¢) C Ok|q]- This is a trivial Ox-module generated by dq. In what follows, we endow {2 with a structure of
Hermitian line bundle €2, defined by

ladglls = lo(a)]

for any a € Ok and any embedding ¢ : K < C. Observe that € is isomorphic to the trivial Hermitian line
bundle, and therefore d/eTgﬁ =0.

Let ¢(0) : Spec O — X denote the reduction of ¢ modulo g, i.e., the composition of ¢ with the closed
immersion Spec O — Spf Ok [q] associated to the ideal (¢). The Hermitian structure on L endows ¢(0)* L
with the structure of a Hermitian line bundle over Spec Ok.

For every integers d > 1 and m > 0, we have an injective Og-linear map

v EFEFT — ¢(0) L8 0o, Q%™
defined by mapping the class [s] € E7/E]"! of s € ET to ji*¢*s (the jet of order m at ¢ = 0 of $*s).
LEMMA 5.9. There exist constants k1, ko > 0 such that for every integers d > 1 and m > 0 we have

M) < k1d + Kadlog® m,

where h denotes the height of vy with respect to the Hermitian vector bundles Em/ETT and @(0)*f®d®oK

[

PROOF. Let o : K — C be a field embedding. Since ¢, : Dr, — X" has moderate growth, it follows
from Proposition 3.12 that there exist constants k1 », K2, > 0 such that, for any d > 1 and m > 0 for which
and ET'/E7 #£0, and any s € B\ E(T;r17 we have

(5.4) log 175" psslr, —10g 5|l (xan) < K10d + K2 odlog™ m.

Here, the norm || ||, is the norm || ||, introduced before Proposition 3.8, in the special case where r = R,
and L is ¢* L, equipped with the pullback of || |,.
Note that

176" ¢"sllo = By ™[l76" P8l R,

$*s = ~7'([s]) with respect to the Hermitian structure of @(O)*f®d®

0°™. The estimate (5.4), together with (5.3), shows that

ym

where ||j{*¢*s||, denotes the norm of 5

1og [ |lo + mlog Ry < K1,0d + K2 odlog™ m.

Since [[,.x.c Ro = 1, we obtain

Zlog Ivd' lle < (Z m,a> d+ <Z 5275> dlog™ m.

Since 7" is defined over Ok, we have [|77'« ||y < 1 for every maximal ideal p of O, so that

1 1 1
h(’Yer,LK) < m glog g lle < m (; Iﬂ,a) d+ m <; /<;27[,> leng m.



END OF PROOF OF THEOREM 5.1. Let us first remark that, as Lg is ample, we have

degy . Xk

rg =1k Eg = dimT(Xx, LYY ~astoo d".

n!
In particular, logrg = O(d) as d — +oo. We shall apply Proposition 5.8 for (E7")4>1,m>0 defined as above.
This suffices by the estimates (5.3).

Note that condition (5.1) is trivially verified for k = 1. Moreover, by the same argument of [15] Proposi-
tion 4.4 (cf. [15] Lemma 4.1) and by the estimates (5.3), there exists a constant ¢ > 0 such that —fi(Ey) < cd
for every d > 1. Thus, to finish our proof, it is sufficient to find constants a,b > 0 such that

A(ET/ETY < ag,, = ad + bdlogt m

for every d > 1 and m > 0 (condition (5.2)).
By Lemma 5.9, there exist constants k1,k2 > 0 such that, for every d > 1 and m > 0 such that
E7/ET #£0, we have

h(vq'x) < kad + kodlog™ m.

Thus, since 7"y is injective, we may apply the Slope Inequality (Proposition 5.6) to obtain

~Tm ) A1 PN «TOd oem m PN *T
AET/ETFY) < i(@(0) T @0, Q7™ + h(vd") < (k1 + i($(0)*D))d + radlog® m.

6. Derivatives of sections of line bundles along vector fields

A crucial step in Nesterenko’s method involves applying a certain differential operator (deduced from
the Ramanujan equations) to auxiliary polynomials. It is also important to understand how this differential
operator affects the degree and the norm || || of a polynomial.

Our generalization of Nesterenko’s proof replaces polynomials of degree d by global sections of the dth
tensor power of some ample line bundle. In this section we explain how to derive global sections of tensor
powers of a line bundle L along a vector field v. Under a projectivity hypothesis, we also explain how L>
norms with respect to some Hermitian metric on L are affected by a differential operator deduced from wv.

6.1. The basic definition. Let M be a compact connected complex manifold, and L be a line bundle
over M endowed with a global holomorphic section so € I'(M, L) \ {0}. To L is associated the graded ring
R =@~ Ra, where Rq := I'(M, L®).

Let v be a meromorphic vector field on M, and assume that v is holomorphic on the open subset
M, ={p € M | so(p) # 0}. Then there is a smallest integer k > 0, the “order of pole of v at div(sp)”, such
that v ® s&* defines a global holomorphic section of TM @ L®*.

The vector field v induces a C-derivation of degree k + 1 of the graded ring R

Oy :R— R

given as follows. By definition, 0, is the zero map on Ry = C. Let d > 1 be an integer, s € Ry, and
f+ My, — C be the holomorphic function for which s = fs?d over Mg,. Then 0,5 € Rq4r+1 is defined as
the unique global section of L&4T*+1 such that d,s = v(f)sgz)dHchl over M;,. The next lemma guarantees
that this is well defined.

LEMMA 6.1. With the above notations, v(f)s$* ™ extends to a global holomorphic section of L®4F+1,

PROOF. The couple (L, sg) corresponds canonically to an effective analytic Cartier divisor E on M ; let
(9i, Us)ier be a family of local equations of E for some open covering M = |J,.; U;. By hypothesis, for every
i € I, gFv extends to a holomorphic vector field on U;.

An element s € Ry might be identified with a meromorphic function f = s/ s?d on M having pole of
order at most d on E, i.e., such that g¢f defines a holomorphic function on U; for every i € I. Under this
identification, our statement is equivalent to the assertion that gf+k+1v( f) defines a holomorphic function
on U; for every i € I.



Now, for i € I, we have
gF (gl f) = gf T (d - gf () f + gl (f)) = d - gFo(ga)gl f + gt (),

d+k+1y(f) defines a holomorphic function on Us. |

%

so that g

Finally, it is easy to see that the C-linear map 0, : R — R satisfies Leibniz’s rule : if s € Ry and t € R,
then

O(s®1t) = 0,8t + s® Oyt
in Rgtetrti-
6.2. Estimates of uniform norms. Let us keep the notation of the last paragraph and fix once and

for all some ¢t € Ry (recall that k denotes the “order of pole of v at div(sg)”).
For any integer j > 1 and d > 1, we define a differential operator of degree j(k + 1)

oVl R— R
as the composition
31[)j] =0y0(0y —t)o---0(0y— (j — D).

PROPOSITION 6.2. With the above notation, assume moreover that L = i*O(1) for some projectively
normal embedding i : M — P"(C). Let || || be a Hermitian metric on L. Then there exists a constant C > 0
such that, for any integer j > 1, any sufficiently large positive integer d, and any s € Ry, we have

||3,[Jj]s||L°°(M) <O+ d)?||s|| oo a1y

where H&Ejl (8)llzoe (ary (resp. ||sl Lo (ary) denotes the uniform norm on M with respect to the Hermitian metric
on LOHIEHD) (resp L94) induced by | ||

Our proof is a reduction to the case M = P"(C). Let || || denote the Fubini-Study metric on the line
bundle O(1) over P& = ProjC[Xy,...,X,] (cf. Example 4.5), and let us identify I'(Pg, O(d)) with the
C-vector space C[Xy,..., X,]q of homogeneous polynomials of degree d. If P = E| f=a 01X T we consider
the norms

[Plloc = lr}llfgllafl and [P =Y lasl.
N |I|=d

The uniform norm of P, seen as an element of I'(P"(C), O(d)), with O(1) equipped with the Fubini-Study

metric, is given by

|P(2)]
IPlisricy = sip  —12EL
Z€CHI\{0} (Zi:o |2i]2)

LEMMA 6.3. For any P € I'(P}, O(d)), we have

vl

_d d+n
(1 D H 1Pl < WPl < 1P < () I

PROOF. If we write P = Z|I|:d ar X', then Cauchy’s integral formula gives, for any multi-index I,

1 P(z)
= — ——=dzg - dzp,
ar (2mi)n+1 /(8D)"+1 LI+1 20 z

where D denotes the unit disk in C and 1 the multi-index of order n + 1 having 1 at each coordinate. Thus,
if [2] denotes the image in P"(C) of a point z € C"*1\ {0},

d
lafl < sup  |P(z)[=(n+1)z sup [P([2])].
2€(9D)n+1 2€(8D)n+1

This proves that (n + 1)"2||Ple < || Pl @n(cy)-
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For any z € C"™1\ {0}, we have

PR _ 2 dlazllzl max|r—q |2']
1P = g < - ey Lt
(> izo l2il ) (i l2l? ) (Zi:o‘zi| )?
Now, if I = (ig,...,i,) is a multi-index satisfying |I| = d, then it is clear that

2112 = (Jz0l*) -+ ()™ (ZI%F)

We thus obtain ||P||p~pnc)) < [P
The inequality ||P||; < (”:d)HPHOO is an immediate consequence of dim I'(P™(C), O(d)) = (”*d)_ [

n

PROOF OF PROPOSITION 6.2. Since M is compact, if the conclusion of the statement holds for some
Hermitian metric || ||, then, up to replacing the constant C, it also holds for any other Hermitian metric on
L. We may thus assume that || || is induced by the Fubini-Study metric on O(1) via the embedding i.

Let (Xo,...,X,) denote the projective coordinates of P™(C), seen as global sections of O(1), and let
t; € Ry be the restriction of X; to M for every 0 < j < n. Since i : M — P"(C) is projectively normal, for
any integer d > 1, Ry is generated as a C-vector space by the monomials of degree d in %, ..., t,.

We lift v to P"(C) as follows. For every 0 < j < n, let P; € I'(P"(C), O(k+2)) = C[Xy, ..., X, ]x4+2 bea
lifting of 0,t; € Rp42. Then there exists a unique C-derivation 0 of @, '(P"(C),O(d)) = C[Xo, ..., Xy],
of degree k + 1, such that 0X; = P; for every 0 < j < n. It is easy to see that, for every integer d > 0, the
diagram

(j[)(()7 ce 7Xn]d L C[Xo, e ,Xn]d+k+1

| ’

o
Ry

commutes. Moreover, if Q € C[Xo,..., X,]x+1 is any lifting of t € Ri41, then it is clear that

0 =00 (0= Q)00 (0~ (- Q)
make the diagrams

[4]
C[Xo, ..., Xnla -2 C[Xo, -, Xnlarihin)

:
aldl

Ry > Ryt jk+1)

commute for any j > 1.
For every multi-index I € N™*! we obtain, by a straightforward computation, the upper bound

10X oo < 7] s |17
This implies that, for any d > 1 and any homogeneous polynomial P € C[X,..., X4,
0Pl < (g, 1Pl ) 1P

Thus, if £ == ||Q]|co + (k+1) maxo<i<n || Pi|leoc and S € C[Xy, ..., X, ] is a homogeneous polynomial of degree
d+ m(k+ 1) for some 0 <m < j — 1, we have

160~ m@)Sl < (@ mlt+ 1)) (ma 1Pl ) + Qe ) 11 < K0+ DS e
By induction, we conclude that, for any d > 1 and any P € C[Xj, ..., X,]q4, we have

(6.1) 1OV Pllo < w7 (d + 5) || Pl|co-
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To complete our proof, we apply a lifting argument. By [16] Proposition 3.5, there exists a constant
Co > 0 such that, for every sufficiently large integer d and every s € I'(M,L®?), there exists a lifting
P eT(Pg,0(d)) of s such that

(6.2) 1P|l Lo e (cy) < CGllsll Loe (ar)-
Thus, for any j > 1,
1095l (ary < 1OULP] e oy < 1OV1P] < (d . )) |09P)c by Lemma 6.3
< 2¢+ik+1) 9l p|
< 2T (d 4 )| Pl oo by (6.1)
< 2D I (d 4 5) (n 4+ 1) 3| Pl L e () by Lemma 6.3
< 2D I (d 4 5) (n 4+ 1) 5 C sl 2w (an) by (6.2).

6.3. The arithmetic case. We shall actually need an arithmetic variant of the above constructions.

Consider the notation and terminology of Paragraph 5.1. Let K be a number field, X be a projective
arithmetic variety over S = Spec Ok with smooth generic fiber, and L be a line bundle over X endowed with
a global section so € T'(X, L) \ {0}. Arguing as above, we see that a section w € T'(Xs,, Derops (Ox)) induces
an O-derivation 9, of the ring @, (X, L®?).

Let us fix t € T'(X, L¥*1), where k > 0 is the “order of pole of w at div(sp)”, and consider the differential
operators 0% = 9, o (Ow —t)o -+ 0(0y — (j — 1)t), for j > 0, as above.

By applying Proposition 6.2 for each projective embedding ¢ : K < C, we obtain the following corollary.

COROLLARY 6.4. With the above notations, assume moreover that L = i*O(1) for some closed immersion
i X = Ph_ over S such that ix : X — P is projectively normal. Let (|| ||o)s:xsc be a Hermitian
structure on L. Then, there exists a constant C' > 0 such that, for any integer j > 1, any sufficiently large
positive integer d, and any s € T'(X, L®Y), we have

102s]lx < CTFA(j + d) 5]l

7. Proof of Theorem 1.2

Recall the notation and hypotheses of Theorem 1.2 : X' is a quasi-projective arithmetic variety over Ok
of relative dimension n > 2 with smooth generic fiber, and ¢ : Spf Ok [¢] — X is a morphism of formal
Ok-schemes such that

(i) the formal curve ¢k : Spf K[q] — Xk is ZL-dense in Xx and satisfies the differential equation
dpx
o
q
(ii) for any field embedding o : K < C, the formal curve ¢, : Spf C[q] — X, lifts to an analytic
curve ¢, : D, C C — &X2" of moderate growth. We also assume that [[ .., c Ro = 1.

=v0QPK;

Let X be some projective compactification with smooth generic fiber of the arithmetic variety X over
Ok. Fix a Hermitian line bundle L = (L, (|| ||s)o:x-sc) over X such that Ly is ample and (L,, || ||,) over
X2" is positive for every o : K — C.

In view of Philippon’s algebraic independence criterion (Theorem 3.A.1), Theorem 1.2 will be a direct
consequence of the following.

THEOREM 7.1. With the above notation, for any field embedding o : K — C, and any z € Dg_ \ {0},
there exist real constants co, c1, ¢z, c3 > 0 such that, for every sufficiently large positive integer d, there exists
a positive integer d' < cpdlogd, and t € T'(X, L®d/) satisfying

log||t|| < c1dlog®d
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and
—cod” <log|lt(ps(2))]le < —c3d™.
We shall prove this theorem in three steps corresponding to the next three lemmas.

LEMMA 7.2 (Auxiliary sections). There exist constants a,b,c > 0 such that, for every sufficiently large
positive integer d, there is a global section s € T'(X, L®?) such that

(7.1) ad”™ < ordpp™s < bd"
and
(7.2) log ||s||% < cdlogd.

PROOF. Since ¢k is ZL-dense in Xk, and ¢, has moderate growth in X*" for every embedding 7 : K —
C, our statement follows immediately from Corollary 5.3. |

Fix a field embedding 0 : K < C and z € Dp_ \ {0}. By the projective Prime Avoidance Lemma, there
is an integer & > 1, and a global section sy € T'(X, L®%) such that X, = (so # 0) C X and ¢, (2) € fj;g.
Up to replacing L by L®*, we may assume that & = 1 (cf. Remark 3.A.2).

LEMMA 7.3. There exist constants g, v1,7v2 > 0 such that, for every sufficiently large positive integer d,

and every s € T'(X,L®Y) as in Lemma 7.2, there exists j < yodlogd such that, if we write s = fsgz’d over
X, , then

S0
—d" < log (95 f)9 (2)] < —yed”.

PROOF. Let d be a sufficiently large positive integer and s € T'(X, L®%) be as in Lemma 7.2. Set
m = ordgp*s.

According to Proposition 3.12 and to the bounds (7.1) and (7.2), for every embedding 7 # o, there is a
constant %, (not depending on d or s) such that

(7.3) log [ljg"¢7sllr, < krdlogd.

Here, the norm || ||z, is the norm || ||, introduced before Proposition 3.8, in the special case where r = R,
and L is ¢* L, equipped with the pullback of || ||,.

Fix any constant C' > " _ 2o b Then Corollary 3.16 shows that there exist real numbers 7, y; > 0 such
that, for sufficiently large d, if

7'4 loe |(* FYD) (2)] < —ryr "
( ) OSJSII_II’IY?(}iilong 0g|(¢0’f) (Z)l Y1

then
(7.5) log 135" ¢35l r, < —Cdlogd.
By contradiction, assume that (7.4) holds. Observe that ji*¢*s is an element of $(0)* L¥? @ Q®™. The

o o +®d _ = . . o A
Hermitian structure on go(O)*L@ ® Q%™ allows us to consider its norms (1757 ¢* sl ) r: k. For every field
embedding 7 : K — C, we have

76" ¢"sll- = B " [lig"vzsl m. -

Thus, since [],.x.,c R+ = 1, we obtain from (7.3) and (7.5)

3 log|igesl- < = [ €= ke | dlogd.

T:K—C T#Co

On the other hand, by definition of the Arakelov degree, we have

M Ak PN «7®d ;om EPN * T
> log g @ sl > —deg(¢p(0)' T ® Q) = — deg(p(0)*L)d.
7:K—C
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This contradicts our choice of C for d > 0. We conclude that, for sufficiently large d, (7.4) cannot hold, so
that there exists an integer j < vodlogd for which

(7.6) log|(¢5/)(2)] = —md".

Next, we bound log |(% f)¥)(z)| from above. Let A be a disk centered in z, of radius ¢ > 0 small enough
so that A C @1 (X2 ). It follows from Proposition 3.14, and bounds (7.1) and (7.2), that there is a constant
¢’ > 0 such that

1 * < —cd".
oggglgﬁl%f(()l < -—c

By the Cauchy inequalities, we have

(05D ()] _ maxceon |5 f(C)]
3! - el

)

so that
log |(¢5 )9 (2)] < —'d™ +1og j! — jloge.

Since j = O(dlogd), we have logj! = O(dlog?d), and we conclude that there is a constant 45 > 0 (not
depending on d or s) such that

(7.7) log|(¢5/)Y(2)] < —r2d”
for every sufficiently large d. u
Again by Remark 3.A.2, up to replacing L by a sufficiently large tensor power of itself, we may assume
that there exists a closed immersion i : X < P, over O such that ix : Xk — P is projectively normal
and L = i*O(1).
Fix any o € Ok \ {0} that “clears the denominators of v”, i.e., such that w := av defines a non-zero
global section of Derp, (Ox). Let k > 0 be the smallest integer for which w ® s?k defines a global section

of Dero, (Ox) ® LE*, and let 8,, be the Ok-derivation of degree k + 1 of the ring -, ['(X, LZ?) defined
in Section 6. For any integer j > 1, set B

87[3] = 0y 0 (O — as(?kJrl) 0.0 (0y—(j— l)as?wﬂ).

LEMMA 7.4. There exist constants c1,ca,c3 > 0 such that, for every sufficiently large positive integer
d, and every s € T'(X,L%?%) as in Lemma 7.2, if j denotes the integer constructed in Lemma 7.8, then the

section t = 04 (s) € T(X, LO+i(k+D)) sqtisfies
log||t|| < c1dlog®d
and
—cod™ <log||t(ps(2))]le < —csd™.

PROOF. Since j grows at the order of dlogd, by Corollary 6.4 and bound (7.2), there exists ¢; > 0 such
that

log ||t||= < c1dlog? d.

In order to bound ||t(¢s(2))|ls, we first remark that the formal identity of differential operators

i d [ d d
J— =g— g— —1) - [g— — (1 —1
Tag ~ Ydg (qdq > <qdq U )>

and the differential equation



yield :
Pt = " (0w (0w — asg™ ) -+ (B — (1 — Dasg™)(s))
[ d [ d d . . R : o (f) . j
— A “ 1) ... “ ~1 * * ®d+j(k+1) _ Vil SRS ®d+](k:+1).
ot |agp (a5 = 1)+ (ag — G- 0) )] 6760 00y e (s)
A similar formula holds for ¢,. Thus

log [t (2))[lo = log [(¢5 £)9(2)] + jlogaz| + (d + j(k + 1)) log |9} s0(2) |o-
Since j grows at the order of dlogd, we conclude from (7.6) and (7.7) that there exist real constants
cy > c3 > 0 such that
—cod" <log [t(ps(2))lle < —cad”
for sufficiently large d. n

To finish the proof, one simply remarks that, if ¢g := (k + 1)7g, then the degree d' :=d + j(k+1) of ¢
constructed above satisfies d’ < d + (k + 1)yodlogd < codlogd, for d sufficiently large.

3.A. Philippon’s algebraic independence criterion for projective varieties

Let K be a number field, X be a projective arithmetic variety over O of relative dimension n > 2, and
L= (L,(| lo)o:xc) be a Hermitian line bundle over X with L relatively ample over Spec Ok . Recall that,
if s € I(X, L®) for some integer d > 1, then we denote ||s||x = max, |5, Lo (xan), where o runs through
the set of field embeddings of K in C.

The proof of the main theorem of this article relies on the following generalized version of an algebraic
independence criterion of Philippon (cf. [85] Théoréme 2.11 and [75] Lemma 2.5).

THEOREM 3.A.1. Let o : K < C be a field embedding and p € X;(C). Suppose that there exist an integer
m such that 2 < m < n, a non-decreasing sequence of positive real numbers ({q)q>1 satisfying é;"‘_l = o(d)
as d — +o00, and real constants a > b > 0 such that, for every sufficiently large positive integer d, there
exists an integer d' < dly and a section s € T'(X, L®d/) satisfying

log ||s]|lx < dtg
and
—ad™ <log||se(p)|le < —bd™.
Then the field of definition K (p) of the complex point p in Xk satisfies
trdegq K (p) = m — 1.
REMARK 3.A.2. For any integer k£ > 1, the conditions in the above statement are verified for the

Hermitian line bundle L if and only if similar conditions hold for the tensor power T of T (up to multiplying
L4, a, and b by suitable constants).

Moreover, since X is proper over Spec Ok, it is easy to see that if the above statement is true for a
particular choice of Hermitian structure on L, then it also holds for any other Hermitian structure on L.

In what follows, we explain how to deduce the above statement from Philippon’s original result concerning
X = Pp, . The main technical tool is the following “integral lifting lemma”.

LEMMA 3.A.3. Let X and Y be projective arithmetic varieties over O, L be a Hermitian line bundle
over X, with L relatively ample over Spec Ok, and Y — X be a closed immersion over Spec Ok . Endow L|y
with the induced Hermitian structure. Then, there exists a real number C > 0 such that, for every sufficiently
large positive integer d, any section s € I'(Y, L@d) can be lifted to a section § € T'(X, L®) satisfying

1]l < Clls]ly-

This type of result is well known in Arakelov Geometry and goes back to Zhang’s work on arithmetic
ampleness [96]. For lack of reference, we include a proof.
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PROOF. Let I be the ideal of Y in O« . For sufficiently large d, we have an exact sequence of O x-modules
0— DX, 1eL%) —T(X, L% — TV, LIS — 0
t—tly
and thus also an exact sequence of R-vector spaces
0 — DX, I0L% @z R — (X, L% 0z R — (Y, L5 @z R — 0.
Let Q4 be a fundamental domain in T'(X, I ® L®?) @z R. of the lattice I'(X, I @ L®?).

By [16] Proposition 3.5, there exists a constant C; > 0 such that, for every sufficiently large positive
integer d, every field embedding o : K — C, and every s € F(y,L@d), there exists t, € I'(X,, L2?) such
that t,|y, = s, and

[t 1o, Lo (2ezny < CFlIse|lo,ov (an)-
We thus obtain an element (¢,), € @, I'(X,, L&) 2 T(X, L??) ®7 C and we can define
t= % ((ta)g +@) e I'(X, L% @z R.
Note that t|y = s € I'(V, L|$%) ®z R and
el < CEslly-
Let 59 be any element of I'(X, L®9) lifting s, so that t — 5y € T'(X,I ® L®?) @z R. Since Qg is a
fundamental domain, there exists §; € T'(X,I ® L®?) such that t — 59 — §1 € 4. We define
§:=250 45 € T(x, L%,
Then §|y = s and
1512 < 115 = tha + [Itlla < diam(2q) + Cf[|s]ly-
where diam(£24) denotes the diameter of Qg C I'(X, I ® L®?) ®z R with respect to the norm || || x. Thus, to

finish our proof, it is sufficient to show that there exists a constant Cy > 0 such that, for every sufficiently
large integer d,

diam(Qg) < C¢.
We mimic the argument in the proof of [21] Proposition 2.5. Since L is ample, there exists an integer
n > 1 such that, for any sufficiently large integer r, and any positive integer ¢, the morphism
DX, I® L)@z (X, L)% — T(X, ] ® L&)

is surjective. Choose sufficiently large integers r1, ..., r, forming a complete residue system modulo n. Fixing
bases of the finite free Z-modules T'(X, L®"), T(X, I @ L®™),... . T(X,I ® L®™), we see that there exists
a constant B > 1 such that any I'(X,I ® L®"?*") admits a full rank submodule having a basis whose
elements have norm bounded by BY. By [96] Lemma 1.7, the Z-module I'(X, I ® L®"4"") admits a basis
whose elements have norm bounded by rB?, where r denotes the rank of I'(X, [ ® L®™4T71). Since r grows

polynomialy in ¢, and 71, ...,r, form a complete residue system modulo n, we conclude that there exists a
constant Cy > 0 such that, for any sufficiently large integer d, the Z-module T'(X, I ® L®?) admits a basis
consisting of elements with norm bounded by C{, i.e., diam(2;) < C§. u

To handle the case X = P, , we compare the height h(P) of a homogeneous polynomial P &
Ok[Xo,...,Xn] of degree d used in [85] with the Fubini-Study norm ||s||p%K of the corresponding sec-

tion s € (P, , O(d)). By definition,
— 1
h(P) =
P

where, for any field embedding o : K — C, we set

1 27 27 o ]
MO'(P) ‘= €xXp ((271')n+1/0 /0 log\P (67'007...,619"’)|d90-~-d9n> .
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LEMMA 3.A4. Let (|| |lo)o:k—c denote the Fubini-Study Hermitian structure on the line bundle O(1)
over the arithmetic variety P¢ . For any integer d > 1, and any section s € T(Pp, ,0(d)), if P €

Oxk[Xo,...,Xn] denotes the homogeneous polynomial of degree d corresponding to s, then

7 + (n+1)

R(P) < log™ [sllmg,, + "2 d.

PROOF. For any field embedding o : K < C, and any (o, ...,0,) € [0,27]"!, we have
i 7 |Pa(ei007”"ei9n)‘
s (e0 e, = 7 ;
(n+ 1)1
so that
n+1 n+1
log My (P) < 108 ]2 o 03 + atLd < log sl + "t a

Clearly, a similar inequality holds with log™ in place of log. The result follows by taking the arithmetic mean
over all o : K — C. [ ]

PROOF OF THEOREM 3.A.1. The case where X = P and L is given by O(1) endowed with the
Fubini-Study metric follows from Lemma 3.A.4 and [85] Théoreme 2.11 (cf. [75] Lemma 2.5).

The general case follows from this one by considering a closed immersion i : X — Pg,  over Ok
satisfying i*O(1) = L®* for some k > 1, and by applying Lemma 3.A.3 and Remark 3.A.2. ]

3.B. D-property and ZL-density in quasi-projective varieties

Let k£ be a field, X be a smooth quasi-projective variety over k, and F be a Ox-submodule of rank one
of the tangent bundle Tx;, such that the quotient T'x,;/F is torsion-free, i.e., a one dimensional (possibly
singular) foliation on X.

Let p € X (k) be a k-point of X. We say that a formal curve ¢ : Spf k[¢] — X is an integral curve of
F at p if $(0) = p and if the image of the tangent map

D¢ : Tspekfqy/e — P Tx/k
factors through the subbundle ¢*F of ¢*T'x/,. Moreover, if F(p) := I'(Speck,p*F) denotes the fiber of F
at p, we say that ¢ is smooth if @'(0) == Doafa(d%) € F(p) is non-zero.

From now on, we assume that k& has characteristic 0. By a formal version of the Frobenius Theorem,
for every p € X (k) such that F(p) # 0, there exists a unique smooth integral curve ¢ of F at p, up to
composition by an automorphism of Spf k[q].

We say that a closed subscheme Y of X is F-invariant if the ideal of Y in Ox is stable under the
derivations of F C T'x;, = Dery(Ox).

DEFINITION 3.B.1. Let X be a smooth quasi-projective variety over the field k, let F be a one dimensional
foliation on X, and let ¢ : Spf k[¢q] — X be a formal integral curve of F. We say that ¢ satisfies the D-
property for F if there exists a constant C' > 0 such that, for every F-invariant closed subvariety Y of X,
there exists a Cartier divisor D whose support contains Y satisfying

mults D < C.

Observe that, if ¢ satisfies the D-property, then its image is Zariski-dense in X. Indeed, the Zariski-
closure of the image of an integral curve of F is F-invariant.

THEOREM 3.B.2 (Nesterenko-Binyamini). Let X be a smooth quasi-projective variety over an algebrai-
cally closed field k of characteristic 0, v € I'(X,Tx i) \ {0} be a vector field on X, and ¢ : Spfk[q] — X
be a smooth formal curve satisfying the differential equation

dd
qdfi =vop.
If ¢ satisfies the D-property for the foliation generated by v, then ¢ is ZL-dense in X.
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Note that ¢(0) is a singular point of v. In the non-singular case, i.e., ¢ satisfies the differential equation
Z—f = v o @, stronger statements are true (cf. [10] Theorem 2), but an analogous of the above result may be
also obtained by virtually the same proof.

Binyamini’s original result ([10] Corollary 3) builds on ideas of Nesterenko and concerns the case of an
analytic integral curve of a polynomial vector field on some affine space over C. In what follows, we briefly
indicate how a slight modification of the geometric methods of Binyamini may be used to prove the Theorem
3.B.2 above.

We start by recasting the D-property into a more workable form.

PROPOSITION 3.B.3. Let X be any projective compactification of X and L be an ample line bundle on
X. Then, a formal curve ¢ : Spfk[q] — X satisfies the D-property for a one dimensional foliation F
on X if and only if there exists a constant C' > 0 such that, for every F-invariant closed subvariety Y of
X, there exists an integer d > 1, and a global section s € T'(X, L®%) vanishing identically on Y such that
ordgp*s < C'.

PRrROOF. The sufficiency is clear : consider the divisors div(s).

Conversely, suppose that ¢ satisfies the D-property for F with constant C' > 0 and let Y be a F-invariant
closed subvariety of X. Since L is ample, we may assume that Y contains ¢(0); otherwise there exists an
integer d > 1 and a section s € I'(X, L®?) vanishing on Y such that s((0)) # 0, so that ordgp*s =0 < C.

Let D be a divisor whose support contains ¥ such that mult; D < C, and let f be a local equation for
D on some open neighborhood U of ¢(0). Since L is ample, there exists an integer m > 1 and a section
so € T(X, L®™) such that ¢(0) € X, and X, C U. Now, there exists an integer n > 1, and a global section
s € D(X,L®™") such that s = fs§™" over X,,. It is clear that s vanishes identically on Y and satisfies
ordgp*s = ordg@* f = multy D < C. |

Consider the hypotheses and notation of Theorem 3.B.2. Fix a projective compactification X of X, and
an ample line bundle L on X endowed with a global section sq € T'(X, L) satisfying X,, C X. Recall from
Section 6 that v defines a k-derivation 9, on the ring @, I'(X, L=?).

Let p = ¢(0). By a formal cycle of X at p, we mean a cycle in the scheme Spec Ox ,,, where Ox_, denotes
the completion of the local ring Ox , with respect to its maximal ideal. Note that every (global) cycle of X
induces, by localization and formal completion, a formal cycle of X at p.

Let Y be a prime formal cycle of X at p corresponding to the prime ideal p of 19 x,p and denote by I
the ideal of im ¢ in O ,. Assume that I; does not contain p (i.e., Y does not contain the image of (). Since
¢ : Spf k[g] — X is smooth, the image of I in the local ring @X@/p contains some power of the maximal
ideal. We may thus consider the Samuel multiplicity

multeY = er, /1. np (Oxp/p)-

By additivity, we may extend this definition to every formal cycle of X at p whose components do not contain
the image of ¢. By abuse of notation, if Z is a (global) cycle of X, we denote by mult;Z the multiplicity

mult¢2 of its completion at p.
PRrROPOSITION 3.B.4. The multiplicity function constructed above satisfies the following properties :

(1) If Z = div(f), for some f € Ox.p, then mults(Z) = ordg@* f.

(2) If Z = p, then multy(Z) = 1.

(3) For any closed subvariety Y of X, any integer d > 1, and any s € T'(X,L®%) \ {0} vanishing
identically on'Y', we have mults(Y) < ordog™*s - mult, (Y).

(4) For any closed subvariety Y of X, any integer d > 1, and any s € T'(X, L®?) \ {0} wvanishing
identically on Y for which Oys does not vanish identically on Y, we have multy(Y) < multg(Y -
div(9,s)).

(5) There is an integer ng > 0 such that, for every closed subvariety Y of X not contained in a v-

invariant subvariety of X, if d > 1 is the smallest integer for which there is s € I'(X, L®%) \ {0}
vanishing identically on'Y', then min{n | 0's does not vanish identically on Y} < nyg.
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Properties (1) and (2) are easy. For properties (3) and (4), see [10] Lemma 8 and Proposition 9. Finally,
property (5) follows by an adaptation of the arguments in [10] Section 3.

Once this is established, the proof Theorem 3.B.2 becomes completely analogous to the proof of [10]
Theorem 3.
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