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Abstract

Growth is the most fundamental property of life. Growth consists in the
transformation of matter and energy from the environment into diverse or-
ganic structures. Interestingly, general growth laws relate the macromolec-
ular composition of the cell to growth rate. These laws are widespread and
conserved in different microbial species, suggesting a fundamental principle
of design. Recent work has shown that these empirical regularities can be
derived from coarse-grained models of resource allocation and explained by
the principles of natural selection. However, the vast majority of these stud-
ies focus on steady-state growth. Such conditions are rarely found in natural
habitats, where microorganisms are continually challenged by environmental
fluctuations. The aim of this thesis is to extend the theoretical and experi-
mental studies of microbial growth strategies to changing environments.

Using a self-replicator model, we developed a theoretical framework that
encapsulates the main features of growth. We formulate dynamical growth
maximization as an optimal control problem that the microbial cell must
solve in order to allocate the available resources to the gene expression ma-
chinery or to metabolism. Using Pontryagin’s Maximum Principle, we have
derived a general solution to the optimization problem and we have compared
the optimal strategy with possible implementations of growth control in bac-
terial cells. Our results show that simple control strategies that maximize the
growth-rate at steady state are suboptimal for transitions from one growth
regime to another. We show that a near-optimal control strategy in dy-
namical conditions requires information about several, rather than a single,
physiological variable. Interestingly, this strategy has structural analogies
with the regulation of ribosomal protein synthesis by the signaling molecule
ppGpp in the enterobacterium Escherichia coli. The strategy involves sens-
ing a discrepancy between the concentrations of precursor metabolites and
ribosomes, and the control of the rate of ribosome synthesis in a switch-like
manner.

Even though this switch-like ribosome synthesis has been suggested by
published data, the phenomenon has never been experimentally confirmed.
We therefore measured ribosomal abundance in Escherichia coli at the single-
cell level during a nutrient upshift. More precisely, we constructed a strain
in which a fluorescent marker has been attached to a ribosomal subunit, thus
allowing in-vivo monitoring of the abundance of ribosomes. We monitored
this strain in a microfluidics device designed for long-term imaging of in-
dividual cells in a continuous culture, and used this experimental setup to
simulate a nutrient upshift by changing the input medium. We developed a
Kalman smoothing method for extracting quantitative information about re-
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source allocation to ribosome synthesis from the raw data. Even though our
preliminary results do not allow to reach a final conclusion, they do suggest
the presence of oscillatory patterns after an upshift that are reminiscent of
the expected behavior.

Our results demonstrate that the capability of regulatory systems to in-
tegrate information about several physiological variables is critical for op-
timizing growth in a changing environment. The proposed control scheme
correctly reproduces the observed growth laws at steady state, but also pre-
dicts novel and unexpected behaviors when applied to a dynamical environ-
ment. Our improved understanding of the principles that govern the control
of bacterial growth could be used for improving biotechnological processes,
in particular those that use microorganisms to produce high valuable-added
products for the chemical or biomedical industry.

Non-technical summary of the work

Bacteria grow by exploiting matter and energy extracted from their envi-
ronment. The strategies that enable bacteria to optimize their growth rate
have been extensively studied. However, most of these studies were carried
out in a constant environment. Here, we construct a simple model of mi-
crobial growth and use mathematical methods from optimal control theory
to determine how the cells should behave when the environment changes
abruptly. We find that microbial cells should adopt an on-off strategy: they
should alternatively allocate all of their resources to the production of two
categories of cellular components, the elements needed for gene expression
and the ones needed for the general metabolism of the cell. Our prelimi-
nary experiments confirm this prediction. In other words, theory tells us
that switch-like mechanisms would optimize the growth of bacterial cells and
our experiments validate the theory. This suggests new ways for optimizing
biotechnological processes.
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Résumé

Croissance et reproduction sont des mécanismes fondamentaux du vivant.
Chez les micro-organismes, ces processus sont couplés dans la transformation
des ressources de l’environnement (matière et énergie) en nouvelles structures
organiques. Étonnamment, malgré l’extrême diversité des micro-organismes,
certaines caractéristiques de leur physiologie suivent des lois de croissance
universelles. Cela suggère l’existence de principes fondamentaux, ce qui a été
en effet récemment confirmé en montrant que ces lois s’expliquent facilement
si l’organisme maximise son taux de croissance dans chaque environnement.
Cependant, ces lois ont seulement été étudiées lors de croissances à l’état
stationnaire, c’est-à-dire lorsque l’environnement et donc le taux de crois-
sance sont stables. Ces conditions, même si elles peuvent être reproduites en
laboratoire, n’ont rien à voir avec les conditions de vie dans lesquelles les or-
ganismes ont évolué durant des milliards d’années. Le but de cette thèse est
d’étendre dans un contexte d’environnement purement dynamique, l’étude à
la fois théorique et expérimentale de ces stratégies de croissance microbienne.

En modélisant la cellule comme un auto-réplicateur, nous cherchons à
savoir quelles sont les meilleures stratégies d’allocation des ressources lors de
l’adaptation à un nouvel environnement. Ce problème se formule très bien
comme un problème de contrôle optimal : la cellule choisit en temps réel com-
ment allouer ses ressources entre la machinerie d’expression génique et le mé-
tabolisme. Le meilleur comportement possible, comme le révèle l’application
du Principe de Maximisation de Pontryagin, est de successivement orienter
toutes les ressources dans chacun des deux secteurs, une stratégie communé-
ment appelée bang-bang. Mais s’approcher d’un tel contrôle requiert pour la
cellule des stratégies de régulation bien plus complexes que celles qui étaient
suffisantes pour maximiser le taux de croissance à l’état stationnaire. De ma-
nière intéressante, la régulation de la synthèse des ribosomes par le ppGpp
chez la bactérie Escherichia coli s’avère présenter la structure adéquate. Nous
montrons en effet qu’elle permet de détecter rapidement toute incompatibi-
lité entre la concentration de précurseurs et celle des ribosomes, et d’ajuster
en conséquence la synthèse de ces derniers pour obtenir un comportement
proche de l’optimum mathématique prédit.

Même si de vieilles données le suggèrent, un tel comportement bang-bang
n’a jamais été totalement confirmé expérimentalement pour la synthèse des
ribosomes. Nous mesurons donc l’abondance des ribosomes chez Escherichia
coli au niveau de cellules individuelles lors d’un changement brutal de milieu
de culture. En particulier, nous créons une souche de E.coli sur laquelle
un rapporteur fluorescent est attaché à l’une des sous-unités ribosomales,
permettant ainsi leur quantification in vivo. Un appareillage micro-fluidique
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nous permet ensuite de contrôler en temps réel le milieu de croissance tout
en observant individuellement chaque cellule fluorescente. Nous développons
une méthode basée sur le lissage de Kalman qui est capable de reconstruire
la façon dont les ressources sont aiguillées vers la synthèse des ribosomes.
Même si ces résultats sont préliminaires, ils suggèrent que la concentration
des ribosomes oscille après le changement d’environnement, ce qui rappelle
une stratégie de type bang-bang.

Nos résultats montrent que la capacité des systèmes de régulation à inté-
grer l’état de différentes variables physiologiques est cruciale dans l’optimi-
sation de la croissance en environnement variable. Au final, nous démontrons
que les principes utilisés à l’état stationnaire peuvent, lorsqu’ils sont appli-
qués en dynamique, générer des comportements inattendus et expliquer plus
en détails les stratégies de régulation employées par les micro-organismes.

Résumé pour un public non spécialiste

Bactéries et autres micro-organismes se multiplient en utilisant la matière
et l’énergie présentes dans leur environnement. Les stratégies qui leur per-
mettent d’optimiser ce processus ont été longuement étudiées, mais unique-
ment dans des environnements stables. Ici, nous construisons un modèle
simple de la croissance microbienne et utilisons la théorie du contrôle op-
timal pour déterminer la façon dont les cellules devraient agir lorsque leur
environnement est soudainement modifié. Nous mettons en évidence que la
meilleure stratégie consiste à aiguiller toutes les ressources disponibles vers la
production d’un seul composant de manière alternative, une prédiction que
nous tentons également de confirmer de manière expérimentale. Ces résultats
pourraient suggérer de nouvelles façons d’optimiser les processus biotechno-
logiques de production de molécules d’intérêt.
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Chapter 1

Introduction

"There’s an infinity of things that have never been done before, and most
of those things are not worth doing." – Jeremy Fox, Dynamic Ecology [1]

Résumé du Chapitre 1: Introduction
Malgré leur apparente simplicité, les microorganismes sont des êtres vi-

vants complexes capables de survivre dans les milieux les plus extrêmes. Une
telle ubiquité repose en partie sur leurs excellentes capacités d’adaptation.
En effet, via l’information stockée dans son ADN, une cellule microbienne
est capable, par la production des protéines nécessaires, d’assimiler et de se
répliquer à partir d’une grande variété de nutriments. Ce mécanisme, que l’on
appelle l’expression génétique, permet donc à la cellule de réguler sa com-
position en fonction des conditions environnementales. Chaque composant
cellulaire est initialement issu des ressources trouvées dans l’environnement.
Par l’expression génétique, la machinerie cellulaire résout donc un problème
de distribution des ressources : un bien commun (les nutriments) est partagé
entre plusieurs milliers de bénéficiaires potentiels (les protéines et autres ma-
cromolécules).

Selon quels critères les ressources sont-elles distribuées dans la cellule ?
Le comportement de la plupart des systèmes vivants peut s’expliquer par
les principes de la sélection naturelle. En définissant des facteurs de fitness
(adaptation au milieu), on peut généralement identifier des objectifs permet-
tant à l’organisme de maximiser sa descendance, et donc de persister sur le
long terme dans un milieu donné. Ces facteurs et surtout leurs importances

11



12 CHAPTER 1. INTRODUCTION

relatives, peuvent s’avérer extrêmement complexes à identifier, ce qui est no-
tamment le cas chez les microorganismes. Cependant, de nombreuses études
ont pu montrer que la maximisation du taux de croissance (ou taux de répli-
cation) est un facteur qui semble commun à de nombreux microorganismes,
et qui permet d’expliquer à lui seul une grande variété de comportements.

Peut-on, à l’aide d’un tel principe universel, formaliser la croissance des
microorganismes en lois simples, analogues à celles que l’on peut trouver
dans d’autres domaines des sciences comme la physique ? Historiquement,
la première tentative d’établissement de lois fondamentales de la physiologie
microbienne fut la découverte de la loi de Monod il y a plus de 60 ans (Fig. 1.1
et Eq. 1.1). Elle montre que le taux de croissance d’un microorganisme suit
une loi hyperbolique de la concentration du nutriment limitant dans le mi-
lieu. Depuis, d’autres lois fondamentales ont pu être identifiées. L’une d’entre
elles est une loi de croissance qui décrit la relation linéaire existante entre
la concentration en ribosomes dans la cellule et le taux de croissance de
l’organisme (Fig. 1.2). De manière étonnante, quels que soient les détails mo-
léculaires qui permettent cette adaptation, cette loi émerge lorsque la cellule
cherche à maximiser son taux de croissance dans chaque environnement.

Bien que répandues chez de nombreux microorganismes, ces lois se li-
mitent à un état bien particulier qu’on appelle croissance à l’état station-
naire. Cet état est atteint lorsque l’organisme se multiplie pendant suffi-
samment longtemps dans un environnement stable (Fig. 1.3). Il s’avère très
pratique pour les études théoriques et expérimentales, notamment car les
composants de la cellule ne changent plus au cours du temps, ce qui lui
vaut aussi l’appellation de croissance équilibrée (balanced growth). Mais cet
état a beau être pratique, il est très loin des conditions rencontrées par les
microorganismes dans leur milieu de vie naturel. Ces derniers sont en effet
plutôt soumis à des environnements changeants, où les éléments chimiques
indispensables à la croissance sont rares, et sont donc les objets d’une rude
compétition. Pour quelles raisons les microorganismes seraient-ils optimisés
pour un état de croissance qu’ils n’ont quasiment jamais rencontré au cours
de leur évolution ? Si comme on s’y attend ces systèmes sont plutôt adaptés
à des environnements variables, ratons-nous quelque chose en ne les étudiant
qu’en conditions stables ?

Dans cette thèse, nous nous proposons ainsi d’étendre les études des lois
de croissance en adoptant une perspective dynamique, c’est-à-dire, en en-
vironnements variables : quelles stratégies dynamiques les microorganismes
suivent-ils pour redistribuer leurs ressources lors d’un changement environ-
nemental ? Cette question sera développée en deux grands axes d’étude.

Quelles sont les meilleures stratégies de distribution des ressources si,
comme pour les lois de croissance à l’état stationnaire, la production de bio-
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masse est le seul critère optimisé par la cellule ? Répondre à cette question est
une étape nécessaire pour évaluer dans quelles mesures les critères d’optimi-
sation dynamique peuvent différer de ceux à l’état stationnaire, et donc, de
tester si les pressions évolutives s’appliquent effectivement différemment entre
environnements stables et dynamiques. Cette preuve de concept reposera sur
un modèle de la distribution des ressources dans une cellule microbienne, qui
sera utilisé pour déterminer quelle est la manière dynamique optimale pour
la cellule de distribuer ses ressources lors d’un changement d’environnement
(Chapitre 2).

Les prédictions faites seront ensuite testées expérimentalement. Nous
chercherons donc à mesurer la distribution des ressources chez Escherichia
coli lors d’une transition de croissance (Chapitre 3). Nous montrerons com-
ment l’utilisation de marqueurs fluorescents des ribosomes, d’un dispositif
microfluidique de culture continue, et de méthodes originales d’analyse des
séries temporelles, permet d’observer et de reconstruire l’allocation des res-
sources au cours d’une transition brutale du milieu, notamment la transition
d’un milieu pauvre vers un milieu riche (nutrient upshift).

Beginning of Chapter 1

1.1 Context

1.1.1 Self-replication is a resource allocation problem

At every moment of our lives, we are surrounded by billions of microscopic
organisms. They sustain themselves by harvesting energy from their environ-
ment in the form of organic matter, highly reactive chemicals, or light [2, 3].
While most of our cells are kept in a stable and friendly internal environ-
ment (temperature, oxygenation, nutrient abundance, ...), microorganisms
have evolved to constantly adapt their physiology to strongly variable condi-
tions [4–10]. Not without success, because microbes have been found to sur-
vive almost everywhere, sometimes in the strangest places that were initially
thought unsuitable for life [2, 3, 11, 12]. Such ubiquity translates a strong
potential for adaptation. The model organism Escherichia coli, a bacterium
first isolated from our intestinal tract, is capable of growing on dozens of
different carbon sources through changes in the expression of thousands of
genes [13].
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Microorganisms, along with all living cells, are mainly constituted of
polymers (DNA, RNA, proteins) consisting of many repeated subunits (nu-
cleotides, amino acids). The information about their sequences is stored in
the form of genes, physically located on the DNA. Gene expression is the
process by which this information is used in the synthesis of a functional
final product (protein or RNA). The gene expression machinery (itself con-
stituted of RNA and proteins) synthesizes gene products after binding to
target sequences either by transcription (promoter on the DNA), or trans-
lation (ribosome binding site on the messaging RNA). In a given cell, there
are roughly as many different target sequences as genes [14], which ensures
that not all products are synthesized at the same rate. Furthermore, some
of these products specifically bind some promoters and stimulate or repress
promoter activity and hence gene expression. These products are called tran-
scription factors and allow, in addition to other mechanisms, the regulation
of cell composition.

The reorganization of gene expression controls the abundance of enzymes
and ribozymes that catalyze the biochemical reactions allowing the cell to
perform different functions. For instance, assimilating a given nutrient in-
volves the synthesis of the corresponding uptake protein and of the metabolic
enzymes converting the nutrients into reducing power, nucleotides and amino
acids [3]. These precursors are then used to produce new macromolecules,
closing the loop of self-replication. In order to optimize the overall process
in different environmental conditions, the cell must adjust the abundance of
every enzyme involved in this network of biochemical reactions. By doing so,
the cell actually solves a resource allocation problem, where a common wealth
(precursors) has to be distributed over thousands of potential beneficiaries
(proteins and other macromolecules).

1.1.2 Optimizing biomass production yields a competi-
tive advantage

Which allocation of resources is optimal for a living cell? Systems capable
of Darwinian evolution sustain themselves in the long run by fitting to their
environment [15]. Living cells with the best fitness are more likely to survive,
replicate, and through long-term competition, eliminate their siblings. The
optimization criteria that quantitatively measure fitness are called fitness
factors. Whether they apply at the species, the population, the organism, or
even the gene level has long been debated [15]. An optimal resource allocation
would be a gene expression scheme maximizing the fitness factors. But since
fitness factors have to take into account the ability to survive, reproduce, and
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compete with other organisms in a given (sometimes changing) environment,
they are often context-dependent and highly difficult to identify.

For this reason, there is no consensus about what constitutes the main
fitness factors of microorganisms. Competition for common resources seems
to favor the maximization of offspring, in the sense that a replicator with
more descendants will outnumber its competitors in the long term [15]. It is
unclear, however, how this general principle translates into specific features
of microbial physiology. For instance, the use of genome-scale metabolic net-
work models has shown that metabolism maximizes the production either of
biomass or available energy (ATP) depending on the environmental condi-
tions [16]. Microbes can also either optimize their production yield (making
the most of available nutrients at the expense of a lower growth rate) or their
production rate (growing quickly while wasting part of the available nutri-
ents), the latter being favored in fluctuating environments [17–19]. Overall,
it seems that cell optimality drifts in a multidimensional space and involves
making several trade-offs that strongly depend on the environmental con-
text [20].

Nevertheless, numerous studies have shown that considering growth rate
maximization confers a good predictive power of microorganism physiology.
When cultivated in minimal medium with acetate or succinate, Escherichia
coli uptake rates are correctly predicted by assuming that the metabolic net-
work operates in a mode that maximizes growth rate [21]. This result is
not general though and depends on the carbon source and strain used [22].
But even in other situations, the metabolic networks evolve rapidly towards
growth-rate maximization if a constant nutrient-providing environment is
maintained [22]. The mutants obtained present modications in the regula-
tion of the synthesis of metabolic enzymes [23], indicating that not only the
efficiency of the enzymes is affected, but also their abundance and thus the
cellular composition. Overall, with the currently available knowledge and its
limitations (discussed in Chapter 4), focusing on growth-rate maximization
sounds like a rational choice to understand the growth strategies of microor-
ganisms [24].

1.1.3 Growth laws are universal strategies employed by
microorganisms

One of the first attempt to formalize the functioning of microbial physi-
ology into elegant, fundamental laws was the discovery of Monod’s law more
than sixty years ago [25]. This empirical relationship states that the growth
rate µ [div h-1] of Escherichia coli is a hyperbolic function of the concen-
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Figure 1.1 – Monod law, reproduced from [25]. Monod has been a
pioneer in the formalization of microbial growth into fundamental, coarse-
grained relationships. This figure displays the steady-state growth rate (in
number of divisions per hour) of Escherichia coli in a synthetic minimal
medium at 37◦C containing different concentrations of glucose (a common
carbon source). As the concentration of glucose increases, so does the growth
rate of E. coli by following the hyperbolic relationship described in Eq. 1.1.
The solid curve is obtained for µK = 1.35 div h-1, and KC = 0.22 · 10−4 mol
L-1.

tration of the limiting nutrient C [mol L-1], such that

µ = µK
C

KC + C
, (1.1)

with µK and KC two constants depending on the quality of the nutrient
(Fig. 1.1). It is remarkable that the growth rate, a parameter that depends
on the use and production of thousands of proteins, can be so easily predicted
by a simple relation. What is even more remarkable is that this relation
is rather universal. Despite some adjustments (the Droop model being a
well-known example [26]), the relation holds for most microorganisms: the
growth rate increases with the abundance of the limiting nutrient, up to a
point beyond which they cannot grow any faster [27].

The production of every component of the cell is controlled by a com-
plex network of regulatory interactions. But an obvious constraint is that
at steady state, the synthesis rate of all individual components must be pro-
portional to the growth rate in order to compensate for growth dilution [25].
Many physiological parameters (like the mass of DNA, RNA and protein)
are thus functions of the growth rate alone, regardless of the environmental
conditions [28, 29]. These so-called growth laws were carefully measured [29]
and are still used today in the quantitative understanding of growth control
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Figure 1.2 – The growth law of ribosomal abundance (figure repro-
duced from Fig S1 in [33]). For a variety of carbon sources and their
corresponding steady-state growth rate, the RNA/protein ratio is linearly
correlated with the growth rate, a relation that holds for many species of mi-
croorganisms. This ratio is correlated with the fraction of ribosome-affiliated
proteins, and therefore with the relative abundance of ribosomes in the cell.

in microorganisms [30]. Recently, the topic was revitalized through the work
of Scott et al. [31]. They focused on the ribosome concentration, a physio-
logical parameter that was long known to vary linearly with the growth rate
in microorganisms (Fig 1.2). By measuring it under different environmental
perturbations of the protein synthesis machinery, they built a coarse-grained
model describing proteome resource allocation [32]. It has allowed to show
that, whatever the details of the molecular implementation (differing between
organisms), this growth law emerges from the underlying principles of robust-
ness and optimization imposed by natural selection, especially growth-rate
maximization, in all conditions [32].

1.1.4 Static versus dynamical perspective on growth

The growth laws cited above apply at steady state, where all intensive
properties of the cell are time-invariant [3, 34]. This means that the proper-
ties that are independent of the cell volume or the cell mass (temperature,
concentrations, ...) are constant over time, even though the cell is growing.
It requires that the components of the cell "increase by the same factor over a
time interval", which has motivated the use of the term balanced growth [35].
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Experimentally, this growth scenario has been used as a standard because
it improves reproducibility, in that the results do no longer depend on the
precise timing of the samples [3]. It can be easily achieved in the laboratory
either in continuous culture, where the substrate is continually supplied [36],
or in batch conditions if the substrate is in high excess (Fig 1.3). This ap-
proach has been beneficial to mathematical modeling because considering the
system at steady state reduces the complexity of the underlying dynamical
system governing microbial growth, allowing genome-scale models encapsu-
lating the enzymatic diversity of living cells to be built and analyzed [37].

Although balanced growth is convenient from an experimental and the-
oretical point of view, it is widely admitted that microorganisms rarely en-
counter this state in nature [3]. Steady-state growth requires stable condi-
tions over a long period of time, but microorganisms live in environments
where the key elements, such as carbon, nitrogen or phosphorus, are quickly
depleted by the competitors as soon as they become available [4–6], a con-
sideration that also holds for the lab strains for which growth laws have
been established [7–10]. Why would microorganisms be optimal for a state
they have barely encountered during their evolution? Are we missing some-
thing by studying in stable, unchanging conditions systems that were in fact
selected to cope with environmental variations?
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Figure 1.3 – The different phases of a typical growth curve. During a
typical batch growth scenario, biomass accumulates (black thick line) whereas
nutrients are consumed until depletion (green dashed line) [3]. (A) The lag
phase is a variable period of time during which the organism adapt to the new
medium [38]. It is hard to study experimentaly and is known to be affected by
the pre-culturing history of the strain [39–41], the magnitude and the rate of
the change between the past and present environments [42], and other hard-
to-control environmental conditions [43]. (B) The steady-state (or balanced-
growth) phase is characterized by an exponential production of biomass. Its
characteristics are time-invariant and quite robust accross conditions, which
has made it a standard for microbial growth studies [3]. This phase can be
extended for hundreds of generations in continuous cultures by the constant
renewal of the medium [36, 44, 45]. As represented here, nutrients are quickly
depleted in batch conditions, which does not allow to maintain steady-state
growth for a long period of time. (C) The stationary phase occurs after
the depletion of the limiting nutrients in the medium [3, 46]. In natural
conditions, microorganisms usually encounter poor media and spend most of
their time in stationary phase [4–6]. Some species that have evolved long-
term resistance mechanisms, like sporulation [47] or cannibalism [48], can
survive particularly long stationary phases.
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1.2 Problem statement
Microbial growth is essentially a resource allocation problem that can be

summarized in simple, fundamental growth laws. Though established empir-
ically, those laws are elegantly explained if we consider that microorganisms
behave in ways that optimize biomass production. However, these laws de-
scribe growth in stable environments and it is hard to imagine how natural
selection could have resulted in microorganisms that are optimal for condi-
tions they rarely encounter outside the laboratory. This motivates the study
of growth laws from a dynamical perspective, that is, in a changing environ-
ment, and leads us to the following problem statement: Which strategies
do microorganisms follow in order to dynamically reallocate their
resources after a change in the environment? The development of this
question prompts the following investigations.

What are the best strategies of resource allocation if, like for the steady-
state growth laws, we continue to assume that biomass production is the only
optimization criterion? An answer to this question would allow us to assess
to which extent the features of dynamical optimization differ from those of
steady-state optimization. In other words, it would test our verbal hypothe-
sis that motivated a dynamical perspective on growth: the expectation that
evolutionary pressure applies differently in a changing or stable environment.
In order to achieve this, we need to formulate our problem in mathematical
terms, through the development of a proof-of-concept model of resource al-
location in bacterial cells, and the theoretical determination of the optimal
dynamical allocation of resources following a change in the environment.

The model will help us to establish actual resource allocation strategies
that optimize biomass production during an environmental change. However,
it will not be able to tell us if microorganism do actually optimize such a
criterion. We therefore need to measure biomass accumulation and changes
in resource allocation following a change in the environment. How could one
measure resource allocation during a growth transition? In the light of the
discussion in the previous section, this requires monitoring the abundance
of key macromolecules in living cells over time, while establishing an exper-
imental set-up that allows to control the inherent variability of dynamical
experimental studies of microbial growth.
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1.3 Related work

1.3.1 Modeling growth of microorganisms

My recent experience as a teacher taught me that, as of today, many
students in biology do not like mathematics very much. Since mathematics
is the main language of modeling, this has often made it difficult for me to
convince them that modeling is of key importance for biologists. However,
while mathematics is the language, it is not the essence of modeling. Gen-
erally speaking, a model depicts and simplifies reality. Maps, sketches, or
pictures satisfy this definition, as do graphs, sets of equations, or even the
DNA sequences stored in a text file on a computer. In other words, depicting
and simplifying reality makes you a modeler, not so much drawing equations
on a board. But this does not change the fact that mathematics are powerful
tools for formulating and analyzing models [49, 50].

What makes mathematical modeling so useful in microbial growth stud-
ies? Microbial physiology results from the interplay of thousands of chemical
reactions that are not necessarily relevant in any given situation [3]. These
reactions occurs on a wide range of time scales (shorter than 1 second for
metabolism, to more than 1 day for the degradation of stable proteins [3]),
and are controlled by several layers of regulatory mechanisms that can only
be understood through evolutionary considerations [15]. As a consequence,
even the simplest verbal hypothesis can resist direct empirical testing. But
abstracting away complexity is the purpose of mathematical models. The
overwhelming number of variables and the co-existence of several different
time scales can be dealt with by choosing the correct framework. When
working on a model, microbial behavior is abstracted into a world of clearly
stated rules, where it is easier to spell out the logical consequences of the
underlying assumptions [49, 50]. Predictions can be made, "unpacked" into
our real world, and confronted with experimental testing.

Modeling has proven to be particularly helpful in unveiling how metabolic
networks operate. For an increasing number of microorganisms, we are now
able to draw quasi-exhaustive maps of their metabolic reactions. For in-
stance, a much-used genome-scale reconstruction of E. coli metabolism con-
tains 1366 genes, 2251 metabolic reactions, and 1136 unique metabolites [51].
The number of variables may seem overwhelming, and making sense of this
information is not straightforward. Which reactions are important, and in
which environmental conditions? Can we predict how perturbations will af-
fect a given metabolic network? Do fundamental regularities exist between
different metabolic networks, from different species?

The complexity of the reconstructed metabolic networks does not im-
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pede their mathematical study. Constraint-based modeling is a framework
that abstracts away the unknown kinetics and represents the metabolic re-
actions by steady-state fluxes to which physico-chemical constraints can be
applied, e.g., compartmentalization, mass conservation, molecular crowding,
and thermodynamic directionality [52]. From a mathematical point of view,
the model consists of a system of linear equations defining a space of ad-
missible flux distributions that is further reduced by the above-mentioned
constraints, which eliminate flux distributions that are unlikely to occur in
an environmental condition of interest. The solution space is often further
reduced by selecting the flux distributions optimizing a specified objective
function, such as the growth rate of the cell. This approach, called flux
balance analysis (FBA) [51, 53], has been shown to correctly predict many
behaviors of the metabolic network of E. coli [21, 54]. It has also proved ca-
pable of predicting its long-term adaptation through evolution of the network
after a gene deletion [55].

More direct modeling approaches, in the form of large kinetic models,
have also been helpful for understanding growth-related processes. Through
the construction of a model of 47 differential equations and 193 parameters,
Kotte et al. have shown how metabolic fluxes are sensed at different loca-
tions in central carbon metabolism, and are integrated in a global cellular
response by the coupling of enzymatic and transcriptional regulation [56].
Kinetic models of this type are sufficiently detailed to be used as an in silico
testbed to investigate specific molecular mechanisms and uncover their func-
tion in bringing about a cellular response [57]. The most emblematic instance
of this approach is probably the recent whole-cell model of Mycoplasma gen-
italium [58]. By aggregating all the available knowledge from more than
900 publications, Karr et al. constructed a dynamical model accounting for
all the annotated gene functions of this pathogenic organism, and success-
fully used it to investigate unobserved molecular mechanisms and guide novel
experimental analysis. While such approach is not yet applicable to many or-
ganisms, it genuinely demonstrates how the increase in computational power
could one day guide in silico experimentation.

The granularity of the kinetic models cited above is their strength, but
also their main weakness. Despite the available knowledge of molecular mech-
anisms, precisely measuring in-vivo kinetic parameters still represents a tech-
nological bottleneck [59–61]. While parameter values can be collectively fit-
ted to available data [62, 63], this is known to often produce large parameter
uncertainty [64–66]. This is problematic, because the predictions are often
particularly sensitive to the parameter values [67–69]. Constraint-based mod-
eling overcomes this limitation by using a mathematical approach that does
not require any knowledge about the reaction kinetics. The drawback is that
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this approach strongly depends on the constraints used to reduce the space
of admissible solutions, e.g. the choice of the objective function that may be
tricky, as discussed above [70].

The limitations of constraint-based and detailed kinetic models have mo-
tivated the construction of simpler, coarse-grained models. The philosophy is
quite different: instead of aggregating all available knowledge into a detailed
model, the modeler is concerned about carefully filtering this information to
keep the model as simple as possible. The resulting models generally describe
cellular functioning on a high level of abstraction, and are particularly valu-
able when looking for universal laws or principles [31–33]. They can take the
form of minimal core models that focus on a given aspect of growth, while
still abstracting away the molecular details (see e.g., [71]). They can also
be used as proof-of-concepts to submit verbal hypotheses to the logic and
rigor of mathematical reasoning [49]. For instance, a simple proof-of-concept
model was used to uncover the principles leading to overflow metabolism,
a mechanism by which microorganisms switch to inefficient metabolic path-
ways when growing at high nutrient availability [24]. This paradoxical and
widespread phenomenon [72–75] was shown to be easily explained by the
fact that high yield pathways also require the synthesis of more enzymes, re-
vealing the occurrence of a cost-benefit trade-off producing the switch when
nutrients are no longer the limiting factor. Overall, these models have several
advantages for the purpose of our study: they clearly state the underlying
assumptions, and are sufficiently tractable to be analyzed by a variety of
mathematical tools.

1.3.2 Measuring growth of microorganisms

Either to formulate hypotheses or test predictions, data on microbial
growth need to be acquired. The most straightforward method is to work at
the population level. When working with microorganisms, a clonal popula-
tion of genetically identical cells can easily be obtained by inoculating a single
colony into a growth medium [3]. Over time, this culture can be subjected
to different types of measurements: for instance, biomass can be estimated
directly through measurements of the dry weight of samples [25], or indi-
rectly through measurements of transmitted or scattered light across the cul-
ture [76], allowing to construct growth curves as presented in Fig. 1.3. Other
population-wide parameters, like the macromolecular composition [31, 33] or
the concentration of metabolites [60] can also be evaluated. They represent
averaged estimates from billions of genetically identical cells and are thus
usually robust and reliable measurements. In fact, most of E. coli param-
eters that are currently used in today’s growth models have been measured
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at the population level, notably through the emblematic work of Bremer and
Dennis [29, 77–79].

Nevertheless, some questions cannot be solved at the population level [80–
82]. One example are questions about the internal structure of the cell [81].
Bakshi et al. used a combination of fluorescent labeling and superresolu-
tion imaging to localize the ribosomes, RNA polymerases and DNA in living
E. coli cells [81]. They showed that despite what was previously thought,
most of the translation occurs far from the DNA, on free mRNA molecules
that migrate to ribosome-rich regions [81]. Another example concerns ques-
tions about single-cell variability [82–84]. Through growth and imaging of
single cells in a microfluidic device, Balaban et al. showed that a clonal bac-
terial population can profit from a preexisting heterogeneity to persist when
challenged by the presence of an antibiotic, a short-term mechanism that
does not involve any genetic mutation [82]. In the long term, heterogeneity
has also been shown to help subpopulations to resist lethal stresses, leaving
them with enough time to adapt and conquer new ecological niches [83, 84].
In fact, cell heterogeneity seems so crucial for the fitness of microorganisms
that diversity-generating mechanisms have been identified [85–87].

In addition to the level of measurement, the cultivation method plays
a significant role in the kinds of question that an experiment can answer.
With the advent of molecular genetics in the 1970s and 1980s, batch growth
conditions have been the preferred choice of most microbiologists [88]. As il-
lustrated in Fig. 1.3, the organism is inoculated in a closed-system and grows
until the nutrient is depleted. In a sense, such a condition is close to what mi-
crobes encounter in nature, where key nutrients are only available for a short
time and quickly depleted [4–6], and is essential to study many questions,
e.g. diauxic growth [89]. Currently, a strong advantage of batch culturing
is the intense parallelization that can be attained using microplates. Indeed,
microplates allow to perform dozens to hundreds of growth experiments, each
in less than one milliliter, while the optical density or the fluorescence of each
culture is automatically monitored. This has proven extremely helpful for
screening purposes and the establishment of standard libraries of gene label-
ing and modification [90, 91]. Parallel cultivation has notably been exploited
to construct roughly 4,000 single-cell knock-out mutants of Escherichia coli,
forming the Keio collection [90]. This mutant collection was extensively used
during the last decade to unveil unknown gene functions and test genome-
wide effects of gene deletions (as of 2009, more than 4 millions samples issued
from this collection had been shared worldwide [92]). Microplates have also
helped building a massive library of transcriptional fusions of the green flu-
orescent protein to each of about 2,000 different promoters in E. coli [91].
Interestingly, microplate batch growing conditions have also been used when
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applying the above constructions in the inference and analysis of gene regula-
tory networks [93–97]. But the latter use can be hazardous, because the main
drawback of the batch condition is that the culturing system is poorly con-
trolled. Changes of key chemical parameters (e.g. pH, pO2) have been shown
to occur during the whole growth curve [98]. At high density, metabolic by-
products can accumulate in the medium and impede growth before nutrients
are exhausted [99–101]. This could be dealt with by focusing on the begin-
ning of the culture, but this part has been shown to strongly depend on the
preculture history [39–41], and one is never sure when an internal steady
state has been reached [102].

For this reason, continuous cultures were developed for microbial stud-
ies [44, 102, 103]. Through the permanent renewal of the growth medium,
continuous cultures allow for maintenance of a chemically well-controlled en-
vironment, allowing for the acquisition of reproducible and reliable data [36,
88]. This has shown to be particularly valuable for comparative omic anal-
ysis, for instance the analysis of changes in protein levels [104] or genome-
wide transcriptomic changes [105] that occur when Saccharomyces cerevisiae
is grown in different media. Continuous cultures are more difficult to set-up,
however [36, 103]. Even if the working volume can be reduced [106], they
usually consume large quantities of medium and are, by design, expected to
be more prone to contamination [103]. But recent advances in microfluidic
technology have made it possible to set up robust continuous cultures exper-
iments on the microliter scale [45, 82]. For instance, the mother machine [45]
allows to perform long-term growth of microorganisms in continuous culture
using only a few milliliters of fresh medium per hour. This has enabled to
show that E. coli growth is remarkably stable on the long term and rather
immune to the aging mechanisms that normally affect mother cells in other
microorganisms. It is however important to note that at those scales, growth
can only be monitored through microscopy analysis, which could unnecessar-
ily complicate studies that do not rely on single-cell measurements.

The experimental approaches briefly reviewed above can be applied to
study microbial growth in a dynamical setting [30, 107–109]. For instance,
Levy et al. [107, 108] applied pulse-like environmental perturbations to a
continuous culture of yeast, and measured how transcriptomic reorganization
occurs. They observed that the transcription levels are affected before the
growth rate of the organism, suggesting a significant role of feed-forward
sensing from the environment. Madar et al. [109] analyzed the transcriptional
reorganization occuring in E. coli during the lag phase through the coupling
of batch experiments in microplates and single-cell measurements via flow
cytometry. They showed that bottleneck enzymes were produced early in the
lag phase, before the cells actually switch to the production of ribosomes and
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general metabolic enzymes. As in this PhD project, the studies cited above
investigate questions that can only be answered in a dynamical context and
they inspired the search for the most appropriate experimental approaches
to answer the problem set out in Section 1.2. By taking the best of the
works presented above, a part of our study will focus on establishing such
experimental conditions.

1.4 Approach
Throughout this study, we focus on a specific dynamical growth scenario,

namely the case of a nutrient upshift [30, 110–112]. Contrary to steady-
state growth, nutrient upshifts and downshifts are frequently encountered
in the life cycle of microorganisms [3–6]. In combination, they also provide
a good approximation of more complex environments. In nature, nutrient
upshifts generally start from stationary phase [4–6], a state in which complex
adaptive mechanisms are at work that we would like to sidestep for this
study [39–43, 47, 48]. For this reason, we confine the problem to the study of
resource allocation during a so-called steady-state-to-steady-state transition.
While we expect the starting and ending conditions to be on the growth law
presented in Fig. 1.2, we currently have no idea of what happens in the time
between.

We start by developing in Chapter 2 a simple proof-of-concept model of
resource allocation that evaluates how biomass production can be maximized
during an upshift from a medium with low nutrient content to a medium
with high nutrient content. The model is an instance of a self-replicator
model [24], but focuses on the allocation of resources to only two sectors
of the microbial cell: metabolism, taking up and converting nutrients to
precursor metabolites, and gene expression, producing macromolecules from
the precursors. The model is kept as simple as possible in order to make
sure it stays mathematically tractable in a dynamical context. A necessary
step is however to verify that, at steady-state, the model account for known
growth laws of resource allocation [31, 33].

Using this model, we pose the problem of dynamical optimization as an
optimal control problem [113]. To comply with what we know at steady
state, the microbial cells are assumed to maximize biomass production, but
we adapt the criterion to the dynamical context of an upshift scenario. By
using a combination of analytical [114] and numerical optimization [115], we
aim to identify a mathematical upper bound for the biomass produced [113].
This theoretical solution can then be used to explore possible regulatory
strategies. In particular, we use the bang-bang [113] control solution found
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as a benchmark to identify the system variables that need to be sensed in
order to optimize resource allocation. This provides a common scale on
which the outcomes of different regulatory schemes can be compared during
an upshift scenario. This allows us to identify one or several strategies that
clearly outperform all the others, giving us testable predictions. Specifically,
we show that feedback from the intracellular state turns out to be much more
valuable than information from the environment. We investigate if such a
strategy could be active in real cells, and identify the widespread ppGpp
system [116] as a possible molecular implementation that could control the
synthesis of ribosomes in a switch-like manner during a nutrient upshift.
Overall, this chapter demonstrates that, if microbial cells actually optimize
their biomass production during an upshift, they should dynamically allocate
their resources to the gene expression machinery in an on-off manner, making
an experimentally testable prediction.

In Chapter 3, we address the challenging problem of experimentally veri-
fying this prediction in Escherichia coli. This task requires the development
of an experimental set-up allowing the measurement of resource allocation
in our dynamical growth scenario, i.e. a steady-state-to-steady-state nu-
trient upshift. From the model developed in Chapter 2, we identified that
the predicted on-off pattern should occur on a short time scale after the
transition (a couple of generations). This motivates the use of in-vivo, high-
frequency, single-cell measurements of the concentration of the gene expres-
sion machinery. Inspired by the work of Bakshi et al. [81], we constructed
a strain with a GFP-tagged S2 ribosomal subunit, grew this strain in the
mother machine, and monitored expression of the reporter gene using fluo-
rescence microscopy [45]. While originally developed for studies of long-term
steady-state growth, we used the mother machine here to perform an in-
stantaneous medium transition in a controlled manner from acetate (a poor
carbon source) to glucose (a rich carbon source), in order to obtain a signif-
icant difference in growth rates between the two media [117].

After segmentation and cell tracking, this set-up was able to generate
fluorescence and size time series for dozens of cells. Using again the self-
replicator model as a framework, we showed that these measurements are
sufficient for the intended signal reconstructions, in particular the growth
rate and the resource allocation profile over time. The method we used
is called Kalman smoothing [118, 119]. While well-known in engineering,
Kalman smoothing has been rarely used in quantitative biology, but turned
out to be particularly suitable for the purpose of the model-based analysis of
gene expression data in single cells, as we argue and show on synthetic data
in Chapter 3. Finally, the experimental verification or falsification of the
optimal control prediction, should allow to conclude whether the biomass
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maximization, as considered in Chapter 2, is indeed a cell objective in a
dynamical context.



Chapter 2

Dynamical Allocation of Cellular
Resources as an Optimal Control
Problem: Novel Insights into
Microbial Growth Strategies

"Rather than propose a new theory or unearth a new fact, often the most
important contribution a scientist can make is to discover a new way of seeing
old theories or facts." – Richard Dawkins, The Selfish Gene [15] (preface to
1989 edition).

Résumé du Chapitre 2: Modélisation de l’alloca-
tion dynamique des ressources cellulaires comme
un problème de contrôle optimal

Ce chapitre est dédié à une approche théorique du problème d’allocation
des ressources cellulaires chez les microorganismes. En Section 2.2.1, nous
modélisons la cellule comme un auto-réplicateur devant allouer une ressource
(les nutriments du milieu) à deux secteurs distincts de macromolécules : la
machinerie métabolique qui extrait les nutriments de l’environnement et les
convertit en précurseurs utilisables, et la machinerie d’expression génique qui
utilise ces précurseurs pour produire de nouvelles macromolécules (Fig. 2.1).
Ce modèle très simple comprenant 2 réactions (Eq. 2.1) se traduit mathéma-
tiquement par deux équations différentielles ordinaires (Eqs 2.3 et 2.4) faisant
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intervenir le paramètre α qui va devenir clé dans notre étude. α représente
la proportion massique des précurseurs qui sont utilisés pour produire de la
machinerie d’expression génique, au détriment de la machinerie métabolique
(qui elle, est produite à la proportion 1 − α). Comme on l’a déjà vu avec
les lois de croissance établies à l’état stationnaire (voir Chapitre 1), cette
proportion varie avec l’environnement, on s’attend donc à ce que α en fasse
autant, augmentant d’autant que l’environnement devient riche (Fig. 1.2).
Cependant, de quelle manière varie-t-il entre deux états de croissance sta-
tionnaires, lorsque les composants cellulaires sont en déséquilibre et que la
cellule doit adapter sa composition ?

Comme nous l’avons vu dans le Chapitre 1, les lois de croissance à l’état
stationnaire s’expliquent facilement si l’on considère que la cellule maximise
son taux de croissance. C’est aussi le cas dans notre modèle, et en Sec-
tion 2.2.2 nous voyons que pour chaque environnement, la croissance de la
cellule est maximale pour une valeur unique de α. Mais surtout, cette valeur
que l’on nomme α∗opt est d’autant plus grande que l’environnement est riche
(Fig. 2.2). C’est finalement toutes les lois de croissance à l’état stationnaire
qui sont prédites par notre modèle simple, sous la simple hypothèse qu’à
tout moment, la cellule maximise son taux de croissance (Fig. 2.3). Peut-on
appliquer le même principe, dans un contexte cette fois dynamique, de façon
à prédire comment la cellule distribue ses ressources lors d’une transition de
croissance ?

Dans ce contexte, α est désormais une fonction du temps. Nous cherchons
donc quelle fonction du temps maximise un objectif donné. Ce problème,
formulé en Section 2.2.3, est un problème de contrôle optimal, puisque l’ob-
jectif à optimiser est une fonction d’une autre fonction, plus communément
appelée fonctionnelle. Nous choisissons comme équivalent dynamique de la
maximisation du taux de croissance, la maximisation de la production de
biomasse sur un intervalle de temps comprenant un changement abrupt de
l’environnement (Eq. 2.9). Nous résolvons ce problème en Section 2.2.4 en
couplant l’utilisation du principe du maximum de Pontryagin avec de l’opti-
misation numérique. La solution optimale obtenue montre que le contrôle α
doit prendre alternativement les valeurs 0 ou 1 jusqu’à ce que le système soit
stabilisé sur un nouvel équilibre (Fig. 2.4 et Eq. 2.14). En d’autres termes,
la meilleure production de biomasse s’obtient si, à tout moment, la cellule
aiguille 100% de ses ressources vers un seul secteur, en alternant entre l’un et
l’autre jusqu’à ce que le nouvel état stationnaire de croissance soit atteint. Ce
type de solution se rencontre souvent en contrôle optimal, et répond au nom
de concept TOR (Tout-Ou-Rien, ou bang-bang en anglais). Mais ce contrôle
est-il pertinent d’un point de vue biologique ? La cellule a-t-elle suffisamment
d’information à sa disposition pour réaliser une telle transition, laquelle re-
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pose sur des changements abrupts de l’expression génique à des instants bien
précis ?

En Section 2.2.5, nous utilisons le problème de contrôle optimal et sa so-
lution comme un banc d’essai permettant de comparer entre elles différentes
stratégies de régulation (Fig. 2.5). En se servant du modèle pour guider notre
intuition, et en nous limitant aux solutions qui respectent les lois de crois-
sance stationnaire, nous montrons que deux stratégies de régulation simples
sont possibles : soit l’organisme mesure directement la quantité de nutriments
dans l’environnement, soit il mesure la concentration en précurseurs dans la
cellule. De manière intéressante, ces deux stratégies sont optimales à l’état
stationnaire, et donc strictement équivalentes. Cependant, dans le contexte
dynamique de notre banc d’essai, la stratégie qui consiste à mesurer les pré-
curseurs est bien plus efficace, même si elle reste évidemment inférieure à la
solution optimale (Fig. 2.6).

Finalement, nous montrons en Section 2.2.6 qu’une stratégie plus com-
plexe mesurant à la fois les précurseurs et la concentration en machinerie
d’expression génique est tout à fait capable de réaliser un contrôle proche du
tout-ou-rien optimal (Eq. 2.19 et Fig. 2.7). Mais surtout, en réutilisant un
modèle du système ppGpp, connu pour réguler la synthèse des ribosomes chez
la bactérie Escherichia coli, nous montrons que ce système répond, au moins
structurellement, aux exigences d’une telle stratégie de régulation (Fig. 2.8).
Cela éclaire d’un jour nouveau le fonctionnement et l’origine de ce système
de régulation largement répandu chez de nombreux microorganismes. En in-
tégrant l’information provenant à la fois de la quantité de ribosomes et de
celle des précurseurs, ce dernier est capable d’allouer efficacement les res-
sources de la cellule lorsque celle-ci doit s’adapter rapidement à un nouvel
environnement.

Beginning of Chapter 2
Important note: Text and figures in this chapter have been published in
Plos Computational Biology [120] under the terms of the Creative Commons
Attribution License (CC-BY 4.0).

2.1 Introduction
Microorganisms adapt their physiology to changes in nutrient availabil-

ity in the environment. This involves changes in the expression of a large

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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number of genes, encoding proteins with a variety of cellular functions, such
as transporters for the uptake of nutrients, enzymes for the conversion of
nutrients to energy and building blocks for macromolecules, the components
of the transcriptional and translational machinery, and transcription factors
to preferentially direct RNA polymerase to specific promoters [3, 14]. Fun-
damentally, the reorganization of gene expression in response to changes in
environmental conditions is a resource allocation problem. It poses the ques-
tion how microorganisms redistribute their protein synthesis capacity over
different cellular functions when constrained by the changing environment.

The mechanisms responsible for resource allocation in microbial cells are
usually assumed to have been optimized through evolution, so as to max-
imize the offspring of cells in their natural environment. How this general
principle manifests itself on the level of cellular physiology is not straight-
forward though. Many studies have reasoned that growth-rate maximization
provides a selective advantage to microorganisms, because it allows competi-
tors to be outgrown when resources are scarce. Others have shown, however,
that appropriate optimization criteria will depend on the structure of the
environment and the ecosystem, as well as on the molecular properties of
metabolic pathways [16–20]. For instance, in environments without competi-
tion for a shared resource, maximization of growth yield rather than growth
rate is expected to provide a selective advantage. Although what counts as
optimal is thus context-dependent, growth and evolution experiments in Es-
cherichia coli have shown that in certain conditions bacterial metabolism is
indeed geared towards growth-rate maximization [21–23].

For this reason, growth-rate maximization is a central hypothesis in a
number of recent theoretical studies of resource allocation using coarse-
grained models of the cell [24, 32, 33]. The models deliberately reduce the
molecular complexity of regulatory networks so as to focus on generic ex-
planatory principles [49]. Along these lines, Molenaar et al. developed a
series of simple models of the microbial cell, taking into account that growth
requires the synthesis of proteins playing a role in metabolism (transporters,
enzymes) and gene expression (ribosomes), in varying proportions. Alloca-
tion parameters that maximize the growth rate were shown to account, at
least in a qualitative way, for the variation of the amount of ribosomal protein
as a fraction of total protein in different growth media, and for the occur-
rence of overflow metabolism above certain growth rates [24]. Using another
coarse-grained model of the cell, centered on amino acid supply (metabolism)
and demand (protein synthesis), Scott et al. derived empirical growth laws
with linear relations between the ribosomal protein fraction and the growth
rate, in conditions where the nutrient supply or demand are altered [32, 33].
In their model, maximization of growth rate requires maximization of amino
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acid flux and is achieved for a specific, unique value of the ribosomal pro-
tein fraction. Based on a structurally similar model, Maitra and Dill related
optimal resource allocation to the basic constants of the metabolic and gene
expression machinery, in particular energy efficiency [121].

The assumption of growth-rate maximization may lead to correct predic-
tions in some situations, but ignores the regulatory mechanisms achieving
resource allocation and therefore cannot provide a causal explanation of cel-
lular behavior [89]. Several studies have used coarse-grained models to under-
stand which control strategies microorganisms employ to achieve (optimal)
resource allocation [32, 116, 122]. Scott et al. have shown that a robust feed-
forward control strategy, based on the sensing of the amino acid pool size and
the corresponding adjustment of the fraction of ribosomes producing ribo-
somal proteins, allows the ribosomal protein fraction to be maintained close
to its optimal value under a variety of growth conditions [32]. The authors
suggest that this control strategy involves the signalling molecule ppGpp, in
agreement with conclusions drawn from a recent kinetic model of the reg-
ulatory mechanisms achieving optimal adjustment of the ribosomal protein
fraction [116]. Weiße et al. also developed a coarse-grained model of micro-
bial growth based on resource allocation trade-offs [122]. Without including
specific regulatory interactions, the model accounts for the above-mentioned
bacterial growth laws, predicts host-circuit interactions in synthetic biology,
and relates gene regulation to the nutrient composition of the medium.

The above studies consider resource allocation at steady state, where all
intensive variables describing the growing microbial culture, in particular
the concentrations of its molecular components, are constant (see [34] for
a precise definition of steady-state growth and the closely related notions
of balanced and exponential growth). This requires an environment to be
stable over a long period of time. Such conditions can be achieved in the
laboratory [36], but many microorganisms naturally experience frequently-
changing conditions. For example, E. coli can cycle between two distinct
habitats, the mammalian intestine and the earth’s surface (water, sediment,
soil) [7]. The bacteria transit through different microenvironments in the
intestinal system, where they encounter different mixes of sugars [8]. They
are even more challenged in the open environment outside the host, with
a greatly fluctuating availability of carbon and energy sources and a large
variability in temperature, osmolarity, oxygen, and microbial communities [9,
10].

This situation motivates a dynamical perspective on microbial growth
and resource allocation [30, 123–125]. However, fundamental results like the
growth laws uncovered for steady-state conditions are still lacking. In par-
ticular, extending the results reviewed above to dynamical conditions raises



34 CHAPTER 2. DYNAMICAL ALLOCATION OF CELL RESOURCES

the following questions: Are control strategies that maximize steady-state
growth also optimal in dynamical environments? If this is not the case, then
which alternative strategies would be optimal for such conditions? And fi-
nally, how do these strategies compare with the regulatory mechanisms that
have actually evolved in microorganisms?

The aim of this study is to address the above fundamental questions in a
specific dynamical growth scenario, namely a transition between two steady
states following an environmental perturbation. In particular, we consider
the upshift of a microbial culture from a medium supporting growth at a low
rate to a medium supporting growth at a high rate [30]. We develop a coarse-
grained model of the cell, inspired by the self-replicator model of Molenaar
et al. [24], and reformulate our questions in the context of optimal control
theory [113] to identify control schemes maximizing biomass production over
an interval of time, the dynamical equivalent of growth-rate maximization.

We show that Pontryagin’s Maximum Principle suggests that optimal
resource allocation after a growth transition is achieved by a bang-bang-
singular control law [113], a conjecture confirmed by direct numerical op-
timization. This optimal solution provides a gold standard against which
possible control strategies of the cell can be compared. We consider sim-
ple strategies that drive the system to the steady state enabling growth at
the maximal rate in the new medium, after the upshift. In a dynamical
growth scenario, the strategy sensing the concentration of precursor metabo-
lites emerges as the best candidate, consistent with the analysis of Scott et
al. that feedforward activation of the rate of synthesis of ribosomal proteins,
involving ppGpp-mediated sensing of the amino acid pool [126–128], is the
key regulatory mechanism for growth control. It is possible, however, to de-
fine a strategy approaching the theoretical optimum even more closely by
exploiting information on both the precursor concentration and the abun-
dance of the gene expression machinery. Interestingly, a thorough analysis
of the functioning of the ppGpp system, as described by a kinetic model
of the synthesis and degradation of this signalling molecule, suggests simi-
larities between our two-variable control strategy and the regulation of the
transcription of ribosomal RNA by ppGpp [116].

The results presented here generalize the analysis of control strategies
enabling optimal growth of microorganisms from steady-state to dynamical
scenarios. The control strategies are formulated in the context of a coarse-
grained model of resource allocation, based on minimal assumptions, that
accounts for empirical growth laws at steady state. The analysis shows that
during growth transitions, control strategies based on information of a single
variable are outperformed by systems measuring several variables. This con-
clusion agrees with the intuition that, in dynamical environments, there may
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be an evolutionary pressure towards more elaborate sensory systems. From
a methodological point of view, our study illustrates how optimal control
theory can provide novel insights into complex biological phenomena [129].

2.2 Results

2.2.1 Self-replicator model of resource allocation

Resource allocation in bacteria involves the distribution of cellular re-
sources (precursor metabolites and energy) over processes supporting main-
tenance and growth [3]. A simple modelling tool for analyzing resource allo-
cation questions in a precise way are so-called self-replicator models. These
models have a long history in various domains of chemistry, biology, physics,
and computer science [130], and were recently put to use as an analytical tool
in systems biology [24] (see also [131]). We will show that despite their sim-
plicity, which make them tractable for mathematical analysis, self-replicator
models are sufficiently expressive to account for empirical observations and
make testable predictions.

Bearing in mind that the major constituents of the cell are macromole-
cules (DNA, RNA, proteins), produced from precursor metabolites, a fun-
damental resource allocation question is the following: How much of the
cellular resources are invested in the making of new macromolecules (gene
expression machinery) and how much in performing other functions, in par-
ticular producing metabolic enzymes involved in the uptake of nutrients and
their conversion to precursor metabolites (metabolic machinery)? In order to
address this question, we consider a self-replicating system composed of the
gene expression machinery (R) and the metabolic machinery (M). The sys-
tem, shown schematically in Fig. 2.1, is thus defined by two macroreactions
which are conveniently written as:

S
VM−→ P,

P
VR−→ αR + (1− α)M.

(2.1)

The first reaction, catalyzed by M , converts external substrates (S) into
precursor metabolites (P ). The second reaction, catalyzed by R, converts
precursors into macromolecules (R and M). The resource allocation param-
eter α ∈ [0, 1] defines the proportion of precursor mass used for making
gene expression machinery as compared to metabolic machinery. We will
interchangeably use the symbols M , R, S, and P for the components of the
replicators themselves and their total mass [g]. We will denote the rates at
which the macroreactions occur by VR and VM [g h-1].
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Figure 2.1 – Self-replicator model of bacterial growth. External sub-
strates S enter the cell and are transformed into precursors P through the
action of the metabolic machinery M . The precursors are used by the gene
expression machinery R to make the proteins composing both the metabolic
machinery (transporters, enzymes, ...) and the gene expression machinery
itself (RNA polymerase, ribosomes, ...). α (1− α) is the mass proportion of
precursors converted into R (M). Thick arrows denote reactions and thin,
dashed arrows denote catalytic activities. The rate of synthesis of precursors
and the rate of synthesis of proteins from precursors are denoted by VM and
VR, respectively.

The self-replicator system in Fig. 2.1 is based on a number of simplifying
assumptions. First, cell division is not explicitly modelled and replication
should therefore be interpreted as the growth of (the mass of) a cell popula-
tion. This amounts to the assumption that individual cells in a growing
populations have the same macromolecular composition. Second, degra-
dation of the macromolecules is ignored. In other words, we assume that
macromolecules are stable and that their degradation rates are negligible
with respect to the rates of other reactions in the system. Third, we con-
sider only two classes of macromolecules (R and M). In particular, we do
not assume that an irreducible mass fraction of the precursors is dedicated
to cell maintenance [33]. The system could be easily extended to relax the
above assumptions, but this would complicate the analysis of the model and
obscure the points we want to make.

In what follows, it will be more convenient to describe the quantities in
the system as intracellular concentrations rather than as the total mass in
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the cell population. To this end, we define the volume Vol [L] of the cell
population as follows:

Vol = β (M +R), (2.2)

with β a conversion constant [L g-1] equal to the inverse of the cytoplasmic
density. Dividing each variableM , R, and P by Vol yields the concentrations
m, r, and p of metabolic enzymes, ribosomes and other components of the
gene expression machinery, and precursor metabolites, respectively [g L-1].
Henceforth, these variables as well as Vol and α will be considered functions
of time t [h].

The dynamics of the self-replicator in Fig. 2.1 can be described by the
following system of ordinary differential equations (see S1 Text for the deriva-
tion):

dp

dt
= vM(s, r)− vR(p, r) (1 + β p), (2.3)

dr

dt
= vR(p, r) (α(t)− β r), (2.4)

where s [g L-1] denote the (extracellular) concentration of substrate. vM(s, r)
[g L-1 h-1] and vR(p, r) [g L-1 h-1] denote the precursor synthesis rate and the
macromolecule synthesis rate, respectively. The growth rate µ [h-1] of the
replicator system is defined as the relative increase of the volume, and can
be rewritten with Eqs 2.3-2.4 as proportional to the macromolecule synthesis
rate (S1 Text):

µ =
1

Vol

dVol

dt
=

1

M +R

d(M +R)

dt
= β vR(p, r). (2.5)

The precursor concentration changes through the joint effect of the pre-
cursor synthesis rate vM(·), the macromolecule synthesis rate vR(·), and the
rate of growth dilution (β vR(·) p). The change in concentration of ribosomes
and other components of the gene expression machinery is the net effect of the
ribosome synthesis rate (α(·) vR(·)) and the rate of growth dilution (β vR(·) r).
Remark that it is not necessary to add an equation for m because it follows
from Eq. 2.2 that r +m = 1/β, and therefore dm/dt = −dr/dt.

We use Michaelis-Menten kinetics to define the synthesis rate of each
reaction:

vM(s, r) = kM m
s

KM + s
= kM (1/β − r) s

KM + s
, (2.6)

vR(p, r) = kR r
p

KR + p
, (2.7)
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with rate constants kM , kR [h-1] and half-saturation constantsKM , KR [g L-1].
Note that the rate of precursor synthesis is proportional to the concentra-
tion of the components of the metabolic machinery, while the macromolecule
synthesis rate is proportional to the concentration of the components of
the gene expression machinery. These catalytic effects correspond to the
dashed arrows in Fig. 2.1. The rate constant kM depends both on the qual-
ity of the nutrients in the medium (higher kM for a richer medium) and on
the metabolic efficiency of the macroreaction converting the substrate into
precursors (higher kM for a more efficient reaction). For convenience, we
henceforth assume that the environmental conditions do not change over the
time-interval considered, either because s is constant or because s � KM ,
corresponding to a situation in which the substrate is available in excess. In
both cases, eM(s) = kM s/(KM + s) is approximately constant, so that we
can write

vM(r) = eM (1/β − r). (2.8)

The rate constant kR characterizes the efficiency of the gene expression ma-
chinery, depending on the elongation rate of ribosomes, among other things.
The ratio p/KR is an indicator of the saturation of the gene expression ma-
chinery by precursors.

The system of Eqs 2.3-2.4 thus has four parameters (eM , kR, KR, β), one
of which characterizes the input from the environment (eM). The order of
magnitude of the parameters can be inferred from data in the literature, as
explained in S2 Text. Below we use the following values for the parameters
eM = 3.6 h-1, kR = 3.6 h-1, KR = 1 g L-1, β = 0.003 L g-1 (S1 Table).
However, it should be emphasized that the conclusions of this paper do not
depend on the exact quantitative values of these parameters.

An interesting property of the model is that it is built on minimal assump-
tions, basically the two macroreactions and the definition of the volume as
proportional to the total mass of macromolecules. Like in [24, 32, 123], these
assumptions directly lead to the expression of the growth rate in Eq. 2.5,
without additional assumptions.

2.2.2 Growth-rate maximization of the self-replicator
reproduces bacterial growth laws

The nullcline for r is given by r = 0, r = α/β, and p = 0, while the
nullcline for p is defined by

r =
eM

β
(
eM + kR

p
KR+p

(1 + βp)
) .



2.2. RESULTS 39

0.0 0.5 1.0 1.5 2.0

p [g L−1] ×102

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r
[g

L
−

1
]

×102 A

Nullcline for p

Nullcline for r

0.0 0.5 1.0 1.5 2.0 2.5 3.0

µ∗ [h−1]

0.0

0.2

0.4

0.6

0.8

1.0

α

(µ∗opt , α
∗
opt)

B

Rich medium

Poor medium

Figure 2.2 – Analysis of self-replicator model of bacterial growth.
A: Phase-plane analysis of the self-replicator model of Eqs 2.3 and 2.4. The
nullclines for p and r are shown as solid and dashed curves, respectively.
Parameter values are eM = 3.6 h-1, kR = 3.6 h-1, KR = 1 g L-1, β =
0.003 L g-1, α = 0.45. B: Dependence of the growth rate at steady state
µ∗ on the resource allocation parameter α, for two different environmental
conditions (solid line, eM = 4.76 h-1; dashed line, eM = 1.57 h-1, other
parameter values are kR = 2.23 h-1, KR = 1 g L-1, and β = 0.003 L g-1). The
maximal growth rate is attained for a unique α, called α∗opt.

The nullclines define a single stable steady state (p∗, r∗) (Fig. 2.2A and Meth-
ods). At this steady state, the growth rate is constant and denoted by µ∗.
The nullcline for p is defined by the environment eM . The nullcline for r,
and thus the location of the steady state with the associated growth rate, are
given by α. Fig. 2.2B shows the dependency of the steady-state growth rate
µ∗ on the resource allocation parameter α. As can be seen, µ∗ is maximal
for a specific, unique value of α, which we denote α∗opt. That is, the model
predicts that there is a single optimal way to divide the precursor flux over
the synthesis of the gene expression machinery and the metabolic machinery.
The same result, using a similar model, was obtained by Scott et al. [32].
The self-replicator model is simple enough to derive an algebraic expression
for computing α∗opt and the corresponding maximal growth rate µ∗opt (Methods
and S1 Text), which will simplify analysis of the system in later sections.

In order to validate the model, we verified that it can account for data on
the macromolecular composition of E. coli at steady state [33]. When opti-
mizing α for different values of eM (assuming cells attain maximal growth),
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the model predicts a relation between α∗opt and µ∗opt (colored dots and black
dashed line in Fig. 2.3A) that is quasi-linear for high growth rates. We
compared this prediction with the results of experiments where the relation
between the growth rate and the mass ratio of total RNA and protein was
determined in different growth media (Fig. 2.3B). In the framework of our
model, different media correspond to different values of eM , and different
total RNA/protein mass ratios to different values of α (up to a conversion
factor), allowing a direct comparison of the model predictions in Fig. 2.3A
with the data in Fig. 2.3B (see Methods). As can be seen, the model is able
to account for the observed quasi-linear relation between the growth rate and
the total mass ratio of RNA and protein. Moreover, for realistic values of kR
and eM , a good quantitative fit is obtained (Methods and S1 Table).

The data from Scott et al. also reveal a second apparently linear relation
between the growth rate and the total RNA/protein mass ratio. This rela-
tion is obtained when varying, in the same growth medium, the efficiency of
protein synthesis by adding different doses of an inhibitor of translation (chlo-
ramphenicol) [33]. Using the model, we computed α∗opt and µ∗opt, for constant
environment eM and different values of the efficiency of protein synthesis kR
(dashed colored lines in Fig. 2.3A). As can be seen in Fig. 2.3B, the model
also captures the second linear relation in the data.

We conclude that the self-replicator model is able to reproduce known
observations of resource allocation in bacteria, so-called growth laws [33].
The model is similar to a model recently proposed by Scott et al. [32]. Con-
trary to the latter model, the translation rate is not assumed to be constant
in the self-replicator model, but rather depends on precursor abundance, as
proposed by the same authors in [132].

The above analysis of bacterial growth has two major limitations. First,
the predictions of optimal resource allocation (the value of α leading to
the maximal growth rate) hold at steady state, for a constant environment,
whereas most bacteria are not expected to encounter such conditions outside
the laboratory. An allocation of resources that is optimal for steady-state
growth and constant over time may not be optimal in dynamical growth
conditions. Second, while it predicts which value of α is optimal at steady
state, the model says nothing about the strategies that could be used to
control resource allocation and set α to its optimal value. In other words,
how could bacterial cells use sensors of changes in their internal state and
the environment to optimally adjust α? In what follows, we will address the
above two questions, after having given a precise statement of the problem of
optimal resource allocation in a dynamical environment in the next section.
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Figure 2.3 – Self-replicator model accounts for bacterial growth laws.
A: Predicted quasi-linear relation between the maximal growth rate µ∗opt and
the corresponding optimal resource allocation α∗opt, for different values of eM
(different colors). The colored dots indicate α∗opt and µ∗opt for kR = 2.23 h-1
and different eM , and the dashed black line the relation for all intermedi-
ate values of eM . The dashed colored lines indicate the relation between
α∗opt and µ∗opt obtained when, for a given value of eM , the value of kR is de-
creased (lower kR leads to lower µ∗opt). The solid grey curves correspond to
(µ∗, α)-profiles like those shown in Fig. 2.2B. B: Measured relation between
the total RNA/protein mass ratio and the growth rate, in different growth
media with different doses of a translation inhibitor (data from [33]). For
each medium, indicated by a color, five different concentrations of inhibitor
were used (higher dose leads to lower growth rate). Growth-medium compo-
sitions are given in the original publication and error bars represent standard
deviations. The dashed black and colored lines are the same as in panel A,
indicating the good quantitative correspondence between model predictions
and experimental data for the chosen parameter values, obtained by fitting
the model to the data points (see Methods for details).
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2.2.3 Biomass maximization as an optimal control prob-
lem

A self-replicator at steady state accumulates biomass according to
Vol(0) eµ

∗ t, t ∈ [0, τ ], when µ∗ is the growth rate at steady state. The accu-
mulation of biomass is obviously maximal when the growth rate is maximal
(µ∗ = µ∗opt). In dynamical conditions, the growth rate is not constant and
biomass accumulation is described more generally by:

dVol
dt

= µ(t) Vol.

In other words, when integrating over the time interval [0, τ ]:

ln

(
Vol(τ)

Vol(0)

)
=

∫ τ

0

µ(t) dt. (2.9)

Since the logarithm is an increasing function, maximizing the biomass pro-
duced over [0, τ ] requires maximization of the right-hand side of the equation.

In a changing environment, maximization of the integral in Eq. 2.9 will
generally require the optimal value of α to be a function of time instead of
a specific constant value. This dynamical resource allocation problem can
be formulated in a more precise way using concepts from optimal control
theory [113]. Let J be the objective function

J(α) =

∫ τ

0

µ(t) dt =

∫ τ

0

β vR(p, r) dt,

where α : R+ → [0, 1] is a time-dependent function. The time evolution of
p and r is determined by the self-replicator model of Eqs 2.3 and 2.4, and p
and r thus depend on eM and α. Moreover, let U = {α : R+ → [0, 1]} be
the set of admissible controls. The optimal dynamical control problem then
consists in finding the time-varying function αopt(t) that maximizes J(α) over
the time-interval [0, τ ]:

αopt = arg max
α∈U

J(α). (2.10)

In what follows, we will simplify the above problem by considering that
the environment changes in a step-wise fashion at t = 0, but remains constant
over the time-interval [0, τ ], that is, eM(t) = eM . More specifically, we focus
on the case of a nutrient upshift, corresponding to a step-wise increase of
eM . This upshift scenario corresponds to classical experiments in bacterial
physiology [110–112], reviewed in [30], and is frequently encountered in the
life cycle of a microorganism [3]. Notice that more complex environments can
be approximated by a sequence of step-wise nutrient upshifts and downshifts.
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2.2.4 Solution of the optimal control problem

Optimal dynamical control problems for two-dimensional nonlinear dy-
namical systems, like the problem of Eq. 2.10, are generally difficult to solve.
However, we will show that the class of functions to which αopt belongs can
be identified, and we will use numerical optimization to identify a particular
αopt maximizing J .

As a preliminary step, in order to simplify the analysis, the variables in
the self-replicator model of Eqs 2.3 and 2.4 are made nondimensional, by
defining t̂ = kR t, p̂ = β p, and r̂ = β r. This leads to the following ODE
system:

dp̂

dt̂
= (1− r̂)EM − (1 + p̂) r̂

p̂

K + p̂
, (2.11)

dr̂

dt̂
= r̂

p̂

K + p̂
(α(t̂)− r̂), (2.12)

where K = β KR and EM = eM/kR. The nondimensional growth rate is
given by:

µ̂ =
µ

kR
=

p̂

K + p̂
r̂. (2.13)

Notice that the nondimensionalized system depends on a single parameter
K, in addition to the constant environment EM , which functions as an input
to the system.

Analysis of the nondimensionalized system allows a number of proper-
ties of the solution of the optimal control problem of Eq. 2.10 to be derived
(Methods and S3 Text). First, by applying a version of the well-known Pon-
tryagin Maximum Principlek [114], we can prove that the optimal solution
is obtained for an alternating sequence of α(·) = 0 and α(·) = 1, possi-
bly ending with an intermediate value of α(·), corresponding to the optimal
steady state (p̂(t), r̂(t)) = (p̂∗opt, r̂

∗
opt), that is, the steady state leading to the

optimal growth rate µ̂∗opt in the post-upshift environment EM . Second, if the
optimal solution reaches the optimal steady state for the new environment,
then it does so after an infinite number of switches of α(·) between 0 and 1.
Third, this switching behavior is characterized by a so-called switching curve
r̂ = ϕ(p̂) in the (p̂, r̂)-plane, which passes through (p̂∗opt, r̂

∗
opt). The switching

curve divides the phase plane into two regions, such that α(·) switches to 0
when the system is in the region above ϕ and to 1 when the system is below
ϕ (black dashed curve in Fig. 2.4A).

In line with these results, we conjecture that the optimal solution con-
sists in a switching transient towards the optimal steady state for the new
environment, and remains at this steady state until the next environmental
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Figure 2.4 – Optimal control of the self-replicator during a nutrient
upshift. A: Optimal trajectory in the phase plane for the nondimension-
alized model of Eqs 2.11-2.12, with streamlines. The optimal trajectory is
shown as a solid, red curve. The solid, black curve represents the p̂-nullcline.
The dashed, black curve is the switching curve ϕ(p̂). The optimal solution
was obtained by numerical optimization using bocop [115] (see Methods for
details), using the parameter values EM = 1 and K = 0.003, and start-
ing from the initial state (0.024, 0.18) at t = 0 (optimal steady state for
EM = 0.2). B: Time evolution of the control variable αopt(·) (thick, red line)
and the environment EM (dashed, black line).

change. Such a solution is known as a bang-bang-singular solution in the
control theory literature [113]. Formally, the solution of Eq. 2.10 can be
described as

αopt(t̂) =


0, if r̂(t̂) > ϕ(p̂(t̂)),

1, if r̂(t̂) < ϕ(p̂(t̂)),

α∗opt, if (p̂(t̂), r̂(t̂)) = (p̂∗opt, r̂
∗
opt).

(2.14)

Notice that the optimal solution involves dynamical feedback from the state
of the system to the control variable α(·), and is therefore an instance of
closed-loop optimization [113].

The optimal control problem of Eq. 2.10 was also solved numerically by
a direct method using the bocop software [115] (see Methods for details). A
time discretization allows the problem to be transformed into a nonlinear
optimization problem solved here by interior point techniques. The optimal
trajectories obtained numerically confirm our conjecture that the optimal
control is bang-bang-singular. An example solution, obtained by numeri-
cal optimization is shown in Fig. 2.4. At time t̂ = 0, EM jumps from a
low to a high value, corresponding to a nutrient upshift (dashed black line
in Fig. 2.4B). The optimal solution αopt consists of a sequence of switches
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between α = 1, corresponding to maximal synthesis of the gene expression
machinery, and α = 0, corresponding to maximal synthesis of the metabolic
machinery, until (p̂∗opt, r̂

∗
opt) is reached. α is then set to α∗opt, the value leading

to the maximum growth rate in the new medium (here 0.5, for EM = 1).
The sequence of switches of α in Fig. 2.4B corresponds to successive cross-
ings of the switching curve in Fig. 2.4A. In particular, the switch just after
t̂ = 2 corresponds to the first crossing of the switching curve; the subsequent
switches accumulate around the steady state and are therefore difficult to
identify in the plot.

What is the biological relevance of the bang-bang-singular solution max-
imizing growth of the bacterial self-replicator? In order to answer this ques-
tion, we will investigate in the next two sections the different ways in which
microorganisms could implement or have been shown to implement feedback
growth control by sensing the environment and cellular physiology. Although
the idealized solution proposed by optimal control theory will obviously not
be found in nature, actual control strategies may produce solutions that are
close. The optimal solution can thus be used as a gold standard, a benchmark
for comparing actual control strategies.

2.2.5 Simple feedback control strategies: exploiting in-
formation on nutrients or precursors

The control strategies that microbial cells have evolved to bring resource
allocation in line with changes in the environment involve a variety of molec-
ular mechanisms [133]. These mechanisms are responsible for sensing the
environment and the physiological state of the cell, as well as for adjust-
ing the expression of genes that encode components of the transcriptional
and translational machinery, enzymes, transporters, and proteins with other
metabolic functions.

In the framework of the self-replicator model of bacterial growth, control
strategies take the form of feedback control laws mapping the value of system
variables to a value of the control variable α(·). In this section, we explore two
such strategies, the first exploiting information on the quality and quantity
of substrate present in the environment, as reflected in the value of EM , and
the second using information on the precursor concentration p̂. The feedback
control strategies are graphically displayed in Fig. 2.5, as an extension of the
self-replicator of Fig. 2.1. We pose a number of mathematical constraints
on the feedback control strategies considered below. First, we require the
control laws to be functions of the variables of the self-replicator but not
involve derivatives or integrals of these variables. Second, for a constant
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Figure 2.5 – Alternative strategies for controlling the self-replicator
of bacterial growth. The feedback control strategies, shown in red and
superposed on the self-replicator of Fig. 2.1, exploit information on system
variables and the environment to adjust the value of α, and thus the rela-
tive allocation of resources to the metabolic machinery and gene expression
machinery.

environment EM , the control strategies must drive the system to a unique
stable and non-trivial steady state, enabling a non-zero growth rate. Third,
this steady state must equal the optimal steady state for that environment,
given by (p̂∗opt, r̂

∗
opt).

The first control strategy is defined by the function f : R+ → [0, 1], map-
ping EM to α:

α = f(EM). (2.15)

Notice that α is constant because EM is fixed to the value defining the new
environment after the upshift. What would be an appropriate choice for f?
An advantage of the self-replicator model is that the optimal allocation at
steady state can be explicitly formulated as a function of EM (Eq. 2.22 in
Methods, with derivation in S1 Text). This function is the unique function
satisfying all of the above criteria (S1 Text). S1 Figure plots f and shows
that it is conveniently approximated by a Michaelis-Menten function, i.e.,

α(·) =
EM

EM +KmE

, (2.16)

with the dimensionless half-saturation constant KmE. The interest of the
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approximation is that it demonstrates that the control strategy can be de-
scribed by a simple and ubiquitous response curve in biochemical kinetics.

As an example of a regulatory system resembling the above control strat-
egy consider the phosphotransferase system responsible for the uptake of glu-
cose, the preferred substrate of E. coli [134]. In the presence of glucose, the
EIIAGlc component of the phosphotransferase system is mostly unphosphory-
lated, since the phosphate groups are used for the conversion of extracellular
glucose to intracellular glucose-6-phosphate. When glucose disappears from
the medium, however, the glucose uptake rate decreases and, correspond-
ingly, the phosphorylated fraction of EIIAGlc increases. The phosphorylation
state of EIIAGlc thus provides an indirect read-out of glucose availability.
In response to this signal, a variety of metabolic processes are upregulated
or downregulated, notably involving the signalling molecule cAMP which
activates the pleiotropic transcription factor Crp [134, 135].

How does the control strategy of Eq. 2.15, which we call a nutrient-only
strategy, perform in comparison with the optimal solution derived in the
previous section? That is, how much biomass does this strategy produce
compared with the maximal amount of biomass that can theoretically be ob-
tained after a nutrient upshift? In order to answer these questions, we simu-
lated the response to a sudden upshift of the self-replicator of Eqs 2.11-2.12
controlled by the nutrient-only strategy of Eq. 2.15. The results are shown in
Fig. 2.6. Panel A shows the trajectory of the controlled self-replicator system
and panel D plots the evolution of the amount of biomass as a fraction of the
amount of biomass produced by the optimal strategy. While the system does
reach the steady state that is optimal for EM , the nutrient-only strategy has
poor performance in the transient phase immediately following the nutrient
upshift. As can be seen from the solution trajectory in Fig. 2.6A, fixing α to
the value that enables optimal growth at steady state leads to a huge tran-
sient overshoot of the precursor concentration. The overshoot reveals that
resource allocation is initially suboptimal, with too many resources invested
in the metabolic machinery at the expense of the gene expression machinery.
This causes a transiently suboptimal growth rate, leading to lower biomass
accumulation (Eq. 2.9).

One way to avoid the transient precursor imbalance observed in Fig. 2.6A
would be to exploit information on the precursor concentration in the control
strategy. The second strategy considered here, which we label a precursor-
only strategy, does exactly this: it involves a feedback control law g : R+ →
[0, 1] mapping p̂ to α:

α = g(p̂). (2.17)
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Figure 2.6 – Comparison of the performance of the nutrient-only and
precursor-only strategies after a nutrient upshift. A: Trajectory in the
phase plane for the nutrient-only strategy (green curve). The solid, black curve
represents the p̂-nullcline. The dashed, black curve is the r̂-nullcline. The solution
is obtained by numerical simulation of the system of Eqs 2.11-2.12, supplemented
with α = f(EM ) as specified by Eq. 2.27 in the Methods section and plotted
in S1 Figure. The initial state corresponds to the steady state attained for an
environment given by 0.2EM . While converging to the new steady state after the
upshift, the precursor concentration makes a large overshoot. B: As above, but
for the precursor-only strategy. The feedback control strategy is now defined by
α = g(p̂) as specified by Eq. 2.28 in the Methods section and plotted in S1 Figure.
The solution trajectory (blue curve) exhibits a lower overshoot. C: Evolution of
the control variable α(·) as a function of time, for each of the above two strategies.
Notice that in the nutrient-only strategy α(·) immediately jumps to the optimal
value for the post-upshift steady state (green curve), whereas in the precursor-only
strategy it depends on the (time-varying) precursor concentration (blue curve).
D: Evolution of the ratio Vol/Volopt as a function of time, where Vol is the volume
of the self-replicator and Volopt the volume of the same replicator following the
optimal strategy shown in Fig. 2.4. In all of the above simulations, the parameter
values EM = 1 and K = 0.003 were used.
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Since p̂ will vary during the upshift experiment, α is not constant, contrary
to the nutrient-only strategy above. In the Methods section, we present a
function g satisfying the requirements listed in the beginning of this section,
in particular that the system converge to a stable steady state ensuring max-
imal growth in the new environment. Moreover, we show that any other
choice for g leads to lower biomass production. The function is plotted in
S1 Figure, and as shown in the same panel, is conveniently approximated by
a Hill function with cooperativity coefficient 2:

α(·) =
p̂2

p̂2 +Kmp
2 , (2.18)

where Kmp is a dimensionless half-saturation constant.
While converging to the same steady state, this second strategy, which

we will refer to as the precursor-only strategy, performs much better than
the nutrient-only strategy after an upshift, as shown in Fig. 2.6. We simu-
lated the response to a nutrient upshift of the self-replicator of Eqs 2.11-2.12
with the precursor-only strategy of Eq. 2.17. The relative biomass increases
by 51% and reaches 94% of the biomass produced by the optimal control
strategy (the theoretical maximum). The precursor-only strategy notably
avoids the inefficient transient accumulation of precursors directly after the
nutrient upshift, by alternatingly investing more resources in gene expression
(consumption of precursors) and metabolism (production of precursors). In
this respect, the oscillatory time profile of α (Fig. 2.6C ) is somewhat reminis-
cent of the bang-bang-singular control in the solution of the optimal control
problem (Fig. 2.4B).

Both strategies, nutrient-only and precursor-only, drive the self-replicator
towards the same steady state. Whereas the two strategies are thus indistin-
guishable when the analysis is restricted to steady state, the precursor-only
strategy is shown to perform much better in a dynamical upshift scenario,
in the sense that the biomass produced is much closer to that produced by
the optimal strategy. Several authors have concluded that control strate-
gies based on precursor sensing are key for maintaining optimal growth at
steady state. Scott et al. argue that a strategy similar to the precursor-only
approach above allows robust control of amino acid supply and demand, re-
sulting in optimal steady-state growth over a range of nutrient conditions [32].
They associate this strategy with ppGpp-mediated control of the synthesis
of ribosomal proteins [126–128]. The signalling molecule ppGpp accumu-
lates in response to an increase in the level of uncharged tRNA, when amino
acid concentrations in the cell drop. This causes ribosomes to "stall" and
leads to RelA-mediated conversion of GTP to ppGpp, the molecular details
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of which are still subject of debate [128, 136]. Since ppGpp inhibits the tran-
scription of ribosomal RNAs [137], the concentration of the latter decreases,
leading to more inactive ribosomal proteins and, through a well-characterized
post-transcriptional autoregulatory mechanism, a lower synthesis rate of ri-
bosomal proteins [127, 138]. Our analysis adds to the above study a novel
insight: measuring precursors does not only enable resource allocation con-
trol to achieve maximal growth at steady state, but is also a good strategy
in a dynamical context.

While the precursor-only strategy is thus seen to lead to good results,
Fig. 2.6D shows that there remains room for improvement. It seems rea-
sonable to expect that control strategies exploiting information of not just
a single variable, but several variables simultaneously, could further improve
the performance of the self-replicator during a growth transition.

2.2.6 A near-optimal feedback control strategy that ex-
ploits information on the imbalance between pre-
cursors and the gene expression machinery

In the quest for further improvements, a natural starting-point would
be to consider the curve defining the optimal steady states (p̂∗opt, r̂

∗
opt) for

different environments EM . This curve is defined by a function mapping
p̂∗ to r̂∗, which is actually the same as the function g introduced in the
precursor-only strategy (Methods and S1 Figure), given that at steady state
r̂ = α (Eq. 2.12). The curve can be seen as representing an optimal balance
between precursors and the gene expression machinery, in the sense that the
maximal growth rate attainable for a given precursor concentration p̂ requires
a concentration r̂ of ribosomes and other components of the gene expression
machinery equal to g(p̂). If either r̂ > g(p̂) or r̂ < g(p̂), the growth rate is
suboptimal.

These considerations suggest an intuitive control strategy, namely to
avoid an imbalance between p̂ and r̂ at all times, and remain as close as
possible to the curve defined by g. In particular, when the gene expression
machinery is more abundant than what is optimal given the available pre-
cursors (r̂ > g(p̂)), its synthesis is switched off (α = 0). Conversely, when
r̂ < g(p̂), synthesis of the gene expression machinery is switched on. This
strategy thus tries to restore "as quickly as possible" the optimal balance
between precursors p̂ and the gene expression machinery r̂, giving rise to a
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so-called on-off control strategy:

α = h(p̂, r̂) =


0, if r̂ > g(p̂),

1, if r̂ < g(p̂),

α∗opt if (p̂, r̂) = (p̂∗opt, r̂
∗
opt).

(2.19)

As shown in the Methods section, the on-off strategy drives the system
to a stable steady state ensuring growth at the maximal rate. Notice that,
contrary to the strategies discussed in the previous section, the value of α
selected by the on-off strategy depends on both p̂ and r̂ (Fig. 2.5). It thus
uses more information on the state of the system than the nutrient-only and
precursor-only strategies.

Fig. 2.7 shows the performance of the on-off strategy after a nutrient up-
shift, as compared to the precursor-only strategy. The transition is seen to
be nearly perfect, in the sense that 98% of the optimal biomass is produced
by the strategy. The time course of α in panel D is very similar to the op-
timal time course obtained by numerical optimization, shown in Fig. 2.4B,
and clearly brings out the bang-bang-singular nature of the solution. These
results show that a strategy exploiting complete information on the internal
state of the self-replicator can lead to near-optimal performance, outcompet-
ing a strategy that uses partial information on the internal state (precursor
abundance only).

Are microbial cells equipped with mechanisms implementing a strategy
similar to the on-off strategy? A possible candidate would again be the
ppGpp system. A kinetic model of ppGpp metabolism and the regulation
of the synthesis of ribosomal proteins was recently presented by Bosdriesz et
al. [116]. The model proved capable of accounting for a range of experimental
data, including the steady-state concentration of ppGpp as a function of the
growth rate [29] and the dynamical response of ppGpp to a nutrient upshift
or downshift [139]. A major conclusion of the model is that the steady-state
concentration of ppGpp exhibits a strongly ultrasensitive response to devi-
ations of the ribosomal protein fraction from the optimal ribosomal protein
fraction at a given growth rate. These deviations from optimality, in turn,
lead to a switch-like response of the synthesis rate of ribosomal proteins
(Fig. 4 in Bosdriesz et al. [116]).

How does this mechanistic model of ppGpp regulation relate to the on-off
strategy presented above? In order to answer this question, we first need to
find a correspondence between the variables p and r of our coarse-grained
model and the concentrations of molecular species in the kinetic model of
Bosdriesz et al. This is rather straightforward to achieve, by equating p
to the total amino acid concentration and r to the ribosome concentration.
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Figure 2.7 – Comparison of the performance of the precursor-only and
the on-off strategies after a nutrient upshift. A: Trajectory in the phase
plane for the on-off strategy (yellow curve). The solid, black curve represents the
p̂-nullcline and the dashed, black curve the function g. The solution is obtained
by numerical simulation of the system of Eqs 2.11-2.12, supplemented with the
equation α = h(p̂, r̂) defined in Eq. 2.19 and plotted in Fig. 2.8A. The initial
state corresponds to the optimal steady state attained for an environment given
by 0.2EM . B: Trajectory in the phase plane for the precursor-only strategy (same
as in Fig. 2.6B, added for comparison). C: Evolution of the control variable α
for each strategy as a function of time. Both strategies stabilize the system at the
optimal steady state, but only the on-off strategy (yellow curve) exhibits bang-bang
behavior. D: Evolution of the ratio Vol/Volopt for the on-off and precursor-only
strategies as a function of time, where Vol is the volume of the self-replicator and
Volopt the volume of the same replicator following the optimal strategy shown in
Fig. 2.4. The final values of Vol/Volopt attained by the two strategies are 0.9831
and 0.9413, respectively. The on-off strategy is thus hardly distinguishable from the
optimal control strategy in the plot. In all of the above simulations, the parameter
values EM = 1 and K = 0.003 were used.
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Second, S4 Text shows that by making two simplifying assumptions, ppGpp
can be expressed as a function of the total amino acid concentration and
the ribosome concentration. In particular, we assume that concentrations of
all individual amino acids are equal, and that the concentrations of charged
tRNAs and ppGpp evolve fast relative to the dynamics of the amino acid
and ribosome concentrations. The third step consists in positing an explicit
relation between ppGpp and α, based on the regulatory action of ppGpp on
the transcription of ribosomal RNA [137]:

α(·) =
KI

KI + ppGpp(·)
, (2.20)

with KI a Michaelis-Menten inhibition constant [µmol L-1] and ppGpp the
(time-varying) intracellular concentration of ppGpp [µmol L-1].

The response function for ppGpp thus obtained and evaluated for a range
of amino acid and ribosome concentrations is represented in Fig. 2.8, and vi-
sually compared with the on-off strategy. As can be seen, the two response
surfaces are very similar. In other words, the ultrasensitive response of the
synthesis rate of ribosomal proteins to the suboptimal allocation of cellular
resources, derived from a model of the molecular mechanisms involved in the
synthesis, degradation, and regulatory action of ppGpp [116], implements a
control strategy that is close to the optimal predicted by a control-theoretical
analysis of the self-replicator. While the role of ppGpp in maintaining opti-
mal resource allocation was already pointed out by Scott et al. and Bosdriesz
et al., the latter studies were restricted to optimizing steady-state growth. A
major insight from the analysis in this section is that this conclusion seems to
carry over to dynamical scenarios as well. Fundamentally, the analysis sug-
gests that the ppGpp system is a likely candidate to fulfill this role because
it integrates information on the imbalance between precursor concentration
and abundance of the gene expression machinery.
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Figure 2.8 – ppGpp regulation implements an on-off control strategy
of resource allocation. A: Response surface of the on-off control strategy,
defined by α = h(p̂, r̂) in Eq. 2.19. B: Response surface of the ppGpp control
strategy, as defined by Eq. 2.20 and the simplified kinetic model defining
ppGpp in terms of the total amino acid concentration and the ribosomal
protein fraction (S4 Text). The shape of the response surface of the ppGpp
control strategy is seen to be in very good agreement with the on-off strategy
leading to near-optimal performance of the self-replicator during a nutrient
upshift.

2.3 Discussion
Quantitative growth laws are empirical regularities pointing at fundamen-

tal properties of microbial life [31]. Recent work has led to the precise the-
oretical formulation of growth laws and has shown that they can be derived
from basic assumptions on the molecular processes responsible for the assimi-
lation of nutrients and their conversion to biomass [24, 32, 116, 121, 122]. The
growth laws are uniquely defined under the hypothesis that microorganisms
allocate resources in such a way as to maximize their growth rate. Several
of the above-mentioned studies have analyzed feedback control strategies on
the molecular level enabling cells to achieve optimal resource allocation in
a robust manner. The control strategies exploit information on the physio-
logical state of the cell to adjust the (relative) rate of synthesis of different
classes of proteins (ribsomes, metabolic enzymes, . . .). Whereas the growth
laws describe microbial growth at steady state, most microorganisms live
in complex, continuously changing environments. Despite some precursory
work [123, 124], questions about the dynamics of microbial growth remain
largely unanswered: Which resource allocation schemes are optimal in chang-
ing environments? Which dynamical control strategies lead to (near-)optimal
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resource allocation? How do these strategies compare with those actually im-
plemented by microorganisms?

We have addressed the above questions by means of a self-replicator model
of microbial growth, which, like other coarse-grained models of bacterial
growth [24, 32, 121], is capable of reproducing the growth laws at steady
state (Fig. 2.3). A first major contribution of our work is to show that, in
the case of a dynamical upshift scenario, optimal production of biomass re-
quires a bang-bang-singular resource allocation scheme (Fig. 2.4). That is,
the optimal self-replicator should iteratively allocate all of its resources to the
gene expression machinery (bang control input) and the metabolic machinery
(another bang control input), until the steady state enabling maximal growth
in the post-upshift environment is reached, corresponding to a trade-off in
the allocation of resources to the two processes (singular control input).

Bang-bang phenomena are widespread in a variety of life processes. Ap-
plications of optimal control theory to reproductive strategies in insects [140],
the development of intestinal crypts [141], and the activation of metabolic
pathways [142, 143] have led to bang-bang or bang-bang-singular strategies.
In optimal control problems, such a solution arises with systems where the
differential equations are linear in the control variable (in our case, α(·)). Ex-
amples of applications that are close to the problem considered here are the
control of gene expression for adaptation to environmental changes [109, 123],
and the allocation of resources between nutrient uptake and growth in mi-
croorganisms [124, 144]. Whereas the former applications focus on mini-
mization of response times, the latter also optimize biomass during a growth
transition, using a different model, not derived from first principles as in this
study. However, the optimal solution of the corresponding optimal control
problem is also bang-bang-singular, thus showing that our conclusions are
robust to model variations.

Our second major contribution is the assessment of how different feedback
control strategies perform with respect to each other and to the gold stan-
dard determined from optimal control theory. We show that the precursor-
only and nutrient-only strategies, both of which drive the self-replicator to
the steady state with maximal growth rate in a static environment, per-
form quite differently in a dynamical upshift scenario (Fig. 2.6). While the
precursor-only strategy is better than the nutrient-only strategy in a dynam-
ical environment, it is in turn outperformed by a so-called on-off strategy,
which achieves a near-perfect growth transition by exploiting information on
the imbalance between the precursor concentration and the abundance of the
gene expression machinery (Fig. 2.7). The superior performance of the on-off
strategy can be intuitively explained by the fact that during a growth tran-
sition the two variables are not fully correlated, which means that sensing
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both instead of either one provides additional information in a dynamical
context.

Interestingly, the on-off strategy is based on a feedback control law that
very much resembles the response function for ppGpp-mediated regulation of
the synthesis of ribosomal RNAs in E. coli [116]. The role of ppGpp in con-
trolling microbial growth has been amply documented [126–128]. For exam-
ple, Potrykus et al. observed that in cells without ppGpp (ppGpp0 mutants)
the RNA/protein mass ratio, a proxy for our resource allocation variable α,
does not change with the growth rate, which has led these authors to conclude
that ppGpp is the major source of growth-rate control in E. coli [145]. The
central importance of ppGpp in the reallocation of gene expression resources
in E. coli following changes in nutrient availability has also been mapped
with higher resolution, using genome-wide transcriptome studies [146, 147].
In nearly all bacterial species examined so far, ppGpp is known to accumu-
late in response to an increase in the level of uncharged tRNA [148], although
the molecular details of ppGpp metabolism and the range of other functions
of the alarmone may greatly vary across species [128, 148, 149]. While it
has thus been well-established that regulation by ppGpp is an evolutionary
conserved mechanism of growth control in the bacterial cell, our analysis
provides a new perspective by suggesting that ppGpp enables optimal real-
location of resources after a growth transition, dynamically maximizing the
accumulation of biomass.

The model on which the above results are based is built from first princi-
ples by distinguishing two fundamental cellular processes: metabolism (con-
verting nutrients to precursors) and gene expression (converting precursors
to the proteins that make up biomass) (Fig. 2.1). Despite its simplicity,
our self-replicator model is capable of reproducing the empirical growth laws
and of making testable predictions on the time-course profile of the resource
allocation variable α and on the concentrations p and r of components of
the gene expression machinery and metabolic machinery, respectively (see
Fig. 2.8 and below). The model can be easily extended with more details
on protein synthesis, central carbon and energy metabolism, stress systems,
or cell membranes, but this would make the mathematical analysis of the
model dynamics and the optimal control problem more complicated. Notice,
however, that the direct numerical approach for solving the optimal control
problem remains applicable, even for more fine-grained models (Fig. 2.4, see
also [125]).

The comparison of different control strategies during a classical growth
transition should be interpreted carefully, in a qualitative rather than quanti-
tative manner. Whereas the differences in performance based on the biomass
ratio Vol/Volopt of the control strategies are robust, the absolute numbers for
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the biomass ratio will depend on details of the growth experiment chosen and
the exact parameter values. Another implicit assumption in the analysis of
the control strategies is that the costs of their molecular implementation can
be neglected. This is not true in general, since every control strategy requires
resources to be diverted towards the synthesis of sensory systems and regula-
tory proteins, with possibly detrimental effects on growth. In other words, a
control strategy entails a trade-off between the growth burden of regulation
and the growth benefit of the improved capability to adapt to changes in the
environment [150, 151]. The analysis of control strategies could be refined
by adding a reaction to the self-replicator that models the loss of resources
incurred by regulatory strategies. While in general the growth burden of a
control strategy requiring information on several aspects of cellular physi-
ology is expected to be higher, notice that a single regulatory system may
be capable of sensing more than one variable. For example, we show that
ppGpp levels in the cell carry information on both the metabolic and the gene
expression state (Fig. 2.8), thus integrating several signals in a cost-efficient
manner.

The model predictions for the dynamical adaptation of resource alloca-
tion after a nutrient upshift suggest several interesting experimental tests.
In particular, the switching profile of the resource allocation variable α is a
promising candidate for experimental validation. The most straightforward
option would be direct measurement of the synthesis rate of ribosomal pro-
teins, using a translational fusion of a fluorescent reporter with a ribosomal
protein [81, 136]. However, a more indirect approach based on the quantifi-
cation of ppGpp concentrations in the cell or the activity of the ribosomal
RNA (rRNA) promoters would also be a possibility. Interestingly, some data
are already available in the literature. For instance, Gausing has reviewed
data on the synthesis of ribosomal proteins after a nutrient upshift, showing
that the synthesis rate goes through "a series of rapid changes" resembling
oscillations [152]. Later work attributed this pattern to regulation on the
transcriptional level [153]. Friesen et al. observed oscillatory patterns in
ppGpp concentrations after a nutrient upshift, with an initial response re-
sembling bang control for an upshift to a particularly rich medium [154].
Murray et al. also present data on the ppGpp concentration after a nutrient
upshift [139], but with a lower temporal resolution and no clear oscillatory
pattern. All of the above measurements were carried out on the population
level, which means that switching patterns may be obscured by desynchro-
nisation of the individual cells. More sophisticated experimental set-ups are
necessary for the decisive validation of the model predictions, allowing gene
expression in single cells to be followed over time in tightly regulated growth
conditions [155, 156]. In addition, the model could be validated on other
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dynamical scenarios, for example nutrient downshifts [139, 157].
Apart from its interest for fundamental science, resource allocation is also

a critical question in biotechnology, where there exists an inherent trade-off
between the maximization of yield and productivity[158]. High yield means
that most of the substrate is converted to a metabolite, peptide or recombi-
nant protein of interest, but this leads to low productivity if the remaining
nutrient influx is insufficient to sustain population growth. Engineered con-
trol of resource allocation may help in establishing the right trade-off, the
most profitable balance between yield and productivity, in a biotechnological
process. Such a trade-off could be attained either in steady-state conditions
(the incoming nutrient flux is optimally distributed over growth and pro-
duction) or in dynamical conditions (alternating utilization of the incoming
nutrient flux for growth or production) [159–161]. When extended with het-
erologous metabolic pathways, the self-replicator models used in this study
would provide an adequate in-silico test bed for the rapid screening and
comparison of alternative control strategies in bioprocess engineering.

2.4 Methods

2.4.1 Steady-state analysis of model

The nondimensional version of the model, given by Eqs 2.11-2.12, was
used for a steady-state analysis of the self-replicator. Eqs 2.11-2.12 were
derived from the original model of Eqs 2.3-2.4 by means of the following
rescalings:

p̂ = β p, r̂ = β r, t̂ = kR t, EM = eM/kR, K = βKR.

As shown in S1 Text, for a constant environment EM and constant re-
source allocation α, the system has two steady states: a trivial unstable
steady state (p̂∗, r̂∗) = (0, 1), allowing no growth in the absence of precur-
sors, and a steady state with a positive growth rate given by

(p̂∗, r̂∗) =

(
(1− α)EM − α +

√
[(1− α)EM − α]2 + 4α (1− α)EM K

2α
, α

)
.

(2.21)
The two eigenvalues of the Jacobian matrix evaluated at (p̂∗, r̂∗) are negative
(S1 Text), so that this steady state is stable.

The growth rate at steady state, as a function of p̂∗ and r̂∗, is given by
Eq. 2.13, which we repeat here for clarity:

µ̂∗ =
p̂∗

K + p̂∗
r̂∗.
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Evaluating dp̂/dt = 0 at (p̂∗, r̂∗) allows r̂∗, and therefore µ̂∗, to be written as
a function of p̂∗ (S1 Text). Accordingly, we can compute ∂µ̂∗/∂p̂∗ and, when
setting this partial derivative to 0, determine the maximum growth rate at
steady state µ∗opt and the optimal resource allocation α∗opt bringing about this
maximal growth rate. As shown in S1 Text, µ∗opt and α∗opt can be written as
explicit functions of either the environment EM :

α∗opt =
EM +

√
K EM

EM + 2
√
K EM + 1

, µ̂∗opt =
EM

EM + 2
√
K EM + 1

, (2.22)

or the precursor abundance p̂∗opt:

α∗opt =
p̂∗opt

p̂∗opt + K
K+p̂∗opt

(1 + p̂∗opt)
, µ̂∗opt =

p̂∗2opt
p̂∗2opt + 2Kp̂∗opt +K

. (2.23)

The above equations were used for the derivation of the control strategies
(see below).

2.4.2 Model fitting

As can be seen by comparing Figs 2.3A and 2.3B, growth-rate maximiza-
tion in the self-replicator model leads to a good qualitative correspondence
with the growth laws. In order to determine if a good quantitative fit of the
model with the data from Scott et al. [33] can be obtained, for reasonable
parameter values, we estimated eM and kR in Eqs 2.3-2.4 from the measured
RNA/protein mass ratios. At steady state, the RNA/protein mass ratio can
be interpreted as proportional to r̂∗ (and thus α∗opt), with an unknown (di-
mensionless) proportionality constant γ (see [33] for details on the use of the
RNA/protein mass ratio as a proxy for the ribosomal protein mass fraction):

r̂∗ = α∗opt = γ
RNA mass
protein mass

. (2.24)

Reformulating Eq. 2.22 in terms of the original parameters eM and kR, which
have physical dimensions facilitating the biological interpretation of their
values, we obtain a straighforward relation between eM , kR, K, α∗opt and
µ∗opt:

α∗opt =
eM +

√
K eM kR

eM + 2
√
K eM kR + kR

, µ∗opt =
eM kR

eM + 2
√
K eM kR + kR

.

(2.25)
Eqs 2.24-2.25 were used to estimate values of kR and γ, as well as eM for

each of the six growth conditions, from the measurements of the growth rate
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and the RNA/protein mass ratio. The value K was not estimated from the
experimental data, but set to a value inferred from the literature (S1 Text).
The optimization process was carried out by means of the differential evolu-
tion algorithm of Storn and Price [162]. The results are shown in Fig. 2.3B,
while the estimated parameter values are summarized in S1 Table. The pa-
rameter values are in very good agreement with order-of-magnitude values
determined from the literature (S2 Text and S1 Table).

2.4.3 Solution of optimal control problem

The optimal control problem of Eq. 2.10 consists in identifying the func-
tion αopt(t) that maximizes the integral of the growth rate µ̂ over an interval
[0, τ ]. In order to solve this problem, we first redefined it over an infinite
horizon (i.e., τ →∞) in order to avoid boundary effects occurring over finite
time intervals, in particular the depletion of precursors just before reaching
τ . With U = {α : R+ → [0, 1]} the set of admissible controls, the full
optimization problem for the nondimensionalized system is given by

max
α∈U

J(α) ≡
∫ ∞
0

r̂(t̂)
p̂(t̂)

K + p̂(t̂)
dt̂. (2.26)

Since J(α) diverges, we actually consider overtaking optimality: A solution is
overtaking optimal if its performance index catches up with the performance
index of any other solution ([114], see S3 Text for details).

Necessary conditions on optimal trajectories can be obtained by the Infi-
nite Horizon Maximum Principle [114], an extension of the well-known Pon-
tryagin Maximum Principle. Analysis of the Hamiltonian of the system of
Eqs 2.11-2.12 and the associated adjoint system shows that the optimal tra-
jectory is a concatenation of bang arcs (α(·) = 0 or α(·) = 1) and possi-
bly a singular arc corresponding to the optimal steady state (p̂(t), r̂(t)) =
(p̂∗opt, r̂

∗
opt), that is, the steady state leading to the optimal growth rate µ̂∗opt in

the new environment after the upshift (S3 Text). Moreover, from the Kelley
condition [163], we can show that if the optimal trajectory has a singular arc,
then it must enter this singular arc via a chattering arc, i.e., with an infinite
number of switches of α(·) between 0 and 1 (S3 Text). The chattering arc is
characterized by a switching curve r̂ = ϕ(p̂) in the (p̂, r̂)-plane, which passes
through (p̂∗opt, r̂

∗
opt). The switching curve divides the phase plane into two

regions, such that α(t) switches to 0 when the system is in the region above
ϕ and to 1 when the system is below ϕ (S3 Text and Fig. 2.4).

The above results have led to the conjectured optimal solution of Eq. 2.14.
In parallel, we numerically solved the problem of Eq. 2.26 by a direct method
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using the bocop software [115]. A time discretization allows the optimal
control problem to be transformed into a nonlinear optimization problem,
solved here by interior point techniques. A discretization by a Lobatto IIIC
formula (6th order) was used with 4000 time steps, and the relative tolerance
for the NLP solver was set to 10−14. The optimal trajectories thus obtained
are composed of a chattering arc followed by a steady state corresponding
to the singular arc (Fig. 2.4). The switching curve ϕ(p̂) was computed from
numerical simulations with different initial conditions.

2.4.4 Specification and analysis of control strategies

As described in the Results section, we are interested in control strategies
satisfying the following conditions:

(C1) The control laws are static functions of the system variables (as
opposed to, for instance, functions that depend on derivatives or in-
tegrals of the variables).

(C2) For any given constant environment EM , they drive the self-repli-
cator system towards a unique stable steady state that is not trivial,
i.e., with nonzero growth rate.

(C3) This steady state corresponds to the optimal steady state (p̂∗opt,
r̂∗opt), allowing growth at the maximal rate µ∗opt.

It can be directly verified from the functions f , g, and h defining the nutrient-
only, precursor-only, and on-off control strategies (Eqs 2.15, 2.17, and 2.19)
that they are indeed static functions of the system variables (or the system
input, in the case of the nutrient-only strategy). Here we show that the other
two conditions are also satisfied for all three strategies.

Following Eq. 2.15, the nutrient-only strategy is defined by α = f(EM),
so that α is constant after the upshift. As shown above and in S1 Text,
this means that the system controlled by the nutrient-only strategy has a
single nontrivial stable steady state (Condition C2). In addition, in this case
the optimal steady state is attained for α∗opt defined as in Eq. 2.22, and the
following function f therefore guarantees Condition C3:

f(EM) =
EM +

√
KEM

EM + 2
√
K EM + 1

. (2.27)

In S1 Text, it is shown that Eq. 2.27 is the only definition of f satisfying
all conditions. S1 Figure shows a plot of f(EM) together with a biologically
plausible Michaelis-Menten approximation (Eq. 2.16).

The full specification of the precursor-only strategy demands an expres-
sion for the function g in Eq. 2.17. Recall that Eq. 2.23 defines α∗opt in terms
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of the precursor concentration p̂∗opt, which leads us to propose the following
function g:

g(p̂) =
p̂

p̂+ K
K+p̂

(1 + p̂)
. (2.28)

As shown in S1 Text by computing the Jacobian, the system given by
Eqs 2.11-2.12 and 2.28 has a single nontrivial stable steady state for any
environment EM (Condition C2). Moreover, Eq. 2.28 guarantees this steady
state to be optimal (Condition C3). This can be seen by noting that at
steady state, dr̂/dt = 0 implies r̂∗ = g(p̂∗) (Eq. 2.12). In order for the self-
replicator to attain a maximal growth rate at steady rate, Eq. 2.23 needs to
be satified, which is the case for the above choice of the function g. Like for
f , Eq. 2.28 is the only choice for g satisfying C1-C3. S1 Figure shows a plot
of g(p̂) together with a biologically plausible Hill approximation (Eq. 2.18).

The on-off control strategy is defined in Eq. 2.19 and repeated below:

h(p̂, r̂) =


0, if r̂ > g(p̂),

1, if r̂ < g(p̂),

α∗opt, if (p̂, r̂) = (p̂∗opt, r̂
∗
opt).

(2.29)

This strategy drives the system to a single steady state, because the p̂-
nullcline crosses the function g(p̂) only once, as shown graphically in
Fig. 2.7A. In S1 Text we argue that this steady state is stable, by taking
into account so-called sliding modes on the switching curve [164] (Condi-
tion C2). Moreover, the steady state coincides with the optimal steady state
(p̂∗opt, r̂

∗
opt) by construction, so that Condition C3 is satisfied as well. Fig 2.8A

shows a plot of h(p̂, r̂).
Note that since h(·) is discontinuous, numerical instabilities occur during

simulations. We therefore used the following continuous approximation of
this function:

g(p̂)100

g(p̂)100 + r̂100
, if r̂ 6= g(p̂). (2.30)

The approximation causes α to take intermediate values (instead of 0 or
1) just before reaching the optimal steady state in Fig 2.7C. For numeri-
cal simulations of the ODE system, we used the CVODE solver [165] from
SUNDIALS 2.6.2 [166].
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2.5 Supporting information for Chapter 2

2.5.1 S1 Text – Model derivation and analysis

Model formulation

The time evolution of the total mass of each component of the self-
replicator can be written as follows:

dP

dt
= VM(t)− VR(t),

dM

dt
= (1− α(t))VR(t), (2.31)

dR

dt
= α(t)VR(t),

where P , M , R [g] denote the total mass of precursors, metabolic machinery
and gene expression machinery, respectively. VM [g h−1] is the rate of pro-
duction of precursors by metabolism and VR [g h−1] the rate of utilisation of
precursors for gene expression.

Dividing the mass variables by the total time-varying volume Vol(t) of
the system, we obtain the concentration variables p = P/Vol, m = M/Vol,
r = R/Vol [g L−1]. The dynamics of the concentration variables then follows
with Eq. 2.31:

dp

dt
=

VM(t)

Vol
− VR(t)

Vol
− 1

Vol
dVol
dt

p,

dm

dt
= (1− α(t))

VR(t)

Vol
− 1

Vol
dVol
dt

m, (2.32)

dr

dt
= α(t)

VR(t)

Vol
− 1

Vol
dVol
dt

r.

At this point, we define vM = VM/Vol and vR = VR/Vol [g L−1 h−1]
as the mass fluxes per unit volume. Moreover, with the definition of the
volume in terms of the total protein mass in Eq. 2.2 of the main text, that
is, Vol = β (M +R), we find that

1

Vol
dVol
dt

=
β

Vol
d(M +R)

dt
= β

VR(t)

Vol
= β vR(t). (2.33)

This leads to the system

dp

dt
= vM(t)− vR(t) (1 + β p), (2.34)

dr

dt
= vR(t) (α(t)− β r), (2.35)
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where the equation form(t) is omitted since by construction r(t)+m(t) = 1/β
and dr/dt+ dm/dt = 0.

As stated in the main text, we use Michaelis-Menten kinetics to express
vM and vR in terms of the system variables:

vM(t) = m(t) kM
s(t)

KM + s(t)
=

(
1

β
− r(t)

)
eM(t),

vR(t) = r(t) kR
p(t)

KR + p(t)
,

with rate constants kM , kR [h−1] and half-saturation constants KM , KR [g
L−1]. s(t) is an exogenous variable representing the nutrient concentration
in the external medium. We simplify vM(t) by defining the environmental
input eM(t) = kM s(t)/(KM + s(t)). Throughout the paper, as explained in
the main text, we assume the environment is constant, i.e., eM(t) = eM .

Finally, the growth rate µ [h−1] is defined as the relative increase of the
volume of the self-replicator. From Eq. 2.33, it follows that:

µ(t) =
1

Vol
dVol
dt

= β vR(t). (2.36)

Nondimensionalization of the system

For the sake of simplifying the proofs and derivations below, we define
the following nondimensional variables:

p̂ = β p, r̂ = β r, t̂ = kR t.

When injecting these into Eq. 2.34, we obtain

kR
β

dp̂

dt̂
=

(
1

β
− r̂

β

)
eM −

r̂

β
kR

p̂

βKR + p̂
(1 + p̂),

which simplifies to

dp̂

dt̂
= (1− r̂) eM

kR
− r̂ p̂

βKR + p̂
(1 + p̂).

In a similar manner, we derive the time evolution of the nondimensional r̂,
and thus obtain the system

dp̂

dt̂
= (1− r̂)EM − (1 + p̂)

p̂

K + p̂
r̂,

dr̂

dt̂
= (α− r̂) p̂

K + p̂
r̂,

(2.37)
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with the lumped parameters EM = eM/kR and K = β KR. The correspond-
ing nondimensionalized growth rate is given by

µ̂ =
µ

kR
=

p̂

K + p̂
r̂. (2.38)

Steady-state growth of the self-replicator

If we suppose EM > 0, K > 0 and α ∈]0, 1[, there is a trivial unstable
steady state at (0, 1). A second steady-state exists for the point in which
r̂∗ = α and p̂∗ is a root of the following polynomial:

α p̂2 + (α− (1− α)EM) p̂− (1− α)EM K.

If we keep the only admissible root for this polynomial (i.e., for which p̂ ≥ 0),
the second steady state is given by

(p̂∗, r̂∗) =

(
(1− α)EM − α +

√
[(1− α)EM − α]2 + 4α (1− α)EM K

2α
, α

)
.

(2.39)
We can determine the stability of this steady state by looking at the Jacobian
matrix J of the ODE system:

J =

(
− r̂
K+p̂

[
p̂+ (1 + p̂) K

K+p̂

]
−EM − (1 + p̂) p̂

K+p̂

(α− r̂) r̂ K
(K+p̂)2

(α− 2r̂) p̂
K+p̂

)
. (2.40)

Evaluated at the point (p̂∗, r̂∗), the Jacobian matrix becomes

J(p̂∗,r̂∗) =

(
− α
K+p̂∗

[
p̂∗ + (1 + p̂∗) K

K+p̂∗

]
−EM − (1 + p̂∗) p̂∗

K+p̂∗

0 −α p̂∗

K+p̂∗

)
.

Since p̂∗, α, EM , K > 0, the two eigenvalues are negative and therefore
the steady state (p̂∗, r̂∗) is stable (see also the streamlines in Figure 2.2A in
the main text). It means that for fixed environmental conditions EM and
resource allocation α, the self-replicator converges towards a steady state in
which the concentration variables are constant.

One can now easily derive the steady-state growth rate, denoted µ̂∗. By
substituting Eq. 2.38 into the first ODE of the system of Eq. 2.37, we find
at steady state: (

dp̂

dt̂

)
(p̂∗,r̂∗)

= 0 = (1− α)EM − (1 + p̂∗) µ̂∗,
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which by means of Eq. 2.39 gives the following relation:

µ̂∗ =
(1− α)EM

1 + p̂∗

=
2α(1− α)EM

(1− α)EM + α +
√

[(1− α)EM − α]2 + 4α(1− α)EM K
.

(2.41)

Finally, we can transform this expression to obtain

µ̂∗ =

 (1−α)EM+α−
√

[(1−α)EM−α]2+4(1−α)αEM K

2(1−K)
for K 6= 1,

α (1−α)EM

α+(1−α)EM
for K = 1.

(2.42)

This function of α is plotted in Figure 2.2B in the main text.

Maximization of growth rate at steady state

We are interested in the steady state at which growth occurs at the max-
imum rate. The growth rate at steady state µ̂∗ is given by

µ̂∗ =
p̂∗

K + p̂∗
r̂∗. (2.43)

From the first ODE of the system of Eq. 2.37, we have

r̂∗ =
EM

EM + p̂∗

K+p̂∗
(1 + p̂∗)

. (2.44)

Substituting Eq. 2.44 into Eq. 2.43, we obtain

µ̂∗ =
EM p̂∗

p̂∗2 + (EM + 1) p̂∗ + EM K
. (2.45)

The value of p̂∗ maximizing µ̂∗ can be determined from

∂µ̂∗

∂p̂∗
=

EM (EM K − p̂∗2)
(p̂∗2 + (EM + 1) p̂∗ + EM K)2

, (2.46)

by looking at the values of p̂∗ for which this derivative equals 0. It follows
that µ̂∗ is maximal for

p̂∗ = p̂∗opt =
√
K EM . (2.47)

By substituting p̂∗opt and α∗opt for p̂∗ and r̂∗, respectively, in Eq. 2.44, we obtain
the resource allocation maximizing the growth rate

α∗opt =
EM +

√
KEM

EM + 2
√
KEM + 1

. (2.48)
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Finally, injecting this result into Eq. 2.43 we obtain the optimal steady-state
growth rate:

µ̂∗opt =
EM

EM + 2
√
K EM + 1

. (2.49)

In addition, by using Eq. 2.47, we can write α∗opt and µ̂∗opt as a function of
p̂∗opt only:

α∗opt =
p̂∗opt

p̂∗opt + K
K+p̂∗opt

(1 + p̂∗opt)
, µ̂∗opt =

p̂∗2opt
p̂∗2opt + 2Kp̂∗opt +K

. (2.50)

Analysis of the control strategies

In this section, we derive the main results for the functions f , g, and h
defining the nutrient-only, precursor-only, and on-off control strategies. For
each of these, we prove that the Conditions C1, C2 and C3 from the Methods
section are satisfied, which we repeat here for clarity:

(C1) The control laws are static functions of the system variables (as
opposed to, for instance, functions that depend on derivatives or in-
tegrals of the variables).

(C2) For any given constant environment EM , they drive the self-repli-
cator system towards a unique stable steady state that is not trivial,
i.e., with nonzero growth rate.

(C3) This steady state corresponds to the optimal steady state (p̂∗opt,
r̂∗opt), allowing growth at the maximal rate µ∗opt.

Nutrient-only strategy The nutrient-only strategy is defined by:

α = f(EM) =
EM +

√
KEM

EM + 2
√
K EM + 1

. (2.51)

It drives the system to the optimal steady state by measuring the environ-
ment EM . Note that Condition C1 is satisfied by definition.

By injecting Eq. 2.51 into Eq. 2.37, the ODE system under the control of
f becomes:

dp̂

dt̂
= (1− r̂)EM − (1 + p̂)

p̂

K + p̂
r̂,

dr̂

dt̂
= (f(EM)− r̂) p̂

K + p̂
r̂.

(2.52)

Since EM is constant on the interval of interest (starting right after the
upshift), we are in the case of Section S1 Text (i.e., α constant). In particular,
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the system has two steady states: a trivial unstable one at (0, 1) (with
zero growth), and a stable one defined by Eq. 2.39 (Condition C2). Since
f(EM) = α∗opt, we conclude from the derivations in Section S1 Text that the
stable steady state is optimal for every environment EM (Condition C3).

It is interesting to note that the expression in Eq. 2.51 is the only function
f(EM) satisfying C1-C3. We can prove this statement by contradiction. As-
sume a control strategy c(EM) satisfying C1-C3, and different from f(EM),
i.e., there exists EM = EM 1 such that c(EM 1) 6= f(EM 1). In this environ-
ment, the system reaches a steady state (p̂∗1, r̂

∗
1) with r̂∗1 = c(EM 1) 6= f(EM 1).

However, by Eq. 2.48 the optimal value for r̂∗ in this environment is given by
f(EM 1). So, the control law c(EM) does not drive the system to the optimal
steady state in this environment, in contradiction with Condition C3.

Precursor-only strategy The precursor-only strategy is defined by:

α = g(p̂) =
p̂

p̂+ K
K+p̂

(1 + p̂)
. (2.53)

Here as well, C1 is satisfied by construction.
The ODE system under the control of g becomes

dp̂

dt̂
= (1− r̂)EM − (1 + p̂)

p̂

K + p̂
r̂,

dr̂

dt̂
= (g(p̂)− r̂) p̂

K + p̂
r̂.

(2.54)

The nullcline for p̂ remains unchanged and is defined by

dp̂

dt
= 0⇔ r̂ =

EM

EM + p̂
K+p̂

(1 + p̂)
, (2.55)

while the nullcline for r̂ is

dr̂

dt
= 0⇔


p̂ = 0,

r̂ = 0,

r̂ = p̂

p̂+ K
K+p̂

(1+p̂)
.

(2.56)

Hence, we also have a trivial unstable steady state at (0,1) (with zero growth).
The second steady state is obtained from Eqs 2.55-2.56:

EM

EM + p̂∗

K+p̂∗
(1 + p̂∗)

=
p̂∗

p̂∗ + K
K+p̂∗

(1 + p̂∗)
,
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which we rearrange into

p̂∗EM +
K

K + p̂∗
(1 + p̂∗)EM = p̂∗EM +

p̂∗

K + p̂∗
(1 + p̂∗)p̂∗.

This leads to
p̂∗ =

√
KEM ,

and therefore

r̂∗ = g(p̂∗) =

√
KEM√

KEM + K
K+
√
KEM

(1 +
√
KEM)

=
EM +

√
KEM

EM + 2
√
KEM + 1

.

From Eqs 2.47-2.48, we recognize the optimal steady state for the environ-
ment EM , validating Condition C3. We now look for the stability of this
(optimal) steady state by deriving the Jacobian of this system:

J =

(
− r̂
K+p̂

p̂2+2Kp̂+K
p̂+K

−EM − p̂
K+p̂

(1 + p̂)
r̂

K+p̂

[
K
K+p̂

(g(p̂)− r̂) + p̂K p̂2+2p̂+K
(p̂2+2Kp̂+K)2

]
p̂

K+p̂
(g(p̂)− 2r̂)

)
.

(2.57)
Evaluated at (p̂∗, r̂∗) = (

√
KEM , g(

√
KEM)), the Jacobian J(p̂∗,r̂∗) becomes(

−
√
EM√

K+
√
EM

−EM −
√
EM√

K+
√
EM

(1 +
√
KEM)

√
EM√

K+
√
EM

KEM+2
√
KEM+K

K(EM+2
√
KEM+1)2

g(
√
KEM) −

√
EM√

K+
√
EM

g(
√
KEM)

)
.

(2.58)
Since K, EM , and g(

√
KEM) > 0, it follows immediately that the real part

of the eigenvalues of this matrix are both negative. 1 Hence, the non-trivial
steady state is stable, completing the proof of Condition C2.

Here again, it is interesting to observe that the expression in Eq. 2.53 is
the only function g(p̂) satisfying C1-C3. This can be proven in a similar way
as for f .

On-off strategy The on-off strategy is defined by:

α = h(p̂, r̂) =


0, if r̂ > g(p̂),

1, if r̂ < g(p̂),

α∗opt, if (p̂, r̂) = (p̂∗opt, r̂
∗
opt).

(2.59)

h is a static function of p̂ and r̂ (Condition C1).

1. Notice that the eigenvalues λ1 and λ2 of J(p̂∗,r̂∗) satisfy the inequalities Tr(J) =
λ1 + λ2 < 0 and det(J) = λ1λ2 > 0.
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Figure 2.9 – Local stability of the on-off strategy. The on-off strategy
sets α to a value of 0 (1) when r̂ > g(p̂) (r̂ < g(p̂)). The solid, black curve is
the p̂-nullcline. The dashed, black curve is the curve r̂ = g(p̂). The arrows
represent the vector fields for α = 0 (in blue) and α = 1 (in red). The
intersection of the p̂-nullcline and the curve r̂ = g(p̂) corresponds to a unique
non-trivial stable steady state, which is equal to (p̂∗opt, r̂

∗
opt) by Eq. 2.60.

As a consequence, the ODE system under the control of h is given by

dp̂

dt̂
= (1− r̂)EM − (1 + p̂)

p̂

K + p̂
r̂,

dr̂

dt̂
= (h(p̂, r̂)− r̂) p̂

K + p̂
r̂.

(2.60)

Notice that the system has a discontinuitous right-hand side, due to the fact
that α switches between 0 and 1 on r̂ = g(p̂). Fig. 2.9 shows the dynamics of
the system in the phase plane. Due to the direction of the vector fields relative
to r̂ = g(p̂), a sliding mode occurs on the latter curve [164]. The system is
seen to evolve towards a locally asymptotically stable steady state, which is
the single non-trivial steady state (Condition C2). This steady state coincides
with the intersection of r̂ = g(p̂) and the p̂-nullcline, which is the steady state
(p̂∗opt, r̂

∗
opt) allowing maximal growth, thus verifying Condition C3.
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2.5.2 S2 Text – Model parameters

Most of the conclusions of this paper are parameter-independent in the
range of physically admissible values. The exact parameter values used in the
simulations aim to represent relevant orders of magnitude. They were derived
from the available literature on fast-growing bacteria (mostly Escherichia
coli). This document describes this derivation for each parameter. In the
Methods section of the main text, we also describe how some of them were
validated by fitting the model to available experimental data (Fig. 2.3 in the
main text).

The model parameters (Eqs. 2.3-2.4 in the main text) are listed in the
table below:

Name Unit Description
eM h−1 Constant characterizing nutrient composition of medium
kR h−1 Rate constant of macromolecular synthesis
KR g L−1 Half-saturation constant of macromolecular synthesis
β L g−1 Inverse of the cellular density of macromolecules
α – Resource allocation parameter

The values derived below are summarized in S1 Table.

eM
By definition, eM is the effective turnover of the metabolic macroreaction

producing precursors from external substrates, obtained by dividing the re-
action rate vM by the enzyme concentration m (Eq. 2.6). The unit of eM is
min−1, and can be decomposed as follows:

[eM ] =
[mass of metabolic product]
[mass of enzyme M] · [time]

=
1

[time]
.

Note that eM = kM s/(KM + s) where kM is a rate constant, indicating the
maximal rate of conversion of external nutrients to precursor metabolites.
eM will thus vary with the concentration s of the external nutrients and the
kind of nutrient. For example, the precursor mass that can be produced from
1 g of glucose is higher than that produced from 1 g of acetate.

How can we find a typical value for kM , and thus for eM (both have the
same order of magnitude if we suppose that the reaction is not operating far
below saturation, that is, eM ≈ kM)? A reasonable estimate for kM can be
obtained from the turnover numbers of reactions involved in the synthesis of
charged tRNA, since the latter are directly consumed by the most abundant
part of the gene expression machinery, the ribosomes.
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Ref. [167] provides a typical value for such a reaction, catalyzed by glu-
taminyl-tRNA synthetase: kcat,GlnRS = 3.2 s-1, indicating that on average 3.2
glutaminyl-tRNA molecules are produced per glutaminyl-tRNA synthetase
molecule per second. After conversion to mass units using molar weight
from [168], this yields

kcat,GlnRS =
3.2 · 147

64.4 · 103
≈ 10−3 g of glutaminyl-tRNA · g of enzyme−1 · s−1.

We therefore take
kM ≈ 3.6 h−1,

and thus obtain an upper bound for eM in our simulations.

kR
kR is the mass rate constant describing the maximal rate of conversion of

precursors to macromolecules [h-1]. As for eM , we can decompose this into

[kR] =
[mass of macromolecules]

[mass of gene expression machinery] · [time]
=

1

[time]

To obtain an order of magnitude for the mass of macromolecules, we focus
on proteins since they are the most abundant macromolecules in the cell [30].
The dimensional analysis of kR thus becomes:

[kR] =
[protein mass produced]
[ribosomal mass] · [hour]

=
[moles of protein] · [protein molar mass]

[moles of ribosome] · [ribosome molar mass] · [hour]

=
[moles of amino acids] · [molar mass of amino acids]
[moles of ribosome] · [hour] · [ribosome molar mass]

≈ [maximal protein elongation rate] · [molar mass of amino-acids]
[ribosome molar mass]

.

The values in the last equality are available from the literature [30, 132, 169,
170]. We obtain

kR ≈
10 · 100

106
· 3600 ≈ 3.6 h−1.

This value is comparable with the translational capacity kT , in µg of protein
per µg of ribosomal protein per hour, given by Scott et al. [33]:

kT =
4.5 µg of protein / µg of RNA / h

0.76 µg of ribosomal protein / µg of RNA
= 5.9 h−1.
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KR

A value for the parameter KR, representing the half-saturation constant
of macromolecular synthesis, is more difficult to obtain from the literature.
However, assuming that ribosomes operate close to saturation (80% over
a range of growth rates [30]), we find that KR ≈ 0.25 p, with p the total
amino acid concentration. The total concentration of amino acids in the
cell is around 150 mmol L-1 [60], which with a mean molecular weight of
118.9 g mol-1 for amino acids [169], yields a mass concentration of 17.8 g L-1.
These considerations led to the following order of magnitude for KR:

KR ≈ 1 g L−1.

β

β is the inverse of the cellular density of macromolecules, which has
been shown constant during balanced growth over a large range of growth
rates [77], and there is some data suggesting that β varies little during growth
transitions as well [171]. From [172, 173] we take the following typical value
for β:

β ≈ 1

300
≈ 0.003 L g−1.

EM and K

From the values of the parameter in the dimensional model, one can
deduce the parameters in the nondimensional model used in the simulations:

EM =
eM
kR

=
3.6

3.6
= 1 , K = β KR = 3 · 10−3 · 1 = 0.003.
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2.5.3 S3 Text – Solution of optimal control problem

Statement of the problem

We consider the dimensionless system defined by Eqs 2.11-2.12 in the
main text, which are here repeated for clarity:

dp̂

dt̂
= (1− r̂)EM − (1 + p̂) r̂

p̂

K + p̂
,

dr̂

dt̂
= r̂

p̂

K + p̂
(α(t̂)− r̂).

(2.61)

As stated in the section Biomass maximization as an optimal control
problem in the main text, the objective of this study is to maximize the
growth rate on an interval [0, τ ] after a nutrient upshift. With Eq. 2.38 in
S1 Text, we have

µ̂ = r̂
p̂

K + p̂
.

In order to avoid boundary effects occurring over finite time intervals, notably
the depletion of precursors just before τ , we solve the optimal control problem
over an infinite horizon (τ →∞). Consider the set of admissible controls

U = {α : R→ [0, 1] | α(·) measurable}.

The optimization problem can then be stated as follows:

αopt = arg max
α∈U

J(α) ≡
∫ +∞

0

r̂(t̂)
p̂(t̂)

K + p̂(t̂)
dt̂, (2.62)

where (p̂(t̂), r̂(t̂)) is the unique solution of Eq. 2.61 starting at a given point
(p̂0, r̂0) ∈ Ω ≡ R+

∗ × (0, 1) for a given control α ∈ U .
Given that the performance index J(α) diverges, we actually consider

overtaking optimality [114]. Consider the performance index of the trajectory
x(·) emanating from x0 and generated by u(·) defined for any T ≥ 0 by

JT (x0, u(·)) =

∫ T

0

f0(x(t), u(t), t)dt.

A trajectory x∗(·) emanating from x0 and generated by u∗(·) is said to be
overtaking optimal if for any other trajectory x(·) emanating from x0 and
generated by u(·) the following holds

lim inf
T→∞

{JT (x0, u
∗(·))− JT (x0, u(·))} ≥ 0.

Roughly speaking, a trajectory is overtaking optimal if "the performance
index catches up with the performance index of any other trajectory" [114].
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Maximum Principle

Necessary conditions on optimal trajectories can be obtained by the In-
finite Horizon Maximum Principle [114]. Let H(p̂, r̂, λp, λr, λ0, α) be the
Hamiltonian of the system, defined by

H(·) ≡ λpEM (1− r̂)− r̂ p̂

K + p̂
[λp(1 + p̂) + λr r̂ + λ0] + αλr r̂

p̂

K + p̂
.

Moreover, let α be an optimal control, and x̂(·) = (p̂(·), r̂(·)) the associated
trajectory. Then, there exists λ0 ≤ 0 and an absolutely continuous map
λ = (λp, λr) : [0,+∞)→ R2 such that (λ, λ0) 6= 0, and

λ̇p = −∂H
∂p̂

= r̂
K

(K + p̂)2
[λp (1 + p̂) + λr (r̂ − α) + λ0] + r̂

p̂

K + p̂
λp,

(2.63)

λ̇r = −∂H
∂r̂

= λpEM +
p̂

K + p̂
[λp (1 + p̂) + λr (2r̂ − α) + λ0] . (2.64)

The maximization condition is given by:

α(t̂) ∈ arg maxv∈[0,1]H(x̂(t̂), λ(t̂), λ0, v),

almost everywhere on [0,+∞).
(2.65)

An extremal trajectory is a quadruplet (x̂(·), λ(·), λ0, α(·)) satisfying
Eqs 2.61-2.65. The extremal is said to be normal (resp. abnormal) if λ0 < 0
(resp. λ0 = 0). In the normal case, we normalize the adjoint vector so that
λ0 = −1.

From Eq. 2.65, it follows that the control strategy is given by the sign of
the switching function φ(·) ≡ λr r̂ p̂/(K + p̂), that is,{

α = 1 ⇐⇒ φ(·) > 0,

α = 0 ⇐⇒ φ(·) < 0.

Finally, given that the system is autonomous, the Hamiltonian is con-
served along any extremal trajectory.

Characterization of singular arcs

Whenever φ is vanishing over a time interval, we say that the trajectory
is singular. We will now characterize such trajectories. If I = [t̂1, t̂2] is a
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singular arc, we have φ(t̂) = φ̇(t̂) = 0, for all t̂ ∈ [t̂1, t̂2], that is, λr(t̂) = 0
and λ̇r(t̂) = 0.

For abnormal extremal trajectories, we get λp(t̂) = 0, in contradiction
with the Maximum Principle, so there is no singular arc. An abnormal
extremal trajectory is therefore a concatenation of bang arcs.

For normal extremal trajectories, using additionally that H is constant
along an extremal trajectory, we obtain that λp is constant along a singular
arc. By combining λ̇p = 0 and λ̇r = 0, we obtain p̂(t̂) =

√
EM K = p̂∗opt.

Using dp̂/dt̂ = 0, we finally get r̂(t̂) = r̂∗opt. Thus, the singular arc is the
optimal steady state, corresponding to a singular control α(t̂) = α∗opt, with
α∗opt depending on EM (S1 Text).

A necessary condition of optimality for a singular arc is given by the
Kelley condition [163]. We must differentiate φ with respect to t̂ until α
appears in the derivative. Along a singular arc, we obtain for q = 2:

(−1)q
∂

∂α

d2q

dt̂2q
φ(t̂) < 0,

satisfying the Kelley condition necessary for optimality. Given that the sin-
gular arc is of second order, an optimal trajectory can enter into the singular
arc only by a chattering arc (also called the Fuller’s phenomenon, i.e., an arc
with an infinite number of switches [163, 174]).

Analysis of the adjoint system

Recalling that a switch corresponds to a change of sign of λr, the anal-
ysis of the adjoint system (Eqs 2.63-2.64) may be useful to characterize the
switches of extremal trajectories.

First, for the abnormal case, we can easily determine in the phase-plane
the possible transitions between the four regions defined by the axes (see
Fig. 2.10). A trajectory can cross at most twice the λp-axis, so we conclude
that an abnormal extremal cannot have more than two switches. Thus, an
abnormal extremal is a concatenation of at most three bang arcs (α(t) = 0 or
α(t) = 1). When α(t) = 0 or α(t) = 1 for a long time, the growth rate tends
to zero. We therefore conclude that abnormal extremal trajectories are not
optimal.

Secondly, for the normal case, after the first switch, a trajectory with
two consecutive switches in the regions {(p̂, r̂) ∈ Ω | p̂ < p̂∗opt} or {(p̂, r̂) ∈
Ω | p̂ > p̂∗opt} is not possible, as shown in Fig. 2.10. Therefore, such a
trajectory is not optimal given that it does not fulfill the conditions given
by the Maximum Principle. We conclude that if the optimal trajectory has
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λp

λr

0

α = 1

α = 0

λp

λr

λs
p

0

α = 1

α = 0

if p < p∗opt if p > p∗opt

Figure 2.10 – Transitions between regions in the phase-plane for the
adjoint system. A switch occurs when a trajectory crosses the λp-axis.
Left: abnormal case. An extremal trajectory cannot have more than two
switches. Right: normal case. (λsp, 0) corresponds to the singular arc. After
the first switch, an extremal trajectory cannot have two consecutive switches
if it stays in the region {(p̂, r̂) ∈ Ω | p̂ < p̂∗opt} or {(p̂, r̂) ∈ Ω | p̂ > p̂∗opt}.

a concatenation of bang arcs, the switches must alternatingly occur in the
regions {(p̂, r̂) ∈ Ω | p̂ < p̂∗opt} and {(p̂, r̂) ∈ Ω | p̂ > p̂∗opt}.

Optimal trajectories

From the Maximum Principle, we have shown that the optimal trajectory
is a concatenation of bang arcs (α(t) = 0 or α(t) = 1) and possibly a singular
arc corresponding to the optimal steady state (p̂(t̂), r̂(t̂)) = (p̂∗opt, r̂

∗
opt). More-

over, if the optimal trajectory has a singular arc, it must enter it through a
chattering arc (i.e., with an infinite number of switches between α = 0 and
α = 1).

These elements motivate the supposition that optimal solutions consist
in a transient (chattering arc) towards the optimal steady state, after which
they remain there (until the next change of environment). The chattering
arc can be characterized by a switching curve p̂ 7→ ϕ(p̂) which passes through
the optimal steady state. Defining A0 and A1 the regions above and below
ϕ in the (p̂, r̂)-plane, respectively, we conjecture that the following feedback
control law is optimal:

α(t̂) = 0 if (p̂(t̂), r̂(t̂)) ∈ A0,

α(t̂) = 1 if (p̂(t̂), r̂(t̂)) ∈ A1,

α(t̂) = αopt if (p̂(t̂), r̂(t̂)) = (p̂∗opt, r̂
∗
opt).

(2.66)

Loosely speaking, the chattering arc corresponds to a spiral composed
of bang arcs wrapping around the optimal steady state, where the switches
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alternatingly occur in the regions {(p̂, r̂) ∈ Ω | p̂ < p̂∗opt} and {(p̂, r̂) ∈ Ω |
p̂ > p̂∗opt}, in line with the analysis of the adjoint system. This is a first hint
that the proposed control strategy is optimal. Moreover, our conjecture is
also in line with the turnpike property : Trélat and Zuazua [175] have shown
that, for quite a generic class of systems, the optimal strategy consists in
staying at the optimal steady state (after a short transient).

As explained in the Methods section of the main text, we numerically
solved the optimal control problem by the direct method using the bocop
software [115]. It is important to stress that the optimization process was
performed without any preliminary assumptions on the characteristics of
the optimal trajectory. The fact that the numerical solution verifies the
Maximum Principle (i.e., the singular arc corresponds to the optimal steady
state) and the Kelley condition (i.e., the presence of a chattering arc) tends
to confirm that the control strategy of Eq. 2.66 is optimal. As an aside, we
note that due to the fact that numerical optimization was performed for a
finite horizon, we actually obtained a second chattering arc escaping from the
singular arc at the end of the simulation. This is a classical property of the
turnpike strategy: the optimal trajectory leaves the optimal steady state just
before the end of the time interval of interest, in our case consuming almost
all precursors. This arc was removed from the plot in Fig. 2.4, because it
does not occur with an infinite horizon and is therefore a numerical artifact
for this study.
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2.5.4 S4 Text – Kinetic model of the ppGpp system in
Escherichia coli

The recently published model of Bosdriesz et al. [116] provides a syn-
thesis of the currently available knowledge of the ppGpp regulatory system.
Through the mechanisms of ppGpp production and degradation, it describes
regulation of the synthesis of ribosomal RNA. We explain below how we use
the model to compare the action of the ppGpp system with the on-off control
strategy. The denomination of variables and parameters follows the Support-
ing Information of [116] , and is reproduced in Table 2.1 in order to make
the text self-contained.

The evolution of the cellular concentration of ppGpp is described in [116]
by

dppGpp
dt

= vRelA(rt,tot) + vspoT − kspoT · ppGpp, (2.67)

where vspoT and kspoT are constants (see Table 2.1), and vRelA is a function
of rt,tot, the total concentration of "stalled" ribosomes:

vRelA(rt,tot) = kRelA ·RelAtot ·
rt,tot

KD,RelA + rt,tot
. (2.68)

The amount of stalled ribosomes is determined by the equilibrium between
charged and uncharged tRNA, tai and ti, in the cell:

rt,tot =
∑
i

rti =
∑
i

ri
ti/κt

1 + tai/κta + ti/κt
, (2.69)

which can be rewritten as

rt,tot =
∑
i

ri
ti/κt

1 + (0.5r − ti)/κta + ti/κt
, (2.70)

using the assumption that ttot,i = tai + ti = 0.5 · r. ri denotes the concen-
tration of ribosomes recognizing amino acid i. Finally, with r =

∑
i ri the

total ribosome concentration and ai the concentration of amino acid i, the
dynamics of the charged tRNA concentration is described by

dtai
dt

= vtai(ai, ti)− fi · vribosome(ti, r), (2.71)

with vtai(ai, ti) the synthesis rate of charged tRNA, and fi · vribosome(ti, r)
their consumption via protein synthesis. In particular,

vtai(ai, ti) = kSi · Stot,i ·
ti ai

tiKMai + aiKMti + ti ai
, (2.72)

vribosome(ti, r) = krib · r ·

(
1 +

∑
i

[
fi ·
(

1 +
ti
κt

)
κta

0.5 · r − ti

])−1
.(2.73)
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For comparison with our framework, we need ppGpp as a direct function
of the total amino acid concentration a =

∑
i ai (a proxy for precursors) and

total ribosome concentration r (a proxy for gene expression machinery). To
this end, we made two additionnal assumptions:

(A1) All concentrations specific to one type of amino acid i (ai, tai, ti,
ri) are in the same proportion fi = f = 1/20 with respect to the total
concentrations (a, ta, t, r).

(A2) We apply a quasi-steady-state approximation (QSSA) to the dy-
namics of the concentration of the charged tRNAs (tai) and the con-
centration of ppGpp (ppGpp). That is, the dynamics of these variables
are assumed fast relative to the dynamics of the amino acid concen-
trations (ai) and the total ribosome concentration (r).

Using (A2), we can rewrite Eq. 2.71 as follow:

vtai(ai, ti) = fi · vribosome(ti, r), (2.74)

which, using (A1) and Eqs 2.72 and 2.73, leads to:

kSi·Stot,i·
ti ai

tiKMai + aiKMti + ti ai
= fi·krib·r·

(
1 +

κta
0.5r − ti

·
(

1 +
ti
κt

))−1
.

(2.75)
By rearranging both sides of the equation, ti can be expressed as a function
of ai and r, which yields:

Ati
2 +Bti + C = 0, with

A =
kSi Stot,i ai
fi krib r

(
κta
κt
− 1

)
+KMai + ai,

B =
kSi Stot,i ai
fi krib r

(0.5 r + κta) + aiKMti − 0.5 r (KMai + ai),

C = −0.5 r aiKMti,

(2.76)

and therefore

ti(ai, r) =
−B ±

√
B2 − 4AC

2A
.

It is not difficult to show that the only solution on [0, 0.5 r] is

ti(ai, r) =
−B +

√
B2 − 4AC

2A
. (2.77)

From this result, we obtain rt,tot as a function of ai and r, by applying (A1)
to Eq. 2.70:

rt,tot(ti, r) = r · ti/κt
1 + (0.5r − ti)/κta + ti/κt

, (2.78)
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and substituting ti by the expression of Eq. 2.77.
Finally, we apply (A2) to Eq. 2.67 and obtain the final expression giv-

ing the concentration of ppGpp as a function of the total amino acid and
ribosome concentrations:

ppGpp(ai, r) =
1

kspoT

(
kRelA ·RelAtot ·

rt,tot(ai, r)

KD,RelA + rt,tot(ai, r)
+ vspoT

)
.

(2.79)
This function is represented in Fig. 2.11 with parameters taken from Ta-
ble 2.1.

The plotted surface of the function resembles the inverse of the on-off
control strategy in Fig. 2.8, as expected, bearing in mind that ppGpp has an
inhibitory effect on the synthesis of ribosomal RNA. We assumed a Michaelis-
Menten inhibition for the regulatory effect of ppGpp on rRNA synthesis, and
thus indirectly on the synthesis of ribosomal proteins [127, 138]:

α(ppGpp) =
KI

KI + ppGpp
. (2.80)

The inhibitory constant KI lies in the dynamical range of variation of ppGpp.
In Fig. 2.8 in the main text, we took KI = 10 µM.
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Figure 2.11 – ppGpp concentration is a function of total ribosome
and amino acid concentrations. We assume the dynamics of ppGpp to
be fast on the time-scale of changes in the ribosome and amino acid concen-
trations. The concentration of ppGpp can thus be expressed as a function of
the latter two variables, using the model of Bosdriesz et al. [116]. Parameters
are taken from Table 2.1.
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Symbol Value Unit Description
ai – µM Concentration of aa i (not incorporated in protein)
tai – µM Concentration of tRNA charged with aa i
ti – µM Concentration of free tRNA conjugate to aa i

ttot,i 0.5 · r µM Total concentration of tRNA conjugate to aa i
ri – µM Total concentration of ribosome with an A-site for aa i
rti – µM Ribosomes with uncharged tRNA in an A-site for aa i

ppGpp – µM Concentration of ppGpp
a

∑
i ai µM Total concentration of aa (not incorporated in protein)

ta
∑

i tai µM Total concentration of tRNA charged with aa
t

∑
i ti µM Total concentration of free tRNA

rt,tot
∑

i rti µM Total concentration of uncharged tRNA bound to ribosomes
r

∑
i ri µM Total concentration of ribosomes

vRelA – µM/s Rate of RelA-catalyzed ppGpp synthesis
vSpoT 10−3 µM/s Rate of ppGpp synthesis by SpoT
vtai – µM/s Rate of amino-acyl tRNA i synthetase

vribosome – µM/s Total rate of protein synthesis
krib 20 s-1 kcat of protein elongation
kRelA 75 s-1 kcat of ppGpp synthesis by RelA

KD,RelA 0.26 µM Michaelis constant of RelA-catalyzed ppGpp production
RelAtot 1/15 µM RelA concentration
kSpoT ln(2)/30 s-1 Rate of ppGpp degradation by SpoT
κt 500 µM Dissociation constant of uncharged tRNA-ribosome complex
κta 1 µM Dissociation constant of charged tRNA-ribosome complex
kSi 100 s-1 kcat of aminoacyl-tRNA synthetase
Stot,i 1 µM Total concentration of aminoacyl-tRNA synthetase for aa i
KMai 100 µM Michaelis constant of aa-tRNA synthetase for amino acids
KMti 1 µM Michaelis constant of aa-tRNA synthetase for uncharged tRNA
fi 1/20 – Proportion of aa i in proteins (Assumption A1)

Table 2.1 – Parameters and variables reused from Bosdriesz et
al. [116]. The abbreviation aa denotes amino acids.
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2.5.5 S1 Table – Parameter values of the self-replicator
model

Parameter Unit Literature value Fitted value
γ − No value 1.39
kR h−1 3.6 2.23

eM for M63+glycerol h−1 < 3.6 0.587
eM for M63+glucose h−1 < 3.6 0.867
eM for cAA+glycerol h−1 < 3.6 1.07
eM for cAA+glucose h−1 < 3.6 1.57
eM for RDM+glycerol h−1 < 3.6 3.48
eM for RDM+glucose h−1 < 3.6 4.76

βKR − 0.003 Not fitted

Table 2.2 – Parameter values of self-replicator model The parameter
values in the model were obtained by fitting Eq. 2.25 to the data of Scott
et al [33] (Fig. 2.3 in the main text), as described in the Methods section.
They are compared with order-of-magnitude estimates from the literature
(S2 Text).
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2.5.6 S1 Figure – Simple control strategies for the self-
replicator of bacterial growth

Figure 2.12 – Simple control strategies for the self-replicator of bac-
terial growth. A: Nutrient-only strategy: α = f(EM). The dashed, black
curve is the (unique) strategy driving the system exactly to the optimal
steady state, that is, the state in which growth occurs at the maximal rate
supported by EM . The function f is defined by Eq. 2.27 in the Methods sec-
tion of the main text. The solid, red curve is an approximation of this func-
tion by the simple Michaelis-Menten curve of Eq. 2.16, with KmE = 1.0. B:
Precursor-only strategy: α = g(p̂). The dashed, black curve is the (unique)
strategy driving the system exactly to the optimal steady state. The function
g is defined by Eq. 2.28 in the Methods section of the main text. The solid,
red curve is an approximation of this function by the simple Hill curve of
Eq. 2.18, with Kmp = 0.06 and a cooperativity coefficient 2.
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Chapter 3

Dynamics of resource allocation
during an acetate-glucose upshift

"Oh you like beetles? Wonderful! Then that’s what you’ll be killing for
the next 50 years." – Zach Weinersmith, Biologists are weird [176].

Résumé du Chapitre 3: Mesures dynamiques de
l’allocation des ressources lors d’une transition
acétate vers glucose

Dans ce chapitre, nous nous intéressons à la validation expérimentale des
prédictions faites au cours du Chapitre 2. Nous avons en effet pu voir que, si
l’on suppose qu’un microorganisme optimise sa production de biomasse lors
d’une transition de croissance, on peut s’attendre à ce que ce dernier distri-
bue ses ressources cellulaires entre la production de machinerie d’expression
génique et de machinerie métabolique en suivant un schéma tout-ou-rien
(bang-bang). Le but est donc ici de mesurer précisément la dynamique de α
lors d’une transition de croissance contrôlée.

La Section 3.2.1 s’attache à définir les conditions expérimentales dans
lesquelles le comportement prédit lors du Chapitre 2 pourra être observé. En
utilisant le modèle d’auto-réplicateur (Eqs 3.1 et 3.2), nous montrons que
l’allocation des ressources α(·) peut être reconstruite au cours de la transi-
tion si l’on dispose de mesures dynamiques du taux de croissance et de la
concentration en machinerie d’expression génique. Cependant, le comporte-
ment tout-ou-rien a une dynamique bien particulière qui peut facilement être

87
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offusquée au niveau d’une population de cellules si ces dernières ne sont pas
synchrones. De fait, cette question ne peut être résolue qu’en obtenant des
mesures à haute fréquence et au niveau de cellules individuelles, ce qui nous
a conduits à utiliser des rapporteurs fluorescents de l’abondance d’une des
machineries. En particulier, nous construisons une souche d’Escherichia coli
chez laquelle la sous-unité S2 du ribosome a été fusionnée avec une protéine
fluorescente (GFP) (voir Section 3.4.1 des matériels et méthodes). Couplée à
de la vidéomicroscopie, cette souche nous permet de quantifier en temps réel
la quantité de ribosomes au niveau de cellules uniques, ce qui procure un ex-
cellent moyen d’obtenir la concentration en machinerie d’expression génique
(le ribosome étant son composant principal). Le taux de croissance quant à
lui, peut être facilement reconstruit en mesurant l’évolution de la taille des
cellules dans le temps.

Nous définissons également dans la Section 3.2.1 les conditions de crois-
sance adéquates. Nous nous focalisons sur le cas particulier d’une transition
d’un milieu de croissance pauvre vers un milieu riche. Il est important que
les bactéries soient en phase de croissance dans chaque milieu du fait de
l’existence d’une physiologie bien particulière propre à la non-croissance. Les
cellules doivent donc croître pendant suffisamment longtemps sur le premier
milieu, sans épuiser celui-ci, puis une transition rapide doit être effectuée vers
le milieu riche. Nous avons utilisé pour cela la Mother Machine, un dispositif
microfluidique à la base mis au point pour maintenir et observer les cellules
bactériennes en état de croissance stationnaire pendant de longues périodes.
Au sein de ce dispositif, les cellules sont en contact avec du milieu frais qui
circule et leur procure de nouveaux nutriments durant toute la durée de
l’expérience (voir Section 3.4.3). En changeant simplement le type de milieu
injecté dans le dispositif, nous pouvons l’utiliser pour modifier en quelques
secondes les nutriments auxquels les bactéries ont accès, et donc réaliser la
transition de manière robuste et contrôlée. Plus particulièrement, le milieu
pauvre utilisé contient de l’acétate comme seule source de carbone, tandis
que le milieu riche contient essentiellement du glucose (Fig. 3.1).

De telles expériences s’avèrent malheureusement pointues et, au cours du
déroulement de cette thèse, nous n’avons pu en réaliser qu’un petit nombre,
dont seule celle présentée ici s’est avérée exploitable. Celle-ci a cependant subi
de nombreux problèmes expérimentaux qui, s’ils n’ont pas empêché complè-
tement son exploitation, ont posé des problèmes pour l’analyse et l’inter-
prétation des résultats. Ces problèmes expérimentaux sont abordés dans la
Section 3.2.2, et sont largement discutés en Section 3.3. En effet, suite à un
problème logiciel et à ce qui semble être une contamination par un bacté-
riophage, nous n’avons pas pu obtenir des séries temporelles aussi longues
qu’initialement prévu. Même si nous disposons néanmoins des données se si-
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tuant autour de la transition, le fait de ne pas avoir atteint un nouvel état
de croissance stationnaire sur glucose va s’avérer être un inconvénient ma-
jeur pour l’analyse des résultats. De plus, nous n’avons pu analyser qu’une
partie des données, en nous focalisant sur une seule cellule par canal de la
Mother Machine (Fig. 3.2). Au final, il faut retenir de ces sections que cette
expérience et son analyse sont largement préliminaires, et seront consolidées
dans le futur par de nouveaux travaux.

La Section 3.2.3 présente la façon dont nous pouvons reconstruire α(·)
lors de la transition à partir des données obtenues. Pour cela, nous dévelop-
pons une méthode basée sur le lissage de Kalman, qui utilise une approche
probabiliste et bayésienne pour reconstruire de manière robuste un signal à
partir de mesures bruitées. Nous montrons comment l’information dont nous
disposons sur le déroulement de l’expérience peut être injectée dans l’analyse
sous la forme d’un prior bayésien afin de faciliter la reconstruction, ce qui
s’avère particulièrement utile sur nos données. De plus, à partir de données
synthétiques générées grâce au modèle développé lors du Chapitre 2, nous
constatons que la méthode est capable de capturer le profil oscillatoire généré
par le comportement tout-ou-rien que nous attendons (Fig. 3.5).

Finalement, nous appliquons cette méthode à la reconstruction du taux
de croissance puis de α(·), et présentons les résultats dans la Section 3.2.4. En
moyenne, le taux de croissance présente le comportement attendu (Figs 3.3
et 3.4), avec des valeurs à l’état de croissance stationnaire qui sont proches
de celles connues pour E. coli, et une augmentation rapide au moment de la
transition vers le milieu riche. Les résultats pour la reconstruction de α(·) sont
cependant plus mitigés. Même si un comportement oscillatoire est observé
pour chaque cellule (Figs 3.6 et 3.8), il n’est pas certain que ce dernier ne soit
pas un artefact dû à une mauvaise calibration de la méthode. Il aurait fallu
en effet obtenir de longs états stationnaires de croissance avant et après la
transition pour pouvoir réaliser cette calibration dans de bonnes conditions.
Néanmoins, si l’on s’intéresse au comportement médian des cellules (Fig. 3.7),
on constate que la première oscillation survenant après la transition semble
conservée dans la population (Fig. 3.8). Ces résultats s’avèrent finalement
encourageants, et incitent à pousser plus en avant cette étude, notamment via
l’acquisition de nouvelles données pour lesquelles les problèmes cités auront
pu être corrigés (voir discussion en Section 3.3).
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Beginning of Chapter 3

3.1 Introduction
Most studies of the growth of microorganisms have been done at steady

state. This is a reasonable and logical choice given that at steady state, the
behavior of microorganisms is reproducible, which helps uncovering simple
theories to apprehend their inherent complexity. But while this condition can
be easily achieved in the laboratory, microorganisms naturally spend very lit-
tle time in steady state. This motivated the construction of a new theoretical
framework in Chapter 2 to study growth laws during growth transitions.

The principles underlying regulatory processes in dynamical conditions
appear to be different from those applying at steady state. We showed that
regulatory strategies approaching the theoretical optimal, given by bang-
bang control of gene expression machinery, have to be able to effect abrupt
and strong variations in the activity of a gene. It was seen that for imple-
menting such strategies the regulatory system needs to be capable of sensing
the internal state of the cell and not just the environment. A near-optimal
transition also requires information of several different variables, whereas for
maintaining a steady state with maximal biomass accumulation a single vari-
able turned out to be sufficient in our theoretical framework. Interestingly,
we showed that the ppGpp regulatory system of E. coli fulfills the require-
ment of such a regulatory strategy, by implementing an on-off strategy for
regulating the synthesis of ribosomes. However, although this provides cir-
cumstantial evidence that bacteria control resource allocation in a manner
consistent with theoretical optimality, experimental data are necessary to
decide if an on-off strategy is at work in E. coli during growth transitions.

Unfortunately, far more information is available on ribosome abundance
at steady state than during growth transitions [33, 152]. The main reason
for this bias on steady-state conditions is that, from an experimental point
of view, growth transitions are hard to control and may depend on the his-
tory of the culture [39–43]. However, as we discussed in Section 2.3, the few
studies that have been reported seem to be consistent with our predictions,
in the sense that they indicate that during growth transitions, the synthesis
rate of ribomoses oscillates [152, 153] and the ppGpp concentration manifests
a rapid succession of increases and decreases [139, 154]. But we cannot de-
cisively validate or disprove the model predictions from measurements that
were carried out at the population level, where it is inherently hard to iden-
tify switching patterns. What is needed for the verification of our predictions
are dynamical single-cell measurements of the ribosome concentration during
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well-controlled growth transitions. While the observation of an on-off strat-
egy would show that simple models of the type introduced in Chapter 2 are
instrumental in gaining a better understanding of microbial physiology, its
refutation would also raise interesting questions. If maximization of growth
rate and biomass accumulation have been retained by natural selection in
E. coli, which factors would prevent the cell from behaving optimally from a
theoretical point of view?

The aim of this chapter is to measure in vivo, during a growth transition,
the resource allocation profile α(·) and compare its dynamics with the gold
standard established in Chapter 2. To this end, we have measured riboso-
mal abundance of E. coli at the single-cell level during a nutrient upshift.
More precisely, we constructed a strain in which a fluorescent marker has
been attached to a ribosomal subunit, thus allowing the in-vivo monitor-
ing of (changes in) the abundance of ribosomes. In collaboration with Irina
Mihalcescu of the Laboratoire Interdisciplinaire de Physique, we cultivated
this E. coli strain in a microfluidic device, allowing the long-term imaging
of individual cells in well-controlled conditions, notably involving a classic
upshift experiment from growth in minimal medium with acetate to minimal
medium with glucose. We then developed a Kalman smoothing method, in
collaboration with Eugenio Cinquemani of Inria Grenoble – Rhône-Alpes, to
reconstruct α(·) from the estimates of the variations of the growth rate and
the relative ribosomal synthesis rate. While the preliminary results presented
here do not allow a decisive validation of the expected behavior, among other
things due to the difficulties that were encountered during the experiments
and the image analysis, we believe they are promising as a first step to-
wards the better understanding of global resource allocation during growth
transitions.

For clarity, the model of resource allocation during growth transitions
developed in Chapter 2 is reproduced here, where dotted variables represent
time derivatives:

ṗ(t) = eM(t) · (1/β − r(t))− kR · p(t)
KR + p(t)

· r(t) (1 + β p(t)), (3.1)

ṙ(t) =
kR · p(t)
KR + p(t)

· r(t) (α(t)− β r(t)). (3.2)

In this form, it contains 4 variables (eM(t), p(t), r(t), α(t)) and 3 parameters
(β, kR, KR). eM(t) [min-1] is an indicator of the richness of the environment.
p(t) [g.L-1] is the precursor concentration inside the cell. r(t) [g.L-1] is the
concentration of gene expression machinery inside the cell. α(t) [∅] is the
fraction of resources allocated to the synthesis of gene expression machinery.
kR [min-1] is the rate constant of macromolecular synthesis. KR [g.L-1] is the
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half-saturation constant of macromolecular synthesis. β [L.g-1] is the inverse
of the cellular density of macromolecules, assumed to be constant.

3.2 Results

3.2.1 Experimental design

How can one measure the resource allocation variable in E. coli cells?
There is no direct way to quantify α(·) in an experiment, mostly because of
its abstract nature. To correctly reconstruct it, one has to know the value
of every single term in the equations in which it appears. In the model of
Eqs 3.1-3.2, α only appears in Eq. 3.2. We can therefore identify α(tk) for
each time tk when the terms βr(tk), ṙ(tk), and kR·p(tk)

KR+p(tk)
· r(tk) are known,

or equivalently, the six individual components r(tk), ṙ(tk), p(tk), kR, KR, β
they are composed of. Even when assuming that the parameters kR, KR, and
β are known, or at least easy to estimate independently, reconstructing the
dynamics of α would require estimation of the (changes in) concentration of
the gene expression machinery (r, ṙ) and the precursor concentration p.

Are such measurements feasible in practice? The abundance of ribosomes
can be quantified, for instance, by measuring the total RNA of the cell [33],
or using radioactive markers [152, 153], fluorescent labels [81], or mass spec-
trometry techniques [177]. However, only the use of fluorescent proteins
complies with our need for real-time single-cell quantification. Obtaining
an estimate of precursor abundance is even more challenging, since there is
no clear proxy for the totality of precursors in the cell and, while absolute
quantification of all internal metabolites has been achieved in E. coli [60],
this method is also not suitable for a dynamical estimation in individual cells.

The problem of quantifying α(·) can be simplified by applying a transfor-
mation of the model of Eqs 3.1-3.2. Taking into account that by construction
the growth rate µ(t) is given by

µ(t) = β
kR · p(t)
KR + p(t)

· r(t),

we can rewrite Eq. 3.2 as follows

ṙ(t) = µ(t)

(
α(t)

β
− r(t)

)
. (3.3)

The problem of estimating α(·) is thus equivalent to the problem of estimating
r(·), ṙ(·), µ(·) and β. If we are satisfied with estimating α up to a constant
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factor β, dynamically measuring the ribosome concentration and the growth
rate would make α(·)/β identifiable.

Given that fluorescent reporters of ribosomal proteins can provide infor-
mation on both r(·) and ṙ(·) [178], the above reformulation of the problem is
promising for the purposes of our study. Moreover, since the predicted bang-
bang profiles in gene activity are easily hidden at the population level if cells
are not synchronous, which is generally the case, expression of the riboso-
mal genes need to be monitored at high sampling density on the single-cell
level, which is also possible with fluorescent reporters. Inspired by previous
work [81], we therefore constructed an E. coli strain in which the S2 ribosomal
subunit, encoded by the gene rpsB, has been tagged with a green fluorescent
protein (GFP). The strain with the chromosomal rpsB-gfp fusion produces
fluorescent ribosomes that are quantifiable in vivo in single cells while not
affecting the growth rate (see Material and Methods 3.4.1 and [81]). Moni-
toring single cells of this strain, by time-lapse fluorescence microscopy, thus
makes it possible to estimate r(·) and ṙ(·) and reconstruct µ(·).

The growth conditions also need to be carefully chosen for this study.
In natural environments, for many bacteria one of the most frequently en-
countered growth transitions, or at least the transition on which selection is
expected to operate, is the transition from stationary phase in a nutrient-
deprived medium [179] to (exponential) growth after the renewed availability
of nutrients. The transition from stationary to exponential phase is difficult
to study though as many hard-to-control parameters play a role, including
the duration of the nutrient stress, the composition of the medium before
growth arrest, and the accumulation of waste products in the medium [30].
As a consequence, growth resumption only occurs after a lag phase of vari-
able duration [39–43], which is not included in the model. For this reason, we
decided to focus on a transition from exponential growth on a poor carbon
source (acetate) to exponential growth on a rich carbon source (glucose) in a
well-defined minimal medium. By construction, this steady-state-to-steady-
state transition requires a long acquisition time before and after the shift,
respectively, to ensure that the cells have no memory of their physiological
state before the transition and have enough time to reach the new steady
state after the transition. The use of the mother machine, a microfluidic de-
vice that was designed to sustain exponential growth for long periods of time,
is therefore a good choice for this purpose. It allows to maintain a constant
flow of fresh medium and to effect fast transitions by switching the medium
(see Material and Methods 3.4.2 and 3.4.3). The complete experimental plan
is summarized in Fig. 3.1.
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Figure 3.1 – Schematic outline of the upshift experiment. The goal is
to measure the fluorescence and length/area of E. coli rpsB-gfp cells during
an acetate-to-glucose upshift. We use M9 minimal medium supplemented
with 0.2% of acetate or glucose (see Material and Methods 3.4.2). A precul-
ture was started from glycerol stock for 2.5 days on 0.2% acetate in batch con-
dition (shake flask). The day of the experiment, the cells were injected into
the mothermachine and fed by a constant flow of fresh 0.2% acetate medium
(see Material and Methods 3.4.3). Fluorescence and phase contrast images
were taken every 5 minutes. After 20 h, the feeding media was switched to
0.2% glucose and maintained for 20 h while continuing image acquisition.
Time 0 corresponds to the moment of the acetate-glucose upshift.

3.2.2 Data acquisition

An experiment following the plan of Fig. 3.1 was carried out, over a period
of 40 h, but encountered a number of difficulties. First, the motor displacing
the microscope along the Z-axis intermittently stalled, thus deactivating the
autofocus and the Z-compensation for the tilt of the microfluidic device in the
XY plane. As a consequence, until the experimenter manually intervened,
many of the images acquired were out of focus. This is the reason why data
points between -720 and -150 min are not exploitable, but fortunately the
experiment was planned in such a way that when it really mattered, notably
around the growth transition, someone was present to monitor the micro-
scope. Second, at around 7 h after the nutrient upshift, the bacteria started
to die for reasons that are unknown, the most plausible hypothesis being a
phage contamination (see Discussion 3.3). Data analysis was therefore lim-
ited to 550 min after the upshift, when roughly 3/4 of the cells were still
growing. For these and other reasons (see Section 3.3), the experiment will
have to be repeated, but there was no time left for this in the framework of
my PhD thesis.

The acquired data consisted of phase contrast and fluorescence images of
60 wells in total, in four different fields. While quite a few image analysis
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programs have been reported in the literature [155, 180–182], and some of
these specifically address the mother machine design of the microfluidic de-
vice [45, 183], they all presented limitations when applied to our data. For
instance, the segmentation algorithms experienced difficulties due to the low
resolution of the camera, and the phase contrast images had a superposed
reflection band due to the microfluidic device. Moreover, the fluorescence
density was concentrated in hot spots (Fig. 3.2) and its intensity varied dur-
ing the experiment. While this was expected, since ribosomes are localized
in the cell poles [81] and ribosomal abundance is known to vary with the
growth rate [33], it complicated automatic segmentation on the fluorescence
images.

For these reasons, the image analysis carried out for this chapter has been
much simplified. First, we have focused on the cell at the bottom of each
well, since this avoids the tracking of individual cells across several genera-
tions and ensures that the descendance of this cell can be followed throughout
the experiment. Second, segmentation was done by manually selecting two
pixels, one at each pole of the cell. These pixels were used to create a rect-
angle surrounding the cell (Fig. 3.2 and Material and Methods 3.4.4). After
background correction (Material and Methods 3.4.4), the fluorescence inten-
sity in units RFU was evaluated for each pixel in the rectangle, as well as
the length of the cell, defined by the distance in pixels between the poles
(Fig. 3.2). The fluorescence density for the entire cell [RFU/pixel/cell] was
computed by dividing the sum of the fluorescence intensities of the pixels in
the rectangle by the total number of pixels in the rectangle. Although we are
well aware that the above procedure can be improved on many counts (Sec-
tion 3.3), we nevertheless believe that it provides a reasonable approximation
of the quantities of interest and a valid starting-point for the estimation of
the growth rate and the resource allocation profile in the remainder of this
chapter.

In total, we obtained time courses of fluorescence density [RFU/pixel/cell]
and the length for 68 bacterial cells (Fig. 3.2). The fluorescence density ap-
pears constant during growth on acetate (before time 0) and immediately
increases when the carbon source is switched to glucose. Inspection of the
cellular length shows that the division frequency abruptly increases after
the nutrient upshift, corresponding to a higher growth rate. Unfortunately,
while steady-state growth on acetate was reached before the upshift, the flu-
orescence density profile suggests that the experiment did not continue long
enough to ensure that a new steady state on glucose was reached. However,
the data before and after the nutrient upshift are exploitable. What do we
observe if we estimate the growth rate and the resource allocation profile
from these data?
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Figure 3.2 – Results of data acquisition. We imaged 6 fields (X[1-3]Y[1-2])
each containing 15 wells (W[0-14]) for ∼40 h. From the 90 wells, 68 were suitable
for further analysis (the others being empty, out of frame for some period of time,
or plugged). For all wells, data points are missing in the interval between [-720,-
150] because the camera was out of focus. We stopped the analysis at 550 min,
when about 3/4 of the bacteria were still growing, before the entire population
died within a few hours for an unknown reason. The image labeled "Raw image"
is the last image analyzed for the highlighted well. The bacterium on the left of
this image was manually segmented by selecting two pixels at the poles on the
fluorescence images (red cross). A 6-pixel-wide rectangular mask was computed
for each image, resulting in the "Segmented image" on the right. Fluorescence
intensities are expressed in Relative Fluorescence Units (RFU) on a 16-bit image
and were corrected for camera background, but not autofluorescence background
(Material and Methods 3.4.4 and Discussion 3.3). The fluorescence intensity of the
cell, expressed in units RFU/pixel/cell, was computed by dividing the sum of the
fluorescence intensities of the pixels in the rectangle by the total number of pixels
in the rectangle. The cell length is the distance in pixels between the two poles
(red line). The thick lines in green and black highlight the time-varying length and
fluorescence density for the cell visible in the top images, labeled "X3Y2, W2".
The vertical dashed lines represent the time of the upshift from growth on acetate
to growth on glucose.
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3.2.3 Data analysis using Kalman smoothing

As we presented in section 3.2.1, our goal is to reconstruct the signal α(·)
during a growth transition. By modeling E. coli as a cylinder, the volume
can be assumed directly proportional to the length of the cell. If we assume a
negligible background of autofluorescence (see Material and Methods 3.4.4),
the fluorescence concentration in the cell can be assumed proportional to the
ribosome concentration. More precisely, based on the available data, we have
the following measurement model at each time-point tk, 0 ≤ k ≤ N − 1:

L(tk) = λ · V (tk) + εk, (3.4)
F (tk) = γ · r(tk) + ηk, (3.5)

where L(tk) and F (tk) are the length and fluorescence density in Relative Flu-
orescence Units per pixels measured at time tk, respectively, and V (tk) and
r(tk) the corresponding actual volume and ribosome concentration at time
tk, respectively. (λ,γ) are unknown proportionality constants, and (εk,ηk)
uncorrelated sequence of measurement noise assumed normally distributed
with mean 0.

As explained in Section 3.2.1, reconstructing α(·) requires information on
µ(·), r(·) and ṙ(·). From Eq. 3.5, we can obtain r(·) and ṙ(·) by smoothing
interpolation and differentiation. Similarly, µ(·) can be derived from Eq. 3.4
as it is defined by

V̇ (t) = µ(t) · V (t).

However, smoothing interpolation is particularly sensible to the boundary
conditions. Since each division in the time series generates a new boundary
condition, smoothing interpolation of our data is expected to be little robust.
For this reason, the growth rate of single cells is usually estimated by fitting
an exponential function to the volume data between each cell [45, 161]. While
this is suitable when bacteria are at steady state, it is not applicable during a
growth transition, where we expect the growth rate to vary between succes-
sive divisions. Other techniques are less sensible to the above problem [178],
and we decided to use Kalman smoothing for our purpose [118, 119, 184].

Kalman filtering [185] is a Bayesian algorithm using a series of noisy
measurements to predict the state of a dynamical system. It has been ex-
tensively used in engineering applications (guidance, tracking, control, ...)
requiring the real-time estimation of hidden variables in a dynamical system
from present and past measurements. Kalman smoothing is an extension of
Kalman filtering using information about past and present but also future
measurements of the state of the system, and is widely applied to estimate
unknown inputs in time series analysis [118, 119, 184]. The advantage of
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Kalman filtering with respect to Kalman smoothing is that it uses all available
information to estimate the hidden variables of a dynamical system, in appli-
cations where a real-time response is not required. For our problem, at each
time step tk, our hidden variables are the resource allocation variable α(tk)
and the growth rate µ(tk), while the available information consists of the N
measurements {F (t0), F (t1), ..., F (tN−1)} and {L(t0), L(t1), ..., L(tN−1)} that
were taken during the experiment.

The Kalman filtering problem can now be formulated as follows. The
state of a growing bacterial cell is described by the dynamical system

ṙ(t) = µ(t) · α(t)

β
− µ(t) · r(t), (3.6)

V̇ (t) = µ(t) · V (t), (3.7)

with initial conditions r(0) = r0, V (0) = V0, and the following measurement
model:

L(tk) = λ · V (tk) + εk, (3.8)
F (tk) = γ · r(tk) + ηk, (3.9)

where the variables are as defined as for Eqs 3.3, 3.4 and 3.5. While β can be
obtained from the literature (Chapter 2), λ and γ are unknown parameters
that need to be estimated along with α(·) and µ(·). Since we are satisfied with
a qualitative reconstruction of α(·), we can simplify the system by defining
rγ = γ · r and Vλ = λ · V . The dynamical system is consequently rewritten
as

ṙγ(t) = µ(t) · γ · α(t)

β
− µ(t) · rγ(t), (3.10)

V̇λ(t) = µ(t) · Vλ(t), (3.11)

with initial conditions rγ(0) = γr0, Vλ(0) = λV0, and the new measurement
model:

F (tk) = rγ(tk) + ηk, (3.12)
L(tk) = Vλ(tk) + εk. (3.13)

The Kalman filtering problem thus becomes the reconstruction of γα(·)/β
and µ(·) from measurements {F (t0), ..., F (tN−1)} and {L(t0), ..., L(tN−1)}.

Note that the above problem is not linear, whereas Kalman filtering was
initially introduced for linear systems [118, 185]. For this reason, we use a
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nonlinear extension of Kalman smoothing called unscented Kalman smooth-
ing [119, 186]. Details about its exact implementation are available in Ma-
terial and Methods 3.4.5. While it is feasible to simultaneously reconstruct
the signals µ(·) and γα(·)/β using Kalman smoothing, it is not necessary in
our case and might lead to unstable results. We therefore decided to proceed
in two steps: first reconstruct µ(·) from the measurements L(·), than inject
this result into the reconstruction of γα(·)/β from the measurements F (·).

3.2.4 Estimation of growth rate and resource allocation
profile

Growth rate estimation

As presented in the previous section, we want to reconstruct the growth
rate µ defined by Eq. 3.11, using measurements of the length L defined by
Eq. 3.13. Note that Kalman smoothing is a procedure that returns the ex-
pected mean and covariance of the state of a dynamical system, given the
measurements. Therefore, reconstructing µ requires it to be explicitly in-
cluded as a state variable of the dynamical system. This provides constraints
on the variation of µ that have the effect of a regularization. In particular, in
the Kalman smoothing procedure, we model the variations of µ as the out-
come of a stochastic process [184]. The laws describing this process play the
role of a prior on the expected regularity of µ (the more noisy the process,
the less constrained the variations of µ). In particular, we define µ as the
double integral of a Gaussian white noise w:

µ̇ = v(t), v̇ = w(t),

where v is an intermediate variable and w(t) is assumed normally distributed
with mean 0 and standard deviation θ: w(t) ∼ N (0, θ). The resulting system
then becomes

V̇λ(t) = µ(t) · Vλ(t),
µ̇(t) = v(t), (3.14)
v̇(t) = w(t),

with the measurement model

L(tk) = Vλ(tk) + εk, (3.15)

and the initial conditions

Vλ(0) = Vλ,0, µ(0) = µ0, v(0) = v0,
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that may themselves be Gaussian random variables with some given statis-
tics. The advantages of this regularization method are that the reconstructed
µ is guaranteed to be second-order differentiable [184]. It is also equivalent
to other methods like Tikhonov regularization [187–189], which minimizes
least-square differences between predictions and observations along with pe-
nalizing the variations of the input.

Our prior is thus entirely contained in the parameters of the Kalman
procedure:

— the mean of the initial state (Vλ,0, µ0, v0),
— the covariance of the initial state (Vλ,0, µ0, v0),
— the transition covariance for the derivatives of Vλ, µ and v (see below),
— the variance of the observation noise εk.

The mean and covariance of the initial state (Vλ,0, µ0, v0) represent the knowl-
edge we have of the initial values of the variables. For instance, if we know
exactly the initial value of the growth rate µ (via independent measurements
or literature data), we can use it as mean for µ0 along with a very small
variance. This will constraint the signal reconstruction by penalizing devi-
ations from this value at t = 0. On the contrary, if we are very uncertain
of the value for Vλ,0 (because cells are not synchronized, and can be in any
state when the data acquisition starts), we can use a large variance for this
initial condition. In our framework, there is no transition covariance for Vλ
and µ, because they are not the result of a stochastic process (the equations
that define their derivatives are fully deterministic). However, by definition
v is the result of a stochastic process of mean 0 and transition variance θ2.
This value is crucial and represents the intensity of the white noise w that
serves as prior for the regularization of µ. The smaller its value, the more
the variations of v are penalized, hence the smoother the reconstructed µ(·).
Finally, the variance of the observation noise εk is simply the expected mea-
surement noise. Together, these parameters represents the prior information
we have on the initial conditions, the smoothness of the reconstructed signal,
and the precision of our measurements, in order to reconstruct the growth
rate µ(·). As we will see below, we widely use these properties to overcome
the difficulties introduced by the discontinuities following cell divisions.

The observation of the length L of growing bacterial cells is inherently
discontinuous, due to the division of cells at regular time-points (Fig. 3.2).
The estimation problem can therefore not be solved for the experiment as a
whole, but only for the time-intervals between two successive division events,
when the cell length is expected to change continuously. We localize the di-
vision events by identifying the time points at which the empirical derivative
of the length is below an arbitrary threshold, and correspondingly slice the
total duration of the experiment into time-intervals with continuous changes
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of cell length. The simplest way to proceed from there on would be to treat
each portion independently. However, by doing this we would lose impor-
tant information, since the growth rates of a mother and its daughter cells
are expected to be similar. In other word, while not necessary continuous,
the growth rate of new-born cells will depend strongly on the growth rate of
their mother just before division. This can be easily taken into account in the
Kalman smoothing procedure by exploiting the prior information about the
initial mean and covariance of the system variables. In particular, we set the
mean of the initial growth rate of a daughter cell equal to the final estimated
growth rate of the mother cell, while defining a reasonable variance of the
growth rate to allow for uncertainty. The results of this Kalman smoothing
procedure, along with the exact parameters used, are reported in Fig. 3.3
and Material and Methods 3.4.5.

On average, the results presented in Fig. 3.3 show a roughly constant
growth rate on acetate, followed by a quick increase after the upshift. Con-
trary to what was visible in the plot with the fluorescence data, a steady state
for the growth rate seems to have been reached before the end of the experi-
ment. When considering the individual cells, the results are more difficult to
interpret. A significant part of the cells stopped growing before the end of
the experiment, probably due to the fact that all cells die from an unknown
cause around the end of the experiment. As a consequence, the analysis has
been limited to a time-interval after the upshift in which roughly 3/4 of the
cells are still growing. Interestingly, 1/6 of the cells exhibit growth rate os-
cillations, with a 1 h-long pause around 200 min after the upshift, followed
by a recovery of the growth rate until the end of the experiment (see S2 Fig
and S3 Fig). In order to focus the analysis, we decided to classify the cells
in three categories: dying cells (N=12) for which the growth rate drops to
zero after the upshift, pausing cells (N=11) for which the growth rate drops
to zero after the upshift and then recovers, and finally so-called normal cells
(N=45) which do not exhibit any of the above behaviors (see S2 Fig and
S3 Fig) In what follows, we focus on the 45 normal cells (Fig. 3.4) which
show a globally coherent behavior in the time window considered here.

Estimation of resource allocation profile

In order to estimate the time-varying allocation of resources after the up-
shift, we use a similar Bayesian regularization approach as for the estimation
of the growth rate. We note u(t) = γα(t)/β the resource allocation input
that we wish to reconstruct. With µ̂ the estimation of µ obtained in the
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Figure 3.3 – Growth-rate estimation using Kalman smoothing based
on measurement of the length of bacteria growing in a microfluidic
device. Gray lines represent the estimation of the time-varying length (up-
per plot) and growth rate (lower plot) of 68 cells by the unscented Kalman
smoothing procedure. The solid red lines highlight the result for one par-
ticular cell, located at the bottom of the well labelled "X3Y2, W2", while
black crosses in the top graph are the data points for this cell. The verti-
cal dashed lines represent the time of the upshift from growth on acetate
to growth on glucose. As prior for the algorithm, we used an observation
variance of 9 pixels2 for the length L. The transition variance θ2 (i.e., the
smoothing factor for µ) is fixed at 10−8 min-6. Inheritance between mother
and daughter cells is taken into account by systematically choosing an initial
mean growth rate equal to the last estimated value for µ before cell division,
and to half the last estimated value for Vγ, bearing in mind that E. coli cells
divide symmetrically. At the start of the experiment, when no mother cell is
available to provide initial estimates, the above values were fixed at 15 pixels
for Vγ and 0.004 min-1 for µ. The variances associated with these means are
16 pixels2 and 10−4 min-2, respectively for Vγ and µ. The initial mean of v is
set equal to 0, with an initial variance of 10−8 min-6. All the cross-covariances
are set to 0 because the system variables are independent by construction.
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Figure 3.4 – Growth-rate estimation using Kalman smoothing for
the normal cells only. The top graph is the same as the bottom graph of
Fig. 3.3, except that the dying and pausing cells were removed. The bottom
graph shows the 25% (lower gray curve), 50% (solid black curve) and 75%
(upper gray curve) quartiles, computed at each time step. The gray area
represents the interquartile range.

previous section, the full model for the reconstruction of u(·) is given by

ṙγ(t) = µ̂(t) · u(t)− µ̂(t) · rγ(t),
u̇(t) = v(t), (3.16)
v̇(t) = w(t),

with the measurement model

F (tk) = rγ(tk) + ηk, (3.17)

and the initial conditions

rγ(0) = rγ,0, u(0) = u0, v(0) = v0,
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that may themselves be Gaussian random variables with some given statis-
tics. Contrary to the model used for the estimation of the growth rate, the
system of Eq. 3.16 is linear. Furthermore, we do not have to deal with dis-
continuities in the measurements, since the fluorescence density F in the cells
is continuous between mother and daughter cells (Fig. 3.2).

Given the analysis in Chapter 2, we expect u(·) to exhibit bang-bang
variations after the upshift. This is a discontinuous signal that could be
complicated to reconstruct for certain choices of the parameters of the regu-
larization method. In order to parametrize the Kalman smoothing algorithm,
we generated synthetic data by simulating the model of Chapter 2. We es-
timated the noise characteristics of F using the RFU/pixel measurements
from Fig. 3.2 (S7 Text) and chose parameters that allow the model to re-
produce the observed growth rates and fluorescence densities. We simulated
an upshift from acetate to glucose and tried to estimate γα(·)/β from these
synthetic data, selecting the prior in the Kalman smoothing procedure by
trial and error. This approach may not have been optimal for our purpose
and possible improvements are discussed in Section 3.3. The results along
with the prior used are reported in Fig. 3.5. As expected, like any smoothing
method, the algorithm has difficulty in reconstructing stiff variations in the
state variables of Eq. 3.16. The switching profile of the resource allocation
input is relatively well captured though, which indicates that the algorithm
is in principle capable of reconstructing an on-off strategy (further improve-
ments are discussed in Section 3.3). In what follows, we use the same prior
of the Kalman smoothing procedure for the normal cells identified in the
previous section, to test the occurrence of an on-off switching profile in our
data.

The results of the reconstruction of the resource allocation profile u =
γα(·)/β are presented in Fig. 3.6. Within the interval between -150 and 0
min, resource allocation remains more or less stable, as expected for steady-
state growth on acetate. On the contrary, the reconstructed resource alloca-
tion profile seems particularly unstable at the beginning and the end of the
experiment. While oscillations do occur after the upshift, these need to be
taken with much care. The problem of reconstructing an on-off strategy is
more challenging than we initially thought, for the simple reason that the
expected signal is similar to the kind of artifacts a poorly calibrated regular-
ization method would generate. Data about the pre-upshift and post-upshift
steady state are crucial for the calibration of the method and, as explained
in Section 3.2.2, the experiment had to be interrupted before a steady state
on glucose was attained. We extensively discuss this and other problems in
Section 3.3 and give directions for future improvements.

Nevertheless, when not focusing on the individual cells but looking at the
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Figure 3.5 – Performance of the Kalman smoothing procedure on syn-
thetic data simulating an acetate-glucose upshift. (A) Synthetic data simu-
lating an upshift from acetate to glucose, with and without additive white noise, as
well as the results obtained by Kalman smoothing. The synthetic data were gen-
erated by simulating the model presented in Eqs 2.3-2.4 with the on-off regulatory
strategy (Eq. 2.19 and Fig. 2.7). The model parameters used for the simulation are
eM,Ace = 0.18 h-1, eM,Glu = 0.9 h-1, kR = 3.6 h-1, β = 0.003 L g-1, KR = 1 g L-1.
The predicted r(t) profile was multiplied by a factor γ = 0.02 RFU L g-1 in order
to obtain the corresponding fluorescence intensity profile F (dashed black curve).
The noise level was estimated from the data (S7 Text) and added to F . The choice
of the parameters of the Kalman smoothing procedure is discussed in the Material
and Methods 3.4.5. (B) Estimation of the resource allocation profile γα/β based
on the data in (A). Following Chapter 2, α(t) displays a bang-bang-singular profile
during the upshift (dashed black curve). While the Kalman smoother is not able
to capture the discontinuous variations in γα/β, it qualitatively reproduces the
input quite well (red solid curve). (C) The predicted growth rate during the up-
shift experiment. This information is used as an input in the smoothing procedure,
since it is supposed to have been independently estimated from the measurements
{L(t0), ..., L(tN−1)}.
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Figure 3.6 – Estimation of the resource allocation profile using Kal-
man smoothing based on the fluorescence density measurements
and the estimated growth rates from Fig. 3.3. (A-B) Gray lines rep-
resent the estimation of the fluorescence density (RFU/pixel) F (·) (in A)
and the resource allocation profile γα/β (in B) by the Kalman smoothing
procedure for the 45 normal cells. The solid red curves highlight the result
for one particular cell, , located at the bottom of the well labelled "X3Y2,
W2", while black crosses in the top graph are the data points for this cell.
The vertical dashed lines represent the time of the upshift from growth on
acetate to growth on glucose. The prior values for the parameters of the
smoothing algorithm are exactly the same as those used for Fig. 3.5 and are
reported in the Material and Methods 3.4.5.
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statistics of the entire data set, some interesting patterns emerge. Fig. 3.7
shows the median of the time-varying growth rate and resource allocation
profile as well as the 25%-75% interquartile range. The use of these statis-
tics gives a more robust view on the population level of the response of the
cells to a nutrient upshift. When changing the carbon source from acetate to
glucose, the growth rate increases to a value of around 0.011 min−1, consis-
tent with growth rates reported in the literature for the E. coli strain used
here [76, 161], before decreasing when the first cells start to die (Fig. 3.7C ).
In addition, the data show one period of an oscillation in the first 3 h after
the upshift, conserved in each of the 25%, 50% and 75% quartiles (Fig. 3.7B).
The heatmap in Fig. 3.8 reveals that almost all of the normal cells show this
oscillatory feature. Moreover, the first peak is seen to be even more pro-
nounced on the level of the individual cells, reflecting the fact that in the
different cells it occurs at different times after the upshift and is therefore
dampened out at the population level. While the results of the microfluidic
experiment presented here do not allow to confirm the occurrence of an on-off
strategy for resource allocation after a nutrient upshift, the preliminary data
are encouraging and prompt further investigation.
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Figure 3.7 – Robust statistics for the estimation results presented
in Fig. 3.6. Each graph shows the 25% (lower gray curve), 50% (solid black
curve) and 75% (upper gray curve) quartiles, computed at each time step for
the signals reconstructed in Fig. 3.6. The gray area represents the interquar-
tile range. Interestingly, while most oscillations in the resource allocation
profile γα(·)/β cancel out at the population level, the first peak after the
upshift is conserved.
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Figure 3.8 – Global overview of all estimated resource allocation
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3.3 Discussion
As we showed in Chapter 2, adopting a dynamical perspective might

prove useful to unveil and understand the regulatory strategies employed by
microorganisms. The criterion of biomass maximization has allowed to ac-
count for steady-state empirical growth laws. Interestingly, when the same
criterion is applied to growth transitions, it predicts that microorganisms
allocates their resources through bang-bang control of gene expression. For
the control of ribosome synthesis, the implementation of this optimal control
scheme results in an on-off strategy, where a bacterial cell is either producing
only ribosomes or not producing them at all during the adaptation to a new
growth medium. The ppGpp system, ubiquitous in bacteria and playing an
important role in the control of ribosome synthesis in E. coli, satisfies the
requirements posed by the on-off strategy. However, we currently lack exper-
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imental data to show that it actually functions in this manner, among other
things because of the difficulties to produce well-controlled growth transi-
tions on the single-cell level in the laboratory. Can we set up appropriate
experiments to measure the expression of ribosomes during a growth transi-
tions? Will the bacterial cells exhibit the on-off strategy that was shown to
be close to optimal in Chapter 2?

In this chapter, the above questions have been addressed by developing
an experimental framework which allows the ribosome concentration to be
quantified in individual E. coli cells in real time. Our main contribution
consists in bringing together several experimental techniques developed in
recent years. First, inspired by the work of Bakshi et al. [81], we constructed
an E. coli strain with fluorescent ribosomes. In their paper, Bakshi et al es-
sentially used this fluorescent marker to localize ribosomes in the cytoplasm
through superresolution microscopy. While improving their design (Mate-
rial and Methods 3.4.1), we used our strain for the purpose of quantifying
ribosomal abundance in single cells. Second, we employed the mother ma-
chine developed by Wang et al. [45], originally developed to study long-term
steady-state growth of E. coli, to observe individual E. coli cells growing in
continuous culture by means of time-lapse fluorescence microscopy. Here, the
mother machine was used to establish well-controlled growth transitions, i.e.
from steady-state growth in minimal medium with acetate to steady-state
growth in minimal medium with glucose. By changing the medium source of
the mother machine, we were able to observe how E. coli cells adapt their
growth rate and the expression of ribosomes. Overall, through the combi-
nation of fluorescent labeling of a core component of the gene expression
machinery and the use of a microfluidic device, we have opened the way to
experimentally study growth laws in a dynamical context.

We applied this experimental setup to the reconstruction of the resources
allocation strategy employed by E. coli during a nutrient upshift, with the
aim to observe the bang-bang profile predicted in Chapter 2. We developed
a Kalman smoothing procedure adapted to our question and showed how
it can be implemented to reconstruct the internal state of a cell from time-
lapse microscopy images. Similar to hidden Markov chains, Kalman filtering
and smoothing are powerful techniques for the reconstruction of unobserved
signals from noisy measurements, and have had numerous applications in a
variety of domains, though less in biology than in other fields. We showed
in this chapter that the Bayesian framework of Kalman smoothing can be
exploited for growth rate reconstruction from a probabilistic prior defining
the relation between mother and daughter cells. We also developed another
variant of Kalman smoothing for the reconstruction of the resource alloca-
tion variable α(·) that is at the heart of the models of Chapter 2. Our work
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on synthetic data showed that, despite the challenge posed by the recon-
struction of a discontinuous signal, the algorithm was capable of recovering
an oscillatory pattern close to the expected on-off profile. Unfortunately, its
application to the real data did not allow an unambiguous conclusion to be
drawn: while oscillations do occur, and a first peak between 0 and 120 min
after the upshift is visible in almost all of the cells, it turned out to be far
from straightforward to distinguish a real oscillatory pattern from artifacts
of the data analysis and signal reconstruction methods. Below we propose
several improvements that will be addressed in future work.

Several experimental problems complicated the analysis of the data. Suf-
ficiently long steady-state measurements before and after the transition of
interest are needed to provide a reliable estimation of the intensity and the
nature of the experimental noise. They are also critical to calibrate the pa-
rameters of the regularization method used for signal reconstruction. Despite
what was initially planned, we did not completely reach a new steady state
after the transition. Several causes are to blame. First, the random stall
of the motorization along the Z-axis of the microscope, which does not al-
low overnight measurements and occurred during the slow growth on acetate
in the presented experiment. Second, the massive death of bacteria starting
after the transition on glucose. Future work will focus on solving these issues.

The death of bacteria is particularly worrying. During the construction
of this strain, most people in the lab experienced contamination by an ag-
gressive bacteriophage. Unfortunately, the strain used in this study was not
spared, and our frozen stocks were later tested positive for phage-induced
lysis. Interestingly, the lysis seems to depend strongly on the environmental
conditions. To our disarray, the massive death observed in this experiment
suggests that a strong environmental upshift could trigger the lytic cycle of
the phage. While impeding any possible long-term measurement, the death
of the bacteria is not our only worry. Phages are machines that are extremely
well optimized to divert cell resources to their own end, especially the activity
of the gene expression machinery. That could dramatically perturb the cell
regulation of resource allocation, and so the conclusions of this study. For
this reason, future work will start by the reconstruction of a clean phage-free
strain from scratch.

It is also possible to optimize the image analysis techniques used in this
study. We segmented the images using the most powerful and ubiquitous
segmentation algorithm available: the human brain. In other words, we
manually selected the pixels representing the poles of a single bacteria per
well on the fluorescence images, and used this information to arbitrarily de-
fine a rectangle around the cell of interest. While this is far from satisfying,
it may turn out to be difficult to improve upon this, as it seems that the first



112 CHAPTER 3. MEASUREMENTS DURING AN UPSHIFT

rule of image analysis is that every application is more or less unique. Every
algorithm has to make assumptions about the object it is trying to recog-
nize. For imaging of microbial cells, it could be the curvature at the poles,
the size of the pixels, the homogeneity of the background, the homogene-
ity of intracellular fluorescence, ... While some parameters can be tweaked,
some assumptions are always hard-coded in the algorithm and reflect the
philosophy used to address the identification problem. Since the preliminary
analysis reported here was completed, we started a collaboration with the
authors of FluoBacTracker [190] that focuses on adapting their software to
our setup in a near future. It should provide a robust, automated way to
identify and track the cells, enhancing the reproducibility of the analysis and
increasing the number of cells available for computing population statistics.

The Kalman filtering algorithm that was later applied to these data can
also be improved in many respects. As described in the Results section, the
algorithm is an instance of Bayesian inference and several parameters de-
scribing the expected input define a probabilistic prior. In the work reported
here, we chose these parameters through trial and error, or by calibrating
the system on synthetic data whenever possible. A better technique would
be to choose these parameters by generalized cross-validation (GCV) [191],
a procedure maximizing the predictive power of the reconstructed signal by
reducing overfitting. The use of GCV in our framework amounts to choosing
the parameters of the Kalman smoother by optimizing predictions on a sub-
set of the cells, then testing the performance on the remaining cells. While
the initial conditions did not seem to play a huge role in the final shape of
the signal, the choice of the smoothing factor θ2 is critical and may strongly
benefit from the proposed GCV extension.

The Kalman smoothing algorithm itself can also be further improved,
notably by addressing the difficulty of estimating abrupt transitions. As can
be seen in Fig. 3.5, the resource allocation profile γα(·)/β reconstructed from
the synthetic data increases before the nutrient shift and this artifact also
occurs when using the measured fluorescent densities (Fig. 3.7), the change
in resource allocation preceding the nutrient upshift by several dozens of
minutes. While we know exactly when the change of medium occurs, this
information is currently not used as a prior for the reconstruction. The
Kalman smoother can be improved by implementing time-varying parameters
for the regularization method, so as to strongly penalize variations of the
reconstructed signal at steady state and to release this constraint following
the change in medium.

The improvements of the approach proposed in this section, which would
help in reaching a conclusion about the existence of the on-off strategy, are
not very complicated to realize. Another improvement consists in taking
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into account the autofluorescence of the bacteria, which we assumed to be
negligible, mostly because its proper estimation in a dynamical, single-cell
context is complicated (Material and Methods 3.4.4). A simple trick, how-
ever, could help in quantifying autofluorescence: mixing wild-type bacteria
with bacteria having fluorescent ribosomes when loading the device. This
would allow some channels to be occupied by wild-type cells, in addition to
the channels in which the strain of interest is growing, and thus obtain a
reliable estimation of the level of autofluorescence of the cells. Notice though
that the propertion between the two types of bacteria need to be carefully
adjusted in order to preserve enough cells for the estimation of the resource
allocation profile.

3.4 Material and Methods

3.4.1 Bacterial strain construction

In order to quantify the concentration of ribosomes in the cell in real time,
we constructed a strain containing a translational fusion of gfp_mut2 [91] to
the C-terminus of rpsB, the gene coding for the ribosome subunit S2. The
design was inspired by the work of Bakshi et al., who used a similar construc-
tion to measure the spatial distribution of ribosomes in living E. coli cells
[81]. However, contrary to Bakshi et al., and in order not to create any inter-
ference with normal gene expression in the modified cells, we decided to keep
the intergenic region between rpsB and the downstream gene, tsf, unchanged.
Since the transcription factor tsf is under the control of the same promoter
as rpsB, leaving a selection marker downstream of rpsB would interfere with
the proper expression of tsf. Our strategy comprises two steps: (i) creation
of the translational fusion by selecting an antibiotic resistance marker and
(ii) removal of the selection marker. The strategy is outlined in Figure 3.9.

The DNA fragment containing the selection cassette was amplified using
two long primers annealing, respectively, downstream of rpsB (starting just
after the STOP codon), and to the end of gfp_mut2. The selection cassette
contains an antibiotic resistance gene, kanamycin (positive selection), and
a gene coding for the CcdB toxin under the control of the pBAD promoter
(negative selection in presence of arabinose). This cassette is referred below
as kan-pBAD-ccdB.

Another DNA fragment containing gfp_mut2 [91] without the ATG start
codon was amplified using long primers annealing, respectively, to the C-
terminus of rpsB (just before the STOP codon), and the end of the kan-
pBAD-ccdB cassette. The first primer also contained a 18-bp (base pair)
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Figure 3.9 – Construction of the gfp-tagged ribosome subunit. The
translational fusion of gfp_mut2 with rpsB was constructed on the chromo-
some of E. coli (top line) by homologous recombination of gfp_mut2 fol-
lowed by a selection “cassette” (second line). A small linker was inserted
between rpsB and gfp_mut2 in order to minimize interference of the fluo-
rescent protein with ribosome functioning. The selection cassette consists of
a positive selection marker, the gene coding for the resistance to the antibi-
otic kanamycine, and a negative selection marker, the gene coding for the
toxin CcdB. The latter is transcribed from the pBAD promoter, which is only
activated in the presence of arabinose in the culture medium. Homologous
recombination is indicated by the grey shaded lines. The resulting recom-
bination product (third line) contains the desired fusion protein followed
by the selection cassette on the chromosome of the bacterium. A second
homologous recombination, using an oligonucleotide complementary to the
end of gfp_mut2 and the beginning the original region downstream of rpsB
removes the selection cassette. The resulting strain (line four) carries the
translational fusion of gfp_mut2 to rpsB without any other modification of
the chromosome.
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linker, inserting the same six amino-acids that Bakshi et al. have used for
their construction [81].

The two fragments, the gfp_mut2 reporter including the linker and the
kan-pBAD-ccdB cassette, were assembled by Gibson assembly [192] using a
commercial Gibson Assembly mix (New England Biolabs). A final product
of 2683 bp was obtained:

— *(50 bp) the C-terminus of rpsB without the STOP codon
— (18 bp) a linker
— (714 bp) the gfpmut2 sequence without the initial ATG
— (1851 bp) the kan-pBAD-ccdB cassette
— *(50 bp) the region directly after rpsB in E. coli

Regions labeled with * anneal to the E. coli chromosome. The complete
sequence of this fragment, as well as the sequences of all the primers, are
listed in S5 Text.

This fragment was electroporated into the wildtype strain, BW25113,
containing the pSIM5 plasmid for lambda-red recombinaison [193]. A kana-
mycin-resistant colony was selected on LA-glucose medium and verified to
show green fluorescence (485 nm excitation, 535 nm emission) in a microplate
reader (Tecan Infinite 200 pro). A 100-bp oligonucleotide, containing 50 bp
of the end of gfp_mut2 and 50 bp of the region just downstream of rpsB
was electroporated into this strain (sequence available in S5 Text). The
homologous recombination removes the kan-pBAD-ccdB cassette. A colony
was selected on an LA-arabinose plate. The clone was tested for kanamycin-
sensitivity and green fluorescence. Finally, the strain was grown overnight
at 42◦C to get rid of the pSIM5 plasmid, containing a temperature-sensitive
origin of replication. A chloramphenicol-sensitive colony was chosen and the
region after rpsB was verified by sequencing (full sequence obtained available
in S5 Text).

In parallel, the same protocol was used to construct mCherry and cfp
variants of the same strain. However, only the gfp_mut2 and mCherry ver-
sions were successfully obtained. The full sequence of the final rpsB-mCherry
strain is available in S5 Text.

The rpsB-gfp and rpsB-mCherry strains were characterized on different
media using a Tecan microplate reader (S6 Text, in particular Fig. 3.10 for
growth on glucose). They possess a wild-type growth rate and sufficient
fluorescence to allow quantification. However, the rpsB-mCherry strain ex-
hibited strange fluorescence dynamics, especially during growth transitions,
which made it unsuitable for our study. We therefore concentrated our efforts
on the rpsB-gfp strain (see S6 Text for more details).
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3.4.2 Growth conditions

All experiments were carried out in sterilized media. Sterilization was
performed by autoclaving for instruments and filtration for solutions (0.2
µm). During cloning, bacteria were grown in 20-mL Erlenmeyer flasks filled
with LB or spread on Petri dishes with LA. In all the experiments, we used M9
minimal medium supplemented with trace elements, thiamine and a carbon
source. The full recipe is reproduced below. Numbers in squared brackets are
characteristics of the stock solution. All stock solutions were stored at room
temperature, except for FeSO4 [30 g.L-1] and Thiamine [10 g.L-1], which were
stored respectively at -20◦C and 4◦C.

M9 medium (100 mL)
CaCl2 [1 mol.L-1] 10 µl
MgSO4 [1 mol.L-1] 200 µl
5x Salts 20 mL
Traces elements 90 µl
FeSO4 [30 g.L-1] 10 µl
Thiamine [10 g.L-1] 50 µl
Carbon source at will
H20 [18.2 MΩ.cm] to 100 mL

Traces elements (0.9 mL)
H20 [18.2 MΩ.cm] 200µl
Na2EDTA 2H2O [150 g.L-1] 100µl
ZnSO4 7H2O [45 g.L-1] 100µl
CoCl2 6H2O [3 g.L-1] 100µl
MnCl2 4H2O [10 g.L-1] 100µl
H3BO3 [10 g.L-1] 100µl
Na2MoO4 2H2O [4 g.L-1] 100µl
CuSO4 5H2O [3 g.L-1] 100µl

5x Salts (100 mL)
Na2HPO42H20 4.25 g
KH2HPO4 1.5 mg
NaCl 0.25 g
NH4Cl 0.5 g
H20 [18.2 MΩ.cm] to 100 mL

A large quantity of M9 was prepared several days before the experiment,
and stored at 4◦C. It contained all the necessary components except FeSO4,
thiamine, and carbon sources, which were added just before inoculation of
the pre-culture. Except where stated otherwise, the growth temperature was
37◦C. M9 Acetate contains 0.2% acetate (in mass of C2H3O2 per mass of
solution), and M9 Glucose contains 0.2% glucose (in mass of D-(+)-Glucose
per mass of solution).

Four days before the measurements, the glycerol stock containing the
rpsB-gfp strain was spread on a Petri dish of LA, and incubated at 37◦C.
On the following day, an isolated colony was used to inoculate a cotton-
plugged, sterile flask containing 20 mL of M9 acetate (Fig. 3.1). The time
of inoculation was calculated such that the culture obtains an OD of 0.3-0.4
OD at the beginning of the experiment. This optical density corresponds to
a culture in mid-exponential growth phase.
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At the day of the experiment, the pre-culture was concentrated by cen-
trifugation and re-suspended in 5 mL of M9 acetate, supplemented with
50 mg.mL-1 BSA (passivation buffer) for injection into the microfluidic de-
vice. Channels were filled by diffusion until most of them contained cells
(∼1 hour). Data acquisition started after a constant medium flow was suc-
cessfully obtained (∼1 hour, depending on the quality of the microfluidics
device).

3.4.3 Microfluidic device

In order to observe the bacteria over a long time, we used the so-called
mothermachine [45]. It consists of a series of wells (or channels), oriented
at a 90◦ angle to a large, central channel through which growth medium is
passed at a constant flow rate. The width of the wells, a little over a µm,
constrains the bacteria to grow “in a line”. This design ensures that at least
one cell per well (the one at the bottom of the channel) remains in the device
during the entire experiment, while the others incrementally escape into the
central channel as divisions occur. For the fabrication of the devices, we
thoroughly followed the step described in the supporting information of [45].
We maintained a stock of chemically treated devices at room temperature
(day 2 in workflow summary [45]). The day of the experiment, a single device
was plasma cleaned, bond to a glass coverslip, and injected with bacteria (see
section above).

The device was connected using 0.023" inner diameter polyethylene tubes
to a waste and a sterile bottle containing 200 mL of growth medium, which
was enough for several days of acquisition. A microfluidic pump (Elvesys)
containing an output flow sensor module was plugged to the medium bottle
and a pressure up to 2 bars was applied to the bottle. The output flow was
set to 50 µL.min−1.

For imaging, the device was placed on a motorized inverted microscope
(Zeiss Axiovert 200M) with a phase contrast objective lens (Zeiss Plan-
Neofluar, Ph3 100x/1.3), placed in a thermostated box at 37◦C. In this
setup, fluorescence illumination is provided by a mercury lamp (Osram,
1xHBO 103X/2) and visualization is performed with narrow-bandpass exci-
tation and emission filters (Chroma, #49002 ET-GFP and Chroma, #49005
TR/DsRED ET). The exposure time is externally controlled by mechani-
cal shutters (Uniblitz-VS35). Images were acquired with a 16-bit gray level
CCDcamera cooled to -80◦C (Roper Scientific, Princeton Instruments PHO-
TOMAX 512) controlled by a custom-made software using Visual Basic and
the Type libraries of the Winview software (Princeton Instruments). Every
5 minutes, autofocus was numerically performed by maximizing the contrast
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of a region of interest, and a series of acquisitions were made. A total of 6
fields, each containing 15 wells was observed during the entire experiment.

3.4.4 Cell segmentation

The raw data from the camera are in the form of 512x512-pixel 16-bit SPE
images (proprietary format produced by the Princeton Instruments camera).
They were converted into 16-bit Tif images using the SPE plugin of Im-
ageJ [194]. The rest of the analysis was performed using Python 3.5.2. In
particular, we used OpenCV 3.1.0-dev, Scikit-Image 0.12.3, Numpy 1.11.2 to
manipulate the images.

In order to correct for the drift of the device, we calculated the offset
between consecutive images of a given field using cross-correlation in the
Fourier space [195] (see Scikit-Image documentation at [196]). All images for
a field were thereby aligned to the first acquisition by a simple translation.

In order to simplify the image treatment, we extracted individual wells
from the images by a combination of manual pixel selection and automatic
segmentation. In particular, we selected the entrance of the two wells at
the border of the image, and used this information along with the regularity
of the microfluidic device to compute a mask that allowed to extract each
well into an image of size 100x21 pixels. These sub-images were labeled
{W0,W1, ...,W14} depending on the position of the well in the original
image, from left to right.

In this study, we performed a preliminary analysis of each well, focusing
on the cell at the bottom of the channel. For each image, we manually selected
the poles of the cell of interest. The distance between the two selected pixels
was directly used as the length L of the bacterium in pixels. The two selected
positions were also used to compute a rectangular 6-pixel-wide mask around
the cell (see Fig. 3.2). We then computed the RFU/pixel in this cell mask
by summing each pixel and dividing by the mask size.

The camera noise and background were evaluated by taking a picture
with a closed shutter at the end of the experiment. Pixels in this picture
were found to be Gaussian distributed with a mean of 1101.0 and a standard
deviation of 10.788. A correction for the camera background was thus applied
by removing 1101 from the computed RFU/pixel.

The autofluorescence of the bacteria and the background fluorescence of
the medium were supposed to be negligible and were thus not corrected. As
a control, the same device was used to image bacteria in stationary phase
that do not produce any fluorescent protein. They were indistinguishable
from the camera noise. Of course, using this control we can not affirm that
the autofluorescence is also negligible when the bacteria are actively growing.
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Furthermore, the autofluorescence could change in different media of interest,
and may even be different in steady state and during growth transitions. An
independent estimate of the autofluorescence is therefore difficult to obtain.
In the section 3.3, we discuss possible improvements of the experimental
setup that would allow to dynamically co-estimate the autofluorescence with
the ribosome abundance in a single experiment.

3.4.5 Kalman smoothing

The data of the length and the RFU/pixel of each bacteria were an-
alyzed using Python 3.5.2. In particular, we manipulated the data using
Pandas 0.19.1, Pykalman 0.9.5 and the Curves submodule of Wellfare 0.1.1.

Historical details about the Kalman smoothing procedure are reported
in section 3.2.3 of the main text. We used the Additive Unscented Kalman
Filter implementation of the Pykalman python module. This class is reported
to be more stable and computationally efficient with non-linear problems
containing additive noise.

As described in section 3.2.3, the reconstruction of the growth rate was
done on continuous portions of the length, i.e. between cell divisions. The
full problem, as described in Eq. 3.14, is reproduced below for clarity:

V̇λ(t) = µ(t) · Vλ(t),
µ̇(t) = v(t),

v̇(t) = w(t),

with the measurement model:

L(tk) = Vλ(tk) + εk,

and the initial conditions

Vλ(0) = Vλ,0, µ(0) = µ0, v(0) = v0.

The parameters used as priors for the reconstruction of µ are described below.
We used an observation variance of 9 pixels2 for the length L. The transition
variance θ2 (a.k.a. the smoothing factor for µ) is fixed at 10−8 min-6 for the
entire time series. Inheritance between mother and daughter cells is taken
into account by systematically choosing an initial mean for µ0 equal to the
last estimated value for µ, and for Vγ,0 to half the last estimated value for
Vγ (as expected for a completely symmetrical division). At the beginning
of the experiment, when no mother cells are available, these values were
fixed to 15 pixels for Vγ and 0.004 min-1 for µ. The variances associated
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with these means are 16 pixels2 and 10−4 min-2, respectively, for Vγ,0 and
µ0. The initial mean of v is always taken as null, with an initial variance of
10−8 min-6. All the cross-covariances are set to 0 because the system variables
are independent by construction.

For the reconstruction of gene activity, we had to cope with the large
gap in data acquisition between -720 and -150 min. Reconstruction was then
done independently on the continuous sections before and after this gap.
The full problem for the estimation of u = γα/β, as described in Eq. 3.16, is
reproduced here for clarity:

ṙγ(t) = µ̂(t) · u(t)− µ̂(t) · rγ(t),
u̇(t) = v(t),

v̇(t) = w(t),

with the measurement model

F (tk) = rγ(tk) + ηk,

and the initial conditions

rγ(0) = rγ,0, u(0) = u0, v(0) = v0,

where µ̂ is the estimate of µ above. In both case, we used as prior an ob-
servation variance of 800.4 RFU2 for F . The transition variance θ2 (a.k.a.
the smoothing factor for γα/β) is fixed at 102 RFU2.min-4. The initial state
means used are 600 RFU for rγ,0 and 1000 RFU for u0. The variances associ-
ated with these means are purposely large and fixed at 106 RFU2 for rγ,0 and
u0. The initial mean for v0 is always taken as null, with an initial variance
of 10−8 RFU.min-2, imposing a null second derivative for the reconstructed
signal γα/β. Here again, all the cross-covariances are set to 0.

All the parameters cited in this section were chosen through trial and
error, and are therefore certainly optimizable. Possible improvements are
discussed in Section 3.3.



3.5. SUPPORTING INFORMATION FOR CHAPTER 3 121

3.5 Supporting Information for Chapter 3

3.5.1 S5 Text – DNA sequences used for the strain con-
struction

Exhaustive list of the primers used

...for the gfp_mut2 amplification.

GTTCTCAGGATCTGGCTTCCCAGGCGGAAGAAAGCT
TCGTAGAAGCTGAGCAGGAAAGGCGACAGGAGAGTAAAG
GAGAAGAACTTTTCACTG (Length: 93)
The 50 first bp anneals with the C-terminus of rpsB (just before the
STOP codon). The 18 next bp code for the linker (see Material and
Methods 3.4.1).

TGATGTTCTGGGGAATATAATTATTTGTATAGTTCA
TCCATGCC (Length: 44)
The 20 last bp anneals with the end of the kan-pBAD-ccdB cassette.

...for the mCherry amplification
GTTCTCAGGATCTGGCTTCCCAGGCGGAAGAAAGCT

TCGTAGAAGCTGAGCAGGAAAGGCGACAGGAGACTAGCAA
AAGATCCAAGGG (Length: 88)

TGATGTTCTGGGGAATATAATTATTTGTACAGCTCA
TCCATG (Length: 42)
Same design as for gfp_mut2, except it amplifies mCherry.

...for the cassette amplification
TGGATGAACTATACAAATAATTATATTCCCCAGAACA

TCAGG (Length: 42, used to assemble with gfp)
The 20 first bp anneals with the end of gfp_mut2.

TGGATGAGCTGTACAAATAATTATATTCCCCAGAACA
TCAG (Length: 41, used to assemble with mCherry)
The 20 first bp anneals with the end of mCherry.

GAGCTTGCCGCCTTTCTGCAACTCGAACTATTTTGGG
GGAGTTATCAAGCTTAGAAGAACTCGTCAAGAAGG
(Length: 72, used for both)
The 50 last bp anneals downstream rpsB (just before the STOP codon).
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...for the whole insert amplification
GTTCTCAGGATCTGGCTTCCCAGG (Length: 24)

GAGCTTGCCGCCTTTCTGCA (Length: 20)

...for the cassette elimination
rpsB-gfp TTGTAACAGCTGCTGGGATTACACATGGCATGGAT

GAACTATACAAATAAGCTTGATAACTCCCCCAAAATAGTT
CGAGTTGCAGAAAGGCGGCAAGCTC (Length: 100)

rpsB-mCherry GCGCGGAGGGTCGTCATTCTACCGGTGGCAT
GGATGAGCTGTACAAATAAGCTTGATAACTCCCCCAAAAT
AGTTCGAGTTGCAGAAAGGCGGCAAGCTC (Length: 100)

...for the sequencing of the final strain
CGTCTGAAAGACCTGGAAAC (Length: 20)

AAACGTGTACTACCTGGTCTATAAGG (Length: 26)

Full annotated sequences of the inserts

The following pages contain the full annotated sequences of the region
downstream of rpsB after the insertion of the gfp_mut2-cassette and the
mCherry-cassette, respectively (third line in Fig. 3.9). The positions where
the primers anneal to the template are indicated using the same color code
as in the description of the primers above. The primers reported in the
publication of Bakshi et al. [81] are indicated for information.



02/01/2017 10:35:39

https://benchling.com/nigiord/f/0DRopjl2QB-inserts/seq-VJ8I603b-gfp-mut2-cassette-after-rpsb-gene/edit 1/7

gfp_mut2-cassette after rpsB (E. coli) (4574 bp)

CCGGACTTCCGATCCATTTCGTATACACAGACTGGACGGAAGCGACAATCTCACTTTGTGTAACAACACACACGTATCGGCACATATTCCGGG

GGCCTGAAGGCTAGGTAAAGCATATGTGTCTGACCTGCCTTCGCTGTTAGAGTGAAACACATTGTTGTGTGTGCATAGCCGTGTATAAGGCCC
tff gene

10 20 30 40 50 60 70 80 90

GTGCCCTTTGGGGTCGGTAATATGGGATACGTGGAGGCATAACCCCAACTTTTATATAGAGGTTTTAATCATGGCAACTGTTTCCATGCGCGA

CACGGGAAACCCCAGCCATTATACCCTATGCACCTCCGTATTGGGGTTGAAAATATATCTCCAAAATTAGTACCGTTGACAAAGGTACGCGCT
tff gene

100 110 120 130 140 150 160 170 180

CATGCTCAAGGCTGGTGTTCACTTCGGTCACCAGACCCGTTACTGGAACCCGAAAATGAAGCCGTTCATCTTCGGTGCGCGTAACAAAGTTCA

GTACGAGTTCCGACCACAAGTGAAGCCAGTGGTCTGGGCAATGACCTTGGGCTTTTACTTCGGCAAGTAGAAGCCACGCGCATTGTTTCAAGT
rpsB gene (without STOP)

190 200 210 220 230 240 250 260 270

CATCATCAACCTTGAGAAAACTGTACCGATGTTCAACGAAGCTCTGGCTGAACTGAACAAGATTGCTTCTCGCAAAGGTAAAATCCTTTTCGT

GTAGTAGTTGGAACTCTTTTGACATGGCTACAAGTTGCTTCGAGACCGACTTGACTTGTTCTAACGAAGAGCGTTTCCATTTTAGGAAAAGCA
rpsB gene (without STOP)

280 290 300 310 320 330 340 350 360 370

TGGTACTAAACGCGCTGCAAGCGAAGCGGTGAAAGACGCTGCTCTGAGCTGCGACCAGTTCTTCGTGAACCATCGCTGGCTGGGCGGTATGCT

ACCATGATTTGCGCGACGTTCGCTTCGCCACTTTCTGCGACGAGACTCGACGCTGGTCAAGAAGCACTTGGTAGCGACCGACCCGCCATACGA
rpsB gene (without STOP)

380 390 400 410 420 430 440 450 460

GACTAACTGGAAAACCGTTCGTCAGTCCATCAAACGTCTGAAAGACCTGGAAACTCAGTCTCAGGACGGTACTTTCGACAAGCTGACCAAGAA

CTGATTGACCTTTTGGCAAGCAGTCAGGTAGTTTGCAGACTTTCTGGACCTTTGAGTCAGAGTCCTGCCATGAAAGCTGTTCGACTGGTTCTT
rpsB gene (without STOP)

470 480 490 500 510 520 530 540 550

AGAAGCGCTGATGCGCACTCGTGAGCTGGAGAAACTGGAAAACAGCCTGGGCGGTATCAAAGACATGGGCGGTCTGCCGGACGCTCTGTTTGT

TCTTCGCGACTACGCGTGAGCACTCGACCTCTTTGACCTTTTGTCGGACCCGCCATAGTTTCTGTACCCGCCAGACGGCCTGCGAGACAAACA
rpsB gene (without STOP)

560 570 580 590 600 610 620 630 640 650

AATCGATGCTGACCACGAACACATTGCTATCAAAGAAGCAAACAACCTGGGTATTCCGGTATTTGCTATCGTTGATACCAACTCTGATCCGGA

TTAGCTACGACTGGTGCTTGTGTAACGATAGTTTCTTCGTTTGTTGGACCCATAAGGCCATAAACGATAGCAACTATGGTTGAGACTAGGCCT
rpsB gene (without STOP)

660 670 680 690 700 710 720 730 740
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CGGTGTTGACTTCGTTATCCCGGGTAACGACGACGCAATCCGTGCTGTGACCCTGTACCTGGGCGCTGTTGCTGCAACCGTACGTGAAGGCCG

GCCACAACTGAAGCAATAGGGCCCATTGCTGCTGCGTTAGGCACGACACTGGGACATGGACCCGCGACAACGACGTTGGCATGCACTTCCGGC
rpsB gene (without STOP)

750 760 770 780 790 800 810 820 830

TTCTCAGGATCTGGCTTCCCAGGCGGAAGAAAGCTTCGTAGAAGCTGAGCAGGAAAGGCGACAGGAGAGTAAAGGAGAAGAACTTTTCACTGG

AAGAGTCCTAGACCGAAGGGTCCGCCTTCTTTCGAAGCATCTTCGACTCGTCCTTTCCGCTGTCCTCTCATTTCCTCTTCTTGAAAAGTGACC
Primer Bakshi yfp-kan (L)

rpsB gene (without STOP) gfp_mut2 (without ATG)linker

RpsBfluo_gfpmut2-left

840 850 860 870 880 890 900 910 920 930

AGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATACGGAAA

TCAACAGGGTTAAGAACAACTTAATCTACCACTACAATTACCCGTGTTTAAAAGACAGTCACCTCTCCCACTTCCACTACGTTGTATGCCTTT
gfp_mut2 (without ATG)

940 950 960 970 980 990 1,000 1,010 1,020

ACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTCGCGTATGGTCTTCAATGCTTTGC

TGAATGGGAATTTAAATAAACGTGATGACCTTTTGATGGACAAGGTACCGGTTGTGAACAGTGATGAAAGCGCATACCAGAAGTTACGAAACG
gfp_mut2 (without ATG)

1,030 1,040 1,050 1,060 1,070 1,080 1,090 1,100 1,110

GAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGA

CTCTATGGGTCTAGTATACTTTGTCGTACTGAAAAAGTTCTCACGGTACGGGCTTCCAATACATGTCCTTTCTTGATATAAAAAGTTTCTACT
gfp_mut2 (without ATG)

1,120 1,130 1,140 1,150 1,160 1,170 1,180 1,190 1,200

CGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGG

GCCCTTGATGTTCTGTGCACGACTTCAGTTCAAACTTCCACTATGGGAACAATTATCTTAGCTCAATTTTCCATAACTAAAATTTCTTCTACC
gfp_mut2 (without ATG)

1,210 1,220 1,230 1,240 1,250 1,260 1,270 1,280 1,290 1,300

AAACATTCTTGGACACAAATTGGAATACAACTATAACTCACACAATGTATACATCATGGCAGACAAACAAAAGAATGGAATCAAAGTTAACTT

TTTGTAAGAACCTGTGTTTAACCTTATGTTGATATTGAGTGTGTTACATATGTAGTACCGTCTGTTTGTTTTCTTACCTTAGTTTCAATTGAA
gfp_mut2 (without ATG)

1,310 1,320 1,330 1,340 1,350 1,360 1,370 1,380 1,390
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CAAAATTAGACACAACATTGAAGATGGAAGCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACC

GTTTTAATCTGTGTTGTAACTTCTACCTTCGCAAGTTGATCGTCTGGTAATAGTTGTTTTATGAGGTTAACCGCTACCGGGACAGGAAAATGG
gfp_mut2 (without ATG)

1,400 1,410 1,420 1,430 1,440 1,450 1,460 1,470 1,480

AGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGC

TCTGTTGGTAATGGACAGGTGTGTTAGACGGGAAAGCTTTCTAGGGTTGCTTTTCTCTCTGGTGTACCAGGAAGAACTCAAACATTGTCGACG
gfp_mut2 (without ATG)

1,490 1,500 1,510 1,520 1,530 1,540 1,550 1,560 1,570 1,580

TGGGATTACACATGGCATGGATGAACTATACAAATAATTATATTCCCCAGAACATCAGGTTAATGGCGTTTTTGATGTCATTTTCGCGGTGGC

ACCCTAATGTGTACCGTACCTACTTGATATGTTTATTAATATAAGGGGTCTTGTAGTCCAATTACCGCAAAAACTACAGTAAAAGCGCCACCG

Cassette
ccdB

gfp_mut2 (without ATG)

RpsBfluo_cassette-left (gfpmut2 and cfp)

RpsBfluo_cfp/gfpmut2-right

1,590 1,600 1,610 1,620 1,630 1,640 1,650 1,660 1,670

TGAGATCAGCCACTTCTTCCCCGATAACGGAGACCGGCACACTGGCCATATCGGTGGTCATCATGCGCCAGCTTTCATCCCCGATATGCACCA

ACTCTAGTCGGTGAAGAAGGGGCTATTGCCTCTGGCCGTGTGACCGGTATAGCCACCAGTAGTACGCGGTCGAAAGTAGGGGCTATACGTGGT

Cassette
ccdB

1,680 1,690 1,700 1,710 1,720 1,730 1,740 1,750 1,760

CCGGGTAAAGTTCACGGGAGACTTTATCTGACAGCAGACGTGCACTGGCCAGGGGGATCACCATCCGTCGCCCGGGCGTGTCAATAATATCAC

GGCCCATTTCAAGTGCCCTCTGAAATAGACTGTCGTCTGCACGTGACCGGTCCCCCTAGTGGTAGGCAGCGGGCCCGCACAGTTATTATAGTG

Cassette
ccdB

1,770 1,780 1,790 1,800 1,810 1,820 1,830 1,840 1,850 1,860

TCTGTACATCCACAAACAGACGATAACGGCTCTCTCTTTTATAGGTGTAAACCTTAAACTGCATCGTTTCACTCCATCCAAAAAAACGGGTAT

AGACATGTAGGTGTTTGTCTGCTATTGCCGAGAGAGAAAATATCCACATTTGGAATTTGACGTAGCAAAGTGAGGTAGGTTTTTTTGCCCATA

Cassette
ccdB

1,870 1,880 1,890 1,900 1,910 1,920 1,930 1,940 1,950

GGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACGCCG

CCTCTTTGTCATCTCTCAACGCTATTTTTCGCAGTCCATCCTAGGCGATTAGAATACCTATTTTTACGATACCGTATCGTTTCACACTGCGGC

Cassette
pBAD

araI2 araI1

1,960 1,970 1,980 1,990 2,000 2,010 2,020 2,030 2,040
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TGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGAATG

ACGTTTATTAGTTACACCTGAAAAGACGGCACTAATATCTGTGAAAACAATGCGCAAAAACAGTACCGAAACCAGGGCGAAACAATGTCTTAC
Cassette

2,050 2,060 2,070 2,080 2,090 2,100 2,110 2,120 2,130

CTTTTAATAAGCGGGGTTACCGGTTGGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTGGTT

GAAAATTATTCGCCCCAATGGCCAACCCAATCGCTCTTCTCGGTCATTTTCTGCGTCACTGCCGTTACAGACTACGTTATACCTGTTAACCAA

Cassette
araO2

2,140 2,150 2,160 2,170 2,180 2,190 2,200 2,210 2,220 2,230

TCTTCTCTGAATGGTGGGAGTATGAAAAGTATGGCTGAAGCGCAAAATGATCCCCTGCTGCCGGGATACTCGTTTAACGCCCTTTTGAAGCTC

AGAAGAGACTTACCACCCTCATACTTTTCATACCGACTTCGCGTTTTACTAGGGGACGACGGCCCTATGAGCAAATTGCGGGAAAACTTCGAG

Cassette

2,240 2,250 2,260 2,270 2,280 2,290 2,300 2,310 2,320

ACGCTGCCGCAAGCACTCAGGGCGCAAGGGCTGCTAAAGGAAGCGGAACACGTAGAAAGCCAGTCCGCAGAAACGGTGCTGACCCCGGATGAA

TGCGACGGCGTTCGTGAGTCCCGCGTTCCCGACGATTTCCTTCGCCTTGTGCATCTTTCGGTCAGGCGTCTTTGCCACGACTGGGGCCTACTT
Cassette

2,330 2,340 2,350 2,360 2,370 2,380 2,390 2,400 2,410

TGTCAGCTACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGCTAGACTG

ACAGTCGATGACCCGATAGACCTGTTCCCTTTTGCGTTCGCGTTTCTCTTTCGTCCATCGAACGTCACCCGAATGTACCGCTATCGATCTGAC
Cassette

2,420 2,430 2,440 2,450 2,460 2,470 2,480 2,490 2,500 2,510

GGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTT

CCGCCAAAATACCTGTCGTTCGCTTGGCCTTAACGGTCGACCCCGCGGGAGACCATTCCAACCCTTCGGGACGTTTCATTTGACCTACCGAAA
Cassette

2,520 2,530 2,540 2,550 2,560 2,570 2,580 2,590 2,600

CTTGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCA

GAACGGCGGTTCCTAGACTACCGCGTCCCCTAGTTCTAGACTAGTTCTCTGTCCTACTCCTAGCAAAGCGTACTAACTTGTTCTACCTAACGT

Cassette

2,610 2,620 2,630 2,640 2,650 2,660 2,670 2,680 2,690
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CGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCT

GCGTCCAAGAGGCCGGCGAACCCACCTCTCCGATAAGCCGATACTGACCCGTGTTGTCTGTTAGCCGACGAGACTACGGCGGCACAAGGCCGA

Cassette
KnR (kanamycin resistance)

2,700 2,710 2,720 2,730 2,740 2,750 2,760 2,770 2,780 2,790

GTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCT

CAGTCGCGTCCCCGCGGGCCAAGAAAAACAGTTCTGGCTGGACAGGCCACGGGACTTACTTGACGTCCTGCTCCGTCGCGCCGATAGCACCGA

Cassette
KnR (kanamycin resistance)

2,800 2,810 2,820 2,830 2,840 2,850 2,860 2,870 2,880

GGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGA

CCGGTGCTGCCCGCAAGGAACGCGTCGACACGAGCTGCAACAGTGACTTCGCCCTTCCCTGACCGACGATAACCCGCTTCACGGCCCCGTCCT

Cassette
KnR (kanamycin resistance)

2,890 2,900 2,910 2,920 2,930 2,940 2,950 2,960 2,970

TCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCC

AGAGGACAGTAGAGTGGAACGAGGACGGCTCTTTCATAGGTAGTACCGACTACGTTACGCCGCCGACGTATGCGAACTAGGCCGATGGACGGG

Cassette
KnR (kanamycin resistance)

2,980 2,990 3,000 3,010 3,020 3,030 3,040 3,050 3,060

ATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCA

TAAGCTGGTGGTTCGCTTTGTAGCGTAGCTCGCTCGTGCATGAGCCTACCTTCGGCCAGAACAGCTAGTCCTACTAGACCTGCTTCTCGTAGT

Cassette
KnR (kanamycin resistance)

3,070 3,080 3,090 3,100 3,110 3,120 3,130 3,140 3,150 3,160

GGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCC

CCCCGAGCGCGGTCGGCTTGACAAGCGGTCCGAGTTCCGCGCGTACGGGCTGCCGCTCCTAGAGCAGCACTGGGTACCGCTACGGACGAACGG

Cassette
KnR (kanamycin resistance)

3,170 3,180 3,190 3,200 3,210 3,220 3,230 3,240 3,250

GAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTAC

CTTATAGTACCACCTTTTACCGGCGAAAAGACCTAAGTAGCTGACACCGGCCGACCCACACCGCCTGGCGATAGTCCTGTATCGCAACCGATG

Cassette
KnR (kanamycin resistance)

3,260 3,270 3,280 3,290 3,300 3,310 3,320 3,330 3,340
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CCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTT

GGCACTATAACGACTTCTCGAACCGCCGCTTACCCGACTGGCGAAGGAGCACGAAATGCCATAGCGGCGAGGGCTAAGCGTCGCGTAGCGGAA

Cassette
KnR (kanamycin resistance)

3,350 3,360 3,370 3,380 3,390 3,400 3,410 3,420 3,430 3,440

CTATCGCCTTCTTGACGAGTTCTTCTAAGCTTGATAACTCCCCCAAAATAGTTCGAGTTGCAGAAAGGCGGCAAGCTCGAGAATTCCCGGGAG

GATAGCGGAAGAACTGCTCAAGAAGATTCGAACTATTGAGGGGGTTTTATCAAGCTCAACGTCTTTCCGCCGTTCGAGCTCTTAAGGGCCCTC

Primer Bakshi yfp-kan (R)Cassette
KnR (kanamycin resistance)

RpsBfluo_cassette-right

3,450 3,460 3,470 3,480 3,490 3,500 3,510 3,520 3,530

CTTACATCAGTAAGTGACCGGGATGAGCGAGCGAAGATAACGCATCTGCGGCGCGAAATATGAAGGGGGAGAGCCCTTATAGACCAGGTAGTA

GAATGTAGTCATTCACTGGCCCTACTCGCTCGCTTCTATTGCGTAGACGCCGCGCTTTATACTTCCCCCTCTCGGGAATATCTGGTCCATCAT

3,540 3,550 3,560 3,570 3,580 3,590 3,600 3,610 3,620

CACGTTTGGTTAGGGGGCCTGCATATGGCCCCCTTTTTCACTTTTATATCTGTGCGGTTTAATGCCGGGCAGATCACATCTCCGAGGATTTTA

GTGCAAACCAATCCCCCGGACGTATACCGGGGGAAAAAGTGAAAATATAGACACGCCAAATTACGGCCCGTCTAGTGTAGAGGCTCCTAAAAT

3,630 3,640 3,650 3,660 3,670 3,680 3,690 3,700 3,710 3,720

GAATGGCTGAAATTACCGCATCCCTGGTAAAAGAGCTGCGTGAGCGTACTGGCGCAGGCATGATGGATTGCAAAAAAGCACTGACTGAAGCTA

CTTACCGACTTTAATGGCGTAGGGACCATTTTCTCGACGCACTCGCATGACCGCGTCCGTACTACCTAACGTTTTTTCGTGACTGACTTCGAT
tsf gene

3,730 3,740 3,750 3,760 3,770 3,780 3,790 3,800 3,810

ACGGCGACATCGAGCTGGCAATCGAAAACATGCGTAAGTCCGGTGCTATTAAAGCAGCGAAAAAAGCAGGCAACGTTGCTGCTGACGGCGTGA

TGCCGCTGTAGCTCGACCGTTAGCTTTTGTACGCATTCAGGCCACGATAATTTCGTCGCTTTTTTCGTCCGTTGCAACGACGACTGCCGCACT
tsf gene

3,820 3,830 3,840 3,850 3,860 3,870 3,880 3,890 3,900

TCAAAACCAAAATCGACGGCAACTACGGCATCATTCTGGAAGTTAACTGCCAGACTGACTTCGTTGCAAAAGACGCTGGTTTCCAGGCGTTCG

AGTTTTGGTTTTAGCTGCCGTTGATGCCGTAGTAAGACCTTCAATTGACGGTCTGACTGAAGCAACGTTTTCTGCGACCAAAGGTCCGCAAGC
tsf gene

3,910 3,920 3,930 3,940 3,950 3,960 3,970 3,980 3,990
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CAGACAAAGTTCTGGACGCAGCTGTTGCTGGCAAAATCACTGACGTTGAAGTTCTGAAAGCACAGTTCGAAGAAGAACGTGTTGCGCTGGTAG

GTCTGTTTCAAGACCTGCGTCGACAACGACCGTTTTAGTGACTGCAACTTCAAGACTTTCGTGTCAAGCTTCTTCTTGCACAACGCGACCATC
tsf gene

4,000 4,010 4,020 4,030 4,040 4,050 4,060 4,070 4,080 4,090

CGAAAATTGGTGAAAACATCAACATTCGCCGCGTTGCTGCGCTGGAAGGCGACGTTCTGGGTTCTTATCAGCACGGTGCGCGTATCGGCGTTC

GCTTTTAACCACTTTTGTAGTTGTAAGCGGCGCAACGACGCGACCTTCCGCTGCAAGACCCAAGAATAGTCGTGCCACGCGCATAGCCGCAAG
tsf gene

4,100 4,110 4,120 4,130 4,140 4,150 4,160 4,170 4,180

TGGTTGCTGCTAAAGGCGCTGACGAAGAGCTGGTTAAACACATCGCTATGCACGTTGCTGCAAGCAAGCCAGAATTCATCAAACCGGAAGACG

ACCAACGACGATTTCCGCGACTGCTTCTCGACCAATTTGTGTAGCGATACGTGCAACGACGTTCGTTCGGTCTTAAGTAGTTTGGCCTTCTGC
tsf gene

4,190 4,200 4,210 4,220 4,230 4,240 4,250 4,260 4,270

TATCCGCTGAAGTGGTAGAAAAAGAATACCAGGTACAGCTGGATATCGCGATGCAGTCTGGTAAGCCGAAAGAAATCGCAGAGAAAATGGTTG

ATAGGCGACTTCACCATCTTTTTCTTATGGTCCATGTCGACCTATAGCGCTACGTCAGACCATTCGGCTTTCTTTAGCGTCTCTTTTACCAAC
tsf gene

4,280 4,290 4,300 4,310 4,320 4,330 4,340 4,350 4,360 4,370

AAGGCCGCATGAAGAAATTCACCGGCGAAGTTTCTCTGACCGGTCAGCCGTTCGTTATGGAACCAAGCAAAACTGTTGGTCAGCTGCTGAAAG

TTCCGGCGTACTTCTTTAAGTGGCCGCTTCAAAGAGACTGGCCAGTCGGCAAGCAATACCTTGGTTCGTTTTGACAACCAGTCGACGACTTTC
tsf gene

4,380 4,390 4,400 4,410 4,420 4,430 4,440 4,450 4,460

AGCATAACGCTGAAGTGACTGGCTTCATCCGCTTCGAAGTGGGTGAAGGCATCGAGAAAGTTGAGACTGACTTTGCAGCAGAAGTTGCTGCGA

TCGTATTGCGACTTCACTGACCGAAGTAGGCGAAGCTTCACCCACTTCCGTAGCTCTTTCAACTCTGACTGAAACGTCGTCTTCAACGACGCT
tsf gene

4,470 4,480 4,490 4,500 4,510 4,520 4,530 4,540 4,550

TGTCCAAGCAGTCTTAA

ACAGGTTCGTCAGAATT
tsf gene

4,560 4,570
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mCherry-cassette after rpsB (E. coli) (4577 bp)

CCGGACTTCCGATCCATTTCGTATACACAGACTGGACGGAAGCGACAATCTCACTTTGTGTAACAACACACACGTATCGGCACATATTCCGGG

GGCCTGAAGGCTAGGTAAAGCATATGTGTCTGACCTGCCTTCGCTGTTAGAGTGAAACACATTGTTGTGTGTGCATAGCCGTGTATAAGGCCC
tff gene

10 20 30 40 50 60 70 80 90

GTGCCCTTTGGGGTCGGTAATATGGGATACGTGGAGGCATAACCCCAACTTTTATATAGAGGTTTTAATCATGGCAACTGTTTCCATGCGCGA

CACGGGAAACCCCAGCCATTATACCCTATGCACCTCCGTATTGGGGTTGAAAATATATCTCCAAAATTAGTACCGTTGACAAAGGTACGCGCT
tff gene

100 110 120 130 140 150 160 170 180

CATGCTCAAGGCTGGTGTTCACTTCGGTCACCAGACCCGTTACTGGAACCCGAAAATGAAGCCGTTCATCTTCGGTGCGCGTAACAAAGTTCA

GTACGAGTTCCGACCACAAGTGAAGCCAGTGGTCTGGGCAATGACCTTGGGCTTTTACTTCGGCAAGTAGAAGCCACGCGCATTGTTTCAAGT
rpsB gene (without STOP)

190 200 210 220 230 240 250 260 270

CATCATCAACCTTGAGAAAACTGTACCGATGTTCAACGAAGCTCTGGCTGAACTGAACAAGATTGCTTCTCGCAAAGGTAAAATCCTTTTCGT

GTAGTAGTTGGAACTCTTTTGACATGGCTACAAGTTGCTTCGAGACCGACTTGACTTGTTCTAACGAAGAGCGTTTCCATTTTAGGAAAAGCA
rpsB gene (without STOP)

280 290 300 310 320 330 340 350 360 370

TGGTACTAAACGCGCTGCAAGCGAAGCGGTGAAAGACGCTGCTCTGAGCTGCGACCAGTTCTTCGTGAACCATCGCTGGCTGGGCGGTATGCT

ACCATGATTTGCGCGACGTTCGCTTCGCCACTTTCTGCGACGAGACTCGACGCTGGTCAAGAAGCACTTGGTAGCGACCGACCCGCCATACGA
rpsB gene (without STOP)

380 390 400 410 420 430 440 450 460

GACTAACTGGAAAACCGTTCGTCAGTCCATCAAACGTCTGAAAGACCTGGAAACTCAGTCTCAGGACGGTACTTTCGACAAGCTGACCAAGAA

CTGATTGACCTTTTGGCAAGCAGTCAGGTAGTTTGCAGACTTTCTGGACCTTTGAGTCAGAGTCCTGCCATGAAAGCTGTTCGACTGGTTCTT
rpsB gene (without STOP)

470 480 490 500 510 520 530 540 550

AGAAGCGCTGATGCGCACTCGTGAGCTGGAGAAACTGGAAAACAGCCTGGGCGGTATCAAAGACATGGGCGGTCTGCCGGACGCTCTGTTTGT

TCTTCGCGACTACGCGTGAGCACTCGACCTCTTTGACCTTTTGTCGGACCCGCCATAGTTTCTGTACCCGCCAGACGGCCTGCGAGACAAACA
rpsB gene (without STOP)

560 570 580 590 600 610 620 630 640 650

AATCGATGCTGACCACGAACACATTGCTATCAAAGAAGCAAACAACCTGGGTATTCCGGTATTTGCTATCGTTGATACCAACTCTGATCCGGA

TTAGCTACGACTGGTGCTTGTGTAACGATAGTTTCTTCGTTTGTTGGACCCATAAGGCCATAAACGATAGCAACTATGGTTGAGACTAGGCCT
rpsB gene (without STOP)

660 670 680 690 700 710 720 730 740
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CGGTGTTGACTTCGTTATCCCGGGTAACGACGACGCAATCCGTGCTGTGACCCTGTACCTGGGCGCTGTTGCTGCAACCGTACGTGAAGGCCG

GCCACAACTGAAGCAATAGGGCCCATTGCTGCTGCGTTAGGCACGACACTGGGACATGGACCCGCGACAACGACGTTGGCATGCACTTCCGGC
rpsB gene (without STOP)

750 760 770 780 790 800 810 820 830

TTCTCAGGATCTGGCTTCCCAGGCGGAAGAAAGCTTCGTAGAAGCTGAGCAGGAAAGGCGACAGGAGACTAGCAAAAGATCCAAGGGCGAGGA

AAGAGTCCTAGACCGAAGGGTCCGCCTTCTTTCGAAGCATCTTCGACTCGTCCTTTCCGCTGTCCTCTGATCGTTTTCTAGGTTCCCGCTCCT
Primer Bakshi yfp-kan (L)

rpsB gene (without STOP) mCherry (without ATG)linker

RpsBfluo_mCherry-left

840 850 860 870 880 890 900 910 920 930

GGATAACATGGCTATCATTAAAGAGTTCATGCGCTTCAAAGTTCACATGGAGGGTTCTGTTAACGGTCACGAGTTCGAGATCGAAGGCGAAGG

CCTATTGTACCGATAGTAATTTCTCAAGTACGCGAAGTTTCAAGTGTACCTCCCAAGACAATTGCCAGTGCTCAAGCTCTAGCTTCCGCTTCC
mCherry (without ATG)

940 950 960 970 980 990 1,000 1,010 1,020

CGAGGGCCGTCCGTATGAAGGCACCCAGACCGCCAAACTGAAAGTGACTAAAGGCGGCCCGCTGCCTTTTGCGTGGGACATCCTGAGCCCGCA

GCTCCCGGCAGGCATACTTCCGTGGGTCTGGCGGTTTGACTTTCACTGATTTCCGCCGGGCGACGGAAAACGCACCCTGTAGGACTCGGGCGT
mCherry (without ATG)

1,030 1,040 1,050 1,060 1,070 1,080 1,090 1,100 1,110

ATTTATGTACGGTTCTAAAGCGTATGTTAAACACCCAGCGGATATCCCGGACTATCTGAAGCTGTCTTTTCCGGAAGGTTTCAAGTGGGAACG

TAAATACATGCCAAGATTTCGCATACAATTTGTGGGTCGCCTATAGGGCCTGATAGACTTCGACAGAAAAGGCCTTCCAAAGTTCACCCTTGC
mCherry (without ATG)

1,120 1,130 1,140 1,150 1,160 1,170 1,180 1,190 1,200

CGTAATGAATTTTGAAGATGGTGGTGTCGTGACCGTCACTCAGGACTCCTCCCTGCAAGATGGCGAGTTCATCTATAAAGTTAAACTGCGTGG

GCATTACTTAAAACTTCTACCACCACAGCACTGGCAGTGAGTCCTGAGGAGGGACGTTCTACCGCTCAAGTAGATATTTCAATTTGACGCACC
mCherry (without ATG)

1,210 1,220 1,230 1,240 1,250 1,260 1,270 1,280 1,290 1,300

TACTAATTTTCCATCTGATGGCCCGGTGATGCAGAAAAAGACGATGGGTTGGGAGGCGTCTAGCGAACGCATGTATCCGGAAGATGGTGCGCT

ATGATTAAAAGGTAGACTACCGGGCCACTACGTCTTTTTCTGCTACCCAACCCTCCGCAGATCGCTTGCGTACATAGGCCTTCTACCACGCGA
mCherry (without ATG)

1,310 1,320 1,330 1,340 1,350 1,360 1,370 1,380 1,390
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GAAAGGCGAAATTAAACAGCGCCTGAAACTGAAAGATGGCGGCCATTATGACGCTGAAGTGAAAACCACGTACAAAGCCAAGAAACCTGTGCA

CTTTCCGCTTTAATTTGTCGCGGACTTTGACTTTCTACCGCCGGTAATACTGCGACTTCACTTTTGGTGCATGTTTCGGTTCTTTGGACACGT
mCherry (without ATG)

1,400 1,410 1,420 1,430 1,440 1,450 1,460 1,470 1,480

GCTGCCTGGCGCGTACAATGTGAATATTAAACTGGACATCACCTCTCATAATGAAGATTATACGATCGTAGAGCAATATGAGCGCGCGGAGGG

CGACGGACCGCGCATGTTACACTTATAATTTGACCTGTAGTGGAGAGTATTACTTCTAATATGCTAGCATCTCGTTATACTCGCGCGCCTCCC
mCherry (without ATG)

1,490 1,500 1,510 1,520 1,530 1,540 1,550 1,560 1,570 1,580

TCGTCATTCTACCGGTGGCATGGATGAGCTGTACAAATAATTATATTCCCCAGAACATCAGGTTAATGGCGTTTTTGATGTCATTTTCGCGGT

AGCAGTAAGATGGCCACCGTACCTACTCGACATGTTTATTAATATAAGGGGTCTTGTAGTCCAATTACCGCAAAAACTACAGTAAAAGCGCCA

Cassette
ccdB

mCherry (without ATG)

RpsBfluo_cassette-left (mCherry)

RpsBfluo_mCherry-right

1,590 1,600 1,610 1,620 1,630 1,640 1,650 1,660 1,670

GGCTGAGATCAGCCACTTCTTCCCCGATAACGGAGACCGGCACACTGGCCATATCGGTGGTCATCATGCGCCAGCTTTCATCCCCGATATGCA

CCGACTCTAGTCGGTGAAGAAGGGGCTATTGCCTCTGGCCGTGTGACCGGTATAGCCACCAGTAGTACGCGGTCGAAAGTAGGGGCTATACGT

Cassette
ccdB

1,680 1,690 1,700 1,710 1,720 1,730 1,740 1,750 1,760

CCACCGGGTAAAGTTCACGGGAGACTTTATCTGACAGCAGACGTGCACTGGCCAGGGGGATCACCATCCGTCGCCCGGGCGTGTCAATAATAT

GGTGGCCCATTTCAAGTGCCCTCTGAAATAGACTGTCGTCTGCACGTGACCGGTCCCCCTAGTGGTAGGCAGCGGGCCCGCACAGTTATTATA

Cassette
ccdB

1,770 1,780 1,790 1,800 1,810 1,820 1,830 1,840 1,850 1,860

CACTCTGTACATCCACAAACAGACGATAACGGCTCTCTCTTTTATAGGTGTAAACCTTAAACTGCATCGTTTCACTCCATCCAAAAAAACGGG

GTGAGACATGTAGGTGTTTGTCTGCTATTGCCGAGAGAGAAAATATCCACATTTGGAATTTGACGTAGCAAAGTGAGGTAGGTTTTTTTGCCC

Cassette
ccdB

1,870 1,880 1,890 1,900 1,910 1,920 1,930 1,940 1,950

TATGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTATGGCATAGCAAAGTGTGACG

ATACCTCTTTGTCATCTCTCAACGCTATTTTTCGCAGTCCATCCTAGGCGATTAGAATACCTATTTTTACGATACCGTATCGTTTCACACTGC

Cassette
pBAD

araI1araI2

1,960 1,970 1,980 1,990 2,000 2,010 2,020 2,030 2,040
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CCGTGCAAATAATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTGGTCCCGCTTTGTTACAGA

GGCACGTTTATTAGTTACACCTGAAAAGACGGCACTAATATCTGTGAAAACAATGCGCAAAAACAGTACCGAAACCAGGGCGAAACAATGTCT
Cassette

2,050 2,060 2,070 2,080 2,090 2,100 2,110 2,120 2,130

ATGCTTTTAATAAGCGGGGTTACCGGTTGGGTTAGCGAGAAGAGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGACAATTG

TACGAAAATTATTCGCCCCAATGGCCAACCCAATCGCTCTTCTCGGTCATTTTCTGCGTCACTGCCGTTACAGACTACGTTATACCTGTTAAC

Cassette
araO2

2,140 2,150 2,160 2,170 2,180 2,190 2,200 2,210 2,220 2,230

GTTTCTTCTCTGAATGGTGGGAGTATGAAAAGTATGGCTGAAGCGCAAAATGATCCCCTGCTGCCGGGATACTCGTTTAACGCCCTTTTGAAG

CAAAGAAGAGACTTACCACCCTCATACTTTTCATACCGACTTCGCGTTTTACTAGGGGACGACGGCCCTATGAGCAAATTGCGGGAAAACTTC

Cassette

2,240 2,250 2,260 2,270 2,280 2,290 2,300 2,310 2,320

CTCACGCTGCCGCAAGCACTCAGGGCGCAAGGGCTGCTAAAGGAAGCGGAACACGTAGAAAGCCAGTCCGCAGAAACGGTGCTGACCCCGGAT

GAGTGCGACGGCGTTCGTGAGTCCCGCGTTCCCGACGATTTCCTTCGCCTTGTGCATCTTTCGGTCAGGCGTCTTTGCCACGACTGGGGCCTA
Cassette

2,330 2,340 2,350 2,360 2,370 2,380 2,390 2,400 2,410

GAATGTCAGCTACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGCTAGA

CTTACAGTCGATGACCCGATAGACCTGTTCCCTTTTGCGTTCGCGTTTCTCTTTCGTCCATCGAACGTCACCCGAATGTACCGCTATCGATCT
Cassette

2,420 2,430 2,440 2,450 2,460 2,470 2,480 2,490 2,500 2,510

CTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGC

GACCCGCCAAAATACCTGTCGTTCGCTTGGCCTTAACGGTCGACCCCGCGGGAGACCATTCCAACCCTTCGGGACGTTTCATTTGACCTACCG
Cassette

2,520 2,530 2,540 2,550 2,560 2,570 2,580 2,590 2,600

TTTCTTGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATT

AAAGAACGGCGGTTCCTAGACTACCGCGTCCCCTAGTTCTAGACTAGTTCTCTGTCCTACTCCTAGCAAAGCGTACTAACTTGTTCTACCTAA

Cassette

2,610 2,620 2,630 2,640 2,650 2,660 2,670 2,680 2,690
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GCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCG

CGTGCGTCCAAGAGGCCGGCGAACCCACCTCTCCGATAAGCCGATACTGACCCGTGTTGTCTGTTAGCCGACGAGACTACGGCGGCACAAGGC

Cassette
KnR (kanamycin resistance)

2,700 2,710 2,720 2,730 2,740 2,750 2,760 2,770 2,780 2,790

GCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTG

CGACAGTCGCGTCCCCGCGGGCCAAGAAAAACAGTTCTGGCTGGACAGGCCACGGGACTTACTTGACGTCCTGCTCCGTCGCGCCGATAGCAC

Cassette
KnR (kanamycin resistance)

2,800 2,810 2,820 2,830 2,840 2,850 2,860 2,870 2,880

GCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCA

CGACCGGTGCTGCCCGCAAGGAACGCGTCGACACGAGCTGCAACAGTGACTTCGCCCTTCCCTGACCGACGATAACCCGCTTCACGGCCCCGT

Cassette
KnR (kanamycin resistance)

2,890 2,900 2,910 2,920 2,930 2,940 2,950 2,960 2,970

GGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTG

CCTAGAGGACAGTAGAGTGGAACGAGGACGGCTCTTTCATAGGTAGTACCGACTACGTTACGCCGCCGACGTATGCGAACTAGGCCGATGGAC

Cassette
KnR (kanamycin resistance)

2,980 2,990 3,000 3,010 3,020 3,030 3,040 3,050 3,060

CCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCA

GGGTAAGCTGGTGGTTCGCTTTGTAGCGTAGCTCGCTCGTGCATGAGCCTACCTTCGGCCAGAACAGCTAGTCCTACTAGACCTGCTTCTCGT

Cassette
KnR (kanamycin resistance)

3,070 3,080 3,090 3,100 3,110 3,120 3,130 3,140 3,150 3,160

TCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTT

AGTCCCCGAGCGCGGTCGGCTTGACAAGCGGTCCGAGTTCCGCGCGTACGGGCTGCCGCTCCTAGAGCAGCACTGGGTACCGCTACGGACGAA

Cassette
KnR (kanamycin resistance)

3,170 3,180 3,190 3,200 3,210 3,220 3,230 3,240 3,250

GCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGC

CGGCTTATAGTACCACCTTTTACCGGCGAAAAGACCTAAGTAGCTGACACCGGCCGACCCACACCGCCTGGCGATAGTCCTGTATCGCAACCG

Cassette
KnR (kanamycin resistance)

3,260 3,270 3,280 3,290 3,300 3,310 3,320 3,330 3,340
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TACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGC

ATGGGCACTATAACGACTTCTCGAACCGCCGCTTACCCGACTGGCGAAGGAGCACGAAATGCCATAGCGGCGAGGGCTAAGCGTCGCGTAGCG

Cassette
KnR (kanamycin resistance)

3,350 3,360 3,370 3,380 3,390 3,400 3,410 3,420 3,430 3,440

CTTCTATCGCCTTCTTGACGAGTTCTTCTAAGCTTGATAACTCCCCCAAAATAGTTCGAGTTGCAGAAAGGCGGCAAGCTCGAGAATTCCCGG

GAAGATAGCGGAAGAACTGCTCAAGAAGATTCGAACTATTGAGGGGGTTTTATCAAGCTCAACGTCTTTCCGCCGTTCGAGCTCTTAAGGGCC

Cassette
KnR (kanamycin resistance)

Primer Bakshi yfp-kan (R)

RpsBfluo_cassette-right

3,450 3,460 3,470 3,480 3,490 3,500 3,510 3,520 3,530

GAGCTTACATCAGTAAGTGACCGGGATGAGCGAGCGAAGATAACGCATCTGCGGCGCGAAATATGAAGGGGGAGAGCCCTTATAGACCAGGTA

CTCGAATGTAGTCATTCACTGGCCCTACTCGCTCGCTTCTATTGCGTAGACGCCGCGCTTTATACTTCCCCCTCTCGGGAATATCTGGTCCAT

3,540 3,550 3,560 3,570 3,580 3,590 3,600 3,610 3,620

GTACACGTTTGGTTAGGGGGCCTGCATATGGCCCCCTTTTTCACTTTTATATCTGTGCGGTTTAATGCCGGGCAGATCACATCTCCGAGGATT

CATGTGCAAACCAATCCCCCGGACGTATACCGGGGGAAAAAGTGAAAATATAGACACGCCAAATTACGGCCCGTCTAGTGTAGAGGCTCCTAA

3,630 3,640 3,650 3,660 3,670 3,680 3,690 3,700 3,710 3,720

TTAGAATGGCTGAAATTACCGCATCCCTGGTAAAAGAGCTGCGTGAGCGTACTGGCGCAGGCATGATGGATTGCAAAAAAGCACTGACTGAAG

AATCTTACCGACTTTAATGGCGTAGGGACCATTTTCTCGACGCACTCGCATGACCGCGTCCGTACTACCTAACGTTTTTTCGTGACTGACTTC
tsf gene

3,730 3,740 3,750 3,760 3,770 3,780 3,790 3,800 3,810

CTAACGGCGACATCGAGCTGGCAATCGAAAACATGCGTAAGTCCGGTGCTATTAAAGCAGCGAAAAAAGCAGGCAACGTTGCTGCTGACGGCG

GATTGCCGCTGTAGCTCGACCGTTAGCTTTTGTACGCATTCAGGCCACGATAATTTCGTCGCTTTTTTCGTCCGTTGCAACGACGACTGCCGC
tsf gene

3,820 3,830 3,840 3,850 3,860 3,870 3,880 3,890 3,900

TGATCAAAACCAAAATCGACGGCAACTACGGCATCATTCTGGAAGTTAACTGCCAGACTGACTTCGTTGCAAAAGACGCTGGTTTCCAGGCGT

ACTAGTTTTGGTTTTAGCTGCCGTTGATGCCGTAGTAAGACCTTCAATTGACGGTCTGACTGAAGCAACGTTTTCTGCGACCAAAGGTCCGCA
tsf gene

3,910 3,920 3,930 3,940 3,950 3,960 3,970 3,980 3,990
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TCGCAGACAAAGTTCTGGACGCAGCTGTTGCTGGCAAAATCACTGACGTTGAAGTTCTGAAAGCACAGTTCGAAGAAGAACGTGTTGCGCTGG

AGCGTCTGTTTCAAGACCTGCGTCGACAACGACCGTTTTAGTGACTGCAACTTCAAGACTTTCGTGTCAAGCTTCTTCTTGCACAACGCGACC
tsf gene

4,000 4,010 4,020 4,030 4,040 4,050 4,060 4,070 4,080 4,090

TAGCGAAAATTGGTGAAAACATCAACATTCGCCGCGTTGCTGCGCTGGAAGGCGACGTTCTGGGTTCTTATCAGCACGGTGCGCGTATCGGCG

ATCGCTTTTAACCACTTTTGTAGTTGTAAGCGGCGCAACGACGCGACCTTCCGCTGCAAGACCCAAGAATAGTCGTGCCACGCGCATAGCCGC
tsf gene

4,100 4,110 4,120 4,130 4,140 4,150 4,160 4,170 4,180

TTCTGGTTGCTGCTAAAGGCGCTGACGAAGAGCTGGTTAAACACATCGCTATGCACGTTGCTGCAAGCAAGCCAGAATTCATCAAACCGGAAG

AAGACCAACGACGATTTCCGCGACTGCTTCTCGACCAATTTGTGTAGCGATACGTGCAACGACGTTCGTTCGGTCTTAAGTAGTTTGGCCTTC
tsf gene

4,190 4,200 4,210 4,220 4,230 4,240 4,250 4,260 4,270

ACGTATCCGCTGAAGTGGTAGAAAAAGAATACCAGGTACAGCTGGATATCGCGATGCAGTCTGGTAAGCCGAAAGAAATCGCAGAGAAAATGG

TGCATAGGCGACTTCACCATCTTTTTCTTATGGTCCATGTCGACCTATAGCGCTACGTCAGACCATTCGGCTTTCTTTAGCGTCTCTTTTACC
tsf gene

4,280 4,290 4,300 4,310 4,320 4,330 4,340 4,350 4,360 4,370

TTGAAGGCCGCATGAAGAAATTCACCGGCGAAGTTTCTCTGACCGGTCAGCCGTTCGTTATGGAACCAAGCAAAACTGTTGGTCAGCTGCTGA

AACTTCCGGCGTACTTCTTTAAGTGGCCGCTTCAAAGAGACTGGCCAGTCGGCAAGCAATACCTTGGTTCGTTTTGACAACCAGTCGACGACT
tsf gene

4,380 4,390 4,400 4,410 4,420 4,430 4,440 4,450 4,460

AAGAGCATAACGCTGAAGTGACTGGCTTCATCCGCTTCGAAGTGGGTGAAGGCATCGAGAAAGTTGAGACTGACTTTGCAGCAGAAGTTGCTG

TTCTCGTATTGCGACTTCACTGACCGAAGTAGGCGAAGCTTCACCCACTTCCGTAGCTCTTTCAACTCTGACTGAAACGTCGTCTTCAACGAC
tsf gene

4,470 4,480 4,490 4,500 4,510 4,520 4,530 4,540 4,550

CGATGTCCAAGCAGTCTTAA

GCTACAGGTTCGTCAGAATT
tsf gene

4,560 4,570
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Sequencing of the final strains

After the strains were constructed using the protocol described in Material
and Methods 3.4.1, the downstream region of the rpsB gene was amplified
and sequenced. Alignments of the results confirmed the expected sequences,
except for a few single-base mutations. The raw results of the sequencing are
reproduced below.

Final sequences of the rpsB-gfp strain (downstream region of rpsB)

AGAAAGAAGCGCTGTATGCGCACTCGTGAGCTGGAGAAA
CTGGAAAACAGCCTGGGCGGTATCAAAGACATGGGCGGTCTGC
CGGACGCTCTGTTTGTAATCGATGCTGACCACGAACACATTGC
TATCAAAGAAGCAAACAACCTGGGTATTCCGGTATTTGCTATC
GTTGATACCAACTCTGATCCGGACGGTGTTGACTTCGTTATCC
CGGGTAACGACGACGCAATCCGTGCTGTGACCCTGTACCTGGG
CGCTGTTGCTGCAACCGTACGTGAAGGCCGTTCTCAGGATCTG
GCTTCCCAGGCGGAAGAAAGCTTCGTAGAAGCTGAGCAGGAAA
GGCGACAGGAGCGTAAAGGAGAAGAACTTTTCACTGGAGTTGT
TCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAA
TTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATA

CGCCGCAGATGCGTTATCTTCGCTCGCTCATCCCGGTCA
CTTACTGATGTAAGCTCCCGGGAATTCTCGAGCTTGCCGCCTT
TCTGCAACTCGAACTATTTTGGGGGAGTTATCAAGCTTATTTG
TATAGTTCATCCATGCCATGTGTAATCCCAGCAGCTGTTACAAA
CTCAAGAAGGACCATGTGGTCTCTCTTTTCGTTGGGATCTTTC
GAAAGGGCAGATTGTGTGGACAGGTAATGGTTGTCTGGTAAAA
GGACAGGGCCATCGCCAATTGGAGTATTTTGTTGATAATGGTC
TGCTAGTTGAACGCTTCCATCTTCAATGTTGTGTCTAATTTTGA
AGTTAACTTTGATTCCATTCTTTTGTTTGTCTGCCATGATGTAT
ACATTGTGTGAGTTATAGTTGTATTCCAATTTGTGTCCAAGAA
TGTTTCCATCTTCTTTAAAATCAATACCTTTTAACTCGATTCTA
TTAACAAGGGTATCACCTTCAAACTTGACTTCAGCACGTGTCTT
GTAGTTCCCGTCATCTTTGAAAAATATAGTTCTTTCCTGTACAT
AAACCTTCGGGCATGGCACTCTTGAAAAAGTCATGCTGTTTCA
TATGATCTGGGTATCTCGCAAAGCATTGAAGACCATACGCGAA
AAGTAGTGACAAGTGTTGGCCATGGAACAGGTAGTTTTCCAGT
AGTGCAAATAAATTTAAGGGTAAAGTTTTCCGTATGTTGCATC
ACCTTCACCCTCTCCACTGACAGAAAAATTTGTGCCCATTTAAC
ATCACCATCTAATTCAACAAGAATTGGAAACAACTCCAGTGAA
AGT
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Final sequences of the rpsB-mCherry strain (downstream region
of rpsB)

TTTCGACAGCTGACCAAGAAGAAGCGCTGATGCGCACTC
GTGAGCTGGAGAAACTGGAAAACAGCCTGGGCGGTATCAAAGA
CATGGGCGGTCTGCCGGACGCTCTGTTTGTAATCGATGCTGAC
CACGAACACATTGCTATCAAAGAAGCAAACAACCTGGGTATTC
CGGTATTTGCTATCGTTGATACCAACTCTGATCCGGACGGTGT
TGACTTCGTTATCCCGGGTAACGACGACGCAATCCGTGCTGTG
ACCCTGTACCTGGGCGCTGTTGCTGCAACCGTACGTGAAGGCC
GTTCTCAGGATCTGGCTTCCCAGGCGGAAGAAAGCTTCGTAGA
AGCTGAGCAGGAAAGGCGACAGGAGACTAGCAAAAGATCCAAG
GGCGAGGAGGATAACATGGCTATCATTAAAGAGTTCATGCGCT
TCAAAGTTCACATGGAGGGTTCTGTTAACGGTCACGAGTTCGA
GATCGAAGGCGAAGGCGAGGGCCGTCCGTATGAAGGCACCCAG
ACCGCCAAACTGAAAGTGACTAAAGGCGGCCCGCTGCCTTTTG
CGTGGGACATCCTGAGCCCGCAATTTATGTACGGTTCTAAAGC
GTATGTTAAACACCCAGCGGATATCCCGGACTATCTGAAGCTG
TCTTTTCCGGAAGGTTTCAAGTGGGAACGCGTAATGAATTTTG
AAGATGGTGGTGTCGTGACCGTCACTCAGGACTCCTCCCTGCA
AGATGGCGAGTTCATCTATAAAGTTAAACTGCGTGGTACTAAT
TTTCCATCTGATGGCCCGGTGATGCAGAAAAAGACGATGGGTT
GGGAGGCGTCTAGCGAACGCATGTATCCGGAAGATGGTGCGCT
GAAAGGCGAAATTAAACAGCGCCTGAAACTGAAAGATGGCGG

TTCGCGCCGCAGATGCGTTATCTTCGCTCGCTCATCCCGG
TCACTTACTGATGTAAGCTCCCGGGAATTCTCGAGCTTGCCGC
CTTTCTGCAACTCGAACTATTTTGGGGGAGTTATCAAGCTTAT
TTGTACAGCTCATCCATGCCACCGGTAGAATGACGACCCTCCG
CGCGCTCATATTGCTCTACGATCGTATAATCTTCATTATGAGAG
GTGATGTCCAGTTTAATATTCACATTGTACGCGCCAGGCAGCT
GCACAGGTTTCTTGGCTTTGTACGTGGTTTTCACTTCAGCGTC
ATAATGGCCGCCATCTTTCAGTTTCAGGCGCTGTTTAATTTCGC
CTTTCAGCGCACCATCTTCCGGATACATGCGTTCGCTAGACGCC
TCCCAACCCATCGTCTTTTTCTGCATCACCGGGCCATCAGATGG
AAAATTAGTACCACGCAGTTTAACTTTATAGATGAACTCGCCA
TCTTGCAGGGAGGAGTCCTGAGTGACGGTCACGACACCACCAT
CTTCAAAATTCATTACGCGTTCCCACTTGAAACCTTCCGGAAAA
GACAGCTTCAGATAGTCCGGGATATCCGCTGGGTGTTTAACAT
ACGCTTTAGAACCGTACATAAATTGCGGGCTCAGGATGTCCCA
CGCAAAAGGCAGCGGGCCGCCTTTAGTCACTTTCAGTTTGGCG
GTCTGGGTGCCTTCATACGGACGGCCCTCGCCTTCGCCTTCGA
TCTCGAACTCGTGACCGTTAACAGAACCCTCCATGTGAACTTTG
AAGCGCATGAACTCTTTAATGATAGCCATGTTATCCTCCTCGCC
CTTGGAT
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3.5.2 S6 Text – Strain validation in batch growing con-
ditions

The rpsB-gfp and rpsB-mCherry strains were characterized on different
media using a Tecan microplate reader. Strains were grown in M9 mini-
mal medium at 37◦C in 96-well microplates. The absorbance and fluores-
cence were measured approximately every minute for up to 24 h. In a single
experiment, this allowed to generate up to 96 growth curves like the one
schematized in Fig. 1.3.

In Fig. 3.10, we show growth curves obtained on M9 supplemented with
0.2% glucose. As for the construction of Bakshi et al. [81], our strains pos-
sess a wild-type growth rate (Fig. 3.10A), indicating that the gfp-tagging
or mCherry-tagging of the ribosomal S2 subunit does not impede the func-
tioning of the ribosome. It is known that E. coli cultures exhibit a high
autofluorescence overlapping the GFP spectrum [197], but the fluorescence
of the rpsB-gfp strain is at least 4-time higher than the wild-type (Fig. 3.10B).
Contrary to green autofluorescence, red autofluorescence of E. coli cultures
is very low (Fig. 3.10B) so the corrected signal level for mCherry is even
stronger. Overall, both strains possess enough fluorescence to allow quantifi-
cation at the population level, all the more so at the cell level because most
of the autofluorescence is concentrated in the medium outside the cell [197].

In Fig. 3.10C, we display the ratio between the (corrected) fluorescence
of the strain and the absorbance ("corrected" meaning that we substracted
the autofluorescence of the wild-type strain). As a first approximation, this
ratio can be used as a proxy for the fluorescence concentration in the cells,
therefore for the ribosome concentration. The instability at the beginning of
the experiment (before 400 min) is characteristic of the difficulty of obtaining
robust estimations when the absorbance of the culture is low [178]. The
RFU/Abs ratio is stable in the interval [400,600] min for both rpsB-gfp and
rpsB-mCherry strains, indicative of exponential steady-state growth. Note
that this short time interval (a couple of generations) of readability before
approaching the stationary phase is one of the main problems preventing the
use of batch conditions for obtaining robust data about growth transitions.
Indeed, most of our attempts to perform robust growth transitions in this
region were unsuccessful.

Results for rpsB-gfp and rpsB-mCherry start to differ when glucose is
exhausted and the cells enter stationary phase. As would be expected, the
fluorescence of the rpsB-gfp strain starts to slowly decrease as GFP proteins
are degraded or photobleached. On the contrary, the fluorescence of the
rpsB-mCherry strain quickly triples when entering stationary phase, at a
rate that is much higher than the physical limit imposed by the protein
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synthesis rate [33].
In order to explain these strange dynamics, we set-up an experiment to

evaluate the degradation and maturation rates of GFP and mCherry in our
strains. The procedure was to instantly stop all protein synthesis in mid-
exponential phase using an antibiotic, then to observe the evolution of the
fluorescence in a condition with no synthesis of new reporter proteins. The
estimation was performed using the following model:

dPm
dt

= K · P − (µ+D) · Pm, (3.18)

dP

dt
= f(t)− (µ+D +K)P, (3.19)

where Pm is the concentration of mature (fluorescent) proteins, P is the
concentration of immature (non-fluorescent) proteins, K is the maturation
rate, D is the degradation rate (assumed identical for mature and immature
proteins), f(t) the protein synthesis rate, and µ the growth rate. By stopping
all protein synthesis in the bacteria, we obtain f(t) = µ = 0, hence the model
becomes:

dPm
dt

= K · P −D · Pm, (3.20)

dP

dt
= −(D +K)P. (3.21)

This system of differential equations can be analytically solved to yield:

Pm(t) =
(
Pm(0) + P (0)

(
1− e−Kt

))
e−Dt

with Pm(0) and P (0) the initial concentrations of mature proteins and im-
mature proteins, respectively. By dividing by Pm(0) and taking the log of
both sides, we can rewrite it as

log
Pm(t)

Pm(0)
= −Dt+ log

(
1 +

P (0)

Pm(0)

(
1− e−Kt

))
. (3.22)

Since growth is stopped, the bacterial volume is constant and Pm(t)
Pm(0)

can now
be easily measured by directly taking the fluorescence normalized by its initial
value, while the maturation rate K, the degradation rate D, and the initial
fraction of immature proteins P (0)

Pm(0)
are free parameters that can be fitted on

fluorescence time series. The curves used for the estimation are represented
in Fig. 3.11 and the results are reported in Tab. 3.1. As expected, both
reporter proteins are stable and exhibit a long half-life in exponential phase
(>24 h). The maturation rate of GFP was too fast for obtaining a numerical
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Figure 3.10 – Growth curves in M9 0.2% glucose for the rpsB-gfp and
rpsB-mCherry strains. Growth and measurements were performed at 37◦C on
a 96-well microplate in a Tecan infinite 200 pro. We monitored 4 wells for each of
the WT, rpsB-gfp, and rpsB-mCherry strains. Curves were time shifted to correct
for variability in the inoculation process (-50 min for WT, and -20 min for rpsB-
mCherry). (A) Absorbance at 600 nm, corrected for background by subtracting
the absorbance of the M9 medium. Curve superposition indicates similar growth
rates between the WT and the modified strains. (B) Fluorescence measured in each
well in Relative Fluorescence Units (RFU). Green fluorescence (485 nm excitation,
535 nm emission) is measured for the WT (dashed lines) and the rpsB-gfp (solid
lines) strains. Red fluorescence (560 nm exc., 635 nm em.) is measured for the
WT (dashed lines) and the rpsB-mCherry (solid lines) strains. Fluorescence levels
of the modified strains are far above the autofluorescences measured on the WT
strain. (C) Ratio of fluorescence over absorbance (proxy for the fluorescence con-
centration in the cells). Autofluorescence background was corrected by removing
the fluorescence measured on the WT. We observed a strange increase in fluores-
cence concentration for the rpsB-mCherry strain after entry into stationary phase,
something that does not occur on the rpsB-gfp strain. At each measurement cy-
cle, the following procedure was applied: shaking (Orbital 6mm) for 30 s, shaking
(Linear 6mm) for 30 s, waiting for 5 s.
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Figure 3.11 – Estimation of the maturation and degradation rates of
the reporter proteins in the rpsB-gfp and rpsB-mCherry strains.
The strains were grown in the same condition as in Fig. 3.10, except that a
high concentration of Chloramphenicol was added in mid-exponential phase
(t = 0, vertical dashed grey line). The fluorescence was normalized by the
value at t = 0 and the degradation and maturation rates were estimated by
using the model in Eq. 3.22. Parameters of the best fit (solid black line)
are reported in Tab. 3.1. Data are the result of the aggregation of 9 and 8
independent growth curves for rpsB-gfp and rpsB-mCherry, respectively.

value. However, the maturation rate of mCherry is rather slow, with a half-
maturation time on the order of 30 min (time needed to mature 50% of a
pool of mCherry). Even though degradation and maturation rate can be
slightly different in stationary phase, the estimated value are not sufficient
to explain the rapid increase in fluorescence observed in Fig. 3.10.

The fluorescence of GFP and mCherry is known to be affected by intra-
cellular physiological changes like pH or pO2 [198]. In particular, mCherry
has been reported to be extremely sensible to the presence of oxygen for its
maturation [198]. However, we reproduced the following results in condi-
tions were the oxygen is not limiting. In particular, the abrupt increase of
mCherry fluorescence is conserved when the stationary phase is attained at
low bacterial density, in a larger volume (20-mL flask), and on several type
of carbon sources (acetate, xylose, glycerol, maltose). We have so far no
explanation for these strange dynamics, and we therefore concentrated our
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GFP mut2 mCherry
P (0)/Pm(0) 0.05635 ± 0.001202 0.7349 ± 0.0027362
D [min-1] 0.0002064 ± 2.1·10−6 0.0003027 ± 2.7·10−6

half-life [min] 3325 - 3392 2269 - 2309
K [min-1] ∅ 0.02254 ± 0.0003

half-maturation [min] ∅ 30.27 - 31.16

Table 3.1 – Fitted parameters for the degradation and maturation of
GFP mut2 and mCherry, according to the model in Eq. 3.22 and
data in Fig. 3.11

efforts on the rpsB-gfp strain in the microfluidic experiments.
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3.5.3 S7 Text – Noise estimation in the microscopy ex-
periment

We estimated the noise in the RFU/pixel/cell measurements by using
the data points just before the upshift (Fig. 3.12). Since the cells have been
growing for 20 h on acetate in the microfluidic device, bacteria are assumed
to be in balanced growth in this region of ∼2 hours (roughly 23-24 points
depending on the well of interest). For this reason, ribosome concentration,
and therefore the fluorescence concentration, are expected to be constant.
Fig. 3.12 shows the distribution of points in this region, which can be ap-
proximated by a Gaussian distribution, for a particular cell.

Interestingly, as can be seen in Fig. 3.13, the mean and standard devia-
tion of the distribution vary from cell to cell in a slightly correlated manner
(Pearson R2: 0.3213, p-value: 4.923 · 10−5). We did not investigate if this
heterogeneity between cells is the result of true biological variations or a bias
due to the microfluidic device. By looking at the points of Fig. 3.13, there
are however no strong correlations of the mean and standard deviation with
the acquisition field (XY), or the position of the well on the image (W).

Noise characteristics were computed by normalizing and aggregating data
for the 45 normal cells presented in Fig. 3.13. Two scenarios were considered.
First, the noise is additive, which means that we have the measurement model
presented in Section 3.2.4:

F (tk) = γr(tk) + ηk, (3.23)

were F (tk) is the fluorescence measured at the time step tk, r(tk) is the true
ribosomal concentration at this time step, γ is an unknown factor, and ηk
is the measurement noise. In this scenario, for a time independent ribosome
concentration r (i.e. at steady state), the ribosome concentration is equal to
its mean on the interval of interest (noted mk(·)). Given that

mk(F ) = mk(γr) +mk(ηk) = γmk(r), (3.24)

the noise residues are given by

ηk = F (tk)−mk(F ). (3.25)

In other words, we can normalize the data points of each cell by remov-
ing their mean in order to aggregate the noise residues and thus obtain an
estimation of the noise level (Fig. 3.14, top panel).

Alternatively, the noise could be multiplicative. The noise model is than
different of the one presented in Section 3.2.4, and can be re-written:

F (tk) = γr(tk) · (1 + λk), (3.26)
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Figure 3.12 – Points of interest for the noise estimation.
(Top graph) RFU/pixel/cell data points for the cell at the bottom of the
well labeled X3Y2,W2. Noise estimation was performed on the points just
before the upshift (red points), were the bacteria are assumed to grow at
steady state. (Bottom graph) Cumulative density function (CDF, in red)
and probability density function (PDF, in gray) of the points highlighted in
red on the top graph. They are visually compared with CDF (solid green
line) and PDF (dashed green line) of a Gaussian fit with mean 548.88 and
standard deviation 17.316.
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Figure 3.13 – Distribution of the means and standard deviations
in the region of interest for the normal cells. The empirical mean
and standard deviation were evaluated in the region before the upshift (red
points on Fig. 3.12) for each of the 45 normal cells. They appear to be slightly
correlated (Pearson R2: 0.3213, p-value: 4.923 · 10−5) which could indicate a
multiplicative instead of an additive noise.

were γr(tk)·λk is the measurement noise, proportional to the value measured.
In that scenario, with the same notations as above, the noise λk is given by

λk =
F (tk)

mk(F )
− 1, (3.27)

which means we can normalize data points from different cells by dividing
by the mean and removing 1 (Fig. 3.14, bottom panel).

Both models were considered and are represented in Fig. 3.14. Despite
the correlation identified in Fig. 3.13, the means of the residues in both
models are very close to zero, and the distributions are well approximated by
a Gaussian distribution. For this reason, we decided in the main analysis to
stick with an additive noise, the main reason being that the implementation
used for the Kalman smoothing procedure are faster and more stable with
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an additive noise model. We assumed an additive white Gaussian noise with
mean 0 and standard deviation of 28.29 for the simulation of the synthetic
data and the signal reconstruction through the Kalman smoothing procedure.
As discussed in Section 3.3, the only way to definitively choose a noise model
over the other would have been to obtain two different steady-state growths
for each cell. Unfortunately, the presented time series were not long enough
to obtain a new steady state on glucose, something that will be corrected in
future experiments.
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Figure 3.14 – Distribution of the noise residues after normalization
and aggregation for the 45 normal cells. Two noise models were con-
sidered for the normalization: either the temporal mean mk(·) was removed
from the measurements independently for each cell (additive noise model in
Eq. 3.25), or 1 was removed from the ratio of the measurements with the tem-
poral mean mk(·) (multiplicative noise model in Eq. 3.27). For the additive
noise model, the fitted Gaussian distribution has a mean of 1.256 · 10−15 and
a standard deviation of 28.29. For the multiplicative noise model, the fitted
Gaussian distribution has a mean of 2.666 · 10−18 and a standard deviation
of 0.05383.
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3.5.4 S8 Text – Examples of complete analysis for 5 cells

In order to obtain a more visual idea of the results of the analysis, we
display below the complete signal reconstructions for 5 cells. In Figs 3.15-
3.19, the image on the left is the last image analyzed for the corresponding
well. The cell either at the top or the bottom (depending on the orientation
in the device) was manually segmented by selecting two pixels at the poles
on the fluorescence images (red cross). A 6-pixel-wide rectangular mask
was computed for each image, resulting in the masked image on the right.
In each of the graphs, the black and green points represent data points,
while the red solid lines are the results of the signal reconstruction via the
Kalman smoothing procedure. The parameters of the Kalman smoothing
are described in Material and Methods 3.4.5 and Figs 3.3 and 3.6. Specific
comments on each cell are given in the caption of Figs 3.15-3.19.
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Figure 3.15 – Complete analysis for the cell located at the bottom of the
well labelled "X1Y1, W11". (Figure description available in the introduction
of S8 Text.)
Growth rate and resource allocation are particularly unstable at the beginning
of the experiment, but seem to stabilize before the upshift. Oscillations in the
RFU/pixel/cell signal are clearly visible and result in oscillations in the resource
allocation signal reconstruction.
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Figure 3.16 – Complete analysis for the cell located at the bottom of the
well labelled "X2Y1, W7". (Figure description available in the introduction of
S8 Text.)
Here, the resource allocation is unstable at the beginning of the experiment despite
the apparent regularity of the RFU/pixel/cell. This could indicate a smoothing
factor that is too low for this particular cell.
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Figure 3.17 – Complete analysis for the cell located at the bottom of the
well labelled "X3Y2, W5". (Figure description available in the introduction of
S8 Text.)
We see for this cell that the reconstruction of the growth rate on the acetate medium
(before 0) is affected by the huge gap in the acquisition, the increase before -150 min
clearly being an artifact. However, because the Kalman smoothing procedure we
used allows for flexibility between the mother and the daughter cells, we quickly
recover a more realistic growth rate before the upshift. Despite an instability at
the beginning of the experiment, the resource allocation reconstruction exhibits a
remarkable stability during growth on the acetate medium, followed by oscillations
after the upshift on glucose (also visible directly on the RFU/pixel/cell data).
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Figure 3.18 – Complete analysis for the cell located at the bottom of the
well labelled "X2Y2, W3". (Figure description available in the introduction of
S8 Text.)
The reconstruction on this cell is a good example of what was expected: the growth
rate is stable on acetate, than quickly increases after the upshift on glucose. The
resource allocation is stable on acetate (indicating a steady state) than starts to
oscillate after the upshift on glucose, even though the smoothing factor seems a
little too high for this particular cell (some oscillations are poorly predicted after
the upshift, in particular in the interval [200,400] min).
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Figure 3.19 – Complete analysis for the cell located at the bottom of the
well labelled "X1Y2, W6". (Figure description available in the introduction of
S8 Text.)
The results on this cell are particularly questionable: we do not seem to obtain a
good steady state on acetate since the reconstructed resource allocation appears
either negative or oscillating before the upshift. It is thus impossible to conclude
if the oscillations observed after the upshift are real or due to overfitting. This cell
highlights why robust steady states before and after the transition are important
for a reliable signal reconstruction.
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3.5.5 S2 Figure – Cell categories identified in the anal-
ysis
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Figure 3.20 – Cell categories identified in the microscopy analysis.
As stated in Section 3.2.4, the reconstruction of the growth rate for the 68
available cells motivated their classification in three categories: dying cells
stop growing (lowest graphs) , pausing cells present growth rate oscillations
(middle graph), and normal cells that do not present any of the above (highest
graph).
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3.5.6 S3 Figure – Robust statistics for the cell categories
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Figure 3.21 – Robust statistics for the cell categories identified in the
microscopy analysis. Each graph shows the 25% (lower gray curve), 50%
(solid black curve) and 75% (upper gray curve) quartiles, computed at each
time step for the growth rates presented in S2 Fig. The gray area represents
the interquartile range.



Chapter 4

Discussion

"Apples fall onto the Earth because natural selection eliminated apples
falling towards the sky." – @tomroud [199], original source unknown.

Résumé du Chapitre 4: Discussion
Contrairement à sa cousine la physique, la biologie manque encore de

théories quantitatives à fort pouvoir prédictif. Même si de grosses avancées
ont eu lieu en biologie évolutive, d’autres domaines sont loin d’être aussi
développés d’un point de vue mathématique. C’est notamment le cas de la
croissance, qui malgré la place fondamentale qu’elle occupe dans ce qui définit
un être-vivant, repose sur des mécanismes qui semblent varier énormément
d’un organisme à l’autre, et pour lesquels des lois fondamentales sont dures
à identifier.

Chez les microorganismes, nous disposons néanmoins de lois de croissance.
Elles montrent de manière empirique que malgré la grande diversité des mé-
canismes moléculaires qui assurent le contrôle de la croissance, la composition
des microorganismes obéit à des règles universelles lorsqu’ils se multiplient
à l’état stationnaire dans différents environnements. En particulier, l’abon-
dance de leurs ribosomes s’ajuste linéairement avec la richesse du milieu,
d’une manière qui maximise leur taux de croissance. Mais comme décrit au
cours du Chapitre 1, ces lois ont été essentiellement établies en croissance
stationnaire, un état très rarement rencontré par ces organismes dans leur
milieu naturel. Pour quelles raisons les microorganismes seraient-ils optimisés
pour un état qu’ils n’ont que très peu rencontré au cours de leur évolution ?
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Les lois de croissance à l’état stationnaire ne seraient-elles pas une applica-
tion particulière de lois plus générales qui s’appliquent en environnements
variables ?

Notre but dans ce manuscrit a été d’établir un cadre de travail à la fois
théorique et expérimental dans lequel une perspective dynamique peut être
adoptée sur les lois de croissance. Au cours du Chapitre 2, nous avons uti-
lisé un modèle d’auto-réplicateur pour évaluer la redistribution optimale des
ressources lors d’un changement environnemental. En élargissant les prin-
cipes d’optimalité établis dans les lois de croissance stationnaire, nous avons
montré qu’une distribution des ressources de type tout-ou-rien (bang-bang
en anglais) optimise la biomasse générée tant que la composition cellulaire
n’est pas à l’équilibre. Cela nous a servi de point de référence pour comparer
entre elles différentes stratégies de régulation. Ainsi, nous avons montré que
les stratégies mesurant l’état interne de la cellule s’avèrent plus efficaces que
celles tirant leur information de l’environnement, contrairement à l’état sta-
tionnaire de croissance où toutes ces stratégies sont strictement équivalentes.
De plus, une stratégie légèrement plus complexe mais proche du système
ppGpp chez Escherichia coli, est théoriquement capable de s’approcher de la
distribution tout-ou-rien identifiée comme optimale.

La simplicité du modèle, même si elle peut rendre certains lecteurs scep-
tiques, s’est avérée cruciale dans notre étude. En effet, cela nous a permis
de clairement spécifier les hypothèses mises en jeu. La plus critique s’avère
être celle qui considère la production de biomasse comme étant le facteur de
fitness principal que l’on soit en environnement stable ou dynamique. Bien
que largement répandue, cette hypothèse n’est finalement basée que sur des
arguments indirects, ou bien établis dans des conditions de laboratoire, et sur
des souches de laboratoire (Chapitre 1). De fait, en conditions naturelles et à
l’échelle des temps évolutifs, il n’est pas certain que ce critère soit vraiment
universel. Une étape importante a donc été de vérifier expérimentalement les
prédictions que nous avons pu tirer de cette hypothèse.

C’est ce qui a été abordé au cours du Chapitre 3 de ce manuscrit. Nous
avons mis en place un cadre d’étude expérimental dans lequel la distribution
des ressources peut être observée lors d’une transition de croissance. Tout
d’abord, une souche d’Escherichia coli a été modifiée en attachant une pro-
téine fluorescente (GFP) à l’une des sous-unités du ribosome. Cette souche a
ensuite été observée en utilisant une technique avancée de microfluidique per-
mettant de réaliser des transitions robustes et contrôlées du milieu de culture.
Enfin, les mesures obtenues ont pu être exploitées via le développement d’une
technique de reconstruction du signal utilisant le lissage de Kalman. Plusieurs
améliorations du dispositif seront cependant nécessaires pour conclure défi-
nitivement sur l’existence d’une production tout-ou-rien des ribosomes après
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une transition. Deux scénarios sont cependant envisageables.
Dans le premier cas, la nature oscillatoire de la synthèse des ribosomes

pourrait être confirmée. Cela suggèrerait que les mécanismes de régulation
de la distribution des ressources maximisent la biomasse produite lors d’une
transition, et donc que les microorganismes sont effectivement adaptés à des
environnements changeants. Pour confirmer ces résultats, de nouvelles don-
nées devront nécessairement être acquises, notamment en mesurant des tran-
sitions similaires dans une variété plus large de conditions environnementales
(changement de source de carbone, ajout d’acides aminés dans le milieu pour
contourner le métabolisme, utilisation d’une restriction en azote au lieu du
carbone, ...). Le dispositif expérimental pourrait également être modifié pour
contrôler un plus grand nombre de paramètres. Par exemple, en attachant un
autre rapporteur fluorescent à une enzyme clé du métabolisme, nous pour-
rions vérifier si les synthèses de la machinerie d’expression génique et de la
machinerie métabolique sont effectivement en anti-phase lors des oscillations.

Dans le second cas, le comportement observé serait différent d’une pro-
duction tout-ou-rien. Par construction, cela signifierait qu’une hypothèse du
modèle n’est pas respectée. Par exemple, cela pourrait signifier que l’optimi-
sation de la biomasse produite lors d’une transition n’est pas un objectif pour
la cellule. Une autre possibilité serait que les coûts pour la cellule d’une telle
régulation dépassent les éventuels bénéfices qu’elle peut en tirer. En effet, en
ne comparant les schémas de régulation que par leurs bénéfices, nous avons
fait l’hypothèse implicite que leurs coûts pour la cellule sont négligeables,
sinon au moins comparables. Il est possible que même si la production de
biomasse s’avère être un critère déterminant, les limites physiques imposées
par le coût des régulations empêchent la cellule de faire mieux que le com-
portement observé. La prise en compte de ces coûts dans le modèle devra
donc être explorée avant toute conclusion.

Dans tous les cas, cette exploration des coûts des schémas de régulation
pourrait s’avérer cruciale dans l’établissement d’un lien fondamental entre la
complexité des schémas de régulation d’une espèce microbienne, et la dyna-
mique de son environnement. En effet, comme montré dans le Chapitre 2, la
cellule ne tire avantage d’un schéma de régulation complexe que lorsque son
environnement varie. On peut élargir ce résultat en supposant que le bénéfice
apporté par des régulations toujours plus complexes finit par saturer. En re-
vanche, le coût de ces régulations devrait continuer à croître, dans la mesure
où des régulations plus élaborées impliquent pour la cellule la synthèse de
davantage de systèmes de mesure, et donc détournent une part toujours plus
grande des ressources cellulaires. On peut donc conjecturer que ces deux ten-
dances vont finir par se croiser au niveau d’un goulot d’étranglement évolutif,
au delà duquel les coûts excèdent les bénéfices. On peut de plus s’attendre
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à ce que ce goulot d’étranglement survienne plus ou moins loin en fonction
de l’intensité et la fréquence des variations environnementales auxquelles les
microorganismes sont soumis. En d’autres termes, là où les lois de croissance
actuelles décrivent uniquement des variations physiologiques avec la qualité
du milieu, nous pourrions ajouter une autre dimension à ces lois qui re-
présenterait la variabilité temporelle de la disponibilité des nutriments dans
l’environnement naturel.

Beginning of Chapter 4
Physics has yet to be reduced to a formula that will fit on a piece of

clothing [200]. This is even more true for Biology, but the extensive work on
the mechanisms of evolution are helping to close this gap (see for instance
the Price equation, which summarize in a short and elegant formula the
mechanisms of evolution and natural selection [201]). But evolution by itself
is not sufficient to define life. Even the least restrictive definition we have –
the one we use to look for life in the universe – defines a living system as "a
self-sustaining chemical system capable of Darwinian evolution" [202, 203].
Self-sustainment appears to be as fundamental as evolution, and relies on
the transformation of matter and energy from the environment into organic
matter, in other words, on growth. But the mathematical formulation of
questions regarding the self-sustaining character of living systems has not
advanced as much as the mathematical analysis of evolution.

Nevertheless, fundamental growth laws have been established for microor-
ganisms. These growth laws show that, regardless of the molecular mech-
anisms underlying growth control, microorganisms tend to follow the same
empirical regularities when grown at steady state in different environmental
conditions [24, 31–33]. In particular, they adjust their internal molecular
composition after a change in the environment in such a way as to maximize
their growth rate (see in particular [24, 32]). Growth laws are a strong sup-
port for the theory of a modular organization of microorganisms [32, 204–
206]. They represent a big step forward towards gaining a general under-
standing of the physiology of microorganisms. They have been established
at steady state, however, a state in which most microorganisms spend very
little time [4–10]. Why would microorganisms be optimal for a situation they
rarely encounter? Would known growth laws be specific cases of more general
laws allowing microorganisms to respond to changes in the environment?

Our aim in this manuscript has been to establish a theoretical and ex-
perimental framework extending growth laws to a dynamical context. We
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focused on the growth law describing how ribosome abundance adapts to a
change in environment so as to maximize steady-state growth in different
media. Applying the same criterion of growth rate maximization, what is
the optimal way to allocate resources during a growth transition between
two different environments? In Chapter 2, we used a simple self-replicator
model of resource allocation, and showed that the steady state is invariant
over a number of regulatory schemes: the growth rate can be maximized by
measuring either the environment or the internal state of the cell. In both
cases, the expression of genes encoding the metabolic and gene expression
machineries has to be set to a specific value. By contrast, biomass maxi-
mization during a growth transition requires information about the internal
state rather than the environment. Moreover, expression of the metabolic
and gene expression machineries is not set to one specific value, but varies
with time in an on-off manner. What is optimal at steady state and during a
growth transition is thus not the same, but this does not mean that a single
regulatory system cannot meet both demands.

The model developed here is an instance of proof-of-concept model [49].
It does not necessarily aim at quantitatively predicting or controlling the
behavior of microorganisms. By using a simple and abstract representation,
it provides a convenient and tractable way of evaluating the implications of
dynamical optimality, in particular its divergence from steady-state optimal-
ity. Is a dynamical perspective on growth laws necessary? Do regulatory
mechanisms need to differ in a dynamical context? Those are the questions
that were investigated by means of this model. To our surprise, it addi-
tionally provided a new way of looking at the regulatory systems controlling
ribosomal abundance in many bacteria.

Some readers may be skeptical about the interest of using such a simple
model for addressing the above questions. Given the profusion of knowledge
and data available on biological systems, one might be tempted to include
in the model every known detail about the molecular implementation of the
system of interest. One of the main drawbacks of such mechanistic mod-
els is that we quickly loose track of the big picture and the underlying as-
sumptions. When including many molecular details, the models also tend to
become untractable, prohibiting the use of mathematical tools like optimal
control theory that are quickly overwhelmed by the sheer number of variables
and parameters in the model. Besides, simple, abstract models make it easy
for the modeler to state the assumptions that are made, and more impor-
tantly to identify which ones are logistical, exploratory, or critical (see [49],
in particular Box 1). Logistical assumptions do not affect the conclusions
of the model, and are only necessary for tractability. A good example in
our case is the Michaelis-Menten kinetics that were considered in Chapter 2.
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Exploratory assumptions, however, might be important to vary and test.
For instance, an exploratory assumption of our model was to consider that
the proposed strategies had to be optimal at steady state as well. This was
used as a necessary step to reduce the space of possible solutions, and make
the comparison between different strategies time-independent. Relaxing this
assumption would require the exploration of other environmental changes
beyond a simple nutrient upshift, but would probably raise interesting con-
siderations [207–210].

But the assumptions that are most in need of discussion are the criti-
cal assumptions, i.e. the ones that are invalidated if the model predictions
are not met in nature. In our case, a critical assumption is that biomass
production is the main fitness factor in stable or changing environments.
Throughout the manuscript, we did not really challenge this hypothesis, but
only provided arguments about why this assumption is reasonable in some
experimental conditions. The arguments given, however, are mostly based on
results obtained with laboratory strains in laboratory conditions. While it is
clear that microorganisms can be cultivated and are even naturally found in
conditions where maximizing the growth rate ensures their persistence [21–
24], we have no direct proof that biomass production is the fitness factor that
allowed them to naturally persist on evolutionary time-scales. In addition,
one must be careful when explaining the behavior of living systems solely as a
consequence of natural selection. Such systems are embedded in the physical
world, and sometimes universal laws just result from the physical limitations
that apply to the system (e.g., Monod’s law described in Chapter 1).

The second part of this manuscript was dedicated to setting up an experi-
mental framework for studying resource allocation during growth transitions.
Much emphasis has been given to the experimental issues encountered when
studying growth transitions and to come up with possible solutions. Fluo-
rescent reporter proteins were used to cope with the need for in-vivo mea-
surements at high temporal resolution. Advances in microfluidics were ex-
ploited to perform steady-state-to-steady-state transitions following a change
in medium, in order to buffer the effect of the pre-culture history [39–41].
Finally, the signal of interest was reconstructed through the use of Kalman
smoothing, a powerful signal processing algorithm that has, as we showed,
many features that make it suitable for the analysis of microscopy time-series
data [118, 119, 185]. Overall, the set-up still needs many improvements,
though most of them are experimental issues that should be easily fixable.

Chapter 3 must not be taken as a "test of the model" presented in Chap-
ter 2, but rather as a test of its assumptions (see Box 2 in [49]). The model
is correct in that bang-bang resource allocation follows mathematically from
the assumption that microorganisms maximize their biomass production at
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steady state and during growth transitions. The model predictions can be
used, however, as a tool to test whether this critical assumption is valid. In
Chapter 3, we thus apply the experimental set-up to observe the resource
allocation profile following a nutrient upshift in E. coli. While we were not
able to arrive at an unambiguous conclusion about the correctness of the
model prediction in this manuscript, we can draw up two possible scenarios
in the wake of future improvements of the experimental set-up.

In one scenario, the bang-bang or at least oscillatory nature of resource al-
location during a growth transition is confirmed. This would suggest that the
regulatory mechanisms of resource allocation do maximize biomass produc-
tion during growth transitions, hence that microorganisms are adapted for
changing environments. In order to further establish these results, we would
need additional data for a broader range of environmental conditions. The
most straightforward extension would be to test other upshift and downshift
schemes (different carbon sources, amino-acids supplementation, nitrogen in-
stead of carbon limitation, ...). The experimental set-up could also be slightly
modified to test a broader range of variables. For instance, the strain could
be modified so as to express an additional fluorescent protein that would
report the abundance of a key enzyme of metabolism. Along with the ribo-
somal reporter, this would allow us to test the prediction that the metabolic
and gene expression machineries are expressed in anti-phase.

In the other scenario, we do not observe any trace of a bang-bang re-
source allocation scheme. In that case, the crucial questions is: "Which
critical assumptions are not valid?" We cannot discard the possibility that
an assumption that was originally identified as exploratory or logistical might
in fact be critical for the predictions of the model. Although unlikely a priori,
this might be the case for the expressions used for the macroreactions in the
model (Eqs 2.6-2.7), the definition of the volume as invariably proportional
to the total mass of macromolecules (Eq. 2.2), or the fact that degrada-
tion is assumed negligible with respect to the rates of other reactions in the
system. More likely, the assumptions regarding the cost of the regulatory
system could be more critical than initially thought. By only comparing
the regulatory schemes with respect to their benefits, we implicitly made
the assumption that their costs are negligible or at least comparable. The
costs of regulatory schemes are difficult to model [211–213] since the cellular
variables are not equally costly to measure and, as we showed for the ppGpp
system, one mechanism may measure several variables at once. Nevertheless,
relaxation of this hypothesis would definitively need to be explored before
concluding that microorganisms do not optimize their biomass production
during growth transitions.

In any case, exploring the costs of regulatory mechanisms might uncover
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a fundamental link between the complexity of the regulatory schemes and the
dynamics of the environment. As we illustrated in Chapter 2, complex regula-
tory schemes only prove beneficial in a dynamical context, away from steady
state. At the opposite extreme, one can expect the benefits of these regu-
latory schemes to saturate, whereas the cost of complexity would probably
not saturate, since acquiring more information is expected to require addi-
tional sensing systems, diverting away an increasingly larger part of cellular
resources. Overall, these two tendencies are expected to cross at a point that
would represent an evolutionary bottleneck, beyond which the costs exceed
the benefits (see [214] for another example of such a bottleneck). Interest-
ingly, the position of the bottleneck might be dependent on the environment,
resulting in a law that would link the complexity of regulatory systems to the
dynamics of the environment. In other words, while the current growth laws
consider how the physiology of the cell varies with the nutrient quality of
the medium, we could add another dimension representing the time-varying
availability of this nutrient in the natural environment.
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1.1 Monod law, reproduced from [25]. Monod has been a
pioneer in the formalization of microbial growth into funda-
mental, coarse-grained relationships. This figure displays the
steady-state growth rate (in number of divisions per hour) of
Escherichia coli in a synthetic minimal medium at 37◦C con-
taining different concentrations of glucose (a common carbon
source). As the concentration of glucose increases, so does the
growth rate of E. coli by following the hyperbolic relationship
described in Eq. 1.1. The solid curve is obtained for µK = 1.35
div h-1, and KC = 0.22 · 10−4 mol L-1. . . . . . . . . . . . . . 16

1.2 The growth law of ribosomal abundance (figure re-
produced from Fig S1 in [33]). For a variety of carbon
sources and their corresponding steady-state growth rate, the
RNA/protein ratio is linearly correlated with the growth rate,
a relation that holds for many species of microorganisms. This
ratio is correlated with the fraction of ribosome-affiliated pro-
teins, and therefore with the relative abundance of ribosomes
in the cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1.3 The different phases of a typical growth curve. During
a typical batch growth scenario, biomass accumulates (black
thick line) whereas nutrients are consumed until depletion
(green dashed line) [3]. (A) The lag phase is a variable pe-
riod of time during which the organism adapt to the new
medium [38]. It is hard to study experimentaly and is known
to be affected by the pre-culturing history of the strain [39–
41], the magnitude and the rate of the change between the past
and present environments [42], and other hard-to-control envi-
ronmental conditions [43]. (B) The steady-state (or balanced-
growth) phase is characterized by an exponential production
of biomass. Its characteristics are time-invariant and quite
robust accross conditions, which has made it a standard for
microbial growth studies [3]. This phase can be extended for
hundreds of generations in continuous cultures by the constant
renewal of the medium [36, 44, 45]. As represented here, nutri-
ents are quickly depleted in batch conditions, which does not
allow to maintain steady-state growth for a long period of time.
(C) The stationary phase occurs after the depletion of the lim-
iting nutrients in the medium [3, 46]. In natural conditions,
microorganisms usually encounter poor media and spend most
of their time in stationary phase [4–6]. Some species that have
evolved long-term resistance mechanisms, like sporulation [47]
or cannibalism [48], can survive particularly long stationary
phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Self-replicator model of bacterial growth. External sub-
strates S enter the cell and are transformed into precursors
P through the action of the metabolic machinery M . The
precursors are used by the gene expression machinery R to
make the proteins composing both the metabolic machinery
(transporters, enzymes, ...) and the gene expression machin-
ery itself (RNA polymerase, ribosomes, ...). α (1 − α) is the
mass proportion of precursors converted into R (M). Thick
arrows denote reactions and thin, dashed arrows denote cat-
alytic activities. The rate of synthesis of precursors and the
rate of synthesis of proteins from precursors are denoted by
VM and VR, respectively. . . . . . . . . . . . . . . . . . . . . 36
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2.2 Analysis of self-replicator model of bacterial growth.
A: Phase-plane analysis of the self-replicator model of Eqs 2.3
and 2.4. The nullclines for p and r are shown as solid and
dashed curves, respectively. Parameter values are eM = 3.6 h-1,
kR = 3.6 h-1, KR = 1 g L-1, β = 0.003 L g-1, α = 0.45. B: De-
pendence of the growth rate at steady state µ∗ on the resource
allocation parameter α, for two different environmental con-
ditions (solid line, eM = 4.76 h-1; dashed line, eM = 1.57 h-1,
other parameter values are kR = 2.23 h-1, KR = 1 g L-1, and
β = 0.003 L g-1). The maximal growth rate is attained for a
unique α, called α∗opt. . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Self-replicator model accounts for bacterial growth laws.
A: Predicted quasi-linear relation between the maximal growth
rate µ∗opt and the corresponding optimal resource allocation
α∗opt, for different values of eM (different colors). The colored
dots indicate α∗opt and µ∗opt for kR = 2.23 h-1 and different
eM , and the dashed black line the relation for all intermedi-
ate values of eM . The dashed colored lines indicate the rela-
tion between α∗opt and µ∗opt obtained when, for a given value
of eM , the value of kR is decreased (lower kR leads to lower
µ∗opt). The solid grey curves correspond to (µ∗, α)-profiles like
those shown in Fig. 2.2B. B: Measured relation between the
total RNA/protein mass ratio and the growth rate, in differ-
ent growth media with different doses of a translation inhibitor
(data from [33]). For each medium, indicated by a color, five
different concentrations of inhibitor were used (higher dose
leads to lower growth rate). Growth-medium compositions
are given in the original publication and error bars represent
standard deviations. The dashed black and colored lines are
the same as in panel A, indicating the good quantitative corre-
spondence between model predictions and experimental data
for the chosen parameter values, obtained by fitting the model
to the data points (see Methods for details). . . . . . . . . . . 41
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2.4 Optimal control of the self-replicator during a nutri-
ent upshift. A: Optimal trajectory in the phase plane for
the nondimensionalized model of Eqs 2.11-2.12, with stream-
lines. The optimal trajectory is shown as a solid, red curve.
The solid, black curve represents the p̂-nullcline. The dashed,
black curve is the switching curve ϕ(p̂). The optimal solution
was obtained by numerical optimization using bocop [115] (see
Methods for details), using the parameter values EM = 1 and
K = 0.003, and starting from the initial state (0.024, 0.18) at
t = 0 (optimal steady state for EM = 0.2). B: Time evo-
lution of the control variable αopt(·) (thick, red line) and the
environment EM (dashed, black line). . . . . . . . . . . . . . 44

2.5 Alternative strategies for controlling the self-replicator
of bacterial growth. The feedback control strategies, shown
in red and superposed on the self-replicator of Fig. 2.1, exploit
information on system variables and the environment to adjust
the value of α, and thus the relative allocation of resources to
the metabolic machinery and gene expression machinery. . . . 46
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2.6 Comparison of the performance of the nutrient-only and
precursor-only strategies after a nutrient upshift. A: Tra-
jectory in the phase plane for the nutrient-only strategy (green
curve). The solid, black curve represents the p̂-nullcline. The
dashed, black curve is the r̂-nullcline. The solution is obtained
by numerical simulation of the system of Eqs 2.11-2.12, supple-
mented with α = f(EM ) as specified by Eq. 2.27 in the Methods
section and plotted in S1 Figure. The initial state corresponds
to the steady state attained for an environment given by 0.2EM .
While converging to the new steady state after the upshift, the pre-
cursor concentration makes a large overshoot. B: As above, but for
the precursor-only strategy. The feedback control strategy is now
defined by α = g(p̂) as specified by Eq. 2.28 in the Methods section
and plotted in S1 Figure. The solution trajectory (blue curve) ex-
hibits a lower overshoot. C: Evolution of the control variable α(·)
as a function of time, for each of the above two strategies. No-
tice that in the nutrient-only strategy α(·) immediately jumps to
the optimal value for the post-upshift steady state (green curve),
whereas in the precursor-only strategy it depends on the (time-
varying) precursor concentration (blue curve). D: Evolution of the
ratio Vol/Volopt as a function of time, where Vol is the volume of
the self-replicator and Volopt the volume of the same replicator fol-
lowing the optimal strategy shown in Fig. 2.4. In all of the above
simulations, the parameter values EM = 1 and K = 0.003 were
used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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2.7 Comparison of the performance of the precursor-only and
the on-off strategies after a nutrient upshift. A: Trajectory
in the phase plane for the on-off strategy (yellow curve). The solid,
black curve represents the p̂-nullcline and the dashed, black curve
the function g. The solution is obtained by numerical simulation
of the system of Eqs 2.11-2.12, supplemented with the equation
α = h(p̂, r̂) defined in Eq. 2.19 and plotted in Fig. 2.8A. The ini-
tial state corresponds to the optimal steady state attained for an
environment given by 0.2EM . B: Trajectory in the phase plane for
the precursor-only strategy (same as in Fig. 2.6B, added for com-
parison). C: Evolution of the control variable α for each strategy
as a function of time. Both strategies stabilize the system at the
optimal steady state, but only the on-off strategy (yellow curve)
exhibits bang-bang behavior. D: Evolution of the ratio Vol/Volopt
for the on-off and precursor-only strategies as a function of time,
where Vol is the volume of the self-replicator and Volopt the vol-
ume of the same replicator following the optimal strategy shown
in Fig. 2.4. The final values of Vol/Volopt attained by the two
strategies are 0.9831 and 0.9413, respectively. The on-off strategy
is thus hardly distinguishable from the optimal control strategy
in the plot. In all of the above simulations, the parameter values
EM = 1 and K = 0.003 were used. . . . . . . . . . . . . . . . . 52

2.8 ppGpp regulation implements an on-off control strat-
egy of resource allocation. A: Response surface of the
on-off control strategy, defined by α = h(p̂, r̂) in Eq. 2.19.
B: Response surface of the ppGpp control strategy, as defined
by Eq. 2.20 and the simplified kinetic model defining ppGpp in
terms of the total amino acid concentration and the ribosomal
protein fraction (S4 Text). The shape of the response sur-
face of the ppGpp control strategy is seen to be in very good
agreement with the on-off strategy leading to near-optimal
performance of the self-replicator during a nutrient upshift. . 54

2.9 Local stability of the on-off strategy. The on-off strategy
sets α to a value of 0 (1) when r̂ > g(p̂) (r̂ < g(p̂)). The
solid, black curve is the p̂-nullcline. The dashed, black curve
is the curve r̂ = g(p̂). The arrows represent the vector fields
for α = 0 (in blue) and α = 1 (in red). The intersection of
the p̂-nullcline and the curve r̂ = g(p̂) corresponds to a unique
non-trivial stable steady state, which is equal to (p̂∗opt, r̂

∗
opt) by

Eq. 2.60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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2.10 Transitions between regions in the phase-plane for the
adjoint system. A switch occurs when a trajectory crosses
the λp-axis. Left: abnormal case. An extremal trajectory
cannot have more than two switches. Right: normal case.
(λsp, 0) corresponds to the singular arc. After the first switch,
an extremal trajectory cannot have two consecutive switches
if it stays in the region {(p̂, r̂) ∈ Ω | p̂ < p̂∗opt} or {(p̂, r̂) ∈ Ω |
p̂ > p̂∗opt}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.11 ppGpp concentration is a function of total ribosome
and amino acid concentrations. We assume the dynam-
ics of ppGpp to be fast on the time-scale of changes in the
ribosome and amino acid concentrations. The concentration
of ppGpp can thus be expressed as a function of the latter two
variables, using the model of Bosdriesz et al. [116]. Parameters
are taken from Table 2.1. . . . . . . . . . . . . . . . . . . . . 82

2.12 Simple control strategies for the self-replicator of bac-
terial growth. A: Nutrient-only strategy: α = f(EM). The
dashed, black curve is the (unique) strategy driving the system
exactly to the optimal steady state, that is, the state in which
growth occurs at the maximal rate supported by EM . The
function f is defined by Eq. 2.27 in the Methods section of the
main text. The solid, red curve is an approximation of this
function by the simple Michaelis-Menten curve of Eq. 2.16,
with KmE = 1.0. B: Precursor-only strategy: α = g(p̂). The
dashed, black curve is the (unique) strategy driving the system
exactly to the optimal steady state. The function g is defined
by Eq. 2.28 in the Methods section of the main text. The solid,
red curve is an approximation of this function by the simple
Hill curve of Eq. 2.18, with Kmp = 0.06 and a cooperativity
coefficient 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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3.1 Schematic outline of the upshift experiment. The goal is
to measure the fluorescence and length/area of E. coli rpsB-gfp
cells during an acetate-to-glucose upshift. We use M9 mini-
mal medium supplemented with 0.2% of acetate or glucose
(see Material and Methods 3.4.2). A preculture was started
from glycerol stock for 2.5 days on 0.2% acetate in batch con-
dition (shake flask). The day of the experiment, the cells were
injected into the mothermachine and fed by a constant flow of
fresh 0.2% acetate medium (see Material and Methods 3.4.3).
Fluorescence and phase contrast images were taken every 5
minutes. After 20 h, the feeding media was switched to 0.2%
glucose and maintained for 20 h while continuing image ac-
quisition. Time 0 corresponds to the moment of the acetate-
glucose upshift. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 Results of data acquisition. We imaged 6 fields (X[1-3]Y[1-2])
each containing 15 wells (W[0-14]) for ∼40 h. From the 90 wells,
68 were suitable for further analysis (the others being empty, out
of frame for some period of time, or plugged). For all wells, data
points are missing in the interval between [-720,-150] because the
camera was out of focus. We stopped the analysis at 550 min,
when about 3/4 of the bacteria were still growing, before the en-
tire population died within a few hours for an unknown reason.
The image labeled "Raw image" is the last image analyzed for
the highlighted well. The bacterium on the left of this image was
manually segmented by selecting two pixels at the poles on the flu-
orescence images (red cross). A 6-pixel-wide rectangular mask was
computed for each image, resulting in the "Segmented image" on
the right. Fluorescence intensities are expressed in Relative Flu-
orescence Units (RFU) on a 16-bit image and were corrected for
camera background, but not autofluorescence background (Mate-
rial and Methods 3.4.4 and Discussion 3.3). The fluorescence inten-
sity of the cell, expressed in units RFU/pixel/cell, was computed
by dividing the sum of the fluorescence intensities of the pixels in
the rectangle by the total number of pixels in the rectangle. The
cell length is the distance in pixels between the two poles (red line).
The thick lines in green and black highlight the time-varying length
and fluorescence density for the cell visible in the top images, la-
beled "X3Y2, W2". The vertical dashed lines represent the time of
the upshift from growth on acetate to growth on glucose. . . . . . 96
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3.3 Growth-rate estimation using Kalman smoothing based
on measurement of the length of bacteria growing in a
microfluidic device. Gray lines represent the estimation of
the time-varying length (upper plot) and growth rate (lower
plot) of 68 cells by the unscented Kalman smoothing proce-
dure. The solid red lines highlight the result for one particular
cell, located at the bottom of the well labelled "X3Y2, W2",
while black crosses in the top graph are the data points for
this cell. The vertical dashed lines represent the time of the
upshift from growth on acetate to growth on glucose. As prior
for the algorithm, we used an observation variance of 9 pixels2
for the length L. The transition variance θ2 (i.e., the smooth-
ing factor for µ) is fixed at 10−8 min-6. Inheritance between
mother and daughter cells is taken into account by systemat-
ically choosing an initial mean growth rate equal to the last
estimated value for µ before cell division, and to half the last
estimated value for Vγ, bearing in mind that E. coli cells di-
vide symmetrically. At the start of the experiment, when no
mother cell is available to provide initial estimates, the above
values were fixed at 15 pixels for Vγ and 0.004 min-1 for µ.
The variances associated with these means are 16 pixels2 and
10−4 min-2, respectively for Vγ and µ. The initial mean of v is
set equal to 0, with an initial variance of 10−8 min-6. All the
cross-covariances are set to 0 because the system variables are
independent by construction. . . . . . . . . . . . . . . . . . . 102

3.4 Growth-rate estimation using Kalman smoothing for
the normal cells only. The top graph is the same as the
bottom graph of Fig. 3.3, except that the dying and pausing
cells were removed. The bottom graph shows the 25% (lower
gray curve), 50% (solid black curve) and 75% (upper gray
curve) quartiles, computed at each time step. The gray area
represents the interquartile range. . . . . . . . . . . . . . . . 103
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3.5 Performance of the Kalman smoothing procedure on syn-
thetic data simulating an acetate-glucose upshift. (A) Syn-
thetic data simulating an upshift from acetate to glucose, with and
without additive white noise, as well as the results obtained by
Kalman smoothing. The synthetic data were generated by simu-
lating the model presented in Eqs 2.3-2.4 with the on-off regulatory
strategy (Eq. 2.19 and Fig. 2.7). The model parameters used for
the simulation are eM,Ace = 0.18 h-1, eM,Glu = 0.9 h-1, kR = 3.6 h-1,
β = 0.003 L g-1, KR = 1 g L-1. The predicted r(t) profile was mul-
tiplied by a factor γ = 0.02 RFU L g-1 in order to obtain the corre-
sponding fluorescence intensity profile F (dashed black curve). The
noise level was estimated from the data (S7 Text) and added to F .
The choice of the parameters of the Kalman smoothing procedure
is discussed in the Material and Methods 3.4.5. (B) Estimation of
the resource allocation profile γα/β based on the data in (A). Fol-
lowing Chapter 2, α(t) displays a bang-bang-singular profile during
the upshift (dashed black curve). While the Kalman smoother is
not able to capture the discontinuous variations in γα/β, it quali-
tatively reproduces the input quite well (red solid curve). (C) The
predicted growth rate during the upshift experiment. This infor-
mation is used as an input in the smoothing procedure, since it is
supposed to have been independently estimated from the measure-
ments {L(t0), ..., L(tN−1)}. . . . . . . . . . . . . . . . . . . . . 105

3.6 Estimation of the resource allocation profile using Kal-
man smoothing based on the fluorescence density mea-
surements and the estimated growth rates from Fig. 3.3.
(A-B) Gray lines represent the estimation of the fluorescence
density (RFU/pixel) F (·) (in A) and the resource allocation
profile γα/β (in B) by the Kalman smoothing procedure for
the 45 normal cells. The solid red curves highlight the result
for one particular cell, , located at the bottom of the well la-
belled "X3Y2, W2", while black crosses in the top graph are
the data points for this cell. The vertical dashed lines repre-
sent the time of the upshift from growth on acetate to growth
on glucose. The prior values for the parameters of the smooth-
ing algorithm are exactly the same as those used for Fig. 3.5
and are reported in the Material and Methods 3.4.5. . . . . . 106
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3.7 Robust statistics for the estimation results presented
in Fig. 3.6. Each graph shows the 25% (lower gray curve),
50% (solid black curve) and 75% (upper gray curve) quartiles,
computed at each time step for the signals reconstructed in
Fig. 3.6. The gray area represents the interquartile range.
Interestingly, while most oscillations in the resource allocation
profile γα(·)/β cancel out at the population level, the first
peak after the upshift is conserved. . . . . . . . . . . . . . . . 108

3.8 Global overview of all estimated resource allocation
profiles presented in Fig. 3.6. The individual γα(·)/β
curves have been normalized with respect to their maximum
in the interval [0, 400] and then ordered with respect to their
maximum in the interval [0, 120]. . . . . . . . . . . . . . . . . 109

3.9 Construction of the gfp-tagged ribosome subunit. The
translational fusion of gfp_mut2 with rpsB was constructed
on the chromosome of E. coli (top line) by homologous re-
combination of gfp_mut2 followed by a selection “cassette”
(second line). A small linker was inserted between rpsB and
gfp_mut2 in order to minimize interference of the fluorescent
protein with ribosome functioning. The selection cassette con-
sists of a positive selection marker, the gene coding for the
resistance to the antibiotic kanamycine, and a negative selec-
tion marker, the gene coding for the toxin CcdB. The latter is
transcribed from the pBAD promoter, which is only activated
in the presence of arabinose in the culture medium. Homolo-
gous recombination is indicated by the grey shaded lines. The
resulting recombination product (third line) contains the de-
sired fusion protein followed by the selection cassette on the
chromosome of the bacterium. A second homologous recombi-
nation, using an oligonucleotide complementary to the end of
gfp_mut2 and the beginning the original region downstream
of rpsB removes the selection cassette. The resulting strain
(line four) carries the translational fusion of gfp_mut2 to rpsB
without any other modification of the chromosome. . . . . . . 114
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3.10 Growth curves in M9 0.2% glucose for the rpsB-gfp and
rpsB-mCherry strains. Growth and measurements were per-
formed at 37◦C on a 96-well microplate in a Tecan infinite 200
pro. We monitored 4 wells for each of the WT, rpsB-gfp, and rpsB-
mCherry strains. Curves were time shifted to correct for variability
in the inoculation process (-50 min for WT, and -20 min for rpsB-
mCherry). (A) Absorbance at 600 nm, corrected for background
by subtracting the absorbance of the M9 medium. Curve super-
position indicates similar growth rates between the WT and the
modified strains. (B) Fluorescence measured in each well in Rela-
tive Fluorescence Units (RFU). Green fluorescence (485 nm excita-
tion, 535 nm emission) is measured for the WT (dashed lines) and
the rpsB-gfp (solid lines) strains. Red fluorescence (560 nm exc.,
635 nm em.) is measured for the WT (dashed lines) and the rpsB-
mCherry (solid lines) strains. Fluorescence levels of the modified
strains are far above the autofluorescences measured on the WT
strain. (C) Ratio of fluorescence over absorbance (proxy for the flu-
orescence concentration in the cells). Autofluorescence background
was corrected by removing the fluorescence measured on the WT.
We observed a strange increase in fluorescence concentration for the
rpsB-mCherry strain after entry into stationary phase, something
that does not occur on the rpsB-gfp strain. At each measurement
cycle, the following procedure was applied: shaking (Orbital 6mm)
for 30 s, shaking (Linear 6mm) for 30 s, waiting for 5 s. . . . . . . 141

3.11 Estimation of the maturation and degradation rates
of the reporter proteins in the rpsB-gfp and rpsB-
mCherry strains. The strains were grown in the same con-
dition as in Fig. 3.10, except that a high concentration of Chlo-
ramphenicol was added in mid-exponential phase (t = 0, verti-
cal dashed grey line). The fluorescence was normalized by the
value at t = 0 and the degradation and maturation rates were
estimated by using the model in Eq. 3.22. Parameters of the
best fit (solid black line) are reported in Tab. 3.1. Data are
the result of the aggregation of 9 and 8 independent growth
curves for rpsB-gfp and rpsB-mCherry, respectively. . . . . . 142
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3.12 Points of interest for the noise estimation.
(Top graph) RFU/pixel/cell data points for the cell at the
bottom of the well labeled X3Y2,W2. Noise estimation was
performed on the points just before the upshift (red points),
were the bacteria are assumed to grow at steady state. (Bot-
tom graph) Cumulative density function (CDF, in red) and
probability density function (PDF, in gray) of the points high-
lighted in red on the top graph. They are visually compared
with CDF (solid green line) and PDF (dashed green line) of a
Gaussian fit with mean 548.88 and standard deviation 17.316. 145

3.13 Distribution of the means and standard deviations in
the region of interest for the normal cells. The empiri-
cal mean and standard deviation were evaluated in the region
before the upshift (red points on Fig. 3.12) for each of the
45 normal cells. They appear to be slightly correlated (Pear-
son R2: 0.3213, p-value: 4.923 · 10−5) which could indicate a
multiplicative instead of an additive noise. . . . . . . . . . . . 146

3.14 Distribution of the noise residues after normalization
and aggregation for the 45 normal cells. Two noise mod-
els were considered for the normalization: either the tempo-
ral mean mk(·) was removed from the measurements indepen-
dently for each cell (additive noise model in Eq. 3.25), or 1 was
removed from the ratio of the measurements with the tempo-
ral mean mk(·) (multiplicative noise model in Eq. 3.27). For
the additive noise model, the fitted Gaussian distribution has
a mean of 1.256 · 10−15 and a standard deviation of 28.29. For
the multiplicative noise model, the fitted Gaussian distribu-
tion has a mean of 2.666 · 10−18 and a standard deviation of
0.05383. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.15 Complete analysis for the cell located at the bottom of
the well labelled "X1Y1, W11". (Figure description available
in the introduction of S8 Text.)
Growth rate and resource allocation are particularly unstable at the
beginning of the experiment, but seem to stabilize before the up-
shift. Oscillations in the RFU/pixel/cell signal are clearly visible
and result in oscillations in the resource allocation signal recon-
struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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3.16 Complete analysis for the cell located at the bottom of the
well labelled "X2Y1, W7". (Figure description available in the
introduction of S8 Text.)
Here, the resource allocation is unstable at the beginning of the
experiment despite the apparent regularity of the RFU/pixel/cell.
This could indicate a smoothing factor that is too low for this
particular cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.17 Complete analysis for the cell located at the bottom of the
well labelled "X3Y2, W5". (Figure description available in the
introduction of S8 Text.)
We see for this cell that the reconstruction of the growth rate on
the acetate medium (before 0) is affected by the huge gap in the
acquisition, the increase before -150 min clearly being an artifact.
However, because the Kalman smoothing procedure we used allows
for flexibility between the mother and the daughter cells, we quickly
recover a more realistic growth rate before the upshift. Despite an
instability at the beginning of the experiment, the resource alloca-
tion reconstruction exhibits a remarkable stability during growth
on the acetate medium, followed by oscillations after the upshift
on glucose (also visible directly on the RFU/pixel/cell data). . . . 152

3.18 Complete analysis for the cell located at the bottom of the
well labelled "X2Y2, W3". (Figure description available in the
introduction of S8 Text.)
The reconstruction on this cell is a good example of what was ex-
pected: the growth rate is stable on acetate, than quickly increases
after the upshift on glucose. The resource allocation is stable on
acetate (indicating a steady state) than starts to oscillate after the
upshift on glucose, even though the smoothing factor seems a little
too high for this particular cell (some oscillations are poorly pre-
dicted after the upshift, in particular in the interval [200,400] min). 153

3.19 Complete analysis for the cell located at the bottom of the
well labelled "X1Y2, W6". (Figure description available in the
introduction of S8 Text.)
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3.20 Cell categories identified in the microscopy analysis.
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